From f93741e9b0b7bdc9a62684f33b25fb58998a0d93 Mon Sep 17 00:00:00 2001
From: "patricia.saez"
Date: Wed, 18 Oct 2023 17:09:32 +0200
Subject: [PATCH] Patricia S. all donegit add pandas_1.ipynb
---
your-code/pandas_1.ipynb | 2005 ++++++++++++++++++++++++++++++++++++--
1 file changed, 1927 insertions(+), 78 deletions(-)
diff --git a/your-code/pandas_1.ipynb b/your-code/pandas_1.ipynb
index 4f428ac..696d671 100644
--- a/your-code/pandas_1.ipynb
+++ b/your-code/pandas_1.ipynb
@@ -44,10 +44,39 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 3,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "p_s =pd.Series(lst)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "0 5.7\n",
+ "1 75.2\n",
+ "2 74.4\n",
+ "3 84.0\n",
+ "4 66.5\n",
+ "5 66.3\n",
+ "6 55.8\n",
+ "7 75.7\n",
+ "8 29.1\n",
+ "9 43.7\n",
+ "dtype: float64\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(p_s)"
+ ]
},
{
"cell_type": "markdown",
@@ -60,10 +89,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 5,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "74.4"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "p_s[2]"
+ ]
},
{
"cell_type": "markdown",
@@ -74,7 +116,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
@@ -92,10 +134,145 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 7,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 53.1 | \n",
+ " 95.0 | \n",
+ " 67.5 | \n",
+ " 35.0 | \n",
+ " 78.4 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 61.3 | \n",
+ " 40.8 | \n",
+ " 30.8 | \n",
+ " 37.8 | \n",
+ " 87.6 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 20.6 | \n",
+ " 73.2 | \n",
+ " 44.2 | \n",
+ " 14.6 | \n",
+ " 91.8 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 57.4 | \n",
+ " 0.1 | \n",
+ " 96.1 | \n",
+ " 4.2 | \n",
+ " 69.5 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 83.6 | \n",
+ " 20.5 | \n",
+ " 85.4 | \n",
+ " 22.8 | \n",
+ " 35.9 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 49.0 | \n",
+ " 69.0 | \n",
+ " 0.1 | \n",
+ " 31.8 | \n",
+ " 89.1 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 23.3 | \n",
+ " 40.7 | \n",
+ " 95.0 | \n",
+ " 83.8 | \n",
+ " 26.9 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 27.6 | \n",
+ " 26.4 | \n",
+ " 53.8 | \n",
+ " 88.8 | \n",
+ " 68.5 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 96.6 | \n",
+ " 96.4 | \n",
+ " 53.4 | \n",
+ " 72.4 | \n",
+ " 50.1 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 73.7 | \n",
+ " 39.0 | \n",
+ " 43.2 | \n",
+ " 81.6 | \n",
+ " 34.7 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 0 1 2 3 4\n",
+ "0 53.1 95.0 67.5 35.0 78.4\n",
+ "1 61.3 40.8 30.8 37.8 87.6\n",
+ "2 20.6 73.2 44.2 14.6 91.8\n",
+ "3 57.4 0.1 96.1 4.2 69.5\n",
+ "4 83.6 20.5 85.4 22.8 35.9\n",
+ "5 49.0 69.0 0.1 31.8 89.1\n",
+ "6 23.3 40.7 95.0 83.8 26.9\n",
+ "7 27.6 26.4 53.8 88.8 68.5\n",
+ "8 96.6 96.4 53.4 72.4 50.1\n",
+ "9 73.7 39.0 43.2 81.6 34.7"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pf = pd.DataFrame(b)\n",
+ "pf"
+ ]
},
{
"cell_type": "markdown",
@@ -106,7 +283,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
@@ -124,7 +301,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
@@ -133,10 +310,145 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 10,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Score_1 | \n",
+ " Score_2 | \n",
+ " Score_3 | \n",
+ " Score_4 | \n",
+ " Score_5 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 53.1 | \n",
+ " 95.0 | \n",
+ " 67.5 | \n",
+ " 35.0 | \n",
+ " 78.4 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 61.3 | \n",
+ " 40.8 | \n",
+ " 30.8 | \n",
+ " 37.8 | \n",
+ " 87.6 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 20.6 | \n",
+ " 73.2 | \n",
+ " 44.2 | \n",
+ " 14.6 | \n",
+ " 91.8 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 57.4 | \n",
+ " 0.1 | \n",
+ " 96.1 | \n",
+ " 4.2 | \n",
+ " 69.5 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 83.6 | \n",
+ " 20.5 | \n",
+ " 85.4 | \n",
+ " 22.8 | \n",
+ " 35.9 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 49.0 | \n",
+ " 69.0 | \n",
+ " 0.1 | \n",
+ " 31.8 | \n",
+ " 89.1 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 23.3 | \n",
+ " 40.7 | \n",
+ " 95.0 | \n",
+ " 83.8 | \n",
+ " 26.9 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 27.6 | \n",
+ " 26.4 | \n",
+ " 53.8 | \n",
+ " 88.8 | \n",
+ " 68.5 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 96.6 | \n",
+ " 96.4 | \n",
+ " 53.4 | \n",
+ " 72.4 | \n",
+ " 50.1 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 73.7 | \n",
+ " 39.0 | \n",
+ " 43.2 | \n",
+ " 81.6 | \n",
+ " 34.7 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Score_1 Score_2 Score_3 Score_4 Score_5\n",
+ "0 53.1 95.0 67.5 35.0 78.4\n",
+ "1 61.3 40.8 30.8 37.8 87.6\n",
+ "2 20.6 73.2 44.2 14.6 91.8\n",
+ "3 57.4 0.1 96.1 4.2 69.5\n",
+ "4 83.6 20.5 85.4 22.8 35.9\n",
+ "5 49.0 69.0 0.1 31.8 89.1\n",
+ "6 23.3 40.7 95.0 83.8 26.9\n",
+ "7 27.6 26.4 53.8 88.8 68.5\n",
+ "8 96.6 96.4 53.4 72.4 50.1\n",
+ "9 73.7 39.0 43.2 81.6 34.7"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pf.columns=colnames\n",
+ "pf"
+ ]
},
{
"cell_type": "markdown",
@@ -147,10 +459,123 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 11,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Score_1 | \n",
+ " Score_2 | \n",
+ " Score_3 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 53.1 | \n",
+ " 95.0 | \n",
+ " 67.5 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 61.3 | \n",
+ " 40.8 | \n",
+ " 30.8 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 20.6 | \n",
+ " 73.2 | \n",
+ " 44.2 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 57.4 | \n",
+ " 0.1 | \n",
+ " 96.1 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 83.6 | \n",
+ " 20.5 | \n",
+ " 85.4 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 49.0 | \n",
+ " 69.0 | \n",
+ " 0.1 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 23.3 | \n",
+ " 40.7 | \n",
+ " 95.0 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 27.6 | \n",
+ " 26.4 | \n",
+ " 53.8 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 96.6 | \n",
+ " 96.4 | \n",
+ " 53.4 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 73.7 | \n",
+ " 39.0 | \n",
+ " 43.2 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Score_1 Score_2 Score_3\n",
+ "0 53.1 95.0 67.5\n",
+ "1 61.3 40.8 30.8\n",
+ "2 20.6 73.2 44.2\n",
+ "3 57.4 0.1 96.1\n",
+ "4 83.6 20.5 85.4\n",
+ "5 49.0 69.0 0.1\n",
+ "6 23.3 40.7 95.0\n",
+ "7 27.6 26.4 53.8\n",
+ "8 96.6 96.4 53.4\n",
+ "9 73.7 39.0 43.2"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pf_subset_135=pf[['Score_1','Score_2','Score_3']]\n",
+ "pf_subset_135"
+ ]
},
{
"cell_type": "markdown",
@@ -161,10 +586,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 12,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "56.95000000000001"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pf.Score_3.mean()"
+ ]
},
{
"cell_type": "markdown",
@@ -175,10 +613,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 13,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "88.8"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pf.Score_4.max()"
+ ]
},
{
"cell_type": "markdown",
@@ -189,10 +640,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 14,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "40.75"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pf.Score_2.median()"
+ ]
},
{
"cell_type": "markdown",
@@ -203,7 +667,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
@@ -224,10 +688,134 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 16,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Description | \n",
+ " Quantity | \n",
+ " UnitPrice | \n",
+ " Revenue | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " LUNCH BAG APPLE DESIGN | \n",
+ " 1 | \n",
+ " 1.65 | \n",
+ " 1.65 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " SET OF 60 VINTAGE LEAF CAKE CASES | \n",
+ " 24 | \n",
+ " 0.55 | \n",
+ " 13.20 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " RIBBON REEL STRIPES DESIGN | \n",
+ " 1 | \n",
+ " 1.65 | \n",
+ " 1.65 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " WORLD WAR 2 GLIDERS ASSTD DESIGNS | \n",
+ " 2880 | \n",
+ " 0.18 | \n",
+ " 518.40 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " PLAYING CARDS JUBILEE UNION JACK | \n",
+ " 2 | \n",
+ " 1.25 | \n",
+ " 2.50 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " POPCORN HOLDER | \n",
+ " 7 | \n",
+ " 0.85 | \n",
+ " 5.95 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " BOX OF VINTAGE ALPHABET BLOCKS | \n",
+ " 1 | \n",
+ " 11.95 | \n",
+ " 11.95 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " PARTY BUNTING | \n",
+ " 4 | \n",
+ " 4.95 | \n",
+ " 19.80 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " JAZZ HEARTS ADDRESS BOOK | \n",
+ " 10 | \n",
+ " 0.19 | \n",
+ " 1.90 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " SET OF 4 SANTA PLACE SETTINGS | \n",
+ " 48 | \n",
+ " 1.25 | \n",
+ " 60.00 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Description Quantity UnitPrice Revenue\n",
+ "0 LUNCH BAG APPLE DESIGN 1 1.65 1.65\n",
+ "1 SET OF 60 VINTAGE LEAF CAKE CASES 24 0.55 13.20\n",
+ "2 RIBBON REEL STRIPES DESIGN 1 1.65 1.65\n",
+ "3 WORLD WAR 2 GLIDERS ASSTD DESIGNS 2880 0.18 518.40\n",
+ "4 PLAYING CARDS JUBILEE UNION JACK 2 1.25 2.50\n",
+ "5 POPCORN HOLDER 7 0.85 5.95\n",
+ "6 BOX OF VINTAGE ALPHABET BLOCKS 1 11.95 11.95\n",
+ "7 PARTY BUNTING 4 4.95 19.80\n",
+ "8 JAZZ HEARTS ADDRESS BOOK 10 0.19 1.90\n",
+ "9 SET OF 4 SANTA PLACE SETTINGS 48 1.25 60.00"
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df_products=pd.DataFrame(orders)\n",
+ "df_products"
+ ]
},
{
"cell_type": "markdown",
@@ -238,10 +826,20 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 17,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "the total quantity ordered is: 2978 and the total amount of Revenue: 637.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(\"the total quantity ordered is: \", df_products[\"Quantity\"].sum(), \"and the total amount of Revenue: \",df_products[\"Revenue\"].sum())"
+ ]
},
{
"cell_type": "markdown",
@@ -252,10 +850,29 @@
},
{
"cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
+ "execution_count": 18,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "the price of the most expensive is: 11.95\n",
+ "the price of the less expensive is: 0.18\n",
+ "the difference between both is : 11.77\n"
+ ]
+ }
+ ],
+ "source": [
+ "most_expensive = df_products['UnitPrice'].max()\n",
+ "less_expensive = df_products['UnitPrice'].min()\n",
+ "dif = most_expensive - less_expensive\n",
+ "print (\"the price of the most expensive is: \", most_expensive)\n",
+ "print (\"the price of the less expensive is: \", less_expensive)\n",
+ "print (\"the difference between both is : \", dif)"
+ ]
},
{
"cell_type": "markdown",
@@ -266,7 +883,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
@@ -285,10 +902,130 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 20,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Serial No. | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1 | \n",
+ " 337 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 4.5 | \n",
+ " 9.65 | \n",
+ " 1 | \n",
+ " 0.92 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 2 | \n",
+ " 316 | \n",
+ " 104 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 8.00 | \n",
+ " 1 | \n",
+ " 0.72 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 3 | \n",
+ " 322 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 2.5 | \n",
+ " 8.67 | \n",
+ " 1 | \n",
+ " 0.80 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 4 | \n",
+ " 314 | \n",
+ " 103 | \n",
+ " 2 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 8.21 | \n",
+ " 0 | \n",
+ " 0.65 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 5 | \n",
+ " 330 | \n",
+ " 115 | \n",
+ " 5 | \n",
+ " 4.5 | \n",
+ " 3.0 | \n",
+ " 9.34 | \n",
+ " 1 | \n",
+ " 0.90 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n",
+ "0 1 337 118 4 4.5 4.5 9.65 \n",
+ "1 2 316 104 3 3.0 3.5 8.00 \n",
+ "2 3 322 110 3 3.5 2.5 8.67 \n",
+ "3 4 314 103 2 2.0 3.0 8.21 \n",
+ "4 5 330 115 5 4.5 3.0 9.34 \n",
+ "\n",
+ " Research Chance of Admit \n",
+ "0 1 0.92 \n",
+ "1 1 0.72 \n",
+ "2 1 0.80 \n",
+ "3 0 0.65 \n",
+ "4 1 0.90 "
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions.head()"
+ ]
},
{
"cell_type": "markdown",
@@ -299,10 +1036,32 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 21,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Serial No. 0\n",
+ "GRE Score 0\n",
+ "TOEFL Score 0\n",
+ "University Rating 0\n",
+ "SOP 0\n",
+ "LOR 0\n",
+ "CGPA 0\n",
+ "Research 0\n",
+ "Chance of Admit 0\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions.isnull().sum()"
+ ]
},
{
"cell_type": "markdown",
@@ -313,17 +1072,347 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 22,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Serial No. | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1 | \n",
+ " 337 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 4.5 | \n",
+ " 9.65 | \n",
+ " 1 | \n",
+ " 0.92 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 2 | \n",
+ " 316 | \n",
+ " 104 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 8.00 | \n",
+ " 1 | \n",
+ " 0.72 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 3 | \n",
+ " 322 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 2.5 | \n",
+ " 8.67 | \n",
+ " 1 | \n",
+ " 0.80 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 4 | \n",
+ " 314 | \n",
+ " 103 | \n",
+ " 2 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 8.21 | \n",
+ " 0 | \n",
+ " 0.65 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 5 | \n",
+ " 330 | \n",
+ " 115 | \n",
+ " 5 | \n",
+ " 4.5 | \n",
+ " 3.0 | \n",
+ " 9.34 | \n",
+ " 1 | \n",
+ " 0.90 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n",
+ "0 1 337 118 4 4.5 4.5 9.65 \n",
+ "1 2 316 104 3 3.0 3.5 8.00 \n",
+ "2 3 322 110 3 3.5 2.5 8.67 \n",
+ "3 4 314 103 2 2.0 3.0 8.21 \n",
+ "4 5 330 115 5 4.5 3.0 9.34 \n",
+ "\n",
+ " Research Chance of Admit \n",
+ "0 1 0.92 \n",
+ "1 1 0.72 \n",
+ "2 1 0.80 \n",
+ "3 0 0.65 \n",
+ "4 1 0.90 "
+ ]
+ },
+ "execution_count": 22,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions.head()"
+ ]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 23,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ "
\n",
+ " \n",
+ " | Serial No. | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 1 | \n",
+ " 337 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 4.5 | \n",
+ " 9.65 | \n",
+ " 1 | \n",
+ " 0.92 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 316 | \n",
+ " 104 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 8.00 | \n",
+ " 1 | \n",
+ " 0.72 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 322 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 2.5 | \n",
+ " 8.67 | \n",
+ " 1 | \n",
+ " 0.80 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 314 | \n",
+ " 103 | \n",
+ " 2 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 8.21 | \n",
+ " 0 | \n",
+ " 0.65 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 330 | \n",
+ " 115 | \n",
+ " 5 | \n",
+ " 4.5 | \n",
+ " 3.0 | \n",
+ " 9.34 | \n",
+ " 1 | \n",
+ " 0.90 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 381 | \n",
+ " 324 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 3.5 | \n",
+ " 9.04 | \n",
+ " 1 | \n",
+ " 0.82 | \n",
+ "
\n",
+ " \n",
+ " | 382 | \n",
+ " 325 | \n",
+ " 107 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 9.11 | \n",
+ " 1 | \n",
+ " 0.84 | \n",
+ "
\n",
+ " \n",
+ " | 383 | \n",
+ " 330 | \n",
+ " 116 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.5 | \n",
+ " 9.45 | \n",
+ " 1 | \n",
+ " 0.91 | \n",
+ "
\n",
+ " \n",
+ " | 384 | \n",
+ " 312 | \n",
+ " 103 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 4.0 | \n",
+ " 8.78 | \n",
+ " 0 | \n",
+ " 0.67 | \n",
+ "
\n",
+ " \n",
+ " | 385 | \n",
+ " 333 | \n",
+ " 117 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.0 | \n",
+ " 9.66 | \n",
+ " 1 | \n",
+ " 0.95 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
385 rows × 8 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n",
+ "Serial No. \n",
+ "1 337 118 4 4.5 4.5 9.65 \n",
+ "2 316 104 3 3.0 3.5 8.00 \n",
+ "3 322 110 3 3.5 2.5 8.67 \n",
+ "4 314 103 2 2.0 3.0 8.21 \n",
+ "5 330 115 5 4.5 3.0 9.34 \n",
+ "... ... ... ... ... ... ... \n",
+ "381 324 110 3 3.5 3.5 9.04 \n",
+ "382 325 107 3 3.0 3.5 9.11 \n",
+ "383 330 116 4 5.0 4.5 9.45 \n",
+ "384 312 103 3 3.5 4.0 8.78 \n",
+ "385 333 117 4 5.0 4.0 9.66 \n",
+ "\n",
+ " Research Chance of Admit \n",
+ "Serial No. \n",
+ "1 1 0.92 \n",
+ "2 1 0.72 \n",
+ "3 1 0.80 \n",
+ "4 0 0.65 \n",
+ "5 1 0.90 \n",
+ "... ... ... \n",
+ "381 1 0.82 \n",
+ "382 1 0.84 \n",
+ "383 1 0.91 \n",
+ "384 0 0.67 \n",
+ "385 1 0.95 \n",
+ "\n",
+ "[385 rows x 8 columns]"
+ ]
+ },
+ "execution_count": 23,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#df.set_index(\"year\", inplace=False)\n",
+ "admissions.set_index(\"Serial No.\", inplace = True)\n",
+ "admissions"
+ ]
},
{
"cell_type": "markdown",
@@ -334,10 +1423,25 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 36,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0"
+ ]
+ },
+ "execution_count": 36,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions.duplicated(subset =['GRE Score', 'CGPA']).sum()\n",
+ "# as when checking for dupplicate rows just using the two columns GRE Score and CGPA the sum of the booleans is 0 this\n",
+ "# means that all are faulse => the combination of these two column leads to unique values for each row"
+ ]
},
{
"cell_type": "markdown",
@@ -348,10 +1452,140 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 46,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ "
\n",
+ " \n",
+ " | Serial No. | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 1 | \n",
+ " 337 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 4.5 | \n",
+ " 9.65 | \n",
+ " 1 | \n",
+ " 0.92 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 330 | \n",
+ " 115 | \n",
+ " 5 | \n",
+ " 4.5 | \n",
+ " 3.0 | \n",
+ " 9.34 | \n",
+ " 1 | \n",
+ " 0.90 | \n",
+ "
\n",
+ " \n",
+ " | 11 | \n",
+ " 328 | \n",
+ " 112 | \n",
+ " 4 | \n",
+ " 4.0 | \n",
+ " 4.5 | \n",
+ " 9.10 | \n",
+ " 1 | \n",
+ " 0.78 | \n",
+ "
\n",
+ " \n",
+ " | 20 | \n",
+ " 328 | \n",
+ " 116 | \n",
+ " 5 | \n",
+ " 5.0 | \n",
+ " 5.0 | \n",
+ " 9.50 | \n",
+ " 1 | \n",
+ " 0.94 | \n",
+ "
\n",
+ " \n",
+ " | 21 | \n",
+ " 334 | \n",
+ " 119 | \n",
+ " 5 | \n",
+ " 5.0 | \n",
+ " 4.5 | \n",
+ " 9.70 | \n",
+ " 1 | \n",
+ " 0.95 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n",
+ "Serial No. \n",
+ "1 337 118 4 4.5 4.5 9.65 \n",
+ "5 330 115 5 4.5 3.0 9.34 \n",
+ "11 328 112 4 4.0 4.5 9.10 \n",
+ "20 328 116 5 5.0 5.0 9.50 \n",
+ "21 334 119 5 5.0 4.5 9.70 \n",
+ "\n",
+ " Research Chance of Admit \n",
+ "Serial No. \n",
+ "1 1 0.92 \n",
+ "5 1 0.90 \n",
+ "11 1 0.78 \n",
+ "20 1 0.94 \n",
+ "21 1 0.95 "
+ ]
+ },
+ "execution_count": 46,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "cond_1 = admissions['CGPA'] > 9\n",
+ "cond_2 = admissions['Research'] > 0\n",
+ "test_answer = admissions[cond_1 & cond_2]\n",
+ "test_answer.head()"
+ ]
},
{
"cell_type": "markdown",
@@ -362,17 +1596,160 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 51,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The mean chance of admit for these applicants is; 0.8019999999999999\n"
+ ]
+ }
+ ],
+ "source": [
+ "cond_1 = admissions['CGPA'] > 9\n",
+ "cond_3 = admissions['SOP'] < 3.5\n",
+ "CGPA_9_SOP_35= admissions[cond_1 & cond_3]\n",
+ "mean_CGPA_9_SOP_35 = CGPA_9_SOP_35['Chance of Admit'].mean()\n",
+ "print('The mean chance of admit for these applicants is; ', mean_CGPA_9_SOP_35)"
+ ]
},
{
"cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
+ "execution_count": 48,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ "
\n",
+ " \n",
+ " | Serial No. | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 29 | \n",
+ " 338 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 3.0 | \n",
+ " 4.5 | \n",
+ " 9.40 | \n",
+ " 1 | \n",
+ " 0.91 | \n",
+ "
\n",
+ " \n",
+ " | 63 | \n",
+ " 327 | \n",
+ " 114 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 9.02 | \n",
+ " 0 | \n",
+ " 0.61 | \n",
+ "
\n",
+ " \n",
+ " | 141 | \n",
+ " 326 | \n",
+ " 114 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 9.11 | \n",
+ " 1 | \n",
+ " 0.83 | \n",
+ "
\n",
+ " \n",
+ " | 218 | \n",
+ " 324 | \n",
+ " 111 | \n",
+ " 4 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 9.01 | \n",
+ " 1 | \n",
+ " 0.82 | \n",
+ "
\n",
+ " \n",
+ " | 382 | \n",
+ " 325 | \n",
+ " 107 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 9.11 | \n",
+ " 1 | \n",
+ " 0.84 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n",
+ "Serial No. \n",
+ "29 338 118 4 3.0 4.5 9.40 \n",
+ "63 327 114 3 3.0 3.0 9.02 \n",
+ "141 326 114 3 3.0 3.0 9.11 \n",
+ "218 324 111 4 3.0 3.0 9.01 \n",
+ "382 325 107 3 3.0 3.5 9.11 \n",
+ "\n",
+ " Research Chance of Admit \n",
+ "Serial No. \n",
+ "29 1 0.91 \n",
+ "63 0 0.61 \n",
+ "141 1 0.83 \n",
+ "218 1 0.82 \n",
+ "382 1 0.84 "
+ ]
+ },
+ "execution_count": 48,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "CGPA_9_SOP_35"
+ ]
},
{
"cell_type": "markdown",
@@ -384,10 +1761,16 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 52,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "def tofle_crieteria (tofle):\n",
+ " if tofle > 100:\n",
+ " return True\n",
+ " else:\n",
+ " return False"
+ ]
},
{
"cell_type": "markdown",
@@ -398,31 +1781,497 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 53,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "admissions['Decision'] = admissions ['TOEFL Score'].apply(tofle_crieteria)"
+ ]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 55,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ " Decision | \n",
+ "
\n",
+ " \n",
+ " | Serial No. | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 1 | \n",
+ " 337 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 4.5 | \n",
+ " 9.65 | \n",
+ " 1 | \n",
+ " 0.92 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 316 | \n",
+ " 104 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 8.00 | \n",
+ " 1 | \n",
+ " 0.72 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 322 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 2.5 | \n",
+ " 8.67 | \n",
+ " 1 | \n",
+ " 0.80 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 314 | \n",
+ " 103 | \n",
+ " 2 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 8.21 | \n",
+ " 0 | \n",
+ " 0.65 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 330 | \n",
+ " 115 | \n",
+ " 5 | \n",
+ " 4.5 | \n",
+ " 3.0 | \n",
+ " 9.34 | \n",
+ " 1 | \n",
+ " 0.90 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 381 | \n",
+ " 324 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 3.5 | \n",
+ " 9.04 | \n",
+ " 1 | \n",
+ " 0.82 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " | 382 | \n",
+ " 325 | \n",
+ " 107 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 9.11 | \n",
+ " 1 | \n",
+ " 0.84 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " | 383 | \n",
+ " 330 | \n",
+ " 116 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.5 | \n",
+ " 9.45 | \n",
+ " 1 | \n",
+ " 0.91 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " | 384 | \n",
+ " 312 | \n",
+ " 103 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 4.0 | \n",
+ " 8.78 | \n",
+ " 0 | \n",
+ " 0.67 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " | 385 | \n",
+ " 333 | \n",
+ " 117 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.0 | \n",
+ " 9.66 | \n",
+ " 1 | \n",
+ " 0.95 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
385 rows × 9 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n",
+ "Serial No. \n",
+ "1 337 118 4 4.5 4.5 9.65 \n",
+ "2 316 104 3 3.0 3.5 8.00 \n",
+ "3 322 110 3 3.5 2.5 8.67 \n",
+ "4 314 103 2 2.0 3.0 8.21 \n",
+ "5 330 115 5 4.5 3.0 9.34 \n",
+ "... ... ... ... ... ... ... \n",
+ "381 324 110 3 3.5 3.5 9.04 \n",
+ "382 325 107 3 3.0 3.5 9.11 \n",
+ "383 330 116 4 5.0 4.5 9.45 \n",
+ "384 312 103 3 3.5 4.0 8.78 \n",
+ "385 333 117 4 5.0 4.0 9.66 \n",
+ "\n",
+ " Research Chance of Admit Decision \n",
+ "Serial No. \n",
+ "1 1 0.92 True \n",
+ "2 1 0.72 True \n",
+ "3 1 0.80 True \n",
+ "4 0 0.65 True \n",
+ "5 1 0.90 True \n",
+ "... ... ... ... \n",
+ "381 1 0.82 True \n",
+ "382 1 0.84 True \n",
+ "383 1 0.91 True \n",
+ "384 0 0.67 True \n",
+ "385 1 0.95 True \n",
+ "\n",
+ "[385 rows x 9 columns]"
+ ]
+ },
+ "execution_count": 55,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Create a column called `decision2` in the `admissions` dataframe. Assign 1 to this column if the value of `SOP` is greater than 3 and 0 otherwise. \n",
+ "HINT (use np.where)"
+ ]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 56,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "admissions['decision2'] = admissions['SOP'].apply(lambda x: 1 if x >3 else 0)"
+ ]
},
{
- "cell_type": "markdown",
+ "cell_type": "code",
+ "execution_count": 57,
"metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ " Decision | \n",
+ " decision2 | \n",
+ "
\n",
+ " \n",
+ " | Serial No. | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 1 | \n",
+ " 337 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 4.5 | \n",
+ " 9.65 | \n",
+ " 1 | \n",
+ " 0.92 | \n",
+ " True | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 316 | \n",
+ " 104 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 8.00 | \n",
+ " 1 | \n",
+ " 0.72 | \n",
+ " True | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 322 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 2.5 | \n",
+ " 8.67 | \n",
+ " 1 | \n",
+ " 0.80 | \n",
+ " True | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 314 | \n",
+ " 103 | \n",
+ " 2 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 8.21 | \n",
+ " 0 | \n",
+ " 0.65 | \n",
+ " True | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 330 | \n",
+ " 115 | \n",
+ " 5 | \n",
+ " 4.5 | \n",
+ " 3.0 | \n",
+ " 9.34 | \n",
+ " 1 | \n",
+ " 0.90 | \n",
+ " True | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 381 | \n",
+ " 324 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 3.5 | \n",
+ " 9.04 | \n",
+ " 1 | \n",
+ " 0.82 | \n",
+ " True | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 382 | \n",
+ " 325 | \n",
+ " 107 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 9.11 | \n",
+ " 1 | \n",
+ " 0.84 | \n",
+ " True | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 383 | \n",
+ " 330 | \n",
+ " 116 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.5 | \n",
+ " 9.45 | \n",
+ " 1 | \n",
+ " 0.91 | \n",
+ " True | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 384 | \n",
+ " 312 | \n",
+ " 103 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 4.0 | \n",
+ " 8.78 | \n",
+ " 0 | \n",
+ " 0.67 | \n",
+ " True | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 385 | \n",
+ " 333 | \n",
+ " 117 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.0 | \n",
+ " 9.66 | \n",
+ " 1 | \n",
+ " 0.95 | \n",
+ " True | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
385 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n",
+ "Serial No. \n",
+ "1 337 118 4 4.5 4.5 9.65 \n",
+ "2 316 104 3 3.0 3.5 8.00 \n",
+ "3 322 110 3 3.5 2.5 8.67 \n",
+ "4 314 103 2 2.0 3.0 8.21 \n",
+ "5 330 115 5 4.5 3.0 9.34 \n",
+ "... ... ... ... ... ... ... \n",
+ "381 324 110 3 3.5 3.5 9.04 \n",
+ "382 325 107 3 3.0 3.5 9.11 \n",
+ "383 330 116 4 5.0 4.5 9.45 \n",
+ "384 312 103 3 3.5 4.0 8.78 \n",
+ "385 333 117 4 5.0 4.0 9.66 \n",
+ "\n",
+ " Research Chance of Admit Decision decision2 \n",
+ "Serial No. \n",
+ "1 1 0.92 True 1 \n",
+ "2 1 0.72 True 0 \n",
+ "3 1 0.80 True 1 \n",
+ "4 0 0.65 True 0 \n",
+ "5 1 0.90 True 1 \n",
+ "... ... ... ... ... \n",
+ "381 1 0.82 True 1 \n",
+ "382 1 0.84 True 0 \n",
+ "383 1 0.91 True 1 \n",
+ "384 0 0.67 True 1 \n",
+ "385 1 0.95 True 1 \n",
+ "\n",
+ "[385 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 57,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "Create a column called `decision2` in the `admissions` dataframe. Assign 1 to this column if the value of `SOP` is greater than 3 and 0 otherwise. \n",
- "HINT (use np.where)"
+ "admissions"
]
},
{
@@ -435,9 +2284,9 @@
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3 (ipykernel)",
+ "display_name": "ironhack",
"language": "python",
- "name": "python3"
+ "name": "ironhack"
},
"language_info": {
"codemirror_mode": {
@@ -449,7 +2298,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.10.8"
+ "version": "3.11.5"
},
"toc": {
"base_numbering": "",