Skip to content

How to fix unstable loss. I am using wizardlm or Llama-X training code with vicuna style chat format for fine-tuning Llama-2-7b-hf model. #32

@apt-team-018

Description

@apt-team-018

I'm using the 'Llama-X' (https://github.com/AetherCortex/Llama-X) training code with the vicuna-style chat template to fine-tune the Llama-2-7b-hf model. However, I'm observing an unstable loss during the process.

Please find the detailed Weights & Biases report at (https://wandb.ai/arpitsh018/huggingface/reports/Untitled-Report--Vmlldzo1NjE2Njgz).

Training Parameters:

os.system(f'deepspeed train.py
--model_name_or_path meta-llama/Llama-2-7b-hf
--data_path ../data/dummy_conversation.json
--output_dir ./checkpoint/finetuned-llama2-7b
--num_train_epochs 1
--model_max_length 4096
--per_device_train_batch_size 1
--per_device_eval_batch_size 1
--gradient_accumulation_steps 1
--evaluation_strategy "no"
--save_strategy "steps"
--save_steps 1000
--save_total_limit 3
--learning_rate 2e-5
--warmup_steps 0
--logging_steps 1
--lr_scheduler_type "cosine"
--report_to "wandb"
--gradient_checkpointing True
--deepspeed configs/deepspeed_config.json
--bf16 True')

deepspeed_config.json:

{
"zero_optimization": {
"stage": 2,
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
},
"offload_param": {
"device": "cpu",
"pin_memory": true
},
"overlap_comm": true,
"contiguous_gradients": true,
"sub_group_size": 0,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"stage3_max_live_parameters": 0,
"stage3_max_reuse_distance": 0,
"stage3_gather_16bit_weights_on_model_save": true
},
"bf16": {
"enabled": true
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": [0.9, 0.999],
"eps": 1e-8,
"weight_decay": 0
}
},
"scheduler": {
"type": "WarmupDecayLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto",
"total_num_steps": "auto"
}
},
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"wall_clock_breakdown": false
}

I'm eager to understand how to stabilize the loss for my training sessions. Any insights or recommendations would be greatly appreciated.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions