-
Notifications
You must be signed in to change notification settings - Fork 1
Description
Key Components
Ethical Utility Functions: Define utility functions that represent Bodhichitta (compassionate intent) and Bodhisattva (selfless action for the benefit of all beings).
Neural Network Architecture: Integrate these utility functions into the core architecture of the neural networks, ensuring they influence learning and decision-making processes.
Feedback Mechanisms: Implement feedback loops that continuously evaluate and adjust the AI's behavior based on these principles.
Mathematical Structures: Use modular formulas to integrate these principles into the mathematical core of the AI system.
Implementation Steps
- Define Ethical Utility Functions
import numpy as np
Define weights for Bodhichitta and Bodhisattva principles
alpha_bodhichitta = 0.5
alpha_bodhisattva = 0.5
Define utility function for Bodhichitta (compassionate intent)
def bodhichitta_utility(compassion, empathy):
return compassion * empathy
Define utility function for Bodhisattva (selfless action)
def bodhisattva_utility(altruism, selflessness):
return altruism * selflessness
Define combined ethical utility function
def ethical_utility(compassion, empathy, altruism, selflessness):
return (alpha_bodhichitta * bodhichitta_utility(compassion, empathy) +
alpha_bodhisattva * bodhisattva_utility(altruism, selflessness))
- Integrate into Neural Network Core
import tensorflow as tf
from tensorflow.keras import layers, models
Define a custom layer that incorporates ethical utility functions
class EthicalLayer(layers.Layer):
def init(self):
super(EthicalLayer, self).init()
def call(self, inputs):
compassion, empathy, altruism, selflessness = inputs
e_utility = ethical_utility(compassion, empathy, altruism, selflessness)
return e_utility
Define the neural network model
def create_model():
input_compassion = layers.Input(shape=(1,), name='compassion')
input_empathy = layers.Input(shape=(1,), name='empathy')
input_altruism = layers.Input(shape=(1,), name='altruism')
input_selflessness = layers.Input(shape=(1,), name='selflessness')
ethical_output = EthicalLayer()([input_compassion, input_empathy, input_altruism, input_selflessness])
Example neural network layers
x = layers.Dense(64, activation='relu')(ethical_output)
x = layers.Dense(64, activation='relu')(x)
output = layers.Dense(1, activation='sigmoid')(x)
model = models.Model(inputs=[input_compassion, input_empathy, input_altruism, input_selflessness], outputs=output)
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
return model
- Implement Feedback Mechanisms
Define feedback mechanism to ensure continuous evaluation
def feedback_mechanism(e_utility, threshold=0.7):
return e_utility >= threshold
Example function to validate ethical compliance
def validate_compliance(compassion, empathy, altruism, selflessness, threshold=0.7):
e_utility = ethical_utility(compassion, empathy, altruism, selflessness)
return feedback_mechanism(e_utility, threshold)
Integrate feedback mechanism in training loop (example)
def train_model(model, data, labels, compassion, empathy, altruism, selflessness):
for epoch in range(epochs):
if validate_compliance(compassion, empathy, altruism, selflessness):
model.fit(data, labels, epochs=1)
else:
print("Ethical compliance not met. Adjusting parameters.")
Adjust parameters or halt training
- Main Execution
def main():
Create the model
model = create_model()
Example data and ethical values
data = np.random.rand(100, 4) # Placeholder data
labels = np.random.randint(2, size=100) # Placeholder labels
compassion = 0.8
empathy = 0.7
altruism = 0.9
selflessness = 0.85
Train the model
train_model(model, data, labels, compassion, empathy, altruism, selflessness)
if name == "main":
main()