diff --git a/doc/pub/week1/ipynb/week1.ipynb b/doc/pub/week1/ipynb/week1.ipynb index e4647628..d3ed8323 100644 --- a/doc/pub/week1/ipynb/week1.ipynb +++ b/doc/pub/week1/ipynb/week1.ipynb @@ -659,7 +659,7 @@ "id": "f60e43ec", "metadata": {}, "source": [ - "For two arbitrary vectors $\\vert x\\rangle$ and $\\vert y\\rangle$ with the same lentgh, we have the\n", + "For two arbitrary vectors $\\vert x\\rangle$ and $\\vert y\\rangle$ with the same length, we have the\n", "general expression" ] }, @@ -1414,7 +1414,7 @@ "metadata": {}, "source": [ "## Examples of tensor products\n", - "If we now go back to our original one-qubit basis states, we can form teh following tensor products" + "If we now go back to our original one-qubit basis states, we can form the following tensor products" ] }, { @@ -1981,7 +1981,7 @@ "\n", "Since our original basis $\\vert \\psi\\rangle$ is orthogonal and normalized with $\\vert\\alpha\\vert^2+\\vert\\beta\\vert^2=1$, the new basis is also orthogonal and normalized, as we can see below here.\n", "\n", - "Since the inverse of a hermitian matrix is equal to its hermitian\n", + "Since the inverse of a unitary matrix is equal to its hermitian\n", "conjugate/adjoint), unitary transformations are always reversible.\n", "\n", "Why are only unitary transformations allowed? The key lies in the way the inner product tranforms.\n", @@ -2004,7 +2004,7 @@ "id": "1d1c60c1", "metadata": {}, "source": [ - "or in terms of a matrix-vector notatio we have" + "or in terms of a matrix-vector notation we have" ] }, { diff --git a/doc/pub/week2/ipynb/week2.ipynb b/doc/pub/week2/ipynb/week2.ipynb index 513c8fbf..18b35a92 100644 --- a/doc/pub/week2/ipynb/week2.ipynb +++ b/doc/pub/week2/ipynb/week2.ipynb @@ -500,7 +500,7 @@ "source": [ "$$\n", "\\boldsymbol{P}_a=\\vert \\psi_a\\rangle \\langle \\psi_a\\vert = \\begin{bmatrix} \\vert \\alpha_0\\vert^2 &\\alpha_0\\alpha_1^* \\\\\n", - " \\alpha_1\\alpha_0^* & \\vert \\alpha_1\\vert^* \\end{bmatrix},\n", + " \\alpha_1\\alpha_0^* & \\vert \\alpha_1\\vert^2 \\end{bmatrix},\n", "$$" ] }, @@ -519,7 +519,7 @@ "source": [ "$$\n", "\\boldsymbol{P}_b=\\vert \\psi_b\\rangle \\langle \\psi_b\\vert = \\begin{bmatrix} \\vert \\beta_0\\vert^2 &\\beta_0\\beta_1^* \\\\\n", - " \\beta_1\\beta_0^* & \\vert \\beta_1\\vert^* \\end{bmatrix}.\n", + " \\beta_1\\beta_0^* & \\vert \\beta_1\\vert^2 \\end{bmatrix}.\n", "$$" ] }, @@ -558,8 +558,8 @@ "source": [ "$$\n", "\\boldsymbol{A}=\\lambda_a\\begin{bmatrix} \\vert \\alpha_0\\vert^2 &\\alpha_0\\alpha_1^* \\\\\n", - " \\alpha_1\\alpha_0^* & \\vert \\alpha_1\\vert^* \\end{bmatrix} +\\lambda_b\\begin{bmatrix} \\vert \\beta_0\\vert^2 &\\beta_0\\beta_1^* \\\\\n", - " \\beta_1\\beta_0^* & \\vert \\beta_1\\vert^* \\end{bmatrix}.\n", + " \\alpha_1\\alpha_0^* & \\vert \\alpha_1\\vert^2 \\end{bmatrix} +\\lambda_b\\begin{bmatrix} \\vert \\beta_0\\vert^2 &\\beta_0\\beta_1^* \\\\\n", + " \\beta_1\\beta_0^* & \\vert \\beta_1\\vert^2 \\end{bmatrix}.\n", "$$" ] }, @@ -742,7 +742,7 @@ "metadata": {}, "source": [ "$$\n", - "\\sum_{i=0}^1\\boldsymbol{P}_i^{\\dagger}\\boldsymbol{P}_1=\\boldsymbol{I},\n", + "\\sum_{i=0}^1\\boldsymbol{P}_i^{\\dagger}\\boldsymbol{P}_i=\\boldsymbol{I},\n", "$$" ] }, @@ -1500,14 +1500,14 @@ "source": [ "## Simple Hamiltonian models\n", "\n", - "In order to study get started with coding, we will study two simple Hamiltonian systems, one which we can use for a single qubit systems and one which has as basis functions a two-qubit system. These two simple Hamiltonians exhibit also something which is called level crossing, a feature which we will use in later studies of entanglement.\n", + "In order to get started with coding, we will study two simple Hamiltonian systems, one which we can use for a single qubit systems and one which has as basis functions a two-qubit system. These two simple Hamiltonians exhibit also something which is called level crossing, a feature which we will use in later studies of entanglement.\n", "\n", "We study first a simple two-level system. Thereafter we\n", "extend our model to a four-level system which can be\n", "interpreted as composed of two separate (not necesseraly identical)\n", "subsystems.\n", "\n", - "We let our hamiltonian depend linearly on a strength parameter $z$" + "We let our hamiltonian depend linearly on a strength parameter $\\lambda$" ] }, { @@ -1668,7 +1668,7 @@ "is $\\vert 0 \\rangle$. At $\\lambda=1$ the $\\vert 0 \\rangle$ mixing of\n", "the lowest eigenvalue is $1\\%$ while for $\\lambda\\leq 2/3$ we have a\n", "$\\vert 0 \\rangle$ component of more than $90\\%$. The character of the\n", - "eigenvectors has therefore been interchanged when passing $z=2/3$. The\n", + "eigenvectors has therefore been interchanged when passing $\\lambda=2/3$. The\n", "value of the parameter $X$ represents the strength of the coupling\n", "between the model space and the excluded space. The following code\n", "computes and plots the eigenvalues." @@ -1785,7 +1785,7 @@ "metadata": {}, "source": [ "$$\n", - "\\vert 10\\rangle = \\vert 1\\rangle_{\\mathrm{A}}\\otimes \\vert 0\\rangle_{\\mathrm{B}}=\\begin{bmatrix} 0 & 1 & 0 &0\\end{bmatrix}^T,\n", + "\\vert 01\\rangle = \\vert 0\\rangle_{\\mathrm{A}}\\otimes \\vert 1\\rangle_{\\mathrm{B}}=\\begin{bmatrix} 0 & 1 & 0 &0\\end{bmatrix}^T,\n", "$$" ] }, @@ -1803,7 +1803,7 @@ "metadata": {}, "source": [ "$$\n", - "\\vert 01\\rangle = \\vert 0\\rangle_{\\mathrm{A}}\\otimes \\vert 1\\rangle_{\\mathrm{B}}=\\begin{bmatrix} 0 & 0 & 1 &0\\end{bmatrix}^T,\n", + "\\vert 10\\rangle = \\vert 1\\rangle_{\\mathrm{A}}\\otimes \\vert 0\\rangle_{\\mathrm{B}}=\\begin{bmatrix} 0 & 0 & 1 &0\\end{bmatrix}^T,\n", "$$" ] }, @@ -1849,7 +1849,7 @@ "metadata": {}, "source": [ "$$\n", - "H_0\\vert 10 \\rangle = \\epsilon_{10}\\vert 10 \\rangle,\n", + "H_0\\vert 01 \\rangle = \\epsilon_{01}\\vert 01 \\rangle,\n", "$$" ] }, @@ -1859,7 +1859,7 @@ "metadata": {}, "source": [ "$$\n", - "H_0\\vert 01 \\rangle = \\epsilon_{01}\\vert 01 \\rangle,\n", + "H_0\\vert 10 \\rangle = \\epsilon_{10}\\vert 10 \\rangle,\n", "$$" ] }, @@ -1914,8 +1914,8 @@ "source": [ "$$\n", "\\boldsymbol{H}=\\begin{bmatrix} \\epsilon_{00}+H_z & 0 & 0 & H_x \\\\\n", - " 0 & \\epsilon_{10}-H_z & H_x & 0 \\\\\n", - "\t\t 0 & H_x & \\epsilon_{01}-H_z & 0 \\\\\n", + " 0 & \\epsilon_{01}-H_z & H_x & 0 \\\\\n", + "\t\t 0 & H_x & \\epsilon_{10}-H_z & 0 \\\\\n", "\t\t H_x & 0 & 0 & \\epsilon_{11} +H_z \\end{bmatrix}.\n", "$$" ] @@ -1936,7 +1936,7 @@ "metadata": {}, "source": [ "$$\n", - "\\rho_0=\\left(\\alpha_{00}\\vert 00 \\rangle\\langle 00\\vert+\\alpha_{10}\\vert 10 \\rangle\\langle 10\\vert+\\alpha_{01}\\vert 01 \\rangle\\langle 01\\vert+\\alpha_{11}\\vert 11 \\rangle\\langle 11\\vert\\right),\n", + "\\rho_0=\\left(\\alpha_{00}\\vert 00 \\rangle\\langle 00\\vert+\\alpha_{01}\\vert 01 \\rangle\\langle 01\\vert+\\alpha_{10}\\vert 10 \\rangle\\langle 10\\vert+\\alpha_{11}\\vert 11 \\rangle\\langle 11\\vert\\right),\n", "$$" ] },