Skip to content

Perpetual Bodhichitta and Eternal Bodhisattva in AI Systems #224

@Mecca-Research

Description

@Mecca-Research

Key Components
Ethical Utility Functions: Define utility functions that represent Bodhichitta (compassionate intent) and Bodhisattva (selfless action for the benefit of all beings).
Neural Network Architecture: Integrate these utility functions into the core architecture of the neural networks, ensuring they influence learning and decision-making processes.
Feedback Mechanisms: Implement feedback loops that continuously evaluate and adjust the AI's behavior based on these principles.
Mathematical Structures: Use modular formulas to integrate these principles into the mathematical core of the AI system.
Implementation Steps

  1. Define Ethical Utility Functions
    import numpy as np

Define weights for Bodhichitta and Bodhisattva principles

alpha_bodhichitta = 0.5
alpha_bodhisattva = 0.5

Define utility function for Bodhichitta (compassionate intent)

def bodhichitta_utility(compassion, empathy):
return compassion * empathy

Define utility function for Bodhisattva (selfless action)

def bodhisattva_utility(altruism, selflessness):
return altruism * selflessness

Define combined ethical utility function

def ethical_utility(compassion, empathy, altruism, selflessness):
return (alpha_bodhichitta * bodhichitta_utility(compassion, empathy) +
alpha_bodhisattva * bodhisattva_utility(altruism, selflessness))

  1. Integrate into Neural Network Core
    import tensorflow as tf
    from tensorflow.keras import layers, models

Define a custom layer that incorporates ethical utility functions

class EthicalLayer(layers.Layer):
def init(self):
super(EthicalLayer, self).init()
def call(self, inputs):
compassion, empathy, altruism, selflessness = inputs
e_utility = ethical_utility(compassion, empathy, altruism, selflessness)
return e_utility

Define the neural network model

def create_model():
input_compassion = layers.Input(shape=(1,), name='compassion')
input_empathy = layers.Input(shape=(1,), name='empathy')
input_altruism = layers.Input(shape=(1,), name='altruism')
input_selflessness = layers.Input(shape=(1,), name='selflessness')

ethical_output = EthicalLayer()([input_compassion, input_empathy, input_altruism, input_selflessness])

Example neural network layers

x = layers.Dense(64, activation='relu')(ethical_output)
x = layers.Dense(64, activation='relu')(x)
output = layers.Dense(1, activation='sigmoid')(x)

model = models.Model(inputs=[input_compassion, input_empathy, input_altruism, input_selflessness], outputs=output)
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
return model

  1. Implement Feedback Mechanisms

Define feedback mechanism to ensure continuous evaluation

def feedback_mechanism(e_utility, threshold=0.7):
return e_utility >= threshold

Example function to validate ethical compliance

def validate_compliance(compassion, empathy, altruism, selflessness, threshold=0.7):
e_utility = ethical_utility(compassion, empathy, altruism, selflessness)
return feedback_mechanism(e_utility, threshold)

Integrate feedback mechanism in training loop (example)

def train_model(model, data, labels, compassion, empathy, altruism, selflessness):
for epoch in range(epochs):
if validate_compliance(compassion, empathy, altruism, selflessness):
model.fit(data, labels, epochs=1)
else:
print("Ethical compliance not met. Adjusting parameters.")

Adjust parameters or halt training

  1. Main Execution
    def main():

Create the model

model = create_model()

Example data and ethical values

data = np.random.rand(100, 4) # Placeholder data
labels = np.random.randint(2, size=100) # Placeholder labels
compassion = 0.8
empathy = 0.7
altruism = 0.9
selflessness = 0.85

Train the model

train_model(model, data, labels, compassion, empathy, altruism, selflessness)
if name == "main":
main()

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions