From ca00af6ec8f1ab13033559965c04f92f16124147 Mon Sep 17 00:00:00 2001 From: Aadiraj Anil <95686935+CodingSmiles@users.noreply.github.com> Date: Sun, 8 Feb 2026 11:47:33 +0530 Subject: [PATCH] Add plan for voice-enabled knowledge agent --- agent-bot-plan.md | 72 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 72 insertions(+) create mode 100644 agent-bot-plan.md diff --git a/agent-bot-plan.md b/agent-bot-plan.md new file mode 100644 index 0000000..2a4b204 --- /dev/null +++ b/agent-bot-plan.md @@ -0,0 +1,72 @@ +# Agent Bot Plan: PDF/Website Knowledge + Voice Conversation + +## Goal +Build a personal assistant that learns from PDFs or websites and holds voice conversations with answers grounded in the source repository content. + +## Core Capabilities +- **Ingest sources:** Upload PDF(s) or provide website URLs. +- **Index knowledge:** Extract text, chunk it, and store embeddings in a vector database. +- **Grounded responses:** Use retrieval-augmented generation (RAG) to answer only from indexed sources. +- **Voice interface:** Speech-to-text (STT) for input and text-to-speech (TTS) for responses. +- **Conversation memory:** Maintain short-term context while citing or summarizing sources. + +## Suggested Architecture +### 1) Ingestion & Processing +- **PDF pipeline:** + - Extract text from PDF. + - Normalize whitespace, remove headers/footers if needed. + - Chunk by sections or fixed token size (e.g., 500–1,000 tokens with overlap). +- **Website pipeline:** + - Fetch content, remove boilerplate, extract readable text. + - Respect robots.txt and rate limits. + - Chunk similarly to PDF pipeline. + +### 2) Embeddings & Vector Store +- Generate embeddings for each chunk. +- Store embeddings and metadata (source URL/file, page, section) in a vector database. +- When asked a question, retrieve the most relevant chunks. + +### 3) Retrieval-Augmented Generation (RAG) +- Combine retrieved chunks with the user’s question. +- Use a system prompt that **restricts answers to retrieved sources**. +- Optionally provide inline citations from chunk metadata. + +### 4) Voice Conversation Layer +- **STT:** Convert user audio to text. +- **TTS:** Convert model output to audio. +- **Streaming:** Stream audio responses for a more conversational experience. + +## Recommended Tech Stack (Example) +- **Backend:** Python + FastAPI +- **Embeddings:** OpenAI or local embeddings (e.g., sentence-transformers) +- **Vector DB:** FAISS (local), Chroma, or Pinecone +- **RAG Orchestration:** Lightweight custom pipeline or frameworks like LangChain/LlamaIndex +- **STT:** OpenAI Whisper or Deepgram +- **TTS:** ElevenLabs, OpenAI TTS, or Coqui TTS +- **Frontend:** Minimal web app with microphone input + audio output + +## Data Flow +1. User uploads PDF or enters website URL. +2. Server extracts, chunks, and embeds content. +3. Vector DB stores embeddings + metadata. +4. User asks a question by voice. +5. STT converts voice to text. +6. RAG retrieves relevant chunks and generates a grounded response. +7. TTS converts the answer to speech and streams it back. + +## Safety & Quality +- **Grounding:** Never answer without relevant chunks; ask follow-up questions if retrieval is weak. +- **Source citations:** Provide page numbers or URLs where possible. +- **Privacy:** Store user data locally or encrypt at rest if hosted. + +## MVP Milestones +1. **Text-only RAG demo** (PDF + website ingestion, Q&A in text). +2. **Add STT + TTS** for voice input/output. +3. **UI polish** (conversation history, source citations, upload status). +4. **Performance tuning** (better chunking, caching, retrieval filters). + +## Stretch Goals +- Multi-document collections with tags and filters. +- User-specific memory (preferences, frequently asked topics). +- Offline mode (local embeddings + local TTS/STT). +- Fine-grained permissions and access control.