diff --git a/your-code/pandas_1.ipynb b/your-code/pandas_1.ipynb
index 4f428ac..f17aa9a 100644
--- a/your-code/pandas_1.ipynb
+++ b/your-code/pandas_1.ipynb
@@ -18,7 +18,7 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 160,
"metadata": {},
"outputs": [],
"source": [
@@ -35,7 +35,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 161,
"metadata": {},
"outputs": [],
"source": [
@@ -44,10 +44,34 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 162,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 5.7\n",
+ "1 75.2\n",
+ "2 74.4\n",
+ "3 84.0\n",
+ "4 66.5\n",
+ "5 66.3\n",
+ "6 55.8\n",
+ "7 75.7\n",
+ "8 29.1\n",
+ "9 43.7\n",
+ "dtype: float64"
+ ]
+ },
+ "execution_count": 162,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "series_ = pd.Series(lst)\n",
+ "series_"
+ ]
},
{
"cell_type": "markdown",
@@ -60,10 +84,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 163,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "74.4"
+ ]
+ },
+ "execution_count": 163,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "series_[2]"
+ ]
},
{
"cell_type": "markdown",
@@ -74,7 +111,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 164,
"metadata": {},
"outputs": [],
"source": [
@@ -92,10 +129,145 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 165,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 53.1 | \n",
+ " 95.0 | \n",
+ " 67.5 | \n",
+ " 35.0 | \n",
+ " 78.4 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 61.3 | \n",
+ " 40.8 | \n",
+ " 30.8 | \n",
+ " 37.8 | \n",
+ " 87.6 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 20.6 | \n",
+ " 73.2 | \n",
+ " 44.2 | \n",
+ " 14.6 | \n",
+ " 91.8 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 57.4 | \n",
+ " 0.1 | \n",
+ " 96.1 | \n",
+ " 4.2 | \n",
+ " 69.5 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 83.6 | \n",
+ " 20.5 | \n",
+ " 85.4 | \n",
+ " 22.8 | \n",
+ " 35.9 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 49.0 | \n",
+ " 69.0 | \n",
+ " 0.1 | \n",
+ " 31.8 | \n",
+ " 89.1 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 23.3 | \n",
+ " 40.7 | \n",
+ " 95.0 | \n",
+ " 83.8 | \n",
+ " 26.9 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 27.6 | \n",
+ " 26.4 | \n",
+ " 53.8 | \n",
+ " 88.8 | \n",
+ " 68.5 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 96.6 | \n",
+ " 96.4 | \n",
+ " 53.4 | \n",
+ " 72.4 | \n",
+ " 50.1 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 73.7 | \n",
+ " 39.0 | \n",
+ " 43.2 | \n",
+ " 81.6 | \n",
+ " 34.7 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 0 1 2 3 4\n",
+ "0 53.1 95.0 67.5 35.0 78.4\n",
+ "1 61.3 40.8 30.8 37.8 87.6\n",
+ "2 20.6 73.2 44.2 14.6 91.8\n",
+ "3 57.4 0.1 96.1 4.2 69.5\n",
+ "4 83.6 20.5 85.4 22.8 35.9\n",
+ "5 49.0 69.0 0.1 31.8 89.1\n",
+ "6 23.3 40.7 95.0 83.8 26.9\n",
+ "7 27.6 26.4 53.8 88.8 68.5\n",
+ "8 96.6 96.4 53.4 72.4 50.1\n",
+ "9 73.7 39.0 43.2 81.6 34.7"
+ ]
+ },
+ "execution_count": 165,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = pd.DataFrame(b)\n",
+ "df"
+ ]
},
{
"cell_type": "markdown",
@@ -106,7 +278,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 166,
"metadata": {},
"outputs": [],
"source": [
@@ -124,7 +296,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 167,
"metadata": {},
"outputs": [],
"source": [
@@ -133,10 +305,145 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 168,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Score_1 | \n",
+ " Score_2 | \n",
+ " Score_3 | \n",
+ " Score_4 | \n",
+ " Score_5 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 53.1 | \n",
+ " 95.0 | \n",
+ " 67.5 | \n",
+ " 35.0 | \n",
+ " 78.4 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 61.3 | \n",
+ " 40.8 | \n",
+ " 30.8 | \n",
+ " 37.8 | \n",
+ " 87.6 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 20.6 | \n",
+ " 73.2 | \n",
+ " 44.2 | \n",
+ " 14.6 | \n",
+ " 91.8 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 57.4 | \n",
+ " 0.1 | \n",
+ " 96.1 | \n",
+ " 4.2 | \n",
+ " 69.5 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 83.6 | \n",
+ " 20.5 | \n",
+ " 85.4 | \n",
+ " 22.8 | \n",
+ " 35.9 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 49.0 | \n",
+ " 69.0 | \n",
+ " 0.1 | \n",
+ " 31.8 | \n",
+ " 89.1 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 23.3 | \n",
+ " 40.7 | \n",
+ " 95.0 | \n",
+ " 83.8 | \n",
+ " 26.9 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 27.6 | \n",
+ " 26.4 | \n",
+ " 53.8 | \n",
+ " 88.8 | \n",
+ " 68.5 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 96.6 | \n",
+ " 96.4 | \n",
+ " 53.4 | \n",
+ " 72.4 | \n",
+ " 50.1 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 73.7 | \n",
+ " 39.0 | \n",
+ " 43.2 | \n",
+ " 81.6 | \n",
+ " 34.7 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Score_1 Score_2 Score_3 Score_4 Score_5\n",
+ "0 53.1 95.0 67.5 35.0 78.4\n",
+ "1 61.3 40.8 30.8 37.8 87.6\n",
+ "2 20.6 73.2 44.2 14.6 91.8\n",
+ "3 57.4 0.1 96.1 4.2 69.5\n",
+ "4 83.6 20.5 85.4 22.8 35.9\n",
+ "5 49.0 69.0 0.1 31.8 89.1\n",
+ "6 23.3 40.7 95.0 83.8 26.9\n",
+ "7 27.6 26.4 53.8 88.8 68.5\n",
+ "8 96.6 96.4 53.4 72.4 50.1\n",
+ "9 73.7 39.0 43.2 81.6 34.7"
+ ]
+ },
+ "execution_count": 168,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = pd.DataFrame(b, columns=colnames)\n",
+ "df"
+ ]
},
{
"cell_type": "markdown",
@@ -147,10 +454,123 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 169,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Score_1 | \n",
+ " Score_3 | \n",
+ " Score_5 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 53.1 | \n",
+ " 67.5 | \n",
+ " 78.4 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 61.3 | \n",
+ " 30.8 | \n",
+ " 87.6 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 20.6 | \n",
+ " 44.2 | \n",
+ " 91.8 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 57.4 | \n",
+ " 96.1 | \n",
+ " 69.5 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 83.6 | \n",
+ " 85.4 | \n",
+ " 35.9 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 49.0 | \n",
+ " 0.1 | \n",
+ " 89.1 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 23.3 | \n",
+ " 95.0 | \n",
+ " 26.9 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 27.6 | \n",
+ " 53.8 | \n",
+ " 68.5 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 96.6 | \n",
+ " 53.4 | \n",
+ " 50.1 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 73.7 | \n",
+ " 43.2 | \n",
+ " 34.7 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Score_1 Score_3 Score_5\n",
+ "0 53.1 67.5 78.4\n",
+ "1 61.3 30.8 87.6\n",
+ "2 20.6 44.2 91.8\n",
+ "3 57.4 96.1 69.5\n",
+ "4 83.6 85.4 35.9\n",
+ "5 49.0 0.1 89.1\n",
+ "6 23.3 95.0 26.9\n",
+ "7 27.6 53.8 68.5\n",
+ "8 96.6 53.4 50.1\n",
+ "9 73.7 43.2 34.7"
+ ]
+ },
+ "execution_count": 169,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "subset_df = df[[\"Score_1\", \"Score_3\", \"Score_5\"]]\n",
+ "subset_df"
+ ]
},
{
"cell_type": "markdown",
@@ -161,10 +581,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 170,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "56.95000000000001"
+ ]
+ },
+ "execution_count": 170,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[\"Score_3\"].mean()"
+ ]
},
{
"cell_type": "markdown",
@@ -175,10 +608,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 171,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "88.8"
+ ]
+ },
+ "execution_count": 171,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[\"Score_4\"].max()"
+ ]
},
{
"cell_type": "markdown",
@@ -189,10 +635,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 172,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "40.75"
+ ]
+ },
+ "execution_count": 172,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[\"Score_2\"].median()"
+ ]
},
{
"cell_type": "markdown",
@@ -203,31 +662,156 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 173,
"metadata": {},
"outputs": [],
"source": [
- "orders = {'Description': ['LUNCH BAG APPLE DESIGN',\n",
- " 'SET OF 60 VINTAGE LEAF CAKE CASES ',\n",
- " 'RIBBON REEL STRIPES DESIGN ',\n",
- " 'WORLD WAR 2 GLIDERS ASSTD DESIGNS',\n",
- " 'PLAYING CARDS JUBILEE UNION JACK',\n",
- " 'POPCORN HOLDER',\n",
- " 'BOX OF VINTAGE ALPHABET BLOCKS',\n",
- " 'PARTY BUNTING',\n",
- " 'JAZZ HEARTS ADDRESS BOOK',\n",
- " 'SET OF 4 SANTA PLACE SETTINGS'],\n",
- " 'Quantity': [1, 24, 1, 2880, 2, 7, 1, 4, 10, 48],\n",
- " 'UnitPrice': [1.65, 0.55, 1.65, 0.18, 1.25, 0.85, 11.95, 4.95, 0.19, 1.25],\n",
- " 'Revenue': [1.65, 13.2, 1.65, 518.4, 2.5, 5.95, 11.95, 19.8, 1.9, 60.0]}"
+ "orders = {\n",
+ " 'Description': ['LUNCH BAG APPLE DESIGN', 'SET OF 60 VINTAGE LEAF CAKE CASES ', 'RIBBON REEL STRIPES DESIGN ', 'WORLD WAR 2 GLIDERS ASSTD DESIGNS', 'PLAYING CARDS JUBILEE UNION JACK', 'POPCORN HOLDER', 'BOX OF VINTAGE ALPHABET BLOCKS', 'PARTY BUNTING', 'JAZZ HEARTS ADDRESS BOOK', 'SET OF 4 SANTA PLACE SETTINGS'],\n",
+ " 'Quantity': [1, 24, 1, 2880, 2, 7, 1, 4, 10, 48],\n",
+ " 'UnitPrice': [1.65, 0.55, 1.65, 0.18, 1.25, 0.85, 11.95, 4.95, 0.19, 1.25],\n",
+ " 'Revenue': [1.65, 13.2, 1.65, 518.4, 2.5, 5.95, 11.95, 19.8, 1.9, 60.0]\n",
+ "}"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 174,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "df = pd.DataFrame(orders)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 175,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Description | \n",
+ " Quantity | \n",
+ " UnitPrice | \n",
+ " Revenue | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " LUNCH BAG APPLE DESIGN | \n",
+ " 1 | \n",
+ " 1.65 | \n",
+ " 1.65 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " SET OF 60 VINTAGE LEAF CAKE CASES | \n",
+ " 24 | \n",
+ " 0.55 | \n",
+ " 13.20 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " RIBBON REEL STRIPES DESIGN | \n",
+ " 1 | \n",
+ " 1.65 | \n",
+ " 1.65 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " WORLD WAR 2 GLIDERS ASSTD DESIGNS | \n",
+ " 2880 | \n",
+ " 0.18 | \n",
+ " 518.40 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " PLAYING CARDS JUBILEE UNION JACK | \n",
+ " 2 | \n",
+ " 1.25 | \n",
+ " 2.50 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " POPCORN HOLDER | \n",
+ " 7 | \n",
+ " 0.85 | \n",
+ " 5.95 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " BOX OF VINTAGE ALPHABET BLOCKS | \n",
+ " 1 | \n",
+ " 11.95 | \n",
+ " 11.95 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " PARTY BUNTING | \n",
+ " 4 | \n",
+ " 4.95 | \n",
+ " 19.80 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " JAZZ HEARTS ADDRESS BOOK | \n",
+ " 10 | \n",
+ " 0.19 | \n",
+ " 1.90 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " SET OF 4 SANTA PLACE SETTINGS | \n",
+ " 48 | \n",
+ " 1.25 | \n",
+ " 60.00 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Description Quantity UnitPrice Revenue\n",
+ "0 LUNCH BAG APPLE DESIGN 1 1.65 1.65\n",
+ "1 SET OF 60 VINTAGE LEAF CAKE CASES 24 0.55 13.20\n",
+ "2 RIBBON REEL STRIPES DESIGN 1 1.65 1.65\n",
+ "3 WORLD WAR 2 GLIDERS ASSTD DESIGNS 2880 0.18 518.40\n",
+ "4 PLAYING CARDS JUBILEE UNION JACK 2 1.25 2.50\n",
+ "5 POPCORN HOLDER 7 0.85 5.95\n",
+ "6 BOX OF VINTAGE ALPHABET BLOCKS 1 11.95 11.95\n",
+ "7 PARTY BUNTING 4 4.95 19.80\n",
+ "8 JAZZ HEARTS ADDRESS BOOK 10 0.19 1.90\n",
+ "9 SET OF 4 SANTA PLACE SETTINGS 48 1.25 60.00"
+ ]
+ },
+ "execution_count": 175,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df"
+ ]
},
{
"cell_type": "markdown",
@@ -238,10 +822,20 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 176,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The total quantity ordered is 2978, and the revenue generated is 637.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(f\"The total quantity ordered is {df['Quantity'].sum()}, and the revenue generated is {df['Revenue'].sum()}\")"
+ ]
},
{
"cell_type": "markdown",
@@ -252,10 +846,20 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 177,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "11.77\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(df[\"UnitPrice\"].max() - df[\"UnitPrice\"].min())"
+ ]
},
{
"cell_type": "markdown",
@@ -266,7 +870,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 178,
"metadata": {},
"outputs": [],
"source": [
@@ -285,10 +889,130 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 179,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Serial No. | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1 | \n",
+ " 337 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 4.5 | \n",
+ " 9.65 | \n",
+ " 1 | \n",
+ " 0.92 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 2 | \n",
+ " 316 | \n",
+ " 104 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 8.00 | \n",
+ " 1 | \n",
+ " 0.72 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 3 | \n",
+ " 322 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 2.5 | \n",
+ " 8.67 | \n",
+ " 1 | \n",
+ " 0.80 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 4 | \n",
+ " 314 | \n",
+ " 103 | \n",
+ " 2 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 8.21 | \n",
+ " 0 | \n",
+ " 0.65 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 5 | \n",
+ " 330 | \n",
+ " 115 | \n",
+ " 5 | \n",
+ " 4.5 | \n",
+ " 3.0 | \n",
+ " 9.34 | \n",
+ " 1 | \n",
+ " 0.90 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n",
+ "0 1 337 118 4 4.5 4.5 9.65 \n",
+ "1 2 316 104 3 3.0 3.5 8.00 \n",
+ "2 3 322 110 3 3.5 2.5 8.67 \n",
+ "3 4 314 103 2 2.0 3.0 8.21 \n",
+ "4 5 330 115 5 4.5 3.0 9.34 \n",
+ "\n",
+ " Research Chance of Admit \n",
+ "0 1 0.92 \n",
+ "1 1 0.72 \n",
+ "2 1 0.80 \n",
+ "3 0 0.65 \n",
+ "4 1 0.90 "
+ ]
+ },
+ "execution_count": 179,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions.head()"
+ ]
},
{
"cell_type": "markdown",
@@ -299,10 +1023,95 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 180,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | Serial No. | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | GRE Score | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | TOEFL Score | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | University Rating | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | SOP | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | LOR | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | CGPA | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | Research | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | Chance of Admit | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 0\n",
+ "Serial No. 0\n",
+ "GRE Score 0\n",
+ "TOEFL Score 0\n",
+ "University Rating 0\n",
+ "SOP 0\n",
+ "LOR 0\n",
+ "CGPA 0\n",
+ "Research 0\n",
+ "Chance of Admit 0"
+ ]
+ },
+ "execution_count": 180,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pd.DataFrame(admissions.isnull().sum()) #There is no missing value"
+ ]
},
{
"cell_type": "markdown",
@@ -313,17 +1122,12 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 181,
"metadata": {},
"outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
+ "source": [
+ "admissions.set_index(\"Serial No.\", inplace = True, drop = False)"
+ ]
},
{
"cell_type": "markdown",
@@ -334,10 +1138,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 183,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0"
+ ]
+ },
+ "execution_count": 183,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions.duplicated(subset=[\"GRE Score\",\"CGPA\" ]).sum()"
+ ]
},
{
"cell_type": "markdown",
@@ -348,10 +1165,26 @@
},
{
"cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
+ "execution_count": 185,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "CGPA 110\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 185,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pd.DataFrame(admissions[\"CGPA\"] > 9).sum() #110 times this condition is True"
+ ]
},
{
"cell_type": "markdown",
@@ -362,17 +1195,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
+ "execution_count": 186,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0.7313235294117648"
+ ]
+ },
+ "execution_count": 186,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions[(admissions[\"CGPA\"] > 9) | (admissions[\"SOP\"] < 3.5)][\"Chance of Admit\"].mean()"
+ ]
},
{
"cell_type": "markdown",
@@ -384,10 +1223,15 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 187,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "def func_TOEFL(x):\n",
+ " return True if x > 100 else False\n",
+ "\n",
+ "admissions[\"TOEFL\"] = admissions[\"TOEFL Score\"].apply(func_TOEFL)"
+ ]
},
{
"cell_type": "markdown",
@@ -398,24 +1242,12 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 188,
"metadata": {},
"outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
+ "source": [
+ "admissions.rename(columns = {\"TOEFL\": \"Decision\"}, inplace=True)"
+ ]
},
{
"cell_type": "markdown",
@@ -427,17 +1259,21 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 191,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "def func_SOP(x):\n",
+ " return 1 if x > 3 else 0\n",
+ "admissions[\"decision2\"] = admissions[\"SOP\"].apply(func_SOP)"
+ ]
}
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3 (ipykernel)",
+ "display_name": "ironhack",
"language": "python",
- "name": "python3"
+ "name": "ironhack"
},
"language_info": {
"codemirror_mode": {
@@ -449,7 +1285,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.10.8"
+ "version": "3.11.5"
},
"toc": {
"base_numbering": "",