-
Notifications
You must be signed in to change notification settings - Fork 96
Open
Description
Hi,
Thank you for sharing your code publicly, but I'm having some memory issues when running it on AWS.
I'm spinning a g2.2xlarge instance on AWS and try to run your code for only the first 1000 lines of news.2011.en.shuffled.
Have you ever got an error message like this one (see below)? And if so, is there a way to change the parameters to avoid or maybe should I select another type of AWS instance?
Just for completeness these are the parameters I was trying to test
NUMBER_OF_ITERATIONS = 20000
EPOCHS_PER_ITERATION = 5
RNN = recurrent.LSTM
INPUT_LAYERS = 2
OUTPUT_LAYERS = 2
AMOUNT_OF_DROPOUT = 0.3
BATCH_SIZE = 500
HIDDEN_SIZE = 700
INITIALIZATION = "he_normal" # : Gaussian initialization scaled by fan_in (He et al., 2014)
MAX_INPUT_LEN = 40
MIN_INPUT_LEN = 3
INVERTED = True
AMOUNT_OF_NOISE = 0.2 / MAX_INPUT_LEN
NUMBER_OF_CHARS = 100 # 75
And this is the error that I'm getting
Iteration 1
Train on 3376 samples, validate on 376 samples
Epoch 1/5
Traceback (most recent call last):
File "/home/ubuntu/anaconda3/lib/python3.5/site-packages/theano/compile/function_module.py", line 884, in __call__
self.fn() if output_subset is None else\
RuntimeError: Cuda error: GpuElemwise node_m71c627ae87c918771aac75471af66509_0 Add: out of memory.
n_blocks=30 threads_per_block=256
Call: kernel_Add_node_m71c627ae87c918771aac75471af66509_0_Ccontiguous<<<n_blocks, threads_per_block>>>(numEls, local_dims[0], local_dims[1], i0_data, local_str[0][0], local_str[0][1], i1_data, local_str[1][0], local_str[1][1], o0_data, local_ostr[0][0], local_ostr[0][1])
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 10, in main_news
File "<stdin>", line 8, in iterate_training
File "/home/ubuntu/anaconda3/lib/python3.5/site-packages/keras/models.py", line 672, in fit
initial_epoch=initial_epoch)
File "/home/ubuntu/anaconda3/lib/python3.5/site-packages/keras/engine/training.py", line 1196, in fit
initial_epoch=initial_epoch)
File "/home/ubuntu/anaconda3/lib/python3.5/site-packages/keras/engine/training.py", line 891, in _fit_loop
outs = f(ins_batch)
File "/home/ubuntu/anaconda3/lib/python3.5/site-packages/keras/backend/theano_backend.py", line 959, in __call__
return self.function(*inputs)
File "/home/ubuntu/anaconda3/lib/python3.5/site-packages/theano/compile/function_module.py", line 898, in __call__
storage_map=getattr(self.fn, 'storage_map', None))
File "/home/ubuntu/anaconda3/lib/python3.5/site-packages/theano/gof/link.py", line 325, in raise_with_op
reraise(exc_type, exc_value, exc_trace)
File "/home/ubuntu/anaconda3/lib/python3.5/site-packages/six.py", line 685, in reraise
raise value.with_traceback(tb)
File "/home/ubuntu/anaconda3/lib/python3.5/site-packages/theano/compile/function_module.py", line 884, in __call__
self.fn() if output_subset is None else\
RuntimeError: Cuda error: GpuElemwise node_m71c627ae87c918771aac75471af66509_0 Add: out of memory.
n_blocks=30 threads_per_block=256
Call: kernel_Add_node_m71c627ae87c918771aac75471af66509_0_Ccontiguous<<<n_blocks, threads_per_block>>>(numEls, local_dims[0], local_dims[1], i0_data, local_str[0][0], local_str[0][1], i1_data, local_str[1][0], local_str[1][1], o0_data, local_ostr[0][0], local_ostr[0][1])
Apply node that caused the error: GpuElemwise{add,no_inplace}(GpuDot22.0, GpuDimShuffle{x,0}.0)
Toposort index: 207
Inputs types: [CudaNdarrayType(float32, matrix), CudaNdarrayType(float32, row)]
Inputs shapes: [(20000, 700), (1, 700)]
Inputs strides: [(700, 1), (0, 1)]
Inputs values: ['not shown', 'not shown']
Outputs clients: [[GpuReshape{3}(GpuElemwise{add,no_inplace}.0, MakeVector{dtype='int64'}.0)]]
HINT: Re-running with most Theano optimization disabled could give you a back-trace of when this node was created. This can be done with by setting the Theano flag 'optimizer=fast_compile'. If that does not work, Theano optimizations can be disabled with 'optimizer=None'.
HINT: Use the Theano flag 'exception_verbosity=high' for a debugprint and storage map footprint of this apply node.
Metadata
Metadata
Assignees
Labels
No labels