diff --git a/your-code/pandas_1.ipynb b/your-code/pandas_1.ipynb
index 4f428ac..5725464 100644
--- a/your-code/pandas_1.ipynb
+++ b/your-code/pandas_1.ipynb
@@ -18,7 +18,7 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 100,
"metadata": {},
"outputs": [],
"source": [
@@ -35,7 +35,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 56,
"metadata": {},
"outputs": [],
"source": [
@@ -44,10 +44,12 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 57,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "a = pd.Series(lst)"
+ ]
},
{
"cell_type": "markdown",
@@ -60,10 +62,24 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 105,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "74.4"
+ ]
+ },
+ "execution_count": 105,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "s = pd.Series(a)\n",
+ "s[2]"
+ ]
},
{
"cell_type": "markdown",
@@ -74,7 +90,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 106,
"metadata": {},
"outputs": [],
"source": [
@@ -92,10 +108,12 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 123,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "df = pd.DataFrame(b)"
+ ]
},
{
"cell_type": "markdown",
@@ -106,7 +124,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 98,
"metadata": {},
"outputs": [],
"source": [
@@ -124,7 +142,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 66,
"metadata": {},
"outputs": [],
"source": [
@@ -133,10 +151,153 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 132,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "df.rename({0:\"Score_1\", 1:\"Score_2\", 2:\"Score_3\", 3:\"Score_4\", 4:\"Score_5\"}, axis=1, inplace=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 133,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Score_1 | \n",
+ " Score_2 | \n",
+ " Score_3 | \n",
+ " Score_4 | \n",
+ " Score_5 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 53.1 | \n",
+ " 95.0 | \n",
+ " 67.5 | \n",
+ " 35.0 | \n",
+ " 78.4 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 61.3 | \n",
+ " 40.8 | \n",
+ " 30.8 | \n",
+ " 37.8 | \n",
+ " 87.6 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 20.6 | \n",
+ " 73.2 | \n",
+ " 44.2 | \n",
+ " 14.6 | \n",
+ " 91.8 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 57.4 | \n",
+ " 0.1 | \n",
+ " 96.1 | \n",
+ " 4.2 | \n",
+ " 69.5 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 83.6 | \n",
+ " 20.5 | \n",
+ " 85.4 | \n",
+ " 22.8 | \n",
+ " 35.9 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 49.0 | \n",
+ " 69.0 | \n",
+ " 0.1 | \n",
+ " 31.8 | \n",
+ " 89.1 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 23.3 | \n",
+ " 40.7 | \n",
+ " 95.0 | \n",
+ " 83.8 | \n",
+ " 26.9 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 27.6 | \n",
+ " 26.4 | \n",
+ " 53.8 | \n",
+ " 88.8 | \n",
+ " 68.5 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 96.6 | \n",
+ " 96.4 | \n",
+ " 53.4 | \n",
+ " 72.4 | \n",
+ " 50.1 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 73.7 | \n",
+ " 39.0 | \n",
+ " 43.2 | \n",
+ " 81.6 | \n",
+ " 34.7 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Score_1 Score_2 Score_3 Score_4 Score_5\n",
+ "0 53.1 95.0 67.5 35.0 78.4\n",
+ "1 61.3 40.8 30.8 37.8 87.6\n",
+ "2 20.6 73.2 44.2 14.6 91.8\n",
+ "3 57.4 0.1 96.1 4.2 69.5\n",
+ "4 83.6 20.5 85.4 22.8 35.9\n",
+ "5 49.0 69.0 0.1 31.8 89.1\n",
+ "6 23.3 40.7 95.0 83.8 26.9\n",
+ "7 27.6 26.4 53.8 88.8 68.5\n",
+ "8 96.6 96.4 53.4 72.4 50.1\n",
+ "9 73.7 39.0 43.2 81.6 34.7"
+ ]
+ },
+ "execution_count": 133,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df"
+ ]
},
{
"cell_type": "markdown",
@@ -147,10 +308,123 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 136,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Score_1 | \n",
+ " Score_3 | \n",
+ " Score_5 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 53.1 | \n",
+ " 67.5 | \n",
+ " 78.4 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 61.3 | \n",
+ " 30.8 | \n",
+ " 87.6 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 20.6 | \n",
+ " 44.2 | \n",
+ " 91.8 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 57.4 | \n",
+ " 96.1 | \n",
+ " 69.5 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 83.6 | \n",
+ " 85.4 | \n",
+ " 35.9 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 49.0 | \n",
+ " 0.1 | \n",
+ " 89.1 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 23.3 | \n",
+ " 95.0 | \n",
+ " 26.9 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 27.6 | \n",
+ " 53.8 | \n",
+ " 68.5 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 96.6 | \n",
+ " 53.4 | \n",
+ " 50.1 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 73.7 | \n",
+ " 43.2 | \n",
+ " 34.7 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Score_1 Score_3 Score_5\n",
+ "0 53.1 67.5 78.4\n",
+ "1 61.3 30.8 87.6\n",
+ "2 20.6 44.2 91.8\n",
+ "3 57.4 96.1 69.5\n",
+ "4 83.6 85.4 35.9\n",
+ "5 49.0 0.1 89.1\n",
+ "6 23.3 95.0 26.9\n",
+ "7 27.6 53.8 68.5\n",
+ "8 96.6 53.4 50.1\n",
+ "9 73.7 43.2 34.7"
+ ]
+ },
+ "execution_count": 136,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df_scores = df[[\"Score_1\", \"Score_3\", \"Score_5\"]]\n",
+ "df_scores"
+ ]
},
{
"cell_type": "markdown",
@@ -161,10 +435,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 94,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "56.95000000000001"
+ ]
+ },
+ "execution_count": 94,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "mean_value = raw['Score_3'].mean()"
+ ]
},
{
"cell_type": "markdown",
@@ -175,10 +462,12 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 92,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "max_value = raw['Score_4'].max()"
+ ]
},
{
"cell_type": "markdown",
@@ -189,10 +478,12 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 93,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "median_values = raw['Score_2'].median()"
+ ]
},
{
"cell_type": "markdown",
@@ -203,7 +494,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 144,
"metadata": {},
"outputs": [],
"source": [
@@ -224,10 +515,134 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 145,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Description | \n",
+ " Quantity | \n",
+ " UnitPrice | \n",
+ " Revenue | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " LUNCH BAG APPLE DESIGN | \n",
+ " 1 | \n",
+ " 1.65 | \n",
+ " 1.65 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " SET OF 60 VINTAGE LEAF CAKE CASES | \n",
+ " 24 | \n",
+ " 0.55 | \n",
+ " 13.20 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " RIBBON REEL STRIPES DESIGN | \n",
+ " 1 | \n",
+ " 1.65 | \n",
+ " 1.65 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " WORLD WAR 2 GLIDERS ASSTD DESIGNS | \n",
+ " 2880 | \n",
+ " 0.18 | \n",
+ " 518.40 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " PLAYING CARDS JUBILEE UNION JACK | \n",
+ " 2 | \n",
+ " 1.25 | \n",
+ " 2.50 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " POPCORN HOLDER | \n",
+ " 7 | \n",
+ " 0.85 | \n",
+ " 5.95 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " BOX OF VINTAGE ALPHABET BLOCKS | \n",
+ " 1 | \n",
+ " 11.95 | \n",
+ " 11.95 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " PARTY BUNTING | \n",
+ " 4 | \n",
+ " 4.95 | \n",
+ " 19.80 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " JAZZ HEARTS ADDRESS BOOK | \n",
+ " 10 | \n",
+ " 0.19 | \n",
+ " 1.90 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " SET OF 4 SANTA PLACE SETTINGS | \n",
+ " 48 | \n",
+ " 1.25 | \n",
+ " 60.00 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Description Quantity UnitPrice Revenue\n",
+ "0 LUNCH BAG APPLE DESIGN 1 1.65 1.65\n",
+ "1 SET OF 60 VINTAGE LEAF CAKE CASES 24 0.55 13.20\n",
+ "2 RIBBON REEL STRIPES DESIGN 1 1.65 1.65\n",
+ "3 WORLD WAR 2 GLIDERS ASSTD DESIGNS 2880 0.18 518.40\n",
+ "4 PLAYING CARDS JUBILEE UNION JACK 2 1.25 2.50\n",
+ "5 POPCORN HOLDER 7 0.85 5.95\n",
+ "6 BOX OF VINTAGE ALPHABET BLOCKS 1 11.95 11.95\n",
+ "7 PARTY BUNTING 4 4.95 19.80\n",
+ "8 JAZZ HEARTS ADDRESS BOOK 10 0.19 1.90\n",
+ "9 SET OF 4 SANTA PLACE SETTINGS 48 1.25 60.00"
+ ]
+ },
+ "execution_count": 145,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "product_orders = pd.DataFrame(orders)\n",
+ "product_orders"
+ ]
},
{
"cell_type": "markdown",
@@ -238,10 +653,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 152,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The total quantity is: 2978 and the total revenue is: 637.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "total_quantity = product_orders[\"Quantity\"].sum()\n",
+ "total_revenue = product_orders[\"Revenue\"].sum()\n",
+ "\n",
+ "print(f\"The total quantity is: {total_quantity} and the total revenue is: {total_revenue}\")"
+ ]
},
{
"cell_type": "markdown",
@@ -252,10 +680,40 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 156,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The most expensive price is: 11.95 and the least expensive proice is: 0.18\n"
+ ]
+ }
+ ],
+ "source": [
+ "most_espensive = product_orders['UnitPrice'].max()\n",
+ "least_expensive = product_orders['UnitPrice'].min()\n",
+ "\n",
+ "print(f\"The most expensive price is: {most_espensive} and the least expensive proice is: {least_expensive}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 157,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "11.77\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(most_espensive - least_expensive)"
+ ]
},
{
"cell_type": "markdown",
@@ -266,7 +724,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 158,
"metadata": {},
"outputs": [],
"source": [
@@ -285,10 +743,130 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 160,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Serial No. | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1 | \n",
+ " 337 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 4.5 | \n",
+ " 9.65 | \n",
+ " 1 | \n",
+ " 0.92 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 2 | \n",
+ " 316 | \n",
+ " 104 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 8.00 | \n",
+ " 1 | \n",
+ " 0.72 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 3 | \n",
+ " 322 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 2.5 | \n",
+ " 8.67 | \n",
+ " 1 | \n",
+ " 0.80 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 4 | \n",
+ " 314 | \n",
+ " 103 | \n",
+ " 2 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 8.21 | \n",
+ " 0 | \n",
+ " 0.65 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 5 | \n",
+ " 330 | \n",
+ " 115 | \n",
+ " 5 | \n",
+ " 4.5 | \n",
+ " 3.0 | \n",
+ " 9.34 | \n",
+ " 1 | \n",
+ " 0.90 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n",
+ "0 1 337 118 4 4.5 4.5 9.65 \n",
+ "1 2 316 104 3 3.0 3.5 8.00 \n",
+ "2 3 322 110 3 3.5 2.5 8.67 \n",
+ "3 4 314 103 2 2.0 3.0 8.21 \n",
+ "4 5 330 115 5 4.5 3.0 9.34 \n",
+ "\n",
+ " Research Chance of Admit \n",
+ "0 1 0.92 \n",
+ "1 1 0.72 \n",
+ "2 1 0.80 \n",
+ "3 0 0.65 \n",
+ "4 1 0.90 "
+ ]
+ },
+ "execution_count": 160,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions.head()"
+ ]
},
{
"cell_type": "markdown",
@@ -299,10 +877,217 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 161,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Serial No. | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 380 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " | 381 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " | 382 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " | 383 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " | 384 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
385 rows × 9 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Serial No. GRE Score TOEFL Score University Rating SOP LOR \\\n",
+ "0 False False False False False False \n",
+ "1 False False False False False False \n",
+ "2 False False False False False False \n",
+ "3 False False False False False False \n",
+ "4 False False False False False False \n",
+ ".. ... ... ... ... ... ... \n",
+ "380 False False False False False False \n",
+ "381 False False False False False False \n",
+ "382 False False False False False False \n",
+ "383 False False False False False False \n",
+ "384 False False False False False False \n",
+ "\n",
+ " CGPA Research Chance of Admit \n",
+ "0 False False False \n",
+ "1 False False False \n",
+ "2 False False False \n",
+ "3 False False False \n",
+ "4 False False False \n",
+ ".. ... ... ... \n",
+ "380 False False False \n",
+ "381 False False False \n",
+ "382 False False False \n",
+ "383 False False False \n",
+ "384 False False False \n",
+ "\n",
+ "[385 rows x 9 columns]"
+ ]
+ },
+ "execution_count": 161,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pd.isnull(admissions)"
+ ]
},
{
"cell_type": "markdown",
@@ -313,17 +1098,25 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 164,
"metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "ename": "KeyError",
+ "evalue": "\"None of ['Serial No.'] are in the columns\"",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)",
+ "\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_17520\\3039814691.py\u001b[0m in \u001b[0;36m?\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0madmissions\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mset_index\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"Serial No.\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0minplace\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mTrue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
+ "\u001b[1;32m~\\miniconda3\\envs\\ironhack\\Lib\\site-packages\\pandas\\core\\frame.py\u001b[0m in \u001b[0;36m?\u001b[1;34m(self, keys, drop, append, inplace, verify_integrity)\u001b[0m\n\u001b[0;32m 5869\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mfound\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5870\u001b[0m \u001b[0mmissing\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcol\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5871\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5872\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mmissing\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 5873\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34mf\"None of {missing} are in the columns\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 5874\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5875\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0minplace\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5876\u001b[0m \u001b[0mframe\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
+ "\u001b[1;31mKeyError\u001b[0m: \"None of ['Serial No.'] are in the columns\""
+ ]
+ }
+ ],
+ "source": [
+ "admissions.set_index(\"Serial No.\", inplace=True)"
+ ]
},
{
"cell_type": "markdown",
@@ -334,10 +1127,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 169,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0"
+ ]
+ },
+ "execution_count": 169,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions.duplicated(subset=[\"GRE Score\", \"CGPA\"]).sum()"
+ ]
},
{
"cell_type": "markdown",
@@ -348,10 +1154,138 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 176,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ "
\n",
+ " \n",
+ " | Serial No. | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 1 | \n",
+ " 337 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 4.5 | \n",
+ " 9.65 | \n",
+ " 1 | \n",
+ " 0.92 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 330 | \n",
+ " 115 | \n",
+ " 5 | \n",
+ " 4.5 | \n",
+ " 3.0 | \n",
+ " 9.34 | \n",
+ " 1 | \n",
+ " 0.90 | \n",
+ "
\n",
+ " \n",
+ " | 11 | \n",
+ " 328 | \n",
+ " 112 | \n",
+ " 4 | \n",
+ " 4.0 | \n",
+ " 4.5 | \n",
+ " 9.10 | \n",
+ " 1 | \n",
+ " 0.78 | \n",
+ "
\n",
+ " \n",
+ " | 20 | \n",
+ " 328 | \n",
+ " 116 | \n",
+ " 5 | \n",
+ " 5.0 | \n",
+ " 5.0 | \n",
+ " 9.50 | \n",
+ " 1 | \n",
+ " 0.94 | \n",
+ "
\n",
+ " \n",
+ " | 21 | \n",
+ " 334 | \n",
+ " 119 | \n",
+ " 5 | \n",
+ " 5.0 | \n",
+ " 4.5 | \n",
+ " 9.70 | \n",
+ " 1 | \n",
+ " 0.95 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n",
+ "Serial No. \n",
+ "1 337 118 4 4.5 4.5 9.65 \n",
+ "5 330 115 5 4.5 3.0 9.34 \n",
+ "11 328 112 4 4.0 4.5 9.10 \n",
+ "20 328 116 5 5.0 5.0 9.50 \n",
+ "21 334 119 5 5.0 4.5 9.70 \n",
+ "\n",
+ " Research Chance of Admit \n",
+ "Serial No. \n",
+ "1 1 0.92 \n",
+ "5 1 0.90 \n",
+ "11 1 0.78 \n",
+ "20 1 0.94 \n",
+ "21 1 0.95 "
+ ]
+ },
+ "execution_count": 176,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "condition_1 = admissions[\"CGPA\"] > 9\n",
+ "admissions[condition_1].head()"
+ ]
},
{
"cell_type": "markdown",
@@ -362,17 +1296,32 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 189,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "condition_2 = admissions[\"SOP\"] < 3.5"
+ ]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 190,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0.7313235294117648"
+ ]
+ },
+ "execution_count": 190,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions[condition_1 | condition_2][\"Chance of Admit\"].mean()"
+ ]
},
{
"cell_type": "markdown",
@@ -384,10 +1333,15 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 194,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "def TOELF(x):\n",
+ " return True if x > 100 else False\n",
+ "\n",
+ "admissions[\"TOELF\"] = admissions[\"TOEFL Score\"].apply(TOELF)"
+ ]
},
{
"cell_type": "markdown",
@@ -398,39 +1352,39 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 196,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "admissions.rename(columns = {\"TOELF\": \"Decision\"}, inplace=True)"
+ ]
},
{
- "cell_type": "code",
- "execution_count": null,
+ "cell_type": "markdown",
"metadata": {},
- "outputs": [],
- "source": []
+ "source": [
+ "Create a column called `decision2` in the `admissions` dataframe. Assign 1 to this column if the value of `SOP` is greater than 3 and 0 otherwise. \n",
+ "HINT (use np.where)"
+ ]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 198,
"metadata": {},
"outputs": [],
- "source": []
- },
- {
- "cell_type": "markdown",
- "metadata": {},
"source": [
- "Create a column called `decision2` in the `admissions` dataframe. Assign 1 to this column if the value of `SOP` is greater than 3 and 0 otherwise. \n",
- "HINT (use np.where)"
+ "def sop(x):\n",
+ " return 1 if x > 3 else 0"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 200,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "admissions[\"Decision2\"] = admissions[\"SOP\"].apply(sop)"
+ ]
}
],
"metadata": {
@@ -449,7 +1403,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.10.8"
+ "version": "3.11.5"
},
"toc": {
"base_numbering": "",