From 7505a3c6c5c7ac0da38bb2a8a639f588a04ea3e6 Mon Sep 17 00:00:00 2001 From: Mvital74 Date: Thu, 22 Oct 2020 19:49:06 -0300 Subject: [PATCH 1/4] Criado usando o Colaboratory --- .../NB15_00__Machine_Learning___DSWP.ipynb | 1314 ++++++++++++++++- 1 file changed, 1313 insertions(+), 1 deletion(-) diff --git a/Notebooks/NB15_00__Machine_Learning___DSWP.ipynb b/Notebooks/NB15_00__Machine_Learning___DSWP.ipynb index a6110358a..84f1acbd1 100644 --- a/Notebooks/NB15_00__Machine_Learning___DSWP.ipynb +++ b/Notebooks/NB15_00__Machine_Learning___DSWP.ipynb @@ -21,7 +21,7 @@ "colab_type": "text" }, "source": [ - "\"Open" + "\"Open" ] }, { @@ -3756,6 +3756,1307 @@ "* [Creditcard.csv](https://raw.githubusercontent.com/MathMachado/DataFrames/master/creditcard.csv)" ] }, + { + "cell_type": "code", + "metadata": { + "id": "SSNpg5p62IZi" + }, + "source": [ + "import pandas as pd\n", + "import numpy as np" + ], + "execution_count": 119, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "pxso-Su_2Q34" + }, + "source": [ + "url = 'https://raw.githubusercontent.com/Mvital74/DSWP/master/Dataframes/creditcard.csv'\n", + "df_cc = pd.read_csv(url)" + ], + "execution_count": 120, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "qKwrDosC2iVG", + "outputId": "7d76bc66-510d-4b07-cd23-82460d6f1a25", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 218 + } + }, + "source": [ + "df_cc.head()" + ], + "execution_count": 121, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimeV1V2V3V4V5V6V7V8V9V10V11V12V13V14V15V16V17V18V19V20V21V22V23V24V25V26V27V28AmountClass
00-1.359807-0.0727812.5363471.378155-0.3383210.4623880.2395990.0986980.3637870.090794-0.551600-0.617801-0.991390-0.3111691.468177-0.4704010.2079710.0257910.4039930.251412-0.0183070.277838-0.1104740.0669280.128539-0.1891150.133558-0.021053149.620.0
101.1918570.2661510.1664800.4481540.060018-0.082361-0.0788030.085102-0.255425-0.1669741.6127271.0652350.489095-0.1437720.6355580.463917-0.114805-0.183361-0.145783-0.069083-0.225775-0.6386720.101288-0.3398460.1671700.125895-0.0089830.0147242.690.0
21-1.358354-1.3401631.7732090.379780-0.5031981.8004990.7914610.247676-1.5146540.2076430.6245010.0660840.717293-0.1659462.345865-2.8900831.109969-0.121359-2.2618570.5249800.2479980.7716790.909412-0.689281-0.327642-0.139097-0.055353-0.059752378.660.0
31-0.966272-0.1852261.792993-0.863291-0.0103091.2472030.2376090.377436-1.387024-0.054952-0.2264870.1782280.507757-0.287924-0.631418-1.059647-0.6840931.965775-1.232622-0.208038-0.1083000.005274-0.190321-1.1755750.647376-0.2219290.0627230.061458123.500.0
42-1.1582330.8777371.5487180.403034-0.4071930.0959210.592941-0.2705330.8177390.753074-0.8228430.5381961.345852-1.1196700.175121-0.451449-0.237033-0.0381950.8034870.408542-0.0094310.798278-0.1374580.141267-0.2060100.5022920.2194220.21515369.990.0
\n", + "
" + ], + "text/plain": [ + " Time V1 V2 V3 ... V27 V28 Amount Class\n", + "0 0 -1.359807 -0.072781 2.536347 ... 0.133558 -0.021053 149.62 0.0\n", + "1 0 1.191857 0.266151 0.166480 ... -0.008983 0.014724 2.69 0.0\n", + "2 1 -1.358354 -1.340163 1.773209 ... -0.055353 -0.059752 378.66 0.0\n", + "3 1 -0.966272 -0.185226 1.792993 ... 0.062723 0.061458 123.50 0.0\n", + "4 2 -1.158233 0.877737 1.548718 ... 0.219422 0.215153 69.99 0.0\n", + "\n", + "[5 rows x 31 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 121 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "0p1DNndk2m2u", + "outputId": "aed21549-d93b-43d0-bd78-7a7ac30a9c79", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 708 + } + }, + "source": [ + "df_cc.info()" + ], + "execution_count": 122, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 12842 entries, 0 to 12841\n", + "Data columns (total 31 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Time 12842 non-null int64 \n", + " 1 V1 12842 non-null float64\n", + " 2 V2 12842 non-null float64\n", + " 3 V3 12842 non-null float64\n", + " 4 V4 12842 non-null float64\n", + " 5 V5 12842 non-null float64\n", + " 6 V6 12842 non-null float64\n", + " 7 V7 12842 non-null float64\n", + " 8 V8 12842 non-null float64\n", + " 9 V9 12842 non-null float64\n", + " 10 V10 12841 non-null float64\n", + " 11 V11 12841 non-null float64\n", + " 12 V12 12841 non-null float64\n", + " 13 V13 12841 non-null float64\n", + " 14 V14 12841 non-null float64\n", + " 15 V15 12841 non-null float64\n", + " 16 V16 12841 non-null float64\n", + " 17 V17 12841 non-null float64\n", + " 18 V18 12841 non-null float64\n", + " 19 V19 12841 non-null float64\n", + " 20 V20 12841 non-null float64\n", + " 21 V21 12841 non-null float64\n", + " 22 V22 12841 non-null float64\n", + " 23 V23 12841 non-null float64\n", + " 24 V24 12841 non-null float64\n", + " 25 V25 12841 non-null float64\n", + " 26 V26 12841 non-null float64\n", + " 27 V27 12841 non-null float64\n", + " 28 V28 12841 non-null float64\n", + " 29 Amount 12841 non-null float64\n", + " 30 Class 12841 non-null float64\n", + "dtypes: float64(30), int64(1)\n", + "memory usage: 3.0 MB\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "EoPPQsb72ylV", + "outputId": "76828eff-b896-4a40-9fb5-9b408aae9287", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 599 + } + }, + "source": [ + "df_cc.isnull().sum()" + ], + "execution_count": 123, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Time 0\n", + "V1 0\n", + "V2 0\n", + "V3 0\n", + "V4 0\n", + "V5 0\n", + "V6 0\n", + "V7 0\n", + "V8 0\n", + "V9 0\n", + "V10 1\n", + "V11 1\n", + "V12 1\n", + "V13 1\n", + "V14 1\n", + "V15 1\n", + "V16 1\n", + "V17 1\n", + "V18 1\n", + "V19 1\n", + "V20 1\n", + "V21 1\n", + "V22 1\n", + "V23 1\n", + "V24 1\n", + "V25 1\n", + "V26 1\n", + "V27 1\n", + "V28 1\n", + "Amount 1\n", + "Class 1\n", + "dtype: int64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 123 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "e3yk83k12-hP" + }, + "source": [ + "df_cc2 = df_cc.copy()" + ], + "execution_count": 124, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "_eofeMiKbpOy" + }, + "source": [ + "df_cc2.dropna(inplace=True)" + ], + "execution_count": 143, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "nSVaJYM85aLK", + "outputId": "25035299-ba1d-4a04-84b1-50e0aaef33ca", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + } + }, + "source": [ + "df_cc.shape" + ], + "execution_count": 144, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(12842, 31)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 144 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "AO3yanAx_jcd", + "outputId": "a25bb4c7-e84e-46f6-c92f-283db68f1116", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + } + }, + "source": [ + "df_cc2.shape" + ], + "execution_count": 145, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(12841, 31)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 145 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "R-ibTv4v3l6e", + "outputId": "cfae62ed-3151-48a9-e06e-b5fe4f1aa8ca", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 72 + } + }, + "source": [ + "df_cc2['Class'].value_counts()" + ], + "execution_count": 146, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0.0 12785\n", + "1.0 56\n", + "Name: Class, dtype: int64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 146 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "90RW7M7y6Xoo", + "outputId": "e7c33bb2-aab4-41c8-d26e-02dbf6b871cd", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 198 + } + }, + "source": [ + "df_y = df_cc2.loc[:,['Class']]\n", + "df_y.head()" + ], + "execution_count": 147, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Class
00.0
10.0
20.0
30.0
40.0
\n", + "
" + ], + "text/plain": [ + " Class\n", + "0 0.0\n", + "1 0.0\n", + "2 0.0\n", + "3 0.0\n", + "4 0.0" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 147 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "kXJlPPxwAHsQ", + "outputId": "bc799060-bc5a-4951-8034-3884d71b4497", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 218 + } + }, + "source": [ + "df_x = df_cc2.drop(columns='Class', axis=1)\n", + "df_x.head()" + ], + "execution_count": 148, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimeV1V2V3V4V5V6V7V8V9V10V11V12V13V14V15V16V17V18V19V20V21V22V23V24V25V26V27V28Amount
00-1.359807-0.0727812.5363471.378155-0.3383210.4623880.2395990.0986980.3637870.090794-0.551600-0.617801-0.991390-0.3111691.468177-0.4704010.2079710.0257910.4039930.251412-0.0183070.277838-0.1104740.0669280.128539-0.1891150.133558-0.021053149.62
101.1918570.2661510.1664800.4481540.060018-0.082361-0.0788030.085102-0.255425-0.1669741.6127271.0652350.489095-0.1437720.6355580.463917-0.114805-0.183361-0.145783-0.069083-0.225775-0.6386720.101288-0.3398460.1671700.125895-0.0089830.0147242.69
21-1.358354-1.3401631.7732090.379780-0.5031981.8004990.7914610.247676-1.5146540.2076430.6245010.0660840.717293-0.1659462.345865-2.8900831.109969-0.121359-2.2618570.5249800.2479980.7716790.909412-0.689281-0.327642-0.139097-0.055353-0.059752378.66
31-0.966272-0.1852261.792993-0.863291-0.0103091.2472030.2376090.377436-1.387024-0.054952-0.2264870.1782280.507757-0.287924-0.631418-1.059647-0.6840931.965775-1.232622-0.208038-0.1083000.005274-0.190321-1.1755750.647376-0.2219290.0627230.061458123.50
42-1.1582330.8777371.5487180.403034-0.4071930.0959210.592941-0.2705330.8177390.753074-0.8228430.5381961.345852-1.1196700.175121-0.451449-0.237033-0.0381950.8034870.408542-0.0094310.798278-0.1374580.141267-0.2060100.5022920.2194220.21515369.99
\n", + "
" + ], + "text/plain": [ + " Time V1 V2 V3 ... V26 V27 V28 Amount\n", + "0 0 -1.359807 -0.072781 2.536347 ... -0.189115 0.133558 -0.021053 149.62\n", + "1 0 1.191857 0.266151 0.166480 ... 0.125895 -0.008983 0.014724 2.69\n", + "2 1 -1.358354 -1.340163 1.773209 ... -0.139097 -0.055353 -0.059752 378.66\n", + "3 1 -0.966272 -0.185226 1.792993 ... -0.221929 0.062723 0.061458 123.50\n", + "4 2 -1.158233 0.877737 1.548718 ... 0.502292 0.219422 0.215153 69.99\n", + "\n", + "[5 rows x 30 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 148 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "FieIjpegBCbj" + }, + "source": [ + "i_Seed = 20111974 # semente por questões de reproducibilidade\n", + "f_Test_Size = 0.3 # Proporção do dataframe de validação (outros valores poderiam ser 0.15, 0.20 ou 0.25)\n", + "\n", + "from sklearn.datasets import make_classification\n", + "\n", + "X, y = make_classification(n_samples = 1000, \n", + " n_features = 18, \n", + " n_informative = 9, \n", + " n_redundant = 6, \n", + " n_repeated = 3, \n", + " n_classes = 2, \n", + " n_clusters_per_class = 1, \n", + " random_state=i_Seed)\n" + ], + "execution_count": 149, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "k__vRXIZAsIr" + }, + "source": [ + "from sklearn.model_selection import train_test_split\n", + "\n", + "x_train, x_test, y_train, y_test = train_test_split(df_x, df_y, test_size = f_Test_Size, random_state = i_Seed)" + ], + "execution_count": 150, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "ZceWqfiDBjey", + "outputId": "6577c960-0329-428e-bf2c-f160f33f2ead", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + } + }, + "source": [ + "x_test.shape" + ], + "execution_count": 151, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(3853, 30)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 151 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "09pfUg_bCE55", + "outputId": "f8b9d437-d121-4192-e80a-58f79c1c9861", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + } + }, + "source": [ + "x_train.shape" + ], + "execution_count": 152, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(8988, 30)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 152 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "lX5H1ZcbCWfy", + "outputId": "2f4eea19-6da1-46f2-bb8c-f827f2719101", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + } + }, + "source": [ + "y_test.shape" + ], + "execution_count": 153, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(3853, 1)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 153 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "vJnKtatID_bt", + "outputId": "e4c0b6f1-f02e-492d-bc29-bc5b95c2a7f0", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + } + }, + "source": [ + "y_train.shape" + ], + "execution_count": 154, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(8988, 1)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 154 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "lsXmz1B4JrXI" + }, + "source": [ + "import seaborn as sns\n", + "from sklearn.metrics import accuracy_score\n", + "from sklearn.metrics import precision_score\n", + "from sklearn.metrics import recall_score\n", + "from sklearn.metrics import confusion_matrix\n", + "\n", + "from sklearn.model_selection import GridSearchCV\n", + "from sklearn.model_selection import cross_val_score\n", + "from time import time\n", + "from operator import itemgetter\n", + "from scipy.stats import randint\n", + "\n", + "from sklearn.tree import export_graphviz\n", + "from sklearn.externals.six import StringIO \n", + "from IPython.display import Image \n", + "import pydotplus\n" + ], + "execution_count": 155, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "heXcP-zIZ3kc" + }, + "source": [ + "def mostra_confusion_matrix(cf, \n", + " group_names = None, \n", + " categories = 'auto', \n", + " count = True, \n", + " percent = True, \n", + " cbar = True, \n", + " xyticks = False, \n", + " xyplotlabels = True, \n", + " sum_stats = True, figsize = (8, 8), \n", + " cmap = 'Blues'):\n", + " '''\n", + " This function will make a pretty plot of an sklearn Confusion Matrix cm using a Seaborn heatmap visualization.\n", + " Arguments\n", + " ---------\n", + " cf: confusion matrix to be passed in\n", + " group_names: List of strings that represent the labels row by row to be shown in each square.\n", + " categories: List of strings containing the categories to be displayed on the x,y axis. Default is 'auto'\n", + " count: If True, show the raw number in the confusion matrix. Default is True.\n", + " normalize: If True, show the proportions for each category. Default is True.\n", + " cbar: If True, show the color bar. The cbar values are based off the values in the confusion matrix.\n", + " Default is True.\n", + " xyticks: If True, show x and y ticks. Default is True.\n", + " xyplotlabels: If True, show 'True Label' and 'Predicted Label' on the figure. Default is True.\n", + " sum_stats: If True, display summary statistics below the figure. Default is True.\n", + " figsize: Tuple representing the figure size. Default will be the matplotlib rcParams value.\n", + " cmap: Colormap of the values displayed from matplotlib.pyplot.cm. Default is 'Blues'\n", + " See http://matplotlib.org/examples/color/colormaps_reference.html\n", + " '''\n", + "\n", + " # CODE TO GENERATE TEXT INSIDE EACH SQUARE\n", + " blanks = ['' for i in range(cf.size)]\n", + "\n", + " if group_names and len(group_names)==cf.size:\n", + " group_labels = [\"{}\\n\".format(value) for value in group_names]\n", + " else:\n", + " group_labels = blanks\n", + "\n", + " if count:\n", + " group_counts = [\"{0:0.0f}\\n\".format(value) for value in cf.flatten()]\n", + " else:\n", + " group_counts = blanks\n", + "\n", + " if percent:\n", + " group_percentages = [\"{0:.2%}\".format(value) for value in cf.flatten()/np.sum(cf)]\n", + " else:\n", + " group_percentages = blanks\n", + "\n", + " box_labels = [f\"{v1}{v2}{v3}\".strip() for v1, v2, v3 in zip(group_labels,group_counts,group_percentages)]\n", + " box_labels = np.asarray(box_labels).reshape(cf.shape[0],cf.shape[1])\n", + "\n", + " # CODE TO GENERATE SUMMARY STATISTICS & TEXT FOR SUMMARY STATS\n", + " if sum_stats:\n", + " #Accuracy is sum of diagonal divided by total observations\n", + " accuracy = np.trace(cf) / float(np.sum(cf))\n", + "\n", + " #if it is a binary confusion matrix, show some more stats\n", + " if len(cf)==2:\n", + " #Metrics for Binary Confusion Matrices\n", + " precision = cf[1,1] / sum(cf[:,1])\n", + " recall = cf[1,1] / sum(cf[1,:])\n", + " f1_score = 2*precision*recall / (precision + recall)\n", + " stats_text = \"\\n\\nAccuracy={:0.3f}\\nPrecision={:0.3f}\\nRecall={:0.3f}\\nF1 Score={:0.3f}\".format(accuracy,precision,recall,f1_score)\n", + " else:\n", + " stats_text = \"\\n\\nAccuracy={:0.3f}\".format(accuracy)\n", + " else:\n", + " stats_text = \"\"\n", + "\n", + " # SET FIGURE PARAMETERS ACCORDING TO OTHER ARGUMENTS\n", + " if figsize==None:\n", + " #Get default figure size if not set\n", + " figsize = plt.rcParams.get('figure.figsize')\n", + "\n", + " if xyticks==False:\n", + " #Do not show categories if xyticks is False\n", + " categories=False\n", + "\n", + " # MAKE THE HEATMAP VISUALIZATION\n", + " plt.figure(figsize=figsize)\n", + " sns.heatmap(cf,annot=box_labels,fmt=\"\",cmap=cmap,cbar=cbar,xticklabels=categories,yticklabels=categories)\n", + "\n", + " if xyplotlabels:\n", + " plt.ylabel('True label')\n", + " plt.xlabel('Predicted label' + stats_text)\n", + " else:\n", + " plt.xlabel(stats_text)" + ], + "execution_count": 156, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "6kyzJD1_aBg5" + }, + "source": [ + "from sklearn.tree import DecisionTreeClassifier\n", + "\n", + "# Instancia com os parâmetros sugeridos para se evitar overfitting:\n", + "ml_DT= DecisionTreeClassifier(criterion = 'gini', \n", + " splitter = 'best', \n", + " max_depth = None, \n", + " min_samples_split = 2, \n", + " min_samples_leaf = 1, \n", + " min_weight_fraction_leaf = 0.0, \n", + " max_features = None, \n", + " random_state = i_Seed, \n", + " max_leaf_nodes = None, \n", + " min_impurity_decrease = 0.0, \n", + " min_impurity_split = None, \n", + " class_weight = None)\n", + "\n" + ], + "execution_count": 164, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "QFDHGWmKaXpS", + "outputId": "9ebb3988-6f66-4368-f141-caf20e402bec", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 126 + } + }, + "source": [ + "ml_DT" + ], + "execution_count": 165, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='gini',\n", + " max_depth=None, max_features=None, max_leaf_nodes=None,\n", + " min_impurity_decrease=0.0, min_impurity_split=None,\n", + " min_samples_leaf=1, min_samples_split=2,\n", + " min_weight_fraction_leaf=0.0, presort='deprecated',\n", + " random_state=20111974, splitter='best')" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 165 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "JgUyA0ggabAK", + "outputId": "871f25a8-e4f6-4aff-fff5-791da03af4f4", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 126 + } + }, + "source": [ + "ml_DT.fit(x_train, y_train)" + ], + "execution_count": 166, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='gini',\n", + " max_depth=None, max_features=None, max_leaf_nodes=None,\n", + " min_impurity_decrease=0.0, min_impurity_split=None,\n", + " min_samples_leaf=1, min_samples_split=2,\n", + " min_weight_fraction_leaf=0.0, presort='deprecated',\n", + " random_state=20111974, splitter='best')" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 166 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "pGoxh27rctPi", + "outputId": "7ce03e24-bcbf-4948-9ef4-faf15a20f946", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 54 + } + }, + "source": [ + "a_scores_CV = cross_val_score(ml_DT, x_train, y_train, cv = 10)\n", + "\n", + "print(f'Média das Acurácias calculadas pelo CV....: {100*round(a_scores_CV.mean(),4)}')\n", + "print(f'std médio das Acurácias calculadas pelo CV: {100*round(a_scores_CV.std(),4)}')" + ], + "execution_count": 169, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Média das Acurácias calculadas pelo CV....: 99.88\n", + "std médio das Acurácias calculadas pelo CV: 0.13999999999999999\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "uKgUauNLeuyE", + "outputId": "c7dd3ae4-eb36-42f1-f991-d65f46d21b6e", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 90 + } + }, + "source": [ + "from sklearn.preprocessing import LabelBinarizer\n", + "lb = LabelBinarizer()\n", + "y_train2 = np.array([number[0] for number in lb.fit_transform(y_train)])\n", + "\n", + "recall = cross_val_score(ml_DT, x_train, y_train2, cv=10, scoring='recall')\n", + "print(f'Média do Recall calculada pelo CV....: {100*round(recall.mean(),4)}')\n", + "print(f'DP do Recall calculada pelo CV....: {100*round(recall.std(),4)}')\n", + "precision = cross_val_score(ml_DT, x_train, y_train, cv=10, scoring='precision')\n", + "print(f'Média do Precision calculada pelo CV....: {100*round(precision.mean(),4)}')\n", + "print(f'DP do Precision calculada pelo CV....: {100*round(precision.std(),4)}')" + ], + "execution_count": 174, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Média do Recall calculada pelo CV....: 83.33\n", + "DP do Recall calculada pelo CV....: 20.41\n", + "Média do Precision calculada pelo CV....: 90.5\n", + "DP do Precision calculada pelo CV....: 16.189999999999998\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "VsoLpLCMgAxL" + }, + "source": [ + "" + ], + "execution_count": null, + "outputs": [] + }, { "cell_type": "markdown", "metadata": { @@ -3781,6 +5082,17 @@ "execution_count": null, "outputs": [] }, + { + "cell_type": "code", + "metadata": { + "id": "MNl-qLZp29eN" + }, + "source": [ + "" + ], + "execution_count": null, + "outputs": [] + }, { "cell_type": "markdown", "metadata": { From ddcad03fd0cc3624f978069e411f204fc9343ae3 Mon Sep 17 00:00:00 2001 From: Mvital74 Date: Thu, 22 Oct 2020 20:18:15 -0300 Subject: [PATCH 2/4] Criado usando o Colaboratory --- .../NB15_00__Machine_Learning___DSWP.ipynb | 241 +++++++++++++++++- 1 file changed, 239 insertions(+), 2 deletions(-) diff --git a/Notebooks/NB15_00__Machine_Learning___DSWP.ipynb b/Notebooks/NB15_00__Machine_Learning___DSWP.ipynb index 84f1acbd1..a78de6809 100644 --- a/Notebooks/NB15_00__Machine_Learning___DSWP.ipynb +++ b/Notebooks/NB15_00__Machine_Learning___DSWP.ipynb @@ -5052,11 +5052,248 @@ "id": "VsoLpLCMgAxL" }, "source": [ - "" + "y_pred = ml_DT.predict(x_test)" ], - "execution_count": null, + "execution_count": 175, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "1R3o0DVjhWUK", + "outputId": "1299717c-e2df-4fd5-c8ca-ac54e4fd8794", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 538 + } + }, + "source": [ + "import matplotlib.pyplot as plt\n", + "# Confusion Matrix\n", + "cf_matrix = confusion_matrix(y_test, y_pred)\n", + "cf_labels = ['True_Negative', 'False_Positive', 'False_Negative', 'True_Positive']\n", + "cf_categories = ['Zero', 'One']\n", + "mostra_confusion_matrix(cf_matrix, group_names= cf_labels, categories= cf_categories)" + ], + "execution_count": 177, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc0AAAIJCAYAAADH1GYiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeZxO5f/H8ddnzNjJvoRKKNlJaLeEsW8RKVqpSPpWv2xRSqqvSgtKUlSWKXzJrpA2ocWaylbZK1uWGbNcvz/uYxrMjNsxY2a638/v4zy6z3Wuc67rzPee+fhc5zrnmHMOERERObOwjO6AiIhIVqGgKSIiEiQFTRERkSApaIqIiARJQVNERCRICpoiIiJBCk+Pg+aq2Vv3sUiWt3/l6xndBZE0kTMcS69jp8ff+2Pfv55u/T1XyjRFRESClC6ZpoiIhAgLrdwrtM5WRETkHCjTFBER/yzTXn5MF8o0RUREgqRMU0RE/Auxa5oKmiIi4p+GZ0VERCQ5yjRFRMS/EBueDa2zFREROQfKNEVExL8Qu6apoCkiIv5peFZERESSo0xTRET8C7HhWWWaIiIiQVKmKSIi/oXYNU0FTRER8U/DsyIiIpIcZZoiIuJfiA3PhtbZioiInANlmiIi4p+uaYqIiEhylGmKiIh/IXZNU0FTRET8C7GgGVpnKyIicg6UaYqIiH9hmggkIiIiyVCmKSIi/oXYNU0FTRER8U/3aYqIiEhylGmKiIh/ITY8G1pnKyIicg6UaYqIiH+6pikiIhIkC0v75UxNmuU0sxVmttrM1pvZU175u2a21cx+8JYaXrmZ2atmtsnM1phZrSTH6m5mv3hL9zO1rUxTRESymhigoXPusJlFAF+Y2Txv22POuY9Oqd8MqOAtdYExQF0zKwQMAWoDDvjWzGY55/an1LAyTRER8c8s7ZczcAGHvdUIb3Gp7NIGmOjttxwoYGYlgabAIufcPi9QLgIiU2tbQVNERLIcM8tmZj8AewkEvm+8TcO8IdiXzSyHV1YK+D3J7tu9spTKU6SgKSIi/qXDNU0z62Fmq5IsPU5t1jkX75yrAZQG6phZFaA/UBG4CigEPJ7Wp6ugKSIi/qXD8KxzbqxzrnaSZWxKzTvnDgBLgEjn3C5vCDYGeAeo41XbAZRJsltpryyl8hQpaIqISJZiZkXNrID3ORfQGNjoXafEzAxoC6zzdpkFdPNm0dYDDjrndgELgCZmVtDMCgJNvLIUafasiIj4lzFPBCoJTDCzbASSvyjn3GwzW2xmRQEDfgDu8+rPBZoDm4CjwJ0Azrl9ZvY0sNKrN9Q5ty+1hhU0RUQkS3HOrQFqJlPeMIX6DuiVwrbxwPhg21bQFBER//REIBEREUmOMk0REfEvxN5yoqApIiL+hVjQDK2zFREROQfKNEVExD9NBBIREZHkKNMUERH/QuyapoKmiIj4p+FZERERSY4yTRER8S/EhmdD62xFRETOgTJNERHxL8SuaSpoioiIbxZiQVPDsyIiIkFSpikiIr4p0xQREZFkKdMUERH/QivRVKYpIiISLGWaIiLiW6hd01TQFBER30ItaGp4VkREJEjKNEVExDdlmiIiIpIsZZoiIuJbqGWaCpoiIuJfaMVMDc+KiIgES5mmiIj4FmrDs8o0RUREgqRMU0REfAu1TFNBU0REfAu1oKnhWRERkSAp0xQREd+UaYqIiEiylGmKiIh/oZVoKtMUEREJljJNERHxLdSuaSpoioiIb6EWNDU8KyIiEiRlmiIi4psyTREREUmWMk0REfEvtBJNBU0REfFPw7MiIiKSLGWaIiLimzJNERERSZYyTRER8S3UMk0FTRER8S3UgqaGZ0VEJEsxs5xmtsLMVpvZejN7yisva2bfmNkmM5tqZtm98hze+iZv+yVJjtXfK//JzJqeqW0FTRER8c/SYTmzGKChc646UAOINLN6wPPAy8658sB+4G6v/t3Afq/8Za8eZlYJ6AxUBiKB0WaWLbWGFTTPQqEL8rB8Sj+WT+nH1kXPsnnBM4nrEeGp/pzP2sY5TzF5xD2J6+1uqsHYp25L0zYAet9an1w5IxLXZ7x2PxfkzZXm7UjmVLPqFXRq3yZx2bFje4p169WumWbt3n3H7bRu0ZSO7VrTvWtntm3dctbH6HXfvRw6dIhDhw4xdfIHieV79+7hkb590qyvkvm4gMPeaoS3OKAh8JFXPgFo631u463jbW9kgXHlNsAU51yMc24rsAmok1rbuqZ5FvYdPEK9zs8BMLBnc44cjWHke58mbs+WLYz4+IQ0a6/mFWWoeGkJNm7ZnWbHPFXvrg2YPHclx6JjAWj34Jh0a0synxw5chI1fWaGtD38+RFUrlKVj6Km8tKIF3h11Btntf+oN94CYMeO7UydMplbunQFoFix4rw48tU0768kLz2uaZpZD6BHkqKxzrmxp9TJBnwLlAdGAZuBA865OK/KdqCU97kU8DuAcy7OzA4Chb3y5UkOm3SfZCnTPEdjn7qNVwd2ZtnER3m2b1sG9mxO39sbJW5f9eEALipZCIDOza/i8/ceZfmUfrw2sDNhYal/2V55bzGP3336EHvunNl5Y0hXPn/vUb6e/Dgt61cFIFfOCN5//i6+mzaQqS/ey7KJj1Kr0kWBYw24hS8++D++/Wggg+5rDsADXW6kZNELmD/2IeaPDfzLfOOcpyhcIA9P92lNz043JLaZ9Lwe7taIL95/jBVT+yceS/4djh45wr13deeWm9vRoW0rliz+5LQ6f/yxlzu7daVT+za0b9OS775dBcBXX37B7bfewi03t+PRh/tw9MiRoNq8snZtfv/tN5xzvDTiedq3aUmHtq2YP29uqu01a9yQ/fv38crLL7L999/o1L4NL414nh07ttO+TUsAbuvSiU2bfkls6+47bmf9urUcPXqUwYP6c+stN9OpQ9tkz1MyjnNurHOudpJlbDJ14p1zNYDSBLLDiuejb8o000CpYgWof8eLJCQ4BvZMPohcXrY4NzepRYM7XyIuLoGR/TvRuflVTJq9IsXjTlv4HT06Xs+lZYqcVP74PU1ZuvJn7nvqAy7Im4vP33+Mxct/okfH69l/6Ci1OgyjUrmSfDOlX+I+T77+MfsPHSUszJj3Zh+qVLiQ0ZM/o89tDYns8Qp/HTj5D9xHC77jv4914M2oZQB0aFKT1g+MolG9ipS7qBjX3fZfzIyPRvbk2lrl+PK7zX5/fJKBYmKi6dS+DQAXli7NiJde4eVXR5E3b17279/H7V1uoX6DRidlE3PnzOaaa6/j3p73Ex8fT3T0Mfbv38dbb47hzXHvkDt3bsaPG8vECe9w3wO9z9iHz5Yuofxll/HpooX8tHEjH06fyYH9+7n1lpu5snbtZNtL6qGHH2HTL78kZsxJh5ibRjZn4fx5lO9dgT/+2Msff+ylcpWqvDryJerUrcfQZ4Zz6NAhunbuSN1615A7d+60+LGGlIyePeucO2BmS4CrgQJmFu5lm6WBHV61HUAZYLuZhQMXAH8lKT8h6T7JUtBMA9M/+Z6EBJdqnQZ1LqdWpYv44v3/AyBXjgj+2Hc41X3iExJ4eeInPHZXExZ+uSGxvNHVV9Dixqr07RbI/HJmD6dMyYJcU/NSXp+0FIANm3ex9pedift0aFKLu9pfS3i2MEoUzc8Vl5ZkXZLtp1r903aKFsxHyaIXUKRgXg4cOsr2PQfodWsDbrq6Isu9gJw3Vw7KX1RMQTOLOnV4NjY2lldHvsR3364kzMLYu3cPf/35J0WKFk2sU6VKVYYMGkBcXBwNGt5ExSuuYNXKJWzZvIk7buuSeJxqNWqk2nb/xx8lZ46cXFiqFP0GPMF7E94hsnkLsmXLRuEiRbjyqqtYv3Ztsu0Fq0lkM+679y4e6N2HhfPn0bhJJABff/UFS5csZuI74wE4HhPD7l27uLRcuaCPLQEZETTNrCgQ6wXMXEBjApN7lgA3A1OA7sCJL/csb/1rb/ti55wzs1nAJDN7CbgQqACknMmgoJkmjh6LSfwcFx9/0rBrzuyBSTZmxvsff8Pg12ad1bEnzVnBY3c1YcOmXYllBnR5dBy//Lo3qGNcfGFh+t7eiOtue4EDfx9j7FO3kSP7mf+vn/7J97S7qQbFC+fno4XfeecB/x2/kLenfXlW5yFZw9zZH7N//z4mR00nIiKCZo0bEnM85qQ6V9a+ivET3+fzzz5j8MB+3N79TvLlz0+9q6/l+REvBd3WiWuaZ5Jce63atD3jfgDFixenQIEC/PzTRhbMn8egwU8C4By8NPJVLil7adD9lUylJDDBu64ZBkQ552ab2QZgipk9A3wPvO3Vfxt4z8w2AfsIzJjFObfezKKADUAc0Ms5F59aw7qmmcZ+3bmPGlcEsv0aFUtzSanCACxZ8RPtbqpB0YJ5ASiYPzcXlSx4xuPFxSXw2vtLeLBrg8SyT77+kQc635i4Xv3y0gB8/cMWOjSpBUDFS0tQpfyFAOTPm5Mj0TEcPBxNsUL5aHJtpcR9/z4SQ97cOZNt+6MF39Kx6ZW0u6km0xd9D8Cir36ke5uryZMrOwAXFr0g8Zwk6zt8+G8KFSpMREQEK75Zzs6dp49U7dy5g8KFi9ChYyfadejIjxvWU616DX74/jt++/VXAI4ePcq2bVvPqu2aV9Zmwbx5xMfHs2/fPr5btYoqVasl215SefLkSfX6adPI5rwzfhx///03l10euOx1zbXXMemD93EuMEL0448bUtxfziADbjlxzq1xztV0zlVzzlVxzg31yrc45+o458o75zo652K88mhvvby3fUuSYw1zzpVzzl3unJt3praVaaax/336A11b1uHbjwaycu22xGxw45bdPDVqNh+P6U2YGbFx8Tz8XBS/7dp/xmO++7+v6XdvZOL68Lfm899HO7AyagBhYca2HX/R4aE3eDPqc8Y9fTvfTRvIz1v3sGHLLg4ePsbm3/5g9cbtrJ7xBNt372f5D/9M7x8//UtmjXqAXX8cJLLHyTMOf9yym7y5c7Jz7wF2/3kIgE+Xb6Ri2RIsnfAoAEeOxXDnwAn8sT/1oWbJGpq3bEWfXvfToW0rKlWuQtlLT8/EVq1YwbvvvE14eDi5c+fmmeHPU6hQIYYOG06/x/7D8djjAPR+sC+XXFI26LYb3dSYNau/p2P7NpgZfR95jCJFizLrfzNOay+pAgUKUqNmLdq3acl111+fOIv2hMZNmvLCc8Pocd8DiWU97nuAF557lpvbtSYhIYFSpUvz+ug3z+ZHJSHKTvxLKy3lqtk77Q8qZxQWZkSEZyPmeBxlSxdh7hu9qdb2aWLjUh1tkBTsX/l6RndBJE3kDE+/V0Vf9OCsNP97/9trrTPts/mUaf6L5M6ZnflvPUREeBiG8dDwKAVMEUlXGT179nxT0MxgyyY+SvZTJuXcPWgi6zelPLM1JYePxnBd1xfSqmsi56xvn17s3H7yU4Ye+s+jXHvd9RnUI5Fzo+HZTCRH9nA+ebsv2bOHE54tGzM++Z5n3phL/TqX8WzfdoSFGUeOxnDvkPfY8vuf3HPzdfTsdAPxCQkcORpDr2cms3HLbgpdkIdJ/72bKytfzPuzlvPw8x9m9KllSRqeTV8xMTHc2a0rscePExcfT+MmTXmgtx5/lx7Sc3j2kodmp/nf+22vtMy06asyzUwk5ngckT1e5cix44SHh7F4/H9Y+OUGXh3QmY4Pv8lPW/fQo+P19Lsnkh5D3mfqvFWM++gLAFrcWJXn/9OeNr1HEx0Ty9DRs6lU/kIqlyuZwWclkrzs2bMzbvwEcufJQ2xsLHfcfivXXX8D1aqnfn+nSEbSLSeZzJFjgZmHEeHZCA/PhnMO5xz58wRuC8mfLxe7/jgIwN9HohP3y5MrO47AP/iORh/nqx+2EB0Te557LxI8MyN3njwAxMXFERcXF7gRWLIUM0vzJTNTppnJhIUZX016nHJlivLm1GWsXPcrDwydxIzXHiA65jiHjkRzY7cXE+v37HQDfW5rQPaIcCJ76iHVkrXEx8fTpWN7fvvtN27pcivVqlXP6C7J2crcMS7NKdPMZBISHPU6P0f5poOoXeViKpUryYNdG9DuwdGUj3yC92Yu5/lH2ifWfzNqGZVbP8WgV2bS757IVI4skvlky5aNqOkzWbj4M9atXcMvv/yc0V0SSZWCZiZ18PAxPlv1M02vrUTVy0qxcl3gSSsfLfyOetVPv2E8asG3tKpf7Xx3UyRN5M+fn6vq1OWrLz7P6K7IWQq14VkFzUykSMG8iS+AzpkjgkZ1K7Jx6x7y581F+YuKAdCwXkV+2roHgHIX/fMQ7WbXV2bT73+c/06L+LRv3z4OHQo8aSo6OprlX3+lZ8FKpqdrmplIiSL5eWvo7WQLCyMszJi26Dvmfb6OXk9PYvKIe0hwCRw4dIyeT74PwP233ECDuhWJjYvnwKGj3PvExMRjbZzzFPny5CR7RDitGlSj5QOj0vVl1iJn688/9jJoQD8SEuJJSHA0aRrJjfUbnHlHyVQye2aY1nSfpkgKdJ+m/Fuk532a5R6Zl+Z/7ze/2CzTRmJlmiIi4luIJZoKmiIi4l+oDc9qIpCIiEiQFDQzQK8u9Vn14QC+/WggvW+tD0DVy0qxdMIjrIwawEcje5IvT/IvhobAAxC+nvw40165L7FszJBb+WZqP1ZM7c+k/96d+JLo+zvfyKoPBzDjtfuJCM8GwDU1LuWFJPd6iqSFLz9fRusWTWkZ2Zi33xp72vbjx4/z2CN9aRnZmK6dO7JjR+BB7rGxsQzq/zgd2raibatmvP1W4L2W+/bto/ttXWjfpiWLP/0k8TgP9b6fvXv3nJ+TkjMyS/slM1PQPM8qlSvJne2v4frb/0udW4bT7IYqXFqmCGMG38qgV2dyVadnmbVkNQ93b5TiMXrf2iDxtpMT/m/EdOre8hx1bhnO77v3c3/nGwHo3Kw2V3UazvLVW2h8zRUA9Lu3GcPfmp9+JykhJz4+nmeHDWX0G+OYMWsO8+fOZvOmTSfVmTHtQ/Lnz8/s+Yu4rdsdjHxpBACLFszneOxxpv3vYyZHTeejqKns2LGdeXNn0/GWznww5UM+eG8CAEuXLKbiFZUoVqz4eT9HEVDQPO8qli3BynXbOBYdS3x8Ap9/u4m2DWtQ/qJifPFt4I/M4uUbadso+YdWlypWgMjrKvPOjK9OKk/6HNqcOSI4MSvaLPBi6tw5sxMbF0+XFlex8Mv17D90NJ3OUELRurVrKFPmYkqXKUNE9uxENm/B0iWfnlRnyeLFtG7TDoDGTZqyYvnXOOcwM44dPUZcXBwxMdGER0SQN09eIsLDiT4WTezx44SFhREXF8cH703gjrvuyYhTlBTo4QaSrtZv3sm1NctT6II85MoZQeR1lSldoiA/btmV+ESf9o1rUbp4wWT3/+9jHRj4yv9ISDh9lvebT97Gtk+e5fJLijN6ymcAjJn6GZ9NfIQyJQry9Q9b6Na6Hm9ELUu/E5SQtHfPHkqULJG4Xqx4cfbsOXk0ZO/ePZQoEXjrTnh4OHnz5ePAgf3c1KQpuXLn4qb619H0pgZ0v+MuLihQgGYtWrF0yaf0vPdO7ulxH1OnTKJlqzbkypXrvJ6bpC7Uhmc1e/Y8+2nrHl58dxEfj+7F0ejjrP5pO/HxCfR88gNe/L+b6XdvJHM+W8vx2PjT9m12fRX27vub73/8neuvrHDa9p5Pvk9YmPHS4x25ucmVvDdrOZPnrGTynJUA9O8RyejJn9H02sp0bVmH7bv38/hLM0iPe3VFgrVu7RqyhYWxaMnnHDp0iDu73Uq9q6+hdJkyvD4mcG300MGDjB83lpdfeZ2nBg/i0KFDdLvjTqrXqJnBvZdQo0wzA0z439dc2/UFGt89kgOHjvLLr3v5edseWj0wimu7vkDU/G/Zuv30R+JdXeNSWt5YlY1znmLic3dS/6rLGP9Mt5PqJCQ4Plzw7WnDuyWLXkDtypfw8dI1PHR7Q257fDwH/j5GgzqXp+u5SmgoVrw4u3f988SpvXv2ULz4ydcdixUrzu7du4DAq8AO//03BQoUZN6c2Vxz3fVERERQuHBhatSsxfr1a0/a9803RnNPj/uYN3cONWtdydPPPseYUXr4RGYQFmZpvmRmCpoZoGjBvACUKVGQNg2rM3XeqsQyM6PfvU15y3u5dFKDX5tF+cgnqNhiCN36vcPSlT9z16DAo/MuLVMksV7LG6vx87aTh8YGP9CCp8fMBiBXjgicgwTnyJ0rIl3OUUJL5SpV+e23bWzf/juxx48zf+4cbmzQ8KQ69Rs0ZNbMGQAsWriAOnXrYWaUKFmSFd98A8DRo0dZu3o1ZZM8g/bXX7exd89urqpTl+joY1hY4LpXTEw0IuebhmczwOQR91CoQB5i4+Lp+1wUBw8fo1eX+vS85QYAZi7+gYkzlwOBDHH04Ftp9+CYFI9nZowbejv58uTCDNb+vIM+z05N3F798tIA/LAxMMV/6rxVrPpwANt37+eldz9J9pgiZyM8PJz+Awdzf497SEiIp227DpQvX4FRr71C5cpVqN+wEe063MzAfo/RMrIx+S+4gBdGvAxA5y5dGTyoP+1atwDnaNOuPZddXjHx2K+/8jK9H3oYgMjmLXm4Ty/Gj3uLXr37ZMi5ysky+zXItKZnz4qkQM+elX+L9Hz2bJVBi9L87/26Zxpn2lCs4VkREZEgaXhWRER8C7XhWWWaIiIiQVKmKSIivmX2J/ikNWWaIiIiQVKmKSIivoVapqmgKSIivoVYzNTwrIiISLCUaYqIiG+hNjyrTFNERCRIyjRFRMS3EEs0FTRFRMQ/Dc+KiIhIspRpioiIbyGWaCrTFBERCZYyTRER8S3UrmkqaIqIiG8hFjM1PCsiIhIsZZoiIuJbqA3PKtMUEREJkjJNERHxLcQSTWWaIiIiwVLQFBER38wszZcg2ixjZkvMbIOZrTezh7zyJ81sh5n94C3Nk+zT38w2mdlPZtY0SXmkV7bJzPqdqW0Nz4qIiG8ZNDwbBzzinPvOzPIB35rZIm/by865EUkrm1kloDNQGbgQ+MTMLvM2jwIaA9uBlWY2yzm3IaWGFTRFRCRLcc7tAnZ5n/82sx+BUqns0gaY4pyLAbaa2Sagjrdtk3NuC4CZTfHqphg0NTwrIiK+ZcTw7CntXwLUBL7xinqb2RozG29mBb2yUsDvSXbb7pWlVJ4iBU0REclUzKyHma1KsvRIoV5eYBrQ1zl3CBgDlANqEMhEX0zrvml4VkREfEuPa5rOubHA2NTbtQgCAfMD59x0b789Sba/Bcz2VncAZZLsXtorI5XyZCnTFBER3zJo9qwBbwM/OudeSlJeMkm1dsA67/MsoLOZ5TCzskAFYAWwEqhgZmXNLDuByUKzUmtbmaaIiGQ11wK3A2vN7AevbADQxcxqAA7YBvQEcM6tN7MoAhN84oBezrl4ADPrDSwAsgHjnXPrU2tYQVNERHzLiGfPOue+AJJreG4q+wwDhiVTPje1/U6l4VkREZEgKdMUERHfQu3ZswqaIiLim14NJiIiIslSpikiIr6FWKKpTFNERCRYyjRFRMS3ULumqaApIiK+hVjM1PCsiIhIsJRpioiIb2Ehlmoq0xQREQmSMk0REfEtxBJNZZoiIiLBUqYpIiK+6ZYTERGRIIWFVszU8KyIiEiwlGmKiIhvoTY8q0xTREQkSMo0RUTEtxBLNBU0RUTEPyO0oqaGZ0VERIKkTFNERHzTLSciIiKSLGWaIiLiW6jdcqKgKSIivoVYzNTwrIiISLCUaYqIiG96CbWIiIgkS5mmiIj4FmKJpjJNERGRYCnTFBER33TLiYiISJBCLGZqeFZERCRYyjRFRMQ33XIiIiIiyVKmKSIivoVWnqmgKSIi5yDUZs9qeFZERCRIyjRFRMS3UHsJdYpB08xeA1xK251zfdKlRyIiIplUapnmqvPWCxERyZJC7ZpmikHTOTch6bqZ5XbOHU3/LomISFYRYjHzzBOBzOxqM9sAbPTWq5vZ6HTvmYiISCYTzOzZkUBT4C8A59xq4Ib07JSIiGQNZpbmS2YW1C0nzrnfTymKT4e+iIiIZGrB3HLyu5ldAzgziwAeAn5M326JiEhWEGq3nASTad4H9AJKATuBGt66iIhISDljpumc+xPoeh76IiIiWUxmvwaZ1oKZPXupmX1sZn+Y2V4zm2lml56PzomISOZm6bCcsU2zMma2xMw2mNl6M3vIKy9kZovM7BfvvwW9cjOzV81sk5mtMbNaSY7V3av/i5l1P1PbwQzPTgKigJLAhcCHwOQg9hMREUkPccAjzrlKQD2gl5lVAvoBnzrnKgCfeusAzYAK3tIDGAOBIAsMAeoCdYAhJwJtSoIJmrmdc+855+K85X0g59meoYiI/PuEmaX5cibOuV3Oue+8z38TmJxaCmgDnHgwzwSgrfe5DTDRBSwHCphZSQK3Uy5yzu1zzu0HFgGRqbWd2rNnC3kf55lZP2AKgWfR3gLMPeNZiYiIpDMzuwSoCXwDFHfO7fI27QaKe59LAUlvndzulaVUnqLUJgJ9SyBIngj7PZNsc0D/1A4sIiL/fukxD8jMehAYRj1hrHNubDL18gLTgL7OuUNJJyU555yZpfjSEb9Se/Zs2bRuTERE/l3SY/asFyBPC5KntBtBIGB+4Jyb7hXvMbOSzrld3vDrXq98B1Amye6lvbIdQP1Typem1m5QTwQysypm1snMup1YgtlPREQkrVkgUr8N/OiceynJplnAiRmw3YGZScq7ebNo6wEHvWHcBUATMyvoTQBq4pWl6Iz3aZrZEAKRuBKBa5nNgC+AicGdnoiI/Ftl0G2a1wK3A2vN7AevbADwHBBlZncDvwKdvG1zgebAJuAocCeAc26fmT0NrPTqDXXO7Uut4WAeo3czUB343jl3p5kVB94P9sxERETSknPuC1K+pbNRMvUdKTzJzjk3HhgfbNvBBM1jzrkEM4szs/wExojLnGknERH59wvmFpF/k2CC5iozKwC8RWBG7WHg63TtlYiIZAkhFjODevbsA97HN8xsPpDfObcmfbslIiKS+aT2cINaqW078TQGEREJXaH2wPbUMkoB3aQAACAASURBVM0XU9nmgIYpbdy/8nXfHRLJLFya3xYtIlldag83aHA+OyIiIllPUDf7/4uE2vmKiIj4FszsWRERkWTpmqaIiEiQwkIrZp55eNZ7Vt9tZjbYW7/IzOqkf9dEREQyl2CuaY4Grga6eOt/A6PSrUciIpJlhFnaL5lZMMOzdZ1ztczsewDn3H4zy57O/RIREcl0ggmasWaWjcC9mZhZUSAhXXslIiJZgiYCne5VYAZQzMyGEXjryaB07ZWIiGQJmX04Na0F8+zZD8zsWwKvWzGgrXPux3TvmYiISCYTzEuoLyLw0s6Pk5Y5535Lz46JiEjmF2Kjs0ENz84hcD3TgJxAWeAnoHI69ktERCTTCWZ4tmrSde/tJw+kUF1EREKIXkJ9Bs6578ysbnp0RkREspZQe4B5MNc0/5NkNQyoBexMtx6JiIhkUsFkmvmSfI4jcI1zWvp0R0REspIQG51NPWh6DzXI55x79Dz1R0REJNNKMWiaWbhzLs7Mrj2fHRIRkaxDE4H+sYLA9csfzGwW8CFw5MRG59z0dO6biIhIphLMNc2cwF9AQ/65X9MBCpoiIiEuxBLNVINmMW/m7Dr+CZYnuHTtlYiIZAl69uw/sgF5OTlYnqCgKSIiISe1oLnLOTf0vPVERESynFCbCJTawxxC6ychIiJyBqllmo3OWy9ERCRLCrFEM+Wg6Zzbdz47IiIiWU+oTQQKtWftioiI+HbWbzkRERE5wUJs+osyTRERkSAp0xQREd9C7ZqmgqaIiPgWakFTw7MiIiJBUqYpIiK+WYjdqKlMU0REJEjKNEVExDdd0xQREZFkKdMUERHfQuySpoKmiIj4p1eDiYiISLKUaYqIiG+aCCQiIiLJUqYpIiK+hdglTQVNERHxL0yvBhMREcnczGy8me01s3VJyp40sx1m9oO3NE+yrb+ZbTKzn8ysaZLySK9sk5n1O1O7CpoiIuKbWdovQXoXiEym/GXnXA1vmRvoo1UCOgOVvX1Gm1k2M8sGjAKaAZWALl7dFGl4VkREshzn3DIzuyTI6m2AKc65GGCrmW0C6njbNjnntgCY2RSv7oaUDqRMU0REfAuztF/OUW8zW+MN3xb0ykoBvyeps90rS6k85fM95+6JiEjICjNL88XMepjZqiRLjyC7MwYoB9QAdgEvpvX5anhWREQyFefcWGCsj/32nPhsZm8Bs73VHUCZJFVLe2WkUp4sZZoiIuJbBk4ESqYvVjLJajvgxMzaWUBnM8thZmWBCsAKYCVQwczKmll2ApOFZqXWhjJNERHJcsxsMlAfKGJm24EhQH0zqwE4YBvQE8A5t97MoghM8IkDejnn4r3j9AYWANmA8c659am265xL85OJjiPtDypynqXDr4ZIhsgVkX5PIHh7xW9p/ptyd52LMu0TEzQ8KyIiEiQNz4qIiG969qyIiEiQQm24MtTOV0RExDdlmiIi4puF2PisMk0REZEgKdMUERHfQivPVNAUEZFzEKbhWREREUmOMk0REfEttPJMZZoiIiJBU6YpIiK+hdglTQVNERHxT/dpioiISLKUaYqIiG+hlnmF2vmKiIj4pkxTRER80zVNERERSZYyTRER8S208kwFTREROQcanhUREZFkKdMUERHfQi3zCrXzFRER8U2ZpoiI+BZq1zQVNEVExLfQCpkanhUREQmaMk0REfEtxEZnlWmKiIgES5mmiIj4FhZiVzUVNEVExDcNz4qIiEiylGmKiIhvFmLDs8o0RUREgqRMU0REfAu1a5oKmiIi4luozZ7V8KyIiEiQlGmKiIhvoTY8q0xTREQkSMo0RUTEN2WaIiIikiwFzSDVrHoFndq3SVx27NieYt16tWumWbt333E7XTq1T1xfv24td99xe5od/4SZM6azd++exPUnBw9k86ZNad6OZD4HDuynU4c2dOrQhkY3XkvjhtcnrsfGHk/Ttpo1acjN7VrRsV0r7rv3Lv7884+zPka3rp0B2LFjO3PnfJxYvn7dWp5/9pk066sEx9Lhf5mZhmeDlCNHTqKmz8yQtvf9tY8vPv+M666/Md3amDVzBuUrVKBYseIAPDl0WLq1JZlLgQIFiZoW+G6PGfUauXPnpvuddyduj4uLIzw87f5UvDV+AgULFuLVkS/x9tg3eXzAoLPaf+IHUwDYuWMH8+bMpnmLVgBUrlKVylWqplk/JThhmTvGpTkFTZ+OHjnCQw8+wKFDh4iLi6N3n4do0PCmk+r88cde/u+Rhzly+DBx8fEMGvwkta6szVdffsGYUa9x/PhxypQpw9BnhpM7T54U2+p+19289eYbpwXN+Ph4Xnl5BKtWrOB47HFu6dKVjp06k5CQwPBnhrJixXJKlChJeHg4bdt1oHHTSN4Y/TrLli4hOiaGGjVq8sSTQ/lk4QLWr1tH/8cfJWeOnEycNJVe993Lfx79P9avX8f233/jP48+DgQy0vXr1zFg0GBmfzyTSe+/R1xsLFWqVWfgE0PIli1b2v+w5bx7YmA/cmTPzsaNP1KjZi3y5Ml7UjDt0LYlr456g1KlSjPn45lM+uA9YmNjqVqtOgMGBfc9uLJ2bSZ98B4xMTEMe/pJNqxfR7Zs2Xj0//pxVZ16bNr0C0MG9Sc2NhaXkMCIka9x8cWXcPVVNfl65fe8OvJFtm7ZTKcObWjVph0VK17BxHfH88rrY2gReRNTP/of+fPnB6BV8ya8O3ESFhbGsKFD2LVrJwCPPT6AmrWuTL8fpPzraHg2SDEx0YlDs3379CJ7jhy8/Ooopn40g3HvTODFF57HOXfSPnPnzOaaa68javpMPpw+k8srVmT//n289eYY3hz3DlM/mkGlylWYOOGdVNuuXr0GERERrPhm+UnlM6Z9RN68+ZgUNY1JU6cx/aMotm//nU8XLWTnzh3MmDWXYcNfYPXqHxL36XLrbUyKmsb0mbOJjonms6VLaNw0kspVqjD8+RFETZ9Jzpw5E+vf1Lgpiz/5JHF9wfy5RDZrzpbNm1kwbx4T3p9M1PSZZAsLY+7sj5F/jz179jDh/Sk8+n/9U6yzZfNmFsyfx7vvTSZq2kzCzuJ7sOyzpVSocBlTJ3+AAR/N+JjnXniRJwb0IyYmho+ipnDrbd2ImjaTSVHTKF68xEn79+n7CDVr1SZq2kxu73ZHYnlYWBj1GzRk8aeLAFi7ZjUXXnghhYsU4YXnhnFbt+5MmjqNF0e+xtAhZ5flyuk0PCvJOnV4NjY2lldHvsR3364kzMLYu3cPf/35J0WKFk2sU6VKVYYMGkBcXBwNGt5ExSuuYNXKJWzZvIk7buuSeJxqNWqcsf17e97PW2+Ooe9/Hk0s+/qrL/n555/4ZOECAP4+/De//for33/3LY2bRhIWFkaRokW5qk7dxH1WrviGd8aPIzo6moMHD1CuXAXqN2iYYruFChWiVJkyrFn9AxddfDFbt26hZq0rmTLpA37csI6ut9wMQHRMNIUKFw7ypylZQeOmkWfMGFd883Xge9A58D2IiYmmUKHUvwf33tWdsLAwLrvscno92Jchg/rTpettAJS9tBwlL7yQX7dtpVr1Gowb+wZ79+ym4U1NuPjiS4Lue9PI5ox9YxRt23Vg/rw5NIlsDsA3y79iy+Z/rtUfPnKYo0ePkDt3yiM9IkkpaPo0d/bH7N+/j8lR04mIiKBZ44bEHI85qc6Vta9i/MT3+fyzzxg8sB+3d7+TfPnzU+/qa3l+xEtn1V7delcz6rVXWLN6dWKZc45+AwZx7XXXn1T3i2WfJXuMmJgYhj3zFJOnTqNEyZLeEHFMsnWTimzWnAXz51G27KU0bNQYM8PhaNWmHQ89/MhZnYdkHbly5Ur8HB6ejQSXkLh+PCbwvXHO0ap1O/qcxffgxDXNM2neohVVq1bn82VL6X1/D54Y8hR16l4dVBvVa9Tk999+Y9++fSxZ/An39rw/0N+EBN6bFEWOHDmC7q+kTrecSFAOH/6bQoUKJw6b7ty547Q6O3fuoHDhInTo2Il2HTry44b1VKtegx++/47ffv0VgKNHj7Jt29ag2ry35/28O35c4vo1117Hh1MnExsbC8C2bVs5evQoNWrV4pNFC0lISOCvP/9k1YoVQCBoAhQoWJCjR46wyMtQAXLnzsORI0eSbbdRo8YsXfIp8+bOJrJZCwDq1r2aTxYu4K+//gLg4IEDyf4M5N/hwgtLsXHDBgB+3LA+cfZ4nXpXs2jRAvad+B4cPPvvQa0raycO6f66bSu7d+3ikrKXsv333yldpgy33taNBg0a8fPPP520X548eTh6NPnvrJnRoNFNvPjCcMpeWo4CBQoCUO+a65j8wXuJ9TZu/PGs+iqn0/CsBKV5y1b06XU/Hdq2olLlKpS99NLT6qxasYJ333mb8PBwcufOzTPDn6dQoUIMHTacfo/9h+PedP7eD/blkkvKnrHN62+4kYKF/vkXevubO7Jz5w46d2yPc46CBQsy8rXR3NS4Kd8s/5p2rZtTokRJrqhUibz58pE/f346dOhIh7YtKVK4yEkzDdu0bcczQ4ckTgRKKv8FF1D20nJs2byJqtWqAVCufHl69enL/ffeRYJLIDw8ggGDBnPhhaV8/Twlc2vUuCkfz5pJ+zYtqFq1WuJQably5en9YF/u63EXLiGB8IgI+g88u+9Bp863MuzpJ7m5XSuyZcvG0GHDyZ49OwsXzGP2xzMJDw+nSJEi3N2j50n7VbjscsLCwujUvjWt2ranYsUrTtreNLI5XTvfzNBhzyWWPd5/IMOfGUrHdq2Ij4+n1pW1GTRkqP8fjIQcO3XySlqIjiPtDypn5eiRI+TOk4cDB/bTtXNHJrw3+aTrrXJm6fCrIZIhckWkX/q27Od9af6bcsNlhc7YXzMbD7QE9jrnqnhlhYCpwCXANqCTc26/mRnwCtAcOArc4Zz7ztunO3BiRtgzzrkJqbWrTPNf6sFe9/H3oUPExsbSo+cDCpgi8m/zLvA6MDFJWT/gU+fcc2bWz1t/HGgGVPCWusAYoK4XZIcAtQEHfGtms5xz+1NqVEEzk+jbpxc7t5/8lKGH/vPoaZN8gvX2u++duZJIOrmtS0eOHz/5aULDhr9Ahcsuz6AeSXrJqGuQzrllZnbJKcVtgPre5wnAUgJBsw0w0QWGVpebWQEzK+nVXeSc2wdgZouASGBySu0qaGYSI18dldFdEEkz70/+MKO7IOdJesyeNbMeQI8kRWOdc2OD2LW4c26X93k3UNz7XAr4PUm97V5ZSuUpUtDMYgYP6s+yz5ZSqFBhps+cndHdETkrQwb1Z9mywPd32v8C39+NG39k2NAhxMTEEJ4tG/2feJKqVatlcE8lI3kBMpggmdoxnJml+fVW3XKSxbRp254xb447c0WRTKh12/aMfuPk7+/IF/9Lz/t7ETVtJvf3foiRL/43g3onflg6LOdgjzfsivffvV75DqBMknqlvbKUylOkoJnFXFn7KvJfcEFGd0PEl+S+v2bGkcOB+y0PH/6bosWKZUTX5N9hFtDd+9wdmJmkvJsF1AMOesO4C4AmZlbQzAoCTbyyFGl4VkQy1GOPD+CBnnfz0ojnSXAJTHh/SkZ3Sc5CWAY9EsjMJhOYyFPEzLYTmAX7HBBlZncDvwKdvOpzCdxusonALSd3Ajjn9pnZ08BKr97QE5OCUqKgKSIZ6sOpk3n08f7c1LgpC+bP5anBA3lz3LsZ3S3J5JxzXVLY1CiZug7olcJxxgPjg21Xw7MikqE+njWDRjc1AaBJ02asW7smg3skZyOTXdNMdwqaIpKhihYtxqqVgecjr/hmORedxdtMJBMIsaipx+hlMY8/+h9WrVzBgQP7KVS4MPf3epD2HTpmdLf+lfQYvbTX77FTvr8PPMglZcvywnPPEh8XR/YcORgwaAiVKlfJ6K7+q6TnY/SWbz6Q5r8p9coVyLShU0FTJAUKmvJvkZ5B85vNB9P8N6VuuQsybdDU8KyIiEiQNHtWRER800uo5bz68vNltG7RlJaRjXn7rdOfGnX8+HEee6QvLSMb07Vzx8SX/65ds4ZO7dvQqX0bOrZrzaefLAJg3759dL+tC+3btGTxp58kHueh3vezd++e83NSEpK+/GIZbVo2pVWzxowfl/IT0D5ZtIAaVS5n/bq1AMyZPYtOHdokLjWrVmTjxh85fvw4D/S8mw5tWzJ1ygeJ+w998gl+3LA+3c9HghNi84AUNDNSfHw8zw4byug3xjFj1hzmz53N5k2bTqozY9qH5M+fn9nzF3FbtzsY+dIIAMpXqMCkqGlETZ/J6LHjePqpwcTFxTFv7mw63tKZD6Z8yAfvBV4Lt3TJYipeUYlixYqf1geRtBAfH8/wZ4Yyasw4pp/4Lm/edFq9I0cOM+n9iVStVj2xrEXL1kRNm0nUtJkMG/4CpUqVpmLFK/jqy8+pWetKPpw+izkfzwLgp40bSYiP54pKlc/buYkkpaCZgdatXUOZMhdTukwZIrJnJ7J5C5Yu+fSkOksWL6Z1m3YANG7SlBXLv8Y5R65cuQgPD4yux8TEYN4YSUR4ONHHook9fpywsDDi4uL44L0J3HHXPef35CSkrFu7hjIXed/liOw0bdaCpYs/Pa3eqNde4Y677iV79hzJHmfe3Dk0bdYCgPDwcI4diyYuLo4TExZHvz6SBx58KP1ORM5eiKWaCpoZaO+ePZQoWSJxvVjx4uzZc/IQ6t69eyhRoiQQ+COSN18+DhwIvB91zZrVtGvdgpvbtmbQ4KcIDw+nWYtWLF3yKT3vvZN7etzH1CmTaNmqDbly5Tp/JyYhJ/A9/ee7XLx48dMuB/y4YT17du/mhhvrp3ichfPn0qx5IGjWu/padu7cwe23dqJL19tZuuRTKl5RWSMmkqE0ESgLq1atOjNmzWHL5s0MGvA4111/A/ny5eP1MYHrSYcOHmT8uLG8/MrrPDV4EIcOHaLbHXdSvUbNDO65hJqEhARGvPAcQ4cNT7HO2jWryZkrF+UrXAYE/pH43AsvAhAbG8sDPe9m5GujGfHCcHbv2kXL1m2o3+C0J6bJeZZRL6HOKMo0M1Cx4sXZvWt34vrePXsoXvzkf0UXK1ac3bsD71SNi4vj8N9/U6BAwZPqXFquHLlz52bTLz+fVP7mG6O5p8d9zJs7h5q1ruTpZ59jzKjX0+lsJJQFvqf/fJf37NlzUkZ45MgRNm/6mXvu7EazJg1Zu+YH+j54f+JkIID58+YQ6Q3NnipqyiRatm7LmtWryZs3H8+PeJn3JryTfickQTNL+yUzU9DMQJWrVOW337axffvvxB4/zvy5c7ixQcOT6tRv0JBZM2cAsGjhAurUrYeZsX3778TFxQGwc+cOtm3dwoWl/nnh+K+/bmPvnt1cVacu0dHHsDDDzIiJiT5/Jygh48R3ecf234mNPc6CeSd/l/Ply8fSL75h3sLFzFu4mKrVajDytTFUrlIVCGSiCxfMSzZoHjp4kGWfLaVV67ZERx8jzPsuR0fruyznn4ZnM1B4eDj9Bw7m/h73kJAQT9t2HShfvgKjXnuFypWrUL9hI9p1uJmB/R6jZWRj8l9wAS+MeBmA77/7lvHj3iIiPBwLC2PAE09SsGChxGO//srL9H7oYQAim7fk4T69GD/uLXr17pMh5yr/buHh4fQbMJj7e95DQnw8bbzv8ujXX6FS5SpnHEb9dtVKSpQoSekyZU7b9uYbo7inx32EhYVxzbXXM3XyJG5u14qOnTqn1+nIWcjkiWGa02P0RFKgx+jJv0V6Pkbvu22H0vw3pdYl+TNtLFamKSIi/mXa8JY+dE1TREQkSMo0RUTEt1C75URBU0REfMvst4ikNQ3PioiIBEmZpoiI+BZiiaYyTRERkWAp0xQREf9CLNVU0BQREd9CbfashmdFRESCpExTRER80y0nIiIikixlmiIi4luIJZoKmiIicg5CLGpqeFZERCRIyjRFRMQ33XIiIiIiyVKmKSIivumWExEREUmWMk0REfEtxBJNBU0RETkHIRY1NTwrIiISJGWaIiLim245ERERkWQp0xQREd9C7ZYTBU0REfEtxGKmhmdFRESCpUxTRET8C7FUU5mmiIhIkJRpioiIb6F2y4mCpoiI+BZqs2c1PCsiIhIkBU0REfHN0mEJql2zbWa21sx+MLNVXlkhM1tkZr94/y3olZuZvWpmm8xsjZnV8nu+CpoiIpJVNXDO1XDO1fbW+wGfOucqAJ966wDNgAre0gMY47dBBU0REfEvo1LN5LUBJnifJwBtk5RPdAHLgQJmVtJPAwqaIiKSFTlgoZl9a2Y9vLLizrld3ufdQHHvcyng9yT7bvfKzppmz4qIiG/pccuJFwR7JCka65wbe0q165xzO8ysGLDIzDYm3eicc2bm0rpvCpoiIuJbetxy4gXIU4PkqXV2eP/da2YzgDrAHjMr6Zzb5Q2/7vWq7wDKJNm9tFd21jQ8KyIiWYqZ5TGzfCc+A02AdcAsoLtXrTsw0/s8C+jmzaKtBxxMMox7VpRpioiIbxn0bIPiwAwLpLnhwCTn3HwzWwlEmdndwK9AJ6/+XKA5sAk4Ctzpt2FzLs2HfImOI+0PKnKepcOvhkiGyBWRfrFt25/Raf6bckmRnJn2OUPKNEVExL9MG97Sh4KmiIj4FmoPbNdEIBERkSAp0xQREd/0lhMRERFJljJNERHxLcQSTQVNERHxT8OzIiIikixlmiIicg5CK9VUpikiIhIkZZoiIuKbrmmKiIhIspRpioiIbyGWaCpoioiIfxqeFRERkWQp0xQREd/0lhMRERFJljJNERHxL7QSTQVNERHxL8RipoZnRUREgqVMU0REfNMtJyIiIpIsZZoiIuJbqN1yoqApIiL+hVbM1PCsiIhIsJRpioiIbyGWaCrTFBERCZYyTRER8U23nIiIiEiylGmKiIhvuuVEREQkSBqeFRERkWQpaIqIiARJQVNERCRIuqYpIiK+hdo1TQVNERHxLdRmz2p4VkREJEjKNEVExLdQG55VpikiIhIkZZoiIuJbiCWaCpoiInIOQixqanhWREQkSMo0RUTEN91yIiIiIslSpikiIr7plhMRERFJljJNERHxLcQSTQVNERE5ByEWNTU8KyIiEiRlmiIi4ptuOREREZFkKdMUERHfQu2WE3POZXQfREREsgQNz4qIiARJQVNERCRICpoiIiJBUtCUTMXM4s3sBzNbZ2YfmlnuczjWu2Z2s/d5nJlVSqVufTO7xkcb28ysSLDlp9Q5fJZtPWlmj55tH0Uk7ShoSmZzzDlXwzlXBTgO3Jd0o5n5mvHtnLvHObchlSr1gbMOmiISWhQ0JTP7HCjvZYGfm9ksYIOZZTOz/5rZSjNbY2Y9ASzgdTP7ycw+AYqdOJCZLTWz2t7nSDP7zsxWm9mnZnYJgeD8sJflXm9mRc1smtfGSjO71tu3sJktNLP1ZjaOIB4iZmb/M7NvvX16nLLtZa/8UzMr6pWVM7P53j6fm1nFtPhhisi5032akil5GWUzYL5XVAuo4pzb6gWeg865q8wsB/ClmS0EagKXA5WA4sAGYPwpxy0KvAXc4B2rkHNun5m9ARx2zo3w6k0CXnbOfWFmFwELgCuAIcAXzrmhZtYCuDuI07nLayMXsNLMpjnn/gLyAKuccw+b2WDv2L2BscB9zrlfzKwuMBpo6OPHKCJpTEFTMptcZvaD9/lz4G0Cw6YrnHNbvfImQLUT1yuBC4AKwA3AZOdcPLDTzBYnc/x6wLITx3LO7UuhHzcBleyfO7fzm1ler4323r5zzGx/EOfUx8zaeZ/LeH39C0gApnrl7wPTvTauAT5M0naOINoQkfNAQVMym2POuRpJC7zgcSRpEfCgc27BKfWap2E/woB6zrnoZPoSNDOrTyAAX+2cO2pmS4GcKVR3XrsHTv0ZiEjmoGuakhUtAO43swgAM7vMzPIAy4BbvGueJYEGyey7HLjBzMp6+xbyyv8G8iWptxB48MSKmZ0IYsuAW72yZkDBM/T1AmC/FzArEsh0TwgDTmTLtxIY9j0EbDWzjl4bZmbVz9CGiJwnCpqSFY0jcL3yOzNbB7xJYNRkBvCLt20i8PWpOzrn/gB6EBgKXc0/w6MfA+1OTAQC+gC1vYlGG/hnFu9TBILuegLDtL+doa/zgXAz+xF4jkDQPuEIUMc7h4bAUK+8K3C317/1QJsgfiYich7o2bMiIiJBUqYpIiISJAVNERGRICloioiIBElBU0REJEgKmiIiIkFS0BQREQmSgqaIiEiQFDRFRESCpKApIiISJAVNERGRICloioiIBElBU0REJEgKmiIiIkFS0BQREQmSgqZkKDNra2bOe0FzlmdmV5rZWjPbZGavmpklU6egmc3w3tW5wsyqJNn2kJmtM7P1ZtY3SXl1M/vaO/bHZpb/fJ2TiPxDQfP/27v7aKvqOo/j70+QgoGolMQQSYKpjQg+oObIDCrZk5PoUEqp+Zhak6RDo8s1zTQ9zOCanCZzzBoZDZeZY2gSU+BTIGYqPnB5FFTACWWsxCcQdUGf+eP3Pba5nXM5xOWey5rva62zzjm/vfdv73PWuut7f7+z92enVpsA3BfP24WkHtur7zq+A5wL7BOPD9VZ5zJgvu0DgdOBbwFE8TwXOAwYARwvaVhscy1wqe3hlJttf3F7foiUUn1ZNFPLSOoDHAWcDZwSbT0kfSNGWwskfT7aR0m6X1JbjM76SjpD0lWV/mZIGhOv10m6QlIb8H5Jfy9pXvT7vdoIUNIwSXdFv49KGippqqRxlX5vlHRCE59nILCr7Qdc7u4+FRhXZ9X3AfcA2H4cGCJpALA/8KDtV21vBOYAJ8U27wXujdd3An/VxFecUupkWTRTK50AzLS9HHhe0iHAZ4AhwMgYid0oaSfgZmCi7RHAWGDDFvp+G6UAjbB9H3CV7VG2DwB6A8fHejcC/x79Io7PwgAAC2RJREFUHgmsAaYAZwBI6hft/y1pX0nzGzx2AwYBqyvHsDra2msjiqGkw4C9gHcBi4DRkvpL2gX4CDA4tlkc3xfAxyvtKaUu1LPVB5D+X5tATE0CP4z37wGuiZEWttdKGg6ssT0v2l4GqPNzYdUmYFrl/dGS/hbYBdgDWCxpNjDI9m3R72ux7hxJV0t6B2VENy2OZxkwstEOt3A8VZOBb0maDywEHgM22V4q6XLgDmA9MD8+B8BZwJWSvgRMB95odmcppc6TRTO1hKQ9gGOA4ZIM9AAMzNuKbjay+WxJr8rr12xvin31Aq4GDrX9K0lfbrduPVOBUynTxmdGP/tSRrz1jAGeoYwYa94VbZuJol/rU8BKYEUsm0IZ6SLpn4iRa0zjHhft7wU+uoXjTyltBzk9m1plPHCD7b1sD7E9mFI82oDzJPWEN4vrMmCgpFHR1jeWrwJGSnqLpMGUE2jqqRXI38bvqOMBbL8CrK79filp55gWBbge+EKstySel9ke2eDxou01wMuSjohieDpwe/uDkbRbTDkDnAPcWxk97xnP76ZM4f6gXftbgL8Drmnua04pdaYsmqlVJlDOAq2aBgwE/gdYECfxfNL2G8DJwLej7U5KIfwFpdAuAa4EHq23I9svAv9B+c1wFpuPZk8DLpS0ALgfeGds8xywFLhuKz/XZylnuj4JPAX8DEDS+ZLOj3X2BxZJWgZ8GJhY/Q4kLQF+Anwujh1ggqTlwOPAs3/EcaWUOoHKSX4ppaoYcS4EDrb9UquPJ6XUPeRIM6V2JI2ljDK/nQUzpVSVI82UUkqpSTnSTCmllJqURTO1lKRNEQ6wSNItlbNXt6XPr8QUa6Pl50s6fVv300H/zeTP9osM2bbImT2zsqz2ncyXNL3SPrfS/qykH2+vz5BSqi+nZ1NLSVpnu0+8vhF4xPa/Vpb3rAUd7CgkPQRcCDwI/BS40vbP2q1zGdDP9iURorAMeKftN6rfSQf7mAbcbnvq9vkUKaV6cqSZupO5wDBJY2JUNR1YopJH+y+RHbtA0nm1DSRdEqO6NkmTo+16SePj9WRJS2K7b0TblyVNitcjJT0Qy2+TtHu0z5Z0uUrO7XJJo5v5AGo+f9ZA3xiF9gHWUsIamtnHrpRgiBxpptTFMhEodQsRVvBhYGY0HQwcYHulpM8AL9keJWln4BeS7gD2o+SxHm771QhCqPbZHzgR2M+2VfJh25sKfN72HElfAf6BCDUAeto+TNJHon1sE6lAzebPXkWJw3sW6AucbPt3sayXpIcpRXSy7fbFcRxwdy0QIaXUdbJoplbrHRmsUEaaUygB6Q/ZXhntxwEH1kaPQD/KbbfGAtfZfhVKTm27vl8CXgOmSJoBzKguVAlj3832nGj6PnBLZZVb4/kRSog8tjsrf/aDlGzZY4ChwJ2S5kYh3Mv2M5L2Bu6RtND2U5VtJ1ACFFJKXSyLZmq1DbY3K0JReNZXmyijwVnt1vtgRx3b3qhyF5FjKdF5f00pUs16PZ43EX8rTYw0m8qfpWTPTo4p3CclraSMnB+y/Uwc/wqVUPmDKOlCSHo7JS7wxK34HCmlTpK/aaYdwSzgAklvhRJYLultlDi9M2tn3NaZnu1DOdnmp8BFlBs7vymCC16o/F55GuUelg11Vv4sJSrw2DjOAcC+wApJu8cUdK1A/hklJrBmPDCjckeWlFIXypFm2hFcS5kefTQK0W+AcbZnShoJPCzpDcqZqpdVtusL3K5ylxMBF9fp+9PANVF4VxB3H9lGn6UEvvemZM++mT8LYPsa4KvA9ZIWxrFdYvu3ko4Evivpd5R/aifXAuPDKZRbi6WUWiAvOUkppZSalNOzKaWUUpOyaKaUUkpNyqKZuq12EXs/aXCd5bb0vypOtkHSuq3Y7j2SHoyYvJv1+xtKV9fZSdJ1leCFMXXWmS5pUeX9zZWYvFWVS3FSSt1EFs3UnW2Is1IPoCTmfK7VBxQuB75pexjwAnB2nXXOBbA9HPgAcIWkN//eJJ0EbFaobZ9cOxOXckPuW0kpdStZNNOO4pdEso6koZJmSnok4vb2i/YBEYXXFo8jo/3Hse7iSBf6o8XZu8cAP4qm71M/Ju99wD0Atn8NvAgcGn30oZzJ+7UO9vEJ4KZtOdaUUufLS05StyepB+WaxinR9D3gfNtPSDocuJpSyK4E5tg+MbaphZ6fZXutpN7APEnTbD/fYF99KclE9XwS+DXwYiVEvlFMXhvwMUk3AYOBQ+L5IcrlJlcArzbYz2jgOdtPNFieUmqRLJqpO6tF7A0CllKi5vpQYvZuqUTW7RzPx1DCBLC9iRKjB3ChpFqCzmBKBF/domn7FTqOyXt7k8f+n8D+wMPA08D9wKa4rnSo7YskDWmw7QRylJlSt5RFM3VnG2yPjOCBWZTfNK+njPQaFraqOAFnLPD+CHWfDfTqYP0tjTSXArvp97csqxuTF8suqvR7P7Ac+AvgUEmrKH9/e0qabXtMrNcTOIkyMk0pdTP5m2bq9iKQ/ULgbyhTmislfRzK73+SavF4dwMXRHuPCGTvB7wQBXM/4Igt7OuVDmLylkRW7M8pcXZQEoX+ICZP0i4R9YekDwAbY/vv2P4T20OAo4DltYIZxgKP217dvs+UUutl0Uw7BNuPAQsoU5efAs6W1AYsptweDGAicHRE0z1CORlnJtBT0lJK/NwDnXA4lwAXS3oS6E/81irpYyq3FwPYkxL7tzTWP63Jvk8hp2ZT6rYyRi+llFJqUo40U0oppSZl0UwppZSalEUzpZRSalIWzdRylYzZ2mOIpP6Sfi5pnaSrOtj2eEmPRQLQEknndeWx1zmePSTdKemJeN69wXqXR6buIkknV9rr5tpK2jnePxnLh3TNJ0opVWXRTN3BhnaXdqwCXgO+BExqtJGkt1LSgf7S9gjgIGD2thxIXMKyLX8XlwJ3296HcgnMpXX28VHgYEqIwuHAJEm7xuJGubZnUy6dGQZ8M9ZLKXWxLJqpW7K93vZ9lOLZSF9KQMDzsc3rtpdBhzm0F1dGeF+ItiGSlkmaCiwCBkv6oqR5khZI+setOPQTKHm00HEu7b22N9peT7mU5kNbyLWt9vsj4FhVIpFSSl0ji2bqDnpXpmZva3Yj22uB6cDTkm6S9KnKKLGWQzuCMqpbLOkQ4EzK6O4I4FxJB8X6+wBX2/5TYN94fxhlNHiIpD8HUAmIn1/nMTb6GWB7Tbz+X2BAnUNvoxTJXSKW72hKvF9/GufaDgJ+FZ97IyUisH+z31VKqXNkjF7qDjY0G4vXnu1zJA2nJOlMotyG6wzq5NBKOgq4LUZ3SLqVEo4+HXjadi344Lh4PBbv+1CK6L22R2/FsVnSH1wIbfsOSaMoebS/odzBZdPWfO6UUmtk0Uw7PNsLgYWSbgBWUorm1lpfeS3gn21/t/1KkuZSpoXbm2T7LuA5SQNtr5E0kHJXlHrH/HXg69HnDyi5tM/TONf2GcpodHXk0/ajQeh8Smn7yenZtMOS1CcC2WtGUu4oAvVzaOcC4yq5sCdSP5x9FnCWyh1VkDRI0p4Atkc3yKW9K7adTsmjhca5tD0k9Y/XBwIHAndsIde22u944B5nnFdKXS5j9FLLSVpnu0+d9lXArsBOlJs4H2d7SWV5X+BmYCiwgTJanGj7YUkDKGfW7k2Z+rzA9i8lXQycFV1ca/vf4vKNGbYPqPQ9ETgn3q4DTrX9VBOfpT/wX8C7KQX8E3Evz0Mp9wA9R1Iv4NHY5OVonx/b7w38ENiDMj18qu3XY5sbKGcIrwVOsb1iS8eTUupcWTRTSimlJuX0bEoppdSkLJoppZRSk7JoppRSSk3KoplSSik1KYtmSiml1KQsmimllFKTsmimlFJKTcqimVJKKTXp/wCQ3f+KztAnqwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [], + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "QmlM3cUGh6fi" + }, + "source": [ + "# Dicionário de parâmetros para o parameter tunning. Ao todo serão ajustados 2X13X5X5X7= 4.550 modelos. Contando com 10 folds no Cross-Validation, então são 45.500 modelos.\n", + "d_parametros_DT= {\"criterion\": [\"gini\", \"entropy\"]} #, \"min_samples_split\": [2, 5, 10, 30, 50, 70, 90, 120, 150, 180, 210, 240, 270, 350, 400], \"max_depth\": [None, 2, 5, 9, 15], \"min_samples_leaf\": [20, 40, 60, 80, 100], \"max_leaf_nodes\": [None, 2, 3, 4, 5, 10, 15]}" + ], + "execution_count": 181, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "ZUDivm_piEJA", + "outputId": "d754537f-586b-49d1-b80b-d4600920eab1", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 54 + } + }, + "source": [ + "grid_search = GridSearchCV(ml_DT, param_grid= d_parametros_DT, cv = 10, n_jobs= -1)\n", + "start = time()\n", + "grid_search.fit(x_train, y_train)\n", + "tempo_elapsed= time()-start\n", + "print(f\"\\nGridSearchCV levou {tempo_elapsed:.2f} segundos para estimar {len(grid_search.cv_results_)} modelos candidatos\")" + ], + "execution_count": 182, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "GridSearchCV levou 4.48 segundos para estimar 19 modelos candidatos\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Kr2n-QlHi9fs" + }, + "source": [ + "i_CV = 20\n", + "\n", + "# Definindo a função para o GridSearchCV\n", + "def GridSearchOptimizer(modelo, ml_Opt, d_Parametros, x_train, y_train, x_test, y_test, cv = 20):\n", + " ml_GridSearchCV = GridSearchCV(modelo, d_Parametros, cv = i_CV, n_jobs= -1, verbose= 10, scoring= 'accuracy')\n", + " start = time()\n", + " ml_GridSearchCV.fit(x_train, y_train)\n", + " tempo_elapsed= time()-start\n", + " #print(f\"\\nGridSearchCV levou {tempo_elapsed:.2f} segundos.\")\n", + "\n", + " # Parâmetros que otimizam a classificação:\n", + " print(f'\\nParametros otimizados: {ml_GridSearchCV.best_params_}')\n", + " \n", + " if ml_Opt == 'ml_DT2':\n", + " print(f'\\nDecisionTreeClassifier *********************************************************************************************************')\n", + " ml_Opt = DecisionTreeClassifier(criterion= ml_GridSearchCV.best_params_['criterion'], \n", + " max_depth= ml_GridSearchCV.best_params_['max_depth'],\n", + " max_leaf_nodes= ml_GridSearchCV.best_params_['max_leaf_nodes'],\n", + " min_samples_split= ml_GridSearchCV.best_params_['min_samples_leaf'],\n", + " min_samples_leaf= ml_GridSearchCV.best_params_['min_samples_split'], \n", + " random_state= i_Seed)\n", + " \n", + " elif ml_Opt == 'ml_RF2':\n", + " print(f'\\nRandomForestClassifier *********************************************************************************************************')\n", + " ml_Opt = RandomForestClassifier(bootstrap= ml_GridSearchCV.best_params_['bootstrap'], \n", + " max_depth= ml_GridSearchCV.best_params_['max_depth'],\n", + " max_features= ml_GridSearchCV.best_params_['max_features'],\n", + " min_samples_leaf= ml_GridSearchCV.best_params_['min_samples_leaf'],\n", + " min_samples_split= ml_GridSearchCV.best_params_['min_samples_split'],\n", + " n_estimators= ml_GridSearchCV.best_params_['n_estimators'],\n", + " random_state= i_Seed)\n", + " \n", + " elif ml_Opt == 'ml_AB2':\n", + " print(f'\\nAdaBoostClassifier *********************************************************************************************************')\n", + " ml_Opt = AdaBoostClassifier(algorithm='SAMME.R', \n", + " base_estimator=RandomForestClassifier(bootstrap = False, \n", + " max_depth = 10, \n", + " max_features = 'auto', \n", + " min_samples_leaf = 1, \n", + " min_samples_split = 2, \n", + " n_estimators = 400), \n", + " learning_rate = ml_GridSearchCV.best_params_['learning_rate'], \n", + " n_estimators = ml_GridSearchCV.best_params_['n_estimators'], \n", + " random_state = i_Seed)\n", + " \n", + " elif ml_Opt == 'ml_GB2':\n", + " print(f'\\nGradientBoostingClassifier *********************************************************************************************************')\n", + " ml_Opt = GradientBoostingClassifier(learning_rate = ml_GridSearchCV.best_params_['learning_rate'], \n", + " n_estimators = ml_GridSearchCV.best_params_['n_estimators'], \n", + " max_depth = ml_GridSearchCV.best_params_['max_depth'], \n", + " min_samples_split = ml_GridSearchCV.best_params_['min_samples_split'], \n", + " min_samples_leaf = ml_GridSearchCV.best_params_['min_samples_leaf'], \n", + " max_features = ml_GridSearchCV.best_params_['max_features'])\n", + " \n", + " elif ml_Opt == 'ml_XGB2':\n", + " print(f'\\nXGBoostingClassifier *********************************************************************************************************')\n", + " ml_Opt = XGBoostingClassifier(learning_rate= ml_GridSearchCV.best_params_['learning_rate'], \n", + " max_depth= ml_GridSearchCV.best_params_['max_depth'], \n", + " colsample_bytree= ml_GridSearchCV.best_params_['colsample_bytree'], \n", + " subsample= ml_GridSearchCV.best_params_['subsample'], \n", + " gamma= ml_GridSearchCV.best_params_['gamma'], \n", + " min_child_weight= ml_GridSearchCV.best_params_['min_child_weight'])\n", + " \n", + " # Treina novamente usando os parametros otimizados...\n", + " ml_Opt.fit(x_train, y_train)\n", + "\n", + " # Cross-Validation com 10 folds\n", + " print(f'\\n********* CROSS-VALIDATION ***********')\n", + " a_scores_CV = cross_val_score(ml_Opt, x_train, y_train, cv = i_CV)\n", + " print(f'Média das Acurácias calculadas pelo CV....: {100*round(a_scores_CV.mean(),4)}')\n", + " print(f'std médio das Acurácias calculadas pelo CV: {100*round(a_scores_CV.std(),4)}')\n", + "\n", + " # Faz predições com os parametros otimizados...\n", + " y_pred = ml_Opt.predict(x_test)\n", + " \n", + " # Importância das COLUNAS\n", + " print(f'\\n********* IMPORTÂNCIA DAS COLUNAS ***********')\n", + " df_importancia_variaveis = pd.DataFrame(zip(l_colunas, ml_Opt.feature_importances_), columns= ['coluna', 'importancia'])\n", + " df_importancia_variaveis = df_importancia_variaveis.sort_values(by= ['importancia'], ascending=False)\n", + " print(df_importancia_variaveis)\n", + "\n", + " # Matriz de Confusão\n", + " print(f'\\n********* CONFUSION MATRIX - PARAMETER TUNNING ***********')\n", + " cf_matrix = confusion_matrix(y_test, y_pred)\n", + " cf_labels = ['True_Negative', 'False_Positive', 'False_Negative', 'True_Positive']\n", + " cf_categories = ['Zero', 'One']\n", + " mostra_confusion_matrix(cf_matrix, group_names = cf_labels, categories = cf_categories)\n", + "\n", + " return ml_Opt, ml_GridSearchCV.best_params_" + ], + "execution_count": 187, "outputs": [] }, + { + "cell_type": "code", + "metadata": { + "id": "l3cwjvLLjXHO", + "outputId": "f3c3c851-7fee-4157-d834-872b3f4cc1f5", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 589 + } + }, + "source": [ + "# Invoca a função\n", + "ml_DT2, best_params = GridSearchOptimizer(ml_DT, 'ml_DT2', d_parametros_DT, x_train, y_train, x_test, y_test, cv = 20)" + ], + "execution_count": 191, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Fitting 20 folds for each of 2 candidates, totalling 40 fits\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.\n", + "[Parallel(n_jobs=-1)]: Done 1 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=-1)]: Done 4 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=-1)]: Done 9 tasks | elapsed: 1.5s\n", + "[Parallel(n_jobs=-1)]: Done 14 tasks | elapsed: 2.2s\n", + "[Parallel(n_jobs=-1)]: Done 21 tasks | elapsed: 3.3s\n", + "[Parallel(n_jobs=-1)]: Done 28 tasks | elapsed: 3.9s\n", + "[Parallel(n_jobs=-1)]: Done 37 tasks | elapsed: 4.9s\n", + "[Parallel(n_jobs=-1)]: Done 40 out of 40 | elapsed: 5.1s finished\n" + ], + "name": "stderr" + }, + { + "output_type": "stream", + "text": [ + "\n", + "Parametros otimizados: {'criterion': 'gini'}\n", + "\n", + "DecisionTreeClassifier *********************************************************************************************************\n" + ], + "name": "stdout" + }, + { + "output_type": "error", + "ename": "KeyError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# Invoca a função\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mml_DT2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbest_params\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mGridSearchOptimizer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mml_DT\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'ml_DT2'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0md_parametros_DT\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx_test\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_test\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m20\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m\u001b[0m in \u001b[0;36mGridSearchOptimizer\u001b[0;34m(modelo, ml_Opt, d_Parametros, x_train, y_train, x_test, y_test, cv)\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf'\\nDecisionTreeClassifier *********************************************************************************************************'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 16\u001b[0m ml_Opt = DecisionTreeClassifier(criterion= ml_GridSearchCV.best_params_['criterion'], \n\u001b[0;32m---> 17\u001b[0;31m \u001b[0mmax_depth\u001b[0m\u001b[0;34m=\u001b[0m \u001b[0mml_GridSearchCV\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbest_params_\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'max_depth'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 18\u001b[0m \u001b[0mmax_leaf_nodes\u001b[0m\u001b[0;34m=\u001b[0m \u001b[0mml_GridSearchCV\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbest_params_\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'max_leaf_nodes'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 19\u001b[0m \u001b[0mmin_samples_split\u001b[0m\u001b[0;34m=\u001b[0m \u001b[0mml_GridSearchCV\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbest_params_\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'min_samples_leaf'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'max_depth'" + ] + } + ] + }, { "cell_type": "markdown", "metadata": { From eb4b6edddff315033b912409cc6d6f015e49c3af Mon Sep 17 00:00:00 2001 From: Mvital74 Date: Tue, 27 Oct 2020 16:02:57 -0300 Subject: [PATCH 3/4] Criado usando o Colaboratory --- FIFA18_PRED.ipynb | 5216 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 5216 insertions(+) create mode 100644 FIFA18_PRED.ipynb diff --git a/FIFA18_PRED.ipynb b/FIFA18_PRED.ipynb new file mode 100644 index 000000000..f5620497c --- /dev/null +++ b/FIFA18_PRED.ipynb @@ -0,0 +1,5216 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "FIFA18_PRED.ipynb", + "provenance": [], + "authorship_tag": "ABX9TyPj2g1YROJHuBgBmpdqt1vm", + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "eaTZdihLYZig" + }, + "source": [ + "# Importa Bibliotecas iniciais\n", + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n" + ], + "execution_count": 172, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "hwSX6bvpYwNe", + "outputId": "e7f3f937-b311-4d1e-f52b-5405de0ed295", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 420 + } + }, + "source": [ + "# Importa DataFrame\n", + "url = 'https://raw.githubusercontent.com/Mvital74/DSWP/master/Dataframes/FIFA.csv'\n", + "fifa18 = pd.read_csv(url, index_col='ID')\n", + "fifa18.head()" + ], + "execution_count": 173, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0NameAgePhotoNationalityFlagOverallPotentialClubClub LogoValueWageSpecialPreferred FootInternational ReputationWeak FootSkill MovesWork RateBody TypeReal FacePositionJersey NumberJoinedLoaned FromContract Valid UntilHeightWeightLSSTRSLWLFCFRFRWLAMCAMRAMLMLCM...LBLCBCBRCBRBCrossingFinishingHeadingAccuracyShortPassingVolleysDribblingCurveFKAccuracyLongPassingBallControlAccelerationSprintSpeedAgilityReactionsBalanceShotPowerJumpingStaminaStrengthLongShotsAggressionInterceptionsPositioningVisionPenaltiesComposureMarkingStandingTackleSlidingTackleGKDivingGKHandlingGKKickingGKPositioningGKReflexesRelease Clause
ID
1580230L. Messi31https://cdn.sofifa.org/players/4/19/158023.pngArgentinahttps://cdn.sofifa.org/flags/52.png9494FC Barcelonahttps://cdn.sofifa.org/teams/2/light/241.png€110.5M€565K2202Left5.04.04.0Medium/ MediumMessiYesRF10.0Jul 1, 2004NaN20215'7159lbs88+288+288+292+293+293+293+292+293+293+293+291+284+2...59+247+247+247+259+284.095.070.090.086.097.093.094.087.096.091.086.091.095.095.085.068.072.059.094.048.022.094.094.075.096.033.028.026.06.011.015.014.08.0€226.5M
208011Cristiano Ronaldo33https://cdn.sofifa.org/players/4/19/20801.pngPortugalhttps://cdn.sofifa.org/flags/38.png9494Juventushttps://cdn.sofifa.org/teams/2/light/45.png€77M€405K2228Right5.04.05.0High/ LowC. RonaldoYesST7.0Jul 10, 2018NaN20226'2183lbs91+391+391+389+390+390+390+389+388+388+388+388+381+3...61+353+353+353+361+384.094.089.081.087.088.081.076.077.094.089.091.087.096.070.095.095.088.079.093.063.029.095.082.085.095.028.031.023.07.011.015.014.011.0€127.1M
1908712Neymar Jr26https://cdn.sofifa.org/players/4/19/190871.pngBrazilhttps://cdn.sofifa.org/flags/54.png9293Paris Saint-Germainhttps://cdn.sofifa.org/teams/2/light/73.png€118.5M€290K2143Right5.05.05.0High/ MediumNeymarYesLW10.0Aug 3, 2017NaN20225'9150lbs84+384+384+389+389+389+389+389+389+389+389+388+381+3...60+347+347+347+360+379.087.062.084.084.096.088.087.078.095.094.090.096.094.084.080.061.081.049.082.056.036.089.087.081.094.027.024.033.09.09.015.015.011.0€228.1M
1930803De Gea27https://cdn.sofifa.org/players/4/19/193080.pngSpainhttps://cdn.sofifa.org/flags/45.png9193Manchester Unitedhttps://cdn.sofifa.org/teams/2/light/11.png€72M€260K1471Right4.03.01.0Medium/ MediumLeanYesGK1.0Jul 1, 2011NaN20206'4168lbsNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaN17.013.021.050.013.018.021.019.051.042.057.058.060.090.043.031.067.043.064.012.038.030.012.068.040.068.015.021.013.090.085.087.088.094.0€138.6M
1929854K. De Bruyne27https://cdn.sofifa.org/players/4/19/192985.pngBelgiumhttps://cdn.sofifa.org/flags/7.png9192Manchester Cityhttps://cdn.sofifa.org/teams/2/light/10.png€102M€355K2281Right4.05.04.0High/ HighNormalYesRCM7.0Aug 30, 2015NaN20235'11154lbs82+382+382+387+387+387+387+387+388+388+388+388+387+3...73+366+366+366+373+393.082.055.092.082.086.085.083.091.091.078.076.079.091.077.091.063.090.075.091.076.061.087.094.079.088.068.058.051.015.013.05.010.013.0€196.4M
\n", + "

5 rows × 88 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 Name ... GKReflexes Release Clause\n", + "ID ... \n", + "158023 0 L. Messi ... 8.0 €226.5M\n", + "20801 1 Cristiano Ronaldo ... 11.0 €127.1M\n", + "190871 2 Neymar Jr ... 11.0 €228.1M\n", + "193080 3 De Gea ... 94.0 €138.6M\n", + "192985 4 K. De Bruyne ... 13.0 €196.4M\n", + "\n", + "[5 rows x 88 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 173 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "7s6uviOyZS8a", + "outputId": "8ac9c344-3f64-473b-e933-d35e96ba283b", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 357 + } + }, + "source": [ + "fifa18_tidy = fifa18.drop(columns=['Name', 'Club','Unnamed: 0', 'Photo', 'Nationality','Height', 'Weight', 'Flag', 'Club Logo', 'Preferred Foot', 'Body Type', 'Real Face', 'Jersey Number', 'Joined', 'Loaned From', 'Contract Valid Until', 'Release Clause'], axis=1)\n", + "fifa18_tidy.head()" + ], + "execution_count": 174, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AgeOverallPotentialValueWageSpecialInternational ReputationWeak FootSkill MovesWork RatePositionLSSTRSLWLFCFRFRWLAMCAMRAMLMLCMCMRCMRMLWBLDMCDMRDMRWBLBLCBCBRCBRBCrossingFinishingHeadingAccuracyShortPassingVolleysDribblingCurveFKAccuracyLongPassingBallControlAccelerationSprintSpeedAgilityReactionsBalanceShotPowerJumpingStaminaStrengthLongShotsAggressionInterceptionsPositioningVisionPenaltiesComposureMarkingStandingTackleSlidingTackleGKDivingGKHandlingGKKickingGKPositioningGKReflexes
ID
158023319494€110.5M€565K22025.04.04.0Medium/ MediumRF88+288+288+292+293+293+293+292+293+293+293+291+284+284+284+291+264+261+261+261+264+259+247+247+247+259+284.095.070.090.086.097.093.094.087.096.091.086.091.095.095.085.068.072.059.094.048.022.094.094.075.096.033.028.026.06.011.015.014.08.0
20801339494€77M€405K22285.04.05.0High/ LowST91+391+391+389+390+390+390+389+388+388+388+388+381+381+381+388+365+361+361+361+365+361+353+353+353+361+384.094.089.081.087.088.081.076.077.094.089.091.087.096.070.095.095.088.079.093.063.029.095.082.085.095.028.031.023.07.011.015.014.011.0
190871269293€118.5M€290K21435.05.05.0High/ MediumLW84+384+384+389+389+389+389+389+389+389+389+388+381+381+381+388+365+360+360+360+365+360+347+347+347+360+379.087.062.084.084.096.088.087.078.095.094.090.096.094.084.080.061.081.049.082.056.036.089.087.081.094.027.024.033.09.09.015.015.011.0
193080279193€72M€260K14714.03.01.0Medium/ MediumGKNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN17.013.021.050.013.018.021.019.051.042.057.058.060.090.043.031.067.043.064.012.038.030.012.068.040.068.015.021.013.090.085.087.088.094.0
192985279192€102M€355K22814.05.04.0High/ HighRCM82+382+382+387+387+387+387+387+388+388+388+388+387+387+387+388+377+377+377+377+377+373+366+366+366+373+393.082.055.092.082.086.085.083.091.091.078.076.079.091.077.091.063.090.075.091.076.061.087.094.079.088.068.058.051.015.013.05.010.013.0
\n", + "
" + ], + "text/plain": [ + " Age Overall Potential ... GKKicking GKPositioning GKReflexes\n", + "ID ... \n", + "158023 31 94 94 ... 15.0 14.0 8.0\n", + "20801 33 94 94 ... 15.0 14.0 11.0\n", + "190871 26 92 93 ... 15.0 15.0 11.0\n", + "193080 27 91 93 ... 87.0 88.0 94.0\n", + "192985 27 91 92 ... 5.0 10.0 13.0\n", + "\n", + "[5 rows x 71 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 174 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "wdghK5BjSk7t" + }, + "source": [ + "fifa18_tidy = fifa18_tidy.drop(list(fifa18_tidy)[11:37], axis=1)" + ], + "execution_count": 175, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "-XbxzrBefXXy" + }, + "source": [ + "#Transformar para lower\n", + "def transformacao_lower(df):\n", + " # Primeira transformação: Aplicar lower() nos nomes das COLUNAS:\n", + " df.columns = [col.lower() for col in df.columns]" + ], + "execution_count": 176, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "rWiSvGW8fcqF" + }, + "source": [ + "transformacao_lower(fifa18_tidy)" + ], + "execution_count": 177, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "GalSf2nCc26i", + "outputId": "52b5494d-84d5-4274-8814-66b5fd96900a", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 357 + } + }, + "source": [ + "fifa18_gk = fifa18_tidy[fifa18_tidy['position'] == 'GK']\n", + "fifa18_gk.head()" + ], + "execution_count": 178, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ageoverallpotentialvaluewagespecialinternational reputationweak footskill moveswork ratepositioncrossingfinishingheadingaccuracyshortpassingvolleysdribblingcurvefkaccuracylongpassingballcontrolaccelerationsprintspeedagilityreactionsbalanceshotpowerjumpingstaminastrengthlongshotsaggressioninterceptionspositioningvisionpenaltiescomposuremarkingstandingtackleslidingtacklegkdivinggkhandlinggkkickinggkpositioninggkreflexes
ID
193080279193€72M€260K14714.03.01.0Medium/ MediumGK17.013.021.050.013.018.021.019.051.042.057.058.060.090.043.031.067.043.064.012.038.030.012.068.040.068.015.021.013.090.085.087.088.094.0
200389259093€68M€94K13313.03.01.0Medium/ MediumGK13.011.015.029.013.012.013.014.026.016.043.060.067.086.049.022.076.041.078.012.034.019.011.070.011.070.027.012.018.086.092.078.088.089.0
192448268992€58M€240K13283.04.01.0Medium/ MediumGK15.014.011.036.014.017.018.012.042.018.038.050.037.085.043.022.079.035.079.010.043.022.011.069.025.069.025.013.010.087.085.088.085.090.0
192119268990€53.5M€240K13114.02.01.0Medium/ MediumGK14.014.013.033.012.013.019.020.035.023.046.052.061.084.045.036.068.038.070.017.023.015.013.044.027.066.020.018.016.085.091.072.086.088.0
167495328989€38M€130K14735.04.01.0Medium/ MediumGK15.013.025.055.011.030.014.011.059.048.054.060.051.084.035.025.077.043.080.016.029.030.012.070.047.070.017.010.011.090.086.091.087.087.0
\n", + "
" + ], + "text/plain": [ + " age overall potential ... gkkicking gkpositioning gkreflexes\n", + "ID ... \n", + "193080 27 91 93 ... 87.0 88.0 94.0\n", + "200389 25 90 93 ... 78.0 88.0 89.0\n", + "192448 26 89 92 ... 88.0 85.0 90.0\n", + "192119 26 89 90 ... 72.0 86.0 88.0\n", + "167495 32 89 89 ... 91.0 87.0 87.0\n", + "\n", + "[5 rows x 45 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 178 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "b2fdjtLievrM", + "outputId": "06c83706-b288-45b3-9922-b518fe8349d7", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 357 + } + }, + "source": [ + "fifa18_pl = fifa18_tidy[fifa18_tidy['position'] != 'GK']\n", + "fifa18_pl.head()" + ], + "execution_count": 179, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ageoverallpotentialvaluewagespecialinternational reputationweak footskill moveswork ratepositioncrossingfinishingheadingaccuracyshortpassingvolleysdribblingcurvefkaccuracylongpassingballcontrolaccelerationsprintspeedagilityreactionsbalanceshotpowerjumpingstaminastrengthlongshotsaggressioninterceptionspositioningvisionpenaltiescomposuremarkingstandingtackleslidingtacklegkdivinggkhandlinggkkickinggkpositioninggkreflexes
ID
158023319494€110.5M€565K22025.04.04.0Medium/ MediumRF84.095.070.090.086.097.093.094.087.096.091.086.091.095.095.085.068.072.059.094.048.022.094.094.075.096.033.028.026.06.011.015.014.08.0
20801339494€77M€405K22285.04.05.0High/ LowST84.094.089.081.087.088.081.076.077.094.089.091.087.096.070.095.095.088.079.093.063.029.095.082.085.095.028.031.023.07.011.015.014.011.0
190871269293€118.5M€290K21435.05.05.0High/ MediumLW79.087.062.084.084.096.088.087.078.095.094.090.096.094.084.080.061.081.049.082.056.036.089.087.081.094.027.024.033.09.09.015.015.011.0
192985279192€102M€355K22814.05.04.0High/ HighRCM93.082.055.092.082.086.085.083.091.091.078.076.079.091.077.091.063.090.075.091.076.061.087.094.079.088.068.058.051.015.013.05.010.013.0
183277279191€93M€340K21424.04.04.0High/ MediumLF81.084.061.089.080.095.083.079.083.094.094.088.095.090.094.082.056.083.066.080.054.041.087.089.086.091.034.027.022.011.012.06.08.08.0
\n", + "
" + ], + "text/plain": [ + " age overall potential ... gkkicking gkpositioning gkreflexes\n", + "ID ... \n", + "158023 31 94 94 ... 15.0 14.0 8.0\n", + "20801 33 94 94 ... 15.0 14.0 11.0\n", + "190871 26 92 93 ... 15.0 15.0 11.0\n", + "192985 27 91 92 ... 5.0 10.0 13.0\n", + "183277 27 91 91 ... 6.0 8.0 8.0\n", + "\n", + "[5 rows x 45 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 179 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "JVyKkHKDf4DF", + "outputId": "77d98487-e548-40b0-9561-a03e4ca3c086", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 119 + } + }, + "source": [ + "fifa18_pl.loc[:,'value'] = fifa18_pl.loc[:,'value'].str.replace('€','')\n", + "fifa18_pl.loc[:,'wage'] = fifa18_pl.loc[:,'wage'].str.replace('€','')" + ], + "execution_count": 180, + "outputs": [ + { + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.6/dist-packages/pandas/core/indexing.py:1745: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " isetter(ilocs[0], value)\n" + ], + "name": "stderr" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "RUW7LdTXhJn9", + "outputId": "a282669e-ce91-4102-de18-8d72aff3653d", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 357 + } + }, + "source": [ + "fifa18_pl.head()" + ], + "execution_count": 181, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ageoverallpotentialvaluewagespecialinternational reputationweak footskill moveswork ratepositioncrossingfinishingheadingaccuracyshortpassingvolleysdribblingcurvefkaccuracylongpassingballcontrolaccelerationsprintspeedagilityreactionsbalanceshotpowerjumpingstaminastrengthlongshotsaggressioninterceptionspositioningvisionpenaltiescomposuremarkingstandingtackleslidingtacklegkdivinggkhandlinggkkickinggkpositioninggkreflexes
ID
158023319494110.5M565K22025.04.04.0Medium/ MediumRF84.095.070.090.086.097.093.094.087.096.091.086.091.095.095.085.068.072.059.094.048.022.094.094.075.096.033.028.026.06.011.015.014.08.0
2080133949477M405K22285.04.05.0High/ LowST84.094.089.081.087.088.081.076.077.094.089.091.087.096.070.095.095.088.079.093.063.029.095.082.085.095.028.031.023.07.011.015.014.011.0
190871269293118.5M290K21435.05.05.0High/ MediumLW79.087.062.084.084.096.088.087.078.095.094.090.096.094.084.080.061.081.049.082.056.036.089.087.081.094.027.024.033.09.09.015.015.011.0
192985279192102M355K22814.05.04.0High/ HighRCM93.082.055.092.082.086.085.083.091.091.078.076.079.091.077.091.063.090.075.091.076.061.087.094.079.088.068.058.051.015.013.05.010.013.0
18327727919193M340K21424.04.04.0High/ MediumLF81.084.061.089.080.095.083.079.083.094.094.088.095.090.094.082.056.083.066.080.054.041.087.089.086.091.034.027.022.011.012.06.08.08.0
\n", + "
" + ], + "text/plain": [ + " age overall potential ... gkkicking gkpositioning gkreflexes\n", + "ID ... \n", + "158023 31 94 94 ... 15.0 14.0 8.0\n", + "20801 33 94 94 ... 15.0 14.0 11.0\n", + "190871 26 92 93 ... 15.0 15.0 11.0\n", + "192985 27 91 92 ... 5.0 10.0 13.0\n", + "183277 27 91 91 ... 6.0 8.0 8.0\n", + "\n", + "[5 rows x 45 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 181 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "nWDoCnfhhMwl", + "outputId": "984cf5b2-3e83-45d1-ed29-c97f1363df2f", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 119 + } + }, + "source": [ + "fifa18_pl['wage'] = fifa18_pl['wage'].map(lambda x: int(x.replace('K',''))*1000)" + ], + "execution_count": 182, + "outputs": [ + { + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:1: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " \"\"\"Entry point for launching an IPython kernel.\n" + ], + "name": "stderr" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "FMePdMNwi9yZ", + "outputId": "b8fbe75c-c51d-4389-c944-735ee1904322", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 357 + } + }, + "source": [ + "fifa18_pl.head()" + ], + "execution_count": 183, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ageoverallpotentialvaluewagespecialinternational reputationweak footskill moveswork ratepositioncrossingfinishingheadingaccuracyshortpassingvolleysdribblingcurvefkaccuracylongpassingballcontrolaccelerationsprintspeedagilityreactionsbalanceshotpowerjumpingstaminastrengthlongshotsaggressioninterceptionspositioningvisionpenaltiescomposuremarkingstandingtackleslidingtacklegkdivinggkhandlinggkkickinggkpositioninggkreflexes
ID
158023319494110.5M56500022025.04.04.0Medium/ MediumRF84.095.070.090.086.097.093.094.087.096.091.086.091.095.095.085.068.072.059.094.048.022.094.094.075.096.033.028.026.06.011.015.014.08.0
2080133949477M40500022285.04.05.0High/ LowST84.094.089.081.087.088.081.076.077.094.089.091.087.096.070.095.095.088.079.093.063.029.095.082.085.095.028.031.023.07.011.015.014.011.0
190871269293118.5M29000021435.05.05.0High/ MediumLW79.087.062.084.084.096.088.087.078.095.094.090.096.094.084.080.061.081.049.082.056.036.089.087.081.094.027.024.033.09.09.015.015.011.0
192985279192102M35500022814.05.04.0High/ HighRCM93.082.055.092.082.086.085.083.091.091.078.076.079.091.077.091.063.090.075.091.076.061.087.094.079.088.068.058.051.015.013.05.010.013.0
18327727919193M34000021424.04.04.0High/ MediumLF81.084.061.089.080.095.083.079.083.094.094.088.095.090.094.082.056.083.066.080.054.041.087.089.086.091.034.027.022.011.012.06.08.08.0
\n", + "
" + ], + "text/plain": [ + " age overall potential ... gkkicking gkpositioning gkreflexes\n", + "ID ... \n", + "158023 31 94 94 ... 15.0 14.0 8.0\n", + "20801 33 94 94 ... 15.0 14.0 11.0\n", + "190871 26 92 93 ... 15.0 15.0 11.0\n", + "192985 27 91 92 ... 5.0 10.0 13.0\n", + "183277 27 91 91 ... 6.0 8.0 8.0\n", + "\n", + "[5 rows x 45 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 183 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Hl83tZNVh2rf" + }, + "source": [ + "def money_num(money):\n", + " if money[-1] == 'M':\n", + " return float(money.replace('M',''))*1000000\n", + " else:\n", + " return float(money.replace('K',''))*1000\n" + ], + "execution_count": 184, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "yHb18GAsiytq", + "outputId": "bbb3f6a0-c14b-4fcb-ca66-49ad8cf64c3c", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 459 + } + }, + "source": [ + "fifa18_pl['value'] = fifa18_pl['value'].apply(money_num)\n", + "fifa18_pl.head()" + ], + "execution_count": 185, + "outputs": [ + { + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:1: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " \"\"\"Entry point for launching an IPython kernel.\n" + ], + "name": "stderr" + }, + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ageoverallpotentialvaluewagespecialinternational reputationweak footskill moveswork ratepositioncrossingfinishingheadingaccuracyshortpassingvolleysdribblingcurvefkaccuracylongpassingballcontrolaccelerationsprintspeedagilityreactionsbalanceshotpowerjumpingstaminastrengthlongshotsaggressioninterceptionspositioningvisionpenaltiescomposuremarkingstandingtackleslidingtacklegkdivinggkhandlinggkkickinggkpositioninggkreflexes
ID
158023319494110500000.056500022025.04.04.0Medium/ MediumRF84.095.070.090.086.097.093.094.087.096.091.086.091.095.095.085.068.072.059.094.048.022.094.094.075.096.033.028.026.06.011.015.014.08.0
2080133949477000000.040500022285.04.05.0High/ LowST84.094.089.081.087.088.081.076.077.094.089.091.087.096.070.095.095.088.079.093.063.029.095.082.085.095.028.031.023.07.011.015.014.011.0
190871269293118500000.029000021435.05.05.0High/ MediumLW79.087.062.084.084.096.088.087.078.095.094.090.096.094.084.080.061.081.049.082.056.036.089.087.081.094.027.024.033.09.09.015.015.011.0
192985279192102000000.035500022814.05.04.0High/ HighRCM93.082.055.092.082.086.085.083.091.091.078.076.079.091.077.091.063.090.075.091.076.061.087.094.079.088.068.058.051.015.013.05.010.013.0
18327727919193000000.034000021424.04.04.0High/ MediumLF81.084.061.089.080.095.083.079.083.094.094.088.095.090.094.082.056.083.066.080.054.041.087.089.086.091.034.027.022.011.012.06.08.08.0
\n", + "
" + ], + "text/plain": [ + " age overall potential ... gkkicking gkpositioning gkreflexes\n", + "ID ... \n", + "158023 31 94 94 ... 15.0 14.0 8.0\n", + "20801 33 94 94 ... 15.0 14.0 11.0\n", + "190871 26 92 93 ... 15.0 15.0 11.0\n", + "192985 27 91 92 ... 5.0 10.0 13.0\n", + "183277 27 91 91 ... 6.0 8.0 8.0\n", + "\n", + "[5 rows x 45 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 185 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "GZzNeXTZGfke", + "outputId": "9fe35a9a-c9cb-469e-ab30-4eebb7577a5f", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 901 + } + }, + "source": [ + "fifa18_pl.info()" + ], + "execution_count": 186, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "Int64Index: 16182 entries, 158023 to 246269\n", + "Data columns (total 45 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 age 16182 non-null int64 \n", + " 1 overall 16182 non-null int64 \n", + " 2 potential 16182 non-null int64 \n", + " 3 value 16182 non-null float64\n", + " 4 wage 16182 non-null int64 \n", + " 5 special 16182 non-null int64 \n", + " 6 international reputation 16134 non-null float64\n", + " 7 weak foot 16134 non-null float64\n", + " 8 skill moves 16134 non-null float64\n", + " 9 work rate 16134 non-null object \n", + " 10 position 16122 non-null object \n", + " 11 crossing 16134 non-null float64\n", + " 12 finishing 16134 non-null float64\n", + " 13 headingaccuracy 16134 non-null float64\n", + " 14 shortpassing 16134 non-null float64\n", + " 15 volleys 16134 non-null float64\n", + " 16 dribbling 16134 non-null float64\n", + " 17 curve 16134 non-null float64\n", + " 18 fkaccuracy 16134 non-null float64\n", + " 19 longpassing 16134 non-null float64\n", + " 20 ballcontrol 16134 non-null float64\n", + " 21 acceleration 16134 non-null float64\n", + " 22 sprintspeed 16134 non-null float64\n", + " 23 agility 16134 non-null float64\n", + " 24 reactions 16134 non-null float64\n", + " 25 balance 16134 non-null float64\n", + " 26 shotpower 16134 non-null float64\n", + " 27 jumping 16134 non-null float64\n", + " 28 stamina 16134 non-null float64\n", + " 29 strength 16134 non-null float64\n", + " 30 longshots 16134 non-null float64\n", + " 31 aggression 16134 non-null float64\n", + " 32 interceptions 16134 non-null float64\n", + " 33 positioning 16134 non-null float64\n", + " 34 vision 16134 non-null float64\n", + " 35 penalties 16134 non-null float64\n", + " 36 composure 16134 non-null float64\n", + " 37 marking 16134 non-null float64\n", + " 38 standingtackle 16134 non-null float64\n", + " 39 slidingtackle 16134 non-null float64\n", + " 40 gkdiving 16134 non-null float64\n", + " 41 gkhandling 16134 non-null float64\n", + " 42 gkkicking 16134 non-null float64\n", + " 43 gkpositioning 16134 non-null float64\n", + " 44 gkreflexes 16134 non-null float64\n", + "dtypes: float64(38), int64(5), object(2)\n", + "memory usage: 5.7+ MB\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "AtXJCbZOUKTa" + }, + "source": [ + "fifa18_na=fifa18_pl.dropna()" + ], + "execution_count": 187, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "f7islUJ2UcEQ", + "outputId": "15040dc0-211e-45d2-9049-130d30b682f7", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 901 + } + }, + "source": [ + "fifa18_na.info()" + ], + "execution_count": 188, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "Int64Index: 16122 entries, 158023 to 246269\n", + "Data columns (total 45 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 age 16122 non-null int64 \n", + " 1 overall 16122 non-null int64 \n", + " 2 potential 16122 non-null int64 \n", + " 3 value 16122 non-null float64\n", + " 4 wage 16122 non-null int64 \n", + " 5 special 16122 non-null int64 \n", + " 6 international reputation 16122 non-null float64\n", + " 7 weak foot 16122 non-null float64\n", + " 8 skill moves 16122 non-null float64\n", + " 9 work rate 16122 non-null object \n", + " 10 position 16122 non-null object \n", + " 11 crossing 16122 non-null float64\n", + " 12 finishing 16122 non-null float64\n", + " 13 headingaccuracy 16122 non-null float64\n", + " 14 shortpassing 16122 non-null float64\n", + " 15 volleys 16122 non-null float64\n", + " 16 dribbling 16122 non-null float64\n", + " 17 curve 16122 non-null float64\n", + " 18 fkaccuracy 16122 non-null float64\n", + " 19 longpassing 16122 non-null float64\n", + " 20 ballcontrol 16122 non-null float64\n", + " 21 acceleration 16122 non-null float64\n", + " 22 sprintspeed 16122 non-null float64\n", + " 23 agility 16122 non-null float64\n", + " 24 reactions 16122 non-null float64\n", + " 25 balance 16122 non-null float64\n", + " 26 shotpower 16122 non-null float64\n", + " 27 jumping 16122 non-null float64\n", + " 28 stamina 16122 non-null float64\n", + " 29 strength 16122 non-null float64\n", + " 30 longshots 16122 non-null float64\n", + " 31 aggression 16122 non-null float64\n", + " 32 interceptions 16122 non-null float64\n", + " 33 positioning 16122 non-null float64\n", + " 34 vision 16122 non-null float64\n", + " 35 penalties 16122 non-null float64\n", + " 36 composure 16122 non-null float64\n", + " 37 marking 16122 non-null float64\n", + " 38 standingtackle 16122 non-null float64\n", + " 39 slidingtackle 16122 non-null float64\n", + " 40 gkdiving 16122 non-null float64\n", + " 41 gkhandling 16122 non-null float64\n", + " 42 gkkicking 16122 non-null float64\n", + " 43 gkpositioning 16122 non-null float64\n", + " 44 gkreflexes 16122 non-null float64\n", + "dtypes: float64(38), int64(5), object(2)\n", + "memory usage: 5.7+ MB\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "vavX_JcwUtg5", + "outputId": "e92f84fa-4bd1-4921-eb25-9c731f7955a7", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 187 + } + }, + "source": [ + "fifa18_na['work rate'].value_counts()" + ], + "execution_count": 189, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Medium/ Medium 7779\n", + "High/ Medium 3170\n", + "Medium/ High 1690\n", + "High/ High 1015\n", + "Medium/ Low 849\n", + "High/ Low 697\n", + "Low/ Medium 449\n", + "Low/ High 439\n", + "Low/ Low 34\n", + "Name: work rate, dtype: int64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 189 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "41ex_SseWn-R", + "outputId": "007bd488-9ba5-4d41-80e2-613073d77363", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 476 + } + }, + "source": [ + "fifa18_na['position'].value_counts()" + ], + "execution_count": 190, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "ST 2152\n", + "CB 1778\n", + "CM 1394\n", + "LB 1322\n", + "RB 1291\n", + "RM 1124\n", + "LM 1095\n", + "CAM 958\n", + "CDM 948\n", + "RCB 662\n", + "LCB 648\n", + "LCM 395\n", + "RCM 391\n", + "LW 381\n", + "RW 370\n", + "RDM 248\n", + "LDM 243\n", + "LS 207\n", + "RS 203\n", + "RWB 87\n", + "LWB 78\n", + "CF 74\n", + "LAM 21\n", + "RAM 21\n", + "RF 16\n", + "LF 15\n", + "Name: position, dtype: int64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 190 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "WO6ZWWPRWucx", + "outputId": "e498416e-724f-4fde-875b-2cbc95192391", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 289 + } + }, + "source": [ + "dummy = pd.get_dummies(fifa18_na[['position','work rate']])\n", + "dummy.head()" + ], + "execution_count": 192, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
position_CAMposition_CBposition_CDMposition_CFposition_CMposition_LAMposition_LBposition_LCBposition_LCMposition_LDMposition_LFposition_LMposition_LSposition_LWposition_LWBposition_RAMposition_RBposition_RCBposition_RCMposition_RDMposition_RFposition_RMposition_RSposition_RWposition_RWBposition_STwork rate_High/ Highwork rate_High/ Lowwork rate_High/ Mediumwork rate_Low/ Highwork rate_Low/ Lowwork rate_Low/ Mediumwork rate_Medium/ Highwork rate_Medium/ Lowwork rate_Medium/ Medium
ID
15802300000000000000000000100000000000001
2080100000000000000000000000001010000000
19087100000000000001000000000000001000000
19298500000000000000000010000000100000000
18327700000000001000000000000000001000000
\n", + "
" + ], + "text/plain": [ + " position_CAM ... work rate_Medium/ Medium\n", + "ID ... \n", + "158023 0 ... 1\n", + "20801 0 ... 0\n", + "190871 0 ... 0\n", + "192985 0 ... 0\n", + "183277 0 ... 0\n", + "\n", + "[5 rows x 35 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 192 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "YHeor0QeZtyp", + "outputId": "498245f5-ce5d-4f3f-bbee-21522dceb8a1", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 374 + } + }, + "source": [ + "fifa18_na = fifa18_na.merge(dummy, left_index=True, right_index=True)\n", + "fifa18_na.head()" + ], + "execution_count": 193, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ageoverallpotentialvaluewagespecialinternational reputationweak footskill moveswork ratepositioncrossingfinishingheadingaccuracyshortpassingvolleysdribblingcurvefkaccuracylongpassingballcontrolaccelerationsprintspeedagilityreactionsbalanceshotpowerjumpingstaminastrengthlongshotsaggressioninterceptionspositioningvisionpenaltiescomposuremarkingstandingtackleslidingtacklegkdivinggkhandlinggkkickinggkpositioninggkreflexesposition_CAMposition_CBposition_CDMposition_CFposition_CMposition_LAMposition_LBposition_LCBposition_LCMposition_LDMposition_LFposition_LMposition_LSposition_LWposition_LWBposition_RAMposition_RBposition_RCBposition_RCMposition_RDMposition_RFposition_RMposition_RSposition_RWposition_RWBposition_STwork rate_High/ Highwork rate_High/ Lowwork rate_High/ Mediumwork rate_Low/ Highwork rate_Low/ Lowwork rate_Low/ Mediumwork rate_Medium/ Highwork rate_Medium/ Lowwork rate_Medium/ Medium
ID
158023319494110500000.056500022025.04.04.0Medium/ MediumRF84.095.070.090.086.097.093.094.087.096.091.086.091.095.095.085.068.072.059.094.048.022.094.094.075.096.033.028.026.06.011.015.014.08.000000000000000000000100000000000001
2080133949477000000.040500022285.04.05.0High/ LowST84.094.089.081.087.088.081.076.077.094.089.091.087.096.070.095.095.088.079.093.063.029.095.082.085.095.028.031.023.07.011.015.014.011.000000000000000000000000001010000000
190871269293118500000.029000021435.05.05.0High/ MediumLW79.087.062.084.084.096.088.087.078.095.094.090.096.094.084.080.061.081.049.082.056.036.089.087.081.094.027.024.033.09.09.015.015.011.000000000000001000000000000001000000
192985279192102000000.035500022814.05.04.0High/ HighRCM93.082.055.092.082.086.085.083.091.091.078.076.079.091.077.091.063.090.075.091.076.061.087.094.079.088.068.058.051.015.013.05.010.013.000000000000000000010000000100000000
18327727919193000000.034000021424.04.04.0High/ MediumLF81.084.061.089.080.095.083.079.083.094.094.088.095.090.094.082.056.083.066.080.054.041.087.089.086.091.034.027.022.011.012.06.08.08.000000000001000000000000000001000000
\n", + "
" + ], + "text/plain": [ + " age overall ... work rate_Medium/ Low work rate_Medium/ Medium\n", + "ID ... \n", + "158023 31 94 ... 0 1\n", + "20801 33 94 ... 0 0\n", + "190871 26 92 ... 0 0\n", + "192985 27 91 ... 0 0\n", + "183277 27 91 ... 0 0\n", + "\n", + "[5 rows x 80 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 193 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "AQ9I816EafRg", + "outputId": "78c12fe1-a15d-484f-9ad7-8f8b41a35659", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 289 + } + }, + "source": [ + "fifa18_ml = fifa18_na.drop(columns=['work rate', 'position','special','value'], axis=1)\n", + "fifa18_ml.head()" + ], + "execution_count": 197, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ageoverallpotentialwageinternational reputationweak footskill movescrossingfinishingheadingaccuracyshortpassingvolleysdribblingcurvefkaccuracylongpassingballcontrolaccelerationsprintspeedagilityreactionsbalanceshotpowerjumpingstaminastrengthlongshotsaggressioninterceptionspositioningvisionpenaltiescomposuremarkingstandingtackleslidingtacklegkdivinggkhandlinggkkickinggkpositioninggkreflexesposition_CAMposition_CBposition_CDMposition_CFposition_CMposition_LAMposition_LBposition_LCBposition_LCMposition_LDMposition_LFposition_LMposition_LSposition_LWposition_LWBposition_RAMposition_RBposition_RCBposition_RCMposition_RDMposition_RFposition_RMposition_RSposition_RWposition_RWBposition_STwork rate_High/ Highwork rate_High/ Lowwork rate_High/ Mediumwork rate_Low/ Highwork rate_Low/ Lowwork rate_Low/ Mediumwork rate_Medium/ Highwork rate_Medium/ Lowwork rate_Medium/ Medium
ID
1580233194945650005.04.04.084.095.070.090.086.097.093.094.087.096.091.086.091.095.095.085.068.072.059.094.048.022.094.094.075.096.033.028.026.06.011.015.014.08.000000000000000000000100000000000001
208013394944050005.04.05.084.094.089.081.087.088.081.076.077.094.089.091.087.096.070.095.095.088.079.093.063.029.095.082.085.095.028.031.023.07.011.015.014.011.000000000000000000000000001010000000
1908712692932900005.05.05.079.087.062.084.084.096.088.087.078.095.094.090.096.094.084.080.061.081.049.082.056.036.089.087.081.094.027.024.033.09.09.015.015.011.000000000000001000000000000001000000
1929852791923550004.05.04.093.082.055.092.082.086.085.083.091.091.078.076.079.091.077.091.063.090.075.091.076.061.087.094.079.088.068.058.051.015.013.05.010.013.000000000000000000010000000100000000
1832772791913400004.04.04.081.084.061.089.080.095.083.079.083.094.094.088.095.090.094.082.056.083.066.080.054.041.087.089.086.091.034.027.022.011.012.06.08.08.000000000001000000000000000001000000
\n", + "
" + ], + "text/plain": [ + " age overall ... work rate_Medium/ Low work rate_Medium/ Medium\n", + "ID ... \n", + "158023 31 94 ... 0 1\n", + "20801 33 94 ... 0 0\n", + "190871 26 92 ... 0 0\n", + "192985 27 91 ... 0 0\n", + "183277 27 91 ... 0 0\n", + "\n", + "[5 rows x 76 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 197 + } + ] + } + ] +} \ No newline at end of file From ceade616cca221cc5c5642acc42ee50ff9897ce8 Mon Sep 17 00:00:00 2001 From: Mvital74 Date: Sun, 15 Nov 2020 22:16:00 -0300 Subject: [PATCH 4/4] Criado usando o Colaboratory --- Churn_pred_exc_feat.ipynb | 6332 +++++++++++++++++++++++++++++++++++++ 1 file changed, 6332 insertions(+) create mode 100644 Churn_pred_exc_feat.ipynb diff --git a/Churn_pred_exc_feat.ipynb b/Churn_pred_exc_feat.ipynb new file mode 100644 index 000000000..751dfdfbf --- /dev/null +++ b/Churn_pred_exc_feat.ipynb @@ -0,0 +1,6332 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "Churn_pred_exc_feat.ipynb", + "provenance": [], + "collapsed_sections": [], + "authorship_tag": "ABX9TyNv+Bt/3KuD8Bvh2oGQZqLT", + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "38c2a034cf674670adc19ddf7bc7823d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "IntProgressModel", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_950f906e936b450786a2715366bf8c45", + "_dom_classes": [], + "description": "Processing: ", + "_model_name": "IntProgressModel", + "bar_style": "", + "max": 3, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 3, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_8467b6fac30e4fa5b3df99f9bce018c9" + } + }, + "950f906e936b450786a2715366bf8c45": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "8467b6fac30e4fa5b3df99f9bce018c9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "ca45548f411d419e866f0750f5a6c5c5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "TextModel", + "state": { + "_view_name": "TextView", + "style": "IPY_MODEL_f416f31746f442fb991a0736db762068", + "_dom_classes": [], + "description": "", + "_model_name": "TextModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": "Following data types have been inferred automatically, if they are correct press enter to continue or type 'quit' otherwise.", + "_view_count": null, + "disabled": false, + "_view_module_version": "1.5.0", + "continuous_update": true, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_0b7b428b847f42f3843d3a9ef21a5785" + } + }, + "f416f31746f442fb991a0736db762068": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "0b7b428b847f42f3843d3a9ef21a5785": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": "100%", + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "a866d68fcc704a9da5aa0febd930c8be": { + "model_module": "@jupyter-widgets/controls", + "model_name": "IntProgressModel", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_dfe9ba82a64a4fde9eb582f66debfe45", + "_dom_classes": [], + "description": "Processing: ", + "_model_name": "IntProgressModel", + "bar_style": "", + "max": 79, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 79, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_16a3ad7c27c545ea846107c763a09160" + } + }, + "dfe9ba82a64a4fde9eb582f66debfe45": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "16a3ad7c27c545ea846107c763a09160": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "02e474ea159044469047ad99bdca7691": { + "model_module": "@jupyter-widgets/controls", + "model_name": "IntProgressModel", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_95ecdbc5764d42c1a6d0d6497244738f", + "_dom_classes": [], + "description": "Processing: ", + "_model_name": "IntProgressModel", + "bar_style": "", + "max": 4, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 4, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_a10ba5ad1bc642f9bbc9606fb6367c8f" + } + }, + "95ecdbc5764d42c1a6d0d6497244738f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "a10ba5ad1bc642f9bbc9606fb6367c8f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "2a8680f6e11442f2b1a4f2ffb25bb26e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "IntProgressModel", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_a4a8b0747a874b009e24007c0450187e", + "_dom_classes": [], + "description": "Processing: ", + "_model_name": "IntProgressModel", + "bar_style": "", + "max": 4, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 4, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_7466c945fa2f43d7beef09df3e5e6873" + } + }, + "a4a8b0747a874b009e24007c0450187e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "7466c945fa2f43d7beef09df3e5e6873": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "bfd7bc9b84504acaa45ade9ce905039e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "IntProgressModel", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_0252ecc639a4401bbb24565504a3e78d", + "_dom_classes": [], + "description": "Processing: ", + "_model_name": "IntProgressModel", + "bar_style": "", + "max": 4, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 4, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_ea3cd554c7fe4c7bb2d20c7d9c6fe297" + } + }, + "0252ecc639a4401bbb24565504a3e78d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "ea3cd554c7fe4c7bb2d20c7d9c6fe297": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "efd0161617ba486fbad9d63bb8868a15": { + "model_module": "@jupyter-widgets/controls", + "model_name": "IntProgressModel", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_5c80678a9a5b4265be06eb3f00bd3762", + "_dom_classes": [], + "description": "Processing: ", + "_model_name": "IntProgressModel", + "bar_style": "", + "max": 4, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 4, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_fbbb1109c1104d51ba36459c1984c3e6" + } + }, + "5c80678a9a5b4265be06eb3f00bd3762": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "fbbb1109c1104d51ba36459c1984c3e6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "dce27f74ac10489299f2e86ca4df0e10": { + "model_module": "@jupyter-widgets/controls", + "model_name": "IntProgressModel", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_ed8e57f8d2964d9f80a643f14ab9c01d", + "_dom_classes": [], + "description": "Processing: ", + "_model_name": "IntProgressModel", + "bar_style": "", + "max": 7, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 7, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_cd8845aa47124ec1acbdf6e2ddc0955c" + } + }, + "ed8e57f8d2964d9f80a643f14ab9c01d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "cd8845aa47124ec1acbdf6e2ddc0955c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "53d5b2f611b247a39772728c4b355f4b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "IntProgressModel", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_b479346e107548248cbebf308a6588a0", + "_dom_classes": [], + "description": "Processing: ", + "_model_name": "IntProgressModel", + "bar_style": "", + "max": 7, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 7, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_a7236ae9246041ec982214b506eba7c7" + } + }, + "b479346e107548248cbebf308a6588a0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "a7236ae9246041ec982214b506eba7c7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "0e7e5598166140fdafa439917e69ab2e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "IntProgressModel", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_bb7b11cbfd784979a8b6fbe3db882d30", + "_dom_classes": [], + "description": "Processing: ", + "_model_name": "IntProgressModel", + "bar_style": "", + "max": 7, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 7, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_d161ea86c3bc4b9e84029797905487e1" + } + }, + "bb7b11cbfd784979a8b6fbe3db882d30": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "d161ea86c3bc4b9e84029797905487e1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "9815bc085d224f42a4e1a714831650c7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "IntProgressModel", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_2a2a232930394ddd8a249b6deb7ebbfd", + "_dom_classes": [], + "description": "Processing: ", + "_model_name": "IntProgressModel", + "bar_style": "", + "max": 7, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 7, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_65e12b95f706447ab2ba2944fdc0f2ab" + } + }, + "2a2a232930394ddd8a249b6deb7ebbfd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "65e12b95f706447ab2ba2944fdc0f2ab": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + } + } + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "pk-uEUJUsQNL", + "outputId": "a8463741-8b31-4805-d541-538b01e9d633", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "source": [ + "!pip install pycaret" + ], + "execution_count": 64, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Requirement already satisfied: pycaret in /usr/local/lib/python3.6/dist-packages (2.2.1)\n", + "Requirement already satisfied: ipywidgets in /usr/local/lib/python3.6/dist-packages (from pycaret) (7.5.1)\n", + "Requirement already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (from pycaret) (3.2.2)\n", + "Requirement already satisfied: pyLDAvis in /usr/local/lib/python3.6/dist-packages (from pycaret) (2.1.2)\n", + "Requirement already satisfied: pandas-profiling>=2.8.0 in /usr/local/lib/python3.6/dist-packages (from pycaret) (2.9.0)\n", + "Requirement already satisfied: kmodes>=0.10.1 in /usr/local/lib/python3.6/dist-packages (from pycaret) (0.10.2)\n", + "Requirement already satisfied: imbalanced-learn>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from pycaret) (0.7.0)\n", + "Requirement already satisfied: pyod in /usr/local/lib/python3.6/dist-packages (from pycaret) (0.8.3)\n", + "Requirement already satisfied: catboost>=0.23.2 in /usr/local/lib/python3.6/dist-packages (from pycaret) (0.24.2)\n", + "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.6/dist-packages (from pycaret) (1.18.5)\n", + "Requirement already satisfied: cufflinks>=0.17.0 in /usr/local/lib/python3.6/dist-packages (from pycaret) (0.17.3)\n", + "Requirement already satisfied: xgboost>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from pycaret) (1.2.1)\n", + "Requirement already satisfied: spacy in /usr/local/lib/python3.6/dist-packages (from pycaret) (2.2.4)\n", + "Requirement already satisfied: plotly>=4.4.1 in /usr/local/lib/python3.6/dist-packages (from pycaret) (4.4.1)\n", + "Requirement already satisfied: mlxtend in /usr/local/lib/python3.6/dist-packages (from pycaret) (0.14.0)\n", + "Requirement already satisfied: wordcloud in /usr/local/lib/python3.6/dist-packages (from pycaret) (1.5.0)\n", + "Requirement already satisfied: umap-learn in /usr/local/lib/python3.6/dist-packages (from pycaret) (0.4.6)\n", + "Requirement already satisfied: joblib in /usr/local/lib/python3.6/dist-packages (from pycaret) (0.17.0)\n", + "Requirement already satisfied: nltk in /usr/local/lib/python3.6/dist-packages (from pycaret) (3.2.5)\n", + "Requirement already satisfied: textblob in /usr/local/lib/python3.6/dist-packages (from pycaret) (0.15.3)\n", + "Requirement already satisfied: scikit-learn>=0.23.2 in /usr/local/lib/python3.6/dist-packages (from pycaret) (0.23.2)\n", + "Requirement already satisfied: IPython in /usr/local/lib/python3.6/dist-packages (from pycaret) (5.5.0)\n", + "Requirement already satisfied: seaborn in /usr/local/lib/python3.6/dist-packages (from pycaret) (0.11.0)\n", + "Requirement already satisfied: pandas in /usr/local/lib/python3.6/dist-packages (from pycaret) (1.1.4)\n", + "Requirement already satisfied: yellowbrick>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from pycaret) (1.2)\n", + "Requirement already satisfied: lightgbm>=2.3.1 in /usr/local/lib/python3.6/dist-packages (from pycaret) (3.0.0)\n", + "Requirement already satisfied: scikit-plot in /usr/local/lib/python3.6/dist-packages (from pycaret) (0.3.7)\n", + "Requirement already satisfied: gensim in /usr/local/lib/python3.6/dist-packages (from pycaret) (3.6.0)\n", + "Requirement already satisfied: mlflow in /usr/local/lib/python3.6/dist-packages (from pycaret) (1.12.0)\n", + "Requirement already satisfied: nbformat>=4.2.0 in /usr/local/lib/python3.6/dist-packages (from ipywidgets->pycaret) (5.0.8)\n", + "Requirement already satisfied: traitlets>=4.3.1 in /usr/local/lib/python3.6/dist-packages (from ipywidgets->pycaret) (4.3.3)\n", + "Requirement already satisfied: widgetsnbextension~=3.5.0 in /usr/local/lib/python3.6/dist-packages (from ipywidgets->pycaret) (3.5.1)\n", + "Requirement already satisfied: ipykernel>=4.5.1 in /usr/local/lib/python3.6/dist-packages (from ipywidgets->pycaret) (4.10.1)\n", + "Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->pycaret) (2.8.1)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->pycaret) (2.4.7)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->pycaret) (1.3.1)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib->pycaret) (0.10.0)\n", + "Requirement already satisfied: numexpr in /usr/local/lib/python3.6/dist-packages (from pyLDAvis->pycaret) (2.7.1)\n", + "Requirement already satisfied: funcy in /usr/local/lib/python3.6/dist-packages (from pyLDAvis->pycaret) (1.15)\n", + "Requirement already satisfied: scipy>=0.18.0 in /usr/local/lib/python3.6/dist-packages (from pyLDAvis->pycaret) (1.4.1)\n", + "Requirement already satisfied: pytest in /usr/local/lib/python3.6/dist-packages (from pyLDAvis->pycaret) (3.6.4)\n", + "Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from pyLDAvis->pycaret) (0.16.0)\n", + "Requirement already satisfied: jinja2>=2.7.2 in /usr/local/lib/python3.6/dist-packages (from pyLDAvis->pycaret) (2.11.2)\n", + "Requirement already satisfied: wheel>=0.23.0 in /usr/local/lib/python3.6/dist-packages (from pyLDAvis->pycaret) (0.35.1)\n", + "Requirement already satisfied: visions[type_image_path]==0.5.0 in /usr/local/lib/python3.6/dist-packages (from pandas-profiling>=2.8.0->pycaret) (0.5.0)\n", + "Requirement already satisfied: tqdm>=4.43.0 in /usr/local/lib/python3.6/dist-packages (from pandas-profiling>=2.8.0->pycaret) (4.51.0)\n", + "Requirement already satisfied: confuse>=1.0.0 in /usr/local/lib/python3.6/dist-packages (from pandas-profiling>=2.8.0->pycaret) (1.3.0)\n", + "Requirement already satisfied: attrs>=19.3.0 in /usr/local/lib/python3.6/dist-packages (from pandas-profiling>=2.8.0->pycaret) (20.2.0)\n", + "Requirement already satisfied: htmlmin>=0.1.12 in /usr/local/lib/python3.6/dist-packages (from pandas-profiling>=2.8.0->pycaret) (0.1.12)\n", + "Requirement already satisfied: missingno>=0.4.2 in /usr/local/lib/python3.6/dist-packages (from pandas-profiling>=2.8.0->pycaret) (0.4.2)\n", + "Requirement already satisfied: tangled-up-in-unicode>=0.0.6 in /usr/local/lib/python3.6/dist-packages (from pandas-profiling>=2.8.0->pycaret) (0.0.6)\n", + "Requirement already satisfied: requests>=2.23.0 in /usr/local/lib/python3.6/dist-packages (from pandas-profiling>=2.8.0->pycaret) (2.23.0)\n", + "Requirement already satisfied: phik>=0.9.10 in /usr/local/lib/python3.6/dist-packages (from pandas-profiling>=2.8.0->pycaret) (0.10.0)\n", + "Requirement already satisfied: combo in /usr/local/lib/python3.6/dist-packages (from pyod->pycaret) (0.1.1)\n", + "Requirement already satisfied: numba>=0.35 in /usr/local/lib/python3.6/dist-packages (from pyod->pycaret) (0.48.0)\n", + "Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from pyod->pycaret) (1.15.0)\n", + "Requirement already satisfied: suod in /usr/local/lib/python3.6/dist-packages (from pyod->pycaret) (0.0.4)\n", + "Requirement already satisfied: statsmodels in /usr/local/lib/python3.6/dist-packages (from pyod->pycaret) (0.10.2)\n", + "Requirement already satisfied: graphviz in /usr/local/lib/python3.6/dist-packages (from catboost>=0.23.2->pycaret) (0.10.1)\n", + "Requirement already satisfied: setuptools>=34.4.1 in /usr/local/lib/python3.6/dist-packages (from cufflinks>=0.17.0->pycaret) (50.3.2)\n", + "Requirement already satisfied: colorlover>=0.2.1 in /usr/local/lib/python3.6/dist-packages (from cufflinks>=0.17.0->pycaret) (0.3.0)\n", + "Requirement already satisfied: plac<1.2.0,>=0.9.6 in /usr/local/lib/python3.6/dist-packages (from spacy->pycaret) (1.1.3)\n", + "Requirement already satisfied: catalogue<1.1.0,>=0.0.7 in /usr/local/lib/python3.6/dist-packages (from spacy->pycaret) (1.0.0)\n", + "Requirement already satisfied: srsly<1.1.0,>=1.0.2 in /usr/local/lib/python3.6/dist-packages (from spacy->pycaret) (1.0.2)\n", + "Requirement already satisfied: thinc==7.4.0 in /usr/local/lib/python3.6/dist-packages (from spacy->pycaret) (7.4.0)\n", + "Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /usr/local/lib/python3.6/dist-packages (from spacy->pycaret) (2.0.4)\n", + "Requirement already satisfied: preshed<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from spacy->pycaret) (3.0.2)\n", + "Requirement already satisfied: wasabi<1.1.0,>=0.4.0 in /usr/local/lib/python3.6/dist-packages (from spacy->pycaret) (0.8.0)\n", + "Requirement already satisfied: blis<0.5.0,>=0.4.0 in /usr/local/lib/python3.6/dist-packages (from spacy->pycaret) (0.4.1)\n", + "Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /usr/local/lib/python3.6/dist-packages (from spacy->pycaret) (1.0.3)\n", + "Requirement already satisfied: retrying>=1.3.3 in /usr/local/lib/python3.6/dist-packages (from plotly>=4.4.1->pycaret) (1.3.3)\n", + "Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (from wordcloud->pycaret) (7.0.0)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.6/dist-packages (from scikit-learn>=0.23.2->pycaret) (2.1.0)\n", + "Requirement already satisfied: pickleshare in /usr/local/lib/python3.6/dist-packages (from IPython->pycaret) (0.7.5)\n", + "Requirement already satisfied: simplegeneric>0.8 in /usr/local/lib/python3.6/dist-packages (from IPython->pycaret) (0.8.1)\n", + "Requirement already satisfied: prompt-toolkit<2.0.0,>=1.0.4 in /usr/local/lib/python3.6/dist-packages (from IPython->pycaret) (1.0.18)\n", + "Requirement already satisfied: decorator in /usr/local/lib/python3.6/dist-packages (from IPython->pycaret) (4.4.2)\n", + "Requirement already satisfied: pexpect; sys_platform != \"win32\" in /usr/local/lib/python3.6/dist-packages (from IPython->pycaret) (4.8.0)\n", + "Requirement already satisfied: pygments in /usr/local/lib/python3.6/dist-packages (from IPython->pycaret) (2.6.1)\n", + "Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas->pycaret) (2018.9)\n", + "Requirement already satisfied: smart-open>=1.2.1 in /usr/local/lib/python3.6/dist-packages (from gensim->pycaret) (3.0.0)\n", + "Requirement already satisfied: querystring-parser in /usr/local/lib/python3.6/dist-packages (from mlflow->pycaret) (1.2.4)\n", + "Requirement already satisfied: pyyaml in /usr/local/lib/python3.6/dist-packages (from mlflow->pycaret) (3.13)\n", + "Requirement already satisfied: gitpython>=2.1.0 in /usr/local/lib/python3.6/dist-packages (from mlflow->pycaret) (3.1.11)\n", + "Requirement already satisfied: entrypoints in /usr/local/lib/python3.6/dist-packages (from mlflow->pycaret) (0.3)\n", + "Requirement already satisfied: databricks-cli>=0.8.7 in /usr/local/lib/python3.6/dist-packages (from mlflow->pycaret) (0.14.0)\n", + "Requirement already satisfied: Flask in /usr/local/lib/python3.6/dist-packages (from mlflow->pycaret) (1.1.2)\n", + "Requirement already satisfied: docker>=4.0.0 in /usr/local/lib/python3.6/dist-packages (from mlflow->pycaret) (4.3.1)\n", + "Requirement already satisfied: alembic<=1.4.1 in /usr/local/lib/python3.6/dist-packages (from mlflow->pycaret) (1.4.1)\n", + "Requirement already satisfied: cloudpickle in /usr/local/lib/python3.6/dist-packages (from mlflow->pycaret) (1.3.0)\n", + "Requirement already satisfied: sqlparse>=0.3.1 in /usr/local/lib/python3.6/dist-packages (from mlflow->pycaret) (0.4.1)\n", + "Requirement already satisfied: click>=7.0 in /usr/local/lib/python3.6/dist-packages (from mlflow->pycaret) (7.1.2)\n", + "Requirement already satisfied: prometheus-flask-exporter in /usr/local/lib/python3.6/dist-packages (from mlflow->pycaret) (0.18.1)\n", + "Requirement already satisfied: gunicorn; platform_system != \"Windows\" in /usr/local/lib/python3.6/dist-packages (from mlflow->pycaret) (20.0.4)\n", + "Requirement already satisfied: sqlalchemy in /usr/local/lib/python3.6/dist-packages (from mlflow->pycaret) (1.3.20)\n", + "Requirement already satisfied: protobuf>=3.6.0 in /usr/local/lib/python3.6/dist-packages (from mlflow->pycaret) (3.12.4)\n", + "Requirement already satisfied: azure-storage-blob in /usr/local/lib/python3.6/dist-packages (from mlflow->pycaret) (12.6.0)\n", + "Requirement already satisfied: jsonschema!=2.5.0,>=2.4 in /usr/local/lib/python3.6/dist-packages (from nbformat>=4.2.0->ipywidgets->pycaret) (2.6.0)\n", + "Requirement already satisfied: ipython-genutils in /usr/local/lib/python3.6/dist-packages (from nbformat>=4.2.0->ipywidgets->pycaret) (0.2.0)\n", + "Requirement already satisfied: jupyter-core in /usr/local/lib/python3.6/dist-packages (from nbformat>=4.2.0->ipywidgets->pycaret) (4.6.3)\n", + "Requirement already satisfied: notebook>=4.4.1 in /usr/local/lib/python3.6/dist-packages (from widgetsnbextension~=3.5.0->ipywidgets->pycaret) (5.3.1)\n", + "Requirement already satisfied: tornado>=4.0 in /usr/local/lib/python3.6/dist-packages (from ipykernel>=4.5.1->ipywidgets->pycaret) (5.1.1)\n", + "Requirement already satisfied: jupyter-client in /usr/local/lib/python3.6/dist-packages (from ipykernel>=4.5.1->ipywidgets->pycaret) (5.3.5)\n", + "Requirement already satisfied: py>=1.5.0 in /usr/local/lib/python3.6/dist-packages (from pytest->pyLDAvis->pycaret) (1.9.0)\n", + "Requirement already satisfied: pluggy<0.8,>=0.5 in /usr/local/lib/python3.6/dist-packages (from pytest->pyLDAvis->pycaret) (0.7.1)\n", + "Requirement already satisfied: more-itertools>=4.0.0 in /usr/local/lib/python3.6/dist-packages (from pytest->pyLDAvis->pycaret) (8.6.0)\n", + "Requirement already satisfied: atomicwrites>=1.0 in /usr/local/lib/python3.6/dist-packages (from pytest->pyLDAvis->pycaret) (1.4.0)\n", + "Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.6/dist-packages (from jinja2>=2.7.2->pyLDAvis->pycaret) (1.1.1)\n", + "Requirement already satisfied: networkx>=2.4 in /usr/local/lib/python3.6/dist-packages (from visions[type_image_path]==0.5.0->pandas-profiling>=2.8.0->pycaret) (2.5)\n", + "Requirement already satisfied: imagehash; extra == \"type_image_path\" in /usr/local/lib/python3.6/dist-packages (from visions[type_image_path]==0.5.0->pandas-profiling>=2.8.0->pycaret) (4.1.0)\n", + "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests>=2.23.0->pandas-profiling>=2.8.0->pycaret) (1.24.3)\n", + "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests>=2.23.0->pandas-profiling>=2.8.0->pycaret) (2.10)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests>=2.23.0->pandas-profiling>=2.8.0->pycaret) (2020.6.20)\n", + "Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests>=2.23.0->pandas-profiling>=2.8.0->pycaret) (3.0.4)\n", + "Requirement already satisfied: llvmlite<0.32.0,>=0.31.0dev0 in /usr/local/lib/python3.6/dist-packages (from numba>=0.35->pyod->pycaret) (0.31.0)\n", + "Requirement already satisfied: patsy>=0.4.0 in /usr/local/lib/python3.6/dist-packages (from statsmodels->pyod->pycaret) (0.5.1)\n", + "Requirement already satisfied: importlib-metadata>=0.20; python_version < \"3.8\" in /usr/local/lib/python3.6/dist-packages (from catalogue<1.1.0,>=0.0.7->spacy->pycaret) (2.0.0)\n", + "Requirement already satisfied: wcwidth in /usr/local/lib/python3.6/dist-packages (from prompt-toolkit<2.0.0,>=1.0.4->IPython->pycaret) (0.2.5)\n", + "Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.6/dist-packages (from pexpect; sys_platform != \"win32\"->IPython->pycaret) (0.6.0)\n", + "Requirement already satisfied: gitdb<5,>=4.0.1 in /usr/local/lib/python3.6/dist-packages (from gitpython>=2.1.0->mlflow->pycaret) (4.0.5)\n", + "Requirement already satisfied: tabulate>=0.7.7 in /usr/local/lib/python3.6/dist-packages (from databricks-cli>=0.8.7->mlflow->pycaret) (0.8.7)\n", + "Requirement already satisfied: Werkzeug>=0.15 in /usr/local/lib/python3.6/dist-packages (from Flask->mlflow->pycaret) (1.0.1)\n", + "Requirement already satisfied: itsdangerous>=0.24 in /usr/local/lib/python3.6/dist-packages (from Flask->mlflow->pycaret) (1.1.0)\n", + "Requirement already satisfied: websocket-client>=0.32.0 in /usr/local/lib/python3.6/dist-packages (from docker>=4.0.0->mlflow->pycaret) (0.57.0)\n", + "Requirement already satisfied: Mako in /usr/local/lib/python3.6/dist-packages (from alembic<=1.4.1->mlflow->pycaret) (1.1.3)\n", + "Requirement already satisfied: python-editor>=0.3 in /usr/local/lib/python3.6/dist-packages (from alembic<=1.4.1->mlflow->pycaret) (1.0.4)\n", + "Requirement already satisfied: prometheus-client in /usr/local/lib/python3.6/dist-packages (from prometheus-flask-exporter->mlflow->pycaret) (0.8.0)\n", + "Requirement already satisfied: azure-core<2.0.0,>=1.9.0 in /usr/local/lib/python3.6/dist-packages (from azure-storage-blob->mlflow->pycaret) (1.9.0)\n", + "Requirement already satisfied: msrest>=0.6.10 in /usr/local/lib/python3.6/dist-packages (from azure-storage-blob->mlflow->pycaret) (0.6.19)\n", + "Requirement already satisfied: cryptography>=2.1.4 in /usr/local/lib/python3.6/dist-packages (from azure-storage-blob->mlflow->pycaret) (3.2.1)\n", + "Requirement already satisfied: terminado>=0.8.1 in /usr/local/lib/python3.6/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets->pycaret) (0.9.1)\n", + "Requirement already satisfied: Send2Trash in /usr/local/lib/python3.6/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets->pycaret) (1.5.0)\n", + "Requirement already satisfied: nbconvert in /usr/local/lib/python3.6/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets->pycaret) (5.6.1)\n", + "Requirement already satisfied: pyzmq>=13 in /usr/local/lib/python3.6/dist-packages (from jupyter-client->ipykernel>=4.5.1->ipywidgets->pycaret) (19.0.2)\n", + "Requirement already satisfied: PyWavelets in /usr/local/lib/python3.6/dist-packages (from imagehash; extra == \"type_image_path\"->visions[type_image_path]==0.5.0->pandas-profiling>=2.8.0->pycaret) (1.1.1)\n", + "Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.6/dist-packages (from importlib-metadata>=0.20; python_version < \"3.8\"->catalogue<1.1.0,>=0.0.7->spacy->pycaret) (3.4.0)\n", + "Requirement already satisfied: smmap<4,>=3.0.1 in /usr/local/lib/python3.6/dist-packages (from gitdb<5,>=4.0.1->gitpython>=2.1.0->mlflow->pycaret) (3.0.4)\n", + "Requirement already satisfied: isodate>=0.6.0 in /usr/local/lib/python3.6/dist-packages (from msrest>=0.6.10->azure-storage-blob->mlflow->pycaret) (0.6.0)\n", + "Requirement already satisfied: requests-oauthlib>=0.5.0 in /usr/local/lib/python3.6/dist-packages (from msrest>=0.6.10->azure-storage-blob->mlflow->pycaret) (1.3.0)\n", + "Requirement already satisfied: cffi!=1.11.3,>=1.8 in /usr/local/lib/python3.6/dist-packages (from cryptography>=2.1.4->azure-storage-blob->mlflow->pycaret) (1.14.3)\n", + "Requirement already satisfied: defusedxml in /usr/local/lib/python3.6/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets->pycaret) (0.6.0)\n", + "Requirement already satisfied: mistune<2,>=0.8.1 in /usr/local/lib/python3.6/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets->pycaret) (0.8.4)\n", + "Requirement already satisfied: pandocfilters>=1.4.1 in /usr/local/lib/python3.6/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets->pycaret) (1.4.3)\n", + "Requirement already satisfied: bleach in /usr/local/lib/python3.6/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets->pycaret) (3.2.1)\n", + "Requirement already satisfied: testpath in /usr/local/lib/python3.6/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets->pycaret) (0.4.4)\n", + "Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.6/dist-packages (from requests-oauthlib>=0.5.0->msrest>=0.6.10->azure-storage-blob->mlflow->pycaret) (3.1.0)\n", + "Requirement already satisfied: pycparser in /usr/local/lib/python3.6/dist-packages (from cffi!=1.11.3,>=1.8->cryptography>=2.1.4->azure-storage-blob->mlflow->pycaret) (2.20)\n", + "Requirement already satisfied: packaging in /usr/local/lib/python3.6/dist-packages (from bleach->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets->pycaret) (20.4)\n", + "Requirement already satisfied: webencodings in /usr/local/lib/python3.6/dist-packages (from bleach->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets->pycaret) (0.5.1)\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4Sz22WZNOlYm" + }, + "source": [ + "#Importar Bibliotecas\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "cCt2tSMXwwmW" + }, + "source": [ + "import numpy as np # linear algebra\n", + "import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "from sklearn.impute import SimpleImputer\n", + "from pycaret.classification import *" + ], + "execution_count": 82, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "e7iVuCAyOvsZ" + }, + "source": [ + "#Carregar Dataframes" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "6hOISoasvfLo", + "outputId": "76838be7-9b61-4492-f076-4adf00019375", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 329 + } + }, + "source": [ + "df_sample = pd.read_csv('https://raw.githubusercontent.com/Mvital74/datasharing/master/sample_submission.csv', index_col='id')\n", + "df_test = pd.read_csv('https://raw.githubusercontent.com/Mvital74/datasharing/master/test.csv', index_col='id')\n", + "df_train =pd.read_csv('https://raw.githubusercontent.com/Mvital74/datasharing/master/train.csv', index_col='id')\n", + "\n", + "df_train.head()" + ], + "execution_count": 131, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
genderSeniorCitizenPartnerDependentstenurePhoneServiceMultipleLinesInternetServiceOnlineSecurityOnlineBackupDeviceProtectionTechSupportStreamingTVStreamingMoviesContractPaperlessBillingPaymentMethodMonthlyChargesTotalChargesChurn
id
4030Female0NoNo56.0NoNo phone serviceDSLYesYesYesYesNoNoTwo yearNoNaN45.052560.10
6731Male0YesYesNaNYesNoNoNo internet serviceNo internet serviceNo internet serviceNo internet serviceNo internet serviceNo internet serviceOne yearNoMailed check19.65332.650
6479Female0YesNo60.0YesYesFiber opticNoYesYesYesYesYesTwo yearYesCredit card (automatic)110.806640.70
6861Female0NoNo37.0YesYesFiber opticNoYesYesNoYesYesMonth-to-monthYesBank transfer (automatic)101.903545.351
3266Male0YesYes29.0YesNoFiber opticNoNoNoNoNoNoMonth-to-monthYesElectronic check70.751974.81
\n", + "
" + ], + "text/plain": [ + " gender SeniorCitizen Partner ... MonthlyCharges TotalCharges Churn\n", + "id ... \n", + "4030 Female 0 No ... 45.05 2560.1 0\n", + "6731 Male 0 Yes ... 19.65 332.65 0\n", + "6479 Female 0 Yes ... 110.80 6640.7 0\n", + "6861 Female 0 No ... 101.90 3545.35 1\n", + "3266 Male 0 Yes ... 70.75 1974.8 1\n", + "\n", + "[5 rows x 20 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 131 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "O28wqhTrO32p", + "outputId": "f0d1c140-d2e1-4a25-8e31-4b7304cdf1a1", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 312 + } + }, + "source": [ + "df_test.head()" + ], + "execution_count": 132, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
genderSeniorCitizenPartnerDependentstenurePhoneServiceMultipleLinesInternetServiceOnlineSecurityOnlineBackupDeviceProtectionTechSupportStreamingTVStreamingMoviesContractPaperlessBillingPaymentMethodMonthlyChargesTotalCharges
id
5027Male0YesYes23.0YesNoNoNo internet serviceNo internet serviceNo internet serviceNo internet serviceNo internet serviceNo internet serviceOne yearYesCredit card (automatic)20.00445.3
1733Male1YesYes61.0YesYesFiber opticNoYesNoNoYesYesOne yearNoNaN99.005969.3
5384Male0NoNo36.0YesYesFiber opticNoNoNoNoNoYesMonth-to-monthYesElectronic check84.753050.15
6554Female0YesYes61.0NoNo phone serviceDSLNoYesYesYesYesYesTwo yearYesBank transfer (automatic)61.453751.15
364Female0NoNo47.0YesNoNoNo internet serviceNo internet serviceNo internet serviceNo internet serviceNo internet serviceNo internet serviceTwo yearYesMailed check20.55945.7
\n", + "
" + ], + "text/plain": [ + " gender SeniorCitizen ... MonthlyCharges TotalCharges\n", + "id ... \n", + "5027 Male 0 ... 20.00 445.3\n", + "1733 Male 1 ... 99.00 5969.3\n", + "5384 Male 0 ... 84.75 3050.15\n", + "6554 Female 0 ... 61.45 3751.15\n", + "364 Female 0 ... 20.55 945.7\n", + "\n", + "[5 rows x 19 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 132 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "OGpJv46wPSxB" + }, + "source": [ + "#Explora Dataframes" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "8eCPEUYyy8SW", + "outputId": "3c7ec248-7353-4a86-af23-af4b4861c56c", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "source": [ + "df_train.info()" + ], + "execution_count": 133, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "Int64Index: 5634 entries, 4030 to 103\n", + "Data columns (total 20 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 gender 5634 non-null object \n", + " 1 SeniorCitizen 5634 non-null int64 \n", + " 2 Partner 5634 non-null object \n", + " 3 Dependents 5416 non-null object \n", + " 4 tenure 5173 non-null float64\n", + " 5 PhoneService 5634 non-null object \n", + " 6 MultipleLines 5634 non-null object \n", + " 7 InternetService 5634 non-null object \n", + " 8 OnlineSecurity 5634 non-null object \n", + " 9 OnlineBackup 5634 non-null object \n", + " 10 DeviceProtection 5634 non-null object \n", + " 11 TechSupport 5634 non-null object \n", + " 12 StreamingTV 5634 non-null object \n", + " 13 StreamingMovies 5634 non-null object \n", + " 14 Contract 5634 non-null object \n", + " 15 PaperlessBilling 5634 non-null object \n", + " 16 PaymentMethod 5535 non-null object \n", + " 17 MonthlyCharges 5634 non-null float64\n", + " 18 TotalCharges 5634 non-null object \n", + " 19 Churn 5634 non-null int64 \n", + "dtypes: float64(2), int64(2), object(16)\n", + "memory usage: 924.3+ KB\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "nH3I-iWb-Bpf", + "outputId": "3d2c63d0-d393-41ff-efec-3186127f86db", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 296 + } + }, + "source": [ + "\n", + "df_train[df_train['MonthlyCharges'].isalnum() == False]" + ], + "execution_count": 145, + "outputs": [ + { + "output_type": "error", + "ename": "AttributeError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mdf_train\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdf_train\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'MonthlyCharges'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0misalnum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 5137\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_info_axis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_can_hold_identifiers_and_holds_name\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5138\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 5139\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mobject\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__getattribute__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5140\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5141\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__setattr__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mAttributeError\u001b[0m: 'Series' object has no attribute 'isalnum'" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Ylq5eJMSPomC" + }, + "source": [ + "#Trata Dataframe de treinamento\n", + "\n", + "1. Item da lista\n", + "2. Item da lista\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0W7n8b4TQBEC" + }, + "source": [ + "## Tratar os NA\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "eao-YWDa-kiZ", + "outputId": "8d3c10d2-ac6a-4eaa-8d35-9f58fa4680d4", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 195 + } + }, + "source": [ + "df_tenure = df_train.groupby(['Contract']).agg({'tenure': ['mean', 'median']})\n", + "df_tenure" + ], + "execution_count": 135, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
tenure
meanmedian
Contract
Month-to-month17.94369712.0
One year41.91066544.0
Two year56.39696564.0
\n", + "
" + ], + "text/plain": [ + " tenure \n", + " mean median\n", + "Contract \n", + "Month-to-month 17.943697 12.0\n", + "One year 41.910665 44.0\n", + "Two year 56.396965 64.0" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 135 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "0QwzUaQ1N-Bm" + }, + "source": [ + "df_month = df_train[df_train['Contract']=='Month-to-month']\n", + "df_month['tenure'].fillna(df_month['tenure'].mean(), inplace=True)\n", + "df_one = df_train[df_train['Contract']=='One year']\n", + "df_one['tenure'].fillna(df_one['tenure'].mean(), inplace=True)\n", + "df_two = df_train[df_train['Contract']=='Two year']\n", + "df_two['tenure'].fillna(df_two['tenure'].mean(), inplace=True)\n", + "df_train_na = pd.concat([df_month, df_one, df_two], axis=0)" + ], + "execution_count": 136, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "6ayxIVokTET-", + "outputId": "c7fc3fb0-faba-4b25-97b7-15bd533c5f53", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "source": [ + "df_train_na['Dependents'].value_counts()\n" + ], + "execution_count": 137, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "No 3793\n", + "Yes 1623\n", + "Name: Dependents, dtype: int64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 137 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "9AX6izcoVjSZ" + }, + "source": [ + "df_train_na['Dependents'].fillna('No', inplace=True)" + ], + "execution_count": 138, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "zVRtKNm3ly2-", + "outputId": "dcb584b7-1c8a-44b0-faa7-f3608b8f1f9f", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "source": [ + "df_train_na['PaymentMethod'].value_counts()" + ], + "execution_count": 149, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Electronic check 1887\n", + "Mailed check 1272\n", + "Bank transfer (automatic) 1212\n", + "Credit card (automatic) 1164\n", + "Name: PaymentMethod, dtype: int64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 149 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "wAmb1cmdmRxn" + }, + "source": [ + "df_train_na['PaymentMethod'].fillna(method='ffill', inplace = True)" + ], + "execution_count": 151, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "DIUNab0XVzHQ", + "outputId": "b7aa935f-db8a-4c54-8de0-68b5e72e8537", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "source": [ + "df_train_na.info()" + ], + "execution_count": 152, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "Int64Index: 5634 entries, 6861 to 6317\n", + "Data columns (total 20 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 gender 5634 non-null object \n", + " 1 SeniorCitizen 5634 non-null int64 \n", + " 2 Partner 5634 non-null object \n", + " 3 Dependents 5634 non-null object \n", + " 4 tenure 5634 non-null float64\n", + " 5 PhoneService 5634 non-null object \n", + " 6 MultipleLines 5634 non-null object \n", + " 7 InternetService 5634 non-null object \n", + " 8 OnlineSecurity 5634 non-null object \n", + " 9 OnlineBackup 5634 non-null object \n", + " 10 DeviceProtection 5634 non-null object \n", + " 11 TechSupport 5634 non-null object \n", + " 12 StreamingTV 5634 non-null object \n", + " 13 StreamingMovies 5634 non-null object \n", + " 14 Contract 5634 non-null object \n", + " 15 PaperlessBilling 5634 non-null object \n", + " 16 PaymentMethod 5634 non-null object \n", + " 17 MonthlyCharges 5634 non-null float64\n", + " 18 TotalCharges 5634 non-null object \n", + " 19 Churn 5634 non-null int64 \n", + "dtypes: float64(2), int64(2), object(16)\n", + "memory usage: 924.3+ KB\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "AYMOeGKPQGlx" + }, + "source": [ + "\n", + "\n", + "```\n", + "# Isto está formatado como código\n", + "```\n", + "\n", + "##Drop \"TotalCharges\"" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "hhpn9QrD2wVt", + "outputId": "4e501e94-5083-460f-c86e-1fc078a30f55", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 619 + } + }, + "source": [ + "df_train_na.drop(columns=['TotalCharges'])\n" + ], + "execution_count": 153, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
genderSeniorCitizenPartnerDependentstenurePhoneServiceMultipleLinesInternetServiceOnlineSecurityOnlineBackupDeviceProtectionTechSupportStreamingTVStreamingMoviesContractPaperlessBillingPaymentMethodMonthlyChargesChurn
id
6861Female0NoNo37.000000YesYesFiber opticNoYesYesNoYesYesMonth-to-monthYesBank transfer (automatic)101.901
3266Male0YesYes29.000000YesNoFiber opticNoNoNoNoNoNoMonth-to-monthYesElectronic check70.751
4476Female0NoNo3.000000YesNoNoNo internet serviceNo internet serviceNo internet serviceNo internet serviceNo internet serviceNo internet serviceMonth-to-monthNoElectronic check19.550
3145Male0NoNo6.000000YesNoNoNo internet serviceNo internet serviceNo internet serviceNo internet serviceNo internet serviceNo internet serviceMonth-to-monthNoMailed check18.950
2140Female0NoNo7.000000YesNoDSLNoNoNoNoYesYesMonth-to-monthYesElectronic check66.850
............................................................
145Male1YesNo71.000000YesYesNoNo internet serviceNo internet serviceNo internet serviceNo internet serviceNo internet serviceNo internet serviceTwo yearNoBank transfer (automatic)23.950
2873Female0YesYes42.000000YesYesNoNo internet serviceNo internet serviceNo internet serviceNo internet serviceNo internet serviceNo internet serviceTwo yearNoElectronic check22.950
4304Female0YesNo45.000000YesYesNoNo internet serviceNo internet serviceNo internet serviceNo internet serviceNo internet serviceNo internet serviceTwo yearNoMailed check25.500
604Male0NoNo56.396965YesYesFiber opticNoYesYesYesYesYesTwo yearNoElectronic check108.650
6317Male0YesYes63.000000YesYesNoNo internet serviceNo internet serviceNo internet serviceNo internet serviceNo internet serviceNo internet serviceTwo yearNoMailed check25.250
\n", + "

5634 rows × 19 columns

\n", + "
" + ], + "text/plain": [ + " gender SeniorCitizen ... MonthlyCharges Churn\n", + "id ... \n", + "6861 Female 0 ... 101.90 1\n", + "3266 Male 0 ... 70.75 1\n", + "4476 Female 0 ... 19.55 0\n", + "3145 Male 0 ... 18.95 0\n", + "2140 Female 0 ... 66.85 0\n", + "... ... ... ... ... ...\n", + "145 Male 1 ... 23.95 0\n", + "2873 Female 0 ... 22.95 0\n", + "4304 Female 0 ... 25.50 0\n", + "604 Male 0 ... 108.65 0\n", + "6317 Male 0 ... 25.25 0\n", + "\n", + "[5634 rows x 19 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 153 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "XezEXstv7o9T" + }, + "source": [ + "categorical = ['gender','Partner','Dependents','PhoneService','MultipleLines','InternetService',\n", + " 'OnlineSecurity','OnlineBackup','DeviceProtection','TechSupport','StreamingTV','StreamingMovies',\n", + " 'Contract','PaperlessBilling','PaymentMethod', 'SeniorCitizen']\n", + "numerical = ['tenure','MonthlyCharges']" + ], + "execution_count": 74, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "FZ4gKDEe8LQG", + "outputId": "398c5b72-597a-4604-9c68-11a7e72cdaaf", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 278 + } + }, + "source": [ + "df_train_eda = pd.concat([pd.get_dummies(df_train_na[categorical]),df_train_na[numerical], df_train_na['Churn']], axis=1)\n", + "df_train_eda.head()" + ], + "execution_count": 154, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
SeniorCitizengender_Femalegender_MalePartner_NoPartner_YesDependents_NoDependents_YesPhoneService_NoPhoneService_YesMultipleLines_NoMultipleLines_No phone serviceMultipleLines_YesInternetService_DSLInternetService_Fiber opticInternetService_NoOnlineSecurity_NoOnlineSecurity_No internet serviceOnlineSecurity_YesOnlineBackup_NoOnlineBackup_No internet serviceOnlineBackup_YesDeviceProtection_NoDeviceProtection_No internet serviceDeviceProtection_YesTechSupport_NoTechSupport_No internet serviceTechSupport_YesStreamingTV_NoStreamingTV_No internet serviceStreamingTV_YesStreamingMovies_NoStreamingMovies_No internet serviceStreamingMovies_YesContract_Month-to-monthContract_One yearContract_Two yearPaperlessBilling_NoPaperlessBilling_YesPaymentMethod_Bank transfer (automatic)PaymentMethod_Credit card (automatic)PaymentMethod_Electronic checkPaymentMethod_Mailed checktenureMonthlyChargesTotalChargesChurn
id
686101010100100101010000100110000100110001100037.0101.903545.351
326600101010110001010010010010010010010001001029.070.751974.81
44760101010011000010100100100100100101001000103.019.5561.050
31450011010011000010100100100100100101001000016.018.95110.150
21400101010011001001001001001000010011000100107.066.85458.10
\n", + "
" + ], + "text/plain": [ + " SeniorCitizen gender_Female ... TotalCharges Churn\n", + "id ... \n", + "6861 0 1 ... 3545.35 1\n", + "3266 0 0 ... 1974.8 1\n", + "4476 0 1 ... 61.05 0\n", + "3145 0 0 ... 110.15 0\n", + "2140 0 1 ... 458.1 0\n", + "\n", + "[5 rows x 46 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 154 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "ybG3mkjh87dG", + "outputId": "de9a891b-ab14-49d9-88a9-ffc3127263e2", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 442 + } + }, + "source": [ + "fig, axs = plt.subplots(2,2, figsize=(15,7), sharey=False);\n", + "sns.boxplot(df_train_eda['tenure'], ax=axs[0,0]);\n", + "sns.boxplot(df_train_eda['MonthlyCharges'], ax=axs[0,1], color='lightgreen');\n", + "sns.distplot(df_train_eda['tenure'], ax=axs[1,0]);\n", + "sns.distplot(df_train_eda['MonthlyCharges'], ax=axs[1,1], color='lightgreen');\n" + ], + "execution_count": 156, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4YAAAGpCAYAAADRFijHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdfVyUdb7/8fcw3AmDIsYg5m2kYqC1cmwzCu/1pJXVqZU13bOn1mo1NzdNjUqtxFLLbqj9ad7VahlFtut2p3mOtZ4kLGxV2Az1bAiKOHiDgNwO8/vD45wlUQEZ5uZ6PR+PHjFzzfWdz/fLeH15z3XNfE0Oh8MhAAAAAIBh+bm7AAAAAACAexEMAQAAAMDgCIYAAAAAYHAEQwAAAAAwOH93F9Da6uvrVVFRoYCAAJlMJneXAwBwIYfDodraWoWGhsrPj/c6L4U5EgCMoSXzo88Fw4qKCuXl5bm7DABAG+rTp4/CwsLcXYbHY44EAGNpzvzoc8EwICBA0tlBCAwMvKy2cnJyFB8f3xpluQX1uxf1uxf1u1db1V9TU6O8vDznsR8X15pzZGO8/XXrCozJ+RiT8zEm52NMGmrueLRkfvS5YHju0pjAwEAFBQVddnut0YY7Ub97Ub97Ub97tWX9XBbZNK09RzbG21+3rsCYnI8xOR9jcj7GpKGWjEdz5kc+kAEAAAAABkcwBAAAAACDIxgCAAAAgMERDAEAAADA4AiGAAAAAGBwBEMAAAAAMDiCIQAAAAAYHMEQAAAAAAyOYAgAAAAABkcwBAAAAACDIxgCAAAAgMERDAEAAADA4AiGAAAAAGBwBEMAAAAAMDh/dxcA17jvvvtUUFCgwMBAd5fSYjU1NR5X/+nTpyVJ7du3v+RjPbH+5qD+i4uKitKaNWtc1j4Az/Daa6+ptLS0xfvX1NTos88+a8WKvJ+njMmZM2ckSSEhIW6uxHPGpEOHDnr44YfdXQbchGDoo4qLi1Vy/ITsQe4/2F2eKncX0IC5+uwkUlrX1D08q/7mo/7GnHsdAPB9paWlOnnqpAIsAS1rwE+qqatp3aK8nYeMSW1NrSSpPrDezZXII8aktrzWrc8P9yMY+jB7UIiKB97l7jJ8StSujZLEuBrcudcBAGMIsATo6vuudncZaGUH1hyQJH63/+vceMC4+IwhAAAAABgcwRAAAAAADI5gCAAAAAAGRzAEAAAAAIMjGAIAAACAwREMAQAAAMDgCIYAAAAAYHAEQwAAAAAwOIIhAAAAABgcwRAAAAAADI5gCAAAAAAGRzAEAAAAAIMjGAIAAACAwREMAQAAAMDgCIYAAAAAYHAEQwAAAAAwOIIhAAAAABgcwRAAAAAADI5gCAAAAAAGRzAEAAAAAIMjGAIAAACAwREMAQAAAMDgCIYAAAAAYHAEQwAAAAAwOIIhAAAAABgcwRAAAAAADI5gCAAAAAAGRzAEAAAAAIMjGAIAAACAwREMAQAAAMDgCIYAAAAAYHD+7i7AU7300ksqLi5WQkKCu0sBAJ/00ksvSZJ+//vfu7kSNMdf/vIXSdJtt93m5koAwDe56zjLGcML2Lp1q7Kzs91dBgD4rK1bt2rr1q3uLgPNtGfPHu3Zs8fdZQCAz3LXcZZgCAAAAAAGRzAEAAAAAIMjGAIAAACAwREMAQAAAMDgCIYAAAAAYHAEQwAAAAAwOIIhAAAAABgcwRAAAAAADI5gCAAAAAAGRzAEAAAAAIMjGAIAAACAwREMAQAAAMDgCIYAAAAAYHAEQwAAAAAwOIIhAAAAABgcwRAAAAAADI5gCAAAAAAGRzAEAAAAAIMjGAIAAACAwREMAQAAAMDgCIYAAAAAYHAEQwAAAAAwOIIhAAAAABgcwRAAAAAADI5gCAAAAAAGRzAEAAAAAIMjGAIAAACAwREMAQAAAMDgCIYAAAAAYHAEQwAAAAAwOIIhAAAAABgcwRAAAAAADI5gCAAAAAAG5+/uAjzV6dOnVVlZqXHjxrm7lBY5duyY/Mj9gEv41dXo2LFjLj0+1NTUKDAw0GXtu1pT6j927JiCg4PbqCK0ljNnzqi2tlapqannbaupqdFnn33mhqpcp7S0VDK7uwrA9exVdpXaSxv9t+0Ovng8aarS0lIFBAS0+fOSHAAAAADA4DhjeAHt27dXcHCwPv74Y3eX0iLjxo1TwYnT7i4D8En1/oGyRrR36fEhOztbCQkJLmvf1ZpSv7dekWF0ISEhkqQnnnjivG3e/rptTGpqqsrryt1dBuBy5mCzLP6WRv9tu4MvHk+ayl1nbTljCAAAAAAGRzAEAAAAAIMjGAIAAACAwREMAQAAAMDgCIYAAAAAYHAEQwAAAAAwOIIhAAAAABgcwRAAAAAADI5gCAAAAAAGRzAEAAAAAIMjGAIAAACAwREMAQAAAMDgCIYAAAAAYHAEQwAAAAAwOIIhAAAAABgcwRAAAAAADI5gCAAAAAAGRzAEAAAAAIMjGAIAAACAwREMAQAAAMDgCIYAAAAAYHAEQwAAAAAwOIIhAAAAABgcwRAAAAAADI5gCAAAAAAGRzAEAAAAAIMjGAIAAACAwREMAQAAAMDgCIYAAAAAYHAEQwAAAAAwOIIhAAAAABgcwRAAAAAADM7f3QV4qpEjR6q4uNjdZQCAzxo5cqS7S0ALDBgwwN0lAIBPc9dxlmB4Ab///e+VnZ3t7jIAwGf9/ve/d3cJaIHbbrvN3SUAgE9z13GWS0kBAAAAwOAIhgAAAABgcARDAAAAADA4giEAAAAAGBzBEAAAAAAMjmAIAAAAAAZHMAQAAAAAgyMYAgAAAIDBEQwBAAAAwOAIhgAAAABgcARDAAAAADA4giEAAAAAGBzBEAAAAAAMjmAIAAAAAAZHMAQAAAAAgyMYAgAAAIDBEQwBAAAAwOAIhgAAAABgcARDAAAAADA4giEAAAAAGBzBEAAAAAAMjmAIAAAAAAZHMAQAAAAAgyMYAgAAAIDBEQwBAAAAwOAIhgAAAABgcARDAAAAADA4giEAAAAAGBzBEAAAAAAMjmAIAAAAAAZHMAQAAAAAgyMYAgAAAIDB+bu7ALiOufqMonZtdHcZPsVcfUaSGFeDO/s6aO/uMgC0kdryWh1Yc8DdZaCV1ZbXShK/2/9VW14rhbu7CrgTwdBHRUVFqaamRoGBge4upcU8sf7Tp8/+v337S4cCT6y/Oaj/YtorKirKRW0D8CQdOnS4rP29/VjqCp4yJmcCz77ZG+If4uZKPGRMwi//9Q7vRjD0UWvWrFF2drYSEhLcXUqLUb97UT8ASA8//PBl7c+x6HyMyfkYE3gCPmMIAAAAAAZHMAQAAAAAgyMYAgAAAIDBEQwBAAAAwOAIhgAAAABgcARDAAAAADA4giEAAAAAGBzBEAAAAAAMjmAIAAAAAAZHMAQAAAAAgyMYAgAAAIDBEQwBAAAAwOAIhgAAAABgcARDAAAAADA4f3cX0NocDockqaamplXaq66ubpV23IX63Yv63Yv63ast6j93rD937MfFtfYc2Rhvf926AmNyPsbkfIzJ+RiThpozHi2ZH00OH5tNy8rKlJeX5+4yAABtqE+fPgoLC3N3GR6PORIAjKU586PPBcP6+npVVFQoICBAJpPJ3eUAAFzI4XCotrZWoaGh8vPj0xGXwhwJAMbQkvnR54IhAAAAAKB5eHsVAAAAAAyOYAgAAAAABkcwBAAAAACDIxgCAAAAgMERDAEAAADA4HxugfvWsGjRIu3evVsmk0kpKSkaMGCAu0tqkry8PE2dOlW//vWvNWnSJBUVFWn27Nmy2+2KjIzU0qVLFRgY6O4yL2jJkiXKzs5WXV2dHnzwQfXv399r6q+srNTcuXN1/PhxVVdXa+rUqYqNjfWa+s+pqqrSrbfeqqlTp2rw4MFeU39WVpYeeeQR9e7dW9LZNXt+85vfeE39krRp0yatWrVK/v7++t3vfqe+fft6Tf3vv/++Nm3a5Lydk5OjDRs2aMGCBZKkvn376umnn3ZTdXAlbz5uu5K3HktdxZuPb65QUVGhOXPmqLS0VLW1tZo2bZoiIyMNecxs6t+umzZt0ltvvSU/Pz/94he/0D333OPu0l2msTF5/PHHVVdXJ39/fy1dulSRkZGuGRMHGsjKynI88MADDofD4Thw4IDjF7/4hZsrapqKigrHpEmTHE8++aRj3bp1DofD4Zg7d67jk08+cTgcDseLL77oePvtt91Z4kVlZmY6fvOb3zgcDofjxIkTjiFDhnhV/R9//LHjjTfecDgcDkdhYaFj9OjRXlX/OcuWLXPcddddjg8++MCr6v/6668d06dPb3CfN9V/4sQJx+jRox1lZWWO4uJix5NPPulV9f+zrKwsx4IFCxyTJk1y7N692+FwOByPPvqo44svvnBzZWht3n7cdiVvPZa6gi8d31rLunXrHC+88ILD4XA4jh496hgzZowhj5lN/du1oqLCMXr0aMfp06cdlZWVjnHjxjlOnjzpztJdprExmT17tuPjjz92OBwOx/r16x2LFy922ZhwKelPZGZmauTIkZKkmJgYlZaWqry83M1VXVpgYKBWrlwpq9XqvC8rK0sjRoyQJA0bNkyZmZnuKu+SBg0apFdeeUWS1L59e1VWVnpV/WPHjtWUKVMkSUVFRYqKivKq+iXp4MGDOnDggIYOHSrJu14/jfGm+jMzMzV48GBZLBZZrVY9++yzXlX/P3v99dc1ZcoUHT582Hm1hTfVj6bz9uO2q/jasfRy+dLxrbV07NhRp06dkiSdPn1a4eHhhjxmNvVv1927d6t///4KCwtTcHCwBg4cqF27drmrbJdqbEzmz5+vMWPGSPq/146rxoRg+BMlJSXq2LGj83ZERIRsNpsbK2oaf39/BQcHN7ivsrLSeWlGp06dPLofZrNZISEhkqSMjAwlJSV5Vf3nJCcna9asWUpJSfG6+hcvXqy5c+c6b3tb/QcOHNBDDz2kX/7yl/rqq6+8qv7CwkJVVVXpoYce0sSJE5WZmelV9Z+zZ88eRUdHy2w2q3379s77vaV+NI+vHLdbm7cfS1ubrxzfWtO4ceN05MgRjRo1SpMmTdLs2bMNecxs6t+uJSUlioiIcD7GW/42b4nGxiQkJERms1l2u13vvPOObrvtNpeNCZ8xvASHw+HuElqFt/Rj69atysjI0Jo1azR69Gjn/d5S/7vvvqvvv/9ejz32WIOaPb3+P/3pT7ruuuvUrVu3Rrd7ev09e/bUww8/rFtuuUUFBQX61a9+Jbvd7tzu6fVL0qlTp/Taa6/pyJEj+tWvfuVVr59zMjIydOedd553v7fUj5bx9uN2a/L2Y6mr+MLxrTX9+c9/VpcuXbR69Wrt27dP06ZNU1hYmHO7EcekMRcaByOOj91u1+zZs3XDDTdo8ODB+stf/tJge2uNCcHwJ6xWq0pKSpy3jx07psjISDdW1HIhISGqqqpScHCwiouLG5yW9kTbt2/X8uXLtWrVKoWFhXlV/Tk5OerUqZOio6PVr18/2e12hYaGek39X3zxhQoKCvTFF1/o6NGjCgwM9Krxj4qK0tixYyVJ3bt31xVXXKG9e/d6Tf2dOnXSz372M/n7+6t79+4KDQ2V2Wz2mvrPycrK0pNPPimTyeS8TEqS19SP5vPm47YrePux1BV85fjWmnbt2qWbbrpJkhQbG6vq6mrV1dU5txtxTM5p7N9LY3+bX3fddW6ssu09/vjj6tGjhx5++GFJjeeV1hgTLiX9icTERG3evFmSlJubK6vVKovF4uaqWubGG2909mXLli26+eab3VzRhZWVlWnJkiVasWKFwsPDJXlX/d9++63WrFkj6ezlyGfOnPGq+l9++WV98MEHeu+993TPPfdo6tSpXlX/pk2btHr1akmSzWbT8ePHddddd3lN/TfddJO+/vpr1dfX6+TJk173+pHO/iETGhqqwMBABQQE6KqrrtK3334ryTvqR/N5+3HbFbz9WOoKvnB8a209evTQ7t27JUmHDx9WaGioYmJiOGaq8WPItddeq7179+r06dOqqKjQrl279C//8i9urrTtbNq0SQEBAfrd737nvM9VY2JyGPF87CW88MIL+vbbb2UymTR//nzFxsa6u6RLysnJ0eLFi3X48GH5+/srKipKL7zwgubOnavq6mp16dJFzz33nAICAtxdaqPS09OVlpamXr16Oe97/vnn9eSTT3pF/VVVVXriiSdUVFSkqqoqPfzww4qPj9ecOXO8ov5/lpaWpiuvvFI33XST19RfXl6uWbNm6fTp06qtrdXDDz+sfv36eU390tnLkDMyMiRJv/3tb9W/f3+vqj8nJ0cvv/yyVq1aJensZz7nzZun+vp6XXvttXr88cfdXCFam7cft13NG4+lruLtx7fWVlFRoZSUFB0/flx1dXV65JFHFBkZabhjZnP+dv3ss8+0evVqmUwmTZo0Sbfffru7y3eJxsbk+PHjCgoKcp6oiomJ0YIFC1wyJgRDAAAAADA4LiUFAAAAAIMjGAIAAACAwREMAQAAAMDgCIYAAAAAYHAEQwAAAAAwOIIh4GH+/Oc/u7sEAACarbCwUH379tWGDRsa3P/tt9+qb9++ysrKanabu3btUkFBgSRp8uTJ2rFjx3mPmTt3rt5///2LtvPXv/5VycnJuueee3TXXXfpscce04kTJy7aLmA0BEPAg9jtdv3hD39wdxkAALRIz549tXHjxgb3bdy4scF6l82xceNGZzBsqX379mnBggVKTU3V+++/rw8++EBXX321ZsyYcVntAr7G390FAPg/KSkpOnz4sO677z7dfffdWr9+vRwOhyIiIrRw4UJ17NhRCQkJeuihh7R9+3bZbDa9/PLL6tu3r4YPH661a9eqR48eysrK0ssvv6wNGzZo8uTJio2N1ffff6+33npL33zzjV5//XU5HA75+/vr2WefVbdu3dzddQCAD7Baraqurtb+/fvVu3dvVVZWKjs7W9dee60kKSMjQ++++67atWunTp06aeHChbJYLI3ObYcOHdJnn32mPXv2OBd8z8zM1Jtvvqkff/xR06ZN0/jx453PPXPmTCUmJuquu+6SJM2fP199+vTRd999pylTpigmJkaSZDKZNGXKFE2cONG5b2PtHjx4UPPnz5fZbFZ5eblmzJihm2++WWlpaSosLNSRI0c0Z84cSdK8efMUEhKipKQkpaWl6bvvvlN9fb2eeeYZ5efnq6KiQrfeeqvuu+8+5eXlad68eQoICFBVVZWmTZumoUOHtsWvB7gozhgCHmT69OmKiIhQamqqli9frjfffFMbNmzQ9ddfrxUrVkiSysvL1adPH/3xj3/UuHHjLnn5jCSFhIRo/fr1qqmp0fz585WWlqb169dr0qRJWrJkiau7BQAwkPHjx+uDDz6QJG3evFlJSUny8/NTUVGR0tLS9Oabb2rdunWKjo7Wm2++KanxuW3UqFHq16+f5s6dq8GDB0uSHA6H3njjDS1atEirVq1q8LzJycn68MMPJZ29Amf79u26/fbbdeDAAfXv37/BY/38/BQWFua83Vi7JSUleuSRR/TWW2/pySef1EsvveR8fGFhof74xz8qPj5eqampmjZtmtavX6/27durpqZGkvTHP/5RVqtV69at0/vvv6+PP/5Y+/bt03vvvafhw4dr3bp1Wr58uU6dOtWKow+0HGcMAQ/03XffyWaz6f7775ck1dTUqGvXrs7tN9xwgySpS5cuys/Pv2R7AwcOlCTt379fNptN06dPl3R24jSZTK1dPgDAwG655RbdeeedmjVrlj788EPNmjVLb7/9tiwWi+Li4mSxWCRJ119/vd59913nfk2Z266//npJUufOnXX69OkG2wYNGqQTJ06ooKBAhYWFSkhIUFhYmPz8/FRfX3/RmhtrNzIyUkuWLNFLL72k2traBgHu2muvdc6f+/bt089//nNJ0pgxYzR//nxJUlZWlo4ePapvvvlG0tm5/NChQxozZozmzp2rI0eOaNiwYQ3OegLuRDAEPFBgYKAGDBjgPEv4U2az2fmzw+E4b3ttbW2D2wEBAc52u3TponXr1rVitQAA/J+IiAhdc801ysjIkM1mO+9s3TkOh6PBm5OXmtskyd/f/6KPueeee7Rp0yYVFxfrnnvukST17dtXu3bt0oABAxo89m9/+5uuu+66C7b77LPPaty4cbr77ruVl5enhx56yPmYc/OqJNXX1zv78c99CAwM1LRp0/Sv//qv59X50UcfKTMzUxs3btSmTZv04osvNtpfoC1xKSngQfz8/FRXV6f+/ftrz549stlskqRPP/1UW7duvei+FotFRUVFkqSvv/660cf07NlTJ0+eVF5eniTpm2++UXp6eiv2AACAs5eTvvTSSxo3bpzzvoqKCuXm5qq8vFyStGPHDudnDy/EZDKd92bnxdxxxx36z//8T+3bt895FvA3v/mN1qxZo3379jkft3r1ar388ssXbaukpES9e/eWJH3yySfOS0R/6qqrrtJ3330nSdqyZYvz/oSEBH366aeSzobH5557TqdOndK6det09OhRDR8+XKmpqdq9e3eT+we4EmcMAQ9itVp1xRVX6Le//a0ef/xxPfjgg2rXrp2Cg4O1ePHii+5733336YknnlDPnj2dl47+VHBwsJYuXaonnnhCQUFBkqRnnnmm1fsBADC24cOHa968ebr99tud93Xu3FmPPPKI/uM//kOBgYHq3LmzHn300Yu2k5iYqPnz5yslJaVJzxseHq5u3bopLi7OeV9MTIxee+01Pf3006qpqVFAQID69eun119//aJt3XfffZo9e7a6du2qX//61/r888/1/PPPKzQ0tMHjZs+erWeffVZWq1VDhw6VyWSSn5+f7r33Xu3fv18TJkyQ3W7X0KFDFR4erquuukozZ85UaGio6uvrNXPmzCb1DXA1k+NC5+oBAAAAL3L69GklJyfr7bffVseOHdvkOb/++muFh4crNjZWubm5evTRR7V58+Y2eW6gNXHGEAAAAF4vIyNDb731lmbMmNFmoVA6+/nEc1fi1NbWciUOvBZnDAEAAADA4PjyGQAAAAAwOJ+7lLS+vl4VFRUKCAhgfTYA8HEOh0O1tbUKDQ2Vnx/vdV4KcyQAGENL5kefC4YVFRXOr+IHABhDnz59FBYW5u4yPB5zJAAYS3PmR58LhucWHO3Tp48CAwPdXE3by8nJUXx8vLvL8EiMzYUxNhfG2FyYJ4xNTU2N8vLyGiw2jQtr7hzpCb/j1uZrfaI/no3+eD5f69O5/rRkfvS5YHju0pjAwEDnOm1GY9R+NwVjc2GMzYUxNhfmKWPjbZdFLlq0SLt375bJZFJKSooGDBjg3LZjxw4tW7ZMZrNZSUlJmjZtmiorKzV37lwdP35c1dXVmjp1qoYNG6aioiLNnj1bdrtdkZGRWrp06UUDX0vmSE/5HbcmX+sT/fFs9Mfz+Vqf/rk/zZkf+UAGAABtaOfOncrPz1d6erpSU1OVmpraYPvChQuVlpamDRs26KuvvtKBAwe0bds2xcfHa/369Xr55Zf1/PPPS5JeffVVTZw4Ue+884569OihjIwMd3QJAOADCIYAALShzMxMjRw5UpIUExOj0tJSlZeXS5IKCgrUoUMHRUdHy8/PT0OGDFFmZqbGjh2rKVOmSJKKiooUFRUlScrKytKIESMkScOGDVNmZqYbegQA8AU+dykpAACerKSkRHFxcc7bERERstlsslgsstlsioiIaLCtoKDAeTs5OVlHjx7V8uXLJUmVlZXOS0c7deokm83WpBpycnKaXG92dnaTH+stfK1P9Mez0R/P52t9aml/CIYAALiRw+Fo8mPfffddff/993rssce0adOmFrcTHx/fpM/UZGdnKyEhocntegNf6xP98Wz0x/P5Wp/O9ae6urpZbwJKXEoKAECbslqtKikpcd4+duyYIiMjG91WXFwsq9WqnJwcFRUVSZL69esnu92uEydOKCQkRFVVVQ0eCwBAS3DG0Md8eOCksmsub42qBwb3aaVqAAA/lZiYqLS0NCUnJys3N1dWq1UWi0WS1LVrV5WXl6uwsFCdO3fWtm3b9MILL+jLL7/U4cOH9cQTT6ikpERnzpxRx44ddeONN2rz5s0aP368tmzZoptvvtnNvfMse6v3nnff0bCjjd7fmP5B/Vu7JADwWARDAADa0MCBAxUXF6fk5GSZTCbNnz9fGzduVFhYmEaNGqUFCxZo5syZkqSxY8eqV69eio6O1hNPPKGJEyeqqqpK8+bNk5+fn6ZPn645c+YoPT1dXbp00R133OHm3gEAvBXBEACANjZr1qwGt2NjY50/Dxo0SOnp6Q22BwcH68UXXzyvHavVqrVr17qmSACAofAZQwAAAAAwOIIhAAAAABgcwRAAAAAADI5gCAAAAAAGRzAEAAAAAIMjGAIAAACAwREMAQAAAMDgCIYAAAAAYHAEQwAAAAAwOH9XNr5o0SLt3r1bJpNJKSkpGjBggHPbjh07tGzZMpnNZiUlJWnatGmqrKzU3Llzdfz4cVVXV2vq1KkaNmyYioqKNHv2bNntdkVGRmrp0qUKDAx0ZekAAAAAYBguO2O4c+dO5efnKz09XampqUpNTW2wfeHChUpLS9OGDRv01Vdf6cCBA9q2bZvi4+O1fv16vfzyy3r++eclSa+++qomTpyod955Rz169FBGRoarygYAAAAAw3FZMMzMzNTIkSMlSTExMSotLVV5ebkkqaCgQB06dFB0dLT8/Pw0ZMgQZWZmauzYsZoyZYokqaioSFFRUZKkrKwsjRgxQpI0bNgwZWZmuqpsAAAAADAcl11KWlJSori4OOftiIgI2Ww2WSwW2Ww2RURENNhWUFDgvJ2cnKyjR49q+fLlkqTKykrnpaOdOnWSzWa75PPn5OS0Vle8zqFDhy5r/+zAslaqxPNkZ2e7uwSPxdhcGGNzYYwNAAC+waWfMfxnDoejyY9999139f333+uxxx7Tpk2bWtROfHy8goKCmlWjL/jwwFZ17979stpISOjTStV4luzsbCUkJLi7DI/E2FwYY3NhnjA21dXVhn4jEACA1uKyS0mtVqtKSkqct48dO6bIyMhGt6990HUAACAASURBVBUXF8tqtSonJ0dFRUWSpH79+slut+vEiRMKCQlRVVVVg8cCAAAAAFqHy4JhYmKiNm/eLEnKzc2V1WqVxWKRJHXt2lXl5eUqLCxUXV2dtm3bpsTERH377bdas2aNpLOXop45c0YdO3bUjTfe6Gxry5Ytuvnmm11VNgAAAAAYjssuJR04cKDi4uKUnJwsk8mk+fPna+PGjQoLC9OoUaO0YMECzZw5U5I0duxY9erVS9HR0XriiSc0ceJEVVVVad68efLz89P06dM1Z84cpaenq0uXLrrjjjtcVTYAAAAAGI5LP2M4a9asBrdjY2OdPw8aNEjp6ekNtgcHB+vFF188rx2r1aq1a9e6pkgAAAAAMDiXXUoKAAAAAPAObfatpAAA4KxFixZp9+7dMplMSklJ0YABA5zbduzYoWXLlslsNispKUnTpk2TJC1ZskTZ2dmqq6vTgw8+qNGjR2vu3LnKzc1VeHi4JOn+++/X0KFD3dElAICXIxgCANCGdu7cqfz8fKWnp+vgwYNKSUlp8NGKhQsXavXq1YqKitKkSZM0ZswYlZSUaP/+/UpPT9fJkyd15513avTo0ZKkRx99VMOGDXNXdwAAPoJgCABAG8rMzNTIkSMlSTExMSotLVV5ebksFosKCgrUoUMHRUdHS5KGDBmizMxMTZw40XlWsX379qqsrJTdbndbHwAAvodgCABAGyopKVFcXJzzdkREhGw2mywWi2w2myIiIhpsKygokNlsVkhIiCQpIyNDSUlJMpvNkqT169dr7dq16tSpk5566qkG+19ITk5Ok+vNzs5u8mM9zdGwo43efyj/UJP2rymrac1yXMabf0eNoT+ezdf6I/len1raH4IhAABu5HA4mvzYrVu3KiMjw7nm7/jx4xUeHq5+/frpjTfe0GuvvaZ58+Zdsp34+HgFBQVd8nHZ2dlKSEhocn2eZm/13vPuO5R/SN17dG/S/v2D+rd2Sa3O239HP0V/PJuv9UfyvT6d6091dXWz3gSU+FZSAADalNVqVUlJifP2sWPHFBkZ2ei24uJiWa1WSdL27du1fPlyrVy5UmFhYZKkwYMHq1+/fpKk4cOHKy8vr626AQDwMQRDAADaUGJiojZv3ixJys3NldVqlcVikSR17dpV5eXlKiwsVF1dnbZt26bExESVlZVpyZIlWrFihfMbSCVp+vTpKigokCRlZWWpd+/ebd8hAIBP4FJSAADa0MCBAxUXF6fk5GSZTCbNnz9fGzduVFhYmEaNGqUFCxZo5syZkqSxY8eqV69ezm8jnTFjhrOdxYsX695779WMGTPUrl07hYSE6LnnnnNXtwAAXo5gCABAG5s1a1aD27Gxsc6fBw0a1GD5CkmaMGGCJkyYcF47Xbp00QcffOCaIgEAhsKlpAAAAABgcARDAAAAADA4giEAAAAAGBzBEAAAAAAMjmAIAAAAAAZHMAQAAAAAg3PpchWLFi3S7t27ZTKZlJKSogEDBji37dixQ8uWLZPZbFZSUpKmTZsmSVqyZImys7NVV1enBx98UKNHj9bcuXOVm5vrXNT3/vvv19ChQ11ZOgAAAAAYhsuC4c6dO5Wfn6/09HQdPHhQKSkpDdZlWrhwoVavXq2oqChNmjRJY8aMUUlJifbv3+9cyPfOO+/U6NGjJUmPPvqohg0b5qpyAQAAAMCwXBYMMzMzNXLkSElSTEyMSktLVV5eLovFooKCAnXo0EHR0dGSpCFDhigzM1MTJ050nlVs3769KisrZbfbXVUiAAAAAEAuDIYlJSWKi4tz3o6IiJDNZpPFYpHNZlNERESDbQUFBTKbzQoJCZEkZWRkKCkpSWazWZK0fv16rV27Vp06ddJTTz3VYP/G5OTkuKBX3uHQoUOXtX92YFkrVeJ5srOz3V2Cx2JsLoyxuTDGBgAA3+DSzxj+M4fD0eTHbt26VRkZGVqzZo0kafz48QoPD1e/fv30xhtv6LXXXtO8efMu2kZ8fLyCgoIuq2Zv9OGBrerevftltZGQ0KeVqvEs2dnZSkhIcHcZHomxuTDG5sI8YWyqq6sN/UYgAACtxWXfSmq1WlVSUuK8fezYMUVGRja6rbi4WFarVZK0fft2LV++XCtXrlRYWJgkafDgwerXr58kafjw4crLy3NV2QAAAABgOC4LhomJidq8ebMkKTc3V1arVRaLRZLUtWtXlZeXq7CwUHV1ddq2bZsSExNVVlamJUuWaMWKFc5vIJWk6dOnq6CgQJKUlZWl3r17u6psAAAAADAcl11KOnDgQMXFxSk5OVkmk0nz58/Xxo0bFRYWplGjRmnBggWaOXOmJGns2LHq1auX89tIZ8yY4Wxn8eLFuvfeezVjxgy1a9dOISEheu6551xVNgAAAAAYjks/Yzhr1qwGt2NjY50/Dxo0qMHyFZI0YcIETZgw4bx2unTpog8++MA1RQIAAACAwbnsUlIAAAAAgHcgGAIAAACAwREMAQAAAMDg2mwdQwBA497IvPwleB4Y7JvrjwIAgLZBMAQAoI0tWrRIu3fvlslkUkpKigYMGODctmPHDi1btkxms1lJSUmaNm2aJGnJkiXKzs5WXV2dHnzwQY0ePVpFRUWaPXu27Ha7IiMjtXTpUgUGBrqrWwAAL8alpAAAtKGdO3cqPz9f6enpSk1NVWpqaoPtCxcuVFpamjZs2KCvvvpKBw4c0Ndff639+/crPT1dq1at0qJFiyRJr776qiZOnKh33nlHPXr0UEZGhju6BADwAQRDAADaUGZmpkaOHClJiomJUWlpqcrLyyVJBQUF6tChg6Kjo+Xn56chQ4YoMzNTgwYN0iuvvCJJat++vSorK2W325WVlaURI0ZIkoYNG6bMzEz3dAoA4PW4lBQAgDZUUlKiuLg45+2IiAjZbDZZLBbZbDZFREQ02FZQUCCz2ayQkBBJUkZGhpKSkmQ2m1VZWem8dLRTp06y2WxNqiEnJ6fJ9WZnZzf5sZ7maNjRRu8/lH+oSfvXlNW0Zjku482/o8bQH8/ma/2RfK9PLe0PwRAAADdyOBxNfuzWrVuVkZGhNWvWXFY78fHxCgoKuuTjsrOzlZCQ0OR2Pc3e6r3n3Xco/5C69+jepP37B/Vv7ZJanbf/jn6K/ng2X+uP5Ht9Otef6urqZr0JKHEpKQAAbcpqtaqkpMR5+9ixY4qMjGx0W3FxsaxWqyRp+/btWr58uVauXKmwsDBJUkhIiKqqqs57LAAAzUUwBACgDSUmJmrz5s2SpNzcXFmtVlksFklS165dVV5ersLCQtXV1Wnbtm1KTExUWVmZlixZohUrVig8PNzZ1o033uhsa8uWLbr55pvbvkMAAJ/ApaTwWKztBsAXDRw4UHFxcUpOTpbJZNL8+fO1ceNGhYWFadSoUVqwYIFmzpwpSRo7dqx69eql9PR0nTx5UjNmzHC2s3jxYk2fPl1z5sxRenq6unTpojvuuMNd3QIAeDmCIQAAbWzWrFkNbsfGxjp/HjRokNLT0xtsnzBhgiZMmNBoW2vXrm39AgEAhsOlpAAAAABgcARDAAAAADA4giEAAAAAGJxLP2O4aNEi7d69WyaTSSkpKRowYIBz244dO7Rs2TKZzWYlJSVp2rRpkqQlS5YoOztbdXV1evDBBzV69GgVFRVp9uzZstvtioyM1NKlS50L+gIAAAAALk+Tzhi+8MIL+vHHH5vV8M6dO5Wfn6/09HSlpqYqNTW1wfaFCxcqLS1NGzZs0FdffaUDBw7o66+/1v79+5Wenq5Vq1Zp0aJFkqRXX31VEydO1DvvvKMePXooIyOjWbXgwhwOh4rLKvXjiXIdPV2p+mYskAwAaNkcCQCAp2nSGcMOHTpo5syZCgkJ0b/927/plltuUVBQ0EX3yczM1MiRIyVJMTExKi0tVXl5uSwWiwoKCtShQwdFR0dLkoYMGaLMzExNnDjReVaxffv2qqyslN1uV1ZWlp5++mlJ0rBhw7RmzRpNnDixxZ2GVO9w6IsDxfryYLGOlVc57w9vF6D8ExV6bHicIkIu/jsGALRsjgQAwNM0KRhOmTJFU6ZMUUFBgT799FP9+7//u2JjYzV58mTFxMQ0uk9JSYni4uKctyMiImSz2WSxWGSz2RQREdFgW0FBgcxms0JCQiRJGRkZSkpKktlsVmVlpfPS0U6dOslms12y5pycnKZ0zScdOnTootvLa+zadPCU8stqFOBnUt+OweoQZFZFbb0OnKrSkm25Wrljn2YmdNbonh3aqOrzHTp08rLbyA4sa3g7O/uy2/RVjM2FuXpsXPFabyu8blo2RwIA4Gma9RnDo0ePKj8/XxUVFQoNDdXcuXN15513NunsnaMZlyhu3bpVGRkZWrNmTYvbiY+PN+Q7th8e2Kru3btfcHtFTZ3e/OLvKiqr0bVdOurehF4KCwpwbq+11+tMjV1Pb9mtJ3cc1omADnr+1p/J7Nf231OUXXP5C9wnJPzfAvfZ2dlKSEi47DZ9EWNzYW0xNq39Wm8rnvC6qa6u9pg3Ai9njgQAwN2aFAxfe+01bdq0ST179tSECRP0zDPPyGw2q6amRnfffXejk57ValVJSYnz9rFjxxQZGdnotuLiYlmtVknS9u3btXz5cq1atUphYWGSpJCQEFVVVSk4OLjBY9E8tfZ6/b+v8lR0ulJDr47SL67tIZPJ1OAxAWY/PTY8Vnf076bxq7dp2Zd/1z9OlOudSTcp0N/spsoBwHO1ZI4EAMDTNOk0UElJidauXas33nhDI0aMkNlsVkFBgQIDAzVr1qxG90lMTNTmzZslSbm5ubJarbJYLJKkrl27qry8XIWFhaqrq9O2bduUmJiosrIyLVmyRCtWrFB4eLizrRtvvNHZ1pYtW3TzzTdfVqeN6qO/F+rg8TIldI3QPY2Ewn/WO7K9djxyi4bGROnDvYeUvG67aursbVgtAHiHlsyRAAB4mksGw/r6eh08eFBdunRRfX296uvrVVNTo6lTp0qSkpKSGt1v4MCBiouLU3JyshYuXKj58+dr48aN+vzzzyVJCxYs0MyZM3Xvvfdq7Nix6tWrlz755BOdPHlSM2bM0OTJkzV58mQdOXJE06dP15/+9CdNnDhRp06d0h133NGKQ2AMP54o1+c/FKlTaJAm/8tV8rtIKDwnvF2g/vKb4Rp+dWf9OadA96dnqr6eby0FgHNaOkcCAOBpLnop6UcffaS0tDTl5+erX79+zvv9/Px00003XbLxn75TGhsb6/x50KBBSk9Pb7B9woQJmjBhQqNtrV279pLPh8bVOxxan/0/ckialNBLQc24JDQk0F9/vn+YRi/fqnd2/UPdwkO0aNxA1xULAF7icudIAAA8yUWD4a233qpbb71VaWlpmj59elvVhFaWlV+iw6WVGtwzUrHW5n/LaEigv/5031DdlPaZFv9XrrqFh+q3iX1bv1AA8CLMkQAAX3LRYPjll19qyJAh6ty5c6OLyt99990uKwyto9Zer4/+Xih/P5NuvebKFrdzhSVYnzwwQomvfqbpH+5UdPt2uqP/hb/9FAB8HXMkAMCXXDQY/vDDDxoyZIh27drV6HYmPc/31T+O6cSZGg2/uvNlL1h/Vaews585/MMWTXr7v/Wfvx2ln/eIbKVKAcC7MEcCAHzJRYPhAw88IEl67rnn5HA4ZDKZVFNTo+PHjys6OrpNCkTL2esd+jyvSIFmP42J7dIqbf5Lt05691dJGr96m8av2aYdv7tFV3UKa5W2AcCbMEcCAHxJk5arWLFihdavX6+qqirdcccd+t3vfqdXXnnF1bXhMu0+ckInztTohh5XqH1wwKV3aKKx/a7Uq3cOkq28Wreu/C+dOFPdam0DgLdhjvQudX512lu9V19VfqW/nvmrcqtzVVlf6e6yAMDtmhQMt23bpkmTJunTTz/VsGHD9P777ys7O9vVteEy/df+YknSsKs7t3rbv03sq0eHXKMfbKd195tfqpo1DgEYFHOk9zhuP65DHQ/JZrfJIYfMJrOK7cXKqspSib3E3eUBgFs1KRj6+/vLZDLpr3/9q0aOHCnp7NpN8Fz5Jyt08HiZronqoM7t27nkORbfOlB3DeiuLw8W65frtqvWzmsCgPEwR3qHivoK5VTnyGFyqG9AXyUGJ+rG4Bt1TeA1kqSc6hyV2kvdXCUAuE+TgmFYWJgeeOABHTx4UD/72c+0bds2mZqwQDrcZ/v/uO5s4Tl+fib9cWKihl/dWX/OKdDkt/9bdYRDAAbTkjly0aJFmjBhgpKTk7Vnz54G23bs2KG7775bEyZM0Ouvv+68Py8vTyNHjtT69eud982dO1e33XabJk+erMmTJ+uLL75o1b75CrvDrpzqHNlll7XMqisDrpTJZJLJZFJn/86KD4qXQw7tqd6jGkeNu8sFALe46JfPnPPiiy9qx44dGjjw7MLmgYGBWrx4sUsLQ8tV19mVXXBcHdsF6prOzV+3sDnaBZxd43Dcqv/S+7vzFejvp7XJN8rs16T3HADA6zV3jty5c6fy8/OVnp6ugwcPKiUlRenp6c7tCxcu1OrVqxUVFaVJkyZpzJgx6tKli5599lkNHjz4vPYeffRRDRs2rPU75kN+rP1RFY4KXel/pdpVn38VzRXmKxQTEKMDtQd0oOaArgm6xg1VAoB7NSkYms1mSWc/R+FwOCRJRUVFfBW3h/rb4ROqqqvXsKuvkF8Lzuy+kZnX7H3u6t9dhafO6O3sf+hgSZm+mDZGAWbCIQDf19w5MjMz03nJaUxMjEpLS1VeXi6LxaKCggJ16NDB+a2mQ4YMUWZmpn75y19q5cqVWrlyZRv0yLdUO6pVUFegQFOgrg64Wod1uNHHdfXvqqN1R3XUflTR9mh1NHds40oBwL2aFAzvv/9++fn56corGy6QTjD0TDt+PPsB+sE9226NweAAsx6+qa9e3b5PX+eX6LZV/6X3/j1J7YMD26wGAHCH5s6RJSUliouLc96OiIiQzWaTxWKRzWZTREREg20FBQXy9/eXv3/jU/b69eu1du1aderUSU899VSD/S8kJyenKV2TJK/+Ip2jYUdls9hU365eHU530OFjZ0PhofxDjT4+3D9c5eHlyq3IVbeT3VRT5h2XlXrz76gx9Mez+Vp/JN/rU0v706RgWFdXp3fffbdFT4C2daq6Tnm20+p9RZgiLcFt+twhgf6aMaSf1mQd0Od5RRr00ifaMPlmDezaqU3rAIC2dLlz5LmzjC0xfvx4hYeHq1+/fnrjjTf02muvad68eZfcLz4+XkFBQZd8XHZ2thISElpcn7t9U/mNDlYdVDtTO8VZ4+Rn8tOh/EPq3qP7Bfepra5VsalYoV1DlRDi+X339t/RT9Efz+Zr/ZF8r0/n+lNdXd2sNwGlJn75zNVXX62TJ0+2qDi0re+PV0mSft7jCrc8f7C/WQ8O7qPZw+J0oKRMN776meZ9+jedqalzSz0A4GrNnSOtVqtKSv5vaYRjx44pMjKy0W3FxcWyWq0XbGvw4MHq16+fJGn48OHKy2v+RwF82ZG6I3LIoR4BPeRnatrHG3oE9JB09nOJlxPaAcDbNOmM4dGjRzV69GjFxMQ4P0shSW+//bbLCkPLfH+iUmaTSdddeelLiVzF7GfSc7cO1NCrO+uB9zKVunWv3vrmoGYM6af7f351sy4vtdfXy1ZeraNllSouq1JZda0qa8+umRjkb1Z4uwB1aR+inhGhsgQFuKpLAHBBzZ0jExMTlZaWpuTkZOXm5spqtcpisUiSunbtqvLychUWFqpz587atm2bXnjhhQs+9/Tp0zV79mx169ZNWVlZ6t27d+t2zovZHXYdqTsif/kryhzV5P0sfhZFmiNls9t0qO6QMygCgK9rUjB84IEHXF0HWsEPx0pVfKZO/aPDFRrYpF+tS42J7aLcObdr0da9SvvvfZq1KVspH3+nEX2idXMvq/p36SirJVghAWZV19WruLxS/zhRrvwTZ9dgzPzRpmNlVbI38R3bq68I0/XdO+nn3a9QoL/50jsAQCto7hw5cOBAxcXFKTk5WSaTSfPnz9fGjRsVFhamUaNGacGCBZo5c6YkaezYserVq5dycnK0ePFiHT58WP7+/tq8ebPS0tJ07733asaMGWrXrp1CQkL03HPPuaKLXulA7QHVqEbd/LvJbGrenNDDv4dsdpv+VvU3giEAw2hSerj++uv1xRdfqLCwUJMmTdKhQ4fUrVs3V9eGZnrvb/mSpAQP+kyfJShAi8YN1MyhcVr5dZ7e+1u+Pv3+sD79vvFvhftnwf5+6tYxRNFh7dS5fTtFhbVTeHCA2gWcfdlW1dl1srJah06eUZ7ttA6WlOlASZk25RRqVN9oDe/tujUcAeCclsyRs2bNanA7NjbW+fOgQYMaLF8hnf1M4Lp1685r54YbbtAHH3xwGdX7rj3VZ9eHvNL/yks88nztze3V3q+9fqz7UaX2UnUwu3bpJ6Cl9lbvvaz9+wf1b6VK4AuaFAyXLl2q/Px8HTlyRJMmTdJf/vIXnThxQk899dRF91u0aJF2794tk8mklJQUDRgwwLltx44dWrZsmcxms5KSkjRt2jRJZxfwnTp1qn79619r0qRJks4u4Jubm6vw8HBJZ78BbujQoS3pr097728/yt8kDegS7u5SztMpNEhzR/TX3BH9dehkhbILj2tfcamOn6nWmRq7AswmRYW1U4+OoeoZYVHPCIs+yi245CLR3TuG6touZy+bPVVZo78eLNYXB4v14d4CffUPm66JCtfQqwmIAFynpXMkXKfUXqojdUcU7heuEL+QFrXR1b+r/l7zd+2t3qubQm5q5QoBwPM0KRh+8803eu+99zR58mRJ0rRp05ScnHzRfVjAt23tKy7V34tL1adjkPOMmqfq3jFU3TuGSpd4k+pSofCnwtsF6vb4bhrRJ1of5Rbqy4PFGrn8cz02NE7P3HLdZVQMABfWkjkSrpVXc/ZLeDr7t/yNwUhzpNqZ2im3Jlc3tLtB/ibPnlsB4HI16Su6fvqV1na7XXa7/aL7XGgBX0kNFvD18/NzLuAbGBiolStXXvQb2NC4P+WcXZOpT8e2XaLCE4UG+mvCz3rqsWFx6hVh0ZJtufrXFVt1qopvRgXQ+loyR8K1fqj5QWaZFWlu+Xq+ZpNZ1wReoypHlQ7WHmzF6gDAMzXp7a+BAwdq7ty5stlsWrt2rTZv3qzrr7/+ovu4ewHf5q7b4e3e/vp/ZDZJV4cH69ChxhfubUvZgWWX3cahQ5e3RIpZ0urhV+rpzCP64mCx8o6eUFptvbqFNf1bUY3E1xZ3bU2uHpvLfa1LrfNvrkXPy+umRXMkXKfEXqLj9ccVExCjANPlfVv1NUHXKLs6W/uq96lvYN9WqhC+rN5RrypHleocdapVrcoCy2SrsynAFKAAU4CCTEGcfYbHatIr8/bbb9cPP/ygvXv3ateuXbr//vs1atSoZj1RWy/g29TFe31BwckK/f3E3zWid2e18zepe/cLL9zbVhIS+lx2G9k1l78eV9INffT59Q49s2WPnv18j6Z+UajPHhipAV06XnbbvsTXFndtTW0xNq3xWm+Nf3PN5Qmvm5Ys4NvaWmOOROv5oeYHSVLfwL6qclRdVlsR5ghZzVbl1+Wror5CoX6hrVEifESto1aH6w6rsLZQJ+pP6JT9lE7Xn5Zd/3TFQFdpd9nuBvsFmYJkMVkU6heqDuYO6ujXUR3NHdXRr6PC/MKavOYm0NouGgyrqqo0c+ZM7du3T/Hx8YqKitK3336roKAgDRkyRIGBFz7z0toL+J4zfPhwLViw4JIdM5I/5xRIku6I764jhwvcXI3n8fMzacG/Xquqk8e09NujGvaHLfroN8M1uGfLLzECgMuZI+E6B2sOyl/+6hnQU/tq9l12e7GBsTpWeUx5NXn6WfDPWqFCeLMz9Wf0Q80POlh7UEV1RapXvXNbkClIV5ivUJhfmAJMAfI3+et48XFFRkWq1lGrOkedqhxVqqivULmjXMfrjks/+ZSLWWZ1NHdUpDlSV5ivcP7X0i9RAprjosHwD3/4g6KiovTKK684L/GsrKxUamqqXnrpJc2ZM+eC+7KAb9vZlHs2DI7v303/j2B4Qff0iVB8nxjd9+4OjV7xuf70H8M0ok+0u8sC4KUuZ46Ea5ywn9DJ+pOtchnpOX0D+2p75Xbtq9lHMDSwY3XHtKt6l/bX7HeGQavZqm7+3WSX3RkG/z97dx5fVXUufPy39xmTnMwkISEkhAiEKUwiAjJPKgp1qkjB69UOtpSrb7VoqVdsnepQtKX2ai1qBasoYB0Bi4BSCSAQZkIIQ+Z5ns683z+QaCRMIck+OXm+fPhAzp6etc/JXufZa+21vq/R1UikoeVpxNyam0atkW6GblR6Kqn0VlLpqaTCU0GZp6zZukFKUFOSGGWMItoQTZjqe6PQi87tvInhrl27eOONN5o99xcQEMCSJUu4+eabz1vpyQS+HaPW7uLLEyUMj4+gR6jv3E36W9rld41rD/NG9CbEYmLOii+ZtXwzH/14EpP7SHIohLh0l1NHivZxZpCYZFNym+0zUA0k0ZjIKfcpKjwVRBjOP8aB8C/lnnK2NW7jhOsEABFqBIMsg+hn7tfUitfauQSNipFgJZi+5uaPAng1L9Xeako9pZR5yk7/6y4j251NtjsbHKfXMytmgpQggtVgQtQQgtVgrIr1kkd1F+KM8yaGBoOhxa4wJpOJkJCQC+5cJvBtf//OLMTl8XJ9/0ufwLermjWoJ2vumsjNr29h1vLNfPzjyTLXoRDikl1uHSna3gnnCRQUkkxJbbrfFEsKp9ynyHBmMCZgTJvuW/gmp+Zke+N29jr2oqERa4hlVMAoEowJ7Z54qYp6+plDQzh9+TZptHvtlHnKKPGUUOIpodhdfLqV0fvtAGYmTE2JYpghjFA1FINiaNd4hf84b2J4qYaaOwAAIABJREFUvg++wSAfMl/wyeE8AGYOiNc5ks7luv49WH3XBG554wtuXL6Jj388hQnJMXqHJYToRKSO9C113jqKPEXEG+Oxqm07dVNvU2/MmMlwZjDaOlpaZPxcobuQ9fXrqfHWEKqGMj5gPEmmpHZ73y+1xdGkmOhh7EEPYw/cmptaby013pqmfyu8FVR4K8ANCgrBajBhahhhhjDC1DAZFVWc03k/Genp6UycOPGs1zVNo7Ly8odXF5fH69VYl5FPtM3KlfEt918X5zZzQDzv/dd4bvvHl9zw98/55MdTGC/JoRDiIkkd6VtOuk4CbduN9AyTYiLZnMwR5xHy3fnEm+RmrD/yal522Xex3b4dDY0rrVcyyjrKpxMpo2Jsal08w6k5qfHWUOWpospb1ZQw5rhzUFAIU8OINEQSaYhE0zS50SGanPeTvn79+o6KQ7TCnvwKimvt3Hllb1RVfqlb48aBPXn3zvH88M0vueHvm/j0J1O4pve5R8gVvqMtnmP96eiOn+JB+A+pI31LtisbgF6mXu2y//7m/hxxHiHDmSGJoR9q8Dawrn4dee48bIqNGUEzOu37bFbMTQPVAHg0D9Xe6qaBbc50P81yZbHPsY8oQxQxhhiC1eALJolFwUVNLZyDLYPbvSyiY503MezRQ55b82XSjbRtzBrUk3fmj+P2N79k5t8/59OfTGFskiSHomNpmkZ2ZT2Hi6opqm2k1uHCYjQQZbMyICaUvlHBGFSZ28qXSB3pOzyah1xXLqFqKGGG9hmpsYexB0FKEFmuLCZqE326FUlcmkpPJR/UfUC1t5pkUzJTA6e2eXdkPRkUAxGGCCIMESSTjENzUO4pp9xTToWnglx3LrnuXAKUAGIMMcQaYwlQA/QOW+hArmqd2KdH8jGqCtNkyoXL9oPBCbw9fzxzVnzJ9a9+zrqfTGGMJIeiA9Q5XGw6VsSmrCLK6x0trrMxs5CoIAs3DIxnZM9I6fYjxPcUuYtw4qS/qX+7HUNVVPqa+5LuSCfHlUNvc+92O5boOHmuPD6u/xiH5qCXsRcJxgSOuY7pHVa7sigW4oxxxBnj8Gpeyj3llHhKKPOUccp9ilPuU0SoEcQZ4+hm6IaqyE3JrkISw06qqKaRXbnlTLoihtAAmUS5LdycmsA/541j7sqtXP/qJtb/bApXJ0bpHZbwY/86kMPCtTspqGnEZFAZldCNIT3CSQgLIsRqwuH2kFvVwJ68CtJOlfL6zuOk51Vw58jeBJjk8i3EGafcpwBINCW263HOJIZHnUclMfRBlzqIS7G7mMPOwwCkmFOIM8a1R1g+TVVUooxRRBmj8GgeSjwlFLgLTg9g46zAqlhJMCYQa4yV0U27APlm0Umty8gHpBtpW7t1SCIa8KOVW7nub5+z4WdTuSqhm95hCT9TWNPA/7z/NWv352A2qFybEseUPt2xWZpPjmwyqPSPCaV/TCgzUmJZsesEewsqKdx0iPvH9ydMbgoJAZx+vtCAgXhj+9aJMYYYQtVQTrhO4NJcLU5oLjqHQnchR5xHMGBgsGWwzE/J6S6nscZYYo2x1HnryHfnU+guJNOVyUnXSRJMCWhoeocp2pEkhp3UJ4dPJ4Yyf2Hbu21IIl6vxry3/sO1r2xkw8+mMtJPksNzDdiSk1PJbufFDeYiA7a0nqZpLN+RxaKPdlNtd3FNUjQv33Y1W08UX3DbbkFW/mdcf9buz2FTVhF/+vII/2/CAEKs8sVUdG313npKPaX0NPZs90RNURT6mvvytf1rTrpOnjUxuegcCtwFZDgzMGJkqGUoIQaZd/T7bKqNfuZ+JJmSyHXlku/O57jrOMYII1a3lRiDjOLuj6TTcCfkdHvYmFlIcmQwfaPkYtYebh/WizfnjqXW4WbGKxvZlVuud0iik8ssrWHK//2bn723Ha8GL90yis2/mE7/mNCL3odBVbh1SAJT+nSnqNbOS18dxeXxtmPUQvi+9h6N9Pv6mfsBcNR5tEOOJ9pWviufDGcGJkwMsw6TpPACzIqZZHMyowNGk2BMwK26Oew8zG7HbkrcJXqHJ9qYJIad0NYTJdQ6XMwc0EMGoWhHdwxP4o07xjQlh7slORSt4PJ4+cPnBxj6/Ed8cbyYWQPjOfTQLO4d07dV08woisItqQlcndiNnMp63t17qu2DFqITOZMYtvfzhWecmf8t25WNw9vygFHCN+W6cjnqOtqUFAarwXqH1GmYFBNXmK8gsSKRaEM0Nd4a3ql9h7TGNDyaR+/wRBuRxLAT+vSIdCPtKD8a0ZvX5oyh2u5k0l8/46NDuXqHJDqRtFOlXPXCp/z2072EB1h497/Gs/a/J9IjNPCy9qsoCncMT6JnWCD/OVnK9uzSNopYdJSnnnqK22+/nTlz5rB///5my7Zt28att97K7bffzksvvdT0emZmJlOnTmXlypVNrxUWFjJ//nzmzp3Lfffdh9Pp7LAy+AKv5iXHnYNNsRGhdtwzYn1NffHgIcuV1WHHFJcnx5XDMdcxzJgZbh2OTbXpHVKnZPKaGGQZxFDLUGyqjZ32nbxd+7a0HvoJSQw7oU8O5xFkNjI+Wfp3d4T5V/Zm1Z3j8WoaN72+hT99eQRNk4evxbnlVzdw5z//wzXL1rO/sJJ7Rl3BwUU3cktqYpu18psNKj+5ug9Wo8q7e7MpqG5ok/2K9rdz506ys7NZtWoVTz75JE8++WSz5U888QTLli3j7bff5quvviIrK4uGhgYef/xxRo8e3WzdP//5z8ydO5d//vOfJCYmsnr16o4siu5KPCXYNTu9TL3apQfNAceBFv+esdu++4LrCP1lu7LJcmVhVswMsw4jSA3SO6ROL8IQwY9CfsQg8yDKPeW8W/suBx0H9Q5LXCZJDDuZY6U1HCurZVq/WCxGGTa4o9ySmsjmX0wnxhbArz7YxYI1O3G6peuEaK6q0cnjn+0n5Q//4q3dJxkeH8EXC2bwtx+OJjzQ0ubHi7JZuTk1gUaXh1+s2SE3LDqJtLQ0pk6dCkBycjLV1dXU1dUBkJubS2hoKLGxsaiqyoQJE0hLS8NsNvPqq68SHd18ftUdO3YwZcoUACZNmkRaWlrHFkZnp1yngI7rRnpGgBpAiBpCpbcSp9a1Wmk7m2xXNsddx7EoFoZbhktS2IYsioUpQVOYbZuNSTHxecPnfF7/OW7NrXdoopVkVNJORrqR6mdkQje233cds1/bzCtpmezOK+ef88aR3E2eUfBVdpcHu9vT9K9BUbAYDViMKgGmtruxcrioiuU7snhtZxY1dhfRNisv/mAkd41MxqC27/23sUnR7Mot56NDeaw9kMMtqR37BVlcurKyMgYOHNj0c0REBKWlpdhsNkpLS4mIiGi2LDc3F6PRiNF4dpXd2NiI2Xx62pLIyEhKSy+uW/HBgxd/Z3/37t0XvW5HOxx3GCxQfrCcaq36rOVFwUUtbpeTnXPZxzYHmMEGGSUZhNnDzlrurO24hNGX36PWaG15vv9+VwRUUGGrwOgx0r2qO2XesrYI75K1xefNl5wpTw7flitGjaEwpJCDHORY/TFia2Ixes+fZnSv7d6ucV4K+R06TRLDTuaTw3mAJIZ66RkexJe/nMHCtTt5c9cJRiz9hP+7dRR3DE/SO7Qur7TOzuHiavKq6imssVNU20i98/x3LR//9wESw4NICLeRGB70zf+/+RsWRGTQ2a18bo+X3Kp69hZUsv1UKZ8eyedw8ekvpDHBVn4zZRD3julLiLVj5hhUFYW5w5N4cuNBFn20m5n947G2YdIr2l9btfReyn4GDRqExXLhVuzdu3czYsSIywmr3TR6G/mq+ivijHGMGj6qxXVa6tKZk51DQmLCZR8/xhtDmb0MV6iLhJiz9zfYMviyj3ExfPk9ao3LKc933++TrpNUuCpOtxQGDScgOKCtQrwkbfV58xXnK08vrRdHnUcpooiibkUMtQwlUD33M/Ud9TtyIf76O+RwOC7pJiBIYtip1NpdfHmihBHxEcSGXN7gFeLitTT33+heUaiKwtvpJ5n31n/489Yj3JKaeM455WTuv7bn8njJKqvlUFEVh4qqKKq1Ny1TON3NMjE8iECzEes3rYReDRxuDw63h3qnG68Gh4qq2Z1X0eIxFAWsBoXgD09gMao0OD1U2Z14vN9+ATepCoNjw7g6MYrUuDCMqso76afaufTNxQQHsPCaFJZ+cZgXvjjMb6b6RmUrWhYdHU1Z2bctFyUlJURFRbW4rLi4+Kzuo98VGBiI3W7HarVecF1/k+vORUMj0ahPK7lFtRCmhlHlrcLutWNVrbrEIZrTNI1T7lOcdJ3EqlgZZhlGgKpPUtjVGBQD/c39CXAHcNJ1kt323Qy1DpXRXzuRdk0Mn3rqKfbt24eiKCxevJjU1NSmZdu2bWPp0qUYDAbGjx/PggULgNOjrv3iF7/grrvuYt68ecDpUdcWLVqEx+MhKiqK5557rqnrTFfy78xCXB4v1/eP1zsUAYxK7EZShI3XdmaxM6ecg4VV3DQ4gTFJp5NG0fZyK+tZl5HPuiP5bMgowPHNHH5mg0pqbBiDYsPoHRlMtM2KyXDhLpw/Hd0XTdMoqbOTXVlPdmU9uZX15FTVk11RR2Wjk9LKGjSjGbvbQ0ywlf4xoSRGBNE/OpSRCd3IKK7C7APP+z4ybTArdh/n6c8PcveoK4jR6e64uLCxY8eybNky5syZw6FDh4iOjsZmOz1CYnx8PHV1deTl5dG9e3c2b97M888/f859jRkzhg0bNjB79mw+++wzxo0b11HF0N2Z5ws7av7ClsQYY6hyVlHsKSZRlW7cevNqXo65jpHvzpekUCeKopBkSsKEiUxXJnvse0i1pBJuCNc7NHER2i0x/O6oa8ePH2fx4sWsWrWqafkTTzzB8uXLiYmJYd68ecyYMYO4uLjzjrp23XXXsXTpUlavXs3cuXPbK3Sf9emRb7qRDpBupL4iOtjKoskD+eJ4MR8ezOWtPSdJyy7lpsEJXNHJnz30eL3UOdzUO90oyukui6qiUFZnJyLQ0qo5+C6Vy+Ml7VQp647ksy4jnwOFVU3Lom1WBnU/nQxe0S34ohLBliiKQkxwADHBAVyV0O2s5RfqYnKivLZVx21roQFmlswYwi/X7OQPnx/khR+M1DskcQ7Dhw9n4MCBzJkzB0VRWLJkCWvXriU4OJhp06bx2GOP8cADDwBw/fXXk5SUxMGDB3nmmWfIz8/HaDSyYcMGli1bxsKFC3nooYdYtWoVcXFx/OAHP9C5dB1D0zSyXdkEKoFEGaJ0iyPaEE0mmRS7izt8ABzRnEtzccBxgHJvOTbFxhDLECxq2w/6JS5OvCkek2LisPMw+xz7GGoZSpjh7GdxhW9pt8TwXKOu2Wy2ZqOuAU2jrt1xxx28+uqrvPrqq832tWPHDn73u98Bp0dde+2117pcYuj1aqw7UkC0zcqV8ZF6hyO+Q1UUJl3RnWE9InhvbzZ78iv445bDDIgJZdbAeBIjfHuupEaXm+NVdo40FFBQ00B+dSOVDQ4aXC2Puvro+n0YVIVom5XYkAASw230jrSRFGEj6Zt/E8NtrXrOzeH2sK+gki+PF/PF8WL+c7KEGrsLAItRZUZKHNen9ODa/nFsOtbyoBJd2T1XXcEfNx/m5W2Z/L8JA0gIl9H3fNWDDz7Y7OeUlJSm/48cObLZjVQ4/UzgihUrWtzX66+/3vYB+rgyTxkNWgP9zf3bZZqKi2VSTESoEZR7y6nz1snceDqp99bzYd2HlHvLCVfDGWwZjFGRp6X0FmOMwaAYOOA4wD7HPoZZhhFiCNE7LHEe7fZbo/eoa5f6sKWvO1zeSFFtIzf0DiU9fc95183J8a/Rry7HbnPz1pzWjNKUk1N50evO6GFhYEgkW/NrOVxczeHiapJCzDSUFjAm1oahA1rZzicnpxKPV6Og3sXJagenahwU1Lk4/cTc6XKaVIVQi4Eoq5lAk4r1m5Y4DQ2vBpEBRsob3ZTb3RwqrGRPC8/nKUBUgJFYm4keNjNxQSZCLQbMBhWLQUEB6lxe6lweahwecutOx1NQ58TznfEzetrMTO8Tzpg4G1fGBGE1qkA91dnHLul9OZfvfz7Oud55PjdtEUdbOFOW/+oXwmNpddz/9iZ+Oyqu/Y/rZyO5ic7hlPsU0PHTVLQk1hhLubOcIncRV5iv0Dsc3V3OHI6tGYwk15XL+vr1NGgNdDd0J8WcgqrIbGy+opuhGwPNAznoPMhex16GWYfJM4c+rMNup3T0qGsXO+JaZ/HJhn0AzL9mCCOGnLsifD9rIwkJ/jP61eUaMeLbQV9aO+rUbufZg8+cTwIwZiAcLanmk8P5HCur5YEvcukVEcRPr+7L7cN60asDWxE1TSOjpIaNmQV8nFvAsdIa7O7Tz+apCiRF2OhuhcGJsfQIDSQyyHLeZyS/O5COpmkU19o5UV7LyYo6TlXUcaL89L8nK+o4UNbAvtLGi4ozPMDM1YlRDIoNZ1zvaMYnx9Aj9NyDLF3q+9KS734+znmcC3xu2iKOtnCmLEOHeXnn+Ed8crKaF++Y3K6thr4wkltrRl0TnV+2KxuABKP+9V2kIRIjRoo8RfTWektS0kHcmpu0xjTSHekoKIwLGIcRo64tyKJl0cZoBjCAw87D7LXvZYR1xHlHKxX6abfEUEZda1sfHc7DZFCZ3i9W71DEReoXHUq/6FDyquoprrPzzz0nWfxpOos/TWdkz0huHZLItSlxDIgJa/Pn9bIr6th6soRNx4r4PLOQvOqGpmXRNitXxYTQPzqUftEhBJiM5OTkkNAj4jx7bJmiKHQPCaB7SABjks7+vXR5vORU1nOyoo4au4tGl5tGl4cvjhcTYDIQaDJgNRnoFmQl2PJthV7rcDVNzSIujUFVWTR5EHe/s42lXxzmRXnWUPgZh+ag0F1IjCHGJwYWMSgGYowx5LvzqfRWEmnoOo97ODQHtd5aGr2NuHGjoFDtqcaoGDEpJkyY2jxR0zSNLFcWXzV+RbW3mlA1lBlBM4g1xl5Wa6VoX92N3fHg4ajzKHsde7nSeqXeIYkWtFtiKKOutZ3cynr25FUwvV9ch82NJtpOfFgQv79uGH+YOZw1+3NYvS+bTVlFfJ1bzkMf7yEy0ML45BjGJkUxICaMATGhxIcFXlRlqmkaBTWNHCis5GBhFXvzK/jqVCk5lfVN60QGWvjh0ESm9o2lpNbe4tx87cVkUEnuFkzy9wbi8bZRDwLRsrnDk3hswz7+vv0Yi6cMIlpGKBV+JM+VhxevT3QjPaO7oTv57nwK3YWdPjE8X3Jl99op85RR6a2kxluDQ3Ocd18GDASpQQQqgQSpQdhUGzbVhkW59HrIrbnJcmaR7kinxFOCisowyzBGB4zGpLQ8VZTwLT2MPXB4HZxyn2K/Yz+pllR573xMuyWGMupa2/nwUC4AswbJNBWd1XfnQrw5NYHp/WLZX1hFZkkNmaU1vH8gh/cPfPtsqMWoEmo1Y7MYsZmNmI0Gekfa8GqnW+FK6+wU1px+7rTxe4PERAZamD2oJ+O/6Y45NC6iqUWypTkZhf8xGVR+PXEgC9/fyZ+3ZvDE9cP0DkmINuML01R8X4gaQpASRKmnFKfmxKz4z01cr+alxFNCvjufam910+tmzESoEQSoAZgwYVAMaGi4NTcuzYULF43eRmq9tdRQA9+pqkyYsKk2gtXgpsTRpJiwe+1N+3BoDmq8NZS4SyhwF3DSdRIXLhQU+pj6MDpgtEyB0AklmZKwa3aKPEVsqN/A9UHXS/drH9KuzxjKqGtt44OD3ySGA3vqHIloKzaLiTG9ohjTKwpN0yird5BTWd+U7BXV2qm1uyirt3NmLvVdueVN26sKBFtMdAuyEBloIS40kB6hgfQIDSDaZm1qbdyVW95sO9HcxSTKOTmVPvMc4aX471HJPP7v/fz1q6P8etJAQgP854uq6Lo0TSPbnY1FsRBjiNE7nCaKohBnjOOY6xhF7iISTPo/+3i5vJqXfHc+2e5snJoTgDA1jGhDNJGGyIvuxuvVvDRqjdR766nz1lGn1VHnraPSW0mlt/ngXdvt26E3fFX11Vn7CVFDSDWlMtgymFBD6OUXUOhCURRSzCnYHXaOu47zn8b/MD5wvN5hiW/IWL4+rqrRyRfHixnZM/K8A3GIzktRFKJsVqJs1rOWaZpGo8uD0+NFUUBBwaAqBJgM5x0gRogAk5H7x/dn8afpvLwtk4emDNI7JCEuW6W3klpvLX1MfXyulaG7sTvHXccpcBfQ09i5b+SWe8o56jyKXbNjwEBPY0/ijfGteqZTVVSClCCC1CCi+fZZdLfmPp0oeuuwa3ZcmosANYCymjLCgsMwK2ZC1BDCDeHEGeMIV8NlYBk/oSoqgy2DOeQ4RLojnShDFP0t/fUOSyCJoc/79Eg+bq/GrEGdu5LRy3dbhDpjy4+iKASajcgtAdEa947pyzObDvLCl4dZOC6FQLNc8kXndtJ1EvCtbqRnmBQTUYYoij3FVHmr9A6nVeq99Rx0HKTEU4KCQk9jTxJNie3SNdaoGAkzhDWb9HywZTC7j+5mRJy+ox2L9mdSTNxgu4F3at/h84bPiTBEEGP0nV4AXZV8S/Bx33YjlecLhRCXJjTAzC/G9uPpzw/yj6+P8/Ox/fQOSYjLcsJ1AvDNxBBOD65R7Ckmz935RlU+6jzKpoZNODUnIWoIKeYUbGrHTa0Epwe+KQouktFFu4hwQzjXBl3Lh3Uf8nHdx9wRcodMY6Ez3+qHIZpxuD2sz8gnOTKYgd3DLryBEEJ8z8JxKViMKku/OIzb49U7HCFardHbSKG7kFhDrM9+eQxVQwlWgyn1lFLtqb7wBj7Arbn5vP5z1tevR9M0+pr6MsIyosOTQtE1JZmSGG0dTZ1Wx6f1n+LRPBfeSLQbSQx92OasIuocbmYNipd+9UKIVokJDuC/RiZzoryOtd8Z+VaIzuaU6xQaGknmJL1DOSdFUZqeL9zn2KdzNBdW6alkVe0qDjoP0s3QjTtC7iDeJN85RMcaaR3JFaYryHfns7Vxq97hdGmSGPowGY1UCNEWfjVhAIoCz28+hCZzSIpO6szzhb1NvXWO5PyiDdGYMXPIceiC8/zpKdeVy6raVZR5yhhkHsTtwbfL9A9CF4qiMC1oGpFqJPsc+zjsOKx3SF2WJIY+yuvV+OhQHt2CLIzpFaV3OEKITqxPVAg3DU5gd14FW44X6x2OEJfMo3nIdmUTqoYSoUboHc55qYpKvCkeJ072O/brHU6LjjiO8K+6f+HSXEwLnMaUoCkYFRl2QujHrJi5wXYDFsXCpoZNFLulrtKDJIY+ant2KYU1jcwcEI/RIG+TEOLyPDhxAADPbT6kcyRCXLo8dx5OnCSZkjpFN8d4YzwWxUK6PR2X5tI7nCaaprG9cTufNXyGSTFxk+0mBlgG6B2WEACEGcK4NuhaPHj4pP4TGr2NeofU5cjtIR/17r5sAG4bkqhzJEI0dzGTwgvfMyoxivG9o9mQUcD+gkpS46TLmOg8Oks30jOMipGhlqHssO/ggOMAw63D9Q4Jj+ZhY8NGMpwZhKghzLbNJsLg262vouvpZerFKOsodth3sL5+PbNts31uzlJ/JomhD/J4vazel01EoJmpfWP1DkcI4ScenDSQL0+U8PyWQ7w59xq9wxHiomiaxgnXCcyKmThjnN7hXLShlqGk29PZZd/FQMtALIqlw479/ekeXJqLA44DVHmrCFFDSLWkku/OJ9+d32ExCXGxRllHUewu5pT7FDvsOxgdMFrvkLoMScF90H9Onu5GetPgBEzSjVQI0UauS+nBwO6hrEo/RU5lvd7hCHFRyr3l1Hpr6WXshUEx6B3ORbOqVkZYR9CoNbLLvku3OBq9jey276bKW0WUIYphlmHtMmG9EG1FURRmBM0gVA1lp30nJ5wn9A6py5Cswwe9u/cUAD8c2kvXOIQQ/kVVFR6YOBC3V+NPXx7ROxwhLsqZL4W9zZ2jG+l3DbcOx6bYSLenU+Op6fDj13hq2GXfRYPWQE9jTwaZB3Wq5Fp0XVbVysygmRgwsKF+A5WeSr1D6hKkK6mPcXm8rNmfTZTNwsTkGL3DEUL4mTuG9eJ/1+3l1e3HeGTaYMIDO657mxCtccJ1AgWFRGPne+beqBgZGzCWDQ0b+LLxS26w3dBhxy51l3LIeQgvXvqa+hJviu+wYwtxMb7f5bklfc19OeI8wpraNVxpvbLpxsZgy+D2Dq9LkhZDH7M+I5/SOgd3DEuS0UiFEG3ObDRw37gU6p1uXt4mAwnp5amnnuL2229nzpw57N/ffEqDbdu2ceutt3L77bfz0ksvnXebhx9+mBtvvJH58+czf/58tmzZ0pHFaHfVnmqKPcX0NPbEqlr1DqdV+pn7EWeM47jrOMecx9r9eJqmke3K5oDz9JfuVHOqJIWi04o1xtLD2IN6rZ4MZ4bMxdvOpMXQx7y563SXmflXdr4uM0KIzuEno/vwxMYDLPtPBv9vwgCsJula1pF27txJdnY2q1at4vjx4yxevJhVq1Y1LX/iiSdYvnw5MTExzJs3jxkzZlBRUXHObX71q18xadIkvYrTrjJdp29e9DX31TmS1lMUhamBU3mr5i02N2ymh7EHgWpguxzLo3nY1LCJ467jWBQLqZZUgtXgdjmWEB2lj6kPtd5aij3FhLhD6GnqqXdIfkuapHxIRYODjw/lMbB7KMN6yBDSQoj2EWI1c+/ovhTX2lmxWx7q72hpaWlMnToVgOTkZKqrq6mrqwMgNzeX0NBQYmNjUVWVCRMmkJaWdt5t/FmmMxMVlWRTst6hXJZwQzhjAsbQqDWyvn49Xs3b5seo99aztm4th52HCVaDudJ6pSSFwi+oisog8yBMmMhyZVHlqdI7JL/Vri2GTz31FPv27UNRFBYvXkxqamrTsm2zOisrAAAgAElEQVTbtrF06VIMBgPjx49nwYIF59zm4Ycf5tChQ4SFhQFwzz33MHHixPYMXRer9p7C6fEyf0Ryp5jAVwjReS0cl8ILXx5h6ZbD3H1VMgZV7hN2lLKyMgYOHNj0c0REBKWlpdhsNkpLS4mIiGi2LDc3l8rKyha3AVi5ciWvv/46kZGR/O///m+z7c/l4MGDFx3v7t27L3rdttRgaqCsZxnh9eEcOnGoVfsoCi5q8fWc7JzLCe2iOGudzX7W0IiIiSA3KJe1p9aSVJHUZsfaeHgjmVGZuIwuutV1I6QxhGKK22z/Ha0j3p+OJOVpG1GmKApCC9jXsA9jphGzp+1G19XrOtdeWluedksMpavMpdE0jeXbszCoCnNHtF1lIYQQLYkLDWTeiCRe33mc9/ZlM2eYXHf00ppnZs5sM3v2bMLCwujfvz9/+9vf+Mtf/sKjjz56we0HDRqExXLhgYd2797NiBEjLjm+trC9cTvY4aqoq0iJT2nVPloa3CInO4eExITLDe+CWhocY7A2mFU1q8gPyycpNokR1ss7t17Ny79O/ovc8FxUVCYETGBI2BAOOi8+8fc1HfX+dBQpT9sKdAWS5coiLzmPm203t8kou3pe59rDmfI4HI5LugkI7diVVLrKXJpdueWk51dww4B4eoS2z7MHQgjxXb+ZMhijqvC7Dftxe9q+a5toWXR0NGVlZU0/l5SUEBUV1eKy4uJioqOjz7nN6NGj6d+/PwCTJ08mM9M/BhTSNI0jziOYMHXKaSrOxaJYmGWbhU2x8Z/G/7CzcWerB9MocZewqnYVueG5hKgh/DD4hwy1DpUeR8Kv9TT2JMoQRYG7gK8av9I7HL/Tbi2GeneVudQMWW9Pbi8AYHI35bKbs3Ny/KvLQluSc3Nucm7OrTOcm93m2lZtd2PvUN7PquKJNZu5MTns0o/rZ91vOsLYsWNZtmwZc+bM4dChQ0RHR2Oz2QCIj4+nrq6OvLw8unfvzubNm3n++eeprKxscZuFCxeyaNEievbsyY4dO+jTp4/OpWsbee48arw19Df397vJ2MMMYdwSfAtrateQZk+jxFPCtMBpWNSLmzqmzlvHjsYdHHIeQkMjqjaKW+JvuejthejMFEWhv7k/HoeHdEc60YZoUiyt61EgztZho5J2dFeZi+0m4wuqGp1sfO8oSRE2fjFzPKra+rt972dtJCHBf7ostKWcnBw5N+cg5+bcOsu5GTGidaM2vpicwqdP/4s3M6tZfPNEzMaL75bjC91vWtNVRm/Dhw9n4MCBzJkzB0VRWLJkCWvXriU4OJhp06bx2GOP8cADDwBw/fXXk5SURFJS0lnbAPzoRz/i/vvvJyAggMDAQJ5++mk9i9ZmDjsPAzDQPPACa3ZOYYYw5oTMYV39Oo67jpNfk89I60gGmge2mOBpmkahp5CDjoNkOjPx4CFcDWdC4ATKTpRhSegc33eEaAtGxchM20xW1a5iY8NGQg2hxBpj9Q7LL7RbYtiarjImk6nFbZKSvn32ZfLkyTz22GPtFbYuXtuRRaPLw09H97mspFAIIS5VfFgQPxvdlz9vzWD5jix+Praf3iF1CQ8++GCzn1NSvr3jPXLkyGbP5J9rG4Crr76aNWvWtH2AOnJoDrKcWYSqocQZ4/QOp90EqUHcbLuZ3Y7d7GrcxdbGrXzV+BU9jD2IMERgUSy4NTeV3kqK3cU0aA0AhKlhjLCOYIB5AKqiUkbZBY4khP+JMERwfdD1fFD3AR/VfcSc4DmEGEL0DqvTa7dnDMeOHcuGDRsAzttVxu12s3nzZsaOHXvObRYuXEhubi6AX3WVAXB5vPzpyyMEmY38+Gr/KZcQovN4eMogAs0Gntx4gEaXW+9wRBeX4cjAjZsB5gF+/7ycqqiMtI7krtC7GGMdQ4Qhglx3Lvsc+9hp38kexx5Ouk4CMMA8gNm22dwZcieDLINQFRlJWHRtiaZEJgZOpFFr5MO6D3FoDr1D6vTarcVQuspcnFV7T5FX3cDCcSlEBEpXECFEx4sJDmDhNSk8s+kQf/3PUR6Y5J/d94Tv0zSNfY59GDAw0NJ1PocBagAjA0YyMmAkDs1BlacKt+ZGVVRC1VACVRmUToiWpFpSqfRUstexl3V167jRdmObjFTaVbXrM4bSVeb8NE1j6ZbDqIrC/eP76x2OEKILe3DSQF5JO8aTGw9w58hkomxWvUMSXVCOO4dKbyX9zf0JUoP0DkcXFsVCjDFG7zCE6DTGBYyjylvFKdcpNjZsZHrgdL/vbdBepB+Cjj44mMu+gkpuG5JIrwib3uEIIbqwiEALj81Ipdru4n/X7dU7HNFF7bWf/uwNsQzRORIhRGehKirXB11Pd0N3MpwZbG3c2uppYLo6SQx14vF6WbJ+H6qi8Oj0VL3DEUII7h3TjwExofx9xzH25JXrHY7oYkrdpZxynyLWECstZkKIS2JSTMy2zSZCjSDdkc5uh0yl1BodNl2FaG7V3mwOFlVx55W9SYkJ1TscIYTAZFB58Qcjmf7KRn723nbS/uc6jAa5fyg6xk77TgCuCrhK50jaxgHHgVZvO9gyuA0jEaJrsKpWfhD8A96teZevGr/ChIkhVul9cCkkMdRBo8vNo+v2YjKo0loohPApU/rGcueVvXlz1wle+OIIv57cdQYAEfopdZeS5coixhBDojFR73CEED7ufDdeBloGkm5PZ0vjFvLd+fQ09Wy2XG68nJskhjp4btMhTlbU8asJA0iKDNY7HCGEaOaPs69kfUYBj23Yxw0D4+kvvRpEO9tu3w7A1QFXy6ARXFprY1Fw0WW1Tgrhb4LUIIZZh5HuSOeY6xgaGgmmBL3D6hSkj1AHO1Feyx82HSQuJEBaC4UQPiki0MJfbx2F3e1h7oqt2F0evUMSfizblc0J1wliDbHSWiiEaBNBahDDLcOxKBayXFmccp2SAWkugiSGHcjr1fjpu2k43F6evXEEwVaT3iEJIUSLbhqcwE+u7sP+wkoWfSQP8Yv24dE8fNnwJQATAydKa6EQos0EqoEMswzDolg44TrBUddRvJpX77B8miSGHeiFLw6zOauYWQPjmTOsl97hCCHEeS2dfSUDYkJ56aujvL4zS+9whB/a49hDhbeCwebBRBuj9Q5HCOFnAtVArrRciU2xUeAuYL9jPw7NoXdYPksSww6yM6eM367bS/fgAF794Wi5KyqE8HmBZiNr/3si4QFmfr56B1tPFOsdkvAjJe4StjduJ1AJZHTAaL3DEUL4KYtqYbh1OJFqJBXeCt6reY9KT6XeYfkkSQw7QG5lPTe9tgWPV+P1O8bQzWbVOyQhhLgofaJCWHXneLyaxqzlm2V+Q9EmnJqT9fXr8eJletB0AtQAvUMSQvgxo2Ik1ZJKvDGecm85b9e8zRHHEb3D8jmSGLazigYHs5Zvpqi2kT/OGsH0fnF6hySEEJdkSt9Y/nHHWGodLq595XPS8yr0Dkl0Yl7Ny/r69VR6KxlqGUqiSQacEUK0P0VR6Gvuy4ygGSgofNbwGevr1+NW3HqH5jMkMWxHZXV2pv3fv9lfWMnPx/Rl4bgUvUMSQohWuWN4En+7bTQVjQ4m/fUz/n20QO+QRCekaRpbGrdw0nWSBGMC1wRco3dIQoguJsWcwtyQuXQ3dOeo8yh7eu7hqPOojFqKJIbtJqO4mnF/2cDegkp+OroPf77pKnmuUAjRqd096gremT8ep8fDzL9v4h+Hy/B6pSIVF8erednYsJEDjgNEGiK53nY9BsWgd1hCiC4o1BDKrcG3cpX1KlwGF+vr17Ombg2l7lK9Q9OVTHDfxjRN4609J/nlmp3UOlz8etJAnp45TJJCIYRfuHVIIrEhAcx580te2ltCRv1GXrplFH2iQvQOTfiwBm8Dn9V/RrY7m2hDNLNts7EoFr3DEkJ0YQbFwOiA0XgyPVQmV3LCdYK3a98m2ZTMCOsIuhu76x1ih5PEsA0dLKxk0cd72JBRQKDZwMofXcMdw5P0DksIIdrU2KRo9jxwA7e+so7PjxWR+txH/PKaFH49aQDRwTKIiPiWpmlkubL4ouEL6rV6Eo2JXGe7TpJCIYTPCHAHcI3tGk65TpHWmEaWK4ssVxY9jD0YYhlCL1MvTErXmHtcEsPL5PVqbM4q4uW0TN4/kIOmwdS+sbx86yiSIoP1Dk8IIdpFlM3KHyf0JNscxQMf7GLpF4f5v21HuX1oL+4ZdQVXJ0ahqtJToqvyal5Ouk6y276bQk8hKirXBFzDcMtw6UEjhPBJvUy9SDQmkufOY7d9N9nubPLd+Zgw0dvcmz6mPsQb47Go/ntjq10Tw6eeeop9+/ahKAqLFy8mNTW1adm2bdtYunQpBoOB8ePHs2DBgnNuU1hYyKJFi/B4PERFRfHcc89hNpvbM/Rz8no1cqvq2Z5dxuasIj4+nEdhTSMAI+IjeOzaoVyXEicVnxDC7ymKwi2pidwwIJ7XdmTxxy2HeePr47zx9XHiQgKY1i+OUYndGJXQjUHdwzAa5LH2M/yxfrR77RS4C8hx55DlzKJeqwcg2ZTM2ICxhBvCdYlLCCEulqIo9DT1pKepJ+WecjKcGRxzHuOo8yhHnUcB6GboRg9jD6IN0UQYIogwRGBW9LnutrV2Swx37txJdnY2q1at4vjx4yxevJhVq1Y1LX/iiSdYvnw5MTExzJs3jxkzZlBRUdHiNn/+85+ZO3cu1113HUuXLmX16tXMnTu3vUIHYHt2KQcKqyirs1NW7yC/uoHM0hqOldXQ4PQ0rdctyMJ/X5XMPaP6cHViN0kIhRBdjsVo4Odj+/Gz0X3ZeKyQVemn+OhQHv/4+jj/+Po4AFajgV4RQSRG2OgVbiM2JIDuIQHMGdqLYGvX6KJzRmevHx1eB8dcx6j11lLvrafOW0eFt4Jab23TOhbFwiDzIIZYh9DN0K1d4xFCiPYQaYhkbMBYxljHUOwp5qTrJAXuAgrdhZR5ypqtG6QEYVNt2FQbQWoQVsWKRbFgVsxNf40YURWVM38UFAyK4fS/GFAUhTN/AKyKtcMH6Gq3xDAtLY2pU6cCkJycTHV1NXV1ddhsNnJzcwkNDSU2NhaACRMmkJaWRkVFRYvb7Nixg9/97ncATJo0iddee+2cFd+ZoWadTmerY29wuvnha5vwfm/Y2gCTyuj4cHpF2EiNDWNEz24MiQvDoKqXfcy2EmhUMePVOwyfJOfm3OTcnFtnOTcOh8MnjjuhVyQTekWybPYwjpfXsTe/gvT8Cg4XVZNX3cD+3FL253476ptV0fjh0NbPY3fmutuZhhnXq36E1tWR33+P99r3ku5Ib/ZagBJAL0Mvog3RxBpjiTZEn/5C4waHW5/PJoDmPPtzYfAaWny9s5Ly+DYpj+9xcPY16UJ1aDjhhKvhDDcPx2PyUOYto9JTSbWnmkpvJbWeWmq9tVRR1WZxBqvB3GK7pVWNTg6Ho1X1Y7slhmVlZQwcOLDp54iICEpLS7HZbJSWlhIREdFsWW5uLpWVlS1u09jY2NQ1JjIyktLScw8l63K5AMjMzLys+N+fdcUF1nBCVQFHqnxrLq8ZvUKBer3D8EmD5dyck5ybc+ss5+bgwYM+edwBRhiQaIbEqHOsUdsmsbtcLqxW62XvpyPoVT9C6+rI778/RoyMZOQ51y//5o+viiIKV6ZL7zDajJTHt0l5fM9Bzq5zWlsPBX3zp70c4lCrtvtueS6lfuywwWdacze3pW0utJ+goCD69u2LyWSSbp1CCOHnNE3D5XIRFNR+FXN766j6EaSOFEKIrqI19WO7JYbR0dGUlX3b/7akpISoqKgWlxUXFxMdHY3JZGpxm8DAQOx2O1artWndc1FVleBgGQ1UCCG6is7SUniGXvUjSB0phBBdyaXWj+02RNzYsWPZsGEDAIcOHSI6OhqbzQZAfHw8dXV15OXl4Xa72bx5M2PHjj3nNmPGjGl6/bPPPmPcuHHtFbYQQgjRrqR+FEII4YsUrR2f2H/++efZtWsXiqKwZMkSDh8+THBwMNOmTePrr7/m+eefB2D69Oncc889LW6TkpJCSUkJDz30EA6Hg7i4OJ5++mlMpq41ip0QQgj/IfWjEEIIX9OuiaEQQgghhBBCCN8nsw0LIYQQQgghRBcniaEQQgghhBBCdHGSGPqRp556ittvv505c+awf/9+vcPR3bPPPsvtt9/OLbfcwmeffUZhYSHz589n7ty53HfffZc0wbO/sdvtTJ06lbVr18p5+Z4PP/yQWbNmcfPNN7NlyxY5P9+or6/nl7/8JfPnz2fOnDls3bqVjIwM5syZw5w5c1iyZIneIYo25i91ir/VBf52/fana64/XSczMzOZOnUqK1euBDjn+/Lhhx9yyy23cNttt/Hee+/pGfJ5tVSeu+66i3nz5nHXXXc1zQHbWctzxtatW+nXr1/Tz5dcHk34hR07dmg//elPNU3TtKysLO2HP/yhzhHpKy0tTfvxj3+saZqmVVRUaBMmTNAefvhh7dNPP9U0TdP++Mc/am+99ZaeIepq6dKl2s0336ytWbNGzst3VFRUaNOnT9dqa2u14uJi7ZFHHpHz840VK1Zozz//vKZpmlZUVKTNmDFDmzdvnrZv3z5N0zTtV7/6lbZlyxY9QxRtyF/qFH+sC/zp+u1v11x/uU7W19dr8+bN0x555BFtxYoVmqZpLb4v9fX12vTp07WamhqtsbFRmzlzplZZWaln6C1qqTyLFi3SPvnkE03TNG3lypXaM88806nLo2maZrfbtXnz5mljx45tWu9SyyMthn4iLS2NqVOnApCcnEx1dTV1dXU6R6WfkSNH8qc//QmAkJAQGhsb2bFjB1OmTAFg0qRJpKWl6Rmibo4fP05WVhYTJ04EkPPyHWlpaYwePRqbzUZ0dDSPP/64nJ9vhIeHU1VVBUBNTQ1hYWHk5+eTmpoKdO1z44/8pU7xt7rA367f/nbN9ZfrpNls5tVXX202L2pL78u+ffsYPHgwwcHBWK1Whg8fzp49e/QK+5xaKs+SJUuYMWMG8O371pnLA/Dyyy8zd+5czGYzQKvKI4mhnygrKyM8PLzp54iIiKZm8a7IYDAQGBgIwOrVqxk/fjyNjY1NvyyRkZFd9vw888wzPPzww00/y3n5Vl5eHna7nXvvvZe5c+eSlpYm5+cbM2fOpKCggGnTpjFv3jwWLVpESEhI0/KufG78kb/UKf5WF/jb9dvfrrn+cp00Go1nTYze0vtSVlZGRERE0zq+ep1oqTyBgYEYDAY8Hg///Oc/ufHGGzt1eU6ePElGRgbXXXdd02utKY+xbUMVvkKTWUgA2LhxI6tXr+a1115j+vTpTa931fPzr3/9i6FDh9KzZ88Wl3fV8/JdVVVV/OUvf6GgoIA777yz2Tnpyufngw8+IC4ujuXLl5ORkcGCBQsIDg5uWt6Vz01X0NnfX3+oC/z1+u1P19yucp08Vzk6W/k8Hg+LFi3i6quvZvTo0Xz00UfNlnem8jz99NM88sgj513nYsojiaGfiI6OpqysrOnnkpISoqKidIxIf1u3buXll1/m73//O8HBwQQGBmK327FarRQXF5/VBN8VbNmyhdzcXLZs2UJRURFms1nOy3dERkYybNgwjEYjCQkJBAUFYTAY5PwAe/bs4ZprrgEgJSUFh8OB2+1uWt6Vz40/8qc6xV/qAn+8fvvbNdefr5MtfdZauk4MHTpUxygvzW9+8xsSExP55S9/CbR83esM5SkuLubEiRM8+OCDwOm4582bx8KFCy+5PNKV1E+MHTuWDRs2AHDo0CGio6Ox2Ww6R6Wf2tpann32WV555RXCwsIAGDNmTNM5+uyzzxg3bpyeIerixRdfZM2aNbz77rvcdttt/OIXv5Dz8h3XXHMN27dvx+v1UllZSUNDg5yfbyQmJrJv3z4A8vPzCQoKIjk5mV27dgFd+9z4I3+pU/ypLvDH67e/XXP9+TrZ0vsyZMgQDhw4QE1NDfX19ezZs4crr7xS50gvzocffojJZOJ//ud/ml7rrOWJiYlh48aNvPvuu7z77rtER0ezcuXKVpVH0TpTO6k4r+eff55du3ahKApLliwhJSVF75B0s2rVKpYtW0ZSUlLTa3/4wx945JFHcDgcxMXF8fTTT2MymXSMUl/Lli2jR48eXHPNNTz00ENyXr7xzjvvsHr1agB+/vOfM3jwYDk/nB6GffHixZSXl+N2u7nvvvuIiori0Ucfxev1MmTIEH7zm9/oHaZoQ/5Qp/hrXeBP129/uub6y3Xy4MGDPPPMM+Tn52M0GomJieH555/n4YcfPut9Wb9+PcuXL0dRFObNm8esWbP0Dv8sLZWnvLwci8XSdMMrOTmZxx57rNOWZ9myZU03vyZPnsymTZsALrk8khgKIYQQQgghRBcnXUmFEEIIIYQQoouTxFAIIYQQQgghujhJDIUQQgghhBCii5PEUAghhBBCCCG6OEkMhRBCCCGEEKKLk8RQCB/zwQcf6B2CEEIIccny8vLo168fb7/9drPXd+3aRb9+/dixY8cl73PPnj3k5uYCMH/+fLZt23bWOg8//DDvvffeeffz5ZdfMmfOHG677TZuvvlmfv3rX1NRUXHe/QrR1UhiKIQP8Xg8/PWvf9U7DCGEEKJVevXqxdq1a5u9tnbt2mZzSV6KtWvXNiWGrZWRkcFjjz3Gk08+yXvvvceaNWu44ooruP/++y9rv0L4G6PeAQghvrV48WLy8/O5++67ufXWW1m5ciWaphEREcETTzxBeHg4I0aM4N5772Xr1q2Ulpby4osv0q9fPyZPnszrr79OYmIiO3bs4MUXX+Ttt99m/vz5pKSkcOTIEf7xj3/w9ddf89JLL6FpGkajkccff5yePXvqXXQhhBB+IDo6GofDwbFjx+jTpw+NjY3s3r2bIUOGALB69WreeecdAgICiIyM5IknnsBms7VYt+Xk5LB+/Xr279/fNDF8Wloab7zxBqdOnWLBggXMnj276dgPPPAAY8eO5eabbwZgyZIl9O3bl/T0dH7yk5+QnJwMgKIo/OQnP2Hu3LlN27a03+PHj7NkyRIMBgN1dXXcf//9jBs3jmXLlpGXl0dBQQEPPfQQAI8++iiBgYGMHz+eZcuWkZ6ejtfr5fe//z3Z2dnU19dzww03cPfdd5OZmcmjjz6KyWTCbrezYMECJk6c2BFvjxDnJS2GQviQhQsXEhERwZNPPsnLL7/MG2+8wdtvv81VV13FK6+8AkBdXR19+/blzTffZObMmRfsPgMQGBjIypUrcTqdLFmyhGXLlrFy5UrmzZvHs88+297FEkII0YXMnj2bNWvWALBhwwbGjx+PqqoUFhaybNky3njjDVasWEFsbCxvvPEG0HLdNm3aNPr378/DDz/M6NGjAdA0jb/97W889dRT/P3vf2923Dlz5vD+++8Dp3vgbN26lVmzZpGVlcXgwYObrauqKsHBwU0/t7TfsrIy7rvvPv7xj3/wyCOP8MILLzStn5eXx5tvvsmgQYN48sknWbBgAStXriQkJASn0wnAm2++SXR0NCtWrOC9997jk08+ISMjg3fffZfJkyezYsUKXn75Zaqqqtrw7AvRetJiKIQPSk9Pp7S0lHvuuQcAp9NJfHx80/Krr74agLi4OLKzsy+4v+HDhwNw7NgxSktLWbhwIXC64lQUpa3DF0II0YVdd9113HTTTTz44IO8//77PPjgg7z11lvYbDYGDhyIzWYD4KqrruKdd95p2u5i6rarrroKgO7du1NTU9Ns2ciRI6moqCA3N5e8vDxGjBhBcHAwqqri9XrPG3NL+42KiuLZZ5/lhRdewOVyNUvghgwZ0lR/ZmRkMGrUKABmzJjBkiVLANixYwdFRUV8/fXXwOm6PCcnhxkzZvDwww9TUFDApEmTmrV6CqEnSQyF8EFms5nU1NSmVsLvMxgMTf/XNO2s5S6Xq9nPJpOpab9xcXGsWLGiDaMVQgghvhUREcGAAQNYvXo1paWlZ7XWnaFpWrObkxeq2wCMRuN517ntttv48MMPKS4u5rbbbgOgX79+7Nmzh9TU1Gbr7t27l6FDh55zv48//jgzZ87k1ltvJTMzk3vvvbdpnTP1KoDX620qx3fLYDabWbBgAddee+1ZcX788cekpaWxdu1aPvzwQ/74xz+2WF4hOpJ0JRXCh6iqitvtZvDgwezfv5/S0lIA1q1bx8aNG8+7rc1mo7CwEIDt27e3uE6vXr2orKwkMzMTgK+//ppVq1a1YQmEEEKI091JX3jhBWbOnNn0Wn19PYcOHaKurg6Abdu2NT17eC6Kopx1s/N8fvCDH/D555+TkZHR1Ar44x//mNdee42MjIym9ZYvX86LL7543n2VlZXRp08fAD799NOmLqLf17t3b9LT0wH47LPPml4fMWIE69atA04nj08//TRVVVWsWLGCoqIiJk+ezJNPPsm+ffsuunxCtCdpMRTCh0RHR9OtWzd+/vOf85vf/Iaf/exnBAQEYLVaeeaZZ8677d13381vf/tbevXq1dR19PusVivPPfccv/3tb7FYLAD8/ve/b/NyCCGE6NomT57Mo48+yqxZs5pe6969O/f9/3buGEVhIArj+BdBmzSTRiy00UbJEdLkFhFs1AsoCaSwCZImB0gOkMLOCwQv4AWsvIWlom6x7MIWKxa7guT/K4dhHlN+vDezWGg2m6nVaqnT6SgMw4fneJ6nJEm0Wq2eqmuMUa/Xk+u632uDwUB5nmu9Xut8PqvZbGo0GqkoiodnzedzxXGsbrer6XSq3W6nLMtk2/aPfXEcK01Ttdtt+b4vy7LUaDQ0mUx0PB4VBIGu16t835cxRv1+X1EUybZt3W43RVH01N2A/2bdf+vVAwAAAG/kdDppPB5rs9nIcZyX1Nzv9zLGaDgc6nA4KAxDVVX1ktrAX6JjCAAAgLe33W5VlqV5Ha4AAABKSURBVKWWy+XLQqH0+T7xaxLncrkwiYO3RccQAAAAAGqOz2cAAAAAoOYIhgAAAABQcwRDAAAAAKg5giEAAAAA1BzBEAAAAABq7gNmX4rZ/HGRxwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Bhe0eO5v-URB", + "outputId": "3669f3c9-eb46-4de4-8f60-5aad40025eb6", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + } + }, + "source": [ + "# Correlation\n", + "fig, ax = plt.subplots(figsize=(25,25))\n", + "mask = np.triu(df_train_eda.corr())\n", + "sns.heatmap(df_train_eda.corr(), annot = True, vmin=-1, vmax=1, center= 0, cmap= 'coolwarm', fmt='.1f', mask=mask, ax=ax);" + ], + "execution_count": 77, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdoAAAYnCAYAAAB7ls9kAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeVyU9drH8e8Aw6ICLoigYBqaSwbaySVLrDT1OSfrKTXLIDva5pJbRyGTY7klVqah4FFcwZP1lJbkOWmWZZ3MUoHUk6igKYu7IIszwzLPH+boiMvgSGp93q+Xr1f3Pdfvd133kP5x+fO6DVar1SoAAAAAAAAAAHBVXK53AQAAAAAAAAAA3MxotAMAAAAAAAAA4AQa7QAAAAAAAAAAOIFGOwAAAAAAAAAATqDRDgAAAAAAAACAE2i0AwAAAAAAAADgBBrtAAAAAAAAAIDfhd27d6t79+5KTk6u9Nl3332nvn37qn///po7d67t/rRp09S/f3898cQT+umnn64qr9tVVwwAAAAAAAAAwA2ipKREkydP1t13333Rz6dMmaKFCxeqQYMGioiIUM+ePXXixAn98ssvev/995WZmanx48fr/fffr3JuTrQDAAAAAAAAAG567u7uWrBggfz9/St9dvDgQfn6+iowMFAuLi7q2rWrNm3apE2bNql79+6SpJCQEBUUFKioqKjKuWm0AwAAAAAAAABuem5ubvL09LzoZ0ePHlXdunVt13Xr1tXRo0d17Ngx1alTp9L9KueuerkAAAAAAAAAgOq2xtjiepdwQ/lLaUa157BarVe1jkY7AAAAAAAAAOB3zd/fX8eOHbNdHz58WP7+/jIajXb3jxw5ovr161d5f0bHAAAAAAAAAAB+14KCglRUVKTs7GyVlZVpw4YNuueee3TPPfdo7dq1kqSdO3fK399ftWrVqvL+nGgHAAAAAAAAANz0duzYodjYWOXk5MjNzU1r167VAw88oKCgID344IN67bXX9PLLL0uS/vznP6tp06Zq2rSpbr/9dj3xxBMyGAyaOHHiVeU2WK926AwAAAAAAAAAoNowo93ebzGj/WoxOgYAAAAAAAAAACcwOgYAAAAAAAAAbkAGo+F6lwAHcaIdAAAAAAAAAAAn0GgHAAAAAAAAAMAJNNoBAAAAAAAAAHACjXYAAAAAAAAAAJzAy1BRJcuXL9cnn3wid3d3mUwmjRkzRp07d3Z4/fz589W+fXu1a9fOofiNGzdq7ty5MhgMslgs6tOnj5566ilt3LhR2dnZGjBggD777DP16tVLP//8sz7//HONGDHiah8PAAAAAAAAuGG4uPEy1JsFjXY4LDs7Wx988IE+/PBDGY1G7d+/XxMmTKhSo/3555+vUr433nhDixcvVkBAgIqLi/XMM8+oSZMmCg8Pt8XNnz9fvXr1UqtWrdSqVasqPRMAAAAAAAAAOItGOxxWVFQks9ms0tJSGY1GNWnSRMnJydq7d68mTZokg8GgmjVravr06Tp16pSio6MVHBysjIwMtWrVSlOnTlV0dLR69uype++9V3//+9918OBBWSwWjRgxQvfee6969Oih8PBw1atXT8XFxYqIiFBAQIAkqWbNmlq0aJG8vb21cuVK7dmzR/Xq1VNGRoaGDx+uyMhILV++XGPHjtX48eMlScXFxSouLtbatWu1bt06LVq0SG5ubmrTpo2io6O1cuVKbd26VSdOnNC+ffs0ePBg9evX73p+zQAAAAAAAABuMsxoh8Natmyp0NBQdevWTdHR0frXv/6lsrIyTZ48WZMmTdLSpUt1zz33aPny5ZKknTt3asyYMfrwww/19ddf69SpU7a91qxZI3d3dyUnJysuLk6TJ0+WJJWVlSk8PFxDhgxRVlZWpRPq3t7edtfPPvusatWqpTlz5tjuBQcHKykpSUlJSQoODtaYMWNUXFyshIQELVu2TMnJycrLy9PWrVslSbt379acOXM0d+5cJScnV8t3BwAAAAAAAOD3ixPtqJIZM2YoMzNT33zzjRITE/Xee+9px44diomJkSRZLBbdcccdkqTGjRurfv36kiR/f38VFhba9tmxY4c6duwoSWrQoIHc3d2Vn58vSQoNDZUkGQwGVVRUXHWt//d//ycfHx/17NlT6enpys3N1eDBgyVJhYWFys3NlSS1bdtWrq6uCggIsKsRAAAAAAAAABxBox0Os1qtslgsCgkJUUhIiCIjI/U///M/Kikp0bJly2QwnHs5Q3Z2tlxdXSutv9S1xWKRi8uZf2BhNBolSbfeeqt++ukn3XXXXba4nJwceXl5XbHWffv26b333rOdrjcajWrTpo0WLlxoF7dy5Uq5ufHbAAAAAAAAADceg5GBJDcLflJw2IcffqiYmBhbg7ywsFAVFRXq3LmzNm7cKOnMSJhNmzZdca877rhDmzdvliTl5eXJxcVFPj4+djFPPvmkli9frv3790s6MyN+7Nix2rVrl13chQ18i8WiV155RVOnTrU15Zs2barMzEwdP35ckvTuu+/q8OHDVfwGAAAAAAAAAKAyjvLCYY899piysrLUr18/1ahRQ2VlZZowYYKCg4MVExOjBQsWyMPDQ2+//baKioouu9df/vIX/fDDD4qMjFRpaakmTZpUKaZhw4Z66623NHbsWLm4uMhgMGjgwIHq3LmzVq5caYtr1aqV+vbtq7Fjx0qS1q1bp3379mnatGm2mHnz5mn8+PF67rnn5O7urtatW8vf3/8afTMAAAAAAAAA/sgM1guPAwMAAAAAAAAArru19W6/3iXcUHoe33m9S7gkRscAAAAAAAAAAOAEGu0AAAAAAAAAADiBGe0AAAAAAAAAcANycTNc7xLgIE60AwAAAAAAAADgBBrtAAAAAAAAAAA4gUY7AAAAAAAAAABOoNEOAAAAAAAAAIATeBkqAAAAAAAAANyADEZehnqz4EQ7AAAAAAAAAABO4EQ7UEVZmZnVnuPWkJBqzwEAAAAAAADg2uBEOwAAAAAAAAAATqDRDgAAAAAAAACAExgdAwAAAAAAAAA3IBc3XoZ6s+BEOwAAAAAAAAAATqDRDgAAAAAAAACAE2i0AwAAAAAAAADgBBrtAAAAAAAAAAA4gUY7AAAAAAAAAABOcLveBQAAAAAAAAAAKjMYDde7BDiIRjtwDaSlpSlx4UKZTp+Wv7+/Ro8Zo/p+fnYxWVlZmjN3rk4VFMjH11cvDR+upk2bXqeKAQAAAAAAAFwrjI4BnGQymTQ9NlajRo5UYmKiOnbsqDlxcZXipsfGqm+fPkpMTNTj/fppxowZ16FaAAAAAAAAANcajXZcM8nJyYq7SIO5KuLi4tSjRw9FRkbafm3cuPEaVXjG5s2bNWLEiGu2X1p6ugICAtSsWTNJUo8ePbQtNVUlJSW2mH379qmoqEidO3eWJHXq1En5BQU6cODANasDAAAAAAAAwPXB6BjccJ5++mlFRERc7zIclpOTo8DAQNu1l5eXvL29lZuXp2YhIediAgLs1gUEBOhgdrYaN278m9YLAAAAAAAA4Nqi0f4HV1hYqBEjRshkMqlr16764IMPNGPGDM2cOVNubm4KDAzU5MmTlZqaquXLl8tgMCgrK0s9e/bU8OHDtWnTJk2bNk1+fn6qX7++goODJUnvvPOOtmzZovLyckVEROihhx5SdHS0jEaj8vPzq3zy/fDhw3r11VdVWloqV1dXTZkyRQ0bNlT37t31wAMPaNOmTerSpYusVqv+85//KDw8XH/729/03Xffafbs2TIajfLx8dGsWbPs9l23bp0WLVokNzc3tWnTRtHR0VX+Ds0mk9zd3e3ueXh4yGQynYsxm2W8MMbdXebzYgAAAAAAAIDzubjxMtSbBaNj/uA+/vhjhYSE6L333pO3t7ckacqUKYqPj9eyZctUr149ffbZZ5Kkn376SdOnT9eKFSuUlJQkSXr77bf15ptvavHixTp58qQkacuWLcrJydHy5cu1bNkyJSQk2JrOvr6+VzVeZvbs2Ro0aJCWLl2qgQMHKj4+XpKUnZ2t/v3764MPPlBSUpJ69eqlDz74QB999JEkqaCgQG+99ZaSk5NVq1Ytffvtt7Y9i4uLlZCQoGXLlik5OVl5eXnaunVrlWvz9PSUxWKxu2c2m+Xl6WkXU3pBjMlslud5MQAAAAAAAABuTpxo/4PLzMxUhw4dJEndunVTbGysTp48qZdeekmSVFJSojp16qhBgwZq3bq1vLy87Nbn5OSoZcuWkqT27dvLbDZr27ZtSk9PV2RkpCSpoqJCR48elSSFhoZesaZly5Zp7dq1tuuoqCilpqZq3759SkhIUHl5uerWrStJqlWrlkJ+Hc9So0YN3X777XJzc1NFRYUkqW7dupowYYLKy8t18OBBderUSTVr1pQk7d27V7m5uRo8eLCkM6f7c3Nz9ac//alK32FQcLDdHPni4mIVFhaqUaNGdjF5hw7Zrq1Wq/Ly8hgbAwAAAAAAAPwO0Gj/g7NarXJxOfMPGwwGg4xGo/z8/Gwn1s/avHmz3Nwq/+9ydu3ZvSTJ3d1dffv21QsvvFAp3mg0XrGmi81oNxqNmj17tvz9/e3uu7q62l1fWOP48eM1f/58hYSEaNKkSZX2bNOmjRYuXHjFmi4nLDRUs2bN0o6dO9Xm9tu1atUqdezQwe60+i2NG8vXx0cbNmzQ/fffr/Xr18vf319BQUFO5QYAAAAAAABw/TE65g+ucePG2rFjhyRp48aN8vX1lXTmtLckJSUladeuXZdc36BBA2VlZclqteqHH36QdObU+oYNG1RRUSGz2azJkyc7XWdYWJjWr18vSdq0aZNSUlIcWldUVKTAwECdOnVKmzdvVmlpqe2zpk2bKjMzU8ePH5ckvfvuuzp8+HCVa/Pw8FB0VJTi4+M1aPBg7crI0NChQ3Xs2DG9OGSILW7cuHH6ZPVqDX72WX22dq3GjR1b5VwAAAAAAAAAbjycaP+De/TRRzV06FBFRkaqc+fOcnFx0dSpU/XKK6/IaDTK399f/fv3V2pq6kXXjxo1SiNHjlTDhg0VEBAgSbrzzjvVsWNH9e/fX1arVQMGDHC6zuHDh2v8+PFas2aNDAaD3njjDYfWDRgwQE8++aSaNGmiZ599VnFxcRozZowkycvLS+PHj9dzzz0nd3d3tW7dutKJeUeFhoYqfu7cSvfnJSTY/rtp06aa9c47V7U/AAAAAAAA/ngMrrwM9WZhsJ6d94E/pJycHGVlZalLly5KTU1VXFycFi1adL3LuqFlZWZWe45bf507DwAAAAAAgD+ujW3aXe8SbijhOy5+GPhGwIn2Pzhvb28tWbJEc389jf3qq69We87c3FxFRUVVut++fXuNGDGi2vMDAAAAAAAAwLXEiXagijjRDgAAAAAAgN8CJ9rt3cgn2nkZKgAAAAAAAAAATqDRDgAAAAAAAACAE5jRDgAAAAAAAAA3IBdXw/UuAQ7iRDsAAAAAAAAAAE6g0Q4AAAAAAAAAgBNotAMAAAAAAAAA4AQa7QAAAAAAAAAAOIGXoQJVZDVU70soBo48KCm7WnN8m9K1WvcHAAAAAACA8wwuvAz1ZsGJdgAAAAAAAAAAnECjHQAAAAAAAAAAJ9BoBwAAAAAAAADACTTaAQAAAAAAAABwAi9DBQAAAAAAAIAbkMGVc9I3C35SAAAAAAAAAAA4gUY7AAAAAAAAAABOoNEOAAAAAAAAAIATmNEOXCNff/WVVqxYobKyMt3SpIlGjx6tmjVrVopLS0vTwsREnTaZ5O/vrzGjR8uvfn2Hcnh5umjssNv0QBd/3fe/Gy8Zd2dobQ0bdKtqeLrq0BGzps3epaPHLVf9bAAAAAAAAAAujRPtwDVw5MgRJSQk6PVJk7QgMVENGjTQ0qVLK8WZTCbFTp+ukaNGKTExUR07dlTcnDkO50mY0U6HjpgvG+Pp4aLXx7ZSbNxuPfnij/rPj8f1t2G3VfmZAAAAAAAAcH25uBr4dd6vGxmNdlw3ycnJiouLc2qPuLg49erVy+7e7t271aJFC23evPmS6yIjI7V7926ncp/v+02b1LZtW/n7+0uSevbooW+/+aZSXHpamgICAtSsWTNJUo8ePZS6bZtKSkocyvPm3D1avTb3sjF/Cq2j3EMm7c4skiSt+TxPHdrWkZeXa1UeCQAAAAAAAICDaLTjpldWVqb//ve/tus1a9YoODj4N60hJydHgYGBtuvAwEDl5+ersLDwsnFeXl7y9vZWXu7lm+dn7cw4dcWY4EZeyjl02nZ92lShgsJSBQV6OZQDAAAAAAAAQNUwox1VUlhYqBEjRshkMqlr16764IMPNGPGDM2cOVNubm4KDAzU5MmTlZqaquXLl8tgMCgrK0s9e/bU8OHDtWnTJk2bNk1+fn6qX7++rSH+zjvvaMuWLSovL1dERIQeeughRUdHy2g0Kj8//7In37t27aqUlBS1bt1akvTNN98oLCxM0pkmfFRUlA4fPqySkhK99NJLuv/++21ri4qKNH78eBUUFKi8vFwTJkxQy5Ytq/y9mM1m+daubbs2urvLYDDIbDLJ29vbdt9kNsvd3d1urYeHh0wmU5VzXoqHh4sslgq7exZLhbw8+Xs1AAAAAAAAoDrQeUOVfPzxxwoJCdF7771nayBPmTJF8fHxWrZsmerVq6fPPvtMkvTTTz9p+vTpWrFihZKSkiRJb7/9tt58800tXrxYJ0+elCRt2bJFOTk5Wr58uZYtW6aEhARb49nX1/eK42XCw8P11VdfyWq1avv27br11ltlNBolSQUFBbr33nuVnJys2bNnV9pr6dKl6tKli5YuXarXXntNsbGxDn8XKatX6/nnntPzzz2njN27VWo597JRi8Uiq9UqTy/7U+Senp6yWOxfSmo2myvFnfXYXxpqeUJ7LU9or/BO9Ryqy2SqkLu7/W9tDw9XlZwud2g9AAAAAAAAgKrhRDuqJDMzUx06dJAkdevWTbGxsTp58qReeuklSVJJSYnq1KmjBg0aqHXr1vK6oIGck5NjOzHevn17mc1mbdu2Tenp6YqMjJQkVVRU6OjRo5Kk0NDQK9bk6emp2267TVu3btUXX3yhXr16af369ZIkHx8fbd++Xe+//75cXFyUn59vtzY1NVUnTpzQ6tWrJUmnT5+utP+l9H74YfV++GFJ0qeffqrt27fbPWfdunVVq1YtuzXBQUHauHGj7bq4uFiFhYVq1KjRRXOsXJOrlWscGytz1i/ZJerWpb7tumYNV3nXclN2ruPPBgAAAAAAAMBxNNpRJVarVS4uZ05LGwwGGY1G+fn52U6sn7V582a5uVX+3+vs2rN7SZK7u7v69u2rF154oVL82ZPpV9KrVy/9+9//1ubNmzVq1Chbo/3TTz9VQUGB/vnPfyo/P199+/attH9MTIzatWvnUJ5L6dSpk5KTkpSdna2goCCtWrVKXe+7r1JcaFiYZs2apZ07duj2Nm20atUqdejYUZ6enk7lP9+27fl6ZWQLhbb20U//PaX+jwTpux+Py2SuuPJiAAAAAAAA3DAMLobrXQIcxOgYVEnjxo21Y8cOSdLGjRvl6+srSdq7d68kKSkpSbt27brk+gYNGigrK0tWq1U//PCDpDOn1jds2KCKigqZzWZNnjy5ynXdd999Wr9+vZo1ayYPDw/b/ZMnTyooKEguLi76/PPPK41tCQsLszXl9+7dq8WLF1c5tyT5+flp6LBhmjxpkp4dPFhms1kRERGSpIyMDE149VVJZ+axR0VHKz4+XoMHDVLGrl0aOnSoQzluC6ml5QntNXtKmNxcDbaRMpLUqrm33n79Dkln5rG/NuO/GvNic634Rwfd3sJHMxP2XNVzAQAAAAAAALgyTrSjSh599FENHTpUkZGR6ty5s1xcXDR16lS98sorMhqN8vf3V//+/ZWamnrR9aNGjdLIkSPVsGFDBQQESJLuvPNOdezYUf3795fVatWAAQOqXJeXl5fCwsLUs2dPu/s9evTQkCFDlJaWpj59+iggIEBz5syxfR4REaFXXnlFAwYMUEVFhV79tSF+NcLDwxUeHl7pfosWLTRl6lTbdWhoqObGx1d5/92ZRXpqyI8X/eznPYV6eeK50TWpOwr0zIitVc4BAAAAAAAAoOoM1rPzOwAH5OTkKCsrS126dFFqaqri4uK0aNGi613WbyozK6ta9x848mC17i9J36Z0rfYcAAAAAAAAcM7muzte7xJuKB03bb7eJVwSJ9pRJd7e3lqyZInmzp0rSU6dAHdUbm6uoqKiKt1v3769RowYUe35AQAAAAAAAOByaLSjSnx8fLRw4cLfNGfDhg0rvWwVAAAAAAAA+L1zceVlqDcLXoYKAAAAAAAAAIATaLQDAAAAAAAAAOAEGu0AAAAAAAAAADiBRjsAAAAAAAAAAE7gZagAAAAAAAAAcAMy8DLUmwYn2gEAAAAAAAAAcAKNdgAAAAAAAAAAnMDoGKCKKqyu1br/0tnB1bq/wWpVVmZmtea4NSSkWvcHAAAAAAAAbiScaAcAAAAAAAAAwAk02gEAAAAAAAAAcAKjYwAAAAAAAADgBmRw4Zz0zYKfFAAAAAAAAAAATqDRDgAAAAAAAACAE2i0AwAAAAAAAADgBBrtAAAAAAAAAAA4gZehAgAAAAAAAMANyOBiuN4lwEGcaAcAAAAAAAAAwAmcaAeuka+/3qD3V/xT5WXluuWWJho5+mXVrFmzUlx6WqoWLVyg06dPy9/fX6PG/E1+fvUdy/HVV1qxYoXKysp0S5MmGj169EVzpKWlaWFiok6bTPL399eY0aPlV//yOdLS0pS4cKFMv9Y1eswY1ffzs4vJysrSnLlzdaqgQD6+vnpp+HA1bdrUodoBAAAAAACA3ytOtAPXwJEjR/SPhHi99vpU/WPBIvk3aKBlSxdXijOZTmtG7DS9NHK05icuVoeOnTQ37l2HcyQkJOj1SZO0IDFRDRo00NKlSy+Sw6TY6dM1ctQoJSYmqmPHjoqbM+eye5tMJk2PjdWokSNta+bExVWKmx4bq759+igxMVGP9+unGTNmOFQ7AAAAAAAA8HtGox3XVHZ2ttq1a6fIyEhFRETo8ccf1+eff+7Q2h9//FHHjx+vlroiIyM1ffr0Sveulc3ff6ewtm3l7+8vSerRs5f+8+3GSnHp6WkKCAhUs2bNJUkP9uil1NStKikpuWKO7zdtUtvzcvTs0UPffvNN5RxpaQoICFCzZs3O1NKjh1K3bbtsjrT09EprtqWm2q3Zt2+fioqK1LlzZ0lSp06dlF9QoAMHDlyxdgAAAAAAAOD3jNExuOaaNm2qpKQkSVJ+fr4effRRdenSRZ6enpdd99FHH2nQoEGqV69etdS1ZcsW5eTkqFGjRtd875ycHAUGNrRdBwYGKj8/X0WFharl7W0XFxAYaLv28vKSt7eP8vJyFRLSzIEc59aezVFYWCjvC3IEVsrhrbzcXIU0u3iOS63JzctTs5CQczEBAXbrAgICdDA7W40bN75s7QAAAAAAAKg6F1dehnqzoNGOalW7dm3Vr19f+/fv1+uvvy43Nze5uLho9uzZKioq0tixY1WjRg099dRTWr9+vfbs2aO4uDgNHDhQ3bt317Zt2+Tt7a358+erpKRE48ePV0FBgcrLyzVhwgS1bNlSPXr0UHh4uOrVq6chQ4ZcspaXXnpJs2fPrjTuJCMjQ5MmTZKLi4tq1qyp6dOnq3bt2lV6TrPZJF9fX9u10egug8Egk9lk12g3m0xyd3e3W+vu4S6TyeRADrN8z6vL6H4mh9lksmu0m8zmSjk8PDwum+NidV24xmw2y3hhjLu7zA7UDgAAAAAAAPye0WhHtcrOzlZ+fr6OHz+umJgYtW7dWrNnz1ZKSoruv/9+/fzzz9qwYYPq1KmjVq1aKSYmRg0bNtTBgwf1yCOPKCoqSo8//rgyMjL05ZdfqkuXLurXr5/27t2rqVOnavHixSorK1N4eLjCw8MvW0vXrl21aNEi7dq1Sy1btrTdnzp1qsaNG6ewsDAtXLhQy5Yt04gRI674bCkpn2hNyieSJFdXN9WpU9f2mcVikdVqlaenl90aT09PWSwWu3tms1leF8TZcqxerZSUlDM53NxUp06dyjm8HMtxYZxjdXnaxZReEGMym6/4LxUAAAAAAACA3zsa7bjm9u3bp8jISFmtVnl4eCg2NlZeXl566623ZDKZdOTIEfXu3VuSFBwcbNc8PqtWrVq2ZnhAQIAKCwuVmpqqEydOaPXq1ZKk06dP2+JDQ0Mdqu3ll1/WW2+9pcTERNu9zMxMhYWFSdKZl4Be4cWhZ/Xu/Yh6935EkrTm09XasX277bPcnBzVrVtXtWrVslsTFNxY32z82nZdXFysosIiNWzUUBfT++GH1fvhhyVJn376qbaflyPnEjmCg4K0ceO5+fDFxcUqLCy87MicoODgK64JCg5W3qFDtmur1aq8vDzGxgAAAAAAAOAPj5eh4po7O6M9OTlZCxcuVLt27TR16lQ9/fTTSk5OVv/+/W2xRqPxonu4urraXVutVhmNRsXExCgpKUlJSUn68MMPr7jPhUJDQ1WzZk1t2rTpop+XlpbKxaXqvy06duqs9PRUZWcflCR9vOojhXe9/yL5w3Tk6BHt3LnDFtehQ8dKJ98vplOnTkpPS1N2drYkadWqVep6332Vc4SF6eiRI9q5Y4ctrkPHjpc9eR4WGqojR49qx86dtjUdO3SwW3NL48by9fHRhg0bJEnr16+Xv7+/goKCrlg7AAAAAAAA8HtGox2/ifz8fDVu3FgWi0Vff/21SktLK8UYDAaVl5dfco+wsDCtX79ekrR3714tXrz4qmoZPXq0Zs2aZbtu3ry5UlNTJUk//vij2rRpU+U9/fz8NGToS5oy+TU99+wzMpvNeiriaUlSRsYuxUx4RdKZuefjosYrIX6Onhv8jDIydmnI0OEO5xg6bJgmT5qkZwcPltlsVkRExK85MjTh1VdtOaKioxUfH6/BgwYpY9cuDR069LJ7e3h4KDoqSvHx8Ro0eLB2ZWRo6NChOnbsmF48b+79uHHj9Mnq1Rr87LP6bO1ajRs7tqpfFQAAAAAAAPC7w+gY/CYiIiI0bPGBc7AAACAASURBVNgwBQcHKzIyUpMmTdKf//xnu5gOHTpoxIgRio+Pv+Qer7zyigYMGKCKigq9+mtjuaqaNGmi1q1ba+/evZKkCRMm6PXXX5fBYJCvr6/eeOONq9q3S3hXdQnvWul+ixYtNXnKuT1DQ8M0Z+68q8pxqVn0LVq00JSpU8/LEaq5l/geLyU0NFTxc+dWuj8vIcH2302bNtWsd96p0r4AAAAAAAC4OgYXw/UuAQ4yWK1W6/UuAriZ7Mn8pVr3dzFc+lT/tWD4DX7L3xoSUu05AAAAAAAAfu/Se1U+cPlHFvbZxisHXSecaMfvxhdffKElS5ZUuv/000/rwQcf/O0LAgAAAAAAAPCHQKMdvxvdunVTt27drncZAAAAAAAAAP5geBkqAAAAAAAAAABO4EQ7AAAAAAAAANyADC6ck75Z8JMCAAAAAAAAAMAJNNoBAAAAAAAAAHACjXYAAAAAAAAAAJxAox0AAAAAAAAAACfwMlQAAAAAAAAAuAEZXAzXuwQ4iEY7UEVGq7la96+Qa7XubzVU7x/QA0celJRdrTkk6duUrtWeAwAAAAAAAHAEo2MAAAAAAAAAAHACjXYAAAAAAAAAAJxAox0AAAAAAAAAACfQaAcAAAAAAAAAwAm8DBUAAAAAAAAAbkAurobrXQIcxIl2AAAAAAAAAACcQKMdAAAAAAAAAAAn0GgHAAAAAAAAAMAJzGgHroG09HQtWLhIp0+b5O/vr5dHj1R9Pz+7mMysfYqbG69Tp07Jx8dHI4YP1a1NmzqeIy1NiQsXynT6tPz9/TV6zJhKObKysjRn7lydKiiQj6+vXho+XE2rkOPrr77SihUrVFZWpluaNNHo0aNVs2bNi9ayMDFRp01nnnfM6NHyq1//ivt7ebpo7LDb9EAXf933vxsvGXdnaG0NG3Srani66tARs6bN3qWjxy0OPwcAAAAAAADwW+JEO+Akk8mkabFvatSIl7RowT/UqWN7vTtnbqW4N2Jn6PG+j2nRgn+of7++in3z7SrlmB4bq1EjRyoxMVEdO3bUnLi4SnHTY2PVt08fJSYm6vF+/TRjxgyHcxw5ckQJCQl6fdIkLUhMVIMGDbR06dKL1hI7fbpGjhplqyVuzhyHciTMaKdDR8yXjfH0cNHrY1spNm63nnzxR/3nx+P627DbHH4OAAAAAACA3wuDi4Ff5/26kdFoB5yUlv6TAgMC1LxZM0lSzwcf1LbUNJWUlNhi9u3fr+LiYnW++25J0t2dOiq/oEAHDhx0MEe6AgIC1OzXHD169NC21FT7HPv2qaioSJ07d5YkderU6dccBxzK8f2mTWrbtq38/f3PPEePHvr2m28qxaWnpVWqJXXbNrtaLuXNuXu0em3uZWP+FFpHuYdM2p1ZJEla83meOrStIy8vV4eeAwAAAAAAAPit0WiHU7Kzs9WuXTtFRkYqIiJCjz/+uD7//HOH1v744486fvz4Na/p4MGD6tWrlyyWc6NGFixYoNjY2GueS5Kyc3IUGBhgu/by8pKPt7dy8/LsYgICAuzWBQY00MHsbIdy5OTkKDAw0C6H9wU5cnJyFHhBjoCAgKvOERgYqPz8fBUWFjpUS17u5RvokrQz49QVY4IbeSnn0Gnb9WlThQoKSxUU6OXIYwAAAAAAAAC/ORrtcFrTpk2VlJSk5ORkzZ8/X9OmTZPJZLriuo8++qhaGu3BwcG6//77tXz5cknSyZMn9eGHH2ro0KHXPJckmc1muRvd7e65u7vbfQdms1nu7sYLYjwc+p4kyWwyyd3dPoeHh0elHMYLY9zdZXY0xwXrje7uMhgMldabzOYr1uIMDw8XWSwVdvcslgp5efLHFQAAAAAAAG5MvAwV11Tt2rVVv3597d+/X6+//rrc3Nzk4uKi2bNnq6ioSGPHjlWNGjX01FNPaf369dqzZ4/i4uI0cOBAde/eXdu2bZO3t7fmz5+vkpISjR8/XgUFBSovL9eECRPUsmVL9ejRQ+Hh4apXr56GDBly0TqGDBmifv36qU+fPoqPj9czzzwjb29vvfPOO9qyZYvKy8sVERGhhx56SN9++61mzZolT09P1atXT2+99ZaMRuNF970YT09PWUrtX9RpNpvl5XnuBLanh6csltLKMV6ejuewXCyHp11M6QUxJrNZnp6XzpGyerVSUlIkSa5ubqpTp47tM4vFIqvVKk8v+5Pkl6rlwjhJeuwvDdXnoUaSpH8szdLG76/8FysmU4Xc3e2b6h4erio5XX7FtQAAAAAAAMD1QKMd11R2drby8/N1/PhxxcTEqHXr1po9e7ZSUlJ0//336+eff9aGDRtUp04dtWrVSjExMWrYsKEOHjyoRx55RFFRUXr88ceVkZGhL7/8Ul26dFG/fv20d+9eTZ06VYsXL1ZZWZnCw8MVHh5+yTp8fHwUGRmpv//97zpw4ICio6O1ZcsW5eTkaPny5bJYLHr00UfVvXt3JScnKzo6WnfddZfWrVun/Px81a9f3+FnDg4K0tcbz80yLy4uVlFRkRo1anguJjhIeeeNebFarcrNy1Xjxo0dyhEUHKyNGzfa5SgsLFSjRo3sYvIOHbLLkZeXd9kcvR9+WL0ffliS9Omnn2r79u22z3JyclS3bl3VqlWr0vNeqZazVq7J1co1Vx4pc75fskvUrcu5779mDVd513JTdu7py6wCAAAAAAD4/TG48C/8bxb8pOC0ffv22Wa0T5w4UbGxsapXr55mzpypiIgIrVmzRvn5+ZLOjHU5/9T0WbVq1VLLli0lnZkrXlhYqNTUVL333nuKjIzU66+/bjcrPDQ09Ip1PfHEE9q+fbuGDRsmV1dXbdu2Tenp6YqMjNTgwYNVUVGho0ePqlevXpo4caLmzZunVq1aVanJLklhoXfoyJEj2rFzpyRp5cefqEOH9nYnyW9p3Fi+vr768quvJEmfr/9C/vX9FXSR5vTFc4TqyNGjthyrVq1Sxw4dKufw8dGGDRskSevXr5e/v7+CgoIcytGpUyelp6Up+9eZ7qtWrVLX++6rFBcaFqajR45o544dtrgOHTte9uR8VWzbnq8G/p4Kbe0jSer/SJC++/G4TOaKK6wEAAAAAAAArg9OtMNpZ2e0ny8yMlLPPfecwsPDtXDhQpWUlEjSJUeyuLq62l1brVYZjUbFxMSoXbt2leIdGe3i5uamhg0bKjg4WNKZuel9+/bVCy+8YBcXHBysLl26aP369RoyZIhmz56tkJCQK+5/loeHh16JGqc5CfNkMpnVMDBQfxs9SseOHdf4v/9d8+PnSpKix/1Ns96do6Tl/1Sd2rUVNfblKuWIjopSfHy8TCaTGjZsqDGjR+vYsWOaEBOjeQkJkqRx48Zp9rvvKnn5ctWuXVvjxo51OIefn5+GDhumyZMmqby8XCHNmtlG82RkZChp2TJNmTpVHh4eioqOtqtl9JgxV9z/tpBamvi3VnJzNcjN1aDlCe0lSU8N+VGtmnvr2YgmennidlksFXptxn815sXm8vRwVU7eaU2dtcvh5wAAAAAAAAB+azTaUS3y8/PVuHFjWSwWff3112rbtm2lGIPBoPLyS8/dDgsL0/r169WuXTvt3btX33zzjf76179edU2hoaGaMWOGnnvuOZWWlmrGjBmKiYnR3LlzFRERof79++v48ePKzMysUqNdOnOqfd6cuEr3zzbZJalpkyaaPfMtp+qPnzu30v2zTXbpzF96zHrnnavOcamRPC1atNCUqVPtapkbH1+lvXdnFumpIT9e9LOf9xTq5Ynnxtak7ijQMyO2Vml/AAAAAAAA4HphdAyqRUREhIYNG6YRI0YoMjJSq1atUlFRkV1Mhw4dNGLECO3Zs+eSexw4cEADBgzQhAkTdNdddzlV05133qmOHTuqf//+euqpp3T77bdLkho2bKi//vWveuaZZ7Rr1y516dLFqTwAAAAAAAAA/lgMVqvVer2LAG4m+/furtb9KwyuVw5ygtVgqNb9B448WK37n/VtStffJA8AAAAAAMD1sqtfj+tdwg2l5f+tu94lXBKjY3DT+uKLL7RkyZJK959++mk9+OCDv31BAAAAAAAAAP6QaLTjptWtWzd169btepcBAAAAAAAA4A+OGe0AAAAAAAAAADiBRjsAAAAAAAAAAE6g0Q4AAAAAAAAAgBOY0Q4AAAAAAAAANyCDi+F6lwAHcaIdAAAAAAAAAAAn0GgHAAAAAAAAAMAJjI4BqqjeiT3Vuv+xei2qdf8Ka/X+/drn/f9TrftL0hK/8Ur4rHpzDOlVvfsDAAAAAADg94MT7QAAAAAAAAAAOIET7QAAAAAAAABwA+JlqDcPTrQDAAAAAAAAAOAEGu0AAAAAAAAAADiBRjsAAAAAAAAAAE6g0Q4AAAAAAAAAgBN4GSoAAAAAAAAA3IAMLpyTvlnwkwIAAAAAAAAAwAk02gEAAAAAAAAAcAKjY4Br4MedezTrvdU6bbYooF4dTXz+CTWoW9suJm33Pr2z/BMVm0zydHfXmKce0Z0tQxzOkZaWrgULF8p0+rT8/f01Zsxo1ffzs4vJyspS3Ny5OlVwSj6+Pnpp+HDd2rSpwzm+/vorvb/iPZWVlemWW5po1OgxqlmzZqW49LQ0LVy4QKdPm+Tv76/RY8bIz6/+Zff+YV+eZq7fohJLmQJ9a2rSw/eogY/93m0nL1WTej62a3/vGpof2dPh+jO2rdEPaxNUUVGqegG36cEB0+Th5W0XU3A8W0un9JSvX7DtXsAtoeoZMcPhPAAAAAAAAMD5aLQDTjptMmv83CTFjXteLZsEacXajXpj8Yea9fKzthhLaZlefmeRYl96Wne1bq5v0/6rV+OT9O93X3Moh8lk0huxsZoyeZKaN2umjz9Zrbi4OZr0uv36N2Jj9deBz6hz57u16fvvNWPGm5qXEO9QjiNHjmheQoJmvxsnf39/JS6Yr2VLl2jI0GGVaomNfUOTJk9Rs2bNtfqTjzUnLk6vvT7p0t+RpVRRKzcqfkB3tQqsp3/+8LOm/Ot7xT3RrVLsx0MfdajeC506kauvPpysJ/+2Uj51G2rjqun6bs07ur/v3yvF1qzdQANf/eyq8gAAAAAAAAAXYnTMH1h2drbatWunyMhIRUREaODAgdq0adNvlj82NlYrV66s8rrPPqt6gzQuLk59+vSR1Wq13YuMjKzyPhfz43/3qpF/XbVsEiRJerhrR32/PUPFp022mLLycr06qJ/uat1cktS2xa06evKUCotPO5QjLT1dgQEBat6smSSpZ48HtS01VSUlJbaYffv2q6ioWJ073y1JurtTJ+UXFOjAgQMO5fj++01q27at/P39JUk9evbUt99+UykuPT1NAQGBatbszLM82KOnUlO32dVyoR/2H1JQnVpqFVhPkvS/bZtpU2auis2lDtXmiKwdXyj4trvlU7ehJOn2u/tqTyrNdAAAAAAAAFQ/TrT/wTVt2lRJSUmSpAMHDujFF1/UzJkz1bJly+tc2cVZLBYtWbJEvXr1uqq1//73v/XnP//5mtZ04NBRBfmfG+FSw9NDvrVq6ODhY7bmew1PDz3QPtQW8136z2ocUF/eNb0cypGTk6PAwEDbtZeXl7y9vZWbl6dmISHnYgIC7NYFBAToYHa2Gjdu7FCOgPNyBAYGKj8/X4WFhfL29raLu1gteXm5CglpdtG9fzl+SkF1zu1Rw92o2jU8dPDEKbX8tfl+1vhV32jXoeOqXcNDIx74k9oG+1+xdkk6eWS/fP3OPaevX2OVFB2XqaRAnjV87WItpiKtThyqk4ez5FO3kbo+Ol51Axwf4wMAAAAAAPBbcHE1XO8S4CAa7bBp3LixXnzxRf3zn/9UixYtlJKSIhcXF3Xv3l2DBg1SXFycDh06pLy8PB09elRjx45VeHi41q1bp0WLFsnNzU1t2rRRdHS0Vq5cqa1bt+rEiRPat2+fBg8erH79+umTTz5RYmKiGjRoIE9PTzVv3lzl5eWKiYnRwYMHVVZWphEjRujuu+9WZGSkOnfurO+//14nT57UvHnztGDBAmVkZOi1117T888/r7Fjx8rFxUXl5eV688031ahRo0s+35AhQ/SPf/xDDz74oIxGo+1+YWGhoqOjderUKZWVlWnChAm6/fbbHf7eTBaL3I32v5U83Y0ymS0Xjd9zIFczl3+iKUMjHM9hMsvobrS75+HhLpPp3Kl5k9ksd3d3+xh3+5jLMZtNqu17riFtNLrLYDDIbDbZNdrNJlOlWtw9PC6bx1RaJg83V/va3Fx1urTM7t5j7ZrrifYtdVuDulq7c79Gvv+lUoY/Jh9P++e6mDLLadXwrmu7dnNzlwwGlVpO2zXa3T1rquWfHtKd9w+ST52G2vbVEq1OHKqnX1kjF1f+SAQAAAAAAEDV0VWCnTZt2ujtt9/Wvn379N5770mSnnzySdsJ8sOHD2vRokXKyMhQVFSU/vSnPykhIUHvv/++3N3dNXLkSG3dulWStHv3bq1YsUL79+/XmDFj1LdvX73zzjv66KOP5OPjo8cee0ySlJKSovr162vatGk6ceKEBg4cqJSUFElSrVq1tHTpUr311ltat26dBg8erPT0dL322mtavHixOnfurGHDhmnnzp06evToZRvt9erVU/fu3bVixQq7sTFLly5VWFiYnn/+eW3fvl1vvPGGkpOTHf7OPD3cZbmgYWyylMrL06NSbPrufXplzjJNGPy47mp18dPfF83h6alSi/2YFbPZLC9Pz/NiPGSxWC4Sc+lT8ykpq/VpympJkqurm+rUOdeotlgsslqt8rxg/aVquTDufF7ubjKXldvdM5WWyeuChv3fH+ps+++etzdR4rc/Kf3gEXVpHnTRfdM2Jiv9mzM/KxdXo2r4nHsha1mpWbJaZXSvYV9LzTp2c9vvvP+v2rx2rk4e3a96AY7/TAAAAAAAAICzaLTDTnFxsWrUqKFffvlFTz/9tO1eTk6OJOnuu8/M/27RooUOHz6svXv3Kjc3V4MHD5Z05nR4bm6uJKlt27ZydXVVQECACgsLdfLkSdWsWVP16p0ZFXLnnXdKklJTU7V161Zt27ZN0pmm7dmG8V133SXpzAiU/Px8u1rvueceDR8+XIWFherZs6fatWt3xecbNGiQnnjiCT366LkXbu7YsUNDhgyRJN1xxx365ZdfqvSdNQn01+ffp9mui0pO61RxiRo38LOL23MgV9FzlmrasKfVrsWtVcoRHBykjRs32q6Li4tVVFhk9xcLwcHByjuUZ7u2Wq3Kzcu77NiY3r0fVu/eD0uSPv00RTu2b7d9lpuTo7p166pWrVp2a4KCg69Yy4Wa1PPV2p37bdeFJotOmSy6pe65k/IlllIdOVWiJn7nTp+XV1TIzfXSr5JoGx6htuFn/mVA+jfLlZ35o+2z/KP7VdOnvjxr+NitMZUUyHz6lHzrBdvuWSsq5OLCH4cAAAAAAAC4OrwMFXZ27Nghs9ms++67T0lJSUpKSlJKSorat28vSaqoqLCLNxqNatOmjS32448/Vu/evSVJbm6VG5cuLuf+lzv7YlKj0agXX3zRtse6detsI1BcXV0rxZ9122236ZNPPtFdd92lmTNn6uOPP77i89WsWVNPPPGEFi5caLtnMBjs9r7wGa/krtbNdOj4SaVlZEmSln/2te5t29ruRLvVatXE+e8pamDfKjfZJSksNFRHjh7Rjp07JUkrV32sDh06yPO8E+23NG4sXx9fbdjwlSTp8/Xr5e9fX0FBl26An69Tp7uVnp6m7OyDkqRVq1aqa9f7KsWFhobpyNEj2rlzhyTp41UrK9VyofZNApRXUKTUA4clScmb/6vw5kF2J9oPFRTr6cX/0oETpyRJ32Xm6GSJWXc08rvonhcKuaO7Du7epBOHz/wctm1YohZ3PlQp7vCB7fpozkCVFJ2QJO3Y9IG86wTK1y+4UiwAAAAAAADgCBrtsDlw4ICWLFmi5ORkbd68WadPn5bVatWUKVNs87fPjoXZtWuXGjZsqKZNmyozM1PHjx+XJL377rs6fPjwRfevXbu2CgsLderUKZWWltpOsIeFhemLL76QJB0/flwzZ868ZI1n57FL0po1a7Rnzx51795dI0eO1I4dOxx6zscff1xffvmljh07JunMKfbNmzdLktLS0tS8eXOH9jnL091dU4dFKnbpR/rfl6dqx95fFDWwj46cyNfj0TMkSdv3/qK9B3IV9/6n6jNuuu3Xrv3ZDuXw8PBQdFSU5sYn6K+Dn9WujF0aNnSIjh07pheGDLXFRY0bp09Wr9agZ5/TZ2vXKWrsWIefw8/PT0OHDtfkyZP03LODZDab9VTEmRE7GRkZipkw3lZLVFS0EuLn6tnBf9WujF0aMnTY5b8jo5umP9ZVb/x7s3rPWantOUf1yv900uFTxeoz7xNJ0q31a2tsjw4a9f6X+t/4VZr3dbpm9b9ftTyuPJ9dkmrVbqAH+k1UysJhWjK5h0pLT6vTn1+SJB365SetTDjzry5uaXmvQu8doA9mPamlU3tp97Z/6aFBcXJxcb3c9gAAAAAAAL85g4uBX+f9upEZrBceE8YfRnZ2tnr37q02bdrIYrGovLxco0eP1j333KPly5fro48+kqurq7p3764XXnhBcXFx+uWXX1RUVKScnByNHz9ed999t9atW6d58+bJ3d1drVu3VkxMjFatWqU9e/YoKipKxcXF6t27t7788kt9+OGHWrZsmRo1aiRPT0916dJFDz/8sCZOnKjMzEyVl5dr+PDh6tq1qyIjIxUTE6PbbrtNycnJOnnypF588UU98sgjatasmV544QVNnDhRNWrUkKurqyZMmKCQkJCLPmtcXJw6dOigjh3/n707D6uyWvs4/t3MkygImw2CQ2iZmWjl/JoNpk3aoObpJKfBTuUslkMOaQ4lNpiiooIDKmWd44jayQatPKl5FDAtrZwZFLRQQPZmkPcPast2MxmSmr/PdXFdPs++173u9Szxj7WX62kLwMcff8ywYcM4cOAAOTk5jBkzhqysLIqLi3nttdcqXGzP/nZDjczH707VvalG8xdRswvK9bZ9UKP5AZb4janxPvrfX+NdiIiIiIiIiIhU6NAz9v9b/3p2w5L1FX7+xhtvkJycjMFgYMyYMbRo0QIoee/kK6+8Yo07fvw4L7/8MgUFBcycOdN69HKHDh2sR0xfKi20S5VFRUXh4+ND3759r3QpV5QW2iumhXYRERERERERkctDC+22Klpo//bbb1m4cCHz58/n4MGDjBkzhg8//NAurrCwkPDwcGJjY/nkk0+sm4WrS2//k7+MtLS0Mn8pWrduzZAhQ65ARSIiIiIiIiIiIvJn2LZtG126dAEgNDSUM2fOkJOTg5eXl03c6tWr6datG56enpe1fy20S5UNHjz4SpdQoaCgIJYtW3alyxAREREREREREZE/2alTp7jlllus176+vmRmZtottP/rX/9i0aJF1utvv/2Wfv36UVhYyKhRo2jWrNkf6l8L7SIiIiIiIiIiIiJXIYODw5Uu4ZpV1onpiYmJ3HDDDdbF97CwMHx9fbnrrrtITExk1KhRJCQk/KH+tNAuIiIiIiIiIiIiItc0o9HIqVOnrNcZGRn4+/vbxGzZsoX27dtbr0NDQwkNDQWgVatW/PLLLxQVFeHoeOnvONRXIiIiIiIiIiIiIiJyTevYsSOffPIJAPv27cNoNNodG/Pdd9/RtGlT63VMTAzr15e8YPXHH3/E19f3Dy2yg3a0i4iIiIiIiIiIiMg17rbbbuOWW27hb3/7GwaDgQkTJrBq1Spq1arFfffdB0BmZiZ169a1tunevTsjRoxgxYoVFBYWMnXq1D/cvxbaRUREREREREREROSa98orr9hcl969Dtidv24ymVi2bNll6VtHx4iIiIiIiIiIiIiIVIN2tIuIiIiIiIiIiIhchQwOhitdglSRFtpFLtH/3O+p0fwhnKjR/I4U1Wj+JX5jajQ/wDOn3qjR/Pd92JH4OTXaBVsTOtdsByIiIiIiIiIi8qfR0TEiIiIiIiIiIiIiItWghXYRERERERERERERkWrQQruIiIiIiIiIiIiISDXojHYRERERERERERGRq5Behnrt0I52EREREREREREREZFq0EK7iIiIiIiIiIiIiEg1aKFdRERERERERERERKQatNAuIiIiIiIiIiIiIlINehmqyGWyc+t/+HhlDEVFhQSFNOYfAybi7lnLLi555xYSPpxLYUEBnrVq8/cXxlGvfuMq9fHll1v4cMUHFBYW0qBBQ4ZFDMfT09O+j6QkFi6MIS/PjNFoJGL4cPz8/CvMnZSUTMzChZjz8jAajQwfHoG/n59NzKFDh4iaM4ezZ87iXdubwYMGcUOjRlWqHeDA7g18+0k0588XUNd0I/f9/Q1c3W2f0ZnTKcRN6UZtvxDrPVODFnTrO73C3N8eTufdz/7HufxCAmt7MqlHRwK8bZ9Ny8lxNKzrbb021vJgQXi3KtcP4O7mwIiBN3JPJyN3PfpVuXG3tajDwOduwMPNkRMZFt6YuZ/M0/mX1JeIiIiIiIiIXN8MDtonfa3QTIlcBr9kpvPhokgGjZnN67PWUtcYxJoPZtvF/Xr6JHGzx/Pc0DeZOHM1rf/vAeLnT65SHxkZGcyLjmbi65NZELOQgIAAlsYtsYszm81ERr7JkKHDiIldSNu2bZkdFVVhbrPZzJuRkQwbOoSFsTG0bduWqCj7+t+MjKR3z14sjI3hid69mT79rSrVDnD2lzS2/Hsyj7y4gKfHfoK3bz2+2TCjzFjPOgE8PfY/1p/KFtnz8gsYteorJjzcgXUDH6PzjSFM2bi9zNg1Ax6z/lzqIjtA9PRWnMiwVBjj5urA6yNuJjLqR558aSf/3XmaVwbeeMl9iYiIiIiIiIjItUEL7deRlJQUWrVqRXh4OH379uXpp59m27Ztf1r/Y7+spAAAIABJREFUkZGRrFq16pLb/ec//7mk+MLCQrp3787Bgwet95KTk3niiScoLi6+5P6rInnnFpo2b4OvfyAAHe55lN3bPrWLc3Rypt+waQSFhALQuGkr0o8ftIsry/bt22jZsiVGoxGArt26sXXr1/a1JCdhMgXSuHETAO7r2o3ExN2cO3eu3NxJyckEmkw0aVyys75b1/vYnZho0+bw4SPk5OTSoUN7ANq3a0fWmTMcO3asSvUf2vs5ITe2x9s3CIBb2vfip8RLm9vyfHvkBME+XtwcWBeAR1s2ZtvBNHItBZclf2lvzfmJdZ+kVRhzewsf0k6Y+fFgDgAbPk2nTUsf3N0dL3s9IiIiIiIiIiJy5Wmh/TrTqFEjli1bxvLly5k8eTKTJ09m//79V7qscuXn57NkyZJLauPk5MTw4cN5660Lu62nT5/O6NGjMRgMl7nCEifTj+JnCrZe+5tCyD7zC7k5Z23ivGv7ckurjtbrfYn/pVGTW6vUR2pqKqbAQOt1YGAgWVlZZGdn28UFlopzd3enVq1apKeXvzhcXpu09HTbGJPJpp3JZOJ4SkqV6v814wi1/epbr2v71edczmnM587Yxeabc1gXO4C4qfezOrofv5yo+MuIo6fPEuxz4QgaDxdn6ni4cvyXs3axY1Z/zePRa3gu7mOSjmdUqfbS9h2wz3mxkHrupJ7Is17nmc9zJruA4ED3S+5PRERERERERESufjqj/TpWv359XnrpJd5//31uuukmEhIScHBwoEuXLjz33HNERUVx4sQJ0tPTyczMZMSIEdx5551s2rSJRYsW4eTkRPPmzRk9ejSrVq1i165d/PLLLxw+fJh+/frRu3dv1q5dS2xsLAEBAbi5udGkSROKiooYP348x48fp7CwkCFDhtC+fXvCw8Pp0KED27dv59dff2XevHnExMRw4MABJk6cyAsvvMCIESNwcHCgqKiIt956i3r16pU5trvvvpu4uDi+/fZbzp49i9Fo5Lbbbiuz9rS0tCrnLU++xUwtb1/rtbOzCwaDgXxLHp5e3mW22b9nB59vWM6wCQuq1IfFYqZO7dp2fVgsZmrVurDIbDGbcXZxtmnr4uqK2WwuN7fZbLFr4+rqYtPGbLHg4uJiG+PiUmHe0grz8/CodeEZOTm5gMFAQX4ebh4XxuXi5knT2x/mtrufw9sniN1blrAudgD/eHUDDo5l/5NlLijE1cl2t7irkyN5BYU29x5v1YS/tW7KjQG+fLLvCEM//IKEQY/j7WY7rupydXUgP/+8zb38/PO4u+m7TRERERERERGRvyIttF/nmjdvzjvvvMPhw4f54IMPAHjyySe5//77ATh58iSLFi3iwIEDjBo1ittvv53o6Gg+/PBDXFxcGDp0KLt27QLgxx9/ZMWKFRw5coThw4fTq1cvZsyYwcqVK/H29ubxxx8HICEhAX9/f9544w1++eUXnn76aRISEgDw8vIiLi6Ot99+m02bNtGvXz+Sk5OZOHEiixcvpkOHDgwcOJB9+/aRmZlZ4YL46NGjee2118jPz2fOnDnk5uaWWfuePXsuKe/vNn+8gi0frwDA0ckJ7zp1rZ8V5FsoLi7G1a3sHcxJ337BhwsjGTh6lvUYmbIkJKxjfcK6kj4cnfDxubBQnZ+fT3FxMW4X9eHm5kZBvu2RKRaLxS6uKm3c3dxKxbiSn59fRkz5eZO+Wk7y18sBcHB0xsP7wgtZCwssUFyMs4uHTRt3Tx/u7vWa9fq2u59lxydz+DXzCHVNZb801t3FCUthkc09c0Eh7hd9efDawx2sf+52S0Nit+4h+XgGnZoEU57HHwqi58Mlfx/mxx3iq+2ny4219m0+j4uL7aK6q6sj5/KKymkhIiIiIiIiIiLXMi20X+dyc3Px8PDg6NGj/OMf/7DeS01NBaB9+5LzuG+66SZOnjzJzz//TFpaGv369QMgOzubtLSSI0latmyJo6MjJpOJ7Oxsfv31Vzw9Palbt2QB+rbbbgMgMTGRXbt2sXv3bqBksfb3Bdw77rgDKDmSJCsry6bWjh07MmjQILKzs+nWrRutWrWqcGxNmzalYcOG+Pj4UK9ePZKTk8us/VLz/u7uB/7G3Q/8DYAt//mQn77fZf0sI/0YtX388fC0383+w57tfLToLYaMjyYw+IYK++jevQfdu/cAYP36BPZ+9531s7TUVHx9ffHy8rJpExwSwldffWW9zs3NJSc7p8IvD0JCgittExISQvqJC0fJFBcXk5aeTv369SlPyzv70vLOvgAkfx1PysGd1s+yMo/g6e2Pm4ftMzKfO4Ml7yy164Zc6Ov8eRwcyv/nqmHd2nyy74j1Otucz1lzPg18L+z0P5dfQMbZczT0u7B7vuj8eZwcK95lvmpDGqs2VHwm+8WOppzj3k4XvlTw9HCklpcTKWl5FbQSEREREREREbFlcKiZY5Dl8tM5Bte5vXv3YrFYuOuuu1i2bBnLli0jISGB1q1bA3D+vO3xF87OzjRv3twau2bNGrp37w6UnI1+MQeHC3/Ffn8RqbOzMy+99JI1x6ZNm6xHkjg6OtrF/+7GG29k7dq13HHHHbz77rusWbOm0vGFhIQQEhJSYe1/JO/Fwlrfxf7vvuVE6hEAPlu/jNb/d79dXL4lj6VzJvDiiHcqXWS/WLt27UlOTiIl5TgAq1evonPnu+ziWrQIIyMzg3379gKwZvUq2rRpg1up3el29bdoQUZmBnv37QNg1eo1dm0a1K9Pbe/abN68BYBPP/sMo9Gf4OCqHbMTemsXjv+4jV9OHgJg9+Yl3HTbw3ZxJ499x8rZT3Mu5xcA9m77iFo+gdT2C7GL/V3rhibSz+SQeOwkAMt3fM+dTYJtdrSfOJPLPxZv5Nhv57Z/czCVX89ZuLWeX5XqvxS7v8siwOhGi2YlXyL0eSSYb3aexmw5X0lLERERERERERG5Fmmh/Tp27NgxlixZwvLly9mxYwd5eXkUFxczZcoU67nbvx8Ls3//foKCgmjUqBEHDx7k9OmS4zNmzZrFyZMny8xfp04dsrOzOXv2LAUFBdYd7GFhYXz++ecAnD59mnfffbfcGn8/Nx1gw4YN/PTTT3Tp0oWhQ4eyd+/eSxpvebVXNy+AT90Anvznq8ybHsH4Qd3Jt5h5+In+ABz+6TtmTS75c/LOLWSf/ZVFM8cwYcij1p+zWZUfR+Ln58eAAYOYPHkS/3z+OSwWC0/1DQfgwIEDjB83BgBXV1dGjRpN9Nw5PN/vWfYf2E//AQMrzO3q6sroUaOYMzeaZ/s9z/4D+xk4oD+nTp3ixf4DrHGjRo5k7bp1PPf8P/nPJ5sYNWJElZ+RV50A7uk9gYSFA1kyuSsFBXm0e3AwACeO7mFVdMn/NGjQ9P9o8X9/56P3niRu6v38uHsjDz8XhYODY7m53ZydmPZ4Z978eAfdZ6/iu9RMXn2gHSfP5tJz3loAbvCvw4iubRj24Rc8Onc1875M5r0+d+PlWvXz2W8M9SI+ujUzp4Th5GggPro18dElX0rd3KQW77xe8mLb/PzzTJz+PcNfasKK+W245SZv3o3+qcr9iIiIiIiIiIjItcVQfPG2YfnLSklJoXv37jRv3pz8/HyKioqIiIigY8eOxMfHs3LlShwdHenSpQsvvvgiUVFRHD16lJycHFJTUxkzZgzt27dn06ZNzJs3DxcXF5o1a8b48eNZvXo1P/30E6NGjSI3N5fu3bvzxRdf8O9//5ulS5dSr1493Nzc6NSpEz169GDChAkcPHiQoqIiBg0aROfOnQkPD2f8+PHceOONLF++nF9//ZWXXnqJRx55hMaNG/Piiy8yYcIEPDw8cHR0ZNy4cYSGln++OUBUVBQ+Pj707VtyfElZtX///feXlHfzdzV7/EeIx4kaze9IzZ4T/p+fyj5H/XJ65tQbNZr/vg871mh+gK0JnWu8DxERERERERG5th0f0PNKl3BVCZm78kqXUC4ttEu5Ll6klhJaaK+YFtqrRgvtIiIiIiIiIlIZLbTbupoX2vUyVLlmpaWlMWrUKLv7rVu3ZsiQIVegIhERERERERERkcvH4KCTv68VWmiXcg0ePPhKl1ChoKAgli1bdqXLEBERERERERERkeucvhIREREREREREREREakGLbSLiIiIiIiIiIiIiFSDFtpFRERERERERERERKpBZ7SLiIiIiIiIiIiIXI0MhitdgVSRdrSLiIiIiIiIiIiIiFSDFtpFRERERERERERERKpBC+0iIiIiIiIiIiIiItVgKC4uLr7SRYhcS34+eLhG8ztwvkbzF9fw2V7ORZYazQ+Q5+BVo/mdya/R/DU9BwChN9xQ432IiIiIiIiISM1KGfzElS7hqhIc9dGVLqFcehmqiIiIiIiIiIiIyFXI4KCXoV4rdHSMiIiIiIiIiIiIiEg1aKFdRERERERERERERKQatNAuIiIiIiIiIiIiIlINWmgXEREREREREREREakGLbSLiIiIiIiIiIiIiFSD05UuQERERERERERERETsGRy0T/paoZkSEREREREREREREakGLbSLiIiIiIiIiIiIiFSDjo4RuUy+/HILH674gMLCQho0aMiwiOF4enraxSUnJbFwYQx5eWaMRiMRw4fj5+dfaf6kpCRiFy7EnJdnbefv52cTc+jQIWbPmcPZM2fwrl2bwYMG0ahRo6qPYcsWVqxYUTKGhg2JiIgocwxJSUksjI0lz1wyhuEREfj5VzyGxOQ9LFi0hLw8MwFGf14ZNtiu/oOHDjNr7jzOnM2mtncthg7szw2NGla5/q++3MxHK+IpKiykfoOGDIl4BU9PL7u45KREFi+cjzkvD39jAEOHj7gu5kBERERERERERGqGdrSLXAYZGRnMi45m4uuTWRCzkICAAJbGLbGLM5vNREa+yZChw4iJXUjbtm2ZHRVVaX6z2cy0yEiGDR1KbGxsue2mRUbSq2dPYmNjeaJ3b6ZPn35JY4iOjub1SZOIiY0lICCAuLi4sscwbRpDhw2z1hI1e3aFufPMZt6Y/g7DBw9kyYK5tGvTmplz5tnFTZ3+Dk/0fIwlC+bSp3dP3nz73SrXn5lxkgXRs5nw+lSiY5ZgDDCxLG5xGfXn8XbkVAYPfZl5sXG0adueuVHvVZr/Wp8DERERERERERGpOVpoF7kMtm/fRsuWLTEajQB07daNrVu/totLTk7CZAqkceMmANzXtRuJibs5d+5chfmTkpMxmUw0bty4JH/XruxOTLRpd/jwYXJycujQoQMA7dq1I+vMGY4dO1a1MWyzHUO3rl3Z+nUZY0hKsqslcXfFY0hK3oPJFECTxqEA3H/fvexKTOLcubwL9R85Qm5uLh3btwOgQ9s2ZJ05w9Hjx6tU/47t3xDWshX+xgAA7uv2AP/d+qVd3J7kJAJMJkJ/m4MuXe8nKXHXX34OREREREREROTaY3Aw6KfUz9VMC+1/USkpKbRq1Yrw8HD69u3LE088waeffkpUVBTLly+vkT7j4+N54okn6Nu3L7169eKbb76pVr6IiAjMZnO160pJSeHmm29m//791nurVq1i1apV1c79u9TUVEyBgdbrwMBAsrKyyM7OtosLLBXn7u5OrVq1SE9PqzR/We3S0tNtY0wmm3Ymk4njKSlVHkNgdcaQVv4YUlLTCCpVm7u7O94X1Z+SmobJFGDTLjDAxPHjqVWsPwVTYJBN/Weyssixqz+FwFJxJfV7k55ecT/X+hyIiIiIiIiIiEjN0Rntf2GNGjVi2bJlAGRlZfHYY4/x4IMP1khfKSkpfPTRR/z73//G2dmZI0eOMG7cOOvO3j9ixowZl62+xo0b88477xATE3PZcpZmsZipU7u29drZ2QWDwYDFYqZWrVoX4sxmnF2cbdq6uLpW+oWCxWzGxcXF5p7rRe0sFgvOF8e4uGCp4pcVFouF2nXqXBiDy29jMNuOwWyxVFpLWbldLh63i4tNG7PFgouzbYyrqwtmyyXUX9vnQv2/zYHZYsbLZg7sn5OLa+XP6VqfAxERERERERERqTlaaL9O1KlTB39/f06dOkV2djYvvvgiR44cYezYsdx5551s3LiRJUuW4OjoyC233MK4ceOIiooiOzubw4cPc+zYMcaMGUPnzp3ZtGkTixYtwsnJiebNmzN69GhycnKwWCwUFBTg7OxMw4YNrTvnf/75ZyZNmoTBYMDT05Np06Zx9uxZRowYgYeHB08++SSff/45b775JgCvvvoqXbp0YerUqSQkJJCVlcXo0aMpKioiKCiIyMhITp06xdixYykoKMDR0ZEpU6YQFBRU7vhvueUW8vLy2LZtG+3bt7f5LC4ujo0bNwJw77338sILL1TpmSYkrGN9wjoAHB2d8PHxtX6Wn59PcXExbm7uNm3c3NwoyC+wuWexWOziLubm5kZ+fr5dO3c3t4ty28aYLRbcSsXYjWHdOhISEkrG4OSEj8+FhWrrGNztx1BWLRfH2bcpY9zutvXnF9jGmC8a48XWJ6xhQ8JaAJwcHS9hDsqo/y8+ByIiIiIiIiIiUnN0dMx1IiUlhaysLEwmE1lZWcyfP59x48axYsUKcnNzmTFjBosXL+aDDz4gJSWF7du3A3DixAliYmIYO3YsH374Ibm5uURHR7N06VKWL19Oeno6u3btomnTprRo0YJ7772X0aNHs3HjRgoLCwGYPHkykyZNIi4ujo4dOxIfHw/ADz/8wNtvv02nTp3YuXMn58+fp6ioiJ07d9KpUydr7TNmzOCZZ57h/fffx2g0snfvXmbOnMlzzz1HXFwcTz/9NHPnzq30GURERPDee+9RXFxsvXf8+HFWr15NfHw88fHxfPzxx1U+T7t79x7MXxDL/AWxPPjQQzbHdqSlpuLr64uXl5dNm+CQENJKxeXm5pKTnUO9evUq7Cs4JMQmf25uLtnZ2TbtgkNCSD9xwnpdXFxMeno69evXL38MPXqwICaGBTExPPTQQ3bHoJQ1hpDgYJu4smq5WEhwPbs2OTk51Cv15Uj94GDS023rT0tPp0H9kHLzPtz9UaIXLCZ6wWIeeKg76WkXjn9JS03B17dumXNg+yxzyMnOIegvPgciIiIiIiIiIlJztND+F3b48GHrGe0TJkwgMjISJycnbrvtNgACAgLIzs7myJEjNGjQAE9PTwDatGnDDz/8AGCNNZlMZGdn8/PPP5OWlka/fv0IDw/n6NGj1oXj6dOns3z5cpo2bUpsbCzPPvssxcXF7Nmzh/HjxxMeHs66des4ffo0ACEhIfj4+ODq6kqzZs3Ys2cPiYmJhIWF2RyL8f3331vrGDlyJGFhYSQmJhIVFUV4eDjz588nKyur0ufRsGFDmjVrZt29DiWL/WFhYTg5OVmfTemz3KuqXbv2JCcnkZJS8uLO1atX0bnzXXZxLVqEkZGZwb59ewFYs3oVbdq0qXDHM0BYixZkZGayd9++3/Kvpu1F7RrUr09tb282b94MwGeffYbRaCQ4OLiKY2hHclISKb+dJ7569Wo631XGGMLCyMzIYN/evda4Nm3bVjiGli1u5WRGJnv3fQ/AyjXraNvmDpvd4A3qh1C7tjdfbCl5gemmz78gwN+f4CouHrdt15Hk5ETrHKxdvZJOne+2i7u1RUsyMk/y/b7vrHGt27StdEf7tT4HIiIiIiIiInLtMTg46KfUz9VMR8f8hZU+o/13W7duxcnJdtoNBoPNLu+CggJcXV0B7GKdnZ1p3rw5CxcutLlfXFxMfn4+oaGhhIaGEh4ezgMPPEBaWhru7u4sXboUg+HCm4FTUlJwLnUed9euXdm8eTP5+fl069bNJrejo6NNfb/XMXPmTIxGY1UfBwADBw6kX79+PPXUUzg5OZU5doc/8Evr5+fHgAGDmDx5EueLiggNbcxL/QcAcODAAZYvi2PylDdwdXVl1KjRRM+dg9lsJjAoiIiIlyvN7+rqyuhRo5g7dy5ms5mgoCCGR0Rw6tQpxo0fz7zoaKDki4iZs2axPD6eOnXqMHLEiEsbw8CBTJ40iaKiIkIbN6Z///7WMSxbupQpU6eWjGH0aJtaIoYPr7T+sSNfJip6AWaLmaDAQEZEDOHUqdO8+trrxMydBcCYEcN5N2oucfEr8PGpw+hXKs5bWl0/P/oPGMIbkyeU1B/amBf6DwLgxwP7iV+2mNenROLq6sqIUWOZNzfKOgfDIkZWmv9anwMREREREREREak5huKLVzDlLyElJYUhQ4awatUqm/tRUVH4+PjQt29ffvzxRyZPnsz8+fPp0aMHa9aswcvLi379+tG/f3+2bdtmF7tgwQIeeOABVq5cSd26dZk1axZ9+vThq6++YufOnURGRmIwGMjKyqJXr16sX7+eAQMG8PTTT9O5c2c2bNiAr68vISEhNvXl5OTwwgsvYLFYiI+Px83NjXvuuYeEhASmTJlCp06dePDBB5k5cyatW7fm448/5uabb+bvf/8727Zt49SpU3Tv3r3cZzF79mymTZtmfQabN2+mb9++tGnThgEDBljr6NmzJ3Pnzq3wCI6fDx6+HFNULgfO12j+4lJfeNQE5yJLjeYHyHPwqjyoGpzJrzyoGmp6DgBCb7ihxvsQERERERERkZp1YkTfK13CVcX01vIrXUK5tKNd8PDwYOTIkTz//PM4ODhw++23c8cdd7Bt2za7WHd3d8aMGcM///lPXFxcaNasGUajkccff5xDhw7Ru3dvPDw8KCwsZNy4cbi5uTF27FjGjx9PTEwMrq6uvPPOO+Tk5Njk9fLywtvbGzc3N7vjL4YMGcKrr77K+++/T2BgIIMGDSI0NJQxY8awYcMGDAaD9UWqVfHcc8/xwQcfABAcHEyfPn3o27cvxcXF9O7dW+dci4iIiIiIiIiIyCXRjnaRS6Qd7RXTjvbKaUe7iIiIiIiIiFSFdrTb0o52kT/BxIkTOXjwoN39mJgYvSRSREREREREREREaowW2uUvY+LEiVe6BBERERERERERkcvG4FDz/yteLg+HK12AiIiIiIiIiIiIiMi1TAvtIiIiIiIiIiIiIiLVoIV2EREREREREREREZFq0EK7iIiIiIiIiIiIiEg16GWoIiIiIiIiIiIiIlchvQz12qEd7SIiIiIiIiIiIiIi1aAd7SKXyJGiGs1/3lCz338ZiotrNH+eg1eN5gdwP59To/kLHF1rNH9Nz8E/hqUAx2u0D4CtCZ1rvA8RERERERERkWuBdrSLiIiIiIiIiIiIiFSDFtpFRERERERERERERKpBR8eIiIiIiIiIiIiIXI0ctE/6WqGZEhERERERERERERGpBi20i4iIiIiIiIiIiIhUgxbaRURERERERERERESqQQvtIiIiIiIiIiIiIiLVoIV2EREREREREREREZFqcLrSBYj8FSQlJROzcCHmvDyMRiPDh0fg7+dnE3Po0CGi5szh7JmzeNf2ZvCgQdzQqNEl9fPlli2sWLGCwsJCGjRsSEREBJ6enmXUk8TC2FjyzOaSeiIi8PP3r2QMScSWGkPE8OFljmH2nDmcPXMG79q1GTxoEI0uYQxffbmZj1bEU1RYSP0GDRkS8Qqenl52cclJiSxeOB9zXh7+xgCGDh+Bn1/F9Scm72HBoiXk5ZkJMPrzyrDBdvUfPHSYWXPnceZsNrW9azF0YH9uaNSwyvXDtT8H7m4OjBh4I/d0MnLXo1+VG3dbizoMfO4GPNwcOZFh4Y2Z+8k8nV/lfkRERERERESk+gwGw5UuQapIO9pFqslsNvNmZCTDhg5hYWwMbdu2JSpqtl3cm5GR9O7Zi4WxMTzRuzfTp791Sf1kZGQQHR3N65MmERMbS0BAAHFxcWXWEzltGkOHDSM2Nrakntn29VzcZlpkJMOGDrW2mR0VZRc3LTKSXj17Ehsb+9sYple5/syMkyyIns2E16cSHbMEY4CJZXGLy6glj7cjpzJ46MvMi42jTdv2zI16r8LceWYzb0x/h+GDB7JkwVzatWnNzDnz7OKmTn+HJ3o+xpIFc+nTuydvvv1uleuHa38OAKKnt+JEhqXCGDdXB14fcTORUT/y5Es7+e/O07wy8MZL6kdERERERERE5HqihXaRakpKTibQZKJJ48YAdOt6H7sTEzl37pw15vDhI+Tk5NKhQ3sA2rdrR9aZMxw7dqzK/Wzfto2WLVtiNBp/66crW7/+2i4uOSkJk8lE49/q6dq1K4m7d9vUU9YYLm5jP4bD5OTk0KFDBwDaXeIYdmz/hrCWrfA3BgBwX7cH+O/WL+3i9iQnEWAyEdq4CQBdut5PUuKuSurfg8kUQJPGoQDcf9+97EpM4ty5vAv1HzlCbm4uHdu3A6BD2zZknTnD0ePHq1Q/XPtzAPDWnJ9Y90lahTG3t/Ah7YSZHw/mALDh03TatPTB3d2xyv2IiIiIiIiIiFxPtND+F5KSkkKrVq0IDw+nb9++PPHEE3z66adERUWxfPnyGukzPj6eJ554gr59+9KrVy+++eabauWLiIjAbDZXu665c+fy7rsXdiufP3+eRx55hP3791c798VSU1MJDAy0Xru7u1OrVi3S0tNtY0wmm3Ymk4njKSl/uJ/AwECysrLIzs6uUj3paeUvrv4ZY0hNTcEUGGRT/5msLHLs6k8hsFRcSS3epKenlps7JTWNoFK1ubu7431R/SmpaZhMATbtAgNMHD9efl77MVzbcwCw78DZSmNC6rmTeuLClxR55vOcyS4gONC9yv2IiIiIiIiIiFxPdEb7X0yjRo1YtmwZAFlZWTz22GM8+OCDNdJXSkoKH330Ef/+979xdnbmyJEjjBs3zrrb9o+YMWPGZantueee45FHHuGpp54iICCAlStXEhYWRtOmTS9L/tLMZgvOLs4291xdXWy+MDBbLLi4uNjGuLhc0pcKFouF2nXqWK+dXVwwGAxYzGZq1apVcV+urhX2ZTGbK21jsVhwLmOAZM8VAAAgAElEQVQMliqOwWKxULu2z4X6nUvqN1vMeJWq32K278fFteJ+LBYLLhfNgYtLGXPgXMY8Wa6fOagqV1cH8vPP29zLzz+Pu5u+mxURERERERERKYsW2v/C6tSpg7+/P6dOnSI7O5sXX3yRI0eOMHbsWO688042btzIkiVLcHR05JZbbmHcuHFERUWRnZ3N4cOHOXbsGGPGjKFz585s2rSJRYsW4eTkRPPmzRk9ejQ5OTlYLBYKCgpwdnamYcOG1p3zP//8M5MmTcJgMODp6cm0adM4e/YsI0aMwMPDgyeffJLPP/+cN998E4BXX32VLl26MHXqVBISEsjKymL06NEUFRURFBREZGQkp06dYuzYsRQUFODo6MiUKVMICgoqc+xubm4MGDCA9957j9dee41FixaxfPlyTp48WWaOKVOmsHfvXoqKinjyySd5/PHHq/yc3dzcKMgvsLlnsVhwd3MrFeNKfn5+GTEV7xBOWLeOhIQEABydnPDxubBQnZ+fT3FxMW7utjnc3NzK7OviuKq0sR2DGwUXxZgtFtxKxVxsfcIaNiSsBcDJ0REfH1/7+t3s67+4H4vFYhdnX7/9HLi529afX2AbY75ojGW51ufg8YeC6PlwPQDmxx3iq+2ny4215jSfx8XFdlHd1dWRc3lFlbYVERERERERkcvH4KBNb9cKzdRfWEpKCllZWZhMJrKyspg/fz7jxo1jxYoV5ObmMmPGDBYvXswHH3xASkoK27dvB+DEiRPExMQwduxYPvzwQ3Jzc4mOjmbp0qUsX76c9PR0du3aRdOmTWnRogX33nsvo0ePZuPGjRQWFgIwefJkJk2aRFxcHB07diQ+Ph6AH374gbfffptOnTqxc+dOzp8/T1FRETt37qRTp07W2mfMmMEzzzzD+++/j9FoZO/evcycOZPnnnuOuLg4nn76aebOnVvh+Hv06MHBgwcZN24cjz32GHXr1i0zR1ZWFlu2bGHFihW8//771jFUVUhIMGmljgTJzc0lJzuHevXqlYoJIf3EhSNAiouLSUtPp379+hXm7t6jBwtiYlgQE8NDDz1kd4yIr68vXl5etvUEB9vE5ebmkp2dbVPPxYJDQmyONSmrTXBICOknTtiMIb2SMTzc/VGiFywmesFiHnioO+lpF45pSUtNwde3rl399rXkkJOdQ1AF9YcE17Mbc05ODvVKfRFTPziY9HTb+tPS02lQP6TcvHDtz8GqDWk81X8nT/XfWaVFdoCjKedsjonx9HCklpcTKWl5FbQSEREREREREbl+aaH9L+bw4cPWM9onTJhAZGQkTk5O3HbbbQAEBASQnZ3NkSNHaNCgAZ6engC0adOGH374AcAaazKZyM7O5ueffyYtLY1+/foRHh7O0aNHrQvL06dPZ/ny5TRt2pTY2FieffZZiouL2bNnD+PHjyc8PJx169Zx+nTJAl9ISAg+Pj64urrSrFkz9uzZQ2JiImFhYTbHZnz//ffWOkaOHElYWBiJiYlERUURHh7O/PnzycrKqvBZGAwGIiIi2LFjB8888wxAmTnq1KlDw4YN6d+/Pxs3buTRRx+9pGce1qIFGZkZ7N23D4BVq9fQpk0bm13GDerXp7Z3bTZv3gLAp599htHoT3Bw+QuvF2vXrh3JSUmk/HYe9+rVq+l81112cS3CwsjMyGDf3r3WuDZt21a467lkDJnWMaxevZq2ZY7Bm82bNwPw2WefYTQaCQ4OrlL9bdt1JDk5kZSUkpePrl29kk6d77aLu7VFSzIyT/L9vu+sca3btK1wR3vLFrdyMiOTvfu+B2DlmnW0bXOHzW7wBvVDqF3bmy+2lLyAddPnXxDg709wBYvfF7vW56Cqdn+XRYDRjRbNvAHo80gw3+w8jdlyvpKWIiIiIiIiIiLXJx0d8xdT+oz2323duhUnJ9upNhgMFBcXW68LCgpwdXUFsIt1dnamefPmLFy40OZ+cXEx+fn5hIaGEhoaSnh4OA888ABpaWm4u7uzdOlSDAaDNT4lJQXnUmdkd+3alc2bN5Ofn0+3bt1scjs6OtrU93sdM2fOxGg0VvVxEBISgtFotC7il5cjNjaWffv2sX79etauXcuiRYuq3IerqyujR41iztxozGYzQUGBvBwRUXLUzfjXmB9dsvN+1MiRzJw1i2Xx8dSpU4dRI0ZUuQ8APz8/BgwcyORJkygqKiK0cWP69+8PwIEDB1i2dClTpk7F1dWVUaNHM3fu3N/qCSJi+PAqjaF0m+G/jWHc+PHMi44GSr70mDlrFst/G8PISxhDXT8/+g8YwhuTJ5TUH9qYF/oPAuDHA/uJX7aY16dE4urqyohRY5k3Nwqz2UxgUBDDIkZWWv/YkS8TFb0As8VMUGAgIyKGcOrUaV597XVi5s4CYMyI4bwbNZe4+BX4+NRh9CsVP5eLXetzcGOoFxNeuRknRwNOjgbio1sD8FT/ndzcpBbP923IyxO+Iz//PBOnf8/wl5rg5upIanoeU9+7/C8SFhERERERERH5qzAUX7yaKdeslJQUhgwZwqpVq2zuR0VF4ePjQ9++ffnxxx+ZPHky8+fPp0ePHqxZswYvLy/69etH//792bZtm13sggULeOCBB1i5ciV169Zl1qxZ9OnTh6+++oqdO3cSGRmJwWAgKyuLXr16sX79egYMGMDTTz9N586d2bBhA76+voSEhNjUl5OTwwsvvIDFYiE+Ph43NzfuueceEhISmDJlCp06deLBBx9k5syZtG7dmo8//pibb76Zv//972zbto1Tp07RvXv3S3om48ePt8vRqlUrvvjiC/7xj38A8Pjjj9s9w9IOH/y5OtNUqfOGmv2PJoYa/pUvwKXyoGpyP59To/kLHF1rNH9Nz8E/hqXUaP7fbU3o/Kf0IyIiIiIiInK9OvVavytdwlXFb9LCyoOuEO1ov055eHgwcuRInn/+eRwcHLj99tu544472LZtm12su7s7Y8aM4Z///CcuLi40a9YMo9HI448/zqFDh+jduzceHh4UFhYybtw43NzcGDt2LOPHjycmJgZXV1feeecdcnJsF0e9vLzw9vbGzc3N7kiNIUOG8Oqrr/L+++8TGBjIoEGDCA0NZcyYMWzYsAGDwWB9keqlGDRokF0Oo9FIYmIiGzduxNnZmZ49e15yXhERERERERERkcvN4GCoPEiuCtrRLnKJtKO9YtrRXjntaBcRERERERGRqjg98fkrXcJVpe7E2CtdQrm0o12uaRMnTuTgwYN292NiYip88aSIiIiIiIiIiIjI5aKFdrmmTZw48UqXICIiIiIiIiIiIte5mj2jQkRERERERERERETkL04L7SIiIiIiIiIiIiIi1aCjY0RERERERERERESuRg7aJ32t0EyJiIiIiIiIiIiIiFSDFtpFRERERERERERERKpBC+0iIiIiIiIiIiIiItWgM9pFLtHpwro1mt/H+dcazV/T/PKO13gfh51vrtH8tRxyajS/+/mazT98fKcazQ/w4JmlmD89XKN9uN33TI3mFxERERERERG5XLTQLiIiIiIiIiIiInIVMjgYrnQJUkU6OkZEREREREREREREpBq00C4iIiIiIiIiIiIiUg1aaBcRERERERERERERqQYttIuIiIiIiIiIiIiIVINehioiIiIiIiIiIiJyFTIYtE/6WqGZEhERERERERERERGpBi20i4iIiIiIiIiIiIhUgxbaRURERERERERERESqQWe0i1wm2776lDUfLaaoqJDg+jfwwpBxeHh62cUVFhayIm4OH6/9gFmL1lHXz1jlPr7csoUVK1ZQWFhIg4YNiYiIwNPT0y4uKSmJhbGx5JnNGI1GhkdE4OfvX2HupKQkYhcuxJyXh9FoJGL4cPz9/GxiDh06xOw5czh75gzetWszeNAgGjVqVKXa//fd98yO+5A8swWTf13GDuqHsa6vTUxxcTHvr/0P895fyezXRxJ2841Vyv27P2MOvvpyMx+tiKeosJD6DRoyJOIVPMvoIzkpkcUL52POy8PfGMDQ4SPw86t4DhKT97Bg0RLy8swEGP15Zdhguzk4eOgws+bO48zZbGp712LowP7c0KhhletP3raBzWvnUVRUSEBwE3r9cypuHrXs4vbu3MQXa6IpLLDgUcuHR5+ZgCmk4vnYceAI767+gnOWfIJ8azOp70ME+HjbxPzvp2PMWPMFOWYLbs7OjOzVhdsb169y/SIiIiIiIiIiVyPtaBe5DE5lniBuwTuMmPAub0d/hJ8xkI+WzSsz9t2pI3Bz97jkPjIyMoiOjub1SZOIiY0lICCAuLg4uziz2UzktGkMHTaM2NhY2rZtS9Ts2RXmNpvNTIuMZNjQodY2s6Oi7OKmRUbSq2dPYmNjeaJ3b6ZPn16l2vPMFl57dx6vDniWD2dPo+MdLZk+f6ld3FsLlnIs/QQ+te0XfivzZ8xBZsZJFkTPZsLrU4mOWYIxwMSyuMV2cWZzHm9HTmXw0JeZFxtHm7btmRv1XoW588xm3pj+DsMHD2TJgrm0a9OamXPs6586/R2e6PkYSxbMpU/vnrz59rtVrj/rVBoJy6byzCvzefmtj/Hxr8cn/7KvK+tUGmsWTyQ8YjbDp2/k1jbdWBk7rsLc5yz5jFq8lolPPUjChJe489bGTF7xH5sYc34BL8euYmyfbqwd/yIvPfh/jFi4huLi4iqPQUREREREROS64mDQT+mfq5gW2q8TKSkp3HTTTSQlJdnc79mzJ6NHjy6zzapVq4iMjATgP/8pWTD74YcfmDVrVrn9REVFsXz58nI/L52ztP79+1c6huoIDw9n2rRpdvcul107vuKWsDvw8zcBcNd9Pdjx38/LjH2sz3P0+vs/L7mP7du20bJlS4zGkt3X3bp2ZevXX9vFJSclYTKZaNy4MQBdu3Ylcfduzp07V27upORkuza7ExNt2hw+fJicnBw6dOgAQLt27cg6c4Zjx45VWvuu736gXoA/N93QEICH7+nEt8l7yc3Ls4l74K6OvNr/WZwcHSvNadfHnzAHO7Z/Q1jLVvgbAwC4r9sD/Hfrl3Zxe5KTCDCZCG3cBIAuXe8nKXFXJXOwB5MpgCaNQwG4/7572ZWYxLlzF57R4SNHyM3NpWP7dgB0aNuGrDNnOHr8eJXq/373F4Q2a0cdvyAA7ujck73ffmIX5+DkRJ/+b+HjVw+A0GbtyEw/XGHub388SrBfHW4OKXn+j7UPY9v+w+SaLdaYgqIiJj71IM3qBwLQ9qaGnM7OJTvPXKX6RURERERERESuVlpov46EhISwfv166/XRo0c5e/ZsldouWLAAgJtvvpkhQ4Zc9tqio6Mve86L/e9//yM1NbVGcp9IPUaAqZ71OiCwHmfP/Epujv3zbdL01j/UR2pqKoGBgdbrwMBAsrKyyM7OrjDO3d2dWrVqkZ6WVuXcv7dJS0+3jTGZbNqZTCaOp6RUWvux9BPUM104nsXD3Y3aXl6kpGfYxN16U+NKc5Xnz5mDFEyBQdbrwMBAzmRlkWM3BykElooreZ7epKeX//cvJTWNoFLP193dHe+L5iAlNQ2TKcCmXWCAiePHq/b3+tSJI/gGXDimpa6xPjlnT5OXe8YmzruOkSa3dgSgqKiQ3V+vodlt91SY+2jGL4T41bFee7i6UMfTnWOZv1rv1XJ34+4WJcfPFBcXs/qbZG4LDcHbw71K9YuIiIiIiIiIXK200H4dCQsL45tvvqGoqAiADRs20LFjyWLaPffcQ25uLgCRkZGsWrXK2i42NpYDBw4waNAgduzYYV1o79SpE1OmTKFPnz4MGTKE/Px8m/5mzJjBU089xd/+9jebBf6ytG3bFijZZR4dHc3TTz9Njx49SPttcbisXFu3bqVXr1707duXoUOHUlBQUGEfgwcPZubMmXb3Dxw4wFNPPUV4eDgvvfQSWVlZFeYpi8ViwdnZ1Xrt7OyCwWDAbL58O3UtFgvOLi4X+nAp6cNyUR9miwWXUnEArq6uFdZiMZsrbXNx/wCuLi52/Zddez4uzs52bc0WSzktLt2fNgfOpebg9z4stn1YzPbPysW14mdlsVhwcbF9Ri4uLjb1my0W++fo6mLXf3kKLHk4larf6bf68y15Zcb/95OlTB30fxw+sIv7//ZyhbnN+QW4ONu+9sPV2Zm8fPvfy08T93PvmCg+2rqbcX+7v0q1i4iIiIiIiIhczfQy1OuIs7MzYWFh7Nixgw4dOvD5558zaNAgPvnE/uiI0p5//nliYmKYPXs2O3bssN7PyMjg4YcfZty4cQwePJivvvrK+tnvu8fj4+PJz8/nscceo0uXLlWq08vLi7i4ON5++202bdpE8+bNy8y1fPlyRo8ezR133MGmTZvIysrCv4IXfnbu3JlFixaxf/9+mjZtar0/depURo4cSVhYGAsXLmTp0qVV2rW/af2/2LTh3wA4OjlRx+fCiz3z8y0UFxfj5la9nboJ69aRkJBg7cPHx6dUH/klfbjb9uHm5mb3pYfFYrGLq0obdzc3m5iCi2LMFgtupWLKze/qSv5FX4SY823z/xF/xhysT1jDhoS1ADg5OuJj00d+mX2U9awsFkuFtZTMge0zKpk32zmwe46Wip/jN5/Gs/3TeAAcHJ3wqnPhd6Tgt2fk4lr2efUdu/2DDl3DSd6+kXmv/52IyPU4u5Tdl7uLC/kFhba15Rfg4epiF3tfq6bc16opOw4c4flZ8fzr1X74edu/UFZERERERERE5FqhhfbrzP3338/69evx8/MjICAAD49LfyHk7zw8PGjZsiUALVu25PDhC2c47969m+TkZOs56OfPnyczM7NKee+44w6g5FiSrKyscnPdf//9TJgwge7du/PQQw9VuMj+u5dffpm3336b2NhY672DBw8SFhYGlOysn13Ji0N/1/Xh3nR9uDcAn278Nz/sTbR+diLtOHV8/fD0uvSXepbWvUcPuvfoAcD69ev57rvvrJ+lpqbi6+uLl5ftAmVIcLDNlx65ublkZ2dTr149yhMcElJpm+CQENJPnLBeFxcXk56eTv369alMg3omPv/mW+t1Tu45snPOERIYUEGryv0Zc/Bw90d5uPujAGxcv5a93+2xfpaWmoKvb127OQgOCWHrV1us17m5OeRk5xBUwRyEBNfjy6+3lmqTS05ODvWCLhxBUz84mPR02zlIS0+nQf2QcvN2uO8pOtz3FADbPnufw/t3Wj87ffIoter44+7pbdMmI/UgZ389SePmHTAYDLRs/xDrlk4mM/0wQQ1uLrOfRiZfPtn9vfU6O8/M2Twz9f0vfDl04tezfH/sBPeElRwf0/amhgTU8WbP4TTrPRERERERERGRa5GOjrnOtG/fnh07drBhwwa6detWZkxlR7D87vz589Y/FxcXYzBcePOvi4sLvXr1YtmyZSxbtoyPP/6YkJDyFwNLcyz1Iszi4uJycz366KMsXboUHx8f+vfvz8GDByvN3aJFCzw9Pdm2bVuZnxcUFODgcOm/Fre3vZN9yf8jLeUoAB+v/YD2ne675DwVadeuHclJSaT8dib66tWr6XzXXXZxLcLCyMzIYN/evda4Nm3bVrjzPKxFCzIyM9m7b5+1Tds2bWzaNKhfn9re3mzevBmAzz77DKPRSHBwcKW13978Zk5kniL5hx8BWLF+Ex1vD8PdzbWSllX3Z8xB23YdSU5OJCWl5OWja1evpFPnu+3ibm3RkozMk3y/7ztrXOs2bSvc0d6yxa2czMhk776SxeqVa9bRts0dNrvVG9QPoXZtb77YUvIC1k2ff0GAvz/BFSzgl9bstns5uG+79cWmWz9eQlj7h+zicrN/4aP5ozn7a8kZ+kd+3M35wkJ8jeX/Drdu0oD0X86y+2DJs1n+xU7uvKWxzY72gsIiXlu+np/TS750O5rxC8czfyU00K9K9YuIiIiIiIhcbwwODvop9XM1u7qrk8vOxcWF1q1bs3LlSu6558LLDb28vMjMzKSoqIjk5GS7dsXFxXb3zGYze39bzE1KSqJx4wsvsmzRogWbN2/m/PnzWCwWJk+e/IdrLi/XnDlzcHJyok+fPjz44INVWmgHiIiI4L333rNeN2nShMTEkp3QO3fupHnz5pdco29dI8/2H8GMN0Yy/MVeWCxmev39nwAc/HEf0yYMBeDMr6d5pX8fXunfB4CpYwbwSv8+/HI6o9zcv/Pz82PAwIFMnjSJ5/v1w2L5f/buPCzqqv3j+BvZBUGUVcUlt6xcshSz1MpcMi1zyX4mWakl7lou5ZZbiY9puYAploqU9ZSaS6aPppa5ZQouKZaZyaLgggIyM4D8/qAGhmEZQlo/r+t6rqfvzH3uc5/vAbyuM2fO10i/fv2A3HPmJ02cCOSerT5+wgTCwsIY8MILxJ46xZAhQ4rN7ezszITx4wkLC+OFAQM4FRvLkCFDuHTpEoNDQsxx48aN47MNGxgwcCBfbN3KuLFjbbo/zs5OTB8dwlvLVtN76HhOnD7Dy4OCSb58lWdGTTLHPTNqEk8Pf5XkKym8/vZSnh7+Kt//8JNNffwRc1DV25uQISN4Y8ZUXhrYH6PRQN9+/QE4HXuKqZPG/zpeZ8aOn8iSsIW8OOBZYmNPMnhI8ccROTs7M3HcyywMX0r/QYM5GXua4SEvcenSZQbla/va2DGs27iZ/oNC2LJtOxNeGWPT/QHwrOLHE89NIfLtYcx9pRMmUwaP9BgGwPkzR3lvzkAA6tzegocef4nls19g3rgufLZiOk8PfQsX16KPd3FxciT0+Sd48+NtdH09nKM/x/Nan45cTEmlx6xlAAT6eDHl/x5lwvuf8cSMdxn57ieM6/UItXyrFJlXREREREREROTvwC6nsBVU+ceJi4tj0aJFzJ49m127dvHBBx+wdOlSDhw4wLp162jevDnvvfcederUoXLlyrRo0QKAH374gfHjx9O/f3/S09MZO3YsUVFRLFiwgKCgIJ544gmOHz+Oj48Pb731FuHh4Xh5edGvXz/mz5/P3r17ycnJoW/fvvTo0YO1a9fyzjvvWBw3snz5ctq0acOBAwcIDg5m8uTJNGjQgNWrV3P16lWGDx9eaK5169YRGRmJh4cHHh4ehIaG4lrEOeTBwcFERkaar6dNm8aPP/5IZGQkP/74I9OmTcPOzg5PT0/efPNNq6NA8jsUe/UWzUrhvBzLN79dOf/Ke2ZcLNf8AGcdCz++5Fap5JBWrvldb5Zv/kNXG5ZrfoAu11aVex8uHZ4r9z5ERERERERE/spSQof92SX8pVQeb9uRz38GLbTL7xYUFGTxcNR/Cy20F08L7SXTQrtttNAuIiIiIiIi/3ZaaLf0V15o18NQ5R9jx44drFixwur1Z599lg4dbu1Z3SIiIiIiIiIiIiK/0UK7/G5/td3s7du3p3379n92GSIiIiIiIiIiIreEXQW7P7sEsZEehioiIiIiIiIiIiIiUgZaaBcRERERERERERERKQMttIuIiIiIiIiIiIiIlIEW2kVEREREREREREREykAPQxURERERERERERH5K7LTPum/C82UiIiIiIiIiIiIiEgZaKFdRERERERERERERKQMdHSMSClVdkgp1/x2OTnlmj/Hzq5c86c7e5VrfoBKFdLKNb8jpnLNn2nvXK75ne9vVK75AR7pvLRc84+Z3AYO3izXPnq01GfNIiIiIiIiInJraJVBRERERERERERERKQMtNAuIiIiIiIiIiIiIlIGOjpGRERERERERERE5C/IrkL5HgEst452tIuIiIiIiIiIiIiIlIEW2kVEREREREREREREykAL7SIiIiIiIiIiIiIiZaCFdhERERERERERERGRMtDDUEVERERERERERET+iipon/TfhRbaRW6R3bt38dGaD8nKyqJWrdqMGj0GNzc3q7iY6GiWL19GRoYBX19fRo8Zg7e3T4n5o6OjiVi+HENGhrmdj7e3RcxPP/3EosWLuX7tGh6engwfNow6derYPoZdu1izZk3uGGrXZvTo0YWOITo6muUREWQYcscwZvRovH2KH8ORmKMsfW8FGRkG/Hx9eGXUcKv6z/x0lgVhS7h2PRVPj0qMHBrCbXVq21z/V7t38vGaKLKzsqhZqzYjRr+Cm5u7VVxM9BHeX/4uhowMfHz9GDlm7L9iDuwcHLj9jZe5bfQL7KjdFkP8RauYSk0a0njR6zhW9SLz8lWODX2d1GOxNtfv6lKBsUMb8HAbXx7s/lWRcc2bVGboC7dR0cWeC0lG3njnFMmXTTb1EbNvMzs/W0J2dhZ+NerTa9AsXCpWsoo7/u02vlwfTlamkYqVvOj+3FT8AxvYPBYREREREREREVvpIxGRWyApKYkl4eG8Pm0GS5ctx8/Pj1UrV1jFGQwGQkPfZMTIUSyLWE5QUBCLFi4sMb/BYGB2aCijRo4kIiKiyHazQ0Pp1bMnERERPNW7N3PmzCnVGMLDw5k2fTrLIiLw8/Nj5cqVhY9h9mxGjhplrmXhokXF5s4wGHhjzluMGT6UFUvDaNWyBe8sXmIVN2vOWzzV80lWLA2jT++evDl3ns31JyddZGn4IqZOm0X4shX4+vkTufL9QurPYG7oLIaPfJklEStpGXQfYQvfLjH/330OAO5dG0ZW2o1iY5qvns+ZuRHsvrMzP85ZRrNV/7G5foDwOXdzIclYbIyLcwWmjW1E6MLT/N/gb/nm28u8MtS2BfCUSwlsjJzFc6+8y8v/2YKXT3W2/td6/lIuJbD+/dcJHr2IMXM+p3HLTnwaMalUYxERERERERERsdU/fqE9Li6Ohg0bEh0dbfF6z549mTBhQpHt1q5dS2hoKABffPEFACdPnmTBggVFtlm4cCGrV6+2KWd+ISEhxY6hrIKDg5k9e7bVa2Xx8MMPk56eXqYcf5Tk5GSmTJlSrn3s37+PZs2a4evrC0DHTp3Ys+drq7iYmGj8/QOoV1++I1AAACAASURBVK8+AB06duLIkcPcuFH84md0TAz+/v7Uq1cvN3/Hjhw+csSi3dmzZ0lLS6N169YAtGrVipRr1/jll19sG8M+yzF06tiRPV8XMoboaKtajhwufgzRMUfx9/ejfr26AHTu0J7vjkRz40ZGXv0//0x6ejr339cKgNZBLUm5do1z58/bVP+B/Xtp2uxufHz9AOjQ6VG+2bPbKu5oTDR+/v7U/XUOHunYmegj3/3j5wDghzfC+GF60R/sVLqrAQ6VK3Fxww4AkjZ9ibNPVdxvv82m+gH+s/gHNmxNKDbmniZeJFwwcPpMGgCb/5dIy2ZeuLral5j/+8NfUveOVlT2rgbAve16cvzgVqu4Cg4O9An5D17e1QGoe0crkhPP2jwOEREREREREZHS+McvtAMEBgayadMm8/W5c+e4fv26ze2XLl0KQKNGjRgxYsQtry88PPyW5yzo0KFDxMfHl3s/f0U+Pj5Mnz69XPuIj4/HPyDAfB0QEEBKSgqpqalWcQH54lxdXalUqRKJicUvTBbVLiEx0TLG39+inb+/P+fj4mweQ0BZxpBQ9Bji4hOolq82V1dXPArUHxefgL+/n0W7AD9/zp+37ec2Pj4O/4BqFvVfS0khzar+OALyxeXW70FiYvH9/N3nACBlf3Sx77vVr82Ns5a13jh7HreGti+0n4gt+W9rYHVX4i/kfciSYbjJtdRMagS4ltj20oWfqeJX03xd1bcmadcvk5F+zSLOo7Iv9RvfD0B2dhaHv17PHc0ftnUYIiIiIiIiIiKl8q84o71p06bs3buX7Oxs7O3t2bx5M/fffz8GgwHI3Z29ceNG3NzcCA0NpX79+ua2ERERxMbGMmzYMIKDg4mKimLBggW0adOGTp06cezYMfz8/Jg7d65Fn/Pnz+fQoUNkZ2fTr18/unbtWmR9QUFBHDhwgODgYFq3bs3+/fu5evUqS5YsoVq1aoXm2rNnD2+//TYuLi5UrVqVuXPn4ujoWGQfw4cP55133rE6xiI2Npbp06dToUIF3NzcmD17NpUrVza/v3DhQi5cuEBiYiLJycmMHTuWtm3bAhAVFcXu3bvJzs4mIiICZ2dnpkyZwvnz5zGZTIwYMYIHHniADh060KdPH3bu3InJZOL999/H1dWVyZMnc/78ebKyshgxYgT33XefRW0zZ87k+PHjZGdn83//93/06NGDbdu28d577+Hg4MBdd93FhAkTWLt2LV999RVJSUnUqlWLoKAgunfvDkCnTp2YN28ekydPZu3atXzzzTfMmzcPe3t7unTpwnPPPcehQ4eYN28eDg4OBAQEMGPGDJycnIr7kbJiNBqo7OlpvnZ0dMLOzg6j0UClSnlnRxsNBhydLOfJydnZ/LNYZH6Dwaom5wLtjEYjjgVjnJwwlpA7f3vPfHPv6PTrGAyWYzAYjSXWUlhup4LjdnKyaGMwGnEq8DPs7OyEwViK+j298ur/dQ4MRgPuFnNgfZ+cnEu+T3/3ObCFfUVXbhosj33JzjDi4FaxTHkLcnaugMl00+I1k+kmri4lf/abaczAzaOK+drh13k2GTNwdfO0iv9m6yp2rA+jqm8tgkeXfEyTiIiIiIiIyF+JnZ3dn12C2OhfsaPd0dGRpk2bcuDAAQB27NhBu3btbGo7cOBA3N3dWVTg/OOkpCS6du3KRx99RE5ODl99lffQv992j0dFRbFq1SrCw8NtXgBzd3dn5cqVtG3blm3bthWZa/Xq1UyYMIHVq1fz2GOPkZKSUmzedu3acfHiRU6dOmXx+qxZsxg3bhyRkZG0aNGCVatWWbW9ePEi7733HnPnzmXevLwzs+vXr09UVBTVqlVj//79bN68GScnJ1avXs3ChQuZMWMGANnZ2dx2221ERUVRo0YN9u/fz8aNG/Hx8SEyMpLFixfzxhtvWPSZkpLCrl8fCvnBBx+QlZVFeno64eHhrFq1itWrV5OYmMh3330HQGJiIlFRUfTs2ZMvv/wSgFOnTlG9enU8f10Az8nJYdq0aSxbtowPP/yQffv2YTAYmDlzJmFhYaxatYqqVauajwoqycaNG3jpxYG89OJATseexpSZaX7PZDKRk5ODi4vlDl0XFxcyTZkWrxmNRqu4glxcXDCZLB8UaTQacXVxKZDbMsZgNOKSL8ZqDBs28OKgQbw4aBCxp09btDePwdV6DIXVUjDOuk0h43a1rD//Pfytftdi6t+0cT0hLz5PyIvP80PsKTIzC6m/0DkopP5/+BzYIjv9BhVcnC1es6/oQlZa0cdE9XisGlHhLYgKb0HbVlVt6sdguImTk+U/P87O9tzIyC40fu//opg3rgvzxnXh/E/HyMo3z5kmIzk5OTg5F/5hwP2dnmVy2D7u7/wsS6b1JdNUtg8jREREREREREQK86/Y0Q7QuXNnNm3ahLe3N35+flSsWLYdmhUrVqRZs2YANGvWjLNn887+PXz4MDExMeZz0G/evElycrJNee+9914g97iJlJSUInN17tyZqVOn0q1bNx577DF8fHxKzP3yyy8zd+5cIiIizK+dOXOGpk2bArk76wt+oACYd5o3bNiQixcvml+/5557APDz8yM1NZUTJ04QFBRkfs3Jycn8AUD+caWmphIdHc13333H4cOHgdxFQpPJZN6lW7lyZWrXrk1ISAidO3eme/funDx5koSEBAYMGABAamoqCb8eldG4cWPs7Oxo3rw5EydOxGQysWPHDjp16mSu98qVKzg7O1OlSu5u2HfffZdLly5x7tw5hg8fDsCNGzfw8srbFV2cbt0ep1u3xwHYtGkjx48dM7+XEB9PlSpVcHd3t2hTIzDQ4kOZ9PR00lLTqF69erF9FdYuNTXVol2NwEASL1wwX+fk5JCYmEjNmjUpSrfHH6fb47+NYRPH8o0hvogxBNaoUWItBQXWqM7ur/dYtElLS6N6tbwjXGrWqEFiomX9CYmJ1KoZWGTert2607Vb7rcXPt/0GcePHTW/lxAfR5UqVQudgz1f7cpXSxppqWlU+4fPgS3SYn+i4m2W99utbi3STp4pss3azQms3Vz8kTUFnYu7Qfs2eX+z3CraU8ndgbiEjELjW3d4htYdngFg3/YPOHvqW/N7ly+eo1JlH1zdPCzaJMWf4frVi9S7qzV2dnY0u+8xNqyaQXLiWarValSqekVERERERERESvKv2NEOuYvFBw4cYPPmzRaLrwVlFthRW5SbN/OOPcjJybH4GoeTkxO9evUiMjKSyMhItmzZQmBg0YuF+dnb5z0MMCcnp8hc3bt3Z9WqVXh5eRESEsKZM0UvhP2mSZMmuLm5sW/fvkLfz8zMpEIF6x+J/GMtrtb8/w+5u3F/y1cw1tHRkcGDB5vHtW3bNqujMCIiIhg2bBinTp1i8ODBODo6ctddd5nbrF+/nm7dugGYj82pUKECQUFBfPvtt+zevZsOHTqY81WoUMFqLI6Ojvj6+ppzfvrppwwaNKjQ8RanVav7iImJJi4u98Gd69atpV27B63imjRpSlJyEidOHAdg/bq1tGzZstgdzwBNmzQhKTmZ4ydO/Jp/HUEF2tWqWRNPDw927twJwPbt2/H19aVGjRo2jqEVMdHRxP16nvi6deto92AhY2jalOSkJE4cP26OaxkUVOwYmjVpzMWkZI6f+B6AT9dvIKjlvRa7wWvVDMTT04Mvd+U+wHTbji/x8/Ghho2Lx0Gt7icm5oh5Dj5b9ylt2j1kFde4STOSki/y/Ylj5rgWLYNK3NH+d58DW6SdPIPp0hWqPZ171FWNZ58k45d40n/4uUx5Czp8LAU/Xxea3JG7ON7niRrs/fYyBmPhf2vyu6N5e86c2G9+sOmeLStoet9jVnHpqVf4+N0JXL+aBMDPpw9zMyuLKr62/S0WERERERERESmNf81Cu5OTEy1atODTTz/l4YctH4jn7u5OcnIy2dnZxMTEWLXNv3j8G4PBwPFfF7mio6OpV6+e+b0mTZqwc+dObt68idFoNB+h8nsUlWvx4sU4ODjQp08funTpYtNCO8Do0aN5++23zdf169fnyJEjAHz77bfcddddVm1+O57l1KlTVMu3A7mgxo0bm4/nSUxMpEKFCnh4eBQa27RpU3bs2AHA5cuXLY6kAYiLi2PVqlXceeedjB8/npSUFOrUqcOZM2e4fPkyAAsWLLDYYf+bDh06sH79elxdXc271wG8vLzIzs7m4sWL5OTk8NJLL5k/IPnxxx8BiIyMtDpexxbe3t4MGTKMGTOmM2jgCxiNRp7pl/sthNjYWCZPeg3IPUd7/PgJhIctZuCA5zkVe4qQIUNLzO/s7MyE8eMJCwvjhQEDOBUby5AhQ7h06RKDQ0LMcePGjeOzDRsYMHAgX2zdyrixY0s3hqFDmTF9OgMHDMBoNNKvXz/zGCZNnJg3hgkTCAsLY8ALLxB76hRDhgwpsf6J415mYfhS+g8azMnY0wwPeYlLly4zaEjeA4ZfGzuGdRs3039QCFu2bWfCK2Nsrr+qtzchQ0bwxoypvDSwP0ajgb79+gNwOvYUUyeNN9cydvxEloQt5MUBzxIbe5LBQ0p+yPHffQ6cfKvS7tgW2h3bAkCr7ZG0O7YF52q+tD2y0RwXHfwKtYcF8+D3Wwl8oTdHnrW9/gZ13YkKb8E7M5viYG9nPlIGoFH9Srw1rTGQex7763O+Z8zg+qx5tyV3NvRgXvgPNvXhWcWPJ56bQuTbw5j7SidMpgwe6TEMgPNnjvLenIEA1Lm9BQ89/hLLZ7/AvHFd+GzFdJ4e+hYuru7FpRcRERERERER+V3+NUfHQO7xMVeuXLF4qCBAv379GDx4MHXq1LFYMP9No0aN6NWrF2PzLZhVrlyZDRs28MYbb+Dj48MDDzxgPvKhefPmBAUF0adPH3Jycujbt6+53eeff25eoAdYvnx5sTUXlatatWo8//zzeHh44OHhwfPPP2/TPahduzZ33HGHeWF50qRJTJs2DTs7Ozw9PXnzzTet2ri7uzN48GDi4+N57bXXisz92GOPcfDgQYKDg8nMzGT69OlFxj766KPs37+fp59+muzsbIYNG2bxvq+vL0eOHOHzzz/H0dGRnj174urqymuvvcagQYNwcnLijjvuwNfX1yp3q1ateOWVVxgxwnrxdOrUqebXH330UTw8PJg1axavvvqqeXd7nz59iqy7OG3atqXNrw+Kza9hw4bMmJl3Bn2TJk1ZtDi81PmbNGlC2OLFVq8vCc/LVadOHd6eP7/UuX/Ttm1b88Nu82vYsCEzZ82yqGVxWFipcjdt0ph3F71t9fqysAXm/65TuzYL35pjFWOrB9o+yANtH7R6vUHD25k2M9R83bhJMxYsXlrq/H/nOTAlXWZ340cLfe+ru7uZ/zv1+Gn2PvD7fgdOn0njmZBvC33v5A+pvDw171icI8ev8dyI735XP02CHqVJkPVYAus24YVxeUdj3dfhGe779cgZEREREREREZHyZJdT2HZtKVFQUJB59/Y/2cKFC/Hy8jLvqhX48czZkoPKoAIlH59RFjnl/LRqx2xjueYHyKhQvruSHTGVHFQG5T0HpxoWvqB+K73ZufQfVJTGmMltyjU/QI+W/5ovdYmIiIiIiMjfVOpC279p/m9Qafh//uwSivSv2tH+T7Zjxw5WrFhh9fqzzz5rcU65iIiIiIiIiIiIiNxaWmj/nf5qu9nbt29P+/btb3ne4cOH3/KcIiIiIiIiIiIiIv8k+t68iIiIiIiIiIiIiEgZaKFdRERERERERERERKQMdHSMiIiIiIiIiIiIyF+QXQW7P7sEsZF2tIuIiIiIiIiIiIiIlIEW2kVEREREREREREREykAL7SIiIiIiIiIiIiIiZaCFdhERERERERERERGRMtDDUEVKqcqN+HLNn1IxoFzzl7cL2dXKvY96GUfLNX+aq3e55s+o4F6u+W/uP1Gu+QH+l/rfcs3f/6NfyjV/cN8abPzuZrn20e0e/RMrIiIiIiIiZWSnfdJ/F5opEREREREREREREZEy0EK7iIiIiIiIiIiIiEgZaKFdRERERERERERERKQMtNAuIiIiIiIiIiIiIlIGWmgXERERERERERERESkDhz+7ABEREREREREREREpRAW7P7sCsZF2tIuIiIiIiIiIiIiIlIEW2kVEREREREREREREykAL7SIiIiIiIiIiIiIiZaAz2kVugUPHTrJw1cdkGIz4+1Rl0tDn8a1axSImJyeHqA1bWfLBWha/PpamjeqXqo/o6Ggili/HkJGBr68vo8eMwcfb2yLmp59+YtHixVy/dg0PT0+GDxtGnTp1bO5j965drFmzhqysLGrVrs3o0aNxc3MrtJblERFkGAz4+voyZvRovH18Ssy/76ttfPbf98jOyqJGrboMGj6Zim7uVnFZWVl8vGoRWz77gHeWb6SKt1+JuQ8dO8nCyP/mzoF3leLn4MN1LJ76Sqnn4EjMUZa+t4KMDAN+vj68Mmq41Ryc+eksC8KWcO16Kp4elRg5NITb6tS2uY+vdu/k4zVRZGdlUbNWbUaMfgW3Qu5RTPQR3l/+LoaMDHx8/Rg5Zize3iXPwZG9n7N9/bvczM7Cv0Y9nnppJq4VK1nFHT24je3rlpBpMuFWqTI9B0wlILD4+3Xw1E/M+2QbN4wmAqpWZnr/J/Dz8rSIOXT6Z97+9H+kZRhwcXJk7FOduadB7RLrzq91Mzd6POKJg70d5y+YCPvoEhmGHKu4B1u48/iDHmAHV65ls/zTyyReyioxf3neIxERERERERH5Z9KOdpEyyjAYmTL/XV4LeY6PF77BA/c0JfTdSKu4OUsjOZ9wAS9P6wW7khgMBmaHhjJq5EgiIiIICgpi0cKFVnGzQ0Pp1bMnERERPNW7N3PmzLG5j6SkJMLDw5k2fTrLIiLw8/Nj5cqVhdYSOns2I0eNMteycNGiEvNfSr5A5LK5vDLlbf4T/gk+vgH8d3V4obHz33gFZ5eKNteeYTAy5e2lvDa4Px8vmMUD9zYldOlqq7g5y1ZzPvEiXh6ln4MMg4E35rzFmOFDWbE0jFYtW/DO4iVWcbPmvMVTPZ9kxdIw+vTuyZtz59ncR3LSRZaGL2LqtFmEL1uBr58/kSvft4ozGDKYGzqL4SNfZknESloG3UfYwrdLzH/1UgLrV77BwHHhjH9rM14+1dny0TuFxn26fDrPjVnE+Lc20TSoEx+/O6nY3BlGE+MjPmHqs4+zYcYI2jVpwMyoTZZ1mzJ5ZclHvNb3MdZPH85LXR9k3LL/kpNjvUhelKqV7XnhySq8GXGRUaHxJF3J4v8e9bKKq+brSL9uXsx49yJj5iRw4OgNQp72LiSj9djL6x6JiIiIiIiIlJadXQX9L9///sr+2tXJ7xYXF0fDhg2Jjo62eL1nz55MmDCh0DZr164lNDQUgC+++AKAkydPsmDBgiL7WbhwIatXWy9oFpYzv5CQkBLH8HudP3+ezp07YzKZzK8tW7as0DpuhUPHT1LNz4eGt9UCoOvDD3Dw6AnSMzIs4ro82JpXQ57Dwd6+1H1Ex8Tg7+9PvXr1AOjYsSOHjxzhxo0b5pizZ8+SlpZG69atAWjVqhUp167xyy+/2NTH/n37aNasGb6+vgB06tiRPV9/bRUXEx1tVcuRw4ctainM4QO7uaNJC7x9/AFo98jjHPxmR6Gx3Z96gZ59X7SpbihkDh56gIMxJ0jPMFjEdWnXmlcH98fB4ffMwVH8/f2oX68uAJ07tOe7I9HcuJE3z2d//pn09HTuv68VAK2DWpJy7Rrnzp+3qY8D+/fStNnd+Pjm7uDv0OlRvtmz2yruaEw0fv7+1K2Xu3v6kY6diT7yXYlzcOK7ndS/sxVe3tUAaPlgD44e2GYVZ2/vyDPD5lDFJzeu3l2tSE78udjcB0+dpYa3F41q5rbp3vpu9n1/hnSD0RyTmZ3N1Gef4I5auTFBt9fh8vV0Um8YCs1ZmBZ3VeTYDwYup2QD8OXBNFo1tf7WRQ0/Ry4kZ3L1em7c8R8yCPR3KjF/ed4jERERERERESlfb7zxBn369OHpp5/m6NGjFu89/PDD9O3bl+DgYIKDg7l48WKJbUpDC+3/YIGBgWzalLej9Ny5c1y/ft2mtkuXLgWgUaNGjBgx4pbXFh5e+E7mWyEwMJCHHnqIqKgoAK5evconn3zCkCFDyqW/8wkXqe6Xd2RHRVcXPN3diUtMsohr3LDe7+4jPj6egIAA87WrqyuVKlUiITHRMsbf36Kdv78/5+PiflcfAQEBpKSkkJqaalMtiQkJxea/kPALfv7Vzde+ATW4fu0K6WnWP5P1b29iU82/OZ9YyBxUcifuQsE5qFuqvPnFxSdQLd/9dXV1xaPAHMTFJ+Dvb3nMTYCfP+fPx9vUR3x8HP4B1fLaBgRwLSWFNKs5iCMgX1zuHHiQmFh8P8mJP1PVL9B87e1Xk7Trl7mRds0izsPLhwaNcz+wyc7O4tBX67nznoeLzX0u6TI1fPKO6qno4kxlt4qcT7pifq2SqwsPNbsdyD3GZ903R2heryYebq7F5s4vwMeRi5czzdcXL2VSuZI9bq6W/5z9cM6IX1VHAv0dAQhq4sbR05YffhWmPO+RiIiIiIiIiJSfgwcPcu7cOT766CNmzZrFrFmzrGKWLVtGZGQkkZGR+Pn52dTGVjqj/R+sadOm7N27l+zsbOzt7dm8eTP3338/BoOBhx9+mI0bN+Lm5kZoaCj16+edKxwREUFsbCzDhg0jODiYqKgoFixYQJs2bejUqRPHjh3Dz8+PuXPnWvQ3f/58Dh06RHZ2Nv369aNr165F1hYUFMSBAwcIDg6mdevW7N+/n6tXr7JkyRKqVatWaK49e/bw9ttv4+LiQtWqVZk7dy6Ojo6F5g8JCaF379707NmTsLAwnnvuOSpVqlTmvIUxGE04OVnGOzs5YjCaimhRekaDAScny924zs7OGAx5O4GNRiOOBWOcnDAabNstbDQa8axc2Xzt6OSEnZ0dRoOBSpXyjloxGI0l1lJ4fgMennkLsY6Ov+XPwM3dw6Yai2IwmnByLGQO8u2mLiuj0Wg1z05OThbjNhiN1nU4O2EwlmIOPPOOQfntHhmMBtzzzYHRYD3XTs4lz3WmyYC7R94cOPya32TMoKK7p1X811si+d+6cKr61eT5MdZHFeVnMGXi7Gj5T4qzkwMZJuvfg/99d4LZaz6nkqsLbw3uU2zegpwd7biemnfUTFY23LyZg7OTHen51tGvXs/mwy1XmTOmGhnGmxhNObwedqHE/OV5j0RERERERESk/Ozbt49HHnkEgLp163Lt2jXS0tJwd7d+9l1Z2hRFC+3/YI6OjjRt2pQDBw7QunVrduzYwbBhw9i6dWux7QYOHMiyZctYtGgRBw4cML+elJRE165dmTRpEsOHD+err74yv3fo0CHi4+OJiorCZDLx5JNPmn9IS+Lu7s7KlSuZO3cu27Zt46677io01+rVq5kwYQL33nsv27ZtIyUlBZ8iHsDp4eFBcHAwU6ZM4ZdffmHChAlF1liavIVxdXHCZMq0eM1gMuHq4mxzjpK4uLhYHIUDuYuyri4uFjGZBWIMRiMu+WIK2rhhAxs3bgTA3sEBL6+8RV6TyUROTg4urpa7jYuqpWAcwP82f8z/Nv/XnL9y5ar58hvJyckp1VnsRXF1dsaUWWAOjOUxB5Z95I7bcg6s67Ccp4I2bVzP5o2fAeBgb4+XV94ir3kOXKznoOBcG41GqziAPVuj+Gbbh0DuHFTyzDunPLOEOWjzaDAPdO5H9L7PWfj6M4z7zwYcnQofi6uTI8ZMyweNGkyZuDpbH9fS4Z476XDPnRw89ROD5q3k48mD8S7m2QWd7q9E5wdyP4zJzs4hJTXb/J6jgx0VKthhMFqe8167uhM92nsy7I04Lqdk06a5G+Ne8OXl/1h/8+KPukciIiIiIiIiUn4uXbrEnXfeab6uUqUKycnJFovmU6dOJT4+nnvuuYeXX37Zpja20kL7P1znzp3ZtGkT3t7e+Pn5UbHi71/UrFixIs2aNQOgWbNmnD171vze4cOHiYmJITg4GICbN2+SnJxsU957770XyD3mJCUlpchcnTt3ZurUqXTr1o3HHnusxMXwp59+mvfff5/XXnsNe3v7W5a3oFrVA9j+zbfm67T0G6Sm3SAwwK+YVqVTIzDQ4oON9PR0UlNTqV69ukVM4oW8Hbs5OTkkJiZSs2bNIvN2e/xxuj3+OACbNm3i2LFj5vfi4+OpUqWK1R+WwBo1SqzlNx0ee4oOjz0FwPbPP+HU8cPm9y4mnKeylzdu7qV/MGlBtar7s31vgTlIv7VzEFijOru/3mO+Tk9PJy0tjerV8o5wqVmjBomJlnOQkJhIrZqBFKVrt+507dYdgM83fcbxY3lngSXEx1GlSlWrOagRGMier3blqyWNtNQ0qhUyBw90eoYHOj0DwDf/+5CfTh4yv3fpwjk8Kvvg6mb5jYKL8We4diWJBo3vw87OjrtbP8a6FbNISjhL9dqNCh1HbX9vth46Yb5OzTBw/YaBWr55H65cuHKN739J4OFmuTla3n4bfl4eHD0bZ36tMFu/SWXrN7nH53RsXYk76uYtZPt7O3DlWhY3DDct2jSu70LsOaP5LPe90ekMf8aHSm4VSE23jP2j7pGIiIiIiIhIqVWw+7Mr+NvKybHclDdixAjatGmDp6cnQ4cOLXQzcsE2paEz2v/h7rvvPg4cOMDmzZvp1KlToTGZBXbgFuXmzbzFqZycHOzs8n7RnZyc6NWrl/mMoy1bthAYWPTiYn72+R4OmpOTU2Su7t27s2rVKry8vAgJCeHMmTPF5nVwcKBatWrmOm5V3oKa33k7Fy5dJubkDwCs2fQ/7r+nyS3dTd20SROSkpM5fiJ3IXPdunUEtWxpsVu9Vs2aeHp4sHPnTgC2b9+Or68vPeoGtAAAIABJREFUNWrUsKmPVq1aERMdTdyvZ7qvW7eOdg8+aBXXpGlTkpOSOHH8uDmuZVBQsTvnAZoHteXE0W9JjDsHwJbPPuC+th1tqq0kze+8nQvJ+eZg862fg2ZNGnMxKZnjJ74H4NP1Gwhqea/FbvVaNQPx9PTgy125DzDdtuNL/Hx8qFHIAnhhglrdT0zMEeLich+e+tm6T2nT7iGruMZNmpGUfJHvTxwzx7VoGVTojvb87rrnYX44vp+khNwPyXZ/vpJmrbtYxaVdv8qa8Fe5djX3jPuzsYfJzs6iqm/Rv9MtGtYh8UoKR37Mnd/V2/fRtnEDix3tmdnZTFmxnh8TcvOeu3iZ80lXqBvgW2zd+X17/AZ31XchwCf3c+Ku7Tz45ki6VVxCUiYNaznjXjH3n7m7G7ly9XqW1SJ7QeV5j0RERERERESk/Pj6+nLp0iXzdVJSksWG2u7du1O1alUcHBxo27Ytp0+fLrFNaWih/R/OycmJFi1a8Omnn/Lww3kP6nN3dyc5OZns7GxiYmKs2hX26Y3BYOD4r4ur0dHR1KuX93DPJk2asHPnTm7evInRaGTGjBm/u+aici1evBgHBwf69OlDly5dSr0gXl55XZydmDHqJeZGrKbXsFc5/sNPvDKwH0mXr/LM6MnmuGdGT6bPiIkkX0nh9XeW0mfERE788JNNfTg7OzNh/HjCwsJ4YcAATsXGMmTIEC5dusTgkBBz3Lhx4/hswwYGDBzIF1u3Mm7sWJvH4e3tzZChQ5kxfToDBwzAaDTSr18/AGJjY5k0caK5lvETJhAWFsaAF14g9tQpmx40W6WqL88NHsfbb47llcE9MRkN9Pi/FwE4c/oEc6YOB+BaymXGDenNuCG9AZg1MYRxQ3pz5XJSkbldnJ2YMfpF5i6Pyp2D0z/xyoBncudgzBRz3DNjptBn5KTcOViwjD4jJ5VqDiaOe5mF4UvpP2gwJ2NPMzzkJS5dusygIXkPDH5t7BjWbdxM/0EhbNm2nQmvjLEpP0BVb29ChozgjRlTeWlgf4xGA3379QfgdOwppk4ab65l7PiJLAlbyIsDniU29iSDh5T80GLPKn70eGEyK+aNYPboR8k0GejUaygAv/x4lKVvDgKgbqN7ad/9Rd59YwChL3dl7fsz6DdsLi4Vi/7alIuTI7MH9uLNDz+n26R3OPZTHK/+XxcuXr1Oz2mLAQj0qcKU4Md5NeITuk9ZyKiwDxnbpzO1/KoWmbegq9ezWf7pZcY+78s7E6rj7FSBj7em5NYd6MRrL+Z+i+G77zPYfSidmSMCeHt8dXo8Upl5q0r+lk153iMRERERERERKT/333+/eZf6iRMn8PX1NZ8SkJqayoABA8zHIX/77bfUr1+/2DalZZdTlv3w8pcVFxfHokWLmD17Nrt27eKDDz5g6dKlHDhwgHXr1tG8eXPee+896tSpQ+XKlWnRogUAP/zwA+PHj6d///6kp6czduxY88NQg4KCeOKJJzh+/Dg+Pj689dZbhIeH4+XlRb9+/Zg/fz579+4lJyeHvn370qNHD9auXcs777xjcXzJ8uXLadOmjflhqJMnT6ZBgwasXr2aq1evMnz48EJzrVu3jsjISDw8PPDw8CA0NBTXQs4Fzy9/fuCW5L1ybE+R790KKRUDyjV/jl35fuXossn2RdPfq57paMlBZZDm6l1yUBlkVCjfxdjTKeX7MwTwSOp/yzV//433lWv+4L62fdOjLLrdo9PZREREREREpGzSl036s0v4S3EbNLPY9+fOncuhQ4ews7Nj6tSpfP/991SqVIkOHTqwcuVK1q9fj7OzM3fccQeTJ0/Gzs7Oqs3tt9/+u2rTQrvYLCgoyOLhqP9WWmgvnhbaS6aF9pJpoV1EREREREREC+0FlbTQ/mfSKoD8be3YsYMVK1ZYvf7ss8/SoUOHP74gERERERERERGRW8iugk7+/rvQQrvY7K+2m719+/a0b9/+zy5DRERERERERERE/uX0kYiIiIiIiIiIiIiISBlooV1EREREREREREREpAy00C4iIiIiIiIiIiIiUgZaaBcRERERERERERERKQM9DFVERERERERERETkr8jO7s+uQGykHe0iIiIiIiIiIiIiImWghXYRERERERERERERkTLQ0TEipXTO5fZyze9hd71c89vl5JRr/iqOV8o1P8A1x4ByzX8jx61c83tlJZdr/kdORpZrfoAV3q+Va/6pIYnlmv+2/XPKNf/Bu0ex+4SpXPsAaHdnxXLvQ0RERERERERKph3tIiIiIiIiIiIiIiJloB3tIiIiIiIiIiIiIn9FFbRP+u9CMyUiIiIiIiIiIiIiUgZaaBcRERERERERERERKQMttIuIiIiIiIiIiIiIlIEW2kVEREREREREREREykAPQxURERERERERERH5K7Kz+7MrEBtpR7uIiIiIiIiIiIiISBloR7vILbJ393bWfrSC7OwsAmvdxuCRr1HRzd0qLisriw9XhLN5/RoWr1hHVW9fm/vYvWsXa9asISsri1q1azN69Gjc3Nys4qKjo1keEUGGwYCvry9jRo/G28en2NzR0dFELF+OISMDX19fRo8Zg4+3t0XMTz/9xKLFi7l+7Roenp4MHzaMOnXq2F7/7l18tObD3Ppr1WbU6DGF1h8THc3y5cvIyDCYa/H2Lqn+GJblq3/MmNGF1r9w8WKuX7uOh6cHw4cN47ZS1A+wZ/cO/vtRJNlZ2dSsVYeho8bhVsQ8R65YysZ1H7N05cd42zDPh2OOseT9SDIMBvx8vBk/cig+3lUtYnJycvho3QYiIj9k/qypNL6jkc21HzybyLzth7hhyiLA043pj9+Pn4f1/QeIvXCFZ5ZvIvyZjrSo7W9zH7GHN3Nwazg3b2ZS1b8BHfq+gbNrpSLjz57YxWdLX+L5KTvwrFrDpj7Kcw7+iHt0cM8XfP7fCLKzs6hWsy79h75ORTfrexR9cBcb1oSTlZmJWyVP+r00keq16tncj4iIiIiIiIj8cbSjXeQWuJR0gfffnc+E1+cy/901+PgGsGbVu4XGzp0xHhdX11L3kZSURHh4ONOmT2dZRAR+fn6sXLnSKs5gMBA6ezYjR40iIiKCoKAgFi5aVGxug8HA7NBQRo0caW6zaOFCq7jZoaH06tmTiIgInurdmzlz5pSq/iXh4bw+bQZLly3Hz8+PVStXFF5/6JuMGDmKZRHLi6ylYJs3Q0MZNXIEyyOW5Y55ofWY3wwNpXfPXiyPWPZr/f+xuX6A5KSLRCxZwKTXQ1m0NBIfP38+WBVRaOzsGRNxdbF9njMMBmbMfZtXhg8mcskC7mt5L/PCllrFzQ9fRlxCIl6eHqWqPcOUyfi1XzG1a2s2DH2Sdg0Cmfn5/kJjb+bkMGvLfqq6l+7n9PqVBHZ9MoMnXlpK/4lb8ahSnb2b5xcZn2nKYM/Gt3CpWNnmPsp1Dv6Ae3Q5OZE1EaEMn7SQGYvW4+1TjfUfLLaKu3o5iRULpzBw9BtMX7iWoDaPsnrJzFL1JSIiIiIiIiJ/HC20i9wChw58zV1N78HbN3dX60Mdu3Lgm52FxvZ4+nl6PzOw1H3s37ePZs2a4eubuyu3U8eO7Pn6a6u4mOho/P39qVcvd+drx44dOXL4MDdu3Cgyd3RMjFWbw0eOWLQ5e/YsaWlptG7dGoBWrVqRcu0av/zyi23177esv2OnTuzZU0j9MdH4+wdQr159ADp07MSRIyXXH+DvT/1f6+/UsUMh9f9MWlo6rVvfB8B9pawf4OD+b2jcrDk+vn4APNKxC3v37C40tvfTz/J0v+dtzn3k6HEC/PxoUPc2ALo88hCHomO4cSPDIq7Tw+14Zdhg7B1K94Wkgz9foIaXO40CcnfId29Wj31nEkg3ZlrF/ve7WBr6VaGGV9E70Qvz0/EdBDa4D48q1QC4875e/HDkiyLj929ZSKMWj+PoUviO8ULHUY5z8Efco5iDu7i9cUuq+gQAcP8j3flu7/+s4uztHRg4+k2qBdYFoF6jZiScP1OqvkRERERERETkj6OF9r+JuLg4evToUeT7X3xR9GJWWeXPHRUVxVNPPUW/fv3o1asXe/fuLVPu0aNHYzAYyloicXFx3H333QQHB9OvXz/69+/Pvn37zO8fOHCAvn370q9fP5588klWrFhhfn3EiBFl7j8x/jx+AdXN134B1bmWcpW0tOtWsQ0a3fW7+oiPjycgIMB8HRAQQEpKCqmpqcXGubq6UqlSJRITEmzO/VubhMREyxh/y+Mx/P39OR8XZ3P9/mWpP/HPrR8gIf48/v558+wfUC13nguMAaBhozttzgsQF59ItQA/87WrqyselSoRn3jBIu7O2xuWKu9vzl2+brEoXNHJkcoVnTl/xfJn9FJaBh8cOMnwh5uXuo+rST/j6V3TfO3pXZMbaZcx3LhmFXspIZZfYvdy94PPlaqP8pyDP+IeXUw4h49/oPnaxz+Q1GtXSC/wt8KjchXuan6/+fr44W+o06BxqfsTERERERERkT+Gzmj/h1i6dCmdO3e+5XlNJhMrVqygc+fOxMXF8fHHH/PJJ5/g6OjIzz//zKRJk8w7nH+P+fOLPlaitOrUqUNkZCQAv/zyC4MHD2bevHncfvvtTJkyhVWrVuHn54fBYOC5556jS5cut6xvo9GIh6eX+drR0Qk7OzuMBgPu7qU74qO4Pjwr5x2x4eiU10elSnmLgwajEScnJ4u2zs7OxX6gYTQYSmxjNBpxLBjj5ITRxg9KjEYDlT098+r/7R4ZLes3Ggw4OjlatHUqoX6DwWjVxtnZyaJNoffFyalUH/SYjEY8K1vPs8GYgXul0u1sLshgNOLkWGAMTk4YjGX/IArAkJmFs4O9ZX4HezIysyxe+8/Wg7zYtikeLpb3yhZZpgwqVqpivnZwcAI7OzJNGbhUzJv7nJwcdnw8lQd7TsLe3rGwVEUq1zn4A+6RyWSgkmfePfqtfpMhA7ci/lacPHqA7ZuiGDOt8OOoRERERERE5J/LroL2Sf9daKH9b2bChAn4+vpy4sQJEhISmDt3Lvv27SM2NpZhw4axaNEi5s+fz6FDh8jOzqZfv3507dqVCRMm4OjoSEpKCg899BDfffcdV65c4ezZswwYMIDevXtz6NAh5s2bh4ODAwEBAcyYMYM333yT2NhYXn/9dZ5++mmMRiOZmZk4OjpSu3ZtVq9eDcCPP/7I9OnTsbOzw83NjdmzZ3P9+nXGjh1LxYoV+b//+z927NjBm2++CcCrr77KI488wqxZs9i4cSMpKSlMmDCB7OxsqlWrRmhoKJcuXWLixIlkZmZib2/PzJkzqVatmk33qWbNmgwePJgPPviA6dOnk5KSYj5GxMXFhTVr1gC5x6H8Xl9s/IRtmz8Fco95qOyVt3hmMhnJycnBpRTnQxdm44YNbNy4MbcPBwe8vPIWGE0mU24fBc57d3FxwWQyWbxmNBqLPRe+qDauLi4WMZkFYgxGIy75Yqzq37iBTRs35NZv74CXxT0yFXqPcvuxPKrDaDQWey+LamNZv3MRYyx+jj7fuJYtm9aZx1DYPJfmHPCiuLg4Y8q0HIOhwBjKwtXJAWNWtmX+zCxc831AsfdMPCkZRh5rfJvNeaO/Wk3M17l/ByrYO1LRI++htVmZRsjJwdGpokWbY3s/oqp/ParXvdemPv6oOSive/Tl52vYueUjILd+j8p5D+nN/LV+Z9eKhbY9cmAnayJCGfbaO+ZjZERERERERETkr0cL7X9DJpOJ5cuX8+GHH7J+/XomTpzIsmXLWLRoEYcOHSI+Pp6oqChMJhNPPvkkjzzyCACenp7MmDGDtWvXcvr0adasWcPPP//MmDFj6N27NzNnzmTFihVUrlyZOXPm8MUXXzBgwABiYmJ4/fXXAWjSpAnt27enXbt2tG3blo4dO+Lg4MCMGTOYPn06tWvXJioqiqioKLp168bJkyfZuXMnFStWZPbs2dy8eZOcnBy+/fZbpk2bZh7T/Pnzee6552jfvj1z5szh+PHjfPTRR7zwwgu0bt2a3bt3ExYWxsyZtj8M8K677jIvqI8cOZJevXrRsmVLHnjgAbp27Ypnvt3Vv0fnbr3o3K0XANs2r+X740fM711IiMOrSlXc3Mu2w7bb44/T7fHHAdi0aRPHjh0zvxcfH0+VKlVwd3e3aBNYowZfffWV+To9PZ3U1FSqV69OUWoEBpbYpkZgIIkX8o4xycnJITExkZo1a1KUbt0ep1u33+rfyPF89ScUUX9htaSlphVbf2Cg9ZgLtgkMDCTxQt5RMjk5OSSUUD9Al2496NIt99imLZvWc+J4jPm9xIT4WzLPADVrVGfnnryjmNLS00lLS6d6tYBiWtmudlVPtp742XydajBx3WCiVpW82r889QuxF67Qfl7uovC1DBMv/3cnYzu2pFvTwhd5m7XtR7O2/QCI+TqKuDPfmt9LSf4ZNw8fXCpa7tT+6dgOLp4/zk/Hc59jkJF2hTVv9aLL828TWL+VVR9/1ByU1z16uMvTPNzlaQB2bfmY0ye+M793MfEXPL28qehmXf/3Mfv5aPkcRk0NI6CG7Qv7IiIiIiIiIvLH03cP/obuvTd3F6i/vz9paWkW7x0+fJiYmBiCg4MZMGAAN2/eJDk5GchdJP9Ns2bNsLe3x9/fn9TUVC5dusS5c+cYPnw4wcHBHDhwgIsXL1r1PWfOHFavXs3tt99OREQEzz//PDk5ORw9epTJkycTHBzMhg0buHz5MpC7uOnl5YWzszN33HEHR48e5ciRIzRt2tTiGI/vv/+e5s1zzzseN24cTZs25ciRIyxcuJDg4GDeffddUlJSSnWf0tPTsbfPPQaib9++fPHFF3Ts2JG9e/fy2GOPkZSUVKp8xbk3qA0nYr4jIe4cAJvXr6F12w63LD/kPnw0JjqauF/PFF+3bh3tHnzQKq5J06YkJyVx4vhxc1zLoKBid543bdKEpORkjp84YW4T1LKlRZtaNWvi6eHBzp25i6Pbt2/H19eXGjVq2Fj/fcTERBMXd/7XPtbSrl0h9TdpSlJyEidO5Na/ft1aWhaopfD6k8z1r1233qpNbv2e7Ny5C4D/bd+Or68PNWoUvYBfUMtW93Ms5jvi43IfoLph3cc80K69ze2Lc3fjO7mYlMyx708C8Mlnm2nV4p5btqO9RW1/Eq+lceSX3N/r1Qe+p239Gha7tSc9dh+7XnmaHWP6sGNMH5oG+vBW74eKXEAuqG7jRzh/eh9XLv4EwOGdK2jYvKtVXPfBy3hp1j5enPkNL878BnevAJ5++ZNCF9kLKs85+CPuUdOWD3Ly2EEuxP8MwPYNq2n5gPWxX0ZjBisXvU7I+Le0yC4iIiIiIiLyN6Ad7X9Dvy0eQ+6u3PycnJzo1asXL730klU7x3znPzs4OFi95+vraz7j/Ddx+R4UmZOTg8lkom7dutStW5fg4GAeffRREhIScHV1ZdWqVdjZ2Vm0zd9nx44d2blzJyaTiU6dOlmNqeBYHB0deeedd/D19S3yXhTn+PHjNGrUCACDwYCPjw9PPvkkTz75JK+++irffPONzUfRlKSKtw8vhLzM3JmvcjM7m9r1GvD8S6MB+DH2ez5evYzXZswn5eoVpr861Nxu+qvDsLe3Z9LMBVTx9ikqPQDe3t4MGTqUGdOnk52dTd169QgJCQEgNjaWyFWrmDlrFs7OzoyfMIGwsDAMBgPVqlVj9JgxxeZ2dnZmwvjxFm3GjB7NpUuXmDR5MkvCw4HcD0HeWbCA1VFRVK5cmXFjx9p8j7y9vRkyZBgzZkznZnY2devWY3DIEHP9qyNXMmPmG7n1j59AeNhiDAYDAdWqMXr0yzbVvzgs/Nf6A3j51/onTp7Cu+FhAIz/tf7IX+sfX4r6Aap6+/DikNHMnjGJmzezqVO3AQMHPwfAD7En+XD1e0yZ8R9Srl5h8oSR5nZTJozC3t6e12fNo2oR8+zs7MyUsaN5e8lyDAYD1QP8mTBqKMmXLzNu6izeXzQPgOeHjSE7O5tLl68w660FODk58eroYTRqUL/Y2l0cHZjdox1vbjlARmYWgVUqMf3xB7h4PZ0hH2zn08FPlOpeFMa9sh8P957KxuVDycnOxifwDh7sMgmAC+eOsvfzd+gRsrxMfZTnHPwR98irqi/PvPgqYbPHcPNmFjXrNOLpgeMBOPvDcT77MIxRU8KIObiL1OtXiXh7okX7sTMi8Khctcx1iIiIiIiIiMitZZdTcHVT/pLi4uIYMWIEDRo0oFOnTjz00EPs3LmTrVu3Mnv2bFq2bMnB/2fvzuOiqvc/jr9GdlBAdlBM00zcs1zyXs3MpVvZYlrm1ZtlapZLesvdXNBUUnHBpdQyEXfR0sxKM7M0l1TMJfcdXHADgZmBYX5/kIMjCBjOrfy9n48Hj8c9Zz7n8/2e7zkz3j7zne/Zto2dO3cSFRXFggULyMzMJCoqiqFDhzJgwADbcfHx8Rw+fJj+/fuTlpZGq1at+O6772jZsiXTpk2jUqVKxMbGUrduXby9venevTuff/45S5cuZfv27YwbNw6DwcDVq1dp06YNq1ev5q233uLVV1/lscce48svv8TPz4/w8HB69epFfHw8ANevX6dr166YTCbi4uJwd3enadOmrFq1ilGjRtGoUSOeeuopJk+eTN26dfnqq6+IiIigffv2bNmyheTkZFq1alXg+Nxo69SpU3Tp0oVPP/0Us9nMW2+9xdKlS/Hy8iI7O5suXbrQvXt3LBYLcXFxTJkypcjXYtfh5OJf0AJ4O6U4NL/BwW/57P/BD2WcsBQeVAzpVi+H5i9tuejY/NtXOzQ/wNyAQQ7N37hSUuFBxXD/z586NP+2h95xaP4bHquW/9ruIiIiIiIicm/ImP/Bn92FvxSPDo6tRxSHZrTfIyIiImjTpg3Lli2jfv36vPzyy1itVtq3b1/kHKNHj2bgwIG22e0vv/wyBoOBzMxMevXqRXR0NMeOHaNt27Z4enqSlZXFkCFDcHd3Z/DgwQwdOpRZs2bh5ubGhAkT8ixrU7JkSby9vXF3d8+zDEivXr0YOHAgCxYsIDQ0lB49elCxYkUGDRrEl19+icFgsD1I9XaOHz9Ox44dMZvNWCwW3n//fduM9S5dutCpU6ech2ZmZtK0aVMeeeQRtm7dyrZt2+jYsaMtz7hx4+7aTHcRERERERERERG592lGu8gd0oz2gmlGe+E0o71wmtFeNJrRLiIiIiIicm/TjHZ7mtEucpcMHz6co0eP5tk/a9asAh+WKSIiIiIiIiIiIuIoKrTL38rw4cP/7C6IiIiIiIiIiIiI2FGhXUREREREREREROSvqIThz+6BFJHjF1MWEREREREREREREbmHqdAuIiIiIiIiIiIiIlIMKrSLiIiIiIiIiIiIiBSDCu0iIiIiIiIiIiIiIsWgQruIiIiIiIiIiIiISDEYrFar9c/uhMjfSdrmeIfmPx9cy6H5rQbHP63a4OCPFUefg3/KKYfmP+BWx6H5AZLTPR2av1nqUofm3x74rEPzA1wzujk0f/OkWQ7NP+T0qw7NDzC+u2PvIxERERERESmYceG4P7sLfynur/T/s7twW5rRLiJ3laOL7FI4RxfZ7wV/9yK7iIiIiIiIiPy1qNAuIiIiIiIiIiIiIlIMKrSLiIiIiIiIiIiIiBSDCu0iIiIiIiIiIiIiIsXg/Gd3QERERERERERERETyUcLwZ/dAikgz2kVEREREREREREREikGFdhERERERERERERGRYlChXURERERERERERESkGFRoFxEREREREREREREpBj0MVeQu2Lb/KJMWryHdZCLUvzTDO7ch2M/HLmb34RNMXPQl1zNMuLu68N9XnuHhBysUuY3du3cze84cjBkZBAUF0advXwIDAuxijh07Rsy0aaRcu4a3jw89e/SgQoWit7Hx++9ZtGgRWVlZ3Fe+PH369MHLyyvfvsyZPZsMo5GgoCD69ulDQGDgPd1/gB17f2NK7LKc6xzgz5DurxLsX9ouJuG3I0yOXUpauhE3N1f6/KctD1WtXORz+HnTN6xaOgdLVhZlylWkc8/38fQqmSdu17aNxC/4iKysTEqW8uHVNwdQ9r5KhebftXkN61Z+RLYli5CylXip2yg8PEvliduz7RvWrZhJptmMVylfXuw8jNDwBwrMve23Y0xc9g3pJjOh/r6MfPU5gkvbvw92HDrBpOXfcj3DiLurC++99CQPVy5faL/t2vnxa75cOhuLJWeMXn17GJ5eec9h97aNfL5oBlmZZkqW8qVDt0GU+ZPHaOvh00xc9QPppkzCSnszsl1zgn3z5gY4mHiR9tELmdntBepWCi+03zfUruREs4ddKFECzl3OZskGM0Zz3jhvTwPtmroS4GPAmAkrN5k5lpRd5HZERERERETkf8CgedJ/F7pSIsWUYTIzcOZChr7WmpVj36Vx7SqMnrfCLsacmUXfKbH0bPMk8R/05a0XmjNo5qIit2E0Ghk7bhzv9O7N7NmzqV+/PjFTp+aJGztuHG1efJHZs2fzUtu2REVFFbmNCxcuMGPGDEaMHMms2bMJDg7ms88+y7cv48aOpfc779j6MjUm5p7uP0CG0cSQybMZ1O0/LJsUyT8frsm42XF2MebMTN4bP523XmnN4ugRdHv5WYZOmVPkc7h08Rxxsz6k79DJjJ2+nICgUJbHTc8Td+XSBWZNHsGb/x3FmJilNGjUkrkzxhSa/0pyIis/+4A3+s2g/4QvKR1Yhq8WT843bvmckXTqG0P/CaupVb8lSz4aUmDuDJOZ/rOXMew/z/JFZC8eq1mZUXGr7WKM5kzenbmYQe2fZuXInnR7pgn9Zi3FarUW2vcbLl1MYuHscfQaMoVRMSvwDwxj5YJpec/h0gU+nfo+Xfp8QOTUeOo1epLYmaMLze/IMUo3ZdJ//hrFy6b4AAAgAElEQVSGv9ScVQM70bhaBSKXfZdvbHa2ldHLvsO/lGehfb6Zb0kDz//TldlfmohaaORKipV/1XPJN7ZdU1d+O2Xhgzgjn/9o5h/V9d27iIiIiIiIyB+lQvsfdObMGVq3bl1gzNq1ax3W/s254+LieOmll+jQoQNt2rRh8+bNxcrdp08fjEZjcbvImTNneOihh+jYsaPtb/To0Rw4cIApU6YAUL9+/WK3cye2b9/OpUuXAOjevftdybntwFHKBPoRUb4MAM81eoSf9x4hLcNki8myWBj86gvUjagIQO3K5bl4NYXU9IwitbE7IYGQkBAqVcqZjduiRQt27tpFenq6Leb48eNcv36dhg0bAtCgQQOuXrvGqVOnitTGz1u2ULt2bYKCggBo2aIFP27alCcuYffuPH3ZtXOnXV/utf4D7Nj3G2FBAVS5vxwArR5vyNaE/aRl5L5XsiwWBnbpwCPVHwSg1oOVuHjlKqlpBee+YefWjUTUrIt/YAgAjZs/x/af1ueJc3Jy5s3/jqJM+P0AVK5am7OnjhWaf98vG3igWgNKB4QBUK9Ja/Zs/Saf/C78u0cUfoE5cZWqN+Bi0okCc2/77ThlA0oTUS7nmOcbPsSW/UdJM+a+DzItFob95zmq3pcTU79KBS6lpJGaXvTPm93bNhJRox7+gaEA/LPZ8+zYvC6fc3CmS58PCPt9jB6IqE3i6aOF5nfoGB05TVk/HyLK5tyjL9SrxpZDJ0nLZ7r50i17eLBMIOEBPnleK0i18k4cPmPh6vWcLy+2/ZZFzYp5C+g+XgbKBpbgx71ZABxNzCb223ymvYuIiIiIiIhIkajQ7kAff/yxQ/KazWbmzp0L5BSzlyxZQlxcHPPnz2f8+PFMn553BuydiI6Oxt3d/S70FCpUqEBsbKztb/DgwURERNCrV6+7kv9OLV++3FZonzFjxl3JeepcMuFBfrZtT3c3fEt6cvrCJbt9TzxS3bb9055D3BcSQClPjyK1cfbsWUJDQ23bHh4elCpVisSkJPuYkBC740JCQjh95swfaiM0NJSrV6+SmppapL4kJSbes/0HOJV4gbLBucvLeLq741PKizPnLtjte7x+Hdv2lt17KRcaTCmvos1KPpd4iqCQsrbtoJCypFy7TNr1FLs4b18/atZpaNves3MzFStXpzAXk07gH5y7BElAcDmup1wi/fo1+/ylA6lcIye/xZLFjh9WUu3hpgXmPnnhEmUDb3kfeHly+sJl275SHu48XrsKAFarlRU/7aJOpXJ4exXtfQBwPvEkgTeNUWBIWVJvM0bV6/zDtv3rzs1U+LPH6OIVwv1zC+eebq74erpzKvmqXVxyShpxm3bT86mGt6YoVKCvgUspub8QSL5mpZSnAQ9X+7iwAAOXU608Xd+Ffq+40/05N8ICDHfcnoiIiIiIiIjk0O/E74IBAwYQFBTEvn37SExMZPz48WzZsoWDBw/So0cPYmJiiI6OZseOHVgsFjp06MAzzzzDgAEDcHFx4erVqzz++OP88ssvXL58mePHj9O5c2fatm3Ljh07mDhxIs7OzoSGhhIZGcmYMWM4ePAgw4cPp127dphMJjIzM3FxcaF8+fLMnz8fgCNHjjBy5EgMBgNeXl6MHTuWlJQU3nvvPTw9PXnllVdYv349Y8bkLDkxcOBAmjVrxujRo1m1ahVXr15lwIABWCwWwsLCGDduHMnJyQwePJjMzEycnJwYNWoUYWFhdzReW7duJS4uzjarfdSoUezduxd/f38mTZqEyWRi0KBBXLt2DYvFwpAhQ6hSpQotWrSgcePG+Pv7281G37p1K9HR0Tg7OxMcHMyYMWNYvXo1mzZt4vr165w7d45OnToREhLCunXrOHz4MFOnTuWFF15g69at7N+/nxEjRmAwGHjooYfo37//HZ2P0WzG1cV+aQY3V2cyTPnPDj10OokJi1bzQbd2RW7DZDTi6mpfKXNzc7P75YHJZMLl1hhXV0xF/HWCyWTCx9fXtu3i6orBYMBkNFKqVO4a0kaTqdC+3Gv9h9+vs+ut19n1ttf58MkzTJq3lJE9Oxep/wBmkxFvn9w1311cbpxDBl4lvfM9Zn/CNr7+YgH9Iwv/4ijTbKSkd24x3Pn3/GZTBp4l886c3vRVLN+umIF/cDle65t3qZ+bGc2ZuLnY/5Pi5upMhjnv+Hz7yz7GLlpDKQ93Jrz5cqH9vpnZbMTbJ/ccijJGB/ZsZd3qOP474qNC8zt0jDKzcL11jFycyTBn2u2L+nwj3ZrXx9vjzr/wdHE2cD0jd511SzZkW624uhjIMOcW4D1cDYT4Gfh2RzartmRSP8KJTi3dGLvASHbRV/IRERERERERkd+p0H6XmM1m5syZw8KFC1m5ciWDBw9m1qxZxMTEsGPHDs6ePUtcXBxms5kXXniBZs2aAeDj40NkZCTx8fEcOnSIRYsWceLECfr27Uvbtm0ZNWoUc+fOxdfXl6ioKNauXUvnzp1JSEhg+PDhANSsWZMnnniCxx57jMaNG9OiRQucnZ2JjIxk5MiRlC9fnri4OOLi4mjVqhUHDhxgw4YNeHp6MnbsWLKzs7FarWzfvp0RI0bYzik6OppOnTrxxBNPEBUVxd69e1m8eDGvv/46DRs2ZOPGjUyfPp1Ro0b94XG7evUqzzzzDEOGDKFXr15s2rSJAwcO0KhRI9q2bcuRI0cYPXo0n376KVlZWTRu3JjGjRvb5Rg2bBiffvopoaGhjBw5klWrVmEwGDhy5AgrVqwgJSWF5557jo0bNxIREcHQoUPtvhwYNWoUI0aMoEqVKvTr14+zZ89SpkyZIp+Dh5sr5kz7QpnRlImnu2ue2ITDJ+k/YwHvd2rNI1XuL3Ib7u7umG8pWJpMJjxu+uWBu7s7mbfEGE2mAn+dsOqLL1i1ahUATs7OlC6dW+Q1m81YrVbcPexnG9+uL7fG3Uv9h9+vs/nW62zG090tT+yeg0cZNOljBnXryMPVHiww77ovl7BuzRIAnJ2c8Sntf9M5mLBarbi55z8j/pefvydu1of0GRJtW0bmVj9+HcdP3ywEcsaolE/uA2gzC8nf6F8d+eeTHdi9ZQ1Th/+bfh9+gYtr/tfDw9UFU2aW3T6jORMPt7zvg+YPV6P5w9XY9tsxukz8jCVD3yTAJ/8HggJ8t2YRG77KGSMnJ2d8fHPH6MY5uHvkfw67tm5g4ewoeg6abFtG5lb/yzEy3zpGmVl4uuV+gfPTbye4lmbk6Yer5JsjP/+o7mxbX92SDanpuZVyZycoYTBgyrSvnhvNcD3Dyr4TFgC2HrDwzKOuBPoaOH9FlXYRERERERGRO6VC+13yyCOPADlLXezZs8futZ07d5KQkEDHjh0ByM7O5uLFi0BOkfyG2rVr4+TkREhICKmpqSQnJ3Py5El69uwJQHp6ul0h8YaoqCiOHj3Kpk2bmD17NgsXLmTevHns2bOHoUOHAjlFxxo1agAQHh5uy1O1alX27NlDVlYWtWrVspvpu3//fgYPHgxAv379gJzZ+8ePH2fGjBlYLBb8/PwoyPHjx23nDdCwYUPq1MldWsPNzY3atWsDUKNGDY4fP86uXbu4fPkyX3zxBQAZGbnrmN88XpBTqDcYDLalQOrXr8/27dupWrUqdevWxdnZGT8/P3x8fLhy5cpt+1ilShXbWN6p8iGBfLMt95qnphtJSc+gXHCAXdyh00n0m76AMd3bUadyhTtqo2x4OD/88INtOy0tjdTUVLsvBMqGh5N07pxt22q1kpSURLly5W6bt9Wzz9Lq2WcBWL16Nb/++qvttbNnz+Ln50fJkiXtjgkvW7bQvtxr/Qe4r0wI67bssG1fT88gNS2d8JAgu7jDJ88wKPpjInu/wUMRDxSYE6DZ0y/R7OmXAFi/ZikH9+20vXY+8TS+pQPwKpm3CL0vYSsL5kzg3eExhIXf/n76Z8t/88+W/wbgp28XcuxA7jkknzuJt28gHl72M8HPnz3KtcsXqFzj0ZxfejR8mhVzR3Mh8Thlykfk2075kAC+3rHPtp2aYSQl3ch9QblF8XOXr7H/VCJNa+fkqFflfoJLe7Pn+Bnbvvw0faodTZ/K+QXIhq+WcGjfL7l9TTqFT+kAPL3yjtH+hK0smvMhfYZNI7Ts7b/Y+l+NUYWg0ny9++BNY2QiJd1EuYDcz/Xv9h7lt7MXaDo8Z+mxa+lG+s5dTb/nH6PVI1XzzfvT3ix++n2t9YbVnLk/LHdVuAAfA9fSsrl1Gfgrqdm4uRgwADfK6lbQbHYREREREZG/GoOW+fy70Brtd4mTk5Ptf1ut9pUKV1dX2rRpY1un/KuvviI8PGcNYJeblhxxdrb/3sPFxYWgoCDbccuXL6dLly52MVarFZPJRMWKFenUqRNLly7l/PnzJCYm4uHhwbx584iNjWXx4sUMGTIkT5stWrRgw4YNrF+/npYtW+Y5p1vPxcXFhcmTJxMbG8uCBQuIiYkpcFxuXaP91geQGm75sDAYDLi4uDB06FDbMcuWLbNr/9b4m/uYmZlpy5mdnbt8gtVqzdPWDSVKFO9t8EhERZKSr7Lr0AkA4r75kUa1qtjN5LVarQybvZSBHZ+74yI7QK2aNblw8SJ79+UUMlesWEH9evXsZnvfV64cPt7ebNiwAYB169YRFBRE2bJl8815qwYNGpCwezdnfl8TfcWKFTzWpEmeuJq1anHxwgX27d1ri6tXv36BM8//7v0HeLjagyRdvMzu344AsPDLdfyjTg08bprRbrVaGTl9Lu91fqVIRfZb1an/GPv3bCfp7AkAvv4ijvqNWuSJM5mMzJkykp79owosst+q+sNNObz3Zy4kHgdg45rPqN3wqTxx11OusGjGQK5dyVl//vjBnVgsWfgHheeJvaHugxVIunyVXUdOAjB/3RYa16hs9z7ItFh4f+5KjiTm5D15/hKnL1ymYmhQvjnzU7teE377dTvnfh+jb7+YT71/PpknzmTKYG7McN7qP77AIvutHDpGlcJJupLKzmNnAZj/w04aV61gN6N9aJsn2Bj5Jt8N78p3w7tSu3woEzs9c9si+632nrDwQBknAn1zPu8eq+XC7sOWPHFJl62kpFmpF5Hzb1fN+53IMFm5dE2VdhEREREREZE/QjPaHehGAbhmzZpERUXRpUsXMjMziYqKss00L4iPT856wEeOHKFSpUrExsZSt25dvL29sVhyCifLli1j+/btjBs3DoPBQGpqKtnZ2fj7+1OlShV++OEHHnvsMb788kv8/PxsBf4bmjRpwoIFCzCZTPTu3dvuterVq/Pzzz/z1FNPMXnyZOrWrUutWrVYt24d7du3Z8uWLSQnJ9OqVas/PEZGo5G9e/dSvXp1EhISaNu2LWazmXXr1vHQQw9x5MgRNm3axGuvvXbbMTIYDCQmJhIWFsa2bdt4+OGHsVgs7N69G4vFwrVr10hLS8PX1xeDwWAbuxsqVqxIQkICtWrVYtCgQXTu3JmKFSsW+RzcXV0Y0/0Vxs7/nAyTmfAgf0a80ZYLV67x9oRPWTrqHfYcPcXh0+eYsnQtU5autR07utvLRJQvfJkaNzc3BvTvz/Tp0zEajYSFhdG3Tx+Sk5MZMnQoM39/sGu/fv2YPGUK8+Pi8PX1pd977xX5PAICAnjr7beJHDkSi8VCxUqVbF+MHDx4kNh58xg1ejRubm70HzDAri99+va9p/sP4O7qyqjeb/DhnIUYTSbKhgTy/luduHD5Cr1HT2HhhGHsPXyMIyfPMG1BPNMWxNuOHdnzDarcf/uZ+TeU9g/iP936M2XMe2RbLNx3/4N06JIzBscO7SN+wUzeHT6VXVs3kpJylZnR9p8jA0d/ZLesyq18/IJp/fpQ5k7sRbYlizIVqtKyzSAATh3Zw9qlU+k6cBYVIx7hiee78tEHnbFmW3F2caFDj/G4e5a8bW53VxfGvtGGMQvX5LwPAv0Y2el5zl9J4a0psSwf9jbhgX683/FZBs5eRmaWBYPBwHsvP8l9wbfvc35j1L7rAKaN7Ut2toVyFarwyhs5z1U4fngvKxdOp8/709m9bSOpKVeYPWmI3fHvRc7C+88aIxdnxnX4F2PiN5BhziQ8wJfIdi04f+063T9eQfx7HW97bFGlpFmJ32Sm05NulDDA2eRsvt6es+RReFAJnqzrwqwvTQDM+8bEy4+70rSOC9czrMz72qQZ7SIiIiIiIiJ/kMF665RlKZIzZ87Qq1cv4uPjGTBgAC1btuTxxx9nw4YNfP3114wdO5ZXX32VtLQ0li1bRnR0NJs3b8ZqtdK+fXtat25td1x8fDyHDx+mf//+pKWl0apVK7777jt27NjBuHHjbLPbo6KiMBgMPPfcc1SqVIno6GjGjx/P9u3b8fT0JCsri65du9KkSROOHj3K0KFDKVGiBG5ubkyYMIHr16/b+n3Dm2++ibu7O5MmTQKgadOmrFq1ipSUFAYOHEhWVhahoaGMHTuW5ORkBg0ahNFoxGAwMGbMmDzF+/zG6GY3Pwy1UaNGPPXUU7aHoUZHR5ORkcHAgQO5dOkS2dnZDB48mBo1atj65eXlZZdvx44dTJgwAWdnZ8LDwxk5ciRffPEF69evx2AwcPLkSTp37szzzz9PTEwMn3/+OdOnT6dDhw5s3brV9mBZyFm+p7CHoaZtji/w9eI6H1zLofmtDv7JkeF/8JHi6HPwTznl0PwH3OoUHlQMyen5ryd+NzVLXerQ/NsDn3Vo/mvGvGvr303Nk2Y5ND/AkNOvOryN8d0dfy+JiIiIiIjI7RmXTvizu/CX4t72v392F25LhXa5J938xcXdpkJ7wVRoL5wK7YVTob1wKrSLiIiIiIjc+1Rot/dXLrRr6RgptuHDh3P06NE8+2fNmlXoutciIiIiIiIiIiJyG8V8tqD876jQLsV2Y9mVv5LWrVv/2V0QERERERERERGR/yf0lYiIiIiIiIiIiIiISDGo0C4iIiIiIiIiIiIiUgwqtIuIiIiIiIiIiIiIFIPWaBcRERERERERERH5KzJonvTfha6UiIiIiIiIiIiIiEgxqNAuIiIiIiIiIiIiIlIMKrSLiIiIiIiIiIiIiBSDwWq1Wv/sToj8nfy4P82h+cPczjk0v9VgcGh+w//gI8XR53Aty8eh+cMzjzg0/yFDNYfmB6hu/Nmh+d2uJDo0/y+hrR2aPzPbyaH5AU5d8nBo/tR0h6YH4O1/Ob4NERERERGRvzNj/OQ/uwt/Ke6te//ZXbgtPQxVRERERERERERE5K+ohGMnG8rdo6VjRERERERERERERESKQYV2EREREREREREREZFiUKFdRERERERERERERKQYVGgXERERERERERERESkGFdpFRERERERERERERIrB+c/ugIiIiIiIiIiIiIjkw6B50n8XulIiIiIiIiIiIiIiIsWgQruIiIiIiIiIiIiISDFo6RiRu2Trpq9ZvXQ2FksWZcpV5LUew/D0KpUnbve2jaxcOIOsTDNepXzp+OYgyt5XqdD8u3fvZvacORgzMggKCqJP374EBgTYxRw7doyYadNIuXYNbx8fevboQYUKFYp8Dhu//55FixaRlZXFfeXL06dPH7y8vPLty5zZs8kwGgkKCqJvnz4EBAbe0/2/YfMP37Ji8VwsFgvh5e6nW+9BeHqVzBOXlZXFws+ms2blImI+XYl/QFChuX/5dT/T5i4k3WgkJDCAQT26EBTgZxdjtVpZ+PkaPopbxpSRA6gV8WCR+n1Dzn06hyxLFmXLVeS1Hu/ne5/u2raRlQtn/n6f+vCfItyn2/ceZErcCtKNJkID/Bj6ZgeC/UvbxSQcPMqk2OWkZRhxd3PlnY4vUifigaL3/+AJJsavI92USZifDyM7PkNwaW+7mB2HThK98juuZ5hwd3WmX5sWPPxAuaK34cAxAtj+41rWLJuFxZJFWHglXn17OB755E/Y/j1fLJpOVmYmXqV8+He3IZQpV3h+gH3bvuSnNTOwWDIJDKvMM69+gLtn3jZuOLzne5bEdOPtD9bjG1C20PyHdn7Jtm9mkG3JxD+0Ms1e+QA3D/v8KZfOMG90S3wCwm37gsvVpEWHqCKdg4iIiIiIiMjfiWa0i9wFly4msWD2ON4ZOoUPpq0gICiMFXHT8sRduXSBOVPep2vfDxgVE0/9xk8SO3N0ofmNRiNjx43jnd69mT17NvXr1ydm6tQ8cWPHjaPNiy8ye/ZsXmrblqioohe0Lly4wIwZMxgxciSzZs8mODiYzz77LN++jBs7lt7vvGPry9SYmHu6/zckXzjH3I+i6T9sAhNnLiIgOITFsR/lGzthVH/c3T2L3P8Mo4lhE6bR/63OLJr2If+o+xDjP/o0T9z4j+ZyOvEcpX2888lSsEsXk4ibHcU7QyczZlo8/kGhxMdNzxOXc58Oo2vf0YyOWU6Dxk8yb+YHhfZ/yNRPGNy1Pcujh9Ho4eqMnbPILsacmcm74z/i7VeeZ8mE9+nW9hmGTs17jreTbjLTf84Khv/7aVYN707jGg8QufAruxijOZP/zlrO4HZP8vmwN3nzqUa8Nyceq9VapDYcOUYAly8msWjOOHoOjmHk1M/xDwpj5YK899+VS+eZO3Uond8Zw4gpK6jX6F/EzYws0jlcu5TIN4siebnnx3SP/BrfgDJ8vzL6tvGZpgw2xE/Aw8u3SPlTryTy/fJInuv2Mf8Z/DXefmXY8mX++b18guk4aK3tT0V2ERERERERuVep0H4POHPmDK1bt77t62vXrnVY2zfnjouL46WXXqJDhw60adOGzZs3Fyt3nz59MBqNxe0iZ86cISIigt9++822Lz4+nvj4+GLnvmH3to1E1KyHf2AoAI2aPc+OzevyxDk5OdO17weEhd8PwAMRtTl76mjh+RMSCAkJoVKlnNmsLVq0YOeuXaSnp9tijh8/zvXr12nYsCEADRo04Oq1a5w6dapI5/Dzli3Url2boKCcmdctW7Tgx02b8sQl7N6dpy+7du6068u91v8bdmzdRPVaDxMQFALA481b8fNP3+Ub+0K7TrT99xtF6jvkzGYPCw7iwYrlAXi6aWO2JewlPSPDLu5fj/+T/m91xtnJqci5b9i1bSNVi3ifduv7AWVs9+lDhd6nO/YdokxQAFUq5Mwcb9XkUbbuOUBaRu57OMtiYVCX9jxSrTIAtR6syMUr10hNK3zsAbYdPEHZAF8iyuX0/4VHa7HlwDHSjCZbTKbFwvAOT1P195j6D1bgUkoaqRlF+yxx5BgB7N7+PVVq1MPv9/z/eOJ5ftnybd78zi507jOWsPCKAFSq8hCJpwvPD3AoYT3lqzyKj38YALX+0Ybffrn9vwM/rJpKjQbP4uqe99cf+Tn263rCKz9KqdI5+as2aMPh3Y77d0ZEREREROT/NYNBfzf//YWp0P7/wMcff+yQvGazmblz5wI5xewlS5YQFxfH/PnzGT9+PNOn550Feieio6Nxd3e/Cz2FSpUqMWHChLuSKz/nEk8SFJy73EJgSFlSrl0m7XqKXZy3rx816vzDtv3rzs3cX7l6ofnPnj1LaGiobdvDw4NSpUqRmJRkHxMSYndcSEgIp8+cKdI53NpGaGgoV69eJTU1tUh9SUpMvGf7f0NS4mmCQ8rYtoNDy5By9QrXb7nOAJWr1ChSv284nXiOMiG5y8t4erjjU7IkZ5LO28VVf7Doy6zc6nziKQJvuk+DCrxPG9q2f935U6H36amk85QJzl0KyNPdHZ9SXpw5d9Fu3+P1atu2tyTsp1xoEKW8ijbz/+SFy4QH5i5F4+nuiq+XB6cuXrHtK+XhzuO1cpbTsVqtrNi8mzqVwvH29ChSG44co5z8J+3yB4aEk5pffh8/qj+U+1mxd9dPVHigaPfU5fMn8A3MXSqndGA50lIvkZF2LU/shTMHOX5gM/WadSpSboArF0/gE5Cb3yegHBnXL2FMz5vfbLrO6tlvEfvBk6yc2ZnL54r2ZYGIiIiIiIjI343WaL+HDBgwgKCgIPbt20diYiLjx49ny5YtHDx4kB49ehATE0N0dDQ7duzAYrHQoUMHnnnmGQYMGICLiwtXr17l8ccf55dffuHy5cscP36czp0707ZtW3bs2MHEiRNxdnYmNDSUyMhIxowZw8GDBxk+fDjt2rXDZDKRmZmJi4sL5cuXZ/78+QAcOXKEkSNHYjAY8PLyYuzYsaSkpPDee+/h6enJK6+8wvr16xkzZgwAAwcOpFmzZowePZpVq1Zx9epVBgwYgMViISwsjHHjxpGcnMzgwYPJzMzEycmJUaNGERYWdtuxqVatGhkZGWzZsoVHH33U7rXPPvuMNWvWAPDEE0/QtWvXOx57s8mIt0/uWtouLq4YDAZMxgy8Sua/xMf+PVv5dlUc743Mf+mRm5mMRlxdXe32ubm52c34N5lMuNwa4+qKqYi/CjCZTPj45i4d4eJ64xyMlCqVu/ay0WQqtC/3Wv9vMJuM+PjkFnpzr7ORkre5zkVlMplwdXWx2+fq5kqGyXSbI/5IG0ZK5dv/gu7TbXyzagHvjZxZYG6jORNXF/v+u7m63Lb/h0+eJXreciJ7dipy/43mTFyd7f/ZcnNxIcOUmSf2250HGLPka0p5uDOx64tFbsORYwSQeZvPCrPp9vkP7NnK+tXz6TO8aF+aZpoz8CyV24aziysYDGSaM/Dw8rHtt1qtfBU3jJbthuDk7JJfqnxlmTPwLHlTfufc/O6eufld3L14sM4z1Hn8dUqVDmPXxrmsnvMWHQZ8SQkn/d8PERERERERubfov3TvMWazmTlz5rBw4UJWrlzJ4MGDmTVrFjExMezYsYOzZ88SFxeH2WzmhRdeoFmzZgD4+PgQGRlJfHw8hw4dYtGiRZw4cYK+ffvStm1bRo0axdy5c/H19SUqKoq1a9fSuXNnEhISGD58OAA1a9bkiSee4LHHHqNx48/XShIAACAASURBVMa0aNECZ2dnIiMjGTlyJOXLlycuLo64uDhatWrFgQMH2LBhA56enowdO5bs7GysVivbt29nxIgRtnOKjo6mU6dOPPHEE0RFRbF3714WL17M66+/TsOGDdm4cSPTp09n1KhRBY5Nnz596N+/Pw0aNLDtO336NCtWrGDZsmUAtG3blieffJJy5Qp/cOL6NYv4bs0SIGcZCR9ff9trmWYTVqsVd4/8Z+ru3LqBBbOi6D14sm0ZmYK4u7tjNpvt9plMJjxumvHv7u5O5i0xRpOpwF8FrPriC1atWpVzDs7OlC6dW2A0m82/n4P9TODb9eXWuHul/1+vXsY3q5fZ2vD1zS0wmm9cZ/eizZYuiLu7G2azfcHYZDLjWcxfdaxfs5j1axYDf+w+jZv1Ib0HT7ItkXLb/ru5Ys6077/RZMbT3S1P7J5Dxxg0eQ6Du7bn4aqVi3wuHm6umLOy7NvIzMTTLW+RuHmdCJrXiWDrwRO8MSmOpYPeIMAn70NrwfFjtGHNIjZ8lbNevZOzM9755He7zT20e+t3LJozjrcHTrEtI5Of7d/N55cNOV9ulnBywcs79+G+WZkmsFpxdbM/h10/LCYgtBLhDzxy27w3JGyaz55Nufk988vvap/fw6s0Tdq8b9t+qMlrbPt6GlcunsA/pGgPdRURERERERH5u1Ch/R7zyCM5BZOQkBD27Nlj99rOnTtJSEigY8eOAGRnZ3PxYs6yDjVr1rTF1a5dGycnJ0JCQkhNTSU5OZmTJ0/Ss2dPANLT0+0KmjdERUVx9OhRNm3axOzZs1m4cCHz5s1jz549DB06FMgpftaokbP8QXh4uC1P1apV2bNnD1lZWdSqVctuxvH+/fsZPHgwAP369QNyZu8fP36cGTNmYLFY8PPzozDly5enatWqttnrAAcOHKBWrVo4/z5Ltk6dOvz2229FKrQ/8VQ7nniqHQDffbWEQ/t+sb12PukUPqUD8PQqlee4/QlbWTjnQ/oOm1akIjtA2fBwfvjhB9t2WloaqamplClTxi4m6dw527bVaiUpKanAc2n17LO0evZZAFavXs2vv/5qe+3s2bP4+flRsqR9cTK8bNlC+3Iv9b/lM21o+UwbAL75cjkH9u62vXYu8Qy+fgF4lcx7ne/UfWXCWP/TVtv29bR0Uq+nUTY0pICjCvfEUy/zxFMvAzn36cF9O22vFXSf7kvYysI54/nvsGmEhVcotJ3yYcGs25L7HrienkFqWgbhNy2HAzkz2QdOms2oXq/zUJU7K7ZWCPbn61/227ZTM4ykpBspF5T7/j93OYX9p5JoWjtn+Zj6D5Yn2LcUe46fte27laPH6PGn2vH4758V369dbPdZcSHpFD6lA/H0yjub/UDCzyz+5EN6vz+D0LIFf1bUbdqBuk07ALDj+zhOHdpue+3y+ROU9AnE3dO+jUMJ60k6uZfD724AID31Mp9+0IYXuk6ifJUGdrG1GnWgVqOc/Ht+jOPskdz8Vy+ewMs7ELdb8hvTr2HKSMHHP9y2z5qdjZNms4uIiIiIiMg9SGu032OcbnpAotVqtXvN1dWVNm3aEBsbS2xsLF999RXh4TkFEJeblnxwvmVpBhcXF4KCgmzHLV++nC5dutjFWK1WTCYTFStWpFOnTixdupTz58+TmJiIh4cH8+bNIzY2lsWLFzNkyJA8bbZo0YINGzawfv16WrZsmeecbj0XFxcXJk+eTGxsLAsWLCAmJqZI4/P222/z8ccfk/X7rFiDwWCXOzMzkxIl7vxt8VC9JhzYs51zZ08A8M0X86nf6Mk8cSZTBp9MHc7b/ccXucgOUKtmTS5cvMjeffsAWLFiBfXr1bOb7X1fuXL4eHuzYUNO0WzdunUEBQVRtmzZfHPeqkGDBiTs3s2Z39dEX7FiBY81aZInrmatWly8cIF9e/fa4urVr1/gzPO/e/9veKRBY/Ym7CDxzEkA1qxcSMPGzYrUv8LUqR7B+YuXSDhwEIDFq9bS8JHaeOQzI/yPyrlPt5H0+3369Rdx1G/UMk9czn064vf7tPAiO8DD1SqTlHyZ3b8dAWDBmu/4Z53qdv23Wq2MmDGPfq+/fMdFdoC6le8j6fI1dh45DcD89dtoXL0Snm65X8xlWiy8H7uKI4k5XyKevHCZ0xevUDEsMN+ct3LkGAHUqtuE337dZvus+HZVLHX/mfezwmzK4LNpw3iz34RCi+y3qlyrGScObOHSuWMAbF03l2r1nskT167XLPpM2MI743/infE/4e0XymuDluUpst/q/urNOH14C1fO5+Tf9f1cKtfJm//8qV9ZMe1V0q9fBmDfliWULB2K902FdxERERERESlEiRL6u/nvL0zTyv4fuFFIrlmzJlFRUXTp0oXMzEyioqJsM80L4uOTs+bukSNHqFSpErGxsdStWxdvb28sFgsAy5YtY/v27YwbNw6DwUBqairZ2dn4+/tTpUoVfvjhBx577DG+/PJL/Pz8bAX+G5o0acKCBQswmUz07t3b7rXq1avz888/89RTTzF58mTq1q1LrVq1WLduHe3bt2fLli0kJyfTqlWrQs8lICCAZs2asWjRIjp06EBERARTp061Fd4TEhLo1q1b4YN6i9L+QXToNoCYMX2xZFu47/4qtH+jPwDHDu1l5cLp9B02nd3bNpKacoVZ0UPsju83apbdchW3cnNzY0D//kyfPh2j0UhYWBh9+/QhOTmZIUOHMnPGjJw8/foxecoU5sfF4evrS7/33ivyOQQEBPDW228TOXIkFouFipUq0b17dwAOHjxI7Lx5jBo9Gjc3N/oPGGDXlz59+xaY++/e/xv8/AN5vfu7TBg9gGyLhfIVH6RTtzcAOHJoP0vnf8zAkZO4euUykQPfsh0XOehtnEo4MXj0VPz88y/4urm5MrzvW0z8eB5Gk4kyIcEM7tmFi5cu03fkh8ROznmGQcfeA7FkZ3Px8hVGRs/Ezc2VIb26UvWB2y8rckPuffpf23367zdyfiVy7NBeViycwX+HTWPX7/fpx9GD7Y7vX8B96u7qyuherxP16RKMJhNlgwN5v3tHLly+Sq8xMSz6cAi/Hj7OkVNniVn4OTELP88dnx6dqFKh8F+RuLu6MO71FxizeC0Z5kzCA0sT2bEV56+m0H3qIuKHdiU8sDTv//tpBnyykkyLBQPQr21z7gsq/Fcvjh6jnPzBtO8ykBnj+pBtySL8/gjadR4AwPHDv/LFwun0fn8Gu7d9T2rKFeZMGmR3/LuRc+yWnsmPd+lgnvz3MJZOf5vsbAsh5arSsl3OZ87Z43v44fPJvPLOnCKNR35K+gbTpM0wVs/JyR9Utir1X8zJf+7kHn5eM5nnu8/hvir/pMY/27Ns8is5z+jwCebp16ZSooRTIS2IiIiIiIiI/P0YrLdOFZa/nTNnztCrVy8qV65My5Ytefzxx9mwYQNff/01Y8eO5dVXXyUtLY1ly5YRHR3N5s2bsVqttG/fntatWzNgwADbcfHx8Rw+fJj+/fuTlpZGq1at+O6779ixYwfjxo2zzW6PiorCYDDw3HPPUalSJaKjoxk/fjzbt2/H09OTrKwsunbtSpMmTTh69ChDhw6lRIkSuLm5MWHCBK5fv06vXr2Ij4+3ncebb76Ju7s7kyZNAqBp06asWrWKlJQUBg4cSFZWFqGhoYwdO5bk5GQGDRqE0WjEYDAwZsyYPMX7m8cnJiaGsWPHAjlLhTRv3px3332X1q1bExcXx6pVq7BarbRq1YoOHToUON4/7k+7S1cuf2Fu5woPKgarweDQ/Ib/wUeKo8/hWpZP4UHFEJ55xKH5DxmqOTQ/QHXjzw7N73Yl0aH5fwlt7dD8mdmOLyafulT8ZwMUJDXdoekBePtfjm9DRERERETk78y4esaf3YW/FPdnuv/ZXbgtFdpF7pAK7QVTob1wKrQXToX2wqnQLiIiIiIicu9Tod3eX7nQrqVj5J4xfPhwjh49mmf/rFmzirT+toiIiIiIiIiIiMgfoUK73DOGDx/+Z3dBRERERERERERE/h9SoV1ERERERERERETkr8jBy+fK3VPiz+6AiIiIiIiIiIiIiMjfmQrtIiIiIiIiIiIiIiLFoEK7iIiIiIiIiIiIiEgxqNAuIiIiIiIiIiIiIlIMehiqiIiIiIiIiIiIyF+RQfOk/y50pUREREREREREREREikEz2kXuUM2MHx2a/7xbFYfmd8k2OTR/KWOyQ/MDHHeJcGj+B9J+cWj+ve4NHJq/vPNxh+YHOOtd1aH5M0rWcWj+8jh2jJyysxyaH6B8GS+H5g/Ztcqh+aeU6EPUcoc2Qb8XNZ9ARERERERE/jf0X6AiIiIiIiIiIiIiIsWgQruIiIiIiIiIiIiISDFo6RgRERERERERERGRv6ISmif9d6ErJSIiIiIiIiIiIiJSDCq0i4iIiIiIiIiIiIgUgwrtIiIiIiIiIiIiIiLFoEK7iIiIiIiIiIiIiEgxqNAuIiIiIiIiIiIiIlIMzn92B0TuBdv3HWJy3EoyjCZCAvx4v1t7gv1L28UkHDxG9PwVpGUYcXd1oU/H1tSJqHRH7WzcuIHFixZgybJw333l6d3nv3h5eeWJS9i9i0/mzCIjI4OgoCDe6fsuAQGBBebenZDArDmfkJFhJCgoiP/26U1gQIBdzNFjx5k6bTopKSl4e3vTq8db3F+hQpH6vuPX/cR8tjhnjAL9GdyjM0H+fnYxVquVBZ+vZeaC5cSM6EetiMpFyn3Dlh++ZeWST7FYsihb7n669hqCp1fJPHFZWVks+mwaX32+kCmffIF/QFCR8m/fe5ApcStIN5oIDfBj6Jsd8rnOR5kUuzznOru58k7HF6kT8UCRz2Hrpq9ZvXQOWZYsyparyGs93sfTq1SeuF3bNrJy4UyyMs14lfLhP28Ooux9Bd9POxN+ZeYn8zAajQQHBdKv99sEBvjbxVitVhav+II58xYwcfRwalSLKHLfATZt/I6li2OxZFkod195erzTD6/bXIPYuR/zxYqlzPpsSaH35802//AtKxfPtV3nbr0HF3Cdp7Nm5UKmfvp5ka6zo8do5569TP90PhlGI8GBgQzo9SZB+eRftGI1s+YvYtKoodSsWqXI+R39PgbYevQsE9f+TLo5izDfkoxs/RjBPnnHH+Bg0iXaz4hnZqenqXt/WJHbOJrwJbs3zMSanUXp4Ado9OJoXN3t3wepV86ydMKTePuF2/YFhtfgsbbjityOiIiIiIjIX57B8Gf3QIpIM9pFiinDaGLw1LkM6fIKyycOpVGd6oz9ZIldjDkzk/9OmEWPdq1YOn4wb7Z9miExn91ROxcuXOCjGdMZPmI0H836hKDgYOZ99mmeOKMxg6hxH9Czdx8+nv0p9eo3YNrUKQXmNhqNfDDuQ97p1ZNPZn1Eg/p1mRIzLU/cmHFRvNSmNZ/M+oiX27Zh3IcTitT3DKOJ9yfOZOBbr7E4Ziz/eKQ2UR/NyxP34cfzOJV0jtI+eQvLhUm+eI7PPp7Ae8MmMn7GEgKCQlkSOzPf2Imj38Pdw/OO8mcYTQyZ+gmDu7ZnefQwGj1cnbFzFtnFmDMzeXf8R7z9yvMsmfA+3do+w9Cpea/R7Vy6mETc7CjeGTqZMdPi8Q8KJT5uep64K5cuMGfKMLr2Hc3omOU0aPwk82Z+UEj/jYz6MJp3e3Zn3kdTebTuw0RP+yhP3KTpH3PmbCK+Pj5F7vcNFy+cZ/bMKQwdPpZpH88jKDiEuHlz8o0dEzkEd3ePO24j+cI5PvtoIv2GTWDCzMUEBoey+DbXecKofnfUhqPHKMNoZMT4KfTr0Y24GZNoWLcOE2fMzhM3ccYcTicmUdrH+47yO/p9DJBuzqT/kvUMf+ExVvV5mcZV7iPyix/zjc3OtjL6ix/xL3ln77XrVxP5edVoWnb6iDZ9v6Jk6TLs+GZSvrFe3kG06bvG9qciu4iIiIiIiPxZVGi/x5w6dYo333yTF198kRdeeIHIyEiMRmO+sWfOnKF169YA9OnT57ZxBZk0aRIvvfQSHTt2pF27dhw4cKBY/c9PfHw83377LQBr16694+OnTp3Kiy++iNVqte3r2LHjXevf9n2HKBPkT5UKObMqn23SgJ/3/EZaRu54ZlmyGfRGOx6pljNDu9aD93PxyjVS09KL3M7WnzdTq3ZtgoJyZuW2aPkkP/34Q564hITdhISEUqlSzizq5i2eZNeuX0hPv31buxP2EBoSwgOVcmZEt2zenJ27dtsdc/zECdLS0mj46KMAPNqgPlevXePUqdOF9v2XXw9QJjiQB+8vD8AzTRuxLWEvaRkZdnH/avIPBnZ/DWcnp0Jz5mlj6w9Uq/UIAYEhADRp/ixbf1qfb+wLL79Om/Zd7ij/jn2HKBMUQJUK5QBo1eRRtu45cMt1tjCoS/ubrnPFO7rOu7ZtpGrNevgHhgLQqNnz7Ni8Lk+ck5Mz3fp+QJnw+wF4IOIhzp46WnDuPXsJDQmmcqWcY/7VvCk7du8hPd3+GrR4ognv9uyOs/OdX4NtP/9Ezdp1CAwKBqBZi6fY/OPGfGPbtuvIKx1eu+M2ftm6Kec6B924zq3Y+tN3+ca+0O412vy76NfZ0WO0c88+woKDqFwxZ/b4U80eZ3s++Vs2bUy/Hl3vOL+j38cA244lUra0NxFhObPkX6jzIFuOnCHNZM4Tu3T7fh4M9Sfc786+MDi5/ztCKzagpG/ODPjKD7/I8V+/vqMcIiIiIiIiIv9rKrTfQ7Kzs+nZsyevvvoqy5cvZ8WKFZQpU4ahQ4cWemx0dDTu7u531N62bds4cOAAixcvJjY2lnfeeYfZs/POziyu1q1b07x5c8xmM3Pnzv1DOcxmM1999dXd7djvTp27SJmg3KUZPN3d8CnlxZnzF+32Na1Xy7a9OeEA5UKDKOVV9JmeZ8+eJTQ0d+mF0NBQrl69yvXU1DxxIaGhtm0PDw9KlfImKSnxtrnPnD1LaGiI3THepUqRmJRkFxMSEmJ3XGhIMKfPnCm076eSzlEmJHfZDk8Pd3xKluRM0gW7uBoP3tlSOjc7d/YUwSFlbNvBoWVIuXaFtOspeWIfqFLjjvOfSjpPmeCbr7N7znU+d9Fu3+P1atu2tyTsv6PrfD7xFIHBZW3bQSFlSbl2Oc85ePv6UaNOQ9v2rzt/4v7K1QvMfeZsImEhwbbtnGtckrM3XWOAalUeLFJf85N49gzBIbn3aEhoGNeuXslzjwJUiaj2h9pISsznOl+9wvV8rnPlO7zOjh6jM4lJdvk9PdzxLlWKM+fO2cVVr3JnSybZ8jv4fQxwMvmaXeHc080FXw83Tl2yH//k1HTituylZ/O6d3weKckn8PYvZ9v29i+HMe0SpoxreWLNpjS+je3BsolPsfbTLly9UPAXTiIiIiIiIiKOojXa7yE//vgj5cuX59HfZyoCvPbaazz55JN06dKFiIgI9u3bR2JiIuPHj8fnpmUPmjZtyqpVq4iMjCQoKMgurlq1asTFxbFq1SpKlChBs2bNeP3110lJSSE9PR2LxYKzszMNGjSgQYMGAOzYsYOJEyfi7OxMaGgokZGRuLq6MmrUKPbs2YOTkxMjRozgypUrxMXFMWVKztIm9evXZ+vWrXTs2JEHHsiZkV26dGlKly7N0aNHOXjwIMOHD2ffvn1MmDCBcuXKce7cOd566y3i4+NvOzbdu3fno48+onnz5ri4uNj2p6amMmDAAFJSUsjKymLIkCFUq3ZnBUCjyYybq4vdPjcXFzKMeWd4Ahw+dZbo2HhG9Xj1jtoxmYx218zFxRWDwYDRZKRkqdylVkxGI66urnbHurq5FviLBZPJhKvLLce42h9jMplwveU8XV3divRLCJPJjKvLLWPk6orRZCr02KIymUx4++Su+W4bH6MRr5J3NqM2P0ZzZj7n4ELGbc7h8MmzRM9bTmTPTkVuw2QyUsond833G+dgMmbc9hz279nGN6sW8N7I/JdPyc1tynNfuLm6YjTezWtgxMfX17Z9u3u0OMwmI975jpGRksW8zo4eI2M+76G7md/R72MAY2YWrrfMtHdzcSbDnGW3L2rNZro1qYO3h9udnAIAWZkZuJfMfS87ObuCwUCWOQM3j5s+A908qVjraWo0ep2SPqHs/ekzvo19mxffWU0JJ/3fGxEREREREfnf0n+J3kOOHTtG1apV7fYZDAYeeOAB0tLSMJvNzJkzh4ULF7Jy5Ur+j737DI+iahs4/t+UTSM9pJJQg7SAgCEURZQgKCIiShERpUhAugiIUoQgvUjoXUOkSQ2GIhFQkF7SKApSU0gIAdJ2N9ns+2Fhw6Yj5FF879918WFnz9xzymRC7jlzplevohO9BcvZ2dmxe/du1q1bB0D37t1p164dLVu2JCwsjMDAQFq2bEnr1q1p2bIlCoWC4OBg1qxZg4ODAzNmzGD37t24uLiQlJTExo0bOXHiBBEREUY3BQry9fWle/fuhISEANCnTx+ioqKYOHEia9euJSIigqCgICIjI2nfvn2JfePs7ExgYCDr1683Wjbmu+++o0GDBnzyySfExMQwdepU1q5dW6b+fsjKQolak2O0TaXRYGVZOMEU9cdfjJ2/mq/6dadxndJfkBkevp2fwrcD+uVCHB3zk08ajQadTldoDWpLS0s0GuMkv1qtxqqEtaotLS3R5JS8j6WFJZoC7VSr1VhZlf4khKWFBZqcgn2kxuoxn6IoaO/OTez96UcATM3McDDqH3WR/fN3WVooC7dBrcG6iHGO/uMvxn67ki8/eZ/GdUqenRwZsYHIiA2AfoztHfJfjJnzsA3FrCd/+th+wpbPZOiX8wzLyBRb/yLOC5VaU6bxK0lE+FYidm411N+hiHO0pHOvLPbs3MTenfpxNjMz7qOnOc7l1UfG8Yv4GXrCnwOj+OX4cwxgpTRDk6s12qbKycXaIv+/E4f/vMG9LDXtny/7S4DPHQnj3JEwAExMzbCyzX85bm6OGnQ6zJTGPweW1o40fyv/ia16L37EmV8Wce/2VRzd/v7TMUIIIYQQQgjxr6KQBUmeFZJo/w9RKBRotdpC23U6HSYmJrzwwgsAuLu7Ex0dXWycguViYmK4du0aH374IQCZmZnEx8fj6enJ6tWriYmJ4ffff2fq1KlERETw+eefc+3aNQYPHgxAVlYWjo6O3Lp1i0aNGgHg7++Pv78/x44dK7Ye9evXL/a79u3b06dPH4KCgjhw4ADBwcGl9A707t2bbt260alTJ8O22NhYBgwYAICfnx/Xrl0rNU5BVTzd+PnoGcPnjKxs0jOz8HGvaFTuz+vxfPHtaqYM/oiGtaqXKXaHDh3p0KEjAD/t3EFsTIzhu4T4eJycnKhQoYLRPpW8ffjt1/x1sTMzM8lIz8DTy5PieFeqxMFffzPeJyMDr0f28fauROIjS1DodDoSEhPw8fGhNJW93In8/bjhc0ZmFukZWXh7uJWwV+lee/M9XnvzPQB+jviR87H545CUcAMHJxdsKjydmdRVPN3Yd+SU4bN+nLPxfmRJHNDPZP9i3gqCh/SmYa3Sk32t3+hK6ze6AvDLro1cjDtt+O5W4nXsHV2wtinchrioY6xbOYvPJizE07tqqcfxruTF/t8O59f/4Rh7epSwV+ne6NCJNzrof6Z27dxGXGyU4bvEhJs4OjljU+AcfVxt33yPtg/H+afN5TbO5dVHD1X28mT/b78/Ej+L9IxMKnm6l7BX2ZX3zzFAVRcH9sTkL8+SrtJwP1uNj3P+TPNfzl3lQuJtXp0WCsC9bDUj1v3MqDea0aFh0Tee6jTrQZ1mPQA4d/QHkq6cMHx3P/Ua1rYVsbAyfmJBnX0PTXY6tk75yy3pdHkym10IIYQQQgghxD9Cbon8h1SrVo3Y2FijbTqdjkuXLmFubo7pIy+YfPTFoAUVLGdubk6rVq0IDQ0lNDSU8PBw/P390Wq15OTk4OfnR//+/dmyZQuRkZGYmpri6upqKL9582b69euHqakpeXl5RsdSKBRGn3Nz85cfMC+wTMejHB0dDTcC8vLycHMrPWFrY2NDt27dWLlypdHxH+2LgvUri8Z1fUm8fYezF/TJpx8i9vNiw3pGM9p1Oh0TF69l9MfvlTnJXlBA0+ZERZ3h5k39Swu3bd1My5dfKVSufv0GJKckExcXayjXpElAiTN+G9T3Izk5mdi4OAC2bNtOkyb+Ruv2V/bxwd7enl8OHADg532RuFZ0pZKXV1EhjTSuV5uklNtEnf8DgPU799KicYMiZ/3/XY0DWhIXdZKEm/qbJbu2r6PZS22eXvy6NR+M8yUAfoj4hRcbFR7nrxd/z6jeXcuUZC+oYZNWnI8+TmL8VQD27Agj4KW2hcqp1dmsCvmaT0fPKlOSHaChX11uJd8mJk7/wuIft++kqX/jpzabGqBJ0xZER50m/uZ1AHZs3cRLL7/61OIDNG76ErGPjHPEtvU0b/l0xrm8+6ihX11updwm+twFADbt+Ilm/o2eWvzy/jkG8K/mSeLdDE5f1a8rv/ZwNC2f88H6keVoxnV8iYNje/HLmJ78MqYnz3u7Mad7m2KT7AVVrt2ahMtHuZtyBYDYQ2uo1qDwU0spN2OJWPkR2Rl3ALh4YhMV7D2wdfIu03GEEEIIIYQQQoinSaZ9/Ye0aNGCmTNncvDgQV5++WUA1qxZQ+PGjf9WAvmhunXrMmvWLLKzs7G0tGTKlCmMHDmSxYsXAzB8+HAA7ty5g4uLC46O+vWTL126RI0aNQgNDcXf3x8/Pz+WLVtG3759OXfuHJs2beK9994jOVn/QswLFy6QmZlZbD1MTEyMZux37NiRSZMm0bVr1zK3pUuXLrz77ruG5SH8/Pw4duwYzz//PGfPnjWsC/84LJVKvhn8ETPWbCJbraGSmwsTgj4g+c5dBk9bzIYZXxDz51UuXU8gZN0OQtbtMOwbPKgX5KLgIQAAIABJREFUtaqWLSnk4uLCgIGDCZ48Ea1WS43qvvQf8CkAFy9eYG3od0wOnoqFhQWjRo9l8aIFqFUqPDw9GT58ZImxLSws+GL0KBYsXoJKpcbTw4ORw4dx+3YqY8ePZ9mihQCMGTWSefMXEBr2A44ODoz+/LMy1d3CQsmk4QOYvXwt2Wo1ldxd+WpQX1JS0xg2eTZh8/RPJPQY9hVarZaUO3eZOG8ZFkpzxg/pRx3fkpdFAXByduXjAZ8z95tRaLVaqlR/jl6f6Ot3+Y84NoUtY8zX33IvLZXJYwca9psydiAmpqaMDQ7Bydm1uPBYKpVMGdKbGas3olKrqeRWkfEDepJ85y5Dpi5g/cyviPnzCpeux7Ng3XYWrNtu2HfyoI+oVbX0GcOOzq580H8MC6Z+hjZPS+VqtejRdxQAf/0Ry9Z1i/lswkLOHD9I+v00ls390mj/0cHLjZZVeZSFhQXjRg3j2yUrUKnVeHm4M3rYp6SkpjJ6fDCrFs4FoPenw9FqtdxOvcOU2d9ioVQyZsRgatcs/WfD2aUi/QcOY+rkceTlaalW3Ze+QUMA+OPiedatXcWEyTO5m3aHr8YMM+w3bsww/XsbpszG2aViceEB/Tj3HjCSOVNGo9VqqVr9Od7tPwKAS3/EsWntcr6YNI97aXeY9MUAw37BYwdiYmLKl1OKH+fy7iMLCyXjRw5h3tJVqFT6+GOGDiAl9Q6fT/yGNSGzAPho8Ei02jxSUtMInrMAC6WSscMGUrtmyTdvyvvnGMDS3IzpXVozdechsjW5eDvbMfmdVty6n8mANRFsGfJemWMVx8bejeZvjWff2kHo8nJx9qxDs9b6cz3lRjSn9s2n3ccrqOTbgtoB3dm59H0UChOs7dxo3eNbTExMSzmCEEIIIYQQQgjx9Cl0JU1tFs+clJQUJkyYQFJSEjqdjnr16vHFF18wadIk2rZtyyuvvML+/fvZs2cPgwYNYsiQIWzZssXoZagFy02bNo2wsDA2b96MqakpgYGB9O/fn+zsbCZNmsTly5exsrIiLy+PkSNH0qBBA06ePMn06dMxNzfH1dWVGTNmoFQqmTZtmmHZmgkTJuDr60vfvn3JysqiYcOG7N27l8jISHr27Mm4ceOoWbMmISEhODo60rVrVzp27EiNGjWYP38+Go2GF198kX379mFnV/xLEENCQmjSpAkBAQEA7Nq1i2HDhnHx4kUyMjIYO3Ysd+/eRafTMX78+FKT7fdP7Xl6A1aEWw61yjW+ue7pvfyyKLaq2+UaH+CKee1yje+bear0Qk8g1rJpucavYnalXOMD3DMpOqH/tGTnPb2Z9kVxJ75c45vm5ZZe6AmpzGzKNb77mfByjT/fZHi5xgcY1Vke3BNCCCGEEEI821R7V//TVfhXsXzt43+6CsWSRLt4Zh09epStW7cyffr0/+lxJdFeMkm0l04S7aWTRHvpJNFeOkm0CyGEEEIIIZ51qp/X/NNV+FexbPPRP12FYsnSMeKZNH/+fA4dOkRISAgACQkJjB49ulA5f39/hgwZ8r+unhBCCCGEEEIIIYQQ4v8RSbSLZ9KQIUOMEuienp6Ehob+gzUSQgghhBBCCCGEEEL8fyXPVAshhBBCCCGEEEIIIYQQT0AS7UIIIYQQQgghhBBCCCHEE5BEuxBCCCGEEEIIIYQQQgjxBGSNdiGEEEIIIYQQQgghhPg3MpF50s8KGSkhhBBCCCGEEEIIIYQQ4glIol0IIYQQQgghhBBCCCGEeAKSaBdCCCGEEEIIIYQQQgghnoBCp9Pp/ulKCPEsOXQus1zje1oklWt8nUJRrvEV/4NLSnm34V6ufbnG9865VK7x/1DULdf4APVUR8s1vkVaQrnGP+XxTrnGz8kzLdf4ANdTrco1fnpWuYanylvPlWv8uPXnyzX+Q6M6y5wFIYQQQgghRPlRRX7/T1fhX8Wy9Yf/dBWKJS9DFUIIIYQQQgghhBBCiH+h8p5sKJ4emYYlhBBCCCGEEEIIIYQQQjwBSbQLIYQQQgghhBBCCCGEEE9AEu1CCCGEEEIIIYQQQgghxBOQRLsQQgghhBBCCCGEEEII8QTkZahCCCGEEEIIIYQQQgjxb6SQedLPChkpIYQQQgghhBBCCCGEEOIJSKJdCCGEEEIIIYQQQgghhHgCkmgXQgghhBBCCCGEEEIIIZ6ArNEuxFNy7Lc97Ny0Aq02Fy+f6nw8aALWNraFyp09fpBt6xaTm6PBxtaBnkFjqVS5Rqnxz549y4qVK1FlZ+Pq6srwESOo6OJiVOavv/5iwcKF3L93Dzt7ewYPGkTVqlXL3IaDBw6wfv16cnNzqVylCsOHD8fGxqbIuqxcsYJslQpXV1dGDB+OS8WK/+n6P/T7rz+zdcMatFot3j7V6D90LNY2FQqVy83NZd13i4jYtp4Fq7fh7OJaauxTMedYuGYdWSoV7hVdGDuoH64uTkZldDod67ZHsDTsR+ZPGkOD2s+Vqd4P6c/TleRqc6nkU52PB40v8jw9c/wg29YteXCe2vNhGc7TE7EXmR+2lSyVGg8XJ8YFfYCbs6NRmaiLl5kXupnMbBWWFkqG9exMo9q+Za//xavM2bKPLHUOnk72TOr5Jm6OdkZlTv5xjbnbfiEjW42l0oxR775GY1+fsh+jHPsI4MSh3UT8uBytNhdP7xr0+nQiVkXEjzpxgB3rF5Gbk4ONrT09+n+Fl0/p8QHijv/E4YjFaLU5VPSsyZu9vsHSuvAxHvoz+gAbF/Tn028icXCpVGr8P07/xPG9i8nT5uDsUZPA7t9gYWUc/37qTb6f0hZ7F2/DNjef+rz2wYwSYyvMzKj1zWdUG96byCotUcXfKlTGtv5z+C2YiLmzIzmpacR8OpH0mIul1vuhy1E/cXb/EnR5uTi6+fJS5ykoLY3rn54Wz6bZ7bBzyq9/RW8/Xn5vepmPI4QQQgghhBDi/w+Z0S7EU5CaksgPK6YzbNx8vlm4FRdXT7aGLSxULi01mZXzx/PJiG8IXrCFgJbtCF0ypdT4KpWKadOnM2zoUFasWEFAQAALQkIKlZs2fTrvdu7MihUr6PLee8yYUXJC61HJycksXryYrydNYvmKFbi5ufHdd98VWZfp06YxdNgwQ11CFiz4T9f/odvJSaxZOpfRE2YzZ8l6XNzc2RC6tMiys4NHY2lpXeb6Z6vUTJi9kNED+7B+4Uxa+Ddk1tLVhcrNWrqGGwlJONrbFRGlZKkpiYStmMGwcd8ydeEWnF092BK2qFA5/Xk6gU9GTGHKgs00bdmO75d8U2r9vwpZxZefvM/muRN4qXE9pq1cb1RGk5PDyFlL+bT722ycPZ7+773JuJDCbSxOllrD6JVbmdijPeETB9DSz5fJ63YZlVFpcvhs+Wa+7NaO7ROCCHrjJT5fuQWdTlemY5RnHwHcSUlk/crpDP5yAZNCtuPs6sm2Hwqff2mpt1gTMo4+w6by9fytNHnpdcKWTC5TG+6lJrB3/WS6Dl7GgMl7cHDx4sC2ucWWz1Fns3/LbKxsHMoUPz0tgQObJ9Ox/zI+/HIPdk5eHPmp6Pg29m70HLvb8K+0JDvAC1sWkZuRVWKZRmvncnnWCg7WbcelGct5/vuZZao7QMbdBI6GT6HtR0t5d8QuKjh6cXLvvKLrb+fKuyMiDP8kyS6EEEIIIYQQojjPZKL9+vXrBAUF0blzZzp16sTkyZNRqVTFlr958ybvvPMOAMOHDy+xbHHmzZtHly5d6NmzJ926deP8+fN/u/7F2bJlCz///DMAu3fvfuz9Q0JC6Ny5s1FCqWfPnmXa9/z588yfP7/Y7zMyMjh06NBj16ksEhISiI6OLpfYACkpKYwfP77c4oN+lnrt+k1wrugBwEuBb3Py932FypmamvHJiG/w9K4GgG/t54m/frn0+FFRuLu7U6OGfjbra6+9xukzZ8jKyk9GXblyhYyMDJo3bw5A06ZNuXvvHtevXy9TG44eOcLzzz+Pq6t+5nXb117j0G+/FSoXdfZsobqcOX3aqC7/tfo/dPLYb9Rr0BgXV3cAXmnTgaOHfymybKduH/Fej75lqjvoZ7N7urnyXPUqALR/tSXHo2LJys42Kvf6Ky8yemAfzExNyxz7oTPHD1KnjOdp/xHf4GU4TxuWep6ejPsDL1cXalXVzxzv0KoZx6LPk5mdf73N1WoZ2+99XqhbE4AGz1UnJe0e6Zml9z3A8YtXqeTiQG0fff07NWvAkfN/kalSG8rkaLVM/KA9dR6UCXiuKqn3M0nPLtt1vzz7CODsiQPU8muC04P4LVq/zakjPxeOb2ZOn+HT8PSuDkCNWg1JuFF6fIA/oiKpUqsZ9s6eADRo8S4XThX/O+XX8BD8mr6F0rLw0x9F+SsmEu+azbB11Mev0/Rd/jz7+L+zivPnN4v4c1LhG3EP2dariZmDLbd2RAKQvPMXLCo6U6FWtTLFv3buFzyqN6WCg77+NRt35krMnievuBBCCCGEEEKUB4WJ/Hv037/Yv7t2RcjLy2Pw4MH06tWLzZs3s3XrVry8vBg3blyZ9p87dy6WlpaPdczjx49z/vx5NmzYQGhoKMMezIR92t555x3atGmDRqNhzZo1fyuGRqNh165dpRcsoHbt2gwZMqTY7+Pi4jh8+PDfqlNpjh49Wq6J9ooVKzJp0qRyiw+QlHANV7f85RYqulfi/r07ZGbcNypn5+CEX6MWhs8xp3+nWs16pcaPj4/Hw8PD8NnKygpbW1sSEhONy7i7G+3n7u7OjZs3y9SGgsfw8PDg7t27pKenl6kuiQkJ/9n6P5SYcAM3dy/DZzcPL+7fTSOjwDgD1KzlV6Z6P3QjIQkv9/zlZaytLLGvUIGbicbLZtR7ruzLrBR0K+E6FR85T11LPE+bGz7HnD5c6nl6PfEWXm75SwFZW1pib2vDzaQUo22vNHne8PlI1Dl8PFyxtSnbzP9ryXfwrpi/FI21pRIHGyuup6QZttlaWfJKA/1yOjqdjq2/n6VRDW/srK3KdIzy7CN9/GtG8Su6e5NeVHx7J+o1zL9WxJ45TFXfsp1Td25dxaFi/lI5jhV9yExPJTvzXqGyyTcvcuX87zQJ/KhMsQHSUq5i75If397Fh+yMVFRZheNr1BnsXDGQ0G/asW1JH+4klX6z4O7RsyV+b+NbhawrxteFrCs3sHmubIn2+7evYuecX387Zx9Umamos4uqfyY/hw7ixzlvsHt1P+4ml+1mhxBCCCGEEEKI/3+euTXaDx06RJUqVWjWrJlh28cff0y7du1ITU1l5syZuLq6EhcXR0JCArNmzcLe3t5Q9tVXXyU8PJzJkycXKle3bl3CwsIIDw/HxMSEwMBAevfuzf3798nKykKr1WJmZkbTpk1p2rQpACdPnmTOnDmYmZnh4eHB5MmTUSqVBAcHEx0djampKV9//TVpaWmEhYUZZo0HBARw7Ngxevbsia+vPnHm6OiIo6Mjly9f5uLFi0ycOJG4uDhmz56Nj48PSUlJDBw4kC1bthTbPwMGDGDp0qW0adMGc3Nzw/b09HTGjBnD/fv3yc3N5auvvqJu3bqG748dO2aoX5s2bQgMDOT06dPY2tqybNkyJk2aREZGBlWqVKFVq1Z8+eWX5OTkYGpqSnBwMJ6enrz22mvUqVOHFi1asGPHDpo3b87Ro0dJS0tjyZIleHp6MnfuXE6ePIlWq+WDDz6gefPmLFiwwNB/rVu3NtQpODiY2NhYtFot3bt355133mHv3r2sWrUKMzMz6tWrx5gxY9iyZQu//vorycnJVK5cmYCAAN5++20A2rZty5w5cxg3bhxbtmzh8OHDzJkzB1NTU9544w0++uijYsfwcWjUKuzs89fSNjdXolAoUKuysalQ9BIf56KP8XN4GJ9PKnrpkUepVapCdbKwsDB6OkOtVmNesIxSibqMT3Co1WrsHfKXjjBXPmyDClvb/LWLVWp1qXX5r9X/IY1ahb19fqI3f5xVVChmnMtKrVajVJobbVNaKMlWq4vZ4+8cQ4VtkfUv6Tw9zt7wH/h80pISY6s0OSjNjetvoTQvtv5/Xotn7vebmTz4ozLXX6XJQWlm/GvLwtycbHVOobI/nz7P1I17sLWyZM4nnct8jPLsI4CcYq4VGnXx8c9HHyNy51qGT1xWpjbkaLKxts0/hpm5EhQKcjTZWNnk/z7U6XTsCptA225fYWpmXlSoIuVqsrGu8Eh8s/z4ltb58c0tbXiu0Zs0eqU3to6enDm4hp0rB/LBmJ8wMf37//0wtbYiT2V8Xmmz1ZiV8YZNbk42lo/U3/RB/XM12VhYPVJ/C2uqN2iP30u9qWDvQezh7/g59FM6D9v5RPUXQgghhBBCCPHf9Mz9pfjXX39Rp04do20KhQJfX1+uXr0K6Gd1r1y5knXr1rFt2zZ69epVZKyC5ezs7Ni9ezfr1q0DoHv37rRr146WLVsSFhZGYGAgLVu2pHXr1rRs2RKFQkFwcDBr1qzBwcGBGTNmsHv3blxcXEhKSmLjxo2cOHGCiIgIoxsDBfn6+tK9e3dCHqxZ3adPH6Kiopg4cSJr164lIiKCoKAgIiMjad++fYn94+zsTGBgIOvXrzdaNua7776jQYMGfPLJJ8TExDB16lTWrl1bZIwbN27QsWNHRo8eTZcuXbh48SJ9+vThzz//pGvXrowdO5bevXvTvHlzDh48yKJFiwgODubGjRssXLgQX19fduzYQYUKFfjuu++YNWsWe/fupV69esTHxxMWFoZGo6FTp04EBgbSqVMnHB0djZLsd+/e5cCBA+zbt4+cnBy2bt1KZmYmixcvZsOGDSiVSoYOHcqpU6cASExMZP369Zw6dYrvv/+et99+mwsXLuDl5WW40aLT6fj6669Zv3499vb2DBw4kG7duhU5hm+99VaJ/QwQGbGeXyI2AvplJOwdnA3f5WjU6HQ6LK2KTvycPrafH5bPYOiX3xqWkSmJpaUlGo3GaJtarcbqkaczLC0tySlQRqVWl/gER/iOHYSHh+vbYGaGo2N+glGj0Txog/FM4OLqUrDcf6X+e3b+yN6dPxqO4eCQn6DTPBxny7LNli6JpaUFGo1xwlit1mD9mE/gFBQZsYHIiA3A3ztPw5bPZOiX8wxLpBRbfwslmhzj+qvUGqwtLQqVjf7jL8Z+u5IvP3mfxnVqlrktVhZKNLm5xsfIycHaonCSuE2j2rRpVJtjF6/Sd14Ym8b2xcW+8Etrofz7aH/Eevbv0q9Xb2pmhl0R8S2KOYfOHvuF9Sun8+kX8w3LyBTlxC9rObVff003MTXHxi7/5b65OWrQ6VBaGLfhzK8bcPGogbfvC8XGfSjqt7VE/5Yf37qo+Erj+FY2jrR6N3/ZroatPub4noWkpVzF2b1sL3UtijYzC5MC55WptSW5GZnF7nPuSBjnjoQ9qL8ZVraF629WoP6W1o40fyv/abl6L37EmV8Wce/2VRzd/n79hRBCCCGEEEL8Nz1ziXaFQoFWqy20XafTYfpgzeIXXtAnDdzd3UtckqRguZiYGK5du8aHH34IQGZmJvHx8Xh6erJ69WpiYmL4/fffmTp1KhEREXz++edcu3aNwYMHA5CVlYWjoyO3bt2iUaNGAPj7++Pv78+xY8eKrUf9+vWL/a59+/b06dOHoKAgDhw4QHBwcEndA0Dv3r3p1q0bnTp1MmyLjY1lwIABAPj5+XHt2rVi969QoQK1atUy9E3BpTfOnDnDlStXWLx4MVqtFicnfeLRysrKMDsfjPv37t27nD59mqioKMMNgLy8PFJSUiiKg4MDVapUYcCAAbRr1463336b8+fPk5CQQJ8+fQD9LP2EB8t9+Pn5oVAoaNSoEV9++SUajYbIyEjatm1riHnnzh0sLCwM9V26dCm3b98ucgzLovUb3Wj9RjcAftm1kT/iThm+u5V4HXtHF6xtbAvtdy7qGOtWzmTEhIVlSrIDVPL25tdffzV8zszMJD09HS8vL6MyiUlJhs86nY7ExER8fHwoToe33qLDg5sKO3fuJCYmxvBdfHw8Tk5OVKhgnJz0rlSp1Lr8l+rf9s13afvmuwDs/Wkz52Pzl7VISriJg5MLNhUKj/PjquzlSeTh/OtERmYW6RmZVPJwL2Gv0rV+oyut3+gK6M/Ti3GnDd+VdJ7GRR1j3cpZfDZhIZ7eVUs9ThVPN/Ydyf8ZyMjKJj0zG+9HlsMB/Uz2L+atIHhIbxrWerxkZVU3Z/acOmf4nJ6t4n6WCh/X/JsfSXfuc+56Iq8+r18+JuC5Krg52BJ9Jd6wraDy7qNX3ujGKw+uFQd2bzC6ViQnXsfesSLWNoVns5+POsqGVTMZOn4xHpVKvlb4v/oB/q9+AMDJA2Fc/+OE4bs7t65Swb4iltbGx/gjKpLEa7H8OXI/AFnpd1j9zbt0+mQeVWo1NSrb4KUPaPCSPn70oTDiL+XHv5tyFRu7ilgUiK/Kuoc6+z72zt6Gbbq8PEyfcDZ4xsW/sK7mbbTNpnplMs4Xv6xLnWY9qNOsBwDnjv5A0pX8+t9PvYa1bUUsrIzrr86+hyY7HVun/KV+dLo8mc0uhBBCCCGEEKJIz9wa7dWqVSM2NtZom06n49KlS1SpUgXAkHB/+F1xCpYzNzenVatWhIaGEhoaSnh4OP7+/mi1WnJycvDz86N///5s2bKFyMhITE1NcXV1NZTfvHkz/fr1w9TUlLy8PKNjKRQKo8+5j8zKNDcv/pF9R0dHw42AvLw83Nzciu+cB2xsbOjWrRsrV640Ov6jfVGwfsX1CxTuQ3Nzc7799ltCQ0P54YcfWLBgQZHtKNi/SqWSd99919Bfu3btwtvbOFnyqBUrVjBo0CAuXLhAUFAQ5ubm1KtXz7D/tm3b6NChg9GxTUxMCAgI4MSJExw8eJA2bdoY4pmYmBRqt7m5eZFj+LgaNmnF+egTJMVfBWDvjrUEvNSuUDm1OptVIRP5dPSsMifZARrUr09ySgqxcXEAbN26lYAmTYxme1f28cHezo79+/VJs3379uHq6kqlSpWKjFlQ06ZNiTp7lpsP1kTfunUrL7dqVahc/QYNSElOJu7Bz+HWrVtpEhBQ4szzZ73+D73QtCWxUSdJuKm/URWxbR3NWwaWqX6laVSvNrdSUok6fxGADeG7af7C81gVMSP879Kfp8dJfHCe7tkRRsBLbQuV05+nXz84T0tPsgM0rluTxNt3OHvhEgA/RPzCi43qGdVfp9Px9eLvGdW762Mn2QH8a1Ym8c49Tl+6AcDayOO0rFcDa4v8pYBytFrGh4ZzKUF/E+9a8h1upKRR3bNikTELKs8+Amjg34oLMccN14qfw0Pxf7HwtUKjzua7hRMIGjW71CR7QTUbBHL1/BFSk/4C4Ni+NdRt8mahct2GLGf47CMMm3WYYbMOY+fkwcdjfyyUZC+oWr1Abvx5hLRb+vhnDqyhZqPC8W9dj2Hrwl5kZdwBIO7IRio4emDnXPx1vywyzl9Gc/sOnt30x6z0YSeyr8eT+efVMu1fuXZrEi4f5W7KFQBiD62hWoPCT4ul3IwlYuVHZD+o/8UTm6hg74Gt05PVXwghhBBCCCEeh06hkH+P/Ps3e+amZbVo0YKZM2dy8OBBXn75ZQDWrFlD48aNcXhkfea/o27dusyaNYvs7GwsLS2ZMmUKI0eOZPHixQAMHz4c0M+MdnFxMcx8vnTpEjVq1CA0NBR/f3/8/PxYtmwZffv25dy5c2zatIn33nuP5ORkAC5cuEBmZvGPuJuYmBjN2u/YsSOTJk2ia9euZW5Lly5dePfddw1LZPj5+XHs2DGef/55zp49azTzvCxMTEwMNwcaNGjAvn37eP/99zly5Ai3b982JLxLUr9+fWbMmEG/fv3IyclhxowZjBs3DoVCYXTjAeDmzZv88ssvfPjhh9StW5d33nmHqlWrcvnyZVJTU3F2dmb+/PlF9kmbNm3Ytm0bVlZWODk5kZWVBehvWmi1Wm7duoWrqytBQUHMnDkTKDyGD2f0l5Wjsysf9B/Dgqkj0OZpqVytFu/3HQ3AX3/Esm3dIkZMWMTZ4wdJv5/G8rlfGe0/Kni50XIVBVlYWDBm9GgWLVqESqXC09OTEcOHc/v2bb4aN44lD87RUaNG8e38+awNC8PBwYFRn39e5ja4uLgw8NNPmTxpElqtluo1ahiegrh48SKh339P8JQpWFhYMHrMGKO6DB8xosTYz3r9H3JyrkjvASOZPWUMeVotVao/x0f9+wJw6Y9zbFq7jC8mzeNu2h0mfzHQsN/ksZ9iamLKl1NCcHIuOuFrYaFk4oiBzFn2PSq1Gi93N74c3I+U1DuMmDST0G+nAtBz6Bdo8/JIuZPGpLlLsLBQ8tWQT6jjW/yyIg/ln6efGc7THn1HAfrzdOu6xXw2YSFnHpyny+Z+abT/6BLOU0ulkilDejNj9UZUajWV3CoyfkBPku/cZcjUBayf+RUxf17h0vV4FqzbzoJ12/P7Z9BH1Kpa/JML+ccwZ3rvTkzdsJtsTQ7eFR2Z3LMDt+7eZ0DIeraM+wTvio6M79GeMau2kaPVogBGvdeGyo/Mev+n+kgf3433+33B4unDydPm4l2tNt36jAHgyp8x7Fi3iKHjF3P2+AHS76exct5Yo/1HTl5ptPRMUewc3WjXYwKbFn1KXp4Wd586tO2mv+bEX4nm1+3f0n3YyhJjlKSCgxut3p3AzpX6+K6V6hDQWR8/6Vo0RyO+5e0BK6lc60X8XnyfH7/tjkKhwMbejfYfh2BiYlpsbKWrM80i85c1a7ovFF2ulqNtexHw00p+baj/XXO250j8lkym5vjBqJNTOfNh2a8VNvZuNH9rPPvWDkKXl4uzZx2atdaPY8qNaE7tm0+7j1dQybcFtQO6s3Pp+ygUJljbudG6x7cl1l8IIYQQQgghxP9fCl1JU77/pVJSUpgwYQJJSUnodDpZv5rsAAAgAElEQVTq1avHF198gbW1NWPGjKFt27a88sor7N+/nz179jBo0CCGDBnCli1bjF6GWrDctGnTCAsLY/PmzZiamhIYGEj//v3Jzs5m0qRJXL58GSsrK/Ly8hg5ciQNGjTg5MmTTJ8+3TAzesaMGSiVSqZNm2ZYtmbChAn4+vrSt29fsrKyaNiwIXv37iUyMpKePXsybtw4atasSUhICI6OjnTt2pWOHTtSo0YN5s+fj0aj4cUXX2Tfvn3Y2RX/wsWQkBCaNGlCQEAAALt27WLYsGFcvHiRjIwMxo4dy927d9HpdIwfP94o2f7oy1AfvqgVYMiQIfTo0QNHR0d69+7Nxx9/zJtvvsnYsWNRqVQoFAqmTp2Kt7e30X6Ptmvt2rWkpaUxePBg5s6dy++//45Op+P999/nnXfe4fDhw4wePZpRo0YZ1kbXaDSMHj2axMREzM3NadeuHT169GDv3r0sWbIEpVJJnTp1GDduHFu3buXPP/9k9Gh9YjsnJ4cXX3zRUPebN28axv/IkSPMmzcPgNdff93wMtSixrA4h84Vf5PkafC0SCq90BMo77t/iv/BJaW823Av1770Qk/AO+dSucb/Q1G39EJPqJ7qaLnGt0hLKNf4pzzeKdf4OXnln4y9nvrk7wYoSXpWuYanyltFL+XztMStP1+u8R8a1fmZezhQCCGEEEII8QzJOrj+n67Cv4r1y93+6SoU65lMtP9/c/ToUbZu3cr06dP/6aoIJNFeGkm0l04S7aWTRHvpJNFeMkm0CyGEEEIIIf4LJNFu7N+caH/mlo75/2b+/PkcOnSIkJAQABISEgwztx/l7+/PkCFD/tfVE0IIIYQQQgghhBBCiP/3JNH+LzdkyBCjBLqnpyehoaH/YI2EEEIIIYQQQgghhBD/Ewp5ivZZISMlhBBCCCGEEEIIIYQQQjwBSbQLIYQQQgghhBBCCCGEEE9AEu1CCCGEEEIIIYQQQgghxBOQRLsQQgghhBBCCCGEEEII8QTkZahCCCGEEEIIIYQQQgjxb6RQ/NM1EGUkM9qFEEIIIYQQQgghhBBCiCcgiXYhhBBCCCGEEEIIIYQQ4gnI0jFCPCYXi7RyjW+i05Zr/BwsyjV+Wo5DucYHqKGJLtf4mVYVyjV+nkn5XnprcLFc4wNcs61frvFV1v7lGr+Grpz7yLR8wwM0VZ0t1/jXar5WrvGjfj1frvFTY9TlGh+gsZ8FG4/klesxujSTORFCCCGEEEII8SyQv96EEEIIIYQQQgghhBBCiCcgiXYhhBBCCCGEEEIIIYQQ4gnI0jFCCCGEEEIIIYQQQgjxb2Qi86SfFZJoF0IIIYQQQgghhBBCCPHM++abb4iKikKhUDB27Fjq189/x9zRo0eZM2cOJiYmVK1alSlTpnDixAmGDh2Kr68vADVr1mTcuHF/69iSaBdCCCGEEEIIIYQQQgjxTDt+/DjXrl1jw4YNXL58mbFjx7JhwwbD9+PHj+f777/H3d2dIUOG8Ntvv2FpaUmTJk2YP3/+Ex9fnj0QQgghhBBCCCGEEEII8Uw7cuQIgYGBAFSvXp179+6RkZFh+H7Lli24u7sD4OTkRFpa2lM9viTahRBCCCGEEEIIIYQQQjzTbt++jaOjo+Gzk5MTKSkphs8VKlQAIDk5mcOHD/Pyyy8DcOnSJYKCgujevTuHDx/+28eXpWOEEEIIIYQQQgghhBDiX0inUPzTVXhm6XS6QttSU1MJCgpiwoQJODo6UqVKFQYNGsTrr7/OjRs3+PDDD9m7dy9KpfKxjyeJdiGekl8P/sKm9WHk5uZSuXJVBg8fiY1NhULlos+eYfXKJaiys6no6saQEaNwcalYavyzUVEsX7mK7GwVrq6ufDZ8KBVdXIzKXP7rCiELF3H//n3s7OwYMmgg1apWLXMbDh7cz4b1P6DN1VK5chWGDv8MGxubQuWizp5h1crlZGdn4+rqyrARI8vUhiO/7mX7plVoc3OpVLk6/QaPw7qIPsrNzWXj9wvYtf0Hvl0ZjpOLW6mxT8acJyR0E9kqNe4uTnz16ce4OjsZldHpdITt2MOSdVtZOGEkDWr7lhq3oMMH97F5w/fkanPxqVyNAUPHFDnOubm5hK1Zws5tG1iyZjPOLq6lxj4VHceiNWFkq1S4V3RhzOD+uLo4F2rD+m07WbZ2I99O/pL6dWqVue7lHR/Kt38eKs/z6Fkfg2N/XGPOtv1kqXPwdLJj0vtv4OZoa1Tm5J/XmbvjIBnZaiyVZox6pzWNa3iX+RgAvx7cz8b1YWhzc/GpXIUhxVzvos6eYfXKpYbr3dARn5fpWhF99CcOhi9Bq83FzcuXTn2mYGltW6hc3Im9HNixmNwcNda2jrzVawJulWqWGr9BdVNebWiGqQkkpen48YAGVU7hcrbW0LWVEmd7BWoNbD+cw5WkvFLj/y/aIIQQQgghhBDCmKurK7dv3zZ8Tk5OpmLF/L9BMzIy6NevH8OGDePFF18EwM3NjTfeeAMAHx8fXFxcuHXrFt7ej/d3MsjSMUI8FSnJt1i+eAHjv/6Gxcu/w9XNjbXfrSpUTqXKZtb0YAYN/YzFK77HP6AZi0PmlhpfpVLxzfSZDBsymFXLl9I0wJ/5CxYWKjd1+gy6vPsOq5Yvpet77zJ95uwytyE5OZmlixcx8espLF2+Clc3N77/bnWRbZgx/RsGDx3OshWraRLQlIUhpb8w4nZKEqHLZzFy/DxmLv6Riq4ebFq7uMiyc78ZiYWldZnrnq1SM37eMsYG9WLj/Cm8+EIDpi9bW6jcjOVruZF4C0e7wsmuskhJvsXKpfP4YuJM5i/9gYqu7qz7fnmRZWdM/gJLK6vHaIOKr2eHMOrTfvywaA7N/Rsxe0nhc2j2klXcSEjC0d7usepe3vGhfPvnofI9j57tMchSaxi9JpyJ3dsRPq4fLevVYPLGPUZlVJocPlu1nS/fa8P2r/oS1K4Fn6/eUeRd/uKkJN9i2eIFTPh6CouXr8HVzZ3QYq4Vs6ZPYfDQz1iy4juaBDRjUci8UuPfTU3gp7Ap9ByxlGHTduHg4sW+zYX3u5uawI7vJ9Jj6AKGTougnn9btq78qtT4DjYK3mpuzupdGmZtVJOWnkfbJuZFlu3aSsnFG3lMX6dmx+85NK9rWmr8/0UbhBBCCCGEEEIU1qJFC/bs0f8dHBcXh6urq2G5GIBp06bRq1cvWrZsadi2Y8cOVq5cCUBKSgqpqam4uZU+Ua8okmj/D7h+/TpBQUF07tyZTp06MXnyZFQqVZFlb968yTvvvAPA8OHDiy1Xknnz5tGlSxd69uxJt27dOH/+/BPVvyhbtmzh559/BmD37t2PtW9ubi4dOnTg8uXLhm1RUVF06dLlsZJJj+PY0d+p/3xDKrrqfxAD277O4UMHC5WLjjqDm7sH1WvoZysGvvY6Z8+cIisrq8T4Z6Oi8XB3x7dGDQDatmnD6TNnjfa7cvUqmZmZNG/WDIBmTQO4e+8e16/fKHMbGjz/PK6u+pnFr7Vtx+FDvxYqFxV1Fnd3D2rU0M8Gb/NaO86UoQ2njx2kTn1/XCrqXzrxcuBbHD8cWWTZt7v0pvP7n5Sp3gAnY8/j6VaR56pVBuDNV17keFQcmdnG5/cbLzfni6BemJmVLVlW6DjHfsOvQWPDOL/6WnuOHt5fZNnO3XrRtUefMsc+HR2Hp5srz1XXP4HwRutWnDgbTVZ2tlG5dq+8xKhP+2Fm+nhtKO/4UL7981B5nkfP+hgc/+M6lZztqe2t75tOTf04cuEqmSq1oUyONo+J3dtRx0dfJuC5yqSmZ5KerS4yZlH014r8612bYq93Z3Fzd6f6g2tF4GvtynS9u3D6F6rVboqDsycAjVt2JvbEnkLlTE3NeK//TBxcvACoVqcpt5OulFr/OlVMuJyg5W6m/vfBiQta/KoW7mt7GwVeLiYcjs0F4K/EPMIii5j2/g+0QQghhBBCCCFEYY0aNaJu3bp069aN4OBgJkyYYMgxZmdns23bNn788Ud69uxJz5492bBhA6+++ionTpzg/fffZ+DAgUycOPFvLRsDsnTMMy8vL4/BgwczZswYmj1IsK5atYpx48Yxc+bMEvedO7f0mdQFHT9+nPPnz7NhwwYUCgVHjx5lxYoVzJ5d9pnTZfHwZoBGo2HNmjW0a9euzPuamZkxYsQIZs6cyZIlSwCYMWMGY8aMQVFO61olxN/E3cPT8NnDw5N7d++SkZ5OBVvbYstZWVlha2tHUmI81aoXv4zJzfh4PDzcjfazs7UlITGRGtWrG8o8fHOyoR7ubty4eRMfn9Ifd4mPj8fDqA0e3C2iDfHx8bh7eBRqQ2JiAtWr1yg2flLCddzcvQyfXT0qcf/eHTIz7mNTwXjmrm+t+qXW91E3Em/h5Zb/KJC1lSX2thW4mZTMc1V9DNv9nqv+WHELSoi/gZtHfhvcPby4dzeNjIx0KlQwniX/XO16jxX7RkISnu75y6dYW1liZ2vLzcRb1KxWxbC9Xq2/t6REeceH8u2fh8r1PHrGx+Bayh28XRzy41socbCx4nrKXWp765PitlYWvFJff63R6XRsPRJNo+qVsLO2LPNx4gtd7zyKvN7Fx980uqbkXyviqV7C9e520lWcXPN/bp1cfci8n0p25j2sbOwN220dXLF10PenVpvLmUPbqNXw1VLr72JvQur9/Juuqfd12ForsFJCtia/nIezgjvpOl4PMKO2jynpWTrCj+SQkFr6DdvyboMQQgghhBBCiKKNHDnS6HOtWvnLscbGxha5z8P84ZOSRPsz7tChQ1SpUsWQZAf4+OOPadeuHf369aN27drExcWRkJDArFmzsLfP/wP/1VdfJTw8nMmTJ+Pq6mpUrm7duoSFhREeHo6JiQmBgYH07t2b+/fvk5WVhVarxczMjKZNm9K0aVMATp48yZw5czAzM8PDw4PJkyejVCoJDg4mOjoaU1NTvv76a9LS0ggLC2P+fP1yIwEBARw7doyePXvi66tPvjg6OuLo6Mjly5e5ePEiEydOJC4ujtmzZ+Pj40NSUhIDBw5ky5YtRfbLK6+8wnfffcfx48e5f/8+rq6uNGrUiL1797Jq1SrMzMyoV68eY8aMISEhgc8//xwTExO0Wi0zZ87Ey8uryLjFUatV2NvnJ7jMzZUoFApUapVR4kmtUqNUGi9RoLSwKPXJArVajdLc+G6aUqk02k+tLiK2svTYxm3IPz+Kb4Oq0J09pYWyDG1QYWefv2b6w/hqVXahBOnjUqk1KM2N226hNEelKvss3bJQq9XY2+e/vfrRNhRMJP+d2AXHWN+Gx3/q5J+I//AY5dU/+ccov/PoWR8DlSYXpbnxr3ULczOyNYVnYf985iJTf9yHrZUFc/q8/VjHKW6ci7remRdxrVCX0t4cTTY2dvljbPYgvkadbZSkfujI3u/Zv30Rzm6VeX9ISKn1V5pB5iMPEWjzIE+nQ2lunGi3Uipwd1IQeTqPn47m0qSWKT3bKJm5QU1eKbn28m6DEEIIIYQQ4v8RhSxI8qyQRPsz7q+//qJOnTpG2xQKBb6+vmRmZqLRaFi5ciXr1q1j27Zt9OrVq8g4BcvZ2dmxe/du1q1bB0D37t1p164dLVu2JCwsjMDAQFq2bEnr1q1p2bIlCoWC4OBg1qxZg4ODAzNmzGD37t24uLiQlJTExo0bOXHiBBEREUY3BQry9fWle/fuhIToEw19+vQhKiqKiRMnsnbtWiIiIggKCiIyMpL27duX2Ddjxoxh/PjxaDQaFi5cSGZmJosXL2bDhg0olUqGDh3KqVOniI6Opnnz5nz66afExcWRkpJSpkT7T+Hb+Cl8GwBmpmY4OOYnVTQaDTqdDktL4zWoLS0t0RRIeqnVqkLlCrK0tESTozHaplarsXpkP0uLomKrsbIqfqZqePh2fgrfDuiXMHAscxtKrstDP/+0kZ9/2qSPb2aGg0P+Sx81GjU6ne6x1tAujpWFBZoc47ar1BqsLC2eOPau8M3s/kl/Q8e00Diri+yjv8PS0qKIMdZgZVn2mcb/RPz/Rf/8r86jZ3UMHrJSmqPJyTXaptLkYm1ReP3xNg2fo03D5zj2xzX6LljPptEf4WJX+GWmD+0M32a4VpiZmpb5WpFTxLWiqPPh6L4wju0LA8DEzIwK9vlPqOQ8GGOlRdFj3Oy1D2napicxxyJYFvw+Q77ZibnSuE+b1TWleV39f3m0eZCerTV8Z2YKJgoF6gL3I1QaHRnZOs5d07/89PgFLe2bmuNiryD5buFMe3m3QQghhBBCCCHEv5sk2p9xCoUCrVZbaLtOp8PExIQXXngBAHd3d6Kjo4uNU7BcTEwM165d48MPPwQgMzOT+Ph4PD09Wb16NTExMfz+++9MnTqViIgIPv/8c65du8bgwYMByMrKwtHRkVu3btGoUSMA/P398ff359ixY8XWo3794pd6aN++PX369CEoKIgDBw4QHBxcYt/UqlWLKlWq4OjoiJeXF1FRUSQkJNCnj35d6PT0dBISEmjRogWDBg0iPT2dtm3b0rBhwxLjGurT4W3ad9DPBI3YuZ3YmPz+TYi/iaOTs9ELFwC8vH347dcDhs+ZmRlkpGfgWUpi37tSJQ7++tsj+2WSkZGBl1f+sgze3pVITEw0fNbpdCQkJuDj40NxOnToSIcOHQH4aecOYmNiHmlDPE5OToXaUMnbh99+zV+POTMz80EbPCmoTfsutGnfBYB9ET9yIfa04btbCTdwcHTB5inMdK7s5c6+308YPmdkZpGemYW3x997ecWjXu/Qmdc7dAZgz09biYs9a/guMUE/zk+jDT5envxy6Kjhc0ZmFukZmVTydC9hr38+/v+if/5X59GzOgYPVXVzYs+ZC4bP6dlq7mep8KmYP/s8Ke0+527c4tUHy8cE1KyMm70t0VcTDduK8maHt3mzhOudUxHXu0re3hwq4/WuaWAPmgb2AOBY5A9cvZj/85x66xq2DhWxsjF+YiE54TLpabeoXrc5CoWC+k3bszN0MrcTr+BRubZR2SNxWo7E6X9XNq1jSjWP/BkhLnYK7mfqUBnfEyAtQ4eFuQIF8DCtnqej2Nns5d0GIYQQQgghhBD/bvLswTOuWrVqhdYX0ul0XLp0CXNzc0wfeZleSS8CLVjO3NycVq1aERoaSmhoKOHh4fj7+6PVasnJycHPz4/+/fuzZcsWIiMjMTU1xdXV1VB+8+bN9OvXD1NTU/Ly8oyOVXCd9Nzc/BmY5uaFZ14+5OjoaLgRkJeXV6Y3AHt7e+Pt7W2IXa9ePUMdt23bRocOHahZsybbt2/nhRdeYM6cOWzbtq3UuAUFNG1OdNRpbt7Uv3h0+9YfafnyK4XK+dV/npSUW5yL0ye0d2zdjH+TpqXO+G1Q34/k5GRi4+IA2LJtO02a+GP5yEzYyj4+2Nvb88uBAwD8vC8S14quVCrjMjgBTZsTFXXG0IZtWzcX2Yb69RuQnJJMXFysoVyTJgGltqFRQEviok+QePMaALu2/0Czlq+VqW6laVS3FkkpqUSd/xOA9T/9TIvG9Z/KjPZHvRDwIrFRp4i/eR2Ands20KJl4FOJ3civLrdSbhN9Tp8o3bgjgmYvNHxqs53LOz6Ub/88VK7n0TM+Bv6+PiTeuc/pyzcBWLv/BC3rVcfaIn/5lpxcLePDIriUeBuAa8l3uHE7jeruzkXGLEpA0xZG14rtWzfzUjHXu+RHrnfbt27GvwzXitqNWvPXuaOkJOpfCvr7njX4BRR+gikr/Q6bl4/hflqyvi1/niZPm4uja8nvpDh3VUsNL1Nc7PW/i16qb8bZy7mFyiXd0XE/S4d/Lf3vR7+qJmSrddy5X/oa7eXdBiGEEEIIIYQQ/z4yo/0Z16JFC2bOnMnBgwd5+eWXAVizZg2NGzculOB+HHXr1mXWrFlkZ2djaWnJlClTGDlyJIsXLwZg+PDhANy5cwcXFxccHfUzJi9dukSNGjUIDQ3F398fPz8/li1bRt++fTl37hybNm3ivffeIzlZn1S4cOECmZmZxdbj4brpD3Xs2JFJkybRtWvXx25T1apVuXz5MqmpqTg7OzN//ny6du3KyZMn8fb2JjAwEAcHB3bv3s3bbz/emsXOLhUJGjiUqZPHo9VqqVbdl08G6Gf3/3HxAmGhq/k6eDoWFhaMHP0VSxfNR6VS4eHpxdDho0qNb2FhwRejR7Fg8RJUKjWeHh6MHD6M27dTGTt+PMsWLQRgzKiRzJu/gNCwH3B0cGD055+VuQ0uLi4MGDiY4MkT0Wq11KjuS/8BnwJw8eIF1oZ+x+TgqVhYWDBq9FgWL1qAWqXCw9OT4cNHlhIdnJxd+ShoFPOmfo5Wq6VKted45xP9fpf/iGNz2BJGfR3CvbupTBkbZNhvypcDMDU1ZczkhTg5uxYZ29JCyeThnzBrZRjZKjWV3F0Z92lvklPTGD5lLmFzJgHQY8R4crV5pNy5y8T5y1Eqlf/H3p3HRVW9Dxz/ADJssu8qivu+r21qpWlfy8rUyiQzLdMQ931BQc01E/cFUxHXXMqlNJcsK1FTwKXcFVEQXFCWWWCY3x/I4DAsozia/p736+Ufc+fc5z7n3HMvdebccxkf+Bm1q1YyqY3cPTzp3XcwMyaNRqvVUrFKNT7r8xkA586cZv3qZYwN/YaUO7cJHtVfv1/wqCCsrKwYP+lb3D08C4xtY6MgeEh/Zi9ZgUqlpqyvN6OCviT51m2GTpzKyrDpAPQIGo5WqyX59h1CZy/ARmHN6AF9qVWt8BfRPon45m6fXObsR8/6ObBVWDPt07f5euMvKDWZ+Hm4Etr9TW6kpNJ34UY2j/oMP09Xxn/YjpErt5GZpcXCAoa//zoVvNyKjP0gdw8P+vYLYkpoMFqtlsqVq/BF30DA+H43bMQYFi2Ye/9+V4aBJtzvnFy9eeuT8awJCyQ7O4syFWrRofsYAOIvxrJ3cxg9hi7Dv3pTWr3VhxUzPkOXnY2VtYKufWdha1f4EjgA9zJg68FMeryhwNISrt3M5pc/cgbay3la0K6JNeE/5UxvX/2Lhq6tFbRuUIp0JUTu0RS7PvuTqIMQQgghhBBCiP8eC11R05zFMyE5OZng4GASExPR6XTUqVOHUaNGERISQrt27Xj11VfZv38/u3btIjAwkKCgIDZv3mzwMtT85aZOnUpkZCSbNm3CysqKNm3a0KdPH5RKJSEhIVy4cAE7Ozuys7MZOnQo9evX5+jRo0ybNg1ra2u8vLyYPn06CoWCqVOn6petCQ4OpmrVqvTu3ZuMjAwaNmzI7t272bt3LwEBAYwbN45q1aoxd+5cXF1d+eCDD3jnnXeoUqUKYWFhaDQaXn75Zfbs2YOTU/EvPsyN0717dwB2797NokWLUCgU1KpVi3HjxnH69GmCg4Oxt7fHysqKsWPHUrly5UJj/nt/tqi52OoyzBo/0+LxzvLO706mS/GFSqiKpvBlkB6HeLvqZo3vnXXVrPGfhBulzDvjVqU1bz+toDtv1vhPgnNcdPGFSuBKlcfzpEBhYpIe7qXTD+vvE4/3ZcgFaVzXvP0UoOsL8vChEEIIIYQQ/5+l//XwKy88zxxeeLjJsU+SDLSLZ8qhQ4fYsmUL06ZNe2o5yEB70WSgvXgy0F48GWgvngy0F00G2oUQQgghhBDPg7RDPz7tFP5TSrfo+LRTKJQsHSOeGWFhYRw8eJC5c+cCcP36dUaMGGFUrmnTpgQFBT3p9IQQQgghhBBCCCGEEP9PyUC7eGYEBQUZDKCXKVOGiIiIp5iREEIIIYQQQgghhBBCgDyPLIQQQgghhBBCCCGEEEKUgAy0CyGEEEIIIYQQQgghhBAlIEvHCCGEEEIIIYQQQgghxH+RhcXTzkCYSGa0CyGEEEIIIYQQQgghhBAlIAPtQgghhBBCCCGEEEIIIUQJyEC7EEIIIYQQQgghhBBCCFECMtAuhBBCCCGEEEIIIYQQQpSAvAxViIfkrr5u1vgpNt5mjW+tU5s1fuWsU2aND3DRpo5Z41dU/2PW+Jesa5o1fgXtObPGB9Ca+XdaR+s0s8a3VGvNGv+ujadZ4wMofKqYNX65pL/NGv+XO+XMGt+vnC29sxaY9RjL7vQza/wO1S9w6YJZD0HFyubtR0IIIYQQQoiS0VnIPOlnhZwpIYQQQjx3zD3ILoQQQgghhBBCPEgG2oUQQgghhBBCCCGEEEKIEpCBdiGEEEIIIYQQQgghhBCiBGSgXQghhBBCCCGEEEIIIYQoARloF0IIIYQQQgghhBBCCCFKoNTTTkAIIYQQQgghhBBCCCFEASwsnnYGwkQyo10IIYQQQgghhBBCCCGEKAEZaBdCCCGEEEIIIYQQQgghSkAG2oUQQgghhBBCCCGEEEKIEpA12oV4DP6OPcX8lWvJUKrx8XJndOAXeHm4GZTR6XSs3bqTxZEbCQsZRf1a1R/6OAcO7Gf9ujVos7RUqODPgEFDcHBwMCoXE32c5eFLUSqVeHl5MXDwUDw8PIuMHR0Tw9Lw5SiVKry8vBgyaACeHh4GZS5cvMTc+Qu4d+8eTk5OBAX2o1LFiiblfvTEaeatXI9SpcbH050xgb3wcjduozU//MyiNZuYN3E49WtWMyl2rr9++4WtG75Dq82iXPlKfBE0FnuH0kblsrKyWLdyPj/9sJaw5T/i7uH1/6IOT6Kf/nlgD5vXr0CrzcKvQiW+HDC60PzXrljIjq3rmL9ii8nnAOD3A/vYuG41WVlZlK9Qkf6DhuFQyDFWfbeUH7dsZNmq9cVeA/Bk2ujAgV9Zv24tWVlZVKjgz8BBgwu5jqMJD1+qvyYHDR5cbB2OnvyXsIiNOX3Uw51x/T7Fy93VMO6/55mzagPpShW2CgUDe3SlYS3T++nh0+f5dv0OMlQafD1cmNCrC95uLgZlos9d5pu120m7f4wh3d6icfVKJh/j7LEdHKxKPQEAACAASURBVPllEdnaTNx9q/L6h1OwsXM0KHPvdjwRk9vj5OGn3+Zdvh5vfDytyNhR56/yzfaDZKgzKePqSEjXNni7OBZY9sz1ZLrNWc+iL96laeVyJudv7jpER8ewNDwc1f17/ODBg4zu1xcvXmTu/Pncu3sPJ2cn+gcGmny/FkIIIYQQQgjx8GRGuxAlpFSpCJ41nxH9erNuwQxeatKQmYu+Myo3c9EKrl5PxNXZ6ZGOk5SUxOKFC5gwcTKLly7Hy9ubVSuNj6NSKZk+bQr9BwxiybLvaNa8BfPnhhUZW6VSMWXaDAYG9Wf50sW0aN6UsHnzjcp9PW06XTt3YvnSxXzQpTPTZswyKXelSs34bxYxql9P1s+byktNGjB98SqjcjOWrCIuIRFX54IHvYpyMzmRlUtmMSz4G2Yu3ICHly8bIhYVWPabycOwtbN/qPjPeh2eRD+9mZTId4tnM3LCTGYvXoenly/rVi0usOzM0BHY2tk99DGSk26wdOFcxk38mgVLV+Hl7UPkyvACy04JGYvdQxzjSbRRUlISixYuZMLEUJYsDcfb25tVK1cYlVOpVEyb9jVBAwaydFk4zZs3Z97cucXkr2bct0sZ3ecTNs6ZxMuN6zFt6WqDMprMTIbPmM9X3TqxfnYIfT54h/Fzlpmcv1KtYdTCNYzr2Zmt04bRskEtJq/cku8YWQyes5L+Xd5k89dD6dfpDUYvXGvyMVLvXOfA5kl0/GIxAaN/xtGtLH/tnF1gWQdnLwJG/aT/V9wAdYYmkxGrf2ZC59fZNuITWtaqSOjm/QWWzc7WMXnzftwdH+5eYe46qFQqvp42jYEDgghftpTmzZszd+48o3JfT5tGl/c7E75sKV27dGH69BkPXQ8hhBBCCCHEf4CFpfx78N9/2H87O1EicXFxfPnll7z//vu89957hIaGolKpCiwbHx9Pp06dABg0aFCh5QoTFRVFixYtCAgIICAggG7dunHhwoWHjhEUFPRQ+5hi8+bNtGrVCrVard82cuRI4uPjH0v8v0+cpoyPF9Ur+wPQ4fVWHI45QYZSaVDuzVdfZsRXvShlZfVIx4k69Cf1GzTAyytn5u8b7drzx8HfjMrFxETj4+NLlSpVAWj7RnuOH/+bjIyMQmNHx8Ti6+ND1SpVAGjXti3Hjkcb7HPp8mXS09N58YUXAHihRXNS7t4lLu5qsbn/feIfynp7Ur2SPwBvvfYKh2NOkp6/jVq/xKi+PR+pjf6O+o3a9Zvg4ekDQOu2HYn6Y2+BZd/74DM6d/v84eI/43V4Ev30aNTv1KnfGA+vnPxffeMtov4oeBCz04c96fJx74c+RtShP6jXoBGeXt4AtG33ZoHXAUDXjwL4qPunJsd+Em106NBfNDC4jttx8ODvRuWMr+N2HD9+rMjr+OjJfynj7UGNShUAePu1l4iKOU26Mu9+nqXVMvKLABrXqQFA/RpVSL6TQmp64XEfdPj0ecp6ulHTvywA77zShEMnz5GuzLu/Zmm1jPn0fZrWrAxAg2r+JKfcIzVdWWDM/C6e2ItftRdwdC0DQO3mnTkfvcukfYvN//xVyrk7UbNcTvu/17QWf52NI12lMSq78dAJqpfxxM/d+aGPY846RMfEGN6v32jLsePHDe/Xly6TlpbOiy/m3q9b3L9fxz2WHIQQQgghhBBCGJOB9udUdnY2/fv3p0ePHmzatIktW7ZQtmxZxo0bV+y+s2fPxtbW9qGP2axZMyIiIoiIiKBr166sXLnyUVI3CycnJ7Plc/V6ImV98pa9sLezxdmxNPEJNwzK1alRtUTHuXbtGr6+ZfSffX19SUlJIS011aicj6+v/rOdnR2Ojk4kJFwvNHb8tWv4+voY7OPk6Mj1hASDMj4+Pgb7+fp4c9WEHyziEgpoo9KliU9IMihXt3qVYmMVJvFaHN4+ZfWfvX3Lcu/uHdLT7hmVrVqj7kPHf9br8CT6acK1q3j7GuZ/N+UOaQXkX61mnUc6xvVr8fg8cB34+JbJOUa+6wCgRs3aDxX7SbRR/usz9zpOLeA69jW6jh2LvI7jEm5Q1jtvaRl7W1ucHR2IT0wy2PZq80b6z39Gn6S8rzeODqbN2o5LvImfl/sD8WxwKW3P1aSbBtteb5J3fv+IPUMFHw8cHUx7uiAl+TLO7nlLqTh7lEeZdgtVxl2jshp1OtvDvyLi6zf5YXFvbt8o+gfeK8kp+LnnLXNjb6PAxd6WuFspBuVu3ksn8mA0/d980aScn2QdCusbD96vr127hm+++7WPj49J92shhBBCCCGEEI9GBtqfUwcPHsTf358X7s8+BujZsyexsbF8/vnnfPPNN/Tq1Ys333yTU6dOGez72muvkZ6ezsiRIwssFxkZyYcffki3bt1Yvnx5gce/efOmfsbmn3/+yQcffED37t3p168fGk3OzMFJkybRtWtXPvroI86ePWuw/7p16xgzZozRLPfmzZsDEBAQwLRp0wgICKBr165cu3atyPbo1q0b27ZtIyXFcDAlMzOTUaNG0b17d7p27crBgweLjFMQtVqDwtraYJtCoUCpUheyx6NRq1VYP3Aca2sFFhYWqNSGTx+oVSoUCoVhPjaKIp9SUKvVKKzz7aMw3EetVqNQ5K+njUlPPxTURjYKBSr142sjtVqNtbWN/rO+fR7y6YzC4z/bdXgS/TQn/7x+lJu/+jGdg6KOkf86eLTYT6KNVAbH0LdRAdexdf7rzabo602t1mBTQB9VFtJHz12JZ87KDYz4orvJ+as0GhTWhq93sVFYo1QbzwgHOHs1gVlrtzGmRyeTj5GVqcLqgevAqpQCLCzI0hjOiLe2caBaow60fG8U3UfswK/ai+wI70e2NquI/LNQlDJ8EsHGuhRKjeE+03/8jT5tmuFkZ8OjMGsdVGqjvmGT7x6vUquN/g7YKIr+OyCEEEIIIYQQomTkZajPqYsXL1KrVi2DbRYWFlStWpX09HQ0Gg3h4eGsXbuWrVu30qNHjwLj5C/n5OTEzz//zNq1OevtfvTRR7Rv3x6Aw4cPExAQQHp6OhkZGURERABw9+5dZs6ciZ+fH8OHD+fgwYPY2tqSmJjIhg0bOHLkCDt37tT/KHDs2DF2797N4sWLOXbsWKF1dHV11c+gX7lyJaNHjy60rI2NDT179mTRokWMHDlSv33Hjh0oFApWr17NjRs3+OSTT9i16+Ee77e1sUGTmWmwTa3WYG/38E8F5Ldt2w/s2PYDAFZWpXB1zXspo0ajQafTYWtrOEvU1tZW/2NGXj5q7GwLn01qa2uLJrPofWxtbNFo8tdTjZ0J9SyojVQaNXaP8OTEg3Zv38juHd8DYFWqFC4G7aMusH0e1bNeB3P105+3fc/uHZuAnD5qjvx3bNvCzm1b9ccw5Tp4FOZqo23bfmT7th+Bh7uOMwu43oqqp62tDer8fVStwb6APhp75gJjZi9mdJ9PaFzb9Je52tko0GQaDgKr1BrsbYwHpGPOXWbEgkjG9+xMk/vLyBQm5vfVxB6MBHLayN4x78WeWZlq0OmwtjGcdW/n4Err98frPzds3ZMjuxeQknwZN5+CnyyxU5RCk6U1zF+Thf0DA9d/nLnC3QwVHRrVKDLnp1WHwvrGg/ciW1ubh/47IIQQQgghhBCiZGSg/TllYWGBVqs12q7T6bC0tKRJkyZAzqPksbGxhcbJX+7EiRNcuXKFTz75BID09HT9bPJmzZoRFpbz0s0jR44wcOBAIiMjcXNzY+zYsWi1Wq5evUqLFi24desWjRrlLF/QtGlTmjZtSlRUFElJSQwZMoQNGzYYzN4uSO7AfIMGDfjtt4LXaH7Qu+++S5cuXQxmv588eVI/S97b2xuFQkFKSgouLi6FhTFSoZwve/84pP+clp5Balo65Xy9TY5RmLfffoe3334HgB3bf+TkiRP6765fu4abmxulS5c22KecX3l+/+2A/nN6ejppqWmUKVuGwviVK8eB33433CctjbIP7OPnV46EB5Ym0Ol0XE+4Tvny5YutR4WyPuz987D+c04bZeBXwjZ6460uvPFWFwB+2fk9/5w8rv8u8fpVXNw8cCj98C8lLcizXgdz9dP2b3em/dudAdi9YzOnDfKPx9XNvcT5d3j7PTq8/R4AO7f/wKkTMfrvrl/LOUb+6+BRmKuN3n67I2+/3RGA7du3mXgd+xnc13Kv47Jly1IY/zI+7PnzSF7+GRmkpmfg98ByOJAzk33MN4sJHfg5DWo+3DI4/r5e7D6c9zcjNUPJvQwl5X08DMqdvZrA8PmRfN23G42qVyw2bv1XulP/lZyZ9bEH13DtQl49UpIv4+DkiY2d4ctnVRl3UStTcXYvp9+my87G0qrw/7Sp6OXGrphzefkr1dxTqijvmXfP33fyAv9eS+a1iTkvib2rVDF45Q6Gd2zJ201qPvU6+PmVK7Zv+Pn5kZCY/36dYNL9WgghhBBCCPHforOweNopCBPJ0jHPqUqVKnHy5EmDbTqdjvPnz2NtbY3VAy/x0+l0hcbJX87a2prWrVvrZ5Jv27aNpk2bGu3XtGlTLl++jFarZfTo0YwfP57Vq1fz+uuv6+NmZ2cb7RcfH0+TJk3YuHEjkPODwYOysvJmUubmrdPpjMoVxNLSkv79+zNnzhyD7Q/WX6PRYGn5cJdFozq1uJF8i5jTZwBYv+1nXmzSoMQznfNr3uJFYmKOEx+f8/LRrVs20bLVq0bl6tWrT1JyEqdOndSXa9aseZEzYevXq0tSUhIn7y8PtHnrDzRr1tRgrf4K5cvj7OzMvl9/BeCXPXvx8vSiXBEDf7ka16lJYvJNYv7JWSJo3fbdvNS4Pna2j7YsQ4HHaN6SUzFHuR5/BYCffljLC6+0fXzxn/E6PIl+2qT5K5yK+Vuf/46t63ix5eM7B5BzHcTGHONafM5LHX/cspFXWr32WGI/iTZq0eIFYmKi9dfxli2badWqtVE54+t4M82aNSvy/RmN6lQnMfk20f/mDCSv3b6HlxrVNeijOp2O0PnfMax3t4ceZAdoUrMyCTfvcPzsJQAidx3klfo1sbPJW6ZEp9MRvHQDoz5516RB9vwq1Xmd+HN/cSfpIgDRB1ZQtVEHo3JJcSfYuqAHyrTbAJz6awOlXX1xemBt9PyaVilHwp1Ujl3KWet+9e/HaVmzosGM9nHvv8aBiV+wL7g3+4J706CCL9/06FDkIPuTrEP9evVISn7gfr1lq1HfqFC+PM5Ozuzf/ysAv+zZg5eXJ+XKFX+/FkIIIYQQQgjxaGRG+3PqpZdeYsaMGRw4cIBWrVoBsGLFCho3blzgALepateuzcyZM1Eqldja2jJ58mSGDh1qVC4uLg5HR0esrKxIS0vD19eXe/fuERUVRfXq1albty5Lliyhd+/enD59mo0bN9K+fXsaNWrEpEmT6Ny5M23btqV06dIkJeW8yO/ff/8lPT1df4yjR49Sr149oqOjqVy56GUJcrVu3Zrly5frXzxYt25doqKi6NChAwkJCVhaWuLk5FRMFEM2NgomDPmKb5auRKVSU9bXmzH9vyD51m0GT5xORNhUAAKCRqLNzib59h1Cvl2IjULB2KA+1KpmWu4eHh707defSaET0Gq1VKlclT59vwLgzJl/WR2xktBJX2NjY8PwEaNZuGAeapUK3zJlGDTI+BwZ1sGGUSOGM2/hIlQqNWV8fRk6aCA3b95i9PjxLFkwH4CRw4fybdg8IiLX4OriwohhQ0xuo5BBfZm1dDVKtZpyPl6MDexN8q07DAydReS3kwD4eGDOkw/Jt1OY8O0SbBTWjA/6nFpVKxV7DDd3L3r2HcbsKcPRarX4V65Ojy9y8rtw9hQbI5cwcuIc7t65Rejofvr9Jo/uh6WVFaMnzcXN3auw8M98HZ5EP3Xz8OSzvkOYOWkU2Vot/lWq0bPPIADOnznNhtVLGR06m5Q7twkZ9ZV+v5BRgVhZWTF2UhhuHp6FhQfA3cOTPv0G8nXoeLRaLZUqV+Xzvp8CcPbMP6yJ+I4Jk6aTcuc2Y0YM0u83dsQgrKysCJkyE/dCjvEk2sjDw4N+/QIJDQ0hW6ulcuUqfNk351yeOXPm/nU8BRsbG0aMGMnCBfNR6a/joq83W4WC0IGfMzN8LSpVTh8d99WnJN2+w8DJc1gzawInz13k/JV45kduYn7kJv2+E4N6U6NShWLzt1VY83XfbkyN+AGlWoOflzsTe3cl6c5dvpoZzsbJg4m9EMe5qwmEbfiJsA0/6fed/OVH1PQvfqC3tIs3rd8PZkd4INnZWjzL1aJlp7EAJF6JJeqnObzzZTjla7xM3Ze68X3YR2BhSWlnb/7XMwxLS6tCY9tal2Ja9/Z8veVXlJpM/NydCf2gLTfuptF36VY2DzV9vfqnVQcbGxtGjhjB/AULUalUlCnjy5BBg7h58yZjxo1n8cIFAIwYPpw5YWFEREbi4uLCiGHDHkvdhBBCCCGEEEIUzEJX1HRm8UxLTk4mODiYxMREdDodderUYdSoUYSEhNCuXTteffVV9u/fz65duwgMDCQoKIjNmzfz2muvsW3bNkJDQ43KTZ06lcjISDZt2oSVlRVt2rShT58+REVFMWDAAKpWzZkhmZmZybBhw2jcuDFz5sxh3759+Pv707p1a+bOncu6detYvny5ftma4OBgUlJSiIyMJCwsjGPHjjF16lTWrl3L559/TkZGBg0bNmT37t3s3buXgIAAqlevzqVLl0hNTWXu3Ll4exe8vMPmzZsB6NQp52V8sbGxdOnShb179+Lj40NwcDBxcXFkZmYyZMiQAmfoG7Tr6cNFfl9SKTYlX3KmKNa6x/uS1vwcVTfNGh/gkrXpM0sfRcXMf8wa39z5V9CeK75QCcVbF//DQUnYWpq3n3qoi36BckndtSn6B4PHwT0tzqzxFRl3zBr/uzvvmDV+76wFZo0PsKxUv+ILlUCH6hfMGh+gYuWC14IXQgghhBBC/Dfc+/vh3iX4vHNq3O5pp1AoGWgXz6SAgADGjRtHtWrVnvixZaC9aDLQXjwZaC+eDLQXTwbaiyYD7aaRgXYhhBBCCCH+22Sg3dB/eaBdlo4RzwWNRkOvXr2MtlesWJGQkJCnkJEQQgghhBBCCCGEEOL/CxloF8+kiIgIg88KhcJomxBCCCGEEEIIIYQQzzQLy6edgTCRnCkhhBBCCCGEEEIIIYQQogRkoF0IIYQQQgghhBBCCCGEKAEZaBdCCCGEEEIIIYQQQgghSkAG2oUQQgghhBBCCCGEEEKIEpCXoQohhBBCCCGEEEIIIcR/kA6Lp52CMJHMaBdCCCGEEEIIIYQQQgghSkAG2oUQQgghhBBCCCGEEEKIErDQ6XS6p52EEM+Sg6fTzRq/jE2iWePrLMz7yJHFE7ilmLsOd7OczRrfL/O8WeOftaht1vgAdVSHzBrf5s51s8b/27eTWeNnZluZNT5A3C07s8ZPzTBrePw7Vjdr/FPr/jFrfIDaH9Y0a/z038xbh6Q7T+YR1MD/yaOuQgghhBBCPKq7x/Y87RT+U5wbtXnaKRRKZrQLIYQQQgghhBBCCCGEECUgL0MVQgghhBBCCCGEEEKI/yCdhcyTflbImRJCCCGEEEIIIYQQQgghSkAG2oUQQgghhBBCCCGEEEKIEpCBdiGEEEIIIYQQQgghhBCiBGSgXQghhBBCCCGEEEIIIYQoAXkZqhBCCCGEEEIIIYQQQvwXyctQnxlypoQQQgghhBBCCCGEEEKIEpAZ7UI8JlG/72L7xmVotVmULV+ZnoHB2Ds4GpWLPnyArWsXkpWpwcHRhYAvR1OuQpVi40dHR7MsPByVUomXlxeDBg/G08PDoMzFixeZN38+9+7excnZmf6BgVSsWNHkOhz49VfWrVtHVlYWFfz9GTRoEA4ODgXmEr5sGUqVCi8vLwYPGoSHp+dznX+uP3/7hS3rV6DVavErX4k+A0Zj71DaqFxWVhZrVy5g59Z1zPtuK+4eXsXG/vvEaeavWEuGSoWPpwejAz/Hy8PNoIxOp2PtDztZHPk9YSEjqV+zukl558rpp+FkabMoV74yPQPHF9hPjx8+wNa1i+73U2c+MaGfHjl5hrDILWSo1Ph6uDHuy+54u7salIk5c4FvIzaRrlRha6NgYMD7NKpZ1fT8z1zmm817yFBnUsbNmZCAt/B2dTIoc/TsFWZv3UeaUo2tohTDO79B46rlTT+GGdsI4MjBn9n5/VK02izK+FWhx1cTsCsgfsyRX/lx3QKyMjNxcHTm4z5jKVu++PgApw7v4I+dC9FqM/EsU423ekzB1t74GLnOxf7Khnl9+GrKXlw8yhUb/+yxHRzevZBsbSbuvtVo89EUbOwM49+7Fc+qye1w9vDTb/MuX483uk8vMrZFqVLUmDKESoM+Y69/S1TXbhiVcaxXnbrzJmDt7krmrTuc+GoCqSfOFJt3rgsxO4jevwhddhau3lV55f3JKGwN80+9c42Ns9rj5JaXv6dfXVp1mVZs/CdRh9hDOziwbRFabRbeZavyXq/JBZ7jU0d28+uPC8nKVGPv6ErHHsF4l6tWbPyzx3Zw5JdF989xVV7/sIBzfDueiMntccp/jj8uvo2EEEIIIYQQ4nkjM9qFeAxuJSewZtk0Bo4LY8r8LXh4lWFL5HyjcnduJREeNp4vBk9h0rzNNG/ZnohFk4uNr1KpmDptGgMHDGDZsmU0b96ceXPnGpWbOm0and9/n2XLltG1SxemTy96QOtBSUlJLFy4kIkhISxdtgxvb29WrlxZYC7Tpk5lwMCB+lzmzpv3XOef62ZSIisWz2ZE8Cy+WbQOD28f1kcsLrDsrEkjsLW1Nzl/pUpN8Kz5jOjXi3XzZ/BS04bMXPydUbmZi1dw9Xoirs5OBUQp2q3kBCKXTWfguDl8PX8z7l6+bI5cYFQup58G88XgyUyet4kWLduzatGUYvMfO3c5Y77oxqbZwbzSuA5Tw9cZlNFkZjJ05mK++uhdNswaT58ubzFurnEdC5Oh1jAifAsTPu7Atgl9aVm3KqFrfzIoo9JkMmTpJsZ82J4fgr/ky/+9wrDwzeh0OpOOYc42AridnMC68Gn0HzOPkLk/4O5Vhq1rjPvfnVs3WDF3HL0Gfs3EsC00e+VNIheFmlSHu7eus3tdKB/0X0Lf0F24eJTl162zCy2fqVayf/Ms7BxcTIqfeuc6v24K5Z0+S/hkzC6c3Mry146C4zs4exMw+mf9v+IG2QGabF5AVlpGkWUarZ7NhZnLOFC7PeenL6XBqhkm5Q6QlnKdQ9sm0+7TxXQe/BOlXctydPe3Befv5EXnwTv1/0wZZH8SdUi5dZ0dkZMJGLyYgVN/wsWjLHs2Gdch5dZ1flw1gY8HzGPA1J3UadqOLeFji42feuc6BzZPouMXiwkY/TOObmX5a2dh59iLgFE/6f/JILsQQgghhBDi/6tnfqA9Li6OL7/8kvfff5/33nuP0NBQVCpVoeXj4+Pp1KkTAIMGDSqybEGioqJo0aIFAQEBBAQE0K1bNy5cuPDQMYKCgh5qH1Ns3ryZVq1aoVar9dtGjhxJfHx8sfsmJyczfvz4Isvs2rWrxDkWJC0tjYMHD5oldq6+ffuaNX704QPUrNcMd09fAF5p8y5H/9xjVM7KqhRfDJ5CGb9KAFSt2YBrccX3n+iYGHx8fKhSJWc26xtvvMGx48fJyMgbyLl06RJpaWm8+OKLALRo0YKUu3eJi4szqQ6H/vqLBg0a4OWVM/O63RtvcPD3343KxURHG+Vy/Ngxg1yet/xzHY36nTr1G+Ph5QPAq23f5tAf+wos+96Hn9Ll494m5Q45s9nLeHtRvbI/AB1ea8nhmJNkKJUG5d589WVG9OtFKSsrk2PnOn74ALVM7Kd9Bk+hrL6fNiy2nx49dZayXh7UqJgzc/zt1i8QFfsP6cq8e2yWVsvoz7vRpHbObNr61SuTfOcuqenFtz3A4TOXKefhQs3yOfm/90J9/vrnIumqvHteplbLhO4dqHW/TPPqFbl1L51UpWn3enO2EUD0kV+pUbcZbvfjv/T6u/z91y/G8UtZ02vQVMr4VQagSo2GXL9q2t+aszF78a/xAs7uZQCo/1Jn/v3750LL/7ZtLnVbdERha/z0R0EuntiLX7UXcHTNiV+rRWfORRce/2Gdm7KAcyHGP8TlcqxTjVIujtz4cS8ASdv3YePpTukalUyKf+X0Pnwrt6C0S07+1Rq/z6UTj/fvm7nr8O+xfVSq2QKX++e4ccv3OXnEuA5WVqXo0mcGLh5lAahUqwU3Ey8VGz//Oa7dvDPno83z3wBCCCGEEEII8bx4pgfas7Oz6d+/Pz169GDTpk1s2bKFsmXLMm7cOJP2nz17Nra2tg993GbNmhEREUFERARdu3YtcNbs0+Lk5PRI+Xh6ehISElLo9/Hx8ezYsaMkqRXq1KlT/PHHH2aJnWvhwoVmjZ94/Qpe3nnLLXj6lOPe3dukp90zKOfk4kbdRi/pP5849ieVqtUpNv61a9fw9fXVf7azs8PR0ZHrCQmGZXx8DPbz8fHhqgk/tBR0DF9fX1JSUkhNTTUpl4Tr15/b/HMlXL+Kt09Z/Wdv37LcS7lDWr7zDFCtRl2T8s519XoiZX3ylpext7PFuXRp4hMMl5yoU930ZVbyu3E9Ds8H+qlXkf30Rf3nE8f+KLafxiXcoKx33lJA9ra2ODs6EJ+YbLDt1WYN9J//ijlNeV8vHB1Mm/l/Jek2fp55S9HY2ypwcbAjLvmOfpujnS2v1s9ZTken07Hlz2gaVfHDyd7OpGOYs41y4l8xiO/p40dqQfGd3ajTMO9ecfL4H1Ssalqfun3jMi6eeUvluHqWJz31Fsr0u0Zlk+LPcOmfP2nW5lOTYgPcSb6Ms0defGeP8ijTbqHKMI6vUaexfVk/Iqa0Z+uiXtxOLP7HgpRD0UV+71DVn4xLhveF6ViYcAAAIABJREFUjEtXcahu2iD1vZuXcXLPy9/JvTyq9FuolQXln84vEYF8/83/+Pm7z0lJMu3HDnPX4WbiZdy88urg5lWe9HvG59jRxYsqdXL6kVabxfGDW6nR8LXi80++jLN73nIwRZ/jdLaHf0XE12/yw+Le3L7xcJMPhBBCCCGEEOJ58Uyv0X7w4EH8/f154YUX9Nt69uxJ+/btuXXrFjNmzMDLy4tTp05x/fp1Zs6cibOzs77sa6+9xrZt2wgNDTUqV7t2bSIjI9m2bRuWlpa0adOGzz77zCiHmzdv6mfQ/vnnn8yZMwdra2ucnJz49ttvUSgUTJo0idjYWKysrJg4caLB/uvWrePEiRN07NiRyMhIwsLCAGjevDlRUVEEBARQp04dTp48iVqtZvbs2ZQtW9Yoj1zdunVjzZo1dO3aFReXvGUAMjMzGT9+PFevXkWj0RAUFMTLL7+s/z4+Pp6goCA2b95M27Zt+eCDD9i/fz8ajYbvvvuOkJAQYmNjmTdvHp9++imjR4/m7t27aLVaxo4dS40aNXjjjTdo2bIl7u7uXLlyxeQ2DQkJIS0tDX9/fz744AN9TkuWLOGXX37B0tKSV199lS+//JKjR4/yzTffUKpUKXx9fQkNDeX48eMsX76cjIwMmjdvDkBgYCAAAQEBjBkzhh49ehAVFcXp06eZOHEiFhYWNGzYkBEjRnD+/HlCQkKwsLDAwcGBqVOn4uT0cMtyaNQqnJzz1tK2tlZgYWGBWqXEoXTBsU7HRvHLtkiGhRS89MiD1CoVCoXCYJuNjY3BExlqtRrr/GUUCtQmPrWhVqtxfqDPWCty66DC0TFvXV6VWl1sLs9b/rk0ahXOznkDvXnnWUXpQs6zqdRqNQqFtcE2hY0C5QNPqJSUWq3CscD8i+qnh9m9bQ3DQhYVGVulyURhbZi/jcK60PzPXbnG7FWbCO3/qcn5qzSZKEoZ/tmysbZGqc40KvvLsX/4esMuHO1s+eaL900+hjnbCCCzkHuFRl14/H9io9i7fTWDJiwxqQ6ZGiX2jnnHKGWtAAsLMjVK7Bzy/gbqdDp+igym3YdjsSplXVCoAmVplNiXfiB+qbz4tvZ58a1tHaje6C0avfoZjq5lOH5gBdvD+9F95A4srR79Pz+s7O3IVhn2K61STSkTf7DJylRi+0D+Vvfzz9IosbF7IH8beyrX70DdVz6jtLMvJ/9YyS8RX/H+wO0lyv9x1CFTo8TByfAc5/ajB89xrr92r2L/Dwtw965At6DCZ9rnyspUYefonpfvA23Eg+fYxoFqjTrknGOXnHO8I7wfH48o2TkWQgghhBBC5NFZWDztFISJnun/C7p48SK1atUy2GZhYUHVqlW5fPkyABqNhvDwcNauXcvWrVvp0aNHgbHyl3NycuLnn39m7dq1AHz00Ue0b98egMOHDxMQEEB6ejoZGRlEREQAcPfuXWbOnImfnx/Dhw/n4MGD2NrakpiYyIYNGzhy5Ag7d+7U/zBw7Ngxdu/ezeLFizl27Fih9XR1ddXPoF+5ciWjR48utKyNjQ09e/Zk0aJFjBw5Ur99x44dKBQKVq9ezY0bN/jkk08KXQpGq9VSqVIlevfuzaBBgzh06BC9evUiMjKSwMBA5s+fzyuvvEKXLl04f/48kydP5rvvviMrK4uWLVvSsmVLRo4caXKb9urVi3PnzhkMsgMsX76cgwcPYmVlpd9n0qRJrFixAhcXF6ZPn87PP/+Mt7c3Z8+eZdeuXdy6dYv+/fsTGBhISkoKt27dokaNGvqYkyZNYuLEidSoUYPhw4dz7do1QkNDCQkJwd/fn8jISCIjI01aambvznXs27kByHk839klb1AiU6NGp9Nha1fwoMmxqP2sWTqdAWPm6JeRKYqtrS0ajcZgm1qtxu6BJzJsbW3JzFdGpVYX+dTGth9/ZNu2bTl1KFUKV9e8AUaNRnO/DoYzgQvLJX+55yX/Xdu/Z/f27/XHcHHJG9zS5J5nW9NmSxfF1tYGjcZwwFit1mD/CE/dPGjvzvXs3bkeeLR+Grl0BgPGfKtfIqXQ/G0UaDIN81epNdjb2hiVjT17kdFzwhnzRTca1yr+pYy57GwUaLKyDI+RmYm9jfEgcdtGNWnbqCZRZy7T+9tINo7ujYez8UtrwfxttH/nOvb/lLNevVWpUjgVEN+mkD4UHbWPdeHT+GpUmH4ZmYIc2beav/evBsDSyhoHp7yX+2ZlqkGnQ2FjWIfjv63Hw7cKflWbFBo3V8zvq4n9PS++fUHxFYbx7Rxcad05b0myhq17cnjXfO4kX8bdx7SXuhZEm56BZb5+ZWVvS1ZaeqH7nP4rktN/Rd7PvxR2jsb5l8qXv629Ky92zHtCrs7Ln3J83wLu3ryMq/ej5/+odTi0J5KoPffrUKoUpZ3z6pDbj/Kf41wvvPEJLdoGcCJqJ0smdSNoynasFYb3lpjfVxN7MCe+lVUp7B3znlDJbSNrmwLO8fuG5/jI7gWkJF/GrQTnWAghhBBCCCGeRc/0QLuFhQVardZou06nw+r++sVNmuQMIPj4+BAbG1torPzlTpw4wZUrV/jkk08ASE9P59q1a0DO0jG5M8+PHDnCwIEDiYyMxM3NjbFjx6LVarl69SotWrTg1q1bNGrUCICmTZvStGlToqKiSEpKYsiQIWzYsAFr66JnEuYOzDdo0IDffvut2HZ599136dKliz5fgJMnT+pne3t7e6NQKEhJSTGY9V5Ye6SmphrMCD5+/Di3b9/mxx9/BED5wBrS9erVKzBGcW1akHbt2tGzZ0/eeustOnbsyM2bN7ly5Qr9+/cHICMjA1dXV7y9valevToKhQJfX18sLCxISkrizz//pE2bNgYxL126pB94z33RZmxsrH65IY1GQ926pi3P8Pr/PuT1/30IwL6fNnD21N/6724kxOHs6oG9g6PRfqdjolgbPoPBwfNNGmQHKOfnZ3Du09PTSU1NNXi6oZyfHwmJifrPOp2OhIQEypcvT2He7tiRtzt2BGD79u2cOHFC/921a9dwc3OjdGnDwUm/cuWKzeV5yr/dW51p91ZnAHbv2MQ/J/OWhEi8Ho+LmwcOpY3P88OqULYMe/+I0n9OS88gNS2dcr4+RexVvNf/9wGv/y/nR6x9P23gzKm8H/WK6qenYqJYGz6TIcHzKeNXsdjj+JfxZs9feddAWoaS1HQlfg8shwM5M9lHfbuMSUGf0bDGww3EVfR2Z9ffp/WfU5Uq7mWoKO+V9+NH4u17nI5L4LUGOcvHNK/uj7eLI7GXrum35WfuNnr1fx/y6v17xa8/rze4VyQlxOHs6om9g/Fs9n9iDrF++QwGjF+Ib7mi7xVNX+tO09e6A3D010jizh7Rf3f7xmVKO3tia294jLMxe0m4cpJzQ/cDkJF6m++mdOa9L77Fv0YLg7L1X+lO/Vdy4scejOTa+bz4KcmXcXDyxCZffFXGXdTKewZLkOiys7Eq4UzntDMXsa/kZ7DNoXIF0v4pfMmSWi98TK0XPgbg9KE1JF7Ky//erSvYO3piY2eYv1p5F40yFUe3vKV+dLrsxzJT+1Hq0KLNx7Rok1OHqL1ruHwmrw63blzB0cUTu3z9KOn6BVLv3KBy7RexsLCgXosObI8I5WbCJXwr1DQoa3iO13DtQgHn2K6gc5yKs/sDbZT9eNpICCGEEEIIIZ41z/Qa7ZUqVeLkyZMG23Q6HefPn8ff3x9AP+Ce+11h8peztramdevW+pnk27Zto2nTpkb7NW3alMuXL6PVahk9ejTjx49n9erVvP766/q42dnZRvvFx8fTpEkTNm7cCOT8aPCgrAdmbebmrdPpjMoVxNLSkv79+zNnzhyD7Q/WX6PRYGlZ+Okvqt2sra0ZN26cvm2+//57g+8Ki2Fqm+aaOHEiEyZMIDk5mYCAACwtLfHy8tLvv2nTJj7//HMAg6VA2rRpw6+//sq+ffto166dUdvkZ2dnx6pVq4iIiGD9+vWMHTu20JwK07BZa/6JPULitcsA7P5xNc1faW9UTq1WsnzuBL4aMdPkQXaA+vXqkZSczMlTpwDYsmULzZs1M5jtXaF8eZydnNi/P2fQbM+ePXh5eVGuXLkCY+bXokULYqKj9S/P3bJlC61atzYqV69+fZKTkjh1/9rbsmULzZo3L3Lm+bOef64mLVpyMuYo1+OvALBz61pebNmmmL1M06hOTW4k3yLmnzMArN/2My82aYBdATPCH1VOPz1Mwv1+uuvHSJq/0s6oXE4/nXi/nxY/yA7QuHY1Em7eJvrf8wCs2bmPlxvVMchfp9MxceEqhn/2wUMPsgM0rVaBhNt3OXb+KgCr9x6mZZ0q2NvkXf+ZWi3jI7Zx/nrO2vBXkm5zNfkOlct4FhgzP3O2EUD9pq3598Rh/b3il20RNH3Z+F6hUStZOT+YL4fPKnaQPb9q9dtw+Z+/uJV4EYCoPSuo3ewto3IfBi1l0Ky/GDjzDwbO/AMnN196jv7eaJA9v0p12nD13F/cuZET//ivK6jWyDj+jbgTbJnfg4y02wCc+msDpV19cXL3Myr7MNL+uYDm5m3KfJhzzHKfvIcy7hrp5y6btH+Fmq9z/cIhUpJzXgp68uAKKtXvYFQuOf4kO8M/RXk//zNHNlLa2RdHt5Ll/zjqULPR61w8fYjkhJw6/LlrBXWbG9chI/U2m5aO5N6dJACunDtGtjYLV6+i61CpzuvEn/uLO0k55zj6wAqqNjKOnxR3gq0Leujb6HGdYyGEEEIIIYR4Fj3TU45eeuklZsyYwYEDB2jVqhUAK1asoHHjxoXO1DZV7dq1mTlzJkqlEltbWyZPnszQoUONysXFxeHo6IiVlRVpaWn4+vpy7949oqKiqF69OnXr1mXJkiX07t2b06dPs3HjRtq3b0+jRo2YNGkSnTt3pm3btpQuXZqkpJz/Ef73339JT897fPzo0aPUq1eP6OhoKlcufOmAB7Vu3Zrly5frXwRZt25doqKi6NChAwkJCVhaWj7UOuSWlpb6wf/69euzZ88eGjZsyPnz5/n999/p2bNnsTEKa9MHY+dKTU1l5cqVBAYGEhgYyNGjR/WD5OfPn6dKlSpEREQUOFDftm1bZs2aRXx8PLVr1zb4rnLlysTExFC/fn1Gjx5Nr169qFGjBr/99hutWrVix44duLm5Gaz7bwpXdy+69xnJvK8Ho83WUqFSDbr1HgHAxbMn2bp2AYODFxB9+ACp9+6wdLbhYP7wSUsNlqvIz8bGhpEjRrBgwQJUKhVlypRh8KBB3Lx5k7HjxrHo/stehw8fzpywMFZHRuLi4sLwYcNMroOHhwf9vvqK0JAQtFotlatU0S+hc+bMGSJWrWLS5MnY2NgwYuRIg1wGDR5cZOxnPf9cbu6efNZ3KLMmjyRbq8W/cnU+7dMbgPNnT7Nx9RJGhXxLyp3bhI7qp98vdPRXWFlaMWbyXNzcCx7wtbFRMGFwP75ZsgqVWk1ZH2/G9P+c5Fu3GRwyg4g5XwMQMGAU2uxskm/fIWT2ImxsFIwN+oJaVYu/N+T10yH6fvpx7+FATj/dsnYhQ4Lnc/x+P10ye4zB/iOK6Ke2CgWTgz5j+ncbUKnVlPP2ZHzfAJJupxD09TzWzRjLiXOXOB93jXlrf2De2h/y2ifwU2pULPzJhbxjWDPts/f4ev3PKDWZ+Hm6EhrwNjdS7tF37jo2j/sCP09Xxn/cgZHLt5Kp1WIBDO/SlgoPzHp/Wm2UE9+bbp+PYuG0QWRrs/CrVJMPe+Us83Xp3Al+XLuAAeMXEn34V1Lv3SH8W8OlwoaGhhssPVMQJ1dv2n8czMYFX5GdrcWnfC3afZhzz7l2KZbffpjDRwPDTWqPgpR28aZ152C2h+fE9ypXi+bv58RPvBLLoZ1zeLdvOBVqvEzdl7vx/ZyPct6B4exNh55zsbS0KjS2wsudF/au1n9usScCXZaWQ+160HxHOL81fBuA6ICh1F0USrXx/VEn3eL4J6bfKxycvXmx43j2rA5El52Fe5lavPB6znlMvhrL33vCaN9zGeWqvkTN5h+xfXE3LCwssXfy5vWP5xSZ/5Oqg5OrN299Mp41YYFkZ2dRpkItOnTPqUP8xVj2bg6jx9Bl+FdvSqu3+rBixmc5TxNYK+jadxa2dgUvo5SrtIs3rd8PZkd4INnZWjzL1aJlp7xzHPXTHN75MpzyNV6m7kvd+D7sI7CwpLSzN//rGVZsGwkhhBBCCCHE88hCV9Q072dAcnIywcHBJCYmotPpqFOnDqNGjcLe3p6RI0fSrl07Xn31Vfbv38+uXbsIDAzUv/TzwZeh5i83depUIiMj2bRpE1ZWVrRp04Y+ffoQFRXFgAEDqFq1KpDzktFhw4bRuHFj5syZw759+/D396d169bMnTuXdevWsXz5cv2yNcHBwaSkpOhffHrs2DGmTp3K2rVr+fzzz8nIyKBhw4bs3r2bvXv3EhAQQPXq1bl06RKpqanMnTsXb2/vAtti8+bNAHTq1AnIWRKlS5cu7N27Fx8fH4KDg4mLiyMzM5MhQ4YYDFI/+DLU3HZxcHBg2rRpVK1aldatW9OpUyfeeOMNgoKCGDVqFLdu3SI7O5sxY8ZQt25dg/0KavvC2vTs2bN89tln9OzZk169eulzCg0NJSYmBnt7exo2bMigQYM4evQo06ZNw9raGi8vL6ZPn87x48cNXiQL0LFjR15++WWGD88ZIMt9ueyZM2eYMGECkLMUz4gRI7hw4QLjxo3D0tISGxsbZs2aVeQPNQdPF76G7uNQxiax+EIlYO6XaFg8gVuKuetwN8v4ZYKPk1/mebPGP2tRu/hCJVRHdcis8W3uXDdr/L99O5k1fma2+Qca426V/N0ARUnNMGt4/DsWvJTP43Jq3T9mjQ9Q+8OaxRcqgfTfzFuHpDtP5qVKgf+TlzcJIYQQQgjxqG7H/v60U/hPcav3ytNOoVDP/ED78y4gIIBx48ZRrZrpLwwU5iUD7UWTgfbiyUB78WSgvXgy0F40GWgvngy0CyGEEEII8d8nA+2G/ssD7c/00jH/H2k0GoNZ37kqVqxISEjIU8hICCGEEEIIIYQQQggh/n+Tgfb/uIiICIPPCoXCaJsQQgghhBBCCCGEEEKIp8fyaScghBBCCCGEEEIIIYQQQjzLZEa7EEIIIYQQQgghhBBC/BeZ+T114vGRGe1CCCGEEEIIIYQQQgghRAnIQLsQQgghhBBCCCGEEEIIUQIy0C6EEEIIIYQQQgghhBBClIAMtAshhBBCCCGEEEIIIYQQJSAD7UIIIYQQQgghhBBCCCFECVjodDrd005CiGdJ/NmTZo2fZakwa/xMCxuzxk/JcjZrfIDKGvOeg2T7CmaNb5edZtb4Fpj/tp5u6WTW+AkZ7maNX8X2klnjO9+7atb4ADoLK7PGz7ayNmv87XdbmTU+wGs+J8waf19iXbPG75y91qzxg/9916zxAerWsjP7MQJamv0QQgghhBBCPDW3Tv75tFP4T3Gv8+LTTqFQMqNdCCGEEM8dcw+yCyGEEEIIIYQQD5KBdiGEEEIIIYQQQgghhBCiBGSgXQghhBBCCCGEEEIIIYQoARloF0IIIYQQQgghhBBCCCFKoNTTTkAIIYQQQgghhBBCCCGEMR0WTzsFYSKZ0S6EEEIIIYQQQgghhBBClIAMtAshhBBCCCGEEEIIIYQQJSAD7UIIIYQQQgghhBBCCCFECchAuxBCCCGEEEIIIYQQQghRAvIyVCEeg+MxJ1i0fCVKlQpvL0+GDwjE08PdoMyFS5f5dsES7t67h7OTEwP7fUHliv4mHyM6Joal4ctRKlV4eXkxZNAAPD08DI9x8RJz5y/g3r17ODk5ERTYj0oVK5p8jAMH9rN+3Rq0WVoqVPBnwKAhODg4GJWLiT7O8vClKJVKvLy8GDh4KB4ensXG/+u33fyw4TuytFn4la/E50HjsHcobVQuKyuL9Svn89MPa5iz/EfcPbyLjX30xD/MXbUBpUqNj6c7Y7/qiZe7m0EZnU5H5I+7WLRmM/MnDKN+zarFxs3vtwP72bAuEm1WFuUr+BM0aCgOBdQhJvo434UvRqVU4unlzYDBw4pto+MxsSxZvgKlMqcfDR3Yv8BzHLZgEXfvpeLs5MiAr/pSqaK/Sbkfj4ll8fKVKJVKvL28GDYwsMD4cxYszuunX31pcnyA3w7sY+O6SLKysqhQoSL9C2mf2OjjfBe+SN8+QYOHm9SHAI4c/JmfNi1Fq82ijF8VPuk3ATsHR6NyMUd+Zdv6BWRlZuLg6Ey3L8ZStnyVImObu42OnDrLnMitOf3Uw43xfbrh7e5qmPeZi8xevYV0pQpbhTWDAjrRqGbReevjnzxDWOQWMlRqfD3cGPdl9wLiX+DbiE058W0UDAx4n0YPcS0cPfkvYREb79fBnXH9PsUr3zF0Oh2R23azcO0W5gcPoUGNh7vWTh3ewcEdC9FqM/EqW423ekzB1t74HOc6F/sr6+f2IfDrvbh4lCsy9rGYEyxavgqV/n79ldH9WqfTsX7Lj4SvWsM3kydQt3bNh8rf3HU4/O9Fvvl+NxlqDb7uLoT0eAdvV2eDMkfPXubbTb+Qdr8fDevansbV/E3Ov35lK15vXAorS0i8rWPjrxpUGuNyTvbQ9TUFHs4WqDWw9WAmlxKyi41vzvYRQgghhBDieaKzkHnSzwo5U0KUkFKlYtKMbxjSvx+rFs/jhaZNmD1/sVG5SdO/4YNO77Bq8Tw+6vweX8+aY/IxVCoVU6bNYGBQf5YvXUyL5k0JmzffqNzX06bTtXMnli9dzAddOjNtxiyTj5GUlMTihQuYMHEyi5cux8vbm1UrvysgFyXTp02h/4BBLFn2Hc2at2D+3LBi499MTmTVklkMDZ7NzIUb8fAqw8aIhQWWnT15KLZ2dibnrlSpGT97MaP7fsqGuVN4uXF9pi2OMCo3fUkEV68n4upc+GBOUZKTbrBk4TyCJ05m4dIVeHn7EFFIG82cNpn+A4awaNlK/o+9+45r6nofOP5BIAGVJXu699YCaltrrautdmm3aJd7Yq3iHohV6xb3qBZXta46vlqrVWu1jirgqKt1sBRERVYCxPz+iAZCAoRqatvf8369+OOGc5/znHPPTfRwcm5QcHMWzJtdQhtUTJ42gyED+rFyyQKaBQUyZ/4io3IR02bwTuc3WblkAe++3Zkvp880K/dslYqIaTP4fEBfVi1ZQPOgZ5hdRPx3O7/JqiULeO/tt5g8fZZZ8UHXP0sXRjJ2wmQWLl2Fh6cnq1etMCqn659J9B/0OQuXfUNgcHMWzjOvnjspSXy7Yir9R0YyYe42XD182Lou0qjc3dRbrIocwyeDvmT8nC0EPvcyaxaHFxvb0n2UrVIzat5KRvd4n00zx/B8k3pMWbHBoExObi6fz1hK//c6sXH6KHq//SqjI1eZHX/0vBWM6vkBm2aN4/mm9ZiyfL1R/KHTF9Pv/TfYMGMsvd7uyJh5xmO4uDrGzF7KyF7d2DhnEs81bcDUpauNyk1buoYbibeo4OhoduxH0lIT2bMunPcGLqHvpD04ufpyYGvRfZyrzmb/5hnYl3M2I38Vk76axdABffhm8TyaBzY1+X49e8ES4hMScXZyMhHlKbdBncPwZd8xrttrfB8+kBca1GDSmh0GZVQ5uQxd9C0jP3iVrRMH0KtjK4Yt3YhWqzUrf+fyVrz+nC0rduXw1Xo1d9Mf0D7I1mTZd1oruHjjAVPWqPn+l1xa1LMuMb4l+0cIIYQQQgghnhaZaP8PuXHjBr1796Zz5868+eabhIeHo1KpTJaNj4/nrbfeAiA0NLTIckU5duwYzZo1IyQkhJCQED744AP++OOPUscYOHBgqc4xx0cffcThw4f1x4mJibRv377UbTTX6dgzeHt5UqNaFQBebtua36JjyMrK1pf589p1MjIzea55MAAtggO5m5bG9bh4s+qIjonF28uL6tV0q1rbt23LqdPRZGVl6ctcvXaNzMxMWjRvDkDzZsHcS0vjxo04s+o49usRGjZqhIeHBwDt2nfgl8OHjMrFxETj5eVNtWq6Fapt23Xg9OnfDHIx5dSxQ9Rt+Axu7l4AtGrbiWO/7DNZ9o13P6XzBz3Nyhvg5Nnf8fF0p2aVigB0bP0cx2PPkZmdbVDulVYtGNHnI2ysS54IMkXXR41x99CtsG/b/mV+OXzQqFxsTDSeXl5UfdhHbdp1ILqEPoqOicXLy5Pq1aoC0KHtS/x2OtpgHD26xs82bwZAi+Ag7qWlcT2u5GscHXMGLy+vQvFNjdMsntWPU/Pjg65/GhTonzZF9s9pPL28qVqthq5cu5dL7J9HYk4coFa9ICq4e+tybP0Gp47uNSpnbWPLp4On4OOva2+1Wo1Jiiv+PcrSfXTi3CV8PVypVdkfgNdaNePX2AtkZue/N+VpHjDys/d4pq6ubxrWrELK3TTSM0vum5PnLuHr4UatygEAdGrVnGOxvxeKr2Fkjw8KxK9qdnzQrWb38XSj1sN7rVPrZzkWc96gDoBXWjVnZO9uWNuU/l67FL2PSrWb4+TqA0Cj57rw+8ndRZY/tH0e9Zu9hsLO+Ns3hZ2OPWv0fn0yOtbgGgO0e6kVQwf0weYv5G/pNhy/cBU/NxdqB+hiv9GiMUfP/0GmSq0vk6vRMK7b69SpqCsTXKsyqfczSc8y73OwTqUyXEnQcC9D+7BODQ2qGPeFUzkr/NzK8MvZPAD+SHzAmr25Jca3ZP8IIYQQQgghxNMiE+3/EQ8ePGDAgAF0796dTZs2sWXLFnx9fRkzZkyJ586aNQs7O7tS1xkUFERUVBRRUVG88847rFpl3qpLSwsLC2PmzJk8eKD76vqsWbMYMGDAX2qjOeITkvDx8tIf29vb4+hQnoSkpAJlEvH2Mtz+xNvTk7j4BDPrSMDbu3AdDiQa1JGAV4GV+LqvAAAgAElEQVQ8ALy9PImLN28yPyEhAW9vn/xzvb25d+8eGenpRuW8vL0NcnFwcCQpKbHY+EkJN/Dwyv+6v4e3H/fT7pKZcd+obPVa9c3K+ZG4xFv4euZvO1LW3g6n8uWJT0o2KFe/pnnbbxQlISEer0J9lGayj+IN+jK/j4q+3vEJiSbGUeFrnIiX0TjyIi6u5HFUVHyzxqkZ8QESjfrHx2T/FC73qH9uFtM/j9xKuo5bgXHk7uVPetodo3Hk6FSBuo2f1R+fO/0LlasXP64s3Uc3bqbg65G/DU1ZOyVODuWIv5Vi8FrroIb64yMxvxPg7YFDubIlx0+6ha9nwfh2uvg3UwxeezGokf74aMx5s+Pn11HgXtPXUeheq1HVrHimpN66hot7gP7YxT2AzPRUsjPTjMomx1/kz/NHCG7zkVmxddc4//qZer8GqFur5l9L/iFLtuF6cip+7vnbYpW1U+JcrixxyXf0rznY2/Fio1qAbhucLb+cpkm1ABzLmfdNIXenMqTez1/9npqmxaGsFfYKw3I+rlbcSdfySrANX7ynpPdrCnxcrUqMb8n+EUIIIYQQQoinRfZo/484fPgwlSpVovnD1cwAH3/8MR06dKBHjx7Url2bc+fOkZiYyPTp03Eq8HX41q1bs337dsLDw/Hw8DAoV7duXdasWcP27dspU6YMbdq04ZNPPjGq//bt2/qV0EeOHGHOnDnY2tri6OjI7NmzUSgUTJo0idjYWKytrZkwYYLB+evXr+fMmTO89tprrFmzhrlzdVuRBAcHc+zYMUJCQqhXrx5nz55FrVYza9YsfH19TfZFrVq1qF27Ntu2baNmzZrExcXx6quvcvLkSWbOnImNjQ3e3t6Eh4ejVqsZPHgwOTk55OTkMHbsWOrWrVuqvler1dgqDL9Sr1QoUBVYXahWq1HYGs5QKJUKss1cZW/qfIVCYbBKX61WoyiUh0KhNHslv1qtMhgXtrYKrKysUKlVlHfI32pFrVKhUBTKRakosZ4ctQpHp/x9nPXxVdmUK1/67SUKUqlzjNquVNiiUpvYUPgxqNVqnEy1waiP1Nia6CN1MX1k+voZ9qtKrUZhW6idSgUqdcnX2Jz46seIrztfhZNT/tYOxfWPUS5K88ZqjlqFg2P+JOOjOnLURY+jC7HH2LdzNYPHLSkhf8v2kUqdg7LwOLW1JdvUxtfA5RsJzIrazKT+3UuMDbrtQoxyU9iSrVabLH/5egKzvtlE+ICPzIoPoFbnoDSqQ1FkHX9Fbk425QpcYxtbBVhZkavOxr5c/nuUVqtl1+pxtH9/NNY2prc1KUx3jQu9Fxd6v34SLNkGVU4uSlvDf74pFTZk5xiPo72/nWPK+l042Nsxo/e7ZudvawMZBRb5ax7AA60WhS1kF6jGTmmFVwUrfvztATuO5hFU25pu7RVMW6fmQTG71Fiyf4QQQgghhBDiaZGJ9v+IP//8kzp16hi8ZmVlRfXq1cnMzCQnJ4fly5ezbt06tm7dSvfupiduCpdzdHRk9+7drFu3DoD333+fDh06AHD8+HFCQkLIzMwkKyuLqCjdnthpaWlMnz4df39/hg0bxuHDh7Gzs+PmzZts2LCBEydOsGvXLv0fBU6dOsUPP/zA4sWLOXXqVJFtdHFx0a+gX7VqFSNHjiyy7ODBg+nevTuurq6EhYVhZWXFpEmTWLlyJc7OzkybNo3du3djZ2eHp6cnkydPJi4ujqtXr5rf6Q/Z2SnJzTH8qrxKnYO9vV2BMnbk5BpOgqjVauzNXGVf9Pn5qxPtlHbkFMpDrVYb5FHY9u3b2Ll9GwDW1ja4uORPfOTk5KDVarGzM1wBaWdnR05O8bk88sOOjezduVEX38YGJ5f8Bw7m5KgfxjdvJW1x7O0URm1X5eRgb6d87Ng7tm/V95GNtbXZfZRroo8Klyt8jqnrZ2c0jgqPNfPGkZ2dsojxYW9Yxih+jslr+8jO7VvZuX0rADbWNjibPYYK56Iqsn9++t96DvxPt9e4tY0Njs754yj34ThSFnFu9PH9fLt8Kv3C5uq3kSmKpfroEXulArWZ4zTm0p+MnPs1o3u8T9M65j1I1E6pMJlbWRPxYy/9ycg5yxnV8wOa1qlhVnzQtV9tso7H+8bQif2rOfmTbq/3Mta2lHfKXzWfl6sGrRZFofeKU4e+xc2nGgHVnzG7HlPvX4Xfr/+qv6sN9gpb1Ll5Bq+pcnKxVyqMyrZtWpe2Tety/MKf9Ji5ig1jeuNWxDMqWtS1pkU93T8LNQ8gPVuj/52NNZSxskJdaFcYVY6WjGwt56/pvkF2/HcNrzazxc3ZiuS7hjPtf1f/CCGEEEIIIcTTIhPt/xFWVlZoNBqj17VaLWXKlOGZZ3T/SfXy8iI2NrbIOIXLnTlzhuvXr9OtWzcAMjMzSUjQbZEQFBSkX3l+4sQJBg8ezJo1a6hQoQKjR49Go9EQFxdHs2bNSE1NpUmTJgAEBgYSGBjIsWPHSE5O5vPPP2fDhg3Y2ha/Wu3RxHyjRo04dMh47/CC3N3dad++PZcvX6ZRo0bcvn2b69evM2DAAACysrJwcXHh9ddfZ/bs2YwdO5Z27drRsmXLYuOaEuDny4Gfj+iPMzIzycjIwNcnf3sVfz9fEpNu6Y+1Wi0JiTepGOBvVh3+fn4cPPSz/jjzUR2++dtv+Pv7kVRg+wOtVktiUiIBAQEUpVOn1+nU6XUAdu74nrNnzuh/l5iQQIUKFShfvrzBOX7+Afx8KH/f7czMTDLSM/ApkMsj7Tq+TbuObwOwd9d3XDh7Wv+7W4lxOFdwo1z5v/Zg0oIq+nrz4y8n9McZmVmkZ2Th7+1ZzFnm6djpDTp2egOAXTu2cfZM/v2TmBBPhQquJvrIn8OHDuiPMzMzHvaR6W9hgG6MHPz5cIFzHo2j/H4N8PMjKemm/lh3jZPMGkf+fn4c+PkX/bGpcRrg50eiyfh+FOXVTm/wajH942Kif3z9A/i5FP3z4svv8eLL7wFwYPe3XD7/m/53yUk3cHJxp2w549Xsv8f+yoYVXzFwzEK8/aoU2YZHLNVHj1Ty8WTvr/n3QEZWNumZWQR4uRuUu3wjgRFzviZiwEc0rmX+FiyVfDz58Wh+3+jiZ+Pv5WEY/3oCI2YvY9LAT2hcq3TbKVXy8eLHIwXutaws0jOzjOoorcDWXQls3RWAkz+t4cal/Dru3LpGeSd37MoaXuNL0ftIun6WWTE/AZCVfocVEV14q9dsKtVqZrIefz9ffirhGv/T21DJy409J8/pj9OzVdzPUlHRI/8PUDfvpHH+RiKtG9UGIKhWFTxdHIm9Gq9/rbAj5zQcOaf7d0TzutZU8c7fXdDNyYr7mVoKf/nibroWpa0VVsCjaXUtoH3w9PpHCCGEEEKI/xyrkrdnFP8Mskf7f0SVKlU4e/aswWtarZYrV65ga2uLdYGHP2q1RX+fu3A5W1tbWrVqpV9Jvn37dgIDA43OCwwM5Nq1a2g0GkaOHMnYsWNZvXo1L730kj7uoz3TC4qPj+eZZ55h40bdqmerQm8eeXn5q/Ye5a3Vao3KmeLv74+/v24C0tbWFg8PD307Nm3aRI8ePfDw8GDbtm20a9eOdevWERkZWWLcwhrVr8et5BTOnPsdgE3bdtAssKnBKuNKAf44Ozmy74BusnzPvp/w9HDH38TktCkNG9QnOTmZs+d0kyubt24jKCjQYN/5igEBODk5sf/AAQD2/rgPD3cP/IqZ3C0ouFkLYmJOEx+ve6jj1i2baPnCi0blGjRoSHJKMufOndWXCwoKLna1NkDT4JacizlBYvx1AHZtW0vz59uZlVtJmtStxc3bqcT8fhmA9Tv28mzTBk9kRXtBwc2eNeijbVs28byJPqrfoBHJKbc4f+6MvlxgCX3UqEF9biWncPbceQA2bf2e4KBnDMZRxQB/nJwc2X9A94eOH/btx9Pd3axr3KjBo3H6KP72IuPvO3DoYfyfzI4PujEUG3OqQP98Z3IM1W/QiJQC/fP9lk0EBjUrcQwBNAxsxYUzx7mZcA2AH3dEEfhcB6NyOepsvpk/jl5fzDBrkh0s30dN61Yn6fYdoi/oHsq6dtdPPNe4nsE41Wq1jF+4muEfv12qSXZd/BoP4195GH8/zzUxjj9h4TcM++TdUk+yAzSpV5ObKXeIvqC719bt+JFnm9R/ovdajUZtuHrhKKk3/wTg170rqRvU0ajc+4OWMmTmUUJn/ELojF9wrODNJ6O+K3YCtnH9utxKvq1/v/7OxPv1P70NgTUrk3TnHqev6N5LV/94lJb1axisaM/VaBi7citXEnV751+/lUpc8h2qepv3B5Fz1zRU87XG3Un3Wft8Axuir+QZlbt5R8v9TC1BtXX/dqhfpQzZaq3B/u6mWLJ/hBBCCCGEEOJpkRXt/xHPPvssX331FQcPHuSFF14AYOXKlTRt2tTkBLe56taty/Tp08nOzsbOzo6IiAiGDh1qVO7GjRs4ODhgbW1NRkYG3t7e3L9/n2PHjlGzZk3q16/PkiVL+Oyzzzh//jwbN26kQ4cONGnShEmTJtGlSxfatm1L+fLlSU7WTQxcuHCBzMxMfR0nT56kQYMGREdHU7Vq6SagHu09fuXKFapVq0ZUVBSBgYHcuXOH3NxcXnjhBapVq8b48eNL3UdKpZLRw0KZu2gpKrUaX28vhg3uT0pqKmFjw1k+fzYAI4cOZmbkQlatXY+LszMjPx9UqjpGDB9G5MJFqFRqfLy9GRo6mNu3Uxk5dixLFswHIGzYUGbPjSRqzVpcnJ0Z/sXnZtfh5uZGn74DmBQ+Ho1GQ7Wq1enVpx8AFy9eYHXUKsInfYlSqWTY8JEsXBCJWqXC28eH0FDjMVFYBVcPPuozjNmTh6HR5FGpai069+wBwB+XzvHdmsUMnzCXtLupTBrZR39exMi+WFtbM2JSJBVcTU8S2SkVhA/uxfRlq8lW5+Dn5cGYfp+QnHqX0EkzWTMrHIAPQ8eQp3lAyp17jJ+zBIVCwdgBn1K3unkTsa5ubvTpO5DJ4ePQaDRUrVqNnn36A3Dp4gXWRH3NhElTUSqVfDF8FIsWzEP1sI8Ghw4rNrZSqWTUsM+Zt3AJKrUKH29vvggdyO3bqYwYO4GlC3TfHhn5xRBmzlvAqjXrcXFxJmzoELNyz4+/VB9/WOgAbt9OJWzsBJYViv/NmvU4uzgxYmioWfF1/eNO776D+DJ8LBqNhipVq9OzzwCT/TN0+GgWL5j7sH98GVRC/zzi4urJ+z1GsGhaKBpNHgFVavPuJ2EAXL18hu3rFzBwzEJiThwg/f5dVswx3GLq84nLDbae+Tv7yE6hYPKAj5i2cqNunHq6Ma53V5Lv3GPAlIV8O20EZy5f48qNROat+555677Xnzupf3dqVS7+mwt2CgURAz9h2tcbUKnV+Hm6M7ZPCMl37jHwy0jWfzWaM5evcuVGApHrthG5bpv+3PD+H1GrctHffilYR/jgHkxfvg6VSv3wXvuI5Dt3GRwxh7UzxgPwwee695GUO3cZP3c5SoUtY/t/Qt1qlUusw9HFk5c/GMeG+f148ECDd0AdXnh/NAAJV2M5uHUOH4QuLzGOKUqlkjHDBjNn0TL9+/Xwwf1ISU1l+NhJrJg/C4BP+oWi0Wi4nXqHiBlzUCoUhA0ZQO0a5m3jY8k22ClsmfJZF75ct4tsdQ7+7hWY+NEb3Lp7n75zo9g0rh/+7hUYG/IaI5Z9R26eBisrK754twMVPU2P/cLuZ8KWw7l066DAugwkpDxg22HdRLu/hxXtAm1ZvlO3vD1qbw7vvKigVWMbMrJh9Q85xe7Pbun+EUIIIYQQQoinxUpb3PJm8a+SkpLCuHHjuHnzJlqtlnr16jFixAgmTpxI+/btefHFF/npp5/Ys2cP/fv3Z+DAgWzevNngYaiFy02ZMoU1a9awadMmrK2tadOmDb169eLYsWMMGjSI6tV1kw65ubl88cUXNG3alDlz5rB//34qVapEq1atmDdvHuvXr2fFihX6bWvGjRvHvXv39A8+PXXqFFOmTGHdunX06NGDrKwsGjduzA8//MC+ffsICQmhZs2aXL16lfT0dObNm4enZ/HbgmzevJnLly8zfPhwQDdRP3XqVP3q9mnTppGcnMwXX3yBjY0NVlZWDBw4UL99TlHiL50t9vePK6+M8T67T1Ku1ZNd5V3YvTynkgs9pqo5lr0GKWUrWjS+/YMMi8a3wvJv65llHu8BtiVJyjJvQvCvqmZX+ucxlIbT/TiLxgfQWlmXXOgxPLC27MMnd6S9YNH4rb3OlFzoMe2/Wd+i8bs8WGfR+OMuvGHR+AD165T8TZXHFVL6Xd+EEEIIIYT410g5f/xpp/CP4l4n6GmnUCSZaBf/CiEhIYwZM4YaNcx/aJ+lyER78WSivWQy0V4ymWgvmUy0F08m2ksmE+1CCCGEEEL888lEu6F/8kS7bB0j/pVycnL49NNPjV6vXLkyEydOfAoZCSGEEEIIIYQQQgjxZGnlEZv/GjLRLv4VoqKiDI4VCoXRa0IIIYQQQgghhBBCCPE0yJ9EhBBCCCGEEEIIIYQQQojHIBPtQgghhBBCCCGEEEIIIcRjkIl2IYQQQgghhBBCCCGEEOIxyB7tQgghhBBCCCGEEEII8Q+ktbJ62ikIM8mKdiGEEEIIIYQQQgghhBDiMchEuxBCCCGEEEIIIYQQQgjxGGSiXQghhBBCCCGEEEIIIYR4DLJHuxClpMzLsmj8HKW9ReOXsdJYNH5V9RmLxge4omhg0fhVss9bNP51RU2Lxvd9cN2i8QFyrWwtGt+3bIpF49vmqi0a/5ZzLYvGB/BIu2zR+Laq+xaNn5ahtWh81wuHLBofIM2mnkXj36rR1KLxJ2ausmh8gGUZvSwa/7XqF7hh2VuBgOq1LVuBEEIIIYQQ4j9BVrQLIYQQQgghhBBCCCGEEI9BVrQLIYQQQgghhBBCCCHEP5DWStZJ/1vIlRJCCCGEEEIIIYQQQgghHoNMtAshhBBCCCGEEEIIIYQQj0Em2oUQQgghhBBCCCGEEEKIxyAT7UIIIYQQQgghhBBCCCHEY5CHoQohhBBCCCGEEEIIIcQ/kBarp52CMJOsaBdCCCGEEEIIIYQQQgghHoOsaBfiCfgt9hzzV60jK1uNl4crI/v3xMOtgkEZrVbLuq27WLxmI3MnjqBhnZqlqiM6Opply5ejys7Gw8OD0CFDcHdzMyjz559/Ejl/PvfT0nB0cmJA//5UrlzZ7DoOHjjA+vXrycvLo2KlSoSGhlKuXDmTuSxftoxslQoPDw+GhIbi5u5ebOyTZ35nXtRGslVqvNwqMLrfx3i4GvfRmu/3sGjdFuaPG0rD2tXNzh3g6KEf2LZxBZq8PPwqVqXHgDGULVfeqFxeXh4bvonkf9vWMmf5diq4eZoV/7cz54lc9S3ZKhWe7m6M6v+pyTas3fY/Fq/dxLwJw2lYu0ap2nDk0F62frsSjSYPv4Aq9Bo0qsg2rF+1gF1b1zHv6224unmUGPtU7FkWfL36Yf7uhA3sjYebq1H+67fsYOnq9cyeNIYGdWqVKv/DB/ex6dtv0OTl4V+xMn0Hh1GuiPzXrFzE9i0bWLzqO7Pyf+TQwZ/4dv1aNHl5BFSsxKDQoSbHaUz0aVYsX/LwnvFk0JChuLkVP07/jj46qM9fQ8WKlRgU+nkx+S8l++E9P9iM/E+cvcjcNVvIUqnxdqvAmN5d8XR1MYx78Q9mR20iM1uFnVLB4JDONCnFvXb8/GVmr9tBtkqNt5sL43q8i2cFZ4My0ZeuMnPt92Rmq7FT2vL5B6/RpFZVs+u4dGonJ/Yu4oEmF1fv6rz03mSU9g4GZe7fiScqogOObv761zwDGtDuw6nFxj52JY6ZOw6Tpc7Fx8WBie+0wdPZwWTZi4kpfDDnWxb1fIPAqn5m52/pNkTHxLB0+Qqys3XvwZ+HDjL6PPjjz6vMm7+A+/fv4+joyMD+fali5ufBscs3mPn9z2Tl5ODj4sjE99oV3UcJKXwway2Ler9FYDV/k2VMsWT/nI6JZcmKlWRnq/D0cGfo4AEm+2fugkWk3U/HydGBQf36UKVyJbPzF0IIIYQQQojCZEW7EI8pW6Vi3Iz5DO/7GesXfMWzzzRm+qKvjcpNX7SSuMSbuDg5lroOlUrFlKlTGTxoEMuWLSM4OJjIefOMyk2ZOpUunTuzbNky3nn7baZNm2Z2HcnJySxcuJAJEyeydNkyPD09WbVqlclcpk6ZwqDBg/W5zIuMLDZ2tkrN2NlLGNm7OxvmRvDcMw2ZumS1UblpS1cTl3QLF0fTEzrFuZ1yk6il0xk6djZfLfwOdw9vNq5eaLLsrMlDUdqVLVX8bJWasTMXEtb3Y9ZHTuW5Zxrx1WLj/vlqySrikm7i4vQX2pB8k1WLZzJs3AxmLPoWd09vvo1aZLLsjEnDsLOzL0X+KiZMn8uw/r1Ys3A2LQKbMHPhMqNyMxcuJy4x6S+N05TkW6xYNJuR46cxd8kaPDy9WPfNUpNlp4aPwK6U1wB043TxwvmMmxDBoqVf4+npSdSqFUblVKpsvpo6mQGDhrB42UoCg5sxf96cYmP/HX2ky38B4ydEsHjpCjw8PflmlfH7hUqVzbSpkxkwKJQly74mKLgZ8+fNLSF/NaPnrWBUzw/YNGsczzetx5Tl6w3K5OTmMnT6Yvq9/wYbZoyl19sdGTPPuP4i61CrGTl/NWM+fZstX4XxfOM6TP56U6E68hgy+2sGvPMqm6YOo0/nDoxcuMbsOtLvJnJw8yRe67mYkJG7cajgy9Fds0yWLefkQciI/+l/SpqAzcrJZfjq3Yzv8hLbh3ejZZ3KhG/+yWTZBw+0RGz+CVeH0o9TS7ZBpVIxeepXDB44gBVLF9MsOJC5kfONyn05dRrvdHmLFUsX8+7bXZj61Qyzcs9S5zI8ahfj323D9hEf07JOFcK/22ey7IMHWiI27cPVsXR9ZMn+yVapmDxtBkMG9GPlkgU0Cwpkznzj99GIaTN4p/ObrFyygHff7syX02eWqg1CCCGEEEIIUZhMtAvxmH47cx4fLw9qVq0EwKsvvcDxmDNkZWcblHv5xecY3u9TbKytS11HdEwMXl5eVKtWDYB27dpx6vRpsrKy9GWuXr1KRkYGLVq0AKBZs2bcS0vjxo0bZtXx69GjNGrUCA8P3cri9u3acfjnn43KxURHG+Vy+tQpg1wKO3n2d3w83alZpSIAHV98juMx58jMVhmUe+WFFozo3R0bm9L30aljB6nTIBA3dy8AXmjzGsd/MT059MY7n9D5g56liv/bmfMP21AJgFdbP8/xmLNkFrrOr7R6jrA+n/yl6/zbsZ+p2/AZ3Dx0bWjVthPHftlvsuyb731Mlw97mB37VOw5fDw9qFFVt6L1lTYvciI6lqwsw/zbt27JsP49/9I1OPHrYeo1aoq7h+4bAq3bdeTo4QMmy3Z5rzvvdv2k1HUc+/UIDRs11o/Ttu1f5pfDh4zKxcY8Gqe6ldpt23Ug+vRvxY7Tv6OPdPnn32ft2ncwmX9MTDReXt4G+Z8uIf+T5y7h6+FGrcoBAHRq1Zxjsb8b3Gd5Gg0je3zAM3V137RoWLMqKXfTSM8sOm5BJ85fwdfDldqVdKu7X28ZxK9nLxnVMfrjtwmso3uPaFSjMil375OemW0yZmF/ntmHf43mOLj4AFA3uAtXoveYdW5Jjl+Jw8/Vkdp+uv5/M7AORy/dIFOVY1R2469nqOnjjr+rU6nrsWQbomNi8fbyovrD9+D2bdty6nS04efBtWtkZmbSonlzAJo3C374eRBXYvzjV27gV8GJ2n66+/jN4LocvXjddB8djX3YR85GvyuOpfvHy8uT6tV036Do0PYlfjsdbXAfP+qfZ5s3A6BFcBD30tK4Hldy/wghhBBCCCFEUWSi/V8gPj6exo0bExISQteuXenevTtHjx4tVYzNmzezd+/eUp/zwgsv6OsNCQnhypUrZp+/e/fuUtUHkJiYSGxsLAARERHEPaH/9IaFhTFgwACD10JCQp5I7LjEm/h65W97UdbeDieH8sQn3TIoV69W6bZBKSghIQFvb2/9sb29PQ4ODiQmJRmW8fIyOM/Ly4u4+Pi/VIe3tzf37t0jPT3drFySEhOLjB2XdAtfz/wtL/R9dDPZoFz9muZvLVHYzcQbeHr56o89vP24n3aHzIz7RmWr12pQ6vhxSSauc/nyJCQZtqFezWqljv1IUqE2eHr7cv/eXTJMtKFGrfqlih2fmISPV/4WOWXt7XB0cCD+5k2DcvVqlW6rm4KSEuLwKpC/l7cPaffuklFoDAHUrF3vL9WRmBCPl4lxWriOhIR4vLx99Me6cepIUlLR4/Tv6CPd/ZOfV9H5Jxi005z8byTdwtczf3uMsnZ2ODmUI/5misFrLwY10h8fjTlPgLcHDuXMW5F8/WYKfh75W+mUtVPiVL4scbdSDV5rHZg/Po/EXKCilzsO5cz7Bsa9lGs4ueZvFeLkFkB2RiqqrDSjsjnqTHYs70fUly+zbfFn3Ln1R/H5p9wzmBQuq1TgXNaOG6n3DMrdvp/JmsPRDHi5hVk5/51tiE9IwNs7/73e3t4ex0KfB/EJCXgV+jzw9vI06/Pgeso9/N1M9NFtE3106DQDXn22xJiFWbZ/EvHxKql/EvHyMtwyzNvTi7i4hFK3RQghhBBCCEvTWpWRnwI//2T/7OyEXuXKlYmKimL16tWEh4cTHh7OhQsXzD7/rbfeom3btqWu95VXXtHXO2DAACZNmmT2uUuWLCl1fb/++qt+on3UqFH4+5u/32tJrl+/TnR09BOL94hanYPC1tbgNYVCQbZK/eTqUKlQKBQGrymVSlSq/FWkarUa28JlFArUKsNV40XWUeh8W4UCKysro/NVanWJuRSmMtFHSoUtqifZR2oVtgql/tjW9oZEN8cAACAASURBVFH+5q2iLYlKnYPSqA0KstVPrg05apXhNbA1fQ3+Ct11M87/yV8DE/mrn8w10NWhRmFrXIdKbdhHapXxOFUoFSWM07+pjwqMo6LzN77nS8w/J9fkfVbUGL18PYFZ32xixGfvm52/Sp1rdB/YKWzJVhuvdga4fCORGWu/Z+THnc2uIy9XhbVt/r1sbaMAKyvycgzHka2yHDWavErLN0fQdfhO/Gu0YOfyvjzQ5BWdf04eikLfRFDa2pCdY3jOtO8P0atNEI72Sv4KS7ah8D0Aus+cwp8HhceyQlH8+/QjqpzcIvoo1+C1aVsP0KtdMI72diXGLMzi/WPUdsP+UanVxveKUmF0HwohhBBCCCFEacjDUP+FAgIC6N27N2vXrqVmzZps376dMmXK0KZNG7p3706bNm3YvXs3SqWS48eP880331CzZk1cXFzo2rUrkyZNIjY2FmtrayZMmECNGjWYNWsWJ0+eRKPR0LVrVzp27GhUb8OGDbl+/Tqg2y6kZcuWuLq68uabbzJy5Ehyc3OxsrIiIiKCPXv2cPHiRfr3709kZKTJ+AkJCYSFhaHRaPDx8SEsLIzIyEhsbGzw9vZm5cqVjBkzBm9vb8LCwrh//z55eXmMHj2aunXr0rZtW9q0acOpU6dwcHBgyZIllClT9N+OBg8ezIwZM4iKijJ4/ebNm0b5l2aC306pJCfXcAJCrc6h7F+YfCiyDjs7cnIMJ7LUajX2dnYGZXILlVGp1djZFZ3H9u+/Z/v27QBY29jg4pL/0MScnBy0Wi129oarUIvKpXC5guxN9JFKnYO93V+bxHpk784N7N25UZ+/s3P+StucHDVarbbUe7EXxV6pRF24DTnqx27Dnh0b+WHHdwDY2NjgZKINpdmLvSi661Z4nBqOob/if9s38b8dWwCwsbbG2eXJ579j+1Z2bP++QB0mxqmdeeO0uPZaqo+2b9/Gzu3bALC2tsHFJf8BuqXPv+i+tFMqTN5nZU2M0dhLfzJyznJG9fyApnXMX6Fvr1SYuA9yKWunMCobc/kaYZFRjPn0bZ6pXfw3PWJ+Xk3sYd0+7tbWNpR1yF+Zn5erBq0WW6XhvWxfzoVWncfqjxu3+pgTPyzgXso1KniZrs9eYUNOnqZQ/nmULTAx+8vF66RlqXi1Sekecvt3tcHOzo6c3OLHhp2yiLFsxueSvcLWuI9y8yirLNBHF67p+qhp7RLjPfK39o+JttvZG35eGt8rj3+vCyGEEEIIIf5/k4n2f6l69eoxY8YMrl69yrp16wB4//336dChA82bN+fo0aO0atWKffv20b59e65duwbAkSNHuHnzJhs2bODEiRPs2rWL+/fvk5CQwJo1a8jJyeHNN9+kTZs2RnX+9NNP1K+v2w4gLy+Pli1b0rJlS0aMGEGXLl145ZVX2L17N5GRkUydOpWlS5cSGRnJyZMnTcafNWsWH330ES+99BLTpk0jISGBN998ExcXF1566SVWrlwJwKpVq2jYsCE9e/bkzJkzfPnll6xevZq4uDhef/11hg8fzjvvvMPFixepXbvo//TXqFEDX19f9u/fT+vWrfWvz5kzx2T+5qro582+X37VH2dkZpGekYmft2cxZ5WOn78/hw7l7+OcmZlJeno6vr6+BmWSCmxxodVqSUpKIiAgoMi4nV57jU6vvQbAjh07OHPmjP53CQkJVKhQgfLlyxuc4+/nV2IuhVX09eLHIyf0xxmZWaRnZuH/mH3U9tV3aPvqOwD8uOs7Lpw9pf/drcQ4nF3cKFe+9A8lNSXA15t9R47rj3XXOQt/b69izipZ+45v077j2wDs3bmJ38+e1v/uZmIczhWeTBsq+vrw089H9Mf6cerzePm/3KkzL3fSrVbevWML58/mf2skKTEelwquj51/x05v0LHTGwDs3PE9Z8/E6n+XWMQ49fP35+dDB/XHmZmZZKRn4FPsOLVMH3Xq9DqdOr1eIP/8+6zo/AOKyN+HolTy8eTHo7/l55+VTXpmNv4FtjwC3Ur2EbOXMWngJzSuVbqtjir5ePDDsfxrnJ6Vzf3MLAK83AzKXb6RyPDIb/iyb1ca16xSYtyGz3el4fNdAYg9vJaEP/LfL+6lXKOcoztKe8OHz6qy0lBnp+Pk6qd/TfvgAWWsi/6nTWWPCuyJuZyff7aa+9kqAtzzt0rZf/YPLiSk0HqC7kG4adkqhqzaybDXWtLpmaI/Y/6uNvj7+XHwUP7zMzIzM8nIyMC3wNjw9/cjqcBWKVqtlsSkxGI/Dx6p7FGBPdGX9Mfp2WruZ6kJcMv/A9f+M1e4kJBM63GLAUjLUjHk6+0Me6MVnQLrmIz79/WPLwd/Pqw/1vePT37/BPj5kZRk+HmZmJRExYAn9y06IYQQQgghxP8/snXMv1RmZiZly5bl+vXrdOvWjW7dupGZmUlCQgLt2rVj/37dAxQPHz7Miy++qD/v3LlzNGnSBIDAwEAGDx7MqVOniImJISQkhE8//ZQHDx6QkqLb03fXrl36Pdr37NnDqFGj9LEaNNDtc3327FmCgoIACA4O5vz58wa5FhX//Pnz+lyGDRtGw4YNTbb17NmzBAcHA1C/fn39qvry5ctTq5ZuxaGXl5fRXuKmDBo0iMjISDSa/NV6JeVfkib16nArJZWY8xcB+Hb7blo80+iJroxr2KABySkpnD13DoAtW7YQHBRksFq9YkAATo6O/PTTTwD8+OOPeHh44OfnZzJmYc2aNSMmOpr4h3v4btmyhRdatTIq16BhQ1KSkzl39qy+XFBwcLEr55vUrcXNlFRiftdNcK3fuZdnmzZ47NXgBnUEt+Rc7AmS4nXj43/b1tK8ZbsnFr9pvdrcTLlNzO+6Cahvd+yhRdOGT7QNTZs9z9mYkyQ+bMOuretp0bL0Wz6Z0rh+XW6l3Cb2vG7LqY3f76R5YJMnOk4Dmz3HmZhTJMTrHsC7Y8sGnnvhpScWH6BZsxbExJwmPl73/IatW76j5QsvGpWr36ARySm3OHdON063bdlEYFBwsavr/44+CjbKf5PJ/Bs0aEhySrI+/61bNhFUQv5N69Yg6fYdoi/onqWxdtd+nmtSz2CMarVaJiz8hmGfvFvqSXaAZ2pX42bqPU5fvKqrY/chnm9UB3ulYR3jlqwnrNtbZk2yF1al3kvEXz7K3eQ/AYg+uJLqTV41Kpd84wxbF3QnO+MOAOeObqC8izeOrkVPlgZW8yPpbjqnrur2ul/982la1q5ssKJ9TOfWHJzQk/3jPmP/uM9oVNGbmd1fLXaS/e9sQ8MG9UlOTtZ/Hmzeuo2goEDjzwMnJ/YfOADA3h/34eHugV8xf2h6JLCaP0l373PqT91+5asPnqJlncoGK9rHvN2Gg+F92D+hF/sn9KJRJR9mftypyEn2wizZP40a1OdWcgpnz+k+yzdt/Z7goGcM7uOKAf44OTmy/4Duj1k/7NuPp7u7Wf0jhBBCCCGEEEWRFe3/UmfPnkWtVtOqVSsmTpxo8LucnBymTZvGxYsX8ff3N1gpaW1tzYMHDwzKKxQKunTpQq9evQxeP3HiBK+88grDhw83mcOjfYatrKzQarUA5ObmGm3fUlR8a2tr/XnFKRgf0OdvbW24h6w5sby9vQkODmbLli0m45vKvyRKpYLxn/dj5tJVqFRqfL09GTWgJympdxgyYRpRc6cAEDIwDM2DB6TcucvE2QtRKhSMHtiLOjVKfgCoUqkkbPhwFixYgEqlwsfHhyGhody+fZvRY8awaOFCQPcHizlz57J6zRqcnZ0Z9sUXZrfDzc2Nvv36ET5xIhqNhqrVqtGnTx8ALl68SNQ33zApIgKlUsnwsDCDXEKHDCk2tp1SQXhoT6YvX0O2So2flwdj+n1CcupdQiNmsWambgx/OGQseZoHpNy5x/i5S1EoFIzt/wl1q5c8WVfB1YOPeg9j9pdfoNFoqFSlJm/1HArAH5fOsWnNIoZNmEfavVQiRvbWnxcxqg/W1taEhc+ngqtHUeFRKhVMCO3DzKVRZKt1bRjV/zNSUu8SGj6d1bMjAOg6eBQajYaUO/eYMHsxSoUtYwb2pI6Zbfikz1BmRgxHo9FQuWpNuvTS9e2VS+fYuHopIybOJu3uHSaO6KM/b9LIvpQpY82oiHlFtkGpVDB26EBmL17xcJx6ETaoDympd/hi/GRWzpsOwEcDhqLRPCAl9S6TZkaiVCgYObgvtWuUPCnr6uZOj76hTAsfieaBhipVa/BJ70EAXL54nvWrlzMmfAb37t5hbNhA/XnjwgZRxtqacRGzcHVzLyr8wzrc6NN3IBHh43TjtGp1evXpD8ClixdYHbWSiZOmoFQqGTZ8FIsWzEOtUuHt48Pg0OLvh7+jj9zc3OjTdwCTwsej0WioVrU6vfr0A+DixQusjlpF+KQvH+Y/koULIvX5h4YOLTa2nUJBxMBPmPb1BlRqNX6e7oztE0LynXsM/DKS9V+N5szlq1y5kUDkum1ErtumPze8/0fUqlzyamc7hS2T+37I1G82k63Owd/TjfE93iX5Thr9v1rChi+/4MyV61yOS2Luhp3M3bBTf25Enw+pXankP/yVd/akVedx7FzenwcPNLj71aHlW6MBuHk9lmP/m8PrvZcTUOs56j/7Ad/NfR+sylDeyZNXPp5LmTLWRca2s7VhatcOfLnlANk5ufi7OhH+bltupWXQZ+lWNg/tWmJ+5rBkG5RKJSOGDyNy4SJUKjU+3t4MDR3M7dupjBw7liUL5gMQNmwos+dGErVmLS7Ozgz/4nOzcrdT2DA15BW+3LRf10duzoS/355b9zLos2Qzm4d1+8f3z6hhnzNv4RJUahU+3t58ETqQ27dTGTF2AksXzAVg5BdDmDlvAavWrMfFxZmwocV/jgkhhBBCCPG0aK2snnYKwkxWWnNmJ8VTFR8fz8CBA9m8eTMAN27coEePHnz99dd8/PHHbN26FTs7OyIiIhg6dCh2dnYMGTIEGxsbWrRowRtvvMG8efNwcXGhZs2aLFmyhKVLl3L+/Hk2btxIp06dmDZtGmvXriU3N5dp06YxZswYNm/ezOXLl01OtLdu3Zrt27dTrlw5Ro0aRfPmzenYsSM7d+7kyJEjREREEBQUxPHjxzl16pTJ+CNGjOD555/nlVdeYc6cOQQGBnLq1CnKly/PRx99REhICGPGjOHHH3/E2tqaXr16ER0dzezZs1m5ciXBwcEcO3YMgIEDB/Lhhx/qV74XFhYWRv/+/fHz8yMtLY2uXbtib2/Phg0bisy/KCnnjxf5uychXelacqHHYOk3aJeMBIvGB7iiaGDR+FXySvethtK6rqhp0fi+D65bND5Aik3RW5g8CUqrJ/cAUlMcc1MtGj/dtkLJhR6TR9rlkgs9BuvcJ/cQW1NWpho/C+RJ+ixvgUXjAyyz6WvR+B1rWPYae13cb9H4AMusepVc6DG8Vt38B8P/VQHVzf82gxBCCCGEEE9awqUzJRf6f8S3Rv2nnUKRZEX7v8TVq1cJCQkhJycHjUbD2LFj8fHxoVu3bnz44YdYW1vTpk0b/VfH27ZtS1hYGKNHjzaIExgYyL59+/jggw8AGDduHDVr1iQ4OJh3330XrVar/525Bg4cyKhRo9iwYQO2trZMnjwZgNq1a9OlSxe+++47k/EHDhzIiBEjWLt2Ld7e3vTv3x+tVsvw4cOpUCF/kqpbt26MHDmSbt26odVqGTt2rMk8zOXk5MTrr7/O2rVri81fCCGEEEIIIYQQQgghzCEr2oUoJVnRXjxZ0V4yWdFeMlnRXjJZ0V48WdFeMlnRbh5Z0S6EEEIIIZ4mWdFuSFa0C/E3iI2N5auvvjJ6/eWXXy71Kn0hhBBCCCGEEEIIIYQwl0y0i/+MBg0aEBUV9bTTEEIIIYQQQgghhBBC/D8jE+1CCCGEEEIIIYQQQgjxD6TFslsAiyenzNNOQAghhBBCCCGEEEIIIYT4N5OJdiGEEEIIIYQQQgghhBDiMchEuxBCCCGEEEIIIYQQQgjxGGSiXQghhBBCCCGEEEIIIYR4DPIwVCGEEEIIIYQQQgghhPgH0lrJOul/CyutVqt92kkI8W9y+HymReP7KG9aNL7WyrJPq7b6G95SLN2GtDwni8b3z71i0fiXrOpaND5APdWvFo2vvJto0fi/eb9l0fi5D6wtGh/gRqq9ReOnZ1k0PJVeq2nZCoBz63+3aPy679W2aPzMQ5bNP/muZd9LASq/Xsui8e/su2jR+GkZlv9M6/+K5a+DEEIIIYT494q7fP5pp/CP4l+9ztNOoUjyJxEhhBBC/OdYepJdCCGEEEIIIYQoSCbahRBCCCGEEEIIIYQQQojHIBPtQgghhBBCCCGEEEIIIcRjkIehCiGEEEIIIYQQQgghxD+QFnmmz7+FrGgXQgghhBBCCCGEEEIIIR6DTLQLIYQQQgghhBBCCCGEEI9BJtqFEEIIIYQQQgghhBBCiMcgE+1CCCGEEEIIIYQQQgghxGOQiXYhhBBCCCGEEEIIIYQQ4jHYPO0EhPivOPbzHnZsXIZGk4dvQFU+7j+OsuUcjMpFHz/I1nULycvNoZyDMyG9R+JXsVqJ8aOjo1m2fDmq7Gw8PDwIHTIEdzc3gzJ//vknkfPncz8tDUcnJwb070/lypXNbsPBAwdYv349eXl5VKxUidDQUMqVK2cyl+XLlpGtUuHh4cGQ0FDc3N3/0/k/cuTQXrZ8uxKNRoN/QBV6DRpJ2XLljcrl5eWxbtUCdm1dT+TXW3F18ygx9m9nzjN/5TqyVCq83N0Y2b8HHm4VDMpotVrWbdvF4jXfMXdiGA1r1zQr70d043Q5eZo8/AKq8nH/sSbH6enjB9m6btHDcepENzPG6YmzF5m7ZgtZKjXebhUY07srnq4uBmViLv7B7KhNZGarsFMqGBzSmSa1q5uf/8VrzNz8I1nqXHwqODExpCOeLo4GZU5eus6srfvJyFZjp7BhWJd2NK0eYH4dFuwjgBOHd7Pru6VoNHn4+Feje7/x2JuIH3PiAN+vX0Bebi7lHJz4sNdofANKjg9w7vhOftm1EI0mF3efGnTsPhm7ssZ1PHI59gAbInvRb/I+nN38Sox/6dROjv+wkAeaXFy9a9Dm/cko7Q3j30+N55uI9ji5+etf8wxoQLuu04qNbWVjQ63Jn1Ml9BP2VWqJKuGWURmHBjWpHzkeW1cXclPvcqbfeNLPXCwx70f+iNlJ9E+L0D7Iw8WzOs93jkBhZ5h/+t0ENs7ogGOF/Pzd/evzwttTS4z/d7Qh9tedHNy+CI0mD0/f6rz5aYTJa3zuxA8c+H4heblqyjq48Fr3cXj61Sgx/qVTOzmxd9HDa1ydl94zcY3vxBMV0QHHwtf4w39GH507vpPDO3X3gYeveffBt/N60f9L8+8DS/aREEIIIYQQAForWSf9byFXSognIDUlibXLpjJ4zFwmz9+Cm4cPW9bMNyp3NzWZ5XPH0nPIZCZFbia4ZQeiFkWUGF+lUjFl6lQGDxrEsmXLCA4OJnLePKNyU6ZOpUvnzixbtox33n6badOKn9AqKDk5mYULFzJh4kSWLluGp6cnq1atMpnL1ClTGDR4sD6XeZGR/+n8H7mdfJOVi2cxfNwMZi5aj5unF99GLTZZdsak4djZlTU7/2yVmnEz5jO876esn/8VzwY2Zvrir43KTV+8krjEm7g4OZqIUrzUlCTWLJvG4DFz+HL+Zlw9vNm8ZoFROd04HUfPIRFERG6iWcsOfLNocon5j563glE9P2DTrHE837QeU5avNyiTk5vL0OmL6ff+G2yYMZZeb3dkzDzjNhYlS53D8OVbGP/hq2wf34eW9asTvu5/BmVUObl8vnQTo97rwLZxven9yvN8sXwzWq3WrDos2UcAd1KSWL98KgNGRTJx3jZcPXzYutZ4/N1NvcXKeWP4dPCXTJi7haDnX2bNonCz2pCWmsgP68N5d8AS+oTvwdnNlwNbZxVZPledzU+bZ2Bfztms+Ol3EzmwKZzXey2h26g9OFbw5ehO0/HLOXkSMnK3/qekSXaAZzYvIC8jq9gyTVbP4o/pyzhYtwNXpi2l0TdfmZU7QMa9RH7dHkH7jxbTZcj/KO/iy8kfZpvO39GDLkN26X/MmWT/O9pwLzWRnWsiCBmymMFT/oezmy8/bjJuw73URL7/ZjwfDopk0JRd1Atsz5blo0uMn343kYObJ/Faz8WEjNyNQwVfju4q6hp7EDLif/ofcyeQLd1HaamJ7FkXznsDl9B30h6cXEu+D/aX8j6wdB8JIYQQQggh/l1kol2IJyD6+EFqNwjC1d0bgOfbvMHJIz8albO2tqHnkMn4+FcBoHrtRiTc+KPk+DExeHl5Ua2abjVru3btOHX6NFlZ+ZMUV69eJSMjgxYtWgDQrFkz7qWlcePGDbPa8OvRozRq1AgPD93K6/bt2nH455+NysVERxvlcvrUKYNc/mv5P3Ly2M/Ua9gUNw8vAF5s24lff9lvsuyb733E2x9+ZlbuoFvN7uPpQc2qlQB4tXVLjsecJSs726Dcyy8+x/C+n2JjbW127EdOHz9IHTPHaa8hk/HVj9PGJY7Tk+cu4evhRq3KupXjnVo151js72Rmq/Rl8jQaRvb4gGfq6lbTNqxZlZS7aaRnltz3AMcvXsPPzZnaAbr832zekKO//0mmSq0vk6vRML7rq9R5WCa4ZmVS72eSXiCP4liyjwCiTxygVv0gKjyM/+xLb/Db0b3G8W1s+TR0Cj7+VQGoVqsxiXElxwe4FLOPSrWa4+TqA0DDZ7tw4bfdRZY/tH0e9Zu9hsLO+Nsfpvx5Zh/+NZrj4KKLX6dZFy5HFx2/tC5PXsDlicZ/iHvEoV4NbJwduPX9PgCSd+xH6e5K+VpVzIp//fx+vKs2o7yzLv8aTTtz9cyex0+8AEu34cKp/VSp3Qznh9e4acvOnD1h3AZraxve7vUVzm6+AFSp04zbN6+WGL/wNa4b3IUr0f+uProUvY9KtfPvg0bPdeH3k5a7DyzRR0IIIYQQQoh/l3/ERHt8fDyNGzcmJCSErl270r17d44ePVrqOJs3b2bvXuMJi5LOeeGFF/R1h4SEcOXKFbPP37279JMLiYmJxMbGAhAREUFcXFypY5gSFhbGgAEDDF4LCQkx69xDhw6xdu3aIn9fMOcn7cKFC1y9WvJ//P+q33//nblz51osPsDNxOt4eOZ/zdzdy4/7aXfIzLhvUM7RuQL1mzyrPz5z6ghVatQrMX5CQgLe3t76Y3t7exwcHEhMSjIs4+VlcJ6Xlxdx8fFmtaFwHd7e3ty7d4/09HSzcklKTPzP5v9IUmIcnl6++mNPb1/u37tLRqHrDFCjVn2z8n4kLvEmvl7528uUtbfDqXx54pMMt1OoV9P8bVYKu5V4A/cC49Sj2HHaQn985tQvJY7TG0m38PXM3wqorJ0dTg7liL+ZYvDai0GN9MdHY84T4O2BQznzVv5fT76Dv3v+VjRl7RQ4l7PnRspd/WsO9na82FC3nY5Wq2XLkWiaVPPHsay9WXVYso908a8bxHf38ifdVHynCtRrnP9ecfb0L1Subt6YunPrGs7u+VvluLgHkJmeSnZmmlHZ5PiLXP39CEFtPjIrNsDdlGs4ueXHd3ILIDsjFVWWcfwcdQY7lvUlanIHti76lDs3S/5jwb1fo4v9fbnqlci6avi+kHU1jnI1zZuAvX/7Go6u+fk7ugagykxFnW0q/0z2RvXnu5mvsPvrHtxLNu+PHZZuw+2b16jgkd+GCh4BZN43vsYOzh5Uq6cbRxpNHqcPb6VW49Yl559yDSfX/K1Oir/GmexY3o+oL19m2+LPuHPrn9FHqbeu4VKK++DP80cILsV98Hf0kRBCCCGEEOLf5R8x0Q78H3v3HRXV8T5+/I3AUlSQXgSssfcEUZNgw5gQTWJiYsWSpkbFEhUsaCxYY+9iV+xRY/toohITYw8CorHFjg3FiCC7S9nfH6uLyy6wRDfR3/d5neM5ubszz8ydmXs3zM7OpVy5cqxatYrVq1czduxYxo4dy9mzZ4sU4+OPP6ZFixZFLjs4OFhXdt++fRk3bpzJeRctWlTk8o4cOaKbtB4+fDi+vr6F5DDd1atXiYsr+I9XYwIDA+nYsWO+7z9b5xft559/5sqVK2aJDVC1alVCQ0PNFh9ArVJirbDRHVtbK7CwsEClzMg3z5mEo/y8PZr2nw8qNL5KqUShUOi9ZmNjg1KZu0pXpVJhnTeNQoFKadpK3rz5rRVPz0E/v1KlKrQu/7/V/6n8+9m0OhZEpVKhUFjrvaawUZChUuWT45+UodRvI5PG6TF+2r6G9p9/W2BspToThbV+/W0U1vnW/8LVJKav/IGhX3Ywuf5KdSYKK/1Hi9hYW5OhyjRI+3PsnzQfOpMNv8UyosN7JpdhzjYCyMxnDKlV+cf/M+Eo+3as5tPuhd8rADLVGVhZ556DlbUCLCzIVOuXodFo+F/0KFq2H4GllXXeMPnKUmdgZfVMfCvj8a1ti1O5XisC2wyjc/gu/Cq/yY4l35CTnWVyWcZY2tuRo9QfV9kZKqxM/MImKzMDy2fqb/mk/ll5629jT4Xa79Og1VA+6b+D0hUb8fOq3s9d/xdxDsb6uKBxdPinlUwKfYur5/+g5WeFj9OsTCWW1rnjNP82Kk6leu8T2GYoncN24lupETtfQB+DedoICwsyVYbXwa7Vo2jZoYjXwUvQRkIIIYQQQoiXy0v5MFQ/Pz969uzJmjVrGDNmDNHR0Wzfvp1ixYoRFBRE165dCQoKYvfu3djY2HDs2DFWrlxJ5cqVcXJyonPnzowbN46EhAQsLS0ZPXo0lSpVYvr06Zw4cYLs7Gw6d+5Mq1atDMquXbs2V69eBbRbSgQGBuLi4kKbNm0YNmwYmZmZWFhYEBkZyZ49ezh37hx9+vRhzpw5RuMnJSUREhN2CQAAIABJREFUHh5OdnY23t7ehIeHM2fOHKysrPDy8mL58uVERETg5eVFeHg4qampZGVlMWLECKpXr06LFi0ICgoiNjaWkiVLsmjRIooVy//7kf79+zN16lRWrVql9/rt27cN6v/sBP/mzZu5cOECnTp1Ijw8HF9fX86dO0fVqlX59ttv9epcpkwZxowZg4WFBcWLF2fixImkpqYyePBg7O3t6dy5M+PHj6ddu3bExMSgVqtZtmwZdnZ2REREcP36dbKysggNDcXZ2Zl169bh7OyMi4sLtWrVAiAzM5PBgweTnJyMWq2mb9++BAYGGoyFzz//nNmzZ3P9+nVu3LiBk5MT3bp1w9/fH6VSSXBwMJGRkaxdu5ZZs2axdetWVq1aRbFixejevTvBwcH89NNPLF26FCsrK2rUqEF4eLhJ43TfrnXs37UB0P4837GUi+69TLUKjUaDrZ3xCYHYozGsiZpMv+EzddvIFMTW1ha1Wq33mkqlws7WVi9NZp40SpUK22fS5LV92za2b9+uPQcrK5ycclcLq9XqJ+egvxI4v7rkTff/S/337NjETzs26cooVSr34aTqp/1sa9pq6YLY2tqgVutPGKtUauwLOH9T7Nu1nn271gP/bJxGR02h3/AZui1S8q2/jQJ1pn79lSo19rY2BmkTzl9i2MwlDP+6I69XK/yhjE/Z2ShQZ+lPTikzM7G3MZwca1GvKi3qVeXouSt8OSOajcO+xNXR8KG1YP42itm1jpj/afert7SywsFIfJt8xlDc0f2sWzKJ3kNn6baRMeb4/tX8EbMagGKW1hR3yH24b1amCjQaFDb653Dy1/W4elXE97U38o37VPxvq0n4LTe+vbH4Cv34dsWdaNJ2pO64bpPuHNszlwfJV3DxNO2hrsZkpz+mWJ5xZWlvS1Zaer55zhyO5szh6Cf1t8KupGH9rfLU39beiUYfROiOa7zVjZP75/Hw3hWcPP55/f/pORzZG83RvU/OwcqKEo655/B0HOXt46cavtOFBi1COHV0F4vGdSR0/A6sFfr3lvjfVpNwUBvf0tIK+5K5v1B52kbWNkb6+BP9Pj7+0zz+Tr6C83P0MfyzNjq+fzUnnrkOnm0j3TjN8+yM2F/X4+pdET9Tr4OXqI2EEEIIIcT/DRos/usqCBO9lBPtADVq1GDdunVcv36d3bt3s3btWgA6dOjAu+++S8OGDTl8+DBNmjRh3759tGzZUrcq+tChQ9y+fZsNGzZw/Phxdu3aRWpqKklJSURHR6NWq2nTpg1BQUEG5cbExFCzpvbn+VlZWQQGBhIYGMjQoUNp27YtwcHB7N69mzlz5jBp0iSioqKYM2cOJ06cMBp/+vTpdOvWjebNmzN58mSSkpJo06YNTk5ONG/enOXLlwOwYsUKateuzddff82pU6eYMGECq1ev5vr163z44YeEhYXx2Wef6Sa/81OpUiVKly7N/v37adYs9+fhM2fONFp/Y06fPs306dNxcXEhMDCQsLAwvTp37dqVMWPGULZsWaKjo4mOjqZ169b8+eefxMTE4OTkxNixYylfvjxffvklAwYM4MiRI6SlpeHm5sb48eNJSUmha9eubN++nbfffpuWLVvqJtkBzp8/z4MHD4iOjiY1NZUDBw7kOxZAOzG/Zs0atm7dyv79+/H39+f333/nzTff1H0xkZaWxrx589i2bRtqtZqwsDAaN27M/PnzWb9+PQqFgn79+vHHH3/w+uuvFzpGmwe3p3lwewD2/28D50//oXvvzq1rODq5Yl+8pEG+M/FHWbtkCgNHzTVpkh3Ax9eXX3/9VXecnp7Oo0ePKF26tF6aW7dv6441Gg23bt3Cz8+P/LT+4ANaf/ABADt27ODUqVO695KSknB2dqZECf3JSV8fn0Lr8v9T/Vu2akvLVm0B+GnnD/yZmPuLkds3b1DK2ZXiJQz7uajKlPZm3+9Hdcdp6Y95lJaOj5dnAbkK1zy4Hc2D2wHacXrudKzuvYLG6en4o6xd8j3fjpqLt2+5Qssp6+3B3sO510Da4wwepWfg+8x2OKBdyT50xmLGhX5O3SpFm2Qq5+HCnj/O6I4fZShJfazEzz33y4/bKamcuXaLZnW028cEVC6LR6mSJFxO0r2Wl7nbqGlwe5o+uVf8snu93r3i7q1rODq5YV/c8OG2f8YfYf3SKfQbOR8vn4LvFf7NOuPfrDMAJ36J5tr547r3Uu5coYSjG7b2+mWcj9/HrauJXBgUA8DjRyksG9+WNl/PoGyVBnppa7/dmdpva+MnHIwm6WJu/L+Tr1DcwQ2bPPGVjx+iykjV215Dk5ODpeXz/a9H2rlL2JfX/yVY8QplSPsz/+04qjXsRLWGnQA4c2QNty/n1j/1/lXsS7phY6dff1XGQ9QZjyjpnLvVj0aTQ7HnrP8/PYcGQZ1oEKQ9h6P71nDlXO453L9zlZKl3LDLM47u3vyLRw/uUKF6IywsLKjV4H12rBrLvVuX8Sqj//8S+n28hqS/jPSxnbE+foSjyzNtlPPftZHedRBj4nUQp70OpsfnXgdLI9vycY/CroP/vo2EEEIIIYQQL5eXZuuYvNLT07G0tOTUqVNcvXqVLl260KVLF9LT00lKSuKdd95h/37tQwgPHjxI06ZNdXlPnz5NvXr1APD396d///7ExsYSHx9PSEgIX3zxBTk5OSQna/cO3rVrl26P9j179jB8+HBdrKeTv4mJidSvXx+AgIAAzpzJnewB8o1/5swZXV2GDBlC7dq1jZ5vYmIiAQEBANSsWVO3qr5EiRJUqVIF0O5XnXe/aWP69evHnDlzyM7O1otfUP2f5efnh5ubG8WKFcPd3d2gzISEBCIiIggJCWHbtm3cv38fAF9fX70VxW+88YZevU+ePMm+ffsICQmhX79+qFQqg5XFT5UvX5709HQGDx7MkSNHeP/99/MdC5DbT82aNePgwYMAui9gnrp06RLly5fH1tYWBwcH5s+fz8WLF7l58yZffPEFISEhXL16lZsm7NWdV936Tfgz4Ti3k64A8NO21QS8/a5BOpUqg6Wzv6N32PcmT7ID1K5Vi7vJySSePg3Ali1bCKhfX2+1dxk/PxwdHIiJ0U4W7N27F3d3d3x8fIzGzKtBgwbEx8Vx48me6Fu2bKFxkyYG6WrVrk3y3bucTkzUpasfEFDgyvNXvf5PvdEgkMT4E9y8ob0+d21dS6NAwy/s/ol6NapyJ/k+8X+eA2D99t00eqMOdkZWhP9T2nF6jFtPxumebdEEvN3SIJ12nI5+Mk4Ln2QHeL16JW7dSyHurPYZF2t27eetejX06q/RaBg9fyVDPm9X5El2AP9KZbiV8pDYi9rnWqzed4zAGhWxt8ndHiIzO5uRq7Zz8ab2/n71bgrXkx9QwdvNaMy8zNlGALX9m3D21DHdveLn7avwf8vwXqFWZbBi7ih6Dpla6CR7XpVqB3Hlz8Pcv30JgKN7l1O9vuEvuNqHRjFg6mH6f/87/b//HQdnL7oP22QwuZhX+RpBXL9wmAd3tPFP/rKcSvUM49+5dootc7vyOC0FgNOHN1DCyQsHl+fbLi3tz79Q30vBu722TJ8ubci4lkT6hSsm5S9TtTk3/zrC38naZ4MkHlxO+drvG6RLvpHIriXdyHhS/3PHN1LC0YuSzs+/3dvznkPVes25dOYIybe053Boz3JqBhiew+NHKfwQFU7qg7sAXL0QS052Fk7uBZ9D+RrNuXHhMA/uavs47sByXqtnGP/utVNsnddV10Yvqo/h+duoUp0gLp/NvQ6O/Gz8OujQL4qB0w4zYOrvDJiqvQ4+H27KdfDft5EQQgghhBDi5fLSLqdJTEykatWqWFtb06RJE8aMGaP3vlqtZvLkyZw7dw5fX1+9VauWlpbk5OTopVcoFLRt25YePXrovX78+HGCg4MJCwszWg/rJ3sOW1hYoNFoAO3q6bzbt+QX39LSUpevIM/GB3T1t7S01EtnSiwvLy8CAgLYsmWL0fjG6p+3zgWVaWdnx8qVK7GwyP3pyo0bN3RtZSyORqPB2tqanj17Gt2yJy87Ozs2bNhAbGwsW7ZsISYmhmbNmhkdC0eOHNGV7eDggLu7O5cuXeLkyZOMGTOGP/7Qrh4tVqyYwbiwtramRo0aLFmypNA6FcTJxZ3OPcKZM2Eg2TnZlClfhY5fasfUpfOJbF07j4Gj5hF37ACPUh8QNX2EXv4h46L0tqvIy8bGhvCwMObNm4dSqcTb25uBAwZw7949RkREsGD+fG2cIUOYOWsWq6OjKVWqFEMGDzb5HFxdXfmmd2/GjhlDdnY2FSpWpFevXgCcO3eOVStXMi4yEhsbG8LCw/XqMmDgwAJjv+r1f8rZxY3Pew1iamQ4OdnZlK1QmW49vgTg4vkzbFy9iKFjZvD3gxTGDv1Gl2/ssN5YFrNkeORsnF2MT/ja2Cj4buA3TFu0EqVKRWlPD4b3/Yrk+ykMHDOFVTMnABDSbyjZOTkkpzxgzPQF2NgoGBH6NdVey39bkadyx+m3unHa6cshgHacblk7n29HzeXkk3G6aPpwvfxhBYxTW4WCyNDPmbxsA0qVCh8PN0b2CuFuyt+ETpjDuikjOHXhMhevJTFn7Y/MWftjbvv06UaVcvn/ciG3DGsmfd6GCet3k6HOxNfNibEhrbnzdyq9Zq9jc8TX+Lo5MbLT+4Qv3UpmdjYWwJBPW1DmmVXv/1UbaeN70PGrocyfNICc7Cx8y1el/Rfa7aouXzjFtrXz6DdyPnHHfuFR6gOWzBiml3/Q2CV6W88Y4+DkwbudRrFxXm9ycrLx9KtGy/bae07S5QR+/XEmHfr/83teiVIeNGk7ih1LtPHdfaoR8Ik2/u2rCRzZNZOPei2hTJW3qPlWRzbN7KDdaszRg/e7z6ZYMct8YyvcXWi4b7XuuMHeVWiysjnSsisBO5fwa93WAMSFDKLmgrFUGtkX1d37nOxi+r2iuKMHjT4Yyd7VfdDkZOHiXY2GzbX9mHw9gT/2zuLd7ovxee1NqgZ0YMfCjlhYFMPewYPmnWYWWP9/6xwcnDxo1WUka2b1IScnC+8y1Xi/s/YcblxKYN/mWXQdtJiylf1p3KoHy6d8rv01gbWCz3pNxdbO+DZKT5Uo5UGTT0axc0kfcnKycfOpRuDHuX189H8z+bDnEvyqvEXNNzuyaVYHsChGCUcPgrvPemna6L2Oo9gwVztOvfyq0bhD7nVwYOtMOg54zuvAjG0khBBCCCGEePVYaEyZuTWzGzduEBoayubNmwG4du0aX331FcuWLQOge/fubN26FVtbWyIjIxk0aBC2trYMHDgQKysrGjVqxEcffcTs2bNxcnKicuXKLFq0iKioKM6cOcPGjRtp3bo1kydPZs2aNWRmZjJ58mQiIiJ0e5Mbm2hv1qwZ27dvp3jx4gwfPpyGDRvSqlUrdu7cyaFDh4iMjKR+/focO3aM2NhYo/GHDh3K22+/TXBwMDNnzsTf35/Y2FhKlChBt27dCAkJISIigr1792JpaUmPHj2Ii4tjxowZLF++nICAAI4e1W4nERoaSqdOnXQr3/MKDw+nT58++Pj48PDhQzp37qybsM6v/k89u0f7s33x8ccf6/Y2f1rnzz//nK5du9K4cWN27tyJs7Mzvr6+evmebbtJkybx2muvYW1tzf79+5k+fTr3799nxYoVDBw4kKFDh9K8eXO9rXxOnz7NxYsX+fDDD8nMzKRTp07MmDHD6FiIiorS7c0PsG7dOmJjY7G0tGTChAkcPXqU6OhoJk6cyIcffsjWrVuxsrKiZ8+ezJ07l+DgYH744QdcXFyYNWsW7dq1w8PDI9/xevBM/vvDvgjeNrcLT/QcNBbm3dvL4l+4pZj7HB5mOZo1vm/mRbPGP29R3azxAWooj5g1vs2Dov+ypCj+8PrYrPEzc8w/iXbt/vM/G6Agjx6bNTxlPzC+lc+Lcnrdn2aND1C9ff5bub0I6b+a9xzuPjD/Xo/lPqxi1vgp+86ZNf7DNPN/pvUJlj03hRBCCCFE/q5cPP9fV+GlUrai6c96+7e9NCvaL1++TEhICGq1muzsbEaOHIm3tzcAXbp0oVOnTlhaWhIUFKTb4qFFixaEh4czYoT+6mB/f3/27dtHx44dARg1ahSVK1cmICCAdu3aodFodO+ZKjQ0lOHDh7Nhwwasra0ZP348AFWrVqVt27Zs2rTJaPzQ0FCGDh3KmjVr8PLyok+fPmg0GsLCwnB2zl1h2aVLF4YNG0aXLl3QaDSMHDnSaD1M5ejoyIcffsiaNWsKrL+p6tatq6vz8OHDiYiIICoqChsbG6ZOnUpaWlqhMd577z2OHDlC+/btyc7Opk+fPoB2i5lx48ZRvHhxGjZsCICPjw/Tpk1j/fr1WFpa8sUXX+Dt7Z3vWHhWUFAQ48aNY+7cuXqv29vbExoaSvfu3QHo1q0b9vb2DBs2jK+++gqFQkG1atVwd3c3iCmEEEIIIYQQQgghxL9NY/HS7vwt8ngpVrQL8SqRFe0FkxXthZMV7YWTFe2FkxXtBZMV7YWTFe2FkxXtQgghhBDiv3b5L/POIbxqylUo+jPf/i0vzYp2YZqEhASmTJli8Pp7771X5FX6QgghhBBCCCGEEEIIIZ6fTLS/YmrVqsWqVav+62oIIYQQQgghhBBCCCGEeEI2+RFCCCGEEEIIIYQQQgghnoNMtAshhBBCCCGEEEIIIYQQz0G2jhFCCCGEEEIIIYQQQoiXkAaL/7oKwkQy0S6EEEIIIYQQQgghhBDilTd+/Hji4+OxsLBg2LBh1KpVS/feoUOHmDZtGpaWlgQGBtK7d+9C8xSFTLQLIYQQQgghhBBCCCGEeKUdO3aMq1evsn79ev766y+GDRvG+vXrde+PGzeOJUuW4OHhQefOnWnZsiUpKSkF5ikKmWgXQgghhBBCCCGEEEII8Uo7fPgwQUFBAFSoUIGHDx+SlpZGiRIluH79Oo6Ojnh5eQHQuHFjDh8+TEpKSr55ikom2oUoojLWV80aX21ha9b4FhqNWePfzXQ1a3yAyqo4s8bPLmHeW+PjYqXMGr9szmWzxgdIcqhm3viWb5s1fjWr82aN7/DwulnjA9QuVdys8S0css0af/u+c2aN39kjwazxAfaZ+Rw+Ua8za/x7r9U2a3yAA2Zuo7bZ0WaNH3G1jVnj165uz6pfzVoEACGB5i9DCCGEEEKI/9q9e/eoXr267tjZ2Znk5GRKlChBcnIyzs7Oeu9dv36dBw8e5JunqGSiXQghhBBCCCGEEEIIIV5CGgt5GOo/pfkHi03/SZ6nZKJdCCGEEEIIIYQQQgghxCvN3d2de/fu6Y7v3r2Lm5ub0ffu3LmDu7s71tbW+eYpqmL/sN5CCCGEEEIIIYQQQgghxEvhzTffZM+ePQCcPn0ad3d33RYwPj4+pKWlcePGDbKysoiJieHNN98sME9RyYp2IYQQQgghhBBCCCGEEK+0evXqUb16ddq3b4+FhQWjRo1i8+bNlCxZkhYtWvDdd9/x7bffAhAcHEy5cuUoV66cQZ5/SibahRBCCCGEEEIIIYQQQrzyBg0apHdcpUoV3X/7+/uzfv36QvP8UzLRLoQQQgghhBBCCCGEEC8hjUYehvqqkD3ahRBCCCGEEEIIIYQQQojnIBPtQgghhBBCCCGEEEIIIcRzkK1jhHgBTsYnsHDpCjIyMvBwd2dw/z64ubrqpfnr0mVmzlvIw9RUHB0c6N+7J+XLlS1SOQd++YV169aRlZVFmbJlGTBgAMWLFzdIFxcXx5LFi8lQKnF3d2fggAG4urkVGDsuLo7FS5agzMjA3d2dAQMHGpzDpUuXmDN3LqkPH+Lg6EjfPn0oV66cyfU/8utPbNu4lOysLHzKVOCLvhHYFzd8knPs0V/ZsnYhmZmZlCjpSLde4fiUqVBg7BOJZ5m1aiMZShWeri5EfNMNdxcnvTTxZy8yc+UG0jOU2CoU9O/6GXWrVTK5/gC/Hohh/bo1ZGdl4VemLP0GDDLaB/FxJ1m6ZNGT9vSg38BBuLoW3Acn4+OJWrKMjAwl7u5uDBrQz+g4mj13vm4chfbpRXkT+yA2/hQLlq5EqVTi4e7GkH69cXN10Uuj0WhYv2UbS1auYVrkd9SsXtWk2E/9dmA/G9evIjsrG78yZenTfwjFjfRxVlYWq5YvYtuWjUSt2FBo2zzrxO//Y8/mRWRnZeHlW5HO34zBzr6kQbqEEzHsXD+PrCw1xUuUov1XI/D2e63A2OZuo+OnLzBjzY9kqNR4ujox6qsOeLiU0ksTd/4S06N/1I3TgZ0/ol6Vgsf/U//GdXAi8SyzVm/msVKFl5szI3p2wSNvGef+YubKTaRnKLGxsWZAl0+pW7Xgtn/W6WM7ObhzPtnZmbiXrkSrruOxNdLHT11I+IX1s3vQZ8I+Srn6FBg7Nv4UC5atIkOpxMPNlbAC+njxqrVMjxxFzWpFuw7MfQ7Hzl5i+safeKxS4+XiyOhuH+Hh5KiX5sS5K8z84SfSMlTYKqwZ1O5dXq9U1qS6n4xPYNHS5WRkaK+DQf37Gr0XzZq3gIepj3B0KEm/3r2K9Jlm3va5zLQffta2j7MjY7p+iIeTg16aE+evMGPzXl37DP6sJa+/Vsbk+gPUqWhJ0OvWFCsGt1Ny2BCjRqk2TOdgb0H7ZgpcHS1QZsLW39RcupVTaHxztpEQQgghhBDixZMV7UI8pwylksjJU/m27zesWDSPhvXfYMbcBQbpIidPpd0nbVixaB7tP/2Y8d9PL1I5d+/eZf78+YweM4aoxYvx8PBgxYoVBumUSiWTJk6kX//+LF68mICAAGbPmVNgbKVSycRJk+jfr58uz5zZsw3STZw0ibaffMLixYv57NNPmTx5ssn1v598m9VR3/PtyBlMmr8JV3cvNq2eb5Au5f5domaOpufAsUycu4GGgS1ZNm9CgbEzlCoiZkQxrEcXNs4cx1uv12JS1Gq9NOrMTIZMmUvvjh+zfvoYerT7kJEzF5tcf9D2wcL5cxk1OpIFUcvw8PBg1YqlBumUygymTBpP334DWbh4Of4BDZg7e2Yh56Bk/KTvGRDal2VRC2gQUJ9Zc+YZpBs/aQqftv2YZVELaPfpJ0ycMs2kumcolYybMp1BfXuxcuFsGvq/zvS5Cw3SzZi3iBtJNynl6GgkSsGS795h8YJZRHw3kbmLVuLu4Un0yiVG004YOwJbW7sil5Fy7xablk6k19B5jJy5HRf30mxfazhW/065w6q5I+jWbyIR03/kjbfeY13U2AJjm7uNMpQqhs1dScSX7dj8/TAC61ZnwrKNemnUmVl8O20pfdu1YtPkofRs+x7D564yOb65r4MMpYoRs5YwrEdnNs0YzVv1ajJp8RqDMgZ/P59vOn7E+mmj6PHZB0TMMj4OjHl4/yZ71o6lfegivhm3B0eX0vyyNf/7ZaYqg/2bp2JXvFS+aXLrr2Ts9zMY1LcnqxbMomH9N5g2b5FBuunzo7hx8xZOjg5GovzH56BSEx61iZFdPuDHcaEE1qpM5OodemmU6kwGL1jP0E6t2DK2L1+3bkLYoo1oNJrC4yuVjJ88lYF9e7N80Twa1PdnZj6faZ990obli+bR7tNPmPC9afciMH/7hC35gVEhrdk2pg+Na1Vi3JqdemmU6kwGLdzIsA7BbB3dmx7vN2ZI1CaT2uepUiUs+OgtBYt3qpi8VsmDVA3v1bc2mrZ9MwVnr2UzPlrJjwfVvFmj8HUu5mwjIYQQQgghhHnIRLsQzyku/hSenp68VlG74vTdFs3542Q8jx9n6NJcunKVtPTHvNkwAIBGAfX5++FDrl6/bnI5Rw4fpk6dOri7uwPQ8p13OPjbbwbp4uPi8PT0pGLFigC88847nIyN5fHjxwWcQ7xBntiTJ/XyXL58mbS0NBo1agRAgwYN+PvhQ65du2ZS/WOPHqBaLX9c3DwBCAz6gOO/7zNIZ2VpRa9B4yjtVx6A16rV5ub1SwXGPpF4Fm8PV6qU165GbN3sTY7GnyE9Q6lLk5WdTfjXIbxeQ/u06dpVKpL84G8epeffLnkdPXKI2nXq6vqgRcv3+P3grwbpEuKf9oF2BW+Ld94l7uQfhfRBAl6eHs+MoyD+OBmn3wdXrpCens6bDRsA0LBBAH8//Jtr1wofRycTEvHy9KBSRW27vteiGSfiEvTGKcA7zZswqG8vrKwsC42Z17Ejv1OrTj3c3D0ACHonmEMHDxhN+2n7EDp07l7kMhKOx1CpZgDOrl4ANGzWhpNHfjJIZ2lpRfd+k/Dy0bZnhSr1uHX9rwJjm7uNjp+5QGk3F6qU8wXgg8YBHDl1zmCcDv/iM96oph07dSqVJ/nBQx6lZxiN+ax/4zo4cfoc3u6uVCnnpy2jaSOOJvxpUMbQrzrxRvXK2jIqV3hyDqaVcT5uH2WrNsTRxRuAOm+15c8Tu/NN/+v22dRs8AEKW8NfluR1MiERLw8PKlXQ9nFwUFNOxMUb9HHLZo0Z1Kcnllb/7Id/5jyHY2cv4+PqRNUy2tgfvVmXw2f+Il2p0qXJzMpmZNcPqfYkTUCVctxPTePRY6XRmM+Ki0/AU+9e1PzJvSi3jfLei4r6mWbW9jn3pH38tPeIjxoZaZ/sbEaFfJCnfdJNap+nqpe15MKNbP5O007OHzubRa0KhuPFsbgFPm7FOJiYBcBfN3NY9bORZe95mLONhBBCCCGEEOYhE+0voRs3blC3bl1CQkLo3LkzXbt25fDhw0WKsXnzZn7++eci52ncuLGu3JCQEC5evGhy/t278/8DMD83b94kISEBgMjISK4XYeI5P6mpqQQFBZGSkqJ7bdeuXYSGhj53bGNuJN3E29NTd2xnZ4dDyZIk3bqll8bL00Mvn5eHB9evJ5lcTlJSEl5eXrn5vbz4+++/efToUYHp7OzsKFmyJLdu3jQ59tM8N585h6QCUe03AAAgAElEQVSkJLyeOU8AT09Prt+4YVL9b9+8hrtnad2xu5cPqQ9TSE9L1UvnUMqZWvUa6o5P/XGI8q9VLzD2tVt3KO2Ru/WIva0tjiWLc+P2Xb3XmgbU0x0fikvEz8uDksXtTao/wM2kG3ga6YM0gz64gaeXt+5Y254O3LpVtD5wyNMHN5Ju4pl3HHl6cs2EPtCO09y82vgl9MYpQPUqlQuNlZ+bSTfw8Mw9b08vbx7+/cCgfQCqVC24T/Nz99ZVXD1yt0Rw9fDl0cMUHucZRyUdXahW5y3d8ZmTBynzWs0CY5u7ja7dTsbHI3eLEntbGxxL2HP9zj2915r519IdH0r4Ez9PN0oWL3z1/79xHVy7dRcfo2Uk65dRv67u+HDcafy83E0u4/6dKzi5+emOndz8SH90n4z0hwZp7944x6UzhwgI6mZS7BtJt/D2ytvHJUm6dVsv3fNcB2Dec7h65x4+brlb9djb2lCquB3X7+Z+5pW0t6VpHe2XKRqNhq2/x1L3tTI4mDCO8vtMK/Re5OFp8meaedsnBR/XZ9tHQani9vrtY2dL0zraPtZoNGz5/ST1KvqZ1D5PuZWy4H5q7gr4ew81lLS3wE6hn87b1YKURxreD7BmSAdben1og7erRaHxzdlGQgghhBDi1aKhmPx75t/L7OWu3f9h5cqVY9WqVaxevZqxY8cyduxYzp49a3L+jz/+mBYtWhS53ODgYF25ffv2Zdy4cSbnXbTI8Of3hTly5Ihuon348OH4+voWOUZeDg4OdOvWjXnztNtuqNVq5s6dy+DBg587tjEqlQqFQv/n4gqFAqVSqZ/GWj+NjY0Cpcr01XMqlQprRe5f8NYKBRYWFqiU+jGUKhUKhf5f+jY2Nnr1MYitVBaaJ2/5ADYKhUH5+VGrlFgrbHLrb/20/vmv1D0df4w929bS8YsBBcZWqdTY5G1fhYIMlcpo+gtXbzBzxQbCvu5sUt1zy1GhsH6mD56cQ95+VCkN+0BhoyiwD5RGxoh2HOWeg8pI3+YdawXW3Uj/PRv/ealU+uMov/Z5HpkqJdbWRsaRKv/V0udOHWH/zlV80rXge4C520ipyjToY1uFNUqV8dWtF67dZNrqrQz7/DOT4v8b14FSpTa8lymsCyxjxqpNhH/ZyeQyMtUZWD1znVlZK8DCgkyV/r1Co9Gwa/UoWnYYgaWV8S07DOtv5F6sKNq92BRmPQd1Jgpr/ZXT2j4wHEc//3GaFoO/Z+MvJxjeqZVJ8U35TDPajkX4TDN3+9gYtI8VGepMg7Q//3GGoLBpbPz1BMM7vm9S/KesrSzIys6daM/OgRyNBoW1/iS6ncICT2cLLt3KYfJaJbHns+jW0oZihcy1m7ONhBBCCCGEEOYhD0N9Bfj5+dGzZ0/WrFlD5cqV2b59O8WKFSMoKIiuXbsSFBTE7t27sbGx4dixY6xcuZLKlSvj5ORE586dGTduHAkJCVhaWjJ69GgqVarE9OnTOXHiBNnZ2XTu3JlWrQz/AK9duzZXr14FtFuJBAYG4uLiQps2bRg2bBiZmZlYWFgQGRnJnj17OHfuHH369GHOnDlG4yclJREeHk52djbe3t6Eh4czZ84crKys8PLyYvny5URERODl5UV4eDipqalkZWUxYsQIqlevTosWLQgKCiI2NpaSJUuyaNEiihUz/l1R+/btadOmDVevXiUmJoamTZvi6+tLdHS0Xvt9/vnnnDlzhtGjR6NQKFAoFEyfPh0HB9P35bW1tUGd5w94lUqFnZ2dfppM/TRKlRq7Qvao3r5tG9u3bwfA0soKJ6fcVXpqtRqNRoOtnX4MW1tb1Gr9CReVSmWQzpQ8dra2emky86RRqlTYPpMmr593bmDfzo26+juWyl3Nq1ar0Gg02NgaX+X6x5FfWL3oewaMmKbbRib/+tugMtK+9kbqlnDuL4ZPX8iwHl14vXrhq1Z3bN/Kju3bALCytKSUsT6wNa0P7ApoK1tbW4MxYtAHNjbG4xbQtwXVSalSY2eXf51MsWv7Fnbt2AJot2sp5eSse+9p+xQ2zgtzYPdaft29FoBillaUfGYcZRYyjuKP7Wfjsgn0DJ+j20YmP+ZqI118G4XhfUCdiZ2tjUHa+POXGTp7BSO+bMcb1SqaFt+M18FTdrZGzkGVib2Rc0g49xfDZi5m2Nedeb16wQ9bPb5/NSditPvJF7O0poRj7qr5rEwVaDQo8vRx7K/rcfWuiN9rb5hcf+P34oKvTVP9W+dgZ6NAnZml95pSnYm9rcIgbYvXq9Pi9eocO3uJr6cuZ/3IXrg65v8wTXh6HRjei2zt9D8PitqO/177WKMy0j52NsbapxotXq/GsbOX+Wr6SjaM6IGro+HDm596s4aVbn/17Bx49Dh3ot3KEopZWKDK1N/nXamGtAwNp69kA3D0z2xaNVTgVsqCOw/00/5bbSSEEEIIIYQwD5lof0XUqFGDqVOncvnyZdau1U44dejQgXfffZeGDRty+PBhmjRpwr59+2jZsiVXrlwB4NChQ9y+fZsNGzZw/Phxdu3aRWpqKklJSURHR6NWq2nTpg1BQUEGZcbExFCzpnarhaysLAIDAwkMDGTo0KG0bduW4OBgdu/ezZw5c5g0aRJRUVHMmTOHEydOGI0/ffp0unXrRvPmzZk8eTJJSUm0adMGJycnmjdvzvLlywFYsWIFtWvX5uuvv+bUqVNMmDCB1atXc/36dT788EPCwsL47LPPOHfuHFWrVjXaXlZWVgwcOJBx48Zx8+ZN1q9fz/Xr19m9e7dB+23evJkOHTrw0UcfcfjwYZKTk4s00e7r48Mvv/2uO05LTyctLY3S3rnbgPj5+HDzma0JNBoNN2/dooyfDwVp/cEHtP7gAwB27NjBqVOndO8lJSXh7OxMiRL6kwK+Pj78+mvuvuHp6ek8evSI0qVLkx8fX99C8/j4+nLrtv453Lp1Cz8/P/LT4v3PaPG+djXuvl2bOJsYq3vvzs3rlHJypXgJw0mf03HHiF48jcGjZ+PtWy7f+E+V9fZk76HjuuO0x495lP4YX093vXQXrt5g+LSFjO3/FXWqvlZoXIBWrT+iVeuPANi5YxuJpxJ0793Mpw98fH357dfcvcnT09NJe5SGdwF94Ofjw4FfD+rnSUvDu3TuViy+vj7cMjqOCv8liK9PaWIKGaf/RHDrNgS3bgPA/3Zs5XRivO69Wzdv4OTsQvES+U9cmaLxux1o/G4HAH7ds46LZ/7QvXf39lUcnNywL254zZ5NOMKm5ZPoM3whnj4Ff1kD5mujp8p6u/Pz0ZO58R9nkJr+GD8PV710F67dJHz2Csb3DqFulYK/HNCPb77r4Kky3p7sPZTb/mmPM/ItY9iMKMaGfkFdE8rwb9YZ/2balfUnYqK5dj73PFLuXKGEoxu29vp9fD5uH7euJjI9PgaAx49SWBrZlo97zKBslQZGy/HzKU3MwUO59U9PJy0t/YX08b91DmU9XfnpeKLu+NFjJamPM/Bzz/0C6nbKQ/68epOmdbWfkfWrlMfDyYFTl27oXsuPr09pDvxmeC8q7Z17L/LzKfq96F9rHw9X9pw4rTt+lKEk9bGSMu65XwLeTnnImWu3aPZke536Vcrh4eRAwuUbuteM+T0xi9+f7LXeqLoV5b1zv+x3dbTgYXoOyjw/LHjwKAcbawssgKfT6hogx8hzV/+tNhJCCCGEEEKYh2wd84pIT0/H3t6eq1ev0qVLF7p06UJ6ejpJSUm888477N+/H4CDBw/StGlTXb7Tp09Tr552P15/f3/69+9PbGws8fHxhISE8MUXX5CTk0NysnZ/3V27dun2aN+zZw/Dhw/XxapVS7tvcGJiIvXr1wcgICCAM2fO6NU1v/hnzpzR1WXIkCHUrl3b6LkmJiYSEKB9aGjNmjV1q+pLlChBlSraP4A9PT0N9ibPq2nTpjx+/Jh27dpRokQJTp06ZbT9mjdvzvz585kxYwYuLi5UqGD6xBZAnVo1uHM3mVOnte3ww9btBNR/Q29lXxk/XxwdHdj3i3Yy+6d9MXi4ueFTwMRrXg0aNCA+Lo4bT/bj3rJlC42bNDFIV6t2bZLv3uV0YqIuXf2AgAJXnteuVYu7yckknj6tyxNQv75enjJ+fjg6OBATo/1jfu/evbi7u+PjU/CXBU/VDQjkTMJxbt3Q9ufuH9fQIPAdg3QqlZLFs8bQN3ySSZPsAPVqVOZ2cgpxZy8AsHbHXt6sV1NvpbBGo2Hs3GUM/rJjkScXn2rQoBHx8Se5cUP7LIGtWzYR2LipQbqatepwN/kOp09r++DHLT/gXz/AYOX7s2rXqsndu3dJ1I2jHwmo759nHPnh6OjI/l+0k/g/792Pu5u7SeOobs3q3Ll7j1On/wRg0487aOD/+gtZyftU/QZvkhAfS9IN7QNyt23ZyNuNm72w+AC1/JtyLvEod25eBmD/jlW88eZ7BunUqgxWz4/gq0HTTZpkB/O30RvVKnL73gPizmkf7hv9vwO8Vbe6wTgdtXANYd0+KdIkO/w718Hr1Stx614KcWe1z+9Yu3Mfb9arYVDGmPkrGPxFB5Mm2fOqVCeIy2cPc/+2tp2O/Lyc6vUNf3XVoV8UA6cdZsDU3xkw9XccnL34fPimAicXtX2czKkzT/t45wu/Dsx9Dv6Vy3Er5SEnL2jvpdF7D/N2zUp6K7Yzs7IZuXwrf93U7s9/9c59rt9Noby3u9GYz6pTqyZ37iY/cy/alu9n2tN70U/79hfpM8287VNW2z4Xtfeh1XuPEFjzNf32yc5m5IofuZinfSp4uRmNaUzilWxeK22JWyntHjCNa1sTdyHbIN2tFA2p6RrqV9U+PLlWeUsyVBruPzQy0/4Mc7aREEIIIYQQwjxkRfsrIjExEZVKRZMmTRgzZozee2q1msmTJ3Pu3Dl8fX31VtdaWlqSk5Ojl16hUNC2bVt69Oih9/rx48cJDg4mLCzMaB2sn+zHamFhgUaj/QMxMzPTYPuW/OJbWlrq8hXk2fiArv6WlpZ66UyJ5evrq9v33dra2mj7AWzatImYmBjCw8MZMmQIDRqY/geqjY0Nw4d8y+z5UShVSry9vBgyoC/37t0nfORoFs+bBcCwwQOZNnseK6PXUcrJkaGDCt53PC9XV1e+6d2bsWPGkJ2dTYWKFenVqxcA586dY9XKlYyLjMTGxoaw8HDmzZuHUqnE29ubAQMHFnoO4WFhenkGDhjAvXv3GBERwYL58wHtFyQzZ81idXQ0pUqVYkgR9r13dnGnS88hzJwwmJzsbMqUr0ybrwcB8Nf502yOXsDg0bOJPXqAR6l/s3DaSL38Q8cv0Nt65lm2CgVj+3/F90vWolSq8PF0J6J3N+6mPKB/5EzWTP2OxAuXuHj1BnOjf2Bu9A+6vKNDv6RK+TImnYOLqyu9vgklcuwobR9UeI0evfoAcP7cWVavWs6YcROxsbFhSNhwFsybjUqpxMvbm/4DCm4rGxsbhoUNZs78Bdo+8PJi0ID+3Lt3n6EjRxE1b462HYZ8y/RZc1gZvQanUqUIH/ytSXW3sbEhYkh/Zi5YjFKlorSXJ2H9e5N8/z5hI8exdO50AD7vPYDs7Gzu3U8hcupMbBQKwgf2pWqlwidMXVzd6PFNfyaMjSAnJ5vyFV7jy56hT9rnT9auXsqosVP4+0EKI8L76/JFhPfXbm0VORUX14Inuko5e9Dui+EsmtKfnOxsfMtV5f3PhwJw5eIpdqyfS5/hC0g4HkNa6gNWzArXy9/vu2U45DOOzN1GtgoFkb27MGnFD2Qo1fh6uDKqRwfupvxNn8kL2TAxjFMXr3Lx2k1mr9vB7HU7dHkjv+lMlXIF/3Lh37gObBUKxoV+wZSl61Cq1Ph4ujGyVxfupvxNv/GzWPv9SBIvXObi1STmrtnC3DVbdHnH9P2cKuXy/wXMUw5OHrzXcRQb5vYmJycbL79qNO4wAoCkywkc2DqTjgOWFBrHGBsbG0YOHsCMBUtQKpWU9vIk/EkfDxkVybI50wDo3mfgM308C4VCwdABfUy6Dsx9DrYKayZ+1ZYJa3eiVGXi6+7M6G4fcfdBKt/MXMWm73rj6+7MyJAPGBq1icysbCwsYHD79yjjYXzs520j7WfaIt1n2uABoU/uRaOJyvOZtiJ6HU5OpQgfVPDnzL/aPl98woS1/yNDrcbXzZkxXT/kzoNUvpkdzQ8je+Hr5szIzq0ZumTzk/axYPBnLU1qn6dS0zVs/k1Nt3e1+60n3cthz3Htdjq+7sV419+aqJ3aZxes/ElFu6YKmtWzJi1Dw8o9KqMr2v+tNhJCCCGEEK8WDYU84Ee8NCw0psxWin/VjRs3CA0NZfPmzQBcu3aNr776imXLltG9e3e2bt2Kra0tkZGRDBo0CFtbWwYOHIiVlRWNGjXio48+Yvbs2Tg5OVG5cmUWLVpEVFQUZ86cYePGjbRu3ZrJkyezZs0aMjMzmTx5MhEREWzevJkLFy4YnWhv1qwZ27dvp3jx4gwfPpyGDRvSqlUrdu7cyaFDh4iMjKR+/focO3aM2NhYo/GHDh3K22+/TXBwMDNnzsTf35/Y2FhKlChBt27dCAkJISIigr1792JpaUmPHj2Ii4tjxowZLF++nICAAI4ePQpAaGgonTp10q18z094eDgtW7akadOm3Lx502j7bdq0icaNG+Pr68uPP/5ISkoK3bt3zzfm9Qtn8n3vRVBbvtiVlXlZmPmSv5vpWnii51RZFWfW+MklTFtJ/0/ZaPJ/AOyLYJVj/OGaL9LDYqZPSP0TSenmjV/N7rxZ4zs8vG7W+ABZiuJmjW+RY7g690Xa/ujF/tohr+YeCYUnek777tQya/xPNOvMGv+et/Fflr1IB24VvFXN82qbHW3W+BFn25g1fu3qxp8v8aKFBP4rxQghhBBCCDM4/9e1/7oKL5VKFQpfwPVfkRXtL6nLly8TEhKCWq0mOzubkSNH4u3tTZcuXejUqROWlpYEBQXptvZo0aIF4eHhjBgxQi+Ov78/+/bto2PHjgCMGjWKypUrExAQQLt27dBoNLr3TBUaGsrw4cPZsGED1tbWjB8/HoCqVavStm1bNm3aZDR+aGgoQ4cOZc2aNXh5edGnTx80Gg1hYWE4O+fundqlSxeGDRtGly5d0Gg0jBw50mg9iiq/9vPz86Nfv36ULFkShULBhAkTXkh5QgghhBBCCCGEEEKI/xtkRbsQRSQr2gsmK9oLJyvaCycr2gsnK9oLJivaCycr2gsnK9qFEEIIIcR/TVa065MV7UKYQUJCAlOmTDF4/b333ivyKn0hhBBCCCGEEEIIIYT4p2SiXbyyatWqxapVq/7ragghhBBCCCGEEEIIYRbyMNRXR7H/ugJCCCGEEEIIIYQQQgghxKtMJtqFEEIIIYQQQgghhBBCiOcgE+1CCCGEEEIIIYQQQgghxHOQiXYhhBBCCCGEEEIIIYQQ4jnIw1CFEEIIIYQQQgghhBDiJSQPQ311yIp2IYQQQgghhBBCCCGEEOI5yIp2IYqo1N9XzBr/rksVs8Y3two558xexhX76maNXy41wazxz9j6mzU+QBnLK2Yvw5yc7dL/6yo8l1RHXyxzssxahsrK3qzxPU7uMGv8W8WamDX+6uQa9Hk01qxl3CpZw6zxr9V5y6zxy57+0azxAW5lVjZr/JSatcwaf1zyPLPGn5U80KzxAT6rfZErF81bRtmKlcxbgBBCCCGEEK8AWdEuhBD/n3nVJ9n/f2DuSXZROHNPsgshhBBCCCGEEM+SiXYhhBBCCCGEEEIIIYQQ4jnIRLsQQgghhBBCCCGEEEII8Rxkj3YhhBBCCCGEEEIIIYR4CWmw+K+rIEwkK9qFEEIIIYQQQgghhBBCiOcgE+1CCCGEEEIIIYQQQgghxHOQiXYhhBBCCCGEEEIIIYQQ4jnIRLsQQgghhBBCCCGEEEII8RzkYahCCCGEEEIIIYQQQgjxEtJo5GGorwqZaBfiBTh++gIz1vxIhkqNp6sTo77qgIdLKb00cecvMT36R9IzlNgqFAzs/BH1qlQoUjkHfvmFdevWkZWVRZmyZRkwYADFixc3SBcXF8eSxYvJUCpxd3dn4IABuLq5FRg7Li6OxUuWoMzIwN3dnQEDB+Lm6qqX5tKlS8yZO5fUhw9xcHSkb58+lCtXzqS6/5Fwmrkr1vI4Q4WnuwvD+nyNu6uzXhqNRsParbtYGL2RWWOGUrtaZZNiP3XowF42r19OdnYWvmXK07PfMOyLlzBIl5WVxdrl89m5dR1zl2/BxdXdpPgnEs8ya/VmHitVeLk5M6JnFzxcnPTSxJ/7i5krN5GeocTGxpoBXT6lbtXXTD6Ho7/tYfvGJWRnZVHarwKf9x1l9BxOHjvAljULycpSU6KkI116DsWnTMUCY8fGn2LB0pUolUo83N0Y0q83bq4uemk0Gg3rt2xjyco1TIv8jprVq5pcd4DfDuxn4/pVZGdl41emLH36D6F4Pn2wavkitm3ZSNSKDbi6Fjw+n3Xo15/Z+qSfffzK06Pf8Hz7ed2KeezaupbZy340qZ/N3UaxCYnMW7aaDKUSDzc3wkN74m4k/rotO4havY4Z4yKoVa2KyfFPxscTtWQZGRlK3N3dGDSgn8F1/Nely8yeO5+Hqak4OjgQ2qcX5U28jgGO/pXEtN1HeKzOwrtUCcZ83BgPR8P2Bzh36z4d529mQbf38S/vbXIZf8XvJC5mAZqcLJw8XuPtTyJR2JbUS/PoQRIbp76Lg7Ov7jU335o0/nRSgbGPXbnN9P0neazOwsuxOKPfb4CHg71emroT1lDW2UF37F7SjoUdm5tcf3OfA8CvB/azcV209vOgTDn6Dhhk9FpLiDvJsiULUGZk4ObuQejAIYVeb0cvXmfajoM8VmXi7VSSMZ8F4VGqpNG0524m03HmehZ8/RH+FXwKrfdT5myff+Ned/RSEtN2H+WxOhPvUiUZ0yaw4OtgwRYWdAvGv9zLcR3ExccTtWTpk3uFO9/me6+YR2pqKg4ODoT2+aZI9wohhBBCCCH+r5GtY4R4ThlKFcPmriTiy3Zs/n4YgXWrM2HZRr006swsvp22lL7tWrFp8lB6tn2P4XNXFamcu3fvMn/+fEaPGUPU4sV4eHiwYsUKg3RKpZJJEyfSr39/Fi9eTEBAALPnzCkwtlKpZOKkSfTv10+XZ87s2QbpJk6aRNtPPmHx4sV89umnTJ482aS6ZyiVjJo6l7BvvmTdvCm8+UZdvl+wzCDd9wuWc/3mbZwcHYxEKdi9u7dZtnA64d99z/SF63Bz92LdyoVG034/NgxbO7sixc9QqhgxawnDenRm04zRvFWvJpMWr9FLo87MZPD38/mm40esnzaKHp99QMSsJSaXcT/5NqujpjAgYhYT5m3G1d2bH6LnGqR7cP8ui2d+R49vxzF+ziYavP0uK+aPL6T+SsZNmc6gvr1YuXA2Df1fZ/pcw/aZMW8RN5JuUsrR0eR6P5V89w6LF8wi4ruJzF20EncPT6JXGj//CWNHYGtbtD4AbT+vWDiNIaOmMnXBetw8vFi/aoHRtFPHDSlSGeZuowylktHfz2JInx5Ez59BI/96TJu/2CDdtPlLuH7zVpGvgwylkvGTvmdAaF+WRS2gQUB9Zs2ZZ5Bu/KQpfNr2Y5ZFLaDdp58wcco0k8t4rM4kbMM+vmvTmO0D2hFYpQxjtx00mjYnR0PktoO4lLA3+n5+0v6+yZHtkbTstpC2A/9HCafSnPhphtG0xR3caTtwl+5fYZOLGeoswn/8nZHBAfzYszWBFUsTufuY0bRberTS/SvqJLs5zwG011rU/DmMHD2e+VErcPfwYPWKpQbplMoMvp80jj79vmX+4pX4BzRk/uzpBcZ+rM4kbPVuvmvbnO1hXQisVo6xm2OMps3J0RC5OQaXki9RH/8L9zrtdbCf7z4KZHv/dgRW9iv4Otj+cl0HSqWS8ZOm0D+0L0ujFtIgwJ9Zcww/ayZMmsxnbT9madRC2n3alklTphbpHIQQQgghhPi/Riba/4+ZOHEiISEhvPvuuzRu3JiQkBD69OljUt7w8HBiYgz/2D569CgdO3akc+fOtGnThuXLl7/gWhds9+7dBb4/e/ZsPvnkEzQaje61kJCQF1b+8TMXKO3mQpVy2tVkHzQO4Mipc6RnKHVpsrKzGf7FZ7xRTbuyuU6l8iQ/eMij9AyTyzly+DB16tTB3V27KrflO+9w8LffDNLFx8Xh6elJxYra1c3vvPMOJ2Njefz4cb6x4+LjDfLEnjypl+fy5cukpaXRqFEjABo0aMDfDx9y7dq1Quv+x6kzeHu6U7lCWQDeb96YY/GneJyhf/7vNX2LsN5fYGVpWWjMvE4c/Y0atV/H1d0TgKbvtOLo78Ynhz5u351PO31ZtPinz+Ht7kqVcn4AtG7aiKMJfxr089CvOvFGde1K/NqVKzzp5/zb/lknj/5CtVr+uLhpz+HtFh9y4vd9BuksLa3o+W0kpX3LA/BatTokXbtUcOyERLw8PahUUZvnvRbNOBGXwOPH+n3wTvMmDOrbCyurovfBsSO/U6tOPdzcPQAIeieYQwcPGE37afsQOnTuXuQy/jj6G9Vrv6Hr5yYtWnP09/1G07Zp3522nb4yOba52yg24TTeHu5UqqBdERoc1JTjRuK3/H/s3Xdc1PUfwPEXskEEZCO498KRopa2NM3UMi3N0dDc20rIPXPkKFFxYSoOzBL3yp2maCoIDhy5GAqiKCB3Bwe/P04PDg440kt/9X4+Hj4e3d3n+/5+5vfic5/v5/tWC0YN7lvs+OER5/Bwd6NKZc2dMm1ateT02XDdcXzjBmlpabzatAkATZv4kvwwmVu3bht0jpN/xeHlWIoanpqVrx0bVOP41RjSlKp8aTeeukA1Dye8SxfvB4ObFw7gUakJJR00K3+rNuzE9cg9xYclQUEAACAASURBVIpRkJM37+DlUJIa7pq7aT7wqcjx63dIU2Y8l/hPGbMMAGEn/qBuvfo5Y631uxzTM9bORZzFzd2DSpWratK98y7hZ08X+n1w8uptvJxKUcNL813TsVFNjl++RZpCTxufiKSapwveTsWbrDZm/fwj1zp94+BabAHj4OJLNw401wp3qjz5zm/dqhVnCrhWNGvaFHh6rXho8LVCCCGEEEKI/yKZaP+P8ff3Jzg4mL59+9K2bVuCg4NZUMRq56KMHz+eefPmsWbNGtavX8/u3btJSEh4TjkunEqlMmhiX6VSsWvXLqPk4dadRLzccm5Jt7GyxL6kDbfv3tN5761GdbWv/zh3kbLuLtjZGr7aNjY2Fg8PD+1rDw8PkpOTSUlJKTSdtbU1dnZ2xMfFGRz76TFx8fG6adzddY5zd3fndkxMkXm/HXeHMu4523bYWFthb1eSmPi7OulqVzd8i5W84mNv4+ZRRvvazaMMD5MfkJr6KF/aqjVqFzv+rfgEvNxytluwsbLC3s6WmDuJOu+92bi+9vXx8POU9XDFztawlYx34m7h6p6z9YKruxePHt4nLU8ZSjmUpk6DZtrX584co2LVwssUExuHp7ub9rW1tTWl7EoSm6uNAWpVL952PbnFxcbg5p6zLYK7h6emDfL0UYDqNWr9rXPEx93CzV23nR8V1M7V6xQrtrHrKCYuXie+jbUVpezsiLlzRydd7epV/1Z8feO4VJ5xHBMbh3uuPAB4uLtzy4BxDHDz3kOdCUMbS3McrC25laRb//dSHrP2eBRDWjUqdjke3btBKaey2telnMqiSEtCmf4wX1qVMo3fggfzy9y27P6pD8kJ1wrP//0UvBxytvewsTDHwdqC2w/y99ExW//gw6Xb6bXmN8JjEvN9/qLKAJqx5u6RM9Y8PDx5mJycb6zlTae5tpfiTnxsgbFvJibjnWvrMxtLCxxsrLiVlKyT7t6jNNYeDWfIu83yhiiSMevnn7jW3Ux6iHfpnC1cihwHLV+ucRATG4uHR873uf5rRSzueb7zPdzdDPrOF0IIIYQQ4r9KJtr/49RqNaNHj6Znz5588sknHD9+HIALFy7QpUsXunbtysyZObcgh4WF0bt3b9q2bcuFCxcASE5O1q6CsrKyIiQkBFdXVwICAlizZg0Aly9f1q4ib968OVOnTqVLly4MHToUlUpFQEAAY8aMoVevXrRv354jR44AsHPnTj7++GM++eQTpk6dCmhWqI8aNYpu3boxbdo0oqOjmThxYqHlHDBgAEuWLCEjQ3fVYkpKCoMGDdKW//z588WuQ4UyAwtzc533rCzMUehZ2QZw5VYcc9dsZnSvj4t1HqVSibmFhfa1uYUFJiYmKBUKnXQKpRKLXOkALC0tUeRJpxNboSjymLznB7C0sMh3fv15V+WrIwsLC9IVyiKPNZRSqcTcPFf9mOuvn79LoacMlhbmpCv1l+HKzRh+CP4F/y+7G3wOlVKBubml9nVOGQq+8+FCxEn2bl3PJ71HFhpbqa9fWFigeK5toNuPnuZfoXw+bQBP6kjPOZ5HOxu7jjRjM28fes7x9Yyz3PH1lVGTxrD6U2RkYpFnBbCluRnpqkyd92bt/IN+bzSglLUlxZWZkY6pWU4eTc0swMSETJXuODC3tKGSz3s0afctnYZvp0zlZvwWPIgsdWbekEXk35T0DN1jPqxXic+a1GBT33Z0bViV4RsPk6JnRfeLKAM8GWt6rnd5x5pSkb/PWRTxfaBQGdjGW4/Qr2Xjl66N/4lrXYF1lJF3HByn35sv3zhQKpU6/QfyXweUeq5XFhaF9x0hhBBCCGEc2ZjIv1z/XmbyMNT/uG3btuHi4sJ3333H/fv3+eyzz9i2bRtTp05l0qRJVK9enVGjRhEbq1n9ZmJiQlBQECEhIYSGhlKzZk2GDRtG586dady4Ma+99hrt2rXDvpA9TxMSEmjXrh1jx45lyJAh2kn1u3fvsmLFCqKjo/Hz86Nhw4bMmzePzZs3Y2trS//+/Tlx4gQAGRkZrFu3jpiYGCIjI4ucaHdycqJly5aEhITobBuzatUqfHx86Nu3L5GRkUyfPl3744ChrCwtUOWZwFeoMrC2yv+HdcTl63wbsIqxX3bhlZqFP7gSYNvWrWzbtg0AUzMzHB1zHrypUqnIzs7Ot9e4lZUVKpXuhJBSqSx0T/KCjrG2stJJk5EnjUKpxCpXmgLjW1rmqyOlUoWNddHHFmb3tl/Yu+NXQLOdioNjzsNVVSqlpn7+xj7g+lhb6WlnZQY2etr5XPQ1Rv+4nNF9e9CwVuGrk/ft2MD+nT8DmjLYO+bcHZGhLYP+FfFnThxizbLvGT52nnYbmYLoa2OFUoX1M7bBzm2h7Nweqs2/bhto+qj1M7bBnu0b2bv9FwDMzMywd8ipo+fZzsaqI934eceB7jh75vj5xlmecWxpqX+sG/jMAmsLM1SZap33FBmZ2Fjm/O/EsSu3efhYyXv1DL9D5cLxtVw4vhaAEqZmWNvl3D2SmaGE7GzMLHTHgZWNI806jNO+rv3a55w9sIiH927g6Kb/+qo//2ps8kwojnvXV/vf79Qox/Jj5wmPSaR55TIUxNhl2LFtMzu2bQbArICxlncc6O9zikLHi946UmXq1NGx6Js8fKzgvQaGP6j3n2pjY49jKGQc5K6jK7d5mK7kPZ+iv+uf+kfrKEPfd35Ov7CyLOB69RzrUQghhBBCiH8bmWj/jzt79iynT5/mzJkzgOaPKJVKxfXr16leXfMHdO4HXjZs2BAANzc3IiIiAOjWrRutWrXi6NGj7Nu3j8DAQDZt2lTgOW1sbKhXrx4A9erV4/r16wA0fbIPaLVq1bh79y43btygXLly2NraAtC4cWMuXrwIQN26dfVELlyvXr3o2rUrHTt21L4XFRXFgAEDAKhTpw43b94sdtzynq78FnZW+zr1cTqP0h5T1s1ZJ92VW3H4B6ziu0E9qV+9kkGx23foQPsOHQDYvn07kZGR2s9iY2MpXbo0JUuW1DnG28tL++MFQFpaGikpKZQpU/AEkZe3d5HHeHl7E59ri4vs7Gzi4+MpW7YsRSnn5cH+Yye0r1PTHpOSmoaXh1shRxWtTfvOtGnfGYC9OzZxISqnHe7ExeBY2gnbknYFHV4s5Tzd2ffHae3r1MfppKQ9xjvXljigWck++odlTBnam/o1ip5obPleF1q+1wWAAzs3cun8mVxluI2DozM2espwPiKMdUGz+XriAjy9KxR5Hm+vMhz8/VhO/tPSSE1NpYynRyFHFa1t+460ba8ZU7u2b+Z8VIT2s3htG5Qs6HCDtG73Ea3bfQTAbzt+5aJOO9/GobTzc2lnY9XRU+XKeHLw9z9yxX8yDjzdCznKcGW9vDh8JOeBjGlP8u9ZJmfrEG9vL+LjdcdxXHw85cp6G3SOCs4O7InM2ZYiRaHiUbqSsrn26D5w4QaX4u/x1gzNA58fpisZuf43RrVtSvv6+n94qtm0OzWbau7+uHBiHXeun9J+9ijpJjZ2Llha6+5xrUx/iCo9BbvSOdstZWdnUcK04P+1KV+6FHsv5DxXIkWh4pFCRVnHnP7zWJVBQko65Z1yzpeZlYW5aeE3ARq7DO+1/4D32n8AwM7tW4iKPKf9LC5WM9byfh+U8S7L70cOaV+npaWSmpKKZyHfBxVcS7Mn4or2dUq6kkfpCsq65GwncyDqGpdiE3lrkuZhvg/TFYxctYNRHVrQ/pUaeuP+U21s7HEMUMHFgT1ROc/FyBkHOfk/cPHJOJip+fFeMw72MerdJi98HHh7eXH4SM4zXp5eK8rku1bkbCWjuVbEGfSdL4QQQgghxH+VbB3zH2dubk7//v0JDg4mODiYvXv3YmFhQYkS+ruGaa6HVD59uKhCocDFxYWOHTuycOFCmjdvzrFjxzAxybmdIzMz5xbmrKwsnRhP0+V+HzSr53M/wDQjI0Ob1jzP9giGsLW1pWvXrgQFBRV4jrx5MMQrNStz594DwqM1f3Sv3XWY1+rX0lnRnp2dzYQl6/D7vJPBk+x5NWnShIjwcGKe7I8aGhrK62+8kS9dXR8fEhMSOB8VpU3X2Ne30JXnPnXrkpCYSNSTrXNCQ0PxbdxY55hyZctiX6qU9oG4+/btw9XVFS8vL70xc2tQuyZ3E5OIuBANwIZtu2n2Sr3ntpIX4BXf5pyPOE1cjObHkh2bQ2jWotVzi9+wVlXi790n/NJVANbv2M+rDWrna+fJgav4pvcnBk2y51Xf93UunjtJfOwNAPZuXYtv89b50imVCoLmT2aw3/cGTbID1K9Ti7sJ94g8r/mx6pct22nSqOFzbYPGTV7lXMQZYmM0E5lbQzfS/PW3nlt8gIZNmhMV8ae2nXc+x3Y2dh3Vr1OLu4n3OHfhEgAbt+6gaaMGzy2+T906JCQkEHVes63Xr5u34Nu4kU78cmXLYm9vz4FDmgdn/rbvAK4urngVMvGaW6OKnsQnp3Lmhmayfs2xc7SoVlZnJe+495tzePRnHPDvyQH/ntTzdmPuJ60KnFzMq1yNt4m7doLkRM2PsFFHV1LR57186RJjotgZ9DnpqfcBiD61kZL2HtiVLvhHg0bl3Ih/lMbZ25rniKw9dYnmlctgbZEzKXnn0WM+W72XW/c1+50f/yue5HQltT2d9cb8p8sA4NukGecizhATo3kw5ZbQX2jx+pv50tWpW4/ExLtcOK/5kXZr6K80atyk0BXtjSp7Ef8ghTPXNc/1WPP7WVrUqKDbxp3e4vCkvhyY8CUHJnxJvXIezP3svQIn2fMyZv38E9e6RhWejIObT8bBH5H5x0GH5hz+9lMO+PXggF+PJ+Og5UsxDnKuFZrv/E2bt9C4caP83/n29hw4dAiA3/btL9a1QgghhBBCiP8iWdH+H+fj48P+/ftp164dSUlJrFq1ipEjR1KpUiUiIiLw8fFh9OjR9O7dW+/xN27cYODAgWzcuBFbW1uysrJISEjA29ubhw8fkpioeYDc6dM5K4EVCgVRUVHUrl2b8PBwOnfuTGRkJKdPn6ZPnz5cunQJT09Pypcvz82bN0lNTaVkyZKcPHmSAQMGaPeRByhRogRqtTpfvgry8ccf07lzZ+1t5XXq1CEsLIx69eoRHh5OlSrFnxy1srBg2qBPmbnqV9IVKrzdnJnQ7xMS7iczeNYSfp7hR+TVm1y9FUdAyHYCQrZrj502sAfVKxi2ktTZ2ZmBgwYxZfJk1Go1lSpX1q7Gj46OJnj1aqZOm4alpSV+/v4sWrQIhUKBp6cnI0YWvn+3paUl/n5+OseMHDGCe/fuMXbcOBYHBgIwatQofpw/nzVr1+Lg4MCob74xKO+WlhZM/GoQc5etQqFQUsbDjTFD+pKYdJ+Rk2YRPH8GAD2H+qPOyiLx/gMm/xCIpYUFY4f2o2bVon+cKO3sQq8BXzF76rdkqdWUr1yVL/qNAOBq9AV+XrOM0VPmkfzgPpO/HaQ9bvK3gzE1NWXs1PmUdnYpKDxWFhZMHdqb71eEoFCq8HJ3YfyAT0m4n8yw7+azfvZ4oq5c5+rNWBauC2XhutCccwzpRfUKRa8CdHRypWc/fwKmf41araZcxep076Op478uR7Fp3WK+nriAs2GHSHn0gCXzxuoc7z9tqc62KrlZWloybtRwfly8HIVSSRkPd/yGDyIxKQm/8VNZsXAeAL0GjUCtVnMv6T7T5vyIpYUF/iOHUKNq0WPDydmFfgOHM33KOLKy1FSsVIUv+w8F4HL0RdavWcGEKd+T/OA+Y/2Ha48b5z8cU1NTJk2bg1MhbQBQ2smVXgO+Zu40P9RqNRUqVaNzP03/vnr5PBvXLOPbyT/w8MF9Jn87QHvc1NEDKVHClDHTAijt5Ko3trHryNLSgvFfD+WHJSuejAN3/IcNIDHpPt9M/I6VAbMB+HzI16jVWSQmPWDq3AVYWlgwevhAalQtfAsKS0tLRvt9w4LAxZpx7OHB1yOGc+9eEt+On8CyRZoHX3876ivmzV/A6rXrcHRwwP+brwqNm5uVuRkzP36b6duPkq7KxNupFFM+fIO7j9IYsHInm4Z+ZHCsgtjau9Gsw3j2rRlMdlYmTp41afr2GAASb5/j9L75tPliOV5VXqWG7ydsX9INE5MS2JRy4+3uP1KihGmBsa3MzZjx/qtM3/snClUm3o52TGrXhISUxwwMOcgvfd6jorM9X7dswPBfDpOdDXZW5szr1IKSlob/wGvMMoBmrPUfOIzpU8ajVmvGWt8BQwC4HH2JtcE/MWnqTCwtLfnabyxLFs1HoVDg4VmGYSNGFRrbytyMmT3aMD30EOmqDLyd7JnSpRV3H6YyYNlmNn3dw+B6eBH1809c6zTj4C2mbztGekYm3qVLMeXD1zXjYNUuNg3p/NLX0bd+o55cK5Q614rR48ezdNFCAPxHfc0P8xcQ/ORa4VeMa4UQQgghhBD/RSbZuZfziv+MTZs2ceXKFb766ismTJjAtWvXUKvVDB48mNdff13nAaP16tXDz88Pf39/WrduzZtvvsnBgwfZs2cPM2bMIDQ0lHXr1mn28M7I4K233qJv377ExsbSr18/XFxceOWVVzhx4gTBwcH4+vry/vvvExUVhYuLC3PmzCEwMFA7qR4bG8vo0aNp2rQpe/fuZcWKFZQoUYKGDRvy1VdfERAQgKOjIz169CAjI4P333+fypUrM3/+fL1lDQgIoHHjxvj6avbc3bVrF8OHDyc6OprU1FRGjx5NcnIy2dnZjB8/vsjJ9pRTO59rW+SV4GT4nrd/h4mRh7ydMsmo8QFizAvfj/xZVUg9V3SiZ3DBqpFR45czvWHU+AAPS+if0H9e0rOMuw+wO7FGjW+aVfjDLJ8HpZn+vfufF7ez24tO9Azmlxhh1PiDU6YYNT7AArtxRSd6Bh3qxRk1fvnzW4waH2B+xoCiEz2D7nWK/xDz4nAK32PU+PNNC/8h/Hn42Oeq0c9RvrJhK/WFEEIIIUTxnb8aX3Si/5BalZ/ftpDPm0y0i3+cr68vYWFhOu/lnjx/2clEe+Fkor1oMtFeNJloL5pMtBdOJtqLJhPtRZOJdsPIRLsQQgghhPFEXb1TdKL/kNqVn89zzoxBto4R/wpxcXH4+fnle79Ro0YMHTr0BeRICCGEEEIIIYQQQgjxXyET7eIfl3c1O8CQIUOeKaanpyfBwcHPFEMIIYQQQgghhBBCCCH+jhIvOgNCCCGEEEIIIYQQQgghxP8zmWgXQgghhBBCCCGEEEIIIZ6BbB0jhBBCCCGEEEIIIYQQL6FsTF50FoSBZEW7EEIIIYQQQgghhBBCCPEMZKJdCCGEEEIIIYQQQgghhHgGMtEuhBBCCCGEEEIIIYQQQjwDmWgXQgghhBBCCCGEEEIIIZ6BSXZ2dvaLzoQQ/0+OXkgzanxPyztGjZ9tYtyHaJj8A5cUY5fhYaa9UeN7Z1w1avzLJrWMGh+gtuKEUeNbPogzavzTHh8aNX5GlqlR4wPcSrI2avyUx0YNT/kO1Ywa/3zIRaPGB6jVtYZR46cdMW4ZEh4Y/6FKFd6vbtT49/dHGzX+w1TjfqcZu37A+HUUn5hl1PgAozrJ2iAhhBBC/Hedu5LworPwUqlbxfVFZ6FA8n+tQgghhBBCCCGEEEIIIcQzkIl2IYQQQgghhBBCCCGEEOIZyES7EEIIIYQQQgghhBBCCPEMZKJdCCGEEEIIIYQQQgghhHgGMtEuhBBCCCGEEEIIIYQQQjwDsxedASGEEEIIIYQQQgghhBD5ZWHyorMgDCQr2oUQQgghhBBCCCGEEEKIZyAT7UIIIYQQQgghhBBCCCHEM5CJdiGEEEIIIYQQQgghhBDiGcge7UI8J2G/72H7xuWo1ZmUKVuJLwZPwMbWLl+68JOH2bw+kMwMFbZ2DvTsPxqvcpWLjB8eHs7yoCAU6em4uroyYuRIXJydddL89ddfLFi4kEcPH1LK3p4hgwdToUIFg8tw+NAhQkJCyMzMpFz58owYMQJbW1u9eQlavpx0hQJXV1dGjhiBs4vLvzr/T/1x5DdCN6xErVbjXbYi/YaNxsa2ZL50mZmZrF+1iJ2bQ1jw02acnF2LjH068gILV67nsUKBu4szowf3wdW5tE6a7Oxs1m/ZyZK1vzB/sj8+NaoZlO+nNP00iEx1Jl5lK/HF4PF6++nZk4fZvH7xk35qz6cG9NNTUdHMXxvKY4USD+fSjOvfAzcnR500EdHX+CH4V9LSFVhZWjC8Zyca1KhieP6jbzB30z4eKzPwLG3P5J7tcHMspZPmz8s3mbf5AKnpSqwszBjV+R0aVilr+DmMWEcAp47uZucvy1CrM/H0rsxngyZirSd+xKlDbA1ZRGZGBrZ29nTvN5YyZYuOD3D+5A6O7QxErc7AxbMq7T77Diub/Od46sq5Q/y8oB+DvtuPg7NXkfEvn9nByb2BZKkzcPKoSstPvsPSWjf+o6QYVk9rjb2zt/Y9t7J1eafHrEJjm5iZUf27r6g4ohf7y7dAEXs3Xxq7utWos2Ai5k6OZCQ9IHLQRFIio4vM91PXInYQfnAx2VmZOLpVoXmnaVhY6eY/5UEsG+e0oVTpnPy7eNfh9Y9mFhn/nyjDuRM7OLxtMWp1Jm5lqtCx9zS9bXz+1F4ObQ0kM0OJjZ0jHT6bgJtX1SLjXz6zg1O/LX7SxlV4u6ueNr4fQ/C0NpTK28bdX446On9yB0d3aMaBaxnDxsGGgH4Mnm74ODBWHf0b6geMP9aEEEIIIYR4mciKdiGeg6TEeNYtn8nwcfP5bmEozq6ehK5dmC/dg6QEguaPp+/I75i6YBO+LdoQvHhakfEVCgUzZs5k+LBhLF++HF9fXxYEBORLN2PmTDp36sTy5cv5+KOPmDWr8Amt3BISEggMDGTS5MksW74cNzc3Vq1apTcvM2fMYNjw4dq8BCxY8K/O/1P3Eu6wcsk8/CbMYe7iEJzd3NkQvERv2jlT/bCysjE4/+kKJRPmLMRvYG9CFn7Pq43qM3vJT/nSzV6ykttxd3C0L6UnSuGSEuNZu3wWw8f9yPSFm3By9WDT2kX50mn66QT6jpzGtAW/0qRFG1Yv/q7I/I8NWMGYvt34dd4EmjeszYygEJ00qowMvp69hEGffMDPc8bT76N2jAvIX8aCPFaq8AsKZWL399g2cQAt6lRhyvpdOmkUqgy+WvYrY7q2YcuE/vRv25xvgjaRnZ1t0DmMWUcA9xPjCQmayZAxC5gcsAUnV082r8vf/x4k3WVlwDh6D5/OpPmhNG7+LmsXTzGoDA+T4tgbMoUuQ5YyYMoeHJzLcGjzvALTZyjTObhpDta2DgbFT3kQx6Ffp/B+v6V8OmYPpUqX4fgO/fFt7d3oOXq39l9Rk+wAr2xaRGbq40LTNFgzj2uzl3O4VhuuzlpGvdXfG5R3gNTkOE5sm0brz5fQeeQuSjqW4c+9P+jPfylXOo/cqf1n6MSfscuQnBTHjrXT6DlyCcNn7MLBuQz7fs1fhuSkOLaunkj3YQsYNmMntRu1JjRobJHxUx7EcXjTVDr0XULP0buxK12G4zsLamNXen67S/vPkEl2MH4dPUyKY8/6KXQdupSBU/dg71T0ODhQzHFgzDr6f68f+GfGmhBCCCHEf0E2JvIv17+X2b9yon3GjBn07NmTNm3a8Prrr9OzZ08GDx5s8PH+/v4cPHgw3/thYWF069aNHj160LFjR1auXPkcc1203bt3F/p5QEAAnTp10plQ6tmzp0GxL168yPz58wv8PDU1laNHjxqW0WKKi4vj3LlzRokNkJiYyPjx440WHzSr1GvUbYyTiwcAzVt+wJ9/7MuXztTUjL4jv8PTuyIAVWrUI/bWtaLjR0Tg7u5O5cqa1azvvPMOZ86e5fHjnD/Cr1+/TmpqKs2aNQOgSZMmJD98yK1btwwqw4njx6lXrx6urpqV163feYejv/+eL11EeHi+vJw9c0YnL/+2/D/1Z9jv1PZpiLOrOwBvtmrPiWMH9Kbt2PVzPur+pUF5B81qdk83V6pVKg/Ae2+14GREFI/T03XSvfvma/gN7I2ZqanBsZ86e/IwNQ3sp/1GfkcZbT+tX2Q//fP8Zcq4OlO9gmblePs3mhJ27iJp6Qptmky1mtF9uvFKLc1qWp9qlUh88JCUtKLrHuBk9A28nB2oUVaT/45NfTh+8S/SFEptmgy1mok93qPmkzS+1SqQ9CiNlFz5KIwx6wgg/NQhqtdpTOkn8V99+wNOH/8tf3wzc3qPmIGndyUAKlevT9ztouMDXI7YT/nqTbF38gTA59XOXDpd8PfHkW0B1GnSAQur/Hd/6PNX5H68qzbFzlETv2aTzlwJL/z7qTiufLeIK5Pz/xD3lF3tqpg52HF3634AErYfwNLFiZLVKxoU/+aFA3hUakJJB03+qzbsxPXIPc+e8VyMXYZLZw5QsUYTHJ60ccMWnYg6lb8MpqZmfNTvexycywBQsWYT7t25XmT8vG1cy7czV8P/v+rocvh+ytfIGQf1XuvMxT+NNw6edx39v9cP/DNjTQghhBBCiJfJv3Ki3d/fn+DgYPr27Uvbtm0JDg5mgYErVgszfvx45s2bx5o1a1i/fj27d+8mISHhOeS4aCqVyqCJfZVKxa5du4pMl1eNGjUYOnRogZ+fP3+eY8eOFTuuIU6cOGHUiXYXFxcmT55stPgAd+Ju4uqWcxu1i7sXjx7eJy31kU66Ug6lqdPgVe3ryDN/ULFq7SLjx8bG4uHhoX1tbW2NnZ0dcfHxumnc3XWOc3d353ZMjEFlyHsODw8PkpOTSUlJMSgv8XFx/9r8PxUfdxs39zLa124eZXiU/IDUPO0MULV6HYPy/dTtuDuUcc/ZXsbG2gr7kiWJidfdLqB2NcO3WcnrbtwtXHL1U9dC+2kz7evIM8eK7Ke34u9Sxi1nKyAbKyvs7WyJi/CTsAAAIABJREFUuZOo896bjetpXx+PuEBZD1fsbA1b+X8z4T7eLjlb0dhYWeBga82txAfa9+ysrXjTR7OdTnZ2NqF/hNOgsjelbKwNOocx60gT/6ZOfBd3b1L0xbcvTe36OdeKqLPHqFDFsD51/+4NHFxytspxdClLWkoS6WkP86VNiInm+sU/aNzyc4NiAzxIvIG9c058e+eypKcmoXicP75Kmcr25QMJ/q4Nmxf35v6don8sSD4RXujntlXK8/i67nXh8fXb2FYzbILx0b0blHLKyX8pp7Io0pJQpuvLfxq/BQ/ml7lt2f1TH5ITDPuxw9hluHfnBqVdc8pQ2rUsaY/yt7GdgyuVa2v6kVqdydmjm6le/62i8594A3unnG08Cm/jNLYHDSJ4+rtsWfIl9+++HHWUdPcGjsUYB39d+APfYowDY9fR/3v9wD8z1oQQQgghhHiZ/Gf2aFer1YwbN47bt2+TmZnJ0KFDadq0KRcuXGDSpEmYmJhQv359/Pz8AM3q9TVr1hAfH8/s2bOpWbMmycnJ2lWvVlZWhIRotkUICAjA0dGRHj16cPnyZaZMmUJwcDDNmzendevWREZG4ubmxuzZs1myZAl37twhPj6exMREvvnmG1q0aMHOnTtZuXIlpqam1KpVi7FjxxIQEMDt27eJiYmhSpUqREdHM3HiRCZOnFhgOQcMGMCSJUto1aoV5ubm2vdTUlLw9/fn0aNHZGZmMnbsWGrVqqX9PCwsjLVr1zJ//nxatWpFy5YtOXPmDHZ2dixdupTJkyeTmppK+fLleeONNxgzZgwZGRmYmpoydepUPD09eeedd6hZsyavvvoqW7dupVmzZpw4cYIHDx6wePFiPD09mTdvHn/++SdqtZoePXrQrFkzFixYgJmZGR4eHrz99tvaPE2dOpWoqCjUajWffPIJH374IXv37mXFihWYmZlRu3Zt/P392bRpE0eOHCEhIYFy5crh6+vLBx98AEDr1q2ZO3cu48aNY9OmTRw7doy5c+diampK27Zt+fzzz/nzzz+ZO3euNg9TpkzBwsKiWP1LpVRQyj5nL21zcwtMTExQKtKxLal/i48L58L4bdtavpmsf+uR3JQKRb48WVpaolDkrNJVKpWY501jYYFSYdhKXqVSib1Dzi3h5hZPy6DAzi5nP1WFUllkXv5t+X9KpVRgb58z0ZvTzgpKFtDOhlIqlVhYmOu8Z2FpQbpSWcARf+ccCuz05r+wfnqSvdvW8c3kxYXGVqgysDDXzb+lhXmB+b9yM5Z5q39lypDPDc6/QpWBhZnu15aluTnpyox8aX87c5HpP+/BztqKuX07GXwOY9YRQEYB1wqVsuD4F8+FsX/7GkZMXGpQGTJU6djY5ZzDzNwCTEzIUKVjbWuvfT87O5tdayfQuutYTM3M9YXSK1OVjk3JXPHNcuJb2eTEN7eypVqDdjR4sxd2jp6cPbyS7UED6eG/gxKmf/9/P0xtrMlS6PYrdboSMwN/sMnMSMcqV/5Nn+Q/U5WOpXWu/FvaUMnnPeo070VJew+ijq3it+BBdBq+/Zny/zzKkKFKx7aUbhs/7Ue52/ip43tXc3DLIpzcytFtaMGrpJ/KzFBgbeeUk99cdUTuNra0pWqD9zRt7KBp4x1BA+nu92xtDMapI0xMyFDmHwc710yg9SfFHAcvuI5e9vqBl2OsCSGEEEII8U/6z/zf67Zt23BxceG7777j/v37fPbZZ2zbto2pU6cyadIkqlevzqhRo4iNjQXAxMSEoKAgQkJCCA0NpWbNmgwbNozOnTvTuHFjXnvtNdq1a4e9ff4/aJ9KSEigXbt2jB07liFDhnDkyBEA7t69y4oVK4iOjsbPz4+GDRsyb948Nm/ejK2tLf379+fEiRMAZGRksG7dOmJiYoiMjCx0kh3AycmJli1bEhISorNtzKpVq/Dx8aFv375ERkYyffp01qxZozfG7du3ef/99/Hz8+Pjjz8mOjqa3r17c+XKFbp06cLo0aPp1asXzZo14/DhwyxatIipU6dy+/ZtFi5cSJUqVdi6dSslS5Zk1apVzJ49m71791K7dm1iY2NZu3YtKpWKjh070rJlSzp27Iijo6POJHtycjKHDh1i3759ZGRkEBoaSlpaGoGBgWzYsAELCwuGDRvG6dOnAYiPjyckJITTp0+zevVqPvjgAy5dukSZMmW0bZSdnc2kSZMICQnB3t6egQMH0rVrV6ZOncrKlStxcHBg1qxZ7N69mw4dOhTRo2D/zhAO7PwZ0Nyeb++Q8wd3hkpJdnY2Vtb6/+A9E3aQdctmMWzMj9ptZApjZWWFSqXSeU+pVGJtZaWTJiNPGoVSiVWuNHlt27qVbdu2acpgZoajY84Eo0qlelIG3ZXABeUlb7p/S/73bP+Fvdt/0Z7DwSFn0kD1tJ2tDFstXRgrK0tUKt0JY6VShU0h5TfE/p0b2L9zA/D3+unaZd8zbMwP2i1SCsy/pQWqDN38K5QqbKws86U9d/kvRv8YxJi+3WhYs+iHMj5lbWmBKjNT9xwZGdhY5p/8adWgBq0a1CAs+gZf/rCWjaO/xNk+/0Nrwfh1dHBnCAd3aX6YNTUzo5Se+JYF9KHwsAOEBM1k0LfztdvI6HPqwBpOH9Rc00uYmmNbKufhvpkZSsjOxsJStwxnj2zA2aMy3lVeKTDuUxG/r+Hc7znxbfTFt9CNb23ryBudc7btqv/GF5zcs5AHiTdwcjfsoa76qNMeUyJPvzK1sSIzNa3AYy4cX8uF42uf5N8Ma7v8+TfLk38rG0eadRinfV37tc85e2ARD+/dwNHt7+f/75bhxL61hO17UgYzM0ra55ThaT/K28ZPNX3nU5q06klk2E6WTu3G0O+2Y26he22J+H0N545q4puammFjl3OHytM6MrfU08addNv41N5FJCfeoPQztDH8vTo6dWANf+YaB7nrSNtP8zw748yRDTh7VqasoePgJamjl7F+4OUba0IIIYQQQvyT/jMT7WfPnuX06dOcOXMG0EysqVQqrl+/TvXq1QF0HrzYsGFDANzc3IiIiACgW7dutGrViqNHj7Jv3z4CAwPZtGlTgee0sbGhXj3NNgn16tXj+nXNvqhNmzYFoFq1aty9e5cbN25Qrlw5bG01+142btyYixcvAlC3bt1il7VXr1507dqVjh07at+LiopiwIABANSpU4ebN28WeHzJkiW1deLu7p5v642zZ89y/fp1AgMDUavVlC6tmXi0tramSpWcbS1eeeUVbYzk5GTOnDlDRESE9geArKwsEhMT0cfBwYHy5cszYMAA2rRpwwcffMDFixeJi4ujd+/egGaVftyT7T7q1KmDiYkJDRo0YMyYMahUKvbv30/r1q21Me/fv4+lpaU2v0uWLOHevXvcvHmTIUOGAPD48WOdydrCvN22K2+37QrAgV0/c/n8ae1nd+NvYe/ojI2tXb7jLkSEsT7oe0ZOWGjQJDuAl7e39ocagLS0NFJSUihTpoxOmvg7d7Svs7OziY+Pp2zZshSkfYcOtH/yo8L27duJjIzUfhYbG0vp0qUpWVJ3ctLby6vIvPyb8t+6XWdat+sMwN4dv3IxKud2/jtxMTiUdsa2ZP52Lq5yZTzZfyxM+zo17TEpqWl4ebgXclTR3m7bhbfbdgE0/TT6/BntZ4X10/MRYawPms1XExbi6V2hyPOU93Rj3/GcMZD6OJ2UtHS8c22HA5qV7N/+sJypQ3tRv3rxJlAquDmx5/QF7euUdAWPHiso65rz48ed+4+4cCuet+ppto/xrVYeNwc7zl2P1b6Xl7Hr6M22XXnzybXi0O4NOteKhPhb2Du6YGObfzX7xYgTbFjxPcPGB+LhVfi1otFbPWj0Vg8A/jy0lluXT2k/u3/3BiXtXbCy0T3H5Yj9xN+M4srXmmeSPE65z0/fdaZj3x8oX72JTlqf5j3waa6Jf+7oWmKv5sRPTryBbSkXLPPEVzx+iDL9kc72GtlZWZg+4wrV1Oi/sKnorfOebaVypF4seKuJmk27U7NpdwAunFjHnes5+X+UdBMbOxcsrXXzr0x/iCo9BbvSOVv9ZGdnPZcVtn+nDE1adqdJS00Zwvav40Z0ThmS7t7EzsEF6zz9KCHuGikP7lKpVjNMTEyo2+Q9tgdP4V78dTzK1dBJq9vG64i9pqeNrfW1cQr2TrnqKOvF1ZHOODho4DgI14yDeRE542DFtM582K+ocfBi6+hlrB94+caaEEIIIcS/QXb2y/0AUJHjX7lHuz7m5ub079+f4OBggoOD2bt3LxYWFpQoob8KTHM9aPDpw0UVCgUuLi507NiRhQsX0rx5c44dO4aJSU6Hz8y12jIrK0snxtN0ud8Hzer53A8wzcjI0KY1Ny/ebboAtra2dO3alaCgoALPkTcPuZnmechi7uOe5unHH38kODiYdevWafe/z5vXvHVoYWFB586dtW2wa9cuvL11/0jMbfny5QwePJhLly7Rv39/zM3NqV27tvb4zZs30759e51zlyhRAl9fX06dOsXhw4dp1aqVNl6JEiXyldvc3BxXV1dtzF9//ZU+ffoUmKeC1G/8BhfPneJO7A0A9m5dg2/zNvnSKZXprAiYyCC/2QZPsgP41K1LQmIiUefPAxAaGopv48Y6q73LlS2LfalS2gf57tu3D1dXV7y8vPTGzKtJkyZEhIcT82RP9NDQUF5/44186er6+JCYkMD5qChtusa+voWuPP9/z/9TrzRpQVTEn8TFaH6o2rl5Pc1atDQof0VpULsGdxOTiLgYDcCGbbtp9ko9rPWsCP+7NP30JPFP+umerWvxbd46XzpNP530pJ8WPckO0LBWVeLv3Sf80lUA1u08wGsNauvkPzs7m0mBqxnVq0uxJ9kBGlUtR/z9h5y5ehuANftP0qJ2ZWwsc7YCylCrGR+8jatxmh/xbibc53biAyp5uuiNmZcx6wjAp9EbXIo8qb1W/LYtmEav5b9WqJTprFo4gf6j5hQ5yZ5XVZ+W3Lh4nKQ7fwEQtm8ltRq3y5eu69BljJhznOGzjzF89jFKlfbgi9G/6J08y61i7ZbcvnKcB3c18c8eWknVBvnj370VSejCz3iceh+A88d/pqSjB6WcCr7uGyL14jVU9+7j2VVzTq9PO5J+K5a0KzcMOr5cjbeJu3aC5ETNj99RR1dS0ee9fOkSY6LYGfQ56U/yH31qIyXtPbAr/Wz5fx5lqNHgbf66cILEeE0Z/tizkjq++cvwOOU+vy7z59EDzfNkbl45Q5Y6E0fXwstQsfbbxFw5zoMETRuHH15JlQb54yfcimTzos+0dfS82hievY6q1mvJ9Us54+DEb/rHwSfDljFy7nFGzDnGiDmacdBrjCHj4MXW0cteP/ByjDUhhBBCCCH+Sf+ZpSI+Pj7s37+fdu3akZSUxKpVqxg5ciSVKlUiIiICHx8fRo8erV0tndeNGzcYOHAgGzduxNbWlqysLBISEvD29ubhw4faldlPtzIBzcR8VFQUtWvXJjw8nM6dOxMZGcnp06fp06cPly5dwtPTk/Lly3Pz5k1SU1MpWbIkJ0+eZMCAARw/flwbq0SJEqjVaoPL+/HHH9O5c2ftFhl16tQhLCyMevXqER4errPy3BAlSpTQ/ojg4+PDvn376NatG8ePH+fevXvaCe/C1K1bl1mzZtGnTx8yMjKYNWsW48aNw8TEROcHCoCYmBgOHDjAp59+Sq1atfjwww+pUKEC165dIykpCScnJ+bPn0+XLl3ynadVq1Zs3rwZa2trSpcurd1X39HREbVazd27d3F1daV///58//33AFy9epXKlSsTHBxMo0aNtCv6DeXo5EqPfv4smD4SdZaachWr0+1LzX7/f12OYvP6RYycsIjwk4dJefSAZfPG6hw/auoyne0q8rK0tMTfz49FixahUCjw9PRk5IgR3Lt3j7HjxrE4MFATZ9Qofpw/nzVr1+Lg4MCob74xuAzOzs4MHDSIKZMno1arqVS5svYuiOjoaIJXr2bqtGlYWlri5++vk5cRI0cWGvv/Pf9PlXZyodeAr5kzzZ8stZrylarxeb8vAbh6+QIb1yzl28k/kPzgPlO+Hag9bsroQZiWMGXMtABKO+mf8LW0tGDiyIHMXboahVJJGXc3xgzpQ2LSfUZO/p7gH6cD0HPYt6izski8/4DJ8xZjaWnB2KF9qVml4G1Fnsrpp19p+2n3L0cBmn4auj6QryYs5OyTfrp03hid4/0K6adWFhZMG9qLWT/9jEKpxMvNhfEDepJwP5mh0xcQ8v1YIq9c5+qtWBas38KC9Vty6mfw51SvUPCdCznnMGdmr45M37CbdFUG3i6OTOnZnrvJjxgQEMKmcX3xdnFkfPf38F+xmQy1GhNg1EetKJdr1fuLqiNNfDe69fmWwJkjyFJn4l2xBl17+wNw/UokW9cvYtj4QMJPHiLl0QOCfhitc/zXU4J0tp7Rp5SjG226T2DjokFkZalxL1uT1l0115zY6+c4suVHPhkeVGiMwpR0cOONzhPYHqSJ7+pVE99Omvh3bp7jxM4f+WBAEOWqv0ad17rxy4+fYGJigq29G+99EUCJEqYFxrZwdaLp/pxtzZrsCyY7U82J1p/huyOII/U13zXhPb+mzuIpVB0/BGVCEmc/NfxaYWvvRrMO49m3ZjDZWZk4edak6duadky8fY7T++bT5ovleFV5lRq+n7B9STdMTEpgU8qNt7v/WGj+/6kylHJ0o92n41k3fzBZWZl4lqvJez00ZYj56xz7N83ns6+XU75aI15v14+V3/fS3E1gbsHHA+ZgZa1/G6WnSjq48UanCewIGkxWlhoXr5q0+DCnjcN2/cj7/YMoW/016rzajV/mfwImJShp70bbL+a/NHX0brcJ/LxQ0089ytbk9U9yxsHhzT/SbcQzjgMj1dG/oX7A+GNNCCGEEEKIl41Jdt7lyv8imzZt4sqVK/j5+ZGZmcmECRO4du0aarWawYMH8/rrr2sfMAqa7V38/Pzw9/endevWvPnmmxw8eJA9e/YwY8YMQkNDWbdunWYv6YwM3nrrLfr27UtsbCz9+vXDxcWFV155hRMnThAcHIyvry/vv/8+UVFRuLi4MGfOHAIDA7WT6rGxsYwePZqmTZtqH/JZokQJGjZsyFdffaXzkNWMjAzef/99KleuzPz58/WWNyAggMaNG+Pr6wvArl27GD58ONHR0aSmpjJ69GiSk5PJzs5m/PjxOpPtuR+G6uvrS1iYZguLoUOH0r17dxwdHenVqxdffPEF7dq1Y/To0SgUCkxMTJg+fTre3t46x/Xs2ZNx48ZRtWpV1qxZw4MHDxgyZAjz5s3jjz/+IDs7m27duvHhhx9y7Ngx/Pz8GDVqlHZvdJVKhZ+fH/Hx8Zibm9OmTRu6d+/O3r17Wbx4MRYWFtSsWZNx48YRGhqqbWfQ3BHw2muvafMeExPD0KFD2bRpE8ePH+eHH34A4N1339U+DHXmzJna1e2zZs0q9GGoRy8UvP/p8+BpeafoRM8g28S4txyZ/AOXFGOX4WFmwc9eeB68M64aNf5lk1pFJ3pGtRUnjBrf8kGcUeOf9vjQqPEzsow/QXQr6dmfDVCYlMdGDU/5Dvq38nlezodcNGp8gFpdaxSd6BmkHTFuGRIeGP8W1ArvF++H6+K6vz/aqPEfphr3O83Y9QPGr6P4xILvknxeRnX6z9yEK4QQQgiRz5nLSS86Cy+VBlULX3z2Iv2rJ9pftNwTz0/lnjwX/59kor1wMtFeNJloL5pMtBdNJtoLJxPtRZOJ9qLJRHvRZKJdCCGEEMK4ZKJd18s80f6f2Trm3yIuLk67cju3Ro0aMXTo0BeQIyGEEEIIIYQQQgghhPhvk4l2I8q7mh1gyJAhzxTT09OT4ODgZ4ohhBBCCCGEEEIIIYR4+WVj/DtRxfMh92EKIYQQQgghhBBCCCGEEM9AJtqFEEIIIYQQQgghhBBCiGcgE+1CCCGEEEIIIYQQQgghxDOQiXYhhBBCCCGEEEIIIYQQ4hnIw1CFEEIIIYQQQgghhBDiJZSdLQ9D/X8hK9qFEEIIIYQQQgghhBBCiGcgE+1CCCGEEEIIIYQQQgghxDMwyc7Ozn7RmRDi/8n5q/FGjW9t8tio8bNNjHvLUXKmg1HjA5RTRRs1frxVRaPGd8mMM2p8k+wso8YHuGvmbdT4CrWlUeOXy75q1Pgm/8BXa6mYSKPGv1XpbaPGD0/wMmr8Oq7GvVYDRCZ4GDV+h/tLjRo/vnpLo8YHOJVg3OtpO9XPRo1/2+tVo8aPSChj1PgAHR79ZNT4E252M2r8hnWM+30A8HFTWXskhBBCiJfXn9EPXnQWXiqvVHN80VkokPxfpRBCCCGEEEIIIYQQQgjxDORhqEIIIYQQQgghhBBCCPESykYehvr/Qla0CyGEEEIIIYQQQgghhBDPQCbahRBCCCGEEEIIIYQQQohnIBPtQgghhBBCCCGEEEIIIcQzkIl2IYQQQgghhBBCCCGEEOIZyMNQhRBCCCGEEEIIIYQQ4iWUnS0PQ/1/ISvahRBCCCGEEEIIIYQQQohnICvahXhOjh7ez8YNwagz1ZQtV4FBw0dha1syX7rMzEyCVy5lW+jPLF31M87OrgbFDw8PZ3lQEIr0dFxdXRkxciQuzs46af766y8WLFzIo4cPKWVvz5DBg6lQoYLBZTh86BAhISFkZmZSrnx5RowYga2trd68BC1fTrpCgaurKyNHjMDZxaXI+H8c+Y3NG1aiVmfiVbYi/YaNwaaAOgpZtYidm9cT8NMWnAyoo9ORF1iwagPpCgVuLs6MGdwbV6fSOmmys7NZt2UXS9b9SsAkP3xqVC0ybl5HD+/n1w2rUWdm4l2uAgOH+xfYzmtXLmZb6M8sWfWLQWU4cy6KRT+teVIGF/yH9sfV2SlfGUJCt7NsTQg/TB1H3ZrVDc776XPnWbRyLekKBe4uzvgP6ac//ubtLF3zMz9OGVOs+ADHDu/j1w2ryVRnUrZcRQYMK7x+tm/ewOKVvxpUP08dP7KXLRtXoM7MxKtcJfoMGVdgP/p59QJ2bVnHj0HbKO3sVmRsY9fR6XPnWbhqHenpCtxdnfl2cF+98ddv3sHStT8zf/IY6tasZnD8sOgbzN18kMdKFZ6l7ZncvS1ujqV00vx55RbzthwkNV2JlYU5ozq9TcPKZQ0+B8CRwwfZELIOdWYmZcuVZ9iIr/VeKyLCz7IiaOmT65Ybw0Z+jbNz0deKcyd2cHjbYtTqTNzKVKFj72lY2djlS3f+1F4ObQ0kM0OJjZ0jHT6bgJtX0eP698MH2BiyhszMTMqWq8CQEd/o7afnws+wMmgxinQFLq5uDBk5yqD8G7sMYVduMXfr7zxWqfB0LMXkru/g5pA/NkB0bCLd5q1jcf8PaVTZ26C8h4dHsCzX983IkSP0ft8ELFzIo4ePKGVfiiGDB1OxGN83xqyfk5f+Yt7GvTxWqvBwsmfS5x/g5mivk+bP6Bv8+Ote7Tj4uksbGlYtb3D+QTMOfg5Zqx0HQ0d8rbcfRYSf5aegJSjS03FxdWPYyG9e+DgIu3zzybUiA8/SpZjcrS1ujrqx/7xyi3lbDz+pIzNGffg2DQ3sQ0/5VDLlrfpmmJaAOw+y+eWQCkVG/nR2NtDlDQuc7E1QqmDLsQyu38kqMr6xrxVCCCGEEEIUh6xoF+I5SEy4y/LF8xk7cSYLlgbj4ubOutXL9aadMWUM1lbWxYqvUCiYMXMmw4cNY/ny5fj6+rIgICB/7Jkz6dypE8uXL+fjjz5i1qxZBp8jISGBwMBAJk2ezLLly3Fzc2PVqlV68zJzxgyGDR+uzUvAggVFxr+XcIdVS+YyasIc5izegIubBxuCF+tNO2fqKKyKUUfpCiXj5wbiP/ALQhbM5LVX6vH9kvx5/37pKm7H38HRXv+EVFESE+6yYvEPjJ44i/lL1+Lq5s761cv0pp055VusrGyKUQYFk2bPZ9TgfqwN/IFmjRowNzB/H5obGMTtuHgc7UvpiVJE/DkBjBrUh3WL5tKsUQPmLF6RL92cxSu4HXen2PFBUz9BS37g24nfM3/JOlxcC66fWVO+xcq6eOMA4F7iHYKXzebr8T/wfeAvuLh6sHFNoN608777GsvitoER6yhdoWDinAX4DfyS9Yvm8Oor9ZldYPzit/FjpQq/lVuZ2O1dto3vR4valZmyYY9OGoUqg6+CQhnzcWu2jOtL/3df5ZsVW8jOzjb4PAkJCSwJXMiESdNYvOwn3NzcCF6VvxwKRTrfz/yOIcNGsmT5Shr5NmFhwI9Fxk9OimPH2mn0HLmE4TN24eBchn2//qA33dbVE+k+bAHDZuykdqPWhAaNLTJ+YsJdlgUGMG7SdBYtW42rmztrVwXpzf+cmVMZNOxrFi1fTSPfpiwOmFdkfGOX4bEyA7/gnUzs0pJt335Bi5oVmfLLfr1ps7KymfbrfpxKGT4OFAoF02fOZPiwoQQtX6a5xgfkv8ZPnzmTjzp1Jmj5siffN98bfA5j1k+6UoX/sl8Y/2kHtkwdSou61Zi2ZrtuGVUZfLN4A992b0folCH0bf8Gfks3FmscJCbcZWngAiZMmkbgspW4urkTvOqnfOkUinRmz5zGkGFfsXj5Khr7NmVRQP6y6iu78fqQCr+V25j4SRu2jeujuVb8rOdasWILYz5qxZaxX9K/zat889PWYtWRg60JHZqZ89MuFbN/VvIgJYvWjc31pu3yhgXRt7OYuV7J1j8yaFbLtMj4xr5WCCGEEEIIUVwy0f4vN2PGDHr27EmbNm14/fXX6dmzJ4MHDzboWH9/fw4ePJjv/bCwMLp160aPHj3o2LEjK1eufM65Ltzu3bsL/CwzM5P27dtz7do17XsRERF8/PHHxfrjsLhOnjhGnXoNcHHVrJht+U5b/jh6WG/aj7p+StceXxTTM5SkAAAgAElEQVQrfnhEBO7u7lSuXBmAd955hzNnz/L48WNtmuvXr5OamkqzZs0AaNKkCckPH3Lr1i2DznHi+HHq1auHq6tmZXHrd97h6O+/50sXER6eLy9nz5zRyYs+p8N+p5bPKzi7ugPwRqv2hB07oDdtx65f0Ll7H4PyDZrV7J5uLlSrWB6A995qzsmIKNLS03XStX3jNfwH9MLMtOg/4PU5deIotes11LbzW++04/jRQ3rTdu76GV169DI49plz5/F0c6VqJc2K0LYt3+RU+DkeP9YtQ+u3WjBqcF/MzIpXhqfxqz2N//Ybmvh56qjNm80ZNajP36qjP8N+p45P7vp5jxPH8l9DADp1/Ywu3XsX+xxnwg5Ts24jnF00/ej1lh04eUz/JOMHH/eiU7e+hsc2ch2dibyAp7uLbvyISD3xW+D3N+KfvHwTL2cHanhr6qZj07ocv3SdNIVSmyZDrWZit3epWVaTxrdaeZJS0khJV+qNqU/YiT/wqVdfe61o1fpdjh09ki/duYin14oqmnTvtCH87OkirxWXzhygYo0mODh5AtCwRSeiTu3Jl87U1IyP+n2Pg3MZACrWbMK9O9cNyP8x6ua6Xhec/7O4uXtQqbJm1evb77xL+Nk/SS8i/8Yuw8mrt/AqbU8NL03+O/rW4nj0TdIUqnxpNx4/RzVPF7ydHIrM81PhERF4uLtT5ck1vvU7rfR839wgNTWNZs2aAtC0mN83Rq2fS9fxcnakRjlN7A9erc/xC9d0x0GmmvGfvU/NJ2l8q1cg6VEqKY8VBuUfcsaBbj/K/71/LiIcN3d3Kj0ZBy1fgnFw8vL/2Lvv8Kaq/4Hj79I2XXTvyYayQTYICDIc4AT9/hQURdlbBWRPFURQ9lZoy5BRtkxxATJklTJUZHTRllLoTJqm+f0RmjZN2qa2wfV5PQ/PQ9KTzz3rntucnnvubYI8XQvGitYNOXH1ZpGxIo9p//dUobGiSpnHinpVK3E9XsP9TN3vX6evamhYzXhcc3WyItCrEscu5QLwR0IeEUdMLHsvwtJjhRBCCCGEEGUlE+3/cuPHjycsLIwBAwbwzDPPEBYWxmIzVh+XZMqUKSxYsIDw8HA2btzI/v37SUpKqqAclywnJ6fEiX0bGxvGjBnDp58WrKybO3cu48ePx8rKcg+PiI+Lwc8vUP/azz+AB/dTyUhPN0pbp279MsePi4vD399f/9rBwQFnZ2fiExIM0/j5GXzOz8+PmNjYP3UMf39/7t+/T3qRMhSXl4T4+BLjJ8TfxrdQHfn6B5J2P5WMjDSjtLVDG5qV53wxCXcI9CvYesTRwR7XypWJSzDslw3q1CxT3KISytTODcoUOzY+gQC/gq1NHB3scXF2JvbOHYN0DUL/3K3uMfF3CChSRy7OzsQmJFZIfNCdB77+hesnUFc/GeWvn3x3ivQjH/8g0h7cI9NEP6oV2qhMsS1dRzHxCQSaamOj+LX+VPxbSfcI9iqYUHW0U+Dm5MDt5FT9e84O9nRqpMu/Vqsl8sQFHqsRhIujvdnHiY+Lxc/EWFH0PIiLi8XPP0D/WjdWuJCQUPJYcffOTTx8Cray8fAJITMthezMBwbpnN18qNmgHQAaTS7nftpBaNPOZua/IF/FncdF0xXkP67UY1iyDLeS7xu3s6M9t+/eN8xDWiYRP5xj+LPtSs1vYY/iemPR+km8S5C3u/61o70dbk4OxCTdK4jraE+nJrotn7RaLTuOnaVprSq4OJl/l03R/u3v78+DYs4D/z/Rjyzbh4obKwr6kLODHZ0a6cYi3VhxscxjhZdrJVLSChY5pKRpcXa0wkFhmM7f04p76VqebmXD+6/YMbCHggDP0n9ns/RYIYQQQgghRFnJHu3/MRqNhsmTJxMTE0Nubi4jRoygTZs2XL58menTp2NlZUXTpk0ZN24coFu9Hh4eTkJCAvPmzaNevXrcv39fvxLL3t6eTZs2AbBo0SLc3d3p06cPv/76KzNnziQsLIz27dvTvXt3oqKi8PX1Zd68eaxYsYI7d+6QkJBAcnIyH3zwAR06dGDfvn189dVXWFtbU79+fSZNmsSiRYuIiYkhNjaWWrVqce3aNaZNm8a0adNMlrFTp06sW7eOU6dOkZaWho+PD4899hgHDx5k7dq12NjY0KBBA8aPH098fDwffPABlSpVQqPR8OmnnxIYGGgybklyVCpc3Qq+2NvaKrCyskKpyqay85/bpqQwlVKJQmH4zdTOzg6lsmD1nUqlwrZoGoUCldK8FXoqlQpXt4Iv3rYKXRlUSiXOhcqgVKlKzYspOSolLq7GdaRSKqlcuezblBSmVOVgZ2t4O7qdQkG2yvyVd+ZQqZS4mGhnVQW0s65ejcugVFZMGVQqFQrbov3DttR2K+sxXE22cTaVK5f/PNAdQ4mLa8He+4WP4VTOfmTpOlKqclAY9VPbCmtjpToXhY3hZd3O1obsHOOVoYfOXeXjLYdwdrBj/jsvlek4unYuNFboxzulwXmgUhqPFQo7Ran1qc7JxsmloI1tHsbPUWXj4ORqlP7EwfUc3bkUT98qvDbCeEst0/k3NV4b57/omKowY6yzdBmUOWoURe5oMdXOc3d8x8BurXBxMH9iFECpVGFbdCwq0m4mrwOK0ts2n8Xrx7bIeaCwJVtlvOL/0C/RzNm4D2cHe+YNftWsvOcrXz8q/dps2TrKNa6jYseKa3y89bBurOj/Qolxi1LYQGahG3Y0eZCn1aKwhexCzeGgsMLPw4ojZ/PY+3MuLUOt6dtVwaebVeSVcDOipccKIYQQQoi/i9KfXCP+LmSi/T9m9+7deHt789FHH3Hv3j3efPNNdu/ezaxZs5g+fTqhoaGMHTuWuDjdSisrKyvWrFnDpk2biIyMpF69eowcOZJevXrRsmVLHn/8cXr06IGrq/EXmnxJSUn06NGDSZMmMXz4cH74QXeLfmJiImvXruXatWuMGzeOZs2asWDBAnbs2IGTkxODBg3i559/BkCtVrNhwwZiY2OJiooqdpI93/jx45kyZQo5OTksWbKEzMxMli1bxubNm1EoFIwcOZJffvmFixcv0rZtW4YOHUp0dDTJyclmT7Tv272db/ZEArrbkt3cC77s5eSo0Gq1Zd6LvTj29vbk5BhOEqhUKhzs7Q3SqIukUapU2NsXP8mye9cudu/eDYC1jQ3u7gWTBjk5OWi1WqN9tIvLi6n9tg/s2cLBPVsB3d0Grm4FD33Mr6Oy7MVeHAc7O1RqwwkCZY4KB3u7csf+Zvc2fTvbWFvj5m6ZMujq1bAMRdu4fPHtyFEXbbeccsf/Zvc29u/dDhR/HpS3fg7t/ZpDe7fojmFjg5uJflSWvdiLY6k60se3syNHXbSNc3BwKH8/BXBQ2JKTm2vwnjInF0c7hVHark1D6do0lJPXbvLOog1sGf82Xi7GD3HMt2f3Dvbs3gXknwcmxgp788YKU/X58+EITh6OAKCSjQ2VXQseFKl+2MYKO9Nt3KbbG7Tu2peok/tYOes1Rny0B1uF4TH27o5k3+4dgK6fuhv00+LzX3RMVamUxfZnS5chn66dNQbvKdW5ONoVTI4fu3qTB1lKnm1W12SMkujKXfJYZG9vV0zbFn+uP7L6sVOQoy56HqhxtDdxHjSrT9dm9Tl19Q8GfPYVm6cMxquEZ3js2b2Dvbt3Arrz4M/3I5XJfvRI+5BRHRn2oXxdm9aha9M6nPz1Fu8s3sSWcf1KHCva1LembX3d1wtNHqRnF/RVG2uoZGWFqsh8vjJHS0a2lsu3dF8hT13V8GxrW7xcrUi6bzjT/qjqSAghhBBCiD9DJtr/Y86dO8cvv/zC2bNnAd2XvZycHG7cuEFoqO426sIP0GzWrBkAvr6+XLhwAYDXXnuNrl278tNPP3H48GGWLVvG9u3biz2mo6MjTZo0AaBJkybcuKHbF7NNG93ernXq1CExMZGbN29SpUoVnJycAGjZsiVXrlwBoFGjsm0BERoaStWqVXF3dycwMJALFy4QHx9P//66PaHT09OJj4+nXbt2DBs2jPT0dLp3707Tpk3NPsYzPV/imZ66laDf7NlB9KUL+p8lxMfh7uGJUwWt4g0KDtb/gQIgMzOT9PR0gz8KBAUHk1BomxGtVktCQgIhISEUp+dzz9HzuecA2LNnD1FRUfqfxcXF4eHhQeXKhl+og4OCSs1Lvu49etO9R28ADu3dxpVL5/Q/uxMfg5uHV4XUUUigP0eOn9K/zsjMIj0ji2B/vxI+ZZ6ne77M0z1fBmD/nkguXzqv/1lCfGyFtXOVwACO/nhc/1pXhkyCAspfBoCQwAC+/ennCo9fuH4O7I0k2gL10/XZV+j67CsAHN63lauXzup/lhgfg5t7RfUjy9RRvipBAXx7zET8CuinANV8PTlw9or+dXq2krRsJSGFttG4k5rG5dt36NxYt31MqzpV8XVz5uKNeP17pvTo+QI9eupWs+7ds4tLURf1P4svZqwICg7mxx8K9qzOzMwkIz2DABNjResur9O6y+sAnDyygZvXTut/lpJ4C2c3bxycDO9YSIq/TnpqIjXqt8XKyopGrZ9lT9hM7ibcwL+K4QTzsz1f5NmeLwKwb89OoqMKxuv4OF0/LZr/wOBgfvqh4BkDmZkZxeb/UZQhXzUfDw6c/1X/Oj1bRVqWihCvgnb+Nup3rsYl0XnqCgAeZCkZ8+Vuxr7wBD1b1DMZN19wsPEYn5GeYTDGBwcHk3CnYCsZrVZLfCnXm0dVP1X9vDh4+lJB/WQpScvKJsSn4A90d+494MqteDo11cVoGVodX3cXov6I1b9nSuHzYN+enUXOg1g8TPSjoOBgfvrhO/3rkvrRI+tDvh4cOHe1oI6yVaRlmRgrYhLp/HD7mFa1q+Dr6szFmwn690w5Ea3hRLRucr11PWuq+xfsUunlYkVappaijxNIzdBiZ2uFFZA/rZ6nxeRq9kdVR0IIIYQQQvwZskf7f4ytrS2DBg0iLCyMsLAwDh48iEKhoFIl013ButDD+PIfJqpUKvH29ubFF19kyZIltG/fnmPHjhnsgZ5baFVlXl6eQYz8dIXfB93q+cIPLFWr1fq0trbGq6xKExwcTHBwsP7zDRo00Jd7x44d9OzZk9q1a7Nz506aN2/O/Pnz2bFjR5mPA9CydTuiLvxCXKzuQXC7Ir/m8Y5P/qlYpjRu1Iik5GQuRUcDEBkZSauWLQ1Wq1cJCcHVxUX/ANvDhw/j4+NDUFCQWcdo3bo1F86fJ/bhHruRkZF0fOIJo3SNGjcmOSmJ6EuX9OlatmpV4sp5gGat23PpwhniY28BsG/HJtp26GpW3krTrEFd7iTf5cIV3eTT5j0HaNuscYWsaC+sRevHibpwVt/OeyqwnZs2rE9i8l0uXtZNfmzZtZc2LR6rsNXUjxWJ//WufbRp3rTC4gM0b/U4lwqdB3t2bKZdhy4VFh/gsVYdiL54moSH/eibnRto06FbxcS2cB091qDew/jXdPF3f0PbCozfolYICffSOHs9BoDwo6fpUL+GwYp2da6GKRF7+T0hGdDt6x6TfJ8a/l5mH6d167ZcuHCO2FjdcXZEbqVDx05G6Ro2akJSciLR0bqxYmfkNlq0bFXqHQ51H3uSPy7/THKC7o+yxw98RcNWzxqly0q/x7ZV40lL1T2L4dZvZ8nT5OLuE1xi/Fat23Kx0Hm8K3IL7Tsa79fcsFFTkpMTuRwd9TDdVpq3bG3WHRqWLEOLmsEkpKZx9g/dnWfh35+lQ71qBquRJ/fuwvczB/Pt9IF8O30gTaoGMP+tnqVOskP+9SZJf73ZHrmDliavN64cPfodAIcOH8bHx5ugIPPuCLNo/dSpRsK9B5z7TTdGRBw+QfuGtXEoeh58tYPr8Q/jJqYQk3SP6gE+JmOa0qp1O4PzYGfkNtqXcB7k96O/w3lQMFborvfhR0/ToYGpsWIfvyfc1cVNukfM3VRq+HmajGnK5ZsaagZa4+Wq+12ufSMbzl/PNUp3556WtCwtLUJ1v3M2rFaJbJWWe2klP8Te0mOFEEIIIYQQZWWlLTyzKf61tm/fzm+//Ua9evX49ttvWbBgASkpKaxbt44xY8bwxhtv8N5779G4cWMmTJhA//79WbVqFd27d6dTp04cPXqUAwcOMGjQIIYMGcKWLVtwcnIiLy+Pd999l8GDB3Pp0iVSU1MZPXq0fhI/LCyMOnXqsG3bNho0aMCwYcPo1asXUVFRREdHs3z5cq5evcrEiRMJCwvjueeeY8eOHVSuXJn+/fszePBgTpw4od/7PT4+nsGDB7Nz585Sy1x4z/js7Gyefvpptm3bhqenJwsXLuTVV1/lzJkzBAcH06hRI86cOcP+/fuZNGlSiXGjf08w+f6xH4+yKfxL8vI0VKtRm6EjP8DBwZHfrl1hY/hapsz8lPup95g8fiQAcbEx+PkHYG1tzbTZ8/H00t3+7GCVZTL+xYsXWb5iBUqlkoCAAMaMHk1eXh6TJk9m+bJlANy4cYMvFi4kPT0dNzc3Ro0cqf9jQz5tCQ+F/eGHH4gID0ej0VCjZk1GjRqFg4MD165dI2z9embNnq3Py4rly/V5GT1mDB4eulvo7+e6FRv/5x8Ps3XDajQaDdVq1GHAiAnYOzjy+6/RbAlfxYczPudB6j1mfDgYgIS42/j6B1KpkjUTZy/Cw1M3CVIl55pR7LOXrvDF2g1kq1QE+fkwcdg75OVpGT1zHuGf6/LdZ9RENBoNcYnJeLm7YaewZfKIAdSrVd0gVoJ9daP4+Y7/+C2bw9eiydNQvUZtBo8c97CdL7MpfA2TZ37G/dR7TBk/AoD42Nv4+QdSydqaqbMX4OnljXeu6YdBnouKZtHqdSiVKgL9/Rg/cjB5eXl8MO0jvlo0D4B+w99Ho8kj7k4iXh7u2CkUTBg1hLq1Cx70aqU1vYPbuajLLFyz/mF8Xz4cMYi8vDzen/4J6xbq7mR5c8RYXR3dSXoY35YJIwdTr7bhg2QTbUxPUBz/8Vu+jlira+OatRk8oqB+NoevZtLM+dxPvcfUD4fr68fXPxBra2umzPpcfx4oNcX/keTkT4fYvnEVGo2GqtXr8M7wSdg7OHL912i2RSxn7PRFPLifwuwJgwBIiLuFj18Q1tbWjJ+5BA9PH6pof7doHVkVc2k9d+kyX6wJ08efMHwgeXl5vDd9DusXzgHgjRHj0OTlx3fDTqFg4ojB1KtdwyCWS2yUUfzTv91i7tbDZOeoCfZ2Z2afZ9HkaRm8dDPbJ7wDwMFzV1m5/xjqXA1WVla81aUVz7c2vmvodo3i/4j04w/fsyFinW6sqFGLEaPew8HBgV+vXSU87CtmzPoEgKiLF1i5YikqpRL/gABGjf4A94djxfmk4v8IGHXqG76NXExeXi4BVerxwtuzsLN3IvaPixzZvpA3318NwMnDEZz8diPavDysbRV06zWa2o07AtDQx/RYDfDTD9+xKeIrNBoN1WvUYtioDx7m/wobwr5k2qy5D/N/njUrFqNUKvEPCGTE6HH6/ANEJfkXc4SKKcNz91aajH369xjmRn6na2cvN2b+X3ddO6/czvaxbxil779kC4O6t6ZFTcPzNiHU9B/CLly8yPIVKx+O8f689/B6M3HyFFYsWwrAjRs3+WLhQtIeXm9GjxxhdL0BOJ1kejytiPoB6JHztVHsM9duMHfzNyhVaoJ9PJje7wXy8rQM+SKMrdOGAnDoTDSr9n7/8DyAfk89znNtje9qiwkq/mGyP/3wHRsi1j88D2oyfNT7+vMgIuxLps/SndNRF8+zasXSh/0ogFGjx+r70YWk4v84UVF19Fzal0axT/92m7nbjjzsQ+7M7PO0rg8t28L2D98GHo4VB07o6+itLq14vpXxw8qn3nqt2DI0qm5N12Y2VKoEcXfz2Pq9mpxcCPK2ontzW9Z8o1ve7uNmxStPKHC01+3rvuNYDnF3deNos4bFXw8qqo5eaSNrj4QQQgjx9/Xz1QelJ/oPaR1a/PbVfzWZaP+PyJ9of++995g6dSrXr19Ho9EwbNgwOnbsqH/AKOi2dxk3bhzjx483mmj/5JNPiIyMZMOGDbp9R9VqOnfuzIABA4iLi2PgwIF4e3vTvHlzfv75Z8LCwmjVqhXPP/88ly5dwtvbm88++4xly5Zx69YtMjIyiIuLY8KECbRp00b/wNJKlSrRrFkz3nvvPYMJc7VazfPPP0/NmjVZuHBhiWUu/DmAgwcPsnz5chQKBfXq1WPy5MlcvnyZqVOn4ujoiLW1NZMmTaJGjRolxi1uor2iFDfRXlFKmmivCCVNtFcUUxPtFamkifaKUNxEe0UpbqK9IhU30V5RSpporwjFTbRXlOIm2iuSqYn2ilTSRHtFKGmivSKUNNFeUUqaaK8IxU20V5TiJtorUnET7RXF1ER7RSppor0ilDTRXlFMTbRXpJIm2itCSRPtFUUm2oUQQgjxd3biStpfnYW/lTZ1XUpP9BeRiXZhca1ateLkyZMG7xWdBP8nkYn2kslEe+lkor10MtFeOploL5lMtJdOJtpLJxPtpZOJdiGEEEIIy5KJdkN/54l2eRiq+EeKj49n3LhxRu+3aNGCESNG/AU5EkIIIYQQQgghhBBC/FfJRLuwuKKr2QGGDx9erpgBAQGEhYWVK4YQQgghhBBCCCGEEEJUBLlPUgghhBBCCCGEEEIIIYQoB1nRLoQQQgghhBBCCCGEEH9DWiz7rD1RcWRFuxBCCCGEEEIIIYQQQghRDjLRLoQQQgghhBBCCCGEEEKUg0y0CyGEEEIIIYQQQgghhBDlIBPtQgghhBBCCCGEEEIIIUQ5yES7EEIIIYQQQgghhBBCCFEONn91BoT4p3HNS7FofJWNo0XjW2m1Fo1fNeeqReMD3LCta9H4Qbk3LRo/2SbAovEDs3+zaHwAVSWFReN72d61aHzbrGyLxo+1r23R+ADONlcsGt9J88Ci8R9khlg0fpU7P1s0PsBP2S9bNH56tccsGt/v1gmLxgd4kFfTovFTQ+pbNH6VMxstGv8Hz7EWjQ/we41nLRp/ujbCovHDMt+xaPwu1X7nxnWLHgKAajUsey4IIYQQ4t9Lq7X6q7MgzCQr2oUQQgghhBBCCCGEEEKIcpCJdiGEEEIIIYQQQgghhBCiHGSiXQghhBBCCCGEEEIIIYQoB5loF0IIIYQQQgghhBBCCCHKQR6GKoQQQgghhBBCCCGEEH9DWuRhqP8UsqJdCCGEEEIIIYQQQgghhCgHmWgXQgghhBBCCCGEEEIIIcpBJtqFEEIIIYQQQgghhBBCiHKQiXYhhBBCCCGEEEIIIYQQohzkYahCVIBzF6JYvnYd2Uolvj7ejB05DG8vT4M0Wq2WryN3smb9Bj6bPZ2G9euW+Tjff/cdmzZtIjc3lypVqzJ69GicnJyM0p0/f541q1eTrVTi4+PDmNGj8fL2LjH2+fPnWb1mDcrsbHx8fBg9ZgzeXl4Gaf744w8WL1lC2oMHuLi6MnzYMKpVq2ZW3s9EXWbxus1kK1X4eXsycVh/fDw9DNJotVo27NzP8g3bWDx9LI3r1jYrdr4TPxxix9dfotHkEhRSnQEjJuHoVNkoXW5uLpvWLeGbnRtZuHYXnl4+ZsU/e/ESS78M17WztzfjRwzCx0Q7b4rcw6rwTXw+azKN6oWWqQw/fX+EbZvXo8nNJbhKNYaMGo9TMWWI+Go5uyO/ZsW6rWaV4UzUFRat/1rfBpOGvmWyDSJ2HWD5hu0smfYBjevWKlP+T/xwkJ1ff0muJpfgkOq8O2JysW2wed0Svtm5gS/W7sLTy9es+Jbvp5avo2PfH2bb5vXkanIJqVKdwSNLbuM9Ozaz/KttZrXxqas3mL/9CFmqHPw9XJnxRk983V0My/jrLT6PPEJGtgp7hS0f9O5Ks1pVzM7/2QtRLF+7HqV+vBtqcrzbHLmLNes3MH/2tDKPd1fP7OXE/mXkadR4BdTmqT4fYefgXGz665e+I3LZQN6dcQRXz6ASY5+6cp0Fm78hS6XC39Od6W+/jK+Hq0GaM9f+4Iuv95ORrcReoeD9/3uWZnXM60OPogy/XIxmybqNZGWr8PPxZMKwAfh4GffTjTv2sSJiCwtnfEjjenXMzvuj6EeWrJ9H0UdP/hHP/AOnyMpRE+BamRkvdsDX1fh6DHDtTgqvLd/J8jefpkU1f7OPYck6At31ZuvmMP31ZuioccWOReFfrWB35NesXLfF7GvmyV9vMX/nd2Sp1AS4uzDj9afxdTPM/5nfY1iw6/uH/ciGsS92plnNYLPig2Xr6Pz5C6wqdL0ZM2a0yevNoiVLSHuQhourC8OHDaO6mdcbIYQQQghz5Wn/6hwIc8mKdiHKKVupZNan83lv+BDWr1hMmxbNWbBkhVG6z5euJDYuATdXVxNRSpeUlMSyZcuYPmMGq1avxtfXl3Xr1hmlUyqVzPnkE0aOGsXq1atp1aoVixYvLjG2UqnkkzlzGDVypP4zixctMkr3yZw59Hr5ZVavXs0rvXszd+5cs/KerVQxZf5yPhzyFpsXf0K75k2Yu2K9UbpPV67ndsId3F2L/5JcnLvJd1i38jM+mDqfecu+xsvHn6/DlptMO3/2B9g7OJYpfrZSyfR5Cxk7bCARyz6nbYvHmL9stXHsZWuIiU/A3dXFRJSSJSclsnb550yYNpeFKyPw8fVj4/pVJtPOmfkh9vbmlyFbqWLKghVMGNyPrxd9xOPNGjNnRZhRurkrw4iJ//NtsH7lZ7w/dQHzlm3ByyeALWHLTKZdMPt97B0cyhT/kfRTC9dRclIia1Z8zofTPmXhig14+xTfxnNnflimOspW5TBuTSRT+zzLrulD6NiwFrM27DNIo8xR8/7KrUz439PsmDaYgc+2Z+zq7Wi15v3mphvvFvD+8MGsX7GINi2alTDexf+p8S7tXjxHtszk5YTzE1wAACAASURBVCEr6T/1AC4egfy4a0Gx6dU52fy48zPsndxKz78qh/HLNzHlrRfZ+fF7dGgcyuz1OwzSKHPUfLBkAx/2fZ7Ij8Yw4PnOjFu20ew6sngZlEqmfraEcUPeYdPST2nXvCnzln9plG7e8q8e9tOyjUWPoh9Zun4s3UezctSM23KUac8/zu6RvekQGsLM3cdMps3L0zJ793E8K5ftmmPJOoKHY9HyL5g4bQ6LVobj4+vHhvXG1zSAT2ZOwN6+bON1liqHcev2MO1/T7F70jt0aFCDmZsPGqRR5qh5b+1OJvbuws6J/Rn0VFs++GrX36IfKZVKPp4zh1EjR7Bm9Srd71KLjH+X+njOHHq/3Is1q1c9vN58albehRBCCCHEv5NMtP+HRERE8Morr9CnTx969erF8ePHuXr1Kjdu3LDoca9cucLChQvL9Jljx47Rt29f+vbtS/369fX/X7lyJYMGDTJIm5GRQfv27VGr1SZjbd++nY4dO6JSqfTvjR8/ntjY2LIXxoRzF6Pw9/Olds3qADzdtTO/nL9AVla2QbpuTz7Be8MHY2Nj/aeO8/OJEzRp0gQfH91Ksu7duvHTjz8apbtw/jx+fn7UrFlTd9xu3Th39ixZWVnFxj5/4YLRZ86eO2fwmRs3bpCRkUHbtm0BaN26NfcfPOD27dul5v2XqCsE+npTp3pVAHp0bs+pC5fIzDaso6efaMeHg9/CxrrsdfTLyR+o37g5Xt5+ADzR9TlOHjtiMu2Lr75Nr9feLVP8sxejCfD1oXYN3Uq1Z7p04vT5i0bt3L1zB8YOG/Cn2vn0zz/RoEkzvH10q7s7d+vBiZ++M5m21//e5NU+b5sd+8ylKwT4elOnum7FaY/Oj3PqYrRRGzzzRFs+HNzvT7XBWaM26FlsG7zwan9efm1AmeJbup8+ijo6c/JHGjYu3MbP8vOxoybTvvy/N3n19f5mxz517SZBXu7UDdGtmH2hbRNOXPmDTGXB2KfWaJjatwf1qujStKpTjZS0TNKzlGYd49zFS0bj3RkT50G3J5/g/T853v1+8Qghddrg4hEAQMO2vfj13P5i0x/fu4h6LZ9DYWd6NXFhp65cJ8jbg7pVAgF4oX0zTkT/TmZ2oTrK1TDlrZeoV1WXplXdGqSkZZhdR5Yuwy9Rlwnw86FOjaoAPPtkR05diCKr6Hja6XHGDe1f5n76KPqRJevnUfTRU38kEOTuTN0A3ermF5vW5sT1ODJVOUZpt5y5Qh0/D4I9yvaHOUvWEeiuNw0LXW+e7PZssdeb3v97g/+V4XoDcOq32wR5ulI3WBf/xdYNOXHtJpnKgjpSa/KY9n/dqResu2a0ql2FlPQs0gudjyWxZB2dv3ABfz8/aj283nTv1tXE9eYmGRmZtG3bBoA2ZbjeCCGEEEKIfyeZaP+PiI2N5euvvyYiIoLw8HDmzZvH0qVLOXToEDdv3rTosevWrcuIESPK9Jl27doRFhZGWFgYlStX1v+/f//+XL16lbS0NH3aw4cP06lTJ2xtbYuN5+LiYnL1d0WIjUsgwM9P/9rBwQEX58rEJSQYpKsfav5t+6bExcXh719wy7m/vz/3798nPT29xHQODg44OzuTEB9vduz8z8QXKkNcXBz+hcoJ4OfnR4wZf7C4nXCHQL+CW80dHexxrVyZ2IQkg3QN69QsNVZx7sTdxtcvUP/a1z+QtAepZGakGaWtFdqwzPFj4xMI8CvY3sTRwR4XZ2di79wxSNcgtGzb3RSWEBeDX6Ey+PkH8OB+KhlF2higTt0GZYodE59IoG/B9kGWaIOEuNv4+BXciu/jH1ShbWDpfvoo6ig+LgZf/8JtHKhr44zyt/GtpHsEeRes1HS0V+Dm5EhMcqr+PWcHezo11o1FWq2WyOPneaxmMC5O5q1WjY2LNzgPLDHepSbdxM0rRP/azSuErPQUlFkPjNImx13j1tXjNOvcz6zYt+7cJcinYIsVR3s73Co7EpOUon/P2dGeTk3rAbo62vHjGZrWrmp2HVm6DDHxJsZT58rEJiQapGsQWrYtjfI9in5kyfp5FH30VsoDgj0K7hRwtLPFzcGO2/cMx7q76VlEnLjM8C7Ny3wMS9YRPByL/AL0ryvyegNwKymVYK9C/chOgZuTA7fvFu5HdnRqqOunWq2WyBNRPFYjCBdHe7OOYck6svT1RgghhBBC/DvJHu3/ERkZGahUKtRqNba2tlStWpXJkyfz9ttv4+HhgaenJ++//z4dOnTA09OTl156iYkTJ6JWq7G2tmbWrFkEBASwdu1aDhw4QF5eHh07dmTYsGEsWrSI1NRUbt26RWxsLCNHjmTbtm3ExcWxatUq4uPjiYiIYOHChXTt2pUuXbpw9uxZnJ2dWblyJUlJSYwcORJbW1uaN2/OL7/8QliY8XYNANbW1jz55JMcPnyYl156CYD9+/fz9tslr7R67bXX2LBhA6+88gpubgVf/NRqNVOmTCEmJoacnBxGjBjB448/Xqa6ValU2CoMJ/ntFAqUSvNWZJXlOK6F8m6rUGBlZYVKqcTZuWClnFKlQqFQGObHzg6lsviVhiqlstTP6MpZJI1CgaqEuAWfzUFha6KOVBVXRyqVChfXggk0W1td/SiVSpwql30bl6J09WrZdlaplLi4uetf55dBpcqmsnPZtykpTKnKMZF/W5QmVmD+WTkqJS6uxvlXKrMrpA0s3U8fRR2pVCpcTdSRSplN5crlbOMcNXa2hpd1O1sbsk3k/9DZK3yyeT/ODvZ8NrCX2cdQmRpfKvg8UOdk4+hccC7b2CrAygq1Kht7x4JtPrRaLYc2TaVz70lYWxf/h9bClDlqFDZm1tGZKOaE78bZ0Z55Q1//25TB1HiqUCjIrqA2eBT9yLL1Y/k+qlTnoiiyEt7O1obsnFyD9+Z+8zMDn2iCi4NdmY9hyTqC/N8pLHO9AVCqizvXjO8+PHT+Gh9vPYyzgz3z+z9v9jEsOlYoTfxuZ6cwuN6Y/H1LoSjx9y0hhBBCCPHvJhPt/xGhoaE0atSIJ598ko4dO9KhQwe6detG+/bt6d69O40aNSI3N5cOHTrQoUMHJkyYwNtvv03btm35/vvvWbp0KbNmzQJgw4YNVKpUiSeffJJ+/foB8ODBA9asWcOCBQvYsWMHa9as4fPPP+fIkSPUrVvwgLGYmBief/55xo0bxyuvvMK1a9fYuXMnTz/9NP369TNrL+UePXqwdOlSXnrpJdLT07l+/TotWrQo8TN2dna89dZbLF++nPHjx+vf37t3LwqFgvDwcBITE3njjTc4cOBAmerW3t4OdY7hF0elKgcHB/NWZJVk965d7N69GwBrGxvc3Qu+FOfk5KDVao32cLa3tycnx3BCRKVSlbjXc3GfcbC3N0ijLpJGqVJhb196Oe3t7MgpsrWPMscw/p9xcM8WDu7dCujqx8294At3To5KVz9l3Fe2OLo6MixD0Tr6M77ZvY1v9kQCYGNtjZt7wQP7KrIMDvYKo/wrc3JwsC/7BFBhB/ds4dDeLYCuDVxN5r9sexMXx9L91FJ19M3ubezfux0Aa2vL9VMHhS0qteFEn1KtxsFOYZS262N16fpYXU5dvcG7C8L5euK7eLkaPwSxKFNtUBHj3dnvwjn/QzgAlaxtcXIpuLMgV60CrRZbO8N+dPGnzXj61SSopvmrhR3sFOTkFqmjHDWO9ibqqHlDujZvyKkr1xnw6Wo2Tx+BVwn78j+qMpgaT1WqHBwr4JoDlutHj6x+LNRHC3OwtSEnV2N4DHUujoUmZo/9FsuDLBXPNjb/DhhL19G+3duLXG8sd810UNiaPtfsjCe6uzapQ9cmdTj56y3eWbSZLePexMvlr+9HRX+3M77e2BVzTaqYOhRCCCGEEP88MtH+HzJ37lyuX7/Ojz/+yOrVq9m4cSMBAQEGaRo1agTAuXPnuHHjBsuWLUOj0eDhofsyZm9vT58+fbCxsSE1NZX79+8D0LChbhsIb++CLzxeXl76n+erXLkyoaGhgO722vyJ8meeeQaAzp07ExUVVWI5mjZtyu3bt7l//z5Hjx6lS5cuWFlZlVr+F154gd69exMXF6d/79KlS7Rq1QoAX19fFAoF9+/fN1j1XpqQoEC++/G4/nVGZiYZGRkEBviX8Cnz9HzuOXo+9xwAe/bsMaibuLg4PDw8qFzZ8MtocFAQP/zwg/51ZmYm6enpBAYGUpyg4OBSPxMUHExCoW1StFotCQkJhISEUJoqgX4cOX5K/zojM4v0jCyC/X1L+FTpuvXoTbcevQE4tG8rVy6d0//sTnwMbh5eOJVzlXC+KoEBHDVo5yzSMzIJCvAr4VOle7rnyzzd82UA9u+J5PKl8/qfJcTH4u7hWSFlqBLoz+Fjp/WvLdUGVwu1QWIFt4Hl+6ll6qhwGx/YG0m0hdq4qp8XB365rH+dnq0kLUtJlUJbpdy594DLt+/QuYlu24yWodXwdXPm4o04/XslCQ4K5OiPBQ99rKjx7rEn+vDYE30AOPdDBLG/FbRDatJNnFy9sXc0vCvi94tHuHP7EtejdHvcZ2fcI3xuL3r2/5yQ2q1NHqeqvzcHT13Uv07PUpKWlU2Ir5f+vTv37nPlZjydHtNtH9Oybg183V2Juh6jf++vLEOVIH+OHPtZ/1o/FpWzn+azVD96VPVjqT5aWDVvNw5cKni+Tboyh7RsFSGeBfn/9sotrt5JofPcDQA8yFYxZtNhxj7dmp5NTG/rY+k6eqbnSzzT8+HdgHsiib50Qf+zihyLAKr5eHLg3DX96/RsFWlZKkK8CxYM3ElN43JMIp0b6eqjVe0qun50M0H/XlGPrB8FG/8ulZGeYXC9CQ4OJuFOwVYyWq2WeDOvN0IIIYQQZaGl9Dkv8fcge7T/R2i1WlQqFTVq1KBfv35s2bKFxMRE4ovs252/z7mtrS1ffPEFYWFhbNiwgcWLFxMXF8dXX33F6tWrCQsLM/iyYVPo9uDC/9dqtQbxrYs8lE2r1aLVavUT5eZMmAM89dRTHD58mAMHDtCzZ0+zPlOpUiWGDx/OF198YZSHfDk5OVSqVLbToknDBiQmJRMVfQWAbTv30LpFs3KvdC6qdevWXDh/Xv8Q18jISDo+8YRRukaNG5OclET0pUv6dC1btSpxRW/jRo1ISk7mUnS0/jOtWrY0+EyVkBBcXVw4elT3RfXw4cP4+PgQFBRkMmZhzRrU5U7yXS5c+RWATXsO0q5Z43KvFDY4RqsORF84Q3zsLQC+2bmRNu27Vlj8pg3rk5h8l4uXrwKwZdde2rR4rELbuUXrx4m6cJa4WN2D1PZEfs3jHZ+skNiP1Q/lzt0ULlz5DYBNew7RrlkjC7TBaX0b7Nu5gTbtu1VYfEv300dRR81bPc6lC78UtPGOzbTr0KVCYreoXYWEew8497sudviRk3RoUMtgJbJao2HK+l38Hp8M6PbjjklOpUaAt8mYRTVtWJ/EpLv68W6rBca7mo26cPvaCe4l/gHAmW+/IrRZD6N0Lw9dxdA5JxjyyTGGfHIMZ3d/+ozdWuzEGUCL0OokpNzn3K83AYg4+BPtG4ca1lGuhilrtnI9Trfn+a3Eu8QkpVA90MdUyEdehsca1CMxOYULl3WTmJt376dt8yYV1gaPoh9Zsn4eRR9tUc2fhAcZnL2l+6Ne+PFLdKgTYrCiffJz7fh+fB++Hfsa3459jSbBPsz/X5diJ9mLsmQdgfH1ZncFXm8AWtQKJuHeA85e1/3OEv7dGTrUr45j0X604Rt+T7gL6PZ1j7mbSg0/L5Mxi7JkHemuN0n66832yB20NHm9ceXo0e8AOHT4MD4+3gQFFb+wQQghhBBC/LvJivb/iK1bt3L69GnmzJmDlZUV6enp5OXlERQUhEajMUrfuHFjDh8+zGuvvcaJEye4e/cu1apVw8PDAycnJ6Kjo4mLi0OtNt5rs6xCQkK4dOkSDRs2NFg9VJIePXowZ84cUlJSqFev+BWGRT3xxBOsXbtW/wDRhg0bcvLkSZ599lkSEhKoVKkSLi5l20vazs6OSWNHs3D5KpQqFYH+fowdNYzklBTGT5nJmiWfA9B/6Cg0Gg13U+7x0WefY6dQMH7MCEJrm/el28vLiyFDhzJzxgw0Gg01atZk8ODBAFy7do2w9euZNXs2dnZ2jBs/nqVLl6JUKgkICGD0mDGllmH8uHEGnxkzejR3795l0uTJLF+2DICxY8fyxcKFhEdE4ObmxtgPPjCzjhTMGD2Yz1aFk61SEeTnw6Rh75CcksqomZ8R8bluW6LXR01Co9GQfO8+0z5fiZ3Clikj3qVereqlHsPD04e3Bn/Ago/GotFoqFqjDm8OeA+A679GsyViJeOnf8GD1BRmThii/9zsCUOoZG3NhFmL8PAsfiLNzk7BlPdH8PmKtSiVunYeP3IwySn3+GDaR3y1aB4A/Ya/j0aTR3JKKrPmL8ZOoWDCqCHUrV369gGeXt68O2Q0c2dOQJOnoXqN2rw9aCQAv127zKbwNUye+Rn3U+8xZXzBA4anjh9JJWtrps5egKeX6YkuezsFM0cNZN7qcLJVOQT5+TB56NskpaQyetZ8IhbMBOD10ZPJ1eTp2uCLlSgUCqYM7099M9ug3+CxfP7RWDSaXKrWCOXlAe8CujbYGrGCcdMX8iA1hVkTBus/N3vCEKytrflw1uJS2sCy/fRR1JGnlzfvDB7Dp7MmoNFoqFazNm8P1D1j4rdrl9kcvppJM+dzP/UeUz8crv/c1A9HYG1tzZRZnxffxgpbPun/Ih9v2k92jppgb3dmvPEciffTGLJwI9umDCTY24Mprz/Lh2sjUedqsLKCD17pZrBauSR2dnZMHjuKL5av1o9340YNJTklhXFTZrF2yQIA3h46Wj/ezf7si4fj3XDqmjHeObv58uSrU9mxYih5eRp8g+vRrvckABJuXuTYni/oNWyNWfk1WUeD/sfH4btQ5uQQ7OPJ9P69SEp9wJD5X7J15iiCfTyZ0u9FPlyxGXVuLlZWVnzwfz2o4mve5J+ly2Bnp2Dae0OZv2rdw7HIl4nDB5Ccco8x0+cStvATAPqOGI8mL4/ke6nM+HwZdgoFk0YMpF7tGqXXkYX7kWXrx/J91N7Whjm9O/HxnhNkq9UEe7gw88UOJKZlMnj9frYPe/lP5b0wS9YR5F9vRjFn5kT99ab/oLcA+O3aFTaGr2HKzHncT73H5PEj9Z+bMn4UlaytmTZ7frFjEej60Zw3e/Lx1sO6fuTlxszXnybxfjqDl21l+4dvEezlzpRXuzN+3W7UmjysrGDsS09Sxce92LiPqo7yrzdLli57eL3x572H15uJk6ewYtlSAMY9vN6EPbzejDPzeiOEEEIIIf6drLRFlxyLfyWNRsO8efM4ffo0jo6O5ObmMmDAAFJSUli0aBEff/wxEydOZPfu3Tg5OZGYmMiECRNQKpVYWVnx8ccfExAQwIABA8jMzKRZs2bk5eVx5coVmjVrhru7O3369CE8PJzU1FSGDx+u/3/Lli31D0Nt1aoVJ0+eBGDEiBG8/vrr+Pr6MmrUKNzc3GjcuDHnz59n3bp1+rwX/kxhzz//PN26dWPo0KElln37dt3eyPkPT7148SK9e/fmyJEj+Pn5MXXqVG7fvo1area9994rdb/32F8vlanuy0plUzH7WRfHysKnvGt2okXjA9ywrVt6onII0t60aPxkm4DSE5VDYPZvFo0PcF3RwKLxPW1SLBrfLSuh9ETlEGtf26LxAWrFlO15EmV1L6iJRePvu93QovFfd9hm0fgAEdnln1AtyQsBp0pPVA6V71wrPVE5hef1tWj8Z0JK3m6uvDzPfWPR+GGeYy0aH6BN1TulJyqHmr/vsWj8MJt3LBq/S7XfLRo/X7Ua5u/XL4QQQghR2PfRWX91Fv5WOta37LxZechEu/jL/fbbb6SlpdGsWTP27NnDyZMnmTlz5l+drWLJRHvJZKK9dDLRXjqZaC+dTLSXTCbaSycT7aWTifbSyUS7eWSiXQghhBB/lky0G/o7T7TL1jHiL+fk5MSUKVOwsrKiUqVKfPzxx2WOkZOTQ//+/Y3er1atGjNmzKiIbAohhBBCCCGEEEII8UhptfIw1H8KmWgXf7mAgAA2btxYrhgKhYKwsLAKypEQQgghhBBCCCGEEEKYr9JfnQEhhBBCCCGEEEIIIYQQ4p9MJtqFEEIIIYQQQgghhBBCiHKQiXYhhBBCCCGEEEIIIYQQohxkj3YhhBBCCCGEEEIIIYT4G9Jq/+ocCHPJinYhhBBCCCGEEEIIIYQQohxkol0IIYQQQgghhBBCCCGEKAeZaBdCCCGEEEIIIYQQQgghysFKq5WdfoQoi58uZ1o0foDdHYvG11pZWTS+1SMYUixdhge5rhaNH6z+3aLxf7Wqb9H4AA2UP1s0vl1qvEXj/+L/kkXjq/OsLRof4HaKg0Xjp2dZNDxVn6tj0fjRm65YND5A/f/VtWj8zB8sW4akVMuOpQDVng+1aPx7R65ZNP6DDMte0yxdP2D5OkpIzrNo/H/6eQbwINPya5ve7WLxQwghhBDiL3I0KvuvzsLfSqeGlv0uXB6yol0IIYQQQgghhBBCCCGEKAebvzoDQgghhBBCCCGEEEIIIYzlYfk7UUXFkBXtQgghhBBCCCGEEEIIIUQ5yES7EEIIIYQQQgghhBBCCFEOMtEuhBBCCCGEEEIIIYQQQpSDTLQLIYQQQgghhBBCCCGEEOUgD0MVQgghhBBCCCGEEEKIvyGtVh6G+k8hK9qFEEIIIYQQQgghhBBCiHKQFe1CVJCTPx5gz5bVaDS5BIbU4K1hU3F0cjZKd/7U9+zYuIxcdQ5Ozm70HTSBoCo1S41//vx5Vq9ZgzI7Gx8fH0aPGYO3l5dBmj/++IPFS5aQ9uABLq6uDB82jGrVqpldhu+/+45NmzaRm5tLlapVGT16NE5OTibzsmb1arKVSnx8fBgzejRe3t7/6vznO/7DISI3f4VGoyE4pDoDR07A0amyUbrc3Fw2rlvKvh2bWPzlDjy9fEqN/UvUZZZ8tZEspRI/by8mDHsXHy8PgzRarZaNO/exImIrC2eMp3HdOmblO5+un64hV5NLUEgN3ho2xWQ/PXfqe3ZsXP6wn7ryhhn99PSlayyMiCRLqcLfy4PJg/rg6+lukObCtet8HraNzGwl9nYKRvV9mcfq1jI//9duMn/7YbJUagI8XJnRtwe+7i4Gac78eosFO74lI1uFvcKGsb260axWiPnHsGAdAZz+aT/7tq5Co8klILgmbw6dhoOJ+BdOf8euTUvJVatxcnbl9YGTCAwpPT5A9Km9HNu3DI1GjXdAbXq8+RH2jsbHyPfbxe/4evFAhn50BDevoFLj/3p2L6cOLiNPo8bTvzZd/u8j7BwM46elxLJ+dndcvYL17/mGNKJbn7klxraysSH0o/eoPvptjlTtgDIu0SiNc6M6NFw8DVtPd9QpqUQNnUZ61LVS853v+oW9nD+6HG1eLu6+tWj/8mwU9ob5T0+NY8tnT+HiUZB/7+CGdOw9p9T4j6IMF3/ey/e7l6PR5OIbWIsX+8822cbRpw/y3a5l5KpVODq789ybU/ENql1q/F/P7uX0oeUP27gWT/7PRBvfiyVs9lO4FG3j1/8edRR9ai8/7dWdBz6B5p0HmxcNZNjH5p8Hlqqjf0P9gGXPtX/DeXb1zF5O7NeNpV4BtXmqj3EfKuz6pe+IXDaQd2ccwdXTvDYQQgghhBCPjqxoF6ICpCQnsGH1HEZNXshHSyLx8gkgMmKJUbrUlCTWLJzCgDEfMWvxdlp1eIqw5bNLja9UKvlkzhxGjRzJ6tWradWqFYsXLTJK98mcOfR6+WVWr17NK717M3duyRNahSUlJbFs2TKmz5jBqtWr8fX1Zd26dSbzMueTTxg5apQ+L4sWL/5X5z/f3aQ7fLViAeOmfsb85Zvw8vVjc9gKk2k/mzUOe3tHs/OfrVQx9bMljBvSn01LPqVdi6bMW/GlUbp5K74iJv4O7q4uJqKULCU5gYjVcxk1+Qs+XrIdTx9/tkcsNUqn66dTGTBmNrMXb6N1h6dYv/yjUvM/adFaJg54jW0LptK+WQM+WbPJIE2OWs3781Yw9P9e4OvPpjCwdw8mLzIuY3GyVDmMWxPJtNefZfe0wXRoWIuZG78xSKPMUfPeqm1M/N9T7Jw6iEHPtOeDNdvRarVmHcOSdQRwLzmBTWvmMHziYmYs2omnTwA7Nhj3v9SURL5aNJn+oz5m+sJIWrZ/mojlM80qw4OUeA5umsmrw1cyeOYB3LwC+W7HgmLTq1XZHN3+GQ5ObmbFT0+N57ttM3l+4EremHgAF49ATuw1Hd/J1Ze+E/br/5U2yQ7QfPtScjOySkzzWPgCrs9bzff1n+L3uatosv5Ts/IOkHE/np93z6Z7vxX0GvMNld0DOXPwc9P5d/Gh15h9+n/mTLI/ijLcT4lnb8Rs+o5ZwahPvsHNK5DD24zLcD8lnl3rp/H6yMWM/GQfDVp0J3LNpFLjp6fG8/32WTw3YAV9J+zH2SOQE/uKa2Mf+n74jf6fOZPsYPk6epASz4GNM/nfiJUMmXUAV8/Sz4Nvy3geWLKO/un1A5Y/1/7p51navXiObJnJy0NW0n+qbiz9cVcJbZCTzY87P8O+DG0ghBBCCCEerX/dRHtERASvvPIKffr0oVevXhw/fhyAq1evcuPGDYse+8qVKyxcuLBMnzl27Bh9+/alb9++1K9fX///lStXMmjQIIO0GRkZtG/fHrVabTLW9u3b6dixIyqVSv/e+PHjiY2NLTUfycnJTJkypcQ0Bw4cMKNEZZeRkcFPP/1kkdj5Bg8ebNH45099T91GLfH09gegfZcXOHP8sFE6a2sbBoz5iIDg6gDUqtuEuNvXS49/4QJ+fn7UrKlbzdqtWzfOnjtHVlbBk5PXEwAAIABJREFUF8wbN26QkZFB27ZtAWjdujX3Hzzg9u3bZpXh5xMnaNKkCT4+upXX3bt146cffzRKd+H8eaO8nDt71iAv/7b85ztz8kcaNG6Gl48fAJ269uTnY9+aTPvi//rR+/V3zMo76FazB/j6UKdGVQCe7dyBUxcukZWdbZDu6U6PM25If2ysrc2One/cqe+pZ2Y/HTjmIwL1/bRpqf30TPSvBPp4EVpNt3K85xNtOHnxCpnZSn2aXI2GCe++RvP6ulV+jevUIDn1AemZpdc9wKlrNwnycqNuiC7/L7ZpzIkrf5CpLBjz1BoN0/o8S72HaVrVqUZKWibphfJREkvWEcD5098R2rAlHg/jt3vyBX45ccg4vo0t/Ud/QkBwDQBqhjYlPqb0+AC/XjhC1dA2uHoGANC4XS+u/rK/2PQ/7F5Ew9bPobA3vvvDlD+ijhBcuw3O7rr49Vr34rfzxccvq98+WspvM4z/EJfPuUFtbNycSdx1BICkPd9i5+1J5dDqZsW/dflb/Gu0prKbLv+1m73MjaiKvb5ZugxXz35L9bqtcXvYxs06vMyl08ZlsLa2offAT3HzCgSger3W3L1T+u9CRdu4fqte/H7+n1VHv54/QtW6BedBk8d7ceWM5c6Diq6jf3r9gOXPtX/6efb7xSOE1GmDi4cufsO2vfj1XPFtcHzvIuq1fA6FnfltIIQQQgghHq1/1UR7bGwsX3/9NREREYSHhzNv3jyWLtWtRDx06BA3b9606PHr1q3LiBEjyvSZdu3aERYWRlhYGJUrV9b/v3///ly9epW0tDR92sOHD9OpUydsbW2Ljefi4mJyFW9pvL29mTFjRrE/j42NZe/evWWOa47o6GiOHTtmkdj5li1bZtH4d+Jv4eNbcAuvt18QaQ/ukZmRZpDOxc2Dho+107+OOnuc6rUblBo/Li4Of39//WsHBwecnZ2JT0gwTOPnZ/A5Pz8/Ysz4Q4upY/j7+3P//n3S09PNyktCfPy/Nv/5EuJj8PUL1L/29Q8k7X4qGUXaGaB2aEOz8p0vJv4OgX4F28s4OtjjWrkysQmGt8I3qGP+NitFJcbfxrtQP/UpsZ+21b+OOnus1H56OyGRQN+CrYAc7e1xdXYi9k6ywXudWjbRvz5x4TIh/j44O5m38v9W0j2CvQu2onG0V+Dm5MDt5FT9e84O9nRqrNtOR6vVEnn8PI/VDMbF0cGsY1iyjnTxbxnE9/YLJt1UfFcPGjQtGCsunTtGtVrm9al7iTdx8y7YKsfdO4TM9BSyMx8YpU2KvcaNK8dp2aWfWbEBUpNv4upVEN/VK4TsjBSUWcbxc1QZ7Fk9hLCPnmLH8v7cu1P6Hwvu/3y+xJ871apK1g3DcSHrRgxOdcybPEu7exMXz4L8u3iGoMxMQZVtKv+ZHAobxtb5z7D/y3e5n2TeHzssXYa7d27i4VNQBg+fEDLTjNvY2c2Hmg10/UijyeXcTzsIbdq59Pwn38TVs2Abj5LbOJM9a4YS9vHT7FzxDvcS/x51lJJ4E/cynAd/XD5OqzKcB5auo396/YDlz7V/+nmWmnQTt0JjqZtXCFnppvtQctw1bl09TrPO/czKuxBCCCH+XbRa+Vf439/Zv2qP9oyMDFQqFWq1GltbW6pWrUp4eDjXrl1j06ZNeHh44Onpyfvvv0+HDh3w9PTkpZdeYuLEiajVaqytrZk1axYBAQGsXbuWAwcOkJeXR8eOHRk2bBiLFi0iNTWVW7duERsby8iRI9m2bRtxcXGsWrWK+Ph4IiIiWLhwIV27dqVLly6cPXsWZ2dnVq5cSVJSEiNHjsTW1pbmzZvzyy+/EBYWZrIs1tbWPPnkkxw+fJiXXnoJgP379/P222+XWAevvfYaGzZs4JVXXsHNreDWUrVazZQpU4iJiSEnJ4cRI0bw+OOP638eGxvLiBEj2L59O127duXVV1/l6NGj5OTk8OWXXzJjxgwuXrzI4sWL6devHxMmTODBgwdoNBomTZpEaGgo3bp109frrVu38PHxITo6mvj4eObNm0f9+vWJiIhg9+7dVKpUiS5duvD2228zY8YMMjIyqFq1Kq+++qo+TytXruTQoUNUqlSJTp06MWjQoP9n777Dm6zeBo5/u9IFXXTbsoUCsmSD7CkCKgIqgjIURTYCZcgsCEX2FigCpZS98QcCIkssIG3Ze5dC2Z1J2jTvH6Fp03SkYhB57891cV0kPbmf+4znSXtych5OnDjBjBkzsLa2xsfHh6CgICIjI1m2bBnJycnUqlULgL59+wLQtWtXRo0axRdffEFERATnzp1j/PjxWFhYULVqVQIDA7ly5QoTJkzAwsICR0dHpkyZgpNTwbblUKuUODln7qVtY6PAwsIClTIFx0I5xzp3KoI928MYOiHnrUeyUimVKBQKg+dsbW1RKjNX6apUKmyyl1EoUClNW8mrUqlwzjJmbBQZdVBSuHDmfqFKlSrfXF63/DOoVUqcnTMnejP7WUmhXPrZVCqVCoXC8EM0ha2ClCzfUHlRKpWSwjnmn9c4Pcav21czdMKiPGMr1akosn0IaKuwyTX/yzdjmLlyI0H9upmcv1KdisLa8G3L1saGFJXxt3z2nDzP5HW7KWxvx4xeH5l8DHO2EUBqLtcKtSr3+OdPRbBvxyoGjVtsUh1S1Sk4FM48hrWNAiwsSFWnYO/orH9eq9Xyv7CxtPzke6ysc/8AN7s0dQoOhbLEt86Mb+eQGd/GzpGyb7fh7cY9KOzqS+SB5ewI+ZYuw3diafX3f/2wcrAnXWk4rjQpKqxN/MAmLTUFuyz5Wz3PP02dgq19lvxtHShV+T0q1u9BIWcfzhxZwZ7QPnw0cMcL5f9P1CFVnYKjk2EfZ4yjrH2c4eivK9m/dQFFvIrRuX/uK4AzpKUqsS9cJDPfLG1E1j62daTM2+/p+thF18c7Q77ls8AX62MwTxthYUGqyvg8+GXVWFp+WsDz4F9uo1e9feDfP9de9fMs12u1yvBaqtVq2bNmLE06fo+VVcH6QAghhBBCvFyv1UR7QEAAlSpVomnTpjRs2JAGDRrQokULypYtS/369WnZsiWVKlUiLS2NBg0a0KBBA0aOHEmPHj2oW7cuBw4cYMGCBUycOBGA1atXY2lpSdOmTenWrRsAz549IyQkhJkzZ7JlyxZCQkKYNWsW+/bto1y5cvpcbt++zfvvv09gYCCdOnXi4sWLbN26lXfffZdu3bqZtPd0mzZtWLBgAe3btychIYGrV69So0aNPF9ja2tL9+7dWbRoEcOHD9c/v3PnThQKBatWreL+/ft8/vnnuW4Fo9FoKFmyJF9++SWDBg3izz//pGfPnoSFhdG3b1/mz59P/fr16dixI1euXGHSpEn8/PPPBu06fPhw1Go1ISEhhIeHs2XLFpycnNi1axfh4eEAfPrpp7Rq1YqePXty+fJlg0l2gGXLlnH48GGsrKz0r5k4cSLLly/HxcWFqVOnsmvXLry8vLh06RK7d+/m0aNH9OvXj759+/L06VMePXpEQECAPubEiRMZP348AQEBDBs2jJiYGIKCgpgwYQLFixcnLCyMsLAwk7aa2ffLGn77ZR2g+9qws0vmH9ypahVarRY7+5z/mDsZsZ/VS6YyYNRs/TYyebGzs0OtVhs8p1KpsLezMyiTmq2MUqXCLkuZ7LZv28b27dt1dbC2xtU1c4JRrVY/r4PhSuDccsle7nXJf/eODfy6Y4P+GC4umX8UqzP62c601dJ5sbOzRa02nDBWqdQ45FF/U+z7ZS37flkL/L1xGrbkRwaMmqXfIiXX/G0VqLNta6VUqXGwszUqe+rSNUbODmFUr85UK5//zeIy2NsqUKelGR4jNRUHW+OJh+Zvl6P52+WIuHiDL2eFsX7kl7g7G9+0FszfRvt/WcP+/+n2q7eytsYph/i2uYyhqIjfWBMSTJ8Rc/TbyOTk+G+r+Gv/KgAsrWxwdMq8uW9aqgq0WhS2hnWIPLgWd5/S+L9ZPde4GaIPreLUocz4DjnFVxjGt3d0pVGHzC3JqjbqzrHd83ny4AZFvE27qWtONEnJWGYbV1YOdqQlJuX6mnNHwzh3NOx5/tbYFzbO3zpb/nYOrtRtN1r/+K13uhH52wKePbyBq9ffz//v1uHPvWFE7H1eB2trCjln1iFjHGXv4wx1WnxO7eZdOR3xC4sndqb/DzuwURheW6IPreLUYV18KytrHApnfkMlo41sbHPo448M+/j4rwt4+uAGbi/Qx/D32uj4b6s4keU8yNpG+nGa7d4ZJw+uxd23NEVNPQ9ekTZ6FdsHXq1z7VU8z07+voqog3lfq7OPoVOH11LEuzR+pU3rAyGEEEII8e95rSbaAaZOncrVq1c5dOgQS5cuJTw8nJUrVxqVq1SpEgCRkZFcv36dhQsXotFocHPTTaLZ2dnRpUsXrK2tefLkCU+fPgWgYkXdV/c9PDJ/MXZ3d9f/PEOhQoX0E7ze3t76ifLWrVsD0KRJE06fPp1nXapWrcqtW7d4+vQp+/fvp1mzZlhYWOTbBh988AEdO3YkJiZG/9yZM2f0q729vLxQKBQ8ffrUYNV7VtWrVzfIPeuK4MjISB4/fsy2bdsASMmyh3RGu2aPcerUKU6fPs3Nmzf5/PPPAUhKSjLIMbuWLVvSvXt32rRpQ7t27Xj48CE3b96kX79+ACQnJ+Pq6oqXlxdly5ZFoVDg4+ODhYUFcXFx/PHHHzRr1swg5vXr1/X9kvFhx6lTpxg9WvcHnlqt1vdxfpq2/oSmrT8B4Lf/rePS2b/0P7sfewtnV3ccHAsbve5cdAThIT8yeOx8kybZAfz8/Tl48KD+cVJSEgkJCbzxxhsGZWLv3dM/1mq1xMbGUrRoUXLTtl072rZrB8COHTsMxmRMTAxubm4UKmQ4Oenv55dvLq9T/i3bdKBlmw4A/LpzI+fPZH5V/d7dO7i4ueNYyLifC6rYG77sOxKhf5yYlExCYhJ+Pt55vCp/TVt/TNPWug+xfvvfOi6ePan/WV7j9Gx0BOEh0/hu7Hx8/Uvke5zivl7sPZp5DiQmp5CQlIJ/lu1wQLeSfcSspUzs34OqAQWbQCnhVYTdf53TP05IURKfrKSoZ+aHH/cex3PuVixNqui2j6lVtjheLoU5dT1G/1x25m6jxq0/ofHza8Xvu9YaXCviYm/h7OqBg6Pxavbz0X+ydtmPDBizEB+/vK8VNZp0oUaTLgCc+D2MW5eO63/2+P4NCjl7YOdgeIxL0fuIvXmGy0P2A5Cc8Jiff+jAh71mUTygtkHZyvW7ULm+Lv6pw2HEXMmM//TBDRydPLDNFl+Z/AxVSrzB9hra9HSsXnClc+LFaziU9Dd4zrFUMRLP577VRPk6n1G+zmcAnPtzNfeuZ+Yf/+gmDoU9sLU3zF+V8gx1SgKF3TK3+tFq0194pfbfrUPtZp9Ru5muDhH7VnPjYmYdHt2/SWEXD+yzjaO4u1dJeHKfUhXqYmFhQaXa77EjNIiHsdfxKVbOoKxhH68m5moOfWyfUx8n4FwkSxul/3ttZHAe7DfxPIjSnQczozPPg2WTOtD+6/zOg3+3jV7F9oFX61x7Fc+ztxt14e1Guj6IPBjGncuZ8Z/E3cAxhz64cmof926d4eppXR+kJD5m1dQOtO05i6JljPtACCGEEEL8e16rPdq1Wi0qlYpSpUrRrVs31q9fz/3797mbw97LGfuc29jYMHv2bEJDQ1m9ejXz5s0jJiaG5cuXs3TpUkJDQw0m4KyzbFuQ9f/abJsEWWW7UaFWq0Wr1eonyk2ZMAdo1aoVe/fuZffu3bRt29ak11haWtKvXz9mz55tlEMGtVqNpWXu3Z81/+x1s7GxYfTo0fr95Dds2GDws9xi2NjY0KhRI/3rtm/fnucK/fHjxzNu3DgePHhA165dsbS0xNPTU//6jRs38tVXXwEYbAXSrFkzfv/9d3777Tdatmxp1DbZ2dvbs3LlSkJDQ1m7di3ff/99rjnlpmrNRpw/dZx7MTcA+HXbKmrVb2VUTqVKYdnccfQJnGbyJDtA5UqViHvwgDNnzwKwefNmatWsabDau1jRojg7ObF/v+4Psb179+Lp6Ymfn1+OMbOrXbs20VFR+pvnbt68mYaNGhmVq1S5Mg/i4jh75oy+XM1atfJcef5fzz9D9doNOBN9grt3bgLwy5Zw6jZols+rTPP2W+W4/+AR0ecvArB2+y7qVq+CfQ4rwv8u3Tg9Ruzzcbp7Wxi16rc0Kqcbp+Ofj9P8J9kBqlUoQ+zDx0RduALA6l9+45233zLIX6vVMn7hSob1+LjAk+wANcoUI/bxM05euQ3Aqn3HaPBWaRxsM8//VI2GMaHbuXJXtzf8zbjH3H7whFK+HjnGzM6cbQRQuUYjLpw+pr9W7NkeSo13jK8ValUKK+aP5Zth0/OdZM+uTOVm3Dh/lEf3rgEQsXc5FWq2MSr3Sf8lDJp+lIHTjjBw2hGc3HzoPnJDjpNnWZV8qxm3Lx/lyX1d/Mjfl1PmbeP492+dZvP8L0hOfAzA2aPrKOTqg1MRf6OyBZF4/irqh4/x/UR3TL/PPyTlVgxJl2+Y9Ppi5Zpy9+qfPH2gu1nhmcPLKVn5PaNyD+6c4ZeQbqQ8z//i8fUUcvahsNuL5f9P1KHc2025du5PHsTq6vDH7uVUrGVch+SEx2xcMpz4J3EA3Lx8knRNGq6eedeh5FtNuXP5KE/idH0cdWA5b75tHD/u1mm2LPhC30b/VB/Di7dRmSrNuH4h8zz4c0/O58GnA5YweMZRBk0/wqDpuvOgxyhTzoN/t41e9faBf/9ce9XPs9KVmnHr4lEeP7+WnvhtOQHVjPvgoz5L6BN8lG+nHOHbKUco7OpDl2EbZJJdCCGEEOIV9FqtaN+wYQPHjx8nODgYCwsLEhISSE9Pp0iRIlhYWKDRaIxeU7lyZfbu3Uvnzp05evQoDx8+pESJEri5ueHo6MjZs2eJiYkhNdV4D+CCKlq0KGfOnKFixYoGK2rz0qZNG4KDg3n06BHly5c3+ViNGjVi2bJl+htBVqxYkYiICN577z1iY2OxtLQs0D7klpaWpD3fsiGjzapWrcqVK1c4dOgQ3bt3zzdGhQoVmDZtGikpKdjZ2TFp0iSGDBliEDtDQkICK1asoG/fvvTt25cTJ07oJ8mvXLlC6dKlCQ0NzXGivnnz5kyfPp07d+5QoUIFg5+VKlWK6OhoKleuzMiRI+nZsycBAQEcPHiQhg0bsnPnTtzc3KhTp47JbQPgWsSTLl8PZ97kwWjSNRQrGUDnLwMBuHbpDFvCFzB47AKijh0gIf4JS2YaTuYPm7jEYLuK7GxtbRkeGMiCBQtQKpX4+voyeNAgHj58yPejR7Po+c1ehw0bxuw5c1gVFoaLiwvDhg41uQ7u7u5826cPQRMmoNFoKFW6tH4LnYsXLxK6ciUTJ03C1taWwOHDDXIZNHhwnrH/6/lncCviQY/eQ5g+aTjpGg3FS5Wl29dfAnDl0jnWr1rMiAmzePrkMUEjvtW/LmhkH6wsrRg1aS5uRXKe8LW1VTBu8LfMWLwSpUrFG95ejOr3FQ8ePWbwhB8JnT0ZgK4DRqBJT+fB4ydMmLkIW1sF3/fvRfk3c99WJEPmOP1OP04/+3IYoBunm8MX8t3Y+UQ+H6eLZ44yeH1gHuPUTqFgUv8eTP15HUqVCj8vD8b07krc46f0nzyPNT9+z+nL17lyK4Z54VuZF741s336diOgRO7fXMg8hg3BPT5k8tpdpKhT8fdwJahrW+4/jaf33DVsGt0Lfw9Xxnz2HsOXbSFVo8ECGNaxOcWyrHr/t9pIF9+Lzl+NYGHwINI1afiXLMcnPXXbfF2/fJpt4QsYMGYhUcd+JyH+CSGzRhq8fkhQiMHWMzlxcvWi1WdjWb+gD+npGryLlqflJ7prTsz1UxzcOptPB4aY1B45KeTiRaMOY9kRoovv6VeeWh/p4t+7eYo/f5nNB71DKBbwDhXf6cyG2Z/q7oHh7MV73ediaWmVa2yFZxHq7Fulf1x7byjaNA1/tvyCWjtDOFhV94FzVNchVFwURJkx/VDFPSLyc9OvFY7OXtRtN4a9q/qiTU+jiG956jTV9eOD26f4a+8cWnVfit+b9ShX61N2/NQZCwtLHJy8aPrZ7Dzzf1l1cHL1os3nY1g9py/p6Wn4FivPe110dbhz7RT7Ns3hiyFLKV62Bg3bfM3yH3vovk1go6BT7+nY2ee8jVKGQi5eNPpoLDtD+pKersHDrzwN2mf2ccT/ZvP+NyEUDXiHivU6s2HOp2BhSSFnL1p3n/PKtNG7nceybr5unPoULU/DTzPPgwNbZtN50AueB2Zqo9ehfcC859rrcJ4VdvGi6cdj2fKTrg+8/MtTr6OuD2JvnOLIjtl06PtifSCEEEKI14MW0xbrin+fhTb7cuX/MI1Gw7Rp0zh+/DgODg6kpaXRq1cvGjVqxMaNG5k7dy6TJ09m1KhRbN++HUdHR+7fv8/IkSNRKpVYWFgwefJkfH196dWrF0lJSVSrVo309HTOnz9PtWrVcHV1pUuXLqxatYonT57Qr18//f9r1qypvxlqrVq1iIjQbQPRv39/PvvsM7y8vBg4cCAuLi5UrlyZqKgoVqxYoc8/62uyev/992nRogV9+vTJs/6bNm0C0N889dSpU3Ts2JF9+/bh7e3N2LFjuXXrFqmpqXz33XcGk9RZb4bapEkTffsEBwfz5ptv0qhRI9q3b0+LFi3o378/I0aM4NGjR6SnpzNq1CgqVqxo8Lrhw4fTsmVLGjduzP79+9m9ezdTpkwhLCyMjRs3YmVlRbNmzfj666+5dOkSPXr0oHv37vTs2VOfU1BQENHR0Tg4OFC1alUGDRrEiRMnCA4OxsbGBk9PT6ZOnUpkZKS+3TO0a9eOd955h2HDhhm07cWLFxk3bhwAVapUITAwkKtXrzJ69GgsLS2xtbVl+vTpuW6pA3D4XO57e/4TfG3v5V/oBWhN/DbF32XxEi4p5q7DszTjm5z9k/xTr5g1/iWLCvkXekFvKf80a3zbJ8bfRPon/eXT3qzxU9Pznmj8J9x69OL3BshLQrJZw1O8Xc5b+fxTzq45b9b4ABU+KZd/oReQdNC8dYh7Yv5f2Eu8H5B/oRfweN9Fs8Z/lmje9zRztw+Yv41iH6SbNf5//TwDeJZk/i8Rf/XPfMFOCCGEEK+gX6PV+Rf6f6RFZUX+hf4lr9VE+6vu8uXLxMfHU61aNXbs2EFERARBQUH/dlqigGSiPW8y0Z4/mWjPn0y0508m2vMmE+35k4n2/MlEe/5koj1/MtEuhBBCiBchE+2GCjrRnpqayvDhw7l79y5WVlZMnjwZf3/Dbf5++eUXli1bhqWlJXXq1GHQoEFs2rSJ2bNn6+8dWLduXf3OCbl5rbaOedU5OjoyZswYLCwssLS0ZPLkyQWOoVarDVZ9ZyhRogQTJkz4J9IUQgghhBBCCCGEEEKI/7wdO3bg5OTE9OnTOXz4MNOnT2fWrFn6n6ekpDBt2jS2bduGo6MjnTp10t8ns3Xr1gQGBpp8LJlof4l8fX0JDw9/oRgKhYLQ0NB/KCMhhBBCCCGEEEIIIYR4PR09epQPPvgA0K1KHznS8F5o9vb2bNu2jUKFdPfYcXFx4enTp3/rWOb/HqMQQgghhBBCCCGEEEII8ZI9fPgQNzc3ACwtLbGwsECtNtyOJ2OS/eLFi8TExFC5cmUAjh07Rs+ePfniiy84d+5cvseSFe1CCCGEEEIIIYQQQgjxCkqXu2uabP369axfv97guejoaIPHud2u9MaNGwwZMoTp06djY2ND5cqVcXNzo1GjRkRGRhIYGMj27dvzPL5MtAshhBBCCCGEEEIIIYT4T+vYsSMdO3Y0eG748OE8ePCAgIAAUlNT0Wq1KBSGN1S9d+8effr0YerUqZQrVw6AUqVKUapUKQCqVq3K48eP0Wg0WFlZ5Xp82TpGCCGEEEIIIYQQQgghxGunXr167Nq1C4D9+/dTq1YtozKjRo1i3LhxVKhQQf/ckiVL2LFjBwCXLl3Czc0tz0l2kBXtQgghhBBCCCGEEEIIIV5DrVu35o8//uDTTz9FoVAwZcoUABYvXkyNGjVwcXHhxIkTzJkzR/+abt260bZtW4YOHcqaNWtIS0tj0qRJ+R5LJtqFEEIIIYQQQgghhBBCvHasrKyYPHmy0fO9evXS/z/7Pu4ZQkNDC3QsmWgXQgghhBBCCCGEEEKIV5BWa/FvpyBMZKHN7VarQogcxZ07Ydb4ibauZo2vtTDvBfpJqnnzByiRet6s8ePtPc0aX0Pee3q9KCs0Zo0P5q/D5Xg/s8YPcLpp1vhedyPNGh8gzqeyWeN7Xz1k1virrHuaNT5AJ9c9Zo2/7klzs8bv6LrXrPFVdi5mjQ+wLba6WeN3Vqw3a/w7vsb7N/6TDt4oatb4AF2ezTZr/PiAemaNb/YxZL3GrPEBxpxrZ9b4AWUczBof4MumZj+EEEIIIXLxv8jUfzuFV8q7VW3+7RRyJTdDFUIIIcRrx9yT7EIIIYQQQgghRFYy0S6EEEIIIYQQQgghhBBCvACZaBdCCCGEEEIIIYQQQgghXoDcDFUIIYQQQgghhBBCCCFeQXJ3zf8OWdEuhBBCCCGEEEIIIYQQQrwAmWgXQgghhBBCCCGEEEIIIV6ATLQLIYQQQgghhBBCCCGEEC9AJtqFEEIIIYQQQgghhBBCiBcgE+1CCCGEEEIIIYQQQgghxAuw/rcTEOJ18Neps8xfsZqUFCXenu6M6NsLT/ciBmW0Wi3hW3ayOGwdcyaMolL5sgU6RlRUFEtDQlCmpODp6cmgwYPxcHc3KHPt2jXmzZ9P/LNnODk7069vX0qUKGHyMQ78/jtr1qwhLS2NYsWLM2jQIBwdHXPMJWTpUlKUSjw9PRk8aBDuHh75xj9uMhxgAAAgAElEQVR6cA9b1v2MRpOGX9GS9Or/PQ6OhYzKpaWlsWbFfP63NZw5y7ZRxN0z39gnTp9j3oq1pChVeHsUYVTfnngWcTMoo9VqWb11F4tWb2Te+GFULlcm37hZRUVFsyRLHwwePCjHPpg7fz7xz+JxcnaiX9++lCxIHxz4nbVrwnV9UKw4AwcNzrEPoqOiCAlZQkqKUj8e3N3z7oP/ev4ZTv7xC79uWoxGk4aPf2k+/SYIe4fCxseI2MPuTYtIS1XjWNiFTl+Owcf/zTxjm7uNjp2/ysz1u0hWqfFxc2F89/Z4uTkblDlx8TqzN+wmMUWJncKGIZ+0ploZ0+JHRUezJGSZvl2/GzTAKP+r164zd/4C4uPjcXJyon/fbwvUxxGXbjJjy36SVan4ujkxoXNrvFwN2//E5VvM3HaAxBQVdgprhrVvSrXS/iYf4/yJnfz5v4VoNKm4+5bh3a4/YGtv3Mf6Op3+nU0Lv6ZX0D6ci/jlGfv4mYvMDtusu1a4uzHmmy54FXE1KBN98SozQzeRlKLEzlbBoK4f8Xa50ibn/zLqMCdsM8lKFT7ubozOpQ6zQjfq6zCw60e8XS7v8Z/hZbynmbN9zH2eZTh4YD9r16xGk5ZG0WLFGTBoSC7Xu0iWhSx+fl3xYsDgISZd78zZRhFX7zDjlz9057FrYSZ0aIKXs/H7McDF2Id0nreBRT3bUqPkG/nmneE/P44uXGPm+l9146iIM+O7fYCXa/ZxdIPZG399fq2zYcjHrahWprjJ+VcpbUWzajZYWsK9x+ms269GqTYu5+RgwSdNFLg7W6BMhS2H1FyLTTfpGOZsIyGEEEK8HOlY/NspCBPJinYhXlCKUsm46fMI/PZLwhdMp171qkxbtMyo3PRFy7h9NxZXZ6cCH0OpVDIlOJiBAwawdOlSatWqxby5c43KTQkOpsNHH7F06VI6dezI1KlTTT5GXFwcCxcuZPyECSxZuhQvLy9WrFiRYy7BU6YwYOBAfS5z583LN/7DB/dYsXg6Q8fOYNrCdbh7+rAudFGOZWdMGoqdvYPJuacoVYyZsYgR33Zn7bwp1Ktehak/rTQq9+PildyKvYerc+5/YOZGqVQyOTiYgQP6E7J0ia7ec43rPTk4mI4fdSBk6ZLnffCjyceIi4tj0cKFjBsfxOIlIXh5ebFyxfIccwkOnkz/AQNZsjQk1/HwOuWf4cnDWDb+PJmvhy9k1MwduHm8wc41c3Ist27pBL4cMpeRM7ZTpVYLwheNzjO2udsoRaVm+OJ1jPniQ7ZOGkSDygFMWrXNMAd1KkMXhjPis7ZsnjiQXm2bELhoLVqtNt/4SqWSH4J/ZGD/fixb8hO1a9Vgzrz5OeQ/lU4d2rNsyU983LEDwT9ONyl/gGSVmsDl2xn3aSu2j/6KBm+VJmjdbqM6fLdsK6M6Nmfr91/yTat6DP15m0l1AIh/fJd964L4qM9ivhy3G+cib3Bo28xcy6eqUzi4dTp2ji75xk5Rqhg192e+7/UZG2eOpX61ikwJWWNQRp2aynfTFtP30/dZP30033Rsw/dzfzYp95dVh+/nLmNUr87P6/BWjnUYMu0n+nz6Aeumj+Hrjm0YbWIdXsZ7mlnbx8znWYa4uDh+WjifseMnsWjJz3h5eRG6wridlMoUfgz+gX4DBvPT0uXUqFWb+XNn5xvfnG2UrE4lMHwP49o3ZvuQz2gQUJygzQdyLJuermXSlgMUKWyfb9ysXotxtGQDYz5vx9aJ/WlQqSyTVu0wKKNUpzJ00VpGfNaGzUH96NW2EYGL15s8jlwKWfDBOwqW7lQxNVzJk3gt79a0ybHsJ00UXLil4YcwJVsPq6n3lmlrpczZRkIIIYQQwphMtL/GwsLC6NSpE126dKFDhw788ccfXLhwgevXr5v1uOfPn2fOHOOJr7wcOXKErl270rVrVypUqKD//+LFi/nmm28MyiYmJlK/fn1SU1NzjNWtWzcOHz6sf3z37l1atmyJUqkseGVMcPL0OXy9PShbSrcSrnXTRhyPPk1ySopBuVaNGxDY5yusrawKfIyo6Gi8vb0pXVq3orJFixacjIwkOTlZX+b69eskJiZSt25dAGrXrs3TZ8+4deuWScf48+hRqlSpgqenbvV4yxYtOHzokFG56Kgoo1wiT540yCUnf0UcpELl6rh7eAPQqHk7Io7sy7Hshx/3oEPnr0zKG+Cv0+d5w8uDsiWLA9CmSX2ORZ8hKVsfvNuoHiN6d//bfeDj7c2bz+vdskXzHPrgBomJSdStWweAOgXtgz8N+6BFy5YcPpxDH0RH4e3tQ+nSutWpzVu0JDIy7z74r+ef4fSJ3yjzVi1c3X0AqN24PVERu43KWVpZ83m/YNw8fAEoU7E2cXdv5Bnb3G107Pw1/DxcKVdMl9MH77zN0bNXSFKq9GVS0zSM+eJDyhfXrRqtVa4kj+ITSUjO//oVFX3KMP/mzTkZGWWY/40bJCUlUbdORv61nud/O9/4AMcu3cKviDPl/HXn8Ye1K3L0wg3DOmjSGfdpK8oX1ZWpVbYYjxKSSEhR5RgzuyvR+yhWtg5Obrp2qli3AxdP7sq1/JEdcylfsx0KW+OVxNkdP3uJNzzdCSihW13frlEd/jx1gaSUzPZN06Qz8qtPqV5B942XymVL8uDJMxKS8h+fL6MOJ/R1KApA20Z1iDh1PlsdNIz8qnOWOpQyuQ4v4z3NnO1j7vMsQ8Sff1C5SlX99a55y3c5cvigUblT0RnvmRnXu1ZERf6V7/XOrG10NQY/NyfKvaFbVf9h9XIcvXKbJJXxUur1EWcp6+OOf7ZvBOTnPz+OLlzHzz3LOKpXlaPnruYwjt6n/PMytQJKFGgcVShuxeU7Gp4map8fM41KpYwn0J0dLfDzsOTwmTQArt5NJ3RPDsvec2DONhJCCCGEEMZkov01defOHdatW0dYWBirVq1i2rRpLFiwgD179nDjxg2zHrtcuXL079+/QK+pV68eoaGhhIaGUqhQIf3/e/bsyYULF4iPj9eX3bt3L40bN8bGJudVP8OHD2fGjBmkp+u+Ujtz5kz69euHnZ3d369UHm7fjeUNby/9Ywd7O5wKF+ZO7H2Dcm8FmPaV/ZzExMTg4+Ojf2xvb0/hwoW5GxtrWMbb2+B13t7e3L5z528dw8fHh6dPn5KQkGBSLrF37+YZ/17MLby8M79y7uXzBvHPnpCUGG9U9s2AiiblnOFW7D3e8M7cXsbB3g7nQoW4ExtnUK5i2YJt/ZDVy+oD7xfpg9jc++C/nn+GB7E3cffK3ILE3cufxGePSU58ZlDO2dWDspV0HzppNGkc+30Lb1VvnG/+5myjm/cf4ueRuZ2Rg50tLoXsuR33SP9cYQc7GlctB+i2VNhy+C+qvlkMJ8f8V5PeiYnBxyczN3t7e5yy5X8nJgbvbPn7eHuZ3Mc3HzzG3z1zpaODrQIXR3tuPXiaWQd7WxpXelNfh81HT/F2KT+cHEy7Bj+Ou4GLe1H9Yxf3oiQnPEKZ/Myo7IOYi9y88AfVm3YzKfat2Dje8MrcSsfBzhbnwo7cuffA4LkmNavoH/8RfY6iPp4UdjT9WzbmrcP9bHWwy6EOdjTOUoejBajDy3hPM2f7mPs8y3A35k6O17tEo+vdHbx9fPWPddcVp3yvd2Zto4dP8XfLXEHuYGuDi4Mdtx4Zxn6YkEzYH6fo17K2SXGzej3GUeZ2TA52trg42nM77rH+ucIOdjSuEgA8H0dHThZoHHm4WPAoPnP1+8NnWgo7WGCvMCzn627B4wQt79WyYdindvR+3xZfd9O+Pm7ONhJCCCGEEMZkj/bXVGJiIiqVitTUVGxsbChevDijR4+mR48euLm5UaRIEYYMGUKDBg0oUqQI7du3Z9SoUaSmpmJlZcXEiRPx9fVl2bJl7N69m/T0dBo2bEjfvn2ZO3cuT5484ebNm9y5c4cBAwawceNGYmJiWLJkCXfv3iUsLIw5c+bQvHlzmjVrxsmTJylcuDCLFy8mLi6OAQMGYGNjQ/Xq1fnrr78IDQ3NsR5WVlY0bdqUvXv30r59ewB27dpFjx49cq17QEAA5cqVY+vWrZQtW5bbt2/z3nvvceLECWbMmIG1tTU+Pj4EBQWhUqkYOHAgarUatVrNmDFjqFChQoHaWqlSo8g26W+rsEGpNG31pilUSiUKheFfXra2tgar9FUqFTbZyygUqExcya9SqXB2yZxAs1EosLCwQKVUUrhw5lYrSpUq31xyi+/knDn5YWOji69UKnEsVPCvjBvGzqkPFChV/1wfKJUqbBTZjmGrMKh3jm2jUJj8bQqVSomLc+aqwYw2UqkM+0ClVBrlosinD/7r+WdQq1Io5JQ5jqyfH0OtSsGhkPGKywO/hLJ70yLcvYrSc0je37Qxdxsp1akobAzfdm1tbEjJYRXpnhNnCF69g8IOdkz7tnO+sUF3jilsDHNTZMtNpVKhyN72CtPaXleHtBzqYE2K2vgbRnsiLzJ5w14K29syo+cHJsUHSFOn4FDYsI+xsCBVlYKdQ2Yfa7Vafg0fS9NO32NllfMHr8b5q7HN4XqdUx8AXL4Zw8yVG5nYr5vJ+Zu/Dqk5vuek5HK9y6hDkIl1eBnvaeZvH/OdZxlUKhXOzlneMzPe01RKChlc74yvGQrb/K8Z5m2jNBQ2hivIba2tSVGnGTw3dcdhvm5SHSd7W5PiGhzjdRxHuVwr9vx1luDwXyhsb8e03h+bnL+NtQWJKZn7rGvSIV2rRWFjQYo6cwLeXmGBt5sFe06ks/1oKrXKWdGtpS1TVitJz2eXGnO2kRBCCCGEMCYT7a+pgIAAKlWqRNOmTWnYsCENGjSgRYsW1K9fn5YtW1KpUiXS0tJo0KABDRo0YOTIkfTo0YO6dety4MABFixYwMSJEwFYvXo1lpaWNG3alG7dugHw7NkzQkJCmDlzJlu2bCEkJIRZs2axb98+ypUrp8/j9u3bvP/++wQGBtKpUycuXrzI1q1beffdd+nWrZtJe4i3adOGBQsW0L59exISErh69So1atTI8zUDBw7kiy++oEiRIgwfPhwLCwsmTpzI8uXLcXFxYerUqezatQs7Ozu8vLz44YcfuH379t/aVsfO1hZ1tm1sVCo19n/jD9Ncj2Fnh1pt+MedSqXCPssqfTs7O1KzlVGqVHmu5N++bRvbt28HwMraGlfXzNVbarUarVaLnb3hyqzccsleDuDXHev5decGfXwX18w/9tRqlS6+XcH2fc1JTn2gVBu2zwsfw86OVHX2fs7eB7a59FPuddy+fRs7tuv2D7ayssbVoI3UObZRbrnk1Zb/5fwP7VrNoV/D9cdwcslczZv6fBwp7HJeqduwdVcavNuFk3/8j9ljujB8+lYUipzHhbnaKIO9rQJ1quFEllKdioOt8bWiefW3aF79LY6dv0qvH0NYO64v7vncW8DOzg51at652dnaoc6pjvamnSv2Cpsc6pCGg63xxEzzqmVpXrUsEZdu8uW8NawP7Ia7U843Wzz5+yoiD6wCwNLKBkenzBtFpqWqQKvFxtawj6MPr8XdpzR+paublDvo+kCV/VqhUmNvZ9wH0ZeuMXL2Mr7v9RnVyud/4+SXVQc7W4Xx9U6lxiGHOpy6dI2Rs0MY1auzSXXQxTfPe9rL7GNznWc7tm/RX++sraxwyek9M4frXX7v3xleWhsprFGnagyeU6am4pDlQ7gjl27xLFnJe1ULdtPwDK/tOLJTGJVtXq0CzatV4NiFa/Savpy1Y3rnOo7qvWWt319dkw4JyZkz5dZWYGlhgSrVcPZcqYbEFC1nb+j6LOK8hjZ1FHi4WHD/ifFM+8tqIyGEEEK8PAW4lZD4l8lE+2ts6tSpXL16lUOHDrF06VLCw8Px9fU1KFOpUiUAIiMjuX79OgsXLkSj0eDmppsss7Ozo0uXLlhbW/PkyROePtVtD1Cxom5rDw+PzF/e3d3d9T/PUKhQIQICdF+r9fb21k+Ut27dGoAmTZpw+vTpPOtRtWpVbt26xdOnT9m/fz/NmjXDwiLvr8x6eHjQsmVLLl++TJUqVXj48CE3b96kX79+ACQnJ+Pq6sr777/PrFmzGDNmDC1atKBBgwZ5xs1JMT9ffjvyp/5xYlIyCYlJ+Pl45/GqgvHz9+fgwcy9X5OSkkhISOCNN94wKBN7757+sVarJTY2lqJFi5Kbtu3a0bZdOwB27Nhh0BcxMTG4ublRqJDhxJi/n1++uWRo0aYjLdp0BGDPLxs4fyZS/7N7d2/j4uaOY6GC35g0u2JveLPvj2P6x7o+SMbfxyuPVxWMv79xvRMTEg3q7e/vT+y9zG06tFotd/Prg7btaNs2ow+2cyZLH9zNpQ9yGg/Zc3md8q/fqjP1W+lWmx7+dQ1Xzh3X/+zBvZs4uXrg4Gj4rYh7MVd59jiOshXrYGFhQbV6rdn48yTi7t7Ar3hAjscxVxtlKO7tzq/HM9snIVlJfHIKRb2KZOb9+Cnnb96lcdXyANQsVwovV2dOX7utfy43/n5+HDiYuSd+UlISiYmJvPFG5nXf39+P2Njs+d81KX+AEl5u7I68kFmHFBXxyUqKZtli4d6TeM7dvk+T59vH1CpTDC/nwpy6Eat/Lru3G3Xh7UZdAIg8EMbty5l9/CTuBo7OHtg5GPbxlVP7uH/zDFdO7wcgJeExocEdaNdzFkXL5rzVRXFfb/YcPal/nJicQkJSCkW9PQzKXb4Zw4hZIUzq352qAaZtOfXy6uDF3qN/GdXBP8v2WZl1WMrE/j1MrgOY7z3tpbWPGc+zNm0/oE1b3bczdu7YxpnTp/Q/y+t6d+hg5o1GM64rvjlc715WG5XwcGX3qSuZbaRUEZ+ioqh75grn385e48LdhzSZpLuJ7rMUFYNX7WJYm3q0fTvna2hWr8c4OqN/rB9HnlnH0bPn40i3wKRmQEm8XJ04fe2O/rnsjpxJ48jzvdbrVrCmpG/mLp7uzhY8S0pHmW3R/JOEdGxtLLAAMv7G1kKuq9lfVhsJIYQQQghjskf7a0qr1aJSqShVqhTdunVj/fr13L9/n7vZ9tHO2OfcxsaG2bNnExoayurVq5k3bx4xMTEsX76cpUuXEhoaajDZZG1tneP/tdk+ZrPKdnMrrVaLVqvVT5TnN2GeoVWrVuzdu5fdu3fTtm1bk17j7++Pv7+/vn6enp76vd83btzIV199haenJ1u3bqVFixaEh4czb948k2Jn9fZb5bn/4CGnzl0EYN32/1G3etV/dDV15UqViHvwgDNnzwKwefNmatWsabBavVjRojg7ObF/v+6PpL179+Lp6Ymfn59Jx6hduzbRUVHceb5X8+bNm2nYqJFRuUqVK/MgLo6zZ87oy9WsVSvfPfCr1WrA2egT3L1zE4D/bQ2nTv3mJuWWn2pvlePeg4dEn78EwJodv1KvWuUcV6n+Xbo+iNP3wabNW6iZYx84s3//7wDs2bsXT08P/PxynwDPqnbtOkRHR3Hnju7GlJs3b6Jhw0ZG5SpVqkzcgzjOntX1wZbNm4xyed3yz/BW9cZcPhvB/bu6b5/8vnMlb9dtbVQuKf4JYQtG8uyxbp/+axdPotGk4e6Z+/lg7jaqEVCS2EdPibx8A4CwPUeoX6ks9raZKyRT0zSMWbaJqzG6fYxv3n/I7QePKOnrmVPIbPlXJC4uS/5btlKzZg3j/J2d+e33jPz34enhiV8eH9IY1OHNosQ+jufkVd11YtX+4zR4qxQO2esQ9gtXYh/q6hD3mNsPn1DKu0iOMbMrXbkZty4e5fH9awCc2LecctXbGJXr0GcJfaYepc+UI/SZcoTCrj50DdyQ56RQtQpvEvvwMVEXrgKw+pffeOftCgbXCq1Wy7iFoQT2+LhAE9Qvrw5lntfhSpY6vGVUh/ELVzLsb9ThZbynmbN9zH2eZahduy7R0ZH6692WzRto0ND4PhAVK1Uh7sF9/fVu6+aN1KhZK99vc5m1jUq9QezTBE7e0H3otupwNA0CihusaB/9YSMOjO7Bb6O689uo7lQp6s2MLq1MmmSH12AclS1B7ONnRF7W/c4Stvco9SuWMR5Hy7dw9a7ufebm/Ufcjnts8jg6c0PDm29Y4eGi+124YWUboi5rjMrFPtYSn6SlZjnd79SVSlqRotLy6Fn+S9vM2UZCCCGEEMKYrGh/TW3YsIHjx48THByMhYUFCQkJpKen4+fnh0Zj/Et85cqV2bt3L507d+bo0aM8fPiQEiVK4ObmhqOjI2fPniUmJobUVON9eAuqaNGinDlzhooVKxqsHs1LmzZtCA4O5tGjR5Qvn/eqzpw4P983+sqVK5QuXZrQ0FBq1KjB48ePSU1NpWHDhpQuXZpx48YVOLatrYJx3/VlxpLlKJUq3vDxYmS/r3nw6DHfjQ9m5ZxgAD7vH4gmXcODx0+YMGs+tgoFo/r3pnyZUiYcw5bhgYEsWLAApVKJr68vgwcN4uHDh3w/ejSLFi4EYNiwYcyeM4dVYWG4uLgwbOhQk+vh7u7Ot336EDRhAhqNhlKlS9O7d28ALl68SOjKlUycNAlbW1sChw83yGXQ4MH5xncr4kn33kOZ+cMwNBoNxUuV5Yte3wFw9dJZ1octZvj42Tx78oigkd/qXzdp5LdYWlkxcuJc3Irk/Merra2CCYN6M33JKlJUKvy8Pfm+75c8ePSEgUHTCZul2wbps4Hfo9FoePD4KeNmLcZWYcOY/l9R/s2S+eaf0QfzFyx8Xm8fvnveB6NGj+GnhQsACHzeB6HP+yCwoH3wbV+CgiaQrtFQqlRpvumta4uLFy+yKnQFQRN/0PVB4HAWLpiPUqnEx9eXQYO+e63zz+Di5kWHHt8TMq0/6eka/IqX46PuIwG4eeU0v6ybS++RiylVrjrNP+jFgklfotVqsba24Yv+P2LnkPPWJS+jjewUNkzp1YnJYTtQqtT4exZhfI/2xD2J59uZy9kwoT/+nkUY88UHjFi8jlSNBgssGPrJexTLcvPLvPIfETiMeQsXoVSq8PXxYciggTx8+IiRY8aweMF8AIYPG8KsOfMIDVuNq4sLgUNNa/uMOgR3a8vk9XtIUafi7+5KUJd3uf80gd4L17NpRA/8PVwZ80lLhq/YTmqaBgsLGPZRU4p5uuV/AKCwixfNPhnL5kV9SE/X4OVfnqadvgcg9sYpDm+fTcd+ISbnbJi/gh/6d2fqz+t01wovD8b27krc46f0mzyftT+O4vTl61y5FcPc8K3MDd+qf+3Evt0IKOGfR/SXV4dJ/Xsw9ed1KJ/XYczzOvSfPI81P36vr8O88K3My1KHoL7dCCiR97cXXsZ7mnnbx7znWYYi7u70/rY/k4LG6t4zS73J1737AnDp4gVWhS5nwsQp2NraMixwFIsWzEX1/Ho3cFD+1wyztpGNNcGftmDy1oO687iIM0Edm3L/WSK9f97BpoGf/K24Wb0W4+irDkwO34lSlYq/pxvju32gG0ezQ9kwrg/+nm6M6dqOEUs26K91Qz95l2Jepn2oGJ+kZdMhNd1a2WJpATEP09l9XPd7tr+nJa1q2LBkp25P+5W/qvi4sYImb9uQmKJl5W5Vvvuzm7uNhBBCCCGEMQtt9iXI4rWg0WiYNm0ax48fx8HBgbS0NHr16sWjR4+YO3cukydPZtSoUWzfvh1HR0fu37/PyJEjUSqVWFhYMHnyZHx9fenVqxdJSUlUq1aN9PR0zp8/T7Vq1XB1daVLly6sWrWKJ0+e0K9fP/3/a9asqb8Zaq1atYiIiACgf//+fPbZZ3h5eTFw4EBcXFyoXLkyUVFRrFixQp971tdk9f7779OiRQv69OljUhts2rSJy5cvExgYCMCJEycIDg7Wr26fOnUqcXFxDB06FGtraywsLOjfvz/Vq+e9P2XcuROmdsPfkmjrmn+hF6A18VsEf9eTVPPmD1Ai9bxZ48fbm76q8e/QYJV/oRdghfGHaf80c9fhcrxp38T4uwKcbpo1vtfdyPwLvaA4n8pmje999VD+hV7AKuueZo3fyXWPWeMDrHvyz3wrJzcdXfeaNb7KziX/Qi9oW6x593zurFhv1vh3fGuZNf7BG6Zt2/Qiujybbdb48QH1zBrf7GPIeo1Z4wOMOdfOrPEDyuR8n5J/0pdNzX4IIYQQQuRi+19p+Rf6f6RttVd33bhMtIuX7vLly8THx1OtWjV27NhBREQEQUFB/3ZaJpOJ9rzJRHv+ZKI9fzLRnj+ZaM+bTLTnTyba8ycT7fmTifb8yUS7EEIIIV7EthPm/xv/v6RddfPOR7yIV/cjAPHacnR0ZMyYMVhYWGBpacnkyZMLHEOtVtOzp/EkTYkSJZgwYcI/kaYQQgghhBBCCCGEEEKYRCbaxUvn6+tLeHj4C8VQKBSEhob+QxkJIYQQQgghhBBCCCHE32f5bycghBBCCCGEEEIIIYQQQvyXyUS7EEIIIYQQQgghhBBCCPECZKJdCCGEEEIIIYQQQgghhHgBske7EEIIIYQQQgghhBBCvILStf92BsJUsqJdCCGEEEIIIYQQQgghhHgBMtEuhBBCCCGEEEIIIYQQQrwAmWgXQgghhBBCCCGEEEIIIV6A7NEuRAEpbRzNGl9rYWHW+BZa827uVSztklnjA9xUlDVrfO+0GLPGf2LlYdb4XsobZo0P5u+DAKebZo1fOOWBWeNf9Wlg1vgApW/vNWv8x8VrmDW+9rZZw2Od9NS8BwDMfDlFZedi1vhOsefMGh9Aq61u1viPvCuYNb5/RJhZ42s9R5g1PsCFip3NGj/g8mazxtcqzDuG7vmZ91oHMPbUWLPGX6P90azxy/smcsTMl4t65QuZ9wBCCCGEEC+BTLQLIYQQQgghhBBCCCHEK8jcC3zEP0e2jhFCCCGEEEIIIYQQQgghXoBMtAshhBBCCCGEEEIIIYQQL0Am2oUQQgghhBBCCCGEEBA27qcAACAASURBVEKIFyAT7UIIIYQQQgghhBBCCCHEC5CboQohhBBCCCGEEEIIIcQrSIvFv52CMJGsaBdCCCGEEEIIIYQQQgghXoBMtAshhBBCCCGEEEIIIYQQL0C2jhHiHxAZfYrFy5aTkqLEy9ODIQP74eHublDm6rXrzFmwiGfxCTg7FWZAn96ULFG8QMc58PvvrFmzhrS0NIoVL86gQYNwdHQ0KhcVFUXI0qWkKJV4enoyeNAg3D088owdFRXF0pAQlCkpeHp6MmjwYKM6XLt2jXnz5xP/7BlOzs7069uXEiVKmJT7X6fPMX95OMlKJd4e7ozs+xWe7m4GZbRaLeFbf+GnsA3MmTCcyuXKmhQ7wx8H97B57XI0Gg3+RUvy9YCRODgWMiqXlpZG+IoF/LJlDfN+3kIRd0+T4p+MPs2in0NJUSrx8nAncEAfPNyLGNVh7eZtLA0NZ+aksVQsX65AdTh8YB/r14aiSdNQtFgJ+gwchmMudQhdvpjtm9exeMU63E2ow1+nzzFvxVp9/qP69sSziHEfrN76P35avZG54wOpXK5MgfL/4+AetqxdjkaThl/Rknw9YFSufbBmxQJ+2RLO3J+3mtwHUVHRLMkyTgcPHpTjOJ07fz7xz+JxcnaiX9++lCzAODV3Gx0+sI+Na1eiSUvDv1gJvh04PNc+Dlu+iO2b1/HTig0mtdGxC9eZsXEPySo1Pm7OTPjifbxcnQzKnLh0g1mb9pKYosJOYcPQTi2p9mYxk/N/GefBhRM7ObprIemaVNx9y9Cqyw/Y2hfOtfzVM7+zeeHXfDVhH85F/PKMfez8VWau3/W8jVwY3709Xm7OBmVOXLzO7A27SUxRYqewYcgnralWxrQx9DLq8Neps8xfsZqUFCXenu6M6NsLzxz6IHzLThaHrWPOhFFUKm/69TTi4g1mbNpLsioVXzdnJnRtk8M4usnMLb89H0fWDOvQgmpvFjX5GOZsn8joU/y0bAUpKSl4eXoydGDfHN+TZy/4iWfx8Tg7OTGwzzcFek8+dj2WGb8eJ1mdho+LIxPefwcvJ+P3Y4CL9x7z2ZLtLOzaghrFfUw+hjnbCODIgb1sWrsCjSYN/2Il6T1gRK7X69XLF7Jzy1oWLN9k8vU64vItZmw9QLI6FV/Xwkz4tBVeLob5n7hym5nbD5KoVGFnY8OwDxtTrVT+uWcwZxuZ+/ciK79S2NZrg4WNLekJT1DuXYc26ZlBmcL9fkTzJE7/WJv4jJQti02Kn8Hc4yji0G52rA8hTZOGX9FSdO87BgdH4/iRxw6wJXwRaalqHAs78/k3I/ErVrpAdRFCCCGEeNXJinYhXlCKUskPU6czuF8fli9eQO2aNZg9f5FRuUlTp9Ppow9ZvngBH3f8iMnTZhToOHFxcSxcuJDxEyawZOlSvLy8WLFihVE5pVJJ8JQpDBg4kKVLl1KrVi3mzpuXZ2ylUsmU4GAGDhigf828uXONyk0JDqbDRx+xdOlSOnXsyNSpU03KPUWpYuz0+QR+25M183+kXo2qTPvpZ6Ny035azu2793B1dsohSt4ext1j+U8zCRw7nRmL1uDu5c3a0J9yLDt9YiB2dg4Fip+iVBI0bRZD+n1D6KI51KlZnRkLjP/YnblwCXfuxv6tOjyIu8/SRXP4flww8xaH4uHlzeqVS3MsOyVoFPZ29gXIX8WYGQsZ/m131swL5p3qVfjxJ+Px8+PiFdyOvYerc+5/hOfmYdw9Vvw0g2FjpzN90Vo8vHxYG2p8LgBMnzgMuwLkD7pxOjk4mIED+hOydIlubM81HtuTg4Pp+FEHQpYueT5OfzQp/stoowdx91m2aBYjx01lzuIwPL28CV+5JMeywUEjCjROU1RqAkM2MrZrW7ZN6EvDSmWYuHqnQRmlOpUhP61n5Ket2TK+D1+/15BhSzag1WpNO8ZLOA/iH99l3/ogPvp2MT3H7sbJ7Q0ObZuZa/lUdQqHtk7HztEl//xVaoYvXseYLz5k66RBNKgcwKRV2wzKKNWpDF0YzojP2rJ54kB6tW1C4KK1JreR2eugVDJu+jwCv/2S8AXTqVe9KtMWLTMqN33RMm7/jT5IVqkJDNnMuM/eY/u43jSo+CZB4f8zKKNUp/Ldko2M+qQVW8d+wzet6zM0ZJPJbWTu9pk0dTrf9fuWFYsXUKdmdWbl8p788UcfsmLxAj7p2J4fpuV+fKNjqFMJ3HCAse3qsa1fexqW8WfijqM5lk3Xapm08yhFChXsemfONgLd9frnn2YxYtyPzPopHA9Pb9aszHkC98eg4djZF+w9M1mVSuDKHYz7uAXbR/agQYVSBK3fa1BGqU7lu+XbGNWhGVtH9OCblnUYumL7KzGOzP17EdY22LXsgvK3DSStmkra9XPYNW6fY9HkVT/q/xV0kt3c4+jRg1jClk5l4OjZTJ6/iSKePmwKW2BU7smjOELmjKXX4ElMmreR2g1asXLRDwWqixBCCCHEf4FMtL/iwsLC6NSpE126dKFDhw788ccfXLhwgevXr5v1uOfPn2fOnDkFfl3Xrl0ZM2aMwXOrVq2ibNmCrUwG6N27d4Ffk5OIiAiqVq3KgwcP9M/NnTuXiIiIfyR+VPQpvL29eLN0KQBaNW/KX5FRJCen6Mtcv3GDpKQk6tWpDUDdWjV5+uwZN2/fNvk4fx49SpUqVfD01K0ka9miBYcPHTIqFx0Vhbe3N6VL61YJtWjRgsiTJ0lOTs6jDtFGrzkZGWnwmuvXr5OYmEjdunUBqF27Nk+fPePWrVv55v7X6XP4enlStlRxAN5r0oBj0WdITkkxKPdu43cI/LYn1lZW+cbM7kTEId6qXA13T28AGjdvy59Hfsux7IefdKPjZ18WKH7kqTP4eHlRplRJAFo3a8yJqGiDfgZo2aQhQ/p+g5V1wb8wdOzPI1Ss8jYenl4ANGvRmj8OH8ixbMdPPueTLt1Njq3rAw/KliwOwHtN6nMs+gxJ2fqgdaN3GN67x9/qg78iDlGhcnV9HzRq3paIXPugOx0++6pA8aOio/Hx9ubN5+O0ZYvmOYzTGyQmJlG3bh0A6hR4nJq3jY7/eZi3qlTT93GTFm04evj3HMt2+OQLPu7Sw+TYxy5ex8/dlXJFdStmP6hblaPnrpKkVOnLpGo0jO3ajvLFfAGoFVCCR/FJJCQrTTrGyzgPrpzaR9GydXBy0+VYsW4HLkXuyrX8HzvnUr5mOxS2Oa8mzurY+Wv4ebj+H3v3HVd19T9w/MVesjcC7plIubNCc1dmfcum+s2stBQ1zb1zpJZbU1PxqwKuMi1HOXCVAycqauREGQoyZMi9wOX+/rhy4XIZF/Wq9Xs/H48eeS/n8/6c+bncw/mcDw3ul//NF5tw5Pxl3TrKVzHho//QsHpVAFo2qElKRpbBdWTsMpw6dwEfL3fq1dKsmn21fVuOnzmndz3t8nIQIwd8Vul+eizmOr5uTtp+9J/nAzly8apeP5rU8zUa3k/Tst79fpRjWB0Zs36izpzDy8urxGeybh+9ej2WrOx7vPB8S6Dyn8nHrt3C17kKDbw1dxG8+VwdjlxJIFuZp5f2xxMx1PNywde5cn+YM2YdARyP/FPnM7Ndp64cPbSv1LRvv9+bd3t8Uqn8H7t0A19XJxr4aa51/2nZiCMx18lW5GrT5KkKmPReZxreT9Oyrj8pmffIzFGWGrMk4/Yj4/5eZOZbG3VGCgXJ8QDkXTyOmX9dsLCq8NjKMHY/On3sAA0bt8DVXXMteKnDm5w4vEcvnZmZOf2GfkNVP81nR50GzxF/40pliyOEEEII8dSTifanWFxcHBs3biQ8PJywsDBmzZrF4sWL2b17N9evXzfquRs0aMCgQYMe6NiLFy+Sl1f0ZXPv3r24V7BtSWmWLFnyQOcvja+vL4sqWNX9oOLiE/Dx8tK+trGxwcHenoTERJ00Xl6eOsd5e3px82a8weeJj4/H27volnNvb2/S09PJzMwsN52NjQ329vYkJiQYHLvwmOJliI+Px7tYOQG8vLy4GRdXYd5vJtyiqlfRrea2NtY4VqlCXOJtnXSN6tWpMFZZEhNu4ulVVfva07sqGelpZGVl6KWtWz+g0vHj4hPx8S5qw8J2jk+8pZPumfqV/6NSoYT4m3gVK4OXtw9309PIKtHGAPUaPFOp2DcTS2+D+MQknXSN6j34bdyJCTeM2gZG76ePo44q1caNKhU79nYqvm7O2te21pY42dlyMylV+569jTUvP6vpo2q1ms2HTtOktj8Odoattn0c4yAt6TpObkVbkDi5+XMvMwXFvbt6aZPjY4j96zBN2/U2KHbs7Tv4uhdtBWRrbYVTFRtuJqVo37O3tebl5zRb3ajVarb8eZLn6lQzuI6MXYabCYlULfZ5YmtjjYO9vf71tP6DXU9jk1Lxcy/Zj2y4kZymfc/expqXA4v1o8NRNKnth4OtYXVkzPop6zM5vsRnsrfeZ7KnwZ/JsSl38XUpulPA1tICJ1srbqbqXuvuZN1jbeQFBrZvYlDc4oxZR3D/WuTto33t6V1Vcy0q7XpdyWsRQGxyGn6uRVsy2VpZ4mRrw407xfuRFS8HaK6narWazUejaVKzKg621gadw5h1ZOzPG1NndwruFl13yMtFrbiHqaOrXlrrjh9g22MYNm99gamX4dt8gfH70e2EG7h7Fm0v4+HlS8bdVLJL9CMHJxcCmrTWvj536hA161a+XwkhhBD/XxWo5b/i/z3NZI/2p1hWVhZKpZK8vDwsLCyoXr0648ePp0+fPri4uODq6sqwYcMICgrC1dWVt956i7Fjx5KXl4eZmRlTp07Fx8eHlStXsnPnTgoKCmjTpg3BwcEsXLiQtLQ0YmNjiYuLY/DgwWzatIn4+HiWL19OQkIC4eHhLFiwgI4dO9KhQwdOnTqFvb09y5YtIykpicGDB2NhYUGzZs04efIkoaGhADRu3JhDhw7Rtm1bEhMTMTc3x9LSEoDMzExGjRpFRkYG+fn5jBs3jhMnTpCZmUlwcDCgWRU/duxYPvroIyIjI7l8+TKTJ0/GxMQEOzs7ZsyYgY2NDcOHDyc5OZnc3FwGDhxIUFBQmXXZqVMnDh06xLVr1/T2zvz22285deoUKpWKHj168Oabb1aqnZRKJZaWFjrvWVpaolAUrexTKJVYWuimsbKyRKE0fIWkUqnE0anoVl4LS0tMTExQKhTY2xetlFMoldr6LjqXlU5+9GIrFBUeo1QqsSiZxtISZTlxix+rV0dWluQoDVu1ZohcpQJHx6LJIQuLovqpUqXy21eUVGobWlauDSuSq1Ti6KRfBoUyhyr2ld+mpDiFMherUvL/qNvAwZhtoFBiYVnKOCo51krpp+X1/6JjjV9HSqUCh1LaWPko2jg3DysL3Y91K0tzcnL1V9nuPnmBGRt+w97Gmtn93jX8HI9hHOTl5mBrXzQZbm5hCSYm5ClzsLYtmrhTq9XsXj+Rdu+Mw8zMorRQehS5eViWrCMLC3KUuXppd5+IZubabdjbWjOr/4dPTxmUuaW0gQUKxaPpp4rcPCzNS6ujUvrRqYtM37gTextr5vR92+BzGLN+DPlMVj7kZ7IiT4VViTsFrMzNyMnL13nvu9+P0TcoEAfryq9SNmYdwWP4zMwrbayVcT2K+pvpP0dgb2PFnI/fMPgcRu1HRv69yMTcEnW+bn8hPw8TC914udFHyTt7mIKURMxrN8a268dkrZkBuYb1VWP3I6VSgX2p/SgHuzL60YWzx9i1dS3DJ5e+tZwQQgghxD+ZTLQ/xerXr0/jxo1p3749bdq0ISgoiE6dOvHSSy/RuXNnGjduTH5+PkFBQQQFBTFmzBj69OlD69atOXDgAIsXL2bq1KkArF27FlNTU9q3b0/v3r0BuHv3LiEhIcydO5ctW7YQEhLCvHnziIiIoEGDogfX3bx5kzfeeIORI0fy7rvvEhMTwy+//MIrr7xC79699faj7Ny5Mxs3bqRt27bs2LGDjh07cvnyZQBWr15NYGAgffv25dy5c0yfPp3vvvuOgQMHEhwcTHp6OikpKdSvX18bb8qUKUyePJnq1asTHh5OeHg4QUFBpKWlER4eTkZGBgcOlL69RnFDhgxhzpw5LCy2x+bx48e5dOkS69ev5969e3Tr1o0OHTpQpYr+w8DKYm1tTW6JL45KpRJrG2vdNHm6aRRKJTbW5a/a2vrrr2zduhUAM3NznJ2Lvszk5uaiVquxttFdQajJj+6kkSY/Za80LOuY4vmztrYmr0QahVKJdQVl0BxrVUod5WJrwLHl2bntJ3Zt+wnQ1I+TU9GXydxcpaZ+KrkPeFmsra0eqA0rsmPrz/y2bTOgubXayVm/DJXZi70sNlZWKEvmP1eJzQNMABW3c9uP2jYwNzfH0aloNd6jbwNr8koZa7r91KqMvlxxHoxVR79t3aRtY3MzM5ycjVNHNlYWKEtM9Cly87CxstRL27FpQzo2bcixv67x2dw1bBzXDzfHiq97xhoHp/aHEXUwDABTMwvsHIrugsrPU4JajYWV7h7RZ//cgKtXbXxrNzP4PDZWluSWUke2Vvpt3LFZIzo2a8Sxi1fo+10IGyYF41bOvvyPqwzWVvptoFTmYmPzaLacsLGyJLfEBKAiLw9bK/3Jt45NGtCxSQMiY67z6bxwfhzzaZn96LHVT6mfN0psin0Glt6Pcw2+1tpYmqNUqXSPz8vHxrLo1+rDl+NJz1HyWuNaBufd2HX0+9ZN7Ny+CSj78+ZRXa9tLC30x1peHralXY+erUvHZ+sSeekGn36/kR+H/xe3Mh4s+/j6kXF/L1Ln5WJacmstc0vUeSXOuW+T9t/5l89S0LwDZt7VUcX+VWZsY9dRxI4NROzYAGj6UfHP/bzCflTGnv6nIvcRvvw7Bo+dp91GRgghhBDi30Qm2p9y3377LVeuXOGPP/5gxYoVrFu3Dh8fH500jRs3BuD06dNcu3aNJUuWoFKpcHHRfIGytramZ8+emJubk5aWRnp6OgABAZqtG4pv6+Lm5qb9eaEqVapoJ769vLzIzMzkypUrvPrqqwC0a9eOc+fOadM3a9aMcePGoVAo2LVrF0uWLNFuAxMdHa3dez0gIIDY2Fi8vb0xMTEhKSmJw4cP06FDB53znz17lvHjxwOayeWAgABq1qxJdnY2w4cPp2PHjrz22msV1mXLli1ZuXIlUVFR2veio6Np3rw5ALa2ttSuXZvY2FieecbwbTn8fKty4I8/ta+zs7PJysqiarF28vf1JbHY1gpqtZqExESq+fuVG/v1bt14vVs3ALZt26ZTz/Hx8bi4uOj9UcDP15eDBw/q5CczM5OqVatSFl8/vwqP8fXzI/GWbhkSExPx9/enItWq+hBxqGhP/Kzse2RmZePr7VXOURXr3LU7nbt2B2DX9k1cjC5q21sJcTi5uGFX5eFWCRfy963Kvj8Pa19nZWeTlZVNVR/vco6q2Kuvv8Wrr2segPbbti2cjz6j/VliQjzOLq6PpAz+Vb2JOHxM+1rTBvfwe+g2eIfOXd8BYPf2TVyMPq392a2Em4+0Dfz89Pt2VmaWTj/18/Mj8VbRrf2FY82QfmqsOnrl9bd55XXNat/ft23mQrF+mpgQ98jauLqnGztPnNe+zsxRkHFPQTWPosm0W6l3uXAjkXbPaq7pLerXwNPZgbPX4rTvlcdY46BJ2540adsTgNMHw4m7dFz7s7Sk69g5umNtq7s68vLZCG7diObKOc2+0jlZqYR9253XP5mHf91WpZ6nupcbu44XXUcz7ynIuJeDv2fRRNGt1HQuxibw8nMNAWjRoBaezo6cu3pT+96TLEM1Xx/2Hjqqff2orqeFani6svPkBe3rwn7kr9OPMu73I832MS3rVcfTyZ6z1+K175X0uOrHz9eX/X8c0r7O0n4mF/VRf19fEkr9TPbFENXdHNl5vuhZOZmKXDIUuVQrtp3M3r9iiUlMpf2s9QDczcnlqw37GN6lBa8Hlr79lLHrqMvrb9Pl/rVo5/af9T4zH9W1CKCGhws7T8doX2fmKMm4p8S/2PZWt9IyuBB3m3YBmm2OWtbxx9OpCmdjE7TvlfS4+pGxfy8qSEvCok5g0RuW1phY21CQXvQ8ISwsMbFzRF38PVNTKND9I09Jxq6j9q++R/tX3wNg728biTl/Svuz24k3cHR2w9ZOvx+dPxPJupBZfDXxe3z8auj9XAghhBDi30D2aH+KqdVqlEoltWrVonfv3vz444/cvn2bhBJ7bVvcv/3ZwsKC+fPnExoaytq1a1m0aBHx8fGsWrWKFStWEBoaqvMFwbzYSpri/1ardTc8Mitxe7RarUatVmNiYgKg/X8hU1NTXnjhBcLDw7GxsdFO+BemLR6/oKAAgA4dOrB//3727t1L586ddeLZ2NiwZs0aQkND2bBhA+PGjcPGxoaNGzfy3nvvceDAAcaOHVtBbWoMHTqU2bNn6+SnuLy8PExNKzcsnm0cwO2kZKLPayYmNm35lZYtmumseqrm74ejowN792tW3u+K2Iunuzu+5Ux+l9SqVSvOREURd3/vz82bN9OmbVu9dI0DA0lOSuJ8dLQ2XYuWLctdYRXYuDFJyclEnz+vPaZlixY6x1Tz98fRwYF9+zRfwvbs2YOHhwe+vhVPTDRp1IDbySmcuaj50r1h6++0bvbsQ68ULq5ZqyCiz5wgIS4WgB1b1tE6qEMFRxnuuYBnuJ2UzLkLFwH46ZfttGre9KFX8hbXotULnDtzkvg4zYPUft28kRfbtH8ksZs2asCt5Ducufg3ABu27aR108BH2gZNW71Uog3W0zqo4yOLr+mnSdp++vPmLbQotZ86sm/ffgB279mDh4c7vr4Vj7XHUUfNW73IuTOntG287RG2cfN61UlMvcvpy5rYYXuOEhRQR2dFe55KxYTVv3A5QbPvfOztFG4mpVLL27DnaDyOcVC7cQduxBwh9fZVAE7sXUX9pl310r09YDkDZh6h/4xD9J9xCHtnb3qO+KnMiTOA5vVrkpiSzulL1wEI332IlxrX062jfBUTVv7MlXjNnuext+9wMzmFmj4epYV87GVo0qght5PvcPaC5nq6cetvtG723CNrg+Z1q5GYepdTlzUPBg2LOEZQo9o6K5HzVComhG7lcoJmAjA2KZWbyWnU8jGsHxmzfp5t3EjTR7WfyVvL/EyO2K+ZSN0Vsa9Sn8nNq3uRmJ7F6RuaPhJ29DxBdf2wKbZlzbiurdk/4gMihr1PxLD3CfRzZ/Z7L5c5yV6SMesIoHnLl4g+c5KEwmvRlg2P9DOzeW0/EtMyOHVV8ztL2IGTBD1TU+fOiDxVARPW7uRy4h1As6/7zTvp1PJyM+gcxqwjY/9epIq7jIm9M2be1QGwfPYl8q9dhPyiOy1Mqzhh904wJvf3bTfzq4uJtR2qWxU/bLWQsfvRcy3acvHsMRLjrwOw89dwWr7UWS+dUpnDyoVfM2DkLJlkF0IIIcS/mqxof4r99NNPHD9+nJkzZ2JiYkJmZiYFBQX4+vqiUumvZgkMDGTPnj18+OGHHDlyhDt37lCjRg1cXFyws7Pj/PnzxMfH6zyo9EH5+/sTHR1NQECAzoqfQl26dGHQoEEMHjxY5/2AgAAiIyN59tlniYqKok4dzYqljh07Mnv2bOLi4vRWk9evX5+DBw/Spk0btm/fjouLCw4ODly+fJk33niDwMBAevToYVC+69WrR9WqVdm3bx8tWrSgUaNGLFmyhL59+5Kdnc2NGzeoVq1yD5qysrJi7IivWLhkGQqlAh9vb4YPGcSdOymMnvA1yxcvAGDM8KHMWbiY1eHrcXZ2YtSwoZU6j5ubG/0HDGDK5MmoVCpq1a6tvTsgJiaG0DVrmDptGlZWVowcNYrFixejUCjw8fFhyNDyz2VlZcWokSN1jhk6ZAh37txh3PjxLL1/R8KIESOYv2ABYeHhODk5MWL4cAPryJJJQ/szZ9kaFEolVb08GTvwM5JTUhk6+TtC508HoNfg0agKCkhOTWPy3KVYWVkyblBfGtap+NZ7F1d3+nwxjNnTRlGgUlG9Vj169/sUgMt/X+DHsGWMnjyP9LRUpozurz1uypgBmJmaMXbaQlxcy54ksrKyYsLwIcxbGoJCoaCqtxejvhxAckoKIyZO43+L5gDwcfBQVCoVd1JSmTZ7AZaWloweEkyDuhU/mNDVzZ2+/YcwY8o4CgpU1KhVl08/7w3ApZiLrAtbyYQp35Gelsr4UUVja8KoLzEzM2PStDm4upVeBisrS74e8gVzloeSo1Ti6+XB2OBPSU5JY8iUWYTNmwZAzy/HolKpSE5N5+t5P2BlacH4QX1pWKfiW7xdXD3o88Uw5kwbiUqlokatenTvp+l7l/8+z49hyxk9eR5301KZPPoL7XFTx/THVNsGZU9mFvbT7xcvud9Pvfnqfj8dO34CPyxZDMDI+/009H4/HVmJfmrsOnJ1c+ez/kP4dsoYVAUqataqS5/PNW15KeYC68NCGD9lNulpqUwYVfRA6omjBmNqZsbEaXPLbGNrSwtmfPI209f9Rk5uLn7uLkz+6A1up2XQf2E4myZ8gZ+7CxN6vs7okJ/Jy1dhYmLC8Hc7U81T/wF8pdeR8ceBvZMn7d+byJYfBlBQoMLTryEvvDMOgMTrZzm0bT7dg0MMym+pddT3XaaHb0OhzMXPw5Wv+7xFUloG/eeu4qfJg/DzcGXCR28yetlG8lQqTDBh+PuvUc3TsMk/Y5fBysqSSV8FM2f5KhQKJVW9PRkzsB/JKal89fVM1iyYCcB/B41EVaDSXE/nfY+VpSVjB31Bw7rlX0+tLS2Y2ec/TN/wOzm5efi5OzOl1+vcTs/gi4Xr+Xl8X/zcnZnQ4zVGrdxyv45gxDsdde6eeHL1U/iZvFz7mTxiyEDu3Elh1ISvWVHiM3lN+HqcnB0ZPWyIweewtjBn9Isx2gAAIABJREFURvc2TN9xlJzcfPxc7Jn85ovczsimf9huNvWv3LNeSmPMOgJwcXPnky+G8t3U0RSoVNSoXZd3+30JwOWYC2wIW8HYKXNIT0vl69HB2uO+Hj0QMzMzxk+dj0sZ1yK434/+25Xpm/Zq+pGbE1M+6MLt9Ey++GETP4/sjZ+bExPe68io0O3asTbiPy9TrdjDeJ9UHRn79yJU+Sh2hmHV9j+YmFtScDcFxZ4NmNg5YPPGZ9xbO5uCtCQUf/yKTdePwcQEFDnkbF8FeYY/j8HY/cjZ1YOe/UaxaPpXqApUVKtZnx6fjgDg6t/RbF63hK8mfs/pYwfIzEhj2VzdhTEjpy7X2XpGCCGEEKVTP+UPABVFTNQlly+Lp4ZKpWLWrFkcP34cW1tb8vPz6du3LykpKSxcuJDp06czduxYtm7dip2dHbdv32bMmDEoFApMTEyYPn06Pj4+2knkpk2bUlBQwMWLF2natCnOzs707NmTsLAw0tLSGDhwoPbfLVq00D4MtWXLlkRGarb9GDRoED169MDT05Mvv/wSJycnAgMDiYqKYvXq1fTq1YvQ0FDtg1c3b96Mm5sb7dq1Y+/evWRlZTFmzBjS09NRq9VMmDBBO9nerVs3XnzxRUaM0PyCXnjeK1euMH78eExNTbGysmL27NmYmJgwdOhQcnJyMDMzo2fPnnor4QtFRkZy7NgxBg4cCEBiYiKdO3dm+fLltGzZkrlz53LixAny8/P5+OOP6dKlS7ntcuPSxUfVxKXKM3t0q2dLY2LkIW+vuGPU+AA3LQxbEfigvNTxRo2fZmbYqs8H5am4btT4ALGWpW8P8ai4mKUaNb59TnLFiR5CorXx956tfXOPUeOn+QQYNf72m42NGr+H1Y9GjQ8QrnzHqPHf8Dlh1PgOiRcqTvSQQtX/NWr8LtWMWwa3478YNX6Yx2ijxgdoXs2417v6lzYbNX6oZV+jxm9f44pR4wO47zDugz/XN/jOqPEb+mQZNT7ACw0Nfz6SEEII8f/Nj0cLnnQWnirvtHp6N2iRiXbxQC5dukRGRgZNmzZl27ZtREZGMmXKlCedrcdCJtrLJxPtFZOJ9orJRHvFZKK9fDLRXjGZaK+YTLRXTCbaKyYT7RWTiXYhhBCibDLRrutpnmiXrWPEA7Gzs2PChAmYmJhgamrK9OnTn3SWCA4O5u7duzrvValSRfsgViGEEEIIIYQQQgghhDAGmWgXD8THx4d169Y96WzoWLRo0ZPOghBCCCGEEEIIIYQQ4v8hmWgXQgghhBBCCCGEEEKIp5Bs+v3P8fRuaiOEEEIIIYQQQgghhBBC/APIRLsQQgghhBBCCCGEEEII8RBkol0IIYQQQgghhBBCCCGEeAgy0S6EEEIIIYQQQgghhBBCPASZaBdCCCGEEEIIIYQQQgghHoL5k86AEEIIIYQQQgghhBBCCH0FapMnnQVhIBO1Wq1+0pkQ4p/kzwvZRo3vY3XLqPHVJsa9QJs8hkuKsctwN9/RqPH98i4bNf7fJs8YNT5AI8VRo8a3SkswavyT3m8ZNX5egZlR4wPcSLExavzMe0YNT/Vu9Yx7AuD8+otGjf/M+w2MGj/7oHHzn5Rm/F/Ya7xR36jxUyNijBr/bpZxP9OMXT9g/DpKTC4wavx/+jgDuJtt3JuIfV4x7vU08Xfj9qHH9W30sw6P5zxCCCHEo7b+sEzdFvd+66f3Dw+ydYwQQggh/nWMPckuhBBCCCGEEEIUJxPtQgghhBBCCCGEEEIIIcRDkIl2IYQQQgghhBBCCCGEEOIhyMNQhRBCCCGEEEIIIYQQ4ikkT9f855AV7UIIIYQQQgghhBBCCCHEQ5CJdiGEEEIIIYQQQgghhBDiIchEuxBCCCGEEEIIIYQQQgjxEGSiXQghhBBCCCGEEEIIIYR4CPIwVCGEEEIIIYQQQgghhHgKycNQ/zlkol2IRyTyj51s+3EFKlU+Vf1r8XHwRGzt7PXSRR07wJZ1S8jPy8XO3olen4/Bt1rtCuNHRUWxIiQERU4OHh4eDBk6FHc3N500V69eZdH335Nx9y4Ojo4MDA6mRo0aBpfhwP79rF+/nvz8fKpVr86QIUOws7MrNS8hK1aQo1Dg4eHB0CFDcHN3/1fnv9Dhg7vZvGEVKpUKP/+a9Bs8Blu7Knrp8vPzWbd6MTu2rGfR/7bg6uZRYeyT5y7w/ap13FMo8HJ3Y0zwZ3i4ueikUavVrPtlBz+E/8SCyaMIbFDPoHwX0vTTEPJV+fj61+Lj4Aml9tPTxw6wZd3S+/3Ukf8a0E+PR8ewIHwz9xRKvN1cGP95TzxdnXXSnIm5wrzQTWTnKLC2suTLXm/TpEEdw/Mfc505P+/hnjIPHxdHJvfqiqezg06aE3/HMnfLXrJylFhbmjOieyea1vE3/BxGrCOA43/+zo6flqNS5ePjV5uPBkzCppT4Z47v59f1i8nPy8PO3pEe/cZR1b/i+ADnj23n0I4lqFR5uPvUpetH32Btq3+OQpfO7mfjon4M+CYCJzffCuP/fWo7x3YtoUCVh6t3XTp88A1WNrrxM1LiWDOtM45uftr3PP0b06nnt+XGNjE3p/43X1FzSB8iqgehiL+tl8a+cT0CFk3CwtWZvJQ0zg2YROa5mArzXejKme1E7VuKuiAfZ886vPT2NCytdfOfmRbPj7O74OBSlH93vwDavDOzwviPowxnj27nwNalqFT5eFatw38+mVZqG58/vov9vy4hP0+Jrb0z3T6aiKdv3Qrj/31qO8d3L73fxnVo/34pbZwaR+i0LjiUbOMeT0cdnT+2nT+3a8aBR1XDxsGGhf0Inm74ODBWHf0b6geMO9b+DePsrxPbOfK75lrq5lOXLj31+1BxV6L3s3lJPz6bHIGja8Vt8Djq6OKJ7Rz9TdOP3Hzq8kqvCspwbj8/L+lH3ymGlcHYdSSEEEII8SjJ1jFCPAIpyYmsXTGTL8cv4JvvN+Pm4cPm8O/10qWlJBGyYAJ9h37D1EU/0zKoC6FLp1UYX6FQMGPmTL4cPJgVK1bQsmVLFi1cqJduxsyZdH/7bVasWMG777zDt9+WP6FVXFJSEkuWLOHryZNZvmIFnp6erF69utS8zJwxg8FffqnNy8JFi/7V+S90J+kWq36Yy8iJs5mzdD1unl5sCP2h1LSzp47E2trW4PznKJRMnP09I/t/wvrvv+OF5s8x64f/6aWb9cMqbibcwtnRoZQo5UtJTiR8xbd8OX4+07//GVcPb34OX6yXTtNPJ9J36DSmLdpEq6AurFn6TYX5H7dwJWP7fsimuRN5qWkjZoSs10mTm5fHsFk/MOCDN9k4ewL93unK+IX6ZSzLPWUuI0M2M6nHa2yd9AVBAXWYsu43nTSK3Dy+Wr6Jse934ZeJn/P5qy8xPORn1AYuATBmHQGkJieyPmQmA8cuYvLCX3D18GHLWv3+l5Zym1ULx/PJl9P5esFmWrz0CuFLpxhUhrspCexaP4X3Bi7jiyk7cXKryv4tc8tMn6fMYd/Ps7GxczIofmZaAvs3TeGNfsv479idOLhU5cj20uPbOXrSa8zv2v8qmmQHaPbzYvKz7pWbpknYXK7MWsGBZ7pw+dvlPLvmO4PyDpCVnsDRrdPo3PsHug/9jSrOVTmxa17p+XfwoPvQHdr/DJlkfxxlSE9JYHv4NHoN/YEvZ/yGk1tV9mzSL0N6SgK/rplEj8GLGDxjB42ad2ZzyLgK42emJXDg56l06/sDvcb8jr1LVY7sKKuNPeg1+jftf4ZMsoPx6+huSgI7103h/UHL6D91J46uFY+DvZUcB8aso396/YDxx9o/fZxlpCYQ8eMU3u6/jE8maq6lf/xaThvk5vDHL7OxrkQbGLuOMlITiNg4hbcHLOPTSZp+VFEZDlaiDI+jjoQQQgghHqWnYqI9PDycd999l549e9K9e3cOHz4MwF9//cW1a9eMeu6LFy+yYMGCSh/Xq1cvJkyYoPNeWFgY9epVbnUpwBdffFHpY0oTGRnJc889R3Jysva9hQsXEhkZ+Ujy8fvvvz9U/sqzc+dOo8UGGDJkCAqFwmjxo44doEHjFri6ewPwUoc3OXF4j146MzNz+g79Bh+/mgDUafAs8TeuVBz/zBm8vLyoXVuzmrVTp06cOn2ae/eKvjxdu3aNrKwsWrduDUCrVq1Iv3uXGzduGFSGo0eO8Oyzz+LhoVl53blTJ/784w+9dGeiovTycvrUKZ28/NvyX+hE5B80CmyKm4cXAC93fJ2jh/aWmvY/7/fmnR6fGpR30Kxm9/H0oF6t6gC81i6IY2eiuZeTo5PulZdfZGT/TzA3MzM4dqHTxw7Q0MB+2m/oN1TV9tPnKuynJ87/TVUPN+rX0Kwcf73t80SevUh2TtG4y1epGPPZhzR7RrPKL7BeLZLT7pKZXXHdAxyLuY6vmxMN/DX5/8/zgRy5eJVshVKbJk+lYlLP12h4P03LejVIycgmM8ew8W/MOgKIOr6f+gEtcLkf/4X2b3LyyG79+OYWfDJkBj5+tQCoXf85Em5WHB/g7zMRVK//PI6uPgAEvtCdv06Wff0+uHUhAa26YWmtf/dHaa6ei8Cv7vPYO2viN2zVnUtRj+7z4dI3i7k0Wf8PcYXsG9XF3Mme279GAJC0bS9W7q5UqV/ToPixF/biXasVVZw0+a/b9G2unXu0n0HGLsNfp/ZSs0ErnO63cdOgt4k+rl8GMzNz3un3HU5uVQGo2bAVd25V/HtVyTZ+pmV3Lkf9s+ro76gIqjcoGgfPvtidiyeMNw4edR390+sHjD/W/unj7PLZCPzrPY+DiyZ+QOvu/H267DY4vH0hDVt0w9LK8DYwdh1dPhNBtRJliDlVdhkObatcGR5HHQkhhBBCPEpPfKI9Li6OjRs3Eh4eTlhYGLNmzWLxYs3qwd27d3P9+nWjnr9BgwYMGjTogY69ePEieXl52td79+7F3cDtJ4pbsmTJA52/NL6+viwycHVuZfKRm5vLqlWrHjBX5YuLi2P79u1GiV1o7ty5WFtbGy3+rYRYPDyLbk919/Il424q2VkZOukcnFwIaPKC9vW5U4epWbdRhfHj4+Px9vbWvraxscHe3p6ExETdNF5eOsd5eXlxMy7OoDKUPIe3tzfp6elkZmYalJfEhIR/bf4LJSbcxNOrqva1p3dVMtLTyCrRzgB16wcYlO9CNxNuUdWraHsZWxtrHKtUIS5R9zbvRvUM32alpNsJN3Av1k89yu2nrbWvz506VGE/vZF4m6qeRVsB2Vpb42hvR9ytZJ33Xm7xrPb1kTMX8Pf2wN7OsJX/sUmp+LkXbUVja22Jk50NN5LTtO/Z21jzcqDmD55qtZrNh6NoUtsPB1sbg85hzDrSxI/Vie/u5UdmafEdXWj0XNG1Ivr0IWrUMaxPpd6+jpN70VY5zu7+ZGemkJN9Vy9tUlwM1y4epkWH3gbFBkhLvo6jW1F8Rzd/crJSUNzTj5+rzGLbiv6EftOFLUs/IfVWxX8sSD8aVe7P7epU59413evCvWs3satn2MRQxp3rOLgW5d/B1R9FdgrKnNLyn83u0GB+mvMqv//vM9KTDPtjh7HLcOfWdVw8isrg4uFPdoZ+G9s7eVC7kaYfqVT5nP5zC/Wfa1dx/pOv4+hatI1H+W2czbaQAYROf4VffviU1NtPRx2l3L6OcyXGwdULh2lZiXFg7Dr6p9cPGH+s/dPHWVrSdZyKXUud3Py5l1l6H0qOjyH2r8M0bdfboLwXMnYdpT5AGZq1721QbHg8dSSEEEII8Sg98T3as7KyUCqV5OXlYWFhQfXq1QkLCyMmJob169fj4uKCq6srw4YNIygoCFdXV9566y3Gjh1LXl4eZmZmTJ06FR8fH1auXMnOnTspKCigTZs2BAcHs3DhQtLS0oiNjSUuLo7BgwezadMm4uPjWb58OQkJCYSHh7NgwQI6duxIhw4dOHXqFPb29ixbtoykpCQGDx6MhYUFzZo14+TJk4SGhgLQuHFjDh06RNu2bUlMTMTc3BxLS0sAMjMzGTVqFBkZGeTn5zNu3DhOnDhBZmYmwcHBgGZV/NixY/noo4+IjIzk8uXLTJ48GRMTE+zs7JgxYwY2NjYMHz6c5ORkcnNzGThwIEFBQWXWZ6dOnTh06BDXrl3T29v622+/5dSpU6hUKnr06MGbb76p8/OWLVsSGRlJr169aN26NUePHiUtLY2lS5eyfPlyYmJimDRpEuPHj2f8+PHcvHmT/Px8Bg0axPPPP0+vXr2oU0czCejs7ExmZibXrl3jxo0bjBkzhjZt2rBr1y5WrlyJubk5jRo1YtSoUUyePJmzZ8+yaNEibd0AbNmyhbCwMCwsLKhfvz4TJ04stY4yMjIYPnw4tra2fPDBB0RERDB9+nQARo8eTYcOHZg2bRpbt24lPT2dUaNGoVKp8PHxYebMmdy5c6fU/lQZuUoFDo5Fe2lbWFhiYmKCUpGDXZXSt/i4cDaS3VvDGT659K1HilMqFNq+VcjKykpnlb5SqcSiZBpLS5QGruRXKpU4OhXdamthWVgGBfb2RXthKpTKCvPyb8t/oVylAkfHooneonZWUKWMdjaUUqnE0tJC5z1LK0tylMoyjniQcyiwLzX/5fXTY+zaupbhk5eWG1uRm4elhW7+rSwtysz/pdh45q7ZxJSBvQ3OvyI3D0tz3Y8tKwsLcpR5eml3n7rI9I07sbexZk7ftw0+hzHrCCCvjGtFrrLs+BfPRhKxLYwhk5YZVIa83Bxs7YvOYW5hCSYm5OXmYGPnqH1frVbzW/hEOr8/DjNzi9JClSo/NwfbKsXimxfFt7Ytim9hbUe9Jl1p8nIf7J19OH1gFdtC+tNz1HZMzR781w8zWxsKFLr9SpWjxNzAP9jk5+VgXSz/Zvfzn5+bg5VNsfxb2VIr8DUCXupDFUdvog+tZnfoAN7+cttD5f9RlCEvNwc7B902LuxHxdu40JFda9j3y2JcPavx4aCyV7cWys9TYGPvWpTfYnVE8Ta2sqNuk9c0beykaePtIf3pMfLh2hiMU0eYmJCn1B8HO8Im0vmDSo6DJ1xHT3v9wJMfa0/7OCvzWq3UvZaq1Wp2r59Iu3fGYWZWuTaoyENfTytRhl3rJtL+3cqV4WmoIyGEEOJpUCAPQ/3HeOIT7fXr16dx48a0b9+eNm3aEBQURKdOnahXrx4vvfQSnTt3pnHjxuTn5xMUFERQUBBjxoyhT58+tG7dmgMHDrB48WKmTp0KwNq1azE1NaV9+/b07t0bgLt37xISEsLcuXPZsmULISEhzJs3j4iICBo0aKDNy82bN3njjTcYOXIk7777LjExMfzyyy+88sor9O7dW2+/6M6dO7Nx40batm3Ljh076NixI5cvXwZg9erVBAYG0rdvX86dO8f06dP57rvvGDhwIMHBwaSnp5OSkkL9+vW18aZMmcLkyZOpXr064eHhhIeHExQURFpaGuHh4WRkZHDgwIEK63TIkCHMmTOHhcX2wD5+/DiXLl1i/fr13Lt3j27dutGhQweqVNF/iCNAlSpVWL16NbNmzWLXrl188sknnDlzhkmTJrFlyxbc3d355ptvSE1N5aOPPmLr1q0A1KlThw8++ICFCxdy69Ytli9fzsGDB1m/fj3NmjVjyZIlbNiwAUtLSwYPHszJkyf55JNPCA8P15lkBwgJCWHZsmV4e3uzadMmFApFqXX0+uuvc/HiRfbt24etrS0zZsygoKAAtVrN8ePH+frrr7Ux586dS+/evWnfvj3ffvst0dHRbNiwocz+VJ6IHevZu2MjoLlt2NGp6At3Xq4StVqNtU3pX1RORe5j7fJvGTx2vnYbmfJYW1uTm5ur855SqcSm2Cp9a2tr8kqkUSiV5a7k3/rrr9q2MzM3x9m5aIIxNzf3fhl0VwKXlZeS6f4t+d+57Sd2bftJew4np6IvfLmF7Wxt2Grp8lhbW5GbqzthrFTmYvuQd2JE7NhAxI4NwIP10/Dl3zF47DztFill5t/Kktw83fwrlLnYWlvppT3791XGzA9hbN8Padqw4ofFFbKxsiQ3P1/3HHl52Frpf6nu2KQBHZs0IDLmOp/OC+fHMZ/i5lj69c7YdbRvx3r2/abZr97M3ByHUuJbldGHoiL3sj5kJgNGL9BuI1Oa43vDOLkvDABTMwvsHIrursrPU4JajaWVbhlOH9yAm3dt/Oo0KzNuoTN/hHH2j6L4tqXFt9SNb2PnTNvuRVusPdf2Y47t/J605Ou4ehn2UNfSqLLvYVqiX5nZWpOflV3mMReOhHPhSPj9/JtjY6+ff/MS+be2daZ1t/Ha141e7M3pvYu5e+c6zp4Pnv8HLcPRPeFE7rlfBnNzqjgWlaGwH5Vs40LPd/ovrTr24lzkDpZN/ZBB32zDwlL32nLmjzDO/qmJb2Zmjq190R0qhXVkYVVKG7+t28bHdy0mPfk6Lg/RxvBgdXR8bxgnio2D4nWk7aclnp1x6uAG3Hxq42/oOHhK6uhprB94usba0zjOTu0PI+pg+dfqkn3o7J8bcPWqjW9tw9qgMh6kjk7tD+P0gcqV4cyfms8bQ8rwtNWREEIIIURlPPGJdtCstL5y5Qp//PEHK1asYN26daxZs0YvXePGjQE4ffo0165dY8mSJahUKlxcNBNf1tbW9OzZE3Nzc9LS0khPTwcgIEBzu33xbV3c3Ny0Py9UpUoV7cS3l5cXmZmZXLlyhVdffRWAdu3ace7cOW36Zs2aMW7cOBQKBbt27WLJkiXa7Veio6O1e54HBAQQGxuLt7c3JiYmJCUlcfjwYTp06KBz/rNnzzJ+vOaLRm5uLgEBAdSsWZPs7GyGDx9Ox44dee211yqsz5YtW7Jy5UqioopuF42OjqZ58+YA2NraUrt2bWJjY3nmmWdKjdGsWTNtPZSsp9OnT3Py5ElOnToFaCYpCycuC9sIoEmTJjp1efnyZRISEvjkk08Azar/hIQE7Z7aJXXt2pUBAwbQrVs3unbtirW1dal1BODn56edZG3YsCFnz54lPz+fwMBAndXLFy5cYOzYsQCMGDECgFGjRpXanyrS/tX3af/q+wDs/W0jf58/qf3Z7cQbODq7YWtnr3fchTORrAv5jqETvzdokh3A18+PgwcPal9nZ2eTmZlJ1apVddIk3rqlfa1Wq0lMTMTf35+yvN6tG6936wbAtm3bdPp3fHw8Li4uen+M8fP1rTAv/6b8d+7anc5duwOwa/smLkYXjatbCXE4ubhhV0W/nSurWlUfIg4VPU8hK/semVnZ+Hp7lXNUxdq/+h7tX30P0PTTmPOntD8rr5+ePxPJupBZfDXxe3z8auj9vKTqPp7sOVI0BrLu5ZCZnYOfl+74vhQbz+h5K5g6qA/P1a/cBEoNT1d2nrygfZ2ZoyDjngJ/j6Ixeys1gws3Emn3rGb7mJb1quPpZM/Za/Ha90oydh29/Or7vHz/WrH/9w0614qkxBs4Ortja6e/mv3imaNsWPkdgycswdu3/GtF83Y9ad6uJwAn9odz4+/j2p+l3r5OFUd3rG11z/H3mQgSY6O5NGwfAPcyU/nfN935T995VK/fSidt4Es9CXxJE//sn+HEXy6Kn558HTsHd6xKxFfcu4syJ0Nnew11QQFmD7nSOSvmKrY1/XTes6tVjayLZW810fD5HjR8vgcAF46u5da1ovxnpMRia++OlY1u/pU5d8nNycTepWirH7W64KFXaj9oGVp16EGrDpoyREas5XpMURlSbsdi7+SOTYl+lJRwhcy029R6pjUmJiY0bvUa20KncCfxGt7VGuik1W3jtcRfKaWNbUpr40wcXYvVUcGTqyOdcbDPwHEQpRkHc88UjYOV07rzVr+KxsGTraOnsX7g6RprT+M4a9K2J03aatrg9MFw4i4VxU9Luo5dKW1w+WwEt25Ec+Wcpg1yslIJ+7Y7r38yD/+6+m1QGQ9SRzplOBDOTQPLcDs2msuFZchMJXRmd7p9Mg//erpleNrqSAghhBCiMp74Hu1qtRqlUkmtWrXo3bs3P/74I7dv3yahlP2SLe5vS2BhYcH8+fMJDQ1l7dq1LFq0iPj4eFatWsWKFSsIDQ3VmTQzL7bVQPF/q9W6916YlXi4oFqtRq1WY2JiAqD9fyFTU1NeeOEFwsPDsbGx0ZmgNTEx0YlfUFAAQIcOHdi/fz979+6lc+fOOvFsbGxYs2YNoaGhbNiwgXHjxmFjY8PGjRt57733OHDggHaSuCJDhw5l9uzZOvkpLi8vD1PTspu/eF2UrCcLCws+//xzQkNDCQ0NZdeuXdrJbItiW0eYl9jiwcLCgkaNGmmP27JlC6+//nqZeejXrx+LFi1CrVbz0UcfkZaWVmodlTxvp06d2LdvHxEREXp1bGZmVmp5SvanynquRVsunj3OrfjrAOz6NYyWL3XRS6dU5rBy4SQGjJxl8CQ7QGDjxiQlJxN9/jwAmzdvpmWLFjqrvav5++Po4MC+fZovGXv27MHDwwNfX99SY5bUqlUrzkRFEXd/T/TNmzfTpm1bvXSNAwNJTkrifHS0Nl2Lli3LXXn+T89/oWatgog+c4KEuFgAdmxZR+ugDhUcZZgmjRpwOzmFMxdjANiw9XdaN3sWm1JWhD8oTT89RuL9frrz13BavtRZL52mn359v59WPMkO0PSZuiTeSSXqL81dPWt37OXFJo108q9Wq/l6yRpG9Hmv0pPsAM3rViMx9S6nLt8EICziGEGNamNrVfTHtDyVigmhW7mcoNkbPjYplZvJadTyMez5GcasI4DA5m3569wx7bVi99ZQmr+of63IVeaw+vuJfD5idoWT7CXVDezA9YtHSLl1FYDIPat4pkVXvXTvD1rOkNlH+HLWIb6cdQgHF28+HvNTqZNnxdVs1IGbl46QdlsT//T+VdRtoh//9o1zbP7+I+5lpQJw/shGqjgRrYFMAAAgAElEQVR74+Dqp5e2MrIuXiH3Tio+72vO6fvf/5BzI57sS9cNOr5ag/YkXDlKerLmYYXRf66iZqD+H7GT46LZEdKbnPv5jzn+I1UcvbF3ebj8P4oyNGjSnqsXjpKcqCnD4Z2rCGipX4Z7malsWj6KjLQkAGIvnaJAlY+zR/llqNmoPXGXjpCWpGnjqAOrqNNEP37SjXNsWfyRto4eVRvDw9dR3Wc7cO2vonFwdHfp4+CDwcsZOucIQ2YfYshszTjoM9aQcfBk6+hprx948mPtaR9ntRt34EbMEVLvX0tP7F1F/ab6bfD2gOUMmHmE/jMO0X/GIeydvek54qdHMoH8sHVUO7BEGSJW0aCZfhm6D1jOgG+PMGDGIQbcL0OvkT/pTbLrxX8K6kgIIYQQojKe+Ir2n376iePHjzNz5kxMTEzIzMykoKAAV1dXTExMUKlUescEBgayZ88ePvzwQ44cOcKdO3eoUaMGLi4u2NnZcf78eeLj43UeVPqg/P39iY6OJiAgQGcVbKEuXbowaNAgBg8erPN+QEAAkZGRPPvss0RFRWn3Lu/YsSOzZ88mLi5ObzV5/fr1OXjwIG3atGH79u24uLjg4ODA5cuXeeONNwgMDKRHjx4G5btevXpUrVqVffv20aJFCxo1asSSJUvo27cv2dnZ3Lhxg2rVqhlcD6amptq2CAwMJCIigq5du5KSksLq1asZOnRohTFq1KjBlStXSElJwdXVlQULFvDee+9hampKfontIAoKCpg/fz7BwcF8/PHH2tXwpdWRn5/uF5m2bduydu1alEqlXrs0atSIo0eP8uqrrzJ//nyaN29ean8q7w8ApXF29aBnv1Esmj4UVYGKajXr8+GnIwG4+nc0W9YtZujExUQdO0BmRhrL547TOX7E1OU621WUZGVlxaiRI1m8eDEKhQIfHx+GDhnCnTt3GDd+PEvv30kxYsQI5i9YQFh4OE5OTowYPtzgMri5udF/wACmTJ6MSqWiVu3a2rsyYmJiCF2zhqnTpmFlZcXIUaN08jKkgvb/p+e/kIurO32+GMbsaaMoUKmoXqsevft9CsDlvy/wY9gyRk+eR3paKlNG99ceN2XMAMxMzRg7bSEurqVP+FpZWTJpaH/mLFuDQqmkqpcnYwd+RnJKKkMnf0fofM1zB3oNHo2qoIDk1DQmz12KlZUl4wb1pWGdsrcVKVTUT7/S9tMen2ru7Lj6dzSb1y3hq4nfc/p+P102V/cPeyPL6afWlpZMG9SHb/+3EYVSia+nOxO+6EVSajqDpi9i/XfjOHfpGpdvxLNo3S8sWvdLUf0E96Z+jbLvXCg6hwUz+/yH6Rt+Jyc3Dz93Z6b0ep3b6Rl8sXA9P4/vi5+7MxN6vMaolVvIU6kwAUa805FqHobdqWLMOtLE9+TDz0azZOYQClT5+NVswPufjALg2qVz/LpuMYMnLCHq2H4yM9IImTdG5/hhU0J0tp4pjYOzJ116TOTHxQMoKFDh5d+Qzu9rrjnx185y8Jf5fPBliEH1UZoqTp607T6RbSGa+B6+DWn5tib+rdizHN0xnze/CKFa/RcJePFDfpr/gea5Go6evPbxQkxNzcqMbenhyvMRYdrXrfaEos5XcbTzR7TcHsLB5zTX5qhewwhYOoW6EwaiTErh9H8Nv1bYOXrSutsE9oQFoy7Ix9WnIc+317Rj8s2znNyzgC4fr8C3zgs0aPkB2374EBMTU2wdPGnfY365+X9cZXBw9qTrfyewdkEwBQX5+FRryGs9NWWIu3qWiJ8X8NGwFVSv15w2Xfux6rs+mrsJLCx594vZWNuUvo1SoSpOnrR9eyLbQ4IpKFDh7tuQoLeK2jjyt/m88XkI/vVfJOCFD/lpwQdgYkoVR09e/XjBU1NHr3w4kY3fa/qpt39D2nxQNA4ObJnPh0MechwYqY7+DfUDxh1r/4ZxZu/kSfv3JrLlB00bePo15IV3NG2QeP0sh7bNp3vwg7fB46gjeydPOrw/kc1Li8rQ/t2iMvy5dT7vDHzwMhi7joQQQgghHjUTdcnlvY+ZSqVi1qxZHD9+HFtbW/Lz8+nbty9t27Zl06ZNLFy4kOnTpzN27Fi2bt2KnZ0dt2/fZsyYMSgUCkxMTJg+fTo+Pj7aSeSmTZtSUFDAxYsXadq0Kc7OzvTs2ZOwsDDS0tIYOHCg9t8tWrTQPgy18GGgAIMGDaJHjx54enry5Zdf4uTkRGBgIFFRUaxevZpevXoRGhqqffDq5s2bcXNzo127duzdu5esrCzGjBlDeno6arWaCRMmaCfbu3XrxosvvqjduqTwvFeuXGH8+PGYmppiZWXF7NmzMTExYejQoeTk5GBmZkbPnj31VmkXioyM5NixYwwcOBCAxMREOnfuzPLly2nZsiVz587lxIkT5Ofn8/HHH9Oli+4qyuIPQx0/fjx169bV1tPnn3/OG2+8Qe3atZkzZw4TJ07kypUrqFQqgoODadOmjc5xCxcu1Nb733//zZQpU7Sr35cuXYqlpSUNGzZk/PjxpKWl8dZbb9GpUyfGjCmaVFq2bBm///479vb2+Pn5MXnyZK5du6ZXR1lZWQwaNIiff/5Ze+znn3+OtbU18+bNAzTb/mzdupWMjAxGjx5Nfn4+3t7ezJgxgzt37uj1p5KT98X9eaHsfSsfBR+rWxUnegjqEnc3PGomj+GSYuwy3M3Xf8jZo+SXd9mo8f82KX1LqEepkeKoUeNbpenf1fQonfR+y6jx8wrKn2h8FG6kPPyzAcqTec+o4anerfStfB6V8+svGjU+wDPvN6g40UPIPmjcMiSlGfdaClDjjfoVJ3oIqRExRo1/N8u4n2nGrh8wfh0lJhcYNf4/fZwB3M027k3EPq8Y93qa+Ltx+9Dj+jb62aO5CVEIIYR47ML+kKehFtfzJeN/j3lQT3yi/Wl36dIlMjIyaNq0Kdu2bSMyMpIpU6Y86WyJJ0gm2ssnE+0Vk4n2islEe8Vkor18MtFeMZlor5hMtFdMJtorJhPt5ZOJdiGEEKJ8ofobbPy/1ivoSeegbE9865innZ2dHRMmTMDExARTU1OmT5/+pLNEcHAwd+/e1XmvSpUq2gexCiGEEEIIIYQQQgghhHh8ZKK9Aj4+Pqxbt+5JZ0PHgzysUwghhBBCCCGEEEIIIYRxGPc+RiGEEEIIIYQQQgghhBDiX04m2oUQQgghhBBCCCGEEEKIhyBbxwghhBBCCCGEEEIIIcRT6HE9OFw8PFnRLoQQQgghhBBCCCGEEEI8BJloF0IIIYQQQgghhBBCCCEegky0CyGEEEIIIYQQQgghhBAPQSbahRBCCCGEEEIIIYQQQoiHYKJWy5b6QlRG8vlIo8bPsHE3anwTIw/5dJWTUeMD+OVdNmr8HEsH48Y3rWLU+Nbqe0aND6A0sTFq/Mt3vY0a/xmHq0aN73472qjxAZI9Gxk1vufVw0aNH2r6sVHjv+uyx6jxATamdjBq/Pecdxo1fo6tm1HjA/wa39So8XtYrDdq/Fjfl4wa/89rVY0aH6BX6iyjxr8b8LJR4//T+xDAafeuRo1/IcG4v1d8EDPCqPEnmU4yanyAenVsjX6Oz4z7kSCEEOL/sVX7n3QOni692z7pHJRNVrQLIYQQQgghhBBCCCGEEA9BJtqFEEIIIYQQQgghhBBCiIcgE+1CCCGEEEIIIYQQQgghxEOQiXYhhBBCCCGEEEIIIYQQ4iHIRLsQQgghhBBCCCGEEEII8RDMn3QGhBBCCCGEEEIIIYQQQuhTq590DoShZEW7EEIIIYQQQgghhBBCCPEQZKJdCCGEEEIIIYQQQgghhHgIsnWMEI/AyXMX+H7VOu4pFHi5uzEm+DM83Fx00qjVatb9soMfwn9iweRRBDaoV+nzHNi/n/Xr15Ofn0+16tUZMmQIdnZ2eumioqIIWbGCHIUCDw8Phg4Zgpu7e7mxo6KiWBESgiInBw8PD4YMHYq7m5tOmqtXr7Lo++/JuHsXB0dHBgYHU6NGDYPzf/jgbjZvWIVKpcLPvyb9Bo/B1q6KXrr8/HzWrV7Mji3rWfS/Lbi6eVQY+3G0wekzZ1m2chU5OQo8PdwZ9uVAvTq6cvUaCxYv5W5GJo4O9gwe8AU1a1Q3+BwHD+xj4/pwVPn5+FerzqAhw7ArpY7ORJ3mfyE/oMjJwd3Dk8FDh+PmVn4bnz5zhuUh/yMnR4GHhzvDhgwuNf8Lv1/C3YwMHB0cGBT8BTUr0cYHD+xjw/q12vwPHjKs1D56Juo0K0OW3e9vngweOqzC/Bc6dXgHuzcvQ6XKx9uvNu/3m4KNrb3+OSJ3s2vzUvLzcrGzd+KdTybg7Ven3NjGrqNjF68wd8Nv3FMq8XZ15us+b+Pp4qiT5kTMVeZv/J2sHAXWlpYM++A1mtYzLP7jaOPImOvM2bKPe8pcfFwcmdzjVTz/j73zDovq+B73i5SlSO/V3hXsGAv2FmNMbEksiTGJxtg1it3YYokl9kpiAbuiosYWjV3sItg7AgoKSN1dWPj9sbrLsgus0SV+f595n4dH791zz5w5c2bu7Ozcc+1tNOtw9wkLdh8jLVOGuZkpo7u0pE55H73LuHVxH2cPLCdHkYWTR0Xa9foViYV2G6vqFPkPocv788PUv7F19CpU94XI2ywKCSVDKsPdyYGJP/bC1dFeQ+ba7fv8vmEH6ZlSzCVmDOvdhdpVCo+dYq1D1B0WhuwiUyrDzcmBSf176KjDAxYEhyrrYGbK8N6dqV2lvF62X4qIYtnaEDJfj6djBvfHxclRQyY3N5fNu/ayKngrC6eNx7dqZb10v8GQ/jl/6wELth0iQybH3dGWKX0+w9U+fz97xMIdh1Qx+vMX7ahTsfRb1eHk8aNs2xxMdnY2PqXKMHj4KJ3jdcTVy6wNWoE0U4qziyuDR4zWa7wzpI/CH8Qw/0A4GfIsPOysmfp5AK622rYD3I57SY8Voazo8zH1yngUafcbRBwVTfjJg+zdFkS2Ihsvn3J8O2gSllba9l85f5xdm97cz2z5+sdxeJXSrz8b1EfRCfx+KorMrGzcrS2Z3KoWrtYWGjJ1Fu2mlL06tlyszFnRuZFetgPULG9MqzqmlCgBzxJz2HpMjlSuLWdjacSXLcxwsjVCmgW7Tsp5EJdTpH5D+kcgEAgEAsH/HmJHu0DwjmRKZUyet5TAn75j89LfaFSvFnNX/qklN3flWqJjn2Fva6NDS9HEx8ezfPlypkydyuo1a3B1dWXdunVaclKplNmzZjF02DDWrFmDv78/i5csKVS3VCpl1uzZDBs6VHXNksWLteRmzZ5N1y5dWLNmDd27dWPOnDl62/8i/hlrVy4gcPI85q/YjJOrG1s2rNQpO296IObmlnrrLo42yJRK+XXOPEYMHsjaVctoUL8eC5eu0JKbMWce3bt8ztpVy/iiWxdmzp2vdxkJ8c9ZtXwJk6fMYPnqtbi4urFhnXY9pNJM5s6eweChI1mxZh31/T9i2eLfi7Z/9lyGDxnMn6tX0MC/PouWLNOS+3X2b3Tr2pk/V6/gi25dmPWb/vbHx8ezcvlSJk+ZwYrVf+Lq6sqGdX/otP+32b8yeOgIVq5ZSz3/BixdvFCvMpJexLFz7Uz6BS5n3Py9ODh5sn/LIp1y24Km8t3IxYydF4affxs2r5xYqG5D+yhTJmfMis1M+vZzds8cSYBfZWas36UhI5VnMWrpRsb27kToryPo16kFgcs3katHUr7iaOMMmZzAtXv4pUd7wib1J6B6eaZtOahVh5FBoYzv3pbdE/vxY/tGjPpjt151AEhJjOXvbdPo8tMqvpt8EBsHT07uWVCgfJY8k5O752FuZVek7kypjAmL/2B8vx7sWDCZJnWqMytos4aMPCuLn+euZOBXn7F13iT6d/uEiYu1++F/WYfxi9cy4Yev2DF/Ik1qV2fWH1u16jBy3moGfdmRbXPH82O3DkxYon2/0K1fypR5ixk98Ac2LptPw3q1mbdCux/PW/HHvx5PDeofmZwxq7cz6etP2T19CAG+lZgRvFdDRirPYtSKLYzt+Qmh0wbTr2MzAldt0ztGQTler16+mIlTZrJs9XpcXN0IWRekJSeVZjJv9nQGDv2ZZWvWU8//I1YsLriubzCkjzLkWQRuPcovnwUQNuwLAir5MG3PKZ2yOTm5zAg7hWNJ/e/JIOJIH14mxBGyZg7DJi5k5tKdOLq4szNEe8xOehlP0KLJ9BsxgxlLdtAgoB3rV/yqVxkG9VFWNuMOXGRiy5qEft2KJmVc+fXYNZ2yO3u3VP29zSK7XUkjPmtsxpp9MuZskpKUkkv7+qY6Zb9sYcatJwp+DZGy+5ScRtWL3k9mSP8IBAKBQCD430QstH9ghISE0L17d3r16kXXrl05c+YMt27d4uHDhwYt9+bNmyxapL1YVRS9e/dm0qRJGueCg4OpVOntd2sPGDDgra/Rxfjx49myZYvqOC0tjdatW5OQkPBe9Ofn0vUbeLi6UKlcaQA6tAjg/LVIMjIzNeTaN29M4E/fYWJs/K/KOXf2LDVr1sTFRbm7u22bNpw6eVJL7trVq7i5uVG+vHKnU5s2bbhy+TIZGRkF6r567ZrWNZevXNG45uHDh6SlpdGwYUMAGjRoQPKrVzx58kQv+y+Gn6S6Xx2cXNwAaN66I+dOH9Up+/mXfejW83u99ELxtMHVaxG4ublSoXw5ANq1bsmlK1fJyFCX8fDRI9LT02n0UQMAGvrXJ/nVKx5HR+tVRvi5M/jVrIWziysArdu25/Sp41pyEdeu4urmRrnyyh22rdq04+qVS0W0cQTuGva3em1/njbOZ/9HDfxJfpXMkydvZ/+bGFXaf0Kn/cp4U9rfWg/733D94lEqVvfH3skdAP/mnbl67qCWXAljE3oPmo2Ds3L3ZcXqDYiPfVSobkP76PzN+3g5O1CllCcAnzWpw9moe6RnylQyWdkKJn3bmaqllTL+VcrxMiWN1AxpkfqLo43P33mMl5MdVbyV/fjzj3w5e+sh6dI8dVAo+KVHe6r6KGX8K5XmZWo6qXnqWRj3Iv7Gp9JH2Dgo265Gw67cuXKgQPkz+xZTtf6nmEm0n5zIz8WoO3i6OFG5jHJ3fcdmHxEecZP0TLV/sxUKxv3Qg7rVKgLgV6kcCUmvSE0vOj6Low4Xou7g6eJI5TLeAHzarAHnIm7lq0MO477/Mk8dyupdh8sRUa/HU+VTDh+3bMaFqxFa42m75k0YPfCHfzWeGtI/5289xMvJniqllLo/a1SLszfua8ZotoJJ33Si6msZ/8pl9O5nbwg/dxrfmrXzjde6xrsruLq5U668si1atmnP1SsXySxivDOojx7E4mVvQxUP5dMun9euxNn7MaTLtLcJb7twk0rujng7vN1CuIijorly/jhVfevj6Ky8nzVp9RkXzxzRkjM2NqH/iF/x9C4LQIUqtYh5cl+vMgw6FkW/wNPGiiouykXnTlVLce5JPOnyLL1s04dqpY25+1RBcpryx4vzt7LxLae9gG5rZYSXcwlORWYDcD82hw2HdWx7z4ch/SMQCAQCwfskN1f85f37kBEL7R8QT58+ZevWrYSEhBAcHMzcuXNZtmwZhw8f5tGjRwYtu0qVKgwZMuRfXXvz5k2ystST6qNHj+JcRJoSXSxfvvxflZ+fYcOG8ccff6gWl9asWUPXrl3/lU36EB37DE83dWoTSwtzbEuW5Gnccw256pXeLu1AfmJiYnB3d1cdu7u7k5ycTGpqaqFyFhYWWFtbExcbq7fuN9fExsVpyri5aVzn5uZG9NOnetkfFxuNq5un6tjV3ZOU5CTS0lK0ZCtWrqGXzjcURxs8jYnFI0/9LSwssMnno6cxsbi5uWpc5+7qRnR0jF5lxMQ8xc1d/Vi+u7s7r5KTSdNq46e455FTtpcNcXEFl6OrjfWy382NJ3q2cWzMU9x0xKgu+9102l9wjL4hIe4xjq7eqmMnV2/SUhLJSHulIWdr70wlX+WPQgpFNueP76J63eaF6ja0jx4/e4GXizqdkaW5BLuSlkTHv1Sds7Y0p3mtqoAypcKukxepVbE0NlYWWvqK236Ax/GJeDupd/JZSsyws7LgSUKSug4W5jT3raiqQ+jZa9Qu54WNpbleZSTFP8LOSZ1mxs7Jh4zUl0gzXmnJJsTc5vGtM9Rp0Ucv3U/inuPpqk6lY2lujq21FU+fJWica16/pur47LUb+Li7YG2l/45eg9bhWQKeLnnrIFHW4XmCxrkW9f1Ux2eu3dS7DtGxz/DIN57aWFtrj6eVK+plry4M6Z/Hz1/g5axOo2NpLsHOyoLo+ETVOWtLc5rXVKYoyc3NZdfpy9SqUEqvfvaG2HzjmJu7B6+Sk7TGu/xy+ozXYGAfvXyFt4M6NYalxBQ7CwlPXmrej1+kZhByNpLBrerppTcvIo6K5nnsE5xd1alHXNy8SHmVSHq+eZGNnQM1ajdUHV+/fJqyFavrVYZBfZSchpedesHZ0swEW3MzopPTtWQnHLxE1w1/8/32U1yLS9T6vCCc7Yx4maL+Nv3iVS7WlkZYmGnKeTgZkZiaSwd/U0Z/Zc6AThI8nIyK1G9I/wgEAoFAIPjfRORo/4BIS0tDJpORlZWFqakppUuXZuLEifTt2xcHBwccHR35+eefCQgIwNHRkc6dOzN+/HiysrIwNjZm+vTpeHh48Mcff3Dw4EFycnJo2rQpgwYNYvHixSQlJfH48WOePn3K0KFD2bFjBzExMaxevZrY2FhCQkJYtGgRrVu3plWrVly+fBlra2tWrVpFfHw8Q4cOxdTUlLp163Lp0iU2bNgAgK+vL6dPn6ZZs2bExcVhYmKCmZlyBpyamsqYMWNISUkhOzubCRMmcPHiRVJTUxk0aBCg3BU/fvx4vvnmG8LDw7l37x5Tp07FyMgIKysrZs2ahYWFBaNGjSIhIQG5XM7gwYMJCAjQ6UdnZ2c6derEH3/8Qbdu3Th8+DA7d+58Z70FIZPJMDPTfIzVTGJGpky/3ZtvU46tnXqBy9TMDCMjI2RSKdbW6i/MUplM5f83SCQSpNKCd1jJpNIir5HJZJjmlzEzQ1aI3rzIZVJsbdVfWk1N1faXLPnv0unktc3QbaCzDDMzDR9JZTLMTDVlJBIzpDL9fCSTyXT6SCqTUjJPG8uk2m1hJim8LXTZprRf7SOZjtjJX8ei7c8To4XYr1WORL9ysuSZWNuqF6tNXpchl2ViWdJWS/74Xxs4tHMFTq4+9B1Z+FM7hvaRVJ6FmYnmbVdiakKmjl2khy9eZ3ZwGNaW5swd2LNI3cVhP4A0K1t3HXTsYDx85RYztx3G2kLC/O8766UflG1saa3ZxhgZkSXLxNxS3ca5ubkc3jyZFt0mYGysO5WAlv3yLO0+amZa4Fhx93EMC9bvYNrgPnrbb/A6yORI8o1FElNTMnUlLQbuPolhwYadTB/0jV76ZTIZZqb5x3pTvWNEHwzfxvli1MxUdz+7FMXsTfuxtjBn7oAv3qoO7zZeF35PBkP7KBszE80d5BJTEzKzsjXOzdl/lv7Na2NjIdFLb15EHBWNTCbFWue8KBOrAuZFNyLOcyhsI6Omaqeu04VBfZStQGKsuWfL3MSYzGyFxrnPq5XiC78yVHCy5dCdGIaHnWP3N62xlhRdjqmJEWmZ6jzrihzIyc3FzNSITLl6Ad7CzAg3ByMOX8wh7GwW/lWM6dNWwqyNUnIK2fVmSP8IBAKBQCD430QstH9AVK5cGV9fX1q2bEnTpk0JCAigTZs2NGnShLZt2+Lr60t2djYBAQEEBAQwbtw4+vbtS8OGDTl+/DjLli1j+vTpAGzcuJESJUrQsmVL+vTpA8CrV68ICgpiwYIF7Nq1i6CgIH7//Xf+/vtvqlSporIjOjqaTp06ERgYSPfu3bl9+za7d++mffv29OnTRysvd9u2bdm6dSvNmjVj//79tG7dmnv37gGwbt06/Pz86NevH9evX2fmzJn89ttvDB48mEGDBpGcnMzLly+pXFn98qtp06YxdepUSpcuTUhICCEhIQQEBJCUlERISAgpKSkcP66dTiMvffv2pXPnzty8eZOBAwcikUjei15dmJtLkOdbZJLJ5Fia67d7szDC9uwhLCwMAGMTE+zt1V/I5HI5ubm5mFto7pwyNzdHLtf8IiiTybTk9LnGIk8dzM3NyconI5XJMC+kngf3bufQ3u0q++3s1F9m5HKZ0n5z/XcQFmy/4dpAXYa5jjJkmFto+kiepSkjzefH/OwN28W+sN0AmBgbY2+f10dynT7S1RYymaxQX+qyTauNJRLdcVBI7OwN28XesD0q++10xagO+4uKt7ycPLiRU4c2AcpH6K3t1Lt5s17HkaSAnP5N2/cmoF0vrpz5i0WTexE4dzdmZrrLMZSP3mAhMUOerbmQJZVnYWlupiXbum4NWtetwfmb9+n32xq2TBmCk23BL2crDvsBLMxMddQhG0uJjjrUqkzrWpUJv/2I7xdvZNuYvjjZ6H7Z4uV/grl6IhiAEsamWNmon0DKzpJBbi6mEs02jji1BUe38niVr6uX7QDmEjMdfVSOpbn2QmLEnQeMWxjE+H49qFO16F23xVUHC4kZsnxjkVQux0JHHa7decC4RX8y4YevqFNVvyd6zM0lyLPyx4i80HFMH4rTP/IsPftZnWq0rlON87ce0G/eWrZMGlBoP9sXFsr+MOV7FYyNTd5hvJbqHK+LzUdmJsjzLYZKs7KxzPMDzum70bzKlNHBT78XbuZHxJHuOPp7/xb+3q9Mb2hsbIKtnfrlsG/uZ+YWuu9nl8OPEbL6N4aO/12VRkanXHH5yMQYmULzZaPSbAWW+X6gmNBS/YRQm4qeBF24w7W4RBqX1ny66g2Nqpuo8qsrciA1Q71SbmIMJYyMkGVprp5L5ZCWmUvUI2Vch99U8MlHZjjbGfE8SVO2uPwjEAlXnsIAACAASURBVAgEAoHgfxOx0P6BMWfOHO7fv8/JkydZs2YNmzZtwsPDQ0PG19cXgCtXrvDw4UOWL1+OQqHAwUH5hc/c3JxevXphYmJCUlISycnJANSooUzHkTeFipOTk+rzN5QsWVK18O3m5kZqair379/n448/BqBFixZcv35dJV+3bl0mTJiAVCrl0KFDLF++XJUGJjIyUpV7vUaNGjx+/Bh3d3eMjIyIj4/nzJkztGrVSqP8iIgIJk5UvrRQLpdTo0YNypYtS3p6OqNGjaJ169Z06NChUD+am5vTt29fNm7cqLL7fejVRSlPD/4+Ha46TkvPIDUtHS93t0Ku0o+On35Kx08/BWDv3r0afo+JicHBwYGSJTUXrry9vDhxQp0nNj09ndTUVDw9PSkIL2/vIq/x8vYm7tkz1XFubi5xcXH4+PhQEG0/6UrbT7oCcGjfDm5GXlV99iz2KXYOTliVLHzxUB8M2QZv8Pby5PhJ9cvi0tPTSUtLwzNP//Tx8iIuTtNHsXFxlPLxpiA+6fgZn3T8DID9e3cTeT1C9VlszFMcHBy12tjL25tTJ/7JY0saaalpeBTSxj5eXhw/oW2/h6fafm/vd7N/3949+ezXHaNe3t6cPKH+USs9Pb1Q+5u07UGTtj0AOHVoM/dvXlB9lvDsMTZ2zlhYae7+ex5zn+TEeCrV+AgjIyNqN/qYHWtnkBD7CM/SldGFoXz0htLuzhw6r/ZPaoaUlIxMfPKkMnmWmMzNR7E0r61MH1O/Sjlc7W25fj9ada4gDG0/QBlXRw5evqmuQ6aUlEwpPnlSLDxLSuHGk2e08FMuTvtXKo2rnTURD2NV5/JTu1kvajfrBcCVEyE8vatu46T4R1jZOmNuqdnG9yL+5tmTSO5fPwZAZloiwXO60vG73/Gp2EBnOaU9XDly9pLqOC0jk9T0TLzzpLgA5U72sb+vYfqQvtSqrN9CY3HW4fC5K/nqkIGPm2Z6tLtPYhi78E9mDO5Drcrl9KoDgI+nB0dPnVPrfzOeerzbeFps/nFz4tCFSNWxqp+5qBc0nyW+4ubjWJrXUm4yqF+5LK72Nlx/8FR1ThcdOn5Oh46fA8rxOuq6+sWPsTFPsdcxXnt6e3PqxDHVcWHjdXH5qIyzHQcjH6h9JJWTkinDx1Gt++jNR9yKe0GL2coFyVeZMkZsOsLo9g3oWKvoH55EHOmOo5Yff0HLj5W73o/+tZXbUZdVnz2Pe4KtvROWVtrzoqhr4WwKmsvIyUvx8C5TsIMoRh85WHPorjoFUqosixRpFj550slkyLOJT8+ktL26ToqcHExKFJzW5XRkNqdf51pvWM2Esh7qXfNOtka8Ss8h/wM8Sak5SEyNMALeLKvngs7d7MXlH4FAIBAIBP+biBztHxC5ubnIZDLKlStHnz592LZtG8+fPyc2X25t09ePvZuamrJw4UI2bNjAxo0bWbJkCTExMaxdu5Y1a9awYcMGjYVSkzyP++f9f26+NwkY53shVW5uLrm5uRgZKSfFb/59Q4kSJWjUqBEhISFYWFioFvzfyObVn5Oj3PnSqlUr/vnnH44ePUrbtm019FlYWLB+/Xo2bNjAli1bmDBhAhYWFmzdupUvvviC48ePM378+CK8Cd7e3nh5qXNfvi+9+aldvQrPE15y7eZtALaEHaBh3Zo6dxe+Cw0aNODa1as8fZ1LOTQ0lKbNmmnJ+fr5kRAfT1RkpEquvr9/oTvP/Xx9iU9IIDIqSnWNf/36GteU8vHB1saGY8eUXzKOHDmCi4uLho8Lo26DACKvXST26WMA9u/aRMOAVkVcpR/F0QY1fWvwPD6ByKgbAOzYtQf/+nU1dueV8vHG1taGo/8oF5EP/X0UV2dnvApZAM+Lf4NGXLt2hadPlS+m3B26gyZNtfOK1/CtSXzCc25EXVfJ1avvX+iOdj/fGsTHx+exfzf+9evls98HW1tblf2HjxzFxdlFb/sbNGioYf+u0O0EFGJ/VFSk3va/oXrd5tyNDCc+VvmC6OP711O74cdacmkpSWxcNo5XifEAPLh9GYUiG0eXguPV0D6qV7kscS+TuXLnEQAhh07RxK8yFnl2g2dlK5gUtJ37Mco8xo+fvyA6/iVlPV10qSxW+wHqVfAhLjGFy/eVbRx87AIB1cpp7GjPylYwKWQf9+KUOcMfxycSnZBMOXcnnTrzU963FU9unyXxuXIh8OLRtVSu84mWXJeBqxk4+yw/zTrNT7NOY23vTq/R2wtd9KhTrSJxLxK5ekv51NXG/UdpXLu6xliRm5vLlOXrGd33C70X2Yu3DhVe1+H+6zoco3Et7Tr8sjyYwG+7vdUiO0DtGtV4nvCCiBu3ANi6Zz8f1a31zjuR82JI/9SrVIa4xFdcuau814QcOUuTGhW1+9naXdyPVY4Pj5+/JDo+kbIeRfezN/g3aEjEtcvEPFW+EHxP6DaaNG2hJVfDtxYJecbrPaHbqVu/QZHjnUF9VMaDuOQ0Lj9W/ugWfOY6AZV8NHa0T/y0CcfHfs3RwF4cDexFTW9X5n/VSq9FdhBxpA+16jfjZsR54mIeAXBwTwj+TdpqyclkmfyxeAoDA+cWucieH0P6qK6XE89SM7kSq3zPyMYr92lSxhWLPDvan6dl8u3Wk0QnpwFw9nE8yVI51V3tderMT+QjBRU8jXG2U373aOpnytW7Ci25uMRcUtJzqV9F+R3Gt6wxmbJcXr4q/G1phvSPQCAQCATvk5xc8Zf370NG7Gj/gNi+fTsXLlxg9uzZGBkZkZqaSk5ODl5eXigU2pNKPz8/jhw5Qo8ePTh79iwvXrygTJkyODg4YGVlRVRUFDExMRovKv23+Pj4EBkZSY0aNTR2Pr+hXbt2DBkyhKFDh2qcr1GjBuHh4dSsWZOrV69SoYLy0fXWrVszb948nj59SrVq1TSuqVy5MidOnKBp06bs27cPBwcHbGxsuHfvHp06dcLPz4+ePfXLWVwceiUSM34Z8RPzV61HKpPh6ebK+ME/kPAykRFTf2PDwpkA9B46FkVODgmJSUxdsAKJxIwJQ/pRtYJ+iyBOTk78NHAg06ZORaFQUK58edXTArdv32bD+vVMnzEDiURC4JgxLFu2DKlUioeHB8NHjCiiDhLGBAZqXDNi+HBevHjBhIkTWfH6CYXRo0ezcNEigkNCsLOzY/SoUXr7ycHRmb4DfmbejDHkKBSULleJPv2/B+DenRtsC17F2Km/k5yUyLSxP6mumzZuIMYljBk/YzEOjrpfaFscbSCRSBg/eiSLl69CKpPi4e7OqOFDePHiJWMnTWH1MmX+73GjRjB/8TLWhWzG3t6OMT8X7vu8ODo5MeCnIfw6bbKyjcuVp98A5bsM7ty+RciGP5kyfTYSiYRRgeNZsWwxUqkUdw8Phg0fXaT94wJHsWT5CmUbu7vz8/Bhr+2fzOplSwAYO3okCxYtYX3IRuzt7BgzauRb2z9DZX8F+uexP3jDWqZOn4VEImH0a/tlKvv1iyU7B1e69J1A0Lwh5OQo8Cpdhc59xgHw+N51/tq2mB/HrqJclbq0/rwfy3/9ntzcXExMTPl68G+YW+pOXVIcPjI3M2XWj18yM3gPUrkcbxdHpnzXlfikV/w0/0+2TxuGt4sjk/p8ztiVW8jKzsbIyIhRX31CKdeiF6mLo43NzUyZ/e2nzNx6iEx5Ft7O9kzr1YHnyakMWLaFneO+x9vZnklftWfM2j1kZSswMjJidJeWlMrzItjCsLZzpeUXk9m1ciA5OQpcvavSqNsEAOIeRXB670K6DgrS22ZN+82YMaQvc/7cilQmw8vVmUkDehOfmMyQmUvY/NsErt99yL0nMSzZtJslm3arrp02qA+VyxT8BE9x1uHXwX2Ys3YbmTI5Xq5OTP6xF/GJyQyetZwtc8Zy/e4j7j2JZfGmPSzetEd17fRB31C5TOFPL0gkZkweOZgFq9YilcrwdHdl7JAfSXiZyM9TZrFukTJ93DdDRqNQKEhITGLagmVIzEwZN3QAVSsW/eOEYf1jyqwfujJz0z6ksiy8XRyY0ucz4pNS+GnhBrb/MhBvFwcm9f6Usau3v45RGPVle0q5OhZdwGscnZzp/9MwZk6bhEKhoGy5CvwwoA8Ad27fZOOGP/ll+hwkEgkjAyeyatnC1+O1J0OGB/63PjI1YXb3FswMO01mVjbeDjZM69yU5ynpDFj3FzsHd/1XevMi4qho7B1d6NV/DEtmjkSRo6BU2cr0/F55L39wJ5LQTcsZOXkpV84fJzUliVULNDeDBE5frZF6RhcG9ZGJMb+2q8vsfyLIzFLgbWvFL61rEZ+WyaBdZ9naqwVlHKwZGVCd4WHh5AA2ElPmf+JPST3yswOkpOey86ScPu0klDCCmBc5HLyg/F7j7VKCdvVMWb1P+Y6N9YdkfNHcjBa1TUnLzGX9QVmRX8QN6R+BQCAQCAT/mxjl5t/OLPjPUCgUzJ07lwsXLmBpaUl2djb9+vXj5cuXLF68mJkzZzJ+/HjCwsKwsrLi+fPnjBs3DqlUipGRETNnzsTDw4N+/fqRnp5OnTp1yMnJ4ebNm9SpUwd7e3t69epFcHAwSUlJDB48WPX/+vXrq16G6u/vT3i4Mg3HkCFD6NmzJ66urgwbNgw7Ozv8/Py4evUq69ato3fv3mzYsEH14tXQ0FCcnJxo0aIFR48eJS0tjXHjxpGcnExubi6TJk1SLbZ/+umnNG7cmNGjlV8q3pR7//59Jk6cSIkSJZBIJMybNw8jIyNGjBhBZmYmxsbG9OrVS2snfH7Cw8NVdQLem96EqPBCP39XUix0Lya/L4wM3OWTFXZFC70j3ln3DKo/0+zdXs5apP4SBS/2vg/MczMMqh9AZvTuufUL494rd4Pqr2bzoGihd8D5eWTRQu9Igmt1g+p3fXDGoPo3lPjWoPq7OxwxqH6ArYnv56mcgvjC/qBB9Wda6veUwbuwJ6aOQfX3NN1sUP2PvZoYVP+ph/o9TfIu9E6ca1D9r2poP7n0Pvm/HkMAV5y1d0m/T27EGnZe8dXtwn/Mf1d+KfGLQfUDVKqgO/f9++QHw94SBAKBQPA/zJq//2sLPiy+b/lfW1AwYqFdoBd3794lJSWFOnXqsHfvXsLDw5k2bdp/bdZ/glhoLxyx0K6HfrHQXiRiob1oxEJ74YiF9qIRC+1FIxbai0YstBeNWGgvHLHQLhAIBAJB4YiFdk0+5IV2kTpGoBdWVlZMmjQJIyMjSpQowcyZM/9rkxg0aBCvXr3SOFeyZEnVi1gFAoFAIBAIBAKBQCAQCAQCgaA4EAvtAr3w8PBg06ZN/7UZGixZsuS/NkEgEAgEAoFAIBAIBAKBQCAQCMRCu0AgEAgEAoFAIBAIBAKBQCAQfIiIpN//dyjxXxsgEAgEAoFAIBAIBAKBQCAQCAQCwf9lxEK7QCAQCAQCgUAgEAgEAoFAIBAIBO+AWGgXCAQCgUAgEAgEAoFAIBAIBAKB4B0QC+0CgUAgEAgEAoFAIBAIBAKBQCAQvAPiZagCgUAgEAgEAoFAIBAIBAKBQPABkpPzX1sg0Bexo10gEAgEAoFAIBAIBAKBQCAQCASCd8AoNzc39782QiD4v0RixEmD6k+28jCo/lwjI4Pq93h81qD6AQ5bf2lQ/S2y9xlU/znLtgbVX84q2qD6ARQYG1R/yaxkg+rPNLU2qP7UHBuD6gcoYWTYbQ1lEs4ZVP8Fa8P2A4AGd1YZVP+5iv0Mql+uMGw/C3i2waD6Ac559jCofolxlkH117r5p0H1GzqGALIUht1X0+TG7wbVf67GEIPqT5WZGlQ/QKvUbQbVH+70mUH125hlGFR/laf7DaofINylq0H1W5tlGlQ/QJ2KDgYvQyAQCAQfJisP/dcWfFj0b/NfW1AwYke7QCAQCASC/+8w9CK7QCAQCAQCgUAgEAgEeREL7QKBQCAQCAQCgUAgEAgEAoFAIBC8A+JlqAKBQCAQCAQCgUAgEAgEAoFA8AEikn7/30HsaBcIBAKBQCAQCAQCgUAgEAgEAoHgHRAL7QKBQCAQCAQCgUAgEAgEAoFAIBC8A2KhXSAQCAQCgUAgEAgEAoFAIBAIBIJ3QCy0CwQCgUAgEAgEAoFAIBAIBAKBQPAOiIV2gUAgEAgEAoFAIBAIBAKBQCAQCN4Bk//aAIFAIBAIBAKBQCAQCAQCgUAgEGiTm/tfWyDQF7HQLhC8By5ev8niDdvIlMpwc3JgwsBvcXF00JDJzc0lZM9BVmwKZenkn/GrUuGtyrh69SprgoKQZmbi4uLC8BEjcHZy0pB58OABS5YuJeXVK2xsbRk8aBBlypTRu4zj//zD5s2byc7OplTp0gwfPhwrKyudtgStWUOmVIqLiwsjhg/Hydm5UN3nbz1k/o7DZMjkuDvYMvWbTrja22jIXLzziN93HiEtU4a5mSmjurelToVSett/9ex+juxaQY4iG1evCnTvNx0LS2stuYjzhzgSupzsLDlW1vZ06TsZN++i2+P8jXv8vnkvmVIZ7k72TP6+O64Odpo23HnI/E1hpL+uw8gen1K7clm963Dx9F8c2LEKRXY2Hj7l6TVgKhZWOupw4Rh7tywjO1uOVUk7vuo3AQ+fwutw9eo1VueJoREjhuuMocVLl5LyKgUbWxsGDxpE2beJoeP/sGXzJmUMlSrNsOEjdMbQtatXCQpaTWamVBXPTk6FxxDA5YhIlv0ZTKZUiquzM2OG/IiLk6OGTG5uLptD97I6eDO/T5+Ib9XKettfHD46ffwIO7asJ1uRjU+psgwYOgYrq5JactnZ2YSsXcHeXVtYsXYHjk4ueuk/dfxvtm/ZgCI7G+9SZRg4LLBA/cFrVxIWupVV67bprf/8jXv8vmUfGVI57k52/PJdN+1+cPcR8zftJS1TirmZGSN7fEKdSvr3gwunDrB/+2oUimw8vMvzzcBfdPaDaxf+Yc/mZWRnZWFlbUvP/hPw9ClfqO7w+0+Zv/8MGbIsPOytmdq1Ba622v4BuB33gh5LtrPiu47UK+upt/2GrgPApdN/cXCncqxw9y5Pz5+m6hzvrl88xr4tS1VjxRc/TCxyrAi/85j5u44pfeRgw9QeH+Nqr6n74t0nLNhz/PV4bcLozi2pU967SLvfYGj/AJw7eYiwbUEosrPx9CnHd4MnYamjL1w5f5ydG1eSnZ1FSWtbvvlxDF6l/vs4MrSPLuaLoV4FxFDExWPsy3O/+fKHou83AOEPYpl/6AIZ8iw87EoytVMTXG217wcAt5+9pMeqPazo3Y56ZdyL1P0GQ/voypn9HNm1khxFNm5e5enev7B5xQqy5HKsrO3o8t1k3IuYV5y/9YD52w8p50WOdq/nRbYaMhfvPOL3HYdfj6WmjOrejjoVSxdpd14M7aMzJw4TumUtCoUCb5+y9B86Tmc/y87OZtO6ZezftZklf+7S655z/tZD5u/8Wz13/LqjjrnjY34P/Vs9d+zW+q3mjsUxFp05cZhdW9aiUGTj5VOW/kPHF+ijzeuWsX/XJhb/uVvv+7JAIBAIBIIPB5E6RiB4RzKlMib9vopxP37D1kUzaFzXj9mrgrXk5qwOJjruOfY22pP3opBKpcyaPZthQ4eyZs0a/P39WbJ4sZbcrNmz6dqlC2vWrKF7t27MmTNH7zLi4+NZvnw5U6ZOZfWaNbi6urJu3TqdtsyeNYuhw4apbFm8ZEmhujNlcgKDdjC5d0f2TB1EU9+KTN+4T1OvPIufV25j3Fcfs2vKQPp3aMro1dvJ1fOn26QXsexaN4PvRq1g9Nz9ODh5cGDrQp1yO/+YwrcjljB67j58/duyddWEIvVnyuSMWxbMxL5dCZ0TSJOaVfl17U4NGXlWNiMWrmVw94/ZMWsUA7q0ZdzyEL3sB0hMiGNb0Cx+GruMyYvCcHD2ZM8m7XZOfvmc9Usn8O3QWUz6fTf1mrRn06ppheqWSqXMnD2bYUOHELRmtbLdFmu328zZs+nWpStBa1a/jqHf9LY/Pj6eFcuX88uUaaxaHYSrqyvr163Vacvs2TMZMnQYq9cEFRjP+cmUSpkydxGjB/UnZPnvNKxXm/nL12jJzV8eRHRsHPa2Njq0FExx+Cgh/jlBK39n7C+/sWjlRpxd3Ni0frVO2TnTxmJuYfFWdUiIf07QioWM/2U2i1cF4+Lqxsb12j4CmDVtHObmb6c/UyZn7PKNTPy2K7tmjyKgZlVmrAvVkFH2g3UM7taenTN/5qfObRi3fJPeZSQmxLE5aDaDxy9h6uLdOLp4sGujdjskvXzO2sUT+W7YTKYsCqV+k/aErCi8H2TIswjcdJhfOjcn7OeeBFQuzbTQ4zplc3JymbHrOI7Wb+cjQ9cBIPFFHNv/mMmPY5cxcWEYDi4ehG1apCWXnPicDUvH883Q2UxYsIc6jT9m8+qpherOkMkJXBvGL1+1I2ziDwRUL8+0rQc1ZKTyLEb+sZvx3Vqze8L3/NiuEaP+3KP3eG1o/wC8THhGyOrfGDFxIbOW7cDJxZ0dIct0lBHP6oVT+HHkdGYu2UaDJm1Zu3xmobqLI46KJ4ZmMWDsMiYtDMPRxZMwXfebxOdsWDqBPkNnMXHBbuo2bs/m1UXrz5BnEbj9H375tBFhQ7oSUNGbaXvP6JTNycllxt6zOJa0LFKvRh0M7CPlvOJXvh+9nMB5+7B39uSvLbrnFTuCptJnxBIC5+3Fz78tW1cWPq/IlMkJXLOdyV9/yp5pQ5TzopC9GjJSeRY/r9jCuB4d2DV1MP0/acbo1dv07mdgeB+9iH/G2pULCJw8j/krNuPk6saWDSt1ys6bHoi5uf5trJw7hjK5Vwf2TPmJpjUqMH3jfg0ZqTyLn1dtZ9yX7dn1ywD6d2jC6DU7P6ix6EX8M9atnM/oyfOYt2ILzq7ubNmwQqfsvOmj3/q+LBAIBAKB4MNCLLQLBO/IxcibeLg6U6mscvfMJ80bc/5aFOmZUg25j5s2ZOyP32BiYvzWZVy9dg03NzfKl1funGnTpg2Xr1whIyNDJfPw4UPS0tJo2LAhAA0aNCD51SuePHmiVxnnzp6lZs2auLgod8+0bdOGUydPasldu3pVy5Yrly9r2JKf87cf4uVkTxUf5S61zxrW4uyN+6RLZSqZLIWCyb0/pWopDwD8K5fhZUo6qRlSnTrzE3XpKOWrNcDeSXl9/WZdiAg/qCVnbGxKj4G/Ye+s3FVYoVoDEuIeFqn/wo17eLo4UqW0FwCdAupxLvKORjtnKxRM+LYr9aoofVOzYhkSklNITc/Uqw4RF49RqYY/Ds5KPzVs8TlXzh3SroOJCd8OnY27dzkAylWuTVz0/UJ1X712DXc3Nyq8bre2bVrriKFHpKWl07DhRwB89LYxdE4zhtq0bcupUzpi6NpV3NzcKV9euduvdZu2XLlSeAwBXI6IwsPVhYrllLvHP27VnAtXI8jI0PRv2xYBjB7U7637WnH46GL4SWr41cHZxRWAFm06cO70MZ2yXb78hi96fvdWdbhw7hQ1aqr1t2zTgbOn/tEp2+3Lr/myV9+30n/+xj08nR2oUlrZfzo1qcu5yLukZ6r7crZCwfg+XahXRRmfNSuWfqt+cPXCP1SuUV/VDxq1/IxLZw9ryRmbmPLd8Fl4vO4H5SvXIraIfnD+fgxeDjZU8VQ+PfF53SqcvRdNukyuJbstPIpK7k54O9hqffZf1gHg+oWjVKzhj4OTUv9HLTpzVddYYWxCn6FzcPd6M1bU4llRPrrzBC9HW6p4uwHweYManL31KN94ncMvX7Wjqo9Sxr9SKV6mppOaJw4Kw9D+AbgcfpwqvvVwdFbaGNC6ExdO/61dhrEJP46cjqe38omLilVrEvPkQaG6iyOODO2jiAvH8sVQAfcb49f3Gy/97zcA5x/G4WVvTRUP5RNBn9eqyNn7MaTLsrRkt128RSU3B7zt324jgqF9FHXpGBU05hWdiQjX5SNTeg6ag4OzUq589QYkxD0qVPf5W2/mRcprCpwXfd3pX8+LwPA+uhh+kup+dXByUfaz5q07cu70UZ2yn3/Zh249v9fb9vO3H+WbO9bk7M0HOuaOn1C1lFLGv9Lb+ag4xqJL4Sep5ldX5aNmrTsSXqCPvqVrzx/00isQCAQCgeDDRCy0G4BHjx7Rr18/unbtSufOnZk2bRpyufaXr8I4cODAO9mQlpbGqVOnCpXp3bs3kyZN0jgXHBxMpUqV3qm8xYsXExysvaM7L7GxsURERLx1Oe+DvGWPGTOGY8d0L3LpS3Tcczxd1SkvLC3MsbUuydNn8RpyNSqV+9dlxMTE4O6ufpTawsICa2trYuPiNGXc3DSuc3NzI/rp039Vhru7O8nJyaSmpuplS1xsbIG6Hz9PxMvJXnVsaW6GnZUl0fGJqnPWFuY0r6mMvdzcXEJPX6F2eR9srPTb2fPi2SMcXdVpCxxdfUhLeUlG+isNORt7ZyrWUP4YoVBkc+FEKFXrtChS/+NnCXi5qFOUWJpLsC1pSXT8S41zLerWUB2fibhFKTdnrPWsQ3zsY5xcvVTHTm7epL5KJCMtRUPO2taRarUaq46jrpyidIUaFEZxxZDbu8RQXMExBPA0Ng4PN1fVsaWFOTbW1jx99kxDrnrlinrZq8t+Q/soNiYaV3d16gg3d09eJSeRlpaqJVupSvW3rYJSv5tHHv0eSv2p70f/k2cv8M7XD+xKWhId/0LjXMu6at2nI25Tys1J737wPPYxznn6gfPrfpCerx/Y2DpQvVYj1XHkldOUKaIfPH6RjLeD+kkHS4kpdpbmPHmpOU68SM0g5EwEg9s20Mvm4qwDQHzcY5zyjHdOrm/GCs16WNs6UrWmeqy4ceUUpYryUUIi3k7qVECWEjPsrCx4kpCs1mshobmv8oey3NxcQs9GULucFzaW5kXaDob3D8Cz2Ce4uKnLcHHzIkVXGXYO+NZuqDqOjqLCeAAAIABJREFUuHyGchUL7xvFEUfFE0N57jeuBd9v3jaGAB6/fIW3g3rhXOkjCU8SNfW/SM0gJDyKwS3rFKkzP4b2UUKc5rzC6c28Iq3wecXFE7uoVsS84nH8S7yc1SkGLc0lBcyLlKnP/s28CAzvo7jYaFzd1Pc0V3dPUpKTSMunH6BiZf367hsexyfi5ZxnLHozd0xIUp2ztjCnuV+eueOZq9Qu7623j4pjLIqLfWIwHwkEAoFAIPjwEAvt7xmFQsHgwYP5/vvv2b59Ozt27ABg6dKlb6Vn1apV72RHVFQUp0+fLlLu5s2bZGWpdxcdPXoU5yJybb9LeW84d+7cf7bQ/r7LlsrkmJmaapyTmJkileq3s08fZFIpZmZmmmVIJEil6h07MpkM0/wyZmbIpPrt6sl/vamZGUZGRlrXS2WyIm3Jj1SehcRU85UQEjMTMuXaO9sOX7pBq8D5bDtxkfE9OuhlO4BcJsXEVKI6NjFV2i+X6t5Fe/LABqb+1ISHty/R4cuRReqXyuVadTA3MyVTxw5GgLtPYpm3MYxxfbq8VR1MzdR1MH1dB5ms4J3et66f4+jeDXT5ZlTh9ktlmJrli1OJmUa76WxbM7NC2zYvMplUoy+o7de8XiaVatliVkQMqe3L39fM3ltfKx4fyTAzzdPP3viogDh9W2T57FO3wfvRL5XLMdPqywX3gzvRcczbFMb4bzrrXUZWAf1AXkgdbkaE8/feYLp9+3MR9mdjZqr5pIPExIRMebbGuTl7T9G/RV1sLCT8GwxZB3g9VuiKo0L0375+jmP7NtD5m9GF6lb6KF8bmxYwXl+5TcsJy9h66ioTurcp0u43GNo/UIiPCulrN66d5+CejXz13fBCdRdHHBnaR1kyKaamb3e/uX39HEf3FX2/AZBmKTAzye8jY604mnMgnP5Na32YPpJLMckTQyZF6D/51wamDAjgwa1LdPhqRKG6C54XaY+lhy9F0Wr0XLYdv8D4np8UabdGHYpjLNI1b9HznlgYOn1kaqLzfnP48k1ajfmdbScuMb7Hx3qXUWxjka778nvwkUAgEAj+d8jJFX95/z5kxMtQ3zOnT5+mbNmy1K9fHwAjIyNGjRpFiRIlWLduHfv3K3MLtmzZkn79+jFmzBhcXFyIiooiNjaWuXPncvbsWW7fvs2gQYPo3bs3f/zxBxkZGQQGBnL+/HkOHjxITk4OTZs2ZdCgQaSkpPDzzz+TlpaGtbU18+fPZ+rUqaSlpVG6dGm++OKLAu319fXl9OnTNGvWjLi4OExMTFSLNKmpqYwZM4aUlBSys7OZMGEC1apVo3Xr1rRq1YrLly9jbW3NqlWrNMoDuHPnDv379+fRo0eMHz+egIAAVZmJiYksWbIEExMT3N3d8fLyYurUqZQoUQIrKytmzZqFnZ3mi/VatWpF9+7dOXDgAKVKlaJatWqq/8+bN49nz54xbtw4srKyMDIyYsaMGRgZGTFmzBi8vb25ffs2VapUYeTIkRplA4SHhxMcHExcXBxz586latWqb9XmFhIJ8izNL45SmRwL83+3QKMLc3NzraciZDIZFubmGjJZ+WSkMhnm5gXvMAzbs4ewsDBAmY7E3l6961wul5Obm6uVI7ogWwrLJW0hMUWWpbkAIZVnYSEx05JtXacqretU5fyth/ywYD1bJ/THqYAXzJ0+FMLpQxuV9hubYG2nfmllllxGbm4ukgLygTZp15vGbXtx9ex+lkzpwag5YZiaFewrC4mZjjrIsdRRh2t3HzFmqTKfe90qhT/J8M9fmzhxYJOqDjZ26t3CRdXh2vmjbP1jJgPGLlGlkSkIZXxoxql2DEkKiLOC2zYsbA97w/ao7Le3V+/QU8WQuXYM6bKlqLykytgrvA7vgqF89FfYDg7sU+bzNzY2wU7DRzKdPnob9oft5K+9yjzpJsbG711/XiwkZsjz9wOZHEuJ9nh37e4jApeFMOnbovvBsf2bOfbXZkA5FunuB7rrcDX8KJuDZjNw7CLVY/0F2m9mgjxLoWl/VhaWeX5gOX3nCa8ypHSo9XZPRhi6DscPbMw3Vug/3l07/zfb/5zJj2OWqlKAFISFmal2G8uzsZSYasm2rlWJ1rUqEX7nMd8v2cy2wD442eger4ujjY/s28qR/VsBMDE2wdZeXYa8CB9dOvcPIat/Y/iEBao0MgVhqDgyfAyp7zcljE2wfsv7zbY/Z/LjmCVFxhCAhakJ8uz8PlJo+ujeU15lyujgq/8Tf4b20amDIZw+tEml39r2LeYV7XvTuJ1yXrH4l56M/m1PgfMKC7O3mRdVo3Wdapy/9YAf5q9j68QfcbItOM2OoX10cO92Du3drtJvZ2eYe45OH2UV4KPaVWhdu8rruWMwW8f/UODcsTjGooN7t6l8ZGJigq2d9lgkcrELBAKBQPD/J2Kh/T3z4MEDqlSponHO3Nyc6OhoQkND2b5dOenq1q0b7dq1A5SLUUFBQWzatIldu3Yxfvx4Vq9ezZIlSwgPD+fOnTscPHgQMzMzzp8/z8aNGylRogQtW7akT58+BAUF0bhxY77++mvWrl3L2bNn+e6777h7926hi+wAbdu2ZevWrTRr1oz9+/fTunVr7t27B8C6devw8/OjX79+XL9+nZkzZxIcHEx0dDSdOnUiMDCQ7t27c/v2bY3yFi9eTHJyMitXruTkyZNs2rRJY6HdwcGBzz//HHt7e1q2bMnXX3/N6NGj8fPzIygoiPXr1zNkyBANO3NycqhatSo//PADzZo1o02bNmzfvp1mzZqRkpLCwoUL6dq1Kx9//DEHDhxgyZIlDB48mKioKBYsWICjoyMBAQEEBgZqlH348GGMjIwICgpi8+bNhIaGvvVCeylPN46cuaA6TkvPIDU9A29310Kueju8vL05ceKE6jg9PZ3U1FQ8PT01ZOLypNDIzc0lLi4OHx+fAvV2/PRTOn76KQB79+7l+vXrqs9iYmJwcHCgZEnNLyreXl5F2pKf0q5OHLwYpTpOzZSSkiGllIv6y9mzxFfceBJHi9ePSdevXAZXexsiHj5VnctPozY9adSmJwBnDm/iwU11O7x49hgbO2csrDRfiPk85j6vkp5TsXpDjIyMqNWwA7vWTSc+9iGepTX7rkYd3F04FH5NXYeMTFLSM/Fx03wC5O6TWAKXbGDmTz2pVanwxRqAZu2/oln7rwA4cXAzd6MuqT6Lj3uMrb0zllbaL/W8FXGObX/OZvCElbh5FV2Ot7d2u6Wlpmm0m7e3N3HP1GlScnNziS0qhjp+SseOb2IojMg8MRRbQAzpiuf8tuiilKcHx06qX6aXlp5Balo6Xh5uhVylP4byUfuOXWjfUflkw8F9oURFXlV9Fhf7FHsHR6xKvv1Lkt/wccfOfNxRuWP8wN5QoiLVcfo+9OeltLsLh86rnwhKzcgkJSMTHzcnDbk70XGMXhrCzAE9qF2pTJF6m3/8Jc0//hKAfw5s4Y5GP3hSYD+4ee0cW/74jaGTluOuRz8o42zPwYh7avulMlIyZfg4qfNnH416wK3YF7SY8ScArzJljAg+wOhPGtGxtu6xqDjq0LRdD5q26wEox4p7Ny6qPkt49hibAseKs+xYO5uB41fpNVaUcXXg4JVbquPUTBkpGVJ8nNU/xD5LSuFG9HNavE4f41+xFK621kQ8ilOdy09xtHGrDt1p1aE7AH/v38btqMuqz57HRmNn76SzL0RdC2dj0Dx+/mUJHt5Fx6uh4sjwMfQVTdup7zf3buTRX2gMnWP72tkMGq/f/QagjJMtB6PUue5TpXJSpDJ8HNX6j958zK24l7T4Tbmw/SpTxogtfzO6nT8da/43cdS4bU8at1XOK04f3sSDm+p+Vui8IjGeijU+Us0rQtfOKHReUdqtoHmRekFWOS+KpUVNpY76lcvmmRcVPF8xtI/aftKVtp90BeDQvh3czHNPexb7FDsH3f3sbSnt5sTBSzdUxwXPHZ/R4nXqwfqVy+BqZ03EwxjVufwUx1jU9pNutP2kGwCH9+3gZuQVtc2x0e/NRwKBQCAQCD48ROqY94yRkREKhULr/M2bN/Hz88PExAQTExNq167NrVvKL7J169YFlHl+09LStK6tVKmSape5ubk5vXr14uuvvyYpKYnk5GRu3LhB7dq1AejTpw+tWrXS2966desSERGBVCrl0KFDtGzZUvVZZGQk/v7+ANSoUYPHjx8DULJkSSpXrqyyOX/+ZUBlj6urq87P83L//n38/PwA8Pf358aNGzrlfH19MTIywtHRUbUY7uDgQGpqKpGRkaqnCPLq8PHxwdnZmRIlSuDi4qLTljp16qhs1eX/oqhdrTLPEl5y7eZdADbvO0yjOr7vdUe7n68v8QkJREYpv5SFhobiX7++xm71Uj4+2NrYqHLOHzlyBBcXF7y8vHTqzE+DBg24dvUqT1/nmg4NDaVps2Zacr5+fiTExxMVGamSq+/vX+jO+XqVShOX+Ior95QvjAw+co6AGhU0diVlKRRMWrebe7HK3PaPn78kOj6Rcu76pTKqVqcFd6POER+rfLHpib/WUvMj7ceH01OS2LJ8LK+SlOU8vH0ZRXY2ji7eWrJ5qVulPM9eJnHljlL/xoMnaVKzikYdcnNzmbx6C2O++VyvRfb8+NZtzu3IcJ7HKMs4uncDdRq115KTyzLZsGwi/X5eoPeihzKG4lUxtDN0F/V1xpAtx479A8DhI0dwcXHGy6vwBfA3NGjwEdeuXeXp02gAQkN30rRpM+16+voRnxBPVJQyhnaF7tSyRRe1alTjecILIm4ox85te/bxUb3a721He3H4qK5/YyKvXSLmqbIv7N21hUYB+o/ZRVGvQWOuX7us0h8WupXGTVsWcZX+1K1SjrgX6n4QcvAUTfx09YOtjP36M70W2fPjV68Zt66f51nMIwAOh22gXuN2WnJyWSbrlk7mx9Hz9FpkB6hXzpO45FQuP1L+WBJ86hoBlUtr7LKd+Hkzjk/sy9Hx33J0/LfU9HFjfq92hS6yF2cdAHzrNedOZDjPY9+MFesLHCtClk/k+7cYK+pV8CEuMYXL95X3guBjFwioXk7j6Z2sbAWTQvZzL06Zm/9xfCLRL5Io5+aoU2d+DO0fgNr+TbkRcYG412Uc3BOCfxPt9DYymZSgRVMZHDhHr0V2KJ44Ko4Yuq0RQxuoW0AMBS+fyA9vEUMA9cq4E5eczuXHyg0AwWcjCajoremjjo04HtiTo6O+4uior6jp7cL8L1oWuMieH0P7qHqdFtyNVM8rju9fR82G2vOKtJQkNuefVygKn1fUq1SGuMRkrtxTzq2Dj5wloEZF7XnR2l065kUuetfB0D6q2yCAyGsXiX2qrMf+XZto+J7uafUqltKcO/4dTkB1HXPH9Xu4F5sAvB6LEpIo56Hf3LE4xqI6DZrk89FmGga0fisdAoFAIBAI/u8gdrS/Z8qWLUtISIjGOblczt27d8nNVScSysrKokQJ5e8cxsbqHJZ5Zd7wZpE9JiaGtWvXEhoaipWVFZ988onq+pycnH9lb4kSJWjUqBEhISFYWFjg4KDeJWJkZKRhz5sy8tpbkM0mJpqhFR0dzbhx4wAIDAws0J43fjl8+DDr168HYO3atVrl5vdZXlsL8m1Bthbl/6Iwl5gxbXg/5gaFkCmV4eXmwsSBfYl/mcTwGQsImT8VgJ4jJpGtyCEhMZlfFq3GzMyMSYP6Uq1C0RN2iUTCmMBAli1bhlQqxcPDgxHDh/PixQsmTJzIiuXLARg9ejQLFy0iOCQEOzs7Ro8qOo/qG5ycnPhp4ECmTZ2KQqGgXPnyDBgwAIDbt2+zYf16ps+YgUQiIXDMGA1bho8oPBepuZkps77rwsxNf5Epl+Pt7MDUbzrxPCmFnxaHsGPSALydHZjUqyNjg3aSla1Qpl3q3pZSrvot3Ng6uNL524msWzCYHEU2nqWr0uab8QA8uR/BwW2L+WHMaspWqUuLTv1Z9ev/Y+/Ow2O6/geOv7NNEkGI7ARF7aVae3XB19JFF6VKQ7VauwStfal9aW1N7IQQS6zRBkWL2kUtSQhFbSUJoQSJzCSZmd8fE5NMZpJMJBPL7/N6Hs8jybmfc+7nnnPuzcmde79Gq9Via6fgiwEzcChm+iPGWfdhSh9fpq8MI0WVio9HGcZ904mEu/fpP2MJ66d8z+lL17h4PZ6A9dsJWL9dv+3k3l2oUTHvP3iUKuNBp29GseingWjUanxeqkHHr0cAcPXiabaum0f/0QuJ/msvSQ/uERww3GD7geOXG3wEOqvHfWje/AUZx82L7zL60KgxY1m0YD4AwzL6UEhGHxqW3z7Utz8TJ05Ao1ZTuXIVevfpC+j60KqQFUycNEXXh4YNZ8H8eSiVSry8vRk0KO/n5NvbKxj7vR9zFi1DqVRR1suT4f59uP3fXYaMm0Jw4AwAug/4HrVaw+3/7jFp1lzsFQpGDuxLjapV8ohv+RyVcXXjmz6D+WnSSNRqNS9VqcrXvb4G4OL5s6xbtZTRE2eReO8uP4wYoN/uhxF+2NjYMHbSHMq45ryAUMbVjW/7DmT6xFGoNWoqVa5Kj95fZcQ/x9pVQYydOIPEe3cZM9xfv93Y4QOxtrFh3ORZucZ3UNgxtU8XpoX8ohsH7mUY/81nJNy7T78ZQWyYPJjoS/9mjIPfCFj/m37byb07U6Ni3n+QKF3Ggy7fjmDB9EFo1On4VKrB5z10ff3KxdP8unY+/mMXEHnsTx4+uEfQnJEG238/MSjHceBgZ8v0zq2Z+st+UlLT8CnjzMSOLbl1P4k+y7eyeeDnebbPHJbcB4BSLh581mMUS37yR6NWU+6lGnT8Whfj6j+n2bZuLv1GLdLPFSuyzRX+45YbPHomKweFHdO7t2Pqht91OXItzUTfd7mV+JA+CzawecTX+LiVZuznbRi+Ijxjvoahn7Y0uNP0aeZHV4c73XoNI2DqEDRqNRUqVcP3W91YvXwhhs1rFvL9uEBORezjwYNEFs4eY7D9iMmLDB73YJCjIuhHRdGHOvUYxeIs55v3H59v/sk434xamEcfyjm+g50t0zu8w9TtR0hJTcfHpSQTP36TWw+S6ROyk839zH9vQ04snSNnFw/afz2G4Fl+uuuKl2rSpoMuxr//RLNjQyA9Ryyhco36tPy4J4um9ECr0WJrZ4dv/9yvKxwUdkz7pgNT127XzaVuLkzo/rHuuigghE0/9NNdF3X9kBFLN2ZeF3Vqa/Z1UVHkyKWMG1/3+Z6Zk4ejUaupWLka3Xt9A8A/F86yYdViRkyYQ+K9u0wc0Ve/3cSR/bCxtmHU5EBcypg+5+iuHT9haugO3ThzK82Ebh9yK/EBfQPWsmlsL12OvnifEcvC9HPRkM9aP1NzkUsZd77u8z2zJg/TnfcrV6NDr8EZOYphw6oljJgwh/v37jJhRB/9dpNG9sVanyPz/7gihBBCiKfLSvskK4siRxqNho8++ohBgwbRokULNBoNU6dOJTExkfPnz7N5s+45vZ9++inz588nMDCQNm3a0Lx5c/bu3cvOnTuZNm0aDRs25NixY0RERLB69WoCAgI4c+YMkyZNIjQ0lJiYGHx9fdm8eTPbtm1DoVDQs2dPQkNDsbe3x8rKipiYGEaNGpVjW7t27UpISAgRERH4+fnh7+9Ply5daNGiBXv27GH+/PnY2NjQq1cvIiMjmTNnDsHBwTRq1IiIiAgA/Pz8+OKLL4iPj9fXFxgYSOnSpfH19eXChQtMnDiRkJAQg7rnzp1L8eLF6d69O927d8ff35969eqxePFi0tPT6du3r0H5Fi1aEB4ejpOTE+3btycgIIBy5crp/79gwQKaNGnCBx98wLZt2zh8+DB9+vTBz89Pn/PHZbds2aKve/jw4Sbzn5u70Qfy3S/yI9HJ26LxtVZWFo3vfe2IReMD/F6icBbDctIifZtF4x8t1sai8Ss7XbdofAA1NnkXKoDiaYkWjZ9iZ9mPbD/UGH/svLBZWz3ZH1jN9dLtoxaN/1cJy46DxhcK9lJxcxyt2tOi8VPVlh1nb90MybtQAR0t28Wi8e1tjF/SWpjqnVtu0fiW7kMAaWrLfoD1zbNzLBr/6Ct+eRcqgIcq4/cPFLb/Pdxg0fgRrh9bNH5JRc4vyS0MNW5sz7tQAUW4d7Bo/BKKwnnpeG5er2reHxCEEEK8eOZul6XbrPq/Z9l1rYKQO9oLmbW1NUFBQYwdO5a5c+eiUCho2rQpI0aMYO3atfj6+qLVaunYsWOuzyOuUaMGHTp0YEiWOyVr1KiBk5MTn3/+Oa+//jqff/4548ePJzAwkKFDh9K1a1ecnJyYMWOG/sWqnp6e9OjRI9c2N2jQAIVCQevWhh+p7tatGyNHjqRbt25otVrGjh2bY4yaNWvq6zNHvXr1GDZsGC4uLowePZrx48djZWWFs7MzU6dONStGVn5+fowaNYr169djZ2fHlClTSEsz/ct31rqFEEIIIYQQQgghhBCioOSOdiHySe5oz53c0Z43uaM9b3JHe97kjvbcyR3teZM72vMmd7TnTe5oz5vc0Z47uaPdPHJHuxBC/P8ld7QbkjvaxVOze/du/TPOs+rWrRutWsmLeIQQQgghhBBCCCGEEKKgZKH9BdeyZUtatmz5tJshhBBCCCGEEEIIIYQQLyxZaBdCCCGEEEIIIYQQQohnkDz0+/lh2Yc2CiGEEEIIIYQQQgghhBAvOFloF0IIIYQQQgghhBBCCCEKQBbahRBCCCGEEEIIIYQQQogCkIV2IYQQQgghhBBCCCGEEKIAZKFdCCGEEEIIIYQQQgghhCgAK61W3l0rRH6cuxRr0fi2pFs0vp1WZdH4D3G2aHwAt/Q4i8a/a+th0fjOmv8sGl9p62TR+ABWz/mpQ2tl9bSbUGD26Y8sGv+etZtF4ztr71o0/h2tu0XjA7haJVg0vkNaskXjx9pVtGh8gDLctmh8hVpp0fg3rCpaNL679U2LxgdwTHto0fjXbStbNL6lx5ml51KAW7Y+Fo1fCsteV9hq0iwa/461p0Xjw/Ofo6XHa1o0PsDYL2wtXocQQogn83P48/37d2Hzb/fs/j4vd7QLIYQQQgghhBBCCCGEEAUgC+1CCCGEEEIIIYQQQgghRAHIQrsQQgghhBBCCCGEEEIIUQCy0C6EEEIIIYQQQgghhBBCFIC88UQIIYQQQgghhBBCCCGeQVp5F+pzQ+5oF0IIIYQQQgghhBBCCCEKQBbahRBCCCGEEEIIIYQQQogCkIV2IYQQQgghhBBCCCGEEKIA5BntQhSSA/v2sCF0Fenp6ZSv8BIDBg3Byam4UbnoyJMEBy1EmaLEzd2DAYOH4urqZlYd+/btZV3oGtTpaipUqIj/oO9wcnIyKhcVeYplQUtISUnB3d2dgYO/z7OOyKgolgQtIyVFibu7O98N8sfN1dWgzKXLVwicN58HDx5QsmRJ/Pr3pdJLL5nVdoCD+3azad1K1Onp+FR4ib4Dh5vMUXp6OquDFxIetp5FKzZSxtU9z9gno88wf/kqUpRKPNzcGO7XG3fXMgZltFotoWFbWbIqlDmTxlCnZnWz2/7YgX172LAuBHW6mvIVKtJ/4NAc9yEkeDG/hm1gyYr1Zh3jk1GnWbhsJUqlEg93N4b698PNxD6sC/uVoJVrmDV5HK/UqpGv9u/7809CQ0NJT0+nQsWKDBo0yGQfioyMJGjpUlKUuv4weNAgXN3y6EORkSwNCkKZ0e8GDR5s1IcuX77M3HnzeHD/PiWdnRnQvz8v5aMPFUUdlsyRpeOfijrNwmUrdOPA3Y2h/v1N9qH1Yb8QtHINMyePz3cfAsuO5VNR0SxeFkxKim4fvh84wORcFDB/IfcfPMS5ZAn8+/Wh0ksVzW7/4f2/E7YuGLVajU/5SvTyH0mxHNq/dsV8tm8JZe7yLc9M+09ExzBvxRpSUpR4ursyon9Pk/Pd2i3bWLx6PQETRlGnZjWz4wMc3vcHm9cFo1an41OhEr1zy1HwArZtCWVecNgzkaOiOh8c2f87W9YvR61Op1z5SvT0G51jjkJXzOO3X9YSsOzXZyJHuj60lkcpKjzdyzCyf0/cXV0Myuj60HYWrd5AwIQR1M1nH4Lne6ydiI5hfvBqUpRKPN1cGT6gl+l+tGUri1et5+eJo/Ldjw7t+4NN61aSrk6nfIVK9PHPfS7dumUdC4M3mZUfKIKxFnWahctDMsaaK8NyuW5ZGrKW2ZN/4JWa+TvnWDJHRTFfF0WOalWw4s3a1lhbw+1ELb8e1aBKMy5X3BE+bmKNSwkrVGnw23E1/ybkqyohhBBC5EHuaBeiENxOuMWSBYGMGT+V+UtW4u7hyeoVQUbllMoUZk6fRD//75m/dCUNGjVhYeBss+pISEhg0YL5jBs/mUVLluHu4cHKFctN1vHj9CkM8B/E4qXLadioMfMCA3KNrVQqmTL9Jwb6DWDZkkU0btSAgLnzjMpNnf4jn3Voz7Ili+jUsQPTf5ppVttBl6NlC+cwctyPBCxejbuHJ2tXLjFZdvrEETg4FDM7dopSyfgZAQzt34vVC+bQtMFrzFqw1KjcrAVBXI+Lp7RzSbNjZ9+HpQsDGDNuGvMWZxznlcbHGWDqxNE4ODjmax8m/TSb7wf0YeWiQJo0eJ3Z8xYZlZszfzE3YuMo5eyc7/YnJCSwYMECxk+YwJKlS/Hw8GDFihVG5ZRKJdOnTcN/4ECWLl1Ko0aNCJw7N9fYSqWSadOnM9DfX7/N3MBAo3LTpk+nw6efsnTpUj7r2JEff/zR7PYXRR2WzJGl4+v60Cy+G9CXlYvm0qRB/Vz6UPwT9SGw/Fie8uNMBg/oR/Di+TRu2ICf5y00Kjf5x5l89uknBC+eT6eOnzJ1xiyz67iTcJPgRbMZ9sNMZi0MxdXDk3UhxnkCmDlp2DPX/hSlknEz5zKs7zesnT+TN+rXY8Zb5sI8AAAgAElEQVTCZcZtX7jsiee7Owk3Wb5oNsPHzWD2olDc3L0IXWk6RzMmDsPBMX9znSVzVFTngzu3b7Ji8UyG/DCLGQvW4+ruxfoQ4/0AmDV5CA6Oz04/SlEq+WHmPIb1/YbQ+T9l9CHj64kZC4O5HnfzyXP0HI+1FKWS8TMDGdrvW9bMn0XTBq8xM8dx9mQ5up1wi6BFcxgx7icCFq3BzT3nufTHiSPyNc4e74OlczRxxhy+H9CbkIUBNGlYn1nzFxuVm71gCTeecKxZMkdFNV9bOkcli0Hb+tas2atmfriaxGRoXtf0r/gfN7HmnzgtAb+o2XlCQ4OqshQghBDPC41W/mX99yyTs+sL5OrVq/Ts2ZMOHTrQvn17Jk6cSGpqar7j7Nixo0DtSEpK4uDBg7mWUavVzJo1i48//pjPPvuMrl27cuHChQLV+zRFHD1EnVdfw83dA4BWbd7l0MH9RuWio07h4elF5SpVAWjZ+l0iTx0n5dEjM+o4TN1XX8XdXXeHTus2bU3WERUViaenF1WqvKxrS+u2nDp1gke51BEZFY2XpycvV6kCQJtWrTh5KtJgmytXr5KcnEzTJk0AaNK4EYn37/Pvv9fzbDvAX0cPUvvV1/U5atH6A44c/NNk2Q6ff0kn36/NigtwMjoGbw93qlbW3bX83v+a81dkNI8epRiUa9PiLYb274mtrY3ZsbM6lu04/6/1exw+uM9k2Y6fd6Wz71dmxz4VfQYvTw+qVqkEwLutWnDcxD60bvkO3w/o80T7cPTIEV7N0ofatG7NwQMHjMpFRUbi6elJlYz+0Lp1a06dPJlHH4oy2ubkqVOGfejKFZKSkmjatCkAjRs3zuhD/5rV/qKow5I5snT8U9GnjfrQicgok33ouyfsQ2DZsRwZFY2npwcvV6kMQNtWLTlxKtJgHx7PRW80aQxA00YNSbx/n2vXzZuLjkccoHbd13F19wSgeat2HD20x2TZTz7vTscvvnmm2n/y9Fm8Pd2o9ni+a/kOf0Wd5lGK4XFu2/wthvX7Flub/B9noxy1/oCIQ3tNlm3/+VfPVI6K6nxwImI/terWx9VNl6N3Wn1IxKHdJst+0ulrOnT51uzYls7RidNn8fZ0p1rligC83/JtjpnoQ+82b8awfj2eqA/B8z3WHvcjg3EWGW1inL3J0AKMs1fqZp1L3+doDuPs08+/pNMXPfIV39I5OhV9Bi8PD6pW1p1z3vtfc46bOOe0afE23/fvjY1t/j9IbckcFcV8XRQ5qlbOiis3tTzIuDw49Y+GmuWtjMqVLAZeLlYcO69bnbh6S8umg5p81yeEEEI8j9LS0vjuu+/o3Lkzvr6+XDdxLq9VqxZdu3bV/1Or1WZtl50stL8g1Go1AwYM4JtvvmHjxo1s2rQJgHnzjO9KzsvixcZ3WuRHTEwMhw4dyrVMUFAQ//33H5s3b2b9+vWMGzeOAQMGkJiYWKC6n5a42Bt4ennrv/b08uZ+4j2SHj7MtZyjoyMlSpQkPj42zzpiY2PxyrKtl5cXiYmJRnXExsbi6eVloo64HGPfiI3Fy8vTYJuSJUoQFx9vUMbT09NgOy9PD67fuJFn2wHiY6/j6VlW/3VOOQKoVqO2WTH1bYuLx9vTQ/91MUcHSpYowY2bNw3K1a5eNV9xs4uLvYGHZ97HGaB6jVr5in0jNs5gH3THoDixWY4BQK3q+f/o/mO6PpTZNx73oYcm+pCXUR8qQXxczn0op22y9qHY2Fi8svUhT09Ps/vQ06ijMHNk6fg3YuPx9sw+jgu3D4GFx3JsnIl9yD4XxeGZZawAeHl4cv163vMoQHzcdTyytN/DqywPEu+RlPTAqGzV6q88c+2/HhdPWVPzXfwtg3K1q7+cr7ZnFR97HQ8vwxzdzylHz9gxLqrzwc3Yf4370f17JJvI0cvPWD+6HneTsp6Zj9Uo5uiAc4nihdqH4Pkea9fjbuKdLUemx9mT96O4bOPMUz/OCj6XQhGMtdh4vL2yX7eUIDbecKwV5JxjyRwVxXxdFDkqU9KKe0mZX99LguKOVjgoDMt5lNaVa1nPmr7tbPjyfzZ4ln7iaoUQQojnytatWylZsiRr166ld+/ezJxp/HSG4sWLExISov9nY2Nj1nbZyUL7C+LQoUNUqlSJhg0bAmBlZcWQIUPo168fACtWrKBTp0506tRJv5A+fPhwZs2aRY8ePXj33XeJiYlh6dKlnD9/nv79+xMREUGvXr3o2rUrZ86cYdmyZXTq1ImOHTsyN+MRBg8ePKBnz5506dKFXr16kZyczIQJE9i+fTvr1q3Lsb1r165l2LBhWFvrumDlypVp164dmzZtIiIiAj8/P/z9/WnXrp2+rn/++Ydu3brx5Zdf0rdvXx48MPxFrWPHjvq7Vm/evEn79u1Rq9WMHDmSrl270rlzZ44cOQLA4cOH6dSpE76+vvTt25fU1FSj/c0PlUqFnV3mFa2dnQIrKyuUKqVhOaUKO4Xhla/C3h6l0rCc6TqU2NnZmVGHEoVRHYpc61CpVCjssm2jMNxGpVKhUNhlK2Ne2/XtVxjnSKVKyWUr8yhNtM1eoUCpVBU4dlYqlWFuczoGTxZbZXTcCnsfVCrD/menyDgG2Y6h0lRb8uinpvpd9m2y1w+6fcxe/1Otw4I5snR8XeyiGQeWGsum5xnDuUipUqGwy7af9gqzx2GqSomdwl7/tb79ZvaR3BRF+5WqVOPtFXaFP1eYOKc9DzkquvOBCjs7435k7jkxr9iWzJHKRB9SKBSkFHKOnuexZuq6SDfOCt72nOrIzE/B51J9fEuPNaO5yPy5zByWzFHRzNeWz5GdDaSrMz9Dr9bonvlul+1DFg524FEKriVomR+uJvqKho5v2WBlfPO7EEII8cI5cuQIrVq1AqBp06acPHnSYtvJy1BfEJcvX6ZGDcMX5zg4OABw/fp1wsLC2LhxI6BbkG7bti0AqampBAUFsXbtWrZs2cKoUaNYsmQJc+fOJSIiggsXLrBz504UCgXHjh1jzZo1WFtb07JlS7p3705QUBDNmjWjW7duBAcHc+TIEXr06MHFixfp1KmTybY+fPgQhUJByZKGzyGsUaMGe/fupXbt2kRHR/Pbb7+h0Who0aIF/fv3Z+LEiUyYMIGKFSuyevVqVq9eTZ8+ffTbf/TRR2zfvp3evXuze/du3n//fcLDw3Fzc2PKlCncvXuXL7/8kvDwcO7fv8+MGTPw8fFh6NChHDx4ECcnJ4P9zcu28DC2h28BwMbGltKlM18ilpqailarNXpGt4ODA2nZHuejUilzfJZ3ePgvbAv/Jd91ZH9kkEqlwjGX54U7ODiQmpb7Ng72DqSmphmXcXTIMe5v4Zv4bWsYALY2NpQqnfnyp9RUlcn2PwndPptom0PObTPX9vAwtmfsg42NLaVMHIPccmsuU8dNqUrNNb/mCP/1V8LDwwGwsbWldOnM25f0fcjRvD6U27NPc+53DgZlsvd/pUqln6vyYqk6LJ2jojsG9qRlGweF0Yfg6Y9lB0fDY5yaln0/cx/vO7duZNdW3TnQxtaWUqWyjuNnv/0GddjbG22vUqXi6Gifwxbm2RG+kV3bdJ+GM57rnp8cWfJ8sGvrBnZty9KPntcc5dCHihXCXPGijDUHB3sT10WpBe5Hv4VvYse2zYBlxxkUVY6efC7LSVHlqEjmawvlqEFVK/3z1dVaSFIC6Bbbbax1N1ylphtuo0rTlbtwQ1fu1CUtrV6DMiXgjvGHTIQQQogXyp07d3Bx0V1TWFtb686VqakGa3+pqal89913xMbG0qZNG7766iuztstOFtpfEFZWVqjVapM/O3fuHHXr1sU247l/r732Gn///TcA9evXB3SPVoiOjjbatlq1avoO5ODggK+vL7a2tty7d4/ExETOnj2Lv78/AN27dwdg8+bNebZXqzV+e4FWq9Xf4V6zZk0csy0oRUdHM2bMGEA3AF55xfBjxu+//z49evSgd+/e/Pnnn0yaNIn58+dz4sQJ/V+dVCoVqampuLi4MHr0aNRqNdevX6dx48Y4OTkZ7G9e3m/3Ce+3+wSA7Vt/IeZ0lP5ncbE3KO1ShuLFixtsU9bHh4P7M58tmZycRNLDJLzLlsWUdu0+ol27jwDYtvVXzpw+naWOWFxcXIzqKOdTngP7M58bnpycnFGHNznxKVeOffsPGG6TlETZLNv4+JQjPsvHabVaLXHxcZQvXz7HuO+2+5R3230KwI6tYZw9E6n/WXycLkdOxUvkuL25KpT1Zu+Bw/qvk5If8TApmXLenrlsZZ732n3CexnH+betW4g5k3mcM/eheE6bm82nXFn2Hsh85FLS42Pg7ZXLVnlr9+GHtPvwQ0D3canTWfpQbA59yKdcOfbvz3z+f3JyMg8fPqRsDv0UoJyPT57blPPxIT7L4xu0Wi3x8fG59qGiqMPSOSqqY1C+XFn+NBgHhdOHoOjGsk+5suw7kPmOD/1c5J05F5UvV474eMNjHBcfT4XyPjnGbfNBB9p80AGAXds2cS5L+2/G3aCUi+sz3f6sKpTzZs+ho/qv9fOdV8Hmu7btOtC23eMcbebsmVP6n918Do7xY5Y8H7T+oCOtP+gIwO/bN3LOIEfXn5t+VKGcF7tN9iGPXLYyz4sy1sqX9WbPQRM5KmA/yjqX7twWRoyF5lIoghyVK8veg9nPOckFPucUVY6KYr62VI7+uqDlrwu63/vqv2xFBY/M29LLlISHj7SoDNf3SUzWYm94cz1are6fEEII8SLZsGEDGzZsMPheVFSUwdem1iSHDh3Khx9+iJWVFb6+vvr10ry2y04eHfOCqFSpksHiDegWoy9cuICVlZVBZ0hLS9MvaNtkeXmTqQ7zeNE5NjaW4OBgli5dSkhIiH6xx8bGBo0mfy/SKVGiBGlpady9e9fg+3///bf+xX+2Jl4G5OjoyMqVKwkJCWHdunWMHj3a4OelS5fW/8FAo9Hg4eGBnZ0dvXv31j9jadeuXSgUCkaOHMnYsWNZtWoVLVu2NNrf/GrUuCnRUSeJvaF7dM2vYRt48+0WRuVeqVOP27dvcTbmdEa5jdRv2NisO3MaNW5KVNQpbtzQvXxhS9gm3nq7uVG5OnXqknA7gZiYM/pyDRs2yrWOunVeISEhgTMxMQBs3vILDRs2MLgLuEL58jg7O7Pnzz8B+P2P3bi7uVMul4W/rBo0bsbpLDnaGraeZm+3zGMr89R7pRa3bt8h+qzuD0gbft1GkwavFcodjFk1bPyGWcf5SdR7pRa3Eu5wOuYcABt/2UrjBq8X6j40btyYqMhIbmQ8rzwsLIy333nHqFydunW5nZBATMYjlMLCwmjYqFGud4XXrVOHhNu39X0oLCyMRg0bGvehkiXZu1f3x6Y//vgDd3d3ypUrZ1b7i6IOS+bI0vFffaU2txJu6/vQJgv0IbDsWH61zivcSrjNmZizAGza8iuNGtY32IcK5X1wdi7Jnj91f1DctXsPHm5uZs9F9Ru/xZmo48TduAbA9i1rafrW/56b9r9Wu2bGfHcegPXhv9G0fr1CPc71G71JTNQJfY62bQml6VutCiW2pXNUVOeD1xu9RUyWfvTbL2tp8ubzkSNdH/qPqIw+tC58B03rv1roOXqex9pr2frR+l+306TQx1kzzkSdyJxLt6zjjULKDxTRWEu4zemzj69bthX6OceSOSqK+boocnT+hpaXPKwok/G3h8bVrTlzzfh3uoREeJgCr1XRLcrXKG+FMhXuJhkVFUII8Qx6/MdR+Zf3H4k7duzI+vXrDf598skn3L59G9CtiWq1WqP1v86dO+Pk5ESxYsVo3LgxFy5cwN3dPc/tsrPSmrMcL555Go2Gjz76iEGDBtGiRQs0Gg1Tp07FycmJDh060LdvX/2d5p9++inz588nMDCQNm3a0Lx5c/bu3cvOnTuZNm0aDRs25NixY0RERLB69WoCAgI4c+YMkyZNIjQ0lJiYGHx9fdm8eTPbtm1DoVDQs2dPQkNDsbe3x8rKipiYGEaNGpVje5csWcKFCxeYNm0aNjY2XLp0if79+7N+/XrOnj2rrxegUaNGRERE8PXXX/Pll1/y9ttvs23bNlxcXGjSpIlB3J07d7JkyRL9s+TDw8PZs2cPs2fP5r///mPFihUMHjyYRo0asXfvXtLT0+ncuTPdunXTP5Lmcb05OXfJ9AuQDu7/k9DVwajVaipVfpn+A4fg6OjIhfPnWBOynHGTfgTgdHQkQYvmolQq8fIui9+gYZR2yfxYrC3pJuMDHNi/j9WrV6JWq6lS+WX8Bg7G0dGR8+f/ZlXICiZOmgpAdHQUixctQKVU4uXtzaBB3+vrsNOafgZrVPRpFixejFKpwtvLi+8HDUSj0TBy7FgWz9e9VPfK1avMCZjLg4cPKF2qFAP9BlDex/Cunoc459j+wwf2sG7VMtQaNZUqV6WP/zAcHYtx8fxZQlcFMWbiTBLv3WXscD8A4m78i6dXWaxtbPhh8mzKuLoB4JZu/ELIU6djCFy6AqVSRVkvT4b790Gj0TBk3BSCA2cA0H3A96jVGmJv3sLVpTT2CgUjB/alRtUqBrHu2uZ8V9+hA3tZuyoYjUZ3nPv5D9Uf57WrlvHDxJ9IvHeX0cMHAhB74zqeXt7Y2NgwfvJMyri64az5z2TsyNNnmLt4OUqVbh+GDeyHWqNh2NhJLJs3G4Cv+w1CrVYTd/MWZTL2YfjgAdSomvnSOqWtU47t379/P6tXrUKtVlO5ShUGDhyY0YfOE7JyJZMmTwZ0nyBZtHAhSqUSb29vBg0erP/IFICViVNHdHQ0Cxct0m8zeNAgNBoNo8eMYeGCBQBcuXKFnwMCePjwIaVKlWKgvz8+PubdGVaYdWhzeShpYeXI0vHt0x8ZxY48fYZ5i5fp+9DQgf1RazQMHzuRoHlzAOjRb6CJPuRH9Sx9COCetVuO+1AYY9lZe9dk7Kjo08xfHIRSpcTby4shg/zQqDWMGDueJfN18/OVq1eZFTifBw8eUrp0KQYP6Ed5H8M/ptzRupsKD8CRA7vZuGYpGrWaipWr0ctvBA6Oxfjnwlk2rFrMiAlzSLx3l4kj+uraH/svHl5lsbG2YdTkQFzK6HLjapVgsfYDOKQlm2z/qTNn+TkoJGO+82DkgF5oNBq+Gz+dlQHTAejmNwy1Rk3szQRcXUphr1Awyq8PNatW1seJtauYa442rA7S5ahKVXo/ztH5s6xftYSRE2eTeO8uE0bo3gUTdyMjRzY2jJ4UgEvGfF2G2xbNkUJt/Kzjwjwf3LDKOUdHD/7BpjVLUGf0o54DRuHgWIxLF2LYsHoxw8f/zP17/zFxpK4fxcdew8OzHNY2NoycFIhLGXfcrW+ajF2YOXJMM35x5Mkz5wz60KgBPdFoNAwe/yMhAdMA6Oo3HLVGY9CHRvv1MuhDANdtKxvFf6wwxpqpcVaYOTI1lwKcOn2WgKCV+hyN8OuNRqPh+/HTWBGgu6b70m8oavXjcVYae4UdI/37UDNbP7pla/o8d/jAHtavXoZarealKlXp45c5l65btZTRE2eReO8uP4wYoMtPlnE2dtIc/XVRKUxfVxRWjmw1aabCE3k6hsAly1EqlbqxlnHdMvSHySyfOwuAr/oP1p9zXF1Ko1AoGDGov8F1yx3rnD8pYMkcFeY4s3SOlh6vmWOOapa34u061lhbwc17Wn49qiEtHbzLQPM61qzeq7spyrUkfNTEhmL2kKyC3/5SE5/lVDz2C/mwuxBCPKtmbpGl26y++zh/LxkJDw/n6NGjTJ48mV27drFr1y5mzJih//nly5eZN28eM2bMQK1W4+vry8iRI7l27Vqu25kiC+0vkISEBMaOHUtCQgIKhYKmTZvSv39/rK2tWb16NeHh4Wi1Wtq1a4evry/Dhw83udD+5ZdfkpyczJAhQ/QLz2q1mp49e5KcnMzrr7+ORqPh3LlzBAYGMnToUJKSknBycmLGjBnExcXx9ddf89VXX9GjRw+TbdVqtSxevJitW7fi4OCAg4MDQ4YMoU6dOgYL/JC50H7p0iXGjBmDtbU19vb2zJw5k1KlShnETU1NpVmzZvzxxx+ULFmS9PR0fvjhBy5duoRaraZ///68/fbb/Pzzz+zZs4eKFSvyzjvvEBgYyODBg9m1a9cTL7QXltwW2gtDTgvthSW3hfbCYmqhvTDlttBeGHJaaC8suS20FxZTC+3Pk9wW2p8XOS0OFZbcFtoLQ04L7YUlt4X2wpLTAmBhyWmhvbDkttBeWEwttBcmUwvthSm3hfbCkNNCe2EytdBemHJbaC8Mlh5nlp5LIeeF9sKS00J7YclpEbmw5LbQXlie9xzlttBeWGShXQghnl2y0G4ovwvtarWa0aNHc/XqVRQKBdOmTcPLy4vFixfToEED6tWrx08//cTRo0extramRYsW9OnTJ8ftciML7eKFcvToUcLCwpg+fbrF6pCF9tzJQnveZKH96ZOF9rzJQnveZKE9b7LQnjtZaM+bLLTn7XlfRJaF9rzJQrsQQvz/JgvthvK70F6U5GwqLGb37t0EBwcbfb9bt260alU4zzHNKiAggIMHDxIYGFjosYUQQgghhBBCCCGEECInstAuLKZly5YGLxq1ND8/P/z8/IqsPiGEEEIIIYQQQgghLEmrkTvaDT27d7RbP+0GCCGEEEIIIYQQQgghhBDPM1loF0IIIYQQQgghhBBCCCEKQBbahRBCCCGEEEIIIYQQQogCkIV2IYQQQgghhBBCCCGEEKIA5GWoQgghhBBCCCGEEEII8QySd6E+P+SOdiGEEEIIIYQQQgghhBCiAGShXQghhBBCCCGEEEIIIYQoAHl0jBD59EjtaNH4LjZ3LRo/3crOovFvPHCxaHyAykn7LRr/79LVLRrfJyXSovFTXGpYND6ANRqLxk/UlLJo/BLWDy0aH8BZmWDR+CmKkhaN/5/SsvErppywaPzSXGFb2rsWreNluwiLxtda21g0fqzyVYvGB6iiPmbR+MpiZSwa//IDZ4vGr2Z7xKLxAdS2DhaNH51g2WPwqZNlx5l1mtKi8QGinF6xaPyXUo9bNP7DkuUsGj8u2bLnfICX0iybo+QSXhaN/+hRukXjA/x63MridXxY37LnNSGEEOJpkzvahRBCiEJm6UV2kTdLL7ILIYQQL4qm9Sx7I44QQgjx/4UstAshhBBCCCGEEEIIIYQQBSCPjhFCCCGEEEIIIYQQQohnkFb7tFsgzCV3tAshhBBCCCGEEEIIIYQQBSAL7UIIIYQQQgghhBBCCCFEAchCuxBCCCGEEEIIIYQQQghRALLQLoQQQgghhBBCCCGEEEIUgLwMVQghhBBCCCGEEEIIIZ5BGo28DfV5IXe0CyGEEEIIIYQQQgghhBAFIHe0C1FIDu//nS3rglGr0ylXvhK9/EdRzKm4Ubn09HRCV8xn+5a1BC7/hTKu7mbFj4yMYklQEMqUFNzd3Rk8eBBurq4GZS5fvkzgvHk8uP+Aks4lGdC/P5Veesnsfdi370/Wha4lPT2dChUqMnDQYJycnIzKRUVGEhS0hJQUJe7u7gwaPBhXV7c84588vJ1dmxejVqfj5VOFzr0n4lishHH8iN/ZuXkh6WmpOJUoxWffjMXL5+VcYx87d4nZG3bwSJWKl0spxn/VHg8XZ4Myx89f4eeNO0lKUeKgsOP7z9/j9arm5wfgr4M72L5xCWp1Ot4+Vfiy3zgcnUzsw19/8mvofNLT0nAq4cwXvUZTtnyV3GPHXGTOml9IUaXi6VqaH77tjEeZUgZlIi9cZvbqX0hOUeKgUDDY92Neq17Z7PZb8hgXRR8FOLzvDzZnjDWfCpXo7T8yx7G2NngB27aEMi84zOyxZskcnTh9lnnBa3mkVOLp5srI/t/i7upiUEar1bL2l+0sWr2RgAnDqVujmlntBjgVFc3iZcGkpCjxcHfj+4EDjI7BpctXCJi/kPsPHuJcsgT+/fpQ6aWKZtcBz/84OB2xjf3hC1Gr03Av+zIffz0FBxNz0dnjO9n36wLS01QUK1GaD7qNw6Nc1afe/r9iLvDz6i2kKFV4urowtlcXPMqUNigTdf4ys1eFZdRhx6Cu7XmtRu65z+rU4e38EbYItTodT58qdOo1yeR8HR2xi9/DFpKWMV936PFDnvO1pXNk6XH2WPTRbewLX4hanY5H2Zf5pMdkk/0o5q9d/JmlH3345Q9PvR8dP/M3Aas280ipwsvNhdG9u5noQ5f4eeVGklOU2NvbMahbR+rVyP3YZnf2r20c2r4AjToNN++qvPflFBwcjXP02D+n/2TD3F70mbybUq7lco1t6RwdO3uJOeu280ilwqtMacb16GB0XRF58SqzQreRlKLCQWHHd50/4PVq5p/TThz6jZ2bF6NO110XfdF3gslxdvr4Xratm0d6eipOxUvR6dsxeJfP+1hYOkcno06zcHkIKUolHm6uDPPvh5trGYMyWq2WdWG/sjRkLbMn/8ArNWuYFVtfR0aONBlzUZc+pnMUGfE7uzYtIi1NhVOJ0nz2Td45Kor5+mT0GeYvX5WRIzeG+/XG3USOQsO2smRVKHMmjaFOzepmxweoU8maFvVssbGGW/e0bNiXhirNuFyJYvDZ23a4OlujTNXy6+E0rtzM+w7JyCPb+WPLQjTqdDzKvcxnPXM4HxzbxR9hCzKu30vz6dc/4JnH+UAIIYR40cgd7UIUgjsJN1mxaBZDf5jJzIXrcPPwYl3IQpNlZ04aioODY77iK5VKpk6fzkB/P4KWLqFRo0YEBs41Kjd1+nQ6ftqBoKVL+KxjR3788Sez60hISGDhggWMGz+RxUuC8PDwYOWKYJNtmT59Kn7+A1myNIhGjRoxNzAwz/j37sSzaflUeg1fwKjZW3FxK8u20ACT5dYvncA33wcyclY4rzZqzdqFY3KNnaJKZfji9Yz98sDQn6gAACAASURBVBN+mTyIt+pWZ/KqXw3bnZrGkAVrGfFFO8ImDaRnuxYMW7gOrdb8j2DdvR1PaNB0Boyay4TAXyjj7s2WNcbH4d5/twgOHEOPgVMZHxBGwzffZfXCibnvg1LFyHkrGfNNJzbPGMlb9WoxdfkGgzKpael8N2sZAzp9wMYfR9C7w7uMmhdidvsteYyLoo+CbqwtXzSb4eNmMHtRKG7uXoSuXGSy7IyJw3BwzN9Ys2SOUpQqfpg5j2F9exA67yfeaFCPGYuWG7d7UTDX425S2rlkvtqeolQy5ceZDB7Qj+DF82ncsAE/zzOehyb/OJPPPv2E4MXz6dTxU6bOmJWvep73cZD4XxzbV03ii0GL8Ju6g1KuZdm9abbJcuErxtHZbx4Dpv5Gzfpt+WXZqKfe/hSlilGBwYz+tjObZo3hzddqM23Z+mx1pPHdzCX0/7wdG2aMonfH9xk9d4XZddy7E0dY8BS+GbaA4bO24eJalt/W/Wyy3MagCXz13VyGz9xK3UZtWLdodJ7tt2SOLD3OHkv8L45tqyfTdfAiBk77jVKuZflj0xyT5X5dOY4v/OfiP207tRu0ISzo6edodEAQI3v5snHOeJq99grTl67JFj+NITMW0LfLx6yb9QO9PvuQMQFBZsV/7P7dOHaFTuSzAYvpNWEnzmXKsm+L8Vh7LC01hT83z8TBqVSOZbLug0VzpEplxMK1jPmqPVumfc9br1Zn8sowo/iDA0IY0KEtm6cMpu8nrRi5MNSs+AB378SzcdlUeo+Yz5ifw3Fx9yZ8rfF1UeLdW4TMG8WX/tMZPftXXm/2HqFLJuS9DxbvR0omzpjD9wN6E7IwgCYN6zNr/mKjcrMXLOFGXPwTjbW7d+LZuHwqvUbMZ9SccFzcvE1eO969E8/6JRP5ZkgAo2aH82rj1qxdODaP9hfFfK1k/IwAhvbvxeoFc2ja4DVmLVhqVG7WgiCuP2GOnJ3gw6Z2LN+RyswNqdx7qKVNA9P30n32th3nb2iYHqoi/Eg6TWrlfc/dvTtxbFkxmR5DFjJ0xnZcXL3Zsd70+WDzsvF8NXguQ2dso06jNqxfnPtcJ4QQQryIZKH9BXL16lV69uxJhw4daN++PRMnTiQ1NTXfcXbs2FGgdiQlJXHw4MEcf37o0CG6du1K165dqVWrlv7/0dHRBar3aToRcYBadevj6u4JwDut2hFxaI/Jsp98/hUdvvg2X/Ejo6Lw8vTk5Sq6uxHbtG7FyVOnePTokb7MlStXSUpKpmnTJgA0adyYxPv3+ffff82q4+jRI7z66qu4u+vu+m3dpg0HDx4wKhcVFYmnpxdVqujuUGnVug2nTp00aIspp4/voWrtRpR29QKgcfP2REbsNCpnbWNLtwHTcXHzBqDqK41JiLuaa+xj5y5Tzq00NSrotvm42WscifmHZKVKXyYtXc3YLz+hZsWyADSqUYn/HiTx8JEy19hZRf71J9VfaYiLm24f3mj5MSeO/G5UzsbWjh6DpuHto7vjqUr1esRdv5Rr7L/OXqSsWxmqv+QDwIdvN+Lo6fMkp2S2L12tZlSPz6hfU5f7V6tW4va9+zxMTjGr/ZY8xkXRRwGORxygdt3X9WOteesPiDi012TZ9p9/RccvvjE7Nlg2RydOn8Xbw51qlSsC8H6LtzgWdYZHKYbH793mzRjWtwe2Njb5antkVDSenh68XEXX79q2asmJU5E8epQZ/8rVqyQnJ/NGk8YANG3UkMT797l2/br59Tzn4+DvU7upVLMJpcro5ovX3uxAzHHjucjGxpYOvWdQylU3Z1Sq2Zg7N6889fb/FXOBsu5Z6ninMUej/85Wh4aR33xO/Vq6u6brVntcR+7z9GNnju/l5dqNKe2qy1HD5u2JOrrLqJyNjR1f9P9RP1+/XLsxt/OYry2dI0uPs8f+PrmHSjUa6/vR6299ypm/TPejjr1+eqb60fGY83i7u1L9pfIAtGvelIjoc0bxR3z7BfVr6e70r1utcr76EMDFyN1UrN4EZxddjuq+0YG/T+R8jXkgPJDajT/E3sH4E0TZWTpHx85doqybCzUyrhk+erM+R8/8Q3JK5nVFulrNqC8/oUGNyhnxK3I78QEPH5k3lk//tYeqrzTCJeO6qEmL9kSaHGe2dPf/Ea9yunoqV6/HzTzmUrB8jk5Fn8HLw4OqlSsB8N7/mnM8MsrgnAPQpsXbfN+/Nza2+f8g9Zm/dNeOWXN0KoccdfOblnntWLtRnteORTFfn4yOwdvDnaqVdZ9yeO9/zfkrMtpEjt5iaP+e2Nrmfz6qVdGGS3Ea7idn7Nd5Na+8ZBzH2QnKulpz+IwagMvxGtbsNnHbezYxJ/ZQpVaW88E7nxJt4vrdxsaOLv1+orSbbsy8XKsxt+Nzn+uEEEKIF5EstL8g1Go1AwYM4JtvvmHjxo1s2rQJgHnz5uU71uLFxnej5EdMTAyHDh3K8edvvPEGISEhhISEULx4cf3/69SpU6B6n6b4uH/x8Cyr/9rDqywPEu+RlPTAqGzV6q/kO35sbCxeXl76rx0dHSlRogRx8fGGZTw9Dbbz9PTk+o0bZtfhmaUOLy8vEhMTefjwoVltiY+PyzX+7fhruHr46L929fAh6f5dHiXdNyjnXNqNanWaAqBWp3Pszy3Urt8819jXbt2hnFvmYwGKOdhTqrgj1xP+03+vRDEHmtfTfVxZq9Wy5eAJ6r1cgZJO5t/xfCvuGm4emR9ld/P04eH9uyRnO84lnV2oXe8N/ddnTh3ipZdzP+7/3rxNOY/MjxIXc7DHuXgxrt+6Y/C9Fg0yx8nh6HOU93SjhJn7YMljXBR9FCA+9joeXoZj7X5OY61GbbPjZm2jpXJ0Pe4mZT0zH19TzNEB5+LFuRF/y6Bc7WpP9jHrG7FxeGfJr6OjIyWzHYMbsXF4enoYbOfl4cn167Fm1/O8j4P/bl6ltHvmXOTiXp7kB/+Rkmw4F5Uo5U7lWrr2q9XpRB4Mo3q9lk+9/f/evE1Z98zHARVzsMe5hBM3bt02rKNh3cw6os5R3sudEk7FzKrjdvxVyhjM1+VJevCf0XxdMtt8/de+LdSq3yLP9lsyR5YeZ4/duXkVF/fy+q9z60dVamf2o1MHt1C93tPN0b/xCZTzyHzMVTEHB10funnb4HvNG9bTf30kMiZffQjg7q2rlHbLzFEpt/I8emicI4CE2PNcPXeYBv/rblZsi+fo5h183LNfVxQzuK4o5mBPy/qZ55lD0Reo4OlKiWLmjeUEE9dFD01cF5VwLkPNV5vpvz576iAV8phLdftg2RzdiI3H2yvzfPL4nBMbf9OgXK3q+X8s02MJ8ddw9TTv2rF61mvHfb/wSh7XjkUxX9+Ii8c7yzm3mKMDJUuU4MZNwxzVrp77o6Ry4+psxX8PMj+d+d8DLSWKWeGoMCznVcaauw+1vNvQlu86Kuj5gQLvMlZ5xr9z0/B8UObx+SDZ+HxQ9ZUs54P9YdR8Pfe5TgghhPm0WvmX9d+zTBbaXxCHDh2iUqVKNGzYEAArKyuGDBlCv379AFixYgWdOnWiU6dO+oX04cOHM2vWLHr06MG7775LTEwMS5cu5fz58/Tv35+IiAh69epF165dOXPmDMuWLaNTp0507NiRuXN1jwl48OABPXv2pEuXLvTq1Yvk5GQmTJjA9u3bWbduXb72oW3btqjVatLT06lXrx6nT58GoEePHsTGxprch8f27dvHkCFD9F+PHj2a3bt3c/z4cbp06UK3bt0YNmwYqamppKen89133+Hr60v79u3Zu1d3N2zXrl2ZMGECEybk/XHc7FJVSuwUmVe0dnYKrKysUCnNv1s6N0qlCjuFncH37O0VKLPEV6pUKBSGV9X2CsMyuVGplCjsMuvQ74PKcHuVUmnUFoW9fZ71pKpSsLWz139tmxE/VWX6rqB920MY0+ttLv19knZdBucaW5mahsLO8E4pezs7UlTGn+j4/fgZWn03nQ1/HmNU149yjZtdmkqJnSJzH+zy2AeAc9ER7N66io5ffZ/7PqjSDPIP4KCwQ2liHwAu/hvHrFVbGPn1Z2a335LHuCj6qG4fVNjZWW6sWTJHKpUKhdE2ClJUqhy2yB+T8RUmjoGdieOkMj9/z/s4SEtV5msuOrJrJT/5v8G1iydo1fG7p95+pSoV++xjzc6OFGVOdcQyO2QzI3t0MruOtFSlwTjLK0f7fwthXO+3uPL3CT7onMd8beEcWXqcPZaWmoJtPnJ0ZNdKpvs149qFE7T57On2I6Uq1XgeUNjlmKOL124wJ2Qjw7/5wqz4j6WlpWCTLUdYWZGWapgjrVbLjtU/0Orz0djY2GUPk8M+WDhHqaZyZGvyugLgwvV4ZoZuZdSXn5gVHzKuHU2dz3KZS8+fPsrebSG0/3JonvEt349MnE8U+Tuf5CU1n3PRn9tXMbrnO1z++yTtvhiUa+yima+N5yPddU/hzUd2tpCuzlxxUGtAo9WSbddwUICnixVXbmqYuSGVUxfV+LaywzqPtfZUVQ7nTKXpY3BgRwgT+r7JlfMneP/z3Oc6IYQQ4kUkL0N9QVy+fJkaNQxfLuTg4ADA9evXCQsLY+PGjQB07NiRtm3bApCamkpQUBBr165ly5YtjBo1iiVLljB37lwiIiK4cOECO3fuRKFQcOzYMdasWYO1tTUtW7ake/fuBAUF0axZM7p160ZwcDBHjhyhR48eXLx4kU6dzP+lHqBWrVpcvHiR1NRUateuTWRkJLVq1eLOnTtoNBqT+1C+vO5OqWbNmjFlypSMRTg7Tp48ydixY/nss88IDg6mVKlS/Pjjj+zYsYM33niDZs2a8cknn3D9+nX8/f1p3lx318vLL79M586dzWrvzq0b2LVV1x5bW1ucS2XeFZOaqkKr1eb7Wew5cXBwIC3V8OOdKpUKx4xjrCtjb/SoIF2ZnNsQHv4rW8N1zzK3sbGldOnMu7dSU1NN7kNObTG1rwd2rOHArrX6+CVLZd6FmZaRI4WD6bvj3n6vK2+968vJw7/x81hfhs/8BYXCwWRZR3sFqWnpBt9TpqZRzN7eqGyr+rVpVb82x85doudPQawb1x9X55xfzLZ3eyh7f9M9c9XG1paSWY7z432wzyHHkRF7CA2aTr8RAfrHZ+TEwV5BapphXpWpaTg6GO9D1IUrjAhcwehvOlG/Zu4vN7T0Mc5rm4L2UYAd4RvZtW2Tfh9KGexDwcda0eXInlSjbVIp5mC6X+eXg4ODifgqHBwdDMtk72fZjpMpz/s4iPhjFcd2rwZ0j6cq7pxlLkrLfS5q0robjVt15UzENpZO7kz/yduwy2EuslT7s3K0V6BKzV5Hag51XGZkwHJGf9uZ12vmfgf3wZ2rOZhlvi5hYr62zyFHb73blTfb+nLq8HYCf/iCoTN+fWo5suQ4O/rHaiL+yOhHtrYUd868K1x/TrPPvR+djtjO4kld8Juy9anlyNHBRHxVGsVMxI8+f4mRPy9lZE9fXq+V9123x/eu4sTeVYDuURLFS2bmKD1NBSZyFHlgHa5eVfCpUt+s9kMR5MhUfFUaxRwURmWjLl5j2II1jO3envrVK+Uad9+ONezfkft1UU7jLOrYbjYun0rv4fP0j5HJTZGMtSc4n+Rl/441HNj5ZNeO77zny9vvfsHJw78xZ0xXRszakuO1Y1HM1zmdlwuaoyY1bWhSS/d4GI0GHj7S6H9mawPWVlZkqxZVKiSlwNlrurJ/nVfzfmNbXJ2tSEg0vDXw0K7VHNqle29Dfs8Hb7btSrM2vkQe2c7c8V0Y8mN4jnOdEEII8SKShfYXhJWVFWq12uTPzp07R926dbHNeDbia6+9xt9//w1A/fq6X2o8PT1NPiO9WrVq+jtQHRwc8PX1xdbWlnv37pGYmMjZs2fx9/cHoHv37gBs3rz5ifahYcOGREZGolQq6dq1K7t27aJBgwbUrFkzx314vNBuY2PDO++8w759+3Bzc6N+/fo8ePCAa9euMWDAAAAePXpE6dKlKVmyJKdPn2bdunVYW1uTmJiob0N+Hl/T5oOOtPmgIwC/b9vEuTOn9D+7GXedUi6uOBXPeQE3P3x8yrF//37918nJySQ9TKJs2bJZyvgQfzPzERFarZa4+Hh9jkxp1+5D2rX7EICtW8M5k/EpAoC42FhcXFwoXry4wTblfHzybMtjb7btwpttuwBwcFco/5z9S/+z2zevUbK0G8WcDF/8dDP2EvfvJlDtlSZYWVnx+hvvsWn5ZBLirlKuYnWT+1HR05Vdf2W2/eEjJQ8epVA+y0eCb95N5Ny1OJrXqwlAwxqV8SjtzOnL1/XfM6X5e5/T/L3PAfhzxzouxJzQ/ywh/l+cTewDwLmoo6xb9hP+YxfgVS73X7wBKnq783tEZh9KepTCg+RHlPdwNSh38d84hgeuYEq/rtSrnvcv2pY+xo9Zqo8CtG3XgbbtOgCwa9tmzhqMtRuUdilToLFWVDmqUNab3Yci9F8nJT/iYVIy5bw8c9wmP3zKlWXfgcz3YyQnJ5OUlERZb2/998qXK0d8lo/1Pz4GFcr7kJvnfRw0+p8vjf7nC8CxPWu4+nfmXHT35lVKlHLDsZhh+2/HXeLBvVtUrtUUKysrXmn8AdtWTeTOzSt4lTf8w7al229Yhwe/HzWs42HyI8p7uhmUu/hvLCN+Xs7kAd3NqqNZmy9o1kZ3x/KhXWu5dO64/md3bl6jZCk3HLMd41sZ83XVjPn6tTfeJyx4MglxVyhb8enkyJLjrPH/vqDx/3Q5iti9hqvnM/vRf7eu6fpRthwlxF3iYZZ+VKfx+2wNmcid+Ct4VXhKOfL25I/DmWP4cR/yyfLIHdDdyT5yzhIm+vWgXg3zHrVTv7kv9ZvrxtqJP1dz/UKWsZZwleLObjhkG2sXonZz89oZAqJ1nzB89PAuwVM78EnPOVSo1thkPZbOUUVPN3Ydy7wuzryuMIx/4Xo8Q+evYWqfz3mt6kt5xn27bRfezrgu2r8zlH/OZo6znK6LAP6OPsKm4On0G7UYTzPmUrB8jsqXK8veg4cz4ycnk5SUTFlvr1y2yttbbbvwVkaODuwMNZiLcrx2vHGZ+3dvUa1O5rXjxmVTcr92LIL5ukJZb/YeyJqjjPnIu2Dz0ZGzao6c1f3e17iGDS95ZX5IvUxJKx4ka8n+Iad7SVrs7cAKeLysrtWCxsTH799o/QVvtNbNdYd/X8vlc5njONfzwb1bVK2tm+vqNX2fLSsm5Xo+EEIIIV5E8uiYF0SlSpX0j1p5LDU1lQsXLmBlZYU2y0OM0tLSsLbWHXqbLC8B05p40NHjRfbY2FiCg4NZunQpISEh+sUkGxsbNBqN0XZPomHDhkRFRREVFUXTpk1JSkrixIkTNGrUKNd9eOzjjz9mx44d7Nmzhw8++AA7Ozvc3d31z4DftGkT3377LVu3buX+/fusWbNG/wicx+yyf87STK83fpMzUceJu3ENgO1bQmn6VqsnimVK3Tp1SLidwJmYGAA2h22hYcOG+k8tAFQoXx7nks7s3fsnAL//8Qfu7m6UK5fzwl9WjRs3ISoqkhs3dC9FDAvbzNtvv2NUrk6duiTcTiAm5gwAW8I2G7XFlNr1m3MxJoJbcboXI/25bSWvNX3PqFzyg3usnj+S+3cTALh8/iRqdfr/sXffAVHX/wPHnwoiOACRLbgzNfdCrSwtR8Pqm6tSK6tvWQ7AkXuLilsQEAEXDhw501JLc4uaDEeunAwFJ4LcAXf8/jgEjhucyVF9f6/HP3Xn+16f973en8/7874Xn/scjs4eOm2fal2/Nsn3HhJz+ToAa/Ye4dUmL2JTvuDKs+wcFROXbebPRM19em/cucut1HvUdnfWF1Kvpq1f58KZE9xO1Gxn745IWr/STaddljKTlUGTGPj9PJOKiwCtGtbl9t0HxF68qnkPPx3gleYvaV1ZlZuby6TQtYz6vMczf9gD845xaeyjAK28XuVc3O/5x9rOEj7WzJmjFo0acCf1HnF/XARg/Y6fad+qmd6r5/6KZk0acycllbPnzgPww9bteLVppXXlXI3qntjZ2bLvtwMA7Pl1Hy5OTngY+QNBUf/246B+8ze49scx7iZrtnF0zwoaeb2j0y7j8X22hI8i7YFmzrh5+TRqVQ5VnAz/UaI0+t/ypRdIvnuf2AuaH0Ncu2s/rzRvpLONySGrGTWg11/aRqNWnbh89jgpefP1gV0raa5nvk5Pe8C64DH58/W1vPm6qvPflyNzH2dPNWjxBlfPH8//sb+ju1fQWM9+9OTxfX4IG03aA02Objzdj/7GHLV8qV7ePnQFgHU7f+XlFrr70NSQlYz88mOTi+xF1Wv6JtcvHOPebc37OLF3BQ1bv6vTrs+QMLznHmPonCMMnXMEWwc3Ph+zyWCRHcyfo1YN6pB89yExl65r4u85zKtN62utK3Jzc5kUvpEx/d83qcheVJPWHbl0tmBdtO/HVbR8+S2ddlnKTNaETOCrEQtMLrKD+XPUvPFL3ElJ5cz5PwDYtG0nbVu3fO6rtQtrXCRH+39cRYv2ujlKT7vP6uBxBWvHCzHFrh1LY75u3vgl7qTeJf685gKnjdt30q51ixLN0fkbKupWK4ujneYeMK82tiDuT92Lr27fzyXtSS6t62s++zWuVZYnylzupxm/0e1LLTtx+VzB+eDgTyto1k7/+n19yBgePSh0Psgxfj4QQggh/heVydVXXRX/Omq1mvfffx9fX186deqEWq1m5syZVKxYkZ49e/Ldd9/lX2neo0cPgoODCQwMpGvXrnTs2JH9+/eze/duZs2aRZs2bThx4gTR0dGsWbOGgIAAzp49y/Tp04mKiuLcuXP069ePzZs3s3PnTqysrPj666+JioqifPnylClThnPnzjFu3Lhi++3l5UV0dMGVZ59//jmWlpaEh4czfvx4kpKSmDFjBjk5OXrfQ9GrR/v27YulpSUrVqygTJkydO3alaCgIOrWrUtkZCStW7fm6NGjPHr0CF9fX9avX09gYCCHDx+mf//+TJgwgXr1jH81+vdL9/U+f/zQL2xaG45KpaJWnRf5euhYrG0qcOXSOTauDmPM1IU8enCfqWO+BSA58SYubtUoW9aCcX6BOFTVFHwdLPTHj4uPZ0noUhQKBe7ubgz39UWtVjNuwkRCQ4IBuHbtOosCAkh7/Bh7e3t8vYfi6am9wFVhoS88AIcOHmT1mkjUKhV16tTF28cXGxsbLl68yOrIlUybPgOA+Pg4loYuQaFQ4Obujq/vcBwcNLfbuJxm+ENNzLGf+WljEGq1Co+aDfh44DTKW1fgxpUz7NoQyLdjNffeP7R7HYf3rCM3NxdLy3K8+7EPDZt3yI/zWvpWndinLlxldtQuFMosPJ2rMuWLD1Grc/luwQo2TR0KaO7PHrZjP9kqFWUow+dvvcp7L7fQiXWiim4hIH87R3azY/0S1KocPGs34NPvJmNtU4Frl8+wfV0w3hNDOHHoJ1YGTaKqk7vWa0dMi8DWviotM/frj33+CvNWbyFTkYWniyOTvvkYtVrN4NmhbJg1ivjL1/lqagCeRa5c9fuuH/VrFYzzHQfDVw6VxBgDWKD7Ia6k9lGAh2p7g+/h2KFf2bgmArVKRc269Rg4dIzmWLt4ng2rwxg7bQEPH9xn6hjNb1QkJWiONQsLC8ZPD8DB0YnKZR8bjF8SObJTpOiNffrsHyyKWI1CqaSaqwvjhvwXtVrNsKlziFw0E4D+3mNQqdUk3k7BsYo95ctbMX7o1zR8QftDfqaV7lWPcfFnCF4agUKpwN3NjZG+Q1Gr1IyZOIWw4ADNGFy/zvzAYNLSHlOlij3DhgyiuqfucXtVWdNgjv4Nx8HObN1izFNnT/zE/q2BqFUq3Go05P0vplPeuiIJV+PZt3kRn46IACD61zWc3LeWXLUai3JWvNljGPWavpYf551yP5mt/wC5ZfXP17+fv8y8VT+QqczCw8WRSQP7oVarGTIrhPWzxxB/6Rr/nbJQZxvTB3+mtY2DZQz/uGvssZ/ZvSkItTqHajUb0uebqZS3rsjNK/H8tDGQb8aEAXB4z1qO7lmHOm++fucjXxoUnq9Ve8yaI0WFqhRVksfZ/rTWBnN05sRP7NuyGLU6B/caDfmg0H706+YAPhsRDkD0L2uI3rcufz/q0tM3fz96y/JnvbFLMkcqS92i3u/nLjF/5QYUyiw8XJ2Y+O2nqNS5eM8IYN3ciZy5dJWvJ83F0037j9FTh3xB/Vra30La+sjwDx7+cWoXh3YEolarcPVsyNuf+mFlXZGka/Ec3L6Ij7wjdF4TPLYTnwxbhb2jZl7qUXGXWXNUNlv/PcVPXbjKnLU7yHy6rviqF2q1mkHzlrNxug9xV27w5YxQnSug/b7pQ4Oa2uvTIxX1rytOH/2ZXRuDUatUeNRqQN9vp1LeugLXr5xh5/rFDBoXyqnDu1gTMgGHInOp9+Tl+bdVaZf1i1lz9NhW/9ou9sw5AsOWo1AoqObmymifQajUar6f5MfyxfMBGDB4GCqViqTbd3B0qIKVlRVjfAfToF7BH3DiM/VfdQ55a8cNwajUKjxrNeDjgVML1o7rF/PtuFBAs3Y8tDuK3Fw1lpZWvPuJNy8VmoteztbNUUkeZxmV9V/JH3PmHIHhK1EolJoceX+LWq1m5OQZrAicC8DnQ0agUqlJzMtReSsrxvp8R4N6BbepWXjI8Nquce2ydG5hSdmykHg3lx8OZpOVAx5OZejSypJlP2nuI+NsX4Zer5WjgjVkZMK2o9kk3tWUAto3N3yxUdzxn9jzQxBqleZ80OvraZrzwZ/x7N4YyH9Ha84HR/as5ejetZr1ezkr3urjQ4Nmr2nFeq+V4c8hQgghDJuxXv8dLP6/Gtvnn3s+kUL7/5CUlBQmTpxISkoKVlZWtG/fnsGDB1O2bFnWrFnDjh07OXQnQwAAIABJREFUyM3NpXv37vTr14/Ro0frLbR/9tlnZGRkMHLkyPxCu0ql4uuvvyYjI4OWLVuiVqv5448/CAwM5Pvvvyc9PZ2KFSsyd+5ckpKS+OKLLxgwYABffvml0T4XLbQPHz6cihUrMnXqVDZu3Eh4eDi7d+8G0PseigoODs7vO8CpU6fw9/fPv7p99uzZpKSk8O233+Lg4ECPHj1YtWoVr7/+OtHR0c9VaC8phgrtJcVYob0kGCu0lxR9hfaSZKzQXhIMFRhLirFCe0nRV2gvScYK7SXBWKG9JBgqtJckfYX2kmSs0F4SzH0cGCu0lxR9hfaSZKjQXlKMFdpLir5Ce0nSV2gvScYK7SXBUKG9JOkrtJckY4X2kmCo0F5SDBXaS5KhQntJMVRoLymGCu0lxVihvaToK7SXJEOF9pJirNBeEowV2kuSFNqFEOKv8YuSQnth4z76555PpNAu/mfk5uYyYMAApkyZQo0aNcy2HSm0GyeF9uJJob14UmgvnhTajZNCe/Gk0F48KbQXTwrtxZNCu3FSaC+eFNqFEOL/Nym0a/snF9rlx1CF2fz666+sWLFC5/lPP/2Uzp1L7p7KAAkJCQwdOpRu3bqZtcguhBBCCCGEEEIIIYQQRUmhXZjNG2+8wRtvmP9qOQAPD4/8+7cLIYQQQgghhBBCCCFEaSr7d3dACCGEEEIIIYQQQgghhPg3kyvahRBCCCGEEEIIIYQQ4h9ILT+v+a8hV7QLIYQQQgghhBBCCCGEEM9BCu1CCCGEEEIIIYQQQgghxHOQQrsQQgghhBBCCCGEEEII8Ryk0C6EEEIIIYQQQgghhBBCPAf5MVQhhBBCCCGEEEIIIYT4B8pV/909EKaSQrsQzyhbbWHW+GpL837RpKyZZ+jatrfNGh/gbqVGZo1vR4ZZ4yvKOpo1vmVutlnjA2SXKW/W+DUy/zBr/LQKLmaNf6VsA7PGB6ihvm7W+HczzDvG5dJSzBrftmqOWeMDlLtn3veQXPsVs8avmvXErPEByiWYN0dX7NuYNb6HvXnPB+bOD8CVmu+aNX61skqzxi+XYt4c3azdyazxATxJNWv8clfNm6OL1h3NGr96pbtmjQ9Q7pp5c3TBxrw56v6yec9pNS0vmzU+QIXM+zyIM+82qjR9zbwbEEIIIYoht44RQgghhBBCCCGEEEIIIZ6DFNqFEEIIIYQQQgghhBBCiOcghXYhhBBCCCGEEEIIIYQQ4jnIPdqFEEIIIYQQQgghhBDiHyg3N/fv7oIwkVzRLoQQQgghhBBCCCGEEEI8Bym0CyGEEEIIIYQQQgghhBDPQQrtQgghhBBCCCGEEEIIIcRzkEK7EEIIIYQQQgghhBBCCPEcpNAuhBBCCCGEEEIIIYQQQjwHy7+7A0L8rzh+cA/bNy5DlZODR406fDlkAhUqVtJpl5OTw8ZVi/l521oWROzAwdHF5G0c+O03oqKiyMnJoUbNmvj6+lKxYkWddrGxsUSEh5OpUODs7MwwX18cnZyMxo6NjSU8IgJFZibOzs74DhuGk6OjVpurV6+yOCiItEePsLWzY8jgwdSqVcvk/h88sJ8NUWtQ5eRQvUZNhvqOoKKeHMXFxrA8IhRFZiZOzi54DxuJo6Px/sfExbN02QoyMxW4ODsxwmeITv//vHqNgOAlPEp7jJ1tZbwHfUvtWjVN7j/A0QO/sHn9ClSqHDxr1Gag91iD47xuRQg7t0YRtGILVR2di439e/w5glau40mmElfnqowd/DXOjg5abXJzc1m3dRehazYSMHUMTRu+aHLfY+PiCItYRmamZr8Y7uutN0eBQcGkpaVha2vL0MHfUfsZxvjAgf2sj1qLKkdFjRo18fYdrncfjYuNYVlEGJl5+5vPsBHFjjHAqTN/EBi5kUyFEldHB8YPGoBzVd0crdm+myXrthA0aQRNG7xgcv9LI0fHD+1hx8YIVDk5VKtehy+HTNS7D8WcOMDmtaHk5GRTqbIdnw0cjUeNukZjn447w5LlkWQqFLg4OTLKexBOjlW12uTm5rJ+y3bCI9exwG8SjRs2MLnvT8Uf38n+bUtQq3Jw8XiBD7/yw7pCZZ12Z0/uYf+2EHKylVSsVIX3B0zCxaOe0djRF68zf8s+niizcHewY2q/d3CpYqvV5tTlmyzYuo90hRLrcuX4vuebtKxb3eT+nz66i71blqJS5eDmWZePvpmGjZ7+x0XvZc+WJeRkZ1Gxsj29vpyIm6fx/ak0+h8bG0dYofl62DBfvfN1YFAQaY/SsLWzZcjgwf+Y/bQ0cgTmna8Bog/t1srRF0MmGczRlrWh5ORkUamyHZ8OHPOPyJG58wNw6shP7N68FFWO5ljr991Uvcda/Kn97FwfTE5OFhUr2fPRf8fjXv3vP9YO5p/TNOsWb98RRs5pS/OOSRe8TTynHTqwj41Rq8nJyaF6jVoM8R2pd12Uk5PDquVhbN+ykfBV602KDaWTo5OHf+anH8JQqXJw96zLp99Nxqainvn05G/sWB9MTnY2FSvb8cnX46lW3fhxAHk5Wh+JKkdF9Ro1GezzvcEcRa5YyvYtGwlbucGkHJXWXHTy8M/s2lSQo88GGc7R9qiCHPX9xrQcRR/azY8bI8hR5eBRvQ4DBk+kgp74MScOsHXd03OaHZ8OHGvaumLZKhQKzfr6eyPriohVa5nvN5nGL5m+rjh19gIB+eu6qkz47nOcq1bRahN34QqLVm0gI1OBtZUVPp/1pnlD42sJIYT4X6NW/909EKaSK9qFKAH3Um+zOmwuwycuxD9kE47ObmxaHaK37aIZIyhvXeGZt5GSkkJISAhTpk4lLDwcFxcXVq5cqdNOoVDgP2sW3j4+hIeH4+XlReDixUZjKxQKZvn74+Ptnf+axYGBOu1m+fvTs0cPwsPD6d2rF7Nnzza5/6kpd1gasphJU/wICVuBs4srkSuX6+lLJnP9/RjiPZwl4Stp49WO4MCFRmNnKhTMmD2PYUMGsWJpMG3btGZR0BKddn6z59G7x39YsTSYPr16MHPufJP7D3A35TbLQxcwevJcFoRG4eTsRtSqUL1t504bhbWNjcmxMxUKJs0LYtR3XxEVPIeXWzVn7hLd/MxdsoJbSbepYmerJ4phCoWCGf5z8Bk6hGVhobT1ak3A4iCddjP9Z9O754csCwulT6+e+M+ZZ/I2UlJSCA0JZvIUP0LDluHs4sIqA2M8238GQ7x9WRq+nDZebQkKDCg2fqZCycSFSxk78DM2BPjxSqum+C9drdNudthqbiXfoYqt7odMY0ojR/dSb7MmbA7DJixiVvAPODq78cOaYJ12D+6lELZoCgOHT2fm4o20fbUrK0JmGo2dqVAwbe5CRgwZSOSSANq1acX84KU67RaEhJGQlPzM+9BTD+8msSPSj8+Gh+I7+yfsHauxZ5PuMfrwbhLbVkymn89ifP130ahNV34IH2809hNlFqOWb2Ny37fZMWkgHRrXZVrUz1ptFFnZDA/fzLg+Xdk24RsGvv0KIyO2kpuba1L/H9xNZvOKmXw9KoSx83/EwbEau9br7n8P7iazMWIqXw4PZMy8HTT16kJU6IS/vf8KhYKZ/v74eA8lIjxMM8cH6s7xM/396dWjJxHhYXnz9RyT4oN599PSyBGYd76Gp+f9OfhOCGBm8GYcnd35YY3ufPHgXgrhiybzzfDpzFi8ibavdmNlyAyjsUsjR+bOD8D9u8lsWjaLb8cEM3HRDqo6V2PHOt21xcP7d4gMGs/n3rOYsGAbrV55i6iwaUZjl0aONOe0ICZN8WNJ2HJcXFyIXLlMp51Ckckc/xkM8R5GaPgKWnu1JShwUbHxU1PuEBYSyIQpMwkOW4WziytrVkbobTtj6nhsnnEMSiNH91OTWb/Mn8FjFzMlYBtVnd3Zuk53Pnpw7w4rF0/gC++ZTF60hdavvMWaUONjDJochS8JYMLkWQQtzcvRKv05mjltPNbWpueotOai+6nJREX4M2TcYqYG5uVorf4crQicwJc+M5kSsIU2r77FmiXF5+heajJrwmfjM2ERM4M2U9XZjc0G5uuIgEl8PcwPv8U/0LZDN1YtMT4XZSoUTJ+zgBFDvmVVaCDtWrdkQZDuPLEweCkJiUnY29kV21/t+EomLAxj7DefsnHRdF5p2QT/MO11XVZ2Nt/PCWLQJx+yfsFUvunzPhMXhT/TdoQQQojSJIX2f6GEhASaN29O//796devH71792bv3r0lvp3+/ftz6dKl544zevRounfvTv/+/enduzcTJ05ErVaTmprKxIkTAejUqRMZGRmMHj2a/fv3c/DgQdauXfvc2waIjo6mefPmpKam5j8XGBhIdHR0icQHOB19gIZNWlPVyRWADm++x8kjv+pt+37vL/jwk6+feRvHjx2jWbNmODtrriTr2qULhw8d0mkXFxuLq6srdetqrlDp0qULMadP8+TJE4OxY+PidF5zOiZG6zXXrl0jPT2d9u3bA9C2bVsePnrEzZs3Tep/9PGjNG3WHCdnzRX8nbu+xZHDB3TaxcfF4uLqSp26mivZ3uzSjdiY34vpfzyuri68ULcOAN06v8HvMbE8eZJZ0P/r18nIyODldm0BaO/VhoePHnHj1i2T+g9wKvoQjZq2xNFZM84du7xL9JH9ett++NEAevX9yuTYv585j7urMy/WqQnAO2+8xom4MzzJzNRq91bHVxg16EssLSxMjg2aHLm5uvJC3hh37dyZ0zGx2mOcl6P27doB0K6tV94Ym5YjzRgX7KNdunbjyOGDOu3i4mJxdXWjbt4Yd+7SjZhixhjg1Nk/cHdx4sXaNQB4t+MrnIg7R0amQqvd26+1Z8zAz7C0/Ofl6HT0ARoUnis6v693rrCwsGTg8OlU86wNQL2GzUi8edVo7Jj4s7i5uFCvjuY1b7/ZkVOxcVrHAUDXTq8xYvBALCz/2pfa/ji9jzoN22Lv6A5Aq9d6cPbEbp12ZS0t6fPtHKo4VgOgzkttuZt8zWjsE5du4OFoTwNPTX7+064pxy5cI0OhzG+TrVIxue/bNKzuBoDXizW59ziDx0X2A0POnNpHvUZeVHHMe33HD4k9rqf/Fpb0H+yPg5PmfdZr1JaUpOt/e/9j4+K099MunfXM19dJT8+gffun++mzzdfm3E9LI0dg3vkaICb6N63z/qud3+eUwRz55efohX9IjsydH4D4k/up19gLh7xjrV2n/xBzfI9OOwsLSwZ4++PmoTmH16nfguRbfxqNXRo5erpueXpO06xbdM9p8XFP110F57Ti1i2a+Edo0qxFkXWRbnyA3h/35+N+n5vU76dKI0dxJ3+jfqM2ODhpXt++0wecPqb7mcTCshxf+szC3VMzxnXrNy92jAFOFMnRm13e5qietSNAr4/683G/ASb1G0pvLoo9+Rv1Gxfk6OU3PuB3Qzny1c5Rkgk5ijlxgIZN2lA1L/6rb37AqaO/6Ma3sOSbYTMK5qIGzUm8aTx+TPxZ3FxdqFdX85q3OnfiVGy8zrqiyxuvM2LIt8+87jp19gLuLo7Uz1vXde/0MtFx57XWdTkqFaO/7k/LRvUBaFq/LqkPHvI4w/jxJYQQQvxdpND+L1WrVi0iIyNZvXo1S5cuZcaMGSgUpi/6StuwYcOIjIxkw4YN3Lhxg7i4OJycnJg6dare9h06dOCTTz4pse17eHiwuJirup/H7aSbOLtWy3/s7OZB2qP7ZKSn6bStW7/JX9pGYmIibm5u+Y/d3Nx4+PAhjx8/NtrOxsaGypUrk5yUZHLsp69JSk7WbuPqqvU6V1dXbiUkmNj/BFzd3LX6/+jhQ9J1+p+AW6F2mr7YkpycaDB2QmIS7oX6ZmNjg22R/ickJuHqqn2bHjcXV27dMhy3qOTEW7i4FYyzi1s1Hj18QLqeca7XoJHJcQFuJd2mmmvB1/Er2FhjV7kSCcl3tNo1qm/6bVAKS0hMxM2tuBwl4lpkjN1cXZ5hjBO1xu7pPqo7xom46uxvtiQnG95HAW4l36GaS8FXwfNzdDtFq13jF+uY1N+iSiNHmrnCI/+xs6v+ucLW3oEmLdrnP44/fZQ69YzvUwmJybi7FezjT/ufmHxbq91L9U2/3ZA+d29fx8G54GvzDs7VyUi7R2bGI612tvbO1G30MgAqVQ6nD22lQYtORmPfSLmPp6N9/uMK5a2wr2jDzdQH+c9VtrGmYxPNV8Zzc3PZcjSOFnU8sa1g2pWMqck3qOrimf/Y0cWT9LT7PEnX7r9dFSdebNI+v/8nDmylUauOf3v/S2O+Nud+Who5AvPO1/BsOWqslaMj1P4H5Mjc+QFISb6Bo0tBjhxdPHn86D5Pimyjsl1VGjZ7Jf/x+ZjD1HihsdHYpZGjpMQErXOV4XOa9vrG1HNaUpHXubq5a8agSHyA+g1eMqnPhZVGju4k38Cx0HHg5KoZY53jwM6Bl5q/nP/4XMwRahUzxqDJkYureXJUWnPRnaQbOLmYlqNGhXJ01sQc3Um6qRXf1LnojAlzkWZ9XXRdUYnEQucb+OvriptF13XW1thVrqi1rqtgbU1Hrxb5j4/GnqW6mwuVKz77t4OFEEKI0iD3aP8fYG9vj5OTE9evX2fKlClYWlpStmxZFi1aRHp6Ot7e3tSsWZPr16/TuHFjJk+ezJ07dxg3bhzZ2dlYWFgwffp03N3d6dKlCw0bNuTllwsWeunp6YwdO5ZHjx6hUqkYP3489evXZ+nSpezdu5eyZcvSsWNHBg4cqPe5wrKysnjy5AmOjo4kJCQwdOhQNm/erPOeNm/ezOXLl+nbty+jR4/G09OTixcv0qBBA/z8/Lhw4QKjR4+mcuXKNGrUiAcPHjBr1iyDOerSpQtHjhzh2rVrOvcUnz17NqdPn0alUtG3b18++OCDZx6DLKUCW7uC+0SXK2dFmTJlUCoyqVjpr92eoSilUomdfcEHgnJWT7ehoHLlgltkKJRKrKystF5bvnx5o3+IUSoUxb5GqVRSrmgbKyuUJv6BR6lUYmdXcM/FpzlSKBVUKtR/pUJ3O1bljW9HqVRiZVVO+zVWVlr9VyiVWJXTblO+vBUKpel/oFIqldjqeQ9KhYJKzznOSmWWTv+srKzILHRl1fPFV2JVrkhei+RIfx6N7zva21BgV+hrw4bHWHd/sypvVex2FHpyVN6qHIp/UY40c4W+fcjwXHE+7gS7t69l1DT9t6N6Su8+bvVs+7gpsrMyqWhbMN9Z5r2HLGUmNhV1vzZ+dPcq9m0NpqpLDfr66N42ojBFVjZW5bSXJuXLlSMzK1un7d6YC8zcsIfKFcoz/6sez9T/ynb6+1+hkm7/D/wUyZ7NS3B0qc4Xw43f4qg0+q9QKClnpWcuKzrf6Zmv/xH7aSnkCMw7X8NfO++fjzvBnu3r+P4fkCNz5wcgW6mgsq2eHCmfUMHANi6eOc6+nZEMnWT81hCllSM7u0LrLiPrlr9yTjN1XfRXlUaOsgyMcZbS8HFwIT6aX3euxmeS7q3NilIqFdpr3xLMUWnNRdkG5gpjOfojPppff1yN72TTclT5Wefr+BPs2bGWkVN1b7OoHdvQuaSk1l1ZlNezbslU6o9/+UYCi1ZuYMrQZ/+GjRBCCFFapND+PyAhIYGHDx9y7949JkyYQMOGDVm0aBE7duygY8eOXLx4kcWLF+Pq6krPnj25cOECq1at4osvvqB9+/YcOHCA4OBgpk+fzq1btwgKCuKFF15g+/btAKxcuZJXX32VXr16ceXKFfz8/Fi+fDnLli3j8OHDWFhYsG7dOgC9zwHMnz+fZcuWcfPmTTp37oynpycJJl5Zd+7cORYsWEDVqlXp0KEDaWlpBAUFMWjQIDp37oy3t7dJ96309fVl/vz5BBa69/jJkye5fPkyUVFRPHnyhPfee48333yTSpV0f2SpqL07N/Drzo0AWFhaYmdf8MNAWVlKcnNz/9K92AvbsX07O3bsyN9GlSoFC+msrCxyc3N17ptqbW1NVlaW1nNKpdLo/VUNvcbG2lqrTXaRNgqlEutCbYr6ccdWdu7YBoClhQVVqhR80Mjvv7Vu/4tuR6lUGr3vpqb/2h+MNO9Zu/9Z2dptFEXeoz4/79jEnp0/AJqv3dprvQel3vfwV1iXL6/TP6Uyiwo2xvtncnxra7Ky9Y1xQd+ty+vPo42RPuzYsS1/jC0sLE0eY/37m/E82ujJkUKZhY11eaOvM5W5cvTLzg38smsDAJYWlthVMX2u+P34b6wJm4Pv+AX5X/c23H99+Sl+HzfFsb1rOP7LGkAzzpXsCq5Ay857D1bl9b+H9l0/pV2X/sQf38XSqZ/gPetHylnp75ONlRVZ2Tna7yErmwrlrXTadm5en87N6xN98TpfBaxh45gvcbTVP3cf2r2Ww3vW5fe/sn3BD4dmFzMGr73Vnw7d+hFz9CcCJvVj1NxtWJVy/wvTzJF69kGt+br8Mx9jpbWfmjNH5p6vf9m5nl/zcmRRJEfZ+fH15+j08d9YHTYHn78xR6VxPjvw8zoO/qw51spaWFLZXjdHhvajuBP72Lh8JgNHL86/jYwh5srRjzu28uMOzfrX0sICe33rLpPPabrzxM4dW9i1Yytg+jnzrzJXjvb/FMVvP0Vp3oOlJbZ6x1j/e4g9sY/1Ef4MGh2Qf4uUonbt2MKuH7do4uvsp5ocFbdeMIU556L9u6LY/1dzFL2PqAh/Bo0xnKNfd63n113rNfEttD+D5M9FNgbmouj9rAmbg/e4hSasK3T3bYUyy+ia51lYW5dHqWddV0HPsRN/8U/GLQhl7Def0vKl5/tmnhBC/Bs9y++DiL+XFNr/pa5du0b//v01C7Xy5fH398fGxoa5c+eiUChISUmhe/fuANSsWTP/a+ZNmzbl6tWrxMTEcO3aNUJCQlCpVDg4aBaxNjY2vPCC9q0pYmJiuH//fn7hPTPvntFdu3ZlwIABvPvuu7z33nsGnwPNrWM6duyIWq1m0qRJbNy4kXZ59zguTvXq1XFy0hR1nJ2defz4MX/++SctWmi+RtipUyeOHTtWbBwvLy+WLVtGbGxs/nNnz56ldevWAFSoUIG6dety48YNXnqp+K+fdn6nN53f6Q3Ar7s2ceHs6fx/u5N0C/sqjlSs9HxX23R/7z265+Xxxx9/5MyZM/n/lpiYiIODg84fBTw9PDh4sOAenxkZGTx+/Jhq1aphiIenZ7Gv8fD0JPl2wS0ocnNzSU5Opnr16hjybvcPeLe75hsCu37cxtkz8fn/lpSYgINDVZ3+e3h6cvjgb4X6kk7643TcjfTf06MaBw4d1up/eno61dwLvm5c3cOD5GTt/iclJ1OjuifGdOvek27dewKwZ+dmzp+Nyf+320kJVHGo+tzjDFDDw41fjxzPf5ye8YTH6Rl4uLkYeZXpPD08OHCw4J7++TmqVpAjT08Pkgt9HViToySjY9y9+/t07/4+ADt/3M7ZQvtokoF91MOzOocOFtxjNSMjI2+M3TGmRjVXfjl6Mv9xesYTHmc8wfMfnqM33+nNm/lzxUYunjNtrjgXF83aiHmMmLwYd89aOv9eVHWPauw/fDT/cXpGBunpGVRzdzPyKtO069yXdp37AnD8l7Vcv1AwDvfu3KCyvRM2FbWvnEtJ/JO0B3eo26g9ZcqUoWm7d9ixahqpyddwr9FA73ZquTqw+/T5/MePMxWkZSqo7lRQ7Lr9II3zN2/Tqanm6/xeL9bExd6W+GtJ+c8V9WrXT3i1q+Z2ZIf3RPHnHwX9T719A1s9/b+T+CcP76fwYuN2lClThhYvv80PK/xITbpOtZr1S7X/hXl66s7x6Y/TteZrT09Pkm8X3U+Nz9eltZ+aM0fmnq/ffKcPb77TB4B9uzZyoVCObuflqILBHM3923NUGuez17p9zGvdPgbg4O4orpz/Pf/fUm7fwLaKExUq6l5leyH+OJtW+DN4XCiuHsaLf2C+HBVet2jOaYXXLYbOaZ4Gzmm665Z3uv+Hd7r/B9Csi86diSsUXzMGplzsYQpz5ajjWx/R8a2PAPjt5/VcLjzGyTexMzDGf8QfZ8OyOQydEIKbkTF+u/t/eDsvRz/9uJVzZwtylJy/nz5/jsw5F3V8+yM6vl2Qo0vnTMxR3HHWL5uD90TjOXrj7T688XbeXPTTBu35OvkmdlUcqVBR/1y0LmIuwycFmTQXeXpUY/+hI/mP0/PX18+/rgCo6V5kXfckb11X6FaKoLmSfdz8UKb5/JdmDf7aLRSFEEKI0iL3aP+XKnyP9oiICJo3b46fnx+ffvopq1evpk+fPvlt1Wp1/v/n5uZSpkwZypUrx6JFi4iMjGTt2rX59y8vV+Tre0+fmzBhApGRkURGRrJp0yYApkyZwuTJk0lNTaV///7k5OTofa6wsmXL8uabb3Lq1CmT36tFkR99zM3NzX8fQP5/TTFs2DDmzZuX/7joa7Ozsylb9tkPi+ZeHTgff5LkhBsA/LxtLW07dHnmOMa0bduWuNjY/G8CbNmyhddef12nXZOmTUlNSeHc2bP57dp4eRm98rxpkyakpKZy9ty5/Nd4tWmj9Zoa1atjZ2vL/v2aH0v75ZdfcHZ2xsPDQ2/MorzavkxcXAwJCZofjdy25QdefU33fseNmzQjJfUO58+dyW/Xuo2X0Su8mjVpzJ2UVM6e03xg+mHrdrzatNK6mqxGdU/s7GzZ95vmw/CeX/fh4uSEh5ECflGtvF7lXNzvJOWN886tUbTv0Nnk1xvTolFD7qTeI+78RQDW7/iZ9q2alcjVyABNmzQmJSUlf4w3b91GmzatdcfYzo59v/0GwN5ffsXZydnkHHm1ba81xlu3/EAHPWPcpElTUlJTOHfubH67NsWMMUCLl+pzO/UecX9cBiBq515ebtmkxK5oL40ctfB6TTNXJF4HYPf2NXi9qjtXKJUKIgKmMmTUbJM+DAM0b/wSd1JSOXP+DwB++037AAAgAElEQVQ2bdtJ29YtS2wfeqpBizf48/xxUvN+2PTIzyto0vYdnXYZj++zaelo0h5o7rV649Jp1KocHJwN/3Gr9Qs1SL6fxuk/NfvQ6n0n6fBSXa0rDLNzVExc/SNXkjU/cH0j5T63Uh9Qx81Rb8yiGrXqyOWz0aQkafp/YNcqWrR/W6ddetoD1gaP5dF9Tf+vXjyNSpVDVWfDc15p9F8zXxfaT7dspY3e+dqO/ft/A2DvL7/g7OyEh8ffv5+WRo7AvPM1QHOv1/gj/kR+jvZsX4PXq1112j3N0eBRc/5ROTJ3fgCatO7IxbPR3Mk71vb9GEmrl9/SaZelzGR1yAT+O2KBSUV2KJ0ctdU5p23Se057um55ek4zZd0CmnNmfNxpEhM0P1K8fctGXn3N+O9YPItSmY9av86FMye4nXcc/PJjJK1f6abTLkuZyaqgSXwzcp7RAnJRbdq+bLYcldZcVDRHe3cYztHKoEkM/P7ZctS8zetac9Fug3NRJssCpzBo1NxnXFfc5cy5p+uKH0t0XdGi0YvcTr1P7AXNum7dj7/wcovGWuu63NxcpgUtZ+RXn0iRXQghxL9CmVz5/sG/jqF7m3fv3p3AwEDc3d356quvaNasGb1796Zbt27s27cPR0dHevbsib+/P6tWraJBgwZ88sknHDt2jLt379K9e3e8vLyIjo4GoH///kyYMIF9+/bx+PFjRo4cyZUrVzh06BA9e/Zk5cqVDB48GIDPP/8cPz8/tmzZovXcwoULmTVrFl27dqVjR82Hk4CAAKysrHj33Xfz30enTp3YsWMH06ZNo2vXrjx48CD/Hu2F3+uHH35IQEAA06ZNo2/fvnTo0IERI0ZgaWlp8B7t0dHRnDhxgiFDhgAwevRoLl26xKhRo7CwsCAkJISIiAgyMjL44IMP2LZtGxUqGL7ly/ELj/Q+H314L1vWhaFWqahR+0W+HDIea5sK/HnpHJvXLGHklEAePbzHzLGa+9YnJ97A2dUDCwsLvp8WhENVzdUbTlb3DG774MGDrFm9GpVKRZ26dfHx8cHGxoaLFy8SuWoV0/38AIiPjyd0yRIUCgXu7u74DhuW/62FMgYO+fj4eJaEhua/ZpivL2q1mvETJrAkRHM/2WvXrrEoIIDHjx9jb2+Pj7c3np7aRbNsdL9y+9Thg7+xds0qTf/r1GWIzwhsbGy4dPECayKXM2W6PwBn4mMJCw1GoVDg5u6Oj+/3VHEo+OqwjTpdJ3Zc/BmCl0agUCpwd3NjpO9Q1Co1YyZOISxYc1/la9evMz8wmLS0x1SpYs+wIYOo7qlbNLuHk85zTx079Csb10SgVqmoWbceA4eOwdqmAlcunmfD6jDGTlvAwwf3mTpmEABJCTdxcauGhYUF46cH4ODohEf2Vb2xT5/9g0URkSgUSqq5uTBuyNeo1WqGTZlNZIBm/+4/dDQqtZrE2yk4OthT3sqK8UO/oWG9gq8XZ1jZ640fF3+GkKVLUSiUuLu5McLXB7VazdiJE1kaHJSfo4UBi0l7nEYVe3t8hg6huqduYTS7jP7i9qGDB1iTN8Z167zAUJ9hefvoBVZHrmTa9JkAxMfHsTQ0BGXeGPv6jtAa46oZN/Xn6NwFFiyPIlOhxMPVmQmDvkClVuPrt4A18zU/rtx32ERyVGoS76TiVMUOKysrJg7+gpdeKPjgmlZB/1XwJZWj5GxXfeEBOHF4L1uilubPFV8MnoC1TQWuXjrH5rVLGDE5kOMHdxMeOBVHZ+2rxsb4heZ/RbxG2es6sWPPnCMwbDkKhYJqbq6M9hmESq3m+0l+LF88H4ABg4ehUqlIun0HR4cqWFlZMcZ3MA3qaX+APfrQ8I+knYn+iV83L0atzsG9RkP+89V0yltX5Naf8fzyQwADvtfcX/n4L2s4/ss6cnPVWFpa0aW3Ly82fQ2Ad9NW6Y198tINZv/wC5nKLDydqjCt/7uo1Ll8GxTF5nH/BWDP6T9Y+vMRslUqylCGAZ3b8n5b7R+a3le1r8H+xxz7mZ83BaFWq/Co2YCPvplGeesK3Lhyhp82BjJwjOa+uIf3rOPwnnXk5uZiaVmOdz7yoWHzDvlxOt1bY7b+AyTXfkXnOYC4+HiWhC7Nm6/dGJ43X4+bMJHQkGAArl27zqKAANLy5mtf76E68/XtLGd94YGS20+bJ+j+DktJ5uiPmu8afA8lMV9n5hj+Q96Jw3vZGhWKSqWiRu36hXJ0Ni9Hizl+8Gci9ORotN9S7Oyr0iLhB72xSyNHJZEfgLtPDF8Ff/robnZuDEatUuFZqwF9v51CeesKXL9yhh/XBzF43BJOHd7F6pCJVHXS/laT9+Tl2NpX5dWUdXpjl1SObtY2XLg9dPAAa9eszFu3vMBQn+H565bVkSuYOl1zbj4TH8fS0OD8c5qP70itc5oKC73xDx/8jag1K1CpVNSu8wKDfUbmxf+DtZHLmTx9Ng8f3GfcKF8AEhNu4ermjoWFBVNnzKVq3hjUurrXrDk65tpHX3gATh3dzY/rl6BS5VC9dgP6fzsZa5sKXLt8hh1RwQydEMLJwz+xMmiSzhgPnxqBrX1VXGweGIgORw7tZ93qFajVmhwN8v4+P0frVi9j0rQ5PHxwn/GjfXRyNMVvXn6Oal/bY7b8ABx3M5KjI7vZsX4JalUOnrUb8Ol3BTnavi4Y74khnDikP0cjpmlyVK6symD8E0f2sG1dKCq1Zi4aMGhi/ly0ZV0IwycFcfzQzywLnKIzF42aHoadfVVqWl7TGzv2zFkWL12OQqmkmpsro/LWFaMmTmdZ0AIAvhjkm7+uqOpQhfJWVoweNkRnXVEh875O/N/PXWTBivUo8td1n6NSq/HxW8TaeZM5c+lPvpkwG0837fPVlKFfUb92DZ14VfLWGEII8b9m4sqs4hv9PzL1M8N1p7+bFNr/hQwV2tevX8+qVavw9PSkR48eTJ06lbCwMEaOHEmjRo24cuUKTZs2Zfz48dy5c4exY8eiUCgoU6YMM2fOxNPTU2+h3d3dnTFjxnDv3j3NB/lx42jcuDHTpk0jLi6OChUq0Lx5c3x9ffU+N3r0aM6dO4e9vT0qlQonJydmzpzJ/fv3/3Kh/e7du4wfPx4XFxfq1q3L48ePmTFjht58FS20Jycn07VrV8LCwvDy8mLBggWcOnWKnJwcBgwYQLduuleZFGao0F5SjBXaS4KhQntJMVZoLyn6Cu0lyVihvSQYKrSXFEOF9pJkqNBeUgwV2kuKoUJ7STFWaC8p+grtJclYob0kGCq0lxRjhfaSoq/QXpIMFdpLirFCe0nRV2gvScYK7SXBWKG9JBgqtJckc+fIWKG9JBgqtJcUY4X2kmKo0F5SDBXaS4qxQntJMFZoLyn6Cu0lyVihvSQYK7SXBEOF9pKkr9Be0qTQLoT4XyWFdm1SaBd/G0NF+X+72NhYrK2tqV+/PqGhoeTm5jJw4MBS2bYU2o2TQnvxpNBePCm0F08K7cZJob14UmgvnhTaiyeF9uJJod04KbQXTwrtppFCuxDif9X4FVJoL2z65//cQrv8GKr4V7KysmLcuHFYW1tjbW3NvHnzGDx4MI8eaRfBK1WqREjebU+EEEIIIYQQQgghhBDCHKTQ/j/Ow8Pjf+5qdoCGDRvyww/aV4E9/UFXIYQQQgghhBBCCCGEKE1l/+4OCCGEEEIIIYQQQgghhBD/ZlJoF0IIIYQQQgghhBBCCCGegxTahRBCCCGEEEIIIYQQQojnIPdoF0IIIYQQQgghhBBCiH+gXHXu390FYSK5ol0IIYQQQgghhBBCCCGEeA5SaBdCCCGEEEIIIYQQQgghnoMU2oUQQgghhBBCCCGEEEKI51AmNzdXbvQjxDN4EHfAvPEreZg1fm6ZMmaNX06lNGt8gMyylcwa30GZbNb4CeVqmzV+pbIZZo0PUC7XvOOckuNi1vhVyj00a3ynx9fMGh8gsdKLZo1f5+rPZo2/y/4zs8bvpthk1vgAP1v3NGv8JlVvmDW+42PzxgfYl9XBrPFfrXTKrPHLKdPNGn9f9utmjQ/mz1GFR0lmjb/b4j2zxm/pcNms8QEs1NlmjX/iYUOzxu/MT2aNn2Zf3azxAaIfvmTW+J3LmPecqbawMmv8RFvz7kMAaTkVzRp/xMhYs8YHOLzjNbNvQwgh9Bm3zPx1ln8Tvy/K/91dMEh+DFUIIYQQQgghhBBCCCH+geQS6X8PuXWMEEIIIYQQQgghhBBCCPEcpNAuhBBCCCGEEEIIIYQQQjwHKbQLIYQQQgghhBBCCCGEEM9BCu1CCCGEEEIIIYQQQgghxHOQH0MVQgghhBBCCCGEEEKIfyC1Wn4N9d9CrmgXQgghhBBCCCGEEEIIIZ6DFNqFEEIIIYQQQgghhBBCiOcgt44RogScOnuBgMiNZCqUuDpWZcJ3n+NctYpWm9zcXNbs2EPIui0ETRpOs/ovPNM2YmNjCY+IQJGZibOzM77DhuHk6KjV5urVqywOCiLt0SNs7ewYMngwtWrVMnkbB377jaioKHJycqhRsya+vr5UrFhRb18iwsPJVChwdnZmmK8vjk5ORmPHxMWzdNkKMjMVuDg7McJniE7//7x6jYDgJTxKe4ydbWW8B31L7Vo1Te7/wQP72RC1BlVODtVr1GSo7wgqVqyk0y4uNoblEaEoMjNxcnbBe9hIHB2N9x/g9/hzBK1cx5NMJa7OVRk7+GucHR202uTm5rJu6y5C12wkYOoYmjZ80eT+Axw98Aub169ApcrBs0ZtBnqPpYKe95CTk8O6FSHs3BpF0IotVHV0Nin+gQP7WR+1FlWOiho1auLtO1zvGMfFxrAsIozMvP3NZ9iIYnMUGxdHWMQyMjM1+8VwX2+9YxwYFExaWhq2trYMHfwdtZ9hHwU4dnAP2zYuQ5WTg0eNOvx3yASDOdqwajE/bVvLoogdODi6mBTfnDnSzBWbeKJU4uZYlfHffoZLkbki7sIVFkVuJOOJgvLlrfD9tBfNG9Yzqe8Ahw/8ysb1kahyVFSvUYtBPt/rPQ5ycnKIXLGUHVs2sHTlBhxN3IeiL15n/tb9PFFm4e5gx9S+b+NSxVb7fV6+yYJt+0nPVGJtVY7ve7xBy7rVTX4Pccd2sn/bElSqHFw8XqDnf/2wrlBZp93Zk3vYtzWEnGwlFSpX4YPPJ+HqaTxXJ/64yoJNP/NEkYVbVXumfP4fXBzstPt/8RqLfthDeqYCa6tyjOjzNi3r1TS5/+Z+DwAHDvzG+qh1mvm6Rk18fIcZ2E9jiYgIyz8ufYcN+0fsp+bMT2nM1afOXiBg9WaeKJS4OTkwfuCnujm6+CeLVm0iI1NB+fLlNDlqYPq5/9+eoxPnr7Bw/U7NseZoz+Qve+HiYK/VJvbydeav+zHvWLNi+Cfv0vLF2iZvw5w5iomLIyxied6x48QIg+e0EB6lpWFna8vQwd+afE6LiTvDkmUryVRo1kXfew/GybGqVpvc3Fw2bNlGxKq1zPObQuOXGpgUuzBz5ujkucssXLedTGUWrlWrMOnrj3TH+NI1FqzZRoZCM8bD+r5Pi/p1TOr76bgzLFm2CkV+jgbpzdH6LduJWLWW+X6TnzlH5p6rT567zMK12zQ5cqzCpP9+jEvVojm6qslR3nEwrN8HJufo5NmLBKzZopmLHB2YMLCf3rloYeQPmvjlrfDp34MWzzAXHTqwr9C6oiaDi1lXbN+ykbCVG0xaWwMcP7iH7YXWdV8aWNedjj7IlnWhZGdnU6myHZ9/OxqPGqblyca6LCMH1aPTq868/sFBg+1aNLFn0Be1qWBtwe0UJTMWXSD1XpZJ2xBCCCFArmgX4rllKpRMWBjG2G8+ZeOi6bzSsgn+Yat12s0OW8PNpDs42NrqiWKcQqFglr8/Pt7ehIeH4+XlxeLAQJ12s/z96dmjB+Hh4fTu1YvZs2ebvI2UlBRCQkKYMnUqYeHhuLi4sHLlSr198Z81C28fn/y+BC5ebDR2pkLBjNnzGDZkECuWBtO2TWsWBS3Raec3ex69e/yHFUuD6dOrBzPnzje5/6kpd1gasphJU/wICVuBs4srkSuX6+l/JnP9/RjiPZwl4Stp49WO4MCFxcbPVCiYNC+IUd99RVTwHF5u1Zy5S3Tjz12ygltJt6li9+zjfDflNstDFzB68lwWhEbh5OxG1KpQvW3nThuFtY3NM8VPSUkhNCSYyVP8CA1bhrOLC6sM5Gi2/wyGePuyNHw5bbzaEhQYYDS2QqFghv8cfIYOYVlYKG29WhOwOEin3Uz/2fTu+SHLwkLp06sn/nPmPdN7uJt6m8iwuYyYuJA5IZtwcnZj4+oQvW0XzBhBeesKzxTfnDnKVCgZvyicsd98yqaF0zRzRfgarTZZ2dmMnBvMdx9/yPoFU/imz3tMCIgwuf+pKXcIXxLA+Mn+LF4aiZOLK2tXhettO2vaOGysn20feqLMYtSK7Uz+5C12TPyGDo3qMm39bq02iqxshkdsYVzvrmyb8DUD33qZkcu2kZtr2n0FH95NYkekH5+PCGX4nJ+o4lSN3Rt1j9GHd5PYunwy/X0XM2z2Lhq36coP4eONxs5UZjE6bAMTP/2AbX4+dGj6In6rt+v0f+SSKMb0fZct07z5untHRoWuN7n/5n4PoNlPl4SEMHnKNJaGReDi4sKqlSt02ikUCvz9ZzLU24ew8AiD547CSmM/NesYl8JcnalQMj4ggrHf9GPTwim80qIx/uFrtdpochTCd598wPr5k/im9/+zHCmzGBOylgkDerLVfyQdmjXEb+UWrTZZ2TkMW7SSIb3eYvPMEXz3YRfGhqwzeRvmztEM/7n4Dh3C8rAltPVqQ8DiYJ12M/zn0KvnhywPW0KfXj2YNce0dUumQsH0OfMZPuQ7VoUupl3rViwI0j3fLwxeSkJiMvZ2dnqiFM+8OVIyNiiSCV/1YfOcMXRo3pCZyzdptcnKzmH4gmUM6fMOm/xHM7BHN8YFR5rUd02OFjBiyLesCg2kXeuWRnKU9JdyZO65WpOjVZoczR1Lh+YvMXP5Rq02Wdk5DJ+/jCF93mXT7DEM7PkW44JMzZGS8YHLGPf1J/ywYBKvtmzErIioIvGzGTE3lEEff8CGeRP5pte7TAjUPd4NebqumDB5FkFLV+Hs4sqaVfrnspnTxmP9jOuKe6m3WR02l+ETF+IfsglHZzc26VnX3b+XQtiiKQwcNo1ZQRto16Ery4NnmrydkNnNuZ2iNNrGunxZpoxsgH/gJT4eeJIjJ+8xYpDpf0AWQgghQArt/xoJCQk0b96c/v37069fP3r37s3evXtLfDv9+/fn0qVLzx1n9OjRdO/enf79+9O7d28mTpyIWq0mNTWViRMnAtCpUycyMjIYPXo0+/fv5+DBg6xdu7aYyKYZN24c69evz3+cnp5O586dSU1NLZH4hZ06ewF3F0fq164BQPdOLxMdd56MTIVWu7dfb8fYgZ9iYWnxzNuIjYvD1dWVunXrAtClSxdOx8Tw5MmT/DbXrl0jPT2d9u3bA9C2bVsePnrEzZs3TdrG8WPHaNasGc7Omqtau3bpwuFDh3TaxcXG6vQl5vRprb7o9j8eV1cXXqirueqkW+c3+D0mlidPMgv6f/06GRkZvNyuLQDtvdrw8NEjbty6ZVL/o48fpWmz5jg5a65a7tz1LY4cPqDTLj4uFhdXV+rU1VzJ82aXbsTG/G60/wC/nzmPu6szL9apCcA7b7zGibgzPMnM1Gr3VsdXGDXoSywtnn2cT0UfolHTljg6uwLQscu7RB/Zr7fthx8NoFffr54pviZHBWPcpWs3jhzWvaonLi4WV1c36ublqHOXbsQUk6PYuHjcXF15IW+/6Nq5M6djYrX30bwxbt+uHQDt2nrl7aOmjTHA6egDNGzSGkcnTY5ee/M9Thz5VW/bD3p/QY9PvjY5Npg3R6fOXcDd2ZH6tTVXdnfv2F5nrshRqRjz3360aqS5crTpi3VJffCQxxnG98+nThw/QuNmLfKPgze7vM1RPccBQK+PPuWjfgNMipsf/9INPBztaeCpyf9/2jXh2IVrZCgKPrxmq1RM/uQtGlbXtPF6sSb3HmfwONP4B9ynzp/eR52GbbF3dAeg1Ws9OHtit067spaW9Pl2DlUcqwFQp2FbUpOvGe//hat4OFahQQ1N7A9ebsGx839q9z9HxcTPPqBhDU1cr/q1uZeWzuMnCr0xS/s9ABw/rj1fd+nalcOH9czXOvtpV2JijM/XpbGfmjM/pTJXn7uoyVGtQjmK/0NPjvrS6qWnOapD6oNH/29ydOL8Fao5OdCgpqZf77/aiuNnL5NRaB7IUakY93kPWjfQrA2a1atJ6sM0Hmdk6o1ZlDlzpDmnFV63vJm3btE9pz1dt2jOaQ9NOqfFxJ/BzdWFenU1V++/1bkTv8fGaa2LALq88TrDh3yL5V9YO4J5c3Ty/BWqOTtQv6YHAO+95sXxMxd1joNxX/SiVUPNHNTsxdqkPjBtjGPiz+rk6FRsvN4cjfiLOTL3XH3y/GWqOVWlfi1PwEiOvuxdkKN6tfPmiuJzdOrcJaoVnoteb6d3Lhr7309o9ZKmYPysc9GJ40doYvK6oj8fP+O64um6rmreuq7Dm+9xUs+6ztLCkm9HTKdadc3+8ELDpiTdumryduYEXWb77iSjbVo2qULSbQWX/kwHYOfeZNo0q4KNzV87/oQQQvz/JIX2f5FatWoRGRnJ6tWrWbp0KTNmzEChMP2Df2kbNmwYkZGRbNiwgRs3bhAXF4eTkxNTp07V275Dhw588sknJbJtHx8fli1blv+BKDw8nJ49e+JUzO1N/oqbyXeo5lIQt4K1NXaVK5JwO0WrXeN6pn21UZ/ExETc3NzyH9vY2FC5cmWSkpO127i6ar3O1dWVWwkJf2kbbm5uPHz4kMePH5vUl+Qkw4vXhMQk3Av1zcbGBtsi/U9ITMLVVfvWHm4urty6lWhi/xNwdXPX6v+jhw9J1+l/Am6F2mn6b0tysvHt3Eq6TTXXgltrVLCxxq5yJRKS72i1a/SMtwQqLDnxFi5u1fIfu7hV49HDB6Snp+m0rdeg0TPH14yddo4e6s1RIq46Y2xLcrKxMU7Eza24MU7Etcg+6ubqYvI+CnA76SYurgU5cnbzIO3RfTL05OiF+k1MjvuUOXN0MykFj2Lmiv9j777DojrWB45/AdkFKypdQI3G2GssMYlGo9GbSJJfYto1JsaYxAIqVuwFsVewIzbArqioKZZYkhiNBWxRo7FRFBRURHaBhd8fqwvL7sKiLMbc9/M897lZ9pw5M++ZmTPOnjOntJ0d7Vo21X0+HH0GLzcXypUx7878+LgbuOaJj6ubu7YO5cs/wEt16pmVZl7XEpPxdMx95L20UoFDGXuuJ6Xo/lbO3o52DbX/oM/JySHycAxNa3hQvrSdWce4ffMqlVxyl5mp7OzFg/t3SE+7p7ddeQdnXmzwKgAaTRYnDm2lbtP2Bef/1h08nHKXxyhtp8ShrD03Eu/k5r+0He0a19Hlf+svJ2jyYlXKlzH/Lj1LlgEM61+R++tnXE8tGZ+S6KuvJ5iKUZLe39q1aKL7fDj6LF5uzv87Mbp5G0/n3CU+tG2tNDcSb+v97c2Xc69lv566QFVXR8qZ2dYsGSNjbcescYurK9fNuKbFxiUYGReVJS5P+gD1ahdtuZ78LBmj6zeT8HDOXUqntJ2SCmVLc+OW/jlu3zz3WvxbzJ94uTqZdY61Y8fc+FoiRpbuq6/fTMLDRb8dFBqjU+bHSPtvkLznwFRf1Fj3+XDMuSL1RfFxsbi45o6LChpX1H6CccXN+Os4mzGuK+9QiYZNX9F9Pn38N1540fzjnb1gOE7Mz7OKPXE3c3/gSFdlcy81Ew+3ot2lL4QQlpCTkyP/y/O/fzJZo/055eDggJOTE1evXmXChAmUKlUKa2tr5s2bx4MHDxgwYADVqlXj6tWrNGjQgPHjx3Pr1i1GjRpFZmYmNjY2TJo0CXd3d9566y3q1q3Lq6++qkv/wYMHjBw5knv37qHRaBg9ejS1a9dm6dKl7N69G2tra9q1a0fv3r2N/i2vjIwMHj58iKOjI7GxsfTv358tW7YYlGnLli389ddfdOvWDX9/fzw9Pblw4QJ16tQhMDCQ8+fP4+/vT7ly5ahfvz4pKSlMnTrVaHycnJx47733WL58OR999BG7d+9my5YtXLp0iYkTJ2JlZUWZMmWYOnUq9vb2DB06lKSkJDIyMvD19aVNmzZmnwu1OgOlra3e35QKBelq8+7eNOsYKhUKhUL/GEql3g8tarUa2/zbKBSozfwxRq1WU8EhdwLNVqHAysoKtUpFuXK5a1Wq1OpC82IsbYVCP0YKhUJvH5VajSJ/HJUKVOoi5L9C7pqUtrba/KvUKsrmyb9aZRgnhbLwOKnVGQb5UygUpKuK8Tyr1ZQ3Uga1SkXZskV/dN8wfRUV8jxabTpGhvVNoVQUfo5t8+2T7xwbrwcF1x1jZShfIXeiNDdG6ZT5h8dIlZFhUH5tX2F87c+/rsUyd/VGJvp+bXb+M9RqKjgYawfpevl/UqrMLBSl9IcOSttSpGdkGmy7++R5pmzcTTl7JbN7fWD2MTLV6ZQpn3uOSz0qQ4Y6HfsyhksD/PrjavZuXUhl56p09yt4WRRVRgYK2/z5tyVdbST/x88wbc1OypW2Y2afz8zOv6XLANp66mCknqrV+v21WqXCNn+bK6S/Lol6asn4lERfrTJyDKXC1uR1/69rscwN28REn55mH+O5j5GxtqawNVmPLt5IYNbaKCZ/Z35bs2hfYWRMor2m5cZIbWQ8lP+6Z4p2zGbYzlTFeA6g5PtTO4UtKlN9xfV4ZkdsY1Lfz83Ku7H4FneMLN1Xq9SZBvWo0BiFb2VS3+5m5V+VYZh+wX1RHHNWbybAt4dZ6cOjcVHefx+YGBc9qdBpz6sAACAASURBVIwnGNedjTnKj9vXMjzAcDmnp6FUWpORka2fv4xs7O3k3kQhhBDmk4n251RsbCx3797lzp07jBkzhrp16zJv3jyioqJo164dFy5cYP78+bi6utK1a1fOnz/P6tWr6dmzJ61bt+bAgQMsXLiQSZMmcePGDRYsWMCLL77I9u3atWpXrVrF66+/zkcffcSlS5cIDAxkxYoVLF++nF9++QUbGxvWrtWuo2nsbwCzZ89m+fLlXL9+nY4dO+Lp6UmsmXeunj17ljlz5lC5cmXatGnD/fv3WbBgAf369aNjx44MGDAA+0LWp+7ZsycffPABf/75J/369UOpVBIQEMDEiROpVq0aERERRERE0KZNG1JSUoiIiOD+/fscOGD8cUhT7OyUqDP1J2lU6gxK25l396Z5x7AjI0N/UK5Wq7HPcww7Ozsy822jUquxKyAfUdu3ExUVBYBNqVJUrJg7QZeRkUFOTo7BOuCm8lLQeuHaffRjpN1HP/8ZBnHUL2N+O6K2sjNqGwClbGyoWDF3oK7Lv51h/vPHSa1WF7qmpJ1SaZA/tTqD0vZPd55/iNrETzs3A2BjUwoHvTKojZahKKKituliZGNTyuwYGa9vhZzjzIL3sVMarwf2hcRw984N7N6pXdPUplQpHBxy7w57HKOirsWeV0nFyF6pMCi/tq9QGmx76sJlRs5dysjvutOsXsF36+2K2sL3OyJ1+TdWh4q6Frsp9gpbMrKy9P6mysiitFJhsG3HJrXp2KQ2Ry5cpVfwGjb698SxvOHLzQB+2x3B77u164Bb25SirEPu3cKZj8qgUBo/x692+oLWb3Un5vddLJ7wX/ym7cBWYbxO2SsUZGTmz3+m8fw3q0/HZvU5+ufffDtzOevH9cOxgulJBUuXISpqOzuitNfootTTTGN97zOopyV1ji3VV+dlb6cwcr3KNB2jecsY+e3nNKtX8Fq//6oYKY20NXUGpZWGMYr56yrDF0Yw9quuvFyn4Kf/SixGRsYkBuMupdL4dcCM96fY2SkN2qZKnVHo9dAcJVePjPen9kbaQczFK4yYv5rRX3/My3VqmlUOY9fZ4ohRScUHHsco33kuKEbBqxjd6xNermtmjIylb6q/vvg3I+eFMurb/9KskBdX74qKZJfJcUXGU48rdu/cwN4847oKRRjXHf99P+FLZ+I3erZuGRljPnjHnQ+7aO+UX7Lqbw7+fsfkto+pVNkoFPqT6kqlDQ/TNYXuK4QQQjwmE+3PkStXrtC9e3ft4EOpZNq0adjb2zNz5kxUKhWJiYl4e3sDUK1aNd0jr40aNeLvv//m5MmTXLlyhUWLFqHRaKhUSTtosre358UX9R8PPnnyJMnJybqJ9/RH63Z26tSJr776ii5duvDuu++a/Btol45p164d2dnZjBs3jo0bN/LKK69gDi8vL90yL87OzqSmpnL58mWaNtU+qt6+fXsOHz5cYBp2dnb07NmTNWvW8PbbbwNw6tQpxowZA2gHig0aNOCFF14gLS2NoUOH0rFjR9555x2z8vhYNXdX9vz2h+7zg4cPSU17iGeex7KfloenJwcP5q4TnZaWRmpqKlWqVNHbJuHmTd3nnJwcEhIS8PLywhTvd9/F+9E527FjB6dPn9Z9FxcXR6VKlShbVn9izNPDo9C85OfpUYUDh37R2+fBgwdUcc99FNXLw4OEBP38xyckUNXL02S6Xbzfp4v3+wDs2rGNM6dP6b6Lj4ulUqXKBvn38PTkl4P78+TlAQ9SH+BeQP4Bqnq4sffX33WfH6Q9JPVBGh5uLgXsVbjO3l3p7N0VgJ92buHcmZO6727Gx1KxUmXKlH3yO4a8vd/D2/s9AHbu2M6ZPOc43sQ59vD04tDB3B+c0tLSHsXIHVM8PTw4cPCQ/j4PHlAlzz6enh4k5HnkW3uO4wusowAd3/mYju98DMCeXZs4f+aE7rtb8TdwqOj4XMSoahVX9hw+pvv84GG60b7ir2uxjJyzlIABvWhSp/ClG972/oC3vbV3jH+/Yytnz8TovkuIj3vqOpRXdZfK/HjiT93n1HQV99NVeDnl/kh3M+U+567fpH0j7T/kW75UDReHcpy6Eq/7W36tO3ajdcduABzes4Yr53P71Du3rlHOwQn7Mvp3tiXGXeZ+yi1q1m+NlZUVjV95h+2rA0hKuIJ71TpGj1PNzYmfjp3Jzf9DFfcfpuOV59H+m8n3+PNaHO2a1AWgRZ0XcKlYgdN/39D97VmUwdv7Xby9H/fXUWbWU8Nrx4PUBwX215aqpyV1ji3VV+sdw92VPb8dzz1GQTGaG0JA/6//52JUzc2Zn47mXpNTH6Zr25qro952F28kMGxBBFP6/JemL1UvNN2SipGXhwcHDhqOW9wNrmlFG7fkpl+F/Yd+031+oBsXuRWwl3lKrj91Zvfv0blleJjO/bSHeLnon+O/rsfjP38Vk/t9QZOXTE+M5ufpUYWfD/2am34xxaik4gNQzd2Z3Udyx3UFxih4FZP7dadJbfOXmqzm7sKew/n7onQjfVEcI+YuY1L/njSpXfgk/tve/8fb3v8HGBtXPB6bGv/h3Bx5x3V7izCuOxt9lIhlsxk6IRh3z4L7iy0749mys+A12fO7FvuQN1/P/eGlTGkbypUtRWy8ee+NEEIIIUDWaH+u5F2jPTQ0lCZNmhAYGMgXX3xBeHg4n3zyiW7b7Ozcx95ycnKwsrLC1taWefPmERYWxpo1a5g/fz4AtvkeOXz8tzFjxhAWFkZYWBibNm0CYMKECYwfP56kpCS6d+9OVlaW0b/lZW1tTYcOHTh27JjBcUyxyffircfrMFlZWQHo/r8wnp6eeHh46D7b29uzevVqwsLCWL9+PaNHj8be3p4NGzbwySefcODAAUaNGmV2PgGa1n+Jm0nJRJ//C4C1O/bwatMGRu9WeVKNGjYkMSmJM2fPAhAZGUnLFi307lav6uVFhfLl+fln7csz9+zZg7Ozs175C9KqVStioqN1Tx1ERkbS9o03DLZr2KgRSYmJnD1zRrddi5YtC7xzvnHDBtxKTOLM2XMAbN66nZYtXta7M6yqlycVKpRn337t5OVPe/fh4uSERyET4I+1bPUqMTEniY3VvoRsW+RmXm/bzmC7Bg0bk5h0i3NnT+u2a96iZaF3jTetX5dbSXeIOXcBgPVRP9D65cYF3nFfVC+3fJ2zMceJj70GwM6t62jdpmOxpd+yVWu9GG2N3EwbIzFq2LARiUmJnD17Rrddi0Ji1KhhAxITE3V1dMvWbbRo0dywjlaowL79+wHYvWcvzk7OZp9jgKYt23D21B8kPIrR99vW8Eqbt8zevzCWjFGzei+RkJRM9PlLAKzdadhX5OTkMHHhSoZ+/ZlZE3P5tWj1KqdjjhMXq30J8vbIDbzW9s0ip2NK8xe9SEi+z4nL2viE//wHberV0LsjPDNLw9iInVxK0K4Rey0xmRtJd6nh5mg0zfzqNn2Ty2d/171o7pfvV9LoFcMfQNNSk9mwxJ/7Kdq1w69ePEF2VhaVnE1PcjV/qToJd+5y8i9t/YnY8xuvN3wJ+/z5XxHJ5TjtetXXbt3hRtIdXnA3fxLSkmUAaNXqFWJionX1NDJyC23bvmGwnWE93UKLfNeO/EqinloyPiXRVzerV4uE23ljtJdXm9Y3jNGiVf+zMXq5Tg0Sbqdw8qI2/xE//sLrjerotbWcnBzGhWxgxBfvmzXJnp8lY5R7TXs8btlGyxbN841bHl/TtOOW3Xv2mX1Na9ygPrcSkzh9VvvD5eZtO2jVvFmxngOwbIxerluTm3dSiL6gfSFlxA8HeK1xXYN2MG7pWoZ/2bVIk+wATRrU41bibV2MNlkgRpbuq1+uW5Obt/PE6PsDvNaknmGMlqxheI8PizTJDoZ90Zpd+3jNSF80YdFqhvX8xKxJ9vxatHqVUzEn8owrNvJ628LXpzdXk5ZtOJdnXPfDtjW0MjKuU6tVLAuaiK//tEIn2Z/UidN3cXG2o2Fd7Q8tn7znwW9/3EGlzi5kTyGEECKXVc4/fRV5AWBybXNvb2+Cg4Nxd3enV69eNG7cmI8//pjOnTuzb98+HB0d6dq1K9OmTWP16tXUqVOH//73vxw+fJjbt2/j7e1Ny5YtOXLkCADdu3dnzJgx7Nu3j9TUVIYOHcqlS5c4dOgQXbt2ZdWqVfj4+ADQo0cPAgMDiYyM1Pvb3LlzmTp1Kp06daJdO+0EVVBQEAqFgi5duujK0b59e6KioggICKBTp06kpKTo1mjPW9YPPviAoKAgAgIC6NatG23atGHIkCGUKlXK5Brtjx05coSIiAiCgoIA7XIyX375JW3btmXnzp1UqlSJ8uXLc+nSJd577z0yMzPp1q0bGzZsMJlmSozh0jLHz15gzsr1qFRqPFydGdOvB5rsbAYGzmPNrPEA/HfweDQaDbG3knCq6IBSYctYn57Uq6k/WEwpa3xi/NSpUyxesgSVSoW7uzuD/PzIzs5m9JgxLF60CNA+9TAvKIjU1FQcHBwYOGAAnp76/wjIKeBHioMHDxIRHo5Go6FGzZoMHDgQe3t7Lly4QNjq1UwKDNTlZcnixbq8+A0apHtCwlZjfF3ImFOnWbg0FJVahbubG0P9+pOtyWbE2AmELNSenytXrzI7eCH376dSsaIDg3z74eVpGI90a+N30fxycD9rIlZr81+jJr4Dh2Bvb8/FC+eJCFvBhEnTADh9KpqQJQtRqVS4ubsz0G8YFSvlPhZbSZ1gNP0TZ/5kXmgYKpWaKm4ujPL9luzsbAZNmE5YkLYudu/vjyY7m7ibiThWckCpUDC6/3fUzfMy3Fhb0//YPHxoLxsjQsnWaKhWsxa9+4/Azr40ly6cY0N4CCMD5nA3JZmJI/oBEB97HRe3KtjY2DB6UhCVHJ0oa51mMv1DBw8Q8ShGNWu8SP+Bgx6d4/OEh60iYNIUAE6dimHpkkWoH8XIz2+IXoxscwzPc8yp0yxauhSVSo27mxtD/AaSnZ3NyLFjWbpwAaA9x3OD5nM/9T4VHRwY2N8XL0/Df6gmZpme1Dzyy262rA1Bo9FQ7YWX6OU7Gjv70ly+eJbNEYsZNiGYe3fvEDhS+76IhLhrOLt6YGNjg3/AAipVdqai7V2Lxsgp9YrRtI+fvcDslRtQqdV4uDoxtq+2rxgQGMTaWeM4ffEy346dgaeb/t1oE317UfsF/Tv/48oaX6rj10M/sy58BdnZGqrXqEW/AUOxty/NXxf+ZG34csYGzOBuSjJj/Ado04m9gaubOzY2NowPnE1lR+3dXDX+/sFo+n/8dY3pm/aQnpGJp1NFAj5/B012Dn0WrmfLyF4A/HTyPEt/+JXMLA1WVlZ81aEl77XSfzntLocvTZ6DU0e+Z8+W+WRrsnCvVpcPe01CaVeGG5dPsXtzED2HLQPg8O4Ift+zlpycbGxKKej0sR+1G7cFoLNqk9G0j124wvR1O1GpM/F0rsSErz4gOzuHvnNXsWmCLwC7j50hZMd+MjUarIAenV/n3VebGqT1g11Xi5ahYeVrJtM/dPAg4RFhZD/q7wYM9NP119p6Olmbj1MxLF2yWNff+fkN1vXXjqnG0y/Oerovw/g7T4ojPgCvlzX8Eb+4+moAW/UDEzG6yOxVG1CpM7Qx6vMFmuwcBkwOYu3MsZy++DffjptpJEY9qV09N0b7Mt8wmv7zFKPS94zfNXrsz8vMWBNFujoDT+fKTOj1Mdk52fSbGcrGwEHEXLrG14GLDO7uDez9GXWq5U5W/2jzbv6kizVGzSr9ZTRt7TUtRDvWyXNNGzF2HCELtTerXLl6lTlB87mfmkpFBwf8+vsaHbfYZBu+ByL69BkWLF2OSq2mipsrwwb6oMnOxn9sAKEL5gLwdb+BaDQa4m/eonKliigVCvwH9ad2Lf0fb47eNf20TXHEqCPfG0372J+XmBUWqT3HLo6M+/YzsrOz8Zm+lA1Th3Hqr6v0CgjG09VJb7/Avp9Tu1punO47GH+yLfr0GeYvXaGL0fCB/dBkZzN87CSWL5gDQM9+fkZi5EudfDE6ctf4izOLq511tDJ+zTx27hKzwiNJVz2K0XePY7SEDVOHa2M0Mch4jKrnjo+ybQyXOAM4fu4is1Zt0vbXLk6M7dOd7Owc+k+Zz7oZozl18W++HT/boC8K8Omh1xfFlTddh3499DNrw1eSna3hhRov0m/AsEfja+24YtyjccVo/4HatPKMKyYEztKNK+5nlTGa/pFfdhO5NoRsjYaqL7zE13nGdVsiFjN0QjCHD/5IaFAAjs76TzSMmLxYt/TMkKHRxpKnVo2yjBtSh1I2VlRxs+da7EMAuvX5gzovlqPX59UYPE57A06T+hUY8G1N7JQ2xCWkEzj3PMl3c9vvL1FtjR5DCCEsbdhiebomr+m9/7kvqpaJ9ueEqYn29evXs3r1ajw9Pfnwww+ZOHEiISEhDB06lPr163Pp0iUaNWrE6NGjuXXrFiNHjkSlUmFlZcWUKVPw9PQ0OtHu7u7OiBEjuHPnDtnZ2YwaNYoGDRoQEBBATEwMpUuXpkmTJvj5+Rn9m7+/P2fPnsXBwQGNRoOTkxNTpkwhOTn5iSfab9++zejRo3FxcaFmzZqkpqYyefLkAuOWf6L98uXLjBkzBmtra5RKJbNmzcLKyopBgwaRnp6OjY0Nn3/+OZ06dTKZprGJ9uJkaqK9uBQ00V4cTE20FydTE+3FxdREe3EpaKK9OBQ00V5cjE20F6eCJtqLQ0ET7cXB1ER7cTI10V5cTE20F5eCJtqLg6mJ9uJU0ER7cShoor04mJpoL06mJtqLi7FJ5OJkaqK9uBQ00V5cLB0jUxPtxaWgifbiYGqivTgZm2gvTgVNtBcHUxPtxcXURHtxMjXRXlxMTbQXF1MT7cWloIn24mJqor24mJpoL04y0S6EeFZkol2fTLSLEmVqUv55Fx0djZ2dHbVr12bJkiXk5OTQu3fvEs+HTLQXTCbaCycT7YWTifbCyUR7wWSivXAy0V44mWgvnEy0F04m2gsmE+2Fk4n2wslEuxDi30wm2vX9kyfa5WWo4rmhUCgYNWoUdnZ22NnZMWvWLHx8fLh3757edmXLlmXRo6VUhBBCCCGEEEIIIYQQwtJkov1fyMPD4193NztA3bp12bx5s97fHr/QVQghhBBCCCGEEEIIIZ4VmWgXQgghhBBCCCGEEEKIf6BsWfX7uWH9rDMghBBCCCGEEEIIIYQQQjzPZKJdCCGEEEIIIYQQQgghhHgKMtEuhBBCCCGEEEIIIYQQQjwFmWgXQgghhBBCCCGEEEIIIZ6CTLQLIYQQQgghhBBCCCGEEE+h1LPOgBBCCCGEEEIIIYQQQghDOTk5zzoLwkxWOXK2hCiSi5evWzR9u+w0i6afbl3Wouk/0JSxaPoAVTMuWDT9JHsvi6ZfTpNi0fRVNpY/BzZoLJr+wxzLlkFppbJo+mUy71k0fQB1qdIWTT/Lytai6VtZWXb4kaaxbF8HUMbmgUXTL6+6bdH0byks29cB2Fs/tGj6ZdWW7U+TbKtYNH1LxwegTIZl+6OkUu4WTb+0tWXHReVUyRZNH+Cu0tmi6dtYZVk0fVuN2qLpP7QuZ9H0AWytMiyavjLLsm35uqaqRdP3srlm0fQByqTfsWj698u4WjR9tZW9RdMHqFXD8tdlIcTzafBCy46Hnjez+lp+zuNJydIxQgghhBBCCCGEEEIIIcRTkIl2IYQQQgghhBBCCCGEEOIpyES7EEIIIYQQQgghhBBCCPEU5GWoQgghhBBCCCGEEEII8Q+UnS2v13xeyB3tQgghhBBCCCGEEEIIIcRTkIl2IYQQQgghhBBCCCGEEOIpyES7EEIIIYQQQgghhBBCCPEUZKJdCCGEEEIIIYQQQgghhHgK8jJUIYQQQgghhBBCCCGE+AfKkXehPjdkol2IYnLwwM+sX7cGTVYWXlWrMcBvCGXKlDHYLib6JMtDl6JKT8fZ2YUBg4bg6OhUaPonY06xdPlK0tNVuDg7MWSgL06OjnrbXP77CkELF3PvfioVypdjQL8+vFC9WpHKsGFdhK4M/f2GUKZMWaNlWBG6BFV6Ok7OLgwYNNSsMvx2cDdb169Eo8nCw+sFvhswitJG0s/KymLdqoXs2rqW4BXbqOzoXGjax0+fY/6q9aSrVLg4OTLK52ucK1fS2yYnJ4c1275nyZrNBE8YTqM6tQpNN79DB/axcV04WVlZeFWtjq/fUKMxysrKYvWKELZHbmTZ6vVmnuPTLF6+SlsGZyeGDfDBybGyQRk2RG4jdPUaZgVOoEG9OkXK/4ED+1m/bi1ZWVlUrVqNgX6DTNTTaEJDQ0hPV+Hs7IzfoEGFliE6OoaQ0NBHdduZQYP8DOro33//TfCCBdy/d5/yFcrj6+PDC9WrF6kMvxzYy8b1YWiyNHhVrU6/gcNMnoOwlUuJitzA0lUbcDSjHoFlY3Ti1BkWrQgjXaXGxcmR4f374GzkHK+PjCIkfB1zJo2lYd3aZuUbIDomhpDQ5bo8DfYbYLSfCF6wkPv371O+fHn6+/Qt8jmwZIwADuzfz7p167TpV6uGn5+f0fSjo6MJXbaMdJU2/UF+fjg6FZ7+rwf2sHn9arI0WXhVfYE+A/xN1qGIlYvZsXU9i1duNqsvKokyHD91lgWr1vIwXY2rc2VG+nyLs6Nhf7d26y6WRGwkaOIIGtV9yey8g7adbVofhiYrC8+q1ek3cLjJGIWvXPKonW00O0aWjs/ClRGkq1S4Ojni7/ud0Xa2busOloZvYF7AqCK1s8ee5xidOHWGhSvCH10znfDv39t4jCJ3EBK+jrmTxjxxjDavX62LUd+BBbe1qMgNLFm16R8RI207W0N6ugpXZ0dG+HxrNEZrt+5kacQGgiaOomER25mlx45g2RiVzNh0HxvXRTy63lTH18TY9FT0SVaELtaNTfsPGvaPuN6UxNjuyKEfidoYiiYriypeNejpO87o+Prk0QNErllCVlYGZctV4IveI/CoWvOZ5v/YmfMEhW0kXaXG1bEyY/r2wLlyRYP0I6J+YtHaSBaMG0zj2i+anb62DDGEhK54NBZxYojJsdEi7t2/T4Xy5env06dIY6OSaMtCCCGeD7J0jBDFIDExkSWLFjBuQiCLQ1bg4uJC2KrlBtupVOnMmDYZ3wGDWLJsJc1btmJB8LxC009XqZg8fRaDfPuxculCWrVozrwFiw22C5w+i48//D9WLl3IJx99yJSZs80uQ1LiLZYums+4CYEsClmJs4srYatWGC3DzGmB+A4YzOJlq2jR8hUWBs8tNP3biTdZtWQ2w8bNYtbi9Ti5uLE+zLAMALMmDcPOzt7svKer1IydvQj/vl+xbv40Xnu5MTOWrDLYbsbSVdxIuEnFCuXMTjuvpMRbhCwKZsyEKSwMWY2ziysRq0KNbjt54mjs7YtSBhWTZsxmsG9fVi+ZzyvNX2bOgiUG281duJTYuAQcKlQocv4TExNZvGgR4ycEsDQkFBcXF1avWmmwnUqlYtq0KfQfMJCQZaG0bNmS+cHBBaatUqmYMm0aAwf0J3RZCC1btiQ4eL7BdlOmTeOjD7sSuiyEjz/6iOnTZxSpDEmJt1i2OIjR46cxf2kYTi6urFm9zOi2UwNGYV+EegSWjVG6SsXEmfMY6vMd4Yvm0rp5M2YvMsz77EXLuBGfQMUK5YuUd5VKxeRpMxjY35flIUto1bI5QfMXGGw3Zdp0Pu76ActDlvDJR12ZNmNWkY5jyRg9Tn/RokVMmDiRkGXLcHFxYdUqw/asUqmYNnUqAwYOZNmyZdo6N9+wzuWXlHiL0CVzGTF+BkFL1uDk7Mra1SFGt50eMAK7IrTjkihDukrFuFkLGN63F+sWzuDVl5swc7FhXz1z8UpuxN8scj2CRzFaPI9R46cRvDQc5wLb2cgi9ddg+fhMmBXMsH7fsGbhbFo3b8qsxYbX41mLlz9xfOBfEKOZQQzz+Y6IRXNp3bypib4o9In6oseSEm+xfPFcRo6fTtDSCJxdTLe1aQEjsLMrXaT0LR2j8bPmM7xvL9YunPWonZmqR08WI0uPHR8fw5IxKomxacii+YydMJlFIatwdnEh3ESMZk6bhM+AwSxatprmLV9hUfCcQtO39PWmJMZ2d5JuEh4yA78xQUxZuAVHZ3c2Rxhe+1PuJLJs3ni+GzyJyfM30er1zqxaNPmZ5j9dpWbM3BBGfvcFG+dN4rVmDZkWEm6w3fSQCK7H36JS+aK3s3SVisnTZuLX35cVIYtp1bIFQfMXGmw3edoMPur6AStCFvPJRx8ydYb59bQk2rIQQojnR4ET7bGxsTRp0oTu3bvz+eef8/HHH7N79+6SyptR58+f58qVKwD4+/vz9ddf633/888/89JLLxEbG2tWGt27d+fixYtFzkd4eDjBBUwYbNmyhbZt2+pi17NnT27fvl3k47Rv3560tDST3//www9FTtMcISEhdOnShatXrxZ531u3bvHVV1+RkZFRpP0sVZa9e/eSkZFBUlISY8eONbrNzZs36dmzJ5mZmU90jCO//0ajxk1wdtbegdWx03/49ZeDBtudionG1dWVmjW1d2J0fKsz0SeP8/DhwwLTj445haurCy/WrAFA545vcvxkNA8fpuu2uXL1Kmlpabz6SisAWrdswd1797h240aRyuDk7JKnDAeMlsHF1ZUaj8rQwcwyHD9yiHqNXsbR2RWANzp6c+TXfUa3/b9Pv6Jrt2/Myjdo72Z3d3HipReqAfBO+9c5GnOGtPR0ve3efuM1/Pv0pJSNjdlp53Xk919p2LhpvhgZnmeAjz/rzmef9zA77ZOnTuPm6kKtmi8A8J+O7TkeHaN3jgHeevMNBvv2oVSpopfh998P07hxY109fatTJ3755ZDBdjEx0bi6uuWpp504efJEgec4OiYGN1dXXqypuwf05AAAIABJREFUvTOq01sdOXHypN4+V65c5cGDNFq3fgWAV1q14u69e1y/ft3sMhz9/Vca5DkHHd56m9+M1FOAjz79gk8//8rstMGyMTp56ixuLs7UqvHoHHdoxzEj57hz+7YM9fkOm1JFe+gsOuaU/jno2JETJ6P1z8GjfqL1K4/PQctH58C8fgIsGyOA3w/rp9/prbf45ZCR9KMf96fa8r711lucPFF4+seOHKJBo2a6OtT+rXf4/defjW774adf8km3r41+96zKcPz0OdxdnXmpRjUA3nmzLUdjTvMwX3/3n3avMbzf10/U3/3x+y80aJwbozffeofDv+w3uq22nfUsUvqWjM+JU2dxd3HmpRraOxHffvMN/og+ZRCfzu1eZ1i/b574evBviFGtxzHq0E4bo3x9Uaf2bRjm8+0TXW9AG6P6jfO2tS4mY9T10y/55J8Uo9PncHd10q9HRtpZ53ZtGP6E9cjSY0ewbIxKamzaMM/YtIPJselJXFzdqFFT+6Rih7f+Y1aMLH29KYmx3ckj+6nbsDmVnbTj69c7vsexX/cabGdjU4regwOp4qnNy4t1GxN3/e9nmv9jZ87j7uJI7ReqAuDd/lWOxJwjLV2lt93bb7zCyN5fYPME8dGOjfLW0w6P6qnh2OhxPdWOje6aPTYqibYshBDi+VHoHe3Vq1cnLCyM8PBwli5dyuTJk1GpVIXtZjG7d+/Wm/yNjY0lOTlZ93nXrl14enoWKQ1Lefvtt3Wxa9q0KZs3by72YyxdurTY0wQ4dOgQM2bMoFq1akXeNzAwEF9fXxQKRZH2s1RZVq5cSWZmJk5OTkycONHoNq6urrRp04bVq1c/0THi42JxdXPTfXZzc+Pu3bs8SE3V2y4uLhZXN3fdZ3t7e8qVK09CQnyB6cfGxePu6qq3X/ly5YhPSNDbxtXVRW8/NxdXbtyIM6sM+fPm5ubGPRNlcDNahoKPkxB/HRfXKrrPLm5VuH83hQcP7htsW6t2A7Py/NiNhJtUcc19zLy0vR0VypYlLiFRb7v6LxX8eGxh4vPFyNXNnXt3UwxiBFC7Tr0ipR0bl2DkHJclLs85BqhXu2iPpecVFxdntJ6mGpzjONzybKc9x+UKrKem9slbR+Pi4nDLU0bQtr0bBfwwml983A1c89Sjgs7BS0U8B4/zaKkY3YiPp0qeNlra3o7y5coRd/Om3nb1ahd9SSOA2Lg43NwK6yficM13DtxcXYp0DiwZI2P7FTn9+ILTj4+7gYtb3jpURVuHHhirQ/ULTOtZlOFGvJH+rlxZYhNu6W1Xv4iP1ucVH3cDF1fz+roniZGl4+OeLz7ly5UzEp8na2ePPc8xio1PwN1IXxSbry962hglFKm//mfF6EZ8gtH+unjbmWXHjtp9LViPSmBsmn/c5ebmbnRsmn+7xzG6WcjY1NLXm5IY292Mv46zq4fus7OrB/fvJZOWb3xd3qESDZq21n0+deJXXqhVcLuzdP6vJ9yiikvusiml7eyoUK4MsTf1x+8NatV4ovTB+Lkzq566unLdzLFRSbRlIYQQz48i3S7n4OCAk5MTSUlJpKWlMWHCBEqVKoW1tTXz5s0jJCSEatWq8dFHHwHaiebp06czefJkvLy8OHnyJJ999hkXLlwgJiaGbt260a1bN44dO8bs2bMpVaoUbm5uBAQEcPLkSSIiIrCysuLvv/+mU6dOdOzYkXXr1lGpUiUqV9auDffaa6/x/fff061bN1QqFVevXtVdTDUaDWPGjOHGjRtkZWXRv39/KlWqZJDG999/T2BgIHfv3mXRokW4u7szffp0Tpw4gUajoVu3brz//vscPnyYyZMn4+joiJOTU6ET+nnduXOHRo0aAbB9+3bCw8OxtrbmxRdfJCAggC1btnD8+HGSk5O5cuUKX3/9tS6OAAkJCfTr14/Fixfrfi1ftmwZFy5cwMfHh+7du7N8+XIePnzI8OHDOXr0KD/++CPZ2dm0bdsWHx8fgoODSU1N5cqVK1y/fp2RI0fStm1bJk2axJkzZ9BoNHz22WdYW1tz7tw5Ro8ezYwZMzh8+DBRUVFYW1vToUMHevbsSXBwMDdu3CA2NpawsDBsHt3JEx8fz40bN2jatCkAU6ZM4dSpU6jVaj777DM++ugj/P396dSpE+3atePnn3/mxx9/pGbNmrqyzJ8/32j8u3fvTsuWLfn111+xtrbm/fffJzIyEhsbG1auXElSUhJDhw4FtGt9Tps2jRMnThAdHc0333xDYGAggwcPZsuWLfz666/Mnj0bGxsb3n77bXr06MHHH3/Me++9Z/CUhDnUajUVKjjoPtvaKrCyskKlVlG2XO4yJWqV2uAHCIVSUeiPV2q1GoXCVn8/hf5+KrUaha3+NkqlApXavB/GtGXIXROxoDLYGimDupAyZKhVlDeSvlqlomzZJ3ss/TGVOgNl/rIrFKSr1U+Vbn7mxuhJ07ZVGJZBpSq+MqjVKr3HenXnQK2inN45VhnkRaFUFlhPVSoj+VcaqaP56o5SUXj9zytDraaCg7FzkP7U5wAsGyO1OsNo+dOL6Ryr1WoUtvnaZr74Gu9LCs634XEsF6PHeazgkKc/VeT2FXnTN1qfzE3faF+UTtmyT1+HLF0GtTrDoK9XFGM90h7DeDtTF1s7s2R8DNuBUmFb7DeJPM8xUhnpB4r7egPavqL8cxsjw3amrUfF3M4sOHbUHcOSbc3iY1NVEWL0z7zeWHpspx1f576jI+81rYyJ8fW5mKP8tH0twwIWFZi2pfOvLoHxu7E6qMhXBrWR85u/LhekJNqyEELkZMvbUJ8XRZpoj42N5e7du7i5uXHkyBHGjBlD3bp1mTdvHlFRUbz33ntMnTqVjz76iEuXLuHp6YmDgwN//vknCxYs4N69e3Tp0oW9e/eiVqvx9fWlW7duTJo0iZUrV+Lg4MD06dP54YcfcHFx4dSpU3z//fdkZ2fTvn17fHx8eP311+nUqRMNGzZkzZo1vPXWW8ybN49u3bqxf/9+WrduzYkTJwCIiorCycmJyZMnk5yczJdffklUVJReGgCVK1dm1apVzJo1i59++ol69erx119/sW7dOh4+fMi7775Lhw4dmDVrFjNmzKB27dp88803hU6079q1izNnzpCSkkKZMmUYNmwYAOnp6Sxbtozy5cvTrVs3Lly4AMDFixdZt24dV69eZdCgQbqJdrVazbBhw5g0aZJukh2gV69ehISEMH/+fI4cOcLFixf58ccfUSgUHD16lDVr1mBtbc2bb75Jjx49AO0SKSEhIRw8eJB169bRqFEj9u/fz549e8jMzCQyMpKPP/6YzZs3M2bMGGxtbfnhhx9Yu3YtAJ999hmdO3cGIDMzkzVr1uiV+ejRozRr1kyX7ypVqjBixAhUKhUdOnTQ+/Egr7xl+eOPP4zGH8DJyYm1a9fy6aefcu/ePdasWcN///tfLl68SGZmJv369aNVq1Zs2rSJNWvW4O/vT1BQECEhIaSkpADaF+pMmDCBdevWUaFCBfr27cunn35K6dKlqVy5MlevXjXrTv4dUVvZEbUdgFI2NjhUzP3HZEZGBjk5OQZrstrZ2RksqaNWq7G3syvwWNr99Je1UavV2Nnb6W+Tb+kbVSFp74jays6obboyVKyYO1AvqAyZRspgbP3ZH3ds5Kcdm7TplypFBYfclydlZKiNpv8k7JVK1PnLnqHG3k751GnvjIpkV9RWQPvYrTkxehJ2dkoyM/Kfvwzs7QuuG4WJitquq6fm5l97jo3UtwLKaWqfvPXPzk5pov4XHL9dUVv4fkekrgwOemXQ1qOirsWeV8nFyLD8hbXRotD2AQXH105pvC8prJ5ZOkZR27cTFRWlTb9UKSoa60/tzetPja2p/n3UZn7YuUWXf2N16GnbsaXLoNtHqTTo69XqDEo/ZV+Rt51pr2nFG6MSi4+d0kg7yCiWdvbviZGJfqAYYvR91OZ8MSre6/6zbmf29k83riiJseOzrkdPOzbdGbWVnY/GXaUM+uuCYpQ/L6pncr3R388yY7s9O9ezd9cGQHtNq5CnnWXq2pnxdx6c+H0/4SEzGDh6jm4ZmZLOf970Dcbv6gxKF9O4SHsMwzpoMD5VmhifFnB+S/LfgUIIIZ4vhU60X7lyhe7du5OTk4NSqWTatGmUKlWKypUrM3PmTFQqFYmJiXh7e1OrVi3u379PcnIye/fuxdvbGwAvLy8qVqyIQqGgUqVKuLi4kJaWRmpqKrdv3+batWv4+voC8PDhQypWrIiLiwt169Yt9GWCVapUITMzk/j4eHbt2kWfPn10E+0nT57k+PHjus9qtdrouuGPJ4ZdXFy4e/cuZ86coXnz5gCULl2amjVrcu3aNeLi4qhduzYAzZs3R13Ir+1vv/02w4cPB2Dr1q2MHTuWGTNm6CZ3AS5fvszdu3cBaNy4MTY2Nri6uuo9sjh+/Hjat29P3bp1CzzeSy+9pPuV3M7Ojs8//5xSpUqRkpKiO8bjO80fH8PBwYFq1arRp08fOnfuzPvvv6+X5unTp7l27RpffPEFAGlpacTFaR/DfPxDRV6JiYm4uGgfvVMqldy7d49PP/0UW1tb3UR3YUzFP+8xnZ2ddfFwdHQkNTUVT09PJk2aRHBwMPfv36dePePLRiQnJ6NUKqlUSTtwX7Ik96U+Li4uJCQkmDXR3sX7fbp4a+O1c8d2zpw+pfsuPi6OSpUqUbZsWb19PDw9OXQwd23JtLQ0HqQ+wL1KFQri6VGFA4d+0d/vwQOquOc+fujl4UFCQu5j3zk5OcQnJFDVy/QPQnnLsGvHtnxliKVSpcpGy/DLwf158vLAZBk6dfmITl20P67s3rmZP8+c1H13M/4GDpUcKVMMd5B6VXFj729HdZ8fpD0k9cFDPN1cC9jLPO94/x/veP8foI3R2dMxuu/i42KpaCRGT8LLowr7D/2m+/xAd47dCtircN7e7+Lt/S4AO3ZEceb0ad13BdXTgwdz15Z8XE+rFFBPPT09Ct3H09OThJu5j+o+rqNeXl4FluFt7w942/sDAL7fsZWzZ3LPQUJ8HBUrVX6qelRSMfKqUoWfDx3WfX6Q9pAHD9LwcH/6egrg6eHBgYO5a8vq+okquf2Ep6cHCQn5z0F8oefA0jHyfvddvN99nP4OTudJP85E+p4ehnUuNTXVaPr/8f6Q/3h/CMCPOyM5eyZa911CfOxT16GSKMNjVT3c2Pvr77rP2v4uDQ83F5P7mCNvO/thR2S+dvb0MSqp+HhVcWffL0biUwzt7N8So6pV3PlZ73pTfDHK29Z+2BHJuWJuayXXztzZZ7SdPV2MSmLsWFIxstTY9B3v93mngLGpsXFXFU8vDpk5Ni2p+IDlxnYd3vmEDu98AsC+XRs5f/aE7rub8TdwqOhIaSPt7GzMEdaEzmTI+Pm4e1Yv9DiWyv9j1dxd2fPbH7npP3xIatpDPPMs//W0vDw8OHDQsJ66G4yNnvzfUJb+d6AQQojnS5HWaA8NDaVJkyaAdh3uL774gvDwcD755BPd9l26dOGnn37i8OHDvPnmmwC6ZUVAe1drXra2tjg7OxMWFkZYWBibN2/mm2++MbqtKZ06dSIyMpIrV65Qp04dvbR79+6tS/unn34yum543vzl5ORgZWWl931mZibW1tZYW1vrbVcUnTp14tixY2RkZDBx4kTmzJlDeHi4bjkZMF1eFxcXtm3bVujLRR+XLS4ujpUrV7Js2TLCwsL0BoHGjrFs2TJ8fHw4f/48vXv31vvO1taWN954QxfDqKgo3SS4bb7H8B57HL+jR4/y+++/6/Z9nL+88c3KyjK5/2OP4w/65yr/eQsKCuK1114jIiKCfv36Gc0bgLW1NdnZ2Sa/fxKtWrUmJuYksbHal+ZsjdxEm7btDLZr0LAxiUm3OHv2DADbIjfTvEXLQu/uatywAbcSkzhz9hwAm7dup2WLl/XugKjq5UmFCuXZt187gPtp7z5cnJzwMHPw1rLVq3pl2Ba5mdcLKMO5s6eLVIZmrV7nTMwx4mO1P5rs2rqO1m06mpW3wjSrX4ebSbeJ+VP7YuP1O36kdbNGxXJHe14tW7XmVMwJ4mK1L+/cHrmR19u2L5a0Gzeoz63EJE6f/ROAzdt20Kp5s2K9y6VVq1eIiYnWnePIyC20bfuGwXYNGzYiMSlRV0+3Rm6hRYsW2BWQl0YNG5KYlMiZs2cB2BK51WCfql5eVChfgZ9/3g/A7j17cHZ2wsPD/H9gtGj1Kqdjjuc5Bxt4re2bZu9fGEvGqEmDetxMSuLUufMAbNy+k1eaNy22c9yoYQMSE/Ocg63baNGiueE5qFCBffv3A7B7z16cnZzN7ifAsjHSpt+KmOho3UvNIyMjafuGkfQbNSIpMZGzZ87otmvRsmWh6b/c8jXO5KlDO7au59U2HQrcp6gsWYam9etyK+kOMee0T8Otj/qB1i83Lta+onmr1zidp6+LKvZ2ZsH4NKjHraTbuna2YfsuXnm5SbHfMfg8x6hJvhgVd1/0WP4Y7XiOYqRtZ7c59aidbYj6ntbFXI8sPXbUHsNyMSqZsal23JU7NjUdo6Q8Y9PtkZtp3qJVoTGy9PWmJMZ2TVq25c9TR0mIuwrAT9sjaPl6J4Pt1GoVoUET8Rk+w6xJ9pLIf9P6L3EzKZno838BsHbHHl5t2qBYx++5Y6PH9XQbLVs0z1dPH4+NtPV09559RRoblURbFkII8fwo0tIxed29excvLy8yMjI4cOAAjRs3BrQT7X379qVq1aqF3o0OUOHROq+XLl2iZs2ahIWF6SZyjbGyskKj0ej9rVOnTnTt2pWuXbvq/b1Ro0bs3buXLl26cOfOHVatWsWgQYOMppFX/fr1WbRoEd9++y1paWlcv36dqlWr4uLiwt9//0316tU5evSorszmiImJoXr16qSlpWFjY4OTkxMJCQmcOXOGzHyPs+U3cOBAQkNDWbBgAX5+fnrfGZvwT0lJoVKlSpQpU4azZ88SFxdn8hixsbHs27ePL774gnr16vHBBx/ofV+vXj1mzpxJeno6dnZ2BAYGMmTIEJN5dXZ25syjQWhKSgqurq7Y2tqyd+9eNBoNGRkZlClThqSkJACOHz9uUBZT8S9MSkoKXl5e5OTksHfvXt1kev7zXbFiRTQaDbdu3cLZ2ZnevXszY8YMypcvz61btwxeFGiOyo6O9Onbn8CAcWg0GmrUeJHv+vgAcPHCecLDVjJx0lSUSiXDho9i8cJg1CoVbu7uDPQbWmj6SqWSUcMGE7xoKSq1Cnc3N4b69ef27TuMGDuBkIVBAIwcOojZwQtZFbGOihUd8B8yqMhlmKwrQ02+zVOGiLAVTJg0DaVSydBHZVDpyjCs0PQrVXamZ58hzA4cjkajoXqNl+j6nTZ/ly6eZWN4CCMmzuVeSjITR/TR7TdpZF+srW0YFRhMpcrG73BRKhVM8OvD7JAw0tVqPFydGeXTi6Q7KfgFzCR8biAAnw8chUajISn5LhPmLkGpsGVM/2+p+2LBj87mxsiJ7/oOZErAWDQaDS/UeJFv+vR4FKM/WRO2gvGTpnM3JZlRw3Pb6ujhftjY2DBx8kwqOzoZTVupVDJ6mB9Bi0NQqdVUcXNl2EAfku7cwX9sAKEL5gLwdb+BaDQabt9JZvKsuSgVCvwH9ad2rcJfyObo6Ejfvj4EBEwk+9E57t1H+3TNhQsXCA9bRcCkySiVSoYP92fRwgW6c+znN7jAtJVKJf7Dh7Ng4SJUKhXu7m4M9vPj9u3bjBozliWLFgIwfNgw5gUFERYRgYODA8OHFl7/86rs6MS3ff2YGjCa7GwN1WvUolfvHgD8deFP1oYvZ2zADO6mJDPGf4Buv7H+A7GxsWF84GyT58DyMVIwdsgA5i0JJV2lPcf+A/qSdCeZoeMDWRk8C4AevoPRaLK5fSeZwNnBKBQKRg7sR51aBb/MV6lUMmL4MOYvWoxKpcbdzY0hfgO5ffsOI8eOZenCBQD4DxvC3KD5hEWsoaKDA8OHFpzvkoyRLv1+/QiYOFHbF9WsSZ8+fXTph61ezaTAQG36/v4sXLjwUZ1zx29Q4X1eZUcnevUZxIxJI7V9Uc1a9PyuJwB/XTjH+vBljA6Yzd2UZMaN8NXtN25Ef2xsbBg7aW6BdcjSZVAqFYwf3I/ZIatQqdRUcXNhlO+3JN1JZtCE6YQFTQWge39/NNnZJCWnMHHuIpQKBaP7f0ddM14qV9nRiW/6DmRawCg02RpeqFGLr3t/9ShGf7I2PJSxATONtjNrc9uZBeMzbrAvc5au1MVnRP/eJN1JZsiEqawKmg7Al/2HPboepBAwZyFKhS0jB/ShbiHt7N8So7FD+jN3yfJHMXLFf0CfR33RZFYGzwSgh+8QNJpsku6kMGn2fJQKBSMH9i20L9KPkR/TA0bqYtSz94BHMTrHuvBQxgTM4m5KMmP9++v2G+c/AGsbG8YFznmmMRo/2IfZIbn1aKTvdyTdSWbwhGmsDpoGwBf9h6PJ1jxqZwtQKhSM6t/HzHZm2bGj5WNUEmNTJ3r3HaA37vq2j68uRnnHpkOGj2bJwqBH15sqDDBjbGrp601JjO0qVnam+3f+BE8ZgkajoeoLten2jbZ+/H3xDFvWLGbI+PmcPLKf1PspLJkzWm9//8Cleks7lmT+7RQKAgZ+w8zQtahU2vH7mH49SExOYWDgPNbMGg/AfweP1/XX44NCUSpsGevTk3o1C//BQKlUMnL40EdjI5Xe2GjE2HGELJwPwIhhg5kTNJ/Vj8ZG/kUYG5VEWxZCCPH8sMop4Nbs2NhY+vfvz5YtWwy+W79+PatXr8bT05MPP/yQiRMnEhISQu3atenRowdfffUVbdu21UsjLS0Nb29v9u3bp/ffx44dY9q0abq726dPn657GWpQkHaQ1rJlS44cOcLmzZsJDg5mypQpbNu2DR8fHzw8PPjwww8ZN24cDRs2pHv37kyZMgVXV1fGjRvH5cuX0Wg0+Pj40LZtW700Fi5cyJgxY6hVqxbh4eGkpKTg6+vLnDlzOHbsGFlZWXz11Vd07tyZgwcPMmPGDNzd3XF0dMTV1VW35E1+W7ZsYd68eXqP448fP54aNWrg7+/PX3/9Re3atalZsyabNm3iyy+/5MqVKwwfPlwvNu3btycqKgpbW1s++eQTAgICqF8/9w3xX375JWlpaQwdOlQXL41Go5ukbtasGdnZ2fz55580a9aMihUr8vnnn3Px4kUCAgIIDQ1l+PDhJCQkYGtrS+fOnenWrRvdu3fXxSUiIoLNmzdjY2NDhw4d+O677wgODtallVdcXBy+vr5s2bKF1NRUvvrqK+zs7OjQoQMnTpygbNmyfPbZZwwZMgQPDw/q1KnD7du3mTp1qq4smzZtMhr/vHnq378/3bp1o2XLlrr/fvjwIdOmTaNKlSq6badMmcLOnTs5ffo0U6ZMYdy4cWzZsoXDhw8zd652cPif//yHHj16kJ6ejre3N3v27Cmw0Vy8fL3A75+WXXaaRdNPt376ZU4K8kBTxqLpA1TNuGDR9JPsC15G42mV05i3jNKTUtlY/hzYYPrHyuLwMMeyZVBaWfbFU2Uy71k0fQB1KePrrxaXLCvjTy0VFysry77QJ01j2b4OoIzNA4umX15126Lp31JYtq8DsLd+aNH0y6ot258m2Vr2kX5LxwegTIZl+6OkUu6Fb/QUSltbdlxUTpVs0fQB7iqLbykMY2ysDJ8QLU62muJ9UW5+D62L50XUBbG1KvjJ4KelzLJsW76uKfymo6fhZXPNoukDlEm/Y9H075cpnqX4TFFbWf7O81o1LH9dFkI8nwbMSy18o/8h8wZYfuzwpAqcaH8SycnJ9OrVi02bNukttSL+d/j4+PDNN9/oLYvzPFi1ahUZGRm6pYtMkYn2gslEe+Fkor1wMtFeOJloL5hMtBdOJtoLJxPthZOJ9sLJRHvBZKK9cDLRXjiZaBdC/Jv5zr3/rLPwjxI8sPyzzoJJT7x0jDF79uwhKCiIESNG/E9MsmdkZPD1118b/L169epMnDjxGeTon2H06NGMHDmSxYsXG10T/5/o5s2b7N+/X+/FqEIIIYQQQgghhBBCCGGOYp1o79ChAx06FO8Lxf7JFAoFYWFhzzob/ziurq4sX778WWejSFxdXVmxYsWzzoYQQgghhBBCCCGEEOI59O+/7VwIIYQQQgghhBBCCCGEsCCZaBdCCCGEEEIIIYQQQgghnkKxLh0jhBBCCCGEEEIIIYQQonjkZOc86ywIM8kd7UIIIYQQQgghhBBCCCHEU5CJdiGEEEIIIYQQQgghhBDiKchEuxBCCCGEEEIIIYQQQgjxFGSiXQghhBBCCCGEEEIIIYR4CvIyVCGKyBqNRdNXWZexaPp2OQ8tmr7aSmnR9AE0NgqLH+N5ZmVl+Rel5ORYWfwYlmTpGOVYWf53bNtstUXTT7exbF+kwLL51/wb7iXIkZceFcbSbS0j29ai6duXQDW10WRYNP1Mawv/c8LCMbLOzrTsAQANNhZN34Ysi6ZvnWPZsW92Tgk0BAsPW6ywbH+dobFsO7O2zrZo+gBW2ZatRzkWPsmWPsd/3XPn0gnL90dvN7XsdU0IYRnyMtTnx7/gX6FCCCGEEEIIIYQQQgghxLMjE+1CCCGEEEIIIYQQQgghxFOQiXYhhBBCCCGEEEIIIYQQ4inIRLsQQgghhBBCCCGEEEII8RRkol0IIYQQQgghhBBCCCGEeAqWfX25EEIIIYQQQgghhBBCiCeSnfOscyDMJXe0CyGEEEIIIYQQQgghhBBPQSbahRBCCCGEEEIIIYQQQoinIEvHCFFMDhzYz/p1a8nKyqJq1WoM9BtEmTJlDLaLiY4mNDSE9HQVzs7O+A0ahKOjk1nHOHjgZ9avW4MmKwuvqtUY4DfExDFOsjx0Kar0dJydXRgwaEjQd7G2AAAgAElEQVShxzgZE0NI6IpH+XJiiN8AnBwd9ba5/PcVghcs4t79+1QoX57+Pn14oXp1s/IO8OuBPWxev5osTRZeVV+gzwB/ypQpa7BdVlYWESsXs2Prehav3ExlR+dC0z5+6iwLV0aQrlLh6uSIv+93ODtW1tsmJyeHdVt3sDR8A/MCRtGwbm2z8/7YoQP72LgunKysLLyqVsfXb6jJMqxeEcL2yI0sW73erHN8MuY0i5evIl2lwsXZiWEDfHAyUoYNkdsIXb2GWYETaFCvTpHyf2D/ftatW6etp9Wq4efnZ7QORUdHE7psGekqbT0d5OeHo1PBZYiOjmZZaOj/s3feYVEdXwN+6aAinaUIamLsNYoYS2JsqFF/SdQkBo0aYyyxJyr2XlBRsWEXBRVjQQV7S4zGLqDYTSw0BUUswC6w8v2xsrDsAotyTcw37/PwPNzduWfOnDNn2s6d+6reqep2/jr0999/s2TpUp49fUpZKysGDxpExWLUIYATvx9h65YglFlK3MtX5Kdhowr0QVDgSsJCf2Xl+l+x16MegbQ2uhh1meXrglQ+drBn9NCfdPp4S+huVgdtZsGMSdSqrr+PL0ZdZvnaDcjVdahg+Ws2bGL+jMnFrkMgbRyAtD4A+PP3w+zYEohSmYVb+ffoP3QspQrQf3NgAHt2hrA0MFSvtuhtlOHC5assDdxM2qv2buygvjja22qkyc7OZvOuvazYuI1FU32oU62K3rqDKs62bQlCmZWFW/mK/DRsdIE+Dg5c8SrOtuptI0nj7FI0y9YFv4ozB3yG9NfdH4SGsyo4hIXTJ7xWf/Dn8UOEbglEqVTi5v4e/QqrR+uXsXdnCEvW7fxX2Oht1CF49220ZP0WdXs9blAfHO20bbRp1z5WbNrO4imjqVOtsl565yB1WwrS2uhtjFv++P1onj6/AoOK6PN3h25l1fpf/zX9zdvol8+d2M/ebatQKrNwcatEz58mY1HaUitd1Lnf2B2yjKzMTEpbWuHdbzyu7pWK1l/Cccv56OssCt5BmlyBs4Mt4/t/h8zORlPvG3/hv2EbqelyzMxMGP5dV+pV+0DvPCKjoli1Zq167vVzgXOcZTx79oyyZcsyZNDAYs1xflfP0ZSUL1+BocN/LmSOtor0V2PlYXrM0QAu/rmXQ6ErUSqzcHarxDf9pmFRSoePzxziYOhysjIzKG1pTdc+E3F2099WAoFAIHhzxI52gaAESExMZHlAAJOnTGPlqjXIZDI2rA/USieXy/H1ncWQocNYtXoNnp6eLFm8WO88VgQsZdKUGSxftQ6ZTEbQ+rU68khnru9MBg8dwYrVgXh4NmLpYv9CZafL5cz0ncfwIYNZt2o5jTwbsmjJMq10M33n0rXLl6xbtZyvu3Zm9tz5eukOkJT4kDUrFjJm8lwWrdiEg6MTmzes0pl2zrQxmFtY6C07XS5nit9iRv3Ul03L5tPY40P8lmvbxm/5WmLiH2BjVVZv2fnLsCpgMROmzGLZqg04ypzYuH6NzrQzp47HophlmD53Pj8PHsiGFUv4yKMBC5au0Eq3cNlKYuMSsLayKrb+iYmJBAQEMGXqVFatXo1MJmP9+vVa6eRyOb6zZzN02DBWr16Np6cni5csKVS2XC5ntq8vw4YOVd+jq27P9vWlS+fOrF69mq+6dmXOnDnFKkNS4kNWL1/E+Mm+LFkZhIPMiU0bVutMO3vaOCzM9fcBSGujdLmcafMW8svg/gQtX8RHDRswf9lKrXQLAlYRG59Q7HqqqkML+GXwADasWMxHHvULqUPxr1WHQNo4AGl9APAo8QHrVizAZ/I8FqwIwcHRmZAN2nYCmDdtdLHaordRhnS5gkl+Sxk9sA8hS+fSxKMe81as09Z9ReBrt3dJiQ9Zs9yfcZN9WbwyGMdC42ws5v+yOJsybxGjBvVjY8BCGnt8yPwAbd3nB6wh5jXiLIdHiQ8IXLGA0ZP8mL88BHuZE1uCdNcjv+mjMTcvVSz573odgnffRhPnB+AzsDchS3xp2qAuc1doy567cj0xCQ+wsdJe8CoKqdtSkD7WpB635PT5EybPZunKVzbaoNtGs6aN/1e1RfB2+uXkpARC1vgyeNwSpi7ehZ2jCzs3aev25PFDAhdPoM+wWUxZFErDZu3YuHxakfpLO25RMH7RGsb26862hVNo+mEtfFdv0kiTkZnJyHkBDPz2c7bMn0S/rzoxYZHuOqALuVzOTN+5DBsymLWrVtDI04NFS5ZqpZvlO4evunzJ2lUr+LprF3zn+umdh2qOtozJU2awYtVaHGUyNqzXblPl8nTm+M5k8NDhrFy9joaejVi6eFGR8p88SmBH4Cx+HB3A2Pnh2Nq7sneL9n1PHiWwdc1U+vy8mDF+YdTxbEPIigl6l0MgEAgEJUOJLbTHxsZSr149evToQffu3fnqq684dOhQSYl/La5fv86dO3cA8PHxoU+fPhrfHzt2jCpVqhAbG6uXjB49enDz5s1i6xEcHMziIhZTjx8/ztdff80333zDl19+ycaNG4udD8DNmzfp0aMHAAMGDAA0y1CSpKam0qJFC53fjRw5koiIiGLJk0rP+Ph4Ll26BMCMGTOIiYnRmW7EiBHqdMXl9OlT1K1bF0dH1Q6sNl5enDjxh1a6qKhInJycqVRJtbOgdRsvIiIukpaWVmQeZ07/SZ269dR5tPZqx8kTx7XSXYqKxMnJKU8ebYmMuFBoHpFRl3B2kvFBpfcBaNu6FRciIjXuuXP3LqmpqTT5qBEAHzXyJOVpCvfv67Znfs6f+YNaderj4CgDoEWbzzh98pjOtJ2/6cnX3n10fqeLi5eu4CJzpMr7qp0n7Vs251zkJdLS0zXStf20GaN+6ouxkZHesvNy5vRJatf9UF2GgnwA8FW3HnTr3ktv2RGXLuPsJKNypfcAaNe6BRcio0hL0yxDm5bN+XnwAIyNi1+G06c066lXmzac+ENHPY3MqUOqXU5t2rQh4mLh9TQyKkrrnosREZp16M4dXrx4QePGjQFo1KgRKU+fcv/+fb3LcPb0SWrl8UGrNu3588TvOtN2/eY7vuneW2/ZIK2NIi5F4yyTUfl9lY/bt/qU8zp87NXiE34Z1B8j4+I9dBZxKVqrDp2PvKSzDv3ymnUIpI0DkNYHoGqLatapj72jEwCftunAmQLaoi+/6U1X7x+Kpb/UZbhw+eqr9q4CAJ+1+JizUdFa7V27T5syemCf12rvzp0+Qa26ue11yzafcerEbzrTquLs+2LJl9I+Of1B5Zz+oNWnqv5AK84+ZtSgH187DrTqUeuOnD55VGfaL77pVex69K7XIfgv2MiBKu9VAOCzFs04GxVNaj4btW/eFJ8B37+WjaRuS0HqPk36ccvZfDYqvM/vQbd/UZ8Pb6dfjjz3G1VrNcTWwRmAJi0/58Ip7Tm4kbEJfYbPxsVNNdavVLUe8TF/Fa2/hOOW81du4OJoT9WK7gB0/LQxZy5dIzVdrk6TpVQypq83DWqonqipU+V9kp485Xlq0XMnyJnjOPHBK995tW7NxQLmOI0/+gjImeM81XuOo5qj5Z0HttUZy9rzwLZEFDFHA7h8/iiVa3piY6/yseenXxJ5+oBWOkMjY3oM8sXWwQWAyjUbkRh/V68yCASCfz/ZL7PFX56/fzMluqO9YsWKBAUFERwczMqVK5k5cyZyubzoGyXi0KFD3L17V30dGxtLcnKy+nrv3r24ubkVS4YUxMbGMmvWLPz9/QkJCSEoKIidO3dy8uTJN5IbEBAAvJ0y5OXYsWNYWFhQr169Yt0nlZ6nT59WL6CPGzeuQJ/7+PgwdepUsrOLH7RxcXE4OTurr52dnUlJSeH58+da6ZzzpLOwsMDS0pKEhPgi84iPi9WZxwutPGJxcnbJl0fZQvPQpVdZS0viExLUn8XGxePkJNO4z9nJifuF/FClqX8MMmdX9bWTsytPU57w4sVzrbRVqtXUS2YOMfEPcHHKfcy8lIU5ZS0tiU14qJGuZtXiPdKdn/h8tnVydlGV4bl2GapWq1Es2bFxCbg4OamvVT4oQ1weHwDUqFr8R/dzyO/nYtfT+OLVIct8dSguLg7nPGUEcHJyIkbPOgSqeuTklLceFeyDKsX0gVpHiWwUG5eAi7NM456ylpbEJTzQSPe6Po6Ni8fFKb/8kq1DIG0cgLQ+AEjI1xbJ1G3RM620lYvZFr2NMsTEP8A1X3tnVaaMdntX5fUfFY+Pi0HmpJ+Pi9teg8RxFp+gEQfq/uCBZpy9aX+QEB+DzEmzHj0rqB5VrVVs+e96HYJ33EYJum0Ul5Coka5mlcKP3SgMqdtSeAt9msTjlvi4WL3bon9jf/M2+uWH8fdwkJVTXzs4ufH8aTKp+eKsrJUtNes1UV9HR5yk4geFx53U45b7CYmUk+Uem1LK3Bwry9LEPkjS+OzThrlzylORV3B3dsSytH5PwMTGxeHsnL+e5p/jxOGUb3zq7CTTe3yqqh+59bTgOZrmfFGfORpAUsI97GS581d7mRsvniWT9uKpRjorGweq1FZtZlEqszj7+05qNvhUrzIIBAKBoOSQ7Ix2a2trHBwcSEpKIjU1lSlTpmBsbIyhoSH+/v6sWrWKChUq0LVrVwDat2/PnDlzmDlzJu7u7kRERNCtWzdu3LhBVFQU3t7eeHt7c/78eebPn4+xsTHOzs5MmzaNiIgINm7ciIGBAX///TdeXl60bt2akJAQbG1tsbNTnSPXtGlT9u3bh7e3N3K5nLt376oHTUqlkgkTJhATE0NWVhZDhgzB1tZWS8a+ffuYMWMGKSkpBAQE4OLiwpw5c7h48SJKpRJvb28+//xzTp06xcyZM7G3t8fBwaHQBf2QkBC6d++u7uBLly7N2rVrsbS0ZMeOHRw/fpzExEQWLFjA4cOHCQsLw9DQkFatWvH999/z4MEDhg4diqmpKVWq5A50PD092bBhg0YZateurf5+1apVHDhwAENDQ0aMGEGjRo2YNWsWly5dQqFQ0K1bN7p27YqPjw8mJiakpKQwa9YsBg8ejEKhoH79+jrLs379ekaPHg3An3/+ib+/PyYmJpQtW5aFCxeq/bVo0aIC9UxPT2fBggUYGxsjk8mYNWsW4eHhnDt3jidPnnDr1i2GDx9OeHg4f/31F/PmzaNOnTpa+rds2ZIlS5ao60tgYCATJkzAycmJX375hRcvXmBpacn8+fNxdHSkQoUKnDp1Sr3jVl8UCrnG454mJqYYGBigUMixtMx9nFghl2NiaqJxr6mZmV4/SCkUCqysrLXykCvklNHIQ4GpqWm+PEwLzUOuUGBqkk8vU1PkcoVG/lpyTQuXq61/7pmLahvJ0ylTpviPXOeXbWqiqZuZqUmJ/9BXUBny++B1ZeevG2b5fPCmKBQKrKzz1CHTHB9o1lO5Dl+bFVFPFXJ5kfeoypjfT6YoiuGnDIUCK2tdPkh/Yx/k6CiVjXTFmZmpKXJFydRTXTFa0nUoJx+p4kAtXyIf5Mgvq7MtklOmzOsdkfE2y6Dyc/5+xJR0RUm3FTps9K7EmcRtKUCGQl5An1Yy9ehdr0PwbttIrsjATEd7XeJxJmFbqs5Dwnok/bhFrqn/O9jfSN0vZyrklLXKfXdAjo0yFOmULiDOrl06w5HwYIZP1j4GJi9Sj1vkigwd8k0KjLNb92JZGLSNqYP0f4pK1xwh//xFZ5toqt/8THW/HCsd80DtOZr2WLmoORpAZkY6lnl8bJzHx6XKaB839Pu+IA7uWI69zJ3vfy76aBqBQCAQlCySLbTHxsaSkpKCs7MzZ86cYcKECVSvXh1/f3/CwsL43//+x+zZs+natSu3b9/Gzc0Na2trrl27xtKlS3n69CkdOnTgyJEjKBQKBg8ejLe3N9OnTycwMBBra2vmzJnD/v37kclkXLp0iX379vHy5UtatGjBoEGDaNasGV5eXtSuXZtNmzbRpk0b/P398fb25rfffqNx48ZcvHgRgLCwMBwcHJg5cybJycn07NmTsLAwDRkAdnZ2rF+/Hj8/Pw4ePEiNGjW4desWISEhpKWl0alTJ1q1aoWfnx9z586latWq9O3bt9CF9r///lvrCJa8g7uEhARCQkKIjY1l//79bN68GYBu3brRtm1bgoODad++PT179mTlypXcuHFDfW+VKlW0ygBw9+5dDhw4wK+//kpMTAwrV66kXr16uLq6MmbMGORyOa1atVL/EGJlZcW0adPYuHEjH3zwAWPHjmXv3r3s2bNHQ+/MzExu3rxJ1aqql4o9ffqUefPm4ebmxqhRozhx4oTOF8Pk17Nt27asW7cOZ2dnpk6dSlhYGAYGBty9e5dNmzaxdetWVqxYwc6dO9mxYwfh4eFUrVpVp/5ffPEFNjY2tGzZksDAQADWrFlD06ZN+e677wgMDOTUqVO0atUKDw8Pzpw5o9dCe1jYbsLDdgNgZGSMjU3uACgjI4Ps7GytsyLNzc3JzMjU+EyhUBR4pmR42E51HsZGRljb5E7ICssjIyNDKw8Lc/MCy2Jubk5GprZeee8xNzPTLbeQM0P3hW1n/54dgMpG1ho2UujU/3UwNzcjIzO/bhmFlllf9oSFsjdsJ6C/n18Hc3MzrbohV2RgYfFmZQjbvZuwsDAAjIyNsdFVhyz0q0OFnVWtT71T1X/NNHKFAvMi/LQ3bAf7wkNVZSigHhX3LPa8vD0bmWnFmbyI2CwOunQqiToE0seB1D7YH7aNg3u2q/WXoi16q/VIqx/JoNQb1qO8cabqb0rWRm+3LSq8P3tdDoRv42D4NkBVBmvrd9VG0tQh+O/YyMLMDEX+9jpDgYW52WvrDm9nTPE265EU45a9YaHsLbDPz3hn+vyC7isJGx3bG8KxfSGAqgxlrXNfTpr5Ks7MCrBR5JmjhKzx5acxi9THyBSsv7TjFgtzUx3yMymlI84u3fiLsf6rGftjd+rX0P+JJNUcR9f4NNc+5mYF9BuF+CksbBd7wnYBxZsH6h4ra/vqjwObOHFws1q+pXXuy1tzfax7V/8n7XrwcdvuRPy5j0WTujN63i5MTUvGZwKBQCAomhJdaL9z5w49evRQNfxmZvj6+mJsbIydnR3z5s1DLpeTmJhIx44dqVy5Ms+ePSM5OZkjR47QsWNHANzd3bGxscHU1BRbW1tkMhmpqak8f/6cR48ece/ePQYPHgxAWloaNjY2yGQyqlevXuRLglxdXcnMzCQ+Pp69e/cyYMAA9UJ7REQEFy5cUF8rFAqtjhBQ7+KWyWSkpKQQHR2Nh4cHAKVKlaJSpUrcu3ePuLg49WKzh4cHikJ2wBgYGPDy5csCv69VqxYGBgZcvnyZe/fu8d133wGqM9Lj4uL466+/aNu2LaDaHf6HjrMF83P16lXq1KmDoaEh5cuXZ8aMGYBqYfybb77BxMSEJ0+eqNPnLNL/9ddf6vI2bNhQS25KSgrW1tYYGBgAYGtry/jx41EqlcTExNCoUSOdC+35ZRgYGKifNvD09OTcuXNUr16dmjVrYmBggIODA1WqVMHIyAh7e3suXryImZlZgfrrKv/QoUMB6NWrl/pzJycnLly4UJT5AOjYsRMdO3YCIDw8jOjLl9XfxcfFYWtrS5kyZTTuKefmxvHjuWf2paam8uL5C1xdXdFFh46f06Hj5wDsCd9N9OXcM+QLy+OP47nnV+bk4VJAHgDu5crx+/ETmve8eIGLa+5jkG5u5UjI86hodnY28QkJlHcv+Eekdh07065jZwAO7AnlSnSk+ruE+FhsbO0o/Ya72QHcXV04euK0+vpFahrPX6RSzsWpkLv047OOX/BZxy8A2Bu+iyuXo9TfxcepypDfB6+DezlXfvvjT/X1i1c+cHVxLuSuounYqRMdO+XU03Au56mncQXUIbdy5bTq6fPnzwusp6C7bue/p5ybGwkPNOtQQkIC7u7uhZahfccvad/xSwD2he/kSnSuDxLi4964Hr0tG7mXc+XYifw+Tn1jH+fq5MqxP3KPHCupOgTSx4HUPmjbsQttO3YB4OCeHVyNzn2HyIMSaoveVj0q7+rCkZNn1Nfq9s75zdq7vHG2Pzw0X5y9uY3epn2OabSlJdcfeHXogleHnHq0nWt5+rQH8bFY29q/MzaSog7Bf8dG7q7OHPnzrPpaZaM03N7QRm9jTPE2+zQpxi3tO35B+1c20u7zc9qif29/o3mfNP3yp+2/4dP23wDw2/4t3LySO3dJTLiPlY0DpUpr72a/FnWaLWvnMnRiAM7l3isyH6nHLeVdnDj8Z67uL9LSeZ6ahlueY5tAtZN97MJVTBvSh3rVineklVu5cvx+PHdunDPHcdWa4+QeJaOa48QXOj7t2PF/dOz4PyBnjqbPPNC9gDmaC/lp5vUtzby+BeDEwRD+unZO/V3Sg3uUtXbAIp+PH8b9RUpyIlVqfYSBgQEfNmnP9sAZJMXfxbVC1QLLIhAIBIKSRbIz2tesWaM+o3vGjBl89913BAcH8/XXX6vTd+jQgYMHD3Lq1ClatmwJgFGelwkZ53uhiomJCY6OjgQFBREUFMT27dvp27evzrQF4eXlRWhoKHfu3KFatWoasvv376+WffDgQa1Hu/Lrl52drV5QziEzMxNDQ0MMDQ010hXGe++9p/USzri4OPV58iavHqkzMTGhefPmah3DwsLw8PAgOztbnV9hC/b5y5E/7dmzZzl9+rRaft7y5+igT155bTJ27FgmTpxIcHCw2sf5bZaVlaV1f16bZWZmqu/J6+e8/2dnZxeqvz7lfxMaNfqIqKhIYmNVL80JDd3BJ58010pXu3YdEpMSuXIlGoCdoTto2LBhkTt6VXk0JioqQp3HztBtfPyJ9rl7tWrXJTHpoTqPXaHb8WjoWegOqTq1a5GYmEj0lasAbN+5C8+GHho7Vsq7u2NlZcXR31QDxEOHj+Lo4Ei5IiYZOTTwbEp01AXiYlUvvgzfuYUmH7fS696i+LBWDR4mPeLS1esA/Lp7Lx81qFdiO25y8GzUmEtRF9Vl2B26lWaf6H4hcHGpW6smDxOTuHzlGgDbd4XTyKN+iZahUaNGREVGql8AHRoayifNm2ulq12nDkmJiVyJjlana+jpWWg9rVO7NolJSURfuaK+xzNf3S7v7o5V2bIcO6Z68eThw4dxdHSkXLlyOmXqomGjJlzOU492h/5K009a6n1/UUhpo3q1aqh8fFXl42279pSoj1XyH6nr0DYJ6hBIGwcgrQ8AGng240rUBeJj7wGwZ2cIjT9uXWL6S12GD2tW42HSY6KuqZ5e2xK2n8YN6r7xTtu8eDRqyuU8Pg571+IsT3+wdfcePvL4sMTjoEGjj4mOOq+uR3t3bqZxCfVp8O7XIXi3bVS/ZjUeJD0i6tpNALaEH6Bx/TolaiOp21KQ1kZvY9zSsFGTd7q/eRv9ch2P5ly/fJYHcXcBOBQWhEfTtlrpMhTprF86if6j/PRaZM/VX7pxS/0alUl4lEzk9dsAbN5zhCYf1tSIs+zsbKYGrGdkn27FXmSHvHMc1fh0x85dNGzooT0+tbLi6G+/AXDo8JFizXE8teZo23XO0bTngdtpWMQcDaBmg0+5FX2GxPg7APy+dwMfNm6vle7FsydsWjaWp8mqd0n8feMiSmUWdo76j7MFAsG/l+zsbPGX5+/fjGRHx+QlJSUFd3d3MjIy+P3336lbty6gWmgfOHAg5cuXL3I3OqA+++z27dtUqlSJoKAg9e5qXRgYGKBUKjU+8/LyokuXLnTp0kXj8zp16nDkyBE6dOjA48ePWb9+PSNGjNApIy81a9YkICCAH3/8kdTUVO7fv0/58uWRyWT8/fffVKxYkbNnz6rLrItu3brRo0cPWrRoQYUKFXjx4gUjR45k0KBBGulq1KjBvHnzSE9Px9zcnBkzZvDLL79QsWJFoqOjqVmzJmfOnNGSr6sMNWrUYNmyZWRlZZGSksKkSZPo1KkTTk5OmJiYcOTIEZRKpdau/py8vLy8dOZlbW1NSkqK+keIFy9e4OzszLNnzzhz5gxVqlShTJkyJCaqBgDXr18nNTVVQ08rKysMDAyIj4/HxcWFs2fPUr9+/UL9APDkyROd+hsYGGgt5tesWZPTp09Tu3ZtQkJCMDMz44svvuDhw4daL8PRB3t7ewYOHMS0aVN5qVTy/vuV6D9gIAA3btwgOGg906bPxMzMjNGjfQhYthS5XI6ziwvDh/+sVx529vYMGDiEGdMmoVQqef/9D+g3QFVHbt64TnBQIFOnz8bMzIxRo8exfNliFK/yGDZ8ZKGyzczMGDt6JEsCliOXy3FxduaX4cN49OgxYyZOYtWyJQCMGfUzCxYtYcPGTdhYW+MzUj/dVfo78MOAEcydPhalUknFSpX5vp/qjMVbN66yJXg146fNJ+VJMpPGDFbfN2nMEIyMjJg4fSF29g46ZZuZmTLp58EsWBmIXK7A1VnGmCH9SXqczC9TZrN+0RwAeg4ZhVKpJCn5CdMWLMPM1ISxQwdQvbJ+LzOzs3eg38BhzJo2EaVSyXvvf0DfAb0AuHnjGpuC1jF5+hxSniQzbvRw9X3jRw/HyMiIqTPnFVIGM8aPGs6i5auQKxS4Ojsxatggkh4/xmfiNNYsXQhAn5+GoVQqefQ4mZl+CzEzNcVnxBCqVi568mFvb8/An35i2tSpqjpUqRIDBgwAVPU0aMMGps+YoaqnPj4sW7ZMVR9cXBg+YkShss3MzPAZPVrjnhHDh/Po0SPGT5jA8lcvZx41ahT+ixYRvHEj1tbWjBpZeN3Mj529Az8OHM7saeN5+VJJxfcr80P/XgDcunGNzcFrmThtLilPkpngM1R930SfYRgZGTF5xvwCffA2bDRx5HAWLl+DXC7H1dkJn2E/kfT4MaMmzWDdkvkA9B40Qu3jGX6LMDU1ZczwQVQrwsdmZmZMGDUM/+Wr1XVo9Cv5oydOZ+3SBdV7fn8AACAASURBVAB8/9PwPPL9X9WhwUXKz0HKOABpfQBga+/A9wN+Zt70MbxUKqlQqTK9+6n0vH3jKr8Gr2LstAWkPElm6pif1PdNHTMIIyMjxk9fhG0h+ktdBjMzUyaPGMj8lRtUfnaSMW5wX5IeJzNi6lyC/GcB0GPoGJQvX5KU/ISpC5ZjZmbK+CE/Uv2Dwo8KAJWP+w4chu+0cShfKnnv/cr06d8byImzNUycNk9nnBn+43FmysRfhrBwxdpX/YETPkMHkPQ4mZGTZxK4eB4AvQb/glL5kqTHT5g+fwlmpqaMHTaQanr2B7Z2Dnw/4Bf8Zvio6tH7VejV7wcAbt+8ytbglYyZupCUJ8lMGzNQfd+0sT9hZGjEuBmLsbX752wkdR36L9hoyvABzF8VRLpCQTknR8YN+oGkx08YPm0ewQtVT4J2Hzbu1bgihSkLV2BmasKEIT9S/YOiFzKlbkult5H045ZcG03g5UuVjX7oP0Rto83Ba5n0qs8f7zNMfd+EV33+lBl+/2h/8zb6ZRs7Gd/2HUOA73BeKrNwe68a3/TxAeDOrcvs3ryMoRMDiDz7G8+fPWHNwrEa9/8ybY3G0TP59Zdy3GJuasr0IX2YuzYEuSKDck4OTBzwHYnJKQyduYjN8yYSfesOt+/FsXRTKEs3harvnTr4e6pWLPyJyJwyjBk96tUcR6Exxxk7cSIrly0FwGfULyxctISgV3Oc0cWY49jb2zNg4GCmT5uMUqmk0vsf0G+Aavxw48b1V/PAWa/maGMJWLZEPUcbPvyXIuVb28ro/P141vgN4eVLJeUqVOPLXio/3rt9mX1bF9N/zErer9aA1l/8SMDMH8jOzsbY2ITvBs/FvNSbP3krEAgEAv0xyC6hnwJiY2MZMmQIO3bs0Ppuy5YtbNiwATc3Nzp37szUqVNZtWoVVatWpVevXvTu3ZtPPvlEQ0ZqaiodO3bk6NGjGv+fP38eX19f9e72OXPm6Hy55pkzZ9i+fTuLFy9m1qxZ7Nq1i0GDBlGuXDk6d+7MpEmTqF27Nj169GDWrFk4OTkxadIk/vrrL5RKJYMGDeKTTz7RkLFs2TImTJhA5cqVCQ4O5smTJwwePJgFCxZw/vx5srKy6N27N23btuX48ePMnTsXFxcX7O3tcXJyUh95o4uIiAhmzpyJoaEhBgYG9OzZk3bt2rFjxw5u3bqlfrnoxo0b2b59O0ZGRrRq1Yp+/foRFxfHsGHDKFu2LJUrVyY6OpqgoCCddvjoo4/Uea5du5aDBw+SnZ3N8OHDqVGjBr1798bc3JxWrVpx8eJFypQpw8uXL/Hy8uLTTz/l2bNn/PTTTxgaGlK/fn127tzJ0aNHNcrSs2dPxowZQ9WqVfH39+fo0aNUqFCB5s2bs3jxYjZv3syYMWNIS0ujXr16HDx4kCNHjmjoaWJigp+fH8bGxri5uTF16lR2796ttsWxY8c4cOAAs2fPVv8/btw4nfp/9tlnjB49mlGjRrF161YmTJiAs7Mzo0aN4sWLF5QuXZp58+ZRpkwZRo4cyeeff06TJk0K9NXtv+4UKzaKy0uMik70Bphlp0sq/2m2TdGJ3hBZVoyk8pNN3/zx+cKwVBZ8rFFJoDDWfWZjSWIg8a/I6dnSlsHcUNo4sMh8Ial8gOx8TweVNM+MbItO9AaYGpTsixfz80xZMi82LYyyRs+klZ+eJKn8h2blJZUPYGGYJqn80hlPJZUfb1j0Qs6bYGUsrf4gfT2KMdHvx4nXRWobWaU9lFQ+QJKFtPVI6vbULEvaOH5mKG1/A2BmWDIv8CwI86xUSeXfypA2ziqb3JJUPkCptEeSyk+xlHbndqZByT71k59bT7WPkJGC9h+aFJ1IIBD86+g3O/mfVuFfxQof6ccOr0uJLbS/DsnJyfzwww9s27ZN46gVwbvNkSNHOH78OFOmTPmnVSkWjx49ol+/fmzbtk3reJu8iIX2whEL7UUjFtqLRiy0F41YaC8csdBeNGKhvWjEQnvRiIX2ohEL7YUjFtqLRiy0F41YaNcPsdAuELybiIV2Tf7NC+1v5egYXRw+fJhFixYxZsyY/xeL7BkZGfTp00fr84oVKzJ16tR/QCPpaNmyJfv37ycyMrLQI3P+bcyaNYuJEycWusguEAgEAoFAIBAIBAKBQCAQCAT5+ccW2lu1akWrViX3QqR/O6ampgQFBf3Tarw15s6d+0+rUGz8/Pz+aRUEAoFAIBAIBAKBQCAQCAQCwTvIP7bQLhAIBAKBQCAQCAQCgUAgEAgEgoJ5+fIfO/VbUEz++2e2CAQCgUAgEAgEAoFAIBAIBAKBQCAhYqFdIBAIBAKBQCAQCAQCgUAgEAgEgjdALLQLBAKBQCAQCAQCgUAgEAgEAoFA8AaIhXaBQCAQCAQCgUAgEAgEAoFAIBAI3gDxMlSBQCAQCAQCgUAgEAgEAoFAIPgXkp0tXob6riB2tAsEAoFAIBAIBAKBQCAQCAQCgUDwBogd7QJBMbF/dkdS+Y+tKkgqXylx2MsyYySVD/DQ2E1S+eXSbkoq/y/TmpLKt8t+LKl8gGwDA0nlv8yW9ndgA4l3BBhkv5RUPkCioauk8qve3i2p/EP2PSWV3zopUFL5AIccekkq38XSWlL5VR6dkFQ+wDGT9pLKr2F9T1L5lZNOSipfavsA1LCWtr2rfnunpPKlbitcLa0klQ9QTiHt2PFMel1J5TcxPS2pfDPDVEnlA5yW15dUfmOzs5LKbxQfIqn86xU7SCofIOZldUnll0rPklS+Z9ohSeWfVpSXVD6AgUE2wX9I2yd0bybtHEEgEAj+7Ygd7QKBQCAQCAQCgUAgEAgEAoFAIBC8AWKhXSAQCAQCgUAgEAgEAoFAIBAIBII3QBwdIxAIBAKBQCAQCAQCgUAgEAgE/0KyX4qXob4riIV2gUAgEAgEAoFAIBAIBAKBQCAQ/OfIzMzEx8eH+Ph4jIyMmDVrFm5uue/+i46OxtfXV319+/Ztli5dysmTJwkLC0MmkwHQqVMnunbtWmheYqFdIBAIBAKBQCAQCAQCgUAgEAgE/znCw8MpW7Ysfn5+nDhxAj8/PxYuXKj+vmbNmgQFBQHw7NkzBg4cSN26dTl58iTfffcd3bt31zsvcUa7QCAQCAQCgUAgEAgEAoFAIBAI/nOcOnWK1q1bA9C4cWMuXrxYYNo1a9bQs2dPDA1fb8lcLLQLBAKBQCAQCAQCgUAgEAgEAoHgP8ejR4+wtbUFwNDQEAMDAzIyMrTSyeVyTpw4QcuWLdWf7d+/n969e9OvXz9iYmKKzEscHSMQCAQCgUAgEAgEAoFAIBAIBIJ3mq1bt7J161aNz6KiojSus7N1v1z28OHDNG/eXL2b/ZNPPqFRo0Z4eHiwZ88epk+fzooVKwrNXyy0CwQCgUAgEAgEAoFAIBAIBALBv5Dsl7oXhgXadO3aVeuFpT4+PiQlJVG1alUyMzPJzs7G1NRU695jx47RrVs39XXt2rXV/7do0YJ58+YVmb9YaBcISoDz0ddZFLyDNLkCZwdbxvf/DpmdjUaaqBt/4b9hG6npcszMTBj+XVfqVfugWPn8/ttvhISEkJWVRfkKFRg+fDilS5fWShcZGcma1atJl8txdHRkxPDh2Ds4FCo7MjKS1WvWIE9Px9HRkeEjRuBgb6+R5u+//2bJ0qU8e/qUslZWDB40iIoVK+ql+4VLV1gWuJF0uRwnB3t8BvfD0d5OI012djYhO8NZGfwr/tPGUbt6Vb1k53Dy98Ns37KBLGUW7uXfY8BQH0qXLqOVLisri42BywnfuYXlgduxs3fUS/75y9dYvOFX0uUKnBzsGP9TbxztbLXKsHH3AZZv2sHSySOpU0wfnzp+kF2/riNLmYWb+3v0HTKBUgWUYcv6pezbtQn/tbuxs5cVKVtqH4O0dTSHE78fYfuWDSizsnArX5GBwwr3c1jor6xYv00vP0tto4uXoglYF0S6XIHMwZ7RQwbojIMtoWGsCg5hwfSJrxUHO7asR6nMwq38ewwYOqbAOrQpMIA9O7ewLHCH3nFw5uY95u88RpoiExfbskz9tj0yG0uNNOdv3WfB7t95ka7A3NSYUV+2pH4ltwIkahPx514O71zBS2UWTuUq8VW/6ViUstRKd+nsQQ6HLiczI4PSltZ07jMJZ7fCY+7MzXvM3/WbSn+bskz1bofMOp/+t2M09f+iRbH0l7oMAH8eP8TOLYEolVmUc3+PfkPHFejnkPXL2LtzM4vX7dLLz2ev3mZhSDjpcgXO9jZM+uErZLbWGmkib95h/uYwUtMVmJua8PO3nfiw6ntFys5BSvu8jbZO2Kho3vW2AlRxFrolEKVSiZv7e/QbOrbAONu8fhl7d4awZN1OveLswqUrLF2/ifR0OU6O9owZ9KPO/mDzzj2s3Pgri6aOo3b1KkXKzY+UNpJ6XHTh8lWWBm4m7dXYceygvjjaa8vfvGsvKzZuY9FUH+pUK56NpK5D5y9fZcn6LWobjRvUR6eNNu3az/JN21kyZRR1qlXWW/8zN+6+irMMXGytmOrdHplNWU0dbt1nwa5jr+LMhFGdW1K/krveeUg9rpDaBwDnT+xj3/ZVKJVZuLhVosfAKViU1pHHud8I37KMzMwMylha0e3H8bi4F57H2au3WLg5T3/Q92vd/cGm3ar+wCynP3hfL90Brpzdw4k9ASiVmTi6VqZDz5mY67BRDrcu/caWxf0YNOsI1vbl9Moj+uweToQvf5XHB3TsVXQeIYv6M3j2Yb3zEAgEgn+KJk2asH//fpo1a8axY8fw9PTUmS46OpqqVXPn39OnT6dt27Y0aNCAs2fP8sEHRfc74ox2geANSZcrGL9oDWP7dWfbwik0/bAWvqs3aaTJyMxk5LwABn77OVvmT6LfV52YsGhNsfJJTEwkICCAKVOnsmr1amQyGevXr9dKJ5fL8Z09m6HDhrF69Wo8PT1ZvGRJobLlcjmzfX0ZNnSo+p4lixdrpZvt60uXzp1ZvXo1X3Xtypw5c/TSPV0uZ4rfYkb91JdNy+bT2OND/Jav1Urnt3wtMfEPsLEqq0NK4SQlPmTNioWMmTyXRSs24eDoxOYNq3SmnTNtDOYWFsWSny5XMHHBCsYO6MWvi2fStH4dfFcEacteGfSqDAUPTAviUdIDNqz045dJC5gXsBV7Rxe2BgXoTLtgxi/FKoPUPgZp62gOSYkPWbt8IWMnz2HRyo04ygr2s++0MZibl9Jb/7cRB1Pn+TNyUD+CAxbS2KM+8wNWa6WbH7CamPiE14qDR4kPWPcqDhau2IyDoxMhG1bqTDt3mg/mFvrbByBNkcHowDAmd2tL2IS+fFyzEtN+PaCRRp6Ryc9rdzGua2t2jf+B/m2bMHLd7gIfz8vPk0fx7Fw/kx9GBTDabw82Dq7s2+KvM932NVPpNWIJo/3CqePpxa8rxhet//pwJn/TlrDxP/BxzfeZtuVgAfq3Yte4PvRv25iRgfrrL3UZQOXn9SvmM2qSH37Lt+Agc2ZL0HKdaf2mj8LcXP+2Il2RwdhlwUz4vguhc0bTrG51Zgbu0EiTkZnFCP9ABn/Vnu2zRzKgsxdjAzbqnYeU9nkbbZ2wUdG8620FqOIscMUCRk/yY/7yEOxlTmwJ0v2osN/00cXqb9Llcib7LWH0wB/YvMyPJg3qMa/AcdHr9QcgrY2kHhelyxVM8lvK6IF9CFk6lyYe9Zi3Yp1WunkrAl977Ch1HUqXK5g4fzljBvZmy5LZNGlQlzkrNmilm7tyA/cTim8jVZztZvK37Qib2E8VZ1t0xNmaUMZ95cWuCT/Sv10TRq7dpXecST2ukNoHAMlJCfy61pefxi5l8qLd2Dm6sHuzdpuX8vgh65eMp/fQWUzy30mDpu3ZtGJ6obLTFQrGLg1mQp+uhM71oVm96sxct10jTUZmFiMWrmPwV5+x3XcUAzq3LVZ/8PRxPAc2T+ObISsZOP0AVnau/LZzQYHpMxXpHN3hh0Vp6wLT6Mxj03S6DV3BTzP2Y23nyrHQwvM4st0Pi9JWeuchEAgE/yTt27fn5cuXdOvWjY0bN/Lzzz8DsHLlSiIiItTpnj17RpkyuT8md+3alXnz5tG9e3dWr17NuHHjiszrnV1oj42NpV69evTo0YPu3bvz1VdfcejQoX9Up+vXr3Pnzh1A9VhCnz59NL4/duwYVapUITY2Vi8ZPXr04ObNm8XWIzg4mMU6Jkw57Nixg08++YQePXqo/0aNGgWoHoVITU0tVn5HjhzR+RKB4jB8+HDkcvlr3fu6dsrBx8eHY8eOvfb956/cwMXRnqoVVTtDOn7amDOXrpGanlueLKWSMX29aVBDtcumTpX3SXrylOepaXrnc/rUKerWrYujo2p3iFebNpz44w+tdFGRkTg5OVGpUiUA2rRpQ8TFi6SlFZxXZFSU1j0XIyI07rlz5w4vXrygcePGADRq1IiUp0+5f/9+kbpfvHQFF5kjVd5X7YRr37I55yIvkZaerpGu7afNGPVTX4yNjIqUmZ/zZ/6gVp36ODiqdna3aPMZp0/q9mvnb3rytXcfnd8VKD/6Gi4yB6q8Vx6ADi2acvbSFVLzlaF988aMGdDrtcpw8cxxatRpgL2DEwDNW3fkzMkjOtN+/nUfOn/7o96ypfYxSFtHczh3+gQ16+b1cwdOnfhNZ9ou3/Tk6+7f66U7SG+jiEtXcJY5Uvl91Y7Wdq0+5XxkFGlp+eKgxSeMHNQPI+PiP3R27swJatapj72jqg61aNOhkDjoxVfFjIOzN+9Tzs6Kam4q+V80qsWp63dJlSvUaTKVL5ncrS3V3VVpPKuU5/HzVJ6nK3TKzM+VC8f4oEYjbOxdAGjY/EsunTmolc7IyATvQXOwdVClq1SzEUkJdwvX/1aO/rJc/W/cJVWe24ep9Pei+qsyelYuz+PnaXrrL3UZAC6c+UPVVjjmbSuO6kz7xTe96eLdV2/dz129jaujHdUqqHan/e9jD05H39Tq08b37oJHNVWs1K1ckaSUZzxPTdcpMz9S2udttHXCRkXzrrcVoBpX5G1PP23dkdMFxlkvunr/oJfeABcvX8XFyUFzXBR1Wce46GNGv+a4CKS1kdTjoguXr74aO1YA4LMWH3M2KlrLRu0+bcrogX1ey0aSt9WXr+Eqc6DKe6oydGjRjLNR0Vo2ate8CWMG9C52Gc7evEc5e+vcOPuoNqeu38kXZ0omf9suT5xVKFacST2ukNoHAFHnjlGlZkNsHZwBaNziCy6e0l43MDI25vthvji7qXaav1+1HgkxfxUqW7s/aFhAf9AVj+p5+oMn+vcHNyOPUKHaR1jZqcpet2kXrp3fX2D642GLqdWoE6bm2k+UFsSN/Hk068K18wcKTP/77iXUbvS/YuUhEAgE/yRGRkbMmjWLzZs3s379epydVX3Cjz/+SL169dTpTp06pXFflSpVCAkJITg4mKCgIMqXL19kXu/sQjtAxYoVCQoKIjg4mJUrVzJz5szXXqwtCQ4dOsTdu3fV17GxsSQnJ6uv9+7di5tb4Y/D5pchFe3btycoKEj9V5xdSvkJDAwkMzPzjfRZsGAB5ubmbyTjn+J+QiLlZLlHXpQyN8fKsjSxD5I0Pvu0YZ7gjbyCu7MjlqX13/URFxenbgwAnJ2dSUlJ4fnz54Wms7CwwNLSkoT4eL1l59wTn5CgmcbJSeM+JycnYgr54SiHmPgHuDjlPj5aysKcspaWxCY81EhXs6r+j8rmJz4uBpmza65uzq48TXnCixfPtdJWqVaz2PJj4h/imtfPFuZYlSlDbEKiRrpaVSoVW3YOCXH3cXTKffTS0bkcz54+IfXFM620H1StVSzZUvtYVx4lWUdzSIiLwckpr59dVH5+/uZ+lj4O4nF1yj3iJycO4h480EhX4w3iICEuBidnF/W1TB0H2nWo8mvEwb2kZNzsc3dIlTIzxbq0BfeTUtSfWVqY8Wlt1SN12dnZhJ66xIfvl6NsKf3a+KSEu9jJcvtKe5k7L549Ju3FU410ZW0cqFxLtQioVGZx/vhOatRvUbj+iU906//oiab+tfLqf7lY+ktdBoCE+PvI8sSBzNmVZwX5uZhtxb0HSZRzzD2+opS5GVZlShGT+FjjsxYNcuX+eek65Z0csCyt3855Ke3zNto6YaOiedfbCoCE+BjJ4iwmPkFnf6A9Lire8XP5kdJGUo+LYuIf4Jpv7KiSn89GVV7fRlLXofsJBZWhZGx0L7GgOMvbp5nzaW3VuEIVZ1HFijOpxxVS+wAgMeEe9k558nBy4/nTZNLylcHSyo4a9Zqor69GnKDCB4WXqcD+4GG+/sAjT38QVbz+4PHDu9g45B71Y+PgTurzx6SnPtVKmxh7g7+v/olnq156yc4h+eFdbBxybVRYHg9z8mjds1h5CAQCwf8X/jNntFtbW+Pg4EBSUhKpqalMmTIFY2NjDA0N8ff3Z9WqVVSoUEF9IH779u2ZM2cOM2fOxN3dnYiICLp168aNGzeIiorC29sbb29vzp8/z/z58zE2NsbZ2Zlp06YRERHBxo0bMTAw4O+//8bLy4vWrVsTEhKCra0tdnaqzrZp06bs27cPb29v5HI5d+/eVU9slEolEyZMICYmhqysLIYMGYKtra2WjH379jFjxgxSUlIICAjAxcWFOXPmcPHiRZRKJd7e3nz++eecOnWKmTNnYm9vj4ODQ5EL+kXx8OFDxo0bR2ZmJkZGRkyfPh0XFxd27txJUFAQhoaG9O7dm4yMDCIjI+nbty8zZsxg7NixlCpViu7du1OqVCkWLFiAsbExMpmMWbNmER4ezoULF0hOTubOnTv06dOHrl270qJFC8LCwkhJScHHxwelUomLiwu+vr4Y5dndcfLkSebPn4+RkRHt27enV69eBdppwYIFnD9/HqVSSffu3enQoQNxcXFa8nPIzMykb9++9O/fn0aNGultK7kiA1MTE43PzExNSFfo3ily614sC4O2MXWQ/jttARQKBVbWuYNpE1NTDAwMUMjlWFrmPmoqVyi0XupgZmZW6I9QCrm8yHsUCgUm+dOYmqLQ48cthUKBqUn+e01K9IcxhUKBlVXuufgmJjn2SadMmeIf45IfuSIDU1NtP8sVb/Y0R14yFHLK6iiDXJ5O6TKv99h4DlL7OOd+qepobh5yylrr8LMinTKWb+Zn6eMgQ1u+qSnpcv13ShdFhkJeQBzIKfOGdQhAnpGFqYnm0MHMxJj0DO0fWw9F3GDWtsNYWpgxv8/neueRmSGnTNnc82uNX5UhQ5FOqTLajyj/sS+IQ6EB2Mnc6T2i4Ke5AOSZmZga69BfoUP/yBz9zZnf53966y91GaDgtqIk/CzPyMAsn4/NTU1IL6Ctu3U/Hr9NYczo/63eeUhpn7fR1gkbFc273laAtO1pQWNHeQn2ByBxeyrxuEihUGjJNzUzLXB8/TpIXYcUOv1siryEyiDPzNLdp+mMs+vM2npIFWc/fKl3HlKPK6T2QU4ZLPPkkXfsWKqAMly/dIaje4IZOkn38YQ5yBWZmOXzcdH9wW5mDChOf5BO6Xw2wsCATEW6xtEt2dnZ7A2ehFe38RgZm+gSVUgeckpZ5v5gUGgeQZNp+23x8xAIBG/Gy2IcYyn4Z/nPLLTHxsaSkpKCs7MzZ86cYcKECVSvXh1/f3/CwsL43//+x+zZs+natSu3b9/Gzc0Na2trrl27xtKlS3n69CkdOnTgyJEjKBQKBg8ejLe3N9OnTycwMBBra2vmzJnD/v37kclkXLp0iX379vHy5UtatGjBoEGDaNasGV5eXtSuXZtNmzbRpk0b/P398fb25rfffqNx48ZcvHgRgLCwMBwcHJg5cybJycn07NmTsLAwDRkAdnZ2rF+/Hj8/Pw4ePEiNGjW4desWISEhpKWl0alTJ1q1aoWfnx9z586latWq9O3b940X2v39/fn+++9p3Lgxv//+O8uWLcPHx4dly5axe/duMjIyGD16NAEBASxatIhVq1bx5MkTrl27xrFjx7CxsaFt27asW7cOZ2dnpk6dSlhYGAYGBty8eZOQkBDu3r3LiBEjNN4GvGDBAnr16kXLli2ZM2cO0dHR1KlTB1B17FOmTCEkJAQrKysGDhzIN998o9NONWvWJC4ujo0bN5KRkcEXX3xBq1atdMrPYdasWbRr165Yi+wAFuamZOTb0S9XZFLK3Ewr7aUbfzHWfzVjf+xO/RpF71oN272bsLAwQPU4o41N7kA3IyOD7OxsrXO6zc3NtY7yUSgUhZ7nXdA9FnmeMjA3NyczXxq5QqHXkwjm5mZkZOaXn6Eh/3XYF7ad/XtU5+IaGRljbZM7CM3IUKjsU4yziQvDwtyUjHwTF3lGBhY6/FwcDoZv5dCerYDKx1Y2uYPc3DIU77xLXUjl47dRR/eFbWdfeCgAxkZGWOu00Zv7+a3EgY573zQO9odt58Ae1XmgkseBqQkZmVkan8kzsihlpj3Zal2vCq3rVeHMzXv8sCSEraN7YV9W++VpACcObOTkwc2qMhgbY2mV+1LGzFdlMCsgDpq160HTtt2JPLWXxZO9GTV3Nyamum1qYWpCRlZ+/TN161+3Cq3rvtJ/8Ra2ju5ZoP5vowwHwrdyMHwbAMbGxlhZSxMHFmamKLR8nEEpM1OttFG37uKzVHVWeYNqhb/U7W35WOo4BmEjfXhX24oD4dvUcWZkbIy1tTTtqbmZmdbYUaHIwMLizcYU8BbbU4nGRTmo+kxtG5V6wz7zbdkHdPtZnvHm/X4Ouvu0LJ1tUet6VWldrypnbtzlh8Wb2OrzfYFxJvW44m344Ld9m/l9X4g6j7LWuvLQXYbIs0f5dc1sBvgsVh8jUxCq/iC/jzMpZV5Af7AkiAl9utKgWuFPMZw7Gsz5Y8EAGBqZUMYq9+mRrEwFZGdjms9GF49vwd6lEu4fNChUdt48LnrHVAAAIABJREFUzh3d+CoPY0qXzbVRYXk4uFTC/YP6euUhEAgE/x95pxfa79y5Q48ePVQdpZkZvr6+GBsbY2dnx7x585DL5SQmJtKxY0cqV67Ms2fPSE5O5siRI3Ts2BEAd3d3bGxsMDU1xdbWFplMRmpqKs+fP+fRo0fcu3ePwYMHA5CWloaNjQ0ymYzq1atjUcSLCF1dXcnMzCQ+Pp69e/cyYMAA9UJ7REQEFy5cUF8rFAqd55zXr6/qxGQyGSkpKURHR+Ph4QFAqVKlqFSpEvfu3SMuLk79ZlwPDw8UReyU2Lt3r8Yic7t27fj229xf1iMiIrhz5w4BAQEolUpsbW35+++/ee+99zA3N8fc3JyAAO2XNLq5uWFjY0NKSgoGBgbqHfyenp6cO3eO6tWrU7duXYyMjHByctI6UuLq1avqlwvknBufQ3JyMmZmZtjaqgZ7K1bkvpAqv50uXrxIVFQUPXr0AODly5ckJSXplL9582ZCQ0PJyMhg4sSJhdpNF+VdnDj85wX19Yu0dJ6npuGW51FRUO1kH7twFdOG9KFeNf0ec+3YqRMdO3UCIDw8nMuXL6u/i4uLw9bWVuNFDQBu5cpx/Phx9XVOfXZ1daUgyrm5FXlPOTc3EvIccZGdnU1CQgLu7u4UhburC0dPnFZfv0hN4/mLVMq5OBVyV9G069iZdh07A3BgTyhXoiPV3yXEx2Jja0fpEtjNDlDe1ZnDJ8+pr1VlSMPNWVbIXUXTpkNX2nRQ/dh0aO82rkfnvojjYXwM1rb2JVIGqXz8NupoXj/vDw/lqkR+lj4OXDn2R+6Zby9S03hRAnHQtmNn2qrjYAfX8tjnQQnHQUWZLQcirquvn6creJYmx90h9weWB0+ecTXmIS1eHQnhWbk8MitLLt1NUH+Wn6Ze3jT18gbg5KHN/H3tvPq7Rw/uUdbaAYvSmrvOHsb9xdPkRCrX+ggDAwPqNf6M0MAZJMbfwbVCNd36O9pxIOJGPv0VRetvXbj+b6MMXh264pXTVuzZzrU8bcWDEmwrKjg7cvBMlPr6eVo6z1LTcXdy0Eh36348o5cEMWugN/WqvFek3LflY6njGISN9OFdbSu8OnTBq0MXAA7u2a7VnpZUnJUv58LRkzrGRc5v1h/A26tHUo2LcuW7cOTkmXzy39xGb8s+qjI4ceTPs/nKUHI2qiiz48DFa+rr5+lynqXriLP7D2hRR7XBx7NKBVWfdide/Vl+pB5XvA0fNG/XjebtugHw+/4t3Lqam0diwn2sbBwoVVp7N/v1S6fZtnYOgycsx7lc0e12BRdHDp7JtY+qP0jD3cleI52qP9jArIHd9eoPPFp0x6NFdwDOH9vI/Zu5sZb88C5lrBwwL6Wp/83IIyTci2ZBlOoM/bTnyayd0YUv+y2kQlXtjWSaeWzi3o3cPB4XlEfEUeLvRXMzTx5rpnelc/8FOvMQCASC/4/8Z85oX7NmjfoA+xkzZvDdd98RHBzM119/rU7foUMHDh48yKlTp2jZsiWAxrEkxvkevTMxMcHR0VF9jvn27dvp27evzrQF4eXlRWhoKHfu3KFatdxBgImJCf3791fLPnjwoNZjvPn1y87OxsDAQOP7zMxMDA0NMTQ01EhXFPnPaM+7yJ6jn7+/P0FBQWzatIklS5ZgaGjIy5cvC5Vr8urROQMDAw09MjMz1boXZjsjI6MC9S8s//x2MjU1pUuXLury7du3Dzc3twLlZ2dnExsb+1rn49evUZmER8lEXr8NwOY9R2jyYU2NHT3Z2dlMDVjPyD7d9F5kz0+jRo2IioxUv0w3NDSUT5o310pXu04dkhITufLqh5TQ0FAaenoWugutTu3aJCYlEX3livoez4YNNe4p7+6OVdmy6hfHHj58GEdHR8qVK6dTZl4+rFWDh0mPuHRVNen+dfdePmpQr8R29AA08GxKdNQF4mJVL2oL37mFJh+3KjH5H9aoyoNHj4m6dguAkPBDNKlfu8R2bgHU9/yYK1HniI+9B8DeXZv4qFmbEpEttY9B2jqag0ejplyOupjr59BfafpJS730KwqpbVSvVg0eJCWp42Dr7j185PFhicaBh2czoqMuEJ8nDhqXYBx4fOBOQvIzLv6l8nHwsXN8XPN9jd1zmVlKJm7cy+2ER4DqDNmYR09438lOp8z81KzfglvRp0mMV70Y/Pe966nbuL1WuhfPnhASMIanT1Rn3d65cRGlMgs7x4Kf6PL4wI2E5Ke5+v92no9rvKepv1LJxE378uj/5JX+9jplvu0yANRv9H/s3XdUVMfbwPEvIsWC0qugRKNGjZpEozHFJGosifkl1thi76JiR0UUVMReQUVsoGIv2LumWGPXxN6xoGBDdoGF94/VhYWFXaOXxDfP5xzPEZj73NmZO2Vn7879nDMnj2b0FeuiqfFFHZPzl5sq75Xi7sMEjl/Q5n3ptl/4vPJ7FMhURunp6QSEL2dI2x9NWjDISsnyyYu+TsrIuLe9rwCoUv2LLO1s2RvrTz+sUO7FvEj7wd+KmC3UeMPzIlC2jJSeF31Y4T3uxT3k5J/aMloes5UaVSq/0XmX4n11hfe4G/eAk39eACB643Y+/ajSG3sNGe3sJvCinZU31M42cemO9tlR1+/HczPuESXdTBvTlJ5XKF0HAJWqfsn504e5d/saALs2LqbKZ/WypUtWJ7F41gi6DJxs0iI7vBwPHnH8/IvxYOt+Pq9cjgJW+u8DA+ZGM+TnRn9rPChduTZX/zrAw7tXADi4YyHlP/4uW7oWfcLpN/kAvpN+w3fSbxSxd6PDsFUmLYCXrlyLq38d4MGLcxzavpAKH3+b/Rx959J/yu/0m/wr/Sb/ShF7VzoOXymL7EIIkclbfUd7Th49eoSXlxfJycns27ePypUrA9qF9h49elC8eHGjd6MDFC2q3Y/s0qVLlCpVisjISN3d5IaYmZmh0Wj0fle3bl2aNGlCkyZN9H5fqVIldu3axXfffcfDhw9ZtGgR/fr1MxgjswoVKhAWFkaXLl1ITEzkxo0bFC9eHBcXF65cuYK3tzeHDx/Wvea/q1KlSuzcuZOWLVty4MABHjx4QK1atbh69SqJiYnkz5+fbt26MX/+fIN5Llq0KGZmZsTGxuLu7s7hw4f56KOPcn1tL1/fwYMHadCgAdOmTaNq1arUqKF98I2dnR0ajYZ79+7h7OxMt27dmDBhgsE4FStWZPz48XTu3JmUlBTGjx+Pv7+/wfgAjRo1wtrammHDhhEVFZXtA43cWFtaMrp3RybMj0alTqaYqxMjuv/M/fhH9Bk7nWUTR3Dm4lUuXb/NrKVrmbV0re7YQJ8OlPU27e4wR0dHevTsSVBgIBqNhpKlStG9e3cAzp8/T+TixYweMwYrKysGv9jmR6VS4e7ujm+/frnGtrKyYsjgwXrH9PP15cGDBwz392f2i28vDBo0iGnTpxO1ZAm2trYMGjjQpLxbWVkS0N+HKXMXolKp8XBzwa93N+IexjNg1DgWTdc+jLdt70FoNBri4hMImhKKlaUFQ/t0p1xp4w+JcnB0olP3fkwYPRSNRoN3qdJ06KrdB//i+XMsj5rH8KDJPEqIJ8DPR3dcgF9vzM3NGTF6Kg6OTjmFx9rKkqC+XZk4L4okdTLFXJ3x79mB+w8T8B09mSVTggBo5etPqiaNuPhHjJw2F0tLS0b4dKT8u8Yn1vYOzrTrPoipYweh0aRSomRZGnfRfrh3+cJZVi2Zw+BR03mc8JDRQ7vrjhsztAfm5ub4jZ6JvYOzwdhK1zEoe42+5ODoROcevowPGoomTcM7JUvToVsfQFvP0VER+AdN4lFCPCOG9NYdFzCkD/nMzQkYMyXHes6LdjBiQB+mzYkgSaXGw82VIX16EPcwnoEjx7BwxiQA2vn0R6NJ48HDeMZMnoGlpSVD+/bkPRPagb2jEx2792PCaD/SXrSDZl37AnDpRTsY9qIdjPLrpTtulJ8P5ubm+I+ehn1u7cDSgpB2DQleuYOk5BQ8He0Ial2fe4+e0j1sJWv8OuDpZMeIn+oyZFEMKakazMxgUONaFHe2zzFuZkXtXWjUwZ+Fk3uTpknFw7scdZsMBeDGpVNsXTmDLn7hlHyvCrV+6MKcsR1JT0snv4UFrXtNxLpgztu7WFtaENK2IcGrdr7Ivy1BrV7mfxVr/Nrj6WjHiOYv8q9J0+a/US2KO9vlGDcvXwNo+4oO3QcwecxgbX9XsgxNumrb0KULZ1kZFY5f4FQeJ8QT6JfRV4we2oN8+cwZNmZGjn2FtaUFY7u3JmTxWpLUyXi6ODCyU3Puxz+m18RwVowdwOnL17l48w7TV2xm+orNumPHdGvJeyWML8QqWT550ddJGZlWRm9zXwFg7+BEh+4DmDRmCGkaDSVKlqFd104AXLpwjpVRc/ELnMqjhHiC/Hrojgsa2hNzXTvLabyxZGT/XkwOz5gXDfXpStzDePqPCmHxdO0zhH7uPRhNmnZeFDh1FlaWlgzr3Z1ypXPfziIvykjpeZGVlSUj+/Vg8tzFqNRqPFxdGObTmbiH8fQLnEDktGAA2vTxQ5OWpi2jKbOxsrJkeO8ulHvXeBkpfQ1ZWVkS6NudSeFRJKnVFHN1ZnivTsQ9TKBv0CSWTB2tLaO+w1/Mfx8xcupcrCwtGNG7M+WMlJG1pQUh7b8neMV2bTtzsiOo9bfadha6nDVDO2nbWYv6DFm44UU7M3uldqb0vELpOgCwdXDhp85DmT2+L2kaDZ7vlKVZBz8Arl08TUz0LHz8Z3PyyF6ePUlgwTQ/veN9A+dTxNbwB4DWlhaM7dGKkMVrXowHjozs/GI8mDCXFcEDOX3p5XiwiekrNumOHdO9lUnjQRE7F+q3DGDFrJ6kpWlw8ypHzRbDAbh99RT71k2jpW+E0ThGz9EqgBUze5GepsHVqxz1Wr44x5VT7F0/jVaveQ4hhPivMEs35fbnf6Fbt27Ru3dv1qxZk+1vy5cvZ/HixXh6etK4cWMCAwMJDw+nbNmytGvXjvbt21OzZk29GImJiTRs2JDdu3fr/f/o0aOEhITo7m4fP3687mGo06dPB7Tbohw6dIjVq1czY8YMgoODWb9+Pb169aJYsWI0btyYgIAAKlasSJs2bQgODsbV1ZWAgAAuX76MRqOhV69e1KxZUy9GaGgo/v7+lC5dmqioKBISEvDx8dE95DM1NZX27dtTr1499u/fz4QJE3B3d8fR0RFXV1fdljdZrVmzhmnTpmX7+m9ERAT16tUjJiaGZ8+eMXToUFQqFWZmZgQHB+Pp6UlMTAyRkZEAtGvXjgYNGuDn58fp06cJDg4mICBAVydHjx5l0qRJ5M+fH09PTwIDA9mwYQMXL15k8ODBeuX88mGoT548wc/Pj9TUVNzc3Bg3bpze3eoHDhxg6tSpgHa7m3bt2tGmTZscy+n3338nPT2dli1b0qhRI+7cuZMt/rBhw6hbty5fffUVI0aMoGTJkrRtm/NT1B8d3/0KV+qre1i0hKLxzRRu8oWSHykaH+Be/td7BoExxVQXFI1/2bKCovEd8j9UND5A+it8GPV3PE8rpGj8QmbPFI1fIOWp8USv6Z55zttBvQllr2xQNP4Ox5z72TehTtxCReMD7HBqp2h8d5snisYvE/+rovEB9lhkvzPxTSpve13R+M5xZxWNr3T5gPJl5H5pr6Lxle4rPGweKxofoFjqVUXjH0p6vRtsjPnU8qDxRK9Bk0/5hyoeVCm7p3QNq8PGE72GQrHnjSd6DX95Z79D+k27+cT0D6z/joKWqcYTvYZqz3coGn+tuqGi8QHMzJRf+mn9ubLvEYT4r2o74q7xRP8hiwJff7s9pby1C+1/R3x8PJ06dWLVqlV6W60I8SpkoT13stBunCy0GycL7cbJQnvuZKHdOFloN04W2o2ThXbjZKE9d7LQbpwstBsnC+3GyUK7EG8vWWjX929eaP9/uXWMITt37mT69On4+fn9JxbZk5OT6dixY7bfe3t7ExgY+A/kSAghhBBCCCGEEEIIIf5/+s8stNeuXZvatd/cg1v+7SwtLXVbvAghhBBCCCGEEEIIIYRQzv//W7uFEEIIIYQQQgghhBBCCAX9Z+5oF0IIIYQQQgghhBBCiLfJf+jxmm89uaNdCCGEEEIIIYQQQgghhHgNstAuhBBCCCGEEEIIIYQQQrwGWWgXQgghhBBCCCGEEEIIIV6DLLQLIYQQQgghhBBCCCGEEK9BFtqFEEIIIYQQQgghhBBCiNdgli6PrhXilRz867Gi8Z0sHyoa30zhJm+jVjb/ALcs3lE0vnU+taLxbTQJisZPNi+gaHyAdDMzReO7xJ1VNP59x3KKxr+SWEzR+AClC1xRNP4fCaUVjV//0WJF4x/2aKZofICPb69QNP4F728VjZ+abq5ofIBy1zYoGv+YZxNF49tYPFc0/rtXNisaH+CQR3NF45uh7LzibW9nAFYKzyuKX96paPxfXFoqGr944XuKxgfwurxL0fj7XVopGr+kzS1F4+cFpd+DOCVcVDT+sQJfKBr/cZKVovEB8uVTtg4ePMmvaHyAdl8qfgoh/pVaD4v9p7PwrxI1xv2fzkKO5I52IYQQQgghhBBCCCGEEOI1yEK7EEIIIYQQQgghhBBCCPEaZKFdCCGEEEIIIYQQQgghhHgNstAuhBBCCCGEEEIIIYQQQrwG5Z9WIYQQQgghhBBCCCGEEOKVpacp+zBj8ebIHe1CCCGEEEIIIYQQQgghxGuQhXYhhBBCCCGEEEIIIYQQ4jXIQrsQQgghhBBCCCGEEEII8Rpkj3Yh3pCD+7ezYeV8NKmpFCteko4+/hQsVDhbutTUVFYunsnW9UuZEhGDvaOLyefYt3cv0dHRpKamUrxECXx9fSlUqFC2dCdOnCBi3jySVCqcnZ3p5+uLo5NTrrFPnDjBvIgIVElJODs749uvH06Ojnpprly5wsxZs3jy+DFFihbFp1cvvL29Tcr7H6fOMmvRMp4nqXF1dmBory44O9rrpUlPT2fZus3MWbKS6YF+VCpXxqTYL/2+bydrli9Eo0nFs/g7dOszNMc6WLYwjE3ropm1cC0Ojs4mn+OXfbtZGR1FamoqXsW98fEdSCED5zh14hgLI2ajSlLh5OyCT79BODrmXgfHT55m9vxFJKlUuDg7MahPL5wcHfTSXL56jamhc3n85AlFixShb48ulPQuYVLela5jUPYaBTh87iJTl20kSaXGzdGOgM7NcbG31Y994SqTl24gMUmNtZUF/Vt+z4dlS5qU/7woo6O/bWHr6rloUlNx9ypF6+6BFChkky3dqSN72Lg8lNTUZAoVtqVFl+G4e72ba+zjJ08xd/5CkpK019CAvj7Z8n/5ylWmh87m8ZOnFC1iQ5+e3XnHu4TJ+Qc4eWAzu9fPRqNJxaXYuzTtPBrrgtlfw+kj29m9LozUlGQK2tjxY7sAXD1zfw2Hzl9j8ro9PFcn425flMBWDXCxK6KX5ujFG0xZv4dnSWqsLS0Y1LgWH5XyMjn/h3/dxqaV89BoUvHwKknbngEUNFAHJw7vY320Nv+FbWxp3XUoHsVL/eP5B/ht305WL19MqiYVr+Lv0L3PEIN9UWpqKksWzmbjuuXMXrja5P7u9/07WLt8IRqNBk+vd+iaW3+6KJTN66KZuWCdSfHzqowO/bKNmJURaFK19dzBJ8Dgazh+eB9rl84hNTWZwjZF+bmbH8WM1DPAr/t2sXr5YjSpqXgW96ZH39zrIGbtCuYsWvWvKaPDv25l84t24O5VkrY9R+bQDvayITqM1JQUCtkUpXXXYUbbQcY53u62pnQ7279vDyuil6BJTcWreAl6+w4wGP/kieMsiJiDKikJJ2cX+vQbaHROAXlTRkd/28K2Ndoxzc2zFK17BFLAwHhw6ugeNmUa037qbHxMA20ZLY9eqiujPr4DDM4rTp44zvyIuS/Gbxf69BtgtIzyqi/6I0sZtcqhjE4f3cOm5bN0ZdS8s79JZaT03Ottfv8BcOTsBaYuXU+SSo2rox0BXVrh4pBl7nj+ClOWrCMxSYW1pQX9Wv/Ih++Z1s+B8v3piQOb2bluNmkv5l3Nuow23M4Ob2fnWm1fWsjGjsYdjM+7Xjr++2Z2rp2DRpOKq2cpmnfN4RyHtrNj7WxSUpIpZGNLk44BuJlwjnNHNvHb5jDSNCk4uZemQduxWBfIHv+lS6f3snJmV7qP2YWtYzGTXoMQQvwbyB3tQrwBD+PuEhU+kf4jphIStgpHZzdWRYUZTDtt7ACsrAu+8jnu379PWFgYowIDCZ83DxcXFxYtWpQtnUqlImTcOPr07cu8efOoVq0aM2bOzDW2SqViXEgIffv00R0zc8aMbOnGhYTQpHFj5s2bR7OmTRk/frxJeU9SqQiYNIvBPToRHTqBT6t8wMTZC7Klmzh7ITdj72JXtIiBKLl7cP8uC+ZMYcjIiUyZE42TsxvRi+cYTDsxaDDWBQq88jni7t8jPGwG/qOCCQ1fjLOLK0sWRWRLp1IlMSlkND37DCB03mKqVvuE2TOm5Bo7SaVi9ITJ9PfpweI5M/mkahWmzMqe/9HjJ9O80f9YPGcmLZr8SPCkaSblXek6BmWvUYAktZqhs6Lw79iUtROG8PkH5Ri7YLVemuSUVPpNXYBPs29ZHTKI7o3rMTRsiUn5z4syio+7w8qIcfTwCyVgegz2Th5sWJb9HI8e3mPxrOG07zOOEVPXU/Xz+iybG5Rr7CSVirHjJ9HPpycL54ZS/eOqTJs1O1u6MeMn0azxjyycG0rzpo0JnjjZ5PwDPHoQy4bIMbQfMJsBEzZj5+TOtpXZr8NHD2JZt2AUP/vOpP/4Tbz/cV1WzRuea+zn6mQGL9zAyJb1iRnRlS8qlCJo+Ta9NKrkFPpHrGVYs7qs9+9Ct/qfMnD+etLTTXtA0MO4OyybF0Lv4dMZPXMtDk7urFs6K1u6hIf3WTBjBJ19xxI0Yw0ff16PyNlj/vH8g7YvipgzFb+RE5g+ZylOzq4sWxxuMO34IL9X7u8e3L/LwjlTGBwwicmzo3F0cWV5pOH+dNLowVi/wpiWV2WkHZcn4Os/neDQNTg6u7N6ieF6njdtJF37j2bszFVU/7wei8LGGo0fd/8e82dPZejI8UyfuwRnl5zrICTI719XRg/j7hA9LwSf4TMImrkOx1zawcIZI+jkO5bAGWuo9nl9omaPNvkcb3NbU7qdxd2/x9ywmQSMGkNY+EKcXVyJXJR9bqRSJTExZAw+ffoze94iPq72CaEzphqNnxdlFP/gDqvmj6O7XygjpsXg4OxBjKExLf4ekbOG067POPynrKfKZ/WJDs99TAPtvGJO2CwCRo1hdvgCXFxciFw0P1s6lSqJCSFj8enTjznzFlK1WnVmzch9fpRXfZG2jILp5heK/7QY7J3diVk2PVs6bRkNo22fEIZP2cBHnzUgOjzQaHyl515v8/sPgCSVmqEzF+Hf6SfWTBrOFx9UIHj+cr00ySmp9J88D5/mDVk1YSjdmjZg2KzFJp9D6f404UEs6xaNoePA2QyauBl7R3e2rsh+fSc8iGXN/FG07zeTQRM3UbFaXVbMzX3elfnYtQvH0mlwGEMmb8Le0YMtyw2fY1VEIO37z2TIpI1UqlaX5XOMn+NxfCzbo4No5jOXroHbKOrgwb51Ob83SklOYu+aSVgXss0xjRD/Nenp6fIv079/s//kQvutW7f44IMPaNOmDa1bt6ZZs2bs2LHjH83TX3/9xdWrVwEYMmQIHTt21Pv7nj17KFOmDLdu3TIpRps2bbhw4cIr5yMqKooZBiY4L61Zs4YqVaqQnJys+93jx4+pUKECa9asyfG4uXPncvz4cdasWUNISIhJeblw4QJt2rQxmu7WrVs0atTIpJg5qVat2msdf+zQPspVrIqDkysAX9T+niO/7TKY9n/NOtCoZZdXPsfBAweoXLkyzs7au6TqfvMNv/7yS7Z0J0+cwNXVlVKltHdHfPPNNxw/doznz5/nGPvEyZPZjjl2/LjeMVevXuXZs2fUqFEDgOrVq/Po8WNu3LhhNO9/nD6Hu6szZUqWAODbWjU5fPI0z5OS9NLV/+ozBvfsSH5zc6Mxszp66BcqVPoIR2dtHXz1zXcc+m2PwbSNfmpP01adXvkchw7+RsXKH+LkrP0WQp269fnt1/3Z0p06eRwXVzdKlioNQK1v6nPi+FGScqmD46dO4+bqQulS7wBQv87X/HHiJM+fZ5TRlWvXeZaYyGefaK/XGtWqkvD4Mddv5twvvKR0HYOy1yjAkXOX8HB24L0S2rta/vfFxxw8c4HEJJUuTapGw/D2TalaThu7cmlv4hKe8DQxyWDMzPKijE4d3UOZ96th7+QGQI2vf+T4we3Z0pnnz0/7PiG4eWrvxC9Z9kPu3LxsJP+ncHV14d1S2mPq1anFH8dP6F1DV69dIzExkU8/qa49f7WPefT4Mddv3jQp/wBnj+2mZLnq2Dq6A1C1ZmNOH96WLV2+/Bb81H0Cdo4eAJQqV524O1dzjX34wnWKOdrynqe2Hf/4SUUO/HWVRJValyZFo2Fky/qU89KmqVamBA+fJvI0SW0wZlYnDu/jvfc/xuFFHXxW+weO/r4zWzpz8/x09h2Lu6e2Tb77XmVijdRBXuQftP3d+5U+0vVFX3/zLQdz6O8a/9SW5q06GvxbbvH1+tM6DTn4226DaX/8qd0r9ad5VUbHD+3VG5c/r/M/jhoYl83N89Ot/xg8XtZzucrcvnHFaPwjB3+lQuXMdfAdB37dazBtk5/a0rx1B5PznhdldPLwXspmagef1v6BP37PPhc2N89PJ99g3F/0RaVMaAcvve1tTel2dujg71Sq/EGWOcW+bOlOnTyBi6srJUtp7xit/U09Thz/w+iYmRdldOrIHkq/Xw17R20df5LTmGb+YkwrZvqYBhll9HJekfODrykPAAAgAElEQVS86+W8QltGdUwoo7zqi04f2Z2ljBpxIocyatdnfKYy+oC7JpSR0nOvt/n9B8CRcxfxcHKgrLcnAN9/WZ2Dp89nmzsO69ScKuW110/l0iWJS3jM08Tcy0b32hXuT8/+sZtS5atj92Le9fGXjTl1KPu8y9zcgpY9J2DnpJ13vVve+LzrpTNH9/BuhUzn+KoRJw1epxa06jUeeydtuncrVCcu9prR+BdP7KJE2U8oaq89rtKnTfjrj605pv8lZgYVqn+PlXX2b04IIcS/3X9yoR3A29ubyMhIoqKimDt3LmPHjkWlUhk/UCE7duzg2rVrup9v3bpFfHy87ufNmzfj6en5SjGUYmtry759GW8Etm/fjqura67HdOnShQ8++EDprP1j7sbewNnVQ/ezs1sxnjyOJ/HZk2xpS5Wt+LfOcfv2bdzc3HQ/u7m58ejRI54+fZprugIFCmBjY8Od2FiTY788JvbOHf00WerZ1dWVm7l8+PPSzdi7eLhmfI26YAFritoU5tade3rpKpQ17auNhty5fRMXt4w6cHHz4PGjBJ4ZqIPS71X4W+eIvX0LVzd33c+ubu7ac2Spg6zptOVZhDt3bucY+9btO7hnKt8CBQpQxKYwtzPVwa3bsbi56m815Obiws1bOcd9Sek6NnSON3mNAly/G0cx54ytdApaW1G0cEFu3nuo97uvq76v+/n3k39R3NUJm0LG7zTMizK6H3sdR5eMr786unry9HE8z7NcpzZFHSj/wWe6n88e/5US775Pbm7djjVwDenn/9btWFyzXUOu3Lxp/Bp66cHdazi4ZIxHDs5ePHvykOeJj/XSFbF14t33tW+MNZpU/vhlLeU+/DrX2Nfvx+PpmHH3UkErS2wLFeBGXILudzYFrPmqovZDrPT0dNYeOMmHJYtRpKC1Sfm/F3sdJ9eMOnByLcZTA/11EVt7Knz4qe7n08d+x7t07n1HXuQfIDZLf+eq6++eZktb5m/0d3dib+Liqt+fPsmpPy2b+3WZVV6VkXZczqhnZ1fD43IRW3ve/7CG7udTx37jHSP1DNoxx9U1cx0YHg/g1esg79pBRjt2etEXGWsHZ479hndp0+r8bW9rSrez21nmCm5ubjx+9CjbNXT79i3cXnFOAXlTRvfvZBnTXHIe08pVzhjTzh3/leJGxjR4OZ/KPq8wVEaG5105zyvyqi/SllFGW8soI/0x8++WkdJzr7f5/QfAjTv3KeaSsRVNQWsritoU4ua9B3q/+7pqJd3Pv588h5ebMzaFTPsmktL9abZ5l0sO8y47J0pnmncd2b+Wch/lPu96Ke6O/jkcX57jWfZzlKmY6Rz71lG+ivFzxN+7hp1TxpZLtk5ePH/6kKQsrwHg/u3zXPvzd6rWbmdS3oUQ4t9G9mhHu3Ds5OREXFwciYmJjBo1ivz585MvXz6mTZtGeHg4JUqUoGnTpgA0aNCA8ePHM3bsWLy8vDh+/DgtWrTg/PnznDx5klatWtGqVSuOHj3K5MmTyZ8/P25ubgQFBXH8+HGWLFmCmZkZV65coW7dutSpU4fo6Gjs7e1xcNAuIn322Wds2bKFVq1aoVKpuHbtmm4iotFo8Pf35+bNm6SmptK7d2/s7e2zxdiyZQtjxozh0aNHhIWF4e7uzvjx4zl27BgajYZWrVrxww8/cODAAcaOHYujoyNOTk5GF/Rr1qxJTEwMderU0Z3n5V0GAMHBwZw6dQq1Wk2LFi1o2rQpQ4YMoW7dunpxlixZQkxMDPny5aN27dp06NCBu3fv0qdPHywtLSlTxvD+3KNHj+bUqVOYm5szatQoChYsSHp6OgEBAZw+fZry5csTFBTEvXv3GDZsGCkpKZibmzN69Gjc3d1Zt24dkZGR5MuXj/bt29OgQQNd7D///JNRo0YRERFhcO/BnCSrVRQpmrHfuIWFJWZmZqhVSRQq/OrboBiiVqspapvxhsDC8uU5VNjYZOxvp1KrsbS01DvWysoq1w+S1CqV0WPUajUWWdNYWqI24QMqtToZSwsLvd9ZWlqSpDL9jiDj51BTpKid7ueMOlBR+E3WgYFzqNQqCmeqA7Uqe1lZGqsDtRoLS/0ysrK0RJWpjNRqNZYWWevJkiRT6kDhOn55vFLXqPa4FKyyXEfWlhYkqZMNpr94I5ZJSzcwpntL0/KfB2WUrFZhY6ivUD+nYA7X6V+nD7J7YyR9Aublnn+1GkvL7O0sc/5VanW2tmhlZYlKbfoHzSlqFYWLZHzgkf/Fa0hRJ0GhotnS/7otkt3rQnFw9qKNr5GvkaekYplff2piZZGfpOSUbGl3HP+L4JU7sClgxeROpn+rKTn51fvrP08dYufGJfQfZXj7lLzMP+TcF6lVSRQunPN+p6ZKVqtyiP/6/WleldHfGZfPnTzM9g3LGBRkeOu3zNRqFUVsDZSROklvPPg78qodGOqLkk1oB/2MtIPM53ib25rS7ez15hTGx528KKMUtQqbIq82pp0/fZDdmyLpbWRMg5dllGlekUsZZR2/La0sc51X5GVfZLiMkihYOPuYCdoy2rMpEp+A7NsTZqX03Ottfv8B2u1/LC3069nawgKV2vB7kIs3bjM5ai2je/5sUnxQvj9NVqsoZGDelaxKoqCBedcvWyPZuTYUBxcv2hmZd72UkuU16M6Rw3W6f0skO9aE4ejiRfv+OX8bXhc/JYmCRfTjY2ZGSnISBTK9hvT0dLYuCaDOT8MxN7cwFEoIIf71ZKEd7d3jjx49ws3NjUOHDuHv70+5cuWYNm0aMTEx/O9//2PcuHE0bdqUS5cu4enpia2tLX/++SezZs3i8ePHfPfdd+zatQu1Wo2Pjw+tWrVi9OjRLFy4EFtbW8aPH8/WrVtxcXHh1KlTbNmyhbS0NL7++mt69erF559/Tt26dalYsSJLly7lm2++Ydq0abRq1Yq9e/dSo0YNjh07BkBMTAxOTk6MHTuW+Ph42rZtS0xMjF4MAAcHBxYtWsSkSZPYvn075cuX5+LFi0RHR/P8+XO+//57ateuzaRJk5gwYQJly5alc+fORhfay5cvT0REBM+ePUOlUpGSkoLTiwfdqNVqPDw88PPzQ6VSUbt2bd0HFJndvHmTrVu3smzZMgBatGhBvXr1iIqKokGDBrRt25a5c+dy/vx5veN+//137t69y4oVKzhy5AibN2+mSZMmXLt2jblz5+Lg4MCXX37JkydPmDZtGh06dKBGjRrs27eP0NBQhgwZQmhoKBs2bCA5OZnBgwfrFtrj4+MJCAhg6tSpJi2y79i0gl2bVgLabR6K2mZMgJKT1aSnp/+tvdgzi9mwgZiYGN057Owy3pAlJyeTnp6ebU9Qa2trva19QFsvue0dmtMxBayt9dKkZEmjUquxtjZ+V4+1lRXJKfpvXNTqZAoWMP2OIEO2xqxi+ybtHt3m5vmxtcuYwL2sA2vrV9+LPbNNMWvZHLNOdw47vXMkGzyHobJSq1W55sXa2oqULG/uVOpkChTQr4PklNzrKef4ytRxXl2jAAWsLFFnuY5UySkUtLbMlvbkxWsMmRmJf8emVDHxYVZKldHeLcvYv1Xb15mb56dIpr4ixUhfcfLwblbMD6a730zdNjK55z9rO1Njne0aynqdGb+Gft+xhAM7lgKQzzw/NrYZd4e9fA2WVoZfw2d12/DpN605eXAzYaNa0i8kBgtLw+crYGlBcmqqfv6SUylolb2O63xQljoflOXQ+Wt0mrGUlUM64Fgk+0MEAXZvjmbPlhWAtg6KGqgD6wKG83/80B6WzRuPz9Bpuq0tcqJU/gG2xKxm66Y1utfwpvu7bRtXsX3jKm38/PmxtX3z/SkoW0Y7Ny1n1+ZM9WxnoJ5zaGvHDu4lKnwCfYdP0W0jk9WWmNVs2bgWgPzm5tjaZR/3/81lpG0H2r2JtX1R9nZslUs7iJ4XQq+h03TbHuR8jre3rSndzjbGrGNTzHpAew39/TmF2mg+lCqjfVszxjTtePBqY9rKBcF0GzJTt0VKVhtj1rExZgPwsp0ZmFcYKCNj43dWSvZF+7YuzTLuG2hrOZbRLlYtCKbbkFk5lpHSc6//L+8/AKytLElOyVrPyRSwssqW9uSFq/hNX8Dwzj9RpVzu37JVuj/9bfsSftu+VBff0Lwrp2vo83pt+Kxua04c2MzMUS0ZON7wvOvXbUv4dXvGdfoq5/iifhs+r9ea479vZkZAKwZN3JDtHEf3RPHHnqgX8S0oXCTjwbipKWowMHc88ctyHN1K4VmqisHzCiHE2+A/u9B+9epV2rRpox1ArKwICQkhf/78ODg4MHHiRFQqFffv36dhw4aULl2aJ0+eEB8fz65du2jYsCEAXl5e2NnZYWlpib29PS4uLiQmJvL06VMePHjA9evX8fHxAeD58+fY2dnh4uJCuXLlKGBkQcnDw4OUlBRiY2PZvHkz3bt31y20Hz9+nD/++EP3s1qtzjZJAfjoo48AcHFx4dGjR5w5c4aqVasCULBgQUqVKsX169e5ffs2ZcuWBaBq1aqoc/iEP7OaNWuyc+dOnj17Rq1atXRfH7SysuLx48f89NNPWFhYkJCQYPD406dPc/36dX7+WXu3QGJiIrdv3+by5cvUq1cP0O6b/kuWPQDPnj3Lhx9+qMtr1apVuXXrFl5eXrrFfkdHR54+fcrx48e5evUqYWFhaDQa7O3tuXLlCu+88w7W1tZYW1sTFqa9ay09PR1fX186deqEu7s7pqjzbTPqfNsMgF2bV/HXmWO6v92LvYmtnSOFXvOOp4bff0/D778HYOPGjZw+fVr3t9u3b2Nvb0/hwvoTfc9ixdi/P2P/ypfXpIeHBzkp5ulp9Jhinp7cuXtX93N6ejp37tzBy8sLY4oXc2PXbwd1Pz9LfM7TZ4kUc3PJ5Sjj6jVsQr2GTQDYvmkN584c1/3tbuwt7OwdXrsOvm34I982/BGAzRvXc/b0Sd3fYm9rz5G1Djw8Pfl1f8Y+romJz3j29BnuudSBVzEP9v7yu+7nZ4mJPHv2DA/3jK/UehbzIDbTdjvp6encjr1Lca/cPxwD5eo4r65RgBLuzmw/dEL389PnSTxJfI6Xq6Neuos3Yhk8czHBPVrzQZncF2syU6qMvqzfgi/rtwBg/7ZoLp79Q/e3+3euU9TOiYKFst/x9Nepg6xcEILP8Dm4FjP+OjyLebDvl1/18q+9hjL6NK9ixbhzRz//sXfuGL2GatRpRY06rQA4sHMZV/86ovvbw3vXsbF1okCW13D/9mUeJ9zj3Qo1MDMzo/In37Jh8Wji7lzFvfh7Bs/j7eLAtmN/6n5+mqTiSZIKL6eMN/l3E55w7sZdvq6k/Tp/tTIlcLG14dTVWN3vsvq6wU983eAnAPZsWcGFTHVw784Nito5UrBQ9r7i3MlDREdMwDdgFm4m1IFS+Qeo37Ax9Rs2BmDbprWcPZPRFu68gf6u7ndNqPvdy/50NX9min839ha29q8/poGyZVT72+bU/rY5ALs3r+Svsxnj8t0X43JBA6/h7MlDLI2YyICRM3H39M4xfuY62LpxLefecB28lBftYO8rtYODLI8YT9+AUKPt4G1va0q3s+8a/sB3DX8AtHOKM6dP6f4We/sW9gbmFMU8Pfl1/17dz6bMKUC5MqpZrwU162WMaZfOZRrT7l6nSC5j2qqFIfQalvuYlrmMNm3ckKWMDM8rinl68sv+jG0tExMTjZaRkn1RzXotqVlP+206bRkd1f0tLtcyOsDqhSH0HDY31zJSeu71/+X9B2jnjjsOZrw/eKabOzrppbt44zZDpi9gbK+2fFA29xsbQPn+9NNvWvHpN9p51+87lnHlz4x514O71yliYN5178W8q/SLedcHNb5l3aLR3I+9ikeJ7POuz+q24rO62nP8tn0Zl//MuE5zPUf8fUq//wlmZmZ8+Om3rF04xuA5qnzVmipftQbgj71LuHkh4zXE379G4aJOWBfUj3/h5C7uXj/D9FPa91HPn8azMLgJP3aZSvEy1XMsLyGE+DeRPdqjooiIiNDtHz5mzBh+/vlnoqKiaN68uS79d999x/bt2zlw4AC1atUCwDzTAxvzZ/nqoYWFBc7OzkRGRhIZGcnq1avp3LmzwbQ5qVu3LmvXruXq1au8917GwGVhYUG3bt10sbdv357ta3dZ85eeno6ZmZne31NSUsiXLx/58uXTS2eKevXqsXXrVrZt26a3Jczhw4c5ePCgLm+G8vXyNXz55Ze6dDExMVStWpX09HRdftLS0gy+ppx+n1l6ejoWFhZMmzaNyMhIli5dysyZM8mXL5/B4589e0aZMmWIjo426fVn9UG1Lzh36gh3bl0HYOv6pVT/4pu/FSsn1atX5+SJE7oH4q5du5aaX36ZLV3FSpWIu3+fs2fO6NJ9XK1arnd+VKpYkftxcZw5e1Z3TLWPP9Y7priXF0WLFGHPHu3EZ+fOnTg7O1OsWDGDMTP7sEI57sU95OQ57TcUlsdspUaVyibdiW2qKtU+5+zJP4h9UQeb1kVT44s6byw+QLXqNTh18hi3b2kfwLRh7Uo+r5l9X8L3K35AXNw9zp09/SLdKqp8XD3Xu88qv1+Be/fjOH1W+6Zv9fqNVK/6kV4ZlfDyxLZoEXbt1X4AtW3XHlycnfD0MP7hkNJ1DMpeowBV3ivF3YePOH5e+2CnpVv383nlcnp3JaWnpxMwN5ohPzd6pUV2yJsyqljlK86fOcS929rXsHtjJB99Wj9bumR1EpGh/nQZMMWkRXaAyhXf5979OM6cPQfA6nUbqPZxFb1rqLiXJ0WLFmH3Xu2CxPZdu3FxcqKYkQWbzMp9+DWXzh7UPWDrly0LqfRJg2zpnj1NYMUcP54k3Afg2oVjaFJTsXfOeVG/6rte3Il/wrHL2oezRu05whflS+rdYZiSqmHEkk1cuhMHaPfZvRn3iJJujgZjZlX54y/56/QR7t6+BsCODVF8/Fm9bOnU6iQWzhxJj8ETTVr4y6v8A1Sp9hlnTv6h64s2rlvOp1/UNvl4o/Grf8GZk0d1/enmdcuo8Ybi51UZfVCtJn+eOsydF/W8fcMSqn1eN1s6tVpFxPRAeg2ekOsie7bXUf0zTmcaDzauXcFnNWuZfHyusfOgjCp9/CV/nj6sawc7c2kHi2aOpPvgSSa3g5fe9ramdDurVv1TTp48zq1b2tewfu1qPq/5VbZ071eszP1Mc4r1a1dT9eNqRu9oz4syqlj1xZgWmzGmVclhTIsK86fzK4xpANWr19Aro3VrV/FFLmV09qx2XmFKGeVVX1Sx6ldc0CujxTmO+0vC/On0ymWk7NzrbX7/AVCl3LvcfRDPifPah44u2bKXzz4oTwHrLHPH2UsY3K6pSYvs2V6Hwv1p+Y++5uLZg9x/cQ3t37KQygbmXYlPElge5sfjF/Ouq+e18y6HXOZdL1Wo8jUXz2ScY9/mRXxQw8Dc7kkCy0L9eByf6Rwa4+coXak21/46wMO72oeNH96xkHJVv8uWrrlPOH0mHqD3hN/oPeE3iti70c5vlSyyCwGkp6XJv0z//s3+s3e05+TRo0d4eXmRnJzMvn37qFy5MqBdaO/RowfFixc3ejc6QNGi2r3GLl26RKlSpYiMjNTdTW6ImZkZGo1G73d169alSZMmNGnSRO/3lSpVYteuXXz33Xc8fPiQRYsW0a9fP4MxMqtQoQJhYWF06dKFxMREbty4QfHixXFxceHKlSt4e3tz+PBh3WvOTcWKFbl9+zaFCxfWe4hNQkICrq6uWFhYsGvXLjQajcG77cuXL8/EiRNJSkrC2tqaMWPGMGDAALy9vTlz5gwVKlTg0KFD2Y57//33mTt3Lp06deLcuXOsXLmSjh07GsxjpUqV2LlzJy1btuTAgQM8ePCAWrVqcfXqVRITE8mfPz/dunVj/vz52NjYMHToUAYPHsyKFSto1qyZ0TLIzN7BmZ+7DWJa8EDSNBqKv1OGH7sMAODyhbOsWTKbgaNm8PjRQ4KHdtMdFzysO+bm5gwKmoW9g3NO4QHtnfo9evYkKDAQjUZDyVKl6N69OwDnz58ncvFiRo8Zg5WVFYNfbJGjUqlwd3fHt1+/XGNbWVkxZPBgvWP6+fry4MEDhvv7M/vFnf+DBg1i2vTpRC1Zgq2tLYMGDjSpfKysLBnZvyeTwxehUqnxcHNhmE8X4h7G02/UeCKnjwOgTe8haNLSiItPIHBqGFaWlgzv3ZVypY1Peu0dnejQvT8TR/uRptFQolRp2nf1BeDS+XOsiApnaNAUHiXEE+jXU3dcoF8vzM3NGT56OvaOTjmFB8DB0YmuPfoSHDQCjUbDOyXfpXP3dgBcOP8nSyMXMHL0eKysrOg/2J+5odNQqVS4uXvQ23ewkTKyYvggX6bPDkelVuPh5sqgvr2Ie/iQISOCiJg1FYChA/oyeWYYi5ZGY2dry9D+fYyWzcv4StYxKHuNgnY/9rE9WhGyeA1J6mQ8XRwZ2bk59+Mf02vCXFYED+T0petcvHmH6Ss2MX3FJt2xY7q34r0Sub8py4sysnVwoXmnYcyZ0Jc0jQZP7/do2sEPgGsXT7Nx+Sx6DZ/NqSN7ePYkgYXTh+gd33fUAr2tZ7Lmf9ig/swIm4tKrcLdzY2Bvr158OAhfiNGER46HYChA/sxeUYoi5ZEY2dny5ABxss+s6L2LvzQzp/FU31I06TiUaIc3zcaBsDNy6fYvnoGHQeF807ZKnz9fVfmjetAeno65vktadFzItYFcv66vbWlBSHtvyd4xXaSklPwdLIjqPW33Hv0lO6hy1kztBOeTnaMaFGfIQs3kJKqwczMjEGNa1Hc2T7HuJnZOTjTsssQZo3rR1qaBi/vsrTopG2fVy+eYd2yUHxHhHLi8D6ePklg3tThescPDArPsQ7yIv+g7Ys6de/HhNFD0Wg0eJcqTYeuHQC4eP4cy6PmMTxoMo8S4gnw89EdF+DXG3Nzc0aMnopDLv2dvYMTHboPYNKYIdr+tGQZ2nXtBMClC+dYGTUXv8CpPEqIJ8ivh+64oKE9Mc9nzrAxM7B3MBw/r8rIzsGZNl2HMCN4ABqNhuLvlKVVZ21bvXLhDGuWzmbAyJkcP7SXp08SmDNFv56HjJmrt+1JVg6OTnTu4cv4oKFo0jS8U7I0Hbpp++OL588RHRWBf9AkHiXEM2JIb91xAUP6kM/cnIAxU3Ksg7xqB626+BE6rh9paal4eb/HT5nawfplofQdEcrJw3tftINhescPDJqXYzvIfI63ua0p3c4cHB3p3qM3Y4MCtGNmyVJ06d4LgAvn/2JJ5AJGjQ7BysqKgYOHMTt0xos5hTt9fQcZzX9elJGtvQvNOw5jbqYx7duXY9qlF2PasIwxbVGWMa3PyJzHtMxlNEZXRu/SNVMZRUUuJHD0OKysrBj0oozUujLKfWzOq77I1t6FZh2HET6hD2kaDcW836Nph6G6Mtq0fCY9h80xUkY5L+wrPfd6m99/AFhbWjKmV1tCFq7SzR0DurbifvwjeoWEsSLEj9OXrnHpRiwzojcwI3qD7tgxPX+mrLfxRWql+9Oi9i40au/PoikZ865v2mpj3Lh8im0rZ9B5SDjvvFeFr//XlbljtfOu/BaWtPKZiHXBnOddmc/RuIM/Cyb1Ji1Ne44f22mv0xuXTrFl5Qy6+oVT8r0q1PqxC3PGdiQtPZ38+S1oY8I5bOxcqNsygNVhPUlL0+DqWY7Pf9L2+bFXT7F/wzR+6mP8mQRCCPE2MEs39Rbm/0du3bpF7969WbNmTba/LV++nMWLF+Pp6Unjxo0JDAwkPDycsmXL0q5dO9q3b0/NmjX1YiQmJtKwYUN2796t9/+jR48SEhKiu7t9/PjxuoehTp+uXfCoVq0ahw4dYvXq1cyYMYPg4GDWr19Pr169KFasGI0bNyYgIICKFSvSpk0bgoODcXV1JSAggMuXL6PRaOjVqxc1a9bUixEaGoq/vz+lS5cmKiqKhIQEfHx8mDJlCkePHiU1NZX27dtTr1499u/fz4QJE3B3d8fR0RFXV1fdljdZvSyzRo0aERISgoODA506dWLGjBl4eHhQp04d2rdvj7W1NbVr1+bYsWMULlyYtLQ06tatS0JCAhcvXmTw4MEsWbKE1atXY25uTu3atenatSu3b9+mb9++FClShNKlS3PmzBkiIyP18jBu3DhOndJ+jTQgIIBChQrp1WejRo2YPn06FhYWDB06FJVKhZmZGcHBwXh6ehITE6OL2a5dOxo0aKCrh8ePH9O8eXMWLFig9wFCZgf/yv509DfJyfKhovHNFG7yNmpl8w9wy+LV7qp7Vdb53txDWg2x0RjeUulNSTZ//T2CjUnP8g2ZN80l7qyi8e87llM0/pVE0+60eh2lC1xRNP4fCTl/Lf5NqP9osaLxD3u82gemf8fHt1coGv+C97eKxk9NNzee6DWVu7bBeKLXcMyzifFEr8HG4rmi8d+9slnR+ACHPJobT/QazFB2XvG2tzMAK4XnFcUv71Q0/i8upj1U/O8qXvie8USvyevyLkXj73dppWj8kja3FI2fF5R+D+KUcFHR+McKfKFo/MdJ2feNf9Py5VO2Dh48Uf4+znZfKn4KIf6VWgy68U9n4V9l2XjTthD7J/wnF9r/jvj4eDp16sSqVav0tloR/z2y0J47WWg3ThbajZOFduNkoT13stBunCy0GycL7cbJQrtxstCeO1loN04W2o2ThXbjZKFdiLeXLLTr+zcvtMvWMSbYuXMn06dPx8/P7z+xyJ6cnGxwOxZvb28CAwP/gRwJIYQQQgghhBBCCCHEv5cstJugdu3a1K795h5+9G9naWmZbbsWIYQQQgghhBBCCCFE3kpLk81I3hb//2/PFkIIIYQQQgghhBBCCCEUJAvtQgghhBBCCCGEEEIIIcRrkIV2IYQQQgghhBBCCCGEEOI1yN2DmbcAACAASURBVEK7EEIIIYQQQgghhBBCCPEa5GGoQgghhBBCCCGEEEII8S+Uni4PQ31byB3tQgghhBBCCCGEEEIIIcRrkIV2IYQQQgghhBBCCCGEEOI1mKXL9w+EeCVXLl9WNH6awp9/maNRNP4vt0opGh+gWcJ0ReMfL9NO0fjvqY8pGj/OxlvR+AAW6WpF4x99qOx1VMnxpqLxPS/uUDQ+wJ13v1Q0vll6mqLxVWYFFY0PcPWJi6LxvYvcUzR+icvKXkdb7X5WND5AWfs7isYvcX6zovE3O3ZSNH45h1hF4wOU+DNG0fh7i3VUNH4Jm/vKxr+yU9H4AL84t1A0vmfhOEXje936VdH4+4o0VjQ+KN9fF7+xT9H4/n/9qGj8gCp7FY0PkP6bsm3tYcMeisbXYK5ofAC3e8cVjZ+eT9mdg48UqqNo/DTMFI3/Uq33rfPkPEK8imb9r/3TWfhXWTGpxD+dhRzJHe1CCCGE+H9H6UV2IYQQQog3RelFdiGEEHlDFtqFEEIIIYQQQgghhBBCiNeg7HeHhBBCCCGEEEIIIYQQQvwt6Wmy6/fbQu5oF0IIIYQQQgghhBBCCCFegyy0CyGEEEIIIYQQQgghhBCvQRbahRBCCCGEEEIIIYQQQojXIAvtQgghhBBCCCGEEEIIIcRrkIehCiGEEEIIIYQQQgghxL+QPAz17SF3tAshhBBCCCGEEEIIIYQQr0HuaBfiDThx4gTzIiJQJSXh7OyMb79+ODk66qW5cuUKM2fN4snjxxQpWhSfXr3w9vZ+pfPs27eX5dHLSE1NpXjxEvT17UehQoWypTt54gQREeEkJal0+XF0dDLyGk4Snuk19Ovna/A1zJg1iyePn1CkaBF8evXinVd4DWcPb+K3zWFoNCk4uZfmu7ZjsS5ok2P6i6f2smJmV3qO3YWtY7FcYx+6dIvJm37jeXIK7rY2BDathYttYYNpz8c+oOWMlczu9D1VS3qYnH+Ag79sJ2ZlBJrUVDy8StLRZwQFC2U/z/HD+1izdA6pqSkUtilK225DKFa8VK6xj575i+mRq3iuVuPm6MDw7m1xcbDTS3Pyr0tMi1xJ4nMVVlaW+P7clA/KlTY5//v27WF59FI0qRqKFy9BH9/+OVxDx5kfEU7Si+uhb78Bxq+hkycJj5ivu+76+/bJdg1dvnKVGbNCefLkCUWKFKF3rx6vdA0BnDq4iT3rZ5OmScWl2Ls06jTG4HV05sh29qwPIzVFTaHCdvyvfQAuxYyXlZJldOjCdSav38tzdQrudkUIbFUfF1v9vB+9dJMpG/bxLEmNtWV+Bv34NR+V8jSab8ibdpwX9bx/325WRi950dd54+M7gEIG2tmpE8dZEDEbVVISTs4u9O43yGgdABz7fTPb18xFo0nFzbMULboFUcDANXTy0A62rZlNakoyhWxsadZpBG6e7/7jr+HQ+WtMXreH5+pk3O2LEtiqAS52RfTSHL14gynr97y4jiwY1LgWH5XyMinvACcObGb3+tloUlNx9XyXJp1HGyyj04e3s2td2IsysuPH9gG4mlBGipbPxRtMXr9POx7Y2RDYop7hdhazn2cqNdYWFgz68Ss+Kpn7OJPVyQPavkjzoi9q0jnnvmj3Om1fVNDGjh/aBeDqabwvUraMbjI5Zn9GX/RTnWxl9NL52DhaTlnG7K4/UtXEvuilY79tYduauaRpUnH1LEXL7oEGr6MTh3awffUcUlLUFLKxo1knf9y9/uHr6Pw1Jq/dndHOWn9ruJ2t251xHTWp/Urt7OiL8tGkavui1j0Ml8+po3vYtDyU1NRkChW25afOw00qH1C2jA7/dYUpK7fzXJ2Mm0NRRrX7ARe7ovqv8fw1pq3eruuLBjSvx0elS5iUd1C+v1Z6vDn811Umr96hLSP7ogS2/V/26+jCNaau2akro4HN6vLRu8WNxn6pcilzan9kQb58cDc+jRV7klElZ09XpKAZP31tiWNRM1QpsO6XZK7cScs19pGzF5m6dD1J6mRcHe0I6NwCFwdbvTQnLlxhypL1JCapsLa0pF/rH/iwbEmT8m5erBTWX3wPFpakP0kgaUc06c8e6yeysKJAneaYuxYnPTUZ9e9bSL10yqT4kDdzIyXfox0+d5mpyzdr3x842DGyYxNc7PXb2YmL15gcvUl3DfVv8R0flTEt/4fPXWJq9EaSVGrcHO0I6NQMF/usdXyVyctiSHwZv+X3fFj2HZPiv3Tk161sWR2ORpOKu2cpfu4xkgKFDLTlI3uJWR5KakoKhWyK0rLLcDy8cn8PBXD01y168dv0GGUw/qkje9m4PJSUlGQK2xSlRRfT+1MhhDCF3NEuxGtSqVSMCwmhb58+zJs3j2rVqjFzxoxs6caFhNCkcWPmzZtHs6ZNGT9+/Cud5/79+8wOC2PkqCDmhkfg4uLC4kULDeYnJCSY3n36Ej4vIsf8ZD0mOCSEvn16EzEvnGrVqjFjxsxs6YJDQmjauAkR88JfvIYJJuf/8cNYtkcH0dxnLt2DtmHr6MHedVNyTJ+iTmLPmkkUKGSbY5qXnienMHjpdkY2+ZqYga35olwJgtbuNZg2LS2dMWv34WBT0OS8v/Qw7i5LwifQz38a40JX4+jsxuolodnSJTy8T/i0UXTrP5rgmSup/nldFoYF5xo7SaVm+LR5DO36M6umBvHZRxUJmbdEL01ySgoDJ4bSo0Ujlk8ZRdfm3+M/PcLk/N+/f585YaGMHDWGOeHzcXZxYfGiBdnSqVRJjA8Zi08fX+bOW8DH1aoza8b0XGOrVCrGhkygb28f5ofPoXq1qkyfOStbuuCQ8TRr0oj54XNo3rQJIRMmmZx/gEcPYomJHEPb/nPwHb8FW0cPtq+aajDd+oUjad13Jr4hm6nwcV1WzxtuNL6SZfRcnczgRRsZ+VM9YoZ34osKJQlavl0/bnIK/eevZ1jT2qwf1pFu9WowcOEG0tONf1UwL9pxXtRz3P17hIfNZMSosYSFL8LZxYWoRfMN5CWJiSGj6dWnP2HzFlO12ieEzci5T3kp4cEdVi8IpuuQMIZN2Yi9kweborPXXcKDO6yYF0inATMYOjmGytW+Ydls/3/8NTxXJzN44QZGtqxPzIiufFGhFEHLt+nHTU6hf8RahjWry3r/LnSr/ykD56836TrSvvZYNiweQ/sBsxk4cTN2ju5sWznNYLq1C0bRtt9MBkzYxPsf12VluPF2pmz5pDB48UZGNv+GmKEd+KJ8SYJW7tSPm5xC/4UbGNakNuv9OtCt7icMXBRjcvlARl/UbsAc+k/Ygp2TB9tWGu6L1i0YSRvfmfQbv5n3TeyLFC+jqM2MbFaHGL92fFHem6BVuw2mTUtLZ8yq3X9rzIx/cIdVC4Lp6hfKsKkx2Du5G2xr8Q/usCI8iE4DpzNsSgyVq3/DstkjjMZXvJ0tWM/IVg2ICejGF++XIih6q37c5BT6z1vDsOZ1We/flW4NPmNgxDqTr6P4B3dYNX8c3f1CGTEtBgdnD2KWZZ+vPYq/R+Ss4bTrMw7/Keup8ll9osODTDqHkmWUpE5mSPgqRvz8PetH9+aLimUYE7VRP25yCgNnL8ev1XesDfKhS8MvGTx35Sv0Rcr210qPN0nqZAZHrCagTUM2BPaiZsXSjF66ST92cgoD5qxkaIsGrBvVk67f1mRQ+CqTy+j/2Dvv8KiKroH/liSbRnoPSeglofemIChdRESUIoqABQUpijQpUqQJKL0pSpVeQu+d0JPQawqQSgLpW7K73x8bstnsbrK8ZqPv987veXj0bmbPnTlzztwzZ2fmupaV8O5rUlbtlTN7o4zn6Ro6NbExWrZXWyl3YlX8tF7GrjMKWtYqes1djkzOuMVrmDDoQ7b/PI5W9WsyY/UWvTIKZS7fzvudoR++zdbZY/ny/U6MX7zWrLpjLcW+cz9yDm8i68+Z5Ebdwq7t+wbF7Fp1Q52VTubvU8kJ/R1p3ddAYl4aozRiI0vO0XLkCsYu28iET99j58zvaFWvBtPX7NAro1DmMnLBWoa+35HtP43kq+7tGLfsL7PqniNXMG7JOiYMeJ8ds0fzer0Qfvpju6H8X/9g6Aed2TZzFIN7dGDc0vUmJBonNTmeTb/PYsi4Rfy4YBce3v7s3GjYD89TEvlz0QQGDJvB5F930Pi1TqxfXvx4l5ocz+bfZ/H1uMVMXrAbD29/dhsbT1MS+XPRD3w6bAaTft1Jo9c6s2H5tFdqi0AgEBSHSLQL/ms4ePBg8YX+AcIjIvD19aVKFe0v7e3bt+fqtWtkZ2fnl4mKiiIzM5MWLVoA0KxZM16kpREbG2v2fcLCzlOvXj28vb219+nQgTNnThuUi4gIx9fXjypVtL/Mt2vfgWvXrurVx1gb/Hx9qZrXhg7t2xlpQzSZmVm0aNEcgOav2IZ7EUepUKM5Lh7+ANRt+T53rhwwWf5U6EJqN3sHqZ3hapDCXHzwhAB3Z4LLaVeEdG8UzPn7j8mSGy7n2XLhBtX9PQn0cDb4W3FcvXCS4DqN8fDyBaBVu25cOnvUoJyVlTVffjuNcoHalR7VQurxNPZRkbIv37yDv7cnNSppV8J1bdOCCxG3yMqR5ZfJVakY+9lHNKpVHYC61auQ/PwFGVmm+7YgF8LOUVfPhjpy9swpg3KGNtSRa9euFGNDkfo21K4dV6+F69tQdDRZWVm0aP7Shprm2dBjs+oPcPvqMSqHNMPVU2tHjVr34MZFw7GhjLU1Hw6eg5undsdC5ZrNeBYfVax8S+ro4v1YAjxcCA70AaB7s9qcvxtNVoFlZ0qVmsm9OxASqLWxptXKk5KRTUaOvNi6l4Yfl0Y/Xwg7R5169fHy1urprQ6dOHvmpEG5yIhr+Pj6UbmKdmXwW+07EV5MHwBcv3yMarWa4ubpB0CzNu8RfsGIDVlZ8/HQWbh7aW2tWu1mJMVF/+NtuHgvhgBPV4LzbKR78zqcvxNFlkxnI0qVisl9OhESlGdH1SuQkpFllh0B3Lp6jMo1m+GW52eN3+jBdSM6srKyoddXOj+rUrMZyWb6mcX0cz+WAA9XnZ81rWXczz7sQEhemabVgsz2s5fc+k/HopB/gY4ePCbA3YXgAO04171JTc7fi9HT0Uu2nI+kejkvAj1dDP5WHDcuaX3NPc/Xmrd9j2thhwzKWVlZ8/E3M3W+VqupWb5Wun5W17if9e1MSJC2fTo/kxmVaVCvS8epVrugfrqb1M+nw2bhF6BdIVy5RgPiHz806x4W1dGdKAI83Qgur+23d1vW5/yth/o6ylUx8ZNuhOSVaVqjIinpmWRkm6cjS4/Xln7eXLybp6M8G3m3hREdqVRM6vdOIR1lma2jmhWsuP9ExYtMbWL+4p1c6lQ2TKC7OEoI8CrDmRu5ADyMU7P2sJFl7wW4dOs+5bw8qFFRu5PlndZNCbt+1yA2HT/wAxqFaOOhetUqkfw8jYysnGLrbh1YBXVaKurkpwAobl7Aunx1sLHVFbKywqZ6fRQXtT+Yqp8nk71tCWiKXon/ktKIjSw5R7t4+yHlvNwJrqB9hnR7vRFhNx6QVeB5latSMf6T7jQO1o4R9apVIPlFOhnZxffBpVsPKOftQXAF7Y6ubq0aE3bjnkEf//Dp+zQOrpInv6JWvhl9nN/2SyeoUasJ7l5aX2jR9l2unj9sUM7K2oaBw2fiH6htS5Ua9c0a7yIuHae6nvzuJuRbM2D4LPwCX46n5skXCASCV0Ek2gX/FTx58oS9e/cWX/Af4OnTp/j5+eVf29vb4+TkRFx8vH4ZX1+97/n6+vL4yZNXuo9vgfv4+fnx4sULMjIyzKpPfHzcP9qG1MRoXL1026ndvILIykghJyvNoGzSk7tE3T5Hk7f6myU75tkLvcS5g60UVwc7Yp/py36WkcX6M5EM7djMLLmFSYiLxdtXd7SAt28A6WmpZGWm65VzdnWnToMW+deRV89RuVqtImXHxiUR4KPbOupgZ4eLkyNPEpL0PmvTtEH+9fnwGwT5+eDkaN5KQ20/++dfv7ShTCM25GtgD85F2tCTp0/x8/PV+45zIRt68vQpvoVsyM/X55X84FlCNO7eOjty9w4iK93QjpxdvalSqyUAKlUuV0/vJLhB22LlW1JHMUnPCfTU7dBwsJXi6mhP7LPn+Z852dvSprZ2AqbRaNhx/joNKgfg7GBnZt0t68el0c9xT5/gq9cH/qQZ6YPC5V72QUL80yLlJ8fH4OmjO/7C0yeQzLRUsgttVXdx86J6Ha0fq1S5XDyxk1qN2vzjbYhJSjVuR8kF7ciONnW0CSGtHUWYbUcAz+Kj8fDW6cjDO4jM9BSyC/uZmxfVaut0dPn0Dmo2LN7PLKqf5OcEeuiSwtrngTE/0yYMNBoNO8Ju0KBSObP1A3ljkY9uLHqpI2NjUdXa+mNRiBljUenryI7YZy/025iexfrT4Qzt3KKwCLNIio/B09c8X6tR0NdO7qK2Gb72r/OzcxE0qByIs4N9sXWHPP346GIKT59AMtJSyS4UUzi5eBBS77X861vXzlC+am2z7mFRHSU+I8BLd7ydg50tro72PE5K1dXdwY429WoAWh3tPHuV+lXL4+xono4sPV5b+nkTk5hKgGdBHUlxdXTQ15G9HW3qaRdQaDQadpy9RoMqQWbryMtVQkq6bvX7szQNTg4S7KX65fw9JaRmaOjS1Ibve9sxuJst/p6SImXHJiQT4ONRoP62uJR14HHiM73P2jauk399LvI2Qb5eOJlR/zJuXmjSdLJQKtDIsinjqjvWpYyrF5pcJTYhjXHs9z2OvYZjZeYRblA6sZEl52ixCc8I9HbPv3aws8W1rAOPk1L0PnuzkW6ecTbyHuV9PXEyYyyKSUgmwNtIHxeS37aRbsw5F3mH8mb28UsS42PwLDCH8vLVjncGcygXd2rWb5l/ffPaWSqaMd4ZPG98TY+nBeXfunaGClWLnqMJBP8W1Bq1+Ffg378ZkWgX/FcwZcoULl68yKJFi/jmm2/45JNP+Oijj7hz5w4A7dq1Y9WqVfTt25eePXuSmZnJ9u3bmTVrFgBZWVm0baud2LZv355p06axdOlSEhMTGTRoEJ988gkDBgwgLs50oGMKuUyGVKofzdra2iKT6VYCyOVybAqXkUqRy8xbraKVIUNqo9sKamMjRSKRIJfry5DLZNhI9beMSgvVpzAymdzgO7a2Ur3vyORyw3ZKpUXKLYhSkYO1je771jZSkEhQKvRXQ2g0Gvavn0SHXj9gZW1866tB/RW5SK31V+/Y2liTo1DqfTZ79xm+eKsRzva2/Cco5DJsCrQhvw9kpld03Iq4yMHdG+g9cESRsmUKBdLCfSCVkmNkVT7A/Zgn/LJmC2M+62t2/eVyGTZGbEhmxIYK97XUtui+lsvlSG0KfaeQfcjlcoM2SqVF22ZhjNmRRCJBITfeB+cOrmHGkNeIvnuFDh9+W6x8S+pIplQat1O50qDs4fC7vDlhCZvPhvPDB+2KrTeUjh+XRj9rxzpDPzPsAyP3KWasA1DIc7AusFquOBs6uW8tE75ozcM7V+naZ+Q/3gaZ0rzxDuDwtTu8OX4Rm09f44cPO5pVdwCFQmZcRybGujMH1jLt69eJvnuFTmb6meX0o0RqY6Z+wu/x5qRlbD4Xzg89zfOzlyjlrzYWnT24hulDXiPq7hU69vqndZRrlo5m7zrJF+2a4mxv/g8QBVEo9J+ZxenoxL51/PD5Gzy6c5WufYt+ZoKFdaQwZkc2pv1s3EI2n7nKD73M9zOlXIZNAT/TxXWmV7fevR7Gsb1r6fHJKLPuUeo6ktoYjVsOX7lJu1E/s+XEZcb3fdusuoPlx2tLP29kCiW2BjoyMR5ducVbo+ex5dRlxvfpUmzd8+tsLSFXpUu0q9Sg1miQ2ugn0e2lEnzdJTyKVzN7o4yr93Lp38GWMkXk2mVypd7cA8BOaoPMVGwaG8e8dTsZN+AD8ypvLUWTm6v/Wa4SSYE+kdjaI7G1B1UuWWtnIzu/H4e3+4OteYtMSic2suAcTaEw6ANbqbXJ+cG9x/HM/WsP4z/pblbdZQqFgY3amfBj0Pbx3A2hjOvfwyz5L1GYGO9M+TLAncgLHN27jvf7f2emfCNztGLkH9u7jvf7mzeeCgQCgbmIl6EK/isYOHAg69evRyKR8Prrr9OzZ08ePHjA9OnTWb16NSqVikqVKjFo0CBGjBhBWFiYSVm5ubm0atWKVq1aMW7cOAYMGECLFi04efIkS5YsYdq0Vzunzc7ODoVCPxiRy+XY29nplVEWKiOTy7GzK3ryGhq6mz2huwHt1mE3N92KBoVCgUajwc5OfzWB9l76AbxcLjcoZ8539Ntga6KdpuVeOraOK8fXAVDGygZHZ92K7VylHDQapIUC5WunNuHpV4XAqo1Myi2MvdQGRaFAXaZQ4mCrC0zP3o0lLVtGl/rVzZYLcGTvZo7s2wyAtZU1Lm66VR8KhRyNRoOtnfFg/0rYCdavnMOIH+bnHyNjsg22UhSF+kAmV+BgZ/ijQOTdh4z7ZQXjvuhHw5pFtyc0dBd7Q3cBr2ZDr9rXdnZ2KJRFf8fO1s6gjXK5HPtikjjnD68n7Mj6/DaUddHZkTKvDwrb0UtadPiY5u37ERm2jxVT+jBs5h5spPr3Ky0dmWOnL2lXrzrt6lXnwr0YBi3cxJbRn+DpbPzlvgXrZAk/LnwPS/Tz3tCd7A3dCWj9zNXsPih8H5nRse70gQ2cPrQR0Paxc4HVcvk2ZMKPW3fuR6tOH3H13H5+nfgRY+buQio1bIul2/AS43aUi4Ot1KBsu/o1aFe/BhfuRjNo4Qa2jBlg0o7OHVrPucMbAK2OnFwMdWRqrHutYz9adviIiPP7WDKlD9/OCjXws1LVj7KQfpRK4/qpV4129apx4X4sgxZvZsuoj/F0Nn1c2bnD6wk7rB2LylhZU9bV/LGoZYePadG+HxFh+1j2Yx9GzDIci/5ZHeXqPzPvRJOWJaNLwxom5Rjj1IENnD74n/naG50/onWnvlw9t59fJvRj7LydBr5WejqSGupIYcKOCvrZgvVsGTvQpJ+dPLCRUwe0+iljZY2Tqy6mKM7PIi4eY8vqGXw5ZlH+MTLGKDUd2ZrQkZ0RHTWsSbuGNbl45xGfz/2DTRMH4+li/OW7lh6vS0s/APa2NsiN6MjemB01DKFdwxAu3onis/lr2PzDF3i6GLejlrWs889XV6khI1uXaLe2gjISCXKl/hnvMgVk5mi4Ga0C4MJtFW83l+LlKiHxufHz4O1spSiUhWJThRJ7I7FpxL0oxi78kx8GfUijkOJfXAmAUoGk0A/HWNugUeqORdHIZVBGgiLyrLa9MXdRpz/H2q88udG3i72FpWKj0pqj2RvrA7lxP4u4H8PopRuY2P89Gpn5olJ7W6kRG1UYHesi7kczZrH2PPdGwcW/7Pb4/r84sV97VryVtTXORsc7420Pv3iMTb/N4usxC/KPkSnMif0bOakn31jcYlr+5t9mMnjMwvxjZAQCgaCkEIl2wX8V165dIzU1ld27tYFNTo7uV+pGjbSJWV9fX4OteoWpU6dOvryoqCiWLl2KSqXC3d29yO8ZIyAwkFOndGc4Z2VlkZGRQbly5fTKxCck5F9rNBri4+MJCgqiKLp2fYeuXd8BYM+eUG5cv57/t7inT3F3d6dsWf0g3Fh9MjMy9epTmMDAgGK/ExgYSHyCbpulRqMhrpg2NG77EY3bfgTA5RPrib13Kf9vqYnRlHXxws5B/6z0exFHiY+5wf3vjgOQnZHK6p/ep/vnv1ChhvEjXyp6u3Iw8n7+dUaOnPQcOUEFtn0fu/mIO3HPaDtV+5KrtBw5I9fu5/uur9G1iETCW10+4K0u2pU5R/dt4e7Nq/l/S4x7jKubJ45lDSeLNyMusOG3uXw3eRH+gRVNyn9J+XK+HDl/Of86MzuHjKxsAn299crdj3nCuPkrmDpsEPWDi98627VrN7p27QbA3j27zbShIE6f0p1R+tIe/Mv5Y4rAgABOnjqt/53MTMoV+E5gYADx8YVtKK5YP2jeri/N22lX7ocd2UD0HZ0dpSTG4OTqhb2jvh0lPX1I+vNEqtRqgUQioW7zLoSumUpyfBT+5YP1ypaWjip6e3Dw2t3864wcOenZcoIKbL1PeJ7OrceJtK2j7dum1crj4+pEZHR8/memsJQf693DQv3cpeu7dOn6LgD79uzixvXI/L/FPX2Cm7uHQR+UCwzi9KkTBeqSmdcHhmPd6x378HrHPgCcOfQXD27pbCg5IQZnNy8cCtlQwtOHpKUmUb12cyQSCQ1bdmbb6ukkxUUTUMFwzLB0G15S0ceDg1d1yYWMHBnpOTJDO4pNoG1d7bEWTatX0NpRVFz+Z4Vp0b4vLdpr/ez84Y08KuBnz0z4WWKen1XN87N6Lbqwa800o35WavrxdjfuZ56F9PMkkbZ5xzQ1rRqEj2tZImPi8j8zqqN2fWmRNxadP7KBqP9gLKrXvAu7TYxFpacjNw6GF62jYzcecudpEm0nrwAgLVvGyD/28P27renaKMSk7FYd+9Aqz9dOH/yLh7d1zzWTvvbkEWmpiVSvo/O1rb//ZNTXSk1Hvu4cvHqrgI7M9TPnIv2sdcfetO7YG4BTB//iwa0r+X9LMqEfgDuRYWz9YxZDxi/HN6DoBFpp6aiCryeHLt3Iv87IlpGenUNQgWMoElLTuB0TR5v6WltvUqMSPm7OXH/0JP+zwlh6vC4t/QBU8PHk4OWbOh3lyEjPllG+wFEgCalp3IqNp23eETtNalTEx82ZyKgn+Z8V5uyNXM7mnbXeoqY1lfx1m9Q9XSSkZakp/MqF5xlqbG0kSICXaXUNoC7inasV/L05fOFa/nVmdg7pWdkE+XjqlbsfG8eYhX/y09f9qF/D/KSl+nkSNtXr6T6Q2iGxdUD9XHecjDoz77gmXJsWiQAAIABJREFUGzt4udtDo0Zj5rEBloqNSmuOVsHXi0MXdTaa72eF+uDe43i+X7KBGYN70aBa8fOOfPl+3hy6EFFAfg7pWTkE+XrplbsfG8foRWuZ8VVf6lc3L4nfplMv2nTqBcCJA5u4X3C8i4/FxcR4dzsyjM2/z+GbCUvxK2K8e6NTb97opB1PTx7YxP1buudNUfLvRIax9ffZDJ2wrEj5AoFA8J8ijo4R/FdhY2PDhAkTWLt2LWvXrmXr1q35f7Oyssr/f41Gg0Si2wuZW2j138ujIWxsbPj1119Zu3YtGzZsYNEiw7efF0fdOnVISk7mxk1tIL1jxw6aNmmit1q9fFAQLs7OHD+uTR4fOXIEb29vAgICjMo0RrNmzYmICOfJk8d599lO69ZvGJSrU6cuSclJ3Lypnfzs3LGdJoXqY7wNSflt2L5jp8F3tG1w4fjxEwAcPnIEb28vAgKKnmS8pFrdt4i+fZ6UBO1LQS8c+YOaTQy3D/f6ZiUj5p5n+M9nGf7zWZzd/fh03FaTSXaAxpUDiH+ewdUo7dE/685E0Cq4Ag4FtmdOeO8NTk4ayLEJAzg2YQD1yvsyr1+nIpPshWnQtDW3Ii8R/zQagIO719P09fYG5eRyGb8tmMLQ0bPNSrIDNKxZnfjkVMLvPABg494jtGxQW2/VkEajYcqSPxg1sLdZSfbCNG3WgoiIa/k2tHPHNlq1NjzD1NCGttGkSdMiV9zUrVObpKQCNrRzF02aNDa0IRcXjp04AcDhI0fx9vImoJiJakGCG7zJw1th+S8TPHvgD+o0M9xinZWRytYVY0h/rj3jPubeVdSqXNwLnDttDEvqqHHVQOJT07j6UHvm57oTl2lVs5LeqiGlSsXEDft5EK+dZMYkPefxs+dU9vU0KrMgpeHHpdHPTZu1IDLian4f7Nqx1Wgf1K5Tj+TkRG7d1E5ud+/YRuMmzYpdYVirURvu37xAYpzWhk7sXUODFp0NymWlP2f9knGkpWpt6NHdq6hUuXh6Fz9uW7INjasGEZ+aztWHWtnrjl+iVc3K+naUq2Li+r08iE8GtOdNP05+QWW/4u0IIKRhWx7cDCM5T0en9/1BveZGdJTxnE3Lxub7WfS9q6hyc3H3Kt7PLKafKoHEP0/n6qM8Pzt5Jc/PdM8DpUrNxA0HdX6W/JzHz16Y5WcvCWnwJg9v6saiM/v/oG5z42PR5uVj9HSkzjVvLLKsjjK4+kh7vvS6U1dpFVJRT0cT3n+Tk1O/5Njkzzk2+XPqVfBjXv+3i0yyG9StcRvu3dD52vE9a2jQopNBucz0VNYtGa/ztTvXzPI1y/pZeX0/O3aJVjWrGPrZuj2F/Oy52X5Wp3Eb7hbQz7E9a2nU0lA/CnkO65ZO4LPv5hebZC+MRXVUvSLxqWlcux8DwPoj53m9djW91drKXBUT/9jJw7i8Z3FiCo+TUqnk721UZmEsPV5b+nnTuHoFrY4eaF+que5IGK1qV9XXkUrFxD938aCQjir7eRmVWZgb0SqqlrPCy1U772ld14bw+yqDcvGpGtKzNDQJ1s6X6lSyIkeuISXNdKa9UUgVEp49J/yuNnZfv/8kr9WvaRCbTlq+gdH9e7xSkh0g9/EDJE5uWPlrY2XbBq3JjboFuQV+JZDLUMXcxbbhGwBY+QZRxtkdVYJ5L1gvjdjIknO0RsGViX/2gmv3ogFYf+gMr9etoWdDGo2GSau2MLZft1dKsmvlVyEh5TnX7ml9bMPB07xeL9hQ/spNjPmku9lJ9sLUbfwGd65fJCFvDnVkz1oav2Z41JZCnsOaxZP4YtTcV0qC1238BnevXyQxT/7RPWtoZFL+RD4fNU8k2QUCgcWQaDSaIn7HFgj+HVy6dInVq1dTp04dMjIyGDVqFA8ePOD06dN8+umntG3bltDQUBwdHZk1axZVq1bFycmJAwcOMHfuXI4dO8a0adM4duyYXtkJEyYQHBxMnz59OH/+PM+ePaNr165F1uXRQ8M3k0dGRrJs+XJkMhn+/v6MHDECtVrNDxMmsGzpUgCioqL4dcECMjIycHV1ZfiwYQQGGk601UX8/nX61CnWrV+LWqWicuUqDBs+Ant7e+7evcu6tX8yddpPefWJYMXyZchkMvz8/Rkx4tv81fpWGAbfABGRkSxbviKvDX58m9eG8RMmsnzpkrw2RPPrggWk57VhxLBvDNpw+onp7aK3Lu/j1O6FqNUqfINCePvj6UjtHHkaFcmpXb/Se/hvBt9ZNLYtH327BldP3WTpg+cLDMpdeviU2aGnyVEoCfRwZeoHbVGpNQz+LZTtI3sblB+4fAdfvtWExpUNg+hr1fubbMPFM4fZ8dcK1CoV5StVZ8CQCdjZO/Do3k22b1jGd5MXEnbqIKsWTsHT20/vu2OnL8fF1YNg+VWjsq/cvMu8PzYjk8sJ8PVi4lf9UanVDJu+gI1zJ3H93kM+nziHQD/9CeqUoYOoUUm36ibZyXSQffrUSdavX4NKpaJK5ap8M3xkng3dybOhGcBLG1qKPN+GvsOtwI4PG43cQHZE5HWWrliBTCbH38+P70YMR61WM27iRFYsWQxAVHQ0vyxYRHpGOm6urgz/ZihBRvzgcoppO7p+YT9Hty9Crc7Fv3wI3QdNw9bOkccPIzmybQGffr8KgLAj6wk7shGNRo21tZT2H4yget3WANT1ND1BKwkdBd4/bFT2pfuxzN5+TGunnq5M7dtJa6dLt7J97KcAHLp2lxUHz6FUqZFI4NM3m9KtqeGLmuKrvmHwWUn5MYDExGqxkupnmcT0+apnTp1g4/o/tceCVa7K0OHfYW9vz727d1i/djU/TtO+f+N6ZDirli/OG+vKMWzE9/l9EJXuY1L+tfMH2L9lMWq1ioAKwfT+ciq2dg7EPLjOvs0LGTxOu4r39MGNnDm0EY1Gg7W1DW/3Hk5I/Vb5cio6J1q0DRUemrKjGGZvPaK1Iy83pn7URWtHSzaxfdwgAA5du8OKA2dR5qqQSCR8+lZTujWroyfngNvHJusfEbafw9sXo1blUq5CCO9/NjXfzw5uXcig0SsBOHd4A+cPb9DqyEZKxw+GU6Ne63w5NdzjjcovCf0AVLi7z1A/Dx4ze8dxnZ/17ohKrWbw8m1sH91fq5/wu6w4FIZSpUKChE/fbEy3JoZ+ts9zkEkdRV7Yz5Hti1CrcvGvEEKPAmPR4W0LGJA3FmmPv9KORVbWUjp8MCJfRyEept8NU2I6uh1qXEc7T+p01Ks9Ko2GwSt2sH1UP4PyA5ds4cv2zWhcxXCsOBEw0GQbrp0/wP7NS1CpVQRWDKb3l1N0vrZpEYPHLwe0vnb64F/54/XbfYZRM8/XKjglmZRfIn726IhR2ZfuxTB72xFy5Aqtn/V7W+tni/9i+/jPADh09bbWz17aUbtmBn4GcNrbMA4BuHruIHu3LEGt0uqn7+AfsbVzIPrBdfZsWsyQ8cu4fGYf65ZOxMNLf8fUsMmr849iCCybbFEdBT05Y1T25btRzN60H5lcSaC3Oz/2fxe1WsNXv65l6+SvATh8+SYr957MG4ugf8fXeKdFfT05J51Nn/ds6fG6pPysfOxJo/Iv3Y1mzuaD5CgUBHq5M+WTbqjUar5auJ5tEwcDcOjKLVbuO5U/Xvdv34JuLerpyZlwx/SZ23UrW9G+sQ1lJPD0mZrNxxUociHQuwwdG9uwcq82ZvNxk/BhGymO9hIyczRsP6Xg6TNtKmBSoxNGZV++9YC563aQI1MQ6OPJpC96o1arGTJ7OZtnjibyfjSDpiwgsNAK6OlffUSNivrjheasoa9ZBVTGrnV3JDZS1C+ekXNoI0jK4ND9c7LWzQFA4uiMfYc+lHH1RCOXITu9G1XsPQNZKV2/MtqGkoqNVFgZEw+UzBzNL/GaUdmX7zxizoZQ7Vjk7cGPg3qiVqv5eu5qtkwbTsSDGAb+tNxglfv0Lz4kuIL+PEdTxvBAg8u3H/Lz+l1a+T4eTB70IWq1hiE/r2TzT98R+SCagdOWEFjox+jpX/YhuIL+j1mXHE2/7+TyuYPs2bQMlSqXoErB9Bs8GTt7B6LuXyf0ryV8M2Epl87s58/FkwzGu2+n/IazqwdqTL9U4Mq5g+zZtFQ7nlaqwUeDf8TO3oHo+9cJ/WsxQycs49KZ/axdbDiejpjyu97RNm/W/s/eTSIQWJL3vnnwT1fhX8X2BWYeU/YPIBLtgv8KUlNTee+992jfvj3x8fGkpKRoA6Tx46ldu7bRRHv79u35+OOPcXR0pHXr1mzcuJGjR4/qlU1MTGTcuHHIZDIkEgkzZswwmnAqiLFEe0lSVKK9JDCVaC8pikq0lxTGEu0lSVGJ9pLAVKK9pCgq0V5SGEu0lyRFJdpLgqIS7SWBqUR7SWIs0V6SmEq0lxRFJdpLgqIS7SVFUYn2ksBUor2kKCrRXlKYSrSXFMYS7SVJUYn2kqCoRHtJYSzRXpIUlWgvCYpKtJeIfBOJ9pLEVKK9pCgq0V4SmEq0lxRFJdpLCkuP16YS7SVFUYn2ksBUor0kMZZoL0lMJdpLiqIS7SWBqUR7SWIs0V6SFJVoLwmKSrSXJCLRLvg30n3I/eIL/Q+xY9Gr7/AvLcQZ7YL/Ctzd3TmRdwyBMY4dO5b//6NHj87//+3bt+f//6BBgwzK+vj48NtvhquoBQKBQCAQCAQCgUAgEAgEAoHAXMQZ7QKBQCAQCAQCgUAgEAgEAoFAIBD8DUSiXSAQCAQCgUAgEAgEAoFAIBAIBIK/gUi0CwQCgUAgEAgEAoFAIBAIBAKBQPA3EGe0CwQCgUAgEAgEAoFAIBAIBALBvxCNWvNPV0FgJmJFu0AgEAgEAoFAIBAIBAKBQCAQCAR/A5FoFwgEAoFAIBAIBAKBQCAQCAQCgeBvIBLtAoFAIBAIBAKBQCAQCAQCgUAgEPwNRKJdIBAIBAKBQCAQCAQCgUAgEAgEgr+BeBmqQCAQCAQCgUAgEAgEAoFAIBD8C9FoxMtQ/1sQiXaB4BXxSrljUfnJHjUsKl8tsexGljr+yRaVD5Du1cKi8itr7llUfrRjTYvKT8hwsah8gFZZoRaVr7GqYlH5DzP8LCq/3NNYi8oHSKzgZVH5bpM+sKj8mcFrLCp/WePfLCof4Mtd3S0qf2lrqUXlv6XeZ1H5AEPWNrGo/GXVn1tUflu/ExaVP3ytZZ8HAEsC4y0q/w3peovK/3JnZ4vKX9ZcZVH5AFXKPrao/B/XOllU/s/qwxaVX+OTRhaVD6Who2MWlT/8o7oWlZ9sVd2i8gFy3q5vUfnXE30tKv/dFystKv9ZFcvObwDUEiuLym+asMei8rdpelpUPkAPq21kn7XsPRxa9rDsDQQCwT+KODpGIBAIBAKBQCAQCAQCgUAgEAgEgr+BSLQLBAKBQCAQCAQCgUAgEAgEAoFA8DcQiXaBQCAQCAQCgUAgEAgEAoFAIBAI/gbijHaBQCAQCAQCgUAgEAgEAoFAIPgXolar/+kqCMxErGgXCAQCgUAgEAgEAoFAIBAIBAKB4G8gEu0CgUAgEAgEAoFAIBAIBAKBQCAQ/A1Eol0gEAgEAoFAIBAIBAKBQCAQCASCv4FItAsEAoFAIBAIBAKBQCAQCAQCgUDwNxAvQxUISoBLN+/zy8bd5MgV+Hq4MenzXvi4u+qVCb8Xxfz1u8iSybCTShnZtxsNalQ2+x7h4eGs+u03ZDk5eHt7M2LkSLw8PfXKPHr0iEWLF5OeloaziwtDhwyhYsWKZt/j5IkT/PXXX+Tm5lK+QgVGjBiBo6Oj0br8tmoVOTIZ3t7ejBwxAk8vr2Llnz15hO2b/kSlyiWwfCUGDxuLg2NZg3K5ubls+GMpe3duYskf2/Hw9C5W9pXImyz+cwM5OTJ8vT0ZO+RzvD099MpoNBo27tzLivWbWTBlPHVCqhcrt7TvYUkdAVw9u5+D21egVuXiG1iFPoOnYO/gZFAu/MJhDm1bjlIpx9HJjQ8GTcA/qGqRsi/efsj8TfvJlsvx83DjxwE98HF30Stz+e4jft18gMwcrR9817sLDaubb6MAkWF7ObF7GWpVLt4BVXlv4HTsjLTh5qVDHN+9lFylHIeybnTrPwmfgGrFyreojmISmX88nGxlLn7OjvzYuQk+Tg56ZerP3kQFd939vMvas7xXm2Lr/ZKwU4fYveV3VLm5BJSvzMChE4za0NULp9ixcTlKpZKyTi70HzyGgPLFj0kONevi1e8zytjao3yWRMLSueSmPtMr41i/CZ69+iOxkaLOTCfpz+XIHt41uw1Na9nStVVZrMrA06RcftuVTo5cY1DutXp2dGrpiARITVexdl8GiSmqImVfuB/LvN2nyVYo8HdzZkqv9vi4GvYvwN2nyfSZv4FlX75H4yqBZtff0m24eCeKedsOky1X4OfuwpRPuuHj5qxX5vK9aH7ZfoTMHDl2UhtGfdCBhlXLm1X3i7fu88vGPeTI5Ph5ujHpsw+NPtPmbdhNVo4cO1sbvu3zzis90yypH4ALj+KYd+gS2Qol/q5lmdLtdXxcDJ9nAHcTUuizYjfL+nWkcUU/s+p/+cYdFqzbTrZMjp+XOz98+TE+Hm56ZSLuPuTXNVvJypFha2vDiI97Uj+46DGiIBa1oVIYiy7cjWbezuNkyxX4u7swpW9nQzu9H8v8Xcfz7fT7Hm/SsEqQ2few6FhxLyav/kr83Z2Z0qczPm76Y8Xl+7HM330yr/7WfP/emzQ0c6wID49gZYG4buTIEUbjuoWLF5Oelo6zizNDhwyh0ivEdWBZHdlUrIFjhw+QSG1RpaWQuWM16vTnemUkUjvKvtsf64BKaJQKso/uQHHrill1Lw0dWXossrSOrkVcZ9nvf5Ijk+Hj7cX3w4bgZSQ23bxjF7+t2cDc6T9Su2awWbKhdOYfZ04eZcumtahyVQSVr8jXw7/H0UTsu/aPFYTu2MyKPzfjaWbsC3D9wl5OhS5DpVLiXa4q7w74yWjseOvyQU6+jB2d3Hj748nFxo4X7scyb9dJ7fPGzYkpvTsaxBWXHzxmfugpMmVy7Gxs+L57GxpWDjCr7ub08cOoaH5ZsoK09HRcnJ0Z/tXnVK5YwUz5kaz4/Q9ycrTyvxs+1KCPHz6KYsGSZaSlZ+Di7MSwrwdTyUz5kDdH2HIgL25x5cdP3zMyR4ji160H8+YINnzXqzMNq5lvRzcv7uXM3qV5fVyNtz8x3scvuR95gk0Lv2DIjKO4ehbdF6U1xxEIBP8/ECvaBYK/SY5MzrjFa5kw6EO2zxlLq/ohzFi9Va+MQpnLt/N/Z+iHXdg6awxf9ujI+CVrzb6HTCZj5qxZDB82jFWrVtG0aVMWLVxoUG7mrFm836MHq1at4oOePZk9e7bZ90hKSmLp0qX8OGUKK1etwsfHhz///NNoXWbNnMmw4cPz67Jw0aJi5T9LSmD18l8YO3kOvyzfiJe3L3+tWWG07JypY7CzdzD6N2PkyGRMnruI0V8NYuOSubRsVJ+fl/1uUG7ust95HBePm4uzESn//D0sqSOA1GfxbF09gy/GLmH8L6G4e/mz968FRsttXjmVQaMWMH5+KPWatWfjsolFys6RKxiz7C8mftqdXTO+pVXdGkxfs1OvjEyhZNTiDYzt140dP43k825tGb10IxqN4YTWFC9S4tizbjoff7uc4bP24+ZZjsNbfzFabtefk+k7bBHDZ+6jVpMObF/1Q7HyLaojRS5jQs8zsWNjdn3WhVZV/Jl+8LLRsjsGdc7/9yqJrZTkBNat/JlvJ/7CrKVb8fT2Y+u6pYb1T0li5a8/8uXIqcxcvJnmrTqwesmMYuVLbG3xGzaOhOW/EDViIJlXwvAZ9I1emTIOjvh9M4aExXOIHjmIZ9s24D9ygtltcHcpQ99Ozsxb/5yxi1J49kJFjzcNJ9x+nlZ82N6JOWueM25xClduyxnYrWi/y5YrGb12H5M/fIvQsZ/SKqQSU7ceNVpWrdYwfdtRPJxfzc8s3YYcuYLRv21jUr+u7J4yhNZ1qjFtw169MjKFku+Wb2Fc787s/PFrvujSmu9XbjXL13LkcsYtXseEgT3ZMWcMr9cP4afV2/TKKJS5jPxlNUM/6MK2Wd8zuEdHxi1db4ZmtFhSPwDZCiWjt55g8jstCf3mfVpVC2TqnnNGy6rVGqbvOY9H2Vd55sj5YcFvjPviI7b+8iOvNajNrFUb9MoolEpG/byUr/q8y6Z5k/jig3eYsOA3s+9hURsqhbEoW65g9B+7mdynE6ETv6BVrSpM3XRQr4xMoeTb33Yw/oMO7JrwOV92asmo33eZ/Uyw7FihYPQfoUzu3ZHQCZ9p67/ZSP1/38X4nu3Y9cMgvuzYklGrd5tVf5lMxoxZsxg+7Bt+W7VSG0stNIylZsyaRc8e7/PbqpV5cd2cYmUXxKK+ZiPFqecXZOz6g+cLxqO4E0HZrv0Mijl2/BB1RhrP531PxoaF2DVtC2WKn4KWho4sPRZZWkc5MhnT5szj26FfsWb5Ipo3bsT8xcsNyv2yZAVPnsbj6uJiRIppSmP+kZyUyKplC/hh8iwWrViLl48vG9asMlp25tTx2NvZv1IbQBsT7ls3jb4jlvPNjAO4epbj6Lb5RsuF/jmZ3t8sZuiM/YQ06siu38cXKTtbrmT0mj1M/rA9oeMG0KpmZaZuOaJXRqZQ8u0fuxn//lvsGjuALzs0Z9SfoeY9k83s42mz5/Hhe91Ys3wRvd/vzoy5vxYr+6X8n2bPZeTQr/ljxRKaNWnMr4uXGZSbPnsuH/Tozh8rlvBhzx7M+HmeWfIhb46wYjMTP+nOrukjtHOEdbv1ysgUSkYt3cjYvl3ZMW04n3dty+hlm8x+HqSlxHFw41R6fbOCr6YdxMWjHCd2GvbxS5TyHI5tn4u9o6vJMnr1L4U5jkBQHBq1Rvwr8O/fjEi0/4/y5MkTqlevTnh4uN7nPXr0YMyYMa8k69KlS6SkpADQtm1bsrKy9P6+fft2Zs2aZfL72dnZTJgwge7du9OrVy+++OIL4uPjAejXrx/37t17pfqUNpduPaCctzs1Kmh/CX+ndVPCrt8lK0eWXyZXpWL8gJ40CtGuZKtXvRLJz9PJyMox6x7hERH4+vpSpUoVANq3b8/Va9fIzs7OLxMVFUVmZiYtWrQAoFmzZrxISyM2Ntase4SdP0+9evXw9tauDunQvj1nTp82KBcRHm5Ql2tXr+rVxRiXLpyhVt2GeHr7AtC2/duEnT1utGyPXv35oO9As+oNcPX6Lfx9vaheWbtqoPObb3Ap4jrZOfr67dimFaO//gxrKyuzZZfmPSypI4Abl45RrVZT3D21Kzabt32Pa2GHDMpZWVnz8TczcffyB6BaraYkxUUXKfvi7YcEeLkTXL4cAO++3pDzNx+QlSPPL6PMVTHx0/cIqaAt0zS4MinpmWRky4zKNMbtq8eoHNIMVw9t3Rq26sGNSwcNyllZWfPBl3Nw89Teq3JIM54lRBUr36I6ik0kwMWRYF93AN6tXZHz0YlkyZXF1stcrl44SUidxnh4aW2o1VvvcOmsYSLZ2sqawd9No1xQJQCqhtQl7vGjYuU71KyHMikeedQDANKOH8SxbgMkBSa+Nj5+aOQy5LFafWffCMfG04syDsZXExemQXVbbkcpSE1TA3DqWg6NQ2wNyvl7WZOYksuLDG25W1EKAryL3qh38UEsAe4uBAf4ANC9aU3O340hS6YwKLvlfCTV/b0I9Ch+ElaqbbgbRYCnG8FBWht9t0V9zt96SJasgK+pVEzq9w4h5bX22bRGRVLSs8zyNe0zzYPgvGdat1ZNCLtxz+CZ9sOnPWkcon0O1KtW8ZWeaZbUD8DFqHgC3JwI9teuyOtevxrnHz416mtbLt+huq87gW6mV70V5vLNu/h7e1Kjonblddc2LbgQedtAR2M/60ujmtpdTXWrVyb5eRoZWUU/K19iURsqhbHo4r0YAjxdCQ7UjkXdm9fh/J0oAzud3KcTIUHaMk2rVyAlI4uMAs+NorCoju7FEuDhoqt/s9qcvxNdqP5qJvfuWKD+5c2uf3hEBH6+vlTNi6U6tG9nJK6LJjMzixYtmgPQ/BXjOrCsjqSVglE9T0YVr62P7NoZbCrXRCK10xWyssa2dhOyT+0BQJWSSPrqOaBWF1v30tCRpcciS+voWuR1/Hx9qFZF+yzv1K4tV8IjyM7WH4vbv/kG3w4djLX1q8WmpTH/uBh2ltr1GuDlrX0uv9W+M+fOnDRatmevj+n10aev1AaAO9eOUimkeX7s2OD197l52Xjs+P6XP+OaFztWMiN2vHg/lgAPV4IDX8YVtTh/N1ovrlCq1Ez+sAMheWWaVgsiJSPbrLHCnD5+FB1DZlYWrzVvCkCLpo15npZGzOMnxcoPj4jE19eHqlW0O9I6tnuTK9fC9eRHRUeTlZVFy+bN8uQ34UVaGjGPHxcrH+Di7UcEeLkRnBeTvPtaA+0cQVZojvBJ9wJzhEqvNEe4F36UCsHNccnr43qvvc/tywdMlj8VupDazd5Bald8bFpacxyBQPD/B5Fo/x8mMDCQPXv25F/HxMSQnp7+ynK2bduWn2j/T5gxYwblypVjx44d/PXXX7z77ruMGDHiP5ZX2sQmJBPgrdte52Bni0tZBx4nPtP7rG3jOvnX5yJuE+TrhZOjeasynj59ip+fbju7vb09Tk5OxOX9IJFfxtdX73u+vr48flJ8kGXsHn5+frx48YKMjAyz6hIfF1ek/Pinj/H188+/9vErR9qL52RmGtpcteBaZtX5JY/j4inn65N/7WBvh7OTE0/iE/XK1aph/pb9f+IeltQRQFJ8DJ6+ui3tnj6BZKalkp2ZplfOxc2LGnW0EyaVKpeLJ3dRu1HRKxljEp4R4O2ef+1gZ4trWQceJ+nGBicHO9rUDwG025h3nr5M/WoVcDbTDwBSEqJx99bXGXL3AAAgAElEQVQdK+DuHURWego5WfptcHL1pkqtlvltuHp6J8H12xYr36I6Ss0gwFW3Us5BaoOrvZTHLzINyo7fE8Z7v+1nwIZjhD99ZvB3UyTExeLtWy7/2tsvgPS0VLIK2ZCzqzt1GjTPv75+5RyVqtYsVr7UPwBlom7c0chlqDLSkfrq7FbxJBaNWo1DzboAODV7nZyHd1FnZxnIM4avhzVJqbn510mpKlzKWuFgJ9Er9/CJEm93a8p5axMHjYJtufnQMGFekJjkFwR66hLnDrZSXB3siH32Qq/cs/Qs1p+6xtAuLc2qc6m2ITGVAE/dESUOdlJcHR14nJSa/5mTvR1t6mkTvBqNhh1nr9GgSpBZvhaTkEyAt25Luu6ZlqL3WdvGtfOvz0XcofwrPNMsqR+AmJQ0AgsceeJga4Orgy2xqfp+8Cwjm/UXbjL0zYZm1fslsfFJBPjojktzsLPDxcmRJwnJep+1aVI///p8+E2C/LxxcjRv5bxFbagUxqKYpFRDX3O0JzZZd2SGk70dbepoj2TQaDTsOB9Bg8oBODvYGcgzhmXHClP1140VTva2tKlTtUD9I82uf2nEdWBZHVl5+KBK1dk8CjmanEzKuHvrldHkKrGr3xLXIVNx+Xw8NpXMO7akNHRk6bHI0jp68jQe/wLtt7e3x9mpLE8L6AigZo1XO8bwJaXRB3FPH+NbIG7x9fPXxr6F5h8A1YOLj1OMkZIQjZu3LrYrKnasXFMXO4af2UGN+m8WKTsm+TmBHrqdAtq4wp7YZwXHOlva1Nb+WKHRaNgRdoMGlcqZNVaY08dPnsbhV2COAuDn48PjJ0/NkB9nRL5+Hz95GoevgXxfHj8uXj5ATOIzArwKzxHsjcwRtHav0WjYeeYK9auWN3uOkJIYjZuXbn7g5hVEVoZhHwMkPbnLo1vnaPpWf/PqX0pzHIFA8P8HcUb7/zB169bl3LlzqFQqrKys2Lt3Ly1btkQmk3HhwgXmz5+PtbU1Pj4+zJgxgz179nDlyhVSU1OJiopi4MCB+Pv7c+TIEe7fv8/CvK2E69ev5+TJk6hUKlat0m39mzNnDhUqVKBnz54AdO7cmZUrV3LmzBmOHNFtsevUqRMtW+qSG/v372f69Om8ePGCpUuX4u3tzejRo0lMTCQ7O5uhQ4fSpk0b+vXrR9Wq2gnP559/zrBhw7CxsaFRo0ZcuXKFtWvXcujQIX7//Xesra2pVasWY8aMIS4ujlGjRlGmTBlUKhVz5syhXDldwFccMoUCqY2+K9lJbZDJjQfg92PjmLd+F9O++sjse8hlMqRSqd5ntra2yGS6X8nlcjk2hctIpchl5v2SLpfLcXHVTSptpFIkEglymQwnJ13CQiaXF1sXYyjkMlxcdMkhGxud/LJlX/2YlYLI5AqkNjb6dZLaIJOZtyru33IPS+oIQKGQ4eSiCxSt8+Qr5Dk4lDXcTnxi3zoObluGl28QA78reguqTKFEaq3vB7Y21uQY8YPDl68za10oTg52/Px131dsQw6OzsbbYO9o2IZzh9ZwfOcSPHzK03eY4XZnQ/kW1FGuCmmh1WS21lbkKHP1PnuvTiU+bFCVat6uHLoTy/Btpwn9vAtOdvp+Z7T+chnOBeqvs6EcHE3Y0M2IixzcvZHRU5cUK7+M1Ba1Qr9P1QoFZWx1k0WNUkHiil8pN2YqGoUCJBKezCh663VBpDYS0gvk5HNVoNZosJVKyJbptgm+yFCz9WgmU770QCbXIFdqmLH6uRGJOrR2WqgPbKzJUeiv5J298wRftG+Ks715Cb/SboNtoWeOrdSwDQCHr9xi5qb9ONnbMfeLD8yqu0yuxLbQWGcntTHqy6B9ps3dsJvpg/uYJR8sqx8AmdKErxXu5wMX+KJ1fZztDVewFinfxPMgR278eXA/5gm/rN3KlCEDzL6HRW2oFMYimTLX+DPBmJ1eu8OMLYdxsrdl3qD3ipX9Esv6Wa5BbGe6/neZsfWItv4D3zWr7jKZHBtpIRuylerFUkbjLam02HirIBb1NRsp5OrrQ6NUIilQZ4mdPRI7ezRKJS8WTcCmSk2cPvyK57+MQZNT9I+vpaEjS49FltaRNvYvPBZJSyw2LY35h0Iux8XVMPaVyXMo62T+TqOiUCpkODrrfkAuLnY8f2gNJ3cvxt2nPL2HFn08pkypNH+sCL/HjO1HtWPFp93Mqrs5fSyXy5HaFO4nKTlm9IFcLkdaSL5UasTPCj/zbKXI5Ob1sUxhTEfG44rDl28wa8Me7RzhK/PjCqWR+QESCcpCfazRaNi3bhIdev+AlbWNMVHG618KcxyBQPD/B5Fo/x/GxsaGunXrcuHCBVq0aMHRo0cZMmQIBw8eZNKkSaxevRo/Pz+mTJlCaGgoEomEe/fu8ddffxEdHc3IkSPZtWsXwcHBTJgwAX9/7YrGqlWr8vnnnzNy5EjCwsLy79etWzdmzpxJz549efDgAYGBgaSnp1OxYkWsCh2z4eysSwh5eHjw559/MnfuXA4dOkTXrl157bXX6N69O48fP2bYsGG0adMm/969e/dm5syZdOrUif79++efE5iVlcXSpUvZtGkTUqmUYcOGceXKFSIjI2nRogVff/01N2/eJDk5+ZUS7Xa2UhSFJqcyhRJ7O8OJe8S9KMYuWsMPAz+gUXAV8+9hZ4eiUHJLLpdjb2enV0ZZqIxMLsfOznSiKHT3bkJDQwGwsrbGzU0X6CoUCjQaDXb2+r/Em6pL4XIAB0K3cXCv9mxfKytrXN10AZBCIdfK/w/OWiyMna0tCqV+QCuXK7B/xeTJP3EPS+vo1IENnD64MV++s6tu94UyT77UzvgKyzc6f0TrTn25em4/v0zox9h5O5FKjduTva0URa6hHzgYSci0a1Sbdo1qc/H2Qz6fs4pNP36Dp4vpyVTY4fWEHV2f3wYnF91K0vw22BpvQ4v2H9O8XT8iw/axfGofhs3Yg02hNpSajmysUeTqvzhNlqvCodDkY0LHxvn/375GEKvO3yL86TNer+yPMQ7v3czRvVu09be2xsVVN5l8aUO2Jup/JewE61b8zIgf5uUfI1MUarmMMoUm1GVsbVHLdFuMrdzc8f1yBDHjvkHxOBr7kDqU+3Yij4YNQGNiUvZmE3veaqKtY65KQ1qmTk821lBGIkGu0D+LL8jXmq6vOzLq12ekpqlpXseO4b1dGb/E9A4re6mNYR8oc3Gw1U22zt6JJi1bRpeG5r8srlTbYGuD3Ngzx9aIrzUMoV3DEC7eieKz+WvY/MMXeLoYnj+sL1+KvNBYZ8qXI+5HM2bRWiYM7FnsM6209AMmfE2pwqFAMuHsgyek5cjpUsf8F7jmy7eTGjwPZHIlDkae+5F3HzLu11WM+/wjGtYs+oV6pWZDFhqL9O4htTHyTMjFwZid1q9Bu/o1uHA3mkELN7BlzAA8nY3baamOFQZ+pj9W6OpfnXb1q3PhXgyDFv3FltH9Tdb/JdqYrXBMUTiuszUR+xUdE5SWjjRKBRRKVElspGgUugSgRpYDkjLILp0AQPngJuq0FKwDKqG8f73IdlhKR6U5FlleR7YGOpLJFdj/hz8SG8q3zPxjX+h29u/ZAZiOff+Ts9gLcuHIOi7mxY5lrKwp61IgtlMWHds1b/8xzdr148aFvaya3psh0/caxI4vMTpWKJXGx7p61WhXrxoX7scyaPFmtoz6GE/noo8uMaeP7ezsUCiL7ifT8u1QGPEzOwP5hetgnnzImyMYiVscbA2fme0a1aJdo1p5c4Tf2DR5iMk5wqVj67h8fB0AZaxsKFtgfpCrlIORPr56ahOe/lUIqtrIrLrn199CcxyBQPD/E3F0zP84HTt2ZM+ePdy7dw8fHx8cHBx48eIFEokkf6tg06ZNuX37NgD16tXDysoKX19fgyNFXtKwoXYLto+Pj16ZatWqkZ6eTmpqKkePHqVr165IJBJUKpVROcbkZWZm4uzszPXr1+nVqxejR4/mxQvdNt46dbTHszx8+JAGDRoA2nPjAR48eEBcXBwDBw6kX79+xMTEEBcXR8uWLdm1axczZ85EoVBQr169V9JhBT9vvWNiMrNzSM/KJshH/23t92PjGLPoT6Z/3Y/X6oW80j0CAgP1jmbJysoiIyND7weBgMBA4hMS8q81Gg3x8fEEBQVhiq7vvMOKlStZsXIlXbp0MdgK6u7uTtmy+pPFwIAAvXLG6vKSjl17MH/ZBuYv20C7zu+SEK/bYpgQ9wQ3dw8cy/794KN8gL/eES6ZWdlkZGYR4OdbxLf+HfewtI5adezD+PmhjJ8fSst2H/IsQXdmZnJCDM5uXjg46q90TnjyiLuR5wGQSCQ0bNkZWU5mkWeQV/Dz0jtaIiNbRnp2jp4fJKS+4PjVW/nXTYIr4+PmwvWHRZ/x2KxdX4bP3Mfwmfto0rYXKYkx+X9LSYzBydUL+0JtSIp7yIOb5/LbULd5F+Q5mTyLNzxrs9R05O6kdzRDhlxBukxBUIGzobMVSqJT9I+3yFVrsLEy/bhu1+UDZi7ZwswlW2jbsQeJ8brt2olxj3F18zRqQzfDL7J+1TxG/biQilXNG5MUTx9j46NLspWxd6CMY1kUCTq7ta8WgjIpAcXjaABybkWiUauxDTA9Fh29mMPYRSmMXZTC8cs5eLvrEn4+7tY8z1DprS4ECKkk5cFj3dm6F2/IKOdtjZOD/pb/glT0dtc7JiYjR056tpygAkexHLv+gDtPk2g7aTltJy0nPDqOkatDCb10y5jIUm9DBR9PHifrjonJyJGRni2jfIFtzQmpaRwLv5N/3aRGRXzcnImMKn4rfwV//Wdaxstnmq/hM230ojX89FVfXqtb/I8SpaUfgIqeLnrHxGTIFKTL5AR56Pz42O0Y7sSn0HbORtrO2Uj44yRGbjpKaPj9YttS3t9X75iYzOwcMrKyCfT11it3P+YJ435ZydShA2hZv/jjvkrNhiw0FhWkoo+H3jExGTky0nNkBHnpfC3heTrHInTv4WlavQI+rk5ERpk+iq7UxgofY2OFkfpH6uylabXy+Lg4ERmtf2yHMQIDA4grFNdlZmTqxVKBgYHEJxQ4qkujIa6YuA5KT0eq5HisPHQ2L7G1R2LvgCpFFyup01Pz/lYgIafRgKb488ctpaPSHIssraOggHI8jdfF/plZWWRmZlLO36+Ib5mPpeYfnbu+x8Lla1m4fC0dOncjvkDsGx/3tETmB03f+oihM/YzdMZ+GrftTWqiLrZLTYjWxo4O+rFdctxDHhaIHWs3e1sbOxZxTrs5cUXC83SOXS8wVlQNwse1LJExRR+7Ceb1cWBAOeIKzFE0Gg1P4xIoHxRIcWi/qz+v08rXxXpBAQHEx+v3cVx8vFnyASr4euodb6ebI+gWhiSkvuD4NSNzhEem5wiN237E4KkHGDz1AA1b9+J5km5+kJoYTVkXL+wK9fG98KPcCz/K/G9bMv/blqSnxvP79PeJvhNWWLyu/hac4wgEr4JGoxb/Cvz7NyMS7f/jNG/enAsXLrB37146dOgAaAOLgm/IViqVSCTaQNLauvhNEAVXpxd+0/bbb7/NoUOHOH/+PG+++SYBAQE8evTIYLXE9eu6FRyF5e3Zs4e0tDQ2bNjAokX62/ls8ra1aTSa/Dq//K+NjQ21atVi7dq1rF27lp07d9K1a1eqVavGrl27aNSoEfPmzWPnTv23iBdHo5AqJKQ8J/yu9kWC6w+c5LV6IXor2jUaDZNWbGT0J+9Tv3rxq0YLU7dOHZKSk7lx8yYAO3bsoGmTJnqrRcoHBeHi7Mzx49qXZx458n/s3XdYVEf78PEvAkuT3lFQ7L3GkmKJGpNoTDHVxJhoEkusaGKJioUYu0axRSXRKPaOPfZosEXFXmJXQFBQENhd2N33j0Vg2QUWZU1+z3t/ritXBGbvnZkzc3bO7Jw5u/Dx8aFs2bJmvUfTpk2JOXWKO9l7Kq5fv54WLVsapatTty6JCQmcO3s2J13jJk0KXbkC0KhJM87G/E3sHf1Ad/OGlbzUvI1ZeStKg1o1uJd4n9PnLwGwKmobL71Q3+yVFv+V97BkHQHUbvQql88e4V6s/oJh7+bfafDSm0bpHqcksXTOcB4lJQBw7eJJNJosvHwKbkuNqlUg7sFDTl6+AUDkzoM0q1vNYJVtZpaG0Ig1XL2rvxi4ee8+txMeUKGMj6mQJlWv35pr5w+TmD1hfmj7Iuo0bW+ULi0libXzh5KSrC/Dzcsn0GqyDPboNMWidRTkQ1xKOifv6CfoIo9dplnFABwUuefV+NQMvojcza1k/ZeU0dfjeZihopa/p8mY+dVv0pzzp48Rd0d/sbF94zKaNm9rlE6lUrJw5lj6Dp1IQGCwWbEB0s/FYOvtg0NV/T6p7u07knbiKLo8W2Zkxt1FUbYcNt76/Tztgith7eiEOr7oySeAExdV1KigwM9Tf+5//UVHjpwxXgkffz+LSoEKnBz05/g6le14mKohNb3gp9A3qhRIXHIKJ67pL+qX7j9B8xrBBqtUR37Yhv1hvdgzpgd7xvSgXvkApnXtQIdG5n9BatEyVC1PXNIjTv6jP08s3XWY5rUrG/Y1jYbQxRv5Jza7/d97wO2EJCr6e5uMmdcL1SsR/+AhJy/p+8Cy7QdoVq8GDnb5P9NWMLRLx6f6TLNk/QA0CvYn7mEaJ27qJwaWRp+leZVAgxXtIzu8zP4hn7Hn+07s+b4T9QJ9mPZxazrUK/o5Gw1rViHufhKnLuofCrx8y25eblDL6HN/7NzFfP9VJ+pXL/6zOyzahp7DuahR5SDiklI4kT3JsHTvMZrXrGiwyjMzS0No5Bb+idPn42ZCErcTH1LR38tkzPwsWkc5+b+Tm/9apvK/lX/i7ufm/34yFf2KriP9uC4hZ1y3bv0GGpsc17myd+8+AP7YtQsfH2/KljX/rktL1lHm9YtYu3piE6S/m8XhpddQXzoNeVbW6pQZZF49h8PL+msMm7LBlHLzJOvujSLz/jzqyNLnIkvXUb3atbiXkMiZc/oFUWs3bqZpo4YlNjZ9HtcfjZu+zJmYv7mbPfbdtH4Vr7QofF/04qpWvzXXL0RzP05/rfbXzkXUamJi7JiaxPqFQ0hJ1o9Tb13JHjt6Fzx2zB1XZJ8r9v9N85oVDMYVmRotoct25J4rEpO5ff8hFf2KPteZc4zLBwXi5urC7n1/ArBj9158fbwJLFP03Uf16tTmXkIiZ8/pJ4nXbthEk8YvGMQvFxSIq6sLe/bpH1K7c/cefL29KWvmHeA51whXbgAQ+cchmtWpanyN8Os6w2uExAdUCDDvGqFKvTZcvxjNg3j9MT78xyJqNn7LKF2n/gsYOC2akKmHCJl6CBcPf7oNX0P5ak2Lzr+Fr3GEEP87rHT5Z0LF/xfu3LnDrFmzmDBhAkOHDuXgwYNs27aN8+fPs379emJiYoiIiCAgIIDQ0FAaNmyIRqPhypUrDBkyhLS0NDp06MCePXvo0qULw4YNo3r16rRq1YqoqCicnJyYOHFizp7pT153//59vv32W8qVK8fkyZMBGD16NI6OjgwePBiAHTt25EyGd+nShZEjR1KlShWWLl1KcnIyTk5OPHr0iJCQEFauXEl4eDgHDx7k888/z0k7duzYnG1kpk+fzokTJ5g/fz5vvvkma9euxdPTk5kzZ/Lxxx9z/PhxAgMDqVOnDsePH2f79u2MGDGiwLpLPbrF6HfHL/zD1CXryVCpCfT1YlT3Tmi1WvpMms+qCYM5feUGX4eFE+hnOMkx7tvOVCtvOBBN9Kxm8n1Pnz7NvF9+QalUEhAQwMCQELRaLSNGjmTe3LkAXL9+nRkzZ5KamoqbmxsD+vcnMNBwcKizKnj1zYEDB4hcuhSNRkPFSpUYMGAADg4OXLp0iSW//86P48bl5OWXefNy8hIycCAeHvrVlKmaglegRP+5m1WRv6LVaAiuVIWe/YZi7+DIP5fOs3LpQoaHTeNhchJjhvUBIPbOLXz9y2Btbc3IH2fg4aWvv4DMm0axT549z4yIJSiVKsr4+/JD3x5otVoGjZnI7zMnAtCl3xA0Wg134xPw8nDDTqFgeL9e1Khi3tYBJfUesbblLFpH8WnG+03mlCF6O9tWzUGj1RAYXJ1OPcdiZ+/IzX/OsHXlLHoN/wWAP3cs588dK9DptNjYKHjr0/7UrN88J07ztCij2McvXmPSss0o1WoCfTwZ89UHaLVavp32G2vCBgDwx7EzLIjaS2ZWFlZWVnz5ZnPefsX4QYRbrN8rsAxnjmxjz/pZaLVZ+JerwXtf/YidvRN3rp5m17qZfPm9/tkQh3dFcmT38pwyvPZhCFXrtgDA2T6rwPglUUfN//7RZOzjtxKYtPsEykwNge6lGfNmY7Q6Hd+u3s+abvoJ/aiz1/ntyEV0Oh3O9goGvVqPumWML8ZOvzzI5HscOfgH65cvQKvRUK5CVb7qOwJ7B0euXj7Hush5fD8mnOgDO4iYGYaXj+Gqt2E/zcvZesZ9lOk9vR1q1MHny16UsrMnMz6WuDlTsCpVirLDf+LGdz0AcG3THvd27+q/uM3M5P6q33l8PNogzvjqv5uMD9Coph3vtSxNqVJwMy6LXzeloFLrCC5jQ8dXSzN1qX712LstnWha2x6dDjJUOpbvSOXKLf3tzfMarTcZ+9g/t5m0fh8Z6kwCvdwI6/Q6Gq2OXvPXsW5wF6P0X81eTc/Xm9KokvGFds9jBbfTkijD3Ba7TMY+dukGk1ftIEOtJtDbg7FfvINGq+Xb8EjWhvYCYOff51mw9QCZWRp9X2v7Eu+8ZHjHlsbR9L79xy/8w5SlG3M+00Z/8zFarY4+k+ezavz3nL5yg69+nE1gvkmCcb0+o3q+z7Q+2xpbrH4A5lVdZLqOrscxafthMtRZBHq4EPZuMzQ6Hb2W7GBdb+N9wL/6bSs9W9anUbBhn1BWa2SUFuDvc5eZtngVSpWasn7ehPbqgkaro/9PM1k+JZQzl6/RfdQUAv0NL7LH9u1GteDclZ4DNhb8cL+SqqM5gbONYpfkuahUAV/WHbtyk0lrdun7mrc7YZ3b6/vanJWs++FrAHaevMj87Ydy2mnXNk14p2kdgzg9/2pn0Tqa9+LmAvJ/i0lrd2efK9wJ6/ymPv9zV7NuWLfc/O+Izs4/+vw3qW0UK65SC6PfxZw+zbxf5mePpfwZlD2uGz4ylF/m6p+Zcf36DWbMnElK9rgupH8/o3EdwJglBY+9SqKOpmh/MBnbtnxVnNp1wspWgSYpgdT1v2JlVQqXLgN5ODsUgFLObpTu+BXWHj7oVBmk7VhN5tVzBnFSvxhmMv7zqKOS6meWriNl5xCT8U+dOcvs+b+iVKko4+/H4AF90Gi1DA0NI2L2zwB81XsAGo2G2Ph7eHq4Y6dQMHRgP6pVyf0SUG1tequWkrr+AMjQmd6q5dCfe1mx9De0Wg3BFavQu//3ODg4cuXSBZYv/ZXQsMk8TE5i5ND+ANy9cxs//wCsra0ZPW4antnXB2cSCr7L9OzRbezdEI5Wo8G/XA3e6ZY9drx2mj3rZtDluwgAjuyO5NieZei0WqxtFbR5fyBVsseO7z5cYDK2flyxN8+44g00Wi29flnLuiFfArDz1CXm7zxMpkaDFVZ0bd2Idxob3ul0v9JLJuObc4yv3bjJtFlzSUlJxd3NjUF9exEUaPxlh9bK2uh3MafPMGd+BEqVkgB/f74P6YdWo2VY6BgWzJkJwPUbN5gWPkcf392NgX17m4zvFX/WZBmOX7zGpBVbUaqyrxG6dUSr1fHt9EWsGdsP0O/PviBqb04dfflmM95+uYFBnLW6D03GBzh/bCv7N4Wj1WrwD6rBW1+MQ2HvxN3rp9m/YQafhkQYvSZ8aCs+/+533Lxyy/K+9VrT+S+haxwAx5ffL7AcQhSk/dem+9f/r7YsLPpu0X+LTLT/fyrvRPu+fftYtmwZ8+fP58iRI6xfv54PPviAqVOnYmNjQ2BgIGPHjmXTpk0mJ9pnzZrFxo0bmTNnDj169Ch0oh3gyy+/pGvXrrRooR+0qNVqJk+ezOHDh3FxccHPz4+RI0fi5uZmMHn+ZKL9vffeo1evXnh4ePD+++/z+++/07JlS44cOZKT9saNGwwYMAA3Nzfq1q3LqVOnWLx4MTt37mTevHkoFApq1KjByJEjOX/+PKNGjcLR0RFra2tGjBhBxYoFT7yammgvSQVNtJeUwibaS0JhE+0lxdRE+/8lhU20l4TCJtpLiqmJ9pJU2ER7SShsor0kFDTRXpIKmmgvKQVNtJeUwibaS0JBE+0lqbCJ9pJQ0ER7SSloor0kFTTRXlIKmmgvKQVNtJeUwibaS4qpifaSVNBEe0kpbKK9JBQ00V6STE20l6TCJtpLQkGTyCWloIn2kvR/vY4KmmgvKQVNtJekgibaS0phE+0loaCJ9pJS0ER7STI10V6SCppoLymFTbSXFFMT7SVNJtrF05CJdkP/5Yl2eRjq/6fKli3LhAkTAGjZsiUts7cIadKkCU2aNAFg+fLlBq/p2DF3BZiTkxN79uwBoE+fPvTpo19d++R3QM7Eel5JSUmkpKTQrFmznN8pFAqGDx9uMp9LlizJ+Xfnzp1z/v3kAZ4Ab7/9dk4+nsjMzGTkyJE0bNiQzZs3k5Sk3xeubdu2tG1ruI1CzZo1WbNmjcn3F0IIIYQQQgghhBBCiKLIRLt4bnbt2sXMmTMZNmwYpUpZ9vEATk5OhIaGYmVlRalSpRg/frxF308IIYQQQgghhBBCiJKm08pmJP9XyES7eG7atGlDmzYl92DHwgQEBBityBdCCCGEEEIIIYQQQghLsOyyYiGEEEIIIYQQQgghhBDif5xMtAshhBBCCCGEEEIIIYQQz0Am2oUQQgghhBBCCCGEEEKIZyAT7UIIIYQQQgghhBBCCCHEM5CHoQohhBBCCLN/1J8AACAASURBVCGEEEIIIcR/kE6r+7ezIMwkK9qFEEIIIYQQQgghhBBCiGcgE+1CCCGEEEIIIYQQQgghxDOQrWOEKKZ0Zz+Lxtda+Psva53GovH/SfK0aHyAao82WzT+1QpvWDS+jybOovE1jtYWjQ+QbhNg0fhp9y3bDyp4PLZofKwtfwxcbS1bhnKfv2vR+K1dfC0afzU9aRBg2b7W2tmyZbCKt2z+z9TuYNH4AK1buVg0vuZSqkXjn1Y0sWj81q2cLBofQHtGadH41yq8adH4re0t28+Ie2DZ+MAtpWU/M1u3crRofPvzPhaNfzajjEXjA7Ru5WDR+PZnLDv+XX2tlkXjd/LdY9H4APaxly0aP61iJ4vGTy9d3aLxHZXJ2GSmW/Q9LO26/ysWje/60LLXsQBXR8+yaHzf2oE83rzRou/hM/53i8YXQhROVrQLIYQQ4n+OpSfZhRBCCCFKyv/1SXYhhBB6sqJdCCGEEEIIIYQQQggh/oO0Ou2/nQVhJlnRLoQQQgghhBBCCCGEEEI8A5loF0IIIYQQQgghhBBCCCGegUy0CyGEEEIIIYQQQgghhBDPQCbahRBCCCGEEEIIIYQQQohnIA9DFUIIIYQQQgghhBBCiP8gnVb3b2dBmElWtAshhBBCCCGEEEIIIYQQz0Am2oUQQgghhBBCCCGEEEKIZyBbxwhRAv4+fY45iyLJUCrx8/ZiaN8e+Hh5GqTR6XSs2LCZ+UtXMSNsOHVqVCv2++zfv4+VK5aTlZVFuXLlGRAyECcnJ6N0MadOERGxgIwMJT4+PoQMHIiXl3ehsU+dimFBRATKjAx8fHwYODAEby8vgzTXrl0jfPZsUh6l4OLqQt8+fagQHGx2/k8f3sLejfPQarLwLVuZjl+Pw97R2Sjd2WM72btxLlmZKpxKu/NO11H4lq1SaOwjl24wbcNe0lVqAjxcGftZO3zdXQzSHL9yi+kb9/I4Q4W9wpbB77emYaUgs/MPcHD/blavXIImS0NQuWB6DxiMk1Npo3RZWVksWTSfqPWrmL94FV5ePkXGPhFzhnm/LSFDqcTX24sh/XvjbaIdrVy/iYVLljN93Chq16herPz/deAPNqxchEaTRdmgCvToPxzHAvK/YvEctm5YTvhvG/E0I/9/nznPrMUrc/I/vM9X+Hh6GOV/2cZt/LJsLeFjhlC3euHH1ZTzx7ZwaOtctJpMvAOq0O6Ln7B3MG5HT/xzZh+rZ/Wg17jduHmVLTK+Jevo6I14pu85Sbo6C39XJ8a0b4qvi6NBmvrjl1HeI7ft+jg78MunrYuM/cSf+/ewesVSsrKyCCoXTN+Q70220dOnTrAoYh7KDCXePr70HTi4yPMEwJErt5kWdYB0VSYB7i6M/eQ1fN1M1/+l2EQ+nb6ceT3eo1GlQLPLcO7oFg5umYtGk4lPmSq89cVPJs8VT1w5vY+V4T3oM968Y2zJfvw8ynDk2l2mbT9CujqTADdnxr7XHF9X4/wDXIp7wKfz1jPvy3Y0Cg4wO/+H/9xJ1OoINFlZlAmqyFd9Q032g5NH97Nu2S9kZWVS2tmVL3oOpWy5SkXGt2T9HL2VwM/7YkjPzMLfxZHRbzTC19mwnzWYspryHrnv513agV8+alFkvg3e5+AOtqxeiEajr6Mveo/C0cm4DKeO7mfjirlkZaop7exG5x4/UObfrqPbifx88BwZmVn4Ozsyqk19fJ0dDNI0nLmRcu65x9zHyZ55HV8uMt95Hdy/mzUrl6DJyiKwXDC9BwwpsK8tXfRLdl9bbdb5FCzdz2KZtuOovp+5ls7uZ8ZjLoBL8Q/4dN5G5n3xJo2C/c3KO8DRg9vZmt2GAoIq8kXv0QW0oX1sWjGXrMxMnJxd6dxjuFltCJ5DX/vzDBlqDf4ujoxq28CorzWcvs6wHZV2YN4HzczKO8Cxg9vZumaBvo4CK/FF79E4mKijmGP72LRiTk4dfdZjBGWC/t1+Bs+nr106sYWjO+ai1Wbi6VeF1z79CbtCxkXXz+1j4/wedA3djatn4WU4fvYiM5euI12pwt/bgxE9u+Dr6W6QJubSVWb8voa0DCV2draEdPmQ+tUrm5X3I1duMW3Tn6Sr1dljirYFjynuJvLp9GXM69mxWGMKgOgDO9m4+lc0WVmULVeRb/qOLHBst+r3WWzbuIwZEVF4ePkWGfv4mQuEL1lNhlKFn5cHI3p3NTn+jdy0g3nL1zN71HfUNbN+AI6du8yMyA058UN7fGriGFxj+tL1pGUosVfYEvJ5RxpUN+8cYen4T1h67HUqeiu7NuReZ37U/UccTPTl00d3smu9/jPZydmd97uNwi+w8OPhVKc+/t16UsrBAXXCPe78PJGsB/cN0ji/0BTfLl9hZatAk5pC3MLZZFy+aFbeAWwrVKd0u05Y2dmjTb5PypoFaFOSc/5uE1QJl/e/NniNtacPSeGhaO7dMft9hBCWJyvahXhGGUolY6aGM7j3NyybM42XGjVg6rxfjdJNnfcrt2PjcXd1MRGlaAkJCcybO5fRY8KYvyACX19ffl+8yCidUqlk4sTx9Os/gAULI2jSpAmzwsMLja1UKhk/cSID+vcjYuECmjRpQnj4LKN04ydO5MP3PyBi4QI++vBDJk2abHb+H96PJWrJOL4Y9Ashk7bh5lWGnWt+Nplu46LRdB4wi5CJW6nV+HXWLhxRaOx0lZohizYx+tM3iQrtQfNalQhbucOwjOpMBkWsZ/hHr7NxZHd6vvky3/+6EZ3O/L3OEhPusXDeTEaMnsis+Uvw9vVj2e8LTaadEDYcB3sHk38zJUOpJGzKz3zXtydL5s3kxcYvMG3OfKN00+cu4E5s3FO1o/sJ8Sz+ZRqDR01l6ryVePv6s3LJPJNpp/44GPti5V9F6LS5DP22KytmTeSVF+ox+ZfFRukmz1/M7bh43F0LvgAszKOkWHauCOOjvvPpMXYHrp5l2L9heoHpM9UZ7Fs3FXsnN7PiW7SO1FkM3XiI0HZN2NizA80rlWHc9qMm067v8VbOf8WZZE9MuMeCueGMHDOeOQt+x8fXj8jFEUbplMoMpk78kd79v2POwt9p1ORF5oUXXI9PpKsyGbJ0K6M/eo2oYV/SvGYwYWv2mEyr1eoYt2YPnvkmXYry6EEsO5aH8Um/+Xz7o/4Y7yvsGKsy2LNuKg5mHmNL9uPnUYZ0dSZDVu1h9LvNiRrwMc2rBhG26aDJtFqtjnFRB/EsXbxj8CAxnsgFkxk4cgYT5qzFy8eftZFzjNIlP0hgwYwx9Bz0I+NnraZps9dZNHd8kfEtWT8Z6iyGRR1m5OsvsOGrN2leMYBxf5wwmXZdtzdy/ivuJPuDxDiWL5xIvxEz+XHWejy9A9iwbLZRuuQHCfwWHso3IT8RFr6Oxs3eYMm8cUXGt2gdZWbxw/bjjGxdj/Vd2tAs2Jef9saYTLvu89Y5/xV3kj0x4R4R82YwfPREwucvxafQvvZDsc6n8Bz62eq9jH7nFaL6f0jzakGERR0ymVbfz/56in4Wx4qFE+k7IpywWRvwKqQNLQoP5euQnxgbvo4mzd5k6bwfzXoPi7ejrccY2aYB67u2pVkFP37afcpk2nVfts35rziT7EmJcayImEjf4bMYG74RT58ANiwzHp8mP7jHovCRfDVgPGNmrqdxszeJnBdWZHxLf948j76WkhTLvjVhvNNjPl8M34GLRxn+2lL4uOhg1FTsHc04xkoVI2ZG8EOPzqz5eQyvNKjNxIXLDNKoMzP5fspcvv30XVZOG0WPj95m5EzjcYcp6apMhizZyuiP2xA1rCvNa1QgbM1uk2m1Wh3j1u7G06V4/QzgfmI8SxZM4bvQn5k8dw3ePv6sXjrXZNrpP32Hnb3575GhVBH683x+6PkFq2aO45UX6jJx/lKjdJMWLOV23D3cXYo3/s1QqhgevogR33Ri7bSRNGtQiwm/rjJIo87MZNDUBfT5pAOrpwyn54ftGTHLeAz+b8R/wtJjr+T7sWxYPI6vvp/H4Clb8fAKYPuqGSbTrft1DF0HzmLwlC3UafI6q+YXfp1pZWdP0OCR3AmfwuUeXUg9Gk2Z3gMN0pRyciLw++HcmTaeK72+IGHF7wQNG2N+AWwVuHbqTeq6CJKmDkZ18STO73U1SJJ16x+Spg/N+S9lzXyyYm/KJLsQ/0Ey0S7MNmHCBD7//HPeeOMNWrRoweeff06fPn2M0h07dowHDx4UGCc8PJylS/UDkPv37zNgwAA6duzIBx98wKBBg0hJSQGgVatWpKWlWaYwJejE6XME+PpQtaJ+ZXe71i05duo06RkZBuneeLUZg3t/g4219VO9z+HD0dSrVw8fH/23+m1ff52DB/80ShcTcwo/P38qVdJ/M/9a29c5efIE6enpBcY+FRODv58flSvpVya83vY1Tpw8afCa69dv8PhxGi+99CIALzZtysNHj7h165ZZ+b9wYg8VazTFzUu/ovKFFu9z9ugOo3SlbGz4uNdk3L3KAFCxZlPux10vNPbRyzcp6+VG9UA/AN57sQ7RF6+TplTlpMnUaBj96ZvUCNKnaVK1PA9S00jNUJmMafJ9Dh+idr0GePvoV7e0aduOvw7uN5n2w0+68Ennrib/ZsrJ02fx9/WlSsUKALRr8yrHT8WQnm7Yjl5v1YLv+vTE2qb4NyT9feRPatZ9AS8ffR20fK0DRw6ZniR975OufPDZN+bHPnOeAF9vqlYoD0D7Vs04GnOWtHz9oF3LVxjaq9tT94Mrp3ZTvtqLuHro21Hdlz/g4t/bC0z/Z1Q4tZq+jZ296VWIRuWwYB0dvRlPWbfSVPfTr3J6t24Foq/Hk6bKNDtGUY4cPkSdPG30tdff5NDBA0bpTsecxNfPn4qV9HcUtG77JqdOHiejkPMEwNF/blPWw5XqZfXnofca1yT68k3SlGqjtKujT1O1jDeBXq7FKsPlU7spX/1FXD31x7jeKx9w4XjBx/hAVDi1m76NwsxjbMl+/IQly3D0Wixl3V2oHqC/4+i9BlWJvnqXNJWJY3DsAlX9PQn0KN4XcyeO7Kd6nUZ4euv7QfPX3uHYIePJD2trG3oO+pEygfrzVpUa9bh761qR8S1aP7cTKOPmRHVf/Wq8d2oFc/hGPGnqkutnoF+lXr12Yzy99auXX2nzLsf/2mWUztrahm9CfiIgu44qV69H7O2rRca3ZB0du32fMi5OVPfRT7S9U6Mch28llHgdHTt8kNr1Gub0tdZt2xN9cJ/JtPq+1q1Y8S3bz+Io6+6c28/qVym4nx2/QFU/DwI9ijeBFnN0H9XytKGX27zL33/9YZTO2tqGr0PGExBYEYBKZrYhsHA7upVIGVfH3L5WszyHb94r0XZ06pi+jjye1FHrd/k72kQd2djyVciE3DqqVv9f72fwfPratbO7CazyIi7Z46KaL37AlZMFl+HwtnCqN3obWzPKcPzcJQJ8vKgWrL/7s8OrL3Hk9AXSMpQ5abI0GoZ98xkv1KwKQN2qFUlMfkRqWuHjCYCj/9zKHlPozxHvNalJ9KVCxhQB3gR6mvclR14njuynRp1GeGV/prVo8zZHTXymAbz7UTfe/7S72bGPn72QPf4tB8Bbr77C0ZhzBnUE0K7FSwzr+QU2NsUb/x47d5kyPp5UC9av4H+7ZVMOn76Y7xho+eHrT3ihpn5MV7dqBbOPgaXjP2Hpsde5v/dQqWZT3LOvMxu3fJ/TR4yvM62tbfm092TcvfXXmZVrNiWxiOvM0nXro46PQ3n1CgDJf2yldP0XKOWQ+2WAwi8ArUqF8oZ+DJR2+iQKbx9Kmbjz3BRFxRpokhLIir0JgPL4ARSVamGlsC/wNc5vdebx1uVmxRdCPF8y0S7MNnToUJYsWUL37t1p164dS5YsYdYs41Ula9euLXSiPa/BgwfTunVr1q1bx5o1a6hevTpjxhTj29//gNux8QT45d7S5uhgj4uzM3fi7hmkq1Wt+Ftk5HX37l38/HNvR/b39+fhw4ekpqYapfPPk87BwQFnZ2fi4mILjW3qNbFxcYZp/PwMXufn58ftO+Z9i34//gYePrnbtHj4BJGW8oCMtEcG6VzcfKhUS7+SR6PJ4sSfG6jeoFWhsW8mJBHolTvwdrRT4ObkwK3E3NvtnB3sebWO/hjodDrWR8fQoGJZXBwLHsDkF3v3Nn5+ZXJ+9vMP4NHDZB7nOwYAVavXNDsuwJ27cQT4596e6uDggIuzM3fj4g3S1axWtVhx84qLvYVvnvz7+pch5WEyjx+nGKWtUq12sWLfjounTL5+4Fq6NHfjEgzS1apavNtM80u6dwN379x25OYdRHqqcTsCSLh7iRsX/qJRmy/Njm/JOrqZlEpZt9xbZB0Vtrg5KLidbNx+hm/6i47zN9Nt6R+cupNo9nvE3r2Dn3/u9iAFtdH86fR93oW4uLuFlyExmUDP3IlzRzsFbo723Lr/0CDd/ZQ0Iv88Rd92L5md9yce5DvG7t5BpBV0jO9c4tr5v2hSjGNsyX78hCXLcPPBI4MJPUc7W9wc7Lj1wLCN3k9NJzL6LH3bNCp2/uNjb+Hjl7udgI9fWVIeJZGWrx+4uHlQp0HuMT594i8qVqlVZHxL1s+tpFQCDfqZDW4OdtxOfmyUdviWI7z/63a+WrGXmLv3jf5emHuxN/HOU0fefmVJLaCOajXIXZ165sRfBP/LdXTz4WPKuuVe/DsqbHC1V3D7ofHihhE7/uaDJbv5es1BYuKSzIr/ROzd2/j6FX0+Aqhaveg6yc/y/Sz3C6qcfpZkqp+dp2+bF4qdf30byt3+wtsv0Kw2dPbEIYKrmPf5Y/l2ZNjXCmxH247xweI/+HrVfmJizbtGgOw68s3bzwqoI1cPatXPU0cnDxFcueg6svTnzfPoa8kJN3D1yi2Dq1cQ6Y8foEw3LsP92EvcuvQX9VuaV4ZbcQmU9c3dUs7R3h5XZyfuxCca/O7VxvVzfo4+dY4gfx+cnYpeFX4z8aHx+L2gMcWBk/RtX7y7ap6Izze28/E3/ZkGULlanWLFvh13jzJ568jBHlfn0tyJNxz/1q5asZi51rsVn0gZn9ytPB3t7fTH4F6iwe9aNa6b8/NfMRfMPgaWjv+Epcde9+Nv4Ombez719A3iccoD0vNfZ7p7U6W2ftyi0WRx7MB6ajQs/DrTrkxZ1PG519FapRJNagoK/9zyqG7fBK0Wpzr6vuDycgvSL19Ea+aiQWsvPzRJuW1Gp1ahTX+MtafprYsUVeuiy1STeeOyWfHF/wadViv/5fnvv0z2aBdPLTMzk9DQUG7fvo1araZfv35YWVmxa9curly5Qnh4ONu3b2fHjh1otVpatGhhsAL+6tWrpKSk0KFDh5zfde3aFaUy9xv0yMhI9u/fj0ajYeFC/e1lgwYNIj09HaVSyciRI6lTpw5t27alefPmeHp68uqrrzJ06FCcnZ2pVasWycnJTJgwgcjISKKioihVqhRt2rShW7dunD9/njFjxqBQKFAoFEyfPh0Xl+Kt/FOpVChsFQa/s1PYGpSjJKhUStxccye4bG0VWFlZoVIpcXbOnXRRKZXYKmwNXquwsys0P0qlyug1dnYKg9coVSoUivzlVJhdzkx1Bk4uufsV2mTnX63KwMHJeMXrXzt+Z8+GOXj6luOzAUVsfZOZhSLfCm87WxsyTKwY+uPkRcav/gNnBzumfd3RrLw/oVapcHXL3bPwyTFQqjIo7fx0W6E8oVSpUNjmOwYKBUpVybUjtUqJi6tx/lVKJaVLP92WRk8oVWrsTOQ/Q2X+HQPmyMzMwDFfO8LKiky1YTvS6XRsjxzFa5+MwNra1lQokyxaR5lZKPKtZLKztSYjM8vgdx3rVeTjhlWo4uPOzgs3GbB6P1G93sbZ3rD/maJSqXA1kX+lSmnQRlVKFbb5+nNR54mcMtgW3dcmbdxPj9ea4OJg/hdZT5g6V2BlRabK+BhvXTqK1zuNwNqmOMfYcv34eZRBqTbVjmyM2tGkrdH0eLUBLg52xc5/wf0gA6cC+sH5mKPs2LSMIWGmb8fPy6L1k6VBYW24jsTOxpqMTI3B796rE8zH9StRxduNnRdvM2D9ITZ9/aZZ/QxArVbi4ppbBnPq6MLpI+zaHMmgMb8UGd/SdWSXr47sbazJyMpXRzXL8XHdYCp7ubLz8l1Cog6z8YvXcLYz731UBfQ1VQn1NYvWkcnztQ0Z6nz9bNtherSs93T9TK3E2UQbUpvRhgaa0YbA8nVksh3lOxe9V6s8H9erSGVvV3ZeukPIxmg2dm1rVl/LVJnuZ2pV4XW0e/NSQkYbb79nFN/CnzfPo69lqTNwdM5TBpvccZG9o2EZdq8aRcv3zR8XKVVqE2NT2wLHdldu3uHnJWsY28e8u1OU6swC+lm+McWGffRo+3RjCtBfQxX3fG2ugupIqSyZ8a9SpcYu/zWarS0ZJlb9A1y5dZfpS9bxY58v/hPxn7D02EutUuLkkvtcK5s851NHE9eZf25fwq71c/D0DeLLEOOFg3mVsrNHqzasD51aRSl7+zw/q7k7ayrlR41Hq1ZhZVWK66MGm51/K4Udusx8161ZaqwUpj9bHJu3J/3AFrPjCyGeL5loF09ty5YtKBQKli5dyr179+jSpQs7duygevXqjBw5koAA/SqmZcuWUapUKVq3bs2XX36Z8/rr169Tvbrhgxytra0NHu5ZuXJlunfvzsCBAzl8+DAVK1bkww8/pE2bNkRHR7NgwQLCw8PJysqiefPmNG/enL59+9K7d29ee+01+vfvj4ODA7dv32b79u0sX66/vapTp0688cYbrFu3jk6dOvHuu+8SHR1NYmJisSfa7e3tUGcafviqVGoc7J9uMJhXVNQmNkdtAvS3Dru75w4S1Wo1Op3OaE9Te3t7MvMNUFUqVaF7nxb0mrxlsLe3Q63OX05VoXvoRf8RyeFdkTn5L+2au+IjU61Cp9OhsDO9GuKl17vwYtvPOX14K/PHfkr/CZuxLeD2OQeFLeoswws7pToLRzvji7jX6lfjtfrVOHLpBl+HL2P10G54uZh+iCDA1qh1bNu8PqcMbgbHQF+Gp9nDOT99OzI8Bsp8x+Bp7Ni8mp2b1wBgY2ODq1vuIPRJ/ou7L64pDnZ2qPLnX63Cwb74kw/5Hd+7lL/36rebsra2pbRLbjvKylSBiXZ06s+VePlXIrBS0asMn1sdKWxQ57u4VmZqcMx3gTPyzSY5/25bvRwLD53j1J1EmlUqgylbotazNWoDUNzzRP7+rCyynA4KW9T5JlGUmVk45pkMOHTxBo/SlLRvaP4Dn4/tWcrx7GNcytrW4FyRc4zz7Zl64sBKvAIqEVS56GP8PPqxpcvwhOl2lGXQjg5duc2jDBXt65p/B8muLavYtVW/L6uNtQ2u7sb9oKB9a/8+vI/IBZMJGTE9ZxuZ/J5b/djaoNYYrnLR14/hkHdk29yYbasFsvDwBWJiH/BKhYIfZLln6wr2btPXkbW14bniyWeavYPpOjp5ZC/LF06i7w8zcraRye+51ZGNNar8dZSlwTHfl2gjWtfL+XfbKmWIOHaZmLgkXilf8MMB8/Y1G2trk33tWc6nz7UdFdnP7vAovXj9TN+GVgL6NuTilruS9EkbsiukDa1YOJE+P8zI2SLFlOdZR2a1o9ca5Py7bdWyRBy9qG9HwYZ3ST6xd+sK9m5bAYC1jQ0uJvqZXQFt6NSRPayImEjvYTMLrKPnVT9gub526sBSYv7MLYOjiXGRrcKwDGf+WomnXyXKVCzGMbZXmBibZuJoYmx3+tJVfpixkB+6d6ZhTfPu4tWP3030s/xjinQl7RtWz//yQv2xZRV/bFkN6NuRm4mxXXH2Yi+Ig52p8bu6RMa/+vgKVOr842vT8WMuX+OHmb8x4ptONKxh3sNWLRnf0mOvQzsjObRzWU58Z1Pn0wKOcbM3PueV1ztzKnors8Z8yveTogq8ztQqlZTKtzjFys4ebZ7tMW08PCnT73v+GdgL1c3rONWuS7nhYVzu3hmtGYvSdGoVVvm+sMFWgU5t/NpSLu7Y+JVFffl0kXGFEP8OmWgXT+3s2bM0aaKfEPL19UWhUPDwoeGtfvb29nTu3BkbGxuSk5ON/q7RGA6u8mvYsGFO/NTUVLy8vJgzZw4RERGo1WocHXM/POvU0d/qd/XqVRo00A/qW7VqRXR0NGfOnOHmzZt06dIFgLS0NO7evUvr1q0ZPXo0N27coF27dlSsWPzb+oLKBLDn4OGcnx+npZP6OI2yAaYvIIqjQ4e36dDhbQA2b47i7JkzOX+LvXsXDw8PSpc2nCQuGxjIgQO5ezKnpaXxOPUxZcqYnqQDCAwsW+RrAgMDiYvP3UpGp9MRGxdHUFAQBXnxtc948bXPADi8axk3Lh7L+duDezdxdvPGwcnwi42Eu1dJSb5HpVovYWVlRd0X2xP1exiJcdcJKGd6kB3s68mOExdyfk7NUJKSoSTIO3flRHxyCudvxdOqrn7w36RqeXzdnDl9PTbnd6a069CRdh30K9+3bd7AubO5D7GKi72Lu4cnTqWffSVGUNky7D34V87Pj9PSePw4jTIBBU/6mOP1tz7k9bc+BOCPLWu5cPZkzt/iY2/j5uFVMvkv48/uv3If7KnvB+kE+j97P3jh1c688GpnAP7eF8nty7ntKCnhBqVdvbF3NGxHl2N2E3/zLDNP7wUgPTWJReM/4L3uP1OualODtM+rjsp7uLDzfO4zDVKValKUaoLcc2OnqzNJSM2gvGduebK0WmytC97prX2H92jf4T0Atm7eyLkzuW009u4d3D08jc4TZQIDOXhgb87PaWmPeZz6mIBCzhMAwT7u7Dh1KbcMGSpS0lUEeeX2tT1nr3LxbgKtslcTPkpXMnDRZga/24IOL9QwGbdRq840aqU/xsf3RnIr7zG+V8AxPrWbuJtnmR6Te4x/34yTcAAAIABJREFUHfcBHXv8TPlqhsf4efRjS5fhiWBvN3aczd0HPVWpJiVDRVCeNrPnwg0uxt2n1UT9RMyjDBUDl+9i8JtN6VDf9PmuTfuPaNP+IwB2b13NpXO5DxC9F3sbN3fT/eBczBGWRUzlu9GzCAgM/tfrp7yHMzsv3s6tH1UmKapMgvJscZGuziLhcQbl82zBo9FqsSlV+I6Krdp9Qqt2nwCwd9sqLp/7O+dv9+Ju4eruhaOTcR2djznCiojJhIyajX9Z05Ps8Jzr6EruNlGpqkxSlJkE5dniIl2dRUJaBuXd89eRVYH5B8O+tn3z+nx97c4z97Xn289y9+013c9ucjH+Aa0m6Sd6HmWoGLgiu5/VMz0JlbcN7StWGzrMyohJDBg1p9A2BM+5HV3O3T4wp6+5F9XXdIW2o1fbfcKrT+po+0qDOkqIu4WruzeOTsaLYi7EHGblr5PpHzr3P9HPwHJ9rV7zztRrri9DzJ+R3LmaW4aHiTdwcjEuw7Uzu7l3+yzXzurLkPE4iRVTP6Bd158JrGy6DOUC/Nj1V279P07PIDUtncA8WwWCfiX7Dz8vIKzfV9Svbt4EL0Cwjwc7TuVufWFyTHHmH/2YYpT+Lo5H6UoG/hbF4Hdb0qGR6TEFwGvtP+K17M+0XVvXcPGseZ9pxVWujB+7/sqt/8dp6fo68i/4C8niKB/gyx+Hc8elT45BkJ+3Qbort+4ybMZvjOv7JfWrmX89a8n4lh57vdz2M15uq7/O/OuP5Vy7kHsc7sffxMXEdea9u1d5lHyPKtnXmfVfas+GxT+SEHudMuVNX2eq7tzCtdmrOT+XcnTCunRpVLG5fduxek3U8XGobuo/N9LOxIBWi11gOTKuXDKKmZ8mMRb7OrkLbazsHCjl4ETW/XijtIpq9VBfOQs6XZFxhRD/DtmjXTwTXZ4TvFqtplSei9S7d++yaNEiFi5cyJIlS4wmeitUqMCZPBPHT5w9ezbn39Z5Hpio0+lYvHgxvr6+LF++nNGjRxu8zjb7W2CdToeVlX5w+uT/tra2tGzZkiVLlrBkyRKioqJo1KgRL774ImvWrKFChQoMHTqUw4cPU1wNatfkXuJ9Tp+/CMCqTVt58YX6JbKiPa+mTV8kJuYUd+7oJxDWr19HixYtjdLVqVOXhMQEzp3T1+OG9eto3Lgx9oXkp26dOiQkJnD23DkA1q3fYPSackFBuLq4snfvPgD+2LULHx9vypYtfGLuieoNWnP1/OGcB84c2r6IOk3bG6VLS01izfyhpCTr96m7efkEWk0WHj6BRmmfaFQ5iLikFE5c1dfN0r3HaF6zosGK9swsDaGRW/gnTr/n4M2EJG4nPqSiv5fJmKY0bvoyZ2L+5u4d/WTppvWreKVFa7NfX5j6tWtyLyGRM+f1Xxis2biFpo0almg7ati0GWdjjhN7R/+gna0bVvBS89dKJnat6sQn3ifmgv6CaeXmHbzUsG6Jreh5okrdNty4GM2DeP1E49E/FlGj0VtG6T7uu4D+U6LpN/kQ/SYfwsXDny+HrTGaZDcqhwXrqFE5X+JS0jh5W9+2I49dpFmlMjjkWWkbn5LOF7/v5FaSfs/K6GtxPMxQUSvAvHbapOlLnI45kaeNrqZZC+O9J2vXqU9i4j3OnzuTnW4NLzRuWuRK00aVAolLTuXENf3FxdIDJ2heI9hg9dnID1qzP6wne0Z3Z8/o7tQr78+0L98qcJI9vyr12nA9zzE+/MciajY2Psad+i9g4LRoQqYeImSq/hh3G76m0EkPsGw/fh5laBQcQNzDx5y4qb/4WvrXGZpXDTJYaTvy7WbsH9aFPUM6s2dIZ+oF+jKtU5sCJ9nza9CkBedPHyPu7g0AdmyKpEmztkbpVColETPH0nfIpEIn2fOzZP28EOij72d39HuuRx6/TLMK/ob9LDWdL5ft5lb2vu3RN+J5mKGmlr+HyZim1GvckotnjhGfXUd/bFpK41feMEqnUmWwaNZovh0ypcgJ0rwsWkdlvYhPzeBk9l7Zy05epVmwLw55Vtnee5xB11V/cvthdh3dTOChUk0tX3eTMU1p1PQVzuQ5H0WVcF+zbD/zJ+5R3n521kQ/e5n9QzuzZ/Cn7Bn8KfUCfZj2SZsCJ9nzq9u4JRfOHM1pQ7sKaUOLZ42m15CpxWpDYOm+5k18Sjons59vsOzEFZoF+xm2o9R0uq7Yl6cd3dP3NT/z+lrdRi25mKeO/ohaQiMTdaRWZbB49ih6Di5eHVn68+Z59LWKtdtw+3I0Sff0ZTixdxFVGxiX4d2eC+gxLpruPx6i+4+HKO3uzyeD1hQ4yQ7QsGYV4u4nceriPwAs37KblxvUMhjb6XQ6xs5dzPdfdSrWJDs8GVOk5I4p9psYU3zYhv1hvdgzpgd7xvSgXvkApnXtUOgke34NmjTn3OljxGWP7bZtXMaLzY0/055Gg5rViE98QMwF/YMyV2z5g5cb1imx8W/DmpWzj4H+4b7Ltu7llfrGx2D03KUM6fphsSbZn0f8Jyw99qrZsBVXzh0mIVZ/nXlg2yLqvdjOKF1aSjIr5w7jUfZ15vVLJ9BkZeFZyHXm49MnsfXxxbGG/lkiXu9+QOrRw+jybO+pvnsH+6Dy2GY/7NW+YmVKOTqhLuQZaXmpr16glJsntuX04zTHV95AdfEUZBpv4WPjH0RWonlxhRD/DlnRLp5a7dq1OXLkCO3btycuLo5SpUrh4uKClZUVGo2G5ORkPDw8cHJy4ty5c9y9e5fMPLfWVahQAT8/PyIjI/nsM/230b/99hvnz59n8uTJJt8zOTmZqlX1D4PctWuXQbwngoKCOHv2LM2bN+fAgQPY2NhQs2ZNpkyZQkZGBvb29owbN47vvvuONWvW0KJFC95++210Oh0XLlygadPCB8352dkpGDWoL9PnL0KpVFHG35dh/XqS+CCJ78ZMYPHMSQB80W8wGo2GxKRkwqbPwU5hyw/9e1Gjinm3HHt5efHtt30ICxuLVqOhYsVK9Oz1LQCXLl1i6ZLFhP34E3Z2dgwZMpS5c2ajVCrxDwggJGRQEWWwY+iQIcyeMxelUklAgD+DQkK4f/8+w0eG8svcOQAMGTyYGTNnsiQyEjc3N4Z8/73Z9eTq4cvbX4QS+XMftNosAsrV4K3PhwNw++ppdq2dSdfBCwmu1oiWb/fg14nd0Om02Ngo+Lj3VOwdCt7exV5hy8SubzN+1U4y1JkEersT1rk99x6m0mvOStb98DWB3u6EdnqToYs2kZmlwcrKisHvt6acj/kTK55e3nT/NoQJYSPQajUEV6zC1z2/BODKpQssX/oroWGTeZicxMih/XNeFzp0ANbW1oweNw1PL2+Tse3s7Aj9PoSf50WgVCop4+/H0AG9SXzwgMGjxvHbrGkAdO0zEI1Gw/0HSYybOhOFQsGwkD5Ur1L0xY2Hpw/den3HtHFD0Gg0BFesygc9BgLwz+VzrF66gGFjf+ZRchJjh/XKed2PP3xLqVLWDB8Xjoenj8nYdnYKxoT0YtqCJWSoVJT182F4n69JfJBMSNgUlv48DoDOA4Zn94OHjPn5F+wUtozs150alc27MHZ29+X1T0exdm5vtFoNfoE1aPbJCABir5/mwKYZfNI/wqxYz7uO7G1tmPDOy4zfeRylOotAd2fGvNWUhNR0vl2xlzXftKeClyvftWnAgDX70enA2d6W6e83p7SZeyJ7ennT49sBjA8LRaPRUKFiZb7p9SUAly9dYNmS3xj94yTs7OwYNGQk8+fMyD5PlKFfyJAi49vb2jCx85uMX7dX39e83Aj7pC33Hj2m1/z1rPv+c7PyWRgXd1/e/HQUq2brj7F/UA1adNIf47vXT7N/www+DXn6Y2zJfvw8ymBva8PEj1oxPuoQGZlZBHq4ENaxBfdS0ui1eBvr+n7wVHHzcvf0oUuPIcwc/z1ajYZyFarS+Rv9+f7a5XOsWzaP70aHc/LIflJSHjJv+kiD1w8b94vBtir5WbZ+rBn/VlMm7D6hrx+30ox5szEJqRn0XnOA1V1fp4KnC9+9Wo+Q9QfRAc52tkx772Wz+xno6+jT7kOZPWEgWq2GoOBqdPpa34euXznLhuVzCAmdw6mj+0lNSWbhzyMMXv992AKDLTHys2gd2Vjz0xsvMHHfaTIyNQS6OjH6tfokPM6gz4ZoVnVuRbCHM4Oa1yIk6ghawMXOlmlvNSlWHXl6efPNtwOYGDYcjVZDhYpV+KpnV+BJX4sgNGyKyb5Wyoy+ZvF+9uGrjN8cTUZmpr6fvddc389+3866Pu8/Vdy83D19+Kz7MOZMGIhWm0VQcHU+ydOGNi6fw4DQOcQc3ZfdhoYbvP77sIWFtiF4Du2oXWMm7onJ7mtOjH79BX07WneIVV3aEOzpwqCWdQjZGI1Wp8PFXsG0t5ua3Y7cPX359JthzJ0YglaTRWCF6nzy1VAArl85w6blc+gfOpdT2XUU8fMPBq//LiziX+tn8Hz6Wmk3X1p9OIqoiN7oNBq8A2vQsp2+DPE3T/PX1hl07PWUx1ih4Md+XzH51xUoVWrK+nkT2qsLCUkP6f/TTJZPCeXslev8c/Mus5etZ/ay9TmvHdu3G9WCC77rVR/fhomft2P82j25Y4pOr3Pv4WN6zV/HusFdnirf+Xl4+vBlz8H8PP57NBoN5StUpWP37wC4evkcayPnMXhMOI8ePmDcDz1zXjdueC+sra0ZGja74LGdnYKwkO5MiYgkQ6kf/47s3Y2EB8mEjJtO5LSxAHw2MJQsjZbEpIeMnrkAhUJBaJ9u1Cxi/GuvUPBT3y+ZtGg1GSo1ZX29GNWzMwlJD+k7YS4rJw3jzJUb/HMrlvDlmwhfvinntT/2+YJqwQVPID+P+E9Yeuzl6uFLx64jWTy9L1pNFmXK16DtF/pz5q2rp9mxOpxvhi6gQvUXaPVOD+b/1A2dToeNrYLP+k7B3rHg60ydWs3tSWMJ6DWAUnb2qOPucmf6BGw8vQgeO4krvbuhvHGN+MXzKT9mIlZWVmgzM7k99Sc0j40f9mpSViYpy+dQ+p0uWCns0Dy4R+rqBZRyccet6/ckzcg9t1m7uJMVd6uQYOJ/lU4rdzH8X2Gl08k9J6J41q1bx5UrVxg0aBCjRo3i1q1bZGZmMmjQIBo1asSsWbPYuHEjc+bMYcKECaSlpdGwYUO0Wi0XLlygYcOGuLu707lzZx4/fszYsWO5dOkSjo6OVKtWjaFDh2JnZ0erVq2IiorCycmJiRMnUrlyZSpVqsSQIUPw9/fns88+46effuLbb79l9uzZOWlPnTrFiBEj8PX1pVKlSqSmpvLTTz8RGRnJ2rVrsba2pk2bNvTo0YMDBw7w888/4+zsjEKhYPz48Xh5Fb5y9N6Fvwv9+7NKVZg/8fs0rCl8u55n9ff94q22ehpvPVps0fhXKxivlipJ7ppEi8aPsypr0fgA5dRF3wb5LDbff9Gi8WsHJFk0fvW/Cn+Ab0m42exri8YPvrCp6ETPYLVLr6ITPYMGAXFFJ3pGJ2KfbWunonwYP8Wi8U/W7m7R+AD/JD7bg+aK0vHSiKITPYO/Xxpm0fg3HzgVnegZvXfG/AeyPY0brw+0aPyTsc++BVlhPoybZNH4AEdq9bFo/FsPnn2v6cK8d96y/eD4K6EWjQ9wO+nZn7VSGEv3syUVLdtOO/nusWh8APvYy0UneganK3ayaPxKasvuiW2TmW7R+M/Dbdc6Fo1/9aHpLzxKUvDoNhaN71vbvC8nnoXP+N8t/h7i+WvT6fi/nYX/lF3Li/fclOdJVrSLYuvYsWPOv8eNG2f09z59+tCnj/6CIiKi8BUUpUuXZtIk0wPHPXtyB3xDhuSutNy2bVvOv1u31t9y9v77hiuLpkyZQrVq1fjll19wd9ffevnZZ5/lrJx/4skDVIUQQgghhBBCCCGEEOJpyUS7+J+jUCgYPnw49vb22NvbM3Xq1H87S0IIIYQQQgghhBBCiP9hMtEu/ufUqFGDtWvX/tvZEEIIIYQQQgghhBBC/H9CJtqFEEIIIYQQQgghhBDiP0in0/7bWRBmKvVvZ0AIIYQQQgghhBBCCCGE+L9MJtqFEEIIIYQQQgghhBBCiGcgE+1CCCGEEEIIIYQQQgghxDOQiXYhhBBCCCGEEEIIIYQQ4hnIRLsQQgghhBBCCCGEEEII8Qxs/u0MCCGEEEIIIYQQQgghhDCm1er+7SwIM1npdDo5WkIUw8NT+ywaP8k50KLxdVZWFo3v+eiGReMDnLdvZNH4NVR/WzT+BbsGFo3vpUi2aHwAW53KovEzrewsGt/S7LTpFn+Pe1p/i8avfXO9ReMf8u9k0fgv3/7dovEBDgV2sWh8O2uNReM3uL/FovEBot3ftmh8H4dHFo1f8d5Bi8aPdmlv0fgAvg4PLRq/0lXLtqNDAZ9ZNL6jjdqi8QGqaM5aNP4pnWXHFdXsrlg0voPKsv0Y4CQvWDS+pevI88wui8b/u/o3Fo0PkJjmYNH47o6WHZs2yDhg0fj/uFq2jQJotNYWjV8zdqtF418s+7pF4wNcTPC0aPy37HZYNP4Jh+YWjQ/Qoqajxd9DGHv1oyP/dhb+U/auavJvZ6FAsnWMEEIIIYQQQgghhBBCCPEMZKJdCCGEEEIIIYQQQgghhHgGMtEuhBBCCCGEEEIIIYQQQjwDeRiqEEIIIYQQQgghhBBC/AfptNp/OwvCTLKiXQghhBBCCCGEEEIIIYR4BjLRLoQQQgghhBBCCCGEEEI8A5loF0IIIYQQQgghhBBCCCGegUy0CyGEEEIIIYQQQgghhBDPQB6GKkQJOH72IjOXrCFdpcLfy5MRvb7A19PdIE3MxX+YsWQ1aelK7OwUhHT5kPo1qpj9HqdOnWJhRATKjAx8fHwIGTgQby8vgzTXrl1j1uzZpDx6hIurK3379CE4ONjs99i/bx8rVqwgKyuLcuXLExISgpOTk8m8RCxcSIZSiY+PDwNDQvDy9i409vGzF5m5dB3pShX+3h6M6NnFuI4uXWXG72tIy1BiZ2err6Pqlc3O/5E/dxC1OgJNVhZlgirSre8oHJ1KG6U7eXQ/65f9QlaWmtLOrnTpOYyy5SoVGf95HOfDf+40KMNXfUMLLMO6Zb+QlZVJaWdXvug51Kwy7N+/l5UrlqHJ0lCuXHn6hwwyeYxjTp3k14gFZGS3twEDv8PLq/BjfComhgURv5KRoW8Xg0L6G7XRq9euEz57DikpKbi4uNCvz7dUKEYbtXQZLB3/ZMxp5v+6iIwMJb4+3nw3oK/JOpo5Zx6PUlJxdXGmf+9eVAguX2S+n4g+sJONq34jS5NFYFAFvuk30mQbysrKYuXi2WzbuIwZv27C08vXrPhHLt1g2oa9pP8/9s47LKrja8AvIgjYkS7Ye+/YTTQaE2OMib23aGKvUbH3qDGIYq+giIoVsXejosRGUewFBRQFFaUssMv3x8rCsruI4V4Sf9+8z+Mje3f2zMyZM3Pmnjt3RpGEg2VhZvf8FtuihbTSXLkXhuv+07xPUGBmasJvP7WibrkS2a7DlfOHObx7HUplCg5O5eg9dBbm+QvqpAv6+wx+O1aSnKzuy90HT8WhRNZjxuV7Yfy5/yzxSck4FC3I7O5tsS2iLfvK/ae4HjjH+0QFZiYm/NbxS+qWdcx2+eWuA6jHOz+f9SiV6rGi//AZWOiRfyPgLPu8V5GSnET+gkXo/YvLR8eKgNCHuO46QnxiEvbFijCrX0dsLQtr1+/OI9x2H+N9QiJmpiaM7/otdSuU+mi5Nb+XWT8A58+eZPcOT5QpKTiVLM3Q0ZPIb6AveG1ezYG9O1njsYtiVjYflR0Q+gDXHYfV/qBYUWYN+EmPjh7itvPIBx2ZMr57O+pWzP54J7eOzp89ya4dWzT6GTZ6okH9bN28hgN7d7LWwydb+gG4fPfJh7EiGQfLQszu8S22RTP1tXthuPqe/TBW5OW3H1tRt5xTtuSD/DqS0ydfCb6Fu8cOEhIV2FkXY8rwgdgUs9RKk5qayrb9R1i9bTfus36jZuXszyc0+cioo2uBwaze6Eliotqn/TZqGNZWxXTqsGOvLxs8t/HnvJlUr1o5+2UPDmW5506NjqYO669XR16+R1m9bQ8rZk6g5ifMG0F+G5JbR5cfhPPnYX91PytagNk/fYltYV0bBbgT+YoeK/awekA76pcpnv08/jqKn88GUpQpOJYoS//h0/X6m+sBZ9nnvfqDvylMn2z4G4Ab/oc4tX81ypQU7JzK0+nnuZhb6MoPDjjGyX1p/qwoHfvPwM4pe+0dcP4Ihz74TIcSZek7bKYBn3kG3+2rSElOJn/BwvQaMoXiH6nD3zfvsnTbfrWdWhVlxuCe2BYroi33zkNcvfYR98Fnju3VkTqVP66bNC6ePcGeHZtRKlNwKlmGX0a5GJzbeW9excF921mxeW+2x2sA/3PH2bdzE0plCo4lyjB45FSDeWz3WMHh/d4s2+ibPZ95+xF/7j5OvCIJe8vCzO7bQXfuePcxS/ec0MwdJ3T5mrrlS2a7/HLrKPjyQc75rUaVkoyNY3k69J+PmR47TeNu4Bm2uf3CqEUnKGqV9RwyN2wI5O0HAvlJVaX+20UQZBOxol0gyCEJiQqmuq3HZUgfdi2dQ9O6NVi43ksrTVJyMhP+WMnQ7j+yw3UWQ7p+z7RlG7KdR2JiIr8vXMjoUaNYv349zs7OuC9frpPu94UL6fTTT6xfv54unTuzaNGibOcRFRXFqlWrmDV7NuvWr8fW1hYPDw+9ZVn4+++MGj1aU5bl7u5Zyk5IVDB12QZchvRi19JZNK1TnYXrt2mlUetoFUN7/MCOP2cwpMun6Sj65XO2rlvMmGnLWLByD1Y2Duz2WqGT7nV0FOvdZjJk3Fzmu++iYbO2eKya/1H5udHO0S+f47VuMWOnufH7yt1Y2diz22ul3jqsc5vFL+PmssDdh4bNvmbzqgUflR8VFcWaVSuZOWsea9ZtxMbWFk+PTTrpEhMTWLRwPiNGjWHt+k00cG7IiuXLspSdmJjI/IWLGT1yBBvXraGhc32Wuevqf8HCRXTp9CMb162ha+dOLFy85KPlzq06yC0/ITGR+YuWMHbEMDavXUnDBvVxW7FaJ928RUvo8lNHNq9dSdfOP7Hgjz8/Wu40Xr18jufaJYyf4cofq3ywsnHAZ8sqvWld543HzNw827IB4hVJTNzsy8we33Bg+hCaVyvHnB1HtdIkJiUzbsNepnT5mv3TBvPLN02YsHE/qanZmxzGvIxk58aFDHNZwcxlvhSzccDXW3e8exP9Ag/3qfQftYAZbvuo1/Rbtq2Z+5HyJzPR04+ZXdtwwGUAzauWZY7PCd3yb/ZlSqev2D95AL983YgJHgeyXX656wAQ/TKSbesXMnraMuav2IuVjQN7DYx3G5ZNZ/DY+cx134Nz87ZsWT0vS9kJiiQmrdvJ9D4/sH/eaJrXrMi8rb5aaRKTkpmwejuTe37H3jmjGNz+Syau2fGfaOM0Xka9YOPqpbjMXMSytV7Y2Nrh7blOb9qFcyZjZmaRLbnwQUertzO9f0f2LxhH85qVmOe5TytNYlIyE1ZsY3LvDuydP5bBHVoycZX3f0ZHL6NesGG1G1NmLmT52q3Y2NqxzXO93rS/z3HBzOyfjBUHmNm9LQem/aweK3bqGSs27mdK59bsnzqIX9o2YcIm3/+MjuT0yQmJCqb/uZrJQ/uzw/13mtSrxaI1njrpFq/1JCzyOUULGw7mZIWcOkpITGTuYlfGj/gVzzXLaVS/Lq4r1uikW7pyLc/CIyhSuLAeKVnJVzDddQ0uv/Zj5/L5NK1bk4VrtuikW7R2C08j/pmO5LYhuXUUn5TMxO3HmdmxBQfGdad5pVLM2XdOb1qVKpV5+/+iWMFP68vRLyPxWr+I0dPcWLBiD8Vs7NljoB9sWDaDwWPnMc99Nw2bt8Vz9cfn169fReDrOY/+41cz4Y9DFLVy4KiPm950ezfNou9Yd8YvPkj1Bl/js25qtuuwff1CRkxdzhz3fVhZO7Bvm36fuXn5dAaNmc/s5XtwbvYNW1d/rB8ocHH3YNqgbuxZMpXmtauxYOMOrTRJySmM+3M9I7q2Z9diF37p/C1TVuj2d0O8inrOpjWuTJr5B65rtmNtY892T107AvhjzsRPntuBev7osXYJE2b8yR+rdmJlY8/OLbpzVIA/503AzPzTfObEDbuZ0bs9vrOH06JGBeZuO6iVJjEpmfFrfHDp/i37Zg1jSLsW/LZuV7b9gdw6ehMdwWGvufQcvYYRC45QpFhxTu5xNZg+SZHAiV1LMM//8T6dGzYE8vYDgUCgjQi0Cz4rHj9+zODBg+nUqRM//vgjc+bMISkpCWdn53+tTFdu3sbBxopKZdSrNdt/2ZjLgbeIS0jUpElRKpn8cy/qVasIQM2K5Xj5+g3v4uKzlceNwEDs7OwoV079JLlNmzZcu36d+Pj03z969Ij379/TuHFjABo2bMibt28JCwvLVh6X/P2pVasWNjbqp/pft2nD+b/+0kkXeOOGTlmuX7umVZbMXLl5R62j0hl0FBSqR0c9qVc1TUdlefn6bbZ1dP3yGarUqE8xazsAmrXuwJULJ3XSGRvn5Zdx8yjuVAaA8lVqER728KPyc6Odr10+S+UMdWjeugN/G6zDXE0dKmSzDpcvXaRmhjZu83VbLpzXvSELDLyBnZ095cqpVwm1btOW69evZtnGNwKDsLezo/wHu/i6dWuuXb+hbaOPHxMXF0fjRo0AaNTQ+YONPv1o2XOjDnLLvxEYhJ2dLeXLlQWgbetWXL1+g/j4BE2aNB01adQQgMbODXjz9i1PnmZPR9cun6NqzXpYfbChL1q357IeGwL4oetAfuoxOFty0wi4+wRHqyJUdlLL79ioBv63HxGXqNCkSVYqmdnjG6qUUKdxrliK6HcuCTz7AAAgAElEQVRxvEtQ6JWZmcC/T1OxWgMsre0BaNyyI9f8j+ukM86blwGjF2LvpNZn2Uq1iXz6IOvy3wvDsVgRKjupV+93dK6G/53HxCUmZSi/ipldv6bKhzTOFUoQ/S4+2+WXuw6gXqVeuUYDin2Q3+yrH7hy8YROOmPjvAweOx+HtPGuci3Cwz6io9sPcbQqSuWSDgD80KQO/rceaLdxipLpfX+gSkn1ikjnSmWIjn3Pu/hEvTIzI7d+AP6+dJ5qtepibaNux5ZtvsP//Bm9aTt160vXXgOyJRfUq9kdrS2p/KH+PzSri//N+8QlZNJR/x+pUuqDjiqX/U/p6O9L56meQT+t2rQzqJ/O3frQ7RP0AxBwNwzHYoXTx4qG1fG//TjTWKFiZve2GcaKkv+ZsQLk9clXg0MpbmtNxTKlAPiuZTMCAkOIS0jQSvfNF02Y/Gt/8hobf7S8+pBTR9eDQrC3s6VCOXW9v2ndkis3grR8GkCbVl8wfsSv5M37aXW4EhKKg601FcuoV7R+17IpAUE3dXT07ReNmfxrv3+kI7ltSG4dBTwIx9GyEJWLq9+m61i3Ev73nxGnSNJJ6xNwk4r2xXCyLKTzXZZ1CDhLlWz6myFj56fPryvX/qi/Abh17RRlqzakqJXa59T/4ieCLx/VSWdsbEK3oYspaqUeU8tVbcjLyEfZqkNgwBkqVU+vQ5OvfuDqRT3tbJyXQWMW4PChnctVrkXER9r571v3KG5djEql1W/ifP9FQy4F39G5P5gyqCv1qqrnjLUqfNo9zpXLf1GtZl2sbNRj0ZdtvuPyhdN60/7YrT+dew7KltyMXNWZP35vcP7YsesAOvX4OduyA+48Us8rSqj1/0Pj2rrzCqWSGb2/p8qHuYdzpdJEx8Zl22fKraM7109SukojihRTl692s07cuqJrp2mc2e9OjcYdMDXTfSM2M7lhQyBvPxAIBNqIQLvgs0GpVDJixAgGDRrErl272L17NwArVug+ic1NwiKicLRN3y7CwsyMwgXz8+x5lNa1L53raD773wihhL0tBfNnbzVAeHg49vb2ms/m5uYULFiQiMhI7TR2dlq/s7Oz4+mzZ/8oD3t7e968ecO7d++yVZbIiAiDssMiDenopda1LxvU1nz2v3GTEvY22dbR84gwbOzSX8uzsXMk9m0Mce9jtdIVKmJJ9TqNNZ+Drl2gTIVqH5WfG+38KXWooVWHi5TNRh3Ubeeg+ZzWxu/1tLGdThsXIjLScBs/Cw/H3t5O6zeFMtnos/Bw7DLZqL2dbbZtVO46yC3/WXgEDnYf01EEdnbaW7jY29rx9Gl4luVOIzI8kw3ZOxL79rWODQGUr1Q9WzIz8iQqBier9FdZLfKZUiS/OWEvX2uuFTQ348sa6u0NUlNT2esfSJ2yjhSyMMtWHlGRT7CyS986wsrOiXdvY4jPVIeChYtRtXYTzedb189TqnzW/eDJy9c4FUtfXWSRz5QiFuaEvcpY/nx8Wb1cevkvhVCnTPFsl1/uOgA8j3iCjW16O1tnOd6lyw++dvGj492TF9E4WqdvzWBhlo8iBcx5GhWdXm4LM76spd7aIDU1lX3nr1G7fEkK5c/eCjG59QMQGf4UO7v0rRHs7B14++a1Tl8GqFg5ezLTePL8FY42mXVkoauj2lWADzr66wq1K5T6z+goIvwptnbpY52U+gF48tLQWPEmvezm+fiyhjpooB4rgv4zYwXI65PDIp9T3C59uwILczMKFyjAs8gorXTVK+bsVX05daT2aen+Su3TChCewacBVK1U8R+V/WnEC4pnnHfJoCO5bUhuHT159VYrcG6Rz4QiFmaERWuX/9W7eLwuBjOizacvTHoREYa17afPr4OzOb9+FfmYYjbpbVDMpgTvY6OJj3urLb+oNRWqq+UrlSlc+WsvVeu2zGYdnmCdoZ2tP7SzvjpUy+AzQ65doHSFrOdK6nuc9C0ALczyUbhgfp6+eKV1rWX9mprPFwNvfdI9TmT4U2zt0/2ZrX1x9XitZ25X4R+M1wDPw8OwtdPOQ6r545MXMThapW+1aWFmSpH8FjyNitFcK2huxpe11P0gNTWVvReuU6dciWz7TLl1FP3iMZbW6TZkaVOCuNhoEjLZKcCLZ3d4eOsijVr3zZbs3LAhkLcfCAQCbUSgXfDZcOHCBcqUKUODBg0AMDIyYsKECQwbNgwANzc3unTpwuDBg1GpVCxfvpytW7cCcPfuXXr37g2oV2CPHj0aHx8fevfuzapVq+jbty/ff/89EVkEiw2RmJSEqamJ1rV8pqYk6FlNAnDvyTOWevow6eee2c5DkZiIqampdh758pGYmP6kW6FQYJI5jakpisTsrQTI/HsTU1OMjIx0fp+oUHy0LJlJVCRhapJZRyYkKPSvWrv35BlLt+xi0qDs6yhJkYiJSb708puklT/B4G9uBQZwzNeb7gPHflR+brSzug4Z2iCbdTjqu43uA8d8VL5CkYhJhnZIk5+o0G47ffZmms80yzZWKBSYmmT6jampjo1m1qGpada2k5t1kFu+/vpr/yZRodDtK/lMdfI3hCEbSszChj6FxOQUTPNqH++SzyQvCUnJOmmPX79Nqynu7PzrOlO7ts12Hgb7gcJwHW4HXebUwa106jfhI+VPxtQkm+W/cZdWM1az8+INpnZune3yy10HjXzTTxzvgi5z/IAX3QaMz1J2YlKSHh2ZkKDQo6OrIbQevwifswFM6fX9R8utVX4Z9QMf+rLpp+WRXRKTkvX3Az3+4PiVYFqPWYDP6ctM6d0h23nIrSNFJl8upX4AEpNSst/Xrt+h1dSV7Dx/g6ld2mQ7j1zpZzL5ZIXeeZEpiQbmRf8UOXWU2YbgQx0SpalDokLfvMuERAPzrn9CbvczkFhH+nxyXmOdfrbI7wJDWtalkHk+PhWDY2mW/iaAYwe20W3AuI/KT0pKJG+G+XveD/KTDMg/f2QLc4c14/Gdq3zT9ePy0/LQ186G8gAIDbrMCT8vuvTPOo/EJN15hZmJicG+fC8snD+37sVlQJdslR0+3KPpHYuyP3/OXh6684pPmaMbIjEpmXyZ/YGpAX9w9RZfTfwTn3NXmNKjXbbzkFtHyQpdO8XIiKRMY0Vqaip+njP5psdUjPOaZBajl9ywIZC3HwgEAm3EYaiCz4aHDx9SubL24UBmZupVT2/fvuXrr79m1KhRdO3alTt37hiU8/TpU1asWEH58uXx9fWlQIECeHh48Mcff3Ds2DH69ev3SeUyz2dKUqaJQqIiCQsz3cls0J0HuCxdi8uQ3tStmv3VK2ZmZiQlad9YKBQKzM3MtNIkZ0qTqFBodKSPA76+HDhwAFC/Flu0aPpqg6SkJFJTU3X2sDNUlqz2ujM3MyUpObOOkg3ryG09LoN7Ubdq1od+nTi4g5OHdqrLb5yXwkXTD5dKTlKoy29g391rl86wdd1iRk911bzmmhVytfOJgzs58aEOeTPVIelDHfIZqMPVS2fwWreYMVnU4cCB/Rw8sB9Q66ho0fRVmJo2NsteG5tnsUevmZkZSclZ/8Ysn5mODhUKBebmWa9elLsOuaojPfU3M9fux7p9RbuvZ+aYnw/HD/qoy59Xvw19yv7TWWFuakJSSop2+ZJSsMhnqpO2de1KtK5dict3HjNo+TZ8Jg3AqpD+A9rOHPbm7OHtmjoUKpK+sidZ0w/06/ZGwCl2bvidXyct17zWn2X5kzOVPzlZf/lrVaB1rQpcvhfGoBU78ZnQB6tChl8BlrsOJw9t51TG8a6InvHOwJ6p1y6fZtu6RYya4qbZRsYQ5qamujpKMqCjutVoXbcaAaEPGfzHRnbMGIaVgX2Sc6ONDx/YzWG/vQDkNTamiN6+8Ol712bGPJ+pnn6QjIWZHh3Vq07retUJCH3A4MXr2TFr5L+mo0MH9mTST8axTjr9gIG+lpSCRT7dwEPr2hVpXbsil+8+YZD7dnwm9vvXxgq5fXIaZvny6Y71SVmP9dklt8ZTfX4wUZH0UZ+eXczN9My7kpIw1zPv+hRySz+QCzoyzas7FiWnYJHhAcWFu095m5BIu1rZP0j35KEdnDyk3iP6n/gbr3WLGTVlqcF+cPGYFxePb9PIL1hYXxvol9+0bW+afN2LQP9DrJzdg3ELD2BiqqvPU4e2c/pweh30trOBOly/fJrt6xcy3MVNs32GIczy6fOZSZjn07XTwLuPmLxsE1N/7ka9Klkf4nrkwC6OHdytKb8c4/UxPx+OHdylziOvPHkAmOczQaFnXmGud15RhdZ1qxBw+xE/u3qyc+oQrAwc7iu3ji6f3ErASS+N/AIZ7TRZAampmGay06tnd2DtUI6SFepmOx+5bAhyrx8IcofUVNW/XQRBNhGBdsFng5GREUqlUu93BQoUoFKlSgDY2trqbHeSEXNzc8qXT3dM9erVA9TbrLx588bQzwxSsrgdJ/yvaD6/j0/gXVw8TnbaJ5jfe/IMF9e1zBk1iNqVP+4YM+Lo5MS5c+n7RMfFxfHu3TuKFy+ulSby+XPN59TUVCIjIylRooRBue2//57236tXIfr5+REcHKz5Ljw8HEtLSwoU0J7cODk6frQsmSnpYMeJi1c1n7PU0dJ1zBk5MFs6+qpdV75q1xWAU4d8uH3zmua75xFPKVLUCosCugGNm4GX2bbhD8bPdMfBqfRH8wH52vmrdl34qp16RcLJQz7cyVCHFx/qkN9gHZZ8tA7t23egfXv1KsqDfr6EZGjjCANt7OhUgr/OndV8jouL4/279zgUd8AQTo6OnD33l/Zv3r+neIbfODk5EpnhdenU1FQiIiOytNHcqEPu6ag4Z/86r/2b9+8p7pD+mxKOjkRGavfjiMhISpZwwhBtvutMm+86A3D80C5uh1zXfPci4ilFLPXb0D+htG0xjl4L1Xx+l5BIbEIiJazTH9I9fx3LrbDntKypvql3rlgK2yIFCXoUobmWmS++6c4X33QH4OyRHdy7ld7XoiLDKFzUGov8uvvK3g66xK6NixgxbTX2jh9/YFbaxpKj19MfxL5LUBAbr6CEVabyP3tBy+rq/utcvgS2RQoQ9CRCc+3fqEOrb7vR6ttuAJw6vJO7N9PH1BeRYRQuaoVFft12vhV4Ge8Nixk7Y8VHg+wApeytOXYlRPP5XXwisfEJlLBND7Q8j3lL6JNwzdYoDSqXwbZoYYIfPtVcy0xutPE37X/im/Y/AXDEby+3Qm5ovouMeEZRy2KS9IVS9tYcCwjSfE7XUfoN7POYN4Q+juDLOmk6KqvW0YOnmmuZkVtH37b/kW/b/wio9XMzJFDznZT6AShta8nR67c1n9V9Tc9Y8fQFLT9sH+NcoSS2hQsS9DhScy0zcutIbp+cRsnidpy8GKD5/D4unnfv43Gyt83iV9kjt8ZTJ8finP7rQoY6pPk0+yx+lX1KFrfnxIW/M8iXRke5pR+QX0elrYtwNCh97+R3iQpiExSUsErfIu3UrUfcjoim5XwPAN4mKBjrdYzf2jWmfR39i0FafduVVt9+mF8f3qndD7LwNzcDL+O94Q/GzViRZT9o3KYnjduo3/j0P+7Nw9vp7fzqxRMKFrHGPFMbvAh/QOzrF5Sv1hgjIyNqNW7Hfs+5vIx8hENJ7YVYAC2/7UbLDz7zzCf5zEvs2LCI0TNWZqudSznYcPxS+rzrfXwCsXHxlLCz1kp3LyycScs2MX94X2pX+njQsm37TrRt3wmAYwf3cCvD3O65RON15vljqFYe0s0fS9lacfTKTc3ndwmJxMYnUjLDFmzPY95yKyySlrXU9/MNKpXGtmghgh4901zLjNw6cm7VC+dWvQAIOLWNJ3fS7TTmxWMKFLbG3ELbTm9fP0XE4xDu3FDvDx//LoZ1szvT+VdXSlduqDcfuWwIcq8fCAQCbcTWMYLPhjJlymgFgkG92vTu3bsYZzoAKTU1FSMjI83nlAyrPUwyvaqb8bfZPdk8I3WrViTyZQw3bt8HwPvgCZrUqa614iY1NZXZKzczYWD3Tw6yA9SsUYOoly8JuamepOzduxfnBg20VquXLFGCwoUKcfq02rGfOHECGxsbHB0d9crMTMOGDQm8cYNnH/bL3rt3Ly2++EInXY2aNXkZFcXNkBBNugbOzlmunK9btQKRrzLq6CRN6lTT1dEqj3+so9rOLQgNCiAy/DEAx3y9cG72tU46hSKRDctmM3zi4mwH2dV1kL+d6zi34FbQ35o6HPX1wrmZ7mv0aXUYMXHRJ9XBuWFjAgOv8+yZ+mDNfXt307zFlzrpatSoSdTLKG7eDNGka9DAOctVITVrVCcqKkpjo3v27adBg/q6Nlq4MKfOnAHg+ImT2Fjb4JjFQ5rcrIPc8mvVqM6LqJeE3LwFwO59vjg3qKe1grFkCScKFy7EqTPqIP6xk6ewtbbOto7qOjfnZuDfRDx7AsCh/dtopMeG/in1y5cgMiaWaw/U+tl6+m+aVy2rtdo5OUXJdK+D3I9Un8HwJCqGpy/fUNbeSq/MzNSs/wV3ggN48aEfnPTzpF5T3a1nkhQJeK6YzuAJf2b7JqB+OSciX8dy7aF6nNt69irNq5bRWmWbrFQxfdtR7keq98Z88vI1T1+9oaxd9sovdx0Aajf4gtCgv3muGe+24txMV75CkcDG5TMZNvGPbAXZAepXLE1k9Buu31PbkNeJizSrUVFr5VlyipLpm/byIPwFoN7X/enLaMo4ZC8AJrd+AOo3bEpw4DXCn6kPBPfbu5OmLVp9kgyDsiuVUevo7mMAvI6dp1nNSro62rArg45e8TQqmjLFbfSJ1EFuHWXWzwEJ9QMZx4oPfe303zSvpm+sOJTe16JiePrqNWXtiumVmRm5dSSnT65brTLPX74iMPQuANv9jtGkbs0cr9bOjJw6ql29Ki+iXhF8U/3wddd+PxrWryvJqnyAOlUr8fxVNIGh9wDY7necJnVrSKoj2cdqmXVUv0xxIt+849pj9SKGreeDaF6ppNaK9mk/NOfs1H6ccunLKZe+1Cphy5892xgMsuvUocEXWvProwbn1wlsXD7rg7/J/ty0St2W3L95iZcR6oNN/zq0mVqNvtVJF/fuNTtWTyb2tXqP/sd3r6FMSdHaN9sQNRt8QWhwgMZnnvDdSgM97axQJODhPpNfJy7JdjvXq1Ke569iuHFH/cDD6/AZmtauqnN/MGO1FxP7dc52gFQrD+dm3Ay8qpnbHdy3ncbNP21Lu4+hnj9e0eRxeL83jZpJk0f9iqWIjHnL9ftqf7P1xCWaVy+v7TOVSqZ77Od+hLp9n7yI5mlUDGXtrfXKzIzcOqpUuxUPQ/15Fak+6Nr/6GaqO+tubdNrzFp+c7vIhKXnmbD0PIUs7fh5uo/BIDvkjg2BvP1AIBBoY5T6TyKLAsG/gEqlokOHDowZM4aWLVuiUqlYsGAB+fPnx9vbm8uXLwMwcuRIevbsSWhoKK9fv2bMmDFs2bKFY8eOsWXLFpydnTVpe/fuzbRp06hQoQJbt27l9evXjBgxIstyvLlxRufa1Zt3+HPzThIVChztrJk+tB9KlYpR85bhvWQGwXcfMHj6YpzstW+wZ48YRKUy2qt5YwrqnzAGBQWxes0aEhMTcXBwYOyYMahUKqZOm8bqVasAePToEW7LlvHu3TuKFCnC6FGjcHLSlpea4QFEZs6dO4fX1q0olUrKlivH6NGjMTc3586dO2zx9GTuvHmasqxZvVpTljFjx2JpqV6VUOztY72yr968y58eO0lUJKl19GsflKpURs1fhvcf0wm++5DBM/7Qo6MBVCqtraNbZvX15hFw/jj7tq9BqVRSskwlBgyfhpm5BQ/vhrBn22rGz3Tn0rkjbFg+Gysb7dVEk+at1bwaW0VxVZ94ydo5NF+dzKK16rB3+1pUSiUly1TMUIebH+qwnEvnjrJeTx0mz1tD4SLFsDJ9bUA6/HXuLF5eniiVSsqVLc/I0WM/tPFttm7xYM7cBQAEBQWyds0qFImJ2Ds4MGbMeIpapq88MUnV3TcwMCiYVWvXkpiowMHenvFjRqNSqXCZPp21K9WHFj96/Jily9yJfRdL0SJFGD1yBCWcdG0+2cjwjbRUdZBTfj5VvF7ZgUHBrFy7gURFIg729kwYMxKVUsXk6bNYt3KZRkd/Ll9JbOw7ihYtwtgRwyjhpPvA7IVK/4q4S+dPsGfbOpTKFEqVrcTPI6ZgZm7Bg7s32eW1homzlvH2dTRzXX4FIDL8CTZ2jhgbGzN5rjuWxdT2W/3JXr3y/773hEW7TpCQlIyTdVHm9GqHUpXKryt3sMdlEADHrt9m7ZELJKcoMTIyov9XznRoWENLzgX77gbb4OrFo/jtWIVKqcSpTCV6/ToLM3MLHt8L5sD2FYyYtpq/zx9my4rpFLPWfotgzOyNFCpSjCZPPfWX//5TFu09rS6/VRHmdG+LUqXi1zW72TOxn7r8N+6w9tglkpVKjDCif6v6dGige3jWBac+stYhn7H+t7gA/r5wjP3eq1Gq1ONdv2EzNOPdPu+VjJ2xkst/HWHj8plY2WjL/23uOgoXKUadVwf1yr5y5xGLth8kUZGMk40ls/r/iEqVytClHuyapfaRx6+EsM7vzAcdQb+2zfi+ie7Y5l9U/97tUugHwMZc9yCyNC7+dYodWzeiVCkpU7YCv46aiLm5Bffu3GL71g1Mm7OEN69jmD5pJAARz8Kwsy9OHmNjZsxzpZiVNWVfnNcr+8rthyza5kdiUhJONsWYNbATKpWKoX9uYtec0Wod/R3MugOnSU5JwcjIiH7fNOf7ptqvk/sXMrwHrVQ6sjXX/7behb9OsWPrJo1+ho767YN+QvHeuoHpc/7gzesYpk0apaOfmfP+pJiVOgBS7oF+O/r7XhiLdp/80NeKMqfXN+qxYpUPeyYPAD6MFUf9P4wVqMcKZ+1D1y44GD7rRAodWeQ1vOe3FD4ZoIIyREf2tZDbLN24jQSFAkc7G6YOH4RKpWL0nCV4LZ0LQM/RU1EqlYS/eIlV0SLkMzVh+sifqVJeO/hxI9XwvEIKHVXKd0+v7BvBIbiv3USiQkFxezsmjh6GUqVi4vS5bFzhCsCAYWNQKpVEPH9BMcui5DM1ZdLYEVSukL4gwVyhvx9fC7mN6yZvEhRJONrZMG3YAJQqFWPm/omX6xy1jsZMI0WpIvzFS6yLFsbU1JTpIwZSNZOOrlNPNv0AsuuoWPAJvfL/fhjOIr+L6n5WrDBzOn2p9mmbDrJndFed9APX7eeXVvWoX0b7Af7Vyj/rlQ8QcOEY+73XaPxN/2HTNf5mr/cqxs1YwaW/jrBx+SydfjDxg78BeBmnfzFC4KXDHN+zApUyheKlqtDp5znkM8vP0wdBHN21nEET1wFw8fg2/I9vIzU1lbwmprTtMppKtVpo5BS1MLz3/ZULx/DdvhqVKoUSpSvT54PPfHQvhP3eKxk9fSUBfx1ms/tMimXymRPmrKdQkWLUSTinX/ateyzZsocERRJOtlbMGNITlUrF8IWr2LlwMkH3HjFolhtOmVYozxvWh0ql0+fA9wvrt1EA/79O4uO1AZVSSalyFfhl5GTMzC24f+cWO7euw2WOK29exzB7svrssohnYdjaF8fY2Jipc5dh+WG8VqqMDeZx6fwJdm9bh1KppFTZigzOMH/08VrLpFluvH0dzRyXoYB6/mhr50geY2Nc5i7HspgNVSMO6ZX9953HLN55lISkJJysLZndtwNKlYqhy73YPV09Hz129RbrDp3TzB37tWlMh8a1tOTcdtR9yCO1jm5H6X/YGxJwmDP7l6NSKrEvWYXv+88ln1l+nj0M4vReN3qP26DzG9cJLek30ZOiVunz+O/yHdVJJ5UNAVwzb25QR1L0A4AWVaXZklLwaTTvqH9O+v+Vc3ub/ttFMIgItAs+K6Kiopg+fTpRUVGYmprSuHFjhg8fTqNGjXQC7Y6OjgwZMgRra2vq1avHpUuXZAu0S4mhQLtUZBVolwJDgXYpMRRolwpDgXapyCrQLgVZBdqlQl+gXUqyCrR/DhgKtEuJoUC7VBgKtEtFVoF2KTAUaJeSrALtUpBVoF0KDAXapcRQoF0qsgq0S4GhQLtUZBVolwpDgXapMBRol4qsAu1SkFWgXSr0BdqlJKtAuxQYCiJLhaFAu5QYCrRLhdw6MhRol4qsAu1SYSjQLhVZBdqlwFCgXSqyCrRLRVaBdikwFGiXiqwC7ZLlYSDQLhX6Au1SklWgXSpEoP3fQQTatfkvB9rFHu2CzwobGxtWr16tcz0tcA6wbNkyzd9+fn6av4cNG6aTdsuWLZq/e/XqJWlZBQKBQCAQCAQCgUAgEAgEAsH/D0SgXSAQCAQCgUAgEAgEAoFAIBAI/oOkqsRmJJ8L4jBUgUAgEAgEAoFAIBAIBAKBQCAQCHKACLQLBAKBQCAQCAQCgUAgEAgEAoFAkANEoF0gEAgEAoFAIBAIBAKBQCAQCASCHCAC7QKBQCAQCAQCgUAgEAgEAoFAIBDkAHEYqkAgEAgEAoFAIBAIBAKBQCAQ/AdJVan+7SIIsolY0S4QCAQCgUAgEAgEAoFAIBAIBIL/SQICAmjUqBGnT5/W+72vry8//fQTnTt3xsfHB4Dk5GTGjRtH9+7d6dWrF0+fPv1oPiLQLhAIBAKBQCAQCAQCgUAgEAgEgv85wsLC2LRpE3Xq1NH7fXx8PCtWrGDz5s1s2bIFDw8P3rx5g5+fH4UKFcLb25tffvmFJUuWfDQvEWgXCAQCgUAgEAgEAoFAIBAIBALB/xzW1ta4u7tTsGBBvd8HBgZSvXp1ChYsiJmZGXXq1OHatWv4+/vTunVrABo3bsy1a9c+mpcItAsEAoFAIBAIBAKBQCAQCAQCgeB/DnNzc4yNjQ1+/+rVKywtLTWfLS0tefnypdb1PHnyYGRkRFJSUpZ5icNQBYJPpEitL6/vtGYAACAASURBVOSVL6v03KCM7Dk0lj2HL2SV3khW6QCFZM9B8O9TQu4MKvaXVXwrWaUD1QfLnYP8dZCdLrLnIL+OzOQVX+4nWcXnjg3ZySu+3EBZxX/2NgTIPXORX0fVZc9Bbj57HVWQV34TWaXnFhYyy28rq/TaskrPJSr2lFV8buiodnm5c5DXjlrIKl3wb3L+gGjd7OLj46PZYz2NESNG0KxZs2zLSE1N/aTrGRGBdoFAIBAIBAKBQCAQCAQCgUAgEHzWdO7cmc6dO3/Sb2xsbHj16pXmc1RUFLVq1cLGxoaXL19SqVIlkpOTSU1NxdTUNEtZYusYgUAgEAgEAoFAIBAIBAKBQCAQ/L+jZs2aBAcHExsbS1xcHNeuXaNevXo0adKEI0eOAHD69GmcnZ0/KssoNTvr3gUCgUAgEAgEAoFAIBAIBAKBQCD4jDhz5gwbNmzg4cOHWFpaYm1tzcaNG1m7di3169endu3aHDlyhA0bNmBkZESvXr34/vvvUSqVTJ06lcePH2Nqasrvv/+Ovb19lnmJQLtAIBAIBAKBQCAQCAQCgUAgEAgEOUBsHSMQCAQCgUAgEAgEAoFAIBAIBAJBDhCBdoFAIBAIBAKBQCAQCAQCgUAgEAhygAi0CwQCgUAgEAgEAoFAIBAIBAKBQJADRKBdIBAIBAI9pKSk4Ofnx4YNGwC4e/cuycnJ/3Kp/ntERkZq/n748OG/WJL/HsKGPs779+9ZvXo18+bNA+DSpUvExsb+y6X6b3L9+nUOHjwIQFRU1L9cmv8Woq99HNHXBDnl1q1bssqfO3eurPL/VwgLC+Py5ctcvnyZJ0+eSCrb39+fpUuXMmnSJCZNmoSrqyv+/v6S5hEQEKBzbcuWLZLJT0hI0Ln24sULyeQLBALBxxCBdoHgM+V/4YY7NjaW5cuXM3ToUIYPH87q1auJi4uTTL5SqSQ6OhqAR48eceLECRQKhWTy5SYyMpKgoCAA9u/fz7x582QJZD59+pQTJ05w8uRJraDpfx257WfatGmEhoZy5MgRQH1jMHHiRMnkw79no8+fP5dEzqJFi3Bzc9N83rBhA4sWLZJEdmY+RzvNDRvKrXEiNjaW9+/fSy530qRJFCpUiODgYABiYmIYN26cpHmEhoZy/vx5AFasWMHQoUO5evWqpHmEh4czadIkOnToQMeOHZk2bZqkvnnhwoV4eHhoAsk7duyQPCj1/v17Hj16BKhtdfPmzcTExEiah1zI3ddyq5/B59vXcqOfxcfHExoayu3bt0lMTJRU9vPnz5k2bRojR44E4ODBg4SHh0uax/nz5zVzdxcXF7p168bx48clzeP27dssWLAAFxcXJk+erPknBb///jspKSmSyNJHamoqO3bsIDQ0lPv372v+SY2cdgTytLNSqWTjxo20adOGiRMn4u3tjbe3N5MmTaJNmzZs2LAhR20THBxM586d2bt3Lw4ODnzzzTd88803ODo6snfvXjp37qwZA3PKqlWr8PHxAeDJkyf06tWLBw8eSCIbYMCAAVqBdR8fH/r37y+Z/NxAbp8jt79//vw5np6erFixAnd3d80/geD/CyLQLhDIwO7du/nhhx/46quvaNWqFS1btqRVq1aSyZf7hvvu3bsMGDCArl27ArB582Zu3rwpmfw0Jk6cSP78+Rk2bBiDBg0iT548kt0MAIwfP57r16/z7NkzRo4cyb179yS78Q4NDaV37940b96cpk2bMmDAAEkniQATJkzAxMSEGzdusHv3btq2batZiSYV69atY9SoUVy6dImzZ8/y66+/sm3bNsnk79u3Dx8fH5KSkhg4cCA//fSTZPLltp/IyEgmTJiAmZkZAL169ZL8oZacNpoVv/32myRybty4we+//675PG/ePAIDAyWRnRE57VTOvpwbNiT3OHHhwgW+/vprevXqRadOnWjXrh1XrlyRTH5cXBw9evTAxMQEgG+//VbywMesWbMoVaoUFy5c4Pbt28yYMYPly5dLmseUKVP48ssv8fDwYO3atTRs2JApU6ZIJj8kJISlS5eSP39+AEaMGCH56tLRo0cTFRXFvXv3WLhwIZaWlpKNqXL7TLn7Wm7448+9r8ndz/bv30+HDh1YtmwZixcvpkOHDpIGqadMmcJXX32lCTZZWloyadIkyeQDLF++nBYtWnD8+HGMjY3ZunWrpCt5QT2vKFOmDG3atOHrr7/W/JMCCwsL2rRpw9ChQxk1apTmn1TcvXsXPz8/5s+fz6xZs5g1axazZ8+WTD7Ib0cgTzsPHjwYY2Nj9u/fj7e3N0uXLmXp0qV4e3vj6+uLiYkJQ4YM+cfyN2/ezMqVK1m0aBFdunShRYsWtGjRgs6dO7No0SJWrVqFh4dHjuqQxrp167h9+7ZmocyIESOYOXOmJLIBpk+fzsiRIzlx4gQDBw7k2rVrbN++XTL5ufFQTm6fI6e/B/jll194+fIlRYoUoWjRopp/AsH/F/L+2wUQCP4X2bBhA+7u7tjZ2ckiPyQkhC1bttC7d29AfcPdo0cPyeTPmTOHmTNnaiY9TZs2Zdq0aXh7e0uWB6hv+gYMGKD5XKtWLfr16yeZ/FevXvHVV1+xdu1aevfuTZcuXbTyywlz585l8uTJVKtWDVAHHGfNmoWnp6ck8gGMjY2pXLkyCxcupG/fvtStWxelUimZfICTJ0/i4+ODsbExoH79vlevXpLZk7e3N15eXhw6dIiKFSvy22+/0bdvX0nky20/ycnJxMbGYmRkBMCDBw9ISkqSTD7Ia6NZkZqaKokclUrFvXv3KF++PABBQUGSyc6InHYqZ1/ODRuSe5xYvnw5W7ZswcbGBlAHNMeNGyfZgw6VSkVYWJhGR+fOnUOlUkkiOw1TU1McHR1Zv3493bt3x9bWVvI8lEqlVjCrXbt27Ny5UzL5KSkpJCcna/QUExMj+dsvSUlJODs7s2zZMvr160f79u3Zs2ePJLLl9ply97Xc8Mefe1+Tu59t27YNX19fzM3NAfUcYODAgbRu3VoS+SqVihYtWrB+/XoAGjVqxIoVKySRnYapqSkFChTgxIkTdO3albx580puR3Z2dpqFMlKjb37y6tUryeTrC0ZL3QZy2xHI087z58/H1tYWUI/VpqamgHplcoECBejTp0+OHqgsWbIEUG+7cvHiRc0CsX379tGmTRusrKw0af4pZ8+e1fzdrFkz9u7dS+nSpUlMTOTs2bO0aNEiR/LTqFy5MqtXr2bs2LFUrFhR8gdmU6ZMoU+fPqxbtw5Ifygn5UMzuX2OnP4eoEiRIpK/nSgQfE6IQLtAIAOlSpWiTJkyssmX+4Y7b968lC1bVvO5XLly5Mkj/QswKpWK4OBgqlevDkBgYKCkN2WJiYlcvXoVX19fPD09iY2N5c2bN5LINjY21gQMQB3kTWsPqVAqlaxatYpTp04xevRogoKCJN0aJY2MbZsnTx5J65EnTx7y5s3L0aNHGT58OIBktiq3/YwZM4a+ffvy+PFjvvnmG0D6/UPltNGskKqNp0+fzsyZM3n06BF58uShXLlykq5KyohcdipnX84NG5J7nDAxMdEE/gDs7e3Jm1e66eP06dOZPn06ISEhNG3alIoVK0q+gtHExISpU6dy48YNpk2bxrlz5yTf/sDU1JTDhw/j7OxMamoqly5d0gRCpKB///507dqViIgIBg0axMOHD3FxcZFMPqhvvH19fTl48CC7d+/m2bNnvHv3ThLZcvtMuftabvjjz72vyd3P8uTJowmOAuTPn19S/eTNmxd/f39UKhWvXr3i+PHj5MuXTzL5AFZWVvTr14/4+Hjq1KmjFfDNKWlBzPLly7No0SLq1q2rpR8pgph16tTh/PnzmnlKcnIya9as4dtvv82xbFDXwc3Njbdv32rk29nZMWzYMEnkg/x2BPK0c1qQ3cPDA39/f1avXg2o32Bo1KgRffv21aTJCWPGjKFRo0aazwqFgnHjxrFq1aocy07b2isNCwsLres5tdGGDRtiZGREamoqRkZGqFQqAgIC2LdvH0ZGRpLtNZ8bD+Xk9jly+ntQt4WXl5fOOFSuXDnJ8hAI/ssYpcqx9Ewg+H/O1KlTuXfvHrVq1dKswATptms4duwYq1evJiIigmrVqvHw4UMmT54s2WqMkSNH0rx5c7Zv3860adM4fvw4YWFhLFu2TBL5ady5c4f58+drXh+vUKECU6ZM0Qry54Tz58/j5eVF27Zt6dChAytXrsTBwYEffvghx7KHDx9OrVq1aNCgAaA+VCwkJERSHUVGRnL06FGaNGlC+fLlOXToEKVKlaJKlSqS5eHh4cG+ffuoVasWKpWKwMBAunTpItmK9rlz53L27FlKly7N2rVr2bJlC9evX+fPP//MsWy57QfUNxjv37/HxMQEIyMjChYsKJlskNdGR44cqTeQlZqaypUrV7h48WKO88gt5LRTufuy3DYk9zgxefJkzMzMaNCggSaArFKpJA1iRkRE4ODgAKhXIkvZh0G94s/f359atWphbW2Nv78/JUqUoHjx4pLl8eLFC9zc3AgJCcHIyIgaNWowYsQIrcBpTomPj+f+/fuYmJhQqlQpyQJ0aYSGhrJ7925atWpFo0aN8PLyokSJEjRr1izHsnPDZ8rZ13LDH3/ufU3ufrZ48WLu379P/fr1SU1NJSAggKpVqzJ69GhJ5EdFReHm5sb169cxNTWlRo0aDB8+XNI+nJKSwt27dylTpgxmZmbcunULR0dHChUqlGPZH9v2YcGCBTnOY/jw4eTPn5+AgABatmzJ5cuXGTRokCRzFoBOnTrh6urKpEmTcHd359ixY+TPn5/vvvtOEvkgvx2BvO3crVs3tm3bpll8kJqaSvfu3SXbGqVnz554eXlpXevdu7ekq7VVKhUhISHUqFEDUB/AmhYk/xz4+eefGTBgAO7u7ri5uXH8+HFOnDih2dJVCuT2OXL6e0Dz1n1GjIyMJH3zWyD4LyMC7QKBDOzdu1fv9Y4dO0qWR9oNt6mpKaVKldLsSyoFcXFxeHh4cP36dUxMTKhZsya9evXS7A37OaFQKHj58iWOjo6Syn3//j0eHh6aoEr16tXp06eP5Dq6du0akZGRtGvXjqioKElv+NJ49uwZoaGhGBkZUblyZUmDTwBv376lcOHCgPrAQBsbG80esf9lMq8a+uWXX2jcuDF9+vSRNB+5bDQgICDL79MCXv+EYcOGsWLFCp0bo7RVRFKtGsqIXHYqZ1/OLRuSc5xISUnBz89PSz/t2rXTeoicExYtWkRMTIxmr/8pU6ZQuHBhyR5Mg7oOhw8fJioqioEDB3L37l1Kly79WYxDaRw6dIiDBw9qVs0NGDCALl260LZtW0nziYyMJDw8nHr16mltT5BT5PaZudHX5PbHn3tfy41+duXKFUJCQgCoXr06devWlUx2amoqwcHBsgb/3r9/z9atW4mJicHFxYVLly5RpUoVSQKwaZw+fZovv/xS65qfn58kweq0gGva/7GxscyYMQNXV9ccy84ov3v37prtKvv378+mTZskkZ+GnHYE8rZzp06dWL9+PUWKFAHUD4hGjhwpWaB9yJAhNGvWjDp16qBSqbh06RLXrl1j5cqVksgH9cIzGxsbxo8fD8CyZcsIDw9n4cKFksg/fPgwfn5+svnL3HgoB/L7HLn8PcCuXbvo1KmTZPIEgs8NEWgXCGTi+vXrRERESOocDa1QTcPNzS1H8u/fv5/l91K97tW7d+8s6yHV0+5Dhw5pJoZ+fn7MnTuXatWqSbbyRm4WLlxIZGQkYWFh7Nmzh+XLl/P27VumTp2aY9n79u3L8nupdPT8+XNWrFjB27dvWbZsGQcPHqRWrVo5CpLmlv3IvWoI5LfRV69eYWVlpfn7/PnzODk5SXZTGRkZib29vda1+/fvSzZW5JadykVu2JBc40RERITOtbQHKYBmVWxO6dGjh84e1PpW1OWEyZMnY2lpSUBAAD4+PmzdupVr165J8maNofEoKSmJly9fcvLkyRznAdC1a1fWr1+vWaWtUCjo27evpLa0efNmjhw5Qnx8PL6+vsybNw9ra2sGDx4sWR5yIXdfk9Mf/6/0Nbn62d9//53l9/Xr18+R/DTkDv6BekV448aN8fX1Zfv27Rw6dIi9e/dq9nrOCcHBwQQFBeHp6an1gEmpVLJ+/XrOnTuX4zy6devGkiVLmDJlCjNmzMDe3p5u3bp91Fdnl/Hjx9O0aVOCg4N5+/Ytjo6OnDp1Cl9f3xzLzi07Annb+cKFC8yePZt8+fKhUqlQqVRMnz6dhg0bSlByePfuHRs2bODWrVvkyZOHGjVq0KdPHwoUKCCJfFAfVr1161ata1KumpfbX65ZsyZHB89mBzl9Dsjv78eOHcuwYcMkf0NRIPhcEHu0CwQykNE5tmvXjh07dkjiHHv16mXwOykOI5o1a5bB76R83UvfROrSpUssXbpU0tewt27dyp49exg4cCCgPsG9d+/eOQrOGQqqREdH8/DhQ0JDQ/+x7MzIeeitvmesKSkpbN++nRcvXkgWwJTjwKDcsp+UlBRiY2M1q4Zevnwpmew05LDRNDZv3syxY8fYtm0bsbGxdOzYkaZNm3LgwAEaNWrEoEGD/rHsmJgYoqOjcXFx4ffff9fYU0pKCqNGjeLo0aM5Lj/Ia6e50Zdzw4bkGieWL1+u9/qdO3cIDQ2VbKzLjQN1IyMjWbBggUZHvXr10tkr9p+SeTxSqVTs3buXzZs3S3pIuVKp1NovWqVSSa6nEydOsH37do2eXFxc6NatW45uvHPLZ8rd1+T0x/8rfU2ufnb58mW910+fPs2DBw+4ceNGjvMA9QOPRYsWaT6PHDlS7/YHOSEuLo4ePXpw+PBhAL799lvNyu2cYmVlhYWFBcnJybx+/Vpz3cjISPMWQ04ZNWoUwcHBDB06lJ9//pn379/Ts2dPSWSD+v7p7du3fPfdd/j5+fH69WtJ9gaH3LMjkLedmzRpwtGjR4mJiSFPnjyaMS+nhIeHU7x4cV68eMF3332n9QbE8+fPJd1b28jIiDNnzlC7dm3Nqnkp98mX219GR0dz4cIFqlevrvXGjpTbucnpc0Aef5+RkJAQ2rdvj7m5uUZHcr3xKhD8FxGBdoFABuRyjmlbPaSkpMhyGFFWwU+pD3lJ486dO/zxxx8UKFCAhQsXUrJkSclkGxsbY2pqqrnJl+KVuMw6iouLY8OGDZw6dUqyV2fTkPPQ28zbGB06dAgPDw+++uorBgwYIEkeIP+BQXLaz5gxY+jatavOqiEpkcNG00hbSQVw4MABatasyYIFC1CpVPTs2TNHgfaHDx+ye/duHj9+rHX4aZ48eWjfvn1Oi65BTjvNjb6cGzYk1ziReT/fiIgI3NzcKFiwIDt27Mix/DRy40Dd5ORkYmNjNTp68OABSUlJkuYBcObMGdzd3XF2dsbLy0vS7SB69epF+/btKVOmDCqVisePHzNixAjJ5IM6OAHphyUrFIocH2aZWz5T7r4mpz/+X+lrcvWztIPU0wgMDGTJkiVUqFBB0vmE3ME/UM+JwsLCNDo6d+6cZIe429vb07FjR1q0aIGpqSnv3r2T/GFc2iGZKSkpnDhxQlLZoH64fvHiRV68eMHAgQO5c+eOZNtl5JYdgTztPGPGDGbNmsVPP/2k9+Hlrl27ciTf09OTyZMnM2vWLM2BomlIvbf2woULcXV1ZfHixRgbG1O9enVJzhBIQ5+/HDlypGTyz549q2P/RkZGkr3BBvL6HJDH32fk2LFjkskSCD5HxNYxAoEMdO/eHU9PTwYOHIinpycxMTH8/PPP7N69WxL5ch9GdPbsWdzc3Hj79i2gvnmys7Nj586dksgH9cqnpUuXEhUVxZgxYzR7YkqJq6srERERBAUF8dNPP3H69GmcnZ0lOfBIqVTi7e3Nzp076datG126dJH8hkzfobcuLi589dVXkuWRthK8atWqDB06lGLFikkmG+Q7MCg37CcNqVcNZUROG834Gu6wYcNo3bq1Zozo27cvHh4eOc7j4sWLNG7cmJiYGIyMjChatGiOZepDTjvNjb4spw3JPU7ExsayatUqrly5wvDhw2nRooUkcnODtD1Hr1y5wrx583j8+DF2dnYAzJs3jzp16kiST1BQEH/88QfFixdn1KhRmjykJi4ujgcPHpA3b15Kly4t+WGoXl5eHD16lCdPnvDFF19w+fJl+vbtS/fu3XMsOzf6GcjX13LDH3+ufS23+tmTJ09YsmQJSUlJjB07lgoVKkgiN42IiAhcXV21tswYMWKEJP05OjqaYsWK8eDBA+bMmUNQUBAWFhZUrFgRFxcXSbdXmDZtGmfPntUEqNO2IcppIBbUq8LnzZtHUlISR44cwdXVlXr16kl2gKKc23ylIacdydnOaVsBPn78WOfcg9evX1OtWrWcFh+AU6dO0bJlS61rUu3xn5GkpCRevHiBk5OTpHLTSPOXxsbGlClTRnJ/KTf6fM7kyZNp3bq1JPL1+fs+ffpItmre0Nts4jBUwf8XRKBdIJABuW/I5D6MqFOnTri6ujJp0iTc3d05duwY+fPnl2yStXDhQq5evcrw4cNp3ry5JDIzsnjxYoYOHUr+/Pm5cuWK1qGutWvXzrH8Q4cOsW7dOlq1asWAAQOwsLCQoNTpdOvWjcmTJ1OzZk3NobcmJiaULl1askNv7969y5IlS7CwsGDMmDGUKFFCErkZ5VeoUEGWA4Pkth+5Vw2B/DYK6r133dzceP/+PZ06deLo0aMUK1aM+Ph4+vXrJ8mDsz179rB06VIKFy5Mamoq8fHxjBkzRrJV7XLbqVx9OTdsSO5xIikpCQ8PD/z8/Ojfvz8dOnSQ9FBAQwfqpiHF68Vt27Zl5MiRmre9oqOjMTExkXSl+ciRIwkLC2P06NF6AzY53V/b3d2d4cOHGzyjJadnswCMHj2a3377DQcHB549e0ZQUBCmpqZUrVpV5wyGf4KcPlPuvpYb/vhz72ty97Po6Gjc3d25c+cOY8aMkXQvbUh/UJCQkACkb1mWpispAnRt2rShc+fO9O3bV9I31/Tx448/snv3bkltKI2ePXvi7u7OyJEj2bJlC9HR0QwdOlSyNy/69evH5s2btRYK6NvP+58gtx2BvO2ckpJCUlISgwcPZv369Ro7VSqVdO/enQMHDuRIfm7s8Z/GwYMHNVsCyXE+kRznQ2WkZcuWOv3L2NhY8lXcaT7H1NSUUqVKSeZz0pDD36dx7949zd8pKSlcvXqVd+/e8euvv0qWh0DwX0YE2gUCmch8Q5aamirZ03S5DyNKm+B2795ds6dg//792bRpk2Ty08g4UUlbdZPTp93r1q1j9+7dDBgwgM6dO0t6s9GpUyeSk5P55ZdfNIdMZkSKiXtgYCCLFy/G1taWCRMmyLI6skqVKpQtW9bgCpicvsL5ww8/ULNmTUaNGoWlpWWOZGVGbvtJWzV069YtChcurPO9FBN1OW00jYCAAKZNm0ZsbCwjR46ke/fuKBQKfvzxR37++WdJbmg6dOjA5s2bNSvZY2Ji6N+/P/v378+xbJDXTuXsy7lhQ3KPE1988QWFCxeme/fuem/upLohvnPnDhUrVpREVmYiIiJYunQpz549Y9KkSbK8+TJ58uQsv8/pWHr79m0qVaqEv78/xsbGOt+nbSmXE9IOZW7ZsiVDhgwhf/78OZaZhtw+U+6+lhv++HPva3L3s9q1a1OiRAmDKzkzbwnyqYwbN44lS5boBM/S5hRSbAcRFxfH+vXrOXHiBMOGDaNt27Y5lmkIFxcXxo8fL/ncC9LfhuvTp49mrtWtWzfJDpns2bMnq1atYvjw4Xh6evLgwQMmT54sycIAue0I5G3nU6dOsWnTJgIDA7G2ttYE2vPkyUODBg2YP39+juRHRkZy6dIlli9fzo8//qi5bmRkRJ06dTTbBklBjx492Lx5MwMHDmTLli0oFAp69+4t2ZvTAwcO1JwPtXXrVvz9/Vm5cqVkh63Gx8dr/k5JSeHKlSs8evRIc96SFOhbEW5sbIyTkxODBw/G0fH/2DvvqKiurg//ZkCIEXvBgpUEG0UpahQ0YoEECVETsSFYIJbYsQEWwAJqVBQ0tgiCBmxBRbEAESNBCEZFRCH2AkiUThQGZr4/Zt37MRQ13n0m8c191spaMmTtO8ycc8s++zxbT1D82u5dNDQ00KFDB4wdO5a0IIFj6tSpgnc0i4i8L4iJdhERBnz22WdYuHChSgV71ZtSoSQmJqKwsBDNmjWDh4cHSkpKMH78eDL/nLu7OywtLXHjxg0UFhZCT08PcXFxOHHiBEn8tyEmJkbQDgCugdKVK1cwe/ZslRsSIQ19AgMDX/t7iht1jpiYGGzfvh19+/ZVef8UjaeePn362t+3a9eOr/J6FxQKBY4cOYJ9+/Zh9OjRcHZ2ZqIJqAuh4wcAbGxsoKenB1tbWwwdOpRci8JqjL6Jhw8fkrns3dzcsHPnTv5hQKFQYM6cOXU29/u7sByn6pjLrMcQwO488dNPP73299X9+e/KpEmTkJeXhyFDhsDW1hbdu3cniVuVW7duwc/PD40bN1b5jBYvXkx+rNoIDw/H2LFjBcWwtraGpaUlbG1t0a9fP0ilUqJ3p0Qmk+HgwYM4cuQIHB0dVbbzC1GYqOuayXqusbwe/6/MNVbzLDk5+bW/p1hsApSJTCsrqxpaDkpyc3Ph4+OD7Oxslc+IYmcKh5OTE27evImOHTtCQ0ODVB3j6emJVq1aISYmBjNmzEBMTAwaNGgAX19fgncOpvohdY0jgO33fPz4cTg4OKi8xmn8KMjLy1NZpJHJZPD29sbq1atJ4gP/X9DFPRsrFAo4OjqSJdq54jAWOyPqgvI5H1COlfLycn4BkNtR8PHHHyM8PFzwosH69euRlZWlEr9FixZo2rQpfvvtN+zevVtQ/AMHDqj8nJubfnoVqgAAIABJREFUi7i4OME7L0RE3hfEZqgiIgyoX78+oqKicPHiRXh5eUFLS4u0IVHVqgIWzYj8/f1RWFiIESNGICoqik8IqpP9+/cLSpQ2bdoUs2fPxooVK7B69Wp+O5zQiue3SQpwW/2F0rhxY9SrVw95eXmkFYbA21X5TZs27Z0/K4lEgq+//hr29vbw8vKCtbU1WrVqRfrA9zqEjh8AOHv2LDIyMhAbG4vp06fjww8/hI2NjeCEGQerMVqVzMxMHDhwAHfv3oVUKkWPHj3g4uJCEhsAdHR04ODggD59+kAul+PatWto164d1q9fD0B4goXlOFXHXGY9hgB254m3Se5x2g4h7N+/H4WFhbhw4QJ27NiBx48fw9LSEgsXLhQUtyoZGRl4/vw5zMzMmPlgX8fp06cFf+fR0dFISEjAqVOnsGbNGvTq1Qu2trZkbuR69eph8ODBSEhIwJkzZ8gS7eq6ZrKeayyvx/8rc43VPHubBCinxxHC+fPn4efnB2NjY9ja2mLgwIGk+o9Xr17h0KFDuH//PqZMmcLsXOTn58ckLgCsXr0aJ06cgJmZGa5evQpra2t89tlnZPGLi4tx+PBhFBYWkmu+1DWOWH/Ppqam8Pf3R0FBAQBlIvy3335DfHw8Sfy4uDgEBAQgPz8fWlpakMvl+PTTT0lic5iammLRokV49uwZdu3ahbi4ONKKeU1NTSQmJkIul+P58+c4f/48tLW1yeL7+/urVJvn5uaitLSULD6gXHSqmkw3NTXFlClTMG/ePBw8eFBw/Js3b6r0arK3t8e0adPINEH5+fkqPzdt2hQ7d+4UHFdE5H1BTLSLiDBAR0cHW7ZsweHDhzF+/HisXr2aVA2xadMmHDlypEbyXqhn87fffqvxWrt27dCuXTtkZWWRue3eBiELExUVFQgLC0NERAQmTpyIjRs31rrlnhVvqpp5E/fu3cOGDRtQVlYGHx8fZlqFNyF0cSg3NxebN2/G48ePsX79erUmuKgWtrp27Qp9fX306tULkZGRCAgIIEncqGOMJiYmYvXq1Zg+fTpcXFxQWlqKtLQ0uLi4YOXKlSQPNVZWViqJPiMjI8Ex/y4sN+YJncsAuzH0bzhP3L9/nyRO48aNMWDAAJSXlyM+Ph6//PILSfLv119/xcaNG9GzZ0+EhITUqi5RBxRjVFtbG9bW1rC2tsb9+/fx/fffY+bMmbhx44bg2AUFBQgMDMRvv/2GBQsWqL0JJ8U8A9jMtX/DPAP+3XPt3zDPioqKBMdYt24d5HI5fv/9d8TGxmLnzp3o0KEDvvvuO8GxDx06hL1792LkyJE4duwYadKvNrZt24Zbt25BKpXC0NAQs2fPJok7evRo2NvbY+bMmYJ67dRFXFwcvvvuO5iZmcHe3h7m5ubkx3gdQseROr7npUuXYtSoUQgJCcGsWbMQGxsLHx8fsvjh4eGIiYnBtGnTEBoaitjYWDx58oQsPgDMnz8fKSkpMDAwgJaWFpYsWULWnwhQ7oLgFgumTZsGY2NjwRq3qlTtx8Kpdfr160cWH1AuoISEhMDU1BRSqRRpaWnIz8/H1atXSe4pioqKEBsbi969e/Pxnz17hszMTLx69Upw/FmzZiEjIwMlJSX8+3369KngvjUiIu8LYqJdRIQB3AXl66+/hrm5OZYtW4YHDx6QxY+Pj8fPP/9MfgPn5OSEDh06wMTEpFbNB4vGQXUhZGHC3t4egwcPxqFDh9CwYUPCd/V2CL0Bmjt3Ltzd3dWe7KiOkO9g8+bNOHfuHGbOnEl6c/u2UCxsRUZG4ueff0ZGRgb69u2LL774QrADk0MdY3TXrl34/vvvVRY4DA0N0b9/f7i7u5Mk2u3s7BAVFYX09HRoaGjA0NAQdnZ25FqL18HCb88hdC6zHEP/lvOEUIKCgnDhwgVIpVIMGTIECxcuROfOnUli7969G+vWrfvHkqMcFGM0JSUFcXFxuHTpEnR1dTF06FAy9c3XX38NFxcXLFu2TK2L0hwUSQNWc+1/ZZ4B7Obav2GeUV0HpFIptLS0+P+4BqlCSU1NxYEDB9SyCOHp6Ylx48Zh6dKlkMlkSE5Ohqenp2AVBADs2LEDsbGx8PLygkKhgK2tLWxsbKCjo0PwzgFfX18oFApcv34dcXFxCAoKgqGhIcaMGaOWYg2h40gd37OmpiZGjx6Nn376CTY2NrCxsYGrqyvZOUpbWxva2tqQyWSQy+UYMmQInJyc4OzsTBIfUDYrTU9PR3l5OcrKypCQkICEhAQylVirVq2wbNkyFBcXQy6XQyKRoKKigiQ2oFSVJSYmori4GABQUlKCmJgYsn4agFIdExwcjG3btkGhUKBjx47YsmULZDIZyeKfn58fgoKCsGnTJigUCnTo0AGrV6/Gy5cvSVRQM2bMQEFBgcqCnEQiUWsuQUTkn0RMtIuIMKBqYrFz584IDQ0l7UTev39/ZGZmomfPnqQJrRMnTuDUqVO4dOkS9PX1YWNjAysrK9Kts+pg165db7whp3B414XQG/XIyMg3Jjuo9DSs+OCDDxAZGfnaxSAhDnh1kJycDCcnJ5iZmZEnc9UxRisqKmo9RocOHcjOG56enmjcuDH69OnDP9AnJSWRujz/SYR+7yzH0P/CeYJj27ZtTJpMvk0DbwolhzoICQnB0KFDMWPGDPLFuWPHjr0xJoVnvi4o5garufa/NM8ANnPtf2WeeXh4ICUlBT169MDw4cPh6upKlkB+m2sihbYEACorK2FjY8P/bGdnR+a+1tXVxfjx4zF+/HjcuHEDPj4+WL9+PaytrTF//nySKneZTIY///wTT58+hUwmw4cffogVK1bA0tKStNkkC9TxPSsUCiQnJ6NJkyaIiIhAhw4dSCvOjYyMEBYWBktLSzg7O6N169YkFc5VmTFjBqysrKCrq0sal2PFihW8cxwAubZy8uTJ0NPTq5FEpmT37t3w8vIijVmVCxcuYOvWrczi5+fnIyIigll8EZF/O2KiXUSEEO5ha/369bVecO3s7EiOI5VKMWHCBN4Tyt1ACFXHGBgYwMDAAPPnz0daWhpOnTqFLVu2wMDAADY2Nhg+fDjF238rhFS4vU3VC4XDmxVvU1FItdX+dQj5DmbMmPHG/0eIA/5NUFRIPnr0iNm2ZXWM0dfd9FMtcOTk5GDDhg38z3Z2dpg0aRJJ7Lfl39zTneUY+recJ4SSlJSEb7755h87PpWS43VQjNG8vLwaDfCoeJvEPYVnniWs5tr/yjwD/tm5po55JpQhQ4Zg1apV/1gBAIX+BlBe36Ojo9G3b18oFApcvnyZ7G96/PgxTp8+jfPnz6N169ZwdXXF4MGDceXKFcyZMwfh4eGC4i9evBipqakYPHgwXF1d0a1bNwDA9OnTMXr06H99ov1tEPo9b9iwAbm5ufDy8kJAQAAuXLiApUuXEr07pZqGK4Tp27cvCgoKSP3pgFJhtWDBAtKYVUlLS8PPP//MbMdjvXr1SKrKX4dCoUBERASMjY1VGjR/9NFHJPFfvHiBhIQEGBkZqcSvX78+SXxLS0v88ccf+Pjjj0niiYi8b4iJdhERQrik2MSJE2v8jvJif/HiRSQnJ+ODDz4gi1kdQ0NDvHr1CjKZDDExMaisrCRPtO/cubPOh77JkyeTHqs6LJNz6kj8qeMYVDdzdSH0b6isrERBQQGaN2+O+/fv4+7du7CysoK2tjbJ+GnZsiXGjh1b4yaUStfwJoR+Pmlpafjqq69qjUulspLJZHj27BlflZSTk0O6PfdtYDlOhX4H7/sYUkf8Dz/8EMOHD0e3bt1UPqOAgADBsdXN7du3VXykgFK5tmjRIsGx9fT0sHDhwhpjacKECYJjvw3/9mvmPznXKK5lb0roi3Pt9TRu3FhwjPDwcFhYWPxjiXaq54S1a9ciICAAO3bsgFQqhZGREdasWUMSe+HChXBwcMCePXvQpEkT/vV+/fphwIABguOPGDECfn5+NXbdSSQSbNu2TXD8N0Exjt6E0O+5VatWyM/Px5MnTzBq1Ci+2IqK1NRUnDp1CsXFxfx5Jy4ujkQDeefOHQDKxp4HDhyAmZmZiqqU6n7OxMQE+fn5aNasGUm86gwePBjx8fEwMzNTOXdTJakBIDMzE5mZmYiKiuJfk0gkZAVK8fHxiImJUXlNIpEgNjZWUNx+/fpBIpFAoVBg+/btaNiwocpnJLQoUETkfUFMtIuIEMJVXoSFhdXYjjVmzBiyrZv9+/dHTk4OOnXqRBKvKrdv38aJEycQHx8PAwMD2Nrawt3dnUlS/3Wr6dbW1uTHq4rQm9Ls7Gz8+eefMDY2xvHjx5GWloZx48ahS5cuWL9+PdG7rBuqm+qcnBwEBQWhsLAQW7duxalTp9CrVy+0a9cOK1euJDlGXQj9G9zd3WFnZ4du3bphzpw5+PzzzxEVFYUtW7aQjJ+BAwcKjiEEoZ/PyZMn3/j/CNX3zJ8/Hy4uLpBKpZDL5ZBKpSRux+qwHKejRo2Cvb097Ozsamx7FzqX3/cxBCjPdcHBwXjw4AEkEgn09fXh7OyMVq1a4YcffhAcf8qUKYJj/Btwc3NDYWGhylZ4zkdqbGwsOD63C6akpERwrHdB6Fjy8fHBihUrVF6bN28etmzZQnLN/CfnmtDPZvDgwRg8ePBrmz+Kcw24dOkSCgsLYWdnBw8PD9y7dw9Tp07FsGHDSJKwJSUlGDRoEDp06IB69eqR6ybUha6uLjw8PFBUVMT/DVQL4K97jqFouPq6edyuXTvB8QFg2bJlNV7T0NBAhw4dyBYkWOLs7IzKyko0b96cf43Sfb1o0SK4uroy8cxX10edOXOG/zdFEnn06NGQSCS8W75Tp07Q0NAgn8sRERE15hRFkroqoaGhNV6jUEtxnD17tsZrx44dExz34sWLCAoKwqxZs/jni8zMTERHR2POnDmC44uIvC+IiXYREULOnj2LXbt2ISMjA5988glfCaBQKNC9e3ey48TFxWH//v3Q0dGBpqYmmTrms88+Q2VlJQYOHIjFixejfv36kEgkuHHjBgD6ZqhVV9O51W/qGxVWLFq0CJ6enrh27RqOHj2KuXPnYs2aNdi7dy/atGnzT7+9t8bT0xOTJk3im2Q1a9YMS5curfUG79/G8+fPMXToUOzatQtOTk4YM2YMaSJh5MiRuHr1KrKysmBnZ4fc3FwS/6i6eJuHUqH6nr59+yI6OhqFhYWQSCRo1KjRO8d6HSzHafXmbjY2NrC1tYWOjo7gufy+jyFAuZgyYsQI2NvbQ6FQ4Nq1a7wioOoC6btiamqKM2fO4NmzZ5g6dSoyMzPJmqGqk6KiIqY+0m+//RY5OTl48uQJzM3N//U9LjjOnj2Lffv2ITMzE6mpqfzrFRUVfKKC4pr5Ps+106dPIzY2Fnv27IGnpyeGDh0Ke3t7vngDgDjXoPTL7927F+fPn4eGhgbCwsIwZcoUDBs2jCT+xo0bSeL807i7u+P333/nq3nf1wUDVjRt2hRZWVmwtraGRCLBxYsX+er8hQsXkjSNZUllZSUOHDjALH6XLl34hDU1Ve/ZysrK+D5OxcXFJL1HWDrHq0LZd60u4uPjERAQgMLCQgDKHaStW7fGrFmzSOLfuHEDu3fvRkFBAR//+fPnGDVqlKC4tS2cd+rUCaWlpQgKCnpv+pmIiAhFTLSLiBDCdX/fu3cvU4/g+fPnmcSt6pDnkutVoU6017aari6EbsPW0NBA9+7d4e/vD2dnZ5iZmaGyspLo3b0Zqm38crkcgwYNwp49ewAAn3zyCWnFxOsQ+je8evUKV65cwYkTJ7B//34UFRXxN4wU+Pv7Izs7G48ePYKdnR0iIiJQWFjItDlRVd4nBRHr7dYsx2ltzd02bNhA0tztf2EMaWlpqejQjIyMEB8fLzgux/Lly9GsWTMkJydj6tSpSE5Oxvfff49NmzaRHeN1UM0BU1NTpj7S4OBgnDlzBi9fvsTx48exYcMGtGrVCq6urkyOV513/ZxsbGwwePBgrF27VuW9SqVStGzZkurt/aNzTegY0tHRgYODAxwcHFBSUoKYmBhs2bIFubm5GD58OKZPn07yPlnNNXWpb7S0tKCjo4OYmBg4OjpCU1OT9L6rcePGCAsLw4sXL+Dp6YnLly+jR48eZPHf5vgUPHz4EHFxcSSx/gkeP36MjIwMSCQS9OjRg7x45ebNmwgJCeF/tre3x7Rp07Bnzx5cvHiR9Fi1IfR7HjlyJH744Qd0795dRbtC9Yw2YsQIfPnll+jatavKvKZQx3Ds378fv/76K77//nsAyuKl/v37C+7xwxWY3LlzB6dPn+YrqH19fUl7jGRmZsLPzw+lpaWIiIhAcHAwLCws0LNnT7JjbNu2DQEBAVi6dCkCAwNx7tw5vjcbBatXr8b8+fOxceNGrFq1CufPn0evXr0Ex7169SqOHj2q8pqWlhaWLl2KCRMmiIl2kf8MYqJdRISQ8PBwjB07Fs+fP691RZfKFfo6jYIQ3ubixzV8pYD1jQpLB3xlZSV27NiBuLg4zJs3D6mpqSgtLRUUszrq0NNoamoiMTERcrkcz58/x/nz5/kKE9YIdTHOnTsXe/bsgaurK5o1a4bt27eTNuJMS0tDaGgonJycACi3RY8fP54sPsDeM/8mWDWKooblOGXZ3E0dY4il+gZQ9uvYvXs3+vfvD7lcjitXrqBLly68a1XoPM7Ozsa6dev4z2jixIkq28kpYK2/AYCYmBjs27cPOjo6fHKCYqdZ1fjh4eH85+Th4YGxY8eSJ9pZeOa1tLRw584dMvVDbbCea6zVNxw6OjqwtrZGZWUlzpw5g7Nnz5Il2lnNNXWpb1q0aAEXFxf89ddfMDU1xYkTJ0idyEuXLkX//v1x4cIFAMoGxNQVzqz1NwBga2uLc+fOoXv37iqJ0rZt2wqOXVJSUutiBNVutt27dyM6OhqmpqYoLy/Htm3bMGbMGNK5XFRUhNjYWPTu3RtSqRRpaWl49uwZMjMz8erVK5JjsNTTREZGorKyEteuXeNfo1THbNmyBW5ubqQLodU5ffo0Dh48yP+8Y8cOjBs3juwefuXKlZg/fz7/8+jRo+Ht7Y2wsDCS+L6+vli1ahVWrVoFQNn4c/ny5fjxxx9J4gNKjWr79u0hl8vRtGlTODo6YvLkyRgxYgRJ/A8++AD9+vWDlpYWDA0NYWhoiKlTp2Lw4MGC4ta16CqVSiGTyQTFFhF5nxAT7SIihHAPkQYGBkyP80/qPpKTk8lisb5RYemA37BhA86ePYvAwEBoa2vjyZMn8PHxEfqWVVCHnmbNmjUICAhAfn4+pk2bBmNjY9KqFZZubUtLS1hYWODPP/8EAMycOZPiLfNUVFRAJpPxyei8vDyUlZWRHoO1Z541r1vMooTlOGXZ3E0dY4il+gb4/91N1Sv9vL29SZyqMpkMRUVF/Gd09+5dlJeXC4pZHdb6G4D9VnKucpf7nMrKysgbD7P0zLdr145pM1dWc01d6huukv306dN4/PgxbGxssGTJEtJmz6zmmrrUNxs2bEBmZia6dOkCQLnIR7nzpbS0FOPHj0d0dDQA4PPPPydNnAHs9TeAsmI7NDS0hsObQh3DejEiNjYWhw8f5pN1FRUVmDhxImmi3c/PD0FBQdi0aRMUCgU6dOiA1atX4+XLl2Q9ZljqaeRyOfm4rIq+vj6+/vprZvEB5fdaVFTEfybcfTxl/KqLfj169CDdJaqpqQl9fX3+548++qhGA1+h6OrqIjIyEj169IC7uzv09PTw4sULsvj169dHbGws9PT0sGnTJrRv3x7Z2dmC4zZt2hQpKSk1Fl0vXLjAxPsvIvJvRUy0i4gQYmVlhcTERIwcOZJ/LT8/H7dv38Ynn3xCdpz3WfdRFdY3Kiwd8Lt371apbvv888/56jYq1KGnadmyJRwdHfkKm8TERNIqFpaLQqdPn8b27dsBAFFRUVi9ejUMDQ3x5ZdfCo4NKHc9ODo6IisrC9OmTcO9e/fg4eFBEpuDtWf+TQidz69bzKKE5Tg1NDSskezj5rLQ5m7qGEMs1TdA7Q25KJk/fz6cnZ3x4MED2NraQiKRYPXq1aTHYK2/AYBbt25h7dq1ePToESorK2FgYABPT0+Va5wQRowYgUmTJuHhw4dYuXIlLl++DBcXF5LYHCw986ybubKaa+pQ30yfPh2ZmZmwtrbGzJkzSbbv1waruaYu9c2rV69w8eJFREZG8s0+KZHL5Xj06BG/EHHx4kXI5XLSY7DW3wBKdQyXCKdGHYsRVZ8DpFIp+c67rl27Yu3atSrNYgGain8Olnqa/v374/DhwzAyMlJRx1AtyjVt2hQTJkyAoaGhSnUy1a5sQHkucnR0hLa2NuRyOeRyueDim6oYGxtjzpw5MDU1hVwuR1JSEklTco6GDRviyJEjePnyJa5fv47z58+rLGxR4O/vj8LCQowYMQJRUVEoKCjgVTsUbNy4Ec+fP8eKFSsQHByMjIwMkt1ZHh4emD17NvT19dG9e3dUVlbi+vXryM7Oxt69ewneuYjI+4GYaBcRIeTgwYM4fvw4jIyMoKOjAwB4+fIlAgMDUVxcjOHDh5Mc55/UfVDe8LK+UWHhgOeq2/74448a1W3UW+LUoadZsmQJWrVqxd+A/vbbb4iMjIS/vz9JfJaLQmFhYTh27BjfD2HRokVwcnIiS7QPHz4clpaWuHPnDrS0tNC5c2fyecbaM/8mhD6YqauhMYtxqo65rI4xxFJ9Aygr+7nzfkVFBUpLS6Gnp0dWwW1ubo6ffvoJL168gEQigYaGBrnzn7X+BlD6TpctWwZDQ0MAwLVr1+Dt7S244p9jwoQJGDRoEFJTU6GlpYUZM2agdevWJLE5WHrmv/32WyQlJeHWrVuQSqUwNDSEqakpWXyWc421+sbMzAzbt28nr4isjjrmGkv1Detq6hUrVmDFihVIS0uDpaUlunbtSr5TkbX+BlAuDiUmJsLIyEglUUpxHNaLEZ999hlGjRqFXr16QS6X4/r16xgzZgxZfADw8vLCxYsX+UVoFs1iWeppkpKSAAAnTpzgX6PYXcbRp08f9OnThyRWXQwYMABnz55FXl4epFKpym5CCjw9PZGYmIibN29CQ0MDrq6udWqt3gUDAwP8+eefaNq0KXbt2gUTExPShRpAWeV/7tw5FBcX80Uxx44dI9O3SqVS3L17F9euXYOenh7atWuHO3fu8Pcw70rHjh0RGRmJhIQE3Lt3DxKJBBMnTsSAAQPeG12liAgFEoU6uq2JiPxHGD16NEJDQ/Hhhx+qvF5SUgI3NzcVH50QcnNzERAQgKtXr0JLSwvGxsb49ttvBVcuvg2TJk0iu5krLS1FSEgI/3eYmJhgwoQJZM1eWDngy8vL4efnp9Lwlqtuq1pdIpTs7GycPXsWAwYMwMcff4zTp0+jc+fO6N69O9kxJk6cWMNZ6OTkRFbF6urqiilTpiAwMBABAQE4f/48YmJiSKoauPfJjUmFQgFHR0ccOnSI4J0rPZgymQwODg6YMWMGCgoK8NVXX2HcuHEk8QGlr/XAgQOwtbWFg4MDtm/fjrZt25ItFgDsejqoE1bjlPVcVscYGjNmDBwcHGBnZ1fjYXXbtm2Cq/Krc/v2bZw4cYKsum3Xrl1o1KgR7O3t4eTkhCZNmsDExARz584liQ+Ad1LXBlWCorZro7Ozs0pVoxA4t/Pnn38OT09P3Lt3D9OmTcPQoUNJ4gPKZPXjx4+ZeObXrl2Lx48fo0+fPpDJZEhOTkbPnj1VPLpCYD3XlixZgoqKCibqG8r7qtfBcq7Vpr4ZMWIEqfpm8uTJ2Ldvn8q5n/J+BVAqmbS1tVFQUICsrCzyZqgVFRW8/uaDDz5Aeno69PT0yBznADBs2LAaVfJUC+B3796Fr68vUlNTUb9+fXTr1g0eHh5kO3eys7NRWVmJW7duQSKRoHv37uT3KqNGjcLRo0eZJv0yMjIQFBSEu3fv8nqaGTNmAFAu3Am9jy8tLcXDhw8hlUrRqVMnfPDBBxRvG4DyvigqKgrp6enQ0NCAoaEh7OzsmC8Evg+cO3cOUVFRSElJgYWFBZ8A58YsZRPikSNHwsrKSkXlBtDp1saNG4e2bduq5A4kEgnpzgURkf8yYkW7iAghWlpaNZLsgLLCh6Li49KlS7C0tESrVq2wZs0a3Lx5k7TD+dtAuTbXoEEDWFtbo0+fPpDL5ZBIJEhPTydr6MPKAa+lpQVXV1ecP39epdIAeLuGsm+LOvQ0EokEFy5cQO/evSGXy3H58mXSxQKWbm1TU1MsWrQIz549w65duxAXF0eqaPrxxx9x4MABnD59Gl27dsXixYvh7OxMmiRl7ZkH2Op7WDc05mAxTmNiYjB06FDo6+vXus2e4mFGHWOIpfqmNrp16wZvb2+yeHFxcQgPD8ehQ4cwZMgQzJo1i1yJoo7+JY0aNcKePXv4SsDLly+TVgtzbueYmBgVtzNlop2lZ/7mzZs4cOAA/7Obm5uKzkcorOcaa/WNOmA119SlvmFdTe3r6wtDQ0MMGjQIzs7O6NWrFyQSCWlVO2v9DQCcP3+e/7dcLidNkOrr6yM4OJgsXnW8vLyQl5eHHj16oG/fvqT3oxzdunVDfn4+mjVrRh6bg6We5sSJEwgMDIS+vj7Ky8vx5MkTuLu7k3n+PT090bhxY5VF0aSkJHKl2/vI8OHD0aNHD/j6+qrcd0mlUr53BBWNGzfGggULSGNWRUNDA9999x2z+CIi/3XERLuICCEKhQK5ubk1KssfPnxI8jCwa9cuWFpa8j/7+/szqYKaM2cOtm7dWuvvKPxtHG5ubigqKoKuri6frOYar1HA0gE/Y8YMWFlZkW/dB9Srp/H398fmzZuxYcMGSKVS8maoLN3a8+fPR0pKCgwMDKClpYUlS5agd+/eJLEB5Y2zpqYmzpw5wycsqRtZsvbMA2z1PawQCixSAAAgAElEQVQbGnOwGKfFxcUAlH00WMFyDKnrPDFnzhyVyr/c3NxaF5TfFc7PevLkST6hRa3IYq2/AZQN9kJCQrBjxw5IJBLyc6k63M4sPfMVFRV49eoVX3n5119/kb5/1udrluqb33//vdZFYi5BR7GjAGA319Slvlm+fDmvdhkwYAC6detGmgS/ffs2li9fjpCQEIwePRouLi6YPHkyWXyAvf6mOi4uLqTPCYGBgSoLZhxUY3Tv3r1QKBTIyMjA1atX4eHhgadPn+LMmTMk8QGlbm3o0KHo2LEjNDQ0mKhjWOppDhw4gOPHj/MqoNLSUkydOpUs0Z6Tk4MNGzbwP9vZ2WHSpEkksTkUCgVu3LjB6wATExNVrtP/ZvT09LBz505m8TmlnampKQ4cOAAzMzNSF//Lly8BAIMGDUJ8fDzMzMzIFVMiIiJiol1EhJSZM2fCxcUFTk5OfAOQ1NRUHDx4EBs3bhQcv3o1OSvzU5MmTbBp0yYYGxurbJEeNGgQ2rRpQ3acoqIiwf7g18HSAd+kSRMsXLiQJFZ1uOZrdSktKCgvL4eWlhaaNm0KHx8flYUOSlg64HNycpCeno7y8nKUlZUhISEBCQkJZLsKevbsiWHDhvG6ntDQUHIHI2vPPMC2pwPrhsYsxynXtLqgoABeXl6C49UGyzGkjvMEAJWqY4lEAh0dHXTr1o0s/tChQzFgwADY2tqic+fOCAoKgomJCVl8QFldXhVOf0PB06dP0a5dO+Tk5MDGxgY2Njb877Kzs8nUGS1atMDkyZNRWlrKzO3M0jPv7OyML774Ap06deIrkym3qLM+X1dV37x69Qrbt28nU9/07t1bLbsuWM21X375RaVRLCs++ugjptXU5eXlePbsGU6cOIGgoCBUVFSQV5yro5loVaifE86dO4fY2FjSxdaq3Lx5E9euXcP169dRVFSEtm3bwtbWlvQYfn5+pPFqIz09HfHx8UwSx1KpVOXc36BBA9LKf5lMhmfPnvHKkpycHFRUVJDFB9g9Gzg5Ob32M1eHokso1XcMVl1kolDd2dnZ8T2VqsOix5KIyH8VMdEuIkLIwIEDoa+vj/DwcFy6dAkSiQRdunTB/v37SRLU1W8eWK38y2Qy/PnnnzUutoMGDSI9DsvGawCwbt06hISEqDSroaow7NevH5NKAw7Wepply5bhu+++42+4OKibWWZlZansgpgzZ85rfcl/h+nTpzPbVQAoK5Jmz57N6x+sra0xduxY0mNoaGhAS0uL/w60tLRI4wNs9T2sGxqrY5wqFApERETUWFikmMssx5A61DcAcPLkSaxatYqveLpz5w7GjRtHtkjq5uYGNzc3/mdnZ2e+mTgrKPU3+/fvx7Jly+Dt7V3j4ZWyQd2GDRt4tzOgHJ+bNm0iic3B+Xg5OHUGBZ9//jk+/fRTPHjwAFKpFB07diRdKGB9vmatvlEH/8Rco2DWrFkICgqqs+KVqpp6woQJcHV1xYgRI9C6dWts3rxZZeGMAtb6m+o4OzuTxuvSpQsTnQuHk5MTjIyM4OTkhP79+5Mm9MPDwzF27FiEhYXVOo4oF/5Y6ml69+6Nb775hneEJycnw8zMjCz+ggUL4OLiAqlUyquHfH19yeID7J4NON3moUOH0KpVK/Tt2xdyuRxJSUlMNE0sYL3oSumRFxERqRsx0S4iQky7du3QoEEDMjVDVZ49e6byoFf9Z6rEyrp161BeXo7c3Fzo6emRxKyNmJgY7Nu3Dw0bNlTZvkn10MTSAZ+QkACAvtKgKiz1NJyXz8vLC1ZWVioJRkpYOuBZ7irgqOpYZtE8lLVnHmCr72G5mAWoZ5xmZmYiMzMTUVFR/GuUc5nVGFKH+gZQVgq7ublh/fr1OHToEM6cOcOrgljAIvHHUn+zbNkyAMpGjdbW1iq/qzqmhKKpqanSmJG6SSPA1jN/6dIlfPfdd8jNzQWgdBW7u7ujb9++JPEBtudrluobrkmiuqGaa6zVN9z9dEhICLp27Soo1uv48ssvVXaTzZs3j7yghbX+BlDuFg0JCeE1R3fu3IGTkxMaNGggOLZcLoetrS169OihopsICAgQHBtQVjanp6fj999/x/Lly1FcXIx27dph5cqVgmNz5wQDAwPBsd4ESz3N4sWLkZKSgrS0NADKohPKRHv9+vURHR2NwsJCSCQSNGrUqMauMKGwejbgCrcyMjLg6enJv96rVy9MmzZNcHx1kJOTgwULFmDXrl38OTotLQ3+/v7Yvn07GjZsKCh+SUkJvL294ePjwy9237x5E/v374evry+Tgh8Rkf8iEgUr94SIyH+YtWvXYtCgQTAyMlJJDAmt3goMDHzt76mUGerwRgPKbfXVK/3v3LlDVhVelwOe6oEAUFb/s0pSu7i4MN0mDSiTRFeuXIGxsTFsbW0xcOBA0pusrKwsbN68Genp6bxbe/bs2SSLB99//z0aNmzIbFeBukhJScHVq1ehpaUFY2NjUs88oHwoa9WqFdzd3QEAW7duxdOnT0n0PZWVlbh48SLu378PiUQCfX19WFlZkScnWI/T95nVq1czU99wXL16FQsXLoSFhcV7+SCWnJzM/7uq/oZinN64cQOpqanYv3+/ise2srISe/bswcWLFwUfQ12UlJQgJCQEaWlpvGeeKkH3xRdfYOPGjXyS6/bt21i8eDGZwoc1p0+fxpYtW2qobyib0damPdDQ0ED79u3h5ubGtPBBCE5OTmpR30yaNAl5eXkYMmQIbG1t0b17d+bHfB+ZMWMGLCws0LdvX76ZZVpaWp29l/4OVc+lVeEW54SiUCiQmZmJa9eu4dq1a8jJyUHz5s1J9Jvx8fGv/T3lrt2nT5/W+jrFAmBtfbTGjBmDQ4cOCYr78OFD3L9/H5s2bVIpYqmoqMCaNWtIK6FZPhsAwNixY2FnZ4fevXtDKpXixo0bOHr0qODPSB1Mnz4dX375ZQ1l0tmzZxETE6Piz38XFi1ahG7dumHKlCkq15vg4GA8fvwYy5cvFxRfREREiZhoFxFhgI2NTY1mdOryngUGBgpOuI8fPx7BwcGYOnUqQkNDUVZWBicnJ7IblLy8PLx48QIeHh7w8/Pjk+AVFRWYO3cuzp49S3KcsWPHMnPAJyUlYc2aNSgvL8eZM2ewefNmWFhYqDSrFYq6EslyuRy///47YmNjkZKSgg4dOgjuRM+5tbmmO9Xd2hTKgNq2mVLvKgCU45LVVumcnBycO3eOiR6IY+LEiQgLC1N5jSoxMnv2bEilUhgZGQEArl+/Dg0NDWzZskVw7OqwGKcA20aZP//8MwYPHqzyWlRUFEaMGCE4Noevry8MDAzI1Te1VYE/fvyYr5yjWrA8fPgwvv76a5XX9u3bR9qEcPny5TX0N15eXiTXh+zsbFy+fBnbtm3DqFGj+NclEgl69+6N/v37Cz4GoEzoc/OM4/Lly+jXr5/g2JxnnmvCVh2Ka87UqVOxd+9elddmzJiBHTt2CI4NqGeu/fXXX8zUN4ByTpWXl8Pa2hoSiYRfpPn4448RHh4u+JzNaq6pK9EOAIWFhbhw4QJiY2Px+PFjWFpaMt/ZRoG69DeAckGi+n0QReFGUVERjhw5ws+Bjz76CF9++SXJzgju/PbZZ5/B0NAQffr0gYWFBTp16iQ4Nge3+6guKHbjcXoaf39/cj3N2bNnsWvXLmRkZKhUNcvlcnTv3l3w95uRkYHz588jPDwcVlZW/OsSiQTm5uYq17d3RR3PBoByx/f+/ftx9+5dKBQKdO7cGZMmTSLvs8SCcePG1dm3geJc+7pFmQkTJtTa7FhEROTvI6pjREQYwCWKCwsLIZVKBW/z+jvUVW3yd2Dtjb537x6OHj2KBw8eqCgIpFIp7O3tyY7D0gG/detWhISEYM6cOQCUDzYzZ84kTbSrQ08DKD93LS0t/j/uBlgI6nBrs36wv3z5MtauXauymGJubq7yACIU1p55gK2+588//6yRrGTlLWYxTgE2jTJTU1Nx48YN7N+/H1lZWfzrFRUV2Lt3L2nyj5X6hrV/OiEhAZcuXcKZM2dw//59/vWKigpER0eTJtpZ6m/atGmDkSNHYuDAgXj69Cnf3C0xMZEkCV5XlaFMJsPatWtJqgzV4Zlv06YN3Nzc8Mknn0Aul+PKlSto2LAh/1D/ruo7dc01dahvUlJSVK5rpqammDJlCubNm4eDBw++c1zWc02d6pvGjRtjwIABKC8vR3x8PH755ReyRPv27dsxc+ZMldf8/PywdOlSwbHVpb8BlInXqgtz169fF+yB/+OPP/Dtt9/CwcEBn376KRQKBW7dugVHR0esX78ePXv2FBR/w4YN2L9/P98klgWcv5slLPU0XLPtvXv3qjRAp6Jr167o2rUrbGxsmPXOUld/KF1dXTg5OeHJkycwNzfnE/zvA2VlZXX+rqCgQHD8150L/vrrL8HxRURElIiJdhERBvz666/w9vaGtrY2ZDIZpFIpfHx8SB16dUGxSYW1N9rc3Bzm5uYYPnx4jQo0Slg64DU1NdG0aVP+RrF58+bkugzugZulnsbDwwMpKSno0aMHhg8fDldXV5LqJJZubXVVhm3btq3WxRTKRLs6PPP+/v7YvHkzNmzYwG/RpfKoGxsbIzU1lU8upqen16i6pYDVOK0NikaZLVu2xIcffgiZTKbiUJdIJPDz8xP6FlVgteDEqQD++OMPREdH8/PAx8cH48aNExzfxMQEmpqa+OWXX1Qe6iUSSY2qW6GMHTsWXbt2xddffw0LCwscPnyY/KHb398frVq14ufCb7/9hsjISMGKplevXiEtLQ15eXk1Fl2pdr6owzPfunVrtG7dGqWlpQD+3zEvtMeAuuba+vXrmatvZDIZQkJCYGpqyusO8vPzcfXqVUH3dqznGrdrg7X6JigoCBcuXIBUKsWQIUOwcOFCdO7cWVBMADh37hyioqKQkpKCjIwM/vWKigrcunWLJNHOsWbNGub6mxUrVmDNmjW4e/cuAGXSV6jjfPXq1di+fTv09fX514YMGYLPPvsMPj4+CAkJERRfHVRP7nJQJnnlcjni4+OZNEHluHPnTq3V+VT3dVXnMfUuP+7ZgHVDzuDgYJw5cwYvX77E8ePHsWHDBrRs2VKlGfS/FUNDQ+zatQuurq789yCTyRAQEEDyLN6+fXucPn0an3/+ucrrBw8eVEv/AhGR/wqiOkZEhAFjx47F1q1b0apVKwDKreULFy4UVJH0ttS2ZfRdYO2NBgBXV1d89913aNSoEXlsgK0D3tPTE61atUJMTAxmzJiBmJgYfPjhh1i9erXg2Bzq0NPExsbCysqKWaWHut3alIsSzs7OCAkJUZlT1Doilnogllt0uUUOhUKBgoICaGtrQyKR4NWrV9DV1X2jC/XvwnKc1tUos7rm4l3Iy8uDjo4O08bSLNU3gLLSeP78+TA3NwegXExZu3ZtDR2REHJycphUnqlLfwOwVTQByp0LBgYGTFRW6vDMy2Qyvp+DVCrl+zlIpVLBsQH2c421+gZQ6g6Cg4N53UHHjh3h5OQEmUyGBg0a1LifeRdYzTWAvfpm//79sLGxga6uLsXbVeHJkyfw9fVVqRSWSqXo0qULedKUtf6GhUbpdfc+jo6OiIiIeOfYgDK52LBhQz7pzUFZIKMO1KGnuXDhAv/viooKXLlyBfXq1cOCBQsEx64NbpefEO1NdY4ePYqwsLAa2kSqinbuesxdgxUKBcaOHSt4nKqDly9fYt26dbh06RI6d+6MyspK3L9/H0OGDIGHh4fg6/+LFy+wePFiFBcXo1u3bpDL5UhNTUWbNm3w3XffMStiERH5ryFWtIuIMKBevXp8kh1Qbplm5XimpLZmq2VlZUhISEBCQgKpNxpQNl4bNGgQOnTogHr16vE31EeOHBEUVx0OeF9fX5w8eRJmZma4du0arK2ta1QHCEUdeprw8HBYWFgwS36vW7dOxa29c+dOMrd2bUydOpVMraOnp4eAgADk5+fj9OnTiImJIffjs9QDsdyiW123whqW47SqIqVqo0wKLl++zLyxNAv1TVUqKir4JDugrESmrNHgKs/++usvnDhxgrTyjLX+piosFU2AsvL7iy++YKKyatGiBfOqcHd3dygUCvTq1QsKhQJHjhzB8ePHsWnTJpL4rOcaK/VNVXR1deHg4MAnnyQSCXJzc2FhYSE4NsB2rgHs1Dcc5ubmcHd3x6NHj1BZWQkDAwN4enqqVFm/K3p6eti5cyeuXr2KrKws2NnZITc3l0llMiv9TV0aJW7BTEiivS6dhVwuJ9G49e7dm7kOcOXKlfD29sbo0aNrrWwX+uwBqEdP8+mnn6r8PHToULi6ujI7HsUuv+rs3bsXgYGBzLSJlZWVAP6/sKSsrAwVFRVMjkVN/fr14ePjg6ysLBQVFQFQVqFTNCUHlDuw9+7di3v37uHevXuQSCSYOnUqye4gERGR/+ffn/kTEXkP0dPTg7e3N/r06QOFQoHLly+jQ4cOajm2kARI06ZNAShv1vPz82FhYQGFQoGkpCQmDWQ2btxY47WSkhLBcVk64CMjI1V+7tWrFwBlMurEiROkCTR16GlYLXZUhZVbuzYoE4DVF1O4bdKUsHywZKnv4ZouV68Y5qCsFAbYjtOmTZuqqFF8fX0xbtw4kkWVsLAwHDt2jK+SXLRoEZycnEjPE9Whfig2NjbGnDlzYGpqCrlcjqSkJF6PQkFMTAzCw8P55sYeHh4YO3YsSfKPtf6mKlUVTRoaGjAyMiLbyg/UvfBKkWhn7ZkHlNXa1StiKZLTHKznGiv1TVXc3NxQVFQEXV1dlR1IVIl2lnMNYKe+4VizZg2WLVsGQ0NDAMC1a9fg7e1Ntrju7++P7OxsPHr0CHZ2doiIiEBhYSG8vLxI4gPs9DcAW43SwIEDsXz5cixZsoSveM3Pz4efnx9pzxGWzJ49G4DyXMoKdehpqu8Y5HZqUVHXLj9KOnXqhC5dupDGrMqIESMwadIkPHz4ECtXrkRSUhKcnZ2ZHY8Frq6uaN++Pb744gvSJHhtzU5zcnLw66+/AqC9LouI/JcRE+0iIgzw9fVFVFQUrly5wj8kUVY7z5kzp84bxfXr179zXO7iGhcXp7JF2tXVlUmzq4YNG+LkyZP8A4FMJkNkZKRg7QRLBzzn73zy5AkePnwIMzMzVFZW4urVqzAwMCBNoKmjorq2xQ5K1OnWBkC6EPHq1Svo6OjwiykymYxsMUVdnnkAOH/+PPz8/Ej1PUOHDgWgvophluN01apVmD9/Pv/z6NGjsWrVKhI1CuvG0gD7h2JPT08kJibi5s2b0NDQgKurKzp16kQWXx2VZ9W/46+++gre3t6k+pu2bdtizZo1ePbsGdq3b08Wl0MdC6+sPPMAYGRkxLSfA+u59s033zBV3wBAUVERqZqsOqznWkBAAIKDg7Ft2zZefbNlyxbIZDKSXWwaGhp8kh1QFjpQzoG0tDSEhobyCxGzZ8/G+PHjyeIDyvvewMBAJvobbsFs0KBBfCV+eno6vygkhLlz52LPnj344osvoK2tDblcDplMhgkTJpA05nybZ4yYmBj+3uNdaNGiBa5fv47mzZtDT08PR48eRUpKCjp37qyizBICa/c4oLoDEgB0dHRId4nWtsuvefPmZPEBoFmzZnB0dESvXr2goaHBv06lp5kwYQIGDRqE1NRUaGlpYfr06STqLXVy6tQp3L17F7GxsZgxYwZatmyJESNGCF5cp1wcFhERqRsx0S4iQsj169dhYmKChIQENG3aVOVieOnSJQwaNIjkOE2aNMGmTZtgbGysUqU6aNAgkhuJ3Nxc3gcLAA8fPsTTp08Fx63O3Llz0bt3b5w6dQqOjo6Ij4/H8uXLyeIfPHgQZmZmpA74JUuWAFBWnh07doxXA8hkMsybN4/sOIB69DSNGzdGWFgYXrx4AU9PT1y+fJnkoYxjyJAhWLVqFWnSw9/fv86KIcqqnsmTJ0NPT09FA0X1UB8UFASgdgWLTCYjOQYHC33PTz/9hGXLlvEVwzt37sQ333xD9ZZrwHKcslSjsG4sDbBV3wDKz6esrAwtWrQAANy/fx9Lly5FTEwMSfzaKs+okh4crPU3gPKhmPN1s1CXqGPhNSsrS2Wxfs6cOXzSUShnzpxBaGgo6tevD4VCgVevXqFJkyaIjIwkcTCznmus1TeA8m/4448/VBqWUsJ6rrFW3zRq1Ah79uzhrzuXL19G48aNSWIDyvOETCbjr/N5eXl1KlPeFZb6G46quhs/Pz+Sin+pVAo3Nze4ubnxO0+rF00ISYRzDXVfx/79+wUl2letWoUHDx7g5cuXMDY2RllZGWxtbZGamoply5Zh8+bN7xybQx16muo7pWQyGby9vcl6RJmamuLSpUsoKCjg4+/cuZPsmg8AZmZmfK8USup6Pvj9998B0CXy1YW+vj6aNWuGxo0b49ixY/jhhx8QEBCARYsWoW/fvu8Us6oGtrS0FIWFhQCUfZ18fHxI3reIiIiYaBcRISUpKQkmJiY1qg04qBLtMpkMf/75Z40tiFTxPTw84OnpiadPn0IqlUJXV5fJzYlcLsecOXPw22+/YcqUKZg4cSLmzZsn6Ea6Kix1E9nZ2SguLuZ1O2VlZXjy5InguIB69TRLly5F//79+eZKeXl5WLhwIXbv3k0Sn4Vbm1sA+ru/+7vUq1ePmUv+dVB65jmo9T23bt1S+TkhIYFpop3lOGWpRpk/fz5SUlJgYGAALS0tLFmyhLyxNEv1DQDMmzcPDRo0QHJyMqytrZGUlETar0MdlWes9TeAcjs2S3WJOlRWLD3zv/zyC0mcumA911irbwBlonLfvn3Q0dHhqzwpG0Gynmus1Td+fn4ICQnBjh07IJFIyPVMU6ZMgaOjI7KysjBt2jTcu3fvjc0t/y6s9TfVoV5QBGom2DmEJsLfhNC/5datW4iIiEB5eTlsbGzw888/A1A+O1HNZXXoaY4cOcIvumppaUEul9fwtguB9TUfUCp2oqKikJ6ezu9UsbOzExyX8hngn+bIkSOIjo5GcXExRowYge3bt6N58+bIy8vDlClTajwr/l2CgoJw7NgxFBQUoG3btsjKyoKjoyPRuxcRERET7SIihHCey3Xr1qGkpKRGN3Uq1q1bh/LycuTm5kJPT488/ieffILDhw+Tx62OTCbD7du38cEHHyAhIQHt27fHo0ePyOKzcsADwLRp0zBq1Cj+gaO0tBSzZs0iia1OPU1paSnGjx+P6OhoAMDnn3+OH3/8kSw+i8WOkSNH8v9mOQ8GDx6M+Ph4mJmZqWxtrV+/PvmxqkJ9zmCh76n+Hlmc56rCcpzWpkapWv0shJycHKSnp6O8vJxZY2mW6hsAKCwsRGBgIJycnLB8+XIUFRVh5cqVZOehW7duITIykr9ecgvIlAk01vobgL26hKXKioOlZ97JyanWSkOqBCPrucZafQMA586dI41XHdZzjbX6RkdHh+w+qzaGDRuGAQMG4M6dO9DS0kKnTp3wwQcfkB6Dtf6mOlTNjN8G1vcBQj8nbW1tAMpzc/V7xqr3eEJQh54mPDwcMTExmDZtGkJDQxEbG0tW6AOwv+YDymty48aN0adPH8hkMiQnJyMpKUlwVX6XLl1gYmIiWEH6b+DBgwdYtmxZjaKJZs2akVzXLl68iNjYWDg5OSE0NBQ3b96ss1BQRETk7yMm2kVEGLB8+XLEx8fzygnqBpOnT5/G9u3bAbDZoh4YGFhrsxRKb3R5eTlWrFiB/Px8uLu7Y82aNSgoKCDdxszKAQ8ADg4OcHBw4GM3adKE7GFJnXoauVyOR48e8e/94sWLkMvlZPFZurVZz4OIiIga/lqqZlavg/qhm4W+p/p7ZJkoANiO04qKCjx//hwSiQSTJ09GZmYmZDIZSfPY6dOnw8rKCq1btyZ4p7XDWosik8nw9OlTaGho4P79+2jTpg3u379PFt/d3R1OTk7MPyOW+hugprrk559/JlWXsFRZcbD0zK9YsYL/d0VFBa5cuYLi4mKy+KznGkv1jbqaS7Oea6zUN926dUOrVq1qnJMpG0wCyl0XERERNYpkKKvNWetvAKWq8scff0RJSQmzv6M2WN8HCCU/Px/x8fFQKBQoLCzknwUUCgWvSRGKOvQ02tra0NbWhkwmg1wux5AhQ+Dk5ETW7JP1NR9QLoxu2LCB/9nOzo7k+S85OVktO8tZwulvFAoFjh07VuP3ixcvJtk5wh2jsrISr169Qs+ePbFmzRrBcUVERJSIiXYREQbcvHkT8fHxzG46w8LCmG5RP3fuHGJjY8m7zHPExMRg7dq1aNmyJQoKCrB+/XomDwAsHfBHjx5FWFhYjQcyyiQsSz0Nx4oVK7BixQqkpaXB0tISXbt2JXX0sXRrq2MeAMrqHqlUioYNG5LEBdTnmQfY6HvS0tLw1VdfAVC+5/v37+Orr74iX1TkYDlOly9fjmbNmiE5ORlTp05FcnIyvv/+exL3cpMmTbBw4UKCd1k3rLUoc+fORVpaGmbOnAlXV1eUlJSQKjNat26NsWPHksWrDXVsha+qLqlXrx4WL15Mqi5Rh8qKpWe+evK1e/fuJE0UOVjPNZbqG3U1l2Y911ipb7y8vPDzzz9DU1MTQ4cOxbBhw9CkSROKt6zC2rVr4eHhwXTRj7X+BlDqaTw9PZk0XP0nEbqAbGhoyCdge/bsqZKM7dmzp6DYHOrQ0xgZGSEsLAyWlpZwdnZG69at8erVK5LYAPtrPqBM5j979owfozk5OSSNmV1dXQHU7bF/H3id/oYyr2BjY4OQkBDY29vDwcEBzZs3Z75jV0Tkv4SYaBcRYUC3bt2Qn5+v0pCIEtZb1Lt06ULmZa2NPXv24KeffkLjxo3x5MkTrFq1Cnv27CE/DksH/N69exEYGMj0gYylnoZDX18fwcHBAJSN8Fq0aEE6nli6tQesy+cAACAASURBVFnPg19//RXe3t585ZBUKoWPjw9JAyd1eeYBNvqekydPvvH/KS8vJ/tOWI7T7OxsrFu3jm/6OHHiRLLts/369cOBAwdgZmamck6lbGLJUn0DQKUq+9y5c5BKpWSxAWXyw9/fH+bm5iqfEWXlmTq2ws+ZMwdbt25V+ezHjBmDQ4cOkcRXh8qKpWe++i653Nxc5ObmCo7LwXqusVTfcM2L27Zti7i4uBoL+Fz1s1BYzzVW6puJEydi4sSJyMnJwenTpzF9+nR8+OGHsLGxwbBhw8jutdu3bw8rKyuSWHXBWn8DAB07doSlpSXTY9QGxU6qw4cP4+uvv1Z5bd++fZg8eTImT54sKHZtCxpyuRwlJSVo1KiRoNgcLPU0FRUV0NTUxNKlS/n7q759+yI/P59vJsv9P+/C9evXYWJionLNr77rq6o+SwgLFiyAi4sLpFIp5HI5pFIpfH19BcflYO2xZwmnx/zrr7+QmJhIuvOrKp999hn/DDto0CDk5+eTq7JERP7LiIl2EREGPH78GEOHDkXHjh2hoaFBXuVZfYt6XFwc6RZ1uVwOW1tb9OjRQ+XGkGr7cr169fitsnp6eigrKyOJWx2WDvhOnTqhS5cuJLHqgqWeJjExEdu3b0doaCgqKysxZcoU5OTkQKFQwMvLCwMHDiQ5Dku3Nut5sHXrVoSGhvKqhuzsbCxcuBAHDx4UHFtdnnmAjb6nXbt2b/x/pk2bJjgJpY5xKpPJUFRUxM+tu3fvory8XHBcQNkkFoBK4l4ikZDu4GGlvrl//z6Cg4Ohq6sLR0dHzJ07Fw8ePECjRo2wdu1a3hUuFC7ZWv2BnjLRznIr/NmzZ7Fr1y5kZGTgk08+4ZNNCoUC3bt3JzkGoB6VFcvFS+46xtG0aVPs3LmTLD7rucZafQModXE2Nja84ogaVnNNXeqb1q1bY8qUKZgwYQIOHDiATZs2Yfv27WQ+5s6dO2Pu3Lk1FrMoqnnVob/hFrN0dXWZ/R2sEuEJCQm4dOkSzpw5o3JurqioQHR0NCZPngxra+t3jl+VXbt2oVGjRrC3t4eTkxOaNGmCXr168Q3FhcBST+Pm5oa5c+fCxMSEPzdXbTScmpqKgIAA7N27953icwut48aN4xf/ODIzM3Hw4EFeiSOUly9fIjo6GoWFhZBIJGQLHRysPfbqYOrUqWjbti25Li4vLw8vXryAh4cH/Pz8+HsWDQ0NzJw5E2fPnhV8DBERETHRLiLCBNbNh6puUdfS0sKSJUtIt6iz3r6sDr8zawd8s2bN4OjoiF69eqk8yCxevJgkPsBWT7N582Y+AXvu3DmUlJQgOjoaRUVF+Pbbb8kS7Szd2qznQb169VRucNu0aUO+04O1Zx5gq+95HRTVbeoYp/Pnz4ezszMePHgAW1tbSCQSMk+lg4MDr9hhBSv1zfLly/HVV1/hxYsXcHJygo+PD8zNzfHo0SMsXbqUZMEJUFZfTp8+nSRWXbDcCm9jYwMbGxvs3buXVIVSHQ8PD+YVeaw888+fP+dVPc+fP8elS5fQvn17tG3bVnBsDtZzjbX6BlBWtM+dO5c0ZlVYzTV1qG8qKytx6dIlREVFITU1FZaWlti2bZtKolEoDRs2RMOGDVFUVEQWk0Md+htuMatly5Zo2bIl6d/BOhFuYmICTU1N/PLLLzAwMODvHyQSSY3EvlDi4uIQHh6OQ4cOYciQIZg1axZcXFxIYrPU06xbtw5r1qzBkydPYGZmhtatW0MikSAnJwcpKSnQ09PD2rVr3zn++vXrceHCBfj7++OPP/7gx2dBQQE+/vhjODk5kS12hIWFoXfv3uT9CThYe+zVgYaGBhNd3L1793D06FE8ePAAq1at4l+XSqWwt7cnP56IyH8VMdEuIsIAVomtwMDAGq+VlZUhISEBCQkJZM5ZU1NTnDlzBs+ePcPUqVORmZmJzp07k8QG2Pud1eGANzMzI1GIvA6WehptbW106NABgDL57eDgAKlUiiZNmgje3loVFm7t6goCrpdAeno60tPTyRJoenp68Pb2Rp8+faBQKHD58mX+M6OCtWceYKvveR0UC2jqGKfm5ub46aef8OLFC2hqapI++P3666/o3bs39PX1yWJWh5X6RiKR8OPw1KlTvBKlQ4cOpOeIvLw8JCQkwMjISKXak1KJwlp/AygT7suWLUN6ejqkUikMDQ0xe/ZslcU6IRw4cACmpqbklX9VYeGZDw4Oxrlz53Dw4EEUFRVh5MiRsLS0xMmTJ/HJJ59g2rRpJO+d9Vxjrb4BgNGjR2P69Ono3r27yhyjurdjNddYq29WrVqFW7duwcjICI6Ojli/fj2TAo2CggJ4eXmRxwXUo7/hxkldVedCYJ0I19HRQd++fXHo0CEkJiZiyJAhAIDIyMi32kH3d5DL5ZDL5Th58iR/P1paWkoSm6WeRldXF1u3bkV2djaSkpL480+PHj3g4uJCsnD56aef4tNPP0VFRQVfgd+kSRPyIhMWSsOqsPbYs+Tly5cAgIEDBzLRxZmbm8Pc3Bz29vbo378/CgsLoaGhwWtKRUREaBAT7SIiDGCV2OKaYqampiI/Px8WFhZQKBRISkoirQxj2RwQeDu/sxDU4YAfOXIkrl69iqysLNjZ2SE3N5csocLBUk9TXl4OuVyOsrIyxMfH8w2EAKUXkAoWbu3qCgJW+Pr6IioqCleuXIFUKoWFhQXs7OxIj8HaMw+w1fewhuU4vX37Nvbs2cNXzG/cuBGxsbFo0aIF/Pz8SLZHp6Wlwd7eHvXr14eWlhb/MCm0OWBVWKlvqiayqj+AUSa54uPja6gsqFQK6tLfAMqK1XHjxmHJkiWQyWRITk6Gp6cn2YIW68QEwMYzf+LECYSHhwNQXvtNTEywbt06yOVyTJgwgSzRznqusVbfAErFCkt1DMu5BrBT39y9exdaWlrIyMhARkYGf/7hvmOqQgqFQoGIiAgYGxurLERQ9tRgqb95m6rzd0VdifAFCxaoLIyWlZVh4cKFfJNmCoYOHYoBAwbA1tYWnTt3RlBQEExMTMjiA2z1NG3atCEtxqgNTU1NZuchQLkgUV2jRHlv/zqP/b8dOzs7SCSSWneFUp6vFQoFbGxsmPShEhERERPtIiJMYJXY4ip14+LiVBx8rq6umDFjhuD4HCybAwJv53cWgjoc8P7+/sjOzsajR49gZ2eHiIgIFBYWklZDsdTTfPHFFxg1ahTKy8thZWWFLl26oLy8HMuXLydppMjSrc1VbclkMly8eBH379+HVCqFvr4+aSOz8vJyNGzYEIaGhgCUW9dPnDhB+oDD2jMPsNX3vA4KdQzLcerj44N58+YBUH4m169fR3x8PL8TKSQkRPD7Z9UcsCqs1Dd//PEH5s6dC4VCwf8bUH6vd+7cERyfg6UPVF36G0B5frCxseF/trOzI2uECrDptcDB0jPfoEEDfgHx119/xbBhwwAot6lTLiyynGvqUN8AyvuV+fPnk8asCmv3Liv1TWhoKHnM2sjMzERmZiaioqL41ygT+az1N1Wrzquqjij1K6wT4cXFxSp6D0dHR5XvgwI3Nze4ubkBUN4fjRo1Cm3atCE9Bks9zftMRUUFysvL4eXlhT179vDXmsrKSkyfPl1wIVZkZGSdv4uJiWG+QEFBXFwcAOWzePVxSXnvtW3bNmZ9qERERMREu4gIE1gntnJzc5GZmQkDAwMAwMOHD/H06VOy+CybA6oDdTjg09LSEBoayi9GzJ49G+PHjyc9Bks9zYQJE/Dpp5+iuLiY3/atpaUFc3NzjB49WnB8dbi13d3doVAo0KtXLygUChw5cgTHjx8n23nBqhFRVVh75gE2+p63gaIK8HXjVKiPWUNDg1caxMbG4ssvv0T9+vWhp6dH9j3n5OQgKCgIhYWF2Lp1K06dOoVevXqRLjayUt9UbWBY3b1M6WLOzMyEn58fSktLERERgeDgYFhYWAj22QLq098AynEZHR2Nvn378qopykQyy14LLD3zcvn/sXfucTGm7x//zMi0KHI+JWS/hEo6sE7bKsRa7KJyqBwirDZCSMihk7NIdq0QsVm7m0ObkENhk7XYyiHHcojapaTQzDTz+2N+8+xMxVrPfT9T3O/X6/f66Znv67rvnZn7mZnrvu73pcDff/+N4uJipKWlcfeeFy9ecEfkSUBrrQmlvgFUDvU5c+bA0tKSeBNLgO5aA+irb9zd3Svcm2vUqIFWrVrBy8uLd0NxdUKfRDPp8gihv1FXnR86dAhZWVkoLi7mEpl8G3GqoZ0INzAwQExMDKytraFQKHDu3DkYGhoSiw/QrTZXQ1NPoz7JUR1JSUnB9u3bkZ6ejs8//5y7LhaLeSumANXJshYtWqBnz55UK/Jp8vTpUzx9+hT+/v5azUrlcjlmzJhBbMNUiD5UDMaHDFtNDAYFNBNbHTt2RM+ePbF8+XJi8RcsWICAgAA8fPgQYrEYTZs2JdqE09fXF+PHj0d2djYGDRoEAMSaAwoBbQc8oPrCI5PJuC+7T58+JV45T1tPo05AaI5hb29PxF8shFs7Ly+PUxKoIZWQAOg1IgKE88wDdPQ9at6U3AoMDCQyRsuWLbFs2TIsXryYu+bs7IyZM2di/fr17xxXvXlYVlaG06dPY+PGjdxjpFyeAQEB8PDw4PQhDRo0wPz584lUaNJW32j+6H38+DEePHgAW1tb7jg2KZYvX44lS5ZwTbl69+6NRYsWETkFJpT+BgBCQkIQHh6OzZs3QywWw8LCgujnphC9Fmh45mfMmIGxY8eiqKgIs2fPRsOGDVFaWgpnZ2ctFRRfaK01odQ3gEpHU79+fSrNOAG6aw2gr75R338cHBwgEomQkpICQNWo1t/fn/drnZaWhuDgYEilUiQmJmLdunWws7ND7969ec9dKP0NAEyZMgVFRUUVigRIVM7TToSvXr0aUVFRWL9+PcRiMSwtLbFy5Upi8QFhqs1p6mnc3d0RExNDJJYm6nVVGSKRqIJ26l3HcHBwwIEDBzBs2DDe8crz22+/4ciRI0hMTMTt27fRv39/ODk5oWnTpsTHogXtZqVqRZwQfagYjA8ZlmhnMAiiqcuIiorChAkTkJeXh3v37uHBgwfEfNs9evTAvn37iMSqjHnz5kGpVKKsrAx//fUX6tati/nz56NVq1aYNWsWseonWtB2wAPAxIkT4erqitzcXHh6euLu3btYsGAB0TGE0NPQGkMIB7yFhQXS09O5hOLVq1dhYWHBO666ytLe3p5KIyJAGM88TX2PGpqJZEClOti+fTtu3ryJ9PR07rpcLodcLucVu2fPnpg6dSpevnyJNm3aoHPnzpDL5YiIiCB2r1YoFLC3t+d6RPTo0QObNm0iElsI9Q2gquhNTEzEixcvcPDgQaxatQqNGzfmjt7zRU9PT6uB5ccff0ysWalQ+htAdWQ9JCSEaExNhOi1QMMz361btwoVePr6+oiMjETr1q35TpmD1loTSn0DqCq/S0pK8OzZMwCqz1GSp49orjWAvvrmwoULWp8t1tbWmDhxImbOnElEd7BhwwZER0dzlc0eHh74+uuviSTahdLfAEBRUVGFIgRS0E6EGxoaYvLkyVprwMfHB9u2bSM2Bs1qczU09TQtW7bE7NmzKzQ15lugER8fD6VSie+++w5mZmbo3r07t5mSk5PDd9pa1KxZE9OnT+fu0RMnToSLiwsGDhzIK27dunXh7OwMZ2dnPHnyBImJifDz80NZWRkcHR0xceJEEtOnSvlmpaRRn24Rog8Vg/EhwxLtDAZByusyXrx4gcTERDx79oyYLgMAIiIiKlTEAiDW9MvFxQWGhoZcs6OUlBQ8ffoU3bt3R1BQUJVvpEjbAQ8A/fv3R69evXDr1i1IJBK0adMGH330EdExhNDT0BqDtgMeABITE7Fr1y7UqlULSqUSr169gpGREfbv38+rCZ4QjYiE8MwLoe+hmUgGVBW2ffv2RVhYmJbSQiwWo3Hjxrxiz5gxA7///juKioq451yddNKsnueDnp4eUlNTOX3GsWPHoK+vTyS2EOobQOU1jY2N5e4RCxYswKhRo4gl2g0NDfHTTz/h5cuX+PPPP3Hs2DE0bNiQSGyh9DcA8OTJE5w9e7ZC8oPExhwgTK8Fmp7569evIy4uDs+fP9e6t4aGhhKJT2utCaW+AYBNmzbhl19+QWFhIVq0aIHc3Fy4uroSi09zrQH01TcymQzR0dGwtraGWCxGRkYGCgoKcOnSJSI9QfT09FC/fn1ujTVs2JD4yRfa+htAtQFx8+ZNLU87KWgnwiMiIhAXF0dtDQDVvxlqq1atAKgaZJNEfbLy4sWLmDVrFnd9yJAhvBrpVkZ0dDT3vREANm/ejHHjxvFOtGtSq1YtGBgYoE6dOnj48CGePHlCLLYQ5Obm4quvvqrwmcn3N8i9e/e0NsfU31euXbuGa9euET0hz2B8yLBEO4NBkPK6jKFDh0IkEhHVZQCqpNnx48e5L0WkSUlJ0UrkOzs7w8PDA1OmTKEyXnXkzJkzWLNmDfLz8wGomoDNmTMH3bt3JzaGEHoaWmPQdsADwOnTp4nEKY+6EZEQ0PTMC6HvoZlIViORSODv748jR44gLy8Pnp6euHHjBhE9gfoovaYa5euvvyZWqRocHIzw8HAUFBTA09MTXbp0QVhYGJHYQqhv1PGBf1QrpaWlvE8TaBIaGoro6GjUr18f3333HdHnSCj9DQAkJydXOFpPamMOqLzXAkklHUDXMz9nzhy4u7tTO8JPa60Jpb4BVPfp48ePw93dHbt27cKVK1eINqKnudYA+uqb8PBw7NixAxs3boRSqUTr1q2xfv16yGQyIpo3Y2Nj7j2UkJCApKQkIr1GNKGtvwFUm6Pbt2+HgYEB91nPp/hAE9qJ8NOnT1NdA4B2tTkAjBs3roJajC809TTe3t5UP88kEgnCwsLQtWtXbkNL/T2AFGVlZVrfFRUKBZHNMplMhuTkZMTHx+P27duwt7fH9OnTYW5uzju20Gzbtg0RERFo1qwZ0bi1atWisgnHYDC0YYl2BoMgQugyAMDU1JRqwxJ9fX2EhIRwVUOZmZmQyWQ4e/YsteR+dWPlypVYvXo115D2+vXrmDt3Lg4ePEhsDCH0NJpjTJo0CXfu3IG/vz+R2LQc8BEREfD29oaPj0+l1WaaVax8EGIzhaZnXoj7kWZya9KkSbC0tCRWoarJ4sWL0aBBA5w/fx6enp44f/48vv32WyIbEjTVKMnJyRU83du3bydSHSaE+gYAvvjiC3h4eCAnJweBgYFIS0uDh4cHsfjR0dH4+uuvta6FhYVh/vz5xMagrb8BQKxB2eu4d+8e12tBTXx8PNHXmqZnvlmzZsQrUzWhtdaEUt8A4E5SlZWV4dWrV+jcuTNRzz/ttUZbfdO0aVMMGzaMq/AUiUTIz88n4h4HVCqFQ4cOwcbGBpcuXYKDg4NWw0YS0NbfAKpiHFrQToTTXgNAxabAP/30E9GmwABdPY368+zly5c4cOAAVq1ahSZNmhDb+NuwYQMOHjyI8+fPQ6lUclX/JHFzc8OQIUNgamoKhUKB7OxsItX+PXv2RP369fHpp5/C3t4eAHDr1i1OFadujl4daNOmDdHPdzWNGjXCV199RTwug8HQhiXaGQyCCKHLAFRf4AYOHIhOnTppVaaSSjBu2LAB+/fvR1paGpRKJUxMTBAZGYmXL1/yaj74PtG4cWMuyQ4AZmZmxJU1QuhpaI9BwwHfr18/AJWrH0ge8xZiM4WWZx4Q5n7UuHFjuLq6cj+EU1NTeStdKuPRo0cIDQ3l9CVubm7EftzTUKOcPXsWZ86cQWJiIu7evctdl8vlOHz4MJFEuxDqG0C18WNvb4/09HRIJBJMnTqViGv26NGjiI+Px4ULF5CVlcVdl8vluHbtGtFEO039ze3btxEUFIScnBxYWloiICCA6BpIT09HRkYGdu7cidzcXO56WVkZtm7dii+++ILYWDQ888nJyQBUFbsrV66EjY2NVqGAOhnyrgix1gD66htApcqKjo7GkCFDMGzYMDRs2JCIekiotUZbfePl5YWioiI0bdqUew1INfkEgKCgICxevFirSSPfptvloa2/AVQKiJCQENy7dw9lZWVo3749AgICtPz87wrtRDitNaAJ7abAAF09zes+z0gl2hcsWIANGzYQifU6vvzyS/Tv3x+3b99GjRo1YGpqSuR1rqwYidS6EpoGDRrA1dUVVlZWWr/1+apdqmN1P4NRHWGJdgaDIELoMgDybtnyGBgYVDpG/fr1qY5bnWjevDm8vLzQo0cPKBQK/PHHHzA0NOSUOySqkoWoqD59+jT27t1bIXmwc+dOIvFpOODVaysmJqbCjwEXFxdiTmEhNlNoeeaBN9+PRo4cSWT+8+bNQ5MmTbiNgt9//x379+/HihUriMRXI5PJUFRUxG2k3L59m1On8IWGGqVLly7Q09PD6dOntY7oikQiODs784qtCW31DaBK2uzfv5+7R6hVKHwTjAMGDECnTp2wfPlyrfulWCwmXsVFU3+zbNkyeHt7o0uXLjhx4gTCwsKIaCzUNG7cGLVr14ZMJtNqoiwSiYhqPwA6nvnyG2Ll9Tp8E+1CrTXa6hsAWpsC9vb2KCgoQMeOHXnHFWqt0Vbf0GryqW66fePGjQpNt2UyGdGxaOtvANWGgb+/P5dQu3z5MpYuXUrkex3tRHj37t3RqVMnAGTXgCa0mwIDdPU0tHVuRkZGWLt2LSwtLbU+B/jeqzV5/PgxNm3ahGfPnmHDhg349ddfYWVlxfs79ttUagcGBmLp0qW8xhECGxsb2NjYEI87b9484jEZDEZFWKKdwSBMZV8SSP7YA1RHTRMTE7V8xW3btiU6BuPNNGvWDM2aNeOOgqp/GGgmQvgiREV1SEgIFixYQNwBqIaGA/7IkSPYsmULsrKy0KNHD26DQKlUEv1BJsRmCi3PvJqWLVti2bJlWhXOzs7OxKr0cnNztZoq+fj4cJsqJPH19cW4ceOQnZ2NgQMHQiQSISgoiEhsGmoUAwMDdO/eHYcOHUJWVhaKi4u592lhYSGJaXPQ1qKoE4w07hHGxsZYu3Ytzp07h+fPn3PXHzx4QPSIN039jUKh4DY8Bg4cWGmjcj40b94cX331Fezt7SGRSCpsipKEhmdec0Pm0aNH3GmIO3fuEEnyCrXWaKtvgIrJp0uXLsHIyIjIBq8Qa412tTOtJp80m26Xh7b+BlA1V9WsWrWysiJ22o92IjwsLAzbtm2Dnp4eWrRogRYtWhCLrYZ2U2CArp6mss+zcePGEZi1CplMhr/++qvCfZ9koj0gIAAeHh74/vvvAaiqt+fPn0+kR8G/oXnyqSozePBgxMfH4+rVq9yaHjx4sK6nxWAw3hKWaGcwqiGLFi2i5itmvB20mxEBwlRUt2rVitNO0ICGA97JyQlOTk6IiorS+lFMGpqbKUJ45tVVejdv3qxQpUeq+kkkEuHUqVPo2rUrFAoFzp07R6V/hK2tLeLi4vDkyRNIJBIYGhoSi01LjQIAU6ZMQVFREZo0acJdI6k6AOhqUQDVOhg1ahSRWJUxceJEGBsbV3iOSELzNS4/V9JzV7Nu3TokJydzz5M6SffTTz8RG4OmZ37VqlV48uQJV4UfFRUFIyMj+Pn5EYlPa63RVt9oQjv5RHut0a52ptnkUyKRYPLkyTh27FiFzSxvb2/e8dXQ1t8AQN26dbF161auGfS5c+dQr149IrFpJ8Jr1aqFAQMGwMzMTKuampQaE6i8KTDp3jI09DT37t2DiYkJevXqRe3zDKh4Wk0mkxGvAFcoFLC3t8fWrVsBAD169CDuga/uBAQEoF69eujWrRtkMhnOnz+PtLQ0YkUmDAaDLizRzmBUQ2j6ihlvB+1mRIAwFdVt27bFjBkzYGNjo+UAJNWQk4YDXrOCWvPfavj6C9WQ/HFdHiE880JU6a1YsQLr1q3DqlWrIBaLqTVD/fnnnxETE1MhAcKn0lYNLTUKQE91oAntY+Tm5uZYsWIFbG1tqSQYa9asSVS1Uhk0X+N79+5p3YfK/03qfnTlyhUkJydTSeTT9swDqqbYms0eg4ODiX3OAPTWGm31jSa0k0+01xot9Y0amk0+AWDatGno06cPtRN+gDCfCWFhYYiOjsbmzZshEolgYWFB7HOZdiK8suIJUvc8dUNMQKVTGjBgAPf3o0eP8PHHHxMZB6Cjp5k+fTpWrVqFRYsWISwsjCvEKSkpwa1bt4jN/6effuKa3EskEigUCnz22WdEYqvR09NDamoqFAoF/v77bxw7dgz6+vpEx6juPH78GKtWreL+Hjx4MNFG9AwGgy4s0c5gVENo+ooZbwftZkSAMHoaQ0NDGBoaoqioiFhMTWg44EkfG9cFQnnmJRIJ/P39ceTIES3VVKNGjXjFVZ/gqF+/PpYtW6ZVmUeDqKgoREREUEmA0FSj0FIdaEJTiwKA6xFBK8HYt29fJCcnV9jsI1kJS/M1njFjxhv/JoWZmRkKCgrQoEED4rFpe+YBVRJZcy2kp6cTVeDQWmu01Tea0E4+0V5rtNQ3QpwAA1Ru6tmzZxOJ9TqE+EwwMDDA9OnTqcSmmQgH6H4nUldlqxVH6nmr/02qNxFAR08zdOhQhIaGIjs7m6uUV0Ny/rGxsUhKSsKkSZOwa9cuHD9+HA8ePCASW01wcDCXzPf09KRyqqC6I5PJkJeXx/UFefz4MdEiCgaDQReWaGcwqiG+vr4YP348srOzMWjQIAAg6sFk/Du0q0gBYfQ03t7eSEtLw7Vr1yAWi2Fubg5ra2ti8Wk44NXNjuLi4qgldmkjlGceABYvXkxcNeXv7481a9Zg8ODBWq+B+gcriUpzTdq0aUM8qaWGphqFpupADS0tivp+o+n3p8HevXsr3DtJv4dovsaazdekUiny8/NhbGxMfJz7jVmpiQAAIABJREFU9++jX79+aN26NWrUqEFUHUPbMw+oGtAtWbIEd+/ehVgsxscff1whWcQH2muNtvoG0E4+TZo0ifgJIdprjZb65k0nwEjyySefYPfu3RX0QCQrnWm+T83MzNCkSROtSnOA7OcyrUS4EN+J1O/Dn376iVhD+NdBQ08zefJkTJ48GQcOHMCwYcMIzbQi+vr60NfXh0wmg0KhgKOjI9zd3Yl44F++fAlAtRGxcOFC3vHeBVo9Tkgza9YsTJgwQWtjaPny5bqeFoPBeEtEyupyt2EwGByOjo5QKpV48uQJatasibp160JPTw+tWrXCrFmziDTbYbyZ3bt34+jRo8jJyYG9vT3OnTuH8ePHY/To0cTGKK+nCQ4OJq6nCQkJwf3797UcgJ07d4avry+R+F5eXtiyZQuRWOVZsWIF92+5XI4///wT//vf/4htOhUVFSE6OlprE8Ld3R116tQhEh8Adc88AIwfPx47duyAu7s790PTzc0NMTExvGOfOHECffr0qfDDnjQLFy7EzZs3YWVlpVWJSULLsW7dOkilUmpqFNqU16Ko4fujfvbs2VizZg0cHBwE2UyhiRCvcUJCAiIjIwEA8fHxCAoKgrm5ObFGkw8fPqz0Oom+HR4eHlrVkOX/JolMJqN+v6DBmDFjtNQ3gGqTi+SmxHfffYcpU6YQiyc0EyZMwPbt26l81gCqxq0nTpyg5lCvrJE36UpnmsTExODkyZPQ09NDv3790L9/fxgZGRGJrZkINzQ0rJAI37FjB5FxhPhONGvWLEyfPl1L7UIKTT1NZZDYtNm/fz9kMhm+/PJLTJ06FYWFhRg5ciSx3x9hYWEwNjZGYWEh0tLS0KxZM2RnZ2Pfvn28Y6u/T2ieKADIfa+IiIh44+Pe3t5V/jOofB+rwsJCiEQirs8Cq/xnMKoHrKKdwaiGuLi4wNDQEI6OjgCAlJQUPH36FN27d0dQUBCvZjuMf+fGjRvIyspCTk4OateujbNnzyImJoa4lkAIPc2VK1e0EgVeXl5Eq8ZoOuDnzZun9XdZWRl8fHx4x9WMb2dnh+nTp3ObEP7+/hWqud4FoTzzAF3V1LFjxxAWFgZLS0sMHDgQn376KfFTFwBgY2MDGxsb4nEBOmoUoVQHAD0tilodcuLECaJx1QQGBmLp0qUYMWJEpc8RySaftPU3gCrJ9csvv3BJIj8/P7i7u/NOtMfGxmLUqFGIiYmp9Hkica8QwjOflpaG4OBgSKVSJCYmYt26dbC1teXdjFuotUZbfQMAT548wdmzZ2FhYaGVCOKrdhFqrdFW33h5ecHJyYm3+ux1kGo6WxlCvE/d3Nzg5uaGx48fIyEhAVOnTkXt2rXh5OSE/v3789JOCdWEvkePHggNDSW+caxJZmYmhgwZglq1akEikXBJXhKnCoTQ0/zwww/YvXs3EhIS0L59e8ybNw/jxo0jlmifP38+d6Kte/fuKCwsRI8ePYjEftP3CZlMxjt+/fr1AajuzwUFBbCzs4NSqURaWhrXuLcqJ9kB1W/M58+fo3fv3rC3t0ft2rWrTRU+g8H4B5ZoZzCqISkpKVrJUWdnZ3h4eFTrSqjqQmpqKoKCgjBt2jRMmDABJSUlyMjIwPjx4xEYGEjsyyggjJ5GLpfj1atXXIPSFy9ecOOSgKYDXn0EVc1ff/2FO3fuEItfUlKCiRMncn9bWVlh/PjxRGIL6Zn39fXFuHHjkJ2djYEDB0IkEiEoKIhI7NDQUCgUCly8eBHHjx/Hd999BxMTE+J+55MnTxLZ4NCEphpFKNUBQE+L8rqknBq+yblvvvkGAIi/rpoIpb8BgBo1akAikXDPGakNJ3XFurrxHQ2E8Mxv2LAB0dHR3Gaoh4cHvv76a96JdqHWGm31DQAkJydX2AwiUeUpxFoD6KtvWrRoQeW9OX36dGzatAmffPJJpfc8EglYoT8TJk6cyJ24WLt2LSIjI5GcnMw7Nu1EuHqDkmZDWppNdYXQ04jFYujp6eHIkSPcaY7S0lJi8c+fP49Dhw5h+fLlsLOzg7e3N4yMjDi9GB/mz5/P6beAfzaSAZX/n+9GhLqI58SJE4iKiuKuT548GdOmTeMVWyh+/vln3Lt3D7/++is2btyIZs2awcnJCX379oWBgYGup8dgMN4SlmhnMKoh+vr6CAkJgbW1NcRiMTIzMyGTyXD27FnUrl1b19N7r9myZQu+/fZbtGrVirtmbm6OXr16Yc6cOUQT7V988QXGjRuHe/fuITAwkNPTkGTcuHEYOnQo2rRpA4VCgXv37hF1ztJ0wGv6wUUiEQwMDLQS43xRKBTIyMiAhYUFAODPP/+EQqEgEltIz7ytrS3i4uLw5MkTSCQSGBoaEo0vFoshkUi4/yu/AUICIyMjrF27FpaWllrVSHwqkml65tXNbrt16/bOMd4Wc3NzrFixgrgWhXZSTl2VSkJ98jqE7CVgbW0NPz8/5OXlYcuWLThx4gR69uzJO646Ea3pgieNEJ55PT091K9fn3sdGjZsSOTeJ9Ra69ixI3bv3k1VO7Bq1SpYWlpqXSOR5BVirQGqzzOa/YJGjBiBqVOnomPHjlon5PiqYzZt2gQAOHfuHK84b0L9Pm3RokWl+htS79+ysjKcOXMG8fHxSE9PR+/evbFx40YiSVKAfiKcZj8NNeWb9v7666+wsrIiuj5+++03dO3alYqepnPnzujfvz/atm2Ljh07YteuXVy1NgnWrl2rdaJpyZIl8Pb2RmxsLO/Y5RVoCQkJ3OtNsmo7Pz8fN27c4Daoc3JyXqtfq4qYmJhg2rRpmDZtGm7evIlff/0VK1euROfOnfHtt9/qenoMBuMtYIl2BqMasmHDBuzfvx9paWlQKpUwMTFBZGQkXr58ifXr1+t6eu81crlcK8muxsTEBGKxmNg4QulpPv/8c3z22WfIzs6GWCxG69ateR9T10TTAf/q1StERkbydsCr/YXdu3ev8NjFixfh7Oz8zrE1WbRoEUJCQnD79m0AqorSwMBAIrHV3Lhxg/u3pmeelNcZUFXHxMTEVPhhTyLJuGDBAly4cAGdOnXCgAEDMHnyZCoVNzKZDH/99VeFOfNJJtNWowgFLS2KOulAywEvBEK+xr6+vrhw4QLat2+PmjVrYv78+bCysqI+LkloeOZ9fHywYcMGGBsbc9XOCQkJSEpKItpkkja01DeAKgl09+5drF27FrNnz+auy+VyBAcHV5t7FC31jZrw8HCq6hghoKm/WbJkCa5duwYLCwu4urpi5cqVxDfyaSfCaW0ca0Kraa8mNPU0CxcuxDfffMM5ux0dHYn2hyorK4OJiQn3Nx/lUHnKvx81v1OQfK8uWLAAAQEByM3NhUgkQtOmTYkqGYVAqVTi3LlziI+PR1paGnr37o2BAwfqeloMBuMtYYl2BqMaYmBgUOnxU7WbjkGPN30RJKUKEFJPc+bMGcTGxlZIopFq/kXDAS+Uv7BDhw6Ijo4mHlcT2p55QNVcLCIigkoFmqOjI5YsWULFy65JaGgo8Upb2moU2gilRaHlgC9PUVERxGIx0Y0aIV/jW7du4bfffuPW7/Lly1GnTh1BNVF8oeGZLywsBKB6Pg4dOgQbGxtcvnwZjo6OGDRoEJF5CwEt9Q0AvHr1CpmZmXj69CkSExMBALm5uWjZsiWxRp+a0FhrAD31jRpjY2Nijdp1BS39DaDqvyKRSJCVlYWsrCwqfnDaiXAh+mkoFArY29tj69atAFQ6HPWpBlLQ1NOcPn0ae/fupfa9fcCAAXBxcYGlpSWUSiUuXryIYcOGEYldHlonOnv06IEdO3YgJycHYrEYbdq04RSZVZ309HTEx8fjt99+4/ofLVmypMq75RkMhjYs0c5gMBj/gczMzEq9i0qlEtnZ2UTGEFJPExwcjICAADRt2pRYTE1oOOBp+wvd3d3f+OWf1I8ZgL5nHgDatGkDU1NTojHVxMbGws7OjnqinUalLW01CqCqBg8JCUFOTg4UCgXat2+PgIAAIsfJhdKi0K5gPHv2LJYtWwZ9fX1IpVLUqFEDS5cuha2tLe/YQrzGagIDA7WSgCNGjMDSpUsRExNDJP7Dhw+xceNGLQ3XN998gyZNmhCJD9DxzJdvrKqubr5y5QquXLlCrMqQ5loD6KlvAODp06dIS0vD9u3bYWpqigkTJiAvLw+5ublwcnIiMgZAd60B9NQ3alq3bo05c+bA0tKSeHN1NS9evEBOTg5EIhGV5Bwt/Q3wds1ck5KSOF/8u0A7ER4aGor79+/j+vXrEIvF6NSpE5o3b04kthraTXsBunqakJAQLFiwgNrm9+TJkzFgwABcvXoVNWrUwMSJE4lpdV7XeFupVOL+/ftExgCAAwcOYNOmTWjXrh2kUikePHiAOXPmoH///sTGoIWLiwtMTEy4jY7Dhw/j8OHD3OPV4TQhg8FgiXYGg8H4Txw6dIj6GELpaQDVD9fevXsTjakJLQc8TX9hZT9Wz507h/Xr16NTp068YpeHtmceUB37dXV1hZWVldYPexIJruLiYtjb28PExAQ1a9bkkrykq8FpVNoKoUYJCgqCv78/zM3NAQCXL1/G0qVLiWzWCKVFoV3BuHHjRuzatYtLGD969AizZ8/Gnj17eMcWUn8jl8u1EpadOnUietImICAAo0ePxvz58yGTyXD+/HkEBARw+gMS0PDM16pVS5CqflprTQj1zbp167B69WqYmJjg8OHDePHiBRITE/Hs2TN4e3tX+bUmlPqmfv36qF+/PpXm6oAqORcREYGPP/6YWnJO1/qbnTt38kq0006Eb926FQkJCbC2toZUKkVERAScnZ0xZswYYmPQbtoL0NXTtGrVishJmjfRunVrtG7dmnjcNzXeJtnwe8+ePThw4AC3sVtSUgJPT89qkWgn2TuGwWDoDpZoZzAYjP8A7WZigDB6GrXOpWnTppgxYwZsbGyoVIjRdMAL4S/MysrC6tWrYWBggBUrVhD74SGUZx4AbGxsYGNjQyyeJqtXr6YStzw0Km3V0FSj1KhRg0v8AYCVlRWxKlihtCjXrl1DWVkZbt26hZo1a3JeWFLJv5o1a2pVZTdv3lwroU8CIfQ3lpaW8PHxgbW1NRQKBdLS0ipU9/KhrKxMq7p58ODB+PHHH4nFB+h45hs1akS1kasaWmtNCPWNvr4+50ROSUnB0KFDIRKJYGRkpPW5zBdaa00o9Y23tzdKSkrw7NkzACp91rJly4jF37NnDw4ePEg1Oadr/Q3fzT/aifCkpCTs27ePe9/L5XK4ubkRTbQ3adIE7u7u6N27N0QiEf73v/8RPRkE0NXTtG3blur3dpq8zWdBYGAgli5dymscsVis9VujTp06xL9X0EKI35kMBoM+1eOOw2AwGB8QQuhpCgoKUFpaCqlUClNTU2oVYjQc8EL4Cx89eoT169cjPz8fvr6+RBNmgHCeeQA4efIkNYVGvXr1EBMTgydPniAgIADnzp0jXvUPVKy0PXnyJDGFEk01St26dbF161Z069YNgOpkhDpRzRfaWpTS0lIsWrQIOTk5aN++PZRKJW7evAk7OzssXLiQ2DjGxsZYunQpunXrxm2eaTZiIwFt/Q2gqmBMTU3FlStXoKenh8mTJxNTcgCqzaXDhw+je/fu3PNEWtlEwzOvmfymCa21JoT6RiqVQqFQoLS0FMnJyZg8eTL32IsXL3jHV0NrrQmlvtm0aRN++eUXFBYWokWLFsjNzYWrqyux+EIk54TQ37wJvptPQiTCNU9uisVi4h7vpUuXIjMzE126dIFCocD3338PGxsbLFiwgNgYNPU0hoaGMDQ0pPa9PSMjAxYWFlrXzp07h08++YTKeOW5e/cu7xjW1taYMmUK7OzsoFQqcf78eWoFJwwGg1EZIiWtX/YMBoPBeCcePnz4xsdJVDskJSUhJCQEjRs3RmFhIVauXIkuXbrwjlueQYMGVeqA55O4MTMz4/yFlSXX+R4BXrFiBf744w94e3vj008/5RXrTag988ePHyfumddk8eLFMDIyqvB8kahI9vb2Rs+ePXHw4EHExsYiISEBcXFxRHUWai5cuIBLly6hZs2a6NKlC7p27Uok7rp16yCVSqmoUYqLixEdHY3MzEyIRCJYWFjAw8MDderU4R1bDS0tSlBQEFq2bIkJEyZoXd+xYwfu3LlDrJJULpcjPj5e6zkaPHgw0Upemq+x2nms2fRZE1IJtLy8PISHh3PPk6WlJXFH+9ixY+Hr68ttEFy9ehUhISHEPPM0obXWBg0aBC8vr9c+TqJaf/fu3di3bx+kUiksLCywYsUKSKVSLFq0CA0aNKjQNPtdobXWXFxctNQ3UVFR2LdvH6e+IfX+cXV1xd69e+Hu7o5du3bhypUrSExM1NLV8GHVqlW4deuWVnKuc+fOmDlzJpH4ABAREVHpdRpNbyvDw8ODV6HDqFGj8MMPP3DJb4VCgbFjx+KHH34gMr/o6GgcOHCAS4L/+eefcHFxIZrIHzlypNaJL4VCgVGjRhE9IZSfn4/w8HBcunQJEokElpaW8Pb2Jna/ruxkx7Zt23jFfJ0CSiaTISQkhLqmTg3f96iaCxcuaN3rrK2tCcyOwWAw3g5W0c5gMBhVDCGODW7duhVxcXGoV68eHjx4gCVLlnBHXElCwwFP21+YmZkJfX19fP/991rPido/TqoZKk3PvCYymQx//fVXheeNRJKxpKQEY8aM4Ro1ff7558R+cGui9iRrVgi7uLgQ+WFMU41iYGCA6dOn847zJmhpUS5evFhp5fr48eMxfPhw3vFzc3O5f3fr1o2rshWJRMjLy0OLFi14j6GG5mv8/PlzAKpTQjRp2rQpQkJCqI5B2zNPE1prTQj1zdixY/HZZ5/h+fPnMDMzA6A6wWBra4sRI0bwjk97rQmlvhGJRFAqlSgrK8OrV6/QuXNnBAcHE4vv5+fHJecAYOrUqcSrYGnrb/4Nvut50KBBGDFiRIVEOCnGjRsHR0dHXLt2DSKRCF5eXsS/E7dp0wZ5eXlcAcjTp0+J9VtQQ1NPQ+tkR2UKKEC17oTaCCLF48ePcfXqVZSUlECpVOK3337Db7/9Vu3+OxgMRvWFJdoZDAbjA0Qz2WRsbIzS0lKi8Wk64GlvRLxNsyp1FStfhPDMh4aGQiqVIj8/H8bGxkRjqxvcqqvbUlJSoFAoiMU/cuQItmzZgqysLC1VjEKhQMeOHXnFpqlGcXd3r/S4+5MnT3Dnzh1cu3aNV3xNaGlR3pQgI9GUeePGjZVez8rKwrVr14g8R0Lob9RJ2KysLAwcOBB9+/ZF7dq1icQGXv9ekkqllW6g8YG2Z54GtNeaUOqbyj7XSPXqoL3WhFLfODk5ITo6GkOGDMGwYcPQsGFDIj1ffv/9d62/O3fuDED1OfP777/Dzs6O9xhqaOtvAGDfvn0V3jvbt2/HhAkTKpxQ+q/QSoRLpVJERkZi+vTpMDY2hrGxMW7evImff/6ZU1mRIjs7G/369UObNm247zBt27bl+p6Q6G9CU0+TkpKC48ePVzjZwZcOHTqgQ4cOcHJyEqSBNU2mTZuGPn36VDhNy2AwGELBEu0MBoPxAVI+MUHagSmUA15X7Ny5k1eiXQjPvJqEhARERkYCAOLj4xEUFARzc3N8+eWXvGMvXrwYixcvRmZmJnr37o0OHToQrc5zcnKCk5MToqKi4OnpSSwuoNIEdOzYUcu/DKjUKCEhIbz+O8pv1pSUlCAqKgonTpzAunXr3jluZZibm2PFihXEtSgNGzZEWlpahYa9KSkpRH68llfb5ObmIjw8HIaGhti7dy/v+ADd17g8Hh4eOH78ODZv3gwTExM4OTnB0dGRtwqq/HtJoVAgLi4OO3bsIKpTAOh75mlAe62R0rboEtprbejQoRg+fDikUin69OkDU1NTTn1D8v2jmSS2t7dHQUEB7w1XAEhLS6v0+smTJ3H79m1cvnyZ9xhqaCVJAeDs2bM4c+YMEhMTtTzXcrkchw8fxoQJE+Dg4PBOsWknwtX3aM2K+9atW6O4uBgRERFEK5HDw8MrXCsuLiaq7cvIyKhUT0MCWic7pk+fjk2bNlXYvFSffklNTeU9xttA4hRVvXr1MGvWLAKzYTAYjHeDOdoZDAbjA8Ta2hqmpqYAVF9q7969C1NTU+4LNd+KHqEc8LpC/SP5XaHtmddkzJgx2LFjBzw9PbFr1y6UlpbC3d2dqI8UUCVvGjVqRLxBI6ByRR84cICoh3z48OH45Zdf/vNj/4WysjL88MMP+PHHHzFq1Ci4uLgQb67n5eWFsrIyiMVirZMqfN9D9+/fxzfffIO2bduiY8eOUCgUyMjIwMOHDxEVFYWGDRuSmD6KioqwefNmXLhwAd7e3kR0LmqEeI0r48aNG4iKisLRo0dx6dIlYnFPnTqFiIgIdO/eHVOmTEHdunWJxBXKM08TIdZadYfmWnv48KGW+gZQVVaPGDGCyAkYQKWD2LRpE549e4YNGzbg119/hZWVFfFTbn/++SfWrFmDli1bYsaMGUS1XGrH+dixY7Ft2zZ89NFHGDNmDPbs2cM7dnFxMa5cuYLly5dj0qRJ3GelSCRC586deVUpBwUFAQDmzp3LfcZLpVKsXr0adevW5Z0IHzFiBH7++ecK10k74AHVOjh06BCn+5LJZNi/fz+Sk5OJjTFnzhz4+flxm9J///031q5dS0T/tX37dohEIujr62PHjh3cyY6oqCjesWnzuh4Fary9vSGTyd656OTWrVsAVAUmDRs2hI2NjdbnAGlFEIPBYLwO9g2UwWAwPkAOHTpENb5QDnhdwfcEAG3PvCY1atSARCLh5kwiEZ6amorIyEjs2rULZWVlmDhxIh4/fgylUomFCxcSbyLr5+dH3ENOW42SkJCA77//Ho6OjoiNjSWqEwHoa1FatWqFuLg4nDlzBnfu3IFIJMLo0aPRq1cvIidgpFIpoqOjER8fjwkTJmDu3LnET9bQfo01kUqlSE1NxcmTJ3HhwgV06NCB2IZZeno6Vq9ejZYtWyIiIoK4j18ozzwtaK+16o4Qa42m+kZNQEAAPDw8uGbbDRo0wPz583ltemuSk5ODNWvWQCqVYuHChWjfvj2RuJrQ0t8Aqj4F3bt3x48//ojU1FQ4OjoCAPbv3897M+LSpUsVEuESiQTz58/H2LFjeSfaX3evFovFkMlkvGKXZ8aMGejatSt+/fVXuLq6Ijk5GYsWLSI6Bk09Tffu3dGpUycAZE92vE7DpYZEf6L69esDUH2mFRQUcI2H09LSuF4RfE52Ll26VOvv8q55Uj2WGAwG499giXYGg8H4AKHtOaftgK/uCNHwVo21tTX8/PyQl5eHLVu24OTJk1q+83dh3bp1WL16NQDg6NGjKC4uxuHDh1FUVARvb2/iiXYaHnKaapSRI0dCJpNh6tSpaNSoEa5cuaL1OAnnrxBaFJFIhD59+qBPnz68Y5VnwIABqFevHkaPHg0AOHDggNbjJNRGtPU3mgwcOBA9e/ZE//79sWDBAmInO3x8fHDv3j3MnDkT7du3h0Kh0GpuSaJpLG3PPE2EWGvVHSHWmhAoFArY29tzm/Y9evTApk2beMd98uQJIiIikJWVBV9fX6rvGVr6G01mzZql9RlfWlqK2bNnY/Pmze8ck3YivH79+rhw4UIF1dCpU6fQqFEj3vE1USgU8PHxwe+//46JEyfCzc0NM2fOJNJ3Rw1NPU1YWBi2bdsGPT09tGjRgljj8MWLFwMAfvzxRzRp0gTdu3fnenWQ0j+qT0edOHFCqwJ/8uTJmDZtGu/46k239PT0Cv1Fzp07xzs+g8FgvC0s0c5gMBgM4tB2wOua6mRd8/X1xYULF9C+fXvUrFkTc+fORdeuXXnF1NfXh4mJCQBV0nLYsGEQi8UwMjJ6YxXxu0LDQx4QEPBGNQofPvvsMwDA7du3cfv27QqPk0jkXLx4sdLK9fHjx2P48OG849NmxowZ3L9prSear3F5kpKSkJeXh4cPH0IikUAqlRJJttepUwcdO3bEkSNHcOTIkQqPk9RM0fLM00SItVbdEWKtCYGenh5SU1OhUCjw999/49ixY9DX1+cdt1+/fjAxMUH//v2RlpZWwdlO0g9eXn9z6dIlGBkZEd18f/78OcaNG8f97erqivj4eF4xaSfCFyxYgG+++Qbt2rVDx44dUVZWhj///BOPHj0ifq+WyWS4fv06PvroI5w9exatWrXCvXv3iI5haGhITU9Tq1YtDBgwAGZmZlrV35Ul9/8LarVQVlYWAgICuOtWVlaYNGkSr9jlyc/Px40bN7hTIzk5OXj48CHvuDk5OcjOzsaaNWswe/Zs7rpcLkdwcDBOnDjBewwGg8F4G5ijncFgMBjEoe2AF4KysjIUFhaiYcOGuHv3Lm7fvo0+ffpAX18fJ06ceOemYkLj4+ODDRs2aF1zcXHh5Wh3dXXFDz/8gNLSUjg6OiImJoZ7vZ2dnbFv3z5ecy6Pv79/pdf5JhmVSqWWGsXU1JSYGuXf4Nvg7U3P88iRI6vFGvs3AgMDKxwF/68I9Rrv2LEDiYmJePHiBQ4ePIjg4GA0btwYXl5eRMepjNjYWOInPmh55nUB6WaK7yMk1hpt8vPzER4ejkuXLkEikcDS0hLe3t5o0qQJr7jnz59/4+PdunXjFV8TT09PTn8TExOjpWEjxZQpU9CnTx9YW1tDoVDg3LlzuHjxItcU/V3Iycl5YyKcRLJdoVDg7NmzVO/VUqkUd+7cQUFBARo0aIDg4GAUFhbCzc0NLi4uxMaZMGFCBT2Nu7s7kar5yt6vIpGI2KbiqFGjMHjwYHTt2hVisRgZGRn4+eefifb1SU1Nxdq1a5GbmwuRSISmTZti5syZvE/PZWVl4dixY4iNjdWKJRKJYGtrWy2KEBgMxvsBq2hnMBgMBnFoO+CFYM6cORg8eDDMzMzg4+M3H9b/AAAgAElEQVSDzz//HPHx8Vi/fn21SLIfOXIEW7ZsQVZWltYxcoVCwfuo+tChQzF8+HBIpVL06dMHpqamkEqlWLRoUYWKNz6ofaaV1QSQ+PFNU43yb/xbcuffEFKLoivu3r3LO4ZQr3FSUhJiY2Ph7u4OQFWhOWrUKEES7QkJCUQS7TQ987qE71r7ECCx1mgTFxeH4OBg4nHfJpE+ffp0IpoaWvobTVavXo2oqCisX78eYrEYlpaWFRRj/5XWrVtj//79WolwNzc3oolwsVhM9V6dlJSEkJAQNG7cGIWFhVi5ciU1ZzdNPU1MTAzx4glNwsPDsXPnTkRERECpVKJt27ZYv349kdhqevTogR07diAnJwdisRht2rTBRx99xDtuhw4d0KFDBwwYMADt27eHXC5nTbEZDIZOYHceBoPBYBBHSAc5Lf7++2/069cPW7Zsgbu7O1xcXDBx4kRdT+utcXJygpOTE6KiouDp6Uk09tixY/HZZ5/h+fPnMDMzA6BqjGZra4uRI0cSG6f8j8n3Cb4HCoXUojD+nbKyMgD/bACVlpZCLpcLMjapw6m0PPO6hh3efT948uQJzp49CwsLCy1lBqlmom+ClKOalv5GE0NDQ0yePBnPnj0DoNpA8/HxwbZt23jFpZ0Ip83WrVsRFxeHevXq4cGDB1iyZAm34UEaGnqaNxVPqJujkqBp06Zwd3fHgwcPYGtrS0yDpsmBAwewadMmtGvXDlKpFA8ePMCcOXPQv39/IvELCgowdOhQSKVSJCYmYt26dbC1ta22710Gg1H9YIl2BoPBYDAq4dWrV/jjjz9w8OBB7Ny5E0VFRSgsLNT1tP4zPXr0QGhoKJ4/f66VcOJbqdqyZUssW7aMa6AFqHQmM2fOJFb99D5s2LwOvlWArVq1QlxcnJYWZfTo0YKpbxjafPHFFxg3bhzu3buHwMBAnDt3DuPHjxdkbFKvNy3PvK5h6+H9IDk5GUlJSVrXRCIRjh8/Tn1sUu+h4OBghIeHo6CgAJMmTYKlpSXxUyMRERGIi4tDYWEhWrRogdzcXLi6uhIdozpSs2ZN1KtXDwBgbGyM0tJSKuNIpVIsXrwYBQUFmDNnDqen8fDw4BWXZvGEJmoN2suXL3HgwAGsWrWKuAZtz549OHDgALdJVlJSAk9PT2KJ9g0bNiA6Oho+Pj4AVP1Hvv76a5ZoZzAYgsES7QwGg8FgVMKMGTOwdetWTJ48GQ0aNEBkZCTvH0q6wM/PD+7u7mjWrBmxmEeOHMH27dtx8+ZNpKenc9flcrlgVbwM3apvGP9w48YNZGVlIScnB7Vr18bZs2cRExNDdM0Jwc6dO7U88zQSLAzGu7Jq1SpYWlpqXUtNTdXRbN4NWvobTU6fPo3jx4/D3d0du3btwpUrV5CYmEh1zOpA+c0SGhtwQuhpaCbZAWE0aGKxWOskSp06dYgqXvT09FC/fn3uNW7YsCHbcGUwGILCEu0MBoPBYFRC7969YWdnh7/++gsA8PXXX+t4Ru9Gs2bNiDdKdHJyQt++fREWFqb1o08sFqNx48ZEx3pfYTqLf6c6PEepqakICgrCtGnTMGHCBJSUlCAjIwPjx49HYGCg1hF/WpB6nnTpmadJdXgf0aSsrAw1atR44/+mKj9HOTk5uHv3LtauXYvZs2dz1+VyOYKDg3HixAkdzu6/IYT+Rt3XpKysDK9evULnzp2pJ/erA5mZmZzaTqlU4u7duxg5ciSUSiVEIhGRBuJC6mloIYQGzdraGlOmTIGdnR2USiXOnz8PGxsbYvGNjY25kyMJCQlISkrCxx9/TCw+g8Fg/Bss0c5gMBgMRiUkJCQgMjISABAfH4+goCCYm5vjyy+/1PHM/hvm5uZYsWIFbG1ttSqG7O3tecWVSCTw9/fHkSNHkJeXB09PT9y4cQONGjXiO+X3huHDh2PIkCEYPHgwmjRpovUY3+Z07wuPHj3Cjh07kJ2dDZFIhHbt2mHcuHFo0qQJb6ewEGzZsgXffvstWrVqxV0zNzdHr169MGfOHKKJ9uvXr6O4uFgrKWpnZwc/Pz8i8XXpmedLeY0VAE5j9aGvtb59+6Jv374YMmTIa5tVV+W19urVK2RmZuLp06dcZXZubi5atmwJb29vQeagVo7wRQj9jZOTE6KjozFkyBAMGzYMDRs2FMRjX9U5dOgQ9TGE0NP8/fffFb5nXb16lZin/YsvvoCHhwdycnIQGBiItLQ0jBs3jkhsNX5+frhw4QIyMzMhEokwbdo0WFtbE4u/fPlyHDp0CDY2Nrh06RIcHBwwaNAgYvEZDAbj3xApq3IJA4PBYDAYOmLMmDHYsWMHPD09sWvXLpSWlsLd3R0//vijrqf2n/D396/0OgkvrL+/Pxo0aIDz589j3759iImJwcWLF7F27Vresd8H8vLycPz4cZw6dQpKpRJOTk4YOHAgDAwMdD21KsOoUaPwxRdfwMrKCkqlEpcvX8avv/6K2NhYXU/trVDrGSpj1KhRxP47vLy88OzZMzRt2pS7JhKJEB4eTiQ+AOzevRtHjx5FTk4O7O3tOc/86NGjiY1BGrXG6saNGzA1NeWuqzVW8fHxOpxd1aC4uBjHjx/H4cOHcffuXfTr1w9DhgzhGllXdVJTUxEZGYnFixfD1NQUEyZMQF5eHhQKBRYuXMh701jNmTNn8OzZMwwePBgLFizAnTt3iHqjASA9Pb1S/Q3JDTnNpGtubi4KCgrQsWNHiMViYmMwKsfDw0NLFVP+bxKMGDECwcHBMDMzg1wux8aNG3H69Gn88ssvROLn5+dDKpUiPT0dEokEnTt3RvPmzYnEVvP48WMcPXq0Qu8gvhtnubm5b3y8RYsWvOIzGAzG28Iq2hkMBoPBqIQaNWpAIpFw1Z3VrSngiBEjuCPk5SHlqnz06BFCQ0M51YSbmxtzwWrQtGlTjBkzBmPGjEFGRgaWLVuGVatWwcHBAb6+vhWq3D9EJBIJ3NzcuL8tLCyQnJyswxn9N960lkjeM4qKirB3715i8cpTXT3zao1VSEgIJk+ezF1nGqt/MDAwwLBhwzBs2DAUFxcjKSkJ69evR35+PgYMGICpU6fqeopvZN26dVi9ejVMTExw+PBhvHjxAomJiXj27Bm8vb2JJdo3btyIqKgoHDt2DDVq1EBMTAwmTpxIJNEupP4mLCwM27Ztg56eHlq0aMGSiwIihJ4mIiICc+fOhaOjIw4ePAgHBweinw2zZs1CTEwMjI2NicUsz7Rp09CnTx+tjWMSODg4wMTEROtzS/0dWCQSEd/0YDAYjNfBEu0MBoPBYFSCtbU1/Pz8kJeXhy1btuDEiROC+JZJsWHDBupjyGQyFBUVccnG27dvQyqVUh+3unD//n0kJCTg2LFjaNasGSZPnoy+ffvijz/+gI+PT7Wp2qaJubk5vv/+e/Ts2RMKhQJ//PEHTE1NcevWLQCo8l5VzcSKJkqlEtnZ2cTGsba2xs2bN/G///2PWEw1VcEzzweJRIJbt26hZcuWup5KlcfAwAAODg4oKytDYmIijhw5UuUT7fr6+jAxMQEApKSkYOjQoRCJRDAyMvpX9/x/QSKRwMDAAElJSXB1dYWenh6nU+KLkPqbWrVqYcCAATAzM9PywJM8/cKoHJp6mpcvXwIAjIyMsGHDBgQGBsLOzg6enp6Qy+VarzUfGjdujFGjRlXoIzB37lwi8QGVimnWrFnE4qnZvHkzDh8+jOzsbPTq1QtOTk7V5uQOg8F4v2CJdgaDwWAwKsHX1xcXLlxA+/btIZFIMG/ePHTt2lXX03prhEg6+fr6Yty4ccjOzsbAgQMhEokQFBREfdzqwuzZszFs2DBs3boVRkZG3PVPPvkEvXr10uHMqg4ZGRkAVAk0TZYuXVotKtCE8P4Cqkal27dvh4GBAZdcFIlESE1N5R1bSM88LVq2bInZs2dXSA6NHTtWh7OqOqgr2RMSEnD//n04OTlh3rx5VX4jCwCkUikUCgVKS0uRnJysdXLhxYsXxMZp1KgRxo8fjxcvXsDa2hoHDx4k5jZ/+vQp0tLSsH37di39TW5uLpycnIiMoUazQbkaUqfYGG+G5veuwYMHc6cU1f8/MzMTx44dI+r5//TTT4nEqQz1Brq1tTV2794NGxsbrd5BfO9H6n4UpaWlOHXqFCIjIzkVmpOTEzp37swrPoPBYLwtzNHOYDAYDEYl0HJIvo88efIEEokEhoaGup5KleJNDRoZjKqCUJ55mkRERFR6nd2vgalTp+LGjRtwcHDg+iFUJ3bv3o19+/ZBKpXCwsICK1asgFQqxaJFi9CgQQPMmzePyDhyuZxz/X/00Ue4evUqjI2NUbduXd6xXVxctPQ3UVFR2LdvH6e/iYmJIfBfoMLHx6fCiTYXF5dq11+GITzl+wUUFBTg+vXrxDZb1ZrByqCxsf7o0SPExcUhOjoaJiYm2LdvH9H4DAaD8TpYRTuDwWAwGJUwdepU9OnTp8o7inXJzz//jJiYmAqbEaQqq6or6gaNN2/eRHp6OnddLpdDJpPpcGZVj08++YSrtpTL5SgpKYGxsTGOHj2q45lVLa5du4aQkBDcu3cPZWVlaN++PQICAtCuXTvesYXyzNPE29sbaWlpuHbtGsRiMczNzWFtba3raVUJbGxsEBkZWW2bYY4dOxafffYZnj9/zmkgJBIJbG1tMWLECGLjvHr1CikpKdi/fz8WLFiAoqIiYrGF0N8cOXIEW7ZsQVZWFnr06MF9JiuVSnTs2JHIGAzdQ+t71549e3DgwAFYWFhwDdtfvnyJiIgIPH/+HAMGDOAVHwC3oVtZU+Bz587xjg+oNgcSEhKQkJAAuVwOJycn/Pzzz1Sd8wwGg1EeVtHOYDAYDEYljB8/Hjt27ND1NKo0n3/+OSIiIipsRtSuXVtHM6o6SKVShIWFaR3jVzdo1DwqzdDm+vXrOHjwIFEf7PvA2LFj4e/vD3NzcwDA5cuXsXbtWiIVgNbW1jA1Na1wXe2Z/+OPP3iPQZuQkBDcv38f3bp1g0wmw/nz59G5c2f4+vrqemo6x8PDo8ormKoC3t7e6NmzJw4ePIjY2FgkJCQgLi4O33//Pe/Yrq6u+OGHH1BaWgpHR0fExMRwa87Z2ZlopW1UVFSl+hjG+wGt710jRozArl27KsQpLi6Gl5cX9uzZwys+oGoKnJ2djTVr1lBpCjxp0iQ8fPiQ87O3aNFCayOZNQZmMBhCwX7pMRgMBoNRCZ988gkVh+T7RJs2bSpN0H3oJCUloV+/fmjXrh1OnTpV4XHmjX49ZmZmWLp0qa6nUeWoUaMGl2QHACsrK2LeZaE88zS5cuUKdu/ezf3t5eUFNzc3Hc6IUd0oKSnBmDFjcPjwYQCqhOYPP/xAJPbQoUMxfPhwSKVS9OnTB6amppz+xtbWlsgYanr06IHQ0NAKFc+hoaFEx2HoBlrfuyQSSaXJegMDAygUCiJjvHr1ChkZGVpNgQHVqSoSmq/GjRujcePGKCkpwS+//FLhcbYGGAyGULBEO4PBYDAYlXD27FkAqPBjgFUG/kODBg3g6uoKKysrrePvH3o18vPnzwGojjAz3oyPj49Wwjg/P5+diKiEunXrYuvWrejWrRsA1TH7evXqEYktRONk2sjlcrx69QofffQRAFWTzLKyMh3Pqmpw8eLFSh3L6qaKJBrqvg8oFArcu3ePux+lpKQQSzAKpb8BAD8/P7i7uzPt3XsKre9dSqUS+fn5aNKkidb1nJwcYuugQ4cO6NChAwYMGID27dtDLpcTPeGnTqRnZGTAwsJC6zFSahoGg8F4G5g6hsFgMBgMxjsRFxdX6fWvvvpK4JlUTYKCgrBw4UJdT6NKc/78ee7fIpEIBgYGMDMzI1at/b5QXFyM6OhoZGZmQiQSwdLSEu7u7qhTp46up1YlSEhIwPr169GmTRsuYTp37lz069dP11PTOW9qdsv4h1u3biEoKAjp6emoVasWzMzMsGDBAiJ9EITE09MTUVFRup4GgxKVfe+Sy+VwdnbmFTclJQVhYWFwd3dHx44dUVZWhvT0dOzZswerV69Gly5deMXXJC0tDcHBwZBKpUhMTMS6detga2uLPn368Iqbk5ODu3fvYu3atVTUNAwGg/G2sEQ7g8FgMBgaTJ8+HZs2bdJq0qgJq/77Bx8fH2zYsEHX06iyLF++HO3bt4elpSVq1qzJXWf6oX9YtGgRlixZwlXm3bp1CwsXLkRsbKyOZ1Y1ePjwIVq2bIlbt25V+jh7L/3DixcvkJ2dDbFYjNatW6NWrVq6nlKVgCXaPyzWrVsHqVQKW1tbrWphe3t7Hc6KQZKbN2+isLAQwD/9YEgowB4+fIjY2FjcuXMHIpEIpqamGD16NJo3b847tiZjx45FREQEfHx8sGvXLjx58gRff/019u7dyytuVlYWjh07htjYWK2kvUgkgq2tLYYPH8536gwGg/FWMHUMg8FgMBgabNq0CUDlx0xlMpnQ06nSGBkZYe3atRUSyewHvYobN27gxo0biI+P564x/ZA2nTt3hpeXF1auXIkff/wRiYmJWLJkia6nVWXYuXMn/P39sXTpUohEIi3nMnsv/cOZM2ewZs0a5OfnA1A1vZszZw66d++u45npnmnTpul6ClWa921zXb0GkpKStK6zz+X3g8WLF+POnTu4c+cOLC0tkZmZiUmTJhGJ3bJlS61K8PIEBgYS6aGip6eH+vXrc+utYcOGRE6xlVfTMBgMhq5giXYGg8FgMN4ST09PltjSQCaT4a+//sLx48e1rrMf9CpYFem/M2rUKHTo0AHOzs6ws7PDvn37IJFIdD2tKoO/vz8AYMKECXBwcNB6THMD50Nn5cqVWL16NZdcuX79OubOnYuDBw/qeGa6p2fPngBUle3lk1k1atRAq1at4OXlBWNjY11MT+eoN9ejo6PRoUMHHc+GP6Ghobh//z6uX78OsViMTp06Ea9IZuiOW7duYc+ePXB3d8e3336LR48eITIyUpCx7969SySOsbExwsPDUVBQgISEBCQlJRE9nXX06FF4eHhw9zvWj4LBYAgNS7QzGAwGg/GWMNuaNqGhoZBKpcjPz/9gkzRvQrNCUi6Xo6SkBMbGxjh69KiOZ6Z7yjdBbdq0Kc6ePQs/Pz8AQHh4uK6mVqXIyMhAeno6du7ciUePHnHXy8rKsHXrVnzxxRc6nF3VoXHjxloVjGZmZu9Fk1eS2NraQiqVwsHBASKRCCkpKQCA//3vf/D39//gNwaDg4Px9OlTODo6YuDAgejYsaOup/RObN26FQkJCbC2toZUKkVERAScnZ0xZswYXU+NQYCysjIUFxcDAJ4+fYrmzZvj+vXrOp7Vf2P58uU4dOgQbGxscOnSJTg4OGDQoEHE4h89ehQnTpxgjdUZDIbOYIl2BoPBYDDeEtagUZuEhASukio+Ph5BQUEwNzfHl19+qeOZVQ3K64euX7/OKmz/Hzc3N11PoVrQqFEj1K5dGzKZDAUFBdx1kUiEsLAwHc6satG8eXN4eXmhR48eUCgU+OOPP2BoaIjdu3cDUDmBP3QuXLiglUy3trbGxIkTMXPmTOzZs0eHM6sa7Ny5E8+ePcOpU6ewefNm3L9/H717936jSqMqkpSUhH379nF9L+RyOdzc3Fii/T3Bzc0Nhw8fhpubG4YMGQI9PT3u1EpVJzc3l/u3nZ0d7OzsuL/z8vLQokULIuOYmppq9SdgMBgMoWF3IAaDwWAwNFixYkWlCXWlUon79+/rYEZVl5iYGPzyyy/w9PQEAPj5+cHd3Z0l2l+DmZkZEb/p+0C3bt0AqJq6HT58GD4+PgCAZcuWYfTo0bqcWpWiefPm+Oqrr/Dpp5/i4cOHsLS0BKDyRn/yySc6nl3VoVmzZmjWrBlKSkoAAJ06dQIArc2JDx2ZTIbo6GhYW1tDLBYjIyMDBQUFuHTpEjut9f/Uq1cPvXr1glQqRXJyMk6fPl3tEu0AIBaLtf7NigTeH4YMGcL928HBASUlJTAyMtLhjN4eBwcHmJiYoFmzZtw19b2HZM8RhUKBgQMHolOnTtyGE8BOyjEYDOFgiXYGg8FgMDR4UwMl1lxJmxo1akAikXA/4plbW5vyepT8/Hx2lLkcS5Ysga+vL/f3yJEjsXTpUsTExOhwVlWPFStWoEmTJlyi/ffff8f+/fuxYsUKHc+sajBlyhSkpKTg7t27EIvFaNeuHfr06aOVcPzQCQ8Px44dO7Bx40YolUq0bt0a69evh0wmw5o1a3Q9PZ2zadMmnDp1CmKxGI6Ojpg9ezbatm2r62n9ZwYNGoQRI0agS5cuUCqVuHz5MlxcXHQ9LQZPnj59ip9++glNmzbFwIEDsWjRIly4cAFt27bFwoULBXmv8t2Q27x5Mw4fPozs7Gz06tULTk5OMDMzIzS7f2An5hgMhq4RKVkJA4PBYDAYlcL8429m3bp1yM3NRXp6OkaMGIGTJ0+iW7duWonTD5nz589z/xaJRDAwMICZmRmrLtTA1dUVe/fu1bo2duxYTvnBUOHm5lZh88Hd3f2D92qrmTFjBpRKJaysrLjkYs2aNbH2/9q797CqynVt4PeYKOIpREQUARMPeAITMTNzER6atGWrLc1DHExQyxYhJpiGpplo4unC5TkxjHDREgVTBA1QLOUQe7NCU6AQJltUTEBBS+bEOb8/iClT8fDJwDHE+/fPYr7jup5x57UUeMY7nnfDBqmjyUpubi6qqqr0hwMCMBjf8Dz7+uuvoVQqYWlpKXWUJ6JWq7F161b84x//QGlpKc6fP49ff/0VKpWKD+SaAV9fXzg5OaGsrAznzp3D9OnToVQq8Z///Afbtm3Dnj17GlV/8+bND73u5+cHjUaDli1bNuo+AFBdXY0TJ04gPj4eKpUKLi4uUCqVGDBgQKNrA7XjkhITE1FaWgpfX1/k5+ejR48eomQnInoc3NFORETUAM4ff7T58+cjKysLffr0QcuWLbFw4UIMHjxY6liyYWZmZjAW5fPPP8f06dPRq1cviZPJh6OjI/z9/eHk5AStVouMjAz9rm26SxAEnDhxAoMHD4ZWq0V6ejpn0NZTWlqK6OhogzXOZTc0Z84cVFZWwtLS0mBcAxvttZydnREYGIji4mLcuXMHffr0QXBwMHr27Cl1tMcSGhoKoHbXsbW1NaytreHi4oJ169Zh8+bN8PPzkzghNYZarcY//vEPALXjYyZMmACg9tD1LVu2NLq+mZkZACAnJwcVFRUYOnQodDodMjIy9LPTxWpUt2rVCkqlEo6OjoiNjcWePXuQlpaGffv2iVJ/6dKl6NixIzIzM+Hr64vMzExs376dD16J6KnhT+hEREQN4PzxR/P398emTZvg7OysX5syZQr+/e9/S5hKPu4dizJp0iQsX76cY1HqCQ4ORlpaGn755RcYGRlh9uzZePHFF6WOJTtr1qzBxo0bsXbtWhgZGcHBwQGrV6+WOpZsODg4ICcnR/+Q5ty5c3BwcJA4lbxUVlbe9zCC7goJCcHixYsxcOBAAMB//vMffPbZZ6LNjW5q2dnZ2L9/v8GasbExFi1aBA8PDzban3H134Sra4o3dO1J1T2YTElJQXh4uH599uzZmDt3bqPr16moqMCRI0dw5MgR1NTUQKlUYv/+/aK+OXr58mWsXr0aXl5eAGrfCEtMTBStPhHRo7DRTkRE1ADOH3+wo0ePYufOncjLy8Pw4cP161qtFv369ZMwmbzU1NQYPITo378/Dx28R01NDaqrq9GpUycAQGFhIRYtWoSkpCSJk8mLlZUVQkJCUFpaChsbG6njyE5iYiIiIyPRunVr6HQ63L59Gx06dEBcXBwEQUBaWprUESXn5OSEX3/9Fb1795Y6iiwZGRnpm+wA8NJLLz1TY77qH/pYn0KhgEajecppSGzFxcUIDQ2FTqfTfw3UvsHwf//3f6Ld5+rVq8jPz9efSaRSqVBSUiJK7VmzZqGkpAQjRoxAQEAArKys9H/HLl26pN8531gajQaVlZX62gUFBVCr1aLUJiJ6HGy0ExERNcDJyQlBQUEoLS3Fzp07kZKSYtBUfp4plUoolUqEh4frd/zT/TgW5dECAgLQtm1bZGZmYtSoUcjIyODOywbEx8dj27ZtADjKqiE//PCD1BFkLykpCV999RXatWunb8ryIcRdL7zwAnbt2oWXX34ZAJCeng5TU1OJUz0+MzMzZGVlGTzcBYATJ07oH2TSs2vevHn6r+ua4A/63BiffPIJgoODcenSJQiCAEtLSyxcuFCU2hYWFrCwsMCtW7dw4MCB+66L9ZbW/PnzMWPGDBQVFcHNzQ2CIGDlypWi1CYiehw8DJWIiOgBsrKykJ2dDWNjYzg6OnL++D3OnTuHgwcP6g/Xq8ORFnfVH4vi4OBwXxPkeVd3oGfd/1ZWVmLZsmXYuHGj1NFk5Z133kFERAR8fX0RGRmJ6upqeHl5cUzTX7y8vBrcffysjP0g6d28eRN79uzB2bNnIQgCHBwc4O3tjbZt20od7bGoVCp8+OGH6NmzJ/r164c7d+7g559/xuXLlxEeHs5m+3Ng2bJl+Oyzzxpd59atW1CpVFAoFHjxxRdhYmIiQrq7zpw5c99or/T0dLzyyiui3qesrAzGxsZo3769qHWJiB6FO9qJiIjqiYqKMvjcpk0bALVN5XPnzvGAvXrq5tZ36dJF6iiyVFNTg2vXrkEQBMycORP5+fnQaDSiHSjWHGg0GpSUlMDIyAiFhYXo2rUrCgsLpY4lOxxl9XCffvqp/uuamhr8z//8D6qqqiRMJB91B2H6+/s3+DAiLCxMglTy065dO/1hk8+i7t27Iy4uDqdOncKFCxcgCAI8PT0xYsSIZ2oEDj05Mb53Hjx4EFu2bEHPnj2hVqtx8eJFBAYGYuzYsY2urVKpUFhYiA0bNmDBggX69ZqaGoSEhCAlJaXR9wCAvXv3YhRCGXUAACAASURBVN++ffdtAklOThalPhHRo7DRTkREVE9FRYXUEZ4ZXbp0wbRp06SOIVtLly5Fx44dkZmZCV9fX2RmZmL79u3YsGGD1NFkY968eTh79iw++OADzJ49Gzdv3uTDrAbcO8rq+PHjHGVVz71zx/v168exVn8ZM2YMgNoDAel+ffv2RefOne97AKrT6SAIwjPVnFMoFBg5ciRGjhwpdRR6Ru3duxcHDx5E69atAdTubvf19RWl0X779m2cPXsW5eXlBoeTCoIg6si4vXv3Ytu2bTA3NxetJhHR/w822omIiOqp+2Ffo9Hg5MmTKCwshEKhQM+ePfnL6z0GDhyINWvWwNnZGS1a3P2RwsXFRcJU8nH58mWsXr0aXl5eAGobXfV/uSQYNIuPHTsGhUIhYRr5mj9/PrKystCnTx+0bNkSCxcu5Cireu59E+nq1au4evWqRGnkpW/fvgBqD9RNSUm5b5dn3Uzy59WSJUtw/PhxtGjRAmPGjMHYsWPRoUMHqWMRSUKhUOib7ADQtm1bg5/vGsPe3h729vZ44403RJ0rfy8HBweYmJjo30glInra2GgnIiJqQGBgIHQ6HV566SXodDrExMTg4MGD3I1cT10jKykpyWCdjfZaGo0GlZWV+tf2CwoKoFarJU4lD4WFhYiIiIClpSWmTp2KefPmoaioCC+88AJWrVqFl156SeqIsuLv749NmzYZzPifMmUKZ7T/5d43kczMzLBjxw6J0sjTnDlzoFQqOav7Hp6envD09MSVK1dw5MgRvP/++2jTpg2USiXGjh2Ljh07Sh2R6KlxcnLCe++9h6FDh0Kn0yEzMxNDhgwR9R7Hjh2Dt7e3/mejurdHxDqY2d7eHq6urujUqROMjIyeybdTiOjZxsNQiYiIGjBt2jRER0cbrHl4eNy3c5LoQbKyshASEoKioiJYWlpCEASEhITAyclJ6miS8/T0xOTJk1FWVob9+/djxYoVcHZ2RnFxMRYtWoS9e/dKHVEWjh49ip07dyIvLw/t27fX70TW6XTo168fIiIipA0oA9euXdM3j69du4Yff/wRNjY2ojeHnnWzZs3Crl27pI4he9XV1YiKisKOHTtgYmKC1NRUqSMRPZa6Q8UbKysry+BQYLF/Zhk/fjyio6ObbMe5m5sbduzYAQsLC4N17nAnoqeFO9qJiIga4ODggJycHDg6OgKoPQzVwcFB4lTyMGnSpIcerhYTE/MU08iXs7MzYmNjUVZWhhYtWsDU1FTqSLIhCAImTpwIAIiPj9fv1La1tYWRkZGU0WRFqVRCqVQiPDycM8cbEBERgWPHjmHv3r2orKzEW2+9hddeew2HDh3C8OHDMWvWLKkjysakSZPw/vvvo1+/fgZ/x8ScjfysunPnDn788UccPnwYOTk5eO211/DPf/4TQ4cOlToaEYDaQ40fxs/PD7t37270fa5cuYJz587h1q1b0Ol0OH36NE6fPi3qvxN2dnaijaNpyODBg2FmZsbGOhFJho12IiKiBiQmJiIyMhKtW7eGTqfD7du30aFDB8TFxYn6iuuzaNOmTVJHkLXc3Fzs2rUL69atAwCsW7cOycnJ6NSpE7744gv9w5vnWf0HNe3atXvgNaqlVCqxePFinDt3DgqFAgMHDsSHH36Izp07Sx1NUt99953+zaNDhw5h0KBBWL16NbRaLTw8PNhorycsLIyjYxqwfPlynD9/Hg4ODpg6dSpCQ0P5bxDJjpmZGQAgJycHFRUV+tEuGRkZsLKyAoD7DvR9EnPnzsXIkSNhaWnZ6FoPotVq4ebmhv79+xs89AsLCxOlfnFxMVxdXfUP7utGx3ATCBE9LWy0ExERNeCHH36QOoJsdevWTeoIsrZixQoEBAQAAE6ePImff/4ZqampKCsrQ3BwMPbs2SNxQun9+uuvmDdvHnQ6nf5roHYkym+//SZxOvlZsmQJpk+fjo8//hgajQaZmZkIDg7Gl19+KXU0SbVt2xbGxsYAgNOnT2Ps2LEAag/0q1unWtbW1pg/f77UMWSnoKAAxsbGyMvLQ15e3n1zo7/++muJExLVji4EgJSUFISHh+vXZ8+ejblz54p2H1NTU3z00Uei1WuIp6dnk9YPDg7mG4REJCk22omIiOrZvHkz/Pz84O/v3+CuNrF23FDzZWRkhJdffhkAkJycjIkTJ6J169awtrbmTsm/1P97dO8v3U39S/iz6M6dO1AqlfrP48aN40GoqN0Zee3aNdy8eRMZGRlYsWIFAOCPP/7An3/+KXE6eenevTsCAwPh6OhosIu0roH3vBJjpjXR03L16lXk5+ejT58+AACVSoWSkpJG1617wO3k5ISoqCgMGTLEYLxLr169Gn2POk5OTkhMTERpaSl8fX2Rn5+PHj16iFY/KCgINjY2GD9+PEaPHo1WrVqJVpuI6HGw0U5ERFTPmDFjADTc7GOTlB6HWq0GUNsc/eGHH/DPf/5Tf+327dtSxZKVugcRQO1M2IsXL8LZ2RlqtZo7kRtgbGyMhIQEDBs2DDqdDunp6fxzAjBv3jx4eHigsrISCxYsgLm5Oaqrq/H2229j9uzZUseTFTMzM5iZmaGyslLqKLLk5eV13/d4IyMj2NjYYM6cObC2tpYoGdFdn3zyCYKDg3Hp0iUIggBLS0ssXLiw0XU/++wzg8+JiYn6r8V+s2Pp0qXo2LEjMjMz4evri8zMTGzfvh0bNmwQpX58fDwKCgqQnJyMuXPnwsLCAu7u7hg5cqQo9YmIHkXQ6XQ6qUMQERHJjb+//32zyKdMmcJdpPRIYWFhOH/+PP78808YGRlh9+7dqKmpwebNm3H16lWsWrVK6oiyERERgcTERPzxxx/47rvvEBISAgsLC8yZM0fqaLJSWlqKsLAwnD17FgqFAg4ODpzR/hAqlQrdu3eXOobs3Lp1Czdu3ABQ+0BwxYoVohyg2ByEhYVBrVZj1KhREAQBJ0+eBAD07t0b0dHR3PlOsnHr1i2oVCooFAq8+OKLMDExEa12Tk7OfefIpKen45VXXhHtHu+++y4iIiLg5eWl/3vl6emJb775RrR7AEBFRQWOHTuGAwcOoE2bNqiqqkJQUBCGDRsm6n2IiO7FHe1ERET1HD16FDt37kReXh6GDx+OuufROp0O/fr1kzgdPQvmzZuHn376CZWVlfodVAqFAgDw6aefShlNdpKSkhAdHQ0vLy8Atbv1pk2bxkb7PeLi4viA5iFyc3MRGxuLqqoq1N9DtHr1aglTycuWLVtw4MABXL9+HVZWVrh06RKmTp0qdSzZyMrKMmimOzk5wcfHBwEBAdi7d6+EyYjuOnjwILZs2YKePXtCrVbj4sWLCAwM1J9P8aRUKhWKioqwfv16LFiwQL9eU1ODkJAQpKSkNDa6nkajQWVlpf4NkoKCAv2bgGKIiYlBQkICqqqq4O7ujq1bt8Lc3Bzl5eXw8fFBXFycaPciImoIG+1ERET1KJVKKJVKhIeHw9fXV+o49IwaOnQoAMOxKB988AHHfdzjzp07AO6OZaqurkZNTY2UkWSprKwMp06dgoODA1q2bKlfb926tYSp5CMwMBBeXl6wtLSUOopsnTx5EsnJyfpdpL/88ovBeIjnnUajwZ49e+Dk5ASFQoEzZ86goqIC2dnZ4AvgJBd79+7FwYMH9f/237p1C76+vo1utN++fRtnzpxBeXn5fWNj/Pz8GlX7XvPnz8eMGTNQVFQENzc3CIKAlStXila/qKgIixcvNpgrn5eXB3t7e9H/W4iIGsLRMURERPWEhoY+9LoYszDp+cCxKI8WFRWFo0ePQqVS4fXXX0dGRga8vb3xzjvvSB1NVpRKJTQajcGaIAhITk6WKJG8zJo1C7t27ZI6hqxNmzYN//rXv+Dh4YHdu3fDxMQE77zzDndr/6W0tBQREREoKCiATqdD9+7d4eXlBY1Gg7Zt26Jr165SRyTC9OnT8a9//ctgTcyxK3UHrdbU1BgchtoUysrKYGxsjPbt24ta98aNGzh8+DAqKioA1D5Ei4uLQ2pqqqj3ISJ6EDbaiYiI6omNjX3o9bfeeuspJaFnXd0vv3U7SHU6HaZNm4Zvv/1W6miycvHiReTk5MDY2BgDBgxgQ4seW13jJD09HYIgYMiQIQbNIRcXF6miyc5XX30FQRDQqlUrREREwNzcHK1bt0Z4eLjU0WQjNzdXP36o7i2bureTiORg7dq1+O233zB06FDodDpkZmaif//+mD9/vij1MzIyEBISArVajcTERGzcuBHOzs6iHiS6d+9e7Nu3775RX2I9OJ45cyYGDx6M+Ph4TJ06FampqfDy8sKYMWNEqU9E9CgcHUNERFRPXSM9NjZW/4s20ZPgWJRHO3/+POLi4vS/cNf9os3Z2rUKCgqwcuVKqFQqODo6Ijg4GBYWFlLHko17R58kJSUZfGaj/a6ZM2fqv3ZxcUFFRQXPHalnzpw5qKyshKWlpb75JwgCG+0kK0FBQcjKysLZs2chCALmzp0LJycn0epv2rQJe/bsgb+/PwDA29sbH3zwgeiN9m3btsHc3Fy0mvVptVr4+/vjp59+go+PDzw9PREQEMBGOxE9NWy0ExERNSA/P1//dU1NDX7++Wf07t0bEydOlDAVPUvc3d3h7e0NlUqFZcuW6cei0F11s7W7dOkidRRZWrFiBfz8/DBo0CCkpKTgiy++wPr166WOJRv1H8hcvnxZ/zbEhQsXYGdnJ1UsWbpy5Qq2bNmCGzduYNOmTcjOzkaHDh3QrVs3qaPJQmVlJaKjo6WOQfRQV65cwblz53Dr1i3odDqcPn0ap0+fFm32eIsWLWBmZqbfIGBubi76phMHBweYmJigTZs2otato9FokJubCxMTE5w6dQo2NjYoLi5uknsRETWEjXYiIqIGfPzxxwaf79y5o9/hQ/Q4PDw84OLioh+L8v7773Msyj26dOmCadOmSR1DtrRarX5HrZubG6KioiROJE9r165FWVkZvvjiCwBAeHg4OnTogKCgIImTyUdwcDC8vb3x5ZdfAgA6duyIRYsWITIyUuJk8uDk5IRff/0VvXv3ljoK0QPNnTsXI0eObLKDn62trREWFoaKigocOXIESUlJBoeKisHe3h6urq7o1KkTjIyM9KOaxBod8+mnn6K8vByBgYEICQnB9evXucmBiJ4qNtqJiIga8Oeffxp8/v3333HhwgWJ0tCziGNRHm3gwIFYs2YNnJ2dOVu7AffuJOQ4q4ZlZ2cbHOoZEhICDw8PCRPJj1arhYuLi/7Q2OHDh2PLli0Sp5KPpKQkfPXVV2jXrh2MjIwA1P59S0tLkzgZ0V2mpqb46KOPmqz+559/jkOHDmHIkCHIzs7GqFGj8Oabb4p6j+joaMTHxzfJGDS1Wo327dujT58+UCgU+Prrr0W/BxHRo7DRTkRE1IBx48ZBEAT9Tpv27dvDx8dH6lj0DOFYlEe7evUqAM7WfpDi4mKEhoY+8PPChQuliCU7Wq3WYDdyTk6OwSF7VDsSIi0tDVqtFteuXcP333+PVq1aSR1LNo4dOyZ1BKIH+u233wDUvnkRFRV138HPjd11funSJf3XQ4cONTiboLS0FFZWVo2qX9/gwYNhZmYm+uiYpKQkrFq1ChYWFrh+/TpCQ0MxaNAgUe9BRPQ4BB1/CiUiIiISna+vL8LDw6WOIUtqtRrGxsb3vTlSp3Xr1k85kTzFxsY+9Hrd4c3Pu/Pnz2PlypUoLCyEQqFAr1698Mknn6BPnz5SR5ONq1evIiwsDNnZ2TA2NoajoyP8/PzQuXNnqaNJavPmzfDz84O/v3+Db4yEhYVJkIrIkJeX1wOvCYLQ6J3bffv2ha2trcHGgPqHAou5M9zDwwO5ubmwtbU1GB0TExPTqLrTpk3Djh07YGpqiosXL2L58uX6N3iIiJ4mNtqJiIjqWbx48UOvc+wHPa6NGzdCrVZzLEoDFixYgPXr12PUqFEGzS2xZ7U2J2q1GlevXoW1tbXUUWRLo9GgZcuWUseQpR07duC9996TOobs5Obmom/fvsjMzGzw+ssvv/yUExE9WE5ODhwdHQ3W0tPT8corrzSq7vHjx5GQkICioiKMGDECSqUSffv2bVTNBzl37hxMTU3vW2/swcxeXl4GZ07c+5mI6Gnh6BgiIqJ68vPzUVVVhddeew0uLi7cWUtPjGNRHmz9+vUAgJSUFImTPBuOHDmCrVu3AgAOHz6MlStXYuDAgZg4caLEyeQhIyMDISEhUKvVSExMxMaNG+Hs7IyRI0dKHU02ysrKcOrUKTg4OBg8jHjev8fVNROtrKyQkpKiP1OjDhvtJAcqlQpFRUVYv349FixYoF+vqalBSEhIo7+Xurq6wtXVFdXV1Thx4gS2bt0KlUoFFxcXKJVKDBgwoLH/CXpBQUGwsbHB+PHjMXr0aNFGWPFMEyKSC+5oJyIiukdxcTHi4+ORnJyMLl26QKlUwtXVFe3atZM6Gj0DOBbl0SZNmvTQX4Ib+wp5c/POO+8gIiICvr6+iIyMRHV1Nby8vPDvf/9b6miy4OHhgc2bN8Pf3x+RkZEoKyvDBx98gG+//VbqaLKhVCqh0WgM1vj2yF3/9V//BaVSiU6dOhms81BdkoO8vDx8//33iI6ONniAKAgCnJ2d8fe//13U+12+fBmxsbHYs2cPbG1tsW/fPlHrFxQUIDk5Genp6bCwsIC7u3ujH4w6OTnBzs4OQO3bcYWFhbCzsxNtNA0R0ePijnYiIqJ72NraYu7cuZg7dy5+/fVXxMfHIzQ0FAMGDMD27duljkcyt3jxYqxfv15/oG4djkW5a9OmTVJHeKYYGRnB2NhY//8nY2NjiRPJS4sWLWBmZqb/8zE3N+duxnusXbv2vpETaWlpEqWRHysrK8ybN0/qGEQNsre3h729Pd544w306dMHNTU1BiPpxFBRUYEjR47gyJEjqKmpgVKpxP79+5tkXFnPnj3RsWNHmJqa4sCBA9i9ezfCwsIQFBSEYcOGPVHNQ4cOiZySiOjJsNFORETUAJ1Oh/T0dBw+fBgZGRl47bXX4ObmJnUsegZwLMqj1c1iPX/+POLi4u4b18CzEAw5OTkhKCgIpaWl2LlzJ1JSUvDqq69KHUs2rK2tERYWpm8UJSUloXfv3lLHkgWVSoXCwkJs2LChSUZONBeTJk3C+++/j379+sHIyEi/7ufnJ2EqIkMVFRUYP3686GOyZs2ahZKSEowYMQIBAQGwsrLSP6y8dOkSrKysxIgPoPaNtYSEBFRVVcHd3R1bt26Fubk5ysvL4ePjg7i4uCeq29gZ70REYuHoGCIionpycnJw+PBhnD59Go6OjnBzc8Pw4cN5wB49No5FeXzjxo2Dl5cXunTpYrD++uuvSxNIxrKyspCdnY2WLVvipZdewksvvSR1JMn5+/tj06ZN0Gq1OHTokP7PZ9CgQXjzzTcNGqbPq6c9cuJZ5ebmBqVSic6dOxusc3QMyUlTjclavHjxQ6+L+fB73bp1mDhxInr16qVfy8vLg729PZKSkjBmzBjR7kVEJAXuaCciIqpnypQpsLW1haOjI3Q6HRISEpCQkKC/zp229Cgci/L4unTpgmnTpkkdQ/Z+++03nD59Gv7+/gCAzz//HG3btn3ud21fv34dAKBQKDBhwgRMmDBB4kTyc+/ICaB2/rK5uTlHENVjbW2N+fPnSx2D6KGaakxW3c+2Z86cgYODg8G19PT0Rtevb/bs2Th8+DASExMBABqNBnFxcUhNTWWTnYiaBTbaiYiI6uH8bGosjkV5fAMHDsSaNWvg7OxsMG/WxcVFwlTys2zZMoMm4KRJk/DZZ5/hm2++kTCV9IqLixEaGvrA6wsXLnyKaeQpLS0NW7duRWRkJO7cuQMfHx9cuXIFOp0OS5Yswd/+9jepI8pC9+7dERgYCEdHR4M3IbijneSkoTFZ9XeGP6mnOWIqICAAgwcPRnx8PKZOnYrU1FQsXbpUtPpERFJjo52IiKgezngksQQGBjY4FoXuunr1KgAgKSnJYJ2NdkM1NTVwdnbWf+7fvz84/RFo3br1c7+r/1E2btyIdevWAQCOHTuGmzdvIiEhAZWVlfDz82Oj/S9mZmYwMzNDZWWl1FGIHujzzz/HoUOHMGTIEGRnZ2PUqFF48803G1339u3bOHv2LMrLy/U7zYHaEVNin1Og1Wrh7++Pn376CT4+PvD09ERAQAB3sxNRs8FGOxEREVET4FiURwsKCoJKpYKRkRFefPFFvPDCC1JHkiVHR0f4+/vDyckJWq0WGRkZcHR0lDqW5Dp16oS33npL6hiy1qpVK9ja2gIATp48iQkTJkChUKBDhw6cYV+Pn58fbt26hRs3bgAA1Go1VqxYIXEqolqXLl3Sfz106FAMHTpU/7m0tLTRh5U2NGKqqWg0GuTm5sLExASnTp2CjY0NiouLm/SeRERPExvtRERERE2AY1EerLq6GkuXLkVOTg769OkDrVaL3377Dc7OzliyZAlMTEykjigrwcHBSEtLwy+//IIWLVpg9uzZBjvcn1cDBw6UOoLsqdVqaLVaVFdXIzU1FbNnz9Zf++OPPyRMJi9btmzBgQMHcP36dVhZWeHSpUuYOnWq1LGIAACjRo2Cra2twRtydW81CYKAr7/+WpT7HDt2DN7e3vq57zqdDoIgIC0tTZT6APDpp5+ivLwcgYGBCAkJwfXr1+Ht7S1afSIiqQk6vndKREREJLrFixc3uM4Z7cDKlSvRrVs3zJw502A9IiICFy5c4E7SvyQlJWHMmDGIiopq8DrnR9OjREVFYd++fVCr1XBwcMCaNWugVquxdOlSdOzYER9//LHUEWVh6tSp+Pbbb+Hl5YXIyEj88ssvSExMNJhXTSSV48ePIyEhAUVFRRgxYgSUSiX69u0r+n3Gjx+P6OhotGnTRvTaQO2Dv99//x1du3aFQqFoknsQEUmNO9qJiIiImgDHojzY//7v/2LJkiX3rb/77rv4+9//LkEieaqqqgIAVFRUSJyEnlUeHh54/fXXUVVVpW/MGRsbw9nZGZMmTZI4nXwIggCdToc7d+7g9u3bGDBgAEJCQqSORQQAcHV1haurK6qrq3HixAls3boVKpUKLi4uUCqVGDBggCj3sbOzM3gDT0xJSUlYtWoVLCwscP36dYSGhmLQoEFNci8iIimx0U5EREQkIo5FebSHzYbmLre76uaP5+Xlwc3NDa6urk2205Car4YO+X777bclSCJfSqUSe/bswX//939jwoQJMDc3R+vWraWORWSgVatWUCqVcHR0RGxsLPbs2YO0tDTs27dPlPparRZubm7o37+/wffpsLCwRtfetWsXYmNjYWpqiosXL2L58uXYtWtXo+sSEckNG+1EREREIlq7di369euH0NBQg/WIiAisWrWKY1EAmJubIyMjA8OGDTNYP3nyJCwtLSVKJV/e3t5ITk7Gtm3bYGtrC6VSidGjR6Ndu3ZSRyNqFuqPsXJxcUFFRQX69esnYSIiQxUVFThy5AiOHDmCmpoaKJVK7N+/H9bW1qLdw9PTU7Ra92rZsiVMTU0BANbW1qiurm6yexERSYmNdiIiIiIRcSzKowUHB+PDDz9Ejx490K9fP2i1Wpw5cwYlJSUIDw+XOp7sDB06FEOHDgUA5OfnIzw8HMuXL0d2drbEyYiahytXrmDLli24ceMGNm3ahOzsbHTo0KHBtwGInrZZs2ahpKQEI0aMQEBAAKysrPQHll66dAlWVlai3MfJyQmJiYkoLS2Fr68v8vPz0aNHD1Fq1+V90GciouaCjXYiIiIiEXEsyqPZ2NggNjYWP/74Iy5cuABBEDB9+nSMGDGCv3w3QK1WIy0tDcePH0dWVhbs7e15qC6RiIKDg+Ht7Y0vv/wSANCxY0csWrQIkZGREicjAiwsLGBhYYFbt27hwIED910X6/tB3SHJmZmZ8PX1RWZmJrZv344NGzY0uvbZs2cxefJkAIBOp0NhYSEmT54MnU4HQRAQExPT6HsQEckBG+1EREREIuJYlMcjCAJGjhyJkSNHSh1F9tzc3PDqq69i7Nix+OSTT2BsbCx1JKJmRavVwsXFRT8zevjw4diyZYvEqYhq1TXSz5w5AwcHB4Nr6enpot3n8uXLWL16Nby8vADUjpJJTEwUpfahQ4dEqUNEJHdstBMRERGJiGNRSGxJSUkoLS1FSUkJjI2NoVar2WwnElGLFi2QlpYGrVaLa9eu4fvvv0erVq2kjkUEAFCpVCgsLMSGDRuwYMEC/XpNTQ1CQkKQkpIiyn00Gg0qKyv1b5YVFBRArVaLUptjmIjoeSHodDqd1CGIiIiImhOdTmcwFsXOzo5jUeiJRUREIDExEX/88Qe+++47hISEwMLCAnPmzJE6GlGzcPXqVYSFhSE7OxvGxsZwdHSEn58fOnfuLHU0IuTl5eH7779HdHS0wVtggiDA2dlZtPNfsrKyEBISgqKiIlhaWkIQBKxcuRJDhgwRpT4R0fOAjXYiIiIiIhnz9PTEN998Ay8vL0RGRkKn02HatGn49ttvpY5G1Czs2LED7733ntQxiB4qPz8fffr0afL7lJWVwdjYGO3bt2/yexERNTccHUNEREREJGN37twBAP0bEdXV1aipqZEyElGzUlZWhlOnTsHBwQEtW7bUr7du3VrCVESGjh07Bm9vb/33grqDRNPS0kSpv3fvXuzbtw9VVVWovx8zOTlZlPpERM8D7mgnIiIiIpKxqKgoHD16FCqVCq+//joyMjIwY8YMTJ8+XepoRM2CUqmERqMxWBMEgQ1GkpXx48cjOjoabdq0aZL67u7u2LZtG8zNzQ3Wm+p+RETNEXe0ExERERHJmIeHB1xcXJCTkwNjY2O8//776Nq1q9SxiJqNtWvXwtHR0WBNrF3CRGKxs7NDixZN18JxcHCAiYkJG+tERI3ARjsRERERkUzlQP+cgQAACDNJREFU5+cjKioKBQUFUCgU6N+/PxwcHKSORdQsqFQqFBYWYsOGDViwYIF+vaamBiEhIUhJSZEwHZEhrVYLNzc39O/fH0ZGRvr1sLAwUerb29vD1dUVnTp1gpGRkX40Dd/sICJ6fGy0ExERERHJUFpaGlauXIm5c+fi3Xffxa1bt3D27FnMmDEDy5Ytw/Dhw6WOSPRMu337Ns6ePYvy8nIkJibq1wVBgJ+fn4TJiO7n6enZpPWjo6MRHx8PCwuLJr0PEVFzxkY7EREREZEM7dy5E9u3b4eNjY1+beDAgXj11VcRGBjIRjtRI9nb28Pe3h5vvPEG+vTpAwC4fPkyzM3NYWxsLHE6IkNOTk5ITExEaWkpfH19kZ+fjx49eohWf/DgwTAzM+PoGCKiRmCjnYiIiIhIhmpqagya7HVsbW2hUCgkSETUvKSlpWHr1q2IjIzEnTt34OPjgytXrkCn02HJkiX429/+JnVEIr2lS5eiY8eOyMzMhK+vLzIzM7F9+3Zs2LBBlPrFxcVwdXWFra2tweiYmJgYUeoTET0P2GgnIiIiIpIhQRAeeI27bYkab+PGjVi3bh0A4NixY7h58yYSEhJQWVkJPz8/NtpJVi5fvozVq1fDy8sLQO0omfojjxorODgYpqamotUjInoesdFORERERCRDZ8+exeTJk+9b1+l0KCoqevqBiJqZVq1awdbWFgBw8uRJTJgwAQqFAh06dDA4bJJIDjQaDSorK/UPYQsKCqBWq0WrHxQUBBsbG4wfPx6jR49Gq1atRKtNRPS8YKOdiIiIiEiGDh06JHUEomZNrVZDq9WiuroaqampmD17tv7aH3/8IWEyovvNnz8fM2bMQFFREdzc3CAIAlauXCla/fj4eBQUFCA5ORlz586FhYUF3N3dMXLkSNHuQUTU3Ak6nU4ndQgiIiIiIiKipykqKgr79u2DWq2Gg4MD1qxZA7VarZ+F/fHHH0sdkeg+ZWVlMDY2Rvv27ZukfkVFBY4dO4YDBw6gTZs2qKqqQlBQEIYNG9Yk9yMiak7YaCciIiIiIqLnUklJCaqqqtC3b1/92r59+zBp0iQeOkyysnfvXuzbtw9VVVWo38ZJTk4WpX5MTAwSEhJQVVUFd3d3jBs3Dubm5igvL4ePjw/i4uJEuQ8RUXPGRjsRERERERERkYy5u7tj27ZtMDc3N1hv06aNKPXXrVuHiRMnolevXvq1vLw82NvbIykpCWPGjBHlPkREzRkb7UREREREREREMrZ48WJ89NFHsLCwaJL6N27cwOHDh1FRUQGg9vDVuLg4pKamNsn9iIiaIx6GSkREREREREQkY/b29nB1dUWnTp1gZGQEnU4HQRBEGx0TEBCAwYMHIz4+HlOnTkVqaiqWLl0qSm0ioucFG+1ERERERERERDIWHR2N+Pj4JtvRrtVq4e/vj59++gk+Pj7w9PREQEAAR8YQEf1/YKOdiIiIiIiIiEjGBg8eDDMzM9Fmst9Lo9EgNzcXJiYmOHXqFGxsbFBcXNwk9yIiaq44o52IiIiIiIiISMY8PDyQm5sLW1tbg9ExMTExotTPzc1FeXk5zM3NERISguvXr8PT0xNTpkwRpT4R0fOAjXYiIiIiIiIiIhk7d+4cTE1N71vv1q1bo2ur1Wr8/vvv6Nq1KxQKRaPrERE9r9hoJyIiIiIiIiKSsXHjxsHGxgbjx4/H6NGj0apVK1HqJiUlYdWqVbCwsMD169cRGhqKQYMGiVKbiOh5w0Y7EREREREREZHMFRQUIDk5Genp6bCwsIC7uztGjhzZqJrTpk3Djh07YGpqiosXL2L58uXYtWuXSImJiJ4vfCeIiIiIiIiIiEjmevbsibfffhtKpRJFRUXYvXs3Jk+ejIyMjCeu2bJlS/1IGmtra1RXV4sVl4joudNC6gBERERERERERPRgMTExSEhIQFVVFdzd3bF161aYm5ujvLwcPj4+iIuLe6K6giA89DMRET0+jo4hIiIiIiIiIpKxdevWYeLEiejVq5d+LS8vD/b29khKSsKYMWOeqK6TkxPs7OwAADqdDoWFhbCzs4NOp4MgCIiJiRElPxHR84CNdiIiIiIiIiIiGbtx4wYOHz6MiooKAIBGo0FcXBxSU1MbVbekpOSh17t169ao+kREzxM22omIiIiIiIiIZGzmzJkYPHgw4uPjMXXqVKSmpsLLy+uJd7ITEZH4eBgqEREREREREZGMabVa+Pv7o3PnzvDx8cGXX36JAwcOSB2LiIjqYaOdiIiIiIiIiEjGNBoNcnNzYWJiglOnTuHKlSsoLi6WOhYREdXD0TFERERERERERDKWm5uL8vJymJubIyQkBNevX4enpyemTJkidTQiIvoLG+1ERERERERERDKlVqvx+++/o2vXrlAoOJiAiEiu+C80EREREREREZEMJSUlwc3NDR999BHefPNN/Pzzz1JHIiKiB2ghdQAiIiIiIiIiIrrfrl27EBsbC1NTU1y8eBHLly/Hrl27pI5FREQN4I52IiIiIiIiIiIZatmyJUxNTQEA1tbWqK6uljgRERE9CBvtREREREREREQyJAjCQz8TEZF88DBUIiIiIiIiIiIZcnJygp2dHQBAp9OhsLAQdnZ20Ol0EAQBMTExEickIqI6bLQTEREREREREclQSUnJQ69369btKSUhIqJHYaOdiIiIiIiIiIiIiKgROKOdiIiIiIiIiIiIiKgR2GgnIiIiIiIiIiIiImoENtqJiIiIiIiIiIiIiBqBjXYiIiIiIiIiIiIiokZgo52IiIiIiIiIiIiIqBH+HzsUPwHD45jfAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Y7xKqghgQjas" + }, + "source": [ + "### Trata Dataframe de teste" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "ZX7JQAtkQnQJ", + "outputId": "546c0743-3e6e-4774-aad7-a7893239e4ea", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "source": [ + "df_test.info()" + ], + "execution_count": 78, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "Int64Index: 1409 entries, 5027 to 5773\n", + "Data columns (total 19 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 gender 1409 non-null object \n", + " 1 SeniorCitizen 1409 non-null int64 \n", + " 2 Partner 1409 non-null object \n", + " 3 Dependents 1368 non-null object \n", + " 4 tenure 1291 non-null float64\n", + " 5 PhoneService 1409 non-null object \n", + " 6 MultipleLines 1409 non-null object \n", + " 7 InternetService 1409 non-null object \n", + " 8 OnlineSecurity 1409 non-null object \n", + " 9 OnlineBackup 1409 non-null object \n", + " 10 DeviceProtection 1409 non-null object \n", + " 11 TechSupport 1409 non-null object \n", + " 12 StreamingTV 1409 non-null object \n", + " 13 StreamingMovies 1409 non-null object \n", + " 14 Contract 1409 non-null object \n", + " 15 PaperlessBilling 1409 non-null object \n", + " 16 PaymentMethod 1379 non-null object \n", + " 17 MonthlyCharges 1409 non-null float64\n", + " 18 TotalCharges 1409 non-null object \n", + "dtypes: float64(2), int64(1), object(16)\n", + "memory usage: 220.2+ KB\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "dq-mKLVnQtch", + "outputId": "90ca8012-1695-43ea-aa3b-6f7741506b7d", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "source": [ + "#Trata os NA do conjunto de teste com os valores mais frequentes\n", + "cols_to_impute = ['Dependents', 'tenure', 'PaymentMethod', 'TotalCharges']\n", + "imputer = SimpleImputer(strategy='most_frequent')\n", + "df_test[cols_to_impute] = imputer.fit_transform(df_test[cols_to_impute])\n", + "df_test.info()" + ], + "execution_count": 79, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "Int64Index: 1409 entries, 5027 to 5773\n", + "Data columns (total 19 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 gender 1409 non-null object \n", + " 1 SeniorCitizen 1409 non-null int64 \n", + " 2 Partner 1409 non-null object \n", + " 3 Dependents 1409 non-null object \n", + " 4 tenure 1409 non-null float64\n", + " 5 PhoneService 1409 non-null object \n", + " 6 MultipleLines 1409 non-null object \n", + " 7 InternetService 1409 non-null object \n", + " 8 OnlineSecurity 1409 non-null object \n", + " 9 OnlineBackup 1409 non-null object \n", + " 10 DeviceProtection 1409 non-null object \n", + " 11 TechSupport 1409 non-null object \n", + " 12 StreamingTV 1409 non-null object \n", + " 13 StreamingMovies 1409 non-null object \n", + " 14 Contract 1409 non-null object \n", + " 15 PaperlessBilling 1409 non-null object \n", + " 16 PaymentMethod 1409 non-null object \n", + " 17 MonthlyCharges 1409 non-null float64\n", + " 18 TotalCharges 1409 non-null object \n", + "dtypes: float64(2), int64(1), object(16)\n", + "memory usage: 220.2+ KB\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "nV5YTUHrRRAd" + }, + "source": [ + "#Transforma 'TotalCharges' para numérico\n", + "df_test['TotalCharges'] = pd.to_numeric(df_test['TotalCharges'], errors='coerce')" + ], + "execution_count": 80, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "g4Ebhn5AbzXM", + "outputId": "e03474de-de84-4139-faf5-b4816c376184", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 278 + } + }, + "source": [ + "df_test_eda = pd.concat([pd.get_dummies(df_test[categorical]),df_test[numerical]], axis=1)\n", + "df_test_eda.head()" + ], + "execution_count": 81, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
SeniorCitizengender_Femalegender_MalePartner_NoPartner_YesDependents_NoDependents_YesPhoneService_NoPhoneService_YesMultipleLines_NoMultipleLines_No phone serviceMultipleLines_YesInternetService_DSLInternetService_Fiber opticInternetService_NoOnlineSecurity_NoOnlineSecurity_No internet serviceOnlineSecurity_YesOnlineBackup_NoOnlineBackup_No internet serviceOnlineBackup_YesDeviceProtection_NoDeviceProtection_No internet serviceDeviceProtection_YesTechSupport_NoTechSupport_No internet serviceTechSupport_YesStreamingTV_NoStreamingTV_No internet serviceStreamingTV_YesStreamingMovies_NoStreamingMovies_No internet serviceStreamingMovies_YesContract_Month-to-monthContract_One yearContract_Two yearPaperlessBilling_NoPaperlessBilling_YesPaymentMethod_Bank transfer (automatic)PaymentMethod_Credit card (automatic)PaymentMethod_Electronic checkPaymentMethod_Mailed checktenureMonthlyChargesTotalCharges
id
502700101010110000101001001001001001001001010023.020.00445.30
173310101010100101010000110010000100101010001061.099.005969.30
538400110100100101010010010010010000110001001036.084.753050.15
655401001011001010010000100100100100100101100061.061.453751.15
36401010100110000101001001001001001000101000147.020.55945.70
\n", + "
" + ], + "text/plain": [ + " SeniorCitizen gender_Female ... MonthlyCharges TotalCharges\n", + "id ... \n", + "5027 0 0 ... 20.00 445.30\n", + "1733 1 0 ... 99.00 5969.30\n", + "5384 0 0 ... 84.75 3050.15\n", + "6554 0 1 ... 61.45 3751.15\n", + "364 0 1 ... 20.55 945.70\n", + "\n", + "[5 rows x 45 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 81 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rfbmFhugWTGf" + }, + "source": [ + "#Configurando Pycaret" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "CX9LRvCqU1xt", + "outputId": "e6096168-b87a-4580-80e2-44ba626e873c", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000, + "referenced_widgets": [ + "38c2a034cf674670adc19ddf7bc7823d", + "950f906e936b450786a2715366bf8c45", + "8467b6fac30e4fa5b3df99f9bce018c9", + "ca45548f411d419e866f0750f5a6c5c5", + "f416f31746f442fb991a0736db762068", + "0b7b428b847f42f3843d3a9ef21a5785" + ] + } + }, + "source": [ + "clf = setup(df_train_eda, \n", + " target = 'Churn', \n", + " session_id=1, \n", + " ##log_experiment=True,\n", + " train_size=0.75,\n", + " #fix_imbalance=True,\n", + " normalize = True,\n", + " normalize_method = 'robust',\n", + " ##transformation = True,\n", + " experiment_name='base_line1')" + ], + "execution_count": 18, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DescriptionValue
0session_id1
1TargetChurn
2Target TypeBinary
3Label Encoded0: 0, 1: 1
4Original Data(4884, 46)
5Missing ValuesTrue
6Numeric Features44
7Categorical Features1
8Ordinal FeaturesFalse
9High Cardinality FeaturesFalse
10High Cardinality MethodNone
11Transformed Train Set(3663, 32)
12Transformed Test Set(1221, 32)
13Shuffle Train-TestTrue
14Stratify Train-TestFalse
15Fold GeneratorStratifiedKFold
16Fold Number10
17CPU Jobs-1
18Use GPUFalse
19Log ExperimentFalse
20Experiment Namebase_line1
21USI7840
22Imputation Typesimple
23Iterative Imputation IterationNone
24Numeric Imputermean
25Iterative Imputation Numeric ModelNone
26Categorical Imputerconstant
27Iterative Imputation Categorical ModelNone
28Unknown Categoricals Handlingleast_frequent
29NormalizeTrue
30Normalize Methodrobust
31TransformationFalse
32Transformation MethodNone
33PCAFalse
34PCA MethodNone
35PCA ComponentsNone
36Ignore Low VarianceFalse
37Combine Rare LevelsFalse
38Rare Level ThresholdNone
39Numeric BinningFalse
40Remove OutliersFalse
41Outliers ThresholdNone
42Remove MulticollinearityFalse
43Multicollinearity ThresholdNone
44ClusteringFalse
45Clustering IterationNone
46Polynomial FeaturesFalse
47Polynomial DegreeNone
48Trignometry FeaturesFalse
49Polynomial ThresholdNone
50Group FeaturesFalse
51Feature SelectionFalse
52Features Selection ThresholdNone
53Feature InteractionFalse
54Feature RatioFalse
55Interaction ThresholdNone
56Fix ImbalanceFalse
57Fix Imbalance MethodSMOTE
\n", + "
" + ], + "text/plain": [ + " Description Value\n", + "0 session_id 1\n", + "1 Target Churn\n", + "2 Target Type Binary\n", + "3 Label Encoded 0: 0, 1: 1\n", + "4 Original Data (4884, 46)\n", + "5 Missing Values True\n", + "6 Numeric Features 44\n", + "7 Categorical Features 1\n", + "8 Ordinal Features False\n", + "9 High Cardinality Features False\n", + "10 High Cardinality Method None\n", + "11 Transformed Train Set (3663, 32)\n", + "12 Transformed Test Set (1221, 32)\n", + "13 Shuffle Train-Test True\n", + "14 Stratify Train-Test False\n", + "15 Fold Generator StratifiedKFold\n", + "16 Fold Number 10\n", + "17 CPU Jobs -1\n", + "18 Use GPU False\n", + "19 Log Experiment False\n", + "20 Experiment Name base_line1\n", + "21 USI 7840\n", + "22 Imputation Type simple\n", + "23 Iterative Imputation Iteration None\n", + "24 Numeric Imputer mean\n", + "25 Iterative Imputation Numeric Model None\n", + "26 Categorical Imputer constant\n", + "27 Iterative Imputation Categorical Model None\n", + "28 Unknown Categoricals Handling least_frequent\n", + "29 Normalize True\n", + "30 Normalize Method robust\n", + "31 Transformation False\n", + "32 Transformation Method None\n", + "33 PCA False\n", + "34 PCA Method None\n", + "35 PCA Components None\n", + "36 Ignore Low Variance False\n", + "37 Combine Rare Levels False\n", + "38 Rare Level Threshold None\n", + "39 Numeric Binning False\n", + "40 Remove Outliers False\n", + "41 Outliers Threshold None\n", + "42 Remove Multicollinearity False\n", + "43 Multicollinearity Threshold None\n", + "44 Clustering False\n", + "45 Clustering Iteration None\n", + "46 Polynomial Features False\n", + "47 Polynomial Degree None\n", + "48 Trignometry Features False\n", + "49 Polynomial Threshold None\n", + "50 Group Features False\n", + "51 Feature Selection False\n", + "52 Features Selection Threshold None\n", + "53 Feature Interaction False\n", + "54 Feature Ratio False\n", + "55 Interaction Threshold None\n", + "56 Fix Imbalance False\n", + "57 Fix Imbalance Method SMOTE" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4QKVNRXQWbF6" + }, + "source": [ + "##Comparando os modelos" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "QiMXGca8Weqg", + "outputId": "8b9767a1-286a-4d5d-cfdf-4e63bb237218", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 575, + "referenced_widgets": [ + "a866d68fcc704a9da5aa0febd930c8be", + "dfe9ba82a64a4fde9eb582f66debfe45", + "16a3ad7c27c545ea846107c763a09160" + ] + } + }, + "source": [ + "Modelos_resultados = compare_models()\n", + "Modelos_resultados" + ], + "execution_count": 19, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ModelAccuracyAUCRecallPrec.F1KappaMCCTT (Sec)
lrLogistic Regression0.81190.84950.55110.67180.60440.48280.48750.355
ldaLinear Discriminant Analysis0.80510.84160.56150.64720.60000.47230.47510.037
gbcGradient Boosting Classifier0.80480.84590.53120.65850.58630.46080.46640.511
adaAda Boost Classifier0.80430.84400.54060.65490.59020.46350.46840.220
ridgeRidge Classifier0.80400.00000.50930.66390.57500.45080.45830.022
catboostCatBoost Classifier0.80370.83860.52800.65540.58350.45730.46273.458
lightgbmLight Gradient Boosting Machine0.79660.83050.53340.63500.57780.44550.44960.118
rfRandom Forest Classifier0.79110.82520.48850.63070.54940.41660.42300.682
svmSVM - Linear Kernel0.78300.00000.53450.61620.54430.40980.42740.038
xgboostExtreme Gradient Boosting0.78270.81520.50200.60370.54690.40570.40950.808
etExtra Trees Classifier0.77890.80150.48120.59980.53230.39000.39500.666
knnK Neighbors Classifier0.77180.78980.55420.56590.55930.40550.40600.139
nbNaive Bayes0.75100.83480.75980.51680.61470.44060.45900.022
dtDecision Tree Classifier0.73300.65700.49680.49040.49210.31150.31230.035
qdaQuadratic Discriminant Analysis0.67840.60360.44680.41860.41290.19890.20930.026
\n", + "
" + ], + "text/plain": [ + " Model Accuracy AUC Recall Prec. \\\n", + "lr Logistic Regression 0.8119 0.8495 0.5511 0.6718 \n", + "lda Linear Discriminant Analysis 0.8051 0.8416 0.5615 0.6472 \n", + "gbc Gradient Boosting Classifier 0.8048 0.8459 0.5312 0.6585 \n", + "ada Ada Boost Classifier 0.8043 0.8440 0.5406 0.6549 \n", + "ridge Ridge Classifier 0.8040 0.0000 0.5093 0.6639 \n", + "catboost CatBoost Classifier 0.8037 0.8386 0.5280 0.6554 \n", + "lightgbm Light Gradient Boosting Machine 0.7966 0.8305 0.5334 0.6350 \n", + "rf Random Forest Classifier 0.7911 0.8252 0.4885 0.6307 \n", + "svm SVM - Linear Kernel 0.7830 0.0000 0.5345 0.6162 \n", + "xgboost Extreme Gradient Boosting 0.7827 0.8152 0.5020 0.6037 \n", + "et Extra Trees Classifier 0.7789 0.8015 0.4812 0.5998 \n", + "knn K Neighbors Classifier 0.7718 0.7898 0.5542 0.5659 \n", + "nb Naive Bayes 0.7510 0.8348 0.7598 0.5168 \n", + "dt Decision Tree Classifier 0.7330 0.6570 0.4968 0.4904 \n", + "qda Quadratic Discriminant Analysis 0.6784 0.6036 0.4468 0.4186 \n", + "\n", + " F1 Kappa MCC TT (Sec) \n", + "lr 0.6044 0.4828 0.4875 0.355 \n", + "lda 0.6000 0.4723 0.4751 0.037 \n", + "gbc 0.5863 0.4608 0.4664 0.511 \n", + "ada 0.5902 0.4635 0.4684 0.220 \n", + "ridge 0.5750 0.4508 0.4583 0.022 \n", + "catboost 0.5835 0.4573 0.4627 3.458 \n", + "lightgbm 0.5778 0.4455 0.4496 0.118 \n", + "rf 0.5494 0.4166 0.4230 0.682 \n", + "svm 0.5443 0.4098 0.4274 0.038 \n", + "xgboost 0.5469 0.4057 0.4095 0.808 \n", + "et 0.5323 0.3900 0.3950 0.666 \n", + "knn 0.5593 0.4055 0.4060 0.139 \n", + "nb 0.6147 0.4406 0.4590 0.022 \n", + "dt 0.4921 0.3115 0.3123 0.035 \n", + "qda 0.4129 0.1989 0.2093 0.026 " + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,\n", + " intercept_scaling=1, l1_ratio=None, max_iter=1000,\n", + " multi_class='auto', n_jobs=None, penalty='l2',\n", + " random_state=1, solver='lbfgs', tol=0.0001, verbose=0,\n", + " warm_start=False)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 19 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0Mp-RD75YKS7" + }, + "source": [ + "##Criando Modelos\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "cHh0JGGsXTtf", + "outputId": "50cff2f3-4a03-4065-fca8-932d228fa37e", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 402, + "referenced_widgets": [ + "02e474ea159044469047ad99bdca7691", + "95ecdbc5764d42c1a6d0d6497244738f", + "a10ba5ad1bc642f9bbc9606fb6367c8f" + ] + } + }, + "source": [ + "lr = create_model('lr')" + ], + "execution_count": 20, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AccuracyAUCRecallPrec.F1KappaMCC
00.82830.86070.59380.70370.64410.53200.5354
10.81470.86560.50000.70590.58540.47050.4821
20.80380.84820.60420.63040.61700.48520.4854
30.81420.85940.59380.66280.62640.50320.5046
40.79230.84050.48960.63510.55290.42060.4267
50.80870.83080.53120.67110.59300.47020.4757
60.81150.86500.58330.65880.61880.49420.4958
70.82240.84010.56250.70130.62430.50980.5151
80.79780.83210.48420.64790.55420.42700.4346
90.82510.85290.56840.70130.62790.51530.5201
Mean0.81190.84950.55110.67180.60440.48280.4875
SD0.01110.01250.04380.02790.03000.03470.0334
\n", + "
" + ], + "text/plain": [ + " Accuracy AUC Recall Prec. F1 Kappa MCC\n", + "0 0.8283 0.8607 0.5938 0.7037 0.6441 0.5320 0.5354\n", + "1 0.8147 0.8656 0.5000 0.7059 0.5854 0.4705 0.4821\n", + "2 0.8038 0.8482 0.6042 0.6304 0.6170 0.4852 0.4854\n", + "3 0.8142 0.8594 0.5938 0.6628 0.6264 0.5032 0.5046\n", + "4 0.7923 0.8405 0.4896 0.6351 0.5529 0.4206 0.4267\n", + "5 0.8087 0.8308 0.5312 0.6711 0.5930 0.4702 0.4757\n", + "6 0.8115 0.8650 0.5833 0.6588 0.6188 0.4942 0.4958\n", + "7 0.8224 0.8401 0.5625 0.7013 0.6243 0.5098 0.5151\n", + "8 0.7978 0.8321 0.4842 0.6479 0.5542 0.4270 0.4346\n", + "9 0.8251 0.8529 0.5684 0.7013 0.6279 0.5153 0.5201\n", + "Mean 0.8119 0.8495 0.5511 0.6718 0.6044 0.4828 0.4875\n", + "SD 0.0111 0.0125 0.0438 0.0279 0.0300 0.0347 0.0334" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "XIU0O_uyXadB", + "outputId": "85094666-7462-47b2-e3c2-fed73d9a311d", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 402, + "referenced_widgets": [ + "2a8680f6e11442f2b1a4f2ffb25bb26e", + "a4a8b0747a874b009e24007c0450187e", + "7466c945fa2f43d7beef09df3e5e6873" + ] + } + }, + "source": [ + "lda = create_model('lda')" + ], + "execution_count": 21, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AccuracyAUCRecallPrec.F1KappaMCC
00.81200.85380.58330.65880.61880.49460.4962
10.81470.85420.53120.68920.60000.48200.4890
20.79290.83840.60420.60420.60420.46390.4639
30.78960.85000.57290.60440.58820.44710.4474
40.78690.84270.50000.61540.55170.41390.4177
50.81150.82720.55210.67090.60570.48340.4873
60.81970.85680.63540.66300.64890.52770.5279
70.82240.83690.61460.67820.64480.52680.5279
80.77870.81820.44210.60000.50910.37040.3776
90.82240.83790.57890.68750.62860.51300.5163
Mean0.80510.84160.56150.64720.60000.47230.4751
SD0.01550.01190.05480.03500.04040.04790.0466
\n", + "
" + ], + "text/plain": [ + " Accuracy AUC Recall Prec. F1 Kappa MCC\n", + "0 0.8120 0.8538 0.5833 0.6588 0.6188 0.4946 0.4962\n", + "1 0.8147 0.8542 0.5312 0.6892 0.6000 0.4820 0.4890\n", + "2 0.7929 0.8384 0.6042 0.6042 0.6042 0.4639 0.4639\n", + "3 0.7896 0.8500 0.5729 0.6044 0.5882 0.4471 0.4474\n", + "4 0.7869 0.8427 0.5000 0.6154 0.5517 0.4139 0.4177\n", + "5 0.8115 0.8272 0.5521 0.6709 0.6057 0.4834 0.4873\n", + "6 0.8197 0.8568 0.6354 0.6630 0.6489 0.5277 0.5279\n", + "7 0.8224 0.8369 0.6146 0.6782 0.6448 0.5268 0.5279\n", + "8 0.7787 0.8182 0.4421 0.6000 0.5091 0.3704 0.3776\n", + "9 0.8224 0.8379 0.5789 0.6875 0.6286 0.5130 0.5163\n", + "Mean 0.8051 0.8416 0.5615 0.6472 0.6000 0.4723 0.4751\n", + "SD 0.0155 0.0119 0.0548 0.0350 0.0404 0.0479 0.0466" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "mY0LF1XYXqmB", + "outputId": "65d8c689-7815-4e66-f811-c66fc56068b0", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 402, + "referenced_widgets": [ + "bfd7bc9b84504acaa45ade9ce905039e", + "0252ecc639a4401bbb24565504a3e78d", + "ea3cd554c7fe4c7bb2d20c7d9c6fe297" + ] + } + }, + "source": [ + "gbc = create_model('gbc')" + ], + "execution_count": 22, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AccuracyAUCRecallPrec.F1KappaMCC
00.83110.85390.60420.70730.65170.54110.5440
10.81470.86590.46880.72580.56960.45840.4762
20.80650.85090.58330.64370.61200.48360.4846
30.80600.86480.56250.65060.60340.47590.4781
40.78960.83150.50000.62340.55490.41930.4237
50.78420.81440.52080.60240.55870.41680.4187
60.79510.85900.56250.62070.59020.45400.4550
70.81150.83240.51040.69010.58680.46820.4772
80.78140.84140.42110.61540.50000.36640.3772
90.82790.84440.57890.70510.63580.52460.5289
Mean0.80480.84590.53120.65850.58630.46080.4664
SD0.01630.01560.05460.04250.04140.04890.0478
\n", + "
" + ], + "text/plain": [ + " Accuracy AUC Recall Prec. F1 Kappa MCC\n", + "0 0.8311 0.8539 0.6042 0.7073 0.6517 0.5411 0.5440\n", + "1 0.8147 0.8659 0.4688 0.7258 0.5696 0.4584 0.4762\n", + "2 0.8065 0.8509 0.5833 0.6437 0.6120 0.4836 0.4846\n", + "3 0.8060 0.8648 0.5625 0.6506 0.6034 0.4759 0.4781\n", + "4 0.7896 0.8315 0.5000 0.6234 0.5549 0.4193 0.4237\n", + "5 0.7842 0.8144 0.5208 0.6024 0.5587 0.4168 0.4187\n", + "6 0.7951 0.8590 0.5625 0.6207 0.5902 0.4540 0.4550\n", + "7 0.8115 0.8324 0.5104 0.6901 0.5868 0.4682 0.4772\n", + "8 0.7814 0.8414 0.4211 0.6154 0.5000 0.3664 0.3772\n", + "9 0.8279 0.8444 0.5789 0.7051 0.6358 0.5246 0.5289\n", + "Mean 0.8048 0.8459 0.5312 0.6585 0.5863 0.4608 0.4664\n", + "SD 0.0163 0.0156 0.0546 0.0425 0.0414 0.0489 0.0478" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "UBr4kwXkYxPg" + }, + "source": [ + "" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "mkRdhgoxX3o_", + "outputId": "d1611329-cf29-4822-d96e-b859b38a0bee", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 402, + "referenced_widgets": [ + "efd0161617ba486fbad9d63bb8868a15", + "5c80678a9a5b4265be06eb3f00bd3762", + "fbbb1109c1104d51ba36459c1984c3e6" + ] + } + }, + "source": [ + "ada = create_model('ada')" + ], + "execution_count": 24, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AccuracyAUCRecallPrec.F1KappaMCC
00.80380.84100.55210.64630.59550.46710.4696
10.81740.86620.45830.74580.56770.46030.4822
20.81740.85750.63540.65590.64550.52260.5227
30.81150.87290.58330.65880.61880.49420.4958
40.79780.83220.53120.63750.57950.44790.4511
50.76500.80930.50000.55810.52750.37170.3727
60.80330.86890.56250.64290.60000.47030.4722
70.80870.83700.56250.65850.60670.48140.4840
80.78960.82470.46320.62860.53330.40150.4093
90.82790.82990.55790.71620.62720.51760.5244
Mean0.80430.84400.54060.65490.59020.46350.4684
SD0.01670.02030.05170.04760.03660.04500.0450
\n", + "
" + ], + "text/plain": [ + " Accuracy AUC Recall Prec. F1 Kappa MCC\n", + "0 0.8038 0.8410 0.5521 0.6463 0.5955 0.4671 0.4696\n", + "1 0.8174 0.8662 0.4583 0.7458 0.5677 0.4603 0.4822\n", + "2 0.8174 0.8575 0.6354 0.6559 0.6455 0.5226 0.5227\n", + "3 0.8115 0.8729 0.5833 0.6588 0.6188 0.4942 0.4958\n", + "4 0.7978 0.8322 0.5312 0.6375 0.5795 0.4479 0.4511\n", + "5 0.7650 0.8093 0.5000 0.5581 0.5275 0.3717 0.3727\n", + "6 0.8033 0.8689 0.5625 0.6429 0.6000 0.4703 0.4722\n", + "7 0.8087 0.8370 0.5625 0.6585 0.6067 0.4814 0.4840\n", + "8 0.7896 0.8247 0.4632 0.6286 0.5333 0.4015 0.4093\n", + "9 0.8279 0.8299 0.5579 0.7162 0.6272 0.5176 0.5244\n", + "Mean 0.8043 0.8440 0.5406 0.6549 0.5902 0.4635 0.4684\n", + "SD 0.0167 0.0203 0.0517 0.0476 0.0366 0.0450 0.0450" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_c0K13FsYPkY" + }, + "source": [ + "##Tuning dos modelos" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "kxmYHWCbYTud", + "outputId": "95f0bc4f-58ab-4945-da20-3e7edea14ccf", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 402, + "referenced_widgets": [ + "dce27f74ac10489299f2e86ca4df0e10", + "ed8e57f8d2964d9f80a643f14ab9c01d", + "cd8845aa47124ec1acbdf6e2ddc0955c" + ] + } + }, + "source": [ + "tuned_lr = tune_model(lr)" + ], + "execution_count": 25, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AccuracyAUCRecallPrec.F1KappaMCC
00.82290.86150.58330.69140.63280.51720.5204
10.81470.86800.50000.70590.58540.47050.4821
20.80380.85150.59380.63330.61290.48170.4821
30.80600.86020.58330.64370.61200.48310.4842
40.78690.83980.50000.61540.55170.41390.4177
50.81420.83010.56250.67500.61360.49270.4962
60.81150.86730.58330.65880.61880.49420.4958
70.81690.84070.56250.68350.61710.49830.5024
80.79230.83190.48420.63010.54760.41590.4219
90.82510.85160.56840.70130.62790.51530.5201
Mean0.80940.85020.55210.66380.60200.47830.4823
SD0.01180.01330.03900.03050.02870.03450.0339
\n", + "
" + ], + "text/plain": [ + " Accuracy AUC Recall Prec. F1 Kappa MCC\n", + "0 0.8229 0.8615 0.5833 0.6914 0.6328 0.5172 0.5204\n", + "1 0.8147 0.8680 0.5000 0.7059 0.5854 0.4705 0.4821\n", + "2 0.8038 0.8515 0.5938 0.6333 0.6129 0.4817 0.4821\n", + "3 0.8060 0.8602 0.5833 0.6437 0.6120 0.4831 0.4842\n", + "4 0.7869 0.8398 0.5000 0.6154 0.5517 0.4139 0.4177\n", + "5 0.8142 0.8301 0.5625 0.6750 0.6136 0.4927 0.4962\n", + "6 0.8115 0.8673 0.5833 0.6588 0.6188 0.4942 0.4958\n", + "7 0.8169 0.8407 0.5625 0.6835 0.6171 0.4983 0.5024\n", + "8 0.7923 0.8319 0.4842 0.6301 0.5476 0.4159 0.4219\n", + "9 0.8251 0.8516 0.5684 0.7013 0.6279 0.5153 0.5201\n", + "Mean 0.8094 0.8502 0.5521 0.6638 0.6020 0.4783 0.4823\n", + "SD 0.0118 0.0133 0.0390 0.0305 0.0287 0.0345 0.0339" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "pN09I9EiYj1J", + "outputId": "33e58b38-2198-4d34-a409-0667d1fea264", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 402, + "referenced_widgets": [ + "53d5b2f611b247a39772728c4b355f4b", + "b479346e107548248cbebf308a6588a0", + "a7236ae9246041ec982214b506eba7c7" + ] + } + }, + "source": [ + "tuned_lda = tune_model(lda)" + ], + "execution_count": 26, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AccuracyAUCRecallPrec.F1KappaMCC
00.81740.85430.60420.66670.63390.51270.5138
10.82020.85550.56250.69230.62070.50450.5092
20.79840.83990.63540.61000.62240.48500.4852
30.80600.85170.61460.63440.62430.49360.4937
40.79230.84250.54170.61900.57780.44090.4426
50.81150.82810.56250.66670.61020.48700.4901
60.81690.85750.64580.65260.64920.52540.5254
70.81970.83610.61460.67050.64130.52120.5221
80.79230.82040.49470.62670.55290.42010.4251
90.81690.84130.58950.66670.62570.50510.5068
Mean0.80920.84270.58650.65060.61580.48960.4914
SD0.01060.01170.04400.02530.02790.03240.0316
\n", + "
" + ], + "text/plain": [ + " Accuracy AUC Recall Prec. F1 Kappa MCC\n", + "0 0.8174 0.8543 0.6042 0.6667 0.6339 0.5127 0.5138\n", + "1 0.8202 0.8555 0.5625 0.6923 0.6207 0.5045 0.5092\n", + "2 0.7984 0.8399 0.6354 0.6100 0.6224 0.4850 0.4852\n", + "3 0.8060 0.8517 0.6146 0.6344 0.6243 0.4936 0.4937\n", + "4 0.7923 0.8425 0.5417 0.6190 0.5778 0.4409 0.4426\n", + "5 0.8115 0.8281 0.5625 0.6667 0.6102 0.4870 0.4901\n", + "6 0.8169 0.8575 0.6458 0.6526 0.6492 0.5254 0.5254\n", + "7 0.8197 0.8361 0.6146 0.6705 0.6413 0.5212 0.5221\n", + "8 0.7923 0.8204 0.4947 0.6267 0.5529 0.4201 0.4251\n", + "9 0.8169 0.8413 0.5895 0.6667 0.6257 0.5051 0.5068\n", + "Mean 0.8092 0.8427 0.5865 0.6506 0.6158 0.4896 0.4914\n", + "SD 0.0106 0.0117 0.0440 0.0253 0.0279 0.0324 0.0316" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "v1wIOsrvYyca", + "outputId": "deca1506-2068-4de5-e48b-262f10ceed67", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 402, + "referenced_widgets": [ + "0e7e5598166140fdafa439917e69ab2e", + "bb7b11cbfd784979a8b6fbe3db882d30", + "d161ea86c3bc4b9e84029797905487e1" + ] + } + }, + "source": [ + "tuned_gbc = tune_model(gbc)" + ], + "execution_count": 27, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AccuracyAUCRecallPrec.F1KappaMCC
00.83650.85160.60420.72500.65910.55270.5567
10.81200.86540.46880.71430.56600.45260.4689
20.80110.84810.58330.62920.60540.47270.4733
30.82240.86760.61460.67820.64480.52680.5279
40.80330.83660.51040.66220.57650.45110.4576
50.80330.83140.55210.64630.59550.46660.4691
60.80600.86030.60420.63740.62030.49020.4905
70.81150.84270.55210.67090.60570.48340.4873
80.78960.84300.45260.63240.52760.39700.4062
90.83330.85930.56840.72970.63910.53290.5399
Mean0.81190.85060.55110.67250.60400.48260.4878
SD0.01400.01170.05400.03650.03780.04360.0419
\n", + "
" + ], + "text/plain": [ + " Accuracy AUC Recall Prec. F1 Kappa MCC\n", + "0 0.8365 0.8516 0.6042 0.7250 0.6591 0.5527 0.5567\n", + "1 0.8120 0.8654 0.4688 0.7143 0.5660 0.4526 0.4689\n", + "2 0.8011 0.8481 0.5833 0.6292 0.6054 0.4727 0.4733\n", + "3 0.8224 0.8676 0.6146 0.6782 0.6448 0.5268 0.5279\n", + "4 0.8033 0.8366 0.5104 0.6622 0.5765 0.4511 0.4576\n", + "5 0.8033 0.8314 0.5521 0.6463 0.5955 0.4666 0.4691\n", + "6 0.8060 0.8603 0.6042 0.6374 0.6203 0.4902 0.4905\n", + "7 0.8115 0.8427 0.5521 0.6709 0.6057 0.4834 0.4873\n", + "8 0.7896 0.8430 0.4526 0.6324 0.5276 0.3970 0.4062\n", + "9 0.8333 0.8593 0.5684 0.7297 0.6391 0.5329 0.5399\n", + "Mean 0.8119 0.8506 0.5511 0.6725 0.6040 0.4826 0.4878\n", + "SD 0.0140 0.0117 0.0540 0.0365 0.0378 0.0436 0.0419" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "cLNQGEp_aAeh", + "outputId": "32c68575-7233-4a6d-c857-95c5e69512ef", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 402, + "referenced_widgets": [ + "9815bc085d224f42a4e1a714831650c7", + "2a2a232930394ddd8a249b6deb7ebbfd", + "65e12b95f706447ab2ba2944fdc0f2ab" + ] + } + }, + "source": [ + "tune_ada = tune_model(ada)" + ], + "execution_count": 28, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AccuracyAUCRecallPrec.F1KappaMCC
00.82290.84510.52080.72460.60610.49570.5070
10.82290.86900.43750.79250.56380.46400.4963
20.80380.85590.50000.66670.57140.44760.4554
30.81970.86990.55210.69740.61630.50050.5063
40.79510.83250.44790.66150.53420.40900.4218
50.78140.82670.44790.61430.51810.38120.3891
60.81420.85860.51040.70000.59040.47400.4839
70.82240.83600.50000.73850.59630.48780.5030
80.80050.83280.42110.68970.52290.40600.4257
90.83060.84100.53680.73910.62200.51630.5273
Mean0.81140.84680.48750.70240.57410.45820.4716
SD0.01470.01490.04310.04710.03650.04350.0435
\n", + "
" + ], + "text/plain": [ + " Accuracy AUC Recall Prec. F1 Kappa MCC\n", + "0 0.8229 0.8451 0.5208 0.7246 0.6061 0.4957 0.5070\n", + "1 0.8229 0.8690 0.4375 0.7925 0.5638 0.4640 0.4963\n", + "2 0.8038 0.8559 0.5000 0.6667 0.5714 0.4476 0.4554\n", + "3 0.8197 0.8699 0.5521 0.6974 0.6163 0.5005 0.5063\n", + "4 0.7951 0.8325 0.4479 0.6615 0.5342 0.4090 0.4218\n", + "5 0.7814 0.8267 0.4479 0.6143 0.5181 0.3812 0.3891\n", + "6 0.8142 0.8586 0.5104 0.7000 0.5904 0.4740 0.4839\n", + "7 0.8224 0.8360 0.5000 0.7385 0.5963 0.4878 0.5030\n", + "8 0.8005 0.8328 0.4211 0.6897 0.5229 0.4060 0.4257\n", + "9 0.8306 0.8410 0.5368 0.7391 0.6220 0.5163 0.5273\n", + "Mean 0.8114 0.8468 0.4875 0.7024 0.5741 0.4582 0.4716\n", + "SD 0.0147 0.0149 0.0431 0.0471 0.0365 0.0435 0.0435" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kPvFXRINacuT" + }, + "source": [ + "##Avaliação do Modelo Vencedor" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "DTP_w4Qcahbo", + "outputId": "34d5b708-cabe-482b-a871-99697b5f8820", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 401 + } + }, + "source": [ + "plot_model(estimator = tuned_gbc, plot = 'confusion_matrix')" + ], + "execution_count": 30, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAAGACAYAAAC6OPj9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deVhUdf//8dewuiuLueBGFmYuuZVWmoaigLlnkmZGFuXtmmm5pqaZZuotbtnukntKegsopZlmaaXi0u1XTS1XVEDckGWY3x/+nFsCBM0BPvV8XFdXcs7MOe8z4wVPz5wZLDabzSYAAACDORX0AAAAAH8VQQMAAIxH0AAAAOMRNAAAwHgEDQAAMB5BAwAAjEfQ4G/FZrNpwYIFat++vYKCghQQEKCXX35Z+/btuyvbf/DBB3XixAnFxMRo+PDhf2lby5cvt/+5Z8+eatq0qQIDAxUYGKjOnTvr+++//6vjZuvIkSP66aefJOmuHEdqaqqmT5+uwMBAtWnTRm3atNH06dOVmpoq6fqxffXVV3957pvdPHdsbKyaN2+uV1999a4cjyTFxcXpjTfeUEBAgFq3bq2OHTtq1apVf2mbx48fV0BAgDp06HBH9586daqWLFnyl2a4WY0aNTRgwIAsy0eOHKkaNWrkev/U1FRFRETkuD4wMFDnz5//SzMCt8UG/I1MnTrV9swzz9ji4uJsNpvNlp6ebluyZImtUaNGtvj4+L+8/Zo1a9qOHz/+l7dz9uxZW0BAgP3r5557zhYREWH/+rvvvrM1bNjQZrVa//K+/mzevHm22bNn37XtDRw40BYWFmZLSkqy2Ww2W2Jioi0sLMw2ePBgm82W9djutlmzZtmGDBly17Z3+fJlW6tWrWwzZsywpaen22w2m+3w4cM2f39/27Jly+54u6tXr7Y9++yzd2vMv8zPz8/WunVr26VLl+zLUlJSbO3atbP5+fnlev9du3bZevXq5cAJgdvDGRr8bVy4cEHz58/X5MmTdc8990iSnJ2dFRISok2bNsnT01PS9TMG06dPV1BQkHbu3Knz58+rd+/eCgwMlL+/vz777DP7Njdv3qyAgAAFBQXp448/ti9ftWqVXnjhBUnSxYsXNXToULVp00YtW7bUl19+ab9djRo1FBERoY4dO6pp06b6/PPPJUkhISE6deqUAgMD7Wcybta4cWNdunRJFy5ckCQdOHBAISEhCgwMVIcOHbRlyxb7bRcsWKDg4GAFBgaqT58+SkhIkCTt2LFDnTp1UnBwsIKCghQVFaWNGzdq3rx5WrBggSZNmpTpOIYNG6bw8HCFhobqySefVGhoqJKTkyVJW7ZsUfPmzRUUFKRly5apQYMGOnHihA4dOqTNmzdr8uTJKlWqlCSpTJkymjhxop5++uksx/XNN9+oXbt2atOmjTp37qz//ve/kqQrV66ob9++CgoKUsuWLTVq1CilpaXluPzG3NHR0VqwYIE2bdqkl19++bael3nz5qlNmzayWq2ZZoyIiJCXl5cGDBggZ2dnSVL16tU1e/ZsNWzY8JbPx/bt29WtWzdNnTpVQUFB8vf3144dO7Rr1y69//77+vXXX9W+fXtt375dAQEB9n3e/PXBgwfVrVs3tW3bVq1bt9aiRYvsz8+cOXPuaP85ady4sWJiYuxfb926VXXq1Ml0mxUrVigoKEitW7dWjx49dPLkSZ0/f179+vXT7t271b1792wf0xo1aujMmTMaP368JkyYIElKT09X27Zt9e233+Y4E3CnCBr8bcTGxqpChQqqVq1alnUlSpTI9PW+ffu0bt06NWjQQHPnzlWlSpUUHR2t+fPna+rUqTp9+rSsVqtGjhypMWPGKCoqSk5OTll++EnSpEmT5OTkpKioKK1YsUIzZ87UwYMH7esPHz6siIgIzZkzR9OmTZPVatXEiRNVoUIFRUdHy83NLdP2bDabVq1apfr168vT01MZGRkaPHiwnnvuOUVHR2vChAl6/fXXdfnyZe3evVuffPKJFi5cqOjoaFWsWFFTp06VJE2ePFnDhw9XZGSk5s6dq6+//lr+/v4KCAjQ888/r2HDhmU5lujoaE2fPl0xMTFKSEhQTEyMrFarhg0bprfffltRUVE6duyYPXR27NihevXqqUyZMpm24+XlpUcffTTTsvT0dA0bNkzjx4/X+vXr5e/vr8mTJ0u6HhGlSpVSVFSU1q9fL2dnZ/vjlt3yGwIDA/Xcc8+pTZs2+uijj27rebHZbPZt3mzHjh1q3rx5lsfmgQceUPXq1W/5fEjSr7/+qoceekhRUVHq3r275s6dq/r162vw4MGqV6+e1qxZk2XbN5s1a5ZCQkK0bt06LV26VNu2bcsUvXey/5wEBQXpP//5j/3rdevWKTAw0P51fHy83n77bX322WfasGGDqlSpojlz5sjb29t+PIsXL77lY/raa69p48aNOnz4sL744gvdf//9atGixS0fA+BOEDT420hKSrKfhZGu/wv9xjUpTzzxRKYfeM2bN5eT0/W//qNGjdLo0aMlSZUrV1bZsmV14sQJHTt2TKmpqWratKkkqVOnTtnud9OmTXr++efl5OQkT09PBQQEaMOGDfb1N66ZqFWrllJSUhQfH5/tdqZMmaLAwEA1a9ZMU6dOVVhYmCTpxIkTOn/+vNq2bStJqlOnjipWrKi9e/fq22+/VZs2beTl5SVJ6tq1q/3aGy8vL0VEROi3335TtWrV7KFzK82bN1eZMmXk4uIiPz8/nT592v443Pgh37NnT2VkZNgf8xv7zo2Li4u2bdumevXqSZIaNWqk48ePS5I8PT21a9cubd26VRkZGRo3bpxq1qyZ4/K8yO15yemHalJSkry9vXPc7q2eD0kqXry4WrVqJen6c37q1Kk8zXuDl5eX1q9fr/3798vDw0Nz5szJFL13c/+PPPKIDh06pPj4eCUnJ2vXrl2ZQtTLy0u//PKLypcvLynzc5ad7B7TEiVKaMSIERo9erQWLFigkSNH5v3BAG6DS0EPANwtnp6eOnv2rP3rUqVKKTo6WtL1Cx2vXbtmX1e6dGn7n/fu3Ws/K+Pk5KRz584pIyNDSUlJmc7s3Hyfm126dEmDBg2y/6s0JSUl079yS5YsKUn29Tdi4M+GDh1qj59Tp04pLCxMFotFHh4eKlmypCwWS6ZjS0hIUEJCgv3ltRvLbwTTxIkTNXfuXIWGhqpIkSIaPHhwprmyc2PWG/NarVYlJSXZX06SlGl/Hh4eiouLu+U2b7Zw4UKtXr1aqampSk1NtR9TUFCQkpKSNGPGDB05ckTt27fX8OHDc1yeF7k9L38+q5TXY0pISMjx+fD29s70GDo5OeX4fOdkyJAhmjdvngYNGqSUlBS98sor6tGjh0P27+zsrNatWysqKkqenp5q2rSpXFz+92PBarUqPDxcGzdulNVq1ZUrV+Tr65vj9nJ6TP39/TV+/Hg1btxYZcuWzdPjANwuztDgb6NevXqKj4/Xr7/+elv3u3Gdxfr16xUdHS0PDw9J1wPmxml8SfZrU/7snnvu0ezZsxUdHa3o6Ght2rRJb7755p0fiKSKFSuqRYsW+u677+Tl5aWkpCTZbvo9shcuXJCXl5e8vb3t19ncWH7j7IK3t7dGjx6t7777Tm+99ZaGDx+uK1eu3PYsJUqU0NWrV+1f3/zOlUceeUSxsbFZAuDixYuaMWNGppl37typjz76SHPnztX69evt11XcEBISohUrVigyMlL79++3v4Mmp+W5udPnpXHjxtqwYUOm2W/Mv2bNmls+H3l1IxZvuHjxov3PxYsX1+DBgxUTE6NZs2YpPDxcR48eta+/G/u/WXBwsP3vfnBwcKZ1kZGR2rhxoxYtWqT169dn+66ovFi8eLHq1aunnTt36sCBA3e0DSA3BA3+NkqUKKF//etfeuONN/T7779Lun42ZN26dYqKilKVKlWyvV98fLxq164ti8Wi1atXKzk5WVevXlWVKlXk7Oys7du3S7p+IfDN/yq+wd/fX0uXLpV0/TqRiRMnav/+/bec1cXFRVevXlV6enq26y9fvqxt27bpvvvuU6VKlVS+fHlFRkZKkv1C5rp166pFixaKiYlRYmKiJGnp0qVq3ry50tLS1LNnT/sZq1q1asnFxUVOTk5ycXHRpUuXcns47apVq6b09HT747BkyRL741C9enUFBwdr8ODB9tC5cOGCBg8erMTExEyPV0JCgry8vFSxYkUlJydr9erVunr1qmw2m2bPnq2VK1dKksqVK6dKlSrJYrHkuDwv7uR5kaSOHTsqLS1N77zzjv3alcOHD2vo0KFydna+5fORV2XLltW5c+cUHx8vq9WqtWvX2te9+uqrOnTokCTJz89PJUqUyHTMd2P/N6tfv77Onj2rQ4cO6ZFHHsm0Lj4+Xj4+PvL09FRiYqKioqLsUezi4qLLly9nCb8/i4uL08cff6xRo0ZpyJAhGjVq1G2ftQLygpec8Lfy8ssvq0yZMhowYIBSUlKUmpoqX19fhYeH26+F+bOBAweqb9++KlOmjEJCQtStWzeNHj1aixcv1vjx4zVixAi5ubmpc+fOKlasWJb7Dxo0SOPGjVObNm0kSc2aNcv1czxq1Kih0qVL6/HHH9fq1aslXb+G5sYFnDabTcHBwerevbssFoumTZumMWPGaNasWSpatKhmzJihYsWKqW7dugoLC1OPHj2UkZGhmjVrauzYsXJ1ddXTTz9tf8ePk5OTRo0apaJFi+rJJ5/UkCFDdPLkyTxdnOnm5qaxY8dq+PDhKlmypEJDQ+Xk5GT/ITt+/HjNnTtXPXr0kMVikaurq9q3b6/evXtn2k6zZs20ePFitWrVSuXKldOIESMUGxurAQMG6M0339Tw4cP10UcfyWKx6KGHHlKHDh109uzZbJfffCFrTu7keZGkIkWKaOHChfZrmtzd3VWqVCmNGDFCLVu2lKQcn4+8qlq1qrp06aKOHTuqYsWK6tChg/0dX88995xef/11paWlSZK6d++e6UL3W/19uBMWi0UBAQFKTk62X1d2w1NPPaV169YpICBAlStX1qBBg9SnTx9NmjRJPXv21Pvvv69mzZpp8+bNOW7/nXfe0QsvvKCyZcsqMDBQy5Yt08KFC9WrV687mhfIicWWW14DwE2uXr2q+vXr6+eff850vQYAFCRecgKQqy5duthf4oiMjFT16tWJGQCFCmdoAOTq559/1ttvv62UlBQVL15cY8eOveNrNgDAEQgaAABgPF5yAgAAxit073LKyMjQlStX5Orqmue3ZwIAgL83m82mtLQ0FS9ePMs78qRCGDRXrlzJ9PtWAAAAbvDz88v2TQmFLmhcXV0lSb3nDtPZi9n/zhsA/wxHF/6guOSTBT0GgELAmmZVwh8X7Z3wZ4UuaG68zHT2YrxOJ57N5dYA/s7c3d3lYnXO/YYA/jFyuhyFi4IBAIDxCBoAAGA8ggYAABiPoAEAAMYjaAAAgPEIGgAAYDyCBgAAGI+gAQAAxiNoAACA8QgaAABgPIIGAAAYj6ABAADGI2gAAIDxCBoAAGA8ggYAABiPoAEAAMYjaAAAgPEIGgAAYDyCBgAAGI+gAQAAxiNoAACA8QgaAABgPIIGAAAYj6ABAADGI2gAAIDxCBoAAGA8ggYAABiPoAEAAMYjaAAAgPEIGgAAYDyCBgAAGI+gAQAAxiNoAACA8QgaAABgPIIGAAAYj6ABAADGI2gAAIDxCBoAAGA8ggYAABiPoAEAAMYjaAAAgPEIGgAAYDyCBgAAGI+gAQAAxiNoAACA8QgaAABgPIIGAAAYj6ABAADGI2gAAIDxCBoAAGA8ggYAABiPoAEAAMYjaAAAgPEIGgAAYDyCBgAAGI+gAQAAxiNoAACA8QgaAABgPIIGAAAYj6ABAADGI2gAAIDxCBoAAGA8ggYAABiPoAEAAMYjaAAAgPEIGgAAYDyCBgAAGI+gAQAAxiNoAACA8QgaAABgPIIGAAAYj6ABAADGI2gAAIDxCBrkK79K9ypi3CeKW75biav364fwNWrbuKV9/YBOvbXvo290ac3/af/HGzWwU+9M92/3aIB+DF+ri18d0MWvDmjdOwtUq1qN/D4MAHfJH8eO6+nAbvIpXk3Hfz+eaV3E8q/U5rG28itXS4/XbaFJY6fIarXa1/9+9A+93P1V1a3aUA/61NUzwd21d9e+/D4EFBIODZrk5GSNHTtW/v7+atiwobp166bvv//ekbtEIWaxWLT+3S+UnHJND/RuoXLP1NfyzWu1asxH8qt0r3q26qLxvYao36zR8uxcW2HT39S4Xq/r+YCnJUlNajbQytHzFB7xqTw61VK155ooJTVV0RMXyWKxFPDRAbhdUWui1a5FJ/lU9smy7octP2pQ2BD1G/Iv7f1jpz5e/IFWLY3QjMkzJUnXrl1TyFM9VKx4MW2J3ajt//1eFXzKq9fTL+ratWv5fSgoBBwaNG+//bZ27dqlTz75RNu2bVOnTp306quv6siRI47cLQqpsqW9VK18Zc2PWanESxeUmpaqOWsWyM3VTfWq19KATi/q0/XL9G3sNqWlp+n7/T/p0+hlGtT5JUnS5eSr6jl5oBZvXC1rhlUJly7o8w3LValsBXmX9izgowNwuy4kJmlVzHJ1ebZzlnWffjBf/m1aqF3ntnJ3d1fN2g8orH9vffrBfGVkZOjsmXNq/PgjGjNptEqXKa2SpUrq5X69FXfmrA4fOFwAR4OC5rCgSUpK0tq1a9W/f3/5+vrK3d1dISEhql69upYuXeqo3aIQO3vhvLbs3a6Xgp6Vd2lPuTi76NWnntO5C/H6NvYH1ateSzsO7M50nx3/t1t1fWuqqHsR7Tt2QMs3r7Wv8y1fRf07hipyx0aduxCf34cD4C96tlc3Vb//3mzX7dyxS/Ua1cu0rF6jh5QYn6gjh4+qSrXK+veHU+Xp5WFf/8ex43J2dla5CuUcOjcKJ4cFzf79+5WWlqY6depkWl63bl3FxsY6arco5Lq8HaZq5Srp3Mo9Sok8ohHP9lfX8a/KyclJLs4uSrh0IdPtzyclyNnZWV6l/vdNq1mdxkqNOqojC7fpXFK8uo5/Jb8PA4CDJZxPUBmP0pmWeXpdPxMbfy7rP2BOnzqj0UPG6oVXnlfZcmXzZUYULg4LmoSEBElSmTJlMi338PBQfDz/mv4ncnVxVfTERTpw/DeVf6a+SnesqbELp2nt+M90b4Uqt7yvzfa/P2/Zu11uQb66r1dTFXEtou+mfilXF1cHTw+gsPjzNXP7YverXYtOerz5YxozaVQBTYWCViDvcuICzn8m/3qPq8H9dfTaB2MVl3hOl5OvaO7aBTp65riebtZWaelpmc7ESJJ3aU+lpafpfFJClu39duqYXpz6uhr61VXgwy3y6SgA5Afve7yVmJD5jG1C/PXvAzefgfkmepO6tOmm53p3V/jH0+Ts7Jyvc6LwcFjQeHl5SZIuXMj8FzIxMVHe3t6O2i0KMWcnp////8zfcFycnZVhy9Avh/aqSc0GmdY1rf2wfj64RylpKXrnxTcVMe6TTOvdXd0kSek3vZUTgPkaNWmgnTt2ZVr207afVa78Pap2b1VJ0tZvt6lPr36aOvc9DXqzf0GMiULEYUFTu3Ztubm5affuzBd57ty5U40aNXLUblGIfb//Z51JOKvJL42QZ8kycnd110tB3VWjUnWt+G6dpq38UKFtnpF//cfl6uKqVg2a6YWAZzR15YeSpJhftuipxq0U1raH3F3d5VmyjN4PG62T58/o+30/FfDRAbibXur7ojZ//Z2+WrlWKSkpit25R/PCP1JY/5dksVh05fIVDQp7XaPeGa6nOgUX9LgoBCw2281XJ9xdY8eO1c8//6yZM2eqfPnyWrx4sWbNmqX//Oc/8vHJ+rkDkpSSkqJ9+/ap3eSXdTrxrKNGQwGp41tT7/YepkZ+dVW6eEkdOP6b3pr/vtb+ECNJCmvbQ28800eVvCvoj3OnNHnZHH0StcR+/6eatNLbvYbogcr36XLyFf34350a9sm7+vX3gwV1SHAgW8wJnbr6e0GPAQdpVs9fJ/84oYwMm9LS0uTm5iaLRerybGdNmT1JkV9F6/3x03T0t2PyvsdbPV/qof5D/iWLxaIvl6zWgJdek7u7W5btDnizP2ds/obSU60691uiateuLXd39yzrHRo0qampeu+997Ru3TpduXJFNWvW1BtvvKGGDRvmeB+CBsANBA2AG3ILGhdH7tzNzU2jRo3SqFFcdQ4AAByH3+UEAACMR9AAAADjETQAAMB4BA0AADAeQQMAAIxH0AAAAOMRNAAAwHgEDQAAMB5BAwAAjEfQAAAA4xE0AADAeAQNAAAwHkEDAACMR9AAAADjETQAAMB4BA0AADAeQQMAAIxH0AAAAOMRNAAAwHgEDQAAMB5BAwAAjEfQAAAA4xE0AADAeAQNAAAwHkEDAACMR9AAAADjETQAAMB4BA0AADAeQQMAAIxH0AAAAOMRNAAAwHgEDQAAMB5BAwAAjEfQAAAA4xE0AADAeAQNAAAwHkEDAACMR9AAAADjETQAAMB4BA0AADAeQQMAAIxH0AAAAOMRNAAAwHgEDQAAMB5BAwAAjEfQAAAA4xE0AADAeAQNAAAwHkEDAACMl2vQpKWl6cyZM5KkAwcOKCIiQsnJyQ4fDAAAIK9yDZphw4Zp9+7diouLU//+/XXw4EENGzYsP2YDAADIk1yDJi4uToGBgYqMjFT37t31xhtvKCkpKT9mAwAAyJNcgyY1NVU2m00xMTFq0aKFJOnq1auOngsAACDPcg2aRx55RA0bNlTZsmXl6+urzz//XL6+vvkxGwAAQJ645HaDIUOGKCwsTKVKlZIktWrVSj169HD4YAAAAHmV6xmazZs3a9OmTZKk119/XS+++KL9awAAgMIg16CZM2eOmjVrps2bNysjI0OrV6/WwoUL82M2AACAPMk1aIoUKSJPT09t3rxZHTp0UPHixeXkxOfxAQCAwiPXMklJSdHHH3+sLVu26NFHH9WxY8d06dKl/JgNAAAgT3INmvHjxysuLk7vvvuu3N3dtXXrVg0dOjQ/ZgMAAMiTXIPm/vvv18iRI9WoUSNJ0jPPPKMlS5Y4fDAAAIC8yvVt2xEREZo0aZL904GdnJzUpEkThw8GAACQV7kGzcKFC7V27VoNHjxY8+bN09q1a1WyZMn8mA0AACBPcn3JqWTJkipbtqysVquKFSumbt266csvv8yP2QAAAPIk1zM0zs7O2rRpkypUqKCZM2fqvvvu08mTJ/NjNgAAgDzJ9QzNe++9p/Lly2vEiBE6e/as1qxZo9GjR+fHbAAAAHmS4xmajIwMSZKHh4c8PDwkSePGjcufqQAAAG5DjkHz4IMPymKxZFlus9lksVj03//+16GDAQAA5FWOQXPgwIH8nAMAAOCO5XgNjc1m05w5c2S1Wu3LfvvtN82dOzdfBgMAAMirHINm1qxZ2r9/v1JTU+3LypUrpwMHDmjBggX5MhwAAEBe5Bg0mzZt0vTp01W0aFH7shIlSmjy5MmKjIzMl+EAAADyIsegKVKkiNzc3LJd7uSU67u9AQAA8k2OZXL16lVdvXo1y/KkpCRduXLFoUMBAADcjhzf5dShQwf169dPb731lqpVqybp+jufxo0bp9DQUIcPVnpvsq7FZQ0qAP8sFYtVLegRABQCKc4pOqfEHNfnGDShoaFyc3NTr169dPnyZWVkZMjLy0uvvPKKOnbs6JBhb7b+h3VycXN2+H4AFF6enp7ad2JXQY8BoBBIT7Xecv0tf5dTjx491KNHD12+fFkWi0XFixe/q8MBAADcDbn+ckrp+rubAAAACivergQAAIxH0AAAAOPlGjQnT57UgAED1LNnT0nS8uXLdezYMUfPBQAAkGe5Bs3o0aPVoUMH2Ww2SZKvr69Gjx7t8MEAAADyKtegSUtLU8uWLWWxWCRJDz/8sMOHAgAAuB15uobm4sWL9qA5dOiQUlJSHDoUAADA7cj1bdt9+/bVM888o3Pnzqldu3ZKTEzUlClT8mM2AACAPMk1aJo0aaKIiAgdPHhQbm5u8vX1lbu7e37MBgAAkCe5Bs2MGTOyXT5w4MC7PgwAAMCdyPUaGmdnZ/t/GRkZ2r59uy5dupQfswEAAORJrmdo+vXrl+lrq9Wq/v37O2wgAACA23XbnxScnp6uP/74wxGzAAAA3JFcz9A0b97c/pZtSUpKSlKnTp0cOhQAAMDtyDVoFi9ebP+zxWJRiRIlVKpUKYcOBQAAcDtyfclpypQp8vHxkY+PjypWrEjMAACAQifXMzSVKlXSypUrVb9+fbm5udmXV65c2aGDAQAA5FWuQRMZGZllmcVi0TfffOOQgQAAAG5XjkGzZs0atW/fXhs3bszPeQAAAG5bjtfQrFy5Mj/nAAAAuGO3/Tk0AAAAhU2OLznt2rVLLVq0yLLcZrPJYrHo22+/deBYAAAAeZdj0Dz44IOaNm1afs4CAABwR3IMGjc3N/n4+OTnLAAAAHckx2to6tatm59zAAAA3LEcg2bo0KH5OQcAAMAd411OAADAeAQNAAAwHkEDAACMR9AAAADjETQAAMB4BA0AADAeQQMAAIxH0AAAAOMRNAAAwHgEDQAAMB5BAwAAjEfQAAAA4xE0AADAeAQNAAAwHkEDAACMR9AAAADjETQAAMB4BA0AADAeQQMAAIxH0AAAAOMRNAAAwHgEDQAAMB5BAwAAjEfQAAAA4xE0AADAeAQNAAAwHkEDAACMR9AAAADjETQAAMB4BA0AADAeQQMAAIxH0AAAAOMRNAAAwHgEDQAAMB5BAwAAjEfQAAAA4xE0AADAeAQNAAAwHkEDAACMR9AAAADjETQAAMB4BA0AADAeQQMAAIxH0AAAAOMRNAAAwHgEDQAAMB5BAwAAjEfQIF/9cey4ng7sJp/i1XT89+P25ampqXpn1Lt65IHHda+nnxpUf0QTRr6rlJQU+21ior5Ruyc76YEKdfRQtUZ6e/g7Sk9PL4jDAHCX5PQ9oVk9f93r6Zfpv2pl7pdP8WqSpH9Pnpll/b2efvIpXk3LF60soKNBQSJokG+i1kSrXYtO8t8kbPcAAA2uSURBVKnsk2XdW0PH6ZvoTVq8ZoEOnz+gT5d/pKULl2vaxBmSpF927FTvbmHq2LW9Yo/9rIhvVuqHLT/qvXHv5/dhALhLbvU9YcvujTqScDDTf8EdAtWtZ1dJ0qA3+2dZ/+myj+Rd1lutAv3z+1BQCDg0aI4fP66ePXuqRo0aOnHihCN3BQNcSEzSqpjl6vJs5yzrnvBvpvCPp+k+v+pycnJSvYYPqfFjD+vXPb9KkqK+Wq+q91ZV73+Fyt3dXb7Vq2nY2KFa8PEXSktLy+9DAXAX3Op7wp9Fr12v7d/v0JhJo7Jdf+niJQ3tN1zjp46Vp7fn3R4VBnBY0MTExKhbt26qWLGio3YBwzzbq5uq339vtuuCOwSqdr3akqS0tDRtXL9JP27drqe7X/9GZ7FIGRkZme7j6eWpSxcv6ciho44dHIBD3Op7ws2Sk69p5OAxGj1xhEqXKZ3tbaZNnKH7a1RX+y5P3e0xYQiHBc2FCxf0xRdfqEOHDo7aBf6GhvYdJl8PP/XvPUij3hmhDl3bS5IC27fRH0f/0IczP1by1WSdPHFK4VNmSZIS4hMKcmQADvbpnM/k4VnG/v3gz04eP6kFHy3Um2OH5vNkKEwcFjRdu3aVr6+vozaPv6kpsyfpSML/afZn4Xpv3Pv64N8fSpIaPtJAsz8P1/JFK1Xv3of18rOvqmuPLpIkF1fXghwZgAOlpKRozr/nqf+Qf8lisWR7mznT56lJ08Z6qEHdfJ4OhQkXBaPQcXNzU4uA5urz2iua+f5s+/L2XZ7S19uj9X9n9ilyyxpV9a0qSapUJesFhQD+HjZt+FbXkq8pILhVtuvT09O15sv/8FITCBoUvPT0dDVv0FKrlkZkWp6akipnZxdJ0pnTcVo6f7lsNpt9/TfRG+V7n68qVCyfr/MCyD9rv1ynJ/ybqljxYtmu//7bbUqMT1Trp1rn82QobAgaFDgXFxfVb1RPU9+Zrn2x+2W1WrVn1159/uFCPdU5WJJktVo1fNAofTz7U1mtVv30w8+aNXWOBr7Rr4CnB+BIO3/apdoP1brlep/KFeXhWSYfp0Jh5FLQA+Cfo1k9f53844QyMq6fZXmiXktZLFKXZzvr3X9P0PR3Z+j5zqG6kHhB5SqUU5eQjho0fKAkyadSRX2wcJbeHfOeJo15T+UqlNOwcW/Yr6MBYJ5bfU+YMnuSJCnudJy8ynrnuI0zp+PkfYv1+Oew2G4+h+8A27ZtU2hoqL755htVqlQp19unpKRo3759KlvdQy5uzo4cDUAhV7tSfe07saugxwBQCKSnWnXut0TVrl1b7u7uWdY77AxNmzZtdOrUKfs1D4GBgbJYLOrQoYMmTJjgqN0CAIB/IIcFzfr16x21aQAAgEy4KBgAABiPoAEAAMYjaAAAgPEIGgAAYDyCBgAAGI+gAQAAxiNoAACA8QgaAABgPIIGAAAYj6ABAADGI2gAAIDxCBoAAGA8ggYAABiPoAEAAMYjaAAAgPEIGgAAYDyCBgAAGI+gAQAAxiNoAACA8QgaAABgPIIGAAAYj6ABAADGI2gAAIDxCBoAAGA8ggYAABiPoAEAAMYjaAAAgPEIGgAAYDyCBgAAGI+gAQAAxiNoAACA8QgaAABgPIIGAAAYj6ABAADGI2gAAIDxCBoAAGA8ggYAABiPoAEAAMYjaAAAgPEIGgAAYDyCBgAAGI+gAQAAxiNoAACA8QgaAABgPIIGAAAYj6ABAADGI2gAAIDxCBoAAGA8ggYAABiPoAEAAMYjaAAAgPEIGgAAYDyCBgAAGI+gAQAAxiNoAACA8QgaAABgPIIGAAAYj6ABAADGI2gAAIDxCBoAAGA8ggYAABiPoAEAAMYjaAAAgPEIGgAAYDyCBgAAGI+gAQAAxiNoAACA8QgaAABgPIIGAAAYj6ABAADGI2gAAIDxCBoAAGA8ggYAABjPpaAH+DObzSZJsqZZC3gSAAWtXLlySk/lewGA/3XBjU74M4stpzUF5NKlSzp48GBBjwEAAAohPz8/lSxZMsvyQhc0GRkZunLlilxdXWWxWAp6HAAAUAjYbDalpaWpePHicnLKesVMoQsaAACA28VFwQAAwHgEDQAAMB5BAwAAjEfQAAAA4xE0AADAeAQNAAAwXqH7pGD88xw7dkxLly7V7t27lZCQIIvFIm9vbzVq1EghISGqUKFCQY8IACjkOEODArVt2za1b99e27dvl5+fn4KCghQYGKjq1atr48aNatu2rXbv3l3QYwIoRN56662CHgGFEB+shwIVEhKiTp06qVu3btmu/+STTxQTE6OlS5fm82QACquHHnpIsbGxBT0GChleckKB+u2339SpU6cc1/fo0UMzZ87Mx4kAFKRTp07dcr3NZsvxlxPin42gQYEqVaqUzpw5oypVqmS7/syZMypWrFg+TwWgoPj7+9/y9/jZbDZ+zx+yRdCgQDVr1kwDBw5U//79VadOHZUuXVqSdOHCBcXGxio8PFxPPfVUAU8JIL88/PDDqlSpktq3b5/tepvNpldeeSWfp4IJuIYGBeratWsaN26c1q5dK6vVmmmdq6urunTpohEjRsjV1bWAJgSQn44fP66QkBAtXrxYVatWzfY2XEOD7BA0KBQuXryo/fv3KyEhQZLk5eWl2rVrq0SJEgU8GYD89vXXXyspKUldunTJdn1gYKCio6PzeSoUdgQNAAAwHp9DAwAAjEfQAAAA4xE0AHTixAnVrl1bPXv2VM+ePRUSEqLXX39dFy9evONtrlixQsOGDZMkvfbaa4qLi8vxtjt37tTx48fzvO309HTVqFEj23V79uzRCy+8oM6dO6tr167q06ePfdvDhg3TihUrbuMoAJiCoAEgSfL09NTChQu1cOFCLV26VPfcc4/mzp17V7Y9ffp0lStXLsf1q1atuq2gycm5c+fUr18/DRw4UKtWrdKKFSsUHBysl156Senp6X95+wAKLz6HBkC2Hn74YS1btkzS9Q87CwoK0vHjxxUeHq7IyEgtWrRINptNnp6emjBhgjw8PPTFF19oyZIlKl++vO655x77tvz9/fXZZ5+pcuXKmjBhgvbt2ydJCg0NlYuLi6Kjo7Vnzx4NHz5cVatW1bhx45ScnKyrV69q8ODBeuyxx3TkyBENHTpURYsWVePGjbOdedGiRWrfvr3q169vX9auXTs98cQTcnHJ/O1uxowZ+uGHHyRJ5cuX15QpU2SxWDRq1CgdPXpUFotFNWvW1JgxY/Tjjz9q6tSpKlKkiFJTUzVy5EjVrVv3rj7eAP4aggZAFlarVTExMWrYsKF9WbVq1TR06FCdPn1aH3zwgVauXCk3NzfNnz9f8+bNU9++fRUeHq7o6Gh5eHioT58+9g9KvGHNmjU6f/68li9frosXL2rIkCGaO3euatasqT59+ujRRx9VWFiYXnzxRTVp0kTnzp1Tt27dtGHDBs2ePVtdunRR9+7dtWHDhmznPnz4cLYfyPbnOdLT01W0aFEtXrxYTk5O6t27t7Zu3apy5copNjZWUVFRkqTly5fr0qVLmj9/vkJDQxUcHKwjR47o6NGjf/UhBnCXETQAJEkJCQnq2bOnJCkjI0ONGjXSCy+8YF9/46zHrl27dO7cOfXu3VuSlJqaqkqVKun333+Xj4+PPDw8JEmNGzfWgQMHMu1jz5499rMrpUqV0ocffphlju3bt+vKlSuaPXu2JMnFxUXx8fE6ePCgwsLCJElNmjTJ9hicnZ2zfEBjdlxcXOTk5KTu3bvLxcVFR44cUWJioh577DF5eHjo5Zdf1pNPPqmgoCCVLFlS7dq107Rp07Rnzx61bNlSLVu2zHUfAPIXQQNA0v+uocnJjU9rdnNzU926dTVv3rxM6/fu3Zvpd+xkZGRk2YbFYsl2+c3c3Nw0c+ZMeXp6Zlpus9nk5HT9sr+cosXPz087d+5UcHBwpuWxsbGZXiL65Zdf9OWXX+rLL79UsWLFNGDAAEmSu7u7Fi9erP3792vTpk16+umntWTJEgUHB6tp06baunWrZs+erbp162rw4MG3PA4A+YuLggHcljp16mjPnj06d+6cJCkqKkpff/21qlSpohMnTujixYuy2Wz261NuVr9+fW3ZskWSdPnyZXXt2lWpqamyWCxKS0uTJDVs2ND+kk9CQoLeeecdSVL16tW1e/duScp225LUvXt3RUdH68cff7Qvi4yM1MiRI+3bl6T4+Hj5+PioWLFiOnnypHbv3q3U1FTt3btXq1evVq1atdSvXz/VqlVLx44dU3h4uKxWq4KDgzVy5Ejt2rXrrz6MAO4yztAAuC3lypXTyJEj9corr6ho0aIqUqSIJk+erNKlS+vVV19Vjx495OPjIx8fH127di3TfYOCgrRz506FhITIarUqNDRUbm5uevzxxzVmzBiNGDFCI0eO1FtvvaV169YpNTVVffr0kST17dtXb775pqKjo1W/fv0sF/lK188yLVq0SOPHj9fkyZNVpEgR+fj46PPPP5ebm5v9do8//rg+/fRTPfvss7r//vvVv39/zZ49WzNmzND69eu1bNkyubm5qUqVKmrQoIFOnz6tF198UaVKlVJGRob69+/v2AcZwG3jVx8AAADj8ZITAAAwHkEDAACMR9AAAADjETQAAMB4BA0AADAeQQMAAIxH0AAAAOMRNAAAwHj/D1OX4n3BAdMRAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "tnDfw_w_a0uF", + "outputId": "e89bef9b-d94e-40a1-ee41-c7abac902f9a", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 478 + } + }, + "source": [ + "plot_model(estimator = tuned_gbc, plot = 'feature')" + ], + "execution_count": 31, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAHNCAYAAABfIZlVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3yN9///8cdJSCJNhFhVxEp7KCEhYgUp6TAiaCk1qmabamlpBR81WnuUqD1Kh10kUm0VVbP4GBWENlbsvXMyJOf3h5/zFQmSIxHH53m/3dzkXNf7uq7X9Tqpnmeu93XFYDabzYiIiIiIiMhTzy6nCxAREREREZGMUYATERERERGxEQpwIiIiIiIiNkIBTkRERERExEYowImIiIiIiNgIBTgREREREREboQAnIiIiIiJiIxTgREREREREbIQCnIiIiIiIiI1QgBMREckGoaGhGI3GB/6ZMmVKTpeYLZYtW4bRaOTw4cM5Xcozadu2bWm+l8qVK0fNmjX59NNPOXr0qGWs3guRZ1OunC5ARETkWeXu7k5ERES665577rksP17fvn0pXrw4H330UZbv+1kUFhbG6dOnGTlyZE6Xkmnjxo2jevXqACQlJXH48GHGjx9P69atiYiIoEiRIlbvu127drRo0YIWLVpkVbkikoV0BU5ERCSb2NnZUahQoXT/ODs7Z/nxdu/eneX7fJbZcr/y5s1r+V564YUXqFOnDmFhYVy9epVly5ZZvd/bt2+zb9++LKxURLKaApyIiEgOCw8Pp2XLllSpUgU/Pz8++eQTzp07l2pMREQEzZs3x8vLi6pVq9KmTRu2b99uWW80Gjl+/DjffPMNRqORkydPMmnSJIxGIwkJCan2ZTQaGTt2LPB/U/J++eUXgoKCqFmzpmXchg0baNeuHX5+flSpUoWuXbtmejreyZMnMRqNrFixgr59++Lr64ufnx+jRo0iISGBL774Aj8/P2rWrMno0aMt292ta/369fTs2ZMqVapQtWpV+vXrR1xcnGVcYmIi48aNo379+lSsWJFatWoRGhrKpUuXLGNCQ0MJDg5mwYIFlmPXr1+fLVu2sHz5coxGI9u2bbOcc5s2bfD29sbHx4fmzZuzevXqNP2bO3cukyZNok6dOvj4+NChQweOHTuWatzy5csJCgqiUqVKBAYGMnHiRG7fvm1Zf/ToUT766CPq1q1LpUqVaNGiBevWrctUf+9VokQJnnvuOU6fPv3AMX/88QetWrWiUqVKeHt706ZNGzZv3gzcea8qVKiAyWSiX79+GI1Gq2sRkeyjACciIpKDwsPD+fzzz/H29mbZsmVMmTKFI0eO0LFjRxITEwHYsWMHn332GfXq1WPVqlUsWbKEUqVK0b17d0vQu/vBv1OnTmzatImiRYtmqo5p06bRs2dPli9fDsD27dvp3r07hQsXZv78+cybN4/ExETatWvH5cuXM32e06ZNw8fHh2XLltGyZUvmzJlDx44dKVOmDEuWLOHNN99k9uzZqUIpwLBhw6hXrx7Lly9n4MCBREZGMmrUKMv6//znP8yfP5+PP/6YVatWMWLECLZt20bXrl0xm82WcVeuXGHNmjV8//33dO/enaVLl+Lu7k7Dhg3ZtGkTPj4+xMbGEhISQpkyZVixYgXh4eH4+/vTq1cvDhw4kKquhQsXYjKZmDdvHlOnTuXQoUN8+eWXlvUrV65kwIABvPnmm6xcuZLQ0FDmzp3L+PHjLfW0a9eOEydOMH78eJYvX46vry8ffvghf/31V6b7C3Dx4kVu3br1wPd+y5YtfPDBB5QrV46lS5eyaNEiihQpQrdu3di/fz9Fixblxx9/BKB///5s2rTJqjpEJHspwImIiOSgadOmUa1aNQYMGECpUqXw9fVl5MiRHDlyhN9++w2AChUqEBkZSY8ePShRogRlypShS5cuxMXFsWvXLgAKFiwIgLOzM4UKFcLe3j5TddSqVYvAwECef/55AGbMmEGxYsUYM2YMnp6eeHl5MW7cOG7evMnixYszfZ4VKlSgdevWeHh40KVLFwCcnJzo2LEjJUuWpHPnzgBpglKtWrVo0aIFJUuWpFmzZjRs2JDIyEjMZjPnzp0jIiKC999/n2bNmuHh4UG9evUIDQ1l//797Ny507Kfc+fO0bdvX4xGI/ny5cPd3R07OzucnJwoVKgQDg4OFClShPDwcMt74eHhQY8ePUhOTmbLli2p6nJ2dubzzz+nTJky1KhRg/r16xMVFWVZP2PGDAICAiznFxgYyOeff05ycjIAS5Ys4dKlS4SFheHr60vZsmXp378/RqORGTNmZLq/J0+eJDQ0FBcXlwfeuzZ79mzKli3LkCFDeOmllzAajYwePRoXFxfmz5+Pvb09+fPnB8DV1ZVChQplug4RyX56iImIiEg2uXTpEj4+PumumzhxIlWqVOHIkSM0bdo01bry5cuTL18+Dhw4QFBQEM7OzuzZs4eBAwcSGxuLyWSyXF26evVqltRasWLFVK/37t3La6+9lioIFixYkBdffDFNyMqIChUqWL7Oly8fAOXKlUuz7ObNm6m28/X1TfX65ZdfJjw8nGvXrrFv3z7MZnOaMXd7fuDAAcs6R0dHXnrppYfW6OjoSExMDEOHDuXw4cPcunXLsu7+Pnt7e6d67e7uzrVr1wCIj4/nn3/+oUmTJqnGtGnTxvL13r178fDwwMPDI9WYGjVqWK6CPkyPHj0s783t27dJTEykUqVKzJ071xLC7xcVFcUbb7yBwWCwLHNwcKBixYpWvacikjMU4ERERLJJvnz5WLRoUbrrChcubPnAP3ny5DRXXUwmE+fPnwdg7ty5jBgxgjZt2tC/f3/c3Nw4d+4c7du3z7JaXV1dU72+efMmK1as4Oeff061PCEhAQcHh0zvP0+ePJav7waIex/kcnfZvdMe4c7DOu519+mdN27csIS9+2t3cXEBSBXA7h+Tnt9//52PP/6YN954gwkTJlCwYEEMBgOvvfZamrH3P4Tm3lB0/fr1VLWm5+bNm5w4cSJNwE9KSiIpKYnExMSH9nnQoEGWcGowGMiXL1+aXqV3zLu9uddzzz3HiRMnHrqtiDw9FOBERESyib29PSVLlnzg+pSUFAA6duxIy5Yt06y/GxIiIiLw9vZm8ODBlnUZuQ8tvVB0b6h5mLx58+Lv75/urySwJsBZ6/56777OmzevJbDcuHEj1Zi7rx8VaO539/H7X3/9NXZ2d+4yuRuiMyN//vzY2dlZAnp68ubNS4kSJZg5c2a663PlevhHtEKFCj30eys9rq6uaa5wwp1gl5GAKyJPB90DJyIikkOee+45XnrpJY4ePUrJkiVT/UlMTKRAgQLAnasyd+9NuuvuNLv7r1jd+/ruh/J7w97ff/+dodq8vb05fPhwmrpu3779RO+Nuvt0yLv27dtHwYIFcXNzo2LFitjZ2bFjx45UY+7e++bl5fXI/d/br6SkJNzc3CzhDR7c54fJnTs3pUuXTlPX/Pnz6datG3Cnv2fOnMHFxSVVf+3t7SlQoECqGrJK5cqV2blzZ6pzSUhIYN++fWl6lZnzFZEnSwFOREQkB3Xv3p21a9cyadIkDh8+TExMDKNGjaJ58+aW+5K8vb3Ztm0bW7Zs4fjx44wZM4aUlBTs7e3Zu3cvly9fxsHBAScnJ/bs2cPBgwe5fv06lSpVAu48KCU2NpatW7cyadKkdKfR3a9Lly4cOnSIwYMHc/DgQY4dO8aMGTMICgrizz//zNae3GvTpk0sWbKE48ePs2LFCn799VeaNWsG3LkK1bx5c2bMmEFkZCQnTpxg7dq1jBgxgurVq1vO/0Hy5s3LgQMHiI6O5uLFi3h7exMTE8OqVas4ceIEs2fP5u+//6Zo0aIcOHAgU1fjunXrxtatW5k2bRqnTp1i3bp1TJgwgTJlygDQokUL3Nzc+Pjjj9m5cycnT55k1apVtGzZkkmTJlnfsIfo0qULR44cYfDgwRw+fJjo6Gg++eQTEhISLNNx3dzcgDtPIT148CDx8fHZUouIWE9TKEVERHJQkyZNsLOzY+bMmUyfPp1cuXLh5eXFrFmzLA8W6dWrFxcuXKBHjx44OjrStGlTBg0ahLOzMwsWLMBgMDBixAhCQkKYNm0abdu2ZdasWfj4+PDJJ5/w448/smLFCsqXL8/AgQPp3r37I+vy9fVl1qxZTJo0ibfffpuUlBSMRiNff/01DRo0yO62WPTs2dMSygwGA02bNk01rXPw4MG4u7szduxYLly4QP78+Xn11Vfp3bv3I/fdvXt3hg0bRps2bRgxYgQdOnTgyJEjDBo0CIPBwCuvvMLo0aNZsmQJEyZMoE+fPnz33XcZqrtZs2bcvn2bOXPmMHnyZAoXLky7du344IMPgDv3R86fP5+xY8fy/vvvExcXR9GiRXn33Xfp2rWrdc16BD8/P6ZOnco333xD8+bNsbe3p3Llynz33XeULVsWuPOgmnfeeYeffvqJ9evXs2LFikz/SgoRyV4Gs66Ri4iIyFNm27ZtdOjQgZkzZ1K3bt2cLkdE5KmhKZQiIiIiIiI2QgFORERERETERmgKpYiIiIiIiI3QFTgREREREREboQAnIiIiIiJiIxTgREREREREbIR+D5zIM2737t2YzWZy586d06WIiIiISDqSkpIwGAz4+Pg8cqyuwIk848xmM0/yWUVms5nExMQnesxngfpmHfXNOupb5qln1lHfrKO+WceW+5aZz2u6AifyjLt75c3Ly+uJHC8uLo7o6Gg8PT1xdnZ+Isd8Fqhv1lHfrKO+ZZ56Zh31zTrqm3VsuW9RUVEZHqsrcCIiIiIiIjZCAU5ERERERMRGKMCJiIiIiIjYCAU4ERERERERG6EAJyIiIiIiYiMU4ERERERERGyEApyIiIiIiIiNUIATERERERGxEQpwIiIiIiIiNkIBTkRERERExEbkyukCREREREREnhZms5mNR85z+nocL+R1pk6ZwhgMhpwuy0IBTiQDVq9ejdFopGTJkjldioiIiIhkk+VRsfRduYvDl25YlpUt4MqooCo09/LIwcr+j6ZQimRAWFgYx48fz+kyRERERCSbLI+KpdW8DanCG8DhSzdoNW8Dy6Nic6iy1HQFTuQRmjZtyr///ktISAhBQUG8++67jBgxgv3795MrVy6aNGlC3759yZ07N8uWLWPu3Ll06tSJsLAwrly5QkBAAKNHjyZ37ty0b9+eypUr06dPHwAOHz5Mo0aNWLt2LcWLF6d+/fq0bNmSpUuX4u/vz5AhQzh48OADj/e0uoYDZ03JOJmTcroUmxEfn6y+WUF9s476lnnqmXXUN+uob9Z5nL6ZzWZ6R+wkxWxOd32K2Uxo5C6aVSyR49MpFeBEHiEiIgKj0ciUKVOoVq0ar776Ku3bt2fmzJmcO3eOkJAQZs+ezfvvvw/AqVOn2LdvH5GRkZw6dYoWLVrw+++/06hRowwd7+eff2bOnDl4eHhgMpno0qXLQ4+XEWazmbi4OKvOP7NMJhPb7YqyPTYBSHgix3xmqG/WUd+so75lnnpmHfXNOuqbdazs29Fzlzl++eZDx8RcvMGa6BPULlXwMQpMn9lsznAwVIATyYT169djNpvp3r07ACVKlKBz585Mnz7dEqhu3bpFr169cHZ25sUXX8RoNHLkyJEMH6NOnTqWe+0ycryMSEpKIjo6OsPjH5ud7hUUERER23HDFJ+hcTsPxuBuupAtNTg4OGRonAKcSCacOHGCS5cu4eXlZVlmNptT/QeXP39+XFxcLK/z5MlDfHzG/lEAKFasWKaOlxG5c+fG09MzU9tYy2Qy4XfsNEWLFsXR0fGJHPNZkJCQwJkzZ9S3TFLfrKO+ZZ56Zh31zTrqm3Uep2+lcGXRpkePq1rOk/LZcAUuJiYmw2MV4EQywdHRkRdffJGVK1c+cIydXcafDZSSkpJmmb29faaOlxEGgwFnZ+fH2kdmuJFIyXzOT/SYti4uzp64M+pbZqlv1lHfMk89s476Zh31zTqP07fS7i588cvfaR5gci/Pgq4Els+ee+Ays089hVIkEzw8PDhx4gS3bt2yLLty5Qo3bz58zvRdDg4Oqa7GxcY+/GlGj3s8EREREXk0g8HAqKAq2D0gSNkZDIxsUiXHH2ACCnAiGeLo6Mjx48fx9fXF3d2dUaNGcfPmTS5cuEDPnj0ZO3ZshvZTqlQptm7dyrVr17hw4QILFy586Hh/f//HOp6IiIiIZExzLw8Wv1sXz4KuqZZ7FnRl8bt1n5rfA6cplCIZ0Lp1a0aPHs2WLVuYMmUKX331FbVr18bFxYUGDRrQt2/fDO2nc+fO7N+/n7p16+Lh4UHfvn3ZsGHDA8fnzp37sY4nIiIiIhnX3MuDZhVLsPHIec5cN/GCWx78Sxd+Kq683aUAJ5IB/fv3p3///pbXP/zwQ7rjWrRoQYsWLVIt+/777y1fv/DCC2muuh06dMjy9bp169Lss1y5cg88noiIiIhkLYPBQN2yRXK6jAfSFEoREREREREboQAnIiIiIiJiIxTgREREREREbIQCnIiIiIiIiI1QgBMREREREbERCnAiIiIiIiI2QgFORERERETERijAiYiIiIiI2AgFOBERERERERuhACciIiIiImIjFOBERERERERshAKciIiIiIiIjVCAExERERERsREKcCIiIiIiIjZCAU5ERERERMRGKMCJiIiIiIjYCAU4ERERERERG6EAJyIiIiIiYiMU4ERERERERGyEApyIiIiIiIiNUIATERERERGxEQpwIiIiIiIiNkIBTkRERERExEYowImIiIiIiNgIBTgREREREREboQAnIiIiIiJiIxTgREREREREbIQCnNic0NBQPvnkk5wu44kxGo1s2LAhp8sQERGRJ8BsNrPp2AVWH7vGpmMXMJvNOV2SPGUU4LLYkSNH6N27N7Vq1aJy5crUr1+fr776iqtXrz72vq9evcqSJUuyoMr0LV26lMuXL2do7LJlyzAajYSFhaVZd/v2bWrUqEH9+vWzpK6sOO9vv/2W27dvZ0k92W3r1q1ERUXldBkiIiLyhC2PisU4IpyGszfwny2naDh7A8YR4SyPis3p0uQpogCXhaKjo3nrrbd4/vnniYiIYNeuXUyePJlDhw7Rpk0b4uPjH2v/f/31V7YFuOTkZEaOHMmVK1cyvE2BAgWIjIxMs3zTpk0YDIYsq+1xz/vy5cuMGjWK5OTkLKspO82dO5d9+/bldBkiIiLyBC2PiqXVvA0cvnQj1fLDl27Qat4GhTixyJXTBTxLhg4dir+/P5999pllWfny5Zk6dSrDhg3j/PnzODg4MGTIEHbt2sXt27epW7cugwYNIl++fGzbto2QkBC+/vprhg8fztmzZ6latSrjx49ny5Yt9O7dm5SUFLy8vFi1ahWTJ0/G3t6e2NhYrly5QmRkJLGxsQwZMsQSAGrXrs3gwYPJmzcvAPv372fo0KEcOnSIIkWK0LNnTxo1aoSfnx83b94kODiY999/nx49ejzyfMuWLcupU6fYs2cP3t7eluWRkZHUq1eP7du3W5adPXs2y877rrCwMH788UeSk5Pp0aMHHTt2TFPjxYsXCQgIwGw24+vry5AhQ2jRogVr1qwhLCyM2NhY3N3d6dixIx06dHjguRqNRsaPH8/s2bOJiYmhRo0aDB06lAEDBrBr1y5Kly5NWFgYxYsXB3jo/kNDQ3nuuefIlSsXy5cvx87Ojs6dO9O1a1fef/991q9fz6ZNm/j111+ZN28eABcuXODdd99l9+7dFC9enAkTJvDSSy898j3KKddw4KwpGSdzUk6XYjPi45PVNyuob9ZR3zJPPbOO+pYxZrOZ3hE7SXnAdMkUs5nQyF00q1giS39ILrZJAS6LXLp0iV27dvH999+nWefi4sKIESMAaNGiBZ6enqxdu5b4+Hh69uzJoEGDmDhxIgAmk4mff/6ZRYsWYTKZeOutt1i8eDFdu3YlJiaGjRs3snjxYsu+165dy4gRIwgICADgP//5D8WKFWPjxo3cvHmTzp07M2XKFEJDQzGZTHTv3p333nuP77//nh07dvD+++9jNBoJDw+nQYMGhIeHU7Zs2Qyf9xtvvMHKlSstAc5kMrFx40a++uqrVAEuJCQkS89769at1K1bl40bN7J06VKGDRtGUFAQBQoUSFVfwYIFmT17Nh06dOC///0vjo6OHDx4kJ49ezJx4kTq1avHf//7X95//31KlixJvXr1HniuCxcuZNq0acTFxREUFETXrl0ZNWoUHh4etG3blm+//ZaBAwdmaP+RkZGEhoayefNmIiIiGDhwIMHBwUybNo369evTtWtX2rRpYzn2okWLGDVqFIUKFSIkJITx48czbdq0DL9PZrOZuLi4DI9/HCaTie12RdkemwAkPJFjPjPUN+uob9ZR3zJPPbOO+vZIR89d5vjlmw8dE3PxBmuiT1C7VMEnVJXtMZlMqf62JWazOcPhXAEui5w4cQKA0qVLP3BMdHQ0+/fvZ/r06bi4uODi4kK3bt348MMPSUxMBO5MZezSpQtubm64ublRtWpVjhw58sB9FitWjFdeecXyesaMGRgMBhwcHHB3d6dOnTrs2rULuDO1MSkpiY4dO2Jvb0/t2rWZMGECTk5OVt8g27RpU9577z369etHrly5WLduHVWrVrVc8cuu8y5evDjNmzcHoHHjxgwZMoTY2Ng0AS49P/30EzVr1iQwMBCAmjVrEhAQwKpVqx4a4Bo3bkzhwoUBKFOmDBUqVODll18GwM/Pz1JvRvZ/b/2NGjWif//+HDt2zLL/+wUHB1u+t+rXr8+CBQseeZ73SkpKIjo6OlPbPBa7kk/uWCIiIjbuhiljt9nsPBiDu+lCNldj+44dO5bTJVjFwcEhQ+MU4LLI3cSckpLywDEnT57Ezc2NQoUKWZZ5eHiQlJTEuXPnLMvuTsMDyJMnz0PvnStWrFiq1/v27WPcuHEcOnSIpKQkkpOTqVixIgCxsbE8//zz2NvbW8Y3aNDAUps1ypUrR+HChdm8eTP16tUjMjKSpk2bphqTHed971gnJycASxh8lJMnT6a5yliyZElL0H2QokWLWr52dHSkSJEiqV7fPX5G9n//uQIZPl9HR0eSkjI3DSV37tx4enpmahtrmUwm/I6dpmjRojg6Oj6RYz4LEhISOHPmjPqWSeqbddS3zFPPrKO+ZUwpXFm06dHjqpbzpLyuwD2QyWTi2LFjlCpVyvL5ylbExMRkeKwCXBbx8PAA4N9//031wf5eDwsY914ytbPL+LNl7g1j165do1u3brRp04aZM2fi4uLChAkT2LJli2W/DwuY1goODiYiIgJvb292797NhAkT2LNnj2V9dpz3gy4x79ixg06dOlle//rrr2nGPKieu/v08vKyLPvyyy9p1qxZusd8UL2P2v/Dtn2Qx53vbjAYcHZ2fqx9ZIYbiZTM5/xEj2nr4uLsiTujvmWW+mYd9S3z1DPrqG8ZU9rdhS9++TvNA0zu5VnQlcDyugcuI/LkyWNz32+ZeV/1FMoskj9/fvz8/Pj222/TrDOZTLRo0YJChQpx7do1Ll68aFl35MiRNFdzrHXkyBFu3bpF586dcXFxAeDAgQOW9SVKlODUqVOpAsaKFSsee2pdkyZN2LBhA7/88guvvPJKmp+wlShRIlvP+17VqlUjKirK8uf+K5RwJ2zfPz3zyJEjlChRAiDV9nfDW2Y8av8iIiIi9zIYDIwKqoLdAz7E2xkMjGxSReFNAAW4LDVgwAD27NnDp59+ytmzZ0lJSSE6OpouXbrg5OSEj48PZcuWZdy4ccTFxXHu3DmmTp1K48aNyZ079yP37+joyIULF7h69Wq6V3leeOEF7Ozs2L17N3FxccydO5eLFy9y8eJFy5MfnZ2dmTZtGgkJCWzfvp1BgwZhb29vmYZ47Ngxbt58+E209ytcuDCVKlVixowZBAUFpVnv5eWVref9KHfP7ejRo8TFxdG0aVM2b97MH3/8we3bt9m4cSPr16+3Kqyl53H37+joSGxsLDduPPincCIiIvJsae7lweJ36+JZ0DXVcs+Crix+ty7NvTxyqDJ52ijAZaFy5cqxePFiUlJSaN68OT4+PvTq1YsaNWowZ84ccufOzZQpUzh//jwBAQG0atWKypUr88UXX2Ro/4GBgZjNZgICAtL9PWFFihTh008/pX///rzyyitcu3aNsWPHkpiYyDvvvIODgwPffvstf/75J9WqVWPgwIEMHz6cl156iYIFC/L666/Ts2dPJkyYkOlzDw4OJjExkRo1aqRZZzAYsvW8H6V8+fL4+Pjw1ltvsWDBAnx8fBg2bBjjxo2jWrVqjB49mrFjx+Ln55fpfafncfffqlUr5s+fT7t27bKkHhEREbENzb08OBgazC+d6zKsdjF+7VyPg6HBCm+SisFs7eMHRcQmREVFAanv7ctOcXFxREdHU758eZubf56T1DfrqG/WUd8yTz2zjvpmHfXNOrbct8x8XtMVOBERERERERuhp1BKGrNnz37oNMrg4GC++uqrJ1iRiIiIiIiAApyko3PnznTu3DmnyxARERERkftoCqWIiIiIiIiNUIATERERERGxEQpwIiIiIiIiNkIBTkRERERExEYowImIiIiIiNgIBTgREREREREboQAnIiIiIiJiIxTgREREREREbIQCnIiIiIiIiI1QgBMREREREbERCnAiIiIiIiI2QgFORERERETERijAiYiIiIiI2AgFOBERERERERuhACciIiIiImIjFOBERERERERshAKciIiIiIiIjVCAExERERERsREKcCIiIiIiIjZCAU5ERERERMRGKMCJiIiIiIjYCAU4ERERERERG6EAJ9nCy8uLzZs353QZvP766yxZsgSA9u3bM3bs2ByuKGN27NiBl5cXiYmJOV2KiIiIiDxFcuV0Abaiffv2VK5cmT59+jxybHJyMt999x3vvffeE6gsratXr/L777/TsmVLy7I///yTmTNn8s8//xAXF0fRokVp2bIlXbt2xWAwZHkNUVFRWb7P+508eZIGDRqQO3fuNOfQpEkTRowYwW+//ZbtdWSV1atXY6zt5y8AACAASURBVDQaKVmyJNWqVXsiPRQRkaxhNpvZeOQ8p6/H8UJeZ+qUKZwt/38VEVGAywYHDhxg1qxZORbg/vrrL5YsWWIJcHv27OGjjz5i2LBhBAYG4uDgwO7du+nZsydms5nu3bvnSJ1ZJTw8nLJly+Z0GY8tLCyMzz//nJIlS+Z0KSIikgnLo2Lpu3IXhy/dsCwrW8CVUUFVaO7lkYOVicizSFMorXDy5EmMRiObN2+mWbNmeHt707p1a06ePMnevXtp3bo1Fy9exMvLi7/++guAH374gYYNG1K5cmUaN27MmjVrLPtr3749Y8aMISgoiG7dugFgNBpZvXo1bdq0wdvbm6CgIA4cOGDZZuvWrbz99tv4+PhQp04dJk+eDMAvv/zCp59+yt69e/Hy8uLEiRNs376d4sWLExQURJ48ebC3t8fX15ewsDCqVatm2eeqVasIDg7G29ubBg0asGjRIsu60NBQBgwYQPv27WnSpAm9evWiX79+qfoyd+5cGjZsaKl/w4YNAJhMJgYOHEj16tWpUaMGAwcOtEwNjI+PZ+jQoQQEBODt7U379u2JiYnJsveqfv36LFiwwPI6Pj6e3r174+Pjw6uvvsqvv/5qWXf16lX69OmDv78/Pj4+fPDBB5w7dw74v/d8/vz5+Pn5ERkZme7xFi5caHmf33jjDVatWpWqlrlz5/Lee+9RqVIlXnvtNXbt2gVA06ZN+ffffwkJCaFfv35s27YNo9FIQkICACdOnKBTp074+Pjwyiuv8N1332VZj0RExHrLo2JpNW9DqvAGcPjSDVrN28DyqNgcqkxEnlW6AvcYvvvuO6ZPn46joyMdOnRg1qxZDB48mC+//JJx48ZZ7gFbvXo133zzDbNmzaJcuXKsW7eOXr16sXr1al544QUAfv75Z8LCwvDy8rLsf9asWYwcOZKiRYvSo0cPvv76a2bOnMnZs2cJCQlh0KBBBAUFERMTQ5cuXfDw8LC83rhxI4sXLwagdOnSHD16lCVLlhAcHIyDgwMAVatWtRwrKiqKAQMGMGnSJGrWrMnu3bvp2rUrL774IlWqVAFg7dq1jBgxgoCAAH777TcGDx5McnIy9vb2APz+++80atQoTZ/Gjx9PTEwMv/zyCwBdunRh8uTJfPLJJ4wdO5YDBw6waNEi3NzcCAsLo0ePHvzyyy/ZMvUkPDyckSNHMmLECBYsWECfPn3w8fGhSJEihIaGkitXLn7++Wfs7e0ZNGgQ/fr1Y86cOZbtt2/fzrp163juuefS7HvdunWMGTOG6dOnU7lyZX7//Xc+++wzypYti9FoBODbb79l4sSJlC9fnrCwMD788EM2btxIREQERqORKVOmULduXbZt25Zq3z169MDPz4/Jkydz7Ngx2rZtS9myZaldu3aW9ygrXMOBs6ZknMxJOV2KzYiPT1bfrKC+WUd9y7z0emY2m+kdsZMUszndbVLMZkIjd9GsYglNpxSRLKMA9xjatGlDkSJFAPD393/gPUtLly7lrbfeomLFigC89tprVK1alcjISMsVt0qVKlGpUqVU2wUHB1OmTBngztWb2bNnAxAZGcmLL75Is2bNgDtXu1q3bk14eDhBQUFpjh8YGEinTp0YMmQIw4cPx9vbm5o1a9K4cWOKFSsGwLJlywgICMDf3x8AX19fGjZsSHh4uCXAFStWjFdeeQWAgIAAEhIS2LlzJ35+fly6dIldu3YxdOjQVMc2m82sWLGC4cOH4+7uDsDw4cO5fv06KSkpLFu2jAkTJlj62KtXL3744Qf27t1L5cqVM/ZGZEKlSpVo0KABAO3atWPKlCls2bKFunXr8scff7Bq1Src3NwA6NOnDwEBAVy4cMGyfbNmzXBxcUl330uXLqVJkyb4+voC0KhRI+bMmcNvv/1mCXD169fH29sbgO7duzN79mz+/vvvVGH6fgcOHODQoUPMmzePPHnyUL58eb755htLzzLCbDYTFxeX4fGPw2Qysd2uKNtjE4CEJ3LMZ4b6Zh31zTrqW+bd17Oj5y5z/PLNh24Sc/EGa6JPULtUwSdQ4NPHZDKl+lsyRn2zji33zWw2Z/gHPQpwj6F48eKWr/PkyWOZ7na/2NhYNm/ezLx58yzLzGYznp6eltd3g1RG9h8bG0tUVFSqq3Vms5nSpUune3yDwcBnn31Gt27d2Lx5Mzt27GDhwoVMnDiRYcOG0axZM2JjY9m6dWuafd4NdPfX6OTkRL169VizZg1+fn6sW7eOF198Mc29aFeuXOH69eupzqVcuXIAXLhwgVu3bhESEpLqGzYlJYUzZ85kOMAFBwen+Yb/6KOPLOH4Xvf23N7enmLFinHu3DlOnDgBYAnF9445c+aMJXzevWKanpMnT1KjRo1Uy0qWLMmpU6csr+99j/LmzYurqyvnz59/6PnFxsbi4uJCvnz5LMtq1ar10G3ul5SURHR0dKa2eSx2uo9PRJ59N0zxGRq382AM7qYLjx74DDt27FhOl2CT1Dfr2Grf7s6SexQFuMeQ0ZTs5ORE79696dSp0wPH3J2GmJH93w1P06ZNy1ih/5+bmxuNGjWiUaNGmM1mvvjiC0aNGkWzZs1wcnKiTZs2DBw4MMM1NmzYkNGjR9O/f39Wr16d7vRJO7s7t1mmpKSkex5w576xu1cnrZGZh5jcredejo6Ollo2bNhA/vz504w5efIkkP77dNeDHvl/fzi9V0Z+2mJnZ5du/zIjd+7cqcJrdjKZTPgdO03RokVxdHR8Isd8FiQkJHDmzBn1LZPUN+uob5mXXs9K4cqiTY/etmo5T8r/D1+BO3bsGKVKlSJPnjw5XY7NUN+sY8t9y8wzIBTgngAPDw8OHTqUatnp03c+4FozJ97Dw4M1a9ak+vB/4cIF3Nzc0k3us2bNwtPTk4CAAMsyg8GAv78/kZGRmM1mPDw80kwBPXv2LIUKFXpgaKlXrx6hoaHs2rWLv/76K93wly9fPvLmzcvRo0epUKECAPv37ycmJobg4GDy5cvHoUOHUgW4kydPprpil5WOHj1q+To5OZlTp05RpEgRihUrhp2dHYcOHbJcRUtKSuLy5csZnqro4eHBkSNHUi07cuQIgYGBltexsf93M/u1a9e4efMmzz///EP3W6JECW7dusX58+cpXLgwAGvWrCFv3rz4+fllqDaDwYCzs3OGxmYFNxIpmc/5iR7T1sXF2RN3Rn3LLPXNOupb5qXXs9LuLnzxy99pHmByL8+CrgSW1z1wefLk0feaFdQ369hi3zLzb4SeQpkNnJycuHHjBufOnSM+Pp63336bVatWsX79em7fvs1ff/1FkyZN+Pvvv63af+PGjbl69SpTpkwhPj7e8oTCu1M0HR0duXDhAlevXiUxMZG4uDgGDBjAn3/+SXx8PCkpKRw6dIgZM2ZQv359DAYDb731Frt27eKnn34iMTGR6OhoWrZs+dDfo+bk5ERAQADjxo3jpZdewsMj/Uclt2jRglmzZnHu3DmuXLnCl19+yb///gtA69atmTp1KocPHyYpKYm5c+fy1ltvZdvc5V27drF582aSkpJYuHAh8fHx+Pv74+rqSqNGjRg7dixnz54lPj6e8ePH06lTJ8wPuDn9fsHBwaxcuZI9e/aQlJTEsmXL+Pfff2ncuLFlzB9//MH+/ftJSEhg+vTpFCxY0DJt1dHRkePHj3PzZur7KcqXL8/LL7/MhAkTuHXrFv/88w8DBgwgPj5jU3dERCR7GAwGRgVVwe4BH7zsDAZGNqnyPx/eRCRr6QpcNqhRowbFixcnMDCQUaNG0ahRI/r27cvQoUO5ePEixYsXZ/DgwZaHWWRW/vz5mTJlCqNHj2batGm4u7sTHBxsmaIZGBjI/PnzCQgIYM6cOXz00Ue4ubnx9ddfc+LECRITE3n++edp2LAhISEhAJQtW5Zx48YRFhbGkCFDKFy4MJ07d053WuS93njjDT7++GP69u37wDG9e/fmq6++olGjRjg4OBAYGEiPHj0ACAkJ4fr167zzzjskJSVRvnx5Zs6cmW2XvVu1asXixYvp0aMHhQsX5uuvvyZv3rwADBw4kC+//JLGjRtjZ2eHt7c3U6ZMyfD/eBs3bsypU6f4/PPPuXjxImXKlGHOnDmUKlXKMubNN99k7Nix7Ny5k+eff55vvvnGcoWzdevWjB49mi1bttCxY8dU+542bRqff/45tWrVokCBAoSEhFC3bt0s6YmIiFivuZcHi9+tS2jkLmIu/t+VOM+Croxsot8DJyJZz2DO6OUFEXks9evXp2vXrrRp0+aJHvfu1Nh7H1CTneLi4oiOjqZ8+fI2N30hJ6lv1lHfrKO+Zd6jemY2m9l45Dxnrpt4wS0P/qUL68ob+l6zlvpmHVvuW2Y+r+kKnIiIiMhjMhgM1C2b8V/vIiJiLQU4eSrt3buXtm3bPnD9Cy+88ND780REREREnkUKcPJUqlSp0gN/MbqtWrduXU6XICIiIiI2Tk+hFBERERERsREKcCIiIiIiIjZCAU5ERERERMRGKMCJiIiIiIjYCAU4ERERERERG6EAJyIiIiIiYiMU4ERERERERGyEApyIiIiIiIiNUIATERERERGxEQpwIiIiIiIiNkIBTkRERERExEYowImIiIiIiNgIBTgREREREREboQAnIiIiIiJiIxTgREREREREbIQCnIiIiIiIiI1QgBMREREREbERCnAiIiIiIiI2QgFORERERETERijAiYiIiIiI2AgFOBERERERERuhACciIiIiImIjFOBERERERERshAKcPPPat2/P2LFjM7XNpEmTaNWqVTZVJCIiIiJinVw5XYD87+rUqRM7duwAIDk5mZSUFHLnzm1Z/+uvv1KsWLF0t/32229p3749uXJl/ls4JSWF+fPns3TpUo4fP07u3LkxGo107NiRBg0aWHcyIiLyP8dsNrPxyHlOX4/jhbzO1ClTGIPBkNNlicgzTgFOcsycOXMsX0+aNImNGzeyePHiR253+fJlRo0axTvvvGNVgAsNDWXPnj0MGTIEPz8/4uLiWLlyJb169WLw4MG8+eabmd6niIj8b1keFUvflbs4fOmGZVnZAq6MCqpCcy+PHKxMRJ51mkIpT6WzZ8/ywQcfUL16dapWrconn3zC1atXuXjxInXr1sVsNuPr68uyZcsAmDt3LoGBgfj4+NCwYUNWr16d7n63bNlCREQEkyZNombNmtjb2+Pq6so777zDF198QVxcXKrxCxYswN/fH29vb0aNGmVZfvnyZT7++GNq1qyJr68vXbt25cyZM5b1RqORuXPn4u/vz4wZMwBYsmQJtWrVwtfXlzFjxjBgwABCQ0Mt2/zwww80bNiQypUr07hxY9asWWNZt379eoKCgvDx8cHf358xY8aQkpLy+I0WEZFMWx4VS6t5G1KFN4DDl27Qat4GlkfF5lBlIvK/QFfg5KkUEhKCp6cna9euJT4+np49ezJo0CAmTpzI7Nmz6dChA//9739xdHRkx44djBs3jp9++okXX3yR5cuX06dPH9avX4+7u3uq/a5evZpq1aphNBrTHLNly5apXh8/fpxr166xbt06tm7dSrdu3WjSpAkVKlRgzJgx3Lp1i7Vr12I2m+nVqxfDhw9n0qRJlu3XrFnDihUrKFCgAPv372fgwIFMnDiRgIAAZs6cyZIlS6hfv76lrm+++YZZs2ZRrlw51q1bR69evVi9ejWFChXik08+YfLkydSsWZPjx4/TpUsXfHx8CAwMzIbuP75rOHDWlIyTOSmnS7EZ8fHJ6psV1DfrqG+Zd7dnZ+Ju0ztiJylmc7rjUsxmQiN30axiCU2nFJFsoQAnT53o6Gj279/P9OnTcXFxwcXFhW7duvHhhx+SmJiYZnzVqlXZvHkzefPmBaBJkyb069ePf/75hxo1aqQae+LECUqXLp2hOnLlykW3bt2ws7OjXr16uLi4cPToUSpUqMCQIUO4ffs2zs7OAAQGBjJt2rRU2zds2JCCBQsCsGHDBoxGI6+//joAH3zwAUuWLLGMXbp0KW+99RYVK1YE4LXXXqNq1apERkbyzjvvEB8fj7OzMwaDgVKlSrF69Wrs7DJ+Ad1sNqe5uphdTCYT2+2Ksj02AUh4Isd8Zqhv1lHfrKO+ZZ5dURb99yzHL9986LCYizdYE32C2qUKPqHCnl4mkynV35Ix6pt1bLlvZrM5wz/0UYCTp87Jkydxc3OjUKFClmUeHh4kJSVx7ty5NOOTk5OZPHkyv/76K5cvX7YsTy/sGQyGDE89fOGFF1KFJCcnJ8s+jx8/zsiRI9m7dy/x8fGkpKSQL1++NNvfdeHChVQPZLG3t+fll1+2vI6NjWXz5s3MmzfPssxsNuPp6YmLiwsffvgh7dq1o1KlStSuXZsWLVpQtGjRDJ0HQFJSEtHR0Rke/9jsSj65Y4mIPEE3TPEZGrfzYAzupgvZXI3tOHbsWE6XYJPUN+vYat8cHBwyNE4BTp466QWvu9L7ycTkyZP55ZdfmDZtGuXKlcNsNqcKR/cqVaoU+/bty1AdD/opSEpKCt27d6dq1ar89ttvuLu7s2TJEiZMmJBqnL29fapt7n/gyv3hsHfv3nTq1CndY/bo0YOWLVuyZs0a1qxZw6xZs5g3bx6VKlXK0Lnkzp0bT0/PDI19XCaTCb9jpylatCiOjo5P5JjPgoSEBM6cOaO+ZZL6Zh31LfPu9qxYMScWZWB81XKelNcVOEwmE8eOHaNUqVLkyZMnp8uxGeqbdWy5bzExMRkeqwAnT50SJUpw7do1Ll68aJmCeOTIERwdHSlSpAinTp1KNT4qKooGDRpYQtvevXsfuO/XXnuN77//nl27dlGlSpVU6xYtWsSmTZtS3ceWnosXL3Lq1CkmTJhgucfuwIEDD92mQIECqYJjcnIyBw4coHr16sCdK4yHDh1Ktc3p03dCkMFg4OrVqxQpUoS2bdvStm1b+vXrR3h4eIYDnMFgsEz3fBLcSKRkPucnekxbFxdnT9wZ9S2z1DfrqG+Zd7dn1SuU4csCrmkeYHIvz4KuBJbXPXD3ypMnj77XrKC+WccW+5aZfy/0FEp56nh5eVG2bFnGjRtHXFwc586dY+rUqTRu3JjcuXPj5OQEwNGjR4mLi6NYsWIcPHgQk8lETEwMs2bNwtXVNd3pln5+frRo0YIPPviA1atXk5SUxI0bN/jhhx8YOXIkzZo1e2R97u7uODs7s2fPHhISEli5ciXR0dHcvHmTW7dupbtNjRo12LdvH+vXrycxMZGpU6cSH/9/03DefvttVq1axfr167l9+zZ//fUXTZo04e+//2b37t00bNiQvXv3YjabuXTpEkePHsXDQ4+pFhF50gwGA6OCqmD3gA9bdgYDI5tUUXgTkWyjACdPHYPBwJQpUzh//jwBAQG0atWKypUr88UXXwBQvnx5fHx8eOutt1iwYAHdu3cnOTmZGjVqEBoaykcffUTz5s356quvWLt2bZr9Dxs2jJCQECZNmoSvry+vvvoqf/75J7Nnz87QL/LOlSsXgwcPZsaMGdSqVYsdO3YwadIknn/+eV577bV0t6lWrRq9evWiT58+1KtXj1y5clG9enXL/+Br165N3759GTp0KFWqVGHo0KEMHjwYb29vfHx8+OCDD+jVqxeVK1emefPmVK5cmbZt2z5Gl0VExFrNvTxY/G5dPAu6plruWdCVxe/W1e+BE5FsZTCbH/AcXBHJUomJialuTm3Xrh2+vr706tUrW48bFRUF3Lmy+STExcURHR1N+fLlbW76Qk5S36yjvllHfcu89HpmNpvZeOQ8Z66beMEtD/6lC+vK2330vWYd9c06tty3zHxe0xU4kSfgxIkT+Pj4sG7dOlJSUti0aRO7d++mbt26OV2aiIhYyWAwULdsEd72KUWdMkUU3kTkidBDTESegBIlSjBy5EjGjBnDp59+SpEiRRg0aFCaB6mIiIiIiDyMApzIExIUFERQUFBOlyEiIiIiNkxTKEVERERERGyEApyIiIiIiIiNUIATERERERGxEQpwIiIiIiIiNkIBTkRERERExEYowImIiIiIiNgIBTgREREREREboQAnIiIiIiJiIxTgREREREREbIQCnIiIiIiIiI1QgBMREREREbERCnAiIiIiIiI2QgFORERERETERijAiYiIiIiI2AgFOBERERERERuhACciIiIiImIjFOBERERERERshAKciIiIiIiIjVCAExERERERsREKcCIiIiIiIjZCAU5ERERERMRGWB3gNm3aZPl6//79DBs2jIULF2ZJUSIiIiIiIpKWVQFu+vTphIaGAnD58mU6duzIwYMHmTVrFt98802WFigiIiIiIiJ3WBXglixZwvTp0wGIiIigRIkSfP/998yaNYuIiIgsLVBERERERETusCrAXbp0iQoVKgCwZcsW3njjDQBKlSrFhQsXsq46EeDkyZMYjUYOHz6c7vpJkybRqlWrLDvetm3bMBqNJCQkZNk+RUSeRWazmQ2Hz7Fw91E2HD6H2WzO6ZJERJ55VgU4V1dXLl++zM2bN9mxYwe1atUC7kyndHBwyNIC5elSv359vL29uXXrVpp1c+fOxWg0smzZssc+zurVqzl+/Phj7yc9mzZtomPHjlStWhUfHx+CgoL49ttvSUlJyZbjiYg8i5ZHxWIcEc4rU1bT9odNvDJlNcYR4SyPis3p0kREnmlWBbjAwEDee+892rdvT8mSJalYsSIJCQkMGzaM6tWrZ3WN8pRxdnZmzZo1aZavXLkSd3f3LDlGWFhYtgS4JUuW8NFHH9G0aVM2bdrEX3/9xeeff868efPo169flh9PRORZtDwqllbzNnD40o1Uyw9fukGreRsU4kREslEuazYKDQ1l7ty53Lhxg7Zt2wKQkpLClStXGDlyZJYWKE+fevXqERERQXBwsGXZ8ePHuXLlCp6enpZlCxcuZN68eZw+fZqiRYvy8ccf06hRIwDat29P7dq1OXz4MGvXruW5556jT58+BAcH07RpU/79919CQkIICgriww8/BODo0aN8/vnn/PPPP7z88stMnDiR559/3nI8k8lE7dq1GTt2LPXr17csf/fdd6lcuTJdunRh+PDh9OnThxYtWljW16lTh7CwMMLDw0lMTLQs37lzJ8OGDeP48ePUrFmT8ePH4+rqitlsZty4caxcuZLr169TqlQp+vfvT7Vq1SznVqlSJTZs2EDRokWZMWMGe/fu5bPPPuPs2bPUrFkTf39/5syZw7p16wDYunUrEyZM4J9//sHFxYXWrVunOu8hQ4awb98+DAYD1atX58svvyR//vxZ9p5mtWs4cNaUjJM5KadLsRnx8cnqmxXUN+s8Tt/MZjO9I3aS8oDpkilmM6GRu2hWsQQGgyEryhURkXtYFeAcHBzo1q1bqmV58uRhzpw5WVKUPN3q16/PZ599xsWLFylYsCBw5+rb66+/zr59+wBYt24dY8aMYfr06VSuXJnff/+dzz77jLJly2I0GgH48ccfGT58OMOHD2fatGkMHTqURo0aERERgdFoZMqUKdStW5eTJ08Cd66eTZ06lVy5ctG+fXtmzZrFf/7zH0tdefLk4fXXX2flypWWAHflyhV27NjBwIED2bRpE7dv36Zly5ZpzqlSpUpUqlQp1bLIyEgWLFjAtWvXaNWqFUuXLuW9994jPDycFStWsHTpUgoVKsTUqVP5+OOP2bRpE/b29gD8/PPPhIWF4eXlRWJiIu+//z5NmzalV69ebNu2jf79++Po6AjA2bNnCQkJYdCgQQQFBRETE0OXLl3w8PAgKCiIL7/8kipVqjBr1ixu3bpF3759mTp1Kv3798/we2Y2m4mLi8vw+MdhMpnYbleU7bEJgO4jzBT1zTrqm3Ws7NvRc5c5fvnmQ8fEXLzBmugT1C5V8DEKfLqYTKZUf0vGqG/WUd+sY8t9M5vNGf6hl1UBDuCnn35ixYoVnD59mrVr15KYmMjcuXPTBDt59uTNmxd/f39WrVpFhw4dgDuBZfz48ZYAt3TpUpo0aYKvry8AjRo1Ys6cOfz222+WAOfj40OdOnUAaNiwId988w3nz5+nWLFi6R73nXfeoXDhwgDUrFmTo0ePphkTHBxM9+7duXnzJi4uLqxdu5aXXnoJT09P1q1bR7FixTJ8n2anTp3ImzcvefPmxdvb23K8oKAgGjRogKurKwCNGzdm0qRJnD59mhIlSgCpA2FUVBSXL1/mgw8+wMnJiXr16lGjRg12794N3AmKL774Is2aNQPAaDTSunVrwsPDCQoK4vr16zg5OZErVy7c3NyYMmUKdnaZm/2clJREdHR0prZ5LHYln9yxROSJumGKz9C4nQdjcDc9ew82O3bsWE6XYJPUN+uob9ax1b5l9DOqVQHu+++/5+uvv6Z58+b8/fffwJ0rHfPnzwdQiPsf0KxZM6ZNm0aHDh04cOAAdnZ2lC9f3rL+5MmT1KhRI9U2JUuW5NSpU5bXxYsXt3zt5OQEQHz8gz8Y3D/+3umOd1WvXh13d3fWrFlDs2bN+P333wkKCrKsz8yDSh50PJPJxPDhw9mwYQPXrl2zjLm3nntD6IULF3BxccHNzc2yzMvLyxLgYmNjiYqKwsvLy7LebDZTunRpAHr06MFnn33GihUr8Pf3p0mTJmmuFj5K7ty5U01vzU4mkwm/Y3emzd69yiiPlpCQwJkzZ9S3TFLfrPM4fSuFK4s2PXpc1XKelH/GrsAdO3aMUqVKkSdPnpwux2aob9ZR36xjy32LiYnJ8FirAtwPP/zAlClTqFGjBkuXLgWgSJEiTJo0iZ49eyrA/Q+oW7cuAwYM+H/s3Xd8zef///HHSUgkYhStmZgt6VeK2DVKKI0goZpWW6NS42OrD1I1Q63ataKaDlRpagU1O6waFTQ0tYKkRtQKkZMhOb8//JyP0xjJkdHD8367uXHeLNuVowAAIABJREFU7+tc1+v9SnBeua739ebMmTOEhYVZFEnAfYsrwGJqOLOzSBlhMBho27YtYWFhNG/enL179xIUFATceczFuXPnSEhIwNnZOUN93c/YsWM5duwYS5cupWzZssTExPDqq69atLm7lBLuFI158lj+Vbu377uzcgsWLLjveE2aNOHnn3/ml19+Ydu2bbz77rsMHTqUd99995HXcO94GbnmrFKIZMoWds7RMW1dQoI9CReUt8xS3qzzOHkrX8SFUT8cTreByb0qFStAc/cn8x44Jycnfa9ZQXmzjvJmHVvMW2b+vbTqE/TFixfvu9vk//3f/+k5cE8JBwcHvL292bRpE5s2baJ169YW593c3IiKirI4FhUVZV5imJ18fX3Zu3cvK1eupFq1ahQvXhyAl19+mXz58vH111+ne8/x48dp1aoVN27ceGT/v//+O23btqVcuXIYDAaOHj360PZFixYlLi6O+Pj/3TMSERFh/rObmxvHjx+3eH7S33//bS6Cr127Rv78+WnVqhXTpk1j7NixLF++/JFxiohkB4PBwOQ2ntg94MOGncHApNaeT2TxJiLyb2BVAffcc88RHZ1+i+AjR45YLBOTJ5ufnx/Lly+nePHiFssN4U4RFRYWxqFDh0hJSWHlypWcOHECHx+fDPXt6OjI2bNnLYqejKpQoQLu7u7MmjXLYmbQxcWF4cOH8+mnnxIcHEx8fDzJycn88ssvdO/enaZNm1KwYMFH9l+mTBkiIiJITk7m0KFDrF+/HoBLly7dt33VqlVxcnLis88+Izk5me3bt7Nv3z7zeR8fH65fv868efNITEwkJiaGbt268dVXX5GYmEjLli1Zs2YNt2/fJjExkaNHj+Lm5pbpvIiIZJV2Hm6s6NKYSsUKWByvVKwAK7o0pp2H/o0SEckuVi2hbN68OQMHDmTAgAGYTCaOHj3KkSNHmDdvXoY/oIvtq169Onnz5k23fBLuFCXnzp1j6NChXL58mQoVKhASEkK5cuUy1Pdbb73FlClT2L17Nx999FGmY/Pz82PSpEm0bNnS4vjrr7/Os88+y2effUZwcDAGg4Fy5coxaNAg8yYijzJ48GCGDh1KnTp1qFatGlOmTAGgd+/eLFmyJF37/PnzM3PmTEaOHMnXX3+Nl5cXXbt2ZenSpQA888wzzJs3jylTprBgwQKKFCmCr68v3bp1w97enlmzZjFlyhRGjx5Nvnz5qFWrFqNGjcp0TkREslI7Dzf8qrqyI+oSF24YKVXIiYbln9PMm4hINjOYTA94kMtDJCcnM3LkSMLCwsybQuTJkwd/f38CAwMzvIOKSHaZPXs2MTExfPLJJ7kdCgCpqanA/+6Nmz17Nnv27DFv/JOd7i7XvHeTlOyUkJBAZGQk7u7uNrf+PDcpb9ZR3qyjvGWecmYd5c06ypt1bDlvmfm8ZvVz4CZPnszw4cM5e/Ysjo6OuLm52dxuL/JkOnToEIsXL2bx4sW5HQpwZ0fJ1157jZYtWzJgwADOnz/P6tWrefPNN3M7NBERERGxMVYVcO3bt2flypUUKlQo09uZi2SngIAAjh07xrBhw6hSpUpuhwPcueF/xowZfPzxx9SpU4cCBQrQsmVL3nvvvdwOTURERERsjFUFXFJSEsePH+eFF17I6nhEHsvnn3+e2yHcV9WqVVm2bFluhyEiIiIiNs6qAs7f359BgwbRsGFDXF1dyZs3r/mcwWDA398/ywIUERERERGRO6wq4CZOnAjAqVOn0p1TASciIiIiIpI9rCrg/vzzz6yOQ0RERERERB7Bqgd5i4iIiIiISM6zagauSpUqD31QZ2RkpNUBiYiIiIiIyP1ZVcCNHj3aooBLTU3l9OnT/PLLL/Tu3TvLghMREREREZH/saqA69ix432Pt2jRguXLl9OuXbvHCkpERERERETSy9J74GrXrs0vv/ySlV2KiIiIiIjI/5elBdy2bdvIk8eqST0RERERERF5BKuqrYYNG6Y7lpiYyK1btx64vFJEREREREQej1UF3FtvvZXumKOjIxUrVsTLy+uxgxIREREREZH0rCrgatasSf369dMdT0xMZP369fj4+Dx2YCIiIiIiImLJqnvgevXqdd/jiYmJfPTRR48VkIiIiIiIiNxfpmbgvvvuO0JDQ0lOTr7vMspLly5RsGDBLAtORERERERE/idTBVzjxo1JTEwkIiKC8uXLpzv/4osv4uvrm2XBiYiIiIiIyP9kqoArXrw4nTp14sKFCwwdOvS+bY4fP54lgYmIiIiIiIglq+6Bu1u8paWlkZycbP515swZPUZAREREREQkm1i1C2VMTAxDhgzhyJEjpKamWpx7/vnnsyQwERERERERsWTVDNy4ceNwdnZmxIgR2NvbM27cOF5//XVq1KjBkiVLsjpGERERERERwcoC7vDhw8yaNYu33noLe3t7OnTowPjx4/Hx8WHRokVZHaOIiIiIiIhgZQGXlJREgQIF7nRgZ0dSUhIAvr6+rFy5MuuiExERERERETOrCrgXXniBkJAQUlNTKVOmDD/88AMAV69exWg0ZmmAIiIiIiIicodVBVzfvn2ZPn06t27d4q233mL48OG0bt2a9u3b06hRo6yOUURERERERLByF8rGjRvz008/UbBgQd555x1cXFwIDw+nbNmyeozAUyQwMJCkpCRmzJjBvHnz2L179xO5ic3q1auZPXs2P/74Y26HIiL/AiaTiR1Rlzh/I4FSBZ1pVOE5DAZDboclIiJPCasKOIBnn30WgNu3b+Pr64uvr2+WBSU548iRIyxYsIDffvsNo9HIs88+S4sWLejVqxcFCxbMVF+9e/emd+/eWRbbmjVrWLx4MWfOnCEpKYly5crRuXNn3njjjSwbI6P8/Pzw8/Mzvw4NDcXLy4siRYo8Vr8rV67kww8/5MMPP6Rr164W5zp16kS7du1o3779Y40hIllrVUQ0w8LCOXXlpvlYxaIFmNzGk3YebrkYmYiIPC2sWkKZlpbG7Nmzadq0KZ6engAYjUZGjx5NcnJylgYo2WPXrl28++67vPTSS2zcuJFDhw4RHBzMyZMn6dixI/Hx8bkW28aNGwkKCmLAgAHs3r2b8PBwBg4cyIQJE1i3bl2uxQWQmprKpEmTuHbtWpb0V7hwYebMmcPly5ezpD8RyT6rIqLx/2q7RfEGcOrKTfy/2s6qiOhcikxERJ4mVs3Affrpp6xcuZIuXbowc+ZMABISEjh06BCzZs1iyJAhWRqkZK20tDRGjx7NO++8Q48ePczHK1asyJw5c3jttdcIDg6mYcOG9O7dmxkzZjBhwgQuXrxIzZo1mT59OoUKFbLo89NPP2XHjh2sWLGCvXv3PvJ9S5YsYenSpZw/f54yZcowaNAgmjdvDsDu3bvx9PS0uJ+yWbNmfPrppxQrVsx87GF9GI1GJkyYwObNmzEYDLz66quMHDkSBwcHvLy86N69u3m57/bt2+nevTvHjh0DoHLlynz44YcsWrSIzp07U6xYMaZNm8auXbuoU6cO8fHx+Pr60qtXL0JCQpg6dSpeXl7muLp06UK1atX44IMPHvm1eOGFF3juueeYOnUqkyZNemC7b7/9lq+++orz589TsmRJ+vfvT6tWrR7Zf26Jw4GLxlTymVJyOxSbkZiYqrxZIafyZjKZGLz2AGkm033Pp5lMBK4Lx6+qq5ZTiohItrKqgFuzZg3z58/nxRdfZNasWQAULVqUGTNm0LlzZxVw/3JHjx4lJiaGzp07pzvn4ODAW2+9RWhoKA0bNsRoNLJ+/XqWL1+O0WikQ4cOrFixgu7duz90jIe9b/PmzcyZM4dFixZRpUoVfvzxRwYOHMjmzZspVaoUFSpUICwsjK1bt+Ll5YWd3Z2J4oYNG5r7f1Qf06dP5+TJk+YdUt9//33mzp3LoEGDMpSjrVu3snr1aooWLcqqVavMx9esWUOzZs1Ys2YNFStW5Ny5c4SFhZkLuGvXrrF//35GjhyZoXEAhg4dire3N/7+/uYZ7Xv9+OOPfPLJJwQHB1OtWjW2bNnCkCFDqFixIpUrV87QGCaTiYSEhAzH9DiMRiP77EqyLzoJSMqRMZ8Yypt1ciBvp2Ovcvbqw1cmnLx8k62RMTQoV+yh7f4N7u4YrZ2jM045s47yZh3lzTq2nDeTyZThHwBaVcBdvXqVF198Md3xsmXLEhcXZ02XkoNiYmJwcnKiePHi9z1foUIF/vrrL0wmE6mpqbz//vsUKlSIQoUKUbNmTaKioh45xsPeFxoaSocOHahatSoALVq0oGbNmqxbt44ePXrw9ttvc+zYMfr160fBggWpUaMGL7/8Mj4+PhQtWvSRfXTv3p3Vq1czYcIE831qEyZM4MaNGxnOkbe3t8Vs34P4+vrSs2dP4uPjcXFxYdu2bbzwwgtUqlQpw2MVL16c3r17M27cOL7//ntzwXpXaGgorVu3platWgC0atWKkJAQNm3alOECLiUlhcjIyAzH9NjsyubcWCI54KYxMUPtDvx5kiLGv7M5mqxz5syZ3A7B5ihn1lHerKO8WcdW8+bg4JChdlYVcKVKlSIyMhJ3d3dM9ywn2b17t3lzE/l3S01NfWCl/8/jZcqUMf/ZycmJxMSMfZB50Puio6PZtWsXX331lcWYd4seBwcHJk6cyAcffMCuXbvYv38/wcHBzJgxg7lz5/Lyyy8/tI9r165x48YNi/GrVKmSoZjvKlWqVIba1a1blyJFirB161b8/PzYsmULbdq0ydRYcGfZ5ffff8+yZct45513LM799ddf1KtXz+JY2bJlOXfuXIb7z5s3b6aKysdhNBqpc+bOUk9HR8ccGfNJkJSUxIULF5S3TMqpvJWjAMt3PrpdzSqVcLeRGbgzZ85Qrlw5nJyccjscm6CcWUd5s47yZh1bztvJkycz3NaqAq5t27b06dOHgIAATCYTmzdv5siRIyxbtoz33nvPmi4lB5UvX57k5GRiYmJwc0u/a9rp06cpV66cuYj754xQRj3offny5WPw4MF069btoe9/9tlnzTtApqSk0KdPH6ZPn87LL7/80D6uX78O3LnXLyPu187e3j5D7zUYDLRt25awsDCaN2/O3r17CQoKytB775U3b15GjBjBBx98gLe3t8W5B20MlJn7bAwGA87OzpmOy1qFSKZsYeccHdPWJSTYk3BBecusnMpb+SIujPrhcLoNTO5VqVgBmrvb1j1wTk5O+n7LJOXMOsqbdZQ369hi3jLzf4dVn8x79uyJn58fs2fPJiUlhf79+7Ny5Up69epFr169rOlSclCVKlUoV64cX3/9dbpzt2/fZsWKFemKiKzk5uZm3jDkrvPnz2MymTCZTEybNo3ff//d4nzevHmpV6+eeU3zw/ooXLgwBQsW5PTp0+ZzR48eZc2aNcCdGb57ZxGjox9v5zhfX1/27t3LypUrqVat2gOXpj5KgwYNqFOnDtOnT7c47ubmlm7ZalRUFK6urlbHLCKZYzAYmNzGE7sH/AdrZzAwqbWnTRVvIiJimzJVwN3dAMJgMNC/f39+/fVX+vbty2+//cbOnTsJCAiwerZGco7BYGDMmDGsWLGCqVOncvXqVUwmE6dOneK9996jQIECBAQEZNv4b775Jhs2bODnn3/m9u3b7Nmzh9atW3P48GEMBgOXLl1i6NCh/PbbbyQnJ3P79m0OHjzIN998Q7NmzR7ZB0D79u1ZtGgRsbGxXLt2jXHjxnHixAkAypUrx88//0xiYiJnz54lLCwsw7Hny5cPuLO2+u6jFipUqIC7uzuzZs2yavnkvQIDA1m/fr1Fwebr60tYWBiHDh0iJSWFlStXcuLECXx8fB5rLBHJnHYebqzo0phKxQpYHK9UrAArujTWc+BERCRHZGoJ5Y8//mjx2s7Ojs8++4y+fftmaVCS/erXr8/SpUuZO3cu3t7eGI1GihcvzmuvvUbPnj2zdd1wgwYNGDZsGEFBQVy+fJkyZcowZswYqlevDsC4ceMIDg5m1KhRXLhwgdTUVNzc3HjrrbfMS3Qf1cfgwYMZP348rVq1wsHBgebNm5u/TwcOHMiQIUOoW7cu7u7uBAQEMGDAgAzFXqxYMVq2bMmAAQN46623GDFiBHDnYd+TJk2iZcuWj5Wb0qVL0717d/PurgA+Pj6cO3eOoUOHcvnyZSpUqEBISAjlypV7rLFEJPPaebjhV9WVHVGXuHDDSKlCTjQs/5xm3kREJMcYTKYHPNTmPl566aV0S9vud0zkaTN79mxiYmL45JNPcjuUdCIiIgDw8PDIkfESEhLMmxzZ2vrz3KS8WUd5s47ylnnKmXWUN+sob9ax5bxl5vNapmbg7vcTRv3UUZ52hw4dYvHixSxevDi3QxERERGRJ5xVu1CKyB0BAQEcO3aMYcOGWTyq4PPPP2fmzJkPfJ+vry/jx4/PiRBFRERE5AmiAk7kMXz++ef3PR4QEJCtG8GIiIiIyNMpUwVcSkoKgwcPfuSxadOmPX5kIiIiIiIiYiFTBVzNmjW5dOnSI4+JiIiIiIhI1stUAadNGkRERERERHKPnrotIiIiIiJiI1TAiYiIiIiI2AgVcCIiIiIiIjZCBZyIiIiIiIiNUAEnIiIiIiJiI1TAiYiIiIiI2AgVcCIiIiIiIjZCBZyIiIiIiIiNUAEnIiIiIiJiI1TAiYiIiIiI2AgVcCIiIiIiIjZCBZyIiIiIiIiNUAEnIiIiIiJiI1TAiYiIiIiI2AgVcCIiIiIiIjZCBZyIiIiIiIiNUAEnIiIiIiJiI1TAiYiIiIiI2AgVcCIiIiIiIjZCBZyIiIiIiIiNUAEnuWLv3r1UrlyZpKSk3A5FRCTDTCYT20/F8u3B02w/FYvJZMrtkERE5CmTJ7cDkH+/bt26sX//fgBSU1NJS0sjb9685vMbN26kdOnSWT7uoUOHmDNnDkeOHCE+Pp6iRYvi4+PDwIEDcXBwyPLxHtf169fZsmULb7zxRobad+rUiSNHjrBx40aKFy9uPv7XX3/RrFkzjh07ll2hiogVVkVEMywsnFNXbpqPVSxagMltPGnn4ZaLkYmIyNNEM3DySCEhIURERBAREcF//vMfXnrpJfPriIiIbCne/vrrL9577z0aNmzI1q1b+f333wkODuann35i/PjxWT5eVtizZw/fffddpt7j6OjIpEmTsikiEckqqyKi8f9qu0XxBnDqyk38v9rOqojoXIpMRESeNpqBk8dy7tw5xo0bx8GDB0lLS6Np06aMGjUKFxcXAHbu3MmUKVOIjo6mbNmyBAYGUr9+ffP7Dxw4wMcff8zZs2epX78+06dPp0CBAhw+fBiTyUTXrl3NbatUqcKMGTO4fPkyACtXrmTatGns2rXL3Mbf359GjRrRr18/AgMDMRgMODk5sXr1ahwcHOjfvz9vv/02AF5eXnTu3JlffvmFAwcOUKJECSZNmoSnpycAFy9eZOzYsYSHh3P79m0aN27M6NGjKVy4MHv37qVXr14MGDCA2bNnExAQwNy5c0lLS8PDw4MNGzbg6ur6yPwFBASwcOFC9u7dS926de/bJi4ujo8//pjdu3dz69YtateuzahRoyhTpkzmvlg5KA4HLhpTyWdKye1QbEZiYqryZoWcyJvJZGLw2gOkPWC5ZJrJROC6cPyqumIwGLIlBhERkbtUwInVTCYTvXv3xtPTkxkzZpCQkMAHH3zA5MmTGTduHLGxsfTr14+PP/6YV199lbCwMPr06cOPP/5o7mPdunUsW7aMuLg4/P39CQ0N5b333qN8+fIYjUbmz59Ply5dcHZ2Bu4UcZmxceNGPvzwQ/bs2cP27dvp27cvnp6e5n6++OILZs2ahbu7O7Nnz6ZPnz7s2LGDPHny0Lt3bypVqsS2bdtITExkwIABjB49mlmzZgGQkpLC2bNn2b17N46OjqSlpbFjxw5WrFiR4fiKFi1Kv379GDduHKtXryZPnvR/JUeMGEF8fDxr167FwcGB4cOHM3DgQEJDQzM8jslkIiEhIcPtH4fRaGSfXUn2RScBuscxU5Q362Rz3k7HXuXs1fiHtjl5+SZbI2NoUK5YtsSQ1YxGo8Xv8mjKmXWUN+sob9ax5byZTKYM/xBQBZxYLSIighMnTrBs2TKcnJxwcnKiX79+BAQEEBQUxA8//ICrqyutWrUCoH379uZC565u3bpRsGBBChYsSPXq1Tl9+jQAL774Ih9++CGzZs1i/vz5eHh4UK9ePby9valUqVKGYyxVqhT+/v4ANG/eHHd3d3766SdzAefl5UX16tUB6NmzJ59//jmHDx/G2dmZo0ePEhwcjIuLCy4uLvTo0YM+ffqQnJwM3Cng3n77bfLly/dYeXznnXcIDQ1lyZIlFjOO8L/76pYvX06RIkUA6N+/Pz4+PsTExGRolu9urJGRkY8VZ6bYlc25sUSy2U1jYobaHfjzJEWMf2dzNFnrzJkzuR2CzVHOrKO8WUd5s46t5i2jezyogBOrxcTEkJqamm7pX2pqKteuXSM6OjrdMj8fHx+L1/eez5cvn7k4AujatSv+/v78+uuv7N+/n40bNzJ37lwGDRpEz549MxRj+fLlLV6XKlWKS5cu3fd8wYIFKVCgAJcuXSJPnjwUKlSIZ5991nzezc2NlJQUYmNjLfp7XPb29owaNYpevXqly8/58+cxmUxUrFjRIg64s3w1owVc3rx5M1X4Pg6j0UidM+cpWbIkjo6OOTLmkyApKYkLFy4ob5mUE3krRwGW73x0u5pVKuFuQzNwZ86coVy5cjg5OeV2ODZBObOO8mYd5c06tpy3kydPZritCjixmqOjI87Ozhw8ePC+5+3s7Cxm2+7nUVPFzs7ONGvWjGbNmhEYGMj8+fOZNWsW77zzzn3bp6amPvT1P6en/xnf3fP3FpIPi/l+Sx6tUatWLV555RU++eQT+vfvbz6e0TgexWAwmJeh5oRCJFO2sHOOjmnrEhLsSbigvGVWTuStfBEXRv1wON0GJveqVKwAzd1t7x44Jycnfb9lknJmHeXNOsqbdWwxb5n5/0O7UIrV3NzcSEhIICYmxnwsPj6ea9euAXdm1+4uibxryZIlFu0fJDQ0lNWrV6c73qhRI1JTU0lOTsbR0dFijXNqairnzp2zaP/Psc6fP0+JEiXMr6Oj/7dzXFxcHPHx8ZQoUQJXV1fi4uLMG6YAREVF4ejoaLHlf1YaOnQo27ZtIzw83Hzs7gxbVFSURRzwv5k4EcleBoOByW08sXvAf652BgOTWnvaXPEmIiK2SQWcWO2FF16gRo0afPzxx1y9epUbN24wevRohg4dCkDr1q25cOECK1asIDk5mfXr1zN9+nTy58+fof7Hjh1LWFgYt27dwmQycfbsWWbPnk2NGjUoUqQIZcuW5datW+zcuZPk5GSCg4PTPVT33LlzrF69mpSUFLZs2cKff/5JkyZNzOd/+uknjh49SlJSEsHBwRQrVgwPDw88PDyoWLEi06ZNIyEhgdjYWObPn4+Pj4/FM/Du5ejoyN9//83169cfOnP2IMWLF+c///kPU6ZMMR8rWrQoDRs2ZNasWVy/fp24uDhmzpxJ3bp1KVmyZKbHEBHrtPNwY0WXxlQqVsDieKViBVjRpbGeAyciIjlGBZw8lmnTpmEymWjWrBmvvvoqqamp5ueaFStWjM8//5wvv/yS2rVrs3DhQubOnWvejONhOnTowJgxY1iyZAlNmzblpZdeokuXLpQuXZr58+cDULVqVbp27cqgQYNo3LgxefLkoUaNGhb9NG7cmIMHD1KvXj1GjhzJmDFjeOGFF8znX3/9daZOnUrt2rXZunUrc+bMwd7eHoPBwLx587h06RJNmjTB39+fatWqMWrUqAfG3Lx5c0wmE02aNOHIkSPWpJMuXbpQoIDlB8TJkyfj7OyMt7c3rVq1wsXFxbwTpojknHYebvwZ6MtPvVvwzbuN+LlPC/4M9FXxJiIiOcpg+ueUhcgTIjAwkKSkJGbMmHHf815eXnTv3p2OHTvmcGQ5KyIiAgAPD48cGS8hIYHIyEjc3d1tbv15blLerKO8WUd5yzzlzDrKm3WUN+vYct4y83lNM3AiIiIiIiI2QrtQimSDtm3bptvA5V4hISHUrl07ByMSERERkSeBCjh5Yt29F+9Bfvzxx2wbe+3atdnWt4iIiIg8vbSEUkRERERExEaogBMREREREbERKuBERERERERshAo4ERERERERG6ECTkRERERExEaogBMREREREbERKuBERERERERshAo4ERERERERG6ECTkRERERExEaogBMREREREbERKuBERERERERshAo4ERERERERG6ECTkRERERExEaogBMREREREbERKuBERERERERshAo4ERERERERG6ECTkRERERExEaogBMREREREbERKuBERERERERshAo4ERERERERG6ECTkRERERExEaogBMREREREbERKuBERERERERshAo4G+Tl5cWyZcuyrD9/f38+/fTTLOuvU6dOTJ06Ncv6yy7dunVj5syZWdpnYGAggwYNytI+Afbu3UvlypVJSkrK8r5FnhQmk4ntp2L59uBptp+KxWQy5XZIIiIiWS5Pbg7u5eVFbGwsdnZ36kgHBwcqV67MwIEDqVOnTm6Glmm//vorLi4ueHh4AHeu7erVq+zatYv8+fNbtP3yyy+ZOHEiEydOpH379o/s++jRo8TFxfHyyy9nS+yZ0alTJw4cOIC9vX26c/369aNHjx5ZNlZ2X3dISEi29CsiOW/tH+cYtfkop67cNB+rWLQAk9t40s7DLRcjExERyVq5PgM3YsQIIiIiiIiIYOfOnTRv3pwePXoQExOT26FlypdffsmRI0csjjk7O7N169Z0bcPCwihSpEiG+/7+++/ZvXv3Y8eYVbp162b+mt37KyuLN/j3XbeI/Dv9FHODTt/usSjeAE5duYnj0ieKAAAgAElEQVT/V9tZFRGdS5GJiIhkvVydgfsnJycnunXrxrfffsv27dt55513uHr1KmPGjGH//v2kpKRQo0YNgoKCKFmyJF26dMHd3Z3AwEBzH3PnzmXHjh18++23VK5cmenTp/P5559z8uRJ6tWrR1BQEB999BHh4eGUL1+e2bNnU6ZMGQA2bNhAcHAwZ8+epWjRovTo0YM333wTuLM0Ln/+/OTJk4dVq1ZhZ2dHQEAA3bt3p1evXvz888/s3LmTjRs38tVXXwHwyiuvsHbtWnx9fc3xnT17lmvXrlGpUiWLa1+yZAlLly7l/PnzlClThkGDBtG8eXPGjRvHN998g52dHZs2bWLLli0A3Lp1i/79+7N9+3aeeeYZJk2aRN26dQE4ceIE48aN448//sDe3p7XXnuN4cOH4+joaM7RsmXLSElJoXPnztn01Xz0tQEYjUYmTJjA5s2bMRgMvPrqq4wcOZLJkyenu24vLy/eeOMNQkNDadiwIWPHjn3ota5cuZIvv/ySbt26MXv2bK5du0aTJk2YMmUKefPmpVOnTlSrVo3//ve/wJ0ZucWLFxMXF0eNGjUYO3as+XvjXqmpqcyYMYNVq1aRnJzMyy+/zNixYylcuLC5zezZs1m6dCmpqan07duXrl27AnD9+nXGjx/Pnj17uHXrFvXq1WPMmDEUL14cuDPrGBQUxLFjxyhevDgDBgygVatW6WKIiIiga9euzJ49mwYNGmT1l+yxxeHARWMq+UwpuR2KzUhMTFXerGA03mbWwUukPWC1ZJrJROC6cPyqumIwGHI2OBERkWzwryrg7kpNTTUv0fvkk0+4desW27Ztw2QyMXDgQCZMmMCnn36Kn58f06dPZ+jQoeZlmJs3b8bf39/c17fffsuCBQtISEigTZs2dO/encmTJ+Pm5sY777zDF198wciRI4mIiOCjjz7i008/pX79+hw8eJDu3bvz/PPP4+npCcC6desIDAxk165drF27lpEjR+Lr68uCBQvw8vKie/fudOzY0Ty2l5cXQ4YM4fLlyxQrVgy4M/vWsmVLi9m6zZs3M2fOHBYtWkSVKlX48ccfGThwIJs3b2bkyJEcP37cotAACA0NZcqUKXzyySeMGDGC8ePHExYWRnJyMt26dcPPz4+FCxdy6dIlevXqxaxZsxg6dCg7d+5k4cKFhISEULVqVT777DOOHz9Oo0aNsuVr+bBrK1WqFNOnT+fkyZP88MMPALz//vvMnTv3gde9fv16QkJCcHNze+S1Apw7d44jR46wbt06zp07R/v27dmyZUu6omjr1q189tlnfPHFF1SoUIGgoCD++9//8u2336a7psWLF7NlyxaWL1/OM888w6BBgxg3bhzTpk0D7iynbdy4MTt27CA0NJSPP/6YNm3aULRoUQIDA8mTJw/r16/H3t6e0aNH8+GHHxISEoLRaKRnz5689957LF68mP3799OrVy8qV65sMX5sbCx9+vThww8/zHDxZjKZSEhIyPgX7jEYjUb22ZVkX3QSoHv2MkV5y7TTsVc5H5/80DYnL99ka2QMDcoVy6Go/v2MRqPF7/Joypl1lDfrKG/WseW8mUymDP+g8V9VwN26dYtvv/2Wq1ev8sorrwAwduxYbt++jbOzMwDNmzdnwYIFALRo0YKgoCD27t1L/fr1iYmJ4dSpU3h7e5v79PHx4bnnngOgQoUK/N///R8vvvgiAHXq1CEqKgqAlStX0qRJExo2bAhArVq18Pb2Zs2aNeYCrkyZMrRr1w6AVq1aMXz4cM6cOWPu/58KFixIw4YN2bBhg3mma/369UyfPt2igAsNDaVDhw5UrVrVfF01a9Zk3bp1D1yW6OXlxUsvvWRuf7cA2r59O0ajkX79+uHg4GAuVBctWsTQoUPZsmULjRs3pmbNmgD07NmTr7/+OiNfHrOQkBDzLOO97s4G3uth19a9e3dWr17NhAkTzEtKJ0yYwI0bNx44dqNGjShbtmyGrhXufE8NHDgQZ2dnnn/+eSpXrmz+mt/r+++/x8fHhypVqgAwaNAg9u3bR1pamvmHA3etXLmSjh07mmfnRo4cyalTp8zn7/0+8fHxYezYsURH31nC9dNPP7FhwwYKFSoEwH//+1+aNGnC33//zaFDh0hJSaFr167Y29vToEEDZs6cSb58+cx9JyUl0adPH9q1a0eHDh0emKd/SklJITIyMsPtH5td2ZwbS55qN42JGWp34M+TFDH+nc3R2J4zZ87kdgg2RzmzjvJmHeXNOraaNwcHhwy1y/UCbvz48UyYMAGAfPny4e7uzpdffknJkiWBO0sOJ02axO+//05iYiJpaWnmpWr58+enefPmrF27lvr167N582YaNGhgcX/Z3X4AHB0dzUvV7r5OTr7zk9vo6Gh+/fVX8yYkcKcSvlvQARbL6ZycnABITHz4hwc/Pz8WLFhA586d+eOPP7Czs8Pd3d2iTXR0NLt27bIoikwmU7pllve6NxZHR0dSUu4sufrrr79wdXW1+AYoW7Ys58+fJy0tjdjYWMqXL28+lzdv3vsuE3yYbt26WcyKPczDru3atWvcuHHDYvy7BdSDlC5d2vznR10rwDPPPIOLi4v5vJOT032/ZjExMeYlqABFixa1+EHAP9veG7Orqyuurq7m1/eeu1t8JScnm+/r9PPzs+jP3t6eCxcuEB0dTYkSJSw2iGnWrJn5WgGGDx/O5cuXGTBgwH1je5C8efM+9PspKxmNRuqcOU/JkiXNy3bl0ZKSkrhw4YLylkmlU/KxPAPtalaphLtm4MyMRiNnzpyhXLly5v/P5OGUM+sob9ZR3qxjy3k7efJkhtvmegE3YsQIi2WH90pLS6Nnz57UrFmTTZs2UaRIEb777juLrd/9/Pzo378/Y8eOZcuWLbz77rsWffxzKvKfsyl35cuXj44dOzJy5MgHxvqg9z5M48aN+eijjzhz5gxhYWG0adPmvmMPHjyYbt26ZbjfB02x3i1IH9Q+OTmZ27dvW5y7W+xkh4dd2/Xr1zM9/r3FzaOuFTL+NTMYDBnectxgMDw05gd9be4Wc/ebqQQ4cODAI3ORmJjI7du3Wbp0KZ06dcpQvHdjujuLnRMKkUzZws45OqatS0iwJ+GC8pZZxfPZMcIlL3/FP/i+wUrFCtDcXffA3Y+Tk5O+3zJJObOO8mYd5c06tpi3zPwfleu7UD7M5cuXOXfuHJ06dTLPqv3xxx8WberXr0/+/Pn57rvvOHHihHnGIrPc3Nw4duyYxbGLFy+SmppqXfD/n4ODA97e3mzatIlNmzbRunXrDI19/vx5q55h5OrqSkxMjEVxExUVRZkyZbCzs+O5557j4sWL5nP3zgxlh4ddW+HChSlYsCCnT582nzt69Chr1qzJUN+PutbMcHV1tYjj6tWrhISEmGc2H9b27NmzLF269JFjlC5dGjs7O4t8pKSkEBsba+733LlzFtezevVqi6WPs2fPZvz48UybNs0iBpGnlcFgoF+N4tg94P89O4OBSa09VbyJiMgT419dwBUpUgRnZ2cOHTpEUlISYWFhREZGEh8fz61bt4A7Myxt2rRh+vTpNGvWzOrp0g4dOhAeHs73339PcnIykZGRvPHGG2zatClD73d0dCQ6OpqbN2+mO+fn58fy5cspXrz4fZcrvvnmm2zYsIGff/6Z27dvs2fPHlq3bs3hw4fNff/111/ExcU9Mo7GjRuTJ08e5s6dS3JyMlFRUXz99dfmZXuNGzdm586d5iWpc+bMydYZuEddW/v27Vm0aBGxsbFcu3aNcePGceLEiQxd96OuNTNef/111q9fz+HDh0lOTmbu3Lls3LiRvHnz3rftsmXLiIqK4tatW3zyySf89ttvjxyjQIECtGrViqlTp3Lx4kUSExOZPn063bp1w2Qy0bhxY5ydnVmwYAFJSUns27eP0aNHW8w62tvb06RJE1q1asWwYcMe+wcMIk+Cpq4FWfxWPSoVK2BxvFKxAqzo0ljPgRMRkSfKv7qAy5MnD2PGjGHhwoW8/PLL7N+/n08//ZQSJUrQokULczs/Pz/i4+PvuzwxoypWrMi0adNYtGgRtWrVol+/fgQEBNx3C/f78ff355tvvkm3hBOgevXq5M2b94HxNWjQgGHDhhEUFISnpydBQUGMGTOG6tWrA3eKnO3bt9OiRYtHfmDPnz8/CxcuZP/+/dSvX5/u3bvj6+tLr169APD29qZz58706tWLV155BQcHB/M4GRUSEoKHh0e6X126dMn0tQ0ePJiXXnqJVq1a0apVK55//nn69u2boet+1LVmRrNmzRg0aBB9+vShXr16nDlzxryr5D916tQJPz8/OnbsSNOmTbG3t3/o0tt7jRw5krJly+Lj40OjRo04efIk8+bNw2Aw4ODgwBdffMEvv/xC7dq1GTlyJBMmTOCFF15I18/de+GCg4Mzfa0iT6K2L5bmz0Bffurdgm/ebcTPfVrwZ6CvijcREXniGEzWrNP7l9mzZw/Dhw9n69atVt2nJvIki4iIALDYoCc7JSQkEBkZibu7u82tP89Nypt1lDfrKG+Zp5xZR3mzjvJmHVvOW2Y+r9l8tXPp0iUmTJhAQECAijcREREREXmi5foulI8jODiYhQsXmpezyeNp27btQzfGCAkJoXbt2jkYkYiIiIiI3MumC7iePXvSs2fP3A7jibF27drcDkFERERERB5Caw5FRERERERshAo4ERERERERG6ECTkRERERExEaogBMREREREbERKuBERERERERshAo4ERERERERG6ECTkRERERExEaogBMREREREbERKuBERERERERshAo4ERERERERG6ECTkRERERExEaogBMREREREbERKuBERERERERshAo4ERERERERG6ECTkRERERExEaogBMREREREbERKuBERERERERshAo4ERERERERG6ECTkRERERExEaogBMREREREbERKuBERERERERshAo4ERERERERG6ECTkRERERExEbkye0ARERskclkYkfUJc7fSKBUQWcaVXgOg8GQ22GJiIjIE04F3FMoKiqKuXPn8uuvv3Lr1i2KFi2Kl5cXffv2pXDhwo/d//Xr19myZQtvvPFGFkSbXmhoKF5eXhQpUuSh7fbv30+3bt3Mr5OTk8mbN6/5Q7avry/jx4/PlhjlybYqIpphYeGcunLTfKxi0QJMbuNJOw+3XIxMREREnnRaQvmUiYyMpEOHDpQoUYK1a9cSHh7O3LlzOXbsGB07diQxMfGxx9izZw/fffddFkSbXmpqKpMmTeLatWuPbFu7dm0iIiLMvwDmzZtnfq3iTayxKiIa/6+2WxRvAKeu3MT/q+2siojOpchERETkaaAZuKdMUFAQDRs2ZMiQIeZj7u7uzJ8/n48//phLly7h5ubGxYsXGTt2LOHh4dy+fZvGjRszevRoChcuzN69e+nduzczZsxgwoQJXLx4kZo1azJ9+nR2797N4MGDSUtLw8PDgw0bNjB37lzs7e2Jjo7m2rVrrFu3jujoaMaOHcuRI0cAaNCgAWPGjKFgwYIAHD16lKCgII4dO0bx4sUZMGAArVq1ok6dOsTHx+Pr60uvXr3o27ev1bkYMmQIRYsWJTAwEICZM2eycOFC9u/fT/78+UlMTKRWrVqEhoZSvnx5PvnkE7Zu3cq1a9eoWrUqI0aMwN3dPV2/r776Kp07d6ZTp07mY8OHDycpKYlp06bx559/MnHiRI4ePUqePHlo3bo1w4YNI2/evAB8+eWXLFmyhCtXrlCiRAkGDRpEixYtAAgMDEyXy3+jOBy4aEwlnyklt0PJUiaTicFrD5BmMt33fJrJROC6cPyqumo5pYiIiGQLFXBPkStXrhAeHs7ixYvTnXNxcWHixInm171796ZSpUps27aNxMREBgwYwOjRo5k1axYARqOR9evXs3z5coxGIx06dGDFihV0796dkydPsmPHDlasWGHub9u2bUycOJEmTZoAMGLECEqXLs2OHTuIj48nICCAefPmERgYiNFopGfPnrz33nssXryY/fv306tXLypXrsyaNWto1qwZa9asoWLFio+Vj7p161rMFP7222+4ublx6NAhGjRowOHDhylYsCCVK1dm8uTJ7N+/nyVLllCsWDGmTZtGz5492bp1Kw4ODhb9+vr6EhYWZi7gUlNT2bZtG1OmTMFoNPL+++/TqVMnPvvsM2JjY+nduzeff/45vXr1Yv/+/UybNo3vv/+e559/nlWrVvHf//6Xn3/+2bxk9J+5zAiTyURCQsJj5SujjEYj++xKsi86CUjKkTFzyunYq5y9Gv/QNicv32RrZAwNyhXLVN9Go9Hid8kY5c06ylvmKWfWUd6so7xZx5bzZjKZMvzDXxVwT5GYmBgAypcv/9B2kZGRHD16lODgYFxcXHBxcaFHjx706dOH5ORk4E5R8v7771OoUCEKFSpEzZo1iYqKemCfpUuXpmnTpubXCxcuxGAw4ODgQJEiRWjUqBHh4eEA7Ny5k5SUFLp27Yq9vT0NGjRg5syZ5MuXD9MDZj6sUa9ePcaMGWO+puPHj/Pee+9x4MABGjRowG+//Ua9evUwGAyEhoYSFBREmTJlABg4cCBLliwhPDycevXqWfTr6+vLnDlziI6Oxs3NjX379mFnZ0eDBg3YsmULJpOJnj17AuDq6kpAQADBwcH06tWLmjVrsmvXLvNMZOvWrfnwww85fvy4eZx/5jIjUlJSiIyMfKx8ZYpd2ZwbKwfdNGZsifGBP09SxPi3VWOcOXPGqvc97ZQ36yhvmaecWUd5s47yZh1bzds/JwUeRAXcU+RuVZ+WlvbQdn/99ReFChXi2WefNR9zc3MjJSWF2NhY87G7xQyAk5PTQ++fK126tMXrI0eOMG3aNI4dO0ZKSgqpqalUrVoVgOjoaEqUKIG9vb25fbNmzcyxZZUyZcrw3HPPERERgclkonLlytSqVYs5c+YAcODAAby9vYmLi+PmzZtUqFDB/N78+fNTtGhRzp07l65fV1dXPD09Wbt2LX379mXLli14e3uTJ08eYmJiuHLlCh4eHub2JpPJ/Bc2NTWVuXPnsnHjRq5evWpuc7fIhPS5zIi8efNSqVKlTL/PGkajkTpnzlOyZEkcHR1zZMycUo4CLN/56HY1q1TC3YoZuDNnzlCuXDmcnJysjPDpo7xZR3nLPOXMOsqbdZQ369hy3k6ePJnhtirgniJubnd2xztx4gTFixd/YLt7i4V/undq184u43vg3FuMxcXF0aNHDzp27Mhnn32Gi4sLM2fOZPfu3eZ+H1VkZpV69epx8OBBUlJS8PT0xMPDgz/++IOkpCQOHjxIUFBQhvNxLz8/P0JCQujTpw9bt241Lz11dHTk+eefJyws7L7vmzt3Lj/88AMLFiygSpUqmEwmXnzxRYs29+YyowwGA87Ozpl+n7UKkUzZws45OmZOKF/EhVE/HE63gcm9KhUrQHN36++Bc3JyeuLylhOUN+sob5mnnFlHebOO8mYdW8xbZj43aBfKp8gzzzxDnTp1+OKLL9KdMxqNtG/fngMHDuDq6kpcXByXL182n4+KisLR0fGhhV9GRUVFcevWLQICAnBxcQHgjz/+MJ93dXXl3LlzFoXT6tWrs2UJYN26dTl48CC//fYbtWrVIl++fJQtW5ZVq1ZRrFgxypQpQ9GiRcmfP7/FEtG4uDiuXLliLor/ydvbm/Pnz7Ns2TIcHR2pUaMGcKeIjomJ4datW+a2165dIz7+zn1VERERNGvWjBdffBE7OzuOHj2a5dcs1jMYDExu44ndA/6RtTMYmNTaUxuYiIiISLZRAfeU+eijjzh06BAffPABFy9eJC0tjcjISN5//33y5cvHSy+9hIeHBxUrVmTatGkkJCQQGxvL/Pnz8fHxMe+U+DCOjo78/fffXL9+/b6zV6VKlcLOzo6DBw+SkJDAl19+yeXLl7l8+bJ5x0tnZ2cWLFhAUlIS+/btY/To0djb25MvXz7gztrmu0XP46hXrx6///47ERER5iKrRo0aLF68mPr16wN3ZgRbt27NwoULuXjxIgkJCUydOhVXV1fze/6pQIECeHl5MW3aNFq3bm0+3rBhQ4oUKcLkyZOJj4/n77//ZsCAAUydOhW4szzyzz//xGg0cvLkSRYtWkSBAgUslq5K7mrn4caKLo2pVKyAxfFKxQqwoktjPQdOREREspUKuKdMlSpVWLFiBWlpabRr144aNWowcOBA6tWrR0hIiPlB1/PmzePSpUs0adIEf39/qlWrxqhRozI0RvPmzTGZTDRp0sT8mIB7FS9enA8++IDhw4fTtGlT4uLimDp1KsnJybz99ts4ODjwxRdf8Msvv1C7dm1GjhzJhAkTeOGFFyhWrBgtW7ZkwIABzJw587HzUbx4cZydnSldurR5NtDT05OTJ0+aCzi4s32/u7s7b7zxBk2bNuXvv//miy++eOhyRj8/P+Lj42nTpo35WN68eZk3bx5RUVE0aNAAPz8/ypUrx7BhwwDo2bMnqamp1KtXj8DAQPr160e7du0YP34827Zte+zrlazRzsONPwN9+al3C755txE/92nBn4G+Kt5EREQk2xlMWbmtn4iYff/993z//fd88803uRrH3YeY37txSnZKSEggMjISd3d3m1t/npuUN+sob9ZR3jJPObOO8mYd5c06tpy3zHxe0wycSDY4ffo0s2bNMj8uQEREREQkK2gXSrFZn3/++UOXUfr6+jJ+/PgcjOiOUaNGsWnTJrp27corr7yS4+OLiIiIyJNLBZzYrICAAAICAnI7jHSCgoIICgrK7TBERERE5AmkJZQiIiIiIiI2QgWciIiIiIiIjVABJyIiIiIiYiNUwImIiIiIiNgIFXAiIiIiIiI2QgWciIiIiIiIjVABJyIiIiIiYiNUwImIiIiIiNgIFXAiIiIiIiI2QgWciIiIiIiIjVABJyIiIiIiYiNUwImIiIiIiNgIFXAiIiIiIiI2QgWciIiIiIiIjVABJyIiIiIiYiNUwImIiIiIiNgIFXAiIiIiIiI2QgWciIiIiIiIjVABJyIiIiIiYiNUwImIiIiIiNgIFXAiIiIiIiI2QgWciIiIiIiIjVABJyIiIiIiYiNUwImIiIiIiNgIFXBPoaioKAYPHszLL79MtWrV8PLyYvz48Vy/fj1L+r9+/TrfffddlvR1P6GhoVy9ejXD7ZOTkwkODqZ169ZUr16dWrVq0bVrV3bu3JltMcqTx2Qysf1ULN8ePM32U7GYTKbcDklERESeQirgnjKRkZF06NCBEiVKsHbtWsLDw5k7dy7Hjh2jY8eOJCYmPvYYe/bsybYCLjU1lUmTJnHt2rUMt+/ZsyebN29m/PjxhIeHs337dtq2bUv//v2ztdCUJ8eqiGgqT1xD03mbeWfJTprO20zliWtYFRGd26GJiIjIU0YF3FMmKCiIhg0bMmTIEIoVK4a9vT3u7u7Mnz+f6tWrc+nSJQAuXrzIf/7zH+rWrUvNmjUZNGiQeYZu79691KxZk+3bt/Paa69RvXp1AgICiIuL44cffuCDDz7g999/x8PDg5iYGAIDA/noo4/o1KkTrVu3BiA6OpqAgADq1q1L3bp1+eCDD7hx44Y5zqNHj/Lmm29SvXp1WrZsyYYNGwCoU6cON2/exNfXlzlz5jzyetesWcOhQ4dYuHAh1atXx87ODmdnZ9q3b8+wYcOYMGGC+bo6derEggULGDJkCJ6enjRq1Ig1a9aY+zp37hy9evWibt261K5dm6FDhxIfH59uzPPnz1OlShWOHTtmcbx58+YsX74cgA0bNuDr60v16tVp1qyZ+ThAUlISI0aMoGHDhnh6evL2229z/Phx83kvLy/mz59Ps2bNGD169CNzII9nVUQ0/l9t59SVmxbHT125if9X21XEiYiISI5SAfcUuXLlCuHh4bz77rvpzrm4uDBx4kTc3NwA6N27NwUKFGDbtm1s2rSJS5cuWRQLRqOR9evXs3z5cjZu3MixY8dYsWIF3t7e/Oc//+Gll14iIiICV1dXALZt20a3bt0ICwsDYMSIETz33HPs2LGDH374gdOnTzNv3jxz3z179qRFixbs27ePUaNGMWzYME6dOmUuqNasWUPfvn0fec2bNm3Cx8eHokWLpjv3+uuvA7B9+3bzsaVLl9K2bVv27t2Lv78/QUFBpKSkYDKZ6N27NyVLluTnn39m48aNxMbGMnny5HT9lipVitq1a5uvFe7MfF68eJHXXnuNiIgIPvroI4YMGcKBAweYPHkykyZNIjw8HIDPPvuMw4cPs27dOvbs2UOFChUIDAy0GGP9+vWEhIQwZsyYR+YgN8ThwEVjKudvpdj0r3PxyQxee4C0ByyXTDOZCFwXruWUIiIikmPy5HYAknNiYmIAKF++/EPbRUZGcvToUYKDg3FxccHFxYUePXrQp08fkpOTgTtLE99//30KFSpEoUKFqFmzJlFRUQ/ss3Tp0jRt2tT8euHChRgMBhwcHChSpAiNGjUyFzA7d+4kJSWFrl27Ym9vT4MGDZg5cyb58uXL9Afl6OhoatWqdd9zefLkwc3Njejo/82g1KhRg0aNGgHg7e3NnDlzuHTpEleuXOHEiRMsW7YMJycnnJyc6NevHwEBAQQFBWEwGCz69vPzY86cOQwePBiDwcDmzZt55ZVXKFSoECtXrqRJkyY0bNgQgFq1auHt7c2aNWvw9PSkZ8+edO3aFRcXFwBee+01Vq5cye3bt8mT585f2UaNGlG2bNkM58FkMpGQkJDxxD0Go9HIPruS7ItOApJyZMzscjr2Kmevpp9lvdfJyzfZGhlDg3LFHmsso9Fo8btkjPJmHeUt85Qz6yhv1lHerGPLeTOZTOk+Tz6ICrinyN1virS0tIe2++uvvyhUqBDPPvus+ZibmxspKSnExsaaj5UpUwkrsA4AABxZSURBVMb8Zycnp4feP1e6dGmL10eOHGHatGkcO3aMlJQUUlNTqfr/2rvzqKiOtA3gT4M0i7iAa6IQDYSGCGiLqAEXUFzHlXFDTUKUwWg0MR6jmaggitEZA6PxIJpFo4lbJhpcxhicJKOTcUFFcQnigogiEBW6kUUb6Pr+8HA/WrYGG8zF53cO59hV1VV1X6vv6Zdb9+LuDuBx0tW+fXuYm5tL7QcOHCjNrbZKS0urrHvyw1L+mKysrAAADx8+xK1bt1BaWopevXpV6Ds3Nxf29vYG5UOGDMHy5ctx+vRpeHt74/Dhw9IVw/T0dBw/fhweHh4G8yhL6HJychAZGYmEhAQUFBRI45SWlkoJ3JPxrElxcTGSk5Nr9Z6nYmZ8cvlH9qDIuHtCz1y+BvuiuyYZMy0tzST9PG8Yt7ph3GqPMasbxq1uGLe6kWvclEqlUe2YwD1HyrZHXr16Fe3atauyXdlVtsqUT3bMzIzfgVs+GdNqtQgNDUVQUBA+//xz2NraYs2aNTh27JjUb01JprE6d+6M69evV1pXXFyM27dv4+WXX5bKqjomS0tL2NjY4OzZs0aNa2tri4EDB2L//v1o06YNsrKypCuQVlZWCAoKwpIlSyp97/vvvw9LS0vs3bsX7du3x/HjxxEcHGzQpnw8jWFhYQFnZ+davaeuioqK0DPtDl544QVYWlo2yJj1pROaYZcRDyv1cnWGmwmuwKWlpaFTp06wtrZ+qr6eJ4xb3TButceY1Q3jVjeMW93IOW7Xrl0zui0TuOeInZ0devbsic2bN0tXe8oUFRVhypQpWLRoERwcHKDVanHv3j20bv34S2lqaiosLS3Rrl07ZGRkPNU8UlNTUVBQgOnTp0vbBH/77Tep3sHBARkZGdDpdNJvIuLi4qBSqdCsWbNajTV06FAsXrwY8+fPr5C07t27F2ZmZtKWyeo4OjqisLAQt27dku7ry8/PR3FxMezs7Cp9z5gxY7BgwQK0bdsWgwcPlpIZR0dHXLhwwaBtVlYW2rRpA3Nzc5w/fx6rV69G+/btATx+oMvTUigUsLGxeep+jNUCOrzU0qZBx6wPne1tEfZDUoUHmJTn3LoZAtwcjN72UBNra2vZx+1ZYNzqhnGrPcasbhi3umHc6kaOcavN9wg+xOQ5s2jRIpw7dw7z5s1DVlYW9Ho9kpOTERISAisrK3h6esLDwwNOTk6IiopCYWEhsrOzERsbiz/96U+wsLCocQxLS0vcvXsXGo2m0qt5L774IszMzHD27FkUFhbiq6++wr1793Dv3j2UlJSgX79+sLGxwYYNG/Do0SMkJCQgPDwc5ubm0rbGtLS0Sp8A+aQRI0bA29sbb7zxBk6fPo3S0lIUFhZi586dWLFiBcLDw6UksjouLi5Qq9VYsWIFcnJykJeXh/DwcCxYsKDK9/j4+MDc3BybN2/GyJEjpfJx48YhMTERu3fvhk6nQ3JyMsaPH48ff/wRwOPtkefPn0dxcTGOHj2K//3vfwBgsH2VGoZCocDfRnaHWRUnVTOFAqtGdDdZ8kZERERUEyZwzxlXV1d8++230Ov1GDt2LNRqNebOnYvevXtj06ZNsLCwgEKhwPr16/H777/Dz88PEyZMQNeuXREWFmbUGAEBARBCwM/PDxcvXqxQ365dO8ybNw8fffQR/P39odVq8cknn0Cn02Hy5MlQKpXYvHkzjhw5Am9vbyxZsgQff/wxXFxc0Lp1awwZMgTvvfce1qxZU+NczMzMEBsbi9GjRyMsLAzdu3dHv379EB8fj9jYWIPEqiZRUVEQQmDgwIEYNGiQ9DfpqmJubo6RI0fCxsbG4N65suT4iy++QI8ePaSHoQwfPhwAEBYWhvj4ePTs2RPfffcdoqOj0bVrVwQGBuLevXtGz5dMY6yHI759sx+cWxte/XVu3QzfvtkPYz0cn9HMiIiI6HmkEHz+NVG9WbhwIV544QXMnTv3mc2hbLtm+Yem1KfCwkIkJyfDzc1NdtsXqiOEwH9Tf0dmXhFebGGNPp3bmvTKW2ONW31j3OqGcas9xqxuGLe6YdzqRs5xq833Nd4DR1RPfvrpJ/znP//BgQMHnvVUyAQUCgX6OVX98B8iIiKihsAEjmTryy+/rHYb5ejRoxEZGdmAM/p/Q4cOhU6nw9///neDP8dARERERPQ0mMCRbE2fPh3Tp09/1tOo1KFDh571FIiIiIioEeJDTIiIiIiIiGSCCRwREREREZFMMIEjIiIiIiKSCSZwREREREREMsEEjoiIiIiISCaYwBEREREREckEEzgiIiIiIiKZUAghxLOeBBHVn8TERAghoFQqG2Q8IQSKi4thYWEBhULRIGM2Boxb3TBudcO41R5jVjeMW90wbnUj57jpdDooFAp07969xrb8Q95EjVxDn8AUCkWDJYuNCeNWN4xb3TButceY1Q3jVjeMW93IOW4KhcLo72y8AkdERERERCQTvAeOiIiIiIhIJpjAERERERERyQQTOCIiIiIiIplgAkdERERERCQTTOCIiIiIiIhkggkcERERERGRTDCBIyIiIiIikgkmcERERERERDLBBI6IiIiIiEgmmMARUQUZGRkIDQ1Fr1694O/vj9WrV0Ov11faduvWrRgyZAi6d++OoKAgXLx4Uap79OgRwsLC0K9fP/Tq1QvvvvsucnNz6zSOHJgqbg8fPsSKFSvQr18/9OjRA2+99RauXLki1Q8YMADu7u7w8PCQft5+++16P776Yqq4vf766+jSpYtBXEaNGlWnceTAVHErH6+yH5VKhYSEBACASqWqsN6WL1/eIMdYH2oTt4KCAsyfPx8qlQrXr183qNNoNJg7dy58fHzQp08fLFq0CA8fPpTqk5OTMXXqVHh5eWHw4MHYtGlTvR5XfTJVzHJzc7Fw4UL4+vqiV69emD17NjIzM6V6rrXK41bTOb8xrTXANHHLyMio8tyWkZGB27dvQ6VSVaj/8ssvG+own44gInrC2LFjxeLFi0VeXp64ceOGGDx4sNi0aVOFdj/99JPo0aOHOHfunCgqKhIbN24Uvr6+oqCgQAghxMqVK0VgYKC4c+eOyM3NFbNnzxYzZsyo9ThyYaq4LVu2TIwdO1ZkZGSIgoIC8dFHH4lBgwZJ7/f39xcnTpxosOOqb6aK29SpU8Xu3bufehy5MFXcnnT69Gnh7+8vioqKhBBCuLi4iFu3btXrsTQkY+OWlZUlBg8eLBYsWCBcXFzEtWvXDOpnz54tQkNDxf3790VWVpaYOHGiWL58uRBCiKKiItG3b1+xbt06UVBQIC5evCh69uwpfvzxxwY5RlMzVcxmzJghpk2bJu7fvy9yc3NFaGioePPNN6V6rrXK41bdOb+xrTUhTBe3J+3bt0+MHz9e6PV6cevWLeHi4lJfh1DvmMARkYHz588LNzc3odFopLLt27eLIUOGVGgbGhoqPv74Y+l1aWmp8PX1FQcOHBDFxcXCy8tL/Pvf/5bqr127JlQqlcjKyqrVOHJgqrgJIUR0dLQ4fvy4VJ+SkiJcXFxEVlaWEKJxJXCmjFt1CRzXW9VxK6+kpESMGjVKHDx4UCprTF+qaxO35ORkcfjwYemLXvkvh3fv3hWurq4iOTlZKjty5Ijo1q2b0Ol04ocffhC9e/cWJSUlUv3q1avFtGnT6unI6o+pYqbX60VYWJhISUmRyn7++Wfh7u4u9Hq9EIJrrbK4CVH9Ob8xrTUhTBu38h48eCD69u0rkpKShBBC9gkct1ASkYFLly6hQ4cOaNGihVTWpUsX3LhxA/n5+RXavvrqq9JrMzMzuLm54cKFC0hPT8eDBw/QpUsXqd7JyQlWVla4dOlSrcaRA1PFDQDef/999O7dW6rPzMyEpaUlWrZsKZVt3boVAQEBUKvVePfdd3H//v36OrR6Zcq4AcDBgwcxfPhwqNVqBAcHIz09vdbjyIGp41YmLi4OSqUSw4YNMyiPioqCn58fevTogSVLlqCgoMDER9QwahM3V1dXBAQEVNpPcnIyzM3NoVKpDPopLCxEamoqLl26BJVKBXNzc6n+1VdfNdi6KhemiplCoUBERARcXFyksszMTLRp0wYKhUIq41qrXFXn/Ma01gDTx63Mpk2boFar4enpaVC+YMEC9OnTB71790ZUVBSKi4uf/iAaABM4IjKg0WjQvHlzg7KyE2n5+9fK2pY/yZa1zc3NhUajAYAKfTVv3lyqN3YcOTBV3J6k1WqxYsUKTJs2DZaWlgAANzc3eHp6Yu/evTh48CA0Gg3ee+89Ux5OgzFl3JycnPDKK69g+/bt+Omnn2Bvb4+QkBDodDquNyPWm16vx2effYYZM2YYlHfr1g0+Pj6Ij4/Hrl27cO7cOURERJjqUBqUqdaBRqOBra2tQeJRvp/KxmnZsiU0Go3s7rusr8/O7du3sXbtWsycOVMq41qrXHXn/Ma01oD6WW/5+fnYtm2bwX2DSqUSarUagwYNwi+//ILPPvsM+/btw/r16+s++QbU5FlPgIj+eIQQJmtbXX1txpEDU8YNAH7//XeEhITAzc0Nc+bMkcpjYmKkfzdt2hTh4eEYPnw40tPT4ejoWLtJ/wGYKm5Lly41eL1s2TL06tULZ86cqfU4cmDq9XbkyBEUFxdj4MCBBuW7du2S/u3k5IT58+dj5syZiIyMhFKpNH7CfxCmWgd16ad8wicnpv7sXL9+HdOnT8fYsWMxfvx4qZxrrXLVnfOrIte1Bph+vcXFxeGVV16Bm5ubVNa2bVvs3LlTeu3p6YkZM2Zg48aNsviFKK/AEZEBe3t76epZGY1GA4VCAXt7e4NyOzu7Stva29tLbZ+s12q1aNWqVa3GkQNTxa1Meno6Jk2aBC8vL0RHRxtsj3lShw4dADxO+OTG1HErz9bWFi1atEB2djbXmxFxO3ToEPz9/Wv84texY0eUlpbKctuuqdaBvb098vPzUVpaatAPAOn8VtmV0JYtW8LMTF5fvUz92Tl//jwmT56MoKAgfPjhh9W25VqrXPlzfmNaa0D9xO3QoUMYMGBAje06dOiAe/fuyeKXffL7nyWieuXu7o7MzEzk5ORIZRcuXICzszOaNm1aoe2lS5ek16Wlpfjtt9/QtWtXODg4oEWLFgb1V65cgU6ng7u7e63GkQNTxQ0AcnJyMG3aNAQGBiI8PNwgecvIyEB4eDh0Op1UVvboZAcHh3o5tvpkqrjl5+dj6dKlyM7OlupzcnKQk5MDBwcHrrdq1hvw+Dfev/zyC3x9fQ3e+9tvv2HVqlUGZdevX4dSqUTbtm1NeUgNwlTrwM3NDUIIXL582aCf5s2bo3PnznB3d0dKSgpKSkoM6svHXC5M+dlJS0tDaGgoFi5cWGGrLtda5Wo65zemtQaYdr0Bj7ddnjlzpsK57fjx44iNjTUoS01NRYcOHWRx9ZIJHBEZePXVV+Hh4YGoqCjk5+fj+vXr2Lx5M4KCggAAQ4cOxenTpwEAQUFBiIuLw7lz51BUVITY2FgolUr4+fnB3NwcEyZMwIYNG5CZmYnc3FxER0dj0KBBaN26dY3jyI2p4gYA0dHR6Nq1K2bPnl1hnFatWuHnn3/GqlWrUFhYiOzsbKxcuRL+/v5o165dgx2vqZgqbra2tkhKSkJkZCQ0Gg20Wi0iIiKgUqmgVqu53qpZb8Dj+5G0Wi06duxoME6rVq2wa9cufPbZZ9DpdLhx4wbWrl2LiRMnVntV+I+qNnGrjr29PYYMGYI1a9YgJycHWVlZiImJwbhx49CkSRP0798ftra2iI2NRVFREZKSkvDdd9/Jcr2ZKmbA423NEyZMQGBgYIU6rrXK1XTOb0xrDTDtegOAlJQU6PX6Cue2Zs2aISYmBnv37kVxcTEuXLiAL7/8Uj5xa+CnXhKRDGRmZoqQkBDh6ekpfHx8xKeffmrwmOcjR45Ibbdt2yb69+8v3N3dRVBQkMEjoh89eiSWLl0qvL29hVqtFvPmzRN5eXlGjSNHpoqbq6ur6NKli3B3dzf4+f7774UQQly+fFkEBwcLLy8v4eXlJT788EOh1Wob9mBNyFRxy8jIEO+8847o2bOn6Natm5g5c6b0pxdqGkeOTBU3IYRITEwULi4u4v79+xXGSUhIEBMnThTdunUTPXv2FCtXrhQPHz6s34OrR8bGLSYmRri7u4suXboIFxcX6TMZExMjhBAiLy9PvP/++6Jbt27C29tbREREiEePHknjpKSkiEmTJgl3d3fh5+cntm3b1vAHayKmiNmdO3cMysr/JCQkCCG41qpaazWd8xvTWhPCdHETQoj9+/eLbt26VTpOfHy8GDVqlPD09BS+vr5iw4YNorS0tP4P0AQUQshgoycRERERERFxCyUREREREZFcMIEjIiIiIiKSCSZwREREREREMsEEjoiIiIiISCaYwBEREREREckEEzgiIiIiIiKZYAJHREREREQkE0zgiIiInnNxcXHw8PCATqczqv26devg6+tbbRuVSoUdO3aYYnpERFQOEzgiIiIZmD59OoKCgqqsDwsLg7+/P0pLS2vd95gxY3DhwgUolcqnmaJJGZMkPiunT5/GsWPHnvU0iOg5xQSOiIhIBqZOnYrExERcvny5Ql1+fj7279+PoKAgmJubP4PZPV+2bNnCBI6InhkmcERERDLQv39/ODo6Yvv27RXq9u7dC71ejwkTJiAtLQ1vv/02vLy8oFarERgYiF9//VVqu27dOowePRrr1q1D9+7dcejQIezZswcqlQqPHj0CgBr7KPPDDz9g8ODBUKvVmDRpElJSUqqc/65duzBq1Cio1Wr4+vpi2bJlKCoqMvr4P/zwQ8ycORObNm2Cr68v1Go1IiMjkZWVhbfeegtqtRpDhw7FqVOnpPeoVCps2bIFs2bNglqthre3N6KioqDX66U2hw8fRmBgILp3745evXph/vz5yMnJAQDcvn0bKpUK3377LQYMGIBZs2Zh/PjxiI+Px6ZNm6Rtp4WFhVi6dClee+01eHp6IiAgAF999ZU0xsmTJ6FSqXD+/HlMnjwZarUaAwYMQFxcnNSmpKQEa9euhZ+fH9RqNSZOnIiTJ09K9ZmZmXj33XfRp08fdO3aFePGjWMSSfScYgJHREQkA2ZmZpgyZQr279+P/Px8g7qdO3dixIgRaNmyJebMmQMLCwscPXoUJ0+eRJ8+fTBnzhzk5uZK7bOysqDVanHs2DEMGTKkwljG9JGXl4f4+Hjs3LkTR48eRatWrfCXv/wFJSUlFfrbvXs3Vq9ejb/+9a84c+YMvv76a5w6dQphYWG1ikFiYiL0ej1++eUXhIeH4+uvv8bcuXPx0Ucf4eTJk3BwcMDKlSsN3vP5559jypQpOHXqFKKjo/HVV19h9+7dAICEhATMmTMHb7zxBk6cOIHdu3cjNTUVc+fOrTD/rVu3IiYmBv/85z/RoUMHTJs2Tdp2GhUVhV9//RXff/89kpKSsHjxYqxcuRL//e9/DfpZs2YNPv74Y5w6dQqDBg3CkiVLoNFoADxOrPft24cvvvgCp06dwuDBgzFjxgxkZGRAp9MhODgYlpaW2L9/PxISEjBixAiEhobi+vXrtYohEckfEzgiIiKZ+POf/wwABlduTp06hStXruD1118H8DiZ+9vf/oamTZtCqVRizJgxKCwsxJUrV6T3aLVavPPOO7CysoJCoagwjjF96HQ6fPDBB7C3t0ezZs0wa9YsZGdnIykpqUJ/X3/9NcaNG4fXXnsNZmZmePnll/HOO+/g4MGDRj84BQCaNGmC6dOnQ6lUSomnj48PXnnlFSiVSvj5+eHatWsG7/H394evry+aNGmCvn37wtfXFz/++CMA4JtvvsFrr72GMWPGQKlUomPHjpg1axZOnjyJO3fuSH0MGzYMHTt2rDRWALBw4ULs2bMH7du3h0KhgJ+fH9q0aYNz584ZtJsyZQo6deqEJk2aYMSIEdDpdLh58yaEENi5cyemTp0KZ2dnNGnSBMHBwVi+fDnMzc1x9OhRpKenIywsDHZ2drC0tERwcDA6deqEAwcOGB0/ImocmjzrCRAREZFxmjVrhjFjxkhf9gFgx44d8Pb2hqurKwDg/PnziImJQUpKisEWxbLtkQDQvHlz2NnZVTmOsX28+OKL0uuXXnoJwOOtfk9KTU3F1atXsW3bNoNyIQQyMzOl99bkhRdekJIoa2trADCYg7W1tcEcAcDZ2dngdceOHXHixAkAwM2bN9G7d+9K26enp6Njx44AAAcHh2rnlZ2djdWrV+P06dN48OABgMcJ7pNzKX+cNjY2AICHDx8iNzcXGo3GYBxzc3OMHDkSALBv3z7o9Xr4+PgY9CeEQEZGRrVzI6LGhwkcERGRjEydOhXbt29HQkICnJycEB8fj6ioKACPE5LQ0FBMnDgRn376Kezt7ZGeno5BgwYZ9GFhYVFl/8b2YWZW+SYeS0vLCmVWVlYIDQ1FSEhIbQ+3xjGrmkeZyp7KWZYEPplgAZDujyt/ta26eOn1eoSEhKB169bYsWMHHB0doVAo0L9//yrHfVLZg2fK35tXnpWVFWxsbHD27Nkq50FEzw9uoSQiIpIRJycn+Pr6Ys+ePdi3bx/atGmDgIAAAMDFixeh0+kwc+ZM2NvbA0CFbXw1MbYPjUaDu3fvSq9TU1MBPL5K9qTOnTvj0qVLBmVarRZarbZWc6uLtLQ0g9fp6enSVbtOnTpVePDK1atXpTpj3L9/H2lpaZgyZQpeeuklKBQKZGZmIjs72+g5tmjRAnZ2dhXuZ9uyZQuuXLmCzp07o7CwsEL9rVu3IIQwehwiahyYwBEREcnM1KlTcfjwYezZs8fgTwc4OjoCePxwDp1Oh6NHj+LQoUMAKt/aWBlj+7C0tMQnn3wCrVaLvLw8xMTEoFOnTujSpUuFPoODgxEfH4+9e/dCp9MhKysL7733HubNm1f3IBjp559/xvHjx1FcXIyjR4/i+PHjGDZsGAAgKCgIJ06cQFxcHIqLi3Hz5k3ExMTA398f7dq1q7JPa2trpKen48GDB2jRogWaNWuGxMRElJSUICUlBREREXBwcDA65gAwefJkbNu2DRcvXkRJSQl27NiB6OhoWFtbw9fXFy4uLli6dCnu3LmDkpIS/Otf/8KwYcOQmJj41DEiInnhFkoiIiKZ8fPzg729PW7evInx48dL5R4eHpg9ezYiIiKwePFi+Pj4IDIyEtbW1oiMjDSqb2P7aNOmDfr27YvAwEDk5OTA1dUV69evr3Sb4LBhw5CTk4P169dj0aJFaNq0KQICAvDBBx88fTBqMGXKFHzzzTeYNWsWLCwsEBISgtGjRwN4/KcZVq5cic2bNyMiIgJ2dnYYOHBghadQPmny5Mn45JNP4O/vj++//x6rVq3CqlWr8N1338HFxQVhYWFISkrC6tWr8cEHH2DcuHE1znP27NlQKBR4++23UVBQAGdnZ2zcuFG6Ly42NharVq3CqFGj8OjRIzg5OeEf//gHvLy8nj5IRCQrCsFr70RERNQIqVQqLF26FEFBQc96KkREJsMtlERERERERDLBBI6IiIiIiEgmuIWSiIiIiIhIJngFjoiIiIiISCaYwBEREREREckEEzgiIiIiIiKZYAJHREREREQkE0zgiIiIiIiIZIIJHBERERERkUwwgSMiIiIiIpIJJnBEREREREQywQSOiIiIiIhIJv4PM/wDrxxYH8QAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "WvnqfkMUa3ba", + "outputId": "3e286af7-cc61-4f7d-e2b5-ccbe2bb9d13e", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 401 + } + }, + "source": [ + "plot_model(estimator = tuned_gbc, plot = 'error')" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAGACAYAAABBWXDTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXhMd///8ddMFiFCJJK2tGrpTYmlpTc35bY1Et3QWlJFq1p3W5QKEhFbY61yU1VcqpbctRS11Ba6Ka2lxTe1tFVaRWk2WSQh28zvD5f5CYmJJJPE8XxcV69mPnPOZ97nnBmvOZ+zjMlqtVoFAAAMxVzaBQAAgOJHwAMAYEAEPAAABkTAAwBgQAQ8AAAGRMADAGBAzqVdAG5mtVq1dOlSrVu3TllZWcrJyVHr1q0VHBwsDw8PhYaGqkaNGnrzzTcdVkNoaKi++eYbeXp6ymq1ymQyKSAgQG+99ZacnJwK3e/ff/+ttm3b6tdff9X//vc/xcfHa9iwYflOHx0drXLlyunhhx8u0PS3o0OHDrJarSpXrlyu9uDgYPn7+xfLa+QlOjpab731lurXr68FCxYUuh+r1arIyEitXbtWWVlZys7OVs2aNTV06FA1bNiwyHU2aNBAO3bs0M8//6yvvvpKU6dOLXRfn376qXr27ClJ6tu3r/744w9VrFhRklShQgUFBwfr8ccfL3LNN/r999+VkJCgf/7zn9q5c2eRlyMzM1Pz5s1TVFSUrl1hHBgYqEGDBsnV1VV9+/ZV9+7d1aVLl+JahFx1X//eef7554u8PDA4K8qcd99919q9e3fr33//bbVarda0tDRrWFiY9YUXXrBaLBZrSEiIdd68eQ6t4cbXuHTpkrV79+7WFStWFKnfCxcuWOvWrVvg6ceOHWvdsGFDkV4zP+3bt7f+8MMPDun7Vj744APriBEjitzPzJkzrT179rTGxMRYrVarNTs727py5UrrY489Zk1ISChy//Xr17eePXu2yP3ExsZa/f39bY/79OmTa5t+++231mbNmllzcnKK/Fo3WrhwYbF+VoYOHWodOHCgNTk52Wq1Wq2JiYnWgQMHWocPH261Wm9etuJWXO8d3B0Yoi9jkpKSFBkZqWnTpumee+6RdHUPZ9y4cXr11Vdtew3XHD58WM8995wCAwP15JNP6vvvv5ckZWdna8yYMQoICJC/v78GDx6s1NTUfNvtqVixorp27arvvvtO0tW9sP/+97/q3LmzDh06pJSUFI0cOVIBAQHq2LGj1q1bZ5t37dq1at++vZ555hlt2rTJ1j537lyNGTNGknT27Fm9+OKL8vf31/PPP69jx45p5cqV2rhxo2bMmKElS5bkmv78+fMaMGCAAgIC9PTTT2vDhg2SpHPnzql169Zavny5nnnmGbVp00Zbt24t1LaoV6+eFi5cqICAAOXk5KhDhw764IMPFBAQoPPnz9utYcqUKerTp0+uPrdv367ly5fr66+/1muvvSZJWr58uZ588kkFBgbqjTfe0MWLFyVdHUWZOnWqnnnmGW3bti1XP0lJSVq2bJmmT58uX19fSZKTk5OCgoL09ddfy8vLK8/tFB8frwEDBigwMFAdOnTQkiVLbH3u2rVL/v7+6ty5sz766CNb+2effaaXX35Zkm65nevVq6cNGzaoa9euat26tZYuXSpJCgoK0vnz5xUYGKjMzMyb1nOLFi106dIlJSUlSZJ++eUXBQUFKTAwUF26dNHu3btt0+a3rg4cOKBu3brpySefVOfOnbVt2zZ99dVXWrhwoZYvX65p06blWo7Q0FC9//776t+/v9q3b6/+/fvr8uXLkqTdu3erbdu26ty5s1avXq2mTZvq3Llz+u2337Rr1y5Nnz5dlSpVkiR5enpqypQp6t69+03L9eWXX+qZZ55RQECAnnvuOf3888+SpLS0NA0aNEidO3dWx44dFR4erqysrHzbr9V943vndrbL9e9j3D0I+DImOjpa9957r+rUqZOrvVy5curQoYPM5tybbNy4cRowYIC2b9+ugQMHavz48ZKkPXv26Ny5c9q+fbt27Nihhx56SIcPH863vSCys7Pl6upqe3z06FFt2bJFTZs21bRp02Q2m7Vt2zatWbNGc+fO1YkTJ5ScnKzJkyfro48+0ueff67Y2Ng8+x47dqyeeuop7dy5U2+88YZGjRqlF154QY0bN9bIkSPVv3//m6Zv3ry5oqKitHDhQk2aNEnnzp2TJCUmJspsNuvzzz9XWFiYZs+eXaDly4vValVUVJTtsERMTIyioqJUrVq1W9aQlJSk+vXr63//+1+u/gIDA9WnTx8FBARo0aJF+r//+z8tXrxYkZGR2r59u6pVq6aZM2fapt+7d6/Wrl2rzp075+onOjpa9913n2rWrHlTzdeGvq+5fjvNnz9f999/v7Zv365ly5Zp5syZunDhgnJycjRmzBiNHz9e27Ztk9lszjMM8tvO15w8eVIbNmzQhx9+qFmzZiknJ0dTpkzRfffdp+3bt+d6/1xbv5999pkeffRReXl5yWKxaPjw4erTp4+2b9+uSZMmKTg4WKmpqbdcV9OnT9fo0aO1detWzZ8/X1988YU6dOggf39/9evXT6GhoTcty/bt2/Xf//5XO3fu1MWLF7Vz507l5OQoNDRU77zzjrZt26bTp0/bgv/AgQN65JFH5Onpmasfb29vtWzZMldbdna2QkNDFRERoaioKHXo0EHTp0+XJG3YsEGVKlXStm3bbO+ta+str/Zrbnzv3M52ufF9jLsDAV/GJCUlydvbu8DTb9iwwfaPf7NmzXT27FlJkpeXl06dOqWdO3fq8uXLGjZsmNq0aZNvuz0JCQlat25drmPTbdu2tX3h+Prrr9WvXz+ZzWZ5eXnJ399fO3bsUHR0tB588EHbF5auXbve1HdGRob279+vp59+WpLUsWNHffrpp/nWkpWVpe+//169e/eWJFWvXl0tWrTQvn37JF39x/W5556TJPn5+en8+fP59jVy5EgFBgbm+u/6vcx27drlmv7aY3s1ZGVlFeg4/jfffKOAgADbNu/Ro4dtlESSWrZsedM5ApKUnJxs20uXru7BXav/3//+d64AuH47hYeHa+zYsZKkBx54QD4+Pjp37pxOnz6tzMxMtW7dWpLUrVu3POvNbztfc+3Ys5+fnzIyMpSQkJBnPzNmzFBgYKDatGmjmTNnauDAgZKujn7Ex8frqaeekiQ1atRI1apV05EjR265rry9vbVhwwadOnVKNWvWzPUlKT9t27aVp6ennJ2dVbduXV24cMG2Htq2bSvp6giIxWKxrfOCfjadnZ31/fff65FHHpEkPfbYY7k+m9e+bFssFk2cOFH169fPt70g7G2XG9/HuDtwkl0ZU6VKFcXExBR4+s8//1zLly9XWlqaLBaLbQi/cePGCg8PV2RkpEJCQtShQweNHz8+3/ZrQ47XW758uW1IvXz58urRo0euPcnKlSvb/r506ZKGDRtm20PIyMhQYGCgkpOT5eHhkec81yQlJclisdimM5lMcnd3z3eZk5KSZLVac/VbqVIl23Ctk5OTKlSoIEkym822f6DzMmPGDD322GP5Pn/j3tq1+gtSw4170nm5ePGibYj9Wh/Xh2Je60u6GhLXj4ZUqlRJ27dvlySNGTNGV65cybOPI0eO2PbazWaz4uLiZLFYlJycnKve/F43v+18zbX1ce35/Nb9yJEjbV8Gzp8/r4EDB8pkMqlKlSry8PCQyWTKtWwXL1685bqaMmWK5s+fr/79+8vNzU3Dhw/PVVdert92Tk5OysnJUXJycq7PwvWvd7ufzcjISK1fv16ZmZnKzMy0LVPnzp2VnJysOXPm6Pfff9ezzz6r0aNH59teEPa2y43vY9wdCPgy5pFHHlFCQoKOHTsmPz8/W3tWVpY++OADvf7667a2mJgYhYeHa82aNapfv75Onz6tgIAA2/PX9uiSkpIUFhamxYsX6+233863/Ub9+vUr8Jn6vr6+mjdvnurWrZurfdeuXbp06ZLt8bUAvF6VKlVkMpmUmJgoLy8vWa1WnTlzRjVq1MjztapUqSKz2azk5ORcgXs7Ix9FVVw1VK1a1Xbs+VofVatWtTvftffJ8ePH1aBBgwK/3siRI/XSSy/phRdekMlkso3eVK5cOde5GHltJyn/7VwU1apVU7t27fTtt9/qlVdeUXJysu3KDen/r9dbrauqVatq7NixGjt2rPbs2aMhQ4YUaGTqRhUrVlR6errtcXx8vO3v5s2ba+rUqYqJibGdHyNdHT1ZsmSJ3nrrLVvboUOHtGjRIq1Zs0b333+/vvvuO9vIiXT1vISgoCDFxMRoyJAh2rBhg3r27Jlnu7Oz/X+mHbFdcOdjiL6MqVSpkl599VWFhITozz//lCRdvnxZ48aN0/Hjx1W+fHnbtBcvXlSFChVUu3ZtZWdna/Xq1ZKunsSzbt06zZs3T9LVb++1a9eWpHzbi6pDhw5atWqVpKtD5FOmTNGxY8fUqFEj/fHHHzp9+rQkaf369TfN6+rqqscff9z23O7du217dM7Ozrm+IEhXhz9bt25tW94zZ87oxx9/VKtWrYplWQqiuGpo166ddu7cqcTEREnSqlWrbMPDt1KxYkW9+eabGjVqlO19YrFYtGXLFm3bti3fL0cJCQlq2LChTCaT1q9fr8uXLys9PV01atSQk5OT9u/fL+nqiXXX70Vfk992vhVnZ2elp6crOzs7z+dTU1P1/fff66GHHtL999+ve++913Zi5LUTAxs3bpzvusrKylLfvn1tIxp+fn5ydnaW2WzO8/1zKzVr1lR2drZtPaxcudK2HurUqaMnn3xSw4cPtwV/UlKShg8frsTExFzr6+LFi/L29la1atV0+fJlrV+/Xunp6bJarZo3b57Wrl0rSbrnnnt0//33y2Qy5dteEIXZLjA+9uDLoCFDhqhy5cp64403lJOTI7PZrI4dO2rChAm5pnv44Yf173//23ZcMjQ0VIcOHVLfvn318ccfKywsTJ06dZKTk5MefPBBTZs2TZLybS+KYcOGaeLEibYRhDZt2qhevXpydnZWSEiI+vfvL3d3d/Xo0SPP+SdPnqwRI0ZoxYoVqly5st577z1J0hNPPKEZM2bo7NmzuYaQJ06cqPDwcH322WdycXHRpEmTdN9999lOciuokSNH3nSM29/fX8HBwXbnLY4aGjdurIEDB+rFF1+UxWJR/fr1b9rO+Xnttdfk6empt956SxkZGcrMzFStWrX0/vvv246l32jo0KEaNGiQPD09FRQUpF69emns2LFasWKFIiIiFBYWJldXVz333HO2wxzXy28730q9evVUuXLlXF/iZsyYofnz50u6egLYk08+qd69e8tkMmnWrFkaP368PvjgA5UvX15z5sxRhQoV8l1XLi4u6t69u+2McrPZrPDwcJUvX17t27fXiBEj9NdffxXoOLSrq6smTJig0aNHy8PDQ/3795fZbLYFbUREhObPn68XX3xRJpNJLi4uevbZZzVgwIBc/bRp00YrVqzQE088oXvuuUdhYWG2a9hDQkI0evRoLVq0SCaTSU2aNFGXLl0UGxubZ/vmzZvt1l2Y7QLjM1lvvO4KACBJSk9P16OPPqoff/wx1zF74E7AED0AXOf555+3HSLYunWr6tSpQ7jjjsQePABc58cff9Q777yjjIwMubu7a8KECWrcuHFplwXcNgIeAAADYogeAAADuuPOordYLEpLS5OLi0uBLyEBABiX1WpVVlaW3N3db7qd993sjgv4tLS0XPdYBgBAkurWrcsJkde54wLexcVF0tUNeeMPV6DkHD16tFh+cxwwCj4TpSczM1MnTpyw5QOuuuMC/tqwvKura54/woGSw/oHcuMzUbo4bJsbBysAADAgAh4AAAMi4AEAMCACHgAAAyLgAQAwIAIeAAADIuABADAgAh4AAAMi4AEAMCACHgAAAyLgAQAwIAIeAAADIuABADAgAh4AAAO6434utjgt3RNa2iXc0Y7sWVPaJdxxXm49rbRLAHCXYA8eAAADIuABADAgAh4AAAMi4AEAMCACHgAAAyLgAQAwIAIeAAADIuABADAgAh4AAAMi4AEAMCACHgAAAyLgAQAwIAIeAAADIuABADAgAh4AAAMi4AEAMCACHgAAAyLgAQAwIAIeAAADIuABADAgAh4AAAMi4AEAMCACHgAAAyLgAQAwIAIeAAADIuABADAgAh4AAAMi4AEAMCACHgAAAyLgAQAwIAIeAAADIuABADAgAh4AAAMi4AEAMCACHgAAAyLgAQAwIAIeAAADIuABADAgAh4AAAMi4AEAMCACHgAAAyLgAQAwIAIeAAADcnZUx2lpaQoJCVFycrKysrI0aNAg+fj4aMKECZKkevXqaeLEiZKkjz76SNu3b5fJZNLgwYPVtm1bR5UFAMBdwWEBv379etWqVUvBwcGKiYnRSy+9JB8fH4WFhalx48YKDg7Wrl27VLt2bW3dulWrVq1SamqqevfurdatW8vJyclRpQEAYHgOC/gqVaro119/lSSlpKTI09NTf/31lxo3bixJat++vfbu3au4uDi1adNGrq6u8vLyUvXq1XXy5EnVq1fPUaXZDFjv5/DXAK73cuvSrgDA3cJhAf/UU0/ps88+k7+/v1JSUjR//ny98847tue9vb0VFxcnT09PeXl52dq9vLwUFxdnN+CPHj3qqNIBhzl48GBplwAHYvuiLHFYwG/cuFHVqlXT4sWL9csvv2jQoEHy8PCwPW+1WvOcL7/2GzVs2FDlypUrWpErjhdtfuA2NWvWrLRLgIMcPHiQ7VtKMjIy2OnLg8POoj906JBat746Hvnwww8rIyNDiYmJtudjYmLk6+srX19fxcfH39QOAAAKz2EB/+CDDyo6OlqS9Ndff8nd3V116tTRjz/+KEnasWOH2rRpo3/961/65ptvlJmZqZiYGMXGxuqhhx5yVFkAANwVHDZE36tXL4WFhalPnz7Kzs7WhAkT5OPjo3HjxslisahJkyZq1aqVJKlnz57q06ePTCaTJkyYILOZy/MBACgKhwW8u7u75syZc1P7ihUrbmrr27ev+vbt66hSAAC467CrDACAARHwAAAYEAEPAIABEfAAABgQAQ8AgAER8AAAGBABDwCAARHwAAAYEAEPAIABEfAAABgQAQ8AgAER8AAAGBABDwCAARHwAAAYEAEPAIABEfAAABgQAQ8AgAER8AAAGBABDwCAARHwAAAYEAEPAIABEfAAABgQAQ8AgAER8AAAGBABDwCAARHwAAAYEAEPAIABEfAAABgQAQ8AgAER8AAAGBABDwCAARHwAAAYEAEPAIAB2Q34Xbt2aePGjZKk4OBgderUSTt27HB4YQAAoPDsBvyHH36oNm3aaNeuXbJYLFq/fr0iIyNLojYAAFBIdgPezc1NXl5e2rVrl7p06SJ3d3eZzYzsAwBQltlN6oyMDH300UfavXu3WrZsqdOnT+vSpUslURsAACgkuwEfERGhmJgYTZ06VeXKldOePXs0YsSIkqgNAAAUkrO9CWrWrKlXXnlF9913n3755RdVrFhRjz76aEnUBgAACsnuHnxoaKiio6MVExOjIUOG6MSJEwoNDS2J2gAAQCHZDfiYmBgFBgZq69at6t27t0aNGqXk5OSSqA0AABSS3YDPzMyU1WrVzp071a5dO0lSWlqao+sCAABFYDfgmzdvrmbNmsnHx0e1atXS0qVLVbt27ZKoDQAAFJLdk+xGjBihgQMHqlKlSpKkjh07qmHDhg4vDAAAFJ7dgE9NTdXnn3+uxMRESVJWVpbWrVunPXv2OLw4AABQOHaH6IcNG6Zff/1Vn332mdLS0vT1119rwoQJJVAaAAAorALdye6dd95R9erVFRISouXLl2vbtm0lURsAACgkuwGflZWl9PR0WSwWJSYmytPTU2fPni2J2gAAQCHZPQbfpUsXffrpp+rRo4eefPJJeXl5qUaNGiVRGwAAKCS7Af/CCy/Y/m7ZsqUSEhLUoEEDhxYFAACKJt+AnzNnTr4z7dy5U0OHDnVIQQAAoOjyDXgnJ6eSrAMAABSjfAN+8ODBkqScnBwdPnxYjz32mCTpq6++st2yFgAAlE12z6IfP368du3aZXt84MABjRkzxqFFAQCAorEb8KdPn1ZwcLDtcWhoqM6dO+fQogAAQNHYDfgrV64oKSnJ9jgmJkYZGRkOLQoAABSN3cvkBg0apKefflr33XefcnJyFBsbq8mTJ5dEbQAAoJDsBnz79u31xRdf6OTJkzKZTKpdu7bKly9foM43bdqkjz76SM7OznrrrbdUr149jRo1Sjk5OfLx8dGMGTPk6uqqTZs2admyZTKbzerZs6d69OhR5AUDAOBuZjfgJcnNze22fyI2MTFR8+bN07p165Senq65c+cqKipKvXv3VufOnTVr1iytXbtWXbt21bx587R27Vq5uLioe/fu8vf3l6enZ6EWCAAAFOAYfGHt3btXLVu2VMWKFeXr66uIiAjt379fHTt2lHR1ZGDv3r2Kjo5Wo0aN5OHhITc3NzVt2lSHDh1yVFkAANwVCrQHXxjnzp3TlStX9PrrryslJUVDhgzR5cuX5erqKkny9vZWXFyc4uPj5eXlZZvPy8tLcXFxdvs/evSoo0oHHObgwYOlXQIciO2LsiTfgP/ggw9uOeO1G+HcSlJSkj744AOdP39e/fr1k9VqtT13/d/Xy6/9Rg0bNlS5cuUKNG2+Vhwv2vzAbWrWrFlplwAHOXjwINu3lGRkZLDTl4d8h+izs7OVnZ2tU6dO6auvvlJKSoqSkpK0Y8eOAl0H7+3trUcffVTOzs6qUaOG3N3d5e7uritXrki6ermdr6+vfH19FR8fb5svNjZWvr6+xbBoAADcvfIN+GHDhmnYsGG6fPmy1qxZo7CwMIWHh2vdunVKTU2123Hr1q21b98+2+/Ip6enq1WrVoqKipIk7dixQ23atFGTJk105MgRpaSkKC0tTYcOHbLdFhcAABSO3WPwFy5cyDVsbjKZdP78ebsd33PPPQoICFDPnj0lSeHh4WrUqJFCQkK0evVqVatWTV27dpWLi4uCg4M1YMAAmUwmDRo0SB4eHkVYJAAAYDfg27Vrp4CAAPn5+clsNuv48eO2M+HtCQoKUlBQUK62JUuW3DRdYGCgAgMDC1gyAACwx27Av/322+rWrZtOnDghq9WqwYMH66GHHiqJ2gAAQCHZvQ4+MzNT3333nX766ScFBAQoLS2Ne9EDAFDG2Q34CRMm6MyZM9q/f78k6dixYwoNDXV4YQAAoPDsBvzvv/+u0aNHy83NTZLUu3dvxcbGOrwwAABQeHYD3tn56mF6k8kkSUpPT7ddyw4AAMomuyfZBQYG6qWXXtK5c+c0adIkffvtt+rdu3dJ1AYAAArJbsD36dNHjRs31oEDB+Tq6qpZs2bd9i/LAQCAkmU34ENDQzVt2jQ1btzY1jZgwAAtXrzYoYUBAIDCyzfgN23apFWrVum3337Tiy++aGvPysrKde94AABQ9uQb8M8++6xatGihESNGaMiQIbZ2s9nMjW4AACjjbnkW/T333KMFCxYoPj5ezZs3V/PmzfXbb7/JxcWlpOoDAACFYPcyudDQ0FxD8leuXNGoUaMcWhQAACgauwGflJSkfv362R73799fKSkpDi0KAAAUjd2Az8rK0qlTp2yPjx49qqysLIcWBQAAisbuZXKjR4/Wm2++qUuXLiknJ0deXl6aPn16SdQGAAAKyW7AN2nSRFFRUUpMTJTJZJKnp2dJ1AUAQJmRY7HoVEJqsfZZx7uinMx2B9ILLd+AX7hwof7zn/9o5MiRtvvQX+/dd991WFEAAJQlpxJSVX/axmLt8+fQLqrrU+mW00yZMkXR0dEymUwKCwvLddM5e/IN+AYNGkiSWrVqVeDOAABA8Thw4ID+/PNPrV69WqdOnVJYWJhWr15d4PnzDfg6dero/PnzatGiRbEUCgAACm7v3r164oknJF3N5OTkZKWmpqpixYoFmj/fgH/hhRdkMplktVoVGxsrDw8PZWdn6/Lly3rggQe0Y8eO4lkCAABwk/j4ePn5+dkee3l5KS4urugBv2vXLknS5MmT1a1bN9uQfXR0tD7//POi1AwAAG6T1Wq9rentnr53/PhxW7hLV8+qP3ny5O1XBgAACszX1zfXnWRjY2Pl4+NT4PntXiZnNps1c+ZMNWvWTCaTSYcPH1ZGRkbhqgUAAAXy+OOPa+7cuQoKCtKxY8fk6+tb4OF5qQABP3v2bC1fvlyrVq2SdPVA/+zZswtfMQAAd5g63hX1c2iXYu/zVpo2bSo/Pz8FBQXJZDJp/Pjxt9W/3YD39vbWyy+/rHPnzqlRo0ayWCwyO/DCfAAAyhons9nuNeuOMGLEiELPazepN2/erF69emn06NGSpIiICK1Zs6bQLwgAABzPbsAvWbJEGzduVJUqVSRJISEh+vTTTx1eGAAAKDy7Ae/h4aHy5cvbHru5ucnFxcWhRQEAgKKxewy+SpUqWr9+vTIyMnTs2DFt3bpVXl5eJVEbAAAoJLt78BMnTtSRI0eUlpam8PBwZWRkaNKkSSVRGwAAKCS7e/CHDx/WuHHjSqIWAADKJIvVoktXEoq1Tw83b5lNpfBzsdcsXbpUjz/+uJyd7U4KAIAhXbqSoPUHZxZrn92aBatyeft3pjtx4oTefPNNvfzyy+rTp0+B+7eb2h4eHnrqqafUoEGDXCfX8XvwAAA4Vnp6uiIiItSyZcvbntduwLdv317t27cvVGEAAKDwXF1dtWjRIi1atOi257Ub8N26ddOJEyd08uRJmUwm1atXT7Vr1y5UoQAAoOCcnZ0LfYjc7lzTp0/Xl19+abtN7cyZM/X0009r2LBhhXpBAADgeHYDfv/+/dqyZYvt+HtmZqaCgoIIeAAAyjC75+dXrVo11/CAi4uLqlev7tCiAABA0RToTnbPP/+8/vWvf8lqteqHH37QAw88oDlz5kiShg4d6vAiAQAoTR5u3urWLLjY+7Tn6NGjmj59uv766y85OzsrKipKc+fOlaenp9157Qb8Aw88oAceePkhGZgAABGaSURBVMD2uF27dnY7BQDASMwmc4GuWS9uDRs2VGRkZKHmtRvwgwcPLlTHAACg9DjuHnkAAKDUEPAAABhQvgH/zjvv5Po/AAC4c+R7DP67777T8OHDdeDAAaWmpt70PPeiBwCg7Mo34BctWqRDhw7p559/LtRN7gEAQOnJN+Br1KihGjVqqGnTpqpRo4aSkpJkMplUuXLlkqwPAAAUgt3L5OLi4vTKK68oLS1NFotFVapU0YwZM9SoUaOSqA8AABSC3YCfNWuWPvzwQ9WtW1eSdPz4cU2ePFmffPKJw4sDAACFY/cyObPZbAt3SWrQoIGcnJwcWhQAACiaAgX8jh07lJqaqtTUVG3dupWABwCgjLM7RD9x4kRFRERozJgxMpvNatKkiSZOnFgStQEAgEKyG/A1a9bU4sWLS6IWAABQTLhVLQAABkTAAwBgQHYD/vjx4yVRBwAAKEZ2A37atGklUQcAAChGdk+yq1atmvr27asmTZrIxcXF1j506FC7nV+5ckVPP/203nzzTbVs2VKjRo1STk6OfHx8NGPGDLm6umrTpk1atmyZzGazevbsqR49ehRtiQAAgP09+Pvvv18tWrSQm5ubnJycbP8VxPz58233rn///ffVu3dvrVixQg8++KDWrl2r9PR0zZs3T0uXLlVkZKSWLVumpKSkoi0RAACwvwc/ePBgJSYm6ty5c2rUqJEsFovMZvvn5p06dUonT55Uu3btJEn79++3XT/fvn17ffzxx6pVq5YaNWokDw8PSVLTpk116NAhdejQoQiLBAAA7Ab8li1bNGfOHLm6umrz5s2KiIiQn5+funfvfsv5pk+frrFjx2rDhg2SpMuXL8vV1VWS5O3trbi4OMXHx8vLy8s2j5eXl+Li4gpU+NGjRws0HVCWHDx4sLRLgAOxfVGW2A34jz/+WBs3btTAgQMlSSEhIerbt+8tA37Dhg165JFH9MADD+T5vNVqva32vDRs2FDlypUr8PR5WsEVAihZzZo1K+0S4CAHDx5k+5aSjIwMdvryYDfgPTw8VL58edtjNze3XCfb5eWbb77R2bNn9c033+jvv/+Wq6urKlSooCtXrsjNzU0xMTHy9fWVr6+v4uPjbfPFxsbqkUceKcLiAAAAqQABX6VKFa1fv14ZGRk6duyYtm7dmmtYPS+zZ8+2/T137lxVr15dhw8fVlRUlLp06aIdO3aoTZs2atKkicLDw5WSkiInJycdOnRIYWFhRV8qAADucnbPlps4caKOHDmitLQ0hYeHKyMjQ5MmTbrtFxoyZIg2bNig3r17KykpSV27dpWbm5uCg4M1YMAA9e/fX4MGDbKdcAcAAArPZC3gge+LFy9Kkt29d0e7dqylOI7BOwVHFlNVQMHkzOxb2iXAQTgGX3qKMxeMxO4Q/datWzV58mSZTCZZrVY5OTlp7Nix8vf3L4n6AABAIdgN+Pnz52vlypWqUaOGJOmPP/7QW2+9RcADAFCG2T0G7+vrawt3SapVq1a+l78BAICyId89+L1790qSateurYiICLVq1Upms1l79+7Vgw8+WGIFAgCA25dvwH/44Ye5Hp84ccL2t8lkclxFAACgyPIN+MhIzjAHAOBOZfcku++//14rVqzQpUuXct1Kdvny5Q4tDAAAFJ7dgJ8wYYLeeOMN3XvvvSVRDwAAKAZ2A75mzZrq1q1bSdQCAACKid2A79mzp8aMGaNHH31Uzs7/f/KuXbs6tDAAAFB4dgN+wYIFKl++vDIzM21tJpOJgAcAoAyzG/AuLi6cUQ8AwB3G7p3sOnTooH379ikzM1MWi8X2HwAAKLvs7sF/+OGHunz5cq42k8mkn3/+2WFFAQCAorEb8IcPHy6JOgAAQDGyG/Bz5szJs33o0KHFXgwAACgedo/BOzk52f6zWCzav3+/Ll26VBK1AQCAQrK7Bz948OBcj3NycjRkyBCHFQQAAIrO7h78jbKzs3XmzBlH1AIAAIqJ3T34tm3b2n4e1mq1KiUlhVvXAgBQxtkN+BUrVtj+NplMqlixoipVquTQogAAQNHYDfiqVatq9+7dSk5OzvVzsd27d3doYQAAoPDsBvyrr74qk8mk6tWr52on4AEAKLvsBnxWVpZWrVpVErUAAIBiYvcs+oceekiJiYklUQsAACgmdvfg//77b3Xq1El16tSRk5OTrf2TTz5xaGEAAKDw7Ab8wIEDS6IOAABQjOwGfPPmzUuiDgAAUIxu+052AACg7CPgAQAwIAIeAAADIuABADAgAh4AAAMi4AEAMCC7l8kBuHss3RNa2iXc0Y7sWVPaJdxxXm49rbRLMCz24AEAMCACHgAAAyLgAQAwIAIeAAADIuABADAgAh4AAAMi4AEAMCACHgAAAyLgAQAwIAIeAAADIuABADAgAh4AAAMi4AEAMCACHgAAAyLgAQAwIAIeAAADIuABADAgAh4AAAMi4AEAMCACHgAAAyLgAQAwIAIeAAADcnZk5++++64OHjyo7Oxs/ec//1GjRo00atQo5eTkyMfHRzNmzJCrq6s2bdqkZcuWyWw2q2fPnurRo4cjywIAwPAcFvD79u3Tb7/9ptWrVysxMVHdunVTy5Yt1bt3b3Xu3FmzZs3S2rVr1bVrV82bN09r166Vi4uLunfvLn9/f3l6ejqqNAAADM9hQ/T//Oc/NWfOHElSpUqVdPnyZe3fv18dO3aUJLVv31579+5VdHS0GjVqJA8PD7m5ualp06Y6dOiQo8oCAOCu4LA9eCcnJ1WoUEGStHbtWv373//Wnj175OrqKkny9vZWXFyc4uPj5eXlZZvPy8tLcXFxdvs/evSoYwoHHOjgwYOlXQJQpvCZcByHHoOXpC+++EJr167Vxx9/rE6dOtnarVZrntPn136jhg0bqly5ckUrbsXxos0P3KZmzZqVdgm3dGTPmtIuAXeZ4vhMZGRksNOXB4eeRb97924tWLBAixYtkoeHhypUqKArV65IkmJiYuTr6ytfX1/Fx8fb5omNjZWvr68jywIAwPAcFvCXLl3Su+++q4ULF9pOmGvVqpWioqIkSTt27FCbNm3UpEkTHTlyRCkpKUpLS9OhQ4f02GOPOaosAADuCg4bot+6dasSExM1bNgwW9u0adMUHh6u1atXq1q1auratatcXFwUHBysAQMGyGQyadCgQfLw8HBUWQAA3BUcFvC9evVSr169bmpfsmTJTW2BgYEKDAx0VCkAANx1uJMdAAAGRMADAGBABDwAAAZEwAMAYEAEPAAABkTAAwBgQAQ8AAAGRMADAGBABDwAAAZEwAMAYEAEPAAABkTAAwBgQAQ8AAAGRMADAGBABDwAAAZEwAMAYEAEPAAABkTAAwBgQAQ8AAAGRMADAGBABDwAAAZEwAMAYEAEPAAABkTAAwBgQAQ8AAAGRMADAGBABDwAAAbkXNoFACg7Bqz3K+0ScJd5uXVpV2Bc7MEDAGBABDwAAAZEwAMAYEAEPAAABkTAAwBgQAQ8AAAGRMADAGBABDwAAAZEwAMAYEAEPAAABkTAAwBgQAQ8AAAGRMADAGBABDwAAAZEwAMAYEAEPAAABkTAAwBgQAQ8AAAGRMADAGBABDwAAAZEwAMAYEAEPAAABkTAAwBgQAQ8AAAGRMADAGBABDwAAAZEwAMAYEAEPAAABkTAAwBgQM6lXcA1U6ZMUXR0tEwmk8LCwtS4cePSLgkAgDtWmQj4AwcO6M8//9Tq1at16tQphYWFafXq1aVdFgAAd6wyEfB79+7VE088IUmqU6eOkpOTlZqaqooVK940rdVqlSRlZmYW+XXvc3cpch/A7cjIyCjtEm6JzwRKWnF8Jq7lwbV8wFVlIuDj4+Pl5+dne+zl5aW4uLg8Az4rK0uSdOLEiSK/7sYu/yhyH8DtOHr0aGmXcEt8JlDSivMzkZWVJTc3t2Lr705XJgL+Rrf6Fubu7q66devKxcVFJpOpBKsCAJRFVqtVWVlZcnd3L+1SypQyEfC+vr6Kj4+3PY6NjZWPj0+e05rNZnl4eJRUaQCAOwB77jcrE5fJPf7444qKipIkHTt2TL6+vnkOzwMAgIIpE3vwTZs2lZ+fn4KCgmQymTR+/PjSLgkAgDuaycpphwAAGE6ZGKIHAADFi4AHAMCAysQxeJR9aWlptisdfHx8VKFChVKuCCh7UlJSVKlSpdIuA5DEMXjYceTIEU2ePFkpKSmqUqWKrFarYmNjdc8992jcuHGqV69eaZcIlBn9+vXT8uXLS7sMQBJ78LBjypQpmjx5surUqZOr/dixY3rnnXf0ySeflFJlQOm41Xs+JiamBCsBbo2Axy1Zrdabwl2S/Pz8lJOTUwoVAaVr6dKlatmypXx9fW96Ljs7uxQqAvJGwOOWmjRpotdff11PPPGEvLy8JF397YCoqCg1b968lKsDSt68efM0adIkhYeHy9XVNddz+/fvL6WqgJtxDB52/fDDD9q7d6/tJDtfX189/vjjevTRR0u5MqB0XL58WeXKlZPZnPtCpGPHjuX64SygNBHwAAAYENfBAwBgQAQ8AAAGRMADpSQmJkZ79+4t1Lz79+/XCy+8UOzTAjAOAh4oJfv379e+fftKuwwABsVlckAxsVgsGj9+vH7//XdlZmaqSZMmCg8PlyStWbNGK1eulIuLi1q0aKEePXpo9uzZslqt8vT0VGpqqrKzs/X2229Lkjp06KAlS5bIx8dHISEhSkpKUlpamgIDAzVw4MB8azh9+rTGjh0ri8WicuXKaerUqbme//HHH/Xee+/J1dVVV65c0fjx4+Xn56etW7dq8eLFqlChgqxWq6ZOnSovLy8FBwcrJSVF2dnZat++vd544w3HrUAAxYqAB4pJcnKy6tWrp4iICElSYGCgTpw4IXd3dy1YsEBbtmyRm5ubQkNDlZWVpW7duik7O1v9+/fX3Llz8+wzISFBHTt2VNeuXZWZmamWLVuqd+/e+dYwfvx4DRgwQO3atdOWLVu0bds21a9f3/Z8UlKSJkyYoIcfflibN2/WwoUL9f7772vBggWKiIhQkyZNFB0drZiYGP3yyy/Kzs7WihUrZLFYFBkZKYvFctOlYQDKJgIeKCaVKlXShQsX1KtXL7m6uiouLk6JiYn6/fff5efnJzc3N0nStGnTCtynt7e3Dh48qFWrVsnFxUUZGRlKSkrKd/qffvrJdgOip556SlLum69UrVpV7777rjIyMnTp0iVVrlxZkvTcc88pNDRUnTp1UqdOndSkSRMlJCTo/fff19ChQ9W2bVv16NGDcAfuIHxagWKyZcsWHTlyRJ988okiIyP14IMPSpJMJpPs3W7CZDLlepyZmSlJWrZsmTIzM7Vy5UpFRkbK3d3dbh0WiyXf50aNGqXXXntNn3zyie1wgCS9/PLLioyMVM2aNTVu3DitWrVK3t7e2rhxo/r166eTJ0/q+eef15UrV+y+PoCygYAHiklCQoJq1aolZ2dnHT16VGfOnFFmZqYaNWqkn376SampqZKkoUOH6ujRozKZTLZ7l1esWFF///23JOm3337TxYsXbX3WqVNHJpNJX375pa5cuWIL/7w0bdpUu3fvliRt3bpVs2bNyvV8fHy8/vGPfygnJ0fbt29XZmamcnJy9N5778nDw0PdunXTkCFDFB0drT179uibb75Rs2bNNGrUKFWoUEEJCQnFvt4AOAZ3sgOKyYULF/T666/Lw8NDTZs2lZubmzZu3KhPP/1UO3bs0OrVq+Xs7KymTZtq1KhR2rdvn95++2316tVLQUFBeu211+Th4aGGDRtq3759mjt3rtLT0zV8+HD5+PioY8eO+u2333T8+HGFhIRo9uzZWrlyZa4arp1kJ0nOzs6aMmWKzpw5Y5t2/vz52rx5s6pVq6YBAwZo1KhReuWVV5STk6PNmzfbfss8PDxcFSpUUGhoqHJycuTk5KSmTZvm2usHULYR8AAAGBBD9AAAGBABDwCAARHwAAAYEAEPAIABEfAAABgQAQ8AgAER8AAAGBABDwCAAf0/7Nm9mOm0PB0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "7nyna3SxbbEw" + }, + "source": [ + "evaluate_model(tuned_gbc)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "gyuSy5ybevQT", + "outputId": "303b4439-90a6-4d62-f613-e2af7f60109b", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 278 + } + }, + "source": [ + "pred_final = predict_model(tuned_gbc, data=df_test_eda)\n", + "pred_final.head()" + ], + "execution_count": 35, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
SeniorCitizengender_Femalegender_MalePartner_NoPartner_YesDependents_NoDependents_YesPhoneService_NoPhoneService_YesMultipleLines_NoMultipleLines_No phone serviceMultipleLines_YesInternetService_DSLInternetService_Fiber opticInternetService_NoOnlineSecurity_NoOnlineSecurity_No internet serviceOnlineSecurity_YesOnlineBackup_NoOnlineBackup_No internet serviceOnlineBackup_YesDeviceProtection_NoDeviceProtection_No internet serviceDeviceProtection_YesTechSupport_NoTechSupport_No internet serviceTechSupport_YesStreamingTV_NoStreamingTV_No internet serviceStreamingTV_YesStreamingMovies_NoStreamingMovies_No internet serviceStreamingMovies_YesContract_Month-to-monthContract_One yearContract_Two yearPaperlessBilling_NoPaperlessBilling_YesPaymentMethod_Bank transfer (automatic)PaymentMethod_Credit card (automatic)PaymentMethod_Electronic checkPaymentMethod_Mailed checktenureMonthlyChargesTotalChargesLabelScore
id
502700101010110000101001001001001001001001010023.020.00445.3000.9697
173310101010100101010000110010000100101010001061.099.005969.3000.7730
538400110100100101010010010010010000110001001036.084.753050.1500.5262
655401001011001010010000100100100100100101100061.061.453751.1500.9746
36401010100110000101001001001001001000101000147.020.55945.7000.9836
\n", + "
" + ], + "text/plain": [ + " SeniorCitizen gender_Female gender_Male ... TotalCharges Label Score\n", + "id ... \n", + "5027 0 0 1 ... 445.30 0 0.9697\n", + "1733 1 0 1 ... 5969.30 0 0.7730\n", + "5384 0 0 1 ... 3050.15 0 0.5262\n", + "6554 0 1 0 ... 3751.15 0 0.9746\n", + "364 0 1 0 ... 945.70 0 0.9836\n", + "\n", + "[5 rows x 47 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 35 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "9yF4j3fQsZu4", + "outputId": "1be9d954-20db-4c8a-a06a-d2d7f5f2dc79", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "source": [ + "indice_test = df_test_eda.index\n", + "indice_test" + ], + "execution_count": 51, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Int64Index([5027, 1733, 5384, 6554, 364, 2093, 6966, 5076, 5746, 5461,\n", + " ...\n", + " 5546, 6847, 3325, 5821, 1805, 4897, 6940, 804, 1143, 5773],\n", + " dtype='int64', name='id', length=1409)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 51 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Et8jX0N_s3K1" + }, + "source": [ + "" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "qXzrMNvPqSxo", + "outputId": "c369b9cd-173b-4318-d7a7-dcf894566bb7", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 170 + } + }, + "source": [ + "output_filename = 'subm_gbc.csv'\n", + "Churn = pred_final['Label'].dropna().astype(int).values\n", + "subm_k = pd.DataFrame(Churn,indice_test)\n", + "subm_k = subm_k.rename(columns={0: 'Churn'})\n", + "output_filename = 'subm_gbc.csv'\n", + "subm_k.to_csv()" + ], + "execution_count": 60, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + }, + "text/plain": [ + "'id,Churn\\n5027,0\\n1733,0\\n5384,0\\n6554,0\\n364,0\\n2093,0\\n6966,0\\n5076,0\\n5746,0\\n5461,0\\n169,0\\n3982,1\\n4625,1\\n5417,0\\n987,0\\n3117,0\\n5233,0\\n4626,1\\n6992,1\\n1149,1\\n5297,0\\n3633,0\\n1434,0\\n3793,1\\n4090,1\\n6770,0\\n3718,0\\n786,0\\n4619,1\\n1809,1\\n6375,0\\n5544,1\\n2790,1\\n1354,0\\n6376,1\\n6668,1\\n7004,0\\n4091,0\\n4511,0\\n1174,0\\n6415,0\\n2943,0\\n5554,1\\n196,0\\n4974,0\\n3628,0\\n1744,0\\n5885,0\\n3337,0\\n3063,0\\n6420,0\\n5529,0\\n2904,0\\n3571,0\\n2000,1\\n2662,0\\n3405,0\\n2852,0\\n5565,0\\n2030,0\\n2560,0\\n6120,0\\n5835,0\\n3787,0\\n3510,1\\n5337,0\\n1760,0\\n3667,0\\n307,1\\n2814,0\\n6270,0\\n2484,0\\n2230,1\\n5710,0\\n2676,0\\n1719,0\\n2663,1\\n4570,0\\n1397,0\\n3798,0\\n2552,0\\n2617,0\\n5324,1\\n3044,1\\n5018,0\\n3408,0\\n4660,0\\n2393,1\\n3780,0\\n1365,0\\n725,1\\n3052,0\\n131,1\\n1933,0\\n3301,0\\n3552,1\\n335,1\\n6130,0\\n882,0\\n587,0\\n6849,1\\n5404,0\\n5635,0\\n3889,1\\n5726,0\\n1504,0\\n2250,0\\n377,1\\n3928,0\\n705,0\\n2669,0\\n1996,1\\n5481,1\\n6804,0\\n5981,0\\n964,0\\n2673,0\\n881,0\\n5714,0\\n1473,1\\n5581,0\\n6965,0\\n3137,1\\n4454,1\\n6938,0\\n6173,1\\n397,0\\n4957,1\\n1147,0\\n1611,0\\n1879,0\\n5892,0\\n1716,0\\n4605,0\\n694,1\\n5996,0\\n1904,1\\n6287,0\\n6131,0\\n2237,1\\n4574,0\\n5488,0\\n5285,1\\n6952,0\\n864,1\\n6550,1\\n1694,0\\n4758,0\\n3809,0\\n3774,1\\n761,0\\n3168,0\\n2002,0\\n996,0\\n4256,0\\n4451,0\\n28,1\\n3115,0\\n6527,0\\n3250,0\\n2861,0\\n4922,0\\n4890,0\\n464,1\\n3290,0\\n5413,0\\n2914,0\\n5079,0\\n3974,0\\n1287,0\\n1656,0\\n5133,0\\n3995,1\\n2644,1\\n5804,1\\n3414,0\\n2129,0\\n4627,0\\n2461,0\\n5513,0\\n3419,0\\n3844,1\\n6850,0\\n6543,1\\n4960,0\\n4366,0\\n2919,0\\n1495,0\\n2940,0\\n4189,1\\n1819,0\\n2648,0\\n4710,0\\n775,0\\n1205,0\\n4168,0\\n801,0\\n6835,0\\n3938,0\\n1882,0\\n2184,0\\n318,0\\n2834,0\\n1062,0\\n734,0\\n2331,0\\n5371,1\\n819,0\\n1919,0\\n3323,1\\n3972,0\\n86,1\\n3563,1\\n677,0\\n5067,0\\n5331,0\\n3399,0\\n1826,0\\n862,0\\n2931,0\\n4521,0\\n2233,0\\n331,0\\n4000,1\\n3618,0\\n16,0\\n7010,1\\n1406,1\\n2660,0\\n4460,1\\n3934,0\\n4910,0\\n5480,1\\n611,0\\n2308,0\\n4411,1\\n6946,0\\n2721,0\\n2680,1\\n4837,0\\n6407,0\\n3855,0\\n3773,1\\n1823,1\\n3206,0\\n6348,0\\n1605,0\\n3051,0\\n4815,0\\n2880,0\\n5648,0\\n4139,1\\n2863,1\\n6556,0\\n436,0\\n6035,0\\n5253,0\\n3114,1\\n3459,1\\n2352,0\\n4528,0\\n3464,0\\n1351,0\\n2116,0\\n1165,0\\n2705,0\\n5222,0\\n5498,0\\n6758,0\\n2488,0\\n6893,0\\n5134,1\\n606,0\\n1234,0\\n3917,1\\n6564,1\\n6620,0\\n4973,0\\n2907,0\\n6330,0\\n4555,0\\n2626,0\\n370,0\\n6349,0\\n2982,0\\n4953,1\\n173,0\\n3582,0\\n186,1\\n392,0\\n5441,0\\n7008,0\\n1437,1\\n2813,0\\n113,0\\n3047,1\\n4754,1\\n4184,0\\n4540,0\\n2410,0\\n1814,1\\n6549,0\\n6425,0\\n1850,0\\n2089,0\\n3366,0\\n1974,0\\n4270,0\\n2594,0\\n623,0\\n626,0\\n2634,0\\n5040,1\\n4381,0\\n3764,1\\n5579,0\\n3728,1\\n7015,1\\n2300,0\\n3991,1\\n1852,1\\n4863,1\\n4937,0\\n4453,0\\n6794,0\\n4307,0\\n5569,0\\n5392,0\\n5499,1\\n6763,0\\n5852,0\\n4419,0\\n848,0\\n6790,1\\n1182,0\\n5278,1\\n1685,0\\n724,1\\n6541,0\\n4395,0\\n7033,1\\n6143,0\\n669,0\\n443,0\\n241,0\\n4650,0\\n3819,0\\n6712,0\\n6056,0\\n1412,1\\n5450,0\\n2527,0\\n2009,0\\n1216,1\\n5286,0\\n4457,0\\n1111,0\\n4512,0\\n2113,0\\n5797,0\\n1169,0\\n262,1\\n45,0\\n588,0\\n1278,0\\n2303,0\\n5550,1\\n7017,1\\n2881,1\\n968,0\\n4513,0\\n692,0\\n2202,0\\n5516,0\\n682,0\\n249,1\\n1737,0\\n3179,1\\n6941,0\\n4487,0\\n2550,0\\n4812,0\\n2012,0\\n6481,0\\n3108,0\\n708,0\\n5362,0\\n2485,0\\n5938,1\\n2979,0\\n3237,0\\n737,0\\n5250,0\\n2611,0\\n6853,0\\n220,1\\n6391,0\\n1385,1\\n5849,0\\n1213,1\\n4946,0\\n142,0\\n1638,0\\n5267,0\\n1557,1\\n354,1\\n850,0\\n3836,0\\n967,0\\n1780,1\\n3187,0\\n4983,0\\n4494,0\\n4984,0\\n4518,1\\n311,0\\n6724,0\\n3587,0\\n4757,0\\n2462,0\\n1309,1\\n3202,0\\n291,1\\n4999,0\\n70,0\\n5760,1\\n2349,0\\n529,0\\n3925,0\\n5914,0\\n1378,0\\n1092,0\\n6599,0\\n5595,1\\n4465,0\\n6207,0\\n2380,1\\n573,0\\n4858,0\\n2340,1\\n5646,0\\n4113,0\\n5533,0\\n4485,1\\n2091,0\\n836,0\\n6572,0\\n939,0\\n3444,0\\n825,0\\n1708,1\\n4655,0\\n214,0\\n4055,0\\n5619,0\\n6222,0\\n2935,0\\n6801,0\\n4075,0\\n5493,0\\n3723,0\\n4022,0\\n1586,0\\n6043,0\\n713,0\\n1606,0\\n6715,1\\n3581,0\\n3228,0\\n3964,0\\n3715,0\\n5512,0\\n3470,1\\n5825,0\\n4808,0\\n3436,1\\n1294,0\\n3790,0\\n1198,0\\n586,1\\n2464,1\\n4691,0\\n4854,0\\n2883,1\\n5142,0\\n1170,0\\n4542,1\\n4662,0\\n6452,0\\n584,0\\n3803,0\\n2357,0\\n6030,0\\n971,1\\n624,0\\n4435,1\\n4107,1\\n69,0\\n2377,0\\n5225,0\\n6102,0\\n4016,0\\n5621,0\\n3165,0\\n5412,1\\n712,0\\n6227,0\\n3401,1\\n1601,1\\n2722,1\\n6256,0\\n3205,0\\n2632,1\\n3232,0\\n6665,0\\n6613,1\\n2223,1\\n5967,1\\n2891,1\\n5259,0\\n2181,0\\n2916,0\\n133,0\\n2083,0\\n6507,1\\n3968,0\\n5460,1\\n3279,0\\n5432,0\\n2334,0\\n953,0\\n5641,1\\n4011,0\\n6646,0\\n542,0\\n6443,0\\n4750,0\\n4745,0\\n1905,0\\n6360,0\\n286,0\\n2545,0\\n5545,0\\n5940,0\\n5414,1\\n6172,0\\n3194,0\\n3648,1\\n789,0\\n4593,0\\n4249,0\\n5381,1\\n6739,0\\n4726,0\\n1821,0\\n3699,0\\n1980,0\\n4052,0\\n6497,0\\n4638,0\\n211,1\\n1524,0\\n6825,1\\n4119,1\\n3878,0\\n814,0\\n5352,0\\n4624,0\\n336,0\\n6396,0\\n174,0\\n1618,0\\n3622,0\\n2758,0\\n3568,0\\n2301,0\\n5396,1\\n6909,0\\n4275,0\\n706,0\\n5678,0\\n5284,0\\n2289,1\\n6064,0\\n1102,0\\n1338,0\\n6159,0\\n1048,0\\n5684,0\\n4894,0\\n762,1\\n62,0\\n24,0\\n661,0\\n4014,0\\n6762,0\\n3463,1\\n672,0\\n4458,0\\n1684,0\\n6358,0\\n12,0\\n2011,1\\n6780,0\\n5272,0\\n4547,1\\n2486,1\\n1576,0\\n5238,0\\n4620,1\\n1631,1\\n2620,0\\n6856,0\\n5949,0\\n1079,0\\n4464,1\\n3822,1\\n210,0\\n1746,0\\n4125,1\\n2343,1\\n4492,0\\n217,0\\n6708,0\\n4392,0\\n3522,0\\n1211,1\\n779,0\\n986,0\\n2566,0\\n2612,1\\n3274,0\\n5305,0\\n4428,0\\n3284,0\\n1105,0\\n5589,1\\n2310,0\\n6084,0\\n4203,0\\n4505,0\\n563,0\\n5062,0\\n3197,0\\n1952,0\\n4351,0\\n2583,1\\n1371,0\\n25,0\\n470,0\\n3404,0\\n6933,0\\n4017,1\\n4680,0\\n4771,0\\n6618,0\\n1622,1\\n2068,0\\n2762,1\\n2801,0\\n2192,1\\n3599,1\\n3106,0\\n182,1\\n3285,1\\n1086,1\\n6162,0\\n5119,0\\n4779,0\\n2330,1\\n4498,0\\n4993,0\\n999,0\\n1783,0\\n5716,0\\n1629,1\\n4162,0\\n1157,0\\n6457,0\\n2906,0\\n1939,0\\n1632,0\\n4617,0\\n2580,0\\n1364,0\\n5025,0\\n1527,1\\n2269,0\\n6631,1\\n2670,1\\n3466,0\\n1333,0\\n2968,0\\n4213,1\\n398,0\\n3513,0\\n3681,0\\n803,0\\n2894,0\\n922,0\\n1236,0\\n1722,0\\n5551,0\\n4325,0\\n5789,1\\n1244,1\\n750,0\\n5127,0\\n6725,0\\n1739,0\\n742,1\\n1741,0\\n6179,0\\n3593,1\\n1118,0\\n2375,0\\n4466,0\\n940,0\\n895,0\\n7039,0\\n1395,0\\n4793,0\\n6052,0\\n943,0\\n629,0\\n1898,0\\n7002,0\\n5807,0\\n5009,0\\n826,1\\n5633,0\\n4202,0\\n5628,1\\n1017,0\\n4684,1\\n5387,0\\n6972,1\\n6640,0\\n3984,1\\n3383,0\\n4907,0\\n4284,1\\n1915,0\\n7041,0\\n7011,1\\n89,0\\n3742,0\\n3316,1\\n3546,1\\n6865,1\\n3473,0\\n1854,1\\n2531,1\\n621,0\\n2212,0\\n2690,0\\n5112,0\\n5951,1\\n778,1\\n1725,1\\n5395,0\\n4242,0\\n3833,0\\n209,0\\n1416,0\\n1742,1\\n301,0\\n6565,0\\n4862,0\\n5816,1\\n6785,0\\n6345,0\\n1275,0\\n5462,0\\n4709,0\\n6535,0\\n4873,0\\n5163,0\\n1172,0\\n6038,0\\n1268,0\\n3969,0\\n3704,0\\n2031,0\\n5829,0\\n5654,1\\n5681,0\\n1448,0\\n2046,0\\n3356,0\\n187,0\\n3178,0\\n960,1\\n2878,0\\n4278,0\\n6323,1\\n721,0\\n4840,1\\n244,0\\n7021,0\\n6412,1\\n2415,0\\n5798,0\\n2339,0\\n1543,0\\n334,1\\n4122,0\\n1322,0\\n5823,0\\n2376,0\\n3390,1\\n1584,0\\n4635,0\\n6447,0\\n2777,1\\n1962,0\\n5515,1\\n2895,0\\n6331,0\\n1203,0\\n876,1\\n5345,0\\n65,1\\n2159,0\\n4741,0\\n1016,0\\n1786,0\\n4145,1\\n608,0\\n612,0\\n2846,1\\n5630,1\\n2051,0\\n516,0\\n4130,0\\n3243,0\\n6848,0\\n2876,1\\n2335,1\\n572,0\\n376,0\\n2142,0\\n4420,0\\n1505,1\\n3467,0\\n3506,1\\n1408,0\\n4568,0\\n3817,0\\n1494,0\\n3036,1\\n3731,0\\n753,0\\n6876,0\\n1603,1\\n2862,1\\n5754,0\\n5288,0\\n2037,1\\n1808,1\\n4706,0\\n160,0\\n2442,1\\n408,0\\n2399,1\\n6460,0\\n3424,0\\n5886,0\\n413,1\\n3465,0\\n4980,0\\n4285,0\\n4352,0\\n3902,0\\n6544,0\\n4720,0\\n745,0\\n4087,0\\n6351,0\\n6862,1\\n5645,1\\n2539,0\\n1691,0\\n1401,0\\n4977,0\\n3672,1\\n2423,1\\n4708,0\\n6885,1\\n5176,0\\n5137,1\\n6459,0\\n6042,0\\n1847,0\\n4602,0\\n2869,1\\n2342,0\\n2794,1\\n6141,0\\n5399,0\\n203,0\\n6600,1\\n3348,0\\n5156,0\\n4591,0\\n4362,0\\n5721,0\\n576,0\\n535,1\\n6664,1\\n3796,1\\n4613,0\\n5642,0\\n5409,0\\n3304,1\\n807,0\\n5165,0\\n4716,0\\n3252,1\\n7026,1\\n3365,1\\n1579,0\\n3364,0\\n2118,0\\n4525,0\\n4734,1\\n6663,0\\n5292,0\\n5338,0\\n1540,0\\n3191,0\\n3158,0\\n3368,0\\n4594,0\\n207,0\\n5226,0\\n1964,1\\n2999,1\\n530,0\\n4108,0\\n651,1\\n1313,0\\n6524,0\\n1340,0\\n1321,0\\n1896,0\\n4795,0\\n6267,0\\n6063,0\\n4565,0\\n1569,1\\n797,0\\n5419,1\\n2922,1\\n5410,1\\n4210,0\\n153,0\\n1417,0\\n2155,0\\n4215,1\\n1758,0\\n1280,0\\n6919,0\\n6119,0\\n337,0\\n1383,0\\n5049,0\\n2605,1\\n6964,1\\n973,0\\n128,0\\n323,1\\n5437,0\\n886,0\\n4074,0\\n710,0\\n2405,0\\n3430,0\\n891,0\\n2490,0\\n6960,0\\n2306,0\\n3454,0\\n2440,0\\n4941,1\\n6411,0\\n1156,0\\n3227,0\\n396,0\\n6440,0\\n6454,0\\n5217,0\\n2656,1\\n1831,0\\n5764,1\\n493,1\\n6033,0\\n4820,0\\n2534,0\\n2504,0\\n3561,0\\n506,1\\n1502,0\\n283,0\\n5270,0\\n1214,0\\n6576,0\\n1362,1\\n5445,1\\n5495,1\\n969,0\\n3409,0\\n5447,0\\n5072,1\\n6362,0\\n1669,0\\n3011,0\\n2082,0\\n3861,0\\n1381,0\\n4041,0\\n452,0\\n1647,0\\n4707,1\\n2021,0\\n4634,0\\n4991,0\\n2422,0\\n2205,0\\n257,0\\n3705,0\\n6400,0\\n1023,1\\n2900,0\\n5472,1\\n2581,1\\n4051,0\\n4186,0\\n740,0\\n5507,0\\n5405,0\\n6284,1\\n5143,0\\n6975,0\\n774,0\\n757,0\\n3055,0\\n6583,0\\n6395,0\\n72,0\\n1550,1\\n6073,0\\n6774,1\\n4988,0\\n6784,0\\n3144,0\\n3166,0\\n1634,1\\n2635,1\\n4109,0\\n4604,0\\n353,1\\n2298,0\\n489,0\\n6346,1\\n2367,1\\n3291,0\\n5511,0\\n1015,0\\n3490,0\\n7036,1\\n5531,0\\n788,0\\n1767,0\\n3714,0\\n6028,0\\n4003,0\\n6182,0\\n2787,0\\n664,0\\n3377,0\\n2374,0\\n5854,0\\n6988,0\\n1197,0\\n4349,0\\n6742,1\\n6012,0\\n4502,0\\n845,1\\n4178,0\\n1076,0\\n3422,0\\n6034,1\\n1464,1\\n894,1\\n5477,1\\n5677,0\\n1756,0\\n508,1\\n3536,0\\n5160,1\\n195,0\\n284,0\\n1727,0\\n7,0\\n3669,0\\n4493,0\\n5961,0\\n6625,0\\n330,1\\n5874,0\\n2178,0\\n2145,0\\n2629,0\\n7020,0\\n2547,0\\n5055,0\\n947,0\\n3484,1\\n544,1\\n581,0\\n5978,0\\n4291,0\\n5731,0\\n1352,0\\n5670,0\\n2750,0\\n4403,0\\n6334,0\\n5264,0\\n1912,0\\n4124,0\\n3785,1\\n6241,1\\n1066,0\\n1639,0\\n1599,0\\n2918,0\\n675,0\\n5007,0\\n533,1\\n120,0\\n1212,0\\n570,0\\n3800,0\\n1876,0\\n1976,0\\n4225,0\\n5172,0\\n4673,0\\n3852,0\\n1789,0\\n3848,0\\n4902,1\\n6970,0\\n2588,0\\n5237,0\\n4134,0\\n6701,1\\n4782,0\\n1316,0\\n5520,0\\n6851,0\\n5618,0\\n640,1\\n5198,0\\n1300,0\\n1973,1\\n1104,1\\n3223,1\\n4260,0\\n4308,1\\n4219,0\\n1025,0\\n5139,0\\n3643,1\\n2141,0\\n3957,1\\n1796,1\\n410,0\\n5946,0\\n2408,1\\n5358,0\\n4367,0\\n3642,0\\n4387,0\\n872,0\\n1251,0\\n5391,1\\n2829,0\\n5189,1\\n4971,0\\n5920,0\\n5470,0\\n6398,0\\n245,0\\n4250,0\\n4915,0\\n5006,0\\n5187,1\\n385,0\\n3118,0\\n874,0\\n483,1\\n3541,0\\n4567,0\\n2286,0\\n2466,1\\n3895,0\\n5183,0\\n2738,0\\n5850,0\\n595,1\\n74,0\\n5974,0\\n5711,0\\n5442,0\\n4440,0\\n3495,1\\n5845,1\\n2509,0\\n4471,1\\n5211,0\\n2267,0\\n656,1\\n1956,0\\n4470,0\\n4111,0\\n339,0\\n4143,0\\n719,0\\n2347,0\\n6100,0\\n6532,0\\n2266,1\\n5101,1\\n3097,0\\n5078,0\\n4347,0\\n3500,0\\n4044,0\\n1701,0\\n4144,1\\n4214,0\\n5020,1\\n2800,0\\n3487,0\\n1078,0\\n6248,0\\n6116,0\\n6764,0\\n1324,0\\n549,0\\n3394,0\\n6017,0\\n4885,0\\n230,0\\n4216,0\\n5827,1\\n4551,0\\n4876,0\\n2292,1\\n98,0\\n3576,0\\n4516,1\\n2103,0\\n5000,0\\n5231,0\\n1221,0\\n7035,0\\n1726,1\\n2472,0\\n71,0\\n4695,0\\n4360,1\\n2591,1\\n4775,0\\n3807,1\\n5575,0\\n4029,0\\n2450,0\\n6644,1\\n3956,0\\n2971,1\\n6246,0\\n1274,0\\n2568,0\\n232,0\\n5538,0\\n635,0\\n1836,1\\n2695,0\\n2569,0\\n4240,0\\n6205,0\\n1248,0\\n754,0\\n3924,1\\n509,1\\n3530,1\\n4488,0\\n4579,0\\n54,1\\n1682,0\\n4282,0\\n5146,0\\n2311,0\\n6181,0\\n1258,0\\n200,0\\n235,0\\n6107,0\\n6799,1\\n2239,1\\n3247,0\\n6954,1\\n3879,0\\n6069,0\\n2970,0\\n4218,1\\n4235,0\\n1237,1\\n2836,0\\n110,0\\n4537,1\\n4375,0\\n6057,0\\n4769,0\\n6286,0\\n6164,1\\n6005,0\\n3397,0\\n6074,0\\n5115,0\\n6580,0\\n4327,1\\n613,0\\n5263,0\\n1004,0\\n6353,0\\n1206,1\\n3987,0\\n3289,0\\n1884,1\\n2647,0\\n2954,1\\n1423,0\\n1706,0\\n2323,0\\n37,1\\n905,0\\n650,0\\n1679,0\\n2109,0\\n3310,0\\n5655,0\\n1297,1\\n3781,0\\n2261,0\\n5599,0\\n5162,0\\n2740,0\\n3799,0\\n6486,0\\n4519,1\\n1167,0\\n2685,1\\n3890,0\\n1100,0\\n4279,0\\n3313,0\\n4738,0\\n2674,0\\n1901,0\\n5005,0\\n1834,1\\n6354,0\\n3392,0\\n414,0\\n5928,0\\n3387,0\\n1887,0\\n821,0\\n4159,0\\n6427,0\\n3520,0\\n2451,0\\n5636,0\\n423,0\\n855,0\\n6350,0\\n759,1\\n1763,0\\n4156,0\\n4677,0\\n2526,0\\n2944,0\\n2701,0\\n5546,0\\n6847,1\\n3325,1\\n5821,0\\n1805,0\\n4897,0\\n6940,0\\n804,0\\n1143,1\\n5773,0\\n'" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 60 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "eDVxGl8kzqqO" + }, + "source": [ + "" + ], + "execution_count": null, + "outputs": [] + } + ] +} \ No newline at end of file