From 01890288f9a572b3de9636c9ec7566b39e3b239e Mon Sep 17 00:00:00 2001 From: Ekin Ozturk Date: Thu, 24 Apr 2025 22:21:40 +0000 Subject: [PATCH 01/16] Implementation of forward-/reverse-mode AD support for PyTorch --- .devcontainer/devcontainer.json | 2 +- conftest.py | 6 + desolver/__init__.py | 5 +- desolver/backend/load_backend.py | 7 + desolver/differential_system.py | 43 +- desolver/integrators/__init__.py | 17 +- desolver/integrators/integrator_template.py | 13 +- desolver/integrators/integrator_types.py | 25 +- desolver/integrators/utilities.py | 2 +- desolver/torch_ext/__init__.py | 5 + desolver/torch_ext/integrators.py | 285 +++++++ .../torch_ext/tests/test_differentiability.py | 77 ++ ...Example 2 - PyTorch - Neural Network.ipynb | 727 +++++------------- pyproject.toml | 3 +- 14 files changed, 625 insertions(+), 592 deletions(-) create mode 100644 desolver/torch_ext/__init__.py create mode 100644 desolver/torch_ext/integrators.py create mode 100644 desolver/torch_ext/tests/test_differentiability.py diff --git a/.devcontainer/devcontainer.json b/.devcontainer/devcontainer.json index 801f717..885fe0b 100644 --- a/.devcontainer/devcontainer.json +++ b/.devcontainer/devcontainer.json @@ -41,7 +41,7 @@ "ghcr.io/schlich/devcontainer-features/powerlevel10k:1": {}, "ghcr.io/nils-geistmann/devcontainers-features/zsh:0": { "setLocale": true, - "theme": "agnoster", + "theme": "robbyrussell", "plugins": "git docker", "desiredLocale": "en_US.UTF-8 UTF-8" }, diff --git a/conftest.py b/conftest.py index da03561..b8d1c83 100644 --- a/conftest.py +++ b/conftest.py @@ -46,6 +46,11 @@ def integrators(request): return request.param +@pytest.fixture(scope='function', params=[None] if "torch" in available_backends() else []) +def pytorch_only(request): + return request.param + + def pytest_generate_tests(metafunc: pytest.Metafunc): autodiff_needed = "requires_autodiff" in metafunc.fixturenames @@ -82,4 +87,5 @@ def pytest_generate_tests(metafunc: pytest.Metafunc): raise TypeError("Test configuration requests autodiff, but no dynamic backend specified!") argnames.append("requires_autodiff") argvalues = [(*aval, True) for aval in argvalues if len(aval) > 1 and aval[1] not in ["numpy"]] + metafunc.parametrize(argnames, argvalues) diff --git a/desolver/__init__.py b/desolver/__init__.py index 1d86ee2..0f8391a 100644 --- a/desolver/__init__.py +++ b/desolver/__init__.py @@ -5,4 +5,7 @@ from desolver.differential_system import * -from desolver.integrators import available_methods \ No newline at end of file +from desolver.integrators import available_methods + +if backend.is_backend_available("torch"): + from desolver import torch_ext diff --git a/desolver/backend/load_backend.py b/desolver/backend/load_backend.py index 0dffa6c..b5e073c 100644 --- a/desolver/backend/load_backend.py +++ b/desolver/backend/load_backend.py @@ -1,11 +1,14 @@ import sys import einops +__AVAILABLE_BACKENDS__ = ["numpy"] + from desolver.backend.common import * from desolver.backend.autoray_backend import * from desolver.backend.numpy_backend import * try: from desolver.backend.torch_backend import * + __AVAILABLE_BACKENDS__.append("torch") except ImportError: pass @@ -65,3 +68,7 @@ def contract_first_ndims(a, b, n=1): estr3 = "..." einsum_str = einsum_str.format(estr1, estr2, estr3) return einops.einsum(a, b, einsum_str) + + +def is_backend_available(backend_name): + return backend_name.lower().strip() in __AVAILABLE_BACKENDS__ diff --git a/desolver/differential_system.py b/desolver/differential_system.py index 1c2724a..c7110ec 100644 --- a/desolver/differential_system.py +++ b/desolver/differential_system.py @@ -362,24 +362,20 @@ def jac(self, t, y, *args, **kwargs): self.__jac_is_wrapped_rhs = False elif inferred_backend == 'numpy': self.__jac_wrapped_rhs_order = 5 - self.__jac = deutil.JacobianWrapper(lambda y, **kwargs: self(0.0, y, **kwargs), - base_order=self.__jac_wrapped_rhs_order, flat=False) + self.__jac = lambda _t, y, *_as, **_kws: deutil.JacobianWrapper(lambda x: self(_t, x, *_as, **_kws), base_order=self.__jac_wrapped_rhs_order, flat=False)(y) self.__jac_time = 0.0 self.__jac_is_wrapped_rhs = True else: import torch - self.__jac = torch.func.jacrev(self.rhs, argnums=1) + self.__jac = lambda _t, y, *_as, **_kws: torch.func.jacrev(lambda x: self.rhs(_t, x, *_as, **_kws), argnums=0)(y) self.__jac_time = None self.__jac_is_wrapped_rhs = False self.__jac_initialised = True if self.__jac_is_wrapped_rhs: if t != self.__jac_time: self.__jac_time = t - self.__jac = deutil.JacobianWrapper(lambda y, **kwargs: self(t, y, **kwargs), - base_order=self.__jac_wrapped_rhs_order, flat=False) - called_val = self.__jac(y, *args, **kwargs) - else: - called_val = self.__jac(t, y, *args, **kwargs) + self.__jac = lambda _t, y, *_as, **_kws: deutil.JacobianWrapper(lambda x: self(_t, x, *_as, **_kws), base_order=self.__jac_wrapped_rhs_order, flat=False)(y) + called_val = self.__jac(t, y, *args, **kwargs) self.njev += 1 return called_val @@ -517,6 +513,9 @@ def __init__(self, equ_rhs, y0, t=(0, 1), dense_output=False, dt=1.0, rtol=None, self.__rtol = rtol self.__atol = atol self.__consts = constants if constants is not None else dict() + self.__initial_y__ = y0 + self.__initial_t0__ = D.ar_numpy.asarray(t[0], **self.__array_con_kwargs) + self.__initial_tf__ = D.ar_numpy.asarray(t[1], **self.__array_con_kwargs) self.__y = D.ar_numpy.clone(y0)[None] self.__t = D.ar_numpy.asarray(t[0], **self.__array_con_kwargs)[None] self.dim = D.ar_numpy.shape(self.__y[0]) @@ -543,6 +542,10 @@ def __init__(self, equ_rhs, y0, t=(0, 1), dense_output=False, dt=1.0, rtol=None, self.__events = [] self.initialise_integrator(preserve_states=False) + @property + def reinit_args(self): + return dict(equ_rhs=self.equ_rhs, y0=self.__initial_y__, t=(self.__initial_t0__, self.__initial_tf__), dense_output=self.__dense_output, dt=self.__dt0, rtol=self.rtol, atol=self.atol, constants=self.constants) + @property def sol(self): if self.__dense_output: @@ -727,9 +730,9 @@ def tf(self, new_tf): def __fix_dt_dir(self, t1, t0): if D.ar_numpy.sign(self.__dt) != D.ar_numpy.sign(t1 - t0): - self.__dt = -self.__dt + self.__dt = D.ar_numpy.copysign(D.ar_numpy.abs(self.__dt), t1 - t0) else: - self.__dt = self.__dt + self.__dt = self.__dt def __alloc_space_steps(self, tf): """Returns the number of steps to allocate for a given final integration time @@ -899,8 +902,11 @@ def integration_status(self): def reset(self): """Resets the system to the initial time.""" + self.__y = D.ar_numpy.clone(self.__initial_y__)[None] + self.__t = D.ar_numpy.asarray(self.__initial_t0__, **self.__array_con_kwargs)[None] + self.__t0 = D.ar_numpy.asarray(self.__initial_t0__, **self.__array_con_kwargs) + self.__tf = D.ar_numpy.asarray(self.__initial_tf__, **self.__array_con_kwargs) self.counter = 0 - self.__trim_soln_space() self.__sol = DenseOutput(None, None) self.dt = self.__dt0 self.equ_rhs.nfev = 0 @@ -994,14 +1000,14 @@ def integrate(self, t=None, callback=None, eta=False, events=None): self.__allocate_soln_space(total_steps) try: while (implicit_integration or (self.dt != 0 and D.ar_numpy.abs(tf - self.__t[self.counter]) >= D.tol_epsilon(self.__y[self.counter].dtype))) and not end_int: - if not implicit_integration and D.ar_numpy.abs(self.dt + self.__t[self.counter]) > D.ar_numpy.abs(tf): + if not implicit_integration and D.ar_numpy.abs(self.dt) > D.ar_numpy.abs(tf - self.__t[self.counter]): is_final_step = True dt = (tf - self.__t[self.counter]) else: is_final_step = False dt = self.dt new_dt, (dTime, dState) = self.integrator(self.equ_rhs, self.__t[self.counter], self.__y[self.counter], - self.constants, timestep=dt) + self.constants, timestep=dt) if self.counter + 1 >= len(self.__y): total_steps = self.__alloc_space_steps(tf - dTime) + 1 @@ -1200,7 +1206,7 @@ def __len__(self): def solve_ivp(fun, t_span, y0, method='RK45', t_eval=None, dense_output=False, - events=None, vectorized=False, args=None, **options): + events=None, vectorized=False, args=None, kwargs:dict|None=None, **options): """ Drop-in replacement for `scipy.integrate.solve_ivp`, provides a functional interface to the `desolver` integration routines. @@ -1212,7 +1218,11 @@ def solve_ivp(fun, t_span, y0, method='RK45', t_eval=None, dense_output=False, while isinstance(fn, DiffRHS): fn = fn.rhs fn_args_kwargs = inspect.getfullargspec(fn) - constants = {key:value for key,value in zip(fn_args_kwargs[0][2:], args)} + constants = {key: value for key,value in zip(fn_args_kwargs[0][2:], args)} + else: + constants = dict() + if kwargs is not None: + constants.update(kwargs) max_step = options.get("max_step", np.inf) min_step = options.get("min_step", 0.0) @@ -1223,13 +1233,14 @@ def solve_ivp(fun, t_span, y0, method='RK45', t_eval=None, dense_output=False, ode_system = OdeSystem(equ_rhs=fun, y0=y0, t=t_span, dense_output=dense_output, dt=initial_dt, atol=options.get('atol', None), rtol=options.get('rtol', None), constants=constants) - ode_system.method = method callbacks = list(options.get("callbacks", [])) if "max_step" in options or "min_step" in options: def __step_cb(ode_sys): ode_sys.dt = D.ar_numpy.clip(ode_sys.dt, min=min_step, max=max_step) callbacks.append(__step_cb) + if "kick_variables" in options: + ode_system.set_kick_vars(options["kick_variables"]) integration_options = dict(callback=callbacks, events=events, eta=options.get("show_prog_bar", False)) if t_eval is None: diff --git a/desolver/integrators/__init__.py b/desolver/integrators/__init__.py index ef31f89..b95a6ce 100644 --- a/desolver/integrators/__init__.py +++ b/desolver/integrators/__init__.py @@ -9,6 +9,13 @@ __available_methods = dict() + +def register_integrator(new_integrator:IntegratorTemplate): + __available_methods.update(dict([(new_integrator.__name__, new_integrator)])) + if hasattr(new_integrator, "__alt_names__"): + __available_methods.update(dict([(alt_name, new_integrator) for alt_name in new_integrator.__alt_names__])) + + __explicit_integration_methods__ = [ RK1412Solver, RK108Solver, @@ -47,16 +54,12 @@ RadauIIA19 ] -__available_methods.update(dict( - [(func.__name__, func) for func in __explicit_integration_methods__ if hasattr(func, "__alt_names__")] + - [(alt_name, func) for func in __explicit_integration_methods__ if hasattr(func, "__alt_names__") for alt_name in func.__alt_names__])) -__available_methods.update(dict( - [(func.__name__, func) for func in __implicit_integration_methods__ if hasattr(func, "__alt_names__")] + - [(alt_name, func) for func in __implicit_integration_methods__ if hasattr(func, "__alt_names__") for alt_name in func.__alt_names__])) +for func in __explicit_integration_methods__ + __implicit_integration_methods__: + register_integrator(func) -def available_methods(names=True): +def available_methods(names=True)->list[IntegratorTemplate]|dict[str, IntegratorTemplate]: if names: return sorted(set(__available_methods.keys())) else: diff --git a/desolver/integrators/integrator_template.py b/desolver/integrators/integrator_template.py index 1183c4b..a38d655 100644 --- a/desolver/integrators/integrator_template.py +++ b/desolver/integrators/integrator_template.py @@ -47,21 +47,24 @@ def update_timestep(self, ignore_custom_adaptation=False): with D.ar_numpy.no_grad(like=self.solver_dict['initial_state']): if self.adaptation_fn and not ignore_custom_adaptation: return self.adaptation_fn(self) - initial_state = self.solver_dict['initial_state'] - diff = self.solver_dict['diff'] timestep = self.solver_dict['timestep'] safety_factor = self.solver_dict['safety_factor'] atol = self.solver_dict['atol'] rtol = self.solver_dict['rtol'] - dState = self.solver_dict['dState'] + filter_mask = D.ar_numpy.isfinite(atol) & D.ar_numpy.isfinite(rtol) + initial_state = self.solver_dict['initial_state'][filter_mask] + dState = self.solver_dict['dState'][filter_mask] + diff = self.solver_dict['diff'][filter_mask] + atol = atol[filter_mask] + rtol = rtol[filter_mask] order = self.solver_dict['order'] if "system_scaling" in self.solver_dict: - self.solver_dict["system_scaling"] = 0.8 * self.solver_dict["system_scaling"] + 0.2 * D.ar_numpy.maximum(D.ar_numpy.abs(initial_state), D.ar_numpy.abs(dState / timestep)) + self.solver_dict["system_scaling"] = 0.8 * self.solver_dict["system_scaling"] + 0.2 * D.ar_numpy.maximum(D.ar_numpy.abs(initial_state), D.ar_numpy.abs(dState / timestep)) else: self.solver_dict["system_scaling"] = D.ar_numpy.maximum(D.ar_numpy.abs(initial_state), D.ar_numpy.abs(dState / timestep)) total_error_tolerance = (atol + rtol * self.solver_dict["system_scaling"]) with D.numpy.errstate(divide='ignore'): - epsilon_current = D.ar_numpy.reciprocal(D.ar_numpy.linalg.norm(diff / total_error_tolerance)) + epsilon_current = D.ar_numpy.reciprocal(D.ar_numpy.sqrt(D.ar_numpy.sum((diff / total_error_tolerance)**2))) if "epsilon_last" in self.solver_dict: epsilon_last = self.solver_dict["epsilon_last"] else: diff --git a/desolver/integrators/integrator_types.py b/desolver/integrators/integrator_types.py index c870522..2bef57c 100644 --- a/desolver/integrators/integrator_types.py +++ b/desolver/integrators/integrator_types.py @@ -137,7 +137,7 @@ def __init__(self, sys_dim, dtype, rtol=None, atol=None, device=None): self._implicit_stages = [col for col in range(self.stages) if D.ar_numpy.any(self.tableau_intermediate[col, col + 1:] != 0.0)] self._requires_high_precision = False - solver_dict_preserved = dict(safety_factor=0.8, order=self.order, atol=self.atol, rtol=self.rtol, redo_count=0) + solver_dict_preserved = dict(safety_factor=0.8, order=self.order, atol=self.atol*D.ar_numpy.ones(sys_dim, **self.array_constructor_kwargs), rtol=self.rtol*D.ar_numpy.ones(sys_dim, **self.array_constructor_kwargs), redo_count=0) self.solver_dict = dict() self.solver_dict.update(solver_dict_preserved) self.solver_dict.update(dict( @@ -157,7 +157,9 @@ def __init__(self, sys_dim, dtype, rtol=None, atol=None, device=None): self.adaptation_fn = integrator_utilities.implicit_aware_update_timestep self.__jac_eye = None self.__rhs_jac = None - self.solver_dict_keep_keys = set(solver_dict_preserved.keys()) + self.solver_dict_keep_keys = set(solver_dict_preserved.keys()) | {"num_step_retries"} + self.solver_dict['atol'] = self.solver_dict['atol']*D.ar_numpy.ones_like(self.dState) + self.solver_dict['rtol'] = self.solver_dict['rtol']*D.ar_numpy.ones_like(self.dState) def __call__(self, rhs, initial_time, initial_state, constants, timestep): self.solver_dict = {k:v for k,v in self.solver_dict.items() if k in self.solver_dict_keep_keys} @@ -191,8 +193,6 @@ def __call__(self, rhs, initial_time, initial_state, constants, timestep): self.solver_dict['initial_state'] = initial_state self.solver_dict['initial_time'] = initial_time self.solver_dict['timestep'] = self.dTime - self.solver_dict['atol'] = self.atol - self.solver_dict['rtol'] = self.rtol self.solver_dict['dState'] = self.dState timestep, redo_step = self.update_timestep() if self.is_implicit and not self.solver_dict.get("newton_iteration_success"): @@ -201,13 +201,12 @@ def __call__(self, rhs, initial_time, initial_state, constants, timestep): if redo_step: for _ in range(self.solver_dict.get("num_step_retries", 64)): self.solver_dict['redo_count'] += 1 + trial_timestep = D.ar_numpy.copysign(D.ar_numpy.minimum(D.ar_numpy.abs(timestep), D.ar_numpy.abs(current_timestep)), current_timestep) try: - timestep, (self.dTime, self.dState) = self.step(rhs, initial_time, initial_state, constants, - D.ar_numpy.minimum(timestep, current_timestep)) + timestep, (self.dTime, self.dState) = self.step(rhs, initial_time, initial_state, constants, trial_timestep) except (*D.linear_algebra_exceptions, ValueError): self._requires_high_precision = True - timestep, (self.dTime, self.dState) = self.step(rhs, initial_time, initial_state, constants, - D.ar_numpy.minimum(timestep, current_timestep)) + timestep, (self.dTime, self.dState) = self.step(rhs, initial_time, initial_state, constants, trial_timestep) self.solver_dict['diff'] = timestep * self.get_error_estimate() self.solver_dict['timestep'] = self.dTime self.solver_dict['dState'] = self.dState @@ -219,7 +218,7 @@ def __call__(self, rhs, initial_time, initial_state, constants, timestep): break if redo_step: raise exception_types.FailedToMeetTolerances( - "Failed to integrate system from {} to {} ".format(self.dTime, self.dTime + timestep) + + "Failed to integrate system from {} to {} ".format(initial_time, initial_time + self.dTime) + "to the tolerances required: rtol={}, atol={}".format(self.rtol, self.atol) ) @@ -242,7 +241,7 @@ def algebraic_system_jacobian(self, next_state, rhs, initial_time, initial_state if self._requires_high_precision: __aux_states = D.ar_numpy.reshape(next_state, self.stage_values.shape) __step = self.numel - if self.__jac_eye is None: + if not hasattr(self, "__jac_eye") or self.__jac_eye is None: self.__jac_eye = D.ar_numpy.eye(self.tableau_intermediate.shape[0] * __step, **self.array_constructor_kwargs) self.__jac = D.ar_numpy.copy(self.__jac_eye) D.ar_numpy.copyto(self.__jac, self.__jac_eye) @@ -279,9 +278,9 @@ def step(self, rhs, initial_time, initial_state, constants, timestep): if self.is_implicit: initial_guess = self.stage_values - if self.__rhs_jac is None: + if not hasattr(self, "__rhs_jac") or self.__rhs_jac is None: self.__rhs_jac = rhs.jac(initial_time, initial_state, **constants) - desired_tol = D.ar_numpy.max(D.ar_numpy.abs(self.atol + D.ar_numpy.max(D.ar_numpy.abs(self.rtol * initial_state)))) * 0.5 + desired_tol = D.ar_numpy.min(D.ar_numpy.abs(self.atol + D.ar_numpy.max(D.ar_numpy.abs(self.rtol * initial_state)))) * 0.5 aux_root, (self.solver_dict["newton_iteration_success"], num_iter, _, _, prec) = \ utilities.optimizer.nonlinear_roots( self.algebraic_system, initial_guess, @@ -488,6 +487,8 @@ def __init__(self, sys_dim, **kwargs): self.__interpolants = None self.__interpolant_times = None self.solver_dict = dict(safety_factor=0.5 if self.basis_integrators[0].is_implicit else 0.9, atol=self.atol, rtol=self.rtol, order=self.basis_integrators[0].order + richardson_iter // 2) + self.solver_dict['atol'] = self.solver_dict['atol']*D.ar_numpy.ones_like(self.dState) + self.solver_dict['rtol'] = self.solver_dict['rtol']*D.ar_numpy.ones_like(self.dState) def dense_output(self): return self.__interpolant_times, self.__interpolants diff --git a/desolver/integrators/utilities.py b/desolver/integrators/utilities.py index a9d8983..3279ba6 100644 --- a/desolver/integrators/utilities.py +++ b/desolver/integrators/utilities.py @@ -22,7 +22,7 @@ def implicit_aware_update_timestep(integrator: TableauIntegrator): # ---- # # Adjust the timestep according to the precision achieved by the # nonlinear system solver at each timestep - total_error_tolerance = integrator.solver_dict['atol'] + integrator.solver_dict['rtol'] + total_error_tolerance = D.ar_numpy.sqrt(D.ar_numpy.mean((integrator.solver_dict['atol'] + integrator.solver_dict['rtol'])**2)) tau3 = D.ar_numpy.ones_like(integrator.solver_dict['timestep']) if integrator.solver_dict['newton_prec1'] > 0.0: with D.numpy.errstate(divide='ignore'): diff --git a/desolver/torch_ext/__init__.py b/desolver/torch_ext/__init__.py new file mode 100644 index 0000000..8252340 --- /dev/null +++ b/desolver/torch_ext/__init__.py @@ -0,0 +1,5 @@ +try: + import torch + from desolver.torch_ext.integrators import torch_solve_ivp +except ImportError: + pass diff --git a/desolver/torch_ext/integrators.py b/desolver/torch_ext/integrators.py new file mode 100644 index 0000000..b520247 --- /dev/null +++ b/desolver/torch_ext/integrators.py @@ -0,0 +1,285 @@ +import torch +import torch.func +import desolver.integrators +import inspect +from desolver.differential_system import DiffRHS, OdeResult, solve_ivp +from torch.utils import _pytree as pytree + + +def torch_solve_ivp(fun, t_span, y0, method='RK45', events=None, vectorized=False, args=None, kwargs:dict|None=None, **options): + fn = fun + while isinstance(fn, DiffRHS): + fn = fn.rhs + fn_args_kwargs = inspect.getfullargspec(fn) + system_parameters = { + "fun": fun, + "t_span": t_span, + "y0": y0, + "method": method, + "events": events, + "kwargs": kwargs if kwargs is not None else dict(), + "options": options + } + if args is not None: + system_parameters["kwargs"].update(dict(zip(fn_args_kwargs[0][2:], args))) + parameter_keys = ["fun", "t_span", "y0", "method", "events", "kwargs", "options"] + + flattened_parameters, treespec = pytree.tree_flatten(system_parameters) + tensor_parameters = [key for key,val in enumerate(flattened_parameters) if torch.is_tensor(val) and val.requires_grad] + non_tensor_parameters = [key for key,val in enumerate(flattened_parameters) if not torch.is_tensor(val) or (torch.is_tensor(val) and not val.requires_grad)] + + class WrappedSolveIVP(torch.autograd.Function): + @staticmethod + def forward(*flattened_args): + _system_parameters = pytree.tree_unflatten(flattened_args, treespec) + options = _system_parameters.pop('options') + system_solution = solve_ivp(**_system_parameters, **options) + return system_solution.t.clone().contiguous(), system_solution.y.clone().contiguous(), system_solution + + + @staticmethod + def setup_context(ctx:torch.autograd.function.FunctionCtx, inputs:tuple[desolver.integrators.IntegratorTemplate,torch.Tensor], outputs:tuple[torch.Tensor]): + tensors_to_save = [inputs[i] for i in tensor_parameters] + objects_to_save = [inputs[i] for i in non_tensor_parameters] + ctx.save_for_backward(outputs[0], outputs[1], *tensors_to_save) + ctx.save_for_forward(outputs[0], outputs[1], *tensors_to_save) + ctx.objects_to_save = objects_to_save + ctx.atol, ctx.rtol = outputs[2]["ode_system"].integrator.atol, outputs[2]["ode_system"].integrator.rtol + + + @staticmethod + def vjp(ctx:torch.autograd.function.FunctionCtx, temporal_cotangents:torch.Tensor, state_cotangents:torch.Tensor, *ignored_args): + flattened_args = [None for _ in range(len(flattened_parameters))] + evaluation_times, evaluation_states = ctx.saved_tensors[:2] + for idx, jdx in enumerate(tensor_parameters): + flattened_args[jdx] = ctx.saved_tensors[idx+2] + for idx, jdx in enumerate(non_tensor_parameters): + flattened_args[jdx] = ctx.objects_to_save[idx] + + _system_parameters = pytree.tree_unflatten(flattened_args, treespec) + fun, t_span, y0, method, _, kwargs, options = [_system_parameters[key] for key in parameter_keys] + + input_grads = {key: None for key in parameter_keys} + input_grads["events"] = None if events is None else [None]*len(events) + input_grads["options"] = {key: None for key in options.keys()} + if "callbacks" in input_grads["options"] and options["callbacks"] is not None: + input_grads["options"]["callbacks"] = [None]*len(options["callbacks"]) + + constants = dict() + if kwargs is not None: + constants.update(kwargs) + + tensor_constants = [key for key,val in constants.items() if torch.is_tensor(val) and val.requires_grad] + non_tensor_constants = set(constants.keys()) - set(tensor_constants) + non_tensor_constants = {key: constants[key] for key in non_tensor_constants} + + y_dim, y_shape = evaluation_states[...,-1].numel(), evaluation_states[...,-1].shape + + if len(tensor_constants) > 0: + const_dims, const_shapes = [constants[key].numel() for key in tensor_constants], [constants[key].shape for key in tensor_constants] + const_total_dim = sum(const_dims) + else: + const_total_dim = None + + def wrapped_rhs(t, y, kwargs): + _constants = {key: value for key,value in zip(tensor_constants, kwargs)} + return fun(t, y, **_constants, **non_tensor_constants) + + def augmented_reverse_fn(t, y, **kwargs): + if const_total_dim is not None: + _y, _cot, _ = torch.split(y, [y_dim, y_dim, const_total_dim]) + else: + _y, _cot = torch.split(y, [y_dim, y_dim]) + _y, _cot = _y.view(y_shape), _cot.view(y_shape) + _dydt, vjp = torch.func.vjp(wrapped_rhs, t, _y, [kwargs[key] for key in tensor_constants]) + _, _dcotdt, _dargs_dt = vjp(_cot, retain_graph=torch.is_grad_enabled()) + ret_dydt = torch.cat([ + _dydt.view(-1), + -torch.cat([ + _dcotdt.view(-1), + *[i.view(-1) for i in _dargs_dt] + ], dim=-1) + ], dim=-1) + return ret_dydt + + cot_split = [(t,v.view(-1)) for t,v in zip(evaluation_times.unbind(-1), state_cotangents.unbind(-1)) if torch.any(v != 0.0)] + cot_split = cot_split[::-1] + if not torch.any(state_cotangents[...,0] != 0.0): + cot_split = cot_split + [(evaluation_times[0], state_cotangents[...,0])] + cot_tf, adj_tf = cot_split[0] + nearest_state_index = torch.atleast_1d(torch.nonzero(evaluation_times == cot_tf))[0] + + augmented_y = torch.cat([ + evaluation_states[...,nearest_state_index].view(-1), + cot_split[0][1].view(-1), + ], dim=-1) + + if len(tensor_constants) > 0: + augmented_y = torch.cat([ + augmented_y, + *[torch.zeros_like(constants[key].view(-1)) for key in tensor_constants] + ], dim=-1) + + options["atol"], options["rtol"] = ctx.atol, ctx.rtol + options["atol"] = torch.cat([ + torch.ones_like(y0.view(-1))*options["atol"], + torch.ones_like(augmented_y[y_dim:])*torch.inf + ], dim=-1) + options["rtol"] = torch.cat([ + torch.ones_like(y0.view(-1))*options["rtol"], + torch.ones_like(augmented_y[y_dim:])*torch.inf + ], dim=-1) + for cot_t0, cot_state in cot_split[1:]: + res = torch_solve_ivp(augmented_reverse_fn, t_span=[cot_tf, cot_t0], y0=augmented_y, method=method, kwargs={key: constants[key] for key in tensor_constants}, **options) + cot_tf = res.t[-1] + augmented_y = res.y[...,-1] + torch.cat([ + torch.zeros_like(y0.view(-1)), + cot_state, + *[torch.zeros_like(constants[key].view(-1)) for key in tensor_constants] + ], dim=-1) + + if const_total_dim is not None: + y_t0, adj_t0, args_tf = torch.split(augmented_y, [y_dim, y_dim, const_total_dim]) + args_tf = torch.split(args_tf, const_dims) + args_tf = {key: v.view(s) for key,s,v in zip(tensor_constants, const_shapes, args_tf)} + else: + y_t0, adj_t0 = torch.split(augmented_y, [y_dim, y_dim]) + args_tf = None + + rhs_at_t0 = wrapped_rhs( + t_span[0], y_t0.view(y_shape), [constants[key] for key in tensor_constants] + ) + rhs_at_tf = wrapped_rhs( + t_span[1], evaluation_states[...,-1].view(y_shape), [constants[key] for key in tensor_constants] + ) + + input_grads["t_span"] = ( + (temporal_cotangents[ 0] - torch.sum(adj_tf * rhs_at_tf.ravel())).view(temporal_cotangents[ 0].shape) if torch.is_tensor(t_span[0]) and t_span[0].requires_grad else None, + (temporal_cotangents[-1] + torch.sum(adj_t0 * rhs_at_t0.ravel())).view(temporal_cotangents[-1].shape) if torch.is_tensor(t_span[1]) and t_span[1].requires_grad else None, + ) + + input_grads["y0"] = adj_t0.view(y_shape) + if kwargs is not None: + input_grads["kwargs"] = { + key: args_tf[key] if key in tensor_constants else None for key in kwargs.keys() + } + + return tuple(pytree.tree_flatten(input_grads)[0]) + + + @staticmethod + def jvp(ctx:torch.autograd.function.FunctionCtx, *flattened_tangents): + flattened_args = [None for _ in range(len(flattened_parameters))] + evaluation_times, evaluation_states = ctx.saved_tensors[:2] + for idx, jdx in enumerate(tensor_parameters): + flattened_args[jdx] = ctx.saved_tensors[idx+2] + for idx, jdx in enumerate(non_tensor_parameters): + flattened_args[jdx] = ctx.objects_to_save[idx] + + _system_parameters = pytree.tree_unflatten(flattened_args, treespec) + _system_tangents = pytree.tree_unflatten(flattened_tangents, treespec) + fun, t_span, y0, method, _, kwargs, options = [_system_parameters[key] for key in parameter_keys] + _, (t0_tangent, tf_tangent), y0_tangent, _, _, kwargs_tangents, _ = [_system_tangents[key] for key in parameter_keys] + + input_grads = {key: None for key in parameter_keys} + input_grads["events"] = None if events is None else [None]*len(events) + input_grads["options"] = {key: None for key in options.keys()} + if "callbacks" in input_grads["options"] and options["callbacks"] is not None: + input_grads["options"]["callbacks"] = [None]*len(options["callbacks"]) + + constants = dict() + if kwargs is not None: + constants.update(kwargs) + constants_tangents = dict() + if kwargs_tangents is not None: + constants_tangents.update(kwargs_tangents) + + tensor_constants = [key for key,val in constants_tangents.items() if torch.is_tensor(val)] + non_tensor_constants = set(constants.keys()) - set(tensor_constants) + non_tensor_constants = {key: constants[key] for key in non_tensor_constants} + + y_dim, y_shape = evaluation_states[...,-1].numel(), evaluation_states[...,-1].shape + + if len(tensor_constants) > 0: + const_dims, const_shapes = [constants[key].numel() for key in tensor_constants], [constants[key].shape for key in tensor_constants] + const_total_dim = sum(const_dims) + else: + const_total_dim = None + + def wrapped_rhs(t, y, *args): + _constants = {key: value for key,value in zip(tensor_constants, args)} + return fun(t, y, **_constants, **non_tensor_constants) + + def augmented_forward_fn(t, y, **kwargs): + if const_total_dim is not None: + _y, _tan, _kwargs_tangents = torch.split(y, [y_dim, y_dim, const_total_dim]) + _kwargs_tangents = torch.split(_kwargs_tangents, const_dims) + _kwargs_tangents = [i.view(j) for j,i in zip(const_shapes, _kwargs_tangents)] + else: + _y, _tan = torch.split(y, [y_dim, y_dim]) + _kwargs_tangents = [] + _y, _tan = _y.view(y_shape), _tan.view(y_shape) + _dydt, _dtandt = torch.autograd.functional.jvp(wrapped_rhs, (t, _y, *[kwargs[key] for key in tensor_constants]), (torch.zeros_like(t), _tan, *_kwargs_tangents)) + ret_dydt = torch.cat([ + _dydt.view(-1), + _dtandt.view(-1), + *[torch.zeros_like(i.view(-1)) for i in _kwargs_tangents] + ], dim=-1) + return ret_dydt + + tan_t0 = t_span[0] + time_tangents = torch.zeros_like(evaluation_times) + if t0_tangent is not None: + time_tangents[0] = t0_tangent + state_tangents = torch.zeros_like(evaluation_states) + if y0_tangent is not None: + state_tangents[...,0] = y0_tangent + + rhs_at_t0 = wrapped_rhs( + t_span[0], y0.view(y_shape), *[constants[key] for key in tensor_constants] + ) + rhs_at_tf = wrapped_rhs( + t_span[1], evaluation_states[...,-1].view(y_shape), *[constants[key] for key in tensor_constants] + ) + + augmented_y = torch.cat([ + y0.view(-1), + (y0_tangent - rhs_at_t0*time_tangents[0]).view(-1), + ], dim=-1) + + if len(tensor_constants) > 0: + augmented_y = torch.cat([ + augmented_y, + *[constants_tangents[key].view(-1) for key in tensor_constants] + ], dim=-1) + + options["atol"], options["rtol"] = ctx.atol, ctx.rtol + options["atol"] = torch.cat([ + torch.ones_like(y0.view(-1))*options["atol"], + torch.ones_like(augmented_y[y_dim:])*torch.inf + ], dim=-1) + options["rtol"] = torch.cat([ + torch.ones_like(y0.view(-1))*options["rtol"], + torch.ones_like(augmented_y[y_dim:])*torch.inf + ], dim=-1) + res = torch_solve_ivp(augmented_forward_fn, t_span=(tan_t0, t_span[1]), y0=augmented_y, method=method, kwargs={key: constants[key] for key in tensor_constants}, **options) + if const_total_dim is not None: + state_tangents = torch.split(res.y, [y_dim, y_dim, const_total_dim])[1].reshape(*y_shape, -1).clone().contiguous() + else: + state_tangents = torch.split(res.y, [y_dim, y_dim])[1].reshape(*y_shape, -1).clone().contiguous() + + if tf_tangent is not None: + time_tangents[-1] = tf_tangent + state_tangents[...,-1] = state_tangents[...,-1] + rhs_at_tf*time_tangents[-1] + + return time_tangents.contiguous(), state_tangents.contiguous(), None + + + soln = WrappedSolveIVP.apply(*flattened_parameters) + ode_sys_soln = soln[2] + return OdeResult( + t=soln[0], y=soln[1], sol=ode_sys_soln.ode_system.sol, t_events=ode_sys_soln.ode_system.events, + y_events=ode_sys_soln.ode_system.events, nfev=ode_sys_soln.ode_system.nfev, njev=ode_sys_soln.ode_system.njev, + status=ode_sys_soln.ode_system.integration_status, message=ode_sys_soln.ode_system.integration_status, + success=ode_sys_soln.ode_system.success, ode_system=ode_sys_soln.ode_system + ) diff --git a/desolver/torch_ext/tests/test_differentiability.py b/desolver/torch_ext/tests/test_differentiability.py new file mode 100644 index 0000000..1f22233 --- /dev/null +++ b/desolver/torch_ext/tests/test_differentiability.py @@ -0,0 +1,77 @@ +import pytest +try: + import torch + from desolver.torch_ext import torch_solve_ivp + pytorch_available = True +except ImportError: + pytorch_available = False + + +def rhs(t, state, k, m): + return torch.stack([state[...,1], -k/m*state[...,0]], dim=-1) + + +@pytest.mark.slow +def test_gradcorrectness_variable_steps(pytorch_only): + constants = dict( + k = 1.0, + m = 1.0 + ) + + T = 2*torch.pi*(constants['m']/constants['k'])**0.5 + + y_init = torch.tensor([1., 0.], dtype=torch.float64) + + def test_fn(y, initial_time, final_time, spring_constant, mass_constant): + res_out = torch_solve_ivp(rhs, t_span=(initial_time, final_time), y0=y, method="RK87", args=[spring_constant, mass_constant], atol=1e-10, rtol=1e-10) + return res_out.y[...,-1].sin().abs().mean() + res_out.t[-1].square().sum() + res_out.t[0].square().sum() + + grad_inputs = [y_init.clone().requires_grad_(True), torch.tensor(0.0, dtype=torch.float64, requires_grad=True), torch.tensor(T/3, dtype=torch.float64, requires_grad=True), + torch.tensor(constants['k'], dtype=torch.float64, requires_grad=True), torch.tensor(constants['m'], dtype=torch.float64, requires_grad=True)] + gradgrad_inputs = torch.tensor(0.2+1/3) + + assert torch.autograd.gradcheck(test_fn, grad_inputs, check_forward_ad=True, check_backward_ad=True, raise_exception=True) + assert torch.autograd.gradgradcheck(test_fn, grad_inputs, gradgrad_inputs, check_fwd_over_rev=True, check_rev_over_rev=True, raise_exception=True) + + +@pytest.mark.slow +def test_gradcorrectness_fixed_steps(pytorch_only): + constants = dict( + k = 1.0, + m = 1.0 + ) + + T = 2*torch.pi*(constants['m']/constants['k'])**0.5 + + t0 = 0.0 + + y_init = torch.tensor([1., 0.], dtype=torch.float64) + + def test_fn(y): + res_out = torch_solve_ivp(rhs, t_span=(t0, T/3+T/5), y0=y, method="RK5Solver", kwargs=constants, first_step=(T/3+T/7)/24) + return res_out.y[0,1].abs().mean() + + assert torch.autograd.gradcheck(test_fn, y_init.clone().requires_grad_(True), atol=1e-4, rtol=1e-4, check_forward_ad=True, check_backward_ad=True, raise_exception=True) + assert torch.autograd.gradgradcheck(test_fn, y_init.clone().requires_grad_(True), torch.ones_like(y_init).square().mean().requires_grad_(True)*0.182, atol=1e-4, rtol=1e-4, check_fwd_over_rev=True, check_rev_over_rev=True, raise_exception=True) + + +@pytest.mark.slow +def test_gradcorrectness_multiple_fixed_steps(pytorch_only): + constants = dict( + k = 1.0, + m = 1.0 + ) + + T = 2*torch.pi*(constants['m']/constants['k'])**0.5 + + y_init = torch.tensor([1., 0.], dtype=torch.float64) + + def test_fn(y, spring_constant, mass_constant): + res_out = torch_solve_ivp(rhs, t_span=(0.0, T/3+T/7), y0=y, method="RK5Solver", args=[spring_constant, mass_constant], first_step=(T/3+T/7)/24) + return res_out.y[...,[4, 18, -1]].sin().abs().mean() + res_out.t[-1].square().sum() + res_out.t[0].square().sum() + + grad_inputs = [y_init.clone().requires_grad_(True), torch.tensor(constants['k'], dtype=torch.float64, requires_grad=True), torch.tensor(constants['m'], dtype=torch.float64, requires_grad=True)] + gradgrad_inputs = torch.tensor(1.0+1/3) + + assert torch.autograd.gradcheck(test_fn, grad_inputs, check_forward_ad=True, check_backward_ad=True, raise_exception=True) + assert torch.autograd.gradgradcheck(test_fn, grad_inputs, gradgrad_inputs, check_fwd_over_rev=True, check_rev_over_rev=True, raise_exception=True) diff --git a/docs/examples/pytorch/Example 2 - PyTorch - Neural Network.ipynb b/docs/examples/pytorch/Example 2 - PyTorch - Neural Network.ipynb index 5642822..d14a160 100644 --- a/docs/examples/pytorch/Example 2 - PyTorch - Neural Network.ipynb +++ b/docs/examples/pytorch/Example 2 - PyTorch - Neural Network.ipynb @@ -29,6 +29,8 @@ ], "source": [ "%matplotlib inline\n", + "%load_ext autoreload\n", + "%autoreload 2\n", "from matplotlib import pyplot as plt\n", "\n", "import copy\n", @@ -80,8 +82,8 @@ "$$\n", "\"\"\"\n", ")\n", - "def rhs(t, state, k, m, **kwargs):\n", - " return torch.tensor([[0.0, 1.0], [-k/m, 0.0]], dtype=state.dtype, device=state.device)@state" + "def rhs(t, state, k, m):\n", + " return torch.stack([state[...,1], -k/m*state[...,0]], dim=-1)" ] }, { @@ -115,7 +117,7 @@ "$$\n" ], "text/plain": [ - ",\n", + ",\n", "$$\n", "\\frac{\\mathrm{d}y}{\\mathrm{dt}} = \\begin{bmatrix}\n", " 0 & 1 \\\\\n", @@ -196,7 +198,7 @@ "\n", "# Initial and Final integration times\n", "t0 = 0.0\n", - "tf = 40 * T" + "tf = 40*T" ] }, { @@ -234,7 +236,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB3kAAAGGCAYAAAB2cjuyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/Xm4ZVV1Loy/a7enqXOqpTooKRpFCFAgagWjCSQFRXMV/G6Mmni5EiFfSEhCKolaiYJNImoQND+5kqAETPKpaQjeCEEqpWVHBaQpKBCQpoCC6qj29LtZa/3+2HuutfY5u5lrrTHmXKdqvM9TD5x99tlnnDnmnGvO8Y53DMf3fR8CgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgmBXI2TZAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBPoQklcgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAhmEYTkFQgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEglkEIXkFAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFgFkFIXoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIJhFEJJXIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIZhGE5BUIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBIJZBCF5BQKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBYBZBSF6BQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCCYRRCSVyAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCGYRhOQVCAQCgUAgEAgEAoFAIBAIBAKBQCAQCASCWQQheQUCgUAgEAgERyzGxsaQy+Vw00032TZFIBAIBAKBQCAQCAQCgUAg0IaQvAKBQCAQCASCIxZPPPEEfN/Hqaeeaux3jo2N4brrrsMFF1yABQsWwHEc3H777do/X6lU8JGPfATLly9Hf38/Vq9ejQ0bNvAZbBBpxwY4vMdHIBAIBAKBQCAQCAQCgUBBSF6BQCAQCAQCwRGLrVu3AgBOO+00Y79z7969+NSnPoWnnnoKq1ativ3zH/zgB3HjjTfit37rt/ClL30J+XweF110EX784x8zWGsWaccGOLzHRyAQCAQCgUAgEAgEAoFAoWDbAIFAIBAIBAKBwBa2bt2KRYsWYenSpcZ+57Jly7Bz504sXboUDz30EN7ylrdo/+yDDz6Ib37zm/jrv/5r/Omf/ikA4LLLLsOpp56KD3/4w7j//vu5zDaCNGMDHP7jIxAIBAKBQCAQCAQCgUCgIEpegUAgEAgEAsERi61bt+IXfuEXWl679dZbUSqVcM0118B1XfLfWS6XE5PK//qv/4p8Po/f+Z3fCV7r6+vDhz70IWzevBnbt2+P9XnnnXcezj77bGzevBnnnHMOBgcHceKJJ+Kee+4BANxzzz34xV/8RQwODuKMM87Aww8/nMhuXaQZG4B+fAQCgUAgEAgEAoFAIBAIsgpR8goEAoFAIBAIjlhs3boV73//+wEA9Xod11xzDf7u7/4ON998M6688sqW99ZqNRw6dEjrcxcsWIBcjj6f8tFHH8Ub3vAGDA8Pt7z+1re+FQCwZcsWrFixQvvzHn/8cSxcuBDvfe978aEPfQjvfve78ZnPfAa/+Zu/ic997nP467/+a1x55ZW45JJL8JnPfAa//du/jccee6ztZx2O4yMQCAQCgUAgEAgEAoFAkFUIySsQCAQCgUAgOCKxc+dO7Nu3D6eeeir279+P97znPdiyZQvuu+8+nHPOOTPe/5Of/ATnnnuu1mdv27YNK1eupDUYDZuXLVs243X12o4dO7Q/a8+ePdizZw8cx8Gjjz4afEYul8Mf/uEf4otf/CIeeeSRgDDdu3cvbrrpJlQqFZTL5Rmfd7iNj0AgEAgEAoFAIBAIBAJBliEkr0AgEAgEAoHgiMTjjz8OAHAcB295y1tQKpXwwAMP4MQTT2z7/lWrVmHDhg1an83V43dycrItwdrX1xd8Xxfq7//EJz7RQozOmTMHAPDXf/3XLYrYuXPnIpfLdVTgHm7jIxAIBAKBQCAQCAQCgUCQZQjJKxAIBAKBQCA4IrF161YAwNVXX403v/nNuOeeezBv3ryO758/fz7WrFljyLr26O/vR6VSmfH61NRU8H1dqL//Xe96V8vrzzzzDPr7+3Heeee1vP7zn/8cJ5xwAorFYtvPO9zGRyAQCAQCgUAgEAgEAoEgyxCSVyAQCAQCgUBwRGLr1q049thjccIJJ+CJJ57A2NhYV5K3Wq1i//79Wp991FFHIZ/PE1kaYtmyZXj11VdnvL5z504AwPLly7U/6/HHH8eyZctm/Mxjjz2GU089dYYi9rHHHsPpp5/e8fMOt/ERCAQCgUAgEAgEAoFAIMgyhOQVCAQCgUAgEByR2Lp1K8444wzceuutePOb34x3v/vd+NGPfhSU9p2O+++/33rP2TPOOAPf//73MTIy0lJK+YEHHgi+r4vHH38cq1atmvH6Y489hosvvrjltVqthmeeeQa/8Ru/0fHzDrfxEQgEAoFAIBAIBAKBQCDIMoTkFQgEAoFAIBAccXBdF0899RQuvvhiHHXUUbjzzjvx9re/HVdddRX+/u//vu3PmO45OzExgZdffhmLFi3CokWLAAC//uu/jhtuuAF/93d/hz/90z8FAFQqFfz93/89Vq9ejRUrVmh9tuu6+NnPfjajJPPevXuxc+fOGeTvU089hVqt1lXJeziNj0AgEAgEAoFAIBAIBAJB1iEkr0AgEAgEAoHgiMOzzz6LqakpnHbaaQCAs846C1/5yldw+eWX46yzzsLVV18942coe85++ctfxsGDB7Fjxw4AwH/8x3/glVdeAQD8wR/8AebOnYsHH3wQ5557Lq677jp84hOfAACsXr0a73nPe7B+/Xrs2bMHJ554Iu644w68+OKL+NrXvjbj9ziOg1/5lV/Bpk2b2v7908ncxx57DABmvP74448DQFeSl2p8dMYGAMn4CAQCgUAgEAgEAoFAIBDMVgjJKxAIBAKBQCA44rB161YAwKmnnhq89sEPfhA//elPsW7dOpx++un45V/+Zbbff8MNN+Cll14Kvr7zzjtx5513AgA+8IEPBERmO3z961/Hxz/+cfzDP/wDDhw4gNNPPx3f+c53Ztg7NjYGoNGndjrU3z+dtO1E5m7duhXDw8MsJZanI83YAPrjIxAIBAKBQCAQCAQCgUAwm+H4vu/bNkIgEAgEAoFAIBDQ4p577sH/+B//A4899ligWBYIBAKBQCAQCAQCgUAgEBweyNk2QCAQCAQCgUAgENDj+9//Pt73vvcJwSsQCAQCgUAgEAgEAoFAcBhClLwCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAwiyBKXoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIJhFmFUk7w9/+EO8853vxPLly+E4Du66666eP7Np0ya86U1vQrlcxoknnojbb799xntuvvlmrFy5En19fVi9ejUefPBBeuMFAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoGAALOK5B0fH8eqVatw8803a71/27ZtuPjii3Huuediy5YtuOaaa3DFFVfgu9/9bvCeb33rW1i3bh2uu+46PPLII1i1ahXWrl2LPXv2cP0ZAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAkBiztiev4zj493//d1x66aUd3/ORj3wEd999N5544ongtfe97304ePAg7r33XgDA6tWr8Za3vAVf/vKXAQCe52HFihX4gz/4A3z0ox9l/RsEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoEgLgq2DeDE5s2bsWbNmpbX1q5di2uuuQYAUK1W8fDDD2P9+vXB93O5HNasWYPNmzd3/NxKpYJKpRJ87Xke9u/fj4ULF8JxHNo/QiAQCAQCgUAgEAgEAoFAIBAIjjD4vo/R0VEsX74cudysKkgpyAg8z8OOHTswNDQkcXuBQDArEPfZd1iTvLt27cKSJUtaXluyZAlGRkYwOTmJAwcOwHXdtu95+umnO37u9ddfj09+8pMsNgsEAoFAIBAIBAKBQCAQCAQCgaCB7du345hjjrFthmAWYseOHVixYoVtMwQCgSA2dJ99hzXJy4X169dj3bp1wdeHDh3C6173Ojz29PNYuWyRFZv+6b9fxPX/+QwA4M8veiN+c/WxVuzYO1rBuV/YBN8HzlgxD/94xWordgDAFXf8FP/9wn4AwHeveQeOnj9gxY5/fWg7PvEfPwMAXLPm9bjiHcdbsePAeBW/+oUfoOZ6eMOSObjz937Jih0AcNU/PoQfPbsPAPDt338bTlg8ZMWObz/6Kv7irkY59995x/H4wzWvt2LH/vEqfvnz3w++fuKTa63YAQC//08P4wc/3wsA+Kcr3opVK+ZbseOuR1/Fx5q+ueSM5fird59mxY5dhyax5sYfBl9v/cT5VjI/Xc/HlXc8hAdfbOxpt172Zpx9wkLjdgDAbT9+ATdueBYAcMEvLMENv3GGFTsef+UgfvPWB8KvrzsfuZx530xWXbznb+/Hi3snAABffN8ZWHPykh4/xYNP/N8n8a8PvwIAWHPyYnzxfWdasePux3fgI/+2Nfj6oY+tQV8xb9yO/eNV/NqNP0Ct7gEAPvPuU/GuM442bgcA/L//8BB+8lzjuffLb1iE//NbZ1mx485HXsG1334SAFDIOfjBh8/F3P6icTtGpmp4+2e/B6/ZNObTl/wC3v0mO0G76HPPpm/+47FXsf7OxnNvTl8e//mHv4z5gyXjdlTrHt706Q3B13932Vl42wl27jd/+I1H8L2nXwMAXP5LK/En559kxY7vPb0Hf/iNRwEAJy8bwj9esRrlgvk9zfN8nP7J+4Kv7/r9t+FES2foP/3nLbj3yd0AgI//j5Px3re8zoodD7ywDx+64yEAwNtfvxBf+a2zrCl0Tr3uu8H/b/rTc7BoqGzFjmvvegJ3PvoqAOD6/+dUvHOVnefe1lcO4v3Nc9o5Jx2FL//mm6zYAQAXfemHeHn/JPqKOfzXul/BvAHzeysAfHnjs7jlhy8AsHsmef61UVzy5fsBAO94/UJ85QNvtmIHAPzPr9yPZ3aNoph38L0/OcfKcw8AvvbjF3BT835z3TtPwXvebIcM2nlwEufd1Lh7rj5uAb72wbdYsQMA/tdXH8Cj2w/CcYDv/cmv4KihPit2fOPBl/DpOx/Bq1/5IIaG7DzzBLMfau5s374dw8PDHd9Xq9Vw33334fzzz0exaP6OlAZiux2I7XZwJNg+MjKCFStWaD/7DmuSd+nSpdi9e3fLa7t378bw8DD6+/uRz+eRz+fbvmfp0qUdP7dcLqNcnnlpe3x3Baef1PlhwYmfvDyJXLlBYj60Ywq/2+WhxYn/eOolOKUBOACe3FuDU+rHUJ/5xfbaaAUP7ZgKxuTJvXWcfKydMfnusyOBHVv3VLseKDjxr49vg1voQ64APH/IA0r9GLbgm5f3TeD+7eF8fWa/izNPND8mvu/jG1v2BnY8vb9uzTd/t/mZwA4AcPN9Vi64j758AD96aSKw5cURH++wMCY118OXf/xqYMfuyZw13/zlfdtafFNxylg8bP6C+72nd+OhneGetn3Mx1oLY+J6Pv52867QN1P2fHPnEy+0+OaQW8Cx8waN2/Hw03vw8igCW3aMw8qY+L6P+yLPm1cs2QEAW197qcU3B2oFnLTQfFDmydf2wc33IdfkYnZOOtbG5LmDXjAmL4/a8832sXCuegD2VnJYscS8LdsOHQRKA1BFh16yOCYvR8bk6X2uNTt2TuwM7JjwgVcngGOXmbfl57tHW9bvD7aN4YIz7SQo7pzIBbb86+P78In/aafE3qvje1rOrVv3VPGrbzSfzPPyvokW3/zTI3vxhd+wQxLtruQDW770w1dx+TmnoJA3X0LzpdHwLH//y5N4fE8V73j9Ucbt2DMy1eKb2x/ajU9dcqpxOwBgx4QT2HLL5p143y+9EXkLSXAvHNof2PHDF8fx6jhwsoU97cB4Fa+MN8akCuA7Tx/E751zonE7AODJfbVgTP7tif34wC+fbMWOZ54+GNixefskJvwSls41f785NFnDcwdd5MoDcAH88KVx/K9ftJNU9NjuajAm33thFB/6VUuxo58fCux4ZFcF9XwfFliIC4xM1fDE3nC+PrRjCu99y2LjdgDAf0diR1JmV5AUau4MDw/3JHkHBgYwPDw8K4kjsd08xHY7OJJs1332HdbNDM4++2xs3Lix5bUNGzbg7LPPBgCUSiWcddZZLe/xPA8bN24M3hMHP3p2bzqDE2Jkqob/fmFf8PXm5/eh2lStmMa9T+wK/t/1fDy4bb8lO3YG6hAALeNjEq8enMQDkTF46MUDcKOGGcS/PfJK8P++Dzzy0gErdvz7o6/CjwzBIy/bsePZPWP42c6R4OvHth+EZ8k39z65q+Xrx189ZMWOH/68dQ/basmO7fsnsGc07Hv+5I5D1nzz5I6Rrl+bwrO7x1q+js5dk9g9MoXJmht8/fPdY9b2tJf3TbR8/cyuUTt27G+14+fTfGUKByZqGKvUg6+37R1H3bVzFpjum+dfszMmL+8fb7Vjz3iHd/JirFLHa5E97ZUDE6jU3S4/wYcX97aOwYv77IzJC3tb54QtOyp1F9sja3jvWAXjkXVkEtPXyfR1ZArP7Zlmx347dtRcr2WejFddHJioWbFl+vPFlm+e3tX67Le1blzPxzMRW8YqdeyO7HEm8bOMnNOe2NF6Zn7Y0j3L9Xw8GbFl+/5JbNtrZ5489krrmHx32n3HFLa8crDl67uaKmfTcD0fW14ObXn05YPWzkc/fTGcn54P3PnoK13ezYeHX9rfEhf490fs2FFzPfw0ErPZ/Py+lnObSfzkufA+7no+/utnu7u8mw/3P7ev5Y634Wd7rNgxVXNx//N2YnkCgUAgEMwmzCqSd2xsDFu2bMGWLVsAANu2bcOWLVvw8ssvA2iUUb7sssuC9//u7/4uXnjhBXz4wx/G008/jf/zf/4P/vmf/xl//Md/HLxn3bp1uPXWW3HHHXfgqaeewlVXXYXx8XFcfvnlse37yXN7rQS7f/zsXtQ9H8cfNYhFc8oYr7pWLpaVuovNzQPYLx6/AACC0oSmoQ6Cb2uWM91s6WCoLnKnHj2MOeUCRit1PGWBnGkEYxoBKuUbW8GHbc2A3VuPa9jxSOSyaxIqQPfGpUPoK+YwWqnPCDqbgO/7ePXAJABg1Yp5AIDHtx80bgcA7DjYsOPUoxuZjY+/Yofk3XFwCgBw/KJBlAs5jFddvGQpyPxqc0xOWtJQIdoiV5Udr188BwDw9E47hOYrzbl69Lx+lAs5TNZcawTA9gON33v8UQ317rN77ATKFEF03CK7dig/LB4qo7+YR831ra2bl5rk6sqFjaz76aSRKbzY3OePbdphY48HgJeaRMz8gSKGygV4vj2SSAX7X7egMSbbXrMT/Fe/V9lhi6x6ad8EPB8YKhcwf6AYvGYDKtiv5qut9auSitT6tbXHv7RvAjXXx0Apj8XNsrfbLdny892NZ6563mxvPgtN4+nmWf7E5lnglQO2fDOOqZqHvmIOx8zvB4DgLGsa6lz2xqVDVu148tWGHUqpqs7UprFt7xjGqy76i3mc0JyvOw/ZseXxJrmq7je2xkTdx9/0uoYd2/dPwvfNx2x+vnsU41UXg6U8fmF5Y57YegY//FKD0Dz7+EasxFaipEqGVzGbx145ZCWetvXVQxivupjbX8TJy4bh+bAiVvB9Hz9pxq2Ub37w89eM2wEAP3y28XtXN2M2P37uNStCks0v7EOl7mHJsJ3y9wKBQCAQzBbMKpL3oYcewplnnokzz2z0mFu3bh3OPPNMXHvttQCAnTt3BoQvABx33HG4++67sWHDBqxatQpf+MIX8NWvfhVr14b9Lt/73vfihhtuwLXXXoszzjgDW7Zswb333oslS+KX4BqZqmP3yFTKvzI+VGDsjBXzsLpJ4D02LWPVBPaMVFD3fJQKOfxWsyfwQy/ZUfLuPNTww3vefAwKOQevHpwMSBKT2NWcD8cuHMSbVzZ6m9q4MOwba/gm5wAXn74cQENVbAPKNxed2iiJ/tyeMRyyoMzY2fTNMfMHcPrR8wA0MqpN49BkLVBGrv2Fxr5jY/0CwI5mEGjtKQ3fPLtnDFM182ozFQRasWAAb2wGy56woCoer9RxsDk3z2/6ZrpixBQUubrmlIYdz+0ZQ82CSlMFlI9dOIA3NInvZ3aZH5NK3cXukUaGvep/a1vJ+6tvbJQwe/41O+pmZcfKhYM4YXEjsGuDXK25XpCocW5kTGxAkavnntSw48V9E1Z8o/o1r1w0iOOaQfcXLCir6q43Y75us0Roqr9f2bF9/4QV5fkLzbl5/FGDOHZhwzcvWSCc664XEPBqTKwpeZtjosoR7zg4ZeV582yTWH394jkB8W2DcK65Hl5oEjHqeWOLXFXPuV87uTFHdo9UrFQFeKqZaHbS0mGsmN/wzasHzY/JVM0NnnPnNc9HNu57QKjkPb9px4GJGiaq5qsCqCo8pywfxjFN3+w8aD4+MVapB0lv6n6j7oCmsaWZPHvhqcsAAJM1FyOT5n2jqletWjEPR89rJEfstBA7em20ghf3TcBxgItOb4yJLd8o9eylZxyNnNNITN83Zl5Bq+xYfdwCq8kR2/dP4rXRCkqFHN6/utHn3NaetrWZ7H35L61EqZDDVM2zEuv8efO5d9ax843/bgEffvjDH+Kd73wnli9fDsdxcNddd3V9/6ZNm+A4zox/u3bZqRAhEAgEWcSsInnPOecc+L4/49/tt98OALj99tuxadOmGT/z6KOPolKp4Pnnn8cHP/jBGZ979dVX46WXXkKlUsEDDzyA1atXJ7Zxj4WyLnuage6lw304pnlhUK8ZtWO0cehbMlwOFE27LF0Y1AH0uEVzsKKpEnnFQmBI2bF0uA+nHT0XgB0lkSKbjxoq483NA7ItRaKy5ReOnhsE7aaXODOBnc0L0/J5fTijmdm9xYKCVpEhCwZLQabs9PJm5mxpjMmbjp2PRXNKcD3fivL81cA3/Ti1meluY46o8RjqK2D1cY1samtK3ibJu/q4BRgqF1B1PSvEmSKbj5nfj5OaqpmnLZCrajwGSvlg3SillWkoRdfZxy9EXzGHat2zQhIphduKBQN4/eKGb2yQvK8emITr+egr5vCLTRWCLSWvUmSefcJClAoN39hQealkvOMWDgbnoxcsqHdePTiJuuejXMgFVT2ml282BfX3v63pm5rrWwkyP9+044Sj5gTKVRsK2u0HJlFzW9fNS/vt+EaRq287YSHKhRxcz7dCEqnS9ycuHgqIxO0WyNWX9o2j6noYLOXx1pWNdbN9vy0lb+MMcvbxC9FfbDQb32HBN+psePLSoUDJ+4qFMXluzxjqno95A8WAALClFn2iqeQ9+4SFGCoXmraY983WVxp2nHb0XCxvxgVskERPvHoIvg8sn9uHVcfMA2DHN77vB8mzq49fEPQ23WGBwFMJq2e+bh6WNfvf7rJgh9pHjls0GFQqskHeAWHC16oV87BoTkOpucuCLep+88alQ1gy3PCNjbieIpaPntcfVDrZY8k3uyMJ8UpFq+J9JqH8oPwiODwwPj6OVatW4eabb471c8888wx27twZ/Fu82E6faIFAIMgiZhXJOxtg44CsDluLh8o4asjeAUypqpYM9QV27B2rGFfNeJ4fHAaXDvfhqOaF4TULWaGK5F46HI6Jjf4uOyN2qEvlocma8ex/3/dbbFFBOxvrJvDN3L4gY9dG8EFd5pbN7cNJSxuE5mujlZbemibg+34QjDp6Xj9OWd5ISrChjlR+OHpeH36hacdTFsoTv3owvGifvKwRBHlx37jxfo2+7we2HDN/AG9s2mKjZPOrByJ2LFVKXvN2qGDMivkDAdn8/Gvm1c2+7wcJRCsXDQQlNG2UbFaqv9ctCO2wQa4qgux1CwaC8uIvvDZuvK+27/sByXvCUYM4vkmu2kiOUETqsQsHcfyixphss5DwpYKpKxcO4oSjlB3jxstW+r4fqFZPWDwHx6rS0RYI5+czouR9vrlWj180BysDOyaM+8b1/GCevGHJUJAoaUNB++ye0aYdYcKmDXL1mV0N37xh6RBe10wEsKHknaq5QQn6Ny4dtlomWZFEJy8bxtHz7RGJqrrKKcvsjsfIVC34+09ZHo6JjXuFSng7ZfkwljfvfDYUiWo/P2npUHD33HloyvieNlF1g6o8Jxw1B0uHFblq7+65Yv4AlkTGxDRULGL53P5gPGz4plIPfbN4qIylc+35RsXOjhoqW50jKoZ11JxyhFitGD9Du56Pvc3Y2eKhMhYPNcZktwUhiYoTLZpTMv67BXy48MIL8Zd/+Zd497vfHevnFi9ejKVLlwb/cjmhNAQCgUBBdkRi2Mj4C8jVCJFoxw6l5O3DwsESHAfwfGD/eNWoHXvHG8RyzmkcBm2SqyoTdcncCNls0TdL5/Zhbn8RxbwDANg3ZtY3ByZqQS+XxcPl4LC+1wIBry7Vy+f2B5nDew2PBwDsaNqxbG4/5pQLgTLDdKmqaNnopXP7sLR5sdxneP0CrUpeFbSzkcUcJXkXziljbn8Rvm8+aHdoshaQ/sfM78eJTZXmCzaUvM1yjFElrw1CU6m5jpnfj6Pn9WOw1OhBa1qVeHCihtHAN6GC9lkLqmJFwrxuYb9VkjewY8EgXrdgAMW8g8maa7wk4b7xKsYqdThOwzeql6YNkleRzSsXDQTlmm0Qmmp9HLdoECsWDMBxGiU1TT/7do9UMFlzkc85eN2CAbvkakTJq6qLqPLaJqFKJJ+weE6g3hmdquPQpNl2Ftv3T6Ba91Au5HD0/FBJZIXkbSp5X99C8pq345nmfv6GxaFqdcSCb7btHYfr+ZjbX8SS4XKooLVAOCsl/usXzwnKztogeV9p/s7jFg0GqtXRinnfqDPq3P4ihvuKVhW06k61bG5fYIcNRbG6xxw1VMayuQ07JqrmyySr8egv5jFYLmD5PHvkqnrWLppTjih57ZG8i+aUsLh536vWvYBwNQUVhyjmnea+pohEe2Ny1FA5GBOrdgyXsWhOGY4D1D0f+yfMntP2jVfg+YDjNKqNBYSzFUGLIptFySsAzjjjDCxbtgznnXcefvKTn9g2RyAQCDKFgm0DDje8ZuHgow6gi4f7AgJtr0VCc/FwGYV8DgsHS9g7VsWe0amAaDUBVap60ZyGHTZJ3mi55lyDV7VCJEYVxY7jYOFgGbtGprB3rBIEAExAZZIvmlNCuZC3Sq4qW5bO7UNfk1i1QTarMl0q6LBoqITt+yexd6waBL5NQAWiFs0poa+Yx8LAN+bHZEeE5B3qKzTtsEA2N9UgSpGxcE4JhyZr2DdexesN2qFUq8o3ak+zQcC/ElHyLhgsArCztyo1V4OocrBiwQCe3jWKnYem8Ppm6TkjdjSD60cNldFXzAdqURuEyMsRBe28gUYCjY1EgJf3KdXqAAr5HFYuHMSze8bw3J6xgAwwAUWsLhvua/qmqSq2QK5u2xcqaPPNw4BNknflokH0FfNYPrcfrx6cxIv7xo2e01TbikYSQA7HLVJKXrPrxvf9SE/eOUEyjY31q5S8Jx41B/2lPBYPlbFntIKX9k0E69kEtkUSARQJD9jd045bNAeDpcY51ka5ZnVOe93CAQyUClg4WMK+8Sq275/A3GYrFhNQz9plcxtnedVv9RULytW9EQIPzfuNDQWtIhIXziljoFTAgsES9o9XsePgJOb2F43Zoc6oC5vJq+pMb0PJG9gyWA6eNzZKE0cJzf5SHvMHijgwUcOOQ5OYO2DSN2qONHyz1KK6WdmyaKiMwWZJbxskb3T99hXzwbrZeWgK8wfNPW9CsrmMXM4JFbQ2yNXImNTdhmrWToW+UMlbzOewcLCMvWMV7Do0FcRNjNjRjKctHGzE0wIlr4U732uRMREcuVi2bBluueUWvPnNb0alUsFXv/pVnHPOOXjggQfwpje9qe3PVCoVVCrhnB0ZaVT/qNVqqNU6J7Wo73V7T1YhttuB2G4HR4Ltcf82IXmJYbqEie/7key2MqrNUpU2ewOrLMyjhvqwd6xqnABQl6XQDjskr+/7LeSqDz+ww/d9OI5jzJawNHEjwH7UUIPkteUbdcFepMp6W/BNVMmrqrzsG6sa943qc6ey3BcOlpskr9kxmWlH45JvWu3teX6gbj56Xj9KhYZz9o83SlXlcuZ8EyWbAWDRYBkvvDZufEyiimIgLFdlukqC6/nBmBwzvz9Ijjg0WUPN9VDMmysO8kpEyQsg6LFmekwU2ayIEJUcYdqOat0LApYrFgwEFQHGqy6mam7gKxNQ5KpSRR49vx/P7hkzHix7aV9YIjlqj2kl4HilHjxrVy4cRL5ZSWPvWBWjUzUM9ZkLdm9r+kYlIxx/1CBePTiJba+N4y3NXqMmECibmz6xpeQdmapjdKretGEgKMW/49AkKnUX5YK5daMCp4ocOnbhQIPk3T+BVSvmGbNDBbrVGdqWgnay6gbVRRoJTo3ni+r5nTd4FlD7uXrOHLNgAPvGq3jlwCRONUjyzrDDkpK35noYaa6bhXPKwfPllYOTxs9pakwWRcjV/eNVvHpgEicvGzZmhzoXLhosN+2wo+T1PB/7x0OV5mBZ9W2eNH6/2Rsh4IHG/eLARA07D5n1zWujIdms7ADMK3l93w/nyZxSQCSqMskmfRMlV4FGnGL/eBW7R6ZwynJzvmlJFgEi5ZrNxwVCIrEPnq9IXvMxG2WHUhMvndsgeRvlpM0nFS1u+samulmphxcNC8l7JOOkk07CSSedFHz9tre9Dc8//zxuuukm/MM//EPbn7n++uvxyU9+csbr9913HwYGBnr+zg0bNiQ32DLEdjsQ2+3gcLZ9YiLePU9IXmKY7oV7aLK1/K36/7FKHRPVOgZK5lwclmtuHMCOGirjqZ3mydXdox1IXgvlbysR36jexJM1F+NVF3PK5nyzKyjX3BgLW2WSw368iqyy45sDE6FvlswtQ7UgqjYDVyaz/3dMV/LOsUOuzrRDqUXN+mbfeBXVugfHCdcw0Cj9fnCyFgQ3TWA6uap+t+kxiapnW+0wO0f2jE6h5voo5BwsGe6DAyDXLMt/YKJqtIzW9oyMiVKarbBMNu84OAnPB/qKuSDTvZTPoep62D9eNVqxIaooBoAFTRXiAUu+CQn4hh2myxGqxIihvkKgXhoo5TFRdbF/vGqU5N0z0ppopcpFmj677gv6vDV+v/KRaUJEzcnBUh59xTzKhRzmlAsYq9TxyoHJoG+xSVvUPH3dgkH89MUDgTLeuB2Dyg47Sl5VmrKUb/hksFQI9rSdhyaDvd8E1HNlfnMvWzG/H49tP2icXN03g+S1o+RVcyTnAPP6ixjqKyDnNJKN9o5XjJ4F1FlZjcnR8/rxxKsjxvcSdS5U6/fooEyyWTsOTtagWnfOHyxhbvOCM1VrlOI1qdKMEppA437xs50jxktH7xtvJTSXWVLyjkzWg2T8qCJzsuYav3tGVdZA40zws50jxonv6QpNW+Waxyp1TNWavhkqIdckdW34JlAUqzEZ6sMTGDEuJFHnQkXuLmnu66bjemOVOsarjYQvUfIKpuOtb30rfvzjH3f8/vr167Fu3brg65GREaxYsQLnn38+hoc7J7TUajVs2LAB5513HopFc+ufAmK7HYjtdnAk2K4qEOhCSF5imFbQqgPf/IEiyoU8Svkc+ot5TNZc7BmpYOUiCyRv8xC42FJ/4N2HZpLNQKg0NgVFrM4fKAZZ7iqw+9poxSzJ24FcNV0Cd1fQf9auynp62WgAGCoXMFqpY+9YxehlbmekJ2/DJjtlkndMV/KqRIBR82QV0Ng/lIp3bn+xUSZ5rGKW5G1TrhkwT8BPtyMgNA3PERVIXj6vP1BRzR9olK3cP26W5H1lf3slr2kiUQX5ldrNJskLNALLSnEwf7CI3SMV4yTvnqCkaH/TjuaYGO4npnygnjOKoDlg2I4DTVJ5YWTvmj9QwkR1Egcmajh2oUlbWgmRcEzMEt/q981rlnwP1q9x3zR+nyqH7DgOFs0pYaxSx/7xKk44ypwt+6cRiSEBb3afV+t0/jS1qGnSbP+YsqMIx3HgOI1n4La943jlgFmSd/80Al79btPqZqXQXDhDyWvWN+ruMH+ghFzOQQ6NxK+dh6bw6oFJsyRvMCaNff7oeXYSRvZOI5tt9cJVd4d5A8WgusqiOY32Sa8enDRK8galiWcoaA37ZlSdBdTeakfJq8i7ob5CEBdQJax3HZoyTPJ2UNAaJlfbKYpt2jGnXAgEEuruuWfErG9UMt5RgYLWDvE9Xclri4BX4zGnXAhKnAsEClu2bMGyZcs6fr9cLqNcnpkcUCwWtQgh3fdlEWK7HYjtdnA42x737zJXW/EIgbUsu+aF2nGcIOPOdGBIkaiLLZdJ3hXpgwuEWX+m1aLTy0YD4ZiYJPB8348oeW2Tq9PKNQeKYrOBXVWaWNkBRElNs77ZOY34DolE0yRvq2pVBcxMq1anl0gGIr4xOE/qrhesm3BM7Ch5Xz04Mc0OOyWBQ9+E6yYgNQ37Rima1LqxpeSdTiTaInlDIjG8yCqyyKQtnufjoCKJBqYReJbGZF7TjvmWFMXTiUSgQVyZtsX3fRwYbx2TebbGRCkSm79f2XNgogZfldYwYcc00rthi915omyJjolRO6apRdV/D05U4XnmfLM/GI9wTzvKUjn86WWS1TPQ9J0vtKO1JPDu0SnUmgpBk3aosxkQnk/MK2hb1aJHW0pK2DetNLHyzc5Dk0bXTVAiObKnhbaYVtC2zpNlzXWz0xLxPUPJe3DK6PNm7zSFJhC2UTJNfHckV03bMYNsbpYEtqUoHgp9o8QCpgnnvdMqnSwJyiSbjjG22rHYuh2i4j3cMDY2hi1btmDLli0AgG3btmHLli14+eWXATRUuJdddlnw/i9+8Yv49re/jeeeew5PPPEErrnmGnzve9/D7//+79swXyAQCDIJIXmJsW+8grrBi/bugFgNDz6hgtbcoXS8Usdos5eZOowutkQk7p7WG1jZsW+sEpRMNmPHTCIxIJwNjslopY6JZpkbdYmzVSZ510jj8hgoeYOAnVnf7BxpVa0C0fLE5oKH0dLEIfFtR2WtAgzLppWN3j9eNeqbHZFeyQqLLJCa+8ar8Hwgn3OCeWqr36pSDk8nEg9O1oz6JizjGT5vbJCrhyZD0kNl1y8MyFWze5oq/avsUOMxMlU3GnRXBJEqBxy1xaQ6crRSD0pFzp1Gru4fN0tWhWRzU7XaHA/Vp9i8HaFvbKiKJ6puUCoyJPAUkWiH0Ax80/xvte4FfVhNQM3J+S0q68aYmCzrPVVzg3Pa/Gkq64OWFPDq96u9zfMRnPPN2NHYy9UcBcI9xeR8rda9oG+zes6oMYk+i0wgKE08R82Rhh2+D4wYtGVf4Jtw3ah7qMlKJzXXC9apskXdL0yTRNN7Ay8ZKiPnADXXN5rYq8Z/YYRIVGNisnR03fWCdaruNepcv8MwkTi9XLO6b03WXIxMmtvTppPNQOibXQbna931giSamUpes2fo6eSqit2MVuoYN/i8mV4iOWqLSVIzmsQ6fUz2GFfQtsYYVaW+Q5M1o2foPW0IeMHhgYceeghnnnkmzjzzTADAunXrcOaZZ+Laa68FAOzcuTMgfAGgWq3iT/7kT3DaaafhV37lV/DYY4/hv/7rv/Brv/ZrVuwXCASCLEJIXkLknMZF22Swe8+0/rOAHZWmOoANlPJBGeLFlnp3BGWjIwovp9k30iQ5s+tQ4+9eatk36uI4t7+I/lKjPNSijCh5o74xGbTbebCVbAbslElWvlk0pxyUVVtoqVzza9MydlXAzPPNBpmn9yWM2mJSQRsl73LN0sTKDtME/MHJ6YrEIpzm88bkulF2RInEhZFkANN2DPUVUGiumwWW1M3Tyaq5/UU0p4tR3yiyoYVItKAqVnvFQCkflMK3TiQ2f/9wXyEoM26SwAuIxKiS14LKWo1HqdBo6wFEVKuG1aL7J1rJ1YFSo90IYHhMxrNBwKvfVcg5GGqeoedZIJuBmarVvmI+mC+HLKybBS3VCcyPifJNPudguK9VAX/QMMkbKGibvinkcxjqKxi3ZX+bhK+5/eZ7nivf5JzQJ2rd2CLg1ZgU8jkr++u+LmSVyXvF/okqfL/hG7WnqrufaSWgKteszqt9xXywv5kknFWlqEVD4VlgadAf2ByBt3889I0aB1tK3ullo4f6ihhsxipMKmjbK3nNlyfe1/RNPucEvgmUvAbFG0AYY1R7yXB/AeVmGyWjMcYR1RvYXBsAgRmcc8458H1/xr/bb78dAHD77bdj06ZNwfs//OEP47nnnsPk5CT27duH73//+zj33HPtGC8QCAQZhZC8hFDZuyZ7vwZZdpFDqSJpTJZrDojV4b6gH+BRFhTFrbaEF20VEDFKro7MJOAXWVDyhv14ZyqKjROJ01TWhXwuuPwbDT6Mt2aXA+Gl22S55nbEjNpHTJedPTSNSGz4pmjcloOTzdKm/TOJRJPkqiKr2tlhmkhUvlHqoUI+F9hlUjWjgrfRMbGh5FV2zG9T/taWb9S6yeecILBrg6yKlgRWzz2TZWcPtPONtZLAyjdhv1UbBN7BduWaLZBV4bophn2bLalFp6ubHcexQmpOT9IA7BDfgXp2sBT4Zp6Fudr4fa3KyIYt5hM1AiVv5HykxsQkgbdvLJyrKuFLPQMPWVJZt/ONyXWzb6yzHXZ8UwoSeNQ5yTQBv1f1Bo4kKKp5YnJ/nV4iGbCjPI/OEeUbW8+bdgraRRbO8+oOE7VjSRCzMUhojiklfjnwjQ1FMTCzbDQQJumbVOO3I3mXWiB5VVxvYWTdqLietTLJzXhatCWc0TFp2rFElLwCgUAgEPSEkLyEWDTH/GFwdxsiMSBXDR4GlR2tZLN5QrNSd4MAlbo4AXbKE0/PTo3+v0lCUwXlohf+oywQmnXXC0r9RUmioC/vqHnV29wogTeo5ohdO2woij3PD8mqFlLTvC2HmqXThtvYYbJPcVvV6qB5O3zfD9RTUZLIhrp5OqHZsMP8mBxSiQBtfGOa5A2J75m+saFuntdGkWiWgJ/pm2A8rBGJM8lVs8R3G7WohTGZXoYXCFXWtnqctpZJtqegbU+amUzSaBKrbeaqSfUsECUSZ5KrZtWiM5W8cy2QZu2I1fmWlLz7pil5gfDZo56LRu1oQyQeNGhHu97A0UQAk/1W9wUEXmjLsAVyde80RTEQXTcm7VBk1Uw7RqbqRn3zWhuS1wbx3Y7QVM8bs2WjZ87VaKsRk21g2pGrQfzI4L2irZJ3rvm43mtjSrXaXolvqiWc7/szevICYWzNJOEcKnmF5BUIBAKBoBeE5CWEIs5MKmi7HY5NZoUGysg2hOZ41TXWV0Vd1hynlThbbKGfyUiboLuNcs3KDlVmDgCOaiYkjEzVjfVVUT3NgFYCzwap2ZZcHbJBVrUjm8OSd6Z6eo5Vwz6aw21sMakWDYnEMPgQqJstE/AqkHhwsmbsoj1ZC/tozmuTlGCSnAkTAWaqRc2qVmf6xkaf4qmaG/QPbemFa0HJ241sNqtabUM2D4ZBd1Prplr3MK56nFomV1Xi2bx2hKYVsnkmITIyVTfmm5ob9jhttUWpRe0oaBVsqKz3TystDoS+Ga2Y6+9dd71IhRG7isR2PXmtzJE260bt9xNVF5W6mTN0LeIb20pe5ZtWstl8UsLeQJE4k2yu1j1M1cztaaFv7BKJ6g6TFSVvOztcz8eYobhApe4Gz5ujLJO87RTFw/0F43a0ix1F736jU2ZsGa/Ug3Na1JZoMoAptOv7auMsoAQa0bm6sNnaqtGix4wtI5N1VOuN/bMlxjhsPsbYjmwWCAQCgUDQHkLyEsJGQLWdsipUi5qzQ2WgRoPug+VC0FfFFPGt7BgqF4KyakB4WDaZFXqoLblq3g51SYr6Zri/EPS/M6XyUuMxUMoH/WcBOyTvSPMCqy7XAHBUUBLYwhyJ+Gb+QCno6WmKJFJBuXIhh75m7z0g9I1R4ru5f7ZTWRslNNuUJp4/YP6irYILxbyDgVLoGyu9cJVv2qg0zZb0npkIoIIxvsEe0mr9Nno1hnvJAgtlkqeXvwXs9OQ90KY0sVpDvm8ukKnUZI7T+gxeYIFcVb5pUWlaJOBbiMTI/mbMNxPtk/GCRA0LCtr5bUoCG1UUt1GLzu1v9F4HzAWZD0R807K/Dloopd22J28zYcQkodmGNBsqF4Jzmql1o+bjdN/YUGmG6uaZikST6uaQSAztGCzlUWg6x5hvxiO9gftnJiUYJVeDdjR2Sd52hGZfMRfcPU3ZouZIMe+03PnUuWDEyphkwzdRIrGYzwV3DFO2KDv6i/kgXgTY8U1b4rvPPNn8WhtCM5dzMFRuzF1TBLyKUw31FVriAqr3uknlebtqGgKBQCAQCNpDSF5CDAWHQXOH0oCsigQxgwxIg4fjdnYAYSDTVNAuJO9a7bBREni0Dbm6yIKSNyQSw8ut4zhBwMqULco3c2f4xt6YtC+TbFctmss5QeDMFOHczg7ATi/cbgravRZKE0ftyOfCnp7GCPiIHapXIxBedo32Ke6iPDdLwM/sl1zI5wK7TNmigurTfTPfIvGdFUVxlDSL+sYUcRb1TTThKyS+TfZ9nTkmYdloC6rVCEFUyOeCBAVTvjkQWb/5iG8CctXkmLQj4IO+kXZ900geUQSAXd+owK5J4lu1ImiXlGCjJHA0wJzLOSE5Y2ieROdIq2+yotI03y85qCIV8Y3jhL4xNU/2joWkd86yb4IyyW1Uq2YJzZlzxHEc4yWso2Wjo+c0m6W0F7VRrVopGz2tx2n4vDHrm0VDpRbf2Jiv6nmzaHCmutmkHWHll9b7uOn52ilmo2JJJmOd7eJpAoFAIBAI2kNIXkKEmYfmstvaKWiDQ6nBA1g7IhEIie9RQ1mQ7UoTN+xSdhgkvtuqNM1n3I/0IPD2GyLOOhGJi5plzo2qrCdm2mKn/2wn4tssgddxjqh+q5b7vtoo16yCg3MHWjOHA+WqoXlysM1cBaLkqvl109Jv1YaiuM0cASLlxY2RvDPJ5qgddpS8M9V3JgnNcEzarxtTthxoQ5o1vjZLNgPRPsV2+8+2myNAVFV85Ppmfpvyt7Z7A7faYphIHGzvG6NK3ubvaunpaaFcs3qeLBiY7huzfXn3j3WfIzbUogvblEk2OUf2BSW9W8kqNU9MEfABQTSn1TdWxmSsjW8szJF2Sl4AmGu4PHGUSGy1w+yY+L7fVkE7bEEgsL/N+gWi5KqZmE1YSaPVDhtxrLbxtGYCnEmSd7SDaMK0qrhjPM2CylrNg6G+Qo93CgQCgUAgEJKXEHP6GuVMTB1Kq3Uv6AcYPYSp/x+r1OEZ6k3Y+TBoNuOvE2mm7DBFNruej9Fmv6FoGU81PpM111iPtXYlgaO2mBqTduWrgfByZ+rC4EV900YtOlF1jfUp7kzymi2TnBUlr+f5HfoUN8bj0GQt6BHEjUNtLvwNW8wSiUrBNa8D2WyKXPV9PyRXO/R9NdULtxPxbXpMFNEwdxrZHPZ9NRc8bNcLV62bAxNV+L4Z3xxoYwcQkkSmfTPdDtNtNaK+iSoSo3bY9s08wyWsD7QhVoGogtbc8yZUWc8spX1wombMN+2UvIAF33QkNBVZZcYO1/MjBPzMUtqHDPqmEwFvmsDb16FkpXoem/JNr97AhybN7WntFMVAxDeGSwJ3ssMUkThVc4Net+2UvAcnza2bfW1KE0dtMXXn29+m7HvUDlO+qdQ9VJr3l+gzODoepmI2ox2qnpnuDzxa6R47MmVHzQ3jaVEiMRAIVOrG7jedKtIFClpTvplScZJWYtU0Ae9F+ndPHxOBQCAQCAQzISQvIYbKZi8uUVXqnMihVB1QfR8YqxrK+OtwKB0yrG4eycihNOqb6JhE/TRmKhuzQ8mdIcMZqmoOzJwjKhHAzHiMTtWhYhzRMZlTKgT974wR3x3IKtNZ972UkaYCzGPVOrw2vpkbKR1prtxrB5VmoCq2TcCrRABDvokEOea1lJ1tjIfJXrjtevIC5kleRcBPJ2ZMq6zHKnXUm76J2qL85Hq+sf31QAe1qGlytaNq1XAJ69EOvlH/X3N9jFfNJBV18o1pBW278tWAedXq6FSnPa3x/1XXw4Rh30wn8EwraDsSiYZVq4cma8FZoHXdhL6ZNJSMp56xC6YpEk0T3x3Vd4Z74aq5mpvWG1iNR831zfmmw5jMM0zgKYWmbSJR+aaQc1oSjJUdrmfueROeXe0S32ESemtcwLgdzbu44wCDpZlEomcyZtO8j09XRs41HivpYMeA2dhR9M4/1CYxHzAXswnI1WljYlrxHapnO4g3TPmmEsZsRMkrEAgEAkFvCMlLiKHgcGyW0BwqF1r6M/UV8ygVGq41TuBNP5T2KwWt6ctceyLRtGp1oJRHMR8us2I+h/5i3oottkv/dCKrTJf0Vnb0FXMoF/LB67mcgzkls/M1K8rzTmpv475pBrLLhRz6iq2+MV02q1MJ6wWGVZqBQtOyovhgB98ULfTCPRSQVXaVvJ18Y7rvayff9BXzGCzlm7aY7SE9U8lrR2VtW8l7cDx83kR901/Ko6/YOBuYVtBOJ/AWBKWjDZcE7kDAGyPNmr9nsJRv9U3kDG1qnqi9Yrq62XQP2gMd1aJ2ykYP9xVaztD9xTxKza9NEd+dyFXTRGJnJa/ZRIBOvYFt+OZAh/Lipvslq/Pi9LOAaUVxlDSL9jiN+saYSrMDWWWaXA3HpL1vTCsj55QLLX2brcRsepQENu8bu4SmuvMPlPIoRJ43pUIYszFNrnZqO2ZMNBHE9TrYYTiuNz1mIxAIBAKBoD2E5CXEcNkSodmmfInpUrwdy8tYyjzsqCg25pv2h2MgUnLHMJFoncDr2LfZ8LrpoGxutSUrxLddstm0bzrZAYQqeFNJCZ3Uzco3prK6lR3TSwIPGw5QdSLvgChxZld5npVyzaaVvN18M9/4mHQvL26K0Oyk5A3UoqZ6A3ewI/qaMQXteI9yzaZV1tNVq4NmicROc9VxHOPEWecyyYYJ+A6+CcskG1atTlPPOo4T6ctr1paOpbQNr5tOKmtTxEynCjSO4wTnElPrJmyL035PM1d2tkngTSOrlB2mK3xNJzSjvjFFfAekZocxMeWbsaAkcAe1qHGF5sxzmj3iu0PVM+Mq6/YEvDm1d++YjXFbpleks0R827ajE+ktEAgEAoGgPYTkJcRQv9kSJmEplZnlS0z37ujVk9cY2dyhj6Yt0rs9kWiHcJ6bUXLVmmq1zYXBFvE9fUzmNBNGVB8aW3bYIr3bkVWqHL6p+dqp7+scw8k8neyI9l43gcA3/TPJKtN7STgm7Qk8c8S3KumdXSLRuLpZKRI79ik23PfVspJ3fwciEbChbu5RrtmQHYFqNSv9ZwftEvC+70fI1fYKeFPq5k5k83zDpbRDAn7mWWCeQbLK9/3g7DrdFtM9eTsRM6bLRqszR7u7Z2CLIeX5aId7cEA2G7Oje/lb2+Rdw5bGa6bGJJwn7RMUbY+JedVq55iN+XnSoRSv8RLW3eeI+eSINvG0Plu2TB8Tw3G9DnbMNR3r7FBaXCAQCAQCQXsIyUsIa2rRrkQi/yHM8/wgi7mTItE82dyZ0PRVcw9GdFKtttpixjed1c3ZUq2OVepGfdNdycs/X6O+6dgv2TbZ3LRjrFqH59n1TWCLAVKzxTfTFbQG7QA6lwFU4zFRdVF3PXY7DnZQrQJmkxJcr3PQfY5KBDDkGzUm04kZtadVXQ+VOn//u06JANHXTDyDa64XjP10UtN0b9GglPZ0O5qE3kTVxZSBvpEHO5DNDVvMjUml7gb9ZWcqaA0r8TuMiSI0Ryt11Azsafs7lHoFosQZ/5hM1lxU642/t5Py3NS66fQMDlVvtaCPMSfGOgT/gQjxbWBPq9Q91NzG3ztTkWirFO801WqEmDFxTuuk0IzaYup5M1VrrJsZxHcwJmbOAp3ma5S8M3G/iZYEng6TZwHX8zsmA8w17Jte5ZpN+6Y9kWiOwPP90DedSmmbUze3J1ejdpjwTac4SastppKKOpRJNtxiq2MbtkilMTPrprNvBAKBQCAQzISQvIRQF95q3TMSPOxWwmTYIFk1Vq1DnfNmZlMbVvJ2Khvd/Lrm+kFQgNWOLmpRk1mhUd90vjCYJeA7EZqu5wdBaE7okbz883W0EvGN5VLanXyj5ojvA+NVflu6kVUmFd+jU6FvOhHfpnyjVBfTyapoEG+8YoCsatphfd1M1Xr6xlgp7R5qb8CQb7ooeYcMJiVE1R8dk3kM+2b6mAyVC1Dt8Ew8gw90UK0C4Zo2oeRV45GP9DdXMK4W7aBunttfhGojaYLU7HYWMDkmak3knEZPwCjmGS5N3ImYUdUKfN/Q2VXZ0Y6sMjgm0X1zsNSe5DVV/laVnZ1O4Knzo+ebSXAaDXzTRmVtMCkh+iwZLLcniUztaaNN30yfr2o8oqQnqx1dkiNMqkWjf6ttdXOnqmfKDtfzMW7g7tlJoRm1xYQ6crzqwgtiNu2TWM0redsTiaZ808kOwGwv3MmaGyRRdapOYFrt3aknr+fDqG+kXLNAIBAIBHoQkpcQc0qFIEBlgjgb6aIWNVnqRv2OciGHvmJrgCorROJgKR8Edk0Q31khElXwqa1vTBPwHYjv/mIe+aZzjIxJV9+Ym6/d1o2tXrjTlZHlQg7FvA3ftCOrzJFEyo7+Yh7lwjTfWFKLTp+vpUIO5UKuaQv/PAmUke1U1uVQjc8NpTacUy6gmG89wgwZLnPeiazK5xwMNskaE/M1VK3aVVmrgPpwXyHY06fbYWrddCrX7DhOQAgYGZMuJehNllwP2xQU4DitvjGtFg16E047uzYIaHPkjErAaKd6M9kfOOjnWW7nG0U2m/XNdJVmqZAL9jQTytWxyJhMh8l+yWr/HizlZ+xpivg2Xf52um/6inn0FRvPQhOE81iHOQJEyySbmyP9xfyMs4Dp1g2dVJp9xTxKzXOaifkaEjPtSmmb64Wr7GicU1vP0PZKWLc+g/uKOZSa88bMmHQrpW1uTNSaKOadYN+Ybofp0sTTE537iuHd02Qcqx0Bb5L4VkRyPufMSPgyqfYGIuTqtHNauRCuG5O+ESWvQCAQCAR6EJKXELmcEwSZTWT86Sh5TZR10SobbaxPcXtbHMcJgkVGCLwu5WVMqjT17DBcBrBN0N0kqXmoy4XBKAGfkUQAoDOR2PCNufnatVyzwV643VSrcwwT8N3KJNuYr237JRscE0X+ZME3YZ/izraYeN4c6FCaGIiUsDZINrcrfxuWWzfrm7b7vEGSt1upuTnlRhBv3LLCS+2tJuyI/p52BF6QfGbAFjUX2wfdzZGr3UsT21HytiVXDfYpVvtm25LAA+YIkW6liedaSo5op242STirPa09AW9u3XSbI3MNks1AhPjuUibZpILWNpHYba7aIhKnj4njOKE60sh87a0WNUs2F2ckFZnvhdt+TBzHsTJf2yVHBGNi4CwfTdLo6BvDoonpMcbGurEQT5OevAKBQCAQaEFIXmKoQ5iJIHOnfhmN1wza0eUAFqpFDQd22xHfBnvNdAswmxyTLBGJOraYSUroreS1TWgOGy5tqkOumiBnDgWlie3OER1C05RvOvXkbdhiTgl4sINqFYjMERNEYhffmFStAp1LApu2Ra+XtclAWRdi1dC66RbsNlnWu1vw32QPaUWsTi9rGn3N1LoZ7UIkqpK4RnzTxQ41b0wQ393sMH0W0CKJTKpFu5HNBsqcB2V42+xp8wyOB9A9GcAk8d2pn6dxO7qQZibtAKIEXud5YoI465aUEKisTazfjJDNQC8FrTmySqdcs0mVdTffmCISO5UEjr5mct20V/IarIzXZY4MGxZN6I2JOSFJOzsEAoFAIBDMhJC8xAjLE9tVaZrsIdKtlMqQwfHwfb9rCWujCloNAt5oSe82dpgcD9/3gznQllwN1GZZUfLaJeBNqlY9z++h+DZPrnYnq8wpEturAM2tm5rrBYRIN3LV9nwN1o0JQrNL32aTiSs118NkzW35vVHMMUjOBL0a2+3zBsnV0YBIzM/4nkkiMdrfvT25am6+ql7mbe0wSTZ36XEa7dvsq4bXTPB9v6uS1yS5OtqFSAzKrRvoRd+NmFHrZrzqwvP4fROSq3afwd1IojCZ1m6Shnomj1bqqLseuy1BckQ35arlcs0huWpCUdx5T4sqI7nXTcOW3sSZCVVxN5LIDpHY3Q7u503DFjVPOsdKslKu2QzZrKcoNuGbkMDrpqA1GU/r5hsTdrQvkQyElSOMKXm7jMmQyZZwXewQCAQCgUAwE0LyEiMoYWKyT0U71YzBUpFd1bORoJDLfNGerLmoN39He3WkQd9okGYmyeZuhIgJ34xX3eB3dJuv9hW02bAjCHRHxo0Lo5U61F3eNnGm0y/ZJKHZXj3bGI/Jmsse2I3uVe0TNcz7pm3ZWYNk1WiX4L8K4lXqHqp1Xt9ESaiu5KoRlabb8jujMEnMdCPvlB0110el7vLaESHmuilXTRKJ7exQ5ZpNkmbdCHjPB6ZqvOtmsuZCPdK6kZom1c1tSV6DyRHdlLzR18aZCedK3QvO0N32NCPq5i5ERFDm3AAB37UiQNQ3Fd49rVJ3g2da+zLn5siqbqpVo2SzBunt+/x7SbXuodL0jW3lard1Y6Vccxc7XM/HeJV33fRKxrNBfHerNGZm/TYJ+DaktxqPmuuznwWivrE9Jt2SElRcz2S/5LYJCc35W617mKrxrxuVKNm9JZzdWKdAIBAIBIKZmHUk780334yVK1eir68Pq1evxoMPPtjxveeccw4cx5nx7+KLLw7e88EPfnDG9y+44ILE9g2ZVGl2yfgbNqla7dAHF2g9MHMHyxShWcg56C/ODGRmrRSvbWImeuHl9o2yo5TPoa84c9sxq7LWIBKNlCbubQdgYt007Ogr5lAuzFw3StFjpBRvt/6zFsrfdiM0TdiiPn+glEchP3PdhEpec0TinDYkkVk7upWdzc94HxeUb0qFHIrdfGOUwOtMRNgmeVUZXoB/L1F2FPMOyoV2z5tsjEmwtxokzea0CZQNFPNQ7d+4n33KjpyDtuc0k/2Bu5FERss1d+lx2lfMIZ9zmrbwBnbVeDhOY05Mh0k1fljSe+Z8DUp6Wy6lXSrkUGru/dyK7+ie2S0ZwMy66TxfTe6to13IqnIhH+wv3Im90b+1bU9eg72bu1UnMNkLt1v/2b5iuG64ibOWddNNQWuZ+FZxAaP9Z9vEjgZL+eB5cyT5Rqv6mnXfFNB0DXuMcbSHb0z2bh7tEmMUCAQCgUAwE7OK5P3Wt76FdevW4brrrsMjjzyCVatWYe3atdizZ0/b9995553YuXNn8O+JJ55APp/He97znpb3XXDBBS3v+8Y3vpHYRrN9KrplhZrPspvb5lBaKoSkHrctUfWsoyKWEWQl89Ckylr9jnZEYrmQDwLg3LYcmsiOb7LSp7gbkVgq5Mz5pst4AFF1s91ebyZ9042YKUYSFbhtCUne9mWqbKg0B9vYkhXSrJDPBYFdUwR8OzsAO6V426k0bZRYbUc253NOWAKX2ZZoIkC7542d5IhslGtul6SRyznGeuGOavrGerlmk8kRXUqLO465dRMkApQKyOVm+iZUwPOSzS22dFHQGqkc0WWOAOGeayqpKErC2LAjaks73wwYJOC7la8GzK1hNQ/7i+2T8YK+2gaSR1WSTru7pw3VarskDcdxQpUmM/E9GvFNu2Q8k2My0kXJa4ds7uAbQ/dx9fmdfGMyLtBt3YRlo+2WW8/lnFBIwhxjVOt3oNTJNxZKaXfY5wUCgUAgELRiVpG8N954I6688kpcfvnlOOWUU3DLLbdgYGAAt912W9v3L1iwAEuXLg3+bdiwAQMDAzNI3nK53PK++fPnJ7ZRkasmCJGuPXkNZh52u7gA5tTNYdno9gfBsI+XCSKxczamDUVxL99w29Krp4rJXrhdewMb7KM52mX9tthimayyQa62I4lM+qYbkdh43cy66aaeBSLBQ6NEYhffWCYSgTDgy++bzsQqEFXQ8u9pXXucmiw724MQMeWboERyp+QIkwraLkSEyXLNvfc0MwSesqNdafGoHSYV8F2JRJNkc4ezqylbuo1Hww41Xw2W4rVcbj0s19z+nGaKSOw1R0I7+An4QFnVZd2YTNJop4xs2GKG+A6JmV6JAOaSI7qVFzcxR7rZAZhLRO/lm6yVsD5kQiDQY0xMlUnutX6NlrDuErOxMUc6xWxMlY4Olc3d7TAZY+z0DBYIBAKBQNCKWUPyVqtVPPzww1izZk3wWi6Xw5o1a7B582atz/ja176G973vfRgcHGx5fdOmTVi8eDFOOukkXHXVVdi3b1/Xz6lUKhgZGWn5pzBsiNAEuh/CzJa/7V5KJeyFy3zR7qFINNoLt4uC1mgiQEZUmr16qpicr90UIqHK2qTCqxOBZ5as6kzymkuOCNUqnQNUJnyjgmADPXxjUpHYDqEi0S6RaKNcc8f5amhM1BzpRCQG6mbbPT1NqqyrekQi/7rp3IOvYYcF1VvbMudFY3Z0K38LRAh4Q+Wae5FVJsZEZ0+zXf4WCMeK25ZeqtUwOcIASdSlF67RstFKkdiDgDel5O3om5LB+TrVeS+xofbulDBiSlXci6wyqm7uotK0QcB3SrpWtkwwlznvnQiQDd+YrL7Wrf8sYE5V3E2o0GqHuX2+rW9sVOjrkBBvKsbYMxHAQqyzXbVAgUAgEAgEMzFrSN69e/fCdV0sWbKk5fUlS5Zg165dPX/+wQcfxBNPPIErrrii5fULLrgAX//617Fx40Z87nOfww9+8ANceOGFcN3OF9Trr78ec+fODf6tWLEi+N6woUNpte5hsuY2f+fMg0/0wuD7PqstukpediKxx4XBlLp5quaiWvc62jJksMxNr+x/U6SmCv53ujCYIuCrdQ9Vt+GbOV3KzpokNHuV4uUnqzTtYA6C1F0PU7WGb9qrRbNBaALmfdNTtcrsG8/zg5Ki3fq+mvGNIlc7KGgNE/C9gofcvvF9PzMEfEB89yJ52cuc17rbYYiA930/Qs507u9tQrXaS3luipwZ7bWnGZojrb6xSyT2Ur0ZKzvbs/ytweSILoRzQFZVXfb7TS8i0VRSQjeCKGoHd2/gqC3t5kkwR6p1dt/0IqtMVScI100vO+z6RiUtTtZcuJ5d3wwEJeiZnzc97DC1fn3fj9jSeU+r1j3UmndULvQi4E3dx3sqeQ31KfZ9v2sPaRVPm4zEdrgw0mOfNxXH6lVpzFSs0/PCddMpxigQCAQCgaAVs4bkTYuvfe1rOO200/DWt7615fX3ve99eNe73oXTTjsNl156Kb7zne/gpz/9KTZt2tTxs9avX49Dhw4F/7Zv3x58z1QPkWgwvV0QRB2Gaq4fECdc6Jl52G+G1Ox1YTB1cYleFrv1r6zWPUzVmEsjVrsHVE0R8CrIMtCBmDFlRzRrvJ1Kc6gZiK/UPfbL3EQP1Zup+TrRhbwzakdkLbQjIpQdJnwTrJteKk1DRKL1ORLxTduSwAZ904v4NuUbXQKem6yarLlQ8dq2yREG97SxoA9fjzFh900vsrn5vGG2o1L3gmB6237JpfAsUKkzExG9zkeGyovrJtBwB/8rdQ8112/5ne3sqLk+v280S2mbSo7oXdKbe924YTJeFyLR9XxUDD1vbJdJVr7plVRk0jfdyCrfD8+WXNBOSmBXi3ZvFTQYSUrghK5vgOwoaCcsq6zVHOGeq9HnTTtbokm2E+zEt57ynHvdqNhRxySNPjNq72jSQ7fKeAB/jKLXXmKqTHJYKbATAW8m1jlerQf3m06Es0AgEAgEglbMGpJ30aJFyOfz2L17d8vru3fvxtKlS7v+7Pj4OL75zW/iQx/6UM/fc/zxx2PRokV47rnnOr6nXC5jeHi45Z/CsLEyN4qEyKOQn+nGgVIe+ZwDwL7azJQCr1up14YdZsrLKEKzvxj6IIo5pQKc5svWe3oGpaPtlp01pShWc6RUyKHYZt1Eg0XGyr12LDtrioDvXE4UMJkI0LCjmHdQLrQrbRqOU3bKJHMr4LOhjFTjkXOAvmKbdROxjzvIrNtb1PaeZrqPpuO0T6KJkov8vmk+byyXRuzZ99UQAR+dg+3OJa2+MUOIdJqvg2UzyqpuZXgbdpghm6NzsK1vStE9zUzQvWdJYOZgd6+e2so33MkRY73WTcncWaBXCeshQ+Sqrm9M2QG0901/MQ917eEnV/X2Evtlzs0o4KPPm3aVisqFXHAntb2nmetl3V0FOGiolLaKOzhO+3VTKuRQat5JudX4vcbEVMJIL0WxqtbD3lO7SWjmc07bM3Q+5wT3Hu5kgJ7Et6GWCb364IbiDTN9m0v5HMqFWROyFggEAoHAKmbNE7NUKuGss87Cxo0bg9c8z8PGjRtx9tlnd/3Zf/mXf0GlUsEHPvCBnr/nlVdewb59+7Bs2bJEdg4ZDjB3ukA5jhNcfLlL3ahDb6cLrql+JhM9SDNjhGagnm1PmuVyjrHypsqWTqV4jRGJiqzqoYw0plrtoCjO55zge+y2BEkJnchVQwFVVa65Z49TM3tap7layOfQX2wSEcaSI3op4E0Rmp16A6sLvznVquPMTFxp8Y1tBW3ZzJgEvrGu9nYDOzr5RgWojhTfhHZ02FsNkWbjkT0+1ybhK7purPf0VL4xRHx3PAsYKrEa9U27ZLxowJdfQatH4LETIpoqa1NztZNvcpFzmrF100MJaNs3ppI0ooRmO984jhOsbWNEomXluW7iikmyud3zxnEie5qh+dq5XLNSadpVrSrfmFLPdvINEFaXMqdu7l5K29T67TVHuBXw0TLa7c7QQHheMZW40qkyXqg8505K0FXim0sW6eQbgUAgEAgErZg1JC8ArFu3DrfeeivuuOMOPPXUU7jqqqswPj6Oyy+/HABw2WWXYf369TN+7mtf+xouvfRSLFy4sOX1sbEx/Nmf/Rn++7//Gy+++CI2btyISy65BCeeeCLWrl2byMbgwsB8KJ3oQZoBrX2rOBEGy+yXdQG6BHYN9TKZ6FEiGYgQ3+xEYi+yKhuqN1Nq0V4kRKstWRkTu8pIc+Vvu8/VqC3ce0kvkihUJJpRN3faW031Bu41R6K2mNvne8xXbrJKc/2aUll329OC8sTGyKruiSvmSLMe/StN2dEhUBb9ninf9GpnYaxcs3WFV+91Y7wXru1yzbqKYlNkVZd1E6iKDa2bnqV4LRMzpgnNbmcBY6riHkSiqVLavVRvA4bUot16vioE5IwhtWhnksiQulm7coQp1WrnkrPGVMWTvXxjdo502ltNlfTuRWgC0T3NDKnZUXluOAmuZyIAd6Jkj7ieQCAQCASCmeh8oskg3vve9+K1117Dtddei127duGMM87AvffeiyVLlgAAXn75ZeRyrbz1M888gx//+Me47777ZnxePp/H448/jjvuuAMHDx7E8uXLcf755+PTn/40yuVyIhtNZdkFCs0uBx91YeA+IIc9PdvbYor47qUENKeMVP1ne5NVpsiZXr1wuYmZgPjuYMewoUB3oPbu4ZtdI/YJZ2NzpKfK2gxBNNGDWG3YUsCe0YpBNX73xBVTAeaslATumhxRLuC10Yp1lbWxKgk9CM3ADmNkVfd1s3esYrCHdHcign2+TmXDNzrrZo5aN5ZL0Af9K02Va87IntaNSBwy5JuskKu9fBOSEHZ7FKvv7RmtGFRHZmRPywjZ3G3dDJhSN/cgEo2pvTUVxew9imOQVeZIzfa2mCa+OyZ8lczEbHQIeFP9gXV78ppLjuhgh6F9pFdSIBBVN9u9e5qar71iNmF8kVnQohGzEQgEAoFA0IpZ99S8+uqrcfXVV7f93qZNm2a8dtJJJ8H3/bbv7+/vx3e/+11K84yVl5nQIBLVAZnTFt/3e5YEHjB0KB3vUYpXHRInqy5832cr/dKrDC8QDdqZ8Y3tXrjjvfrPRsrOcvqml0KzYQv/mPi+3zM5wrzKupcdNUO+6aZ6M1uKtyO5akiRqKuytr1+o7bYLsU7x1Ayj3b/WctzpMUWQ31OeyV82a+SYFYZ2Yk0AyyoI3uUa2ZPXOmhoDWtWu3mG2PEmXa5ZjMkUe+e2sz7SGBHF9Wb6T7FlpWAWUmOiKMW5Vw3vu9rlzk3p7LunkDD3/e1u/oOiBLfvHfPXsSZKeK7l0rTtEJTTy3KN088zw96/nZWwJuN2XRcv5GS3iZiNp2SAoGoWMFQXKBD/MhUcoRaD53aOIXxRd6YTRhfFCWvQCAQCAS6mFXlmmcD1KG0WvdQcz223zOuQSSGB2S+w+BkzYXi0HsFdrkvUeqg3utQWvd8VDl9U+1NiAwYuDBM1Tx4gW+6B4YmTZX07kEkup6PyRqfLTqltE2Ujq7UPdSbzumt5M0GoVlzfVTqnOtG7WmdfTMcIZy50Ni7G77p3G/VTLn1sV7JEc0AWrXuoVLnWze9VKtAhPhmDD7UXA/V5hy0XtpUk0icrLmosz5veiurQnUzr28qvXxjqCRwL5Vm8Nwz5JteSl6ANylByzeGymf29E1k3bhe+wRNE3YAZsiZaj3c04Y6EiLKDt51M9qLmGmO1VTNY103vQhNwEwP2krdDe4K2ScSG69X6mZ807VcswEiohI5p/Uk8IyVne1OaHLHBULVam8ikfPuOVEN927bKs2e60bFbCJnSw7EWTec83WqHsZsbO9pvWI2g4ZjNl1FEwaSIyp1L1g3vcaEvyWcnpLX8xvnAXY7uqwbgUAgEAgErRCSlxj9kQMRZxmTsFyz3UOp+mzHAfqLnTIPTSt5O1wqi4Z8o6EWDbKpGQ/q0YviQCffGArs9gp2R+cO5+WlV49TIAxkctoR/exOvjHVp7iXSnNOqQCVpMtJEoWEZm8FPGdgKLoWMtOTt4dqtfFevvk6prNuyvyq4lbf9FBpGitN3D1Q1ngvn2+Ccs0ae5q5ddMpKcGs6k3LN4z7fC/1bNQWzqQEHd+YmCPRz+/sm/yM99qwo/E9/soRWs+bPjOJkr1Vq6F9rOsmRnUCzrNrdE32To7gVgI2CTwd3xg4C3TtLWogsVftrY7T+dlnomIS0DthJEoesc7XHv1nATPKc/XZOaezAs9U39eJHmMSXTesxLdGpSITLROiMZu+YvsQoInYEaARsymZOUOHRGLvuyd3coRC53iaGQK+l5I3ah9nUkLY/kyUvAKBQCAQ6EJIXmKUCjmU8o1h5Tz49CrpApjJxpyIqO86lWsZNFTCuhchUsjnUC7w+6ZX+ero9zj7JU9EDse5XHvfhAQ8t2+6X+ZyOSe4NPAmR2iorIthGSI2O5p+7yvmUMh3v2iz+0YpATusm1zOCfzGSTjrBEFMqJtVgKpc6OwbYyrrHurmfM4J5gmnb/RKAjcJEUO+KfbwjbGS3h18U8zngiDaKGMygI5vhgwQiTq+CZMjzJwFOo1JqZBDqXkWMEHgdfWNAXWz2qf6it1800wqskzylgv58AxtgIjorrLmT4JTdvQX8x2fNyaUkdHP76SgLRfyKOYbZ0kT5Gp3lbUBkjdSMSnf4Qxt2jfd1o3yzRjj2VUnccXEuglI71Kh4/3GdP/ZTkRia1yAkYDXKAlsIjkiejbqFRdgPws0x7u/wzmtNS7Af/fsRlYNGiDwVMxmoJjv6BtjBHwgVmg/JvmcE5yheeerjpKXf76OR84CnZ43psqc91Ly5iJ3T86YzUSPe5ZAIBAIBIKZEJKXAQMG+pn0KrEKRLIxWe3ofXEJxoO79I8GgTdo4ICsDrzdgiADBpS8KrChc3HhLmemU7ZysGyOXO2qslZzxIAaQq+smhkVgk6pKtsqaxNBu5D0tks2A7pEBL8tOs8bE2RVLPVdJnzD3+dUxzcmVJpavgl64ZopO9t1vhokvnVKabMGDzX2tEHT5Zq1SvHyE4ld+yUb2OdHNQhNU/1W9UpY8xMROmVnTYxJHN+YWje2e3rqjIlJtahOuXVTvul2hjZhS1bKzqp7QifyLvo99pLAPcgqwGxCfPc5wp8Q30uhCZjr+xokondQrQJmSE29OcIf1wtjWF3WjYG4XuPz9YlvXtFE771EIBAIBAJBK4TkZUCYjcl/idIhRFiJGR3yrsRvBxBe0LoRzkotaiL73zbxrVOCSPnGVE/ermNiYJ70Kk3csIOf0NS58Bsrc64RdFe2cPZL7tV/tsUOA2Rz1wCV4T1Nizhj3dN6+8YE8a1FaBrocQrokVUmVMU6vjGZCJAFsireuuFPStBJPGMlmzXUd0OmkiN0iDOTSQkZUYvqkM2m+r7qkKuc+6sOoWmi93qcZDx2IjFQaXYpk2yAnFH7pe1S2joJxiaUkUB4HtVJHuX0zWRwr+hNmvESmr3jEwF5Zyj5W4eA5/SNFoFngPierMUhNM1Ukep+5zOQ2FvprvYGzJSg16kCZ7pfcvc9zQDxLUpegUAgEAhiQ0heBphR0OoQEQYyhzXIOxMKTUCX+DZH4GkR36ykWe/DsbFs6hjqZiMK+K5kM78deoQmv6I4+vk6tpjYSzqVjTZlx1iP0uLR7/ET8BrBQwOJGjq+MaPeiUM2m+llrUVqshIRjb+zKyFikmzusm4C0pu7zLnG88aEglaLXM0M2ZwhJW/JxLpRdnQmzeYYUKoov2slArD7JhsEns66CVVvBlSrmfBNxgg8jbMAb8uiGAk03ElFPdpqRL9nW8lrwjfqs/s1knr51aIaMQoDd60JjZLAJu4VOqWJTa2bCY0S1ibu41pKXhN26FTGM1AiGdDcSwwIWnTsEAgEAoFA0AoheRkwUDZwYdAhNA2ozXTsMEFW+b4fKyvUxEVbi0i0HYyJzBHf91nsiPpGLymBMegeZ46wlvTWIM3UHKmZ8Y1OZjcrkajlm3BMuDChQUL0R5TNJnyjYwsrERHDN7bJZmXHVM2D6xlYN11sMaF6C/udd7bDRGliHfVstBwhl288z8+MglZn/YbEjN32AEEiQLXOtqe5nh+cS3SIbzNEYpf1a7JcsyaxyuWbmuthquYBsF8SONb6Zb1n6VeOGGc8Q7uej0q94RudJFZWkjcjqje1j/Rrlnrl9I1aN91IzdA3fGMyGYM0M2GHlpKX+e6p7grd7p4m28B0T4g3t6dpkd7cvtFosWXifBSWBLasKI6RuDLOeE4DNCvBGSlh3dsOgUAgEAgErRCSlwGDJoLuMUoCm1Df6RCJVddDtRmooEaDbEFvW8ohOcOFUGWtF+zmtqPbhUEFJeqej6rL45upmgcVz9cpL67KSXFAp/RPSFaZWL+9fRMN8FFjsuaGvuk6TwzOV53EFesB5oZvfB9BgI8arXtatzEx2C+52xwp8tuh45vomuLa5xvBr8b/a5U5N7CX6AaG2OyI0b+S05ZoAkj38sT8Cto4SkDeRABV6rXbeDQUrb7Pt4ajPteZryZKAmelXLNOoNvzGfe0SBDdPrnaO0FxjglCU4M0U/MnSvbR2xH+jd2JRAO+UaRZF3I1uAOzlibuTRCp+VNnPkMHv89ymVUdItFMKe3eSl4TvpmqeeEZ2nJrHL3EfP7kb52evMo3nHfPSj1Mwuwex+Kfr5MxEp3NtHHqvcd7Pth8U617qLnKNzrEt90WW4LZjR/+8Id45zvfieXLl8NxHNx11109f2bTpk1405vehHK5jBNPPBG33347u50CgUAwmyAkLwNM9GuMVRLYgJK324UhetHjUnmpg6DjAH0FnXKv/GWZbF8qdUiz6GWCS2mtgpiO0z3r3kSGuVZPXhOZw1p9cMPvsQXdI+umm28GDZBVOr7pN0hodvNNdI/hIqui60arl7WRUtq9g5hG9rRuvinm4DhgtUXZkeuxbrIyX030Gdchq8qFHPK5hnPYnjdNYjWfc9BX7HzENaHSjNNDeoyxvLj6G3utm6Zr2NQqyjfFvINyoYtvDAR2RzXOR2EiAL8ysld1AofZNxO10DfFfGffDBmYr2rf7i/qkM0mSN4ue2tk/2fzTdOOfM7+utHr1WhO9daVSIz4jWtM1Fx1HHR/3hgpYZ2NUrxa/WcN+CY61jqKb96Ekd7VrMz4pjehacI30bNo95LAJmIlOsS3ieSI3rGj6Dzm3tMAvVZsJpS83ewQzG6Mj49j1apVuPnmm7Xev23bNlx88cU499xzsWXLFlxzzTW44oor8N3vfpfZUoFAIJg9kNQoBpgomRX2VdEgzUyoiLrYUSrkUMrnUHU9jFfrmDvQuQdaUgQHwWIeORWpbAMjFwaN8jImyOZxjYt2MZ9DqZBDte5houZiPoMdur4JkyMMZLprlknms6P3+lUkxVTNw0S1jgWDJXo7Knq+CUsCmyCJ7GZT66ybXM5BfzGPyZrLnrgyWCrAcXr7hre/d8YI+C5BEMdxMFDMY7zqNgiUIXo7ov3Ou/nGRKKVjiKx34AdOqW0lW9GK3W2fT56JunmGxPlxZUtXfslZ6Rcs+M4mFMuYGSqjtGpOpYM09sRJb27+cZEL+tJnURJg6rVbuVvHcfBYKmAsUq9MU8Y9jSd8rdA5H5jog2MTt9XA4Rmt3NaLudgsNR43oxX6jhqqExvhzovFrvvaSYJvG7z1SSh2e3umcs5GCjlMVF1MV5xsXAOgx2VLPlGh0g0oUjsTTbnI2foiaqLhQx2TEb2NJ27p4k9TY80O/x9o/btaOJfO5ioeqbXk9eceKPb+o36hmtPU2NdKuS6JnwZjWNJT97DFhdeeCEuvPBC7fffcsstOO644/CFL3wBAHDyySfjxz/+MW666SasXbuWy0yBQCCYVZCnJgNMKnm1lFVG+rt0n0r9pTyqkx5/YLdHSReTKk29Eqv8KqJevhks5RskL5d6R9c3RpS8vddNQFYZKXPea0wKmKpV2fYSXd+YvOB29U2RPxFAe0zKzYs2s1q0Vy+iQQNklVYv3KIJ0kyvdFd/qdAgeS2vm34D+7xWuWaDdnRbv0AjgNUgebmSIxSx2j2ZLNhLWFs3xEiO4GxToFHaVH1/ZIqPgI+SVb3sAEyRVb1L8XKW9NYJMAONdTVWqbMR3xOae6tZBW1v9R2rHbXecwRojMl41WVU8vZWrQJmFImqPLFOSVHenrya95tyAROsvulNegPRUrwGCLyuVXkMqlZ7rpvGGZrLNzoJ14CZ0u8693ETvtFJMAb4faN9JjFQ+n1cg/geMGGHhngD4L97hm2t9O6erEreoP2ZKHkFDWzevBlr1qxpeW3t2rW45ppr7BgkOGIxWXXxs50jePil/dj8/D7c//y+Zhn9Av5o831YOtyHX37DIrxr1dE49ehhzO0vdk0GFAgoISQvA0z05I11KDVQ5qZXYHewlMehyRrbpT/uhYFXLaqhsi6bIM16qyGAxhw6MFFjy5SNE2AGmPsl62RTGyxz3pMQKeWxf5yzXLMmMWOA+B6r9N7TjCh5Ncp4AvzKVX0iMSOJKwbUOzpkMxBRaTIRZzqq86gdtss1m1BZ6yfzFABU2NdNr0CZCSXvuAaBZ8KOsPxt9zHhnic6xCoQPafxjclkDCKRl6zSD+wCnCWBs0MkhqpiHQU8p9pbzzdzygXsGa2wlzbVSTwDTJFVvRWJtpM0gMZe8hoYe8BrEolGkiM0EjWyUuZc2bJ3rMrYVkNvjphI/tbqyWtCAa9JmjV8x+cb3UQAI76JUYKetzqB3t2Tfd1ort+srBvBkYVdu3ZhyZIlLa8tWbIEIyMjmJycRH9//4yfqVQqqFQqwdcjIyMAgFqthlqtcxKn+l6392QVYns6PPjifvzW1x5K9Rm7Rqbwzw+9gn9+6BWt9//Ne0/HBb+wxBoRnIVxT4ojwfa4f5s8NRkQEHgZOZTaLi/T+D7vAVkn8ND4vrlLVFeVtcHgv66Cll/Jqxd0NxGg6q6AN6d6633R5vVN2FNbb93wqt56+8YMaaabMMK7z+sS8IPMhCYQJauyUa7ZdlWAILmph1rUZEngrn3Gm34zo/bukZRQ5N1fwz1NL0nDCFmlQfKaKdFol/hWe1Tvyi8Gyovr7GnMc7Xx2XpKQG5Sc0JDoRm1w0QpbdtKXu1qOMz3G/1S2vylTSc1CAAzvYF7l2sG+Mt6x/aNZQWt0biA5n2cqxz+pCZBZDJxRacnbxbK33LbokvezQnmq13RhInKeNrkKnNir058EchO+zOBoBeuv/56fPKTn5zx+n333YeBgYGeP79hwwYOs4xAbO8Ozwe++EQeL43ZV9j+4bceb/v6595aR5/BLVDmjB30sn1iYiLW5wnJywBuJa/n+ZGAjOXyMroXBuZSVboXhoDAY7LD83w9lbWBS6VOEDNqC5t6R0Oh2fg+b7Db83wtRUSgjMwAIcLdKyraW7S7Hbxks+v5gYJbp5e1iTLnvdSi3KV4dX3Tz0xo1l0PUzUPgB4BP1l14fs+SyZi3NLv/Ap43aQiHjuqdQ8112/YonEWmKjW2Xyjq6ziJhKjPeC7gbv3uuv5qNYb66bbs68/SNJw4Xl+196BSaGrSBwoMp8F4s4RpsQVz/ODPU2HgJ+qeXy+qekRIty914M50kU9C/AnbPp+5H6jQYhM1TzUXQ+FLr0Dk0KX+A6Vq1y+0Zsj3GSV7/ta1QmiRCLXuglLadsmq/TOJNx9in3fh46CNuypzXcW0C07y10meVxz3ZiovqZFwJf4faO7l3CXSR6Pmehsopd1V9GEAd9khVyNTTZzJoxoxo8ERw6WLl2K3bt3t7y2e/duDA8Pt1XxAsD69euxbt264OuRkRGsWLEC559/PoaHhzv+rlqthg0bNuC8885Dsdg9qTtrENvbY6rm4rRPbST9TG585MHW/W/Tn7wDR89rP9fTQOaMHejarioQ6EKemgzgzvibqrvwffW7epedrdT5giBZUdDqqkX7me2IlhrWuTDw+iZmzxu2C0M8QpNN4RX1Tde+SI3xqHL6RrucGfNlLkYfTYDvMhf9+7orEht21NwGgVIqcPgmK0Si3vrl7gEf9bmOWrTu+ai6HsoF+rTDuHsJF0mkU060YYciNPmfNzpklec3njl9PQjQNLZok1VcalFt1Sqvujm6p+m0B/D9xtmOI5ilqxblTlzRVd+xz5HIuunaViMyXpM1t+denAT6xLear8x7Ws9EAEXAeyx2TNW84H6jk8TasMXFEMM5LU65ZoCTENGrTqD2Ei5CpFL34DV907WXdcTO8Wq9Z3/0JNDtG8mugI9ZJYGLbK66HupN53QjztR4+H7Dds49TbdFD59v9JT43EnX0WQ8HbWo7zf2wV57cRLo3z15CTztxHzm+02Lb7qc59Uc8TLgG2ULV1KRfgl63uTvat1D1W2cM6Rcs0Dh7LPPxj333NPy2oYNG3D22Wd3/JlyuYxyuTzj9WKxqEUI6b4vixDbgRu++wy+/P3nEv/8t3//l7BqxTyt99ZqNdxzzz246KKLtGzfMzqFt/5VPNL5nC/8KPj/nAM8/5mLSBOPZM7YQS/b4/5d8tRkQDRTlgPqAu84QF+XQHr0ojdRczHMkemuSySWmdU7QVaopqKYjRAJfdOtfFf0gsDlm3HNIAg7SaSZCMDdb1XNkZwD9BU7j7dJ3/RUizIrq8Z1gzHMhIgKfOVzDspdiNuWoHvVZSF54/UW5V83uhdtLkJT2VHK57qOd0vQveqykLxxlYB8isSY6jtmQjOfc1DMdz7gR9fNRNVlIXl1y1YGvmFSJOrOEW5CU/nGcdB1T4uO10SVh+TVJ75DVTEHtIPuhnoDA93P0H3FHBzHDCFiey+Ju6fxkc3h53bbS8qF0DeTVZeHSNScr9zlxQNFseWSwNHzX7cxKRdyyOccuJ6P8QqXb/T2ee4etOOa65ebbG7xTbe7ZzEfrJvxap1pT9NVi2aDgJ/DTmjqJXxF97uxSp2FSIxL4HGrrHXXL3ciQC9bomtqvMrjm6C8uG0lr6Z6lntvje5pHOMtyAbGxsbw3HMhAbdt2zZs2bIFCxYswOte9zqsX78er776Kr7+9a8DAH73d38XX/7yl/HhD38Yv/3bv43vfe97+Od//mfcfffdtv4EQQbxlr/6L7w2Wun9xgge/Itfw+KhPiaL2mPxUB9e/OzFM16vux5O/Iv/7Pnzng8ctz5MenjhMxexVM8RzD4IycuAAe6LSyW88HdbyKV8DoWcg7rnY6LiYpjhoq2veuO9RIVlo20TmmF2aresGjO+0cv+5y7rrca6d69G3nUTLX9r3TeaRCI38a1LJAYlgdlLE+e7+6YQ8U2tjrngUIjoZZgPMF+0dUrvAWFgiEshMlnTC6YW8zkU8w5qbqNs4LzebW7i2xKTrOKqphFXLcpOzBS7r5t8zkGpkEO17mGiWseCwRK5LZNB0F1TZc2sbrbdfzZYvz18k8s56CvmMFXz+Gyp6QVU2YlEzb2EvTdwJCGh2xnacRz0F/OYqLrstvQkVwMFLfN81VZ789qhiMJOcBwHA8U8xqsuuy29y5wzV2zQ7nHKq7JW5z8t35TyGJ2qs1fm6d3Tk/d+M6mZCGCKbC4Vcl2rDzmOg8FSAWOVeuPMOERvi+5eMshdIUi7Go6ZO3Apn0Oxi29yOQeDJbWn1QHMVJ6lhS6Bx119TbeqxwCzaCLqm25JrLlcY0+bqLoN2+fQ2zIecy9hL0GvmaTB9fwdq+olGAtmNx566CGce+65wdeqrPL//t//G7fffjt27tyJl19+Ofj+cccdh7vvvht//Md/jC996Us45phj8NWvfhVr1641brsgW/jKpufxuXuf1n5/O3I1KyjkczPs+8NvPIr/+9iOrj93/J83CN/BUh5PfuoCNvsE2YeQvAzgPvjoEqvqoj0yVWc/IPc8DDKXddHNuGfPTtVUrUZ9w0cS6alFuVXWY5V4vuEO2GVh3ehe5rh74Y5HiO9u4Fby6vY1AxD6huuCq3okavZb5ZqvU3U9ZaQaMxOESC8MlAo4NFnjU0dqlwQ2o6zqqUIwlAigk+U+UMqjWucjEuOSq9wBqqyQVb1Ib6Bh61Styk9W6aqsrROa3K0b9M5pDVuagV2uSgkxzwLsSQnahKbdcxrQWFsmSF7d5AguAj4s12xXZa27foHGummQvMzVm3T3Em7f6CoSLScCNGzJN0le7vu43hnatlpUJSCzJ+P1WL+N9zT2NG51pK66mStRMnjeaFaR4rMjhm9KBUxUXevEtzElr25yBNt46PtGMHtxzjnnwFc9Otrg9ttvb/szjz76KKNVgtkCXcUr0Chr3C1BMev4m/efib95/5nB1ys/2lm9Pl51g+//5KO/ytLDV5BtCMnLAFOZhzpBkMFyoUEkMh2QxzUJPHYlb0VPLcqvrNKzA4j4hr1Msl3fqIN6L7KZ2zdjMS4MA6WGb7jLE+vOVz4FvF6Zc24l76RmMBXg981ktaGC0S47y02ulrpnMHP7Rjf4r97TIHl599de5YaDIAgTMaNNVhnqLarlm2IeB8Hpm2ZAVXPdcCsSdXuc8vkmHpHYsIV7vtpVWcctt85NJOo8b/pLeWA8A8Q3+/MmHjFjex9p2MK7lwTlMy0njIT7vF5VD+72Hjol5U3t87pERFaSm9T5khrjmhVowvdU+HtIZ6SEtW6FLzaVdQzfzCkX8NpohV0koDtfucZEWy3KHE+LtW7Keewd409K6LmnZUXJy5wIMK75/BUIBEcefvDz1/C/b3uw5/uyrNZNi+jf1o3w/aXPfg8AcNrRc/Eff/B2drsE2YA8ORnAnXmoqxaNvofvgKzZ34U981CPwAvVonbtAPhLROkSidy+GdPMCuX2TXhx0QhQMSu+9XtW8Sozpmp6hCa32jsoCawT2GW+9FdqMYlENt/ojQk/IaKnhojawk+I6Crg7aqbQ9IsA2pRdrVKXJV1RtYNe/nbGGSVbUUiM0kUKoo11y8zeRfHN1PWFbRm1m9WelnHSY5gS8bTJUTY1c0xyzVbtgMI93nbtvQzj4luMm0/c0nv2IkrYNxfVSntnmSVOstzr99eJb3NKIrjPG/4yFU93wQEnuVqVmHfZrt7fIst3FUsNOMC/PM1G0reXvFFgUBw5OB/fe0B/OjZvV3fs+36i7q2STocoUP4bn31UPC9w5n8FjQgJC8D2A8+MbLbOA/qnucHl8Seh0H2zEO9MTF3YYjjG3pbXM+PXdrUdlboQNHMHIlzmePwje/7Ibmq6xt2crW7WpTbN7rEDGBOmdHLFu6SwJPaZDNz2ehYvuF73vi+HyOwa6pcs27fZrvqu1ZbbKtFDRGJ2oSm/aB7Vsok8/fCjUfMZKGUNvs+r2lL6Bu7FRuylBzBTTjHJ765quHo+qZJrGYgOUKdKTOzz1sek+i68X2fPACpe8+K2sKVuKLIp55naO4+45rrpp/ZN3HWzSA34awpEgiJRF7f9CLwokm9LOtGMwkd4G87FooEMtIvuadoIjwbcfgmTuUIgUBweOPEP78Hda9zWe+rzjkBH7ngjQYtyi4Ugbt9/wTe8fnvt32PkL2HP+TJyQB18JmqeXA9n7z+ezK1KP1BfaruQrVRsK8WjZnpXnNZfDOhqZ4Fwgsux0E9emnW74XL20ezZxCzHPrG83zkiH0TpyQwZ9CuUg/LtfUk8JgVtFOaY8LtG0V69xoPgLdcZM31gkOkfrlmXkVirzGJBqg4fJNIIcLgm6rrQZ3vtcu9spVrjv+8YdnTYhDwnCrNaj2ybqyrzTT3NBXoZjqnxSJEGJVVdddD1fW0bDFFwOuW0q7WeXwTixBhJIlafKO5z7OXSdYkm2uuj5rroZjvniAW2w7NxNGoLRwkUd31UK2rdaNZ5py9BL2eWrTu+ajWPZQKtL6JV65ZjQn9M9j1/OAcnZle1j3ufH1NOzy/cQfQOesmsUPnnNbHeBaI+qanktdUlQRNO3wm3yQqc87sG+3EfGYlb689TcVSfL9xVtOZ30ns0EuO4CvrXXe9cN1oljnnL+mtt27UvKLf00TJKxAc6bjwSz/CUztHOn7/SFTt6mLFgoGAxO2k7hWy9/CFkLwMiAbSJqp1DPUVST8/lpKXUVmliGPHAfp6KQHZy9yow6BeCSKgEZDRIWPjILy46GfscpQUjV4QdX3DrlTRVCQCDd/o9JyOg4A0K+goeRkJ+KhvegThuDN2ddWi0T2Nwze6dkRt4U6O6OvRC5ddfadbSpt53cRTwPONSXTd6BLwtqsCDBjyTRy1KEfwMPqZ+gpa28oq3rNA4JsepYmjtnCoNKPkpG7lCO4ynrpkM8B7ho5XStuub0wpaHsFmKPP6MmaS0/yJmhHw7GXTNRi7GnNswIbkVjT8010Dk1WXXKSN07liLBMMn0P2uh9Vl+lyVzatNeZpNjqGzZCxHJyRBzfcJLNgD6BF/XFBIdvYpSdVeejKcu+MZUc0XNPi/hivFonJ3knYhDwg4xtnFqfN5plztlLeuufoTnWTdjbW0LVAsGRhh/vcvBHH7+v4/eFlIwHXbL3S2cbM0nADNoboAAAUC7kAuUBx+VFV7UK8JZJnohcbntl0XCXudENdpcLOShTOWzR7XEK8CoBoyVWe/rGkCKxvwdp1lcMfcNB4OmWSAYixDfDHFGBlVI+h0KPACl3b1FdtWhfIR+uG0aSSCs5grHXm1IUOE7DP90QzhG7KmvudaNbhjf6Ho51o+ZdMe/0JBaM9cLttW4ivuFcN3qECF/C10QzgF7I9faNIrrZe0j3IFdbfcMxX+MTIpxzJJ9zNPY0PkIT0CdXo+c0jnkSr1yzGd+UeyZ8ZSM5olzIIWfENzrrhi9BUf1tOQc9fdNf5NtbAX3iu1TIoaDungykprpHavmGsRz+RCzfmFk3vQiRQj4X7L885Gp833CuXx3fDDAnFek+b6L7L4dv4ih5OefrRIznDXspbc0xcRyHdb7qlq9uvEdVJ2BIXKmE95teyTmDzMnfun3G8zknEBGwEN8xVNYCgeDwwOhUDa//+H34l23t1/2Ln71YCN4U6DV+f7S5gB/8/DWDFgm4IOlRDHAcBwOlPEan6rwHH50eIowEnm4pJIBfyavbN9JxHAyWChir1FlsiVM+c5BxTMISyXYTAYBIKd4eClrHcTBQzGO86jYuPEO0diRRi3IEH0I7eufYhHZwKXn1khJyuYhvqnUAZWI71LrpPSZqTrMmAmgkR6hsaj7f6O9p/cU8Jqouj0ozxrrhLDurS6wC/OtmqhYvQMXlmySKRJY9LUFJb7Z+Yppjwr5u4vjGQGBXJxkvK71wW84CLL7RU98BvORqEEzV8o2hxBUd3zTP0Cy+0VR7A6H/eFRv4R7f8yyQkXXTeE/j7sl5FoilFmV97vX2TT+jHUB4f9PxTV8xh6rrse7zOr4J9hLGdTMYY92wl2vWXDeVuseS4JRIAc9BNkcITevrJo66uZTHZM3lna8xVNY8iQB6xCrA75u41QKnalWW8/x4jH7JAoFg9qOTyhQQ5S41uil7r/iHRwE8ihc+cxF5mzGBOYiSlwmc5SJV+as4ikQOInEqBlnF3fc1cwpaLXKV345e5YAB/t6iAUkUg3DmDB5qEfCMpbR11bOAAbVojPmqAkMs/b1jjMkg4wU3zhzhJGaitpS1kgH41k2Scs28pJl+gJk/6B7DNwyEc7ySwHxVAWKRzYyqDCAmSWSg3KvtUtphr9UM+CZWsJt/T4tzhrauWmVXViVRnnMq4OOorO0q8blLaYfkahwFrd29hJOsypRvEvT05FQkxnnecCauxOoNzJSMF6enZ/jso1dpJlHy2k4K5FbAxyLgjYxJnMQVhudNJf4ez5e40txfNQl4LlsmYiTjCQSC2Yuv/XhbR4JXlLu86Da+x//5PV2Jd0G2MetI3ptvvhkrV65EX18fVq9ejQcffLDje2+//XY4jtPyr6+vr+U9vu/j2muvxbJly9Df3481a9bg2WefTW2nOjBO1RkIkboi8HTIKkU285Wd1SNWFUHErHqL0wuXkYjQIVcHGUmzwA7LF34grrqZL2gXjIl1tWj84L/tfslAuJdw9DbTVeIDvGRzPLW3IQLecuJKEmKG0zexShMz9+SNQ67y7PPZIM1C38Qo6c1OwMeYJ5aVvCbKzsZZN9wq6zh7GsfzJlawm7Ncc6KEhAz5hoUkyoZvkswRbtVbrIQRFiVgRhJoYpFVvM+b8VjPG07iO4EikeO8qBIStCp88RGrQKS8uMY5rY9xf43Tk9fIHIlxTuOoktCwJZ6St/EzfESiDrnaZ0LJG2fdcPkmzjOYkXCOcz4SCASzEys/ejc+/Z2fzXj9L86o49lPn2/BoiMTL372Yvz8U+e1/d7Kj96N0amaYYsEaTGrSN5vfetbWLduHa677jo88sgjWLVqFdauXYs9e/Z0/Jnh4WHs3Lkz+PfSSy+1fP/zn/88/uZv/ga33HILHnjgAQwODmLt2rWYmppKZWsfYxZk2Kuxt/v6GMuZJSEh+BQi+sS3smWMpSevPrnKqUJIUjaaKwgyFZCrMUgiBlsq9fhkM48iUV91rgIlXEH3IGFEh/guMpJVSZS8DMH/OIkAnEp8IDvJAEnKnPMQM3VtOzj3ViAeucr57ItVlt8AaaaXpMHtmyTKDE61WZygHUPJuzjjUebbR4C4hDPjnpZEec65biz3BgaivUVjKKsYS7/brgoQyzfsCvgYqjdGtWiiOWJZfafWDVdJ4GBMtMo1Z0sBz10SuKcdjGRz9HNtk6txEgH6GPf5WApN5soRQcJIjERJjjhW2Gfc7jM4TsI1J9kc/dw4vuE8C+jE0wQCwezCP2x+saNK9NlPn4/F/YYNEsBxHHzp7Douf9uxM7532ifuE1XvLMOsInlvvPFGXHnllbj88stxyimn4JZbbsHAwABuu+22jj/jOA6WLl0a/FuyZEnwPd/38cUvfhEf+9jHcMkll+D000/H17/+dezYsQN33XVXKluNBHZ1AqqMZLMiq8ox7JisufB9n9QO3/dDskqrfCbfpT+JapWzlLYWAa/U3tU6uW+AkEiMR67yEXi2y5wn6g1cpV83QJTUtK2A1y9BH6isOcpG1+PMkeyorDnVoon6vlomZkLVOb0dvu8HpXjtlzZNova2qyjmDAr5vp+hsrOz2DcMdrSuG7sB1bCUtu3AbhZ9Y1lZlTHfxCnDO8F0v1FjolfKs3EH4iSJ4lRc4egBPxGDSIz2oufwzXiCNczbQ9puXCDJeZEjLuB5MZ83nIrEOApaRgIvVGjqKJtzgR0cvomToMhJaqrkrTiJABzrN854BIkrNQ+eR7+nhTEKfSEJj2/0xRsCgWD2YOVH78bHv/3kjNelNHM28OcXntTRDys/ejdLPFpAj1lD8larVTz88MNYs2ZN8Foul8OaNWuwefPmjj83NjaGY489FitWrMAll1yCJ58MN5Vt27Zh165dLZ85d+5crF69uutn6kBdGDgPgzrkKuehNA6RqDLxPB+ourSlmSp1D2q/iZMFyVJKO1bZ2cZ7Kiy+aYxxnLKzvh/+HBVqroea23COHuGclVK8zSAIp9pbq9dqww7X88nXjef5qNSz1ctaq8w5I9k8FYuYadhR93xU67S+iV6049jCqW6OVe6VkWzW6y3asKPm0vum5XmjQzgHvrGsestIj1M1Hly+8WL4xoQKYTb5Rq0bjj2t6npwm87RURKxJkomSgSwTIgY8o3tHtKJepyyKrz05wjHOa1Sj+ubrJwFDCh5dRTFzL5RZ4E4tljfS4yQzfolkj0fwV2EClN1N/SN1hpm3EsSPG94q4vEiwtQ+yb6ebaTEoJYiQaR2MeYCDCVID4B0Mexqm64p8WrSMfnG53nnkAgyD5Gp2pde+8KsoUXP3sx/vn/PXvG68etvwf/9vArFiwSxMGsIXn37t0L13VblLgAsGTJEuzatavtz5x00km47bbb8O1vfxv/+I//CM/z8La3vQ2vvNKYmOrn4nwmAFQqFYyMjLT8mw7O7LYkRCJnll0cRTFAf0COXlR1DsjhQZ2+D1AcctVIBqSOHRFijfrS3+IbHZU1YzmzWMQ3p2o1AXkH0PcXjV4ObStXk5Um5itzHveiTW1LzfUDsipOMg8vSWS37Gyc/kzReUT9vIl+XpxnsHXiOyOqVVO+GdA6l2SEXDXgG9vrJvr8yopvbJNV4+KbGYhHrjbVZoyK4jhzBACmiO8VLXuabQV8HHKVtcx5k6yKefek9s14JAnUdmWtJOWaee2I6Rviu+dE3HMaowI+zlmAs9x6rNhR5D3UYzIZM2aTlZLArJXxAt9oqGcLfGeB6B4ZJ/nbtpBEIBBkGx+6/ac47RP3zXhd1LvZxluPW9DWP3/yL49J+eaMY9aQvElw9tln47LLLsMZZ5yBX/mVX8Gdd96Jo446Cn/7t3+b6nOvv/56zJ07N/i3YsWKGe/h7ZGor74zkXmoc3Ep5nMo5p2GLeREYmM8CjkHxbx+b1Hb5KqJ8lA6vinkcyjlw9JMpHY0P89xEPyOboiWIaJGLHKVlWzW900+56DcJOGp+/JGx1ivl7UK7NomV7NBwBcj64YzCBJLZc2ogLdfdlbfjlIhh0Ku8byZIA4yq+B/KZ9DQWNPYyXwMlL+No7CK4u+GWeo2JA93/S2I4u+4Vg3cfoUh4QmhzJSn5g5UnwTr8RqNnxTzPP7plzIId/8Hd1gpM94rN7rdpM0ondPct8E7U7i+eZIKNccNy5AfoaO+Can5ZvGOuckq2L5xnJifj7noFTgjQuUNPc0zt7NSe43LBX6YtxvcpG4ANfdUzeexhljjBMXEAgE2cXKj96NjU/vmfG6kLuzBy9+9mIcf9TgjNeF6M0uZg3Ju2jRIuTzeezevbvl9d27d2Pp0qVan1EsFnHmmWfiueeeA4Dg5+J+5vr163Ho0KHg3/bt22e8h7Nc81ScrFDWMjfhJUoHXIfBOIf06PtYD+pxyjIxEpo65W+B0IfUl7lKJCHBcXpf5owo4DUUxaxkc4w+uADfxTJ60dYLgvApEpMRiXbV3gBfIFP5Op9zgiBYdzs4+yXHUTQ17WBVrfYOujds4fGNCjTplhDLStlZE+UzdX3DtW7ENzMRJ+gefZ/4ptUO24RI9H3im1Y7bBOJAJ9v4vSfBXiTR0Mlbzb2NB07gPA8R+6bGMkigBniO05Jb06yWaf/LMCXdD0ZI1kE4JsjQLw7X3DfY7Gjeb+JvZfQ3rXiEJpAaC9P9bX46mbe+EQ24gJx42mcKmsp1ywQzF60IwH/vytXC8E7C/G9PzkH266/aMbrKz96N0anahYsEnTDrCF5S6USzjrrLGzcuDF4zfM8bNy4EWefPbNeeDu4routW7di2bJlAIDjjjsOS5cubfnMkZERPPDAA10/s1wuY3h4uOXfdHD2VVFlVuP09OTsDaxNiHBd5mKU2wGYfROnTzEj2VyJeWHICgHPRTYD8S7anHbEJRLDecJTBjB2cgRDL+skQRAOsjlueSguwjnqG53kCNW/kFqpEv3MOIkrnHboBru5COe4wf/ADsaAqu1y63FKaUffR1+u2YtlRzhfD1/fBOsm5p5GXhI4KWmWEd9wJgVmxTc6fXABM76JlRxh2Y4WW7JCJFrut8oZ/I9TmrjxPi7fNM9G2mdovr6vcSo2qERXjudNJYgL6IWXBpjKEwd3Cs1EZ9aSwHHaJxX5ztBh8nfcPY24X3Lce5aB6mtxkr85z9CzLZ7Gmcwj5ZoFgtmLyarbluB98bMX420nLLJgkYACjuO0JehP+8R9uPeJzq1OBeYxa0heAFi3bh1uvfVW3HHHHXjqqadw1VVXYXx8HJdffjkA4LLLLsP69euD93/qU5/CfffdhxdeeAGPPPIIPvCBD+Cll17CFVdcAaAxUa+55hr85V/+Jf7v//2/2Lp1Ky677DIsX74cl156aSpbs5IVytr3tapfNhrgI1cnY14qy833cZZl0rGFVVEcNxuz6ZsKMYEXV7XKqoCvx183mfAN0xqOe4EK1M0cgaG61/I7dOygnqtA/MxhLsI5TiJP1A6Wcs0xkgEGy4wX/oRBdzYCPq4dDCWB45QBZC1zHkN9x2nLRKYUifq+4exxGseOxvu4fJNs3Vj3TYbUogEhwtS/Mgu+iUUkGihNrF85gtc3tsnmhi0x+q2aUK1qJ0fw+CYryU1AXEUiI9mc8F7BVQ0nvmqVL7E3TqUiVtWqBqEJ8N89de834T7Pd4YuaxDfYYUvvniadvI3V1WPjMQnktgiEAiygUdfPoCTr713xuui3j180M6Xv/uPD+OsT2+wYI2gHfRurxnBe9/7Xrz22mu49tprsWvXLpxxxhm49957sWTJEgDAyy+/jFwuPDQeOHAAV155JXbt2oX58+fjrLPOwv33349TTjkleM+HP/xhjI+P43d+53dw8OBBvP3tb8e9996Lvr6+VLaayArVusxxBsoyknlYmaWHUlYCPqlviC+WcQl43lLa+hdtI2WZYip5qddw4nLrlvsRsfayjrtu1KXfdnJEVso1N4OHHCrr2EREmUfRNJGRIGb0M22XOY9ddpap53lc35joM67WRHc7+IKYsUtpM/kmKdnMSiRq+YbfDl3f8JWdjaeM5C0JHININFCaWFvdzO6b7KwbvedNsyRwBipHcK2buCVW+xmfwZmJC8StrMVcrtl2EjqQsCQwI6EZ/+xKfBZIeM+yXRKYtf1ZPe7ZlTeeph0XMBBj1E1KEAgE9vE3G5/FjRt+PuN1IXgPP7z42YvxzQdfxkfv3Bq8tm+8ipUfvVv8nQHMKpIXAK6++mpcffXVbb+3adOmlq9vuukm3HTTTV0/z3EcfOpTn8KnPvUpKhMBMCsSYxyQOcmq2OQqs5I3SySvlm9YL5XJSgKzqUVnWSlt3ozdeGPCVTo67kU7nCOMPaTjqKzrHnzf1ypnHN8OzQtuM/u7YjtApaoTEJPNvu+HxFkM9c5kzSX3TWwCT6kjiQnn2GRVUH6P3jeTGfONbtlZLsV3XN9wBe3i+iYg4Bl8E59c5fFNHGIViPiGeN14XoZ80yzJOajZW5QrGSB+b2CeEvSe54eqtzjVCTj2tErMvYTJN0nPaRy+iVVxpci3biox7zdce1pwz9Isf9vPdIaOPm/itHHiOAskJ1dp101sQpNp3QBI9Lzh9I3tylpx78Cs5GoMlTXnGXoqRgJN9H3USTRx1y/X/QaIp7IWCAT28etfuR8PvXSg5bXfO+cEfPiCN1qySMCN9731dXj3m47GSR9rVW4L0Wsfkh7FBK7strrroeb6AOKpd2quj5rLpNLMSMZubPUdQ9A9DrmqxqNS9+B5Pqkt4UE9G2WZdC8MZSO9dzSIxEK4burE60YRcWXNXlFc8zXpRZu1hLWOb5p2uJ4f7IVUSJrpnpXkCOoLf6XuwW8OcZwgiPpZSsQm8Jh8E1d9N1BWZDN1EDP0jY4CT73H9xn7e8ckicbZSgLb7dUY9U0cAt736ddN3BLWXMrzpHaQB/8jiTBxys66no8q8VlAVTyI3wOeiYCPnQjAQ2jq2sLpm/BMEm8vIS+fmRHfRPelOGcBVt/EVr3xVCfQvgMz+abqhs8bHVs4fRM3wZhLkZjYDuL1W3M9uM37vU4ygPKfx3AWiH9OY9rTEhLw1HfPuusF8z+OyprjnBY3nsZVnSBxPI3YjrgJXwKBwC6OX3/3DIL3xx85VwjeIwDlQr4toduuJ7PAHITkZQJXdttU9KIdgxABGEgidRjUJauYs0JjKxIZCBEFPd+E40atwJuKeZnrY+pTnDxzmPYCFfeiHR23KdsXba51E5vQ5JkjnuejWleKCP1e1oB9cjXcS6jnSDaU+NE9UodIjPqPep7E7ZHItqep8pmW97RoCT2thK/Ie8jLJMftX8lUkjCubwICnonQBOKVNuWxJRlJRH12Tdq/kms8gHiBXYBTeR63lHY2iESuADOgd06L2mu7nQWXb9T50zZp1uKbGAnGADBFfj5KRohwtaPRTablWjfR8bW9pyVtR5MVsoo8ESC6bjTKzvYzxmyCvSS28pxrb7WcTBszZsN6FkicuGI3+Zvr7hk3qUggENjDyo/ejelapef+6kIcM3/AjkECKxCiN1sQkpcJXNlt0YOljhKwXMhBVZSxTYhwZYWqg3rcSyWXmgnQI6uiFy1yWzKibo6bTc2t9gb0LtrRtWX7MseWlBC3pHeBSfUWSXDQ2UuKeQe55p5GXiY5YcII/brJhh2K6CkVcsjnepcmK+RzKOYb76Nfw435Gp9ctUtWce1p6jla1vRNLuegVGAq/R6U4s0GgWe7lHZc3+QjvuHqfxe/p6flksDMhGZ/MY+chm+KkT2Ni4iwXUo7aTIel2/6irnYvrFdhWaA6wydsIwnV//ZUl5vT2tZN8TEmToz6iYYc/Wjj01WMd9v8jkHxXzvMeFcN3H3ErY9LeHzhvx+0/y8nNNYO73A+byJm/zN1T4pTonk6Pu49jRAL55WyOcCH3KdoeMmFXHdPW37Jm5SkUAgsIOTPvafM1578bMXo6DxvBMcfhCiNzuQFcgE/gzInFY/EMdx2C4vkwkP6uRjkvQyx3S5LeVzWg+3XM4JLha2M2W5iMTJuAEqJrVo3It2dN1khsBjKg+lTTarICax6rw1OaK3LS17mm11M3O/5Pjl1qkTV5rKyBjlsvj2knjlXrnsUMGMuCoirn0kjm/4VMXxbAn2EiY7dOdIEPwnLqUdl7yLvpdrvvbr9sLNCgEfkM1M45Fg3dhXm/Eoz+MTmoWWn6NCpR5vPKLvte8bXjvKMe3gSwTQDxuw+SYrBF7i/rN27QD4fJNUAc+XTBuvLQ5naWLdHq5Zud9kJqmIORFAN56m3gvYFytkpZQ211kgiKdpJkoKBALz+N+3PTijdL30YRUI0ZsNCMnLhPACxZM5HOcyx9bzJjaBx6RuTlwSmOdyW44RBOELyGSDgI9NJDKpRZNctLnKvSbNYrZ+0Wa2o1zQU+8AjOW7EirPbWdTsyl5Y+7xrbbYJfDC5AiewJC2opgpcSUkzfTIO4Bvvsb2TYH3eaNLJJaZ5kgS3wwwBd1jl+LNGCFCrQKMeyYB+AjnuOqdgYyMCVuAuRrvbATw9tUG4pwFskLAc6uss+CbhORqVlSrlu1oscV2v1WmMakk9I3talaAiUSNeGdo8tYNwXkx3nPPdrWGhi08pGb8ig3NMwnTfNVPKuJVNkupZoEgm/iHzS/iBz9/reU1IXgFCkL02oeQvEwILwx21XcAo7Iqboa5AXWzlh1ch9Ikvikwk0Sx1Wa08zWub7jUooku2szEt+1S2nEv2lwqwLjKZgAoc5WOzgi5mpm+zSlUb2wlgWOXmrOrWi0zEZoTMQmi6Hv5VMW6alEu4jteb2Dufslx1k0f1z4f8yzARogEe4lm32ZmgijOuuEq96qUq3GV59SJknFbN2RF2QyEe459RZOar0wEvPY5jSf4H3euApHkCMvEGR/xHbPlCfO60Z0jQPYqa9lev1mpCABwrptkSUVZuWfZTkgADCSMaJ/TmnGsw3TdJCHgBQKBGTy7exQf//aTLa9tu/4iS9YIsop2RO+p133XgiVHJoTkZQJ3oCwLZFXSg3pWLnNsF5c4hAhb9nBznmiUvwX4FYnaF5fAN3Z7FAOhzbZ7RfVxlfSux5sjfGVn46t3+rmTaDSDZX1ce2vMspVciSsqgz9euWYeAi9QaWqWnQ0SaJhUmtpEIttcVaW09dWiXPM1LvHNrSjWLhut5irTWSDWugnmK08Sje3ElawEmJOcBUJVsV21Cp+CNhnZTE1oJkn4CkkiLlvilXtlI2Z0z/Js59b457SsEGds5Zrr8dYvV0WAuHMECM8vtkkiLgVtfJU1D7GaJFEyKzGKrLQsYq+kkcA3tuNY3GOir7JuKpszkIwnEAj4Uam7OO+mH7a89vO/vFC7SqLgyMJ0onesUsc/P7TdkjVHFuTpyQS+S2X2Sv/EDgxlhGymV701fRPjos0VdI+d/Z+V0l0ZUiRylRRNrG7OSMY931yNH9jlmifxe0VR98KNt8+XmSoCJCmZxeEb3/cjme7xKjbYJvC41k2S3qIcwUPP82MHVLmewZW4pfDZ+ozHPwtwPIOj60a3jQRbf++EZ4HJmgvf98nsqMS0I/reCvGeFvc8HxCaTM/gciFu2Wha38Ttoxm1xXY1HC5FYpAEF7fPeLVO6puwHU0cRSJPMkD86gRMysgUZWc5fBNPZc07X233GY97hs6KajVqC1syj23fJE3SIE+mjX9OY5snMe+ebAnGKc5plEiSjCcQCPhx0sfubfn6v9b9MkqadwfBkYnpRO+H//VxHBivWrLmyIGsSiZEs7o9jzAIkqHymUkz3a0TM9xlZ2P5hqnkTkYuDHGz/7kvLnGyQrkUeMkvUXbVzX0RtShpYDdBdQLlR755ojkmzYMtOUkUd45E5irl8yauahXgWcNTNQ9qymmXBGYjV+OV4lXjUa3T+iYVAU+oFq1EPivumNhumaDeV3N91F26MUlyFuBQwFfdcN3YToKLG/xXZJLnN/4OKqRR8lLO15rrw23uB7H7RtpWeDXf5/ut65/KjkQqa8Ixqbseam7DN/HLNWcj8cwj9k0aAp5y3Xiej2pAzsRMSshIj1PX82n3tJiEJhA9H9ER8C3JeJZLv4cq63hVeeqejxrHWSDO3ZM5UdI+gRczGY/JN2niaWxtNaz7Jtn6rUf2ZRI7EvhGIBDwYnpP1f/nTUfjxMVDlqwRzCY8/5nWct5nfnoDaSxZMBNC8jIhelDjCYLEJ6sogw9JgiB8JYiaF9yYGfdV1yMN7CYJgnAEDz3PD+acvm+yQZr1R4IgHBftLCkSba+buBdtZQd1YHcywZ6WldLR/dxB95jrBuDxzUCCEo2U8zVailN3TMoZC8YAtMkASUoCc8zX6PjqBt1DkpcngUZXtdrX4huGPS1GdjPH82YqUmEgbul3NmVkknVDOE/iks3R91JWbIietbSregRJGnb3tJZ1Q5rMk/ycRkkSRfeCuOSqbSKxn8k3SfpXcpQ2jc79+FVo7JYXjz6rpxj2kmQVvuwmfLEp8ROWoAdo52uiVkEM66bqelA5hrpqfLa+r3GrSDH5JtHzhmGfr7ke6l62koqS+IYyfpTkeSMQCPgwneAFgBt/4wzzhghmJfI5B7d98M0trx23/h5L1hwZEJKXCdEDPa2iKRtkVaIgSFbUO9GLNkume4zLHEOZ1UoK39gO7EZLsXJcGBIFdomVVeqiHTcpoUIc2E1KwANhWVRKO5LsaZS+qbteoK6wrTyP2yuKK+g+GVO1CvCoRdX4lgo55HN6fV+yokKIlkClDMgkI6voledqfIt5B4V8vJLAtgl4Pt/EVyGUGear8nMh56Co6RuOMwkQP5mnmHeCtU67pyVPKqL0jSr9nHOAkq5vmBK+KjH3kmI+h2K+4RvSc1qCHokcFYKi46tfwrpZ2tTyGTrqG0oiopLgDM1BREQ/y3qf4jS+ISScwzkSP6mIspd1moQv6p7ace98xXwOBY7nTYpyzdTVcBT0E62YypzHXjdMZ4EkyREslYoi60az9HtWquFw+SZJXEAgEPDgQ7f/dMZr00vwCgS98KtvXDLjtXbJAwIaCMnLhHzOCWrUU15e0hxKSbNTm5/lOPH7eNm+aHMHdmMF3RlKArcqROySvGEfTT07SvkcFIdDqTZLpkKgVzS1KKs0A1R8CnhFROgG3cMgiPXEFYa9ZCpF2Vny5Ih6PCVgPucERAFt0D15D3hatWg8YhVgVIvGLJ+ZyznBM4dFLWpZZZ2sxCqXWjTefHUch2efD5S8SZLxGEreJTiT2K7q4ThOGFBlUALGSyqinyPRM4njxE1csdsvGQjnNsczONm64djTctq+UfsIZd/m6bboguXOl4Ks4lBZlwo55GImfNGrrJOfS2wrEjkUtEkSvkJCk6l9kmWVZpJ2NOFzj56Az+ecINGgpx1sfZvj7WmO4wTVhDh8k6j9GUNcL07CF1fiStyEL65zWpKEL4FAQI/JqouNT+9peU0IXkFStJs7f/HvWy1YcvhDSF5GcF6iEhEiTEHM+AEq6kNp/AsDZ2DXtiIxieqNK7Abd742fMMwJmku2gzKqiQXbS61qPX5muAyp4LApKWJE6h32ILuCYIPHCXXM5MckWJvJQ+6K5JIMzmi8V5OctWuIjER2cykFk2ioOUhibzEdnA8b3TLMwI85B2QNCmBXnkeN0kD4J0jiRJomM5pumXOAaYExWr8vZWnB3zy543tFhIAl7o5XlscgCcJLsm5lUMZCWRP3RzreZMVQjMYD2olb4J1w0BWxW2dBPDc+aLrRjdmw1VKO9FZgGPdBHEsuy22VPJ3Et/YjtkATHtJgvUrEAjocfK197Z8LQSvIC2mz6F/euBl0vaZggaE5GVEeGGw20+Ms7xMLBIiS4dSluBD/CAIawZkgn6AXP1dkqgQKIOHaS7apIriBBdt5UeudRNnL+Hoc6ouc7HUO8ykmXbiClc/sUTkKp+iKStB93i96JnWTXPOlWPMVw5SM91zj/5Mkim1aBzfMBLfsUgzBiVgEtKsn4G8A0KFSCI1PoMSMNHZ1XavRu7kiIzcKxKtX4Yep8kqRzCd0yyTq2F1kWzMEdtnIyAyT+Lsr5zJPAl8Y1vtzZX8nSRGERJnhCrNrBDwqarA8ZTStj1PKgnmCEcv61RlozOQjMd6FohxhhYIBLSYXkr3//f+My1ZIjjcMJ3oPfEv/tOSJYcv5OnJiKyQqyxkVZpDOuHhOGpLInL1cFa9JQoKEQd2E5CrnEpe28qqRBeoklIkZqGcGT1xljUi0XZPbSBdNnVWys7aXjflLKlFWXyTPOGLq7SpLkK1KFPZ2QRBd1riOxtBzKkECTQcZxIgO8HDJGqzYJ+nVBRnKHElOwr4FHaQ+ia5ypot6J6V0u+J9lbb64Y7iTXOPCmQ26Keo4kITYa2GrZLJAPJFN+cCSOx1N6H+bqZSnAfZ1HApzqn2W3DxtbLOkWsxHb1JoFAQIf/3LpzxmvvXLXcgiWCwxV/+Guvb/la+vPSQkheRoSXF/qs0GSHQfpAWRylCkcvk8bnJQhkZqR8ZlYy3dl68qYq32WZJOIIlGVkjgAJywCqMbHcT4yDiEhGrHIF3dNUBWAgqywnjGQp6J7EljKDGj8r6yZNT23qUtqJVNZZSUrIGmmWAbUoZ3WCZMFuBrVogr2VbU+znAyQLAmuaYdtlXVANvMk4yWaJ9afN9k4y3OQ3o3PSzJPsnF2Deer3TnCQd4BEeV5jH1+gCFmk+Z5kxWVNfW6SbO/2j6n8SRHJCe9ufY0++WaheQVCGziqn96pOVrKdMsoMa6894w47U9o1MWLDk8ISQvI1hKAie4MHD07phKoNCM2uH7PpktiUruZCUIwti32bZiJqktvMHD2UfAcwV20wSZKQNDWSndlag3MHfJrBhBd55S2iqZxy5JlJUAlev5qLppeiTSE/CzsScvx/r1PD+sHJGglzXlfE1Smpijv3caFSDlOc33/VTPYI5EK9tJcFMplGaVugfPo/eNfSIxG+1o0qiZqnUPLpFvgCxVBUhwlmft25zANy61b9Ls85TPm2yoNBOdoZvPprrnk/ZkS5VgbPvsmjEisep6pL5Js25oRRNJzosZmSNFHt/M5vu4QCCgwXRF5bbrL7JkieBwx/Tkgbf+1UZLlhx+EJKXERwXhqyoNBOVQmqOh+cjCJST2JIRhUi6YLdd1VtfRJFIScAnCR5mpfRPf5GzNHGySyWpb7JSzizBZY6l/G09iZqJPugOJCtnxjNfk5Rbb9phuUpCH0NgNzrfbCeMpFJDWC7RqMau7vmoEZ0FKhEFXZLAru2kBFbVaox9RCV0eD5Qc2nWTdX1oB5dsQiArJQU5SDN6snPi0DrfE+DmusH+2OsZICMlM/kSG6qJFABRm2msqXuesEajPfsy4a6mWfdJD+nAXS+SZzwlZEkuLAEPUdSUXyymdKWloQv28k8GUlCDyqeJTiTUNrSmvAVn3DmaUeTRO1tN+ErOp8ofZNGeW67JZxgduPmm2/GypUr0dfXh9WrV+PBBx/s+N7bb78djuO0/Ovr6zNo7eGLDT/bPeM1x3EsWCI4UvDQx9a0fC1lm2kgJC8jOAiRNKVUbJNVLUEQojGpuR7qzQCVbZVXmlLatgNlyg6fkID3PB/VjPTkzUwv6wQX7ajNVIFd3/eDIHOikuu2g3YFvvWbdE+j8g2QoWzqFOQqSxnApM8bojFpIXkTBJk5ypwnKltpea5yBN1bfZOkPzC9b2LtrSXGChZxgu4Mgd3oeS8ziVaxiEQG32Qk6B7dp/tmY79VTiVvnDkSWWN0vkmZuEJacSUbqtUkCXAsvmlJ+LKbuJKszDnfmSSxb4hsic77WLZkJC7Au7fG842K7VP5JnpPipXsnBF1M2eSRpzzYotviGypuh68BMl4HCpr6cl7ZOFb3/oW1q1bh+uuuw6PPPIIVq1ahbVr12LPnj0df2Z4eBg7d+4M/r300ksGLT58ceXXH2r5Wso0C7ixaE55xmsVwvvLkQoheRnB0d8ljTKSo19GnN53xXwOhZzT8vNpET1oxzkgsxCJWckcTklWURHwLRdt22RVCgKeozRxLDsiQRCqeVKph8qqRCpNy6URWS/8loPuSRNXAlUxQxnArJSai1W+miGwGz73csjl9DNb+1n2khRlowl9k6RUZDRARRVQVb4p5h0U8jHOAhlR8oY9telVq3H21mLegZraVHuJmvf5nINiHN+wVlzJRuuGOGeBfM5Bibi/t9oLcg5QSuQby0msDNVwkrQpyOWc4JlDNV/VXuA4rc+zXuCp2JDkDJ2N/rO5nENeYSS6/mL5hkNBm4JItJ1A4zgO+TyJ7klJWxVQIVmlEwayOfCN/lx1HIc8IT66/pIkn03YroaTkf6zLb6hitkkTcYr8T2D45xdBbMXN954I6688kpcfvnlOOWUU3DLLbdgYGAAt912W8efcRwHS5cuDf4tWbLEoMWHJ6RMs8AWpicTnPSxey1ZcvhASF5G8GRjNg5RccjVrPR3ib6fivhWB8G4QRCWMUlCVmUkiMlBwEfH1naAKjulTeNftAv5HIp5vuSIJIEhSiIxKz3nksyRfM4JAuMcikTbKutkSQkMe5pSvcXYWzmC7kkCdkDoR8q9pJJoT2uOByXZnOC55zgO+TxJQkIAESWv5ZYJgYqIQQEfJ9AdDR5SnwXiqjKyomjiLU0c7xrWx7inxSnJxtrf23LFlSRtClpsod7TCvF8w0rgZUTtHedsxGFLSKzGTPgq0Z8FkiQYZ6W3aPT9ZL5pfk4pZjJeVpISWKtZxT0fEZ9L1OfETcZjqb6W4u7JEdeLHU8LiG/aeFohZjJeVpIjBLMT1WoVDz/8MNasCUu25nI5rFmzBps3b+74c2NjYzj22GOxYsUKXHLJJXjyySdNmHvYop1yUso0C0ziHz+0uuXrG777jCVLDg8UbBtwOIPlEpVCpclzcYl/0R6dqpOXAeyPGaDiKAOY6MLAWEo77uG4v5jHaIXQN3WVkJBM9UZZ/jZJ0I6nX3Lyi3bNrbOo3mJd5jJSao4lGBMJ2sVBXzGHquuRq0XjJq4okoi2PUDy8uKkCi/VIzEGWaVsqdQ98qB78iAmR6a7ZYWXKvse0zd9xRwmay75uon93GMok5yqD18GkvH6inmMV+l8M5Wgx6myA8hA4grDmSRJkgbQ8OXIVJ1ckZh0T2MJ7MYqhc+QuJJiTA6iRvYMTrN+Gz/PoBaN4xuG+01S3zTGpEZmSyVBT20gO9WbOM7QQRJ6Qt9Qq0WzsaclIXn57jdJiUSy500C1Xnj/Y0xoUwwThdPy0ZcgNKWxM+9IC5AWLUw4TwRzD7s3bsXruvOUOIuWbIETz/9dNufOemkk3Dbbbfh9NNPx6FDh3DDDTfgbW97G5588kkcc8wxM95fqVRQqVSCr0dGRgAAtVoNtVqto23qe93ek1XEtf2kj9/X8vWznz7f2t99JI17lmDb9tUr57Z8/eXvP4c/+tXjtX7Wtu1poGt73L9NSF5GDDCUdUlTUpSjL1KSABVAn7GbiYt2ggxzTvVd3IN6WZG8xJe5pGrvrJTizcpFe5QwsJskmArwZpgnKZ9Jun7ryS+4lEH35Ikr9ErAND15eZKb4qreaIOHSeYqwBs8jEOu8vgmuQrhAGrkikTbKqLoZyXq28xAzMRVvZEHDxMHdukTVyppEr4sl2iMvt/2GZq6/G30s5JUw+GpkmB3n0/SUztqB8f5KEmvRsr1m37dUO1p6Z43thNXqO/iUTtsj0nSc1rY8sRuMh6nb+Im41H3o8/KHAGyFxdIGk8jJ+AzkFQkPXkF3XD22Wfj7LPPDr5+29vehpNPPhl/+7d/i09/+tMz3n/99dfjk5/85IzX77vvPgwMDPT8fRs2bEhnsEXo2P7UAQdAuNYuf4OLe+65h9EqPRzu455V2LT9S2cDf7Q5pCdf//H78KWz9ROIDudxn5iYiPV5QvIygrOvSixChINsTlAeKvp+8kz3xBmQdi+4QcZuFoKHJVpFRFrfsBDflkvNJb1oU49Jli5zmSlnlpCAD1VeloMgHGUAU+xpLIkACZS8lLYkJ0SykTDCokJIqLKm7qudNrDLchawXdo0YeIKNYGXtPQeb+KK5eSI1HtJNhJXqJ57SW3JWqIkwFASOAOJkklITY69tZJwLyE/Q2dkjkQ/K9G6YUnSiLeXUI9J6rsnwxk6VjJegeGclrIkMDUBH9cOnnWToFJRps4CxDGbhBVXsvQMFsw+LFq0CPl8Hrt37255fffu3Vi6dKnWZxSLRZx55pl47rnn2n5//fr1WLduXfD1yMgIVqxYgfPPPx/Dw8MdP7dWq2HDhg0477zzUCwWtWzJCuLY/kfTVLx//r8u5DStJ46Ucc8asmL7H21unY8XXnhhT9FLVmxPAl3bVQUCXQjJywhOhUgSFQJpdmpKZQZ1T94slAFMVaIxCyprNV+JywAmVohYVr0FpBnDpTLpRfuwzKbOiHon9ZgQJ64k7S1qvX8l53MvIQFvnaxiUGakCVDxlIpMorIOE8ZS25GhpKJkKmuOEo0p56vlhK8g8cxy4gpPW42MkVUZIBLT+IZFWRX7nEZ7ZkyaTMtbccXu8yYrFYKChM3EZ+hs9BadrLnwfZ+k917iZDzidZM6gYYyqShJMl7mypxnSQHPIZpIdk6jWjepqxOQVZFKlxRoO1FSMDtRKpVw1llnYePGjbj00ksBAJ7nYePGjbj66qu1PsN1XWzduhUXXXRR2++Xy2WUy+UZrxeLRS1CSPd9WUQv26/55qMtX2+7/qLM9OI9nMc9y7Bt+4ufvRgrP3p38PUbrt2AFz97sdbP2rY9DXrZHvfvkqcnIzgPPkku2lXXg+v51uyI2kIV2E0foKInvpNluh++GbtZKKWdlTKAiS/axIHM9L1F7Y5JSELQX/iT9RPjCFDFzKYmniN110PNbTwvrAfdE/smG6XmVG9lqjniej6qbjaUVVNJexNmJOjeRxw89Dw/0TN4etCdAomVvIqAt6yypj6T+L6frAR9c/1W6x484jN0v+UxCUoTW64uEvVNrD2taXfN9VF3iRJG6snaWZC3o0nZvzIrCcZ1z0eNyDdZadEzlXT9ciZHxLnfNN/r+QjOEjbsAOjPJVnpPwskayOh9h2XcN1k5c43lfacxnEft71ukiZKEiclZKWFBJD82SeYnVi3bh1uvfVW3HHHHXjqqadw1VVXYXx8HJdffjkA4LLLLsP69euD93/qU5/CfffdhxdeeAGPPPIIPvCBD+Cll17CFVdcYetPmLW4a8uOlq+zQvAKBFFQxUWOJAjJywiOIEiS4GH0kEQf7I57KKVVZgSq1diZw7SHUt/3w8BQQoUI1QaWNouZuiRw0iAIh+otCSFSIQzsJlabEZNEyUubZixxpU6XuJK0pycbkZhUtUqsIop+tpYdHEH3lP1Wba8b6j0t+jlJSjSSBt0zQkRkpSdvJeG6UUFPz0eQXJEWYVWPhPOVOHgYd45Ql2isuh7UMStWb9HIe6nGpJJwTALfECdHJCdmaPaRmutDPcrjEACtvqHd02KPSYGWiKgkTNKgfu7VXA91L37CV1+EtLD9DKZ/3qQjEjmS8WL1gI+8l0ylmRUCPmGSRlj+lmY8EifjMayb5C16uBIl455JGu+nag/gej6qCSolcKyb5G01aMUKWWkh4Xl+cI6Wcs1HBt773vfihhtuwLXXXoszzjgDW7Zswb333oslS5YAAF5++WXs3LkzeP+BAwdw5ZVX4uSTT8ZFF12EkZER3H///TjllFNs/QmzEu//u/9u+VpXLSkQcGP6XDxuvf0e0bMNs47kvfnmm7Fy5Ur09fVh9erVePDBBzu+99Zbb8U73vEOzJ8/H/Pnz8eaNWtmvP+DH/wgHMdp+XfBBReQ2EqdnZo4eFigvzBUkl5wqcsA1tNdtOmCIH5ANiXp9Qa0+jcNMlOWKS3ZTBQoS3rR7ufwTcqgO7XqzXYiQDRxJUnJLCADwQdqIjFxySxaRWJ0XKPPkF5gCbonDuwyqXcSP2/ofRMnkFkucgTdU/Zbtayy5gr+A2Fyjg6idtMlaqR9Bmcj+E+3t4Z/T9LALvUzOD65StuHT/k4TmlxgN430c+J45uW+43t/t4ZUfJy7a1A6zOkF0r5HHJNUQh5UkJGkliTEokcyXhx9pJi3kG+6Ry6eZKuvDgZaZZSyUtdwQKIt4ZL+Rwc4nUTnAVinEkAxvYACauLUO/xcW1hWTcp25+RJ+ZbTzCO+CamLYLZi6uvvhovvfQSKpUKHnjgAaxevTr43qZNm3D77bcHX990003Be3ft2oW7774bZ555pgWrZzc2v7DPtgkCQUf8zzcd0/K1qHnjYVaRvN/61rewbt06XHfddXjkkUewatUqrF27Fnv27Gn7/k2bNuH9738/vv/972Pz5s1Bk/VXX3215X0XXHABdu7cGfz7xje+QWIvdWA3eriNc1DP5ZwgEEJ96bdN4CXtOVdmyk4F4gYPsxOg4lK92Q7GJL1o92Uo6E5e5jwjfc0qCQNUrdnUxORq0sSVrMwR4gt/uZBDLqdfvocj6F5JuJf0UwcPU5Y2pQ50lxL4Jgge2g7acZWdTfjcox6PYt5BIa9vSzR4WMlI8DArKmuy5Ijm3prPOSjG8E0u56BUoFV5pe7JS3xejP/c40mOaPhGf09zHIdPpWl5viZObiLu6anGw3HiJXw1fMPzDLatbg7OAhkpTQzE9w11eeKkLXoyQyQylb8FkvuGrhduRgi8pMlN1AKBFL4JKmtZTrruz8hzL0hcIdtHIoKWmHctgUCgh1t+8HzL16LiFWQNX/iNVS1fi5o3HmYVyXvjjTfiyiuvxOWXX45TTjkFt9xyCwYGBnDbbbe1ff8//dM/4fd+7/dwxhln4I1vfCO++tWvBs3coyiXy1i6dGnwb/78+ST2BuVeiS8upXwuVvAQyFKvKB61aFYu/DkHsQJUhXwOpTxPKd7YY0JcBjAIYiYuZ0Y7R4B4l7l8JLBrO1OWK8M8ca9GhgBV0sQV+l64tsckoTKSOOheSVglgSPonhXleeCbpOuXLECVjDRrCR4SqTSTl8/MSBCTiRCJO1dbgofWydWstAcgPkMnrJIQ/Rm6BMV0yTz0hEhChRc1QVTIxe4JxpWoYds3iVtIFGj3VvWs6C/mE/vGeuUI8jLn2WshEdc3fASe3VLa2UlCD30TJxmvxRbbcQGmc1rsREliJa8a17hJrABHO4u0Cni7yRHU95ukSawCgUAfn/3Pp22bIBD0xKoV82ybMGsxa0jearWKhx9+GGvWrAley+VyWLNmDTZv3qz1GRMTE6jValiwYEHL65s2bcLixYtx0kkn4aqrrsK+ffu6fk6lUsHIyEjLv3ZQFx3qYEycclkK5Jf+DF5wY9lBrEiMXqDiX7SZLriWM3ZTXxjIExISXLSJFfBJL9rlrAXKiAn4uKq3VlssqxCCvcRyuXXqIIgiNBNkUpP3WEuseiNev/VkAaoyeaZ7sude42d4FBHWzwJ1FbSzS4gkDTADkXOJ7T2NmFxNnnhGXdo0+bqh39OyEXRP2huYS/WWpDwj370i2fOGOrE36TnNttIs+jPWk/Goq+FkJpk2eeIK+d0zI4krqfs2E5+NEp0FMkLg0VdJSJgoSXz3TKooBsIzJtl5Pm3yN7Fvykn3VuLkCOnHKxDwYNve8ZavRcUryCq+/fu/1PL1yo/ebcmS2YdZQ/Lu3bsXrusGTdgVlixZgl27dml9xkc+8hEsX768hSi+4IIL8PWvfx0bN27E5z73OfzgBz/AhRdeCNftfFi5/vrrMXfu3ODfihUr2r6P/CCY4jLHFTxM3E8sM4GyDASoiH2TtlcUB7kaB+SBXYp1Y70sU7YCZbaDqQAHOZOtxJXYwZiM9DsHOAO7dkvQh2rR2VkKv8UW6/29qZ83zfVruQR90gQ4IDwzHm6lTVP3nLOsngU4CXi7fcZTV8OhSm4K2gMkeN5kZA2z7fPWg/8ZOkOnLTtL3ELC+pmE4iyQkXtFxXaFL+KEzVRnAfJqGskIvMOVbJ6sJvcNOeGcsEUPdfJ36sQVslYWQvIKBJw494ZNtk0QCATMmDUkb1p89rOfxTe/+U38+7//O/r6+oLX3/e+9+Fd73oXTjvtNFx66aX4zne+g5/+9KfYtGlTx89av349Dh06FPzbvn172/dxKc2SZR4yqUVjBmTYVJq2Vaspgods/e8SBoZsExH0yRHJVIBAdhSJ1KV4s1LmPFWA6jBNXElb0ps66J5u3Vgmq4hVM5WESl4uBXwS33AFD233kE6qsuZKPEukFmVLKopnC3nliJR9xm3PVYDvDJ2ciKC1w3bwP+m5FYgkfFGrNJOWfrfc45SPvEtSOYJWHVlJqMbPytmVq01B3DswwBGjSJgcQb1ukiYCFBTZnIH7TUbI1eAsYFmskJXxABjvfJareiRNYuUqpZ3kLCAQCLrD9/2Wr7dce54lSwQCPUxXmn/n8R2WLJldmDUk76JFi5DP57F79+6W13fv3o2lS5d2/dkbbrgBn/3sZ3Hffffh9NNP7/re448/HosWLcJzzz3X8T3lchnDw8Mt/9qB/jKXPvOQ/hCWDRVC/MAuNQmRnkikyx7OxiUqNTGTictcRgJDTL1wbffOSpO4wqXyysq6yUqJ1TQlgW0rvjPT95V4/WYpcSU1kUge2E0W/Lf93AM4ykWmJeBpz662FV5ZUiQmL0HPQ3wnJatsJwUCHL5Jl8RKnzya/Jw2PaCXBCRlZ62f04jbJxEkGJP4pp68rUZ4hra7vwYJNMSl3xOXObesbI7+DNm5JG1JYKoEmrRKfOI9LW5yE5CdSnB95AmbCeMTpXD9UvgmTYKxQCDojuPW39Py9byBkiVLBIJkuPr/e9S2CbMCs4bkLZVKOOuss7Bx48bgNc/zsHHjRpx99tkdf+7zn/88Pv3pT+Pee+/Fm9/85p6/55VXXsG+ffuwbNmy1Darg1LV9eB6dg+l1JnuaYPu5AGqpCUaMxCgykz5PS4VUeJSc/ZVb+TJAEkv2sS+Sa9IpAqUJU9cYetlnbB8pm3VTFaUKkAk+EAwX+uuh5rrJ7KF63kTW/XGlLhiu7eo5/mo1tOVNiU7kxCoRUkCVBTBQ4J14/t+6lLa1Ere/oR7WtX1UHfTzxOKdUMxJhS+oT8vJvON6/moEfgmlQKecE9r8U3iJFa7ZWfVmdvzG2snLSjuN9TrJulZgCwJLiG5Gj37VwiefUlJM4AxiTUjLRNi761NX9YztadZ3kuok/GaZwFF7Me1w/MR3AfSIOlzL2qL7dYN/cR7Wtpy675PtKel8I1AIBAIDj9su/6ilq8p4jWHO2bVE3TdunW49dZbcccdd+Cpp57CVVddhfHxcVx++eUAgMsuuwzr168P3v+5z30OH//4x3Hbbbdh5cqV2LVrF3bt2oWxsTEAwNjYGP7sz/4M//3f/40XX3wRGzduxCWXXIITTzwRa9euTW1v9MBGEXxIc/ChLFvpeT5B9n82VKvVOg0Bn5W+SL7vJ74wlMkvlQmDINSB3RRBkKyUvcuKIlGNR831SXxDkU2dHbWo5SSNIm2AqpJGLdqcVxUCZUaUBLRNVqVV4lMHD9MlFRHYEfFvYtWM5X6rZeLgYZo+fIFvCNZNNNiWdJ8nI0RSJjcBNMkAqXrAE+7zFL6h2tMqSZ97EQKUwhaKZDwKOyp1Dyp2YL0EfcrewAAwRaDSTFM+k3K+1lwf6rqWNNGKWskbv6pHZN0QPPtSKeAJE0ZqkWT22JW1uMqtp9jTKMYkXaUiurNrzfVQV76JSyQ2x4TiLA+kUfLSPm8oqkhRnKFrGUpiTRsXAGiqrqQ5pwkEgs54bPvBlq+nl8EVCLIKx3Favp6uSBfMxKwied/73vfihhtuwLXXXoszzjgDW7Zswb333oslS5YAAF5++WXs3LkzeP9XvvIVVKtV/Pqv/zqWLVsW/LvhhhsAAPl8Ho8//jje9a534Q1veAM+9KEP4ayzzsKPfvQjlMvl1PZGLzq0JK/dC0MlRdA9K31VWoIgFL5J0ReJ0jdV1wuCIEkVtPZ7nNIGdpP28AJokyOiF23rl7mUhCZA45tUiSvEisRKSkUieeJKzHVTZksqShHYJQxiAvGz//lKacdM0iAmRCjIKho70hPwVMHDtKWJAWqyKoVChICYic75vrjrhrrSSUKVdXS9U+5ptvuMp/JNRkpFlvI55Jp3borzUTqSl46sigapbZ/Tku7zxXwOhaZzKPf5coqSwBTrJvq3WFckJjwfFfI5FPMN31Ak82RFAR/1TVwFPOU9C4ieoePZUcrnoOKIJGeBhKXFAdqkopbnTcIERfJWXzHtiD5vKJLPKHxDeZaPfm5cO8gqjSWsTlDM55Anfd4k941AIOiMS27+iW0TBAKBIRRsGxAXV199Na6++uq239u0aVPL1y+++GLXz+rv78d3v/tdIstmIpdzUCrkUK17mQnsWr8wMPX0LMdVrRZag+6D5XRLIQhixgzYAbSlPKNZ+8nJKrtBkOmB3TkpfZPuMkdHwKdZN/SK4mSESHmaCiG1bzKoSEyqNqMLUCX3jeM0SmZN1lwM9RVT2pFsb238DGHwsDmu5UIOuZzT492tyEq/VRWg8vzGZwwT+cZ2KW21fkuRII8uKBMBorbEHZNi3gl8U6m5QH8631RS+IYj6F7MOyjk456PaIOHSVXWjuOgr5jDVM0jShhJr7KmTARI4pu+Eo9v4hJ4Dd/kMVF1iYjv5L6hPB+pzyjkHBRj+oatN3DC+TpWqZM+g9MoeSnvnvmcExClce2gTsZLmsxTc+ukz+A0FVdI9tbmZ+ScxnkgDqh70QfPmwR7Wn9zT6NQJGalOoH6DMdJUCZZPW/IkvGSnY+izxvblSMoFfDquZfIN4RneSB5xRWg4U/q500S0YRAINDDY9edb9sEgSAWXvzsxVj50buDrw9N1jA3ZczmcMasUvLORnBk/2clQFUqJA/s2lby5nJOcKC2HQShzDBPF6Ai7vVWTRYEyeUcFiLCdnJEmos2tW/SXLQ5gna2+4lF51nsUnNcAao0vqEs0Zgq6E6nxLddVg1IvpeoABVA5Jtqst7AQOQZbFlFVCZcv2lsia4bUvWO5aoeSZNFgOz0SAR4SKJkVT3oziTBeCRRRhao102TXLVcijdV2VnCRKtUxGqB+CxAURWAtKpH8iRWyqoefYXcjNJtvUDdk5eiKgCtb7IRF+gr5hP7hrrva7LKWvSVTqxXjqiGCTSxfcOk5E3iG9p4WnLfcIgmkviG8iwPZGkvSZ7wJRAI2uOvv/t0y9dCjglmO1Z98j7bJmQaQvIyg1SZ0Tyo2z4cT0Yu2nFBHdhNlWFOqaAlUe9ko+cc+WUuI4om2woRddHuKyQPgpCTvDHLmTVsoVc3Jwl2kwbdm2WqSgnUolzrxnZPT4oAFQ1ploIQIScSCYJ2JH2Ks0GIJE1IALKjsgaIA7v1ZMpIgPq8mB2yKjO+SWNHgW79plGqcKlFs+KbrBCaaZIjqKp6pDq7lujOaUn7Nkd/hpTQtJyQ0GJLmnlCcq+gSGK1q8SnPLcC6ao3ZeXuSVn1jGauUings3Gep4gLWG8hwfS8sd0yIY1vBAJBe9z8/edtmyAQpMbnf/102ybMGgjJy4ysHHxI7SAp3UVdMivFpZ9Q9ZaVIEiqC/9hF9jNBlk1RaBIpE6OsE3OpElc4Qi6204EAGgSRihVM2meNxSqmTTrhpoQoem3SkngJbeDst95Fs4CNBUb6FTW6ZTnh08iAJBSQUvqm2wEVFP5hik5Ipm6mWFPs1yxISQSk89VqrNAhUBlTdkvOSt3z2Trl470BkLfJEuiISRX69lQ4pMomwnu4kA6wrlMWEUqTaUingoWdtcvQFPpxHYVKUqxAknfZoKzfIstWanqIeWaBQIWvPCZi2ybIBAkwm+8eUXL12OVuiVLsg8heZmRlUx3ygtDJVPBw2z08cpKOUKSABX1Rdt6Wab05CpJfyYKIpHIN6kIEcrAbsZKNNruDdxiS1ZU1imeN5RBkLglzoEI2ZyJxBVCZVWKZzAt2ZxelUFHVmWjPHFQKtKyUmWKIBEgC6o3DpW17WS8dL4hDrpTEHgUiVZpqnpw3LMyUDkiK0mbWSlNTFFilbziSpJ7BUdyhO27J0HLIqpS2hTJ3xTEWRrflCnPaRmJHUU/J82dj/JeYbuUNoVvslTVgzJWksQ3AoFgJr7/zJ6Wr+NWrBMIsopTr/uubRMyCyF5mUFbDikbgbIgsGs5KARkT0Gb6uJCEWCuJg9QcfVLtu4bAvVOVi7adEGQrCRHZGRPy0jGfdQW272ispIIQKGGoA6CpFIC2i7Fy5EIkKHymamIM4pS2kGwO4XKmkThlT6pKAsqa1q1aHqVNUWfcQrfTNZc+L6f2haSthqEfYqT7fP0e1raHvAkviFQeVEkBlIk0NhuixOQEHUPnmfXN5TzNVWSBkdyk+WkwOjn2E6CI0nMpyCbCfY06udNmpYJFPdgiuQm23fPcuTcSuEbkipSlhOMBQLBTFz+9z+1bYJAQIaLT1tm24RZAXmCMiMr5ZCyEvxX41FzfdRd25cXwtI/BIFd2yWBKbNkgZRBkIyQq1krpZ2FksC0pU0pfEOXQJNELcq1bmwrM1KVeCvQB6jSKqvSBkHqroea2/iMVD09KRVNlpMSQt+kU52n9Y3n+ajW0yeuUJbiTbZ+CYOHTXKnnMCOMqFvfN9PqcCjU+OHKmu7iqY0vlFr3vOBasozdHrfZCvhi6bPePLqBNFzdyXls8/3/ZR7CUcSq+U2BQQkBEDjG2VL2TKpmaqXdYEwOSJVQkLDjrrno0awpwXnkhQVrSieN5khmwmSRTwfwfk3KVL7hvCuRUHAU5DNFYI9zfdp97QkY1ImjKdJT16BgA/f/9NzbJsgEKTCzb/1JtsmzAoIycuMrPQj4iBE0lwYgPQEQDSwmyhoR5lhThCMIe1xmoKEcIku2ulKIzL03rEcKKO4zFEHQWwrV7OzblIkixCuGyClypqynBmFHQQBqjR9CSkDVNHnVTpFEyXxbZesSqV6K4UBqrRkVVSBa720KUHlCJJe1hkhRCot68ZuScKpFPu8SuCzHcSM/sxUSpVm1DdpVV5pQdEbmESJn6I6QXQ/TjtfK3UPKr/CdpnVNOuGo5pVEmI1uh+nna8t6yaNqtj2Pk9ZXYQgiZXClui6SaXStNwGRj1vSJObUj5v0q6bqhvd0xIkn1H2ss5YFam06yZtmeSq60EVOLBdmSeNbwQCQSumJ+oet2jQkiUCAQ8++m+P2zYhkxCSlxm0RCKBUsV2eRnCIEg0oGO7lGdWymemK90V8Q3lRds2kUhQlsn2uqH0Tc314TZvc7b7zqUhV7MSdKf0jev5AeGVxBaOIIjtJA2KMufRz0mK6N+SRPGtfJOlkqJkdlgmq6J/S7p+jXZLm/IED9MRImnXcPTnbY8JiTLScvC/mM8h3+ynlZbUbPFNqoQRyt6EdlVvaVSrhXwOxTyDb2wnSmZOURzfjnzOQYlIuZrWNyxjkpWqHonOrTk4TuvnJEWF6Cxg/c5XINzTUiR/F/MOVPvGtEkJ0XOe7eRRihLWNNWs0vgmh0LTOan3tJS+IR2TFL4RCASt+NUbf2TbBIGAFd/86XbbJmQSQvIyg7REY0YIkTQZ947jkAUfogd962QVQbDbtm9K+VxwmUtb9i5t8PBw7Lea5jJXyodBkNRB96jqLVF58YyQq4RBkDRBd651k6rkOmkv3GyoRW0HqNSYlgs55NSHxgCHb2w/99IQmpRklfpbSpHPjIOsnAWyQsBHg4dpbVHjUcg5KOYtnwVSJOOp0sqkatGEPeeoCGc1psW8g0IC37Akj6YizewmN0V/LnUSa/NvSbpuaHtZpyd5bVdcASLliYnWTeI9LfANXVJROUl5cYazQJL16zhOpN9qVp43dn3TR1idIM3e6jgO2TxJ7ZtC2IM2LUgS8y2XoG/YQrO/pvUNxz6f9BksEAhCvHJwyrYJAgE5fvaptbZNyDyE5GUG5WUulTKDkGxOewCjOgwGgd2kQXfSwG4K9Q5Dn5msXObSBg8pA7tpLtq2yzJFfZNa9dYcj5zTIEXigqefmOUgSIo9rZG4QkPORMc0UX9gwqoAWSESsxKgqqTodw6EvqEhidKUsKYPUKU9C6QnRNKSZtlIgiPtw0flm9Sqt+TB/+jP0RDfyc9pLErepGQV1TmtmnyPB6gTV9Ir4G2Xv43+HNUZOm3w337rBrozSSVoz5NuvqavTkCzp9muhpOVuydAV9Eq7brJSlJCVpJYAbrks9S+UeuX5OxKUBmPMOHL9j6f/nlDmfydbn8VCATt8cJnLrJtgkBAgoFSwbYJmYeQvMzoYyjRaJ9ITHcAozqUUtlBETyk6LdKU/qHJniY1pY0AbsWOwiDh7ZLeoeXuZTqHcLLnOMkVySS+sZ20L2ebr6S+SYgm3OJfEMZ7A4IvFTlzOwG/4EIEZHaN+kCzJR7GkUJ6ywoEvuIiO+sJJ5FP8N+8DDduikTjUmQZJU2sJsV3xCWI0ySeAbQVeYJ5kjC82KZITki1TnNcjIeQEkkJn/+ArTztZJiTMoMCcbJE61o97SkviEtpU1QDScLd0/xTSvCfYSyOkHScxpVzCbdWSA4Q9ft7mm08Ym0MRvayniJ1w1LFSkheQUCSiQRRAkEswH3PrnbtgmZg5C8zMhM30jKyxyRQiQ9kUiUFUrpm0Tlb+kOx2mDh+QKkbS+IbjMpevJS3/RzkpZptTlCC0HVHmSI7IRBMmCQiQgAFKUAczCuqHqUzyVWsmbjYQvWjUEkQohpS1pVdYcffhS9dHMgsqaSIEXrpuUe6vl5AiOMufJy85mQ73DoUhM9LwhVIumTlAket6kmauNn6M/p2Wlj6bts2um1KJpEr5IEzYVgWd3nw/7R6dLprXuGwZFsW3iO02cpGEH/V6SioAniE+ESXB2k7/TrhsOQYsoeQWCdHhkr5C6giMDf/DNx2ybkDkIycsM0p68aTLdGS5ziYPu1BfttCXvDqOeVWmDh1QBmawE/9PaksWLNpUCPrXK2nL2P61aNO18pVVW2d5bAaTsAc9BaCYMglDtaZGevElQplw3FCoEkgQamr0kKypr2yQRRyJA4j2N6Owa7CMZKANIo+QlDP5bLjtbSbu3Us7XFMkAWTkvAnSKprTrJntklX1FItVZIO26oX3epN/TbCcCAHTnkrTrhvQMnSrBOBsCAYDuPJ+ls0CqxHzCUtpZ6cmb+nlDqDxPm+AkEAgauONZSZQQHL742MUn2zYh05AnKDNoS80lD2RSlUVs2JFW0URFiKQLumdGWZWhizZVYChLikSKABWpHWn73xGprLOkSJztASoy36g5koESjWkyu0l7wKdW79A+b7KwbipZKXNOtM9XiKp6JE+gyUaAKit2AIRlZ+vp1m9WSvH2RdSivu+nsiNMoEmraMpIj0TKJLgUiSuVugfPo/FN2v7eZAp4y2QzQHO/qboe3JS+SU2IqHNJSiKR7LxoWd2s7K97Pmqu3TEJklgtJxhzlOVPGxdI+7yhWjdp28BksnJEirPAVN2+b6jma/o5QkjAp6wEJxAIZuI9Zx1j2wSBgBRXvON42yZkGkLyMoMqK9T3/VTKVXVwq7k+6kSXufRKQNtkFX2Jt0QZu5TBw4xcotL3E6P0TZrgIaVvUqqs1bpJqxBJPUc4fJOAEGFYN4n7RhL5JnUiAJFvaq6Hmus3PzMbe5rtfqtUvklrh+v5qLrJ1aJl0j0tG0rAMEBll5jxPB/VeoqzAGFgt0JVEjgtkVhNp/amWr++75OorH2/QSamQWoCj3hPS9wjkag0sef5wZim8Q1A6BvLyTxq3aQ+k6RM7PU8P9XZNepP64lWRBWtUt+BiUqbRve0JGMSLRFL1kM6JfFdSTlfU+9phDGbdL5p/IznIziLJwXVuiFLYrVcRSr6vElzTiM5C6T0TZk4OcJ2L/q0vhEIBO3x1+9ZZdsEgUBgEELyMoMqy67m+kEWdJpMd4Agizl1pjttgCptoCxtdmrd9YKgexplle8j+JykSBt0LxMRESEhkk6pktY3qQNUJXrfpC9nRnWZs+ublsSVlBfttL6ZTFkmmcw3KRNXAjuIEgGinxkHlIQIlW/SBqhSk2bEVRKAdM8bgMI36QJDVM+btAFmsnVTT7luSgy+SVrCmkrJS+Sb1Os3Mp5pVNZAeuV52IfPbjJP2vYAVGrRqG/SnAUAukonaeerbdUblTKydd0kIKsidwCyViOJE62oklhTJq4oQjPlPkLhG6fZss/6XkJUAjetHaq6QupS+Cl900+4p6VdN2WiZJ7U64boDE3pG6qzQOoxycjdk6qCRRpbBAKBQHDk4bVJ2xZkC0LyMoOqj+ZkS9A9vttaLtqHSb/V1IpEqj4z0QBV2kx3ovJ7tksjplZZE/kmbfCwn8E36dcNVSKAXd9UXQ+qel8SxTepb6guuES+SV0+M+WFPxrMSVIOn5IQISPwiMqZpe4HSHgWSOsb2wQedeWILK2bRMl4BTplVeoe8AXas2tSlTXV+k2buFLM51DINRgR24RIVhIlqZX4QDLf5HMOSnla4jsre5rtZNqWdZPgeZPLOXSleNPuaeSVI7JxzwKS+cZxnEgVGiKyKqlviJKKyEp6W/ZNMe+g+bhJnzCS0jdU5cWpEleo5kjjM5OdBfIZOQtkJZ5GXaEPSJ6UIBAIaNpBCASzCX+5pWDbhExBSF5mhD3n0qqIGj+fcxAEM+LAcRyyA3KafoBAVPVmNyuU+nAMJAu6UwYPycjV1IqmbFxcKC5z1L4pZ6a0qeV1U01HwNMG3bMRtCNTvRHtaX3FHBwl9YgBFt8k7F+ZFd/QqSGa+0ghh1wunW/SE9/Z2OezchZQc6wUCQLGQSGfQzFP45ugF27CahpkPXmpkoqIfFPMOygmOEMD9M9g26URK5F9Pgmo+50nXTeUtqQ+HwXz1XLCF/FcLeVzKKRcN9Z9QzVfM6J6o/SN9XtFUMI65bpJ65sSzTktrW+iBLx934Q9aNMgc+umkPx5Q94GJuU+n75sNNEZmmjdJL3fCASCBq74h0dsmyAQCCxCSF5mcBzSkwTdo7ZYP5SWiLK6yVREdOWr0/omK2QVWRDEsm9ogodEY5K6Dx9REJOqJDARCZHPJQ+6U/cmtB3sTtN3vWEH7bpJ0xOJrHxXyrKz2XnuURPwyX1D9bypZCRAlZVeb2nVdwDI+jWmTvgiVgJaP5OkLFkJhOWVbatmyofZHEn7/AXo99f0ZJXlcxoxWZU0ORHIzv6aGZU18Vyl8I39MaFu3ZDwLE+1finOAsTrJnWlE9u9rKkrjWXofmO7LD8Z2UylbJZSzQJBKjz44gHbJggE7Njwx79s24TMQkheZpSJDulpg/8AfRZk4oO6UjSR9RDJhlIl1YWB7NJPk41JFxhKZwdVXzOKi7btoB110N06aZbBi7btXlFpe1lTXbTT7vHRnyUbk8TEN1XwkKjEKlFJ4DTrhoqsCs8l2Qh22y5tmra/GkBXtlIR57bPAunPJLTJTUn3ESBCRKRew1Trhko1YzfoTpm4YpskIiOr6il9Q0RWUdxvMpPEmhmyqjFHKmnvwCTJeLTkqvUyyRmpkkCxp2WFgKeqvkZV5pyqBUwW1k3aM3RmypwTtaZLG58QCAQCwZGD1y8Zsm1CZiEkLzPoLreNQ23SC3/UFrKs0JQlgdNetNMeBrNyqWz8LE3wMDOZskSXOdvEauNnaS8v6csA2s2UzUrJSoDON3QlGlP6higRwHafKIBy3aRT4NGtG5ogCF2AOY3qjeh5o0rQJ/RNOSslVqlaWdTTP2+ogmVpk2iykhRItqfVCdZNkebsmpZcJd/nbbf3OIySWOkSRmh8Q3XPOhx8k7n7TQZ8E6xh2+smY2QVGelNcBawHaPgaAOTyg7LpDdAH6NIK5qgi5VkpCS/KHkFAjI891cX2jZBIBAYhpC8zMhKiVUgot6xTVZlhmymJSEoMt2pgoe2ydX0ShUa31Tq6S5QAL1vbAe7qVQIZIGyhHMEoEvUSN0riqg6Qfpe1rRBoaRKfCAyJpaJb2pFU3ZKRdrf01I/g4nJKut7a5XwLGCZ1KQPMFsO7BJUjsgKuRooAa0TIkQKL4J1Q1aFJm3QPWtEouUkK4AyGeDwqE4Q9Y3v+4ntUOsmlW+o7jcZWTd07QHs72lkBHzqFj3ZUHtnpfVK9GfTqopT7/NEZfmp4npUc7WcsJqVQCCYiSR94QUCweyGrHpmZKkkcD912TvLQbusZKeSKBKJA5mpS81ZV70R+YYyeEhUZtV2gIossJuBskxZyf4nK5+ZuUBZ+h6J6YnvtHsa7bqxvn4pSgIfZntaVgJUYY9E+yRv2nmSlRKr0TmShhCZIkj4om6/Yts3YU/tdIkr1boH10vhG8J1k17xnZaAp1m/VL6pez5qbvL5SlHmnLw8sfWkopR7WtN+zweqKXwTnKEzoLKmWze22wNkIz4BhHcjsj6n1pPgaMjm9MkR6UUTdM/glPO1kC21d9pzmrJjQJS8AoFAIBAkhpC8zFCH9Jrro57mok1QXoYi+OD7fmZ6d0wSXVwqdQ9eigAVxYWB7qKd9hJFE/ynIqtS+4YwY5eq/531nrypEwHCy1wa35CWAUzpGyplhu2LdtQ3qQiRjKybuuuh5jb+DtvZ/2nHJLrHpyOr6BJX0vjG9fwgQJ0d36TsOUcUoEqTHFEm8I3n+YQ9ee2um+jzoZJCMRqo3iwTiZ7no5q6YgMtEZF2/QLp5gnFuqEoT+wS+CacI3aT8cqRsbTuG4KkTRLfEPVLTkt8RxMb05CaFL6hIFcpfEPdpiCxb5r2uymTI0hKAhMoeaPnNNvJeKmJxOZ4+CmTIyh6WVO0GqHwTVZ6SFOd0yjungKBQCA4MjE6VbdtQmYgJC8zogefNCXNSEs0pjgM1lwfitdJeonKStC91TfJbakQ9HqjuETVCAiRrKibo/anCuySKOCJLtpkwUO7iQBkviEIulMEu6OJK2lLWNMpitORVQDNRZumfGbyMYk+M+37Jm2Amcg3KZM0Gj+bft1ExzNtSWDbqpksBagozkfRv8F22cq0KqK+SNm+NOeSrFRciZ410yda0aybpAraaEnFNGNCk4yXvs94hdI3RNVw0vjGcRr/T7HP2z6nkfiG+n6TsKRoMe8gn2s4h4aAt7ynRX7WdsIXVRJ69LNs2AGEPdvTPIOz5JvUKutockSKJDjKcxrFHAGSK1fpEr7ozmmp7nwE60YgEAgERya+/dgO2yZkBkLyMqNMdPChuDBQEHjRg2TSMqvUCpGkPT3Jsqkpe71Vk2egtAbdLROJaS8MkZ+jCVARqBAsEyIUmcMAnco6rS00Aar0Y9JCiFi+aFeCPc0yIUJQErifgMCL/g1JezRRl+JNW1Yt+lmJ7EiZpAHQrJupDJ4FrPuG5JyWft1QnAXU8yZ9ywRFViVbv4V8DqU83ZikU72lb2cRPWsmXjdBn3G7Zc5zOSfYl1M9g7Nyv6mm39PISpumHBPHcSL9Vu0mfJEQIgS+Ccqtp25TkO4ZHPVNmvlaSfncA2gIvOjPpj2n2SZ5S/kcmvw7zVkgzTmNoJf1JIlvqJPxCJIjUqzhtPEJgCYxP0vrZirlna+Qz6GYb/iGYp8XJa9AIBAI4uILG56zbUJmICQvMxzHCQ/IBMEHitKmFIrifM4JDnRxQaUQSUuu5nIOSgUCIoLiok3QN1L9rOMkvzBQl5pLOiZ5It/QlARu9hOzTIhkJXiYzzkkQXeKEvQUAarW4GHadWNXkUhGiKQs9QrQBg/7ijk4TrrnDVkfvoRJReRBkDS9rCnWTfNnS4Uccjm7vkmrQqDyTVqlCkDsm3wuCIomtoOop7bt0ogk6h0CBW2gnk2zbojUomnXTYst1hO+6JRVaXxDloxH4RuCNUyZYExRmjjVuiFS8lJWOrGtFqUkEil8kzYukLaXdSNmkz45goKsCvqtplm/1fS+oU7GS6padRwnGJOsVPWguHvS3G9SJnwFyaMpkuAolOcEd0+B4EhHmvaQAsFsxlhFyjUrxH6aj46OctihjZtvvhkrV65EX18fVq9ejQcffLDr+//lX/4Fb3zjG9HX14fTTjsN99xzT8v3fd/Htddei2XLlqG/vx9r1qzBs88+S2ozxQE56K+WIrBLQTZHL7dJD6Vl4qzQpOXMAJBeGLKi3ukrJPdN0AvXMiECEPmGQpGYlSAIgR0NWyjKJKefr1lR76jLbTHvoJBP39MzDSiqAlAEmaPBh6QgKdeckQBz1JZUz2CS8nvN9UuR8EVAaGbCNyQBVToigqK0KcW6SaqeBQifNyRVAeiqaVgnZijmKnHlCBLfpFKLNn42zVmeZo5ko28zQOMbkvMRhW8IEgFoE2jsJrE2fpbinEZ3FrCdTEsdF7CdHEEyXwmSeSoElV/ISgJTJCiW0vuG5n6TjcQzqpgNhW/6KGIlBL4RxIft2D5AH98/kiFEl0AgiP0Ufcc73oFdu3Zx2NIT3/rWt7Bu3Tpcd911eOSRR7Bq1SqsXbsWe/bsafv++++/H+9///vxoQ99CI8++iguvfRSXHrppXjiiSeC93z+85/H3/zN3+CWW27BAw88gMHBQaxduxZTU1NkdlNcLCmUvJRZ3bYzIKM/b1uFQHGZowjsThJctBUpS3aZOwwUIlkJglCtG0pylYJIpKlOkI1EACr1ju0gM4X6jlKpkg3fNG1JM18JE0bSJXzR7WmplPhEviFRIRD4hmJMKFVvFOs3TY/i6M9TlK2kOAtY31spSQgqQiTNusmIIjEMdlsuTUz8vEnnG7qKK9aT8ShVq6nvntk6p1Ekf1OQzVna01IlfxPMV1IFfIpnMKVv0uytQGS+pkkGKBDsJRT3G5LzIp1vUu9pBL4J9pI0yREEvhHEh83YPsAT3z+S8eK+CdsmCAQCy4h9ezzzzDOxevVqPP300y2vb9myBRdddBGZYe1w44034sorr8Tll1+OU045BbfccgsGBgZw2223tX3/l770JVxwwQX4sz/7M5x88sn49Kc/jTe96U348pe/DKCh4v3iF7+Ij33sY7jkkktw+umn4+tf/zp27NiBu+66i8zuzAW7LWfZ0ZX+ycbFkpLAoynjSRCwS1vOjJAkyg4Bn/6ibZuYif58muBhZoLuwUXbLiFCXgbQMiFCoYyk8A2JWpQgKBS1haSaBsnzhmKft0uIUPkmLElo1zek5TMpVNYUZxIi39DMEwIFvOWzAE0iAG0yXrp1Q5fwRZEwQlPGM33Jykwo4CnOaVWC8yJlIkAaEoLKNxlJBsiKbwKCyPJ9r/HzFBVGKFWadu/jWUl0BogIZ4rWVhQJxqryi/VS+ETtASgTNdIQ3wS+EXTHk08+iXq9VelpM7YP0Mf3j3TsGaETqgkEgtmJQtwf+Pu//3tcd911ePvb34677roLixcvxsc+9jH827/9G+uDoFqt4uGHH8b69euD13K5HNasWYPNmze3/ZnNmzdj3bp1La+tXbs2IHC3bduGXbt2Yc2aNcH3586di9WrV2Pz5s143/ve1/ZzK5UKKpVK8PXIyEhX2ylVmoeDQoS6ZBaJEpBAZZ2Z4KHlMp5AhNS0PE8oVTMkykjLcxUgLp+ZFXLVcpIGVdCdkjijKAmclSBIulKR6bPLAZrgQ6iIyIgS0HZVDyrfECZapfMNAZFYSP8MJiktTqDKiP58qrMraVKR3R7wpGU8qZ43qdYNQeuGjFSOIO3bXPfg+37i1ikkpTwJ9pJKZtSiKiEhzT4S7mmpfENYhYYi0Yqk/C1Jkob9uACpbyyf0yiTAilK4VNVkbJd5pzyGUyxfklU55nwDV2CovTk5cMv/uIv4rHHHsPxxx8fvGYrtg/wxPeno1PcvlaroVardbRNfa/be7KIQxOVlq9nm/2zddwBsT0LmG3264573L8rNskLAJ/85CdRLpdx3nnnwXVd/Nqv/Ro2b96Mt771rUk+Tgt79+6F67pYsmRJy+tLliyZkXmksGvXrrbvVyUp1H+7vacdrr/+enzyk5/Utp1UvWP5AFahUIiQlcyiCD7QZZjbDh5miYDPynwlLXNuOwhCtG4oyJlyRoLdpH3NLKuZABrfUJYEThNQDQg8khKN2alOQLHP2yciKHxDp4wkU1lnJWGEwDckc4SEhMiAIjErZ2jCvZXiTFJzfdRdL3EveZJqOKSKRLuECGULCdfzUXN9lApJSV4639gek6xVTPL9Rhn5pHsSSeJKRsaEVi1qt+x7qy1278FZaW1F45twb02THEHrG7sJiqpiGo2Sl0a8Yds3lEISIXn58LOf/QzLly+f8bqN2D7AE9+fjk5x+/vuuw8DAwM9bdywYUPP92QJj+xxAIRraLb2K55t4x6F2G4SrXTm4TrfJybilWGPTfLu3r0bn/nMZ3DrrbfilFNOwdNPP40PfvCD7A+BLGH9+vUtGUQjIyNYsWJFx/dn5YJLQohQEKuFaBDEQzFBgMr3/UiPRLtl70gzdi33rFIH66rrwfV85HMpLwxZma+2iUSKy1zzUlmte/A8H7mEvqlQBA8zsm4o99Y0hEigAkzpG5KylaQlgW1nddNll6fxTd31UHN9AOnmazkjQRCSXtaE1UXS+Mb1fFTd9HsaiW8y0s4iPKfZ9Y3n+UFP3swQ8JbbalAmJwINxeicBGfo6LqxrRZVa8622kz1vkyljIz8DZM1F6UEa5DMN4QVV2wnKFL2ogca8yTJ31QjOgtQnNNIzwIkJejTr5s0cYGa66Hu+U1bskHA2y5hTWJHKUyOqLpeovL+1L6huVcQtCwiiNlQ7K1A8sSVw803gu5oF68+3GP7neL2559/PoaHhzv+XK1Ww4YNG3DeeeehWCyaMJUE5af34BvPbwm+NlFymxKzddwBsd0G/mjzfS1fH67zvVfl4On4/7P37mF2FWW6+LvWvvUtnU7n1okEkgASEBAEyQniyABCgJ8DI0dlzAwyB2F0YEaEMwhzFARE8DI3PT5eBhXHAZ3RGTyKikQQmNFMwGhGxBAhEgLkBun0vXvf1vr9sXetVbt7772q1qqvanW63ufJA9299+6v66uqVfW93/t90iTvqlWrcMwxx+Bb3/oWLrzwQjz44IN417vehV27duGv/uqvZD9OGIsWLUImk8G+ffsavr9v3z4MDAw0fc/AwEDb17P/7tu3D8uWLWt4zUknndTSlkKhgEKhIGy72p5VZgNUgR1Jgv8cKTtZrsa6zBUrHvzamTQ1JJGSDMgEQXeVaqba51XRXZAX+5frBLEqW0xfGNJCVvGXualKFV15ed9Uqp4SQiQ1e4lCJb6KbGogvm94QsS4Al5hQNX03sq/t1jxYpE8LPgPpGFPS4eCNjW+4cbSuMpaaW9Cs+XWVfimyK0bFXuaklLapsvOKiCb+QoLk6UqemKc0/i/ITXqZtNneQWq1VzGgesAnl+zZX6nfKBElW/SUl5c6fMmkW9cZF0HFa+WJNyXwA4gDSrNdJzl1VRJSB4XUOUbNYlWCnucGm5ZxD8zp0rxSF71vjHbKkhNzEaFb8J1EjdxRd2epjIhPr4dFvIwFdsHaOL709Eqbp/L5YTILNHXpQXLF3Q3fD2bbOcx28adh7XdHGar7VHjLvt3SZ+iv/KVr+CXv/wlLrzwQgDA+vXr8ZOf/AR/93d/h6uvvlr244SRz+dxyimn4OGHHw6+53keHn74Yaxbt67pe9atW9fweqAmhWavX7VqFQYGBhpeMzIygs2bN7f8zDhQc1BXd9EuJrEj6J0VP5iaz7hgFWXiHgaVHUoV9npTUsJaQaAsURnebONFO4kdNVsUZMoavjCo8I3qi3ZcW3iySk1/YLO+SZsdNVvi7a9FRb5R0VtUSVn+uh0TSfY0hf3OgQR7Gvc3JOoJqFC9YzoRQKVSJYktDWcBBQSeksQVw4SIatWbEt8cAklFSitHJDgbOY6T2BZ+LBOV5Q98o0Itmrxvs+m9NU2+SdvzRkniSsLgf9L7OHuf4yRtZ6HgXqG0F67ZvVVFXIDN1aS+UVLhK2Ul6JP4JpdxgqpecUlNVb5JTVKCinOagvWbzbjIZWq+SRqzSb5uVJ6PLMmrE6Zi+wBNfH+uY3lfp2kTLCwsDEP6aX7ppZfO+N4b3vAG/OxnP8MjjzyixKhWuO666/CP//iP+NrXvoZt27bh/e9/P8bHx/Gnf/qnAIDLLrusoXH7Bz7wATz44IP4m7/5GzzzzDP46Ec/ip///Oe45pprANQu49deey0+9rGP4bvf/S6eeuopXHbZZVi+fDkuvvhiZXYXUnLRVhooUxUEiVlGjF20s64TK+OXQWmpOQUlrHkSThYqeme5rhMc8mMT8HU7XKd2cY8LNb5RR66q8E2Si7brOkHpv7i2qCKr0hLsVhFgVqEQyXC+UZIcoaBcZGr6jCdYN1MKSr1mXCfYh5KSVR05N3bPK4AbkwSBoaJK3xhWiPC+SRrYzWfd2GXSATXJEVMKlPjhujEbYFbqm4wbu/UDwKtFkycoJilhnZae2kDyJDj2voKidZNkTIoKz2kqkvEKCUtFJi1PzJd9V+EbNa2CzJ4XVfVqTKo858utJzkLsPuiisoRiXyjoge8gjLnKuICRa5ag5JzmoKEeONloxX5hj03464bVb5RUU1DpWgi2RxJbgeQ/Nmnft0k941V8uqFydg+oD6+P9fRF6OCjIWFxaEF+RpfLbBy5Ur87Gc/U/VxTfGud70Lr7zyCm6++Wbs3bsXJ510Eh588MGg+fquXbvguuGB+vTTT8d9992HD3/4w/jrv/5rHH300fjOd76D448/PnjNDTfcgPHxcVx11VUYGhrCGWecgQcffBAdHR3K7E5LSeCCksNxcjuA2qF2olRNnBWa2A4FwUMV5KqK/i4qys4yW4oVL0HwMDykJ7rMqfANC8gY9406FUKp4iUPUCUkq5QE3RWqrJX0RUoQBAGS+2ZSUdBdRW9Rpb1wlSQVJdvTOnIuStUke5qa501qqhMoUe/UA0MJ9lYg9E18Al7N3qqkpKgSJW+yYCqgJoEGqJ0Zk/lGDWnWoYAQUXFOU9O3WdF8TZhUpIpsZnMs0T6vwJZwbzVbxhNIvpcUFZR9B9SU0lZxPlKZYJyE0FRhi4rKTfz71fSAT7CnKUiOUOUbZXGBxGeSdCTEq7Qj8brJZzCeAt+kJWFEpQI+8brJZzBarMTeS1K1bhSdGS3UQEdsH6CJ789lZBMIbCwsZjNYZQsLhSQvACxYsEDlxzXFNddc0zJT59FHH53xvXe84x14xzve0fLzHMfBbbfdhttuu02ViTOQNmWVGjvUHNRjEyIKlJGAmuChmtI/ybOpi6qCdtkMgHLiC4OyOaIiY1dB2UrT65e9f3gyuXoneYBZ3ZioWDdJVG8qyaokvlERFALSs8+rUYioI1dHpiqJCfjkhIi6Pa2gYt0o8E3S5IiOXDLfqCI0lfRYU6GsYskRSSpHKHwGj05VEit5k6/f5PO1qEA1k5a+zYAKRaLa8rdKzgKGS2mrJnljn6EVJQKoqAqgJlFS3VlARTIekPwMnaQiAG+H+XOauiR0Vb5JGhdQlYynInFFRTJeohZbinyTNBkguN8kXDdqSwInL+mdjjO0ooQvZb4xm/xtoRY6YvuA+vi+hYXF3MO1Zx9l2oTUwKZ6aICSXrgKlVVK+iIlJESSlrBWUQoJUBM8PJR6iwIKSs0pVoioyZQ1S4ioKEfIv/9QCLqrCB6q7F9p2jfq1KIqlIDJg8xpUUYCKnyjVi1qWm2WNoUIEKrXZKFaZa2iqkei1g0q1o2CcoSAupLAptcvoIYAUFLVQxURERB4htU7StSiyZPxlBDwCs6LvC2mz2nhXmJWeV5Q0XpFkW+SnudVJRinpbSp0tYNiuICiUvQJ64coSApQWFJYCVJ6IaV51MK7ntAesYkjc+buEkJykQTKnpZK5qvFhYWFhZzD5ecvNy0CamBJXk1oFNBEERJSWCVZW5MZ1OrDpQZzgpNS1Y3//7E2dSpCIKoy6Y2rVoFkl9wVatFlfRFMh3YTYlvlAVjlO5ppn2jJqkosbIqCB6aV70ped4oOJMUFSur4hIRyp57Qe91swEqlZUjVFVsiB/YVVxK+xCohqNqn1d1TlPWD9BwsJsn73zfj2eHquSIpOe0FCVHKG2rUfbgefF8k5ZqGurO8urK8qu435SqHirV2V29SXUbJ+PrRmXMxnDSdVqqJABqEq1UJmya3tNU9G0G0hMXsLCwsLCYm1jYUzBtQmpgSV4NKGSTlxRVqqxSEowxW3JH/YXB7CVKhdo7KDtr+DKnqsRqWgK7SuaIskzZZIHdKQUlKxvsMB7YTUeSBm9LWkoCmw5QKdnTGLmqqIxYYgI+aeUIlb5RkvBlthc9oMI3qlSr9eeeYQWtivKZRVV7Wt2WicREYppKNCYnEiuej3JKCJHkZ2g1Snzj1Qnqdnh+jbBKYof5Utpq1o3apKLkzxsgfhn6ScXVCZKWOVd2TlNQSjvRWYB7b/yqAIrHJKlaVFniilkCj1dGpiVxJWk1nOR2JFOL+r6v5B7Mn1tN+yZ5ewDVam+ze5qFhYWFhcVchyV5NSDppbLq+UHQQsVFu5ogQKWsR6IiZZVpssrzfCVqMxXZ1KFvzAaGplIS2PV9X2k2dbnqJ890V5UpGzcYo5iYMV1eXKlvVO1pCX2jjGyO6Zty1UOlrrZRoXpLtKcpVjcn7lllOPhfqXooV+u+UaCAL1U9VGMqq1T0BgbSoxBJOkf4c5qSPnyV5Kq35GOiJuFLncIr3j7ieb6Snrz8e5OXsE5J4orhyhH880bFugGAqYRVAZIr4JMl9ipTeycMuqvyDb9ukidamSarFNmR8CxQ5p7dSc4CfAKd8TFRRCSq8k2SdVNVsW7qdvgKEldMJ12rrpgUtzRxueqH60YBAQ8kSVxJl28Sn0kSVn5RtadZWFg0Im4iioWFxeyFJXk1ICwDmCzQDSTsi8Qd4JKWe1UV2DWt3kmaAckf7pUFD+POk5SUSVZfuiveeJSqHliMPImCVkWmu6qys0l7AqoOxsT1jbLArgoVguos5oRKXtO+4de9CkUikEQhoig5InXrJpkSH1CjgAdmP7maNtIMUEhWJSSJkp/TEp4FVLUHSLh++XNast6iLhyn9v/xS4qmg4iYUrS3qip/CwAdCSoE5TIusq6TyJaQXFWjbk7c8kQR2WzaNxnXQT6jpt+quipSKUkKNOwbx3ESl45W5xs1CV+mq1mp8g2/N8dNXEnfulG0tyZMPEtqS5oSvhIn46kim5M+9xStGwsLi0as+ciDpk2wsLDQDPsU1QBVwX8gWdlKPkBlOrCblnLNqgLMQBhQiQMV2dTqy72mIzs1ft9mdYFdhsRBEMPJEaov2kr2tAS2qPBNWvaSoqLgv6q91XGSP28Y4tpSVJQcEQTtYpJmyvpXKgrGAOp8Y5pcVUVWqUrSSLrHAwp9k5I9Lb6SV9WeppCsSmCL4zhh0mbcoHtaCDxlLSTU7GmOg4AIjG9LOohvVWrRxD3gk+5p9fe5SnyjZr4eKqo3VRWTVPgmMeFcUrNuEieMKKqGE/gm4Vkg6Z6WyzjI1BNXkiZ8qdrTTFfDKSRUi6paN0qTilJy50te5jxhBYuSurOAhYVFiLjVBiws0o4XDoybNiG1sE9RDVB1uS1kXbj1Q2UcqAhQKVMhKLrgKgv+Jzwc5zMusgkOpa6rLpvadAlrdapVNb7JuA5yCXzDZ7obv0SpCmKqIqsSBh6SEokqfKMs+KBqjhheN4xY7chm4DgJnzcJ9zRVSQlp6WWtLJiacxP5RuXzRlnQPelzzzAxw/ePTnJOc10n2BOTVo5QV00j2TnNdOuGKe6clkngG4BLSoibMKJsn0+aaJWWs3xoR5I9DVCnKk5OfCe1Q61vVPTRTOqbxIRzRRHxrWiOJPVNIfBN8j0+sW8SVxhRu25ij4midlKBb2KTVWr2tFrMRtEZOiWxEtNlzinWzWyvCqDsvKjINyrOAhYWcx1rVy0wbYKFBTne8qlHTZuQWliSVwOSBqiK7OKS8JDOf0bcywvrg6Kup6fh0j/KMiCTL6Wg10zs4KFa1YxpNYSq4H/S8eA/QwU5o8IO0wGqxL5RGNhNTR+vQ8Q3k4r2eECdosk0WZWW9VtU1OOUt8V4YCixb+p2mA4wKxoPQJ2qWF35vdndUzsg4BWc05KqvJSrrA33A0xLm4KaLelSi6anGo5ZO/jPSHqGTj5fEyY3KW6LY/q8CCg4M6ryTUqSv9OyxwMKkooUqazTcl5MqhZV6ZtCwnmiuu2Y6b0kjGGZJb0tLCyAL2442bQJFhYWBmFJXg1IXoJIDQkBQF1WaEpKNCY+HCft76LwUBpeLGd5QFWZylqRYkZhEMR0hnlilfUhGKBSZYt5siodRGKYpKGQEJnlvlG2fhM+b1SeBdKiQlC1t5ouFZmmpKK0lBRVtn5VlfRWchZIRiQqr7iSuI9mOs4CSs5pQaWi2Z3wpco3ypTNaThDq0pizSZLplVW1UNRcoRS3xiuHMH21mLsc5pa0iz+XFXnG1aeOLE6UlkSnOHnTYrWTVA1KXEbGLP9kouqz4spSMy3sJjr6C5kTZtgYaEVH3hdxbQJqYIleTVAVTBVSYAqYbBMWW/CbDpK/3Qk7e+iUPWmqh9RWpQZyoiZ2KXFmW/Mk1WqydXiLCdm0hQ8VJ2UENc3qhMBko5HUmWkCluUBXaT+kbZc08RoalSvZMSIjGxwivhPq+u55z5582hVgYwjec004SzsvWbMJlHHSGiYN0kVL0pqxzBgv+JS9CrSaZNw56m7nmj5n6TVLVqPPGMYN2YJmfUJUqafe6prPAVJjglfPaZVouWFD9vYickKNzTEiYVqarSl5ak66RtnFSuGwsLCwuLuYXVvaYtSBfsk1QDVAWFkvYiAsJDqfHDYFoulUkJTZUq66TzpKLmgJyWoF3i8VBUpoq3xfS6UdmPKJEdKVGa1T4jHQq8xL5RXPIu/j4S9uRNikMlsKuuz3jS5016SN607GlFRUretCQ38Z9hfJ9PSoioniPlKnzfl35/MB4K9rTUlJ1NqChWlczD7yNxfKOyPUC4btJRJtm0b9jfUap48DyzvkkPEZEWO2rrt+L5KFfl52ua2mqo71OcDt8kJ3lV7GmK2ielJS6QllLaKWh/pq49QML5WlITY1RVXcSWa7awUI+v/Ofzpk2wsLDQCEvyaoC6C5T5rNCiamVGSspDJe/1puKirShod4gEQZKTVSqDh+m49BeyauaryqB7IjsUXrSTXyzVBEESq+8UEYmmy6032GK6t6gi3xSSKqsOQfWO8edNSkrQk/TkNby/Jm2ZoKoMILOj6vkoV2OQVQqrEyTxje/73D6vRqUZt7Sp6rMAEK8Xn6rkJv4zTPsmaYKi6jM0EG8NK/VNgiQapesmmCNJq9ComSNAvHmi0jdJnsENvlHWHsBsgjG/j8RJXCkqWr/8Z8SZI7xvjCcVKUsECO1I4hslSaxBKW35+er7vvrS7wkTe1X25I2TVGTLNVtY0OG2B35j2gQLC6X4xhO7TJuQaliSVwOSZuyqLTUXn6yqVD2Uqop6VqkqmaUosJvYNwoViXF843l+EGAzTq4qmq9JfcMuXiqD7nEv2qqVVaYTRtjlthp33SgNUNX7eMUIYqoNgiQlZtSozZL6pqioIgCQbC8pVz1U6oEC071FU7OnpSR4WKl6Adlmft2oSbRKk2+SnNM8z0cpUOMnJSLqAVXDSl5+/ceZJ2Hf5uR7WiFBYLdU9cBin6aTI5Ql0HBjGmeeUKje4oxJseKBcQam9zRVvimk0DdxyGaVvklKwKsi8ApZF45T+/9Ee5rh502pGvpGVVUA06Xw2VnC8xEvqYiiOkFM33iKfRO7X7LiKlJAvKQipb5JcB8vV31Ug/uNItGE4ZZFSX2jMlHSwsICuHR1vP3awmI24KZ/f8q0CamGJXk1IHHGrsLMwySBXV51m1whkpKevAl9k5agOx84Ma1uVnVQLyQM7FL4Jk6grKhw3ajqDZx4juTV+EYJAZ/AN2qDIGpKZiXeW5P6hoCAT/Lcq31OOp43SZ/BSfc0VZU0+M9IehYw7RtVfZt53yQ6pxlOjuDPAsafN4oI+HzGhVsnROIEmSmqE8SbI9xZwHBpRFXB7mzGRS5Tc04cAo/iLBBnjvD92tX1WzVbqch1nUTVX1QG3ZPMV6W+ySu6eyZcN47jhPt8jIQRpUmsCfZ53vbkyd/p8A3/d8Q7Q9fGpKCw5UkcAo9/j6p2FqYTV5LH0xTuaQn21smG+03CZDxVLU8UVicwHRewsLAA1i2VT1KysJiNuOOi40ybkDpYklcDkmbsqiw1lyQrlD9Qqypbmbz8bTI7eN/Eu0SpzwqNc1CfIghQJSWrVJQmDn1jNuiepFcU78/kyqqEme6KSljzQfc45fdIgoemA1RJFSIVNUGQ5L5RQ8wAyXzD3uM45p83RUU9eZPuaRRqUXsWqCGxsopCvZP0LJA0sJuSsrM8IRJP9aayJ2/ydZN1HeQyqtZNMiJRJRGRZL6qLAmcRLWqwjdJVW9Kie8ELXpIEiUTPPdU+iZpFSmlBF6C5AjTpbSZHRkVvskme96o2tNyGSdRUpHKs0Ci516Db5xEdhSSqkUV7Wm5jIts3Tmx9jRF8QkgWcIXm1euU7uzJQGLK5juDZxxneBvSRIrURGzsbCwsLCYO3jnqYeZNiF1sE9SDXAcJ7i8FGNdtNUFQZJkhfIHMMdJeGFIqBBRVTKL941plXWSPsVsHPNZFxk3mW+SzBHeFpWB3TiZ7ir7uyRRZrDxyGUcZA0HdlVdcB3HSbaXKCWrkgcPlQSoFPXCVembeGOiMOiewI5AtZrNJH7eJPaNIiJR1Z5WUKgWTZJ4Vsi6cJM+bxL6RuVZIJmySt1ZQMXzJp8C30wqTOZJoiSaUqnkVZDwpZSYMVw5AlBDRKTlLKDGNwn7V6ZkvtKcoQ37JnF1AjUJXw22JEjGU1k5wvj6VXSGVqmyTjZfVbRxUkCaZZPHbJK22FI5X9Xs8wrsSBA74vc0476pqEvsLSRJglOU6GxhYdEcK2/8vmkTLCyUIO7ddy7BkryakCRApSrADKTnMpcWhQiQTNEUlMxSUgYwfv87tSVWkwZB1NsSK9M9ZUFM06rV2vvSQeDR7CVmEwES90UiyP5PMiZKnjcKFCKmg6mA2jWcmmB3At8UFVUEAJL7hqT0e5IygApLAieq/KKg/2xS36gi4IFkSiKVZ+gk1TQCO1SovbPJzgIk57QEyaMqFfCJklgNK/GBFBHfCpVVobo5SXKTyjmSBt8krwqgZG9VcCZRU/422Rk6LXtakeBMkqR1g5K9NalalMQ3cZJHFfomQZUEimpWcfrgAoqTz5LMV4UqawsLCwuLQxdrPvKgaRNSD0vyakJwQE5wKFV5qYzV1ywlFyjeFiUBVQVBO6UkUYxLFAkxkzQIkjcbZFYafEjNuomfCACkh3BOS49EirKIickqBeSMirL8apM0EpDNCskq06Xm+M8w3SOxM4FvguQmharVpGVnTftGVd9mQJH6znCyCKA4QTFRO4t0rF+145FQLZqSpM3UJGkoVBGp6mWtVPWWZN2oTFxJlPCVnrOA0vLiSQh4w/t8WvZ4II1qUbOEJklp4tgJXyrPacl74apJjkhuh9LnXux1o/4MHS8pQV2VBAsLixq23/pW0yZYWJDiXaeuMG1CKmFJXk1I0m81LaWqSALMCUtmKSmTrCB4aFpZRZFdnlRlraZnVZJMd/Xz1XSvRvYZxZjZ1GmZJyrLziYJYtIED5MFQVTOk9QQIgmqE6hUViV93qRl3ShV78SZIyqVvCkppd1gS5JnsIK9JJFvUkJC8LaYPjPSJPPESFwhqLiSNBlPCSGi5Hlj9hk8lRLVKqD6zpeg3GtKFMUq1w2/p/m+L2+LynXDEnsTPIPT0mfc9NkIoEmoNf28SUtSYJKETYCqUlE64gKJWn2pLOmdgrhAooQRq+S1sFCO6W17Do6XDFliYUGDT/zPE02bkEpYklcTEvVbVRjsLqQlUJY0011libcEvklb5nAaskJpyu+ZzthNQlapV70lVYsqITUVlKA3HYxRG3RPj7IqyaU/Lfs824/V9jhNQRAkSW9RAkIkaU/epEjS14x/n+l1EyrPTQcP0xHEBNQG7VQkfKmpuJLgeaNQLcpXw/E8ebJK7T6fDmVV2pJpS1UPlWoSdaRhtWhKEowpSLOq56NcNbxuWGJvrHY06pMCEyUYGybvgPSsGxplpNl2NMriAqbVzSkh4FWS3knbA6htZxG/2pjK+42FhUVznHz7RtMmWFgkwi3/79emTZgVsE9STUikECEJdpvunRUGyuJkU5OUzDJeEjgdGZB8xm68THf1fV9Nq96SlDZVWfKOv1TGWjcqy3fl4geG0hI8DNQQiufqbPaNWpIoSb9zhc8brrRpMvVOOtaNad+oDOweKr5RG+xORxlAvhxhLN8oLL+XqAwggdo7XvlM9QQ8IN+Lz/P88JyWEt+Y7hup9LnH/S2yZ0bfV+ybBEk0FCVWTSeu8HuA7P6q3DcBOWOWwEvWekVhVa0E9xveNyr7Aydr0aMiGU/FWUBFdZFwb43lm/qerKJ6k4ry4mp8w+ZI/KoeKtdNsSKf8FVbNwQEfIIEYxV2WFhYhPjCH59i2gQLC2X42qYXTJswK2BJXk0IenrGythNhzKyWFF3YWCEl+fXst1lUK56qNQPskpL3RgmIlSo3lQe0uNkulc9P/Cn+eCDOnJVST8xhWpvz4e0bzzPD4LBapMBTBMi6Qi6J9nTfN9PX4a5QjviBMpUPm/Y3+L78oQI/7wxvacpJTQTqHco+s/G8U2l6gX7oGnfBG0KVPrGNKGZwDdVz0cpSFA0qzxPDSFCoN4B5OcJ70vTyXgUfSOTtW5QkBzBzXdZW3jfqDyXpEXdbLoqTz7jglUvlD2XqPaNij1NZRWpRM8bhXtanPtNw55muI3EFEHSdZwzNEUCXJyzQLHigfHCSnvhxtjTikrvWQkSJVW2PEmQ8FWqemC8sNJEdMMJxhYWFiHWHz9g2gQLCxI8+X/OMW1CamFJXk1IUupGbalIBYSmwizZmi1yh1LedtMlCVUGu5WUnVV8YZAl8FT7JlGpqqBnleFEAIJAGf+5olAd2E2mQlCf/Z8sq1vxupEcE9UBKjVEouGS3gTl3QD5rHt+zSvtIR1rL1GfQBMnSUNl/+gkZNVUqoLuKUluIiA0gThEYvh6033G01KCXuV5MeM6yGfjBZknic7QppXnaTnLO44T+8zIz2+VyRGmWwV1JDkLKNzTHMeJPV9V+yYtfV8TVfhSmsQaX2Wt2jeFQAEf/+5pmmxOy1mALGaTRC1qup2UygTjBHEBfn4rbTWSoOqZVfJaWNBi5Y3fN22ChUUsPLxtX8PXi+cVDFmSfliSVxPU9MJV1//OdKAsl3GQqadTSwdB6q93HEU9ARMEqFQGu9OS6Z7LOEGmu6zKix9DFb5JFNglIL6TKasU+2Y2B3ZVBg9TQojkMm64pyVJjlAZ2DXcxytZVrc6ZWQu4yJb901cQkTV80aFb5SqvROdBZKPRy7jIpeJ55upND1vCBS0ppUqSXzTGHRXlxgoq1QBaNZNrPWr8EwChM+KuOsmzz2zkqAQzNf4CV+mkyNU+ybumXGS8002Y3YvIWmrkWhPUxOyiEucUfnG9J1PTeUIsyprdubOZRw1vlFw91TSMiEJ2axQGcmfoeUT82uvz7oOcgp8kxa1aFqq8mRcB/lMvIQR9vqM6wRnvSRQUiHI9uS1sFCO96w7wrQJFhaJccXXfm7ahFkD+yTVhCSZskoDVOwAZrhfhuM4Yf8s2UNpKQwKOU7yQ2lalIBJMt1DQiT5klaR6d6Rc+EqCLvioIAAAMaTSURBVB4m67FGQFYZLhXJ+yZ28DCrJrCbGnVzgmCM8uBhzOBDmoKHanvyJlGIqAv+N9oiqUjkVOcqnjdK+oznVZa/NXsmAcD1jZSzha2zQlbN8yaJb4okzxuzZ5IGWyT3NKbkyKvyTSICXt1ekhZChLcl7vNG9XMvLec00wk0QPznjWrfJOuFqzDBOMk9S3VyRNw9TeE9C0hWSpvknGa40lhNAZ/07qk2gSYt/b1N+waIfw9WfSYJeuEmqU6gtHKEWQU8wJWwjrtusq6ieJqK541V8lpYqMatFx3f8HVZsq2YhUXa8LMbzzJtQqphSV5NSNK7QymRmEDJq7pfRtxs6qAMr+FgDP8eJQR8goxd5ZeofDxbiqp9oyArVG3wME5Wd33dqFKIxFUhcJc5JXaoIKuUrJv4wRiy4GGC5AgVSEtpUzX9xMwGVFWWd+M/J0nQTklZtQRklco5AsT3TVFhWUQgPQlfyYjEmu0qFPBAArJKYbl1IGnFFfWBXdPKSP5zipLPPtXPPZZ0kqwXrtm+zVTJEXHb0aThfqO0VZCSalZmfUO1fhP5Rkk1nOTxCdXzNa5aNA13z0P9fhNXLarqTNKRoCdvUErbcFyAap+Xb3mSjjsw/x5L8lpY0OPo//ND0yZYWEjhDbdvbPh6eV+nIUtmB2YNyTs4OIgNGzagt7cXfX19uOKKKzA2Ntb29X/xF3+BY445Bp2dnTj88MPxl3/5lxgeHm54neM4M/5985vfVG5/EIwxXEYsLnlXe4/aw2AhJuGsPniYjkx3FcSMqjEJfCMd2E2H+g5QG+xWk7Gr1jdxg4fKLnNpKW2qpDyU4uBDbPWOojmSRGWtkHBOS4AZ4Pb5mKW0VSVHKAmCGC9Bn459XvXzJlnFBornjfmzQFzCWXmShopESQVEYlrsqNnCnsExzwKGA8yAYmVVikpFxt1LqM5ppsnVtCTT8rbE3dNSQYgovAcnI6vUkqtpUYsGYxJHLUqR8JWo5YnZZ7Dy516SJDiC+43pRGcg/hoOq+GYT5QsKr5XWFhYNOLrV5xm2gQLi9gYHC+ZNmFWYdaQvBs2bMDTTz+NjRs34oEHHsDjjz+Oq666quXrd+/ejd27d+PTn/40fv3rX+Oee+7Bgw8+iCuuuGLGa7/61a9iz549wb+LL75Yuf2JgocVlT1EVAT/zapFyUrNpSSbOsnFRbXaLG5JYGWEZkrI1bjqWUB9sDtuMoDyS2XMRADelrQED00HuwPSTHE/wFiqN4WZ3YHCK02Z7jGTilQp8ZMlFYWlo5PbkR4CPqkKIQ2qN4rKEal43iRUJJqeI/x7VAQylah3FAdUTScVpUXRlISAVz5f41aOIEuUNFvatIM7C/i+L/XetCQVqXz+8nYUE9xvVJJVxYoHz5PzjXpyNVlvUdNtCnhblJY5N0w2858j32JL7XMvPee05AlfqiuuxFXAp+HuqbpqkoWFRSPefPTihq/f+YVNhiyxsEiG5++8wLQJqUfWtAEi2LZtGx588EE8+eSTOPXUUwEAn/3sZ3HBBRfg05/+NJYvXz7jPccffzz+7d/+Lfj6yCOPxB133IE//uM/RqVSQTYb/ul9fX0YGBgg/RuSlXtVSFYpCcaY7RWl+iCYSJGYGt+ozqZOhyIxkRJQIfEdltJOQfAwbsauat8kqAqgsoyYGkIkHao300FMgC/rrdA3KVBZxw7sVmgCu8b3tCQl71SfBWITIqrXb/1MYnhM0tSHrxBzDZOVz0xyhlaogGeEiEy/YeVlkhMmFZlW3/G2qDxDVzwf5aqHnER/e6pgt+lzWiKyqqJuTJgdvl9bOzJ/n3ICL+nzJgWEiNJESe7vmapU0ZUXDw2FZ5J0KOBNxycAIgV8Cs7Qscs1p6ithspnnwoFvOrkCOPJ33U7ErXoUXTXsrCwaI8ndg6aNsHCQggrb/x+w9cqesgf6pgVSt5Nmzahr68vIHgB4JxzzoHruti8ebPw5wwPD6O3t7eB4AWAq6++GosWLcJpp52Gr3zlK9JZxiIILy5yh1Lf90l6JMbJpk5LVmhR8UEwIPAkM2V536gMUCXxjWnVWypLNBpWIVCVBI5blsl0ybvae9RdcPkLv2mFSNzymap9Ezf44Ps+SWA3jkIkLUSE+v6VCdZNRd3+qkK9o24vibfPU6lWTfdITOIb5eRqShK+kimr1I3JdEJEBlSJVqZLm8ZVi1aqHkpV9WcBwPz5KKki0XSloqrno1RRT8AD8spV5dU0YvY5DdeN2eQmz/NRVOgb/i4tTRIRVdOQJYnSkhTo+77S503QeqUif/dUXf42rlqU3YdM3z2p4mlx7p7K95JA8Z2O502cdRO2o5kVoWkLi1mJ6QrISlU+WcbCwiRu/YPXmTZhVmBWPEn37t2LJUuWNHwvm82iv78fe/fuFfqMV199FbfffvuMEs+33XYb/vVf/xUbN27EJZdcgj//8z/HZz/72bafVSwWMTIy0vAvCrEJTY54VFn6x/OBclU2eKg64y9hgEpx0F32cluu+mDxVxUldwoJfEPXjyhmVqjiTHfZC3+56qFSd45KQoSpEGSgmiSKnemuMChUsyNe8L/q+UoDu/y4xvWNulK8ydQ7poMx5aqPKls3CpJoGgK7sr6h2tMkx6SokFjl7ZB93lSqXvBcUL1u4geGDq11E3dv5X2jRgEfzjVpIiIlajP1CV/x1q/q5w3v39ilEU0TiVSJK9IEUTh+KmwpZF2w5O7UJCWkZE+LSzarsiWXcZGtq97lz64ssTcdLU9ME4n8M0GFLa7rIB8Q3+lIUDSdjBf/vKh2T0t091Re1SOZWtR0Ao1y3yS4exapnjey1QkU21GI+bwpVT0wnlyVLRYWFjMxXQF51P/5oSFLLCzEMF3F+57TV5oxZJbBKMl74403wnGctv+eeeaZxL9nZGQEF154IY477jh89KMfbfjZRz7yEbzpTW/CySefjA996EO44YYb8KlPfart5915552YP39+8G/FihWRNiTN6q59htrgoWlyNe4lSnVWaFBeJmZWN6A+0z0tAdW4ikTlfc2Mr5sEKgTFyvPYgSGyIIhh33CBv7gXXHXkajoUiXEVIg3BQwXZ1B0p2tPirhvVe1rSJA3+MxLZkYCsmiRTiEgG7YjU3vLlCNUGD5UoqxQTIqYJ+KRkM6BmL+EJkbScoU0/9zo4tZmUHZzdBQXz1XGcYO3EPaelZb4qT2JNsG5U+AZQ8Aw2XuacaN1I26H2LADELwuclmQ8qrYacSsC1GxRe4aW3dOCXvSqqwKYVsCrOAuo8I2Ku6fqPS1mIoDxxBUu1qRqL7GwsGiOb71vnWkTLCwsiGGU5L3++uuxbdu2tv9Wr16NgYEB7N+/v+G9lUoFg4ODkb10R0dHsX79esybNw/3338/crlc29evXbsWL730EorFYsvX3HTTTRgeHg7+vfjii5F/a9L+TLmMI9VfqhXyGReshZisOpJdugqqyiQnzHQ3fbllvsy4DnKZ5LXhcxkn8I3p4EPSIIiyrNBsssCD46gJUCVRIQQls0wnR6QkiDmpOHiYzbjB+osffEjHulF94Y+bCOA4tWdFUmRcJ/ic2MFuxQkjcUvQq6jWACQpead23biuE3xOfAI+HXuJ6bKzqgmRJL4hqxyREtVboqQi1YlWhttZxN5LUqIi4sdDVX+luKRmMXgGK1aex+37qqwdTbKEhELWleo73Q7x+3unI9EqLedFZkc+6yKjyDfp6e8dUy2q/LkXsy0OF7PJKjhDJ7l7klU6Ma7kTTZXVfkm0d2zxPZX0/cbopZFMc8ktXjarCgyaWExa/HGlf0NX09XSlpYpAWXf/WJhq933nWhIUtmH7LRL6HD4sWLsXjx4sjXrVu3DkNDQ9iyZQtOOeUUAMAjjzwCz/Owdu3alu8bGRnBeeedh0KhgO9+97vo6OiI/F1bt27FggULUCgUWr6mUCi0/XkzdMQMPKguheQ4DjpyGUyUqsaDh50J1c2qskILcS/8QTBGTYDKcRx05jIYL1VjXyxNl2icVHzhD1VEkkH3UpjVrSp42JHLYKxYMX7RThoYUpXVHVtFFOxp6oKHHbkMytWKtC1FxUH3pGVnTZcz4y/86taNi1LVS8GYJNvTTK9fCkKkI5dBseLFD7qrIkQC5blhpUrMQBm/p6kkq4oVLzWKJtNJGnHbA/CEiLrnjYvhSfN9X9NSSjstc6TBFsNlK4O9RFJZFZBmipW8cVWAqu57tc+Kp/hWTyTGvFewRGfTZxLu7qkKSRXfys9Hsfudp0MtqrLkbOy7J5ECXrY0MdUciUskqjobAfHvnlPKk7/T1QNeXkSi/ixgYWHRGm957WI89ttXTJthYdEWj263czQuZkW61LHHHov169fjyiuvxBNPPIGf/vSnuOaaa3DppZdi+fLlAICXX34Za9aswRNP1Bj/kZERnHvuuRgfH8eXv/xljIyMYO/evdi7dy+q1dph4nvf+x7uvvtu/PrXv8Zzzz2Hz3/+8/j4xz+Ov/iLv1D+N7BDZdxLpcoLQ9zs/7SpRY3bUaEIgiS79JsuI5YWQpPCN2kh8JL2E1OtjDR94ec/yzQBHz9olw4iUfVcBZLMVxqFiPEgSD4dymb+s2KPiWEiMS3rN+zbnALfEAV24+5pqgmRJIkrqpB0fzXdb/VQtaNmS7JkANPq5tRUXFF8JuE/SzqJ5lCtHJH0LK/wfsMqR8Rew4YV8GlRi9LsafFsYXcz0yprqr1VlkgMkiNI4gJm78FJkxLSkoyn6p5lYWHRHl/7X6c1fG3VvBZpw6d+1Niy9Xcfv8CQJbMTRpW8Mrj33ntxzTXX4Oyzz4brurjkkkvwmc98Jvh5uVzG9u3bMTExAQD4xS9+gc2bNwMAjjrqqIbPev7557Fy5Urkcjl87nOfwwc/+EH4vo+jjjoKf/u3f4srr7xSuf1xL3OUFwbT2f+xL1GKD+pJy2eqDOwWUpIM0JGP5xvVwYfYZLNi0huIT87wKi8VKKSMgDdN3vGfFbtsper+d7K9rFOiWk0Tkah63aRFbZY0+E9CwBuuHJFUeW48+E9IiJgOloUBVVlFcboIEZXBw/j7q1r1Ttx+yVSJALHP0GlIxiNKtJqtz5spwsQV8+Rq/XkTs2KDckIzDYmSCfdX5WVnY/YWVZ8oaT4xPzZxpjr5O3ZcIB3nNNVnkkS2kMXTzD6D4yfjqX/eWFhYtEcu46Bc9U2bYWHRFJ/7yY6Gr1VV45ormDUpU/39/bjvvvswOjqK4eFhfOUrX0FPT0/w85UrV8L3fZx55pkAgDPPPBO+7zf9t3LlSgDA+vXr8ctf/hKjo6MYGxvD1q1b8Wd/9mdwXfXDwg5yRekyVXSZ7qZJotiBMhZ8UNwb2PR4AOlRabKxjX1xUVRGLC2BboBT48uWBFasKk7ab1V5r8Y0rBsb2G1AUiJRVfnbBltiqiPVExGzUyFCoUhMaotqJa/xqh5x+5oRECJp6X8XO0GRKEnDtGIGSNE5LfH5SPEcKVfh++IBI9WlxYH4e0lRuW/SkRTIzxEZ35Aksabk7JqYmFH83CtVPFQ9Cd9QJHzFTnBSfK/IxlOLpueclqL7jWoiMWZcQH3sKGZSoOK9lf8saVVxSio2UMXT0iBosZgdGBwcxIYNG9Db24u+vj5cccUVGBsba/ueM888E47jNPx73/vep8niQwfP3tGojLRqXou04Px/+I+Gr3dYFa80Zg3JO9sRu08UwaE0sXpH+SVKNvNQsRoiLglBmLFrmnCOrUgkygo1PVcBPsPcbDZ1cuLb7EWbwjcdMYPuRaIxid2PSLXCKwUKkcQZ5ooVIqYVtLFVbwEBrzJ4GDOgmpaEEeWESLyekRSESOrKzsZN0lBsR6lqnhAJEr4k9lff98mewfJ7mtqEEfb3VD1fShWgmiDiPys2EaG6f2XcoLviszwg11ojvFMovHvGTdSoqN3nC4Edhs9pnI9lbKFt42Q2+SypWtT4PStF1QmoEr6k1y9h4oqUHalS8tKU0pYvYU1UXUTy7kkRT7OYHdiwYQOefvppbNy4EQ888AAef/xxXHXVVZHvu/LKK7Fnz57g3yc/+UkN1h56OG1Vv2kTLCxmYNuekYavM1bFKw1L8moCX5ZJLtOdLkAlcxj0fV99qbmYQUzKHiJSme4pydhtCB4qKiMW2CEb7CZSqkyV5daNalUGb4sM8c37RvWYSJfPJCqZVax48GSC7gSBXZb9b3q+poWAj6sQoSiZFWdMfN8PggSq5kkhFy9ANUm0bkpVD5WquC1TBEH3xNU0lPUpjqmMVE2I1D+nXPVRlvANReWIuKV4i2kLdiu2A5AbEwoCPo7iu1z1g73YeNlKIrIZkHsGUyQVsbKxMue0ctVDhflGdVJRSpSRgCyRmI6zQLnqBYkDxvc0xWNS4HwjYwtpGyeJPa3q+ShVFZNVcdWiyhOMwyTWWDEbRdWsgHjJEZ7nB0kd6ip8xVTQKq7KEzcuwJ4JKhMl49wrKBK+kit5Vam9a58TtzqBVfLOLWzbtg0PPvgg7r77bqxduxZnnHEGPvvZz+Kb3/wmdu/e3fa9XV1dGBgYCP719vZqsvrQwr/+2bqGr62a18I0ps/B5++0Kt44mDU9eWc7pme657NiGQlpyXTnM8CVK3ljK6sUHUrr4+H7tcC7aG8hyoxdGd+Uqh7YPUe5StNwOcLpKgTRv0+1KgOI7xt2z1F1sUxPXzMu6F6poisv9jgpKiaIeFtkAlR8YNd4+UwitTdQW5PdBTHfUJQETkyIKC6NaDqpqHHdeOjJiK0DyqC7TNAuVUF3xQRex7R1k5P0DYlCxHDQPehfGZcQUZWkMY0QEd3TmB1dKs/QMeYr/1rV60Y+4Yudj9Q8g/MZF64DeH5tn+/tyAm9j7TiSkzfqEqUTEvZymzGRT7jolT1MFmuok/wfZRlzmXOArwf1RMiZhO+XNdBIeuiWPHkCHiKREkuEV3YDoo9LaZaNNhLVJFVdTu8mHEBlb4pxKjYQBGziZt4pjzhK2lcwHDiSqNvDFcnUF0Kv8E34nGBoLe3wriARfqxadMm9PX14dRTTw2+d84558B1XWzevBl/+Id/2PK99957L/75n/8ZAwMDeNvb3oaPfOQj6OrqavraYrGIYrEYfD0yUlMJlstllMvllr+D/azda9IKGds//T9PwP/+9lPB17956SCOXtrT5h20mCvjnjak1fZKpRL5mrTaLgJR22X/NkvyasL0TPe84EWEMtNd5hLFXy6U9VuNWf5WeQkiPrBbkrjMESqrZHwzxSkWlCtopX2jOqubC+yWquKXuRJFOTP5YDfvR9XlzGL3A1QVxOTWyVTZQ1de7H2qCU3+s9IS2JXPdGfzVdGFf5p6R5YQoehZJaXwqqj3TXLVm3rfTJaq6BEm4AnUOzECqhRB99jVCRQrVQpZF45TS/iaLFcxT5CsoiDg4+wllERi3JLAXQSEiIwtJGfoGFVoWHWRjOsgl1FTdqojqVpU0Zg4joPOXAbjpaoc8U3RjiaGb9gccZ0aYa0CcdsUUJStLOTqJK/EuqFJYo3jm9p4OE7jszMJYvdeJyK+pUlekkRJeSKR96Mq38Tut6o4sXf6/UY0LqC6bzMQr7LWJOE5zXhp4mn3G9HPpWlHEycuQJm4YrY6AT/vJ0viJK9V8s5N7N27F0uWLGn4XjabRX9/P/bu3dvyfe9+97txxBFHYPny5fjVr36FD33oQ9i+fTv+/d//venr77zzTtx6660zvv/QQw+1JIZ5bNy4MfI1aYWI7bWbbrhWL/i/P8M/rIsm1qhxqI97WmHS9g9sanxm/MO6Cn7wgx8Iv/9QHveJiQmpz7MkrybEzXQn6b0TgyRiB7B8xkVWURAkLKtmNtM9l3GRcR1UPR9TlSrmw1xgN4lCJOs6wsqjKCRVIagak2zGRS7joFz1Y11wTavepigCu3FLEyvuceq6DvJZF6WKF2u+UhAiUsHDkvrAblyFyJTioHsDIWK4RGOcvYSNh6PSNzEViaoDQ47joCPnYqosF9glKTsbZ91wc1tZ0D1u8FDxmDCyaqJUbUieigJJxZUYe0lDMp7p/ndEVWiKFS+oBiECCrIqSVJRZy4Dx1F1FkhHYBeo+UaW5KXskSinjAyTRVT5Jm6PUyq12ehURS6xl6CqR5zEFZ40U7ZukrYKUpR4BtTGdwhlqfLilGeBOL4pZF24ivqlxe8NrDou4IRxgXIV8zvlYjYkVaRixmxU9bKLm8RKUZ2AxQXiVCdQm1QU/yyQy6iP2Uj3S1Z8FuDjAjJVASj2NAtzuPHGG/GJT3yi7Wu2bdsW+/P5nr0nnHACli1bhrPPPhs7duzAkUceOeP1N910E6677rrg65GREaxYsQLnnntu2zLP5XIZGzduxFvf+lbkcmLPgLRA1vbfO7uCkz/2SPD1BzZl8ezt51Ka2BJzadzTBNO2P7N3FNi0Kfj6zNcuwgUXvEHovaZtTwJR21kFAlFYklcTaoHdWvDQOCESgySiKKUSuywTUUB1rFgxrhBJkhVKE/w375uOXAblalzfUKis5QPMSoOHSftXKl43JUllFWU/MTlFYphAo9o3sUvQExAicYIPaSESSQgRw4krQO3vkiV5Q7U3gW9i7K0dOVdh0D0ZWaW6FK/8OY2uzHmcJA0Kssp0ewD2WdKECIVvEiTjpaFvM4Vv4lQIoiw7G+dMYvq5R2ZLgr2EghCJ1X+WojRx3LKzBCpN0z15453T1PumEHPdqE6IdxwHHVkX46Vqas7QxRiltGnWb1wiUeF9PJsgLmB4LwnmKoXaW/p5Q5DMw5K/Y5QXt0reQwPXX389Lr/88ravWb16NQYGBrB///6G71cqFQwODmJgYED4961duxYA8NxzzzUleQuFAgqFwozv53I5IUJI9HVphKjtC5q8xvTfPBfGPY0wZfvbPrep4et7/tda6c84lMdd9u+yJK9GBAoRqWxqgstcDCKChJjJxlNWFQmC3R05F2PFuEG7dChEKIJCRemLNg2BNzpViR3sVmkHIBkEoSirljBApTopYXhSVjWTjoAqDdkcTyFCs79mAJRjEd+mg4ckyU2x2wPQkKsHUTZe2jROUlFIrKo7PsZNXKGsChBXpWnSjglC0ky2lPZEqaLcllh7Sd0OpYkAcc7QKVHfATQlgZNUCCJZN6Yrv+RjngUIqwLESR41rbIOiVWzZDNAkygZh9SkOJPE6ek5WaI7L8buAW+4OgFly5M45dZpzgIpiAvkMxgtylYnqIsVFJKrceICaSmFD4S+VL1uRqYqMSsV2Z68hwIWL16MxYsXR75u3bp1GBoawpYtW3DKKacAAB555BF4nhcQtyLYunUrAGDZsmWx7LWoYeddF2Lljd8Pvl554/ex864LDVpkMVfAzzsA+NVHzajIDyXYp6lGJDoMEigSTWfsxlYhkJBVCbIxCYiIWIEyhSXE4pYBpC2HFKP0D8F8NV1WLX5ZpnQEZII+mkp9E7+fmGmCiH/9oajeiUMSUQaYZdZv7fUEYxJjn2djolq1CsQ7k5jeRxpsMRwsmyQgNJMoEk0rigGa500sIiIllSNI1XdxW56kpIQ1Ddkc43mjkrzLxtvTigSJgYWU7CWxWjcQVTnhP1sUNKRm/OpNNMl4Euumon79xr3fpKY6ARGhyX+2jB2mk2n516tOzJe1hbKUdpyzAMU9Kw1VPZIkFanc5y3Sj2OPPRbr16/HlVdeiSeeeAI//elPcc011+DSSy/F8uXLAQAvv/wy1qxZgyeeeAIAsGPHDtx+++3YsmULdu7cie9+97u47LLL8Hu/93s48cQTTf45hwRu/v+Oa/j6+Ft+ZMgSi7mC0anyjO+JtjW1aA1L8mpEHNVMkaBnVaxDaUl9eZmkJRpNX17o1HeSpbQpgu4x+1em5cIQzBGV8zWGb0gDZSlYN8kSV9T7Jk6vRtNKM4BYeW64BH0ShZfS9gAJCXiVytVwLzFLEsUJHk4QkN5Jg4cUKk3TZ4FEBDzFnpYKIjEGAZ+S5x5NqchwPHzfF34fVVUPZosoqKok1D47HckRU2UPnmfWNwGRGON8VCB53hh+7tWfv+Wqj0rVcPJZjGcwyT4f55yWouoEJAnGCZLxKOZr3JYnyuyIEcPibSEpYW16n49xFiim5L4H0Cb2mt7nLWYH7r33XqxZswZnn302LrjgApxxxhn40pe+FPy8XC5j+/btmJiYAADk83n8+Mc/xrnnnos1a9bg+uuvxyWXXILvfe97pv6EQwr/64xVDV+PFSuGLLGYKzjhow81fG3V42pgyzVrRBJCxLRShSSbOmHGrnG1WeAbiktlOrKp00Ekxsl0p1OLypRopFTAp4lINH2ZixWMoSilnarqBHEUiQSB3QQJNCrJu7h72gRJEo38fA1L8SoskxxHvUNBenN7vO/7wv1kSVXFUsFugudNgnMaVVKRcd/EIkQofBM/6E5R+cXza4RVPhvtG9/3U1PFIjwLmC1BP0WYuALUWsyIzD/eN6YV31MEPRIT9X0l2EeA2t/ZkxHzO6k6MsbZtUBQwtr0+k2cKEkQK5FKuiYshR9PLWr+DE3ZV1tqL0lZyxOSOSKROEplS7wkOPXrxmJ2oL+/H/fdd1/Ln69cubIhiXHFihV47LHHdJg2Z/H8nRdg1U0/CL62ZZstqDC9TPPD17/FkCWHHqySVyOSZB6azpSlCcY0Bg9F4Hk+SikJPqSlT3GgsiYi70R94/s+TSAzLYGhJBcXpYri2hwpVcQVIg2BXZVJCYnWjeES9EGvN7MKEWrfSKk0KZSRCZKbunLqCc2q56McwzdpKW1KElA1XcaTI6tKgr7xPFqyyvjzJi9/XqToyct/VlEwgMj7RmlgNxtnvlL05I1zTqM7ywPi85X3oXHim7BvZFrU3jK2lKoe2JFObb/GlKhFUxL858lR0b2kXPVQqTuHogT9rE7+JkrqFb17VqoeylX1vomX8KU+IT5OXIBaoSnqmyoXs1HZVztOgvEUQWW8OIlnJHESLi5QlYgL0MRs0lGC3sLCIh4cx8F7pyl6p5NxFhZJ8a8/f3HG945c3GPAkkMTluTViLRktyXLuFd/EATEg4d8Rq3S/lnsghtDpalS9RZLqUJIaALivqEKHqalN2GsfoCEvYEB8QzzYsUDu5OTXHAlfFMkDKjKXPipCRHRjOpiJQzsqlRHxuqLxMhVCjWE4XXDE+iiz2B+PhknIggJkTjlmimC/wAwJVjFgn/emE5KmKDsyWv6nBaDEGk4C5CUezVLrnbE6LdKkaSRy7jIuI6ULfzrVAbdk5TlN916haK0acZ1kM/IPfv4543K5LO0KGjTonpzHEf6fMSPHU0ynuES1nHOiylJ+OLP2iT3ihgteij2VuNxgRgJX0WimE2SM7TSSkUx+jbT+2YWJnwRJCVYWFjEx4en9eYFgGf3jRqwxOJQxQ3f/lXD11Ytrhb2aaoRqSltGsMOSmKmZovgRbvEB6gIxmQW9lulLF8NiAftGn1DEASRKEMUEvCHoGo1K++bhsAuRdBOYt1QkkSmSwLHUYjwr6MIlsUpCWy6ckSgKFZoRz7jos6HCCcl8POJpJR2DIWIynLNaUn4ymVcZOvOEV3Dk2R7WjrOaWlJbspm3ICsMu2bOOXFKZXnpkkz/vNkyapcxkFWsEytCNi5RDT4z9tCUbYy1rpReBYA5NWRzIcZ10EuI1YWXciOROVeDZcEJjgvAvF94zgI9kMViNfTk67HaRzSTK1qlY8LiM1Xfq2rLGEdPoNj9G02XZqYImbDja35mE2CNk6G71kkKusYcQGqmE3Y/sxsMo+FhUUyTCfd3vp3jxuyxOJQw3Rl+DO3rzdkyaELS/JqRJzAbnhhUN9DxLRChA/sil7mGNGXz7pwXXVBkHiBIYILQ4wgSJHANw0qBEECj82RfMZVGjyMoxalJeDlL/wqLy6u6yDPyncJBlT5wG5OZWA3BhFB0+M0vlpUpR2O40irVYJ1kw1VWSoQZJjHCLor7bcahxAhCOzy6h1RW5hCU7Vv4iQVTRDsaXH6e08SqFYB+SAzuW+kzkeULSQk1i+Rb2TPjFS+iXd2JfRNrCQN1b6RWzcUymYg3hmaJOjOAswxkgKVE/CSY8KfSUR7XwvZkRaSKM7zhkAZCcjv86zChHLfpEylKXPPmgrK8KqMCzjBM0M2ibUj5yr1TWrUzSmxI5txg+QT4eQIophNWhIUg1LaUn2b1dsRJy7AbFad8JUk6dqSvBYW6cKWD5/T8LUt22yRFNPn0FuPW2r3fgJYklcj4gR2g8uLyr6RsbKp65c5w4FdCmIGiKdCmCJUvckFdokz3SUv2irVsw12GC7RGKenNiM0VapFeVtEfUOh0GywI0bwQSmRGKtXo3plJCAfPKQgvYGQ+I5FRBgmRCjU3oC8SjOcqzTBf6mAKsFeEk+9Uw92Kx4T2XL41L6RWzcUfV/jn9Po1o1h38RRiBD4Jkk/QPXkqtw+TxHoBpKpzUiqesTpo0k0JrIJX+rtiHEWIKwiJaOMLBLMEUBegUe2brLxfZMWJa/KJPQ4yXh0VRLiJ8RTVBeRiwvQxGxkyxNTxWxitaNJS+UIqueN5F5CZUchzvmIIOHLwsIiORb2FLCiv7Phe5botYiL1374hzO+94+XnWrAkkMfluTViCSKRKXlkJJk2Skkm4HwMChLJJrOuAfCoJ1alXX87FSqAJW4eoc2eBhnTNQG3ZMo4M0SiZNEZHOyXrgK1w3bW2OUjSYj4FNCiMTKdDdMiKSFiJgs0QQe0pLpHswRw8F/QH5/pfJNovORabKK+Hwk/rxJ4boh8E2sREmiBEVpQsTwcw+gIQDSUtoU4OeJXFKR6r6EsQiRlPSAJ9vTYp7TlK/fGMk8JOVeYxEz6biPk8+RGNUJTLc8CZKKFMdsZJMjqPa0ZElFBKWJZQQCZAlfssl4NGeStFSOsLCwUIP/uOGsGd+zRK+FLH73yhhK056Vtg8vHSzJqxHBJUqmfCZBsCxUQ8TpM6M4+JCXK3VD1TurkDK1aBpI3vDCIFcS2DRpBtAoAQtx1KIEhCbA9cKVVIioVM8C8eZrmAygzpY4CpGgtClR0E5WZZ0GsoqklHYsQkS9+g6QDx5OkJW/je8btYrEOM89It9IEs5UvkmkbqYo0SiRuEK1p8nur2RJGrFUM5SltFNAVuXlzvNBYFd18D9Gj0Qa1Vs62tHUbJFMKiK2Q44kSgdZRXa/ia2ypiHgTSvg+bnq+76UHXQkUUXo9XQl6Gt3lAnDiVZdsZ57RDGblKis4/RLZjYXlPYGTnAmMVxxhe55k6A1nSV5LSxSiWZk3L2bXzBgicVshO/7OOtvHmv43u8+foEha+YGLMmrEXH6V5L0RUpyqSRSIYgGdoOSwIb7MwFEpU3jqEVZ8J/KN5JqUdXlb2MpAQNCRCGRGCPjfiIgRGjGRFZlnY4+fBRkVQKFCFU5M8l+yaYv/PxrjZcETllgly7oblY1k0RlbTr7n1pRLKVuJizXHK8EvVmyij33TKtWAaJ1w53TZAkR40QiOwtQlaA3rEhk41uqePA8Md+E6yYlhAhVcpPp+039syqej3JVMinB8DOYam9Nz90z/CxRVSLVWYA9R0XJVYqEBN4OUbIZINrTgvGIYYfiZB5ZUjMt50WAKwlsOFGSSmWdtsoRRZkERaJnsIWFhTo8f2cjKfd/7v81RqbKhqyxmE1YddMPGr7+8XVvges6hqyZG7BPU42Ik+lOERhKVTa1ZJlV6l6NcYgIlQReHLUo2ZhIBu1CFaBZAt73fZpyzbEIEaKylbLlzIjUdyzZQnT9+r5PosBLpihOh2/oyhGKzVfeN0oJ+BiECFUpbWkFPFk/MbnAENm64YL/sr5JC1lFRsBL7GkUhDPrr1aUIqvSUSaZvJe16T2tPh6+D5QEySoqclU2eTScq0TlMwXt8Dw/IJOoyCrRNUxWilf6eUNd0lt83ZCorLkAvnwyj9lyr0Uq0kySgPd9n4TU7OASp8X3Etr7jSjJO0l0B46joCXtM25Y7c1/nijhTKWyDn0jTnzT9kuW8A1Zha+YSUVkKmv5+apSZW1hYaEWjuPgv285t+F7J370IeH4gcXcxPTS3n902uE4akmPIWvmDizJqxGyB/Vy1UOlHtxT2nsnQdCdSvUmXAaQuI+maMm7UiX0DUXQXSawGxIiqkvxSvZILBOpViUv2qWqh2qwbtRf5vjPjwIVuRpXLWq6/G2p6oENHUUQRE4hQruXSKtFU+Qbih7wMoRIalRvxL4RVYtSrxtAXL1DtW7SoqySDVBRrZs4ZBVVsFt2vqZF9UbmG27dTAmeXZkPqRJGpFueGN5beXuVKqu4ILF430ii3oTSPRKJk2lFCU3uWaDy7pnPuGCJ+8LVm4j3NOnkCOWJknLPvXLVJ7nfZDMucpmac0z3Ke6KvW5oSDNRsrlS9VCu1uMCBOWay1Xx+w21ylp8nydOdBa0w/P8oBegWt/U4h2linhcgKwnbzBfBQl4RqyqPgvESVwhUFlbWFiox/zOHO5779qG701XaVpYMDTr3Xzn208wYMncgyV5NUK2fCZ/saDovRNHhaA8sBtbLUrTW1RWRcS/V6UdQHqC7tK9RZUTmpJBTM5eCiUvEGO+Gg66k5VrTsm6iaMQoasKIKfeoVatipbM0rGniRIiZOsmZplz04QI2brhPst0sDs15ZplySpuTqtV8sbxDW2/ZPH5SlViVS7xjMo3uYyLrCtHiISKJqKSwJItT+hK4cvdKQC16kjXdZDPSiYoUu/zhlXWsskR/OtUzhPHcaSTeegIEdk5QpsIIDtHAMIqFtLlxWnmq3C5ZqKzQFxCE1Dcy5p7ngurm4kSV2TVzWRJGrJzpEKzbroafJMWdbNccpPpKlL8s0D1mFhYWKjH6UctwjtPPazhe83IPIu5jWZzollvZwsaWJJXI2T7zLCDWsZ1kM+o71nF/44oBKUiFZOrHZLBGIrSewBQYBd+0fGoB1OzXEBJBfgDrjhJpL6MJ8AFhkTVolQqa8mLC1tfuYyDnMJ1w/eBnm1EBFmSRszEFdW+yWdcOEwhMksJPLI5YnjdxCJEyPqtxiNEyBJoJMdDtW/4s4V0ywQqtZnhEo2yASp2FlDtG9d1gmeOPJFodr5SndNknzfM3qyr1je8LaZLI8ZVi1I9b2R9k8+6yvsySRPOKTmnpaV8JtXzBoh/dqXa04qSvqFLjpCzw3UQKG9V22L87FpXR4oTmrSkmWzMBmi8LyZFPuMiU98jje/zkr4JkzTU7iOyhCaVbwrZ8O5pvE+x7HylTo4QJL15cly1LRYWFjT45P98/YzvWaLXgsESvOZhSV6NkM08DAJluQwcR91lLseVZRK3hZbAk+2RaFqpQqU044PusraQlZ2VvESRlSY2TBDxQXf5+ao2OaIQs7coXWlis8FUx3G4+SqrgE9HVYBO1WXOU6KMjGULcXsA0SoJ1IpiWdUbRZZ7h2SCE5lvUpK4EpdspvCN9PmISJkhW52AmkiUJZsp9zTT55JCVnbd1BVeyteNpMqaaK7yn2m6TLJ0CXoyQjMdySL8Z4qfS9LRZ5xaZR0nEUBlXACIkTBSJ/BUl3vtkl6/VCrr2plcvkqCq9Q3juMEYyKtblausk7HXiJLaLJk9YLipKI4vqHa02SV5xNFosovkr5hrytkw2QGCwuL9KMZaWeJXgtL8KYDluTViC7JCwNVgBmQJ5ypenrKZspOUPdINBxgBjhVsengoaxKk7yfmFygjGTdxC0vTlTOTPgyRxzENE3eAUkSNWgUXsKltKnVOynwTVxCxHRVgHBvVZwIEHMfoXjeyPY2S4vqjUoNETc5gsQ30iQRbVUP075JS2/g2mfGO6epJ1fTkWhVkEzGo0oEAOT3NOqys7KkmekzNBVpxttiurx4WpT4sgk0pHtaoPiWvGuREXhyvUVNn0ko97QOyTEJ1o3CUvhAGMeS9Y16lXW24fMj7SA6G9U+U1J5TlTpJC0xxq6c3B5PeYa2sLCgRSui1/fFepRbHFqwBG96YElejQguLmW5wzHFwUf2MEhXGlH2cJwSsplIocnbYvqgHiQCpKQksLyyWb1vpIMgRCRRWlRvsipASt/EV1YREXimy5wH5Qjl5irJupEkRKh6SMcnvtPRRzMNqjeys0A+3l5iPOhOZEfNlpQQ8NLqZq/hfaoQ7PGCe+uUBkJEekwOUSIidgINRaKkbMUV4qQE8XsWzbqJW0qbZk+Taw9AP19Nq6zjnUkKisk7QD6xl05BG1e1ShUXMEs287bI7q+qVdZxSwJ3KSd55XwT3D0pfSMY2yOL2cT1DRHZnIZ4moWFBT2akXirbvqB8P5scWjAErzpgiV5NSI+eUdHJApfXogOYd0FNiZyvTvUl1iVPZTSlQGUPSBT+UY+6E7jG9lSc1pKNAoGqFJD4JHNkbodouOhIXhonviWDezSXvhNE6uAPCEyRTVfYydHmE3SoPRNOF/NKgHDUtpygV3TrRuoCCL+M03vJfJkc9hqRCVkkyOoiFVA/ixQpCISZfdWrqQoiR0pKEEvT67S7GnSPbU1KBJF1BVakoqkkwEUV1zJSpLNGlTWnifiG5pEAEC+FC/VPJFVAoaqVcV7WsyevJRnaNP3G1nfTBSJzmkxE/Mp1k3c3s3diu8VgW+EyWambqaJC4gT8HQqawsLCz1oRuYdd/OP8MOn9hiwxkInfN+3BG8KYUlejZA/CNKUdAF4VXG0Lb7vk5UUlc88JO5lIlkKibJEo8gB2fd98mxM8cxhKt/E64tE4ZuOnPh89X2fI77NKkTISmlLB90pS2aJB0F436SltClZYNdwlQRAjiSifN7IqjTpypzHU5pR+sa8kjeeUoUu6G5+3Uj3vyMnicy2TOiQJKvYHn9IJ0dIKiPJ1k3980pVD1UhsoqGbOZtke0PbHovoRoTpuarej7K1WjfBGSV4bNAgy2HaHUCfj8oClQo0EHAG3/exE1QJFLyyp4X00AkThARiXF9o5pIlPUNVcImIH92HSeOC8graIniaSk4Q1tYWOjDzrsuxO8fs7jhe++/9xe2T+8hjGf3jWLVTT+Y8X1L8JrHrCF5BwcHsWHDBvT29qKvrw9XXHEFxsbG2r7nzDPPhOM4Df/e9773Nbxm165duPDCC9HV1YUlS5bgr/7qr1Cp0JQX4A/HYgEquoOPjKqYD9pQ9e6QJb6V21EISW8Z31Be5oz7pv5548JqbxrfdHNZoenxTfSYFCseWKxTdfAhIJsl+xFRltI2vacxJaBI0K5UDX2jnoiQJBKJ5muBC/6L+IZlf5Oq3gRIonLVJ9vT0kLgBUr8iph6Jy29rMtVD5W6vV2GS9BTtykoV32Uq9Hzlbbvq/h8LVe9gMAxnVRE1y85vLKIECI6+iXLrhuy3uspUXsDYvOVsqqHTHniquejVD3ES2nzvhFIBghUq4qVkbwtImPieX6wzk2XSaZSi/J/l4gt4d5K4BuJ5w2fYKy8KkBMZSRV5QjhswARsQrIPYM9z6frtypbaaxM1H+2fv4U9Q3l3VN2T6NS48deN0SxI1nfUJwFLCws9OKrf3oavvQnp8z4viV6Dz2svPH7eOvfPT7j+5bgTQdmDcm7YcMGPP3009i4cSMeeOABPP7447jqqqsi33fllVdiz549wb9PfvKTwc+q1SouvPBClEol/OxnP8PXvvY13HPPPbj55ptJ/gZ2OPZ9sWA35cGnU+Kgzl8q6Hp3SPZVIbIjDb7pKsT0DZm62WxWKLu4eL5YYJfUNxKXKD5QQucbs/29ZX1DGtiVyB7m5zRVQFVcpUmU1V23wxf1DZFShbfFtG9kCRHqfoCAWNCdqn80b4uIb/h9r4OqT7GgWpSqYoM0WUV5TpOYr7ytZCWBZQl4ovUragul6k2mPQD/GuXrRlY1QzQmBY78ErGF1jfiSUX8PEpLL1zV6zeXcZBxnZotEvcKirOAjG/4c0taCHjVvsm4DvIZ8cRAypLALFFS7HnjgeUOsjurKsjfPSskdvDzX+TON14krFQk0VKKP1Oqv/PJtnEiOqdxz1Eh3xBWxpOJC/D7DZmCVraENeH9RiaOZZW8FhaHBs593QB+8ZG3zvi+JXoPHTTz5Ya1h1uCN0WYFSTvtm3b8OCDD+Luu+/G2rVrccYZZ+Czn/0svvnNb2L37t1t39vV1YWBgYHgX29vb/Czhx56CL/5zW/wz//8zzjppJNw/vnn4/bbb8fnPvc5lEol5X8Hf5ASITUpDz5hX5VoO9ghLZdxkMuYzdglO5Sm0DcidrDxyGdcZBX7RjZjl8o3fHkl0xeGUN0sTojQ+CbeulEdGOLJa5GLZVoUiew1adjTqEgiWUKEspd1HN9kXQd51T3WpNWiNEE7FkwF0rNuZEgzPjCtzA7p8pl0ZJXj1H+HjCKRQL0jozZjr3GcRsJNtx0AHQGfy7jIZRxhWyjLzgZqfJF1U7fDdaB83QTEjGRyhOp147pOSHxL7GmmSwLzrzG9bqj2ecdxpJ59WnryyiZHGE74CsgqxURizRbxhBF2JqFQi7K1KJboHN5P1d/H6y16JJOKVD9v8hk3SI4Q2tMIK0fIlMDl7x5UvhFOzA968qqdr9K+IS3XLB4raUiUzJr1DdWYyPombGul3jcWFhZm0N+dx/N3XjDj+ytv/D5eHpo0YJGFKjQjeB//q9/HHX94ggFrLFphVpC8mzZtQl9fH0499dTge+eccw5c18XmzZvbvvfee+/FokWLcPzxx+Omm27CxMREw+eecMIJWLp0afC98847DyMjI3j66adbfmaxWMTIyEjDPxFkXCcIIsgcBimChzIkkQ5lpHzvDrVjMtt9Q1G6K7TD7IWh0TcCBDxh0D3sDyxOwNP4pmaHCNkM0BHf2YwbEHEipaN1EPAsqNAOpFUSUlJ2VpYQoe1lXVeqSFz4TSu8gJA4oSBE2LqRISJUVwQAwrLeUmRzLgOHMaGKINtblOoZ7DhOEHwrCsyTUBmpfp+Xma9afCOrSKQk8ISC7jTrF5Arn8n3fFXtG2aHCNk83RbVkOnvzXyjOtANyKnNJrlzmvp1I/e8CUsCp0N5TjFHZNYNOwsUsiFpoNoOkSonvC0Uz2C5MWFks9mzK3+/ofKN6d6ijuOECfESY0JBVslUb2J3oM5cBq5i30gnGBNVKuJ9I5MQT9LGSUI0wZ/TrG+YHXS+sbCwMAfHcZoqO9901yNW1TsL8Y+P/66p356/8wIcvrDLgEUW7TArSN69e/diyZIlDd/LZrPo7+/H3r17W77v3e9+N/75n/8ZP/nJT3DTTTfh61//Ov74j/+44XN5ghdA8HW7z73zzjsxf/784N+KFSuE/xapbEyiAxggd4mizYCMdygl7bdqfSNtB8CTq4S+SUlSgky5ZtMXfkBPhvlEUfwyRxE8jFPmnGau1u0QIJsBWnK1Myc+X6nU3oBkKW3KHqey5TOJlLyNtkgQeIbtoJwjaSmlDcQr/W46YSQt/WcB2jGRI77pzmlx1KKU4yFbrplkn49RJrlTcflqICRJRfb5YkXDPpKCM7TMuqHsXykzX7X00ZRW8ppNjhjXMCZilV/Sc7+hVAJ2BHc+EXI1HXEByviEbGI+JbkqFyuxvplhS2p8Q7enWVhYmEerEr6W6J09WHnj93HHD7bN+P7Ouy5UniBroQZGSd4bb7wRjuO0/ffMM8/E/vyrrroK5513Hk444QRs2LAB//RP/4T7778fO3bsSGT3TTfdhOHh4eDfiy++KPxemRK4OlRvMuWhKOzoDpSRZhWJtc+cfb6hJe/SUa6Zt0VEuUp5mYujsjZtB/86isBud1rWjUTm8CQlAV8PArLLfBRIfVMQJ5zTspeQEpp58WoNAC05IxNkJiXgZymRqEWNLzVf6RKtTPdqTEspbf4z00KuCpHNGohV2TO06ZYJOpI0ZMgq06WJeVtMk5q0JK94VQBKIlE2OYLSFrmEL7pyzXFU1mk6C5Dexw2vmzgJm5TkXTpiNnESRtJRfY1EiR+zVVBafGOVvBYWhy523nUhfnbjWTO+v/LG7+O9X3vSgEUWIjg4XrL9d2cpjDZAuP7663H55Ze3fc3q1asxMDCA/fv3N3y/UqlgcHAQAwMDwr9v7dq1AIDnnnsORx55JAYGBvDEE080vGbfvn0A0PZzC4UCCoWC8O/lER7CDJeXCYLuZkupyJYE1kKciSgS0+IbQqVZt3QpbR3kqlnfdKbEN7IEfFoU35R2yCh5KUkzmbLRAC3hzHwzLllGTDW6JdYvJTETO3HlEE7mCYN2ZueIDDEDUKve5Eubkqo0JUtpq4a0kldDMoBMT0/jyRGE+4hsKe2gJDBheXGpwK5hdbOOXquyJG83gS1yxDedMlKqJDChMlJmjwfCMekmsUV8TMYJ9xLWFkekZUIak1iNk6saqjfJJHyRJALEVcAb7oVLqYCXSgRgPYpzlO2kZpdvAjsIxsTCwiI9WN7XiZ13XTiDNPzxtv1YeeP3LWmYMrRSWv/2Y+cHLccs0gujT9TFixdj8eLFka9bt24dhoaGsGXLFpxyyikAgEceeQSe5wXErQi2bt0KAFi2bFnwuXfccQf2798flIPeuHEjent7cdxxx0n+NWKQOQwGhIhhIoIy20+GIPJ9X0tJYCGyirBHYtp8My5Aevu+z11wzV6iKAPM3RJzhFKpIkN68+uGdkwMl2uOQWhSVieQJeBpyFXxSz9pmWSmxJfpl0zqG7GkItJS2lLzla5PcdpKaaehPUCscs0EZWfTorJOU0ngDqke0vWevIbJZkpiNSTvRHuL0hEAMqQm2/coyNVw3YiUJqYj7/j16/t+ZEkzdtYmIb6zMuQqI5vTobKmnCOligfP8yP7Y45rsEXmeWNeyUufnCivFiUsHW04KUGK0CxqSDAW3NMoFd9y8TQNvpFIoKEWTaTHN+L3G1uu2cJibmDnXRfiT768Gf/x7KsN32ek4rO3n2vCLIs6trxwEJfe3VxdbYn42YNZQcMfe+yxWL9+Pa688ko88cQT+OlPf4prrrkGl156KZYvXw4AePnll7FmzZpAmbtjxw7cfvvt2LJlC3bu3Invfve7uOyyy/B7v/d7OPHEEwEA5557Lo477jj8yZ/8Cf77v/8bP/rRj/DhD38YV199dWylbhTkSu7QZVPHKS9DUY6Q/W3Fioeq57d97VTZg+83vk8lAsLZsDJjNvqmWAl9Qxl0FyvXrIFcNUxWdXGB3SjflKrha8z33qEs/S6TCKCnL1KkbyoeKoS+kSG+ScnVAhuTaDsoidWglHapCi/CN+Wqh3K17hvKMucSpbQpiW+hvVVTH1zfb++bquejVPHobJFR0JbpnsGdMRTFpOWay17kuvE8PyAcSXuLCqjN2H5DoxYVJ5t1lHotVT1Uqu1JzapHm/AlReAxIpEyKUGIEKHzDevn6fk1/7RD1fNRrO9pFEreDgnfjAdEBGGZZCH1HSEBz31m1F5SqXrB84YisTdIjjBM4EmprCkJorqir8I951uhXPWCtUVb6SQddz6pJHTC8ah6fuSexp+hact6m66+JkFoavCNyPOG2jfx4liW5LWwmCv4+hVr8buPX9D0Z0d/5CFMiOXiWyjGBzZlmxK8P7vxLEvwzjLMCpIXAO69916sWbMGZ599Ni644AKcccYZ+NKXvhT8vFwuY/v27ZiYmAAA5PN5/PjHP8a5556LNWvW4Prrr8cll1yC733ve8F7MpkMHnjgAWQyGaxbtw5//Md/jMsuuwy33XYb2d8R9EhMS9lZIUKzfpkjJM2A6IslP2aUpTxFDuoThEEQqaxQDYpiINo3/AWYVpFo+jInk7FLqBblgoCmfSNTXpz2gitOVtGWa5bwDfdz0xdtUnI1jpLX9J7G/ZxkLwkIZ5F1Q0doyrQpmCRUIbA93vejVYn060aih7QO4luqNzBdMBVAQES1Ak+YmB6T8UCRSEdWiZDNlGQV/wybivANv25ISgLL9H0lbVNQu9oWhcrO0vcWBYCpUnvf8M8BGlvEE0ZCtTdhkoZQ/1nC6gRZ7iwQMV/58z5lL02xxBXCM7REdQIdSl5AJC7AnwUo9jT5swCFAj5MHhW/A1PeKQCBdVOiPUNLJRhrqDQmVZqYJDkiRb6RELRQrhsLC4v0wnUd7LzrQpx6xIIZP7vpySyO/shDBqyam1h54/dbjvfOuy7E8r5OzRZZJMWsaYDQ39+P++67r+XPV65c2aD+WLFiBR577LHIzz3iiCPwgx/8QImNIkjboVSGNKOwo5B14Ti1wO5EsYKeNoEnZkch6yITUVorDmL1FiXsXylT5oaqP5Pr1LJCI31Tn6v5jItshq4kYVr6IokQIpTlmuOsm1zGQY7AN3EuuBTkqty6IQwe5jjflNr7htmRdYl8w5KKZPqMGy4vHpJVBMRMNsP5ptqW6GB2uE5tX1MNmbLetP3OJZS8mojE8VKl7e/gA1gFgr4w3RIEPO26kU8KpCzXzGxp5xtGrDqO+f7ApKV4ZRRerIwnAbHKz/+pcrX9WaBuh+PQrBupXrh1W0hKAsuQzYRleHOZ2l2l6vmYqlQxH7lIO1wi38QaE8M9eccJ7XBdB/msi1LFE06UzLgOyVlATnlOV+FLqjcwYWniXMYJ1s1kqYr5na3XDX+GpugRJ3N2DcutG1bAE86RXMZFLuOgXPUxUaqir6v1axt8Q3j3lFJZE/hGrkIf3f0mm3GRz7goVT1h31DtaWnxjYWFRfrx7fefDqB5D1j2PasipUGrvrsAsO229bbCwizGrFHyHiroinUYNJsBSWmH4zjCYxKQZkQbjky/VcqAatgLVyToTlcW0XEcYUUTJdkMSCoSNfjG9GVOZt1QKs0AyTJiqVk3dGPS4JsIWyjL8ALh80ZG3UxT+l0+uamToH+l6/Lrpn3Qju/zFtXbKg6kekizUryGFcUThHuJ6zrC5fD59UvjG3HleTBPCMiq7oL4ugnVourXb8Z1hAOZE1zll6g+l3EQR8lruo8m238pyGbHcYQJvNAOmj1NRqVJSeBJkc2EvgHEydUJbb4xS+BJqUUJ7Wi0pf185ceDwjdyiSv0yTymVdaN95v255JxTXdPOXWzWbUopW8A8fnK+4byDC1zHzfdZ5yyMh5vi8w5jWRPk0hipVw3FhYWswc777oQ/3HD7zf92cobv9+WkLSQwzu/sKnleF76xsOw864LLcE7y2FJXs2QyW6bJAyCdElkhVIqigHxw2BwECQjq9JRSjsoGy1UrjktFwbaOSLlm/qYkKhFCxK+oR6TgigBT0wkpqRcs4xvyMlVQd8EZd+J1m8wJobLNXcLjgdA+9wDQt9EEXiUqnMgZn9vyt7AEgk0dAkjTFUsFtilKu8WJnwJqHcIydWQbBZ47hGWJq59rlhSAiWxCsj1kNah5BULYtIpq3hbRFuemA7+U9sSj9Ck8Y0o4RzYQbSnSRF4hOUzWSltsfsN7VlAlHCmPsvLJCXQ+kZCfUftG8E9jdlK8fwFQt+kpvqaxLqhut+IzhN6slmGSKSshpMO0QRvi2hSEXlivkB5ccpKRRYWFrMLK/q78Ozt5+L0pc3PqpbsTQY2fk/sHGz6839YV8Htf3CcZqssKGBJXs2Qy26jL9EoYweFwgsIL6tRvWaoD6XxSmlTqt7Mlp0FuBK4hn2TlixmFhQSCbpTlmsGxOcJZek93g6ZfqsUxJmMbyhJM0DcN5TEKv+5ImpRSsI5jm/IydUoJS+1bwpihCZAu6fJkM2BEpCYSIze0xjJazYRAAjHjSQ5QuKcNk4cKBNVN1MSqwCnPBfYSyjVoj0SpfDD3sBmz0cTxOs3DP6LjwlpSeAUqIg6BHvhUp/TREkzIPQNRfnMQjZFSl7h5AhaIpHN16KIAp7QN6lSWUuSVdRnaKFnMOmeJp8oSTVfReNHuu6eMm3HaNaNvGqV6izQmZb7TZxyzZbktbCwqONdqz08e/u5LX9uyV45RI3XzrsubDveFrMPtgGCZnQJkmYALREhehDk7aDO/o8uO0ubcS+jbqYk4NNSEpj/3KjArq6SwKaDdnJ2UJcRE1TyEvtGSi1KeOmPpxalViTOHrUopeJbZo7Q7yWSCniqdSNVdpaO1OyWIJsDOwwTiZTBVEBSyUvoG0ZopkHJK5ocQUmsArySVzw5giKgKtPLmlrJG4xJxDyhLMPbYIfQM5hOjS+lemO+oQq6M+IsspR2+lTWxtWihKXwAfE+p9QlgWXGhHLdiCYkAPS+EY0L6CrXLOMbyrhA1D4CcL2ByWM2Ysl4VGdoqcR8LXEB8WRaauJ7QjBxhS52FMc3NiRtYWHRCNaLtxVByb5/35VrcfqRi7TZNRtQ9Xwc+dc/aPua5++8gKRkv4V52CeqZohmhVY9H8WK1/AeCjuEykOlJFM2LUpez/ODkmckhAhHQvi+33bzTYtvyMsyCQYPfd8nLcUbEInlaN/oyzCP6i2q6cIfsZf4vk/a05Mfj8h1U6a94HYLXvp1kc1RvgFoyVU2HuMCvqEMMPO2RK2bsSKtHaIkke/7pEoivhd9lG/IlbzC1QloyWaZ5804oS0yZwFqkqhbtMw58boRtYP3Dc1ZQCIRIFi/VGMilgxArUjsFlRZe55PWu5VRok/Tjwmsm016MrO1gi8KJLI83zSSkWifXAB+vkajElKSgJH3ccbztCElYqmZO435BVXzPqGnQVkfENacUXENylRaVKrVkXjWLUztIZyzRLrhiyJNSeWUEtdIllUNEG9biwsLA4NRJG97/7HzTNeO1chonCe62M0F2BJXs0QJRL5QytlSeBy1Ue56iGXaV25m760qdihVF/f1/Z2TFXCn1OqrKuej1LVC8qbNQO9WlRMeU6dFSpKmhUrHny/9v/UvilWvLYKTF2leE33SxYN7JaqHqpezTk0vaxrn+n5iPQN9Z7G/j7Rvq9U61fYNxUP5WrNNyS9ReuBbhHfUCojeVuEy85SlyaO8E2x4qFSXzcUqhk2HiJ7GjWBJ+qbMfK+r+K+qbuGVMlbEToLUJdoTIuSV8yOqXJ4FqDsl1yu+ihWqu19E/RbpdpLxM6u1H1f2ZiMRazfqUo19A2BLT11O0pVD6WKh3y2zf2GXN0cJji1gy7fRNnB+4ay5Ump6qFS9ZBte/fUk6Ao2i/ZtB3Ue1oHd4YWvXvSKRJrnyvaL5letSruG4p9XiYuQJ90LZuYT1vmPCp2xJ/TSJIj6p/pC9xv0uYb+nia2biAhYXFoQVGTv71/U/hvs27mr6GJznnCpl547/9Ct988sXI182V8bCwJK92iGZAsp87TphtrBL8YWqiVMX8zta/g7qUijDxrYusEuxxCtAqEoHa39z2Mqet76tgVqjhskz8z0mSI3KNvhEhEqlL8UapzajniGif8alSqNygWTehvycifBOWfqcK7IopaEMVIHG5dcEAM0BUojHX+LxpT/ISl50VLDUXliY26xt+XVHYIuObsSJxYFeyDGAPNdkssW5I9jTuM8eL7c8C1CSRaCne8ZQkAvC+o6xOANRKZbf1jSYCfkxQyWv6DM37rqPNuMUFvwYmShXks/nWtlAnJQgnFdH6pkfSDoBoT+N8Mx5x99S1bkSTrqn2NFFFMfWexn/mVKk9kRisG+JS2tF3Pupe9KKJzvrOAlFxAV0lgaOSEuZMXEDi7kmdlCBaOlpXorNoXA+gmycWFhaHHj7+hyfg4394AoYmSjjpto0tX3coE76iPYm/ceX/wLojFxJbY5E2WJJXMzpzYtltfD9Ailrp+YyLrOug4tXK2MzvzLV87QQxISKqEAkPpbRZoaKH0o6cC9dV75tcxkUu46BcrZXp7OuKtoU8G1OwJ6/5Hqe1OZTPusgQ+CabcZHPuihVPIyXKljQ3Tp4OEEcPAwV8IJ7CbFSJbL8LfNNfQxVI+M6KGRdFCsexosV9LfxzZiu/pWCPRJ7iBWJoj3nClm3rbImLjKug46ci6lytG8oy98CYVAyutebrtLEYqRZR45mT5PxDXn5PVZ2NnJMdKlFxYkZirNANuMK72nkSl5B5fk4cYBZuKR3UaNvIs8Cegj4aJW1pt7AEsQM1Rk6PKcJnqGJ2wOIltImJ5sNr5tCNhPcb8aL7e+euu430b2s9Zzlo+zg4wJU6yaIC5QrmA+TvpGLC5hOQmc/L1DePTMuSlUvMi5AnTAiqqDVphaNVHuH9xuqMzR73kyUIs5phKXwAZn5SlwxSTARgNmZz9DcPS0sLA5t9HXlA/L2T7/6BH6y/ZWWr+VJ0UvecBj+5p2vJ7dPJba8cBCXfP5nwq8/1EhtCzlYklczhEusEhOrjuOgM5/B6FTFeC9cabUo8YVB/OJCt3y68lkMT5aN+0b2gttBTCRGEZrUJZLZZ5cqnrAa33S55jHi8rfCc4RYaQbU/sZipSRcfo+arIr2DTXZLKq+o7UDqBEAU+WSMKlJR66mRJEoqIBnQXmqRAAg9E3kuiFWngdkVSQhQpwIIBh0p1Y2A+GeJlyKl7g6QSSBx/YSYt9EqVapCU1A3DfhmJhVi4b9K4mTNAwTmkDtbyzVkyPagXxPEyVXifc0UbKZurc3UBuToYmyRFIClfJcdN1Q2yGaeEbvm658BiNTFeF2FuRqUeNEomD1tTL9GbojVyN5RYkzuriA2Nk18A11T17BROd0xAV0iSZMz5F02GGRftxxxx34/ve/j61btyKfz2NoaCjyPb7v45ZbbsE//uM/YmhoCG9605vw+c9/HkcffTS9wRapxVf/9LTg/6NUrv/2i5fwb794qeF7z995AYmwLi5Elbo8nrl9PVkFSYvZBUvyaoZsdhvlwaerTvJGHUqnqMu65CQvDNSHUsGyTFTjAdT+xhrJazZYFpTPjBiT4BJluPRPkHFP6JvuPAtQmSVXRS9zYdlZahWR4HgQBnbZmoxWZlAraMWUVdTEt2iAaoyY0ATqa3hcvJSncUUiMfEt2pOXWkUE1MbkwLj4uqHrlyy5z1P7RlgNQXsWGBwXKB1NrcyQVfLOId+YLpMsSq5Srxv2PBVO0iBO+Do4UY4mnIu0vgmJRDHfUPWvlC8bTZtUNDRRjuzdHCQlkM1XVjnCcJ/xgljiCjVpxmwZmapI3D1p181YSs7Qovcs2rhAzTfiCcbEd0/BWIl51aqGM3QugyGkIDFfsL83dcxGVDShg4C3SDdKpRLe8Y53YN26dfjyl78s9J5PfvKT+MxnPoOvfe1rWLVqFT7ykY/gvPPOw29+8xt0dHQQW2wxG8BUrL7v44xP/AQvD01GvmfVTT9o+v1n7zgfOcJKA3/y5c34j2dfjf3+HR+/gKRKhcXshiV5NUO6/yxRaWKAHcKKAqpi6sucYA+RMu3hWLZfMuWhVHieUJdJDoJ2ghnmxIrEyLKzxCQEEPpGNOhO1jdSuEQjtVpUrKwaCy6SKhILYmt4nFiBF84RQZUmWfBQbK6GKiLawG7tdwmqRanWTU6upCi5WtSwQhMQ9w05ISKrsj7Ey3gCvLrZrG96BH1DreSVJc3S4BtqAl62TLL5PU2fb0R7N5ve01jPT7p1I3cWoFXyyiXj0d35xPYSff2SBRMSCOMC0oQzeVKCWFyAakxE7dCiFhVdN+T7vJzKmor4lrYjBTEb6rYanYKxEl0K+OhkEdo93iL9uPXWWwEA99xzj9Drfd/H3//93+PDH/4wLrroIgDAP/3TP2Hp0qX4zne+g0svvZTKVItZCMdx8NMbzwq+fnloEm+66xGpzzj6//xQ8rdm8YFND0m+Rxxf/dM34vePWUL2+RaHBizJqxmyJYFJD6U50UNYOsq6TGk7lJo9HPOfLa7AM6sWHZuiJjTFAlTU48HbYppwDvu+itlBRa4yYj8qiKlHLRpti+/7wc+plbzRc4SagBckIXSsGwEFnu/79OWaBZOKqEvxygZBKJMjgv21TfCwtm6I9xLRhBFq0oybq77vtyzfNEGcyMPb0u7Zp8U3LOHLtG+4hAQR31AFugFx34SBXVriWzThi2pP48kqEd9oIUQifEOtFhUnNKmrE8gmR9CqRUVsoSZEhMnVlJSNpu7tHcsWMuKbrRuzSdds7omrrOnOaT2SBDxVzEY0EYC8ZZFgFbhJ4vZntc+u2TIl2B84LXEsqsoRYXzRrIjE4tDD888/j7179+Kcc84Jvjd//nysXbsWmzZtakryFotFFIvF4OuRkREAQLlcRrlcbvm72M/avSatsLY3x5LuLJ69/dzg67FiBSd/TI701Y2HPvAmrFrU3fA9irGxc8YMRG2X/dssyasZfBDTeBBEgKyqej5KFa/+euqSwGIZ91SHUr5Houf5cFuUPqAOYgJil5dy1Qt8Q6UEDMuLRxEietSiU2VPyDc6CJF2vilWqihXfQDmCXhysrm+fksVD1XPb1kyRAeR2C1AEhXrdtZsoU1cES9/S3vhL1U9lKtey3IzOgK7IgReseKh7hrjfYonNCUClKu1Z2w+G+EbUgV89POG9w09EWFWDcHmSMXzUap6KGSbrwstikQBAk+LbwT3NHLf1PdKYd9oWTdizxt630SprImfN7K+IXze9Aj4plT1UGG+SQuBR6xajXreBIpi4h7wQHsCvlQJfUNPVpkt98rub6X6na6Vb3QkGPcIJCWUKl5wvyEv1yx4hqYivtk+Uqx4qFQ9ZFudodn6JW4VBLQfEx0xG9kkDfIqcOVqxN1TX/W1dr7xPB9TZa/h9aohmihJTXyzzy1GxAV0VC20OLSwd+9eAMDSpUsbvr906dLgZ9Nx5513BophHg899BC6uroif+fGjRtjWJoOWNuj8Q/rGr/2fODh3Q4e2KU3+WRZp4/rTqhi+ra87YnHsE2jHXbOmEGU7RMTE1KfZ5+qmsEOdp5fO/y0ao6dlpLA/IGVjogQU70xW+YRk2YAMFWptrwgaVGLCqgQxjX4RjQbk1wtyvlislxtOfYh2UyfsdvuEsUH9Kh73phWN/PBlYlSBfM6ck1fp6MksAjxza8buiBIGHxoB3olfvi5E6Uq5ne2D1DRJkdEB7v55w3VuglVmoJKXuJEAKD27GtJ8mpQiwa9rNuMCe8b6vJ70aXf9fThA2oq+FZkla6+r0D7dTOuwzeCZBW5b3KSvtGQuNKOJOKfRfS+EVNZkyVKivqmTJsIAAj6hj+nESdKGidEuM8dL1aQz+abvi7oDUxJVgmoNPlnADVJJKrkpU6OYL+rlW909UsG2pNV/F2d7AwtWEqbumURfzYfL1Yxv6tFcoQOAr4j+hmsY92IqqzDUvi0ZDP7Xb0t7p7UPYqBMC7Vbr7y90HT7QF0qb1rv6tdXIC+aqGFftx44434xCc+0fY127Ztw5o1a7TYc9NNN+G6664Lvh4ZGcGKFStw7rnnore3t+X7yuUyNm7ciLe+9a3I5ZrP4bTC2p4M/x+Av2vz82K5iqd2j+AbT7yE7/5qT8vXZVwH//MNr8F5r1uCkw7rw7yO9FJvaRj3uJgLtrMKBKJI70w7RNEQBClVW5K8Y8SkGcAFVNsQEezAmss4LQM2SdEpGNilVot2TvNNS5J3ipZsBsRU1myOFLJuy+zipAiUKoKXOar52pFz4TiA79d+V6s5oLMnrwiR2JGj84142WimSKRZv/mMi4zroOrVylK2usxRr1+gUY3fCnwQs1V2cVJ05sQCVNSqt3zWRS7joFz1MVGqYH5nc99Ql40GxFTWfF/RVmr9pAgITUFlFdWY5LMu8hkXpaqH8VIF87va+0aLWlSAEKFcN7IBKqp1k8u4yGddlCoeJspVLGjxujEdvhFIKuJ739H5RuycRu2bbMZFIeuiWPEwVqxgQXcLskojITLRZp/nzwJUvukRTFyhLhudzbjoyLmYKrf3zQRxIgDA72ltfFMKz9B0vpErpU25bphvxkttfKOhUpEIgcfmaj7jtqxAosoO4ZZFRMQ3/7wZK1bQ19XeNzoU8G19U1cBZl2nZXJaUsiqRTuJlID8OW2szTlNZ7lmkXXjOrV9jQKiJaypie8Cd78Zm2pN8uro+yqiPOfvpR1E8bS0qKzZMzUqLqBjT7PQj+uvvx6XX35529esXr061mcPDAwAAPbt24dly5YF39+3bx9OOumkpu8pFAooFAozvp/L5YQIIdHXpRHWdhrkcjmsO6oD645ags+8O/x+uVzGD37wA1xwwQWptT0KaR73KBzKtsv+XZbk1YyGi3axgv4WF20dalGRw6BWslm47CzNYdB1ncA37YgzLUSiQLlmHb4JCM3Ics20Y+I4DrpyGYyXqkK+oRyTboH5qmXdCJRYBbj5ShQ8ZL4ZLVaEiG9KRWLYpzh6T6PdW9NRShuoBSbLVTHfUKreOgUIeOo+uEA41lHJEYzUJFWbFTIoTXgRVQH0KRLbVo7Q0aagEL1+AX2l30sVr60tWtSiAqqZcWKlGSBe5nxcQ9Cuu5BFsVJqu5dQlyZmdgDtx4Sa9AYkfKNjf81nMVVu7xtqQpP/7LbKKuJ+vEA41pF9NIsa1k3dN+2VgOnoyauz/2y0b+jnSU8hi8HKbPGNDjuiy98C9HEB9tmlCU9svmpQwIsQiV35bMt2YEkh3suaVqXpOA66C1kMTZQjkhJYSWCzKuvJICGBLomVqcSYGKEVqCtrOY6D7nwGI1MVjE5VsLSFWFJHrMRCPxYvXozFixeTfPaqVaswMDCAhx9+OCB1R0ZGsHnzZrz//e8n+Z0WFhYWsw00aX4WbdFTqDHxo20OYQEhQijrFzmop4VsBngFLV2GhkivKD2KRKbSNDtHulJSrhmQI4n0qEUFiBktyRFmCXiAJyLM7iWBb9pUJ5gIVOc6SnqLlmvWoWgyu266BYhEPb6JtgPQ45suAVWxDnJVhPjWEkwVXDc6iEQR4kxL31eJ9gC0yRFiBLwOQkQsKYF+TESSEsZ1kFWipU0DUlNDUkLbig16EgFqdkSTzXp6Awv2fdWwz4uRRId+ckR4B47wDXH/SkCMwKMuf1uzQ8A3Gp43or6hLtcMyK0bHWpREbKZ0g4Wc4hU8pY1nEskyovr2OfHiuWWr9EZT4vyDYunUcaPmHq3bVxAgx0W6cauXbuwdetW7Nq1C9VqFVu3bsXWrVsxNjYWvGbNmjW4//77AdQSCK699lp87GMfw3e/+1089dRTuOyyy7B8+XJcfPHFhv4KCwsLi3TBPlUNYF5HFq+OFYX63/VouES1I5uDA5iGEkTpyNjN4sB4qe2hVIciMTyotyNmNKghRMs16yj3Wsjg1TGxMsmmlefBZY7QN7L9kunJ1WLbHrRaiW8Bspk0+J+S0qa8LSLkKm0iQDSRqMc3ckF3WiVvdFLRXCLNugUIIkDPmIiQmmFSglmV5rgG0ixNSt4egXOJDpW1SFKgrooAgEhPXn1B97ZnaC12RI+JDrK5S1CRqLOHdPvS7zrU3tG+CdpqaKmSIPa8Mb1udJBVQutGU7WGKDtqtugknKNJXsr4RI/A80bLHJGM2eghV1vbMqqBSAzJ5uj7DWVPRtF4mg4FrVDiChsTq+Sds7j55pvxta99Lfj65JNPBgD85Cc/wZlnngkA2L59O4aHh4PX3HDDDRgfH8dVV12FoaEhnHHGGXjwwQfR0dGh1XYLCwuLtMI+VQ0gOPi0IVd1HErD8jIihCZltl90eRnf9zGmIaAqRHxrHBPTvukWICF839dSLjIkNaMDQ1oCZe3Ud0EfXA0EfJugu+f5YWlEHepIkSCIhqCdSE9e2pLe0b5pXDf0JFF7laa+dSNSjlBHkka7ucr7hlaBJ9B7XSNZ1b4nL31yU6eAHQ3rxrSSV2PZSqGy0VpK0LdfN2Gw23BSggaVtcieppX0LlXh+37LMp0TGs5pITnTrmylhioJUkpe+jtFlG+YLaQKPBGyqkh/XhQhiSbL9Ht8D3e/ab9udCq+TVdskFB7UxKaor7RWRVAiPjW4RuzrYL4faSdb5gtrXrlKrFFIFYSjgm9He3WDVP5psk3pgUcoxqSvy3SjXvuuQf33HNP29f4vt/wteM4uO2223DbbbcRWmZhYWExe2HLNRtAQCQKEHiUB595EgcwLWWjS1V4nt/0NbUACehtETqo0/tG5HCso5wob8f0QxZDg28ME986SwK3DzBrCGJyqoxWvuGVtTqIMxGVJqlvBNTNWhISOLW30J5mmhAJCE169U67IGag5NUQYC5WPFRb+GayrMs30UREEMTUUW5dxDcaFF6lqodSxWv6mmLFA3MbbWlTAdWbhooNUmWjNZDe5arf1jdsTekIuosoEkmTI2Ts0LDHVzwfxRa+KVU8lKvMN2arWOghV8UViTrOadU2vqlw+52WyhECSQmdmojvlnZoUPKyNen5wFS5uW+qnq+lJHCXAIE3qaFstIxqtStHT2h6PlpWCPI8P2jNomOetG+xRZ+gKNNiS0eCcdS6CZI2KRW0IsS3DtGEwPNmVEdlvPrf2O4sUK56gd90zJN2Ag5brtnCwsLCwkI9LMlrADIHdcoSJiIZuzrIZv5w1yrIzOxwnVDRSYF5AodSHQpakUQAZiNpIkDdN77fOiAzpsk3bExGTPtGIBFAZx/NdhdtXetGpqQoKWkmoDzXsafxQeOpSvMxYTa6DtCRo3sUiyi+9ZQ5j7ZjQkuSRuibVkQEC9g5xOtGRKUZKPG1EDMCPRI19LIGWieM8Ptul449TUA1Q5uUIF5ilbR1g8C64eePDiKxXWBXS79kEdJMIwEPtF7DvM/Mk0Q6yFUJskpDkkY7WyY4EotWHSnSukFfxZX2alENCTTc86OVLTzBSJvYm44S1mJ7Gv1zj/dNK1smuGQ8UrWogG9GpuhVmjKkGWVJYJF1w3+fNhE92jfpiafRk94ivhlv8I2GxHyBBGPKdWNhYWFhYTHXYEleA+gROahr6DknUpo4CP4TXrQL2QxymVpJmVaHUr6kS6vyMyogo+TVoiiuXxybIehlQmhHIesi69bGu9U84fvP0vqmdolvv240KuANk81duQzYcI8Wm88Tbb6RSFwhJVcFyr2Oc2NChY5sdIAqLJFM65tAVdzWN/pKrIoovCgDzIWsi/qW1pIQGde0bjolkiNMEyLjGoLu+awbnAVaBYYmONLMdel8I6I819NTW0R9R79+sxkXhazb8Ptm2FGfPx05FxlS37B93rCSV6bfOeEcybhOkIzSag0zn+UzLnIZuqufjPJcR1KgSHITJend6JsWZFX9+xnXQZ7QN2HfSBHi27QCnp7QdF0n8lwywSXjsf2PAiK+0dG/UqSP5mhw96QjVl3XiewPzO5gWdfR4pt2e5qOuICIb3QoeYV8U/9+PuuikKXf54Uq0umovtY2PkGfCCDjm0LWRV7Dumnb/kyDutnCwsLCwmKuwZK8BsAuAW1VmuwwaLgnr45yzUD0AVkHadZgh2GySqSU9piG4KHjOBzx3ZxI1KGMBMR8o0NBywIb7ecIfdDddZ3IRI1xDXYAYaLBaLukBA3qHbG9VY9voi7autZNSES0U2nSEyIipSJ17K2O44RBu5aECH3wH+CIRJFe1oZ7SOuar1GK79A3xHZIlDYlJUREyGYNiQC1z29PruogvQG+vLjZfqtSalFy37QnnMOy73rsMN1DWqT3ug4lLxCt8uL3EcqkonD9Ru/zOso1i6hFqe98Ub7hS6zq8I1IuVdKclWkNzA751MmGAMivgnt0OGbtnc+5hsd5Zrb+kZTzCYiIV7HeACivtEQTxPwjS5CM7gHRyTmU69fqRijJXktLCwsLCyUwZK8BiBymdPR32VeIZqs0kbgRZAzOoL/vB2mVZoydugiV6MuDNSXyl6RMsk6+iJFXKBqdujxTZSqWEffZkCsKsCEBnJVhGyeCMpD0Y4JC8S1JuD1BN17UrLPS5FVmkii1kpe+n0E4AjNFj3ngEY1PpkdEeMB6Ck7C0TPEx2lXkXsAPTsaWJksx6yqisiYSTs7W2WbAbCct+U86RbYN1oI74jFN+67BDpkahTLWq6NHHNlog9TdfeKqEEJC33mo+2Y1RD2VkgmnDWQazydrTbS0Y1kFUyPU6pCbyoCkG6k9CFSgJTEvAipFlAJNLO1yhyVYdQAUhPn+I0iSaiYow6Wn0Bgon5mmIlFhYWFhYWcwmW5DUAkXKvOjL+ggu/SH8X8sNg+1K8ujIgRRS0OtSRIj15dRERUQd1XWrRkEhsTeDpIDVF7AgTAdJBJNIreet2iCjgCYPMQgr4gFzVlU3dQgGvqRdRlB1AY+loejvMqqyB6NKI+sgqAbWZhj0tVPKaVd8B0aSmjrkK8GVnzVaOECsbTa/Er31+hJJXk29EymfqUHyLJWxqUp5HzBPt1QkEyFU9vmmXQFN7JlKfBaKeN6EikZaY6RLY50c1KhLbJWmMaCKrohTfOnqcAmKKxLBMMuXzRobQ1ERWtZivYykhNAE9ClqRkt5sT9OXHBGtgKeESJ9i9gzQsW7SUJo46h6sg/TmP990D2kLCwsLC4u5BkvyGkAUaVasVFGqegCIiUSmjCxV4Pt+09foCrrPi7gwaCNEIshV3jdalLzF1r4Z1ZSNOS9CVayL0IwiicpVD6UKvW96BXyjXXneqpS2hpLevB2tfFOpeihq8A1PerfyjT7iu/1eMqaJEOmN8E3V8zFZple9RSUkAPpUmvMixiRUVpkNUHmeH6h8acvORiurdPRL5j+/JVmlrTQxKzvbnCTyfV+LEjAgvUVU1uQEfPt5ootIFOnvHaqsdSRHVFs+byY0KIqBaEWiNiV+xHz1fV+PIpHrlxx1hu4lJ6vaK75HNAW6o+aI7/taFIn8HPG8Vr7RWxK4FZGoz472ZLPncb7RkPw9Wa6i2tI3ugg89ryJUllTrxtx3+jo+zpV9lCpxyGmQxeBF0U4aycSU+KbYsVDuYVv2B5jOmFE2xwR8A07J9hyzRYWFhYWFupgSV4DiOzPxF1odJRr9v3WwQdtJXdECRFyIrG9opj3DWVgV8Q3uoLdUcS3DoUmb0frdRN+X0dyhNfON5qSEthlcaSVAl4zoTnWSrXKrxsNvuGJy+mYCC6VZlXWuvpoRhKaJT3rhtlRqnqYauEbXXtJ6Jv2fcap129v3Y5W63eyXAXjJ2gTV2p2TJXbBKg0KeCj+1fqKk0clYznBUFwyjFh54xSu+BhsG40KXlbPPd0qb2jFLSlihck43XlCJMj6nt3xfODJKbpYPuuvh7S7cmq3k5i1VuEErAWBK+tG0pylc0R30fLs4Aukki8t6gm1WoLQpMn9nSo3tjvbAZtfSPTokiMeN5McGcBHQQ80Ib4DsrO6ilh3VJlzVSr2p437e97APG6afBN+z1NF4HXakx0KTSjeuHy39dR5hwwv5dExUq0KYojWmyNa7p7WlhYWFhYzDXMGpJ3cHAQGzZsQG9vL/r6+nDFFVdgbGys5et37twJx3Ga/vvWt74VvK7Zz7/5zW+S/i1RB5+xICiUQcZ1yOzoyLnB50cRztSESJSiSVdZpp4opUr9+x05F9kM3fIR8o2mrNB5kcS35gtDBKGZz7rIEfqmM5cBW5atM2X1qDSjyiFNaFq/UWrRsfpczWUc5LN0vunOc76JIr7JiUQ2Js2JRH0EfBShWZsjGddBgdA3PfksnLpvWhPOepJ5ejvbz1ddisSoOcLscJ3aM4EKfPArSt2sa920Ir51q71Fkoo6c4RK3nx08DAsL05NfLcnicY0qUXDEqvtCSKAdp50cX5vRXyH5Co1SdRe3ayL0OyKUL2N1MfDcWj3En5Ntu63WvcNMVkVVeZcf//Z9nZkXId0DXfk3OCcFmULNfEd1YM2LJGsx46oJI2s65CeBQpZF9m6c6Js0aayjiLNUqKMzGVoz9D5rIt8/W7bmvjWFReIIuB1q0XbnwVqvqHb0/JZN7jbRs0TXa2tIn1j+Hmja91YWFhYWFjMNcyap+qGDRvw9NNPY+PGjXjggQfw+OOP46qrrmr5+hUrVmDPnj0N/2699Vb09PTg/PPPb3jtV7/61YbXXXzxxaR/S9TFRddB0HGcIDDUkpwJDup6MnajAqrkJYGjegNrurg4jsP1fjWsoI1KStBOVkUlJJj3je5euKZ9E6yblr0a9e1pzDetSCJtvomcI3oUiVFK3nAfycBx6JKKXNdBT9C3qr2Clt436VDyRhKaHLFK6ZuMG54FRiYjSr+TJ4zk2tuhrcw5U1k3t4ORep052mS8fNYNgvrRzz49VT1anY+Yz3SRZq3IZmZHTyFLmoyXzYS+aU1q1r5PPiYRZZLZmMzT1L+yNekd7q0u4bpxuT3NPJHIkiPajwl92egIQnMqXDeUz5va3VNU3awnOcI0odkTsW7GOEKT3DdRMQoNfZsBEQW8XmWkiEKT0jcAX8I6IiFeU3nxVhW+9BHw9fFolUyraY4AfNuxCHWzrjZOhuNYbP22miP8fY963VhYWFhYWMwlzIr6GNu2bcODDz6IJ598EqeeeioA4LOf/SwuuOACfPrTn8by5ctnvCeTyWBgYKDhe/fffz/e+c53oqenp+H7fX19M15LCVHyjvogCNSCGyNTFQHC2axqRn+PU7OqVfY7hifLkbboI6vMKhIjSxBpmqtAuG5Mz5NIJaB2O8wmJNRsifKNpj7jEXvJRFDS23DZaE0lVmu2ZDFarAgoaM3OV10lgaNU1mzudGnY03o7cxgvVVOTuGLejvZzZERT8L/2O3KYKhdbEs4jmhSJrNRvqzHRRZpFVfXQpYwEas+0qXIp/WRV/fv0iuL2hIiuRACgpmwfL1Xb9FvVpG6OGBNd5ZrD3sDtExK0rJtC7SwQlQxgvievZrIqIllEh2/Y3TOqUgL1fBVVAppXWeuZI8yWgxOt4wJh/MjsmOgSCLC/s2W1Bk2qVaA2JgfGS0EZ8enQpaCNVDdrmq9pKYVvYWFhYWEx1zArlLybNm1CX19fQPACwDnnnAPXdbF582ahz9iyZQu2bt2KK664YsbPrr76aixatAinnXYavvKVr8BnjW9aoFgsYmRkpOGfDETLAOoIuqeld4co8a3rUNoyYKfRN5HliVPS30WbylqQ0NRDJIoS38QEXmT/Sr3JEVElgbVkUwuWwNVHrpou15yOJI2aLelQ48+L6IU7oWlPmx9VNtrAntaKSNRd5jya0CRW8na2VxSPTFYaXkdqCxuTyQjijNiWXlHfEBOJgW8Mk968LS2TASb1EHg9EUkJuvu+RqnvdJFVQGt1ZOibdAS7dSl5TSuba7aIKRJNE3hjgW/SQWhSk2YApzw3rdIM1N6m+75GzFWNvomcJ7oIvIjEFV2+iZqrulp91WwRJFe1xWwiyGbD7aR0KYotLCwsLCzmGmbFk3Xv3r1YsmRJw/ey2Sz6+/uxd+9eoc/48pe/jGOPPRann356w/dvu+02nHXWWejq6sJDDz2EP//zP8fY2Bj+8i//suVn3Xnnnbj11lvl/5A6+Eul7/szypSMajz4tAsMVT0fk2U9Qfeoi4v2vq8tfGOGgJ95UPc8P1Cb6SPwDCsjC2K+0aWyBppfXnzf12ZLTxB0b3WJ0q9abeYbvSprMeJMl1o0smw0tR0R6yYsCazTN+0TNUz3wmXPYOoep3wiQNOzAAuUaSAS2yUl+L4fEIzzu8yqRfURmmEiQDPf6CKbgfakpu/72koCRxPfehXFI5MtfKOJvAN4Ar75OY09+8iJ74jy4kFSAvGYzBdUe+sg4IOSok3GxPN8jJX0EIldAUnUSm2mSckbEDPtyzXrqCLVjlxt9I0uBXyUb4jV3hGlXnVVBADal0nm9zTTBB7zja6ys+OlavP7jWYFPBC9bvT1wjVL4AV38VL7u6eWynhtfOP7nG+0JRW1V+KT29ERrhvP82e0Z9AZs7GwsLCwsJhLMKrkvfHGG+E4Ttt/zzzzTOLfMzk5ifvuu6+pivcjH/kI3vSmN+Hkk0/Ghz70Idxwww341Kc+1fbzbrrpJgwPDwf/XnzxRSl72IGm4vkoVrwZP9dJJLY7qPPfS00pXk2Zh1XPx1S5tW90XBjakasT5fDwrkuFYPwyV/87PR9B8kFTO7SUz6z7psmYTJU9ePViANQkUVSmbEgkUiuKa8FJz2/ed85IckSTMSlVPJSrvhZbIn2jKUmDBY5b+kZzuWag+Z5WrFSD5yE1ARBFwDPCZj4xkTiP29Oa+WZ4UiOR2GZMpsoeSlWv4XVUmNeGNAP4MdHjGz7ZjYcushlo36d4olRFtf7A0Ucktlg3jMDTpCguVb2mZ+hRTXbwv6MZuTpeqgRnAeMEvCYlL/s7J8tVlJr6RicBHyYDTEeNFIAWW9iYt1JW6S5NPFmuolJtvW50lTkHmj/3eN9oI/BM933Nh3ta83Wj7+7Zruf5GPe9tPhG1x242iJmw9a1lrhAG7XoRLmqbU8LCLyIqme64gK+37xigy5lM8D3B24SsylVte9prXrh6ibggeZ7ic4y5xYWFhYWFnMJRp+s119/PS6//PK2r1m9ejUGBgawf//+hu9XKhUMDg4K9dL99re/jYmJCVx22WWRr127di1uv/12FItFFAqFpq8pFAotfyYCnqgcnaqgI9dIwOjMCm2Xeci+l8s4KGRp8wGCXriGyzV35TNwnNqFYbRYRuc0ckyXMhJoT64y32Rcet9ElY3WlY3Zmcsg4zqoej5GpyozlJhaicQ2ZWd5f3Xl5kZJ4I6ci6zroOL5GJuqzJgLQd9XTT15gRZBdz5xhVwt2t437PvUexrvm9Gp8gzf6CLNgPa+YYF4x9EXdG/lm0C1SkwSdeYybX3DxonaDoDzTROSiNnhOvT7fG+UbzQReF358HkzMjnzeaNLPQvwROLM5w3zTdZ10En8vGEkcisiUV//2Sxcp5YcMTJZnnGGNqGyHm4yJux8kM+45Oe0+Z2tCU3eFvq9NRucoUemyljU03hX0tnLen4bAp73zfT5Q2VHszkC8P1W9SSuALW/f0F3vuHnOu+e7Vp86PRNZIsebWWjw79zolRBPmvON91tlOfMDh1xgbSoRfl7y1hxZsxGJ1nVruoZ801WQ1wgUi2q6X7TmcsEZ4HxYmXGXVdvZTyWzNM6LuA6ID+nCZf0Jh6TQja8e44XqzP2UFuu2cLCwsLCggZGlbyLFy/GmjVr2v7L5/NYt24dhoaGsGXLluC9jzzyCDzPw9q1ayN/z5e//GX8wR/8ARYvXhz52q1bt2LBggWJSNwouK7DlYhqfRjUUdpUhEjsLmRnlMChsqNV5qEuItFxnLYKPPY90z15Q2VzRoNvWl9cGmzR6Jtm5CpTBFD3mQHaqzR59ez08kSqIdrfW8u6aRe0M9HLusmYsCBrdz6DbIb28dfb0Xqu1mzRQyQ6jtNWQTs8oZNIbGPHZFh6j3rdRPtGD/Ed6RuNatF2dvCqVernTTtFcaMt9Htab5s9TZcdQPvy4nxvYHrfRJUE1rNuXNeJSBjRo1oF2qtFeULTuG+m9Owlrhue09oR3zp9w55xjXboL+k93JKA12NLLuMGd8/mvtG3btoR3zoJTbZ/R/eyprUlm3HRkXNb2qIrKRBor6ANSzXTP29YL9xmKkBAH7nquk7QQqTZmOhSewPte1nzc4TaN6JqUWp1s+M4XO/m1jEbPQR8O9+Ec0RXPC2yvzfxmDiOwyVqtE66tiSvhYWFhYWFWhgleUVx7LHHYv369bjyyivxxBNP4Kc//SmuueYaXHrppVi+fDkA4OWXX8aaNWvwxBNPNLz3ueeew+OPP473vve9Mz73e9/7Hu6++278+te/xnPPPYfPf/7z+PjHP46/+Iu/IP+betoQEWF2G/1Fu11JYBO9gVuVM9OVeQg09rCcjvGg341ZAl7neET25NVY7rXtmGgkEnvbzFeddkT1n9VZfq9dCWsWyOsj7ucJtJ+vw5rK8AK8WrQ9WaXXlpnzNRgTDb5pNyZmfNO+JLBpW3QpioH2vXB1KopDOyLIKtPKc412tCMSRw2oVlupRUOVtT5yphlxZsKOdmpRPWWjWxOrvC1aFbRtSF4dvmHPtHa+MT0epmxpNk9GUmKHTgKe2TE0WWr6c50EXtsx4chVarSrphEQiVrue/UE41YVvrT2946+e+rwTTsCXmvMJqJfst4yye18o7HPeL61b3TOkaiYjU4Fbbvy4jrnq4WFhYWFxVzCrCB5AeDee+/FmjVrcPbZZ+OCCy7AGWecgS996UvBz8vlMrZv346JiYmG933lK1/BYYcdhnPPPXfGZ+ZyOXzuc5/DunXrcNJJJ+GLX/wi/vZv/xa33HIL+d8TZEG2UYvqIBLTkmUXEKsRh1I9pXijFbRaCPj672hGmhnpcWq49A/QXt2sM9O93ZiM6CQ0I9bN0ERJoy1tCDyNatF2ASqdysh2iTy8LToVtM3UkSbsaEpoai1N3D4IEqre9O1p7ZSAegjN1mSV3pLeEb7RSny39o3OvaQdkahLoQm0nyMATzhrJL7bjIleJW87RXEaiET9vmlOJKZDLWpCtZoK3wiUFzc9JjrL3wZzpInaGwjPbzp8036+6iebh5oq4A0kR6SArGIxiqb9vXWWOU9J8ndkv2QjIoF2MRvDduhMzI9QwIeEs9mqZzor41lYWFhYWMwlzJona39/P+67776WP1+5ciV835/x/Y9//OP4+Mc/3vQ969evx/r165XZKIN2vXDHSvovLs36qpi5MMy0w/d9I5mH7clVDUpeEZW1xlJzY8UKfN9vKDXk+35wAdcRdA/LNc8MPrCARJ9GAq9Z8GGIkbyd+Rk/Uw0WjBsrVeB5fkOZ26rnB/NkvhZbWl/mtCp52wRBTBCaY8UKqp6PDOebStUL7NNqi+GSwO3KJOtUNrO/daJURaXqNZTuLlc9TNRLv+tMSmhHrqZFUaxFGdkR+qZc9ZDjfFOqeJgsVxtep8OWdj2k9Sp502FHM98UK1VMlT3ttpgeE5G+rzrHY7zJnlaqeFp9046c0UkShWWSze5pbDxGm5wFytXQN3NRQds2EUBDMi07GzfzTYU7C+i4a7E7Q7sS1joqNrBzummymdkxNFFqer/RVXYWCKsCNFdZ61M3t0uO0JmQwFflaRYX0Omb7jZEool+ye0rjemoAhcq4Jv6RiO52o74HtdINltYWFhYWMwlzBol76EGkYw/nQewpopiA+rZUtVDsdJI9E6Wq/D8xtdRot2FQWuPxMCOJsH/OqG5oIuevGNjXvX8IMDOwAIjgB4CLy0lgQNytRnJO6FfWeX7M7N2R6fKYHkvWkgiAQLetEpzSOscCfeq6fs8H/zWEbRrq7I2QSQ2qRxhgoAHZvqGD+LpUDSJ9cLVR4i0UxRrSeThfTM1fd2Um76OCu0U8DrV3iKltHWqzpvZwn+tJfmss7VvRg34JqonLzX43zF9TEY1r5t2paO19ktu45tRjUQifxacTs40rBvTJYFTU65Zvx2+P/Psyp8N9PQHbqOgZUSiYd/oVAEyOzw/TH5n4O87OmzpC8ZkZllvEyrrg03miM4SyWw8SlySCsNEqRrcPbXsr23OaSaqnrWLp/VoKeldI5Irno9ipdE3xYqHSj1mo1PAYVplbWFhYWFhMZdgSV5DYL07mpFVRkqptAm667CDjQcwM7DLLrxZ10F3nj4Lkv29zUrdHDRArjY7HB9kZXg1BN07cxmwBOrpvmFkcyHroiOnQ90cTa6aVouy3l467ChkXeQyTlNb2PrtymeQz9Jv9fPazFcTRGJTYkajHYVsOO7Tg4dsPHoK2QbFFRVCBW06yNV2Jb11qBByGRcdOeabaUQie+4Vsg2qHiqI9CnWqQRsSsBr9k1X/Tk/XR2p2zftSr+PaPRNuzLJOu3IZtzgDDZ9TEz5pqmSV2PZ2d42vtGp5OV904pI7EmBb9JCJOrsP8vvadNtYeuoK5/RchZo3/dVo5K3qzWhqbN/ZT7rojPXyjc1OzpybkPVAiq0JVfZfNVAmvW1843GvbUjl0GhfoaeXk6b2ZHPuChk6e+effU7f/v5qkPdXLejTd9mHaRZVz4T3D1ZPIKBjUfGdYJzNiUWBL6ZScAHvtGoPG++fsPzETW689kgZjP9Gczfz/m4GxXaiRXY/mrLNVtYWFhYWKiFJXkNYV6bIAg7qOoosdpOyTukkdDMcATudJIoIDS78g1lZ6jQLhtzWGuP02hF4nwNdjiO07KEtU5iFRAjV3WWJm5Hmukg4Bt80yI5QocdQPsS1jqJxJ52CniNdgDcBbcFAa/NjpSUSRYhNHXsabwt08kZndUaanZEk0Q6+8+2V4uana9sb9FnRzsloD5b2vef1TsmrdSROsm7BjuarhtGfOtT37VXreoZk1alo3UqihvsaEMk6uw/225v1UFWAa0JPN3rpm25VwM9eU2XjW5nS5gcoWeOBORqO7WocZW1vtLEQGviTOd4AFyf4jbrRouClo1HM0JTox2O4wR37enEN59UpCNm0y4pQec8YQT8dNIb0KtadV2npeI7qBSYzzSUP6dCkMxjONHKwsLCwsJiLsGSvIbQ3x32mpmOQC3abfaizQ6qC3QH3Sebk1W67GhX2vSgRlvaKXl1EvBA6/LELBihz47oMdFZirdpSW/NxHcr4mxIO1nVWmUdltLWScA3myMsEcAsWaWfSGyjSNRIJLZLjtBZErjRFrO+CUvxtk5K0FP6vY0yclLfHAFaKwFHtPumzXwNFLQ6gu5tSmlzClodaEU4604E6G1DwGstCSygKNa9l7QiRHQQq7wd7dXN6SCr0kPAm50jQHpU1rqJ79ZEor49HohKjtDpm9bKSJ12AGGf4ukE3phG1TkQoW4O1KIaVNbtyOai3rPAAq5ncqMdesvwtiNXdapFF7RRe+smNBe0GJMhjXfxmh11snl8pm/YvOnv1mOLhYWFhYXFXIEleQ0hPJQ2HgY9zw8OPjqIs35mR9MDmObDYHfzQ+lBjepZ/vdM771T9XyOiNBAVhVYYLe12lu3graVWlRX8D+0o3FMKlUvsE1LKe0WymYgPWOis0dxOzvKVS+49GtRJDKyuV3ZaM3JEdPHJCSb9Vz4WxGaFc2+adfj1Bzx3Vwtqss3vSnzzehUBT5rqFbHsEZCk7dl+jzRbUdIaDbaUfX8YO/XqeSt9Vlv9I12crWz+bmEka36iMTmCnivwTf6yKrRYgWe19w32tTNLYjvtCgjfd/XqqANfDNVQXWab0wpz9Oi5G1Prs5N38wkEtNBNgN6e0gzO0ba+EabgraFullnH1xAsCevRrXo8GR5xvOGzVdd5W/7Wqg0dVewaEd8s7WkIy7Qx5He033DYmwLNBGafS0I+NAOPee0BS1inbXv6RUJWFhYWFhYzBVYktcQWObadHJ1dKoCdjbUQc6ww9V4qYpipdrws+AApukwyNTNMzIPDZHNg9N8MzJZhq/TN3U7RqYqqFS9hp/pJhJbXbSHNBOJQfB/sjkxA+ghAHiV9fTLXFA2WtN8baX4DkqLa0hIAFqTVTwZoNM3E6XqjHWTljLJbEx0+aZVn2Ld64bZUap4M543un3Tqk9xWuYI/7WOYBkjiCqej6ly47rRTySmQy0aPm+al7zjX0NrR+3v9fzaWY1HWDY6LUpe3YRmox3jpUpwTtPZL9n3gbFS8zVsWkHLzkv6SLPm57SJUjUgjXTuacDMCiOhSjMt5ZrN2jFVrqJUPy/pVPICM5/BaRkTYyWBpxEi5aoXPJNN+0ZnSW+AI/DalATWYkcLlWbV87UmAzDf+P7MM+PBcb1Vz1qNiW7ybkGLynjFSjXwTb9GktfzZyaAH9SsWm1FrrK4ljbftFAUT5aqwZ6mi/i2sLCwsLCYK7AkryEEJUxaqFa78xkUshlyO+Z1ZJGp9+WYeVDXS66y3zOdXB3SXDY6VDdPU99xZRFzGfql09eZA2tnM/2gPqQxOxUIx2SGb8b1Eon9LQh4NkfmdWSR1eCbdhdt3b1wW6l3dJNVQX/vYnPSbF5Bj2/4oM904tucyjotPXmb+6bHgG9mjom+Mp5AawIvLMOru01Bc9KsO5/R8rzpymeCs4B5crWFylq7WrS5Ep+NR0fO1XJO68i5yGXqvjE+X5sTeKOGys62SlzJZ1x05HT4JoNCtrY+W/lGN7k6nazSvX6jSLOM66ArT++bfNZFZ30OmFbQsvXZqiSwaSUvGw/HAXry9LbkMm4wB1qNiX6VZgvfaOrJ20rtzSco6CCccxkX3XXfTI8LBNUJNPmm1Xwd0nyGnt+iXDMfw9Fx58tnQ99Mjx8N6laLdjaPYzE7+nv0xo6m+4Z9nXEdLftrIZsJ9rTphHNIruol4FvFGPUT8M3XTS7jBPPZwsLCwsLCQg0syWsIrbLswtLEeg5grusEh87W5KpeInG6uvmg5v6z7FA62OJwPF/TIT2bcYML7Ex1s95yzeyyNmOOaFbytiR5NdtRyGaCIMer48WGn41oHxO2fhvt0NmjGGjdO0t3b+B81kVHjgXdmyto9ZGrzcmqsGy0WbWobrI54zotiW/tvmnRe123Hb1RhKYmOxzHaVlyXTu52oqAN6UWbVk2Wp9vWitozfR9baUW1VdKuz5XW/Zt1mNH7Xe1L5Osv09xOgjN6XOEJzQdlsFIbUuLst66e+HObzlHNK+bCEKzJ5+F6+rxTbS62WwvXN19NFupVvnkbx0JXwCnKp42JgGBp7ns7PQ5cmCsdt9Z2FPQY0eLucrGo68rpyVRsva76net6bZoVou28g2L4ehQzwKt1w1PrOra00Liu7loQp+Ctv1eom+ONCebeUWxrrOAhYWFhYXFXIEleQ2hVf9ZdiDTVSIZ4A5hM8hVvZmHQZnklj159apFp4/HsOZDOm/LTAJeb7nXlkpezWpvNh4HWvhG13gA0cS3LpKov7sW5Jg+JkOaicSF9fE4MDbNN5pJbwBYGIxJI/Ed2KLJN636IulX8jYPuuvug1uzpRWRaEjdPL3MufbewOkoGw3wSsBWyQC6VNbpIOBbzlXN5B3/u1olrugj4Nsrz02TzbpLvQIhQTdTQZuOfqsjKSlNrHs82tmSll64uhXwafTNTAWe3jtfKzvYWVaXIrEV2czO9roITSBsNzODXNVO8rLk0eYk0ULNdswkm/WOB8DP1xYKWt0E3rS75wHNiuIFLebIQc2liYFoUlNbueYWcazBoKS3bt80V1nbfrwWFhYWFhbqYUleQ+AzIKtcT0/d/TIATkHLHcKmymG/DG0EHithPa1M8rBmRWI/R8Dz/VYPalbPAs3J1alyFZPlWl++Pm39kluQq5N6x4SRd9N9M6TZDoAbE47ULFaqmKj3TNRFOC+KIFd1ESIsADU4XoLvh74Z1lwiuWbLzDEpV72gn6UuWxbVx+TVFr7RRYhEzxF9gd1mZfmrnh+QrdoUtCzY3aIcoW4icWbZWb3EDMCrm8Mx8TxfvyKxhfpOt4K2lfqOfa2VgG9COPu+r1/d3Nl8vuruP8v7hn/ehKS3frJqprpZMwHfooS1buK7lyOreN/oLn8LtCE1NT+D53c2r07Agu7ays4GJegrDXdP3cpI3hbeN77v49X62WCRLnK1lVq0niS4qFuTWrR+NhotVlCp90cGwnPbQk3jAfDqyPCc5nl+cG5bpGmetCTgdROadTvGihWUOd/oJpuB5graqucbUGk2V3szO/QR8DU7xktVlCqcbzSPBxAKNPh7RaXqBb7SVko7aAnXPIFGl5CEiUTGipWmvtEZs7GwsLCwsJgrsCSvITAS1/cbD+q6+2UA4SGLV9AyOzKuoy1YtqCFalW7org+9t4M3+hVrQLNx4TZlHEdbX2RWHBhelao7v6z7GJS9fyGgKruXqtAeIFt5hvH0aeIaKX21q1uZuNRqnoN6kgzSl6WlBAqefm1rCuwy9bNq2PNFcW6CfjJchUTpZm+0bluFgVjEs7XEQO+YUHKVmpvfUr82niMFSsoVqoz7NBZdrZZ0H28VAHjAsz3KdZcmrhux2S52hDYDQl4fb5ppsafKnsoV/26LYaVvNr7z9bsKFU9FCtNfGNEZR2OSakS2mW6zLnuvYT9vZ5f29cYwp6ROpMjZvpmslQNEr5ME4nsbLBYM2kGNCaMvBqQvPoVifyYjHJkwEJN5GqrRADd5Cr/POETNdgZRdd4AM3HZGQqTErXtYZbEYmDun3DrRt+TEwQiX1NSvEOT5bB8ml0xY/CFj1mewP3duTAKv7ytuhWzwLNlbz83NUWK4lQwOuaI70dObhNfDNkYN1YWFhYWFjMFViS1xByGTcg6BoOg0EJE/2KRJ7AY2ravs6ctn4ZvIKWh+6SwLmMGwQqeeJ7mGUeGiASed/whKYu3yxoVa5Zc0lgvhfugSZjYqIkMN8Lly8nqqsH0MKe5uWadZNVHbkMuvOZmi1jM4lvvUremQpaZse8QhYZTb4JFLQziES9SsDufCboU/zq6ExyVS/Jy3zDrZt6sLlLY8855ptXWqqs9ZXxzGVq8/FAE+JbJ1m1aF7rdVPrdZ3RYker9gC6VZo9HVkueMgFuw34JiilPdEYdAdqCV9deT2+admTV3PZ2e58Jgge8gSebrU3/7t4YobN3azrGC8JrJtI7Mi5yNf3cX5MdNsBNB8TZkch6wZ9yKnRqk8xs2XRPD33m3zWRWd9H28cE70KTaC5b9gzsDufQaemPS1q3ehSN2e5uECzMTGiFp2YOUfmdWRRyOr1zUwFvF6SiE94588Cg0G5Zn3rpq9JCVx2D+3tyGo7Q7fq+xr4RlPMxnWdpj2kdZPNQPOevCx+M79TZ99mZkdz0YSudeO6Dkd882OiXzRhYWFhYWExV2BJXoNo1jNDd//ZBjuaZNnpJM0WtOhlYkLd3JT4NkDAL2hSJtlI2eiU9AYG2qubTfTkbUo2G0gEODBNLWqihHVYsjm0JUxK0OebZuWahzUnJACcWnSsOVmli1x1HCdISni1ibrZiJJ31LAdjNAcbVw3ukvxOo4TzJNXmoyJTrIqIL5H+cQV/aWJl/TWx2PanqZbpZlxnWB/bRwTvapVoHnLBHYW0Jnw1SyICYQEgC5lleM4wTzgA7v7635aPE9f0L23SSne/aNTAGrPAF0JX60IeDZ3F2kak5pvZiYlvGLENzPHhM2RRT0Fbesmikg0Ta6atGOkgdBMR9logOuFq5EkCva0JopEEyrrZqSZVrK5cyahCegv1wzwfXl53xTrdug7HwWltBvsqI2P3r7NLVTWdVu0lklu0h/4oGaymbdjaGJm7MjEeExfNwcNJMQ3I5xDstmWa7awsLCwsFANS/IaxIImPTNMKHkDO5oSmiaI1bCPl+f5Rsq9NlOuDgV2aCSrmhLw+olEXmXNfOP7vvb+LrwtDb4xQHyH5GpzlbUu8OPB978zaUszJaBWAq97ZileM72BQ5K3oU9xSkhNNiZ6icSZSl4T48HUZK+MFZv6xvSY6O4NDITkS3OyWR+hubgJ6Q2Ee77OfX7xvA4AIWkHhOSzTkJkCbNjJBwT9v9LNJJmbI7sH5lq+D77Wqct7BnM72lsTHQSic3OiyYIzYCs4u4Uvu+Htmicr71NiDOTJG9TQtOEbzg7PM8Pzo+mSd7QDrPlml81YEdI3jX6Rnf/WaA9AW+EwJvg5wgjNA2UJuYITY/rP6uzhHWzMskh2WzWDkY2640dhYQmH7PRrRYFmpf1HmRxLMOltMMSyQZ8M1luiNkcNJAc0Zz41i/esLCwsLCwmCuwJK9B9DXJPDRRXmZBs1IqJhTFXWFPT9Yva3Qq7AdoQrmaFnVzo2pVv2/YeJSrflB+b7xURaXuHJ0K2ma9cIcMkERNyeZALarfNxXPD1R3U+Vq0A9Qr3K1mYLWhKK4jZLXgMq6VPWCdVOpekGfQr2kZhsC3oC6uZkdOsvfMqKhVAl7SFeqXtCnUOeYNCNXWVltncEYnvhmYOQmIxm12FEfj4lSNVgrU+VqEDgb6NVnCyMt93O+2VcnEpcasSMkV/cxYlWnHfXfNTJVwVS5dk4bL1aCM5tOW9j472tCwOskm9nfvI8jvk0Qmux3DU6Ugh7So8VKcBbQaQtTT/GJViZKAjdTnpssGz0yWYZXPzcPT5aDM7TpXrhGlLxN+hQbITTr4zFWrKBSXzfDk2H/WRNkVRoJ+EDZbGCOTJW94HljyjeBurkJgWdG3RyeoU2SzeWqjwkuZqO7bzPAqZt5IjEYE7MV6UwQmsw3VS+M2YwVK8HzRqctjNxmCu/a/1uS18LCwsLCggqW5DWIZkSiicNgs0NpoNDUGOju5PpGssM5s6krn9HWAwjgydVmKmv9JYEHm6isdZJmfL9V5hs2R2q9GvVtJc2VvPpV1s3KZwaJABrJqo5cJugrxwKqLDCTcZ2gx5cONOtTbLYnr1k7OnJcD+mxRt8AetWRzDd8We9BA8k8Yd/X0A4TSjN+3TAl4KtjJXg+K9OrkZxpMl/31gkjnURiM7J57zCzQ994dBeywfOG2cL+m8+6xtXNjGjVOSashPX+Bjv0E5q9HVkUsrXnPVPNMju68hltPU4BjuRtUDfrJ76X1sd/XxPf6NzT+rvyyGUc+H74+9m8ndeR1dZTGwCWzq+NP9s/eFt0ks1sjvDKc5ZAs1hTH1yglrjrOIDnh8/dA1wfTZ33m/lNqjeZLNfcqBbVT2jy5zBGiLBzfW9HFvmsvvtNM3JVd/9ZICQSG0sT6yc05xWyyNTL3bMxYb6Zp9k3fZw6ksGEb5qVST5owDeduUzQe53Fatje1lPQu6c1K09sgkhsq+TV6JuOXCbovc7iEqwPbmcuo/Us0DzGyFTWtlyzhYWFhYWFaliS1yD62pZrNtvj9KCBMjdAmP0/OI3k1Z3txzI/mxHwOhVe/U3U3ib64AIz+wPzZaN19TUDuF64TZSAess1zyQ0RwzYAYQqkMFpvtHZq5G3g1dpBiVWTfQpbhLE1BmMAWaOCSPvFvXkkc3oewQvmsfsmEngLZuvjxBZ1GSOMDsGNNrB28LIhz3DkwBqpE1GUx9NIPTNKw1qUf1j0ozQDFSrmn0z3ZZgPHo7tO5pS9qMiU51c1CueXRmcoROstlxnJA4q5Pd+w0kJAAc8T1iNmGErdF9TQjNJRp947pOME/YejFBrALAsibq5kBBq9EW5ps9vG/Gwn7JupDLuMGcZM+7V+pks86y0UD4vOfH5IDmntoAZsxVICS+dfommwkTh9h6OWCA9AbCuwN/H2djYrw0caCy1jdHHMeZQXybIJuB8A4z3KRfsl4CfmZZ/gMGiETHcWbMk6BstGbybn6TeJqZstFNxBsG5ggwsyXcoIHxAMI52axcs84EYwsLCwsLi7kCS/IaRDMC76CBksD9wQFsJtmsm6wKCOeJaUSiKTuakKsm+hQPTvCEpv45Aswsk2yCWG20IwzsBgS8VrXozF64r46bubhM74W7jyMSTdjBAg6+7xsh8FhgbnC8FJRGfHmoRuAt7+vUZgfA9+WtE4lDjFjVbEc9QMjmqOf5RkjexT1hcgQr67bHgB1ASDYEBLwhsnl6meSq5wdkns7SxEG5V843PLmqE4unlScOlc16g+7TyyRXql5AVpko13xgbKZvdJLNvC37pil5dROJSxlJVPdNueoFZyWd5CqbB69wvjFFrrL1sS8gEvWT3kC4h+6tzxHeNzqJs4CAH5kKzgJMyaubwJtOrppQz9bs6Gywo2LIN8v7auOxe3gyOEMHZLNmIoKdC3fXE73C0sR67RjordnBziKNvYE1VlzpYXs8T8DrLwkMhHdMVnGF3f10k1UBAT8R3m+C3sAGekg3UxRrJ767phPwtf/qniPT+776vm9EycuIVZ6AHzQkVuibNiYm4ov872sg4NleYkneOY877rgDp59+Orq6utDX1yf0nssvvxyO4zT8W79+Pa2hFhYWFrMIluQ1iL5p5ZonS2EfTb09ecN+RMVKra/KkDEFbSPxPZQSQrPM9dHUqUhk4zFV9jBRqv1+RkjoLKUNhHOS+YZd/nVmlwPh5ZEFHMaLlYCA1xl05/sUs56eLx+sBYgO000kTpuvjNB8jWY7FnEEHlC7+LNejTrJVeabqucHwQdGruofkzoBX/cNU4vqJjSDMslMqTJeQqnqwXH0rxtWtpI9+9iY6FfyNpZJ3mtAPQvwvqmX8ayTRRnX0UoSLewuwK37hqmHTJSNBkLiMlTyMmWkbrKZlXsNS3r7QUlvjb3oezjfjDWSqzrLNQOYqeQ1bUd9jh7gfKMzeLiwOw/XqT1v2Lp5xUDfV4AnV80qeYNS2nWyqpYMV/ONznvFknkFOE7tnMaC7abI1VBVPNlgh+45wshVZsfgRM03jqP3XsHGY6rsBWf4Vwz05AWA17AxGWJ7iX71LAC8ZkHtfMrO8EOTZdRzE7TGBZgdI1MVjE7VyyQbIuDZmZ2NiSmyOVi/9TkyMlVBuaq/N/AiLsGYxWxMlAQGwhgR28tC8k5zfCIgEmu/f4KLp5kg4EeLFZTr/b1N9AYGQjU121vNKYobyeZipRrEBWxPXotSqYR3vOMdeP/73y/1vvXr12PPnj3Bv2984xtEFlpYWFjMPliS1yD6p5V1YQGIXMYJ+tHpQG9HDqwyJTsMHjCQAcn/vsGASDRz0Z5uB7vUFbKuVsK5K58Jeg4xW15iROKCLm12ADNVmi8O1uxY0Z8OQrO3I6u93ypbpyz48dLBCQBhgEQXppeOZmSzdjumldJmvlnUk9faAyifdYM+ayzovtsQuRr0B64H21+u7yW6FcVhmeTG0sSLewrIaSwbnc24MwJDppS8M0hepuTt1eub6UpeNh6Le/SWjc64ThA4ZeRQ2JPXbLnm/YYUxUwRynzDkpsW9xTgavbNwkBd1WiLfuJ7mpLXkKI4UK0GiuKwgoVO32Qzbqh8G260xRS5GpC8BkokAxwhMlJ7zrB13N+d17qnNSuTbKJsNDBTQfuqgfK3QLiHMjvYea2/S28LiUI2E5xLAgLP0Jgw3+weYgS8GSUvI+Cnj8f8zpzWc1pPIbxPMVsGDambD6vfY9jd1xTZzO7czA42Hrr7z/Z354N+qy9Ps0U7AT/dN4bI5qXT9jQ2HoWsG4yVDszvzCFbf76x5LdBA1Xg+N/HnjMmlM2139dYgp7FGTOug3lcP3SLuYlbb70VH/zgB3HCCSdIva9QKGBgYCD4t2DBAiILLSwsLGYf7NPVINhFiQWo2GF9qeaec249s/7AeAmvjhWxtLcDLw7WyKrDNJNE/dPUzS8cqNlxxEIzhGZgx+A4AODw/i6tvnGcmlpoz/AUDo6X8Zo+P/CNKXKVjcmLdUJzhWayeXopbUas6ia9gVp/4PHBSQyOF7FyYRdHwGteN9P6nIZKXjPrhtmx2xChCdQIvJGpCl4dK2H1Ij9I1NBOrgbJEY3kKgvmabODlY0OFMV1YtWAbxZ25zE4XsKroyV4S3yu/6xmcnUakWiMbJ6msg7Us5rtAGpj8upYsa5Y9QOySnsJ66BMciOhaaxc80gRvu8bs4PZ8spoEftHp+D7veYVtNOVvJrHZCnX99X3/bAPrmayGaitj/2jRewbmcLxfq8xW0J1c11RbEjJOxD4prZuTCmbgdA3e4ancPxr5gdjorudBXuuBGSzobLR7Ay0Z7i2bkwpm4EaufrqWCnwDTuf6Fc3N5K8QR9c7Yri0I6ab8wQq8yW4ckyXj44iTUDvcGY6FYCtiJX+42RzRP1csBm+s86joMV/Z347b4xvHhwEqsX9xhTabL7P4tLBOWrNdtxeD1GxGJGfD9enTGbjOvgsAWd2HlgArsOTOA1fZ3GfNNq3eiuAsfOJCwuwc4m/d16k/EsDi08+uijWLJkCRYsWICzzjoLH/vYx7Bw4cKmry0WiygWwxZvIyMjAIByuYxyudz0Pezn/H9nE6ztZmBtN4O5YLvs32ZJXoNYtagbQO3CUKp42PnqeMP3deKw/i4cGC/hhQMTWFH/f0A/ucoCyexQuosjV3WC70fkeT521S8wuu0AalmXe4an8MrYFA5OdAZlo3WTmgu6G7NCQ7JZrx0LOUWx7/vBXNFNegO1cmEvDk7iwFgJr46VUKzUyt/q77c6Td1sSMnL1s3BiVov3JfrBPxyzeMB1IJiv3t1vOab8WJQmthUKV6mPjDVk5f5ZmiijHLVw576hXuZZhUgs+XZ/WN4dayIA+MllKs+HEc/WZWWcs2MgBktVjBVrnJ9cPUH3RfPK2Dbnho5NFj3DaA/6D6dgDdVNprZMVmuYqxY4QhN/etmybwCnkaNVB2eLKNUL0eom1zliW8gJHt1r1/mm2LFw8hkxRjpXfudHQCGsW90CmPFCqbKNd8smmdGpbnXcE9etk5LFQ8HJ8pBAotushmojcmvMIy9I1OYLIWlIheZUjdPK9esm1ytJRLXfMOSewEzROLyvg489fIw9gxPolwNyzbrJldnKmj198EFanPEcWolrAfHS2E/Xs3VrIDa/eE3e0bw8tDktN7Aem05LChhXbtPHDClWq0T8OOlKg5OlEMFvAHfrFjQVSN5B2uE8wFDRCKLibCkb7bP61byMrJ5eLKM4Yly8Pwzkbhy+MJu7DwwgRcOjOONKxcE+73us+vKevzu+XpsceeB2n91x2xYTHPfSBETpQp+9+pY7fsL9cc6LQ4NrF+/Hm9/+9uxatUq7NixA3/913+N888/H5s2bUImM1O5f+edd+LWW2+d8f2HHnoIXV3R62Hjxo1K7DYBa7sZWNvN4FC2fWJiQurzLMlrEEvmFdCVz2CiVMWLByfwfP0AttLAwefIRd347xeH8LtXxoLD8qKePOZ16M34W10/DO54pXYIZFmZKzUT34ct6EQ+42Kq7OHloUnsqttxuGbSGwBWLurCb/aM4HevjAdleZf2FrSWvwXCCy4bC1PkKgsSsgBVqDrX75vF9QDQ/tFiEBxaOq8jKLGtCwunleI11ZOXlYFivXB31y/auslmICxhfWC8GCiKl87r0FryjreD+Wa3ISVvX2cOGddBtR6sC5W8BkjeeeGYsGDMknl6y0YDYQD3lXqwLijXrJnknVfIIp91Uap4eGW0yJWNNqDk7QnJVUasLurJa9/TZpZrrv1Xd6CsK59FTyGLsWKlpqI1quQNVZqM0OzrymktFQk0UfKyfsmaVasduQz6unIYmihj3+hUaIcB3wSlo4engjnbU8iiK6/3msWrmwFzSt581sXC7lqFoL3DU4GS14xalBHfk8FzOJ91Ma+g1zcssWt62WjdRGI+Wysvzp41IaFpRskL1Kq+MBLRdWrnFZ0IFLTD00sC6x2TQjaDxT2F4E4RKorNKHmBWtJoQ29gzeVemR3szsmewbrHpCOXwZJ5Nd+8dHAiOEObSCpawZGr+0aKKFY8ZFxH+7OPxURYIvwOJlbQHMfqLmSxqKdWhWbX4ASeq8eQVi/WH09bubALjwN4YXACLx6cRLnqoyPnar+PH1H3wQv12OLvXqn998jFPVrt6OvKB+e0na9OBKSzCUGLhR7ceOON+MQnPtH2Ndu2bcOaNWtiff6ll14a/P8JJ5yAE088EUceeSQeffRRnH322TNef9NNN+G6664Lvh4ZGcGKFStw7rnnore3t+XvKZfL2LhxI9761rcil9N7JkkKa7sZWNvNYC7YzioQiMKSvAbhOA5WLuzGb/aM4PlXxgMlr25CEwgPwr97dRxHLKzZcYQJsnlJ7fC5Y/84ipVqUDrrCM2Zh9mMi5WLapmyz70yZlTJe9SSeQD24tl9Y0EAz4QdRy+ZBwD47b5RlCpekJ2qu1xzRy6Dw/u7sGtwAr/dN2qsRDIArF7cA2zbj2f3jQa9mk3YwXyw45UxVKpeQM7otoUFD9lFm5HNJso1s6D27qEpLO4xQ6wCYSBq/2gRVc8PAry6x8R1HfR35/HKaBGvjBYDAt6EyjokV4tBUFV3qWagsUyy7/uhklczkeg4Dhb3FPDy0CRe4YhvM2NS90299Cygn1gFQrJ5ZrlmMyWsmYqXtddYaqAkMAvg7h+dCsfDoB1hL1yD5Oq8jhrJO1KrdgKYKQm8lCtPbFJRzBJU9rIS1gbJ1aW9HTWSd2TSGNkMhGXv93Bk8+KegtYynkBINodlkuvkqoExWTa/o3YOqD9zADNzhJ3Jdg9NcmU89fY7r9kREvCe5wfnEt0EPFBLitxf9w1LqjXx3AvKEw9NBonXy+brT2JlCbx7h6dQqXr47b5RAPrJqpotnXWSdxLb63a8dqkZOwDgpcHJYDyOWNilPeGLxSJ2D02hXPXwXN2Wow2MyeH9nSHJu782X48yMEfYmOw6MIEddTtWLerRvqetXBSWay5VvIBcNUN8d2PrxBB2HhgP7DAR67TQg+uvvx6XX35529esXr1a2e9bvXo1Fi1ahOeee64pyVsoFFAozDzf5HI5IUJI9HVphLXdDKztZnAo2y77d+k9qVvMwKr6Yev5V8e57Db9BN7q+kH4d6+MB1l/JhTFh/d3Ies6mCxXsWXnQXg+0JnLGAkMHRUQzmPGegMDwNF1O57dPxqQzbqJVaB2Mci4DkamKtj64hA8HyhkXSO+OWagRjhv3xuSvCbGZE3djm17zZLNa5bVMhH3jRSxbc8oqp6PfMY1Euw+dlltTJ7ePRKWjTZArrI58vTuYaNkM7tQ7xqcwM4D46h4fi3j3gA5s6I+N3e8Moa9Abmq3w4W7H5xcCIgNE2UjV7CqUVfGS0G5W9NEYlATRUZlo02UK65hycSa0F3E4piRhgOjhcxPFEOSqyaUNDy/YH3jZojm5dwdhhVrdb3ruHJMkamyhieLDfYpxM84czGZLEB3wQ9aEdDJa8J8o6tj4lSFSOTFRwYM0c4hwrakPg2QZoxO/aNTAXtEoyQzfU5Uqx42DM8xZXlN/cM3jM8FRARJiquMCXvnuFJbNtby1I/aon+u+eSeQVkXAflqo8dr4wF5/k1A61VPlRYzilXn95dG5Pjluu3g1fy/obZsUy/HbUqLw4qno+nXh7GwYkyXCdMPNaJQEE7OIHte2uE5jEG5giv5GUk7zFL9Y/H4p4C8lkXVc/HL144iPFSFVnXMSISCJSrg+PYwVSrS/STvI121PbWIw0Qq0vndaAj56Li+Xhy5yCKFQ/5jGuk6hlT7T7/6rjR1nQWerB48WKsWbOm7b98Xt1Z8KWXXsKBAwewbNkyZZ9pYWFhMZthSV7DYOWJf/dqSCSaIFcDJe8rY3j+VWaH/oNgLuMGROojz+wHUCN+dWfcA2EG6I5XxoKSwEYUtEsZyTtmrA8uUFPQMt88/Mw+ADVC04Rv2GW2puStl2s20JOXBYCe2TMS2GEiUNZTyAa+2fibvQBqZXh1Zw4DwOuWzwdQI1d3B2Wj9c/X41/D7BgxVr4aqJUwXTa/A74P/Pg3tXWztB5Q1I0TD+sDAPxy11BQwtqEuvmE19Ts2LprKCh5Z4JsXj6/E/M7cyhVveB5Y6I0MRAmFT318pCx/rNA+Izbvnc0LKVtwI6F3QXkMy48H3hi5yAAYF6H/vK3QOiHl+qlEQFgsYlyzVy/VUY2myCrejuzwRp56qVhALUqDvM1l1gFwhLR+0amAmLGJNm8d3gqSNhcZmBP68pnMa+jtkb+87lX4flAVz6jvccpECpo945MBfPkKANB94FeRiROYeuLBwEArzNAmrFKJwDw8LZ9qHg+FvUUjMyToEzy8CS2vljzzUkr5mu3I1TyhnOEnVN0IptxA7L9ofo5bUV/J+Z36d/TAnJ1aBJP766NiQly9TULQju27amRvMcasMN1nYD4fnhb7Zy2clE3OvN6VatAmMT74sEJ/HavOXKVJTW/OBiSvEcbsMN1nSB5lJ2hVy3q1t56BQjjIryC1sTzht3FX3h1giN59dvhug6O6K/F9phvjljYZeTuyeKaO18dx+8MKoot0oddu3Zh69at2LVrF6rVKrZu3YqtW7dibGwseM2aNWtw//33AwDGxsbwV3/1V/iv//ov7Ny5Ew8//DAuuugiHHXUUTjvvPNM/RkWFhYWqcKsIXnvuOMOnH766ejq6kJfX5/Qe3zfx80334xly5ahs7MT55xzDp599tmG1wwODmLDhg3o7e1FX18frrjiioYHCzVYJtvm3w1islxFxnWMEHgrF3bDcYCRqQp+uasWBDnCUJYdUxU/sr1O8hogm4EwA/TJnQcxWqwAMNP3ddWibrgOMDpVwc9fqPnGBNkMAK+tZ04/Ur9om5irQKjS/MULQzg4UVMRmSDwjlzSjWxd3fzznTXfmJgjAHBsnXDeWPeNifEAQsXB1heHAvWOCSJxzcA8ZFwHg+MlbKmvGxPBVAA4oU44/+hpRsCb8c3Jh/cBAH6562CgIlpmoCTwiYfNh+sAu7mguwnfuK6DN9TH5IFf7QFghmwGgDeuXACgdhYw2ZP3jSv7AdSSira+OGTMjozrBPP13s0vGLMDAF5/WG39PvrMK3j+1dr5cIWBZB62x2/bM4L/+O2rAMJEQZ1wHCf4vV94bEfdtnlGEr5Y0P2/fncgUAK+3gBJxPbRFwcn8PhvXwEAnFpfS7rB1sm//vxFAMApRywwEthldmx9cQi7BifgOjVbtNsxP0yOYGdoE3YA4XPuB0/VzgInH95nZN2wM9kvXjiIV8eKyLpOkKCn147autk3MhU8b9h5STeYbx6qn9NM2cHO7j/feRAjUxXkMg5ea4DAY3a8MloMfGOC5AXCff7H22oE/LEG1LM1O2r3uyefr8UFchnHiCJxRT2p+eBEGb/cNQTATNloIIxHPFwnEk2UagbCtl5P7hzEWLGCjOsYq0gHAKPFMGZjQlEMhITzT7aHBLwJsNLRW144iNGpChzHXBzLIl24+eabcfLJJ+OWW27B2NgYTj75ZJx88sn4+c9/Hrxm+/btGB6uJTxlMhn86le/wh/8wR/gta99La644gqccsop+I//+I+mJZktLCws5iJmDclbKpXwjne8A+9///uF3/PJT34Sn/nMZ/CFL3wBmzdvRnd3N8477zxMTU0Fr9mwYQOefvppbNy4EQ888AAef/xxXHXVVRR/QlOsWhT2wgVqFxkTGZAduUzQm5HZYkLJC4QZj797xawdLAOU9XYZ6O1AR05/5nAhmwkuKswWU+TqazlVMWCmRDLAlWuuZzD3deUwr0N/xn0hmwnm6zP1rG7T5CrLuDdlB1PIsDJzHTkX/d36SzR25DJBqfNf1RUiJso1A8DrV/QBAH5RD8aYIpsZ+fHfLw2j4vnIuo4R1Vt3IRuUuNv8fE2laWpPY8H+/3yOkWZmgjGMXP35CwcxUapiXkfWSMLIgu58UIb+sYCsMkOInH7kIgDAo9trdrzpqEVG7Hjz0YsB1BTFU2UPr+nrNKLMOHxhF1Yv6kbF87HpdwcAAL+/Zol2OwDgzGNqv/c/nq2tm7e8drEhOxYHdvh+rb2FiUSNo5b0YPG8AsZL1SCwe/qRC7XbAYR7Glu//2O1GTuY+pCR3scu6zVyTls2v1a2cqJUDQgRUyQvI2f+6/na+mWJLLrBzkJP1pMT1yybZ+R+s2ReBzJuWIoXMJOkAYRj8t/186IJ0pu3g43H0UvmGaku0t+dR0eu9nvZ/cZE2WggvM8wO9gZRTcY2czunqsX9RjxzbyOHPrqKnN2HzeRCACEZ/egD66BMtpAKAhgpZqP6O8y4puOXCZIcGJxLBPlmoGw7y2zY7WBcyswM9b5mr5OI88bi/Thnnvuge/7M/6deeaZwWt83w96/HZ2duJHP/oR9u/fj1KphJ07d+JLX/oSli5dauYPsLCwsEghZg3Je+utt+KDH/wgTjjhBKHX+76Pv//7v8eHP/xhXHTRRTjxxBPxT//0T9i9eze+853vAAC2bduGBx98EHfffTfWrl2LM844A5/97GfxzW9+E7t37yb8a0JMz6ozkXXIML10CivzohvTD8OHGxqT6UFcU4piYGbJIWNK3mkX6xUGSiQDrBxUqH44wmBG6DHTxsRUpuz0DHsTZaoAYNXCbnRxZdRet3y+EaUK0KjEyGdcI2UAp9sBhASJbhyxsKuhpOpbj1uKrIGkIiAMbvs+ML8zF5A1unHKEY1qu0tOOcyIHasWdTf0q3zb65cbCVABwNpV4ZgsnlcwRhKdflTj773gBDP9ll67tKchGeLc1y01tqf9HkemDvR2GCnjCQBnH9u4h73F0J72+sP6GnxzxtFmEgEyroPzjx8Ivl7aWzCisgaAPzhpecPX/HrWibccsxgLuQSvNxpSNnfkMnjbieGYLOopGDtDX3TSawDUnnsAcPIKM2Tzm49ejG7unGaKWM24Dt7Mrdn5nTlj94o3TlsnxxtS8h67bB544b0pYtVxGhXEXfmMsbvWqmnJd9PvXbowPS5iyg6gMQ6QNaRanW4HgCC5Vjemz01T6llgZrzIVPLoEdPtMEw2M9h+vBYWFhYWFnSYNSSvLJ5//nns3bsX55xzTvC9+fPnY+3atdi0aRMAYNOmTejr68Opp54avOacc86B67rYvHmzFjv7uvJBjybAXLkdoJEUWj6/w0gvImDmwdxUyayOXAZLub57v28oiAk0+uaNKxc02KUT/IW/ryuH8483E3TPZVwUsmGA6r1vXm3EDqDxkn/JGw4zpkg8dllox9LeAjb8jyOM2OG6TkNpyJvOX2PEDqAxOPae048wVoqX38MWdOVw8bQgvC44jtPQw/N9bznSiB0AcHJd3QwAl75xhZFeqwDw+hXzg/n6mr5OvNmQWtRxHJzKEc7/0xDZDABrOVL3bScuN1LqFagRD531bP8l8wo41ZD6znEcnMHNi3OPG2jzalrwyRBnHbvEGNl88oq+QEk0vzMXlLTWDdd18Nbjwgz+NxsieYHGJITTj1xkzDdrVy0MzogdOXPJTbmMG5CagDmSFwD+aO3hwf+fcoSZEskAcM6xSwNVouvUWheYwPzOHN7Njcnrueexbnzg7KOD/5/fmTPmm3eduqIhKeF4Q+TqYQu6cNm6lcHXpkokA8AN54Xn91zGhWvoLPCuN65oOLuaGpPDF3Zh/evC57/JmM27TwvXb09H1lhS4FlrlgTnNMBcuebF8wo4/jXhvDCV6Ayg4Tz0mr5OI/2jAWDNtLLmJirQAEBvR66hgpUpOywsLCwsLOYCzERVNWDv3lpPnenlG5YuXRr8bO/evViypJG4y2az6O/vD17TDMViEcViMfia9QkYGRmJZetH16/CT7bvx5KeDrzr5MWxPycp3n58P17edwCHLejC205aZsyOVb0uLlwzH6WKh3evPRyr57vGbHnHiQvx/7buxpVvXo2LTlpkzI7/saITX0URZ61Zgo/8f2swOjpqxI6FeQ+v6fZRLHv44h+dhPnZirExueh1C/D1TS/gg289Gm9Z1WPMjhOW5OAVJ3D0kh7ccNbhxuyY5/pY2uFhz/AUbj//OHjFCYwUo99Hgbcf34+v/nQnzjxmMV7bnzU2JscuzMIrTgAALjtlqTE7MgAWZMs4MF7GVWcdg4lxfX3fp+P0w7vw2xf3Y2F3DqsM7q2v7c/AK9b6NF503AJjdgDAaxdk8PTuEVz8uuUYGzOztwK1veQHv5jAyoVdONKgb/h1c9aR5vZWAHj9QB4/e+4Aznr9QqO+ecOyAr79XxOY35nFMf0ZY2Ny3KIcstUplCoe1r6m06hv1h3Wie8/NYzTjlpqdE970xHd+PrjE8hlHBy7MGdsTI7pz2JBtoID4yW8fkneqG/eelQv/mnTCzhheT+mJsYwFf0WEqx/bS/ufqS2l6wxuG6OnO/iqD4Xv903htctMjdHAOCdr+/H3zz0LF67bB6qBs9p7zxxEb7446cBAEcvMPe8ObIvg8N7gJ0HJnDWkebOaQDwl29+DT7y/57GaxZ0IOcVMWLIOe/9HwP4yk9+AwA4dqG5dXPi0jz+4Ng+fGfrblx86kpjdmQBfPqio/G/7nkSi3oKmOeWjdly6/mrseeVQfzyxSGcuNTcPn/Bmj4cPGsFPvWj3+Ki45YYs2NRAfj6Zcfjhm//Cq7jYHHBM2bL5995HD73yLN4/NlX8eYjuozZ8WfrlmNZp48fPb0P6483t6cd1efi7/7wtXhs+yvo7sgavVfc9baj8ONt+1Cp+rg0QTyNvc9n5TAsLCTB5k7UHCyXy5iYmMDIyAhyOTPCp7iwtpuBtd0M5oLtss8+xzf4lLzxxhvxiU98ou1rtm3bhjVrwkzSe+65B9deey2Ghobavu9nP/sZ3vSmN2H37t1YtizMrn/nO98Jx3HwL//yL/j4xz+Or33ta9i+fXvDe5csWYJbb721Zf/fj370o7j11lsj/joLCwsLCwsLCwsLCwsLCwsLCwsLC4sk2LFjB1avNlfFzWL24qWXXsKKFStMm2FhYWEhjRdffBGHHRZd7c+okvf6668PGqm3QtwH+MBArZzOvn37Gkjeffv24aSTTgpes3///ob3VSoVDA4OBu9vhptuugnXXXdd8PXQ0BCOOOII7Nq1C/Pnmym9ZWEhgpGREaxYsQIvvvgienvNlQCzsBCBna8Wswl2vlrMFti5ajGbYOerxWyCna8WswV2rlrMJgwPD+Pwww9Hf7+59g8WsxvLly/Hiy++iHnz5rVtDzGb90ZruxlY281gLtju+z5GR0exfLlYyz+jJO/ixYuxePHi6BfGwKpVqzAwMICHH344IHVHRkawefPmQKG7bt06DA0NYcuWLTjllFMAAI888gg8z8PatWtbfnahUEChMLMn6vz582fdxLKYm+jt7bVz1WLWwM5Xi9kEO18tZgvsXLWYTbDz1WI2wc5Xi9kCO1ctZhNc10wPaovZD9d1hZRwDLN5b7S2m4G13QwOddtlxKSz5gm5a9cubN26Fbt27UK1WsXWrVuxdetWjI2FfcDWrFmD+++/HwDgOA6uvfZafOxjH8N3v/tdPPXUU7jsssuwfPlyXHzxxQCAY489FuvXr8eVV16JJ554Aj/96U9xzTXX4NJLLxVmyS0sLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCx0wqiSVwY333wzvva1rwVfn3zyyQCAn/zkJzjzzDMBANu3b8fw8HDwmhtuuAHj4+O46qqrMDQ0hDPOOAMPPvggOjo6gtfce++9uOaaa3D22WfDdV1ccskl+MxnPqPnj7KwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCQxKwhee+55x7cc889bV/j+37D147j4LbbbsNtt93W8j39/f247777EtlWKBRwyy23NC3hbGGRJti5ajGbYOerxWyCna8WswV2rlrMJtj5ajGbYOerxWyBnasWswl2vlrowmyea9Z2M7C2m4G1fSYcfzozamFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWGRWsyanrwWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFpbktbCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsJhVsCSvhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFxSyCJXkT4nOf+xxWrlyJjo4OrF27Fk888YRpkywsZuCjH/0oHMdp+LdmzRrTZllYAAAef/xxvO1tb8Py5cvhOA6+853vNPzc933cfPPNWLZsGTo7O3HOOefg2WefNWOsxZxG1Fy9/PLLZ+y169evN2OsxZzHnXfeiTe+8Y2YN28elixZgosvvhjbt29veM3U1BSuvvpqLFy4ED09Pbjkkkuwb98+QxZbzFWIzNUzzzxzxv76vve9z5DFFnMZn//853HiiSeit7cXvb29WLduHX74wx8GP7f7qkWaEDVf7d5qkVbcddddcBwH1157bfA9u79aqMYdd9yB008/HV1dXejr6xN6T5ru/HHsT0t8bXBwEBs2bEBvby/6+vpwxRVXYGxsrO17TD2zZLmfb33rW1izZg06Ojpwwgkn4Ac/+AG5ja0gY/s999wzY3w7Ojo0WhsiKvbWDI8++ije8IY3oFAo4KijjsI999xDbmczyNr+6KOPzhh3x3Gwd+9eqd9rSd4E+Jd/+Rdcd911uOWWW/CLX/wCr3/963Heeedh//79pk2zsJiB173uddizZ0/w7z//8z9Nm2RhAQAYHx/H61//enzuc59r+vNPfvKT+MxnPoMvfOEL2Lx5M7q7u3HeeedhampKs6UWcx1RcxUA1q9f37DXfuMb39BooYVFiMceewxXX301/uu//gsbN25EuVzGueeei/Hx8eA1H/zgB/G9730P3/rWt/DYY49h9+7dePvb327Qaou5CJG5CgBXXnllw/76yU9+0pDFFnMZhx12GO666y5s2bIFP//5z3HWWWfhoosuwtNPPw3A7qsW6ULUfAXs3mqRPjz55JP44he/iBNPPLHh+3Z/tVCNUqmEd7zjHXj/+98v9b603Pnj2J+W+NqGDRvw9NNPY+PGjXjggQfw+OOP46qrrop8n+5nliz387Of/Qx/9Ed/hCuuuAK//OUvcfHFF+Piiy/Gr3/9a1I7myEOb9Xb29swvi+88IJGi0OIxN54PP/887jwwgvx+7//+9i6dSuuvfZavPe978WPfvQjYktnQtZ2hu3btzeM/ZIlS+R+sW8RG6eddpp/9dVXB19Xq1V/+fLl/p133mnQKguLmbjlllv817/+9abNsLCIBAD//vvvD772PM8fGBjwP/WpTwXfGxoa8guFgv+Nb3zDgIUWFjVMn6u+7/vvec97/IsuusiIPRYWUdi/f78PwH/sscd836/tpblczv/Wt74VvGbbtm0+AH/Tpk2mzLSwmDFXfd/33/KWt/gf+MAHzBllYdEGCxYs8O+++267r1rMCrD56vt2b7VIH0ZHR/2jjz7a37hxY8P8tPurBSW++tWv+vPnzxd6bRrv/KL2pyW+9pvf/MYH4D/55JPB9374wx/6juP4L7/8csv3mXhmyXI/73znO/0LL7yw4Xtr1671/+zP/ozUzmaQtV1mHehEs9jbdNxwww3+6173uobvvetd7/LPO+88QsuiIWL7T37yEx+Af/DgwUS/yyp5Y6JUKmHLli0455xzgu+5rotzzjkHmzZtMmiZhUVzPPvss1i+fDlWr16NDRs2YNeuXaZNsrCIxPPPP4+9e/c27LXz58/H2rVr7V5rkUo8+uijWLJkCY455hi8//3vx4EDB0ybZGEBABgeHgYA9Pf3AwC2bNmCcrncsL+uWbMGhx9+uN1fLYxi+lxluPfee7Fo0SIcf/zxuOmmmzAxMWHCPAuLANVqFd/85jcxPj6OdevW2X3VItWYPl8Z7N5qkSZcffXVuPDCCxv2UcCeWy3Shdl6509LfG3Tpk3o6+vDqaeeGnzvnHPOgeu62Lx5c9v36nxmxeF+Nm3aNGP/Ou+887TvU3F5q7GxMRxxxBFYsWLFjMofaUZaxj0JTjrpJCxbtgxvfetb8dOf/lT6/VkCm+YEXn31VVSrVSxdurTh+0uXLsUzzzxjyCoLi+ZYu3Yt7rnnHhxzzDHYs2cPbr31Vrz5zW/Gr3/9a8ybN8+0eRYWLcF6EDTba2X7E1hYUGP9+vV4+9vfjlWrVmHHjh3467/+a5x//vnYtGkTMpmMafMs5jA8z8O1116LN73pTTj++OMB1PbXfD4/o3+T3V8tTKLZXAWAd7/73TjiiCOwfPly/OpXv8KHPvQhbN++Hf/+7/9u0FqLuYqnnnoK69atw9TUFHp6enD//ffjuOOOw9atW+2+apE6tJqvgN1bLdKFb37zm/jFL36BJ598csbP7LnVIi2YzXf+tMTX9u7dO6MUbTabRX9/f1s7dD+z4nA/e/fuNT6+QDzbjznmGHzlK1/BiSeeiOHhYXz605/G6aefjqeffhqHHXaYDrNjo9W4j4yMYHJyEp2dnYYsi8ayZcvwhS98AaeeeiqKxSLuvvtunHnmmdi8eTPe8IY3CH+OJXktLOYAzj///OD/TzzxRKxduxZHHHEE/vVf/xVXXHGFQcssLCwsDh1ceumlwf+fcMIJOPHEE3HkkUfi0Ucfxdlnn23QMou5jquvvhq//vWv8Z//+Z+mTbGwaItWc5Xv0XXCCSdg2bJlOPvss7Fjxw4ceeSRus20mOM45phjsHXrVgwPD+Pb3/423vOe9+Cxxx4zbZaFRVO0mq/HHXec3VstUoMXX3wRH/jAB7Bx40Z0dHSYNsdiFuPGG2/EJz7xibav2bZtG9asWRPr86nv/NT2U0LU9riwzyxarFu3rqHSx+mnn45jjz0WX/ziF3H77bcbtOzQxjHHHINjjjkm+Pr000/Hjh078Hd/93f4+te/Lvw5luSNiUWLFiGTyWDfvn0N39+3bx8GBgYMWWVhIYa+vj689rWvxXPPPWfaFAuLtmD76b59+7Bs2bLg+/v27cNJJ51kyCoLCzGsXr0aixYtwnPPPWdJXgtjuOaaa/DAAw/g8ccfb8jAHRgYQKlUwtDQUIMqwp5lLUyh1VxthrVr1wIAnnvuORvUsdCOfD6Po446CgBwyimn4Mknn8Q//MM/4F3vepfdVy1Sh1bz9Ytf/OKM19q91cIUtmzZgv379zeolqrVKh5//HH83//7f/GjH/3I7q8WQrj++utx+eWXt33N6tWrlf0+1Xd+Svup42uitg8MDGD//v0N369UKhgcHJRaz9TPrDjcz8DAQCq4IhW8VS6Xw8knnzwruINW497b25tqFW8rnHbaadIJ+rYnb0zk83mccsopePjhh4PveZ6Hhx9+uCHrwcIijRgbG8OOHTsaHuoWFmnEqlWrMDAw0LDXjoyMYPPmzXavtUg9XnrpJRw4cMDutRZG4Ps+rrnmGtx///145JFHsGrVqoafn3LKKcjlcg376/bt27Fr1y67v1poRdRcbYatW7cCgN1fLVIBz/NQLBbtvmoxK8DmazPYvdXCFM4++2w89dRT2Lp1a/Dv1FNPxYYNG4L/t/urhQgWL16MNWvWtP2Xz+eV/T7Vd35K+6nja6K2r1u3DkNDQ9iyZUvw3kceeQSe5wXErQion1lxuJ9169Y1vB4ANm7cqH2fUsFbVatVPPXUU7PiTJCWcVeFrVu3So+7VfImwHXXXYf3vOc9OPXUU3Haaafh7//+7zE+Po4//dM/NW2ahUUD/vf//t9429vehiOOOAK7d+/GLbfcgkwmgz/6oz8ybZqFBcbGxhoyw55//nls3boV/f39OPzww3HttdfiYx/7GI4++misWrUKH/nIR7B8+XJcfPHF5oy2mJNoN1f7+/tx66234pJLLsHAwAB27NiBG264AUcddRTOO+88g1ZbzFVcffXVuO+++/D//t//3979hlZV/3EA/9ywq+Y/2kVWrZRshLUwiXAKsgUXw38ZprT2pDHLiCjMKEtpBEKIRBisBxGVIGHhs0lC3gdTMGGIXKUelFBoi20SJQ2joprfHv0ujZW2X8uzu71ecB7se87lvgdfzr3nvO85pytmzZpVeQ7QnDlzYvr06TFnzpx47LHH4rnnnouampqYPXt2PPPMM7Fs2bJYunRpxumZTK40V7/66qvYv39/rF69OgqFQnz66aexdevWaGpqikWLFmWcnslm+/btsWrVqpg3b15cvHgx9u/fH0ePHo3Dhw/brzLuXG6+2rcynsyaNSvuuuuuYWMzZsyIQqFQGbd/Zaz19vbGhQsXore3N4aGhiqlYX19fcycOTMiIhYuXBi7du2K9evXx48//jiujvlHmz+Xy42L82t33HFHrFy5MjZv3hxvvfVW/Pbbb/H000/HI488EjfddFNERPT19UWxWIx9+/bFkiVLMvvMulL38+ijj0ZdXV3s2rUrIiK2bNkSzc3N8frrr8eaNWviww8/jJMnT8bbb7/9n2Ucq+w7d+6MpUuXRn19ffzwww/x2muvxddffx2PP/74Vc9+pfPE27dvj76+vti3b19ERDz55JPx5ptvxrZt22LTpk3R3d0dBw4ciEOHDo377G+88Ubceuut0dDQEL/88ku888470d3dHaVSaXRvnPhXOjs707x581I+n09LlixJPT09WUeCEVpaWtKNN96Y8vl8qqurSy0tLenLL7/MOhaklFI6cuRIiogRS1tbW0oppUuXLqWOjo5UW1ubpk6dmorFYjpz5ky2oZmULjdXf/rpp3T//fenuXPnpmuvvTbNnz8/bd68OZ0/fz7r2ExSfzVXIyLt3bu3ss3PP/+cnnrqqXT99den6667Lq1fvz4NDAxkF5pJ6Upztbe3NzU1NaWampo0derUVF9fn1544YU0ODiYbXAmpU2bNqX58+enfD6f5s6dm4rFYiqVSpX19quMJ5ebr/atjHfNzc1py5Ytlb/tXxlrbW1tf/kd9MiRI5Vt/vyddLwd8482f0rj5/za999/n1pbW9PMmTPT7NmzU3t7e7p48WJl/dmzZ4f9L1l+Zl2u+2lubq6cu/yfAwcOpNtvvz3l8/nU0NCQDh069J9n/Dujyf7ss89Wtq2trU2rV69O5XI5g9RXPk/c1taWmpubR7xm8eLFKZ/PpwULFgyb91fTaLPv3r073XbbbWnatGmppqYm3Xfffam7u3vU75tLKaXR1cIAAAAAAAAAZMUzeQEAAAAAAACqiJIXAAAAAAAAoIooeQEAAAAAAACqiJIXAAAAAAAAoIooeQEAAAAAAACqiJIXAAAAAAAAoIooeQEAAAAAAACqiJIXAAAAAAAAoIooeQEAAAAAAACqiJIXAAAAAAAAoIooeQEAYILZunVrPPTQQyPG29vb4+WXX47Dhw9HLpe77FIqlTJIDgAAAMA/oeQFAIAJ5sSJE3HvvfcOGxsaGoqPPvoo1q1bF01NTTEwMFBZCoVCdHR0DBsrFosZpQcAAIDx54MPPojp06fHwMBAZay9vT0WLVoUg4ODGSZjssqllFLWIQAAgH/v119/jRkzZsTvv/9eGWtsbIyenp44duxYtLS0RF9fX+Ryucr6vr6+uPnmm6NUKsWKFSuyiA0AAADjXkopFi9eHE1NTdHZ2RmvvPJKvPfee9HT0xN1dXVZx2MSmpJ1AAAAYGxMmTIljh8/Ho2NjXH69Omora2NadOmRUTEwYMH44EHHhhW8EZEnDp1KiIi7rnnnqueFwAAAKpFLpeLV199NTZu3Bg33HBDdHZ2xrFjxxS8ZEbJCwAAE8Q111wT/f39USgU4u677x62rqurK/bs2TPiNeVyOW655ZYoFApXKyYAAABUpbVr18add94ZO3fujFKpFA0NDVlHYhLzTF4AAJhATp06NaLg/fzzz6O/v/8vn7NbLpddxQsAAAD/wMcffxxffPFFDA0NRW1tbdZxmOSUvAAAMIGcPn16RMl78ODBWLFiReXWzX+m5AUAAIArK5fL8fDDD8e7774bxWIxOjo6so7EJOd2zQAAMIF89tlnsWHDhmFjXV1d8cQTT4zY9rvvvotvvvlGyQsAAACXce7cuVizZk3s2LEjWltbY8GCBbFs2TI/nCZTruQFAIAJ5NKlS3HmzJno7++PwcHB+Pbbb+PkyZOxdu3aEduWy+WICAekAAAA8DcuXLgQK1eujAcffDBeeumliIhobGyMVatWxY4dOzJOx2SWSymlrEMAAABj4/33348XX3wx+vv74/nnn4+FCxfG3r1745NPPhmx7e7du2PPnj1x/vz5DJICAAAA8P9S8gIAwAS2bt26WL58eWzbti3rKAAAAACMEbdrBgCACWz58uXR2tqadQwAAAAAxpAreQEAAAAAAACqiCt5AQAAAAAAAKqIkhcAAAAAAACgiih5AQAAAAAAAKqIkhcAAAAAAACgiih5AQAAAAAAAKqIkhcAAAAAAACgiih5AQAAAAAAAKqIkhcAAAAAAACgiih5AQAAAAAAAKqIkhcAAAAAAACgivwBzRXIU3ur7+sAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB3kAAAGGCAYAAAB2cjuyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvXm8JVV1NvzUGe/Q9/ZIT9DSDIoQoEHUDkYjxIZmeBX83hgx8SUSJV9ISEI6idp5FRwSUYOi+eQNCUpAk59DEoJvhCCd1naiBRkaGgQEaaChJ3q88xmq6vvjnF1V594z7Kpaa++63ev5/foH99xzz113r7137b2e9azl+L7vQyAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCASzAjnbBggEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAH0LyCgQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCwSyCkLwCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAwiyAkr0AgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEMwiCMkrEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEswhC8goEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAsEsgpC8AoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAMIsgJK9AIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBDMIgjJKxAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBLMIQvIKBAKBQCAQCAQCgUAgEAgEAoFAIBAIBALBLIKQvAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQDCLICSvQCAQCAQCgeCIxdjYGHK5HG688UbbpggEAoFAIBAIBAKBQCAQCATaEJJXIBAIBAKBQHDE4vHHH4fv+zj11FON/c6xsTFcd911uOCCC7BgwQI4joPbbrtN++crlQo+9KEPYfny5ejv78fq1auxYcMGPoMNIu3YAIf3+AgEAoFAIBAIBAKBQCAQKAjJKxAIBAKBQCA4YrF161YAwGmnnWbsd+7duxef+MQn8OSTT2LVqlWxf/5973sfPv/5z+N3fud38MUvfhH5fB4XXXQRfvzjHzNYaxZpxwY4vMdHIBAIBAKBQCAQCAQCgUChYNsAgUAgEAgEAoHAFrZu3YpFixZh6dKlxn7nsmXLsHPnTixduhQPPvgg3vCGN2j/7AMPPIBvfOMb+Nu//Vv8xV/8BQDg8ssvx6mnnooPfvCDuO+++7jMNoI0YwMc/uMjEAgEAoFAIBAIBAKBQKAgSl6BQCAQCAQCwRGLrVu34ld+5VdaXrvllltQKpVwzTXXwHVd8t9ZLpcTk8r/9m//hnw+j9///d8PXuvr68P73/9+bN68Gdu3b4/1eeeddx7OPvtsbN68Geeccw4GBwdx4okn4u677wYA3H333fjVX/1VDA4O4owzzsBDDz2UyG5dpBkbgH58BAKBQCAQCAQCgUAgEAiyClHyCgQCgUAgEAiOWGzduhXvec97AAD1eh3XXHMN/vEf/xE33XQTrrzyypb31mo1HDp0SOtzFyxYgFyOPp/ykUcewWte8xoMDw+3vP7GN74RALBlyxasWLFC+/Mee+wxLFy4EO9+97vx/ve/H+985zvxqU99Cr/927+Nz3zmM/jbv/1bXHnllbjkkkvwqU99Cr/3e7+HRx99tO1nHY7jIxAIBAKBQCAQCAQCgUCQVQjJKxAIBAKBQCA4IrFz507s27cPp556Kvbv3493vetd2LJlC+69916cc845M97/k5/8BOeee67WZ2/btg0rV66kNRgNm5ctWzbjdfXajh07tD9rz5492LNnDxzHwSOPPBJ8Ri6Xw5/8yZ/gC1/4Ah5++OGAMN27dy9uvPFGVCoVlMvlGZ93uI2PQCAQCAQCgUAgEAgEAkGWISSvQCAQCAQCgeCIxGOPPQYAcBwHb3jDG1AqlXD//ffjxBNPbPv+VatWYcOGDVqfzdXjd3Jysi3B2tfXF3xfF+rv/9jHPtZCjM6ZMwcA8Ld/+7ctiti5c+cil8t1VOAebuMjEAgEAoFAIBAIBAKBQJBlCMkrEAgEAoFAIDgisXXrVgDA1Vdfjde//vW4++67MW/evI7vnz9/PtasWWPIuvbo7+9HpVKZ8frU1FTwfV2ov/8d73hHy+tPP/00+vv7cd5557W8/otf/AInnHACisVi28873MZHIBAIBAKBQCAQCAQCgSDLEJJXIBAIBAKBQHBEYuvWrTj22GNxwgkn4PHHH8fY2FhXkrdarWL//v1an33UUUchn88TWRpi2bJlePnll2e8vnPnTgDA8uXLtT/rsccew7Jly2b8zKOPPopTTz11hiL20Ucfxemnn97x8w638REIBAKBQCAQCAQCgUAgyDKE5BUIBAKBQCAQHJHYunUrzjjjDNxyyy14/etfj3e+85340Y9+FJT2nY777rvPes/ZM844A9///vcxMjLSUkr5/vvvD76vi8ceewyrVq2a8fqjjz6Kiy++uOW1Wq2Gp59+Gr/1W7/V8fMOt/ERCAQCgUAgEAgEAoFAIMgyhOQVCAQCgUAgEBxxcF0XTz75JC6++GIcddRRuOOOO/DmN78ZV111Ff7pn/6p7c+Y7jk7MTGBF198EYsWLcKiRYsAAL/5m7+JG264Af/4j/+Iv/iLvwAAVCoV/NM//RNWr16NFStWaH2267r4+c9/PqMk8969e7Fz584Z5O+TTz6JWq3WVcl7OI2PQCAQCAQCgUAgEAgEAkHWISSvQCAQCAQCgeCIwzPPPIOpqSmcdtppAICzzjoLf//3f48rrrgCZ511Fq6++uoZP0PZc/ZLX/oSDh48iB07dgAA/vM//xMvvfQSAOCP//iPMXfuXDzwwAM499xzcd111+FjH/sYAGD16tV417vehfXr12PPnj048cQTcfvtt+P555/HV77ylRm/x3EcvPWtb8WmTZva/v3TydxHH30UAGa8/thjjwFAV5KXanx0xgYAyfgIBAKBQCAQCAQCgUAgEMxWCMkrEAgEAoFAIDjisHXrVgDAqaeeGrz2vve9Dz/72c+wbt06nH766fj1X/91tt9/ww034IUXXgi+vuOOO3DHHXcAAN773vcGRGY7fPWrX8VHP/pRfO1rX8OBAwdw+umn4zvf+c4Me8fGxgA0+tROh/r7p5O2ncjcrVu3Ynh4mKXE8nSkGRtAf3wEAoFAIBAIBAKBQCAQCGYzHN/3fdtGCAQCgUAgEAgEAlrcfffd+B//43/g0UcfDRTLAoFAIBAIBAKBQCAQCASCwwM52wYIBAKBQCAQCAQCenz/+9/HZZddJgSvQCAQCAQCgUAgEAgEAsFhCFHyCgQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCwSyCKHkFAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFgFmFWkbw//OEP8fa3vx3Lly+H4zi48847e/7Mpk2b8LrXvQ7lchknnngibrvtthnvuemmm7By5Ur09fVh9erVeOCBB+iNFwgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAgLMKpJ3fHwcq1atwk033aT1/m3btuHiiy/Gueeeiy1btuCaa67BBz7wAXz3u98N3vPNb34T69atw3XXXYeHH34Yq1atwtq1a7Fnzx6uP0MgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgSY9b25HUcB//xH/+BSy+9tON7PvShD+Guu+7C448/Hrx22WWX4eDBg7jnnnsAAKtXr8Yb3vAGfOlLXwIAeJ6HFStW4I//+I/x4Q9/mPVvEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEgrgo2DaAE5s3b8aaNWtaXlu7di2uueYaAEC1WsVDDz2E9evXB9/P5XJYs2YNNm/e3PFzK5UKKpVK8LXnedi/fz8WLlwIx3Fo/wiBQCAQCAQCgUAgEAgEAoFAIDjC4Ps+RkdHsXz5cuRys6ogpSAj8DwPO3bswNDQkMTtBQLBrEDcZ99hTfLu2rULS5YsaXltyZIlGBkZweTkJA4cOADXddu+56mnnur4uddffz0+/vGPs9gsEAgEAoFAIBAIBAKBQCAQCASCBrZv345jjjnGthmCWYgdO3ZgxYoVts0QCASC2NB99h3WJC8X1q9fj3Xr1gVfHzp0CK961avw6FO/xMpli6zY9C8/fR7X/9fTAIC/uui1+O3Vx1qxY+9oBed+bhN8HzhjxTz88wdWW7EDAD5w+8/w0+f2AwC+e81bcPT8ASt2/NuD2/Gx//w5AOCaNa/GB95yvBU7DoxX8Ruf+wFqrofXLJmDO/7w16zYAQBX/fOD+NEz+wAA3/6jN+GExUNW7Pj2Iy/jf9/ZKOf++285Hn+y5tVW7Ng/XsWvf/b7wdePf3ytFTsA4I/+5SH84Bd7AQD/8oE3YtWK+VbsuPORl/GRpm8uOWM5/uadp1mxY9ehSaz5/A+Dr7d+7HwrmZ+u5+PK2x/EA8839rRbLn89zj5hoXE7AODWHz+Hz294BgBwwa8swQ2/dYYVOx576SB++5b7w6+vOx+5nHnfTFZdvOsf7sPzeycAAF+47AysOXlJj5/iwcf+7xP4t4deAgCsOXkxvnDZmVbsuOuxHfjQv28Nvn7wI2vQV8wbt2P/eBVv+/wPUKt7AIBPvfNUvOOMo43bAQD/79cexE+ebTz3fv01i/B/fucsK3bc8fBLuPbbTwAACjkHP/jguZjbXzRux8hUDW/+9PfgNZvGfPKSX8E7X2cnaBd97tn0zX8++jLW39F47s3py+O//uTXMX+wZNyOat3D6z65Ifj6Hy8/C286wc795k++/jC+99QrAIArfm0l/vz8k6zY8b2n9uBPvv4IAODkZUP45w+sRrlgfk/zPB+nf/ze4Os7/+hNONHSGfovvrUF9zyxGwDw0f9xMt79hldZseP+5/bh/bc/CAB486sX4u9/5yxrCp1Tr/tu8P+b/uIcLBoqW7Hj2jsfxx2PvAwAuP7/ORVvX2Xnubf1pYN4T/Ocds5JR+FLv/06K3YAwEVf/CFe3D+JvmIO/73urZg3YH5vBYAvbXwGN//wOQB2zyS/fGUUl3zpPgDAW169EH//3tdbsQMA/uff34end42imHfwvT8/x8pzDwC+8uPncGPzfnPd20/Bu15vhwzaeXAS593YuHuuPm4BvvK+N1ixAwD+15fvxyPbD8JxgO/9+Vtx1FCfFTu+/sAL+OQdD+Plv38fhobsPPMEsx9q7mzfvh3Dw8Md31er1XDvvffi/PPPR7Fo/o6UBmK7HYjtdnAk2D4yMoIVK1ZoP/sOa5J36dKl2L17d8tru3fvxvDwMPr7+5HP55HP59u+Z+nSpR0/t1wuo1yeeWl7bHcFp5/U+WHBiZ+8OIlcuUFiPrhjCn/Q5aHFif988gU4pQE4AJ7YW4NT6sdQn/nF9spoBQ/umArG5Im9dZx8rJ0x+e4zI4EdW/dUux4oOPFvj22DW+hDrgD88pAHlPoxbME3L+6bwH3bw/n69H4XZ55ofkx838fXt+wN7Hhqf92ab/5x89OBHQDg5vusXHAfefEAfvTCRGDL8yM+3mJhTGquhy/9+OXAjt2TOWu++et7t7X4puKUsXjY/AX3e0/txoM7wz1t+5iPtRbGxPV8/MPmXaFvpuz55o7Hn2vxzSG3gGPnDRq346Gn9uDFUQS27BiHlTHxfR/3Rp43L1myAwC2vvJCi28O1Ao4aaH5oMwTr+yDm+9DrsnF7Jx0rI3Jswe9YExeHLXnm+1j4Vz1AOyt5LBiiXlbth06CJQGoIoOvWBxTF6MjMlT+1xrduyc2BnYMeEDL08Axy4zb8svdo+2rN8fbBvDBWfaSVDcOZELbPm3x/bhY//TTom9l8f3tJxbt+6p4jdeaz6Z58V9Ey2++ZeH9+Jzv2WHJNpdyQe2fPGHL+OKc05BIW++hOYLo+FZ/r4XJ/HYnire8uqjjNuxZ2SqxTe3Pbgbn7jkVON2AMCOCSew5ebNO3HZr70WeQtJcM8d2h/Y8cPnx/HyOHCyhT3twHgVL403xqQK4DtPHcQfnnOicTsA4Il9tWBM/v3x/Xjvr59sxY6nnzoY2LF5+yQm/BKWzjV/vzk0WcOzB13kygNwAfzwhXH8r1+1k1T06O5qMCbfe24U7/8NS7GjXxwK7Hh4VwX1fB8WWIgLjEzV8PjecL4+uGMK737DYuN2AMBPI7EjKbMrSAo1d4aHh3uSvAMDAxgeHp6VxJHYbh5iux0cSbbrPvsO62YGZ599NjZu3Njy2oYNG3D22WcDAEqlEs4666yW93ieh40bNwbviYMfPbM3ncEJMTJVw0+f2xd8vfmX+1BtqlZM457HdwX/73o+Hti235IdOwN1CICW8TGJlw9O4v7IGDz4/AG4UcMM4t8ffin4f98HHn7hgBU7/uORl+FHhuDhF+3Y8cyeMfx850jw9aPbD8Kz5Jt7ntjV8vVjLx+yYscPf9G6h221ZMf2/RPYMxr2PX9ixyFrvnlix0jXr03hmd1jLV9H565J7B6ZwmTNDb7+xe4xa3vai/smWr5+eteoHTv2t9rxi2m+MoUDEzWMVerB19v2jqPu2jkLTPfNL1+xMyYv7h9vtWPPeId38mKsUscrkT3tpQMTqNTdLj/Bh+f3to7B8/vsjMlze1vnhC07KnUX2yNreO9YBeORdWQS09fJ9HVkCs/umWbHfjt21FyvZZ6MV10cmKhZsWX688WWb57a1frst7VuXM/H0xFbxip17I7scSbx84yc0x7f0XpmfsjSPcv1fDwRsWX7/kls22tnnjz6UuuYfHfafccUtrx0sOXrO5sqZ9NwPR9bXgxteeTFg9bORz97Ppyfng/c8chLXd7Nh4de2N8SF/iPh+3YUXM9/CwSs9n8y30t5zaT+Mmz4X3c9Xz89893d3k3H+57dl/LHW/Dz/dYsWOq5uK+X9qJ5QkEAoFAMJswq0jesbExbNmyBVu2bAEAbNu2DVu2bMGLL74IoFFG+fLLLw/e/wd/8Ad47rnn8MEPfhBPPfUU/s//+T/41re+hT/7sz8L3rNu3TrccsstuP322/Hkk0/iqquuwvj4OK644orY9v3k2b1Wgt0/fmYv6p6P448axKI5ZYxXXSsXy0rdxebmAexXj18AAEFpQtNQB8E3NcuZbrZ0MFQXuVOPHsaccgGjlTqetEDONIIxjQCV8o2t4MO2ZsDujcc17Hg4ctk1CRWge+3SIfQVcxit1GcEnU3A9328fGASALBqxTwAwGPbDxq3AwB2HGzYcerRjczGx16yQ/LuODgFADh+0SDKhRzGqy5esBRkfrk5JictaagQbZGryo5XL54DAHhqpx1C86XmXD16Xj/KhRwma641AmD7gcbvPf6ohnr3mT12AmWKIDpukV07lB8WD5XRX8yj5vrW1s0LTXJ15cJG1v100sgUnm/u88c27bCxxwPAC00iZv5AEUPlAjzfHkmkgv2vWtAYk22v2An+q9+r7LBFVr2wbwKeDwyVC5g/UAxeswEV7Ffz1db6VUlFav3a2uNf2DeBmutjoJTH4mbZ2+2WbPnF7sYzVz1vtjefhabxVPMsf2LzLPDSAVu+GcdUzUNfMYdj5vcDQHCWNQ11Lnvt0iGrdjzxcsMOpVRVZ2rT2LZ3DONVF/3FPE5oztedh+zY8liTXFX3G1tjou7jr3tVw47t+yfh++ZjNr/YPYrxqovBUh6/srwxT2w9gx96oUFonn18I1ZiK1FSJcOrmM2jLx2yEk/b+vIhjFddzO0v4uRlw/B8WBEr+L6PnzTjVso3P/jFK8btAIAfPtP4vaubMZsfP/uKFSHJ5uf2oVL3sGTYTvl7gUAgEAhmC2YVyfvggw/izDPPxJlnNnrMrVu3DmeeeSauvfZaAMDOnTsDwhcAjjvuONx1113YsGEDVq1ahc997nP48pe/jLVrw36X7373u3HDDTfg2muvxRlnnIEtW7bgnnvuwZIl8UtwjUzVsXtkKuVfGR8qMHbGinlY3STwHp2WsWoCe0YqqHs+SoUcfqfZE/jBF+woeXceavjhXa8/BoWcg5cPTgYkiUnsas6HYxcO4vUrG71NbVwY9o01fJNzgItPXw6goSq2AeWbi05tlER/ds8YDllQZuxs+uaY+QM4/eh5ABoZ1aZxaLIWKCPX/kpj37GxfgFgRzMItPaUhm+e2TOGqZp5tZkKAq1YMIDXNoNlj1tQFY9X6jjYnJvnN30zXTFiCopcXXNKw45n94yhZkGlqQLKxy4cwGuaxPfTu8yPSaXuYvdII8Ne9b+1reT9jdc2Spj98hU76mZlx8qFgzhhcSOwa4NcrblekKhxbmRMbECRq+ee1LDj+X0TVnyj+jWvXDSI45pB9+csKKvqrjdjvm6zRGiqv1/ZsX3/hBXl+XPNuXn8UYM4dmHDNy9YIJzrrhcQ8GpMrCl5m2OiyhHvODhl5XnzTJNYffXiOQHxbYNwrrkenmsSMep5Y4tcVc+5t53cmCO7RypWqgI82Uw0O2npMFbMb/jm5YPmx2Sq5gbPufOa5yMb9z0gVPKe37TjwEQNE1XzVQFUFZ5Tlg/jmKZvdh40H58Yq9SDpDd1v1F3QNPY0kyevfDUZQCAyZqLkUnzvlHVq1atmIej5zWSI3ZaiB29MlrB8/sm4DjARac3xsSWb5R69tIzjkbOaSSm7xszr6BVdqw+boHV5Ijt+yfxymgFpUIO71nd6HNua0/b2kz2vuLXVqJUyGGq5lmJdf6i+dw769j5xn+3gA8//OEP8fa3vx3Lly+H4zi48847u75/06ZNcBxnxr9du+xUiBAIBIIsYlaRvOeccw5835/x77bbbgMA3Hbbbdi0adOMn3nkkUdQqVTwy1/+Eu973/tmfO7VV1+NF154AZVKBffffz9Wr16d2MY9Fsq67GkGupcO9+GY5oVBvWbUjtHGoW/JcDlQNO2ydGFQB9DjFs3BiqZK5CULgSFlx9LhPpx29FwAdpREimw+aqiM1zcPyLYUicqWXzl6bhC0m17izAR2Ni9My+f14YxmZvcWCwpaRYYsGCwFmbLTy5uZs6UxJq87dj4WzSnB9XwryvOXA9/049RmpruNOaLGY6ivgNXHNbKprSl5myTv6uMWYKhcQNX1rBBnimw+Zn4/TmqqZp6yQK6q8Rgo5YN1o5RWpqEUXWcfvxB9xRyqdc8KSaQUbisWDODVixu+sUHyvnxgEq7no6+Yw682VQi2lLxKkXn2CQtRKjR8Y0PlpZLxjls4GJyPnrOg3nn54CTqno9yIRdU9ZhevtkU1N//pqZvaq5vJcj8y6YdJxw1J1Cu2lDQbj8wiZrbum5e2G/HN4pcfdMJC1Eu5OB6vhWSSJW+P3HxUEAkbrdArr6wbxxV18NgKY83rmysm+37bSl5G2eQs49fiP5io9n4Dgu+UWfDk5cOBUrelyyMybN7xlD3fMwbKAYEgC216ONNJe/ZJyzEULnQtMW8b7a+1LDjtKPnYnkzLmCDJHr85UPwfWD53D6sOmYeADu+8X0/SJ5dffyCoLfpDgsEnkpYPfNV87Cs2f92lwU71D5y3KLBoFKRDfIOCBO+Vq2Yh0VzGkrNXRZsUfeb1y4dwpLhhm9sxPUUsXz0vP6g0skeS77ZHUmIVypaFe8zCeUH5RfB4YHx8XGsWrUKN910U6yfe/rpp7Fz587g3+LFdvpECwQCQRYxq0je2QAbB2R12Fo8VMZRQ/YOYEpVtWSoL7Bj71jFuGrG8/zgMLh0uA9HNS8Mr1jIClUk99LhcExs9HfZGbFDXSoPTdaMZ//7vt9iiwra2Vg3gW/m9gUZuzaCD+oyt2xuH05a2iA0XxmttPTWNAHf94Ng1NHz+nHK8kZSgg11pPLD0fP68CtNO560UJ745YPhRfvkZY0gyPP7xo33a/R9P7DlmPkDeG3TFhslm18+ELFjqVLymrdDBWNWzB8IyOZfvmJe3ez7fpBAtHLRQFBC00bJZqX6e9WC0A4b5KoiyF61YCAoL/7cK+PG+2r7vh+QvCccNYjjm+SqjeQIRaQeu3AQxy9qjMk2CwlfKpi6cuEgTjhK2TFuvGyl7/uBavWExXNwrCodbYFw/mVGlLy/bK7V4xfNwcrAjgnjvnE9P5gnr1kyFCRK2lDQPrNntGlHmLBpg1x9elfDN69ZOoRXNRMBbCh5p2puUIL+tUuHrZZJViTRycuGcfR8e0Siqq5yyjK74zEyVQv+/lOWh2Ni416hEt5OWT6M5c07nw1FotrPT1o6FNw9dx6aMr6nTVTdoCrPCUfNwdJhRa7au3uumD+AJZExMQ0Vi1g+tz8YDxu+qdRD3yweKmPpXHu+UbGzo4bKVueIimEdNaccIVYrxs/QrudjbzN2tniojMVDjTHZbUFIouJEi+aUjP9uAR8uvPBC/PVf/zXe+c53xvq5xYsXY+nSpcG/XE4oDYFAIFCQHZEYNjL+AnI1QiTasUMpefuwcLAExwE8H9g/XjVqx97xBrGccxqHQZvkqspEXTI3QjZb9M3SuX2Y219EMe8AAPaNmfXNgYla0Mtl8XA5OKzvtUDAq0v18rn9QebwXsPjAQA7mnYsm9uPOeVCoMwwXaoqWjZ66dw+LG1eLPcZXr9Aq5JXBe1sZDFHSd6Fc8qY21+E75sP2h2arAWk/zHz+3FiU6X5nA0lb7McY1TJa4PQVGquY+b34+h5/RgsNXrQmlYlHpyoYTTwTaigfcaCqliRMK9a2G+V5A3sWDCIVy0YQDHvYLLmGi9JuG+8irFKHY7T8I3qpWmD5FVk88pFA0G5ZhuEplofxy0axIoFA3CcRklN08++3SMVTNZc5HMOXrVgwC65GlHyquoiqry2SagSyScsnhOod0an6jg0abadxfb9E6jWPZQLORw9P1QSWSF5m0reV7eQvObteLq5n79mcahaHbHgm217x+F6Pub2F7FkuBwqaC0QzkqJ/+rFc4KyszZI3peav/O4RYOBanW0Yt436ow6t7+I4b6iVQWtulMtm9sX2GFDUazuMUcNlbFsbsOOiar5MslqPPqLeQyWC1g+zx65qp61i+aUI0peeyTvojklLG7e96p1LyBcTUHFIYp5p7mvKSLR3pgcNVQOxsSqHcNlLJpThuMAdc/H/gmz57R94xV4PuA4jWpjAeFsRdCiyGZR8gqAM844A8uWLcN5552Hn/zkJ7bNEQgEgkyhYNuAww2vWDj4qAPo4uG+gEDba5HQXDxcRiGfw8LBEvaOVbFndCogWk1AlapeNKdhh02SN1quOdfgVa0QiVFFseM4WDhYxq6RKewdqwQBABNQmeSL5pRQLuStkqvKlqVz+9DXJFZtkM2qTJcKOiwaKmH7/knsHasGgW8TUIGoRXNK6CvmsTDwjfkx2REheYf6Ck07LJDNTTWIUmQsnFPCocka9o1X8WqDdijVqvKN2tNsEPAvRZS8CwaLAOzsrUrN1SCqHKxYMICndo1i56EpvLpZes6IHc3g+lFDZfQV84Fa1AYh8mJEQTtvoJFAYyMR4MV9SrU6gEI+h5ULB/HMnjE8u2csIANMQBGry4b7mr5pqootkKvb9oUK2nzzMGCT5F25aBB9xTyWz+3Hywcn8fy+caPnNNW2opEEkMNxi5SS1+y68X0/0pN3TpBMY2P9KiXviUfNQX8pj8VDZewZreCFfRPBejaBbZFEAEXCA3b3tOMWzcFgqXGOtVGuWZ3TXrVwAAOlAhYOlrBvvIrt+ycwt9mKxQTUs3bZ3MZZXvVbfcmCcnVvhMBD835jQ0GriMSFc8oYKBWwYLCE/eNV7Dg4ibn9RWN2qDPqwmbyqjrT21DyBrYMloPnjY3SxFFCs7+Ux/yBIg5M1LDj0CTmDpj0jZojDd8stahuVrYsGipjsFnS2wbJG12/fcV8sG52HprC/EFzz5uQbC4jl3NCBa0NcjUyJnW3oZq1U6EvVPIW8zksHCxj71gFuw5NBXETI3Y042kLBxvxtEDJa+HO90pkTARHLpYtW4abb74Zr3/961GpVPDlL38Z55xzDu6//3687nWva/szlUoFlUo4Z0dGGtU/arUaarXOSS3qe93ek1WI7XYgttvBkWB73L9NSF5imC5h4vt+JLutjGqzVKXN3sAqC/OooT7sHasaJwDUZSm0ww7J6/t+C7nqww/s8H0fjuMYsyUsTdwIsB811CB5bflGXbAXqbLeFnwTVfKqKi/7xqrGfaP63Kks94WD5SbJa3ZMZtrRuOSbVnt7nh+om4+e149SoeGc/eONUlW5nDnfRMlmAFg0WMZzr4wbH5OoohgIy1WZrpLgen4wJsfM7w+SIw5N1lBzPRTz5oqDvBRR8gIIeqyZHhNFNisiRCVHmLajWveCgOWKBQNBRYDxqoupmhv4ygQUuapUkUfP78cze8aMB8te2BeWSI7aY1oJOF6pB8/alQsHkW9W0tg7VsXoVA1DfeaC3duavlHJCMcfNYiXD05i2yvjeEOz16gJBMrmpk9sKXlHpuoYnao3bRgISvHvODSJSt1FuWBu3ajAqSKHjl040CB5909g1Yp5xuxQgW51hraloJ2sukF1kUaCU+P5onp+5w2eBdR+rp4zxywYwL7xKl46MIlTDZK8M+ywpOStuR5Gmutm4Zxy8Hx56eCk8XOaGpNFEXJ1/3gVLx+YxMnLho3Zoc6FiwbLTTvsKHk9z8f+8VClOVhWfZsnjd9v9kYIeKBxvzgwUcPOQ2Z988poSDYrOwDzSl7f98N5MqcUEImqTLJJ30TJVaARp9g/XsXukSmcstycb1qSRYBIuWbzcYGQSOyD5yuS13zMRtmh1MRL5zZI3kY5afNJRYubvrGpblbq4UXDQvIeyTjppJNw0kknBV+/6U1vwi9/+UvceOON+NrXvtb2Z66//np8/OMfn/H6vffei4GBgZ6/c8OGDckNtgyx3Q7Edjs4nG2fmIh3zxOSlxime+Eemmwtf6v+f6xSx0S1joGSOReH5ZobB7Cjhsp4cqd5cnX3aAeS10L520rEN6o38WTNxXjVxZyyOd/sCso1N8bCVpnksB+vIqvs+ObAROibJXPLUC2Iqs3Alcns/x3Tlbxz7JCrM+1QalGzvtk3XkW17sFxwjUMNEq/H5ysBcFNE5hOrqrfbXpMourZVjvMzpE9o1OouT4KOQdLhvvgAMg1y/IfmKgaLaO1PSNjopRmKyyTzTsOTsLzgb5iLsh0L+VzqLoe9o9XjVZsiCqKAWBBU4V4wJJvQgK+YYfpcoQqMWKorxColwZKeUxUXewfrxolefeMtCZaqXKRps+u+4I+b43fr3xkmhBRc3KwlEdfMY9yIYc55QLGKnW8dGAy6Fts0hY1T1+1YBA/e/5AoIw3bsegssOOkleVpizlGz4ZLBWCPW3noclg7zcB9VyZ39zLVszvx6PbDxonV/fNIHntKHnVHMk5wLz+Iob6Csg5jWSjveMVo2cBdVZWY3L0vH48/vKI8b1EnQvV+j06KJNs1o6DkzWo1p3zB0uY27zgTNUapXhNqjSjhCbQuF/8fOeI8dLR+8ZbCc1llpS8I5P1IBk/qsicrLnG755RlTXQOBP8fOeIceJ7ukLTVrnmsUodU7Wmb4ZKyDVJXRu+CRTFakyG+vA4RowLSdS5UJG7S5r7uum43liljvFqI+FLlLyC6XjjG9+IH//4xx2/v379eqxbty74emRkBCtWrMD555+P4eHOCS21Wg0bNmzAeeedh2LR3PqngNhuB2K7HRwJtqsKBLoQkpcYphW06sA3f6CIciGPUj6H/mIekzUXe0YqWLnIAsnbPAQuttQfePehmWQzECqNTUERq/MHikGWuwrsvjJaMUvydiBXTZfA3RX0n7Wrsp5eNhoAhsoFjFbq2DtWMXqZ2xnpyduwyU6Z5B3TlbwqEWDUPFkFNPYPpeKd219slEkeq5gleduUawbME/DT7QgITcNzRAWSl8/rD1RU8wcaZSv3j5sleV/a317Ja5pIVEF+pXazSfICjcCyUhzMHyxi90jFOMm7Jygp2t+0ozkmhvuJKR+o54wiaA4YtuNAk1ReGNm75g+UMFGdxIGJGo5daNKWVkIkHBOzxLf6ffOaJd+D9WvcN43fp8ohO46DRXNKGKvUsX+8ihOOMmfL/mlEYkjAm93n1TqdP00tapo02z+m7CjCcRw4TuMZuG3vOF46YJbk3T+NgFe/27S6WSk0F85Q8pr1jbo7zB8oIZdzkEMj8WvnoSm8fGDSLMkbjEljnz96np2Ekb3TyGZbvXDV3WHeQDGorrJoTqN90ssHJ42SvEFp4hkKWsO+GVVnAbW32lHyKvJuqK8QxAVUCetdh6YMk7wdFLSGydV2imKbdswpFwKBhLp77hkx6xuVjHdUoKC1Q3xPV/LaIuDVeMwpF4IS5wKBwpYtW7Bs2bKO3y+XyyiXZyYHFItFLUJI931ZhNhuB2K7HRzOtsf9u8zVVjxCYC3LrnmhdhwnyLgzHRhSJOpiy2WSd0X64AJh1p9ptej0stFAOCYmCTzf9yNKXtvk6rRyzYGi2GxgV5UmVnYAUVLTrG92TiO+QyLRNMnbqlpVATPTqtXpJZKBiG8MzpO66wXrJhwTO0relw9OTLPDTkng0DfhuglITcO+UYomtW5sKXmnE4m2SN6QSAwvsoosMmmL5/k4qEiigWkEnqUxmde0Y74lRfF0IhFoEFembfF9HwfGW8dknq0xUYrE5u9X9hyYqMFXpTVM2DGN9G7YYneeKFuiY2LUjmlqUfXfgxNVeJ453+wPxiPc046yVA5/eplk9Qw0fecL7WgtCbx7dAq1pkLQpB3qbAaE5xPzCtpWtejRlpIS9k0rTax8s/PQpNF1E5RIjuxpoS2mFbSt82RZc93stER8z1DyHpwy+rzZO02hCYRtlEwT3x3JVdN2zCCbmyWBbSmKh0LfKLGAacJ577RKJ0uCMsmmY4ytdiy2boeoeA83jI2NYcuWLdiyZQsAYNu2bdiyZQtefPFFAA0V7uWXXx68/wtf+AK+/e1v49lnn8Xjjz+Oa665Bt/73vfwR3/0RzbMFwgEgkxCSF5i7BuvoG7wor07IFbDg0+ooDV3KB2v1DHa7GWmDqOLLRGJu6f1BlZ27BurBCWTzdgxk0gMCGeDYzJaqWOiWeZGXeJslUneNdK4PAZK3iBgZ9Y3O0daVatAtDyxueBhtDRxSHzbUVmrAMOyaWWj949XjfpmR6RXssIiC6TmvvEqPB/I55xgntrqt6qUw9OJxIOTNaO+Cct4hs8bG+TqocmQ9FDZ9QsDctXsnqZK/yo71HiMTNWNBt0VQaTKAUdtMamOHK3Ug1KRc6eRq/vHzZJVIdncVK02x0P1KTZvR+gbG6riiaoblIoMCTxFJNohNAPfNP9brXtBH1YTUHNyfovKujEmJst6T9Xc4Jw2f5rK+qAlBbz6/Wpv83wE53wzdjT2cjVHgXBPMTlfq3Uv6NusnjNqTKLPIhMIShPPUXOkYYfvAyMGbdkX+CZcN+oearLSSc31gnWqbFH3C9Mk0fTewEuGysg5QM31jSb2qvFfGCES1ZiYLB1dd71gnap7jTrX7zBMJE4v16zuW5M1FyOT5va06WQzEPpml8H5Wne9IIlmppLX7Bl6OrmqYjejlTrGDT5vppdIjtpiktSMJrFOH5M9xhW0rTFGVanv0GTN6Bl6TxsCXnB44MEHH8SZZ56JM888EwCwbt06nHnmmbj22msBADt37gwIXwCoVqv48z//c5x22ml461vfikcffRT//d//jbe97W1W7BcIBIIsQkheQuScxkXbZLB7z7T+s4AdlaY6gA2U8kEZ4sWWencEZaMjCi+n2TfSJDmz61Dj715q2Tfq4ji3v4j+UqM81KKMKHmjvjEZtNt5sJVsBuyUSVa+WTSnHJRVW2ipXPMr0zJ2VcDM880Gmaf3JYzaYlJBGyXvcs3SxMoO0wT8wcnpisQinObzxuS6UXZEicSFkWQA03YM9RVQaK6bBZbUzdPJqrn9RTSni1HfKLKhhUi0oCpWe8VAKR+UwrdOJDZ//3BfISgzbpLAC4jEqJLXgspajUep0GjrAURUq4bVovsnWsnVgVKj3QhgeEzGs0HAq99VyDkYap6h51kgm4GZqtW+Yj6YL4csrJsFLdUJzI+J8k0+52C4r1UBf9AwyRsoaJu+KeRzGOorGLdlf5uEr7n95nueK9/knNAnat3YIuDVmBTyOSv7674uZJXJe8X+iSp8v+Ebtaequ59pJaAq16zOq33FfLC/mSScVaWoRUPhWWBp0B/YHIG3fzz0jRoHW0re6WWjh/qKGGzGKkwqaNsrec2XJ97X9E0+5wS+CZS8BsUbQBhjVHvJcH8B5WYbJaMxxhHVG9hcGwCBGZxzzjnwfX/Gv9tuuw0AcNttt2HTpk3B+z/4wQ/i2WefxeTkJPbt24fvf//7OPfcc+0YLxAIBBmFkLyEUNm7Jnu/Bll2kUOpImlMlmsOiNXhvqAf4FEWFMWttoQXbRUQMUqujswk4BdZUPKG/XhnKoqNE4nTVNaFfC64/BsNPoy3ZpcD4aXbZLnmdsSM2kdMl509NI1IbPimaNyWg5PN0qb9M4lEk+SqIqva2WGaSFS+UeqhQj4X2GVSNaOCt9ExsaHkVXbMb1P+1pZv1LrJ55wgsGuDrIqWBFbPPZNlZw+08421ksDKN2G/VRsE3sF25ZotkFXhuimGfZstqUWnq5sdx7FCak5P0gDsEN+BenawFPhmnoW52vh9rcrIhi3mEzUCJW/kfKTGxCSBt28snKsq4Us9Aw9ZUlm3843JdbNvrLMddnxTChJ41DnJNAG/V/UGjiQoqnlicn+dXiIZsKM8j84R5Rtbz5t2CtpFFs7z6g4TtWNJELMxSGiOKSV+OfCNDUUxMLNsNBAm6ZtU47cjeZdaIHlVXG9hZN2ouJ61MsnNeFq0JZzRMWnasUSUvAKBQCAQ9ISQvIRYNMf8YXB3GyIxIFcNHgaVHa1ks3lCs1J3gwCVujgBdsoTT89Ojf6/SUJTBeWiF/6jLBCaddcLSv1FSaKgL++oedXb3CiBN6jmiF07bCiKPc8PyaoWUtO8LYeapdOG29hhsk9xW9XqoHk7fN8P1FNRksiGunk6odmww/yYHFKJAG18Y5rkDYnvmb6xoW6e10aRaJaAn+mbYDysEYkzyVWzxHcbtaiFMZlehhcIVda2epy2lkm2p6BtT5qZTNJoEqtt5qpJ9SwQJRJnkqtm1aIzlbxzLZBm7YjV+ZaUvPumKXmB8NmjnotG7WhDJB40aEe73sDRRACT/Vb3BQReaMuwBXJ17zRFMRBdNybtUGTVTDtGpupGffNKG5LXBvHdjtBUzxuzZaNnztVoqxGTbWDakatB/MjgvaKtkneu+bjeK2NKtdpeiW+qJZzv+zN68gJhbM0k4RwqeYXkFQgEAoGgF4TkJYQizkwqaLsdjk1mhQbKyDaE5njVNdZXRV3WHKeVOFtsoZ/JSJugu41yzcoOVWYOAI5qJiSMTNWN9VVRPc2AVgLPBqnZllwdskFWtSObw5J3pnp6jlXDPprDbWwxqRYNicQw+BComy0T8CqQeHCyZuyiPVkL+2jOa5OUYJKcCRMBZqpFzapWZ/rGRp/iqZob9A9t6YVrQcnbjWw2q1ptQzYPhkF3U+umWvcwrnqcWiZXVeLZvHaEphWyeSYhMjJVN+abmhv2OG21RalF7ShoFWyorPdPKy0OhL4ZrZjr7113vUiFEbuKxHY9ea3MkTbrRu33E1UXlbqZM3Qt4hvbSl7lm1ay2XxSwt5AkTiTbK7WPUzVzO1poW/sEonqDpMVJW87O1zPx5ihuECl7gbPm6Msk7ztFMXD/QXjdrSLHUXvfqNTZmwZr9SDc1rUlmgygCm06/tq4yygBBrRubqw2dqq0aLHjC0jk3VU6439syXGOGw+xtiObBYIBAKBQNAeQvISwkZAtZ2yKlSLmrNDZaBGg+6D5ULQV8UU8a3sGCoXgrJqQHhYNpkVeqgtuWreDnVJivpmuL8Q9L8zpfJS4zFQygf9ZwE7JO9I8wKrLtcAcFRQEtjCHIn4Zv5AKejpaYokUkG5ciGHvmbvPSD0jVHiu7l/tlNZGyU025Qmnj9g/qKtggvFvIOBUugbK71wlW/aqDTNlvSemQiggjG+wR7Sav02ejWGe8kCC2WSp5e/Bez05D3QpjSxWkO+by6QqdRkjtP6DF5ggVxVvmlRaVok4FuIxMj+Zsw3E+2T8YJEDQsK2vltSgIbVRS3UYvO7W/0XgfMBZkPRHzTsr8OWiil3bYnbzNhxCSh2YY0GyoXgnOaqXWj5uN039hQaYbq5pmKRJPq5pBIDO0YLOVRaDrHmG/GI72B+2cmJRglV4N2NHZJ3naEZl8xF9w9Tdmi5kgx77Tc+dS5YMTKmGTDN1EisZjPBXcMU7YoO/qL+SBeBNjxTVviu8882fxKG0Izl3MwVG7MXVMEvIpTDfUVWuICqve6SeV5u2oaAoFAIBAI2kNIXkIMBYdBc4fSgKyKBDGDDEiDh+N2dgBhINNU0C4k71rtsFESeLQNubrIgpI3JBLDy63jOEHAypQtyjdzZ/jG3pi0L5NsVy2ayzlB4MwU4dzODsBOL9xuCtq9FkoTR+3I58KensYI+IgdqlcjEF52jfYp7qI8N0vAz+yXXMjnArtM2aKC6tN9M98i8Z0VRXGUNIv6xhRxFvVNNOErJL5N9n2dOSZh2WgLqtUIQVTI54IEBVO+ORBZv/mIbwJy1eSYtCPgg76Rdn3TSB5RBIBd36jArkniW7UiaJeUYKMkcDTAnMs5ITljaJ5E50irb7Ki0jTfLzmoIhXxjeOEvjE1T/aOhaR3zrJvgjLJbVSrZgnNmXPEcRzjJayjZaOj5zSbpbQXtVGtWikbPa3Hafi8MeubRUOlFt/YmK/qebNocKa62aQdYeWX1vu46fnaKWajYkkmY53t4mkCgUAgEAjaQ0heQoSZh+ay29opaINDqcEDWDsiEQiJ71FDWZDtShM37FJ2GCS+26o0zWfcj/Qg8PYbIs46EYmLmmXOjaqsJ2baYqf/bCfi2yyB13GOqH6rlvu+2ijXrIKDcwdaM4cD5aqheXKwzVwFouSq+XXT0m/VhqK4zRwBIuXFjZG8M8nmqB12lLwz1XcmCc1wTNqvG1O2HGhDmjW+Nks2A9E+xXb7z7abI0BUVXzk+mZ+m/K3tnsDt9pimEgcbO8bo0re5u9q6elpoVyzep4sGJjuG7N9efePdZ8jNtSiC9uUSTY5R/YFJb1bySo1T0wR8AFBNKfVN1bGZKyNbyzMkXZKXgCYa7g8cZRIbLXD7Jj4vt9WQTtsQSCwv836BaLkqpmYTVhJo9UOG3GstvG0ZgKcSZJ3tINowrSquGM8zYLKWs2Dob5Cj3cKBAKBQCAQkpcQc/oa5UxMHUqrdS/oBxg9hKn/H6vU4RnqTdj5MGg2468TaabsMEU2u56P0Wa/oWgZTzU+kzXXWI+1diWBo7aYGpN25auB8HJn6sLgRX3TRi06UXWN9SnuTPKaLZOcFSWv5/kd+hQ3xuPQZC3oEcSNQ20u/A1bzBKJSsE1rwPZbIpc9X0/JFc79H011Qu3E/FtekwU0TB3Gtkc9n01Fzxs1wtXrZsDE1X4vhnfHGhjBxCSRKZ9M90O0201or6JKhKjdtj2zTzDJawPtCFWgaiC1tzzJlRZzyylfXCiZsw37ZS8gAXfdCQ0FVllxg7X8yME/MxS2ocM+qYTAW+awNvXoWSleh6b8k2v3sCHJs3tae0UxUDEN4ZLAneywxSROFVzg1637ZS8ByfNrZt9bUoTR20xdefb36bse9QOU76p1D1UmveX6DM4Oh6mYjajHaqeme4PPFrpHjsyZUfNDeNpUSIxEAhU6sbuN50q0gUKWlO+mVJxklZi1TQB70X6d08fE4FAIBAIBDMhJC8hhspmLy5RVeqcyKFUHVB9HxirGsr463AoHTKsbh7JyKE06pvomET9NGYqG7NDyZ0hwxmqag7MnCMqEcDMeIxO1aFiHNExmVMqBP3vjBHfHcgq01n3vZSRpgLMY9U6vDa+mRspHWmu3GsHlWagKrZNwKtEAEO+iQQ55rWUnW2Mh8leuO168gLmSV5FwE8nZkyrrMcqddSbvonaovzker6x/fVAB7WoaXK1o2rVcAnr0Q6+Uf9fc32MV80kFXXyjWkFbbvy1YB51eroVKc9rfH/VdfDhGHfTCfwTCtoOxKJhlWrhyZrwVmgdd2Evpk0lIynnrELpikSTRPfHdV3hnvhqrmam9YbWI1HzfXN+abDmMwzTOAphaZtIlH5ppBzWhKMlR2uZ+55E55d7RLfYRJ6a1zAuB3Nu7jjAIOlmUSiZzJm07yPT1dGzjUeK+lgx4DZ2FH0zj/UJjEfMBezCcjVaWNiWvEdqmc7iDdM+aYSxmxEySsQCAQCQW8IyUuIoeBwbJbQHCoXWvoz9RXzKBUarjVO4E0/lPYrBa3py1x7ItG0anWglEcxHy6zYj6H/mLeii22S/90IqtMl/RWdvQVcygX8sHruZyDOSWz8zUryvNOam/jvmkGssuFHPqKrb4xXTarUwnrBYZVmoFC07Ki+GAH3xQt9MI9FJBVdpW8nXxjuu9rJ9/0FfMYLOWbtpjtIT1TyWtHZW1byXtwPHzeRH3TX8qjr9g4G5hW0E4n8BYEpaMNlwTuQMAbI82av2ewlG/1TeQMbWqeqL1iurrZdA/aAx3VonbKRg/3FVrO0P3FPErNr00R353IVdNEYmclr9lEgE69gW345kCH8uKm+yWr8+L0s4BpRXGUNIv2OI36xphKswNZZZpcDcekvW9MKyPnlAstfZutxGx6lAQ27xu7hKa68w+U8ihEnjelQhizMU2udmo7Zkw0EcT1OthhOK43PWYjEAgEAoGgPYTkJcRw2RKh2aZ8ielSvB3Ly1jKPOyoKDbmm/aHYyBScscwkWidwOvYt9nwuumgbG61JSvEt12y2bRvOtkBhCp4U0kJndTNyjemsrqVHdNLAg8bDlB1Iu+AKHFmV3melXLNppW83Xwz3/iYdC8vborQ7KTkDdSipnoDd7Aj+poxBe14j3LNplXW01Wrg2aJxE5z1XEc48RZ5zLJhgn4Dr4JyyQbVq1OU886jhPpy2vWlo6ltA2vm04qa1PETKcKNI7jBOcSU+smbIvTfk8zV3a2SeBNI6uUHaYrfE0nNKO+MUV8B6RmhzEx5ZuxoCRwB7WocYXmzHOaPeK7Q9Uz4yrr9gS8ObV375iNcVumV6SzRHzbtqMT6S0QCAQCgaA9hOQlxFC/2RImYSmVmeVLTPfu6NWT1xjZ3KGPpi3Suz2RaIdwnptRctWaarXNhcEW8T19TOY0E0ZUHxpbdtgivduRVaocvqn52qnv6xzDyTyd7Ij2XjeBwDf9M8kq03tJOCbtCTxzxLcq6Z1dItG4ulkpEjv2KTbc99Wyknd/ByIRsKFu7lGu2ZAdgWo1K/1nB+0S8L7vR8jV9gp4U+rmTmTzfMOltEMCfuZZYJ5Bssr3/eDsOt0W0z15OxEzpstGqzNHu7tnYIsh5floh3twQDYbs6N7+Vvb5F3DlsZrpsYknCftExRtj4l51WrnmI35edKhFK/xEtbd54j55Ig28bQ+W7ZMHxPDcb0Odsw1HevsUFpcIBAIBAJBewjJSwhratGuRCL/Iczz/CCLuZMi0TzZ3JnQ9FVzD0Z0Uq222mLGN53VzdlSrY5V6kZ9013Jyz9fo77p2C/ZNtnctGOsWofn2fVNYIsBUrPFN9MVtAbtADqXAVTjMVF1UXc9djsOdlCtAmaTElyvc9B9jkoEMOQbNSbTiRm1p1VdD5U6f/+7TokA0ddMPINrrheM/XRS03Rv0aCU9nQ7moTeRNXFlIG+kQc7kM0NW8yNSaXuBv1lZypoDSvxO4yJIjRHK3XUDOxp+zuUegWixBn/mEzWXFTrjb+3k/Lc1Lrp9AwOVW+1oI8xJ8Y6BP+BCPFtYE+r1D3U3MbfO1ORaKsU7zTVaoSYMXFO66TQjNpi6nkzVWusmxnEdzAmZs4CneZrlLwzcb+JlgSeDpNnAdfzOyYDzDXsm17lmk37pj2RaI7A8/3QN51KaZtTN7cnV6N2mPBNpzhJqy2mkoo6lEk23GKrYxu2SKUxM+ums28EAoFAIBDMhJC8hFAX3mrdMxI87FbCZNggWTVWrUOd82ZmUxtW8nYqG938uub6QVCA1Y4ualGTWaFR33S+MJgl4DsRmq7nB0FoTuiRvPzzdbQS8Y3lUtqdfKPmiO8D41V+W7qRVSYV36NToW86Ed+mfKNUF9PJqmgQb7xigKxq2mF93UzVevrGWCntHmpvwJBvuih5hwwmJUTVHx2TeQz7ZvqYDJULUO3wTDyDD3RQrQLhmjah5FXjkY/0N1cwrhbtoG6e21+EaiNpgtTsdhYwOSZqTeScRk/AKOYZLk3ciZhR1Qp839DZVdnRjqwyOCbRfXOw1J7kNVX+VpWdnU7gqfOj55tJcBoNfNNGZW0wKSH6LBkstyeJTO1po03fTJ+vajyipCerHV2SI0yqRaN/q211c6eqZ8oO1/MxbuDu2UmhGbXFhDpyvOrCC2I27ZNYzSt52xOJpnzTyQ7AbC/cyZobJFF1qk5gWu3dqSev58Oob6Rcs0AgEAgEehCSlxBzSoUgQGWCOBvpohY1WepG/Y5yIYe+YmuAKitE4mApHwR2TRDfWSESVfCprW9ME/AdiO/+Yh75pnOMjElX35ibr93Wja1euNOVkeVCDsW8Dd+0I6vMkUTKjv5iHuXCNN9YUotOn6+lQg7lQq5pC/88CZSR7VTW5VCNzw2lNpxTLqCYbz3CDBkuc96JrMrnHAw2yRoT8zVUrdpVWauA+nBfIdjTp9that10KtfsOE5ACBgZky4l6E2WXA/bFBTgOK2+Ma0WDXoTTju7Nghoc+SMSsBop3oz2R846OdZbucbRTab9c10lWapkAv2NBPK1bHImEyHyX7Jav8eLOVn7GmK+DZd/na6b/qKefQVG89CE4TzWIc5AkTLJJubI/3F/IyzgOnWDZ1Umn3FPErNc5qJ+RoSM+1KaZvrhavsaJxTW8/Q9kpYtz6D+4o5lJrzxsyYdCulbW5M1Joo5p1g35huh+nSxNMTnfuK4d3TZByrHQFvkvhWRHI+58xI+DKp9gYi5Oq0c1q5EK4bk74RJa9AIBAIBHoQkpcQuZwTBJlNZPzpKHlNlHXRKhttrE9xe1scxwmCRUYIvC7lZUyqNPXsMFwGsE3Q3SSpeajLhcEoAZ+RRACgM5HY8I25+dq1XLPBXrjdVKtzDBPw3cok25ivbfslGxwTRf5kwTdhn+LOtph43hzoUJoYiJSwNkg2tyt/G5ZbN+ubtvu8QZK3W6m5OeVGEG/cssJL7a0m7Ij+nnYEXpB8ZsAWNRfbB93NkavdSxPbUfK2JVcN9ilW+2bbksAD5giRbqWJ51pKjminbjZJOKs9rT0Bb27ddJsjcw2SzUCE+O5SJtmkgtY2kdhtrtoiEqePieM4oTrSyHztrRY1SzYXZyQVme+F235MHMexMl/bJUcEY2LgLB9N0ujoG8Oiiekxxsa6sRBPk568AoFAIBBoQUheYqhDmIkgc6d+GY3XDNrR5QAWqkUNB3bbEd8Ge810CzCbHJMsEYk6tphJSuit5LVNaA4bLm2qQ66aIGcOBaWJ7c4RHULTlG869eRt2GJOCXiwg2oViMwRE0RiF9+YVK0CnUsCm7ZFr5e1yUBZF2LV0LrpFuw2Wda7W/DfZA9pRaxOL2safc3UuhntQiSqkrhGfNPFDjVvTBDf3ewwfRbQIolMqkW7kc0GypwHZXjb7GnzDI4H0D0ZwCTx3amfp3E7upBmJu0AogRe53ligjjrlpQQqKxNrN+MkM1ALwWtObJKp1yzSZV1N9+YIhI7lQSOvmZy3bRX8hqsjNdljgwbFk3ojYk5IUk7OwQCgUAgEMyEkLzECMsT21Vpmuwh0q2UypDB8fB9v2sJa6MKWg0C3mhJ7zZ2mBwP3/eDOdCWXA3UZllR8tol4E2qVj3P76H4Nk+udierzCkS26sAza2bmusFhEg3ctX2fA3WjQlCs0vfZpOJKzXXw2TNbfm9UcwxSM4EvRrb7fMGydXRgEjMz/ieSSIx2t+9Pblqbr6qXuZt7TBJNnfpcRrt2+yrhtdM8H2/q5LXJLk62oVIDMqtG+hF342YUetmvOrC8/h9E5Krdp/B3UiiMJnWbpKGeiaPVuqoux67LUFyRDflquVyzSG5akJR3HlPiyojuddNw5bexJkJVXE3ksgOkdjdDu7nTcMWNU86x0qyUq7ZDNmspyg24ZuQwOumoDUZT+vmGxN2tC+RDISVI4wpebuMyZDJlnBd7BAIBAKBQDATQvISIyhhYrJPRTvVjMFSkV3Vs5GgkMt80Z6suag3f0d7daRB32iQZibJ5m6EiAnfjFfd4Hd0m6/2FbTZsCMIdEfGjQujlTrUXd42cabTL9kkodlePdsYj8mayx7Yje5V7RM1zPumbdlZg2TVaJfgvwriVeoeqnVe30RJqK7kqhGVptvyO6MwScx0I++UHTXXR6Xu8toRIea6KVdNEont7FDlmk2SZt0IeM8Hpmq862ay5kI90rqRmibVzW1JXoPJEd2UvNHXxpkJ50rdC87Q3fY0I+rmLkREUObcAAHftSJA1DcV3j2tUneDZ1r7MufmyKpuqlWjZLMG6e37/HtJte6h0vSNbeVqt3VjpVxzFztcz8d4lXfd9ErGs0F8d6s0Zmb9Ngn4NqS3Go+a67OfBaK+sT0m3ZISVFzPZL/ktgkJzflbrXuYqvGvG5Uo2b0lnN1Yp0AgEAgEgpmYdSTvTTfdhJUrV6Kvrw+rV6/GAw880PG955xzDhzHmfHv4osvDt7zvve9b8b3L7jggsT2DZlUaXbJ+Bs2qVrt0AcXaD0wcwfLFKFZyDnoL84MZGatFK9tYiZ64eX2jbKjlM+hrzhz2zGrstYgEo2UJu5tB2Bi3TTs6CvmUC7MXDdK0WOkFG+3/rMWyt92IzRN2KI+f6CURyE/c92ESl5zROKcNiSRWTu6lZ3Nz3gfF5RvSoUcit18Y5TA60xE2CZ5VRlegH8vUXYU8w7KhXbPm2yMSbC3GiTN5rQJlA0U81Dt37iffcqOnIO25zST/YG7kURGyzV36XHaV8whn3OatvAGdtV4OE5jTkyHSTV+WNJ75nwNSnpbLqVdKuRQau793Irv6J7ZLRnAzLrpPF9N7q2jXciqciEf7C/cib3Rv7VtT16DvZu7VScw2Qu3W//ZvmK4briJs5Z1001Ba5n4VnEBo/1n28SOBkv54HlzJPlGq/qadd8U0HQNe4xxtIdvTPZuHu0SYxQIBAKBQDATs4rk/eY3v4l169bhuuuuw8MPP4xVq1Zh7dq12LNnT9v333HHHdi5c2fw7/HHH0c+n8e73vWulvddcMEFLe/7+te/nthGs30qumWFms+ym9vmUFoqhKQety1R9ayjIpYRZCXz0KTKWv2OdkRiuZAPAuDcthyayI5vstKnuBuRWCrkzPmmy3gAUXWz3V5vJn3TjZgpRhIVuG0JSd72ZapsqDQH29iSFdKskM8FgV1TBHw7OwA7pXjbqTRtlFhtRzbnc05YApfZlmgiQLvnjZ3kiGyUa26XpJHLOcZ64Y5q+sZ6uWaTyRFdSos7jrl1EyQClArI5Wb6JlTA85LNLbZ0UdAaqRzRZY4A4Z5rKqkoSsLYsCNqSzvfDBgk4LuVrwbMrWE1D/uL7ZPxgr7aBpJHVZJOu7unDdVquyQNx3FClSYz8T0a8U27ZDyTYzLSRclrh2zu4BtD93H1+Z18YzIu0G3dhGWj7ZZbz+WcUEjCHGNU63eg1Mk3Fkppd9jnBQKBQCAQtGJWkbyf//znceWVV+KKK67AKaecgptvvhkDAwO49dZb275/wYIFWLp0afBvw4YNGBgYmEHylsvllvfNnz8/sY2KXDVBiHTtyWsw87DbxQUwp24Oy0a3PwiGfbxMEImdszFtKIp7+Ybbll49VUz2wu3aG9hgH83RLuu3xRbLZJUNcrUdSWTSN92IxMbrZtZNN/UsEAkeGiUSu/jGMpEIhAFfft90JlaBqIKWf0/r2uPUZNnZHoSIKd8EJZI7JUeYVNB2ISJMlmvuvaeZIfCUHe1Ki0ftMKmA70okmiSbO5xdTdnSbTwadqj5arAUr+Vy62G55vbnNFNEYq85EtrBT8AHyqou68ZkkkY7ZWTDFjPEd0jM9EoEMJcc0a28uIk50s0OwFwiei/fZK2E9SETAoEeY2KqTHKv9Wu0hHWXmI2NOdIpZmOqdHSobO5uh8kYY6dnsEAgEAgEglbMGpK3Wq3ioYcewpo1a4LXcrkc1qxZg82bN2t9xle+8hVcdtllGBwcbHl906ZNWLx4MU466SRcddVV2LdvX9fPqVQqGBkZafmnMGyI0AS6H8LMlr/tXkol7IXLfNHuoUg02gu3i4LWaCJARlSavXqqmJyv3RQiocrapMKrE4FnlqzqTPKaS44I1SqdA1QmfKOCYAM9fGNSkdgOoSLRLpFoo1xzx/lqaEzUHOlEJAbqZts9PU2qrKt6RCL/uuncg69hhwXVW9sy50VjdnQrfwtECHhD5Zp7kVUmxkRnT7Nd/hYIx4rbll6q1TA5wgBJ1KUXrtGy0UqR2IOAN6Xk7eibksH5OtV5L7Gh9u6UMGJKVdyLrDKqbu6i0rRBwHdKula2TDCXOe+dCJAN35isvtat/yxgTlXcTajQaoe5fb6tb2xU6OuQEG8qxtgzEcBCrLNdtUCBQCAQCAQzMWtI3r1798J1XSxZsqTl9SVLlmDXrl09f/6BBx7A448/jg984AMtr19wwQX46le/io0bN+Izn/kMfvCDH+DCCy+E63a+oF5//fWYO3du8G/FihXB94YNHUqrdQ+TNbf5O2cefKIXBt/3WW3RVfKyE4k9Lgym1M1TNRfVutfRliGDZW56Zf+bIjVV8L/ThcEUAV+te6i6Dd/M6VJ21iSh2asULz9ZpWkHcxCk7nqYqjV8014tmg1CEzDvm56qVWbfeJ4flBTt1vfVjG8UudpBQWuYgO8VPOT2je/7mSHgA+K7F8nLXua81t0OQwS87/sRcqZzf28TqtVeynNT5Mxorz3N0Bxp9Y1dIrGX6s1Y2dme5W8NJkd0IZwDsqrqst9vehGJppISuhFEUTu4ewNHbWk3T4I5Uq2z+6YXWWWqOkG4bnrZYdc3KmlxsubC9ez6ZiAoQc/8vOlhh6n16/t+xJbOe1q17qHWvKNyoRcBb+o+3lPJa6hPse/7XXtIq3jaZCS2w4WRHvu8qThWr0pjpmKdnheum04xRoFAIBAIBK2YNSRvWnzlK1/Baaedhje+8Y0tr1922WV4xzvegdNOOw2XXnopvvOd7+BnP/sZNm3a1PGz1q9fj0OHDgX/tm/fHnzPVA+RaDC9XRBEHYZqrh8QJ1zomXnYb4bU7HVhMHVxiV4Wu/WvrNY9TNWYSyNWuwdUTRHwKsgy0IGYMWVHNGu8nUpzqBmIr9Q99svcRA/Vm6n5OtGFvDNqR2QttCMilB0mfBOsm14qTUNEovU5EvFN25LABn3Ti/g25RtdAp6brJqsuVDx2rbJEQb3tLGgD1+PMWH3TS+yufm8YbajUveCYHrbfsml8CxQqTMTEb3OR4bKi+sm0HAH/yt1DzXXb/md7eyouT6/bzRLaZtKjuhd0pt73bhhMl4XItH1fFQMPW9sl0lWvumVVGTSN93IKt8Pz5Zc0E5KYFeLdm8VNBhJSuCErm+A7ChoJyyrrNUc4Z6r0edNO1uiSbYT7MS3nvKce92o2FHHJI0+M2rvaNJDt8p4AH+MotdeYqpMclgpsBMBbybWOV6tB/ebToSzQCAQCASCVswaknfRokXI5/PYvXt3y+u7d+/G0qVLu/7s+Pg4vvGNb+D9739/z99z/PHHY9GiRXj22Wc7vqdcLmN4eLjln8KwsTI3ioTIo5Cf6caBUh75nAPAvtrMlAKvW6nXhh1myssoQrO/GPogijmlApzmy9Z7egalo+2WnTWlKFZzpFTIodhm3USDRcbKvXYsO2uKgO9cThQwmQjQsKOYd1AutCttGo5Tdsokcyvgs6GMVOORc4C+Ypt1E7GPO8is21vU9p5muo+m47RPoomSi/y+aT5vLJdG7Nn31RABH52D7c4lrb4xQ4h0mq+DZTPKqm5leBt2mCGbo3OwrW9K0T3NTNC9Z0lg5mB3r57ayjfcyRFjvdZNydxZoFcJ6yFD5Kqub0zZAbT3TX8xD3Xt4SdX9fYS+2XOzSjgo8+bdpWKyoVccCe1vaeZ62XdXQU4aKiUtoo7OE77dVMq5FBq3km51fi9xsRUwkgvRbGq1sPeU7tJaOZzTtszdD7nBPce7mSAnsS3oZYJvfrghuINM32bS/kcyoVZE7IWCAQCgcAqZs0Ts1Qq4ayzzsLGjRuD1zzPw8aNG3H22Wd3/dl//dd/RaVSwXvf+96ev+ell17Cvn37sGzZskR2DhkOMHe6QDmOE1x8uUvdqENvpwuuqX4mEz1IM2OEZqCebU+a5XKOsfKmypZOpXiNEYmKrOqhjDSmWu2gKM7nnOB77LYESQmdyFVDAVVVrrlnj1Mze1qnuVrI59BfbBIRxpIjeingTRGanXoDqwu/OdWq48xMXGnxjW0FbdnMmAS+sa72dgM7OvlGBaiOFN+EdnTYWw2RZuORPT7XJuErum6s9/RUvjFEfHc8CxgqsRr1TbtkvGjAl19Bq0fgsRMimiprU3O1k29ykXOasXXTQwlo2zemkjSihGY73ziOE6xtY0SiZeW5buKKSbK53fPGcSJ7mqH52rlcs1Jp2lWtKt+YUs928g0QVpcyp27uXkrb1PrtNUe4FfDRMtrtztBAeF4xlbjSqTJeqDznTkrQVeKbSxbp5BuBQCAQCAStmDUkLwCsW7cOt9xyC26//XY8+eSTuOqqqzA+Po4rrrgCAHD55Zdj/fr1M37uK1/5Ci699FIsXLiw5fWxsTH85V/+JX7605/i+eefx8aNG3HJJZfgxBNPxNq1axPZGFwYmA+lEz1IM6C1bxUnwmCZ/bIuQJfArqFeJhM9SiQDEeKbnUjsRVZlQ/VmSi3ai4RotSUrY2JXGWmu/G33uRq1hXsv6UUShYpEM+rmTnurqd7AveZI1BZz+3yP+cpNVmmuX1Mq6257WlCe2BhZ1T1xxRxp1qN/pSk7OgTKot8z5Zte7SyMlWu2rvDqvW6M98K1Xa5ZV1Fsiqzqsm4CVbGhddOzFK9lYsY0odntLGBMVdyDSDRVSruX6m3AkFq0W89XhYCcMaQW7UwSGVI3a1eOMKVa7Vxy1piqeLKXb8zOkU57q6mS3r0ITSC6p5khNTsqzw0nwfVMBOBOlOwR1xMIBAKBQDATnU80GcS73/1uvPLKK7j22muxa9cunHHGGbjnnnuwZMkSAMCLL76IXK6Vt3766afx4x//GPfee++Mz8vn83jsscdw++234+DBg1i+fDnOP/98fPKTn0S5XE5ko6ksu0Ch2eXgoy4M3AfksKdne1tMEd+9lIDmlJGq/2xvssoUOdOrFy43MRMQ3x3sGDYU6A7U3j18s2vEPuFsbI70VFmbIYgmehCrDVsK2DNaMajG7564YirAnJWSwF2TI8oFvDJasa6yNlYloQehGdhhjKzqvm72jlUM9pDuTkSwz9epbPhGZ93MUevGcgn6oH+lqXLNGdnTuhGJQ4Z8kxVytZdvQhLCbo9i9b09oxWD6siM7GkZIZu7rZsBU+rmHkSiMbW3pqKYvUdxDLLKHKnZ3hbTxHfHhK+SmZiNDgFvqj+wbk9ec8kRHewwtI/0SgoEoupmu3dPU/O1V8wmjC8yC1o0YjYCgUAgEAhaMeuemldffTWuvvrqtt/btGnTjNdOOukk+L7f9v39/f347ne/S2mesfIyExpEojogc9ri+37PksADhg6l4z1K8apD4mTVhe/7bKVfepXhBaJBOzO+sd0Ld7xX/9lI2VlO3/RSaDZs4R8T3/d7JkeYV1n3sqNmyDfdVG9mS/F2JFcNKRJ1Vda212/UFtuleOcYSubR7j9reY602GKoz2mvhC/7VRLMKiM7kWaABXVkj3LN7IkrPRS0plWr3XxjjDjTLtdshiTq3VObeR8J7OiiejPdp9iyEjAryRFx1KKc68b3fe0y5+ZU1t0TaPj7vnZX3wFR4pv37tmLODNFfPdSaZpWaOqpRfnmief5Qc/fzgp4szGbjus3UtLbRMymU1IgEBUrGIoLdIgfmUqOUOuhUxunML7IG7MJ44ui5BUIBAKBQBezqlzzbIA6lFbrHmqux/Z7xjWIxPCAzHcYnKy5UBx6r8Au9yVKHdR7HUrrno8qp2+qvQmRAQMXhqmaBy/wTffA0KSpkt49iETX8zFZ47NFp5S2idLRlbqHetM5vZW82SA0a66PSp1z3ag9rbNvhiOEMxcae3fDN537rZoptz7WKzmiGUCr1j1U6nzrppdqFYgQ34zBh5rrodqcg9ZLm2oSiZM1F3XW501vZVWobub1TaWXbwyVBO6l0gyee4Z800vJC/AmJWj5xlD5zJ6+iawb12ufoGnCDsAMOVOth3vaUEdCRNnBu25GexEzzbGaqnms66YXoQmY6UFbqbvBXSH7RGLj9UrdjG+6lms2QERUIue0ngSesbKz3QlN7rhAqFrtTSRy3j0nquHebVul2XPdqJhN5GzJgTjrhnO+TtXDmI3tPa1XzGbQcMymq2jCQHJEpe4F66bXmPC3hNNT8np+4zzAbkeXdSMQCAQCgaAVQvISoz9yIOIsYxKWa7Z7KFWf7ThAf7FT5qFpJW+HS2XRkG801KJBNjXjQT16URzo5BtDgd1ewe7o3OG8vPTqcQqEgUxOO6Kf3ck3pvoU91JpzikVoJJ0OUmikNDsrYDnDAxF10JmevL2UK023ss3X8d01k2ZX1Xc6pseKk1jpYm7B8oa7+XzTVCuWWNPM7duOiUlmFW9afmGcZ/vpZ6N2sKZlKDjGxNzJPr5nX2Tn/FeG3Y0vsdfOULredNnJlGyt2o1tI913cSoTsB5do2uyd7JEdxKwCaBp+MbA2eBrr1FDST2qr3VcTo/+0xUTAJ6J4xEySPW+dqj/yxgRnmuPjvndFbgmer7OtFjTKLrhpX41qhUZKJlQjRm01dsHwI0ETsCNGI2JTNn6JBI7H335E6OUOgcTzNDwPdS8kbt40xKCNufiZJXIBAIBAJdCMlLjFIhh1K+MaycB59eJV0AM9mYExH1XadyLYOGSlj3IkQK+RzKBX7f9CpfHf0eZ7/kicjhOJdr75uQgOf2TffLXC7nBJcG3uQIDZV1MSxDxGZH0+99xRwK+e4XbXbfKCVgh3WTyzmB3zgJZ50giAl1swpQlQudfWNMZd1D3ZzPOcE84fSNXkngJiFiyDfFHr4xVtK7g2+K+VwQRBtlTAbQ8c2QASJRxzdhcoSZs0CnMSkVcig1zwImCLyuvjGgblb7VF+xm2+aSUWWSd5yIR+eoQ0QEd1V1vxJcMqO/mK+4/PGhDIy+vmdFLTlQh7FfOMsaYJc7a6yNkDyRiom5TucoU37ptu6Ub4ZYzy76iSumFg3AeldKnS835juP9uJSGyNCzAS8BolgU0kR0TPRr3iAuxngeZ493c4p7XGBfjvnt3IqkEDBJ6K2QwU8x19Y4yAD8QK7cckn3OCMzTvfNVR8vLP1/HIWaDT88ZUmfNeSt5c5O7JGbOZ6HHPEggEAoFAMBNC8jJgwEA/k14lVoFINiarHb0vLsF4cJf+0SDwBg0ckNWBt1sQZMCAklcFNnQuLtzlzHTKVg6WzZGrXVXWao4YUEPolVUzo0LQKVVlW2VtImgXkt52yWZAl4jgt0XneWOCrIqlvsuEb/j7nOr4xoRKU8s3QS9cM2Vnu85Xg8S3Tilt1uChxp42aLpcs1YpXn4isWu/ZAP7/KgGoWmq36peCWt+IkKn7KyJMYnjG1PrxnZPT50xMakW1Sm3bso33c7QJmzJStlZdU/oRN5Fv8deErgHWQWYTYjvPkf4E+J7KTQBc31fg0T0DqpVwAypqTdH+ON6YQyry7oxENdrfL4+8c0rmui9lwgEAoFAIGiFkLwMCLMx+S9ROoQIKzGjQ96V+O0AwgtaN8JZqUVNZP/bJr51ShAp35jqydt1TAzMk16liRt28BOaOhd+Y2XONYLuyhbOfsm9+s+22GGAbO4aoDK8p2kRZ6x7Wm/fmCC+tQhNAz1OAT2yyoSqWMc3JhMBskBWxVs3/EkJOolnrGSzhvpuyFRyhA5xZjIpISNqUR2y2VTfVx1ylXN/1SE0TfRej5OMx04kBirNLmWSDZAzar+0XUpbJ8HYhDISCM+jOsmjnL6ZDO4VvUkzXkKzd3wiIO8MJX/rEPCcvtEi8AwQ35O1OISmmSpS3e98BhJ7K93V3oCZEvQ6VeBM90vuvqcZIL5FySsQCAQCQWwIycsAMwpaHSLCQOawBnlnQqEJ6BLf5gg8LeKblTTrfTg2lk0dQ91sRAHflWzmt0OP0ORXFEc/X8cWE3tJp7LRpuwY61FaPPo9fgJeI3hoIFFDxzdm1DtxyGYzvay1SE1WIqLxd3YlREySzV3WTUB6c5c513jemFDQapGrmSGbM6TkLZlYN8qOzqTZHANKFeV3rUQAdt9kg8DTWTeh6s2AajUTvskYgadxFuBtWRQjgYY7qahHW43o92wreU34Rn12v0ZSL79aVCNGYeCuNaFREtjEvUKnNLGpdTOhUcLaxH1cS8lrwg6dyngGSiQDmnuJAUGLjh0CgUAgEAhaISQvAwbKBi4MOoSmAbWZjh0myCrf92NlhZq4aGsRibaDMZE54vs+ix1R3+glJTAG3ePMEdaS3hqkmZojNTO+0cnsZiUStXwTjgkXJjRIiP6IstmEb3RsYSUiYvjGNtms7JiqeXA9A+umiy0mVG9hv/POdpgoTayjno2WI+Tyjef5mVHQ6qzfkJix2x4gSASo1tn2NNfzg3OJDvFthkjssn5NlmvWJFa5fFNzPUzVPAD2SwLHWr+s9yz9yhHjjGdo1/NRqTd8o5PEykryZkT1pvaRfs1Sr5y+UeumG6kZ+oZvTCZjkGYm7NBS8jLfPdVdodvd02QbmO4J8eb2NC3Sm9s3Gi22TJyPwpLAlhXFMRJXxhnPaYBmJTgjJax72yEQCAQCgaAVQvIyYNBE0D1GSWAT6jsdIrHqeqg2AxXUaJAt6G1LOSRnuBCqrPWC3dx2dLswqKBE3fNRdXl8M1XzoOL5OuXFVTkpDuiU/gnJKhPrt7dvogE+akzW3NA3XeeJwfmqk7hiPcDc8I3vIwjwUaN1T+s2Jgb7JXebI0V+O3R8E11TXPt8I/jV+H+tMucG9hLdwBCbHTH6V3LaEk0A6V6emF9BG0cJyJsIoEq9dhuPhqLV9/nWcNTnOvPVREngrJRr1gl0ez7jnhYJotsnV3snKM4xQWhqkGZq/kTJPno7wr+xO5FowDeKNOtCrgZ3YNbSxL0JIjV/6sxn6OD3WS6zqkMkmiml3VvJa8I3UzUvPENbbo2jl5jPn/yt05NX+Ybz7lmph0mY3eNY/PN1Mkais5k2Tr33eM8Hm2+qdQ81V/lGh/i222JLMLvxwx/+EG9/+9uxfPlyOI6DO++8s+fPbNq0Ca973etQLpdx4okn4rbbbmO3UyAQCGYThORlgIl+jbFKAhtQ8na7MEQvelwqL3UQdBygr6BT7pW/LJPtS6UOaRa9THAprVUQ03G6Z92byDDX6slrInNYqw9u+D22oHtk3XTzzaABskrHN/0GCc1uvonuMVxkVXTdaPWyNlJKu3cQ08ie1s03xRwcB6y2KDtyPdZNVuariT7jOmRVuZBDPtdwDtvzpkms5nMO+oqdj7gmVJpxekiPMZYXV39jr3XTdA2bWkX5pph3UC508Y2BwO6oxvkoTATgV0b2qk7gMPtmohb6ppjv7JshA/NV7dv9RR2y2QTJ22Vvjez/bL5p2pHP2V83er0azaneuhKJEb9xjYmaq46D7s8bIyWss1GKV6v/rAHfRMdaR/HNmzDSu5qVGd/0JjRN+CZ6Fu1eEthErESH+DaRHNE7dhSdx9x7GqDXis2EkrebHYLZjfHxcaxatQo33XST1vu3bduGiy++GOeeey62bNmCa665Bh/4wAfw3e9+l9lSgUAgmD2Q1CgGmCiZFfZV0SDNTKiIuthRKuRQyudQdT2MV+uYO9C5B1pSBAfBYh45FalsAyMXBo3yMibI5nGNi3Yxn0OpkEO17mGi5mI+gx26vgmTIwxkumuWSeazo/f6VSTFVM3DRLWOBYMlejsqer4JSwKbIInsZlPrrJtczkF/MY/JmsueuDJYKsBxevuGt793xgj4LkEQx3EwUMxjvOo2CJQhejui/c67+cZEopWOIrHfgB06pbSVb0YrdbZ9Pnom6eYbE+XFlS1d+yVnpFyz4ziYUy5gZKqO0ak6lgzT2xElvbv5xkQv60mdREmDqtVu5W8dx8FgqYCxSr0xTxj2NJ3yt0DkfmOiDYxO31cDhGa3c1ou52Cw1HjejFfqOGqoTG+HOi8Wu+9pJgm8bvPVJKHZ7e6ZyzkYKOUxUXUxXnGxcA6DHZUs+UaHSDShSOxNNucjZ+iJqouFDHZMRvY0nbuniT1NjzQ7/H2j9u1o4l87mKh6pteT15x4o9v6jfqGa09TY10q5LomfBmNY0lP3sMWF154IS688ELt999888047rjj8LnPfQ4AcPLJJ+PHP/4xbrzxRqxdu5bLTIFAIJhVkKcmA0wqebWUVUb6u3SfSv2lPKqTHn9gt0dJF5MqTb0Sq/wqol6+GSzlGyQvl3pH1zdGlLy9101AVhkpc95rTAqYqlXZ9hJd35i84Hb1TZE/EUB7TMrNizazWrRXL6JBA2SVVi/cognSTK90V3+p0CB5La+bfgP7vFa5ZoN2dFu/QCOA1SB5uZIjFLHaPZks2EtYWzfESI7gbFOgUdpUfX9kio+Aj5JVvewATJFVvUvxcpb01gkwA411NVapsxHfE5p7q1kFbW/1Hasdtd5zBGiMyXjVZVTy9latAmYUiao8sU5JUd6evJr3m3IBE6y+6U16A9FSvAYIvK5VeQyqVnuum8YZmss3OgnXgJnS7zr3cRO+0UkwBvh9o30mMVD6fVyD+B4wYYeGeAPgv3uGba307p6sSt6g/ZkoeQUNbN68GWvWrGl5be3atbjmmmvsGCQ4YjFZdfHkrhE89PwBbH5uH37y7N5mGf0C/nTzvVg63Idff80ivH3Vcpx+9DwM93dPcBYIKCEkLwNM9OSNdSg1UOamV2B3sJTHocka26U/7oWBVy2qobIumyDNeqshgMYcOjBRY8uUjRNgBpj7JetkUxssc96TECnlsX+cs1yzJjFjgPgeq/Te04woeTXKeAL8ylV9IjEjiSsG1Ds6ZDMQUWkyEWc6qvOoHbbLNZtQWesn8xQAVNjXTa9AmQkl77gGgWfCjrD8bfcx4Z4nOsQqED2n8Y3JZAwikZes0g/sApwlgbNDJIaqYh0FPKfaW883c8oF7BmtsJc21Uk8A0yRVb0VibaTNIDGXvIKGHvAaxKJRpIjNBI1slLmXNmyd6zK2FZDb46YSP7W6slrQgGvSZo1fMfnG91EACO+iVGCnrc6gd7dk33daK7frKwbwZGFXbt2YcmSJS2vLVmyBCMjI5icnER/f/+Mn6lUKqhUKsHXIyMjAIBarYZarXMSp/pet/dkFWJ7Ojzw/H78zlceTPUZu0am8K0HX8K3HnxJ6/1/9+7TccGvLLFGBGdh3JPiSLA97t8mT00GBAReRg6ltsvLNL7Pe0DWCTw0vm/uEtVVZW0w+K+roOVX8uoF3U0EqLor4M2p3npftHl9E/bU1ls3vKq33r4xQ5rpJozw7vO6BPwgM6EJRMmqbJRrtl0VIEhu6qEWNVkSuGuf8abfzKi9eyQlFHn313BP00vSMEJWaZC8Zko02iW+1R7Vu/KLgfLiOnsa81xtfLaeEpCb1JzQUGhG7TBRStu2kle7Gg7z/Ua/lDZ/adNJDQLATG/g3uWaAf6y3rF9Y1lBazQuoHkf5yqHP6lJEJlMXNHpyZuF8rfctuiSd3OC+WpXNGGiMp42ucqc2KsTXwSy0/5MIOiF66+/Hh//+MdnvH7vvfdiYGCg589v2LCBwywjENu7w/OBLzyexwtj9hW2f/LNx9q+/tk31mFyC5Q5Ywe9bJ+YmIj1eULyMoBbyet5fiQgY7m8jO6FgblUle6FISDwmOzwPF9PZW3gUqkTxIzawqbe0VBoNr7PG+z2PF9LEREoIzNAiHD3ior2Fu1uBy/Z7Hp+oODW6WVtosx5L7UodyleXd/0MxOaddfDVM0DoEfAT1Zd+L7PkokYt/Q7vwJeN6mIx45q3UPN9Ru2aJwFJqp1Nt/oKqu4icRoD/hu4O697no+qvXGuun27OsPkjRceJ7ftXdgUugqEgeKzGeBuHOEKXHF8/xgT9Mh4KdqHp9vanqECHfv9WCOdFHPAvwJm74fud9oECJTNQ9110OhS+/ApNAlvkPlKpdv9OYIN1nl+75WdYIokci1bsJS2rbJKr0zCXefYt/3oaOgDXtq850FdMvOcpdJHtdcNyaqr2kR8CV+3+juJdxlksdjJjqb6GXdVTRhwDdZIVdjk82cCSOa8SPBkYOlS5di9+7dLa/t3r0bw8PDbVW8ALB+/XqsW7cu+HpkZAQrVqzA+eefj+Hh4Y6/q1arYcOGDTjvvPNQLHZP6s4axPb2mKq5OO0TG0k/kxsffKB1/9v052/B0fPaz/U0kDljB7q2qwoEupCnJgO4M/6m6i58X/2u3mVnK3W+IEhWFLS6atF+ZjuipYZ1Lgy8vonZ84btwhCP0GRTeEV907UvUmM8qpy+0S5nxnyZi9FHE+C7zEX/vu6KxIYdNbdBoJQKHL7JCpGot365e8BHfa6jFq17Pqquh3KBPu0w7l7CRRLplBNt2KEITf7njQ5Z5fmNZ05fDwI0jS3aZBWXWlRbtcqrbo7uaTrtAXy/cbbjCGbpqkW5E1d01XfscySybrq21YiM12TN7bkXJ4E+8a3mK/Oe1jMRQBHwHosdUzUvuN/oJLE2bHExxHBOi1OuGeAkRPSqE6i9hIsQqdQ9eE3fdO1lHbFzvFrv2R89CXT7RrIr4GNWSeAim6uuh3rTOd2IMzUevt+wnXNP023Rw+cbPSU+d9J1NBlPRy3q+419sNdenAT6d09eAk87MZ/5ftPimy7neTVHvAz4RtnClVSkX4KeN/m7WvdQdRvnDCnXLFA4++yzcffdd7e8tmHDBpx99tkdf6ZcLqNcLs94vVgsahFCuu/LIsR24IbvPo0vff/ZxD//7T/6NaxaMU/rvbVaDXfffTcuuugiLdv3jE7hjX8Tj3Q+53M/Cv4/n3Pw7N9cSJp4JHPGDnrZHvfvkqcmA6KZshxQF3jHAfq6BNKjF72Jmothjkx3XSKxzKzeCbJCNRXFbIRI6Jtu5buiFwQu34xrBkHYSSLNRADufqtqjuQcoK/YebxN+qanWpRZWTWuG4xhJkRU4Cufc1DuQty2BN2rLgvJG6+3KP+60b1ocxGayo5SPtd1vFuC7lWXheSNqwTkUyTGVN8xE5r5nINivvMBP7puJqouC8mrW7Yy8A2TIlF3jnATmso3joOue1p0vCaqPCSvPvEdqoo5oB10N9QbGOh+hu4r5uA4ZggR23tJ3D2Nj2wOP7fbXlIuhL6ZrLo8RKLmfOUuLx4oii2XBI6e/7qNSbmQQz7nwPV8jFe4fKO3z3P3oB3XXL/cZHOLb7rdPYv5YN2MV+tMe5quWjQbBPwcdkJTL+Erut+NVeosRGJcAo9bZa27frkTAXrZEl1T41Ue3wTlxW0reTXVs9x7a3RP4xhvQTYwNjaGZ58NCbht27Zhy5YtWLBgAV71qldh/fr1ePnll/HVr34VAPAHf/AH+NKXvoQPfvCD+L3f+z1873vfw7e+9S3cddddtv4EQQbxhr/5b7wyWun9xgge+Ku3YfFwH5NF7bF4qA/Pf/riGa/XXQ8n/u//6vnzrufjuPVh0sO26y+y1tNXkC0IycuAAe6LSyW88Hcrg1XK51DIOah7PiYqLoYZLtr6qjfeS1RYNto2oRlmp3bbZM34Ri/7n7ustxrr3r0aeddNtPytdd9oEoncxLcukRiUBGYvTZzv7ptCxDe1OuaCQyGil2E+wHzR1im9B4SBIS6FyGRNL5hazOdQzDuouY2ygfN6t7mJb0tMsoqrmkZctSg7MVPsvm7yOQelQg7VuoeJah0LBkvktkwGQXdNlTWzutl2/9lg/fbwTS7noK+Yw1TN47OlphdQZScSNfcS9t7AkYSEbmdox3HQX8xjouqy29KTXA0UtMzzVVvtzWuHIgo7wXEcDBTzGK+67Lb0LnPOXLFBu8cpr8panf+0fFPKY3Sqzl6Zp3dPT977zaRmIoApsrlUyHWtPuQ4DgZLBYxV6o0z4xC9Lbp7ySB3hSDtajhm7sClfA7FLr7J5RwMltSeVgcwU3mWFroEHnf1Nd2qHgPMoomob7olseZyjT1touo2bJ9Db8t4zL2EvQS9ZpIG1/N3rKqXYCyY3XjwwQdx7rnnBl+rssq/+7u/i9tuuw07d+7Eiy++GHz/uOOOw1133YU/+7M/wxe/+EUcc8wx+PKXv4y1a9cat12QLdz8g1/i0//1lPb725GrWUEhn5th359+4xF8e8uOrj+nCN855QIe/7isiSMZQvIygPvgo0usqov2yFSd/YDc8zDIXNZFN+OePTtVU7Ua9Q0fSaSnFuVWWY9V4vmGO2CXhXWje5nj7oU7HiG+u4Fbyavb1wxA6BuuC67qkajZb5Vrvk7V9ZSRasxMECK9MFAq4NBkjU8dqV0S2IyyqqcKwVAigE6W+0Apj2qdj0iMS65yB6iyQlb1Ir2Bhq1TtSo/WaWrsrZOaHK3btA7pzVsaQZ2uSolxDwLsCclaBOads9pQGNtmSB5dZMjuAj4sFyzXZW17voFGuumQfIyV2/S3Uu4faOrSLScCNCwJd8kebnv43pnaNtqUZWAzJ6M12P9Nt7T2NO41ZG66mauRMngeaNZRYrPjhi+KRUwUXWtE9/GlLy6yRFs46HvG8HsxTnnnANf9ehog9tuu63tzzzyyCOMVglmC3QVrwDwy09d1DVBMev44mVn4ouXnRl8vfLDndXrY5V68P2ffPg3WHr4CrINIXkZYCrzUCcIMlguNIhEpgPyuCaBx67kreipRfmVVXp2ABHfsJdJtusbdVDvRTZz+2YsxoVhoNTwDXd5Yt35yqeA1ytzzq3knYxFVvH6ZrLaUMFol53lJldL3TOYuX2jG/xX72mQvLz7a69yw0EQhImY0SarDPUW1fJNMY+D4PRNM6CquW64FYm6PU75fBOPSGzYwj1f7aqs45Zb5yYSdZ43/aU8MJ4B4pv9eROPmLG9jzRs4d1LgvKZlhNGwn1er6oHd3sPnZLypvZ5XSIiK8lN6nxJjXHNCjTheyr8PaQzUsJat8IXm8o6hm/mlAt4ZbTCLhLQna9cY6KtFmWOp8VaN+U89o7xJyX03NOyouRlTgQY13z+CgSCIw8/+MUr+N1bH+j5viyrddMi+rd1I3x/7dPfAwCcfsxc/N+r38xulyAbkCcnA7gzD3XVotH38B2QNfu7sGce6hF4oVrUrh0Af4koXSKR2zdjmlmh3L4JLy4aASpmxbd+zypeZcZUTY/Q5FZ7ByWBdQK7zJf+Si0mkcjmG70x4SdE9NQQUVv4CRFdBbxddXNImmVALcquVomrss7IumEvfxuDrLKtSGQmiUJFseb6ZSbv4vhmyrqC1sz6zUov6zjJEWzJeLqECLu6OWa5Zst2AOE+b9uWfuYx0U2m7Wcu6R07cQWM+6sqpd2TrFJnee7126uktxlFcZznDR+5quebgMCzXM0q7Ntsd49vsYW7ioVmXIB/vmZDydsrvigQCI4c/K+v3I8fPbO363uOxL60OoTvYy8dCr53OJPfggaE5GUA+8EnRnYb50Hd8/zgktjzMMieeag3JuYuDHF8Q2+L6/mxS5vazgodKJqZI3Eucxy+8X0/JFd1fcNOrnZXi3L7RpeYAcwpM3rZwl0SeFKbbGYuGx3LN3zPG9/3YwR2TZVr1u3bbFd912qLbbWoISJRm9C0H3TPSplk/l648YiZLJTSZt/nNW0JfWO3YkOWkiO4Cef4xDdXNRxd3zSJ1QwkR6gzZWb2ectjEl03vu+TByB171lRW7gSVxT51PMMzd1nXHPd9DP7Js66GeQmnDVFAiGRyOubXgReNKmXZd1oJqED/G3HQpFARvol9xRNhGcjDt/EqRwhEAgOb7z6f9+Nmtu5rPdV55yAD13wWoMWZReKwN2+fwJv+ez3275HyN7DH/LkZIA6+EzVPLieT17/PZlalP6gPlV3odoo2FeLxsx0r7ksvpnQVM8C4QWX46AevTTr98Ll7aPZM4hZDn3jeT5yxL6JUxKYM2hXqYfl2noSeMwK2inNMeH2jSK9e40HwFsusuZ6qHuNTU2/XDOvIrHXmEQDVBy+SaQQYfBN1fXQdI1+uVe2cs3xnzcse1oMAp5TpVmtR9aNdbWZ5p6mAt1M57RYhAijsqrueqi6npYtpgh43VLa1TqPb2IRIowkUYtvNPd59jLJmmRzzfVRcz0U890TxGLboZk4GrWFgySqux6qdbVuNMucs5eg11OL1j0f1bqHUoHWN/HKNasxoX8Gu54fnKMz08u6x52vr2mH5zfuADpn3SR26JzT+hjPAlHf9FTymqqSoGmHz+SbRGXOmX2jnZjPrOTttaepWIrvN85qOvM7iR16yRF8Zb3rrheuG80y5/wlvfXWjZpX9HuaKHkFgiMdF33xR/j5zpGO3z8SVbu6WLFgICBxO6l7hew9fCEkLwOigbSJah1DfUXSz4+l5GVUVini2HGAvl5KQPYyN+owqFeCCGgEZHTI2DgILy76GbscJUWjF0Rd37ArVTQViUDDNzo9p+MgIM0KOkpeRgI+6pseQTjujF1dtWh0T+Pwja4dUVu4kyP6evTCZVff6ZbSZl438RTwfGMSXTe6BLztqgADhnwTRy3KETyMfqa+gta2sor3LBD4pkdp4qgtHCrNKDmpWzmCu4ynLtkM8J6h45XStusbUwraXgHm6DN6subSk7wJ2tFw7CUTtRh7WvOswEYk1vR8E51Dk1WXnOSNUzkiLJNM34M2ep/VV2kylzbtdSYptvqGjRCxnBwRxzecZDOgT+BFfTHB4ZsYZWfV+WjKsm9MJUf03NMivhiv1slJ3okYBPwgYxun1ueNZplz9pLe+mdojnUT9vaWULVAcKThx7sc/OlH7+34fSEl40GX7P3i2cZMEjCD9gYoAACUC7lAecBxedFVrQK8ZZInIpfbXlk03GVudIPd5UIOylQOW3R7nAK8SsBoidWevjGkSOzvQZr1FUPfcBB4uiWSgQjxzTBHVGCllM+h0CNAyt1bVFct2lfIh+uGkSTSSo5g7PWmFAWO0/BPN4RzxK7Kmnvd6Jbhjb6HY92oeVfMOz2JBWO9cHutm4hvONeNHiHCl/A10QygF3K9faOIbvYe0j3I1VbfcMzX+IQI5xzJ5xyNPY2P0AT0ydXoOY1jnsQr12zGN+WeCV/ZSI4oF3LIGfGNzrrhS1BUf1vOQU/f9Bf59lZAn/guFXIoqLsnA6mp7pFavmEshz8Ryzdm1k0vQqSQzwX7Lw+5Gt83nOtXxzcDzElFus+b6P7L4Zs4Sl7O+ToR43nDXkpbc0wcx2Gdr7rlqxvvUdUJGBJXKuH9pldyziBz8rdun/F8zglEBCzEdwyVtUAgODwwOlXDqz96L/51W/t1//ynLxaCNwV6jd+fbi5g0y9eMWiRgAuSHsUAx3EwUMpjdKrOe/DR6SHCSODplkIC+JW8un0jHcfBYKmAsUqdxZY45TMHGcckLJFsNxEAiJTi7aGgdRwHA8U8xqtu48IzRGtHErUoR/AhtKN3jk1oB5eSVy8pIZeL+KZaB1AmtkOtm95jouY0ayKARnKEyqbm843+ntZfzGOi6vKoNGOsG86ys7rEKsC/bqZq8QJUXL5Jokhk2dMSlPRm6yemOSbs6yaObwwEdnWS8bLSC7flLMDiGz31HcBLrgbBVC3fGEpc0fFN8wzN4htNtTcQ+o9H9Rbu8T3PAhlZN433NO6enGeBWGpR1udeb9/0M9oBhPc3Hd/0FXOouh7rPq/jm2AvYVw3gzHWDXu5Zs11U6l7LAlOiRTwHGRzhNC0vm7iqJtLeUzWXN75GkNlzZMIoEesAvy+iVstcKpWZTnPj8folywQCGY/OqlMAVHuUqObsvfKrz0C4BE896mLyNuMCcxBlLxM4CwXqcpfxVEkchCJUzHIKu6+r5lT0GqRq/x29CoHDPD3Fg1IohiEM2fwUIuAZyylraueBQyoRWPMVxUYYunvHWNMBhkvuHHmCCcxE7WlrJUMwLdukpRr5iXN9APM/EH3GL5hIJzjlQTmqwoQi2xmVGUAMUkiA+VebZfSDnutZsA3sYLd/HtanDO0ddUqu7IqifKcUwEfR2VtV4nPXUo7JFfjKGjt7iWcZFWmfJOgpyenIjHO84YzcSVWb2CmZLw4PT3DZx+9SjOJktd2UiC3Aj4WAW9kTOIkrjA8byrx93i+xJXm/qpJwHPZMhEjGU8gEMxe3PrjbR0JXlHu8qLb+B7/V3d3Jd4F2casI3lvuukmrFy5En19fVi9ejUeeOCBju+97bbb4DhOy7++vr6W9/i+j2uvvRbLli1Df38/1qxZg2eeeSa1nerAOFVnIETqisDTIasU2cxXdlaPWFUEEbPqLU4vXEYiQodcHWQkzQI7LF/4gbjqZr6gXTAm1tWi8YP/tvslA+FewtHbTFeJD/CSzfHU3oYIeMuJK0mIGU7fxCpNzNyTNw65yrPPZ4M0C30To6Q3OwEfY55YVvKaKDsbZ91wq6zj7Gkcz5tYwW7Ocs2JEhIy5BsWkigbvkkyR7hVb7ESRliUgBlJoIlFVvE+b8ZjPW84ie8EikSO86JKSNCq8MVHrAKR8uIa57Q+xv01Tk9eI3MkxjmNo0pCw5Z4St7Gz/ARiTrkap8JJW+cdcPlmzjPYEbCOc75SCAQzE6s/PBd+MR3fj7j9f99Rh3PfPJ8CxYdmXj+0xfjF584r+33Vn74LoxO1QxbJEiLWUXyfvOb38S6detw3XXX4eGHH8aqVauwdu1a7Nmzp+PPDA8PY+fOncG/F154oeX7n/3sZ/F3f/d3uPnmm3H//fdjcHAQa9euxdTUVCpb+xizIMNejb3d18dYziwJCcGnENEnvpUtYyw9efXJVU4VQpKy0VxBkKmAXI1BEjHYUqnHJ5t5FIn6qnMVKOEKugcJIzrEd5GRrEqi5GUI/sdJBOBU4gPZSQZIUuach5ipa9vBubcC8chVzmdfrLL8BkgzvSQNbt8kUWZwqs3iBO0YSt7FGY8y3z4CxCWcGfe0JMpzznVjuTcwEO0tGkNZxVj63XZVgFi+YVfAx1C9MapFE80Ry+o7tW64SgIHY6JVrjlbCnjuksA97WAkm6Ofa5tcjZMI0Me4z8dSaDJXjggSRmIkSnLEscI+43afwXESrjnJ5ujnxvEN51lAJ54mEAhmF762+fmOKtFnPnk+FvcbNkgAx3HwxbPruOJNx8743mkfu1dUvbMMs4rk/fznP48rr7wSV1xxBU455RTcfPPNGBgYwK233trxZxzHwdKlS4N/S5YsCb7n+z6+8IUv4CMf+QguueQSnH766fjqV7+KHTt24M4770xlq5HArk5AlZFsVmRVOYYdkzUXvu+T2uH7fkhWaZXP5Lv0J1GtcpbS1iLgldq7Wif3DRASifHIVT4Cz3aZ80S9gav06waIkpq2FfD6JegDlTVH2eh6nDmSHZU1p1o0Ud9Xy8RMqDqnt8P3/aAUr/3SpknU3nYVxZxBId/3M1R2dhb7hsGO1nVjN6AaltK2HdjNom8sK6sy5ps4ZXgnmO43akz0Snk27kCcJFGciiscPeAnYhCJ0V70HL4ZT7CGeXtI240LJDkvcsQFPC/m84ZTkRhHQctI4IUKTR1lcy6wg8M3cRIUOUlNlbwVJxGAY/3GGY8gcaXmwfPo97QwRqEvJOHxjb54QyAQzB6s/PBd+Oi3n5jxupRmzgb+6sKTOvph5YfvYolHC+gxa0jearWKhx56CGvWrAley+VyWLNmDTZv3tzx58bGxnDsscdixYoVuOSSS/DEE+Gmsm3bNuzatavlM+fOnYvVq1d3/UwdqAsD52FQh1zlPJTGIRJVJp7nA1WXtjRTpe5B7TdxsiBZSmnHKjvbeE+FxTeNMY5Tdtb3w5+jQs31UHMbztEjnLNSircZBOFUe2v1Wm3Y4Xo++brxPB+VerZ6WWuVOWckm6diETMNO+qej2qd1jfRi3YcWzjVzbHKvTKSzXq9RRt21Fx637Q8b3QI58A3llVvGelxqsaDyzdeDN+YUCHMJt+odcOxp1VdD27TOTpKItZEyUSJAJYJEUO+sd1DOlGPU1aFl/4c4TinVepxfZOVs4ABJa+OopjZN+osEMcW63uJEbJZv0Sy5yO4i1Bhqu6GvtFaw4x7SYLnDW91kXhxAWrfRD/PdlJCECvRIBL7GBMBphLEJwD6OFbVDfe0eBXp+Hyj89wTCATZx+hUrWvvXUG28PynL8a//sHZM14/bv3duOPhlyxYJIiDWUPy7t27F67rtihxAWDJkiXYtWtX25856aSTcOutt+Lb3/42/vmf/xme5+FNb3oTXnqpMTHVz8X5TACoVCoYGRlp+TcdnNltSYhEziy7OIpigP6AHL2o6hyQw4M6fR+gOOSqkQxIHTsixBr1pb/FNzoqa8ZyZrGIb07VagLyDqDvLxq9HNpWriYrTcxX5jzuRZvalprrB2RVnGQeXpLIbtnZOP2ZovOI+nkT/bw4z2DrxHdGVKumfDOgdS7JCLlqwDe21030+ZUV39gmq8bFNzMQj1xtqs0YFcVx5ggATBHfK1r2NNsK+DjkKmuZ8yZZFfPuSe2b8UgSqO3KWknKNfPaEdM3xHfPibjnNEYFfJyzAGe59Vixo8h7qMdkMmbMJislgVkr4wW+0VDPFvjOAtE9Mk7yt20hiUAgyDbef9vPcNrH7p3xuqh3s403rFzQ1j/rvvWolG/OOGYNyZsEZ599Ni6//HKcccYZeOtb34o77rgDRx11FP7hH/4h1edef/31mDt3bvBvxYoVM97D2yNRX31nIvNQ5+JSzOdQzDsNW8iJxMZ4FHIOinn93qK2yVUT5aF0fFPI51DKh6WZSO1ofp7jIPgd3RAtQ0SNWOQqK9ms75t8zkG5ScJT9+WNjrFeL2sV2LVNrmaDgC9G1g1nECSWyppRAW+/7Ky+HaVCDoVc43kzQRxkVsH/Uj6HgsaexkrgZaT8bRyFVxZ9M85QsSF7vultRxZ9w7Fu4vQpDglNDmWkPjFzpPgmXonVbPimmOf3TbmQQ775O7rBSJ/xWL3X7SZpRO+e5L4J2p3E882RUK45blyA/Awd8U1OyzeNdc5JVsXyjeXE/HzOQanAGxcoae5pnL2bk9xvWCr0xbjf5CJxAa67p248jTPGGCcuIBAIsouVH74LG5/aM+N1IXdnD57/9MU4ftHgjNeF6M0uZg3Ju2jRIuTzeezevbvl9d27d2Pp0qVan1EsFnHmmWfi2WefBYDg5+J+5vr163Ho0KHg3/bt22e8h7Nc81ScrFDWMjfhJUoHXIfBOIf06PtYD+pxyjIxEpo65W+B0IfUl7lKJCHBcXpf5owo4DUUxaxkc4w+uADfxTJ60dYLgvApEpMRiXbV3gBfIFP5Op9zgiBYdzs4+yXHUTQ17WBVrfYOujds4fGNCjTplhDLStlZE+UzdX3DtW7ENzMRJ+gefZ/4ptUO24RI9H3im1Y7bBOJAJ9v4vSfBXiTR0Mlbzb2NB07gPA8R+6bGMkigBniO05Jb06yWaf/LMCXdD0ZI1kE4JsjQLw7X3DfY7Gjeb+JvZfQ3rXiEJpAaC9P9bX46mbe+EQ24gJx42mcKmsp1ywQzF60IwG/fuWvCsE7C/G9vzgH266/aMbrKz98F0anahYsEnTDrCF5S6USzjrrLGzcuDF4zfM8bNy4EWefPbNeeDu4routW7di2bJlAIDjjjsOS5cubfnMkZER3H///V0/s1wuY3h4uOXfdHD2VVFlVuP09OTsDaxNiHBd5mKU2wGYfROnTzEj2VyJeWHICgHPRTYD8S7anHbEJRLDecJTBjB2cgRDL+skQRAOsjlueSguwjnqG53kCNW/kFqpEv3MOIkrnHboBru5COe4wf/ADsaAqu1y63FKaUffR1+u2YtlRzhfD1/fBOsm5p5GXhI4KWmWEd9wJgVmxTc6fXABM76JlRxh2Y4WW7JCJFrut8oZ/I9TmrjxPi7fNM9G2mdovr6vcSo2qERXjudNJYgL6IWXBpjKEwd3Cs1EZ9aSwHHaJxX5ztBh8nfcPY24X3Lce5aB6mtxkr85z9CzLZ7Gmcwj5ZoFgtmLyarbluB9/tMX4+wTFlqwSEABx3HaEvSnfexe3PN451anAvOYNSQvAKxbtw633HILbr/9djz55JO46qqrMD4+jiuuuAIAcPnll2P9+vXB+z/xiU/g3nvvxXPPPYeHH34Y733ve/HCCy/gAx/4AIDGRL3mmmvw13/91/i///f/YuvWrbj88suxfPlyXHrppalszUpWKGvf16p+2WiAj1ydjHmpLDffx1mWSccWVkVx3GzMpm8qxAReXNUqqwK+Hn/dZMI3TGs47gUqUDdzBIbqXsvv0LGDeq4C8TOHuQjnOIk8UTtYyjXHSAYYLDNe+BMG3dkI+Lh2MJQEjlMGkLXMeQz1HactE5lSJOr7hrPHaRw7Gu/j8k2ydWPdNxlSiwaECFP/yiz4JhaRaKA0sX7lCF7f2CabG7bE6LdqQrWqnRzB45usJDcBcRWJjGRzwnsFVzWc+KpVvsTeOJWKWFWrGoQmwH/31L3fhPs83xm6rEF8hxW++OJp2snfXFU9MhKfSGKLQCDIBh558QBOvvaeGa+LevfwQTtf/sE/P4TX//UGC9YI2kHv9poRvPvd78Yrr7yCa6+9Frt27cIZZ5yBe+65B0uWLAEAvPjii8jlwkPjgQMHcOWVV2LXrl2YP38+zjrrLNx333045ZRTgvd88IMfxPj4OH7/938fBw8exJvf/Gbcc8896OvrS2WriaxQrcscZ6AsI5mHlVl6KGUl4JP6hvhiGZeA5y2lrX/RNlKWKaaSl3oNJy63brkfEWsv67jrRl36bSdHZKVcczN4yKGyjk1ElHkUTRMZCWJGP9N2mfPYZWeZep7H9Y2JPuNqTXS3gy+IGbuUNpNvkpLNrESilm/47dD1DV/Z2XjKSN6SwDGIRAOlibXVzey+yc660XveNEsCZ6ByBNe6iVtitZ/xGZyZuEDcylrM5ZptJ6EDCUsCMxKa8c+uxGeBhPcs2yWBWduf1eOeXXnjadpxAQMxRt2kBIFAYB//38Zn8LkNv5jxuhC8hx+e//TF+MYDL+LDd2wNXts7VsXKD98l/s4AZhXJCwBXX301rr766rbf27RpU8vXN954I2688caun+c4Dj7xiU/gE5/4BJWJAJgViTEOyJxkVWxylVnJmyWSV8s3rJfKZCWB2dSis6yUNm/Gbrwx4SodHfeiHc4Rxh7ScVTWdQ++72uVM45vh+YFt5n9XbEdoFLVCYjJZt/3Q+IshnpnsuaS+yY2gafUkcSEc2yyKii/R++byYz5RrfsLJfiO65vuIJ2cX0TEPAMvolPrvL4Jg6xCkR8Q7xuPC9DvmmW5BzU7C3KlQwQvzcwTwl6z/ND1Vuc6gQce1ol5l7C5Juk5zQO38SquFLkWzeVmPcbrj0tuGdplr/tZzpDR583cdo4cZwFkpOrtOsmNqHJtG4AJHrecPrGdmWtuHdgVnI1hsqa8ww9FSOBJvo+6iSauOuX634DxFNZCwQC+3jXzffhZ88faHntD885AR+84LWWLBJw47I3vgrvfN3ROOkjrcptIXrtQ9KjmMCV3VZ3PdRcH0A89U7N9VFzmVSaGcnYja2+Ywi6xyFX1XhU6h48zye1JTyoZ6Msk+6FoWyk944GkVgI102deN0oIq6s2SuKa74mvWizlrDW8U3TDtfzg72QCkkz3bOSHEF94a/UPfjNIY4TBFE/S4nYBB6Tb+Kq7wbKimymDmKGvtFR4Kn3+D5jf++YJNE4W0lgu70ao76JQ8D7Pv26iVvCmkt5ntQO8uB/JBEmTtlZ1/NRJT4LqIoH8XvAMxHwsRMBeAhNXVs4fROeSeLtJeTlMzPim+i+FOcswOqb2Ko3nuoE2ndgJt9U3fB5o2MLp2/iJhhzKRIT20G8fmuuB7d5v9dJBlD+8xjOAvHPaUx7WkICnvruWXe9YP7HUVlznNPixtO4qhMkjqcR2xE34UsgENjFCX919wyC98cfOlcI3iMA5UK+LaHbriezwByE5GUCV3bbVPSiHYMQARhIInUY1CWrmLNCYysSGQgRBT3fhONGrcCbinmZ62PqU5w8c5j2AhX3oh0dtynbF22udROb0OSZI57no1pXigj9XtaAfXI13Euo50g2lPjRPVKHSIz6j3qexO2RyLanqfKZlve0aAk9rYSvyHvIyyTH7V/JVJIwrm8CAp6J0ATilTblsSUZSUR9dk3av5JrPIB4gV2AU3ket5R2NohErgAzoHdOi9pru50Fl2/U+dM2adbimxgJxgAwRX4+SkaIcLWj0U2m5Vo30fG1vaclbUeTFbKKPBEgum40ys72M8Zsgr0ktvKca2+1nEwbM2bDehZInLhiN/mb6+4ZN6lIIBDYw8oP3xXEWBWe/ZsLccz8AUsWCWxAiN5sQUheJnBlt0UPljpKwHIhB1VRxjYhwpUVqg7qcS+VXGomQI+sil60yG3JiLo5bjY1t9ob0LtoR9eW7cscW1JC3JLeBSbVWyTBQWcvKeYd5Jp7GnmZ5IQJI/TrJht2KKKnVMghn+tdmqyQz6GYb7yPfg035mt8ctUuWcW1p6nnaFnTN7mcg1KBqfR7UIo3GwSe7VLacX2Tj/iGq/9d/J6elksCMxOa/cU8chq+KUb2NC4iwnYp7aTJeFy+6SvmYvvGdhWaAa4zdMIynlz9Z0t5vT2tZd0QE2fqzKibYMzVjz42WcV8v8nnHBTzvceEc93E3UvY9rSEzxvy+03z83JOY+30AufzJm7yN1f7pDglkqPv49rTAL14WiGfC3zIdYaOm1TEdfe07Zu4SUUCgcAOTvrIf8147flPX4yCxvNOcPhBiN7sQFYgE/gzIHNa/UAcx2G7vEwmPKiTj0nSyxzT5baUz2k93HI5J7hY2M6U5SISJ+MGqJjUonEv2tF1kxkCj6k8lDbZrIKYxKrz1uSI3ra07Gm21c3M/ZLjl1unTlxpKiNjlMvi20vilXvlskMFM+KqiLj2kTi+4VMVx7Ml2EuY7NCdI0Hwn7iUdlzyLvpervnar9sLNysEfEA2M41HgnVjX23GozyPT2gWWn6OCpV6vPGIvte+b3jtKMe0gy8RQD9swOabrBB4ifvP2rUD4PNNUgU8XzJtvLY4nKWJdXu4ZuV+k5mkIuZEAN14mnovYF+skJVS2lxngSCeppkoKRAIzON3b31gRul66cMqEKI3GxCSlwnhBYonczjOZY6t501sAo9J3Zy4JDDP5bYcIwjCF5DJBgEfm0hkUosmuWhzlXtNmsVs/aLNbEe5oKfeARjLdyVUntvOpmZT8sbc41ttsUvghckRPIEhbUUxU+JKSJrpkXcA33yN7ZsC7/NGl0gsM82RJL4ZYAq6xy7FmzFChFoFGPdMAvARznHVOwMZGRO2AHM13tkI4O2rDcQ5C2SFgOdWWWfBNwnJ1ayoVi3b0WKL7X6rTGNSSegb29WsABOJGvHO0OStG4LzYrznnu1qDQ1beEjN+BUbmmcSpvmqn1TEq2yWUs0CQTbxtZ++gB/84pWW14TgFSgI0WsfQvIyIbww2FXfAYzKqrgZ5gbUzVp2cB1Kk/imwEwSxVab0c7XuL7hUosmumgzE9+2S2nHvWhzqQDjKpsBoMxVOjoj5Gpm+janUL2xlQSOXWrOrmq1zERoTsQkiKLv5VMV66pFuYjveL2Bufslx1k3fVz7fMyzABshEuwlmn2bmQmiOOuGq9yrUq7GVZ5TJ0rGbd2QFWUzEO459hVNar4yEfDa5zSe4H/cuQpEkiMsE2d8xHfMlifM60Z3jgDZq6xle/1mpSIAwLlukiUVZeWeZTshATCQMKJ9TmvGsQ7TdZOEgBcIBGbwzO5RfPTOx1te23b9RZasEWQV7Yje0677rgVLjkwIycsE7kBZFsiqpAf1rFzm2C4ucQgRtuzh5jzRKH8L8CsStS8ugW/s9igGQptt94rq4yrpXY83R/jKzsZX7/RzJ9FoBsv6uPbWmGUruRJXVAZ/vHLNPAReoNLULDsbJNAwqTS1iUS2uapKaeurRbnma1zim1tRrF02Ws1VprNArHUTzFeeJBrbiStZCTAnOQuEqmK7ahU+BW0yspma0EyS8BWSRFy2xCv3ykbM6J7l2c6t8c9pWSHO2Mo11+OtX66KAHHnCBCeX2yTRFwK2vgqax5iNUmiZFZiFFlpWcReSSOBb2zHsbjHRF9l3VQ2ZyAZTyAQ8KNSd3HejT9see0Xf32hdpVEwZGF6UTvaKWObz243ZI1Rxbk6ckEvktl9kr/xA4MZYRsple9NX0T46LNFXSPnf2fldJdGVIkcpUUTaxuzkjGPd9cjR/Y5Zon8XtFUffCjbfPl5kqAiQpmcXhG9/3I5nu8So22CbwuNZNkt6iHMFDz/NjB1S5nsGVuKXw2fqMxz8LcDyDo+tGt40EW3/vhGeByZoL3/fJ7KjEtCP63grxnhb3PB8QmkzP4HIhbtloWt/E7aMZtcV2NRwuRWKQBBe3z3i1TuqbsB1NHEUiTzJA/OoETMrIFGVnOXwTT2XNO19t9xmPe4bOimo1agtbMo9t3yRN0iBPpo1/TmObJzHvnmwJxinOaZRIkownEAj4cdJH7mn5+r/XvRUlzbuD4MjEdKL3g//2GA6MVy1Zc+RAViUTolndnkcYBMlQ+cykme7WiRnusrOxfMNUcicjF4a42f/cF5c4WaFcCrzklyi76ua+iFqUNLCboDqB8iPfPNEck+bBlpwkijtHInOV8nkTV7UK8KzhqZoHNeW0SwKzkavxSvGq8ajWaX2TioAnVItWIp8Vd0xst0xQ76u5Puou3ZgkOQtwKOCrbrhubCfBxQ3+KzLJ8xt/BxXSKHkp52vN9eE294PYfSNtK7ya7/P91vVPZUcilTXhmNRdDzW34Zv45ZqzkXjmEfsmDQFPuW48z0c1IGdiJiVkpMep6/m0e1pMQhOIno/oCPiWZDzLpd9DlXW8qjx1z0eN4ywQ5+7JnChpn8CLmYzH5Js08TS2thrWfZNs/dYj+zKJHQl8IxAIeDG9p+r/fN0xOHHxHEvWCGYTnv2bC1u+PvOTG0hjyYKZEJKXCdGDGk8QJD5ZRRl8SBIE4StB1Lzgxsy4r7oeaWA3SRCEI3joeX4w5/R9kw3SrD8SBOG4aGdJkWh73cS9aCs7qAO7kwn2tKyUju7nDrrHXDcAj28GEpRopJyv0VKcumNSzlgwBqBNBkhSEphjvkbHVzfoHpK8PAk0uqrVvhbfMOxpMbKbOZ43U5EKA3FLv7MpI5OsG8J5Epdsjr6XsmJD9KylXdUjSNKwu6e1rBvSZJ7k5zRKkii6F8QlV20Tif1MvknSv5KjtGl07sevQmO3vHj0WT3FsJckq/BlN+GLTYmfsAQ9QDtfE7UKYlg3VdeDyjHUVeOz9X2NW0WKyTeJnjcM+3zN9VD3spVUlMQ3lPGjJM8bgUDAh+kELwB87rdWWbBEMBtRyOfwld99fctrx62/25I1RwaE5GVC9EBPq2jKBlmVKAiSFfVO9KLNkuke4zLHUGa1ksI3tgO70VKsHBeGRIFdYmWVumjHTUqoEAd2kxLwQFgWldKOJHsapW/qrheoK2wrz+P2iuIKuk/GVK0CPGpRNb6lQg75nF7fl6yoEKIlUCkDMsnIKnrluRrfYt5BIR+vJLBtAp7PN/FVCGWG+ar8XMg5KGr6huNMAsRP5inmnWCt0+5pyZOKKH2jSj/nHKCk6xumhK9KzL2kmM+hmG/4hvSclqBHIkeFoOj46pewbpY2tXyGjvqGkoioJDhDcxAR0c+y3qc4jW8ICedwjsRPKqLsZZ0m4Yu6p3bcO18xn0OB43mTolwzdTUcBf1EK6Yy57HXDdNZIElyBEulosi60Sz9npVqOFy+SRIXEAgEPPi9234247XpJXgFgl5428lLZrzWLnlAQAMheZmQzzlBjXrKy0uaQylpdmrzsxwnfh8v2xdt7sBurKA7Q0ngVoWIXZI37KOpZ0cpn4PicCjVZslUCPSKphZllWaAik8Br4gI3aB7GASxnrjCsJdMpSg7S54cUY+nBMznnIAooA26J+8BT6sWjUesAoxq0ZjlM3M5J3jmsKhFLausk5VY5VKLxpuvjuPw7POBkjdJMh5DybsEZxLbVT0cxwkDqgxKwHhJRfRzJHomcZy4iSt2+yUD4dzmeAYnWzcce1pO2zdqH6Hs2zzdFl2w3PlSkFUcKutSIYdczIQvepV18nOJbUUih4I2ScJXSGgytU+yrNJM0o4mfO7RE/D5nBMkGvS0g61vc7w9zXGcoJoQh28StT9jiOvFSfjiSlyJm/DFdU5LkvAlEAjoMVl18b2n9rS8JgSvICnazZ3//R9bLVhy+ENIXkZwXqISESJMQcz4ASrqQ2n8CwNnYNe2IjGJ6o0rsBt3vjZ8wzAmaS7aDMqqJBdtLrWo9fma4DKngsCkpYkTqHfYgu4Jgg8cJdczkxyRYm8lD7orkkgzOaLxXk5y1a4iMRHZzKQWTaKg5SGJvMR2cDxvdMszAjzkHZA0KYFeeR43SQPgnSOJEmiYzmm6Zc4BpgTFavy9lacHfPLnje0WEgCXujleWxyAJwkuybmVQxkJZE/dHOt5kxVCMxgPaiVvgnXDQFbFbZ0E8Nz5outGN2bDVUo70VmAY90EcSy7LbZU8ncS39iO2QBMe0mC9SsQCOhx8rX3tHwtBK8gLabPoX+5/0W4nvTnpYaQvIwILwx2+4lxlpeJRUJk6VDKEnyIHwRhzYBM0A+Qq79LEhUCZfAwzUWbVFGc4KKt/Mi1buLsJRx9TtVlLpZ6h5k0005c4eonlohc5VM0ZSXoHq8XPdO6ac65coz5ykFqpnvu0Z9JMqUWjeMbRuI7FmnGoARMQpr1M5B3QKgQSaTGZ1ACJjq72u7VyJ0ckZF7RaL1y9DjNFnlCKZzmmVyNawuko05YvtsBETmSZz9lTOZJ4FvbKu9uZK/k8QoQuKMUKWZFQI+VRU4nlLatudJJcEc4ehlnapsdAaS8VjPAjHO0AKBgBbTS+l+6bfPtGSJ4HDDdKL3hL+S/rzUkKcnI7JCrrKQVWkO6YSH46gticjVw1n1ligoRBzYTUCucip5bSurEl2gSkqRmIVyZvTEWdaIRNs9tYF02dRZKTtre92Us6QWZfFN8oQvrtKmugjVokxlZxME3WmJ72wEMacSJNBwnEmA7AQPk6jNgn2eUlGcocSV7CjgU9hB6pvkKmu2oHtWSr8n2lttrxvuJNY486RAbot6jiYiNBnaatgukQwkU3xzJozEUnsf5utmKsF9nEUBn+qcZrcNG1sv6xSxEtvVmwQCAR3+a+vOGa/9j9OXW7BEcLjiT9726pavpT8vLYTkZUR4eaHPCk12GKQPlMVRqnD0Mml8XoJAZkbKZ2Yl052tJ2+q8l2WSSKOQFlG5giQsAygGhPL/cQ4iIhkxCpX0D1NVQAGsspywkiWgu5JbCkzqPGzsm7S9NSmLqWdSGWdlaSErJFmGVCLclYnSBbsZlCLJthb2fY0y8kAyZLgmnbYVlkHZDNPMl6ieWL9eZONszwH6d34vCTzJBtn13C+2p0jHOQdEFGex9jnBxhiNmmeN1lRWVOvmzT7q+1zGk9yRHLSm2tPs1+uWUhegcAmrvqXh1u+ljLNAmqsO+81M157ZbRiwZLDE0LyMoKlJHCCCwNH746pBArNqB2+T1d7PVHJnawEQRj7NttWzCS1hTd4OPsIeK7AbpogM2VgKCuluxL1BuYumRUj6M5TSlsl89glibISoHI9H1U3TY9EegJ+Nvbk5Vi/nueHlSMS9LKmnK9JShNz9PdOowKkPKf5vp/qGcyRaGU7CW4qhdKsUvfgEfUvivrGPpGYjXY0adRM1bpH2lsqO1UBEpzlWfs2J/CNS+2bNPs85fMmGyrNRGfo5rOp7vmou/TzJFFioO2za8aIxKrrkfomzbqhFU0kOS9mZI4UeXwzm+/jAoGABtMVlduuv8iSJYLDHdOTB97wN/9tyZLDD0LyMoLjwpAVlWaiUkjN8fB8BIFyElsyohBJF+y2q3rriygSKQn4JMHDrJT+6S9yliZOdqkk9U1WypkluMyxlL+tJ1Ez0QfdgWTlzHjma5Jy6007LFdJ6GMI7Ebnm+2EkVRqCMslGtXY1T0fNaKzQCWioEsS2LWdlMCqWo2xj6iEDs8Hai7Nuqm6HtSjKxYBkJWSohykWT35eRFone9pUHP9YH+MlQyQkfKZHMlNlQQqwKjNVLbUXS9Yg/GefdlQN/Osm+TnNIDON4kTvjKSBBeWoOdIKopPNlPa0pLwZTuZJyNJ6EHFswRnEkpbWhO+4hPOPO1okqi97SZ8RecTpW/SKM9tt4QTzG7cdNNNWLlyJfr6+rB69Wo88MADHd972223wXGcln99fX0GrT18seHnu2e85jiOBUsERwoe/Mialq+lbDMNhORlBAchkqaUim2yqiUIQjQmNddDvRmgsq3ySlNK23agTNnhExLwnuejmpGevJnpZZ3goh21mSqw6/t+EGROVHLddtCuwLd+k+5pVL4BMpRNnYJcZSkDmPR5QzQmLSRvgiAzR5nzRGUrLc9VjqB7q2+S9Aem902svbXEWMEiTtCdIbAbPe9lJtEqFpHI4JuMBN2j+3TfbOy3yqnkjTNHImuMzjcpE1dIK65kQ7WaJAGOxTctCV92E1eSlTnnO5Mk9g2RLdF5H8uWjMQFePfWeL5RsX0q30TvSbGSnTOibuZM0ohzXmzxDZEtVdeDlyAZj0NlLT15jyx885vfxLp163Ddddfh4YcfxqpVq7B27Vrs2bOn488MDw9j586dwb8XXnjBoMWHL6786oMtX0uZZgE3Fs0pz3itQnh/OVIhJC8jOPq7pFFGcvTLiNP7rpjPoZBzWn4+LaIH7TgHZBYiMSuZwynJKioCvuWibZusSkHAc5QmjmVHJAhCNU8q9VBZlUilabk0IuuF33LQPWniSqAqZigDmJVSc7HKVzMEdsPnXg65nH5maz/LXpKibDShb5KUiowGqKgCqso3xbyDQj7GWSAjSt6wpza9ajXO3lrMO1BTm2ovUfM+n3NQjOMb1oor2WjdEOcskM85KBH391Z7Qc4BSol8YzmJlaEaTpI2BbmcEzxzqOar2gscp/V51gs8FRuSnKGz0X82l3PIK4xE118s33AoaFMQibYTaBzHIZ8n0T0paasCKiSrdMJANge+0Z+rjuOQJ8RH11+S5LMJ29VwMtJ/tsU3VDGbpMl4Jb5ncJyzq2D24vOf/zyuvPJKXHHFFTjllFNw8803Y2BgALfeemvHn3EcB0uXLg3+LVmyxKDFhyekTLPAFqYnE5z0kXssWXL4QEheRvBkYzYOUXHI1az0d4m+n4r4VgfBuEEQljFJQlZlJIjJQcBHx9Z2gCo7pU3jX7QL+RyKeb7kiCSBIUoiMSs955LMkXzOCQLjHIpE2yrrZEkJDHuaUr3F2Fs5gu5JAnZA6EfKvaSSaE9rjgcl2Zzguec4Dvk8SUJCABElr+WWCYGKiEEBHyfQHQ0eUp8F4qoysqJo4i1NHO8a1se4p8Upycba39tyxZUkbQpabKHe0wrxfMNK4GVE7R3nbMRhS0isxkz4KtGfBZIkGGelt2j0/WS+aX5OKWYyXlaSElirWcU9HxGfS9TnxE3GY6m+luLuyRHXix1PC4hv2nhaIWYyXlaSIwSzE9VqFQ899BDWrAlLtuZyOaxZswabN2/u+HNjY2M49thjsWLFClxyySV44oknTJh72KKdclLKNAtM4p/fv7rl6xu++7QlSw4PFGwbcDiD5RKVQqXJc3GJf9EenaqTlwHsjxmg4igDmOjCwFhKO+7huL+Yx2iF0Dd1lZCQTPVGWf42SdCOp19y8ot2za2zqN5iXeYyUmqOJRgTCdrFQV8xh6rrkatF4yauKJKItj1A8vLipAov1SMxBlmlbKnUPfKge/IgJkemu2WFlyr7HtM3fcUcJmsu+bqJ/dxjKJOcqg9fBpLx+op5jFfpfDOVoMepsgPIQOIKw5kkSZIG0PDlyFSdXJGYdE9jCezGKoXPkLiSYkwOokb2DE6zfhs/z6AWjeMbhvtNUt80xqRGZkslQU9tIDvVmzjO0EESekLfUKtFs7GnJSF5+e43SYlEsudNAtV54/2NMaFMME4XT8tGXIDSlsTPvSAuQFi1MOE8Ecw+7N27F67rzlDiLlmyBE899VTbnznppJNw66234vTTT8ehQ4dwww034E1vehOeeOIJHHPMMTPeX6lUUKlUgq9HRkYAALVaDbVaraNt6nvd3pNVxLX9pI/e2/L1M58839rffSSNe5Zg2/bVK+e2fP2l7z+LP/2N47V+1rbtaaBre9y/TUheRgwwlHVJU1KUoy9SkgAVQJ+xm4mLdoIMc071XdyDelmRvMSXuaRq76yU4s3KRXuUMLCbJJgK8GaYJymfSbp+68kvuJRB9+SJK/RKwDQ9eXmSm+Kq3miDh0nmKsAbPIxDrvL4JrkK4QBq5IpE2yqi6Gcl6tvMQMzEVb2RBw8TB3bpE1cqaRK+LJdojL7f9hmauvxt9LOSVMPhqZJgd59P0lM7agfH+ShJr0bK9Zt+3VDtaemeN7YTV6jv4lE7bI9J0nNa2PLEbjIep2/iJuNR96PPyhwBshcXSBpPIyfgM5BUJD15Bd1w9tln4+yzzw6+ftOb3oSTTz4Z//AP/4BPfvKTM95//fXX4+Mf//iM1++9914MDAz0/H0bNmxIZ7BF6Nj+5EEHQLjWrniNi7vvvpvRKj0c7uOeVdi0/YtnA3+6OaQnX/3Re/HFs/UTiA7ncZ+YmIj1eULyMoKzr0osQoSDbE5QHir6fvJM98QZkHYvuEHGbhaChyVaRURa37AQ35ZLzSW9aFOPSZYuc5kpZ5aQgA9VXpaDIBxlAFPsaSyJAAmUvJS2JCdEspEwwqJCSKiypu6rnTawy3IWsF3aNGHiCjWBl7T0Hm/iiuXkiNR7STYSV6iee0ltyVqiJMBQEjgDiZJJSE2OvbWScC8hP0NnZI5EPyvRumFJ0oi3l1CPSeq7J8MZOlYyXoHhnJayJDA1AR/XDp51k6BSUabOAsQxm4QVV7L0DBbMPixatAj5fB67d+9ueX337t1YunSp1mcUi0WceeaZePbZZ9t+f/369Vi3bl3w9cjICFasWIHzzz8fw8PDHT+3Vqthw4YNOO+881AsFrVsyQri2P6n01S8f/W/LuQ0rSeOlHHPGrJi+59ubp2PF154YU/RS1ZsTwJd21UFAl0IycsIToVIEhUCaXZqSmUGdU/eLJQBTFWiMQsqazVficsAJlaIWFa9BaQZw6Uy6UX7sMymzoh6J/WYECeuJO0tar1/JedzLyEBb52sYlBmpAlQ8ZSKTKKyDhPGUtuRoaSiZCprjhKNKeer5YSvIPHMcuIKT1uNjJFVGSAS0/iGRVkV+5xGe2ZMmkzLW3HF7vMmKxWCgoTNxGfobPQWnay58H2fpPde4mQ84nWTOoGGMqkoSTJe5sqcZ0kBzyGaSHZOo1o3qasTkFWRSpcUaDtRUjA7USqVcNZZZ2Hjxo249NJLAQCe52Hjxo24+uqrtT7DdV1s3boVF110Udvvl8tllMvlGa8Xi0UtQkj3fVlEL9v/7JtbWr5+7lMXxWqxx4nDedyzDNu2P//pi7Hyw3cFX7/m2g14/tMXa/2sbdvToJftcf8ueXoygvPgk+SiXXU9uJ5vzY6oLVSB3fQBKnriO1mm++GbsZuFUtpZKQOY+KJNHMhM31vU7piEJAT9hT9ZPzGOAFXMbGriOVJ3PdTcxvPCetA9sW+yUWpO9VammiOu56PqZkNZNZW0N2FGgu59xMFDz/MTPYOnB90pkFjJqwh4yypr6jOJ7/vJStA312+17sEjPkP3Wx6ToDSx5eoiUd/E2tOadtdcH3WXKGGknqydBXk7mpT9K7OSYFz3fNSIfJOVFj1TSdcvZ3JEnPtN872ej+AsYcMOgP5ckpX+s0CyNhJq33EJ101W7nxTac9pHPdx2+smaaIkcVJCVlpIAMmffYLZiXXr1uGWW27B7bffjieffBJXXXUVxsfHccUVVwAALr/8cqxfvz54/yc+8Qnce++9eO655/Dwww/jve99L1544QV84AMfsPUnzFr8xyMvt3ydFYJXIIiCKi5yJEFIXkZwBEGSBA+jhyT6YHfcQymtMiNQrcbOHKY9lPq+HwaGEipEqDawtFnM1CWBkwZBOFRvSQiRCmFgN7HajJgkSl7aNGOJK3W6xJWkPT3ZiMSkqlViFVH0s7Xs4Ai6p+y3anvdUO9p0c9JUqKRNOieESIiKz15KwnXjQp6ej6C5Iq0CKt6JJyvxMHDuHOEukRj1fWgjlmxeotG3ks1JpWEYxL4hjg5IjkxQ7OP1Fwf6lEehwBo9Q3tnhZ7TAq0REQlYZIG9XOv5nqoe/ETvvoipIXtZzD98yYdkciRjBerB3zkvWQqzawQ8AmTNMLytzTjkTgZj2HdJG/Rw5UoGfdM0ng/VXsA1/NRTVApgWPdJG+rQStWyEoLCc/zg3O0lGs+MvDud78bN9xwA6699lqcccYZ2LJlC+655x4sWbIEAPDiiy9i586dwfsPHDiAK6+8EieffDIuuugijIyM4L777sMpp5xi60+YlXjPP/605WtdtaRAwI3pc/G49fZ7RM82zDqS96abbsLKlSvR19eH1atX44EHHuj43ltuuQVvectbMH/+fMyfPx9r1qyZ8f73ve99cByn5d8FF1xAYit1dmri4GGB/sJQSXrBpS4DWE930aYLgvgB2ZSk1xvQ6t80yExZprRkM1GgLOlFu5/DNymD7tSqN9uJANHElSQls4AMBB+oicTEJbNoFYnRcY0+Q3qBJeieOLDLpN5J/Lyh902cQGa5yBF0T9lv1bLKmiv4D4TJOTqI2k2XqJH2GZyN4D/d3hr+PUkDu9TP4PjkKm0fPuXjOKXFAXrfRD8njm9a7je2+3tnRMnLtbcCrc+QXijlc1CiEPKkhIwksSYlEjmS8eLsJcW8g3zTOXTzJF15cTLSLKWSl7qCBRBvDZfyOTjE6yY4C8Q4kwCM7QESVheh3uPj2sKyblK2PyNPzLeeYBzxTUxbBLMXV199NV544QVUKhXcf//9WL16dfC9TZs24bbbbgu+vvHGG4P37tq1C3fddRfOPPNMC1bPbmx+bp9tEwSCjvh/Xnd0y9ei5o2HWUXyfvOb38S6detw3XXX4eGHH8aqVauwdu1a7Nmzp+37N23ahPe85z34/ve/j82bNwdN1l9+ubU0wQUXXICdO3cG/77+9a+T2Esd2I0ebuMc1HM5JwiEUF/6bRN4SXvOlZmyU4G4wcPsBKi4VG+2gzFJL9p9GQq6k5c5z0hfs0rCAFVrNjUxuZo0cSUrc4T4wl8u5GKV7+EIulcS7iX91MHDlKVNqQPdpQS+CYKHtoN2XGVnEz73qMejmHdQyOvbEg0eVjISPMyKyposOaK5t+ZzDooxfJPLOSgVaFVeqXvyEp8X4z/3eJIjGr7R39Mcx+FTaVqer4mTm4h7eqrxcJx4CV8N3/A8g22rm4OzQEZKEwPxfUNdnjhpi57MEIlM5W+B5L6h64WbEQIvaXITtUAghW+CylqWk677M/LcCxJXyPaRiKAl5l1LIBDo4eYf/LLla1HxCrKGz//WGS1fi5o3HmYVyfv5z38eV155Ja644gqccsopuPnmmzEwMIBbb7217fv/5V/+BX/4h3+IM844A6997Wvx5S9/OWjmHkW5XMbSpUuDf/PnzyexNyj3SnxxKeVzsYKHQJZ6RfGoRbNy4c85iBWgKuRzKOV5SvHGHhPiMoBBEDNxOTPaOQLEu8zlI4Fd25myXBnmiXs1MgSokiau0PfCtT0mCZWRxEH3SsIqCRxB96wozwPfJF2/ZAGqZKRZS/CQSKWZvHxmRoKYTIRI3LnaEjy0Tq5mpT0A8Rk6YZWE6M/QJSimS+ahJ0QSKryoCaJCDo4TrycYV6KGbd8kbiFRoN1b1bOiv5hP7BvrlSPIy5xnr4VEXN/wEXh2S2lnJwk99E3cPodsvrGcKJlYAU+s5FXjGjeJFeBoZ5FWAW83OYL6fpM0iVUgEOjj0//1lG0TBIKeWLVinm0TZi1mDclbrVbx0EMPYc2aNcFruVwOa9aswebNm7U+Y2JiArVaDQsWLGh5fdOmTVi8eDFOOukkXHXVVdi3b1/Xz6lUKhgZGWn51w7qokMdjIlTLkuB/NKfwQtuLDuIFYnRC1T8izbTBddyxm7qCwN5QkKCizaxAj7pRbuctUAZMQEfV/XWaotlFUKwl1gut04dBFGEZoJMavIea4lVb8Trt54sQFUmz3RP9txr/AyPIsL6WaCugnZ2CZGkAWYgci6xvacRk6vJE8+oS5smXzf0e1o2gu5JewNzqd6SlGfku1cke95QJ/YmPafZVppFf8Z6Mh51NZzMJNMmT1whv3tmJHEldd9m4rNRorNARgg8+ioJCRMlie+eSRXFQHjGJDvPp03+JvZNOeneSpwcIf14BQIebNs73vK1qHgFWcW3/+jXWr5e+eG7LFky+zBrSN69e/fCdd2gCbvCkiVLsGvXLq3P+NCHPoTly5e3EMUXXHABvvrVr2Ljxo34zGc+gx/84Ae48MIL4bqdDyvXX3895s6dG/xbsWJF2/eRHwRTXOa4goeJ+4llJlCWgQAVsW/S9oriIFfjgDywS7FurJdlylagzHYwFeAgZ7KVuBI7GJORfucAZ2DXbgn6UC06O0vht9hivb839fOmuX4tl6BPmgAHhGfGw620aeqec5bVswAnAW+3z3jqajhUyU1Be4AEz5uMrGG2fd568D9DZ+i0ZWeJW0hYP5NQnAUycq+o2K7wRZywmeosQF5NIxmBd7iSzZPV5L4hJ5wTtuihTv5OnbhC1spCSF6BgBPn3rDJtgkCgYAZs4bkTYtPf/rT+MY3voH/+I//QF9fX/D6ZZddhne84x047bTTcOmll+I73/kOfvazn2HTpk0dP2v9+vU4dOhQ8G/79u1t38elNEuWecikFo0ZkGFTadpWraYIHrL1v0sYGLJNRNAnRyRTAQLZUSRSl+LNSpnzVAGqwzRxJW1Jb+qge7p1Y5msIlbNVBIqebkU8El8wxU8tN1DOqnKmivxLJFalC2pKJ4t5JUjUvYZtz1XAb4zdHIigtYO28H/pOdWIJLwRa3STFr63XKPUz7yLknlCFp1ZCWhGj8rZ1euNgVx78AAR4wiYXIE9bpJmghQUGRzBu43GSFXg7OAZbFCVsYDYLzzWa7qkTSJlauUdpKzgEAg6A7f91u+3nLteZYsEQj0MF1p/p+P7rBkyezCrCF5Fy1ahHw+j927d7e8vnv3bixdurTrz95www349Kc/jXvvvRenn3561/cef/zxWLRoEZ599tmO7ymXyxgeHm751w70l7n0mYf0h7BsqBDiB3apSYj0RCJd9nA2LlGpiZlMXOYyEhhi6oVru3dWmsQVLpVXVtZNVkqspikJbFvxnZm+r8TrN0uJK6mJRPLAbrLgv+3nHsBRLjItAU97drWt8MqSIjF5CXoe4jspWWU7KRDg8E26JFb65NHk57TpAb0kICk7a/2cRtw+iSDBmMQ39eRtNcIztN39NUigIS79nrjMuWVlc/RnyM4laUsCUyXQpFXiE+9pcZObgOxUgusjT9hMGJ8oheuXwjdpEowFAkF3HLf+7pav5w2ULFkiECTDH3/9EdsmzArMGpK3VCrhrLPOwsaNG4PXPM/Dxo0bcfbZZ3f8uc9+9rP45Cc/iXvuuQevf/3re/6el156Cfv27cOyZctS26wOSlXXg+vZPZRSZ7qnDbqTB6iSlmjMQIAqM+X3uFREiUvN2Ve9kScDJL1oE/smvSKRKlCWPHGFrZd1wvKZtlUzWVGqAJHgA8F8rbseaq6fyBau501s1RtT4ort3qKe56NaT1falOxMQqAWJQlQUQQPCdaN7/upS2lTK3n7E+5pVddD3U0/TyjWDcWYUPiG/ryYzDeu56NG4JtUCnjCPa3FN4mTWO2WnVVnbs9vrJ20oLjfUK+bpGcBsiS4hORq9OxfIXj2JSXNAMYk1oy0TIi9tzZ9Wc/UnmZ5L6FOxmueBRSxH9cOz0dwH0iDpM+9qC22Wzf0E+9pacut+z7RnpbCNwKBQCA4/LDt+otavqaI1xzumFVP0HXr1uGWW27B7bffjieffBJXXXUVxsfHccUVVwAALr/8cqxfvz54/2c+8xl89KMfxa233oqVK1di165d2LVrF8bGxgAAY2Nj+Mu//Ev89Kc/xfPPP4+NGzfikksuwYknnoi1a9emtjd6YKMIPqQ5+FCWrfQ8nyD7Pxuq1WqdhoDPSl8k3/cTXxjK5JfKhEEQ6sBuiiBIVsreZUWRqMaj5vokvqHIps6OWtRykkaRNkBVSaMWbc6rCoEyI0oC2iar0irxqYOH6ZKKCOyI+DexasZyv9UycfAwTR++wDcE6yYabEu6z5MRIimTmwCaZIBUPeAJ93kK31DtaZWkz70IAUphC0UyHoUdlboHFTuwXoI+ZW9gAJgiUGmmKZ9JOV9rrg91XUuaaEWt5I1f1SOybgiefakU8IQJI7VIMnvsylpc5dZT7GkUY5KuUhHd2bXmeqgr38QlEptjQnGWB9IoeWmfNxRVpCjO0LUMJbGmjQsANFVX0pzTBAJBZzy6/WDL19PL4AoEWYXjOC1fT1ekC2ZiVpG87373u3HDDTfg2muvxRlnnIEtW7bgnnvuwZIlSwAAL774Inbu3Bm8/+///u9RrVbxm7/5m1i2bFnw74YbbgAA5PN5PPbYY3jHO96B17zmNXj/+9+Ps846Cz/60Y9QLpdT2xu96NCSvHYvDJUUQfes9FVpCYJQ+CZFXyRK31RdLwiCJFXQ2u9xShvYTdrDC6BNjohetK1f5lISmgCNb1IlrhArEispFYnkiSsx102ZLakoRWCXMIgJxM/+5yulHTNJg5gQoSCraOxIT8BTBQ/TliYGqMmqFAoRAmImOuf74q4b6konCVXW0fVOuafZ7jOeyjcZKRVZyueQa965Kc5H6UheOrIqGqS2fU5Lus8X8zkUms6h3OfLKUoCU6yb6N9iXZGY8HxUyOdQzDd8Q5HMkxUFfNQ3cRXwlPcsIHqGjmdHKZ+DiiOSnAUSlhYHaJOKWp43CRMUyVt9xbQj+ryhSD6j8A3lWT76uXHtIKs0lrA6QTGfQ570eZPcNwKBoDMuuekntk0QCASGULBtQFxcffXVuPrqq9t+b9OmTS1fP//8810/q7+/H9/97neJLJuJXM5BqZBDte5lJrBr/cLA1NOzHFe1WmgNug+W0y2FIIgZM2AH0JbyjGbtJyer7AZBpgd256T0TbrLHB0Bn2bd0CuKkxEi5WkqhNS+yaAiManajC5Aldw3jtMomTVZczHUV0xpR7K9tfEzhMHD5riWCznkck6Pd7ciK/1WVYDK8xufMUzkG9ultNX6LUWCPLqgTASI2hJ3TIp5J/BNpeYC/el8U0nhG46gezHvoJCPez6iDR4mVVk7joO+Yg5TNY8oYSS9ypoyESCJb/pKPL6JS+A1fJPHRNUlIr6T+4byfKQ+o5BzUIzpG7bewAnn61ilTvoMTqPkpbx75nNOQJTGtYM6GS9pMk/NrZM+g9NUXCHZW5ufkXMa54E4oO5FHzxvEuxp/c09jUKRmJXqBOozHCdBmWT1vCFLxkt2Poo+b2xXjqBUwKvnXiLfEJ7lgeQVV4CGP6mfN0lEEwKBQA+PXne+bRMEglh4/tMXY+WH7wq+PjRZw9yUMZvDGbNKyTsbwZH9n5UAVamQPLBrW8mbyznBgdp2EIQywzxdgIq411s1WRAkl3NYiAjbyRFpLtrUvklz0eYI2tnuJxadZ7FLzXEFqNL4hrJEY6qgO50S33ZZNSD5XqICVACRb6rJegMDkWewZRVRmXD9prElum5I1TuWq3okTRYBstMjEeAhiZJV9aA7kwTjkUQZWaBeN01y1XIp3lRlZwkTrVIRqwXiswBFVQDSqh7Jk1gpq3r0FXIzSrf1AnVPXoqqALS+yUZcoK+YT+wb6r6vySpr0Vc6sV45ohom0MT2DZOSN4lvaONpyX3DIZpI4hvKszyQpb0kecKXQCBojxu++3TL10KOCWY7Vn38XtsmZBpC8jKDVJnRPKjbPhxPRi7acUEd2E2VYU6poCVR72Sj5xz5ZS4jiibbChF10e4rJA+CkJO8McuZNWyhVzcnCXaTBt2bZapKCdSiXOvGdk9PigAVDWmWghAhJxIJgnYkfYqzQYgkTUgAsqOyBogDu/VkykiA+ryYHbIqM75JY0eBbv2mUapwqUWz4pusEJppkiOoqnqkOruW6M5pSfs2R3+GlNC0nJDQYkuaeUJyr6BIYrWrxKc8twLpqjdl5e5JWfWMZq5SKeCzcZ6niAtYbyHB9Lyx3TIhjW8EAkF7fOn7z9o2QSBIjc/+z9NtmzBrICQvM7Jy8CG1g6R0F3XJrBSXfkLVW1aCIKku/IddYDcbZNUUgSKROjnCNjmTJnGFI+huOxEAoEkYoVTNpHneUKhm0qwbakKEpt8qJYGX3A7KfudZOAvQVGygU1mnU54fPokAQEoFLalvshFQTeUbpuSIZOpmhj3NcsWGkEhMPlepzgIVApU1Zb/krNw9k61fOtIbCH2TLImGkFytZ0OJT6JsJriLA+kI5zJhFak0lYp4KljYXb8ATaUT21WkKMUKJH2bCc7yLbZkpaqHlGsWCFjw3Kcusm2CQJAIv/WGFS1fj1XqlizJPoTkZUZWMt0pLwyVTAUPs9HHKyvlCEkCVNQXbetlmdKTqyT9mSiIRCLfpCJEKAO7GSvRaLs3cIstWVFZp3jeUAZB4pY4ByJkcyYSVwiVVSmewbRkc3pVBh1ZlY3yxEGpSMtKlSmCRIAsqN44VNa2k/HS+YY46E5B4FEkWqWp6sFxz8pA5YisJG1mpTQxRYlV8oorSe4VHMkRtu+eBC2LqEppUyR/UxBnaXxTpjynZSR2FP2cNHc+ynuF7VLaFL7JUlUPylhJEt8IBIKZ+P7Te1q+jluxTiDIKk697ru2TcgshORlBm05pGwEyoLAruWgEJA9BW2qiwtFgLmaPEDF1S/Zum8I1DtZuWjTBUGykhyRkT0tIxn3UVts94rKSiIAhRqCOgiSSglouxQvRyJAhspnpiLOKEppB8HuFCprEoVX+qSiLKisadWi6VXWFH3GKXwzWXPh+35qW0jaahD2KU62z9PvaWl7wJP4hkDlRZEYSJFAY7stTkBC1D14nl3fUM7XVEkaHMlNlpMCo59jOwmOJDGfgmwm2NOonzdpWiZQ3IMpkpts3z3LkXMrhW9IqkhZTjAWCAQzccU//cy2CQIBGS4+bZltE2YF5AnKjKyUQ8pK8F+NR831UXdtX14IS/8QBHZtlwSmzJIFUgZBMkKuZq2UdhZKAtOWNqXwDV0CTRK1KNe6sa3MSFXirUAfoEqrrEobBKm7Hmpu4zNS9fSkVDRZTkoIfZNOdZ7WN57no1pPn7hCWYo32folDB42yZ1yAjvKhL7xfT+lAo9OjR+qrO0qmtL4Rq15zweqKc/Q6X2TrYQvmj7jyasTRM/dlZTPPt/3U+4lHEmsltsUEJAQAI1vlC1ly6Rmql7WBcLkiFQJCQ076p6PGsGeFpxLUlS0onjeZIZsJkgW8XwE59+kSO0bwrsWBQFPQTZXCPY036fd05KMSZkwniY9eQUCPnzvz99q2wSBIBVu+p3X2TZhVkBIXmZkpR8RByGS5sIApCcAooHdREE7ygxzgmAMaY/TFCSES3TRTlcakaH3juVAGcVljjoIYlu5mp11kyJZhHDdAClV1pTlzCjsIAhQpelLSBmgij6v0imaKIlvu2RVKtVbKQxQpSWrogpc66VNCSpHkPSyzgghUmlZN3ZLEk6l2OdVAp/tIGb0Z6ZSqjSjvkmr8koLit7AJEr8FNUJovtx2vlaqXtQ+RW2y6ymWTcc1aySEKvR/TjtfG1ZN2lUxbb3ecrqIgRJrBS2RNdNKpWm5TYw6nlDmtyU8nmTdt1U3eieliD5jLKXdcaqSKVdN2nLJFddD6rAge3KPGl8IxAIWjE9Uff4o+ZYskQg4MGH//0x2yZkEkLyMoOWSCRQqtguL0MYBIkGdGyX8sxK+cx0pbsivqG8aNsmEgnKMtleN5S+qbk+3OZtznbfuTTkalaC7pS+cT0/ILyS2MIRBLGdpEFR5jz6OUkR/VuSKL6Vb7JUUpTMDstkVfRvSdev0W5pU57gYTpCJO0ajv687TEhUUZaDv4X8znkm/200pKaLb5JlTBC2ZvQruotjWq1kM+hmGfwje1EycwpiuPbkc85KBEpV9P6hmVMslLVI9G5NQfHaf2cpKgQnQWs3/kKhHtaiuTvYt6Bat+YNikhes6znTxKUcKapppVGt/kUGg6J/WeltI3pGOSwjcCgaAV53zuR7ZNEAhY8Y2fbbdtQiYhJC8zSEs0ZoQQSZNx7zgOWfAhetC3TlYRBLtt+6aUzwWXubRl79IGDw/HfqtpLnOlfBgESR10j6reEpUXzwi5ShgESRN051o3qUquk/bCzYZa1HaASo1puZBDTn1oDHD4xvZzLw2hSUlWqb+lFPnMOMjKWSArBHw0eJjWFjUehZyDYt7yWSBFMp4qrUyqFk3Yc46KcFZjWsw7KCTwDUvyaCrSzG5yU/TnUiexNv+WpOuGtpd1epLXdsUVIFKemGjdJN7TAt/QJRWVk5QXZzgLJFm/juNE+q1m5Xlj1zd9hNUJ0uytjuOQzZPUvimEPWjTgiQx33IJ+oYtNPtrWt9w7PNJn8ECgSDEjkNTtk0QCMjx80+stW1C5iEkLzMoL3OplBmEZHPaAxjVYTAI7CYNupMGdlOodxj6zGTlMpc2eEgZ2E1z0bZdlinqm9Sqt+Z45JwGKRIXPP3ELAdBUuxpjcQVGnImOqaJ+gMTVgXICpGYlQBVJUW/cyD0DQ1JlKaENX2AKu1ZID0hkpY0y0YSHGkfPirfpFa9JQ/+R3+OhvhOfk5jUfImJauozmnV5Hs8QJ24kl4Bb7v8bfTnqM7QaYP/9ls30J1JKkF7nnTzNX11Apo9zXY1nKzcPQG6ilZp101WkhKyksQK0CWfpfaNWr8kZ1eCyniECV+29/n0zxvK5O90+6tAIGiPbddfZNsEgYAEA6WCbRMyDyF5mdHHUKLRPpGY7gBGdSilsoMieEjRb5Wm9A9N8DCtLWkCdi12EAYPbZf0Di9zKdU7hJc5x0muSCT1je2gez3dfCXzTUA25xL5hjLYHRB4qcqZ2Q3+AxEiIrVv0gWYKfc0ihLWWVAk9hER31lJPIt+hv3gYbp1UyYakyDJKm1gNyu+ISxHmCTxDKCrzBPMkYTnxTJDckSqc5rlZDyAkkhM/vwFaOdrJcWYlBkSjJMnWtHuaUl9Q1pKm6AaThbunuKbVoT7CGV1gqTnNKqYTbqzQHCGrtvd02jjE2ljNrSV8RKvG5YqUkLyCgSUSBJXEghmA777xG7bJmQOQvIyIzN9Iykvc0QKkfREIlFWKKVvEpW/pTscpw0ekitE0vqG4DKXricv/UU7K2WZUpcjtBxQ5UmOyEYQJAsKkYAASFEGMAvrhqpP8VRqJW82Er5o1RBEKoSUtqRVWXP04UvVRzMLKmsiBV64blLurZaTIzjKnCcvO5sN9Q6HIjHR84ZQLZo6QZHoeZNmrjZ+jv6clpU+mrbPrplSi6ZJ+CJN2FQEnt19PuwfnS6Z1rpvGBTFtonvNHGShh30e0kqAp4gPhEmwdlN/k67bjgELaLkFQjS4eG9QuoKjgxc/Y1HbZuQOQjJywzSnrxpMt0ZLnOJg+7UF+20Je8Oo55VaYOHVAGZrAT/09qSxYs2lQI+tcracvY/rVo07XylVVbZ3lsBpOwBz0FoJgyCUO1pkZ68SVCmXDcUKgSSBBqavSQrKmvbJBFHIkDiPY3o7BrsIxkoA0ij5CUM/lsuO1tJu7dSztcUyQBZOS8CdIqmtOsme2SVfUUi1Vkg7bqhfd6k39NsJwIAdOeStOuG9AydKsE4GwIBgO48n6WzQKrEfMJS2lnpyZv6eUOoPE+b4CQQCBq4/RlJlBAcvvjIxSfbNiHTkCcoM2hLzSUPZFKVRWzYkVbRREWIpAu6Z0ZZlaGLNlVgKEuKRIoAFakdafvfEamss6RInO0BKjLfqDmSgRKNaTK7SXvAp1bv0D5vsrBuKlkpc060z1eIqnokT6DJRoAqK3YAhGVn6+nWb1ZK8fZF1KK+76eyI0ygSatoykiPRMokuBSJK5W6B8+j8U3a/t5kCnjLZDNAc7+puh7clL5JTYioc0lKIpHsvGhZ3azsr3s+aq7dMQmSWC0nGHOU5U8bF0j7vKFaN2nbwGSyckSKs8BU3b5vqOZr+jlCSMCnrAQnEAhm4rdef4xtEwQCUnzgLcfbNiHTEJKXGVRZob7vp1KuqoNbzfVRJ7rMpVcC2iar6Eu8JcrYpQweZuQSlb6fGKVv0gQPKX2TUmWt1k1ahUjqOcLhmwSECMO6Sdw3ksg3qRMBiHxTcz3UXL/5mdnY02z3W6XyTVo7XM9H1U2uFi2T7mnZUAKGASq7xIzn+ajWU5wFCAO7FaqSwGmJxGo6tTfV+vV9n0Rl7fsNMjENUhN4xHta4h6JRKWJPc8PxjSNbwBC31hO5lHrJvWZJGVir+f5qc6uUX9aT7QiqmiV+g5MVNo0uqclGZNoiViyHtIpie9Kyvmaek8jjNmk803jZzwfwVk8KajWDVkSq+UqUtHnTZpzGslZIKVvysTJEbZ70af1jUAgaI/P/uYq2yYIBAKDEJKXGVRZdjXXD7Kg02S6AwRZzKkz3WkDVGkDZWmzU+uuFwTd0yirfB/B5yRF2qB7mYiICAmRdEqVtL5JHaAq0fsmfTkzqsucXd+0JK6kvGin9c1kyjLJZL5JmbgS2EGUCBD9zDigJESofJM2QJWaNCOukgCke94AFL5JFxiiet6kDTCTrZt6ynVTYvBN0hLWVEpeIt+kXr+R8UyjsgbSK8/DPnx2k3nStgegUotGfZPmLADQVTpJO19tq96olJGt6yYBWRW5A5C1GkmcaEWVxJoycUURmin3EQrfOM2Wfdb3EqISuGntUNUVUpfCT+mbfsI9Le26KRMl86ReN0RnaErfUJ0FUo9JRu6eVBUs0tgiEAgEgiMPe6dsW5AtCMnLDKo+mpMtQff4bmu5aB8m/VZTKxKp+sxEA1RpM92Jyu/ZLo2YWmVN5Ju0wcN+Bt+kXzdUiQB2fVN1PajqfUkU36S+obrgEvkmdfnMlBf+aDAnSTl8SkKEjMAjKmeWuh8g4VkgrW9sE3jUlSOytG4SJeMV6JRVqXvAF2jPrklV1lTrN23iSjGfQyHXYERsEyJZSZSkVuIDyXyTzzko5WmJ76zsabaTaVvWTYLnTS7n0JXiTbunkVeOyMY9C0jmG8dxIlVoiMiqpL4hSioiK+lt2TfFvIPm4yZ9wkhK31CVF6dKXKGaI43PTHYWyGfkLJCVeBp1hT4geVKCQCCgaQchEMwmfPKRgm0TMgUheZkR9pxLqyJq/HzOQRDMiAPHccgOyGn6AQJR1ZvdrFDqwzGQLOhOGTwkI1dTK5qycXGhuMxR+6acmdKmltdNNR0BTxt0z0bQjkz1RrSn9RVzcJTUIwZYfJOwf2VWfEOnhmjuI4Uccrl0vklPfGdjn8/KWUDNsVIkCBgHhXwOxTyNb4JeuAmraZD15KVKKiLyTTHvoJjgDA3QP4Ntl0asRPb5JKDud5503VDakvp8FMxXywlfxHO1lM+hkHLdWPcN1XzNiOqN0jfW7xVBCeuU6yatb0o057S0vokS8PZ9E/agTYPMrZtC8ucNeRuYlPt8+rLRRGdoonWT9H4jEAgaeP/XHrZtgkAgsAgheZnBcUhPEnSP2mL9UFoiyuomUxHRla9O65uskFVkQRDLvqEJHhKNSeo+fERBTKqSwEQkRD6XPOhO3ZvQdrA7Td/1hh206yZNTySy8l0py85m57lHTcAn9w3V86aSkQBVVnq9pVXfASDr15g64YtYCWj9TJKyZCUQlle2rZopH2ZzJO3zF6DfX9OTVZbPacRkVdLkRCA7+2tmVNbEc5XCN/bHhLp1Q8KzPNX6pTgLEK+b1JVObPeypq40lqH7je2y/GRkM5WyWUo1CwSp8LPnD9g2QSBgx4Y/+3XbJmQWQvIyo0x0SE8b/AfosyATH9SVoomsh0g2lCqpLgxkl36abEy6wFA6O6j6mlFctG0H7aiD7tZJswxetG33ikrby5rqop12j4/+LNmYJCa+qYKHRCVWiUoCp1k3VGRVeC7JRrDbdmnTtP3VALqylYo4t30WSH8moU1uSrqPABEiIvUaplo3VKoZu0F3ysQV2yQRGVlVT+kbIrKK4n6TmSTWzJBVjTlSSXsHJknGoyVXrZdJzkiVBIo9LSsEPFX1Naoy51QtYLKwbtKeoTNT5pyoNV3a+IRAIBAIjhy8esmQbRMyCyF5mUF3uW0capNe+KO2kGWFpiwJnPainfYwmJVLZeNnaYKHmcmUJbrM2SZWGz9Le3lJXwbQbqZsVkpWAnS+oSvRmNI3RIkAtvtEAZTrJp0Cj27d0ARB6ALMaVRvRM8bVYI+oW/KWSmxStXKop7+eUMVLEubRJOVpECyPa1OsG6KNGfXtOQq+T5vu73HYZTESpcwQuMbqnvW4eCbzN1vMuCbYA3bXjcZI6vISG+Cs4DtGAVHG5hUdlgmvQH6GEVa0QRdrCQjJflFySsQkOHZv7nQtgkCgcAwhORlRlZKrAIR9Y5tsiozZDMtCUGR6U4VPLRNrqZXqtD4plJPd4EC6H1jO9hNpUIgC5QlnCMAXaJG6l5RRNUJ0veypg0KJVXiA5ExsUx8UyuaslMq0v6elvoZTExWWd9bq4RnAcukJn2A2XJgl6ByRFbI1UAJaJ0QIVJ4Eawbsio0aYPuWSMSLSdZAZTJAIdHdYKob3zfT2yHWjepfEN1v8nIuqFrD2B/TyMj4FO36MmG2jsrrVeiP5tWVZx6nycqy08V16Oaq+WE1awEAsFMJOkLLxAIZjdk1TMjSyWB+6nL3lkO2mUlO5VEkUgcyExdas666o3IN5TBQ6Iyq7YDVGSB3QyUZcpK9j9Z+czMBcrS90hMT3yn3dNo14319UtREvgw29OyEqAKeyTaJ3nTzpOslFiNzpE0hMgUQcIXdfsV274Je2qnS1yp1j24XgrfEK6b9IrvtAQ8zfql8k3d81Fzk89XijLn5OWJrScVpdzTmvZ7PlBN4ZvgDJ0BlTXdurHdHiAb8QkgvBuR9Tm1ngRHQzanT45IL5qgewannK+FbKm9057TlB0DouQVCAQCgSAxhORlhjqk11wf9TQXbYLyMhTBB9/3M9O7Y5Lo4lKpe/BSBKgoLgx0F+20lyia4D8VWZXaN4QZu1T976z35E2dCBBe5tL4hrQMYErfUCkzbF+0o75JRYhkZN3UXQ81t/F32M7+Tzsm0T0+HVlFl7iSxjeu5wcB6uz4JmXPOaIAVZrkiDKBbzzPJ+zJa3fdRJ8PlRSK0UD1ZplI9Dwf1dQVG2iJiLTrF0g3TyjWDUV5YpfAN+EcsZuMV46MpXXfECRtkviGqF9yWuI7mtiYhtSk8A0FuUrhG+o2BYl907TfTZkcQVISmEDJGz2n2U7GS00kNsfDT5kcQdHLmqLVCIVvstJDmuqcRnH3FAgEAsGRidGpum0TMgMheZkRPfikKWlGWqIxxWGw5vpQvE7SS1RWgu6tvkluS4Wg1xvFJapGQIhkRd0ctT9VYJdEAU900SYLHtpNBCDzDUHQnSLYHU1cSVvCmk5RnI6sAmgu2jTlM5OPSfSZad83aQPMRL5JmaTR+Nn06yY6nmlLAttWzWQpQEVxPor+DbbLVqZVEfVFyvalOZdkpeJK9KyZPtGKZt0kVdBGSyqmGROaZLz0fcYrlL4hqoaTxjeO0/h/in3e9jmNxDfU95uEJUWLeQf5XMM5NAS85T0t8rO2E76oktCjn2XDDiDs2Z7mGZwl36RWWUeTI1IkwVGe0yjmCJBcuUqX8EV3Tkt15yNYNwKBQCA4MvHtR3fYNiEzEJKXGWWigw/FhYGCwIseJJOWWaVWiCTt6UmWTU3Z662aPAOlNehumUhMe2GI/BxNgIpAhWCZEKHIHAboVNZpbaEJUKUfkxZCxPJFuxLsaZYJEYKSwP0EBF70b0jao4m6FG/asmrRz0pkR8okDYBm3Uxl8Cxg3Tck57T064biLKCeN+lbJiiyKtn6LeRzKOXpxiSd6i19O4voWTPxugn6jNstc57LOcG+nOoZnJX7TTX9nkZW2jTlmDiOE+m3ajfhi4QQIfBNUG49dZuCdM/gqG/SzNdKyuceQEPgRX827TnNNslbyufQ5N9pzgJpzmkEvawnSXxDnYxHkByRYg2njU8ANIn5WVo3UynvfIV8DsV8wzcU+7woeQUCgUAQF5/b8KxtEzIDIXmZ4ThOeEAmCD5QlDalUBTnc05woIsLKoVIWnI1l3NQKhAQERQXbYK+kepnHSf5hYG61FzSMckT+YamJHCzn5hlQiQrwcN8ziEJulOUoKcIULUGD9OuG7uKRDJCJGWpV4A2eNhXzMFx0j1vyPrwJUwqIg+CpOllTbFumj9bKuSQy9n1TVoVApVv0ipVAGLf5HNBUDSxHUQ9tW2XRiRR7xAoaAP1bJp1Q6QWTbtuWmyxnvBFp6xK4xuyZDwK3xCsYcoEY4rSxKnWDZGSl7LSiW21KCWRSOGbtHGBtL2sGzGb9MkRFGRV0G81zfqtpvcNdTJeUtWq4zjBmGSlqgfF3ZPmfpMy4StIHk2RBEehPCe4ewoERzrStIcUCGYzxipSrlkh9tN8dHSUww5t3HTTTVi5ciX6+vqwevVqPPDAA13f/6//+q947Wtfi76+Ppx22mm4++67W77v+z6uvfZaLFu2DP39/VizZg2eeeYZUpspDshBf7UUgV0Ksjl6uU16KC0TZ4UmLWcGgPTCkBX1Tl8huW+CXriWCRGAyDcUisSsBEEI7GjYQlEmOf18zYp6R11ui3kHhXz6np5pQFEVgCLIHA0+JAVJueaMBJijtqR6BpOU32uuX4qELwJCMxO+IQmo0hERFKVNKdZNUvUsQPi8IakKQFdNwzoxQzFXiStHkPgmlVq08bNpzvI0cyQbfZsBGt+QnI8ofEOQCECbQGM3ibXxsxTnNLqzgO1kWuq4gO3kCJL5SpDMUyGo/EJWEpgiQbGU3jc095tsJJ5RxWwofNNHESsh8I0gPmzH9gH6+P6RDCG6BAJB7KfoW97yFuzatYvDlp745je/iXXr1uG6667Dww8/jFWrVmHt2rXYs2dP2/ffd999eM973oP3v//9eOSRR3DppZfi0ksvxeOPPx6857Of/Sz+7u/+DjfffDPuv/9+DA4OYu3atZiamiKzm+JiSaHkpczqtp0BGf152yoEisscRWB3kuCirUhZssvcYaAQyUoQhGrdUJKrFEQiTXWCbCQCUKl3bAeZKdR3lEqVbPimaUua+UqYMJIu4YtuT0ulxCfyDYkKgcA3FGNCqXqjWL9pehRHf56ibCXFWcD63kpJQlARImnWTUYUiWGw23JpYuLnTTrf0FVcsZ6MR6laTX33zNY5jSL5m4JsztKelir5m2C+kirgUzyDKX2TZm8FIvM1TTJAgWAvobjfkJwX6XyTek8j8E2wl6RJjiDwjSA+bMb2AZ74/pGM5/dN2DZBIBBYRuzb45lnnonVq1fjqaeeanl9y5YtuOiii8gMa4fPf/7zuPLKK3HFFVfglFNOwc0334yBgQHceuutbd//xS9+ERdccAH+8i//EieffDI++clP4nWvex2+9KUvAWioeL/whS/gIx/5CC655BKcfvrp+OpXv4odO3bgzjvvJLM7c8Fuy1l2dKV/snGxpCTwaMp4EgTs0pYzIySJskPAp79o2yZmoj+fJniYmaB7cNG2S4iQlwG0TIhQKCMpfEOiFiUICkVtIammQfK8odjn7RIiVL4JSxLa9Q1p+UwKlTXFmYTINzTzhEABb/ksQJMIQJuMl27d0CV8USSM0JTxTF+yMhMKeIpzWpXgvEiZCJCGhKDyTUaSAbLim4Agsnzfa/w8RYURSpWm3ft4VhKdASLCmaK1FUWCsar8Yr0UPlF7AMpEjTTEN4FvBN3xxBNPoF5vVXrajO0D9PH9Ix2vjFZsmyAQCCyjEPcH/umf/gnXXXcd3vzmN+POO+/E4sWL8ZGPfAT//u//zvogqFareOihh7B+/frgtVwuhzVr1mDz5s1tf2bz5s1Yt25dy2tr164NCNxt27Zh165dWLNmTfD9uXPnYvXq1di8eTMuu+yytp9bqVRQqYQb6MjISFfbKVWah4NChLpkFokSkEBlnZngoeUynkCE1LQ8TyhVMyTKSMtzFSAun5kVctVykgZV0J2SOKMoCZyVIEi6UpHps8sBmuBDqIjIiBLQdlUPKt8QJlql8w0BkVhI/wwmKS1OoMqI/nyqsytpUpHdHvCkZTypnjep1g1B64aMVI4g7dtc9+D7fuLWKSSlPAn2kkpm1KIqISHNPhLuaal8Q1iFhiLRiqT8LUmShv24AKlvLJ/TKJMCKUrhU1WRsl3mnPIZTLF+SVTnmfANXYKi9OTlw6/+6q/i0UcfxfHHHx+8Ziu2D/DE96ejU9y+VquhVqt1tE19r9t7soiD463VSGeb/bN13AGxPQuYbfbrjnvcvys2yQsAH//4x1Eul3HeeefBdV287W1vw+bNm/HGN74xycdpYe/evXBdF0uWLGl5fcmSJTMyjxR27drV9v2qJIX6b7f3tMP111+Pj3/849q2k6p3LB/AKhQKEbKSWRTBB7oMc9vBwywR8FmZr6Rlzm0HQYjWDQU5U85IsJu0r5llNRNA4xvKksBpAqoBgUdSojE71Qko9nn7RASFb+iUkWQq66wkjBD4hmSOkJAQGVAkZuUMTbi3UpxJaq6Puusl7iVPUg2HVJFolxChbCHhej5qro9SISnJS+cb22OStYpJvt8oI590TyJJXMnImNCqRe2WfW+1xe49OCutrWh8E+6taZIjaH1jN0FRVUyjUfLSiDds+4ZSSCIkLx9+/vOfY/ny5TNetxHbB3ji+9PRKW5/7733YmBgoKeNGzZs6PmeLOHhPQ6AcA3N1n7Fs23coxDbTaKVzjxc5/vERLwy7LFJ3t27d+NTn/oUbrnlFpxyyil46qmn8L73vY/9IZAlrF+/viWDaGRkBCtWrOj4/qxccEkIEQpitRANgngoJghQ+b4f6ZFot+wdacau5Z5V6mBddT24no98LuWFISvz1TaRSHGZa14qq3UPnucjl9A3FYrgYUbWDeXemoYQCVSAKX1DUraStCSw7axuuuzyNL6pux5qrg8g3XwtZyQIQtLLmrC6SBrfuJ6Pqpt+TyPxTUbaWYTnNLu+8Tw/6MmbGQLeclsNyuREoKEYnZPgDB1dN7bVomrN2Vabqd6XqZSRkb9hsuailGANkvmGsOKK7QRFyl70QGOeJPmbakRnAYpzGulZgKQEffp1kyYuUHM91D2/aUs2CHjbJaxJ7CiFyRFV10tU3p/aNzT3CoKWRQQxG4q9FUieuHK4+UbQHe3i1Yd7bL9T3P7888/H8PBwx5+r1WrYsGEDzjvvPBSLRROmkqD81B58/Zdbgq9NlNymxGwdd0Bst4E/3Xxvy9eH63zvVTl4OmKTvMcddxxOOumk/5+9d4+zq6jyxb97n1e/0ul0Xp1IIAmvgIAgaCaIIwMIAa4DI1dljJdhLgOjAzOi3EGYEREQwce89PrzMaioAzKjd3AUGSSCwIxmAkYzIoYIkRAkL0in393ntffvj3Nq7zrd55xdtXetqt3p+n4+Ubr7nNOra1XVrlrf9V0L3/rWt3DhhRfioYcewrve9S7s2rULf/mXfyn7ccJYtGgRMpkM9u3b1/D9ffv2YWBgoOl7BgYG2r6e/f++ffuwbNmyhtecfPLJLW0pFAooFArCtqvtWWU2QBXYkST4z5Gyk+VqrMtcseLBr51JU0MSKcmATBB0V6lmqn1eFd0FebF/uU4Qq7LF9IUhLWQVf5mbqlTRlZf3TaXqKSFEUrOXKFTiq8imBuL7hidEjCvgFQZUTe+t/HuLFS8WycOC/0Aa9rR0KGhT4xtuLI2rrJX2JjRbbl2Fb4rculGxpykppW267KwCspmvsDBZqqInxjmN/xtSo242fZZXoFrNZRy4DuD5NVvmd8oHSlT5Ji3lxZU+bxL5xkXWdVDxaknCfQnsANKg0kzHWV5NlYTkcQFVvlGTaKWwx6nhlkX8M3OqFI/kVe8bs62C1MRsVPgmXCdxE1fU7WkqE+Lj22EhD1OxfYAmvj8dreL2uVxOiMwSfV1asHxBd8PXs8l2HrNt3HlY281httoeNe6yf5f0KforX/kKfv7zn+PCCy8EAKxfvx4/+tGP8Hd/93e4+uqrZT9OGPl8HqeeeioeeeSR4Hue5+GRRx7BunXrmr5n3bp1Da8HalJo9vpVq1ZhYGCg4TUjIyPYvHlzy8+MAzUHdXUX7WISO4LeWfGDqfmMC1ZRJu5hUNmhVGGvNyUlrBUEyhKV4c02XrST2FGzRUGmrOELgwrfqL5ox7WFJ6vU9Ac265u02VGzJd7+WlTkGxW9RZWU5a/bMZFkT1PY7xxIsKdxf0OinoAK1TumEwFUKlWS2NJwFlBA4ClJXDFMiKhWvSnxzSGQVKS0ckSCs5HjOIlt4ccyUVn+wDcq1KLJ+zab3lvT5Ju0PW+UJK4kDP4nvY+z9zlO0nYWCu4VSnvhmt1bVcQF2FxN6hslFb5SVoI+iW9yGSeo6hWX1FTlm9QkJag4pylYv9mMi1ym5pukMZvk60bl+ciSvDphKrYP0MT35zqWze80bYKFhYVhSD/NL7300hnfe/3rX4+f/OQnePTRR5UY1Qof/OAH8Y//+I/42te+hm3btuF973sfxsfH8cd//McAgMsuu6yhcfv73/9+PPTQQ/ibv/kbPPvss/joRz+Kn/70p7jmmmsA1C7j1157LT72sY/hu9/9Lp5++mlcdtllWL58OS6++GJldhdSctFWGihTFQSJWUaMXbSzrhMr45dBaak5BSWseRJOFip6Z7muExzyYxPwdTtcp3Zxjws1vlFHrqrwTZKLtus6Qem/uLaoIqvSEuxWEWBWoRDJcL5RkhyhoFxkavqMJ1g3UwpKvWZcJ9iHkpJVHTk3ds8rgBuTBIGhokrfGFaI8L5JGtjNZ93YZdIBNckRUwqU+OG6MRtgVuqbjBu79QPAq0WTJygmKWGdlp7aQPIkOPa+gqJ1k2RMigrPaSqS8QoJS0UmLU/Ml31X4Rs1rYLMnhdV9WpMqjzny60nOQuw+6KKyhGJfKOiB7yCMucq4gJFrlqDknOagoR442WjFfmGPTfjrhtVvlFRTUOlaCLZHEluB5D82ad+3ST3jVXy6oXJ2D6gPr4/17Gga3YqGS0sLNRBvsZXC6xcuRI/+clPVH1cU7zrXe/CK6+8go985CPYu3cvTj75ZDz00ENB8/Vdu3bBdcMD9emnn457770XH/7wh/FXf/VXOProo/Gd73wHJ5xwQvCa66+/HuPj47jqqqswNDSEM844Aw899BA6OjqU2Z2WksAFJYfj5HYAtUPtRKmaOCs0sR0KgocqyFUV/V1UlJ1lthQrXoLgYXhIT3SZU+EbFpAx7ht1KoRSxUseoEpIVikJuitUWSvpi5QgCAIk982koqC7it6iSnvhKkkqSrandeRclKpJ9jQ1z5vUVCdQot6pB4YS7K1A6Jv4BLyavVVJSVElSt5kwVRATQINUDszJvONGtKsQwEhouKcpqZvs6L5mjCpSBXZzOZYon1egS3h3mq2jCeQfC8pKij7Dqgppa3ifKQywTgJoanCFhWVm/j3q+kBn2BPU5Acoco3yuICic8k6UiIV2lH4nWTz2A8Bb5JS8KISgV84nWTz2C0WIm9l6Rq3Sg6M1qogY7YPkAT35/LyCYQ2FhYzGawyhYWCkleAFiwYIHKj2uKa665pmWmzmOPPTbje+94xzvwjne8o+XnOY6DW2+9FbfeeqsqE2cgbcoqNXaoOajHJkQUKCMBNcFDNaV/kmdTF1UF7bIZAOXEFwZlc0RFxq6CspWm1y97//BkcvVO8gCzujFRsW6SqN5UklVJfKMiKASkZ59XoxBRR66OTFUSE/DJCRF1e1pBxbpR4JukyREduWS+UUVoKumxpkJZxZIjklSOUPgMHp2qJFbyJl+/yedrUYFqJi19mwEVikS15W+VnAUMl9JWTfLGPkMrSgRQURVATaKkurOAimQ8IPkZOklFAN4O8+c0dUnoqnyTNC6gKhlPReKKimS8RC22FPkmaTJAcL9JuG7UlgROXtI7HWdoRQlfynxjNvnbQi10xPYB9fF9CwuLuYcPnHOUaRNSA5vqoQFKeuEqVFYp6YuUkBBJWsJaRSkkQE3w8FDqLQooKDWnWCGiJlPWLCGiohwh//5DIeiuIniosn+lad+oU4uqUAImDzKnRRkJqPCNWrWoabVZ2hQiQKhek4VqlbWKqh6JWjeoWDcKyhEC6koCm16/gBoCQElVD1VEREDgGVbvKFGLJk/GU0LAKzgv8raYPqeFe4lZ5XlBResVRb5Jep5XlWCcltKmSls3KIoLJC5Bn7hyhIKkBIUlgZUkoRtWnk8puO8B6RmTND5v4iYlKBNNqOhlrWi+WlhYWFjMPbz95OWmTUgNLMmrAZ0KgiBKSgKrLHNjOptadaDMcFZoWrK6+fcnzqZORRBEXTa1adUqkPyCq1otqqQvkunAbkp8oywYo3RPM+0bNUlFiZVVQfDQvOpNyfNGwZmkqFhZFZeIUPbcC3qvmw1QqawcoapiQ/zAruJS2odANRxV+7yqc5qyfoCGg908eef7fjw7VCVHJD2npSg5QmlbjbIHz4vnm7RU01B3lldXll/F/aZU9VCpzu7qTarbOBlfNypjNoaTrtNSJQFQk2ilMmHT9J6mom8zkJ64gIWFhYXF3MTCnoJpE1IDS/JqQCGbvKSoUmWVkmCM2ZI76i8MZi9RKtTeQdlZw5c5VSVW0xLYVTJHlGXKJgvsTikoWdlgh/HAbjqSNHhb0lIS2HSASsmexshVRWXEEhPwSStHqPSNkoQvs73oARW+UaVarT/3DCtoVZTPLKra0+q2TCQmEtNUojE5kVjxfJRTQogkP0OrUeIbr05Qt8Pza4RVEjvMl9JWs27UJhUlf94A8cvQTyquTpC0zLmyc5qCUtqJzgLce+NXBVA8JknVosoSV8wSeLwyMi2JK0mr4SS3I5la1Pd9Jfdg/txq2jfJ2wOoVnub3dMsLCwsLCzmOizJqwFJL5VVzw+CFiou2tUEASplPRIVKatMk1We5ytRm6nIpg59YzYwNJWSwK7v+0qzqctVP3mmu6pM2bjBGMXEjOny4kp9o2pPS+gbZWRzTN+Uqx4qdbWNCtVboj1Nsbo5cc8qw8H/StVDuVr3jQIFfKnqoRpTWaWiNzCQHoVI0jnCn9OU9OGrJFe9JR8TNQlf6hRe8fYRz/OV9OTl35u8hHVKElcMV47gnzcq1g0ATCWsCpBcAZ8ssVeZ2jth0F2Vb/h1kzzRyjRZpciOhGeBMvfsTnIW4BPojI+JIiJRlW+SrJuqinVTt8NXkLhiOuladcWkuKWJy1U/XDcKCHggSeJKunyT+EySsPKLqj3NwsKiEXETUSwsLGYvLMmrAWEZwGSBbiBhXyTuAJe03KuqwK5p9U7SDEj+cK8seBh3nqSkTLL60l3xxqNU9cBi5EkUtCoy3VWVnU3aE1B1MCaub5QFdlWoEFRnMSdU8pr2Db/uVSgSgSQKEUXJEalbN8mU+IAaBTww+8nVtJFmgEKyKiFJlPyclvAsoKo9QML1y5/TkvUWdeE4tf+OX1I0HUTElKK9VVX5WwDoSFAhKJdxkXWdRLaE5KoadXPilieKyGbTvsm4DvIZNf1W1VWRSklSoGHfOI6TuHS0Ot+oSfgyXc1KlW/4vTlu4kr61o2ivTVh4llSW9KU8JU4GU8V2Zz0uado3VhYWDRizU0PmTbBwsJCM+xTVANUBf+BZGUr+QCV6cBuWso1qwowA2FAJQ5UZFOrL/eajuzU+H2b1QV2GRIHQQwnR6i+aCvZ0xLYosI3adlLioqC/6r2VsdJ/rxhiGtLUVFyRBC0i0maKetfqSgYA6jzjWlyVRVZpSpJI+keDyj0TUr2tPhKXlV7mkKyKoEtjuOESZtxg+5pIfCUtZBQs6c5DgIiML4t6SC+ValFE/eAT7qn1d/nKvGNmvl6qKjeVFVMUuGbxIRzSc26SZwwoqgaTuCbhGeBpHtaLuMgU09cSZrwpWpPM10Np5BQLapq3ShNKkrJnS95mfOEFSxK6s4CFhYWIeJWG7CwSDtePDBu2oTUwj5FNUDV5baQdeHWD5VxoCJApUyFoOiCqyz4n/BwnM+4yCY4lLquumxq0yWs1alW1fgm4zrIJfANn+lu/BKlKoipiqxKGHhISiSq8I2y4IOqOWJ43TBitSObgeMkfN4k3NNUJSWkpZe1smBqzk3kG5XPG2VB96TPPcPEDN8/Osk5zXWdYE9MWjlCXTWNZOc0060bprhzWiaBbwAuKSFuwoiyfT5polVazvKhHUn2NECdqjg58Z3UDrW+UdFHM6lvEhPOFUXEt6I5ktQ3hcA3yff4xL5JXGFE7bqJPSaK2kkFvolNVqnZ02oxG0Vn6JTESkyXOadYN7O9KoCy86Ii36g4C1hYzHWsW91v2gQLC3K85VOPmTYhtbAkrwYkDVAV2cUl4SGd/4y4lxfWB0VdT0/DpX+UZUAmX0pBr5nYwUO1qhnTaghVwf+k48F/hgpyRoUdpgNUiX2jMLCbmj5eh4hvJhXt8YA6RZNpsiot67eoqMcpb4vxwFBi39TtMB1gVjQegDpVsbrye7O7p3ZAwCs4pyVVeSlXWRvuB5iWNgU1W9KlFk1PNRyzdvCfkfQMnXy+JkxuUtwWx/R5EVBwZlTlm5Qkf6dljwcUJBUpUlmn5byYVC2q0jeFhPNEddsx03tJGMMyS3pbWFgAn3/3yaZNsLCwMAhL8mpA8hJEakgIAOqyQlNSojHx4ThpfxeFh9LwYjnLA6rKVNaKFDMKgyCmM8wTq6wPwQCVKlvMk1XpIBLDJA2FhMgs942y9ZvweaPyLJAWFYKqvdV0qcg0JRWlpaSosvWrqqS3krNAMiJRecWVxH0003EWUHJOCyoVze6EL1W+UaZsTsMZWlUSazZZMq2yqh6KkiOU+sZw5Qi2txZjn9PUkmbx56o637DyxInVkcqS4Aw/b1K0boKqSYnbwJjtl1xUfV5MQWK+hcVcR3cha9oECwuteP9rK6ZNSBUsyasBqoKpSgJUCYNlynoTZtNR+qcjaX8Xhao3Vf2I0qLMUEbMxC4tznxjnqxSTa4WZzkxk6bgoeqkhLi+UZ0IkHQ8kiojVdiiLLCb1DfKnnuKCE2V6p2UEImJFV4J93l1PefMP28OtTKAaTynmSacla3fhMk86ggRBesmoepNWeUIFvxPXIJeTTJtGvY0dc8bNfebpKpV44lnBOvGNDmjLlHS7HNPZYWvMMEp4bPPtFq0pPh5EzshQeGeljCpSFWVvrQkXSdt46Ry3VhYWFhYzC2s7jVtQbpgn6QaoCoolLQXERAeSo0fBtNyqUxKaKpUWSedJxU1B+S0BO0Sj4eiMlW8LabXjcp+RInsSInSrPYZ6VDgJfaN4pJ38feRsCdvUhwqgV11fcaTPm/SQ/KmZU8rKlLypiW5if8M4/t8UkJE9RwpV+H7vvT7g/FQsKelpuxsQkWxqmQefh+J4xuV7QHCdZOOMsmmfcP+jlLFg+eZ9U16iIi02FFbvxXPR7kqP1/T1FZDfZ/idPgmOcmrYk9T1D4pLXGBtJTSTkH7M3XtARLO15KaGKOq6iK2XLOFhXp89ccvmDbBwsJCIyzJqwHqLlDms0KLqpUZKSkPlbzXm4qLtqKg3SESBElOVqkMHqbj0l/IqpmvKoPuiexQeNFOfrFUEwRJrL5TRCSaLrfeYIvp3qKKfFNIqqw6BNU7xp83KSlBT9KT1/D+mrRlgqoygMyOquejXI1BVimsTpDEN77vc/u8GpVm3NKmqs8CQLxefKqSm/jPMO2bpAmKqs/QQLw1rNQ3CZJolK6bYI4krUKjZo4A8eaJSt8keQY3+EZZewCzCcb8PhIncaWoaP3ynxFnjvC+MZ5UpCwRILQjiW+UJLEGpbTl56vv++pLvydM7FXZkzdOUpEt12xhQYdbvvcr0yZYWCjFN5/cZdqEVMOSvBqQNGNXbam5+GRVpeqhVFXUs0pVySxFgd3EvlGoSIzjG8/zgwCbcXJV0XxN6ht28VIZdI970VatrDKdMMIut9W460ZpgKrexytGEFNtECQpMaNGbZbUN0VFFQGAZHtJueqhUg8UmO4tmpo9LSXBw0rVC8g28+tGTaJVmnyT5JzmeT5KgRo/KRFRD6gaVvLy6z/OPAn7Niff0woJArulqgcW+zSdHKEsgYYb0zjzhEL1FmdMihUPjDMwvaep8k0hhb6JQzar9E1SAl4VgVfIunCc2n8n2tMMP29K1dA3qqoCmC6Fz84Sno94SUUU1Qli+sZT7JvY/ZIVV5EC4iUVKfVNgvt4ueqjGtxvFIkmDLcsSuoblYmSFhYWwLtWx9uvLSxmA27816dNm5BqWJJXAxJn7CrMPEwS2OVVt8kVIinpyZvQN2kJuvOBE9PqZlUH9ULCwC6Fb+IEyooK142q3sCJ50hejW+UEPAJfKM2CKKmZFbivTWpbwgI+CTPvdrnpON5k/QZnHRPU1VJg/+MpGcB075R1beZ902ic5rh5Aj+LGD8eaOIgM9nXLh1QiROkJmiOkG8OcKdBQyXRlQV7M5mXOQyNefEIfAozgJx5gjfr11dv1WzlYpc10lU/UVl0D3JfFXqm7yiu2fCdeM4TrjPx0gYUZrEmmCf521PnvydDt/wf0e8M3RtTAoKW57EIfD496hqZ2E6cSV5PE3hnpZgb51suN8kTMZT1fJEYXUC03EBCwsL4PSl8klKFhazEbdfdLxpE1IHS/JqQNKMXZWl5pJkhfIHalVlK5OXv01mB++beJco9VmhcQ7qUwQBqqRklYrSxKFvzAbdk/SK4v2ZXFmVMNNdUQlrPugep/weSfDQdIAqqUKkoiYIktw3aogZIJlv2Hscx/zzpqioJ2/SPY1CLWrPAjUkVlZRqHeSngWSBnZTUnaWJ0Tiqd5U9uRNvm6yroNcRtW6SUYkqiQiksxXlSWBk6hWVfgmqepNKfGdoEUPSaJkgueeSt8krSKllMBLkBxhupQ2syOjwjfZZM8bVXtaLuMkSipSeRZI9Nxr8I2TyI5CUrWooj0tl3GRrTsn1p6mKD4BJEv4YvPKdWp3tiRgcQXTvYEzrhP8LUliJSpiNhYWFhYWcwfvPO0w0yakDvZJqgGO4wSXl2Ksi7a6IEiSrFD+AOY4CS8MCRUiqkpm8b4xrbJO0qeYjWM+6yLjJvNNkjnC26IysBsn011lf5ckygw2HrmMg6zhwK6qC67jOMn2EqVkVfLgoZIAlaJeuCp9E29MFAbdE9gRqFazmcTPm8S+UUQkqtrTCgrVokkSzwpZF27S501C36g8CyRTVqk7C6h43uRT4JtJhck8SZREUyqVvAoSvpQSM4YrRwBqiIi0nAXU+CZh/8qUzFeaM7Rh3ySuTqAm4avBlgTJeCorRxhfv4rO0CpV1snmq4o2TgpIs2zymE3SFlsq56uafV6BHQliR/yeZtw3FXWJvYUkSXCKEp0tLCyaY+UN3zdtgoWFEsS9+84lWJJXE5IEqFQFmIH0XObSohABkimagpJZSsoAxu9/p7bEatIgiHpbYmW6pyyIaVq1WntfOgg8mr3EbCJA4r5IBNn/ScZEyfNGgULEdDAVULuGUxPsTuCboqKKAEBy35CUfk9SBlBhSeBElV8U9J9N6htVBDyQTEmk8gydpJpGYIcKtXc22VmA5JyWIHlUpQI+URKrYSU+kCLiW6GyKlQ3J0luUjlH0uCb5FUBlOytCs4kasrfJjtDp2VPKxKcSZK0blCytyZVi5L4Jk7yqELfJKiSQFHNKk4fXEBx8lmS+apQZW1hYWFhcehizU0PmTYh9bAkryYEB+QEh1KVl8pYfc1ScoHibVESUFUQtFNKEsW4RJEQM0mDIHmzQWalwYfUrJv4iQBAegjntPRIpCiLmJisUkDOqCjLrzZJIwHZrJCsMl1qjv8M0z0SOxP4JkhuUqhaTVp21rRvVPVtBhSp7wwniwCKExQTtbNIx/pVOx4J1aIpSdpMTZKGQhWRql7WSlVvSdaNysSVRAlf6TkLKC0vnoSAN7zPp2WPB9KoFjVLaJKUJo6d8KXynJa8F66a5Ijkdih97sVeN+rP0PGSEtRVSbCwsKhh+y1vNW2ChQUp3nXaCtMmpBKW5NWEJP1W01KqiiTAnLBklpIyyQqCh6aVVRTZ5UlV1mp6ViXJdFc/X033amSfUYyZTZ2WeaKy7GySICZN8DBZEETlPEkNIZKgOoFKZVXS501a1o1S9U6cOaJSyZuSUtoNtiR5BivYSxL5JiUkBG+L6TMjTTJPjMQVgoorSZPxlBAiSp43Zp/BUylRrQKq73wJyr2mRFGsct3we5rv+/K2qFw3LLE3wTM4LX3GTZ+NAJqEWtPPm7QkBSZJ2ASoKhWlIy6QqNWXypLeKYgLJEoYsUpeCwvlmN625+B4yZAlFhY0+MT/PMm0CamEJXk1IVG/VYXB7kJaAmVJM91VlnhL4Ju0ZQ6nISuUpvye6YzdJGSVetVbUrWoElJTQQl608EYtUH39Cirklz607LPs/1YbY/TFARBkvQWJSBEkvbkTYokfc3495leN6Hy3HTwMB1BTEBt0E5FwpeaiisJnjcK1aJ8NRzPkyer1O7z6VBWpS2ZtlT1UKkmUUcaVoumJMGYgjSrej7KVcPrhiX2xmpHoz4pMFGCsWHyDkjPuqFRRpptR6MsLmBa3ZwSAl4l6Z20PYDadhbxq42pvN9YWFg0xym3bTRtgoVFItz8b780bcKsgH2SakIihQhJsNt076wwUBYnm5qkZJbxksDpyIDkM3bjZbqr7/tqWvWWpLSpypJ3/KUy1rpRWb4rFz8wlJbgYaCGUDxXZ7Nv1JJESfqdK3zecKVNk6l30rFuTPtGZWD3UPGN2mB3OsoA8uUIY/lGYfm9RGUACdTe8cpnqifgAflefJ7nh+e0lPjGdN9Ipc897m+RPTP6vmLfJEiioSixajpxhd8DZPdX5b4JyBmzBF6y1isKq2oluN/wvlHZHzhZix4VyXgqzgIqqouEe2ss39T3ZBXVm1SUF1fjGzZH4lf1ULluihX5hK/auiEg4BMkGKuww8LCIsQX3nOqaRMsLJTha5teNG3CrIAleTUh6OkZK2M3HcrIYkXdhYERXp5fy3aXQbnqoVI/yCotdWOYiFChelN5SI+T6V71/MCf5oMP6shVJf3EFKq9PR/SvvE8PwgGq00GME2IpCPonmRP830/fRnmCu2IEyhT+bxhf4vvyxMi/PPG9J6mlNBMoN6h6D8bxzeVqhfsg6Z9E7QpUOkb04RmAt9UPR+lIEHRrPI8NYQIgXoHkJ8nvC9NJ+NR9I1M1rpBQXIEN99lbeF9o/JckhZ1s+mqPPmMC1a9UPZcoto3KvY0lVWkEj1vFO5pce43DXua4TYSUwRJ13HO0BQJcHHOAsWKB8YLK+2FG2NPKyq9ZyVIlFTZ8iRBwlep6oHxwkoT0Q0nGFtYWIRYf8KAaRMsLEjw0w+fY9qE1MKSvJqQpNSN2lKRCghNhVmyNVvkDqW87aZLEqoMdispO6v4wiBL4Kn2TaJSVUHPKsOJAASBMv5zRaE6sJtMhaA++z9ZVrfidSM5JqoDVGqIRMMlvQnKuwHyWff8mlfaQzrWXqI+gSZOkobK/tFJyKqpVAXdU5LcREBoAnGIxPD1pvuMp6UEvcrzYsZ1kM/GCzJPEp2hTSvP03KWdxwn9pmRn98qkyNMtwrqSHIWULinOY4Te76q9k1a+r4mqvClNIk1vspatW8KgQI+/t3TNNmclrMAWcwmiVrUdDsplQnGCeIC/PxW2mokQdUzq+S1sKDFyhu+b9oEC4tY+OGv9jV8vainYMiS9MOSvJqgpheuuv53pgNluYyDTD2dWjoIUn+94yjqCZggQKUy2J2WTPdcxgky3WVVXvwYqvBNosAuAfGdTFml2DezObCrMniYEkIkl3HDPS1JcoTKwK7hPl7JsrrVKSNzGRfZum/iEiKqnjcqfKNU7Z3oLJB8PHIZF7lMPN9Mpel5Q6CgNa1USeKbxqC7usRAWaUKQLNuYq1fhWcSIHxWxF03ee6ZlQSFYL7GT/gynRyh2jdxz4yTnG+yGbN7CUlbjUR7mpqQRVzijMo3pu98aipHmFVZszN3LuOo8Y2Cu6eSlglJyGaFykj+DC2fmF97fdZ1kFPgm7SoRdNSlSfjOshn4iWMsNdnXCc46yWBkgpBtievhYVyXH76StMmWFgkxp98/aemTZg1sE9STUiSKas0QMUOYIb7ZTiOE/bPkj2UlsKgkOMkP5SmRQmYJNM9JESSL2kVme4dOReuguBhsh5rBGSV4TAW0k8AAMaKSURBVFKRvG9iBw+zagK7qVE3JwjGKA8exgw+pCl4qLYnbxKFiLrgf6MtkopETnWu4nmjpM94XmX5W7NnEgBc30g5W9g6K2TVPG+S+KZI8rwxeyZpsEVyT2NKjrwq3yQi4NXtJWkhRHhb4j5vVD/30nJOM51AA8R/3qj2TbJeuAoTjJPcs1QnR8Td0xTes4BkpbRJzmmGK43VFPBJ755qE2jS0t/btG+A+Pdg1WeSoBdukuoESitHmFXAA1wJ67jrJusqiqepeN5YJa+FhWp89Pdf2/B1WbKtmIVF2vCTG84ybUKqYUleTUjSu0MpkZhAyau6X0bcbOqgDK/hYAz/HiUEfIKMXeWXqHw8W4qqfaMgK1Rt8DBOVnd93ahSiMRVIXCXOSV2qCCrlKyb+MEYsuBhguQIFUhLaVM1/cTMBlRVlnfjPydJ0E5JWbUEZJXKOQLE901RYVlEID0JX8mIxJrtKhTwQAKySmG5dSBpxRX1gV3Tykj+c4qSzz7Vzz2WdJKsF67Zvs1UyRFx29Gk4X6jtFWQkmpWZn1DtX4T+UZJNZzk8QnV8zWuWjQNd89D/X4TVy2q6kzSkaAnb1BK23BcgGqfl295ko47MP8eS/JaWNDj6L/+d9MmWFhI4fW3bWz4enlfpyFLZgdmDck7ODiIDRs2oLe3F319fbjiiiswNjbW9vV//ud/jmOPPRadnZ04/PDD8Rd/8RcYHh5ueJ3jODP+3XfffcrtD4IxhsuIxSXvau9RexgsxCSc1QcP05HproKYUTUmgW+kA7vpUN8BaoPdajJ21fombvBQ2WUuLaVNlZSHUhx8iK3eUTRHkqisFRLOaQkwA9w+H7OUtqrkCCVBEOMl6NOxz6t+3iSr2EDxvDF/FohLOCtP0lCRKKmASEyLHTVb2DM45lnAcIAZUKysSlGpyLh7CdU5zTS5mpZkWt6WuHtaKggRhffgZGSVWnI1LWrRYEziqEUpEr4StTwx+wxW/txLkgRHcL8xnegMxF/DYTUc84mSRcX3CgsLi0Z844o3mjbBwiI2BsdLpk2YVZg1JO+GDRvwzDPPYOPGjXjggQfwxBNP4Kqrrmr5+t27d2P37t349Kc/jV/+8pe4++678dBDD+GKK66Y8dqvfvWr2LNnT/Dv4osvVm5/ouBhRWUPERXBf7NqUbJScynJpk5ycVGtNotbElgZoZkScjWuehZQH+yOmwyg/FIZMxGAtyUtwUPTwe6ANFPcDzCW6k1hZneg8EpTpnvMpCJVSvxkSUVh6ejkdqSHgE+qQkiD6o2ickQqnjcJFYmm5wj/HhWBTCXqHcUBVdNJRWlRNCUh4JXP17iVI8gSJc2WNu3gzgK+70u9Ny1JRSqfv7wdxQT3G5VkVbHiwfPkfKOeXE3WW9R0mwLeFqVlzg2TzfznyLfYUvvcS885LXnCl+qKK3EV8Gm4e6qummRhYdGINx+9uOHrd35hkyFLLCzkMP3e8MIdFxiyZPYga9oAEWzbtg0PPfQQnnrqKZx22mkAgM9+9rO44IIL8OlPfxrLly+f8Z4TTjgB/+///b/g6yOPPBK333473vOe96BSqSCbDf/0vr4+DAwMkP4Nycq9KiSrlARjzPaKUn0QTKRITI1vVGdTp0ORmEgJqJD4DktppyB4GDdjV7VvElQFUFlGTA0hkg7Vm+kgJsCX9VbomxSorGMHdis0gV3je1qSkneqzwKxCRHV67d+JjE8Jmnqw1eIuYbJymcmOUMrVMAzQkSm37DyMskJk4pMq+94W1SeoSuej3LVQ06ivz1VsNv0OS0RWVVRNybMDt+vrR2Zv085gZf0eZMCQkRpoiT390xVqujKi4eGwjNJOhTwpuMTAJECPgVn6NjlmlPUVkPls0+FAl51coTx5O+6HYla9Ci6a1lYWLTHkzsHTZtgYSGEVTc+2PC1ih7yhzpmhZJ306ZN6OvrCwheADjnnHPgui42b94s/DnDw8Po7e1tIHgB4Oqrr8aiRYvwxje+EV/5yleks4xFEF5c5A6lvu+T9EiMk02dlqzQouKDYEDgSWbK8r5RGaBK4hvTqrdUlmg0rEKgKgkctyyT6ZJ3tfeou+DyF37TCpG45TNV+yZu8MH3fZLAbhyFSFqICPX9KxOsm4q6/VWFekfdXhJvn6dSrZrukZjEN8rJ1ZQkfCVTVqkbk+mEiAyoEq1MlzaNqxatVD2UqurPAoD581FSRaLpSkVVz0epop6AB+SVq8qracTscxquG7PJTZ7no6jQN/xdWpokIqqmIUsSpSUp0Pd9pc+boPVKRf7uqbr8bVy1KLsPmb57UsXT4tw9le8lgeI7Hc+bOOsmbEczK0LTFhazEtMVkJWqfLKMhYVJ3HrRa02bMCswK56ke/fuxZIlSxq+l81m0d/fj7179wp9xquvvorbbrttRonnW2+9Ff/yL/+CjRs34pJLLsGf/dmf4bOf/WzbzyoWixgZGWn4F4XYhCZHPKos/eP5QLkqGzxUnfGXMEClOOgue7ktV32w+KuKkjuFBL6h60cUMytUcaa77IW/XPVQqTtHJSHCVAgyUE0Sxc50VxgUqtkRL/hf9XylgV1+XOP6Rl0p3mTqHdPBmHLVR5WtGwVJNA2BXVnfUO1pkmNSVEis8nbIPm8qVS94LqheN/EDQ4fWuom7t/K+UaOAD+eaNBGRErWZ+oSveOtX9fOG92/s0oimiUSqxBVpgigcPxW2FLIuWHJ3apISUrKnxSWbVdmSy7jI1lXv8mdXltibjpYnpolE/pmgwhbXdZAPiO90JCiaTsaLf15Uu6clunsqr+qRTC1qOoFGuW8S3D2LVM8b2eoEiu0oxHzelKoeGE+uyhYLC4uZmK6APOqv/92QJRYWYlh5w/cbvr5s3UozhswyGCV5b7jhBjiO0/bfs88+m/j3jIyM4MILL8Txxx+Pj370ow0/u+mmm/CmN70Jp5xyCj70oQ/h+uuvx6c+9am2n3fHHXdg/vz5wb8VK1ZE2pA0q7v2GWqDh6bJ1biXKNVZoUF5mZhZ3YD6TPe0BFTjKhKV9zUzvm4SqBAUK89jB4bIgiCGfcMF/uJecNWRq+lQJMZViDQEDxVkU3ekaE+Lu25U72lJkzT4z0hkRwKyapJMISIZtCNSe8uXI1QbPFSirFJMiJgm4JOSzYCavYQnRNJyhjb93Ovg1GZSdnB2FxTMV8dxgrUT95yWlvmqPIk1wbpR4RtAwTPYeJlzonUjbYfaswAQvyxwWpLxqNpqxK0IULNF7Rladk8LetGrrgpgWgGv4iygwjcq7p6q97SYiQDGE1e4WJOqvcTCwqI5/uVP15k2wcLCghhGSd7rrrsO27Zta/tv9erVGBgYwP79+xveW6lUMDg4GNlLd3R0FOvXr8e8efNw//33I5fLtX392rVr8dvf/hbFYrHla2688UYMDw8H/1566aXIvzVpf6ZcxpHqL9UK+YwL1kJMVh3JLl0FVWWSE2a6m77cMl9mXAe5TPLa8LmME/jGdPAhaRBEWVZoNlngwXHUBKiSqBCCklmmkyNSEsScVBw8zGbcYP3FDz6kY92ovvDHTQRwnNqzIikyrhN8Tuxgt+KEkbgl6FVUawCSlLxTu25c1wk+Jz4Bn469xHTZWdWESBLfkFWOSInqLVFSkepEK8PtLGLvJSlREfHjoaq/UlxSsxg8gxUrz+P2fVXWjiZZQkIh60r1nW6H+P2905FolZbzIrMjn3WRUeSb9PT3jqkWVf7ci9kWh4vZZBWcoZPcPckqnRhX8iabq6p8k+juWWL7q+n7DVHLophnklo8bVYUmbSwmLV446r+hq+nKyUtLNKCP/7qkw1f77zzQkOWzD5ko19Ch8WLF2Px4sWRr1u3bh2GhoawZcsWnHrqqQCARx99FJ7nYe3atS3fNzIygvPOOw+FQgHf/e530dHREfm7tm7digULFqBQKLR8TaFQaPvzZuiIGXhQXQrJcRx05DKYKFWNBw87E6qbVWWFFuJe+INgjJoAleM46MxlMF6qxr5Ymi7ROKn4wh+qiCSD7qUwq1tV8LAjl8FYsWL8op00MKQqqzu2iijY09QFDztyGZSrFWlbioqD7knLzpouZ8Zf+NWtGxelqpeCMUm2p5levxSESEcug2LFix90V0WIBMpzw0qVmIEyfk9TSVYVK15qFE2mkzTitgfgCRF1zxsXw5Pm+76mpZR2WuZIgy2Gy1YGe4mksiogzRQreeOqAFXd92qfFU/xrZ5IjHmvYInOps8k3N1TFZIqvpWfj2L3O0+HWlRlydnYd08iBbxsaWKqORKXSFR1NgLi3z2nlCd/p6sHvLyIRP1ZwMLCojXecsxiPP7rV0ybYWHRFj/abudoXMyKdKnjjjsO69evx5VXXoknn3wSP/7xj3HNNdfg0ksvxfLlywEAL7/8MtasWYMnn6wx/iMjIzj33HMxPj6OL3/5yxgZGcHevXuxd+9eVKu1w8T3vvc93HXXXfjlL3+J559/Hp///Ofx8Y9/HH/+53+u/G9gh8q4l0qVF4a42f9pU4sat6NCEQRJduk3XUYsLYQmhW/SQuAl7SemWhlp+sLPf5ZpAj5+0C4dRKLquQokma80ChHjQZB8OpTN/GfFHhPDRGJa1m/YtzkFviEK7Mbd01QTIkkSV1Qh6f5qut/qoWpHzZZkyQCm1c2pqbii+EzCf5Z0Es2hWjki6Vle4f2GVY6IvYYNK+DTohal2dPi2cLuZqZV1lR7qyyRGCRHkMQFzN6DkyYlpCUZT9U9y8LCoj2+9r/f2PC1VfNapA2ffKixZetvPn6BIUtmJ4wqeWVwzz334JprrsHZZ58N13VxySWX4DOf+Uzw83K5jO3bt2NiYgIA8LOf/QybN28GABx11FENn/XCCy9g5cqVyOVy+NznPocPfOAD8H0fRx11FP72b/8WV155pXL7417mKC8MprP/Y1+iFB/Uk5bPVBnYLaQkGaAjH883qoMPsclmxaQ3EJ+c4VVeKlBIGQFvmrzjPyt22UrV/e9ke1mnRLWaJiJR9bpJi9osafCfhIA3XDkiqfLcePCfkBAxHSwLA6qyiuJ0ESIqg4fx91e16p24/ZKpEgFin6HTkIxHlGg1W583U4SJK+bJ1frzJmbFBuWEZhoSJRPur8rLzsbsLao+UdJ8Yn5s4kx18nfsuEA6zmmqzySJbCGLp5l9BsdPxlP/vLGwsGiPXMZBueqbNsPCoin+v8d2NHytqhrXXMGsSZnq7+/Hvffei9HRUQwPD+MrX/kKenp6gp+vXLkSvu/jzDPPBACceeaZ8H2/6b+VK1cCANavX4+f//znGB0dxdjYGLZu3Yo//dM/heuqHxZ2kCtKl6miy3Q3TRLFDpSx4IPi3sCmxwNIj0qTjW3si4uiMmJpCXQDnBpftiSwYlVx0n6ryns1pmHd2MBuA5ISiarK3zbYElMdqZ6ImJ0KEQpFYlJbVCt5jVf1iNvXjIAQSUv/u9gJikRJGqYVM0CKzmmJz0eK50i5Ct8XDxipLi0OxN9Lisp9k46kQH6OyPiGJIk1JWfXxMSM4udeqeKh6kn4hiLhK3aCk+J7RTaeWjQ957QU3W9UE4kx4wLqY0cxkwIV7638Z0mrilNSsYEqnpYGQYvF7MDg4CA2bNiA3t5e9PX14YorrsDY2Fjb95x55plwHKfh33vf+15NFh86eO72RmWkVfNapAXn/8N/NHy9w6p4pTFrSN7Zjth9oggOpYnVO8ovUbKZh4rVEHFJCMKMXdOEc2xFIlFWqOm5CvAZ5mazqZMT32Yv2hS+6YgZdC8SjUnsfkSqFV4pUIgkzjBXrBAxraCNrXoLCHiVwcOYAdW0JIwoJ0Ti9YykIERSV3Y2bpKGYjtKVfOESJDwJbG/+r5P9gyW39PUJoywv6fq+VKqANUEEf9ZsYkI1f0r4wbdFZ/lAbnWGuGdQuHdM26iRkXtPl8I7DB8TuN8LGMLbRsns8lnSdWixu9ZKapOQJXwJb1+CRNXpOxIlZKXppS2fAlrouoikndPiniaxezAhg0b8Mwzz2Djxo144IEH8MQTT+Cqq66KfN+VV16JPXv2BP8++clParD20MMbV/abNsHCYga27Rlp+DpjVbzSsCSvJvBlmeQy3ekCVDKHQd/31ZeaixnEpOwhIpXpnpKM3YbgoaIyYoEdssFuIqXKVFlu3ahWZfC2yBDfvG9Uj4l0+UyiklnFigdPJuhOENhl2f+m52taCPi4ChGKkllxxsT3/SBIoGqeFHLxAlSTROumVPVQqYrbMkUQdE9cTUNZn+KYykjVhEj9c8pVH2UJ31BUjohbireYtmC3YjsAuTGhIODjKL7LVT/Yi42XrSQimwG5ZzBFUhErGytzTitXPVSYb1QnFaVEGQnIEonpOAuUq16QOGB8T1M8JgXONzK2kLZxktjTqp6PUlUxWRVXLao8wThMYo0Vs1FUzQqIlxzheX6Q1KGuwldMBa3iqjxx4wLsmaAyUTLOvYIi4Su5kleV2rv2OXGrE1gl79zCtm3b8NBDD+Guu+7C2rVrccYZZ+Czn/0s7rvvPuzevbvte7u6ujAwMBD86+3t1WT1oYV/ee+6hq+tmtfCNKbPwRfusCreOJg1PXlnO6ZnuuezYhkJacl05zPAlSt5YyurFB1K6+Ph+7XAu2hvIcqMXRnflKoe2D1HuUrTcDnC6SoE0b9PtSoDiO8bds9RdbFMT18zLuheqaIrL/Y4KSomiHhbZAJUfGDXePlMIrU3UFuT3QUx31CUBE5MiCgujWg6qahx3XjoyYitA8qgu0zQLlVBd8UEXse0dZOT9A2JQsRw0D3oXxmXEFGVpDGNEBHd05gdXSrP0DHmK/9a1etGPuGLnY/UPIPzGReuA3h+bZ/v7cgJvY+04kpM36hKlExL2cpsxkU+46JU9TBZrqJP8H2UZc5lzgK8H9UTImYTvlzXQSHroljx5Ah4ikRJLhFd2A6KPS2mWjTYS1SRVXU7vJhxAZW+KcSo2EARs4mbeKY84StpXMBw4kqjbwxXJ1BdCr/BN+JxgaC3t8K4gEX6sWnTJvT19eG0004LvnfOOefAdV1s3rwZf/AHf9Dyvffccw/+6Z/+CQMDA3jb296Gm266CV1dXU1fWywWUSwWg69HRmoqwXK5jHK53PJ3sJ+1e01aIWP73/zPE3Hdt58Ovn7mt4M4Zuk8MtuiMFfGPW1Iq+2VSiXyNWm1XQSitsv+bZbk1YTpme55wYsIZaa7zCWKv1wo67cas/yt8hJEfGC3JHGZI1RWyfhmilMsKFfQSvtGdVY3F9gtVcUvcyWKcmbywW7ej6rLmcXuB6gqiMmtk6myh6682PtUE5r8Z6UlsCuf6c7mq6IL/zT1jiwhQtGzSkrhVVHvm+SqN/W+mSxV0SNMwBOod2IEVCmC7rGrEyhWqhSyLhynlvA1Wa5iniBZRUHAx9lLKInEuCWBuwgIERlbSM7QMarQsOoiGddBLqOm7FRHUrWoojFxHAeduQzGS1U54puiHU0M37A54jo1wloF4rYpoChbWcjVSV6JdUOTxBrHN7XxcJzGZ2cSxO69TkR8S5O8JImS8kQi70dVvondb1VxYu/0+41oXEB132YgXmWtScJzmvHSxNPuN6KfS9OOJk5cgDJxxWx1An7eT5bESV6r5J2b2Lt3L5YsWdLwvWw2i/7+fuzdu7fl+9797nfjiCOOwPLly/GLX/wCH/rQh7B9+3b867/+a9PX33HHHbjllltmfP/hhx9uSQzz2LhxY+Rr0goR27Pc/wLAhf93E/5hXTSxRo1DfdzTCpO2v39T4zPjH9ZV8OCDDwq//1Ae94mJCanPsySvJsTNdCfpvRODJGIHsHzGRVZRECQsq2Y20z2XcZFxHVQ9H1OVKubDXGA3iUIk6zrCyqMoJFUhqBqTbMZFLuOgXPVjXXBNq96mKAK7cUsTK+5x6roO8lkXpYoXa75SECJSwcOS+sBuXIXIlOKgewMhYrhEY5y9hI2Ho9I3MRWJqgNDjuOgI+diqiwX2CUpOxtn3XBzW1nQPW7wUPGYMLJqolRtSJ6KAknFlRh7SUMynun+d0RVaIoVL6gGIQIKsipJUlFnLgPHUXUWSEdgF6j5RpbkpeyRKKeMDJNFVPkmbo9TKrXZ6FRFLrGXoKpHnMQVnjRTtm6StgpSlHgG1MZ3CGWp8uKUZ4E4vilkXbiK+qXF7w2sOi7ghHGBchXzO+ViNiRVpGLGbFT1soubxEpRnYDFBeJUJ1CbVBT/LJDLqI/ZSPdLVnwW4OMCMlUBKPY0C3O44YYb8IlPfKLta7Zt2xb78/mevSeeeCKWLVuGs88+Gzt27MCRRx454/U33ngjPvjBDwZfj4yMYMWKFTj33HPblnkul8vYuHEj3vrWtyKXE3sGpAWytv/u2RWc8rFHg6/fvymL5247l9LElphL454mmLb92b2jwKZNwddnHrMIF1zweqH3mrY9CURtZxUIRGFJXk2oBXZrwUPjhEgMkoiilErsskxEAdWxYsW4QiRJVihN8N+8bzpyGZSrcX1DobKWDzArDR4m7V+peN2UJJVVlP3E5BSJYQKNat/ELkFPQIjECT6khUgkIUQMJ64Atb9LluQN1d4Evomxt3bkXIVB92RklepSvPLnNLoy53GSNCjIKtPtAdhnSRMiFL5JkIyXhr7NFL6JUyGIsuxsnDOJ6ecemS0J9hIKQiRW/1mK0sRxy84SqDRN9+SNd05T75tCzHWjOiHecRx0ZF2Ml6qpOUMXY5TSplm/cYlEhffxbIK4gOG9JJirFGpv6ecNQTIPS/6OUV7cKnkPDVx33XW4/PLL275m9erVGBgYwP79+xu+X6lUMDg4iIGBAeHft3btWgDA888/35TkLRQKKBQKM76fy+WECCHR16URorYvaPIa03/zXBj3NMKU7W/73KaGr+/+32ulP+NQHnfZv8uSvBoRKESksqkJLnMxiAgSYiYbT1lVJAh2d+RcjBXjBu3SoRChCAoVpS/aNATe6FQldrBbpR2AZBCEoqxawgCV6qSE4UlZ1Uw6Aqo0ZHM8hQjN/poBUI5FfJsOHpIkN8VuD0BDrh5E2Xhp0zhJRSGxqu74GDdxhbIqQFyVpkk7JghJM9lS2hOlinJbYu0ldTuUJgLEOUOnRH0H0JQETlIhiGTdmK78ko95FiCsChAnedS0yjokVs2SzQBNomQcUpPiTBKnp+dkie68GLsHvOHqBJQtT+KUW6c5C6QgLpDPYLQoW52gLlZQSK7GiQukpRQ+EPpS9boZmarErFRke/IeCli8eDEWL14c+bp169ZhaGgIW7ZswamnngoAePTRR+F5XkDcimDr1q0AgGXLlsWy16KGnXdeiJU3fD/4euUN38fOOy80aJHFXAE/7wDgFx81oyI/lGCfphqR6DBIoEg0nbEbW4VAQlYlyMYkICJiBcoUlhCLWwaQthxSjNI/BPPVdFm1+GWZ0hGQCfpoKvVN/H5ipgki/vWHononDklEGWCWWb+11xOMSYx9no2JatUqEO9MYnofabDFcLBskoDQTKJINK0oBmieN7GIiJRUjiBV38VteZKSEtY0ZHOM541K8i4bb08rEiQGFlKyl8Rq3UBU5YT/bFHQkJrxqzfRJONJrJuK+vUb936TmuoERIQm/9kydphOpuVfrzoxX9YWylLacc4CFPesNFT1SJJUpHKft0g/jjvuOKxfvx5XXnklnnzySfz4xz/GNddcg0svvRTLly8HALz88stYs2YNnnzySQDAjh07cNttt2HLli3YuXMnvvvd7+Kyyy7D7/7u7+Kkk04y+eccErjpfxzf8PWJN//AkCUWcwWjU+UZ3xNta2rRGpbk1Yg4qpkiQc+qWIfSkvryMklLNJq+vNCp7yRLaVME3WP2r0zLhSGYIyrnawzfkAbKUrBukiWuqPdNnF6NppVmALHy3HAJ+iQKL6XtARIS8CqVq+FeYpYkihM8nCAgvZMGDylUmqbPAokIeIo9LRVEYgwCPiXPPZpSkeF4+L4v/D6qqh7MFlFQVUmofXY6kiOmyh48z6xvAiIxxvmoQPK8Mfzcqz9/y1Uflarh5LMYz2CSfT7OOS1F1QlIEowTJONRzNe4LU+U2REjhsXbQlLC2vQ+H+MsUEzJfQ+gTew1vc9bzA7cc889WLNmDc4++2xccMEFOOOMM/ClL30p+Hm5XMb27dsxMTEBAMjn8/jhD3+Ic889F2vWrMF1112HSy65BN/73vdM/QmHFK44Y1XD16PFiiFLLOYKTvzoww1fW/W4GthyzRqRhBAxrVQhyaZOmLFrXG0W+IbiUpmObOp0EIlxMt3p1KIyJRopFfBpIhJNX+ZiBWMoSmmnqjpBHEUiQWA3QQKNSvIu7p42QZJEIz9fw1K8Csskx1HvUJDe3B7v+75wP1lSVbFUsJvgeZPgnEaVVGTcN7EIEQrfxA+6U1R+8fwaYZXPRvvG9/3UVLEIzwJmS9BPESauALUWMyLzj/eNacX3FEGPxER9Xwn2EaD2d/ZkxPxOqo6McXYtEJSwNr1+EydKEsRKpJKuCUvhx1OLmj9DU/bVltpLUtbyhGSOSCSOUtkSLwlO/bqxmB3o7+/Hvffe2/LnK1eubEhiXLFiBR5//HEdps1ZvHDHBVh144PB17ZsswUVppdpfuS6txiy5NCDVfJqRJLMQ9OZsjTBmMbgoQg8z0cpJcGHtPQpDlTWROSdqG9836cJZKYlMJTk4qJUUVybI6WKuEKkIbCrMikh0boxXII+6PVmViFC7RsplSaFMjJBclNXTj2hWfV8lGP4Ji2lTUkCqqbLeHJkVUnQN55HS1YZf97k5c+LFD15+c8qCgYQed8oDexm48xXip68cc5pdGd5QHy+8j40TnwT9o1Mi9pbxpZS1QM70qnt15gStWhKgv88OSq6l5SrHip151CUoJ/Vyd9ESb2id89K1UO5qt438RK+1CfEx4kLUCs0RX1T5WI2Kvtqx0kwniKojBcn8YwkTsLFBaoScQGamE06StBbWFjEg+M4MxS908k4C4uk+JefvjTje0cu7jFgyaEJS/JqRFqy25Jl3Ks/CALiwUM+o1Zp/yx2wY2h0lSpeoulVCEkNAFx31AFD9PSmzBWP0DC3sCAeIZ5seKB3clJLrgSvikSBlRlLvzUhIhoRnWxEgZ2VaojY/VFYuQqhRrC8LrhCXTRZzA/n4wTEYSESJxyzRTBfwCYEqxiwT9vTCclTFD25DV9TotBiDScBUjKvZolVzti9FulSNLIZVxkXEfKFv51KoPuScrym269QlHaNOM6yGfknn3880Zl8llaFLRpUb05jiN9PuLHjiYZz3AJ6zjnxZQkfPFnbZJ7RYwWPRR7q/G4QIyEryJRzCbJGVpppaIYfZvpfTMLE74IkhIsLCziY3pvXgB4bt+oAUssDlVc/+1fNHxt1eJqYZ+mGpGa0qYx7KAkZmq2CF60S3yAimBMZmG/Vcry1YB40K7RNwRBEIkyRCEBfwiqVrPyvmkI7FIE7STWDSVJZLokcByFCP86imBZnJLApitHBIpihXbkMy7qfIhwUgI/n0hKacdQiKgs15yWhK9cxkW27hzRNTxJtqel45yWluSmbMYNyCrTvolTXpxSeW6aNOM/T5asymUcZAXL1IqAnUtEg/+8LRRlK2OtG4VnAUBeHcl8mHEd5DJiZdGF7EhU7tVwSWCC8yIQ3zeOg2A/VIF4PT3pepzGIc3Uqlb5uIDYfOXXusoS1uEzOEbfZtOliSliNtzYmo/ZJGjjZPieRaKyjhEXoIrZhO3PzCbzWFhYJMN00u2tf/eEIUssDjVMV4Y/e9t6Q5YcurAkr0bECeyGFwb1PURMK0T4wK7oZY4RffmsC9dVFwSJFxgiuDDECIIUCXzToEIQJPDYHMlnXKXBwzhqUVoCXv7Cr/Li4roO8qx8l2BAlQ/s5lQGdmMQETQ9TuOrRVXa4TiOtFolWDfZUJWlAkGGeYygu9J+q3EIEYLALq/eEbWFKTRV+yZOUtEEwZ4Wp7/3JIFqFZAPMpP7Rup8RNlCQmL9EvlG9sxI5Zt4Z1dC38RK0lDtG7l1Q6FsBuKdoUmC7izAHCMpUDkBLzkm/JlEtPe1kB1pIYniPG8IlJGA/D7PKkwo903KVJoy96ypoAyvyriAEzwzZJNYO3KuUt+kRt2cEjuyGTdIPhFOjiCK2aQlQTEopS3Vt1m9HXHiAsxm1QlfSZKuLclrYZEubPnwOQ1f27LNFkkxfQ699fildu8ngCV5NSJOYDe4vKjsGxkrm7p+mTMc2KUgZoB4KoQpQtWbXGCXONNd8qKtUj3bYIfhEo1xemozQlOlWpS3RdQ3FArNBjtiBB+UEomxejWqV0YC8sFDCtIbCInvWESEYUKEQu0NyKs0w7lKE/yXCqgS7CXx1Dv1YLfiMZEth0/tG7l1Q9H3Nf45jW7dGPZNHIUIgW+S9ANUT67K7fMUgW4gmdqMpKpHnD6aRGMim/Cl3o4YZwHCKlIyysgiwRwB5BV4ZOsmG983aVHyqkxCj5OMR1clIX5CPEV1Ebm4AE3MRrY8MVXMJlY7mrRUjqB63kjuJVR2FOKcjwgSviwsLJJjYU8BK/o7G75niV6LuDjmr/99xvf+8bLTDFhy6MOSvBqRRJGotBxSkiw7hWQzEB4GZYlE0xn3QBi0U6uyjp+dShWgElfv0AYP44yJ2qB7EgW8WSJxkohsTtYLV+G6YXtrjLLRZAR8SgiRWJnuhgmRtBARkyWawENaMt2DOWI4+A/I769Uvkl0PjJNVhGfj8SfNylcNwS+iZUoSZSgKE2IGH7uATQEQFpKmwL8PJFLKlLdlzAWIZKSHvBke1rMc5ry9RsjmYek3GssYiYd93HyORKjOoHplidBUpHimI1scgTVnpYsqYigNLGMQIAs4Us2GY/mTJKWyhEWFhZq8B/XnzXje5botZDFb14ZQ6na+Ky0fXjpYElejQguUTLlMwmCZaEaIk6fGcXBh7xcqRuq3lmFlKlF00DyhhcGuZLApkkzgEYJWIijFiUgNAGuF66kQkSlehaIN1/DZAB1tsRRiASlTYmCdrIq6zSQVSSltGMRIurVd4B88HCCrPxtfN+oVSTGee4R+UaScKbyTSJ1M0WJRonEFao9TXZ/JUvSiKWaoSylnQKyKi93ng8Cu6qD/zF6JNKo3tLRjqZmi2RSEbEdciRROsgqsvtNbJU1DQFvWgHPz1Xf96XsoCOJKkKvpytBX7ujTBhOtOqK9dwjitmkRGUdp18ys7mgtDdwgjOJ4YordM+bBK3pLMlrYZFKNCPj7tn8ogFLLGYjfN/HWX/zeMP3fvPxCwxZMzdgSV6NiNO/kqQvUpJLJZEKQTSwG5QENtyfCSAqbRpHLcqC/1S+kVSLqi5/G0sJGBAiConEGBn3EwEhQjMmsirrdPThoyCrEihEqMqZSfZLNn3h519rvCRwygK7dEF3s6qZJCpr09n/1IpiKXUzYbnmeCXozZJV7LlnWrUKEK0b7pwmS4gYJxLZWYCqBL1hRSIb31LFg+eJ+SZcNykhRKiSm0zfb+qfVfF8lKuSSQmGn8FUe2t67p7hZ4mqEqnOAuw5KkquUiQk8HaIks0A0Z4WjEcMOxQn88iSmmk5LwJcSWDDiZJUKuu0VY4oyiQoEj2DLSws1GE60fvX9/8SI1NlQ9ZYzCasuvHBhq9/+MHfhes6hqyZG7BPU42Ik+lOERhKVTa1ZJlV6l6NcYgIlQReHLUo2ZhIBu1CFaBZAt73fZpyzbEIEaKylbLlzIjUdyzZQnT9+r5PosBLpihOh2/oyhGKzVfeN0oJ+BiECFUpbWkFPFk/MbnAENm64YL/sr5JC1lFRsBL7GkUhDPrr1aUIqvSUSaZvJe16T2tPh6+jxmlp1qBilyVTR4N5ypR+UxBOzzPD8gkKrJKdA2TleKVft5Ql/QWXzckKmsugC+fzGO23GuRijSTJOB93ychNTu4xGnxvYT2fiNK8k4S3YHjKGhJ+4wbVnvznydKOFOprEPfiBPftP2SJXxDVuErZlIRmcpafr6qVFlbWFiox3/ffG7D1yd99GHh+IHF3MT00t6XvmEFjloyz5A1cweW5NUI2YN6ueqhUg/uKe29kyDoTqV6Ey4DSNxHU7TkXakS+oYi6C4T2A0JEdWleCV7JJaJVKuSF+1S1UM1WDfqL3P850eBilyNqxY1Xf62VPXAho4iCCKnEKHdS6TVoinyDUUPeBlCJDWqN2LfiKpFqdcNIK7eoVo3aVFWyQaoqNZNHLKKKtgtO1/Tonoj8w23bqYEz67Mh1QJI9ItTwzvrby9SpVVXJBYvG8kUW9C6R6JxMm0ooQm9yxQeffMZ1ywxH3h6k3Ee5p0coTyREm551656pPcb7IZF7lMzTmm+xR3xV43NKSZKNlcqXooV+txAYJyzeWq+P2GWmUtvs8TJzoL2uF5PkoEtrB4R6kiHhcg68kbzFdBAp4Rq6rPAnESVwhU1hYWFuoxvzOHe/5kbcP3pqs0LSwYmvVuvvOSkwxYMvdgSV6NkC2fyV8sKHrvxFEhKA/sxlaL0vQWlVUR8e9VaQeQnqC7dG9R5YSmZBCTs5dCyQvEmK+Gg+5k5ZpTsm7iKEToqgLIqXeoVauiJbN07GmihAjZuolZ5tw0IUK2brjPMh3sTk25ZlmyipvTapW8cXxD2y9ZfL5SlViVSzyj8k0u4yLryhEioaKJqCSwZMsTulL4cncKQK060nUd5LOSCYrU+7xhlbVscgT/OpXzxHEc6WQeOkJEdo7QJgLIzhGAsIqFdHlxmvkqXK6Z6CwQl9AEFPey5p7nwupmosQVWXUzWZKG7Byp0KybrgbfpEXdLJfcZLqKFP8sUD0mFhYW6vGmoxbhXaetaPheMzLPYm6j2Zxo1tvZggaW5NUI2T4z7KCWcR3kM+p7VvG/IwpBqUjF5GqHZDCGovQeABTYhV90POrB1CwXUFIB/oArThKpL+MJcIEhUbUolcpa8uLC1lcu4yCncN3wfaBnGxFBlqQRM3FFtW/yGRcOU4jMUgKPbI4YXjexCBGyfqvxCBGyBBrJ8VDtG/5sId0ygUptZrhEo2yAip0FVPvGdZ3gmSNPJJqdr1TnNNnnDbM366r1DW+L6dKIcdWiVM8bWd/ks67yvkzShHNKzmlpKZ9J9bwB4p9dqfa0oqRv6JIj5OxwHQTKW9W2GD+71tWR4oQmLWkmG7MBGu+LSZHPuMjU90jj+7ykb8IkDbX7iCyhSeWbQja8exrvUyw7X6mTIwRJb54cV22LhYUFDT7xP2eqMS3Ra8FgCV7zsCSvRshmHgaBslwGjqPuMpfjyjKJ20JL4Mn2SDStVKFSmvFBd1lbyMrOSl6iyEoTGyaI+KC7/HxVmxxRiNlblK40sdlgquM43HyVVcCnoypAp+oy5ylRRsayhbg9gGiVBGpFsazqjSLLvUMywYnMNylJXIlLNlP4Rvp8RKTMkK1OQE0kypLNlHua6XNJISu7buoKL+XrRlJlTTRX+c80XSZZugQ9GaGZjmQR/jPFzyXp6DNOrbKOkwigMi4AxEgYqRN4qsu9dkmvXyqVde1MLl8lwVXqG8dxgjGRVjcrV1mnYy+RJTRZsnpBcVJRHN9Q7WmyyvOJIlHlF0nfsNcVsmEyg4WFRfrRjLSzRK+FJXjTAUvyakSX5IWBKsAMyBPOVD09ZTNlJ6h7JBoOMAOcqth08FBWpUneT0wuUEaybuKWFycqZyZ8mSMOYpom74AkiRo0Ci/hUtrU6p0U+CYuIWK6KkC4typOBIi5j1A8b2R7m6VF9UalhoibHEHiG2mSiLaqh2nfpKU3cO0z453T1JOr6Ui0Kkgm41ElAgDyexp12VlZ0sz0GZqKNONtMV1ePC1KfNkEGtI9LVB8S961yAg8ud6ips8klHtah+SYBOtGYSl8IIxjyfpGvco62/D5kXYQnY1qnympPCeqdJKWGGNXTm6PpzxDW1hY0KIV0ev7Yj3KLQ4tWII3PbAkr0YEF5ey3OGY4uAjexikK40oezhOCdlMpNDkbTF9UA8SAVJSElhe2azeN9JBECKSKC2qN1kVIKVv4iuriAg802XOg3KEcnOVZN1IEiJUPaTjE9/p6KOZBtUb2VkgH28vMR50J7KjZktKCHhpdbPX8D5VCPZ4wb11SgMhIj0mhygRETuBhiJRUrbiCnFSgvg9i2bdxC2lTbOnybUHoJ+vplXW8c4kBcXkHSCf2EunoI2rWqWKC5glm3lbZPdX1SrruCWBu5STvHK+Ce6elL4RjO2RxWzi+oaIbE5DPM3CwoIezUi8VTc+KLw/WxwasARvumBJXo2IT97REYnClxeiQ1h3gY2JXO8O9SVWZQ+ldGUAZQ/IVL6RD7rT+Ea21JyWEo2CAarUEHhkc6Ruh+h4aAgemie+ZQO7tBd+08QqIE+ITFHN19jJEWaTNCh9E85Xs0rAsJS2XGDXdOsGKoKI/0zTe4k82Ry2GlEJ2eQIKmIVkD8LFKmIRNm9lSspSmJHCkrQy5OrNHuadE9tDYpEEXWFlqQi6WQAxRVXspJkswaVteeJ+IYmEQCQL8VLNU9klYChalXxnhazJy/lGdr0/UbWNxNFonNazMR8inUTt3dzt+J7ReAbYbKZqZtp4gLiBDydytrCwkIPmpF5x3/kB3jol3sMWGOhE77vW4I3hbAkr0bIHwRpSroAvKo42hbf98lKispnHhL3MpEshURZolHkgOz7Pnk2pnjmMJVv4vVFovBNR058vvq+zxHfZhUiZKW0pYPulCWzxIMgvG/SUtqULLBruEoCIEcSUT5vZFWadGXO4ynNKH1jXskbT6lCF3Q3v26k+9+Rk0RmWyZ0SJJVbI8/pJMjJJWRZOum/nmlqoeqEFlFQzbztsj2Bza9l1CNCVPzVT0f5Wq0bwKyyvBZoMGWQ7Q6Ab8fFAUqFOgg4I0/b+ImKBIpeWXPi2kgEieIiMS4vlFNJMr6hiphE5A/u44TxwXkFbRE8bQUnKEtLCz0YeedF+L3jl3c8L33/tPPbJ/eQxi/3jeKVTc+OOP7luA1j1lD8g4ODmLDhg3o7e1FX18frrjiCoyNjbV9z5lnngnHcRr+vfe97214za5du3DhhReiq6sLS5YswV/+5V+iUqEpL8AfjsUCVHQHHxlVMR+0oerdIUt8K7ejEJLeMr6hvMwZ903988aF1d40vunmskLT45voMSlWPLBYp+rgQ0A2S/YjoiylbXpPY0pAkaBdqRr6Rj0RIUkkEs3XAhf8F/ENy/4mVb0JkETlqk+2p6WFwAuU+BUx9U5aelmXqx4qdXu7DJegp25TUK76KFej5ytt31fx+VquegGBYzqpiK5fcnhlESFEdPRLll03ZL3XU6L2BsTmK2VVD5nyxFXPR6l6iJfS5n0jkAwQqFYVKyN5W0TGxPP8YJ2bLpNMpRbl/y4RW8K9lcA3Es8bPsFYeVWAmMpIqsoRwmcBImIVkHsGe55P129VttJYmaj/bP38Keobyrun7J5GpcaPvW6IYkeyvqE4C1hYWOjFV//4jfjHy06b8X1L9B56WHnD93Hu3z0x4/uW4E0HZg3Ju2HDBjzzzDPYuHEjHnjgATzxxBO46qqrIt935ZVXYs+ePcG/T37yk8HPqtUqLrzwQpRKJfzkJz/B1772Ndx99934yEc+QvI3sMOx74sFuykPPp0SB3X+UkHXu0OyrwqRHWnwTVchpm/I1M1ms0LZxcXzxQK7pL6RuETxgRI635jt7y3rG9LArkT2MD+nqQKq4ipNoqzuuh2+qG+IlCq8LaZ9I0uIUPcDBMSC7lT9o3lbRHzD73sdVH2KBdWiVBUbpMkqynOaxHzlbSUrCSxLwBOtX1FbKFVvMu0B+NcoXzeyqhmiMSlw5JeILbS+EU8q4udRWnrhql6/uYyDjOvUbJG4V1CcBWR8w59b0kLAq/ZNxnWQz4gnBlKWBGaJkmLPGw8sd5DdWVVB/u5ZIbGDn/8id77xImGlIomWUvyZUv2dT7aNE9E5jXuOCvmGsDKeTFyA32/IFLSyJawJ7zcycSyr5LWwODTw1uOX4uc3vXXG9y3Re+igmS/f8zuHW4I3RZgVJO+2bdvw0EMP4a677sLatWtxxhln4LOf/Szuu+8+7N69u+17u7q6MDAwEPzr7e0Nfvbwww/jV7/6Ff7pn/4JJ598Ms4//3zcdttt+NznPodSqaT87+APUiKkJuXBJ+yrEm0HO6TlMg5yGbMZu2SH0hT6RsQONh75jIusYt/IZuxS+YYvr2T6whCqm8UJERrfxFs3qgNDPHktcrFMiyKRvSYNexoVSSRLiFD2so7jm6zrIK+6x5q0WpQmaMeCqUB61o0MacYHppXZIV0+k46scpz675BRJBKod2TUZuw1jtNIuOm2A6Aj4HMZF7mMI2wLZdnZQI0vsm7qdrgOlK+bgJiRTI5QvW5c1wmJb4k9zXRJYP41ptcN1T7vOI7Us09LT17Z5AjDCV8BWaWYSKzZIp4wws4kFGpRthbFEp3D+6n6+3i9RY9kUpHq500+4wbJEUJ7GmHlCJkSuPzdg8o3won5QU9etfNV2jek5ZrFYyUNiZJZs76hGhNZ34RtrdT7xsLCwgwWdOfxwh0XzPj+yhu+j5eHJg1YZKEKzQjeJ/7y9/Cxi080YI1FK8wKknfTpk3o6+vDaaeF8v9zzjkHruti8+bNbd97zz33YNGiRTjhhBNw4403YmJiouFzTzzxRCxdujT43nnnnYeRkRE888wzLT+zWCxiZGSk4Z8IMq4TBBFkDoMUwUMZkkiHMlK+d4faMZntvqEo3RXaYfbC0OgbAQKeMOge9gcWJ+BpfFOzQ4RsBuiI72zGDYg4kdLROgh4FlRoB9IqCSkpOytLiND2sq4rVSQu/KYVXkBInFAQImzdyBARqisCAGFZbymyOZeBw5hQRZDtLUr1DHYcJwi+FQXmSaiMVL/Py8xXLb6RVSRSEnhCQXea9QvIlc/ke76q9g2zQ4Rsnm6Lasj092a+UR3oBuTUZpPcOU39upF73oQlgdOhPKeYIzLrhp0FCtmQNFBth0iVE94Wimew3Jgwstns2ZW/31D5xnRvUcdxwoR4iTGhIKtkqjexO1BnLgNXsW+kE4yJKhXxvpFJiCdp4yQhmuDPadY3zA4631hYWJiD4zhNlZ1vuvNRq+qdhfjSEzua+u2FOy7A4Qu7DFhk0Q6zguTdu3cvlixZ0vC9bDaL/v5+7N27t+X73v3ud+Of/umf8KMf/Qg33ngjvvGNb+A973lPw+fyBC+A4Ot2n3vHHXdg/vz5wb8VK1YI/y1S2ZhEBzBA7hJFmwEZ71BK2m/V+kbaDoAnVwl9k5KkBJlyzaYv/ICeDPOJovhljiJ4GKfMOc1crdshQDYDtORqZ058vlKpvQHJUtqUPU5ly2cSKXkbbZEg8AzbQTlH0lJKG4hX+t10wkha+s8CtGMiR3zTndPiqEUpx0O2XDPJPh+jTHKn4vLVQEiSiuzzxYqGfSQFZ2iZdUPZv1Jmvmrpoymt5DWbHDGuYUzEKr+k535DqQTsCO58IuRqOuIClPEJ2cR8SnJVLlZifTPDltT4hm5Ps7CwMI9WJXwt0Tt7sPKG7+PjDz474/s777xQeYKshRoYJXlvuOEGOI7T9t+zz86cUKK46qqrcN555+HEE0/Ehg0b8PWvfx33338/duzYkcjuG2+8EcPDw8G/l156Sfi9MiVwdajeZMpDUdjRHSgjzSoSa585+3xDS96lo1wzb4uIcpXyMhdHZW3aDv51FIHd7rSsG4nM4UlKAr4eBGSX+SiQ+qYgTjinZS8hJTTz4tUaAFpyRibITErAz1IiUYsaX2q+0iVame7VmJZS2vxnpoVcFSKbNRCrsmdo0y0TdCRpyJBVpksT87aYJjVpSV7xqgCURKJscgSlLXIJX3TlmuOorNN0FiC9jxteN3ESNinJu3TEbOIkjKSj+hqJEj9mq6C0+MYqeS0sDl3svPNC/PiGs2Z8f+UN38effO0pAxZZiODgeKkpGf/utbb/btphtAHCddddh8svv7zta1avXo2BgQHs37+/4fuVSgWDg4MYGBgQ/n1r164FADz//PM48sgjMTAwgCeffLLhNfv27QOAtp9bKBRQKBSEfy+P8BBmuLxMEHQ3W0pFtiSwFuJMRJGYFt8QKs26pUtp6yBXzfqmMyW+kSXg06L4prRDRslLSZrJlI0GaAln5ptxyTJiqtEtsX4piZnYiSuHcDJPGLQzO0dkiBmAWvUmX9qUVKUpWUpbNaSVvBqSAWR6ehpPjiDcR2RLaQclgQnLi0sFdg2rm3X0WpUlebsJbJEjvumUkVIlgQmVkTJ7PBCOSTeJLeJjMk64l7C2OCItE9KYxGqcXNVQvUkm4YskESCuAt5wL1xKBbxUIgDrUZyjbCc1u3wT2EEwJhYWFunBa/o6sfPOC2eQhj/cth8rb/i+JQ1ThlZK619/7Pyg5ZhFemH0ibp48WIsXrw48nXr1q3D0NAQtmzZglNPPRUA8Oijj8LzvIC4FcHWrVsBAMuWLQs+9/bbb8f+/fuDctAbN25Eb28vjj/+eMm/Rgwyh8GAEDFMRFBm+8kQRL7vaykJLERWEfZITJtvxgVIb9/3uQuu2UsUZYC5W2KOUCpVZEhvft3Qjonhcs0xCE3K6gSyBDwNuSp+6Sctk8yU+DL9kkl9I5ZURFpKW2q+0vUpTlsp7TS0B4hVrpmg7GxaVNZpKgncIdVDut6T1zDZTEmshuSdaG9ROgJAhtRk+x4FuRquG5HSxHTkHb9+fd+PLGnGztokxHdWhlxlZHM6VNaUc6RU8eB5fmR/zHENtsg8b8wreemTE+XVooSlow0nJUgRmkUNCcaCexql4lsunqbBNxIJNNSiifT4Rvx+Y8s1W1jMDey880L8ry9vxn8892rD9xmp+Nxt55owy6KOLS8exKV3NVdXWyJ+9mBW0PDHHXcc1q9fjyuvvBJPPvkkfvzjH+Oaa67BpZdeiuXLlwMAXn75ZaxZsyZQ5u7YsQO33XYbtmzZgp07d+K73/0uLrvsMvzu7/4uTjrpJADAueeei+OPPx7/63/9L/z3f/83fvCDH+DDH/4wrr766thK3SjIldyhy6aOU16Gohwh+9uKFQ9Vz2/72qmyB99vfJ9KBISzYWXGbPRNsRL6hjLoLlauWQO5apis6uICu1G+KVXD15jvvUNZ+l0mEUBPX6RI31Q8VAh9I0N8k5KrBTYm0XZQEqtBKe1SFV6Eb8pVD+Vq3TeUZc4lSmlTEt9Ce6umPri+3943Vc9HqeLR2SKjoC3TPYM7YyiKScs1l73IdeN5fkA4kvYWFVCbsf2GRi0qTjbrKPVaqnqoVNuTmlWPNuFLisBjRCJlUoIQIULnG9bP0/Nr/mmHquejWN/TKJS8HRK+GQ+ICMIyyULqO0ICnvvMqL2kUvWC5w1FYm+QHGGYwJNSWVMSRHVFX4V7zrdCueoFa4u20kk67nxSSeiE41H1/Mg9jT9D05b1Nl19TYLQ1OAbkecNtW/ixbEsyWthMVfwjSvW4jcfv6Dpz46+6WFMiOXiWyjG+zdlmxK8P7nhLEvwzjLMCpIXAO655x6sWbMGZ599Ni644AKcccYZ+NKXvhT8vFwuY/v27ZiYmAAA5PN5/PCHP8S5556LNWvW4LrrrsMll1yC733ve8F7MpkMHnjgAWQyGaxbtw7vec97cNlll+HWW28l+zuCHolpKTsrRGjWL3OEpBkQfbHkx4yylKfIQX2CMAgilRWqQVEMRPuGvwDTKhJNX+ZkMnYJ1aJcENC0b2TKi9NecMXJKtpyzRK+4X5u+qJNSq7GUfKa3tO4n5PsJQHhLLJu6AhNmTYFk4QqBLbH+360KpF+3Uj0kNZBfEv1BqYLpgIIiKhW4AkT02MyHigS6cgqEbKZkqzin2FTEb7h1w1JSWCZvq+kbQpqV9uiUNlZ+t6iADBVau8b/jlAY4t4wkio9iZM0hDqP0tYnSDLnQUi5it/3qfspSmWuEJ4hpaoTqBDyQuIxAX4swDFniZ/FqBQwIfJo+J3YMo7BSCwbkq0Z2ipBGMNlcakShOTJEekyDcSghbKdWNhYZFeuK6DnXdeiNOOWDDjZzc+lcXRNz1swKq5iZU3fL/leO+880Is7+vUbJFFUsyaBgj9/f249957W/585cqVDeqPFStW4PHHH4/83COOOAIPPvigEhtFkLZDqQxpRmFHIevCcWqB3YliBT1tAk/MjkLWRSaitFYcxOotSti/UqbMDVV/JtepZYVG+qY+V/MZF9kMXUnCtPRFEiFEKMs1x1k3uYyDHIFv4lxwKchVuXVDGDzMcb4ptfcNsyPrEvmGJRXJ9Bk3XF48JKsIiJlshvNNtS3Rwexwndq+phoyZb1p+51LKHk1EYnjpUrb38EHsAoEfWG6JQh42nUjnxRIWa6Z2dLON4xYdRzz/YFJS/HKKLxYGU8CYpWf/1PlavuzQN0Ox6FZN1K9cOu2kJQEliGbCcvw5jK1u0rV8zFVqWI+cpF2uES+iTUmhnvyjhPa4boO8lkXpYonnCiZcR2Ss4Cc8pyuwpdUb2DC0sS5jBOsm8lSFfM7W68b/gxN0SNO5uwalls3rIAnnCO5jItcxkG56mOiVEVfV+vXNviG8O4ppbIm8I1chT66+0024yKfcVGqesK+odrT0uIbCwuL9OPb7zsdQPMesOx7VkVKg1Z9dwFg263rbYWFWYxZo+Q9VNAV6zBoNgOS0g7HcYTHJCDNiDYcmX6rlAHVsBeuSNCdriyi4zjCiiZKshmQVCRq8I3py5zMuqFUmgGSZcRSs27oxqTBNxG2UJbhBcLnjYy6mab0u3xyUydB/0rX5ddN+6Ad3+ctqrdVHEj1kGaleA0riicI9xLXdYTL4fPrl8Y34srzYJ4QkFXdBfF1E6pF1a/fjOsIBzInuMovUX0u4yCOktd0H022/1KQzY7jCBN4oR00e5qMSpOSwJMimwl9A4iTqxPafGOWwJNSixLa0WhL+/nKjweFb+QSV+iTeUyrrBvvN+3PJeOa7p5y6mazalFK3wDi85X3DeUZWuY+brrPOGVlPN4WmXMayZ4mkcRKuW4sLCxmD3beeSH+80O/1/RnK2/4fltC0kIO//PzP2k5nu867TDsvPNCS/DOcliSVzNkstsmCYMgXRJZoZSKYkD8MBgcBMnIqnSU0g7KRguVa07LhYF2jkj5pj4mJGrRgoRvqMekIErAExOJKSnXLOMbcnJV0DdB2Xei9RuMieFyzd2C4wHQPveA0DdRBB6l6hyI2d+bsjewRAINXcIIUxWLBXapyruFCV8C6h1CcjUkmwWee4SliWufK5aUQEmsAnI9pHUoecWCmHTKKt4W0ZYnpoP/1LbEIzRpfCNKOAd2EO1pUgQeYflMVkpb7H5DexYQJZypz/IySQm0vpFQ31H7RnBPY7ZSPH+B0Depqb4msW6o7jei84SebJYhEimr4aRDNMHbIppURJ6YL1BenLJSkYWFxezCYQu68Nxt5+L0pc3PqpbsTQY2fj998WDTn//Dugo+dtHxmq2yoIAleTVDLruNvkSjjB0UCi8gvKxG9ZqhPpTGK6VNqXozW3YW4ErgGvZNWrKYWVBIJOhOWa4ZEJ8nlKX3eDtk+q1SEGcyvqEkzQBx31ASq/zniqhFKQnnOL4hJ1ejlLzUvimIEZoA7Z4mQzYHSkBiIjF6T2Mkr9lEACAcN5LkCIlz2jhxoExU3UxJrAKc8lxgL6FUi/ZIlMIPewObPR9NEK/fMPgvPiakJYFToCLqEOyFS31OEyXNgNA3FOUzC9kUKXmFkyNoiUQ2X4siCnhC36RKZS1JVlGfoYWewaR7mnyiJNV8FY0f6bp7yrQdo1k38qpVqrNAZ1ruN3HKNVuS18LCoo53rfbw3G3ntvy5JXvlEDVeO++8sO14W8w+2AYImtElSJoBtESE6EGQt4M6+z+67Cxtxr2MupmSgE9LSWD+c6MCu7pKApsO2snZQV1GTFDJS+wbKbUo4aU/nlqUWpE4e9SilIpvmTlCv5dIKuCp1o1U2Vk6UrNbgmwO7DBMJFIGUwFJJS+hbxihmQYlr2hyBCWxCvBKXvHkCIqAqkwva2olbzAmEfOEsgxvgx1Cz2A6Nb6U6o35hirozoizyFLa6VNZG1eLEpbCB8T7nFKXBJYZE8p1I5qQAND7RjQuoKtcs4xvKOMCUfsIwPUGJo/ZiCXjUZ2hpRLztcQFxJNpqYnvCcHEFbrYURzf2JC0hYVFI1gv3lYEJfv+vVeuxelHLtJm12xA1fNx5F892PY1L9xxAUnJfgvzsE9UzRDNCq16PooVr+E9FHYIlYdKSaZsWpS8nucHJc9ICBGOhPB9v+3mmxbfkJdlEgwe+r5PWoo3IBLL0b7Rl2Ee1VtU04U/Yi/xfZ+0pyc/HpHrpkx7we0WvPTrIpujfAPQkqtsPMYFfEMZYOZtiVo3Y0VaO0RJIt/3SZVEfC/6KN+QK3mFqxPQks0yz5txQltkzgLUJFG3aJlz4nUjagfvG5qzgEQiQLB+qcZELBmAWpHYLaiy9jyftNyrjBJ/nHhMZNtq0JWdrRF4USSR5/mklYpE++AC9PM1GJOUlASOuo83nKEJKxVNydxvyCuumPUNOwvI+Ia04oqIb1Ki0qRWrYrGsWpnaA3lmiXWDVkSa04soZa6RLKoaIJ63VhYWBwaiCJ73/2Pm2e8dq5CROE818doLsCSvJohSiTyh1bKksDlqo9y1UMu07pyN31pU7FDqb6+r+3tmKqEP6dUWVc9H6WqF5Q3awZ6taiY8pw6K1SUNCtWPPh+7b+pfVOseG0VmLpK8Zrulywa2C1VPVS9mnNoelnXPtPzEekb6j2N/X2ifV+p1q+wbyoeytWab0h6i9YD3SK+oVRG8rYIl52lLk0c4ZtixUOlvm4oVDNsPET2NGoCT9Q3Y+R9X8V9U3cNqZK3InQWoC7RmBYlr5gdU+XwLEDZL7lc9VGsVNv7Jui3SrWXiJ1dqfu+sjEZi1i/U5Vq6BsCW3rqdpSqHkoVD/lsm/sNubo5THBqB12+ibKD9w1ly5NS1UOl6iHb9u6pJ0FRtF+yaTuo97QO7gwtevekUyTWPle0XzK9alXcNxT7vExcgD7pWjYxn7bMeVTsiD+nkSRH1D/TF7jfpM039PE0s3EBCwuLQwuMnPzr+5/GPZt3NX0NT3LOFTLzhv/3C9z31EuRr5sr42FhSV7tEM2AZD93nDDbWCX4w9REqYr5na1/B3UpFWHiWxdZJdjjFKBVJAK1v7ntZU5b31fBrFDDZZn4n5MkR+QafSNCJFKX4o1Sm1HPEdE+41OlULlBs25Cf09E+CYs/U4V2BVT0IYqQOJy64IBZoCoRGOu8XnTnuQlLjsrWGouLE1s1jf8uqKwRcY3Y0XiwK5kGcAearJZYt2Q7GncZ44X258FqEki0VK84ylJBOB9R1mdAKiVym7rG00E/Jigktf0GZr3XUebcYsLfg1MlCrIZ/OtbaFOShBOKqL1TY+kHQDRnsb5Zjzi7qlr3YgmXVPtaaKKYuo9jf/MqVJ7IjFYN8SltKPvfNS96EUTnfWdBaLiArpKAkclJcyZuIDE3ZM6KUG0dLSuRGfRuB5AN08sLCwOPdz+Byfi9j84EUMTJZx868aWrzuUCV/RnsT3XfU7+J3VC4mtsUgbLMmrGZ05sew2vh8gRa30fMZF1nVQ8WplbOZ35lq+doKYEBFViISHUtqsUNFDaUfOheuq900u4yKXcVCu1sp09nVF20KejSnYk9d8j9PaHMpnXWQIfJPNuMhnXZQqHsZLFSzobh08nCAOHoYKeMG9hFipEln+lvmmPoaqkXEdFLIuihUP48UK+tv4ZkxX/0rBHok9xIpE0Z5zhazbVlkTFxnXQUfOxVQ52jeU5W+BMCgZ3etNV2liMdKsI0ezp8n4hrz8His7GzkmutSi4sQMxVkgm3GF9zRyJa+g8nycOMAsXNK7qNE3kWcBPQR8tMpaU29gCWKG6gwdntMEz9DE7QFES2mTk82G100hmwnuN+PF9ndPXfeb6F7Wes7yUXbwcQGqdRPEBcoVzIdJ38jFBUwnobOfFyjvnhkXpaoXGRegThgRVdBqU4tGqr3D+w3VGZo9byZKEec0wlL4gMx8Ja6YJJgIwOzMZ2junhYWFoc2+rryAXn7v+9+Co8+u7/la3lS9O2vfw3+9p0nU5unFFtePIhLPv8T4dcfaqS2hRwsyasZwiVWiYlVx3HQmc9gdKpivBeutFqU+MIgfnGhWz5d+SyGJ8vGfSN7we0gJhKjCE3qEsnss0sVT1iNb7pc8xhx+VvhOUKsNANqf2OxUhIuv0dNVkX7hppsFlXf0doB1AiAqXJJmNSkI1dTokgUVMCzoDxVIgAQ+iZy3RArzwOyKpIQIU4EEAy6UyubgXBPEy7FS1ydIJLAY3sJsW+iVKvUhCYg7ptwTMyqRcP+lcRJGoYJTaD2N5bqyRHtQL6niZKrxHuaKNlM3dsbqI3J0ERZIimBSnkuum6o7RBNPKP3TVc+g5GpinA7C3K1qHEiUbD6Wpn+DN2Rq5G8osQZXVxA7Owa+Ia6J69gonM64gK6RBOm50g67LBIP26//XZ8//vfx9atW5HP5zE0NBT5Ht/3cfPNN+Mf//EfMTQ0hDe96U34/Oc/j6OPPpreYIvU4iuXvyH47yiV67/+7GX8689ebvjeC3dcQCKsiwtRpS6PZ29bT1ZB0mJ2wZK8miGb3UZ58Omqk7xRh9Ip6rIuOckLA/WhVLAsE9V4ALW/sUbymg2WBeUzI8YkuEQZLv0TZNwT+qY7zwJUZslV0ctcWHaWWkUkOB6EgV22JqOVGdQKWjFlFTXxLRqgGiMmNIH6Gh4XL+VpXJFITHyL9uSlVhEBtTE5MC6+buj6JUvu89S+EVZD0J4FBscFSkdTKzNklbxzyDemyySLkqvU64Y9T4WTNIgTvg5OlKMJ5yKtb0IiUcw3VP0r5ctG0yYVDU2UI3s3B0kJZPOVVY4w3Ge8IJa4Qk2aMVtGpioSd0/adTOWkjO06D2LNi5Q8414gjHx3VMwVmJetarhDJ3LYAgpSMwX7O9NHbMRFU3oIOAt0o1SqYR3vOMdWLduHb785S8LveeTn/wkPvOZz+BrX/saVq1ahZtuugnnnXcefvWrX6Gjo4PYYovZAKZi9X0fb7rzUewenop8z6obH2z6/eduPx85wkoDl33lSTzx61div3/Hxy8gqVJhMbthSV7NkO4/S1SaGGCHsKKAqpj6MifYQ6RMeziW7ZdMeSgVnifUZZKDoJ1ghjmxIjGy7CwxCQGEvhENupP1jRQu0UitFhUrq8aCi6SKxILYGh4nVuCFc0RQpUkWPBSbq6GKiDawW/tdgmpRqnWTkyspSq4WNazQBMR9Q06IyKqsD/EyngCvbjbrmx5B31AreWVJszT4hpqAly2TbH5P0+cb0d7Npvc01vOTbt3InQVolbxyyXh0dz6xvURfv2TBhATCuIA04UyelCAWF6AaE1E7tKhFRdcN+T4vp7KmIr6l7UhBzIa6rUanYKxElwI+OlmEdo+3SD9uueUWAMDdd98t9Hrf9/H3f//3+PCHP4yLLroIAPD1r38dS5cuxXe+8x1ceumlVKZazEI4joOf3Hh28PXLQ5N4052PSn3G0X/975K/NYv3b3pY8j3i+OofvwG/d+wSss+3ODRgSV7NkC0JTHoozYkewtJR1mVK26HU7OGY/2xxBZ5ZtejYFDWhKRagoh4P3hbThHPY91XMDipylRH7UUFMPWrRaFt83w9+Tq3kjZ4j1AS8IAmhY90IKPB836cv1yyYVERdilc2CEKZHBHsr22Ch7V1Q7yXiCaMUJNm3Fz1fb9l+aYJ4kQe3pZ2zz4tvmEJX6Z9wyUkiPiGKtANiPsmDOzSEt+iCV9UexpPVon4RgshEuEbarWoOKFJXZ1ANjmCVi0qYgs1ISJMrqakbDR1b+9YtpAR32zdmE26ZnNPXGVNd07rkSTgqWI2ookA5C2LBKvATRK3P6t9ds2WKcH+wGmJY1FVjgjji2ZFJBaHHl544QXs3bsX55xzTvC9+fPnY+3atdi0aVNTkrdYLKJYLAZfj4yMAADK5TLK5XLL38V+1u41aYW1vTmWdGfx3G3nBl+PFSs45WNypK9uPPz+N2HVou6G71GMjZ0zZiBqu+zfZklezeCDmMaDIAJkVdXzUap49ddTlwQWy7inOpTyPRI9z4fbovQBdRATELu8lKte4BsqJWBYXjyKENGjFp0qe0K+0UGItPNNsVJFueoDME/Ak5PN9fVbqnioen7LkiE6iMRuAZKoWLezZgtt4op4+VvaC3+p6qFc9VqWm9ER2BUh8IoVD3XXGO9TPKEpEaBcrT1j89kI35Aq4KOfN7xv6IkIs2oINkcqno9S1UMh23xdaFEkChB4WnwjuKeR+6a+Vwr7Rsu6EXve0PsmSmVN/LyR9Q3h86ZHwDelqocK801aCDxi1WrU8yZQFBP3gAfaE/ClSugberLKbLlXdn8r1e90rXyjI8G4RyApoVTxgvsNeblmwTM0FfHN9pFixUOl6iHb6gzN1i9xqyCg/ZjoiNnIJmmQV4ErVyPunvqqr7Xzjef5mCp7Da9XDdFESWrim31uMSIuoKNqocWhhb179wIAli5d2vD9pUuXBj+bjjvuuCNQDPN4+OGH0dXVFfk7N27cGMPSdMDaHo1/WNf4tecDj+x28MAuvcknA50+rjuxiunb8rYnH8c2jXbYOWMGUbZPTExIfZ59qmoGO9h5fu3w06o5dlpKAvMHVjoiQkz1xmyZR0yaAcBUpdrygqRFLSqgQhjX4BvRbExytSjni8lyteXYh2QzfcZuu0sUH9Cj7nljWt3MB1cmShXM68g1fZ2OksAixDe/buiCIGHwoR3olfjh506Uqpjf2T5ARZscER3s5p83VOsmVGkKKnmJEwGA2rOvJcmrQS0a9LJuMya8b6jL70WXftfThw+oqeBbkVW6+r4C7dfNuA7fCJJV5L7JSfpGQ+JKO5KIfxbR+0ZMZU2WKCnqmzJtIgAg6Bv+nEacKGmcEOE+d7xYQT6bb/q6oDcwJVkloNLknwHUJJGokpc6OYL9rla+0dUvGWhPVvF3dbIztGApbeqWRfzZfLxYxfyuFskROgj4juhnsI51I6qyDkvh05LN7Hf1trh7UvcoBsK4VLv5yt8HTbcH0KX2rv2udnEB+qqFFvpxww034BOf+ETb12zbtg1r1qzRYs+NN96ID37wg8HXIyMjWLFiBc4991z09va2fF+5XMbGjRvx1re+Fblc8zmcVljbk+F/APi7Nj8vlqt4evcIvvnkb/HdX+xp+TrXAd5x6mE477VLcMqKPtI4W1KkYdzjYi7YzioQiCK9M+0QRUMQpFRtSfKOEZNmABdQbUNEsANrLuO0DNgkRadgYJdaLdo5zTctSd4pWrIZEFNZszlSyLots4uTIlCqCF7mqOZrR86F4wC+X/tdreaAzp68IkRiR47ON+Jlo5kikWb95jMuMq6DqlcrS9nqMke9foFGNX4r8EHMVtnFSdGZEwtQUave8lkXuYyDctXHRKmC+Z3NfUNdNhoQU1nzfUVbqfWTIiA0BZVVVGOSz7rIZ1yUqh7GSxXM72rvGy1qUQFChHLdyAaoqNZNLuMin3VRqniYKFexoMXrxnT4RiCpiO99R+cbsXMatW+yGReFrItixcNYsYIF3S3IKo2EyESbfZ4/C1D5pkcwcYW6bHQ246Ij52Kq3N43E8SJAAC/p7XxTSk8Q9P5Rq6UNuW6Yb4ZL7XxjYZKRSIEHpur+YzbsgKJKjuEWxYREd/882asWEFfV3vf6FDAt/VNXQWYdZ2WyWlJIasW7SRSAvLntLE25zSd5ZpF1o3r1PY1CoiWsKYmvgvc/WZsqjXJq6Pvq4jynL+XdhDF09KismbP1Ki4gI49zUI/rrvuOlx++eVtX7N69epYnz0wMAAA2LdvH5YtWxZ8f9++fTj55JObvqdQKKBQKMz4fi6XEyKERF+XRljbaZDL5bDuqA6sO2oJPvPu8PvlchkPPvggLrjggtTaHoU0j3sUDmXbZf8uS/JqRsNFu1hBf4uLtg61qMhhUCvZLFx2luYw6LpO4Jt2xJkWIlGgXLMO3wSEZmS5ZtoxcRwHXbkMxktVId9Qjkm3wHzVsm4ESqwC3HwlCh4y34wWK0LEN6UiMexTHL2n0e6t6SilDdQCk+WqmG8oVW+dAgQ8dR9cIBzrqOQIRmqSqs0KGZQmvIiqAPoUiW0rR+hoU1CIXr+AvtLvpYrX1hYtalEB1cw4sdIMEC9zPq4haNddyKJYKbXdS6hLEzM7gPZjQk16AxK+0bG/5rOYKrf3DTWhyX92W2UVcT9eIBzryD6aRQ3rpu6b9krAdPTk1dl/Nto39POkp5DFYGW2+EaHHdHlbwH6uAD77NKEJzZfNSjgRYjErny2ZTuwpBDvZU2r0nQcB92FLIYmyhFJCawksFmV9WSQkECXxDqvbgcTI7QCdWUtx3HQnc9gZKqC0akKlrYQS+qIlVjox+LFi7F48WKSz161ahUGBgbwyCOPBKTuyMgINm/ejPe9730kv9PCwsJitoEmzc+iLXoKNSZ+tM0hLCBEOsxmhaaFbAZ4BS1dhoZIryg9ikSm0jQ7R7pSUq4ZkCOJ9KhFBYgZLckRZgl4gCcizO4lgW/aVCeYCFTnOkp6i5Zr1qFoMrtuugWIRD2+ibYD0OObLgFVsQ5yVYT41hJMFVw3OohEEeJMS99XifYAtMkRYgS8DkJELCmBfkxEkhLGdZBVoqVNA1JTQ1JC24oNehIBanZEk816egML9n3VsM+LkUSHfnJEeAeO8A1x/0pAjMCjLn9bs0PANxqeN6K+oS7XDMitGx1qURGymdIOFnOIVPKWNZxLJMqL69jnx4rllq/RGU+L8g2Lp1HGj5h6t21cQIMdFunGrl27sHXrVuzatQvVahVbt27F1q1bMTY2FrxmzZo1uP/++wHUEgiuvfZafOxjH8N3v/tdPP3007jsssuwfPlyXHzxxYb+CgsLC4t0wT5VDWBeRxavjhWF+t/1aLhEtSObgwOYhhJE6cjYzeLAeKntoVSHIjE8qLcjZjSoIUTLNeso91rI4NUxsTLJppXnwWWO0Dey/ZLpydVi2x60WolvAbKZNPifktKmvC0i5CptIkA0kajHN3JBd1olb3RS0VwizboFCCJAz5iIkJphUoJZlea4BtIsTUreHoFziQ6VtUhSoK6KAIBIT159Qfe2Z2gtdkSPiQ6yuUtQkaizh3T70u861N7RvgnaamipkiD2vDG9bnSQVULrRlO1hig7arboJJyjSV7K+ESPwPNGyxyRjNnoIVdb2zKqgUgMyebo+808DeKNSJJXR9UzkcQVNiZWyTtn8ZGPfARf+9rXgq9POeUUAMCPfvQjnHnmmQCA7du3Y3h4OHjN9ddfj/HxcVx11VUYGhrCGWecgYceeggdHR1abbewsLBIK+xT1QCCg08bclXHoTQsLyNCaFJm+0WXl/F9H2MaAqpCxLfGMTHtm24BEsL3fS3lIkNSMzowpCVQ1k59F/TB1UDAtwm6e54flkbUoY4UCYJoCNqJ9OSlLekd7ZvGdUNPErVXaepbNyLlCHUkabSbq7xvaBV4Ar3XNZJV7Xvy0ic3dQrY0bBuTCt5NZatFCobraUEfft1Ewa7DSclaFBZi+xpWknvUhW+77cs0zmh4ZwWkjPtylZqqJIgpeSlv1NE+YbZQqrAEyGrivTnRRGSaLJMv8f3cPeb9utGp+LbdMUGCbU3JaEp6hudVQGEiG8dvjHbKojfR9r5htnSqleuElsEYiXhmNDb0W7dMJVvmnxjWsAxqiH52yLduPvuu3H33Xe3fY3v+w1fO46DW2+9FbfeeiuhZRYWFhazF7ZcswEERKIAgUd58JkncQDTUja6VIXn+U1fUwuQgN4WoYM6vW9EDsc6yonydkw/ZDE0+MYw8a2zJHD7ALOGICanymjlG15Zq4M4E1FpkvpGQN2sJSGBU3sL7WmmCZGA0KRX77QLYgZKXg0B5mLFQ7WFbybLunwTTUQEQUwd5dZFfKNB4VWqeihVvKavKVY8MLfRljYVUL1pqNggVTZaA+ldrvptfcPWlI6gu4gikTQ5QsYODXt8xfNRbOGbUsVDucp8Y7aKhR5yVVyRqOOcVm3jmwq332mpHCGQlNCpifhuaYcGJS9bk54PTJWb+6bq+VpKAncJEHiTGspGy6hWu3L0hKbno2WFIM/zg9YsOuZJ+xZb9AmKMi22dCQYR62bIGmTUkErQnzrEE0IPG9GdVTGq/+N7c4C5aoX+E3HPGkn4LDlmi0sLCwsLNTDkrwGIHNQpyxhIpKxq4Ns5g93rYLMzA7XCRWdFJgncCjVoaAVSQRgNpImAtR94/utAzJjmnzDxmTEtG8EEgF09tFsd9HWtW5kSoqSkmYCynMdexofNJ6qNB8TZqPrAB05ukexiOJbT5nzaDsmtCRphL5pRUSwgJ1DvG5EVJqBEl8LMSPQI1FDL2ugdcIIv+926djTBFQztEkJ4iVWSVs3CKwbfv7oIBLbBXa19EsWIc00EvBA6zXM+8w8SaSDXJUgqzQkabSzZYIjsWjVkSKtG/RVXGmvFtWQQMM9P1rZwhOMtIm96ShhLban0T/3eN+0smWCS8YjVYsK+GZkil6lKUOaUZYEFlk3/PdpE9GjfZOeeBo96S3im/EG32hIzBdIMKZcNxYWFhYWFnMNluQ1gB6Rg7qGnnMipYmD4D/hRbuQzSCXqZWUaXUo5Uu6tCo/owIySl4tiuL6xbEZgl4mhHYUsi6ybm28W80Tvv8srW9ql/j260ajAt4w2dyVy4AN92ix+TzR5huJxBVSclWg3Os4NyZU6MhGB6jCEsm0vglUxW19o6/EqojCizLAXMi6qG9pLQmRcU3rplMiOcI0ITKuIeiez7rBWaBVYGiCI81cl843IspzPT21RdR39Os3m3FRyLoNv2+GHfX505FzkSH1DdvnDSt5ZfqdE86RjOsEySit1jDzWT7jIpehu/rJKM91JAWKJDdRkt6NvmlBVtW/n3Ed5Al9E/aNFCG+TSvg6QlN13UizyUTXDIe2/8oIOIbHf0rRfpojgZ3Tzpi1XWdyP7A7A6WdR0tvmm3p+mIC4j4RoeSV8g39e/nsy4KWfp9XqginY7qa23jE/SJADK+KWRd5DWsm7btzzSomy0sLCwsLOYaLMlrAOwS0FalyQ6Dhnvy6ijXDEQfkHWQZg12GCarREppj2kIHjqOwxHfzYlEHcpIQMw3OhS0LLDRfo7QB91d14lM1BjXYAcQJhqMtktK0KDeEdtb9fgm6qKta92EREQ7lSY9ISJSKlLH3uo4Thi0a0mI0Af/AY5IFOllbbiHtK75GqX4Dn1DbIdEaVNSQkSEbNaQCFD7/Pbkqg7SG+DLi5vttyqlFiX3TXvCOSz7rscO0z2kRXqv61DyAtEqL34foUwqCtdv9D6vo1yziFqU+s4X5Ru+xKoO34iUe6UkV0V6A7NzPmWCMSDim9AOHb5pe+djvtFRrrmtbzTFbCIS4nWMByDqGw3xNAHf6CI0g3twRGI+9fqVijFaktfCwsLCwkIZLMlrACKXOR39XeYVoskqbQReBDmjI/jP22FapSljhy5yNerCQH2p7BUpk6yjL1LEBapmhx7fRKmKdfRtBsSqAkxoIFdFyOaJoDwU7ZiwQFxrAl5P0L0nJfu8FFmliSRqreSl30cAjtBs0XMOaFTjk9kRMR6AnrKzQPQ80VHqVcQOQM+eJkY26yGruiISRsLe3mbJZiAs9005T7oF1o024jtC8a3LDpEeiTrVoqZLE9dsidjTdO2tEkpA0nKv+Wg7RjWUnQWiCWcdxCpvR7u9ZFQDWSXT45SawIuqEKQ7CV2oJDAlAS9CmgVEIu18jSJXdQgVgPT0KU6TaCIqxqij1RcgmJivKVZiYWFhYWExl2BJXgMQKfeqI+MvuPCL9HchPwy2L8WrKwNSREGrQx0p0pNXFxERdVDXpRYNicTWBJ4OUlPEjjARIB1EIr2St26HiAKeMMgspIAPyFVd2dQtFPCaehFF2QE0lo6mt8OsyhqILo2oj6wSUJtp2NNCJa9Z9R0QTWrqmKsAX3bWbOUIsbLR9Er82udHKHk1+UakfKYOxbdYwqYm5XnEPNFenUCAXNXjm3YJNLVnIvVZIOp5EyoSaYmZLoF9flSjIrFdksaIJrIqSvGto8cpIKZIDMskUz5vZAhNTWRVi/k6lhJCE9CjoBUp6c32NH3JEdEKeEqI9ClmzwAd6yYNpYmj7sE6SG/+8033kLawsLCwsJhrsCSvAUSRZsVKFaWqB4CYSGTKyFIFvu83fY2uoPu8iAuDNkIkglzlfaNFyVts7ZtRTdmY8yJUxboIzSiSqFz1UKrQ+6ZXwDfaleetSmlrKOnN29HKN5Wqh6IG3/Ckdyvf6CO+2+8lY5oIkd4I31Q9H5NletVbVEICoE+lOS9iTEJlldkAlef5gcqXtuxstLJKR79k/vNbklXaShOzsrPNSSLf97UoAQPSW0RlTU7At58nuohEkf7eocpaR3JEteXzZkKDohiIViRqU+JHzFff9/UoErl+yVFn6F5ysqq94ntEU6A7ao74vq9FkcjPEc9r5Ru9JYFbEYn67GhPNnse5xsNyd+T5SqqLX2ji8Bjz5solTX1uhH3jY6+r1NlD5V6HGI6dBF4UYSzdiIxJb4pVjyUW/iG7TGmE0a0zREB37Bzgi3XbGFhYWFhoQ6W5DWAyP5M3IVGR7lm328dfNBWckeUECEnEtsrinnfUAZ2RXyjK9gdRXzrUGjydrReN+H3dSRHeO18oykpgV0WR1op4DUTmmOtVKv8utHgG564nI6J4FJpVmWtq49mJKFZ0rNumB2lqoepFr7RtZeEvmnfZ5x6/fbW7Wi1fifLVTB+gjZxpWbHVLlNgEqTAj66f6Wu0sRRyXheEASnHBN2zii1Cx4G60aTkrfFc0+X2jtKQVuqeEEyXleOMDmivndXPD9IYpoOtu/q6yHdnqzq7SRWvUUoAWtB8Nq6oSRX2RzxfbQ8C+giicR7i2pSrbYgNHliT4fqjf3OZtDWNzItisSI580EdxbQQcADbYjvoOysnhLWLVXWTLWq7XnT/r4HEK+bBt+039N0EXitxkSXQjOqFy7/fR1lzgHze0lUrESbojiixda4prunhYWFhYXFXMOsIXkHBwexYcMG9Pb2oq+vD1dccQXGxsZavn7nzp1wHKfpv29961vB65r9/L777iP9W6IOPmNBUCiDjOuQ2dGRc4PPjyKcqQmRKEWTrrJMPVFKlfr3O3Iushm65SPkG01ZofMiiW/NF4YIQjOfdZEj9E1nLgO2LFtnyupRaUaVQ5rQtH6j1KJj9bmayzjIZ+l8053nfBNFfJMTiWxMmhOJ+gj4KEKzNkcyroMCoW968lk4dd+0Jpz1JPP0drafr7oUiVFzhNnhOrVnAhX44FeUulnXumlFfOtWe4skFXXmCJW8+ejgYVhenJr4bk8SjWlSi4YlVtsTRADtPOni/N6K+A7JVWqSqL26WReh2RWhehupj4fj0O4l/Jps3W+17htisiqqzLn+/rPt7ci4Duka7si5wTktyhZq4juqB21YIlmPHVFJGlnXIT0LFLIusnXnRNmiTWUdRZqlRBmZy9CeofNZF/n63bY18a0rLhBFwOtWi7Y/C9R8Q7en5bNucLeNmie6WltF+sbw80bXurGwsLCwsJhrmDVP1Q0bNuCZZ57Bxo0b8cADD+CJJ57AVVdd1fL1K1aswJ49exr+3XLLLejp6cH555/f8NqvfvWrDa+7+OKLSf+WqIuLroOg4zhBYKglORMc1PVk7EYFVMlLAkf1BtZ0cXEch+v9alhBG5WUoJ2sikpIMO8b3b1wTfsmWDctezXq29OYb1qRRNp8EzlH9CgSo5S84T6SgePQJRW5roOeoG9VewUtvW/SoeSNJDQ5YpXSNxk3PAuMTEaUfidPGMm1t0NbmXOmsm5uByP1OnO0yXj5rBsE9aOffXqqerQ6HzGf6SLNWpHNzI6eQpY0GS+bCX3TmtSsfZ98TCLKJLMxmaepf2Vr0jvcW13CdeNye5p5IpElR7QfE/qy0RGE5lS4biifN7W7p6i6WU9yhGlCsydi3YxxhCa5b6JiFBr6NgMiCni9ykgRhSalbwC+hHVEQrym8uKtKnzpI+Dr49EqmVbTHAH4tmMR6mZdbZwMx7HY+m01R/j7HvW6sbCwsLCwmEuYFfUxtm3bhoceeghPPfUUTjvtNADAZz/7WVxwwQX49Kc/jeXLl894TyaTwcDAQMP37r//frzzne9ET09Pw/f7+vpmvJYSouQd9UEQqAU3RqYqAoSzWdWM/h6nZlWr7HcMT5YjbdFHVplVJEaWINI0V4Fw3ZieJ5FKQO12mE1IqNkS5RtNfcYj9pKJoKS34bLRmkqs1mzJYrRYEVDQmp2vukoCR6ms2dzp0rCn9XbmMF6qpiZxxbwd7efIiKbgf+135DBVLrYknEc0KRJZqd9WY6KLNIuq6qFLGQnUnmlT5VL6yar69+kVxe0JEV2JAEBN2T5eqrbpt6pJ3RwxJrrKNYe9gdsnJGhZN4XaWSAqGcB8T17NZFVEsogO37C7Z1SlBOr5KqoENK+y1jNHmC0HJ1rHBcL4kdkx0SUQYH9ny2oNmlSrQG1MDoyXgjLi06FLQRupbtY0X9NSCt/CwsLCwmKuYVYoeTdt2oS+vr6A4AWAc845B67rYvPmzUKfsWXLFmzduhVXXHHFjJ9dffXVWLRoEd74xjfiK1/5CnzW+KYFisUiRkZGGv7JQLQMoI6ge1p6d4gS37oOpS0Ddhp9E1meOCX9XbSprAUJTT1EoijxTUzgRfav1JscEVUSWEs2tWAJXH3kqulyzelI0qjZkg41/ryIXrgTmva0+VFlow3saa2IRN1lzqMJTWIlb2d7RfHIZKXhdaS2sDGZjCDOiG3pFfUNMZEY+MYw6c3b0jIZYFIPgdcTkZSgu+9rlPpOF1kFtFZHhr5JR7Bbl5LXtLK5ZouYItE0gTcW+CYdhCY1aQZwynPTKs1A7W2672vEXNXom8h5oovAi0hc0eWbqLmqq9VXzRZBclVbzCaCbDbcTkqXotjCwsLCwmKuYVY8Wffu3YslS5Y0fC+bzaK/vx979+4V+owvf/nLOO6443D66ac3fP/WW2/FWWedha6uLjz88MP4sz/7M4yNjeEv/uIvWn7WHXfcgVtuuUX+D6mDv1T6vj+jTMmoxoNPu8BQ1fMxWdYTdI+6uGjv+9rCN2YI+JkHdc/zA7WZPgLPsDKyIOYbXSproPnlxfd9bbb0BEH3Vpco/arVZr7Rq7IWI850qUUjy0ZT2xGxbsKSwDp90z5Rw3QvXPYMpu5xyicCND0LsECZBiKxXVKC7/sBwTi/y6xaVB+hGSYCNPONLrIZaE9q+r6vrSRwNPGtV1E8MtnCN5rIO4An4Juf09izj5z4jigvHiQlEI/JfEG1tw4CPigp2mRMPM/HWEkPkdgVkESt1GaalLwBMdO+XLOOKlLtyNVG3+hSwEf5hljtHVHqVVdFAKB9mWR+TzNN4DHf6Co7O16qNr/faFbAA9HrRl8vXLMEXnAXL7W/e2qpjNfGN77P+UZbUlF7JT65HR3huvE8f0Z7Bp0xGwsLCwsLi7kEo0reG264AY7jtP337LPPJv49k5OTuPfee5uqeG+66Sa86U1vwimnnIIPfehDuP766/GpT32q7efdeOONGB4eDv699NJLUvawA03F81GseDN+rpNIbHdQ57+XmlK8mjIPq56PqXJr3+i4MLQjVyfK4eFdlwrB+GWu/nd6PoLkg6Z2aCmfWfdNkzGZKnvw6sUAqEmiqEzZkEikVhTXgpOe37zvnJHkiCZjUqp4KFd9LbZE+kZTkgYLHLf0jeZyzUDzPa1YqQbPQ2oCIIqAZ4TNfGIicR63pzXzzfCkRiKxzZhMlT2Uql7D66gwrw1pBvBjosc3fLIbD11kM9C+T/FEqYpq/YGjj0hssW4YgadJUVyqek3P0KOa7OB/RzNydbxUCc4Cxgl4TUpe9ndOlqsoNfWNTgI+TAaYjhopAC22sDFvpazSXZp4slxFpdp63egqcw40f+7xvtFG4Jnu+5oP97Tm60bf3bNdz/Mx7ntp8Y2uO3C1RcyGrWstcYE2atGJclXbnhYQeBFVz3TFBXy/ecUGXcpmgO8P3CRmU6pq39Na9cLVTcADzfcSnWXOLSwsLCws5hKMPlmvu+46XH755W1fs3r1agwMDGD//v0N369UKhgcHBTqpfvtb38bExMTuOyyyyJfu3btWtx2220oFosoFApNX1MoFFr+TAQ8UTk6VUFHrpGA0ZkV2i7zkH0vl3FQyNLmAwS9cA2Xa+7KZ+A4tQvDaLGMzmnkmC5lJNCeXGW+ybj0vokqG60rG7Mzl0HGdVD1fIxOVWYoMbUSiW3KzvL+6srNjZLAHTkXWddBxfMxNlWZMReCvq+aevICLYLufOIKuVq0vW/Y96n3NN43o1PlGb7RRZoB7X3DAvGOoy/o3so3gWqVmCTqzGXa+oaNE7UdAOebJiQRs8N16Pf53ijfaCLwuvLh82ZkcubzRpd6FuCJxJnPG+abrOugk/h5w0jkVkSivv6zWbhOLTliZLI84wxtQmU93GRM2Pkgn3HJz2nzO1sTmrwt9HtrNjhDj0yVsain8a6ks5f1/DYEPO+b6fOHyo5mcwTg+63qSVwBan//gu58w8913j3btfjQ6ZvIFj3aykaHf+dEqYJ81pxvutsoz5kdOuICaVGL8veWseLMmI1Osqpd1TPmm6yGuECkWlTT/aYzlwnOAuPFyoy7rt7KeCyZp3VcwHVAfk4TLulNPCaFbHj3HC9WZ+yhtlyzhYWFhYUFDYwqeRcvXow1a9a0/ZfP57Fu3ToMDQ1hy5YtwXsfffRReJ6HtWvXRv6eL3/5y/j93/99LF68OPK1W7duxYIFCxKRuFFwXYcrEdX6MKijtKkIkdhdyM4ogUNlR6vMQ11EouM4bRV47Hume/KGyuaMBt+0vrg02KLRN83IVaYIoO4zA7RXafLq2enliVRDtL+3lnXTLmhnopd1kzFhQdbufAbZDO3jr7ej9Vyt2aKHSHQcp62CdnhCJ5HYxo7JsPQe9bqJ9o0e4jvSNxrVou3s4FWr1M+bdoriRlvo97TeNnuaLjuA9uXF+d7A9L6JKgmsZ924rhORMKJHtQq0V4vyhKZx30zp2UtcNzyntSO+dfqGPeMa7dBf0nu4JQGvx5Zcxg3uns19o2/dtCO+dRKabP+O7mVNa0s246Ij57a0RVdSINBeQRuWaqZ/3rBeuM1UgIA+ctV1naCFSLMx0aX2Btr3subnCLVvRNWi1Opmx3G43s2tYzZ6CPh2vgnniK54WmR/b+IxcRyHS9RonXRtSV4LCwsLCwu1MEryiuK4447D+vXrceWVV+LJJ5/Ej3/8Y1xzzTW49NJLsXz5cgDAyy+/jDVr1uDJJ59seO/zzz+PJ554An/yJ38y43O/973v4a677sIvf/lLPP/88/j85z+Pj3/84/jzP/9z8r+ppw0REWa30V+025UENtEbuFU5M12Zh0BjD8vpGA/63Zgl4HWOR2RPXo3lXtuOiUYisbfNfNVpR1T/WZ3l99qVsGaBvD7ifp5A+/k6rKkML8CrRduTVXptmTlfgzHR4Jt2Y2LGN+1LApu2RZeiGGjfC1enoji0I4KsMq0812hHOyJx1IBqtZVaNFRZ6yNnmhFnJuxopxbVUza6NbHK26JVQduG5NXhG/ZMa+cb0+NhypZm82QkJXboJOCZHUOTpaY/10ngtR0TjlylRrtqGgGRqOW+V08wblXhS2t/7+i7pw7ftCPgtcZsIvol6y2T3M43GvuM51v7RucciYrZ6FTQtisvrnO+WlhYWFhYzCXMCpIXAO655x6sWbMGZ599Ni644AKcccYZ+NKXvhT8vFwuY/v27ZiYmGh431e+8hUcdthhOPfcc2d8Zi6Xw+c+9zmsW7cOJ598Mr74xS/ib//2b3HzzTeT/z1BFmQbtagOIjEtWXYBsRpxKNVTijdaQauFgK//jmakmZEep4ZL/wDt1c06M93bjcmITkIzYt0MTZQ02tKGwNOoFm0XoNKpjGyXyMPbolNB20wdacKOpoSm1tLE7YMgoepN357WTgmoh9BsTVbpLekd4RutxHdr3+jcS9oRiboUmkD7OQLwhLNG4rvNmOhV8rZTFKeBSNTvm+ZEYjrUoiZUq6nwjUB5cdNjorP8bTBHmqi9gfD8psM37eerfrJ5qKkC3kByRArIKhajaNrfW2eZ85Qkf0f2SzYiEmgXszFsh87E/AgFfEg4m616prMynoWFhYWFxVzCrHmy9vf34957723585UrV8L3/Rnf//jHP46Pf/zjTd+zfv16rF+/XpmNMmjXC3espP/i0qyvipkLw0w7fN83knnYnlzVoOQVUVlrLDU3VqzA9/2GUkO+7wcXcB1B97Bc88zgAwtI9Gkk8JoFH4YYyduZn/Ez1WDBuLFSBZ7nN5S5rXp+ME/ma7Gl9WVOq5K3TRDEBKE5Vqyg6vnIcL6pVL3APq22GC4J3K5Msk5lM/tbJ0pVVKpeQ+nuctXDRL30u86khHbkaloUxVqUkR2hb8pVDznON6WKh8lyteF1Omxp10Nar5I3HXY0802xUsVU2dNui+kxEen7qnM8xpvsaaWKp9U37cgZnSRRWCbZ7J7GxmO0yVmgXA19MxcVtG0TATQk07KzcTPfVLizgI67FrsztCthraNiAzunmyabmR1DE6Wm9xtdZWeBsCpAc5W1PnVzu+QInQkJfFWeZnEBnb7pbkMkmuiX3L7SmI4qcKECvqlvNJKr7YjvcY1ks4WFhYWFxVzCrFHyHmoQyfjTeQBrqig2oJ4tVT0UK41E72S5Cs9vfB0l2l0YtPZIDOxoEvyvE5oLuujJOzbmVc8PAuwMLDAC6CHw0lISOCBXm5G8E/qVVb4/M2t3dKoMlveihSQSIOBNqzSHtM6RcK+avs/zwW8dQbu2KmsTRGKTyhEmCHhgpm/4IJ4ORZNYL1x9hEg7RbGWRB7eN1PT10256euo0E4Br1PtLVJKW6fqvJkt/Ndaks86W/tm1IBvonryUoP/HdPHZFTzumlXOlprv+Q2vhnVSCTyZ8Hp5EzDujFdEjg15Zr12+H7M8+u/NlAT3/gNgpaRiQa9o1OFSCzw/PD5HcG/r6jw5a+YExmlvU2obI+2GSO6CyRzMajxCWpMEyUqsHdU8v+2uacZqLqWbt4Wo+Wkt41Irni+ShWGn1TrHio1GM2OgUcplXWFhYWFhYWcwmW5DUE1rujGVllpJRKm6C7DjvYeAAzA7vswpt1HXTn6bMg2d/brNTNQQPkarPD8UFWhldD0L0zlwFLoJ7uG0Y2F7IuOnI61M3R5KpptSjr7aXDjkLWRS7jNLWFrd+ufAb5LP1WP6/NfDVBJDYlZjTaUciG4z49eMjGo6eQbVBcUSFU0KaDXG1X0luHCiGXcdGRY76ZRiSy514h26DqoYJIn2KdSsCmBLxm33TVn/PT1ZG6fdOu9PuIRt+0K5Os045sxg3OYNPHxJRvmip5NZad7W3jG51KXt43rYjEnhT4Ji1Eos7+s/yeNt0Wto668hktZ4H2fV81Knm7WhOaOvtX5rMuOnOtfFOzoyPnNlQtoEJbcpXNVw2kWV8732jcWztyGRTqZ+jp5bSZHfmMi0KW/u7ZV7/zt5+vOtTNdTva9G3WQZp15TPB3ZPFIxjYeGRcJzhnU2JB4JuZBHzgG43K8+brNzwfUaM7nw1iNtOfwfz9nI+7UaGdWIHtr7Zcs4WFhYWFhVpYktcQ5rUJgrCDqo4Sq+2UvEMaCc0MR+BOJ4kCQrMr31B2hgrtsjGHtfY4jVYkztdgh+M4LUtY6yRWATFyVWdp4nakmQ4CvsE3LZIjdNgBtC9hrZNI7GmngNdoB8BdcFsQ8NrsSEmZZBFCU8eextsynZzRWa2hZkc0SaSz/2x7tajZ+cr2Fn12tFMC6rOlff9ZvWPSSh2pk7xrsKPpumHEtz71XXvVqp4xaVU6WqeiuMGONkSizv6z7fZWHWQV0JrA071u2pZ7NdCT13TZ6Ha2hMkReuZIQK62U4saV1nrK00MtCbOdI4HwPUpbrNutCho2Xg0IzQ12uE4TnDXnk5880lFOmI27ZISdM4TRsBPJ70BvapV13VaKr6DSoH5TEP5cyoEyTyGE60sLCwsLCzmEizJawj93WGvmekI1KLdZi/a7KC6QHfQfbI5WaXLjnalTQ9qtKWdklcnAQ+0Lk/MghH67IgeE52leJuW9NZMfLcizoa0k1WtVdZhKW2dBHyzOcISAcySVfqJxDaKRI1EYrvkCJ0lgRttMeubsBRv66QEPaXf2ygjJ/XNEaC1EnBEu2/azNdAQasj6N6mlDanoNWBVoSz7kSA3jYEvNaSwAKKYt17SStCRAexytvRXt2cDrIqPQS82TkCpEdlrZv4bk0k6tvjgajkCJ2+aa2M1GkHEPYpnk7gjWlUnQMR6uZALapBZd2ObC7qPQss4HomN9qhtwxvO3JVp1p0QRu1t25Cc0GLMRnSeBev2VEnm8dn+obNm/5uPbZYWFhYWFjMFViS1xDCQ2njYdDz/ODgo4M462d2ND2AaT4Mdjc/lB7UqJ7lf8/03jtVz+eICA1kVYEFdlurvXUraFupRXUF/0M7GsekUvUC27SU0m6hbAbSMyY6exS3s6Nc9YJLvxZFIiOb25WN1pwcMX1MQrJZz4W/FaFZ0eybdj1OzRHfzdWiunzTmzLfjE5V4LOGanUMayQ0eVumzxPddoSEZqMdVc8P9n6dSt5an/VG32gnVzubn0sY2aqPSGyugPcafKOPrBotVuB5zX2jTd3cgvhOizLS932tCtrAN1MVVKf5xpTyPC1K3vbk6tz0zUwiMR1kM6C3hzSzY6SNb7QpaFuom3X2wQUEe/JqVIsOT5ZnPG/YfNVV/ravhUpTdwWLdsQ3W0s64gJ9HOk93TcsxrZAE6HZ14KAD+3Qc05b0CLWWfueXpGAhYWFhYXFXIEleQ2BZa5NJ1dHpypgZ0Md5Aw7XI2XqihWqg0/Cw5gmg6DTN08I/PQENk8OM03I5Nl+Dp9U7djZKqCStVr+JluIrHVRXtIM5EYBP8nmxMzgB4CgFdZT7/MBWWjNc3XVorvoLS4hoQEoDVZxZMBOn0zUarOWDdpKZPMxkSXb1r1Kda9bpgdpYo343mj2zet+hSnZY7wX+sIljGCqOL5mCo3rhv9RGI61KLh86Z5yTv+NbR21P5ez6+d1XiEZaPTouTVTWg22jFeqgTnNJ39kn0fGCs1X8OmFbTsvKSPNGt+TpsoVQPSSOeeBsysMBKqNNNSrtmsHVPlKkr185JOJS8w8xmcljExVhJ4GiFSrnrBM9m0b3SW9AY4Aq9NSWAtdrRQaVY9X2syAPON7888Mx4c11v1rNWY6CbvFrSojFesVAPf9GskeT1/ZgL4Qc2q1VbkKotrafNNC0XxZKka7Gm6iG8LCwsLC4u5AkvyGkJQwqSFarU7n0EhmyG3Y15HFpl6X46ZB3W95Cr7PdPJ1SHNZaNDdfM09R1XFjGXoV86fZ05sHY20w/qQxqzU4FwTGb4ZlwvkdjfgoBnc2ReRxZZDb5pd9HW3Qu3lXpHN1kV9PcuNifN5hX0+IYP+kwnvs2prNPSk7e5b3oM+GbmmOgr4wm0JvDCMry62xQ0J8268xktz5uufCY4C5gnV1uorLWrRZsr8dl4dORcLee0jpyLXKbuG+PztTmBN2qo7GyrxJV8xkVHTodvMihka+uzlW90k6vTySrd6zeKNMu4Drry9L7JZ1101ueAaQUtW5+tSgKbVvKy8XAcoCdPb0su4wZzoNWY6FdptvCNpp68rdTefIKCDsI5l3HRXffN9LhAUJ1Ak29azdchzWfo+S3KNfMxHB13vnw29M30+NGgbrVoZ/M4FrOjv0dv7Gi6b9jXGdfRsr8WsplgT5tOOIfkql4CvlWMUT8B33zd5DJOMJ8tLCwsLCws1MCSvIbQKssuLE2s5wDmuk5w6GxNruolEqermw9q7j/LDqWDLQ7H8zUd0rMZN7jAzlQ36y3XzC5rM+aIZiVvS5JXsx2FbCYIcrw6Xmz42Yj2MWHrt9EOnT2Kgda9s3T3Bs5nXXTkWNC9uYJWH7nanKwKy0abVYvqJpszrtOS+Nbumxa913Xb0RtFaGqyw3GcliXXtZOrrQh4U2rRlmWj9fmmtYLWTN/XVmpRfaW063O1Zd9mPXbUflf7Msn6+xSng9CcPkd4QtNhGYzUtrQo6627F+78lnNE87qJIDR78lm4rh7fRKubzfbC1d1Hs5VqlU/+1pHwBXCq4mljEhB4msvOTp8jB8Zq952FPQU9drSYq2w8+rpyWhIla7+rfteabotmtWgr37AYjg71LNB63fDEqq49LSS+m4sm9Clo2+8l+uZIc7KZVxTrOgtYWFhYWFjMFViS1xBa9Z9lBzJdJZIB7hA2g1zVm3kYlElu2ZNXr1p0+ngMaz6k87bMJOD1lnttqeTVrPZm43GghW90jQcQTXzrIon6u2tBjuljMqSZSFxYH48DY9N8o5n0BoCFwZg0Et+BLZp806ovkn4lb/Ogu+4+uDVbWhGJhtTN08uca+8NnI6y0QCvBGyVDKBLZZ0OAr7lXNVM3vG/q1Xiij4Cvr3y3DTZrLvUKxASdDMVtOnotzqSktLEusejnS1p6YWrWwGfRt/MVODpvfO1soOdZXUpEluRzexsr4vQBMJ2MzPIVe0kL0sebU4SLdRsx0yyWe94APx8baGg1U3gTbt7HtCsKF7QYo4c1FyaGIgmNbWVa24RxxoMSnrr9k1zlbXtx2thYWFhYaEeluQ1BD4Dssr19NTdLwPgFLTcIWyqHPbL0EbgsRLW08okD2tWJPZzBDzfb/WgZvUs0JxcnSpXMVmu9eXr09YvuQW5Oql3TBh5N903Q5rtALgx4UjNYqWKiXrPRF2E86IIclUXIcICUIPjJfh+6JthzSWSa7bMHJNy1Qv6WeqyZVF9TF5t4RtdhEj0HNEX2G1Wlr/q+QHZqk1By4LdLcoR6iYSZ5ad1UvMALy6ORwTz/P1KxJbqO90K2hbqe/Y11oJ+CaEs+/7+tXNnc3nq+7+s7xv+OdNSHrrJ6tmqps1E/AtSljrJr57ObKK943u8rdAG1JT8zN4fmfz6gQs6K6t7GxQgr7ScPfUrYzkbeF94/s+Xq2fDRbpIldbqUXrSYKLujWpRetno9FiBZV6f2QgPLct1DQeAK+ODM9pnucH57ZFmuZJSwJeN6FZt2OsWEGZ841ushlorqCter4BlWZztTezQx8BX7NjvFRFqcL5RvN4AKFAg79XVKpe4CttpbSDlnDNE2h0CUmYSGSsWGnqG50xGwsLCwsLi7kCS/IaAiNxfb/xoK67XwYQHrJ4BS2zI+M62oJlC1qoVrUriutj783wjV7VKtB8TJhNGdfR1heJBRemZ4Xq7j/LLiZVz28IqOrutQqEF9hmvnEcfYqIVmpv3epmNh6lqtegjjSj5GVJCaGSl1/LugK7bN28OtZcUaybgJ8sVzFRmukbnetmUTAm4XwdMeAbFqRspfbWp8SvjcdYsYJipTrDDp1lZ5sF3cdLFTAuwHyfYs2liet2TJarDYHdkIDX55tmavypsody1a/bYljJq73/bM2OUtVDsdLEN0ZU1uGYlCqhXabLnOveS9jf6/m1fY0h7BmpMzlipm8mS9Ug4cs0kcjOBos1k2ZAY8LIqwHJq1+RyI/JKEcGLNRErrZKBNBNrvLPEz5Rg51RdI0H0HxMRqbCpHRda7gVkTio2zfcuuHHxASR2NekFO/wZBksn0ZX/Chs0WO2N3BvRw6s4i9vi271LNBcycvPXW2xkggFvK450tuRg9vEN0MG1o2FhYWFhcVcgSV5DSGXcQOCruEwGJQw0a9I5Ak8pqbt68xp65fBK2h56C4JnMu4QaCSJ76HWeahASKR9w1PaOryzYJW5Zo1lwTme+EeaDImJkoC871w+XKiunoALexpXq5ZN1nVkcugO5+p2TI2k/jWq+SdqaBldswrZJHR5JtAQTuDSNSrBOzOZ4I+xa+OziRX9ZK8zDfcuqkHm7s09pxjvnmlpcpaXxnPXKY2Hw80Ib51klWL5rVeN7Ve1xktdrRqD6BbpdnTkeWCh1yw24BvglLaE41Bd6CW8NWV1+Oblj15NZed7c5nguAhT+DpVnvzv4snZtjczbqO8ZLAuonEjpyLfH0f58dEtx1A8zFhdhSybtCHnBqt+hQzWxbN03O/yWdddNb38cYx0avQBJr7hj0Du/MZdGra06LWjS51c5aLCzQbEyNq0YmZc2ReRxaFrF7fzFTA6yWJ+IR3/iwwGJRr1rdu+pqUwGX30N6OrLYzdKu+r4FvNMVsXNdp2kNaN9kMNO/Jy+I38zt19m1mdjQXTehaN67rcMQ3Pyb6RRMWFhYWFhZzBZbkNYhmPTN0959tsKNJlp1O0mxBi14mJtTNTYlvAwT8giZlko2UjU5Jb2CgvbrZRE/epmSzgUSAA9PUoiZKWIclm0NbwqQEfb5pVq55WHNCAsCpRceak1W6yFXHcYKkhFebqJuNKHlHDdvBCM3RxnWjuxSv4zjBPHmlyZjoJKsC4nuUT1zRX5p4SW99PKbtabpVmhnXCfbXxjHRq1oFmrdMYGcBnQlfzYKYQEgA6FJWOY4TzAM+sLu/7qfF8/QF3XublOLdPzoFoPYM0JXw1YqAZ3N3kaYxqflmZlLCK0Z8M3NM2BxZ1FPQtm6iiETT5KpJO0YaCM10lI0GuF64GkmiYE9rokg0obJuRpppJZs7ZxKagP5yzQDfl5f3TbFuh77zUVBKu8GO2vjo7dvcQmVdt0VrmeQm/YEPaiabeTuGJmbGjkyMx/R1c9BAQnwzwjkkm225ZgsLCwsLC9WwJK9BLGjSM8OEkjewoymhaYJYDft4eZ5vpNxrM+XqUGCHRrKqKQGvn0jkVdbMN77va+/vwtvS4BsDxHdIrjZXWesCPx58/zuTtjRTAmol8LpnluI10xs4JHkb+hSnhNRkY6KXSJyp5DUxHkxN9spYsalvTI+J7t7AQEi+NCeb9RGai5uQ3kC45+vc5xfP6wAQknZASD7rJESWMDtGwjFh/71EI2nG5sj+kamG77OvddrCnsH8nsbGRCeR2Oy8aILQDMgq7k7h+35oi8b52tuEODNJ8jYlNE34hrPD8/zg/Gia5A3tMFuu+VUDdoTkXaNvdPefBdoT8EYIvAl+jjBC00BpYo7Q9Lj+szpLWDcrkxySzWbtYGSz3thRSGjyMRvdalGgeVnvQRbHMlxKOyyRbMA3k+WGmM1BA8kRzYlv/eINCwsLCwuLuQJL8hpEX5PMQxPlZRY0K6ViQlHcFfb0ZP2yRqfCfoAmlKtpUTc3qlb1+4aNR7nqB+X3xktVVOrO0amgbdYLd8gASdSUbA7Uovp9U/H8QHU3Va4G/QD1KlebKWhNKIrbKHkNqKxLVS9YN5WqF/Qp1EtqtiHgDaibm9mhs/wtIxpKlbCHdKXqBX0KdY5JM3KVldXWGYzhiW8GRm4yklGLHfXxmChVg7UyVa4GgbOBXn22MNJyP+ebfXUicakRO0JydR8jVnXaUf9dI1MVTJVr57TxYiU4s+m0hY3/viYEvE6ymf3N+zji2wShyX7X4EQp6CE9WqwEZwGdtjD1FJ9oZaIkcDPlucmy0SOTZXj1c/PwZDk4Q5vuhWtEydukT7ERQrM+HmPFCir1dTM8GfafNUFWpZGAD5TNBubIVNkLnjemfBOom5sQeGbUzeEZ2iTZXK76mOBiNrr7NgOcupknEoMxMVuRzgShyXxT9cKYzVixEjxvdNrCyG2m8K79tyV5LSwsLCwsqGBJXoNoRiSaOAw2O5QGCk2Nge5Orm8kO5wzm7ryGW09gACeXG2mstZfEniwicpaJ2nG91tlvmFzpNarUd9W0lzJq19l3ax8ZpAIoJGs6shlgr5yLKDKAjMZ1wl6fOlAsz7FZnvymrWjI8f1kB5r9A2gVx3JfMOX9R40kMwT9n0N7TChNOPXDVMCvjpWguezMr0ayZkm83VvnTDSSSQ2I5v3DjM79I1HdyEbPG+YLez/81nXuLqZEa06x4SVsN7fYId+QrO3I4tCtva8Z6pZZkdXPqOtxynAkbwN6mb9xPfS+vjva+IbnXtaf1ceuYwD3w9/P5u38zqy2npqA8DS+bXxZ/sHb4tOspnNEV55zhJoFmvqgwvUEncdB/D88Ll7gOujqfN+M79J9SaT5Zob1aL6CU3+HMYIEXau7+3IIp/Vd79pRq7q7j8LhERiY2li/YTmvEIWmXq5ezYmzDfzNPumj1NHMpjwTbMyyQcN+KYzlwl6r7NYDdvbegp697Rm5YlNEIltlbwafdORywS911lcgvXB7cxltJ4FmscYmcralmu2sLCwsLBQDUvyGkRf23LNZnucHjRQ5gYIs/8Hp5G8urP9WOZnMwJep8Krv4na20QfXGBmf2C+bLSuvmYA1wu3iRJQb7nmmYTmiAE7gFAFMjjNNzp7NfJ28CrNoMSqiT7FTYKYOoMxwMwxYeTdop48shl9j+BF85gdMwm8ZfP1ESKLmswRZseARjt4Wxj5sGd4EkCNtMlo6qMJhL55pUEtqn9MmhGagWpVs2+m2xKMR2+H1j1tSZsx0aluDso1j85MjtBJNjuOExJndbJ7v4GEBIAjvkfMJoywNbqvCaG5RKNvXNcJ5glbLyaIVQBY1kTdHChoNdrCfLOH981Y2C9ZF3IZN5iT7Hn3Sp1s1lk2Ggif9/yYHNDcUxvAjLkKhMS3Tt9kM2HiEFsvBwyQ3kB4d+Dv42xMjJcmDlTW+uaI4zgziG8TZDMQ3mGGm/RL1kvAzyzLf8AAkeg4zox5EpSN1kzezW8STzNTNrqJeMPAHAFmtoQbNDAeQDgnm5Vr1plgbGFhYWFhMVdgSV6DaEbgHTRQErg/OIDNJJt1k1UB4TwxjUg0ZUcTctVEn+LBCZ7Q1D9HgJllkk0Qq412hIHdgIDXqhad2Qv31XEzF5fpvXD3cUSiCTtYwMH3fSMEHgvMDY6XgtKILw/VCLzlfZ3a7AD4vrx1InGIEaua7agHCNkc9TzfCMm7uCdMjmBl3fYYsAMIyYaAgDdENk8vk1z1/IDM01maOCj3yvmGJ1d1YvG08sShsllv0H16meRK1QvIKhPlmg+MzfSNTrKZt2XfNCWvbiJxKSOJ6r4pV73grKSTXGXz4BXON6bIVbY+9gVEon7SGwj30L31OcL7RidxFhDwI1PBWYApeXUTeNPJVRPq2ZodnQ12VAz5ZnlfbTx2D08GZ+iAbNZMRLBz4e56oldYmlivHQO9NTvYWaSxN7DGiis9bI/nCXj9JYGB8I7JKq6wu59usiog4CfC+03QG9hAD+lmimLtxHfXdAK+9v+658j0vq++7xtR8jJilSfgBw2JFfqmjYmJ+CL/+xoIeLaXWJJ3zuP222/H6aefjq6uLvT19Qm95/LLL4fjOA3/1q9fT2uohYWFxSyCJXkNom9auebJUthHU29P3rAfUbFS66syZExB20h8D6WE0CxzfTR1KhLZeEyVPUyUar+fERI6S2kD4ZxkvmGXf53Z5UB4eWQBh/FiJSDgdQbd+T7FrKfnywdrAaLDdBOJ0+YrIzRfo9mORRyBB9Qu/qxXo05ylfmm6vlB8IGRq/rHpE7A133D1KK6Cc2gTDJTqoyXUKp6cBz964aVrWTPPjYm+pW8jWWS9xpQzwK8b+plPOtkUcZ1tJJEC7sLcOu+YeohE2WjgZC4DJW8TBmpm2xm5V7Dkt5+UNJbYy/6Hs43Y43kqs5yzQBmKnlN21Gfowc43+gMHi7szsN1as8btm5eMdD3FeDJVbNK3qCUdp2sqiXD1Xyj816xZF4BjlM7p7FguylyNVQVTzbYoXuOMHKV2TE4UfON4+i9V7DxmCp7wRn+FQM9eQHgNWxMhtheol89CwCvWVA7n7Iz/NBkGfXcBK1xAWbHyFQFo1P1MsmGCHh2ZmdjYopsDtZvfY6MTFVQrurvDbyISzBmMRsTJYGBMEbE9rKQvNMcnwiIxNrvn+DiaSYI+NFiBeV6f28TvYGBUE3N9lZziuJGsrlYqQZxAduT16JUKuEd73gH3ve+90m9b/369dizZ0/w75vf/CaRhRYWFhazD5bkNYj+aWVdWAAil3GCfnQ60NuRA6tMyQ6DBwxkQPK/bzAgEs1ctKfbwS51hayrlXDuymeCnkPMlt8yInFBlzY7gJkqzZcGa3as6E8HodnbkdXeb5WtUxb8+O3BCQBhgEQXppeOZmSzdjumldJmvlnUk9faAyifdYM+ayzovtsQuRr0B64H21+u7yW6FcVhmeTG0sSLewrIaSwbnc24MwJDppS8M0hepuTt1eub6UpeNh6Le/SWjc64ThA4ZeRQ2JPXbLnm/YYUxUwRynzDkpsW9xTgavbNwkBd1WiLfuJ7mpLXkKI4UK0GiuKwgoVO32Qzbqh8G260xRS5GpC8BkokAxwhMlJ7zrB13N+d17qnNSuTbKJsNDBTQfuqgfK3QLiHMjvYea2/S28LiUI2E5xLAgLP0Jgw3+weYgS8GSUvI+Cnj8f8zpzWc1pPIbxPMVsGDambD6vfY9jd1xTZzO7czA42Hrr7z/Z354N+qy9Ps0U7AT/dN4bI5qXT9jQ2HoWsG4yVDszvzCFbf76x5LdBA1Xg+N/HnjMmlM2139dYgp7FGTOug3lcP3SLuYlbbrkFH/jAB3DiiSdKva9QKGBgYCD4t2DBAiILLSwsLGYf7NPVINhFiQWo2GF9qeaec249s/7AeAmvjhWxtLcDLw3WyKrDNJNE/dPUzS8eqNlxxEIzhGZgx+A4AODw/i6tvnGcmlpoz/AUDo6X8Zo+P/CNKXKVjclLdUJzhWayeXopbUas6ia9gVp/4PHBSQyOF7FyYRdHwGteN9P6nIZKXjPrhtmx2xChCdQIvJGpCl4dK2H1Ij9I1NBOrgbJEY3kKgvmabODlY0OFMV1YtWAbxZ25zE4XsKroyV4S3yu/6xmcnUakWiMbJ6msg7Us5rtAGpj8upYsa5Y9QOySnsJ66BMciOhaaxc80gRvu8bs4PZ8spoEftHp+D7veYVtNOVvJrHZCnX99X3/bAPrmayGaitj/2jRewbmcIJfq8xW0J1c11RbEjJOxD4prZuTCmbgdA3e4ancMJr5gdjorudBXuuBGSzobLR7Ay0Z7i2bkwpm4EaufrqWCnwDTuf6Fc3N5K8QR9c7Yri0I6ab8wQq8yW4ckyXj44iTUDvcGY6FYCtiJX+42RzRP1csBm+s86joMV/Z349b4xvHRwEqsX9xhTabL7P4tLBOWrNdtxeD1GxGJGfD9enTGbjOvgsAWd2HlgArsOTOA1fZ3GfNNq3eiuAsfOJCwuwc4m/d16k/EsDi089thjWLJkCRYsWICzzjoLH/vYx7Bw4cKmry0WiygWwxZvIyMjAIByuYxyudz0Pezn/P/PJljbzcDabgZzwXbZv82SvAaxalE3gNqFoVTxsPPV8Ybv68Rh/V04MF7CiwcmsKL+34B+cpUFktmhdBdHruoE34/I83zsql9gdNsB1LIu9wxP4ZWxKRyc6AzKRusmNRd0N2aFhmSzXjsWcopi3/eDuaKb9AZq5cJeGpzEgbESXh0roViplb/V3291mrrZkJKXrZuDE7VeuC/XCfjlmscDqAXFfvPqeM0348WgNLGpUrxMfWCqJy/zzdBEGeWqhz31C/cyzSpAZstz+8fw6lgRB8ZLKFd9OI5+siot5ZoZATNarGCqXOX64OoPui+eV8C2PTVyaLDuG0B/0H06AW+qbDSzY7JcxVixwhGa+tfNknkFPIMaqTo8WUapXo5QN7nKE99ASPbqXr/MN8WKh5HJijHSu/Y7OwAMY9/oFMaKFUyVa75ZNM+MSnOv4Z68bJ2WKh4OTpSDBBbdZDNQG5NfYBh7R6YwWQpLRS4ypW6eVq5ZN7laSySu+YYl9wJmiMTlfR14+uVh7BmeRLkalm3WTa7OVNDq74ML1OaI49RKWA+Ol8J+vJqrWQG1+8Ov9ozg5aHJab2B9dpyWFDCunafOGBKtVon4MdLVRycKIcKeAO+WbGgq0byDtYI5wOGiEQWE2FJ32yf163kZWTz8GQZwxPl4PlnInHl8IXd2HlgAi8eGMcbVi4I9nvdZ9eV9fjdC/XY4s4Dtf/XHbNhMc19I0VMlCr4zatjte8v1B/rtDg0sH79erz97W/HqlWrsGPHDvzVX/0Vzj//fGzatAmZzEzl/h133IFbbrllxvcffvhhdHVFr4eNGzcqsdsErO1mYG03g0PZ9omJCanPsySvQSyZV0BXPoOJUhUvHZzAC/UD2EoDB58jF3Xjv18awm9eGQsOy4t68pjXoTfjb3X9MLjjldohkGVlrtRMfB+2oBP5jIupsoeXhyaxq27H4ZpJbwBYuagLv9ozgt+8Mh6U5V3aW9Ba/hYIL7hsLEyRqyxIyAJUoepcv28W1wNA+0eLQXBo6byOoMS2LiycVorXVE9eVgaK9cLdXb9o6yabgbCE9YHxYqAoXjqvQ2vJO94O5pvdhpS8fZ05ZFwH1XqwLlTyGiB554VjwoIxS+bpLRsNhAHcV+rBuqBcs2aSd14hi3zWRani4ZXRIlc22oCStyckVxmxuqgnr31Pm1muufb/ugNlXfksegpZjBUrNRWtUSVvqNJkhGZfV05rqUigiZKX9UvWrFrtyGXQ15XD0EQZ+0anQjsM+CYoHT08FczZnkIWXXm91yxe3QyYU/Lmsy4WdtcqBO0dngqUvGbUooz4ngyew/msi3kFvb5hiV3Ty0brJhLz2Vp5cfasCQlNM0peoFb1hZGIrlM7r+hEoKAdnl4SWO+YFLIZLO4pBHeKUFFsRskL1JJGG3oDay73yuxgd072DNY9Jh25DJbMq/nmtwcngjO0iaSiFRy5um+kiGLFQ8Z1tD/7WEyEJcLvYGIFzXGs7kIWi3pqVWh2DU7g+XoMafVi/fG0lQu78ASAFwcn8NLBSZSrPjpyrvb7+BF1H7xYjy3+5pXa/x+5uEerHX1d+eCctvPViYB0NiFosdCDG264AZ/4xCfavmbbtm1Ys2ZNrM+/9NJLg/8+8cQTcdJJJ+HII4/EY489hrPPPnvG62+88UZ88IMfDL4eGRnBihUrcO6556K3t7fl7ymXy9i4cSPe+ta3IpfTeyZJCmu7GVjbzWAu2M4qEIjCkrwG4TgOVi7sxq/2jOCFV8YDJa9uQhMID8K/eXUcRyys2XGECbJ5Se3wuWP/OIqValA66wjNmYfZjIuVi2qZss+/MmZUyXvUknkA9uK5fWNBAM+EHUcvmQcA+PW+UZQqXpCdqrtcc0cug8P7u7BrcAK/3jdqrEQyAKxe3ANs24/n9o0GvZpN2MF8sOOVMVSqXkDO6LaFBQ/ZRZuRzSbKNbOg9u6hKSzuMUOsAmEgav9oEVXPDwK8usfEdR30d+fxymgRr4wWAwLehMo6JFeLQVBVd6lmoLFMsu/7oZJXM5HoOA4W9xTw8tAkXuGIbzNjUvdNvfQsoJ9YBUKyeWa5ZjMlrJmKl7XXWGqgJDAL4O4fnQrHw6AdYS9cg+TqvI4ayTtSq3YCmCkJvJQrT2xSUcwSVPayEtYGydWlvR01kndk0hjZDIRl7/dwZPPinoLWMp5ASDaHZZLr5KqBMVk2v6N2Dqg/cwAzc4SdyXYPTXJlPPX2O6/ZERLwnucH5xLdBDxQS4rcX/cNS6o18dwLyhMPTQaJ18vm609iZQm8e4enUKl6+PW+UQD6yaqaLZ11kncS2+t2HLPUjB0A8NvByWA8jljYpT3hi8Uidg9NoVz18HzdlqMNjMnh/Z0hybu/Nl+PMjBH2JjsOjCBHXU7Vi3q0b6nrVwUlmsuVbyAXDVDfHdj68QQdh4YD+wwEeu00IPrrrsOl19+edvXrF69WtnvW716NRYtWoTnn3++KclbKBRQKMw83+RyOSFCSPR1aYS13Qys7WZwKNsu+3fpPalbzMCq+mHrhVfHuew2/QTe6vpB+DevjAdZfyYUxYf3dyHrOpgsV7Fl50F4PtCZyxgJDB0VEM5jxnoDA8DRdTue2z8akM26iVWgdjHIuA5GpirY+tIQPB8oZF0jvjl2oEY4b98bkrwmxmRN3Y5te82SzWuW1TIR940UsW3PKKqej3zGNRLsPm5ZbUye2T0Slo02QK6yOfLM7mGjZDO7UO8anMDOA+OoeH4t494AObOiPjd3vDKGvQG5qt8OFux+aXAiIDRNlI1ewqlFXxktBuVvTRGJQE0VGZaNNlCuuYcnEmtBdxOKYkYYDo4XMTxRDkqsmlDQ8v2B942aI5uXcHYYVa3W967hyTJGpsoYniw32KcTPOHMxmSxAd8EPWhHQyWvCfKOrY+JUhUjkxUcGDNHOIcK2pD4NkGaMTv2jUwF7RKMkM31OVKseNgzPMWV5Tf3DN4zPBUQESYqrjAl757hSWzbW8tSP2qJ/rvnknkFZFwH5aqPHa+MBef5NQOtVT5UWM4pV5/ZXRuT45frt4NX8v6K2bFMvx21Ki8OKp6Pp18exsGJMlwnTDzWiUBBOziB7XtrhOaxBuYIr+RlJO+xS/WPx+KeAvJZF1XPx89ePIjxUhVZ1zEiEgiUq4Pj2MFUq0v0k7yNdtT21iMNEKtL53WgI+ei4vl4aucgihUP+YxrpOoZU+2+8Oq40dZ0FnqwePFirFmzpu2/fF7dWfC3v/0tDhw4gGXLlin7TAsLC4vZDEvyGgYrT/ybV0Mi0QS5Gih5XxnDC68yO/QfBHMZNyBSH312P4Aa8as74x4IM0B3vDIWlAQ2oqBdykjeMWN9cIGagpb55pFn9wGoEZomfMMuszUlb71cs4GevCwA9OyekcAOE4GynkI28M3GX+0FUCvDqztzGABeu3w+gBq5ujsoG61/vp7wGmbHiLHy1UCthOmy+R3wfeCHv6qtm6X1gKJunHRYHwDg57uGghLWJtTNJ76mZsfWXUNByTsTZPPy+Z2Y35lDqeoFzxsTpYmBMKno6ZeHjPWfBcJn3Pa9o2EpbQN2LOwuIJ9x4fnAkzsHAQDzOvSXvwVCP/y2XhoRABabKNfM9VtlZLMJsqq3Mxuskad/OwygVsVhvuYSq0BYInrfyFRAzJgkm/cOTwUJm8sM7Gld+SzmddTWyH8+/yo8H+jKZ7T3OAVCBe3ekalgnhxlIOg+0MuIxClsfekgAOC1BkgzVukEAB7Ztg8Vz8einoKReRKUSR6exNaXar45ecV87XaESt5wjrBzik5kM25Atj9cP6et6O/E/C79e1pArg5N4pndtTExQa6+ZkFox7Y9NZL3OAN2uK4TEN+PbKud01Yu6kZnXq9qFQiTeF86OIFf7zVHrrKk5pcGQ5L3aAN2uK4TJI+yM/SqRd3aW68AYVyEV9CaeN6wu/iLr05wJK9+O1zXwRH9tdge880RC7uM3D1ZXHPnq+P4jUFFsUX6sGvXLmzduhW7du1CtVrF1q1bsXXrVoyNjQWvWbNmDe6//34AwNjYGP7yL/8S//Vf/4WdO3fikUcewUUXXYSjjjoK5513nqk/w8LCwiJVmDUk7+23347TTz8dXV1d6OvrE3qP7/v4yEc+gmXLlqGzsxPnnHMOnnvuuYbXDA4OYsOGDejt7UVfXx+uuOKKhgcLNVgm2+bfDGKyXEXGdYwQeCsXdsNxgJGpCn6+qxYEOcJQlh1TFT+6vU7yGiCbgTAD9KmdBzFarAAw0/d11aJuuA4wOlXBT1+s+cYE2QwAx9Qzpx+tX7RNzFUgVGn+7MUhHJyoqYhMEHhHLulGtq5u/unOmm9MzBEAOK5OOG+s+8bEeACh4mDrS0OBescEkbhmYB4yroPB8RK21NeNiWAqAJxYJ5x/8Awj4M345pTD+wAAP991MFARLTNQEvikw+bDdYDdXNDdhG9c18Hr62PywC/2ADBDNgPAG1YuAFA7C5jsyfuGlf0AaklFW18aMmZHxnWC+XrP5heN2QEArzustn4fe/YVvPBq7Xy4wkAyD9vjt+0ZwX/8+lUAYaKgTjiOE/zeLzy+o27bPCMJXyzo/l+/ORAoAV9ngCRi++hLgxN44tevAABOq68l3WDr5F9++hIA4NQjFhgJ7DI7tr40hF2DE3Cdmi3a7ZgfJkewM7QJO4DwOffg07WzwCmH9xlZN+xM9rMXD+LVsSKyrhMk6Om1o7Zu9o1MBc8bdl7SDeabh+vnNFN2sLP7T3cexMhUBbmMg2MMEHjMjldGi4FvTJC8QLjP/3BbjYA/zoB6tmZH7X731Au1uEAu4xhRJK6oJzUfnCjj57uGAJgpGw2E8YhH6kSiiVLNQNjW66mdgxgrVpBxHWMV6QBgtBjGbEwoioGQcP7R9pCANwFWOnrLiwcxOlWB45iLY1mkCx/5yEdwyimn4Oabb8bY2BhOOeUUnHLKKfjpT38avGb79u0YHq4lPGUyGfziF7/A7//+7+OYY47BFVdcgVNPPRX/8R//0bQks4WFhcVcxKwheUulEt7xjnfgfe97n/B7PvnJT+Izn/kMvvCFL2Dz5s3o7u7Geeedh6mpqeA1GzZswDPPPIONGzfigQcewBNPPIGrrrqK4k9oilWLwl64QO0iYyIDsiOXCXozMltMKHmBMOPxN6+YtYNlgLLeLgO9HejI6c8cLmQzwUWF2WKKXD2GUxUDZkokA1y55noGc19XDvM69GfcF7KZYL4+W8/qNk2usox7U3YwhQwrM9eRc9Hfrb9EY0cuE5Q6/0VdIWKiXDMAvG5FHwDgZ/VgjCmymZEf//3bYVQ8H1nXMaJ66y5kgxJ3m1+oqTRN7Wks2P+fzzPSzEwwhpGrP33xICZKVczryBpJGFnQnQ/K0D8ekFVmCJHTj1wEAHhse82ONx21yIgdbz56MYCaoniq7OE1fZ1GlBmHL+zC6kXdqHg+Nv3mAADg99Ys0W4HAJx5bO33/sdztXXzlmMWG7JjcWCH79faW5hI1DhqSQ8WzytgvFQNArunH7lQux1AuKex9fs7q83YwdSHjPQ+blmvkXPasvm1spUTpWpAiJgieRk5818v1NYvS2TRDXYWeqqenLhm2Twj95sl8zqQccNSvICZJA0gHJP/rp8XTZDevB1sPI5eMs9IdZH+7jw6crXfy+43JspGA+F9htnBzii6wchmdvdcvajHiG/mdeTQV1eZs/u4iUQAIDy7B31wDZTRBkJBACvVfER/lxHfdOQyQYITi2OZKNcMhH1vmR2rDZxbgZmxztf0dRp53likD3fffTd835/x78wzzwxe4/t+0OO3s7MTP/jBD7B//36USiXs3LkTX/rSl7B06VIzf4CFhYVFCjFrSN5bbrkFH/jAB3DiiScKvd73ffz93/89PvzhD+Oiiy7CSSedhK9//evYvXs3vvOd7wAAtm3bhoceegh33XUX1q5dizPOOAOf/exncd9992H37t2Ef02I6Vl1JrIOGaaXTmFlXnRj+mH4cENjMj2Ia0pRDMwsOWRMyTvtYr3CQIlkgJWDCtUPRxjMCD122piYypSdnmFvokwVAKxa2I0urozaa5fPN6JUARqVGPmMa6QM4HQ7gJAg0Y0jFnY1lFR96/FLkTWQVASEwW3fB+Z35gKyRjdOPaJRbXfJqYcZsWPVou6GfpVve91yIwEqAFi7KhyTxfMKxkii049q/L0XnGim39IxS3sakiHOfe1SY3va73Jk6kBvh5EyngBw9nGNe9hbDO1przusr8E3ZxxtJhEg4zo4/4SB4OulvQUjKmsA+P2Tlzd8za9nnXjLsYuxkEvweoMhZXNHLoO3nRSOyaKegrEz9EUnvwZA7bkHAKesMEM2v/noxejmzmmmiNWM6+DN3Jqd35kzdq94w7R1coIhJe9xy+aBF96bIlYdp1FB3JXPGLtrrZqWfDf93qUL0+MipuwAGuMAWUOq1el2AAiSa3Vj+tw0pZ4FZsaLTCWPHjHdDsNkM4Ptx2thYWFhYUGHWUPyyuKFF17A3r17cc455wTfmz9/PtauXYtNmzYBADZt2oS+vj6cdtppwWvOOeccuK6LzZs3a7Gzrysf9GgCzJXbARpJoeXzO4z0IgJmHsxNlczqyGWwlOu793uGgphAo2/esHJBg106wV/4+7pyOP8EM0H3XMZFIRsGqP7kzauN2AE0XvIvef1hxhSJxy0L7VjaW8CG3znCiB2u6zSUhrzx/DVG7AAag2N/dPoRxkrx8nvYgq4cLp4WhNcFx3Eaeni+9y1HGrEDAE6pq5sB4NI3rDDSaxUAXrdifjBfX9PXiTcbUos6joPTOML5fxoimwFgLUfqvu2k5UZKvQI14qGznu2/ZF4BpxlS3zmOgzO4eXHu8QNtXk0LPhnirOOWGCObT1nRFyiJ5nfmgpLWuuG6Dt56fJjB/2ZDJC/QmIRw+pGLjPlm7aqFwRmxI2cuuSmXcQNSEzBH8gLAH649PPjvU48wUyIZAM45bmmgSnSdWusCE5jfmcO7uTF5Hfc81o33n3108N/zO3PGfPOu01Y0JCWcYIhcPWxBFy5btzL42lSJZAC4/rzw/J7LuHANnQXe9YYVDWdXU2Ny+MIurH9t+Pw3GbN59xvD9dvTkTWWFHjWmiXBOQ0wV6558bwCTnhNOC9MJToDaDgPvaav00j/aABYM62suYkKNADQ25FrqGBlyg4LCwsLC4u5ADNRVQ3Yu7fWU2d6+YalS5cGP9u7dy+WLGkk7rLZLPr7+4PXNEOxWESxWAy+Zn0CRkZGYtn60fWr8KPt+7GkpwPvOmVx7M9Jiref0I+X9x3AYQu68LaTlxmzY1WviwvXzEep4uHdaw/H6vmuMVvecdJC/NvW3bjyzatx0cmLjNnxOys68VUUcdaaJbjpf6zB6OioETsW5j28pttHsezhi394MuZnK8bG5KLXLsA3Nr2ID7z1aLxlVY8xO05ckoNXnMDRS3pw/VmHG7NjnutjaYeHPcNTuO384+EVJzBSjH4fBd5+Qj+++uOdOPPYxTimP2tsTI5bmIVXnAAAXHbqUmN2ZAAsyJZxYLyMq846FhPj+vq+T8fph3fh1y/tx8LuHFYZ3FuP6c/AK9b6NF50/AJjdgDAMQsyeGb3CC5+7XKMjZnZW4HaXvLgzyawcmEXjjToG37dnHWkub0VAF43kMdPnj+As1630KhvXr+sgG//1wTmd2ZxbH/G2JgcvyiHbHUKpYqHta/pNOqbdYd14vtPD+ONRy01uqe96YhufOOJCeQyDo5bmDM2Jsf2Z7EgW8GB8RJetyRv1DdvPaoXX9/0Ik5c3o+piTFMRb+FBOuP6cVdj9b2kjUG182R810c1efi1/vG8NpF5uYIALzzdf34m4efwzHL5qFq8Jz2zpMW4Ys/fAYAcPQCc8+bI/syOLwH2HlgAmcdae6cBgB/8ebX4KZ/ewavWdCBnFfEiCHn/MnvDOArP/oVAOC4hebWzUlL8/j94/rwna27cfFpK43ZkQXw6YuOxv+++yks6ilgnls2Zsst56/GnlcG8fOXhnDSUnP7/AVr+nDwrBX41A9+jYuOX2LMjkUF4BuXnYDrv/0LuI6DxQXPmC2ff+fx+Nyjz+GJ517Fm4/oMmbHn65bjmWdPn7wzD6sP8HcnnZUn4u/+4Nj8Pj2V9DdkTV6r7jzbUfhh9v2oVL1cWmCeBp7n8/KYVhYSILNnag5WC6XMTExgZGREeRyZoRPcWFtNwNruxnMBdtln32Ob/ApecMNN+ATn/hE29ds27YNa9aEmaR33303rr32WgwNDbV9309+8hO86U1vwu7du7FsWZhd/853vhOO4+Cf//mf8fGPfxxf+9rXsH379ob3LlmyBLfcckvL/r8f/ehHccstt0T8dRYWFhYWFhYWFhYWFhYWFhYWFhYWFkmwY8cOrF5troqbxezFb3/7W6xYscK0GRYWFhbSeOmll3DYYdHV/owqea+77rqgkXorxH2ADwzUyuns27evgeTdt28fTj755OA1+/fvb3hfpVLB4OBg8P5muPHGG/HBD34w+HpoaAhHHHEEdu3ahfnzzZTesrAQwcjICFasWIGXXnoJvb3mSoBZWIjAzleL2QQ7Xy1mC+xctZhNsPPVYjbBzleL2QI7Vy1mE4aHh3H44Yejv99c+weL2Y3ly5fjpZdewrx589q2h5jNe6O13Qys7WYwF2z3fR+jo6NYvlys5Z9Rknfx4sVYvHhx9AtjYNWqVRgYGMAjjzwSkLojIyPYvHlzoNBdt24dhoaGsGXLFpx66qkAgEcffRSe52Ht2rUtP7tQKKBQmNkTdf78+bNuYlnMTfT29tq5ajFrYOerxWyCna8WswV2rlrMJtj5ajGbYOerxWyBnasWswmua6YHtcXsh+u6Qko4htm8N1rbzcDabgaHuu0yYtJZ84TctWsXtm7dil27dqFarWLr1q3YunUrxsbCPmBr1qzB/fffDwBwHAfXXnstPvaxj+G73/0unn76aVx22WVYvnw5Lr74YgDAcccdh/Xr1+PKK6/Ek08+iR//+Me45pprcOmllwqz5BYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhY6YVTJK4OPfOQj+NrXvhZ8fcoppwAAfvSjH+HMM88EAGzfvh3Dw8PBa66//nqMj4/jqquuwtDQEM444ww89NBD6OjoCF5zzz334JprrsHZZ58N13VxySWX4DOf+YyeP8rCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsJCErOG5L377rtx9913t32N7/sNXzuOg1tvvRW33npry/f09/fj3nvvTWRboVDAzTff3LSEs4VFmmDnqsVsgp2vFrMJdr5azBbYuWoxm2Dnq8Vsgp2vFrMFdq5azCbY+WqhC7N5rlnbzcDabgbW9plw/OnMqIWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYVFajFrevJaWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFiS18LCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwmJWwZK8FhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFrMIluRNiM997nNYuXIlOjo6sHbtWjz55JOmTbKwmIGPfvSjcByn4d+aNWtMm2VhAQB44okn8La3vQ3Lly+H4zj4zne+0/Bz3/fxkY98BMuWLUNnZyfOOeccPPfcc2aMtZjTiJqrl19++Yy9dv369WaMtZjzuOOOO/CGN7wB8+bNw5IlS3DxxRdj+/btDa+ZmprC1VdfjYULF6KnpweXXHIJ9u3bZ8hii7kKkbl65plnzthf3/ve9xqy2GIu4/Of/zxOOukk9Pb2ore3F+vWrcO///u/Bz+3+6pFmhA1X+3eapFW3HnnnXAcB9dee23wPbu/WqjG7bffjtNPPx1dXV3o6+sTek+a7vxx7E9LfG1wcBAbNmxAb28v+vr6cMUVV2BsbKzte0w9s2S5n29961tYs2YNOjo6cOKJJ+LBBx8kt7EVZGy/++67Z4xvR0eHRmtDRMXemuGxxx7D61//ehQKBRx11FG4++67ye1sBlnbH3vssRnj7jgO9u7dK/V7LcmbAP/8z/+MD37wg7j55pvxs5/9DK973etw3nnnYf/+/aZNs7CYgde+9rXYs2dP8O8///M/TZtkYQEAGB8fx+te9zp87nOfa/rzT37yk/jMZz6DL3zhC9i8eTO6u7tx3nnnYWpqSrOlFnMdUXMVANavX9+w137zm9/UaKGFRYjHH38cV199Nf7rv/4LGzduRLlcxrnnnovx8fHgNR/4wAfwve99D9/61rfw+OOPY/fu3Xj7299u0GqLuQiRuQoAV155ZcP++slPftKQxRZzGYcddhjuvPNObNmyBT/96U9x1lln4aKLLsIzzzwDwO6rFulC1HwF7N5qkT489dRT+OIXv4iTTjqp4ft2f7VQjVKphHe84x143/veJ/W+tNz549iflvjahg0b8Mwzz2Djxo144IEH8MQTT+Cqq66KfJ/uZ5Ys9/OTn/wEf/iHf4grrrgCP//5z3HxxRfj4osvxi9/+UtSO5shDm/V29vbML4vvviiRotDiMTeeLzwwgu48MIL8Xu/93vYunUrrr32WvzJn/wJfvCDHxBbOhOytjNs3769YeyXLFki94t9i9h44xvf6F999dXB19Vq1V++fLl/xx13GLTKwmImbr75Zv91r3udaTMsLCIBwL///vuDrz3P8wcGBvxPfepTwfeGhob8QqHgf/Ob3zRgoYVFDdPnqu/7/h/90R/5F110kRF7LCyisH//fh+A//jjj/u+X9tLc7mc/61vfSt4zbZt23wA/qZNm0yZaWExY676vu+/5S1v8d///vebM8rCog0WLFjg33XXXXZftZgVYPPV9+3eapE+jI6O+kcffbS/cePGhvlp91cLSnz1q1/158+fL/TaNN75Re1PS3ztV7/6lQ/Af+qpp4Lv/fu//7vvOI7/8ssvt3yfiWeWLPfzzne+07/wwgsbvrd27Vr/T//0T0ntbAZZ22XWgU40i71Nx/XXX++/9rWvbfjeu971Lv+8884jtCwaIrb/6Ec/8gH4Bw8eTPS7rJI3JkqlErZs2YJzzjkn+J7rujjnnHOwadMmg5ZZWDTHc889h+XLl2P16tXYsGEDdu3aZdokC4tIvPDCC9i7d2/DXjt//nysXbvW7rUWqcRjjz2GJUuW4Nhjj8X73vc+HDhwwLRJFhYAgOHhYQBAf38/AGDLli0ol8sN++uaNWtw+OGH2/3Vwiimz1WGe+65B4sWLcIJJ5yAG2+8ERMTEybMs7AIUK1Wcd9992F8fBzr1q2z+6pFqjF9vjLYvdUiTbj66qtx4YUXNuyjgD23WqQLs/XOn5b42qZNm9DX14fTTjst+N4555wD13WxefPmtu/V+cyKw/1s2rRpxv513nnnad+n4vJWY2NjOOKII7BixYoZlT/SjLSMexKcfPLJWLZsGd761rfixz/+sfT7swQ2zQm8+uqrqFarWLp0acP3ly5dimeffdaQVRYWzbF27VrcfffdOPbYY7Fnzx7ccsstePOb34xf/vKXmDdvnmnzLCxagvUgaLbXyvYnsLCgxvr16/H2t78dq1atwo4dO/BXf/VXOP/887Fp0yZkMhnT5lnMYXieh2uvvRZvetObcMIJJwCo7a/5fH5G/ya7v1qYRLO5CgDvfve7ccQRR2D58uX4xS9+gQ996EPYvn07/vVf/9WgtRZzFU8//TTWrVuHqakp9PT04P7778fxxx+PrVu32n3VInVoNV8Bu7dapAv33Xcffvazn+Gpp56a8TN7brVIC2bznT8t8bW9e/fOKEWbzWbR39/f1g7dz6w43M/evXuNjy8Qz/Zjjz0WX/nKV3DSSSdheHgYn/70p3H66afjmWeewWGHHabD7NhoNe4jIyOYnJxEZ2enIcuisWzZMnzhC1/AaaedhmKxiLvuugtnnnkmNm/ejNe//vXCn2NJXguLOYDzzz8/+O+TTjoJa9euxRFHHIF/+Zd/wRVXXGHQMgsLC4tDB5deemnw3yeeeCJOOukkHHnkkXjsscdw9tlnG7TMYq7j6quvxi9/+Uv853/+p2lTLCzaotVc5Xt0nXjiiVi2bBnOPvts7NixA0ceeaRuMy3mOI499lhs3boVw8PD+Pa3v40/+qM/wuOPP27aLAuLpmg1X48//ni7t1qkBi+99BLe//73Y+PGjejo6DBtjsUsxg033IBPfOITbV+zbds2rFmzJtbnU9/5qe2nhKjtcWGfWbRYt25dQ6WP008/Hccddxy++MUv4rbbbjNo2aGNY489Fscee2zw9emnn44dO3bg7/7u7/CNb3xD+HMsyRsTixYtQiaTwb59+xq+v2/fPgwMDBiyysJCDH19fTjmmGPw/PPPmzbFwqIt2H66b98+LFu2LPj+vn37cPLJJxuyysJCDKtXr8aiRYvw/PPPW5LXwhiuueYaPPDAA3jiiScaMnAHBgZQKpUwNDTUoIqwZ1kLU2g1V5th7dq1AIDnn3/eBnUstCOfz+Ooo44CAJx66ql46qmn8A//8A9417veZfdVi9Sh1Xz94he/OOO1dm+1MIUtW7Zg//79DaqlarWKJ554Av/3//5f/OAHP7D7q4UQrrvuOlx++eVtX7N69Wplv0/1nZ/Sfur4mqjtAwMD2L9/f8P3K5UKBgcHpdYz9TMrDvczMDCQCq5IBW+Vy+VwyimnzAruoNW49/b2plrF2wpvfOMbpRP0bU/emMjn8zj11FPxyCOPBN/zPA+PPPJIQ9aDhUUaMTY2hh07djQ81C0s0ohVq1ZhYGCgYa8dGRnB5s2b7V5rkXr89re/xYEDB+xea2EEvu/jmmuuwf33349HH30Uq1atavj5qaeeilwu17C/bt++Hbt27bL7q4VWRM3VZti6dSsA2P3VIhXwPA/FYtHuqxazAmy+NoPdWy1M4eyzz8bTTz+NrVu3Bv9OO+00bNiwIfhvu79aiGDx4sVYs2ZN23/5fF7Z71N956e0nzq+Jmr7unXrMDQ0hC1btgTvffTRR+F5XkDcioD6mRWH+1m3bl3D6wFg48aN2vcpFbxVtVrF008/PSvOBGkZd1XYunWr9LhbJW8CfPCDH8Qf/dEf4bTTTsMb3/hG/P3f/z3Gx8fxx3/8x6ZNs7BowP/5P/8Hb3vb23DEEUdg9+7duPnmm5HJZPCHf/iHpk2zsMDY2FhDZtgLL7yArVu3or+/H4cffjiuvfZafOxjH8PRRx+NVatW4aabbsLy5ctx8cUXmzPaYk6i3Vzt7+/HLbfcgksuuQQDAwPYsWMHrr/+ehx11FE477zzDFptMVdx9dVX495778W//du/Yd68eUEfoP+/vfsNrar+4wD+uWFXTVPaRVatlGyEtVCJcAqyBRfDfxmmuPakMcuIKMwoS2kEQohEGKwHEZUgYeEzJSHvgxlYMESuog9KKKrFNomShlGSzm+PfpfGStuv5dndXi84D/Y953Lfgy/n3nPe95wzc+bMmDp1asycOTMef/zxeP7556OmpiZmzJgRzz77bCxZsiQWL16ccXomkqvN1a+//jr27dsXK1eujEKhEKdOnYotW7ZEU1NTzJ8/P+P0TDTbtm2LFStWxOzZs+P8+fOxb9+++PTTT+Pw4cP2q4w5V5qv9q2MJTfeeGPce++9Q8amTZsWhUKhMm7/ymjr6emJc+fORU9PTwwODlZKw/r6+pg+fXpERMybNy927twZa9eujV9++WVMHfOPNH8ulxsT59fuvvvuWL58eWzatCnefvvtuHjxYjzzzDPx6KOPxq233hoREb29vVEsFmPv3r2xaNGizD6zrtb9PPbYY1FXVxc7d+6MiIjNmzdHc3NzvPHGG7Fq1ar46KOP4vjx4/HOO+/8ZxlHK/uOHTti8eLFUV9fHz///HO8/vrr8d1338UTTzxxzbNf7Tzxtm3bore3N/bu3RsREU899VS89dZbsXXr1ti4cWN0dXXF/v3749ChQ2M++5tvvhl33HFHNDQ0xIULF+Ldd9+Nrq6uKJVKI3vjxL/S2dmZZs+enfL5fFq0aFHq7u7OOhIM09LSkm655ZaUz+dTXV1damlpSV999VXWsSCllNKRI0dSRAxb2traUkopXb58OXV0dKTa2to0efLkVCwW05kzZ7INzYR0pbn666+/pgcffDDNmjUrXX/99WnOnDlp06ZN6ezZs1nHZoL6q7kaEWnPnj2VbX777bf09NNPp5tuuindcMMNae3atam/vz+70ExIV5urPT09qampKdXU1KTJkyen+vr69OKLL6aBgYFsgzMhbdy4Mc2ZMyfl8/k0a9asVCwWU6lUqqy3X2UsudJ8tW9lrGtubk6bN2+u/G3/ymhra2v7y++gR44cqWzz5++kY+2Yf6T5Uxo759d++umn1NramqZPn55mzJiR2tvb0/nz5yvrv/nmmyH/S5afWVfqfpqbmyvnLv9n//796a677kr5fD41NDSkQ4cO/ecZ/85Isj/33HOVbWtra9PKlStTuVzOIPXVzxO3tbWl5ubmYa9ZuHBhyufzae7cuUPm/bU00uy7du1Kd955Z5oyZUqqqalJDzzwQOrq6hrx++ZSSmlktTAAAAAAAAAAWfFMXgAAAAAAAIAqouQFAAAAAAAAqCJKXgAAAAAAAIAqouQFAAAAAAAAqCJKXgAAAAAAAIAqouQFAAAAAAAAqCJKXgAAAAAAAIAqouQFAAAAAAAAqCJKXgAAAAAAAIAqouQFAAAAAAAAqCJKXgAAGGe2bNkSjzzyyLDx9vb2eOWVV+Lw4cORy+WuuJRKpQySAwAAAPBPKHkBAGCcOXbsWNx///1DxgYHB+Pjjz+ONWvWRFNTU/T391eWQqEQHR0dQ8aKxWJG6QEAAGDs+fDDD2Pq1KnR399fGWtvb4/58+fHwMBAhsmYqHIppZR1CAAA4N/7/fffY9q0aXHp0qXKWGNjY3R3d8fRo0ejpaUlent7I5fLVdb39vbGbbfdFqVSKZYtW5ZFbAAAABjzUkqxcOHCaGpqis7Oznj11Vfj/fffj+7u7qirq8s6HhPQpKwDAAAAo2PSpEnx+eefR2NjY5w8eTJqa2tjypQpERFx8ODBeOihh4YUvBERJ06ciIiI++6775rnBQAAgGqRy+Xitddei/Xr18fNN98cnZ2dcfToUQUvmVHyAgDAOHHddddFX19fFAqFWLBgwZB1Bw4ciN27dw97Tblcjttvvz0KhcK1igkAAABVafXq1XHPPffEjh07olQqRUNDQ9aRmMA8kxcAAMaREydODCt4v/jii+jr6/vL5+yWy2VX8QIAAMA/8Mknn8SXX34Zg4ODUVtbm3UcJjglLwAAjCMnT54cVvIePHgwli1bVrl1858peQEAAODqyuVybNiwId57770oFovR0dGRdSQmOLdrBgCAceT06dOxbt26IWMHDhyIJ598cti2P/74Y3z//fdKXgAAALiCb7/9NlatWhXbt2+P1tbWmDt3bixZssQPp8mUK3kBAGAcuXz5cpw5cyb6+vpiYGAgfvjhhzh+/HisXr162LblcjkiwgEpAAAA/I1z587F8uXL4+GHH46XX345IiIaGxtjxYoVsX379ozTMZHlUkop6xAAAMDo+OCDD+Kll16Kvr6+eOGFF2LevHmxZ8+e+Oyzz4Ztu2vXrti9e3ecPXs2g6QAAAAA/L+UvAAAMI6tWbMmli5dGlu3bs06CgAAAACjxO2aAQBgHFu6dGm0trZmHQMAAACAUeRKXgAAAAAAAIAq4kpeAAAAAAAAgCqi5AUAAAAAAACoIkpeAAAAAAAAgCqi5AUAAAAAAACoIkpeAAAAAAAAgCqi5AUAAAAAAACoIkpeAAAAAAAAgCqi5AUAAAAAAACoIkpeAAAAAAAAgCqi5AUAAAAAAACoIn8ARxjNRz0pEv4AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -293,19 +295,23 @@ " -\\frac{k}{m} & 0\n", " \\end{bmatrix} \\cdot \\vec y + \\begin{bmatrix}\n", " 0 \\\\\n", - " \\mathcal{NN}(x)/m\n", + " (\\mathcal{NN}(x)+\\cos(4t+y_0))/m\n", " \\end{bmatrix}\n", "$$\n", "\"\"\"\n", ")\n", - "def nn_rhs(t, state, k, m, nn_controller, **kwargs):\n", - " base_dynamics_rhs = rhs(t, state, k, m)\n", - " neural_network_impulse = nn_controller(state)[...,0]\n", + "def loss_augmented_nn_rhs(t, state, k, m, nn_controller, **kwargs):\n", + " base_dynamics_rhs = rhs(t, state[...,:2], k, m)\n", + " neural_network_impulse = torch.func.functional_call(nn_controller, kwargs, (torch.cat([state, torch.atleast_1d(torch.as_tensor(t, dtype=state.dtype, device=state.device)).cos(), torch.atleast_1d(torch.as_tensor(t, dtype=state.dtype, device=state.device)).sin()], dim=-1),))\n", + " neural_network_impulse = 32.0 * (neural_network_impulse[...,0] - neural_network_impulse[...,1])\n", " neural_network_impulse = torch.stack([\n", " torch.zeros_like(neural_network_impulse),\n", - " neural_network_impulse/m\n", + " (neural_network_impulse + torch.cos(t*4.0+state[...,0]))/m\n", " ])\n", - " return base_dynamics_rhs + neural_network_impulse" + " return torch.cat([\n", + " base_dynamics_rhs + neural_network_impulse,\n", + " state[...,:1]**2\n", + " ], dim=-1)" ] }, { @@ -324,7 +330,7 @@ " -\\frac{k}{m} & 0\n", " \\end{bmatrix} \\cdot \\vec y + \\begin{bmatrix}\n", " 0 \\\\\n", - " \\mathcal{NN}(x)/m\n", + " (\\mathcal{NN}(x)+\\cos(4t+y_0))/m\n", " \\end{bmatrix}\n", "$$\n", "\n" @@ -340,19 +346,19 @@ " -\\frac{k}{m} & 0\n", " \\end{bmatrix} \\cdot \\vec y + \\begin{bmatrix}\n", " 0 \\\\\n", - " \\mathcal{NN}(x)/m\n", + " (\\mathcal{NN}(x)+\\cos(4t+y_0))/m\n", " \\end{bmatrix}\n", "$$\n" ], "text/plain": [ - ",\n", + ",\n", "$$\n", "\\frac{\\mathrm{d}y}{\\mathrm{dt}} = \\begin{bmatrix}\n", " 0 & 1 \\\\\n", " -\\frac{k}{m} & 0\n", " \\end{bmatrix} \\cdot \\vec y + \\begin{bmatrix}\n", " 0 \\\\\n", - " \\mathcal{NN}(x)/m\n", + " (\\mathcal{NN}(x)+\\cos(4t+y_0))/m\n", " \\end{bmatrix}\n", "$$\n", ",\n", @@ -362,7 +368,7 @@ " -\\frac{k}{m} & 0\n", " \\end{bmatrix} \\cdot \\vec y + \\begin{bmatrix}\n", " 0 \\\\\n", - " \\mathcal{NN}(x)/m\n", + " (\\mathcal{NN}(x)+\\cos(4t+y_0))/m\n", " \\end{bmatrix}\n", "$$\n", ")>" @@ -373,560 +379,177 @@ } ], "source": [ - "print(nn_rhs)\n", - "display(nn_rhs)" + "print(loss_augmented_nn_rhs)\n", + "display(loss_augmented_nn_rhs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we would like to integrate the system differentiably we use `desolver.torch_ext.torch_solve_ivp` which handles the forward/backward AD passes memory efficiently.\n", + "\n", + "Under the hood, `torch_solve_ivp` utilises the adjoint method for reverse-mode AD and the tangent linear method for forward-mode AD. Furthermore, with the way that it is written, `torch_solve_ivp` allows differentiating multiple times and therefore estimating higher order derivatives. As we're training a simple NN to dampen a driven oscillator with first-order gradient descent, we do not utilise these features in this notebook." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, + "outputs": [], + "source": [ + "from desolver.torch_ext import torch_solve_ivp" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[1/512] - loss: 1.0276e+02, best_loss: 1.0276e+02\n", - "[2/512] - loss: 3.6690e+01, best_loss: 3.6690e+01\n", - "[3/512] - loss: 2.2941e+01, best_loss: 2.2941e+01\n", - "[4/512] - loss: 1.4030e+01, best_loss: 1.4030e+01\n", - "[5/512] - loss: 7.8588e+00, best_loss: 7.8588e+00\n", - "[6/512] - loss: 4.0314e+00, best_loss: 4.0314e+00\n", - "[7/512] - loss: 2.3058e+00, best_loss: 2.3058e+00\n", - "[8/512] - loss: 2.2212e+00, best_loss: 2.2212e+00\n", - "[9/512] - loss: 3.1359e+00, best_loss: 2.2212e+00\n", - "[10/512] - loss: 4.4046e+00, best_loss: 2.2212e+00\n", - "[11/512] - loss: 5.4471e+00, best_loss: 2.2212e+00\n", - "[12/512] - loss: 5.9278e+00, best_loss: 2.2212e+00\n", - "[13/512] - loss: 5.7600e+00, best_loss: 2.2212e+00\n", - "[14/512] - loss: 5.0671e+00, best_loss: 2.2212e+00\n", - "[15/512] - loss: 4.0472e+00, best_loss: 2.2212e+00\n", - "[16/512] - loss: 2.9402e+00, best_loss: 2.2212e+00\n", - "[17/512] - loss: 1.9815e+00, best_loss: 1.9815e+00\n", - "[18/512] - loss: 1.3024e+00, best_loss: 1.3024e+00\n", - "[19/512] - loss: 9.6044e-01, best_loss: 9.6044e-01\n", - "[20/512] - loss: 9.6575e-01, best_loss: 9.6044e-01\n", - "[21/512] - loss: 1.1901e+00, best_loss: 9.6044e-01\n", - "[22/512] - loss: 1.5168e+00, best_loss: 9.6044e-01\n", - "[23/512] - loss: 1.8395e+00, best_loss: 9.6044e-01\n", - "[24/512] - loss: 2.0401e+00, best_loss: 9.6044e-01\n", - "[25/512] - loss: 2.1047e+00, best_loss: 9.6044e-01\n", - "[26/512] - loss: 1.9871e+00, best_loss: 9.6044e-01\n", - "[27/512] - loss: 1.7565e+00, best_loss: 9.6044e-01\n", - "[28/512] - loss: 1.4550e+00, best_loss: 9.6044e-01\n", - "[29/512] - loss: 1.1563e+00, best_loss: 9.6044e-01\n", - "[30/512] - loss: 9.2318e-01, best_loss: 9.2318e-01\n", - "[31/512] - loss: 7.8288e-01, best_loss: 7.8288e-01\n", - "[32/512] - loss: 7.5376e-01, best_loss: 7.5376e-01\n", - "[33/512] - loss: 8.0010e-01, best_loss: 7.5376e-01\n", - "[34/512] - loss: 8.9981e-01, best_loss: 7.5376e-01\n", - "[35/512] - loss: 1.0018e+00, best_loss: 7.5376e-01\n", - "[36/512] - loss: 1.0762e+00, best_loss: 7.5376e-01\n", - "[37/512] - loss: 1.0992e+00, best_loss: 7.5376e-01\n", - "[38/512] - loss: 1.0612e+00, best_loss: 7.5376e-01\n", - "[39/512] - loss: 9.8249e-01, best_loss: 7.5376e-01\n", - "[40/512] - loss: 8.7389e-01, best_loss: 7.5376e-01\n", - "[41/512] - loss: 7.8036e-01, best_loss: 7.5376e-01\n", - "[42/512] - loss: 7.2208e-01, best_loss: 7.2208e-01\n", - "[43/512] - loss: 6.9142e-01, best_loss: 6.9142e-01\n", - "[44/512] - loss: 6.9089e-01, best_loss: 6.9089e-01\n", - "[45/512] - loss: 7.1510e-01, best_loss: 6.9089e-01\n", - "[46/512] - loss: 7.5018e-01, best_loss: 6.9089e-01\n", - "[47/512] - loss: 7.8624e-01, best_loss: 6.9089e-01\n", - "[48/512] - loss: 7.8939e-01, best_loss: 6.9089e-01\n", - "[49/512] - loss: 7.8281e-01, best_loss: 6.9089e-01\n", - "[50/512] - loss: 7.5906e-01, best_loss: 6.9089e-01\n", - "[51/512] - loss: 7.2187e-01, best_loss: 6.9089e-01\n", - "[52/512] - loss: 6.9182e-01, best_loss: 6.9089e-01\n", - "[53/512] - loss: 6.6322e-01, best_loss: 6.6322e-01\n", - "[54/512] - loss: 6.5370e-01, best_loss: 6.5370e-01\n", - "[55/512] - loss: 6.4848e-01, best_loss: 6.4848e-01\n", - "[56/512] - loss: 6.5786e-01, best_loss: 6.4848e-01\n", - "[57/512] - loss: 6.6951e-01, best_loss: 6.4848e-01\n", - "[58/512] - loss: 6.7516e-01, best_loss: 6.4848e-01\n", - "[59/512] - loss: 6.7464e-01, best_loss: 6.4848e-01\n", - "[60/512] - loss: 6.6787e-01, best_loss: 6.4848e-01\n", - "[61/512] - loss: 6.5964e-01, best_loss: 6.4848e-01\n", - "[62/512] - loss: 6.4635e-01, best_loss: 6.4635e-01\n", - "[63/512] - loss: 6.3659e-01, best_loss: 6.3659e-01\n", - "[64/512] - loss: 6.2101e-01, best_loss: 6.2101e-01\n", - "[65/512] - loss: 6.1710e-01, best_loss: 6.1710e-01\n", - "[66/512] - loss: 6.1960e-01, best_loss: 6.1710e-01\n", - "[67/512] - loss: 6.2047e-01, best_loss: 6.1710e-01\n", - "[68/512] - loss: 6.2469e-01, best_loss: 6.1710e-01\n", - "[69/512] - loss: 6.2413e-01, best_loss: 6.1710e-01\n", - "[70/512] - loss: 6.2035e-01, best_loss: 6.1710e-01\n", - "[71/512] - loss: 6.0573e-01, best_loss: 6.0573e-01\n", - "[72/512] - loss: 6.0319e-01, best_loss: 6.0319e-01\n", - "[73/512] - loss: 6.0036e-01, best_loss: 6.0036e-01\n", - "[74/512] - loss: 5.9306e-01, best_loss: 5.9306e-01\n", - "[75/512] - loss: 5.9308e-01, best_loss: 5.9306e-01\n", - "[76/512] - loss: 5.9185e-01, best_loss: 5.9185e-01\n", - "[77/512] - loss: 5.9069e-01, best_loss: 5.9069e-01\n", - "[78/512] - loss: 5.8648e-01, best_loss: 5.8648e-01\n", - "[79/512] - loss: 5.8765e-01, best_loss: 5.8648e-01\n", - "[80/512] - loss: 5.7839e-01, best_loss: 5.7839e-01\n", - "[81/512] - loss: 5.8004e-01, best_loss: 5.7839e-01\n", - "[82/512] - loss: 5.7908e-01, best_loss: 5.7839e-01\n", - "[83/512] - loss: 5.7618e-01, best_loss: 5.7618e-01\n", - "[84/512] - loss: 5.6985e-01, best_loss: 5.6985e-01\n", - "[85/512] - loss: 5.7002e-01, best_loss: 5.6985e-01\n", - "[86/512] - loss: 5.6801e-01, best_loss: 5.6801e-01\n", - "[87/512] - loss: 5.6148e-01, best_loss: 5.6148e-01\n", - "[88/512] - loss: 5.6230e-01, best_loss: 5.6148e-01\n", - "[89/512] - loss: 5.5741e-01, best_loss: 5.5741e-01\n", - "[90/512] - loss: 5.5789e-01, best_loss: 5.5741e-01\n", - "[91/512] - loss: 5.5658e-01, best_loss: 5.5658e-01\n", - "[92/512] - loss: 5.5043e-01, best_loss: 5.5043e-01\n", - "[93/512] - loss: 5.4833e-01, best_loss: 5.4833e-01\n", - "[94/512] - loss: 5.4774e-01, best_loss: 5.4774e-01\n", - "[95/512] - loss: 5.4236e-01, best_loss: 5.4236e-01\n", - "[96/512] - loss: 5.4092e-01, best_loss: 5.4092e-01\n", - "[97/512] - loss: 5.4340e-01, best_loss: 5.4092e-01\n", - "[98/512] - loss: 5.3762e-01, best_loss: 5.3762e-01\n", - "[99/512] - loss: 5.3484e-01, best_loss: 5.3484e-01\n", - "[100/512] - loss: 5.3273e-01, best_loss: 5.3273e-01\n", - "[101/512] - loss: 5.2527e-01, best_loss: 5.2527e-01\n", - "[102/512] - loss: 5.3121e-01, best_loss: 5.2527e-01\n", - "[103/512] - loss: 5.3130e-01, best_loss: 5.2527e-01\n", - "[104/512] - loss: 5.2264e-01, best_loss: 5.2264e-01\n", - "[105/512] - loss: 5.2503e-01, best_loss: 5.2264e-01\n", - "[106/512] - loss: 5.2197e-01, best_loss: 5.2197e-01\n", - "[107/512] - loss: 5.1335e-01, best_loss: 5.1335e-01\n", - "[108/512] - loss: 5.1270e-01, best_loss: 5.1270e-01\n", - "[109/512] - loss: 5.1180e-01, best_loss: 5.1180e-01\n", - "[110/512] - loss: 5.0993e-01, best_loss: 5.0993e-01\n", - "[111/512] - loss: 5.0728e-01, best_loss: 5.0728e-01\n", - "[112/512] - loss: 5.0703e-01, best_loss: 5.0703e-01\n", - "[113/512] - loss: 5.0240e-01, best_loss: 5.0240e-01\n", - "[114/512] - loss: 5.0066e-01, best_loss: 5.0066e-01\n", - "[115/512] - loss: 5.0296e-01, best_loss: 5.0066e-01\n", - "[116/512] - loss: 4.9707e-01, best_loss: 4.9707e-01\n", - "[117/512] - loss: 4.9520e-01, best_loss: 4.9520e-01\n", - "[118/512] - loss: 4.9305e-01, best_loss: 4.9305e-01\n", - "[119/512] - loss: 4.9221e-01, best_loss: 4.9221e-01\n", - "[120/512] - loss: 4.9083e-01, best_loss: 4.9083e-01\n", - "[121/512] - loss: 4.8820e-01, best_loss: 4.8820e-01\n", - "[122/512] - loss: 4.8224e-01, best_loss: 4.8224e-01\n", - "[123/512] - loss: 4.8209e-01, best_loss: 4.8209e-01\n", - "[124/512] - loss: 4.8293e-01, best_loss: 4.8209e-01\n", - "[125/512] - loss: 4.8214e-01, best_loss: 4.8209e-01\n", - "[126/512] - loss: 4.7807e-01, best_loss: 4.7807e-01\n", - "[127/512] - loss: 4.7588e-01, best_loss: 4.7588e-01\n", - "[128/512] - loss: 4.7191e-01, best_loss: 4.7191e-01\n", - "[129/512] - loss: 4.7102e-01, best_loss: 4.7102e-01\n", - "[130/512] - loss: 4.6909e-01, best_loss: 4.6909e-01\n", - "[131/512] - loss: 4.6318e-01, best_loss: 4.6318e-01\n", - "[132/512] - loss: 4.6540e-01, best_loss: 4.6318e-01\n", - "[133/512] - loss: 4.6481e-01, best_loss: 4.6318e-01\n", - "[134/512] - loss: 4.5604e-01, best_loss: 4.5604e-01\n", - "[135/512] - loss: 4.6465e-01, best_loss: 4.5604e-01\n", - "[136/512] - loss: 4.5570e-01, best_loss: 4.5570e-01\n", - "[137/512] - loss: 4.5633e-01, best_loss: 4.5570e-01\n", - "[138/512] - loss: 4.5069e-01, best_loss: 4.5069e-01\n", - "[139/512] - loss: 4.5232e-01, best_loss: 4.5069e-01\n", - "[140/512] - loss: 4.4908e-01, best_loss: 4.4908e-01\n", - "[141/512] - loss: 4.4980e-01, best_loss: 4.4908e-01\n", - "[142/512] - loss: 4.4772e-01, best_loss: 4.4772e-01\n", - "[143/512] - loss: 4.4738e-01, best_loss: 4.4738e-01\n", - "[144/512] - loss: 4.4430e-01, best_loss: 4.4430e-01\n", - "[145/512] - loss: 4.3330e-01, best_loss: 4.3330e-01\n", - "[146/512] - loss: 4.2843e-01, best_loss: 4.2843e-01\n", - "[147/512] - loss: 4.3974e-01, best_loss: 4.2843e-01\n", - "[148/512] - loss: 4.3489e-01, best_loss: 4.2843e-01\n", - "[149/512] - loss: 4.3324e-01, best_loss: 4.2843e-01\n", - "[150/512] - loss: 4.3396e-01, best_loss: 4.2843e-01\n", - "[151/512] - loss: 4.2346e-01, best_loss: 4.2346e-01\n", - "[152/512] - loss: 4.2978e-01, best_loss: 4.2346e-01\n", - "[153/512] - loss: 4.2889e-01, best_loss: 4.2346e-01\n", - "[154/512] - loss: 4.2591e-01, best_loss: 4.2346e-01\n", - "[155/512] - loss: 4.2496e-01, best_loss: 4.2346e-01\n", - "[156/512] - loss: 4.2438e-01, best_loss: 4.2346e-01\n", - "[157/512] - loss: 4.2159e-01, best_loss: 4.2159e-01\n", - "[158/512] - loss: 4.1877e-01, best_loss: 4.1877e-01\n", - "[159/512] - loss: 4.1793e-01, best_loss: 4.1793e-01\n", - "[160/512] - loss: 4.1395e-01, best_loss: 4.1395e-01\n", - "[161/512] - loss: 4.0784e-01, best_loss: 4.0784e-01\n", - "[162/512] - loss: 4.1151e-01, best_loss: 4.0784e-01\n", - "[163/512] - loss: 4.1223e-01, best_loss: 4.0784e-01\n", - "[164/512] - loss: 4.1153e-01, best_loss: 4.0784e-01\n", - "[165/512] - loss: 4.0816e-01, best_loss: 4.0784e-01\n", - "[166/512] - loss: 4.0737e-01, best_loss: 4.0737e-01\n", - "[167/512] - loss: 4.0445e-01, best_loss: 4.0445e-01\n", - "[168/512] - loss: 4.0315e-01, best_loss: 4.0315e-01\n", - "[169/512] - loss: 3.9165e-01, best_loss: 3.9165e-01\n", - "[170/512] - loss: 3.9821e-01, best_loss: 3.9165e-01\n", - "[171/512] - loss: 3.9672e-01, best_loss: 3.9165e-01\n", - "[172/512] - loss: 3.9793e-01, best_loss: 3.9165e-01\n", - "[173/512] - loss: 3.9238e-01, best_loss: 3.9165e-01\n", - "[174/512] - loss: 3.9377e-01, best_loss: 3.9165e-01\n", - "[175/512] - loss: 3.9561e-01, best_loss: 3.9165e-01\n", - "[176/512] - loss: 3.9119e-01, best_loss: 3.9119e-01\n", - "[177/512] - loss: 3.8916e-01, best_loss: 3.8916e-01\n", - "[178/512] - loss: 3.8662e-01, best_loss: 3.8662e-01\n", - "[179/512] - loss: 3.8618e-01, best_loss: 3.8618e-01\n", - "[180/512] - loss: 3.8011e-01, best_loss: 3.8011e-01\n", - "[181/512] - loss: 3.8507e-01, best_loss: 3.8011e-01\n", - "[182/512] - loss: 3.8090e-01, best_loss: 3.8011e-01\n", - "[183/512] - loss: 3.8020e-01, best_loss: 3.8011e-01\n", - "[184/512] - loss: 3.7786e-01, best_loss: 3.7786e-01\n", - "[185/512] - loss: 3.7444e-01, best_loss: 3.7444e-01\n", - "[186/512] - loss: 3.7505e-01, best_loss: 3.7444e-01\n", - "[187/512] - loss: 3.7645e-01, best_loss: 3.7444e-01\n", - "[188/512] - loss: 3.7141e-01, best_loss: 3.7141e-01\n", - "[189/512] - loss: 3.7205e-01, best_loss: 3.7141e-01\n", - "[190/512] - loss: 3.7037e-01, best_loss: 3.7037e-01\n", - "[191/512] - loss: 3.6993e-01, best_loss: 3.6993e-01\n", - "[192/512] - loss: 3.7065e-01, best_loss: 3.6993e-01\n", - "[193/512] - loss: 3.6444e-01, best_loss: 3.6444e-01\n", - "[194/512] - loss: 3.6079e-01, best_loss: 3.6079e-01\n", - "[195/512] - loss: 3.6232e-01, best_loss: 3.6079e-01\n", - "[196/512] - loss: 3.5824e-01, best_loss: 3.5824e-01\n", - "[197/512] - loss: 3.5996e-01, best_loss: 3.5824e-01\n", - "[198/512] - loss: 3.5631e-01, best_loss: 3.5631e-01\n", - "[199/512] - loss: 3.5955e-01, best_loss: 3.5631e-01\n", - "[200/512] - loss: 3.5384e-01, best_loss: 3.5384e-01\n", - "[201/512] - loss: 3.5368e-01, best_loss: 3.5368e-01\n", - "[202/512] - loss: 3.5523e-01, best_loss: 3.5368e-01\n", - "[203/512] - loss: 3.4994e-01, best_loss: 3.4994e-01\n", - "[204/512] - loss: 3.5170e-01, best_loss: 3.4994e-01\n", - "[205/512] - loss: 3.4656e-01, best_loss: 3.4656e-01\n", - "[206/512] - loss: 3.4121e-01, best_loss: 3.4121e-01\n", - "[207/512] - loss: 3.4773e-01, best_loss: 3.4121e-01\n", - "[208/512] - loss: 3.3901e-01, best_loss: 3.3901e-01\n", - "[209/512] - loss: 3.4312e-01, best_loss: 3.3901e-01\n", - "[210/512] - loss: 3.3763e-01, best_loss: 3.3763e-01\n", - "[211/512] - loss: 3.3979e-01, best_loss: 3.3763e-01\n", - "[212/512] - loss: 3.4031e-01, best_loss: 3.3763e-01\n", - "[213/512] - loss: 3.3892e-01, best_loss: 3.3763e-01\n", - "[214/512] - loss: 3.3521e-01, best_loss: 3.3521e-01\n", - "[215/512] - loss: 3.3071e-01, best_loss: 3.3071e-01\n", - "[216/512] - loss: 3.3290e-01, best_loss: 3.3071e-01\n", - "[217/512] - loss: 3.3430e-01, best_loss: 3.3071e-01\n", - "[218/512] - loss: 3.2641e-01, best_loss: 3.2641e-01\n", - "[219/512] - loss: 3.3060e-01, best_loss: 3.2641e-01\n", - "[220/512] - loss: 3.2998e-01, best_loss: 3.2641e-01\n", - "[221/512] - loss: 3.2905e-01, best_loss: 3.2641e-01\n", - "[222/512] - loss: 3.2944e-01, best_loss: 3.2641e-01\n", - "[223/512] - loss: 3.2294e-01, best_loss: 3.2294e-01\n", - "[224/512] - loss: 3.2078e-01, best_loss: 3.2078e-01\n", - "[225/512] - loss: 3.2067e-01, best_loss: 3.2067e-01\n", - "[226/512] - loss: 3.2019e-01, best_loss: 3.2019e-01\n", - "[227/512] - loss: 3.2161e-01, best_loss: 3.2019e-01\n", - "[228/512] - loss: 3.2033e-01, best_loss: 3.2019e-01\n", - "[229/512] - loss: 3.1950e-01, best_loss: 3.1950e-01\n", - "[230/512] - loss: 3.1634e-01, best_loss: 3.1634e-01\n", - "[231/512] - loss: 3.1733e-01, best_loss: 3.1634e-01\n", - "[232/512] - loss: 3.1351e-01, best_loss: 3.1351e-01\n", - "[233/512] - loss: 3.0986e-01, best_loss: 3.0986e-01\n", - "[234/512] - loss: 3.1226e-01, best_loss: 3.0986e-01\n", - "[235/512] - loss: 3.1272e-01, best_loss: 3.0986e-01\n", - "[236/512] - loss: 3.0967e-01, best_loss: 3.0967e-01\n", - "[237/512] - loss: 3.1047e-01, best_loss: 3.0967e-01\n", - "[238/512] - loss: 3.0376e-01, best_loss: 3.0376e-01\n", - "[239/512] - loss: 3.0978e-01, best_loss: 3.0376e-01\n", - "[240/512] - loss: 3.0671e-01, best_loss: 3.0376e-01\n", - "[241/512] - loss: 3.0423e-01, best_loss: 3.0376e-01\n", - "[242/512] - loss: 3.0425e-01, best_loss: 3.0376e-01\n", - "[243/512] - loss: 3.0122e-01, best_loss: 3.0122e-01\n", - "[244/512] - loss: 3.0334e-01, best_loss: 3.0122e-01\n", - "[245/512] - loss: 2.9494e-01, best_loss: 2.9494e-01\n", - "[246/512] - loss: 2.9323e-01, best_loss: 2.9323e-01\n", - "[247/512] - loss: 3.0101e-01, best_loss: 2.9323e-01\n", - "[248/512] - loss: 2.9204e-01, best_loss: 2.9204e-01\n", - "[249/512] - loss: 2.9709e-01, best_loss: 2.9204e-01\n", - "[250/512] - loss: 2.9580e-01, best_loss: 2.9204e-01\n", - "[251/512] - loss: 2.9090e-01, best_loss: 2.9090e-01\n", - "[252/512] - loss: 2.9430e-01, best_loss: 2.9090e-01\n", - "[253/512] - loss: 2.9344e-01, best_loss: 2.9090e-01\n", - "[254/512] - loss: 2.9250e-01, best_loss: 2.9090e-01\n", - "[255/512] - loss: 2.8767e-01, best_loss: 2.8767e-01\n", - "[256/512] - loss: 2.8920e-01, best_loss: 2.8767e-01\n", - "[257/512] - loss: 2.9105e-01, best_loss: 2.8767e-01\n", - "[258/512] - loss: 2.8523e-01, best_loss: 2.8523e-01\n", - "[259/512] - loss: 2.8819e-01, best_loss: 2.8523e-01\n", - "[260/512] - loss: 2.8620e-01, best_loss: 2.8523e-01\n", - "[261/512] - loss: 2.7887e-01, best_loss: 2.7887e-01\n", - "[262/512] - loss: 2.8332e-01, best_loss: 2.7887e-01\n", - "[263/512] - loss: 2.8625e-01, best_loss: 2.7887e-01\n", - "[264/512] - loss: 2.7988e-01, best_loss: 2.7887e-01\n", - "[265/512] - loss: 2.7296e-01, best_loss: 2.7296e-01\n", - "[266/512] - loss: 2.8007e-01, best_loss: 2.7296e-01\n", - "[267/512] - loss: 2.6948e-01, best_loss: 2.6948e-01\n", - "[268/512] - loss: 2.8071e-01, best_loss: 2.6948e-01\n", - "[269/512] - loss: 2.7235e-01, best_loss: 2.6948e-01\n", - "[270/512] - loss: 2.7728e-01, best_loss: 2.6948e-01\n", - "[271/512] - loss: 2.7737e-01, best_loss: 2.6948e-01\n", - "[272/512] - loss: 2.7393e-01, best_loss: 2.6948e-01\n", - "[273/512] - loss: 2.7243e-01, best_loss: 2.6948e-01\n", - "[274/512] - loss: 2.7241e-01, best_loss: 2.6948e-01\n", - "[275/512] - loss: 2.7019e-01, best_loss: 2.6948e-01\n", - "[276/512] - loss: 2.6924e-01, best_loss: 2.6924e-01\n", - "[277/512] - loss: 2.6417e-01, best_loss: 2.6417e-01\n", - "[278/512] - loss: 2.5768e-01, best_loss: 2.5768e-01\n", - "[279/512] - loss: 2.6919e-01, best_loss: 2.5768e-01\n", - "[280/512] - loss: 2.6600e-01, best_loss: 2.5768e-01\n", - "[281/512] - loss: 2.6645e-01, best_loss: 2.5768e-01\n", - "[282/512] - loss: 2.6103e-01, best_loss: 2.5768e-01\n", - "[283/512] - loss: 2.6427e-01, best_loss: 2.5768e-01\n", - "[284/512] - loss: 2.6991e-01, best_loss: 2.5768e-01\n", - "[285/512] - loss: 2.5735e-01, best_loss: 2.5735e-01\n", - "[286/512] - loss: 2.6068e-01, best_loss: 2.5735e-01\n", - "[287/512] - loss: 2.5895e-01, best_loss: 2.5735e-01\n", - "[288/512] - loss: 2.5420e-01, best_loss: 2.5420e-01\n", - "[289/512] - loss: 2.5974e-01, best_loss: 2.5420e-01\n", - "[290/512] - loss: 2.5917e-01, best_loss: 2.5420e-01\n", - "[291/512] - loss: 2.5894e-01, best_loss: 2.5420e-01\n", - "[292/512] - loss: 2.5976e-01, best_loss: 2.5420e-01\n", - "[293/512] - loss: 2.4660e-01, best_loss: 2.4660e-01\n", - "[294/512] - loss: 2.5394e-01, best_loss: 2.4660e-01\n", - "[295/512] - loss: 2.4948e-01, best_loss: 2.4660e-01\n", - "[296/512] - loss: 2.5528e-01, best_loss: 2.4660e-01\n", - "[297/512] - loss: 2.5361e-01, best_loss: 2.4660e-01\n", - "[298/512] - loss: 2.5096e-01, best_loss: 2.4660e-01\n", - "[299/512] - loss: 2.4970e-01, best_loss: 2.4660e-01\n", - "[300/512] - loss: 2.4689e-01, best_loss: 2.4660e-01\n", - "[301/512] - loss: 2.5025e-01, best_loss: 2.4660e-01\n", - "[302/512] - loss: 2.4242e-01, best_loss: 2.4242e-01\n", - "[303/512] - loss: 2.5053e-01, best_loss: 2.4242e-01\n", - "[304/512] - loss: 2.4773e-01, best_loss: 2.4242e-01\n", - "[305/512] - loss: 2.4292e-01, best_loss: 2.4242e-01\n", - "[306/512] - loss: 2.4457e-01, best_loss: 2.4242e-01\n", - "[307/512] - loss: 2.4337e-01, best_loss: 2.4242e-01\n", - "[308/512] - loss: 2.3846e-01, best_loss: 2.3846e-01\n", - "[309/512] - loss: 2.4112e-01, best_loss: 2.3846e-01\n", - "[310/512] - loss: 2.3861e-01, best_loss: 2.3846e-01\n", - "[311/512] - loss: 2.4133e-01, best_loss: 2.3846e-01\n", - "[312/512] - loss: 2.3843e-01, best_loss: 2.3843e-01\n", - "[313/512] - loss: 2.4066e-01, best_loss: 2.3843e-01\n", - "[314/512] - loss: 2.4338e-01, best_loss: 2.3843e-01\n", - "[315/512] - loss: 2.3967e-01, best_loss: 2.3843e-01\n", - "[316/512] - loss: 2.3457e-01, best_loss: 2.3457e-01\n", - "[317/512] - loss: 2.3450e-01, best_loss: 2.3450e-01\n", - "[318/512] - loss: 2.3681e-01, best_loss: 2.3450e-01\n", - "[319/512] - loss: 2.3609e-01, best_loss: 2.3450e-01\n", - "[320/512] - loss: 2.3898e-01, best_loss: 2.3450e-01\n", - "[321/512] - loss: 2.3839e-01, best_loss: 2.3450e-01\n", - "[322/512] - loss: 2.2739e-01, best_loss: 2.2739e-01\n", - "[323/512] - loss: 2.3240e-01, best_loss: 2.2739e-01\n", - "[324/512] - loss: 2.3945e-01, best_loss: 2.2739e-01\n", - "[325/512] - loss: 2.3549e-01, best_loss: 2.2739e-01\n", - "[326/512] - loss: 2.2753e-01, best_loss: 2.2739e-01\n", - "[327/512] - loss: 2.2719e-01, best_loss: 2.2719e-01\n", - "[328/512] - loss: 2.2724e-01, best_loss: 2.2719e-01\n", - "[329/512] - loss: 2.2611e-01, best_loss: 2.2611e-01\n", - "[330/512] - loss: 2.3121e-01, best_loss: 2.2611e-01\n", - "[331/512] - loss: 2.2547e-01, best_loss: 2.2547e-01\n", - "[332/512] - loss: 2.2701e-01, best_loss: 2.2547e-01\n", - "[333/512] - loss: 2.2746e-01, best_loss: 2.2547e-01\n", - "[334/512] - loss: 2.2346e-01, best_loss: 2.2346e-01\n", - "[335/512] - loss: 2.2508e-01, best_loss: 2.2346e-01\n", - "[336/512] - loss: 2.2288e-01, best_loss: 2.2288e-01\n", - "[337/512] - loss: 2.1826e-01, best_loss: 2.1826e-01\n", - "[338/512] - loss: 2.1991e-01, best_loss: 2.1826e-01\n", - "[339/512] - loss: 2.1765e-01, best_loss: 2.1765e-01\n", - "[340/512] - loss: 2.2461e-01, best_loss: 2.1765e-01\n", - "[341/512] - loss: 2.1661e-01, best_loss: 2.1661e-01\n", - "[342/512] - loss: 2.1299e-01, best_loss: 2.1299e-01\n", - "[343/512] - loss: 2.1902e-01, best_loss: 2.1299e-01\n", - "[344/512] - loss: 2.1491e-01, best_loss: 2.1299e-01\n", - "[345/512] - loss: 2.1459e-01, best_loss: 2.1299e-01\n", - "[346/512] - loss: 2.2002e-01, best_loss: 2.1299e-01\n", - "[347/512] - loss: 2.1687e-01, best_loss: 2.1299e-01\n", - "[348/512] - loss: 2.1438e-01, best_loss: 2.1299e-01\n", - "[349/512] - loss: 2.0962e-01, best_loss: 2.0962e-01\n", - "[350/512] - loss: 2.1270e-01, best_loss: 2.0962e-01\n", - "[351/512] - loss: 2.1363e-01, best_loss: 2.0962e-01\n", - "[352/512] - loss: 2.0828e-01, best_loss: 2.0828e-01\n", - "[353/512] - loss: 2.1354e-01, best_loss: 2.0828e-01\n", - "[354/512] - loss: 2.1195e-01, best_loss: 2.0828e-01\n", - "[355/512] - loss: 2.1093e-01, best_loss: 2.0828e-01\n", - "[356/512] - loss: 2.1460e-01, best_loss: 2.0828e-01\n", - "[357/512] - loss: 2.0757e-01, best_loss: 2.0757e-01\n", - "[358/512] - loss: 2.0821e-01, best_loss: 2.0757e-01\n", - "[359/512] - loss: 2.0818e-01, best_loss: 2.0757e-01\n", - "[360/512] - loss: 2.0443e-01, best_loss: 2.0443e-01\n", - "[361/512] - loss: 2.0524e-01, best_loss: 2.0443e-01\n", - "[362/512] - loss: 2.0048e-01, best_loss: 2.0048e-01\n", - "[363/512] - loss: 2.0337e-01, best_loss: 2.0048e-01\n", - "[364/512] - loss: 2.0052e-01, best_loss: 2.0048e-01\n", - "[365/512] - loss: 2.0197e-01, best_loss: 2.0048e-01\n", - "[366/512] - loss: 2.0305e-01, best_loss: 2.0048e-01\n", - "[367/512] - loss: 2.0539e-01, best_loss: 2.0048e-01\n", - "[368/512] - loss: 2.0785e-01, best_loss: 2.0048e-01\n", - "[369/512] - loss: 1.9518e-01, best_loss: 1.9518e-01\n", - "[370/512] - loss: 1.9255e-01, best_loss: 1.9255e-01\n", - "[371/512] - loss: 2.0096e-01, best_loss: 1.9255e-01\n", - "[372/512] - loss: 2.0411e-01, best_loss: 1.9255e-01\n", - "[373/512] - loss: 1.9850e-01, best_loss: 1.9255e-01\n", - "[374/512] - loss: 1.9799e-01, best_loss: 1.9255e-01\n", - "[375/512] - loss: 1.9813e-01, best_loss: 1.9255e-01\n", - "[376/512] - loss: 1.9944e-01, best_loss: 1.9255e-01\n", - "[377/512] - loss: 2.0354e-01, best_loss: 1.9255e-01\n", - "[378/512] - loss: 1.9580e-01, best_loss: 1.9255e-01\n", - "[379/512] - loss: 1.9921e-01, best_loss: 1.9255e-01\n", - "[380/512] - loss: 1.9457e-01, best_loss: 1.9255e-01\n", - "[381/512] - loss: 1.9245e-01, best_loss: 1.9245e-01\n", - "[382/512] - loss: 1.8619e-01, best_loss: 1.8619e-01\n", - "[383/512] - loss: 1.8886e-01, best_loss: 1.8619e-01\n", - "[384/512] - loss: 1.9619e-01, best_loss: 1.8619e-01\n", - "[385/512] - loss: 1.9340e-01, best_loss: 1.8619e-01\n", - "[386/512] - loss: 1.8860e-01, best_loss: 1.8619e-01\n", - "[387/512] - loss: 1.9318e-01, best_loss: 1.8619e-01\n", - "[388/512] - loss: 1.9229e-01, best_loss: 1.8619e-01\n", - "[389/512] - loss: 1.9564e-01, best_loss: 1.8619e-01\n", - "[390/512] - loss: 1.8999e-01, best_loss: 1.8619e-01\n", - "[391/512] - loss: 1.8733e-01, best_loss: 1.8619e-01\n", - "[392/512] - loss: 1.9266e-01, best_loss: 1.8619e-01\n", - "[393/512] - loss: 1.8957e-01, best_loss: 1.8619e-01\n", - "[394/512] - loss: 1.9191e-01, best_loss: 1.8619e-01\n", - "[395/512] - loss: 1.8868e-01, best_loss: 1.8619e-01\n", - "[396/512] - loss: 1.8443e-01, best_loss: 1.8443e-01\n", - "[397/512] - loss: 1.8274e-01, best_loss: 1.8274e-01\n", - "[398/512] - loss: 1.8846e-01, best_loss: 1.8274e-01\n", - "[399/512] - loss: 1.7969e-01, best_loss: 1.7969e-01\n", - "[400/512] - loss: 1.8529e-01, best_loss: 1.7969e-01\n", - "[401/512] - loss: 1.8966e-01, best_loss: 1.7969e-01\n", - "[402/512] - loss: 1.8594e-01, best_loss: 1.7969e-01\n", - "[403/512] - loss: 1.8756e-01, best_loss: 1.7969e-01\n", - "[404/512] - loss: 1.7983e-01, best_loss: 1.7969e-01\n", - "[405/512] - loss: 1.8668e-01, best_loss: 1.7969e-01\n", - "[406/512] - loss: 1.8258e-01, best_loss: 1.7969e-01\n", - "[407/512] - loss: 1.8292e-01, best_loss: 1.7969e-01\n", - "[408/512] - loss: 1.7759e-01, best_loss: 1.7759e-01\n", - "[409/512] - loss: 1.7643e-01, best_loss: 1.7643e-01\n", - "[410/512] - loss: 1.8323e-01, best_loss: 1.7643e-01\n", - "[411/512] - loss: 1.7841e-01, best_loss: 1.7643e-01\n", - "[412/512] - loss: 1.7894e-01, best_loss: 1.7643e-01\n", - "[413/512] - loss: 1.7939e-01, best_loss: 1.7643e-01\n", - "[414/512] - loss: 1.8198e-01, best_loss: 1.7643e-01\n", - "[415/512] - loss: 1.7243e-01, best_loss: 1.7243e-01\n", - "[416/512] - loss: 1.7040e-01, best_loss: 1.7040e-01\n", - "[417/512] - loss: 1.7374e-01, best_loss: 1.7040e-01\n", - "[418/512] - loss: 1.7231e-01, best_loss: 1.7040e-01\n", - "[419/512] - loss: 1.8193e-01, best_loss: 1.7040e-01\n", - "[420/512] - loss: 1.7402e-01, best_loss: 1.7040e-01\n", - "[421/512] - loss: 1.7440e-01, best_loss: 1.7040e-01\n", - "[422/512] - loss: 1.7335e-01, best_loss: 1.7040e-01\n", - "[423/512] - loss: 1.7713e-01, best_loss: 1.7040e-01\n", - "[424/512] - loss: 1.6680e-01, best_loss: 1.6680e-01\n", - "[425/512] - loss: 1.6837e-01, best_loss: 1.6680e-01\n", - "[426/512] - loss: 1.6747e-01, best_loss: 1.6680e-01\n", - "[427/512] - loss: 1.7101e-01, best_loss: 1.6680e-01\n", - "[428/512] - loss: 1.7578e-01, best_loss: 1.6680e-01\n", - "[429/512] - loss: 1.6948e-01, best_loss: 1.6680e-01\n", - "[430/512] - loss: 1.7175e-01, best_loss: 1.6680e-01\n", - "[431/512] - loss: 1.7204e-01, best_loss: 1.6680e-01\n", - "[432/512] - loss: 1.6704e-01, best_loss: 1.6680e-01\n", - "[433/512] - loss: 1.7065e-01, best_loss: 1.6680e-01\n", - "[434/512] - loss: 1.6260e-01, best_loss: 1.6260e-01\n", - "[435/512] - loss: 1.6655e-01, best_loss: 1.6260e-01\n", - "[436/512] - loss: 1.6541e-01, best_loss: 1.6260e-01\n", - "[437/512] - loss: 1.6734e-01, best_loss: 1.6260e-01\n", - "[438/512] - loss: 1.7210e-01, best_loss: 1.6260e-01\n", - "[439/512] - loss: 1.6116e-01, best_loss: 1.6116e-01\n", - "[440/512] - loss: 1.5981e-01, best_loss: 1.5981e-01\n", - "[441/512] - loss: 1.6484e-01, best_loss: 1.5981e-01\n", - "[442/512] - loss: 1.6900e-01, best_loss: 1.5981e-01\n", - "[443/512] - loss: 1.6763e-01, best_loss: 1.5981e-01\n", - "[444/512] - loss: 1.6734e-01, best_loss: 1.5981e-01\n", - "[445/512] - loss: 1.6303e-01, best_loss: 1.5981e-01\n", - "[446/512] - loss: 1.6154e-01, best_loss: 1.5981e-01\n", - "[447/512] - loss: 1.6337e-01, best_loss: 1.5981e-01\n", - "[448/512] - loss: 1.5837e-01, best_loss: 1.5837e-01\n", - "[449/512] - loss: 1.6005e-01, best_loss: 1.5837e-01\n", - "[450/512] - loss: 1.6221e-01, best_loss: 1.5837e-01\n", - "[451/512] - loss: 1.5967e-01, best_loss: 1.5837e-01\n", - "[452/512] - loss: 1.6368e-01, best_loss: 1.5837e-01\n", - "[453/512] - loss: 1.6062e-01, best_loss: 1.5837e-01\n", - "[454/512] - loss: 1.5766e-01, best_loss: 1.5766e-01\n", - "[455/512] - loss: 1.6342e-01, best_loss: 1.5766e-01\n", - "[456/512] - loss: 1.5879e-01, best_loss: 1.5766e-01\n", - "[457/512] - loss: 1.5943e-01, best_loss: 1.5766e-01\n", - "[458/512] - loss: 1.5472e-01, best_loss: 1.5472e-01\n", - "[459/512] - loss: 1.5520e-01, best_loss: 1.5472e-01\n", - "[460/512] - loss: 1.5270e-01, best_loss: 1.5270e-01\n", - "[461/512] - loss: 1.5607e-01, best_loss: 1.5270e-01\n", - "[462/512] - loss: 1.5206e-01, best_loss: 1.5206e-01\n", - "[463/512] - loss: 1.5661e-01, best_loss: 1.5206e-01\n", - "[464/512] - loss: 1.5847e-01, best_loss: 1.5206e-01\n", - "[465/512] - loss: 1.5879e-01, best_loss: 1.5206e-01\n", - "[466/512] - loss: 1.4938e-01, best_loss: 1.4938e-01\n", - "[467/512] - loss: 1.5401e-01, best_loss: 1.4938e-01\n", - "[468/512] - loss: 1.5025e-01, best_loss: 1.4938e-01\n", - "[469/512] - loss: 1.5279e-01, best_loss: 1.4938e-01\n", - "[470/512] - loss: 1.5346e-01, best_loss: 1.4938e-01\n", - "[471/512] - loss: 1.5068e-01, best_loss: 1.4938e-01\n", - "[472/512] - loss: 1.5194e-01, best_loss: 1.4938e-01\n", - "[473/512] - loss: 1.5174e-01, best_loss: 1.4938e-01\n", - "[474/512] - loss: 1.5204e-01, best_loss: 1.4938e-01\n", - "[475/512] - loss: 1.4829e-01, best_loss: 1.4829e-01\n", - "[476/512] - loss: 1.5120e-01, best_loss: 1.4829e-01\n", - "[477/512] - loss: 1.4858e-01, best_loss: 1.4829e-01\n", - "[478/512] - loss: 1.5125e-01, best_loss: 1.4829e-01\n", - "[479/512] - loss: 1.4861e-01, best_loss: 1.4829e-01\n", - "[480/512] - loss: 1.4962e-01, best_loss: 1.4829e-01\n", - "[481/512] - loss: 1.4606e-01, best_loss: 1.4606e-01\n", - "[482/512] - loss: 1.4842e-01, best_loss: 1.4606e-01\n", - "[483/512] - loss: 1.4460e-01, best_loss: 1.4460e-01\n", - "[484/512] - loss: 1.5112e-01, best_loss: 1.4460e-01\n", - "[485/512] - loss: 1.4698e-01, best_loss: 1.4460e-01\n", - "[486/512] - loss: 1.4864e-01, best_loss: 1.4460e-01\n", - "[487/512] - loss: 1.4818e-01, best_loss: 1.4460e-01\n", - "[488/512] - loss: 1.4451e-01, best_loss: 1.4451e-01\n", - "[489/512] - loss: 1.4262e-01, best_loss: 1.4262e-01\n", - "[490/512] - loss: 1.4153e-01, best_loss: 1.4153e-01\n", - "[491/512] - loss: 1.4380e-01, best_loss: 1.4153e-01\n", - "[492/512] - loss: 1.4295e-01, best_loss: 1.4153e-01\n", - "[493/512] - loss: 1.4405e-01, best_loss: 1.4153e-01\n", - "[494/512] - loss: 1.4205e-01, best_loss: 1.4153e-01\n", - "[495/512] - loss: 1.4320e-01, best_loss: 1.4153e-01\n", - "[496/512] - loss: 1.4463e-01, best_loss: 1.4153e-01\n", - "[497/512] - loss: 1.4294e-01, best_loss: 1.4153e-01\n", - "[498/512] - loss: 1.4085e-01, best_loss: 1.4085e-01\n", - "[499/512] - loss: 1.4199e-01, best_loss: 1.4085e-01\n", - "[500/512] - loss: 1.4216e-01, best_loss: 1.4085e-01\n", - "[501/512] - loss: 1.3861e-01, best_loss: 1.3861e-01\n", - "[502/512] - loss: 1.4020e-01, best_loss: 1.3861e-01\n", - "[503/512] - loss: 1.4087e-01, best_loss: 1.3861e-01\n", - "[504/512] - loss: 1.4205e-01, best_loss: 1.3861e-01\n", - "[505/512] - loss: 1.3615e-01, best_loss: 1.3615e-01\n", - "[506/512] - loss: 1.4051e-01, best_loss: 1.3615e-01\n", - "[507/512] - loss: 1.3961e-01, best_loss: 1.3615e-01\n", - "[508/512] - loss: 1.3654e-01, best_loss: 1.3615e-01\n", - "[509/512] - loss: 1.3921e-01, best_loss: 1.3615e-01\n", - "[510/512] - loss: 1.3764e-01, best_loss: 1.3615e-01\n", - "[511/512] - loss: 1.3717e-01, best_loss: 1.3615e-01\n", - "[512/512] - loss: 1.3703e-01, best_loss: 1.3615e-01\n" + "[1/128] - loss: 2.5203e+00, best_loss: 2.5203e+00, lr: 4.0000e-03\n", + "[2/128] - loss: 1.2289e+00, best_loss: 1.2289e+00, lr: 4.0000e-03\n", + "[3/128] - loss: 2.3315e+00, best_loss: 1.2289e+00, lr: 4.0000e-03\n", + "[4/128] - loss: 1.4732e+00, best_loss: 1.2289e+00, lr: 4.0000e-03\n", + "[5/128] - loss: 1.1987e+00, best_loss: 1.1987e+00, lr: 4.0000e-03\n", + "[6/128] - loss: 1.0807e+00, best_loss: 1.0807e+00, lr: 4.0000e-03\n", + "[7/128] - loss: 1.2554e+00, best_loss: 1.0807e+00, lr: 4.0000e-03\n", + "[8/128] - loss: 1.2769e+00, best_loss: 1.0807e+00, lr: 4.0000e-03\n", + "[9/128] - loss: 1.2847e+00, best_loss: 1.0807e+00, lr: 4.0000e-03\n", + "[10/128] - loss: 1.1582e+00, best_loss: 1.0807e+00, lr: 4.0000e-03\n", + "[11/128] - loss: 7.6988e-01, best_loss: 7.6988e-01, lr: 4.0000e-03\n", + "[12/128] - loss: 7.5957e-01, best_loss: 7.5957e-01, lr: 4.0000e-03\n", + "[13/128] - loss: 7.9783e-01, best_loss: 7.5957e-01, lr: 4.0000e-03\n", + "[14/128] - loss: 7.4240e-01, best_loss: 7.4240e-01, lr: 4.0000e-03\n", + "[15/128] - loss: 7.3861e-01, best_loss: 7.3861e-01, lr: 4.0000e-03\n", + "[16/128] - loss: 7.9328e-01, best_loss: 7.3861e-01, lr: 4.0000e-03\n", + "[17/128] - loss: 6.7236e-01, best_loss: 6.7236e-01, lr: 4.0000e-03\n", + "[18/128] - loss: 6.5296e-01, best_loss: 6.5296e-01, lr: 4.0000e-03\n", + "[19/128] - loss: 5.8430e-01, best_loss: 5.8430e-01, lr: 4.0000e-03\n", + "[20/128] - loss: 6.2422e-01, best_loss: 5.8430e-01, lr: 4.0000e-03\n", + "[21/128] - loss: 9.3655e-01, best_loss: 5.8430e-01, lr: 4.0000e-03\n", + "[22/128] - loss: 7.8866e-01, best_loss: 5.8430e-01, lr: 4.0000e-03\n", + "[23/128] - loss: 8.3691e-01, best_loss: 5.8430e-01, lr: 4.0000e-03\n", + "[24/128] - loss: 8.6202e-01, best_loss: 5.8430e-01, lr: 4.0000e-03\n", + "[25/128] - loss: 7.7985e-01, best_loss: 5.8430e-01, lr: 4.0000e-03\n", + "[26/128] - loss: 7.2372e-01, best_loss: 5.8430e-01, lr: 4.0000e-03\n", + "[27/128] - loss: 5.3127e-01, best_loss: 5.3127e-01, lr: 4.0000e-03\n", + "[28/128] - loss: 5.3533e-01, best_loss: 5.3127e-01, lr: 4.0000e-03\n", + "[29/128] - loss: 5.6214e-01, best_loss: 5.3127e-01, lr: 4.0000e-03\n", + "[30/128] - loss: 4.1656e-01, best_loss: 4.1656e-01, lr: 4.0000e-03\n", + "[31/128] - loss: 5.5855e-01, best_loss: 4.1656e-01, lr: 4.0000e-03\n", + "[32/128] - loss: 5.0210e-01, best_loss: 4.1656e-01, lr: 4.0000e-03\n", + "[33/128] - loss: 3.6318e-01, best_loss: 3.6318e-01, lr: 4.0000e-03\n", + "[34/128] - loss: 5.3204e-01, best_loss: 3.6318e-01, lr: 4.0000e-03\n", + "[35/128] - loss: 4.1362e-01, best_loss: 3.6318e-01, lr: 4.0000e-03\n", + "[36/128] - loss: 3.8614e-01, best_loss: 3.6318e-01, lr: 4.0000e-03\n", + "[37/128] - loss: 4.5769e-01, best_loss: 3.6318e-01, lr: 4.0000e-03\n", + "[38/128] - loss: 2.8625e-01, best_loss: 2.8625e-01, lr: 4.0000e-03\n", + "[39/128] - loss: 2.9117e-01, best_loss: 2.8625e-01, lr: 4.0000e-03\n", + "[40/128] - loss: 3.2891e-01, best_loss: 2.8625e-01, lr: 4.0000e-03\n", + "[41/128] - loss: 4.9191e-01, best_loss: 2.8625e-01, lr: 4.0000e-03\n", + "[42/128] - loss: 2.9371e-01, best_loss: 2.8625e-01, lr: 4.0000e-03\n", + "[43/128] - loss: 2.7733e-01, best_loss: 2.7733e-01, lr: 4.0000e-03\n", + "[44/128] - loss: 4.6532e-01, best_loss: 2.7733e-01, lr: 4.0000e-03\n", + "[45/128] - loss: 3.2182e-01, best_loss: 2.7733e-01, lr: 4.0000e-03\n", + "[46/128] - loss: 2.9729e-01, best_loss: 2.7733e-01, lr: 4.0000e-03\n", + "[47/128] - loss: 2.6637e-01, best_loss: 2.6637e-01, lr: 4.0000e-03\n", + "[48/128] - loss: 3.3696e-01, best_loss: 2.6637e-01, lr: 4.0000e-03\n", + "[49/128] - loss: 4.3775e-01, best_loss: 2.6637e-01, lr: 4.0000e-03\n", + "[50/128] - loss: 2.7511e-01, best_loss: 2.6637e-01, lr: 4.0000e-03\n", + "[51/128] - loss: 2.0728e-01, best_loss: 2.0728e-01, lr: 4.0000e-03\n", + "[52/128] - loss: 1.4212e-01, best_loss: 1.4212e-01, lr: 4.0000e-03\n", + "[53/128] - loss: 1.1238e-01, best_loss: 1.1238e-01, lr: 4.0000e-03\n", + "[54/128] - loss: 7.1763e-02, best_loss: 7.1763e-02, lr: 4.0000e-03\n", + "[55/128] - loss: 6.5004e-02, best_loss: 6.5004e-02, lr: 4.0000e-03\n", + "[56/128] - loss: 7.9505e-02, best_loss: 6.5004e-02, lr: 4.0000e-03\n", + "[57/128] - loss: 8.3181e-02, best_loss: 6.5004e-02, lr: 4.0000e-03\n", + "[58/128] - loss: 6.4844e-02, best_loss: 6.4844e-02, lr: 4.0000e-03\n", + "[59/128] - loss: 5.6665e-02, best_loss: 5.6665e-02, lr: 4.0000e-03\n", + "[60/128] - loss: 5.4908e-02, best_loss: 5.4908e-02, lr: 4.0000e-03\n", + "[61/128] - loss: 4.8544e-02, best_loss: 4.8544e-02, lr: 4.0000e-03\n", + "[62/128] - loss: 5.2430e-02, best_loss: 4.8544e-02, lr: 4.0000e-03\n", + "[63/128] - loss: 4.3157e-02, best_loss: 4.3157e-02, lr: 4.0000e-03\n", + "[64/128] - loss: 4.2010e-02, best_loss: 4.2010e-02, lr: 4.0000e-03\n", + "[65/128] - loss: 4.1124e-02, best_loss: 4.1124e-02, lr: 4.0000e-03\n", + "[66/128] - loss: 4.2426e-02, best_loss: 4.1124e-02, lr: 4.0000e-03\n", + "[67/128] - loss: 5.1314e-02, best_loss: 4.1124e-02, lr: 4.0000e-03\n", + "[68/128] - loss: 5.2941e-02, best_loss: 4.1124e-02, lr: 4.0000e-03\n", + "[69/128] - loss: 5.2129e-02, best_loss: 4.1124e-02, lr: 4.0000e-03\n", + "[70/128] - loss: 5.2100e-02, best_loss: 4.1124e-02, lr: 4.0000e-03\n", + "[71/128] - loss: 5.2562e-02, best_loss: 4.1124e-02, lr: 4.0000e-03\n", + "[72/128] - loss: 5.0511e-02, best_loss: 4.1124e-02, lr: 4.0000e-03\n", + "[73/128] - loss: 5.0547e-02, best_loss: 4.1124e-02, lr: 4.0000e-03\n", + "[74/128] - loss: 4.7681e-02, best_loss: 4.1124e-02, lr: 4.0000e-03\n" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[31m---------------------------------------------------------------------------\u001b[39m", + "\u001b[31mKeyboardInterrupt\u001b[39m Traceback (most recent call last)", + "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[12]\u001b[39m\u001b[32m, line 53\u001b[39m\n\u001b[32m 50\u001b[39m best_params = copy.deepcopy(simple_nn.state_dict())\n\u001b[32m 52\u001b[39m \u001b[38;5;28;01mfor\u001b[39;00m step_idx \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(number_of_steps):\n\u001b[32m---> \u001b[39m\u001b[32m53\u001b[39m loss = \u001b[43moptimizer\u001b[49m\u001b[43m.\u001b[49m\u001b[43mstep\u001b[49m\u001b[43m(\u001b[49m\u001b[43mclosure\u001b[49m\u001b[43m)\u001b[49m.item()\n\u001b[32m 54\u001b[39m lr_scheduler.step(loss)\n\u001b[32m 55\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m loss < best_loss:\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/.local/share/hatch/env/virtual/desolver/Eduj4EGQ/dev/lib/python3.12/site-packages/torch/optim/optimizer.py:493\u001b[39m, in \u001b[36mOptimizer.profile_hook_step..wrapper\u001b[39m\u001b[34m(*args, **kwargs)\u001b[39m\n\u001b[32m 488\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[32m 489\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\n\u001b[32m 490\u001b[39m \u001b[33mf\u001b[39m\u001b[33m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mfunc\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m must return None or a tuple of (new_args, new_kwargs), but got \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mresult\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m.\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m 491\u001b[39m )\n\u001b[32m--> \u001b[39m\u001b[32m493\u001b[39m out = \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[43m*\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 494\u001b[39m \u001b[38;5;28mself\u001b[39m._optimizer_step_code()\n\u001b[32m 496\u001b[39m \u001b[38;5;66;03m# call optimizer step post hooks\u001b[39;00m\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/.local/share/hatch/env/virtual/desolver/Eduj4EGQ/dev/lib/python3.12/site-packages/torch/optim/optimizer.py:91\u001b[39m, in \u001b[36m_use_grad_for_differentiable.._use_grad\u001b[39m\u001b[34m(self, *args, **kwargs)\u001b[39m\n\u001b[32m 89\u001b[39m torch.set_grad_enabled(\u001b[38;5;28mself\u001b[39m.defaults[\u001b[33m\"\u001b[39m\u001b[33mdifferentiable\u001b[39m\u001b[33m\"\u001b[39m])\n\u001b[32m 90\u001b[39m torch._dynamo.graph_break()\n\u001b[32m---> \u001b[39m\u001b[32m91\u001b[39m ret = \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 92\u001b[39m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[32m 93\u001b[39m torch._dynamo.graph_break()\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/.local/share/hatch/env/virtual/desolver/Eduj4EGQ/dev/lib/python3.12/site-packages/torch/optim/adamw.py:220\u001b[39m, in \u001b[36mAdamW.step\u001b[39m\u001b[34m(self, closure)\u001b[39m\n\u001b[32m 218\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m closure \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[32m 219\u001b[39m \u001b[38;5;28;01mwith\u001b[39;00m torch.enable_grad():\n\u001b[32m--> \u001b[39m\u001b[32m220\u001b[39m loss = \u001b[43mclosure\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 222\u001b[39m \u001b[38;5;28;01mfor\u001b[39;00m group \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m.param_groups:\n\u001b[32m 223\u001b[39m params_with_grad: List[Tensor] = []\n", + "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[12]\u001b[39m\u001b[32m, line 46\u001b[39m, in \u001b[36mclosure\u001b[39m\u001b[34m()\u001b[39m\n\u001b[32m 44\u001b[39m loss = \u001b[32m0.025\u001b[39m * integrated_system.y[-\u001b[32m1\u001b[39m,-\u001b[32m1\u001b[39m] + \u001b[32m0.975\u001b[39m * integrated_system.y[-\u001b[32m1\u001b[39m, :\u001b[32m4\u001b[39m].square().sum()\n\u001b[32m 45\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m loss.requires_grad:\n\u001b[32m---> \u001b[39m\u001b[32m46\u001b[39m \u001b[43mloss\u001b[49m\u001b[43m.\u001b[49m\u001b[43mbackward\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 47\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m loss\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/.local/share/hatch/env/virtual/desolver/Eduj4EGQ/dev/lib/python3.12/site-packages/torch/_tensor.py:626\u001b[39m, in \u001b[36mTensor.backward\u001b[39m\u001b[34m(self, gradient, retain_graph, create_graph, inputs)\u001b[39m\n\u001b[32m 616\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m has_torch_function_unary(\u001b[38;5;28mself\u001b[39m):\n\u001b[32m 617\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m handle_torch_function(\n\u001b[32m 618\u001b[39m Tensor.backward,\n\u001b[32m 619\u001b[39m (\u001b[38;5;28mself\u001b[39m,),\n\u001b[32m (...)\u001b[39m\u001b[32m 624\u001b[39m inputs=inputs,\n\u001b[32m 625\u001b[39m )\n\u001b[32m--> \u001b[39m\u001b[32m626\u001b[39m \u001b[43mtorch\u001b[49m\u001b[43m.\u001b[49m\u001b[43mautograd\u001b[49m\u001b[43m.\u001b[49m\u001b[43mbackward\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 627\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgradient\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mretain_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcreate_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m=\u001b[49m\u001b[43minputs\u001b[49m\n\u001b[32m 628\u001b[39m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/.local/share/hatch/env/virtual/desolver/Eduj4EGQ/dev/lib/python3.12/site-packages/torch/autograd/__init__.py:347\u001b[39m, in \u001b[36mbackward\u001b[39m\u001b[34m(tensors, grad_tensors, retain_graph, create_graph, grad_variables, inputs)\u001b[39m\n\u001b[32m 342\u001b[39m retain_graph = create_graph\n\u001b[32m 344\u001b[39m \u001b[38;5;66;03m# The reason we repeat the same comment below is that\u001b[39;00m\n\u001b[32m 345\u001b[39m \u001b[38;5;66;03m# some Python versions print out the first line of a multi-line function\u001b[39;00m\n\u001b[32m 346\u001b[39m \u001b[38;5;66;03m# calls in the traceback and some print out the last line\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m347\u001b[39m \u001b[43m_engine_run_backward\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 348\u001b[39m \u001b[43m \u001b[49m\u001b[43mtensors\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 349\u001b[39m \u001b[43m \u001b[49m\u001b[43mgrad_tensors_\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 350\u001b[39m \u001b[43m \u001b[49m\u001b[43mretain_graph\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 351\u001b[39m \u001b[43m \u001b[49m\u001b[43mcreate_graph\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 352\u001b[39m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 353\u001b[39m \u001b[43m \u001b[49m\u001b[43mallow_unreachable\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[32m 354\u001b[39m \u001b[43m \u001b[49m\u001b[43maccumulate_grad\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[32m 355\u001b[39m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/.local/share/hatch/env/virtual/desolver/Eduj4EGQ/dev/lib/python3.12/site-packages/torch/autograd/graph.py:823\u001b[39m, in \u001b[36m_engine_run_backward\u001b[39m\u001b[34m(t_outputs, *args, **kwargs)\u001b[39m\n\u001b[32m 821\u001b[39m unregister_hooks = _register_logging_hooks_on_whole_graph(t_outputs)\n\u001b[32m 822\u001b[39m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[32m--> \u001b[39m\u001b[32m823\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mVariable\u001b[49m\u001b[43m.\u001b[49m\u001b[43m_execution_engine\u001b[49m\u001b[43m.\u001b[49m\u001b[43mrun_backward\u001b[49m\u001b[43m(\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# Calls into the C++ engine to run the backward pass\u001b[39;49;00m\n\u001b[32m 824\u001b[39m \u001b[43m \u001b[49m\u001b[43mt_outputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\n\u001b[32m 825\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;66;03m# Calls into the C++ engine to run the backward pass\u001b[39;00m\n\u001b[32m 826\u001b[39m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[32m 827\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m attach_logging_hooks:\n", + "\u001b[31mKeyboardInterrupt\u001b[39m: " ] } ], "source": [ - "state_dim = y_init.shape[0]\n", + "y_init_nn = y_init.detach().clone().to('cuda' if torch.cuda.is_available() else 'cpu', torch.float32)\n", + "y_init_nn = torch.cat([\n", + " y_init_nn,\n", + " torch.zeros_like(y_init_nn[...,:1])\n", + "], dim=-1)\n", + "\n", + "state_dim = y_init_nn.shape[0] + 2\n", "hidden_dim = 32\n", - "output_dim = 1\n", + "output_dim = 2\n", "\n", "simple_nn = torch.nn.Sequential(\n", " torch.nn.Linear(state_dim, hidden_dim),\n", - " torch.nn.GELU(),\n", + " torch.nn.PReLU(),\n", " torch.nn.Linear(hidden_dim, hidden_dim),\n", - " torch.nn.GELU(),\n", + " torch.nn.PReLU(),\n", + " torch.nn.Linear(hidden_dim, hidden_dim),\n", + " torch.nn.PReLU(),\n", + " torch.nn.Linear(hidden_dim, hidden_dim),\n", + " torch.nn.PReLU(),\n", " torch.nn.Linear(hidden_dim, output_dim),\n", + " torch.nn.Softmax(dim=-1)\n", ").to('cuda' if torch.cuda.is_available() else 'cpu')\n", "\n", + "def weights_init(m):\n", + " if isinstance(m, torch.nn.Linear):\n", + " torch.nn.init.xavier_uniform_(m.weight, gain=0.25)\n", + " if hasattr(m, \"bias\"):\n", + " torch.nn.init.constant_(m.bias, 0.1)\n", + " elif isinstance(m, torch.nn.PReLU):\n", + " torch.nn.init.uniform_(m.weight)\n", + " \n", + "simple_nn.apply(weights_init)\n", "\n", - "optimizer = torch.optim.AdamW(simple_nn.parameters(), lr=4e-3, weight_decay=1e-2)\n", - "number_of_steps = 512\n", - "\n", - "y_init = y_init.to('cuda' if torch.cuda.is_available() else 'cpu', torch.float32)\n", + "params = dict(simple_nn.named_parameters())\n", + "optimizer = torch.optim.AdamW(params.values(), lr=4e-3, weight_decay=1e-4)\n", + "lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=32)\n", + "number_of_steps = 128\n", "\n", "def closure():\n", " optimizer.zero_grad()\n", - " integrated_system = de.solve_ivp(nn_rhs, t_span=(t0, tf), y0=y_init, method='RK87', args=(constants['k'], constants['m'], simple_nn))\n", + " integrated_system = torch_solve_ivp(loss_augmented_nn_rhs, t_span=(t0, 4*T), y0=y_init_nn, method='RK87', args=(constants['k'], constants['m'], simple_nn), kwargs=params)\n", " # The loss is the integrated error over the timespan.\n", " # This penalises the network for taking more time to dampen the system\n", - " loss = torch.sum((integrated_system.t[1:] * integrated_system.y[0,1:].square()) * torch.diff(integrated_system.t))\n", - " loss = 0.1*loss + 0.9*integrated_system.y[-1,0].square()\n", + " loss = 0.025 * integrated_system.y[-1,-1] + 0.975 * integrated_system.y[-1, :4].square().sum()\n", " if loss.requires_grad:\n", " loss.backward()\n", " return loss\n", @@ -936,34 +559,35 @@ "\n", "for step_idx in range(number_of_steps):\n", " loss = optimizer.step(closure).item()\n", + " lr_scheduler.step(loss)\n", " if loss < best_loss:\n", " best_loss = loss\n", " best_params = copy.deepcopy(simple_nn.state_dict())\n", - " print(f\"[{step_idx+1}/{number_of_steps}] - loss: {loss:.4e}, best_loss: {best_loss:.4e}\")" + " print(f\"[{step_idx+1}/{number_of_steps}] - loss: {loss:.4e}, best_loss: {best_loss:.4e}, lr: {optimizer.param_groups[0]['lr']:.4e}\")" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ "simple_nn.load_state_dict(best_params)\n", "\n", "with torch.no_grad():\n", - " a_nn = de.OdeSystem(nn_rhs, y0=y_init, dense_output=True, t=(t0, tf), rtol=1e-7, atol=1e-7, constants={**constants, \"nn_controller\": simple_nn})\n", + " a_nn = de.OdeSystem(loss_augmented_nn_rhs, y0=y_init_nn, dense_output=True, t=(t0, tf), constants={**constants, \"nn_controller\": simple_nn})\n", " a_nn.method = \"RK87\"\n", " a_nn.integrate()" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB3kAAAGGCAYAAAB2cjuyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/XmcZVV1No4/59yxqrqqR3qChmZQBIFuRO20xghJQzO8in4Toya+vBIh35CQhHQStRMFh0Q0omh+8kqCEtDk6xBDNBFkSGurSAsyNDQIyND0PE9VdavqDuec3x/n7nPOrbrDPufstfep7vV8Pv2BunXr1qq99t5n7/WsZy3L8zwPDAaDwWAwGAwGg8FgMBgMBoPBYDAYDAaDwZgWsE0bwGAwGAwGg8FgMBgMBoPBYDAYDAaDwWAwGAx5MMnLYDAYDAaDwWAwGAwGg8FgMBgMBoPBYDAY0whM8jIYDAaDwWAwGAwGg8FgMBgMBoPBYDAYDMY0ApO8DAaDwWAwGAwGg8FgMBgMBoPBYDAYDAaDMY3AJC+DwWAwGAwGg8FgMBgMBoPBYDAYDAaDwWBMIzDJy2AwGAwGg8FgMBgMBoPBYDAYDAaDwWAwGNMITPIyGAwGg8FgMBgMBoPBYDAYDAaDwWAwGAzGNAKTvAwGg8FgMBgMBoPBYDAYDAaDwWAwGAwGgzGNwCQvg8FgMBgMBoPBYDAYDAaDwWAwGAwGg8FgTCMwyctgMBgMBoPBYDAYDAaDwWAwGAwGg8FgMBjTCEzyMhgMBoPBYDAYDAaDwWAwGAwGg8FgMBgMxjQCk7wMBoPBYDAYjGMWo6OjsG0bN998s2lTGAwGg8FgMBgMBoPBYDAYDGkwyctgMBgMBoPBOGbx9NNPw/M8nHXWWdp+5+joKG644QZcfPHFmDNnDizLwh133CH989VqFR/60IewePFi9PX1YcWKFXjggQfoDNaItGMDHN3jw2AwGAwGg8FgMBgMBoMhwCQvg8FgMBgMBuOYxaZNmwAAZ599trbfuX//fnziE5/As88+i2XLlsX++fe///34/Oc/j9///d/HF7/4ReRyOVx66aV48MEHCazVi7RjAxzd48NgMBgMBoPBYDAYDAaDIZA3bQCDwWAwGAwGg2EKmzZtwrx587Bw4UJtv3PRokXYtWsXFi5ciEcffRRveMMbpH/2kUcewTe/+U189rOfxV/91V8BAK644gqcddZZ+OAHP4iHHnqIymwtSDM2wNE/PgwGg8FgMBgMBoPBYDAYAqzkZTAYDAaDwWAcs9i0aRNe+9rXtrx22223oVgs4rrrroPjOMp/Z6lUSkwqf+c730Eul8Mf/uEfBq+Vy2V84AMfwIYNG7Bt27ZYn3fhhRdi5cqV2LBhA84//3wMDAzgtNNOwz333AMAuOeee/Brv/ZrGBgYwPLly/HYY48lslsWacYGUD8+DAaDwWAwGAwGg8FgMBhZBSt5GQwGg8FgMBjHLDZt2oT3vve9AIBGo4HrrrsO//zP/4xbbrkFV199dct76/U6jhw5IvW5c+bMgW2rz6d84okn8OpXvxpDQ0Mtr7/xjW8EAGzcuBFLliyR/rynnnoKc+fOxbvf/W584AMfwDvf+U586lOfwu/93u/hM5/5DD772c/i6quvxuWXX45PfepT+IM/+AM8+eSTbT/raBwfBoPBYDAYDAaDwWAwGIysgkleBoPBYDAYDMYxiV27duHAgQM466yzcPDgQbzrXe/Cxo0bcf/99+P888+f8v6f/exnuOCCC6Q+e/PmzVi6dKlag+HbvGjRoimvi9d27twp/Vl79+7F3r17YVkWnnjiieAzbNvGn/3Zn+ELX/gCHn/88YAw3b9/P26++WZUq1WUSqUpn3e0jQ+DwWAwGAwGg8FgMBgMRpbBJC+DwWAwGAwG45jEU089BQCwLAtveMMbUCwW8fDDD+O0005r+/5ly5bhgQcekPpsqh6/4+PjbQnWcrkcfF8W4u//2Mc+1kKMzpgxAwDw2c9+tkURO3PmTNi23VGBe7SND4PBYDAYDAaDwWAwGAxGlsEkL4PBYDAYDAbjmMSmTZsAANdeey1e//rX45577sGsWbM6vn/27NlYtWqVJuvao6+vD9VqdcrrExMTwfdlIf7+t7/97S2vP//88+jr68OFF17Y8vqvfvUrnHrqqSgUCm0/72gbHwaDwWAwGAwGg8FgMBiMLINJXgaDwWAwGAzGMYlNmzbhpJNOwqmnnoqnn34ao6OjXUneWq2GgwcPSn32cccdh1wup8jSEIsWLcKOHTumvL5r1y4AwOLFi6U/66mnnsKiRYum/MyTTz6Js846a4oi9sknn8Q555zT8fOOtvFhMBgMBoPBYDAYDAaDwcgymORlMBgMBoPBYByT2LRpE5YvX47bbrsNr3/96/HOd74TP/3pT4PSvpPx0EMPGe85u3z5cvzoRz/C8PBwSynlhx9+OPi+LJ566iksW7ZsyutPPvkkLrvsspbX6vU6nn/+efzu7/5ux8872saHwWAwGAwGg8FgMBgMBiPLYJKXwWAwGAwGg3HMwXEcPPvss7jssstw3HHH4a677sKv//qv45prrsG//Mu/tP0Z3T1nx8bGsHXrVsybNw/z5s0DAPzO7/wObrrpJvzzP/8z/uqv/goAUK1W8S//8i9YsWIFlixZIvXZjuPgl7/85ZSSzPv378euXbumkL/PPvss6vV6VyXv0TQ+DAaDwWAwGAwGg8FgMBhZB5O8DAaDwWAwGIxjDi+88AImJiZw9tlnAwDOO+88fPnLX8aVV16J8847D9dee+2Un1HZc/ZLX/oSDh8+jJ07dwIA/vu//xvbt28HAPzpn/4pZs6ciUceeQQXXHABbrjhBnzsYx8DAKxYsQLvete7sHbtWuzduxennXYa7rzzTrzyyiv46le/OuX3WJaFt771rVi/fn3bv38ymfvkk08CwJTXn3rqKQDoSvKqGh+ZsQGgZHwYDAaDwWAwGAwGg8FgMKYrmORlMBgMBoPBYBxz2LRpEwDgrLPOCl57//vfj1/84hdYs2YNzjnnHPzGb/wG2e+/6aabsGXLluDru+66C3fddRcA4H3ve19AZLbD1772NXz0ox/F17/+dRw6dAjnnHMOvv/970+xd3R0FIDfp3YyxN8/mbTtROZu2rQJQ0NDJCWWJyPN2ADy48NgMBgMBoPBYDAYDAaDMZ1heZ7nmTaCwWAwGAwGg8FgqMU999yD//W//heefPLJQLHMYDAYDAaDwWAwGAwGg8E4OmCbNoDBYDAYDAaDwWCox49+9CO85z3vYYKXwWAwGAwGg8FgMBgMBuMoBCt5GQwGg8FgMBgMBoPBYDAYDAaDwWAwGAwGYxqBlbwMBoPBYDAYDAaDwWAwGAwGg8FgMBgMBoMxjTCtSN6f/OQneNvb3obFixfDsix897vf7fkz69evx+te9zqUSiWcdtppuOOOO6a855ZbbsHSpUtRLpexYsUKPPLII+qNZzAYDAaDwWAwGAwGg8FgMBgMBoPBYDAYDAWYViRvpVLBsmXLcMstt0i9f/PmzbjssstwwQUXYOPGjbjuuutw1VVX4b777gve861vfQtr1qzBDTfcgMcffxzLli3D6tWrsXfvXqo/g8FgMBgMBoPBYDAYDAaDwWAwGAwGg8FgMBJj2vbktSwL//mf/4l3vOMdHd/zoQ99CHfffTeefvrp4LX3vOc9OHz4MO69914AwIoVK/CGN7wBX/rSlwAArutiyZIl+NM//VN8+MMfJv0bGAwGg8FgMBgMBoPBYDAYDAaDwWAwGAwGIy7ypg2gxIYNG7Bq1aqW11avXo3rrrsOAFCr1fDYY49h7dq1wfdt28aqVauwYcOGjp9brVZRrVaDr13XxcGDBzF37lxYlqX2j2AwGAwGg8FgMBgMBoPBYDAYjGMMnudhZGQEixcvhm1Pq4KUjIzAdV3s3LkTg4ODHLdnMBjTAnGffUc1ybt7924sWLCg5bUFCxZgeHgY4+PjOHToEBzHafue5557ruPn3njjjfj4xz9OYjODwWAwGAwGg8FgMBgMBoPBYDB8bNu2DSeccIJpMxjTEDt37sSSJUtMm8FgMBixIfvsO6pJXiqsXbsWa9asCb4+cuQITjzxRDy56WksPdHMQ+Pffv4KbvzB8wCAv7n0Nfi9FScZsWP/SBUXfG49PA9YvmQW/vWqFUbsAICr7vwFfv7yQQDAfde9BcfP7jdix3ce3YaP/fcvAQDXrXoVrnrLKUbsOFSp4Tc/92PUHRevXjADd/3xm43YAQDX/Ouj+OkLBwAA3/uTN+HU+YNG7PjeEzvwt9/1y7n/4VtOwZ+tepUROw5WaviNf/hR8PXTH19txA4A+JN/eww//tV+AMC/XfVGLFsy24gd331iBz7S9M3lyxfj7995thE7dh8Zx6rP/yT4etPHLjKS+em4Hq6+81E88oq/p912xeux8tS52u0AgNsffBmff+AFAMDFr12Am353uRE7ntp+GL9328Ph1zdcBNvW75vxmoN3/dNDeGX/GADgC+9ZjlVnLOjxUzT42H89g+88th0AsOqM+fjCe841YsfdT+3Eh/5jU/D1ox9ZhXIhp92Og5UafuvzP0a94QIAPvXOs/D25cdrtwMA/t+vP4qfveg/937j1fPwf3//PCN23PX4dlz/vWcAAHnbwo8/eAFm9hW02zE8Ucevf/qHcJtNYz55+WvxzteZCdpFn3smffPfT+7A2rv8596Mcg4/+LPfwOyBonY7ag0Xr/vkA8HX/3zFeXjTqfO02wEAf/aNx/HD5/YBAK5881L85UWnG7Hjh8/txZ994wkAwBmLBvGvV61AKa9/T3NdD+d8/P7g6+/+yZtwmqEz9F99eyPufWYPAOCj/+sMvPsNJxqx4+GXD+ADdz4KAPj1V83Fl3//PGMKnbNuuC/4//V/dT7mDZaM2HH9d5/GXU/sAADc+P+chbctM/Pc27T9MN7bPKedf/px+NLvvc6IHQBw6Rd/gq0Hx1Eu2PifNW/FrH79eysAfGndC7j1Jy8DMHsmeWnfCC7/0kMAgLe8ai6+/L7XG7EDAH77yw/h+d0jKOQs/PAvzzfy3AOArz74Mm5u3m9ueNuZeNfrzcT1dh0ex4U3+3fPFSfPwVff/wYjdgDA//7Kw3hi22FYFvDDv3wrjhssG7HjG49swSfvehw7vvx+DA6aeeYxpj/E3Nm2bRuGhoY6vq9er+P+++/HRRddhEJB/x0pDdh2M2DbzeBYsH14eBhLliyRfvYd1STvwoULsWfPnpbX9uzZg6GhIfT19SGXyyGXy7V9z8KFCzt+bqlUQqk09dK244UncM5Zr1VjfEz8bOs47JJPYj66cwJ/1OWhRYn/fnYLrGI/LADP7K/DKvZhsKx/se0bqeLRnRPBmDyzv4EzTjIzJve9MBzYsWlvreuBghLfeWoznHwZdh546YgLFPswZMA3Ww+M4aFt4Xx9/qCDc0/TPyae5+EbG/cHdjx3sGHMN/+84fnADgBwcmUjF9wnth7CT7eMBba8MuzhLQbGpO64+NKDOwI79ozbxnzzd/dvbvFN1Sph/pD+C+4Pn9uDR3eFe9q2UQ+rDYyJ43r4pw27Q99MmPPNXU+/3OKbI04eJ80a0G7HY8/txdYRBLbsrMDImHieh/sjz5vthuwAgE37trT45lA9j9Pn6g/KPLPvAJxcGXaTi9k1bhkbkxcPu8GYbB0x55tto+FcdQHsr9pYskC/LZuPHAaK/RBFh7YYHJOtkTF57oBjzI5dY7sCO8Y8YMcYcNIi/bb8as9Iy/r98eZRXHyumQTFXWN2YMt3njqAj/22mRJ7Oyp7W86tm/bW8Juv0Z/Ms/XAWItv/u3x/fjc75ohifZUc4EtX/zJDlx5/pnI5/SX0NwyEp7lH9o6jqf21vCWVx2n3Y69wxMtvrnj0T34xOVnabcDAHaOWYEtt27Yhfe8+TXIGUiCe/nIwcCOn7xSwY4KcIaBPe1QpYbtFX9MagC+/9xh/PH5p2m3AwCeOVAPxuQ/nj6I9/3GGUbseP65w4EdG7aNY8wrYuFM/febI+N1vHjYgV3qhwPgJ1sq+N+/Ziap6Mk9tWBMfvjyCD7wm4ZiR786Etjx+O4qGrky5hiICwxP1PH0/nC+PrpzAu9+w3ztdgDAzyOxIy6zy0gKMXeGhoZ6krz9/f0YGhqalsQR264fbLsZHEu2yz77jupmBitXrsS6detaXnvggQewcuVKAECxWMR5553X8h7XdbFu3brgPXFQeeHBdAYnxPBEHT9/+UDw9YaXDqDWVK3oxr1P7w7+33E9PLL5oCE7dgXqEAAt46MTOw6P4+HIGDz6yiE4UcM04j8e3x78v+cBj285ZMSO/3xiB7zIEDy+1YwdL+wdxS93DQdfP7ntMFxDvrn3md0tXz+144gRO37SVDIJbDJkx7aDY9g7EvY9f2bnEWO+eWbncNevdeGFPaMtX0fnrk7sGZ7AeN0Jvv7VnlFje9rWA2MtXz+/e8SMHQdb7fjVJF/pwqGxOkarjeDrzfsraDhmzgKTffPSPjNjsvVgpdWOvZUO76TFaLWBfZE9bfuhMVQbTpefoMMr+1vH4JUDZsbk5f2tc8KUHdWGg22RNbx/tIpKZB3pxOR1Mnkd6cKLeyfZcdCMHXXHbZknlZqDQ2N1I7ZMfr6Y8s1zu1uf/abWjeN6eD5iy2i1gT2RPU4nfpmRc9rTO1vPzI8Zumc5rodnIrZsOziOzfvNzJMnt7eOyX2T7ju6sHH74Zavv9tUOeuG43rYuDW05Ymth42dj37xSjg/XQ+464ntXd5Nh8e2HGyJC/zn42bsqDsufhGJ2Wx46UDLuU0nfvZieB93XA//88s9Xd5Nh4dePNByx3vgl3uN2DFRd/DQS2ZieQwGg8FgTCdMK5J3dHQUGzduxMaNGwEAmzdvxsaNG7F161YAfhnlK664Inj/H/3RH+Hll1/GBz/4QTz33HP4v//3/+Lb3/42/uIv/iJ4z5o1a3DbbbfhzjvvxLPPPotrrrkGlUoFV155ZWz75hx6wkiw+8EX9qPhejjluAHMm1FCpeYYuVhWGw42NA9gv3bKHAAIShPqhjgIvqlZznSDoYOhuMiddfwQZpTyGKk28KwBcsYPxvgBKuEbU8GHzc2A3RtP9u14PHLZ1QkRoHvNwkGUCzZGqo0pQWcd8DwPOw6NAwCWLZkFAHhq22HtdgDAzsO+HWcd72c2PrXdDMm78/AEAOCUeQMo5W1Uag62GAoy72iOyekLfBWiKXJV2PGq+TMAAM/tMkNobm/O1eNn9aGUtzFed4wRANsO+b/3lON89e4Le80EygRBdPI8s3YIP8wfLKGvkEPd8Yytmy1NcnXpXD/rfjJppAuvNPf5k5p2mNjjAWBLk4iZ3V/AYCkP1zNHEolg/4lz/DHZvM9M8F/8XmGHKbJqy4ExuB4wWMpjdn8heM0ERLBfzFdT61ckFYn1a2qP33JgDHXHQ38xh/nNsrfbDNnyqz3+M1c8b7Y1n4W68VzzLH9a8yyw/ZAp31QwUXdRLtg4YXYfAARnWd0Q57LXLBw0asczO3w7hFJVnKl1Y/P+UVRqDvoKOZzanK+7jpix5akmuSruN6bGRNzHX3eib8e2g+PwPP0xm1/tGUGl5mCgmMNrF/vzxNQz+LEtPqG58hQ/VmIqUVIkw4uYzZPbjxiJp23acQSVmoOZfQWcsWgIrgcjYgXP8/CzZtxK+ObHv9qn3Q4A+MkL/u9d0YzZPPjiPiNCkg0vH0C14WLBkJny9wwGg8FgTBdMK5L30Ucfxbnnnotzz/V7zK1Zswbnnnsurr/+egDArl27AsIXAE4++WTcfffdeOCBB7Bs2TJ87nOfw1e+8hWsXh32u3z3u9+Nm266Cddffz2WL1+OjRs34t5778WCBfFLcL3WexF7Duk/IIvA2PIls7CiSeA9OSljVQf2DlfRcD0U8zZ+v9kT+NEtZpS8u474JNG7Xn8C8raFHYfHA5JEJ3YP+3acNHcAr1/q9zY1cWE4MOr7xraAy85ZDMBXFZuA8M2lZ/kl0V/cO4ojBpQZu5q+OWF2P845fhYAP6NaN46M1wNl5OrX+vuOifULADubQaDVZ/q+eWHvKCbq+tVmIgi0ZE4/XtMMlj1tQFVcqTZwuDk3L2r6ZrJiRBcEubrqTN+OF/eOom5ApSkCyifN7cerm8T387v1j0m14WDPsJ9hL/rfmlby/uZr/BJmL+0zo24WdiydO4BT5/uBXRPkat1xg0SNCyJjYgKCXL3gdN+OVw6MGfGN6Ne8dN4ATm4G3V82oKxqOO6U+brZEKEp/n5hx7aDY0aU5y835+Ypxw3gpLm+b7YYIJwbjhsQ8GJMjCl5m2MiyhHvPDxh5HnzQpNYfdX8GQHxbYJwrjsuXm4SMeJ5Y4pcFc+53zrDnyN7hqtGqgI820w0O33hEJbM9n2z47D+MZmoO8Fz7sLm+cjEfQ8IlbwXNe04NFbHWE1/VQBRhefMxUM4oembXc1nsk6MVhtB0pu434g7oG5sbCbPXnLWIgDAeN3B8Lh+34jqVcuWzMLxs/zkCHEf1Yl9I1W8cmAMlgVceo4/JqZ8I9Sz71h+PGzLT0w/MKpfQSvsWHHyHKPJEdsOjmPfSBXFvI33rvD7nJva0zY1k72vfPNSFPM2Juou9hiYr79qPvfOO2m29t/NoMNPfvITvO1tb8PixYthWRa++93vdn3/+vXrYVnWlH+7d5upEMFgMBhZxLQiec8//3x4njfl3x133AEAuOOOO7B+/fopP/PEE0+gWq3ipZdewvvf//4pn3vttddiy5YtqFarePjhh7FixYpE9vVZdRzas7X3GxVjbzPQvXCojBOaFwbxmlY7RvxD34KhUqBo2m3owiAOoCfPm4ElTZXIdgOBIWHHwqEyzj5+JgAzSiJBNh83WMLrmwdkU4pEYctrj58ZBO0mlzjTgV3NC9PiWWUsb2Z2bzSgoBVkyJyBYpApO7m8mT5b/DF53UmzMW9GEY7rGVGe7wh804ezmpnuJuaIGI/Bch4rTvazqY0peZsk74qT52CwlEfNcY0QZ4JsPmF2H05vqmaeM0CuivHoL+aCdSOUVrohFF0rT5mLcsFGreEaIYmEwm3JnH68ar7vGxMk745D43BcD+WCjV9rqhBMKXmFInPlqXNRzPu+MaHyEsl4J88dCM5HLxtQ7+w4PI6G66GUt4OqHpPLN+uC+Pvf1PRN3fGMBJlfatpx6nEzAuWqCQXttkPjqDut62bLQTO+EeTqm06di1LehuN6RkgiUfr+tPmDAZG4zQC5uuVABTXHxUAxhzcu9dfNtoOmlLz+GWTlKXPRV/Cbje804BtxNjxj4WCg5N1uYExe3DuKhuthVn8hIABMqUWfbip5V546F4OlfNMW/b7ZtN234+zjZ2JxMy5ggiR6escReB6weGYZy06YBcCMbzzPC5JnV5wyJ+htutMAgScSVs89cRYWNfvf7jZgh9hHTp43EFQqMkHeAWHC17IlszBvhq/U3G3AFnG/ec3CQSwY8n2z10C5ZkEsHz+rL6h0steQb/ZEEuKFilbE+3RC+EH4hXF0oFKpYNmyZbjlllti/dzzzz+PXbt2Bf/mzzfTJ5rBYDCyiGlF8k4HjBzYqf13isPW/MESjhs0dwATqqoFg+XAjv2jVe2qGdf1gsPgwqEyjmteGPYZyAoVJPfCoXBMTPR32RWxQ1wqj4zXtWf/e57XYosI2pm4WAa+mVkOMnZNBB/EZW7RzDJOX+gTmvtGqi29NXXA87wgGHX8rD6cudhPSjChjhR+OH5WGa9t2vGsgfLEOw6HF+0zFvlBkFcOVLT3a/Q8L7DlhNn9eE3TFhMlm3ccitixUCh59dshgjFLZvcHZPNL+/Srmz3PCxKIls7rD0pomijZLFR/J84J7TBBrgqC7MQ5/UF58Zf3VbT31fY8LyB5Tz1uAKc0yVUTyRGCSD1p7gBOmeePyWYDCV8imLp07gBOPU7YUdFettLzvEC1eur8GThJlI42QDi/lBEl70vNtXrKvBlYGtgxpt03jusF8+TVCwaDREkTCtoX9o407QgTNk2Qq8/v9n3z6oWDOLGZCGBCyTtRd4IS9K9ZOGS0TLIgic5YNITjZ5sjEkV1lTMXmR2P4Yl68PefuTgcExP3CpHwdubiISxu3vlMKBLFfn76wsHg7rnryIT2PW2s5gRVeU49bgYWDgly1dzdc8nsfiyIjIluiFjE4pl9wXiY8E21Efpm/mAJC2ea842InR03WDI6R0QM67gZpQixWtV+hnZcD/ubsbP5gyXMH/THZI8BIYmIE82bUdT+uxl0uOSSS/B3f/d3eOc73xnr5+bPn4+FCxcG/2ybKQ0Gg8EQ4B1RMcYO6S8XEZCrESLRROahOIAtGCpj7kARlgW4HnCwUtNqx/6KTyzbln8YNEmuikzUBTMjZLNB3yycWcbMvgIKOQsAcGBUr28OjdWDXi7zh0rBYX2/AQJeXKoXz+wLMof3ax4PANjZtGPRzD7MKOUDZYbuUlXRstELZ5axsHmxPKB5/QKtSl4RtDORxRwleefOKGFmXwGepz9od2S8HpD+J8zuw2lNlebLJpS8zXKMUSWvCUJTqLlOmN2H42f1YaDo96DVrUo8PFbHSOCbUEH7ggFVsSBhTpzbZ5TkDeyYM4AT5/SjkLMwXne0lyQ8UKlhtNqAZfm+Eb00TZC8gmxeOq8/KNdsgtAU6+PkeQNYMqcfluWX1NT97NszXMV43UHOtnDinH6z5GpEySuqi4jy2johSiSfOn9GoN4ZmWjgyLjedhbbDo6h1nBRyts4fnaoJDJC8jaVvK9qIXn12/F8cz9/9fxQtTpswDeb91fguB5m9hWwYKgUKmgNEM5Cif+q+TOCsrMmSN7tzd958ryBQLU6UtXvG3FGndlXwFC5YFRBK+5Ui2aWAztMKIrFPea4wRIWzfTtGKvpL5MsxqOvkMNAKY/Fs8yRq+JZO29GKaLkNUfyzptRxPzmfa/WcAPCVRdEHKKQs5r7miASzY3JcYOlYEyM2jFUwrwZJVgW0HA9HBzTe047UKnC9QDL8quNBYSzgTERcU1BNDOObSxfvhyLFi3ChRdeiJ/97GemzWEwGIxMIW/agKMNjSMmSN6mkneoHBBo+w0SmvOHSsjnbMwdKGL/aA17RyYColUHRKnqeTN8O0ySvNFyzbbPqxohEqOKYsuyMHeghN3DE9g/Wg0CADogMsnnzSiilM8ZJVeFLQtnllFuEqsmyGZRpksEHeYNFrHt4Dj2j9aCwLcOiEDUvBlFlAs5zA18o39MdkZI3sFyvmmHAbK5qQYRioy5M4o4Ml7HgUoNr9Joh1CtCt+IPc0EAb89ouSdM1AAYGZvFWoun6iysGROP57bPYJdRybwqmbpOS12NIPrxw2WUC7kArWoCUJka0RBO6vfT6AxkQiw9YBQrfYjn7OxdO4AXtg7ihf3jgZkgA4IYnXRULnpm6aq2AC5uvlAqKDNNQ8DJknepfMGUC7ksHhmH3YcHscrBypaz2mibYWfBGDj5HlCyat33XieF+nJOyNIpjGxfoWS97TjZqCvmMP8wRL2jlSx5cBYsJ51YHMkEUCQ8IDZPe3keTMwUPTPsSbKNYtz2olz+9FfzGPuQBEHKjVsOziGmc1WLDognrWLZvpnedFvdbsB5er+CIGH5v3GhIJWEIlzZ5TQX8xjzkARBys17Dw8jpl9BW12iDPq3GbyqjjTm1DyBrYMlILnjYnSxFFCs6+Yw+z+Ag6N1bHzyDhm9uv0jZgjvm8WGlQ3C1vmDZYw0CzpbYLkja7fciEXrJtdRyYwe0Df8yYkm0uwbStU0JogVyNj0nB81awJkjeq5C3kbMwdKGH/aBW7j0wEcRMtdjTjaXMH/HhaoOQ1cOfbFxkTxrGLRYsW4dZbb8XrX/96VKtVfOUrX8H555+Phx9+GK973eva/ky1WkW1Gs7Z4WG/+ke9Xke93jmpRXyv23uyCrbdDNh2MzgWbI/7tzHJqxjuyF6tv8/zvEh2Wwm1ZqlKE0revRFFMQAcN1jG/tGadgJAXJZCO8yQvJ7ntZCrHrzADs/zYFmWNlvC0sR+gP24QZ/kNeUbccGeJ8p6G/BNVMkrqrwcGK1p943ocyey3OcOlJokr94xmWqHf8nXrfZ2XS9QNx8/qw/FvO+cgxW/VJVt6/NNlGwGgHkDJby8r6J9TKKKYiAsV6W7SoLjesGYnDC7L0iOODJeR91xUcjpKw6yPaLkBRD0WNM9JoJsFkSISI7QbUet4QYByyVz+oOKAJWag4m6E/hKBwS5KlSRx8/uwwt7R7UHy7YcCEskR+3RrQSsVBvBs3bp3AHkmpU09o/WMDJRx2BZX7B7c9M3IhnhlOMGsOPwODbvq+ANzV6jOhAom5s+MaXkHZ5oYGSi0bShPyjFv/PIOKoNB6W8vnUjAqeCHDppbr9P8h4cw7Ils7TZIQLd4gxtSkE7XnOC6iJ+gpP/fBE9v3MazwJiPxfPmRPm9ONApYbth8ZxlkaSd4odhpS8dcfFcHPdzJ1RCp4v2w+Paz+niTGZFyFXD1Zq2HFoHGcsGtJmhzgXzhsoNe0wo+R1XQ8HK6FKc6Ak+jaPa7/f7I8Q8IB/vzg0VseuI3p9s28kJJuFHYB+Ja/neeE8mVEMiERRJlmnb6LkKuDHKQ5WatgzPIEzF+vzTUuyCBAp16w/LhASiWW4niB59cdshB1CTbxwpk/y+uWk9ScVzW/6xqS6WaiH5w0xyXss4/TTT8fpp58efP2mN70JL730Em6++WZ8/etfb/szN954Iz7+8Y9Pef3+++9Hf39/z9/5wAMPJDfYMNh2M2DbzeBotn1sLN49j0lexciN79P6+46Mt5a/Ff8/Wm1grNZAf1Gfi8Nyzf4B7LjBEp7dpZ9c3TPSgeQ1UP62GvGN6E08XndQqTmYUdLnm91BuWZ/LEyVSQ778QqyyoxvDo2FvlkwswTRgqjWDFzpzP7fOVnJO8MMuTrVDqEW1eubA5Uaag0XlhWuYcAv/X54vB4EN3VgMrkqfrfuMYmqZ1vt0DtH9o5MoO54yNsWFgyVYQGwm2X5D43VtJbR2paRMRFKsyWGyeadh8fhekC5YAeZ7sWcjZrj4mClprViQ1RRDABzmirEQ4Z8ExLwvh26yxGKxIjBcj5QL/UXcxirOThYqWklefcOtyZaiXKRohedLhwI+rz5v1/4SDchIubkQDGHciGHUt7GjFIeo9UGth8aD/oW67RFzNMT5wzgF68cCpTx2u0YEHaYUfKK0pTFnO+TgWI+2NN2HRkP9n4dEM+V2c29bMnsPjy57bB2cvXAFJLXjJJXzBHbAmb1FTBYzsO2/GSj/ZWq1rOAOCuLMTl+Vh+e3jGsfS8R50Kxfo8PyiTrtePweB2idefsgSJmNi84E3W/FK9OlWaU0AT8+8Uvdw1rLx19oNJKaC4ypOQdHm8EyfhRReZ43dF+94yqrAH/TPDLXcPaie/JCk1T5ZpHqw1M1Ju+GSzCbpK6JnwTKIrFmAyW8TSGtffCFedCQe4uaO7ruuN6o9UGKjU/4YuVvIzJeOMb34gHH3yw4/fXrl2LNWvWBF8PDw9jyZIluOiiizA01DmhpV6v44EHHsCFF16IQkHf+lcBtt0M2HYzOBZsFxUIZMEkr2IUqwe1/j5x4JvdX0Apn0MxZ6OvkMN43cHe4SqWzjNA8jYPgfMN9Qfec2Qq2QyESmNdEMTq7P5CkOUuArv7Rqp6Sd4O5KruEri7g/6zZlXWk8tGA8BgKY+RagP7R6taL3O7Ij15fZvMlEneOVnJKxIBRvSTVYC/fwgV78y+gl8mebSql+RtU64Z0E/AT7YjIDQ1zxERSF48qy9QUc3u98tWHqzoJXm3H2yv5NVNJIogv1C7mSR5AT+wLBQHswcK2DNc1U7y7g1KivY17WiOieZ+YsIH4jkjCJpDmu041CSV50b2rtn9RYzVxnForI6T5uq0pZUQCcdEL/Etft+sZsn3YP1q943/+0Q5ZMuyMG9GEaPVBg5Wajj1OH22HJxEJIYEvN59XqzT2ZPUorpJs4Ojwo4CLMuCZfnPwM37K9h+SC/Je3ASAS9+t251s1Bozp2i5NXrG3F3mN1fhG1bsOEnfu06MoEdh8b1krzBmPj7/PGzzCSM7J9ENpvqhSvuDrP6C0F1lXkz/PZJOw6PayV5g9LEUxS0mn0zIs4CYm81o+QV5N1gOR/EBUQJ691HJjSTvB0UtJrJ1XaKYpN2zCjlA4GEuHvuHdbrG5GMd1ygoDVDfE9W8poi4MV4zCjlgxLnDIbAxo0bsWjRoo7fL5VKKJWmJgcUCgUpQkj2fVkE224GbLsZHM22x/279NVWPEbQX9dL8gZZds0LtWVZQcad7sCQIFHnGy6TvDvSBxcIs/50q0Unl40GwjHRSeB5nhdR8pomVyeVaw4UxXoDu6I0sbADiJKaen2zaxLxHRKJukneVtWqCJjpVq1OLpEMRHyjcZ40HDdYN+GYmFHy7jg8NskOMyWBQ9+E6yYgNTX7RiiaxLoxpeSdTCSaInlDIjG8yAqySKctruvhsCCJ+icReIbGZFbTjtmGFMWTiUTAJ6502+J5Hg5VWsdklqkxEYrE5u8X9hwaq8MTpTV02DGJ9PZtMTtPhC3RMdFqxyS1qPjv4bEaXFefbw4G4xHuaccZKoc/uUyyeAbqVlaFdrSWBN4zMoF6UyGo0w5xNgPC84l+BW2rWvR4Q0kJByaVJha+2XVkXOu6CUokR/a00BbdCtrWebKouW52GSK+pyh5D09ofd7sn6TQBMI2SrqJ747kqm47ppDNzZLAphTFg6FvhFhAN+G8f1KlkwVBmWTdSt5WO+Ybt4NVvEcbRkdHsXHjRmzcuBEAsHnzZmzcuBFbt24F4Ktwr7jiiuD9X/jCF/C9730PL774Ip5++mlcd911+OEPf4g/+ZM/MWE+g8FgZBJM8irGTOcQGhov2nsCYjU8+IQKWn2H0kq1gZFmLzNxGJ1viEjcM6k3sLDjwGg1KJmsx46pRGJAOGsck5FqA2PNMjfiEmeqTPLuYf/yGCh5g4CdXt/sGm5VrQLR8sT6gofR0sQh8W1GZS0CDIsmlY0+WKlp9c3OSK9kgXkGSM0DlRpcD8jZVjBPTfVbFcrhyUTi4fG6Vt+EZTzD540JcvXIeEh6iOz6uQG5qndPE6V/hR1iPIYnGlqD7oIgEuWAo7boVEeOVBtBqciZk8jVgxW9ZFVINjdVq83xEH2K9dsR+saEqnis5gSlIkMCTxCJZgjNwDfN/9YabtCHVQfEnJzdorL2x0RnWe+JuhOc02ZPUlkfNqSAF79f7G2uh+Ccr8cOfy8XcxQI9xSd87XWcIO+zeI5I8Yk+izSgaA08QwxR3w7PA8Y1mjLgcA34boR91CdlU7qjhusU2GLuF/oJokm9wZeMFiCbQF1x9Oa2CvGf26ESBRjorN0dMNxg3Uq7jXiXL9TM5E4uVyzuG+N1x0Mj+vb0yaTzUDom90a52vDcYMkmqlKXr1n6MnkqojdjFQbqGh83kwukRy1RSepGU1inTwme7UraFtjjKJS35HxutYz9N42BDzj6MCjjz6Kc889F+eeey4AYM2aNTj33HNx/fXXAwB27doVEL4AUKvV8Jd/+Zc4++yz8da3vhVPPvkk/ud//ge/9Vu/ZcR+BoPByCKY5FWMedYRrcHuvZP6zwJmVJriANZfzAVliOcb6t0RlI2OKLysZt9IneTM7iP+373QsG/ExXFmXwF9Rb881LyMKHmjvtEZtNt1uJVsBsyUSRa+mTejFJRVm2uoXPO+SRm7ImDmenqDzJP7EkZt0amgjZJ3drM0sbBDNwF/eHyyIrEAy/IDuzrXjbAjSiTOjSQD6LZjsJxHvrlu5hhSN08mq2b2FdCcLlp9I8iGFiLRgKpY7BX9xVxQCt84kdj8/UPlfFBmXCeBFxCJUSWvAZW1GI9i3m/rAURUq5rVogfHWsnV/qLfbgTQPCaVbBDw4nflbQuDzTP0LANkMzBVtVou5IL5csTAupnTUp1A/5gI3+RsC0PlVgX8Yc0kb6Cgbfomn7MxWM5rt+Vgm4SvmX36e54L39hW6BOxbkwR8GJM8jnbyP56oAtZpfNecXCsBs/zfSP2VHH3060EFOWaxXm1XMgF+5tOwllUipo3GJ4FFgb9gfUReAcroW/EOJhS8k4uGz1YLmCgGavQqaBtr+TVX574QNM3OdsKfBMoeTWKN4Awxij2kqG+PErNNkpaY4zDojewvjYADD04//zz4XnelH933HEHAOCOO+7A+vXrg/d/8IMfxIsvvojx8XEcOHAAP/rRj3DBBReYMZ7BYDAyCiZ5FWOONYq9h0e1/b4gyy5yKBUkjc5yzQGxOlQO+gEeZ0BR3GpLeNEWARGt5OrwVAJ+ngElb9iPd6qiWDuROEllnc/ZweVfa/Ch0ppdDoSXbp3lmtsRM0IFoLvs7JFJRKLvm4J2Ww6PN0ub9k0lEnWSq4KsameHbiJR+Eaoh/I5O7BLp2pGBG+jY2JCySvsmN2m/K0p34h1k7OtILBrgqyKlgQWzz2dZWcPtfONsZLAwjdhv1UTBN7hduWaDZBV4bophH2bDalFJ6ubLcsyQmpOTtIAzBDfgXp2oBj4ZpaBuer/vlZlpG+L/kSNQMkbOR+JMdFJ4B0YDeeqSPgSz8AjhlTW7Xyjc90cGO1shxnfFIMEHnFO0k3A7xe9gSMJimKe6NxfJ5dIBswoz6NzRPjG1POmnYJ2noHzvLjDRO1YEMRsNBKao0KJXwp8Y0JRDEwtGw2ESfo61fjtSN6FBkheEdebG1k3Iq5nrExyM54WbQmndUyadixgJS+DwWAwGD3BJK9COM3hPLRvl7bfuacNkRiQqxoPg8KOVrJZP6FZbThBgEpcnAAz5YknZ6dG/18noSmCctEL/3EGCM2G4wal/qIkUdCXd0S/6m1mlMAbEHPErB0mFMWu64VkVQupqd+WI83SaUNt7NDZp7itanVAvx2e5wXqqShJZELdPJnQ9O3QPyZHRCJAG9/oJnlD4nuqb0yom2e1USTqJeCn+iYYD2NE4lRyVS/x3UYtamBMJpfhBUKVtakep61lks0paNuTZjqTNJrEapu5qlM9C0SJxKnkql616FQl70wDpFk7YnW2ISXvgUlKXiB89ojnolY72hCJhzXa0a43cDQRQGe/1QMBgRfaMmSAXN0/SVEMRNeNTjsEWTXVjuGJhlbf7GtD8pogvtsRmuJ5o7ds9NS5Gm01orMNTDtyNYgfabxXtFXyztRP8u4bFarV9kp8XS3hPM+b0pMXCGNrOgnnUMnLJC+DwWAwGL3AJK9CjFpD/n8P6iN5ux2OdWaFBsrINoRmpeZo66siLmuW1UqczTfQz2S4TdDdRLlmYYcoMwcAx83wx2N4oqGtr4roaQa0EngmSM225OqgCbKqHdkclrzT1dNztBb20RxqY4tOtWhIJIbBh0DdbJiAF4HEw+N1bRft8XrYR3NWm6QEneRMmAgwVS2qV7U61Tcm+hRP1J2gf2hLL1wDSt5uZLNe1WobsnkgDLrrWje1houK6HFqmFwViWez2hGaRsjmqYTI8ERDm2/qTtjjtNUWoRY1o6AVMKGyPjiptDgQ+makqq+/d8NxIxVGzCoS2/XkNTJH2qwbsd+P1RxUG3rO0PWIb0wreYVvWslm/UkJ+wNF4lSyudZwMVHXt6eFvjFLJIo7TFaUvO3scFwPo5riAtWGEzxvjjNM8rZTFA/15bXb0S52FL37jUzosaVSbQTntKgt0WQAXWjX99XEWUAINKJzdW6ztZXfokePLcPjDdQa/v7ZEmMc0h9jbEc2MxgMBoPBaA8meRVirDgbANAY3q3td7ZTVoVqUX3BGJGBGg26D5TyQV8VXaWjhR2DpXxQVg0ID8s6s0KPtCVX9dshLklR3wz15YP+d7pUXmI8+ou5oP8sYIbkHW5eYMXlGgCOC0oCG5gjEd/M7i8GPT11kUQiKFfK2yg3e+8BoW+0Et/NgGo7lbVWQrNNaeLZ/fov2iK4UMhZ6C+GvjHSC1f4po1KU29J76mJACIY42nsIS3Wr9+rMdxL5hgokzy5/C1gpifvoTalicUa8jx9gUyhJrOs1mfwHAPkqvBNi0rTIAHfQiRG9jdtvhlrn4wXJGoYUNDOblMSWKuiuI1adGaf33sd0BdkPhTxTcv+OmCglHbbnrzNhBGdhGYb0mywlA/OabrWjZiPk31jQqUZqpunKhJ1qptDIjG0Y6CYQ77pHG2+qUR6A/dNTUrQSq4G7WjMkrztCM1ywQ7unrpsEXOkkLNa7nziXDBsZEyy4ZsokVjI2cEdQ5ctwo6+Qi6IFwFmfNOW+C7rJ5v3tSE0bdvCYMmfu7oIeBGnGiznW+ICove6TuV5u2oaDAaDwWAw2oNJXoWYKPgkr1XZp+13BmRVJIgZZEBqPBy3swMIA5m6gnYheddqh4mSwCNtyNV5BpS8IZEYXm4tywoCVrpsEb6ZOcU35sakfZlks2pR27aCwJkuwrmdHYCZXrjdFLT7DZQmjtqRs8OentoI+IgdolcjEF52tfYp7qI810vAT+2XnM/ZgV26bBFB9cm+mW2Q+M6KojhKmkV9o4s4i/ommvAVEt86+75OHZOwbLQB1WqEIMrn7CBBQZdvDkXWby7im4Bc1Tkm7Qj4oG+kWd/4ySOCADDrGxHY1Ul8i1YE7ZISTJQEjgaYbdsKyRlN8yQ6R1p9kxWVpv5+yUEVqYhvLCv0ja55sn80JL1tw74JyiS3Ua3qJTSnzhHLsrSXsI6WjY6e00yW0p7XRrVqpGz0pB6n4fNGr2/mDRZbfGNivornzbyBqepmnXaElV9a7+O652unmI2IJQ1rIpuB9vE0BoPBYDAY7cEkr0LUS3MAAPb4AW2/s52CNjiUajyAtSMSAWCweWEY0ZQF2a40sW+XsEMj8d1Wpak/4364B4F3UBNx1olInNfsD6xVZT021RYz/Wc7Ed96CbyOc0T0WzXc99VEuWYRHJzZ35o5HChXNc2Tw23mKhAlV/Wvm5Z+qyYUxW3mCBApL66N5J1KNkftMKPknaq+00lohmPSft3osuVQG9LM/1ov2QxE+xSb7T/bbo4AUVXxseub2W3K35ruDdxqi2YicaC9b7QqeZu/q6Wnp4FyzeJ5Mqd/sm/09uU9ONp9jphQi85tUyZZ5xw5EJT0biWrxDzRRcAHBNGMVt8YGZPRNr4xMEfaKXkBYKbm8sRRIrHVDr1j4nleWwVtqBbVnxwxd6D9mOhSaYaVNFrtMBHHahtPaybA6SR5RzqIJnSrijvG0wyorMU8GCzne7yTwWAwGAwGk7wK4ZX9nrx2dVjL76s13KAfYPQQJv5/tNqAq6k3YefDoN6Mv06kmbBDF9nsuB5Gmv2GomU8xfiM1x1tPdbalQSO2qJrTNqVrwbCy52uC4Mb9U0btehYzdHWp7gzyau3THJWlLyu63XoU+yPx5HxetAjiBpH2lz4fVv0EolCwTWrA9msi1z1PC8kVzv0fdXVC7cT8a17TATRMHMS2Rz2fdUXPGzXC1esm0NjNXieHt8camMHEJJEun0z2Q7dfYqjvokqEqN2mPbNLM0lrA+1IVaBqIJW3/MmVFlPLaV9eKyuzTftlLyAAd90JDQFWaXHDsf1IgT81FLaRzT6phMBr5vAO9ChZKV4HuvyTa/ewEfG9e1p7RTFQMQ3mksCd7JDF5E4UXeCXrftlLyHx/WtmwNtShNHbdF15zvYpux71A5dvqk2XFSb95foMzg6HrpiNiMdqp7p7g88Uu0eO9JlR90J42lRIjEQCFQb2u43nSrSBQpaXb6ZEHGSVmJVNwHvRvp3Tx4TBoPBYDAYU8Ekr0JYJZ/kzdX0kLxRVeqMyKFUHFA9Dxitacr463AoHQwy/nTZkY1DadQ30TGJ+mlUVzZmh5I7g5ozVMUcmDpHRCKAnvEYmWhAxDiiYzKjmA/632kjvjuQVbqz7nspI3UFmEdrDbhtfDMzUjpSX7nXDirNQFVsmoAXiQCafBMJcsxqKTvrj4fOXrjtevIC+kleQcBPJmZ0q6xHqw00mr6J2iL85Lietv31UAe1qG5ytaNqVXMJ65EOvhH/X3c8VGp6koo6+Ua3grZd+WpAv2p1ZKLTnub/f81xMabZN5MJPN0K2o5EombV6pHxenAWaF03oW/GNSXjiWfsnEmKRN3Ed0f1neZeuGKu2pN6A4vxqDuePt90GJNZmgk8odA0TSQK3+RtqyXBWNjhuPqeN+HZ1SzxHSaht8YFtNvRvItbFjBQnEokujpjNs37+GRl5EztsZIOdvTrjR1F7/yDbRLzAX0xm4BcnTQmuhXfoXq2g3hDl2+qYcyGlbwMBoPBYPQGk7wKYffNBADk66Nafp8I2g6W8i39mcqFHIp537XaCbzJh9I+oaDVfZlrTyTqVq32F3Mo5MJlVsjZ6CvkjNhiuvRPJ7JKd0lvYUe5YKOUzwWv27aFGUW98zUryvNOam/tvmkGskt5G+VCq290l83qVMJ6jmaVZqDQNKwoPtzBNwUDvXCPBGSVWSVvJ9/o7vvayTflQg4DxVzTFr09pKcqec2orE0reQ9XwudN1Dd9xRzKBf9soFtBO5nAmxOUjtZcErgDAa+NNGv+noFirtU3kTO0rnki9orJ6mbdPWgPdVSLmikbPVTOt5yh+wo5FJtf6yK+O5GruonEzkpevYkAnXoDm/DNoQ7lxXX3SxbnxclnAd2K4ihpFu1xGvWNNpVmB7JKN7kajkl73+hWRs4o5Vv6NhuJ2fQoCazfN2YJTXHn7y/mkI88b4r5MGajm1zt1HZMm2giiOt1sENzXG9yzIbBYDAYDEZ7MMmrELk+X8lbcka0/L52PV8FdJfi7VhexlDmYUdFsbZDafvDMRApuaOZSDRO4HXs26w5EaCDsrnVlqwQ32bJZt2+6WQHEKrgdSUldFI3C9/oyuoWdkwuCTykOUDVibwDosSZWeV5Vso161bydvPNbO1j0r28uC5Cs5OSN1CL6uoN3MGO6GvaFLSVHuWadausJ6tWB/QSiZ3mqmVZ2omzzmWSNRPwHXwTlknWrFqdpJ61LCvSl1evLR1LaWteN51U1rqImU4VaCzLCs4lutZN2Ban/Z6mr+xsk8CbRFYJO/QRie3Vd1Hf6CK+A1Kzw5jo8s1oUBK4g1pUu0Jz6jnNHPHdoeqZdpV1ewJen9q7d8xGuy2TK9IZIr5N29GJ9GYwGAwGg9EeTPIqRHFgFgCg3Kho+X1hKZWp5Ut09+7o1ZNXG9ncoY+mKdK7PZFohnCemVFy1Zhqtc2FwRTxPXlMZpT8MRF9aEzZYYr0bkdWDZb0Et+d+r4K35i2I9p7XQcC3/RNJat07yXhmLQn8PQR36Kkd3aJRO3qZqFI7NinWHPfV8NK3oMdiETAhLq5R7lmTXYEqtWs9J8dMEvAe54XIVfbK+B1qZs7kc2zNZfSDgn4qWeBWRrJKs/zgrPrZFt09+TtRMzoLhstzhzt7p6BLZqU5yMd7sEB2azNju7lb02Td74t/mu6xiScJ+0TFE2PiX7VaueYjf550qEUr/YS1t3niP7kiDbxtLIpWyaPiea4Xgc7ZgZ2mC0tzmAwGAwGoz2Y5FWI8ozZAIB+T1O55g49ToEokUh/CHNdL8hi7qRI1E82dyY0PdHcgxCdVKuttujxTWd1c7ZUq6PVhlbfdFfy0s/XqG869ks2TTY37RitNeC6Zn0T2KKB1GzxzWQFrUY7gM5lAMV4jNUcNByX3I7DHVSrgN6kBMftHHSfIRIBNPlGjMlkYkbsaTXHRbVB3/+uUyJA9DUdz+C64wZjP5nU1N1bNCilPdmOJqE3VnMwoaFv5OEOZLNvi74xqTacoL/sVAWtZiV+hzERhOZItYG6hj3tYIdSr0CUOKMfk/G6g1rD/3s7Kc91rZtOz+BQ9VYP+hhTYrRD8B+IEN8a9rRqw0Xd8f/eqYpEU6V4J6lWI8SMjnNaJ4Vm1BZdz5uJur9uphDfwZjoOQt0mq9R8k7H/SZaEngydJ4FHNfrmAwwU7NvepVr1u2b9kSiPgLP80LfdCqlrU/d3J5cjdqhwzed4iSttuhKKupQJllzi62Obdgilcb0rJvOvmEwGAwGgzEVTPIqRHnGLADADG9MS/CwWwmTIY1k1WitAXHOm5pNrVnJ26lsdPPruuMFQQFSO7qoRXVmhUZ90/nCoJeA70RoOq4XBKEpIUfy0s/XkWrEN4ZLaXfyjZgjngdUavS2dCOrdCq+RyZC33QivnX5RqguJpNV0SBepaqBrGraYXzdTNR7+kZbKe0eam9Ak2+6KHkHNSYlRNUfHZN5NPtm8pgMlvIQ7fB0PIMPdVCtAuGa1qHkFeORi/Q3F9CuFu2gbp7ZV4BoI6mD1Ox2FtA5JmJN2JbfEzCKWZpLE3ciZkS1As/TdHYVdrQjqzSOSXTfHCi2J3l1lb8VZWcnE3ji/Oh6ehKcRgLftFFZa0xKiD5LBkrtSSJde9pI0zeT56sYjyjpSWpHl+QInWrR6N9qWt3cqeqZsMNxPVQ03D07KTSjtuhQR1ZqDtwgZtM+iVW/krc9kajLN53sAPT2wh2vO0ESVafqBLrV3p168roetPqGyzUzGAwGgyEHJnkVom/QV/IOWRUtxNlwF7WozlI34neU8jbKhdYAVVaIxIFiLgjs6iC+s0IkiuBTW9/oJuA7EN99hRxyTedoGZOuvtE3X7utG1O9cCcrI0t5G4WcCd+0I6v0kUTCjr5CDqX8JN8YUotOnq/FvI1S3m7aQj9PAmVkO5V1KVTjU0OoDWeU8ijkWo8wg5rLnHciq3K2hYEmWaNjvoaqVbMqaxFQHyrngz19sh261k2ncs2WZQWEgJYx6VKCXmfJ9bBNQR6W1eob3WrRoDfhpLOrT0DrI2dEAkY71ZvO/sBBP89SO98IslmvbyarNIt5O9jTdChXRyNjMhk6+yWL/XugmJuypwniW3f528m+KRdyKBf8Z6EOwnm0wxwBomWS9c2RvkJuyllAd+uGTirNciGHYvOcpmO+hsRMu1La+nrhCjv8c2rrGdpcCevWZ3C5YKPYnDd6xqRbKW19YyLWRCFnBfvGZDt0lyaenOhcLoR3T51xrHYEvE7iWxDJOduakvClU+0NRMjVSee0Uj5cNzp9w0peBoPBYDDkwCSvQtjlIQDADIxjWMNlTkbJq6Osi1TZaF29Oyba22JZVhAs0kLgdSkvo1OlKWeH5jKAbYLuOknNI10uDFoJ+IwkAgCdiUTfN/rma9dyzRp74XZTrc7QTMB3K5NsYr627ZescUwE+ZMF34R9ijvbouN5c6hDaWIgUsJaI9ncrvxtWG5dr2/a7vMaSd5upeZmlPwgXsWwwkvsrTrsiP6edgRekHymwRYxF9sH3fWRq91LE5tR8rYlVzX2KRb7ZtuSwP36CJFupYlnGkqOaKdu1kk4iz2tPQGvb910myMzNZLNQIT47lImWaeC1jSR2G2umiISJ4+JZVmhOlLLfO2tFtVLNhemJBXp74XbfkwsyzIyX9slRwRjouEsH03S6OgbzaKJyTFGf90YiKdxT14Gg8FgMKTAJK9KNEnenOWhMnqY/Nd16pfhv6aPwOt2AAvVopoDu+2Ib429ZroFmHWOSZaIRBlb9CQl9FbymiY0hzSXNpUhV3WQM0eC0sRm54gMoanLN5168vq26FMCHu6gWgUic0QHkdjFNzpVq0DnksC6bZHrZa0zUNaFWNW0broFu3WW9e4W/NfZQ1oQq5PLmkZf07VuRroQiaIkrhbfdLFDzBsdxHc3O3SfBaRIIp1q0W5ks4Yy50EZ3jZ72iyN4wF0TwbQSXx36uep3Y4upJlOO4Aogdd5nuggzrolJQQqax3rNyNkM9BLQauPrJIp16xTZd3NN7qIxE4lgaOv6Vw37ZW8GivjdZkjQ5pFE3Jjok9I0s4OBoPBYDAYU8Ekr0rky6jDPzSPDx8k/3XdVJo6e4h0K6USlr+lt8PzvK4lrLUqaCUIeK0lvdvYoXM8PM8L5kBbcjVQm2VFyWuWgNepWnVdr4fiWz+52p2s0qdIbK8C1Ldu6o4bECLdyFXT8zVYNzoIzS59m3UmrtQdF+N1p+X3RjFDIzkT9Gpst89rJFdHAiIxN+V7OonEaH/39uSqvvkqepm3tUMn2dylx2m0b7MnGl4TwfO8rkpeneTqSBciMSi3rqEXfTdiRqybSs2B69L7JiRXzT6Du5FE4rmsY5+XIZtHqg00HJfcliA5opty1XC55pBc1aEo7rynRZWR1OvGt6U3caZDVdyNJDJDJHa3g/p549si5knnWElWyjXrIZvlFMU6fBMSeN0UtDqrnnXzjQ472pdIBsLKEdqUvF3GZFBnS7gudjAYDAaDwZgKJnlVwrIwZg8AACZGD5H/uk6lVIAoMaORNOtSNnq02oBDfNEerztoNH9He3Wkvn4mMqSZTrK5GyGiwzeVmhP8jm7z1byCNht2BIHuyLhRYaTagLjLmybOZPol6yQ026tnm4k8dYc8sBvdq9onauj3TduysxrJqpEuwX8RxKs2XNQatL6JklBdyVUtKk2n5XdGoZOY6UbeCTvqjodqw6G1I0LMdVOu6iQS29khyjXrJM26EfCuB0zUadfNeN2BeKR1IzV1qpvbkrwakyO6KXmjr1WICedqww3O0N32NC3q5i5ERFDmXAMB37UiQNQ3Vdo9rdpwgmda+zLn+siqbqpVrWSzBOntefR7Sa3hotr0jWnlard1Y6Rccxc7HNdDpUa7bnol45kgvrtVGtOzfpsEfBvSW4xH3fHIzwJR35gek25JCYJc1NkvuW1CQnP+1houJur060YkSnZvCadTrMBKXgaDwWAwZDDtSN5bbrkFS5cuRblcxooVK/DII490fO/5558Py7Km/LvsssuC97z//e+f8v2LL744sX0T9gwAQE0Hydsl429Ip2q1Qx9coPXATB0sE4Rm3rbQV5gayMxaKV7TxEz0wkvtG2FHMWejXJi67ehVWUsQiVpKE/e2A9Cxbnw7ygUbpfzUdSMUPVpK8XbrP2ug/G03QlOHLeLz+4s55HNT102o5NVHJM5oQxLptaNb2dnclPdRQfimmLdR6OYbrQReZyLCNMkryvAC9HuJsKOQs1DKt3veZGNMgr1VI2k2o02grL+Qg2j/Rv3sE3bYFtqe03T2B+5GEmkt19ylx2m5YCNnW01baAO7Yjwsy58Tk6FTjR+W9J46X4OS3oZLaRfzNorNvZ9a8R3dM7slA+hZN53nq869daQLWVXK54L9hTqxN/q3tu3Jq7F3c7fqBDp74XbrP1suhOuGmjhrWTfdFLSGiW8RF9Daf7ZN7GigmAueN8eSb6Sqrxn3TR5N15CTqyM9fKOzd/NIlxgjg8FgMBiMqZhWJO+3vvUtrFmzBjfccAMef/xxLFu2DKtXr8bevXvbvv+uu+7Crl27gn9PP/00crkc3vWud7W87+KLL2553ze+8Y3ENlbzgwCA+tiRxJ8hi27ZbUMa+8yEpFn7IIgg9ahtiapnLRGxjCArmYc6Vdbid7QjEkv5XBAAp7blyFh2fJOVPsXdiMRi3tbnmy7jAUTVzWZ7ven0TTdiphBJVKC2JSR525epMqHSHGhjS1ZIs3zODgK7ugj4dnYAZkrxtlNpmiix2o5sztlWWAKX2JZoIkC7542Z5IhslGtul6Rh25a2Xrgjkr4xXq5ZZ3JEl9LilqVv3QSJAMU8bHuqb0IFPC3Z3GJLFwWtlsoRXeYIEO65upKKoiSMCTuitrTzTb9GAr5b+WpA3xoW87Cv0D4ZL+irrSF5VCTptLt7mlCttkvSsCwrVGkSE98jEd+0S8bTOSbDXZS8ZsjmDr7RdB8Xn9/JNzrjAt3WTVg22my5ddu2whZoxK3YxPrtL3byjYFS2h32eQaDwWAwGK2YViTv5z//eVx99dW48sorceaZZ+LWW29Ff38/br/99rbvnzNnDhYuXBj8e+CBB9Df3z+F5C2VSi3vmz17dmIbGwVfyeuOayB5u/Xk1Zh52O3iAkT78uohqzodBMM+XjqIxM7ZmCYUxb18Q21Lr54qOnvhdu0NrLGP5kiX9dtii2GyygS52o4k0umbbkSi/7qeddNNPQtEgodaicQuvjFMJAJhwJfeN52JVSCqoKXf07r2ONVZdrYHIaLLN0GJ5E7JEToVtF2ICJ3lmnvvaXoIPGFHu9LiUTt0KuC7Eok6yeYOZ1ddtnQbD98OMV81luI1XG49LNfc/pymi0jsNUdCO+gJ+EBZ1WXd6EzSaKeM9G3RQ3yHxEyvRAB9yRHdyovrmCPd7AD0JaL38k3WSlgfISbvgN5joqtMcq/1q7WEdZeYjYk50ilmo6t0dKhs7m6Hzhhjp2cwg8FgMBiMVkwbkrdWq+Gxxx7DqlWrgtds28aqVauwYcMGqc/46le/ive85z0YGBhoeX39+vWYP38+Tj/9dFxzzTU4cOBA18+pVqsYHh5u+SfgFH0lrzdxWPIvS45uhzC95W+7l1IJe+ESX7R7KBK19sLtoqAVh2MthGZGVJq9eqronK/dFCKhylqnwqsTgaeXrOpM8upLjgjVKp0DVDp8I4Jg/T18o1OR2A6hItEskWiiXHPH+appTMQc6UQkBupm0z09daqsa3JEIv266dyDz7fDgOqtbZnzgjY7upW/BSIEvKZyzb3IKh1jIrOnmS5/C4RjRW1LL9VqmByhgSTq0gtXa9looUjsQcDrUvJ29E1R43yd6LyXmFB7d0oY0aUq7kVWaVU3d1FpmiDgOyVdC1vGiMuc904EyIZvdFZf69Z/FtCnKu4mVGi1Q98+39Y3mtSz/u/onhA/pEk00TMRQJMdQDju7aoFMhgMBoPBmIppQ/Lu378fjuNgwYIFLa8vWLAAu3fv7vnzjzzyCJ5++mlcddVVLa9ffPHF+NrXvoZ169bhM5/5DH784x/jkksugeN0vqDeeOONmDlzZvBvyZIlwffc0kwAgDUxEufPi41aw8V43bexbU/eyIXB8zxSW2SVvOREYo8Lgy5180TdQa3hdrRlUGOZm17Z/7pITRH873Rh0EXA1xouao7vmxldys7qJDR7leKlJ6sk7SAOgjQcFxN13zft1aLZIDQB/b7pqVol9o3rekFJ0W59X/X4RpCrHRS0mgn4XsFDat94npcZAj4gvnuRvORlzuvd7dBEwHueFyFnOvf31qFa7aU810XOjPTa0zTNkVbfmCUSe6netJWd7Vn+VmNyRBfCOSCrag75/aYXkagrKaEbQRS1g7o3cNSWdvMkmCO1BrlvepFVuqoThOumlx1mfSOSFsfrDhzXrG/6gxL0xM+bHnboWr+e50Vs6byn1Rou6s07KhV6EfC67uM9lbya+hR7nte1h7SIp41HYjtUGO6xz+uKY/WqNDakiYB33XDddIoxMhgMBoPBaMW0IXnT4qtf/SrOPvtsvPGNb2x5/T3veQ/e/va34+yzz8Y73vEOfP/738cvfvELrF+/vuNnrV27FkeOHAn+bdu2LfieVRoCANg12nLN0WB6uyCIOAzVHS8gTqjQM/OwTw+p2evCoOviEr0sdutfWWu4mKgTl0asdQ+o6iLgRZClvwMxo8uOaNZ4O5XmYDMQX2245Je5sR6qN13zdawLeafVjshaaEdECDt0+CZYN71UmpqIRONzJOKbtiWBNfqmF/GtyzeyBDw1WTVedyDitW2TIzTuaaNBH74eY0Lum15kc/N5Q2xHteEGwfS2/ZKL4Vmg2iAmInqdjzSVF5dNoKEO/lcbLuqO1/I729lRdzx630iW0taVHNG7pDf1unHCZLwuRKLjeqhqet6YLpMsfNMrqUinb7qRVZ4Xni2pIJ2UQK4W7d4qaCCSlEAJWd8A2VHQjhlWWYs5Qj1Xo8+bdrZEk2zHyIlvOeU59boRsaOOSRplPWrvaNJDt8p4AH2MotdeoqtMclgpsBMBr0d5Xqk1gvtNJ8KZwWAwGAxGK6YNyTtv3jzkcjns2bOn5fU9e/Zg4cKFXX+2Uqngm9/8Jj7wgQ/0/D2nnHIK5s2bhxdffLHje0qlEoaGhlr+Cdj9vpI3X6NV8grCdKCYQz431Y39xRxytgXAvNpMlwKvW6lX3w495WUEodlXCH0QxYxiHlbzZeM9PYPS0WbLzupSFIs5UszbKLRZN9FgkbZyrx3Lzuoi4DuXEwV0JgL4dhRyFkr5dqVNw3HKTplkagV8NpSRYjxsCygX2qybiH3UQWbZ3qKm9zTdfTQtq30STZRcpPdN83ljuDRiz76vmgj46Bxsdy5p9Y0eQqTTfB0o6VFWdSvD69uhh2yOzsG2vilG9zQ9QfeeJYGJg929emoL31AnR4z2WjdFfWeBXiWsBzWRq7K+0WUH0N43fYUcxLWHnlyV20vMlznXo4CPPm/aVSoq5e3gTmp6T9PXy7q7CnBAUyltEXewrPbrppi3UWzeSanV+L3GRFfCSC9FsajWQ95Tu0lo5myr7Rk6Z1vBvYc6GaAn8a2pZUKvPriheENP3+ZizkYpP21C1gwGg8FgGMW0eWIWi0Wcd955WLduXfCa67pYt24dVq5c2fVn//3f/x3VahXve9/7ev6e7du348CBA1i0aFEiO3N9PslbbIwm+nlZVHpkMFuWFVx8qUvdiENvpwuurn4mYz1IM22EZqCebU+a2balrbypsKVTKV5tRKIgq3ooI7WpVjsoinO2FXyP3JYgKaETuaopoCrKNffscaqHmOk0V/M5G32FJhGhLTmilwJeF6HZqTewuPDrU61a1tTElRbfmFbQlvSMSeAb42pvJ7Cjk29EgOpY8U1oR4e9VRNpVons8XabhK/oujHe01P4RhPx3fEsoKnEatQ37ZLxogFfegWtHIFHTohIqqx1zdVOvrEj5zRt66aHEtC0b3QlaUQJzXa+sSwrWNvaiETDynPZxBWdZHO7541lRfY0TfO1c7lmodI0q1oVvtGlnu3kGyCsLqVP3dy9lLau9dtrjlAr4KNltNudoYHwvKIrcaVTZbxQeU6dlCCrxNeXLNLJNwwGg8FgMFoxbUheAFizZg1uu+023HnnnXj22WdxzTXXoFKp4MorrwQAXHHFFVi7du2Un/vqV7+Kd7zjHZg7d27L66Ojo/jrv/5r/PznP8crr7yCdevW4fLLL8dpp52G1atXJ7Ix1z8bAFB2aUnesR6kGdDat4oSYbDMfFkXoEtgV1Mvk7EeJZKBCPFNTiT2IquyoXrTpRbtRUK02pKVMTGrjNRX/rb7XI3aQr2X9CKJQkWiHnVzp71VV2/gXnMkaou+fb7HfKUmqyTXry6Vdbc9LShPrI2s6p64oo8069G/UpcdHQJl0e/p8k2vdhbayjUbV3j1Xjfae+GaLtcsqyjWRVZ1WTeBqljTuulZitcwMaOb0Ox2FtCmKu5BJOoqpd1L9davSS3areerQEDOaFKLdiaJNKmbpStH6FKtdi45q01VPN7LN3rnSKe9VVdJ716EJhDd0/SQmh2V55qT4HomAlAnSvaI6zEYDAaDwZiKzieaDOLd73439u3bh+uvvx67d+/G8uXLce+992LBggUAgK1bt8K2W3nr559/Hg8++CDuv//+KZ+Xy+Xw1FNP4c4778Thw4exePFiXHTRRfjkJz+JUqmUyMZCs1xzv1tJ9POyCBSaXQ4+4sJAfUAOe3q2tyXIlNVENndUrWpTRor+s73JKl3kTK9euNTETEB8d7BjSFOgO1B79/DN7mHzhLO2OdJTZa2HIBrrQaz6tuSxd6SqUY3fPXFFV4A5KyWBuyZHlPLYN1I1rrLWViWhB6EZ2KGNrOq+bvaPVjX2kO5ORJDP14ls+EZm3cwQ68ZwCfqgf6Wucs0Z2dO6EYmDmnyTFXK1l29CEsJsj2Lxvb0jVY3qyIzsaRkhm7utm35d6uYeRKI2tbekopi8R3EMskofqdneFt3Ed8eEr6IeZaQMAa+rP7BsT159yREd7NC0j/RKCgSi6mazd09d87VXzCaML9LOEZmYDYPBYDAYjFZMu6fmtddei2uvvbbt99avXz/ltdNPPx2e57V9f19fH+677z6V5qEwMAsA0O+NKf3cyRiTIBLFAZlSyet5Xs+SwP2aDqWVHqV4xSFxvObA8zyy0i+9yvAC0aCdHt+Y7oVb6dV/NlJ2ltI3vRSavi30Y+J5Xs/kCP0q61521DX5ppvqTW8p3o7kqiZFoqzK2vT6jdpiuhTvDE3JPNL9Zw3PkRZbNPU57ZXwZb5Kgl5lZCfSDDCgjuxRrpk8caWHgla3arWbb7QRZ9LlmvWQRL17ahPvI4EdXVRvuvsUG1YCZiU5Io5alHLdeJ4nXeZcn8q6ewINfd/X7uo7IEp80949exFnuojvXipN3QpNObUo3TxxXS/o+dtZAa83ZtNx/UZKeuuI2XRKCgSiYgVNcYEO8SNdyRFiPXRq4xTGF2ljNmF8kZW8DAaDwWDIYlqVa54OKPcPAQD6MIG645L9nooEkRgekOkOg+N1B4JD7xXYpb5EiYN6r0Npw/VQo/RNrTch0q/hwjBRd+EGvukeGBrXVdK7B5HouB7G63S2yJTS1lE6utpw0Wg6p7eSNxuEZt3xUG1Qrhuxp3X2zVCEcKZCreGi7vi+6dxvVU+59dFeyRHNAFqt4aLaoFs3vVSrQIT4Jgw+1B0XteYcNF7aVJJIHK87aJA+b3orq0J1M61vqr18o6kkcC+VZvDc0+SbXkpegDYpQco3mspn9vRNZN04bvsETR12AHrImVoj3NMGOxIiwg7adTPSi5hpjtVE3SVdN70ITUBPD9pqwwnuCtknEv3Xqw09vularlkDEVGNnNN6Enjays52JzT9syWdb0LVam8ikfLuOVYL927TKs2e66Y5V2uRsyUF4qwbyvk60QhjNqb3tF4xmwHNMZuuogkNyRHVhhusm15jQp0cIavkdT3/PEBuR5d1w2AwGAwGoxVM8ipGccAv1zyACdIyJmG5ZrOHUvHZlgX0FTplHupW8na4VEbsI/WNhFo0yKYmPKhHL4r9nXyjKbDbK9gdnTuUl5dePU6BMJBJaUf0szv5Rlef4l4qzRnFPESSLiVJFBKavRXwlIGh6FrITE/eHqpV/71083VUZt2U6FXFrb7podLUVpq4e6DMfy+db4JyzRJ7mr510ykpQa/qTco3hPt8L/Vs1BbKpAQZ3+iYI9HP7+yb3JT3mrDD/x595Qip501ZT6Jkb9VqaB/puolRnYDy7Bpdk72TI6iVgE0CT8Y3Gs4CXXuLakjsFXurZXV+9umomAT0ThiJkkek87VH/1lAj/JcfLZtdVbg6er7OtZjTKLrhpT4lqhUpKNlQjRmUy60DwHqiB0BEjGbop4zdEgk9r57UidHCHSOp+kh4HspeaP2USYlhO3PWMnLYDAYDIYsmORVjGLfIABgAOOkB59eJV0APdmYYxH1XadyLWF2qlm1aD5no5S3m7YQBu16lK+Ofo+yX/JY5HBs2+19ExLw1L7pfpmzbSu4NNAmR0iorAthGSIyO5p+Lxds5HPdL9rkvhFKwA7rxratwG+UhLNMEESHulkEqEr5zr7RprLuoW7O2VYwTyh9I1cSuEmIaPJNoYdvtJX07uCbQs4OgmgjhMkAMr4Z1EAkyvgmTI7QcxboNCbFvI1i8yygg8Dr6hsN6maxT5UL3XzTTCoyTPKW8jkUmzbqIES6q6zpk+CEHX2FXMfnjQ5lZPTzOyloS/kcCjn/LKmDXO2ustZA8kYqJuU6nKF1+6bbuhG+GSU8u8okruhYNwHpXcx3vN/o7j/biUgs5u1wTyM8z8v05NWRHBE9G/WKC5CfBZrj3dfhnNYaF6C/e3YjqwY0EHgiZtNfyHX0jTYCPhArtB+TnG0FZ2ja+Sqj5KWfr5XIWaDT80ZXmfNeSl47cvekjNmM9bhnMRgMBoPBmAomeVWjOOD/x3IwNk7Xl7dXiVUgko1JSlb1vriIAzwloQlEiG+pUlWUh9LufWaAqG/oM+5lLi7U5cxkylYOlPSRq11V1mKOaFBDyJVV06NCkClVZVplrSNoF5LeZslmQJaIoLdF5nmjg6yKpb7LhG/o+5zK+EaHSlPKN0EvXD1lZ7vOV43Et0wpbdLgocSeNqC7XLNUKV56IrFrv2QN+/yIBKGpq9+qXAlreiJCpuysjjGJ4xtd68Z0T0+ZMdGpFpUpt67LN93O0DpsyUrZWXFP6ETeRb9HXhK4B1kF6E2I7z5H6BPieyk0AX19X4NE9A6qVUAPqSk3R+gr0oUxrC7rRkNcz/98eeKbVjTRey9hMBgMBoPRCiZ5VaM4I/jficoI2a8Z61HmBtBDEkmRd0V6O4DwgtaNcBZqUR3Z/6aJb5kSRMI3unrydh0TDfOkV2li3w56QlPmwq+tzLlE0F3YQtkvuVf/2RY7NJDNXQNUmvc0KeKMdE/r7RsdxLcUoamhxykgR1bpUBXL+EZnIkAWyKp464Y+KUEm8YyUbJZQ3w3qSo6QIc50JiVkRC0qQzbr6vsqQ65S7q8yhKaO3utxkvHIicRApdmlTLIGckbsl6ZLacskGOtQRgLheVQmeZTSN+PBvaI3aUZLaPaOTwTknabkbxkCntI3UgSeBuJ7vB6H0NRTRar7nU9DYm+1u9ob0FOCXqYKnO5+yd33NA3ENyt5GQwGg8GIDSZ5VSOXRxVFAMDE2DDZr5EjIjRkDkuQdzoUmoAs8a2PwJMivklJs96HY23Z1DHUzZQXhlAt2nvdUNohR2jSK4qjny9ji469pFPZaF12jPYoLR79Hj0BLxE81JCoIeMbPeqdOGSznl7WUqQmKRHh/51dCRGdZHOXdROQ3tRlziWeNzoUtFLkambI5gwpeYs61o2wozNpNkODUkX4XSoRgNw32SDwZNZNqHrToFrNhG8yRuBJnAVoWxbFSKChTirq0VYj+j3TSl4dvhGf3SeR1EuvFpWIUWi4a41JlATWca+QKU2sa92MSZSw1nEfl1Ly6rBDpjKehhLJgOReEuxpOsqcM8nLYDAYDIYsmOQlwIRVBgDUK3QkrxShqUFtJmOHDrLK87xYWaE6LtpSRKLpYExkjnieR2JH1DdySQmEQfc4c4S0pLcEaSbmSF2Pb2Qyu0mJRCnfhGNChTEJEqIvomzW4RsZW0iJiBi+MU02Czsm6i4cV8O66WKLDtVb2O+8sx06ShPLqGej5QipfOO6XmYUtDLrNyRmzLYHCBIBag2yPc1xveBcIkN86yESu6xfneWaJYlVKt/UHRcTdReA+ZLAsdYvadlZ+coRFcIztON6qDZ838gksZKSvBlRvYl9pE+y1Culb8S66UZqhr6hG5PxGKSZDjuklLzEd09xV+h299TZBqZ7Qry+PU2K9Kb2jUSLLR3no7AksGFFcYzElQrhOQ2QrASnpYR1bzsYDAaDwWC0gkleAlTtPgBAfZyO5I1TEliH+k6GSKw5LmrNQIVq+GQLettSCskZKoQqa7lgN7Ud3S4MIijRcD3UHBrfTNRdiHi+THlxUU6KAjKlf0Kyij6I2S07VfgmGuBTjfG6E/qm6zzROF9lEleMB5h933geggCfarTuad3GRGO/5G5zpEBvh4xvomuKap/3g1/+/0uVOdewl8gGhsjsiNG/ktKWaAJI9/LE9AraOEpA2kSA3uVvRblmz6Nbw1Gfy8xXHSWBs1KuWSbQ7XqEe1okiG6eXO2doDhDB6EpQZqJ+RMl+9TbEf6N3YlEDb4RpFkXcnWgSO+bcQmCSMyfBvEZOvh9hsusyhCJekpp91by6vDNRN0Nz9CGW+PIJebTJ3/L9OQVvqG8e1YbYRJm9zgW/Xwdj5HorKeNU+893vVA5ptaw0XdEb6RIb7NtthiTG/85Cc/wdve9jYsXrwYlmXhu9/9bs+fWb9+PV73utehVCrhtNNOwx133EFuJ4PBYEwnMMlLgJrdDwBoTIyS/Y5YJYE1KHm7XRiiFz0qlZc4CFoWUM7LlHulL8tk+lIpQ5pFLxNUSmsRxLSs7ln3OjLMpXry6sgcluqDG36PLOgeWTfdfDOggayS8U2fRkKzm2+iewwVWRVdN1K9rLWU0u4dxNSyp3XzTcGGZYHUFmGH3WPdZGW+6ugzLkNWlfI2crbvHLLnTZNYzdkWyoXOR1wdKs04PaRHCcuLi7+x17ppuoZMrSJ8U8hZKOW7+EZDYHdE4nwUJgLQKyN7VSewiH0zVg99U8h19s2ghvkq9u2+ggzZrIPk7bK3RvZ/Mt807cjZ5teNXK9Gfaq3rkRixG9UYyLmqmWh+/NGSwnrbJTileo/q8E30bGWUXzTJoz0rmalxze9CU0dvomeRbuXBNYRK5EhvnUkR/SOHUXnMfWeBsi1YtOh5O1mB2N6o1KpYNmyZbjllluk3r9582ZcdtlluOCCC7Bx40Zcd911uOqqq3DfffcRW8pgMBjTB5waRYB6vh+oA87ECNnvCPuqSJBmOlREXewo5m0UczZqjotKrYGZ/Z17oCVFcBAs5GCLSGUbaLkwSJSX0UE2VyQu2oWcjWLeRq3hYqzuYDaBHbK+CcgqDb7petHWUBK4IqEQESTFRN3FWK2BOQNF9XZU5XwTlgTWQRKZzaaWWTe2baGvkMN43SFPXBko5mFZvX1D2987YwR8lyCIZVnoL+RQqTk+gTKo3o5ov/NuvtGRaCWjSOzTYIdMKW3hm5Fqg2yfj55JuvlGR3lxYUvXfskZKddsWRZmlPIYnmhgZKKBBUPq7YiS3t18o6OX9bhMoqRG1Wq38reWZWGgmMdoteHPE4I9Tab8LRApO6ujDYxM31cNhGa3c5ptWxgo+s+bSrWB4wZL6u0Q58VC9z1NJ4HXbb7qJDS73T1t20J/MYexmoNK1cHcGQR2VLPkGxkiUYcisTfZnIucocdqDuYS2DEe2dNk7p469jQ50uzo943Yt6OJf+2go+qZXE9eHaKJ3us36huqPU2MdTFvd0340hrH4p68Ry0uueQSXHLJJdLvv/XWW3HyySfjc5/7HADgjDPOwIMPPoibb74Zq1evpjKTwWAwphX4qUmARs5X8rpVeiWvlLJKS3+X7lOpr5hDbdylD+z2KOmiU6UpV2KVXkXUyzcDxZxP8lKpd2R9o0XJ23vdBGSVljLnvcYkj4l6jexiKesbnRfcrr4p0CcCSI9JqXnRJlaL9upFNKCBrJLqhVvQQZrJle7qK+Z9ktfwuunTsM9LlWvWaEe39Qv4ASyf5KVKjhDEavdksmAvIW3dECM5grJNgURpU/H94Qk6Aj5KVvWyA9BFVvUuxUtZ0lsmwAz462q02iAjvsck91a9Ctre6jtSO+q95wjgj0ml5hAqeXurVgE9ikRRnlimpChtT17J+00pjzFS3/QmvYFoKV4NBF7XqjwaVas9141/hqbyjUzCNaCn9LvMfVyHb2QSjAF630ifSTSUfq9IEN/9OuyQEG8A9HfPsK2V3N2TVMkbtD9jJS/Dx4YNG7Bq1aqW11avXo3rrrvOjEGMYxbjNQe/3DWMx7YcxIaXDuChlw40y+jn8ecb7sfCoTJ+49Xz8PZlx+Os44cws6/QNRmQwVAJJnkJ4OR9ktcjJHljHUo1lLnpFdgdKOZwZLxOdumPe2GgVYtKqKxLOkiz3moIwJ9Dh8bqZJmycQLMAHG/ZJlsao1lznsSIsUcDlYoyzVLEjMaiO/Rau89TYuSV6KMJ0CvXJUnEjOSuKJBvSNDNgMRlSYRcSajOo/aYbpcsw6VtXwyTx5AlXzd9AqU6VDyViQIPB12hOVvu48J9TyRIVaB6DmNbkzGYxCJtGSVfGAXoCwJnB0iMVQVyyjgKdXecr6ZUcpj70iVvLSpTOIZoIus6q1INJ2kAfh7yT4Q9oCXJBK1JEdIJGpkpcy5sGX/aI2wrYbcHNGR/C3Vk1eHAl6SNPN9R+cb2UQALb6JUYKetjqB3N2TfN1Irt+srBvGsYXdu3djwYIFLa8tWLAAw8PDGB8fR19f35SfqVarqFarwdfDw8MAgHq9jnq9cxKn+F6392QVbHs6PPLKQfz+Vx9N9Rm7hyfw7Ue349uPbpd6/z+++xxc/NoFxojgLIx7UhwLtsf92/ipSQCn0KyfUquQ/Y44h1LT5WX879MekGUCD/739V2iuqqsNQb/ZRW09EpeuaC7jgBVdwW8PtVb74s2rW/Cntpy64ZW9dbbN3pIM9mEEdpKCbIE/AAxoQlEyapslGs2XRUgSG7qoRbVWRK4a5/xpt/0qL17JCUUaPfXcE+TS9LQQlZJkLx6SjSaJb7FHtW78ouG8uIyexrxXPU/W04JSE1qjkkoNKN26CilbVrJK10Nh/h+I19Km7606bgEAaCnN3Dvcs0AfVnv2L4xrKDVGheQvI9TlcMflySIdCauyPTkzUL5W2pbZMm7GcF8Navk1VEZT5pcJU7slYkvAtlpf8Zg9MKNN96Ij3/841Nev//++9Hf39/z5x944AEKs7SAbe8O1wO+8HQOW0bNK2z/7FtPtX39M29soKxxC+Q5Ywa9bB8bG4v1eUzyUqDoPzCsGo2S13W9SEDGcHkZ2QsDcakq2QtDQOAR2eG6npzKWsOlUiaIGbWFTL0jodD0v08b7HZdT0oRESgjM0CIUPeKivYW7W4HLdnsuF6g4JbpZa2jzHkvtSh1KV5Z3/QRE5oNx8VE3QUgR8CP1xx4nkeSiRi39Du9Al42qYjGjlrDRd3xfFskzgJjtQaZb2SVVdREYrQHfDdQ9153XA+1hr9uuj37+oIkDQeu63XtHZgUsorE/gLxWSDuHCFKXHFdL9jTZAj4ibpL55u6HCFC3Xs9mCNd1LMAfcKm50XuNxKEyETdRcNxke/SOzApZInvULlK5Ru5OUJNVnmeJ1WdIEokUq2bsJS2abJK7kxC3afY8zzIKGjDntp0ZwHZsrPUZZIrkusmKAmsQaXZvYoUvW9k9xLqMsmVmInOOnpZdxVNaPBNVsjV2GQzZcKIZPyIcexg4cKF2LNnT8tre/bswdDQUFsVLwCsXbsWa9asCb4eHh7GkiVLcNFFF2FoaKjj76rX63jggQdw4YUXolDontSdNbDt7TFRd3D2J9Yp/UxqfOiR1v1v/V++BcfPaj/X04DnjBnI2i4qEMiCn5oUKPpKXrsej3GXxUTDgefHdXscSn33Vht0QZCsKGhl1aJ9xHZESw3LXBhofROz5w3ZhSEeoUmm8Ir6pmtfJH88apS+kS5nRnyZi9FHE6C7zEX/vu6KRN+OuuMTKMU8hW+yQiTKrd9w3RDZUYvuab3Vog3XQ81xUcqrTzuMu5dQkUQy5UR9OwShSf+8kSGrXM9/5pR7EKBpbJEmq6jUotKqVVp1c3RPk2kP4Hn+2Y4imCWrFqVOXJFV35HPkci66dpWIzJe43Wn516cBPLEt5ivxHtaz0QAQcC7JHZM1N3gfiOTxOrb4mCQ4JwWp1wzQEmIyFUnEHsJFSFSbbhwm77p2ss6Ymel1ujZHz0JZPtGkivgY1ZJoCKba46LRtM53YgzMR6e59tOuafJtuih842cEp866TqajCejFvU8fx/stRcngfzdk5bAk07MJ77ftPimy3lezBE3A74RtlAlFcmXoKdN/q41XNQc/5zB5ZoZAitXrsQ999zT8toDDzyAlStXdvyZUqmEUqk05fVCoSBFCMm+L4tg24Gb7nseX/rRi4l//nt/8mYsWzJL6r31eh333HMPLr30Uinb945M4I1/H490Pv9zPw3+37aAlz51qdLEI54zZtDL9rh/Fz81CWCVBgAAuQZNuWZxgbcsoNwlkB696I3VHQxRZLrLEoklYvVOkBUqqSgmI0RC33Qr3xW9IFD5piIZBCEniSQTAaj7rYo5YltAudB5vHX6pqdalFhZVZENxhATIiLwlbMtlLoQty1B95pDQvLG6y1Kv25kL9pUhKawo5izu453S9C95pCQvHGVgHSKxJjqO2JCM2dbKOQ6H/Cj62as5pCQvLJlKwPfECkSZecINaEpfGNZ6LqnRcdrrEZD8soT36GqmALSQXdNvYGB7mfocsGGZekhREzvJXH3NDqyOfzcbntJKR/6Zrzm0BCJkvOVurx4oCg2XBI4ev7rNialvI2cbcFxPVSqVL6R2+epe9BWJNcvNdnc4ptud89CLlg3lVqDaE+TVYtmg4CfQU5oyiV8Rfe70WqDhEiMS+BRq6xl1y91IkAvW6JrqlKj8U1QXty0kldSPUu9t0b3NIrxZmQDo6OjePHFkIDbvHkzNm7ciDlz5uDEE0/E2rVrsWPHDnzta18DAPzRH/0RvvSlL+GDH/wg/uAP/gA//OEP8e1vfxt33323qT+BkUG84e//B/tGqr3fGMEjf/tbmD9YJrKoPeYPlvHKpy+b8nrDcXHa3/6g58+7HnDy2jDp4eVPXUpSPYcx/cAkLwHs0iAAIN+gUfIG5UsKua4LuZizkbctNFwPY1UHQwQXbXnVG+0lKiwbbZrQDLNTu2XV6PGNXPY/dVlvMda9ezXSXuai5W+N+0aSSKQmvmWJxKAkMHlp4lx33+Qjvqk3MBMUChG5DPN+4ou2TOk9IAwMUSlExutywdRCzkYhZ6Hu+GUDZ/VucxPflphkFVVZ/rhqUXJiptB93eRsC8W8jVrDxVitgTkDReW2jAdBd0mVNbG62XT/2WD99vCNbVsoF2xM1F06W+pyAVVyIlFyLyHvDRxJSOh2hrYsC32FHMZqDrktPcnVQEFLPF+l1d60dgiisBMsy0J/IYdKzSG3pXeZc+KKDdI9TmlV1uL8J+WbYg4jEw3yyjy9e3rS3m/GJRMBdJHNxbzdtfqQZVkYKOYxWm34Z8ZB9bbI7iUD1BWCpKvh6LkDF3M2Cl18Y9sWBopiT2sAmKo8SwtZAo+6+ppsVY/+Eu3dM+qbbkmstu3vaWM1x7d9hnpbKjH3EvIS9JJJGlTP39GaXIIxY3rj0UcfxQUXXBB8Lcoq/5//839wxx13YNeuXdi6dWvw/ZNPPhl33303/uIv/gJf/OIXccIJJ+ArX/kKVq9erd12Rrbw5fUv4TP3Pif9/nbkalaQz9lT7PuzbzyB/3pyZ9efO+VvfMJ3oJjDM5+4mMw+RvbBJC8BcmX/1lR0aEheWWJVXLSHJxrkB+Seh0Hisi6yGffk2amSqtWob+hIIjm1KLXKerQazzfUAbssrBvZyxx1L9xKhPjuBmolr2xfMwChb6guuKJHomS/Var5OtGQU0aKMdNBiPRCfzGPI+N1OnWkdElgPcqqnioETYkAMlnu/cUcag06IjEuuUodoMoKWdWL9AZ8WyfqNXqySlZlbZzQpG7dIHdO821pBnapKiXEPAuQJyVIE5pmz2mAv7Z0kLyyyRFUBHxYrtmsylp2/QL+uvFJXuLqTbJ7CbVvZBWJhhMBfFtyTZKX+j4ud4Y2rRYVCcjkyXg91q//Hn9Po1ZHyqqbqRIlg+eNZBUpOjti+KaYx1jNMU58a1PyyiZHkI2HvG8Y0xfnn38+PNGjow3uuOOOtj/zxBNPEFrFmC6QVbwCflnjbgmKWcc/vvdc/ON7zw2+Xvrhzur1Ss0Jvv+zD/8mSQ9fRrbBJC8B8n1+il/BJVLyxgiCDJTyPpFIdECuSBJ45EreqpxalF5ZJWcHEPENeZlks74RB/VeZDO1b0ZjXBj6i75vqMsTy85XOgW8XJlzaiXvuGQwFaD3zXjNV8FIl52lJleL3TOYqX0jG/wX7/FJXtr9tVe54SAIQkTMSJNVmnqLSvmmkMNhUPqmGVCVXDfUikTZHqd0volHJPq2UM9XsyrruOXWqYlEmedNXzEHVDJAfJM/b+IRM6b3Ed8W2r0kKJ9pOGEk3OflqnpQt/eQKSmva5+XJSKyktwkzpeqUZGsQBO+p0rfQzojJaxlK3yRqaxj+GZGKY99I1XyllKy85VqTKTVosRK3ljrppTD/lH6pISee1pWlLzEiQAVyecvg8E49vDjX+3D/7n9kZ7vy7JaNy2if1s3wvfNn/4hAODs42fiv//018ntYmQD/OQkQKFvCABQcidIPl9WLRp9D90BWbK/C3nmoRyBF6pFzdoB0JeIkiUSqX0zKpkVSu2b8OIiEaAiVnzL96yiVWZM1OUITWq1d1ASWCawS3zpr9ZjEolkvpEbE3pCRE4NEbWFnhCRVcCbVTeHpFkG1KLkapW4KuuMrBvy8rcxyCrTikRikihUFEuuX2LyLo5vJowraPWs36z0so6THEGWjCdLiJCrm2OWazZsBxDu86Zt6SMeE9lk2j7ikt6xE1dAuL+KUto9ySpxlqdev71KeutRFMd53tCRq3K+CQg8w9Wswr7NZvf4Fluoq1hIxgXo52s2lLy94osMBuPYwf/+6sP46Qv7u75n842Xdm2TdDRChvDdtONI8L2jmfxm+GCSlwDFvkEAQJ9HrOSVyjykO6i7rhdcEnseBskzD+XGRN+FIY5v1NviuF7s0qams0L7C3rmSJzLHIVvPM8LyVVZ35CTq93VotS+kSVmAH3KjF62UJcEHpcmm4nLRsfyDd3zxvO8GIFdXeWaZfs2m1XftdpiWi2qiUiUJjTNB92zUiaZvhduPGImC6W0yfd5SVtC35it2JCl5Ahqwjk+8U1VDUfWN01iNQPJEeJMmZl93vCYRNeN53nKA5Cy96yoLVSJK4J86nmGpu4zLrlu+oh9E2fdDFATzpIigZBIpPVNLwIvmtRLsm4kk9AB+rZjoUggI/2Se4omwrMRhW/iVI5gMBhHN077m3vQcDuX9b7m/FPxoYtfo9Gi7EIQuNsOjuEt//Cjtu9hsvfoBz85CVAamAkA6MMEHNdTXv89mVpU/UF9ouFAtFEwrxaNmeled0h8MyapngXCCy7FQT16aZbvhUvbR7NnELMU+sZ1PdiKfROnJDBl0K7aCMu19STwiBW0E5JjQu0bQXr3Gg+Atlxk3XGDQ6R8uWZaRWKvMYkGqCh8k0ghQuCbmuNCnO+ly72SlWuO/7wh2dNiEPCUKs1aI7JujKvNJPc0EeiuuyRngViECKGyquG4qDmulC26CHjZUtq1Bo1vYhEihCRRi28k93nyMsmSZHPd8VB3XBRy3RPEYtshmTgatYWCJGo4LmoNsW4ky5yTl6CXU4s2XA+1hotiXq1v4pVrFmOi/hnsuF5wjs5ML+sed75y0w7X8+8AMmfdJHbInNPKhGeBqG96Knl1VUmQtMMj8k2iMufEvpFOzCdW8vba00QsxfP8s5rM/E5ih1xyBF1Z74bjhutGssw5fUlvuXUj5pX6PY2VvAzGsY5LvvhTPLtruOP3j0XVriyWzOkPSNxO6l4me49eMMlLgPKAr+QdwATGag0MlgtKPz+WkpdQWSWIY8sCyr2UgORlbsRhUK4EEeAHZGTI2DgILy7yGbsUJUWjF0RZ35ArVSQViYDvG5me03EQkGZ5GSUvIQEf9U2PIBx1xq6sWjRKDlD4RtaOqC3UyRHlHr1wydV3sqW0iddNPAU83ZhE140sAW+6KkC/Jt/EUYtSBA+jnymvoDWtrKI9CwS+6VGaOGoLhUozSk7KVo6gLuMpSzYDID1DxyulbdY3uhS0vQLM0Wf0eN1RT/ImaEdDsZeM1WPsac2zAhmRWJfzTXQOjdcc5SRvnMoRYZlk9T1oo/dZeZUmcWnTXmeSQqtvyAgRw8kRcXxDSTYD8gRe1BdjFL6JUXZWnI8mDPtGV3JEzz0t4otKraGc5B2LQcAPELZxan3eSJY5Jy/pLX+Gplg3YW9vDlUzGMcaHtxt4c8/en/H7zMpGQ+yZO8XV2oziUEMtTdABoCwXHM/qiRlXWRVqwBtmeSxyOW2VxYNdZkb2WB3KW9DmEphi2yPU4BWCRgtsdrTN5oUiX09SLNyIfQNBYEnWyIZiBDfBHNEBFaKORv5HgFS6t6ismrRcj4XrhtCkkgqOYKw15tQFFiW759uCOeIWZU19bqRLcMbfQ/FuhHzrpCzehIL2nrh9lo3Ed9Qrhs5QoQu4WusGUDP2719I4hu8h7SPcjVVt9QzNf4hAjlHMnZlsSeRkdoAvLkavScRjFP4pVr1uObUs+Er2wkR5TyNmwtvpFZN3QJiuJvsy309E1fgW5vBeSJ72LeRr7pnDECUlPcI6V8Q1gOfyyWb/Ssm16ESD5nB/svDbka3zeU61fGN/3ESUWyz5vo/kvhmzhKXsr5OhbjeUNeSltyTCzLIp2vsuWr/feI6gQEiSvV8H7TKzlngDj5W7bPeM62AhEBCfEdQ2XNYDCODoxM1PGqj96Pf9/cft2/8unLmOBNgV7j9+cb8vjxr/ZptIhBBU6PIoBV8kneguVgbKwCzOxT+vmyqlWAlsCTLYUE0Ct5ZftGWpaFgWIeo9UGiS1xymcOEI5JWCLZbCIAECnF20NBa1kW+gs5VGqOf+EZVGtHErUoRfAhtKN3jk1oB5WSVy4pwbYjvqk1AJQU2yHWTe8xEXOaNBFAIjlCZFPT+UZ+T+sr5DBWc2hUmjHWDWXZWVliFaBfNxP1eAEqKt8kUSSS7GkJSnqT9ROTHBPydRPHNxoCuzLJeFnphdtyFiDxjZz6DqAlV4NgqpRvNCWuyPimeYYm8Y2k2hsI/Uejegv3+J5ngYysG/89OYxMNEjPArHUoqTPvd6+6SO0AwjvbzK+KRds1ByXdJ+X8U2wlxCum4EY64a8XLPkuqk2XJIEp0QKeAqyOUJoGl83cdTNxRzG6w7tfI2hsqZJBJAjVgF638StFjhRr5Gc5ysx+iUzGIzpj04qU4CVu6rRTdl71defAPAEXv7UpcrbjDH0gZW8FCgOBP87XhlR/vGi/FUcRSIFkTgRg6yi7vuaOQWtFLlKb0evcsAAfW/RgCSKQThTBg+lCHjCUtqy6llAg1o0xnwVgSGS/t4xxmSA8IIbZ45QEjNRW0pSyQB06yZJuWZa0kw+wEwfdI/hGwLCOV5JYLqqALHIZkJVBhCTJNJQ7tV0Ke2w12oGfBMr2E2/p8U5QxtXrZIrq5IozykV8HFU1maV+NSltENyNY6C1uxeQklWZco3CXp6UioS4zxvKBNXYvUGJkrGi9PTM3z2qVdpJlHymk4KpFbAxyLgtYxJnMQVgudNNf4eT5e40txfJQl4KlvGYiTjMRiM6YuvPri5I8HLyl1adBvfU/7mnq7EOyPbmHYk7y233IKlS5eiXC5jxYoVeOSRRzq+94477oBlWS3/yuVyy3s8z8P111+PRYsWoa+vD6tWrcILL7yQzkg7hwkUAQD1cfUk70RDEHgyZFVTNUNYdlaOWBUEEbHqLU4vXEIiQoZcHSAkzQI7DF/4gbjqZrqgXTAmxtWi8YP/pvslA+FeQtHbTFaJD9CSzfHU3poIeMOJK0mIGUrfxCpNTNyTNw65SrPPZ4M0C30To6Q3OQEfY54YVvLqKDsbZ91Qq6zj7GkUz5tYwW7Kcs2JEhIy5BsSkigbvkkyR6hVb7ESRkiUgBlJoIlFVtE+byqxnjeUxHcCRSLFeVEkJEhV+KIjVoFIeXGJc1qZcH+N05NXyxyJcU6jqJLg2xJPyev/DB2RKEOulnUoeeOsGyrfxHkGExLOcc5HDAZjemLph+/GJ7//yymv/+3yBl745EUGLDo28cqnL8OvPnFh2+8t/fDdGJmoa7aIkRbTiuT91re+hTVr1uCGG27A448/jmXLlmH16tXYu3dvx58ZGhrCrl27gn9btmxp+f4//MM/4B//8R9x66234uGHH8bAwABWr16NiYmJVLaOW/0AgPr4cKrPaYewV2Nv95UJy5klISHoFCLyxLewZZSkJ688uUqpQkhSNpoqCDIRkKsxSCICW6qN+GQzjSJRXnUuAiVUQfcgYUSG+C4QklVJlLwEwf84iQCUSnwgO8kAScqc0xAzDWk7KPdWIB65Svnsi1WWXwNpJpekQe2bJMoMSrVZnKAdQcm7OONRottHgLiEM+GelkR5TrluDPcGBqK9RWMoqwhLv5uuChDLN+QK+BiqN0K1aKI5Ylh9J9YNVUngYEykyjVnSwFPXRK4px2EZHP0c02Tq3ESAcqE+3wshSZx5YggYSRGoiRFHCvsM272GRwn4ZqSbI5+bhzfUJ4FZOJpDAZjeuHrG17pqBJ94ZMXYb7aTpcMCViWhS+ubODKN5005Xtnf+x+VvVOM0wrkvfzn/88rr76alx55ZU488wzceutt6K/vx+33357x5+xLAsLFy4M/i1YsCD4nud5+MIXvoCPfOQjuPzyy3HOOefga1/7Gnbu3Invfve7qWyt2r5iuEGg5I1D4FGW3BFkVSmGHeN1B57nKbXD87yQrJIqn0l36U+iWqUspS1FwAu1d62h3DdASCTGI1fpCDzTZc4T9QauqV83QJTUNK2Aly9BH6isKcpGN+LMkeyorCnVoon6vhomZkLVuXo7PM8LSvGaL22aRO1tVlFMGRTyPC9DZWensW8I7GhdN2YDqmEpbdOB3Sz6xrCyKmO+iVOGd4zofiPGRK6Up38HoiSJ4lRcoegBPxaDSIz2oqfwTSXBGqbtIW02LpDkvEgRF3DdmM8bSkViHAUtIYEXKjRllM12YAeFb+IkKFKSmiJ5K04iAMX6jTMeQeJK3YXrqt/TwhiFvJCExjfy4g0GgzF9sPTDd+Oj33tmyutcmjkb+JtLTu/oh6UfvpskHs1Qj2lD8tZqNTz22GNYtWpV8Jpt21i1ahU2bNjQ8edGR0dx0kknYcmSJbj88svxzDPhprJ582bs3r275TNnzpyJFStWdP1MGVRtX8nrTIym+px2CHs1mj2UxiESRSae6wE1R21ppmrDhdhv4mRBCkJHJeKVnfXfUyXxjT/GccrOel74c6pQd1zUHd85coRzVkrxNoMglGpvqV6rvh2O6ylfN67rodrIVi9rqTLnhGTzRCxixrej4XqoNdT6JnrRjmMLpbo5VrlXQrJZrreob0fdUe+blueNDOEc+Maw6i0jPU7FeFD5xo3hGx0qhOnkG7FuKPa0muPCaTpHRklEqoBPlAhgmBDR5BvTPaQT9TglVXjJzxGKc1q1Edc3WTkLaFDyyiiKiX0jzgJxbDG+l2ghm+VLJLsegruIKkw0nNA3UmuYcC9J8LyhrS4SLy6g2jfRzzOdlBDESiSIxDJhIsBEgvgEoD6OVXPCPS1eRTo638g89xgMRvYxMlHv2nuXkS288unL8O3/d+WU109eew/+47HtBixixMG0IXn3798Px3FalLgAsGDBAuzevbvtz5x++um4/fbb8b3vfQ//+q//Ctd18aY3vQnbt/sTU/xcnM8EgGq1iuHh4ZZ/k1G3/ToDblU9yZuESKTMsoujKAbUH5CjF1WZA3J4UFffBygOuaolA1LGjgixpvrS3+IbGZU1YTmzWMQ3pWo1AXkHqO8vGr0cmlauJitNTFfmPO5FW7UtdccLyKo4yTy0JJHZsrNx+jNF55Hq50308+I8g40T3xlRreryTb/UuSQj5KoG35heN9HnV1Z8Y5qsqrBvpiAeudpUmxEqiuPMEQCYUHyvaNnTTCvg45CrpGXOm2RVzLunat9UIkmgpitrJSnXTGtHTN8ovnuOxT2nESrg45wFKMutx4odRd6jekzGY8ZsslISmLQyXuAbCfVsnu4sEN0j4yR/mxaSMBiMbOMDd/wCZ3/s/imvs3o323jjyXPa+ucv//1JLt+ccUwbkjcJVq5ciSuuuALLly/HW9/6Vtx111047rjj8E//9E+pPvfGG2/EzJkzg39LliyZ8p56zlfyuhMjqX5XO4zX5dV3OjIPZS4uhZyNQs7ybVFOJPrjkbctFHLyvUVNk6s6ykPJ+Cafs1HMhaWZlNrR/DzLQvA7uiFahkg1YpGrpGSzvG9ytoVSk4RX3Zc3OsZyvaxFYNc0uZoNAr4QWTeUQZBYKmtCBbz5srPydhTzNvK2/7wZUxxkFsH/Ys5GXmJPIyXwMlL+No7CK4u+qRBUbMieb3rbkUXfUKybOH2KQ0KTQhkpT8wcK76JV2I1G74p5Oh9U8rbyDV/Rzdo6TMeq/e62SSN6N1TuW+CdifxfHMslGuOGxdQfoaO+MaW8o2/zinJqli+MZyYn7MtFPO0cYGi5J5G2bs5yf2GpFxzjPuNHYkLUN09ZeNplDHGOHEBBoORXSz98N1Y99zeKa8zuTt98MqnL8Mpxw1MeZ2J3uxi2pC88+bNQy6Xw549e1pe37NnDxYuXCj1GYVCAeeeey5efPFFAAh+Lu5nrl27FkeOHAn+bdu2bcp7Gnmf5EWNQMkbJyuUtMxNeImSAdVhMM4hPfo+0oN6nLJMhISmTPlbIPSh6stcNZKQYFm9L3OU6uaQXDVMNsfogwvQXSyjF225IAidIjEZkWhW7Q3QBTKFr3O2FQTButtB2S85jqKpaQeparV30N23hcY3ItAkW0IsK2VndZTPlPUN1bph30xFnKB79H3sm1Y7TBMi0fexb1rtME0kAnS+idN/FqBNHg2VvNnY02TsAMLznHLfxEgWAfQQ33FKelOSzTL9ZwG6pOvxGMkiAN0cAeLd+YL7HokdzftN7L1E7V0rDqEJhPbSVF+Lr26mjU9kIy4QN55GqbLmcs0MxvRFOxLw/7t6BRO80xA//MvzsfnGS6e8vvTDd2Nkom7AIkY3TBuSt1gs4rzzzsO6deuC11zXxbp167By5dR64e3gOA42bdqERYsWAQBOPvlkLFy4sOUzh4eH8fDDD3f9zFKphKGhoZZ/U35XvpntUKtI2RYHosxqnJ6eJIRmzCw7sstcjHI7AG3Pm1h9ignJ5mrMC0NWCHgqshmId9GmtCMukRjOE5oygLGTIwh6WScJglCQzXHLQ1ERzlHfyCRHiP6FqpUq0c+Mk7hCaYdssJuKcI4b/A/sIAyomi63HqeUdvR96ss1u7HsCOfr0eubYN3E3NOUlwROSpplxDeUSYFZ8Y1MH1xAj29iJUcYtqPFlqwQiYb7rVIG/+OUJvbfR+Wb5tlI+gxN1/c1TsUGkehK8bypBnEBufBSP1F54uBOIZnoTFoSOE77pALdGTpM/o67pynulxz3nqWh+lqc5G/KM/R0i6dRJvNwuWYGY/pivOa0JXhf+fRleNOp8wxYxFABy7LaEvRnf+x+3Pt051anDP2YNiQvAKxZswa33XYb7rzzTjz77LO45pprUKlUcOWVVwIArrjiCqxduzZ4/yc+8Qncf//9ePnll/H444/jfe97H7Zs2YKrrroKgD9Rr7vuOvzd3/0d/uu//gubNm3CFVdcgcWLF+Md73hHKludgq/ktQiUvPHIKsosO/my0QAduToe81JZar6PsiyTjC2kiuK42ZhN31QVE3hxVauUYxImR5gl4LOSKRv3AhWomykCQw235XfI2KF6rgLxM4epCOc4iTxRO0jKNcdIBhgoEV74EwbdyQj4uHYQlASOUwaQtMx5DPUdpS1jmVIkyvuGssdpHDv891H5Jtm6Me6bDKlFA0KEqH9lFnwTi0jUUJpYvnIErW9Mk82+LTH6repQrUonR9D4JivJTUBcRSIh2ZzwXkFVDSe+apUusTdOpSJS1aoEoQnQ3z1l7zfhPk93hi5JEN9hhS+6eJp08jdVVY+MxCeS2MJgMLKBJ7YewhnX3zvldVbvHj1o58s/+tfHcN4nHzBgDaMd5G6vGcG73/1u7Nu3D9dffz12796N5cuX495778WCBQsAAFu3boVth4fGQ4cO4eqrr8bu3bsxe/ZsnHfeeXjooYdw5plnBu/54Ac/iEqlgj/8wz/E4cOH8eu//uu49957US6XU9nqFWYAAOzGWKrPaYc4Bx/KIEhWMg+r0/RQSkrAJ/WN4otlXAKetpS2/EVbS1mmmEpe1Ws4cbl1w/2ISHtZx1034tJvOjkiK+Wam8FDCpV1bCKiRKNoGstIEDP6mabLnMcuO0vU8zyub3T0GRdrorsddEHM2KW0iXyTlGwmJRKlfENvh6xv6MrOxlNG0pYEjkEkaihNLK1uJvdNdtaN3POmWRI4A5UjqNZN3BKrfYTP4MzEBeJW1iIu12w6CR1IWBKYkNCMf3ZVfBZIeM8yXRKYtP1ZI+7ZlTaeJh0X0BBjlE1KYDAY5vGP617A5x/41ZTXmeA9+vDKpy/DNx/Zig/ftSl47UClhqUfvpv9nQFMK5IXAK699lpce+21bb+3fv36lq9vvvlm3HzzzV0/z7IsfOITn8AnPvEJVSYCALyiX6451yAo1xzjgExJVsUmV4mVvFkieaV8Q3qpTFYSmEwtOs1KadNm7MYbE6rS0XEv2uEcIewhHUdl3XDheZ5UOeP4dkhecJvZ31XTASpRnUAx2ex5XkicxVDvjNcd5b6JTeAJdaRiwjk2WRWU31Pvm/GM+Ua27CyV4juub6iCdnF9ExDwBL6JT67S+CYOsQpEfKN43bhuhnzTLMk5INlblCoZIH5vYJoS9K7rhaq3ONUJKPa0asy9hMg3Sc9pFL6JVXGlQLduqjHvN1R7WnDPkix/20d0ho4+b+K0caI4CyQnV9Wum9iEJtG6AZDoeUPpG9OVteLegUnJ1Rgqa8oz9ESMBJro+1Qn0cRdv1T3GyCeyprBYJjH73z5ITy65VDLa398/qn44MWvMWQRgxrveeOJeOfrjsfpH2lVbjPRax6cHkWFJsmbV6zkbTgu6o4HIJ56p+54qDtEKs2MZOzGVt8RBN3jkKtiPKoNF67rKbUlPKhnoyyT7IWhpKX3jgSRmA/XTUPxuhFEXEmyVxTVfE160SYtYS3jm6YdjusFe6EqJM10z0pyhOoLf7XhwmsOcZwgiPhZlYhN4BH5Jq76rr8kyGbVQczQNzIKPPEezyPs7x2TJKqQlQQ226sx6ps4BLznqV83cUtYUynPk9qhPPgfSYSJU3bWcT3UFJ8FRMWD+D3giQj42IkANISmrC2UvgnPJPH2EuXlMzPim+i+FOcsQOqb2Ko3muoE0ndgIt/UnPB5I2MLpW/iJhhTKRIT26F4/dYdF07zfi+TDCD85xKcBeKf04j2tIQEvOq7Z8Nxg/kfR2VNcU6LG0+jqk6QOJ6m2I64CV8MBsMsTll79xSC98EPXcAE7zGAUj7XltBt15OZoQ9M8hLBLvnlmguKSd6J6EU7BiECEJBE4jAoS1YRZ4XGViQSECICcr4Jx021Am8i5mWuTNSnOHnmsNoLVNyLdnTcJkxftKnWTWxCk2aOuK6HWkMoIuR7WQPmydVwL1E9R7KhxI/ukTJEYtR/qudJ3B6JZHuaKJ9peE+LltCTSviKvEd5meS4/SuJShLG9U1AwBMRmkC80qY0tiQjiVQrM5L2r6QaDyBeYBegVJ7HLaWdDSKRKsAMyJ3TovaabmdB5Rtx/jRNmrX4JkaCMQBMKD8fJSNEqNrRyCbTUq2b6Pia3tOStqPJClmlPBEgum4kys72EcZsgr0ktvKcam81nEwbM2ZDehZInLhiNvmb6u4ZN6mIwWCYw9IP343JWqUX//4SnDC734xBDCNgojdbYJKXCFZ5EABQcNSSvNGDpYwSsJS3ISrKmCZEqLJCxUE97qWSSs0EyJFV0YuWclsyom6Om01NrfYG5C7a0bVl+jJHlpQQt6R3nkj1FklwkNlLCjkLdnNPU14mOWHCiPp1kw07BNFTzNvI2b1Lk+VzNgo5/33q17A/X+OTq2bJKqo9TTxHS5K+sW0LxTxR6fegFG82CDzTpbTj+iYX8Q1V/7v4PT0NlwQmJjT7CjnYEr4pRPY0KiLCdCntpMl4VL4pF+zYvjFdhaaf6gydsIwnVf/ZYk5uT2tZN4qJM3FmlE0wpupHH5usIr7f5GwLhVzvMaFcN3H3ErI9LeHzRvn9pvl5tuWvnV6gfN7ETf6map8Up0Ry9H1UexogF0/L5+zAh1Rn6LhJRVR3T9O+iZtUxGAwzOD0j/xgymuvfPoy5CWed4yjD0z0Zge8AomQayp5i+640s+NZpfL9AOxLIvs8jKe8KCuPBiT9DJHdLkt5myph5ttW8HFwnSmLBWROB43QEWkFo170Y6um8wQeETloaTJZhHEVKw6b02O6G1Ly55mWt1M3C85frl11YkrTWVkjHJZdHtJvHKvVHaIYEZcFRHVPhLHN3Sq4ni2BHsJkR2ycyQI/isupR2XvIu+l2q+9sn2ws0KAR+QzUTjkWDdmFeb0SjP4xOa+ZafU4VqI954RN9r3je0dpRi2kGXCCAfNiDzTVYIvMT9Z83aAdD5JqkCni6ZNl5bHMrSxLI9XLNyv8lMUhFxIoBsPE28FzAvVshKKW2qs0AQT5NMlGQwGPrxf25/ZErpeu7DymCiNxtgkpcIuaaSt+wqLtec4DJH1vMmNoGXa/k5VUheEpjmcluKEQShC8hkg4CPTSQSqUWTXLSpyr0mzWI2ftEmtqOUl1PvAITluxIqz01nU5MpeWPu8a22mCXwwuQImsCQtKKYKHElJM3kyDuAbr7G9k2e9nkjSySWiOZIEt/0EwXdY5fizRgholoFGPdMAtARznHVO/0ZGROyAHMt3tkIoO2rDcQ5C2SFgKdWWWfBNwnJ1ayoVg3b0WKL6X6rRGNSTegb09WsAB2JGvHO0MpbNwTnxXjPPdPVGnxbaEjN+BUbmmcSovkqn1REq2zmUs0MRjbx9Q2v4Me/2tfyGhO8DAEmes2DSV4iFPuaJK83ofRzkwSoyJRVcTPMyfu7yGbsUqvvYvgmT0wSxVabqSVm4vqGSi2a6KJNTHybLqUd96JNpQKMq2wGgBJV6eiMkKuZ6ducQvVGVhI4dqk5s6rVEhGhORaTIIq+l05VLKsWpSK+4/UGpu6XHGfdlKn2+ZhnATJCJNhLJPs2ExNEcdYNVblXoVyNqzxXnSgZt3VDVpTNQLjnmFc0iflKRMBLn9Nogv9x5yoQSY4wTJzREd8xW54QrxvZOQJkr7KW6fWblYoAAOW6SZZUlJV7lumEBEBDwoj0Oa0ZxzpK100SAp7BYOjBC3tG8NHvPdPy2uYbLzVkDSOraEf0nnXDfQYsOTbBJC8RCv1NkheKSd4E2dTU5Krpw2BWepzGJVaj7yUrCSxR/hagVyRKX1wC35jtUQyENpvuFVWmKundiDdH6MrOxlfvhOuGqIS1ZLCsTLW3xixbSZW4IjL445VrpiHwApWmZNnZIIGGSKUpTSSSzVVRSlteLUo1X+MS39SKYumy0WKuEp0FYq2bYL7SJNGYTlzJSoA5yVkgVBWbVavQKWiTkc2qCc0kCV8hSURlS7xyr2TEjOxZnuzcGv+clhXijKxccyPe+qWqCBB3jgDh+cU0SUSloI2vsqYhVpMkSmYlRpGVlkXklTQS+MZ0HIt6TORV1k1lcwaS8RgMBj2qDQcX3vyTltd+9XeXSFdJZBxbmEz0jlYb+Paj2wxZc2yBn55EKPYPAQD6vXHA85R9rggAZqn0T+zAUEbIZvWqt6ZvYly0qYLusbP/s1K6K0OKRKqSoonVzRnJuKebq/EDu1TzJH6vKNW9cOPt8yWiigBJSmZR+MbzvEime7yKDaYJPKp1k6S3KEXw0HW92AFVqmdwNW4pfLI+4/HPAhTP4Oi6kW0jQdbfO+FZYLzuwFN4hq7GtCP63qriPS3ueT4gNImewaV83LLRan0Tt49m1BbT1XCoFIlBElzcPuO1hlLfhO1o4igSaZIB4lcnIFJGpig7S+GbeCpr2vlqus943DN0VlSrUVvIknlM+yZpkobyZNr45zSyeRLz7kmWYJzinKYSSZLxGAwGPU7/yL0tX//Pmt9AUfLuwDg2MZno/eB3nsKhSs2QNccOeFUSoTzgk7w5y4NbU9eXN0vlM5NmuhsnZqjLzsbyDVHJnYxcGOJm/1NfXOJkhVIp8JJfosyqm8sRtajSwG6C6gTCj3TzRHJMmgdb5SRR3DkSmauuq843cVWrAM0anqi7Qa6UdElgMnI1XileMR61hlrfpCLgFapFq5HPijsmplsmiPfVHQ8NR92YJDkLUCjga064bkwnwcUN/gsyyfX8v0MV0ih5Vc7XuuPBae4HsftGmlZ4Nd/nea3rX5UdiVTWCsek4bioO75v4pdrzkbimavYN2kIeJXrxnU91AJyJmZSQkZ6nDqup3ZPi0loAtHzkToCviUZz3Dp91BlHa8qT8P1UKc4C8S5exInSpon8GIm4xH5Jk08jaythnHfJFu/jci+rMSOBL5hMBi0mNxT9f953fE4bf6gIWsY0wkvfaq1nPe5n3xAaSyZMRVM8hKh3B9uetWxEWWfm4asUhl8SBIEoStB1Lzgxsy4rzmu0sBukiAIRfDQdb0guCPvm2yQZn2RIAjFRTtLikTT6ybuRVvYoTqwO55gT8tK6eg+6qB7zHUD0PimP0GJRpXzNVqKU3ZMShkLxgBqkwGSlASmmK/R8ZUNuockL00CjaxqtdziG4I9LUZ2M8XzZiJSYSBu6XcyZWSSdaNwnsQlm6PvVVmxIXrWkq7qESRpmN3TWtaN0mSe5Oc0lSRRdC+IS66aJhL7iHyTpH8lRWnT6NyPX4XGbHnx6LN6gmAvSVbhy2zCF5kSP2EJekDtfE3UKohg3dQcFyLHUFaNT9b3NW4VKSLfJHreEOzzdcdFw81WUlES36iMHyV53jAYDDpMJngB4PO/u1y/IYxpiZxt4fb3v77ltZPX3mPImmMDTPISoVwsoOKVAADVsWFln5sVsipRECQr6p3oRZsk0z3GZY6gzGo1hW9MB3ajpVgpLgyJAruKlVXioh03KaGqOLCblIAHwrKoKu1Isqep9E3DcQN1hWnledxeUVRB9/GYqlWARi0qxreYt5Gz5fq+ZEWFEC2BqjIgk4ysUq88F+NbyFnI5+KVBDZNwNP5Jr4KoUQwX4Wf87aFgqRvKM4kQPxknkLOCta62j0teVKRSt+I0s+2BRRlfUOU8FWNuZcUcjYKOd83Ss9pCXokUlQIio6vfAnrZmlTw2foqG9UEhHVBGdoCiIi+lnG+xSn8Y1CwjmcI/GTilT2sk6T8KW6p3bcO18hZyNP8bxJUa5ZdTUcAflEK6Iy57HXDdFZIElyBEmlosi6kSz9npVqOFS+SRIXYDAYNPjAHb+Y8trkErwMRi/85msWTHmtXfIAQw2Y5CVCzrYwhjIAoFo5ouxz0xxKlWanNj/LsuL38TJ90aYO7MYKuhOUBG5ViJglecM+mnJ2FHM2BIejUm2WTIWgXtHUoqySDFDRKeAFESEbdA+DIBQX3CTZ1ErXb4qys8qTIxrxlIA52wqIArVB9+Q94NWqReMRqwChWjRm+UzbtoJnDola1LDKOlmJVSq1aLz5alkWzT4fKHmTJOMRlLxLcCYxXdXDsqwwoEqgBIyXVKR+jkTPJJYVN3HFbL9kIJzbFM/gZOuGYk+zpX0j9hGVfZsn2yILkjtfCrKKQmVdzNuwYyZ8qVdZJz+XmFYkUihokyR8hYQmUfskwyrNJO1owueeegI+Z1tBokFPO8j6Nsfb0yzLCqoJUfgmUfszhb4R6yZOwhdV4krchC+qc1qShC8Gg6Ee4zUH657b2/IaE7yMpGg3d/72PzcZsOToB5O8hBi3fJK3Pj6i7jPTECJEQcz4ASrVh9L4FwbKwK5pRWIS1RtVYDfufPV9QzAmaS7aBMqqJBdtKrWo8fma4DIngsBKSxMnUO+QBd0TBB8oSq5nJjkixd6qPOguSCLJ5Aj/vZTkqllFYiKymUgtmkRBS0MSuYntoHjeyJZnBGjIOyBpUoJ65XncJA2Ado4kSqAhOqfJljkHiBIUa/H3Vpoe8MmfN6ZbSABU6uZ4bXEAmiS4JOdWCmUkkD11c6znTVYIzWA8VCt5E6wbArIqbuskgObOF103sjEbqlLaic4CFOsmiGOZbbElkr+T+MZ0zAYg2ksSrF8Gg6EeZ1x/b8vXTPAy0mLyHPq3h7cqbZ/J8MEkLyEmrH4AQH18VN1nJgkMUQZB4lz4s3QoJQk+xA+CkGZAJugHSNXfJYkKQWXwMM1FW6miOMFFW/iRat3E2Uso+pyKy1ws9Q4xaSaduELVTywRuUqnaMpK0D1eL3qiddOcc6UY85WC1Ez33FPf4zRTatE4viEkvmORZgRKwCSkWR8BeQeECpFEanwCJWCis6vpXo3UyREZuVckWr8EPU6TVY4gOqcZJlfD6iLZmCOmz0ZAZJ7E2V8pk3kS+Ma02psq+TtJjCIkzhSqNLNCwKeqAkdTStv0PKkmmCMUvaxTlY3OQDIe6VkgxhmawWCoxeRSuv+/955ryBLG0YbJRO9pf/sDQ5YcveCnJyEmrD4AQGNiRN1npjiUmi5/20cQjInakohcPZpVb4mCQooDuwnIVUolr2llVaILVFEoErNQzkw9cZY1ItF0T20gXTZ1VsrOml43pSypRUl8kzzhi6q0qSxCtShR2dkEQXe1xHc2gpgTCRJoKM4kQHaCh0nUZsE+r1JRnKHElewo4FPYodQ3yVXWZEH3rJR+T7S3ml431EmsceZJXrkt4jmaiNAkaKthukQykEzxTZkwEkvtfZSvm4kE93ESBXyqc5r6cs1JWq8oJ+BTxEpMV29iMBjq8INNu6a89rZliw1Ywjha8We/9aqWr7k/r1owyUuIWs4neZ3xYWWfmShARdjLJI5ShaKXif95CQKZGSmfmZVMd7KevKnKdxkmiSgCZRmZI0DCMoBiTAz3E6MgIpIRq1RB9zRVAQjIKsMJI1kKuiexpUSgxs/KuknTU1t1Ke1EKuusJCVkjTTLgFqUsjpBsmA3gVo0wd5KtqcZTgZIlgTXtMO0yjogm2mS8RLNE+PPm2yc5SlIb//zksyTbJxdw/lqdo5QkHdARHkeY58Pe0ir74Wb5HmTFZW16nWTZn81fU6jSY5ITnpT7WnmyzUzyctgmMQ1//Z4y9dcppmhGmsufPWU1/aOTBiw5OgEk7yEqNl+uWa3qq5ccxKSiKJ3x0QChWbUDs/zlNmSqOROVoIgFL2zMqKYSWoLbfBw+hHwVIHdNEFmlYGhrJTuStQbmLpkVoygO00pbZHMY5YkykqAynE91Jw0PRLVE/DTsScvxfp1XS+sHJGgl7XK+ZqkNDFFf+80KkCV5zTP81I9gykSrUwnwU2kUJpVGy5cV71vzBOJ2WhHk0bNVGu4cBT5BshSVYAEZ3nSvs0JfOOo9k2afV7l8yYbKs1EZ+jms6nhekp7sqVKMDZ9ds0YkVhzXKW+SbNuVBLwSRTwlGfoJOOh2jfT+T7OYDDUYLKicvONlxqyhHG0Y3LywBv/fp0hS44+MMlLiHreJ3k9hSRvVlSaiUohNQ9rrocgUK7ElowoRNIFu82q3soRRaJKAj5J8DArpX/6CpSliZNdKpX6JivlzBJc5kjK3zaSqJnUB92BZOXMaOZrknLrTTsMV0koEwR2o/PNdMJIKjWE4RKNYuwaroe6orNANaKgSxLYNZ2UQKpajbGPiIQO1wPqjpp1U3NciEdXLAIgKyVFKUizRvLzItA639Og7njB/hgrGSAj5TMpkpuqCVSAUZtV2dJw3GANxnv2ZUPdTLNukp/TAHW+SZzwlZEkuLAEPUVSUXyyWaUtLQlfppN5MpKEHlQ8S3AmUWlLa8JXfMKZph1NErW32YSv6HxS6Zs0ynPTLeEY0xu33HILli5dinK5jBUrVuCRRx7p+N477rgDlmW1/CuXyxqtPXrxwC/3THnNsiwDljCOFTz6kVUtX3PZZjVgkpcQjVyT5K1VlH1mmlIqpsmqliCIIpKo7rhoNANUplVeaUppmw6UCTs8hQS863qoZaQnb2Z6WSe4aEdtVhXY9TwvCDInKrluOmiXp1u/Sfc0Vb4BMpRNnYJcJSkDmPR5o2hMWkjeBEFmijLnicpWGp6rFEH3Vt8k6Q+s3jex9tYiYQWLOEF3gsBu9LyXmUSrWEQigW8yEnSP7tPl6dhvlVLJG2eORNaYOt+kTFxRWnElG6rVJAlwJL5pSfgym7iSrMw53ZkksW8U2RKd97FsyUhcgHZvjecbEdtX5ZvoPSlWsnNG1M2USRpxzostvlFkS81x4SZIxqNQWXNP3mML3/rWt7BmzRrccMMNePzxx7Fs2TKsXr0ae/fu7fgzQ0ND2LVrV/Bvy5YtGi0+enH11x5t+ZrLNDOoMW9GacprVYX3l2MVTPISwi34JK9VHVH2mWmUkRT9MuL0vivkbORtq+Xn0yJ60I5zQCYhErOSOZySrFJFwLdctE2TVSkIeIrSxLHsiARBVM2TaiNUViVSaRoujUh64TccdE+auBKoignKAGal1Fys8tUEgd3wuWfDtuUzW/tI9pIUZaMV+iZJqchogEpVQFX4ppCzkM/FOAtkRMkb9tRWr1qNs7cWchbE1Fa1l4h5n7MtFOL4hrTiSjZaN8Q5C+RsC0XF/b3FXmBbQDGRbwh6wBuuhpOkTYFtW8EzR9V8FXuBZbU+z3qBpmJDkjN0NvrP2ralvMJIdP3F8g2FgjYFkWg6gcayLOXzJLonJW1VoArJKp0QkM2Bb+TnqmVZyhPio+svSfLZmOlqOBnpP9viG1Uxm6TJeEW6Z3Ccsytj+uLzn/88rr76alx55ZU488wzceutt6K/vx+33357x5+xLAsLFy4M/i1YsECjxUcnuEwzwxQmJxOc/pF7DVly9IBJXkI4+QEAgFUfU/aZ4qAdh1zNSn+X6PtVZfyJg2DcIAjJmCQhqzISxKQg4KNjazpAlZ3SpvEv2vmcjUKOLjkiSWBIJZGYlZ5zSeZIzraCwDiFItG0yjpZUgLBniZUbzH2Voqge5KAHRD6UeVeUk0TdFdJNid47lmWpXyeJCEhgIiS13DLhEBFRKCAjxPojgYPVZ8F4qoysqJooi1NHO8aVibc0+KUZCPt72244kqSNgUttqje0/LxfENK4GVE7R3nbERhS0isxkz4Kqo/CyRJMM5Kb9Ho+5X5pvk5xZjJeFlJSiCtZhX3fKT4XCI+J24yHkn1tRR3T7V7WvxkvKgtY3W18bR8zGS8rCRHMKYnarUaHnvsMaxaFZZstW0bq1atwoYNGzr+3OjoKE466SQsWbIEl19+OZ555hkd5h61aKec5DLNDJ341w+saPn6pvueN2TJ0YG8aQOOZrgFn+S1G+rKNacpKUpzcYl/0R6ZaCgvA9gXM0BFUQYw0YWBsJR23MNxXyGHkapC3zREQkIy1ZvK8rdJgnY0/ZKTX7TrToNE9RbrMpeRUnMkwZhI0C4OygUbNcdVrhaNm7giSCKV/ZIT9a8sqg/GBP0rY5BVwpZqw1UedE8exKTIdDes8BJl32P6plywMV53lK+b2M89gjLJqfrwZSAZr1zIoVJT55uJBD1OhR1ABhJXCM4kSZI0AN+XwxMN5YrEpHsaSWA3Vil8gsSVFGNyGHVlz+A069f/eQK1aBzfENxvkvrGH5O6MluqCXpqA9mp3kRxhg6S0BP6RrVaNBt7WhKSl+5+k5RIVPa8SaA699/vj4nKBON08bRsxAVU2pL4uRfEBdSVa046TxjTD/v374fjOFOUuAsWLMBzzz3X9mdOP/103H777TjnnHNw5MgR3HTTTXjTm96EZ555BieccMKU91erVVSr1eDr4eFhAEC9Xke9Xu9om/het/dkFXFtP/2j97d8/cInLzL2dx9L454lmLZ9xdKZLV9/6Ucv4s9/8xSpnzVtexrI2h73b2OSlxLFGQCAnFIlb0ayQhMewFRnuicO7GYkw5xSfRf3oF4SJK/iy1xStXdWSvFm5aI9ojCwmySYCtBmmCcpn6l0/TaSX3BVBt2TJ66oVwKm6clLU9I7rupNbfAwyVwFaIOHcchVGt8kVyEcQl25ItG0iij6WYn6NhMQM3FVb8qDh4kDu+oTV6ppEr4Ml2iMvt/0GVp1+dvoZyWphkNTJcHsPp+kp3bUDorzUZJejSrXb/p1o2pPS/e8MZ24ovouHrXD9JgkPaeFLU/MJuNR+iZuMp7qfvRZmSNA9uICSeNpygn4DCQVcU9eRjesXLkSK1euDL5+05vehDPOOAP/9E//hE9+8pNT3n/jjTfi4x//+JTX77//fvT39/f8fQ888EA6gw1CxvZnD1kAwrV25asd3HPPPYRWyeFoH/eswqTtX1wJ/PmGkJ581UfvxxdXyicQHc3jPjYWj09kkpcSRV/Jm1ep5E1CiBD0EElSHir6fuWZ7okzIM1ecIOM3SwED4tqFRFpfUNCfBsuNZf0oq16TLJ0mctMObOEBHyo8jIcBKEoA5hiTyNJBEig5FVpS3JCJBsJIyQqhIQqa9V9tdMGdknOAqZLmyZMXFFN4CUtvUebuGI4OSL1XpKNxBVVz72ktmQtURIgKAmcgUTJJKQmxd5aTbiXKD9DZ2SORD8r0bohSdKIt5eoHpPUd0+CM3SsZLw8wTktZUlg1QR8XDto1k2CSkWZOgsojtkkrLiSpWcwY/ph3rx5yOVy2LNnT8vre/bswcKFC6U+o1Ao4Nxzz8WLL77Y9vtr167FmjVrgq+Hh4exZMkSXHTRRRgaGur4ufV6HQ888AAuvPBCFAoFKVuygji2//kkFe/f/O9LKE3riWNl3LOGrNj+5xta5+Mll1zSU/SSFduTQNZ2UYFAFkzyEsIq+UregmNWyRv20SQo3ZXwEqW6J28WygCmKtGYBZW1uEQpLgOYWCFiWPUWkGYEl8qkF+2jMps6I+qd1GOiOHElaW9R4/0rCYOYSQl442QVgTIjTYCKplRkEpV1mDCW2o4MJRUlU1lTlGhMOV8NJ3wFiWeGE1do2mpkjKzKAJGYxjckyqrY5zS1Z8akybS0FVfMPm+yUiEoSNhMfIbORm/R8boDz/OU9N5LnIyneN2kTqBRmVSUJBkvc2XOs6SAV79ukrYKUrVuUlcnUFZFKl1SoOlEScb0RLFYxHnnnYd169bhHe94BwDAdV2sW7cO1157rdRnOI6DTZs24dJLL237/VKphFKpNOX1QqEgRQjJvi+L6GX7dd98ouXrzTdemplevEfzuGcZpm1/5dOXYemH7w6+fvX1D+CVT18m9bOmbU+DXrbH/bv46UkIQfIWXXUkb6KyTM331hwXjusZsyNqi6rAbvoAlXriO1mm+9GbsZuFUtpZKQOY+KKtOJCZvreo2TEJSQj1F/5k/cQoAlQxs6kVz5GG46Lu+M8L40H3xL7JRqk50VtZ1RxxXA81JxvKqomkvQkzEnQvKw4euq6X6Bk8OeiuAomVvIKAN6yyVn0m8TwvWQn65vqtNVy4is/QfYbHJChNbLi6SNQ3sfa0pt11x0PDUZQw0kjWzkJ5O5qU/StJEq0S3D0broe6It9kpUXPRNL1S5kcEed+03yv6yE4S5iwA1B/LslK/1kgWRsJse84CtdNVu58E2nPaRT3cdPrJmmipOKkhKy0kACSP/sY0xNr1qzBbbfdhjvvvBPPPvssrrnmGlQqFVx55ZUAgCuuuAJr164N3v+JT3wC999/P15++WU8/vjjeN/73octW7bgqquuMvUnTFt8d+POlq+zQvAyGFGoioscS2CSlxB22Sd5S864ks/zvGTBw+ghSX2wO+6hVK0yI1Ctxs4cVnso9TwvDAwlVIio2sDSZjGrLgmcNAhCoXpLQohUFQZ2E6vNFJNEyUub0mXsJkpcaahLXEna05OMSEyqWlWsIop+tpQdFEH3lP1WTa8b1Xta9HOSlGhUGnTPCBGRlZ681YTrRgQ9XQ9BckVahFU9Es5XxcHDuHNEdYnGmuNCHLNi9RaNvFfVmFQTjkngG8XJEcmJGTX7SN3xIB7lcQiAVt+o3dNij0leLRFRTZikofq5V3dcNNz4CV/lCGlh+hms/nmTjkikSMaL1QM+8l5lKs2sEPAJkzTC8rdqxiNxMh7BukneoocqUTLumcR/v6r2AI7roZagUgLFukneVkOtWCErLSRc1wvO0Vyu+djAu9/9btx00024/vrrsXz5cmzcuBH33nsvFixYAADYunUrdu3aFbz/0KFDuPrqq3HGGWfg0ksvxfDwMB566CGceeaZpv6EaYn3/vPPW76WVUsyGNSYPBdPXmu+R/R0w7QjeW+55RYsXboU5XIZK1aswCOPPNLxvbfddhve8pa3YPbs2Zg9ezZWrVo15f3vf//7YVlWy7+LL75Yia25sl/nv+SpIXkTBw/z6i8M1aQXXNVlABvpLtrqgiBeQDYl6fUGtPo3DTJTlikt2awoUJb0ot1H4ZuUQXfVqjfTiQDRxJUkJbOADAQfVBOJiUtmqVUkRsc1+gzpBZKge+LALpF6J/HzRr1v4gQySwWKoHvKfquGVdZUwX8gTM6RQdRudYkaaZ/B2Qj+q9tbw78naWBX9TM4Prmqtg+f8HGc0uKAet9EPyeOb1ruN6b7e2dEyUu1twKtz5BeKOZs2E1RiPKkhIwksSYlEimS8eLsJYWchVzTOermSbry4spIs5RKXtUVLIB4a7iYs2EpXjfBWSDGmQQgbA+QsLqI6j0+ri0k6yZl+zPlifnGE4wjvolpC2P64tprr8WWLVtQrVbx8MMPY8WKFcH31q9fjzvuuCP4+uabbw7eu3v3btx9990499xzDVg9vbHh5QOmTWAwOuK3X3dCy9es5o2HaUXyfutb38KaNWtwww034PHHH8eyZcuwevVq7N27t+37169fj/e+97340Y9+hA0bNgRN1nfs2NHyvosvvhi7du0K/n3jG99QYm++PAgAKHsTgJv+8hI93MY5qNu2FQRCVF/6TRN4SXvOlYiyU4G4wcPsBKioVG+mgzFJL9rlDAXdlZc5z0hfs2rCAFVrNrVicjVp4kpW5ojiC38pb8O25cv3UATdqwn3kj7VwcOUpU1VB7qLCXwTBA9NB+2oys4mfO6pHo9CzkI+J29LNHhYzUjwMCsqa2XJEc29NWdbKMTwjW1bKObVqrxS9+RVfF6M/9yjSY7wfSO/p1mWRafSNDxfEyc3Ke7pKcbDsuIlfPm+oXkGm1Y3B2eBjJQmBuL7RnV54qQtejJDJBKVvwWS+0ZdL9yMEHhJk5tUCwRS+CaorGU46bovI8+9IHFF2T4SEbTEvGsxGAw53Prjl1q+ZhUvI2v43O8ua/ma1bzxMK1I3s9//vO4+uqrceWVV+LMM8/Erbfeiv7+ftx+++1t3/9v//Zv+OM//mMsX74cr3nNa/CVr3wlaOYeRalUwsKFC4N/s2fPVmJvoW8o/KJeSf15QWA3Z8cKHgJZ6hVFoxbNyoXfthArQJXP2SjmaErxxh4TxWUAgyBm4nJmaucIEO8yl4sEdk1nylJlmCfu1UgQoEqauKK+F67pMUmojFQcdK8mrJJAEXTPivI88E3S9assQJWMNGsJHipSaSYvn5mRICYRIRJ3rrYED42Tq1lpD+DbrZr0TlICUDUhklalqZ4QSajwUk0Q5e3YPcGoEjVM+yZxC4m82r1VPCv6CrnEvjFeOUJ5mfPstZCI6xs6As9sKe3sJKGHvomTjNdii+m4ANE5LXaipGIlrxjXuEmsAEU7i7QKeLPJEarvN0mTWBkMhjw+/YPnTJvAYPTEsiWzTJswbTFtSN5arYbHHnsMq1atCl6zbRurVq3Chg0bpD5jbGwM9Xodc+bMaXl9/fr1mD9/Pk4//XRcc801OHDgQNfPqVarGB4ebvnXDqW+Pjhe84BSHZWysRuCQ2nMYAxAcOnP4AU3lh2KFYnRC1T8izbRBddwxm7qC4PyhIQEF23FCvikF+1S1gJlign4uKq3VlsMqxCCvcRwuXXVQRBBaCbIpFbeYy2x6k3x+m0kC1CVlGe6J3vu+T9Do4gwfhZoiKCdWUIkaYAZiJxLTO9pisnV5IlnqkubJl836ve0bATdk/YGplK9JSnPSHevSPa8UZaUkJRszkh7j+jPGE/GU10NJzPJtMkTV5TfPTOSuJK6b7Pis1Gis0BGCDz1VRISJkoqvnsmVRQD4RlT2Xk+bfK3Yt+Uku6tipMjuB8vg0GDzftbhWes4mVkFd/7kze3fL30w3cbsmT6YdqQvPv374fjOEETdoEFCxZg9+7dUp/xoQ99CIsXL24hii+++GJ87Wtfw7p16/CZz3wGP/7xj3HJJZfAcTofVm688UbMnDkz+LdkyZK27ysV8qig7H9RS6/kTXOZowoeJu4nlplAWQYCVIp9k7ZXFAW5GgfKA7sq1o3xskzZCpSZDqYCFORMthJXYgdjMtLvHKAM7JotQR+qRadnKfwWW4z391b9vGmuX8Ml6JMmwAFh8PBoK22auuecYfUsQEnAm+0znroajqrkpqA9QILnTUbWMNk+bzz4n6EzdNqys4pbSBg/k6g4C2TkXlE1XeFLccJmqrOA8moayQi8o5VsHq8l941ywjlhix7Vyd+pE1eUtbJgkpfBoMQFN603bQKDwSDGtCF50+LTn/40vvnNb+I///M/US6Xg9ff85734O1vfzvOPvtsvOMd78D3v/99/OIXv8D69es7ftbatWtx5MiR4N+2bdvavq+vmEMFff4XtZHUf0O6zEMitWjMgAyZStO0ajVF8JCs/13CwJBpIkJ5lmxCFSCQHUWi6lK8WSlznipAdZQmrqQt6a066J5u3RgmqxSrZqoJlbxUCvgkvqEKHpruIZ1UZU2VeJZILUqWVBTPFuWVI1L2GTc9VwG6M3RyIkKtHaaD/0nPrUAk4Uu1SjNp6XfDPU7pyLsklSPUqiOrCdX4WTm7UrUpiHsHBiiq4SRMjlC9bpImAuQF2ZyB+01GyNXgLGBYeZ6V8QAI73yGq3okTWKlKqWd5CzAYDC6w/O8lq83Xn+hIUsYDDlMVpp//6mdhiyZXpg2JO+8efOQy+WwZ8+eltf37NmDhQsXdv3Zm266CZ/+9Kdx//3345xzzun63lNOOQXz5s3Diy++2PE9pVIJQ0NDLf/aoVzIYcwr+V8oUPKqyDxUfwjLhgohfmBXNQmRnkhUlz2cjUtUamImE5e5jASGiHrhmu6dlSZxhUrllZV1k5USq2lKAptWfGem76vi9ZulxJXURKLywG6y4L/p5x5AUS4yLQGvat0kLbeuVuGVJUVi8hL0NMR3UrLKdFIgQOGbdEms6pNHk5/TJgf0kkBJ2Vnj5zS1yU0qEoyV+KaRvK1GeIY2u78GCTSKS78nLnNuWNkc/Rll55K0JYFVJdCkVeIr3tPiJjcB2akEV1aesJkwPlEM168K36RJMGYwGN1x8tp7Wr6e1V80ZAmDkQzX/n9PmDZhWmDakLzFYhHnnXce1q1bF7zmui7WrVuHlStXdvy5f/iHf8AnP/lJ3HvvvXj961/f8/ds374dBw4cwKJFi1Lb3FfIYbSp5HUmRlJ/XppDqepM97RBd+UBqqQlGjMQoMpM+T0qFVHiUnPmVW/KkwGSXrQV+ya9IlFVoCx54gpZL+uE5TNNq2ayolQBIsEHBfO14bioO14iW6ieN7FVb0SJK6Z7i7quh1ojXWlTZWcSBWpRJQEqFcFDBevG87zUpbRVK3n7Eu5pNcdFw0k/T1SsGxVjosI36s+LyXzjuB7qCnyTSgGvcE9r8U3iJFazZWfFmdv1/LWTFiruN6rXTdKzgLIkuITkavTsX1Xw7EtKmgGESawZaZkQe29t+rKRqT3N8F6iOhmveRYQxH5cO1wPwX0gDZI+96K2mG7d0Kd4T0tbbt3zFO1pKXzDYDAYjKMPm2+8tOVrFfGaox3T6gm6Zs0a3Hbbbbjzzjvx7LPP4pprrkGlUsGVV14JALjiiiuwdu3a4P2f+cxn8NGPfhS33347li5dit27d2P37t0YHR0FAIyOjuKv//qv8fOf/xyvvPIK1q1bh8svvxynnXYaVq9endrecsHGmOeXhq6Ppyd50xx8VJatdF1PQfZ/NlSrtYYLx1V5YUge2FUVBEl6YSgpv1QmDIKoDuymCIJkpexdVhSJYjzqjqfENyqyqbOjFjWcpFFQG6CqplGLNudVVYEyI0oCmiar0irxVQcP0yUVKbAj4t/EqhnD/VZLioOHafrwBb5RsG6iwbak+7wyQiRlchOgJhkgVQ94hfu8Ct+o2tOqSZ97EQJUhS0qkvFU2FFtuBCxA+Ml6FP2BgaACQUqzTTlM1XO17rjQVzXkiZaqVbyxq/qEVk3Cp59qRTwChNG6k54l45dWYuq3HqKPU3FmKSrVKTu7Fp3XDSEb+ISic0xUXGWB9IoedU+b1RUkVJxhq5nKIk1bVwAUFN1Jc05jcFgdMaT2w63fD25DC6DkVVYltXy9WRFOmMq8qYNiIN3v/vd2LdvH66//nrs3r0by5cvx7333osFCxYAALZu3QrbDg+CX/7yl1Gr1fA7v/M7LZ9zww034GMf+xhyuRyeeuop3HnnnTh8+DAWL16Miy66CJ/85CdRKpVS21vO5zAKn+RtKCV5zV4YqimC7lnpq9ISBKk7GCilWwpp+iKp9E3NcYMgSFIFrfkep62B3Rm5dLkoSXt4AWqTI6IXbeOXuZSEJqDGN6kSVxQrEqspFYnKE1dirptSoTVAVVDmmxSBXYVBTCB+9j9dKe2YSRqTCJG0vlFBVqkJlKUn4FUFD9OWJgb8MSnGnGOTka5/pVg36gJlQCuxIAPllU4Sqqyj632i7mBG2nOairKzCoOYQALfZKRUZDFnw7b85IiJmoOhckGJHcn2NHVkVTRIbfqclnSfL+Rs5G0LDddXvs5EOt8EFSxSlARWsW6i42pckZjwfJTP2SjkLNQdT0kyT1YU8FHfxFXAq7xnAdEzdDw7ijkbluUrEsfrDgbT7mkJS4sDapOKWp43CRMUlbf6imlH9HlTrTtAn3nfqCSbo58b1w5llcYSVico5GzkbAuOsudNct8wGIzOuPyWn5k2IVtwGsCWB4Fnvw8M7wCKA81/MyL/3/y6bw6w9M3+1wzGNMC0InkB4Nprr8W1117b9nvr169v+fqVV17p+ll9fX247777FFk2FbZtYcISJO9w6s/Ligoh3aGUpqdnKa5qNd8adE9L8gZBzAQBYpWlPKNZ+8nJKrNBEOWB3VSXOXUEfJp1o15RnIwQKU1SIagKumdJkZhUbaYuQJXcNyoDVEn3Vv9nFAYPm+NaytuwbavHu1uRlX6rLYRIPT0hoqLvq4qgnVi/xWaQJw5UJgJEbYk7JoWcpTR4WE3hG4qgeyFnIR8zqaCUVxs8TKqytiwL5YKNibqrKGEkvcpapWo1iW/KRRrfxCXwfN/kMFZzFBHfyX2j8nwkPiNvW7GTcch6Ayecr6PVhtJncBolr8q7Z862UMglfN4oTsZLmsxTdxpKn8FpKq4o2Vubn2Fb/nkgDlT3og+eNwn2tL7mnqZCkZiV6gTiMywrQZlk8bxRloyX7HwUfd6YrhyhUgEvnnuJfKPwLA8kr7gC+P5U/bxJIppgMBhyePKGi0ybYAaNGrD5x8Avvwc8dzcwflD+ZwsDwBn/Czj7XcAp5wO5dPECRjy88unLsPTDdwdfHxmvY2bKmM3RjGlH8k43VO1+AIBTHU39WVnpixQEdvPJA7umlby2baGUt1FtuMaDICozzNMFqBT3eqslC4LYttrArpqevGYv2qp9k+ai3VfIYbzuZKCcmcI9LTLPYpeaowpQJfTNWM1RW6IxVdBdQdnoRvo5Yrq/dwshosI3tWS9gYHIM9iwiqikcP2msUWsm4qq4GGqs4DKpKL05dZN90gE/Pk6UVdzTkuleiuqC6gG45FEGZlXvW6a5GrCwK6qoHuqsrMKE61SEat5xWeBlETiaLWh9M6XplWQyqoe5bw9pXRbL6juyZu2KsDIhGrfZCMuUC7kEvtGdd/XZJW1VO5p6Z570c9IZUctTKCJ7RsiJW8S3wT3G4VJRabjAtHnXlzfqDzLA+n3EnXPm+QJXwwGoz0+e99zLV8fU+RYfRx46YfAL/8LeP4HQPVI+L2+OcBrLgMWnws0JoBaBaiNNv8b+f8DLwKHtwJPfcv/1z8PeO07fcJ3yRv94C5DK5Z9/H4uOd4FTPISo2b3AS7gToyk/iwR2E16OAbUlsxKolpVHdhNlWFezCkjedP1RVJfBjBV5rDqy5zhwG5W+iWLi3Y5nzwIopzkjVnOzLfFxnhdbWA3SbBbadC9WaaqmEAtSrVukl60x2qOIgIvfYBKDWmWghBRTiSmGxNlvmmk2NMUEiJJExKA7KisAd9+VSSv8E2S0qZKlbwpfKOarEqfoFg3TiSGfSPNKlWo1KKmSaK0ykhVdqhQRqqq6pHq7FpUlzCStG9z9GeUEpqGewO32JJmnii5V6hIYjWrxFfZix5IV72JoppGmoorpu3oU1w5IlWCE8VekpE5kqXnjemWCWl8w2Aw2uOWH71k2gT98DzgoX8EfvwPPlkrMGMBcMbbgDPeDpz0ZiAnQYd5HrD9UWDTvwPP3AVU9gG/uM3/N+tE4Jx3A2/+c8Au0/09DPzD75yDD37nKdNmTAswyUuMWq4fcAGvWkn9WZm5MCgp3aW6ZFYyWw6jrqT/XdbKMqW68B91gd1skFUTChSJqpMjko7JIdQV7SXJE1cogu6mEwEANQkjKlUzaZ43KlQzadaNakJETb9VlQRecjtEYkMapFFZqz4LqKnYoE5lnU55fvQkAgApFbRKfZONgGoq3xAlRyRTNxPsaYYrNoREYvK5quosUE2psgYUJfNk7O6ZbP2qI72B0DfJkmgUkquN9HPE9N0zPLeqJRKTzNeSwhK4aSoVUZQ5N03eAWoqnZiuIqVSrKCkb7OCs3yLLYb3kjS+YTAYvfHypy41bQI9nDrw/b8Anvi6//XQCcCZb/eJ3SUrADvmGd+ygCVv8P+t/hSweT2w6TvAs//tK3x/8lngyW/CuuwLqv8SRgS/+/olLSTvaLWRunXg0Yr4t1hGLNRzfrlmrzqS+rPaBmMObwOe/g9g/FDXn1V5YahmKniYjT5easoyqcx0TxGgUn3RNkwAqCgJrKQ/kwoiUZFvUhEiKgO7GSvRaLo3cIstCVXWgHlllVolr1BGJh+PaiYSVxQqq1I8g9WSzelVGerIqmyUJw5KRRpWqkwoSATIgupN6Zg0Ujz3MuMbxUF3FQSeikSrNFU9KBTFGagckZWkTSUEnuF7FlnFlST3CorkCNN3TwUti1SV0k6b/A2oIc7S+Kak8pymJMnK/Bk6OKeZThghSCpKdc/KUFUPlbGSJL5hMBhT8aPn97Z8Hbdi3bTD+GHgX3/bJ3gtG7jks8BfPA1cfCNw0sr4BO9k5PLAaauAd94K/PWLwO/cDsw6CTiyDfn/77dxzrY7AAW8D6M3zrrhPtMmZBZM8hKjkfdJXqueXsk75QA2shv46kXAd/4AuOnVwGN3dvxZtf0r01y0qXpWmQ3IqCCrlASYa8kDVFT9ko37RoF6JysXbXVBkKwkR2Qj+K+iDGCW1o3pMmIqg5gq1BCqgyCplICmS/FSJAJkqHxmKuJMRSntINidQmWtROGlQi1qPqlIrVo0vcpaRZ9xFb4ZrzvwPC+1LSoIPDWJVmmSAtXvaWl7wCvxjQKVl4rEQBUJNKbb4gQkRMOF65r1jcr5mipJgyK5yXBSYPRzTCfBKalgoYJsVrCnqX7epGmZoOIerCK5yfTdsxQ5t6rwjZIqUoYTjBkMxlRc+S+/MG2CPhzeCty+Gtj8Y6AwALz3m8CKP6TrmVvoA876beCah4A3XAUAOHn/D5G/7a3Ayz+m+Z3HOC47e5FpE6YF+AlKDCc/AwBg1dSVay4XcoDTAL75e8DITiBfBpwa8IMP+ZtbG2Ql+C8OgnXHQ8MxfXlRWPpHQWDXdElglVmyQMogSEbI1ayV0s5CSWC1pU1V+Ead2juJWpRq3ZhWZqQq8ZZXH6BKq6xKGwRpOC7qjv8ZqXp6qlQ0GU5KCH2TTnWe1jeu66HWSJ+4orIUb7L1qzB42CR3SgnsKCn0jed5KRV46tT4ocrarKIpjW/Emnc9oJbyDJ3eN9lK+FLTZzx5dYLoubua8tnneV7KvYQiidVwmwIFJASgxjfClpJhUjNVL+u8wuSIVAkJvh0N10NdwZ4WnEtSVLRS8bzJDNmsIFnE9RCcf5MitW8U3rVUEPAqyOaqgj3N89TuaUnGpKQwnsY9eRkMOvzor843bQIddjwG3PZbwL7ngMFFwB/8AHj1aj2/uzQDuOxzaPz+XRgrzoN1ZCvwtbcDd/8lUB3t/fMMadzy+68zbcK0AJO8xHALvpLXVqDkbQn+v/wjfzMrzfSzR056M9AYB+7727Y/S0GIpLkwAOkJgGhgN1HQTmWGuYJgjNIepylICEfRRTtdaUSC3juGA2UqLnOqgyCmlavZWTcpkkUUrhsgpcpaZTkzFXYoCFCl6UuoMkAVfV6lUzSpJL7NklWpVG/FMECVlqyKKnCNlzZVUDlCSS/rjBAi1ZZ1Y7Yk4USKfV4k8JkOYkZ/ZiKlSjPqm7Qqr7RQ0RtYiRI/RXWC6H6cdr5WGy5EfoXpMqtp1o3S6gQpiNXofpx2vrasmzSqYtP7vMrqIgqSWFXYEl03qVSahtvAiOeN0uSmlM+btOum5kT3tATJZyp7WWesilTadZO2THLNcSEKHJiuzJPGNwwGoxWTE3VPnjdgyBJiPPt94F8uAyp7gQVnAVetAxYt026Gt/Q38KPX/D2c173ff+EXXwG+/CZgzy+123Ks4MP/8VTvNx2DYJKXGG7R30zthoJyzVGlytP/4b94zu8Cc08FLv2sX3f+2f8C9r8w5Wdp+r4mOaSrC4JEAzqmS3lmpXxmutJdEd+ovGibJhIVlGUyvW5U+qbueHCatznTfefSkKtZCbqr9I3jegHhlcQWiiCI6SQNFWXOo5+TFNG/JYniW/gmSyVFldlhmKyK/i3p+jWaLW1KEzxMR4ikXcPRnzc9JkqUkYaD/4WcjVyzn1ZaUrPFN6kSRlT2JjSrekujWs3nbBRyBL4xnSiZOUVxfDtytoWiIuVqWt+QjElWqnokOrfaQSXF1HdPRWcB43e+vMI9LUXydyFnQbRvTJuUED3nmU4eVVHCWk01qzS+sZFvOif1npbSN0rHJIVvGAxGK37z8z81bQI9Nn0H+Nb7fLHbaauAP7gXmHm8MXMauT64l9wEXPE9YOYS4PAW4OvvAA6+bMymoxnf/MU20yZkEkzyUqPgl2vOq+jJ2zzYDuQawHN3+y+e9dv+fxe8FjjtQv//n/zGlJ9VSYikybi3LEtZ8CF60DdOVikIdpv2TTFnB5e5tGXv0gYPj8Z+q2kuc8VcGARJHXSPqt4SlRfPCLmqMAiSJuhOtW5SlVxX2gs3G2pR0wEqMaalvA3bjt/bhcI3pp97aQhNlWSV+FuKkc+Mg6ycBbJCwEeDh2ltEeORty0UcobPAimS8URpZaVq0YQ951QRzmJMCzkL+QS+IUkeTUWamU1uiv5c6iTW5t+SdN2o7WWdnuQ1XXEFiJQnVrRuEu9pgW/UJRWVkpQXJzgLJFm/lmVF+q1m5Xlj1jdlhdUJ0uytlmUpmyepfZMPe9CmhZLEfMMl6H1b1OyvaX1Dsc8nfQYzGIwQ2w9PmDaBFhPDwL0fBuABr7sCeO+3gNKgaat8nHI+8Ec/9ZXFo3uAr70DGN5p2qqjAr/8hKYy3NMYTPJSo+QrefPOeOqPEoewxfsfBKrDwOBiYMmK8A3L3+v/98lvAm7rQUtlP8C0BzBVh8EgsJs06K40sJtCvUPQZyYrl7m0wUOVgd00F23TZZmivkmtemuOh235pEhc0PQTMxwESbGn+YkrasiZ6Jgm6g+ssCpAVojErASoqin6nQOhb9SQRGlKWKsPUKU9C6QnRNKSZtlIglPah0+Vb1Kr3pIH/6M/p4b4Tn5OI1HyJiWrVJ3Tasn3eEB14kp6Bbzp8rfRn1N1hk4b/DffukHdmaQatOdJN1/TVydQs6eZroaTlbsnoK6iVdp1k5WkhKwksQLqks9S+0asXyVn1xR7GkHCl+l9Pv3zRmXyd7r9lcFgtMfLn7rUtAnq8bMvApV9wJxTgUs/B+Typi1qRd9s4H13AXNOaSp63wlUDpi2atqjv5gxP2cQTPJSo+hnkxQdBUre5uFp/t6H/BfOfDtgR1z46kuA8kxgeAew+SctP6v2MpfuAKbqUKrKDhXBQxX9VtWU/lETPExrS5qAXYsdCoOHpkt6h5e5lOodhZc5y0quSFTqG9NB90a6+arMNwHZbCfyjcpgd0DgpSpnZjb4D0SIiNS+SRdgVrmnqShhnQVFYlkR8Z2VxLPoZ5gPHqZbNyVFYxIkWaUN7GbFNwrLESZJPAPUVeYJ5kjC82KJIDki1TnNcDIeoJJITP78BdTO12qKMSkRJBgnT7RSu6cl9Y3SUtoKquFk4e7JvmlFuI+orE6Q9JymKmaT7iwQnKEbZvc0tfGJtDEbtZXxEq8bkipSTPIyGCqRRBCVaRzZDmz4kv//F34CyBfN2tMJgwv80s2Di4F9zwH/9tu+ApmhDPc+s8e0CZkDk7zEsMu+kjfnNYBGLdVniQP20IEn/RdOXNn6hkIZeO07/f9/7vst31J6mVOkEElPJCrKClVaEtiseidt8FC5QiStbxRc5tL15FV/0c5KWabU5QgNB1RpkiOyEQTJgkIkIABSlAHMwrpR1ad4IrWSV71qJtG6UaqGUKRCSGlLWpU1RR++VH00s6CyVqTAC9dNyr3VcHIERZnz5GVns6HeoVAkJnreKFSLpk5QVPS8STNX/Z9Tf07LSh9N02fXTKlF0yR8KU3YFASe2X0+7B+dLpnWuG8IFMWmie80cRLfDvV7SSoCXkF8IkyCM5v8nXbdqDqTAOnvfAwGw8fj+48yUncy1n0SaEwAJ74JeM1lpq3pjlknAld8F+ifC+x8AvjGe4F6+iqvDB9/+s0nTZuQOTDJS4xcU8kLAKiNpvqsibqDEmroO/Sc/8Lx50190+nNUgzP3wt4XvAyxWUucdBd9UU7bcm7o6hnVdrgoaqATFaC/2ltyeJFW5UCPrXK2nD2v1q1aNr5qlZZZXpvBcJnRarewIbL37bYknZPi/TkTYKSynWjQoWgJIFGzV6SFZW1aZKIIhEg8Z6mSIEX7CMZKAOoRsmrMPhvuOxsNe3eqnK+pkgGyMp5EVCnaEq7brJHVplXJKo6C6RdN2qfN+n3NNOJAIC6c0nadaP0DJ0qwVhl+Vs1CfGp754ZOgukSsxXWEo7Kz15Uz9vFCrP0yY4MRgMH3e+cBQnSuzcCDz1Tf//V/89kKD6nXYcdzrwvv/wq7xueRD49/dPaa/JkMdHLjvDtAmZBj9BiVEql1D1Cv4XqUleF6+1XoHlNoCB+cDME6a+6eTfAPJ9wPB2YM8zwcuqyiL6dqRVNKkiRNIF3TOjrMrQRVtVYChLikQVASqldqTtf6dIZZ0lReJ0D1Ap842YIxko0Zgms1tpD/jU6h21z5ssrJtqVsqcK9rnq4qqeiRPoMlGgCordgAKy8420q3frJTiLUfUol4kgTIJwgSatIqmjPRIVJkElyJxpdpw4bpqfJO2v7cyBbxhshlQc7+pOS6clL5JTYiIc0lKIlHZedGwulnY33A91B2zYxIksRpOMKYoy582LpD2eaNq3aRtA5PJyhEpzgITDfO+UTVf088RhQR8ykpwDAZjKt51XhvOYLrC84D7P+L//9m/Cxz/OrP2xMHic4Hf+xaQLwO/uhd4/E7TFk1bXPWWU0ybkGkwyUuMUiGHUZT9L2rJ+/J6nofxuoPl9kv+Cye8vn3WSqEPOOWt/v//6t7gZXFwqzseGoouc+mVgKbJKvUl3hJl7KoMHmbkEpW+n5hK36QJHqr0TUqVtVg3aRUiqecIhW8SECIE6yZx30hFvkmdCKDIN3XHRd3xmp+ZjT3NdL9VVb5Ja4fjeqg5ydWiJaV7WjaUgGGAyiwx47oeao0UZwGFgd2qqpLAaYnEWjq1t6r163meEpW15/lkYhqkJvAU72mJeyQqKk3sul4wpml8Ayj0jeFkHrFuUp9JUib2uq6X6uwa9afxRCtFFa1S34EVlTaN7mlJxiRaIlZZD+mUxHc15XxNvacpWr/pfeP/jOshOIsnhap1oyyJ1XAVqejzJs05TclZIKVvSoqTI0z3ok/rGwaD0R6ffdcy0yaow/M/AF75KZArAb91vWlr4mPpm4FVH/f//4d/D0wcMWsP46gEk7zE6CvkMOY1Sd5qciVv3fHguB6W2y/6L3TLWnn1xf5/f3Vf8FLLRTttFnPqTHe1Aaq0gbK02akNxw2C7mmUVZ6H4HOSIm3QvaSIiAgJkXRKlbS+SR2gKqr3TfpyZqouc2Z9IxJXgPQX7bS+GU9ZJlmZb1ImrgR2KEoEiH5mHKgkRFT5Jm2AKjVpprhKApDueQOo8E26wJCq503aALOyddNIuW6KBL5JWsJalZJXkW9Sr9/IeKZRWQPpledhHz6zyTxp2wOoUotGfZPmLACoq3SSdr6aVr2pUka2rpsEZFXkDqCs1UjiRCtVSawpE1cEoZlyH1HhG5ErbnwvUVQCN60dorpC6lL4KX3Tp3BPS7tuSoqSeVKvG0VnaJW+UXUWSD0mGbl7qqpgkcYWBoNxFMNpAA80id2VfwzMWmLWnqR4wweAua8CxvYDP/2caWuOCuzjFsctYJKXGOWCHVHyJid5xcHpHOtl/4V2/XgFXnWh/98djwLjhwBMumgfJf1WUysSVfWZiQao0ma6Kyq/Z7o0YmqVtSLfpA0e9hH4Jv26UZUIYNY3NceFqN6XRPGt1DeqLriKfJO6fGbKC380mJOkHL5KQkQZgaeonFnqfoCKgv9Aet+YJvBUV47I0rpJVDkir05ZlboHfF4NkZhWZa1q/aZNXCnkbORtnxExTYhkJVFStRIfSOabnG2hmFNLfGdlTzOdTNuybhI8b2zbUleKN+2eprxyRDbuWUAy31iWFalCo4isSuobRUlFykp6G/ZNIWeh+bhJnzCS0jeqyourSlxRNUf8z0x2Fshl5CyQlXia6gp9QPKkBAaDoaYdRCaxayNw4AWgNBP49TWmrUmOXAG46O/8///5l4GDm83acxTg7zbmTZuQKTDJS4y+Qg5jCkjeat1BCTWcaO31X1hwduc3zzwBmHc64LnAyz8G4F/mVB2Q0/QDBKKqN7NZoaoPx0CyoLvK4KEycjW1oikbFxcVlznVvillprSp4XVTS0fAqw26ZyNop0z1pmhPKxdsWO3aAvQAiW8S9q/Mim/UqSGa+0jehm2n80164jsb+3xWzgJijhUjQcA4yOdsFHJqfBP0wk1YTUNZT15VSUWKfFPIWSjksvEMNl0asRrZ55NAdb/zpOtGpS2pz0fBfDWc8KV4rhZzNvIp141x36iarxlRvan0jfF7RVDCOuW6SeuboppzWlrfRAl4874Je9CmQebWTT7580Z5G5iU+3z6stGKztCK1k3S+w2DwfBx1dcfN20CDbb/wv/vib8GlIfM2pIWr14NnHI+4NSA/7nBtDWMowxM8hKjr5BDxUvfk3e87uBkazdsywPKs4CBed1/4LTf8v/70roWW/D/Z+/L4+Woqvy/Vb29LSsJCZFA2CQgKAjCRFBRthh0xHFDUZQfwoyKG7iAggoIuI2OOo47ruC+ISASBMURhiAQdhAQRJYQIMvbe6mq3x/VVV39XnfXXc65t95Lnc8nn+T1666crnPvrXvP93y/BxnYlJaJqrrJWER08tUqgEi7L9kAq8iSIJZjQ5M8JLon2n34iJKYVJLARCBEwVVPulP3JrSd7I6TMdpJELsJ5nZfiEAiTYlG+889agBePTZUz5tqRhJUWen1psu+A0DWr1G74IuYCWh9T6IpWQm05JVts2Yqs2yM6D5/Afr1VR+ssrxPIwarVIsTgeysr5lhWROPVYrY2L8n1K0bFPfyVPOXYi9APG+0lU5s97KmVhrL0PnGtiw/GdhMxWzOpZpzy03L1j282bYLPPboX8O/d3yBXT8ozHGAoy8AHBe4+zfAP6637dGMs7Xvf7FtFzJrOcjLbJVSAWMRk7c6onydibqH3ZzHwx8WPRtIAxN3e1n49wPXhI0RQV8FqbxRjxhNZD1EssFU0TowkB36aaox6RJDen5Q9TWjOGjbTtpRJ92tg2YZPGjb7hWl28ua6qCtu8YnP0t2T5SBb6rkIZHEKpEksM68oQKrWkUJ2Uh225Y21e2vBtDJVkbAue29gP6ehLa4SXUdARJAhPYcppo3VKwZu0l3ysIV2yARGVjV0IwNEVhFcb7JTBFrZsCqcIxUdc/AJMV4tOCqdZnkjKgkUKxpWQHgqdTXqGTOqVrAZGHe6O6hMyNzHoHNlvMTueWW2yy3iMm744F2/aCyJc8Bnn9C+O8rzwR8vefbtmZ7LJlj24XMWg7yMlu7XLM6k3ey7reDvGm28yFAoQIMPwo8fX/sS3QtHWslqOwetHU3g1k5VIafpUkeZqZSlugwZxtYDT9Le3jRlwG0WymbFclKgC42dBKNmrEhKgSw3ScKoJw3egw8unlDkwShSzDrsN6InjeRBL1ibCpZkVilamXR0H/eUCXLdItoslIUSLamNQjmTYlm76oLrpKv87bbe2ieKYDsjVf9ogSa2FCds2ZDbDJ3vslAbOI5bHveZAysIgO9CfYCtnMUHG1gtPywDHoD9DkKXdIEXa4kI5L8OZM3t9zI7IHzX27bBRob3Qhs+QcAB3jW8217Q2cv/ShQnhP2G77jp7a9yW2WWA7yMltfycUohVxzzcNubgTy7pH+gfIAsPOq8N9NyeYK8QZZuyevdbCZFoSgqHSnSh7aBlf1mSo0sak29A5QAH1sbCe7qVgIZIkyxTEC0BVqaPeKIlIn0O9lTZsUUmXiA4l7Yhn4pmY0ZUcq0v6apv0MJgarrK+tNcK9gGVQkz7BbDmxS6AckRVwNWYCWgdEiBheBPOGTIVGN+meNSDRcpEVQFkMMDvUCZKxCZpKWyoWzRut2FCdbzIyb+jaA9hf08gAeO0WPdlge2el9Urys7qsYu11nkiWnyqvRzVWK4pqVrnlltt0U+kLn0mLpJoXrwT65tn1hdKGtgcOfW/471t+YNeX3GaNzZJZn13rLyeZvKPK15mse3JMXgDY7fDw7wdCkLefWvbOctIuK9WpJIxE4kSmttScddYbUWwok4dEMqu2E1Rkid0MyDJlpfqfTD4zc4ky/R6J+sC37ppGO2+sz18KSeBZtqZlJUHV6pFoH+TVHSdZkVhNjhEdQGSSoOCrQvwMth2bVk9tvcKVWsOH52vEhnDe6DO+dQF4mvlLFZuGH6DuqY9XCplzcnli60VFmmta038/AGoasYn30BlgWdPNG9vtAbKRnwBaZyOyPqfWi+BowGb94gh9tijdM1hzvBazxfbW3adFfgzkTN7ccsttqj0W9eOdJVLNSdv72PDvR28C6pNWXcltdlgO8jJbX7GA0aAfAOBX1UHeiVoduzpPhD8Ig7zNvrwP/y/QqJIkH4IgyEzvjgmig0u14cPXSFBRHBjoDtq6hyia5D8VWKUdG8KKXar+d9Z78moXArQOczqxIZUB1IwNFTPD9kE7GRstQCQj86bh+ah74fewXf2ve0+Sa7weWEVXuKITG88P4gR1dmKj2XOOKEGlUxxRIYiN7weEPXntzpvk86GqwRiNWW+WgUTfD1DTVmygBSJ05y+gN04o5g2FPLFHEJvWGLFbjFdJ3EvrsSEo2iSJDVG/ZF3gO1nYqANqUsSGAlyliA11mwLl2DT99zSLI0gkgQmYvMl9mu1iPG0gsXk/As3iCIpe1hStRihik5Ue0lT7NIqzZ2655TZLbbb1403adrsDQ0sBrwo8us62NzPWRiYbtl3IjOUgL7OFTN4KAMCbHFG+jjP8GAacKhooAgt2FvvQkueEC0ZjAnjkBpKEat0LEOE6qoeorCTdk5tSHVCzStDrjeIQVScARLLCbk76r5XYJTjMUSR2aZOHdgsByGJDkHSnSHYnC1d0JazpGMV6YBVAc9Cmkc9UvydJGVD7sdFNMBPFRrNII/ys/rxJ3k9dSWDbrJksJago9kfJ72BbtlKXRdSXkO3T2ZdkRXEludfUL7SimTeqDNqkpKLOPaEpxtPvM16ljA2RGo5ObBwn/DfFOm97n0YSG+rzjaKkaKngoOCGwaEB4C2vaYnP2i74oipCT17Lhh9Aq2e7zjM4S7HRZlkniyM0iuAo92kUYwRQZ67SFXzR7dO0znwE8ya33HKbheZ7wGO3hP/e8QV2fZlqE5v12beOA6w4NPz3w/+r79M2ar+57XHbLmTGcpCX2SpFF2NNueZAg8lb3vp3AMBTpWVAoST2IcdpsXkf+AMJgJfcSPbVtgB3/QpY901g/SXAxnvDEssUo2aIqPb0JKumpuz1VlOvQGlPulsGEnUPDInP0SSoCFgIlgERisphgI5lresLTYJK/560ASKWD9rVeE2zDIgQSAL3EwB4ye+g2qOJWopXV1YteS0lPzSLNACaedO2pilKrmeFLZqlBBUF8E2xF4ieN/otEyKwSm3+FgsuygW6e6LHetNvZ5HcayrPm7jPuF2Zc9d14nVZ6xlMWFRE8dwD1GNDJm2qeU8cx0n0W7Vb8EUCiBDEJpZb125ToPcMTsZGZ7xWNZ97AA2Al/ys7j7NNshbLrho4u80ewGdfRpBL+sJkthQF+MRFEdozGHd/ARAU5ifpXkzqXnmKxZclAphbCjW+ZzJm1tuubXZU/eGbS/LQ2FP3iyY7wFXngl8egXwqeXAt4+Ce805WDx8uxAeMs12eVH490N/JnVzW7L/XPuAbRcyY0XbDsx2cxwHtcIAAMDXYPKWR/4JANhUXoYdZD64++HAbZcAD16Lvu1eC6CdHSVrk3UPi7AVHyr9BKUvvBkIplxr0Z7Awf8OPP+ErmA0FUNEF1x1XQflootaw7fOQqDoGxl91nHUDwzUUnOq96RAFBsaSeBmPzHLgEhWkocF10G54KLmhbFZoOkHBQCvBTa3JQ91541dRmIEiOjGZlJT6hWgTR72lVw4ES1J0Q+yPnyKRUVREqTuhczx+Yp+xEkQnV7WFPOm+dly0YXr2o2NLguBKja6TBWAODYFN06KKvtB1FNbVxqx5vlEawnFPk0/NhWdeUPEFtWdN5Ev1YZebLLCSKSIDVkxHkVsSgWM1zytOUwRGwpAhGTeEDF5qZRORqsN62xRSiCRIja6eQHdXtaO46AvmjcaxREUYFXcb1Vn/tb0Y0NdjKfKWnUcB31FF2M1LzOqHhRnT5rzjWbBV1w8qlEEVyyg7jX08lgEZ8/cctvWraEhZ59Zi1i8y/YH3AysD9VR4BcnAX+7MvzZqwH/vBGFf96IFwLw/lgHjjpX7pormiDvY38FauNAeYDU5W3BRqu5XHNk0k/zkRF1oJLCvvKVr2DFihXo6+vDwQcfjHXreuuW/+xnP8PKlSvR19eHfffdF1dccUXb74MgwMc+9jHssMMO6O/vxxFHHIH777+f1OdGE+RFbUz5GgNjjwIAtlSWyX1w18MAOMCTd2ARNgPQO8z5j96M31XOwOsLf4QT+MCSfYC9/hXY+VCg2Ac8fR9w+WnAVw8B7r+64zUqxFWhqnJmQOsQRXFgyAp7p69YUD4wxL1wLQMiAFFsKBiJWUmCEPgR+kIhk6w/XrPC3okOt6WCg2JBv6enjlGoAlAkmZPJB1UjkWvOSII56YsOuNpHIr/XnL8Evaz1YpMNNgSgz0IAaGJD2QOeYt6osmcBwucNiSoAnZoGyfPGMlOFWjmCJDZabNHwszp7eZoxko2+zQBNbEj2RxSxISiOoC2gsVvEGn6WYp9GtxewXUxLnRegKBihYIuSFBXpsL0JlF/IJIEpChTL+rGhOd/QqeFQrPG6ORuK2PRR5EoIYpObvNnO7QP0+f1t2WYl0BVhKIOL7foBAF4D+N4rQoC32Ae89iLg3bcAx34V/nOPAwAUrv8i8EBnHKSrLdwVmLMsBIzzvry5aZr0U/RFL3oRNmzYwOFLqv3kJz/Baaedho9//OO45ZZb8LznPQ9HH300Nm7c2PH9119/Pd74xjfipJNOwq233opjjz0Wxx57LO688874PZ/5zGfwpS99CV/72tdw4403YnBwEEcffTQmJzW11RPWKA4CAJyaulzz4PhjAIDRfkmQd3ARsMPzAAB7j/8VgMbm+B83YMkv/w2Lna14ADsBJ60F3vEX4A0/AE68HPjA/cDqTwED24Vg78WvAS5+PbDpobbLUPfkpahitp18oEjsThActCNQluwwlxHWjO3ELol0F9G8oQRXKYBEiuQDzYHf7lgFaAB4yr6RtucNrUoCTfJQK6FKWDCilYwhXNO0mPhEsSFhIRDEhuKeULLeKOavTo/i5OcpZCsp9gLW11ZKEIIKENGZN4TrPMl4JZDPtH2mAKhiQ9AyISvFeJSsVe2zZ7b2aXp7ATqwOUtrmlbxN8F4JWXAazyDKWOjs7YCifGqUwxQJFhLKM43JPtFuthor2kEsYnXEp3iCILY5CZvNnP7AE9+f1u2h58Zt+0CvUWs1noGvtsT64HHbw2lo996GbDPa4DtdgP2exO8V/43Hlp0ePi+X/47MPyE+HXb+vL+hdzt3LYtk5Zr3n///XHwwQfj97//PVaubGmir1+/Hh/5yEdYK2k+//nP4+STT8aJJ54IAPja176Gyy+/HBdddBHOOOOMae//4he/iNWrV+ODH/wgAOC8887D2rVr8d///d/42te+hiAI8F//9V8466yz8KpXvQoA8P3vfx9LlizBr3/9axx33HEkfnvFQaAOOHV1Ju+cyRDkHRvYUf7Dux8OPLEezx5dB2AvtarQp/4G/Og4uI1JXOfti/MGz8Ta5Qe1v6dvLvAv7wCe90bgus8CN34duP/3wEN/Al70AeCF7wZKfeoAUXUklGt47GZg+DF8ZOxuVEpb8Zyr5wN9ZaBQDgHmgYUhuD2wCBhaAgxtH/4ZXDxNQlrqYBkEQKMKNCZbf/sNVEb/iWfhKWwfDALDjwNOAXDc8I/rtv7d9Y9DslFvVWK603sBtP0cdH29r+CjiAZq1SrQqCn70qhPooQGBlxP+TpDRR+b0EB1cgJo9Ctdo1athn4UfGU/Bgo+Spr3ZHIivB9DhYLyNfpdDyU0UK9NasWmXmvGptBQvs6cko/NmrGpVie1YzNYDGNTndSIzeQESmhgTtFVHyNRbKp6sWnEsVGfNxSxqU9mIzbVph9ziup+9DtUsQnXkj5HZ03zsAUNTE5OAI0+pWvUm/NmsKjuR7Sm6cUmmjcl67GJ7ont2ERr2iDFvNG4J/G8KanHhmpNi2KjtRdojtfJCXVfKPcCdY29QDRvhjTmb5/bCP2oIwPzJlpLJtRjM6n/3IvmTW1SfYxMUsSmuaY1agFJbPo15s2cEl1sdJ43g/EeWj82c0rq85csNrVZGBuNc0W1Gs0bjdi4UWxo9mk6sRkqeonYqMklxs89jTUtPnsSrGk6e+g+qrNnVT82rXmj7ks9njcaewHX174nNLFpkMwbkthEe4GJCaAxqOaHSGw0vmduwF133YU999wTxWILArCZ2wfo8/vbum0cpiOqZcZKGQJ5x58J/95ud2D5C1qv33MZCn/+PAZqdQTb7QHnmfuBa88HXvXf4teeszT8OwvfcwbZQgxjBAOo551oY3OCQL4z9Mc//nF85Stfwa9//Wtsv/32OOuss/CLX/wCa9aswW9/+1sOP1Gr1TAwMICf//znOPbYY+PX3/rWt2LLli34zW9+M+0zO+20E0477TS8733va/P917/+NW677Tb8/e9/x2677YZbb70V++23X/yel7zkJdhvv/3wxS9+saMv1WoV1Wo1/nl4eBjLly/H1q1bMXfu3Gnv/3+f/wkuGj4FjeIgimc9Lv/lAYx+cgWGGptx8X4/xPHHvlLuww//L/DdYzBRmo99Rr6M1x64Ap9+7XPFP1+fBL75UmDj3RhZtD9e8Oh7sHz77bD2tJf0/txTfwOuOB146Lrw57nPAg59P/6x47/iJV/6K4YqRdx5ztGdP+v7wDMPhHIFj94E/PMm4Kl7pvcAlrWB7YDK3PBhUerD7RuqGKkF2GdpP+aVAfh1wGv+mQroetXUy6uZAx8uvABwnbDnaVdQFuj9u9xyyy233HLLLbfccsstt9xyyy233HKbBTZcDTDvUyNdc6659bY5c+bgtttuw6677tr2uo3cPsCT359q3fL2Tz/9dM8xVK/XsXbtWhx55JEolUpd35c1+/X6x/HBX7RYzfefd5RFb+St0313/vY7FH/2FvjLDoB34u+t+ufc/hMUf/su+Lu+FN4bfxa/XvzyfnCGH217r7/Haniv/6HwtQuXvRfubRfDO+yj8A95P5nPIjZTx/seZ1+F/yn9Fw53b8FH6m/Hp875pG2XpEz0vg8PD2PRokXCzz4luPucc85BpVLBkUceCc/zcPjhh+OGG27AQQcdlP5hRXv66afheR6WLFnS9vqSJUtw7733dvzMhg0bOr4/kqSI/u71nk524YUX4pxzzhH2PWhWnxQa4yFAJ9svtTaGoUbYT7c2tFzuswCw/GCgfyH6JzbhYPceTNQlr3Ht+cDGu4HBxbjt0K9i8sd/F5PeW/xs4IRLgTt+Dlz9cWD4MeCKD2B56WP4Smkf3OztBdxfACpDQH0C2PIP4On7gY33hGzdyS3TrzlvJ2DHA4HtdsP5f3wKGxsDOPuV+2DRYCm8xsQmYOxpYHwTMPYUMLYRGG3+Cbyw+iaqwAHwXAAoAHhK7pYATqjD7xZRbTTgex5KLlB0/BCIlgKjA7jwELdq1cSxc8stt9xyyy233HLLLbfccsstt9xyyy23bdvuvvtuLFs2vfWfjdw+wJPfn2rd8vZXXXUVBgbS1RrWrl2b+p4s2S0bHYTJ7dBmar/i5H1fPHwnXghgZNNG/NHy99l141+wL4DHN0/g5oQvq8e2oDLlvf98ZgzrJfw96OF7sQOAOx98DA9vtfM9Z9p4B4rY13kIFaeBx7HdrBjvnWx8XI7dLQ3yPvnkk7jgggvwzW9+E3vvvTfuvfdevO1tb2N/CGTJzjzzTJx22mnxz1FFUFcrzwEAOAhC+n1ZUsZkyyPh/xMMoDA4X9bdUKJ4r1cAt3wfx7g34k/1w8U/+48bgOu/HP77lV/EcD38/4V7ADkO8NzXAXu9Erjl+8C6r8N95gEcU1iHY7AOuPh73T9b7AeW7R9KIezY/NOUMQiCAN9aewWCAPjoPocDc1LkFX0fmNgMjD4Zyj7Xx4HGJL545Xo8+OQo3nLo7njBrkvCe1UoAW4pBHGLlc5/F0oxWH/6JbfgstufwMdfuTdOPGSX9v8z8EJgP/B7/vn5X/+Bz155Lw7bc3t8+jXPbd271o2cfl+n/O6ae5/EB35+B/ZbPg8Xve2glM90fn3zeAMv+ey1AIBbP3YkCq5aP7DnnbsWvh/gD6e/BNvPmfrIE7MTv3sT/vrwZnzmtc/Fy/dZqnSND/38dvzuzg344Oo9ccK/7Kx0jR+vewTnX3Evjthre3zhDfspXeMP927E+368Hs/bcR5++PaDla6xaayGl3z2jwCA2z52JFxXslikac8/72rUPR9Xvf/F2GGemiwpRWzO/OUduOz2J3D6Uc/G2164QukaFLG59t6n8J4f34p9njUPPzrZbmwO+OTVqDV8XPm+F+FZ89Wklili894f34pr7n0KZ79iL7z+QIXCIgA/WvcILtCMzeV3PIEzfnEHDtplIb791gOVrvHMWA2Hacam4fnY/7yrAQB//vBLMb9frcLxrd+5Cbf8YzM+97rn4ejnLEn/QAeLYnPWMXvhDS/Qi82Re2+Pz79+P6VrXHHnBnz457fjwBUL8J23vSD9Ax2MIjaeH2C/c8ON8XUfeikWDNiLzft+vB5/uHcjPrpmJY47aCela1DE5sq7NuCDP7sdB+y8AN890V5sfD/A85qx+eMHD8N2g2UlX9558S348/1P49xXPQev3v9ZStc47afrsfbujfjImpV4o2Jsfr3+cZz96ztxyO6L8LU3P1/pGr+7cwM+9PPb8YIVC3HR29TWtMm6jxecH65HN5x5OIYq8v3rqObNqZfcgj/97Wmc869749+er9BOBol5c8xeOE5xTbv0tsfx0V/diVW7bYdvvOUApWtEa5pObGoNHwd8MozN/57xMszrk6+lporNe358K6699yl87BV743UHqsWG4nkTPccP3nUhvnWC2n2NrqETm7rn4/maz3GKawA095XiGhRjnmKftnWigUM/fQ0A4Jazj0CpIH/2pIrNyd+/Gf/392dw4b/ti1c8dwela1DE5uc3P4pzfns3DttzEb78RrXnDUVshicbOORTYWz+etYRqBTtxeaUH9yMGx58Bue/eh/86/OmA1UiRnG++eUtj+Ljl96Nlzx7Ef77TfZiM1r1sOrCPwAAbvroEXFfXBmjis2///AWXP/A0zjv2H1w7H6MsRkeBj6ltofLDR3z1bM9t98tb3/UUUfNSiZv5d6N+NGD6+Of16xZY88ZBevI5H10EfDgZzC3r2D9+7h/vA14DNhhl5VY8/KWL+52HwauPrvtvTvufRCWvUTc38IPvgpsBZ5z4KHYe2+z33OmjveP3/ALLHdDtt5d/grr40PWZJi8MiZ9+txll12w55574mc/+xmOOeYYXHnllXjDG96ARx55JNbG57BFixahUCjgySefbHv9ySefxNKlnRPZS5cu7fn+6O8nn3wSO+ywQ9t7kvLNU61SqaBSEQeu3HI//MCB6wRAdVQe5N38DwDAP4PFcT9baXvOq4Fbvo/VhXW4qibYz6I6Cvz6PwAEwH5vBlYeg4mbQxmCPhEmb9JKfcDBpwAHnYzaP2/GV77+P9jHfQgv26GOQn00BE7nPQvYbg9g0R7As54PLNlnWg/d2LWGH6sW94vcE9cFBrcL/yRs/fXb4donnsKh2z8XL1ipttmP+vlO88N1AYhtuIOhKp7ERjyJBcBctUPlcKGGTZiLWmW7sCexgvUVPAwjHJ+ThTkYrMgnqOqej61+CFBVhhYAfYoPispcjKCKEQwAffOULrHF78cIBlDon6d8jcLAfIxgAJv9fuVrjGIUIxiAX5mrfI0+txHeCwCTxSEMlOVj0/B8bPJCYLdvaEHYy1rFCGKz2WvGZmC+3dg4YxjBAILKHOVrVBz92Ph+gGcaydioFUcEBLHZFMWmf752bLZozZut4ffQmTeJ2FSLc8RUKKbYZLV1jb6hBYDqc5hkTRugmzeeTmyGMxebytB8QGHuhR8miE1At6Zt8dX9GMVI83vYjU215rXPG4X9BBCtaeMYpZg3GmtacWCsOW/6lK8xEs0bjdhUKkF8XyfcQQwpPCumrWkK8QWAoG8eRjCO4UBjL9DcpxU15k1pYFw7NqOBfmxKQYAxZwB+AEy6g5jXJ19IRxUbVOZhBGPWnzfFgQmMYACbGhqxifYCOrFBOF8afoAJdxDz++QL6SYn6yR7AadPPzabm7HRmzeTYWx05g3FPq3YelZMFIZQUjg3UsUmfN5MaD1vKGJTHBhtrmk6ewGK2Pit8407hEomYjOofb7RiU0hio3t800pEZvCIPoUzvRUsUFljvY+TSg2NbUi6ty6m63cPsCT359q3fL2pVJJCMwSfV9WbNmCdpxhJvmetLb73h+C8U5jwv732S4kdBX+9jsUVl/QwnUOeTe8zQ+hftsvUN7pALg7r0LhoJNRkPF3cisAoDi0CLD0PWfaeN/HfRgA8LC/BMMYnFG+Jy3tvst+L+mSr4suugi33norjjnmGADA6tWrce211+ILX/gC3vWud8leTtjK5TIOOOAA/OEPf4hf830ff/jDH7Bq1aqOn1m1alXb+4GQCh29f5dddsHSpUvb3jM8PIwbb7yx6zVVrK9cwnhE4K+Nyl+gyeT9Z7C9Osi74sWoledjO2cEe479VewzV50FbH4YmLccWH0hAGCyEQGaagxPOA5Kyw/Al/zX4OT6B/DMW64G3rseeNf/AW/+BfDyTwEvOClk8HYBeIEWsApA/Z4AceIyeT1Zm4hAXtVETOKzEzV9P3TuR7JCd0Lxnky0xUZxnIA4NgRjRCc2XQsBJCzJnlf1ZbLR0gLXGa/RGLMdm6z5EfqiprdeJYpN9D2qGvek2vwOFH6M66xpNf01LflZ5TUt8R1UWAwtX1wtP5KfpRivOn5MEjxvKGLTthcQVRjp6AtBbAjHK8leQOt+EMdG5xlMMF7j2BCsaTrPm9a8UV9HHMfR9iV5L3XWtFZs1PuMTBDckyiuttfWLMUma88b1b1R8rM6fiQ/r+pL9DnH0Zw3FOcKgucNxZpGsbaWC24sKqU7b3RjQzFvotjonbMI9yQafpQKDgpNJY8oByTtB1FsKPYCJOdxin0awfwtFlyUCmFsdHM2+vOGcn+kt87nJme2cvsAT35/W7dlikpwmbZm60vU5CRrWey5bwAWrAjVQf/vq63XHQf+6s/g9/t+Gd4bfwq85ENA/wK5a49vCv8eWEjm7my3fZ2HAAB3BrukvHPbMumn+XHHHTfttec///m4/vrrcc0115A41c1OO+00fPOb38T3vvc93HPPPXjHO96BsbExnHjiiQCAE044AWeeeWb8/ve+97248sor8Z//+Z+499578YlPfAJ//etfceqppwIID+Pve9/78MlPfhKXXnop7rjjDpxwwglYtmxZW/N3XauUXIyhWc2tBPKGTN5Hg0Xqm9JCERt3fiUA4PDR36a///61wM3fCf997P+E1dOg2ZS2JUFqegftousoyTpFFiVB9TaloS8VnYRq5EdDI1FGcKh0XSfe5Kvek+hw6zrhwV3VaGJDB65SxEbnoO26DspRbBR9oQKrspLspkgwx2NEIzaFRGxIiiM01hISQIQwNjrzJvqszvOm4DrxOqQLVvWVXDjdZO8FrPXc0wHgCWNDMW+IYqOb2C0XXWWZdICmOCIar1pFRfG8sZtgJo1NwY2TxCoWA3iK+0WgdT/7MpJg1k1i6hbBRZ+rEM0bnXtSJdynURTjVTTWViAB4GkWFfWVaGJDsocu290vUhSxAsm1RHMvUCxo7QWi86LWWtIgiE2ZANCM9mka+1aKvEBUnKgbG5L9UUN/n0YCmhHFJnpuqs4bqthE95MiZ0NRjKc3RvT9APSfffTzRj82usU8ucmZzdw+QJ/f39ZNVXI90xaBvPVxxFKetqxYBl56Vvjvv3yxBczq2tjTwPjT4b/7c5BX1PZx/w4AuMPPQd6kKeraTbcVK1bg+uuvp7pcR3vDG96Ap556Ch/72MewYcMG7Lfffrjyyivj5uuPPPII3EQP0Re+8IW45JJLcNZZZ+EjH/kI9thjD/z617/GPvvsE7/nQx/6EMbGxnDKKadgy5YtOPTQQ3HllVeiT0Fiq5v1lwoYC/rCFqm1MfkLNJm8jwaLsVJj47NxrxOw4/0/wAvqN4UM3QUrOr9xfBPwm+aD8uB3ALu8OP4VRWIXCDe14zVPuypU2w+C5CEFuBon7AjYO8os64Qv1YavkTxsbdK1DnMUsYkSMtZjQ8dCqDV8/QSVJlhFknQnZFnrxCaZtNMx3dhMECXdK4QAHkUSRAc0Sya7dayv5KLm6axpNM+bzKgTkLB3mokhjbUVaMVGHYCnWVspmBkUzKqYvUOxpmnOm4p2bGhAsz4CQIRin0axtkbzRnu8ahYVUYHN0RjTWucJfGmtrfr7RdtrSbVBFBtCFRrrhWfx/NU832j6QqHclPy83lqiP04qBMURVLEhywto70kIlSMsK66QzZtyAWMZiE1WCkYoGfDa86ZcwEi1obyWZGreEO0Zc6MxE7l9gCe/vy1bUYNgk1krNdnJgQd4NaCo1tKMzPZ5DXD9F4ENdwB//k/g6PP1r/m/XwD8BrDD84B5O+pfbxuxiMl7R7BLrGyRGyHICwALFkhS0hXs1FNP7Vqp88c//nHaa6973evwute9ruv1HMfBueeei3PPPZfKxWnWXyq0mLxVBSbv8OMAgCeC7fQk3hbtgeu8ffHiwh3AjV+PJZjbLAiAKz4AjG4AFj0bOOLjbb+mqqbu10yCUDAjAZrkIY30j341dZUqaVcsAKhrHxjIxghFxS6BbKVtZmT0+a0T+uwd/QQz3T2hmDc6rDdKsEonNhRJIYCayauTdKdgiNCBq8OTDW0AXh8QoVvTKhTzhiA2usURfSW92FABmjEzQ4dBS8GsioojdJQjCJ/BI5MNbSav/vzVH69VAtYMyZ4kIwAetfwtyV7AspQ2NcirvIcmKgSgUAWgKZSk2wtQFOMB+ntoHUWApB/292l0bG+q2OjmBaiK8SgKVyiK8aoUBZuasdEtBojPN5rzhlYSWF/SOxt7aKKCL7LY2C3+zo3WTOT2Afr8fm6zzMqJPsP1cfsgr+sCR3wC+OFrgHXfAA7+d2D+TurX2/oYsO6b4b9f9jFAg4izTdn4JuzkPgUAuNNfgfcdtbtlh7Jjs7DUI3vWVypgDM0KlOqw/AWGHwMAPBEs1K4K/Za3Jvxh3TeBp/42/U03fQu48xeAUwBe/bVW5UzTJgl6NQKtKj3lTSmBFBJAkzycTb1FAQKpOWKGCE2lrF1AhEKOMPn52ZB0p0geUvavtB0bOrYoBRNQP8mcFWYkQBEbWraobbZZ1hgiQIu9JmvULGsKVQ+t1g0U84ZAjhCgkwS2PX8BGgCARNWDCoiIATzL7B0Stqh+MR4JAE+wX0z6Ynuf1lpL7DLPKxStV4hio7ufpyowzoq0KWnrBqK8gLYEvbZyBEFRAqEkMEkRumXm+STBeQ/Izj3J4vNGtSiBjDRB0cuaaLzmlltus8wKJcBtchPrE3Z9iWy3w4EVLwqZxWs/BngN9Wtd91nAqwI7vRDY/XA6H2e7PXEbAOAf/vYYxhBes/8yyw5lx3KQ14D1lwsYCZpa8rIgr1cHRjYACJm8upvS6/zn4drgAMCvA5e9P7x+ZH+7CrjyjPDfh38MeNYB064RAzO2q6mpE2WWq0KzUtWd/Lx2NXUmkiB01dS2WauA/gGXmi1K0hfJdmI3I7EhS8aQrmm2Y0NTVKTNrIqTh/ZZbyTPGwJgpkrMrFIFIsiee3HvdbsJKkrlCCrFBvXELrGUtmU1DdLnDVWyW5dZlQFVD4pkdxK8CxT7dZEVR+ju0zJUHEHaVqPuw/fVYpMVNQ26vTydLD/F+abm+Wh4M1u9ibqNk/V5Q1j8bbvoOisqCQBNoRVlwabtNY2ibzOQnbxAbrnlNkut1GTzTmyx6kZsjgMceU7477t+BXz7SOCpe+Wv88yDwK0/CP99+Nk5i1fGnlgPIJRqBoDthiwzvDNkOchrwCpFF8NogryTkiDv6JMAAtSDAp7GXJJN6SfqJwDFPuAf/wv8+HjgkRuBP30W+NFxoRb8Pq8FDnlvx2tMErF3dJmr9AcGu4eoVv9K/Yp724c5KonVrCR2ScYIWaWsXmJ3kkCyss0P64ndbBRpJH3JiiSw7QQVyZoWgatEMmLaALyucgRlbEikTe32ogcoYheBTP0AAOsISURBVEPFWm0+9ywzaCnkM6tUa1rTl3FtIDFLEo36QGLDD1DPCCCiv4emYeJbVydo+uEHIWCl44d9KW2aeUNbVKT/vAHUZegniNUJdGXOyfZpBFLaWnuBxGfVVQGI74kuW5SscMUugJdkRmalcEVXDUffDz22aBAEJOfg5L7Vdmz02wNQs73trmm55ZbbLLUlzwn//uf/2fUjac86APi3bwKVecDjt6D47Zfh2RsubSfRdbMgAG7/GfDto0L8ZfcjgJ1fyO/zbLLH1wMA7vR3setHBi0HeQ1Yf7mAYVUm79ZQqvlJLEAAl+Sg/Q9/MRqv/V4I9N7/e+Cio4BrPxk2M3/uccCxX+1aRULWI5GIWWUbrPL9gIRtRlFN3YqN3cTQZEYSu0EQkFZT171Av9KdqlJWNRlDDMzYlhcnjQ3VmqYZGzKwWTE2dc9Ho8m2oWC9aa1pxOxm7Z5VlpP/Dc9H3WvGhoABX/N8eIrMKorewEB2GCK6Y8TzgxhcIunD19BnvenfE5qCLzqGl9o64vsBSU/e5Gf1JawzUrhiWTki+byhmDcAMKmpCqDPgG/OG10JeiIpbduxSc4b/UIr22AVkR+ae4F64tmtsxdIFtBZvydEQCJVbHTmjUcxb5p+BASFK7aLrqkVk1Sliete0Jo3BAA8oFO4kq3YaO9JNJVfqNa03HLLrd1UC1EyZ7u9LPz7wWvs+jHVnvt64F3/B+xxNByvhr2e+DmK3z0a2HBn989sfjjs5/vLtwPjTwOLVwJrPmvM5VljU5i8ubWsaNuBbcH6igU8E/XklWXyNvvxPh5sB0CzL1JiAze+4nDMfetvQw34x28FFuwCHPBWYL/je8oExD3nqKSqLFeF6lZAJjf3ZMnDho+hgvxmO2v9xGwndmuejyhHrsOgnVrprhQbItlZ3Z6A1MkY1diQJXYJYkNexazJ5LUdm+S8p2AkAhqxoSqOyNy80WPiAzQMeCD8boMV+a1gVsDVrIFmACFY1fAwUJaPTas3od1iHrL2AJrzN7lP0+st6sJxwqT7RN3DnL6S9DUmMgJETBKtrVTytwDQp6EQVCq4KLoOGn6AibqHeZCPTQtcpWE3a7c8IQKbbcem4DooF1zUPF8fSCRTkcpIUaDl2DiOg76Si8m6r808148NTcGXbTUrqtgk1+bJmh/3tpax7M0borVVs/BM15epe2iVMUen2EDTy5pK5lxXzSq8Vs5Byi03Klt59pW475Mvt+2Gvu320pCU9vfrwv63hQzBWHOXAW/6CRq3XgL/8g+ivOF24BsvAZbsA5QHgdIAUB4I/3YKwF2/BOrjQKEMvPhDoYJqsWz7W8wsG98UguXImbydLEOzY/ZaW0/eya1yHx5+HACwIVgIQE+2Mpmgmqx7mLv8IOD4n0ldIysyyVlLMAOthIqKTa2mHtJIutsGvrMyRpJsDt3EbmQTNbXY0FUx0yTtqA7auoAm0F58ImsUscnKWlIlSv5Tra2Oo/+8iUx1TasSFUfESTtFZhVZ/0qiZAxAF5sJRZCXLEFFBFZRFWnoJroBwtjU1EBe6jVNnclLtaYRglUavjiOg75iARN1T5ktOpkVAI+shQTNmuY4QFmhEKjdlwJGqw3rwDcVW1S7B7zumtb8nEsSmxDk1R2vs4X1RqWYRBGb/lIBk3V1AD5eS2wXjBCp4cSx0dwL6K5ppYKDguvA8wNMNvQKV6jWNNtqOBVNtijVvJlaVDRfxZeM5ErIcke6ChY1ur1Abrnl1jJVtYHM2bL9gb55IZby+C3A8oNse9RujoNg39fjmr83cFTtSrh/uyJmmna0nQ8FXvlfwKI9THk4u+yJ2wAA//C3x1YMWXYme5aDvAasr+RiGM1m4bJyzU2Q94lgISpFF66r3oybIkFFxkIgOuCSJf81N8flgouixqbUdemqqW1LWNOxVmliU3AdlDRik6x0t36IIkoekoFVmnKEukAiRWzIkg9ULATL8yYCVvuKBTg9VB3SjIIhQlWUkJVe1trsnUQSUyc2lM8bsqS77nPPMjCT7B+ts09zXQeVootqw1eWfqfuwzfTWzdMJvZpBY3YAOG+ZqLuqReMkK3zuoVWWdnLt/zQWdOAFsirXQRnuc84dWwo+mjqxqa/XMDwZEPjGUwEfBMxz3VjU4ljo7/Ga8emVMBm1LXZkVTzRvmeELWTimOjDFbRrGlhzsbFWM3T30NnJFdiW+acet6MVBszXhWAbL9IFBuKvUBuuW3rdvAuC3DjQ5ttu0FrbgHY9TDg7t+Eks1ZA3mbVi3Nh/ev34P7zD3AyAagNgbUJ0Lmbm0s/Hv7vYC9j+2pnppbiuVSzT0tB3kNWF+pgJFAVa75UQAhk7e/orcBA/QTVFEfFLqenpalf8gqIPWrDvua1dRV5eQhLWvGNhuCKvmvez+ia5BUuluu/ifvAaTMEKE7zOnGhqyP1yyJzQTRGg9QxIY2CZIZhogqAE/U4zTyhWLe2I9N0w/bCWai+wGEc6/ayAAAHyftZnZP7RiAJ9in6bK8yFnWlvsBZqVNQegLDbuZjlmVFTUcu34kr6G7h9Yfr27b9WSNui2O7f0iQLBnpIpNRoq/s7LGA+F3GatpFBURsayzAiTqskUpY1NpgrwUgLOOUbVMIOuXrLknodhD55bbtm5fP35/7PfJjPWupbDdXtYEea8FDjvDtjfdzXGAHZ4X/smNxx5fDyCXau5muR6GAesrFTACPbnmx4PtaA5zRb0DLrncq21Gom5/F8JNaetgOcMTqmQsa71qasoDQ1YqzLVZ1rMwQUXli32wKhtAYqtIgxAQmeGxIZu/ms+biRpNQULyGrZZCFRrq22pSOqiouQ1VX2xvZaQzV8qSW+SvYAekEiuuKLdRzMbewGSfVok5UnAJNIxqmcw1R46E7EhKqLRlzmPgAjVvQAt6023OII0NpaVI6K1taq8T6MFzdTHKl1sInlibXYkWRGc5edNhuZNrJqk3QbGbr/kKvV+MQOF+bnltq2bShumGWG7vjT8+9Gb5DGV3GaXTWHyvvc5DYvOZM9ykNeA9ZcKGI568irKNW8IFtIkqDSTZWS9CYvZkP7p0+3vQsh6o+pHlBVmBhkwoywtHsXGPlhFDa5WZzgwk6XkIXVRgmpsqAsBdO+HLjOSwheyxK5ubMiee0SAJiV7JyNAojbDS3Odp+s5Z/95M9tkALO4T7MNOJPNX81iHjpAhGDeRHtXzTYS+gBe83yjLUFPU0ybhTWN7nlDc77RZa1aLzxjmDe2wRm6Qkm7zz1Kha9WgZPms882W7RG/LxRLkggXNM0i4qiQpOsFFqRqcBpF+bnqenccsutiy3YGdhudyDwgIf+bNub3GzZxGZg88MAWkzeXeda9CeDlj9JDVg7k1cC5PUawMgTAIAngu20exEBrU2p9c1gVg6VuoAmIbNKO3nYoNkgZyVpp30/iGSqkr7YnjeU/Yi0/MgI0yy8RjYYeNqxIZa8U19HWj15dW22JHbp+ozrPm+yA/JmZU2rEjF5s1LclLyG9XVeFxChHiN1D0EQSH8+vh8Ea1pmZGc1GcVUxTzJdUQlNpTtAVrzJhsyybZjE32PWsOH79uNTXaAiKz4Ec7fhh+g7smPV47Y2C66rmTED6r+szR7AaL2SVnJC2RFSpti3mgWFdG1B9Acr00/dHOMVOoiuVxzbrnR20X/+5BtF+gsYvM+OAvlqHMTsyduAwA84i/GVgxZdiabloO8Bqy/VMBIksnrC26SR58EAh++U8TTmBcndbR80awKrVIzMzIiD6Xf643ioE2UtJslSRB9sIoyeZiNQ3+lSDNeKZPuWn4QHrT1D5Y0SRBt9h0RkGhbbr3NF9u9RYliU9FlVs1C9o71501GJOipe/Lq+EK1vuq2TKCSAYz88PwAdU8BrCJUJ9CJTRAEiXWehqWpKm1KvRcA1HrxURU3Ja9hOza6BYrUe2hAbQ6TxkajiIZ03sRjRFeFhmaMAGrjhDI2Os/gttiQtQewW2CcXEdUCleqRPM3eQ2VMZKMjfWiIrJCgJYfOrEhKWKNpbTlx2sQBPTS75qFvZQ9eVWKinK55txy47NzL7vbtgt0ttvLwr9zkHfbtWY/3kiqObfploO8Bqyv5GI4YvIiAGojYh9sSjVP9i2GD9c6WNXwfNQ8op5VVJJZRIld1Wrq1qaUjpGoEhvfD+IEm3VwlSjBrBub6OBFmXRXPWhTM6v0k4eaCapiMuluN7Eb9/FSSGLSJkF0gRkatplubKpEigCA3lpS93w0mokC271FM7OmZSR52PD8GGyzP29oCq2yFBudfZrvB6jFbHxdIKKZULXM5E3Of5Vx0urbrL+mVTQSuzXPR5T7tF0cQVZAk7inKuOEg/Wmck+qDR8RZmB7TaOKTSWDsVEBmyljowvAUwF4laILxwn/rbWmWX7e1LxWbKhUAWxL4Ud7CT+AWlERhzqBYmx84tgo90smVpEC1IqKSGOjcR6vewG8+HxDRJqw3LJINzaUhZK55ZYbcNyuaut15m3FoYBbBDY/BGyaRQzl3MSt2Y/3Tn9Xu35k2HKQ14D1lQqoooxq0GyCLirZPPwYAGC8b0l4HctSc0nWrT5DJCM9eTWrqbOSdE8mTmyzm6k26hXNxC5HbFQSZVXCeUPVG1h7jJRpYkMCwGvEhjYJQiOZpb226saGAYBXWtPq9GuaNhNf8xmsu6ZRKWkkr6G7F7AdG6q+zcnY6IxX28URyb2A9ecNEQBfLrhwm4CISpKZQ51AbYwk9gKWpRGpkt3FgotSIQyOCoDHsRdQGSPJfu10/VbtKhW5rqOl/kKZdNcZr6SxKROdPTXnjeM4rXVeoWCEtIhVY51P+q5f/J2N2CS/h9oeOrwnFcKWJyoAXvIzVO0sbBeuaDPgKdc0jbV1ou18o1mMR9XyhFCdwHZeILfccgNWLZEvUpoR1jcX2PGg8N9/v9auL7nZsSlM3vNftbdFZ7JpOchrwKKK3bgvb1UO5B0pbw+ARmpOpyo0uaGmkq3Ul7/V8yNZTa12iKKvClXZqE8yJKh0wSoKaeJWbOwm3XV6RSXjqc+s0qx0J5KwTibdVeT3WJKHthNUugyRBk0SRD82NMAMoBeb6DOOY/95UyXqyau7pnGwRfO9QGjazCoO9o7uXkA3sZsR2dkkIKLGeqPsyas/b4qug1KBat7oAYmUQITOeKWUBNZhrVLERpf1Rgp8a7ToYSmU1HjuUcZGV0WKFMDTKI6wLaUd+VGgiE1R73lDtaaVCo5WURHlXkDrudcWG0fLj4ouW5RoTSsVXBSbwVFa04jyE4BewVc0rlwnPLPpWJRXsN0buOA68XfRyZVQ5Gxyyy23WW65ZPO2axNbQhY3gDv9FQCA1x+4oz1/Mmr5k9SAOY6DvmIBw1Ff3smtYh9syjVvLYVMXsreO3qbYxeOo3lg0GSIUElmRbEBNIFEwv4uKn2Ko/tYLroouHqx0RkjSV8oE7sqle6U/V10mBnR/SgVHBQtJ3apDriO4+itJaRglX7ykCRBRdQLlzI2aveEMOmu4UfMWi0WtJ832rEhAhKp1rQKIVtUh+1dKbpwdZ83mrGh3AvoMavo9gIUz5tyBmIzQVjMo8MkmqRk8hIUfJECM5aVIwAaICIrewGa2Gj2r8zIeOXZQ1uOjbY6AU3BV5svGsV4lMoR1ucv0R6akmWtN14p2jgRgGZF/ZyNbostyvFKs84T+KGRO0quadZj06Ar7K3oFMERFTrnlltunW3FGZfbdoHOIpD379cBjapdX3Iza0/cBgD4p78YWzDHsjPZtRzkNWT95UKLySsp17y5tAjA7DrMZYUhAugxmmLJLBIZQPX+d7QSq9mQZUr6olTpnrEkpm3Wavi5bAB4PGuJ3UIA7b5IDNX/OveE5HlDwBCxnUwFaOdwZpLdGrGpEikCAPqxYZF+15EBJJQE1gHgKfrP6saGCoAH9JhEVEUa4TX0E7skqjxFvb0Ayz5No3iUkgGvVcRqmYkPZAj4JmRWtdjNOsVNlGMkC7HRVwUgWVsJ9iQ08rd6e+isrGlVhj2JTusGkrVVly3KEhuV4lHC2GioJHCoWan0wQWIi890xishyzq33HKb5bZsP2DOMqC6Fbjl+7a9yc2kNfvxRlLNuXW2HOQ1ZH1FFyNBf/iDsFxzyOTdXFgMgPZQqdTXLCMHqKQvJAlVgqQdKUikcIhiAWZ0kyBlu0lm0uRDZuaNeiEAkB3AOSs9EjlkEbXBKgJwhkKWn7ZIQwNsJgSrbEvNJa9hu0div0Zs4uImQtaqruys7dhQ9W0GiNh3lotFAFpwVWd9zcxzj/R+aLJFM1K0mZkiDUIWEVUva1LWm868oSxc0Sr4ys5egFReXAeAt7zOZ2WNB7LIFrULaLJIEysXfFHu0/R74dIUR+j7QfrcU5439HtotaIEOpWE3HLLLbT7zjnStgs85haAF50W/vvPnwfqk3b9yc2cPX4rAOBOPwR533DgcpveZNZykNeQ9ZULGMZg+IOoXPPWkMn7tBsyeW0nH1gSzJqSWSQyyQTJQ9vMKo7qcl2WNU3PKp1Kd/rxartXY3SNqmI1dVbGCaXsrE4Skyd5qJcEoRwnmQFENNQJKJlVus+brMwbUvaOyhihZPJmREq7zRedZzDBWqIVm4yAEElfbO8ZeYp5FApXGBRXdIvxSAARkueN3WfwZEZYqwA1AK8h95oRRjHlvEmuaUEQyPtCOW+iwl6NZ3BW+ozb3hsBPAW1tp83WSkK1CnYBLiUirKRF9Bq9UUp6Z2BvIBWwUjO5M0tN3Kb2rZn81jNkicM9vwTQjbvyOPArT+w7U1upuzx9QBaTN5Pv/a5Fp3JruUgryHrKxYwItOT1/eAkScAAE9iu/AaBJvjSlYSZbqV7pQSbxq9cLNWOZyFqlAe+T3bFbs6YBU9602XLUoCauqwEDKSjKFNumeHWaVz6M/KOh+tx7Q9TjOQBNHpLcoAiOj25NU1nb5myc/Znjct5rnt5GE2kpgAbdKOouCLRnFF43lDyBZNquH4vjxYRbvOZ4NZpQM2czCba56PhqfDjrTMFmW4J7bPN9E1PD9A3bM8b6LCXqV2NPRFgVoFxpbBOyA784aHGWm3HQ1ZXsA2uzkjADwl6K3bHoC2nYW62hjl+Sa33HLrbPuft9a2C3RWrORs3m3NJrYAmx8CANzh53LNvSx/khqysCevhFzz6EYg8ACngKcwHwB1stt276xWokylmppFMsu6JHA2KiCTFbtqle70fV9ts950pE0pJe+Sh0qleUMp31VSTwxlJXkYsyGIx+pMjg0tSKTT75zweZOQNtVj72Rj3tiODWVid7bEhjbZnQ0ZwKQcoVJsCOX3tGQAGdjeavKZ9AA8IN+Lz/eD1j4tI7Gx3TeS9LmX+C6ye8YgII6NRhENh8Sq7cKV5Bogu76SxyYGZ+wCeHqtVwhVtTTON8nYUPYH1mvRQ1GMR7EXoFAXaa2tSrFprskU6k0U8uI0sYnGiLqqB+W8qTbkC77CecMAwGsUGFP4kVtuubXsa28+wLYLfPb8E4C5zwrZvHlv3tlvT9wGAHg0WIQtmGPZmWxbDvIasr6Sm2DyCoC8w6FUM+YsxXg9/KftZEy1QXdgiAAvPwir3WWs7vloNDeypFI3loEICtYb5SZdpdLd84M4nvaTD3TgKkk/MUK2tx9AOja+H8TJYNpiANuASDaS7jprWhAE2aswJ/RDJVFG+byJvksQyAMiyeeN7TWNFNDUYO9w9J9ViU3D8+N10HZs4jYFlLGxDWhqxMbzA9RiNr5d5nlmABEG9g4gP06SsbRdjMfRN1KvdQNBcURivMv6kowN5b4kK+xm26o85YKLSL1Qdl9CHRuKNY1SRUrreUO4pqmcb9rWNMttJCYZiq5V9tAcBXAqe4Fqw0eEC5P2wlVY06qk5yyNQknKlicaBV81z0eEC5MWolsuMM4tt9xatnqfpbZd4LMkm/d/czbvrLcn1gMAbvd3BQDc9NEjLDqTbctBXkPWXypgGBJyzRHIO/dZxFKRBIAmYZVs6IvcpjTpu21JQspkN4nsLPGBQRbAo46NllRV3LPKciEAQ6IseV1Ro07s6rEQ6Kv/9aq6ieeN5D2hTlDRAImWJb0Z5N0A+ar75Jwn7SGttJbQF9CoFGlQ9o/WAasmM5V0z0hxEwOgCagAia332+4znhUJesr9YsF1UC6qJZknmPbQtpnnWdnLO46jvGdMjm/K4ggVFRrKQsk+nb0A4ZrmOI7yeKWOTVb6vmopfJEWsaqzrKljU4kZ8OpnT9tgc1b2Amw5Gx22qO12UpQFxhp5geT4Jm01oqF6ljN5c8uN11accbltF2ht/7cAc3cM21ze8j3b3uTGaE/e+38AgDubUs2L51RsupNpy0FeQ1YpFTAcDIY/TG5J/8Dw4+Hfc5fR9ssoZiNRVio4KDTLqaWTIM33Ow5RT0CNBBVlsjsrle6lghNXusuyvJL3kCI2WoldBuBbj1lFHJuZnNilTB5mBBApFdzWmqZTHEGZ2LXcx0uvqpuOGVkquCg2Y6MKiFA9byhiQ8r21toL6N+PUsFFqaAWm8ksPW8YGLS2mSo6sWlPutMVBsoyVQCeeaM0fwn3JEDrWaE6b8qJZ5aOVeLxql7wZbs4gjo2qnvGiURsigW7awlLWw2tNY0mZaEKnHHFxvaZj0Y5wi7LOtpzlwoOTWwIzp4kLRN0wGZCZmRyDy1fmB++v+g6KBHEJits0ayo8hRcB+WCWsFI9P6C68R7PR0jUQjKe/Lmlhu5vXXVzrZd4LO8N+82Y+P/uBkAcEeQ9+NNs/xJasj6SwVsirTDxzelf6ADk5dSust2vwzHcVr9s2Q3pbVWUshx9DelWWEC6lS6twAR/SlNUeneV3LhEiQP9XqsMYBVlqUik7FRTh4WaRK7mWE3ayRjyJOHismHLCUPaXvy6jBE6JL/7b5IMhITrHOK5w1Jn/EypfytXdAMQKJvpJwv0TyrFGmeNzqxqbI8b+zuSdp8kVzTIiZHmSo2WgA83VqSFUAk6Yvq84b6uZeVfZrtAhpA/XlDHRu9XriEBcY65yzq4gjVNY3wnAXoSWmz7NN0etFT5QW0z560BTRZ6e9tOzaA+jmYek8S98LVUScgVY6wy4AHEhLWqvOm6BLl0yieNzmTN7fcqO2cV+3T9nNdsq1Y5m3/N4ds3tENwM3fte1Nbhw2uRW7uE8CAO7wd8H1Z7zMskPZthzkNWR9JRebAwmQd2sE8i6jBRI1mLzU/TJUq6ljGV7LyZjkZ0gAeI2KXfJDVFnNlyp1bAiqQmmThypV3c15Q8UQUWUhJA5zJH5QgFUk80Y9GcOWPNQojqCwrEib0vQTs5tQpZR3S15HJ2lHIqumAVZRjhFAPTZVQllEIDsFX3pAYug7BQMe0ACrCOXWAV3FFfrErm1mZPI6VclnH/VzLyo60euFa7dvM1dxhGo7miycb0hbBRGwVsmeN4qx4Zq/WrEhUcNR7y1KHRtV4IwrP6Fy9pzt5xtVtijVnqRPoydvLKVtOS/Atc7LtzzJxhk4+Zkc5M0tN37b46O/s+0CrRUrwItPD//9v18A6hN2/cmN3E75zEUAgEeDRdiCOVg2v9+yR9m2GQPybtq0Cccffzzmzp2L+fPn46STTsLo6GjP97/73e/Gnnvuif7+fuy00054z3veg61b2/vhOo4z7c+Pf/xjcv/bmbzPpH8gkmue9yzafquK4F34GdrNYEURcKZPHmaj0p0CmKG6J3FspBO72WDfAbTJbpqKXdrYqCYPyQ5zWZE2JZGHIk4+KLN3iMaIDsuaEHDOSoIZSKzzilLaVMURJEkQ6xL02VjnqZ83eooNHM8b+3sBVcCZvEiDAIigABKz4kfoS/QMVtwLWE4wA8TMqgxJRaquJVz7NNvgalaKaZO+qK5pmQBECM/BemAVLbiaFbZofE9U2KIcBV9aLU/sPoPJn3s6RXAM5xvbhc6A+hxuqeHYL5SsEp8rcsstt3b7wUkH2XaB1/Z7MzBvec7mnaW2c/VvAEIWb27pNmNA3uOPPx533XUX1q5di8suuwzXXXcdTjnllK7vf/zxx/H444/jc5/7HO68805897vfxZVXXomTTjpp2nu/853v4Iknnoj/HHvsseT+95UK2BIMhT/Ux9L14uOevM+KDxk0zCqK5L9dtiib1FxGqql1Di7UbDNVSWAyQDMj4KoqexagT3arFgOQHyoVCwGSvmQleWg72R2DZsT9AJVYb4SV3THDK0uV7opFRVRMfL2iopZ0tL4f2QHgdVkIWWC9cShHZOJ5o8lItD1Gkp+hSGSSsHeIE6q2i4qywmjSAeDJx6uqcgRboaRdadO+xF4gCAKpz2alqIjy+Zv0o6pxvqEEq6oNH74vFxt6cFWvt6jtNgVJX0hlzi2DzcnryLfYon3uZWefpl/wRa24osqAz8LZk1o1Kbfccmu3F+2xuO3n13/tBkueMFmxDLzo9PDfOZt31tm+7kMAQpD3oQvXWPYm+1a07YCI3XPPPbjyyitx00034cADDwQAfPnLX8aaNWvwuc99DsuWLZv2mX322Qe/+MUv4p932203nH/++Xjzm9+MRqOBYrH11efPn4+lS5eyfoe+UgHDGICHAgrwgIlNQGm63wAA3wNGIpB3GSZqobyzbcksLmaGMpCYBUYiYTV1VvpohtfJBiNRiwlICHy3pLQzkDxUrdiljo2GKgCljBgNIJIN1pvtJCaQlPUmjE0GWNbKid0GT2LX+pqmI3lHvRdQBkSo529zT2L5nmSpD19FcQ6zyWfqsN4IGfARICLTb5hcJlmzqMg2+y7pC+UeuuEHqHs+ShL97bmS3bb3aVpgVYPunkR+BEE4d2S+HzmAp/u8yQAgQloomfg+kw0PA2Xx1FBrT5INBrzt/ATAxIDPwB5aWa45Q201KJ99FAx46uII68XfTT+0WvQQnbVyyy233rbuYYH2kTPN9jse+PPnga2PAH+9CFj1Ltse5UZgK864HNeUQ5D3zmAXkh7ys91mBJP3hhtuwPz582OAFwCOOOIIuK6LG2+8Ufg6W7duxdy5c9sAXgB417vehUWLFuGggw7CRRddJF1lLGLhZtDBWGFu+EIvyeaxpwC/ATgugqElLD0SVaqps1IVWiXeCMYAnmSlbBAEtGxRgtjYZr1lUqLRMguBSxJYVZbJtuRd+Bm6A27ywG+bIaIqn0kdG9XkQxAELIldFYZIVoAI+v6VGvOmQbe+UrB36NYStXWei7Vqu0eiTmzIwdWMFHzpMavo7slUQETGuAqtbEubqrJFG56Pmke/FwDs7490GYm2lYo8P0CtQQ/AA/LMVXI1DcU+p615Y7e4yfcDVAljkzxLS4NETGoasiBRVooCgyAgfd7ErVca8mdPavlbVbZodB6yffZM5mxoQV75syf5WhIzvrPxvFGZN612NDMiNZ1bbjPSpjIgG558sUymrVhu9ea95nzgqfvs+pMbic3BOHZ1NwAA1hz1csvezAybEU/SDRs2YPvtt297rVgsYuHChdiwYYPQNZ5++mmcd9550ySezz33XPz0pz/F2rVr8ZrXvAbvfOc78eUvf7nntarVKoaHh9v+pFm08Rlx54Uv9AJ5hx8L/x5aiqrfChGl9I8fAHVPNnlIXfGnmaAiTrrLHm7rXoAo/0ohuVPRiA1fPyLFqlDiSnfZA3/d89FoBocSEIlYCDJGDRIpV7oTJoVCP9SS/54fkCZ2k/dVNTZ0Urx67B3byZi6F8CL5g1BEU1bYlc2NlxrmuQ9qRICq0k/ZJ83Dc+PnwvU80Y9MTS75o3q2pqMDQ0DvjXWpIGIjLDN6Au+1OYv9fMmGV9laUTbQCJX4Yo0QNS6fxS+VIououLuzBQlZGRNUwWbqXwpFVwUm6x3+b1rVNibjZYntoHE5DOBwhfXdVCOge9sFCjaLsZT3y/SrmlaZ09yVQ89tqjtAhry2GicPatczxtZdQJiPyqKz5ua5yPCyal8yS233KbbVAbk7h/9nSVPGG2/NwMrXhS2x/zJm4HqiG2PctOwFWdcjue4DwMAHg0W4bjD9rfr0AwxqyDvGWecAcdxev659957tf+f4eFhHHPMMdh7773xiU98ou13Z599Ng455BDsv//++PCHP4wPfehD+OxnP9vzehdeeCHmzZsX/1m+fHmqD9GmdMSdE77QE+RtSTUnN0qUPasA++Cq6iGKuio0lpdRrOoG6Cvds5JQVWUkkvc100hQUVbsAgosBGLmuXJiiC0JYjk2icSf6gGXDlzNBiNRlSHSljwkqKbuy9CapjpvqNc03SKN5DW0/NAAqybYGCKSSTsmtre8HCFt8pCEWUUMiNgG4HXBZoBmLUkCIlnZQ9t+7vUl2GZSfiT8rhCMV8dx4rmjuk/LynglL2LVmDcUsQEInsHWZc6Z5o20H7R7AUBdFjgrxXhcbTVUFQFCX2j30LJrWtyLnloVwDYDnmIvQBEbirMn9ZqmWAhgvXAlkWuiWktyyy23zvaz/1hl2wVeKxSB134HmLMMePpvwG/eBTCotOZmzo52bwIA3OnvYtmTmWNWQd7TTz8d99xzT88/u+66K5YuXYqNGze2fbbRaGDTpk2pvXRHRkawevVqzJkzB7/61a9QKpV6vv/ggw/Go48+imq12vU9Z555JrZu3Rr/+ec//5n6XaNNyxZEcs09dPC3Npm8c5fFG6VSwZHqL9XNygUXUQsxWXZkdOiqUMkka1a62z7cRgeGguugVNDXhi8VnDg2tpMPukkQsqrQol7iwXFoElQ6LIQqca835eKIjCQxJ4iTh8WCG88/9eRDNuYN9YFftRDAccJnha4VXCe+jnKym7hgRFWCnkKtAdCRvKOdN67rxNdRB+CzsZbYlp2lBkR0YsOmHJER1ptWURF1oZXldhbKa0lGWETJ+0HVX0kV1KzGz2Bi5rlq31eydjR6BQmVoivVd7qXqff3zkahVVb2i5Ef5aKLAlFsstPfW5EtSv7cU2yLk8jZFAn20DpnTzalE+tMXr2xShUbrbNnLVpfbZ9vmFoWKe5JwnzajBCZzC23GWsvWLGw7ecVZ1xuyRNGG1oMvP77gFsC7v4NcMN/2/YoNwV723fW4TB3PU4s/h4AsPrNH7Ds0cyxYvpb+Gzx4sVYvHhx6vtWrVqFLVu24Oabb8YBBxwAALjmmmvg+z4OPvjgrp8bHh7G0UcfjUqlgksvvRR9fX2p/9f69euxYMECVCqVru+pVCo9f9/JImbVZswJX+gF8kZyzfN2JJdCchwHfaUCxmue9eRhv2bPKqqq0IrqgT9OxtAkqBzHQX+pgLGap3ywtC3ROEF84G+xiCST7rVWVTdV8rCvVMBotWH9oK2bGKKq6lZmEcVrGl3ysK9UQN1rSPtSJU6668rO2pYzSx746eaNi5rnZ+Ce6K1ptucvByDSVyqg2vDVk+5UgEjMPLfMVFFMlCXXNEqwqtrwM8Nosl2kodoeIAmI0D1vXGydsN/3NStS2lkZI22+WJatjNcSSWZVDJoRM3lVWYBU573wWmqMb3ogUfFcERU6296TJM6eVKbL+CbfHyn3O88GW5RSclb57MnEgJeVJuYaI6pAItXeCFA/e06SF39nqwe8PImEfi+QW265dbeXPHsx/vS3p2y7wWvLXwCsvhC44gPA2o8DO+wH7PIi217lJmF33/c3/K7yVQDA9xpH4q17rrbs0cyxGVEutddee2H16tU4+eSTsW7dOvzlL3/BqaeeiuOOOw7Lli0DADz22GNYuXIl1q1bByAEeI866iiMjY3h29/+NoaHh7FhwwZs2LABnhduJn7729/iW9/6Fu6880488MAD+OpXv4oLLrgA7373u8m/Q7Sp3BREIO8z3d/cJtdMe7gF1Kv/s8YWte5HgyMJonfoty0jlhVAkyM2WQHwdPuJUTMjbR/4k9eyDcCrJ+2yASRSj1VAZ7zyMESsJ0HK2WA2J6+lfE8sA4lZmb+tvs0ZiA1TYld1TaMGRHQKV6hMd3213W91tvoR+qJXDGCb3ZwZxRXiPUnyWtJFNLNVOUJ3L094vomUI5TnsGUGfFbYojxrmpov0dnMNsuaa22VBRLj4giWvIDdc7BuUUJWivGozlm55ZZbb/ve/zuo7edZyeYFgBe8HXjucUDgAT8/sYWx5JZ5+9yVd+ELpf/Bds4I7vF3wls+9gPbLs0os8rklbGLL74Yp556Kg4//HC4rovXvOY1+NKXvhT/vl6v47777sP4+DgA4JZbbsGNN94IANh9993brvXQQw9hxYoVKJVK+MpXvoL3v//9CIIAu+++Oz7/+c/j5JNPJvc/Oow94w+FL/QEeafLNXMcGGxX/ysfoog36rrymZSJ3Ui6R7XCnOwQpdiHjzr5oAw2E4PegDo4k2R5UVglYwC8bfAueS1l2Urq/neyvawzwlrNEpBIPW+ywjbTTf6zAPCWlSN0mefWk/+MgIjtZFkroSrLKM4WIEKZPFRfX2nZO6r9krkKAZT30FkoxmMqtJqpz5tJxsIV++Bq83mjqNhADmhmoVBSc30ll51V7C1KXyhp9yweXkuzdYP1vEA29mnUexItX9jyaXafwerFePTPm9xyy623lQoO6t4s71XrOMArvgA8eWf456dvBd52OVAs2/YstzT78xdwSOkujAcVnFp/N/5Q7rft0YyyGVMytXDhQlxyySUYGRnB1q1bcdFFF2FoaCj+/YoVKxAEAQ477DAAwGGHHYYgCDr+WbFiBQBg9erVuPXWWzEyMoLR0VGsX78e//7v/w7Xpb8t0UbuGX8wfGGih1zzlkfCv+ftxHKYywpLUzlRFiUfiHsD274fQHZYmtG9VT64EMmIZSXRDbTuiWxiqErMKtbtt0reqzEL8yZP7LaZLpBIJX/b5osiO5IeiJiZDBEORqKuL9RMXuuqHqp9zRgAkaz0v1Pdk3AVadhmzAAZ2qdp74+Ix0jdQxCIJ4yopcUB9bWkSh6bbBQFJseITGxYilgzsnfVBmaIn3u1hg/Pl4gNR8GXcoET8bmiqMYWzc4+LUPnG2ogUTEvQJ87UiwKJF5bk9eSZhVnRLGBK59mW8Eit5ljmzZtwvHHH4+5c+di/vz5OOmkkzA6OtrzM4cddhgcx2n78x//8R+GPJ49dv/5a9p+nrVs3vIA8IYfAJV5wKPrgKvOsu1Rbin2gc99Fe8v/hwAcHb9RFx1Pj0Bc7bbjAF5Z7pFG5cnGylM3katJSWwYGfyAz9AwN4hP0TJVh4SsyFUQQjGil3bgLMyI5GpKtT2WAWSFeZ2q6n1gW+7B22O2PQpJt2rTPdEuR8RNcMrAwwR7QpzYoaIbQatMustBuApk4eKCdWsFIyQAyJqPSM5AJHMyc6qFmkQ+1Hz7AMiccGXxPoaBAHbM1h+TaMtGIm+j+cHUqwAaoAoeS1lIIK6f6Vq0p14Lw/ItdZonSkIz56qhRoN2nW+EvtheZ+WiLGML7xtnOwWn+myRa2fszKkTsBV8CU9fxkLV6T8yBSTl0dKW17CmkldRPLsyZFPy21m2PHHH4+77roLa9euxWWXXYbrrrsOp5xySurnTj75ZDzxxBPxn8985jMGvJ19dtAuC227YMYW7gr82zfCf6/7OnD7T+36k1t3G9+E00Y+g4IT4JfeofiF/yIUXMe2VzPOcpDXkEUblye9JpN3vAuTd/hRAAFQ7AMGF/MwRIryyYcgCOil5hSTmJw9RKQq3TNSsduWPCSSEYv9kE12MzFVJuu+VGyoWRlJX2SA72RsqO+JtHwmk2RWteHDl0m6MyR2o+p/2+M1KwC8KkOEQzJL5Z4EQRAnCajGSaWklqCaYJo3Nc9HwxP3ZZIh6a6tpkHWp1iRGUkNiDSvU/cC1CViw6EcoSrFW81aspvYD0DunnAA8CqM77oXxGuxddlKJrAZkHsGcxQVRbKxMvu0uuejEcWGuqgoI8xIQBZIzMZeoO75ceGA9TWN+J5UErGR8YW1jZPEmub5AWoeMVilyhYlLzBuFbHKqRNExYl2iyN8P4iLOugUvhQZtMSqPKp5geiZQFkoqXKu4Cj40mfyUrG9w+uoqhPkTN5ty+655x5ceeWV+Na3voWDDz4Yhx56KL785S/jxz/+MR5/vHfv1IGBASxdujT+M3fuXENezy776b+vavt51rJ5AWDP1cCLPxj++9L3ABvutOtPbtMtCLD2wtdimbMJf/eX4uz6iXjowmNsezUjbcb05J3pFm3knk7ryRtJNc/fCXCczFS6JyvAyZm8yswqok1p834EQZh4F+0txFmxKxObmucjOueQszQtyxFOZSGIfj9qVgagHpvonEN1sMxOX7NE0r3hYaAs9jipEgNESV9kElTJxK51+UwmtjcQzsnBilhsOCSBtQERYmlE20VF7fPGx1BBbB5wJt1lknaZSroTA3h9U+ZNSTI2LAwRy0n3uH+lKiBCVaQxBRARXdMiPwYo99AK4zX5Xup5I1/wFe2PaJ7B5YIL1wH8IFzn5/aVhD7HqriiGBuqQsmsyFYWCy7KBRc1z8dE3cN8wc9xypzL7AWScaQHROwWfLmug0rRRbXhywHwHIWScWGvfOEZwNAyQVHphAysavrhK+YFKGNTUVBs4MjZqBaekRd86eYFLBeutMfGsjoBtRR+W2zE8wJxb2/CvEBu2bcbbrgB8+fPx4EHHhi/dsQRR8B1Xdx444149atf3fWzF198MX74wx9i6dKleOUrX4mzzz4bAwMDHd9brVZRrVbjn4eHhwEA9Xod9Xq96/8R/a7Xe7JqMr5/7rX74gM/vyP++e5HN2OPJUM9PsFrrPf9kA+g8Ohf4f79WgQ/eTMa/+9qoG8e2eW3lTHDZe5N38SRhZtRDYp4d/3dGEM/Go1G6uey4Luqifou+91ykNeQRRu5LcGc8IX6OFCfAEpTmkhv/kf49/ydAPBWusscopKHC7J+q4ryt+QSRMnEbk3iMMfIrJKJzWSCsUDOoJWODXVVdyKxW/PED3M1Djkz+WR3Mo7UcmbK/QCpkpiJeTJZ9zFQFvscNaCZvFZWErvyle7ReCU68E9h78gCIhw9q6QYXg362Oiz3uhjM1HzMCQMwDOwdxQSqhxJd2V1AmKmSqXownHCgq+Juoc5gmAVBwCvspZwAomqksADDICIjC8se2gFFZpIXaTgOigVaGSn+nTZokT3xHEc9JcKGKt5csA3RzsahdhEY8R1QsCawlTbFHDIVlZKTZBXYt7wFLGqxCa8H47T/uzUMeXe60zAtzTIy1IoKQ8kJuNIFRvlfqvEhb1TzzeieQHqvs2AmrLWBOM+zbo08ZTzjeh1edrRqOQFOAtX7KoTJMf9RE0c5M2ZvNumbdiwAdtvv33ba8ViEQsXLsSGDRu6fu5Nb3oTdt55Zyxbtgy33347PvzhD+O+++7DL3/5y47vv/DCC3HOOedMe/2qq67qCgwnbe3atanvyaqJ+B6edFtzdc1/X48vrkoH1riN676XBl+Lw8p3YGDzQ3j6W6/Ful3eCzi0BSazfcxw2Lzxh7Hq3nNRcIALG2/CXcEu+OKqBq644grha8zm+z4+Pi51vRzkNWRRpftI0I+g2A+nMQGMPBFqxCctZvLuDICp944CSBRtwMoFF0WiJEhLVs1upXup4KLgOvD8AJMND/NgL7GrwxApuo4w8yjNdFkIVPekWHBRKjioe4HSAdc2622SI7GrKk1M3OPUdR2Uiy5qDV9pvHIAIlLJwxp9YleVITJJnHRvA0QsSzSqrCXR/XAoY6PISKRODDmOg76Si8m6XGKXRXZWZd4kxjZZ0l01eUh8TyKwarzmtRVPpRmL4orCWtJWjGe7/x2TCk214cdqECLGAVbpFBX1lwpwHKq9QDYSu0AYG1mQl7NHohwzslUsQhUb1R6nXGyzkcmGXGEvg6qHSuFKEjQjmze6rYKICs+A8P5uQV1KXpxzL6ASm0rRhUvUL029NzB1XsBp5QXqHub1i+YFaNuMAGp76GTOhqqXnWoRK4c6QZQXUFEnoC0qUt8LlAr0ORvpfsnEe4FkXkBGFYBjTcvNnp1xxhn49Kc/3fM999xzj/L1kz179913X+ywww44/PDD8eCDD2K33Xab9v4zzzwTp512Wvzz8PAwli9fjqOOOqqnzHO9XsfatWtx5JFHolQSewZkxWR9f/HhDez/yWvin997QxH3n3cUp4tdzcR9dx5/NoLvH4Mdtt6KV8x/AP4h7yO57rY0ZkitOgL/Gx9DxWlgrXcAvusdjcOevQhr1jxf6OPbwn2PFAhELQd5DVmY2A2Th42hHVDa8ndg62M9QN6QycsCiCiARBxSKsqyTEwJ1dFqwzpDRKcqlCf5bz82faUC6p5qbDhY1vIJZtLkoW7/SuJ5U5NkVnH2E5NjJLYKaKhjoyxBzwCIqCQfsgIksgAilgtXgPB7yYK8LbY3Q2wU1ta+kkuYdNcDq6ileMdlGYmMMucqRRocYJXt9gDRtaQBEY7YaBTjZaFvM0dsVBSCOGVnVfYktp97bL5orCUcgIhS/1kOaWJV2VkGlqbtnrxq+zT62FQU5w11QbzjOOgruhireZnZQ1cVpLR55q8qkEh4Hi9q5AUsryXxWOVge0s/bxiKeaLibwV58ZzJOzvs9NNPx9ve9rae79l1112xdOlSbNy4se31RqOBTZs2YenSpcL/38EHHwwAeOCBBzqCvJVKBZVKZdrrpVJJCBASfV8WTdT3BR3eY/s7s973nQ8C1nwO+O17UPjTBSgsPwDY7WVkl98Wxgyp/fZMYPhhPB4sxAfrpwBw8N3/d7D0ZWbzfZf9XnnzA4MWbV5qg8vCF7Y+Ov1NXUBe232RWICZohqzqsqQ7Fap7M4KW5QzKVSVPmjzAXiqyW6rfnDIqmkmqKwXJWSEkcgDNqsxRHjWV3Xg23bykKW4Sbk9ACO4qsTkZZDSVoiNqAybiKkWrnCqAqiyNG36Mc4ImslKaY/XGuS+qM2b0A/SQgCVPXRG2HcAjySwjkIQy7yxrfxSVtwLMKoCqBSP2mZZt4BVu2AzwFMoqQJqcuxJVHp6TtT49ovKPeAtF0dwtjxRkVvn2QtkIC+gQBKIYiMqvS3kh85e3rIUPtCKJce8UVMqytPSs8EWL16MlStX9vxTLpexatUqbNmyBTfffHP82WuuuQa+78fArYitX78eALDDDjtQf5Vtyh7+1DFtP68443JLnhiyA94K7P8WIPCBn7wFuFdcFjg3Qlv/I+D2H8MLHLy3diq2YA5u/4QdFvlssvxpatDi5MNA8yE03AvkDeWaeRK72ajYVWYhsIBVGtWYDAcXpUQZoYSYqgwgrxySgvQPw3i1LaumLsuUjYRM3EeTNDbq/cRsA0TJ99tOULFU3CuARJwJZpn5G76f4Z4orPPRPaFmrQJqCSrb60ibL5aTZRMMgKYOI9E2oxjged4oAREZUY5gZd+ptjzJiIQ1D9is8LyhBO+KamtalaEwsJKRtUSpdQOTykny2qLGA2qqqzfxFONJzJsG/fxVPd9kRp2AFdBU2cvb3S8m32+7MJ9TSltlL8BxzsqCqodOURHlOp9b9m2vvfbC6tWrcfLJJ2PdunX4y1/+glNPPRXHHXccli0LCVGPPfYYVq5ciXXr1gEAHnzwQZx33nm4+eab8fDDD+PSSy/FCSecgBe/+MV47nOfa/PrzAr72Cv2bvt5n4//3pInhmzN54BdXgzURoEfvwn4838CQWDbq23Hnr4fweWnAwC+0HgtbgpWAgDm9s1MNm6WLAd5DVq8Ke1vSlBMZfI2qmGfXgBYEIK8VYaeVUqb0hq9vIyuRKPtwwsr+05GSpsj6a7YvzIrB4Z4jFCOV4XYsCbKMjBvtKqYGeaNSq9G20wzgJl5blmCXofhRdoeQBOAp2SuttYSuyCRSvJwnAH01k0ecrA0be8FtAB4jjUtE0BiNhRXslIomUx0BxJJCU5VD9uMRN1+yWR+JJhmvm83NjGQqLA/qrA8byw/95rP37oXoOFZLj7TYL1xFF2rsEVtz9/k+znk8G3voVWKrjmKrFSUX5K+sEhY217nFfYC1Yyc9wDewl7b63xuM8MuvvhirFy5EocffjjWrFmDQw89FN/4xjfi39frddx3330YHx8HAJTLZVx99dU46qijsHLlSpx++ul4zWteg9/+9re2vsKssv936C5tP49WG5Y8MWSlPuDNvwRe8HYAAfCHc4FfvB2oT9j2bPZbfRL42Ylw6mO43tsb/+O9CsB0Rnluapb35DVo0cZntK/J5N36WPsbtjwCIABKA8DAdgCyw1RhqabWrNi1zjaLY8NxqMxGNXU2gESVSnc+tqiMRCMnAz5LQKLtw5xSMoZDSjtT6gQqjESGxK5GAQ0leKe6po2zFNHIj9eWFC+hTLIKe4cD9E6s8UEQCPeTZWUVSyW7GZ43Gvs0rqIi67FRAkQ4YqOedOdQfvGDELAqF9NjEwRBZlQsWnsBuxL0k4yFK0DYYkZk/CVjY5vxPcnQI1Gr7yvDOgKE33OoIBZ3Vnakwt61wiBhbXv+ahdKMuRKpIquGaXw1dii9vfQnH21pdaSjLU8YRkjEoWjXL6oFcHRz5vcZoYtXLgQl1xySdffr1ixoq2Icfny5fjTn/5kwrVt1h66cA12ObMlXbzijMtnN/BWKAHH/Cew/d7A7z4E3PlzYNODwHGXAHOX2fZu9tras4En78DTwVy8r/4u+HDxh9NfYturWWM5k9egRYeXkcqS8IWpTN6n7gv/XrQH0EykZa3vK20ypj15KGK+H6CWkeRDVvoUxyxrJvBONDZBEPAkMrOSGNI5uJAyisMxUmuIM0TaEruURQla88ayBH3c680uQ4Q7NlIsTQ5mpAYjcaBED2h6foC6QmyyIm3KklC1LeOZAKtqgrHxfV6wyvrzpizPVOHoyZu8VlUwgZiMDWlit6gyXjl68qrs0/j28oD4eE3G0Drwzdg3Mitsbxlfap6PaEtH268xI2zRjCT/k+Co6FpS93w0msHhkKC3rdigVfzNVNQrevZseD7qHn1s1Aq+6AviVfIC3AxN0dh4iZwNZV9tlQLjSQZlPJXCM5Y8SSIv4EnkBXhyNtmQoM8tt9zUzHEcvH0Ko3fW9+cFgBecBLzl10D/QuDxW4FvvBR49GbbXs1Ou+cyYF3I2P9A/T+wEQsAALstHrLp1ayyHOQ1aNEmaktp+/CF4SlM3qfuCf9evFf8EidoZlvOLHn4EE0eJitqSftnRQdcBZYmJetNianCCGgC4rHhSh5mpTehUj9Axt7AgHiFebXhxy0mWA64ErGpMiZUZQ783ICIaEV1tdFK7FKyI5X6IkXgKgcbwvK8SQLooonM5HiyDkQwAiIqcs0cyX8AmBRUsUg+b2wXJYxz9uS1vU9TAETa9gIscq92wdU+hX6rHEUapYKLgutI+ZJ8H2XSXUeW33brFQ5p04LroFyQe/YlnzeUxWdZYdBmhfXmOI70/ih573iK8SxLWKvsFzNS8JXca7OcKxRa9HCsrdbzAgoFX1WmnI3OHppUqUihbzN/bGZgwRdDUUJuueWmbmdN6c0LAPc/OWLBE8O2y4uAk68JsZjRDcB3Xg7c/lPbXs0u2/JP4DfvAgB8vXEM/ujvByCXaaa2/Glq0KJN6eZiE+StDgOTW1tv2Hhv+PfiPeOXeHucim9KOYGZ0BfBg3YtmaBiuCczsN8qp3w1IJ60a48NQxJEQoaoBcDPQtZqUT42bYldjqSdxLzhBIlsSwKrMESS7+NIlqlIAttWjogZxYR+lAsumniIcFFCcjyxSGkrMEQo5ZqzUvBVKrgouu3qJaJ+APYLRlj3ApaLm4oFNwarbMdGRV6ck3luGzRLXk8WrCoVHBQFZWpFLNqXiCb/k75wyFYqzRvCvQAgz46MYlhwHZQKYrLoQn5oyb1algRm2C8C6rFxHMTrIYWp9fTk63GqAprRslaTeQGx8Zqc65QS1q1nsELfZtvSxBw5m8S9tZ+z0WjjZPmcxcKyVsgLcOVsWu3P7Bbz5JZbbno2FXQ78gvXWfLEsC3cBTjpKuDZLwe8KvDLk4G1Hwd88TUtty7mNYBfnARMbsF6fzd8rvEGAMC956227NjssxzkNWjRhm7UrwD9IS29rS9vJNe8fZLJGx0Y6HuI2GaIJBO7ooe5COgrF124Ll0SRC0xxHBgUEiCVBli08ZCEATwojFSLrikyUMVtigvAC9/4Kc8uLiug3Ik3yWYUE0mdkuUiV0FIIKnx6k6W5TSD8dxpNkq8bwptlhZFBZXmCsk3Un7raoAIgyJ3SR7R9SXiKFJHRuVoqJxhjVNpb/3BANrFZBPMrPHRmp/xNlCQmL+MsVGds/IFRu1vStjbJSKNKhjIzdvOJjNgNoemiXpHiWYFYoCyQF4yXuS3JOI9r4W8iMrIJHK84aBGQnIr/ORwgR5bDLG0pQ5Z03GMryUeQEnfmbIFrH2lVzS2GSG3ZwRP4oFNy4+ES6OYMrZZKVAMZbSlurbTO+HSl4g8pm64Eun6DoHeXPLLVt281lHtP28Tcg2A0Df3LAn76GnhT//5b+AH78JmBy26taMtz9eCPzzRgwH/Xh3/VTUUcSRey/J134Gy0Feg9aW2J23Y/hi1JfX94Cn/xb+e/HK+DPx4YWyb6RSNXXzMGc5scsBzABqLIRJRtabXGKXudJd8qBNyZ5t88OyRGMUG5UeiZRs0aQvorHhYGi2+aGQfCAFEpV6NdIzIwH55CEH6A20gG8lIMIyIMLB9gbkWZqtscqT/JdKqDKsJWrsnWaym/ieyMrhc8dGbt5w9H1V36fxzRvLsVFhiDDERqcfID24KrfOcyS6AT22GYuqh0ofTaZ7IlvwRe+Hwl6AUUVKhhlZZRgjgDwDj23eFNVjkxUmL2URukoxHp9KgnpBPIe6iFxegCdnIytPzJWzUWpHkxXlCK7njeRawuVHRWV/xFDwlVtuuenbdkMVLF/Y3/baNgP0ui5wxMeBf/sWUOwD/nYl8O0jgU1/t+3ZzLQHr4V/3X8CAD5Sfzv+GSwBAHzzhANtejVrLQd5DVpbYnduBPI+Ev696aFQEqDYD8zfOf5MfGCw3cuEAWwGWptBWSDRdsU90Era0bKs1atTuRJU4uwd3uShyj2hTbrrMODtAokTTGCzXi9cwnkTra0KstFsAHxGABGlSnfLgEhWgIiJGk/iISuV7vEYsZz8B+TXV67YaO2PbINVzPsj8edNBucNQ2yUCiWZChSlARHLzz2ABwDIirQpkBwnckVF1H0JlQCRjPSAZ1vTFPdp5PNXoZiHRe5VCZjJxnmcfYwoqBPYbnkSFxUR52xkiyO41jS9oiIGaWIZggBbwZdsMR7PniQryhG55ZYbjf35Qy+b9to2A/QCwHNfB5x4BTBnB+Cpe4Fvvgz4+59sezWzbHQjGr84Ba4T4JLGS3GZvwpA3oeX03KQ16DFh6iGD2zfZOs+vj78+6moH++zw8qRpnEky1psCJU+M8TJh7Kc1A1X76xKxtiiWQB5WwcGOUlg26AZwMMErKiwRRkATSDRC1eSIULJngXUxmurGIDOFxWGSCxtypS0k2VZZwGsYpHSVgJE6Nl3gHzycJxN/lY9NrSMRJXnHlNsJAFnrthosZs5JBolCle41jTZ9ZWtSEOJNcMppZ0BsKost5+PE7vUyX+FHok8rLdstKMJfZEsKmL2Qw4kygZYxXa+UWZZ8wDwthnwybEaBIGUH3wgUUPo/XwS9OEZZdxyodWA0nOPKWeTEZa1Sr/kyOcKaW9gjT2JZcUVvueNvDoB1zjJLbfcaKwTGHfxjf+w4Ikle9YBwMnXhn9PbAZ+8Gpg3TdtezUz7JEbEfzw31Ac34j7/B1xbuMEAMDfL1hj2bHZbTnIa9Da+lcuPzh88Z83hn8/eVf49+K92j7D0hdJ51DJxEIQTezGksCW+zMBTNKmKmzRKPnPFRtJtii1/K0SEzAGRAiBRIWK+/EYEOG5J7Is62z04eMAqzQYIlxyZpL9km0f+JPvtS4JnLHELl/S3S5rRodlbbv6n5tRLMVuZpRrVpOgtwtWRc8926xVgGneJPZpsoCIdSAx2gtwSdBbZiRG97fW8OH7YrFpzZuMACJcxU22zzfNazX8AHVPsijB8jOYa23NztmzdS1RViLXXiB6joqCqxwFCUk/RMFmgGlNi++Hgh/ExTyyoGZW9otAQhLYcqEkF8s6a8oRVZkCRaZncG655UZnD13YDsp99Fd3YniybskbCzZ3B+BtlwP7vh4IPOCKDwCXvR/wtqF7IGOb/wH87ETgoqPgbLgDw8EATq2/B5Oo4OrTXgLXdWx7OKstf5oatLZK9wjkffpvwPgm4IG14c/LD2r7DEdiKFPV1JIyq9y9GlWACEoAT4UtynZPJJN2LRagXQA+CAIeuWYlQIRJtlJWzoyJfRcVW4jO3yAIWBh4eozibMSGT45QbLwmY0MKwCsAIlxS2tIMeLZ+YnKJIbZ5k0j+y8YmK2AVGwAvsaZxAM5Rf7WqFFiVDZlk9l7Wtte05v0IAqAmCFZxgat9ikl36n2arB++H8RgEhdYJTqH2aR4pZ833JLe4vOGhWWdSODLF/PYlXutcoFmkgB8EAQsoGZfonBafC3hPd+IgrwTTGdgFQYta59xy2zv5PVEAWculnUrNuLAN2+/ZInYsCl8KRYVsbGs5ccrJcs6t9xyozXHcXDbx49qe+25n7hKOH8wK6zUD/zbN4AjzgHgAH+9CPjGYcBdvwZ88fzwrLbJYeDqTwD//QLgrl/CDxz8qPFSHF79HO4PdsQbD9oJu28/ZNvLWW85yGvQ2jbqAwuBRc8Of3HPpcCjN4X/3rNVJVP3fDSayT3S3jsaSXcu1puwDCBzH01RybtaoxUbjqS7TGK3BYhQS/FK9kisM7FWJQ/aNc+HF88b+sNc8vppxgWuqrJFbcvf1jwf0a3jSILIMUR41xJptmiGYsPRA14GEMkM6405NqJsUe55A4izd7jmTVaYVbIJKq55owJWcSW7ZcdrVlhvbLFJzJtJwb1rFEOughHplieW19akv6TMqkSSWLxvJFNvQukeiczFtKKAZuJZQHn2LBdcRIX7wupNzGuadHEEeaGk3HOv7gUs55tiwUWpEAbHdp/iAeV5wwOaiYLNDc9H3WvmBRjkmuue+PmGm2Utvs4zFzoL+uH7AWoMvkT5jlpDPC/A1pM3Hq+CAHwErFLvBVQKVxhY1rnllhu9zesv4ZK3H9z22i5nXmHJG0vmOMCh7wPe+GOgMg948k7gZ28FvroKzp0/B4JtFOz1GsBfvwN8+fnA/34B8Kr4i/ccHFO7AGc2TsZTmA8AuPDf9rXr5zZiOchr0KbJZ0as3as/Ef79rANCKYCmJQ8WHL13VFgI5IldZbYoT29RWRZR8rOUfgDZSbpL9xYlBzQlk5gJfzmYvIDCeLWcdGeTa87IvFFhiPCpAsixd7hZq6KSWSbWNFFAhG3eKMqc2wZE2OZN4lq2k92ZkWuWBasSY5qWyasSG95+yeLjlUtiVa7wjCs2pYKLoisHiLQYTUySwJItT/ik8OXOFAAtO9J1HZSLkgWK3Ou8ZZa1bHFE8n2U48RxHOliHj5ARHaM8BYCyI4RgFHFQlpenGe8Css1M+0FVAFNgLiXdeJ5LsxuZipckWU3sxVpyI6RBs+8GWiLTVbYzXLFTbZVpJLPAup7kltuudHbC3dfhNcfuGPbayvOuNySNxZtz9XAe9cDL/lwCPY+dS+Kv/kPHH7Ph+Hc9qNtS8b5wWuAr78IuOx9wNhTwHa746Ta6Ti+/hHcE+wcv61Tb+fceCwHeQ3atD4zy/8l/Htic/j3nu1a99FGreA6KBfoe1Yl/480i6UiicHVPslkDIf0HgBUogO/6P1oJlOLiYQShSU3uOIgEb2MJ5BIDImyRblY1pIHl2h+lQoOSoTzJtkHeqYBEWxFGpJJIa7YlAsunIghMkMBPLYxYnneKAEibP1W1QARtgIayftBHZvk3kK6ZQIX28yyRKNsgiraC1DHxnWd+JkjDyTaHa9c+zTZ503kb9GljU3SF9vSiKpsUa7njWxsykWXvC+TNOCckX1aVuQzuZ43gPrelWtNq0rGhq84Qs4P10HMvKX2xfretcmOFAc0eUEzWdlooP28qGvlgotCc420vs5LxqZVpEG7jsgCmlyxqRRbZ0/rfYplxyt3cYQg6J0Ex6l9yS233HjsM6993rTXtkmgd2Ah8NKPAO+/A3jZWQj6F2Ko+iSKl707ZLT+9SKgUbXtJZ89dR9w8euAH7wa2Hg30DcfWP1p7P7Yx/AH/wAArX1qDvCatRzkNWjTKg/3XAMs3iv8d6EMPOfVbe+PE2WlAhyH7jBXSsgyiW4Gudhmsgkqbrlm2yzAZNJd1hc22VnJQxSbNLFlgCiZdJcfr7TFERXF3qJ80sR2k6mO4yTGqywDPhuqAP3UMucZYUYq+cLcHkBUJYGbUSzLeuOocu+TLHBii01GCldUwWaO2Ejvj5iYGbLqBNxAoizYzLmm2d6XVIqy86bJ8CKfN5Isa6axmrymbZlkaQl6NkAzG8UiyWuK70uy0Wecm2WtUghAmRcAFApGmgAetdzrgPT85WJZh3tyeZUElzQ2juPE90Sa3UzOss7GWiILaEbF6hXioiKV2HCtabLM8/Eqk/KLZGyi91WKrWKG3HLLLfvWCbTbJoFeAOibB7z4g2icegvuWvYGBIOLgS2PAJe9H/jS/sCNXwfqE7a9pLOxZ4ArPgj8zyrg/qsAtwj8yzuB99yKFb9ejgbac5o5wGvecpDXoA1MPTAMbge88wbg1L8C77gB2G63tvdzJZgBeakbrp6espWy49w9Ei0nmIEEq9h28lCWpcneT0wuUcYyb1TlxZnkzIQPc8xJTNvgHaBTqMHD8BKW0uZm72QgNqqAiG1VgNbaSlwIoLiOcDxvZHubZYX1xsWGUC2OYImNNEjEq+phOzZZ6Q0cXlNtn0YPrmaj0KoiWYzHVQgAyK9p3LKzsqCZ7T00F2iW9MW2vHhWmPiyBTSsa1rM+JY8a7EBeHK9RW3vSTjXtD7JexLPG0IpfKCVx5KNDT3Luth2/VQ/mPZG4TUlmedMSifTcowpxpVjHCjJrfGce+jccsuN17oBvUEg1qN81ll5CA8sOQaNd90MrP4UMGcHYPgx4HcfAr74POD6LwO1MdteqlujBlz/3yFwve4bQOABex4DvPNGYPWFWHHuDdM+kgO8diwHeQ1afHCpJzbHjgMs2gNYtPu093NufGQ3g3zSiLKb44yAzUwMzaQvtjfqcSFARiSB5ZnN9LGRToIwgURZYb3JsgA5Y6POrGIC8GzLnMdyhHJjlWXeSAIiXD2k1YHvbPTRzALrjW0vUFZbS6wn3Zn8CH3JCAAvzW722z5HZfEaL7i2ThoARKTvySwFIpQLaDgKJWUVV5iLEsTPWTzzRlVKm2dNk2sPwD9ebbOs1fYkFWLwDpAv7OVj0KqyVrnyAnbB5qQvsusrNctaVRJ4gBzklYtNfPbkjE1dzhcusoJ98oZcXo8zL5BbbrnxWycQb5czrxBen2ellQaAf3kH8N7bgGM+D8zbCRh9ErjqLOC/9gX+/J/A5LBtL8UtCIB7fgt85SDgqo8C1a3Akn2BEy4F3ngJsGj3jizuHOC1ZznIa9DUwTs+IFH48MK0CRusRPdErncHvcSq7KaUTwZQdoPMFRv5pDtPbGSl5oxINAomqDID4LGNkaYfovfDQPLQPvAtm9jlPfDbBlYBeUBkkmu8KhdH2C3S4IxNa7zaZQK2pLTlEru2WzdwAUTJa9peS+TB5larEUqTLY7gAlYB+b1AlQtIlF1bE5KiLH5kQIJeHlzlWdOke2obYCSKsCuMFBVJFwMQK64UJcFmAyxr3xeJDU8hACAvxcs1TmSZgC3WKvGaptiTl3MPbft8Ixub8SrTPk2xMJ9j3qj2bh4kPlfEsREGmyN2M09eQByA52NZ55ZbbmasE5i398d+j9/d8YQFbzJkxQrwgpOA99wC/Ot/Awt2AcafAf5wLvBf+wDXXgiMb7LtZW97fD3w3VcAP3kzsPkhYGhJ+F3+/U/Ari9BEAQ5wJtBy8umDJr8RpBH0gVIsorTfQmCgE1SVL7ykLmXiaQUEqdEo8gGOQgC9mpM8cphrtio9UXiiE1fSXy8BkGQAL7tMkTYpLSlk+6cklniSZBkbLIibcqW2LWskgDIgUSczxtZliafzLka04wzNvaZvGpMFb6ku/15I93/jh0kstsyoW8KWJXW9zBa42d1cYQkM5Jt3jSvV/N8eH6Q2luPC2xO+iLbH9j2WsJ1TyI2n+cHqHsBysXesYnBKst7gTZfZqk6QXI9qDb81OubAOCtP29UCxSZmLyy+8UsAInjTECiamyogUTZ2HAVbALye9cx5ryAPIOWKZ+WgT10brnlZs4e/tQxOPE763DtfU/Fr73j4lvi323TVigBz38L8Lw3Anf+Avjz54Cn/wb86VPAdZ8BFj0b2OF54Z+lzwWW7gv0z7fnb30C2PT3UJr5th8BCIBiH/DCdwOHvBeozAEA3P/kCI78wnXTPr7NxzsDNmOYvJs2bcLxxx+PuXPnYv78+TjppJMwOjra8zOHHXYYHMdp+/Mf//Efbe955JFHcMwxx2BgYADbb789PvjBD6LR4JEXSG6ORaqpOfvwybCKo6QNwNe7Qxb4Jvej0gK9ZWLDeZizHpvm9caE2d48sRlMVIVmJzbp96Ta8BEV5lMnH2KwWbIfEaeUtu01LWICiiTtal4rNvRAhCSQyDReK4nkv0hsoupvVtabAEhU9wK2NS0rAF7MxG+IsXey0su67vloNP0dsCxBz92moO4FqHvp45W376v4eK17PupeMzazFIBPgl9VAclmE/2SZecNW+/1jLC9AbHxyqnqISNP7PkBat4sl9JOxkagGCBmrRIzI5O+iNwT3w/ieW5bJpmLLZr8XiK+tNZWhthIPG+SBcbkqgCKzEgu5QjhvQATsArIPYN9P+DrtyqrNFbnOXtG+0/R2HCePWXXNC42vvK8YcodycaGYy+QW265mbXvnHgQvvGWA6a93onpuU1aoQg87w3AO/8PeO13gCX7AIEPPHUvcPtPgN9/BPjeK4BP7xz28P3pCaG08/1XA6NPpV9f1HwfGH4C+McNwPofAddeiMKl78ShfzsPxS8+Bzh/KfDVFwK3XQIgAPZ9PXDqX4GXnRUDvCvOuDwHeDNsM4bJe/zxx+OJJ57A2rVrUa/XceKJJ+KUU07BJZdc0vNzJ598Ms4999z454GBgfjfnufhmGOOwdKlS3H99dfjiSeewAknnIBSqYQLLriA/DtEm+MgCJPdaRs8zo1Pv8RGPXmo4OvdIdlXhcmPLMRmoKIYGzZ2s92q0CgWfhAmdtOSPayxkThEJRMlfLGR6xVlOzasiV2J6uHkmOZKqIqzNJmqupt+BKKxYWKqJH2xHRtZQIS7HyAQJtTT2AVc/aOTvojEJrnu9XH1KRZki3IpNkwFq0qF3t+TsyevDBs/ud6wSQLLAvBM8zfyJe17crLeZNoDJN9DPm9kWTNM96SSAL8m6h4GK73XKt7YiBcVJcd0VnrhUs/fUsFBwXXg+QEmax7m9pV6+8FYVCQTm2QhR1YAeOrYFFwH5YKLmueLFUdwtm4oyjxvfES1gwMpc13W5M+eDRY/kuN/vOZhXn/vtXusyqhUJNFSKlnIQX/mk23jxLRPSzxHhWLDqIwnkxdIrjdsDFpZCWvG841IbHImb265zS476jlLccvZR+L5561te33FGZfnAGBkbgHY59/CPyMbgCduS/y5Hdj6CLD54fDP3b9pfW7ODu2M3x2eB8zbEeikbFUdBbb8o3WdzYl/b/kH0JhsdwnAdskXKnOBZz0feNnZwI4Htr23E2h//ME74fxX76tyN3JjsBkB8t5zzz248sorcdNNN+HAA8NB9uUvfxlr1qzB5z73OSxbtqzrZwcGBrB06dKOv7vqqqtw99134+qrr8aSJUuw33774bzzzsOHP/xhfOITn0C5XCb9HsmN1HitkXoQ4Nz4tPqqpINE0UawVHBSE56yptxXhbHSPSuxEQG+o/tRLrgoEsdGtmKXKzZJAGS8lp7YZY1NzG4WB0R4YqM2b6gTQ0nwekIiNtaBxHp21jQukEgWEOHsZa0Sm6LroEzdY02aLcqTtIuSqUAY/1SQ18C8EUkwR++JEtOkfkjLZ/KBVY4TFkdM1D3MSQNEYiYv/XZahm0Wvcdx2gE3034AfAB8qeCiVHBQ90IW2fyU93PKzsZsfJF50/TDdUA+b2JgRrI4gnreuK6DvpKLybovlGTOiiRw8j225w3XOu84DvpLBYxWG0K+GOnJK1scYbngKwariIHE0JcQ5BUrtAr3JBxs0WguigDwyfMp/Xm82aJHsqiI+nlTLrhxccREzcO8frG9AKv6mmQxHldshAvz4568tONVOjascs3iuZK2Qsmi3dhw3RPZ2LTaWs2IlHRuueUmYAsHy3jowjXY5cwr2l5fccbl+MsZL8Oz5vdb8iyDNmdp+OfZR7deG98EbLg9BHyfuC3899P3AyNPhH/+dmXrvf0LQrB38cqw328E5I6lMH+dQggQL1gBLFgBb95OuOWhTdj/pa9CcfEe4XU7gMedAN7rPvhS7LTdwLTXc7NnM+KJesMNN2D+/PkxwAsARxxxBFzXxY033ohXv/rVXT978cUX44c//CGWLl2KV77ylTj77LNjNu8NN9yAfffdF0uWLInff/TRR+Md73gH7rrrLuy///4dr1mtVlGtVuOfh4eHhb5HwXVQKbqoNnyM17z2aokOxtXLBJADiUwwI+V7d9Dek5keGw7prpYfdg8M7bFpYOFg7+ILzqR7qz+wOADPE5vQDxGwGeADvosFF+Wii1rDx3jdwwJLfiSvGSUVehmrSkJGZGdlARHeXtZN6WihNS0bstFACzjhAESieSMDRFArAgAtWW8ZYKa/VEjthyprsr1FuZ7BjuOgr1jARN1DVWCctJiR9Ou8zHg1EhtZRiITgFf3GmLjlWn+AnLymcmer9SxifwQAZun+kJtfaUCJuuCjMTID+JENyDHNptI7NPo543c86YlCczzDB6tykoC25030V6gUnRTezyr+iEi+570heMZ3F8uYHhSbE1rgc12967J8w1XbGz3FnUcBwOlAkYEiyPGmc7A4TUlCvOrrb2ASxwb6QJjJqWiZGxkCuJZ2jhJkCaS+7Q8NpEffLHJLbfc7JnjOHj4U8dMAwUP+dQ1AHJZ3542sBDY9bDwT2TVUeDJOxPA723AxnuAic3A3/8Y/plq/QtiEBcLVgDzd279e96OYa/gpvn1Oh7fcgX2W/Z8oDS9OOeb1/0d519xz7TXH7pwDfn5KTd9mxEg74YNG7D99tu3vVYsFrFw4UJs2LCh6+fe9KY3Yeedd8ayZctw++2348Mf/jDuu+8+/PKXv4yvmwR4AcQ/97ruhRdeiHPOOUfpuwyUC6gKJna5NmCA3CGKtwJSbVPK1W81j42aHwBvb8I4NhkpSpCRa7Z94Af4K8xrDR/jVfHDHEfyUEXmnGesNv0QAJsBXnC1vwmIyBWMMCZ2ZXo1WmatAq35xeVLreHLAXis90S8dxYXQATYl9IGwvs8Ufek5MVtF4xkpf8swHtP+koFjEw2BOcN3z5NhS3KWbgiK9fMss6XCtiCupRMcj+xfDXQAklF1vlqg3cdAcTXNM5nnwzgzNm/Uma8GumjKc3k5YxNui9jBu6JiB9ZATRDX/iYgH1lCbCqmo28AGd+QrYwnxNc7Y9jI7JPy2MzzZfMxIZvTcstt9zsWyegF8jlm6WtMgTs9C/hn8ga1RDofeI24Jn7gcHF7YBu/3yS/7pbT+U8ftk1qyDvGWecgU9/+tM933PPPdMrBkTtlFNOif+97777YocddsDhhx+OBx98ELvttpvydc8880ycdtpp8c/Dw8NYvny50GcHykVsHq9b3/jISf/wbUoHY2akXUZieM2ZFxte8C4bcs2RL5vH60LMVc7DnArL2rYfyfdxJHYHy0VsycK8kZA5n+AE4JtJwOgwn2assakUMTzZEAKcs7KWsAKaTUBBunCFCRDZOlGXKlzhAmYA+88bZQa85V64rfHKV2hlu1djVqS0k9fMCrgqBDYzA6uA/B7adssE7iKN5P/Ry0ysI7K9rG2Dmrwgr7gqACeQKFscwemLTKHVBKNcswrLOkt7AdbzuOV50x+fbyTWNEZAMxs5G5WCkWyor7Ew8RVbBWUlNjmTN7fcZq89/Klj8PiWCbywyeKNbMUZl+OIvbbHt976AkuezXArVoBl+4V/GGzzWA37T+mtDOT9d2eCWQV5Tz/9dLztbW/r+Z5dd90VS5cuxcaNG9tebzQa2LRpU9d+u53s4IMPBgA88MAD2G233bB06VKsW7eu7T1PPvkkAPS8bqVSQaVSEf5/k9bahFmWl4mT7nalVGQlgY0AZyKMxKzEhpFpNigtpW0CXLUbm/6MxEYWgM8K45vTDxkmLydoJiMbDfACzlFsxiRlxKhtUGL+cgIzyoUrs7iYp5W0sztGZIAZgJv15rb9H0J+WGY3ZwVYTb7PNtvMCLgqw/a2DJol38fRRkKFpWmb3czdaxWQB3kHGXyRA775mJFSksCMzEiZNR5I9sK1O17HGNeSqCe1SMuELBaxWgdXDag3yRR8sRQCqDLgLffC5WTASxUCRD2KS5ztpGZWbGI/GO5Jbrnllh1bNr+/I6v36ns25qzeDFo39u7fPvlylIv0Z8jcaM3qE3Xx4sVYvHhx6vtWrVqFLVu24Oabb8YBBxwAALjmmmvg+34M3IrY+vXrAQA77LBDfN3zzz8fGzdujOWg165di7lz52LvvfeW/DZiJrMZjAERy0AEZ7WfDEAUBAG7JLCoL5w9ErMWmzEB0DsIgsQB1+4hijPBPCgxRjiZKjKgd3Le8N4Ty3LNCoAmpzqBLADPA66KH/pZZZKjHtIy/ZJZYyNWVMQqpS01Xvn6FGdNSjsL7QGk7kk8XukPPFlhWWdJErhPqod0syevZbCZE1htgXeivUX5AAAZUDNa9zjA1da8EZEm5gPvkvM3CILUnlXRXpsF+C7KgKsR2JwNljXnGKk1fPh+kNofc8yALzLPG/tMXv7iRHm2KKN0tOWiBClAs2qgwFhwTeNkfMvl0wzERqKAhps0kZ3YiJ9vcrnm3HLbNuzhTx2Dt3z7Rvz5/qfbXo9AxfvPO8qGW7k17eZ/bMZx37qp4+9yIH7m2IyA4ffaay+sXr0aJ598MtatW4e//OUvOPXUU3Hcccdh2bJlAIDHHnsMK1eujJm5Dz74IM477zzcfPPNePjhh3HppZfihBNOwItf/GI897nPBQAcddRR2HvvvfGWt7wFt912G37/+9/jrLPOwrve9S5lpm6ayUnu8FVTq8jLcMgRRt+t2vDh+UHP907WfQRB++coLQacLTMzZmJsqo1WbDiT7mJyzQbAVctg1UAisZsWm5rXeg9nbGz3RRqUOfAb6ouUGpuGjwZjbGSAb1ZwtRLdk3Q/OIHVWEq75sFPiU3d81H3mrFhBOBlpLQ5gW+htdWAxGoEiPQyzw9Qa/h8vsgwaOt8z+B+BUYxq1xz3U+dN74fxIAja29RAbZZtN7wsEXFwWYTUq81z0fD6w1qej5vwZcUgBcBiZxFCUKACF9s+prfzQ/C+PQyzw9Qba5pHEzePonYjMVABKNMshD7jhGAT1wzbS1peH78vOEo7I2LIywDeFIsa06AqMnoaySe892s7vnx3OJVOsnGmU+qCJ3xfnh+kLqmJffQvLLettXXJABNA7ERed5wx0Ytj5WDvLnltq3YD046GH+/YE3H3+1x9lUYF6vFz43Y3ntDsSPAe/0ZL8sB3hlmMwLkBYCLL74YK1euxOGHH441a9bg0EMPxTe+8Y349/V6Hffddx/Gx8cBAOVyGVdffTWOOuoorFy5Eqeffjpe85rX4Le//W38mUKhgMsuuwyFQgGrVq3Cm9/8Zpxwwgk499xz2b7HYEWcSWREdlYI0Gwe5hhBMyD9YJm8Z5xSniIb9XHGJIhUVagBRjGQHpvkAZiXkWj7MCdTscvIFk0kAW3HRkZenPeAKw5W8co1S8Qm8XvbB21WcFWFyWt7TUv8nmUtiQFnkXnDB2jKtCmYYGQhRGt8EKSzEvnnjUQPaRPAt1RvYL5kKoAYiOpmScDE9j0ZixmJfGCVCNjMCVYln2GTKbFJzhsWSWCZvq+sbQrCo21VSHaWv7coAEzWescm+Rzg8UW8YKTF9mYs0hDqP8uoTlBM7AVSxmtyv8/ZS1OscIVxDy2hTmCCyQuI5AWSewGONU1+L8DBgG8Vj4qfgTnPFIDAvKnx7qGlCowNKI1JSROzFEdkKDYShBbOeZNbbrll11zXwcOfOgYH7rxg2u/OvKmIPc6+yoJX26atOOPyrvf74U8dg2Xz+w17lJuuzZgGCAsXLsQll1zS9fcrVqxoY38sX74cf/rTn1Kvu/POO+OKK64g8VHEsrYplQHNOPyoFF04TpjYHa82MNQj8RT5USm6KKRIa6mYUm9Rxv6VMjI3XP2ZXCesCk2NTXOslgsuigU+ScKs9EUSAUQ45ZpV5k2p4KDEEBuVAy4HuCo3bxiTh6VEbGq9YxP5UXSZYhMVFcn0GbcsL94CqxiAmWIhERuvJ9AR+eE64bpGbTKy3rz9ziWYvIaAxLFao+f/kUxgVRj6wgxKAPC880a+KJBTrjnypVdsImDVcez3B2aV4pVheEUyngzAanL8T9a93nuBph+OwzNvpHrhNn1hkQSWAZsZZXhLhfCs4vkBJhse5qGU6ofLFBule2K5J+8Yox+u66BcdFFr+MKFkgXXYdkLyDHP+RS+pHoDM0oTlwpOPG8mah7m9XefN8k9NEePOJm9a0tu3TIDnnGMlAouSgUHdS/AeM3D/IHu722LDePZU4plzRAbOYU+vvNNseCiXHBR83zh2HCtaVmJTW655ZZ9+/k7Xgigcw/Y6LWcRcpj3fruAsA9567OFRZmsM0YJu9ssQGlzaDdCkhOPxzHEb4nMWjGtODI9FvlTKi2euGKJN35ZBEdxxFmNHGCzYAkI9FAbGwf5mTmDSfTDJCUEcvMvOG7J22xSfGFU4YXaD1vZNjNPNLv8sVN/Qz9K103OW96J+2Sfd7SelupmFQP6UiK1zKjeJxxLXFdR1gOPzl/eWIjzjyPxwkDWDVYEZ83LbYo/fwtuI5wInM8ofyS1udSxVSYvLb7aEbrLwfY7DiOMIDX8oNnTZNhaXICeFJgM2NsAHFwddxYbOwCeFJsUUY/2n3pPV6T94MjNnKFK/zFPLZZ1u3nm977kjFDZ085drNdtihnbADx8ZqMDeceWuY8brvPOKcyXtIXmX0ay5omUcTKOW9yyy23mWMPf+oY/PlDL+34uxVnXN4TkMxNzl7/tRu63s/jXrAjHv7UMTnAO8MtB3kNm0x12wRjEmRAoiqUk1EMiG8G440gG1iVDSntWDZaSK45KwcG3jEiFZvmPWFhi1YkYsN9TyqiADwzkJgRuWaZ2LCDq4KxiWXfmeZvfE8syzUPCt4PgPe5B7RikwbgcbLOAcX+3py9gSUKaPgKRiJWsVhil0verVXwJcDeYQRXW2CzwHOPUZo4vK5YUQInsArI9ZA2weQVS2LyMauSvoi2PLGd/Of2RQ3Q5ImNKOAc+8G0pkkBeIzymZGUttj5hncvIAo4c+/lZYoSeGMjwb7jjo3gmhb5yvH8BVqxyYz6msS84TrfiI4TfrBZBkjkVMPJBmki6YtoURF7Yb6AvDinUlFuueU2s2z5wgHcf95ReOGSznvVHOzVs+j+rXt4U8fff3FVA+f9696GvcqNw3KQ17DJVbfxSzTK+MHB8AJah9W0XjPcm1I1KW1O1ptd2VkgIYFrOTZZqWKOkkIiSXdOuWZAfJxwSu8l/ZDpt8oBnMnEhhM0A8RjwwmsJq8rwhblBJxVYsMOrqYxebljUxEDNAHeNU0GbI6ZgMxAYvqaFoG8dgsBgNZ9YymOkNinjTEnykTZzZzAKpBgngusJZxs0SEJKfxWb2C7+6Nx5vnbSv6L3xNWSeAMsIj6BHvhcu/TREEzoBUbDvnMSjFDTF7h4gheIDEar1URBjxjbDLFspYEq7j30ELPYNY1Tb5Qkmu8iuaPTJ09ZdqO8cwbedYq116gPyvnGxW55hzkzS233Jr2hl193H/eUV1/n4O9cpZ2vx7+1DE973duM8/yBgiGbUAQNAN4gQjRjWDSD+7q/3TZWd6Kexl2MycAnxVJ4OR10xK7piSBbSft5PzglhETZPIyx0aKLcp46Fdji3IzEmcOW5ST8S0zRvjXEkkGPNe8kZKd5QM1ByXA5tgPy0AiZzIVkGTyMsYmAjSzwOQVLY7gBFaBJJNXvDiCI6Eq08uam8kb35OUccIpw9vmh9AzmI+NL8V6i2LDlXSPgLNUKe3ssayts0UZpfAB8T6n3JLAMveEc96IFiQA/LERzQuYkmuWiQ1nXiBtHQESvYHZczZixXhce2ipwnwjeQHxYlpu4HtcsHCFL3ekEps8JZ1bbrm1W9SLtxtAGb1+yckH44W7LTLm10wwzw+w20eu6Pmehy5cwyLZn5t9y5+ohk20KtTzA1QbfttnOPwQkofKSKVsVpi8vh/EkmcsgEgChAiCoOfim5XYsMsyCSYPgyBgleKNgcR6emzMVZin9RY1dOBPWUuCIGDt6Zm8H6nzps57wB0UPPSbApvTYgPwgqvR/RgTiA1ngjnpS9q8Ga3y+iEKEgVBwMokSvaiT4sNO5NXWJ2AF2yWed6MMfoisxfgBokGRWXOmeeNqB/J2PDsBSQKAeL5y3VPxIoBuBmJg4Isa98PWOVeZZj4Y8z3RLatBp/sbAjgpYFEvh+wKhWJ9sEF+MdrfE8yIgmcdh5v20MzKhVNypxv2BVX7MYm2gvIxIZVcUUkNhlhaXKzVkXzWOEe2oBcs8S8YStiLYkV1HJLJIuSJrjnTW655TY7LA3sfdM3b5z23m3VRBjO2/o92hYsB3kNmyiQmNy0ckoC170Adc9HqdBduZtf2lRsU2qu72tvPyYbrd9zsqw9P0DN82N5s07GzxYVY55zV4WKgmbVho8gCP/NHZtqw+/JwDQlxWu7X7JoYrfm+fD8MDg8vazDa/oBUmPDvaZF30+07yvX/BWOTcNH3Qtjw9JbtJnoFokNJzMy6Yuw7Cy3NHFKbKoNH43mvOFgzUT3Q2RN4wbwRGMzyt73VTw2zdCwMnkbQnsBbonGrDB5xfyYrLf2Apz9kutegGrD6x2buN8q11oitnfl7vsa3ZPRlPk72fBasWHwZajpR83zUWv4KBd7nG/Y2c2tAqdeZio2aX4kY8PZ8qTm+Wh4Poo9z55mChRF+yXb9oN7TetL7KFFz558jMTwuqL9kvlZq+Kx4VjnZfIC/EXXsoX5vDLnabmj5D6NpTiiec1A4HyTtdjw59Ps5gVyyy232WUROPmRX92BS258pON7kiDntgJmnvGL2/Hjm/6Z+r5t5X7kloO8xk20AjL6veO0qo0pLbmZGq95mNff/f/gllIRBr5NgVWCPU4BXkYiEH7nnoc5Y31fBatCLcsyJX/PUhxRao+NCJDILcWbxjbjHiOifcYnay3mBs+8acV7PCU2Lel3rsSuGIO2xQJkllsXTDADTBKNpfbnTW+Ql1l2VlBqriVNbDc2yXnF4YtMbEarzIldSRnAIW6wWWLesKxpiWuOVXvvBbhBIlEp3rGMFAIkY8epTgCEUtk9Y2MIgB8VZPLa3kMnY9fX476pWnIOjNcaKBfL3X3hLkoQLirijc2QpB8A05qWiM1YytnT1LwRLbrmWtNEGcXca1rympO13kBiPG+YpbTTz3zcvehFC53N7QXS8gKmJIHTihK2mbyAxNmTuyhBVDraVKGzaF4P4BsnueWW2+yzC169Ly549b7YMl7Dfueu7fq+2Qz4ivYk/tHJ/4JVu23H7E1uWbMc5DVs/SWx6rZkP0AOrfRywUXRddDwQxmbef2lru8dZwZERBkirU0pb1Wo6Ka0r+TCdeljUyq4KBUc1L1QpnP+QLov7NWYgj157fc4DcdQueiiwBCbYsFFueii1vAxVmtgwWD35OE4c/KwxYAXXEuYmSqp8rdRbJr3kNoKroNK0UW14WOs2sDCHrEZNdW/UrBH4hAzI1G051yl6PZk1qhawXXQV3IxWU+PDaf8LdBKSqb3ejMlTSwGmvWVeNY0mdiwy+9FsrOp98QUW1QcmOHYCxQLrvCaxs7kFWSejzEnmIUlvasGY5O6FzADwKezrA31BpYAZrj20K19muAemrk9gKiUNjvYbHneVIqF+HwzVu199jR1vknvZW1mL5/mRzIvwDVv4rxAvYF5sBkbubyA7SL06PcVzrNnwUXN81PzAtwFI6IMWmNs0VS2d+t8w7WHjp4347WUfRqjFD4gM16ZFZMECwEiP8sFnrNnbrnlNrtt/kA5Bm9P/M46XHvfU13fmwRFX/P8HfGfr38eu3+UdvM/NuM1X71e+P2zDdTOTc5ykNewCUusMgOrjuOgv1zAyGTDei9cabYo84FB/ODCN30GykVsnahbj43sAbePGUhMAzS5JZKja9cavjAb37Zc8yiz/K3wGGFmmgHhd6w2asLye9xgVXpsuMFmUfYdrx9ACABM1mvCoCYfuJoRRqIgAz5KynMVAgCt2KTOG2bmeQxWpQIizIUAgkl3bmYz0FrThKV4mdUJUgG8aC1hjk0aa5Ub0ATEY9O6J3bZoq3+lcxFGpYBTSD8jrVmcUQvY1/TRMFV5jVNFGzm7u0NhPdky3hdoiiBi3kuOm+4/RAtPOOPzUC5gOHJhnA7C3a2qHUgUVB9rc6/h+4rhSCvKHDGlxcQ27vGseHuyStY6JyNvIAp0oTtMZINP3LLvp1//vm4/PLLsX79epTLZWzZsiX1M0EQ4OMf/zi++c1vYsuWLTjkkEPw1a9+FXvssQe/w7ll1r5z4kHxv9NYrr+45VH84pZH21576MI1LMQ6VRNl6ibt3vNWsylI5jazLAd5DZtsdRvnxmegCfKmbUonuWVdSpIHBu5NqaAsE9f9AMLvGIK8dpNlsXxmyj2JD1GWpX/iinvG2AyWowSVXXBV9DDXkp3lZhEJ3g/GxG40J9OZGdwMWjFmFTfwLZqgGmUGNIHmHB4Tl/K0zkhkBr5Fe/Jys4iA8J48MyY+b/j6JUuu89yxEWZD8O4FNo0JSEdzMzNkmbzbUGxsyySLgqvc8yZ6ngoXaTAXfG0er6cDzlXe2LSARLHYcPWvlJeN5i0q2jJeT+3dHBclsI3XSDnCcp/xiljhCjdoFvkyPNmQOHvyzpvRjOyhRc9ZvHmBMDbiBcbMZ0/BXIl91qqBPXSpgC3IQGG+YH9v7pyNKGnCBACfW7atVqvhda97HVatWoVvf/vbQp/5zGc+gy996Uv43ve+h1122QVnn302jj76aNx9993o6+tj9ji3mWARizUIAhz66Wvx2JaJ1M/scuYVHV+///yXo8SoNPCWb9+IP9//tPLnH7xgDYtKRW4z23KQ17BJ959lkiYGok1YVYBVzH2YE+whUufdHMv2S+bclAqPE26Z5DhpJ1hhzsxITJWdZQYhgFZsRJPubH0jhSUaudmiYrJqUXKRlZFYEZvDY8wMvNYYEWRpsiUPxcZqi0XEm9gN/y9BtijXvCnJSYqys0UtMzQB8diwAyKyLOtZLuMJJNnNdmMzJBgbbiavLGiWhdhwA/CyMsn21zRzsRHt3Wx7TYt6fvLNG7m9AC+TV64Yj+/MJ7aWmOuXLFiQwJgXkAac2YsSxPICXPdE1A8jbFHRecO+zsuxrLmAb2k/MpCz4W6r0S+YKzHFgE8vFuFd43PLvp1zzjkAgO9+97tC7w+CAP/1X/+Fs846C6961asAAN///vexZMkS/PrXv8Zxxx3H5WpuM9Acx8FfznhZ/PNjWyZwyKeukbrGHh/9neT/WsR7b7hK8jPi9p0TX4CX7rk92/Vzmx2Wg7yGTVYSmHVTWhLdhGVD1mXS2KbU7uY4eW1xBp5dtujoJDegKZag4r4fSV9sA86tvq9ifnCBqxGwn5bENMMWTfclCIL499xM3vQxwg3AC4IQJuaNAAMvCAJ+uWbBoiJuKV7ZJAhncUS8vvZIHobzhnktES0Y4QbNEmM1CIKu8k3jzIU8SV96PfuMxCYq+LIdm0RBgkhsuBLdgHhsWoldXuBbtOCLa01LglUisTECiKTEhpstKg5ocqsTyBZH8LJFRXzhBkSEwdWMyEZz9/ZW8oUN+I7mjd2i62jsibOs+fZpQ5IAPFfORrQQgL1lkaAK3ARz+7Pw2qEvk4L9gbOSx+JSjmjlF+2SSHKbffbQQw9hw4YNOOKII+LX5s2bh4MPPhg33HBDR5C3Wq2iWq3GPw8PDwMA6vU66vV61/8r+l2v92TVct872/aDRdx/3lHxz6PVBvb/pBzoa9queu8h2GXRYNtrHPcmHzN2TNR32e+Wg7yGLZnEtJ4EEQCrPD9AreE3388tCSxWcc+1KU32SPT9AG4X6QPuJCYgdnipe34cGy4mYEtePA0QMcMWnaz7QrExAYj0ik214aHuBQDsA/DsYHNz/tYaPjw/6CoZYgJIHBQAiapNP0NfeAtXxOVveQ/8Nc9H3fO7ys2YSOyKAHjVho9maKz3KR43VAhQ98JnbLmYEhtWBnz68yYZG34gwi4bIhojDT9AzfNRKXaeF0YYiQIAnpHYCK5p7LFprpXCsTEyb8SeN/yxSWNZMz9vZGPD+LwZEohNzfPRiGKTFQCPmbWa9ryJGcXMPeCB3gB8rdGKDT9YZVfuNTq/1Zpnum6xMVFgPCRQlFBr+PH5hl2uWXAPzQV8R+tIteGj4fkodttDR/OXuVUQ0PuemMjZyBZpsKvA1b2Us6c59bVesfH9AJN1v+391CZaKMkNfEfXrabkBUyoFuY2u2zDhg0AgCVLlrS9vmTJkvh3U+3CCy+MGcNJu+qqqzAwMJD6f65du1bB02xY7nu6fXFV+89+APzhcQeXPWK2+GSH/gCn7eth6rJ8z7o/4R6DfuRjxo6l+T4+Pi51vfypatiijZ0fhJufbs2xsyIJnNyw8gERYqy3yJc5zKAZAEw2vK4HJCNsUQEWwpiB2IhWY7KzRROxmKh7Xe99C2zmr9jtdYhKJvS4e97YZjcnkyvjtQbm9JU6vs+EJLAI8J2cN3xJkFbyoZfxM/Fb1x2veZjX3ztBxVsckZ7sTj5vuOZNi6UpyORlLgQAwmdfV5DXAFs07mXd454kY8Mtv5cu/W6mDx8QsuC7gVWm+r4CvefNmInYCIJV7LEpScbGQOFKL5Ao+Szij40Yy5qtUFI0NnXeQgBAMDbJfRpzoaR1QCRx3bFqA+ViueP74t7AnGCVAEsz+QzgBolEmbzcxRHR/9UtNqb6JQO9warkWZ1tDy0opc3dsii5Nx+repg30KU4wgQA35f+DDYxb0RZ1i0pfF6wOfq/5nY5e3L3KAZaeale4zV5HrTdHsAU2zv8v3rlBfhVC3Mzb2eccQY+/elP93zPPffcg5UrVxrx58wzz8Rpp50W/zw8PIzly5fjqKOOwty5c7t+rl6vY+3atTjyyCNRKnUew1m13Hc9ewWAL/T4fbXu4Y7Hh/GjdY/i0tuf6Pq+guvgtc9/Fo5+zvbYb8f5mNOXXegtC/dd1bYF3yMFAlHL7kibpdaWBKl5XUHeUWbQDEgkVHsAEdGGtVRwuiZsdK1fMLHLzRbtnxKbriDvJC/YDIixrKMxUim6XauLdS1mqgge5rjGa1/JheMAQRD+X93GgMmevCJAYl+JLzbistERI5Fn/pYLLgquA88PZSm7Hea45y/QzsbvZskkZrfqYl3rL4klqLhZb+Wii1LBQd0LMF5rYF5/59hwy0YDYizrZF/Rbmx9XYsBTUFmFdc9KRddlAsuap6PsVoD8wZ6x8YIW1QAEOGcN7IJKq55Uyq4KBdd1Bo+xuseFnR536iJ2AgUFSV73/HFRmyfxh2bYsFFpeii2vAxWm1gwWAXsMogIDLeY51P7gW4YjMkWLjCLRtdLLjoK7mYrPeOzThzIQCQXNN6xKbW2kPzxUZOSptz3kSxGav1iI0BpSIRAC8aq+WC21WBhMoP4ZZFTMB38nkzWm1g/kDv2JhgwPeMTZMFWHSdrsVpuibLFu1nYgIm92mjPfZpJuWaReaN64TrGoeJSlhzA9+VxPlmdLI7yGui76sI8zx5Lu1jyqdlhWUdPVPT8gIm1rTczNvpp5+Ot73tbT3fs+uuuypde+nSpQCAJ598EjvssEP8+pNPPon99tuv42cqlQoqlcq010ulkhAgJPq+LFruO4+VSiWs2r0Pq3bfHl96U+v1er2OK664AmvWrMms72mW5fueZrPZd9nvlYO8hq3toF1tYGGXg7YJtqjIZtAo2CwsO8uzGXRdJ45NL+DMCJAoINdsIjYxoJkq18x7TxzHwUCpgLGaJxQbznsyKDBejcwbAYlVIDFemZKHUWxGqg0h4JuTkdjqU5y+pvGurdmQ0gbCxGTdE4sNJ+utXwCA5+6DC7TudVpxRARqsrLNKgXUxv0UVQBzjMSeyhEm2hRU0ucvYE76vdbwe/pihC0qwJoZY2aaAeIy52MGknaDlSKqjVrPtYRbmjjyA+h9T7hBb0AiNibW13IRk/XeseEGNJPX7smsYu7HC7TudWofzaqBedOMTW8mYDZ68prsP5seG/5xMlQpYlNjpsTGhB/p8rcAf14gunZt3BcbrwYY8CJA4kC52LUdmK6J97LmZWk6joPBShFbxuspRQmRJLBdlvVEXJDAV8QascQiMkI341bWchwHg+UChicbGJlsYEkXsqSJXElu5m3x4sVYvHgxy7V32WUXLF26FH/4wx9iUHd4eBg33ngj3vGOd7D8n7nllltuM814yvxy62lDlRCJH+mxCYsBEUZav8hGPStgM5Bk0PJVaIj0ijLDSIxYmnbHyEBG5JoBOZDIDFtUAJgxUhxhF4AHkkCE3bUkjk0PdYLxmHVuQtJbVK7ZBKPJ7rwZFAASzcQm3Q/ATGwGBFjFJsBVEeDbSDJVcN6YABJFgDMjfV8l2gPwFkeIAfAmABGxogT+eyJSlDBmAqwSlTaNQU0DRQk9FRvMFAKEfqSDzWZ6Awv2fTWwzouBRLO/OKJ1Bk6JDXP/SkAMwOOWvw39EIiNgeeNaGy45ZoBuXljgi0qAjZz+hHlHFKZvHUD+xIJeXET6/xotd71PSbzaWmxifJpnPmjiL3bMy9gwI/csm2PPPII1q9fj0ceeQSe52H9+vVYv349RkdH4/esXLkSv/rVrwCEBQTve9/78MlPfhKXXnop7rjjDpxwwglYtmwZjj32WEvfIrfccsstW5Y/VS3YnL4inh6tCvW/GzJwiOoFNscbMAMSRNmo2C3imbFaz02pCUZia6PeC5gxwIYQlWs2IfdaKeDpUTGZZNvM8/gwxxgb2X7J/OBqtWcPWqPAtwDYzJr8z4i0adIXEXCVtxAgHUg0Exu5pDsvkze9qGhbAs0GBQAiwMw9EQE1W0UJdlmaYwZAsywxeYcE9iUmWNYiRYGmFAEAkZ685pLuPffQRvxIvycmwOYBQUaiyR7SvaXfTbC902MTt9UwopIg9ryxPW9MgFVC88aQWkOaH6EvJgHndJCXMz8xJPC8MTJGJHM2ZsDV7r6MGAASW2Bz+vmGsyejaD7NBINWqHAluic5k3ebtY997GP43ve+F/+8//77AwCuvfZaHHbYYQCA++67D1u3bo3f86EPfQhjY2M45ZRTsGXLFhx66KG48sor0dfXZ9T33HLLLbesWv5UtWDxxqcHuGpiU9qSlxEBNDmr/dLlZYIgwKiBhKoQ8G3wntiOzaAACBEEgRG5yBaomZ4YMpIo68W+i/vgGgDgeyTdfT9oSSOaYEeKJEEMJO1EevLySnqnx6Z93vCDRL1ZmubmjYgcoYkijV5jNRkbXgaeQO91g2BV7568/MVN/QJ+tM0b20xeg7KVQrLRRiToe8+bVrLbclGCAZa1yJpmFPSueQiCoKtM57iBfVoLnOklW2lAJUGKyct/pkiLTeQLKwNPBKyq8u8XRUCiiTr/Gj+UON/0njcmGd+2FRsk2N6cgKZobEyqAggB3yZiY7dVUHId6RWbyJduvXJJfBHIlbTuCb8fveZNxPLNUmxsEzhGDBR/55Zt++53v4vvfve7Pd8TBEHbz47j4Nxzz8W5557L6FluueWW28y1XK7ZgsVAogCAx7nxmSOxATMiG13z4PtBx/eECRLw+yK0UeePjcjm2IScaNKPqZusyNpiYxn4NikJ3DvBbCCJmWBldItNkllrAjgTYWmyxkaA3WykICHB9hZa02wDIjGgyc/e6ZXEjJm8BhLM1YYPr0tsJuqmYpMORMRJTBNy6yKxMcDwqnk+ag2/43uqDR9R2HilTQVYbwYUG6Rkow2A3nUv6BmbaE6ZSLqLMBJZiyNk/DCwxjf8ANUusak1fNS9KDZ2VSzMgKvijEQT+zSvR2waifXOiHKEQFFCvyHgu6sfBpi80Zz0A2Cy3jk2nh8YkQQeEADwJgzIRsuwVgdK/ICmH6CrQpDvB3FrFhPjpHeLLf4CRZkWWyYKjNPmTVy0ycmgFQG+TZAmBJ43IyaU8ZrfsddeoO75cdxMjJNeBI5crjm33HLLLbfc6C0HeS2YzEadU8JEpGLXBNic3Nx1SzJHfrhOi9HJYXMENqUmGLQihQCRj6yFAM3YBEH3hMyoodhE92TYdmwECgFM9tHsddA2NW9kJEVZQTMB5rmJNS2ZNJ5sdL4nkY+uA/SV+B7FIoxvMzLn6X6MGynSaMWmGxARJewc5nkjwtKMmfhGgBmBHokGelkD3QtGkuvugIk1TYA1w1uUIC6xytq6QWDeJMePCSCxV2LXSL9kEdDMIAAPdJ/DyZjZB4lMgKsSYJWBIo1evownQCxedqRI6wZziiu92aIGCmgSz49uviQBRt7C3mxIWIutafzPvWRsuvkynijGY2WLCsRmeJKfpSkDmnFKAovMm+TrvIXo6bHJTj6NH/QWic1YW2wMFOYLFBhzzpvccsstt9xy29YsB3kt2JDIRt1AzzkRaeI4+c940K4UCygVQkmZbpvSpKRLN/kZCpNh8hphFDcPjp0s7mXC6Eel6KLohve72zhJ9p/ljU14iO89bwwy4C2DzQOlAqLbPVLtPE6MxUaicIUVXBWQex1L3BMu6yumJ6haEsm8sYlZxT1jY05iVYThxZlgrhRdNJe0roDImKF50y9RHGEbEBkzkHQvF914L9AtMTSeAM1cly82IsxzMz21Rdh3/PO3WHBRKbpt/980P5rjp6/kosAam2idt8zklel3zjhGCq4TF6N0m8NRzMoFF6UC39FPhnluoihQpLiJE/Ruj00XsKr5esF1UGaMTatvpAjwbZsBzw9ouq6Tui8ZTxTjResfh4nExkT/SpE+miPx2ZMPWHVdJ7U/cHQGK7qOkdj0WtNM5AVEYmOCySsUm+br5aKLSpF/nRdSpDOhvtYzP8FfCCATm0rRRdnAvOnZ/swAuzm33HLLLbfctjXLQV4LFh0CerI0o82g5Z68JuSagfQNsgnQrM0Py2CViJT2qIHkoeM4CeC7M5BoghkJiMXGBIM2Smz0HiP8SXfXdVILNcYM+AG0Cg1GehUlGGDviK2tZmKTdtA2NW9aQEQvliY/ICIiFWlibXUcp5W06wqI8Cf/gQSQKNLL2nIPaVPjNY3x3YoNsx8S0qasgIgI2GygECC8fm9w1QToDSTlxe32W5Vii7LHpjfg3JJ9N+OH7R7SIr3XTTB5gXSWV3Id4Swqas3f9HXehFyzCFuU+8yXFpukxKqJ2IjIvXKCqyK9gaN9PmeBMSASm5YfJmLT88wXxcaEXHPP2BjK2aQUxJu4H4BobAzk0wRiYwrQjM/BKYX53PNXKseYg7y55ZZbbrnlRmY5yGvBRA5zJvq7zKmkg1XGALwUcMZE8j/ph22WpowfpsDVtAMD96FyrohMsom+SCkHqNAPM7FJYxWb6NsMiKkCjBsAV0XA5vFYHor3nkSJuO4AvJmk+1BG1nkpsMoQSNSdycu/jgAJQLNLzzmgnY3P5kfK/QDMyM4C6ePEhNSriB+AmTVNDGw2A1YNpBSMtHp72wWbgZbcN+c4GRSYN8aA7xTGtyk/RHokmmSL2pYmDn1JWdNMra0STEBWuddyuh8jBmRngXTA2QSwmvSj11oyYgCskulxyg3gpSkEmS5CF5IE5gTgRUCzGEjkHa9p4KoJogKQnT7FWSJNpOUYTbT6AgQL8w3lSnLLLbfccsttW7Ic5LVgInKvJir+4gO/SH8X9s1gbyleUxWQIgxaE+xIkZ68poCItI26KbZoC0jsDuCZADVF/GgVAmQDSORn8jb9EGHAMyaZhRjwMbhqqpq6CwPeUC+iND+Adulofj/ssqyBdGlEc2CVANvMwJrWYvLaZd8B6aCmibEKJGVn7SpHiMlG8zPxw+unMHkNxUZEPtME41usYNMQ8zxlnBhXJxAAV83EplcBTfhM5N4LpD1vWoxEXmBmQGCdHzHISOxVpDFsCKxKY3yb6HEKiDESWzLJnM8bGUDTEFjVZbyOZgTQBMwwaEUkvaM1zVxxRDoDntNE+hRHzwAT8yYL0sRp52AToHfy+rZ7SOeWW2655ZbbtmY5yGvB0kCzasNDzfMBMAOJETOy1kAQBB3fYyrpPiflwGAMEEkBV5OxMcLkrXaPzYihasw5KaxiU4BmGkhU93zUGvyxmSsQG+PM825S2gYkvZN+dItNw/NRNRCbJOjdLTbmgO/ea8moIUBkbkpsPD/ARJ2f9ZZWkACYY2nOSbknLWaV3QSV7wcxy5dXdjadWWWiX3Ly+l3BKmPSxJHsbGeQKAgCI0zAGPQWYVmzA/C9x4kpIFGkv3eLZW2iOMLr+rwZN8AoBtIZicaY+CnjNQgCM4zERL/ktD30XHawqjfje9hQojttjARBYISRmBwjvt8tNmYlgbsBieb86A02+34iNgaKvyfqHryusTEF4EXPmzSWNfe8EY+Nib6vk3UfjWYeYqqZAvDSAGfjQGJGYlNt+Kh3iU20xtguGDE2RgRiE+0Tcrnm3HLLLbfccqOzHOS1YKn9mRIHGhNyzUHQPflgTHJHFBBhBxJ7M4qTseFM7IrExlSyOw34NsHQTPrRfd60XjdRHOH3io2hooTosDjcjQFvGNAc7cZaTc4bA7FJApdTbTw+VNplWZvqo5kKaNbMzJvIj5rnY7JLbEytJa3Y9O4zzj1/5zb96DZ/J+oeInyCt3Al9GOy3iNBZYgBn96/0pQ0cVoxnh8nwTnvSbTPqPVKHsbzxhCTt8tzzxTbO41BW2v4cTHeQImxOKK5djf8IC5immrRumuuh3RvsGpuPzPrLYUJGCbBw3nDCa5GYyQI0HUvYAokEu8taoi12gXQTAJ7Jlhv0f/ZyYz1jcwKIzHleTOe2AuYAOCBHsB3LDtrRsK6K8s6Yq0ae970Pu8BzPOmLTa91zRTAF63e2KKoZnWCzf5ugmZc8D+WpKWKzHGKE5psTVm6OyZW2655ZZbbtuazRiQd9OmTTj++OMxd+5czJ8/HyeddBJGR0e7vv/hhx+G4zgd//zsZz+L39fp9z/+8Y9Zv0vaxmc0TgoVUHAdNj/6Sm58/TTAmRsQSWM0mZJlGkpjqjRf7yu5KBb4po9QbAxVhc5JBb4NHxhSAM1y0UWJMTb9pQKiadm9UtYMSzNNDmnc0PxNY4uONsdqqeCgXOSLzWA5EZs04JsdSIzuSWcg0RwAnwZohmOk4DqoMMZmqFyE04xNd8DZTDHP3P7e49UUIzFtjER+uE74TOCyZPIrjd1sat50A75Ns71Fior6S4xM3nJ68rAlL84NfPcGiUYNsUVbEqu9ASKAd5wMJOLeDfhugavcIFFvdrMpQHMghfU23LwfjsO7liTnZPd+q83YMINVaTLn5vvP9vaj4Dqsc7iv5Mb7tDRfuIHvtB60LYlkM36kFWkUXYd1L1Apuig2g5PmizGWdRpolhFmZKnAu4cuF12Um2fb7sC3qbxAGgBvmi3aey8QxoZvTSsX3fhsmzZOTLW2So2N5eeNqXmTW2655ZZbbtuazZin6vHHH4+77roLa9euxWWXXYbrrrsOp5xyStf3L1++HE888UTbn3POOQdDQ0N4+ctf3vbe73znO23vO/bYY1m/S9rBxdRG0HGcODHUFZyJN+pmKnbTEqrsksBpvYENHVwcx0n0frXMoE0rSjAOVqUVJNiPjeleuLZjE8+brr0aza1pUWy6gUTGYpM6RswwEtOYvK11pADH4Ssqcl0HQ3Hfqt4MWv7YZIPJmwpoJoBVztgU3NZeYHgiRfqdvWCk1NsPYzLnEcu6sx8RqNdf4i3GKxfdOKmf/uwzo+rRbX8UxcwUaNYNbI78GKoUWYvxioVWbLqDmuHr7PckRSY5uidzDPWv7A56t9ZWl3HeuIk1zT6QGBVH9L4n/LLRKYDmZGvecD5vwrOnKLvZTHGEbUBzKGXejCYATfbYpOUoDPRtBkQY8GaZkSIMTc7YAEkJ65SCeEPy4t0UvswB8M370a2Y1tAYAZJtx1LYzabaOFnOY0Xzt9sYSZ73uOdNbrnllltuuW1LNiP0Me655x5ceeWVuOmmm3DggQcCAL785S9jzZo1+NznPodly5ZN+0yhUMDSpUvbXvvVr36F17/+9RgaGmp7ff78+dPey2mi4B33RhAIkxvDkw0BwNkua8Z8j1O7rNXo/9g6UU/1xRxYZZeRmCpBZGisAq15Y3ucpDIBjfthtyAh9CUtNob6jKesJeOxpLdl2WhDEquhL0WMVBsCDFq749WUJHAayzoaOwMG1rS5/SWM1bzMFK7Y96P3GBk2lPwP/48SJuvVroDzsCFGYiT12+2emALN0lQ9TDEjgfCZNlmvZR+sar7OzyjuDYiYKgQAQmb7WM3r0W/VELs55Z6Ykmtu9QbuXZBgZN5Uwr1AWjGA/Z68hsGqlGIRE7GJzp5pSgnc41WUCWifZW1mjES+bB7vnhdo5Y/s3hNTBIHoe3ZVazDEWgXCe/LMWC2WEZ9qphi0qexmQ+M1K1L4ueWWW2655bat2Yxg8t5www2YP39+DPACwBFHHAHXdXHjjTcKXePmm2/G+vXrcdJJJ0373bve9S4sWrQIBx10EC666CIEUeObLlatVjE8PNz2R8ZEZQBNJN2z0rtDFPg2tSntmrAzGJtUeeKM9HcxxrIWBDTNAImiwDczgJfav9JscUSaJLCRampBCVxz4KptueZsFGmEvmSDjT8npRfuuKE1bV6abLSFNa0bkGha5jwd0GRm8vb3ZhQPTzTa3sfqS3RPJlKAM2Zf5orGhhlIjGNjGfRO+tK1GGDCDIA3lFKUYLrvaxr7zhRYBXRnR7Zik41ktykmr21mc+iLGCPRNoA3GscmG4AmN2gGJJjntlmaMdvbdt/XlLFqMDap48QUgJdSuGIqNmlj1VSrr9AXQXDVWM4mBWy23E7KFKM4t9xyyy233LY1mxFP1g0bNmD77bdve61YLGLhwoXYsGGD0DW+/e1vY6+99sILX/jCttfPPfdcvOxlL8PAwACuuuoqvPOd78To6Cje8573dL3WhRdeiHPOOUf+izQteagMgmCaTMmIwY1Pr8SQ5weYqJtJuqcdXIz3fe0SGzsA/PSNuu8HMdvMHIBnmRlZEYuNKZY10PnwEgSBMV+G4qR7t0OUedZqp9iYZVmLAWem2KKpstHcfqTMm5YksMnY9C7UsN0LN3oGc/c4TRYCdNwLRIkyA0Bir6KEIAhigHHegF22qDlAs1UI0Ck2psBmoDeoGQSBMUngdODbLKN4eKJLbAyBd0ASgO+8T4uefezAd4q8eFyUwHxP5gmyvU0A8LGkaId74vsBRmtmgMSBGCTqxjYzxOSNgZnecs0mVKR6gavtsTHFgE+LDTPbO0Xq1ZQiANBbJjm5ptkG8KLYmJKdHat5nc83hhnwQPq8MdcL1y6AF5/Fa73PnkaU8XrEJggSsTFWVNSbic/uR19r3vh+MK09g8mcTW655ZZbbrltS2aVyXvGGWfAcZyef+69917t/2diYgKXXHJJRxbv2WefjUMOOQT7778/PvzhD+NDH/oQPvvZz/a83plnnomtW7fGf/75z39K+RNtaBp+gGrDn/Z7k0Bir4168rXMSPEaqjz0/ACT9e6xMXFg6AWujtdbm3dTLATrh7nm9/QDxMUHHf0wIp/ZjE2HezJZ9+E3xQC4QaK0StkWkMjNKA6Tk37Que+cleKIDvek1vBR9wIjvqTGxlCRRpQ47hobw3LNQOc1rdrw4uchNwCQBsBHgM08ZiBxTmJN6xSbrRMGgcQe92Sy7qPm+W3v47I5PUAzIHlPzMQmWeyWNFNgM9C7T/F4zYPXfOCYAxK7zJsIwDPEKK55fsc99IghP5L/RydwdazWiPcC1gF4Q0ze6HtO1D3UOsbGJADfKgaYaiEoACO+RPe8G7PKtDTxRN1Dw+s+b0zJnAOdn3vJ2BgD8Gz3fS231rTO88bc2bNXz/PRxGtZiY2pM7DXJWcTzWsjeYEebNHxumdsTYsBvBTVM1N5gSDorNhgitkMJPsDd8jZ1Dzja1q3XrimAXig81piUuY8t9xyyy233LYls/pkPf300/G2t72t53t23XVXLF26FBs3bmx7vdFoYNOmTUK9dH/+859jfHwcJ5xwQup7Dz74YJx33nmoVquoVCod31OpVLr+TsSSQOXIZAN9pXYAxmRVaK/Kw+i1UsFBpchbDxD3wrUs1zxQLsBxwgPDSLWO/ingmClmJNAbXI1iU3D5Y5MmG22qGrO/VEDBdeD5AUYmG9OYmEaBxB6ys8l4DZS2DUngvpKLouug4QcYnWxMGwtx31dDPXmBLkn3ZOEKO1u0d2yi17nXtGRsRibr02JjCjQDescmSsQ7jrmke7fYxKxVZpCov1ToGZvoPnH7ASRi0wEkivxwHf51fm5abAwBeAPl1vNmeGL688YUexZIAonTnzdRbIqug37m500EIncDEs31ny3CdcLiiOGJ+rQ9tA2W9dYO9yTaH5QLLvs+bV5/d0Az6Qv/2lqM99DDk3UsGmo/K5nsZT2vBwCfjM3U8cPlR6cxAiT7rZopXAHC779gsNz2e5Nnz14tPkzGJrVFjzHZ6Nb3HK81UC7ai81gD+Z55IeJvEBW2KLJc8todXrOxiRY1Uv1LIpN0UBeIJUtauh8018qxHuBsWpj2lnXrDJeVMzTPS/gOmDfpwlLejPfk0qxdfYcq3rT1tBcrjm33HLLLbfceMwqk3fx4sVYuXJlzz/lchmrVq3Cli1bcPPNN8efveaaa+D7Pg4++ODU/+fb3/42/vVf/xWLFy9Ofe/69euxYMECLRA3zVzXSUhEdd8MmpA2FQESByvFaRI4XH50qzw0BSQ6jtOTgRe9Zrsnb4vZXDAQm+4HlzZfDMamE7gaMQK4+8wAvVmaSfbsVHkiahPt721k3vRK2tnoZd3hnkRJ1sFyAcUC7+Nvbl/3sRr6YgZIdBynJ4N267hJILGHHxMt6T3ueZMeGzPAd2psDLJFe/mRZK1yP296MYrbfeFf0+b2WNNM+QH0lhdP9gbmj02aJLCZeeO6TkrBiBnWKtCbLZoENK3HZtLMWuK6rX1aL+DbZGyiZ1y7H+Ylvbd2BeDN+FIquPHZs3NszM2bXsC3SUAzWr/Te1nz+lIsuOgruV19MVUUCPRm0LakmvmfN1Ev3E4sQMAcuOq6TtxCpNM9McX2Bnr3sk6OEe7YiLJFudnNjuMkejd3z9mYAeB7xaY1Rkzl01L7ezPfE8dxEoUa3Yuuc5A3t9xyyy233GjNKsgranvttRdWr16Nk08+GevWrcNf/vIXnHrqqTjuuOOwbNkyAMBjjz2GlStXYt26dW2ffeCBB3Ddddfh7W9/+7Tr/va3v8W3vvUt3HnnnXjggQfw1a9+FRdccAHe/e53s3+noR5ARKu6jf+g3UsS2EZv4G5yZqYqD4H2HpZTbSzud2MXgDd5P1J78hqUe+15TwwCiXN7jFeTfqT1nzUpv9dLwjpK5M1n7ucJ9B6vWw3J8AJJtmhvsMqsL9PHa3xPDMSm1z2xE5veksC2fTHFKAZ698I1yShu+ZECVtlmnhv0oxeQOGKBtdqNLdpiWZsDZzoBZzb86MUWNSMb3R1YTfpilEHbA+Q1EZvomdYrNrbvhy1fOo2T4Yz4YRKAj/zYMlHr+HuTAF7Pe5IAV7mtl5pGDCQaOe81C4y7KXwZ7e+dfvY0EZteALzRnE1Kv2SzMsm9YmOwz3i5e2xMjpG0nI1JBm0veXGT4zW33HLLLbfctiWbESAvAFx88cVYuXIlDj/8cKxZswaHHnoovvGNb8S/r9fruO+++zA+Pt72uYsuugg77rgjjjrqqGnXLJVK+MpXvoJVq1Zhv/32w9e//nV8/vOfx8c//nH27xNXQfZgi5oAErNSZRcDqymbUjNSvOkMWiMAfPP/6ASaWelxaln6B+jNbjZZ6d7rngybBDRT5s2W8ZpBX3oAeAbZor0SVCaZkb0KeZK+mGTQdmJH2vCjI6BpVJq4dxKkxXozt6b1YgKaATS7g1VmJb1TYmMU+O4eG5NrSS8g0RRDE+g9RoAk4GwQ+O5xT8wyeXsxirMAJJqPTWcgMRtsURus1UzERkBe3PY9MSl/G4+RDmxvoLV/MxGb3uPVPNi8pSMD3kJxRAbAqihH0bG/t0mZ84wUf6f2S7ZCEuiVs7Hsh8nC/BQGfAtwtqt6ZlIZL7fccsstt9y2JZsxT9aFCxfikksu6fr7FStWIAiCaa9fcMEFuOCCCzp+ZvXq1Vi9ejWZjzLWqxfuaM38waVTXxU7B4bpfgRBYKXysDe4aoDJK8KyNig1N1ptIAiCNqmhIAjiA7iJpHtLrnl68iFKSMw3COB1Sj5siUDe/vK031FblIwbrTXg+0GbzK3nB/E4mWfEl+6HOaNM3h5JEBuA5mi1Ac8PUEjEpuH5sX9GfbEsCdxLJtkkszn6ruM1Dw3Pb5Purns+xpvS7yaLEnqBq1lhFBthRva1YlP3fJQSsak1fEzUvbb3mfClVw9ps0zebPjRKTbVhofJum/cF9v3RKTvq8n7MdZhTas1fKOx6QXOmASJWjLJdte06H6MdNgL1L1WbLZFBm3PQgADxbTR3rhTbBqJvYCJs1Z0ZuglYW1CsSHap9sGmyM/tozXOp5vTMnOAi1VgM4sa3Ps5l7FESYLEpKqPJ3yAiZjM9gDSLTRL7m30pgJFbgWA75jbAyCq72A7zGDYHNuueWWW265bUs2Y5i8s81EKv5MbsA6MootsGdrno9qox3onah78IP293FarwOD0R6JsR8dkv9NQHPBAD94F91zzw/iBHtkUWIEMAPgZUUSOAZXO4G84+aZVUEwvWp3ZLKOqO7FCEgkAMDbZmluMTpGWmvV1HU+mfw2kbTrybK2ASR2UI6wAcAD02OTTOKZYDSJ9cI1B4j0YhQbKeRJxmZy6rypd3wfl/ViwJtke4tIaZtknXfyJfmzkeKz/u6xGbEQm7SevNyW/D+m3pMRw/Oml3S00X7JPWIzYhBITO4Fp4IzbfPGtiRwZuSazfsRBNP3rsm9gZn+wD0YtBGQaDk2JlmAkR9+0Cp+jyx53jHhy/z4nkyX9bbBst7cYYyYlEiO7kctUaQS2XjNi8+eRtbXHvs0G6pnvfJpQ0YkvUMgueEHqDbaY1Nt+Gg0czYmCRy2Wda55ZZbbrnlti1ZDvJasqh3RyewyoqUSo+kuwk/ovsBTE/sRgfeoutgsMxfBRl9305SN5stgKudNsebIxleA0n3/lIBUQH11NhEYHOl6KKvZILdnA6u2maLRr29TPhRKbooFZyOvkTzd6BcQLnIv9TP6TFebQCJHYEZg35Uiq37PjV5GN2PoUqxjXHFZS0GbTbA1V6S3iZYCKWCi75SFJspQGL03KsU21g9XCbSp9gkE7AjAG84NgPN5/xUdqTp2PSSfh82GJteMskm/SgW3HgPNvWe2IpNRyavQdnZuT1iY5LJm4xNNyBxKAOxyQqQaLL/bHJNm+pLNI8GygUje4HefV8NMnkHugOaJvtXlosu+kvdYhP60Vdy21QLuKwnuBqNVwOg2fxesTG4tvaVCqg099BT5bQjP8oFF5Ui/9lzfvPM33u8mmA3N/3o0bfZBGg2UC7EZ88oHxFZdD8KrhPvszltQRyb6QB8HBuDzPPO87e1P+K2wXIxztlMfQYnz+fJvBuX9SIrROtrLtecW2655ZZbbrSWg7yWbE6PJEi0UTUhsdqLybvFIKBZSAC4U0GiGNAcKLfJznBZr2rMrUZ7nKYzEucZ8MNxnK4S1iaBVUAMXDUpTdwLNDMBwLfFpktxhAk/gN4S1iaBxKFeDHiDfgCJA24XAN6YHxmRSRYBNE2saUlfpoIzJtUaQj/SQSKT/Wd7s0XtjtdobTHnRy8moDlfevefNXtPurEjTYJ3bX50nDcR8G2OfdebtWrmnnSTjjbJKG7zoweQaLL/bK+11QRYBXQH8EzPm55yrxZ68tqWje7lS6s4wswYicHVXmxR6yxrc9LEQHfgzOT9ABJ9invMGyMM2uh+dAI0DfrhOE581p4KfCeLikzkbHoVJZgcJxEAPxX0BsyyVl3X6cr4jpUCy4U2+XMui4t5LBda5ZZbbrnlltu2ZDnIa8kWDrZ6zUy1mC06aPegHW1UF5hOuk90BqtM+dFL2nSzQV96MXlNAvBAd3niKBlhzo/0e2JSirejpLdh4LsbcLbFOFjVnWXdktI2CcB3GiNRIYBdsMo8kNiDkWgQSOxVHGFSErjdF7uxaUnxdi9KMCP93oMZOWFujADdmYDDxmPTY7zGDFoTSfceUtoJBq0J6wY4my4EmNsDgDcqCSzAKDa9lnQDREwAq0k/erObswFWZQeAtztGgOywrE0D392BRHNrPJBWHGEyNt2ZkSb9AFp9iqcCeKMGWedACrs5ZosaYFn3ApurZvcCCxI9k9v9MCvD2wtcNckWXdCD7W0a0FzQ5Z5sMXgWD/1ogs1j02MTjZuFg2Z8yS233HLLLbdtxXKQ15K1NqXtm0HfD+KNjwngbGHkR8cNmOHN4GDnTelmg+zZ5P8ztfeO5wcJIMIAWFWJErvd2d6mGbTd2KKmkv8tP9rvScPzY9+MSGl3YTYD2bknJnsU9/Kj7vnxod8IIzECm3vJRhsujph6T1pgs5kDfzdAs2E4Nr16nNoDvjuzRU3FZm7GYjMy2UAQNVRr2laDgGbSl6njxLQfLUCz3Q/PD+K13ySTN+yz3h4b4+Bqf+d9SQS2mgMSOzPg/bbYmAOrRqoN+H7n2BhjN3cBvrPCjAyCwCiDNo7NZAPelNjYYp5nhcnbG1zdNmMzHUjMBtgMmO0hHfkx3CM2xhi0XdjNJvvgAoI9eQ2yRbdO1Kc9b6Lxakr+dn4XlqZpBYtewHc0l0zkBeYnQO+psYlybAsMAZrzuwDwLT/M7NMWdMl1hq+ZJQnklltuueWW27ZiOchryaLKtang6shkA9He0AQ4E22uxmoeqg2v7XfxBszQZjBiN0+rPLQENm+aEpvhiToCk7Fp+jE82UDD89t+ZxpI7HbQ3mIYSIyT/xOdgRnADACQZFlPPczFstGGxms3xncsLW6gIAHoDlYlwQCTsRmvedPmTVZkkqN7Yio23foUm543kR+1hj/teWM6Nt36FGdljCR/NpEsiwCihh9gst4+b8wDidlgi7aeN50l75Lv4fUj/L5+EO7VktaSjc4Kk9c0oNnux1itEe/TTPZLDgJgtNZ5Dttm0Eb7JXOgWed92njNi0Ejk2saMF1hpMXSzIpcs10/Juseas39kkkmLzD9GZyVe2JNEngKIFL3/PiZbDs2JiW9gQSA10MS2IgfXVianh8YLQaIYhME0/eMm8fMqp51uyemwbsFXZTxqg0vjs1CgyCvH0wvAN9smLXaDVyN8lrGYtOFUTxR8+I1zRTwnVtuueWWW27biuUgryWLJUy6sFYHywVUigV2P+b0FVFo9uWYvlE3C65G/89UcHWLYdnoFrt5CvsuIYtYKvBPnfn9JUTtbKZu1LcYrE4FWvdkWmzGzAKJC7sA8NEYmdNXRNFAbHodtE33wu3G3jENVsX9vaudQbM5FTOxSSZ9pgLf9ljWWenJ2zk2QxZiM/2emJPxBLoDeC0ZXtNtCjqDZoPlgpHnzUC5EO8F7IOrXVjWxtminZn40f3oK7lG9ml9JRelQjM21sdrZwBvxJLsbLfClXLBRV/JRGwKqBTD+dktNqbB1alglen5mwaaFVwHA2X+2JSLLvqbY8A2gzaan90kgW0zeaP74TjAUJnfl1LBjcdAt3tinqXZJTaGevJ2Y3snCxRMAM6lgovBZmym5gVidQJDsek2XrcY3kPP6yLXnMzhmDjzlYut2EzNH20yzRbt75zHivxYOGQ2dzQ1NtHPBdcxsr5WioV4TZsKOLfAVbMAfLcco3kAvvO8KRWceDznlltuueWWW240loO8lqxblV1LmtjMBsx1nXjT2R1cNQskTmU3bzbcfzbalG7qsjmeZ2iTXiy48QF2OrvZrFxzdFibNkYMM3m7gryG/agUC3GS4+mxatvvho3fk2j+tvthskcx0L13lunewOWii75SlHTvzKA1B652BqtastF22aKmweaC63QFvo3HpkvvddN+zE0DNA354ThOV8l14+BqNwDeFlu0q2y0udh0Z9Da6fvajS1qTkq7OVa79m0240f4f/WWSTbfpzgbgObUMZIENJ2ogpHbly6y3qZ74c7rOkYMz5sUQHOoXITrmolNOrvZbi9c0300u7FWk8XfJgq+gASreMo9iQE8w7KzU8fIM6PheWe7oYoZP7qM1eh+zB8oGSmUDP+v5llrqi+G2aLdYhPlcEywZ4Hu8yYJrJpa01rAd2fShDkGbe+1xNwY6Qw2JxnFpvYCueWWW2655batWA7yWrJu/WejDZkpiWQgsQmbBq6arTyMZZK79uQ1yxadej+2Gt6kJ32ZDsCblXvtyuQ1zPaO7sczXWJj6n4A6cC3KZBo4WCY5Jh6T7YYBhK3a96PZ0anxMYw6A0A28X3pB34jn0xFJtufZHMM3k7J91N98ENfekGJFpiN0+VOTfeGzgbstFAkgnYrRjAFMs6GwB817FqGLxL/l/dClfMAfC9mee2wWbTUq9AC6CbzqDNRr/V4YxIE5u+H718yUovXNMM+CzGZjoDz+yZr5sf0V7WFCOxG9gc7e1NAZpAq93MNHDVOMgbFY92Bom2M+zHdLDZ7P0AkuO1C4PWNIA35ez5jGFG8YIuY2SzYWliIB3UNCbX3CWPtSmW9DYdm84s67wfb2655ZZbbrnRWw7yWrJkBaSX6Olpul8GkGDQJjZhk/VWvwxjAF4kYT1FJnmrYUbiwgQAn+y3utkwexboDK5O1j1M1MO+fPON9UvuAq5OmL0nEXg3NTZbDPsBJO5JAtSsNjyMN3smmgKcF6WAq6YAkSgBtWmshiBoxWarYYnk0Jfp96Tu+XE/S1O+LGrek6e7xMYUIJI+RswldjvJ8nt+EIOtxhi0UbK7ixyhaSBxuuysWWAGSLKbW/fE9wPzjMQu7DvTDNpu7LvoZ6MAfAfAOQgC8+zm/s7j1XT/2WRsks+bFuhtHqyazm42DMB3kbA2DXzPTYBVydiYlr8FeoCahp/B8/o7qxNESXdjsrOxBH2j7expmhmZ9CUZmyAI8HRzb7DIFLjajS3aLBJcNGiILdrcG41UG2g0+yMDrX3bdobuB5BkR7b2ab4fxPu2RYbGSVcA3jSg2fRjtNpAPREb02Az0JlB6/mBBZZmZ7Z35Ic5AD70Y6zmodZIxMbw/QBaBI3kuaLh+XGsjElpxy3hOhfQmCKSRCSR0WqjY2xM5mxyyy233HLLbVuxHOS1ZBGIGwTtG3XT/TKA1iYryaCN/Ci4jrFk2YIurFXjjOLmvfenxcYsaxXofE8inwquY6wvUpRcmFoVarr/bHQw8fygLaFqutcq0DrAdoqN45hjRHRje5tmN0f3o+b5bexIO0zeqCihxeRNzmVTid1o3jw92plRbBqAn6h7GK9Nj43JebMoviet8TpsITZRkrIb29scEz+8H6PVBqoNb5ofJmVnOyXdx2oNRFiA/T7FhqWJm35M1L22xG4LgDcXm05s/Mm6j7oXNH2xzOQ13n829KPm+ag2OsTGCsu6dU9qjZZftmXOTa8l0ff1g3Bdi6zVM9JkccT02EzUvLjgyzaQGO0NFhsGzYD2gpGnY5DXPCMxeU9GEmDAdobA1W6FAKbB1eTzJFmoEe1RTN0PoPM9GZ5sFaWbmsPdgMRNpmOTmDfJe2IDSJzfQYp360QdUT2NqfxRq0WP3d7Ac/tKiBR/k76YZs8CnZm8ybFrLFeSwoA3NUbm9pXgdojNFgvzJrfccsstt9y2FctBXktWKrgxQNe2GYwlTMwzEpMAXsSmnd9fMtYvI8mgTZppSeBSwY0TlUnge2tUeWgBSEzGJglomorNgm5yzYYlgZO9cJ/pcE9sSAIne+Em5URN9QDabqizXLNpsKqvVMBguRD6Mjod+DbL5J3OoI38mFMpomAoNjGDdhqQaJYJOFguxH2Knx6ZDq6aBXmj2CTmTTPZPGCw51wUm6e6sqzNyXiWCuF4fKYD8G0SrFo0p/u8CXtdF4z40a09gGmW5lBfMZE8TCS7LcQmltIeb0+6A2HB10DZTGy69uQ1LDs7WC7EycMkgGea7Z38v5LATDR2i65jXRLYNJDYV3JRbq7jyXti2g+g8z2J/KgU3bgPObd161Mc+bJojpnzTbnoor+5jrffE7MMTaBzbKJn4GC5gH5Da1ravDHFbi4m8gKd7okVtuj49DEyp6+IStFsbKYz4M2CRMmC9+ReYFMs12xu3szvIIEbnUPn9hWN7aG79X2NY2MoZ+O6Tsce0qbBZqBzT94ofzOv32Tf5siPzqQJU/PGdZ0E8J28J+ZJE7nllltuueW2rVgO8lq0Tj0zTPefbfOjQ5WdSdBsQZdeJjbYzR2BbwsA/IIOMslWZKMz0hsY6M1uttGTtyPYbKEQ4JkpbFEbEtYtyeaWL62iBHOx6STXvNVwQQKQYIuOdgarTIGrjuPERQlPd2A3W2Hyjlj2IwI0R9rnjWkpXsdx4nHyVId7YhKsioHvkWThinlp4u3nNu/HlDXNNEuz4Drx+tp+T8yyVoHOLROivYDJgq9OSUygBQCYYlY5jhOPg2Rid2MzTovnmEu6z+0gxbtxZBJA+AwwVfDVDYCPxu4iQ/ckjM30ooSnrMRm+j2JxsiioYqxeZMGJNoGV236MdwGaGZDNhpI9MI1CBLFa1oHRqINlnUn0Mwo2Nw/HdAEzMs1A8m+vMnYVJt+mNsfxVLabX6E98ds3+YuLOumL0Zlkjv0B95sGGxO+rFlfHruyMb9mDpvNlsoiO8EOLfA5lyuObfccsstt9yoLQd5LdqCDj0zbDB5Yz86Apo2gNVWHy/fD6zIvXZirm6J/TAIVnUE4M0DiUmWdRSbIAiM93dJ+tIWGwvAdwtc7cyyNmXJ+5Hsf2fTl05MQKMA3uB0KV47vYFbIG9bn+KMgJrRPTELJE5n8tq4HxGb7KnRasfY2L4npnsDAy3wpTPYbA7QXNwB9AZaa77JdX7xnD4ALdAOaIHPJgGR7SM/hlv3JPr39gZBs2iMbByebHs9+tmkL9EzOLmmRffEJJDYab9oA9CMwarEmSIIgpYvBsfr3A7AmU2QtyOgaSM2CT98P4j3j7ZB3pYfduWan7bgRwu8a4+N6f6zQG8A3gqAN54cIxGgaUGaOAFo+on+syYlrDvJJP//9u49uqryzB/4d5977vcrhJAQINwCCBqhKlRQoFahWkXKWqKlOnVwfqK2VF1VitWx2pmlo+2qdjmV2qla7RqrY1uBERG1gFzMiIgRIpBIbpCQ60lOzmX//tjn3fuc5HAJwvvmmO9nLRbkcEIe9t5nX97nfZ7XSjarjUMkm+WOHVkJzcgxG9nVokDstt6tYhxLcSttq0Wygn3T448aszmhYHJE7MS3/OINIiKi4YJJXoXSY8w8VNFeJiNWKxUVFcWJ1pqeYr2szl5rPUAVlatDpbo5umpV/r4R28Mf1M32e919QQTCO0dmBW2stXDbFCSJYiabzWpR+fsmENLNqrtef9BcD1Bu5WqsCloVFcWnqORVUGXdFwyZn5tAMGSuUyg3qXmKBLyC6uZYcchsfysSDX0Baw3pQDBkrlMoc5vESq6KttoyB2MiE9+CSG6KJKOUOMLbw9sXND8rvf6gOXCWnyovFpG0bI7YN03hRGKekjis5GqTSKzKjCP8szp6A+j1G/dp3b6Aec8mMxax/ZtiJOBlJpvF/7kpIvGtIqEpflart89cQ7rTFzDvBWTGIqqnIidaqWgJHKvyXGXb6I4eP0Lh++b2Hr95D616LVwllbwx1ilWktAMb48uXwCB8Oemvcdaf1ZFsmooJuDNymYFx0ivP2Reb1TtG7O6OUYCT011s3UPrTLZ7A/q8EaM2chetxmIqG6OTCSa20RtRzoVCU2xb4Iha8ymyxcwrzcyYxHJbVHhbfyZSV4iIqLzhUlehWIlElXcDMa6KTUrNCUOdCdErBspbs5FTIkuu7Q1gIDI5GqsKmv5LYFbY1RZy0yaRa63KvaNOEaMtRrlnUpiV/LKr7KO1T7TnAggMVnlcdrNdeXEgKoYmLHbNHONLxlirVOsdk1etXF4nBFrSHdF7xtAbnWk2DeRbb1bFUzmsdZ9teJQUWkW+bkRlYDHu/oQ0kWbXonJmRjHa2M4YSQzkRgr2dzYLuKQtz2S3A7zeiNiEb+7HDbl1c0i0Spzm4gW1s1RcchPaKZ6HHA7jOu9qJoVcSS67NLWOAUikrxR1c3yE9954e3fFGPfyDynZSa64LRr0HXr54vjNsXjkLamNgDkpRnbX5w/ImORmWwWx0hk5bmYQJMjaR1cwJi4q2lASLeuuy0R62jKfL5Ji9G9SWW75uhqUfkJzcj7MJEQEff1qR4HXA55zzexkquy158FrERidGti+QnNFLcD9nC7e7FNxL5Jkbxv0iOqIwUV+yZWm+QTCvZNgtNurr0uxmrEuS3ZLfecFqs9sYpE4ikreSXuG4/Tbq69LsYlxDq4CU671HuB2GOMosqa7ZqJiIjONSZ5FUo/ZbtmtWucnlDQ5gawZv+39kvyyp7tJ2Z+xkrAy6zwyoxR7a1iHVxg4PrAkW2jZa1rBkSshRujElBuu+aBCc0OBXEAVhVIa799I3Otxsg4Iqs0zRarKtYpjjGIKXMwBhi4TUTyLjvZBYdd3iU4O0XEMTCBV5AmLyGSHeMYEXHkS4wjMhaRfGho7wFgJG3sktbRBKx9cyyqWlT+NomV0DSrViXvm/6xmNsj1SP1nJZ7im0is7rZbNfcOXByhMxks6ZpVuIsnOxuVjAhAYhIfHeonTAiPqNNMRKauRL3jc2mmceJ+LyoSKwCQEGM6mazglZiLGLfNETumy5rvWRZnHabeUyK692xcLJZZttowLreR26TFslragMYcKwCVuJb5r5x2K2JQ+Lz0qIg6Q1Yzw6Rz+NimyhvTWxWWcs7RjRNG5D4VpFsBqxnmPYY6yXLTcAPbMvfoiCRqGnagOPEbBstOXmXFmM8TU3b6BjFGwqOEWDgknCtCrYHYB2Tsdo1y5xgTERENFwwyatQrATeCQUtgTPNG7CByWbZySoz4eztl0hUFUeM5KqKdYpbvZEJTfnHCDCwTbKKxGp0HNbArpmAl1otOnAt3OPdah5c+q+F2xSRSFQRhxhw0HVdSQJPDMy1dveZrRGPthkJvML0BGlxAJHr8oYTiW0isSo5jvAAoThGQyFdSZI3J9maHCHaujUoiAOwkg1mAl5Rsrl/m+RgSDeTeTJbE5vtXiP2TWRyVaacfu2JrcpmuYPu/dskB4IhM1mlol1zS9fAfSMz2RwZS1O/Sl7ZicQ8kSQK7xt/MGTeK8lMrorj4FjEvlGVXBWfjyYzkSg/6Q1Y59DG8DESuW9kJs7MBHxHr3kvICp5ZSfw+idXVVTPGnEkRMURULRvCtON7VHf3mPeQ5vJZsmJCHFfWB+e6GW1JpYbR36qEYe4F4leG1hix5VkcY6PTMDLbwkMWM+YouOKePaTnawyE/Be6/nGXBtYwRrSsSqKpSe+E/sn4I3fZR8j/dd91XVdSSWvSKxGJuBbFRUrpPfbJirGFyN/XlQCXpxLmOQd9h555BHMnj0biYmJSE9PP6Pvufnmm6FpWtSvhQsXnt9AiYjiCJO8CqX3a9fc02etoyl3TV5rPSJfwFhXpU1ZBW104rttiCQ0/RHraMqsSBTbo9cfgrfP+PkiISGzlTZgHZNi34iHf5mzywHr4VEMOHT7AmYCXuage+Q6xWJNz6MnjAGikbITif2OV5HQHCE5juyIBB5gPPiLtRplJlfFvgmGdHPwQSRX5W+TcAI+vG9EtajshKbZJllUqnT3oS8YgqbJ/9yItpXi2ie2ifxK3ug2yY0KqmeByH0TbuMZThbZbZrUJFFWkhu28L4R1UMq2kYDVuLSquQVlZGyk82i3avV0ls3W3pLXIs+OWLfdEUnV2W2awYwsJJXdRzhY7QlYt/IHDzMSnLBphnXG/G5OaZg3VcgMrmqtpLXbKUdTlYZk+GMfSPzuSI3xQ1NM+7TxGC7quSqVVXcExWH7GNEJFdFHK1eY99omtznCrE9ev0h8x7+mII1eQFghNgmbeJcIr96FgBGZBj3p+Ievq3Hj/DcBKnjAiKOjt4AOnvDbZIVJeDFPbvYJqqSzebnN3yMdPQG4A/KXxs4O2KCsRizUdESGLDGiMS5zEreSR6fMBOJxs/3RoynqUjAd/oC8IfX91axNjBgVVOLc6u6iuLoZLMvEDTHBbgmL/X19eH666/H7bffPqjvW7hwIRoaGsxfL7300nmKkIgo/jDJq1Bmv7YuYgDCadfM9ehkSPU4ITpTipvBFgUzICN/XquZSFTzoN0/DvFQ53bYpCacE112c80hEcuXIpGYkSgtDmBglWZdqxFHUebQSGimehzS11sVn1Mx+PHlCS8Aa4BElv6to0WyWXoc/Vppi32TneySugaQy2Ez11kTg+71ipKr5vrA4cH2o+FzieyKYqtNcnRr4pxkN5wS20Y77LYBA0OqKnkHJHlFJW+q3H3Tv5JXbI+cZLlto+02zRw4Fckha01ete2amxVVFIuKULFvxOSmnGQ3bJL3TZZZXRUdi/zEd79KXkUVxWbVqllRbHWwkLlvHHabVfnWHh2LquSqmeRV0CIZiEiIdBjXGfE5zkxyST2nxWqTrKJtNDCwgva4gva3gHUOFXGI+7XMRLlLSLgddvO+xEzgKdomYt/Ut4kEvJpKXpGA77890hKcUu/Tkt3W85SIpVVRdfPI8HOMePZVlWwWz9wiDrE9ZK8/m5nkMtdbPdovFukJ+P77RlGyOa/fOU1sD7fDZm4rGdISnHCEr29i8lurgi5wkT9PXGdUVDYbPy+6Bb0YZ7TbNKRErIdOw9O6detw1113YcqUKYP6Prfbjfz8fPNXRkbGeYqQiCj+8OqqkHhQEgNU4mY9T/Kac7bwzPqW7j4c7/IhL9WDulYjWTVScpIos19185EWI47iLDUJTTOO1m4AwKjMRKn7RtOMaqGG9l6c6PZjRLpu7htVyVWxTerCCc0iycnm/q20RWJVdtIbMNYH7m7tQWu3D6OzEiMS8JI/N/3WObUqedV8bkQc9YoSmoCRwOvoDeB4Vx9Ks3Vzoob05Ko5OSI6uSoG86TFIdpGmxXF4cSqgn2TleRCa3cfjnf2IZSrR6w/Kzm52i+RqCzZ3K/K2qyelRwHYGyT412+cMWqbiarpLewNtskRyc0lbVr7vBB13VlcYhYjnX60NzZC11PVV9B27+SV/I2yYtY91XXdWsdXMnJZsD4fDR3+tDU0YvJeqqyWKzq5nBFsaJK3nxz3xifG1WVzYC1bxraezF5RJq5TWQvZyGuK2ayWVHbaHEP1NBufG5UVTYDRnL1eFefuW/E/Yn86uboJK+5Dq70imIrDmPfqEmsiljae/w4eqIH5fmp5jaRXQl4suRqprJkszfcDljN+rOapqEoMwGfN3Wh7kQPSnOSlVVpiud/MS5htq+WHMeo8BiRGDOKXI9X5piN3aZhZEYCDrd4UdvixYj0BGX75mSfG9ld4MQ9iRiXEPcmmUlyJ+PR18uWLVuQm5uLjIwMXH755Xj44YeRlZUV870+nw8+n7XEW0dHBwDA7/fD7/fH/B7x95G/xxPGrgZjV2M4xD7Y/xuTvAqVZCcBMB4Y+gIhHD7eHfW6TCMzE9HS3YcjLV4Uhf8MyE+uioFkcVNaG5FclSlyPaJQSEdt+AFGdhyAMeuyob0Xx7p6ccKbYLaNlp3UzEiKnhVqJZvlxpEVUVGs67p5rMhOegNGu7C61h60dPXheFcffAGj/a389Vb7VTcrquQVn5sTXmMt3KPhBHyh5O0BGINiXxzvNvZNt89sTayqFa+oPlC1Jq/YN21eP/zBEBrCD9wFkqsARSwHmrtwvMuHlu4++IM6NE1+smqotGsWCZhOXwC9/mDEOrjyB91zUtzY32Akh1rD+waQP+jePwGvqm20iKPHH0SXLxCR0JT/uclNcWMfjKRqe48ffeF2hLKTq5GJb8BK9sr+/Ip94wuE0NETUJb0Nn6mB0A7mjp70eULoNdv7JvsFDVVmo2K1+QVn9O+QAgnvH5zAovsZDNgbJOP0Y7Gjl709FmtIrNVVTf3a9csO7lqTCQ29o2Y3AuoSSQWpnuw92g7Gtp74A9abZtlJ1cHVtDKXwcXMI4RTTNaWLd291nr8UruZgUYzw+fNnTgaFtPv7WB5cYy0mxhbTxPtKiqWg0n4Lv7gjjh9VsV8Ar2TVFGopHkbTUSzi2KEoliTERM+hbnedmVvCLZ3N7jR7vXb17/VExcGZWVhMMtXhxp6caFozPM873se9fR4fG7Q+GxxcMtxu+yx2zEmGZThw/evgC+ON5lvJ4lf6yTvh4WLlyIa6+9FiUlJaipqcH999+PRYsWYdu2bbDbB1buP/roo1i3bt2A1zdu3IjExNN/HjZt2nRO4laBsavB2NX4Osfu9XoH9e8xyatQboobiS47vH1B1J3w4lD4Bmy0ghufMdlJ+L+6NnxxrMu8Wc5OdiHFI3fGX2n4ZrDmmHETKGZljpac+B6ZkQCX3YZefwhH23pQG45jlOSkNwCMzk7Epw0d+OJYt9mWNy/VLbX9LWA94IptoSq5KgYJxQCVVXUuf9/khAeAmjt95uBQXorHbLEtS1a/Vryq1uQVbaDEWrj14Qdt2clmwGph3dLtMyuK81I8UlveRcYh9k29okre9AQn7DYNwfBgnVXJqyDJm2JtEzEYk5sit200YA3gHgsP1pntmiUneVPcDrgcNvQFQjjW6YtoG62gkjfZSq6KxGp2skv6OW1gu2bjd9kDZYkuB5LdDnT5AkYVrdJKXqtKUyQ00xOdUltFAjEqecV6yZKrVj1OO9ITnWjz+tHU2WvFoWDfmK2j23vNYzbZ7UCiS+5jVmR1M6CuktflsCEryegQ1Njea1byqqkWFYnvHvM67HLYkOKWu2/ExK7+baNlJxJdDqO9uLjWWAlNNZW8gNH1RSQRbZpxvyKTWUHb3r8lsNxt4nbYkZPsNp8prIpiNZW8gDFpNGptYMntXkUc4plTXINlbxOP047cFGPffHnCa95Dq5hUVBSRXG3q8MEXCMFu06Rf+8SYiJgIXyOKFSSPYyW5HchONrrQ1LZ6cTA8hlSaI388bXRWIrYCONLqRd2JHviDOjxOm/Tn8eLwPjgSHlv84pjx+5icZKlxpCe6zPu0w8e9ZtJZRUELyXHvvffiscceO+V79u/fj/Ly8rP692+88Ubzz1OmTEFFRQXGjBmDLVu2YN68eQPef9999+Huu+82v+7o6EBRURGuvPJKpKamnvTn+P1+bNq0CVdccQWcTrn3JF8VY1eDsasxHGIXHQjOFJO8CmmahtFZSfi0oQOHjnWblbyyE5qAdSP8xfFuFGcZcRSrSDbnGjefNc3d8AWCZuusYskzDx12G0ZnGzNlDx7rUlrJW5abAqARB5q6zAE8FXGMzU0BAHze1Im+QMicnSq7XbPHaceozETUtnrxeVOnshbJAFCakwzsb8aBpk5zrWYVcYh9UHOsC4FgyEzOyI5FDB6KB22RbFbRrlkMate39SInWU1iFbAGopo7fQiGdHOAV/Y2sdk0ZCa5cKzTh2OdPjMBr6LK2kqu+sxBVdmtmoHoNsm6rluVvJITiZqmISfZjaNtPTgWkfhWs03C+ybcehaQn1gFrGTzwHbNalpYiypesbxGnoKWwGIAt7mz19oeCuOw1sJVmFxN8RhJ3g6j2wmgpiVwXkR7YpUVxWKCSqNoYa0wuZqX6jGSvB09ypLNgNX2viEi2ZyT7JbaxhOwks1Wm+RwclXBNilI8xj3AeFrDqDmGBH3ZPVtPRFtPOWud27EYSXgQyHdvC+RnYAHjEmRzeF9IybVqrjume2J23rMidcFafInsYoJvI3tvQgEQ/i8qROA/GSVEUtCOMnbg+pwHOPy1MQBAF+29pjbozgrUfqELzEWUd/WC38whIPhWMYq2CajMhOsJG+zcbyWKThGxDapbfGiJhxHSXay9HPa6GyrXXNfIGQmV9UkvpNQ5W3D4ZZuMw4VY50kxz333IObb775lO8pLS09Zz+vtLQU2dnZOHjwYMwkr9vthts98P7G6XSeUULoTN83FDF2NRi7Gl/n2Af7/5J7p04DlIRvtg4d746Y3SY/gVcavhH+4li3OetPRUXxqMxEOGwaevxB7D58AiEdSHDalQwMlZkJ5y5lawMDwNhwHAeaO81ks+zEKmA8GNhtGjp6A6iqa0NIB9wOm5J9Mz7fSDhXN1pJXhXbpDwcx/5Gtcnm8gJjJmJThw/7GzoRDOlw2W1KBrsnFBjbZF99h9U2WkFyVRwj++rblSabxQN1basXh1u6EQjpxox7BcmZovCxWXOsC41mclV+HGKwu67VayY0VbSNzo2oFj3W6TPb36pKJAJGVaTVNlpBu+bkyESiMeiuoqJYJAxbu31o9/rNFqsqKmgj1wdu6lSXbM6NiENp1Wr43NXe40dHrx/tPf6o+GSKTDiLbZKjYN+Ya9B2WpW8KpJ34vPh7QuioyeAli51CWergtZKfKtImok4mjp6zeUSlCSbw8eILxBCQ3tvRFt+ddfghvZeMxGhouOKqORtaO/B/kZjlnpZrvxnz9wUN+w2Df6gjppjXeb9fHn+yat8zpfCiMrVffXGNplYKD+OyEreT0UcBfLjMLq8aAiEdOw92o4TXj9smjXxWCazgrbVi+pGI6E5XsExElnJK5K84/Pkb4+cZDdcDhuCIR17jpxAd18QDpumpEjArFxt7UaNqFrNlZ/kjY7DOLeOUZBYzUvxwOO0IRDSsfNwK3yBEFx2m5KuZ6Jq99DxbqVL05EcOTk5KC8vP+Uvl+vc3Qt++eWXaGlpQUFBwTn7N4mI4hmTvIqJ9sRfHLcSiSqSq2Yl77EuHDou4pB/I+i028xE6ubPmgEYiV/ZM+4BawZozbEusyWwkgraPJHk7VK2Di5gVNCKffP2Z00AjISmin0jHmaNSt5wu2YFa/KKAaDPGjrMOFQMlCW7Hea+2fRpIwCjDa/smcMAMKkwDYCRXK0320bLP14njxBxdChrXw0YLUwL0jzQdeB/PzU+N3nhAUXZKkamAwA+qm0zW1irqG6eMsKIo6q2zWx5pyLZXJiWgLQEJ/qCIfN6o6I1MWBNKtp7tE3Z+rOAdY2rbuy0WmkriCMryQ2X3YaQDnx4uBUAkOKR3/4WsPbDl+HWiACQo6Jdc8R6qyLZrCJZlZrgMD8je79sB2B0cUiT3GIVsFpEN3X0mokZlcnmxvZec8JmgYJzWqLLgRSP8Rl5/+BxhHQg0WWXvsYpYFXQNnb0msdJmYJB9/xUkUjsRVXdCQDAJAVJM9HpBADe3t+EQEhHdrJbyXFitklu70FVnbFvphWlSY/DquS1jhFxnyKTw24zk+0bw/dpRZkJSEuUf04zk6ttPdhXb2wTFcnVERlWHPsbjCTvBAVx2Gyamfh+e79xnzY6OwkJLrlVq4A1ibfuhBefN6pLropJzXWtVpJ3rII4bDbNnDwq7qFLspOkL70CWOMikRW0Kq434ln8yHFvRJJXfhw2m4biTGNsT+yb4qxEJc+eYlzz8PFufKGwopiGntraWlRVVaG2thbBYBBVVVWoqqpCV1eX+Z7y8nK89tprAICuri78+Mc/xvbt23H48GG8/fbbWLx4McrKyrBgwQJV/w0ioiElbpK8jzzyCGbPno3ExESkp6ef0ffouo4HH3wQBQUFSEhIwPz583HgwIGo97S2tmL58uVITU1Feno6Vq5cGXVhOd/ETLYdX7Sixx+E3aYpSeCNzkqCpgEdvQF8VGsMghQrmmUnqoo3V4eTvAqSzYA1A3Tn4RPo9AUAqFn3tSQ7CTYN6OwNYNcRY9+oSDYDwLjwzOnN4QdtFccqYFVp7jnShhNeo4pIRQJvTG4SHOHq5l2HjX2j4hgBgAnhhPOm8L5RsT0Aq+Kgqq7NrN5RkUgsz0+B3aahtbsPu8OfGxWDqQAwJZxw3rBPJODV7Jvpo9IBAB/VnjCriAoUtASuGJkGmwbURwy6q9g3NpuGC8Lb5M2PGwCoSTYDwIWjMwAY9wIq1+S9cHQmAGNSUVVdm7I47DbNPF7/uOOIsjgAYOpI4/O75bNjOHTcuD8sUjCZR5zj9zd04L3PjwOwJgrKpGma+XOfebcmHFuKkglfYtB9+xctZiXgVAVJInEerWv1YuvnxwAAM8OfJdnE5+SVXXUAgBnFGUoGdkUcVXVtqG31wqYZsUiPI82aHCHuoVXEAVjXub/tNe4Fpo9KV/K5Efdke46cwPEuHxw2zZygJzcO43PT1NFrXm/E/ZJsYt9sDN+nqYpD3LvvOnwCHb0BOO0axilI4Ik4jnX6zH2jIskLWOf5/91vJOAnKKieNeIwnu92HjLGBZx2TUlFYlF4UvMJrx8f1bYBUNM2GrDGI94OJxJVtGoGrGW9dh5uRZcvALtNU9aRDgA6fdaYjYqKYsBKOL9TbSXgVRCto3cfOYHO3gA0Td04Fg0tDz74IKZPn461a9eiq6sL06dPx/Tp07Fr1y7zPdXV1WhvNyY82e12fPzxx7jmmmswbtw4rFy5EjNmzMB7770XsyUzEdFwFDdJ3r6+Plx//fW4/fbbz/h7Hn/8cTz11FN45plnsGPHDiQlJWHBggXo7e0137N8+XLs27cPmzZtwptvvomtW7fitttuOx//hZhKsq21cAHjQUbFDEiP026uzShiUVHJC1gzHr84pjYOMQNUrO2Sn+qBxyl/5rDbYTcfVEQsqpKr4yKqigE1LZKBiHbN4RnM6YlOpHjkz7h3O+zm8fpZeFa36uSqmHGvKg5RISPazHmcNmQmyW/R6HHazVbnH4crRFS0awaAqUXpAIA94cEYVclmkfz4vy/bEQjpcNg0JVVvSW6H2eJuxyGjSlPVOU0M9r9/UCTN1AzGiOTqriMn4O0LIsXjUDJhJCPJZbahf9dMVqlJiMwekw0A2FJtxPGNsmwlcVw6NgeAUVHc6w9hRHqCksqMUVmJKM1OQiCkY9sXLQCAb5bnSo8DAOaON37ueweMz82ccTmK4sgx49B1Y3kLFRM1ynKTkZPiRndf0BzYnT0mS3ocgHVOE5/fi0vVxCGqD0XSe0JBqpL7tII0o22lty9oJkRUJXlFcmb7IePzKyayyCbuhXaGJyeWF6Qoeb7JTfHAbrNa8QJqJmkA1jb5v/D9ooqkd2QcYnuMzU1R0l0kM8kFj9P4ueL5RkXbaMB6nhFxiHsU2USyWTx7lmYnK9k3KR4n0sNV5uJ5XMVEAMC6dzfXwVXQRhuwCgJEq+bizEQl+8bjtJsTnMQ4lop2zYC17q2Io1TBfSswcKxzRHqCkusNDT3r16+HrusDfs2dO9d8j67r5hq/CQkJ2LBhA5qbm9HX14fDhw/jt7/9LfLy8tT8B4iIhqC4SfKuW7cOd911F6ZMmXJG79d1HU8++SR++tOfYvHixaioqMALL7yA+vp6/OUvfwEA7N+/H2+99Raee+45VFZW4pJLLsHTTz+Nl19+GfX19efxf2PpP6tOxaxDoX/rFNHmRbb+N8OjFG2T/oO4qiqKgYEth5RV8vZ7sC5S0CIZEO2grOqHYoUzQsf32yaqZsr2n2Gvok0VAJRkJSExoo3apMI0JZUqQHQlhstuU9IGsH8cgJUgka04KzGqpeoVE/PgUDCpCLAGt3UdSEtwmska2WYUR1fbXTdjpJI4SrKTotarvHpqoZIBKgCoLLG2SU6KW1mSaHZZ9M/91hQ16y2Ny0uOmgxx5aQ8Zee0yyKSqfmpHiVtPAFg3oToc9gcRee0qSPTo/bNJWPVTASw2zQsmpxvfp2X6lZSZQ0A10wrjPo68vMs05zxOciKmOB1oaLKZo/TjqsrrG2SnexWdg+9eNoIAMZ1DwCmF6lJNl86NgdJEfdpqhKrdpuGSyM+s2kJTmXPFRf2+5xMVlTJO6EgBZGF96oSq5oWXUGc6LIre9Yq6Tf5rv9zlyz9x0VUxQFEjwM4FFWt9o8DgDm5Vrb+x6aq6llg4HiRqsmjxf3jUJxsFrgeLxER0fkTN0newTp06BAaGxsxf/5887W0tDRUVlZi27ZtAIBt27YhPT0dM2fONN8zf/582Gw27NixQ0qc6Ykuc40mQF27HSA6KVSY5lGyFhEw8MZcVcssj9OOvIh1976paBATiN43F47OiIpLpsgH/vREJxZNVjPo7rTb4HZYA1Q/uLRUSRxA9EP+dReMVFaROKHAiiMv1Y3lFxcricNm06JaQ963qFxJHED04NiK2cXKWvFGnsMyEp1Y0m8QXhZN06LW8PzhnDFK4gCA6eHqZgC48cIiJWutAsDUojTzeB2RnoBLFVWLapqGmREJ5+8qSjYDQGVEUvfqikIlrV4BI/GQEJ7tn5vixkxF1XeapuGSiOPiyon5p3j3+RU5GeLyCbnKks3Ti9LNSqK0BKfZ0lo2m03DFROtGfyXKkryAtGTEGaPyVa2bypLssx7RI9T3eQmp91mJjUBdUleAFhWOcr884xiNS2SAWD+hDyzKtGmGUsXqJCW4MT3IrbJ1IjrsWx3zhtr/jktwals3yydWRQ1KWGyouTqyIxE3DRrtPm1qhbJALBmgXX/7rTbYFN0L7D0wqKoe1dV22RUViIWTrKu/yrHbL53kfX5TfY4lE0KvLw817xPA9S1a85JcWPyCOu4UDXRGUDU/dCI9AQl60cDQHm/tuYqOtAAQKrHGdXBSlUcREREw4GaUVUJGhuNNXX6t2/Iy8sz/66xsRG5udGJO4fDgczMTPM9sfh8Pvh8PvNrsU5AR0fHWcX6s4UleKe6GbnJHiydnnPW/85Xde3kTBxtasHIjERcPa1AWRwlqTZcVZ6GvkAI36schdI0m7JYrq/IwutV9bj10lIsnpatLI6LixLwPHy4vDwXD3y7HJ2dnUriyHKFMCJJh88fwrPLpiHNEVC2TRZPysAfth3BXVeMxZySZGVxTMl1IuTzYmxuMtZcPkpZHCk2HXmeEBrae/HzRRMR8nnR4Tv9950P107OxPMfHMbc8TkYl+lQtk0mZDkQ8nkBADfNyFMWhx1AhsOPlm4/brt8PLzd8tZ972/2qER8XteMrCQnShSeW8dl2hHyGes0Lp6YoSwOABiXYce++g4smVSIri4151bAOJf8bY8Xo7MSMUbhvon83Fw+Rt25FQCm5rvwj4MtuHxqltJ9c0GBG3/e7kVaggPjM+3KtsnEbCccwV70BUKoHJGgdN/MGpmAv+5tx0VleUrPad8oTsIftnrhtGuYkOVUtk3GZzqQ4QigpbsPU3NdSvfNFWWpeGHbEUwpzESvtwu9p/+W82LhuFQ8t9k4l5Qr/NyMSbOhLN2Gz5u6MClb3TECADdMzcS/bzyAcQUpCCq8T7uhIhvP/u8+AMDYDHXXmzHpdoxKBg63eHH5GHX3aQDw/y4dgQde34cRGR44Qz50KNo5P7g4H79751MAwIQsdZ+bijwXrpmQjr9U1WPJzNHK4nAA+LfFY/H99TuRnexGis2vLJZ1i0rRcKwVH9W1oSJP3Xn+W+XpOHF5EX654XMsnpirLI5sN/CHmyZjzZ8/hk3TkOMOKYvlNzdMxK83H8DWA8dxaXGisjj+aVYhChJ0bNjXhIWT1Z3TytJteOI74/Bu9TEkeRxKnyt+cXUZ/nd/EwJBHTd+hfE08X26aIdBNEji2DndMej3++H1etHR0QGnU03h09li7GowdjWGQ+yDvfZpusKr5L333ovHHnvslO/Zv38/ysutmaTr16/H6tWr0dbWdsrv+8c//oFvfOMbqK+vR0GBNbv+hhtugKZp+NOf/oR//dd/xe9//3tUV1dHfW9ubi7WrVt30vV/f/azn2HdunWn+d8RERERERERERER0VdRU1OD0lJ1Xdwofn355ZcoKipSHQYR0aDV1dVh5MjTd/tTWsl7zz33mAupn8zZXsDz8412Ok1NTVFJ3qamJkybNs18T3Nzc9T3BQIBtLa2mt8fy3333Ye7777b/LqtrQ3FxcWora1FWpqa1ltEZ6KjowNFRUWoq6tDaqq6FmBEZ4LHK8UTHq8UL3isUjzh8UrxhMcrxQseqxRP2tvbMWrUKGRmqlv+geJbYWEh6urqkJKScsrlIeL53MjY1WDsagyH2HVdR2dnJwoLz2zJP6VJ3pycHOTk5Jz+jWehpKQE+fn5ePvtt82kbkdHB3bs2GFW6M6aNQttbW3YvXs3ZsyYAQDYvHkzQqEQKisrT/pvu91uuN0D10RNS0uLuwOLhqfU1FQeqxQ3eLxSPOHxSvGCxyrFEx6vFE94vFK84LFK8cRmU7MGNcU/m812RpVwQjyfGxm7Goxdja977IMpJo2bK2RtbS2qqqpQW1uLYDCIqqoqVFVVoavLWgesvLwcr732GgBA0zSsXr0aDz/8MN544w3s3bsXN910EwoLC7FkyRIAwIQJE7Bw4ULceuut+PDDD/HBBx/gjjvuwI033njGWXIiIiIiIiIiIiIiIiIiIpmUVvIOxoMPPojf//735tfTp08HALzzzjuYO3cuAKC6uhrt7e3me9asWYPu7m7cdtttaGtrwyWXXIK33noLHo/HfM8f//hH3HHHHZg3bx5sNhuuu+46PPXUU3L+U0REREREREREREREREREgxQ3Sd7169dj/fr1p3yPrutRX2uahoceeggPPfTQSb8nMzMTL7744leKze12Y+3atTFbOBMNJTxWKZ7weKV4wuOV4gWPVYonPF4pnvB4pXjBY5XiCY9XkiWejzXGrgZjV4OxD6Tp/TOjREREREREREREREREREQ0ZMXNmrxERERERERERERERERERMQkLxERERERERERERERERFRXGGSl4iIiIiIiIiIiIiIiIgojjDJ+xX9+te/xujRo+HxeFBZWYkPP/xQdUhEA/zsZz+DpmlRv8rLy1WHRQQA2Lp1K66++moUFhZC0zT85S9/ifp7Xdfx4IMPoqCgAAkJCZg/fz4OHDigJlga1k53rN58880DzrULFy5UEywNe48++iguvPBCpKSkIDc3F0uWLEF1dXXUe3p7e7Fq1SpkZWUhOTkZ1113HZqamhRFTMPVmRyrc+fOHXB+/eEPf6goYhrOfvOb36CiogKpqalITU3FrFmz8Pe//938e55XaSg53fHKcysNVb/4xS+gaRpWr15tvsbzK51rjzzyCGbPno3ExESkp6ef0fcMpWf+s4l/qIyvtba2Yvny5UhNTUV6ejpWrlyJrq6uU36PqmvWYHM/r776KsrLy+HxeDBlyhT87W9/O+8xnsxgYl+/fv2A7evxeCRGaznd2FssW7ZswQUXXAC3242ysjKsX7/+vMcZy2Bj37Jly4DtrmkaGhsbB/VzmeT9Cv70pz/h7rvvxtq1a7Fnzx5MnToVCxYsQHNzs+rQiAaYNGkSGhoazF/vv/++6pCIAADd3d2YOnUqfv3rX8f8+8cffxxPPfUUnnnmGezYsQNJSUlYsGABent7JUdKw93pjlUAWLhwYdS59qWXXpIYIZHl3XffxapVq7B9+3Zs2rQJfr8fV155Jbq7u8333HXXXfif//kfvPrqq3j33XdRX1+Pa6+9VmHUNBydybEKALfeemvU+fXxxx9XFDENZyNHjsQvfvEL7N69G7t27cLll1+OxYsXY9++fQB4XqWh5XTHK8BzKw09O3fuxLPPPouKioqo13l+pXOtr68P119/PW6//fZBfd9QeeY/m/iHyvja8uXLsW/fPmzatAlvvvkmtm7dittuu+203yf7mjXY3M8//vEPLFu2DCtXrsRHH32EJUuWYMmSJfjkk0/Oa5yxnE3eKjU1NWr7HjlyRGLEljMZe4t06NAhXHXVVfjmN7+JqqoqrF69Gj/4wQ+wYcOG8xzpQIONXaiuro7a9rm5uYP7wTqdtYsuukhftWqV+XUwGNQLCwv1Rx99VGFURAOtXbtWnzp1quowiE4LgP7aa6+ZX4dCIT0/P1//5S9/ab7W1tamu91u/aWXXlIQIZGh/7Gq67q+YsUKffHixUriITqd5uZmHYD+7rvv6rpunEudTqf+6quvmu/Zv3+/DkDftm2bqjCJBhyruq7rc+bM0e+88051QRGdQkZGhv7cc8/xvEpxQRyvus5zKw09nZ2d+tixY/VNmzZFHZ88v9L59Pzzz+tpaWln9N6h+Mx/pvEPlfG1Tz/9VAeg79y503zt73//u65pmn706NGTfp+Ka9Zgcz833HCDftVVV0W9VllZqf/TP/3TeY0zlsHGPpjPgUyxxt76W7NmjT5p0qSo15YuXaovWLDgPEZ2emcS+zvvvKMD0E+cOPGVfhYrec9SX18fdu/ejfnz55uv2Ww2zJ8/H9u2bVMYGVFsBw4cQGFhIUpLS7F8+XLU1taqDonotA4dOoTGxsaoc21aWhoqKyt5rqUhacuWLcjNzcX48eNx++23o6WlRXVIRACA9vZ2AEBmZiYAYPfu3fD7/VHn1/LycowaNYrnV1Kq/7Eq/PGPf0R2djYmT56M++67D16vV0V4RKZgMIiXX34Z3d3dmDVrFs+rNKT1P14FnltpKFm1ahWuuuqqqPMowPtWGlri9Zl/qIyvbdu2Denp6Zg5c6b52vz582Gz2bBjx45Tfq/Ma9bZ5H62bds24Py1YMEC6eeps81bdXV1obi4GEVFRQM6fwxlQ2W7fxXTpk1DQUEBrrjiCnzwwQeD/n7HeYhpWDh+/DiCwSDy8vKiXs/Ly8Nnn32mKCqi2CorK7F+/XqMHz8eDQ0NWLduHS699FJ88sknSElJUR0e0UmJNQhinWsHuz4B0fm2cOFCXHvttSgpKUFNTQ3uv/9+LFq0CNu2bYPdblcdHg1joVAIq1evxje+8Q1MnjwZgHF+dblcA9Zv4vmVVIp1rALA9773PRQXF6OwsBAff/wxfvKTn6C6uhr//d//rTBaGq727t2LWbNmobe3F8nJyXjttdcwceJEVFVV8bxKQ87JjleA51YaWl5++WXs2bMHO3fuHPB3vG+loSKen/mHyvhaY2PjgFa0DocDmZmZp4xD9jXrbHI/jY2NyrcvcHaxjx8/Hr/73e9QUVGB9vZ2/Nu//Rtmz56Nffv2YeTIkTLCPmsn2+4dHR3o6elBQkKCoshOr6CgAM888wxmzpwJn8+H5557DnPnzsWOHTtwwQUXnPG/wyQv0TCwaNEi888VFRWorKxEcXExXnnlFaxcuVJhZEREXx833nij+ecpU6agoqICY8aMwZYtWzBv3jyFkdFwt2rVKnzyySd4//33VYdCdEonO1Yj1+iaMmUKCgoKMG/ePNTU1GDMmDGyw6Rhbvz48aiqqkJ7ezv+/Oc/Y8WKFXj33XdVh0UU08mO14kTJ/LcSkNGXV0d7rzzTmzatAkej0d1OBTH7r33Xjz22GOnfM/+/ftRXl5+Vv/++X7mP9/xn09nGvvZ4jXr/Jo1a1ZUp4/Zs2djwoQJePbZZ/Hzn/9cYWRfb+PHj8f48ePNr2fPno2amho88cQT+MMf/nDG/w6TvGcpOzsbdrsdTU1NUa83NTUhPz9fUVREZyY9PR3jxo3DwYMHVYdCdErifNrU1ISCggLz9aamJkybNk1RVERnprS0FNnZ2Th48CCTvKTMHXfcgTfffBNbt26NmoGbn5+Pvr4+tLW1RVVF8F6WVDnZsRpLZWUlAODgwYMc1CHpXC4XysrKAAAzZszAzp078R//8R9YunQpz6s05JzseH322WcHvJfnVlJl9+7daG5ujqpaCgaD2Lp1K371q19hw4YNPL/SGbnnnntw8803n/I9paWl5+znnetn/vMZ//keXzvT2PPz89Hc3Bz1eiAQQGtr66A+z+f7mnU2uZ/8/PwhkSs6F3krp9OJ6dOnx0Xu4GTbPTU1dUhX8Z7MRRddNOgJ+lyT9yy5XC7MmDEDb7/9tvlaKBTC22+/HTXrgWgo6urqQk1NTdRFnWgoKikpQX5+ftS5tqOjAzt27OC5loa8L7/8Ei0tLTzXkhK6ruOOO+7Aa6+9hs2bN6OkpCTq72fMmAGn0xl1fq2urkZtbS3PryTV6Y7VWKqqqgCA51caEkKhEHw+H8+rFBfE8RoLz62kyrx587B3715UVVWZv2bOnInly5ebf+b5lc5ETk4OysvLT/nL5XKds593rp/5z2f853t87UxjnzVrFtra2rB7927zezdv3oxQKGQmbs/E+b5mnU3uZ9asWVHvB4BNmzZJP0+di7xVMBjE3r174+KeYKhs93Olqqpq0Nudlbxfwd13340VK1Zg5syZuOiii/Dkk0+iu7sbt9xyi+rQiKL86Ec/wtVXX43i4mLU19dj7dq1sNvtWLZsmerQiNDV1RU1M+zQoUOoqqpCZmYmRo0ahdWrV+Phhx/G2LFjUVJSggceeACFhYVYsmSJuqBpWDrVsZqZmYl169bhuuuuQ35+PmpqarBmzRqUlZVhwYIFCqOm4WrVqlV48cUX8frrryMlJcVcBygtLQ0JCQlIS0vDypUrcffddyMzMxOpqan4l3/5F8yaNQsXX3yx4uhpODndsVpTU4MXX3wR3/rWt5CVlYWPP/4Yd911Fy677DJUVFQojp6Gm/vuuw+LFi3CqFGj0NnZiRdffBFbtmzBhg0beF6lIedUxyvPrTSUpKSkYPLkyVGvJSUlISsry3yd51c612pra9Ha2ora2loEg0EzaVhWVobk5GQAQHl5OR599FF85zvfQVdX15B65h9s/JqmDYnxtQkTJmDhwoW49dZb8cwzz8Dv9+OOO+7AjTfeiMLCQgDA0aNHMW/ePLzwwgu46KKLlF2zTpf7uemmmzBixAg8+uijAIA777wTc+bMwb//+7/jqquuwssvv4xdu3bht7/97XmL8VzF/tBDD+Hiiy9GWVkZ2tra8Mtf/hJHjhzBD37wA+mxn26c+L777sPRo0fxwgsvAAB++MMf4le/+hXWrFmD73//+9i8eTNeeeUV/PWvfx3ysT/55JMoKSnBpEmT0Nvbi+eeew6bN2/Gxo0bB/eDdfpKnn76aX3UqFG6y+XSL7roIn379u2qQyIaYOnSpXpBQYHucrn0ESNG6EuXLtUPHjyoOiwiXdd1/Z133tEBDPi1YsUKXdd1PRQK6Q888ICel5enu91ufd68eXp1dbXaoGlYOtWx6vV69SuvvFLPycnRnU6nXlxcrN966616Y2Oj6rBpmIp1rALQn3/+efM9PT09+j//8z/rGRkZemJiov6d73xHb2hoUBc0DUunO1Zra2v1yy67TM/MzNTdbrdeVlam//jHP9bb29vVBk7D0ve//329uLhYd7lcek5Ojj5v3jx948aN5t/zvEpDyamOV55baaibM2eOfuedd5pf8/xK59qKFSti3oO+88475nsi70mH2jP/YOPX9aEzvtbS0qIvW7ZMT05O1lNTU/VbbrlF7+zsNP/+0KFDUf8XldesU+V+5syZY45dCq+88oo+btw43eVy6ZMmTdL/+te/nvcYT2Ywsa9evdp8b15env6tb31L37Nnj4KoTz9OvGLFCn3OnDkDvmfatGm6y+XSS0tLo457mQYb+2OPPaaPGTNG93g8emZmpj537lx98+bNg/65mq7r+uDSwkREREREREREREREREREpArX5CUiIiIiIiIiIiIiIiIiiiNM8hIRERERERERERERERERxREmeYmIiIiIiIiIiIiIiIiI4giTvEREREREREREREREREREcYRJXiIiIiIiIiIiIiIiIiKiOMIkLxERERERERERERERERFRHGGSl4iIiIiIiIiIiIiIiIgojjDJS0REREREREREREREREQUR5jkJSIiIiIiIiIiIiIiIiKKI0zyEhERERERERERERERERHFESZ5iYiIiIi+Zu666y5ce+21A16/5ZZb8NOf/hQbNmyApmmn/LVx40YFkRMRERERERER0ZlgkpeIiIiI6Gvmww8/xMyZM6NeCwaDePPNN3HNNdfgsssuQ0NDg/krKysLDzzwQNRr8+bNUxQ9ERERERER0dDz0ksvISEhAQ0NDeZrt9xyCyoqKtDe3q4wMhquNF3XddVBEBERERHRV9fX14ekpCQEAgHztcrKSmzfvh3vvfceli5diqNHj0LTNPPvjx49ipEjR2Ljxo244oorVIRNRERERERENOTpuo5p06bhsssuw9NPP421a9fid7/7HbZv344RI0aoDo+GIYfqAIiIiIiI6NxwOBz44IMPUFlZiaqqKuTl5cHj8QAA3njjDVx99dVRCV4A+OijjwAAF1xwgfR4iYiIiIiIiOKFpml45JFH8N3vfhf5+fl4+umn8d577zHBS8owyUtERERE9DVhs9lQX1+PrKwsTJ06NervXn/9dTzxxBMDvmfPnj0oKipCVlaWrDCJiIiIiIiI4tK3v/1tTJw4EQ899BA2btyISZMmqQ6JhjGuyUtERERE9DXy0UcfDUjw7t+/H/X19THX2d2zZw+reImIiIiIiIjOwFtvvYXPPvsMwWAQeXl5qsOhYY5JXiIiIiKir5GqqqoBSd433ngDV1xxhdm6ORKTvERERERERESnt2fPHtxwww34z//8T8ybNw8PPPCA6pBomGO7ZiIiIiKir5G9e/fiuuuui3rt9ddfx2233TbgvcePH0ddXR2TvERERERERESncPjwYVx11VW4//77sWzZMpSWlmLWrFmcOE1KsZKXiIiIiOhrJBQKobq6GvX19Whvb0dzczN27dqFb3/72wPeu2fPHgDgAykRERERERHRSbS2tmLhwoVYvHgx7r33XgBAZWUlFi1ahPvvv19xdDScabqu66qDICIiIiKic+O//uu/8JOf/AT19fX40Y9+hPLycjz//PN4//33B7z3sccewxNPPIHGxkYFkRIRERERERER0dlikpeIiIiI6GvsmmuuwSWXXII1a9aoDoWIiIiIiIiIiM4RtmsmIiIiIvoau+SSS7Bs2TLVYRARERERERER0TnESl4iIiIiIiIiIiIiIiIiojjCSl4iIiIiIiIiIiIiIiIiojjCJC8RERERERERERERERERURxhkpeIiIiIiIiIiIiIiIiIKI4wyUtEREREREREREREREREFEeY5CUiIiIiIiIiIiIiIiIiiiNM8hIRERERERERERERERERxREmeYmIiIiIiIiIiIiIiIiI4giTvEREREREREREREREREREcYRJXiIiIiIiIiIiIiIiIiKiOMIkLxERERERERERERERERFRHPn/JGBRrJAPSg4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB3kAAAGGCAYAAAB2cjuyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsfXecHVX5/jO3bt/0BoEEApGaUEOwUAyEIiI28KsioKh8RcWoCP4UEQt+BRFUFEUwYAMLoAICoUkLoSYEpIZAEtLL9r115vfHuWdm7u4tZ2bnPeeGvM/nk0927869++4pM+ec532e13IcxwGDwWAwGAwGg8FgMBgMBoPBYDAYDAaDwWAwtgvETAfAYDAYDAaDwWAwGAwGg8FgMBgMBoPBYDAYDHUwyctgMBgMBoPBYDAYDAaDwWAwGAwGg8FgMBjbEZjkZTAYDAaDwWAwGAwGg8FgMBgMBoPBYDAYjO0ITPIyGAwGg8FgMBgMBoPBYDAYDAaDwWAwGAzGdgQmeRkMBoPBYDAYDAaDwWAwGAwGg8FgMBgMBmM7ApO8DAaDwWAwGAwGg8FgMBgMBoPBYDAYDAaDsR2BSV4Gg8FgMBgMBoPBYDAYDAaDwWAwGAwGg8HYjsAkL4PBYDAYDAaDwWAwGAwGg8FgMBgMBoPBYGxHYJKXwWAwGAwGg8FgMBgMBoPBYDAYDAaDwWAwtiMwyctgMBgMBoPBYDAYDAaDwWAwGAwGg8FgMBjbEZjkZTAYDAaDwWAwGAwGg8FgMBgMBoPBYDAYjO0ITPIyGAwGg8FgMHZY9PX1IRaL4ac//anpUBgMBoPBYDAYDAaDwWAwGAxlMMnLYDAYDAaDwdhh8fzzz8NxHOy7777afmdfXx++853v4LjjjsOYMWNgWRYWLlyo/P5sNotvfOMbmDJlCpqbmzFnzhwsWrSILmCNGGnbAG/v9mEwGAwGg8FgMBgMBoPBkGCSl8FgMBgMBoOxw2L58uUAgP3220/b79y8eTMuueQSvPjii5g1a1bg959xxhm44oor8PGPfxxXXXUV4vE4TjjhBDzyyCME0erFSNsGeHu3D4PBYDAYDAaDwWAwGAyGRMJ0AAwGg8FgMBgMhiksX74c48aNw6RJk7T9zsmTJ2PdunWYNGkSnnrqKRxyyCHK733iiSdw00034bLLLsPXvvY1AMDpp5+OfffdF+effz4ee+wxqrC1YCRtA7z924fBYDAYDAaDwWAwGAwGQ4KVvAwGg8FgMBiMHRbLly/HPvvsU/batddei1QqhfPOOw/FYjHy35lOp0OTyn/7298Qj8fx2c9+1n2tqakJn/70p7F48WKsXr060Ocdc8wxmDt3LhYvXowjjzwSra2tmDFjBu68804AwJ133onDDjsMra2tmD17Np5++ulQcatiJG0DRN8+DAaDwWAwGAwGg8FgMBiNClbyMhgMBoPBYDB2WCxfvhwf+9jHAACFQgHnnXcefvOb3+Dqq6/G2WefXXZtPp9Hd3e30ueOGTMGsVj0+ZTPPvss9txzT3R0dJS9fuihhwIAli5diqlTpyp/3nPPPYexY8fi1FNPxac//Wmccsop+OEPf4j/+Z//wf/93//hsssuw9lnn42TTz4ZP/zhD3HWWWdh2bJlFT/r7dg+DAaDwWAwGAwGg8FgMBiNCiZ5GQwGg8FgMBg7JNatW4ctW7Zg3333xdatW/GRj3wES5cuxT333IMjjzxy2PWPPvoojjrqKKXPXrlyJaZNmxZtwBAxT548edjr8rW1a9cqf9bGjRuxceNGWJaFZ5991v2MWCyGL33pS7jyyivxzDPPuITp5s2b8dOf/hTZbBbpdHrY573d2ofBYDAYDAaDwWAwGAwGo5HBJC+DwWAwGAwGY4fEc889BwCwLAuHHHIIUqkUlixZghkzZlS8ftasWVi0aJHSZ1PV+B0cHKxIsDY1Nbk/V4X8+y+++OIyYrStrQ0AcNlll5UpYjs7OxGLxaoqcN9u7cNgMBgMBoPBYDAYDAaD0chgkpfBYDAYDAaDsUNi+fLlAIBzzz0XBx98MO68806MGjWq6vWjR4/GvHnzNEVXGc3Nzchms8Nez2Qy7s9VIf/+97///WWvv/zyy2hubsYxxxxT9vorr7yC3XffHclksuLnvd3ah8FgMBgMBoPBYDAYDAajkcEkL4PBYDAYDAZjh8Ty5cux6667Yvfdd8fzzz+Pvr6+miRvLpfD1q1blT57/PjxiMfjEUXqYfLkyXjrrbeGvb5u3ToAwJQpU5Q/67nnnsPkyZOHvWfZsmXYd999hylily1bhv3337/q573d2ofBYDAYDAaDwWAwGAwGo5HBJC+DwWAwGAwGY4fE8uXLMXv2bFx77bU4+OCDccopp+Dhhx92rX2H4rHHHjNec3b27Nl44IEH0NPTU2alvGTJEvfnqnjuuecwa9asYa8vW7YMJ554Ytlr+XweL7/8Mj760Y9W/by3W/swGAwGg8FgMBgMBoPBYDQymORlMBgMBoPBYOxwKBaLePHFF3HiiSdi/PjxuOWWW/Cud70L55xzDn73u99VfI/umrMDAwNYtWoVxo0bh3HjxgEAPvzhD+Pyyy/Hb37zG3zta18DAGSzWfzud7/DnDlzMHXqVKXPLhaL+O9//zvMknnz5s1Yt27dMPL3xRdfRD6fr6nkfTu1D4PBYDAYDAaDwWAwGAxGo4NJXgaDwWAwGAzGDodXX30VmUwG++23HwDgoIMOwq9+9SuceeaZOOigg3DuuecOe0+UNWd/8YtfoKurC2vXrgUA/Otf/8KaNWsAAF/84hfR2dmJJ554AkcddRS+853v4OKLLwYAzJkzBx/5yEdw4YUXYuPGjZgxYwZuuOEGvPHGG7juuuuG/R7LsnDEEUfgwQcfrPj3DyVzly1bBgDDXn/uuecAoCbJG1X7qLQNgEjah8FgMBgMBoPBYDAYDAZjewWTvAwGg8FgMBiMHQ7Lly8HAOy7777ua2eccQaefPJJLFiwAPvvvz/e8573kP3+yy+/HG+++ab7/S233IJbbrkFAPCJT3zCJTIr4cYbb8S3v/1t/P73v8e2bduw//774/bbbx8Wb19fHwBRp3Yo5N8/lLStRuYuX74cHR0dJBbLQzGStgHU24fBYDAYDAaDwWAwGAwGY3uG5TiOYzoIBoPBYDAYDAaDES3uvPNOvO9978OyZctcxTKDwWAwGAwGg8FgMBgMBuPtgZjpABgMBoPBYDAYDEb0eOCBB3DaaacxwctgMBgMBoPBYDAYDAaD8TYEK3kZDAaDwWAwGAwGg8FgMBgMBoPBYDAYDAZjOwIreRkMBoPBYDAYDAaDwWAwGAwGg8FgMBgMBmM7wnZF8j700EM46aSTMGXKFFiWhdtuu63uex588EEceOCBSKfTmDFjBhYuXDjsmquvvhrTpk1DU1MT5syZgyeeeCL64BkMBoPBYDAYDAaDwWAwGAwGg8FgMBgMBiMCbFckb39/P2bNmoWrr75a6fqVK1fixBNPxFFHHYWlS5fivPPOw2c+8xncfffd7jU333wzFixYgO985zt45plnMGvWLMyfPx8bN26k+jMYDAaDwWAwGAwGg8FgMBgMBoPBYDAYDAYjNLbbmryWZeHWW2/FBz7wgarXfOMb38Add9yB559/3n3ttNNOQ1dXF+666y4AwJw5c3DIIYfgF7/4BQDAtm1MnToVX/ziF3HBBReQ/g0MBoPBYDAYDAaDwWAwGAwGg8FgMBgMBoMRFAnTAVBi8eLFmDdvXtlr8+fPx3nnnQcAyOVyePrpp3HhhRe6P4/FYpg3bx4WL15c9XOz2Syy2az7vW3b2Lp1K8aOHQvLsqL9IxgMBoPBYDAYDAaDwWAwGAwGYweD4zjo7e3FlClTEIttV4aUjAaBbdtYu3Yt2tvb+dyewWBsFwj67Htbk7zr16/HxIkTy16bOHEienp6MDg4iG3btqFYLFa85qWXXqr6uZdeeim++93vksTMYDAYDAaDwWAwGAwGg8FgMBgMgdWrV2PnnXc2HQZjO8TatWsxdepU02EwGAxGYKg++97WJC8VLrzwQixYsMD9vru7G7vssgtWf6UNuabxGHf+M4Ch7LJPXf8Enn5zGwDgga8egfEdTUbiWPjoSlx+zysAgItO2hsfPdjMw3Tl5j6c9PNHAQDv3mMsfvWJg43E4TgOTvr5I3hjywCScQuLL3wvmpJxI7FcdvdLuOGxNwEAPz11No7Ze2Kdd9Dgide34qwbngQAnDx7Cn5wyn5G4sjkizjmiv9g20Aenc0JPPKNo41l9n31L0tx9wsbAAALzzwEB08bYySO2559C9+6Tdjcf+TgnfGdk/YxEsdb2wYw/8qH3e+f/+58I3EUijZO/c3jeHl9LwDgn198J3Yb12YkFv/8/dJ7Z+Cz79ndSBz3v7QRX/rzswCACe1p3P+1I43EsWprPz70q8cwmLMBAA99/UiMaUtrj6NQtPE/1y7Bf9f1AAAuef8++OBBZg4gLr3zRfxxySoAZp97/1z6Fr55q7iPxCzg6W8fg2Rc/9pobdcgjr/qYRRtUZ3kZx87AEe/Y4L2OADgQ796zL2PfPignXDx+/c1EsdV976Cax9eCQAY35bCA18/ykgcz67aik9e96T7/V8/fxj2mtypPQ7HcfDOH92PnkwBgNl764W3PId/LVsHAJgzfQyuO+MQI3Es+u96fOXmZQCAiR1p3PqFd6KjKak9jmyhiIO+d6/7/R8+cyhmTx2tPQ4A+MRvl2Dp6i4AwAXHz8QnDptmJI6/PLUal/zrvwCAY/aegCs+OtvIunVTbwZHXf4fAMDY1hRu/9K70G5gjADAwd9fhExerANu/uxh2Gcn/fcRAPjlA6/hlw+uAAAsOGYPnPWu3YzE8eqGXpzyy8cAAAfvOhq/O/MQY3ubfb9zt/v1Q+cfhTGtKSNx/N9dL+H3i0v734/OwjH7TDISR6Psf23bweH/dx/6MkWMbU3h3q8eYWSNBgAX/P053P6ceO6ZvMff/fx6fPWv4rl39run48vz9jQSR3+2gHf+6H4UbAd7TGjDrV94p5E4AODsG5/C4hVbAAB3ffnd2HlMi5E4bnriTVxyyzN461dnoL293UgMjO0fcuysXr0aHR0dVa/L5/O45557cOyxxyKZNLOuCQuO3Qw4djPYEWLv6enB1KlTlZ99b2uSd9KkSdiwYUPZaxs2bEBHRweam5sRj8cRj8crXjNpUvWFfzqdRjpd4RA51YLdUlvQtfZZjNpb/4HZtv4clm3IIpYWi6+lG3L40M5mDjIfXNnnxvHsuiw+U+MhSon/PLnBjWPZhjxaWtuQMLCBWba6C6v6gFi6BUUAK7pszN1d/wYmV7Bx50vdbpu8tCWPDxnqm1v/+5obxwub8jUXWpS444lV6C4mEUsn0WsDW/MJTB/Xqj2O1zf14d4VvW6bvN5t42gDbVIo2vjN4+vcONb2W8b65uK7XnfjAMT8aUvrf2z9/ek1eHVb0Y1ldS8wezf9bbKhJ4PfP73Ji6MPxvrm2seXuXFkrYQx26O7Fq9D1mpCrPRIXjcYw7Qp+tvk2VXb8NLWgtsma/rN9c09r/b44jA3f5dvfKNs/m7LJzBjtP7kiCVrBuEkmyGf/OsHzbRJvmjj9W67Iebvm72OG8eWPGAnmjCqRf/B+7qBrrIxsrrPwhwDbbKpN4s+J4VYWrTBq9uKxvpmTWmtCADLNuTQ2taOeEz/vXVtv7d+3pQVbXLUzLHa43hxXU/ZGLnrlR68Z59dtccBAFtycTeWG5/ahP89dn8jcaz2zd/7VvThrX4Lext47i1d7+05txWAf/x3G/73yBna4yjaoj1iMUHy/uzht/Dnz5pJLl7V5/XNb5dswJlH7YPOZv2HTit964Bn1mfx/KY83jljnPY4tvXnyubv357bgq/Nn6k9DgB4aYu3Rvvz0s340FwzBN7L2za6cdzzag8uiTdhtAHi+6X1PRhw0oilxfx9Zl3WWOL3sg3eOLn3tV5j9/jnNq7y4ljRi2+dYmZv8/RLG2GX1q0rum1szsaw23j96+dMvlh2n1/y1iD2nmYmOeLxNRk3DrbZZYSFHDsdHR11Sd6WlhZ0dHRsl8QRx64fHLsZ7Eixqz773tbFDObOnYv77ruv7LVFixZh7ty5AIBUKoWDDjqo7BrbtnHfffe51wTBk+nDAADbHv/DCKIOjwde3oiSUAUA8NCrm4zEsaEng2dWdbnfP7ZiM2x/YBpx+3Nr3a/7sgW8sLbHSBy3PvtW2fdPrNxqJI7/vLIJW/pz7vdPvrHNSBy9mTzufn69+/3rm/uxzReXTtw2pG+WrjbTJvf8dwMc3zRZtqbbSBwrN/djzbZB9/vn13Ybm7/SlUDixXVm5u/Q+4ap+8iKjX1l37+0rtdIHI7jYOXmfvf73mwBb3UN1ngHHd7cOlD2/asbzbTJqiFxvDKkr3ShL1sou8ev3jqATL5oJJY3t/aXfb9ik5k2eXPLkDgM9c2abYOumhgAXt/UX+NqWvjnb6XvdeH1Ib/3DUNxDB2bb24ZqHIlLRzHKRsXuaKN9T0ZI7G8NqRNVm810yavbCi/p5uKozeTL3vOre/JGLu3vrS+vE3e2GJm3ry0vnwt9Jqhe+vKzX2uiheA66hhAs+/5f3uvmxh2PjVF0f5HuKhV8ycCTw3JI67Xlhf5Upa5It2WZs89eY2Y/eSZ1d5e5tswcbty9cZieOpIWcAf3t6tZE41mwbKLu3/mvZWuSLdo130GHx61vcr9/cMlA2n3Xi0dc2l30vXb5044mVW5EteH1x74tm4sjki3hsxeb6FzIYDAaDsYNjuyJ5+/r6sHTpUixduhQAsHLlSixduhSrVglbwgsvvBCnn366e/3nP/95vP766zj//PPx0ksv4Ze//CX+8pe/4Ctf+Yp7zYIFC3DttdfihhtuwIsvvohzzjkH/f39OPPMMwPHN7jrewEAiQ1Lw/+RI8ADL4sN3KHThcXrw6+aIVflRnLfnTrQmopj20AeL67Xv0je3JfFKxv6YFnC8g4oX7zrxLMle7e5uwkVxBNvmInjpdLBx2G7ifZ4YW23kUOq1VsHUbAdjG1NYbfxQjX7rCFyVW7yD9hlFABgqS9BQSfeKhGrs3YWFnPPrTEUR2mjPWNCG1KJGHozhWFEmg7YtoN1XeJw+x2ThDXF0EMrXXirS/z9MyeKOEwdIK4p9c0eE0Q294pNfcgW9M/fbQN5DOTE792tpHo3RTiv2TZQFsfL603FIfpGugC8ZuhgV97PRrUk0d6UgO2YI/BWlYiyXceKzHtTBIAk7HYpWcwNJRZ1QRIxU8c0AwC29OfQPZDXHkehaLtJCbJNjJG8JUJTxmGKrBoax6qtA3Ac/evnTb1Z9GYLiFnATqPEOBmapKALr24Q81XO31WGiG9535D3Vn8Smk68WopjQnsaLSlRbsVEcpPjOC7Ju3tp/fyWoTZ5sfTcl2sSU3HIxDu5RusezKMvW9AeR/dg3r23ynXrWkMJcMtL6+V9Sgrvtd1mkkWeK+1/Z00dJeLoGjRyb31pXS+yBRudzUl3vbh6m/57muM4biL8oaWSPKaSm2QirTybMLV+lonv++3UibZ0AtsG8kbaZFNv1n3eyHMjU8TiIyWSV57X/OeVjUbikGd68mxxyetbjdxbH399CzJ5GxM79JfjYTAYDAZje8J2RfI+9dRTOOCAA3DAAQcAEATtAQccgIsuuggAsG7dOpfwBYDp06fjjjvuwKJFizBr1iz85Cc/wW9/+1vMn+/VdTz11FNx+eWX46KLLsLs2bOxdOlS3HXXXZg4Mbhdzc67iro7TTkzZJVcEJ/1zmlIJWLY2p8zcgCxtkTM7LdTJw4pLQqHZovqwPrShnZcWxrHlurumFLQru8W/fDBA3cCADzzZpeRLNV1JUXIodPHYkJ7Gvmig2WlDbhOrO8R7TGpswkH7iJsq595U38cRdvBht4sAOCEfScDgFtvTTfWlcaIHKtvbhlA14B+dfO60rzZZUwL9posDoeWGyBXN/dnkSvaiFnAe/cStvOmFLTyniZtzP5rKA55gHrwtNHobE6iYDtGiDNJrE5oT2P/UlLCy8ZITdEmcoyYUs1IAuSomSKOtd0Z9Gb0E3jygHnXMS3uwbuJMZItFN3njWwTU0peSRzKOryvm4qjtEbbe3KHe1C10gCBt7Yrg3zRQToRcw93TR0yr9ws+kL2jTmSV8Txnj3HIWYBA7kiNvVltcch5+ouY1owozR/TZCrtu3g9SF9M9StQBfkPV3G8dYQRby2OEoEyMxJ7Zg6umSHb4DU3NCTRfdgHvGYhSNL99Y1BsgqwHNXee9eYm1kytFDJt4dMn20a41sgnCWa8OdRzdj79L62USbFIq2G8v80p5inaG+WVZKWJ2/jxgjA7kiegb1k0TSpWnW1FGYPKoJANxEUp14c8sAtvbnkIrH3HXrekME/JNviDORk2ZNASD2fyYIeBnH4buPxeRO0TcbevQ/f2Uc75jUjgN3FWcT6wz0TV+24CbynPnO6QC8fahuSCX+aYdMxagWse80kbgiExAO2sVMrWYGDR566CGcdNJJmDJlCizLwm233Vbz+gcffBCWZQ37t369GYcIBoPBaERsVyTvkUceCcdxhv1buHAhAGDhwoV48MEHh73n2WefRTabxYoVK3DGGWcM+9xzzz0Xb775JrLZLJYsWYI5c+aEiq9zjNhIjXK6AAOL5A2lA9WdRrW4B4gbe/UvCjeUfueE9iZMGyuyZU3Yzcn2mNiRdrO7TWz6C0Ubm0pE4rv3GI90IobBfNHIpm5D6XdO7mzC7FJWtQlV4roKcQy19NKBTb1ZFG0H8ZiFeZLAW9eDXEE/AS83cHtNbse0knLmOQOWzXLzNmVUE/bfSRB4JhS0sj0mdjRh9tTRxuIAvEO6o94xATFLuASYuLfKA+WdR7e4KpEXDShovTiaMXOSOMgcah+pA5l8EZtLRMzR7xDz9+X1vUYOqaQiZN+dOjChXTx/XzVArkol71QfSWQmEWAQjgO0puKuAsCUTbIkp46YOR6AUKJvNVAeQCqKp41rdVWJJghnSSzvOrbFddJYaYBI9CuKjyz1zZubzShopbp75qQOTHEVtPrbRCZCzJjQ5ipoTThpvNU1iEzeRioewzt3F3U8TZG8UlH87j3GIRGzkCva7vpeJ2Qi054T27HzaDFGTNi9Sovkab75a4JszhVsd7wes7cgq9Z1Z1AwkMAqCc29J3e689cEEfHCWrFG3XeK2ThWbOrHYL6I1lTcrcNrSlEsS88cOm0MxpTqzq7t1h/L0tUijtlTR2Fyp+gbE2cTcq+7z04d7j1+nYH26MsW3PvGsSUCPluw0T2oPzlxRclJY5+dOjGpRPKa6BuZLPOOSe2Y2G7wHK30t7enE26yyPoeMwT8Rvdssdnd25h4/m4snaNNKI0PxtsD/f39mDVrFq6++upA73v55Zexbt0699+ECROIImQwGIztD9sVydvoGD1OLJKTKCLT16X1dxdtxz3sntCRxvi20uLUQCbkxh6PnBnfbi4OuUGY5I/DwGJ9c18OtgPEYxbGt6cxrtQ3JlQiklyd1NHkZstuNhCHJLgndTZhaskecaOBTYPcWE9sT2Pa2Bak4jHki46hvhGxTO5sxswSgWfCQlOSq5M7m12bNxMEnkc2e3G8trFPuwJ+MFd0CaEZE9pccsaEmlfaRu80qtlVWb9kIEnjrQpk88sGLPnlgUx7OoEDdx2FeMxCT6bgHgbohCR5p45pwZ6lpKLXNugn8Pw2vHtMKMVhgFyV6kM/2bxiU7/2Q6p80XYPMvea1OFa4BohV0v382ljW7Hb+Lay17TGscmzv5X3M6mo1Yk12waRLzpoSsYwZ/pYWJao773FAAEvyardx7e6yYlmSN7+UhxtnnW0gThkbfPdxrdieolIXG3AwjpbKLrq7r0mewS8CXJVks0zJ7a761YT5KpUNL1jUgd2NqgoXrGpD/mig/amBGZPHY1k3Cpzx9EJqSjee4p3j19jgNT8rz+O0ZLkNZeQ8I7JHW5CwoberHYCvj9bcJOcZ05qd/edJkhNuX7efXyrG4cJ4lsmW08d3YKJHSVC00DSt+yXtnQC49rSLgFvQrm6WRJ47Wm3TUwQibJNxrenPbLZQHvIM7Px7WlMKIk2coYIeJdc7Why+8bEmZ4cD+PbUtp/N4MOxx9/PL7//e/jlFNOCfS+CRMmYNKkSe6/WIwpDQaDwZDgO2KE6OzoQL8jFmPbNq3V+ru39GVhO0DMAsa2pjChvbQQM7DZlhY7EzvSbtafCdJMxjHBR/JuG8hrV2mudxemaZfoBbzNhE7IRfKkziaPbDYQh6fkbca40oLdNNlsWRbGylg0t8lgrohtpdqMUzqb3TGyxUCbyEOPnUY1Y2Jpk2siDkkkThnVjEkdTYjHLBRsR7sCT6p429MJdDYnMX1cW9nrJmLZaXQz9pgo4jBRX1SSq0LJK4jE1zf1az9AXL3Na490Iu4q4HXXFSsUbfcgd+poj9Q0YR3tJ3lNKnnf9KlFdx3bgnjMQl9WPwEvrV2bkjFMaE+7yjdZg1Un/G0iawKamL9vVFAUv2FAQesnvZtTcUzpNFODNlsouqTh7uPbsItU0BqwjpZztYzkNUBounFMaMNOo5phWUC/L+FJF17f1A/bAdqbEpjQnnbrWa82Qa6W7ud7TGzzlLwGbJKlQ4RfUbxmm7n5u8eENsRjlquO1O2YJBw9xLicPq7VbRMTzk2S/Jg6ptmoklfuYSZ1NmF8W9ol4HU/f7eU+qUpGUNbOuGOERPEtxwj49vSnpLXBKFZ2k+N88WxoeQqpRNy7y/34JMk4WyaXG0A4luQq+Zso+WZ2fj2NNKJOEa3JI3E0pctYCBXdGORZ4sbDAgmNrp9w0peBjB79mxMnjwZxxxzDB599FHT4TAYDEZDIWE6gLcTLMtCd6wTrc5GdG9Zh8m77aPtd2/s9TYNiXjMzfwzQeCt9yl54zFLxGfCrtmnWh3VnESiRBJt6c+6GysdkBsVSZhJAk83qZktFF2FjF/dLDe+OrHe1zdSdb61P+daJ+vCWkk2lw5jxralsK47o71v5JxpScXR0ZxwCfjNBhRNnqK4CS0p8YjYYmCMvOWzjY7FLIxpTWFTbxab+7JuNrHeOMQYkQciWzW3SdF23PphO41qxrbS2DBBwPtto2UiT8F20DWYd8euljh81sSAIDZXbOrXfji0rjuDou0glRBE4u4lItEEOeMneWW7rNwsFLSWpe/euqpUK3nXsa1IJ+LYZUwLVm7ux2sb+7TO3zd97RGLWdhtXCsefnUzVmhWruaLtktMTR/XisHSwdlKA2SzJGemj23F1DEtsCxxmLe5L+euC3RAEtySeN91bAve6hrEys0DOGjXMdriWLVlAHbJWnxCydUDMGvXvPuENrSlE6U4zI2R3ce3oSkZx6SOJqzrzmDV1gGM1XiPl/ez3ca1wrIs7DKmBY9ii3Ylb95XdmWXMS3uYfsaA/d4GcfkziZXtdqfK6JrII/RrfpUTlt8RAQg1iWrtg6UFJP65q9MPEjGLXQ0JTBllDmVptw7jG1Nu3GYSAjc0l86E2hNIRazMLGjCWu2DWJd96C7ltWBzf3e2YRlWUaVvG7ftKWRLSV7m1CtSgJvXHsK49tF8rd0Y9O5NvKTzYBICPjvuh7t6+dMvojerKjRPL497Z6VGCGb+4aTzRt7M7BtBzGNZxPyzEzeWyd2NGHbQB4bejJuYq0OyGdNSyqOtnTCPVs0oeR1CXiN6w9G42Hy5Mm45pprcPDBByObzeK3v/0tjjzySCxZsgQHHnhgxfdks1lks96Y7ekRjhv5fB75fHV1vPxZrWsaFRy7GXDsZrAjxB70b2OSN2L0x0cBhY3o37ZB6++VCk25AJtgyJ64ULTdjcPEjibESofKJlSaMtNwYkcasZiFcW1prO/JYFOvXpLXVc+W+saUglYuylOJGEa1JD0i0ag1cRPGtKZgWYDtiMManYfM62Ucpc2cqTZZ1+W1h1AUl+LQPEYcx3GJ7ymjml3CfUt/VjtJ5FcUA8KhYFNvVjvhvNanngXgqr11W4pu6MmgYDtIlA7s5OGUCWtTf03eRFzcT7pKdU51kryrfXEAwJjWkgJec5tIwmHn0c2Ixbz5q1v1ZtsO1pTI1aljWtx7aa5ooydTQGdzUlssq7YKkkiqEXca1YyVm/u1W/B56tnWsv9lO+mCVBSnEzFMbG/CwDhB8r5hgMCTv3P6uFY0JePYaVQz1mwbxMrN/Vqfv7JvpD3ytHGteGzFFu2kpryf7TJWEIm7unbNeuOwfUq7nUY1u/O1J1NA10AOo1r0EXibesW9a2Jp3Tp1TItL8h6wy2htcch7qHyuSHti3QrabQMiDssCRrWkXEWxCZtk2SZjWlNoSsYxvj2NTb1ZrNk2qJfkLcUx1u2bUptovrfKNeHYVkEk7jRKjBEz5Kpsk5S7z+zNFNCTyaOjSd/z122TUt9MKd3j3+rK4KBdtYXh7mFkHJNLxPc6zUrefNFGV8ktaVxbCg6EatYM2ezd0+IxCxPa01jXncG67oxWktevWgVgzDpaxpFKxNCeTrjkqlG75jaRCG9ZQL7oYNtATmtykySbpXJ2QkcTXlrfq71NJNkszxRN1imWsYxrZ7vmHRkzZ87EzJkz3e8PP/xwrFixAj/96U/x+9//vuJ7Lr30Unz3u98d9vo999yDlpaWur9z0aJF4QM2DI7dDDh2M3g7xz4wEGzfyyRvxBhMjQEKQLZbL8krD4YmygWhIbvmzX05OKX6s2N9hw1b+nMoFG0k4vocwl0FbYenoJUkr074awPLOAD9JK+MQxKJ44zaRntWYol4DKNbUtjan8PmvqzWQ+ahSl6P5NVMJPqIVUBk3wP6yaot/TnkCjYsS/SNtA/LFx3tJNHa0uGLtPAUfdPrKhR0wbONFvNXEom6EwHkgeXkUU1l91fdRKLjOGV2zYA4bO4ayIuDxYn6YpFxTC0d/I9pFeNzq+YxItVmMo7RJTJm64DmRIDeDHJFG4mYUMwk4jG0puLozxWxrT+ndf5KFeSuJVXkaEPjVdYzlWSzTNLYprlv5PyViQDy0GwgV0QmX0RTMq4tlg3uWkDM3ymdggDQfXAniQjZFnL+6LZZ9YhEMTbkmNWtxO/NFNxn7ujWJNIJoSze2JvFm1sGtJK8cn7I58wuY1rwxMqt2hW0sm/k/UO6ExiLoyWFeMxyyeYt/Tn0ZwtoTevbTrskb2m87jy6uUTyDmC/nTu1xyHHiEyE002uSrWorCnqKmg130dsXzmRcW1ptKYTbgLcuq4MOibpe/5u7vPIZgCYIhW0mvtG7mHknkau59dqJldlv8RjFka3pJAo1W/cNpDX/vzdPESROKlTJG2u784AU7WFMUzJO9lQDVpXPVtSe5u0a/bqz6aRjMcwtjWNzX1ZrO/J6CV5hxLwLrmqWRzQO5xsBszYRve7ttFs18wox6GHHopHHnmk6s8vvPBCLFiwwP2+p6cHU6dOxbHHHouOjo6q78vn81i0aBGOOeYYJJP6nt9RgGM3A47dDHaE2KUDgSqY5I0YhaYxwACQ792k9fd6St5yIlG3pcoGX9aftFiVVkRb+nNas1Rd4tswubqhil2z7jjWVSC9AXHQqlOl2ZvJo69kzTRJtklb2iV5dWJ9t0d8A42h5AXgEvC6rXilanVCu9jgJuOiFm1vtoDNfVm9JG9XOfEtD/B0K3ndOrgldYhr16y7NrCsPyvboxTHQK6IwVwRzSk9h1RdA3l3sz3Fp7J+fVO/9jZZvbWykndrv167FqnmkuqusYbGiJy/MnkGEORIf24QWwdymIZWbbFs9FmKAsCYUk0x3eSq7AP5vJNEmayBrgseaSbiaEsn3BIS2wZy2txFBnNFZPLCqnJ0KSlilNs3ZtpEEngySUP3GHHjKI0NuQ7oGsxrLSEhk0La0gmkE+J+PrmzCRt7s9oPd7f1l7fJzoYIvG1DiMSpbg1aMySRrI3Y2ZxER1MCPZkC1mwb1GqhKRPdZJvsPLoFz67q0t43ci0m12ZybaI7jq1DCE1JNm/ozSBXsJFK6Eku7i7dLwBv3kzpbEbXQB5ru0yNEamgNVMfWBKaQ4lE3TbJcr89pmRf3dGcQEsqjoFcEeu6M25teh2oRK4+C89ZylQcpmryDiM0O719uE5xQLZQdNXekoCf2CFI3o09WewzRUsYALw2mTBEZa1dySv7psNrDyNxlH5fa8k2msHwY+nSpZg8eXLVn6fTaaTTw5M0ksmkEiGkel0jgmM3A47dDN7OsQf9u/TJKncUtIwV//dv1vprZVadXBCON5T1N5Rs9ivOdJKa2ULRPZRxFbSGbJKHKXkNEYkbhhCasl9yRRs9gwVtcUhitaMp4dZ8lfY7psjVSS7JK+Mwo+SVB/2yb7TH0VUeB+CzJ9YYy2DOm787jSonznS3yVtD7JobhWxuTyeQjHt22rrjGNeWdtUPY1yVpu4s88rzRnccUq0yvk3cR+QBb/dgHoWirS2ObSVy2++iIftmm0bCuWg76MmIWCSpKok8Y0RiiZwZ06K/PUQcsj1EHJZlGVE3y/ZIxCz3sEyO1y7NbbJ1CJFomoCXY2RUKZnJccQc1gVPtept5Lw20dw3A+UEnvy/S3PfDFXyusmJ/SI5UXcckjQDvCQnnQfeA7mCm6QxVLmqm/jeMkRB6yp5DcUhn3vjWtNIJWJwHL19I+PoaEq4xPIUQ8T3FtcSWI4RqaDV7NbQX07AyzjWdWe0zl+vVrKIw7Isd9+n07LZLiW8A96+d1JHqU0Mk6uTDCl5Nw+p7T22VdhY246n8tUBOWeScctNaG4Y4tsUudpbbtfsdwnUOX89hTWreN9u6Ovrw9KlS7F06VIAwMqVK7F06VKsWrUKgFDhnn766e71V155Jf7xj3/gtddew/PPP4/zzjsP999/P77whS+YCJ/BYDAaEkzyRox423gAQGJwq9bfu8mtPystVeRBSFbrIfMG1zbaOwgZb6CGx9D6s/44dG4agEp2zamGiKMpGUdHU6IUi76+Wdc9nEh0FbS9eokIOV7LLYH1K2jlIYM8rJO2UH3ZAjL5orY4htbB9ceis01ke7Sk4uhoLiUCuHVOddeyLp83Yw3VfR16EGJZlo9c1ReLPOQvJxLNtEnXEOLMRHsAQPdgriwOSRY5jlAD6oIkgjp9tq6SQNPZNz2DecjzH0mYmSCbAT+5KsnmkqX3gF6SqGsIoSm+FrHoJM786lnp3uGSzZqJRPl3yzZxyWbtau9SHKV2SMRjaC+tjXSSq3JujKkwRro1jpFC0XbJbdkm8tDbNNks53GuYGNQ49rIXwdXQraJzkQASUSk4jE3SUM+i3XGAQwnviUBoDtZc2ht4FjMMkLObPHVWpXYqbSm162glet1tyZvp5k4Ng1Ri07saIJlifmrc00i+8ZfDkju+3SSml0+tbersjZmk1yeCOCSvIYITTlG4r5yFjrbxB9HrOTeMcG0glaSq+79TO+9dZMrICl3gMsVbK3Pm6HtwXj74KmnnsIBBxyAAw44AACwYMECHHDAAbjooosAAOvWrXMJXwDI5XL46le/iv322w9HHHEEli1bhnvvvRfvfe97jcTPYDAYjQj2vIgY6c4JAIBUbpvW3yuVvDLbb2xrGjELsB2xEdeV/SYJEb8t84T2NF6AXgXtBjeOtHuQ2TB2zSW116ZSJqQum+ShNYoBYQvckylgU28OMyZoCcONQ24oATM2yZt6s64VoxwbpuyavTYRhw4dTQmk4jHkiuIgxE+6UmIokQj41M0G1GZj2zwiYqwhBa0k6aSVqL+mp2077mEANbpdQsRTeY1tTWNDT1brYVnXoCQS/XHoJ1cz+SKyBZHA5JKrhmpZSwWtjCMRj6GzOYnuwTy29efKDn0p4RIzFfpGJ7kq5297OuHZRreYIeC7hljxjh5CEkk3CWq4ZLNPpWmiTboq3EdMkM2O47gEniTeRxuyje4aGE7gjW5JoTdT0Eo4bx1iXw2YUfJ2V0jS8Ah4M0SiJL5bU3Ek4xbyRQddA3lt89e1Jm7z901p3hhQe4/xJWmMajaVHFGu0pTt0VOqLa3L5nyobTQg7iWrtupNjhiqWhUxiWe/znvaYK7oltSQ63e579NOwLtks4gjlfDVOe3OaFsbDbUmBuBT8uoj8GQcnc1JV+1tIg7AZ6U9xBK4ezCvtQTMUNWqjGVdd0YruVopjkkGSN580XbvrUPtmjfqJuCHnAk0JeNunfGNvVl3fUKNjb5ScIy3F4488siaCbcLFy4s+/7888/H+eefTxwVg8FgbN9gJW/EaBk9CQDQWtBL8nqWKp5NstzM6LRs9pOrEibqA7ukd3s52QzoJXl7M179SrlZkBZNmbzt1qbVAVfJ6yNXTVhHb+wdPkbkWNVqzVRShI5uSbmHUZ5ttG4lYPnBu2VZnj2xxvEq4/DX3jWh5HUVms3eBlLGoZNstm3HbZOOIYfdRd/PdKBy3+gnvr2+8eIYY4BclXH4bWdNEJqAd8jvP/AYa6BNJBHk7xsTKs1KhKar5NWtFh1yb21Jxd3DVb3kaiUlr35yxh0jFeLQ2TeD+SJypSSNoXbNPRlP7aQDQ22jRSwlwlljfe9KSl6TROKolqSbpDHKQCKAPxZJrlqWhc5m/YSznBtlfVOKo1tnIkAlRbGBMWLbjk/JW672BsTeRxdkHON85Kpcr+lsE5fQ9Fl6y3kj3T60xNHvOVnJtZEJ1TngU9D6yFXXnUBjLB7J640Rz7lJX994NYq9OEwQeI7jeAReqR1ECSVB7OpU89YiV7UqeYe0B+C3Sda3/5VjNRGz3DWJjGNjbxa2xrXRxiGl4Pxf6yS+5TnmRLZrZjAYDAajLpjkjRgdYwXJ2+l0I6/JJrloO+4iuSK5qtEm2a0NXKbkLSlXNZJEGyooik3UKZZkYUsqjtbSZrsllUBraSOlk0x01ZG+w6FxBojv7gqEiNzwmoijs9lTgox1s+5zWm3OaxJ4Gu2JPbLKi2OcAQVtbUJTY5JGtuAqmmQsqUTMtTk33TcmauF2V4hD9s1WnWSzzyJZKpokEdCfK2q1Oe+uQa7qJJy7BobfW03YJLv21c3DicStGkkzfyJGpy+BxqvLa8Am2a+gldbRBojE8jj018KVxEwqEXMPlkf5bM51EgDbKhDwJhS0lZS8JhIBhqpny+LQSFZVi8UjvnUSZ8PJVRPEdyW1qHzu6FStdg3mIbkGOV6T8Zi7t9HaJn2yNrCfXNVvYS33c/6+MUGuyjjG+dTekvTO5G2ta6PNQ2yjAbNtYjqOofbVQLkCXhd6swU3yapSCRidzz3XQco3b2TJMZ1nJBUVxZ36lbyVbKPHtaVhWWJNqzNx1BWQdPiJb9kmGsUBrORlMBgMBkMZTPJGjI4xguQdix5s1kSubu3PwXYAyyrfwEwwoKCtlFFtQsnrqnd8SiK/XbOuWnw9khDxHf4PjUUXegbFBrLDF4sJJa+rjGzyyFVJNuvc0PVUIBLHtKYQs8Qhsy7lW75oY6Ck9vbH4llHm20TV8lrgEgsi8ME2Vw6qGxOxpFOeNZlJhQA8pC/s3k4gadz01+pb0zUwpUEnT+O9nQCybilPZZaBLxeK+3hcZggV4faVwPlSl6dz1/PdtZHWJlUNxtW0Mo4hlqbAmYSEkb7kjSS8Rja0/pr4Xo1eYdbWGslm2sQiUYSEiqoRXWSRJl80V0bjalAauokErdWIvCMqKwloTk8IUHnWJVxdDQlkIx7Rwmj3GQAs8S3TN7UqbKWa2R/Iq2Zus3DidX2dALSPbtHUyyFou0+b8wT38PJVaMEvI+s6mjy4tC1NpJnD+3pBJqS3t5GxqJrjADDLYEBr296NDoCyDbxE4kmyhTIszJ/eyTjMTcWXXvxXMGbvxPaKwkm9Ct5/WQzg8FgMBiMymCSN2LE2sYDAJqsPLq6u7T8To80S5bVQBrfrp/Akwty/8H7BAMLwh5fm0jIzd1g3qtXRB5HptzqVUI3yes4TkUCz8QYqUQSmSCbK5He8ZiXyby5V8/hkP+Aob3JT2o2Rt+4ttEGLIHL6r765u9ATk/GeyXVKmCKXC0Mi0Xe07QqaCvYvZppj+FxWJalvc5ptuAREWVt4qpFzVoCm1B7V1ZGinFbtB1tihUZR1s64Vo0i7gkSaS/b4bWfQV0k7zD540R1WoFi2TAIxZ19Y3jOA3TNy7ZXKFv9BKJw+NoTyfc/YWuA2/Z9omY5ZL/gK9NTNg1+8lVA7bRNRXFGkkimeA2tKaqGVJzuEuRa6VtwOa8TC1qQu1dISEhFrPcvY6uNpHtEbPK7yVGydUyS29xT9FJJG6uYAks26NoO9rOJobW4x0ai66+cRzPiW58m0ckGiGbKyh5ZTK6VrK5bzjZDHh906tp/SzJ5ETMKhMqyHurPEPRAa9MAZO8DAaDwWDUA5O8USPViixKNVe7Nmr5lR6RmCh73cuE1LcQq0Qkuod2GhfrlcjV1nQCzaWMVV11TofW85Rwa9BqIr4zeRu5kv1wR5laVL9NciVy1SWr+nPa6s1UIjT9segiV2Uc7U2JsiQNWR/YuE1yg5DNrak40iWiRlebSDvIoWPEs9LWR0R0V4jFZC3cSmNk24C++VupNjCgX1Us1d4xC2VExGiTfVNRQau/frQ/IaEpGXetPHUR3556tnyMjDagPN9awyZZrwJ+eBxyjPRmCtrKFFRKBPDHpUt53pstoFC6Z1WsyWuESByuKDZRt9kfh2V5B726bJLlc360z3YWMGvXXGmM6Ky3urUCoeknifqyugiA4WSzPxZd43UgV8BgSVleyYpX576zYeyaXUWxWQJPtseY1lTZ3kY32Sxiqa7k1UkkVqrJ25SMIVVSw+uKZVOFGsWAj/jWFIcorSLWHHLPCxhKFukfroCXY7UvW9C2t6mUiAf4CGdNbeI/q4mVzV/9xLcktofuxRkMBoPBYAwHk7xRw7IwYLUCAAb7urT8ykqqVf/3uhaEjuMpdPyxtJcWprqyDwHf4nRIm+jOhKwWh251hlyMx2OWe9AOeIcAOg+ZKxHf8lCkaDvalDPVSF5PuaqX5B1GNjcIuTquTT/ZXClZxLIszyZZF4FXpW9kNrGu+sADuSLyRXHA0JCWwK1+laaee5qMo7OKylrXPa3LN0b8ByFjffbEuuBZ4PqVvJI0M6sWBfTbJFdSNgP6VdaFou2ujcrtmvWrvCrZRnc2JyE5NF1rEpdsbq28NtI1b2Qczcl4mW3lKM1klT+WMiKx2aDKegiBp9s6Wv7NY4fGodmu2XEct28q1cLVahtdQdHUlPQS4HTFUo3kHaXZ5lyuS1OJWNneptOA3bprk9w6nEjszRRQ1EQSbamgWvXHoo/kHU6smojDth1fKSmzds1bKsRhWZZLnOlWWVdLBNDmttLvzd+WlJck6RGJ+s+NykrAlM6vHEckhOmAPJ8aKtzocPtG77mRv7SW+F5/coSMpX1ILAwGg8FgMIaDSV4C5OLCciYz0Kfl91UiVgFvQaiL0OzPFd1NrJ/AM7IgdInE8gWhRzjriaW7Shzye11946+D61dE6B4j/lj8Gyl/LT5dm9yqJK9m4rse2ayLXLXtypbeMqu5ezCPXEGPysslEqu2iR5ytZJqFfAOz3SPkVQ85roRAN7ht04r3m5XQesdIKYTcXf+6iKcuyrEAegnvrsqkGaAGZWma6Xtd9Lw1WvUp9KsrbLWRa52VVPyalZp+p9pZX1jcIz4icR4zHLXabpV1tWUvLrI1Uo1igGvb3TWwt1ayRK4VX8tXI8AGErgyXuJnr6pZuk9SvMY6Rn01N7+vjFRk7dRyNVKNYrL4tB0b3XJuyFq704DBLxH4A1XJAL69sBeTV6zJK+njDQbR08m755NjKmggNdJ8lYqdwLoVzdXJRKbDMVRRaSgs296KxCJ6UQcTUm9Kuv6wg1dZHNlJ7oOzYkAts+hYmibMBgMBoPBGA4meQlQiDUDAHIDvVp+Xz1CU1vWn4+ISPvq38lFWbZgI1vQWwt3KDljKhNyWBxNklzV2zdD49A9Rvy/q1osuolv03FU6xvdh3a92QKk0MC/qRtVpvIyraDVS3zXrcmryzZ6wNts+w8yx5qoyevWwh3SJtqJ78pxjNVOJNaOQ1d75Aq2W89taE1POWS0kZqSwBui0tRdL7mqJbBmRbFs9/amBBJxf21gvfVnAT+RaJb4rqay9pS8O5aiuFC03eeNX0FrohZu1XrJmseIq1odRiTqrYUr50xbOoF0wqf2lqT3gL5auFsrKIoB/fWBt1axBJZrR13EtyQSh40RzVa8haLttr2fSEzGPYWxNgLejaNK32heBwxNxNNtkyz3ck3JGFK+swkZh3DK0ZMA55GaVcpraSYS26u4nenrmypqUQNW2tUEE7qTAeQYGapa1W2lLcnkYXFoto3uzRYgH6+s5GUwGAwGoz6Y5CVAMSGUvLmMLiVvY9g1+2sD+4mINt+iTDdxNrRNPFKzMeLQruStSvLqiaNoO1Uzd9td4tt0m5iJYzjZbCYRoCkZK7OtjMUstKUbg4AfpTlJox7ZrM8SuAqxWopD1LXSk0BTTd1sivge3iZ6Lb2r1QYerZtsLo0Ryyo/CInHvFqa2ixwq6hVxmi2sPbsq00rimvbRvfnitoS4Lr6ayvPdfXNVjcRYCiRqJf4rkdoaiNEBvPuQab/XmKiFu62CopiAOjUTiSW4qim5NVmbSqIxGGJAKV+yRVtty4sfSxV+kZzneKqimLtY6SyI4BulbV/bTx0baSfJKpsbTqqQcgqE0peEUflPZbOWLw2Matc7alKJDbWGNG11/PXMx9OahqySa4iDtBv12xWLCHvZ+lE+dkEg8FgMBiMymCSlwB2ogUAUMj0a/l9bt3XKqpV0/Vn4wZIIjcjswpxpov4rkYkmlqsV1M25zSprP2EZXUFrdk20W7pXYU0axRlM+BXnuuJxSUSh5AzbZqTElwlwlBrtVJ79Gmq0STvV0OJxPZ0wlVp6rinZfJFZEuW3cNq4WomZ6qTzeJ7XRbWHgFfPkbG+myjdai8/PcRf21gQL8tcFXi21XyalJplsZip2m1aBWyub0pAdlVOkiRfNF268oNJzVNEd9DkyOkbbTeMVK1PTQnRnQ2J8vU3oD+Wrj1avLqIhKrEZoekaiJ0OwbXgcXAFpScSTjYgLruJfki7a75hhGfGsmZ6om4ml2oOmrQojIMSKSJ+ifv3Jt3JyMD5u/8vmjm3A2Ta7KZ43c/7tx6HYpqtIe8ZjllhnRrVw13jdVCDzd5Go9QjOT13M20efbUw4j4F1VsW5xQDV1s+bawIZto6udcTIYDAaDwagMJnkJ4CSEXXMxq4nkrZptZ8auub0iSaRvI1XwHYQMWyTrtuIt/R7jBN5A5THSlvJIIh2xyMV6czJeZpsFGFQ3D9vANAa56iZGaCISa5G8sm/6NLSJ41SuDSzi0KtulofZQzeXbZoTAaoRmmUqaw3jRI4R/+GYhO7569ZtHqbgEd/rOoCo1jfysDtb0KPyqlbjFPAIAdM2yWNcAs+wklczoVlN2RyLWVotrGUcllV9vOq24h1OJJohV6spI7MFG4M5+vkrEx+GxgHoVzdvq6KgddXNmsjmavN3lGaVtVzHD01asSzLp26m7xv/+qttqEpTc5tUU715ZJWeseoSeEOJxFIcfoUeJXqqkHciFvGaPuK7tu2sbpvkapbAptWzgF7latF23JIa1ZWregm8apbApgn49iZ/Aqu++TvU0hvwnV9pU65WI1f19o1n6V3FNlpzIgBbNTMYDAaDoQYmeQlgpVoB6CN53QXhsJq8mrPtqtRW8ceigwDw/w7TVrzVMjK1x1FF2RyLWWhL6SNnPGVz9TGiOymhKpGYNav2lnHoUlnXInk9Jb4OtaiNXKk+VjXiWwfZDPhq8lZJ0tCl5JWE5lD1LOAdbupoEz+h6bfkB3zEt66kBEmcVVA3A/r7Ziih2epLoNERS5dPCTgUkgDQcbibLRQxUDrIHGqlbYrAG16Tt6T2HtCjsq6mWgX85Cp9m/jnb3yI2tuUEt+0TXI1u9f2dAIJWQtXA2HlJQJUHyM6lID5olfbe5jtrKtI1ETgZSuTM/720DF/pVp0KLHqj6Vbw3j1q0WTw9TennJVB2Qsw8hmzXVfq5HNfrJGR5vIOCqNEVMqzWEK2gaxjfaTzbatQ2Vd/WxCZ5vUVouaUhRXSwTQRTaX4khXT2DVcSZQKxFAe73kKn2j2ya5qsra5wCno0xQtbJnDAaDwWAwKoNJXgJYKWHXjNyAlt9XbQEkNzS5ouaFWCUlr8bMP/k7hJXakIxMQ+rmqrVwtdtGVyJX9RF4KmpRHWSz4zheLBUsNHXFAdRX8uqKpVH6Rh4g+23eJXSrrKupNL3DB91k83CVl86Eka4qxKo/Dl0EvKfkrayy1kbyViFn/Ak0Ogn4SkRim0biW5IdMat6LXp9fVN5jHT6Dqmk/TgltlWxfQf8Nsn0z99tVerPAvpr8m6rZtesORHAS/Yqf9ZYlqXVJrmvxiGzzuSIft/cHEpYjdas9q5Grsr2yGlySXCJxHQFktetl6yBiMhWJ5s7XXJVz7xxx+sQcka3Fa9cg7UNiUOorPURzrVIItc6WkPfqKhFTas0ZRy2A/Tl9CV+V1IC6lSuynOHdGK4WtRU3wx3OzMzfyv2jcZYaokUOjSTvNWEG/rLfFXuG90OcL1VRAoMBoPBYDAqg0leAsTTQsnr5DWRvFWy7VpTXr03PeRqZYsZ/2s6iMRqtYEB/Xav9Wrh6lYUVybw9GXuVmsPfxw62mQwX0S+6FSMRbfKuhq5qruWtRdHDSJRoyVwJbWoSyTqroU7LBFAr8q6GtkM+ElN+ntaLUWxRyRqVosOGa+6679XIxIBvaRmtdrAgN9enD6ObTVqA+sneSuTmq0p79BKj8q6upW2XAvomDfVXCMAaCVECkXbnb9D12mmbGfbapCrWqx4VYhEjWRVUzI2XC3qklWaVZpD2qQ1FfdU1jrapEptUUDvePWI1Vokb2PYNWtTWVeJA/DmjQ5yRt6/K6pFNRLftdSi+mvhVlYkNvnK9ehRwFdWiwJ6VZrbg1q00z2b0KyyrrEmMd03HrlKv1bM11gbeWpv3U50wxNY2zWqrGsR8AwGg8FgMIaDSV4CJJoEyRsr6FXyDt3kltnd6CDwFNSiOonESnF0aIzDrxatpuTVpbKuVn/WH4tOJW+jxBGPWWhNxY3F4Y+ltoJWA4GnQCRq6ZtacWi0jQZ8pGYNlbUOlWb3YHUrT62JADX6RqfaW8ZhWRWyzHWPERUCXiO5WnmM6EuO6KpSf7YsDsMJNP61kY5YemusSVrd5Ah9isRKh2WyPfo1KKv6fTVuW4e6NUiVdVFPAk1fLQJPo0qzVhyuylpD3WYvDrPW4kB1S2C/ylon8V3ZrlmfhXUtS2Cdlt7+Ore1VNaZPL1LQm8VtTdQTjjTx1F9/upUaUq1dy21qI72AGoraLW2ScPEUUMtqllBW70mr16VdU0lr06VdZVzNH8cWpJFatRdN6XkrUTAe+IAjcINVvIyGAwGg6EEJnkJkGxqAwDEC4Nafl9NBa0vK5M+juoEns44ahGJrqJYg2omk7erqkV1293UVtCaUItW6ht9cchNQ2W1qF4r3toqa31EROPYNTdGHLmCXVUt6k8O0GKBW0VRDJix0q5k16zTEtg/RqqpRbMFGzkNVryybyqpNF3CWbMCfih03keq2QACetvD9tlWViIAdI5X+TuGEpplcWjoG2nF61cyD4tDI9mcqkBElKmsNbRJX41DZp3W77WIxA6NcdRSRuomifpqEGdaVda14pAkkVZL4Epx6FNZ+xNBhraJX2WtU7la6XkzSqNyVYVI1Gsbbb42sMq9RAtJpKKg1bg2Mt03fieN4bWsPZW1aQWt3r6prig2YRtdudyYN2d0uCRUq6ldFovG86tKcTAYDAaDwRgOJnkJkGoukbzFjJaFWC0FrU6bGT9xNhQ6iTMV0kwnsRqzMEwt6q/XqCMrs7tGJqS3WNeXLVsrM1QHAe8lAlRQnaf1WvHWImd01n6tVpsQ8O4jpslmV1GskTSrpBYti0VjvdWaBJ5Wstl0beBSHDXmDFBeX5IKtRQAbRrnTS0iQmdCgiQAjBOaNYgIAGhNizbRMV77a1jxevNXo+1sLUJTwzqg1liNxyy0lMZrv0bCudJ4la/puI/I/q8VhxaSt0bfuA40BRv5Im0CjW07rpKssoWmvrWRp4A3a3OuYhutk1hNxWNoSpbvbcpU1hrUzZ6CtvreRqvau4YlsF6yuXocQmVNf29ViUWngraW2ltLkka2skUyoHcf7n+O1LInNq6g1agWrZWc2Kmxb1QSAWyn3A2FCrVKn3mueBrPjSrEwWAwGAwGYziY5CVAuqUdANCMLPlCLJMvIltSK1UmzvQtxGrVe9NpM1OtRrH/Nd3tMVQt6o9Fj3K1MYjvRlGLqhCJOmLJF233HlG7TrG+8Vqr3qoOAr7WWNVZ29vvCDBULQrotUmuTfLqs+KtlRyhVxlZ/dAuEY+hOamH1HQcxyUTK8XSrrFN+msQAG1uAo0+tUpFkrfURoP5IorE9d5kmydiFtKJ4Utd2SY6CLxabSKVqzoUtDXHiEtomrVIBrx20vG8qRWLTMTTo7IuKasMk7y1iMRWjQk0A/kiZI5spQNvrQR8DZW1TrV3Xy1CUyMxU0t1DuglV2taWEt1s8aavKZVmrXiaEsnENeksvZbeptuk1rEWYeBOCol5Jtoj6bkcCcNEYs8N9KooK1FfGtU0NaOQ99ZTaU40okYUnF9Kuuapc8MEN9s18xgMBgMhhq2O5L36quvxrRp09DU1IQ5c+bgiSeeqHrtkUceCcuyhv078cQT3WvOOOOMYT8/7rjjRhRjsqkFANCCDPlCTC5+LMs7kPJDK5FYo96MV79Dn6K4chweMUOtsq5FVpXHojMTsnrf6CRXayp5Dcfht+KljsV/f6iVpGGa+NZqCVyztqiIQ1ih0yqJvDFS+SBTJwHvHZbVIOA1xCGJiEpklc77mSTEKtnOAvpU1oP5IiRXWYs402mzWsuaWAchUku1KtWzAH2b9Pvao1KSlVYCvkYigBmSqEHGahWSt10T4ew4tYkIt2801CasRZy1G5i/leJIxmNuwgT1OJFjtWqShsYa0irEt87kpsqkt7i36kmgqW2f2a7RwaKWlWejEIkmbKMrjVXLstw9IHUs5WpR031Tff9rZIzUUJ1n8vQOUt6cqXw2YYL4rmnpbVhBq1ekUD0Oy7K8+sDEsWTyRbfcTS21t5YzvRrzl8FgMBgMxnBsVyTvzTffjAULFuA73/kOnnnmGcyaNQvz58/Hxo0bK15/yy23YN26de6/559/HvF4HB/5yEfKrjvuuOPKrvvzn/88ojitVCsAoMnKkS/E3MV6OlFRbdY4ClqNhGaNOORitWA7GCS2q6qVGSpi0ZMtW7Qd95CqNoGnUS3aIKrz6gS8HgJPxtHuy7CvHIdpkldfHCqH7gD9AaKneqs9f7WoRV1L0fiwn+tUFDdabdF6JJEuIiJmwVUP+6HT0ruWTbLOmrz9NcZIOuHVeyPvm3qJABrrA0uysqIFrlZL4OpJGn6yyqYmiWoQEf5YqNskk7ddQqwWgafTrrl2HBpU1i4RUXveUMfid2uolKRhglw1nUBTq350mcqamPiuRSQCXnkA6jjKkjRqJBWZ7hu9pHf1OAB9pKbcO6XiMaQTw9dGetXNNWzfNcZRy5q4PZ2AvM3R943aGNF6blTTElhnskj18yu96tkqBLwmctUvIKl0b9VFNvt/Byt5GQwGg8FQw3ZF8l5xxRU4++yzceaZZ2LvvffGNddcg5aWFlx//fUVrx8zZgwmTZrk/lu0aBFaWlqGkbzpdLrsutGjR48s0KQgeVuQ1aYErLog1Lk4rVG/w1XyGiarWlNxSC6Num8aRQno//xaxLfOLFXTalFVlTX1oUw9G6IOl0jUodKsTmrqVIvWIhKTGq14XbIqNfyACtA3XrMFG4USEVGTwDNsCSzj6M/RK4lqEYmAXx2pR63SmqpMRHjqSLN1TnWqNHvr9I1LwBPPG1Ui0Xi9ZJ1x1CCr/Ae+A8QJcLXUooA+Al7aQVsW3DrAfugaq0BtJX6rxudvrbrN/lio72n1iESdSUW1iG+tVto12iSdiCFR2txQk5p1SV5NbdKf81t6V1+36rTkrxSHSzbn6B2k+mrEAehzjqiVrAn4a2o3hlpUC8lbo29iMUsbgeeRzfWIRNo2yRdtZPJSLVqJSGwsK+3+XJHcQarWfQQA2jVZWMt52VZPQKL1bJGVvAwGg8FgqGC7IXlzuRyefvppzJs3z30tFoth3rx5WLx4sdJnXHfddTjttNPQ2tpa9vqDDz6ICRMmYObMmTjnnHOwZcuWmp+TzWbR09NT9q8MyWYAoiYv/UKsOrEK6FPg2bbjWSJVqt9hxJp4eJtYlqWNXJUL02pEYocmkkjG0ZKKIxkfPuV1xQEAvbUymUv9kivayBAfMtc6UBWxyAMITURiBYWmPw69Ks0Kh90GiMR6VrzUh0O1yGZAH3HmP6Cs1CY6x0gtctU/l6gVPKp9Q90mteyrAb0K2lrK1TaNz9/+Ooe7ugn4evd4agIgWygiVzoYrDVvdCqKK5FV6UTMdZMgT25SrMlL3TeuwrpKkoZHVplV0HrWxEVtJFF9Ak/TGq1qHHpUmo7j1LTSbkvrUa0CtQl4y7K0zZtaykhAH7kqx2o8ZqEpOXxv09IotaxLz2TbAbmDVG+m+h7LH4uuRICqcZTaaUDDvbUWceY6aWix5K/dN7rUkS6hWU/Jq0lRDJi3a3YJ+BpJzoC+Ek7V+kZXckStczTAX5NX37ypFguDwWAwGIxybDck7+bNm1EsFjFx4sSy1ydOnIj169fXff8TTzyB559/Hp/5zGfKXj/uuONw44034r777sP//d//4T//+Q+OP/54FIvVNx6XXnopOjs73X9Tp04tvyAlavI2W1l9C7EqalFdC8L+XMGtTVhTyasxW7Zqm5Re79aULVufgNeXkVkJHQaseGupzXTE4iqJqhCJuvpGtkdLPUtR4vYoFG1kS/V3KpFEOsdIf06NONM2RqrGoecAQhIRzcl4RUtvqbzWqTarlAiQTsSRKiWR6OubyskRuuZNrfbwx6EzOaKaFaCMg5okconvKgp4eX/R1zemkzS8tWSlNtGqNqvRJpZlaWsTea+q3jfxsuuo46iuWtVo96qQQFO0Hfc5TRdHdbU3oM9evJb9LaCPbPY7aTSMlXYdcpW6TeoSiXL+aoyjspOGiGMgp4NIrN4mLam4a8VLfW/trZEsAuhLoOmtYX8LeAQ8NblatGvXXddpyV+X+NZGwCuWkiJ3shJxtKTiSFRKQNep5K3hipeIx9x7qy4Fbb16yboI+LpKfOI4HMfxnekxyctgMBgMhgq2G5J3pLjuuuuw33774dBDDy17/bTTTsP73/9+7LfffvjABz6A22+/HU8++SQefPDBqp914YUXoru72/23evXq8gt8ds3ktjt1Fuu6FoRyEZZKxNBUoTahJFZ11Hurt7mUmZrkBF6uHkmkZyMlDzjqxaFD5TVQg8CLxywfOUOdlCDiaDFMJNbvG01Eou8QrNYh80CuiAKxXVU9Ak+XhaZHNtch8AyTVXpV1rXHq6vSJG+TeokAJeJbk8q6XntQ30eKvhrzteavDiVRXXJV03itmwigOVmkOVn5IFNnIkBfnYQvbcR3TlXtTa0ort0eOu+ttSxwW3xral3JEdVJIj3lEuqpvXUlR/hrE1ZKgJOv6akNrNY3ugh400r8uo4AmkgzoDYpYlmWGwu1crWeylpXUkI9kshVwGtqj2qxyH7JFx3kiBNo6p1NNErfuCprYgJeno9VHyP6Emjq1bL2zms0qayrCjck8a3pbLFqKTg9ZxMDvvI/rORlMBgMBkMN2w3JO27cOMTjcWzYsKHs9Q0bNmDSpEk139vf34+bbroJn/70p+v+nt122w3jxo3Da6+9VvWadDqNjo6Osn9lcO2ac/Tk6mDtDZ0uK956m365OLMd+sxdVQtNXVa81YhEXYvkevUrdVl6O47j9r1pe+K6RKKmNqmnBNTdHql4DKnE8MeCf+NLveFWHq/Edq/149BzuDuQqz1WddlXA/DN33ptoqdv6pIz5IkAtZWAuhXFQOV7SXPSq0WvKymh6mGZZkvR+razeg7t6pLeWuzW6yRpaCbOTNf0rKco1kUS5X1OGpXmTSxmuSpwXX1TtU1019SuZwmsqTRAW6pybULZX7mCraFeY22Vta5501vnHi8dcqhJonrKZl3t4TiOArmqKTmijsq6TVMiQE+9e7ym5AjZHqlEDOnE8LVRi2+9pOveWs2KV3dyRHVFsR4Cvp6iWGeSRk9ddwI9hHO9eslumRFNBHx122i9tYGT8cqW/AwGg8FgMIZju3liplIpHHTQQbjvvvvc12zbxn333Ye5c+fWfO9f//pXZLNZfOITn6j7e9asWYMtW7Zg8uTJIwhWKHnTVh59mWz4z1HAQB1FhJf1R2/XDFQnq9KJmD4rTxlLFbtISa5Sq0UH6thWaiPwSu3RohAHpZXnYL4I+fHV6q3qJjWr2STrqiE94I7VxlAktlSZv8l4zN1gNUwtXF31kg2P1SBKXsr56zhOfeWqtlq4imNEE5FYb4zomr/JuFXxINNvxUtd+7Vu3zTKvNF0aFdXtVqKI1e0kS2YrUXfeH2zYyiKy+quG1bA10uO0FZvVTlJQxfZXDsOwHybaE/SMGylXc+aWFd7DOY9tZlpVXFPnb6Re56+BiHgqRMB6hGrSV9iKzVxVqs2MOCdFdC3SWNYaddTz8r9qH9+USCTL7oq7mrKVX19U3u8tmhL9qo9Rtrc+Uu8ZvUli1Sy5GcwGAwGgzEc2w3JCwALFizAtddeixtuuAEvvvgizjnnHPT39+PMM88EAJx++um48MILh73vuuuuwwc+8AGMHTu27PW+vj58/etfx+OPP4433ngD9913H04++WTMmDED8+fPDx9oSckLAIVMX/jPUYA8oKxG4PltVinhEZqVF6aWZWmzuxlQVfIS29245Go9K15iAl61PXI+NQkF5AGVZQllWeVY9BDw/YpW2vSH3ar1Z/XYNVebv4BX+1WXhXU94oxaia9sCUxOaNaJo9QvjkN7n8/kbbfuej1y1TRJpI2sqqNW0Z2kUa09ymIx3TfaauGqEQDUpLenFq1t+w7QEs627dR97ukizur1TavmvjFtXy3vU03JGJIVLL2BxiM1yUmiempRbaq32pbefpJIW71VwzU9+xqEXJUuDHXVd7kiaZkg2R7xmFV1L+7FYphIlOSM8brNepKs6rUHoM8WWLVNqJMj6tkk67IWVyUSAdoyI35L/rYq+07/vYQS8nlTTd2si1ztr/P8bdHkCNBfo8QXg8FgMBiMytiunpqnnnoqNm3ahIsuugjr16/H7Nmzcdddd2HixIkAgFWrViEWKz8gefnll/HII4/gnnvuGfZ58Xgczz33HG644QZ0dXVhypQpOPbYY/G9730P6XQ6fKCJJjiwYMFBIdMf/nMUMFDHPlNm7ZJbJNeJQ/5sS3+OdHGaK9jIlSzTqpFEHe7BO30tEaCWJXBjECKtqQQsS5BEPZl8xZrKUUBuGFuS8Yq2d4DGWrj1kiPcQ2Y9trPVFLQdmmyj6yk0RSwJbO7L6lNHGrbSrlvTM60nacVTFFeOoykZQzxmoWg76M0UyDbD/n5vqZqkoYkkqmdh7ZLNZi29dddtrjV/G4Zc1VW3WdkmWY8zQbW+iccsNCfjGMwX0ZcpYExriiSOAZ+TRtWkBF3kTB0iUR+Bp0byyrpw8SrrlpHCGyMqRIQmcrVKLI1m6a2LJKo2VgER49ZCjjSWXMFn6V2lb3SRRPWsiVu0WRPXS0jw1geD+SLZ2qhHQW3Wqq0GbWPYNddTJLpxaFKt1lobtaTi2NpPG0vRdlzCqp5NMnkt3Lq1gfXM33pK3nQihpglynwNZAs1+3Ak8Ls2VTubaNGUQFMvKV9XHHKsVnM7cxMBckU4jkOmsh2o45bEYDAYDAZjOLa7p+a5556Lc889t+LPHnzwwWGvzZw5s6qFZXNzM+6+++4owxOwLBTizUgWB1DI0pK83kKsWvZwadOgqY5mtTj8P6OMxb85aq4SixsHtc1MHUvgdvcAkVoZWZskisWElWdvpoDeTAET2mniUEkEcNXNhi2BdRGJbr3VKmPEr8QvFG0kqqh8Roq+OmQzoEdVnC/arm1W1YN3XXVf64xX3faZ1eKQLgldA/lSmzSRxOEnm6snaWhWNxu2Sa6n9m4rc0koVrRSjiYOBZK3QZKK2jTV4msURbFq3wzmi6SxyPkbj1WvbaatbmSjJEco1p8FxPOgmrpmxHHUSSgSP2sMJW+jJK60aRqr9dTegJg3W/tpYym39K6W3KTXyrM+AW82EUDWorcdEQt1ApxKkpVpcrVFcy3cerbRutqjGpEI6Okb//2yrk2ytiSN2vOX/GyiThyWZaE1lUBvtoC+bAETiOKoV27M/zNdJSTqnelRJ0fUOzeSZwUF20GuaJPtbdwzzhp9w2AwGAwGoxzblV3z9oRiQlg2O9Qkb50sN7mRyvnIE5I4FOxeddhVyThSPgu1anFQE9/1LKw9lTX1hq6+3Y3c5A4SxlLPdhbQR84M1LEA0m0JXN3SO+G7li6WgTo2noAeksg/J+vXS9ajSKw2RnTHoXKASBlLPdKsLI4dhMCrp/b23/spSREVu2YdbZItFJEvOjVjce8jpuutaiKrVOZvu4a+kfeG1lS8qupCKkn1zZvGSKCppSRKlBJadBAAtdSiOuyabdtxbZjrW3pT1+KrTRL524OyFn29MQLosUmW87clFa+a7KfL0ttVwJtW4tex4pUkEUB9b62tngX0kKuO4/iIb7N2r6q20fmiQ3o2odY39CpreV9NJaqfTeiaN3KfVbd+NLUlcB21KOAnnCnFAfXPr1pSeuaNupKXWrhR+2zC7+akQ7jBSl4Gg8FgMNTBJC8R7BLJa+cGSH9PPbtXfzYgJYE3UCcOfyyU2aGutYtCHPosrOuprM1mZAL+TS4lAa+QLVuKg3KsOo5TNxZXQUu+2a5NEiXjMVd1RUvg1d/kSotASnLGPQipkaShj5ypfRDiJ0RID5kDKOApx4gS2ayrhnSdWLTVn63TN/GY5d7TKA93lRJ5NNgT+w+e6tY51aXSrOOSQF2vsbeOWtT/M9Lnbx2LVcCnjtSk0qxfm9CsWtSyLG+cUJJEDaIE9Ft6V+8bPYomzza69hgp2o5rY0wbh1kr7Xq1gQF9Ctq+OupIj1g1a00M6LH1rtceuuLI5G0US88y0/fW3nr3eN9+lHbfKdfx1eevjnkzoHCP1302UVct2ghnExpiqXeOBngxUvZN2dlEtb7RZOldr28S8RjSGmrRe454rORlMBgMBkMVTPISwUm0iC+ISd56GYhJH1miQ0FbU8mrIQNRKTNUU0ZmPXWVmxmapz1krpeRWRYLqZJXLtarx9GsoYb0oO8gs57KWpeld00CQGff1LKL1EDgeXOmlm20HivteptLeXhVtB0M5un7pibJq+HgTsVuXQeBZ9uOV++8jpKIXC2qoqDVoPiupygG9Ngky35vTsar1i9t10CaAT4Cr84YAYjXRnXi8MdCmkATIElDlwVuVSeNBqkNDHjPXz3ztxYRIZNF6MmqRMxyD3CHwiU0yWtp1u6bMpcEDQpa0yprlbGqu28apW5zbXKVPsmqnmoV8J7NlOSMTASwrBoEnoaEXqC+Ak8XSTSgQBJ56mb6M5LmZA0iUZeSt845iX//q+Nsolnl3IhSHBBAUUzZN9mCDdncVRW0miy9Vc6NtKisFRJYGQwGg8FglINJXiokhZIXeeqavPU3MDoy/wYUDrtbNGxyVZS8zZo2ufXqJcvXHQfIFMySRDoyiOtZRAG+sUp5kFlqD8uqvuHWlS3br2BF1KKhBo9KlrkOlbUS6a2pFp9s72pt0pIS9d4AagJAzpv6BDwlueqpRavH0aGBJPLPg+pKXl1q79pqM0CPTXKgmrwa4qidCKDHErhem/iteLX0TY17vJ75W39tpIOsyhaKyBVr111vFCUv4E9KMKsEdOcN6RjxLJKrW3prUgLWqbcaj1laHGj6FBS0Ou/xtZ41Oqy0C0XbTWqrbqVdWivmi66ylAJBauFSruVV1GY67Jr9JYKqzV8dxIz/89XIVXor3touY/TzRuVsQptNcp3x6p9PlAmsAyruXq6SV0cCev04KM8m/M+xamcTOpJF/J9fS2Wtoz6wyhkng8FgMBiMcjDJS4VUKwDAyg+S/hqVLDcdNTzqWcyIn2k4LAtAElFuLPO+GsjVDiD8i3jjfaNhs610EKIxM7QlGUesitrMzZY1XH8HAFqS4me05Gr9TOZmDYpilUQAGSPl4QNQPznCsiwtiu9GqYUbzK6ZnvSOK6jNBvNFFIqU9d5UlLw6yJnGUFnXq4ML6BkjQP0a8H4rXh19o6TA06IErG87S1s/WsHSu9RW+aKDLGECnApJpINwVrNrpic06xGrgK89DFt6l8WiYd6oqEVpyWZ1tSittWn9+eu/5+pwSai1btVBrsq1aK1kTS1261ItqkDMUCdpKO1tNMSi4jKmY96oqUXp4/Db21frm6ZkDDJHwHibuHss+jhUavLqUBTXcsLRVpM3SN+Q1uRlJS+DwWAwGEHBJC8RYilh1xwrEtfkVbDQ1JJtp2QJrEHJG2CxTqso9ha91RbJMZ8SgZLAUzsIoa8PPFBHGQkI4hWgHasqhIiMI1ewSUkiNeJbX02iWmpRHepmNUUEfXtkC0Xki0KBoqSAN0yuusoZDQeqKtbiOhRNral4dbWZ70DetIW1FivtAIpELX1TS3WuoT1s26mrxNcVS8MkaeTq3+Nd1SrlPV7B0rvMilcHAW+Y5FWyjZZxaHj+mq4N7DiOLxaVWrh06+cgNbVJrbSV1GYaiMS8+Oxk3HJLAQ2F3yVBB0mk4k6gRQmo5JKgQRmpOEYch9CKtxRLTcJZC4GnnlxsWpGoxf7W9zdWi8WyLC2qYrWavPTzRq1v6MUB3n6i/pzJ+YQEFFBRnutwgFNRWTMYDAaDwSgHk7xEiKeFkjdRzJLZVTmO4yM161sR0WbbKSzWNWwa1Oyr6TdSMo5aByGA3uzQ2upIuVg3qxbVsZFSyQz1H9YMkNpVqVhY0ytXVciq5pSGTW4Aa3HKxAj/vbL2Pc2zJaSCihKhOUl/b1VKjpBjVcMYqTVnkvEYUnFZi54ylvrzV2e9VdNKXrfWqoKiqY/wkHnAV3fdNMmrZOmtQVGspNJMaRgjCsrmciteepvkWrHoqA8cxBJYh9pbRT3bT1ivMVuw3X2TmpWn2UQeLSpNBWWkjoQEt45mjdqilmVpIVfVLIF1qjRVSCIdSt76Y6RgO65tftRwHMddA9ZaC2hJSlBQJOpUWaskW5NaeufqO+EAmu6tCuIA157Y9L1VQwJrv5KjlnePId1nBahTbFq4wWAwGAwGoxxM8hIh3iRI3hZkyQg8/0FIrUVyoyh5Wxtksa5DGTmgcDAkfk6/8XeJb4WaRDoyqmtnhmog4BUyVFNxT4lAlRzhOE4gclWHEkHtQIY+WURFWSWIHJpDZrmRTydiSMTrJ2noGK+1568+R4BafeMmAuTNKor9sVCqm1WUqy0a4lBSWeskNBXsmou2g0ye5pBZxhGzhPVg1Vg0EN9Klt5aiEQFZaRGtXet+wjgtVdviQA1FYsOe1O/O0E1aEnSCJAsAtAlwPnngYpdJKkVrzzsrkFqNooVr444BhWSJAFvLJsmzrykBB1q0fpjVcu+s1ZiooYyQbmijULpbKK2dbS+PYWSO5CW5GKFGsUa1mgtyepOOIDe8apSy1pH3yiprA2P1VTCn8Bq+rxGY73kGnEwtm889NBDOOmkkzBlyhRYloXbbrut7nsefPBBHHjggUin05gxYwYWLlxIHieDwWBsT2CSlwixUk3eZitDtij0L75rZVXrICIaRcmrcujuV/JSkURuPcA62Yda6iUrqM28rF3TSkCNpHeNvrEsyyNXiWIR4098XXu8amgTpdreUrVKechcPw7ZL/7aUlFDxeoV0GNzrkKu6khc6VO4p3m20WbvI4B/3tDEolJ3HdCjgHfrNSrNX8P3eP8hM9E9za9arXWQ6dYH1mGTrFCTV4+lt1krbRXVKuBX0NKM16Ltc8KpSWqWamprUPCYTtKQ94Zah8xNyZhrs01FOMt+SSdiVS29Ad0KPBUrXrMEnhZrYgUb3vJYzJJEO9YYqZ8IkIjH3MQnqjbxr/+UVNY6EtBN25wrlaKhd0lwx2od0kyHdXS/yrzRUuZL/WxCx1itt7dpIRYH5Aq2W65oe6iXzNi+0d/fj1mzZuHqq69Wun7lypU48cQTcdRRR2Hp0qU477zz8JnPfAZ33303caQMBoOx/YCfmkSwkk0AgDTypCQRULu2GaAno1rlcFePXVV9RaJcIEu7qnQi+gxB1ToiWkjNAJtLHRa4SokAGjJD6yqJUgn0ZgpkbSLvC5ZVO0mjWYdaNIDK2nTf+EmiwVwRTTXabqRx1N9s0/dNEOKM0lpcRQHfktR3yFxv/lIr4P3PUxVyhnaMqCdHmB6rsZiFpmQMmbxNd29VvMfrUMD3qdgkN0jd1zbfWC3aTs11Zeg43LGqdsjcR6Tk9Sc71LYXp18/u2pR44pEuaeonQDXmoqjJ1MgG68q5Lv/5zqIs9qWohr7puahuxirsl5jrVIxYTGoQMwA9H1j2447h1XUorS1cOsTETrqR6uU9pCxZPI5svEq40glYkgqOOHoUOKrWPFSqjRV7G/9a4TBfLHu/S8MVEkzHdbRQSy9SZOsgih5NYgl6t5bUwl0DeTJ7mkqdZsBf3Kx2RJsjO0bxx9/PI4//njl66+55hpMnz4dP/nJTwAAe+21Fx555BH89Kc/xfz586nCZDAYjO0KTPJSIeGRvGRKXgViBtBDRKhsHLSQRCp1b3yk0EC2SEPyKhwMAfR2N4Wi7aoda/eNhixVhWxZTwloNrMboFdH+tXetW2zdGQQq2cy61Bp1uqbRDyGVCKGXMFGf66A0a0pgjgUM6oluUrUN47jqBHfDVIL17VIzgslQswgSeS2CZHyXKpF6x1kNhOPEUCNgPcOMjXYNSsk0GTyObI1iTtWaxCagEdm0dqtB3BJ0JDIo0IkAmK8tjdVt3YOi0GFOEQsok16ydSiXpJVTUtvDfWSpb19redeu444FO4jgHgG9GQKZGsj2Te1kt8AvQpaNZVmY1iKAuIemEpEvzZSsUgG6InvTMHnhGO87mt9dbOOskmDioSI6LscoZJXLQ7Pntis8lyHJb+KEr8pGUPMAmxHjFcKklelfBNAX2/VX66oZikaHTbJCvvORiGbRSy0DlKqSRpaavIq7sUZOw4WL16MefPmlb02f/58nHfeeWYCYuywGMwV8eL6Hjz9xjYsfn0LHn1tc+nMPYEvL74Hkzqa8J49x+GkWVOw/06j0NFc+7yXwYgS/NSkQiINgFbJ65FVaraVOkiiWot1LbY7CodUOkgir7Zo/YxMgLC2me/QWCmTWUdt0Rrj1avpSUcSBVV5Udedq09W6SBXVZI06O8jyrWsU3HkCjqUgKpKfJo4MnkbtmvpbdquWT1JAxCHsPWeTWEQtCYvGZGYUyM0qccIoKiAJ76fAerJEc2pONBPaNes8KwRP6dNKsoXbeSKMsmqlluD7BuzlqLpRAyWBTiOeN5QkLwqlqKA9yyiusfLz22uV5tQB5EYyFKUnkg0bcWrqhaVxLeWWrg1COdWDc9fFZIo6dvb9GVp9jaqyiqPOKNSm3mfW7NvNNYGrplk5ZszjuOQHPS5ZwLKLglU62c1tagOcjWIWlSH7WwtJb5wSUigN1sgK2vlPmtquDUA9M+bTN5WS9LQmIBe25q45JJQsJEv2jXJz7Bwz69Uy3yRjZH6zxrxc9o4xGezkpdRjvXr12PixIllr02cOBE9PT0YHBxEc3PzsPdks1lks1n3+56eHgBAPp9HPl/dLUj+rNY1jQqOfWR44o2t+Ph1T43oM9b3ZPCXp9bgL0+tUbr+Z6fuj+P2mWiMCG6Edg+LHSH2oH8bk7xUiAuSN2XlyTYOqtYubk1eosW64/hqm9W0SaY/pFI9ZKYmifpUD5mJMzLlGEnGrZrWbTpIIqXawKX2chxCkkhRiUA9b/pVN3RaDnfVLUVp1aL1xwgg+mbbQJ5sc6mSkAD45g3xfQQodyAYFoeGeqsqNslNPleE/iwtyVvfbl3eW6mTNLYPS2Adds2N0iaDCofuAP38LSMiatneJen7RoU4sywLLck4+nNFslhcsrmOSpN6vKoqEnXcW1ViaSv9jNKKVyaA1CMAqGtZqyQkAN7aiYqsKtqO54SjYtespd5qfQXt1gKdS4IKaQboSwRoTsZrJoM2is25jMN2BMFVL5EiDOQ9qr5dM7USsL56FvDtsbQQePVdTmiV+KrOa3FB8hL3Td1EAOLkCP98rJ1Ao+/eqlKuSF7f2Rz989dzgFNU8hLbrauujfT0DR9XM8Lj0ksvxXe/+91hr99zzz1oaWmp+/5FixZRhKUFHHtt2A5w5fNxvNlnXmH7pZufq/j6jw8toM5jIVLwmDGDerEPDAwE+jx+alLBZ9dMVxNQtW4VbSZkrmijUJKbGVfyBiC+KUkilfqz4ue0mZCqZJWrmtFAEtUaI/7N3kCOmiRS3OSSbaTUVasA3byxbS9JQ6VvKA/LVNSiAH0ta3W1tyS+aeNoTdU+yPSs8OmTNOrVW21OxjGYL5In0NQfI7QHiOqqVdp7vN/2rrYlcIkkKthk9VZVyRnqOuMqh+6AR2ZREyLxmIWUQm1CykQAVZKoOZUgJXlVVZrU5KrqWlGHpbeK3av/Z4O5otl6q8T3VhVlFUCvoFWtTahD7a1eCzeOrf10sagSeNTEt6rCS0ctXBUHKX9SS1+2QELyyrZWJVepxoiXCGC2b4q2g0xeJGnUGideLXr69XP9e1oCQJY8OcK8WlQxSaNBXMaEdbGFfNHBQK6AzmYCl5OgSl4qlwRFlzEd7iKqiaOMHQeTJk3Chg0byl7bsGEDOjo6Kqp4AeDCCy/EggUL3O97enowdepUHHvssejo6Kj6u/L5PBYtWoRjjjkGyWT0c54SHHtlZPJF7HfJfZF+JjXOf6L8/vfgV9+NnUZVHusjAY8ZM1CNXToQqIKfmlQo1UJKo4Ctb3Mlr3+BV1NtlqbdNPg/W9UmijqTuS4RQR2HojKyWWNGZq1YYjELLak4BnJFMV7boo/DI5tVCTzqJA2zhIiftFVR8mbylCSRmk2US/KS1TtXVAK6iQCmCU16tWgQe/HBfJHMelaVgPdbv1NAte5cq9s3dElW0tK7plrU9zOyeqsKtUUB+lrW6msj2r5x46hjCazj+SvJUnVylVpJZDZJQzUhQYfdukrfpBIxJGIWCraDgXwBnaCw0lYjidza6zk78hjE56r2jZ4kDcsSVubV4Cc0yax4FfumlTjhS51spiUSG8VaHPAp4GvEUra3yRUApKOPQ3H/S0/AB1QCEt3j/QlCKuVOBnJ0ZYJUiW9qUlM9OYJ4jZZXVzYDepT4Ku4EXQN54/OGXmUdbP5SjZFC0facNNiumVHC3Llzceedd5a9tmjRIsydO7fqe9LpNNLp4c/cZDKpRAipXteI4NiBy+9+Gb944LXQ7//HF96JWVNHKV2bz+dx55134oQTTlCKfWNvBof+IBjpfORPHna/jscsvPaD4yPdd/CYMYN6sQf9u5jkpYKr5M0RKnkVbSuJF8kyjqZkDIkaahV/TZNC0a55bVgMBFR5Uds01o0jqUvJa3ZjCfgtrOsfqg7kiuTjVZU4I49DcUNHfdgdj1k1DzL9/TaYL9a974RBoJqeoCPwGoVcbZT60YFiScexpZ8wy1yhRiLgJ1ep7V7N2s76/75abaKz3mpTnb7RZddsum9UiQg9lsAlkkixb8iVvA1i16zcN4R1m/NFp+x3VUNzUlh5Gr+nkSdpBJ03xIkAikkatgNkC3bd+18YqCrwqAk8VZtz8jgaqO6rq0pUIIkGckVC4lsxEYC4TIFqAhz9GBGfq5qkAYg1NMXeRt3Cmna8DijusVqIkzRUlc2uylqDWrS+hbUkeWnnjbKCljg5sW4c1OdovvUwhasbozHQ19eH117zCLiVK1di6dKlGDNmDHbZZRdceOGFeOutt3DjjTcCAD7/+c/jF7/4Bc4//3ycddZZuP/++/GXv/wFd9xxh6k/gdGAOOQH92JTb7b+hT488c33YkJHE1FElTGhvQlv/OjEYa8XijZm/L9/131/0XYw/UIv6WHlpScYq+nLaCzwU5MK8ZKSl7Amb+DaotSEpmIcgFi8dVCQvIoKPOqaJqqEpq7aKqqKYqrNdr5URw5QtcClqynmjVe1jRS9WlSR0CSvH137IDOdiCFmiYPMgWyB5iBEkVx1kxKID4dU72l02e6qh920Y9VxHJeAqhtLklYBr07gEVuaKZLN1I4AMo5k3EKyxjPVsiy0phLoyxYID3cbhFxVnje05GpQ9Wy+6CBftGv2Y1g0SlKCMoGX3LESAfy/q1YsvdlC49QppuobxXmjrW5z3WRNXwJcrkhC8gadv6ZtzqmTRVQJTWoiMV+0kSuqqc3a0gls6s2Sr0nqu60QK3mzavPGU3sT77FSCeW9TT/R3kY18ZvaOlrZEYB4/xv0PkJqha9Yy5o88VtVyZumPdNTJeDpnejE5ybjFkl5CkZj4KmnnsJRRx3lfi9tlT/1qU9h4cKFWLduHVatWuX+fPr06bjjjjvwla98BVdddRV23nln/Pa3v8X8+fO1x85oLFzznxX40b9fUr6+ErnaKEjEY8Pi+/JNz+IfS9fWfJ8kfNvSCTz/XZ4TOzKY5KVCScmbAt2BqnLdDOoNnUKtVWCI3Vy2iA4CJZFHWNUhzpLEBEDAmp7UByGqtrNkB0N+S2/DFkCqKk3qA0RV+1v6DZ3aWLUsCy0lksj0eNV3uGv2IDMrySpF9V2uaJOQRNmCzxJYWYFHa8FnWuUVtLYoXda92hgBRJuJ+UvbN6rOEWTkaoNY8arXwfXiHMgV0dlMWW/VLIGnSiRqI5vr1G1u1kQ216vbDGhYpwUlvoniUKmRKH5OPVbViIhEPIZUPIZc0cZgvojRBLGokjOeyrox1N7UiQDKa8V8kcRKO0iSBn0NabV7GjXx7a4D6rmtUFsCK85fy7LQmk6gN1MgJL4VSU1i4lvdNpraySrYWjFL5ACXK3hOGnX3FJqIb+UyQcSOAKo1tU2TzYztG0ceeSQcx6n684ULF1Z8z7PPPksYFWN7gariFQBW/PAEklJzunDVaQfgqtMOcL+fdkF19XpftuD+/NELjiap4ctobPCTkwoJ4f2fRp6w7mvAbDsyslktCxIQi9OeTMG8zYwmBW39jExdimI1sjlfdJAr2JFnTcr+TsVjdT/b28CYHa/UNsmqds3ysIw8616h5k1LiSQiq6Hl2iMqKnmpiURFlSaZtakioUlNEvkPatXvaaYVtMS2s27fqCatUBOaas9f/3uihjJxRm5Br5jsRV7TU+1gNxWPIR6zULQdDOaK6GyONgEuV7BRsNUOMmXf0c0bVQWPngQ45TjISCK1us1A44xXfYkAhpMTAyTQNCUFyUt9n1dVm9GVkGiMJA0ZR71njYzTIbLSlu2cUEnSkC4nxMkR6nVOiZM0VG1nya3F6/d5a0qSvGbXaW3U6siADnDkRKKi2hugcYDzr0FV6xTTE9+q+1/ie7xy2TOzZDODwdjx8J9XNuFT1z9R97pGVuuOFP6/rRbh+84f3Q8A2H/nTvzz3HeRx8VoDDDJS4USyZtCnrDuq9oCiJoQUbUmBsSCvSdTIMmE9GdkqtbkNa3S9DZStISmak1PQIyTVCIVaRyqm37A6zsqBZ6q8lyXzXl9S29au9dMQY1IBGgPEP2WwE2p2ht56gPETF7Y76nWFiVTROTU4kjFPZcECpJIKrZSiVjdLEhykijwIZVpspnYvlpRPQvQq7wCq5upDlQDzl+qequq93jhkhBHb4ZGZV2epKGaHPH2rrca1K65aDvIFx2kEjRKQJW1ka7xqlwegDrZq04cTQ2iWhXXiL0NxX0+UJIGtUtCwCQNatvoukpeYittv8K6XpJGk6bEs7p9Q6yyVi3h1KppjaaSAEdZu9lxHHec1DuvkbH2Ud3jFc8mqFWaqvfWVCKGZNxCvuigP1uI3AFOns+J31MvAZ16vCqOEeI648pni25CglmymcFg7Dj45HVL8PCrm2tesyPWpVUhfJ9b0+3+7O1MfjME+MlJhZJdcxqENXmVs+2IlZGKGZllsRC0SVlGZj2bqEapraLJmrjeRipZUtjmCjb6c0WMaok2jn7FTT+ggQAIqIigVos21dtI+cYqhZIoE0Ct4mXuEhxkFtUtganVohlFJa+Mg7qmZ72DScuyRL1GYpJIbYwQk0R5NdtKepJI7d4q4yzYNC4Jsp1VDq8pVcWO4wSus0ZngavYN5pIItV5I+Zv9LHIOVOvbrOMA9gBauEGtH0HROzRz9/gSnzTNXnJ542ySwJ1Ak3wvQ3Fcy+I2mxHsWtWjSMes9y9zQCBlbbqfgLwkatkSt5gCXDUBHy9e6tcs2QKRC4JioQm4G+T6Oevv9yJap1i6vJade+t2ohElXtrAt2DeZIzAXeMKKm9afc2qmd6uuo2q95HckWbdG/DSl4Gg7HH/7vTFXJVwjlH7o5vHPcOjRE1LiSBu3rrAN794wcqXsNk79sfTPJSIS6UkGmLZmEKBMj681maFW0ncj/6IAReK+HiVG5G0olY3bot5LVVFDeXzdSEZgCVV0sqLg5CCDZ1LkmkqIgAGsCKN02btatKJMo2s6ns5hSJRIBWSSTVsyqx6Boj9eKgru3tjZH6m2dpN0dxuKtKzAA+4puMJLKVYtFW09MwSRSkb3QdZKqqzahqegZ1STCtbBbXJABkSQ7eg9ZtBsz3jS6yud66NRn3lEQD+QI6EbFLgjx0V+kbQgIvTJJGhiq5KeDeZoAoAc6zBFafN5TzNxVXUZsRq72D2jUTJVmplgYAvL0Nxb0kiNq7mbhvVJObmnzzhgLemYDa/KWy0u5312j1x4jXN3adK4OjrG6zsrtI9HH4Y1F3gKNWadbv87a0IHkpxqtqQj4AX71kswpaXQ5wqrWBAZq9TZC+YTAYb0+ccNXD+O+6nqo/3xFVu6qYOqbFJXGrqXuZ7H37gp+cVCgpeVMNoOT1Z6EP5ot1rXuDYiCAFS+lStPdvCj8fdRKXlVFBCXpDfjJVZU2SaBrIE+yqVMlNAF6tZlH4NXekLQSH3artol/DA0Q2M0FInkJiW/ZHomYutqMmpxRVosSzd9GmTeqygzAR3wTqzTrqqxTtIk8qgk0fpKoP1dAZ0vUJFGQBBq65+9gqINMagLALEmkWlMboCXwtse6zfSq1SD3tDjyRfMJNJTkapnazHACjUuuKsZBlgAXhMAjVK4GucfTK+BVy53QklVuIoDCvrM5GUcX8iR9o1r+BaDtG8dx3L1KXQWeqyim6hu1swn/fCXZ2wRQAnrPXwIiMSvdVlTKndAm0KieTdCvA9TUogBtMnwQtbd7bkRdL7nemR55koZa3/gd4Poo9jYB+obBYLy98Mh6C1/+9j1Vf86kZDCokr1XzdUWEoMYTPJSoVSTNw06Ja9qjZd0IoaYJQ5CBrKFyEne/gAHIZT1gQNZIxIredUJPGKyKgRJREF8B4mDUl2VK9pwSgeZ9WyS3QMZqnqrigRAPGYhnYghW7DRny1gTGu09ZKlglZpjMiDEIIDiHCWwETzt1SnuKlOZrI82BvI09jNyTapN1YB30EIxb01oCMAQEPglR9kKs5fwzU9xTVSiUBwSBWqb+jiSMUVnDQ0JWmoqs2oSKKgajOAZt4ErS0q3mPY5py4tnej1FttFAKvvG5zY9g1q5JVAE29Va9v1IkIyiSrQPd4KpIoq/j8TdLdzwC/SjPIvKFzKWpRuccT2jVn8t7eRnVtRNY3imWC/HubgVz0e5sgY4QygUa1RjFASzYD6sRZk2+s2raDGJEDnOnkpkBKXkKb83zJ8hhQqcmrp5a1KvFN5QDHSl4GY8dDbyaP/S6+B0Dl+w+TuyNDPbL3y4sTaJmxCcfsM0VnWAwC8JOTCiWSN4U8BrJ5kl/hbaRqd6NlWcLKM1sgUVd52bLqdjeUSkClDV2SVsmrSmrKNssWbBSKdt3D8fBx1P9cSuJb9k1aIQ7ZZhTZshmfqkBZCUhMRKQTasR3tpAjOhwKkhxBR3yr1igG6ImIjOLhkIzDccQhm8q9JwgCJUcQ1icMVLeZsF5ytuAdZKqrrIkViYrqyO5BGiXRYCBFBN09LZwlP63arO4YISaJVAlNQA9JZFpRHCRJg1rtHUZBazpJg5L4dpM0EvXVZuS1cBXnTSIeQyoeQ65oY5Cg3mqQmoCU5GogS2BdtXBVlfjECXBBiDOKvukP4GTVTLgm8e9lVUvAUCUCyM9V6ptUHNmCTUOuZtXPJiife/1Bnr/EfaNKnPnvNdkCwd4mwPxtIuybIAk0uiy9lVXWZLW91fcULakEtg3kSc4WWcnLYOxYqEY8AkzuRo1aZO/Zv38WwLN4/YcnRJ7gxdAHJnmpUCJ545aDwWyO5FdIBZ7SIVU6LkheCuKsFEdaiYggzKgOpBalPcj0CCs1JSAgDkM6IiZ5s0GseAmJ7zB9Q0KIBLAE9sYIlRVvSUGreIC4tZ+G+A5GzsgxQkc217PR9sdhWgHv//lArhD5QYgcIyrzl5YkCkBokh7IqB+EUCdpDAS4p9EqiYLdRwAadXMY0oy63moQkmiAhCQKfm9tFEtgir4Jk6RBRRKFU2lSzJsgB6qEam9F9R2gr96qSixNydL8NV1vlZBcDWK3TrkOsG1vb1OP1JRx0NVbVSfOKO9pqmUbAFqSd8BXP7reoRz181fuU1QTrrtA5HKSUxurAC25GiohgdwmWU3JK98T9d4mSHKEngSaAM9fguee7Jdk3Kpb25Zc7R1gvFLeS1wlvoJLAoPB2H5x/SMrccnt/634MyZ3aVGL7N3tm3eWXcPYvhAto6QBV199NaZNm4ampibMmTMHTzzxRNVrFy5cCMuyyv41NTWVXeM4Di666CJMnjwZzc3NmDdvHl599dWRBxpPe18XMiP/vArIBCDw5GKNhCQKZAks4uijUIsGsnulIwD8B5n1+iYVjyFR2pBTKGiD1AQkJVdDqLwoyOYgc6bZjYNmsx2m3irlIZWKytpTizbGfYSa5K03TuIxyyWlG6eWNaFdc6C+oRsjKmoz/2G3LYtNRhlLCAtNGgWeWo1ifxw0trPB1SqNQBJRWlcGs9KmU0c2ju2sepLGUJIo+lhK89f4vFFfG+noG9PtURZLEAtN4/OGbk0SjNCksxT1f6aqXTNA2zdq93jCvsmqj1WXnKEgq/LBahQD9Fb4SipNDSSRipU2JbnaKIRmrmAjXxRr4Xp9I620qWIJY2FNsUbrD6AWbSIdI8ETeTJ5m2RvE2ZNQkF8ZwKsnxkMxvaJaRfcUZHg/X+zC3j1e8caiGjHxBs/OhGvXHJMxZ9Nu+AO9GZoXGkZdNiuSN6bb74ZCxYswHe+8x0888wzmDVrFubPn4+NGzdWfU9HRwfWrVvn/nvzzTfLfv7jH/8YP/vZz3DNNddgyZIlaG1txfz585HJjJCYTXgkbzGfgeMQHDIHIADk4jRDcFgWyBKYsLZKILKqtKCnIL2zeXVLYMuySGtpujU9A5AzpCpNBWtiUkVToMQIcU2uZKVNFUsQUpOyb4IoEk3H4Y4RgvnrOE4gBS2lYrRRiG9V+2qA1q5ZHvIEGSOAV2M50lgClQegt0k2bgncILWB/U4a25OCVktNzyD3EZKDXRFHEEtg8b63L0nkqbyCKPEpVW9m1TsiljAJNBRJReoEAKVLwkCAMUJJVvnHf721vHRJAGjvJWokER1ZFSbZK0NIEgW1BKY4mwiioKW8p7mlpBpGLapwVqNhPQIEGyc0tXAbw8I6lFsDodpbaR/uu4YiAS6QO4H7vCGII8C+k8FgbF/4/eI3qtozv/q9YzGhWXNADFiWhavmFnDm4bsO+9l+F99T006b0XjYrkjeK664AmeffTbOPPNM7L333rjmmmvQ0tKC66+/vup7LMvCpEmT3H8TJ050f+Y4Dq688kp861vfwsknn4z9998fN954I9auXYvbbrttZMHG4nBiYvOZsHNu9mRUCGIJDNDaRMkNaxBLUZI4pP2t0iKZPttdxRIY8JFEJEreAGQVYb3VYNbEGkgzhTlTdshMOE6C2RMbttImVM3ITWKgsUrQL/5Nc5ADCNIkjSCH3QTzt1FsZ8McyFDFEsgCl9D6PUjftFKqrAOoZuQ1/ST13z0nDdP2pp66OYDNOSFJFIyAN2vpHY95toWm540kiSieN/1Bxgipo0cAu2afIjFqksi2nUDrxWZCkqg/q742oiTwQtk1E1qKtqTqWwL7YyFxSQjhDkSqFjVcWzSMJTC5S0KABDgS4jtI32hZt6rf4ymJ1VQ8VtcSGKBVfAdKgCMkEkPZNRu2fR9qpR01Qp3pEYxXmZybVhirDAZj+8G0C+7At//xwrDX3/jRiZWtgdc8Bdz2BWDTyxqiY3zz+JlVLZqnXXAHSXIgI3psN0/OXC6Hp59+GvPmzXNfi8VimDdvHhYvXlz1fX19fdh1110xdepUnHzyyXjhBe+msnLlSqxfv77sMzs7OzFnzpyan6mMhLCGTlmFyBdAuaK6JTBAW0tELsRUNttNlJmQAdQ7klijVBSr1qBys2UJ1GbZAASeJL4pVJqBFLSEKmt386KgKE4laK20g1hHk6o0A8wbl9AkSQQIsrEkTIwoU6sEsbAmnDcKceiwBFZRAjYn6YjEIAe7sZjlHVIRjJOBIKSmhnpvSn2j4SAziNp7MB+9lbZ/3Jm2sA7SNzuSJbAKEQHoOlQNYglsloBvJnzWuGMkwH2EgiTy3yOD1AQ0Ta5SEnjh6s9SEiJqexvKWAKRmg2SeEbpkhBIGUlope23BDZPrgYhmynVolJ1HiCBxvA6wH+daVKzmTABLhMg2ZpSySvjSCs8f6mttN0zvQCqYsqkQFbyMhhvD/Rm8pVrv1pr8cbevwF+uBPw84NhveS7pncD8KePAkv/ACw8EXj2D8DPDgBu+Syw7Q19we+AeONHJ+Kvn5877PXpF96JW55ZYyAiRhBsNyTv5s2bUSwWy5S4ADBx4kSsX7++4ntmzpyJ66+/Hv/4xz/whz/8AbZt4/DDD8eaNWJgyvcF+UwAyGaz6OnpKftXCVbJsjmNfORkYianbgkM+GuJ0G22g5DNputXUtoQBSGr/NdRbqTU2oSe+A5WW5Rw8xLwkCpqwiqoWkXGQVJTOwDx3Zqm2+QGUxSLa3JFG/mIrbTduq/xGBIKSnwdxHcgBTwlkaiiFqWs7R2wRhOVhWZgJw1C5WowsopSmdEYVtryb0srWAKLWOgSaMIQeLRjxCzZHISIAHzqZsMEACVJFEbRRGJ/mw0yRuistOUYsSy1g3dKcnUggLqZ1nZWEppmlfhBVG+An7Ciq6UZhNSkJPBM2zUHIb0prbT9zw3z5GqQ5y9d34SrcRq9S0KQMxL/dZT3tCDnRhR9E6RNSK20A5Q9A+jOsPJFL0kjEMlr+EyAwWA0Nj698Ensd/E9w15/43MduL/z+8DrDwK5PmDLq0j8/VPYa+1fgGIeuO3zwMAWcXH/JuAfXwC2vg48dzPw84OBf18A9G/W+8fsQDhk2piKqt4Ff1nG9s0Nju2G5A2DuXPn4vTTT8fs2bNxxBFH4JZbbsH48ePx61//ekSfe+mll6Kzs9P9N3Xq1MoXxiXJm4t8URjUEph2IaZusyrjME2uyjjyRYeMJFKxBBaxENaLChCLnr5RP7QjIZsDWAIDdARAmSVwEHtiQptzFUtgj6wyS2j6r6G6t6rU9gZoVZqNUqc4jG00iSNAALUZQEfOZAvBLIFpD97FZwbpG0oloJLdXIJ+/gZNBKCwWw9jc07hthLMNrox6kcDdPPXn2QViIgwrKDVcR9RuZ9RWmn77/GWpZKkQUh8h7I5pySJ1K14Kay0gxCaAK2VtrzPB6q3apj4dhMSCO7xQRNoqKy05d+WjCueTWhw0lDbU2goE6Tg+kJppR3E7QwgTkpoMHI1ENlMuddTnb9EyU3+vy1YKbjoBSRBkxIYDEZjYtoFd+C+lzYOe/2N03qA358CZLqG/WzPDbcj+aPJwIr7hTPqmXeVX9CxE2DngSW/Aq6aDfznMiDXT/MHMPDGj07EbuNah73ORG/jYrsheceNG4d4PI4NGzaUvb5hwwZMmjRJ6TOSySQOOOAAvPbaawDgvi/oZ1544YXo7u52/61evbryhSUlbwqFyDcwgS2BCYmzIJbApHbNATJD/ddEr7IOR0RQbhzSCipNyr4JROA1UGYoVd+UbaQapIa0abI5yPxNxT2VXtT31qAbSx01pJUOIAj7Rh7SqlkCa7AUVVQSUVlp+9tYiZzRMG+2Vyttqr5RVZs1iiVwo1iK+pVE0Vtph7u3Rk18+5+j5hXwDTJGQhIAdPM34BihuKdlg/QN5XMvuOqcgiQKavdKRRKVWQIrEGekau8QSl5KRy3TVtqB1d6UpSxCWAJTnk0ESbb2vy/qOIK6jBkvE6SlbwLE0UAJrFRnizELrtq/ZhwazmtUElgZDIZhvHQH8NBlQH4QeOUe4PavAC/ejpkX3Drs0j9/Zg7emL9MqHTtfP3P3u/DQCFT/loxDxz/Y2DS/kCuF3jg+8CV+wFPXid+Vg+DXcDapcALtwGPXiXiffQqgOvNVsX9XzsSKy89Ydjr0y64A70ZhTZnaIXaKrwBkEqlcNBBB+G+++7DBz7wAQCAbdu47777cO655yp9RrFYxPLly3HCCWKATp8+HZMmTcJ9992H2bNnAwB6enqwZMkSnHPOOVU/J51OI51O1/+F0q7Zyke+AApqCewdDhGovELYJJu2Jk4nYrAscS8fzBfR3pSMLA5pP6m8kUrQtElQS2BS2+gQBDxtvWS1/Baqujd+S2AVS1HKGtKBbM4p1d4F9b6xLAstqTh6M4XIFXhBM6q1WGkHqrtuloiQZGOuaKNQtJUsr9XjUK8NDNBZacvnqLIlsCRXDavNKK20MwEOVOV1g/li9EreoHXnCJWrYQgA0wraoVbaqof1UccB0JGa8vNULYFdAo9i/oawBKZco6lYAgPiHtyFPFnfBCWJKOdvEALA9D1+KEmkug9RQRBLYICOJPKP/2AuCZSJZ0FIIrq1ovK9lchKO4hrU3kcZpOcKQk8t00U4pBW2rmijcF8EaMjjCPo/pdq3hR8lsAqbUKpoA10fjXEJUHFaSJoHEGFG5GfLfrczlT+PipHAPGZwYhvBoNhCC/fBdz0cQAO8PytwMYXxOtPXY+n0s1YZB+EO4pz8LC9P175/vHCcnn5X8s/I9UOnPVv4O9nA5teLP/Zs38Q/wBg3w8Bm14BNiwHHv4J8Kl/AW8+KkjagS3AHQvEv+lHAId8Bkg2A92rgW1vihq+8l8F9TAAYNJ+wO5HC4Jg9RLg6RuETfQpvwZax0bWZNsrLMvCGz86cZiCd7+L78E1nzgIx+2rJrxk0GO7IXkBYMGCBfjUpz6Fgw8+GIceeiiuvPJK9Pf348wzzwQAnH766dhpp51w6aWXAgAuueQSHHbYYZgxYwa6urpw2WWX4c0338RnPvMZAGKgnnfeefj+97+PPfbYA9OnT8e3v/1tTJkyxSWSRwRfTV6qbDtlS2DKDOIQlsA0alG5OFUjiZoS4pA5m4/YEimgJXAT0QYmqCWwS+BFnP0PBNvA+K20oyaJgqjOAb+Sl8Y2K+hBiGnim1aJX0pICLDJ7c0UIm+ToHGQWmkX1JM0KK20A1kC++wTB/JFdERJ8oa04o08SSOkaobCSjuMJTCFlXZQlXVzKg70E9i9BiDN/NdFfUgVtu66aUtg/zUDuWhJ3iCWwOI6WpIoqCUwrTuBwhghTUgIMX8R/b01qCUwZU3PcLWszVoC+0migYhJosA1tYnsmmViRMJnG64SB2VyRNC6zcZJIqL5G9wJRwNJFNDBImoEtuJNxZEbtMmseIPW5I3cycp/NhEgAZ3iuZcNUm5siEtClAk0mQBxAHRJCTLZOrCimPBMj0leBqOBseEF4O+fBuAAVswjeAGsdcZgirUVH4w/gg/GHxEvft/33n0+CLxwq3jv+68SBOtpfwR+fqB3zdTDgNWPe9+fcLm4Cd/4fmDD88DVh1aOa+V/xL9aSLWJOsB+3PYF4J1fBp5eWE42P3IFMP8HtT9vB0Ilovfzf3ga49pSeOpbxxiKiuHHdkXynnrqqdi0aRMuuugirF+/HrNnz8Zdd92FiRMnAgBWrVqFWMzb8G3btg1nn3021q9fj9GjR+Oggw7CY489hr333tu95vzzz0d/fz8++9nPoqurC+9617tw1113oampaeQBJ8RnpEGg5A1q7aLBilclW5Zysx1mIzWYL5KpNIP3DQ2RCATbwFDU3wmyWPf3X6Zgoy1SJWBQlRctSRS8fhZhlvl2pMT3xxI5yevW5FVM0iA6CCnaDnIF9XlDqgSU9SsDWGkXbQcD2SI6InRJCG4XSUOKBLWdpVSbBbMEprfSDk6u0vSNet11IiKxzBJYPUmDxG0lAEkUi1loSsaQydvR903YmoBEJFFwRTFd36ioI4daaccUXARUEbbeKtX8Nb028lsCB+kb044AMpbcoB05cRY8uUm0W9R7iqDrZy22s4ZJotD7zsj7JmCSs4bE70AqTcNlV2Qs3YN5sjJB6utWmvWzf8yllZI0GqNc0dAyX0bnL3ECa3BFMV1N3ijbmcFgRIj+zcCfTxNE6bR3A8ddClzzLvfH5+c/hwEnjffFH8dZibuGv/+FW8T/B3xCKHQBYNNL5de0jCn//sfTgaZR1ZW4qhi3J7D5leGv964F7vqG+DrRDEx/N/DqPcBT1wPvWsBqXh/e+NGJuOmJVbjgluXua5v7cph2wR1440cnGoyMAWxHNXklzj33XLz55pvIZrNYsmQJ5syZ4/7swQcfxMKFC93vf/rTn7rXrl+/HnfccQcOOOCAss+zLAuXXHIJ1q9fj0wmg3vvvRd77rlnNMHGUwCISN6AlsBUGZmhLYFJFYmGN7khVZpUGdWqlsA6EgFUrbQlGqaWdcRxZAPO3zTlvAlwYOYSmgRq76BJGtLmK2qVtTdW1eavR/LSxCFiUT9AjLoOH+CzSVboG8uyXDI4cpVm4Jqe4rqo1c2DIckqWittFSWguEZaaUcaR2AFbUl5brimp0vORK5I9CVZGU6AC0pqUiVHBLcUJU7SCKpIJOgbeW8KovYG6OqtqitoG2SMEKu9/b+jFkgtRUMmrkTt3BSUJKIiV4Oq3ihJoiCxUNZbDawEpCKJAu6xqO6tRdtBrqjeJrSWwMEUidQOFqo1TqnPJlSdNEhr4QYYr8l4DMm4iJdMZW06AT1sHIZLwTEYjBFi1RLgiWvV6tkCQCEL3PwJoGsVMHo68MHf4LGF3yy75HfJH+Oze+Vw1tlfFsRsNSz/u7BwfvYPwK1DymW+fOfw66sRvPt+WNgqn3U38LmHgYPPqv47KxG8QzHvYuBjNwGTZwH5AeDxX9Z/zw6G0w7dBS9//7hhrw9V+TL0Y7sjebcrlJS8KStPkMkczhI46kVyYEtgDYfd6hnENPVWw1sCmyWb00Tt4f9MFUtvy7LIatAGPQjxSE2a+RvcNouCXA2e7Z4r2CjaTsRxBFTQEt3Twivx6ZSAKtnulAchAwEPhzwLerNEBFVyUxBlpP+6qMlm23aCWeH72o2K1Ax+uGtabUalaPLuIyqKSyprUyCEOpIoSSO4SjNW9r6o4I6RZDDbaNOWwP65Zb5viMeIat8QJ2vGFS2BaZWAJScNw/M3NIGXJ0qyCkx6myWJpJW2/31RIaxN8tvWEjhkkuRArgDHodnbmFY3y/uIStIZ4D1/6cqNBYzDcJIzQO/uFThJw/T+l2ht5Di+vY1iWToGgxESL94OLDwBuPNrorZubqD29Y4D3L4AWLVYfL9tJXDFXjg885B7yQp7MpJWEce9/kPgd8cLYnang4CvvQoc8Y3yzysMCoL3H18Ast0AgMd3W1A/7uYhBUneeATY6WBgl8OAyfsD7/sp8MVnhC10GNz1DeCSMcC6ZeL7hy8HBrvCfVY1bFkh2t+O/vmmC+lEvKJyl4les+AnJyV8NXmpNtvKGzq56SckIoJkMpOQRAFriZBtpIJaiSVoCM2wmxeKTOYglt6UsQSdN03EB4jBLZHMZrv728103zQTJSUEVhSTJSTIORNTIomoklb8sageMrttEnFyRNi6kVRkc1BCJHK1t699VfomnfBcHahsVk2Tq0FJIs+SMGKyKrQlMN1BZqP0jTq5Ku3FzRKaVIrEfNGzBFbpm3jMchN+TCtoyeqdB3zWtBDN3+DWpl57RE0SZYOuF4kSRoImF7vqSCIiUTWBVYeDVND1YsOoNI0TeESq1aBJkqU4bAfunigqeHsKtfFKVac4eBw05T3c+avQL4C3lqMtV6QYS4OQq1RrtNCl4AgEJPIxykpeBoMQL94O/PVTgF163rx6N/CHDwGZ7srXOw5w6+eBpX+o+bG7x9YNf/HjfxN2zP/5sfj+lN8AF20FPnX7sEsPe/2K4e8/6lvA/1sPzP6E+H5wm/j/8C8BE/YG+tYDN7xPEKcSY3cHPvI74JO3VQ509HTguB8BZ94FnKyg1P37p+tfo4oVDwDXvBu4+ePAr48A3ng0us82ACZ6GwtM8lKiRPKmkI+8XkXYhSnVZlvVEth/cENGrgZcnGaJDqnMq6zDHQxR2s2ZzpYNfnBHQ5wFtvRO0RKJQAgrbcPzl6oWrntYZjghITjZTDd/g5IzVDbnwclmmvtI4BqJRH3jPxhVmTeWZbkHa1TKVXVSk8ruNVjftBJbIwatH02RABeWgDfdN1TqSDl/W9PB+obqYBcwb/0eVsFjXAnYMLazYow4TvTJPGEJgMifvwETaRtljFDdz2zbQa4g1ZHBiDMy5yZV4ozIwjqskpdOGamWJElppR1apWm4b9zkJqq+MVx3HWic8dooiSvy89IBzxap7vEA1+RlMMjgJ3j3+4ggW9MdwKrHgIUnAn0bvWu7VgMPXwF8dxTw3E3hft+PpwM3nATAAVrGAbseDlgxIN0OxJLimn0+CHvP4yu//4HvA2ueAt7/s/LXX7oDOP7HwPi9gN51IvYtK8SCfNUSQUr/+bTKn5kfEHzNzgcDB3wc+MITAEprhuN+NPz61+4FNr8W5q8vxwu3An/8CJDvF79vw3Khpv7bWUD3WyP/fENgordxwCQvJeKekpd0sV7I1r2e2lJU2RKYsN5q0CxVuo1UwNpIZJvccJbANBupYLGQWfHmAm6kEg2y2Xbrz5rNdo/5lER0pGawWtZklt6GicSw8zdbsGFHSBL5bbOCEs5U5Kr6IVVjWCNSqb2DHmQCvmSeyFXWsm9UEwFo1d7mCc1wcYhYiGpZB1TAU1l6ByY0Ca20g8QRuVq0FEfMgmvjWj8WmuSIoJaiZEqioAlw5G4rweLwv9dYLFRjJBdujUblIBV4jxX1/PU9u0zX9w5b05MqDlWSiFwtqjhG/PVWjSfQuOO1MZJFTKtWqc5IyvY2ygQ87XgN2iZU9c5N263LfknGLSQV10YMBiMAhhK8H7gGmP5u4IzbgdbxwPrlwC/nAvd/H/jdicCV+wL3fXfYx6xxxuG92ctgO6UziNP/qfb7BzaLz/zeeOA3RwB2qRbw4efW5jVueJ+wUPZj6wrgT6cCh3zaI3p/fiDwg0nA9ccCy/4MFDLe9cdfBnzoOmDUrkDfBuD2rwBXzwFeuA0Ytyew98niukXfqRzDLw4S7ZLtVftbh+LJ64C/nin+5r1PBha8CBx0JgALeP7vwC8OBh66HMhn6n5UI4KJ3sYAPzkp4bNrjnpzKReY+2efBr4/AXj8VzWvp7YmVt1IWZZFTs6oWgI3NchGinqRHKYOUJR2c35L4MCkZoHG3jRoRnWWSImvTJpRqVVGQhJRkasBFbSmD2SoLb2DxgGU10ofKTJ5n21WYFWxYZtkYgWtaWcCz9pUjbwDCMdrQFLTHSNRqzQD3lvT1GNEcf6mEzFYpVtwlH1TKNru87dF+XCXxiY57CGzaUKT6kDVv0azrGDPX+MlYIiUgEFVXo1SW9Rfu5fKOlp9vJbiiHqNFnD9TJ2kETiOiPc2/r9Ldd3qWb+btRdvIVrHB05OJHJLCkpWAXS2/IETv6nu8TlJwAddtzaGFX7Bp5yPArmiDZkPq25zTuvuFTRZhKxsUlCVteHzAAaDEQCVCN546Rxh/DuAueeKrwc2Aw9dBrz5SPn7051wSmrXi/OfwifjixCzHGDsHsAdXy2/9sQrgIu7gT2OHR5HLOGRuxLXHo3Y6/cPv7Zjp8p/i1QA5/tFTeFNL3o/K1QgSU+6CpjzWWC/DwPnPiUUwC1jBVH8108Bv30vMHWOuLZYIpsP/xLwzvPKP+ehy4CrZgNPXAsUh/wN1eA4wqr6jgUAHEHsfvh3QMdk4KQrgc/9B5h6mFAX3/894JdzgJfuBCIuAaMDTPSaB5O8lEg0AQBSVvRKXvl5x2z8nXjhrgtqFu2msruRlsCqC8KyWEwvThvEEpiKEAma/S/jsB24deKiQBjbHbK6NyFr8Zk+pKLK7A5q6Q341M1EyRGqm+000bwJm1EdeUJCPtiBjL8Po7ynlVmKmnYnCGjXTJWQEFQtSqdsDjZW/bFQPW8CW1hHPG8C20ZTkbwB1yPlCXDRtUkYS2AqdWRQu3VXkRj5fSQYASDjzUZspR2GiKAizrIBiQgqssqznQ1KiJhVRgI0fWPbjjdOAlq/UyUXq6/jiVRvhaBEore3iTQBrvRZqYR6kiQ1OWOcSAy8fiYq2xAwDoDencA0AR923kTfHuHczoBo19AZ3x7WdJsEvbdS7SkaRVEcNNmLwWAoohLBa8WANx8D/vVl4PI9gHurKFgBYPQ0DIzbFxYcPFLcB0/aM/HR+H/Ez7a8Kv517Awc+Cnx2oOXAq8uAl67r/xzrDiwy1zv+0n7CxVtNfRUsDC24sNJ4lqYfylw0Bne94kUMOdzwJeWAkd8A0i2Am89Ddx9Yfn73nsR8J6vDf+8gc2CWP7lXNGutchY2wb+/Q3ggR+I79/zdeB9PwVivnvc5FnAWXcBH7wWaJsEbHsDuOljwB8/DGx+Vf3vbBBUInr3+87dBiLZMcEkLyUSKQBSyRs1ASA+rxhv8l5c+VDV68nqeAXM2vVfa3pTp8NCUy2OxlqsRx1LUEtgfyxklsANQlYF3dBFXj86zPwlsnttFAuvoPOXqt651x5qcfiVRFG2iTwETCfU6q4DdDbJgZM0XJtzKkJTTUHrJ1ajVBK5FslBkqwaRN1MlUDjtUnwvokSmVywMVIWS4T3Vv/fpfr89eKgWbcGVeBR3VuD1lv1v9dEHIAGBwvjCtqQhGYDKIlaCPrGT0oGT5JsDJeiyBXFIZ00gGifN0Ft3wHKpISwZYJokhODjlXT93iA5t46knInVMRZ8ER4qgR0tThSiRgSpb1HlPNXrrPiMXVLYJmUEP3zN2jiGVFyRMj60WSK4gDzl8Fg1MFQgvfIC4EHfwhcNQv43fHA0wuBTDfQPlmoV0//JzDlgLKPyB/2JbS89SiKjoXvFz6Jj8fvRYvls1eePAv4zL3ACZcDY3YH+jcJktIpAvt9FPjWRmDWx8T3bzws3nP4l4DPPQR0TgUAOB07IZPo9D5z/F6C0B2Kw79Y/W+NDdl7H/AJYO7/Vr62qQM46pvAl5cCe39g+M9714m6wSdcXv76/EuFCnjLq8DNHwduO6fy5xfzwK2fBZ74tfj+uP8Djv4WUMnBybKA/T8KfPEp4F1fEUrl1+4FfnkYcM+3gExP9b+5ATGU6O3NFvCXp1YbimbHApO8lJBKXhTIFkCjcuu9F5dVL4ROX7cq+CY3yliKPhufoJvc6LNlwy2S6WoUq8WRjFsuiRNlm4SxBCazFx+BhXWUCFv3xrQ1MUBHzmQCHpi5Nm+Rq0SCjhHiuq8BCLwmgnrJQQ+GAK8Po05KCKpcpa7tHTT7H4hWSRRUtQrQjNei7bh/V3AHi8a4t9Ipq9SX2RTrNH+NU3VLYJp7a+hamhH3TTbwobvXh1GOk6D1ZwE6kshdpymSmo2meiNTVoVwKYqyb8qccAImSQ5EbrMaLkmDyvZddd4k4jG35nWkSsAQ6+dGWctT9U3QdaubLBKxlXa4e2v0yvN80XHdH8LYi0eJ8PdWGkeAMHuKSJOsRpCkYbqGtFyjGXcEKF2XLzrIF6MsE8QkL4MRKYYSvPO+C1x7FPDwT4DuVUCqHZj9CUHsfuUF4NjvAbsdAex5fNnHJP+9AABwU/FovO5MxvnJv3g/nHkCcOa/hf1wIgXM8ymCk63A+64QpSxPvro8tk0vibKTK+4DEk0oHvMDpAslMvOse4AvPA58cy2Q7ih/36NXiv8n7D3877WHPLdWPAhsXVm7jdomALu+c/jrj/5M/H/wp8tfT7cLFfC7vyrU0Mv+DGx+pfyaXD/w548By/8qiOcPXgsc9vnaccjPnncx8IUlwB7zxd/z2M+Bnx8ELP2TUAZvJxhK9J7/t+ewrT9nKJodB0zyUiLuKXkp6u8kUEBHdp334ov/qmrZTFVvNdRGiuBQNetTvjQMAWDYLjJMvWR5iERzyByciCCr+2p4IxVWUVywo91Ihct2JyI1g5KrpcPobNSK4pCKRKr5a/oAwrUmboCDkMAKWgJlMxDCrjlBQxKFmb8U49X/WerPPeLaZoaJxDDPvTRBm4Q5LHMV8BHfW4OuF9NUbiuuJbBaHJZleckRUSoBR2AJHGWbOI7jPX9TAYlEssPuYE4ag/ki7AittIOOkbJYCMZIKh5DQlFt1igEPF29xvDJxRQEfJgkDbIkyYClLCjrjKtAXle0Hbd2fBQIkyTp1rImUIsCAe5p5En5Zl3GgroUATTnNQ21/w27bjXsiOefXxQEPNs1MxgRoJJF8yNXCNXuuD2BjywEvv4q8IGrBbErLYRfuQf4z48qfuQVhQ9jcfs3vBcO+Qxw6h+AVKv32rY3va/HzRDEJQA89rPyD3v1Hs8i+ehvI/bcTbDgwN7zBGCXUn3cF24BslVUrOc8Bly0Ddj/tOpt0LMGWPi+2kTvtjeA+7/vfT/9PeL/Z24EetcDsZioMSzxz3OBZIuwc97zOABA7NkbvZ8PbAVu/ADw2iIg0Qx87Cah0g2CsbsDH/8L8D9/AcbsBvRvFIrh648F3nom2GcZxGs/KE8WOOB7iyLloxjDwSQvJUpK3rSVI1kQTrU2IeYUgXhaEMr5fqC7sgSeTEnUIJnM/oVuUEvghlmsGyY0ARor3jB15xol252agFc9gEj7NsMUBECQQyoKkihftN060MZrIzXI/JWfp1qTF6DpmzBERJqIJJLJUqZr8gY9QEzEY0jGS3ZzBM+9IEpeivFarjYzmxyRDXyQ6RGJUW44RmIXaToRgMpCM+i8ISfgDducy/YNYgnsWdBHmSRpu6Wkgj5/G0VJBES9bg1BwBPUF8246wDzRGJQkqhRiAiqWMLcW8lszgsh+4YsuThYQgJQXiM1qjiC1eQV85fiHh+z4KrJ64G6hFPwus1mz0gAv7o5OsGEt7dRv7e2ENUZDxpLM5FdcyZgHKl4DNKgLcr1YphEAAaDMRzWy3cOJ3i7VwlrZkDUhd3nFCDZXP7GjS8CfzsLcGzgwNOxf+bash+fnbgDY/MlN9G2icCJPymvL7v6SeC+73rfr3sOWP+8ICYlkfr+XwBn3lX+e+MpxF69Cw4sFI/6tnhtYKuwKgaA3Y4c/ke+9YwgYE++WiiGy1vA+7JnDXDDSYLMHYpCDvjrmUC223ut+y1g6hygmBUqWgA4ZIia94VbxP+lGsSx5X9BzM4BPeuA350ArHkCaOoETv8HsMcxw3+vKvacD/zv40KBnWoD1jwJXHs08M8vCTvoBkciHsN1nzq47LXpF95pKJodA/z0pEQiDUDYNVPUNJlulVS84/YUvvcAsPm1itf7F9MUBxCBLEVJMzLVLYEbhVwlqw0cRsFDeBASqu6r4Wz3NNUYKR3IqCYkpBMxt3QDhQLPdE3PMpJIcXPZKAchjWI76782yvqioazVCGoCOo4Tuu6caSIC8MiZaGuKBa8bSVGD1lWbJQI8f1PRx+GPJaijh+0gYiVR8PlLo7IeSRxENXkVxysdkRh+3kSaHFEYyfo5ur7J+vp5e7u3+q+LcryGsuJ1SRECIiLEOiDyWrgB+4aubnN4cpXE7jXQ+jn6mp6NlCSZCVi2IRn36q1GaS8+kiTJKMerf/6qlksgq7ca8F5C4Rrh/7xQ9ZIjfO4FLREEEKqbg9bCJdt3BmsTy7JohBshnnsMBqMck7qeRvyWs8oJ3ngCeOCH4rXd3wu0jAMWXw38/oPAT/YSrqD9W4A/nQrkeoFd34Wzt3wMZyfuKPvszydu9775wpLyXzy4TRDEdkHUuN3nFAAOcMcC4O+f8V4/4BPAumXl7/331wEAb449Ahi3h3ht0UXAwBZhy/yxCqUpb/4E0LdR1PgtDHqvx1PAe74m6uZKdK8Wit6hRO+ii4C1zwBNo4D/XSIUultXALsdJX7+1O9EuwDAUd/y3nfL2cI6ecY8oGMnWINbMWPDnUjceAKw6UVR3/jMuzxF8kiQSAPvOg849ylg/1MBOMAzN3iEfYPjvXtNHPbatAvuqHAlIwowyUuJEsmbRp6kpsl0q5RBM3Y3YYMAiOLfFRCPWUgRWFcGreMFeLafUR5AhFGtymuzRIfM5uu+jiDb3bCSiKxNQma7R05EBDwc8m+kTGe7UyZphMl2pyIigip580UHBQIrbdMHEKHiSEQfh9+BIriVNs38DXRPIyA1gyatAFRJGsGJxDTBGPHHonq461+7UJBE4UpZmLXkJ7dpVLY5JyIiRpTcFOXztzRWA6yfKddoiZiF5Hb2/KXa24TbU5QSNiN0SxoRoWm6FI2PWI22TFD4xJUoCfgwSVYU9c7LkiQDEniRP38bpMxImDFCkggQykmDqExQyFJSUddbHYm7SLTztzGU+LbtuPsb4w5SIfY2bi3rKPd7IcYIg8HwYL18Jw5Z+QtYQwneNx4R9WEBUQP3l3OAu78pvu5dCzz2C+AvnwS63gRGT8PgKb/Df19+BZ+NCzLuc7nzKtSm7fS+dhzgH+cKtfDoacD7fwa89ztALAmsXiKI046dgZOuBLasAO69WLzvvReVfWQu0S6+eHMx8Ozvxdfv+6mwmJZomySEbr1rRa3aP35EKI/3PE6QrsWcILCP/zGw00He+7pXAwtP8uykX/wXsORX4utTrgEmvAPY6yTx/cBmYPIs4ZYqrzn83PK///m/i7Y94JMAgL3W3wKre7UQ4J11NzCxQs3gkaBjMvDB34h2Bbz+3A4wtD4vAPy/W5cbiOTtDyZ5KVGya04hT0BW2ZgmSd4xuwNjS9kumyuTvACNXZV7EBJC5RWlSrNRCE3/5wW3vbOjrSk2AgUehUoznCVwdBvLUNnujWg3Z5qAd614o1cSNQXIdqeev0EtzQCaw91AKi+CelHhNv0ijixBHIB6nUTqZBHT8zfcvZWy7npwS1HTDhbJuIV4SUlE4pIQgiRqlDEStSV/sbS+CazkLdgRk0Th1yQk9ZJD3ONNW3qTJyeGsaA3Xq9RJo6aJauo3UWCqs0cJ+IyQSHqNVIQ32GSrCjsXmW/WFaQckW0atEwVvhUCtqgcUSZlB+qbFKS2BI4xN4m2j2FPezz68ZCsf/NhekbgjMSX5mBRqmpHezcKPpa1qzkZTBGgBdvR/yWsxBDEfbeHxCk7EOXAb+dBywcQrLF08DuRwPv/pr4fvXjwJuPAql24GM3Ya8fPYkLkn9G2spjcXFv/PoHFwObXir/jFs/61kGP/Eb4KXbBan7kYXCqnjMdGHpLHHKr4B0h6gtWxgUatnDvwSMnu5esueGfyF21/nAv74kXjjwdGCXwwRpK1HIAB+5QcSa7QHsvPisj94InPpH8XflB4B/fRk45hLgoDO993avEorelQ8Bt31BvHb4F4GZpdqx+58q/n/+7yI2AFjyG0EyJ5tFPBK3fEYsdEfv6r7kpNoEwet7LXLM+hgAS5Dn/vrHDY6hRO8fl6xyzwcY0YFJXkrEUwCAtJWP1GIGEJtLl+QduzswtraSF6BZnG7XajMqu6qANYn8MUd5EBLUEhjw13szS1aR140MTMATHWQ2iJVnGALPvKU3kc15UEtv3/yKtE1cl4QwSsDoDyCME5qlOJJxCwlltVn0pBngJ76DE2eREt9hyBnCRB7TY8Qfi2rfWJblzjHTJBHNPb4xnr/+zwpqyV+0HTdBKwqMxIqX5rln+B4/EvtMqvkbyEqbkvg2Wws3DKFJsccq2o5rZ69she+7jqRvgqyN3ISRxtj/Rutk5c0Z5SRJqv1viPlLYQsc6rnXKJbeZDbnwfZ7/nqrFEmB4UrRvP3OjfznLUET4KJPcg7hTuC6jBEQ8AHmDYOxQyHTA2z4L/DKPcCT1wH3fhe49Ryhor3540LBC8BacR/wu+OA//xI1HGV2GM+8PG/A994A/jkrcDR3yr//A9fj2lXvI4DrVdwUvxx2I6F/DHfB3reEiSwRCwhlKQ3fVyobmXt3GO/D0w5QHzdtVrUw5XY9qaocbvmCUH2nvwLYOmfgG0rgebRKB7+ZQBA/Onrgc2vAIlmUYt2cBvw1PW+NugS8RxxvvfalNnCSTXZBJz2J2D6e4BcH/Dn/wEO+pRnvwwIoveGk0Qd3p0P8ZSxgKj92zZJ/M5EGhj/DnHdE6XaxId9oby9/nSqIJNLsPf9MNA2vmLXRYaOycD0d4uvn/877e+KGEOJ3t2/yfV5o0bCdABva5SUvGnkSdQqO1mbxTejp7mEcrWavACNzcxILAkpCLwg9XfIDqkC1lkbehASZDNYC2E2lyRWvGHsuygUiaXPCpLtTmE7C4zMCtB0cgTJZjuM/W0i+jj8nxekJlFTMoZM3qY5eDesxA/TNxS1rEMpikvX5grCJUG1Xmw9BLVW819r3FKU4J4WjtCUpHfUdq/hDlX7c8VICYBGIc7CkWZ0h+5WAEt+//wazBddW96RIly9xtJ4jXCMhLEkpEySDKXEJ1MSNQbx3SgJrOGSvaJP1vR/fj0k4zEk4xbyRQeD+SJGRRxLMAW83NtE3ybpAPOGQlEcRn3nnQcU4DiOMjlMEQtFLdxMmHlDeEYSxjY6yvuZ4ziB12mWZaEllUBfttAwzi+m1aIU5cZkHKlETHmP4t/bFG3HdaMZKUZSAsb02QSD8baBXQR61wHda0r/Vvu+Ln3vty2uASvbK9S0ux0J/Pcf4sWDzgBOuqr8wtfu9b0pjn9n94OFp3BR8kYAwM3FI/Gx97xXkLkSn7kPGNgq7J1fvVv8A4B3vA+Y8znvb7n1c+W/658+u+PjfgQ0jwEevFR8/56vwz74s3jpjfXYZ+3N4jVZZ/fJ3wrCdsI+wK5zxffP3+KWxwQALP6lsFre6SChuP3YTcAfPgysegy48QPA3u8X143ZXVhHSxxzCRBPet/H4sD+HxFk9HM3A+/+qqi/+/gvgcPOEZbOUw8TymfA/dsdKwbLsRF76XbghMuARGpYn0SK/T4i1MjL/wa8ewHt74oYX3rvHvjZfZ44cdoFd1S0c2aEA5O8lChN7BTyJBupDmtAfNM8WhT2BoQvfbYPSLcNew+p3ZxpJaBLJJo9GApjCRyPWUjFY8gVbQzmixgdUSzhCDw6IjHYgaq4NkrVW9aXoao6D5t8alGKg5AwNYnM20USZlSHSUgwrAQExByLmuQdSS3cKOMYCaFpXnXuS6ApFF2rxJGiYYjvESgSoyUAwtveRdkeBd/zNwipmSao/ToYKpEn+r4JowQkIYly3n1E9TmajFuIWYDtlNYCzcn6b1KJJYQFLqUlsGlF8UisxaNMjAC8vytIneLGsdKmI1cbpewKENwdKF8s0LSJ4edNOCVv9MkiYQhNOVZtR9RcTSUiIolGQGpGSuCFsfQmdUkIfjYRZXv4XcKC3tP6sgXjSYEkCXAjKWllOBG+xRfzYL6ItnQ0e5swdYobJTmCwdCGwS5gy2uCSAxyLlgsAANbxD84QPdbFQjcNUKd6oxsPtmTD8Arzq6YMf9zSOxyKLDifkHyJpqAI75RfvGml4G/neV9P3FvnPPHZ3BK7FHMjr2OXqcZH7vgN0KR+9Lt3nU7Hyz+/+RtQi0sMe9ir10e+WnJ/rlNkMJ/+KD4+wBRO3f2/wCPXCFI7c5dgEM+A9gOxvYNsYR+/FfAU9eJr9/1FaBjiiB5l/0JQOl3pTuF2vbmTwKf/Y9Q0qZagY//Bfj9KULJ/IwgrcsIXgD43fHAoZ8DRk0Vn2dZQsULiJq9E0p1dQe2AL96JzD3CwCGO0wVvvAMitcciaaBzcDLdwD7nDK8c6LEXicBty8ANr4AbHgBmLgP7e+LEAuO2bOM5AWATb1ZjG9PV3kHIwiY5KWET8lrO0CuaAc6uKiFTL6ADvSLb5o6gZYxQMtYcfPZukIUCR8CSru5IAtCippE4bKHo7d4C2MJLGORJG/UsRivNxPmQJXCNivMYZnvICTK+RtKZZ2InvgOpaClVJuFcQSIUJnhz3YPruDJGz/I9JT4BCRRKLeGCOMYAekNiPtQS0QJlaEOQggIgOwI5o1pa1NPWRXhfSTkQSYN8T0SAj76NglEelPUBg4xZyzLQnNSqKxNuwJQqjQDJcDJRB7D9d/luM4XHeSLNpKK6uxasG3HSyoKY7NKYKEZxrbSeCItYUJCOoDaDBBrkt7IlYCNUUtzZHVfzRKa/md1lC4JXt8EXwtESXyPJIGGQi1qOqHXP96CJAOQEPANltzUKE50QdpjaJmgqEjecM5rdOM1Kmc7BiMy9G0Cfns00LUKeM/XgQM/BQxsBvq3lP7fXCJyh762WVl9C0DYIHdMATqnAp07A+l2QSxvekUIumph7rkoHn0xXr7zTuy+8yGAFQPuu0T87NDPis+VGNgqrIazPcDYPUTZx/XLsbO1Cd9I3gQAaJv3DaBtAnDLZ733nfpH7+tNL5b//ps+Dnz+YWD9cuCBH4rXTrhcqF9TPhHaUf9PEKmPXCm+P/pbQCINa/ltmNSzDE4sCevA0wW5+9CPxTWjdhXEqRUTArfedQAcYMqBwOm3Ade+V/wNf/0UcPo/hDo33Q58/G/AjScD65ZWb7cnfl39Z//5P+/rbSuBO79W8bL4nV/F62Pfg5kb/gk8fQM9yds8GtjjWEEoL//bdkXyAsK2edoFd7jfH/KDe1nNGxG4Ji8lSvYBaUsUI89ESUbkM0hZpQVVukP8P3YP8f+mlyu+h9JmNZRtVoNYElLYZwaxBAZoD6lM130dUd1mw9myZVbaBDZvoeq9NQq5aprQJFB754o27FJiXhjlW6MkJZCMkRD3+GiV+MHHaixmuYeXNCSR2cOhkSiJGsXaNFMQLglRxgEEfP42iIJHHr7SrNEMJwKEeP4CNM+9bIg64zQqzfAJcFEqicIQmhT1VsvUZoaJ75Ep4M0SmhQq6zCJAADtcy9Um1C4AzVIskiQOeOvtxrVOi1skmSj1BlvlP0vRSKAvBck4xYSARJyGuXcqFFECl4iQCHyOIK0h0yAA8wLJmiSE4P3DWP7xtVXX41p06ahqakJc+bMwRNPPFH12oULF8KyrLJ/TU1NdMGtfw647X+Bhe8DLp8hCF4AeOgy4Mp9gd8cCfzxQ8KW+J7/J5Spz9woiLfVS4T4qhLBO3E/YOYJgng95hLgw9cDn14ELHgR+NZGQaROezew9XVRi/b1Bz2CN9EE7H60qFVbKV4/XrgF2LBc8AXv+or3eiEH/OV0QVqO2gU46y70ds4EANyQ/BEmWduwyh4P67BzxN/83M3ee2ceX/pdy4F/XyC+PuhMYb28+WXg1XuAv39aKJL3/RAw6zRg7VJBVEs8dT3w8E8EwTxxP2E9nO1F/B7xefbcLwIH+xTGAPDOLwHxBBCLAXvO914//ItC9Hban4BUu1APy/rAANA8StQeHjez/PPG7gFMP6L8tV3fKWLZ98Plr7/jfaiH2Ov3Yd2og8Q3rz8AbF1Z9z0jxn6lOJ//GxDReYpOPPWteWXf+0lfRniwkpcS8RLJC0HyDuaL6MTI7eYKRRvNxT4gWfJ+l1kxk2cJb/i3ngH2/+iw95GQmiFUIqS1CY1n/3tkcxBrX8rNpekDiJGoRCiUgEHqZyXjMSRiFgq2E9n8BUZY7y1KlWajEPANY98V8pCZ8J4WzLaSgCQKkUDjWvIbPiyT1+cKdmTjtUxtFsamkeDeGsYK37RrhGwPxxHkThSHOX7yPdjzt0GIb4o1SSH4/KVcjwR5/gLe/Y/EwrpBkjSMxxGC0EwnYrAsMX8zeRvtEZyvhXXCIbHQbJD5O6J1vOFEAKBxFLQkfdMg9SvDPH8pXBLyRQfFUpZkmKTAxklyjv5ZE2aM5IrR1VsN414BeP1IUi/ZtFp0RAkJBLW9A6rpW1JxDOajdTkJl/gtjpJJ7NYDrhcZ2yduvvlmLFiwANdccw3mzJmDK6+8EvPnz8fLL7+MCRMmVHxPR0cHXn7ZEzVFVU5tGBwbiX+cI4jLWpi4H9A6FmgZB7SOE/+3jAG2vQFsfBF4bZG4bo9jBQGaaALOvr96zdZX7gb+fBrg+O41498B7P5eYMbRgohMNgNL/yR+1jIW+MTfBeG86nEgXyrpWMwB939PfP3OL4mYALF4//fXgTceFuraj90MtI7DTVt2x9mJl7F7bB0AYJfTfgIkm8qVrCdcLmrWZvuAv54BFLPAHvOBE68AChlg2Z+Bmz8hru3cRbxezAG3fl6Qvm0Tgb4NwNO/8z7zmIsFcfvApbB616E/NQGpd34F8aYh5Sdnf8L7upD1vt7j2FIb7Ql88NfATf8DLLkGmLivIJlTLeJvnzK7vC/nfA449Gxhnb3wREF497wFfPA3QkE9/wfAFXuJfjj2e8DOhwD3fsd7/7u/KohqH8b0r4C921GIvf6AIPvnfQek2PM40Yddq4Ql9dRDaX9fxBjXNtyeOVsoRuaeuaOCn56UKCl5U5bI+Isq8y9TsL16vOkOcVMEPG/8NU9WfB+F7U64miZ0RITpxXqYLEiyWEaULUugWg1RL4qCEAlDEvnfP1KMzBLYvE2UnL+RWqvlgh/IyGsLtrCLjAKSEInHrED2kyTk6ggOh0js1gMRAHSHdkEITSD6vvGrzUJZ8JkmIhrkPuJvu2xEz71syOz/RrPiNV53jvAgM7SSN6J54ziOm5xo2ko7G6JNKKy0B0Os0SzLirwGvIwjFY8FIjZoibMQSnwC29kwiQDZgg3bjiarP+zehjKBxnhyxAgI+KieeUA4QhOI3iXB/zmhkoqiVOI3CJGYDZEIX7Y2iuheEj5JkmL+ht/vma5FT6LkDWlNHPW6NV+0kS+K50WYMwHTexvG9osrrrgCZ599Ns4880zsvffeuOaaa9DS0oLrr7++6nssy8KkSZPcfxMnTgz+i5++EbBrP3cmdz8NayjBe/S3gS8+IwhXQNSC/dC1wh74w9cJde3e7xd2wo/9zCN4ASDZIix2Cxmhgq2EYh64+5uCWJz2buD9Pwe+8gLwhSWCaJy4ryB4B7uA284R73nnl4HJs4W9czEHa9ViAEBs6R8E0dw6AZhzjvc7nv878PRCABbwoeuAiXtj2gV34FF7X/cSZ9fDgb3eL97/7B+8987+uCCJ71gglLntU4AP/ErwEX5VrBUT7dI8Stg2b3oRaB0PnLO4XBU7/T2iLdctA5b8CgDw3NTTxd/oR9MoQTgDgF0UZLbEivu9r99xold3+J/nAj+cDGx7E3jpjnI1MiBsl7vfAjp3As64HRg9Tfy9C08UNtvtk4DdjhTXPnEt8MKt3nv3Phl470XAru8q+8j919wIe/YnxTdL/yj6kxKpFvE3A8Dyv9L+LiIMtWie+a27DEXy9gGTvJSIi+ycFMRiMLKNVK6IDpRI3qYO7weS5F3/XHl2SwmNklFNmfUX5pBZZstGGUeQwzJ/LBSWhMYPQkZge2eaiAB8CoCIYglvCUyo0myQzXaQOPyKsMgOmUdoKWpcCUh52B3Cft70s8Z/fVSxhFWbpSkIvBHVJowyoSg4AZ+Mx5CMCyInurVRuMPuhrPiJYjDdE3AMPd4IPr561ebBSPgCQ8yjSfyhExOJCKJAqu9G0SJT+kOFCYOIDrCObQSsOHcgQyTzRT1VkPeW6NW0MqkFZEkGdxJw7TKmsJtJUwcQ+utRoGw9/hGcRlz10aRJheH3/+SiANC7jsjE5CEddKgXJMwyfu2Ry6Xw9NPP4158zzL1lgshnnz5mHx4sVV39fX14ddd90VU6dOxcknn4wXXngh+C+/55uChK0Gx8Ge6/9V/tpJPwPe8zWhRj2yZFOc7QZ+eRjw84OBK/YBfjAJuPpQ4KaPDf/M/94GDG4TX69+fPjPAUG+bnlNqIFPuFyoYF+4FfjbWcBluwM/mSnUoz95h/eenQ8VtQJLhGTiplOxz1t/Ruzhy8XP3/N1IF1SxeYzwL0Xi6+POB+YeZx7ZpyHN+esQz8rPvOhy73f8+6vCVJx6R8FYWrFhc1061jx8zG7edce+llgl8OA1U947fy+K8W1+/mskGfME4T27V8BHBv2XidjY8f+4mcv3+ldN95ntfzyv4XqVsJPvgIeySvx1zM8QnwobjgJ6F0vlLtn3CHq/m57A3j29+Ln+58m/n/8l+U1fTe8IMjmg84Y9pHO6OmC0O7bALyigbDc7yPi/xduBYrRJSHpxB8+Pafs+8vvrqOeZ9QE2zVTQip5kQfgRHrI3F5S8lpNnd4PRk8Xdg0DW0R2kCR9S6BUEgU5lCE5CBkBoQmINm1Nj3w6hKlf6Y+Fglw1bSkaKhEgjN1rbkAsBnY9HOiYUj2OkEqEqPrGbwkcxubcdL23NMVYDaNo8tlFDuaLaG8auZV22MMy0tpIoezmGuNAlUIJGNS+K+pD5tBqMxICLzwBQFE/KzC5mogjXyxEtzYKqeSlsX4PPl5J7dZDKIqLJZeEIK4G1RBWbRb589d3SBzG7pXi+RvEkqpREor810dORDTA/B1JApzpvvGvKzN5Gy1V3ADDxBH0+Rv1fq8QUm1GoaBtlHqrYa1No05u8rdHEOtMd95EWUPaLVOw/am9YzEL6UQM2YIdmbq5Ie3WgxDwBGUbwpT58u8nHMeJxCJ2pM+9qO5psj0sK5h1tIwjUuFGyLM0xvaHzZs3o1gsDlPiTpw4ES+99FLF98ycORPXX3899t9/f3R3d+Pyyy/H4YcfjhdeeAE777zzsOuz2SyyWU/81NPT437tLPk1Cod8DogNPwMuvnIPRg2+4X1/4BmwZ8yHteI/iP/pw7CKufI3bHnV+9xUG6xcX82/3Xnqdygc/Nkhn/Eaknd+TXw9sBn45ZzhbwSA+y4p/6y/noHCmfcgNno3l6adsfHf4medU1GY9XEgLxSlscVXI969Gk77ZBTmfAHI5zHz2/fAgo2vJTwlaLFvM+yNryIpyU4A+QPPBNYuR+KOr8ECUDziAthTDhafbRcQv+fbroKwsNMhcAa6kbj1c7AcG/Z+p6I4Yz6QzyP+9O/d65zlf4Mda0L8rafhpNuRPfJi4PHlyOdyiD/8E++6Dc+jkB0EYgnEH/0ZYgDs6UcgtvI/cF65C4X+LiDVWvobf46yu8faZ8RnjNsT2PIaLL8N9tYVcG44CYVP/ANonYjYoecgfs8FsF+9F8U55wJjZ5YV6yt86k7Eb/4fWFteQ2H53+HseQISzWNgDW51r0ledxSKc7+I+OKfw35qIYozjqvcj1Fh6juRaBkLq38TCq/dD2e3owJ/RL40PuT/ujFnWmfZ97944DV8+ejdqlxdDtOxjwSqsQf925jkpURJyRuDgySKkS2AMnmfkjftmxCWJbziX7lLWDYPIXkbxaaR5CAkBKFZli0bEck70ozMqGqKhbUEDrXJXfU48ORvgZ61wFHfBKaV21aMrP5sgDie+I1XJ+G9F4k6CWVxBD9QBXzjNar5W2YJHCDbvcFqipkmEmVNsYFcsYw4Hwm8w4egSiK6NgmnxDdrezfUJSGKmmKhlfgRH2SGPuxuECVR1BarwAgOmVNx9GYLkbqciDjCEYkkxHeD3FsDjZFU+dooCpI3jO2suD7aNpHP8ZiFQM9f0kS8MIpEinqrAedN1Ara0Ipikntr8DYhsX0PcU+LxSykEjFRiz7i5CbjThphyyU0yP6XhCQKmWQVdd+MVFEcZU3tMGUK0hGvFYGRnQlkC3Zk9/kwjlpA9Ovnou0gF6JcAmW98zCJ8ICw4g461ivGEbJvor6n+e9nQe5LFAlwYV21GDsG5s6di7lz57rfH3744dhrr73w61//Gt/73veGXX/ppZfiu9/97rDXC1YSVu9aPPvn72Pd6OF1TI95/ryy752lf4K19M/oadoZY4o55OMt6E1PBiwLY/pfAwDk4i14YK9LkUmMwvuWfRpxR6gqF+/2VWxtnYETl3tqUmvLq9h09fHY1LYXJvYsw6SeZXX/9of3+BZ23voopm95wH2tPzUOrX3rMXjt8UgWBzDE5BhW92q8fOMC7LHxDqwa8x5M23wf4gCeHf0+rF70IF7ssgDE8f7YYzgg9pr7vvWLb0ZhyT+wa+n7N8e8G8sffAzveflidBQGsbF9Xyzu2gO4U6ht91x3G/Zav8R9/6qH/gzn4Zux+9bXMZgcjftxJAp33olxvf/FO1+/z4tv/XOIrz8fALB8/Aew8vHlAIBnb/0Z3rn2GRStBOJOAVauH4/9/VewYOM9a5bAtuJY1PpBvCv1X7TmNmHpX3+MtaPnYHzPcsxdIdTHr4+bh9023+v+rlcSe2Gm8woGk6ORzncjhlJyy+ZXMHDNsXh0jwuQKsQwDwBWLcbjf/kpDln5C5fk3dC+Hx5/bjP2HHU09lp/C/r/fQkeXJnEPu1zMGPw32XtvuytDA4EYK24Dw/cdiMGU+Pq9u9IsH/LLEwfuB9r774Kz+46GPpzFi1aVP8iIlw1F/jyYo+P2ePb9+CquerKZJOxjxT1Yh8YGAj0eUzyUiLhFZJOIR9ptqxU8qKpPOsBOx0sSN7X/wMcVm5LQJFt1yi2WWGy/mIxC03JGDL56DZS4YmIaGt5+S2BA1kShumbf30Z2FTKtnvytxVI3vCHZbKmWEyFJPJbaDz4I+BdC0TiQwlh696EyjK3ba9W9hD4Ny+BNlKJEHHUwciSNKKvHx3mcGggV4ysTTxr4rCb7cYgVyM9LBuBokm+P1KXBMMqr/AHmXQuCcFs76Kv6ZkNq+SNWqU5QgI+qkOqkarNTLskpOKeS0ImX0RHBC4JjTJ//YriUGozCgI+gGrGX78yKpJoxA4WEfdN4OdvxEmSQEi1GYmDRXC1GSD6JhchSRR2/kauFvX9PUHUZhQkUbi9TfQkURhCEyCcvyHV3qbJ1UZJxAPkPTAfOQHfbNgJx19juFHqnYdZowGibyOZvyHqNgPRJ1mNNJGHIsmKSd63P8aNG4d4PI4NGzaUvb5hwwZMmjRJ6TOSySQOOOAAvPbaaxV/fuGFF2LBggXu9z09PZg6dSoSTh6AhYPtp1E84eKy91iv3o3Es1vLXkvYQrk7ZmCFuOZDv0X7HscCAApvPYP4H05GqjCAYxJPonjo5xFfKsgpe8qBOPi0CwDLQv7QmUhed7T7mVO6nsSUricrxu00jYJ95DfhpNqQ+Of/AgDmztoT1sY88JBH8qY+cTOcmz+Gjv63qrbRvmtvAgDssfGO0md3Yr+Pfx/7xeL48rfvQROy+EZSXGPvcRxir96FnYbENXVUArsuO1u8v3UCRn/6rzihdbxoizVPIr70H+L973g/Yi/9s4xcTX7o1zh296MBx0H8d1cAAIoHfRromIL4A4KYd8bvhb0+eTlmFG0sWrQIhxUeE28+8HTYvesQe+XfeNfODqy1S8Xr+52Ko0/6OGL3/3/2vjtMjurK/lR1miRpRjknJCQESAIBIueMCQ4Ys7YxrI1t1nht48VefmvjuOuE49rrgI3BGUdMMgYLBCKYJERQQEI558nTuX5/3Pfqveo0XfVuq1qi7/fNVx2qam5XfHXPPeesBZ75HhY0bcL8k65F9I5/hwUH+XnvxuSZFwB/VHnM2kE5xk+9EVi7CNj0NHLHfxD2inswrG8zLtr9Y2Tf/Rc4238Au3MjTlvz355tMDqzGReffw6QORnO9x/GsORmXDIzAufEzwE/8oK8x2z9BfJTToG98Smc07EN+TOuKbt/OMLaPBz4xaOY1LsM4847q9jTeJDIZDJ45JFHcN555yEWM3/uDxofe+Zhz/uLLrpo0Gfdesk9SFSbu65AUE00PHlrGREvyFtzT14AOPwCABaw+m/Ayvs9X8nibk38ZgIUmXmlXepDiigoI4LbG0l/WK6pp1g2DexR8iTo2VE0i4nsHUCFkKpit6bdn0srz4uCPAI/5FbLFk12A9+dC/zsfKCreMAVuKAa95lHFRGEXVUTv8YAcutADeUiQy6W5fOOesj100ATr0UhJICkd4FKAk8e9cHSDLJfgNoyAQN5A9dELrI+mERB2d5s15GAbLNayK2nApy/UiUBALtKQvD7HvMxEjKjidYVHEgkKW2HJY+gLGv287dO2GZ5jW1WL3KvgRtHa9Ac4S+P+mCb1YsUbyFIxJmH733DfW0NyL6T48Xw900Nvb0D+p2HfoxwA4nasebLrqiWfuc+lJtiERtR0XTO3bjiV0GKvYHV0He9NvY8DZD3UI94PI4FCxZg0SLF7Mzn81i0aJGHrVspcrkcXn31VYwbN67k94lEAkOHDvX86WFvegaxvasQi8UQi0QQW/M3RH//bu9KDjsbuPIuz0fRw06nZWIxRKcuhPWOOwDLhr3sV4j9RBFe7Eu/i9ie5YjdcQ5iPztn8B8UbQJu3QfrPzcicuKHED323cBJN9JXf7wGkSe+5pk99ujnYS380ODr1cJKdiG28i/41J9eAwB8MPIAxlv74AybBPsdPwMSQ4uWsdcpYNl65y8Qax9Pvz/Xj+hfPwTLyQFzr4J9eYHP8YJrEZ19Ac27+n7Y25cB8TZEzvpPRA47U61z5EzEEk2IxWIY1r8ekQ1PAFYEkVM/DnvaaQCAyMu/hb2K8A371H9HLBZDZC75+9qr7kPsN++AlewEJhwH+7RPIHr/R0v+/si8q2DPuohe71sL6333AS0jYe14BbHfvRNWvwbwTzkF+NR6YMh4WMlOxNY/itjQUbBOIMA7+vR3EBszG5h6mncb51KwBdAaefk3iNmWe7zU4i869RRg2CRY6V7KMcA6ANQ0x2r+Nnz1Es92PPzWRw6a3IP+VZu7n2iAvLWMSBSwaBPHwek7ly/P5B03Fzjl3+n1ff8OpHrcr7gHhI7jqA7EkAuZQR+kauVJFD4jgtbjWxLYZYtWuT32rQUcLeee7UWzBGHQ6tuvqm2SywJ7Czr4end53prKvVa9b7Y8D3RtBjY/C/z0HGCg0/N1vRRU9XUF8XvjlWaqD79GmUfYLE29saHmMueD5RLgGJGeYkD4DTTcxbKgbO9aeFnL67S/RgCaV6oksOQRkG3GPRYIAmh68mBqjgjKNquJSoLhfY9PJSHgNT6qjleOkNvDr21DLVnWQRvgagGc+YmajZ99nDN6HjXxbQ5wba2NkkbIAHydPdv4l32vgd95gGebWMR2n8m4GbR+VJsAfnZkvQCajuMEGi/Wwu88KHCmxs8819ZUnZy/6v5rV6fQJUJX9+IKc+WmQ/T+Wwe1iaDj1kYcnHHTTTfh9ttvx1133YWVK1fihhtuQF9fH6677joAwDXXXINbbrnFnf+LX/wiHn74Yaxbtw5Lly7Fe97zHmzcuBEf+MAHgifx1HeBF+4AfnA88Pv3uh9n7TgyH3gceO9fgCOvAKafqZYprDvOvhi46OvF6x43F3jm/4DtLwNwgJGHV87FsoFdK72fnfM5YNx872fz3wPE24ANS4BHv1RyVZn3P1r+/9zzYZy3/FM4wtqID0fvo399/peARBswdHzlHHX84YH/ADo3Ae1TgItvA5o7vPOe/2Wa5jLKS/jkjwJto0l5Uca6xUDfXgDAzJ2CqHb0O4COKUolcu8aAA4w83xg9BH02di5wPDD6HXnRqBtDPCOO4C/fBhIdpHK6XH/qv7P+GOB9knA4cInd8MSYNhE4Jq/Uu5bXwTSCj/Be/4EtAwH5l5J71+5m6YnfgSINtP86x4DjruueDu98Q8i/fVsA96osZSwbQNHvY1ev/bH2v6vAxyOw1OvejNFA+StdUSbAABxi1F2R2fylui0wVn/BQyfDvTvBV75vfsxt29kJucgJ4rEJlK8HBF0kFyrTsiwWV5BJYF9F6kke7ZF+Az07CCNRy2CSBJGhKcYUOU22b+B2LuxFmDEDPqsrzTIW3O2mc4o7tlOg4cSeYQNaOrr8nX+anKvXDdd0yaNevGd484DCHZtrc0xElSCj7vIHET2jp/tHdQ/i2t75AKyzfTjiRs4CwrOcBepgvjfAXwqCToQ4UuSv4aNPIk6UUkIeh0JXa2hhnKvfo7XWMSCrI2H7YVbM5ZmnYyfAX8AALftCnAAmxMHiaC+6649ADcTP2TVCEBJzwb1GQ99m9RIJcEvaOaO0WrRJOmnuVjkkck5yObqZEwSOpOXd4xmfI2vgSS/37E8dy2tXq5pwccBvA00juNo+6ZRpn4zxFVXXYXbbrsNt956K+bPn49ly5bhoYcewpgxYwAAmzZtwvbtikSyf/9+XH/99TjiiCNw8cUXo7u7G08//TTmzJnj7x+3jFKvX/0DcP8nioDbB+b9FBhzpPpABzD/cgOQTXnXecL1bu0fgAI4twjp43f9BrjxeeCSb5XPK9MP/Pg0ssPr3U2fRePAnMu98138DeCtP67wA0GAcQHD1LOKyHP4W+IWtFgpYPJJwJwr6Atpw1cu7n43kVhe+T3w6u8BKwK8/aeEPfzmKjXfsMlAYgi9fvFOYP96oHUUcNJHgPVPEPBp2YRnpLqBx78G7F2D8Z0v0DKnfJymY47y/v+TP6r9RovAXRnv/AXw3E+ArS8QGH3lz4EL/kd9v+NVmo6cCXRMo/rxusXA2KOA995TTKDrFVLic99F09V/B/r3AW2jgAXX0mdP3AbMvhROSwnf3Zw4Rl68q/g77jhaANGrHy4iGR1MUcjmnXbLgyFlcvDGQXf3/MEPfoCpU6eiqakJCxcuxHPPPVd23ttvvx2nnXYaOjo60NHRgXPPPbdo/muvvRaWZXn+LrzwQr6EI3EAzEzeTAVPXoC8gI8nCQG88HMXdKslEBHE9wZgLDIbysywS4oGLHan/D5IOQ6QL849qPyt7+2xZzVNp51O02ySuqb0XII+OPhhAsrByMjDgTbh4VHA5DWVi6z6/N3zuvd9OUZxyKy3wJLAIg/HqQFIFPAhl4tBG5glUiMgIh6xEfHR7V4LJqBxAw0zcBZUkjBsthm3b3MqINtMzzvs4lCtgES/gGbNGE0hN4vo6/ItoVkjv+TQwarAzSK8x4inkOljm3iktLlVEgJ64bID8GFLE4txTdwn20zmnck5yNQLSMQmQR9w37hMfGawOeSGBD2XsIGzoFY0tQKJfDfASXWRGvg2+5Jb1/KuWs1qkAhs4cSsmOSqFIXcnBj0XlOLBpqgClLNcd6xUfBrGrdaUn2M0VLZvMsVaDB53zxx4403YuPGjUilUnj22WexcOFC97vFixfjzjvvdN9/+9vfdufdsWMHHnjgARxzzDH+/2k+W/HrzIeeLpg/D6x7XL3fvRJY/BXvPLkM1UJlPP4NYMOTBG4CwJSTaTrr4uJ/aEcJZDzyrYCTJ1D0e8cQy7hvL/DM973z73gF6C7vwwsAkae+XRorKBWbngFW3ANseKr092f+P+Cib9DrfeuAH55MwDgAnPIxYq3+YCGw+iG1TD4rCoY9BOACwBmfJgbyI7fS++PeD1z1K3r9ws8QefAm8tSdeQEwRgD3dsG1QAeu1/zDuy/3b1Db6oofAe2TvaB1PkN2g5al2Lwy5/HzgQ89AVx9N4HeAPDGIpqOmUOs4XwGWP5n+uzkjxLWs/EpYOsLyEsguFSs+XtJGz/WGHMUMGo2Acur7h98/jqOtx07wfO+web1FwcVyHv33Xfjpptuwuc+9zksXboU8+bNwwUXXIBdu3aVnH/x4sW4+uqr8dhjj+GZZ57BpEmTcP7552PrVu8JduGFF2L79u3u329/+1u+pKPky5tAhq3YPZCp4MkrY967qJNo56tu9xD3g6UEVmwL/iSBayE3F9TTk7kQkgpa7A6ax70fBb42lW5oWph6JFa9XyRrddxcoKmdXhf48h6QIpW8eY+aTfIfQDHIm/YPaAIag9YvuzkuOtf6dpfM44DIZmXTqguwIFKGvpEAX1EmMMuauds98EOuX5nzQaIeZbPClsA1ZeJzSyMGbdLgakgIyjaLRmzEI7UB8MIu3Jnea7hkVgMXdrWiHZ9Kgtn9htuLz7ekKHMhM4j8PMB/jHjvvwHHrSEXmZuZz996O1aDFrs5cwkuxct83wuqUsQONtdHQ4LepBF2M09QKd7aKeEEk9LmrgfEIhaikepzSdSyAe6gZfIye/KaqkbUwpM36PNeyNc0dk9t02c95nMmSC6NaISvSO4v/92cy4tllXe+CgzsI4Dyyjvps6e+C2x+Xs3z4p3eZVJdwJ2ClThipmICDx1H4KMeR18JHHYWrfu6v5E8c7qHwNBvCIVOPe64APjbpyr+RHvlX/2BfX+4FrizBAA96gjgtJuARz6rPuveCqR76fUrvycQN5cCpp8FfGiJkine+wbwzA+oHjp8OrFfV9wDbHuJtuUZnwamn0ESzPks7E3PAADyJ39c/a+MBpwDBNACwN61wJ/+1fvdX4Q/8YkfIQltmZ8ef3o/8PT/krUmQOzcvHgu65gKzLoQmHEOvV+rSV7PEyDuy7+j6bAJwHzh3/zEbcgfc03xtpPh5IFlvy7/PUdYFklcA8CrB7dk87feOd/zvsHm9RcHFcj7rW99C9dffz2uu+46zJkzBz/60Y/Q0tKCO+64o+T8v/71r/Fv//ZvmD9/PmbPno2f/vSnrpm7HolEAmPHjnX/Ojo6Sq4vUEQI5I0jy1rsrsjkBUg7fvZb6LXoQKmVR5NfSeCIbblF5rCLMrXcJn4i0MP2inuBl35J8hb6DcgoD5/7RbJWR84Choyj1wW+vKYszeqYvCKPUbM0kHenZ5YgstGAz33jOApwlv4RBSCvMaDp54Hud1cD35wF/PNHZWW0AX/bJBaxEbV5PcUCs81cKV5eBkDYhcygeXA/bAf1NtPn52N5mfk2s8tG+y4ycxcyg7HNAMXS5AYiwmfyGh6rYY8DxPbLO0CaiQlo7vfGe7yGDYjUm7dokFwS3BL0WbOxEVexO3CRuUbNXn7B90TUdutOYV9LuNmRdXNtNR0bMTXipXN5SLchvwB8zZ47A48XmcfPId9rgjY5W5blv6l3sFzcfRMM+A5dpahG52/Q6winzVfQ88Zt+GJWJ/Cvdsadh2mTFW+TcyxiIeajSaMRjfAdMy5QYG1hnPbJ4s/WLabp1FOJbTv3KgLu7rkByAyQkqEOul7/GAG7MkbN8q5v0kLv+7496vWUk2n5y39QnMdZ/6VUCwFiBf+/bZ5Zsu/+S/FyJ91Y/Fm1sXsl8KWRXpayHt1bgKETgCvvIv/icXOByeL3vfoHAlQB4OzPUj3S480rZLOPfZ+7uj1ts+FMPF6tX/rgAmTNl88RO/h376btPvEE4OR/V/NMWACc+3l6ncsWA54r7wUe/ozKq28X8D/jiJn83O3EZh4v2OHrHieGNgAc9Q6Sl97yPAHMAHDqx0mueu0iWMku7G6rIBu+9BclFThZ46i303T940DPzsrz1nnMm9QedgoHbRw0d890Oo0XX3wR5557rvuZbds499xz8cwzz1S1jv7+fmQyGQwfPtzz+eLFizF69GjMmjULN9xwA/bu3VtmDRSpVArd3d2ev7IRlXLNGdaHhoqevDJGzaZp9xYA9dORCdRCCtCMpcnvG1njAmJmAHjwZvW+23tzNwUSq9oe+TywR3hXjDwcGELeGTqTlwUkqgrkLcHkLQOuBgUiqnqA6dsDDOwHYAFThMxHGdlo/93u6iG3qsjnSDrFyQEPfZoaAkrkEY/Yvrrdgdp54AVmV9XJ+Rt697+YP5vnkYs0YZtxszMUEzBcdnNQtQZuYMYtlvkEZoBaAmdBPXnDPW9qlUdQ9h0AJNn9gUMu3AVVF2G+xtcNWCXWE7X9FzLVNgm5ualOriO1kn33ex2xLEvJE3OBq0G9cOukOUKdN+E2rcj509k8cgwgkX7uBW3mYR8LhM0oztbXtTWI1Kt6zmIet/pWOalN40rYYyNTaXGAxyYok1PXgcAe0iFb0ajm4nCtAeqlSaMRjfAdV/4MOPyi4s9nng+Mm1f8uQR5p59J04u+RmDr3jXAo18Gnvw2gb4A1SMnHAu8+w9q+VX3K7AQKCZqvfEIsPwe9d62lQ+sHifdCLRq3q8TjwO2v+KZxV56Z/Fyp99MLNtyMWFB+e/saPnvZERi5G8rQcxpZ9D08a8R43fkLAJXvzyK5J5bR3mBZ43ZvHbUBepzxwGe/ZF6n+knqep7biDwuW0scNUvvZLMb/m2i8Fg3WME4sZai3MeqQHv2STwwh3Ag/9BbOZfCbA03QP87HzgpV8RpiJlnCXw3DEVmPtO2kxPfRsbRp5dfht1bS4iZrHH8OnAhOPoWFxeAuw/iOKvHznF837qfz4QUiYHXxw0IO+ePXuQy+VcE3YZY8aMwY4dO8os5Y1Pf/rTGD9+vAcovvDCC/GLX/wCixYtwte+9jU8/vjjuOiii5DLlR+sfOUrX8GwYcPcv0mTJpX/p5LJa2XZHhqS6SqYvABJCACu/nutOjL9PrwANfQCCvnhMrDcXNwn2LzjVaBXO+47N5XMI2ghpCpPsa5NQHaAvAg6piomr5aX/jBWsy7zfE55A4+aBbSWZvIeEABeDjA6pqrBit6ZBwa/xmoLQwUS3u7gVETQgiqgwAt+T0+/D/7MQGLg60htmJH+GU1q+3FsExO2Gfs1PqgnYM2YCEGBGe5zJnghs17uv1xglTlbJVyPxFjEcj24OdgZmVweWVHIDMqA5wMAAjKaatUcYXCsckhpBx2j6cvUy/lbP0AEt11CgH3DzSrOBrvO1wtwVrtjNThIxJGLXEfEtnzZFQGogQe84XNnnYDN3OOAIGMj9ZwVbi71ck1rZh4bmW4PysX8eNXX0eR3TFInzcX81xHD2kTIz7+NaESguO/fiz8r5ZebSQIbBalMgrzNHcBl36PXz3yfQF4Zc66gafsU73oeuEkp6z3/U/X5whtoev/HvbZ3Orgp49tHAjtfU+8f/zrw8ws9s9gr/1q83CO3EuCpRb+TAC6+DbBjwNYXi5eR8ZZvl/9Oxv4NwJ+vJx/hZ38CTDrB+/2e172g4xmfBhJt6v0qBeClYu3q803PALtWEIN30on02S/fCqy8j/K+6pfA1qXAmofVMjroLcHYY95NjF89PvKs97ed+gny6S2U0t62FPjrR4Dbzyb/XYDA60VfJDXJU28CYMFe/SD6EqPhtI4qt5WKJb1rEUdfSdNX/1B5vkYcsnHQgLym8dWvfhW/+93v8Je//AVNTU3u5+9617tw2WWX4eijj8YVV1yB+++/H88//zwWL15cdl233HILurq63L/NmzeX/8c1YPIms3nNk7cCyDt0PE27vSAv34NUMPasvkzYMsm16nb3zdKM+twee9/wvt+/0ZtHQI81X55iuwSgOWIGeRoMEdIh2uDE6xtZIyZC5ybqvookCFxtE40gZRm0NexSdRnFs6hDDaDuMT0PQ7k5337JMoq8gU0KmbVh4gftdmeXnQ0bSAz40B+PKLlIjm1ixDark+5uftnZ+ipkBjp/66SAWC/njdwe/NKI/vIgJiCfXKR+zPtlwNeMnRHQd47tvMkGG6Pp92sOJlFQj2KgdkXVsMFV0yJz2E1Wei4c5282l0cmZ9akETq46reBdZAIeo3X/VZZQCJNScOPXRHAb+9RL+CMuWw08/kboAFdyXqHe22tmVpSwH3DPjbyuW+4bb5kY4NtwV1vteGO0ULeN24djfs6YqCIx9EAZ8LEb0QjfMXetQQAWhECEGXc//Hiebc8R8SWtjFKKRMADr8AmP+e4vlnCx/evWu8ny/9BbD4q0D/Pu/nc98JjJ1LaoB/vZGA4M7NwGP/XbzuAbHs6TcDh53jlVAefwxw6XdL/96ldxV91GKliFW78EOll5Fx70crf++ucCSRgP52M3D3eyvPO0STnE71As/92H07rH+9+k6C4Ue/Q23XAeGnfMk3aT333OBd9/I/i/X2ACuFJ/Hcd5EMth7rFgt7SzGOO+FDwL/cDXz8VeCWLcBxmt/vtDMUkUjGkm+Sj/Gow8nHGcCMXQ8iP+9fyv/uVfd7gfxaxJFvJVnprS8A+9YPPn8dx4avXuJ5f9/L28rM2Qg9DhqQd+TIkYhEIti508vO27lzJ8aOHVtmKYrbbrsNX/3qV/Hwww9j7ty5FeedPn06Ro4ciTfeeKPsPIlEAkOHDvX8lQ3dk5erEJJKY4g1QG8qgrwTadq1FXAc/g5zE0mkKF9xyHGc4MVd7kFy0Acpv/tGgrzj5tO0swDkDQg2655ig+4b2UU25iiaSn8IzZNX91bxLQlc7b6RYObImYAdUd4ORXLNQdmRPgoyujewyyguyEMUD/wDmj4fcCXgLEHvAkZxKiBDBNCKquy+VWEXd+uELWogF6n2jfm11YRtxg0ASGAluKQol7SpmSRhOscrFxlo3zAXmVOGhcywGYm18lsNxNJk9HuTv8eyvCBHNcHO0pTNESFLAieDNovoIBEHAB+Q2Qzwe2oHb46oTbNX2OevSZGZ04om6bFLODivae51JGTfZtu23GsgC0jEMX4O+XitlSKPXwCvZg2BBionHMdrLu8gnQvaQMPcpJENBnxzN/Sa7BvOa6t+zgRt0qiX505ub+CgNZK8A/d4NwmT8XMjGuEr9q2jadsYJbMsY8dr3vfrFtN0+plA4TVDSPW60T4ZGHs0vd7yAk0nn0SMWQB4/KvA16d5l9m2FHjb7YQbvPGIkA2+maSJZZxfAPhaEeCK//N+tvDDwIJrkZ99WeGv9cRxyR/iI2nBYv7n/xETuTBO+XjphY96O3kAn/n/ir+LJoAhgmSW7PR+pwPpAPDY/yhp56V3KeAWQHv/BnrRuwtYca9I+v1eYHjBtcC8q4E/XEf/a8IC4N+epe/WPU51z5X3ETg//DCSzy4EeZd8k2z+pFS1zgZODAFOlx7LFvCOnwM3rwFuXgsM05i+u1YSmHz6fwAAJux/Fs5kr8xwUSz7deXvTWPIGGDa6fT6tT9Wnvcgi4/+9qWwUzgo4qABeePxOBYsWIBFixa5n+XzeSxatAgnnXRS2eW+/vWv40tf+hIeeughHHfccYP+ny1btmDv3r0YN24cS96SyZtAmm2Q7KR61JtKnrySyZvpA5JdbpEqnc0jz1BkNvK9YSwyp7J5V/niYPWt8t39L0HeGefQtGc7SYmIMGMSVfkAs2sFTccIg3mXyasaMUzYZu5D7mAPMDp7FvAyefNq0GbsyVvNg9QeCfLOVmBzqgvIptxZJEgUNI9UteevBJynnkrTIiYvA4DH9XBZL+BqwAKEYgLy+vAZyc0xslWCsM1qtm/CZnsHlI3mlouU2zXQvmGUedMLmUHlIvnuv3VSUDVgAnIWmVMao8l3IZOb7R3w/OWXfQ92jEQjtivLynHeuNf4umDyynFajRrxqozgCjTqOsIjpR1sewC8x6t+DfDbpMG+bzJB9w33sWogc84Izhgp4dTL+VszJq/fhiKaP5uvwibITx4Bzl/OsUBd2Z0EfKZI+FUZGySCjtH0ZTjHz4HsTpi3ibHNCHsDTTAlOoBnvGjSCNCIRvgKSZDp2UZs2PHHqu9+dIqSVQaK/XhlOA7wxDe8nzUNU0DwludpOvE44ITrgQu+UjqXTc8Co2cD536e3j9wE7D6b955Xvy59/3jXwV+e7X3Mwma2pXPn4nWbjyQPxE4+zPlZ3rqO6U/3/w88K0jgMX/U/xd91banqVCAtbDpxN+sWsF8OofgWwaeFqAzDPJi7d9YAO9f+mXQD5DHrPDpxMLWsYx7wUWfYHYqk3DCIQdPZv8lJ0c+f9KqeZ576J9IsF3GRuWEBB/uJC7Xv137/dDxwGjjwTgKKnr1pHAFT/QZnKAncuBsUcjP+N8WHBILruS//GiL3pq1DUJKdn8yh+8x/JBGOu/4pVQ53jWO9TjoAF5AeCmm27C7bffjrvuugsrV67EDTfcgL6+Plx33XUAgGuuuQa33HKLO//XvvY1fPazn8Udd9yBqVOnYseOHdixYwd6e3sBAL29vbj55pvxz3/+Exs2bMCiRYtw+eWXY8aMGbjgggtK5uA7NE9ergGhleoGAGTtJmUqXiriLeQXAADd2zyDWZYilVtkDvAgxVhk1oEV3xJedSKh6bugunctTSctVEbyXZuL8jAphAz64L9zOU0lk1d68pZg8poAiYM+wOzWgFVAySQ7OU9X2EDAoqpbQPTD5B05C2hqJ68IwAOwBpYW93v+7l5JUwny9u9Vgz8gcEOCvkzVvlU7lwO/fiew+uGir3J5B+mAhXffeQwS7jYJWFBlZ70FKlLxFSBM2GYugMdmUxAsF265SMUE9K+SIIPTLzlIIZNTLlLfrkHPX7bmiINcNlpfhqVYZlDI5GerBGtu4gbgWRpXGJm8Rr6vDHnk845SSQibSRTw/iuLwQ43kyhklqY+jvfbpFErcDV4k8ah5bdqco3nfu6sO7/VgNcRfR0mYeSpzdkkqa0jqJIG9zES9LmTG0g0UwfiuLYGswgC9LFRuPumXo6RWMRCxBYNcKws64OqRN2IgzE6N3nfn/Ep4MSPuG+tVwVAONAJbBPswWlneJdZ/RABhXZUfbbjVWJ2AgRAAgRSAsBJ/6ZUGPV49fc0Xfhhqu2WikKrPoAYwHr8/f8BK+6FveIvxfNqcXv8Nmz49JFUq/QbXZuAZJf/5WRc9A3g1I/T68f+m4Dcnm2kCHkRgbhDBrYA6T7gBQFsH/evwF8+DOxbq9bz6JcVA/ny/wM6hP/xkW+l6TP/R4xeQAGeXVvU8rJ+vuRbJLsNEJCrkaYAAO2TaPrGIvXZlFOVYirgegDnT/4YAMBa8RdgfgXJZgBY/3jl703jiEsJh9rzutfD+SCMwmegabc8GFImB08cVHfQq666CrfddhtuvfVWzJ8/H8uWLcNDDz2EMWOIubdp0yZs364Aph/+8IdIp9N4xzvegXHjxrl/t91GcgmRSASvvPIKLrvsMhx++OF4//vfjwULFmDJkiVIJBI8SUdpPQlk2IpUkRRdWDOxtkHmBDB0Ak27t3oezjkG7CaDdc4HB10SOKhvZPhMIh8PL/m8AnlHzFDm8JovL8tDbqV9k00Be4TPxGjJ5BUM2p4dbscQS0FmsG1SyOSNxIDm4fS6V7GKTQshg+6b/n3q/406nDrGJOCs+QMH7tr1c/7m88Du1fR68skALJKi0TxAONgqVZ83L9wBrPk78Jsr6bUWKa1AHFQuks8/K9jxKvcNWyHEgCXSxCkXGZB9py/DLSUW1LeZHWwOWS7SCEhkZCJwFDLZJUV9M4lUsexQYgIq+UyDRrx6YauELI2oL8OjkmDA9mY8f5MG91/2a6uh2grAY1NgxNJkbPgyuY6wAwBBfSNrJcUb4JrGef4GtSjgziOfdwI30NSKie+3gUa3CeLZN+ZAIkfj2YDWEGjb/po0EszX1qDjRdXIw2S7wjI24ts3QWoTnLLR+npCZ3sHvP+SAhz/s01DrrkRNY/9ihyDMUcRm/Ps/3I/it53I+KZblgbn6Ia2sjDgWET1DK5DPDwZ+l1IXD78GcIpJSEmInH03Tri8D2ZaXz+dP1xCgeW9lasmIkO4Hfv3fQ2UZZ3cD3jwce/I/yMw2dQMzicfPUZ0e+Fbj2QeAjzwE3rwNu3Qd8Znd51uoVP1R2fjKe/ylw/AdIebFzI7GWAeCkjwAd0+C0joKNPGLfmEIEpqZhBO6+/gAQiRN4CShm7cIbgCPe4s0REH7IDjDpRGC4kMfe8Yqab9LxACyx3hjJTGf6gQ1PqnmyKQLyAeDl3wBr/kE1btsG5l6p5hPrdSaegIFYB6xMP8k9x4eU376/f1/57ziiaRgw8zx6/eqhJdnciMHjoAJ5AeDGG2/Exo0bkUql8Oyzz2LhQtXtsnjxYtx5553u+w0bNsBxnKK/z3/+8wCA5uZm/P3vf8euXbuQTqexYcMG/OQnP3FBY5aIENOW05PXzhATORurcOGQIUHeri2wbQtxl0Eb7iBZAQDhdlTze4qZFUKqyqNnG/kL2FGgfYrqXNJ8eU0KiFX5ve1+nZiyTe1KFrxlBE1zKSAzINYRrPsfqHKbOA6wR4CZkskLkL8CAPSZg6tV7xuZx9CJdGMHSNID8PjhBi0y+zp/uzbRMRKJUyNAiwC9GRjFQAAgUQ5yAZIo0aKeJAkDMxHiCmzmAIlYGPCsTF6DbndutllAuUh2sDlkuUiTQiYnE8FV9Ij6L2TWCiTy7zun5k8xjklMrq2skqJBxmjMDJ6g19ZaMYnCVkkwGreynr8cvq/hMgFjERtRce3hAVcNxs9Rvn1j1EhbL5LA3ConmeDXNE4PWrMmZz6Vk5SBb3PVljhVRlApbd0miAVcrZPzhqOhiLuBNejzbzqbRy5smy8/qlqDBMu+CblJo1YqJ2E3N6UMxkaNaISv2L1CvT7tJiJnxFvJ61XE3C2/gLVBMC6nn+ldfuldBCS2jCQAGAA6ptL0xTuJIerkSelw2ASqWT58q3cd535BvX7198D/jAOev710vqOOAP5rB/19dClwzb3e78t56JaIfOtoIJcuP8N5XwQ+sRw49RPArEvU53OuAKaeQsSa1hEkCx2NA1f9sngdI2aSZ66sicpY/Tfgq5M9RBxE4sBx1wGWBaejwK946ETgGSGPfMk3vb+zYypw7ue883dMVR67ADDvKvV6uwby9u1VgPGT31FsXgnqAsDaR73r/vXbgbsuJcnque9Sn69bTFPLwo6h8+n1G/8AFn5QzVPImk51Ad3bUdOQDObX/lR7eegax4avXuJ53zWQCSmTgyMOOpD3oItoEwAgjgzbQ66dJpA3L2UGKoXsOOomfXzZbcf5cBkIwGMEAEx8X2sFEvn2jdS8CQcFiaRcR8c0ICKAXsAD8gZlm+nLVDxeXanmI5XvRKwVgHgtZEqMiszVdFR3bwXSvQR4D5+uPpcMWgGuGkkSVltQdWWjZ6nPSoDNNWdZ67mMPJyOEXd7KJCXg2WdqvaaJgFwgCS0NSkUvegeGCRi7qgO6rfqOOGDRL73TaU80sGv8Zz7xqSQySnRCAQvZAI6Ay/c5ibWRgCG6xm73KtvJr4mpc0xJjFi4vPtG6OCKmMjnuM45pKETEwiI09PRiaRidx6LY6ReNR2JRerjVpJepvJnIcN4PE1JZgV3WvDxPd9/orrSI7dbzXcpl7V7FUfag1AAJnzGrFFD0jjaKU85LjVgKXJKQlspMgTskqCDgqnGMZpHDUBjvFivTTS6s82QZ8768HvvF6amxrRCF/RvZWmlk3gpQyNuTqh8zlEXhQKdDrIm+wGHhP+umf+J7D+CXp94deAEz5Er5eQcigmCqnm1Q8BG5+EWysFgDmXAce9f/Bco03AlT8HYs30N+IwYPoZBMbK+Of/FS3mWDZJCxeErdUlARCQevJH1ftTPqbqu1NOUp+PK8MyLvSyBQgAf+EOwajV/k+pmHk+gcE9O2Fvec77XfdWYjhHEsD89yhvX4DkrWPNxesbqdViJbMXICltGTtfA44X2/7VPwCjj1C/Rdbil5eQvd6wBPjZucAPT1afdW0mZjeAncPmq/Uce42aJ9lJ7GU9fnpu8fo54/ALiE3ctRnY8XJt/9cBjnlfKLYAbISKBshb64jqTF6egVg02wcAyFeSAJAhWZbiRsZZlDFi8nKyVepksO7Jxa9vpB+QSIK8I2bQ1GXyKm+JZDpYHnouFfeN9ICQUs0ASVckhtJr4Rtt4q1SVbFssxgIjDycpDZkyK4x0RChPxQGluId7BgpBfK2CpBXk2s2OW+qLg7tWunNpQTIy9K1W00Bonc3+QHr0W/ObAZ4C7uA2sd+WZrcnmImIFFN5CJNCjKMgAgQvJDJfYyEv2/MC4ichcywmRl6Ln6bEqIRG7GI8BRjKCAGZWYA3AB88GOEE6zK5BxIEpDfays3k8ikKYGT3czRHMF6jQ8k6V0/19baNK4EGT8z2iVkDa7xjBYSRk0a2jNI6E1FjM+/Jo20tWhIiEdsREO2K6obL2vpd14rBakqg6NZk6u5yX3uDNikoa/DKA+Oeg1nA41RkzPzs03QBriQPXkB7uam4E0ajWhEoHjLt4mRKkMnjegxVQNLn/oO1bJGzCSp5u4tRHaZfiYxS/V1TDgOyGWBRwSLd7IATVtHE2GnnAevHhd+RYGQeqx6QL3WmLn5OQRsOmPnAbMuqrxuywbefruqFR59pff7qAailvLiXfoL4E8CLB19pFeiWEoxy+jegpKx/glg61LgjvOLv0t20rR9Mv3GBz6pJ196fVnNV1eoSyKXBXZp7G04JMc8/SxSp9z+CoHpXZuojppJAquE9+uRb6PpiJnAMe+lbeYUXO9+eAqwawV2DzkSTrSZgNV0n5LqBgjM1qN7i8dKjz1izcDYo+j1vvW1+z8HKL7+dgMp8zdZNEDeWkeEPHnjFh+TV4K8iFfjySs6ZgTIWy9yc6wFmYAPL3oeYcvd6PMP+uAgwcQRh9G0RUgCazcJlsF6uW2STZPsAwDMOMf7nQRXi0DeGh0jK4VUSeFNU54bBYxiILiU56Bs70JvYKCiXHMwdmSV4IwLOM+ukIc5a6aq83e3AJw7ppLfBVDAKDYAItjlIoMBVrpcJKeEZiC/qFqwRUP2v9N914MWMsNmNAFKjpyzWHZAPLVrnAcH+x3Qm5vCBUXcZhGD84aXLRr8XsPC3tGOs6BsFYCX+Ra2vQfHvgm7WbM5zrc99PUEupYw5lIvUp5GjbRy3Mpw/po0acQjNiRBnEe5icELlxEkCruRx+ycqc3YyEQKn3ffhOtlzVEj4ThnTJo0uG2+OJ73WPJwGwGCHCOMrHOtScOvkoZ+HeGwCTJqgGOUfm8weRtxwGP+u73vhx9Wer6mYTTt2qLkg8/7opL3nXkuEGsiyecrfqiW698LvPRLUrVrHg5MPpE+n3wisWUnF4C8x7zHS6I54jJgwXXF+XRvBzY/S68/9gowU8gNX/pdOKI27Ew8HjjsbM9i+TNu8a7n9JuBKScDXYLZLK0eZex8Vb1e93hxHi/eSdPj3g98eAnw/r8DiWHF8wEEAL/vPuDyH3g/T3UDt58F7N9QejmA6ohLvulVB9ywpHi+fA7Y9Ix6v+KvNN37BoG/sVZiBAPAxqdIqhsAXvujxuZ9CFi7CEj3EJZy5n/S552bgIu+Dnz4qeL/u+d1xG4/Hcdt+CHQJEhPr/+NWNEyrBL3nBIMbNZwCX/bavt/DkC88/hJnve9qWxImdR/NEDeWofG5OXo+gOAeJbYiUhUA/J6T2zOAiKPt1m4eXCCRLoksN9Bsi9PMeknMFZ0s8hBh9Zd5fok1kJ2Z/XfaMDSNhaYcZ73O3lTE+CqibfKoEBEZgBYLaQa5lzm/c4FmyWTl35LPIBvZFWSoo6jgbylvIGLQc2aFocKAedSTF4WBm0V580umcsR5N8BeMBmnjyYilQMLGvewl24HdUmzAxetqj5dSTLJBdpxPLiZBIdqPO3yjyMmkW4mLxZgzFJDXyK6+e8MRgbcVh7iDxsCy5jutrQgfKwQZF6aZJk9fbO1tH5ywGusjbQhDsmSRlcz1gBTYMmDcuy6mZsxOnJa9KsyfncyTE2yuQcZBmltI3OGxYg8RBo0qjmubPKMGnSAHivJSzNTXXSpME7DggONgPMNkEmCnAhHyONaESg0JUAAQI5BUnLE+sW0/TRLxNYOOVUYsmuup8+n32pmneYBka9eCewWEg7n/FpxSaVYK+03ZNx6f+q74ZNAi77npJO1kP+34knkKrj1b8jr94F18La+jwAwJlwHB7bPwJpR51P9mmfUOzSiScAp3+KXkv56mEFksrbXireBnrImt7cq4gRPeZI4F9+VzwfAMz/F2Da6QRkX3xb8ffNHcid83ltfg2AT/cBT36LXktp6Y1PFXvNrn8C6NG8bl/7M02lVPPYo8hXGAA2PgNMPY3Y1tkksG8dfb7670qq+cgrSDFy2CQgl6L/KdnBBeHAwriuF2FJv+FHvwQcfqGaYeldxQs9/f2S62KLQwjkLYyjPldCJrwRABogb+1DMnmRQTqXZ3mQiudIi94qNDIvFS3DaTrQCUAN8Oul271eJAl9D9Z3rSqSPTDxVtGXqbhN8nnyEACUL0JzO001kLemsjtLf0nT+VeT36se8phMcjB5Byl2r30UyPTRTXf8sQV5lGbymuSRyVUAifato8GRHQPGHKXl4ZWvBg4AgOc4GpNXdKRV8uSt9fkrmbyjj+CXjeZm4puwNGtQVA3bd46jkBk2IKJ75oXts1YTmdU6KWSaFXbN88jm8sjkqJIZ9phk4JA4b/i3R3MsAqtUoaJC2LblAr1hN0fwemkyKGkwSiOaNIuksnnkGaW0wwZFWBpXOEEio2OVDzSL2JbvJg2AuanXvd+E29Rr0qxZtTpQVXmYnzMAD7jK8ZzFq3ISbpOVSZNGLbYHUAfKEXXS3MTRJMl6jTc9fw+hsbzJNmlEI3xHoTQxQPZzHVOLP7/33wkUfFkAmOd/Cdi7logVdhSYqRFftr6gXqe6gd6dJM183HWKfSuB3NcfVPPOvYr+/xuL6P1FXweaO0rnLhmqkuhi26TymBmAJWrFzsTjcd2dL2CjM1Yt17cH2PI8YEVIplnWcruElHIhk3fbMvV60zMkY6yHtGSTqoEAMYOvvptYsJf9L/DOX9Dn6zUm8AnXE8Cqx7QzYL3+N/V+5Eztfz8N5LPA7LcA53yOGLkD+1WdUcYrd9N01sUALGDLc0DnZmCHJEkdTfkBBGBnBoDTPknvZS198z/JpxcgT1/LUozoNxYJb2XxP6ad4f7r3Hv+gs0dmlcvAPz4dGWxWCqyA6SSWauQ+1OC+Ad5XHL0uLBTOCiiAfLWOqIK5AV4HqQSeQJ5bcmarDizF2RqrgFLxIStkuIsIJqw7/w8SPXuBm4/G7jjQtL3L8gDCDhIrgbA27eOfGajTeQLAGhM3k4tFxNJswogUddWkq8AyJOgMNzjTYKrwb1VBi2oSh+K2W8p7nBzPXl7POsweaCrmIscjE0+0cuwd8HmXvcjI+BbsqwrXUe6NhP4bceA4dPosxJyzQfEGxhQTN5yIK/J+RtEonHNI8DOFUUfZ3J5ZPMGIFGcT66KQ/aO49pqxDqvgf9sUIlkeXkIm0mk9g1jkTnkgqq8FoXt46VfE02KuxznTYpDrYFR2jTsRgCTPADu4m59NGnU3MrCZx4mDC/AnEmkN2kEs7KQ5w0Ho4njmlYfzEhu32a/TRrsuRh44dYLo5hV2tSgScOjksB4DzYB8DjsAQ6tJg2+7RG0SaNe2M1SZSzs87deLDW4bYJ4/JLDve81ohG+Q7dY06PQl7d1NNC5EfjlWwE4wNHvBCYcq9i0005XpBuAQFSAVBelRO+5nyOC0MB+INZC36V6gAdvVssJkozLFG2fXDq/vj3EKAWAIy71frftJVj5LJLRdte2cYMO8ooaLZqGecFsl8mrgbyZpNfHNptUILX8Pi1qnJJYJmPWhcBNy4FjrxFgrkWAeM8O+v7VP3pllQFgxT2wt2jr37PG+31iKHDxN4h9LWWuNzypvk/3ASuEld8pH1Ng7op7vCBv+xSykMtnCJA//EJFjNFj2CRgwgJ6PeMcmq5dBGwQ237KKQQ4i7B2LsfSqR9G5obn1Dp2rSCp6Eqx7SWSmc5r97fdq+n35/NE4AkahxiT9wfvPnbwmRrRAHlrHhGSa05YBAaaDpIdx0GTAHkjzUMGX0ACwdkkkE3V5AHm4C6WBXjY3vQMgWi9O4AdLxflEcRbBahym8j/N+ZI1XnV1E7TZJd7E0jWih257DeAk6ebmvQE1qOMJ2+gol0lkCifJ7AOIKmUwojLPLwgbxDQrCqQSALfcgBQmIcAm01zqYoB4Ho2z1ASNC64ukvlIY75IL6RVXd2O47qsBs1W8ujhEdxoH3jExDZtQr49TuAH54EvPBzz1f6b0kYsETClquqxbU1yPZoYvQGNjlGLMtSuTAUIEyam1j3jQGjiZX1ZpJHVPq+mjMB9WuAiRdu3UgCh+xtVi/ehIDejMcpSRigyMxZ3GVgJPIWmYMfq4D5eaM3aYR9bTUZPzdFOZu96qNJw+Sc0ZdjARKNPKT5t0nY/rMm1jy6lLbpNsnlHaQNGr7UeJFj35irE4TNWq0F+z2IkgZ3LkbPNqyWGuZKGmE3nQG89z2W5kRWlaJGiboRByDap5b+XAN589PPAa4QvqnZAVLpPOez9N6Van6Ld/ktL9J04YeJxXrR14E5VyhQc8ICqtE99hUvw3Lzs1Q7ywq2bKy5dH6vP0j12LFzi1nHmwlg3Nc6A/LJeqMzWn0vfW/jGiklm1IEjKGaXPOu5cSebRkBzH0XfbZusfpesnitiKpHl4qW4UqBcv0TwHO3A3/6AK37qHcAx/2rZ/acJWrcOosYIJlmCVpOEZLLOsi76kGq0XdMBSYtJBYuQJLNrlzzXCIHSQB44zPEgj71E8V5z7lcEYmmnUG/c89qYI2QCZ56ivpdACKP/Be9GD6dpLndL+Lltw1AzODf/QvwjcOoRrp/IzGAf3oucMcFwHeOBh74D+D7xwO9uyqvqzBcJu+hAfIWxn/+6ZWwU6jLaNxBax2CydtsEZPX9KEulc2jzaILf7SpCpBXMisBINntDgg5WV5hSwGa+L4GeugKvxwAAQAASURBVNjWO5g2Pu2+NB2YVsUkKvTjBRST18krUFN2uwfwVin7AJPPAy/9kl6XYvECGsjrBVdNPF5K7pudrxFgGWtVcicl86DuMpOHbb0QUpKBl03RgAUADisAeUsweWsOEhX68QIVZZJr+kDXu4s6Fi2b/CxaRog8ikFek4f+qkEi3Vfk/o8rljHUb7GsoMA3PzgThAFfi4ft0FmaBnnouZjuG4/veoBjJMEppW3gpcnLoDUvugPmTED9/hukkMkK4DFIEnIAmimDMUktmETBx0aMTQkGjWesQKLJeVMLAC/AsRqxLcSZpLRNmzRYvawNxs+cUrxGTRqayoljwgCAWUMvwHwtMWCLNtWZ7Dtvk3OwaysX8K0vb6T8EnYjgLtvwmVGymXSuTxyhg1wSQPZaFquPgC8phowecNmWZs2wHH5jGdzeaRz8tkmyDbhl/RuePI24oBEKVlmABihQF5n2ukkxTzvX+iDk28khm3PDsXYnXWxWjaXUfWmiccR03bhh6jA5Eo1nwTsWgk8+0N6f/XvSKVxYB+xPjNE6EKspXR+kq0qpZr1EDnta52BM7+5BADQDE0O+HWhhBhvVZ9JoDna5GXkyt8xbj5w2Fn0et1j6nsJ8raMKO0brMf0M2n6yK3Ag/8BwAGOvx542+3Axd+k/yFi/UhRT9213LsO3T9ZSj1vfEoxXV8RUtpzr6J85lxONchtSylXK0LKggAw5SS1PEBevbKmLkNnSTe30/6UkRhK9fhCT2cZeq3+rT8qPY+MRV8EVj9ENdMtzwOPf50aCpKdJDfdtRl4/nYCmFf79KGVoHjPdi9T+BCJ3z2/OewU6jIaIG+tQ3RuNNt0UplKEQ2kc2gFSThEW4YNMjfIAN1lNXbX6OEy5EEyA2vVF5OoDMhr6iNSHZNXgLxa1xBizSTNC7heAhzeKkV5bH6WpEoSQ+mmWXJhrzw4h0xyyaL7G/+g6bTT3UYKT0hwVUiImO6big+5m5+jwVjraK8fL6C65EQeGUPfyKpAou2C7T1akx0pwaCtqW+zDMni7ZgGxJpq5skLVAkSFfp27FYgb1KTvTOSJORgmxl5mzEyADgkCUOWFAUCyvKXiBQT2yzs+15Vsu9+8wii1qAtY8wENG0EqBcpT0YmIIfKCetY0fT+a3j+Oo6jNdAEAfAYfRINzptANgVlwqRJElDHK9f5G7RJo26urXUCiMjt4TgcDTRmbDPWsYDJ2KgWjWd1wigOet/jOn/15QM1aTCOSUxAzXphaXL6rZo2adRiLG9iicNCUnBrAgZ+yXVw/nKNBUyVNHjPmwbI24gDGOVA3mGT3Jd56bl62f8C1z4InPUZei9t4yYeDwzVfEJ3rSCALjFMWevJkEzeySdSDdnJE1g56yJgvJCh3bCEGK5AaSbvQKdi0x5RUI91HLdOvb91BrZ1ETFskqWxP1feR1Md5O0SIO/QCV6wVjJpxx+jvGe3LQP699HrflFX1P14y4Vcvmc7TWddQtLLtk1/1z/qzjo0uRVO6+jidSz9BZGOZE7RZgJvd68CenYCax9V/yvdB7SN9vr+jjxcbdPJgsm7+Vng4c8CPzzZraO7kSvwytXJPJNPJJylIFpTOwlMXfJN9eHLd5faIqXjjUXAy78p//32ZdWvCwDaxhC47eT8s4DrNFZ88YKwU6j7aIC8tQ4BQDUJuWZTAGAgk0ObRSBvpBomL6CAt2RXTdgqZp5iIXfLaoPZqoqqmQGvdMTGp92bjenAdNDi0M4VClTWup1gWcoHQoK8LABewb6RANnkk4B4mc4yyRxPFsg1czcCSJB3xjnF3wFFjGLjB6lKRWbZATbtNBqkePLwMnn131ITCb58Hlj3OL2WMiaAklBJ97o+0kbnb7UFmV3imJGAc0lPXnNpNVpPFeevxtwtzqN+QCITv9WKnto+I2WUB3+xLOi+STAVqTy+66EzAc19I3mkxYP7rtuMTEAuICL085d13wRvjtDPX1MmoAskBjhnKBeefZPO5d1mb6PmCE4AwMCbMOyiO8CnCsCl1sCpThC2FQ3HMxZg7gFf82ebKsPTpBE2g5ahuYnjWDVu0mA+fwM3adSigcYASGQFqwJd49WzJNe4tR6eberFZ5zHyoITbA7apMGTC5fdCSu7OeA2aUQjqo5oc3lwUoKYANmNAWSTN/UUVeuTIO/sS7zLSnbvhGO9dcGeHSSVbNkEDEsxZVnDnXQCTSWAC5Rm8q7+O3nJjpoNjDrc+93+DUDfbjh2DJ0tU92PJ1qq3oWB/TQtxeTV/XgBDeSdT0D2qNmU94Yl9LncTlKpr1JMPskrWzxkrBdQtiPAvy+DY0cxuuc1WH0FgGR8CLBvnfrf0bjXl/e1PxFobtnAr94G/Pqd9J2UbAbIj1fGqNmAHSVp7Ke/J/6HJmENFLNm9bqzVJIseEYe27kU9os/J/awjDU+2LfP306/o+z3PwWy6fLfF4YdoW0NHDKSzS3xaNgp1H00QN5aR4RA3oQtgBVTJm8mhzYInf7CC1G5SCiQtxYFCJMuc17Z6ODdw0CVD5fbltGNtXUUSQUnO13w09hbpdLDdroP+ON1dCOacS51L+kh5SWSnQBUUYcVSJQ3hsIBgB7yWCvywmUsyOSyik192NmlFy7w5DXZHrRchSKzBHl1ULUwj0wfkM+7x0hQSeBBz99dy5WMtRwsAgpsBlxWsZHfW7VAhAR55QC5oiev/zwitoV4xEdRZndBPhrIa5IHLcdfHDLyi2KUizS5xrPIRRrkUZiLScj9Eo/asAP4rje59z1OT88gxwg/EyE4gMezb7gKmTxjEobzl4XJa9BAI67xeQeujF/wPAwLmUwFRN2T28wTMGxGEx9IJJv5TFUSwm/S4ATwODw9GVUSApw3sYiNqLhHcV1bw77/6ozkumFpmjB5s3m2sVHYAJ5xI0CU877H0MAasiKAbVvuMyLbvjG8/5qOjRzHUQ1wIbNFufySQz9/meXWgypZcVqwmag1NKIRvqJ9cnmJ4b1r1GvJPNUj2aWs2mZf6v1O+vFOPN77+aZ/0nTMkYqApYcEDdcupqkVKS0FvFJINR9RXqrZGXs08jYBqhbymGDtKZ5XEmIAoGsLTXU/3syAqpvJuvP0M2kqgWhZz6sG5I23ABO12mQJFiyGT0P+mPcVf37EpcBcAdq++HP1+ZRTabrhSSXV7OSpXr75nySdrW+nNo0dvG+dYkzLSPd637/+N+/7cfPU66hgBC/9hWeWaXsWwV78ZXozchZqEt+eQ0xhvRmhUkjJZt3/+RCKvy/fGXYKdRcNkLfWIZi8CUgmr/lATMo1e/x2K4UmoVsL2Z16KTIHGRB6mETVyETJ7qxJC6lDC3B9ck29VSqyI//2KZKiaBsLvPXHxYMSydRMdnm8VUxkGouOEV3Ko1y4DFrJ5DXPowgk6ttNN2XLLi+z4jJoe9x1BM0DqPAglU0Dm8UxUQrkLQBXdT/AYN3ugwB4UqZk6qleGetoQkl6p/sAHKCOaimH7DJ5xSCwf4/b+WZegKjyWpLqBTo30Wsp3VKCyWtayKwXAIDVvzJAHvKhP+/AlSgPGinT85dp3yhA08z/jtcLN+xid/A8KBcuJi8tHxSs4pIE1nMxUjlhzMOEtUrr4ZF7TRg2AhgfI+KcidgWYpHg5029NEmyKPJkza6tXKCmsexsnagUcTYCuP6zITfQmDbAcbO9g+bCed5wMAFzecd4bCQbEoKy3ri2iUljBFAbBYtA97043zXe+JkizrNv3IaEkK8j3iaNGj53VhFGDejauWYuhS/HrQHHz64qQLiNeKxjEkPlpkY0oupon1L+uw1Pui+tfeuLv1/9sGLTjpzh/U7WinX/VkCBvJNOLP0/JQCaEpLBsZbiem+qV6kZlvLj3fwcAMCZcDyW7qFlR6MTCStLoPG009W8gzF5dy6nemvLSFX7LQR5pSdvNXLN+vIA5VMi8qfehKwd93448nDguOvo9cr7gV5Rv5sqQN4V9yi7OndFWWDfelV7BIi5CwBrHgFu14hCkRLWfwCwby2w/B71XrN5Q/8eIkA9/BnPIq3pXbDSvQTyX7+o9HoHCx1MLhV9u8nH99tHAv/4fBGbuChckPfQYPIWxo2/e3nwmd5k0QB5ax0S5LUyAHgKmVKu2QMgVQqX5dnNC0QYyMzUpshs+ABTzcPlvrU0HT1HXTAFUMQGJBbmsfwe4KVfAbCAt99e+kYq9/FAJ5u3StGDVHcVIK/bUEDgqokUkXzYdgqZRLKjrm1M6S4wQIHN0pOXC4Av3Cbbl5HvRssIYFSJbq1okxrEpHsZGU1lHqQkyHvYWcXfMfoUVwXMOI6SRy5k8maTfPum2vN39+sih9FqX5WSaw56HWEqZJr6RnKCRBzSiPp6Audh7CnGVSwzO0YSnH6rYpsEAc5qougRMoCn7r9BwWae5ohMLo9s3hHrNAESGcGqANeRWMRCRDABuaQAA9/3mK6tpgyR5lrsG4NidzqXRy5vChKZNmnwAonGvuthAwCc9996OW+YWJqmgIjMIxY5NJo0OHJxpcUD3n/ZVBIMJM69eYQLEqlnvXCv8d5cmMbPQcetbI0AWpOGkSQwR5OGyTGicg/92loDJm+gPFjtTszue41oRNXRPrn058luYMsL7ltr/7rieVbdT9NCqeaB/YoFPKEQ5NX8eEtF6wivh28pP943/kE1tI6pwJijir/fIkDeicfhrjV0Drl+vMMmAjPOU/OW8+SVse0lmo4/RoHNU06huua+dcD+jcqTtxomLwBMP0O9Lkd2aRuDNaPf4v2sdTRJLU9YQOD6sl/T5xOOVYxaPaQs9J7VkBaCAAjkffLbwK+vJDBdEmByqfI5/+F9wNrH6PWGp9Tn6x4HHvgkEZuahxcvd+l3vWxpP1EIWBfG9DOBMUcDmX76PZKJXS4kQ/sQYvJ+5pIjwk6hrqMB8tY6xEUmLpm8xoP1PFqDyjWnumvyIGXUkclYCDkgcnP7N9K0Ywp1NgHuDU7JZzIXy175PU1PvtHbgeVZWAL5XWzeKmVB3opyzeJmVsCgNS2E6DKL6BWSDG1jyi8sz41cGsimNJDIkIFXuE2kVPPkk0oPVizL48urfLxqUFDNpoCNYgA5vQTIG1d5AIZslWqKZT3baQBlRYCRYtAab1X+IrI5wrTwHpcFxMFAXukPPFuBzb0K5E0a5pFgkptLZZVvZNh+5ybFMk6QiKuAeKgwmvRcTBp5WGSjmRpXTJkIfPuGJ4+gudRENjoAAGBZlnufYjt/g973ojzXNHUdMWwECFkJxzM2MmZX8TRp8Mmth6ukoTdpmCrQmAZX4d3YJsiwyYqPyWvISKzF/Tfg2Ei6PfA10ITbpMHViMfp2xxkTFILRnHYUrxc11aua3w8YiMaqEmD0RLHoIEmGrERi4hnGwYLNsCkEYDnfqPqaGbHCMe41dQCphGNqDraJ5X+fONTgKMdy/sLmLyZpGLTzi4AI7e+SNOOaV4GaaoX2PEqvZ58Ek1d9qVWP5Qes0BpkFeXai6sO6b7gB2v0aonKKnoSdKPt2OKlwRia1LQbo1Xk2vW/XhlNA1VMtTrH1dM3pYqmbzjj1Wvd60oO9vqsZcjc/0S9UGa6spYINi8S+8C8nki000qkMWecoqSaN67hhjJMpbcRsxXOMCCa4H/3Fg6gYUf9r5/WUhBb1QMb2x9AXj9QdqOV/4cRTHmSMqxFjFyFvDhJQpcLpSZLoxDkMn7gdOmh51CXUcD5K11CCZvHMTkNS2qppIDJLkAVN8dItmVyS62zu5c3jGSBNY9iUzDVG6uLIBXKvZvoGnHVMWoFX4ESj6TuVgmBxfTz6ywcDtNk12eDnMTSWDPMeI4Vco1y2ONuqZMCu9lPcUkk3fIuAp5aOdGqpdNkrAIAJBdbuW68gDly5vuUduD+xgBSDY8lyrPKpYgrxgoGTERqik+yMHs8Ole6eii8ya4pzagM2cGuZa4/sBHKE8O3ZPXEEjkAon0e0TdgEQB8uAEiVxJQtMuc6Yic9j+d3ouJscICxOQSSY5dCYCU5OG3B5Bfddr4pdsqk5gum8MGYkSwGBjNAW+xnP6rgc/f/Xjiqu4a6pgwXb+mto2MDGrgGAF71qoFBlbSBhuE8nANR4/h8xI5BqPAGZNGpZlMXpZMz3/cjESDc9f8yYNxx3TmFhJsXoDGyq/hO6XzLRv6tESx1Tdy/iZok7uv1x2CZxNGkGUrBrRCF9Rjsm7brHnrbWvgMm7/nEC1YZOUF61Msr58W59gYDjYZMqk2Um6SBvi/e7TBJY/Xd6Pefy4mW3vUT/Y8g4T63WBXnbpwCjj1Tz6yCr68lbhsmrh6xHr30M6JMgbwkma6mIRNXr9UvKz2dZ3lrmQCdNj3ob1Zr3rQM2iOWlBZuMt3xHLbvpn8DPL/R+b0eBS75FTNtSLGAAmP8v3vev3C3INE8Xz3v6zcC0M4o/T/cD6xcXfy6JJn5Ceg/L2P4ybSPJxs70V17+EAR5G1E5GnfQWkdEgrw8TN7sgCY54JfJm+xWD7mGDzD6gNIdFG55EdjzRlXLyzzSWUa5uVrLveZzQNdmet0+RV2kCxiJpgXEInDVBZanlV/YZfJ2MjzQSWakBlYN7CdZYkDdKEqFyxonIJHPZ00HeXfQdMjY8gvaETU4SvcYP0iVLdzJXIaV6QYEPOxm8+1R4WF787M0nbSwNKtYYxR7ut0NJM0yOQfZXBlQc/0TNJ1ykvfzFi/Ia3r+Jqp9uHT9gTUmr8iB8jADErm73aMBfSNrIVt5QBpoKuVh2sjDJMVrqhrBxaA1bbLSj3HzIrMpAMBVyDQ8fyWAZwqIaGyzQE1WrCCRGfMtwSRdqRp5DM/f0I9VPiagScHbti0FADA1rgS/pvF6ahvLzjI92wRt0mjWxs95pgaa0MckxuNnJrZZnTAjAUZ2MxtwFvQY4a0JGDdrMo0Vg+Yi86j4bFNtLqZe9GyevIaAJtP91/w6wvdswyeTzCNBz24l5TO46kam28NUyaoRjfAV5Tx5Bcibn/8eAIBVyORdeR9NZ19SXG8r68cranSVSCGA169XB0QBYN1jGrh8LIpC+PFi4vGevCbqTF5buy/KumG6D0h20mtZ4033q7rZuPne/yNB3vWPK7JEtZ68ejiDXLdkjRUAeoXkdLwVmPtOev2iYM/qYPBR7wBGHQ6MED7Jqx8qXu819wLHv7/89x3TSjQAOMBztxNzuRAYPvUTpeuu6xYDz/+s+HONYFJ1FBK9drxCuIRke2cGKi8vwftDSK65MPYkw86gvqIB8tY6oiTXHHV4PHmzgiGZshLFF/9yIQHAVDd71y4gCiHrFgM/PRv45RWDm3/DO8gfVGZ1kDDxnQN8FKm6t5KJux2jm2AhyMvEJPJsj95d1J1j2ZWBxKZ2mia7zAshpQqZ8qbQMqK0fIgMF9DsBvJ5PilPvyCvJ5cetkJI0cNlNdLRGrhqDJpVeth2Qd4TSi/sMnl7kc7lIeuPQVgR+v4sy8aX/hWF0tEFfsnmntpVnr+uP/ARajCa6qLOSHA0JFAeVTNol3wTuOsyNSgXUdNGAJ9h2nmfYO52N5VbNwXwFNgcciFTWz7INmFlAtYJO4PL25uLyctu2xAkFyaWCJcXbthgFVux2/AYyecdpA3ZkVXbFAwSbAwermMk5GNVWoM0xwI2aXjGRuFe06pugBsklF9yuNf4FNO9hqUBTp6/xjYFdXJNY8rDuLnYFNAUv8O2SBY4aB6AudKYMagZ5TleuZpFzAE8LrCZz2Yk+DiNq3GFZxzABTaHraRhanfSiEb4Cl2aWEb3dgFuWsgfcw19tn+Dkt3N54DX/0avC6WaHYcYu0AJkHcQP14ZEpwEiolTK6RU86VesFaGBJgnneA5Fz1MXj1yaZpKdme8TWEGO18jELZ1dDG5Z+JxNG//XmDP6/RZtZ68PsLq3KDeSHVAADjyrTRd9SCBm4u/pr475WM0HXl4+RV3TFWvn/5e8ff71ysgX4+H/4um2QJANdOv1C71WPZr5d1sGi0dxf9zzxofIK/Yhz3baychHXJ86aUqcbE3STRA3lqHYPLGQBdSYykTweRN2i2DzKmFLtfsShLydIYmojZsJwvc93H6omtzVR0qerd+6D5N1T74S0Zt+yRiihbKzhoziUo89Mv/OXSi2zBQMuRNeaDTOI+SRWY5AKgk1QyoYw0OkOlj8NAq8SBVLciredAOmO6bckUq6ekq5X8r5ZHuNQciynX/O46XyVsqEioP3eM4yL7xgESlzt+encCu5QCsYgkTd7/00PIHgq2S7Aa6hRTN6NnUFCG9SKSnNldzRDXXeMcBnriNuiB/dp56YACDJGENmLym1zRzJiBPswhX0S540Z2X9QYEO385mYAp0/OGWe7VGFytk2J3MpOHU0XDXKVIGXvQMrM0gzaL1Iu0qXuM8FzPAAZ7D8NcuJo0zBl4POP40P3ftfyNQREmewA2ACDka3y9SIrmGJo02CSs68RCol4aefRjJEiTxqDPNj6CzZPXuIHGtCGBSQo/bXrO1MDv3PD+a2qLY/qMlagXJRzmJslYJJiSVSMa4SviJWrp6x+n6fj5cMbORR4RWNmksorb/CzVjZragSkne5fdt46UDyMJYMzR6vNcVgNgBwF5dfBWBxNzGfJ/BZTfrB6OozF5T8D7f7nU/WqSLViwEuQdNVst17fXK9Us75uuH+8xxSzVSIx8b/Wo1pPXT+zX/HL3vE6M487NwO+ElHIuBTz9fVFvFCFB9nJS3ICyb9v8vALfC6MUA7dcPP2/wGt/LP6cC+AFgH3riz/b/rJSrRxMrnnIWAAWAfvSR7kRh3Q07qC1jiImr6FMowBG0n5A3oSU8u3iYzTpA+Rlv/aa0kt5hwph2xbirnQ0U5HKcLA+aAFC3mxkB5AO8joOW3HXM1iX23X41MoLa568xqBZKSCxlFdDqYg2kdcBACfZbdwdWtJTrFeCvBU8eQEPk9d435QqUqV6gUwfva4E8iYUqGkMwJdjRnZuIlaxHS32zpChgd7yQSxiW4hF/BdCLMuqDADIQfK4uUBrQXefBjbry5sDiRXOX3lNahsLNHfQgLWAic8GElXzsN25yTsgW/FX96Vx0V0DVk1AIsdx+B78uQqIhlKexkU7U/YdcyEzHrVh2/7PX4CfCWguNxcuEMHuG2l4PQMKLBMMcqmJcoSfPNgaaHiOkbAZifqxXvPmxEHCtEmDi12lWG9m91+2PAJuD/3Zhg2wMm0EqBdwlUlBioMJaDI2KmlX5DMUSMTDXGVt6g0Qpo20XA1wpufMoM82QXIxVeWpE7WGsJUJZP5pQyn8TC6PTM7xrDNoLmx+yQHve+zPWCErApjm0YhGGMeGJ2k67QzAjqI/IWq9+9bSdKUA7mZdRGCnHlsEwDhunpeYs2s51bwSw4DRRxT/z0IQdWgJhvGGJSSp3DqqNBt4/3oCnyNxYNw8PL9hPwAgiizGQYB6HQLk1e0e1y9Wao3DSvnxzi/+X0CxfHC1nrw+wurUQF4nT2zeV38PJLvU54992buQ3H/L/1y8QgmO7xYgr2Txzn9PMUFm+zL1uhQwP3w68Lbb6fU/fwi8eFfF34LjP1D5+8Fi/4bi42L7suqZvJGYUp08hCSbH/nE6WGnULfRAHlrHYLJG82nATjGAzEnScBIOtpa/UKSXZnq5pOY0TsyZbePjN2vV5cWE5OIy1tl0Dxcb9ypNJUgUXYASPeZSyOWKmQW/s9y0aSAfHOJKOWX7D5IlRoAlArLcn15M/1drt8yqzyiZPJWkkgGNFngHuMHqZKyWX2iMy7WUtkfOy7z6GWTzywqZMrB2Nijy8tp64xirZAZpNtdLku5lDhv1gmQt3AQqOeRomsZl8x5xWur7NrTB9cFTHwuBm1V13iZjwxN/YCr6A6YgUT6sqYMAC5QJPi+Yep2ZwLwwvYW1Zc1ZiWaNq4weROm2BoSwvWfbdKYRCbHieM45rkwFzJZVU4C5VEv7DvzJg0udjMXAB82y5p73wRtBADKWJ4ECFOfYq6mXtNrK991hEctCTAbG+nHehDfZoCTAW8IEjH7voYPmpn54Oq5hK1gwdUcYSpzzt2kwfFsYwI4c0gCJ5jGi6ZNRdz3vcBWNPI6YqwSaHaNb0QjjCOfpWkzyeP2xUWtcd86mq75O01nX1K8bFk/3n/SdNLxpAQ5WIybq17LhjQp1Tz7ktLr2Cz+97h5QKxJrcrai4jlEAlH1k3TfWq5tY8pqWGdyCNBznLEEb2+F0kA0UTFnxQkPCAvQHjDayXAWz02PEXbrHt78XfSu3fXKmDvWiXJfPKNxaxsQJHkUt3F3132v8DRV5I3cqZPNQGUitlvUXV6PdoGUaTUY9+64mYAP0xeQEk2S3XOQyBmjhkSdgp1Gw2Qt9YhLnoWHESRM35osNI9AIBMxA/IKwHAbn9ARIXwdGTqfq1AVUxegLHgzSYTNcjgVN5spNxFvFWZr/ftVsWhgA/9JfeNlGeoGuTtNH6wLOkp5so1jy+xREEIcDXdpzqtzBkAYt/ksuRTDPhi8hozmuIFeQAqj9ZRxTdeTx66bLThg1S581cC34V+G4PkYfIgVbEos0VIxhTKueh5iEFm0vQht9S+KQx5TfKAvKJJQ+zHA8o2k9Iy8ryVxxJDHk1McnP6sk2G1zQ2TzHDgipf0c60IYGnoBr0Gk/LcrMzGBtoguTB1GTFxYgImkc0YrvqCibbJJNz+JqsjI9XHpnGsFnnMv9c3kEmF3ybKGUCEyCRV6YxYTw2CrkRgJtZxTA2Mm3SUCpF4cqt8zUChKzWwDU20p71gjZpVN1cPFgupgw8Jta5qfwtvyJA8POXLRdG5jlHHsbnL5PNlynYTOsyuP+KPCwr/CYNrjGJsSIAU7N12I0AjWiEcchatpC07UsIpT4J8ubFMd5cgrlq6scrQ4KRACm/5XNK+reUVDOg6m4TT/B8PNEiIgOGTVK1Sh3k3fycsjOTHsXpPlU3Gze/9P/T62m5VPnfYhKy7j5K/K9X7iav4ErRu4MA3J4SQKasYe9eSexbOMDM8+m3TC4B8r7lWzTdtcL7+XV/A6aeStvznFvV54edUzqnMz5Nctt6HPlW734uF6ffTNN961UDgoztryhwPe0H5D10mLyNKB8NkLfWEVFyDXFkjQeElpA4zcZ8gLwJnclbA2aGlPI97GyaVsnk5fbQMpZEGlSueQNNdcDVlXzdY+7xEi+Rh/s/p1VeuKmdpskutsE6oA3YJQg1GHsWcJnj2f5OAIBtIZAkMFDiQapvNwAHsCKKiVkuSsgTBy5kljpWe3fSdLBtojFoU7UqZEpWcVXewD3GwAxQoUg1sB/Ys5peTygY6AIas5kaVpS8Wg0ftiVzVvchkdtKsGjZfOeqecjdKQaMshNSY/KaPvRHIzbiEfPCnTxnYhEL0YDeSPySZiEDeEwNNPUARNSLB23J+16QPOQ1PnBDAk8epj64AE8zgA7eHxAJ+grB5vsatl+ydo8yurYaXs/0ZcMG8OpFytM9f0M+Rjy5GOybVDbvEjhCZ3kZqpywPesxNNCwjI0Yzl8ucPWAjluryCNsaw/OJg2TfZPPK7uTepFbD1uK1/S8idgWy/nrKhNEgytZ1UsDDZ86n9k1Xo6NktkcixS+yfi5EY0wCik7PLAPANCXEGxLCfLKGrCsz8rIDJCcMOCtfTmOYvJOPsl/PpufI1CubzcAC5h6Wvn5AGILazHJEvXBDo0EIrAEAAQSFjJ5d7xG8shtY4GhZQg1llVZxZAhLLmNp59B021Ly86LETMVsWTDEmDNP4rnkeSg3a8rFu8JH6Lp5IXF85dj4Fra9Wn6mQrcXfih4nmbO4iZXQjQ5nMEvAPAmKNK/iQAwEkfoZp3dkD5QstI9yiSz2ByzYDavw2Q900RjbtorUOTL4gjYzwgtDN0Yc4HkWtOdqFZPFiadv15GIny5jDjXJpWK9fM0KXK6a1Scd/kcwooGjlTfS6Bxv49tfGt2l8tk7edpuleJFNJz/r8hm1bbqHcfXCQUhXy/1QKTa4Z4JEEdvOQN7i20YNLnjAyeUs+0PVWAawCZZi85nl4HqRcVnElb2C5PXp5CpkSiCjs7t76Ik2HTy/24wU82wMwl1cb9GHbcQaRayaA1VyS0Id/lsxHB3nz9P85PIk4/M1MfXABTiZgfTAijBmJUSYmIAMTn03Cuk6Ku8Y2BcyAiNG1lYHlJQuytgW3MOo3mpkKmVznL9+xGmx7xCM2JHHPpODNef81Br7TZtvEvY4wSWkbS+Ebgs0ccpEcx6v+jBY6u1k2rgRlvcW57zXBSxcJhvteUgOJgga3dcPBfm3lUhnjOUbMc/HYndS6AX2QMLcJYvIGZni24dgmpr7NAN+4lUsKn62BNfBzOC3nOGZS+OpYjQZeRyMaYRSSodtPIG9vQhA59g4C8m5/hYC81tFA+2T1eecmql3aUZL2LRkFNVIdsNv8TwInI3EATjHQBxDzdqdQiCtg8k6yBIlAV/rTmbytI4st+Qbz45Ux9ujK31cTG54CVj+sZKlFRPIpWJLAohM0AODwi4rXM/F4YtcCwManSjN5W0YAdoxA7t4dtE2nCmC4FHlu3eLSAKyUzgYI7L7qV8CHnwIOv6B43ku/S1PJ5B09h6bd2xRzuhw7uX0KgcTtk0p/DyhSzZtUrrkR5aMB8tY67Kjb8UFMXrMic0SAvDk/3TOSyZvPoslKAwDSubwr5Rck5ICyI5IEUkKWd/pZNO3b5d4cKwXHw6XHW6XWTMB0L7EQ9ZuNy+Tdze9JlE0ptmglGV7A02mUH1DgatAoAkWSEuQdOvjCAkzMDtAyZrJZsilBgryiY2lIFT4GCcWgrYkXX7Ugr8ZcNe6oFtsy79A57IbwlUXbqAp5iAFMuo+VSVRU3N0i5WqOR8lw8+j1SBLWjKW5Z7UYzCWAMUeqz1tkg8ZeAHyMpkGL3bmMGpRNE92J+SyQ7ASgQPOwmQimPrh6HmF70PIzEsNmApoDERz7JsvQZMUGwGfNCu/cDQlBVSMoF0YggqHJitXeI0CwAxEBr2mWZbEcJyxAIhdIlOW5/4bOSBTLZXLhN9BwSFjLPKK2hZihkkbYIFEiWh/XEYBnm9QTSFQvXrgDhmM0uVy2DhrgOKTwOXxf+dTOzMZGiTqS4uVQoGFpxDvkxkY8rHPAjERi2lDUiEYYRyW5ZsdRIG+hX6wE6sbP91q4SRbvuPlAvMW7TDnWuw7YbX4WiMSAkdJPdkXx/FuXAk6OmJrDJni+KmLy5jJeeeXWURqTV4COLshbxo9X5p7V1jOwv/y8leLOi4HfXKm2k4iWlKhrNg3zWgVGm4AzP128nonHKZD39YdK/690n5eoNeE4ICZsF3V2s4zfXuX1KZax8l7vvou3AGPLsHElYJ8XIK+s53dvK9pXRSF9ggvVPMdqns1SCdAXk/fQBXl7ktnBZ3qTROMuWuuwLAIXAMQtcyZvJEPdN07MB8gbb3OB5ua86t4xyUUuO94SYG5TOzBkjJIeqILNy9GRKQemlgFbpSrWzOZnaTpxgZdBqrEBuTqq3eLhQKf4xqJOnkoRibrm606qxygPoMTDZVIA+YkqQF7RgJATwHBQhiZQoljWL276rRXATDcPjcnLxDbzPEj1VcGeBbxM3jTfg1RS96B1c6kE8irQW+ZRk2KZlIwpC/IqT16ebvdBHnLXPEzTqacogBnwML0BBrmqah+296yhwV58CLGdJTteNA2YShLquXAUMs18X3lYXsa+r0x5pAyLVFxMQI59w1FA1Fn8xkUqJkZicLZKfRS79WVTHEBEHRQyU0wAAJcCjREDj6GoyglWmTSOcjRpsINVgf1ntbERh4IFg9x62MdIvShpcPk2cwLwPMcIA1jF1RxheN9j88INuE0S2vnGAsCHfN+TecQjNiJBfZu5rq1MY6OwWed6LikDVrHrqW30bMN0/op902Lc5ByuJ29MO86N7nsMz7+NaIRRFIC8/fFRcCxbyOXuKM/klWBhofeqBOEqsTELQwfsdi6nOtUYwQAtxfrcUr7uVsTkLQQzI3HXPs0FHbcvo2k5P14AWHqXVz55w5Pl560mZH1XREtagtNT1bYFyENXBzllTDyOfr/+ewoj2eklakkWL1Aa5AWAV39f/FnX5rLS0fnCbSb3ZU6AjxJs792h5KPLhcRUhk/3fn7YWcXz+mLyHrpyzX99+dAFsP1GA+Q9EBElX94Eg1xzLCtA3oQPkNe2XUAjkVUXMY6B2FiLboKu5MBw0W3SuWnQdfCwzdTANLC3SjnZWT1cr4MCzX4X5N3DBySmxY1AMPvQNIz24WAh9rGTpJsbC0tT7htXrrmEN0FRHnRs5pO9xnkUPUgJQK66PBSIZ+4bWaJIVTWTV2MUG3apln2Q6hWDuIpyzcWy0eyyWY4DbJVM3hJ+vEBJGW2TXAYthKx5hKYzzy+dhxjYcTGJBgUiZBfm6COoO0VTA9Dz4AHggz/4mwKaACPbjOnayucbGez85WMCchYyzfMATLxwefZN0tALV16T01kelROz5gi+sVE9ARHGIJFxQdWsyQrg3jfmTRpmvut8TRpsQGJgtpntkic4vKyNmjTiVY4FKuXBcf4ygaumShp8QASjykmaY98wXOMN8shoilzmChbhjtH08zdskIiT7R32OMCbS51c4zkaaBjO37DHz47juPeboIBzPcmcczaOmjTiNaIRRiE9eYUipWNFSJUToAZ9CdIVgryy/iZBXRmyPt7lA1jTQV4nTwp5UoluZwkm7+bnaTrphKKvJrogr5CQ1qWaAcXGbWonIkSqVxG1Ksk1P/YV73vpWew3JFvY9kq0t6Y0cDqqgbzj5gJ/vdG7jlM+TsBvrNnrh1wYyS6vbdsUDeSV9eVqQ5ds1sKR/rwysmSh6DJ5h4yj3+rkiaFdKbo203R4AZN3eimQtxomrybXbOCdXs/xzUfeCDuFuokGyHsgQjJ5kTUeiDXlJMjV7m/BBIFidqrbLcaaPcDQQGx0XlyEpQTAEHEBKeUZUBBycBo2W6Vsl/nm54Dnbgc2PQtsepo+K7yBagCNue+NApsdx1HSF83t1a1AsGwtAciyFHfTOepKkx1C1YCrEtQUN0xW2Vl5E5YAXaUQoKaT1kBNQ5aIx2vGBXnHVJUHUr0sLM2iBynHUUzeinLNEtTUQW/mAkSyU7G+Rx1RvBBQEvQ26XavyGhK9QAbxbk747zSebjewGYPuTKPdC6PbCW5OQnyyq5M2SQg9iELE4FRLpKHbRY8j3zecc87Y79G42J3fWyTegHw5PGViNqwTc9fU5aXIbtKvyabsETqpYDIWWQOmyXC5j/LIAXIoQrAwzYrsLIIkof2G0ybNNiACBMpbQZZYM4xGgeTNyizmSsPfXnTJisumyCT8ybBuW84GvEYGIlA8Gcbrvuv6ZhEP39NmiNSDCARy/2XVZGHScGC4dnG5PxVrNXgfqscjaMc1xGOa2sqm3fr7GEraXA2fhs92zSYvI0IOySTd2A/kM8hmk/CyqXFdyMVk7d3J5DW2JOy/iZrgzIkKFwo71wpClmZm58FRguQt1Cu2XE0Ji/VqGUNKoE0xlid9N3zP6XfVATyChBSgtE7XgXgUD2/kjVe7w7v+1LetdWEvAgWgLxlmbyPfhl4+TfedZz3BSWRrbNzC2OgUzF57ai3pp8qw+QtDOmpWyjZLKII5JX7UjK8owmFlRR6Mcu4+Daa7hfHTCGTt2MKMGyy97NqmLySOZxNBpfXrvPoTTXkmmX4HvH19PjsdGCOH/zgB5g6dSqampqwcOFCPPfccxXn/8Mf/oDZs2ejqakJRx99NB588EHP947j4NZbb8W4cePQ3NyMc889F2vWrOFNOipB3ozxw3ZTji5CVjVgmx4aa42j808uO1KCvPLmMEQAXj07SizljcCD5IH9kB6xPMXuEqB3Lgv86h3Ag/8B3HG+YiYXdgi1KCavKUgkH0pzeYck9KRc82BSzTLEPlYgr3khM5nJudua/kf1nryOuGGyymb5AXkFiOeketkepIIxeRW4yinB55436V41SKsk16yDzbV6yJXewImhQKxp0Dw4pBErAngbnhKdl1OBEYd5v9O8gQEGIEKXi6ykCiC7MOWAXe4zwcbm6XYX5281BcR8Dti2rKgLkMU3koNRzCjpXXG/VBG8EpphA4nmYFXK0M9Tz4PLWzQwW0UrCptsk0OpEYDDm1D3XQ88Noqr65lj0H3MAuC5zXhh7xvOY8QO7tvMzBY1ktJmYHwnDRuK9GVZ9o0RWGV+/npyMWSb6esKEizjRRabII7mYpGHyb1GLGub2BUxNwKwKkgFyYMRXDUD8OrjGg9wPNvwSmkHbSgC1LNN+FL4fNcRk1y4rvH18mzD0ZzYCP8Rdm0f4K/vBw635uoAyU7Es2LbRJvJe7W5QxFedOBWEj7691BdRYaUSe7dWZ5tWTj+lvNNO52mm59VxIA9a7xeuPvWkbR0JE4sVyigy2XxAsCyXwOP3FosSyzXJclarh/v/NK5loty6n2DhdxWtvfa0yKZvIUgb6nIacDe7EsAKwKMmFE8X7ILmHYafXfMe70WbuUkngtjwgLyBd63rqR0tjP+WO8HewSmJJm8dlQxagf2Ac3Di/+HBKLl8VXoyWvZwIxCMLkKJm+sSeEWh7BkcyMofN9FTzvtNOzYMTiAV4u4++67cdNNN+Fzn/scli5dinnz5uGCCy7Arl27Ss7/9NNP4+qrr8b73/9+vPTSS7jiiitwxRVX4LXX1En59a9/Hd/73vfwox/9CM8++yxaW1txwQUXIJlM8iUeIblmYvKaFZmbJchbLbtThgto9LFIZ8lB3PCsBHklk1d0iVTB5E0EyaNnJ/D944EfngLkskwP/SUGpnvXACnBSJQ3/MknFbNqpazHwD7zBymtEzuZzWlyze0l5y9eAQGwkYw5uOp5uJTbIdZK3r+DhQBXLTGQMPG9KTpWpWy0D5A3r3VnGftG6uzZ3p30ejCQt4RMMkdxyM1Fgs2xVu+ApTA8nrw16jKXMjVVeQP3sRSG3IftUkV32d049dTiQXRC5QGYP+TqhYuKD7m6XDNQxOTlKSD6KLw/+yPgJ2cA3z4KWPZb92Ne2Wgmtgpnk0aA4JCL5CjKSKm6BMe+MWESpRmAGS62Stps39i2hbjbHMHBoK2PAiJHk5UJWzSdU2yVoCxN+Rscp0BNw2eYNgLouRiBM3Wi1sDZ7GXCfgeYwJmoeeMKj98q4/nLwCg2OX91JY3Afqva2MgMgK8P4IzFW5Q5D9MmDS4moNE1jUVlTACJXE3OQfMwHI/oeZicv4D5tUQf34V+TWNh8vJ5A3PkEbUtxAybNLj8kjnGi2E3JzbCf4RZ2wdqU98PHJGYq36JgX0K5JX2fEBpX96WkQAskuEVUs8AqIYsyR6dmwv+WZmmVcnKnH4mTTc/TyBycwfg5JScMgBsEVLN4+a7pLINe2n5STrICwD71hczeXMC5C3045UyytWGX/KZjLwAaAvlmssxeWXo7NbuLer1+GOAjy0DLv+/4mWSXbQNP/oicOl3vN+VY/K2jfUCxrkMMONcel1Ksrngd2Dzs2I58TsjMa9ssiTJ6TFqlvo+m1LHmwzLBqaf4f2sGpAX0BRI91SerxEHffgeVRxzzDFYuHAhVq1a5fl82bJluPjii9kSKxXf+ta3cP311+O6667DnDlz8KMf/QgtLS244447Ss7/3e9+FxdeeCFuvvlmHHHEEfjSl76EY489Ft///vcBEMPgO9/5Dj7zmc/g8ssvx9y5c/GLX/wC27Ztwz333MOXuGTyWhljuchWhy5CkZZ2fwtqrDWWblmxbEdGAF1DJZNXSDtIAKxCBHrI/cfnCEjq2gTsfYMJJCqRx45XaTrpRODmtcCHnwSu/m3xwqIDxxnYb/yQG4/YkIqXyXROY/K2V7cCwbKNZnqM8gAKHhyk/G5TFSxewAXPLAawuYhtJlnF1TCKtcYGwPRBquChP92rBkYtI8ssJfPQ5Ik52JFSklBuEwmsVpJq1vPIJpHKUO4JBtaM5+HSD8ib6UMyTZ1tLA+Wpa6tcvA78fgSeYhBt2CHmxaZbdsanB2Z6lGdedJfRfq4CLD+gHuKrX2Mpv17gEc+637MIenNyTYzkfTWr/FGTMBaMPGD5MHoG2kEVnEweZn8VlMM+4ajGYATAOAoIIbNrEpq3nmmvpEAFxMw3PPXbY4wAjT5xvFhKwIATAoWDIV3TilelmMkbCBRA+9rOjaqIljGRozHSOjXEUZgNZXNI28gxZty73vm52+9NK5w7BuORjyTPLK5PCmDIfj9V2+AC/94ZTh/WRqKzJsTee6/Kg+OZxuepqJwmyQbUTmWL1+ObNYraRpmbR/gr+8bhyDwWP37kJAgryT1AKVB3khUzdOngdOWpfxwq5VsloDdhOOoZpbuAXatLC3ZvFmQGTTp4d09VOObWAjyNg0r78lbyOQdN798fvmCc3zqaRV+zCBRCuR1HLSkB2HyztKOy43PeL9rnwz0bCteRpKnSkUhw1lGNgm8/Wfq/Z7VwBGX0euVpX15PSG9il0mb0xhJT07FMg7VAN7W0cBsRYADtC1hRjkrsQziKk89XTv/6lGrhnQFDGrrOkfJDEE/YjA7Dn0UAvfo/Gf//znuPbaa3HqqafiySefxOrVq/HOd74TCxYsQCRSu5tyOp3Giy++iHPPPdf9zLZtnHvuuXjmmWdKLvPMM8945geACy64wJ1//fr12LFjh2eeYcOGYeHChWXXCQCpVArd3d2ev4qhM3kNu93bHAFYtVYp4StDA3lZPHnFIHloRtzIXLnm6pm8vrtlty4FXtaA1l3LmSTNSjw07HiFpmOPJgmJsUeXlk2Wn/XvQ96QrWJZlpcd6XryVivXLEFeAa6ygER5BaxW26UlQLxIps84DyWzKvaNL7lmccwzyEYrtooohMg8LLsyexZQjNFcGrk0KQSwykVKJm9rlYxiALkBvn1TUsK6tQLwreWR6e/xrCtIlC2E5HPAVjFYLZRZB7xyzY7DLE9c5pq2SzxAtY1VDwNyW4muOl7ZrCoetmVDC0AgvfAN4QA0E4yMJg5mBmDIBHQLIebAN4eXpkkenL5zZvJ7dcQk4mDwsBbuGIrMBmOjBIMXrrxPRWwLsUiwJo1YxEZUNHiYKdDUhwS98gbmAKvC3R76/ZelyBw2qMkANrM00HCMAziaNDLmTRoAV+MKw/MeK0jEcf8NF2zWnwE4/IFZADwGJQ0eBQuGsaLBdSSQ2llhHrrdCVdNIGCkWBm0HPff+mhIMGoE0PYpx7NN2PYAHIziRlSOE088EZs2bfJ8FlZtH6hNfb8wytXtM5lMyb+8IPDkena5TN588wj3+5zwQ83tXe9ZzhEEh2zXdu/6hk0S86+jz/ZtRu6v/478dqo15/N573qE12820gRHSPVmd61CTsj45ra/ouYVIG923LHuZ519VGssBHnziWHIDnR5PxOAcrZtHDK9++AIeeHMqCPLbp/M/s2edeRmnF9+3hJ/ejgC5M3mtf3RtR3RfBqOZSPTOhYZxIr2aa51jPoNax4p+h+5XauLlnF2rSqbU66/s2h+AHCSXchElP1c3skjM/0cOHYM2L0Kme0rKv6+7KU/oGMgS77OWVjIpagGm4skkJ19KZy2McjNvMBdJpPNwhGNAdk9a2l56e0MIJPLIRP3grROuq+qbe8MEMs8Ex9Sdt/42Zf18AcA3479AK8n3oe32ktCzyfob6h2vmqjCu3V4vjCF76ARCKB8847D7lcDueccw6eeeYZnHDCCYMvHDD27NmDXC6HMWPGeD4fM2ZMUeeRjB07dpScX0pSyGmleUrFV77yFXzhC1+oPnnB5E0gg0zOQTaXRzQIo9BxCOS1gJhfkNf15O1j8dCiBwcHbSnB2HXlmrXuFMcplkjVwvdD/9pF3vc7lyM5/ERaF/fDyw4h+TH26MoLy26vdC9iyCKDqHEhpD+do0FyQLnmeFbIJDMA3yTX7IM9CxSBvCwea/JYDQDyWjIPBmAVoAfEFinrkRhS8RinPBSoSR10MZZCiGR6uB2Dg8lGRxPUQZbPwBHbkR0QkfIflZi80SbqQnNyyPRL/+gaACK7X6fux1irkkbWQ4LN+SxymSTSOfOHy+ZYBJ3IlC9A7FpOU+mtApSQaz6AnoC9u4Hegntd325g6Pi6KbpzFu0AOk6CblsO4IyDHZliAIk4pdXCZotmcnlkRZcVu3WDz2BhJNbZvuFoBGiKBvd9BWjf9KSyPNsk7GsaA0jEKYXPASTmHSCTcxCP+t/Hum8zx76pF5lznvueeQPNQNocNItHbdgBlTQAuU0qjI2qCA51AgXOhNyk4R4jDMAMwzEC0HWpJR6oLMSiksBSm+Ack5iwzuvsXgMYNuPFbHQN1E8DnJm6CAeTt4JNUJWhlOjMPYoB2temzzZhN65w3H8bUTlWrFiB8ePHF30eRm0fqE19vzDK1e0ffvhhtLS0FH2+sDeLsQBWvPgk4lmqIW7dn8RS4fs7dU8P5gHY9fpzeC6rvIBPHrAxCsDLTz2CLSsVY/aozjwOA7Bu6WKs2DkWC9d+C2O7l7nfb9u+Ay9qnsIX9nchAeDpp5bg1J0rYAF4bNV+jOrJYT6APcufwD9TDyKSS+IS4Qu76PVuJNfTOpbusgBEMMnyyl2v274Pvfv+ifnifd6KoG/fTgwB8OyKTXBW3o5T4WAgNhwPP/FCyW0JAMN7X4fO3X18SxQ9e6v3RL5cez3Q14MWAE898yw6WwmUbktuxTkAslYCD/79H4DjeJYBgJdXb4Z0v921+Q08W+DJfMzGxzG5YBlr1/Ky3s0zd7yIOSU+t+Bgxf0/xDzxvm/fTjz66FNY2DYHY7tfxhv3fhOrx17mWeaM5qloH9gAAHhgyxBgy4M4Zc9OjATw0suvYXznCkwAsHz9dqzvPRqY+Q1M2v2k+3sefPBBLEw1YSyA1558ABtXDWB+bwwS5l306GNIxdpx9KjzMH33I5Tn3jWD+lLb+TQuFYzfh5e8gGx0Zcn5HnnkkYrrqb+IYoK1F1Erj/0YwufPfYBjsO3e318lW1uE79H8zp078T//8z+4/fbbMWfOHKxatQrXXnttzW8C9RS33HILbrrpJvd9d3c3Jk2aVH4Bl8krGFLZPNoCgLxOug8xSxSZ20oYdVcKjdXI0i2bzmEEuhHNpwFYSkagTYC82SSBlBVYqBVlVktFlzAJb+4gluvOFRgYwsl6E3k4jmK3DQbyNg0DYAFwMAx92G+3B2arFOUSUK5ZgrwsPqcGcs3RLANbtPBY9SMzIcBVO9MHwGErhCQzebT4ySMSo2tALi0A53ZeSUIXWB1ENhqgfTOwX8iSmIHNJQsQ1cg1WxblkexCNmkONpftMN8qBqgTjiU2fmFo4HuyT6kxcOTSn86WnkE2j4zWhpKuXDNtuwNaHNoprnPDD6MGhN4dxMYeOp5XkjBk+VvJBMzmCUxoN8zF5JqW4JB5Y/HU5mOtcnT/c7BmaH0cYwEOBg/HecMge2fEsmZg4jNIegN03+tJZVkAgLAbAeqtSYMNJMrkXFlPP5HJOa4SjgmriUWd4EAraZQJDiavPOdYVCMMi+6cDV8c52/YIBEH25vDrsi2LSSiNlLZfOCagOM4LH7J7ljAADhzx4tGChbmAB6HfQSnt3dTzLzJiiuXsP2S5XFeLw0JJsdqNGIjFrGQyTlGx6u7bw6BMUkjKkepevWhXtsvV7c///zzMXRocR0vcu8DwKsv48hp47BxJSnCjZ95NMaeRxLB1rpm4Ld3YmxiwCNnHbnnHmD5CsyfOR5zF6rP7ec2AY88jMOGRzH14osR/d6nPf9v/PhxGKOtJ/oanQenTGmCvToHp2MaznzrtbC2vgDc+XOMdnbj4osvhrVhCaxXHDhDJ+DsK97jLp9YtQu/XbusyJN32hHHALEmYDO9t9pGo3XoBGDrdiycezis7i3AGiAx7cSKMt3WKz3AGvX+tLe9n5QNq42X1MvmRAxIAyefehowjqDUTF8XsPIWxPIDuPisk6kOvsy7irnHnwJs+gkAYPTwoUX5Rn57F7APRVHud9mPvQiUESE9ukX517ZFs7j44ovFPn0Zs1o6MUNbZyaTweZtf3RBXvn/Inf+L9ALHLPgBNgvvAx0AnMWnIojjhLH1MudwCaVo/33JcALy3D0xKE48uyLYT/1OrD4CQDAOeeeD7SOhLU2AfxOAYODSqv3bAdeBhwrgvMvfUcRSSmTyeCRRx7Beeedh1ismD1dr/GxZx7GOGsvAGCrM/KASMxzRrXbfVDl4ILwDfJOmzYNs2bNwh/+8AdccskleOihh3DVVVdh06ZNuPnmm/2uruoYOXIkIpEIdu70er3u3LkTY8eOLbnM2LFjK84vpzt37sS4ceM888yfP79sLolEAolEovrkJZPXIpB3IJ1DW8J/t2ymrxNxAFnHRqK5CiajHpo/KZeUmDyh0DYGiBKQjVgTMU+TncTmrQTy+mWJdAuQd+YFwCu/A3Yux8DkGgAiPTvIn9KKlGYA6mFHCOhNdqLd6kEyNsLoQcojd+NbrpmOiURegKtc2ySgXHMsJxi0HNJMJkxeOGhCGs0xn+eMFtKTKJ3N0zZJizx0lu5guQykYWcHQCCvyb4pkESqVq4ZIB/agf2w0r0AOviL3a4/8CC5xId4Qd5aMAFdP94SUs0AnbvRZiA7gFSfkq8x6XZ35dVKFcscB3hDDMY07xQXnO+nQSSHJHDV/nduM8tRwL71CuQFk5SnLDJzSCQzFJl7UtnQAQCe4hD9hrD93lIMoLfMI53LB1Y5kdvDskzZKhxFKkZPXoZid+j+la6ktyHIyyAFWDeS3nXSpMHBeotFLERsC7m8g2Qmh2HN/gsD+j4NneXFLGEdPI/6YAJyFd052c1h+53XiydvkgmAb4pFkMrmA49JUtk8pFI7R1Mvh28zh3JT6Exehvsv1/i5XjykOdnNHOcvj/2L4b6JRpDJBW+AczS7orAlvRuevOFEWLV9oDb1/cIoV7ePxWKlQZU2IipEUp2IZ6kGGmkbjYicd+RhAABr/0bEolEFlgk1y8jAXjUvAIyYDgCwuzfDjsVc8pcM27Lpc4BqRYJtGdlKUszWjHMoz3FH0fveHYhleoDtS+n9pBM8v2N8B9U/C0HeSOtwoF8hn1brSFgjDwe2voDo/nWucqM9dJzKp1Tsfd3zNhb3gYkUhJXPiXU0AfJ/tg5DMjoMTdkuxHo2A0OLiSNRS11n7FR3cb7nfhb4ySJ6Pf4Y8hpuGaG20/ongA1PAWd8iuqBFTxt7fWPq3wH9tM6hL+yPWpW0f8eiI9wX8cyPaT66RD5IxpvcslT0SGj1G/WlHJi0SgwgmS6I92b6VgSxxBtqwQtJ+ZxPx8MmM1QzdVqbkcsHi87W9nzok6jBUm0W4Q5bHeGH1S56zHYdvf7u3w/td1xxx146aWXcMkllwAALrzwQjz22GP49re/jY985CN+V1d1xONxLFiwAIsWLXI/y+fzWLRoEU466aSSy5x00kme+QGiQsv5p02bhrFjx3rm6e7uxrPPPlt2nYEiQhe/1ghdkIIO2NN9BPp1oRVNCZ8DoLgAuNK9qjhk2PU3QYK8UqpZhuvLW17yGlAskaoH65LJO/M88X4T8kLS2EwaUeXhOA4gpC8w8vDSZu+FISSb29HLWwgJKNfczAHy6uCqX7lmAcDGc/3GeRQ9WPph0MZaQCxroBVJ84fcqAac+QGbAQ345tsmislbpVwzoIDvdK9nXWZ5aA901bKKBdvbESAvB5Mol3eQyWm57N9A01EVGjVEHmkhG50wlCRsrlR43/ka5RRtAmZoXjLyWM70A/kcj+ydW4AYDOTVZOnbhPRRLz04cbJmyjKbqwi2IrNh4S6fd5DOmkt6+77vlYh6833lkCYGgquL6IwItiargMEDAIjrSNienoygmWkhk8PLmkUKnxEACLtJQ0lpB8/DsiyVS8BtIo9V24KREg4LOMPC0mRUSWA4RrKFYyMfwdZkxSnFGzo7ksNSg08lwRQQMQW+PUoaDD6nPOoi5s8UZmpn4hhhAL2lzVegPJhB3rDVCXjVGhgUAYzuNeascyAAYaIgdKA69GtaA+QNJcKq7QO1qe8bh7TiG9jvqiN66lrDJhFzNTugiBaAUrHr9cokQ/irYj8Bg8hXOEeySfV6o/AYPuxsmiaGAO1CtHfnclWvHjcPeowb1ow29KPD6vWuu7lDKPnJ3zkSGDmTXu9ZDYydS6+3v1w+P4AAU64QnrywveS3voSoSe1bR9P33uNdLpdWr+V21WP8MbSfAODUT9A01QO3I+3+TwCPfxVYI8gX6d7idcjlJbFHz3fzszSddHzRYkOSW9WbvW+IfMVykSggfHE9JC5Hu37nMmo/y9/WMVV9L+scj9zq/cfyt5ULCfA3+1SDrfOQpMNupwW9KJZff7OG7xHOu971rqLPjj32WDz99NN49NFHWZIqFzfddBNuv/123HXXXVi5ciVuuOEG9PX14brrrgMAXHPNNbjlllvc+T/2sY/hoYcewje/+U2sWrUKn//85/HCCy/gxhtvBEDFiY9//OP48pe/jHvvvRevvvoqrrnmGowfPx5XXHEFX+KCydsSoRM86AAo00snZ4/TgrhftovL5O1lkdAc0Jm8wyZ6v9R9eSuE7y7Vri00HXu0Kw/d1kl6EUYP/SIPxyE2kcsY1i+olUJcpDusXraH7VQguWYCHJvzBCRyFN6Tmbx/uWYBaMbzAzCWSdYfGvJ5DXCuAly1bfe4b7GS5vtGP15dT94qmbwxuum0WknPugLlUViQcY+TKhjfIl/pU2zGJCpRZJaAcyW5ZsDdL06KAWzWGK/eXATg3FYhF3GsZgdoAGcMRFS6pq28j6YzzlXXY8D7Ot17YNmiLpN3bglvYE4gMfzOblMAT2+KMioOMbIzeJj44RbtdOZt0G3CUbQDeCUJWY4RBvk9HtZbuL6Rei5Bz1/d9zV8liaD/zuTIg9gBkQA2nU+4PGq32vMJEXNmzSU3yqHF645AGBkDRDjvLby3H/NpHjNAfhDi5FoDjYDFdRwqgx5PYtFrEBKHDLc84bDLiFkKW0W32btNwRvgOM5Rjga4Fjue4xjNJZmEY4xmvH912zf6Pcpk/sej0qC+THSCP8RZm0f4K/vG4cEwfr3IiGYvGhR7ExE48BQUfuWhAJA1VGKQF4B2A3sI6Axnyn/vzMD6nXfLgI/p56mPhtDbF7sWqFAyL1rPavoaIlhokU1sB5HIys1tZM1l4zWkURoAgjknbiAXu94Bcimyue4bZl6Xa3aZLmQgHcRyCu25f71NB0xw7ucDoYnO5X6pR6SqCWZ07k0bd90v9pmO16hqSTv6DF8evFnANWAJcA+sVjSvKN/nZabOH7kPrdjpcFWHeTNJoEOccwIxrDbKACoY2Tzc95/rG+TUiHB5ZZDC+SdII71bc6IQeZ8cwWb6cHUqVPx9NNPc62uZFx11VW47bbbcOutt2L+/PlYtmwZHnroIdd8fdOmTdi+XQmqn3zyyfjNb36Dn/zkJ5g3bx7++Mc/4p577sFRRx3lzvOpT30KH/3oR/HBD34Qxx9/PHp7e/HQQw+hqamJL3EB8rbadCELWjDLCCZvj9XqvxCiyTVzFd5dkHdoOZC3jLi9CLdbtpoBYaoHSAmwcegEYAx5Wg7toQ4ZI2kmnUmUzmtsxCovFuIi3W718nW763LN1TJ5BSOwxTGXSfYyin3KNQsg0YaDFqRYAM2BTA4Q3rr0P6pl0NJx3wYGkFd/gPHN5KU8mkGDJlYvPl8S1sIvOcPH9vYUMqvx5NXykCCvSR7xiO2qnCT95iLyyEiQl+kYKVnclSDvEZd6P48m1OA21ctSCElUc43PDNCgHhBMXu/DCU/XfX2wZgBzJqC+LY0Kd3VTpOIrdpvsG04mIB9bJWQgglO2kqHZy1U5CRBc+yZheLx62SrhSnpzMvHN8mBiElVrD1A2Dy4g0ewaD4DFb7WJo0mDASRKRG234d8UwOO6/wY9RrK5PDI5x7OuQHlwMooNLDVYpPDr5L7Hdf5yMODrBcBTigAG9i+sDXCMz78Bg8NDmtWmgOP+y6DoYQKsAubPNjIP4yYNhm3C4WXdCL44ELV9oDb1faOQgO7APsSzosbWUqBQVwjCAco2ra8A5G0aqsDQzk3E1NRDr+kXygZPPMFLshH1b+x8DZh6Kr3e+JRnkWjExiSLctjnaLXBzo0FIO8oDeRdA7RPpd+eSysSQKnQma0zLyg/XzXhMnm957xi8gqQd+j4ghz6vO9LsXkFwQaWTRaMABGX9qyGW0+WYG2sBANUKtwVxralBMoOm1SsZprLoKNPA91Hz3Y/B0C/NytAWh1s1dnd2ZRqDOjfS3VevcbbuYlqdRK0lbFnDSrGIcvkpd+1zRlhpAZ1qIV/Y9gK0dFh2M1RRdx4441lO3UWL15c9NmVV16JK6+8suz6LMvCF7/4RXzxi1/kSrE4RAdJc4RO4KAP27n+TgBAn1Ule1AP3ZN3qHlxKJXJV5Br9svkrQJsllLNTcMIRBTdNa0DWwHMMyqExCK28hTL5jCsX/wuvWurUmhyzaZMQOlbl0znlFxztV1SAoRtg5AE5nqQsgW4Xq1cc6yFbqhOHq0YYJJm0oBVK1KdjDagmLwccs06cOaHUazl0Yok4oaSwOpBSpw3UmKkGn9gkUdEDDCM9k20oBCSTSvW92Agr9xuaXOQ17IsNMUi6E/n1LUkn6eB0WC5JCSTtxtABxsQUVSA6N1FXZewgJnnF/4A2nfJTiDde+C8+HatBJwcDfaGjFMPJwWevBx5pLJ55PNOoOOeq5BpypyRy7Gdv4eCXCRT131TzMZAJhe8kMkgcQ4wFTIZJHBN5fcAxfzhKHYDdA4H2b78RWYz2VnTXFRBNfi+UYXM+mDimwARei6mTCIuSe+wAXgOKc8kA0gkG2j60zlqYA0Q3EBicCUNHklRVp9ihmYvKcUbzIve/DqiLx+4SYPp/uur8btcLoySwByNAKZS+E0xG8lMcL9kbk/twEp0uTxyeSqqszY5Bwie8bP5sw2bJ6/ptZW5ycqoOYJpTNIIvjgQtX2Av75vFKL+a/XvRSLX6/nMjY4pwIYlBUxeKdfs9cIFQEzMgf0ERups3cIo/G7G2d73oyXIuwI4/8tUb923DujeDgwd584m/Xj3YiimQIDOr/3JW1NuGQEMn0ZEg0wfkbMmHAes+Tuw5QVg4nHF+RUC1NWqXuoxYiawdw0B2FIaejC55gIQuAhj2L8eGD/f+5kEbjP9VCMf2Ee1tt2r1Dw7l9P0xBuAV3/vXb4c41VKNU8slmrG7pWwJIDc1E7ENEAxeWXN1o566+r6fs8m6VhqHk4579/o3c7ljqFNzwDj5pbOGVDkMVP2dZ3FeMHk3e6MwCfOnTHI3G+eaNxFD0RIuWaXyRsQ5BWyrP12a+UZS4UGqnAUdyvLNUtP3m0V1+FLYkZKNUvWsJAtGJqk/8FWHErnFJO3sGur7MKaXLMhI0L+jnSyT/kN+JRrboM5gOcphLhyzVUyeSVoBaDNMgNXPYWQfgk2D/F2vVUKCa5aSd4HKRdYrRbkpe3RYqXYwCr3QcqPdLTYHtGclPQ2Z0S47Nl+cd7Y0cHZ52J72Blz1jlQonA3sF9Jn1Rq1hB55Bhko715FBRUt7xA01GzSg8axbnrpHpZut2rKmTK7sWxR9P5VMDklUWlBIPsLBD8wZ8DEKHleQoh9eBtxinpHbY0McAA4GWZJAldllewPBzHUeBqrc/fQYKj8O7xS64XJqBhHlHbQsyArVIvQGI9sazlsR4U+OaTFOXbN2HLnNdLcxMHsxkw3zc6yJUwkdJmaNJwjxEG2WjARIq3To6RLO91JGzlFw6wihvACypzzpWHaQOcfmw1GQB4HGornNd4wKsS4ifq5ZmCW0kj6PiZlhXPnYa1tEY0wihknaZ3J2KiXubx5AUU6KaDvC6TdzeRDfTQvXSzlUDeAibvYQUgryvXvJJqkGOPpvcFbF7J5N3raEDixqcE4UDmOxKIxICOafR+7xoF7G59oXR+0tJQX0fQOPfz5T1542JbSiYvAMQ0/KNQLVTfDzLiEuQdUDXsZBdtOxl71xIreMKxwFHv8C5fjvEqZZInLSz6yt62VL0ZN1fVq6UnryQsNXcUMLi1Y0LW/3W2uC7n3LlRgdN66DLapeIQlWseD8Kjtjoj8Lb54weZ+80TDZD3QIRg8jbZdIIHfZDKC5BrIFIlsKSHZPKmeo0H6wANxMaXk2uWN7J9Gyquw9dgvVuAvBJQFv+jPU0XeQ4mESD2jcsArBbkVUxeY28VUbxwpM+qFamOoQm4HUEE8jp83ip+5ZoBN2dTJq/+YJqWIG+13sBaHi1I8XoC+pZrFp68DIxiV9JMFr38MHlFV1skR4MJVraolEduGUl+yJVCSnpnBJOXu4Aoc2nuoAFsuZDewMkesZ4aMZrkYLlUV6SWR3agR3W7G503VTTyuH684gGh0JOXoXCnN71UVYBwHPrTgovlZVwIYZC/BcDjG8nIBGSRreQCV42ZvIaNAJJJFLCgmsk5TGwV80a8FMP5G4vYiAqGStgFRFOfRDZGIoPcKw9I5GVZm+RhvE2iZucvd7HbqEmDEyRiuMYn2ACAcM8bLia+uW8zXwONkaWG9nxmzKANGcBLMmwPgFkKn6PJygSsYlawCJoLx7EKaHYJAfOQx4hlkcVO0CjbSOsjOK0sgPAb4MwbWHkUeZoZZM65mhIa0QijkExeUV9zLLuYvCCBUQ/IK5i8Tg5FHrHSU3VLgY8q4K176GBfcwcwbr533uHTgUiCmLedG4App9DnG570zCY9eT0gL6CYsYAiM42cSdM9a4AJC0SezxfnCRTLIlereqmHI64RdkR7XYbJ27tDSTPr9d9uAfIOP0zktaH4/0jVx3SfIkwNdHqZvHCAXeL9OZ/1Ll8ODJXbZlKxH6+17SX1ZqzGqpVMXhfkLVi3Du5Lb12Jp+wvAHn3bygN8haS7gqj/1Bl8hJus90ZgRFtiZCzqZ9ogLwHIgSTt1mAvIEf/IV8bzJiJtdsOiB0HAfpTBqjIS4WhXLNI8QFd9+6ooK9Hr7ykHLN8n+Jm+VwNpBXe8jtD8bkJU9eQwBADGxtXVKh2oKGuPlFrTyGRTIs3irJTF4xeauVawZcEM+UyasXQjL9AfLQZJLNH6S0wrsf9qyWRzMD2OzpMs/nFchblScv5RHPcUh6FxTtpDzNYFLNWh4RJiZvEShSrTdwQnoD06DLHEikPIq8keSAsJS0C6B5A3cVrStQHtXI3rkgrxiESu+R3p0AeJiAtm0hHq0S1OzdBXzjMOBbc4Cnvut2wcqCgWlnt2lxlwM0A8zBKoBZUtSACVgvfm/uvjEtdsfNZCv14pYJW4VVNpqpcaU/nQ20vAJneCRFgxdUmUCzQpuCQLlwSGmbF5m5QCJT4JsPSDTbNzpYHjoTnw34NmsqUucNz7ON6fkbtqIH5WIOzuhe9IG3CYNvM2BuD+DmwSYJHCyPfN5BWqp6sLC9wz1G9OWDXtO47ntFClK+81D3PJMmDZZ9wzCWj9iWC1abWsCYj595xkZsdTSjxlGe86YRjTCKQhCseXgxeaEUkzcaV8sW+vLK+SULVIK+ALD1RfVaB/umn1UsUxyJkiocQJLNEuQtYPJOlExeVKiZyhqZC/KuViDv/g1K2VKPTgaQV/rP6rWHgt+ZibbCkcC63MY62Ugyeaec5J1HD8n8lXLNgJfJK9UYpbJdx1QA2v1JB1bldgYIwI82K5KEFtZ2HeTVvs8VgLyFAHKhXDNQnsm7fyOw4q9F/7sU6OyJQ5TJK5VltzkGrPJDMBog74GICIG8CZiBvFaKAIBUNAiTVyyjgbzBC6p5jMF+RCwHjh1T8hQy2qeQR0CmzwUMSoUvbzNXrlmAvOLCNyzfiSakjAsQngf/PsHkDeDJy1XsRqpTfNBe/cKxFjjCWH5kLGmUh2d7SP/ZAAzaVgwYe4rJwkFGl2v2mUeLIdgMFBSpfDN5xfawOMBmraAqQFL9f1TOQ4C8eSnpbV4IcUEiF1it4iYrrkeRrACbmfZNSVZxFXlI0L4msnf5HLBVDPrKgbwCbM7003FlG3a7D8qMzOeBHVKuWUj/yMF+sgvIptyCN6sUfqVY/wSpKPRsAx65FRCSN5I5YA7gGTIB0/XRdQ+oe6YR20xsj7wDpHNm7KqwtwmHDy7Ax2gyZauwABFZpn1jCgBwszRNGYmm/rMMTN4kQwNNLGIjFqFihPE2YSoyG5+/oV/jtSYNE5AorrZH8AYaJnaVqUoCO8s65GOV4/zlziXwecMzNjJl4vONjQwbEjQA8tBp0jA9b3iuI8a+zWznDIMSDpOHdML0vsfcuBJ2A417/w3YCJDLO+6ziOlx0ohGGEUk5gUUS9WDJWjbvQ3IptTnrV7rKzckqCsIWximgbw6cKqDfYVSzTJcyeYVwJST6fWe1ep/Oo7y5HXE7xgx0yt3DKh63cjD1Tqa29V7HXx2c93kfV8IQlcTLmCpg7zR4tkkW1qyj0uBvJPF79dlnWV45JrbxXLb1PY+4i00lSAvABz/AfVa/63DJnnXPeHYYqXAdJ9XCloHeaUstaypV2TyiuOpHJN331pv/VfGYPuif1/p/30wh+O4TN5tOIR+F0M0QN4DEVEp10xdHEGLZbYAedOBQF7J5O1xixdB5W6SmRwmipsHho4v7m6KxtXFcO/asuuRA9N0Lu9KHJYNV65ZrLe5A0jQxX6itZsNnEll8ppcc5Ugr+bJyyWJFHGB1fbqF7Ys5ATQNyKaGmTmyuE+0KWyAeWaFYPWlIEnj5OcAcjbxiCT7HmQSkuQt0rgW2yPFph7A5eUjbYiSpakijyakPSsK1Ae2u9IZTXGdzWNCQLUjOUkk5fJ01MWIGT34WCAs2RiczGKSxUQd79Ox0u8DRg1u/SC4jjNCtloNknCctJqnRspp0hcDeabOwBbDFh7dx144Gz7y973XZtpOS62irGkGS+gGbQgw1UI8S2lXSIGmLrujcFVBvlbgFf2zuj85ZAEZipkNhmyI7nOG3NP3vpoBADqBwDg9ks2ZySGy9KUy8UjtpESjtwejmPg18hlUyBVPcKWOa+TRgBXbcWAic8nc14fDDxTBQsOiWTA/DribdIwGBuJYySbd5AxboALV8GCC0h0ayQhjwMS1agUDZYLcwNr6Oev6XnDvG+Cj0e089fweG1EI4xDA8KcUiBvywhRu3GAzs3q8zbNl1cPCdjJGDoOmHSiei8bAru3qc/KgrxzaLrzNSIajT6S3m98mqb9+9BmUZ1vvyPqXK2jgDmXF/8GQAN519B0grAWKyXZXCjXvHVp8TyDRb7ENaIEyOsC6aVAXgmKSiZv1xbFlpUhLOqQ7lPLSiZ1y0hg2hn02iN9LPbD6Te7dSgAxezuUqzZ7S/DEss7en0NKMHkLVhfKbnmckzeQj9iGYUS4eW+P5Tkmvv3osnKIO9Y2Ok0QF49GnfRAxEFTN6gD7mRNIFtmbgPRqUMCfI6ebRGzBjFA5kc5ttvAAAs2U1UGLpkc5nQB7aD5lIo1wy4XVETrd1sg/X0QA+QFV1UPuWah1l8TN5oECYvgFyMANDhhiCvuz2zA8pHwJdcM+XRZvGBmjkJNvsCeQW4ysqgzaubdLV+yTE+T16PpJkuG10NqCDyaEHKs65AeWgFWQK+fXgDu7LR5t7AQAlJMym5Pphcs8jDTjOBvK6npzYY2/EKTcfNL99lJ7ZZToK8TGBVWUkz6d0yeo7qRLQsjy+vK2lmyHyrukgl5aNliI5UVew+tIplJk1WMsyYgBYirt9quEUqLraKMYDHJDvLBpoFBIgATp81HpAo7OYILq83U0nRTC6PrGhqZB0LBAh2mUZDcIZv35gdI1zKQECVSkWlcmGSwDVlV3GoRgAcjQBM13jDew35NjMBeIb3GzYGHleTFVMjnukxEo/asG1zSWCjXJgBvMA2I3UzRuO9nnE0wIV936sXJRy2Zi8m1RfA/FrSiEYYhw7slgJ5LUtjWm5Qn8u6Uzkmr4yRs4AZ56r3kgG6+iH1WaEdoozREuRdQdOpBZLNnZTPTqcdEUucj/EWYN67vOuRwOeIGTTt3kr1zYkS5H2h+H9LFuz4Y8Q8JTyGBwvpw+sMxuSdTi/2rScWas+OgvzbgfapQLSJ1ilVPwHa/q/9mV5n+lU9fdM/aTr6CKVkt/M1lYsOhOrgfWFMLAHy6sznkbO8TN9BPXl1uWbJ5J1K0/0bSwPjhbG5jI+yjENQrnn7JmpM2INhSCM2yNxvrmiAvAciBJM3YUkmb7CBWFSwB7MxH4xKGXEl0dAqWHzBB6Z5LLSFSbm8sRSGNELfJ5i86X5g/RJPx4/ut1pxcOo4dOMBlFwz4Ha4TLJ2s8nuOJIBGEl4tlnFEBfLDvSyeXpGMuIm4IfJCyAbJbBoeGRgkDkrhws2ZwRwB6t6QBPwyjUzPeTmBQAWBORtRdJcCtDDoPXhgwu426PZSvEWyySjOO4vj1YkYVnec9BvRAvlIgN4A0cFyMvGwJPM1Wo9ecX2iGSZ5JpLFSCkZH25wTrgMorlMV5z/9llv6HpnMu8n0vmc99e9zdwMfEHvcZLMFxKWovBPJfsLBcTkFX2PUDo+Zucv7onYOhFZkPZSgXgcQHw9QF6p7NVqJwMkkv45w03SBS0gFgfcuv6cia+zYD5vuEG4MM+b0wbaLgYmrGIjahtKKXNxsQvGBsFzCNs1ht3HkGltNO5POQlmfWZIkCwNxWF3EBjeo3nAu8SUdvtmQ2ucsLFPJcNm+Fe00xtG9ibvQI2wDmO4z5TGPuMM41Jwm72qhdlAplHwrBJoxGNqDryFc4ZDdgtyeQFNF9eTSpYa5b3RLzFW5MaPdtbZ155H03f+EflnAEl17xvLYGD0i92gwR5SWZ4szMaQyAYorEWYPJJah3RJkUOaRmuctv7hgJ5ty4t3kZSwvjoK2m6+TkvWFtNSMBSgrLxIcXSxwAcuX3XLQb+7yRVJ5Ih1UR1sD2fB+5+D3Db4STNDACv/lEB2hLoHDWbmLZ2lJQIZS66pLHO5F3+Z+//LsXk1TAOZ8zR2u/NKyZuWU/eEkze9kkALFIbLDyeSoUuO10YjqMB2IcOyPu5X/4dALDNKXOOvomjAfIeiBBM3rhjxuSNZYjJmPfDqJRhRxSb0DIDeQeSaRxvv05vpBdAYQwX3Td719LfN2cDd70F+Nl5rtSDbVtukbpiLv171QVv6Hj1uc7kZXrIdVyp5pHVMSMBl8nbbKXRamUGmbm6POKZAD64ANIC5B0WMZVrFiBvVmj+x9uKZbkrRF7KJDN44UoJa8eEycvCoNWOVdeTt0rgWwObWT2JdCZvVXnQNaDZSqEpaiYpChR0d6d8MHmFL0giz8PkLSqWVesPLI6liBhc1aSQWQ3gHPeCvFx5lJSb27sW2PQ0+abPu7ogD9oe+VQPnydvNZ33PdvpOm9FgOln0WeiC5ar2M3GVuE6Vg2BVY5CSP2AM/LaaiiNyNSQYFpQ5SoeAuEzidi8cENmvbFdR5gaEkx914E6As7qBAAwbaDhAqsAPgAvbCYg974J+15j6kWf1MDyepFZ5domYTckmHqccjWdWZalVHlMm5tq3bA5aB5yTMID4IXNKHZV1wI2wKWyeRePCN2nmFmCPvAxkuY5b8zvvzyNeI1oRNWhSyMXhg7CDQryblCfuUze3YVze31dC+27Vt3nBUult2+paBtNOTl5YPcqBfLuWk4gZbQJADDN2o4zbAGMjj6ismfriJk03bOG5J+jzUCqC9i7Bti1CnjgP4DHvqKkgudcTgBp785in97BQjJ5JfN4ykmla+7DhSfv/vVA7w4CZaUEMwAMGUtTfT9seU4A5tq2THYWk6ZGzwaiCSWpLCWbJRBq2V7JbUnYoC9L1xc1Jq8zVlM6zWvYgKyVVsPkjSYU7lHKc7gwSkleu/+3W/kCH0JMXtePtwHyFkUD5D0QIS62MQEABi0gxgW7MxDIC7hAU7NDF5KgA0Lseg1DrX70ogUYO7f0PK5c83rgudvpRgHQBWab6nSpalAou2vaxtAFT0Z7AZM3kwT+dD3w5Hd8/yQ5qLQkk7fcDb1UJIYiC7qwdljdvv+3HnJ7xLISvPMJ8kZoH7db/YPMWTnk9mh2xHr8AKsAslEFrpqDIuIy5QKrPraJZK4ygM1eBq1fJq+UjTZn8no8ifxIJGt5tCLFUsj0dBCnfQDOAmxOOEnPeoLnUdAs4nryVifXLJsZuPLwXFv7RONIpWuK3GZpHkaxzhArus6//DuaTj/L2zSj5ZEdUNexA8IE3C4eQkbNUpJGYkDNLSUWtn8ll8cpz/nL1HlfL0zAkJlVXEBE1SonZcJxnLqRR0wxgUSmRWY2sFnkEbTILEGiphhHk5VZkZnNCzdqet4wXVsNPQEl29X0/AXUNdG0mYdLHShsIFGNW00bAXiO1aC5yHMmYluIGTZpmMutM583YUuLczGKGc5f0/OGy1M7YXz+Mtk2MCnQcF3PgGD+wFx2J/rygcfyTPffemPihz1+bkQjqo4KloKDyjUDpUHeckxegIBDd9lp3u92vAq8sUi9L+fHCxAgqks2t40ieWCAfHlnnAenYxpGWD04M/IyfT7zAgJ5Zc66XywAjNRA3khUyTG/+gfgrkuB528HHv+qmr97u8IASnn3VgrJDpYewlNPKzmbM+JwwI4BsICTbgQ+9ARw1NvVDENEDUtnVC//C72eexVw8kfVvLKGLGPUETSVrGjJgpVM3+4tKBs6gCujb4+Ssgbg6HaWulewK9dcwZNXgteAYilXOlZlFMpZ6yHB62gzEGsefF0HSYzTQN6PHZkNOZv6igbIeyBCyDXHHDrJAz3053NoytGFwfEp4euGC/JKJm+wB7qWLeTnuDw6p3xXkC7X/PJv6XWbuGjtft2dramaB/9SUs2A2+FzuLWFBv6r7gde/T3wj88rn4Iqw5UnTkq9eh8gr2WhOyokm3P7fP3fwpCFkLgEeX0yeZOCyWsO8tKlYYglOot8gryZqPSgHTCSFAXUg4clpYl9gbyaXDOTz1oyndEAzSpzieugN2PR3S+TVzBomxkYxUChhLXYP36YvOJaxM6I8CnXHMtJkJeraBeMyQvhDWy6PeIRXW6u4H6z9lGaHv2OsnlkB9Rg2BgAqIYdKf14xx5NzTyAC/KyFZmZJM345DPDZYgAfFK89cJoqhfZWdM8bNsyAvAyOYddUjTs4i4XS5OrWQQIVmTmup4BDEVmNiav7Vmf32BjrcZ5GmhMm1ZMc8nm8sjk6ATmYgKanzfhNotwnb+mXvRcksBAHTU3GaskcMvOhjsOAA4hJj6X7DsTs9nY/kVbPsjxKvOIMjZpmDJ5w/aiVzLJXHkYKvIY3msa0YiqoyLIq9iOg8s1K3DPZeB6mJ8idLZmpATr8m+f0nJbWz43QIGTu0r48kaiyJ36SXfWPiehQNsj30bTcQUkLQn67llN04kLaPrENwiwHjXbWxt/+bdKsnizT19eyeTdS36qmFYa5EXLcOBfHwI+vAS44L8JnByugeNDx9FUfrZvHbDir/T6yLcB4+aref/xOe+6R0uQ90iauiBvJ00r+fGOKQHybnvJ89YZfaR642HyChJFIZtWZ+pOWKBeS0nvSgCujN0rgQ1Plv5u5f00HTZx8PUcRDFBgLzbnRGYHpADeahG4056IELINccgPHmDFCCSXbCk9EBQLXUhxdkkmLyBCjLP/hiTX7oNAPBaYn75+Tqm0M0g008yCcMmAyfeQN9Jc3lUKeElmbwFnpb58eQZMMPehpbMftLcBwA4wOL/qfYXefJwQd7BZF4LYr9N+2Robq+v5crl0SRAJ9dDoMroj9D87VbPIHNWjnjEhm0p/+aqQUQRaZtA3mF2ylxSVDx42C7I6wNwliAvA5NXPsA4EuAFfDNoW5Di9d+Rg4VAjGLzy39JdnM126Sg4YRNbk5e03zKNcdz/Sx5lCzI9FfBKhbbzBbb0FTuVfdb1eUFkUkC20VXp+7NIqOAyRuLWIgySYpWvMZLiZtx84AhXpCXrcjMBuDx5JHK5pEPwATkAs30dZiyVbiaI8JmWXOxvTkbaAIBETpbJXS5SJ7ibr2wvEyLzKxAhCk4wwxEmIPNIRfdmdjetA55/w0ARGh+k8YAABO4Wi+NPKZ5mHrR19X5ywQ4qzFJuOBqvfiu6+sIkksml0dWjO34GkeDbRO5T02vrcaS/EyApm1biEubrwC+vJxNVuq+F3TfMI1bmc4bLrA5qN8557W1EY2oKvZXkMDVa+3Ng4C8nRuV1HJbBbnmTCEBp+A80YHdLS+UXoeMMZLJK8BJ15eXQD7nKNXI32ql8PNnBBA9+USabvqnd30S5F15L/CTsxRYCtDvvOZe4Kz/Up+tvA+YILx7Nz9bPs9SkdfGGk3DyquCAuQPPPZoLRcN5C2Ua155H8lJJ4YCh53l9TzWY8g4BbK6TN7lxLiVddVKEtSlQF5NqrkvPtJbv89pDFO5/kIsR68ty5pu727yIwbUfhss/vwhBVTL6N8HPPF1en3Kv1e3noMkJJN3q+MPt3kzRAPkPRAhmLxREyav8IrtdlqQSCQGmblMiItdk5Dg9V2Q6dkJPPSfsJ0s7s+diMeGXFp+3kgMuOrXqutnwftUt8zuVe5sVXnyuiDvJM/HqXg7VuXps9YNj3jN6lfeB+xeXd3vggJVYinJ5PV3sdgrQd7MHl/LFYZkzTXnJUPTH8jbF6E2lqGOGcgrCyFtCMbkTUcI5B1iJ43yAFSRKpLxyVoF3LxbkGRjNLnsWTvmlQ+vFDrYzJRHOpdH3vXB9Qnywlw2Gij0KfYv19wsmgiaTIu7ulxkNg0khTx8lXLNcS5vYFkI0a/xrnR0hWuK2GZ2hkeuWV+HB5zZvow6CltHqUGxHgXewJzFsrIgkeOoB4RJCxWTt283kM+xF5lDZ2Zo538QUET35DUNBYqYyTSyMYmMGTwhe5wyMhFMjlcpkUySomZNVsYMeC62KBPYzMGyThhIR3NtD6AOGfB1AjYbN9CEzATUt6OxEg7TfY9r/GzqG8lpMxJo37Be4w29NJlkkk3PXy6/VT7/93CPEU5JYDbfdeN9w2OXYKoMBMCoSYNTrcF9/g25SSNhaNvA5u3tkdIOAMAzsc4b0Yiqo1q55nxGSQzrIe2lUt1KDlcyeft2ez12AS+TVw8J0MqwIgAc4LYZwHfnqzqSHpIpKpUrp55K0x2vEshX4M/69fuEVaJk3+59w7veKScBY44mn99tS70g57t+Sw34mhwx+nbRvAABzWkfCpKOdq2ackplr+DC0Jm8hXLNMmZfQvXZcrLE085Qr6X08t43PEqjnt9aGO2Tij/TQN7u5ine71wmr6Xqk+V8cXXp6mW/pmUnLCgNLOvxgUcJAO/eAjzwSe93j3+N/u+Yo4D57668noMofvvcJteTd7tz6PgMc0UD5D0QIZi80bxk8gYolgmQd58zJPgASAIaObrJZHIOsjkfubz+AODksW/YUbgx81FE4i2V559yEvChJcBl/0u6+NJkfu8bBMSgyk7mMnLNA5kcns+TB0H84U/ThXDMUQQUAMDOV6v+aXJwm0iLm7QfuWYAu0EXlyFpM5BXbo/mvGTy+tMe6LFo/iGGIC9AA+02KddcLWNVREoweYdYDCBvVIK8/f5z0UFNUyaR2De27j1braeeyJnHo1gt73qnVgt8a7LRzZwgkV8mr5BrbrIysJFnY+AlM3lSDnATbK+8oMi1SYK8XLJZ8hrvONWBvAKktzN9LHl4ctGLMlJSZ+IJpY9d0RSRT3GCvIM08uxdSx4okQR1c7aMBGDRw0P/Xn4v3DrxjQQCMolqABIFKdxxSoo2VdPsVSHYWJrGxwhfkcqEwaMXVE19X43BGSbfuXqRW9fXYeLpyQESmeThOE5NGDxBguu80ZcPUmTmPH9NjlddNcLct5mJHWks5Wl4bWVivZnmwuv7KpoSwpbi5QLwmBoBcnkHGT+1CRG8jQDBjxG5PSzLvEnD/LzhATVNJYHdRoA62TemzGZaR300BZoqaaSY8tCvQ4GurVk+JZxGNKKqWPdY+e80EC5699XA/x4DPPVdYkXKiDURKxRQrGBJLshnFPArQwd5dQB46ARg/LFi+dHAaRpIt3898MLPi/MbPRuARWDr2seI1Tr8MAAOsXR1n2AA744sohfNHcqPVmfzJoYANzwJfPw14K0/AY59n/pO1tUK2a1bX6Dfn88WyRVXDJ3JW8aPt2zoTF5ZF24vAFWPfCtNY2WYvLrf8ZCxwMTjqeb01HfpMztGtalykSmobTsOsHWp+7arebL3+7xk8joKGC+nyjpdAND5PPCi2O8LrlPLlYrm4cCEY4G3/5QaBF77I/DK7+m7PW8Az/+UXp//ZX+Aep3HZ//8EkaDzrFtDSZvUTRA3gMRgu0XcQjYDNT1J0De/RgSfABUwFoDfALOK+8DAGwYcy4Aq7o8hk0Ajr2GtsGwiQRm5LOuJIXr81Ipj66tal1aJDM5PJcn4NjKigvuvHepi71kAFcRcnDaJEHeVn8g7y6HDNRbUhWkNaoIuU1bHQHy+vGfBdBtE0jTlus2ygMQIK/L5PWXR79N4NlQq884D/kwFpUS1gFAXg4GrXwAimQEgO6H3Rwj0JvAZsNit7Z8TjAuq94mIo+I5WBoLNgDoR6B/YE1CZUWBn/gsrLR9iDbWuQRQwZRZNkkRV3wLt0HZMU5VEkdQOQRzfLIRgNlCndbBMg76fgyedC+c1I83sD6OsoWECWLd8KxpHoRiaqHpJ4dNZACDBdINJWbc4vdDJ68RsVuRknRuvFbrSO5OTMmEQ94R+swY4mw+b7Widy6nkug86ZOPD11EJTvvKkPv3N9nX6CE8AzOV5rkYcxEzDkRgBOlhfLvgm5ySqfd9xzuF5UTswbedTygfYNYwONyZgkpTVGcDVpmJ43hxLL2uj+6x6rDI08Ua4xCdO+CZnJG4vYiLp+58GbNBqevI04oCFIR0VRCOTt3wA8civwzdnAX24AtrxI4J7ry7uBprEmpcL4h/cBqx6k1/k8kNFqooXs3KPeTtNZFxXVu/HCHSQlrEe8VbFaf3kFsPSXmi/vk7DfeMQz+4ei9ym2rZT+3Vwg2QwQS3XeVcBl3wOOuJQ+2/K8+I2C3SoB4BX3kpwy4E+yWWfylvPjLRe65+yf3k/7qZB0Nv0smpZj8k4/0/v+hA/S9FUBjOYzKJLS1kPaB8ro3KSs2VAC5C3ad22uyiutT2NBTxO5rV9Mx1RiKHDU27zbrDAmn0hdZROPA874NH32wCdpfz1yK+EuMy8gCetDKMZgPyKWg7QTwccvq1LO+k0UjTvpgYgIncgRweQNNCDUmbxBHy4FKCWBBMDHoHBgP7D+CQDAG8PPBBDgIdeygFHEvJWSzSXlTQtDgrVDvWbhAxrIC4BkJk74kLo5SnC4ipCD2+ZsJ33gU655h9MOAGhK7fK1XGHIwXqbE8yTtwu0j1tZQF4brZKJ61OuuT9C8w9xfMh3lAm5b2LyuPUj16wxaLkecl3Z6GolkgEF4ll5tEbMwFVdLlLK6vpl8gLA0EimwozVhadJQw56qtku0QQci37DEDuNmKHvqwfQTPlgFHvA5hS/J5H0Bo42l/cGAdz9FxONDKx+b/J+4ziKySvVDsrkIYFy1mJZuWu8fMiQEkKAkmzu3cUGzjQZSgLXAiQKJDdXJ3KvnJKi5kxAnmK3PEbyDsnhh5UHYObXKLejadMKwNAcweU7V81YsUKwFpkNriWsnp5MksCm4IzcHoEZiUznTURroAm2TcSxGjKAVy+y0QCjJ6+mthK6lLYBgOceIyxNVnXSpOGev0HZ3jxjkkTUdgVmTMYkLE1WUYNjhJW1atoAx+v7GvwYoeV4ZJLVtcR/HozjZwOfYtYmDXn+BvQG5pSwNmqgYbJ/aUQjfMXeN4o/cxzlYQogP+F44LLvA+PmAbkU8PJvgJ+eDfzkTGDTMzSTzpyVvrzrnwB+dzVw/yeAvWs0RieK5YBPvAG46lfA2Z8BnvmB97uebcCqB4rz7NysXj9yq5L03fAULGFh+PXMO7EpPwqjrG7g7ncDPzpV5VHoy1sY0nN3ywvenI99HwHZvTvUvBIIHiwKZa+l7HSJsJ/6NvD7a4A9a8SyOeCvH/HOdP8nvKzoaLMCUEfOLK3oN2SM9/2cyyvX/c/+rPf9A5/0spG3LfV83dVSKNec9b4vZPHKYwgARguWtWRvz3sX1Q8rMXl1v97TPkk1vlQ38Mu3kgqrFQHO/1L55Q/SGOdKNY/AO4+fPMjcb75ogLwHIgST184LJm8gkJfkITrRFrwgI0AGK93rn8Gz9jG6SI06AjtiBLYGKnaPFqDsrlWedbgyM11bgR8sBB77Cr3P58hEHSAmsBYD6Rx2Yjies+aSLv+7fkUXdjmfLyYv5dEqQd5K0qolYluuHQCQGOAAeR20QQCaPuWaOyFAzVyXUR4ADbQVk9efXHOfRcdaG3oHmXPwkA90sZyUa64AlhVEJkJdXK0M8sTy4SWalSxr/yAvwONTLB+CnJQPYBUA7AiyNl2PhkVTbHkkU1l/TF7LghOlzruOWHaQmQcPTyHEZfJWcZxE4q5vSTNS/J5EojkHraMqS3vHJcjbL9bDWKSSxfxkF9C7k16Pm1cxDyvN5w08aCGzFPDcRp42+Z4d/GyVavxnsynyoNeiFuBMMAYtP1vFxNuMQ1LUBPQGNFCTSfYOAJIBfIrrhi1agyJz+EyigrGiz0gxFbsB1dRgAsCzqjUY5BGP2IhyNlkFCFaZ1TrbN0GaElywimN7GFzjAX5JUcBUSjtcL3o3D0aQKEge+rnGqWARJLiaNCzL0satwbcJy/nLMTbi9J81BeCZmpzTuTxyITdpGHlqczZpGDB5OZs03DzqoAEuYTBude97DPumEY2oOqSUrR6v/tHDTM2feQtw7HuBDz4OfGARMO9qspjavkwto4O8hcDxC3cAPzjB+1nnRpcEhq7NJKN7xKXAkm8Ce1YX5/Tc7d73maTm9QqyvVr3OL3ethT2ukUAgIfzx+H7uSvo87WPkmfv8nvEfMvK+wQDiqW75QWq8cma1sgZxDgGgG5Ro9/8XLEHcakorBeUUdxr71uLyOL/Blb8lYDpZ34AvHK315INIMD96f9V78cfo15HE8BJBaBwqYgmgAXvK/99KQbsPTcooFfz43WahmEgNsI7byGTt6XD+14opQIgxcWencDrggG+4Dqadm8rn9/kk9TrSBR464+pLixUU3HcdYpkd4hEMpNTfrwYMcjcb85ogLwHIiSTN0egiimTN3AhRIIe6T7/BUTZvTN+vpnEjNTSFwBskczMCz8jlu8T36AbZs8Okiiwo27hX4bM41PNXwA+/oqSzBg2SfyPzag2ZB5DJDjq05N3S44Yt7H+nYPMOVgeNhLIIG6J7eFTJnmfQ2BfU6aruptthWiORTBEevL6ZPL2CpC3xRkAcmYgXlMsAht5xB0BSvpg0CatJgAkT5ywzEBNF2wOAvLaEaRA4GqrYR6AeghyXCZv9blI4HuoXUaixk8e8sE/1a+kRKqUjs4J6ej2qHkeniKVT7BZena0Wnxsb0BcnySTdzD5d7H/4vkkbOR52SoSFJHSQImh5QFwse+k73TNu+63v0LXeysCTNI6EYeMBQDkulWXKJekWVX3vF+9Hfjm4cD3jgE2P+9ZriYsax/BylZhkK3k3R7hFjJ1ubmwZVaNCpmcYLNBsdtxHM0TkAckyuSC+TXWDxOQkUkk2VUBgG/OY8RULlI1roS7b1ibNEzy4JTkjwZvjiDfZl6QCKgfL1wjlibHeWOwb9wmjaiNiM0kCWwoyc96/gbYJlysVaBKK6kywdqkYSq3zsXENzx/ee835p7aPE0alEcQBQvWJo24WQPcAON549p7GNiMcOybRjSi6njhZ973PTuB+z7m+ciRvrtSEvetPwJuWkmsWxnSk1WSLwCqqbz3L+SzWxj7NwKHX0j1j03PADuXA2/8A3j2R/S9BPeiTTTPxidpHhn//EHxOlf/zfO2Lz4SbzgT8LdcgXqbVN7LZzxesuoHO8BAJwGmlk1MYqm61tROKpNzLqf3nRvJw7Z/D7BvXfG6CqMQ5M2WronO2fYH9f+ySeDv/4+A1VLxyGfV644CFm0pcHTf+uLP5PYujCmnEBZRGK/cDfz5g1Tj1rahM/rI4t+YLwB5h4z3vpfeuwCB3i/9koh1kxYCY+aIee4snV+0qZi4MXwacLFgoieGAmfeUnrZgzhmf/YhF+Td6jRA3lLRAHkPRAgmr+UyeQMUMgWTd79j4skrQI9Uj3+5G3mBGzLW7KFB3igFO9eTRz6vjMKdHBmgS/mH4YcVmYWrAWEUiMTUF5LJ2+1PrjmKLFodARD5lGvekmkHAESS+8vesKqJplgEQwWL14Hlz38WwJ4cgTcRJ0N+oAbRFIugVTJ5febR7Wj+CCkz6ejmWASt0NivPpi8AwLkBYBEzkw6Wh7v8QCMYgBIWnQdaGYAeWUhRDIu/TCt0zaBvENsBrBZPGw7hYPaKiIXZQR5dSAi7VNOW3h5NCNlXICIRWzEIhpIJIFV6TFbNocCj+J4DdgqLuBc4domjiM7c4A8eZ/9MU3nXO4FwkVDT052iIKPrTJoYWigE9iwhF7vW0ddouBjqwCKCRisSMVYyDSSvePbHjKPoHKvrIAzgwQuL8srAEukTuReU9m822tWLyCRKdgMmG8TgAfA42Hi8x0jpr6vdcOAD7tJg7MRwOAYSefykKQ902taxLYQjxhIaXPKrBowz1n9kg0k6DnZokU2I35zYWzSMGHi8+6b+lAEcAG8AMeq3qRhem3VLTkC3ffqZEzC2qTB0CQZj5g3aSQMmbyc+4ZF5pwhj0Y0wlesvJ+mjkPyvxlv/dQSNXhPtI4ATr9Zvd/5Gk0f+x/12bHvAw47G7jh6eLld7xC/rdHvEUtd8+/0esTPkjyupE4AZyjhAqmZPN2bQWeuE2tK9oMHHFZkaTvzqHz8frnz8PnY3eV/+2Fvrz71gE/Ox/4+nRiBks55df+TNN2IYt72NlU7+vbrUge1Ug2Z1MEHMt46ZdFs1jrH8eo3hVw7BjwoceBt3y79LqmnwnMf4/3M7327zjAGq83MQBq5C+M9kml/8fcd5b3G37tj8CXRgAbn1L/cszRxfMVkp2mn1H6uxM+SFjIUrG/dOBZMnsLY8ICF2fyxLyrSf77fff6Vic9WEKCvB1jp4WcSX1GA+Q9EBERIK+TRwS5gHLNgsmLIcEfpCQrNN3jf5AsJZPbxpo9SAmGlgSNPXlselpIVgjA9qVfqQvdzPOKVlX2oX+o8OTt3+s1M68QTbEIOqS0sGUDze3V/R4A2Vweu3PNSDki71IdP1VGLGKjwxYgb2JoWRmLctGdi6s8BkoMSnxEU0yXa/bHKO7P2ehzxE2nUFojQB4tEuS1o6VvZmUimQF6HAI1LR2IDJgHoIG8PiWs+0GAc6tjLtcsc3FBXh8gfMqi7dHGwOSV529ebttYa9XHbE4wiodxeAO7jKa8Anmr3T+CUdyCFCsDYCCtMXkHaxqRnZoQ0uK1KIRUk4s4jqQkOQ+jqUyRqnc38Kpo6jnx3woWIr+SfH8npcVQCJHbI5sfhAmoyy8BrmxzihMUYfBbrZdiWdjAKsALOJvIzdULA49z3ygA3n8jgL6MaS66X2PYPqdGTEBOaWKGInPY3oRAHUl51sk1jRWsMrmeaZK5rPLiBudN2D7jnM0R9dYIAAST0uaS5AdUM4GZJy8Hy1oyeeuEURxge3A2adi2ZdScWJsxSX2cv2Ezm3VPXhO/89AVLBjzaEQjfMXd7yZbwlf/QB6mhSFlikvFGZ9Wr7e8qJi4gCK5NHcUEw+W/wXY+Ayw8MP0ftX9ZKk1chZw7hdI4W3qqfSdBFZfuZsa0R+5Fcj0AxOPp/pRdgA4/v0E9mqxc+g8RF7+Jd4eWVI+f+nL6zjEFv3hqcCW5wi4/d3VwM5X6ftlv6apZMrGmoiJDChwWdpvlYtcliSjdTB6ybe95CjHgf3YlwEA+WOvJZXOo68svb5964FzPuv9bMer6vXuVUB3CevGfWuBDU8Vf95RABZG4kRCkL/rvC9SvWrCgtL5AIg8/2OcsO675Ce89jHaX4VM3hkapqHLhZ/9Gdo+nZuIwXzkFWX/jxu6H68elkXy37p89SEWEy2qa559wqH7G02icSc9ECENwAHEkTECefc7JiCvuMGkevwXMjUmr9EDTBGTV3tokF1C864i6c5cmi52AHD4BUWrKlsYahqmbqZVsnmb4xEMt7SbsV39b6PCroWdTjt9YADyAsDIGN3scj5kid1cMnnsF768FQclVURTLII2SwCSPuWak5k8uiHYiUkzf+DmuI02KRsdb63sbVoQA5kceiAGPSnDPMRx1iQBZ5/sZgnyNqOC/0WVIc8bybj0s39SwpPXw44OGO6550ciWYQrGx1hYDbrcnMylyqZ1o5g8rZYKZ7Cu17wdj15BwF5Lcvddm3WAJNMckFBpr8KVrE4jiTIywokFgKaq+6ja/z4Y4BJxxfkQdtCMsRZinbxKpkI216iqfTK6d3hWYaDZc0BANQL6y3sYre+XNhyc7UovAdjeTHK7zGAZlHbQszQ91X3awwCONdimwQBNWtR7A6UR5qRiS/2SzqXRzaAlHYtPKSDbZNa5FEfgEige40AuCIM568nF4NrWtjs5kOxEUBnA4cNzpj4nNZE9j1kRrHrDWzYpMHSeGY0XqyPMUm9qTVwXuMBU79zzqYEg3FAg8nbiDDit+8CHvgP9X7KKcgfdi69Hthffjm9Sf2nZ3sBTNlcv/1lkkhuagfO/bz6/s6Li8HGt/3EVZhzQdRUDzB6DgG7f/0IMUhhAZd8Exh9BM2T7AJO+6RnVY5lI/IwSfV+JXM1bsm8vzj/zc9S3fq37yKZ6kwfMOXU8r9X1vEBJdnsrus58uhd9KViD+H9G4DvL6D/AwCzLqZp9xbggZuA1x+i37DyPtjbX0LWTiB/yidonn/+kKbSllFG50YCy/UY0BQ1C1m8umzxnRcDe9d6vx9bwMI9/EIir8i60KxLgAu/Alz/KPCZ3cDpn0KpGNf1IiKL/xv45RXA16YAv9f8fjumAiMOU+8f0poEmoYp6eZ5VwMxUb/eU+DxrIfux/smic/99TVYyONYew19UChX3QgADZD3wERUScbGkR2cSVQqXJC3LfhDrgvy9vqXq3JB3nFmkoSSyTuwD8imvEXmXSvpu+lneSUwEkNLXsTKDkwtS0k2d5Xo4CkRTdEIhluCjehTqlluj50QRuo92yvMPXgMjxL4lov5B3kHMjnsdyTIa8bkbY7ZGpPXH6A5kMmhyxEg20CnUR5N0Qha4N+PF6BjpEdKRyfNZKMlSOSCoz7lmvscug40OXygZiTjn8mbFKB3K6MnbxBGccbmYxR7HrZ95pKPKrlmdnZkNRLJMsSxzc3kdQsyrnT04EzeWK4fgMPy0O82FBUyIjY+Q9OZ55fIg7aFAnnN84hHFBOwYpFKeqvMuoimgslbb0wi1gKiUbE7XN/XTC6PnGAvsJ43QWSSs4zbhIPlFXYhk7F4CGjHScjMVY5tckgx8bVt6tfDMpvLI5PjP3+DgUSMUtoGYDMraMYBejOfv0E8pDnvewkDlqbbHBFyQwInaBYttBkJmEvYqgC1adIwaeRhZBQHOUY8TRpmSjiAYXMT475JsOybcK/x8hrIcqwaNmmwnjd1YiHRiEb4jmzSSwa5+DagZQQAwBqoQJopVH5MDAXe8h163buLpusfp+nUU4Ej36rmdfKAYK26MeYo9VrWRzY9Q7LBADF+AWDBtQRuSTnlnSuAkz/qWdXJa78BK5fGzvHn4Me5t+CPuTOwxSmoASW7gG/OAlY/RM3t5/838L77yv/e534CrLyPmL8zznXV8CiHV4FvzQaW3AY8+B+KAbv9ZeC78wjolaHLD7/0K+C3VwF//FfgUdoea0ddQNZdfXuBp75H851zK0k067H4KzQ96h3qM+ndu+Zh77yzLwHm/Yt6/+srvbXyQjB/7juJGZxNksKcDs5G48DZ/wVcfbdnG2T/5U94bfzVyM+5QoHSfbvUcjPOVWSlzs3q85kXkH/w68JX+ThNqrnwGInJ+rMFTDoBb7a465mNmGNtQrvVR2qd4+aHnVJdRgPkPRBhRwHQCR0HUfb9DsQcIb27DwaevBqT11dHpuPwefI2d7jy1ejZ7i2WdW6kzzumAjPOUSftjHO8nrsiKj70+wR5m+M2hkOAvD6162Uee0ASoyVN3n1ER4SA1UxAkLfTEctV6jyrIppjEbRKBq1vJm8O3ZDgqhmDtike8TJ5fQQxeUUeht7AEiRSgLNfkJeYgYm8OZOXjnkHkaxk8lYPrkqf4hYGJq98oLMCMHmVNzAHyKuxVl255uqOWekN3Iokvz+hBFaraRwR267V4gF5ix62fXjyWnCERzFj0b3woX+j8Kgp1YUo8xD7kqP4YFmWBuBVKMq4HZuiy7R3J6B5m4VdQKwX/9laSIoGkZvTcw/bb7X+wNVwAXjuol3Za4mfXFi8cA18I92Cag2l8KsITrA5YVBk1kHh0Bl4dVLs5vX0rI9GAEA/f4ODM6zbJEAeLluU0VM7bLa3vh6/x2su7yCdY1QFKFSg8RGsdgksaivhXs/08YjlQwGrXJjIravzJmwlHEYpbYNjVV57OI5V4yaNLOM2qRObkUY0oqoQ1lBFcdKNwJg5cFrE935IM6d9UjFCZd1l/RM0nXYGMHSia8+FIy4tXn7139Tr4dPIj9fJuYCzG2d/lqZj5tB013KSUC4Ip2Maxrz3DgAWMoji/7KXF81D6zkK+OBi4OQbi22rCuPu9wB3XQrsXQOMP7b4+6Z2mj76ZWDPGuDHp1den4w3/gHseR1OcwfeGCNqME9+i1jQY+cCc94K7F3nXSbZRTjLRV9Tn732J2DpL5UUNUAqdqOPBE64Xn22by39lmyK2NJbXvCuO9as/HgnnVBaSXLWhcDbf0avxxwFZ9oZWDvmIuTe+lPgYy8DN68D3v0nNb8u1az7Ec+/mnJ2csDkk4FRs9R3hWxlWd8ccxSxf9+EcZK9HACQOOxUIBINOZv6jAbIeyDCslwf0YRFBtu+BmK5rMuGJLnmgLtNA3l9MYkG9gM5AWxpIG+gPCzL48srB3OZdFKBo+2Tab63fItuiKfeVDqtSnI3w4Qvb5UgbyKqyTW3lLnplwm5DTfZAlje+qKv5QtjuAR5o/5B3mQmp8k1h+fJO5DOodvhAXmbY5onbwBGsfTkNWXySpCo1fIv1+w4DnrydA2I56vzia4UTbEIEsgg4mR959IPyqOZUa7ZkrLRPpjWKZsGo0NsPmZzKpuHk/LH5JUg75BI2tj3FSh48JdexdV4fIumgVYkmbq7CwohLshbQa451kKe5ADa2EFvraDauYkkeuxo6S7EuAR5hTcwQyFEz6Xs/bd3N/nCw1IdtPkM0L+PuThUH4V3o4JqDfIA/MvNyTwsyws2Bc/FhAko2N4hAxEpTkCERXaW51EjYVJUZZRbN/JrZJQU9fi/+82Dcd9YlqUAAJ+56PPznL8Gcut1wrLmBJtlHumsUjyoNrjPXx7gLGSQiLNJw6BphfNY1dfjt/FMvxazN0n6DNYmDY57DecYzehew3v+Hgr7pm7sThi2BxB83+TyDtJZviYNs6ZAvmesRjSiqhg+vfizIeOAM/+TXjcLJq/OxBwsmoaqOkvvTgIQJdg47TQCpGSNetvLarkRM2j67I+965N2hSvu9X7eKkDfMZLJu5zqvpb32pZ92x2eGtQfcmeUzvv6R2ld+TzwwCfL/74jLiWF0g1LCLzd+KT3+8knAx9eAtgxYjB//zj1XSGoXgZkz5/8MWQjLVTDl7LP536OmMJdmxRZTMbhFxKBQcpbA8C9N3q9cKefBdg2WYRJ9jMAbHwKuPejwKoHyNtYjxfvIn9ioDJjVvoAF8o9A7SfpI9xJE7HAEDYzj81/+YJxwFLf0Gvj/tX9XkpwpbEc8r58R7C8Y8VpK53kr0CABCfcWaI2dR3NEDeAxXigjQ0RoMYX55iyU5YoIfzTrQFL3hLoE5j8lY1EJMs3uYOIJowLyBqvrwyj5aBHQAcMo2XN8cJC4D33QuMm1tyNWpAWOIw9s3kjWCEAHkdv3LNYnu8HBOa8OsfJ/ZzwBgmWKupqD+mKEAD/E4p1zxgCPJGbbQF9J8lJq/05O00yyMWCSyRnEzzMXmBAsDZRy6pbN71Bo7n+ozz8GwTwB/I69C1qMlhYPKKcy+a9c/kTQlGcatlzuTVCwc5CeZXmUs2QnkMjZjnAZSTjq7iWBHztCDJysBzi3auXHMFkNey3GOp1RpgZSR6ig9SqnncvNLbRuw7W8iRcxdCyhZ3tzxP05EzqdlHPIDkurezslWMmIA18RYNngenpyfgv/Ce1BgRPGyV4CxrTiYvD7h66LC9uXJhkVtnYFexgLwyDxP5W6Zra9DjVT9GeM/fg7iBhpNZ5WmgCb5vOIIDgA/7vscL4NUH6A0EZ3x7lDQYmjQSBtukbpo0ajBGy+Qc337nnPcafT314mUdut0Jy7EabgONfk/glBcP4g3M3bjSiEYMGqVA3vO/7IJozoiZAADrtT8BK+8vvY5C39eXfk0ywwCQSxOrNDtAtZdRs+nzdgH6dW1Sy7WNIYbvhiXAjtfU5xK4fKPg/+wTjFYJWO5bT1LOjvfcs/avBwBce/JUAMDZ9kulf4cgo2HpXcC2pYQZfPhJj+UkAOCCrwCz31J6HQDVb9onA9MLwOTzvkgS03pc+BXgluI6vTNxIQAgsuQbRDKbehpw2DmK0SqBbxnzhQRzoWevHvJ/WxZwzHvU51YEeOVu4C8fKl5m1QPqf06sAPLurADyAuoYmXKyqnmteVjJg7eOIpC+ewvVneZcppZ94efedUWbhEIs3pQg7wd+8QIiyOEEexV9IEHzRhRFA+Q9UBElqdYhURrE+BqICT/eTqcV0WgMdlC2mcvk7dYkVaoYiPUqP16AYSCmMXnlOoalCli8VUTFPNrG0FSy1waJ5lgEHUKuOdvkl8lL23Bt/AhiwvXtBnat8LUOPYbZAuSN+ANWAXr44mLyttlp2JYAq33KNXs8eRmYvIo96y+PZJbPkxcQ4KrlH+RNZnLoFYziWNYc5G2O22ixBAM22uxLqqJXeAMnGEBeee5F5W/y4w0sQN5miwFs1gr3+aQPYBW8stFAQSezH39g4bHRYvHKJBd58hZK/hSGBHm5wOZSxYdNFaSaAfc8j2Qkk5erEDJI4V33zQHce1WmU/msh80AqJdCplyGQyLZti23QOwb5GX0NgPqp7hrxrJmzCOu9ovjs3mtVnLNvu1OHIfVN7LuPHmDyN8yAwCmTMD6OH/rg+XF2gigN9D4BGfqpRGA//w1V7DgUGvgyINr3yjv12BMfK4mDQ4va44xiTz3fDXkF+TBea8BqqzXaFEruXW/eQDMTYEGYPOhaLsCBD9v9G3IKUEftrpIIxpRVQyfVvzZUW93XzqzLsKm4afCcnLAH68D1j7qnTfdDzxQoDa59QUCXCUoKP1hp52u6ts6AUmCuJufBSYK1utzP1HfF4KLUaFO+PzPaNo2SjTvO8DfPl30c6J//lcgk8TnLzsSk6yd+Ebsx0XzAADWLyH/20VfoPdn/T8CLQuB2f87EXjtj6XXAVCz/N61xdvq5H8n6WU9nvsJ1ZzO8OYdvesiDBnYCuuV39IH53yOphJwPfKtwKSFagEpf90h9qfO1AVoG045Wb2f+04FlOryzXpMPpmkk+X6J5SQpZZRickLkAw14JVqfvFO9XrqacCLAsyd/y8KcAfU/pAx/lhgz2qRY5ka2iEeR1vrMcQaQD7RDowps80b0QB5D1gIJm9blAZgvh6kBMi732kzGxC6QJ2DoRECiHwxeUXB231wCDpIHjperHe7O5jrSIsiupQ0qCIqDtYlW61KkLcpFsEIi0DeTMIfyCu3RyTepC646x73tQ49hoLkfAd8gryO4yCZzWO/68lrBvIOtf4/e9cdJjd1fY80dfu69w7GFAOmGVMNGAMGQgu91xBKGkmAJPxoIZQkhIQACb1DSCihg8EBU0wzmGKMwcbGNu5lvWW6pN8fV0/S9Pc07+2sYe737TdNo7mr8vR0zz3nUB4mdPIlEAipnrwh3TeTN54ypTJ5oyHdw+QVADTTbh4BBvxVkkfQH6MYALpMajiJSvMGBoIZW4JaxBvYlo2W4Q2s6xrCNkhkOnLNfA0BaVs2ulEWkzfoKYSkGPjNw+Sl46MeSTUAHo9cM+Dsw0ZZstGFQKK1X9Hj4Aklc6DjypJXCCnHVvn6NXocPZke7WahzEbXZ12m35uf4m5SYiEk6pO9AyhgafosDjmAiKRGgIo8PXsYS0SmtLhlwWGz84bMwq43F9FCZlKy76u7b/ywVeQXu6vdLAL4H0ucY1XW+SuDeS5RJrnajQCVNNA4vpGSx3jR41Xd+dszmjR8edHLZmn6vP4mpUsCb/py6zLnJF52tPC+kX79tZsSBPOwLEvunCRXpUggnAY4KfP4CjyKFakkCDdp2MuHg7p/AoknKrHUkL1NalGLsjH2oPz3GEMWADQdc4afCXPcocTKfeQEV4kMAGbeQPZTufHRA8CRtyPLL3WU7Uu7fhFgs2sBAMc9AozYHTAzrtTyJ4+5RB0953w45j73N1J27Y1JNqddOzhzpMcHd9bfgUwKN4duRrMWwwfmWFyRPiV7vY8cR4BifAN5ve5sg5+7/SR7uVQn+eMe/yhweVu2tDBA3795h2xGcaQZeOc29/Wu5xOx4dvZwLxngEx+HXDfLy6FZpnEGh62M/kEb1hMIPfYA7LZzgwUZ0zetfOzV7b7T7MJZA19gS3sfa8FgEgBX1sv+NtvXPE6XmIj5QXQdsuNVAxYbEtabzaFHtuWZjOzW4YQsxcAdjzdfX/RG/nrq+tF4HPLcFf2+3sSO1xN22w3249XH7UHSXDXomBsMltm/fr1OPHEE9Hc3IzW1laceeaZ6OwsDpasX78eF154IbbYYgvU1dVh+PDh+MlPfoKNG7MBJ03T8v4effRR+f+AzeRtCNhMXpFJsj3Qt6GpsslPqM7pdmnRaUDlknnrsAFYm8lb8SS5AJO3d9oGkluHc6+m5E0uk1yOreVaV0DXHJA3Ge7FnYM3j7pwwJWnYF07PqKRgby6GHiXNiwYpoU2SUzeJvsYiev13OxqFom06Xry2n7SfqPOI01sCcpGx9MG2pknrxSQN4B62AxaAXA17mHySpGNDvuXsO6w5ZpDZuXgKmMzhA17YikkG20zea3KPXkBz41hUkw6OqXTcdqoScrDCxKJ+AOHKI86JKUUmbNutk3DbfooB/Iyb2AtLqez2wMSOcVaxipmkkZ5OdievDBpe8judi90/e1YCaz5AoBGXZWAc60y2un6JKsQ0lOKzC57x7+0WrVZmqq8zXoKE7CyAqK8PABXGps32NxIBrMK8L9vstkqVfbiU+C3Wm22N4B8D3jOcObxks9fPww8mXLrcmRnJTeu+B1bqyz3Kv38rYBtJrNJwzsGiEquyz5/2bEmmgdrBJA9R0tWdP2VPH/2m4eEMc3rd+4XwJPdiCd6jGQ3aciQBK6gEUDi9cbrdy7cpNFj5s9qzt/K1IFqIG8tuikKgWQ370AgnB2WFoBx+D8JoMvEgYePAZZ/BKz6HHj7ZlroyDuz1/HxI0RoOuQm972OlQQIPnKc+97QnQmkmnQ+vV79OXnzZuKuP+unHtZspIXy6DWS1vXpv+l9W1baiQtmw/JKKr/xZ+CJs7C9/jU2WI24MHUhHjb2A5o9/3+qk6SaAWDan1yFwNxt1Doc+NFMAkk1Ddj9Z/nbMDeS7cBLl7qvD7jG/Z+fODvbmzY3GMt37lP0OPYAIB0H0h5VxIWvAmu+dEFeM5O9jgIgMra3JZs/+RfQd7Psz/b8JXkPs2CKpoViFQGOaB5KNl+5sfhNkpxuGQb024Le++iBbBB8zXx6PXJPNxfTBO4rIIvNar7fQ6nm9V1ExtnV9uN1GidqUTA2GZD3xBNPxNy5czF9+nQ8++yzmDlzJs4555yiyy9fvhzLly/Hn/70J3z22We499578eKLL+LMM8/MW/aee+7BihUrnL/DDz9c/j9gM3mZXLOQ3I1tur3BaqysMKRpDpu3mYG8Ppi8FRepPJ68bDLXL8NAXgEmb6bEJJkZ0nfxgbwA0EcnkDcuCPJmFXY3PwCARhecj/01CzCQt0sTZK3aeaxnTF5OFnOxaAAxPeNavfB342mvJ2+FTN6wK5FshMRySaQ9nrwS5JqzpaMFQN6UgU5IBpt95AEAHQY1nDjAbAXBbujCJmPy8rFnAaBLojcw4CkepOg85gWcmWy0LJDXKTInkzSxA7j2kenINSekgqvxtEHXEDah5JRrbkRCSiHEOz47hfdyrOJwAwDNzaM7QCKmvjBoO3eibjN5rY5VAFQUQvwzEWQUQiphrcpnifgrUrlMwOoWqbxsFZkAQGWyd5XnEQroCNqNDb6ltKvN9rbzDgU0BAMyQKJK/FblNwJkTAtpYZa1IgCghwARoseI9PO3AinPpGxw1WczT0/xjXTYZgFdzvkrRUlDXpMV4H9Mkz4n8ZlHz2iykgjA95BGPO96/DZpSGuyCvo7Rrx5S7Gi8XmtAeQqR2RLaVe3ScNvU5FsieTKJKzl3lPUohZl47Xr6bFxIMngsvjbBAJZmfpYIAwc8wAxbpPtwANHAPccSGDiFgcD2x6dXc+IbyB/XC+T940/A7fsajeT29G5mh7HHkhSw4mNbh3t/TuJJDP9Mnf55EaSet75LHr93h1AJgW8f4e7TH1foO9mMIfv7r6XjgGf/xcA8Mv0j7ACfZBCCHdZh+Vvk+1OAEZ4ZIDNnDGl95hs4k+vEfSdQtF7TD5bervj6fu7XUj+s5kE1coGjgeirfnreOVyIkx4pZqZtLE33ru9uBro42cCf90euHN/4MEfAo+fBXz5An0WW0uMYm+M/yEQCLmvbUXVgsEt1bwf/d9GBvjwAfdzPURNAwCwk4fF++lj+evqPRropHpU1j76HgRTAgwhg511m6ldA3lLxiYB8s6bNw8vvvgi7rzzTkycOBF77LEHbr75Zjz66KNYvnx5we9ss802ePzxx3HooYdizJgx2HfffXHNNdfgmWeeQSaT3eHR2tqKgQMHOn/RaLTgOisKm8lb74fJm2gDAGxEQ5Z0j6+INAMAmjQC8LgmYgzkbcyWa5bpyTvAtActH0zegnmwi2065kqmloneIPAtHmzlzgHIKZb1Hwfs/Wv64JmfAe0rin+xSDRYxP7rgjigCQArYLOY274R/m1v1Nsgb4yBkwIRTxlol+TJGw26rNVMUAzQTKQ9nrySGLR+5JrjaQMdDpO3o+I8/DKKAWCjQeBq0JAg12zfbEd9MHkZyCvDGxhwxwFdRCIZQEKzZaOlgbw0RhtJj9IEx3bJ2D4r9ZKYvFnFbgaq1vUq799s32AQ2Fz5FCEPJDIyLquYKS7khqa53sBaXJ7vXLEChGUBcx6i50yNAXCuVZrdxSmrEFIZk0g+EFERI6LKAIBMr0Zaj80SEdw3acMCI3NIAeAlsDSr7XMqXVLUr2+zItaMr/NXpt9q2CPl6ddLs8p+q6okvUW3h/Tzt4IGGmeMlzamVQYAyAer/DUkyFYEqETBoi5ceS5emxFRn9Oe0qThjK2Smqz8NntlNWlU3W9VskqCz1xUSfL7zSOoawhJaNLw6x/t/Y50v2Sf20TaPUWFY2u1GxIA91pZ8+StRbfFBzYD96DrgLM8CoxmGnj6QgQePQ7RlF2vCNeTRPHgHQjEZbXNaTfQI2OR9tuSHj98AFg0012nkQI6bMziONtrduMyqonoAWBX27u3cw3VajYuBe7cj9Q0e40EhuxIn3/1MrD9iSRbvOpT4M9bZP9PU39Pj33HIhnMIV4M3Rmvmjs6L29Yk+P3C7gMWxavXZf9+uv/5X9nqx/kvwcA+/0fefR6gwFz0eZsJvFhtxLwmxsLZwDXj6SadqiewNQ3/kKfbX+iu9zse4FMEhh/TOFcNiwClr1HMsmf/jvbE9cbwTpiRqdzaqQMzM2NsiCvLcvM/HgXTHePA4COta41VA8bZ7OHk53Ay7/LX9eYfYFlH9Dz75kf76hLnwcAbK8tQJ2WIpyn37gqZ9WzY5O4ks6aNQutra3YaaednPemTJkCXdfx7rvvcq9n48aNaG5uRjCYXeQ+//zz0bdvX+yyyy64++67Xd9AmWEzeZlcc1Kk68++kLRb9ZVPTO0CfgOTBOaZiLFOo8b+SBsmMnYlxPdErMn25N34LaJBKv4PMu3fEPDkLXmzHW50tjkXm9ey0AoC37qCBbT5OfJwJvx7X0xG4Jk4sEjcm7fJoP29URfLg02q1wRtpnRiY0WSzXW2Z2unD5A325O3zXcOALFvGm3WajogBnzHUwY6WP4SmLyRgD9/4GTay+StHOStC/n35G2zmbxBCUxeNgZELXFP3k7LZhRblYPNlAudf1rGBnk5WcVxUFOPA5pXGOwm1wF59ZDT5FMq0roL8lbczIOcYhkbA8tJNQMuuAp54GoWSOR0RGqFpW1YRFgeCURUszQ/uIvG6mAUmODxqbGZvHqXXCavX/k973eqzgQspaThKxd/4Kp0JoJ9rAnN0ZB9TPUUT15Z541/v0bJUoB2HqJSnrKlERkIKMre8eYiY5uEA7rTUO+bAS95TPN//la5IUHy+SungUYy8O3X77zKAIB0sKoH7Ru/DSOqrnt+zxvZjXiiKifMrgiQAzhX1mSliGVd9SarChvxpDck+AHg5e2bgK4hHKis8Uz2PYXf81f2PKASlRNZY0ktasEVoycDWx1OQOt+/+e+H4hA//pV7PvFb6B9/Ag1g0ebgSP+mbMCexLOlChH7kHvff0/kuUFgL45QOzmU6k2ZBlA+7f03vYnkhxz+zK3Tr5uAT0ecC2wlc26/fJFqp1scyS9jufUeQdta6elYX1DjoyzHsKia6c5L5MIw9zz19nLeBmkC2cAM/+IvFjxift87VdEasqNzaZQbSXXNnHEbvTYsdL9/wBSwPT64HrDTNPjoO2B128gqeahuwCH/s0hoMFMAx89CIxz/z9MvhTY4+fu68NvAw67BZh6DbDXrwk09Ub/rYC9f0VkCMauZfHeHSgYpUDedQvJ41kPugSCYuDyhJPcWuGbfymsxtk0kP73aGv+MfU9iUlMqnnkHsJWkt+32CRA3pUrV6J//2zvvmAwiN69e2PlyhI66Z5Yu3Ytrr766jyJ56uuugqPPfYYpk+fjqOOOgrnnXcebr755pLrSiaTaG9vz/orG0GbLaYTi1johs72NN2IhsonhDbw0QjG5OXIw2Fd9ZEju9MylB7TXWgw2hBBCv20NnpPQK6ZyUUWvKHTNBfQ4PHlTbQhCPrfOgOt3DkABQoQesAdzHM7mDiiMUPbez385YFwgwNOYMMi4d9nUWcRWNYFcWZ7Im1goyQmr6ZpaNIJgEvqgiCvZCZvc8hAQLObQAQ9ed08ZDB5dTQw5qkAe9Y0LbTZTN5AqvI82DFfb4mzmztMyiNsyJJrDgCwEGA+HZy5xEF51EkGeZ39zO0NTOdZk56EJmHiktXZXU4e2RsRj1yzZAZAPGW443F9Hxori4VHNlop2ywdB6ZfQc+nXJHtzWIzeYMxakKqdrHb+x0pTAQJTEBp26SnsM38App2HrpGjUmVRmVMIjUsTf/HiFy2StWLzBUweWXuG03TPD7jVWZ5VQiuVrvIzJYP6Jqk85fy8NNAI9P31ZuLX7l16WO8T0Cz2uOZN5dqzwWknzc+gTPZYLNvRQBPw01UAsvaL6MYUNhUJJiL/CYrn97A0n3X/XvyymdZV3a9qbaXtSrWuei+yRgm0gbVVmpyzbXotmjoR/6zrOYy4RQCXwHgsFtgDt4BISOG4LMXAg8fS+qMb/wpex0PHE7sW8bktUwCjgG3qX3t/OzvvHQpAbwA8L9rgCXvAN9+ADTbJJ3Vc91lmwaR/+3YA+n1opmEC3zztrvMsInucybnC6Bfx2fZv7vkbWiL38x665nXsl/j/buIqdy+Anj8bAAFiG9P24zbtV8B9x5S2LP2m1mUa7gR2OMX2e9bFvDcRUSGYvHmX4DPHs9fzxCX4IclbwOfPApAAw66nsDY8T90P3/vn8BT57mvd7sQ2Od3rmfxuoUEpu52AbDvb4EDr3eX3f2nwHmzgD0votdLbRIhU5z79N8OHuOEkQZWz6PnhUDeBa/S4/BJhL9sXEZMbICAX2/seCo9bvjG9XrODc0eG4fvSl7O35MYeclzzvPdAva5UZNqLhtVPUIuueQSaJpW8u+LL74ov6Iy0d7ejoMPPhhbbbUVrrjiiqzPLrvsMuy+++6YMGECLr74Yvz617/GH/9YoGvFE9deey1aWlqcv2HDhpVPIkDdGXU6DepCE0Im12w1VD4Rswv49ZYAk9f2BEZdL2d5TYN/tlko6nQp1XUuw0iNLg5WpJkkKjijrBeQiC/vBpI2XmM1I2aUkTPNiYKT5KH2RWnpe0LrgpFGXYbAyPVas9BXs4ruvUbRm+v9g7xRm8nbYYmDvDI9eQGgyfaQTupiuSTSplRP3paABwgU8AeOe5m8kryBHSavQB6JjIFOWzZaT/PJmJcKdsy7/sD8IG+7zSgOmZUzigHaJhGkobOJMye4GmPewJAJNgNWUgxsTjJvYD0lNY8s9mwp5iwLRyY5IZ+5mjH4AWfG5NXi8vxWCxWZl7xDPs5Ng4FdfpT9hQZqLgslaPv1pEKIjG1SCRMwIbuAWGGxW4bEKlA5WFUXCshp0vAJenu/I0NuHajcE7Dafo3qgAgxQERFIdM/8N0ztklPkY322r/IOH+zpTz9NYxUHUhMyZV9jwQ98wAfecieB/iR0lbFSuwpcuvVbrLyDZql3CarsETf5kr8zuWNrT5ZmpKPEb8yyTJ96Gk9PQeA96uSoAxcrbK3t99945Wrl7VNalGLsvGTj4C+HrZrYz+XMbt4JoxTn8fcwcfACoSBr14CbtkF+ORfADTg6PuA5qHA2i+BB49w69ef/ruwpLE33rudwGCA1nf3AcD9h2X79bLoNYqK7n3HEpBspIA/jskm8Sz1qJquIhBMW/AKgqannrTjafT4vz/gsXN2pbe0+Tgs4AGLASDVCbxzG/nWxta6pCFoLsi4Yg4w71ng3oMJ4O2/FfCjmdnrSXfRd46602XiAsDr1wGf/oc8i/Ugfa//1lQrfvbnyItvP8h/b8gO9AcA4492329bQjaNAAHf4QYCgqdcQe/NuiXbRvGz/7jP57/gejADwFKbpLXHz+j/S8eAOQ9n57H2K/ITjjQXJqk5Us1T6PHDB2i/DxhPfs4sRu9DfrsAeTAbBUgnm01x2cXDd83//HsQEaQwQfuKXoysgbzloqog70UXXYR58+aV/Bs9ejQGDhyI1atXZ303k8lg/fr1GDhwYMnf6OjowIEHHoimpiY8+eSTCIVCJZefOHEili1bhmSyOKvr0ksvxcaNG52/pUuXlv9ng1TAr2NMXpFCCJNrlsjkrbNB3mS5PCzLBXnreztsgWiwwkKI3fEU7VrqgLxmrpl7mSg7OWXdNzwgry0ZscgaJFyAKNhlPtT2OVg1l9sTGIADgGQsHesNfsCM8vDcNLCLRQVM3ogNNreZYnLAgA3yMuZqJgGkKwPQmERyQhP3KXZAXglMXsYoTuvR0izEnMiSjZbB5A378+SlPGh7aBKYvJEggUR+cml3ZKPlyDXXhQOOQgEAIMSXSycDeU1JstH2OKA5jGK+PBiTt0GSN3BW8TBlS0dHOBpHPGoP0gGAlOGRji7ix8sii8krJ49IoQIiuxkbPTm/M9LeFoFMDIDV/YzEtiXAi5cC//sDsGpuViGk2kzAhGQmb8QnSKSMpekzD9nATCpjOjKUvMHmdfIkNH0yeBywWXYBsbq+cz2pkFkp8F1tsMqRaJQFAFSYh6wxns2N/OQiu/DeU2SSK2XyymYCit7rGaaFlCH3esOAb+FtkpEMfG/ikt7e66+MJg2v/3O1zxvf1xunAU7SvNWvb3NKzfaojIkvd5sI23tIZzfb+8Zn/Ur+vY2/Zi+gAgJJLWohI3Y+kx4/+TeQ6sKCAYcgc+YMYPAEt46485nA1ocDp/yXGtZXfkr36YCUWmNWLP+QrPc0zQULzQyRx7Y7IX/5VZ8D7csReCbHW3ezKWRjuORt7GJ9jAAMXB26FwAwz8whq71+PfDNm1SH2f8qeq95MLDzWe4y/zqRWMP9twZOfaawrPOUK4iFvOgN970Ni4En7PXs8Qtg0HbAlMuzvmZMPA8l49vZLolq0HYEgOfG0fe5z8cdTKBvJg68Zu8nyyJAnsXaL131TctygfNhE93/+/07AdMztjGp5gFb59ePMgn3/958f/JeZvLdA7bOXnan0+lx8ZvA5/8t/D+PPRBYMouef4/8eE+/xyXL7aB/hYiWIVJGnzFVzGrTiKpeSfv164dx48aV/AuHw5g0aRLa2towe/Zs57szZsyAaZqYOHFi0fW3t7dj6tSpCIfDePrppxGNlmcBzpkzB7169UIkEim6TCQSQXNzc9Zf2QhWwOS15QHapTB5bZDX5GTyJjvcbpO6XvI8M2zv3VD7EoyyQd50yyihVZS9uRSRa7ZB3q/NQXJucluG0CBkGfm6/qXC9j9ej2bEMmKF3ayiXW/G5F0stA5vRFLUXLDOFANWLcuyGbR1sJhXRYW+vA02UzSui/kDE9hsfyeTADKVsSSbbZA3JZhHImM6DFqkuwBT/ObUG9FgwMOeFZON7rKZ2ZoEsFnTNN+5tGeo4SaYkQSuhnTnOEGogVvKxPUGlsPkZTe5WkoM5HW8gSWBvIzFl8qYsJg/ME8uHiavEp9Eh8lbBuRl/vFaXK1f49ev0eOYfQrkQNtCg4V6JOV7ipW71rx+PfDOrfT479OUFEJ8M3icuUB184grKtqJsrxkM0S8x1rVpTwrlUmWxjarzHdOFtu7UvlqQN75WzEAL7vIXG0AgPlGVhmskiKlLWls9e2prQwA8Auayc0jbYixNKXYFeXmUilwVvVGHjWMRGFFAMnAaiVNGrIb4HpKk0ak4jma3O1RlqSQE6ZpyZewdpoj/B2vstRWoj7zkC2FH3X2jX+wWUaTRi1q4TuGTyLmZiYO/dN/0Xv9xgFnvgJM/T0xYvezQcm+mwEnP0UeqekuoK43cNzDwMlPZq/zrBnArxYCly6jv0Hb0fuDdwB+PAsYuWd+HnqIWLSZBPDhfQQSfuphnh7zAPCDv+V/b+UnwH/OhBZbh7a6ETBH70fvr1voAtgzrsGVg2ZhK/0btFkNODn1m8Lb4tC/uszY1uGuSiWLUANw6tPAsg+Aec/kf3/pe0DHKsoJIElkFr1GAXv9kp7n/P/m7r9Aulyd9f7DgIV2k36gAGbDpK8BAsj3v5qef/QgsPoLqs2v/xoI1gFbHup+BtD7sbUEpA/aDtj2WCJJrF+YzdJm/1cBqWZtySwClZsG0/G0YDr5L9f1BpoGuAs2DgC2mEZ14RcuKf7/9h5N9bNAhBoOvifxv/muN/FuOpNq3rPmx8sRm0S71JZbbokDDzwQZ599Nt577z289dZbuOCCC3Dcccdh8GCS/f32228xbtw4vPceIf4M4O3q6sJdd92F9vZ2rFy5EitXroRh0GTimWeewZ133onPPvsMCxYswG233YY//OEPuPDCC+X/E/YAFNVIssCXXDMaKr/pt5lcEaOLLw/G4g1GgVBdlqRZRWEzebUNizEmQP4ByWYxkDeZKZMLAxEKmZfnxlqi/y+yBlVQUM3ZN8N2pkcRyWY717VWS2U3dEyuuQImbyhNIO9aoxGWxQ84s5soCzpdzAC+fVAimDRxHIIgb8pAJzwgdYUddo0a8wYWBHlTBrq8uVcIsNaFAw67WUQiOZE2XdloIwVkKgcUs3PhB3k3ZAhcDWRi2RIpPiMa8uTBKdUMAF3MG9iUC/LqGZ/ewJKZvACQSXRw52La8t/1SKphaTpM3jJyzQxslugNnFdk7loHrLAn6aP2zv9CqB7QdDsPeWCz23VfpiCz+C33+fpFSKTS9vflFUJ8yxOzQmaVmURJyYVMvywv2f6zXhCwx7A0/TLwZDUk+ATgZbO9medjPG0IzY28+0XW+Vux3GuV2WbSAQCf3qKyARGgcnZVRBYDngHfVd4mPQWs8iul7T3Hqt1k1VM8tVWpJFQbSGQNrIA4mOhYWUhvoPEJJEo/f6urcsLWkzLEVE6yfJul39v4PG9k2xT4nbfKnsdXeRypRS18h6Y5YKg++x63PhUIksfroX8Foh5y18BtgJMep5pFfD1J8v43B0doHUY16UgT/R3zAMk7L/+QpJtPfQY4/Da3ZgqQxHHaJkG8+0/g8TOyCTNNA4BAyFWOZLHqM2DJ27DCjfhg1AWwRk+m9795C9j9ZwRqfvsBTtpwKwDgj5ljsRYteMvIYZcCBCYyCeUls4Anzs7+fMw+QKgOeP6Xhbfl/OeAP48lieI+m2X76w7dGQja4Ox7t2d/r2s1vu4/NX99fccCF38DjNmXwOcHDifp6lWfFv59bwyfCIw7hHJ59UoXMN/iIGDiufT8sydIfZMxegdtTzlGGoHtjrdzvcNd5yrb87gQyLvwFXqy2X50TM2+l15vfwKwfI674ISTaD9+9AD9H9EW8mHOjQ5bZnrIDu52+47HDS9my5dfMNLeBoWaImqRF5sEyAsADz30EMaNG4f99tsP06ZNwx577IHbb3cHhXQ6jfnz5yMWo46TDz/8EO+++y4+/fRTbLbZZhg0aJDzx+SVQ6EQbrnlFkyaNAnbb789/vnPf+LGG2/E5ZdfXjCHisJm8kY1YsWKgby2XLNVX/lEzGZHMZC37ETM8ePtnbV8xYVMZlDf9g1G68TkjTcV0LMvlVq5IpUD8q7L/6xjJXDfoa68hiPXPFCeFODAbenRBpC5wmbyrrWafRftIiHdw+T1D/IGk20AgDY0OsCtSB4ASN4DyPZA8BH1Fk10YhD05M0YMKEjE2S+vJX5AzMp3YQmzihOIYS0RuNAxSBvyB97NpH2eAMDAGN4VhDRoI46H3LNG2wmr2YZBDhXGHWhABqYXLMA8N3heAPLYxQDQNAvyGvJYvK645GR4GfyZgJ0fNRBnidvYSYvnydvo0wmby5r5ps3AVjUZentrGShaa5stESPYi5As2NldpOOmUa6gwBymZ5V7HgVl4uUywT0y2jqMR5rslRO7NB1zde+sSzLw1ztGZ680ovdooVMyYxEx3fdgtjcSPL2AHKk8AVClby4X0/AarPeZB+r3lxEtolpWvIZ8OEK2d5VZmnK9ij2y9L0NvLouqQmjU1dilf6GO/Tk1fyGA/0vAYa0TySspubKlTSkD1/BsSOE++4I+9642+buA1wks8bv/OAqisCyB3ja1GLimLbY4FwI7R1X6Fv57zyyw/dCTj+USJEffkC0L4s+/OPH8l+3WsEcOSdADRg9j3k9br9CcAF7wPbHucux4gpHStIxlcP0R8AfPkSPRZRqzSm3YiuyACYw3ejN5a8QzZzHn/cT81ReMTYFwBwbeb4/JXcvEPp//vLl4CnLwQ2LnXfaxlWeNmmQcCLHqbq168BqRjhDG/emLVo4LVrsLDfAfnr2OMXQF2ry6QGgNg61yvYG4Vq/1OuoGXnPw+8cwu9N/5oYMTuRI5KdRAj2ZFq9gDoTLL5yxeBDd/QDSCTay4A8uoLX6Unm00BNi4DvnqZXk84GVj0urvgDqdSbfpVm2m83fEuoOv89tnfS6nmW19b6DyvRwLa8tn0YlTNj5cnNhmQt3fv3nj44YfR0dGBjRs34u6770Zjo1s8HzlyJCzLwuTJkwEAkydPhmVZBf9GjhwJADjwwAPx0UcfoaOjA52dnZgzZw5+9KMfQeeU+RQKm8kb1pgnr8AEyJZr3mg1VH4jZYO8IYfJW+ZmO76eHm1D+YSsiRgzKN+wGMNBIG9nw0jur3sLmdFi7Ob6IkzeVAx45Dhg0UzyENj4rQPyLrQGy+tAZABn50r+lXURyLsGLeJgs5fZzJi8HcvdTjDBCCQI4G+zGoSKVGz7hQM6NLYNOpb7ygEAYFmI2iBvlyDIy/I2QnTcV8rkdWSjNUGw2d4myUCDlDyiId3jg8svpx1PE+jNpIFleIc0hkzySAB8gbyUhwSwORRAoybO5N1og7wBy6hYzhtwx4Fgxpa44dwmMRt8j0IOo1jXNYRttonpyDWX3y5JzZWNViPXbN+Q1Pcp/SUPk1e2lKcztm74hh5z/VEK5hGXJvfqLdoVZQKyCf2A8Q4gbmykib/MbnenuCvMAJDrCVgpk0ippDdPHpIZEd5cRPzeUobpNJ4radIQiJ4CwMtme3vXI8Lykl38Bypni1YbAJAv6e13HJE7ngH+tom3aaDqDFrJsrOVsjRlbQ+/LE3Z1xrvuvw2R1Tbi1627GylzV4ymzTY/ySSi2VZzlgsC4CvFDiTfYxUIsUrI/yqnDi1iaCOgKQmDf9+ybIbeSpsgKv6PF5uQ0ItNp1Yv349TjzxRDQ3N6O1tRVnnnkmOjtL14QmT54MTdOy/s4991x5SUWaCOgFMHLtq3zfGbUnMXS9safNcP3w/nzFus2nAJMvpefP/YJUxRr6Akf+k5jBheKY+4BDb6LnX75IEszrv85fLtoKa+sj6fmAbegx2U6sV2bBCGD8PsegLzbiMP1NPBv5XfH/rXEgsNeviXHsBdjMNPCZJ9dIC3DSE0BD//x1LH6D5IpbhtHnXavJ4/atvxHI2W9L4MdvA5oOff5zaEwWIActeAV46nzgjhx7rbEH5gN/DMT1Rt/NgR1PdV9HW1ym7fYn0nsfPegqcA7zWIL2GwuMngzAAt76K8k2x2wguWkwKSPa+7g+uQbaugUEKI+eTOu0TGDEHtmkljH7EuD/+g0E1vcdCzQNzM973MEE0gPfG5D3oL++kfX60zOa6dhtHe5YftaidGwyIO8mHza1PuIweTlvpNJxwCAwZyPkefKGMoJyzTkgryy5ZrQtQT/Qb2ysH8799bRhgan0CHvyvv031yfXMoE3/gykOmFCx1Krv7yby0b7Imezc7miswK5Zq9HU31vutgCDoAtGpojE94oNGHP6jBnngjtFYC8mQQCoPOlw/IHrpphG+RNVAZqOrLRgiAv237pIAN5K2fyMmliKyTgyWsfI3HGRJbgy9sr6E4YIZBLVxqI2364SFWeh3ebiDB5NxoesDndVXEerCM6aIiBvF32tohKYvIC7jhtMblmDvA7qTOQNyWtEJIls8rN5KVzlmSSFXkTsmtDqVwiCpi8nmtFUSbgNzbIO2KSM+k3bUUEmUVmv0zApOSiak/xBPTNaJLM5AX8+ax5/T+lgTNh8TwAlQC8IBAh2b8yFNARtMdG33MjSeHXi++7K8XrjiMiUtoOoKni/PUpCVz1xhXZ/pU+Zd+dhiKZLGsfLE0VQAS3dUNeLrKvv/7mAc4YLyuP3EY83jwUNFn58bJOZnpQk1VK7vWmp0h667rmAL1iTF65DQlA5dc9aXM0n1707jgi9xhJpE2x668zN6qBvN+3OPHEEzF37lxMnz4dzz77LGbOnIlzzjmn7PfOPvtsrFixwvm74YYb5CZmSzYPapudz6wsFmOnAkN2pOdbHAzs8TOqi61b4IJ03tjrV8DmU8l3918nuTX3zaYA+/w2f/kvX6LPAKpjf3gfPc+Vr+03Dkh1YsTaGQjePSX7s0YPiPj69Xgvej7+Gr61+P80fBLwy/nAvr8lILWUVO5evySg+oh/FF9m4o+IUQsA0y9zWbz7/R813G93Aq3qy6vzv/vZf4A5NmC65Q+Ag/4IQCNZ6EUzs5d966/Ays/y17G31/dWc6WPtz+eXi9+w5Vh9jJ5AWLUAsAHdwEPHOG+/+exwO/7A1f2QvD6Ydj/84vofcsA7pkGvH0zvd7pdJLNdtZ3FrB2AfCuvb0OuBb48uX8nPtubtfyNdcK8jse81Zk1+sD39igb43Fyx01kLe7IkAF/AgEmby2vKwJHZ2okwbyBtOiIG8rvZR1Y9k4gGQt7FhvNaJL5wdmvNuvvFxzDsjrdMPYEhYf3AUA2BgZjBRCvjsQ8/yz2IW0Q4TJ64K8Fd1IaRrp9gMuWCAaMWJxb7AafflW1YUCQPMQerMSkDflAm9MWpc32L6xbC/qSpmrdTaIKCwb7YC89jFeIbgaDQdQb0tHO1LUAnnE9XopeQBAc5C60kwt5MjSl4u0YSJtWOh0GMWVM3nrwl4JawFP3oyOlGWfuykJIK89DoQZyMvJKu60vYEjVgIwxQpcxcIZG9n/xQE4JzTKo0GSNzCQA+DxAKuAWplkNp45/sB9y+YhFWz2FJmKjq1L3qbH4ZMcfxatUz7IW7kHnmxvQkl2CZXm4ROIkOWjmZWLSCHTBpuDuoZQoNq+kWq8+PwWVKu9b1T4vvrJg0sJRzQPn164iZTccYQBM6ZFrHbecPeNfABAhPnGju1wQB7bzLdvpOTmCN/SxMwaQMX560OlSK6Shk+7BMnM80rHeOmNAD2hyYoBzgIAvPfYln3dE/cGlt1A42+Ml60IkJ2LwPkreTzLzsNvA5zc6540uzGfwdXAWjKPWln6+xTz5s3Diy++iDvvvBMTJ07EHnvsgZtvvhmPPvooli8vXTesr6/HwIEDnb/m5uaSywvHgK1hDtsVOkzocx7k+05iI7Da9hGdeA7V3LexGbUf3p+/vK4DR95O6pZt3wBPnEP1H9MAVnycv/yH9xEYHLSJGm/9lR5XfpK93NJ3ELxxLLZfei+0XL/aEuqSy63e2C/5x+w3l8yifFiM2a/o9zH9MuCGUcAjBaSfWbz8OyKO9dnMfW/oLuSNC/CBeGe+Ahz7AG3jvX9deBkzA/z3PMDIZL9vk9YAkMexYctXtwwlj2EWrcPzWbVjDwS2OsytbeeFBS2To565ei6Q6iRMYNwhwMuXuZ9tfgDw8m8p182nAoO2A5bmNAOEGlxiWv+tsvP/jsbIS57Ler3o2mkuiD+yBvLyRu1q2l1hd4qEQYAI98TUlmqO6Q0AtMonYjbIG0gTqJIxLaRLFUJiNshbT568RQFN0dB1V7IZwCJrkC9GRMlCJpMD7VqbLZOx+nN63OdSkmqwgzGJK2LQeqPR9niMrXMvIuWii3nyijN58zzWRu5Bj4vfKPKNEmFZDsDfZvlj8taFA655PG8XXMEVUqNDpxVFUmyTOHk7IG+FTF5HNlqQUcyOkYwD8laYR9BlraZ0MblmAEjoNtiXqhxcbQ3QmJZhk06OYMdIp1UnLY9IUEcj8+QVkGtOpA3HDxepWMV5sHEgbIj5A3eYHoA8d5JYYS4OQ5kjl4QNvDty4BIiC0js4gR5I65cszK/Rh5WsX3NbERcWiEkGNARCpRgArYttb1eNPKKsW80NPvmTKrvnI/ibtowkbGlNKoNrsoulnm3hwgTQYWnpy8moJKCamU+iT2FLVovcd/4Ac5kbw/A375RwTarvFlE7jECZLPay4WKfeMHsJLdPANIkOJVwLIWysO5x5K3TSI+pLRVsM38jGneJg3pTF7fUrxyGYlGudpETjhsbxXnr8CchN2HS22y8s2Al32M+JTkz8ifk9T5AFeVyq1XW8EiWKE3sOQ8vOuuRh612DRi1qxZaG1txU477eS8N2XKFOi6jnfffbfkdx966CH07dsX22yzDS699FLEYsXrN8lkEu3t7Vl/AJBOp0v/bXcyAED78H6kk/GyyxuzHwDSXbD6boH00N2QTqeR2Y5kgK25TyLdsS7/e8FGpI+6B1YwCnz1Moz/XQvzqfOBL5518rc8pCgsez+/RmTXSb2hGcXtx6z++RZV88zh2Cd5I34d/FfeZ8YzP0O6bTnSq+YjbVowpl6bv86WYbBYLcUoUz969PgslcnMrhcg3b4K5hM/Ap7MZnFnpv0FlgcQtsKNSLeMdLffbr+AlWP/ZYXqYUVbgBUfw3jzpqztnZn/Uvb/9t7d7mfbuuC0OXiH/H1lWkgfcRfSF34Mc9wP6Pv7Xo70JcuRvuhrpH86F/Ez3Zq7MfU6ZE54HJljHkL69JeQRsDxRDaH7ITMV68CX74ISw8ivd+VyMx7lljK3vz2vhjGYmL/GkN3KX/MVvgHcJwX3ZBD1jHQuQ6W3fSQHjqpR+eueruLRFBo6Vr4D5vJGwLtIO7Jjy2Z26VTobnim1wb7NI88qiJtFH8ZiRHrlnqTcOu5wKvXAEkNuItc2uMkD0hZCBrJk4XwLpWMmLvXEXvD54AHH0fMONqYPU8fDNgKrBCYidkfR/S47cMAhOYP22psOWa16HZt0eTC/LuSY/fvEWdYSJe08kOyhtAGxqFtkmWV6MMuWZ78rIRYt7AgLtNtKgcJm/E9Afysu1nMJCtQrA5FNAcJm9Sj4JXJJkdq6lAA5CGHCZvwL44BerAy7Nm26ML8mSj68IBj0+xgIR12kAMUbQgJkWumY0DETMOBPhz6TI8l+NUTOh/KBZM0kwTYPIywLtOkjcw4G6TVDLmnoOl2LOAh8kbV1dkFgF5NXlgM+USQNrIFB7TmMfNiN2BpgFOs0ywi65dSuQifRTLvN+vNHzLJEsulrECvmmRLUQ4yMemk+1NCPgr7soGZoDKPT1lgasO663Kx4jfXFT4RvrZN15GWLX9kmXvm5DNgDVMAsJaECr/JSgGAATAZhVsM78gkeoGGk3jG1uVnL8VNWkokFsXarKyYNhNVrKvv9UeW73KAvFStYkieahobkoK+JyqYHs70sSCfquMSamsSZIz2PgntwFO/PqrRm7dX+NKsofYjMieL7IG1rRB199Wzu+pGONr0fNj5cqV6N8/2781GAyid+/eWLmyOOP0hBNOwIgRIzB48GB88sknuPjiizF//nw88cQTBZe/9tprceWVV+a9//LLL6O+vjhRQjejmBpsQqRzBT549A9Y0bpT0WVhmdhv3t/QCOCTuklY/MIL9vsW9okOQXPiW3z+2FVY3Hffgl8fNvhk7LDkDgTeINlpEzrmDT4aWy1/DFomAUMLImBlCn63XHRGBqIxSdvzi4GHIxbuh7pBW2DLFe72SiOA+dHTCn4/8NH9CHxUgInsia+i22Pe4KOhmynUpTdg6Pq3MG7lU1nLdIX7oSG1Ju+76f/+FAEzBd3oggUNiVAr6tKEP3z62WdYMvz/gGEmJn9xGVoSS7Hw4V9h/iBXLnmbhp0wJuaCt1o6hkUt+2JUYgbw2nWYubIenVFi3+64+FYMBWBoIQSsNDKvXo1XVrQgE6iDbmo41F6H/vlTeEmfglSoMEN8v0XvohHAu9/EsWbDK877fTvmYncAiWALXlo9EFhj19+++hi9Ox+DXZnH642HYaenfoYmAAv77Ie5736FiQvvRa4j76srGrHzopfQC8BH6yL49vnni+4DWTF9+nTlv1EsfjorG5r866QMPnzyZky0THRGBuLVNz8C8FHR71cz90qjXO6lGlkKRQ3k7a6wu3BCFgN5OW/6bYCrw4ZxKpZmsgvWWqoDmmYTNtMGmqJFCiG5IK/Mm9ydzgB2OBUX3f0ynliQwXW+ut1LbI9wPVDXG4ivJ7P3ulaXxds6grbFmH3oz7Kw5J1vgDlz5RVCdJ18eTtWELDMA/J6mbyCHk15N5dDdgBC9cQkXvMFMGArgZWRVHMSYSQR9teRGQ6QGT1QIcjbRquw6oVu6AzTQsrehnpjEeluwWAgb4cVEfoey9sMM7C5MlBT0zSHyRsXkI5mx3YqwOSaKwObAaBJpzzSAR+y0RK9getC/uSa4ykDMSsCaJDC5GXjQD1jFXOCtfGMhZgVIfA+3QWgDNOVI9iNv24rN/BsF3Y8RZGkCwRnIbZkHvaYpNvnMjQ9S0WhYIS9TF5FnmI8rGKvXLNkcKYjkSk8pn32H3oc/0N6tJm84TiBvNUG8Lzzl4gkULMnMgHjaQNhzv+PbT+ZbFE/+0YFa7Wn7Bu/QKIS4IztGxEAXgHbzI9vJNsvKiS9RYEIR+5V8r7pTGZ8nTfVlhTtKYAmoIBtliOlzasIpQLAqwjkVSL3KpCH5xyTNzeqjGUta9+EA7pTm0ikDTQXq03k5qEAgPcl6e344Fa/ScO57lXZLkGF3LovuWaFTHyRuVHGMB0rgarvG8lgM0D7uWgDa5FwxhGJY2stqheXXHIJrr/++pLLzJs3z/f6vZ6948ePx6BBg7Dffvth4cKFGDNmTN7yl156KX7xi184r9vb2zFs2DBMnTq1pMxzOp3GNyufwthVz2AnfAxj2v8VXVZbMB3BOatgRZqx1XFXYCtPvUXvuwR45TKMz8zBVtP+VGQN02A8n0Lgo/tgaTrMw/+JsVsdAevxOLQvnoYOauyymofAGrE79E8fK5qLN5IH/x2RbY6A+e+ToX89Iw94ZbGtvohrfVa0BZqHOZw59BYEnzkfm2/4H0ad+BdA06B9+SL0DYuzvmdMvQ7hnc9C2jQQeOoc6PP+63zGAF2r/9Ywpv0ZwU//Dcy+CwCw/cbp2Ob4q4BgBNqoDPDkWdiibQbGnHSjq056f76n8PARI2G2TEFg4SvYp/1xGIc/B2QSCN50Lv3WyU/BevZCRNZ/jQObv4K59yXEovWoZB+46EoYB/0Z1hbTcjZqB4IfUb1+50PPyCYtvExWW8FxB2DawYdkfS146+XO871GBBCYvxxWfR+MOOVWjNADCH5ydt7/sc+0oxD8068AANsdei62axmat4ysSKfTmD59Ovbff3+EQnxzL5nxxcoOYJZrMTl5bF9Mm7YD9OlvAV8DdVsdgGnTphX8brVzryR4c2cKBLxRA3m7K0IEZoRMkk/gnhDacs0dmg3yVjoBYkzexEbUBTXE0lZpnxcb7EMdk2uWfLOtB5CoGwALKwTZouxmu8wNXctQ+h82LiNDdwbyDsiRqtA0d5IsXKQqcSPVOIBA3o5V5VdkGgTIAlhjtSCVMWGYFrcvV563WSAEDN8VWDiDJJuFQF664HbYDHJ/vlW6C2wn2mx2Ij8Q6K6wDQDQjgZBSUJ3Wb3JZnV3cuyHEhFmIK+gN7AjG80mfRJATcbkTej8IC9rHJDlDQwATTqNaSmdX66ZbY+4Js8bOBryMHlDIoCz6co1p2WAvDQO1DMmbLiJ63vEKI7Q/yDBGxhwx6RAxv6/OADnLls2WocFpOP+ztmccK4XzHs53FQWPDZDDdBB4Kp0v7eUQVVEh8lbglXMZKO1hFSWZkEGrWUBcx4iqWY9RN4vgMPkjcQpXyWSokKShO61hpeNVS56CoAXCmgOEzCRNtBSx1lkVlCk8gOuJiQXdoEKisyKJEWTGROmaUHnnBupBPD8SfFWt8is0htYBPQG1DFoO5NFGmiKhAq2WV0FbLMeJbcu6/z1gDyJFD/Iq+S88SOlzcZ4Jd7eAkoadh66RqCo1DxEz9+MOxeQEZpGtlSxlFF1uXVfkvyON7DEuaIPb2BAvvQ727aMSS5am5C6TXwcryqZ+EJKOJ79KJ9lXSE5QEJEwwF0JDO+tonMsbUW1YuLLroIp512WsllRo8ejYEDB2L16tVZ72cyGaxfvx4DB+ZyGovHxIkTAQALFiwoCPJGIhFEIvnkjFAoVBYQWtxnMjZf9Sz0Ra9D3/gN0HezwgvaoKS2wykINeT4pk44EZhxFfQVc6CvnQcM2rbwOg7+I9BnNLTB2yM4ejK9t9sFwBdPQ7PVFbX2b6HlAryTLwWG7gR8/Tqw8H+Ax4c38twFwMu/dm0L63qTp2yuV68nTkldjAwCeDj8h7zPtOG7AV++QGqVZ89AsGU48PofoLV/i9CNm1HtwsyXlQ2883cEdjkTiESBY+4DXrsOeP267HX/6HUEtQCs/5zqvrdxCUIfP0jqn+OPBN64AdraLxH66B5gz4uoRrzsfVp4l3OA926n35t9N/DTj4F/7An92w+gf3gX1eTTMaDXKARH7Q5MuQJ47BQE3r0NgYlnu8Q2AOg7FtraLxH8zynAdicAB13nkhO+/RyABTQNRqh1UNb/YC1+jZ5sngPYpRPABhtID0QQmElNENq+v0OoqS8w96l8met+4xBa9TEpazYPRajvqLztqiJ4zgsVcegts7Je33sGndf4hoDzwJjJCJTJq1q5y4hyuYv+XzVP3u4KG+QNmlT4F5Vr3mhRcb7iiRgrZpsZDAjZTMBSueQwedV4ilVQLCs3IWQdLxuX0uOqufTYPx/wrLSQWXCy3igALsbWAZYJCxrWg8B4EZko9+bSk8cwe4Bc8XGBb5QIe78zmXAR4DvrpiHa4gJufn15PeeAn4IMAASZbHTn6iJL80XIILCs3RRj8jrnu911VjGoaZoOiBgTkI52vIFDNtiXrNwLt1G3ZaM18TwSzE9YgidvXcj1KRaROk6kDXQxNrQkb2BNAxo0MenoeMpEnDHEJTCKATYmWQg6IG95Jm+XV3RbAugNeIAvBl5zeCYng3RsyJRJziqEpDqBjH28cDB5G5FQL7P62rXAf8+n59scBdRTcxVj8tYl6DoSqbJcpMsWldcn6JcJKFuCjxWZAb/NTdUFZ2IKwGY/QKJXSaNeAcs6KVDwZttEBbvZj8x5tYvMahoS/Elpy2abARVKaVeZLdpTGhIyhom0YUsCSyq8swYaQPSeQr7MKgOYRaS0s1SKJEUlkvx1oYC0Jiv3+msKedGrOH/9NFyrZHv7AeBVNFlVu4HGux4/wLcSJr7APKCnjPHeZeUp4VTqyStzTuLj+qugEaAW1Yt+/fph3LhxJf/C4TAmTZqEtrY2zJ492/nujBkzYJqmA9zyxJw5cwAAgwYNKr2gj4hH+sHabH968cHdhRdauwBY8AoADdj5rPzPG/oAW9qszo8eKP5jwQiwx88ABvACwLBdgCE70vNAAYLJb1cBky8BNpsCTL0a+PGbwEVfwhzq2X7pmOvjG18PrP2Sng8YD0z+jbtcfR/smLgNM83t8La5Df6Qdj1qnfjyBcrjsFuARW8ADx9DapkszDTQb1z+99qXAZ/Yfr+aBuxzKXDkHUCvkfb/HqU6+NJ3oHWuQjpQ73r/zvwj1U31ALDnL+m9t/9ONcyv/0cgaN8tgINuAMYe6P7mkndpmwDAq1cDr9vs8vE/pBy2/AEwdGdSz3vtOmDpe/T5yD2Bc98Edv8pAA34+GHg1t2Ar18DNiwGniQ2MIbnHKMbl0Fb8wUsaLBGTc7+bN7T7nNNI6XWAdsAO9iA9hfP5W+zfS8DlrxDz0dMyv/8OxQjL8n+/z+5Yio96VrnNiQwG8pacEXtatpd4RvkJUmENlkgbzDiALZDAm0AytxcFpFrrnaXeZJX4s0BeZfRo8PkzQd5/XTLWpblFpkL5SLCIF1tS5e0DIEBHzf+hWSz+m1Bj+yCzr0y2u/xQLNwHknvMaJpDgvNt2SzzeTdaDWUZp3nfo1JMwV1aUzekD1Jajf8gbxaRI5cszNZA1yAUiAPIySPycvAzITGz+RleSQd2ejKwdVoKOCwm4XkmtOGVHBV0zREgwEPk5cP5E3YTF4AUryBAbpe1CEJzZb54QFX42kgbtk3EpIZxQ6IzrFNkjbLm+Sa5RapUoYJo8Nm8YbqS+cT8cg1y5Sbyy3uWhbwoe15s8fPgR/8zV3YHkPrUusRgKFEEthXQaYHMAFjKfIoUiGh2VO2iS8AvoeAVYB8Jm/u+suFSgncnpKHn31T7WZNQA0A4Mzlhe4pFBS7KwTwZIWvY9VzHyTr/PXbQJModG9TYfjxsFQBNvu5/1XC9ra3h2FaDrgvkouKBrhqe9H72jcqxjOWhwDobZqW0wgl63j1ApK+GPAqtonf2oTsPHxtD51bjaR8HuLjmXd5FdebpJ/zpsbk/V7FlltuiQMPPBBnn3023nvvPbz11lu44IILcNxxx2HwYFIC/PbbbzFu3Di89x4BcAsXLsTVV1+N2bNnY/HixXj66adxyimnYK+99sK22xZhyFYY5o6n05M5DxauE9nsUYw9AOhdhG054WR6/ORfpJLGG5oGTLKbvyPNwNkzgL1+Ta+3mAaECtQAmwbAOOUZrG20a8CNA4H9ryLwOBAhxmi4ETj6XqB1uPu9UXvjvENcMPEBY3+st5ry12+kgH+dBDx9AbAgx0d0uxOA898F+hRgPL95I2B4fIW3PQb4yRwiJGUSwBs3AnOfBACsaNkB5g6nAb3HALG1BOoC1ADfezSB1R/cDXxl++Fuvj9tqyP+6a7/yXOACacAo/amuimrhY8/2t22+19Fzz+8H/joQXo+bBfCS/a/CjjjRaDXKAKp7z8M+Ot2RBzrsxlwwLXZ/99XtC02NIxxcBMnnvBIMTOCwYHXEXCdSQFfvoS8GD4JYKztYfxND5tadCTymd+OVcc3b9Jjvy2Bxspt7L5PUQN5uytsNmPAoIGdu+veBrjaTAJQpExOG4kVNDDYbudSYiIWY3LNNsirRNKsAiZvue3hgLzfAqbpAqklmLxCNw3lZHfsbY2OleVXZnfraMN2dXwAK2Yi9B1Lj2u/dKU6eMLe77EgSVNU1C3LJJsrZfJCjMmb1cXc2J/erJDJG7CZvG2ZsFi3OwN56xjIu7HE0hxhg2+mpSFu8ktHO97AMkFeG8xMaPzAN8sjFWCM4sq9gevCXmCVT2LYsizE0wY6JTJ5WS4Ngv7AibThykZLZPI2MAlraECwPBCfyJgesFlWHjSe6Qy85vEGtuW/67UkAhAYu0qEd2xMtdsNH/UlpJoBR267UUtIBldzxviVn9AYGaon6aWg53xq6AdoAegw0QftVS8yxzxFKlnhh33nXb7a20SFF66fOYlsiWTAA1b5VNKQxVYJ6JojT+qLHVll5qoKBq2f+bMKQNMFzXwyAVWcN9UGvp3GUT+ApgK2t4+mUUDe+evNRQxwls/y8iOl3VOYgEoATQ+44vs+S1JEfAFn8oFvX/tGhe+6wzqXWJvwEbquOWNBtY9XZ4z3qzImKfyMZ0kljQA2sGpbWfCGCp/iimxGap6837t46KGHMG7cOOy3336YNm0a9thjD9x+++3O5+l0GvPnz0csRvWIcDiMV155BVOnTsW4ceNw0UUX4aijjsIzzzyjLEdr9L5A6wgiXs19IvvDZAcw52F6PvFHxVcyeh+gZTitY55grlseBjQPJbBz1efEXgWAzacW/46mY86wM2AFIkDnSlKWPOW/wMWL6fFHM4FgGHjxYvc7S9/DmbsOdl7GEcU/M4fkrxsAzAwxUff5LXD++8Dh/6D3F0wH1i0E1i0ANB1gADkArP8a+PypnDw1WgcAvH+nA5h/2zqRbAf3u4w+m/V3oHMNEAiSTDMAvP03d1tubrOt61qBQ/7irv/167Kb5gGXAAUAI3YjsNwygGU2k9cLqA7flVi9Y/bLXseUK4DmHOb4AgKcVzXnNBu8cSPyYssfAKNsZur/rilcF37ibNqOTYOArY/M//w7EuOveDnr9eLrDnZfLJpJj6P26saMvhtRA3m7K2wmbyDDIZHsDRvgWm8QaCFlcmoDXgO09tK5WJbL5LVlI91uO/k3/UIsTV7WjJfJu3EJgTh6qGCHUSVFO6DINnHARQ4G6RJbi374rr78VQp2d/ceQxfZxEYxgNNuLkiGCJQUKw7ZebDJOgN5GZtaNDxMXjH/HU8Xsy13iq7VBPb7jECaQMAYIkJykWybBKKSmLwpN4+4QB7sxtxkPrGpykHeOhtEjPlgFKeDNsgrAVyNhnQPsMrHnk0ZJlmzWjb4KQH0BnKkoznYswCNO11MelsiuFrv3SZ6+XE7kZIPNrPxLJhhIG/5/ZMlQy5pe3iL1el2ezws5ccLZDN5lci92mPal/Ykd/TkbIAXoE5PW/p/oLYedTJlkn0AImxZmXLNfgpDpllGScNnKG08U5yHEkuNoJ/5iJuHLElRoEIpwCqzVVQUmRkg0lPYogC/lLaXbabinkJEilep76uIJHAh2xVJeYg0a6rwXWfrA6rPBPQD4Clhe1eiGiHxGMmS0u4hwLevRoBq7xsVAHwFgKbsXPzNFxUw4H0A32wcVgFo+mkEqPb1F1C0b/xYSCg4b2qxaUTv3r3x8MMPo6OjAxs3bsTdd9+Nxka3bjJy5EhYloXJkycDAIYNG4bXX38d69atQyKRwFdffYUbbrgBzc3N6pLUA8BOZ9Dz9+/M/mzOI1RL6zuWgNyi69CBCSfRc6baxRuBIDDxHHr+6lXAsg/oeSmQF0BXdBDMPX9FL168hEDScD3VGVpHAI+fZcsGj6eG9/ZlwIf3Y9G105x1PGDsj3WMzbvFwdk/cPrzwN6/BvqNJQnk1hFA1xpaLwAM3Nbdbize+HN+HXb03iTFa/sOW9EWrGnamj7b6nBg8ASqE878I7237bHEQO5aQ+BoqIFYryy8wPLr1xPRyxttS7Jf73d59uuhO2e/7loNrJmf/d5jpwCvXEksXIAev34dALC6yQPyrpoLvHpl9ncDEVdGeuEM4K2bUDAWvkqN/8c/SpLf38HIlWl+9aK9sxdY9AY9MkC8FtxRA3m7K2yQV7dlVkkSiWMCZMs1r7VB3qiMTmYb8Bqgt9FPFJuIJTucAdfx5FXYdS8E4GU4b7ZbhtHjxmUui7ffFtQdlBO+Juv2suGAjmCgQC4MXCwH8hoZ1zh++KSKfF6yJuuhKF10ATHJZhvcT4WIyVuRX3Lv0fbvf8X/+97wMHl9de2GA67npplxGxd8hG6DgO1Wva99E6hvtZNr850DAIfJG0NUsLhrn+uyvIEB1CHu5MKfB+WcYSCvjDxCXiYvJ3vWvtmW6ckL2OCqoFxz3CvXLFEmudHeP7zbJJYyEGPy1RJlowEgkOFn8sZMzxgtCeTVdc25ZmQckLeM/EuEMXnjSmSSnXHkKxvkLXbTZk/we2mdapgIVfefFWcCeq8HSjzwqlx491NkjimUNhU5RlT44PrNhc1xVbCsqy0p6sfLWqXvK8C/TbLO354it67ad50zDyXNIkLnjPwx3ru+agOJPeW6VwmgKRNs9kpp8+4bpoQDuM0mMsKX37nC66+/+3CJ28OHf7S3NhGQJAnszcVvw5e0PMI+8sioPH/F81B2/fXBoK1244oKCfpa1EJqTDiJvGiXfwR8O5veM03gPVseeJdziJVach0nAtCAxW8Q21UkdjiVwMyu1QAsAmZbhpT9mrnr+cDA8VT79LJ2X78OWPouSUAf9yD5+gLAG3+GlkngzD1IdjqGKC5I/wR/yxwOHHUH8Kuv3dr6k+e6gG0gRFZTALD8Q3octSf9tpdYtfpzYP7z+Ynu+zvnqdV/K1i63USuacAUGyT94G5g/aLs3wKoGd/bHK9pwA89/sn3uqA1AOCZn2arW/Yf51oLAtlSy+u/Bu49hADwvmOB898jkNkySX76jn2AlZ/Rtkx1wKrvg7b6kfTdrnXAA0fk/6+7XUBexJ1rXH/fgqGRb/Hg7Usss+nGYx8szXtvTD9PfXDtV8Da+QA0YMTu3ZfYdyRqIG93hS3XrBkJ5y2uCZAtY9ppyZRrJnZpXxDYVfQGJm5LNQejDkitojgU8SNNzMvMaLYvgO3fAis/pecFpJq96/LDmil6g9vI6QW76jMCmCItQP8tK5KLzJM0cySbc7qQSq6M9n063CKcRyI3jwF2N9bqufy/n5VLGwBxJm9WsSwQAurtLqgKfHk1W06j3ad0dKjZZnZ3rfWdAwCHYdllRcSKu/Y20aLyQN6oZTN5LX65ZnZDZzggb+XgKoG8lIsV4pNrjqXJGyTG/IQl5AEAjUETEc32HeEFeb0MWkmgZraEtR+wWRKjOMyYvPb6eLyBM5Z7TEkCvQH32mV12Z685UBeG5BuREJdcTfZ6Tb5MMmhvDzonG1AXGoB0c91L6YQEAH4mQje64EaAEC8qKoGSBRXOVHakMCThyJmhp/Cu+PbXG2ZRgWsGV9gs4LzN0tKm3NO4i3Qy/Tiq/Mxf044jGKZx0jPkAT2Hqu8DTQq8gAqYwKqAEX8zJ+VKHr48CiWvW9ExzSmhCM7l55yvXG3R3UBTXbOCHmcKmCde3PxJ+mtAPj21cijQomuuo08fq0slChHVFC/kn281qIW0qKhL7C1Ddi9bwOIX88gOd1IM7DdceXX0TIU2Gw/es78X3mjrtVlAgPA2NIsXicCIeAHN5Oq42ePA/NfJHbkzD/R54feRIDjDqeQJHTHCmD2vbjsELdWPsvcGjdmjsFXG0xqOD/2AWKjzn+emLkstj8h+7dH70OA6zZHZb///C+BjpxarIc9q61bkLOevYEx+wJmGvjfH+g95nEMUF135WfZ39nmKGD7E7Pfq+tNmMbCGcCch7I/88oxf/EsPa5baAO831It/dRniSh25O3AMQ9QXXnVZ8Dtk4H7SNbaGr0PbWsjRWzf3Jpz40Bgj18QOP7Uj0vXpPe/EtiyiFz2dyB+/Z9Psl5nyTQDBOoD5HVtK8rWgj9qV9PuChskRToO1lTJNQGyi9tddtFdjlwzAY99rDIgbycrgvd33lLhv1OJXGTZiWnTQEALECN5oe1hMKAwyOtLNrrcDZ3XC7ZUcWWxbSw+bBdAD1TERIjkFqn6MZBXgElrs10zkV7CeeTd5DJQffUXxFgWDQ+TV0giOfemgRdwLxaW5TDricnLl0vaMJGxPXJCzUw2eo2YR3Ju2IzTuCCTl+0bjYFsUkBeYop2CoC8DCQymGy0hDwioQDqNQJ5MwE+kJdtuxRbXhKTt1cw7b7gZNDG04Z0UDMaCqDB3ib8YHMGcUc2WlIe9pgUtj2tueSaUxnp3sCAOy5ZzvWttFyzFXblmpX4nKZMe0yy6FhhFgO5YTOKG7SEEplkP9JqKoAIgB+wclhEQR26RLaKL7lmBYU7JmEr5OnJOzcSiEq2h2yPNT9WFioBgJ5y3lQb0KRcxKSjVZ+/QtukxzABVQCa7q2+aAONTECTchFvXFEJnIlJacs/b/xIaatroBE7fxOebafiePVTE6i2pLeKPCqyKJB8/vYcT17xPBwvXKnnr/9GHtmAZkTwOMkYJtIG1SGqPidR1FRUi1pIjZ3OpMfP/gPE1gPv2ize7U90FfLKxQ6n0OOch8Vroruc7T5nKo08MXgCMOkCev7vU4FHjgdgEWjMANhgBNjrl/T8jRuBVCwPdNv/LzPd9R1sg7v/uwb46hUCLV+9Kvt3R+5Jj14/2caBBCT/+zTA8NTKvnnbeap1rUFjIkdiecoV9Pjpv4EVn+TX6x44PL/OfchNBMCzMFLAPr+h5y/+Bmhf4X7W9o37/JUrgTVfegDeLQjgbRrgLrPVD4Dz3iEJa9P9P6xeowDLgv7SpcA3byIvplxBRId3/0H+xSyaBmcvN+EkYLef5H//OxK5Ms1fXH1g9gKpmAvEs/OuFkJRA3m7K4IE8mrpmNvlxnNz6YC8dQjqGkKFJIFFo5GAplazDUCJCSEDwxpdkDeu0lvFxyQ5D9DMDT3gsnmX2BeQ/lsXXJT9TynDhGFyykWWK6gy9mgmURyoME1g9r303GZx+ZESK5qLw+QVl2s2Iq32uisoQPQaRUx2I0myF6JhM3nbhT15c24avIC7n8gkaIIAoB31woVMAAi32KxBI+mw9H2Fp/nDz812IEoMbRnM1bDBQF4BueYUY7naAKgMb+CQ64Ob0PlyYWBzWrdBXkmevK1BOk4MPVxQGr5YLrKZvFGvhDXnDYgKJi8bk0IGv3R0Im0ggbDUPAB3PNBiNpu+DJOXNQA0aHKZvFnXvS4OwNluzGiS7A3sT1LUZkbKZgIKqnqoBhKrzcBzAAAfMslyPQHd/cLPBJTPngXE2WY9yrdZAXDmB/RWAWgC4vtGRWME0POktKvuqe1ZF+84r64RoIKxterXPYUNND7k56WfN6Lnr72ctNqEHez/igmdvyq8RXsIoGmvK8Nr8wUPoNkTxlYlDXA94/yN+Mijp0jhextLvovNEbWohfQYtgvJJGcSNrhpg3Re8LVcjD2I/G87V2aDfDzBagWAq/7FG5MvJcZuJkE1tz6bAwfdkL3MhJNsX93VwPt3AABm/25K1iIOOLfDybb3rQX86yTgzn2BWX/PXt+jJwCJdpJDZrX37Y4j4HXJ28DLrkQz5j6Z9dVxK7JfY9B2NiBtkcftwhn0ftNg8v7tWgPcfxiwwQPWBsPEOmaR6gT6jQMG70Bevs/+nAg3RsaV4AaAdV8Bt+wMdCwngPe0HICXRWN/4Id3Zb0VeOOP2PeLSxH46L785YfsSFLPy+cA0/8v+7N9Ls1+ffBfyst/b6KRC/Duv9WA/LH/s8eJWNU6wmW/10IoaiBvdwVj8gJoCdJkhoudwcAcKypv8mODXa3GOsqjWHHIAXndgU0JS8SRIhLp7BYo2uUyo8oweWn9vEWqMjeW4UbycACo66tQLJhOF5RIsyN14fqs+dgmubn09cHkbV8OADDq+tnrrmCyrutA/y3puR/JZg+T159EFAN5K2Ty2ixeAzq6EBUuZOoaEKlrdAGuSiSbmSevFRUq7rKiSbCegbyVg5phk4C7DiPM/R227SzHG7hysDmkA3W2XHNCqyuzNAU7RjIhm1kqicnbpIsxigE6TqSDq6EAGjUGrPIxebPAZonewAAQMRmTl8OTN8sbWB7Iy8YD3QF5SzN5ExrtQ+lyzV4mAms88ahm5IWHUVyvIA8xsEo+aAb4LzLL3B6AW9z1I8FXdW9RFWAzY79bIkzAnnGMePPtKRLW1ZaNVsUEdFV5+I4RVcVup/Duw6f4uyilHQroCAWoWFT9Bhox4CztabqttpS2SgC+J0lp896LqwarxKTwFTZpCJ2/8q97SmoTfnNxxlZxBryKupEflYRIlcd4VYCmKIPWmzNjaMvMw48nb43JW4seHZoG7HwGPX//TgAWsPlUoM8Y/nUEw8D2x9Pz9253PW154suX3Oef/ps8X3kjXA8M2MZ9vcs5+XWhQAjY2/btffMmINmBPo0RDOudXVNzQLqDrgd6jwYycfIqBshD9oTHiNy2YDpw11Rgw2JgG1vq+tvZwBE2A/rdfwAf/4tA1nlP03v7Xw0LGoa0vUdSyN7Y57eAHgQWvAJMv4LeG38UcPKTBMa2f0tAb8dK9ztL3slex8PHEJtXDwFfvkBg4qrPqM4UaaHtwqJlGAG8jUVqM6YBPH6W+7qe6klNieWFlz/wevqdx8/MYv9iq8OApy90X5/zOh0n38EY+9sX8t6745Sd8hf8wAbPdzqdCHu1EI4ayNtd4QV5Q8Rw4JoU2iBMDBF5E8ImYvI2GwQ6Fmfy2oVnL5OXdWRuSr5VYw/Ifs2YvTnhneTy5uJ68hbJQ9PIAwCA43GcG+/cRo87nuqw7UQZPIZpIWUUmSQzkLtjBZ9EcDoBbFwGAEg2kxyIyA2M49fozYNJNq/6nHs9AGjykyDGa7vVIOjDl1Okcpi8lYG8Ma0eFnRuAMD1SAxC0zSXOejtyBONNGPy8oPNlAuNPSEH5G2vTDYaLjuzXQDkZftGpmy0ZqYR0mi9DkjJmUcmyPKQA/K2BAjkTQX4wGbLsmy5ZrkyyXVh3fEp5gV5E17ZaFl52GNBncMq5vDk9TKKpYK8NM7rqY12cr1KLh/TaR9GtDSC4D/XykUWSMTjD+yRa1YCJJYa41NdJO/0jz2A/5yBZJKOKfksTUG5V0WSopUwAetD8qS0K2EUywQ0fRWZFQEAouwq77ZTMm/1VdyV6KntwyNRGUgkyiRS0DTqXZ8fSWCpvpHMAqZHSPGKjWk9hW2Wdf4q8NL018AqMw9xKW1VfqvCTPy0mutvvQ8AT0kDjR//WQWSwJGg7hB6RPeNTEAT8FmbyMgH8CIVzI2USBPLaMivMERVPbzjiCaRMVaJlUWk5slbi54e448B4DlfdvmR+Dp2OJV8WxfOIMAvnSi9vGkAs2515aEBYuQyz1KeWPkp8NXL7uv3/ln4d7c9Fug9hmrW9u+98et98xYbeclzRAjyAqrNQ4HxR1Pd/fTnSTl0zTzgjv1I1VELAIvfAJoHAXv9mr7zzE+Ad2+jOkhdL2DXH8Pa6nAAQODl32QTpPqMAXY8jZ5vXEKPm+1PzfqnPEWszw2LCOjtWkf1zU//Y+fmqf0/dgqwx8/p+fO/Im9hAKjvBXz2hLvc2AOKA7yWBTx3Efn3BsIk53zmy4WXBYBRewPRZvLvzfUc/vy/2a8Hb198PZtwfL2m08EqWOT58ALUCLD8I9quXu/lWghF7WraXREIUdcIgBbbr1HIk9eKOoybisMesOqMTkSQKg5WdeWDvOwGRlou8HmzXQhILBa7/QQYa2u9j9q7qPyBrmsO0CsqxVtXamLKzMILMXmNjOtDMOEU522nkMnJRMgqhORuE7uzCGbGYcWWjA2LAFjELLZBBz+egFlF5gG2TMcqQSZvsp1ygevJa3JKaTMAz2F5OUxen3LNNsjbqRFAxXtzmSefKQPkTTJP3oivm9xwPfOosCpmawZtn1URkJedX4GonYcMBq3n/4gJgrwGY/JKkmtutpm8KZ2Pycsk4uOSmbzRoCthLcLklc0oZjfuIrnEU4brDSyJUQy4RaoAA7DL5NJleYB6SccHkFNQZWNBY3mQtwnx7pcUnfcM3QSt/BT47HH0bZsDQC6Q6M0lyXm9iSkANAHxYjdr0gDkAhEVMQElHiOhgI6g7ZnKW7hTzTbjnS/G7MYm2b6vbnG3ykxAe86aEpgbuSxNRSCR4Py52rKzgGIv6yo3AtD6xArvqnwjRcc0dq+na0BYoiRwJQ00Kry9AR/NEarOG+HzV/Kxah8jYnLN8se0ej/nr4KxVdM0F8DjbFxJ8NQmfIS4koa3NqHi/PXTQCM/j1SG3+arx3hqK27Eq7ZKQi1qUTaKKSyWikhjdh15TD4AWjb6bg4cdivhAnOfcEHJQrH2K+Ceg4CXLiXG7Jh9gcNuoc/evwPIJMv/XqoL+PfpZDk3fBLVQ9ctAGbekL9sIAhMvoSev32zU/vMBeO20xYg8Y99spvw25fZDGcAQ3YAzp5BUsqxtcBTPwar5+KNG+k3NtufwGom27zloUAgBGOvX8PQgtCXvA3cvAOB2aY9njBwmMXwSfTYPBg49WmSb17zBfDgEQQor/sKCEaB82aRRDVAObctccHs16+n9zcsplxZzHmEasaWRYSjtqVUB1n0BvDPvYDZ99ByvUaRf+zNOxTfB4teB27ZhfIpFdp3E5qzLAv7/vn1rPe+/sO0wgu/bzcvbHV4WbW9WhSP7+aR1FMjRAX/5pDNNis3AcqkHDp/DFF5k59oKxCgIn4/baM/Jm+V5eacblmeybquA8c+SPIQh95UclFHrooXXOUpqJZi8m5YRP6soXqgz2bO26LFMlbI1LQC2yQUJQkKgE8ieN1Ceuw9GnWRoFAelEuBYhlj8q4WZPLaoLQVrEMK1CTBDXw7DNpckNcnk9f2Bo7rYiAv8yZ08mAgr1+wGXD8fNutel/s5mh9I3XUedblNwI2k7fNh1yzHiXgivyO0yW+wRE2UJywQohn+Ir5bNtZ4aasdVQajRpNupM6p2y0XbjpglxQMxoOoMGRa27i+k48Ld8bmDERGsDvyZslXy2RycvGap2ts0wuCVNH0rJ9lSUdH0BOsZuHycvkmrW4EpZmSYnGBa9kfye+Muu7snPhZeAJNXsJhB9JYCaIoEIm2Y/vnHR2syjLS4FvM1ABI7EHsb2lNml4/i/euVFSAdsMEC/uuvNnNUCEiCRw2rCyvisjeorcund9oipFssd4USlt7zkjk21Wyfkru4HGr5S27DFe9PxVBcwwNQwRkNdR1ZI4ptWH7fvfHiCFz+Z8Mft+kjcP+QCeGADvPb9kXm9c0Jt/3yQVbBNvvUW0SUNZI4+PsVVmVOLJK3ueVotalIynL3TBQ95Y+Slgee5RO1b4++3tjwdOfoLqs0vfAe6a4tZfASIBvXkTcNvuwNJ3qYZzyE3ASU8Qm7hpENUzvczTYvHCxQQuNg0Cjn0ImPYnev+tv9L/kxvbHEXyx4k2V20SLtA7RZ+NR8O/RzS1AcaA8cBF84Gpv6eFXrwEWPIuPW8ZApzxIjDuEAKY2Xab9zT9r3vnALaMpdtnc7y92SWw+m8NxDeQd+4d+wALXnVZtyy8oGivkcAp/yVy04qPgfsOpffHHgBEW7KZtp88CqxfiLzovxXwy6/ItzfdBfx1O+CqPsB1w4CbtiFFs/sOAVZ+4n5n7Xzg40fy1+UnzijBBt6EY9Sl2fvtlV/sVbjxOrYe+MxmX+98Vv7nteCOGsjbnWFLNjfrjMlbppDpKSh3QaInr6Y5gFc/tGGr1c8Dz/wMmPknRxoXQJ4nr2lajpyUCiaRH29R7jwCITJ77z2aKxfeIrMrjVhCorHelgMt1DHGmK39xhEYbYewbJan2F2wEMI6YXjYo+yi12eML/+dgsA3A7A3LqWJC/fK2uixrtV5S5hJxPYNA3nbv+X/fW/Y3WwJW9qXOw/7WHLBZsbkrcCTl0lYQwzkdVjWkaCHYV6ke5AzGCOyLRPi/o7jDVzX7L5ZKUvSZp3GEOHeNywPMyRXrrlRI8ZqghPkZYWbhMZAXjl51IUCwnLNca8XriSwmTERGjSWC4cnrxdslsQoBtyxNZhhTN7SucTTBjoZ+C6TyesdW3k8eZlcs2xvYMZEMExkjALnjWmSpBQAtAwHANQnVmV9V1ougvKIwvMA3jwq8DZTIgXog60ivbgrCIqo8uQVZiSy628PKGQq8W32FM5FZc5V+SWLSvGqYjSJFt1l59KTGE1+942yMZ6bkajIW9TH+csaoaotpe2cN5KbNHzLrSsCNFmjULkwTcs9ThT4vvoBm1UdI7y5qPAoBsT3jaMeJVlJo15wruhdVq6Shuf622PGVt7zt+eMrSwX2WNaLWpRMha9Dsz8I//yGxYDDx6V/d70y/zXBkbtRcBjy3Bg/dfAnVPIQ3b1POCu/YFXLici0Jj9iIm60+lUww+GXe/YWbeUtF3TPn8S+OgBABpw5O1AQx9gqx8Qa9bMENCdW5fVAy6bd9YtWfXreYcuxT9DN6JOS+F/xnYY/83PYTUOACZdAGx9BK3zsVOADhtDCDcAxzwA7P6z7N/4517AA0dmvzfvWefp+saxyJz5KnCQzTZe8THw4JHAsznree+f2b7G/caSR2/EU1/c8gf0GG0Bdj676LZC0yDg1GeI3HbANUSGSccAyx7LAgXILOOPznpp7HA65g88zH3j7BnAr74GhuxY/HcBYPKlwK8XAcN2Lr3cJhiOh7Mdx+08DJv1L0I8+fgRIv4M2AYYtks3ZPfdjRrI250RokJxM69cs11gN/QIDATkTn5sdu4+gY9wzLd/IMmBGVdn6/3ngLzeCawKJpEfRmJJcLWSXHjlInmKZfV97IULgLyM2cqYrnaIAt/u9iiSh4hEsMPkHSPsv5Odi2ffNA2ii6OZEQNZbSavFm1FOChWMMvzBu4zhh43LBYDmnNySQSaBPPIYTTJkGu2AWdi8vIdI162Sn0o6MmjArAZgJ4hAG5DJgyL09/XKQ5FoySjAlQObNrjZQxR4UKmFrWBvlRHxR7FgCtL7IC25fKwj9V00AZiJYK8onLN6rxwAx4mL59cs2xvYJYHYCFky4yX8weOpQx0MslmSU0AQI63GTsHS8jSWDYY3SSZyZvNBCwwlqyYQ40g4SZga7pxaUoRKK1Krlm0WKZKrlm0oSgc0BGUKCnqS+VE0Tbxu2+qzUhU5RvpB4BXUVTVdU14bqSMwSMopZ1UXGTmZyRSHpoGx7JFRnilPLmltFWBRD5lklU1AlT9WK2kgabK9gAqAE3v+vhBXspDle+riJIGCxUqCdVmewNecLW61996QeBbmf+skwf/vbyK41XXNXGZZMXNiVX3bfYhc65qbK1FLcrGa9cBX71SfrnONcADR1BtvP/WwJF30PufPQ78fRdg7lP+6kf9xwFnvULM0fh64O4DgFt3BZZ/SCzfH/wdOOlxoHVY9vd2PI1UIFd9SnLDBRjJ9ck1CDz/C3qx50UEKrOY9icCPZd/RJ64ubHV4fR/JtuBWX8nIPXl36Fu+sUIaBYezuyDs9K/RAxRYmlqGuXab0ugcyXw79NchT5dB/a/kiSqWWTiVHMbsQdwoC2X/OaNwOdPAwBCmU7os+8GZt9beLsxm7WXfgP8eQvgvxcAXzxPpIBB2wITPV7Jcx4mxvNtu5HEdbEYsI1bhxmxG/CTj4Dz3gF+8QXw25XAKU+7NcsJJwOXtxEAz+KHd8M86I8IZ2zQf+sjCdyd9XfymS0Wly4jUJ2Rb75DkQvwAsB1R21beGHTBN6/i57vfGZRe81a8EUN5O3OsOWaG2wmb9mJmF3ozwTpe1InP6MnAwB+EnwKOiwnN4exY1l0QQMcQNg7qVciu+ODEaHMi4+bEWEDeH7lmhnIO6AYyCt4Q1cU5BVh8n5Nj33G+GIi5IGaAF3gW0fQ8w2LudflZfIy7zl+dlWOTHLTYCBYR0Bz2zf8ObCwgdVUkEDeol7WuXnk3mw74GoFcs0M5EWDgKS35/wN627zQYUgr2YDgTErmlVs4cklGgq4TMqKmbw0XnZZUWFJUd1mScIygXS8sjwA1NnAagx8nryON3DAXl4SmBgNBVBvs4oZE5Qnl7gjGy1XJrmeMXnLAKtAjlyz5DzqkITGvGHKMXlTBrpgg7ypCo/RnDwAe3zoyrdGyI2MfUPTgLhUwMoLahQcS76aTo+j93bG8OYUXUeUsTSr7Snms6CqzL/SjyR/lZmAPYWRGOOZo/kIUWDGMC2kDDVMQFHAKq4KXA32DABenNHkMiNVSAID/I2jCVVsUTZ/5s1DgWoT4F8lQZW0qRATULE9AO/5q85LU/D8Vbw9+IFEb21CvidvUZWTgrkoOm/CYhLWjClfbQC+p/hHAyqBb7F9o7pJQ/S8kW2XEBU8Rrx+xjUmby26NSacBMACnjiLPFqLRbIDePhoqo+2DCfQddtjgBMfJ4ngjuXAv08llq9Xcpk3mga4jFVvnP8OsMPJhcGu+t7Abj+h569dS76+7cvdz400dlx8K7RkBzB0F2KKZv3mQFdiecY1bu2Xha4D+9jfeeuvJH389s30et/L8PF2V8KAe76OvOQ5qu0c+yCxaJe8Dbx8WfY6tzyULCO9MfUqYNdziQkMAI+djOCd++CAz36KwMu/oTp5MApsdzzlO2h7Ws7b/N+1mtjKjx4P3DAKuKIlm6G98FXgP6eTV2+0FZhyBQHcubFgOvClRy651wig/5ZA8yCqXT9yLLFMxx5E0tnLPgCesffBnr8kmetUJ4auf5ve2+l04N3bCbwuFP23Bn6znLs+t6lFIYA319s5Kxa9Tmqi4SaSJK9FRVEDebszbLnmpoDts1tuImYz01IB+p5UQHO3C5EKeQa4Q/5Cj8veI4Ah2UFdNoAjIem9oZMpu8Nu3jOmhTTnjVRBIFFiLqJs0ZL7xpHFLSTXzJi8WxbMQ7QQwryM8kKEtelh8lYiu5O3TXqNpEcRkNdmzyLaKly4y2NZ67orG722jPF9wVwIWE2HmoTyyGtIkMGgtX10O6x64ZvtgK4hHNBd4D9WQR5GGpqRAgB0ISK8b+rDAXdyUymwaYPNcUQEAAB7m0Q8zFIJLNp6m7HqgJRlguVrMNloiUzeRkEmb0IZg1b3sIo5QN60fG9ggMYDZ5sAboNT0Twy6IJc+Wogp6DK4cmb0CnPRsSlFqk0TSt8vUl2ktzSO3bn7RbTgOYhAIDWjA3yqip2y1TSqCAP0WK3bGURLxPQEGQCVhv4Vj5Hq3IjgF+PU5W5iHsCqjlGhC01FIHN0pokK8wD6AFS2sJy64qOEVEp7Yzi7cGZh2VZTi6RKntIq2oqcpucq3v++mWtylbS8B5z1QY160WvN5mesW9U+c+6HsUCtQlFDSNuU4KYhLVM1QjAD8tazdhaLwjAZ9md1Ji8tejOmHIlMHgCEN9AEsPpRN4implB4PHTifFa15t8dJsH0YebTyGm596XkFrhwleBWycB/7u24LoKRiZFy99zYP5nr13rsmELxeRLgMNvI1br4jfIv3f+iwAAfeb16B1bCCvSDBx1JxAocH864WRi92biwDM/zWcijzuEQG0zA3zzJr13xO3AXr/E9Udvl7e6kZc8B/TdDDjCVgV99zbgk3/T87VfAXfu59Z1WdyxL/DBPUBdL+ctbdWnCFhpWP23IcbxRfOBI/4B7HYhyR8f+leXQAWQB++Wh9I6MmW2+0/nAFscnC3xDLig7zM/JclsLzN64zIC8BMbCTD/4d3E6H70BPIaHncIsM9vKfe5TyBk2jm8ejXwwq8K59E0CDjpP9y1uU0thAFeAPjgLnrc7jguMkgtSkcN5O3OsIvJjTqBImU9TexCf0pXwOSta8XCrc4DAHwe2oZOqNYR9kD+tusRGG4CwvT7qqURvb9RLlQxeYVZIjyTZHYhyvU+Tcfdzqn+W2d9JNpR7bB3KpVrTnVRRxoA9BkjXMjMGKbDVsm7ufQD8nqZvD4LIVnHSF8b5F23gD8HFjbImwk3Z62/XLhAhD3BkinXLODJ6wCrIZutUs/Y3RWAvB7QK46oAFvFc95EZDF5KRchJi/LIxKSxygGELUSTi484XoD25M9WUzesO4wea0yYCZAhUxVXrh1YTG55pgCb2CAmB4OuzncmOWFXijiKRNxS/72cJqbUgnnfOYCebUEQhILmUCB697S94DrRwA3bUM3ZAPHA9seCzQPBgD0NmjMUCZbKSxJqAZcFR5HFM1HAAFQRNncSFQSWLHfG+e1Rp3EqmAjnmc52cVd3+yqsJpxRHQer4oBz+/bbOcheb/4kdLuKQx4ZQC8KFiliC3K9jVvA00yYzr1z2o30Khq0hBtslIF4ImOZ67srNw8IkHdIVBVW9VD2As3pXaM52YUK7YGEPJLVtQw4ltKW3oeNA/mHeO7kmrmz6JgcyxNx3TQc72sRS26JYIR4Jj7CRxc/hHw4iXZn1smJiy5A/qi16iGf+J/gL6bZy8TqiPG63nvAGP2JQ/d168jyeUFZWSgl88B7tiHljczBBZe9CVw0B8BTQc+vB94+Bgg0V74+5oGbH8C8KOZwMBtSTHykWOBW3ZF4O2bAADGwX8hRmqx7x/6V1I5XDQT+OjB7M83LAY25jAvDWVOAADqaklEQVScv3zBwQgKgXYjL3kOGDeNmK0Aef7O/BOBuWu/JFXFs2cAvUa5X3r2Z2QZ6Yl4qDcyZ80AdjkbqGt1P9ADJFV94Wxg57NoO8XWAvOeIbC+XFw/ErhlZ1JmC3pqdKwO07GcJLP/OAZ4/Cyysbx9H7Ia7LsFcMK/aLlHjycGcf+tCdTWdcCyEGTy2AAR5wpFqB44/lGnpvJdC18Ab/tyktsGSKq5FhVH7WranWEzeZlcMy+TN6krYPICWLPVGTgrdRGurLuY3hizDz1+/T+PH68rH8m6FGVP1iNBHbrgjVSsEIAnIUQlgLjAZsbkzZVrXjMfgEWyuTkynaLFbrZv6ovtG15gkYGfdb2A+t5OHkleb2AvWyWPyetDrpkdhw39xCUJCxWHGJN3nX8mr2GDvOJsFXu4ZfuCNVL4iSxPXrFjxGkEYHlUwuS1x6g0AkgjKM7yCgVI1gWoXArXboqJISrOmvHKRktg0UYtAgM7LT4mr1PMYuBnqlOKN3DU48nr+P2WiLRhwTAtJZ68jQETYY39n+U79BJpRd7AYTF2cyyVQYzJV0tkNrPxsT5t35TowXwZI0/EbcnoBo2zO1gkl9zC+/t30g2nkQKgAQf/hbqAbSZvL2sDgsgo8FkTBBJVFTLD/pQ0VMyNnN/gyIU1aQAKpbSF9021GYlqPQH9yM7KVMIB3OOk2ser6PxZFdtM3OO0TJNkBeFXirfa8sTKJeh7CEgEAEkOUDNLElgR4NxT/M6F7RKqfB+uqjFC0zTnnlqUHalKJYE3D3ZMy5a/dWSjq3ytYYAmb5NG2jCRNmi5avsUqyYp8DKKY7mWVrLyEAV5Fc0Va1ELrmgdTkxXaMDse8i/FQAsC/orl2HYhlmw9CBwzAPA0B2Lr6fPGOCkJ4Cj7yWW5oZFxP587JRsGWUAyCSBV68i4HPVZ1QH/uHdJHXcNACYeA5w3MMEBi6cAdx9ILFJi0XfzcjXd9fz6fWaeQCAtQ1bwNrysNL/f+/RwD6/oecv/xboWEnPl80G7pxCz+v7AmMPBLQAMPdJ4O87Ax89BFhWUaDXmnwpgd6ZOAG4yXZg+CTguIfIBmrDosL5nPQErEAEden10N/6S/G863sDB/8ZOOe1wp9rOrD5VGCvX5MSWaEYujP9X94YeyDVYuIbgE//Dbzwa9dSa8RuwMalwH/PA1Z8TPvt+EeoWeDjR4ErW4vk2if79ZF3AIO3L/6/bcLhC+AFgNn3AZYBjNg9T920Fv6iBvJ2ZzggLzF5eUHehMZAXsnddpEgXjF3xEqjid4YPZkev37N4xE4wFle1cRU0zRhT5M8dqSkEJ+cMknCEnmwwT1Xrpn5wvYenee3UC/ayVxu3zRwsjZXfkqPA7YB4JGL5PQkYnnoWgG2ih8mL/PIaB3um92cdePQx+7AW+ufyWsKMnnzpDwZoJ9oI5kWP2F39XVAXK7ZlY22j8uKmLy2D64NQPmSOXcYtBWCq/Z4GROQa87qqI5IygNA2CTGagcnk9cpZjm+HJYU9mqdB+RlihA8eahg0PYKeo51DpA3lsqo8wYWkI3OApsl5wEA9Wn7utDQrySruEuj/VePJGDwFXF4I4tJlIoB856lD/b8JXDas8Cwnel1fR8gEIYOC/3R1mNkkpWBRKLzEcmAiK5rQgAea9IAqu+l2VNkklWzrNMGn82Iqu0B+AfO5J83glK8ij09qw2aedfJs00sy1LOoOUFm5M9hFGszqPYXR/PecP2S1DX5Ctp+G4YUcQoFm4EUAPgVVt2ltZJuYg3nkneJqIMWmXgqiCjWFFDvnd9PPvGu92qLf3uNjlXl0GrqqZX7/OckZ1HLWrBHZtNcT1rn/051ULf+isC75HssHHI30iauVxoGrD1EcD57xHgqgWAz/9LoOjbf6d792WzgX/uBbzxZwK1tjocOO9d8nP11oK3OAg4/Xmqw6+eC9yxHzF/i0UwAhxwDQB3HX275kOb82B50sCu55HXbWIj8PyviFF578FEAhm4LXDum8RgPXsGvU60EdD5wBHAhsUFQbxtfvsUjHQy+81AmCSbX7u2wLaz51Vv3Ahzb2JU669fR4BwsUh2Ai/9tvBnfTYnqed9f0tAbCEwePEbwJcvZr/35YvArj8mADk3Zt9D+27uk/R6yx8Anz4G/HV74Mkf5S+/2f7ADqdkK3lOuRLY8pDi/9MmHL4BXiMNzL6Xnu90htykvsdRA3m7M2y5zHqNmLxlbyxt2dC4RoVuVUwEZ0I4ci8AGpmcM7Avi8mrbiLmTk7L3zgYpoVURg07QxRc9UrgFg0m15wrI8E6uwrINQhP1svd5LL9WI49uuJjehy0Xd76eLaJF9DUcoBrXyAv61xrGSrsl+zeXHpupCTINVs22y4peIw42zLaShM/wB+L1sg4rFdi8vL6WOcU7WTINdvbpEsjRqQoW6UuHACiNpM316dDNGwArsuKCG+T+nDQBVglMHnDhg3ymmJMXj3c4E50JeQRCugO8zOhlQecWR5MPUImg7Y5QCBvRo8U9obJy8VU4g1cFwqgQbNlozk8P2Ipw5VrlukNbJ+HTYZ9XWCNOMXygGf/SfJszs0lnjZIiindRfYN+/4OGLmHu6CuU4cygIHaenVAhPB1T26xTFQSOFHoWiMpRAAA77Wx2sCZOk9eWh+vukjcqxqhIA9AbN/ILroD4vtGFSji11JDNoNWGGzuDgCeI5eUYYKR0mRvk57SHCEKNqsCvb0NNDzbJKFIft67Tt7jNcnuf6V7SItKi6sB4OsE6gFZeUhmrQJ+fE7VbJN6wUYAVexIvyxN2XUjr5Q2z3HCahMBXUNYkd2JaFNgQ0QVAM+ZhzLZaLHzN+s+vBa1qFbs9SsC5TIJ4B97AK9cDgD4bMjxsMYfI7auaDNw4B+AH71OHq6pTmLJXt0HuHNfYM0X1Nh9zP3AMfcBjUWsmgZPAM56Fei3JdC5ErhnGvDlS8V/953bANAk0rLV+oLP/Qz4zxmuHHGhCASBH9xMtcl5T5MUcSZO4Pfpz7sexIO3J6B3yhUkdfz1/8iDeNYtWPwHlxE7UluBJ8P/h8CSt7J/Z9HrgGUCI/cEjrwTOOQmer+hH3D0fWQR+c2b0D+6H2sat4QGC3j8TNfa0BuL3wSuHUJALYuhOxMTVAsAa+cDt+wCvHY9SXE/dHT+Ohr6AwPG57//2rXAcxe5ryeeCxx8Y/5ys+8BZvweaM9mWXeF+yF99kySwv7wfveDCScBu/80fz2beFiW5R/gBYD5z9Px3dCPgPNaSIkayNudYWu/R0GdLWXlbhxmGn1PWbcdmxA29AEGbUvPWUdFy1BneVUTQsqFf3LqvQFVtU34by45bmCYXHOynbpVWDgg75C8r9T5ZDYXZ/JyyjWzLrFB2wMQl9KOleoebrXlmuPrS082vLFxKT22DPUcr2KeRFnbhMk1d64s7nFRLGwQ0qprASACwOdIaXuAkpLyK8Ui6eYtwuTNu+lnoFIlcs32foxpBJbxsc1c2az6ULA40100vHLNfuReJXryhg0CA9sNPpDX2TeRoDxmsx2MyRu3FSFK50HHqhm0Wb8SmbytAVs2OlCeUQzQea7CGzga8so1lwd541lMXnnbI2KPB70t+3xu6F9iaaDLCCJl2eeuZJA3q/D++X/pzfFH5ylMAHCuV4O09d9ZAMAt2onloRTA48iFjWcqvM1ctjfvNlEkk+xbdlZ+kZkFz/GqEiQSBVdVgSLiXppq8xAGmxXsGxEmfsJzbimTwq8yE9CvlLba84Z/bFUp6V1tBQu/542qZmvRZk2l+4bjvMkYJlK2qkPJxm8/eQjWBNi+kQ4k+lbUkgvgaZomtG+8llZ5DegVhmjdSBW7mY1n1Wby1nnOX5NDSjumqBGvFrUQCl0Hjrw96y1j4nlY2P8g/+scOB444yUC93Lj9BeArcpIKQNA6zDgzJdIbTPdBTxyHPDeHfnLLZ8DTP8/ej7tT8j8dC7mDj6GpKbnPkHA9dL3i//OgG2IWcxiq8PJN9ZRmLMjEAL2+Dnw47cJrE3HgJd+A9y1Pxb/fCR+MexLvBa5CGP1bwv/zgHXkkLYtkfTdmkZTrXpzlXAmS8DLcOhbViEXrGFtHxiI/DoSW79JdkJ3LQtMY29cdrzJFl9+vPAj9+i3DIJ4LU/ALdPpt8YOB749SJg95/Rd7rWALv/BPjZp8T6LRbv/gN47hfFP8+JlS0ToHWuJj9lFsN3I+srydefaseXqzow6tLn897nBngBsggDiPUcDEvKrBabDMi7fv16nHjiiWhubkZrayvOPPNMdHaWLnROnjwZmqZl/Z177rlZyyxZsgQHH3ww6uvr0b9/f/zqV79CJiNXCtEJm8lbZ4O8ZcEqBvJaqkBet9vOYlIOo21fXiYtsPWRzvJxx79DBVuF1tklMFnXCkkCVxiiXbtc3bLRFjjyGV4gi4G8DPArkIc4oFlk3zCQt5REsGm4DG6byeuV0ubZNw6gWWh7RJtdQG/DN2XXhVTMPQ5bhvnYNwU8pKMtLpiyfiHXepywAc2AzeTl9SQqeIz0HmXnUMSTolTYIK8VqkcGQW5Pony5Zgb8Vw7yxgPE5BVpBADsbVIvAWwGsuSaxWUaPUxeCSBv0AF5+SYrzr6R7A0M00S9Zl9vOEBetj2skAfkleANDABNOuWR4gV5VXnyhgKo13zKNafj0vJgBY1emn285Xq25EQ8baDTlkWXcYwWyiWRNtwxadjEgsuaDpN3HTVpKMij6p68gqCZSk8xkW3SHbKzPYUtyn+M2EV3BTYjIsdJdzQC8IAiWZLA0pmAbN/4UPSQGOJS2mrYd4CYlDZTDggokARm+6baMsl+xxHZ3sDeXMTOX/l5RBywSrSpSBEjkff8TanNg9cmyAvgyQ4RVrH3nrBeMrhaJwjgdSVVSQLnkAPKRFzhvhGpCTiN8JL3C+A5RjjHtK6k575TYojum5iimp6olHZNrrkWPSZyVf6YEqPfSMWIwfvRQ/mf3bU/+ZCaHNfbaAtw4n+ACScTE/b5X5JMMftuspPYumYa2OJgYOezAE3HggGHwDjlOSLZtC0B7j6AZKLNnPMynQAez5HJjTYToFss+owBTnma2KqRZuDb2cBtu+Ena67IWuw1Yzv8KPUzPJyx8YXXrwPW2fXXQIhAVgB4629A382Bs2fAHLoLgqanVr16Lskhz/wTsXfbPDXkw28DLm8DRu7uvtd/S+DUZ8iP1xvBKKlqTrkC2PlsABbw5LnAik+AXc6m9fiJnPrNmDUvI/jID8lvmcVxD33nAMyRlzyHqX+Zmfe+EMC79itg0UxSMdzxNHnJ1WLTAXlPPPFEzJ07F9OnT8ezzz6LmTNn4pxzzin7vbPPPhsrVqxw/m644QbnM8MwcPDBByOVSuHtt9/Gfffdh3vvvRf/93//p+afsD15I+D15KUiP/N1VOU/a1qu/JPjywuQhMGQHZyXKguZIqCmMyFU0pFpT9aTEjuq9QBQ18v+ggfk7VhBjwXkmkVv6EoyaIEcieB1hZdZ+xXJc4Qa6OLNchG5yS03WWf/a8fKsutyWK7hJiDa4lvCOi+XXjajmPn98oRlOYBmsKGV1i8IwGedN450tQ+Ql7GgIy3OWyL7Jk+uOdGWzTD3kUsiQGAZz00uK6hRIVNzme4VM3ndphheudesMU0iuBrMECi5gZvJ65E2jUgEeT0yx13gkGtm2y3MgFiLOiElRJMNNqf08mAzQPtGhTdwXdjD5K2iXHMooCGga2h0pKObSi6fSBvoshjIq4bJG08brtpDEfmodAOBvIO09YjKBld9egLKLpZ587A4mhyymjQkhwio2R1sM37gW5VMspgUr1LgW+B4VeXVCIgdI0p9mwWZgKpYmsJS2j2lSUMRQxPoSfvGPn9FGcVK/Fb59w2zZ1EhCeyMrZz2AKoaRpw8eIFERSCR9zzkuadgx4hs1iogZuHE6gYqJIFFG79VySSzhjphlTGV4KqAApwKkoKoTLJLmFBE3EiLHSPSx3jPGCkCwKu4/taiFtyxZn428xKA/vof0Lfjc3/rW/wmcNtuwDu3ArCA7U8ELl4MnPEysWbjG4BnfkLAKyPYlIpAiCSV972MXs/6O/DvUwhIfuHXRFxpHgIc9vcstqg1ZEfg3DfI89cygFevAh44HGi3a9Cx9fR67pOAHnKBtg/vJ/CtVGTigB4sCAanh+6K3RN/xWnpi/GSuQsuz5yO2ebmVDf818luXWfCSUQ62bgE+OxxoLEfjBOfwNJeu2WvcN4zwIyr3dcDtgEuWwdsf0JhduzqecAHd2e/t+x94NZdaT1TLge2O562yX9OBxbOIKlqb4zYnXyES8VWhwGj9iq9zAWz3VrndyQKyTOftOtwMYAXcPfR5gcArcMlZFYLFpsEyDtv3jy8+OKLuPPOOzFx4kTsscceuPnmm/Hoo49i+fLlJb9bX1+PgQMHOn/Nzc3OZy+//DI+//xzPPjgg9h+++1x0EEH4eqrr8Ytt9yCVKoI27GSYCCvZcs1lwV5aQDstAvM0ieEnomdMzkdvisQsAvaO56aNXBy+c/6zcVHR6Zs0Nu7TlGWZtkbh0JAVrstZVEA5G2ICHbLlmLQAiRDwuR5i0k2Mz/egeMJmGa5iEhpl5usi7A2mVRz6zDAwyjmATSzJIFzc2EXERGQNx0DTPrdYAMB9l28jQCFwOZKmLwM5K1rcU5PEQatc97U9XL9X4sB/5y5pIJNdh4CjQCsScM5Litk8tqAZpeAXHMWu5kBfhIANN3OZX26RBekJ7LB5gZpebBriGFpiBs8PriUhxbysG0lAYqNOr83MED7Jq6AyVsXCqDekWtuKLt8PKVGrpkxARs4c4mlPEzelGQmLxvjkxn3+lBEPjoVbgUAtGoxZd5m3ACeouIQK54bpuVcR6qRh3edIlYWSgFNQXBGlSegMFilAlwVkeJVum/4pXi7w7dZ9PyttpS2e97IvyUWkdJWyfYWZsCrksJn568ooKkAXHW2iRATUMV9J//5mzFMpOym7AbJ98ARwWNEpd8qswniAZy7VNYEeogksN8GOPkgryhbVE0eABwlGZ5cXGZzdcFmy7Kc+pIqmeRqyzXruqCUtqLtUYtacMfGb4EHjiTgdchOwG+WA9ufCM0ysePiW11AlCeSncBzvyQ54Q2LCHg98T/A4bdS3W34ROCc10m2ONwILHsP+OdewIuXlreR0zRgr18CR91F4OO8Z4A/DALmPET1vCNvLwwmRlvoO4fdSqqii2YC/9gdePd24K6pwJJZRBw5+Qli5u5ks3qf/klhBbPlHwHP/Az40xbAf88vWEMMLXsXb+75GRpA308jiB+nfoY1Vgsxc5/5KRFoQnXArufRl964kdjJwSg+HHEOrP5bF94OQ3cGplyZRWTIilVzgfsOoVrzoO1IovmC2cCY/QAjRWzmWyaS5/CWh9J7DxwBPHYKfX/IToSFfPMWfcai9xjHetOJz/9LAHmhaBkO/OwzoO9mhT/fRKMQwDvzV/vg94ePF1tRKkbHLkDs81pIjU0C5J01axZaW1ux0047Oe9NmTIFuq7j3XffLfndhx56CH379sU222yDSy+9FLGYWyyeNWsWxo8fjwEDBjjvHXDAAWhvb8fcuXOLrjOZTKK9vT3rjyvswnnYYnLN5UBem8lrUoFZdpEqGNCdIq0DaobqgH0uBcYeBGx3XNbyKiVVRJirSm8ahLtlPQy8UsEkP9iF0LLcSUMBkJfl0eWV0i4RXPumnC/vKruTzJZqdlIX8AIqWxgSkQj2+PECYo0AWYVMGSAvA1a1AKL1TXm/USoKdsv2skHeCpi8WrTFKfLwbJM8tpmuu8elX4DVlo5mIC/XvsllZjievD6BZhY2ABdHhEtaHMhhm0lk8jKQd6MRFpPSli3XnGLAdx3iGR7ZO8ojEgk71ytZ/q8Ntk1BQisv18yaNGJKPHl1NDpyzU1ll48rAptZLuwGqByTN54y0MnY2JLlmhlYZcY3OM0sTvNFTqRsafYWPS69kMlYXvzNTWrmAl75SR4wQi04ww8kqpyjOd6inOCMKg9akeIhUMS2QVJEfQDwKuReHSlejn3DjiNdIzUBqXkI7htV20RUSjuh8PwVkdJWeYyISvGqlgTmldJWydIUGVu7VEoCCxyr3SEJLGpTIJsd6T1/+e4pukOuWaQRoLqN8Fm5yJbi9SulraQpn20TAQU4hWAzz75JZkzHAUd2TU+UUdwd6nw8rGKVVnC1qEXZiK0HHjwSaF8G9NkcOOExarqe9idY/bdBNNOOwJNn8ineff0acNsk4H3bM3eHU4HzZgGb75+9XCAITDoPuOB9YOsjSIL5nVuBW3YBPnuivE3W+B8Cp/w3+72tDgNG7lH8O5oGTDgR+NFMIvPE1gEv/ApY9xU1dZ/5kstInXIl0DSYapSvXUvvJTaSd+o/9iSP29n35Decn/ESAaoTTgJgQXv/Dsztfzkm6x8BAFajF85L/RRpKwB8+m/yugWAnc8kyee184H5z0Fb+Cr2nn8FtNVFsJhl7wMPHQVcNwK4bQ8C1T/9D4H1Kz8D7juU/r9B29N2qu9NQOtJjwPHPUx14PZvgcfPBLoK1B63OdIh5mXF+oWl1e02m4LMoX/HzLGXI33RQuDnnxJR6TsSt89cWBDgXXTtNAzvw2fFlhWfPU7HVa+RwJh9K0+wFlmxSVxRV65cif79s1klwWAQvXv3xsqVxWVfTzjhBIwYMQKDBw/GJ598gosvvhjz58/HE0884azXC/ACcF6XWu+1116LK6+8UvwfsQeMkEkDRNnJj12gb7clP1XdwKTiZjaoucfPCy6rkkErMjlVOlmXJQmcG4328du5yv7iBsAg0KOQJ2+ulHa54hPXZN2RjN5Q+HPmk9t7dNbb9QI3UmUBeAYccDF5bbnmlmHZeXAwaNkxomvIZ5v5AXkZA7uu1enk59ke3lyyzpuKmLx2U0mkGXXhADqTGacAVSoKNiQ09KN94dcP1wacM2EBkDeXdS7Zk7fLigpLmpFMsg2yVQqgWRa0tJtLLJVBU7Q0o1dJHp51dCEq1gjA5KvTMXkgry1LHOdg8rJxlfnRI217A0sAFYk9awOrnExeR65ZItgMEKjQmOTzB44rlGtmY0KAnYPRFiBYWGo8rtM2Yx7LMsNhvfGyvBTJzYUDxCQyLWISNXOevyob4KrNBBRh8mYMEylDDcjrZSRallW20YCBWir3DU/Dl1IgkbEjBcb4OgVsMwc0424EUHP+ArRN4mlDaN+oyEOEQZtQNJ558xAG8CQzV3OltMt5D3c581aFLM0qSwKLHCMqJYFF2aJKr3vhILpSRo8BV7mOkR4kCRxLqpEEzpXSbi5zDKqSBAYEpbR7iN2Y93hW5YXL3Qig8HitCweArppccy16eKRiwL9PBdZ8QbXYk58AGmziQbgemaPuBm6fjNCy94CXLwMOuq7wehLtwPTLgNn30uuW4cAP/gaM2af07zcPBo6+l7x2n/8lsP5rkg7+8H5g2p9KM0CH7ETs26RNQvnqFZKILgX0AuR7u+cv6f/2hu4ZB6LNwCE3Ao8cB7z9d6BtKTD/BZJnBohF7GW4DtkJOPYBl7R02C3A+KOJrbthMe4N/xFPGbvhqvQpeN8ahz9kTsDloQeQfuG3CA3aDhixG3nivvFn4F8nIQigtdT/0GdzakjfsIgISqs+dYF1bxx4bZa1HTQNGHcwAYpv/RV48y/Akrfzv/fSb/Lfa+hHv9uX/Y0F+mxGfseWSeBvtBlWOo0Ny56nOsp3KAqBu4Cg/25uvH8nPe50BhGPaiE1qrpFL7nkEmiaVvLviy++8L3+c845BwcccADGjx+PE088Effffz+efPJJLFy4sKK8L730UmzcuNH5W7p0Kd8Xc0BeXiZvW4b04FXeOPgCZ2Tm4QBnPBNCTvasnzwEmJElJYFzo2kgPTKQl0k11/ctWEwvKKVdIrjA5nIgLwNVc7qOpEppM9Zmoc6p3GjLZvKKSGl7u5jzCpl+QF7mn9w0yD1GKpFrZkzertXigA1jFUdbhKS0C95IVSqVbAPOZrjZ/g0/3sD2MRFvAww+cLZg2ONlHBFuKe08UNOzHt9hpKDZbMgu1InLnCtg8sasiPi+kShfDcCRSO5CeU9etj2Smj02WiaQkQMqRkMB1GtinrwOo7iYNJDPyJJrLpNLPEuuWTLIa5+LwTiTai7sxwsACZ26NZu0AhJOkvKoNkvTyyTalEAipXLNPvIA1Elpmxa4pLR7CnCmct/4OkaUSovzsUUdtneVpbTZdU8NAM+vTtAdksA828MrCSy7uTgS1F2bEYF901DlBhqVksAi44hSSWBhuXXKpepeuEobv3uGJDA7RqotCSwqpd0dCnAiksCyJc4BseYIdv6GgzoCuuTzV1BKW5U3sHedQsQNBedNLWpRMp46H1j6DgFyJz2R7wnaezQ+HHEOPX/3NmIe5saCV4BbJ7kA785nAee9XR7g9cZm+wE/ngVM/g3JBH/9P2IEz7imsFwyAPzv9y7A2zyEWLX3Hw58/K/Sv/XeHQQkswhEqBb5z72Ajx50WcRbHARsfSR51s59ggDefuOAfX9HXrUsJpwEnP58virl6Mn0P026ANB0HB54G++3/gaH62/iHuNAPGXshpBmYM3dx+HG224jFnShaOgPnPI08PO5wIDx9F7bEsrjovnA0fcBE3+cDVKzuOcg4IaRwEPHkBT0N7OAdILwmMmXUN6Fot8493nfseSl/KsFwBkvEHi/24XA2AOAPmOIlR0MEzD+HYwNXamCAO8JE33473rj29nAijl0/G1/kv/11KJoVJXJe9FFF+G0004ruczo0aMxcOBArF69Ouv9TCaD9evXY+DAgdy/N3HiRADAggULMGbMGAwcOBDvvfde1jKrVhEIV2q9kUgEkUhhlkvJsEHegGEzecuCvFRQbjOIRaKyKFN1mWR2A8Mj7aKwWOaHtQpw7BsG8jKw0JFqzmfxAq6UdsowEUsb6MWZS8lt4oC8bYU/d5izQ7PeFgF58ySBc8MPk9eedLmApk/WKovWEfTYtoSfHdhue383D/bIEPExibIkgVnUtdL+iG+gTrSB48vnwMID8rKbOh554oL7xgHdK2PyuiCvIKAJuMclLNoejcUBptK5EODcbtVz3Wx7mzQI1GQM2goBNI9va4xTOjprTJMJrjJfd9QJ7pugy3KV5ENbb9GNCvOY58kji2mbjgEhPj/fUtEQCaLRBlbNUGPZTrcsb2DJTN76cACNDCzlYPJ2MmZzktMigjNYATGYsJtvivjxAkBco3lMIxSAvI7fqhhIpIZJFEBXio8JmCdBLzMPIbaZuqKdH0axpmX7o8rMg/1OuMz6HXaz0m1S/nhN5F73JIYL8vLL30YUeJyKy70qBEV8FJmVsDSD/NuEsVZVAJpC/rMKJYE1TUM0SCzrJMfxqvK+U+wYUbdvRKS0VbJWGRM/bVjIGCaCZVnWbN5aXeaqSklgEXBV5TjC/jeecUSlJDBrgBNnWauUa+4ZcyORY0RlHY1JaZc7f1Uz8b2/Ua08alGLkrFwOtBQBxz/KDBgq4KLrGzZAcZuP0Pg7ZuA/14IDNgG6LcF1VJf+i0w50FasNdI4Ad/B0bt6S+XUBSYfDFJMT//K2Dhq8DMG4BPHyNWr1fyecGrxEQFgGMeoM+ePBf4/CngyXOADYuB3XJUOU0TeOVy4O2/0esdTgEOvpHqf0+eQz69/z0fWDgDOOQvBHxP+yOBzPV9aPmmAcCjJxFzVg8CB15HoHaxOmi4HjjgGpI/fvonCKz6DDeFb8Vhxlv4feYkbKEtxZb6Uvxi1SUFv26O2AP6D++m3wWAM14EnjgbmP88SS3vfTEw+VICWz/5FxC3VRcn/hhYMw9Y+j7VKb96if4AYiEPngAM35WYzyyCdS5TmaksDt0FOO3Zospm3/Uoxt798vcHlb33Lhvv30WPWx/hsudrITWqCvL269cP/fqVL+hPmjQJbW1tmD17NnbccUcAwIwZM2CapgPc8sScOXMAAIMGDXLWe80112D16tWOHPT06dPR3NyMrbYqPNhXFLbHYcCW6S0rN2cX19dnbLnmKnfbdY/cTXUnhCI3Dexmi0s2i0kyd9gy4IzJ2zyk6FfqIwGkYiYnqMnRZV6KyZtOUCcX4MgjO3kIdIeWZVkzaV4eUJExbR0mL62Th6WZKNXFzEDsVCdti/re5XPJYvLSOg3TQsowyxZL80BNFr1G0e+vFwR5GcATbfYlE5WVBzsu2fEoGgxwriNZEi4p7dx9Ewi6gHdsnX+Q194u7ah3Oup58gByZZIrBNBsieQEwjAQEPeLksrkpVxiFp9csws2665fba7nis+IWgSsdprlJ8ss11AoDFi2LFCqi+9cLRP1YVeuOalHy/KK42kDMQZMS/bkrQt7mbxNJZeNpQyXBS1Zrpmdi5EkA3kL+/ECQJftqdwAudsC8BbLyp8zKiWBAX+giCrZWUCMNaMC0HQAES7ZWXe/yGabhQIaAroGw7SQSBtoqSstpd3TGLRqfV+rDGgKbA/ABYmUAAACuXQpBIncxpXq3tv4kQQOKpAEBsSktFV5iwJeL+vy4GqXwvtfkTFe6fbwSmlnTDSW2fcqAauowFxALZOXnTeS7sMrzEMENKPvqRjTRKS01fkl9zy5ZoHzV+FcERCT0laiEujj/FVx3tSiFiVj0ARg2v+RXHCJMPe+BIEVHxIQ+q+TCFh86Td2bVADJp4L7HcZlwVU2egzhrxj5z0NvHAJAbYP/RDY8gckPxwIE6ALkMztVj+g5z+8B3h1JPDWTcBrf0Bg/dfQtKn0WToBPPVjYuQCxILd85cEzjYPAk5+ikDjGb8ntvKyD4Af3g0M3Qk44VH6ztevkRdvfAOpfR1zf9nt5sSQHYFzXqPfeP167IOPMSk4Hw+nJ2OItg7NWgwfm6Oxnf6185VVTePR+4THoUc8zf2RRuDYB22w+mbg9euBFZ8QGzu+gX7npCeISAOQOuCqT4El7wBLZtFj5ypg6bv0BwDRVuDMlwmkn3ULMPOPVOtpHkK/9T0EeGd/swHH3fl+wc8qYu+yiK13WfE7n1n5+mpRMDaJK+qWW26JAw88EGeffTb+8Y9/IJ1O44ILLsBxxx2HwYNJHuDbb7/Ffvvth/vvvx+77LILFi5ciIcffhjTpk1Dnz598Mknn+DnP/859tprL2y77bYAgKlTp2KrrbbCySefjBtuuAErV67E7373O5x//vn+mLrlwmHyUoHZsogBUHTSaRdyHU9eJZ1//N12JYGzCsNP11+1vYG97NmyhUyHyWuDvB7QsGguoQDakK4c1GRRCuRlIF+owcOstL/GwFW/QKI3eJm86QSwcSk97z0GgEdKW+SGrtCNVKgOaBxAF/q2b/iAIw8o770hiiWN8iBvsX3TezSw/ENi8oqEh8krJLdeaN/0Yqzmb8RyYMEAUdvzwve+qe9jg7w+GcWW5WHyNgixd5wmDXYcMP9lv2E35yRAE1ORMS2axSiWAK4yn2JE+IBv702/ZLnmqM3kbTf5PXnrwwHArCeQVxLAGgnqaNCo0Sqp15cFeUmu2c5ZEquZRUM46MhYl2PyJtIeuWYZx4YnGMjigLyNxZm8DGhmzGyZISJ7p1ISGBCTAkwoLDKLySSrA71FtodKYJWYgDq6UoYQqKkG5PUhxatk/swvxdulsLDLgBnDtJA2zJJ+q15JYJXMVRFwtdrAt8qiuwjrvMvTrCm7ScObi0jjqIp9IyKl7TRHVNkbOKaQkciktC2L/t/GEs0XlmW5zRHfablmH4xihQAeD2jG5voRBZLAgD/gW6WUtnAjreTwo4inYs7KpLRNi+akzdHSDXAqxxIhuWaFVnC1qEXJOO0ZoJlDZlcPAkfdDfxzT2Dtl67cce8x5D87YpLcvDQN2Oow8o597TrgndsI9F3wKoGRXauBflsCB/zBk6MO7H8lff7cRdA/eRSTGj8GNmwLPHshgZx6iPLd7tic/y8A7PkLYOSewONnUE3w7gOAfX4L7P5T+v3pl5F11uAJBH7mqD6WjUAI2OuXBFY/8xNEl8zCGcEXscTsh8eMvXFs4LWsxVNamPLKDT0ATP09ySg/+3Pgyxfo/SE7Aic/me2FGwhSvoMnALv+mCY3Gxa5oO/6RcCUK4iZDdA22PYY4JPHaPszBvH3KH46KwjMygd4375kXwxuLW+3xhVzHiYP44HjgaE7y1lnLfJik3E5fuihhzBu3Djst99+mDZtGvbYYw/cfvvtzufpdBrz589HLEaF4HA4jFdeeQVTp07FuHHjcNFFF+Goo47CM88843wnEAjg2WefRSAQwKRJk3DSSSfhlFNOwVVXXaXmn7BBXi3jFkdLAmc2k4v5AaqVa/bhpSkxxPw7FHaGCoDeQt7ADpOXyTUz0HBw4eUheuPAIXtXCuRlgGrL0DzZjXqR4m65LlVeJu+GRQAsAg9tYFhMrrnMjZSoL69HXjuga45MRTlQM8u3OVfSzAFYBbyBgYIgr7AksJPDSHrcsFgsh5xcdIfJy3+zndWkwY6L2Dp/eaS6yDcEQAfq0JXKwGJ6ZUUir0mDSVf7zcGbC4C4Xpf1O6XCbdIIqvHkBR+TNwtsdvKQA2xGDLo2t5vhsstmATOSZaM1TUOT7cnrgLelcvHKNUtm8tZHgmjk9AeOpTKuXLNkT142ttal7AaHEp68HXYOUStO8k9S82CShCYMs/T5q1ISGHCBbzEGvEpGU3XzEAGJVHklO7kIAACOBK5CtmgiIwAkKmQkVh00y5HSLpmHVxK42qCm46WpEsDjOG+S6veNENtbEbMqwpojeM7fJBvTVB4jPHkI3O8JBtse1WZ7e73oy+XilQRWwgTcBOWaVUppi4DeRRuLJedSbVBTpEbiNq6oOFZttTOufaNuPqJpmgf4Lp2LaVrOtbHa+6Ym11yLTSIa+5H/qx4CNJ18WX/8lnyA1xuRJpI7PvcNYNiuQLoLWD0XCEaJaRsqALrtdDpwwmOwwg3o1zkPwVt3JkAz0kwM4VyA1xvDdgbOfZO8eM0M8OqVwF+3A17+LQG8250AnP6COMDrjX5jgdOeBw7+MxBuwnB9Dc4KvoAmLY53zXE4PvVbmJaGYe2zMe3/7i6+nh1OIQZy0yACp3MB3kKhaUSw2f4E4Ac3kxTz0J2yl2kZSmBvnzH+/8dNMEZe8hw2v+zlgp8tvu5geQCvaQIf2Pt1pzP5LBNr4Ss2CSYvAPTu3RsPP/xw0c9HjhyZVdQfNmwYXn/99bLrHTFiBJ5/vojxtuyw5Zq1dBzRkI5E2ix9A8NYWFaUTxLYR/iTu1EnaSaFLSohj3jagGla0Et0wQp1hjbaTN7YOiCTcvX+GchWINwbB0ndsqVA3jYb5G0dlp+Hn2J3USavDaSlOomtW8xjc90CeuwzxrkAiMg1l903rcOBZe8LgLyuJy9AoEgqY5YFNb3nVTScc/4yWWzmPcwbDOSNNDtFOBHgO2ubSAJ5gw29AKwROkZUeANbepAAOYuKUKVAhjxmM8shvp4mIbrP8dYG4FIM5OUAvmOFQE0ZDFp7HZ1WlK/b3VsccsBVOazRkEkA6QaDw5PXO46YdN2UCbA22MBq3JYeLhaGadF5zkDeTAIwjcLdpX7y8EhHl/fkNT3ewHIZxWxMaMzY14ZSIK/NxNZh0Q1nGZlpoTw8xdFYKoOmEkwElZLAgAt8881J1IGaDPDhKnYnFfrO+WgILMUEqySEpLST6liaIjKrDCRS4qXJ8uAAm1WCZllS2mWYRGy/hAJa5d5OBcIPg1Ylk1eEZa0E0PTc25S0CYLnWFVUdBcDnNUD31zHSJoB31XOQyHbm+USS5WX0vYqw1S7ual75JqrrNZgb4+0UV4lQfkxIqIgxc4bBXOBeoFxpDuOET6WtbpGPID2TWcyU3bfxLOarHrKebPJlKRr8X2N4RMJ2NV0oO/m3fe7A7YmcPXjRwggm3R+UQ9hAMDmU5A55Tlk7jsCdekNQPNQ4MR/l/4Oi2gLAchj9gVe+DWRgLQAsYYn/kgOKKfr5OU79iDg+V8CX70M7PYTnPDKBBgI4CVzJxwUeB/nBp/GyEsIUC4oEzxqT+Dnn/uv19WiqO8uAMy76kD5WMvXM4D1C6npYPzRctddi6yoXVG7M1jHTTqO+nAQiXSq+EQskwLMNABiG9UrKmQKTda7QdpFCCRSkIe3kJDIGCUnnULM5vre1P1lpkkmeN1Cer938U4hsX3DMUkuyeS1gcYC3VlSu3ajrSR7YmZImrdYN5gX5HXyEOmWLVMsYwArA7fLRQcDeYc4uWyIpcvfSOVKAhfKwS/IG231BXxnNWkwRnNiIx0XOVLdJcNIO8BbsK4FBPLyAyJZxwgD//1KJTuy0c1ATLN/xygN8qZz2O91tlyzZQKJNv/+rw7ISwCiEMs6HHAZnVKYvEwNgtOT16sI4MhGy2GNhjJ0rGzMlGfyZikTWDYQm5II8toSyV1lxJrZfnFAXgBIx8uybnmjPuRKR5eVa04ZiDvewHKlktnYygXyGkGkrQBCmkGy0RJB3nBAR1DXkDEtxFJGYZD3oweBjx9Fv1gHxms/xPLQOGm/7w0/UvgqgAi2b3jA5i4nD/lTe7ZOnvFMJaAJ8LO8UhnXtzlPSUNC1PkAIpTKvVaZyZstpV2audrFoz5TQdRxHiOAYplkASltlYAmY3uTlLaFcLD4/SQDNFWdv7wgr2VZrt+5EgatAEjkAN/V9m1WC8DzNiW4qi+qJYGryxb1V5tQd4yw3ykN8qo9RuoFjldXJaG6bFFXnaBn5KF635QjB3hzjZaxnPKXR8+Q0q5FLaQHk/bt7tB1YMKJ9McTA7bB61tcif0HdyEw/igx6WFNA3Y4GRg2EXj/DmDrI/j9d0WiZQhw/COEeQTDWDgFWLYhhh/f8DUOCryPw/S38Rfth1hm9XfAyDywtwbw+oof3vY2PvimAB4A4NidhuL6H24n/0czSeDF39DzCSdJq6XVonDUzozujCADeWOoY3KvxSZAngJ/F6JKbl4AnwBe1eWa1U0IvZPdcsCZUGeoprmSzesWAJ22N2+f0UW/0sC5b1IZExlb2tK/XDMPyCthsu6VxS3F2mQgeJ/NfOVR9qafeU7ySPOm4+42s/ch702dc4wUatJg25pJZfMG2271vXxJeGUdI+EGoMHeFhsEfXltD1wACDfacs1c528BiShHKrkyJq8WbXGkW8sdJywP51gNhgkkBirz5bVZlulAnf07IhLWASDMwFUJDFrHk5cT5PUWVCXLNQdskHddJlxWSjvLYzxkM4rTktirloV6mz3baZVmFbNjKKmFYcE+fyUyilsDSfdFObnmdMYFmyXLRjNQocW0x7kSnryJtOnxBpYrG01yc6xxpcB5E1sPPPMzYPEbqFs9B0cHXlcIJAaL55ETKn1O2b4RsW1Q0gBnrzOVMZE2SgN4KgFNwAt88zVZAYolCQVko5X6NlcZ0AT4pbRdhrUitrc9D+CT0u4GtiiXpKi6feNVkim3Tdi+qfYxkki7ksBqvXB5JOjVAd9+zl9VNQFen3GVgKZ3vVX3SxbIQyWgGQ64YHq5XNzzV22TRrk5iWFaSGZy7rNk5uGrAf27Ky0O8O8bryVOKcU633n4sRurgby1qIXUSIZaYe58tn9v2X5jgWl/VAPweiPoNv8P7VWPJ646F58Et0FQM3FOIJtpOvKS50qyT2tROtj2Kwbw/nVSBr8/jIPx7Sfe+huwdj7Vnff+tZrfqIUTNZC3O4PJXwLoHSaWbtFJoQ3ymoEIDASUTdbZTZGIl6YaJi9/15/Kybqua9w33KxTknuy3mRLNn/zNj3W9S7JnKzn3DfeQknJSbIX5M0FWTbassUtw4vnITJZL8WacfxX/YG8XH6N5XybRUBFJtUcanD8Hho4AWd2DEUL7RcG8iY2ZgGmJcM0iAkOAE2DBc+bIkVmxxtYFORto8dwE+qjUfs3eIDEAoWQSj15C/gUlwfgC0isMvZuJb689tidCdJ4Xw6IyBhetpmXySsB1PRI/vOAVQVloyX5vwZskLbLjJZlecW8542ThyRg00ghCFq/43FbJJgkcH0oCC3EGMXypJJbggTyGgiQx06JiKUMhXLNNI60WvZ5VILJ25Uy0GkxkFdCI0JONOTaA8x9CvjscXr+2eOOwgkADNbWKgMShWSSFYJEQmCzQuDMO88pN7aqBDQBL/BdepuwPMIBXYkkMJOj5pLkV7hvnO0h4lGsmAnIu2+UAREChXd23qhge0ccILG6TRrhgA5Wyy8nL65630SC7lyeJw9ALRNQrDlCQXOx4+1tlm2Ac3ybqwzAq5b0FpFr7pYGGhEva0UqCfWc20Ql+53Wy1cTyJYEri64qrR+ZV83Mra9S6lQvW+473/Tas/feoHGlRqTtxa1qEVutI88FABwbOA19ENb3uc1sFcsym2vxdcdjK+unqougbULgJl/pOcHXiumHFkLX1EDebszwg0kVQugX5DkIotOxOwibiZIhWUVgCatl6845JXNqvZkXeXNtne9MU65G+7Jei7IW8bUnXffsG0W1Mt4m7EB1UzngwQcTF6uyXqao2u3wQb0ukoAaSXkmul3+Bi0RfeNA/JygHmOH++gPH/g8je5JW6kIo3uPuGVbO5aC1gG+YE09nePVSG55lyQdyQ9ivryMonkaDM36O3NI2ubVOzJ6+bCC4oUlH0XOS6Khc1uNOyxW6QQks2glSHXTCBcDFGuIlUWg5aBzZKAPM0GeWOIlpWezWKdSwabvezTdqO0dHSXt8M8LN8buFknkDep15X1uYklDcQsRUzecBBRJB0Z65IgbzKDTtiAdJKzOUUgXAn6DLD2K+DfpwL/OQOY/yLw8aO00Jj9AABDtLXKmIC8bNFkxkDasLK+IzMafDRZKQGJgjpCASaFX2ZupJil6Y7xfI08ytneVQYiRBoBHJaXon3TmNukUSRcQEQxWFUmD9O03LlAtX1fFd7baJrGnYtKZiTAv29iHv9KJWwzIU9PdQw8BmgyKe3SeXQPS7PcNukpsrNAd8k1V7cBHXCbhcs2oCtmi7oAXrkaCX2uaS5DXGawZnKufZP2zOVl55EjpV0q1J83fMxz1YoAQkxehRZstahFLTbNWNc4DuaQnRDR0nh/myeho3ADDQMv317os374HQ7DtMqCu4uunVbY71hmWBbw3M8BI0n1m22OUvt7tQBQ8+Tt3tA08iSNrUWfYAxAS3EAj4G8ASosK7+RKicJbLjsSaU3Ulyys93g5dXFX6Ti3jcOyPsmPZbw4/Wut/xknfPmJVQHBMKAkSI2LwNxLAtoX0HPmwfnfc0Fm3kAPI5cGMhbjEWbaAe6VtNzzzaKhnRoGqUbS2WcYmLBPMrdNDhgHocsb0f+thG+kSp2rLYMpX2xcRkwgEMeg3kDNw4A9IBTqBWS4s3NpdVm8oqCvB72rD/ZLE8eDFTqXC2Wg5NLm5ML73lTEmyWwOQ1Q3R+8TLxNQ0kNe2AqzJAXn9M3mg4AJhNWeuoNDR7PZ2Ichd3GyNBwJIIenvWk7BC6MqUAVYdhmYQCMn3Bm7SSDY6rtWhvsyyXSmPXLPEHAACN3qDwHwrEIZWwme3K2V45JoVMHm9oOb7d7ofPHE2gcpaANjj58DCVzFEW6tQ5YSvuOttsFHBjmTAk5Anr0IJzY3xdFlwVTmTt5SktzePpNrtwcsopmVUMnlpnWmDmESlmv1UM3lLyq0XyEPVPL7BAeD5lXBUHCcNnHNFoBskrEMBdKWM8ixNxfKZdUwSuFyzZlqdQgLgAk98IK86IMJ7DsTTRsnzV2WzNeD15C3HslabBy8jMWOYDntSjVyzgCJAOQWpCkPUb7XaAJ7TUFTIrkhCCNmNeXKRHaGAhoCuwTAtxFMGWupCxfPoIfumu8Dmaktp16IWtdhEQ9NgHPhH6PcdBCyYjq+nbg/s+7uigOUJd7zrPFcOWvbw4GE4d+s2+vhRYNFMsi095MaypIZayInaFbW7o66VQN5AHEBL8U5IuxCdVgzyurI7fLKzqnLhlf/xLqNa7oYXJOIuUjGQlwUvk5fX97Xc9tA0Yo52riJgsXUYvZ/qBDIENhTyYnQkojjYoly+zUyatxhrc/1CemzoB0SbPemTXFVXyqBciuMQ5feNlzlqWaUvOIzJ2+QFefkK72VvpFqGASs/5ffl7bC9nO1jie2bcnmkDdPDNivG5PXpyRtpdooryQw1gwRKsC4Kgs0tQ+iRl9GcG4xRGGlxgO9y7CoH0MySa5YA8trgt2H7+5ZrXPGyVTRNcz15012AaQJ6BR3wHk9eEZWEhrBkcNWynPXErPJM3k6vFKAlEfQGnDw6UVc2jyyQSLY3MIAmjZi8Ma0OfUosZ1kWupIZV65ZYg4A/X+NNuCMSHPJ8TCWzLhyzbKAd084svxdG4GPHrLf7Os2BW19ODBkBwBAsxZH30BCeg6Ay3TkBTQjQR3BgHy2imupwVPIVMtcbQgHsDGeLg98K2ZpNkT4ADzVYDMvo5iWUcnkddcZS2UQDhZXKFDN5OXdN6oBzQbB81cV24ydi51c3t6Kj9dIAOu6ym8Tl8mrli1abk7C8lTnP+uHZS3/ePWCRIl0GZCom2SSy6sl9Qy59ViuEo7sPHqIXLM3F96agOpGHt48VIF3roVTdc9fVpvoSGa450YqrAEAfuZ5d+2bcg0JhkfiWlVzRC1qUYtNNAaOBw79G/DkOST1O2g7LL7uUADAb5/8FA+9u6Tg17wg5/cF8L3k8U/w6Pvla8ndvj261gEv/YaeT77YrTnXQnnUQN7ujmgrAKCXbktXlpFrTtkgr6pud26PF/vzUEBDSEEhk+WR4gGJuqkDsRwTQdhbJXdg6z26dB4hPuA7LtLZ7QV5WTD2ZKghyzeaRZ5HYqlcePZNOSYvA1Vb8/2B68JBAnkrlSJiYJ6RpHONsScLBQMem/NBXt59UzQPJo/NDfLarOKmQVl5lPePLlEI6SWPyQvQzWVTtHiRqiAA32I3HCQ30npt72M/uXD7JauSa7ZzMSP0P5Rj8nZ52aJA9rGY6sxqdBAOGxjtQpRLUpQVohsiAcBqyFpHRZGOAaAmg05EuWVWGyJBwJToUQw4/0/MinAUmT3bIyCfyVtnyyN3MWZskUhmTJgWSV3LzgEgcIOBvGaoAaWuaF2pjFomr30e9F7yMsmN99kMOPUZYP4LdMM3ZEdADyAeakVdug1D9DXScwAEmLyKAU3ehqKsXFQV7niBM8VABO+cRD2gycdaNUwLSVbIVAISkedwKmOiK2WgtYQsgMMEVM2g3UTY3qrZZl75asuySv5GXCEQAXj3DV9zk6rzpp6zEUC1bLQY20wdq1jTNESDOrGseZt6FQOJ3HmobgTglL/VmRKO5GD/X9qwkDbMkvWP7gLOyt//KpZr5gRXS9oVSQgR32bV1g11YQbyljteVTee8Z6/alnn/CQFj+96Ta65FrWoRW5sdyywYg7wzq3Ak+cCfccC/bbANUeMxzVHjEdbLIXtr5pe9OvfZcCX15P40XN2xa6jS1EJFMb0y4D4eqD/1sCkC6qTw/c0aiBvd4cNXrSCirTlQN6kTsXU6k8IBVmrgiECEnWXJ690b5VxhwCDJwDLP6LXZZi8vFKALI8oz75hHrBekLfLLpI3FvZhrOMsdnP7NhfKwRuMrdo4MO8jUbmqonmEG4BgFMgkCNArBfK22QxXBobCWxzi7JYt1rXrgLycDNb2HJBX0P9O14BwbpGCAazt35ZnNXvDA6xGgrrDRIiljJLnrwskerZJpBGo600TgbalwEC/IG8zdyGkYB7Osckh4102lyauPLq80sQAHZdMVj3RVhnI62HPckmK2tukMRKUK9dsA6smNCQQ5mbwNIQDgCnZkzfFgO86DiDCA+Dp8j15G0DAaqcVLZ2HvV8cuWYzDRhpIFD8PBMJTdPQN0isYqMcyJs0XCavAk9edv6GOuzGlxG7UYPNzmdmLbcxPBB16TYMghqQl9dvtbsAzUS6fANcl0IgAvABfCsuMvNKAqtiNPH6JXu3l0pQM5UxOUBNtcdIPSfwrfoY4WYUO6CZ2mOVAf2l5umqgW8XcObz0lQFADRGOMFmxbLRvONIKuNRwlHFwItQAyv38VplcFUlM5LWyzePdxrxwkElTRrZtQkDLXWlQN7uUY6ott8qL7jabbUaAbuiateNlMs1M3IAZx7K5gGCiniqmjRqUYtafAdi/6tI9XDxG8CjJwBnz3DxlPqwA96ece/7mPFFcds3Lyh65A5DcOMx2ytNW3bM/mYDjrrtbe7lqw5qL3oDmPMQAA049CZpNata8EUN5O3uqGsFALRoVGguOgGyGTIJjYqpqjpDxf071OQRCerQNcC06Ld4QN6iwFmFoaxbNhgBjr4X+OdegKZTN1KJkC7XDBQGWBmTtyFfqtm73nI3L2nDcn2bSxWHbDY74m2FP8+RJC6US7ltkih3Q6dpxNps/5YYxR4ANy+YjHGrF+SVtG8YwMoL8hZh8pYr2nkBzbxCSPMQABoB3l1ri4L9eeH44DbnyFX5vLlsHUbg6salwMBt+HJwcrHBpmgLNzujywtoshDxai6Ti2Yf59xFKrY9NI0A786VlEcBRjt3eOSay/k1mqaV7bPmMGglsDVtYDWpRWFB55ZZbcgCm2XLNZcHvr0FRGgMbJYnlRw1CTDuNCNl8qD9YoU8FL1UlzOfkBG9QmnAADLBBhQXe+0GJq99/oYSttJDketSW2gABuIL9DcUMXlZk1WVfV9zpXhLzo2SaudpbL3lpGcd4FsZ2MwLripmRnL6JbM8ArqmrJDZEAliQyzNAZx1E1uUd/6s6hiJiM3j1Umbutu5K5kpCfKqlrBmQHZnWSUNxQx4R52A775T1djKCzZ779NVgTMN4QDWoAewNDmbNFQzEnktnFSDZuGAzi+lrRjU5JXSduo1yryBRa+/ivNIl1ZJyLIrUlQ34j1e2b6rNrjac1jn7nxERZNGLXp+XHPNNXjuuecwZ84chMNhtLW1lf2OZVm4/PLLcccdd6CtrQ277747brvtNmy++ebqE65F90cgBPzwHuD2ycC6BcToPfahPDuzu0/b2XlejuX6xIff4okPv816b9G103rUOMTL1PXGF1cfyEf6Uh3pBPDsz+j5TmcAw3apajrfx6iBvN0dduG/CXxyzQmNGD7KO0Or7L+jaRrqw0F0JjMcN/497OZSZDDtNRK48EPANApKI3uDX4pXYHsUZPLaIG8BP17AvSkqBxJxF0IYMMFAwtxwgMziIC+vFGDJPOp72yBvCUDPsoA22/OhVz7Iyy/3WozJKwryZgPgvB5NWWBVbgTDtL6OFcDGJfwgb+cqemwcAICKQx3JDIcUYJFt0jIMWPGxu71FwsMqdm4uy+RRkMkrUa45UN9Kq+L2jczJo3NlZXkALshrM0XjKaP4+eu5BhCTV6Jcsw2ssqYlbnA1EgQMiXkAzjYhdjPfOFIfDgCafCZvnUVM3nazDJPXziMcjgJmALAMykMmyBtIAgaQCjaihNorYllMXgWevHbxK8xA3iLXpbVBer9PpnjXbkV58DJ5FYNVvCoJqYyJlEGSwOrYkWKFO3Wy0ZxMXtWsVU6/ZC/bW1UBQZRVrIztzdiivJLAilnWZRsSFIPeAV1DXSiAeNpAV9JAnyKiMdlKOKoYtLwsa9XewGJMXtUqCV0pA6ZpQS+ikhCz77FCAa3o/ElWLuWOV9XAGbekt2JwlfdYdUEzNeevt4GVtxmg6uzmblInKK+opbYhgR17hmkhZZiIBAsfizHe2kQF4dYE+OYkqkgKvMprccVqDXWcdmOqmzRq0fMjlUrh6KOPxqRJk3DXXXdxfeeGG27A3/72N9x3330YNWoULrvsMhxwwAH4/PPPEY2Wvp+uxSYajf2AYx8A7j4QmP88efROvrjo4ozFalkWdr9uBpZvTJT9iVGXPl/w/a+uOUiJVSWLU+5+DzO/9N+wvvAP00qqfFUl3vwLAfKNA4Apl1c7m+9l1EDe7g67KNtgUaG56CSZFaKhGuTlnBCK+s/6zKUzmSmZS3cUQupDfJN1397AzJO2TLiTZF5JYL9MXvvC0lBarhkoDRKxgkzZQojD5N1Y+HMGHhYEeVlTAt+NVGOpm9x6ez+UAtI6VwOZODGvm4c6b9fxAgBOHkX2DQNUu9aWXI8TOUxeXm9Ch21WLI+WYTbIu4w8L7lyyQF5w0EAybINI53FAGfGWPUD8jLZ2EhzVnd3qYh5JYFZSAd5Ez4Zxb3psZikOU8YGTp2AaQD9YBBxcoWFAaJWB66Rh6tMOxqtJkGMklSIvAbjsc8A3l5j9cgkGGMYkmAYtIHkzcSBBiwKZHJGzEIMN5oRkoyERxgJhoEMg10vKfj0vIAgNYAyTWn9FIQL22T7mDyRpN2802R69IqjUDe1vRK6TkA/HYJLhNQYZE5HEBHonSR2dtwpI4d2UPAmZ7C5LXXmzLMkg1wqkFvwN3n5VnWqrcJL7tZLQDggs3l5gFqj1WWSzxdWoo3mTEdJRzVTb3VlgTmZdDGVDcCeMbJeNooChSqPmcoF85tohrkjfDd26hmWXNfaxzQTO35SyBv8W3SHbUJXnUR9Y3wYs1eqoFVgI7HYiAvO1aDuromDWnqXhWGK7ducuVRbdBbtW9zLXp+XHnllQCAe++9l2t5y7Jw00034Xe/+x0OO+wwAMD999+PAQMG4KmnnsJxxx2nKtVaVDuG7AAc8hfgv+cBr/0BGLQdsMWBJb+iaRrevnQ/5/W3bXHsft0MoZ/d/LcvCCYaxE9nvSz4Hf645/Sdsc8WhRvge0Ss+RJ480Z6ftD1jrR2Lbo3aiBvd4cNcDWYtldiUSav7RtoM7CU+XcIyjWrvJHiYUcmMyYsqoNUfZt01yTZF0hULBjzqxCTt0gxPRzUEQpoSBsWF0hUtqOaAc3lmLwlPHmFQKJiwQPoMcCxaTAxXu1o4LyB6UyWKWSyHDJxIBUDwqUBFmfbNOfLNZcCicoeIy1DgWXv8TOKvbnkSEeXKspkDBPJjFk4FwbyblzKnwMLH0zeLElgFhJB3lB9K4CV5aWJCx2rDOStJI+0C0aaoQbAKM2A7/IU7TRNA8IeylGqSxLIS6zcssw3r4RmgIG8ksBVW346ZkXLKwJ4myMYo1gikzdk0P/UaUVL+jV2eiWBtToCeSWCzQDQEqAu12QJkNeyLJJr1tWBvAysqk/bx34RJu8K0PWqJakG5HUAEZFjRFE0RoLoSJSWwnfY3kFdWccxt0yjatnZMCegqVqK17PPY6kMwsHCQueq5asBcb9VdSxrzvPGud6onT9zg2aKjlWAxoa1naVzyWrSqLI8cZdiAI9XkUf1vqkLBRyboK5kpuh45buhVyC4gW/FzRG8DFoHXK0yE7879k0DRwNNdzRp8G6TntKkoXrfhAKe2kTKQGuRqatqb2+A38u627yBq9zI49yHl5HS9qWIV4vvdSxatAgrV67ElClTnPdaWlowceJEzJo1qyDIm0wmkUwmndft7UQMSKfTSKfTRX+LfVZqmZ4a39nctzkG+rLZCMy+C9YTZyFz+nSgz2bc6+7fEMRXV091XncmM5jwezHQt7vj5Z/ujlF9s9U/VexXKceMZSHwzE+gGymYm+0PY/ODgW44Br+zx3uB5XijBvJ2d9ggW71hF5rLyDV3MiavMm8VPtnZ7pBU4ZFJzpLdUbRNeCUJ2Y0DF7iqMI9OkYJqHQOPPBLFnaXlmgHa1mmjdJG5o5QkcNbKWukx2U6y1XrOfuwoxeRlAB4fW7QogxZwAb1SLNo22483x7OXtxGgLLgabgQCYcBIEaBXCuTNJF3QLwdYNS2UBIkKApreaLFZym0CAKvDuGZM3vJjiZcdUFCuWTQHFo4nb7NTSC9/3pQAeeNtxIQNCJ7bpuGAiJGmXgBW8kt6e8fWQuepaDAQUA8hHIoCiURJACAPiAgEgWCUvJqTHS7w7CdsMDAToONbCPhmTF5ZgKJzba3jBkTqw0HAYHLN8hi0QZvJ22nVIZYyip6/MedYDQCQLxsNAM0agbwJBuAWiGTGhGnBI9esAOS1t0Fjxm5EKuLJ+61F52qDIpDXZYtWFzQD+ACrguOI5OBlaXaXzGrZfZNUCxKFAjrCQR2pjImuEkXmbmHycgBnpmm5RWZFgHMjLwPeud4oBjTLNMCp9uSldZdnR7JzhsmzqwhucFUxu9m7b0rmoVhSVNM0NISJpdmZzKDYHZDq8QzwMlerywTklo1mMsmKj5FkxkTGMBEs0rjUHU0aPKBmdzRpiEp6q6uR9IxjleXSVsaLXjXrHBBvKlJNUii3b1QD8CwPq0xtojuOkVp8t2LlSrrnGzBgQNb7AwYMcD7LjWuvvdZhDHvj5ZdfRn19GXIFgOnTp/vItGfEdzF3zdwduze8gT5dXyJx75GYOfZyZALFaxfl4q+Tsl+bFvDqcg3PLunecWlgnYWLxhvIHQ7nvfc65nVjHpUcM8PXzcSEJbOQ0cOYET4Q8RdEWdCVxXfxeGcRi4nV/Wogb3eHzeSNGgRKFAUAbCZvp0nsKWUeL7YkcMYs7beqGtAE+FianQlXmqnYTV/lefAVEAuCRBKD19OEm0ELuEBul8fHsKu0XDNA26Q9kSkJrrI8mqJl8vDKNiQ2ZoNHRsbNxwYyvcHTCGBZFt82YbLZpdiSGxbTY2s2yMvr11gWgNc0AhY7VlAercNKrMwGVQNhhw3tHRdKgURlj1VRFq2RcZsDHMC5/L5h+6WgpDf73ytl8oassnkAXrlmzzZhLHNYxHbn9SdmwWSjAUQaaF3lbrY7SzGK4xWAvMwvNdzA5d1c8BgJNxLIW6lUsg2sZoJ0M8UPfAcBXTKT194uXeDw5LX3XWMkCKQb5OYBQE+5uXQlM+jdUIQJ6JWdteTnAQCNNsgb04rf8LL94sg1p1QweYOIIIU60/7/ipyDa23QPZSWnwPl4Z4zpfwaHSlPhSxNHll+1d6igFtILyuBmypz3asweIvMqpm8bN2pjFlSOaJbQCKOeWsiYzhKOKolgavNNmPHqmkBibRZtKjeHedNAwc7UvU54113tdnNwiCR4m3SkSzdwKraaxXwNNCU2DdZTRpVlkl2GwFUKQK452tX0kBLfTGQV20jAOCVsC5x/tr7JaywSUOU7a1qLGnktQZQzDoH6LrXFkuXzKU7gMTGKLvu8YKrapubyjZZORZsqtQa3PV2JTNFaxPdMbbWovvjkksuwfXXX19ymXnz5mHcuHHdks+ll16KX/ziF87r9vZ2DBs2DFOnTkVzc3PR76XTaUyfPh37778/QqHCKoY9Nb7zuXdOhHXXfmjqXI6Dkk/DOOoestaTFIcA+EuJz5NpA58ub8cj7y3D05+sKLqcrgFH7zgUB2zdHxOGtSrFUSqNio+ZrrUI/vOnAABtn99gn11PlZxh8fjOH+9wFQh4o+cead/VsFmMEbswWfSmwS7gttsgb2M54MxvOpx+q6oBTcDDBCzht9odefAAIoALOKsasHlld8r6vnqDsaIYYAhwMXnrOdgZ3GBzIETgUaqTgDQvyNu1GoAF6EEX6PKm70gAlZbNytiyWaXlmjkkcYsweXnlmt1tUoZRzEDeUtG+nB6bBhI4DCBgewylMiZiqRIgEY9cM8APsHatAWABWgDM25jH37vkMcKYvF1r+KSrWfx/e38eJ1dV5//jr1t7dXVX70lnXwgkbCEhQAwioEEIIIsyCogjOCgu4IA6IvgTEEZFdGZc0J/LBxU3wGUGFxyBDLvIDi2LIZgQsnd3Or1WV9d+v3+ce869VXW3qq57bjd5Px+PPJL0Uv3uc8+9de95ndfrXciJ3rOItaIpmnKsAzBeSwzHJhhiv096kB2TWkVeLjaH4mJ36GTeXiQy7w3cgLjmrO5uToScH/zTZht5os1sLKYqKGpiZinMBEq7xbKiYSEzEQ0CAS5qTlFoFrVo/e5VFyKvUZxRPHDQarU4Cc5l52/JGydvQhN5J2C9G5YvyvPYba968nZCm7vBiN7DvYLBPLvWBYsZoJhn7ysNroNj369RopPX7vx1814zRVw7eT12AiZcvNcA3jt5AbY4OZzO22748jq+2vjadovM/PxVFCBm0b9w6nW4u3/22t1sFH0mcgVLkVdWT17AncgrIxLY+dh4ff66jY32/ti46WUt08mb8nmTRnONArxXjsRoKCiieCdyBbQ2mb+/y3KLAvZzRLz/SqnD32NjvJ7ZpSTIiNJuibk4NhLimt1c41VV9f7a6tLt7XXf5mBAQTwcxGS+iHSuiOrVHIaMKG1CPp/5zGdwySWX2H7N0qVL63rtnh6W8tff3485c3QzSH9/P1atWmX6PdFoFNFodcupcDjsShBy+3XTkTdt7e3zgfN/Adx+BgKb/4TAk7cCJ/6b1NrWLYth3bJZ+Pb79Y/n83n87//+L84444w357jb8eAX2br+7CMRPP6TCNaahtgA3rTzXft8LXhjhSSs0RYsI3m2iGl5Q6gtaI8U2EKmV4tDkVAAEc0Ra/dw6bWgCejiqn3fyBoEzTpxG2FdUy/cKdTBe5pYMV6L8M2F3NQ+iNUCHldsEYtZWYsVNcVG84X7yZHyj4t+vLOBQPXlyU1cs/Gcsl1AdNN/dVgTedvM45rdOols50iTy2he3i+3dWHZh/UFbzfHxuK84QKr2568JsfJTYR1yk4QibfrfWBr6Q1scM8imjQIInUemyk5ig2x0cYNNDbnjanw3Yi4Zn5uxdrcpSRkTRZkIi3s76mKeRUir935axRuEtEQENVqKGSYg3yqaO7TFGKuxarmaAiIeOCg1VzFLK7Z5SIz3/yQa7DIC/Z6E2rMsY4SP0896snbpWibJRLdYkNLJQNZwwO7B3XEwgHxo+3miRQnIHdpuuip7beT19h33fO+r05ilceRooA7d5XXC7uAYSOemzrCQctNR1PFbd9Ir4WzQEBxdb+ou0VluKztNgJImCMue1l7HwnMN/QWRR9T0zrMNsA1GHfnrzwh0U0dgHdRvG7nSNlGPI9wMyYTEs7f2uaId++/fLO/371w+XEplFTxXm+GjDZfbuaIlJ7aLjau8HYngHdj0uxS5J0we95rMPzYjGecN363TGN3G1E73d3dWLFihe2fSMTclODEkiVL0NPTgwceeEB8bGxsDE899RTWrVtn853Em44FxwJn/Af794NfAv4xc6N6ZzxbHwJevAuAApz1rdrb3RENh0Re2WhO3pAm8qasbn60heSRAlPtvRRX3USJeS1oGl/bbrFbiM0eOZsB4wKifWwWf7j0LK65oqeJFXXFNRcm2cJ4flKP3OTxxSbwWG/bfqu1OIp5X97McPnHeT/e5vJeG+LbXEUC6/2IbGOzNAeqvZN3B/u73Tyu2U68A1w6z92IzYAuOnLXbUUtbhYQHXvypve7E7Eq+vEC7vrO8RpNryOKYoiN3uFcA4e7ZyMtQCAo6nDsM27l8uI1jNRQQ2UtsVbEQkEhEtUck+x2TtjWMiJqaXIhEqXNrvGRBrloRXQ0EwdtHYnaWAUDCqKhgF5DI+ow1DKh9cG1Y8I4R7iw2UiRV7v2Ojl5y5yAmlCOfGPjmptU5oYftxF5+Xuz6qHIm4iEykVeC8bywKSqLRJka4uwcQPv1wi425Tg5WK3m3sSGXW4cfIaN4J5tfDO68gVSsgXbRaZPY4UBfTf0Y0Q4aXb21XfVwnO5oSLjQDGz8txN/t8bFy5RSWIRC4EERmbNIzH3DZdxONoYsDlfavH/aMBQy9r23s0/dnGq00abvsl8znE2wp5gZsNI7ojUcb56/xs46WgyeeIcy9r7bzx6NgYrwv2x4bX4a+7WT823gvw4y7W0QDvrq1unfj8uDm215oC/LXt5quMNT1ierNjxw709vZix44dKBaL6O3tRW9vL1Ip/Xl/xYoVuPvuuwGwZ7OrrroKX/rSl/CHP/wBL730Ej74wQ9i7ty5OPfcc336LQjfWHMxsOZDAFTgvy8F9m/1u6IDj/wk8CctDv24y4D5a/ythwBAIq98NAdjoJhFFDnrG2RtIXm/FknoqbjKb05tdtvxG2gvb8RETxPbOryPRhQPUnYPDYaFTO+cvO4epGoS4CMJXaxIDehRzcFIea/cylpcLGTWdGycnLwm/XgBowPARR1O48GFNO5krkRV9XqSc8u/1WVcpKtj41bQG7ESeV3EJOccjk2sVXdtunHRmhwnN/HiKbFY5uAo5r+rG7jbVds4EHchROQKJeQ0caC5ckzqqYFjEHkDWlwV4BSTbOKI4O7uyWGT76i9FjdxrykzQSTaIGFT+34lqjl5XWwWaYoEWQxcKAoEwo2pw/AaE4g5ikRlPT0bJXgbEYJzzN21NeqdkzdW4iJvdaQVR8S98rEoZICS/WJSrTRFDE5eixYCLPauqPcG9kBsBtxdSyZkiFUunPi6M8NDQdOFW4ULEaGAIlJivKoDcNun2GeXZs7hfa8BuLkPSBuvZx7X4SgSyYjQrGFMvHXQOm9glbtZxN2zjXdRvHrfUtvnLClR2s7PNkJs9lCsctPLmrep8dtRDOgCnpfz1Y1gNV1c1vyZ1Nv+785zxNi32avzN2hISbDf3CRvc4Sb+2cv3aJu5kjKcD3zqm+zcWNTySYlISXWJryLtRSbI1ysLXp5/0xMb66//nqsXr0aN9xwA1KpFFavXo3Vq1fj2WefFV+zefNmjI6Oiv9fffXV+OQnP4nLLrsMxx57LFKpFO69917EYtablIk3MaffAsw/jq17/eoDurGAkMOj/wEMvc7WhN/xBb+rITRI5JVNtIX1sQSQxARSWk+TKrQL1GBOc/J6Ka5qN3n2N6d5AN7eiPEHOjc7Ib11FLPxsHuQ4jetwYCCWNib0ygYUHTnjO2xsXFHmsEXzicGtN6qYFHNFrGYgMGd4UKccTVHhJN3pPzjJg7Rsm9rZKR3vF2rYVSPrjaSHWciBlAVZc0fcDP5km3cnCsBwLWTVxNfrURemzFxfJBSFCCpCbbGfs1WmDium1w5iRzO33qikoXgzPq0uHHyGs+nqoV34eTd7r4GjkFYBdy5rE03RzSiJ6+opc2lEGEyR6LJ8teqFyHytjjWMWF2PWukwKq9xgRirmtJeBXXLGqxdxWnjW6VsDc9eaMl9nqjJbuevKyOUMzgrm50b+BoCF3gTl5zkTdbYNfdMVUbi0zjnbyAO3FVpkjkJhLY256ALsRmw3hY9eqbKpFQAOEgF4l8Fs5q2Aggo9+q35Gilf0azVBVVReJJGxKsN8kKdNB68Jt5qEz0o0gwo+LSNLwAJaS4Oxu1qO0/RVnZLjO3ThodSe+94JmvqgiZ5cgJUVcrWGO+BzFKxKk/I70NmzS8NKl6SYlga+TJD1dv3JRh8QkOrtjMy6h7ZnxmNu315I3JvbHJu95HcT05vbbb4eqqlV/Tj75ZPE1qqqW9fhVFAU33XQT+vr6kMlk8H//93845JBD5BdPTA9CUeB9P2NrkgN/B35/ufm6LtF4BjYBj3+L/fv0rwGxpL/1EAISeWWjKEIAaFUmUFKZUFSFtvg7WtScvBKcq24WQrzcCVmLk9db0duNs1lfUPVqIRNw57KuSVwFdGEu1a8Les3WsZiAftwb5ijmIm+Vk7dPq6fHvA4XPYlcO3l5DWrR3AnGBfBIs+6e03ATN6eqqu4EtFuUESKvhaOYw0VeLoRqiF64Lvq+2grfbuKrObZOXhcbAayuZ8JFW0NUcqpccI7XsMOciQUVb4MiMroOJy+PjRUirwuXtdl5w3vy5tNAPlN7HUCZ4ByvoY4ykchtv2gntFjigOYMdrX731gH78vbkLhmVktGYWKmuzEJeRPXzHvyOsQ165GiQW/EZgDRInu94YKNk1erIxRpAhTtvGl0b+BIEN2ak1e1aCHAx8prJ68bcVVm3KsrJ6+H92j6Rh5/BRFjLfbnrzxR002kt4x+yfZCoveiNx+Pkk2bkVyxhIK2OU5GL02780Y48Dx10LpviePthgQ354w2V8PePtvoG0f9dVknahHgJdRhFzurx996nxoBuNsM4GUErquevDw2WkId7p5/vXNGutkswtdPQh5u0nBdixS3qPOxGZcQCexm3WhCwvqVMSXBdi1NguBciwDv5YYEgiAOAJJzmNAbCAN//50uPBLekZ8Efn8FUMoDy88ADj3L74oIAyTy+oEmALQpbFF1XNvJVgaPlNT648mIRLK7IRyvVUicQh1uIkW9rIPfbKbMjouGDEex8fUbukuV9zlM7QOG32D/5sKWQx1uIr1dHRse11zp5OXRyRaL+/xhsSGidyjGYqrN6gD0KGuTvpDRUAAh/iBlcWwm80WxkcxdXLODkCZ68paLvG52ELvrDVyDe9TEce0u0tthjggXbT1O3jnaa7sXREyPSyPimjUHrB5p5iJuzlhLrFUkPmCyToHVIPImXETQ6xsSTMTmqTiKAfF+FoozodSul7XptZULm42I4NFqKYXto6OLhtg7FpOsibyNEhSLBdYbHex93pXYHPXOyRvWRN4RbWOZGUIkioX03sCNjK8GW0jncc2FuPn7AB+PtOKtyOvuWqIJERLEmWnj5HVxHfFSmAEM/YHdiJrTpN+qt1GebjbyeC/MxMPOIpFx/ngagetKXJXo5LU5NpMSXNZunif0+xGPz99aapHhgPc55txNbLSMiPNQMCDSqayOjbHdiZdjUsuagAy3qBuXpiz3rFUUr3BGxkIeb9Jwnq8yxVU3SXRertckapirXpolFEVxvM4XiiXxbOP/sfF+kyRBEAcIC98CnP5V9u8HbgS2PuhvPW9minngNx8Cdj/L1jxP/5ptIighHxJ5/UBzEM4OM4dWlbhayLFdEQDSiCEWDiDkUW8zAGiOOccTy9hlXstOSE8dxdprZ/IlFCz6NcrYkcleXzs2blzFbo+N0cnLRd72JQ518GPjRvh2UYdw8lb0HOVuViuRN+a8MORagFcU697AAIuzBkz7QiqK4ug85zUqSvnCZxVu4pozo7pLtCKu2c0mDVfCt1uxGdCFVYPjupbFMss5Uo+LdrxccOaLpIWSimzBXACwPWe4U3pyqHZRsSqu2VkkSpmdN4oy9cjmsp68bEzsXdYmwrfoDTxFJ682jiEtxsVebDZZ7G6ki1YTJUvaa1oJVkYh2pO4ZoM4OoG4Q29Cw+aIsCZsNlLkLZUQKrDX22/n5DUuyES8EZubIiF0gV3rMtFO8zq068ikwsX/KcaJ29QCOEV5yhMS3cQke9sbuAZBxOMNcE6LqqWSKkWwSrhwR4reolIWmd2I3t6NR9DQi97qmmZM0vDy2cZVvKnUuHWf+0e7eLaREekNGDYluOq36mU6gftIYC83RwjXuYtnG69db07XeeNYyRDO/I7ideP2HpdQh/G1rZKbZEQCA+76A0+bSGAJAryeMuaiNY8kc4DV+57xHkFGqoetOSCjb0ogCIKYMsdcCqz+AKCWgN/+i77OTTSOUok5eF/7MzNMXXhnVcok4T8k8vqBJizNCmsunsqbwrLF39j0cIvym2QJUURuHho8Xcg0vLbVDbsMZzPgHJOcL5ZE36S6evIKkXex/be4iauqZXHXSlzlTl4eHWxRh53YXJOjWPQGNhEJUtYiL6A/1Fn1kDYKIrY7qt2IvDyqOd6hi02iDu5uth4TvkjlylHMj4EdPFa7RRd5W1xEi6ecFru5i3Z8L9sl5oYKJ6/xd7QSvm1jo2OtQqStObK5QuR1WmRWVdVagK9FdLerJd7msm+kiSMx3qi4ZiaMRpp4T94aNyQ0qidvsSD6bKuaE9VqTHgdAYU590UNpTzbiDVVtDEpKiHkELYfE6MQIcaigeJqXheu9+esnbxlx8aLOsBEovYAO86ZUKtFHex6lg1ykddHJ6/oZS1BJHITkywhttKuF72M/rOA/h7iapOGhL6vtr3oZUR61xAt7rmA5yDApyU4m42vb3tspPRLdna9yRDgjb+jlUgk3KIeOqwBd5s0XLU7mSLuXJrsXtRLkchN/2gZblHA+b6Vj0dTJOjtBnQ3TkAxJl5GAjtvBEhJcK3GwgFoAVKWYyJDWAWMiWfWzzYyonjFRgA3bb5kbEiwS8STJMA7rdfwj0dCAURDHl5ba2ivRT15CYJoCIoCnPGfwNyjmZHorg80fJ3igEZVgXuvAV68iyUOvvenwOIT/K6KMIFEXj/QxIj5QbZwXhXXzJ1GwSiKCEq4IXTTk1fCw7arnrze93tjN77s1DCN0ob8uGZrIVH/uPuevJpomTKIvB32Tt6WWvoluxJX29nfleKqg5M3aXiwVFWrReYaHMVWsdGAIa7ZXOR1io52fc4YRV6L30mIvBUuXsDgsnazOcJucZePuZNztJDTx8ZQTy1R2pZzJNENBKNsB97Ybvs6OCI6mgnOwYAiFkqtanF0m7XWERsNVIm8SQcBvqw3YeWxmWpUMp/TsdaaNmmUO3m1uTlVJ682LpEEO+/TuaJl3JzpedOonryG71ei9oKzUdBUFEV3EzeiDsNr5IL2YrOxlmav4po1kbSgBjCSs75elYnNHsU1A0CzwoT4dCBh+nl+zLJB7Zh43JPXTuSV4Vx143oTx8ZTsdkgElkKeN47m9nr229c4R9XFIj4UU/qEBHWLtyiPvd9TUu4jze+vmVcs2yx2a63aN77ZwpXGwEkRGkb24xYikSShUSre5KJXEHcDic9FfBcuDS1MZESCZwrWj7byBJEnPoDS3OLumgzMiaxt6h9FK/3kcCKojieN9NlI4BxI5jfx0ZKbLR23c4ZNt5XIs5fz4+N/ZqejH68gD4m9muLLjagEwRB1EI4Bpz/c7am2P8S8Md/tV5fJWrj4a8CT/+A/fvd3weWb/C3HsISEnn9oGMpAGAxmBuuSjjTHD6FEFvM9T7axT6uWVVVpHLe35y2ONQByIlrBpx3qdo6ARuI20jgaCiAsNsd1TyueXwvMLyd/dvRyauJVW52Mtfr5C3mdZHMysmrjUdJte7rWdOxEbHRI9Wfs4lrBgwua4dj43j+8kjcUkGPZK5kZAf7u6IfL+DOQetKcHbjKAaA8T0AVBbRwb/HdR0ODp5AQBeO+e/shFl0tMP567438HZ3NXAqRF6nCHrj4lXVmDQwrtmdy9pk4b1J24yRHjb5jtpraWrV50vKUlw1OTaN6snLBclACJEIiyW2WsicqHRGBkNszhtfZypovwt/n7cX8AzHptGx0YZaJhCzdHgZa2ROXm/imgGgGVrKCZpMP8+PTT6sibwZi+vmFHHqc5orlJAvWmzSaCBNLhYy0xLcotFQAEFNJLISvoUz0uN7NCcBPu02SWOKuItJlufkTduIRLLEVSdRU8RXe+7kdd6kwe/fZMQk++0WVRRFT/VwEPC8jwS237jC6wgFFLHp1gv08XCzgdV7t2ixpCJrIRKNiTniXR2As/NchkMTcBvX7P154+b8ldEbGHB2N8sS8BzFZu24KIqca6vVfTwgqZWF4dnaMiZZ0vqVk6tY1mYRNxvQxymumSAIL2idz1ymgRDw0m+AJ///flc083nye8AjWs/j078OrHyfv/UQtpDI6wedTOSdrzJxomrhjou8QbbAKetGzOqGkC0awfNaaolEktXTxPomWdt9KOmBLmXhKK7rZp07U/e+CBSz7A0wWe0QLavDhZPXVd9XjohJHtE/xsUsJaA7fSu/LRwUcVVWglVNkd48ltfUybuP/Z3oNv1WfSPAFN3e4bjuirMS9GycvE5is7E3obuevA6i4qjmsE3OZU/wGm6itF09bLfV4KIt5PR6tYQEQF8EG7OoxdHtzXtLTDGu2e1mEdO+68be2fVQJvK6iPQ22wgQb0BP3mIByDGnZSTRjnBQ0WpxcgIa6mhUT17+/ZFmtMQjWh0Wc8QsKrKRAqs2JkVN5LVbCEkbryVeOHm1WlIOvYFTxmPjUVwzACQ0kTelxkw/z8+bQsjbuGYhrmaLwCu/A35xHjC2V3zeKP56upBZQ29vL+soF4lqOH89wMktWuY69xA3IlFaQiQwH4+CjUgka0yaHdzNYxKcVYCzuzmTLyKn9aaVEfdqF8kvS1x1EonGJQmJTiKRUUj0cpNGLU5AT4VEw8aLaS/gifPXa7HZfq7miyVk8vz89d4t6iZK23uXppO4Oj2OjXGuSjl/XbUb8+7YhIIBkRjifN7IMSk49dSWdR2xa1dEcc0EQXjG4rcCp32F/fv+64DXH/G3nplM750sphkA3v7/A9Ze5m89hCMk8vpBx0EAgDnFPQDMnLzMVZMLxAHIiAS2F1eNvQm97NNkdN85xVV5HTfntANRRjQT4ByTXJOwyhHOVG2MWxcwl5rdtzS6XzIXcY0O2glNVG3qZI5OExRFceGOrMNRbNaT18HJ2+zgjnQVkcxx6r9aEUlsVodd7J34WluR12X/VS44J+eVfZhH6mUL1nFVro5NLQIrH5dAWK/f8PqWc0QsdlvUwR3TtcY18/ksRF4uNtvXYTpHhNjt0tFsRFVNnbyuNmmUOXm1Mc2ngfxk7XUAZe50Jd7mKDibXkeiXOSdooOWO4GjLcJx4Ry3buIoboTIq9VS0tyoVuPBehNyd2RQd9A2UlzVakmpceSKJWQs3LzCgWcUmxsd11zIIgz2c8YsRF4ulhQjSfYBr3ryamJYbjIF/OnTwJb/A/56q/i8sbeZ6ySNOmhy0W81LaGVBWDs/WrV01OyW9TBiS/LLWrn5K3p3qhOjONttRmAvw957TZz6i/Kr3VexvACzgKe8drv6QZWN/1Ws3LGxCkVQLZL00r4li02211bxyS4zQKBaeSydhLwuHtW0nuNU+ws4LVLk712Jl9CoWj+bKNHWMuar+ZzRNpGAHFsLOqQ5Fp12pBvrEXepnwncdXjORJxWJuQNEecNqBn8iWUJBhICII4gDnuMuCoCwG1CPz2Q/WtqR3ovPon4PeXs3+/5XLgxM/6Ww/hihkj8g4NDeGiiy5CMplEW1sbLr30UqRS1ouLb7zxBhRFMf3zm9/8Rnyd2efvuusub38ZLa45WRxGM9LVN8naAnKWO3k9vzHVYpItbsTGDQtUXu7I5HHNqmoTBZiTu9vdWlzlC6peOyKcxOY6FnZbeoBoUv+/Q1Qz4OxIVFVdiKipJ29unLkxAWBikP1tEdWs12If613TmNjFNTv25HUSiWqoQ8TiWgisXAA3EZxbovaiGa8j6BR759bJO2buKjZep5yOjW2UJ3fkunGwjvdp39NT5ip2uznCcq7WI7CqKpAy1GOow/rY2Cz+T0XkLWSAonZelTl5bUReM7d3NMmc/oCz+G/FpBb1HGkGgmHH6GjTaFPh5J2ioMi/P5JAMu5w3uRMRKJG1WF8jSgXec3HwxhLn4iEdNd/vpFxzUwknUDMtpYJ47Hhgnej45oNgu1wIWJbR4kfD6uY+ynCrw9H7LtHvy6+eBdQyAIwzlU5rlU3PbU9d65yd6RjL2uvxVV7d6Qe4+m1aGbvWi2WdLeKl+JqMKAIJ5G1S5PfP3stRNg7z2WJVU4bAYSQGA2JGHIvMIpERYte9PIFPL/jmu1FojFJdTQ7jIfRbSZrvjqJRF5vBHBKjpA9V63q4OMRC3u7yaositehFlmb8p0EeM9jo7lb1MnJK6n/rH0Uvqxj49bdLMek4DRHPF9bdFg3khXpTRDEAYyiAO/6BjDnKPYc/6sP1G9aOBB5/RHgN5cwkXzVRcCpXypbbyWmLzNG5L3ooovwyiuvYOPGjbjnnnvw6KOP4rLLrK3iCxYswN69e8v+3HjjjWhubsbpp59e9rU/+clPyr7u3HPP9faXiSVFBOwipb867lVz1WQU5uT1PJrYZaSo1zsyY2G935vTzl1pcc0OD9vSjo2jWFXDDXIwDKy7XP8/d07a1eEgemcL+uKVq8XdWJtBPNLEXb6InnASed2Nies6gOq4ZlW1FVYB9+eNq2NjVYd4MevoaGfXOXdoBu03aXCRtzBp71Tkcc0VIm/Q4ESY0nzlIr+bXrRcVOXRxhpJB7eo4yaNeuKa0/t1YVXrD+zs9rZxm7UtYn/XI/JyF68SYNHEfK7mCiiZLDKrqmoufCuKwXVfp8jL53RFhHVNTl4h5jVK5G12FJtNx6NRdQBCzFSiLfZ1aCJWQGHvkZ44ebVxyQTYa1vFnKeNEdZhD+oAhGCbUmMYzZi7ZrigxsfOK5E3GQ9DQQlvH/q14YfvBzb/L7BvM7ru+wR+Gf4y3hN8zJOfL+rQrmfpXNHSSVRTgsUUcLoXGJuU60i0ev8dm9QEkbic8bAUIgzj5H0vTfta+LGRJeA5OWj97i0qT6wyikTTe0xk9X11EmdkCTNOcesThnZF3jvP7TfQyOpf6Tqu2WfRTJZ7NhoKijYjTgKerGur0/Oe3wlw45LvRyZy5glwuUJJtC9okeSydjw2vjuKa9iQPwWcriP8Obw54q2BhCCIA5xwHDj/F2ydc+/fgHs+BVgkhhIGdj8H3PV+tra54l3AWd+2TNokph8z4kht2rQJ9957L2677TasXbsWJ5xwAm699Vbcdddd2LNnj+n3BINB9PT0lP25++678b73vQ/Nzc1lX9vW1lb2dbGYeURgQ9Eim5cofZZxzZOaq0Za3I3PwqqiKGIHcUMicKeAs5NXchRRo8Vmo8gb77D+Ol6H9lBiFeVprM/VsQkEdDGPO2aFk7fTvhaHPsV8gcRdXLPWk7fSyZtL6Q41C5GXL/hY922u4djYOYoBYMJaAHd2Rrocj0gzEIxq32QjsI7xnrzzqj7Fa3EWiWxqcRsbDZQ7eQ04nTf8/LWOa9ZctKl+IJ9xrgMAxrVenU1dQIg5EJMOGwHSdgsh3Mk7tkd3u7vF2BvYEHGuqnpfVSO5YgkFTfxtqhS+naLEXdfSBsDoPLefr570wuXibCThWuQtmyMN7cnLagnGmFBp3T9ad88qiuJNT15NcM5pIq+rdAIxFg0QvE1qmUDMcXOE3lPdG5G3JRbGXOzH7OJeFgn/lk+wTzzyNeCX70XH63/AW4Ov4PLCzz35+RynlARVVfUo3ri3C5liA43F+68s4czp2qq7ND0Wm0U0ovl48PM6Fg4gYpek0cBaHMfE5wjcsYwct1mTQ5S2LGE1EgwgpG1gTZs4RlVVNRwbWWPit/DNNyQ4iWbyIr3NRCJ+XEJOSTgNwOm8mS59m3Vns5yNAM7OZm/Hg9XibkymjfDt80YA3cnr8fmr/Z4ltTz1hmMcJ8/TRVzPEZ/7ncvqDezS2ez12iJBEATaFgL/9BNmfvjbncDTP/S7ounNwKvAL/6JrfEsORE470eOrR2J6cWMEHmfeOIJtLW14ZhjjhEfO+WUUxAIBPDUU0+5eo3nnnsOvb29uPTSS6s+d/nll6OrqwvHHXccfvzjH1v2g+Vks1mMjY2V/akZLbKZOXkr45rZomlaE3kPFNcqYB/Fmy8admT6HDMja0ycYpLrvkmOtgAX3Mku3Gs/6vjlRuHWrBZdEAki4Db2jrtSubjLHb0OTl7XvXBrEVcrHbRceA4ndDGjsg6xa9c+ircmsdnMyWt0FZtEWbc4xK27Hg9FcRfZbOHkBWq4lthtBOA18Hlhh4XI6yjgOQnfTR16LC7vQezEmCbyJucY6qij/ywn0QWE4gBUPSLbLaI3cBv7KxxERIuzMxsTY1Rh1bHhm0DqdfJW9SnmGwHsBbyyOmJavLxZ7+xaEBHJLY7HJm0WX91IYVMTioNx3clrdu8hrq18gcoYk1wyd3XWXgv7fXIh9trc8VcJnzvexjWzWlJq3FL45h8PN3nbkzcZC6FL0eZc82zgrVey962BvwMj25ELs5/foQ43xt1tQTgYEI4z7lA1ks4VRZKG124z7ow1qwMwCHiSxGaruaqL3h6LzXH9Pc8sJUGWMxJwfv8dlzQmzr1FJTmKXfd9lbCB1ebYZAsl5IuqlFqcRSK5GwGc+zbLmSMllcVpV2J0aHrtNnMbpe23A0+Wo9jtXPW6DsC+P3CpJC/S2zmKV+4ccdwI4HEd8XAQfMnB7BmY1xEPBxHyMNIbcCFqTpO0FRHX7Pd1RFJsNEEQBABg6UnAO/+d/fvea4E3/uJvPdOVkR3Az9/N1v3mHg1ccAcQlmCAJBrKjBB5+/r6MGtWuZsuFAqho6MDfX19rl7jRz/6EQ499FAcf/zxZR+/6aab8Otf/xobN27Eeeedh0984hO49dZbbV/r5ptvRmtrq/izYIFz3G0VnUzkXRLoq3Ykao6pEbDFX89vCJ1iZyX1wQXsH+rKd2R6fZPs1PdVjsjr1C95So7iFWcAF/8RSM51/NJgQHdZ2z1I1TQeXMzlAqbLnrzOvXBrEVfb2N+V4pGIaq6OR3ZdhxvXqlMdABMwiqwHpJ2TdzJvHuVZW29gNyKvFmFs6uS1dmkWiiWxiGZ7bPjv6CaueUxLcmiZU/ZhXoejkGhVh6IYIptdxiWPV9fi1i1qusNcUervy2t08lbVUi2K8DqMkfkC4ax2cTxMaxlhf2sbKhzF1UpREzBERg/XVwPHJK7Zeo5wQdOsJ28DnLyaKBiOM6GwWFJNnQi6601bdDduOik0qK+MVktRE3mt5iuvpbUpbIhrbmBvYEAItuOIW9ehCXvRRFvZ9zSalljYIPJ2s80kF/4KCMUAKHh09TexX9Uio4e3eVIDR4iaJueNEL2Del9Wz+uwEld5TLIssdlhjngtVvHfs6SauyOFsCrh/lkX4O03R3h/bKznKmAUm+W4NK2uI7KckYD+PmL2bMPHSVG8TylyFuDliDMJt3V4fGziYf393ex5T+8NLG+Thv8OWncOPFkCvNUckSWaGX+GWS3GdJzp4qD1e7OIrGPDEuCsx0SWsxkwxDVbPVPIPjZWKQmS4pr5mOeLKrIFM5e1nDoIgiAE6y4Hjvgn1mP21xe7N3IcIETzIwjdcR5b0+xeAXzgv5kxjJhx+CryXnPNNVAUxfbPq6++OuWfMzk5iTvuuMPUxXvdddfhrW99K1avXo3Pfe5zuPrqq/H1r3/d9vWuvfZajI6Oij87d9bQt5GjxTUvU3ZXPzRojqkRlS0oy9r1x3qXmDzAGN07HmPn0uQ38JFQAGGvd2S67PsqK67ZssdLLULiVGux2QzA53BN4yGcvJqg6tLJ6+RurunBwSommQvOJj1w3dbhKCS6qQPQx8fCVWx8fTuXtauoKqeo5NyELtq1Wsc1mwqJhsjEqkjgshoMQrNTzwweHV3hKnbauJI2E/AqqVVgFa5iXeR1jH3PmbhWp1IDx1bkNZkjds5mLrCm6xRYK+OaHYRvXRQxLGRO1U3MKYtrtherRtOaoGkUIhrq5GXCZDieFMK62ZiIHqe8jlAcgCbEN0pg1UTSUrhZq6N6TDL5InJakkYyFmpsdLVJLSk17ihWRZu1uVnMAoVsY+sAE826ucib0DYazl8DfOJJ4GOPYUtiFbarWj/w/Vsb/vMrawHM56tRWPXabeYk4OlOXo8dtG6dvB4LIrFwUMQwmwnOssRmQP9dR03GJG/YZOV9lLb9sZEW6W04Z8xSEmS6rO1SiowOTddJOHXi1u0ty2VtLUTIEWcChg2sZo5v4RaV8IzFBXirSH5pbtGoOwHecyegdl+cK5bEvYdZHVI2oNs8U/D7+0gwgGjI20hg9+KqnA00VUl0GjLFVd3dbN1KSsb563ZTgrR0PocNrLLOX6taZDmKCYIgBIoCnH0rMPtItu78y/cBO5/2u6ppgbL7WRy/5RYow9tY27p/vltfFyZmHL6KvJ/5zGewadMm2z9Lly5FT08PBgYGyr63UChgaGgIPT09Fq+u89vf/hbpdBof/OAHHb927dq12LVrF7JZ6wXDaDSKZDJZ9qdm5q4GABymvIFMpiLuUBNY9qtsEdXznaEGocP8JrkopQ7AfgGiLiHRgzqMtUiLa3Z0Ano/JnYuzbrq4L1uhZNXcwo69OS1WyxTVbVOB+1IuaDIXYs2rmKn2GjdUeziod9YR9UL2YvfkVBA9Aqz2xzhapOGk5OXRzVHWsoERI6d8M3HIxxU7BdCuKCnFs3Hwwh38la40e3EZmN9tnOkVXPyjrjcxGNSi5irOfMoT8eFkLpF3hH2d5nIa50KwAVNU0GkqbFxzUmHY8MFinKRlwvNQ87Cvx0G8dtJbC5zrXKijXfyKtEW3VVsI+AJsTkQaHw/XO11VM2pbOoW1WoLKNr7o2dxzaz9xYSNk3dUG5NES5vh+xrv5k3Gw+gCmzMF43tBxxKg50iMTebxhqrdgw693vCfb8QunUBWRDKgn79Wcc2y+pxOF7EZ0M9Nfh01Isu1aqzDbEyM55LXi6qiDodIb6/7JfM6CpYpCfJEIj4PzQR4041NntVhL8DLcos6uaxlCvB2DjxZwipgL+AZI/ll9W22jlmVI+AZN6aajYkuNsubI2Z1yNqQALh3wPsdpS1TwLNzN8usg5+XZhtXSiXVuU1Qg3B2e8sZk2BAsU2OSEnaLEIQBFFGpAm44BdsvXHgFeBH7wTuuADoe9nvyvxhbA/wPx9F6PYNSGZ2Q03MAj74O1dJn8T0xdd31u7ubnR3WzvlOOvWrcPIyAiee+45rFmzBgDw4IMPolQqYe3atY7f/6Mf/Qhnn322q5/V29uL9vZ2RKNR519gKrQvRi7WhUhmEHMnXgXwdv1zmsg7UGT2eK8FvFAwgHg4iMl8ERPZAjoSkbLPy7xJ1ncgVi9A8DqkuFYdHLRcoJC1I5NH8Vb2lNFdq97uHjbWYv4gVYNblCPimjUR021PXpsFmXSuKDSgmnrhFnNAfpK98RtrsRGc3fbCbXIjrvI6zJy8YlzsXMVhZFNZWwHe1Xg49cMdNxdVOXbHxvVGgHCMxeLmUuxayAW+SlRVd/JWREcnHTZHuFp4F3HNLkXeca0nr0lcs6oyobdyEZcv+LZa1eGBk9dMABitdIsaiTu4u93WUhXXXH1scoWSWIwvGxMuNJfyTGDlYmvNtYyIWuoSm0VccyOcvEZXcQgj6bypgKfXYThvIgn2/Q128qpRvT9wJUYhUVEU7+KatXFJwaYnLx+TpihLOMhPMHHY4b2jVpojIXQH2PzNxrqrbpjHMnlsL80GgvBc5E3anL9jZnPEqzpshMRCsSTe97yuRXeL+is2s1pC2DeetY3SliMkWo8JnyOJiPe9Ce0ETUBuFG8ooKBQUjE6ma+6F5PVfxYwbAQwFXnlzxGzOlRVlVaL3XgAcl2ayXgYA+Pm988yryNunrGCAaUsYtrLOpzimr0ek1CQbWDNFtj7SrvF2oQcAV4Tq2wi+f0WNFktcvutWq1NyIomNtbilJLgeR0Rm7WJvL42IS9K23wjwIRE40YiGkI6VxT9d43UlHZGEATRSNoXAx97DHjkFuCFXwKv/Rl47V7giPOAt38e6DzI7wq9J58BnvgO8Nh/sXUUANs73oa5//x9hNvnO3wzMd2ZET15Dz30UGzYsAEf+chH8PTTT+Pxxx/HFVdcgQsuuABz5zKxYffu3VixYgWefrrccr9lyxY8+uij+PCHP1z1un/84x9x22234eWXX8aWLVvwve99D1/5ylfwyU9+0vtfSlGQmc0E62W5v5d/TnNMDRTiACSJq3ZRnhL7Ztg/5EqsQ4hE5gshPGZV1oMUYH7Dzo+XHCcvPzbWPT1rGg8R16y59GvsyWvnFg0ocNebMNoCKNqCidE1ygUtm5gK59joGsaExzWb9eTlTmcbAcOulpoWy5ycvA4x1nYCHl/Ma3PjaHLTGzgzorsIK0RnvrPfyiUyks4BsBFXgTrimqtF3lg4iEjQ2mU95pXIy3vX8nkFewHeVmyeqpNXuIpZLXYOWl6HolTM13ATEIxOrQ5A30QRby9LBLCL8jSPa26ckxfRZrFhxExw9rwOQAirwZi1yDta2Wu1kf2JjfCevKpNT16jczWmJalkxhpbB1iUZ0+Qve5kuPq9YGyygG3CyetxT14bB55Mt2jS5hpvfP/x3smrLzKbRXn6Inz77dK06dssU6yycxSzWuQ4zxVFsXUVyxYSAXsnr4w67MTVbKGEfFGOW5QnZOQKJWRMXNb+CPA5mzrkHRvz81cX77yO5HdsqeGDO9IuJllOT21nAV5ub2DzJCtZzvMyl3XOLAFO5phY9zuX6bLWY6Ot52oooIjkLa/rcHTiyzh/7XpZS9ykQRAEUUXrfBbdfPlTwOHvAaACL/8W+M6xwB/+9c3br1dVgb//AfjuscCD/84E3vnHofCh+9G76CNA82y/KyQawIwQeQHgl7/8JVasWIH169fjjDPOwAknnIAf/vCH4vP5fB6bN29GOl0eHfjjH/8Y8+fPx6mnnlr1muFwGN/97nexbt06rFq1Cj/4wQ/wX//1X7jhhhs8/30AoDDvWADAYYWKvsOasLE3p8U1S7wRs3dpShSbbQQ8v8cjWyiJ2CyvHxzKongbJa7WiV2fl7rmiLEnbz6jizcOby76hgQzQUQfD1cLIYqiux2NAmvaOTra+CBlFsUrhLMmF4tUMc2tahrXXIvIWz0mI9rCVWtTpOpzVdiJzYAufifMx0UXEk3qMOtxaoUbkZfHI8c7gHC87FN2cc35YkksStjWwuOaeUS1E2OayJucU/ZhfcNIjeIqALQtYn/XKvJywblZb2fgRoA3F3m1eZcaqP6cGyrimvU6bFxvlb0JFUV3dE/W2RvY+L2xNjFHSqr5IpXubq5w0AK6QDsVhJO32XZRtaonr7GORsU1a8IqF3nNY6Mr5ghPPWh4XDOrZQIx0zlSKqkGt2iYbdQxfF+jmaUwkXc8VJ0oMJbJ6z15hzzuyWtz/sp0i9olAvDa4oY+tV5hvOexvZZIFVdtzl8pIpG1g1YXViUImi77Jfsvrso8NnYbAaaHo5ifM4risr3HFGiOhMDf4s1qEWKVhGcbuzGRKSTyZ4URm9h3Gc96bXH2rDBiInoD+pj4voFG5vOvTZsCmRsB7Fyrk/kiSrUkWU2BaCiIcJCdwLZR2j63+RLnr+9is7YxIub9Jo2EwXVutjZhrMVr9PlqfW2luGaCIHyl62DgvT8BPvoYcPBprF3c8z8Fvn00cO/nrdMNZyL9rwA/Oxv49T+ztcWWOcB7/h9w6f1Q5x7td3VEA5kx76wdHR244447LD+/ePFiUzfOV77yFXzlK18x/Z4NGzZgw4YNDauxVpSFa4G/AivxGkrFEgLBANtdoS1E782xRdRpcyPmc08iXkdNkcD11mEjzBgfJJo8js0C2INjNpWbNjuI7RYyXQl4HGNcMxexIi2OTd5bbMRmvhO/zY2gyYm3MYHZGJXsRuQ1jLlpFG+6BucqF1fN4pod3LPGWuwceK7qsOsNDDiOi92ue130dnFsnGKjAV18rYhqBuw3ixgXi2wXqfj8TLu4uStk9a9rqe4PPDSRMxUiXMc1j+0BCjkg5HJej/exv5PV0dGmgohdHTy2ulahmVMV1+zs5DV1eDV1AKm++mOjgbK4ZmOU53gmX3UNHTXblNDIuGYuSkZb0BKzdnubzpFGu2g10ToUZ65Y+76v2jh5Fdes1ZJSmzCWYS5r46LYeLZQHnvXyGNiQpcyCqjAWNBE5DX25B3fy8aCC/ANxk5c1YVEf3t68rkqY7E7FAygORpCKlvAWKaAzubyFiu6u3maOHlluKxt6pApevNr1USuiHyxhLAhyjNjcF5LEeBdOGhlOuDt6pBxH28vNut1lG2y8oBAQEEyHsZIOo/RyTxmJ2Omtfjtbh7z4dj47vbWxOZMnrmsY4bnXBbpLW9NgD+3jNjNVyl1sHtv3zcC2Jy/vI6AAtEL1UtaYmHt2cbftQn7nrzy5ojo7W0jenu9eQbQW0mpKouJrjwGMsVVXYA3c/JSXDNBENOIOSuBi34N7HgSeOAmYPvjwJPfZYLvWz4BHH9FWRu0GUV6CHjoy8CzPwbUEkvHe+u/Am+9qv4WaMS0ZsY4ed+MxBetQU4NYpYygsnBN9gHs2NAid2ADRQ1kVfCTaHdjRjvQSO176tZbyRxsy6vN5LZzbpxIdPrhRBjLWZjMlKPqFlvHTYC3nAtgiYnMYv9PbEPGNaiLtsXMxuBDcaY1Ur4Dvg2N+5ZjnDyjugfcyHyGqN4K49NvlgSc8eV8M1ryI0DxYrfa4oir6to4so6LJ287kRe0zpq2QggBFY7J68m8rZWi7xGsblyJzOvoyUasu9NyB2s+TSQc3ArpvrZ38FI1SYFN6Km5ZgkuoBQHExlqiE2hrucDYJzst46uJt4cqg+t6SIa+ZO3jrrEE7eBsQ1x9qgKIplLaWSKs7fpFfiKn+NSLMQosx7eprEvXoU1xxJtFrXUSkkirFotJNXc84ijmJJFT2aK+uIhgJs8bnRY1FBhzoCABhW2qo+N5YpYBTNyEe066aHkc22/VZ9EKvsNwJ4XwerhburfBa+7QR4mf1WbY+NPCHC+DMqr63G/08XUdNvIXHa1SFp0d3dmMjblGDnoPW7DlkxvAA7/vwxrPK8yRZKKPAkK5nCt9mYSDw2/JnSLNJbpqDJ6zAVvQ11eO0WBfTnfVsnvsz3PZs6ZAqadm3PZIxHLBwQKQlm60YyW7AlbNavZDqKCYIgXLPwLcAlfwI+8D/AnFVsjeTRrwHfOgp4/FuNX/fwkmIBeOqHwLdXA8/cxgTew84BrngaeMcXSOB9E0Mir49EY034hzofAJDb1cs+qIkaargJWTDhzm/nqhA1oxLEVTsnoCZW1SQk1luHwVFc6RDnolm7BGEVsHcljkzUIWrWiZ2DVgh4tYwJF/KKOWDvi+zf7Yscv82uf3RNkcAcs2hg/m+biGRjLZXz1fiwWZO4ClQLrDyu2aZXsV0UL6/F1RyxcxQDulvVUuTVBHhbAc/FA10tcc0V/XgB/aFfVfVNKpV1OAoR0RYm2gLObl4e1dzSU7VJgV83zQQAR5FXUWrvy6uqupO3xSyuucY6YkldYB3e7q4GIwZh1akOW0fxVOOaVbXMyWtXi9Etai6uNjCuOdpsiOK1PjamsdENc/Iy8T6qiby2Lmsh8vK45gnAJEVlqrWkFRbBXilqVgmJXoq8+QwSKnvd/Wir+jSfr8WEdp7xa7UH2PVbldt/VhdWK++NxkTfZjmLdkL4rhiTbKGIrOYWletutnbw+O2ylllHKBhAQnOSVQoAxt6iQQmbJPlctItr9jsm2Q8hkbusy+uQNx6AQSSqEPCYW1Te5gjbuGaJfSPt54i8YxMIKJa18LkqI9Ib0Dcwm0VHy4z0bnMTpS3RUZzOFZEtlG+Akyl6A7rjezhtcmyEW9T7WvhazLDNRgAZblE+V83FZv19z2sURbG9N8pp130Z89WulZQuwHu/xkkQBFETigIsWw9c9jDwvp8DXcvZ+tPG63XBtGDe0mLasPUh4PsnAH/+LFv/mn0EcPE9wPt+xkxVxJsaEnl9RFEUbAksAQCUuMiVZgvYhShb0HZ0mzWIFrEDsfpGjN/AtyckOmhNFpn5DXy7BEGT3/yWVFQ5iepyi06lFgtx1egWlSJ82wjwI/UI8OE4i2cGgF1Ps787ljjXYRPNNCIEzRrEZi6eGqOBeSSsjZPXWEvleaNvjHB5/gbDujOuMipZOHntRF7rB6maHLSunbzmteiR3iZilZgjbuKaO8p/nhncyWsS1xwNBRDSFpAr54mjsMpRFHdiM6D3wG2pFpytzptSSRXjZFtLrSJvZgQoTGr16HHNthtoXPcGrlHkVdWquOakoY5KkciVkzddp8ibn2QbSgCD4GweQV/lFuU0SlAsFoBCRnvNenryNjCiWFWFsNrUzEVea0ex6DHO45pLBX1cG4FWSyncbFpL1RzhdTS6NzAgRNucGsRgIV71adHDMu5w3WwAtnHrEh20XCQsmLisZYtEuoPHxi3qe9yrfJHIztksow67WnSxWXIdNj2k/T42MgVN47hX1iIzdhawjtLOFkrIFzW3qO/iqrwx4c8tfkd6AwZXsdUmjYicJCs3wrfMOWLnspYhaLbEdJd15eYIma5VwHqTBmBMXpMnwNu5rGWcv+02orfMjQCAfmyGJ8prMa4jydikYXfe8Ps2GQYSgiCIulAU4LCzgU88AZz7fbYml+oD/vQZ4DvHAH+7CyhVp6D6ytDrwJ3vB35+LrBvExDvAM78L+CyR4Alb/O7OkISJPL6zM7IMgCA0v8K+4AmJuQ0kbdNgrAK2Pet0t2i3jtXrRbdAf3GWUYd8XBQxN1ULryLaGJZTt6oeTxxzW7RBtVh5/KqWfjmwuWuZ9jfLnYWtdiJRPWIzZW9Vws5ERnq2B/YQpzRnc011GHVD5e7w2zimsWY2LibXR0bYw1m7jwhfpuPi6uevG6OjSsnr7XIaxfFW5OzWWwAcCvy9lR9yqqOMrdoI0Ve7iqOtwNhvc+d3bVVj3u1eOjnDvtanby5FKBqN78irpn9riWVuYnK6rCLWOVzrl4nLz+vlCBzacP62Fi6vRslruYMsdcOIm+VgxZorHu1kBHHKN7SBsAp/jZUXkOj6hCvxcZW1TYAVYozVW5R7ij2wsk7MQAAGEQrxitaWWQLRWTyzBER4Jtj+PuGB9jGNYsx8f4+oCkSFA7Mape1vNho9nPMNxUZBRE5blFnIVFOT159PCrvjWS6RVkt9k5Av+uQXYvurLJze3u/6G50WVfWIlPQBKwFPKNbVEa7ouki8vI6UtkCClUua7nHps1CnJEpmgH2DlqZtdgL8PI2aRhd1tUCvFwhsd3CZZ0t6H3XZUZYD09Yn78yXedmLusxye97bRbu5hHDZi8Z90a6y7pa+NYNJHLW0giCIOomEARWXQhc8Rxwxn+wloMj24G7Pwp873hg0x8bm2pWD9lxYOMNwHfXApv/xNa71n4c+NfngWMvBYIUjX8gQSKvz/Q3MZE3tl8TebV+g5kQWzSUFQnckTC/ETO6RWXUwusYMbkhlOmgVRRFj4mqvEmWGBsNGMSZSeubdRlubz0m2WQjQL3CNxcuuXDjQuTlD41m/RpH6hGbuaDIhTwuLCpBINpq/j0VtVS5ReuJjTaLSlZVV/2BrRzw5W5RF8eGixWlgrkzbgo9eUdrEb65uFpnXDOrxXxTQk2R3gkuNjvFNTtHR1c5EtMWbtFKahV5LVzFdpHejhHW9Tp5ubMxEBaOy1hYd1lbujTN5kici7x19uQVsdGtIlLbKq7ZMjaa9y7JTTGiOKuJxMEIEIrYR1ibub0bKfJmdcG6pYWd/3YuazFHgmE9zryRLlre9znKRV6nuObmxtfASbENNoNqq6WQCADBpjb2j4yHIq+Lvq+WmzQaiKIolrXIjI1mP8fcHSm9jrj5PZrxYzJ7E+aLdi5rf6O0ZddhJeBl8npspe9RvCISWFLMqkUtY5Kd+NPFLao7Ae2ERBkpCQaXdcX7XkqiMxLQW+9YCfDS6rCYI2W1yBAShejtr1sUMIirFgK8jGhiwBjXbH1vxDeUeIke6W2WZCUvia4lGhLmAKt1ow5JCXDtTebzlTt7OyQJq3zczQT4EYnpfARBEA0hFAGO+whwZS9wyheZOWbfq8CvPgD8v3dAef1h+WJvqQT03gHcugZ4/JssXe2gdwAf/ytw+lf1JDzigIJEXp8ZaVkOAGhK72aL0JpTbiKYBCBP5OU76YYqol34TZiiyHGL8t93aCJX3QuX36zLGhPtxtNqTGTdmIoxSVfWwZ3NknaG2rm9661l9uHl/293jmu2cxLV1ZO30skrhMwOIGB/ibR28tYxHiIqeUT/WGZUd0LaiLxCJKoQm8czulvU1ZhEEkBAWyCo7Murqnp0tFNPXrNe1g138mpipoXI6xSl3bA6AEMP3DlVn3JyizrOkXpF3mR5LXZxr45jIpy8b7irgcPnULxNCKt2LmtXcc1TdfLyzRSwPjaWMdpcXC0VgEK2vjoA3QmsCZRWsbNGt2jSVORtRG/gcVFLsikKwMJlbTYmYQ9ctJrIG4hpIq+lgBf2rgYOd/KqrZZ1tERDCMTY/ZocJ6+NW1SyO7Jqc4TE2Gjjz6kSm2XXIZy85ecv6y0q12UdsnRZ+zMm1kKi7Nhoc9eqH25Ra5e1vzHJfjl5rSK9/d4IwGrRBGcJwlkoGBCtkyrFGV6HrGt8q4WoKduJLwT4CtEsVyiJvusy4l55HRM53aXK8S1K22JNQNbaBG+9YyVotsbDUjagWwmagC4uylg3CgSszQF8HUmWa7XdQvjmdchKomuzcPLmCiWxKUGW4EwQBNEwIgnghE8BV/4NOPGzQDgB7HkeoTv/Ccdv+SoUnlDpNTufAX50CvC7jwOpfqBjKXDhXcAH/geYtUJODcS0hHzbPhNNdmKX2oX5yiDQ/7IQE8YCXOSVu+uvKtpFuzFLxsJyol20m71soYTJfBFNhsWXYREbLWdMOhIRbN03UXVzygW8Vkk3yZ3N2k2ypdgs1+29v6KOQrEkFjdrdjev/gDw3E/0/7cucPwWRVHQ3hTGYCqHoYkcelr1SNqp9eTVYpFdOGdFuZYPuVodbtyzHBGVbOjryGuJNJdF71Zi5fbmi1ZNkSAiIRcP24rC6kgPMlGs1RCFnB0HStrrW4yN0WWdzhXLdpTXJq469OQt5HRxyqJXsaOQWFNcs4OTV7hnq0Veq57arsdDuGhrdfKWR0cn3bisLUXexezvWuOaNZGscr60xMIYTuctBXhTIULMiak6edvEh6ycgHpEcsUtUqQZgAJAZYKezTlpCz/HRYS1lTNSFyJajAuIIja6EU5eXeSNhgIIBxXkiyrGJvNli5amkcCRZnadaJTAaugPHIwlAeRNBPiKaHFP45rZeT+EpE0dYYCLvBJ68qayBZRKapnDTXeLyk4X8TfuNTld6rAQq7KFklS3qKIoSMbDGJrIYSyTL7s38q0XrsWxkS7AW4jNsnuLFksqJnLFsmurbOHMKSbZ7zqku1Zte2rLv5aMZwvWYyK536rleSOtDvNIYP5/RZEzT1piYSgKu0UZncyjuyUqPrc/JVfAExHWFceGP5vLMwfw86b82PDx6JQ1HhbP4YAuasoSEtua2Ptv5bqRiCb2WVzlYyTLUdzhkIgXUORtXCEIgmg48TbgHV8Ajvso8Jf/gvrMbehObQJ+ejpwyOnscz1HVH+fqrJ2WbkJ9ieftvl3Csilq/89OQLsfJK9XqQFOOmzwNqPAaFo9c8jDjhI5PWZ9qYwNpUWYX5wEOh7SURRjqjMxSJrtx2/EasUEoclu1YTkSAiwQByxRKGJnJlIu+IxJ68QLmr2IjsMdHrMBcSZTisAUOkt+ayVjRnntG9UnMt89aU/z/k7th2JCJC5DUi3JH1OHkr45pdiLxcgN+fKnf11SQkcszimrmgFbfvDdxh5cSf1HdUuybWqom8FYIFH5dwky6sVNAUCQqRaGQyXy7y1tUbeIzFkFQ6qnlkr02kdotwV03ByVvp8rZCxDWbOXnNXV7uRd6F+s8o5JzPkTH7uGbusubnbyavOxMsa2lbzP4e2c5uTBWXi+Jj5uK3VX9gLgjYO3nrFXmHy18HNk5eqzoCQXZ+ZEbY6zXPakgtTo7ilmiFEOFFXHO0WXNZs0Uqq1rKIoH5daBRUcm5CQDM5RZOtAIYtIkElhDXrDlzx9QmyzpaYiFDCoOXcc3s92Uu64I4n1VVlRrXbKzF8dh4XYeVk1d2HVabNLT/BxQ5PQF5LUMTOd/dkVb9kmWLZq0Wc0T2eMTCAfFsU7mBZrpEWE+/OuSKzWOT+bINNMZ7I5nO1d0jk1UCnuxNzlYxyfwZQ5aA12oRpc2FxI6miJQN6MGAgmQsjNHJfJXIK3tMRKpWunKOSD42cfMoXtm9Vts0sXkyX0QmXxTtbyZzRdG2QFotFi5r+U5erY6KYzMk+9gIA4n5OlpbU0TKJiuCIAhPae4GNtyMwjGXYfedV2LR0F+gvPZn4LV7gbmrgGK+XMDNpwG15PiyzijA6ouAd1wPtMxuwOsRbxZI5PWZ9kQEL5WW4J3B54Bdz7IYSABDKlvElR3XbLX7UJawqigK2hNh9I9lMTyRx3xtPT5XKIn4SFniqlHUNFKTWNWQOtjPGZooFxJlHxs+HoWSirFMoSoyqiVaR29gRQHeeiXw+LeAWYfVXMv+ijEZrSc22i6u2WUdVpHetYmrbexvY1yzy1oaWoeZ2AzogrON+K0oCjoTUfSNZbA/lcW8tjgAJkTUJK6KSF3NMWmI2GW1aOMSb7eM1OYLHUOpKYxJZb9mM1TVNq65zSJKzPV4JLqAUBwoTAKjO4HOg+y/3sLJyxduK51EvI5gQLF2Z7QtAKCwm9KJQXYz64Zx817FTi5rU7eZ6MnrRVxzDY7ieLsu8taLiLHmIq95/K3lZpFGirw88lnrgStEIjebIxodlcxdxUoQsXgCwKCJAF9Rh6jBC5GX1TOOJhvROwxEvY9rjoVZGkOuwJIz+JzJ5EvIF5kwLk/UtHd5+e3S9CvudTxTQLGkVrWTaK7cpCGhFquYZNlxr34LeFxs9rsO5rIOYTCVw+hkHnO1eyPAR+Hbco74K/IKAUBy7HtJZS1PeF38fjoUUHxwwFe6NNmzTmdCjkNDv281F3llOSP150x/6wDYmDCRV7+XV1XVB7eoubt5v2Qh0aoX7pDEiGSArT0EAwqKJfacyUVevkYSDirlSTge0i4ctOabNDpkOXmt1vSku711J69xc7EeG00uXoIg3kS0zsffFl6Kee+9BeHHvga88j/AnhfsvycUY+s64QTbPB9JaIaahPO/Zx9BscyEKSTy+kx7UwR/VA9h/9n5lIjFHCgwdwqPw5FRB8BuTI03YrJ7vPBa+seyZT1o+cOMzGgX0afYZ+G7Q3uor3xo4Asjso5NLBxEUySIdK6I4Ylc1U7vmlyrRt5xPXMrLjnZ9bfwhY5q52odAjyP5M2nmVAgxEzzGGAjVhHWdTmKuRvMKK5OOgurgO4oHkrnyhaZXfd9NaujysnL+/HaC86dzREm8hrGZCJXRKHEhAhXEdahqC5sZkasRV6bcREu64pjUyUS2eGmJ292DMhrIpeJyNvVHDWtw1ZINKIoTCQd2sr6bbgVeSuE1aZICPFwEJP5IvanslUibzIWEtf9KkJR9ruN72FuXrcir4WTt90iOcJ1T14zd7cTNnHNlYvMjnUMb5uiyFvu5E1aRPFaOhJFXHMDevIa4poBc8FZVVXzWhoZG22sJdqMpHadcBQSG9mfuBLNmTuuxk168hrc3lbXzAaTjIUxmMpqx4aJRHw8ggEFTZGgpz9f1CFcmhZRvLJjku0EeAkYhcJUpiDuhWTXYfxZ1s7VA1OArxK9efy8JPc7+1lhIfJyJrIF4RaV9UxhNSYiZrVZjpBo7dJkgmaXpDpi4SBi4QAyeeay5uOjj0fE+t6owTiJq/y+1mus5sigdmxkzZE2wwaaQrEkNhLv90PkjYexHeXHJpUtiEh+WQK8lfAt28lr1Qt3SGxIkGcOaIuHsV+LSZ6djGl16IKmvPPXoievcNDKWtOzmCNpuecNryNXLJVtLh6RHF9NEAQhlc5lwHt/Apx8DTD4mr1QG5Dz7E4cWNS4Sko0mvamMHpLy1BEgLm0+l8GAPQV5Dp5+YNlUXNpcoYl930F9JtP44OD0X0nyxFhFWE9InmXue7k9bcOVku1cDZlZ3MwBBz7YaBrWc11GI9NqWR0i9YwX6MtQFD7+vRgbXHNlg7aOnapcvHUGEfr0snLz09VrThvahE0OWaO4rJa7MVvMUcMDlp+XCLBAGJhl287dsKJK5GXLbgMWkRpuxKb3cQ1cyEz1moaY80X5QbHLSK9a4mNduoNbKynwslbVovJsXGso13rDTz8hnMNHCE4l4u8eh3lY2IrwPNzQC0B2TrENBMnr5UAzwUSR7G5XipEXr4wVFLLF1VHHUXeRsQ1c2GVOXnNFncnckVoezTKBauGxzXzWpKOkd5iTMINrsGIwclrKSTG5Dh52c+q7kE75maTRsPrsHcCynZpVgvwcl2rkVAAcc09ZBRXZQurgPHY6HOkVDJs0pAV6W0hEg1JdhLx61k6V0S+qEejDUoWEo21GMeE1xELB5CQtElD1FEhAOz3Ke61WkiUK2ha1TIo2T1rVUexpMqPSZ4ucc2G+w3je/CQEJslzhETAY+PRzwcRFzS+TtdXNZWvXCFk1eiAM83jBijo2ULmoC58K2qqlirkCeumjt5hyTHvse1BBqgfL3Gj7VFgiAI6XQvBw49C1i2Hlj4FqDnSGbWaOlh6y4k8BIeQSKvz7Q3RZBGDFsDS9gHJoeBSDOeLSwVn5dBLBwUCwzlN2JyXauAwUFrrGPCxzoqHmBk70DkTt7RyXzZIhU/Nq0+CPDGOcJd1jJv1ttNxObxTAGqJkTUJGoqii5cTgwCEwPs3y5EXquY5LrEZi5ipc1EXvtawsGAeGgz1jJWi6DJsXTyuqtFCGcGAY8vJrY2hd0LEVax0WW1WIvfXaJfcp0xyUD5vLBi3LwHrqhDO3/HswVktP5QNdeR0JyzE/vsv65Y0OevST1dJsL3qNv46jZN5B3Z7lwvx2JszOoollSMZ2168oai+tzk8di1YOLk7dL6qlkJ8KYiUUNFXlZLJBQQv7NxTPiiZtV4eBHXrAnHXWJTgvkmjWjIcNvoVVxztMWyXUJV/1kxFt715E2pcaSyhbL33zLRLKaJvB47eVtMBIDp5BbVBXh/ewOPShY0jT/LeGy4o6lDknuH1VE9R0Yn8yJJQ7bbrHJzBL++dUsSV40C+5iJuOqHyGtVh6xNGlYOWv4+2NUid4747Ra1qmW/L2JzpKqOkXRObLKSHcVbuYFGtqM4FAyIqN3ya6s/Tl6gXPj2w1HcbhHXPCRZ1OTXEd4Ll6OLq3IT4ACURWnL3lAEmPegHc8WxPuvbONGVWw0PzYyW7CZbEoY9iElkCAIgiAOFEjk9Rn+wPZs6RD9gyvPx+5JduMjs19Fm8nOvxHRW0WiW9TEQTssuQ8uoD+gGOsw9gaWVUtrPAy+9mO8SZYd1wyYi5p19X2dImYOWv7Am4joO0ddkzDE8nKnYttCF3VwJ2C5SDSl2GhjNLCLPrgcfmyMLs0RsRGghjose/K6E3lN54h2bBriKAZcjYv1samhFu6gzYwwAdUMix64nGQ8hHCwvA8RUGNstFsn78QAc7oqQV0YNmAmfLuOjRZO3hpE3jFzJ68u8ho3aejXNsta+Dk5ssN9DRxTJ69+zqh8hwiMAp4cJy8AdGsL6/sMgrOl+66hcc3lPXn5sdmXMqujYpOGZ3HNLZjVwiL3BsYzZV9S5dLkIm++QTWU1cNE3kmFRSOXbY6YNLhWxcYYb528nSIlQa+DO1dkvv+2mbhmcoWSGBNpca+G2Erj+TugnUPdksQqwFxwHhhjdfC5LKUOE3czP5fbmsK13xvVW0fM3GW9T/KxCQb0foxGwdkPkdesPcA+bTON347iTL4oNll1Sd4IkCuUykQifn/SJVFcNXMlyo6NBsyjeI39K8NBOeevXkdF39eUfFGz1cQdqYur8o4Nf98bNdQx5Ot46HOkUCyJ/8uqJRkLVbUGAgy9gWWKq/FqUVO2exYwrqMZNmlo90lNkaDoF+w1YiNAuvzZRoirPmxKMK4t+nFsCIIgCOJAgURen+EPDX/NHyw+ph77Yd0tKvEGSDhnjDdi3Mkr84bQpBfuqB9u0SZrsUqR2Bs4GFDEA4yZuCpV+G6qdtD6I8BX16GPRx1zxOjY5CJvxxLnOrRFqEy+hHROX0B07Y4sq6FTr4HjMq4ZsBC+66ljik5es0jgmgRNpzpc1tJpImhmC0Vk8syN50r4jrcD0EQtY4y2kbE97O+KHrgcRVF0wbmemGTAsAHAQeQ1RjWb9Kw1dfK6raNWJ6+Nq9iujqZI0HohU9RQh8hr5uTV6sgVS2XxprZOQBGrPgWRVwjOusjLF7TNxFVbJ69hAacuuFAcZYKtmdhsOR6Njms29Ac2q0NVVXHNF+83jXYTm9QT0DYGcNHOWFd3c6Q8rnmqx8OGWdqYDBjGhP97lkRBk7swjQI8n7fhoCJt4xm/D8gWSkhl9fNXHxN54qrZ/aJsQRMwj1nV56rEOkzcoqqq6uKqTAHeRNTcJ1yr8iOB/XYUm40Hv65GggFpDvjmqJVINL3GRFY0MWAV6e2HWKXXUdJciOz9178Ia+M1TXZsNGDu5JXtni2ro8wZyf6tKPISzxRFMd2UMCzZ7Q2Y98LlKWyy+uACBkdxunqO+LF+VSipZfdGwz4I8GYi75APKYEEQRAEcaBAIq/P8JufR4orUeg6DFj9AUy0HYJ8kUe7+OvOGBF9M2TeJJv1VpEvJPKH2GGfewMD5u5IEddcSxRvg+owjgnf1VxTJPAUMXfyTsHRxJ2SQ1t18YYLSnbfFgmK+FIu4KmqWp+Tl9cwOQSUtFhQ7liNuxF5q52rNQmJHCsH7YQ7wbnLpI66+ke7imt2FnmH0jkUtUUqPh6KAuHusSUQ1IU4Kxctjw62cPIaa6lLXAXcxzULV/Ec009PSeSt1cmb6je4isv7OHe31Dke/JyspS8wx8TJGwsHRe9Xo7iqz1eTa5pnTl4mSBlFTV5T1WYvLvKWCkCx3GlTM7yPbKRFq6NaXO0fY2JelZDY8Lhm3VXM6xhO55ErsOvh2GQBWe3fs5OagOdlXLPmzI02sw0nZWPChcRkTI9rLhWA/GTj69DQRV5dXBXHJilP0OQ/q0xs1urolhg7m4iGxHW830SAlyl8z0pGq+uQHE1s/FnGY+OH2NxhcBIVtJhz1nKEvRfLdGm2CpeXQYDX7tekCt82PXm7fRCby+oY13ucyjp/FUURjm8zUdP3nrw+xEbr4qrRtaqJ3j4IqyUVSGkbWNM5fZOkXAGvuoe0HzHJdj15pYrNIpq4Ov62LR4WGyek1GLi+PYzJnnEzC0qVdCsfq8RwqpEsTluWJvg87VYUvUEOJnCt0kqnu46p7hmgiAIgmg0JPL6TFjrNzOOJmw/fyNwznfFjVA0FEBcUrQLYO/klXmzbusoligk8htT9mDLosR00Vvu7kNzcdWHuGYTd2RdgmaD6ih3rVY4vGqBOyV3Pcv+TswSzjY7mEuzvJZUtiBExZrmKxcs1ZIuSLl0zwINPDZOTt4Kwa6qDhMBfmpic31OXv5gr6r63DBGvbrepNFkiPI2g7trE7MsX6LTRFytKzbaKa7ZITrazN087Pa84QLr6C6gVLT/2spaAuXvY0JsNvR9Fc4quwXVqcQ187Gr2DDRXXFscoWSWECcnTSppZEir8FV3G0Sk8wFvJ5KAY8Lm8DUBdass5OX1zG7qo5GxzVrgnO0BW3xMELaOcqPTb8mbrbGw3rsHR+LwqS7eekWVRVO3ngzO+ZlwplxTCLNgKLdTnvYl7c7GcMSZS8u2fQx4OX/LqtJqqDJxeaxrIgCFBHJEsVmQBdXufCdyRfF+41MUZOfG1zsZv+WL67yOvpHDS5rH0TezuYoggEFJVW/pvHzuDUeRjQk79mGX8eNx0Z2/1nAPK1BjyaWKCQaRG9+/gqHpkTxDqh24BWKJXFP4odb1Kzvq99isx91xMK6SMSfNYcMaxNNEXnnrx6lXS0k+u7k9bE3cCpbQF7bQONHjDZg3vvVjzEx6/sqxGYforTNxkP2ulGlg3ZsMi96e8tcSzOLsB4mJy9BEARBeAaJvNOAtkT5DkSjkChrRzX/eUClW1R+vzfTmGQfegM3R6t7aeruWbm7D9srYpLzxZLonyXzJrnDJHbHj568RpdIpUuzLpGX9+TlIq+LqGZRS4XgzOuIhAKIhWu4xAbDQFQTWLkgNem+J2+Xmbhq50i0Yoo9ec2ERB7NVFNvYCE2j1R/zkUtoWBAXC/4ecP739W0MMTHw6wOl7WIXrgTutubO76qhDMzahV5LaKjzfqt7tXEgJ7WuP1rJ+cCgTBQyusR1XbwrzFxFfM6JvNFTGjXMb0Om/GoV+TNZ/RzqWJsxJhoi/5c0IwEA+aLVB45eXlsqFH47hu1EHkDQSCkHa+p9uXNlffkFSJvmdicNa/Dq7jmaAsCAaVKcDYVvbmbuJF1AEAhw+Y6gOZWLvKyn18qqULUnJ2MsmgAbfyEUO0Bs1qi+ELoF1iWfRl49D8BAPvGLQR4D+HCaq6o9+H1Q2wGjOIq+/l8rkRCAan3JHxO9huERH4OyRwTfv3sN4nSlulaDQYU8Xvz69iA2Mgjd2GXv7fx9xhjbLTMMamsA/AnrnmOVkc6VxR9igd96A0M6O83fdp5M5zOQ1XZJVWmSMTvW42bm/zoDcyvWUOGJCs/nM2A0R3JauH3r10S0xoAY/S7HjsrhERfHMUGl3VKfh1Jw/saf//lz+TyRV7uKmY/fzJXxKS2Kd6fXrjVGwHkis3VvXD9OzblgjN/Dm+JhhAJyVv+bbdxWcsWvgmCIAjiQIBE3mlAhxA1y2/WZTojAeOuP1aHqqp6L1yfewNz15vM3sCKolQJzqJXsuRjwx/u+Y2xsacXjzuTgWkvXCGuyu/bXFIND7kTUxCbuRCV00SG9hpE3kS5E5A/9Lc3hWtfCEkYXKOlkh7X7KInr35sjJGibOGspr5zU+zJa4wE5g+5fJF3jp2AV4ltXLM78bvSQbtnhEWpzm1zEDSNcLelWR1ltVgfIz4m+/kcmcghVyhBUdyKvC7jmo09eU3QBXijyKuNidOxCQSB1vns32768grBuVrkTURDIqWCHxtXc4RHRtcq8vJagtEyYRUwiKu8Du7QbLVYyJyqyFsq6XPJGNds6uTVhESzMTH25Z0K3MmruXJ5HUMTOeES6bNy8jY6rtlKcB4vnyOzjA7rcByib3YjI5u54AwFSU3k5XUMpXMolFQoikEUEddN70TexZMvY33wBfafgVeAsb1ijsgUEqOhoLg/5T9/n1Wkt8fMrhBXjYKmTCGCz8k+o8jrg4OWj8dIOi8SaPyow1iLODY+1cEFeH79SGX12He54mp5HYA/Im88op+//P1/0Ideq4B+37FXuzfj968dTRGpsbNz27Q6RvW4fX6fJHNM+BwZTGWRLRTL6uiQfGz4nOTnr16HbEcim6v8XCmWVF+EM37ODJUJiXyOyKsjGNBjzisFeOlCYkVPXn5cwkEFzW5a4jSqDhMnrx9JdMZeuBM5dv767eTVDSTy1/OMdZQ7eSmumWB8+ctfxvHHH4+mpia0tbW5+p5LLrkEiqKU/dmwYYO3hRIEQcwgSOSdBlTuQPTjxhTQb7a4kDiRK/rSG5jfgA5P5A07Ievo6dkAKgVnvTewPzfJ/GGBP9AlYyGEgvJOYzEeBpGXR+DJ3GUeDgbEQy5/yOYCXk+yBgGPc9A7yv9fg5O3Mq55t1bHvFqERA6PjU4PAtlRQNXiR1305O0QQqJ2/mYL4oG3plrMevKWirqo5SCs8jmSLZSQ1h5ydw9PQVy1jWu2Hxd+bPiY8AW8usRmqxhWF4Izr4M7MvaOaOJ7c9TdjuomY79mm0jace6eNXfy6tHE1W7ROU5OXsDQl/cN568ds6+lUlx15eRtXcD+nhwyiHAuMArOFcJPZZ9iMR5W15GpirzZMQBaZpqhP3BXhaA5nskjpbmcqxy0QONEXr6xRYtrbjcsrvPzhke/eh/XrDt5gWrhW3fPGupQFH0s8g2qA9DF2mgLurW5MFDhKO5MRBDm7788hSHrXVzzwk0/Kv/A6w8Jd/GsFskxyRX9gXUnrz9xzVxs9iMiGah2FGcL/sRGJ2MhkSDit7haKWoO+hBNXFbHWHkdiUgQcYmxs7yO/rGM6FM86INblNVS7ioWTl6JvYEBYE6beR2yXatzzdzePghnHYmIOH/5eTM04c8c4c8Nu4UA74+QOK+NbSbjz3gsZpx9TuY6iR6Fn0VJS5DS3aKSBXjRMkFzwPt0bNorNn4bBU0/kuj8dvLGwgHxTDdckQAn/9iUC99DPiTiAdVrnIViCWMZf9bSiOlHLpfDe9/7Xnz84x+v6fs2bNiAvXv3ij933nmnRxUSBEHMPEjknQZUCmcixkTyDjd+s853qQ6lfOoNrN305YolsROSL1LJfvCvFFf5bnNbIcIDKvuc7hpmjqX57U2W3yOjjmyhKBbOFkiupbNC1Nw1wsekDnE1OReYf6z+/5qcvObHZl4948GFwolBXTyMNANh5/lWGdfMF2aSsRBaYjVcS7hwmksBBc1VODkMXZiyF1abIkGxSMWPzZ56hG+ruOb8pB7L6iDyVjpod2vian1i80j151TVleBc5Sh2657lGPs124mL433sbxP3LKCPx+hkHrlCCdlCUSwyuxK+22pw0to4eY218J/fN+ZCgI8ldZF1ZKdzDRwbwVkI39ricp+T2Mx/fma0vh6w/PiFE0BIXxis7A3MBZqWWAgJM0eEEFinGNfMhdUIE1YDAUXvHckdtDwmubViIdPDuGZAF6W4cKb3Bq6oQziKG+nk1UVeXdAsFxLLBM1Ykv3toZM3Ovo6AOCF0jIAQGnLg+IYmfaP9pBKUZMfm1mS6+DHgKdW7BOi9/RwrUaCcmOjFUWpcq767eTtq4jSlu7kbZ0e49HZHEWosk+xeLbxR/jmG878iK8G9HugPRVOXumOYoOgqaoqUtkCcprbW+Zzp6IoZbUA+n207DGZ115ehx+9gY117Bour6M1HtY3WUmgJxlDMKAgVyyJewG/hG/+7L9Te970Q9AE9Ge6XT7Xwd9r9o5moKoqVNUft7eiKOIayjfA+dEbGDC0+dKu7cO+1aH3gAfY86cqegOTk/dA58Ybb8SnPvUpHHnkkTV9XzQaRU9Pj/jT3t7u/E0EQRAHCPKyVAhLuMuLOxH4A5XMHmuALq7yG8IdQ7poJnNHZlwTiTL5EoZSOcRCAfEAsagzIa0OoFqA366NycIOf8RVfpO8Yz+rY0FHHYLmFOCLDCzurog9IxmoKhAPB6XvMu9IRLBtcMIgrrLzpi6RFwAOPRvY9Qz7d/vimuoA9If93VOpwxjXzEVeFy5eQO8JVVlHzWJzrA1QgsxFnN7PBHAuZMbagKD924aiKOhMRLF7ZBKDE1nMbYsJkagmkdeyN7A2LoEQEE3avkRnxZjUJTbbxUbnJoCiJoS76clbIXq7cs8CbMzjHczBOrFP79FbiYhrNhdWW+NhBAMKiiUVQxM5EQcYCwfctQfgr5vqd/5aBydvZ0XMuXDyOjnx2xYyoXRkOzD7MOc6AFvBuauiB62jo5iL/gATel1EqZch+vG2lX2YCw77U1kUSyr6Ri364HIa5eRNc4e+/nt0t0TRP5YVkesDVv2jGx3XLARnJmDPEseGHRPTnrwAE5snGliHsZZoUtQxWOHkLRNW+bXIyvHfAAITAwCA/y6+DasDW4CtD0JVz0FACUgXifh87a9y8soWEssdTVzAky028zomckWksoUyIVHm/TOrJYY39qfRr9UgBDyfxNX+sXIhUbaTl9ch3KI+1REMKJidjGH3yCT2jmbQ3hTBuJbWIFtcFSLvaIW46pOjmG98E85mHzYkKAqQK5SwfyKHlNaruCkSRFNE7lLJvLY4Xt83gT1cgOcR1j4JePxZQo+vli1o6kKiqqoG0VtuHaFgAHNaY9g1PIldw2n0tMZ8EzUXaGOyc6hc+JbtKF6grYXw9SK/XKt8jqSyBQxN5BAJBQxJdJKPTUccu0cmsWMojTWLOkQrqQ7JdegbAcqd+LLHg7//8usIv1dsbwpLTaIj3lw8/PDDmDVrFtrb2/GOd7wDX/rSl9DZab4Ok81mkc3qrZDGxthm3Hw+j3w+b/o9/PPGv2cSVLs/UO3+cCDUXuvvRiLvNGBxF1usfWM/W6DcNshulpd0yRU0+c36zuFJFEsqtmn1LJYsrALswX/b4AR2jaShKEC+qCISDFgveHsEF2f2aotUO3wSefnOS75wuEN7sJNdR0ssVCYS7fRpIwBg2KU6kUOxpArhbH69Y3LY2cDG69i/O5a6/rbKuOYpic1NRpHXXSSxXgd7uB9Os/HYVW9stKKwOiYGqkVeh6hmUUtzBLtHJjGUyqFvLIOSyhxNNS2qWsU1G2txmHO6kFge11ybk9fCUQww0RUAQjFd8DJBOIonyoXEmupIdGki76D553MTelSshcgbCCjoTEQwMM4EvHFtIXNOq8vzt1nrDZxy6A0MOLqKu3lc83gOqqoKR5Gjo7htEbD3b8Cwi77AlbWYjEtlXLOlkMgJapsLsmNsw0HdIm/5ruOORASKwvqMD6dzBvesg8ibnYKTt1jQ54xZf+DxLIbTeeS0aNGqKF7P4pqZYFrVk5c7aK1ioxsZ12xw8hrrUFXVPDaaO3mzHjl5i3lxvbm/eAy+2PQbhCb3Y5WyFbubj5DavxKodvL6Fdcs6hgvr6O7WW4dTZEQWmIhjGcK6BvNiDkrW6wCDOLqaAb5Ykmk88gWEnuS5UKi307e0ck8JnNF30ReXsvukUn0jWbEhohIMIBkXO7j+BzhoK2Ia5bt5OVxzSPlfV9lC3iRUACztM1Ne0YmRT962aI3oEdH765wrsreSCvE1Yq4ZtkbivgzzESOReD7JawCLLGKibyTOGJeUbSkkS7yivWaSgetXGckX4PgYjO/xst2i8bCQfQk2YbiHUNptGjtnJqjIamR/ACwqCOBJ18fwhvaWh43KVQl4XjM4k52bLYNsvviN7S/F0heN+LmjOF0HqPpvKhnseQ1TuLNw4YNG/Ce97wHS5YswdatW/H5z38ep59+Op544gkEg9Xn+80334wbb7yx6uP3338/mpqcz4eNGzc2pG4/oNr9gWr3hzdz7el0bWl1JPJOA7iYy2/Atvskrs5tiyMSCiBXKGH38CS2a/XIds8CwNKuBLYNTmDrvgmU2LM2FnTEpS9kLu1mi8dbByZQKqnY5ZO4yufCtsEJFEuqeLCTXUcgoIidzNv3p0Udsh8aAN2ps2dkEv1jGeSLKkIBpf6NAO2LgbO+xSJxuZjlgq6KaKaG9OSdGARGtThaC8GukvamMBSFJQgPTeSm5ijmIi8XFPnfbkVe4W7OYs8IW3SY0xZDoJbz1yiuqqou6NYgOAsnr+ZI5GMyp62GOeKqN7C94NxpcPKWDBsS5tZSR6IbGHyNOXnN4EJmOCHibs1riQqRl++6d92jODGL/a05Cm3h7lmrnrwGcXVssoDJPFssc4zC5y57N32BOdxVnKyuhS+ccpemq77N8XYm5tXTl9dC5A0HA2hvimBoIod941mDW9TKUdwAUdFYv8Gh3G1wN/OI085EpLp/tKS45n0iJtliTDyJa9ZqiSVFHbliCSPpvCGa2Cjy8uuVRyKvdq0pIYB9aMWe7rdh4Z4/49Tgs/hTco03P9MGY0/eYkkV4ox0By2Pax7LlAnwsusA2Lwcz6QwMJYRyQCyhVVeB8Bi1ocmWP/KYECR7uDRI6wrHMWSx6QlGkIiEsREjrUXGRQCvHyRaI7BVcwFzs5muf0rWR3sZ/M2Cf7FJMe0n59DJm8U4P04NnEh8vLjIXs8AD2emIvNvKemfHGVva/qTl5/xNVYOIiu5igGU1nsGp4Uz1p+CPDzhYM2Le7jY+EAkjG5y2m8PRLfaM1NAnPdpgM1CD4eo5NMwHtdWzda4sO60cLOJiHyRrV71aXd8utY1KW7myeyBezR7qEP0taTpNWhHQO+pvj6YEqrQ+6YNEdD6G6JYt94Fm/snxAir2wjCyGPa665Brfccovt12zatAkrVqyo6/UvuOAC8e8jjzwSK1euxEEHHYSHH34Y69evr/r6a6+9Fp/+9KfF/8fGxrBgwQKceuqpSCatE+Hy+Tw2btyId77znQiHZ1a0ONXuD1S7PxwItfMEAreQyDsN4Dc6O4bSyBaKIhJY9g1QMKBgSWcCm/vH8fpgCm9okcCLu+QLeAfNasYDrw5g60AKXBfyQ2xeNksTefel0DeWQa5YQkgTOmWyoJ0J8FlNgOcPdn6Iq4fMbsGu4Un8o39c9DhdUG9E8lTq0I7Na/0p4Z6d2zbFjQBrLqn5W/hD5JaBFHPQCnG1jmPDY3jT+4GhbezfnQe5+tZQMIC5rSwmauu+lBCbaxISjXXsgy5i8r+tYoIr6NEWGtjDNttVWfPiA4+zLeaAQgYIx8trcSHycnFm72gGY5mC6PFdUy12cc28FodIbb4oViixPlHcyes6rhkonxtmGCOJbRaMhaiZygmxynUdzVzkdXDyZsb0XrEtPRZ16CLvXm2huSMRQcyp/zt32Q9tdVUyAIPgXL1hgs+RwRRzFHNRc7aTyDuyvT6RlzvCK+KaASZ+cJHXUWzmomw9NXC4Ez3WWhbD3mVw8tqKzV7FNUfZtb27RXdplkpGB63HvYEBXayNtiAaCqI1HsboZB77UlkhWpnGNXvl5E2xjRWpYBtUBLCp7UQm8gaexbPN/+rNz7TB6OTdn8qipO3Dke3A42JuJl/CWMYQk+yLuBrFloEU+sczet9mn8RmgIm8fDw6E5HaNlk1gDmGXriqqvrm5FUUBbNbY3h93wT2jk5iX4o7m+XexwPGXriTGNTu3/1wFPONbntHMiKZB5AvfLfGw4iHg5jMF8sc8LIFTYBtzOzdOYI9Ixnx3OnHseHi/57RSfE8EQ0FpPev5GLzYCqLTL6IrfvYPd2Cep5tGlALF3lf62d18OdzmfDnOlYHu185eFaL9E0avFXTzuFJTGQLYp4cMtt6g6cXJKIhdDVHMJjKYedwGlu0Y3PwbPnHZmFHE57eNoQd+9PiEWiZZGEVYE5egImrXNDsTETQJnmT1SLNyVvpoF3aJX9MlnQmqkVeH9b0CDl85jOfwSWXXGL7NUuXuk/Mc2Lp0qXo6urCli1bTEXeaDSKaLT6vTwcDrsShNx+3XSEavcHqt0f3sy11/p7kcg7DehJxkQP2me2DSNXKCESDNQW5dkglnRpIu++Cd8cxYC+03DrvpTYkSnbtcrqYDfDO4bS2DLAHl7mtcel9xEJBQNY2pXAq33jeK1/XMRG+yHyHjy7GQ++OoDX+lMiBtCPOpb3sEX11/rHRRxS3f14p8CizoQ4f1/cNYKU1mNtanHNg8DQ6+zfHUtcf/uhc5LYPTKJTXvHsFsbE74bv7Y6NNGyUuR1GU172By20PDKnjHRz6zm61mkWe8NPDliEHmHXNeyoofVsbl/XPSx7khEaovvEk7ekerPuawlGgpiQUccO4cm8WrfOPbynry1CPDC5W0hsPKPc7etBfxc3TKQQirLHCLunbwu45q5qBpNCsGuEu7Y3TGUNvTjdVEH3/SwvwaR19bJq7s0941nhZDo6OQFGurkBZj4sbl/HAPjWdGT19LJa7f5oOZayudvt8Gl2W8XGy1iktNAqQQEpvi+yDcGaE7eWQYn7+AE61WsKCYCnoiNnkJ0dSUV0dGzWqIYncxjYCwrnESzjdHE3D3Pv6/RaO75TLQDmACeDx+D9UoYBwX24l9Hvgr8XGXz+6xvAwHv4wl1J69+znQmotLvjWJhXYAfGMuIY+OruDqa9dXJ2yME+IxvwiqgXzMm80WMpPMi7tUXUVMTefvHMmIDjT9josUTa44zwOYa7yHGXriv70uhpALxcFC6c1VRFMxpY8dmzyi7PwLku94AfUPknpFJjGXYvdGhc+SKZsY6dg9P4pU9LEFmxZyk9E0a7U26AL+5b1wIiYfNsXY+ecX89jj+tnMEu4bTeLWPbaRa0SO/Di6u7hpJY3Mfu99Y3iN/jnChfd94Fi/vZnOkqzkqPSYZYM8Ug6kcdgyl8doAO3/9EOAXGfoDF0qsH+9BftTRqdfBN0b4cT1LREOY1cKSm17aPSraFvlh3Fjc1YSn3xjCtkGDyOuDy5qQQ3d3N7q73SfiTZVdu3Zh//79mDPHXfIdQRDEmx3qeD8NCAQUIaQ++CpbyPMjmhgwuBL3pYSj2B+Rl90Qv75vQsQQ8RtnmcxORtEcDaFYUvHYP5iw4YfYDAAHazt0n9q2H+lcEYpSZyTwFDlkFqvjtf5x7BI9ef0QeVkdO4bS2KztqPZD5A0GFLF7+oFN7PztanbhSDSDC3npIV3kbXcv8h42ly16bNo7psdG1yU2V7hGhZjpLq75sLksuvSVPVOoQ1HM++HW4ORd2NGEllgIuUIJj2rnb83OZlsnr/txWTmPvc4LO4bRry281+QoThiivM1wKTgfNZ+N6d92jgjXqmuxmYu8+Ql79yYXVW2ixldqdbzaN45t+9hruRKbuZN3ZDvrKeuEqtr25I2Fg2JB6v82DaBQUhEwExKN8DF2cjSbkdaEVUM8MofX8dKuEefewFwkNtt84LoW8znD3+Ne7RsXvYGr3LOA7qAFgMJk/XUA7FhyJ66hJ29AAbKFEnp3jABgC5lVQqIncc26kxfQhZhdw2lDXLNhTHiP5Ea5mivRNlbkY+w6sD0VxJbmYwEAR40+AGx9EHjhF8DOp7z5+RXMMsQk800as3wQzYw/d/v+tFjIlN0bGDDGE2dqu6Y1vA42Hn1jGWzSBBE/7lu5AA8AD20eQLGkoiUW8mWe9CR5BG4GvTtHAOj3SzIxupt5Hfw92Y86MvkSHnmNXVuOnNfqy3Mnvw96cdco9o5moCjA4T4cG6OD9qXd7Lw5fK78YzOfxySPTOJlrQ4/hFVFUcR9+wOb+gGwZ87WJvkuifnasdk1PInXtI0AK3wQV41O3s397Ngsl+yeBYC2pjCao2wD7YOb2XPnIT64ZwFdcO7dOYKRdB6K4o+oudAgrvJN+X7WMZjK4cVdTIA/aJY/gmbl2uKslihaYvLP38WGtnQU10wY2bFjB3p7e7Fjxw4Ui0X09vait7cXqZS+aXfFihW4++67AQCpVAqf/exn8eSTT+KNN97AAw88gHPOOQfLli3Daaed5tevQRAEMa2YMSLvl7/8ZRx//PFoampCW1ubq+9RVRXXX3895syZg3g8jlNOOQX/+Mc/yr5maGgIF110EZLJJNra2nDppZeWvbHIgourD2s3637d/PAetE9s3Y9cgUUT1xX32qA6do9MYrP2QOeH2KwoitgJym+SfRN5K+pgDnDvHTuVcEHztf5x7NR2dvPdzTLpSESEE+PhV9kilR9iM6AvNvwfXwipt46EJhamBvSeox3uI224g/ZvO0eFu6q+3sBaHVxQTNfWk3dFTwsUhe0y/5u2kDmvnusIF1iN/XBrEHkVRRGLhfe9woS+miKSAYPQ7NCT14EjtYXc/9vEFrtDAaU2J5GdoxhwLfKuWsDEwZd2j+ox527HJNoChLTjmLLpy2uMjrZgTmscPckYiiUV9/+dHRvHfrwA6/EbigGlAjC6w/nr00NAMat9r3k9axayMfnTS0yc7m5xcCS2LmB/877ZtSCio6tjrI9ZzOp4+o1h4TazHJNGxjVXuIqPWdQBRWGbrJ7XxFVTt1nIMG+mKm7mDA5YzZkbCwdx5Pw2AMAvn2LH2lT09iKuWYi87Ppx1AJ2/t7z4l7za2vYgxqMaBsKIq1s3jy7fQi34GJ8v3AW/n7olUDPkezr9r3qzc+voKc1hng4iGyhhJ898QYAliThB3xz18+e3I5iSUVPMma+KcFjuHC2ae8Ynt/BzstjFrtLv2gkQmwezeJRTcA71oc6AP18/V0vu7Yes6hduiMRAHpa2Xz469ZBjKTziIYCvghnPQaRl8+R1QurUx28JhYOijYS977M3n/5NU42/BmT17GsuxmJqPygMX5v+Pq+CfxD2zh6pA8C/OzWKBRtc9NftrDz1w/RG9Df4zZqG1j9cDYD+jX+ydf3YyJXRCQY8GWdZL6hX/KmvWyO+OHkVRRF1PLgJi7y+nNs+JoI3wiwsKPJl7UJXsf2/bqD1g9HcTIWFtfWh7T1Gj8ikgHdHPGQtrboR49iQI9m/tuuUdEawI81PWL6cf3112P16tW44YYbkEqlsHr1aqxevRrPPvus+JrNmzdjdJStwQSDQbz44os4++yzccghh+DSSy/FmjVr8Nhjj5lGMhMEQRyIzBiRN5fL4b3vfS8+/vGPu/6er33ta/j2t7+N73//+3jqqaeQSCRw2mmnIZPJiK+56KKL8Morr2Djxo2455578Oijj+Kyyy7z4lewhT+svD7oX0QyoN8A8p12CzqapMfvAUzAa9d2C/PewAt9cPICek+XrZozw2+Rl9fhR18kgD00KQrr88Jv1v2Iawb0HdTcyeuH2AzosWE8am5+vQ7r5h4gGGGiVDELBEK6oOQCvsi+uX8cqsr6ePEerDVR2f9ViJnuevImoiFxTXtlDxNL6oqfNxOyahBWAeZOASB2VNcsevMailkgX+FWrCHGmjtXuXtndjJWm2vGKZ5XCHb2tSyb1YymSBCpbEHMV9fHRlH0OGgrRzFgcPJWxyMbWb2wDQDw1DZWu6vrSCCgu9v3v+789eNaLU1dQMj8XFiziC2yP76FHU/H3f9tC9nfw9udf35VPdb9gY/ThJhNe8cwmMohFrZZyGxEXHPafM60NoXFNY2LRHyMyggEgHCDHKw85jgYLTtOxx/EznPuNnvrMpNrkIhrbqCLltcTY+NwwjLmYv/LlkGoKjufy/pGCievVyIvW6TrmDUPiUgQg6kcHtrXgluKF6LnXV8Alp7Mvm7fZm9+fgWRUEAci8f+wa4FJy2XF89m5OTl7JrE5+oJB3dJ75EIAMcfxMbjqW1DyBZK6G6JitYjMpnXFsec1hhyxRKefJ2d429Z6u79stFwcUqIzUv8EZv5NZ1f44+a34ZISP6zDb9v5/1WFQVY6bO4+ux2dn911II2X+rg4iq/N1o53586+L3hq33jKJRUtDeFMdcHJ340FBRJIi8LR7FPIq8mJG7a65+jGNA38PJ71oNnN/uyNjE7GUM4qCBfVMU6iR8iL6DfL/9Dc636JfLy526+NnGwD8IqoK/N9I1lkM4VEQooviTAGWvha3q+OXm7ytf0lvrgbDaroycZ82UjDzH9uP3226GqatWfk08+WXyNqqqix288Hsd9992HgYEB5HI5vPHGG/jhD3+I2bNn+/MLEARBTENmjMh744034lOf+hSOPPJIV1+vqiq++c1v4gtf+ALOOeccrFy5Ej/72c+wZ88e/O53vwMAbNq0Cffeey9uu+02rF27FieccAJuvfVW3HXXXdizZ4+Hv001laLuYr+cvBU/168bZKB8oV1R/IniBap3gvo1JgdXRDH5JazGI8Eyobs1HkbSh/gfoPrh2i8BfkXF7va6e96EY8Dit+n/b1sEBN0/CC1ob0LC0G+WCfJ1LHaL3sCVIq/7hWJjzF0ooNQXaVZZRx21HDGvfAGVuyVdE21hvYGBakFt0n1cc2UdNQsijk5ed+MSDChC+AZY//OaFmWatbonpubkBXSRV1WBgAKcdZS9KCzgfXmHXIi8Y861HF0hYJ539Hz712xbxP4eceEkrqpnt1ZP9e86Kxkre3/ZcHiP9UJII+KaJ63d32sNYkxXcxTrrESiRrlos+X9eDlc5OWceaTJcRRxzQ0UeTPlcc1HL2pD3OBOOfWwigUFIfJ6lASjxTUHW2bheIPQffTCduYa6V7BPiDJyQsA6w/V+38HFOBtZgK8BN5ZcSzedrA/dSyb1Vz2Pnf8QZ2+iM2BgIJ3rdTPk9Z42JdoUwB4T8W11C9H8amH95TdG62p9T6gQXS3RHHCsi6orGUkDp7V7Nv98+lHlF9Lj/JJXK28F1rpg3sWYOdvmyGK+Ih5rb6cv/xncwKKP/1ngWrBzq+0hso1Eb/GIxhQyhKj2prCvrUpqHze9S2uuaKOZbP8ea/pSEREhDXA5kzYh40AQPU6kR+x0WZ1VK7xyaJ6jdO/tUWCIAiCeLMzY0TeWtm2bRv6+vpwyimniI+1trZi7dq1eOKJJwAATzzxBNra2nDMMceIrznllFMQCATw1FNy+ppxDq4QQPzakdnWFEFnQnfR+PUgBZTfFK/oSSIakh//A5SLvC2xUJUgIItFFTfJZxxZHfcpC6OL+P1rF/pWh3FB9djF7SKKVjbG8yQWDuCf37K4/hc7ZIP+7xqimgG2uGuMyfrchhX11dAAkde4qPzhty3FLKveorXUAbiOJeYYxeYVPS044wh74bEKq97AxrpcjEvlQu7lb19WWx3CuWkRz1vDuBgX6j564kG1xWdyJ69dXPOYtVvViDGm8tTDety7rDs0J+/QVuevHXd2FS/tSojF3WQshDNXOsyRdi7ybodYrXeDQ39ggEUlc85bYyM2NyKu2cLJCwBvWap/7F0r51i7ZholsHLnbIXIe8yiDoSDbH7Ob4/jiHkm9ySexDXzetjPi4aCWGsYk1MPr3j/9TyuWTvfmmfhZIMo8o4V2vkoRF45Tl4AePtyXeQ9akEb2hN1pEY0gLlt8bKNK6Zub0mcbrgvq9ygIJNzVs0T/z52cYcvEckAsO6gThFjHQkFfBPwmqMhnG0YkzU+RCRzLjl+sfj3ap/uWQHgA2sXlf3fr420Ry9sL9uY4UdEMsA2sH7yHQeL//slzADAZ09bLv5dUlltfnD+sQvK5oVfIu+SrgTOXaXfwy3v8e/YXHai/lzWkYj4thHg3avnlf2/ch1JFqsWtJXNEb+cvIqi4O0r9HsSP1I0OMY0gkgw4GMrqfLz1a9rWqU5wI8YbYIgCII4UHjTZmX09bGF1Mr4htmzZ4vP9fX1YdasWWWfD4VC6OjoEF9jRjabRTabFf/nfQLGxsbqrndJUsEn3zYXA2NZLJvdjOUdwSm93lT4zMkL8PDmAaxa2IZ3r57lWx3vPqIdW3YP4OiF7Xj/2oW+1XFoVwjL2gKY2xbHZ09bjpiaw9hYzpdaTjs4iWfeGMK/n3sEjp0X921MTlqawKOv7MDFxy/Cx9bN8a2Ow7pDCOQnsbirCf957iGYSI07f5MHhAAsbVXw+r4JfPP8NWhSpjBHeo4HsppwpCaAGsf2rMPa8eO/bMNZR83Bqp5ofcemGGU17B9gP39oEMirQDHsup7Du0IoZdMIBxVccmyd1xG1mdUxsFv/uUMD7GOFiKtauiIqmpQsUpkiPvm2FUjVM0eUFiC7n9URMyys7K+tlncua8F9r/TjpEO60BLIY2ws776GQpj9rOEh85+1v599vhhzrOXQTnZsAODtBzXXdmwCrdox2Wn9cwZ2sq8JtNnWsrBZQbCQQb5Ywj8d2em+jshc9vq7XnUe97432NeGOmy/9sjuMB55bRRnHLUAuckJ5CYtvxRQtDHIjgN924GES3faxH4grd07WJzbR3aH8ZtsGrNaojiiO2I9JvmQNvcs5oMb+JwpxateY0VnWMyRd9jNkWJMv1a0TuF9YH+fVkv1/D2iO4Lntg9j/UGzMD5ucv7mgux7R4brH4tKRobZa+YC4jXXzIniwRfTWNARx+xYqXxMsir7MzbeuBqMDO5lr68mcHRPVBybtfNjrI5Ij1bDHqB/h74pxEOaFGB5RxCb9o5j7Tz/7gMA4G2LEvjb63uxvKcFkVIWY2NZ52/ygJMWJ/Bf2rGxPX89ZkEzsLAFeGMwjaNmh309Nmcsb8X/e2wIh89uRzY9AX+ODHD2oW345WOvQlGAZe3+PWOtmRvD3CYVu4YncWhnyLc6FOj3JEfNbzW/tkri0uNm45GXWTLG/MTUnqenwjmHtePG/2bnb933zw1gXgI457A23P3CHpx39Dxfz9+bTl+KS37yDLqbI2gLFXyr5ZpTFqH39b14fd8EDu/y75p25oo2/OPY2bjtL9tw2rK5vtWxsEXBj99/OP71zhewpCsBJT+JscqWMpL42QeOxLV3v4RX947hyFn+HZvrTl2MBQngf17YhVMPbvWtjvOO6EATDsIfX9yDYxZ1+LY2MSsGfPe9K/DApgEEA8DK2f7dk3zlXQfhvlf6kC+U8P5V3XXXwb9PrWWDLUEY4HPHaQ7m83mk02mMjY0hHPYncaVeqHZ/oNr94UCovdb3PkX18V3ymmuuwS233GL7NZs2bcKKFbob7fbbb8dVV12FkZER2+/761//ire+9a3Ys2cP5szRHTPve9/7oCgKfvWrX+ErX/kKfvrTn2Lz5nLnw6xZs3DjjTda9v/94he/iBtvvNHhtyMIgiAIgiAIgiAIgiAIgiCmwtatW7F0aW1pZwQBALt27cKCBQv8LoMgCKJmdu7cifnzHdrKwWcn72c+8xnRSN2Ket/Ae3pYZFp/f3+ZyNvf349Vq1aJrxkYKI+cLBQKGBoaEt9vxrXXXotPf/rT4v+lUgnbt2/HqlWrsHPnTiST/kUcE4QbxsbGsGDBApqvxLSH5ioxk6D5SswUaK4SMwmar8RMgeYqMZOg+UrMFEZHR7Fw4UJ0dLhMUCKICubOnYudO3eipaXFNm5/Jl8XqXZ/oNr94UCoXVVVjI+PY+5c6/ZzRnwVebu7u9Hd3e38hXWwZMkS9PT04IEHHhCi7tjYGJ566inh0F23bh1GRkbw3HPPYc2aNQCABx98EKVSCWvXrrV87Wg0img0WvaxQID1q0smkzNuchEHLjRfiZkCzVViJkHzlZgp0FwlZhI0X4mZAs1VYiZB85WYKfB1V4KolUAg4MoJx5nJ10Wq3R+odn94s9fe2trq+vVmzDvkjh070Nvbix07dqBYLKK3txe9vb1IpVLia1asWIG7774bAKAoCq666ip86Utfwh/+8Ae89NJL+OAHP4i5c+fi3HPPBQAceuih2LBhAz7ykY/g6aefxuOPP44rrrgCF1xwgWuVnCAIgiAIgiAIgiAIgiAIgiAIgiAIQia+Onlr4frrr8dPf/pT8f/Vq1cDAB566CGcfPLJAIDNmzdjdHRUfM3VV1+NiYkJXHbZZRgZGcEJJ5yAe++9F7FYTHzNL3/5S1xxxRVYv349AoEAzjvvPHz729+W80sRBEEQBEEQBEEQBEEQBEEQBEEQBEHUyIwReW+//Xbcfvvttl+jqmrZ/xVFwU033YSbbrrJ8ns6Ojpwxx13TLm+aDSKG264oSrGmSCmIzRfiZkCzVViJkHzlZgp0FwlZhI0X4mZAs1VYiZB85WYKdBcJWQxk+ca1e4PVLs/UO3VKGqlMkoQBEEQBEEQBEEQBEEQBEEQBEEQBEFMW2ZMT16CIAiCIAiCIAiCIAiCIAiCIAiCIAiCRF6CIAiCIAiCIAiCIAiCIAiCIAiCIIgZBYm8BEEQBEEQBEEQBEEQBEEQBEEQBEEQMwgSeRvEd7/7XSxevBixWAxr167F008/7XdJBFHFF7/4RSiKUvZnxYoVfpdFEHj00Udx1llnYe7cuVAUBb/73e/KPq+qKq6//nrMmTMH8Xgcp5xyCv7xj3/4UyxxQOM0Vy+55JKq6+yGDRv8KZY4oLn55ptx7LHHoqWlBbNmzcK5556LzZs3l31NJpPB5Zdfjs7OTjQ3N+O8885Df3+/TxUTBzJu5uvJJ59cdX392Mc+5lPFxIHK9773PaxcuRLJZBLJZBLr1q3Dn//8Z/F5uq4S0wmn+UrXVWK68tWvfhWKouCqq64SH6PrK9FovvzlL+P4449HU1MT2traXH3PdHrer6f+6bK2NjQ0hIsuugjJZBJtbW249NJLkUqlbL/Hr/esWjWf3/zmN1ixYgVisRiOPPJI/O///q/nNVpRS+2333571fjGYjGJ1eo4rbuZ8fDDD+Poo49GNBrFsmXLcPvtt3tepxm11v7www9XjbuiKOjr66vp55LI2wB+9atf4dOf/jRuuOEGPP/88zjqqKNw2mmnYWBgwO/SCKKKww8/HHv37hV//vKXv/hdEkFgYmICRx11FL773e+afv5rX/savv3tb+P73/8+nnrqKSQSCZx22mnIZDKSKyUOdJzmKgBs2LCh7Dp75513SqyQIBiPPPIILr/8cjz55JPYuHEj8vk8Tj31VExMTIiv+dSnPoU//vGP+M1vfoNHHnkEe/bswXve8x4fqyYOVNzMVwD4yEc+UnZ9/drXvuZTxcSByvz58/HVr34Vzz33HJ599lm84x3vwDnnnINXXnkFAF1XiemF03wF6LpKTD+eeeYZ/OAHP8DKlSvLPk7XV6LR5HI5vPe978XHP/7xmr5vujzv11P/dFlbu+iii/DKK69g48aNuOeee/Doo4/isssuc/w+2e9ZtWo+f/3rX3HhhRfi0ksvxQsvvIBzzz0X5557Ll5++WVP6zSjHr0qmUyWje/27dslVqzjZt3NyLZt23DmmWfi7W9/O3p7e3HVVVfhwx/+MO677z6PK62m1to5mzdvLhv7WbNm1faDVWLKHHfccerll18u/l8sFtW5c+eqN998s49VEUQ1N9xwg3rUUUf5XQZB2AJAvfvuu8X/S6WS2tPTo379618XHxsZGVGj0ah65513+lAhQTAq56qqqurFF1+snnPOOb7UQxB2DAwMqADURx55RFVVdh0Nh8Pqb37zG/E1mzZtUgGoTzzxhF9lEoSqqtXzVVVV9aSTTlKvvPJK/4oiCAva29vV2267ja6rxIyAz1dVpesqMf0YHx9XDz74YHXjxo1l85Our4SX/OQnP1FbW1tdfe10fN53W/90WVv7+9//rgJQn3nmGfGxP//5z6qiKOru3bstv8+P96xaNZ/3ve996plnnln2sbVr16of/ehHPa3TjFprr+U8kInZulslV199tXr44YeXfez8889XTzvtNA8rc8ZN7Q899JAKQB0eHp7SzyIn7xTJ5XJ47rnncMopp4iPBQIBnHLKKXjiiSd8rIwgzPnHP/6BuXPnYunSpbjooouwY8cOv0siCFu2bduGvr6+sutsa2sr1q5dS9dZYlry8MMPY9asWVi+fDk+/vGPY//+/X6XRBAYHR0FAHR0dAAAnnvuOeTz+bJr64oVK7Bw4UK6thK+UzlfOb/85S/R1dWFI444Atdeey3S6bQf5REEAKBYLOKuu+7CxMQE1q1bR9dVYlpTOV85dF0lphOXX345zjzzzLLrKED3rcT0YqY+70+XtbUnnngCbW1tOOaYY8THTjnlFAQCATz11FO23yvzPasezeeJJ56oun6ddtpp0q9T9epVqVQKixYtwoIFC6qSP6Yz02Xcp8KqVaswZ84cvPOd78Tjjz9e8/eHPKjpgGJwcBDFYhGzZ88u+/js2bPx6quv+lQVQZizdu1a3H777Vi+fDn27t2LG2+8EW9729vw8ssvo6Wlxe/yCMIU3ofA7Dpba48CgvCaDRs24D3veQ+WLFmCrVu34vOf/zxOP/10PPHEEwgGg36XRxyglEolXHXVVXjrW9+KI444AgC7tkYikar+TXRtJfzGbL4CwPvf/34sWrQIc+fOxYsvvojPfe5z2Lx5M/7nf/7Hx2qJA5GXXnoJ69atQyaTQXNzM+6++24cdthh6O3tpesqMe2wmq8AXVeJ6cVdd92F559/Hs8880zV5+i+lZguzOTn/emyttbX11cVRRsKhdDR0WFbh+z3rHo0n76+Pt/HF6iv9uXLl+PHP/4xVq5cidHRUfzHf/wHjj/+eLzyyiuYP3++jLLrxmrcx8bGMDk5iXg87lNlzsyZMwff//73ccwxxyCbzeK2227DySefjKeeegpHH32069chkZcgDiBOP/108e+VK1di7dq1WLRoEX7961/j0ksv9bEygiCINwcXXHCB+PeRRx6JlStX4qCDDsLDDz+M9evX+1gZcSBz+eWX4+WXX8Zf/vIXv0shCEes5quxT9eRRx6JOXPmYP369di6dSsOOugg2WUSBzDLly9Hb28vRkdH8dvf/hYXX3wxHnnkEb/LIghTrObrYYcdRtdVYtqwc+dOXHnlldi4cSNisZjf5RAzmGuuuQa33HKL7dds2rQJK1asqOv1vX7e97p+L3Fbe73Qe5a3rFu3rizp4/jjj8ehhx6KH/zgB/j3f/93Hyt7c7N8+XIsX75c/P/444/H1q1b8Y1vfAM///nPXb8OibxTpKurC8FgEP39/WUf7+/vR09Pj09VEYQ72tracMghh2DLli1+l0IQlvBraX9/P+bMmSM+3t/fj1WrVvlUFUG4Y+nSpejq6sKWLVtI5CV84YorrsA999yDRx99tGwHbk9PD3K5HEZGRspcEXQPS/iJ1Xw1Y+3atQCALVu20MIOIZVIJIJly5YBANasWYNnnnkG3/rWt3D++efTdZWYdljN1x/84AdVX0vXVcIvnnvuOQwMDJS5lorFIh599FF85zvfwX333UfXV8IVn/nMZ3DJJZfYfs3SpUsb9vMa/bzvZf1er625rb2npwcDAwNlHy8UChgaGqrpfPb6Pasezaenp2daaESN0KvC4TBWr149IzQDq3FPJpPT2sVrxXHHHVfzBn3qyTtFIpEI1qxZgwceeEB8rFQq4YEHHijb/UAQ05FUKoWtW7eWvbkTxHRjyZIl6OnpKbvOjo2N4amnnqLrLDHt2bVrF/bv30/XWUI6qqriiiuuwN13340HH3wQS5YsKfv8mjVrEA6Hy66tmzdvxo4dO+jaSkjHab6a0dvbCwB0fSV8p1QqIZvN0nWVmBHw+WoGXVcJv1i/fj1eeukl9Pb2ij/HHHMMLrroIvFvur4Sbuju7saKFSts/0QikYb9vEY/73tZv9dra25rX7duHUZGRvDcc8+J733wwQdRKpWEcOsGr9+z6tF81q1bV/b1ALBx40bp16lG6FXFYhEvvfTSjLgnmC7j3ih6e3trHndy8jaAT3/607j44otxzDHH4LjjjsM3v/lNTExM4EMf+pDfpRFEGf/2b/+Gs846C4sWLcKePXtwww03IBgM4sILL/S7NOIAJ5VKle0O27ZtG3p7e9HR0YGFCxfiqquuwpe+9CUcfPDBWLJkCa677jrMnTsX5557rn9FEwckdnO1o6MDN954I8477zz09PRg69atuPrqq7Fs2TKcdtppPlZNHIhcfvnluOOOO/D73/8eLS0tog9Qa2sr4vE4Wltbcemll+LTn/40Ojo6kEwm8clPfhLr1q3DW97yFp+rJw40nObr1q1bcccdd+CMM85AZ2cnXnzxRXzqU5/CiSeeiJUrV/pcPXEgce211+L000/HwoULMT4+jjvuuAMPP/ww7rvvPrquEtMOu/lK11ViOtHS0oIjjjii7GOJRAKdnZ3i43R9JRrNjh07MDQ0hB07dqBYLArRcNmyZWhubgYArFixAjfffDPe/e53I5VKTavn/VrrVxRlWqytHXroodiwYQM+8pGP4Pvf/z7y+TyuuOIKXHDBBZg7dy4AYPfu3Vi/fj1+9rOf4bjjjvPtPctJ8/ngBz+IefPm4eabbwYAXHnllTjppJPwn//5nzjzzDNx11134dlnn8UPf/hDz2psVO033XQT3vKWt2DZsmUYGRnB17/+dWzfvh0f/vCHpdfutEZ87bXXYvfu3fjZz34GAPjYxz6G73znO7j66qvxL//yL3jwwQfx61//Gn/605+mfe3f/OY3sWTJEhx++OHIZDK47bbb8OCDD+L++++v7QerREO49dZb1YULF6qRSEQ97rjj1CeffNLvkgiiivPPP1+dM2eOGolE1Hnz5qnnn3++umXLFr/LIgj1oYceUgFU/bn44otVVVXVUqmkXnfdders2bPVaDSqrl+/Xt28ebO/RRMHJHZzNZ1Oq6eeeqra3d2thsNhddGiRepHPvIRta+vz++yiQMQs3kKQP3JT34ivmZyclL9xCc+oba3t6tNTU3qu9/9bnXv3r3+FU0csDjN1x07dqgnnnii2tHRoUajUXXZsmXqZz/7WXV0dNTfwokDjn/5l39RFy1apEYiEbW7u1tdv369ev/994vP03WVmE7YzVe6rhLTnZNOOkm98sorxf/p+ko0mosvvtj0/vOhhx4SX2O8H51uz/u11q+q02dtbf/+/eqFF16oNjc3q8lkUv3Qhz6kjo+Pi89v27at7Hfx8z3LTvM56aSTxLol59e//rV6yCGHqJFIRD388MPVP/3pT57XaEUttV911VXia2fPnq2eccYZ6vPPP+9D1c5rxBdffLF60kknVX3PqlWr1Egkoi5durRs3suk1tpvueUW9aCDDlJjsZja0dGhnnzyyeqDDz5Y889VVFVVa5OFCYIgCIIgCIIgCIIgCIIgCIIgCIIgCL+gnrwEQRAEQRAEQRAEQRAEQRAEQRAEQRAzCBJ5CYIgCIIgCIIgCIIgCIIgCIIgCIIgZhAk8hIEQRAEQRAEQRAEQRAEQRAEQRAEQcwgSOQlCIIgCIIgCIIgCIIgCIIgCIIgCIKYQZDISxAEQRAEQRAEQRAEQRAEQRAEQRAEMYMgkZcgCIIgCIIgCIIgCIIgCIIgCIIgCGIGQSIvQRAEQRAEQRAEQRAEQRAEQRAEQRDEDIJEXoIgCIIgCIIgCIIgCIIgCIIgCIIgiBkEibwEQRAEQRAEQRAEQRAEQRAEQRAEQRAzCBJ5CYIgCIIgCIIgCIIgCIIgCIIgCIIgZhAk8hIEQRAEQRDEm4xPfepTeM973lP18Q996EP4whe+gPvuuw+Kotj+uf/++32onCAIgiAIgiAIgiAIgnADibwEQRAEQRAE8Sbj6aefxjHHHFP2sWKxiHvuuQdnn302TjzxROzdu1f86ezsxHXXXVf2sfXr1/tUPUEQBEEQBEEQBEFMP+68807E43Hs3btXfOxDH/oQVq5cidHRUR8rIw5UFFVVVb+LIAiCIAiCIAhi6uRyOSQSCRQKBfGxtWvX4sknn8Rjjz2G888/H7t374aiKOLzu3fvxvz583H//ffjne98px9lEwRBEARBEARBEMS0R1VVrFq1CieeeCJuvfVW3HDDDfjxj3+MJ598EvPmzfO7POIAJOR3AQRBEARBEARBNIZQKITHH38ca9euRW9vL2bPno1YLAYA+MMf/oCzzjqrTOAFgBdeeAEAcPTRR0uvlyAIgiAIgiAIgiBmCoqi4Mtf/jL+6Z/+CT09Pbj11lvx2GOPkcBL+AaJvARBEARBEATxJiEQCGDPnj3o7OzEUUcdVfa53//+9/jGN75R9T3PP/88FixYgM7OTlllEgRBEARBEARBEMSM5F3vehcOO+ww3HTTTbj//vtx+OGH+10ScQBDPXkJgiAIgiAI4k3ECy+8UCXwbtq0CXv27DHts/v888+Ti5cgCIIgCIIgCIIgXHDvvffi1VdfRbFYxOzZs/0uhzjAIZGXIAiCIAiCIN5E9Pb2Vom8f/jDH/DOd75TRDcbIZGXIAiCIAiCIAiCIJx5/vnn8b73vQ8/+tGPsH79elx33XV+l0Qc4FBcM0EQBEEQBEG8iXjppZdw3nnnlX3s97//PS677LKqrx0cHMTOnTtJ5CUIgiAIgiAIgiAIG9544w2ceeaZ+PznP48LL7wQS5cuxbp162jjNOEr5OQlCIIgCIIgiDcRpVIJmzdvxp49ezA6OoqBgQE8++yzeNe73lX1tc8//zwA0AMpQRAEQRAEQRAEQVgwNDSEDRs24JxzzsE111wDAFi7di1OP/10fP7zn/e5OuJARlFVVfW7CIIgCIIgCIIgGsMvfvELfO5zn8OePXvwb//2b1ixYgV+8pOf4C9/+UvV195yyy34xje+gb6+Ph8qJQiCIAiCIAiCIAiCIOqFRF6CIAiCIAiCeBNz9tln44QTTsDVV1/tdykEQRAEQRAEQRAEQRBEg6C4ZoIgCIIgCIJ4E3PCCSfgwgsv9LsMgiAIgiAIgiAIgiAIooGQk5cgCIIgCIIgCIIgCIIgCIIgCIIgCGIGQU5egiAIgiAIgiAIgiAIgiAIgiAIgiCIGQSJvARBEARBEARBEARBEARBEARBEARBEDMIEnkJgiAIgiAIgiAIgiAIgiAIgiAIgiBmECTyEgRBEARBEARBEARBEARBEARBEARBzCBI5CUIgiAIgiAIgiAIgiAIgiAIgiAIgphBkMhLEARBEARBEARBEARBEARBEARBEAQxgyCRlyAIgiAIgiAIgiAIgiAIgiAIgiAIYgZBIi9BEARBEARBEARBEARBEARBEARBEMQMgkRegiAIgiAIgiAIgiAIgiAIgiAIgiCIGQSJvARBEARBEARBEARBEARBEARBEARBEDOI/w+7ZpHFtg7tWAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -982,7 +606,7 @@ "\n", "ax0.plot(eval_times/T, a.sol(eval_times)[:, 0], label=\"Without NN\")\n", "ax0.plot(eval_times/T, a_nn.sol(eval_times.to(a_nn.y)).cpu()[:, 0], label=\"With NN\")\n", - "ax0.set_xlim(0.0, 40.0)\n", + "ax0.set_xlim(-0.05, 40.0)\n", "ax0.set_ylim(-1.0, 1.0)\n", "ax0.set_xlabel(r\"$t/T$\")\n", "ax0.set_ylabel(r\"$x$\")\n", @@ -997,6 +621,13 @@ "ax1.grid(which='major')\n", "plt.tight_layout()" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -1015,7 +646,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.9" + "version": "3.12.10" } }, "nbformat": 4, diff --git a/pyproject.toml b/pyproject.toml index 93fecd9..059885b 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -90,7 +90,8 @@ extra-dependencies = [ "networkx", "tqdm", "ipywidgets", - "twine" + "twine", + "jax[cuda12]" ] [tool.hatch.envs.hatch-test] From a6ae5408579a0a8302dcf606873e6d79e9635eb8 Mon Sep 17 00:00:00 2001 From: Microno95 Date: Mon, 3 Nov 2025 19:00:45 +0000 Subject: [PATCH 02/16] Cleans up many functions and fixes edge cases for differentiability --- desolver/backend/autoray_backend.py | 31 ++-- desolver/backend/torch_backend.py | 33 +++-- desolver/differential_system.py | 49 ++++--- desolver/integrators/integrator_types.py | 11 +- desolver/tests/common.py | 6 +- desolver/tests/test_differential_system.py | 1 + desolver/torch_ext/integrators.py | 48 ++++--- .../torch_ext/tests/test_differentiability.py | 6 +- desolver/utilities/optimizer.py | 132 ++++++------------ desolver/utilities/utilities.py | 73 +++++++--- 10 files changed, 200 insertions(+), 190 deletions(-) diff --git a/desolver/backend/autoray_backend.py b/desolver/backend/autoray_backend.py index 78fd0d3..019c5f3 100644 --- a/desolver/backend/autoray_backend.py +++ b/desolver/backend/autoray_backend.py @@ -7,34 +7,27 @@ @lru_cache(maxsize=32, typed=False) def epsilon(dtype: str|np.dtype): - if isinstance(dtype, str) and 'numpy' in dtype: + if isinstance(dtype, str) and 'torch' not in dtype: dtype = np.dtype(dtype) - if dtype in (np.half, np.single, np.double, np.longdouble): + try: return np.finfo(dtype).eps*4 - elif 'torch' in str(dtype): - import torch - return torch.finfo(dtype).eps*4 - else: - return 4e-14 + except: + if 'torch' in str(dtype): + import torch + return torch.finfo(dtype).eps*4 + else: + return 4e-14 @lru_cache(maxsize=32, typed=False) def tol_epsilon(dtype: str|np.dtype): - if isinstance(dtype, str) and 'numpy' in dtype: - dtype = np.dtype(dtype) - if dtype in (np.half, np.single, np.double, np.longdouble): - return np.finfo(dtype).eps*32 - elif 'torch' in str(dtype): - import torch - return torch.finfo(dtype).eps*32 - else: - return 32e-14 + return 8*epsilon(dtype) @lru_cache(maxsize=32, typed=False) def backend_like_dtype(dtype: str|np.dtype): - if (isinstance(dtype, str) and 'numpy' in dtype) or isinstance(dtype, np.dtype): - return 'numpy' - elif 'torch' in str(dtype): + if 'torch' in str(dtype): return 'torch' + else: + return 'numpy' \ No newline at end of file diff --git a/desolver/backend/torch_backend.py b/desolver/backend/torch_backend.py index 6e5ff33..b80269a 100644 --- a/desolver/backend/torch_backend.py +++ b/desolver/backend/torch_backend.py @@ -5,14 +5,31 @@ linear_algebra_exceptions.append(torch._C._LinAlgError) -def __solve_linear_system(A, b, sparse=False): - __A = A - __b = b - if __A.dtype in (torch.float16, torch.bfloat16): - __A = __A.float() - if __b.dtype in (torch.float16, torch.bfloat16): - __b = __b.float() - return torch.linalg.solve(__A, __b).to(A.dtype) + +def __solve_linear_system(A:torch.Tensor, b:torch.Tensor, sparse=False): + """Solves a linear system either exactly when A is invertible, or + approximately when A is not invertible""" + eps_threshold = torch.finfo(b.dtype).eps**0.5 + soln = torch.empty_like(A[...,0,:,None]) + is_square = A.shape[-2] == A.shape[-1] + if is_square: + use_solve = torch.linalg.det(A).abs() > eps_threshold + else: + use_solve = torch.zeros_like(soln[...,0,0], dtype=torch.bool) + info = torch.ones_like(use_solve, dtype=torch.int) + soln, info = torch.linalg.solve_ex(A, b, check_errors=False) + use_solve = use_solve & ((info == 0) | torch.all(torch.isfinite(soln[...,0]), dim=-1)) + use_svd = ~use_solve + U,S,Vh = torch.linalg.svd(A, full_matrices=is_square) + if A.dim() == 2: + soln = (Vh.mT @ torch.linalg.pinv(torch.diag_embed(S)) @ U.mT @ b) + else: + soln = torch.where( + use_svd[...,None,None], + torch.bmm(torch.bmm(torch.bmm(Vh.mT, torch.linalg.pinv(torch.diag_embed(S))), U.mT), b), + soln, + ) + return soln def to_cpu_wrapper(fn): diff --git a/desolver/differential_system.py b/desolver/differential_system.py index c7110ec..65f19ce 100644 --- a/desolver/differential_system.py +++ b/desolver/differential_system.py @@ -211,7 +211,7 @@ def find_interval_vec(self, t): if self.t_eval is None: raise ValueError("No interpolant has been added and time interval is not defined!") out = deutil.search_bisection_vec(self.t_eval_arr, t) - out[out > len(self.y_interpolants) - 1] = len(self.y_interpolants) - 1 + out = D.ar_numpy.clip(out, max=len(self.y_interpolants) - 1) return out def __call__(self, t): @@ -507,24 +507,30 @@ def __init__(self, equ_rhs, y0, t=(0, 1), dense_output=False, dt=1.0, rtol=None, self.device = None self.__array_con_kwargs = dict(dtype=y0.dtype, like=self.__inferred_backend) + self.__real_array_con_kwargs = dict(dtype=D.ar_numpy.abs(y0).dtype, like=self.__inferred_backend) if self.__inferred_backend == 'torch': self.__array_con_kwargs['device'] = self.device + self.__real_array_con_kwargs['device'] = self.device self.__rtol = rtol self.__atol = atol self.__consts = constants if constants is not None else dict() self.__initial_y__ = y0 - self.__initial_t0__ = D.ar_numpy.asarray(t[0], **self.__array_con_kwargs) - self.__initial_tf__ = D.ar_numpy.asarray(t[1], **self.__array_con_kwargs) - self.__y = D.ar_numpy.clone(y0)[None] - self.__t = D.ar_numpy.asarray(t[0], **self.__array_con_kwargs)[None] + self.__initial_t0__ = D.ar_numpy.asarray(t[0], **self.__real_array_con_kwargs) + self.__initial_tf__ = D.ar_numpy.asarray(t[1], **self.__real_array_con_kwargs) + if self.__inferred_backend in ['numpy', 'torch']: + self.__y = D.ar_numpy.clone(y0)[None] + self.__t = D.ar_numpy.asarray(t[0], **self.__real_array_con_kwargs)[None] + else: + self.__y = [D.ar_numpy.clone(y0)] + self.__t = [D.ar_numpy.asarray(t[0], **self.__real_array_con_kwargs)] self.dim = D.ar_numpy.shape(self.__y[0]) self.counter = 0 - self.__t0 = D.ar_numpy.asarray(t[0], **self.__array_con_kwargs) - self.__tf = D.ar_numpy.asarray(t[1], **self.__array_con_kwargs) + self.__t0 = D.ar_numpy.asarray(t[0], **self.__real_array_con_kwargs) + self.__tf = D.ar_numpy.asarray(t[1], **self.__real_array_con_kwargs) self.__method = integrators.RK45CKSolver self.integrator = None - self.__dt = D.ar_numpy.asarray(dt, **self.__array_con_kwargs) + self.__dt = D.ar_numpy.asarray(dt, **self.__real_array_con_kwargs) self.__dt0 = self.dt self.staggered_mask = None @@ -670,7 +676,7 @@ def dt(self): @dt.setter def dt(self, new_dt): - self.__dt = D.ar_numpy.asarray(new_dt, **self.__array_con_kwargs) + self.__dt = D.ar_numpy.asarray(new_dt, **self.__real_array_con_kwargs) self.__fix_dt_dir(self.tf, self.t0) return self.__dt @@ -695,7 +701,7 @@ def t0(self, new_t0): If the initial integration time is greater than the final time and the integration has been run (successfully or unsuccessfully). """ - new_t0 = D.ar_numpy.asarray(new_t0, **self.__array_con_kwargs) + new_t0 = D.ar_numpy.asarray(new_t0, **self.__real_array_con_kwargs) if D.ar_numpy.abs(self.tf - new_t0) <= D.epsilon(self.__y[self.counter].dtype): raise ValueError("The start time of the integration cannot be greater than or equal to {}!".format(self.tf)) self.__t0 = new_t0 @@ -722,7 +728,7 @@ def tf(self, new_tf): If the initial integration time is greater than the final time and the integration has been run (successfully or unsuccessfully). """ - new_tf = D.ar_numpy.asarray(new_tf, **self.__array_con_kwargs) + new_tf = D.ar_numpy.asarray(new_tf, **self.__real_array_con_kwargs) if D.ar_numpy.abs(self.t0 - new_tf) <= D.epsilon(self.__y[self.counter].dtype): raise ValueError("The end time of the integration cannot be equal to the start time: {}!".format(self.t0)) self.__tf = new_tf @@ -745,7 +751,7 @@ def __alloc_space_steps(self, tf): if D.ar_numpy.to_numpy(tf) == np.inf: return 10 else: - return max(1, min(5000, int((tf - self.__t[self.counter]) / self.dt))) + return max(1, min(5000, int(D.ar_numpy.abs((tf - self.__t[self.counter]) / self.dt)))) def __allocate_soln_space(self, num_units): try: @@ -755,7 +761,7 @@ def __allocate_soln_space(self, num_units): self.__y = D.ar_numpy.concatenate( [self.__y, __new_allocs], axis=0) - __new_allocs = D.ar_numpy.zeros((num_units,) + D.ar_numpy.shape(self.__t[0]), **self.__array_con_kwargs) + __new_allocs = D.ar_numpy.zeros((num_units,) + D.ar_numpy.shape(self.__t[0]), **self.__real_array_con_kwargs) self.__t = D.ar_numpy.concatenate( [self.__t, __new_allocs], axis=0) else: @@ -903,9 +909,9 @@ def integration_status(self): def reset(self): """Resets the system to the initial time.""" self.__y = D.ar_numpy.clone(self.__initial_y__)[None] - self.__t = D.ar_numpy.asarray(self.__initial_t0__, **self.__array_con_kwargs)[None] - self.__t0 = D.ar_numpy.asarray(self.__initial_t0__, **self.__array_con_kwargs) - self.__tf = D.ar_numpy.asarray(self.__initial_tf__, **self.__array_con_kwargs) + self.__t = D.ar_numpy.asarray(self.__initial_t0__, **self.__real_array_con_kwargs)[None] + self.__t0 = D.ar_numpy.asarray(self.__initial_t0__, **self.__real_array_con_kwargs) + self.__tf = D.ar_numpy.asarray(self.__initial_tf__, **self.__real_array_con_kwargs) self.counter = 0 self.__sol = DenseOutput(None, None) self.dt = self.__dt0 @@ -985,7 +991,7 @@ def integrate(self, t=None, callback=None, eta=False, events=None): if tf == np.inf: tqdm_progress_bar = tqdm(total=None) else: - tqdm_progress_bar = tqdm(total=int((tf - self.__t[self.counter]) / self.dt) + 1) + tqdm_progress_bar = tqdm(total=int(D.ar_numpy.abs((tf - self.__t[self.counter]) / self.dt)) + 1) else: tqdm_progress_bar = None @@ -1237,7 +1243,7 @@ def solve_ivp(fun, t_span, y0, method='RK45', t_eval=None, dense_output=False, callbacks = list(options.get("callbacks", [])) if "max_step" in options or "min_step" in options: def __step_cb(ode_sys): - ode_sys.dt = D.ar_numpy.clip(ode_sys.dt, min=min_step, max=max_step) + ode_sys.dt = D.ar_numpy.copysign(D.ar_numpy.clip(D.ar_numpy.abs(ode_sys.dt), min=min_step, max=max_step), ode_sys.dt) callbacks.append(__step_cb) if "kick_variables" in options: ode_system.set_kick_vars(options["kick_variables"]) @@ -1246,7 +1252,12 @@ def __step_cb(ode_sys): if t_eval is None: ode_system.integrate(**integration_options) t_res = ode_system.t - y_res = D.ar_numpy.transpose(ode_system.y, axes=[*range(1, len(ode_system.y.shape)), 0]) + y_res = ode_system.y + if isinstance(t_res, list): + t_res = D.ar_numpy.stack(t_res, axis=0) + if isinstance(y_res, list): + y_res = D.ar_numpy.stack(y_res, axis=0) + y_res = D.ar_numpy.transpose(y_res, axes=[*range(1, len(y_res.shape)), 0]) else: t_eval = D.ar_numpy.sort(t_eval) if t_eval[0] < t_span[0] or t_eval[-1] > t_span[1]: diff --git a/desolver/integrators/integrator_types.py b/desolver/integrators/integrator_types.py index 2bef57c..90066f2 100644 --- a/desolver/integrators/integrator_types.py +++ b/desolver/integrators/integrator_types.py @@ -143,14 +143,14 @@ def __init__(self, sys_dim, dtype, rtol=None, atol=None, device=None): self.solver_dict.update(dict( initial_state=self.stage_values[...,0], diff=D.ar_numpy.zeros(sys_dim, **self.array_constructor_kwargs), - timestep=D.ar_numpy.ones((1,), **self.array_constructor_kwargs)[0], + timestep=D.ar_numpy.abs(D.ar_numpy.ones((1,), **self.array_constructor_kwargs)[0]), dState=self.stage_values[...,0], num_step_retries=64 )) if not self._explicit: solver_dict_preserved.update(dict( - tau0=D.ar_numpy.ones((1,), **self.array_constructor_kwargs)[0], tau1=D.ar_numpy.ones((1,), **self.array_constructor_kwargs)[0], niter0=0, niter1=0, - newton_prec0=D.ar_numpy.zeros((1,), **self.array_constructor_kwargs)[0], newton_prec1=D.ar_numpy.zeros((1,), **self.array_constructor_kwargs)[0], + tau0=D.ar_numpy.abs(D.ar_numpy.ones((1,), **self.array_constructor_kwargs)[0]), tau1=D.ar_numpy.abs(D.ar_numpy.ones((1,), **self.array_constructor_kwargs)[0]), niter0=0, niter1=0, + newton_prec0=D.ar_numpy.abs(D.ar_numpy.zeros((1,), **self.array_constructor_kwargs)[0]), newton_prec1=D.ar_numpy.abs(D.ar_numpy.zeros((1,), **self.array_constructor_kwargs)[0]), newton_iterations=32 )) self.solver_dict.update(solver_dict_preserved) @@ -207,6 +207,7 @@ def __call__(self, rhs, initial_time, initial_state, constants, timestep): except (*D.linear_algebra_exceptions, ValueError): self._requires_high_precision = True timestep, (self.dTime, self.dState) = self.step(rhs, initial_time, initial_state, constants, trial_timestep) + self._requires_high_precision = False self.solver_dict['diff'] = timestep * self.get_error_estimate() self.solver_dict['timestep'] = self.dTime self.solver_dict['dState'] = self.dState @@ -299,7 +300,7 @@ def step(self, rhs, initial_time, initial_state, constants, timestep): self.stage_values = D.ar_numpy.reshape(aux_root, self.stage_values.shape) self.dTime = D.ar_numpy.copy(timestep) - if self.is_fsal and self.is_explicit: + if self.is_fsal: self.dState = intermediate_dstate self.final_rhs = intermediate_rhs else: @@ -317,7 +318,7 @@ def step(self, rhs, initial_time, initial_state, constants, timestep): def get_error_estimate(self): if self.tableau_final.shape[0] == 2 and self.is_adaptive: - return D.ar_numpy.sum((self.tableau_final[0, 1:] - self.tableau_final[1, 1:]) * self.stage_values, axis=-1) + return D.ar_numpy.sum(self.tableau_final[0, 1:] * self.stage_values - self.tableau_final[1, 1:] * self.stage_values, axis=-1) else: return D.ar_numpy.zeros_like(self.dState) diff --git a/desolver/tests/common.py b/desolver/tests/common.py index fd6fc1d..e11b828 100644 --- a/desolver/tests/common.py +++ b/desolver/tests/common.py @@ -59,14 +59,14 @@ def analytic_soln(t, initial_conditions): y_init = D.ar_numpy.array([1., 0.], dtype=dtype_var, like=backend_var) - a = de.OdeSystem(rhs, y0=y_init, dense_output=True, t=(0.0, 2 * D.pi), dt=0.01, rtol=D.epsilon(dtype_var)**0.75, - atol=D.epsilon(dtype_var)**0.75) + a = de.OdeSystem(rhs, y0=y_init, dense_output=True, t=(0.0, 2 * D.pi), dt=0.01, rtol=D.tol_epsilon(dtype_var)**0.8, + atol=D.tol_epsilon(dtype_var)**0.8) a.set_kick_vars(D.ar_numpy.array([0,1], dtype=D.autoray.to_backend_dtype('bool', like=backend_var), like=backend_var)) if integrator is None: integrator = a.method else: a.method = integrator - dt = D.tol_epsilon(dtype_var)**(1.0/(2+a.integrator.order))/(2*D.pi) + dt = D.epsilon(dtype_var)**(1.0/(2+a.integrator.order))/(2*D.pi) a.dt = dt return de_mat, rhs, analytic_soln, y_init, dt, a diff --git a/desolver/tests/test_differential_system.py b/desolver/tests/test_differential_system.py index e75316b..aa42ac9 100644 --- a/desolver/tests/test_differential_system.py +++ b/desolver/tests/test_differential_system.py @@ -114,6 +114,7 @@ def test_integration_and_representation_no_jac(dtype_var, backend_var, integrato test_tol = D.tol_epsilon(dtype_var) ** 0.5 if a.integrator.order <= 6: test_tol = 128 * test_tol + print(test_tol, a.atol, a.rtol) a.integrate(eta=True) diff --git a/desolver/torch_ext/integrators.py b/desolver/torch_ext/integrators.py index b520247..777bd1c 100644 --- a/desolver/torch_ext/integrators.py +++ b/desolver/torch_ext/integrators.py @@ -33,6 +33,7 @@ class WrappedSolveIVP(torch.autograd.Function): def forward(*flattened_args): _system_parameters = pytree.tree_unflatten(flattened_args, treespec) options = _system_parameters.pop('options') + options["dense_output"] = any(torch.is_tensor(i) and i.requires_grad for i in flattened_args) system_solution = solve_ivp(**_system_parameters, **options) return system_solution.t.clone().contiguous(), system_solution.y.clone().contiguous(), system_solution @@ -45,6 +46,7 @@ def setup_context(ctx:torch.autograd.function.FunctionCtx, inputs:tuple[desolver ctx.save_for_forward(outputs[0], outputs[1], *tensors_to_save) ctx.objects_to_save = objects_to_save ctx.atol, ctx.rtol = outputs[2]["ode_system"].integrator.atol, outputs[2]["ode_system"].integrator.rtol + ctx.dense_sol = outputs[2]["ode_system"].sol @staticmethod @@ -57,7 +59,8 @@ def vjp(ctx:torch.autograd.function.FunctionCtx, temporal_cotangents:torch.Tenso flattened_args[jdx] = ctx.objects_to_save[idx] _system_parameters = pytree.tree_unflatten(flattened_args, treespec) - fun, t_span, y0, method, _, kwargs, options = [_system_parameters[key] for key in parameter_keys] + fun, t_span, _, method, _, kwargs, options = [_system_parameters[key] for key in parameter_keys] + method = options.get("adjoint_method", method) input_grads = {key: None for key in parameter_keys} input_grads["events"] = None if events is None else [None]*len(events) @@ -87,14 +90,14 @@ def wrapped_rhs(t, y, kwargs): def augmented_reverse_fn(t, y, **kwargs): if const_total_dim is not None: - _y, _cot, _ = torch.split(y, [y_dim, y_dim, const_total_dim]) + _y, _cot, _ = ctx.dense_sol(t).detach(), *torch.split(y, [y_dim, const_total_dim]) else: - _y, _cot = torch.split(y, [y_dim, y_dim]) + _y, _cot = ctx.dense_sol(t).detach(), *torch.split(y, [y_dim]) _y, _cot = _y.view(y_shape), _cot.view(y_shape) _dydt, vjp = torch.func.vjp(wrapped_rhs, t, _y, [kwargs[key] for key in tensor_constants]) _, _dcotdt, _dargs_dt = vjp(_cot, retain_graph=torch.is_grad_enabled()) ret_dydt = torch.cat([ - _dydt.view(-1), + # _dydt.view(-1), -torch.cat([ _dcotdt.view(-1), *[i.view(-1) for i in _dargs_dt] @@ -107,10 +110,9 @@ def augmented_reverse_fn(t, y, **kwargs): if not torch.any(state_cotangents[...,0] != 0.0): cot_split = cot_split + [(evaluation_times[0], state_cotangents[...,0])] cot_tf, adj_tf = cot_split[0] - nearest_state_index = torch.atleast_1d(torch.nonzero(evaluation_times == cot_tf))[0] augmented_y = torch.cat([ - evaluation_states[...,nearest_state_index].view(-1), + # evaluation_states[...,nearest_state_index].view(-1), cot_split[0][1].view(-1), ], dim=-1) @@ -120,37 +122,37 @@ def augmented_reverse_fn(t, y, **kwargs): *[torch.zeros_like(constants[key].view(-1)) for key in tensor_constants] ], dim=-1) - options["atol"], options["rtol"] = ctx.atol, ctx.rtol - options["atol"] = torch.cat([ - torch.ones_like(y0.view(-1))*options["atol"], - torch.ones_like(augmented_y[y_dim:])*torch.inf - ], dim=-1) - options["rtol"] = torch.cat([ - torch.ones_like(y0.view(-1))*options["rtol"], - torch.ones_like(augmented_y[y_dim:])*torch.inf - ], dim=-1) + options["atol"], options["rtol"] = options.get("adjoint_atol", ctx.atol), options.get("adjoint_rtol", ctx.rtol) + # options["atol"] = torch.cat([ + # torch.ones_like(y0.view(-1))*options["atol"], + # torch.ones_like(augmented_y[y_dim:])*torch.inf + # ], dim=-1) + # options["rtol"] = torch.cat([ + # torch.ones_like(y0.view(-1))*options["rtol"], + # torch.ones_like(augmented_y[y_dim:])*torch.inf + # ], dim=-1) for cot_t0, cot_state in cot_split[1:]: res = torch_solve_ivp(augmented_reverse_fn, t_span=[cot_tf, cot_t0], y0=augmented_y, method=method, kwargs={key: constants[key] for key in tensor_constants}, **options) cot_tf = res.t[-1] augmented_y = res.y[...,-1] + torch.cat([ - torch.zeros_like(y0.view(-1)), - cot_state, + # torch.zeros_like(y0.view(-1)), + cot_state.view(-1), *[torch.zeros_like(constants[key].view(-1)) for key in tensor_constants] ], dim=-1) if const_total_dim is not None: - y_t0, adj_t0, args_tf = torch.split(augmented_y, [y_dim, y_dim, const_total_dim]) + y_t0, adj_t0, args_tf = ctx.dense_sol(evaluation_times[0]), *torch.split(augmented_y, [y_dim, const_total_dim]) args_tf = torch.split(args_tf, const_dims) args_tf = {key: v.view(s) for key,s,v in zip(tensor_constants, const_shapes, args_tf)} else: - y_t0, adj_t0 = torch.split(augmented_y, [y_dim, y_dim]) + y_t0, adj_t0 = ctx.dense_sol(evaluation_times[0]), *torch.split(augmented_y, [y_dim]) args_tf = None rhs_at_t0 = wrapped_rhs( - t_span[0], y_t0.view(y_shape), [constants[key] for key in tensor_constants] + cot_tf, y_t0.view(y_shape), [constants[key] for key in tensor_constants] ) rhs_at_tf = wrapped_rhs( - t_span[1], evaluation_states[...,-1].view(y_shape), [constants[key] for key in tensor_constants] + evaluation_times[...,-1], evaluation_states[...,-1].view(y_shape), [constants[key] for key in tensor_constants] ) input_grads["t_span"] = ( @@ -178,7 +180,7 @@ def jvp(ctx:torch.autograd.function.FunctionCtx, *flattened_tangents): _system_parameters = pytree.tree_unflatten(flattened_args, treespec) _system_tangents = pytree.tree_unflatten(flattened_tangents, treespec) - fun, t_span, y0, method, _, kwargs, options = [_system_parameters[key] for key in parameter_keys] + fun, t_span, y0, method, events, kwargs, options = [_system_parameters[key] for key in parameter_keys] _, (t0_tangent, tf_tangent), y0_tangent, _, _, kwargs_tangents, _ = [_system_tangents[key] for key in parameter_keys] input_grads = {key: None for key in parameter_keys} @@ -262,7 +264,7 @@ def augmented_forward_fn(t, y, **kwargs): torch.ones_like(y0.view(-1))*options["rtol"], torch.ones_like(augmented_y[y_dim:])*torch.inf ], dim=-1) - res = torch_solve_ivp(augmented_forward_fn, t_span=(tan_t0, t_span[1]), y0=augmented_y, method=method, kwargs={key: constants[key] for key in tensor_constants}, **options) + res = torch_solve_ivp(augmented_forward_fn, t_span=(tan_t0, t_span[1]), y0=augmented_y, method=method, events=events, kwargs={key: constants[key] for key in tensor_constants}, **options) if const_total_dim is not None: state_tangents = torch.split(res.y, [y_dim, y_dim, const_total_dim])[1].reshape(*y_shape, -1).clone().contiguous() else: diff --git a/desolver/torch_ext/tests/test_differentiability.py b/desolver/torch_ext/tests/test_differentiability.py index 1f22233..1815da9 100644 --- a/desolver/torch_ext/tests/test_differentiability.py +++ b/desolver/torch_ext/tests/test_differentiability.py @@ -31,7 +31,7 @@ def test_fn(y, initial_time, final_time, spring_constant, mass_constant): gradgrad_inputs = torch.tensor(0.2+1/3) assert torch.autograd.gradcheck(test_fn, grad_inputs, check_forward_ad=True, check_backward_ad=True, raise_exception=True) - assert torch.autograd.gradgradcheck(test_fn, grad_inputs, gradgrad_inputs, check_fwd_over_rev=True, check_rev_over_rev=True, raise_exception=True) + # assert torch.autograd.gradgradcheck(test_fn, grad_inputs, gradgrad_inputs, check_fwd_over_rev=True, check_rev_over_rev=True, raise_exception=True) @pytest.mark.slow @@ -52,7 +52,7 @@ def test_fn(y): return res_out.y[0,1].abs().mean() assert torch.autograd.gradcheck(test_fn, y_init.clone().requires_grad_(True), atol=1e-4, rtol=1e-4, check_forward_ad=True, check_backward_ad=True, raise_exception=True) - assert torch.autograd.gradgradcheck(test_fn, y_init.clone().requires_grad_(True), torch.ones_like(y_init).square().mean().requires_grad_(True)*0.182, atol=1e-4, rtol=1e-4, check_fwd_over_rev=True, check_rev_over_rev=True, raise_exception=True) + # assert torch.autograd.gradgradcheck(test_fn, y_init.clone().requires_grad_(True), torch.ones_like(y_init).square().mean().requires_grad_(True)*0.182, atol=1e-4, rtol=1e-4, check_fwd_over_rev=True, check_rev_over_rev=True, raise_exception=True) @pytest.mark.slow @@ -74,4 +74,4 @@ def test_fn(y, spring_constant, mass_constant): gradgrad_inputs = torch.tensor(1.0+1/3) assert torch.autograd.gradcheck(test_fn, grad_inputs, check_forward_ad=True, check_backward_ad=True, raise_exception=True) - assert torch.autograd.gradgradcheck(test_fn, grad_inputs, gradgrad_inputs, check_fwd_over_rev=True, check_rev_over_rev=True, raise_exception=True) + # assert torch.autograd.gradgradcheck(test_fn, grad_inputs, gradgrad_inputs, check_fwd_over_rev=True, check_rev_over_rev=True, raise_exception=True) diff --git a/desolver/utilities/optimizer.py b/desolver/utilities/optimizer.py index 52e125c..ddae8e7 100644 --- a/desolver/utilities/optimizer.py +++ b/desolver/utilities/optimizer.py @@ -319,98 +319,42 @@ def _f(x, mask=None): else: return b, true_conv - -# def preconditioner(A, tol=None): -# if tol is None: -# if D.epsilon() <= 1e-5: -# tol = 32*D.epsilon() -# else: -# tol = D.epsilon() -# if tol < 32*D.epsilon() and D.epsilon() <= 1e-5: -# tol = 32*D.epsilon() -# I = D.eye(A.shape[0]) -# if D.backend() == 'torch': -# I = I.to(A) -# Pinv = D.ar_numpy.zeros_like(A) -# A2 = A*A -# nA = 0.5 * (D.ar_numpy.sum(A2, axis=0)**0.5 + D.ar_numpy.sum(A2, axis=1)**0.5) -# nA = (nA > 32*D.epsilon())*nA + (nA <= 32*D.epsilon()) -# Pinv = D.ar_numpy.diag(nA) - -# Ik = Pinv@A -# for _ in range(3): -# AP = A@Pinv -# Wn = -147*I + AP@(53*I + AP@(-11*I + AP)) -# In0 = 0.75*Pinv + 0.25*0.25*Pinv@(32*I + AP@(-113*I + AP@(231*I + AP@(-301*I + AP@(259*I + AP@Wn))))) -# In1 = 2*Pinv - Ik@Pinv -# if D.ar_numpy.linalg.norm(D.ar_numpy.to_numpy(I - In0@A)) < D.ar_numpy.linalg.norm(D.ar_numpy.to_numpy(I - In1@A)): -# In = In0 -# else: -# In = In1 -# if D.ar_numpy.linalg.norm(D.ar_numpy.to_numpy(I - In@A)) >= D.ar_numpy.linalg.norm(D.ar_numpy.to_numpy(I - Ik)): -# break -# else: -# Pinv = In -# nPinv = D.ar_numpy.linalg.norm(Pinv@A) -# Pinv = Pinv / nPinv -# Ik = Pinv@A -# if D.ar_numpy.max(D.ar_numpy.abs(D.ar_numpy.to_numpy(Ik))) - 1 <= tol: -# break -# return Pinv - -# def estimate_cond(A): -# out = D.ar_numpy.abs(A) -# out = out[out > 0] -# out = D.ar_numpy.sqrt(D.ar_numpy.max(out) / D.ar_numpy.min(out)) -# if out <= 32*D.epsilon(): -# out = D.ar_numpy.ones_like(out) -# return out - -def iterative_inverse_7th(A, Ainv0, maxiter=10): - I = D.ar_numpy.diag(D.ar_numpy.ones_like(D.ar_numpy.diag(A))) +def iterative_right_inverse_8th(A, Ainv0, maxiter=10): + """ + From http://dx.doi.org/10.1016/j.amc.2017.08.010, Eq. 7.1 + """ + I = D.ar_numpy.diag(D.ar_numpy.ones_like(A[...,:,0])) Vn = Ainv0 - initial_norm = D.ar_numpy.linalg.norm(Vn @ A - I) + initial_norm = D.ar_numpy.linalg.norm(A @ Vn - I) + c1 = 0.25*((27-2*93**0.5)**0.5 + 1) + c2 = 0.25*(1 - (27-2*93**0.5)**0.5) + c3 = (5*93**0.5 - 93)/496 + d1 = (-93 - 5*93**0.5)/496 + d2 = -93**0.5/4 + mu = 3/8 + psi = 321/1984 for i in range(maxiter): - Vn1 = (1 / 16) * Vn @ (120 * I + A @ Vn @ (-393 * I + A @ Vn @ (-861 * I + A @ Vn @ ( - 651 * I + A @ Vn @ (-315 * I + A @ Vn @ (931 * I + A @ Vn @ (-15 * I + A @ Vn))))))) - new_norm = D.ar_numpy.linalg.norm(Vn1 @ A - I) - if new_norm < D.tol_epsilon(A.dtype) or new_norm > initial_norm: + Kn = I - A @ Vn + Kn2 = Kn@Kn + Kn4 = Kn2@Kn2 + Mk = (I+c1*Kn2+Kn4)@(I+c2*Kn2+Kn4) + Tk = Mk + c3*Kn2 + Sk = Mk + d1*Kn2 + d2*Kn4 + Vn1_1d2 = Vn@((I + Kn)@(Tk@Sk + mu*Kn2 + psi*Kn4)) + Vn1 = Vn1_1d2@A@Vn1_1d2 + new_norm = D.ar_numpy.linalg.norm(A @ Vn1 - I) + if new_norm < D.tol_epsilon(A.dtype): + Vn = Vn1 + break + elif new_norm > 4*initial_norm: break else: Vn = Vn1 initial_norm = new_norm return Vn - -# def iterative_inverse_1st(A, Ainv0, maxiter=10): -# I = D.ar_numpy.diag(D.ar_numpy.ones_like(D.ar_numpy.diag(A))) -# Vn = Ainv0 -# initial_norm = D.ar_numpy.linalg.norm(Vn @ A - I) -# for i in range(maxiter): -# Vn1 = Vn @ (2 * I - A @ Vn) -# new_norm = D.ar_numpy.linalg.norm(Vn1 @ A - I) -# if new_norm < D.tol_epsilon(A.dtype) or new_norm > initial_norm: -# break -# else: -# Vn = Vn1 -# initial_norm = new_norm -# return Vn - - -# def iterative_inverse_3rd(A, Ainv0, maxiter=10): -# I = D.ar_numpy.diag(D.ar_numpy.ones_like(D.ar_numpy.diag(A))) -# Vn = Ainv0 -# initial_norm = D.ar_numpy.linalg.norm(Vn @ A - I) -# for i in range(maxiter): -# Vn1 = Vn @ (2 * I - A @ Vn) -# Vn1 = Vn1 @ (3 * I - A @ Vn1 @ (3 * I - A @ Vn1)) -# new_norm = D.ar_numpy.linalg.norm(Vn1 @ A - I) -# if new_norm < D.tol_epsilon(A.dtype) or new_norm > initial_norm: -# break -# else: -# Vn = Vn1 -# initial_norm = new_norm -# return Vn +def iterative_left_inverse_8th(A, Ainv0, maxiter=10): + return iterative_right_inverse_8th(A.mT, Ainv0.mT, maxiter=maxiter).mT def broyden_update_jac(B, dx, df, Binv=None): @@ -419,12 +363,12 @@ def broyden_update_jac(B, dx, df, Binv=None): with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=RuntimeWarning, message="overflow encountered in matmul") kI = (y_is - y_ex) / D.ar_numpy.sum(y_ex.mT @ y_ex) - B_new = D.ar_numpy.reshape((1 + kI * B * dx) * B, (df.shape[0], dx.shape[0])) + B_new = D.ar_numpy.reshape((1 + kI * (B @ dx)) * B, (df.shape[0], dx.shape[0])) if Binv is not None: Binv_new = Binv + ((dx - Binv @ y_is) / (y_is.mT @ y_is)) @ y_is.mT norm_val = D.ar_numpy.linalg.norm(Binv_new @ B_new - D.ar_numpy.diag(D.ar_numpy.ones_like(D.ar_numpy.diag(B)))) if norm_val < 0.5: - Binv_new = iterative_inverse_7th(B_new, Binv_new, maxiter=3) + Binv_new = iterative_left_inverse_8th(B_new, Binv_new) return B_new, Binv_new else: return B_new @@ -514,15 +458,17 @@ def fun_jac(x): Fn1 = D.ar_numpy.copy(Fn0) dx = D.ar_numpy.zeros_like(x) dxn = D.ar_numpy.linalg.norm(dx).reshape(tuple()) - I = D.ar_numpy.diag(D.ar_numpy.ones_like(D.ar_numpy.diag(Jf1))) + identity_matrix = D.ar_numpy.eye(Jf1.shape[-1], like=Jf1) + if D.backend_like_dtype(Jf1.dtype) == "torch": + identity_matrix = identity_matrix.to(Jf1.device, Jf1.dtype) f64_type = D.autoray.to_backend_dtype('float64', like=inferred_backend) - Jinv = D.ar_numpy.astype(D.ar_numpy.linalg.inv(D.ar_numpy.astype(Jf1, f64_type)), Jf1.dtype) + Jinv = D.ar_numpy.astype(D.ar_numpy.linalg.pinv(D.ar_numpy.astype(Jf1, f64_type)), Jf1.dtype) with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=RuntimeWarning, message="invalid value encountered in matmul") - if D.ar_numpy.linalg.norm(Jinv @ Jf1 - I) < 0.5: - Jinv = iterative_inverse_7th(Jf1, Jinv, maxiter=3) + if D.ar_numpy.linalg.norm(Jinv @ Jf1 - identity_matrix) < 0.5: + Jinv = iterative_left_inverse_8th(Jf1, Jinv) trust_region = 5.0 if initial_trust_region is None else initial_trust_region iteration = 0 fail_iter = 0 @@ -574,7 +520,7 @@ def fun_jac(x): trust_region *= 0.25 / tr_ratio if iteration % jac_update_rate == 0 or no_progress: Jf0, Jf1 = Jf0, fun_jac(x) - Jinv = D.ar_numpy.astype(D.ar_numpy.linalg.inv(D.ar_numpy.astype(Jf1, f64_type)), Jf1.dtype) + Jinv = D.ar_numpy.astype(D.ar_numpy.linalg.pinv(D.ar_numpy.astype(Jf1, f64_type)), Jf1.dtype) else: Jf0, (Jf1, Jinv) = Jf1, broyden_update_jac(Jf1, dx, F1 - F0, Jinv) xtol = tol * (xdim + D.ar_numpy.linalg.norm(x)) @@ -654,6 +600,8 @@ def fun_jac(x): dxn = D.ar_numpy.linalg.norm(dx) trust_region = D.ar_numpy.max(D.ar_numpy.abs(D.ar_numpy.diag(J0))) + if not D.ar_numpy.all(D.ar_numpy.isfinite(trust_region)): + raise ValueError("Encountered NaN in jacobian!") iteration = 0 success = False for iteration in range(maxiter): @@ -829,7 +777,7 @@ def fun_jac(x): else: x = D.ar_numpy.reshape(x0, (xdim, 1)) - root, (success, iterations, *_, prec) = newtontrustregion(fun, x, jac=fun_jac, tol=tol, verbose=verbose, maxiter=maxiter, jac_update_rate=10, initial_trust_region=0.0) + root, (success, iterations, *_, prec) = newtontrustregion(fun, x, jac=fun_jac, tol=tol, verbose=verbose, maxiter=maxiter, jac_update_rate=10, initial_trust_region=1e-4) success = success or prec <= D.tol_epsilon(x0.dtype) x = D.ar_numpy.reshape(root, xshape) diff --git a/desolver/utilities/utilities.py b/desolver/utilities/utilities.py index 46d9e32..77a0999 100644 --- a/desolver/utilities/utilities.py +++ b/desolver/utilities/utilities.py @@ -2,6 +2,7 @@ import functools import numpy import warnings +import math from desolver import backend as D __all__ = [ @@ -13,6 +14,13 @@ 'BlockTimer' ] +REAL_TO_COMPLEX_DTYPE = { + 16: 'complex64', + 32: 'complex64', + 64: 'complex128', + 128: 'complex256' +} + @functools.lru_cache def get_finite_difference_weights(dtype, number_of_nodes, order=1): @@ -29,6 +37,7 @@ def get_finite_difference_weights(dtype, number_of_nodes, order=1): weights = weights[:, 0] return nodal_points, weights + class JacobianWrapper(object): """ A wrapper class that uses Richardson Extrapolation and 4th order finite differences to compute the jacobian of a given callable function. @@ -61,9 +70,10 @@ class JacobianWrapper(object): """ - def __init__(self, rhs, base_order=2, richardson_iter=None, adaptive=True, flat=False, atol=None, rtol=None, sample_input=None): + def __init__(self, rhs, base_order=2, richardson_iter=None, adaptive=True, flat=False, atol=None, rtol=None, sample_input=None, use_complex_step=False): self.rhs = rhs self.base_order = base_order + self.use_complex_step = use_complex_step and not isinstance(self.rhs, JacobianWrapper) if richardson_iter is None: self.richardson_iter = 16 - base_order if base_order < 16 else base_order + 1 else: @@ -77,35 +87,48 @@ def __init__(self, rhs, base_order=2, richardson_iter=None, adaptive=True, flat= self.nodal_points, self.weights = get_finite_difference_weights(numpy.float64 if sample_input is None else sample_input.dtype, self.base_order, order=1) self.nodal_points = self.nodal_points[D.ar_numpy.abs(self.weights) > 16 * eps_val] self.weights = self.weights[D.ar_numpy.abs(self.weights) > 16 * eps_val] + self.complex_differentiable_mask = None - def estimate(self, y, *args, dy=None, **kwargs): - if dy is None: - dy = D.epsilon(y.dtype) ** 0.5 + def estimate(self, y, *args, fd_stepsize=None, **kwargs): + if fd_stepsize is None: + fd_stepsize = D.epsilon(y.dtype) ** 0.5 inferred_backend = D.backend_like_dtype(y.dtype) unravelled_y = D.ar_numpy.reshape(y, (-1,)) dy_val = self.rhs(y, *args, **kwargs) unravelled_dy = D.ar_numpy.reshape(dy_val, (-1,)) - jac_con_kwargs = dict(dtype=unravelled_dy.dtype) + use_complex_step = self.use_complex_step and D.ar_numpy.all(~D.ar_numpy.iscomplex(y)) + complex_type = D.autoray.to_backend_dtype(REAL_TO_COMPLEX_DTYPE[int(D.ar_numpy.finfo(unravelled_dy.dtype).bits)], like=y) + jac_con_kwargs = dict(dtype=complex_type if use_complex_step else unravelled_dy.dtype) if D.backend_like_dtype(unravelled_y.dtype) == 'torch': jac_con_kwargs['device'] = unravelled_y.device jacobian_y = D.ar_numpy.zeros((*D.ar_numpy.shape(unravelled_dy), *D.ar_numpy.shape(unravelled_y)), **jac_con_kwargs, like=unravelled_dy) y_msk = D.ar_numpy.zeros_like(unravelled_y) if inferred_backend == 'torch': - jacobian_y = jacobian_y.to(dy_val).to(y.device) + jacobian_y = jacobian_y.to(y.device) for idx, val in enumerate(unravelled_y): + use_complex_step_for_idx = use_complex_step + if self.complex_differentiable_mask is not None: + use_complex_step_for_idx &= self.complex_differentiable_mask[idx] y_msk[idx - 1] = 0.0 y_msk[idx] = 1.0 - dy_cur = dy + dy_cur = fd_stepsize if not self.adaptive and (D.ar_numpy.abs(val) > 1.0 or dy_cur > D.ar_numpy.abs(val) > 0.0): dy_cur = dy_cur * val for A, w in zip(self.nodal_points, self.weights): - y_jac = unravelled_y + A * dy_cur * y_msk - jacobian_y[:, idx] = jacobian_y[:, idx] + w * D.ar_numpy.reshape( - self.rhs(D.ar_numpy.reshape(y_jac, D.ar_numpy.shape(y)), *args, **kwargs), (-1,)) + if use_complex_step_for_idx: + y_jac = unravelled_y + A * dy_cur * y_msk * 1j + else: + y_jac = unravelled_y + A * dy_cur * y_msk + rhs_eval_at_h = D.ar_numpy.reshape(self.rhs(D.ar_numpy.reshape(y_jac, D.ar_numpy.shape(y)), *args, **kwargs), (-1,)) + jacobian_y[:, idx] = jacobian_y[:, idx] + w * rhs_eval_at_h jacobian_y[:, idx] = jacobian_y[:, idx] / dy_cur - + + if use_complex_step_for_idx: + jacobian_y[:, idx] = D.ar_numpy.astype(D.ar_numpy.real(D.ar_numpy.imag(jacobian_y[:, idx])), y.dtype) + if use_complex_step: + jacobian_y = D.ar_numpy.real(jacobian_y) if self.flat: if D.ar_numpy.shape(jacobian_y) == (1, 1): return jacobian_y[0, 0] @@ -114,7 +137,7 @@ def estimate(self, y, *args, dy=None, **kwargs): return jacobian_y.reshape((*D.ar_numpy.shape(dy_val), *D.ar_numpy.shape(y))) def richardson(self, y, *args, dy=0.5, factor=4.0, **kwargs): - A = [[self.estimate(y, dy=dy * (factor ** -m), *args, **kwargs)] for m in range(self.richardson_iter)] + A = [[self.estimate(y, fd_stepsize=dy * (factor ** -m), *args, **kwargs)] for m in range(self.richardson_iter)] denom = factor ** self.base_order with warnings.catch_warnings(): warnings.filterwarnings('ignore', message='overflow encountered', category=RuntimeWarning) @@ -124,7 +147,7 @@ def richardson(self, y, *args, dy=0.5, factor=4.0, **kwargs): return A[-1][-1] def adaptive_richardson(self, y, *args, dy=0.5, factor=4, **kwargs): - A = [[self.estimate(y, *args, dy=dy, **kwargs)]] + A = [[self.estimate(y, *args, fd_stepsize=dy, **kwargs)]] if self.richardson_iter == 1: return A[0][0] factor = 1.0 * factor @@ -133,7 +156,7 @@ def adaptive_richardson(self, y, *args, dy=0.5, factor=4, **kwargs): with warnings.catch_warnings(): warnings.filterwarnings('ignore', message='overflow encountered', category=RuntimeWarning) for m in range(1, self.richardson_iter): - A.append([self.estimate(y, *args, dy=dy * (factor ** (-m)), **kwargs)]) + A.append([self.estimate(y, *args, fd_stepsize=dy * (factor ** (-m)), **kwargs)]) for n in range(1, m + 1): A[m].append(A[m][n - 1] + (A[m][n - 1] - A[m - 1][n - 1]) / (denom ** n - 1)) if m >= 3: @@ -142,6 +165,17 @@ def adaptive_richardson(self, y, *args, dy=0.5, factor=4, **kwargs): self.order = self.base_order + m break return A[-2][-1] + + def check_function_is_complex_differentiable(self, y, *args, **kwargs): + self.use_complex_step = False + jacobian_y_real = D.ar_numpy.reshape(self.estimate(y, *args, **kwargs, fd_stepsize=1e-4), (-1, math.prod(y.shape))).mT + self.use_complex_step = True + jacobian_y_complex = D.ar_numpy.reshape(self.estimate(y, *args, **kwargs, fd_stepsize=1e-4), (-1, math.prod(y.shape))).mT + + self.complex_differentiable_mask = D.ar_numpy.stack([ + D.ar_numpy.allclose(real_column, complex_column) for real_column, complex_column in zip(jacobian_y_real, jacobian_y_complex) + ], axis=0) + def check_converged(self, initial_state, diff, prev_error): err_estimate = D.ar_numpy.max(D.ar_numpy.abs(D.ar_numpy.to_numpy(diff))) @@ -152,6 +186,8 @@ def check_converged(self, initial_state, diff, prev_error): return err_estimate, True def __call__(self, y, *args, **kwargs): + if self.complex_differentiable_mask is None and self.use_complex_step: + self.check_function_is_complex_differentiable(y, *args, **kwargs) if self.richardson_iter > 0: if self.adaptive: out = self.adaptive_richardson(y, *args, **kwargs) @@ -159,6 +195,7 @@ def __call__(self, y, *args, **kwargs): out = self.richardson(y, *args, **kwargs) else: out = self.estimate(y, *args, **kwargs) + self.complex_differentiable_mask = None return out @@ -302,8 +339,8 @@ def search_bisection_vec(array, val): indices = D.ar_numpy.zeros_like(val, dtype=i64_type) msk1 = val <= D.ar_numpy.take(array, jlower, axis=0) msk2 = val >= D.ar_numpy.take(array, jupper, axis=0) - indices[msk1] = jlower[msk1] - indices[msk2] = jupper[msk2] + indices = D.ar_numpy.where(msk1, jlower, indices) + indices = D.ar_numpy.where(msk2, jupper, indices) not_conv = (jupper - jlower) > 1 @@ -312,8 +349,8 @@ def search_bisection_vec(array, val): mid_vals = D.ar_numpy.take(array, jmid, axis=0) msk1 = val > mid_vals msk2 = val <= mid_vals - jlower[msk1] = jmid[msk1] - jupper[msk2] = jmid[msk2] + jlower = D.ar_numpy.where(msk1, jmid, jlower) + jupper = D.ar_numpy.where(msk2, jmid, jupper) not_conv = (jupper - jlower) > 1 else: jlower = D.ar_numpy.where(D.ar_numpy.take(array, jlower, axis=0) < val, jupper, jlower) From 6376163cf860191783196d34a43dea7c51596d5f Mon Sep 17 00:00:00 2001 From: Microno95 Date: Wed, 5 Nov 2025 00:06:56 +0000 Subject: [PATCH 03/16] Changes convergence measure to be consistent with `newtontrustregion` --- desolver/utilities/optimizer.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/desolver/utilities/optimizer.py b/desolver/utilities/optimizer.py index ddae8e7..ff2c4d5 100644 --- a/desolver/utilities/optimizer.py +++ b/desolver/utilities/optimizer.py @@ -664,7 +664,7 @@ def fun_jac(x): x = D.ar_numpy.reshape(x, xshape) if var_bounds is not None: x = transform_to_unbounded_x(x, *var_bounds) - return x, (success, dxn, iteration, D.ar_numpy.reshape(F0, fshape)) + return x, (success, D.ar_numpy.linalg.norm(F0), iteration, D.ar_numpy.reshape(F0, fshape)) def nonlinear_roots(f, x0, jac=None, tol=None, verbose=False, maxiter=200, use_scipy=True, From 65f9d1c1fddbdd110ca382117f9020b3801ba2e0 Mon Sep 17 00:00:00 2001 From: Microno95 Date: Wed, 5 Nov 2025 00:08:05 +0000 Subject: [PATCH 04/16] Resolves issue with `float16` and `bfloat16` with PyTorch backend --- desolver/backend/torch_backend.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/desolver/backend/torch_backend.py b/desolver/backend/torch_backend.py index b80269a..d8f2e7b 100644 --- a/desolver/backend/torch_backend.py +++ b/desolver/backend/torch_backend.py @@ -9,6 +9,8 @@ def __solve_linear_system(A:torch.Tensor, b:torch.Tensor, sparse=False): """Solves a linear system either exactly when A is invertible, or approximately when A is not invertible""" + if b.dtype in {torch.float16, torch.bfloat16}: + return __solve_linear_system(A.to(torch.float32), b.to(torch.float32), sparse=sparse).to(b.dtype) eps_threshold = torch.finfo(b.dtype).eps**0.5 soln = torch.empty_like(A[...,0,:,None]) is_square = A.shape[-2] == A.shape[-1] From 6eeb71607954d201faf69c01fa9b4c9b1d572d98 Mon Sep 17 00:00:00 2001 From: Microno95 Date: Wed, 5 Nov 2025 00:10:09 +0000 Subject: [PATCH 05/16] Fixes bug in fixture setup for pytest --- conftest.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/conftest.py b/conftest.py index b8d1c83..08014bb 100644 --- a/conftest.py +++ b/conftest.py @@ -63,7 +63,7 @@ def pytest_generate_tests(metafunc: pytest.Metafunc): argnames = sorted([key for key in argvalues_map if key in metafunc.fixturenames]) argvalues = list(itertools.product(*[argvalues_map[key] for key in argnames])) - if "dtype_var" and "backend_var" in metafunc.fixturenames: + if "dtype_var" in metafunc.fixturenames and "backend_var" in metafunc.fixturenames: if np.finfo(np.longdouble).bits > np.finfo(np.float64).bits: expansion_map = { "dtype_var": ["longdouble"], From 62dbda9a8007f1565d0ec2165c2364a0ddf84041 Mon Sep 17 00:00:00 2001 From: Microno95 Date: Wed, 5 Nov 2025 00:11:54 +0000 Subject: [PATCH 06/16] Fixes issue with implicit RK timestepping where Radau methods overestimate the error leading to small timesteps --- desolver/differential_system.py | 2 +- .../implicit_integration_schemes.py | 33 ++++++--- desolver/integrators/integrator_template.py | 25 +++---- desolver/integrators/integrator_types.py | 54 ++++++++------- desolver/integrators/utilities.py | 55 +++++++++------ desolver/tests/test_differential_system.py | 68 ++++++++++++++++--- desolver/tests/test_event_detection.py | 2 - 7 files changed, 155 insertions(+), 84 deletions(-) diff --git a/desolver/differential_system.py b/desolver/differential_system.py index 65f19ce..076d46d 100644 --- a/desolver/differential_system.py +++ b/desolver/differential_system.py @@ -1233,7 +1233,7 @@ def solve_ivp(fun, t_span, y0, method='RK45', t_eval=None, dense_output=False, max_step = options.get("max_step", np.inf) min_step = options.get("min_step", 0.0) - initial_dt = options.get('first_step', 1.0) + initial_dt = options.get('first_step', 1e-4) initial_dt = D.ar_numpy.minimum(initial_dt, max_step) initial_dt = D.ar_numpy.maximum(initial_dt, min_step) diff --git a/desolver/integrators/implicit_integration_schemes.py b/desolver/integrators/implicit_integration_schemes.py index da60752..d14b065 100644 --- a/desolver/integrators/implicit_integration_schemes.py +++ b/desolver/integrators/implicit_integration_schemes.py @@ -312,13 +312,24 @@ class RadauIIA5(RungeKuttaIntegrator): tableau_final = numpy.array( [[0, (16 - s) / 36, (16 + s) / 36, 1 / 9], + # [0, 0.8052720793239878, -1.916383190435099, 1.111111111111111]], dtype=numpy.float64 [0, 1 - 7 * s / 12, 1 + 7 * s / 12, -1]], dtype=numpy.float64 ) + def get_error_estimate(self): + if self.is_adaptive: + # The error estimate from this method is generally much higher than the actual error by almost 4 orders of magnitude + # this leads to overly cautious timestepping and wastes compute + return D.ar_numpy.sum(self.stage_values * (self.tableau_final[1][1:] - self.tableau_final[0][1:]), axis=-1)*1e-4 + else: + return D.ar_numpy.zeros_like(self.dState) + del s class RadauIIA19(RungeKuttaIntegrator): + """Using the method of https://www.osti.gov/servlets/purl/1543560 to generate a + 10-stage, 19th order Embedded Radau Method""" __order__ = 19.0 @@ -462,22 +473,22 @@ class RadauIIA19(RungeKuttaIntegrator): 0.06014833527874081575865526135099759590938724369183571272716692583, 0.010000000000000000000000000000000000000000000000000000000000000000], [1.0, - 0.000111677695713657757062698891880706843728654156750323672093847952, - -0.000374789055929833804794037217207453893530096760223574238193409412, - 0.0006820145757646047502809102002793308989941358728074423799166826524, - -0.0009706622643735461546458098299827473890710310580707658350230239825, - 0.00119367247245614804601066322573572560166761645552917586186173174719, - -0.0013192871745202003341119720339385000469624189162389242743609897010, - 0.00132964434372530388245970367166906172190048190748045984144621431750, - -0.0012146959224468732879762022162956221166730438181317487188418946093, - 0.00095624732961073914571404530785949837994570216009761131110084104535, - -0.0003938220000000000000000000000000000000000000000000000000000000000 + -212.77026297225023781282719001687, + 722.30802184579737480158253286061, + -1340.6900863964839664558331734173, + 1959.5521595582923221165757105769, + -2486.2025780776879386751606046559, + 2840.2058691740274752898985254199, + -2954.5453378743358508688166327943, + 2772.4954333935802134182875588047, + -2224.1332186509393918137067267777, + 923.78000000000000000000000000000 ] ], dtype=numpy.float64) def get_error_estimate(self): if self.is_adaptive: - return D.ar_numpy.sum(self.stage_values * self.tableau_final[1][1:], axis=-1) + return D.ar_numpy.sum(self.stage_values * self.tableau_final[1][1:], axis=-1)*1e-2 else: return D.ar_numpy.zeros_like(self.dState) diff --git a/desolver/integrators/integrator_template.py b/desolver/integrators/integrator_template.py index a38d655..8a9c9cf 100644 --- a/desolver/integrators/integrator_template.py +++ b/desolver/integrators/integrator_template.py @@ -59,12 +59,12 @@ def update_timestep(self, ignore_custom_adaptation=False): rtol = rtol[filter_mask] order = self.solver_dict['order'] if "system_scaling" in self.solver_dict: - self.solver_dict["system_scaling"] = 0.8 * self.solver_dict["system_scaling"] + 0.2 * D.ar_numpy.maximum(D.ar_numpy.abs(initial_state), D.ar_numpy.abs(dState / timestep)) + self.solver_dict["system_scaling"] = 0.5 * self.solver_dict["system_scaling"] + 0.5 * D.ar_numpy.maximum(D.ar_numpy.abs(initial_state), D.ar_numpy.abs(initial_state + dState)) else: - self.solver_dict["system_scaling"] = D.ar_numpy.maximum(D.ar_numpy.abs(initial_state), D.ar_numpy.abs(dState / timestep)) + self.solver_dict["system_scaling"] = D.ar_numpy.maximum(D.ar_numpy.abs(initial_state), D.ar_numpy.abs(initial_state + dState)) total_error_tolerance = (atol + rtol * self.solver_dict["system_scaling"]) with D.numpy.errstate(divide='ignore'): - epsilon_current = D.ar_numpy.reciprocal(D.ar_numpy.sqrt(D.ar_numpy.sum((diff / total_error_tolerance)**2))) + epsilon_current = D.ar_numpy.reciprocal(D.ar_numpy.sqrt(D.ar_numpy.mean((diff / total_error_tolerance)**2))) if "epsilon_last" in self.solver_dict: epsilon_last = self.solver_dict["epsilon_last"] else: @@ -83,17 +83,18 @@ def update_timestep(self, ignore_custom_adaptation=False): elif epsilon_last is not None and epsilon_last_last is not None: # Based on the triple product described in https://link.springer.com/article/10.1007/s42967-021-00159-w # Eq. (6) with the coefficients from the second entry of Table 4 - k1, k2, k3 = self.solver_dict.get("__adapt_k1", 0.55), self.solver_dict.get("__adapt_k2", -0.27), self.solver_dict.get("__adapt_k3", 0.05) - k1 = epsilon_current ** (k1 / order) - k2 = epsilon_last ** (k2 / order) - k3 = epsilon_last_last ** (k3 / order) - corr = D.ar_numpy.where(k1 > 0.0, k1, 1.0) - corr = corr*D.ar_numpy.where(k2 > 0.0, k2, 1.0) - corr = corr*D.ar_numpy.where(k3 > 0.0, k3, 1.0) + k1, k2, k3 = self.solver_dict.get("__adapt_k1", 0.38), self.solver_dict.get("__adapt_k2", -0.18), self.solver_dict.get("__adapt_k3", 0.01) + k1 = epsilon_current**(k1 / order) + k2 = epsilon_last**(k2 / order) + k3 = epsilon_last_last**(k3 / order) + corr = D.ar_numpy.where((k1 > 0.0) & D.ar_numpy.isfinite(k1), k1, 1.0) + corr = corr*D.ar_numpy.where((k2 > 0.0) & D.ar_numpy.isfinite(k2), k2, 1.0) + corr = corr*D.ar_numpy.where((k3 > 0.0) & D.ar_numpy.isfinite(k3), k3, 1.0) self.solver_dict["epsilon_last_last"], self.solver_dict["epsilon_last"] = epsilon_last, epsilon_current - corr = (1 + D.ar_numpy.arctan((safety_factor * corr - 1))) + redo_step = bool(corr < 0.9**2) + corr = D.ar_numpy.where(D.ar_numpy.isfinite(epsilon_current), 1 + D.ar_numpy.arctan((safety_factor*corr - 1)), 1.0) timestep = corr * timestep - return timestep, bool(corr < 0.9**2) + return timestep, redo_step def get_error_estimate(self): return 0.0 diff --git a/desolver/integrators/integrator_types.py b/desolver/integrators/integrator_types.py index 90066f2..e02feed 100644 --- a/desolver/integrators/integrator_types.py +++ b/desolver/integrators/integrator_types.py @@ -147,10 +147,13 @@ def __init__(self, sys_dim, dtype, rtol=None, atol=None, device=None): dState=self.stage_values[...,0], num_step_retries=64 )) + self.solver_dict['atol'] = self.solver_dict['atol']*D.ar_numpy.ones_like(self.dState) + self.solver_dict['rtol'] = self.solver_dict['rtol']*D.ar_numpy.ones_like(self.dState) if not self._explicit: solver_dict_preserved.update(dict( tau0=D.ar_numpy.abs(D.ar_numpy.ones((1,), **self.array_constructor_kwargs)[0]), tau1=D.ar_numpy.abs(D.ar_numpy.ones((1,), **self.array_constructor_kwargs)[0]), niter0=0, niter1=0, newton_prec0=D.ar_numpy.abs(D.ar_numpy.zeros((1,), **self.array_constructor_kwargs)[0]), newton_prec1=D.ar_numpy.abs(D.ar_numpy.zeros((1,), **self.array_constructor_kwargs)[0]), + newton_tol=D.ar_numpy.min(D.ar_numpy.maximum(D.ar_numpy.ones_like(self.dState)*D.tol_epsilon(self.dtype), D.ar_numpy.min(self.solver_dict['rtol'] + self.solver_dict['atol']))), newton_iterations=32 )) self.solver_dict.update(solver_dict_preserved) @@ -158,8 +161,6 @@ def __init__(self, sys_dim, dtype, rtol=None, atol=None, device=None): self.__jac_eye = None self.__rhs_jac = None self.solver_dict_keep_keys = set(solver_dict_preserved.keys()) | {"num_step_retries"} - self.solver_dict['atol'] = self.solver_dict['atol']*D.ar_numpy.ones_like(self.dState) - self.solver_dict['rtol'] = self.solver_dict['rtol']*D.ar_numpy.ones_like(self.dState) def __call__(self, rhs, initial_time, initial_state, constants, timestep): self.solver_dict = {k:v for k,v in self.solver_dict.items() if k in self.solver_dict_keep_keys} @@ -212,10 +213,10 @@ def __call__(self, rhs, initial_time, initial_state, constants, timestep): self.solver_dict['timestep'] = self.dTime self.solver_dict['dState'] = self.dState timestep, redo_step = self.update_timestep() - if self.is_implicit and not self.solver_dict.get("newton_iteration_success"): - redo_step = True - timestep = timestep * 0.8 - if not redo_step: + if redo_step: + if self.is_implicit: + timestep = timestep * 0.8 + else: break if redo_step: raise exception_types.FailedToMeetTolerances( @@ -224,7 +225,7 @@ def __call__(self, rhs, initial_time, initial_state, constants, timestep): ) self._requires_high_precision = False - + return timestep, (self.dTime, self.dState) @@ -266,29 +267,19 @@ def algebraic_system_jacobian(self, next_state, rhs, initial_time, initial_state def step(self, rhs, initial_time, initial_state, constants, timestep): # Initial guess from assuming method is explicit # - _, intermediate_dstate, intermediate_rhs = components.rk_methods.compute_step( - rhs, - initial_time, - initial_state, - timestep, - self.stage_values, - self.stage_values, - self.tableau_intermediate, - constants - ) - if self.is_implicit: initial_guess = self.stage_values - if not hasattr(self, "__rhs_jac") or self.__rhs_jac is None: + if self.__rhs_jac is None: self.__rhs_jac = rhs.jac(initial_time, initial_state, **constants) - desired_tol = D.ar_numpy.min(D.ar_numpy.abs(self.atol + D.ar_numpy.max(D.ar_numpy.abs(self.rtol * initial_state)))) * 0.5 aux_root, (self.solver_dict["newton_iteration_success"], num_iter, _, _, prec) = \ utilities.optimizer.nonlinear_roots( self.algebraic_system, initial_guess, jac=self.algebraic_system_jacobian, verbose=False, - tol=desired_tol, maxiter=self.solver_dict.get("newton_iterations", 32), - additional_args=(rhs, initial_time, initial_state, timestep, constants)) - self.solver_dict["newton_iteration_success"] = self.solver_dict["newton_iteration_success"] and prec < desired_tol + tol=self.solver_dict.get("newton_tol", D.tol_epsilon(self.dtype)), + maxiter=self.solver_dict.get("newton_iterations", 32), + additional_args=(rhs, initial_time, initial_state, timestep, constants), + use_scipy=False) + self.solver_dict["newton_iteration_success"] = self.solver_dict["newton_iteration_success"] and prec < self.solver_dict.get("newton_tol", D.tol_epsilon(self.dtype)) if not self.solver_dict["newton_iteration_success"]: self.__rhs_jac = None self.solver_dict.update(dict( @@ -298,6 +289,17 @@ def step(self, rhs, initial_time, initial_state, constants, timestep): )) self.stage_values = D.ar_numpy.reshape(aux_root, self.stage_values.shape) + + _, intermediate_dstate, intermediate_rhs = components.rk_methods.compute_step( + rhs, + initial_time, + initial_state, + timestep, + self.stage_values, + self.stage_values, + self.tableau_intermediate, + constants + ) self.dTime = D.ar_numpy.copy(timestep) if self.is_fsal: @@ -307,7 +309,7 @@ def step(self, rhs, initial_time, initial_state, constants, timestep): self.dState = timestep * D.ar_numpy.sum(self.stage_values * self.tableau_final[0, 1:], axis=-1) self.final_rhs = rhs(initial_time + self.dTime, initial_state + self.dState, **constants) - if self.is_implicit and self.__rhs_jac is not None: + if self.is_implicit and self.__rhs_jac is not None and self.initial_rhs is not None: self.__rhs_jac = broyden_update_jac( self.__rhs_jac.reshape(self.numel, self.numel), self.dState.reshape(self.numel, 1), @@ -443,9 +445,9 @@ def __init__(self, sys_dim, **kwargs): self.numel = 1 for i in self.dim: self.numel *= int(i) + self.dtype = kwargs.get("dtype", D.ar_numpy.float64) self.rtol = kwargs.get("rtol") if kwargs.get("rtol", None) is not None else 32 * D.epsilon() self.atol = kwargs.get("atol") if kwargs.get("atol", None) is not None else 32 * D.epsilon() - self.dtype = kwargs.get("dtype") self.device = kwargs.get("device", None) self.array_constructor_kwargs = dict(dtype=self.dtype) self.array_constructor_kwargs['like'] = D.backend_like_dtype(self.dtype) @@ -590,7 +592,7 @@ def is_explicit(self): @property def is_adaptive(self): - return self._adaptive and not self._adaptivity_enabled + return self._adaptive and self._adaptivity_enabled @is_adaptive.setter def is_adaptive(self, adaptivity): diff --git a/desolver/integrators/utilities.py b/desolver/integrators/utilities.py index 3279ba6..c53d8e4 100644 --- a/desolver/integrators/utilities.py +++ b/desolver/integrators/utilities.py @@ -7,6 +7,7 @@ def implicit_aware_update_timestep(integrator: TableauIntegrator): if "niter0" in integrator.solver_dict.keys(): # Adjust the timestep according to the computational cost of # solving the nonlinear system at each timestep + # Based on the implementation here: https://www.sciencedirect.com/science/article/pii/S0168927418301387 if integrator.solver_dict['niter0'] != 0 and integrator.solver_dict['niter1'] != 0: Tk0, CTk0 = D.ar_numpy.log(integrator.solver_dict['tau0']), math.log(integrator.solver_dict['niter0']) Tk1, CTk1 = D.ar_numpy.log(integrator.solver_dict['tau1']), math.log(integrator.solver_dict['niter1']) @@ -14,30 +15,40 @@ def implicit_aware_update_timestep(integrator: TableauIntegrator): ddCTk = Tk1 - Tk0 if ddCTk > 0: dCTk = dnCTk / ddCTk + c_alpha, c_beta, c_lambda, c_delta = 1.19735982, 0.44611854, 1.38440318, 0.73715227 + c_s = D.ar_numpy.exp(-c_alpha*D.ar_numpy.tanh(c_beta*dCTk)) + tau2 = D.ar_numpy.where( + (1 <= c_s) & (c_s < c_lambda), + c_lambda, + D.ar_numpy.where( + (c_delta <= c_s) & (c_s < 1), + c_delta, + c_s + ) + ) else: dCTk = D.ar_numpy.zeros_like(integrator.solver_dict['timestep']) - tau2 = D.ar_numpy.exp(-dCTk) + tau2 = D.ar_numpy.ones_like(integrator.solver_dict['timestep'])*10.0 else: - tau2 = None - # ---- # - # Adjust the timestep according to the precision achieved by the - # nonlinear system solver at each timestep - total_error_tolerance = D.ar_numpy.sqrt(D.ar_numpy.mean((integrator.solver_dict['atol'] + integrator.solver_dict['rtol'])**2)) - tau3 = D.ar_numpy.ones_like(integrator.solver_dict['timestep']) - if integrator.solver_dict['newton_prec1'] > 0.0: - with D.numpy.errstate(divide='ignore'): - epsilon_current = total_error_tolerance / integrator.solver_dict['newton_prec1'] - tau3 = tau3*D.ar_numpy.where(D.ar_numpy.isfinite(epsilon_current), epsilon_current, 1.0) - if integrator.solver_dict['newton_prec0'] > 0.0: - with D.numpy.errstate(divide='ignore'): - epsilon_last = total_error_tolerance / integrator.solver_dict['newton_prec0'] - tau3 = tau3*D.ar_numpy.where(D.ar_numpy.isfinite(epsilon_last), epsilon_last, 1.0) - # ---- # - if tau2 is None: - tau = tau3 - else: - tau = D.ar_numpy.minimum(tau2, tau3) - tau = (1 + 0.1*D.ar_numpy.arctan((tau - 1)/0.1)) - return tau * timestep_from_error, redo_step + tau2 = D.ar_numpy.ones_like(integrator.solver_dict['timestep']) + # # ---- # + # # Adjust the timestep according to the precision achieved by the + # # nonlinear system solver at each timestep + # tau3 = D.ar_numpy.ones_like(integrator.solver_dict['timestep']) + # if integrator.solver_dict['newton_prec1'] > 0.0: + # with D.numpy.errstate(divide='ignore'): + # epsilon_current = integrator.solver_dict['newton_tol'] / integrator.solver_dict['newton_prec1'] + # tau3 = tau3*D.ar_numpy.where(D.ar_numpy.isfinite(epsilon_current), epsilon_current, 1.0) + # else: + # tau3 = tau3*10.0 + # tau3 = D.ar_numpy.clip(tau3, min=0.8, max=10.0) + # # ---- # + # if tau2 is None: + # tau = tau3 + # else: + # tau = D.ar_numpy.minimum(tau2, tau3) + corr = timestep_from_error/integrator.solver_dict["tau1"] + tau = D.ar_numpy.sqrt(corr*(1 + D.ar_numpy.arctan((tau2 - 1)))) + return tau * integrator.solver_dict["tau1"], redo_step else: return timestep_from_error, redo_step diff --git a/desolver/tests/test_differential_system.py b/desolver/tests/test_differential_system.py index aa42ac9..a1a4713 100644 --- a/desolver/tests/test_differential_system.py +++ b/desolver/tests/test_differential_system.py @@ -2,6 +2,7 @@ import desolver.backend as D import numpy as np import pytest +import copy from desolver.tests import common @@ -114,6 +115,8 @@ def test_integration_and_representation_no_jac(dtype_var, backend_var, integrato test_tol = D.tol_epsilon(dtype_var) ** 0.5 if a.integrator.order <= 6: test_tol = 128 * test_tol + if a.integrator.is_adaptive and a.integrator.order > 8: + a.dt = a.dt * 0.01 print(test_tol, a.atol, a.rtol) a.integrate(eta=True) @@ -170,6 +173,8 @@ def test_integration_and_representation_with_jac(dtype_var, backend_var, integra test_tol = D.tol_epsilon(dtype_var) ** 0.5 if a.integrator.order <= 6: test_tol = 128 * test_tol + if a.integrator.is_adaptive and a.integrator.order > 8: + a.dt = a.dt * 0.01 a.integrate(eta=True) @@ -248,7 +253,7 @@ def test_integration_with_richardson(dtype_var, backend_var, integrator): assert (a.integration_status == "Integration has not been run.") - a.method = de.integrators.generate_richardson_integrator(a.method, richardson_iter=4) + a.method = de.integrators.generate_richardson_integrator(a.method, richardson_iter=2 if D.ar_numpy.finfo(dtype_var).bits < 32 else 4) test_tol = D.tol_epsilon(dtype_var) ** 0.5 a.integrate() @@ -307,7 +312,7 @@ def rhs(t, state, k, **kwargs): assert (a.integration_status == "Integration completed successfully.") - assert (D.ar_numpy.abs(a.t[-2] - a[2 * D.pi].t) <= D.ar_numpy.abs(a.dt)) + # assert (D.ar_numpy.abs(a.t[-2] - a[2 * D.pi].t) <= D.ar_numpy.abs(a.dt)) assert (len(a.events) == 0) @@ -343,10 +348,10 @@ def rhs(t, state, k, **kwargs): assert (a.integration_status == "Integration completed successfully.") - assert (D.ar_numpy.abs(a.t[-2] - a[2 * D.pi].t) <= D.ar_numpy.abs(a.dt)) - assert (len(a.events) == 0) + pre_reset_a = copy.deepcopy(a) + a.reset() a.integrate(eta=True) @@ -354,10 +359,11 @@ def rhs(t, state, k, **kwargs): assert (a.integration_status == "Integration completed successfully.") - assert (D.ar_numpy.abs(a.t[-2] - a[2 * D.pi].t) <= D.ar_numpy.abs(a.dt)) - assert (len(a.events) == 0) + assert D.ar_numpy.allclose(pre_reset_a.t, a.t) + assert D.ar_numpy.allclose(pre_reset_a.y, a.y) + def test_integration_long_duration(dtype_var, backend_var): print() @@ -366,6 +372,8 @@ def test_integration_long_duration(dtype_var, backend_var): import torch torch.set_printoptions(precision=17) torch.autograd.set_detect_anomaly(True) + if D.ar_numpy.finfo(dtype_var).bits < 32: + pytest.skip(f"dtype: {dtype_var} lacks the precision for long-duration integration") arr_con_kwargs = dict(dtype=dtype_var, like=backend_var) de_mat = D.ar_numpy.asarray([[0.0, 1.0], [-1.0, 0.0]], **arr_con_kwargs) @@ -789,7 +797,7 @@ def jac(t, state, **kwargs): assert (jac_called) -@pytest.mark.parametrize('integrator', [(de.integrators.RK45CKSolver, 'RK45'), (de.integrators.RadauIIA19, 'Radau'), (de.integrators.RK8713MSolver, 'LSODA')]) +@pytest.mark.parametrize('integrator', [(de.integrators.RK45CKSolver, 'RK45'), (de.integrators.RadauIIA5, 'Radau'), (de.integrators.RK8713MSolver, 'LSODA')]) def test_solve_ivp_parity(integrator): print() from scipy.integrate import solve_ivp @@ -809,6 +817,7 @@ def fun(t, state): print(desolver_res) print(scipy_res) + print(D.ar_numpy.mean(D.ar_numpy.diff(desolver_res.t)), D.ar_numpy.mean(D.ar_numpy.diff(scipy_res.t))) test_tol = 1e-6 print(scipy_res.t[0] - desolver_res.t[0]) @@ -827,6 +836,7 @@ def fun(t, state): print(desolver_res) print(scipy_res) + print(D.ar_numpy.mean(D.ar_numpy.diff(desolver_res.t)), D.ar_numpy.mean(D.ar_numpy.diff(scipy_res.t))) test_tol = 1e-6 print(scipy_res.t - desolver_res.t) @@ -844,6 +854,7 @@ def fun(t, state, k, m): print(desolver_res) print(scipy_res) + print(D.ar_numpy.mean(D.ar_numpy.diff(desolver_res.t)), D.ar_numpy.mean(D.ar_numpy.diff(scipy_res.t))) test_tol = 1e-6 print(scipy_res.t[0] - desolver_res.t[0]) @@ -855,11 +866,12 @@ def fun(t, state, k, m): print(scipy_res.y[...,-1] - desolver_res.y[...,-1]) assert np.allclose(scipy_res.y[...,-1], desolver_res.y[...,-1], test_tol, test_tol) - desolver_res = de.solve_ivp(fun, t_span=t_span, y0=y0, atol=atol, rtol=rtol, min_step=1e-2, method=integrator[0], args=(4.0, 0.1)) - assert np.diff(desolver_res.t)[:-1].min() >= 1e-2 - 1e-8 + desolver_res = de.solve_ivp(fun, t_span=t_span, y0=y0, atol=atol, rtol=rtol, min_step=1e-3, method=integrator[0], args=(4.0, 0.1)) + assert np.diff(desolver_res.t)[:-1].min() >= 1e-3 - 1e-8 desolver_res = de.solve_ivp(fun, t_span=t_span, y0=y0, atol=atol, rtol=rtol, max_step=1e-2, method=integrator[0], args=(4.0, 0.1)) assert np.diff(desolver_res.t)[:-1].max() <= 1e-2 + 1e-8 + with pytest.raises(ValueError): t_eval = np.array([-1.0, 0.0, 10.0]) @@ -867,4 +879,40 @@ def fun(t, state, k, m): with pytest.raises(ValueError): t_eval = np.array([0.0, 10.0, 11.0]) - desolver_res = de.solve_ivp(fun, t_span=t_span, y0=y0, atol=atol, rtol=rtol, t_eval=t_eval, method=integrator[0], args=(4.0, 0.1)) \ No newline at end of file + desolver_res = de.solve_ivp(fun, t_span=t_span, y0=y0, atol=atol, rtol=rtol, t_eval=t_eval, method=integrator[0], args=(4.0, 0.1)) + + +@pytest.mark.parametrize('integrator', [de.integrators.RK108Solver, de.integrators.RK8713MSolver, de.integrators.RadauIIA5, de.integrators.LobattoIIIC4, de.integrators.RadauIIA19]) +def test_solve_stiff_system(integrator, backend_var): + print() + + dtype_var = D.autoray.to_backend_dtype("float64", like=backend_var) + if backend_var == 'torch': + import torch + torch.set_printoptions(precision=17) + torch.autograd.set_detect_anomaly(True) + + @de.DiffRHS + def fun(t, state): + return -2000*(state - np.cos(t)) + + def fun_jac(t, state): + return D.ar_numpy.array([[-2000]], dtype=dtype_var, like=backend_var) + + fun.hook_jacobian_call(fun_jac) + + def solution(t): + return D.ar_numpy.exp(-2000*t)/4000001 + (2000/4000001)*D.ar_numpy.sin(t) + (4000000/4000001)*D.ar_numpy.cos(t) + + t_span = [0.0, 5.0] + y0 = D.ar_numpy.array([1.0], dtype=dtype_var, like=backend_var) + atol = rtol = 1e-6 + + desolver_res = de.solve_ivp(fun, t_span=t_span, y0=y0, atol=atol, rtol=rtol, method=integrator, show_prog_bar=True) + + print(desolver_res) + print(D.ar_numpy.mean(D.ar_numpy.diff(desolver_res.t))) + print(D.ar_numpy.mean(D.ar_numpy.abs(desolver_res.y - solution(desolver_res.t)))) + test_tol = atol**0.5 + + assert D.ar_numpy.allclose(desolver_res.y, solution(desolver_res.t), test_tol, test_tol) \ No newline at end of file diff --git a/desolver/tests/test_event_detection.py b/desolver/tests/test_event_detection.py index 3ae3bdd..6c68652 100644 --- a/desolver/tests/test_event_detection.py +++ b/desolver/tests/test_event_detection.py @@ -228,8 +228,6 @@ def stationary_event(t, y, dy, **kwargs): @common.basic_integrator_param @common.dense_output_param def test_event_detection_indefinite_integration(dtype_var, backend_var, integrator, dense_output): - if dtype_var in ["float64", "longdouble"] and integrator == de.integrators.RadauIIA5: - pytest.skip("Too slow") if "float16" in dtype_var: pytest.skip("Event detection with 'float16' types are unreliable due to imprecision") From f2d83d6f60f35d06c872674c4173e1665cd2b726 Mon Sep 17 00:00:00 2001 From: Microno95 Date: Wed, 5 Nov 2025 00:12:20 +0000 Subject: [PATCH 07/16] Re-enables `DIRK3LStable` method with new implicit RK backend --- desolver/integrators/__init__.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/desolver/integrators/__init__.py b/desolver/integrators/__init__.py index b95a6ce..78396c5 100644 --- a/desolver/integrators/__init__.py +++ b/desolver/integrators/__init__.py @@ -46,7 +46,7 @@ def register_integrator(new_integrator:IntegratorTemplate): LobattoIIIC2, LobattoIIIC4, CrankNicolson, -# DIRK3LStable, + DIRK3LStable, RadauIA3, RadauIA5, RadauIIA3, From ed0f7f885ac9d14487064f908c8cde72ca36447f Mon Sep 17 00:00:00 2001 From: Microno95 Date: Wed, 5 Nov 2025 00:49:28 +0000 Subject: [PATCH 08/16] Fix warnings and too small timestep --- desolver/tests/test_differential_system.py | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) diff --git a/desolver/tests/test_differential_system.py b/desolver/tests/test_differential_system.py index a1a4713..dbe9ead 100644 --- a/desolver/tests/test_differential_system.py +++ b/desolver/tests/test_differential_system.py @@ -115,8 +115,6 @@ def test_integration_and_representation_no_jac(dtype_var, backend_var, integrato test_tol = D.tol_epsilon(dtype_var) ** 0.5 if a.integrator.order <= 6: test_tol = 128 * test_tol - if a.integrator.is_adaptive and a.integrator.order > 8: - a.dt = a.dt * 0.01 print(test_tol, a.atol, a.rtol) a.integrate(eta=True) @@ -894,7 +892,7 @@ def test_solve_stiff_system(integrator, backend_var): @de.DiffRHS def fun(t, state): - return -2000*(state - np.cos(t)) + return -2000*(state - D.ar_numpy.cos(t)) def fun_jac(t, state): return D.ar_numpy.array([[-2000]], dtype=dtype_var, like=backend_var) From 4732e1a8242d986429fe4ab5678c9ef93809a92d Mon Sep 17 00:00:00 2001 From: Microno95 Date: Mon, 17 Nov 2025 19:07:25 +0000 Subject: [PATCH 09/16] Fixes solve_ivp interface when setting t_min, t_max --- desolver/differential_system.py | 8 +++++--- 1 file changed, 5 insertions(+), 3 deletions(-) diff --git a/desolver/differential_system.py b/desolver/differential_system.py index 076d46d..8ea55f8 100644 --- a/desolver/differential_system.py +++ b/desolver/differential_system.py @@ -1230,10 +1230,10 @@ def solve_ivp(fun, t_span, y0, method='RK45', t_eval=None, dense_output=False, if kwargs is not None: constants.update(kwargs) - max_step = options.get("max_step", np.inf) - min_step = options.get("min_step", 0.0) + max_step = options.get("max_step", D.ar_numpy.asarray(np.inf, like=y0)) + min_step = options.get("min_step", D.ar_numpy.asarray(0.0, like=y0)) - initial_dt = options.get('first_step', 1e-4) + initial_dt = options.get('first_step', D.ar_numpy.asarray(1e-4, like=y0)) initial_dt = D.ar_numpy.minimum(initial_dt, max_step) initial_dt = D.ar_numpy.maximum(initial_dt, min_step) @@ -1264,6 +1264,8 @@ def __step_cb(ode_sys): raise ValueError(f"Expected `t_eval` to be in the range [{t_span[0]}, {t_span[1]}]") t_res = [] y_res = [] + if integration_options.pop("eta"): + t_eval = tqdm(t_eval) for t in t_eval: ode_system.integrate(t=t, **integration_options) t_res.append(ode_system[-1].t) From 44ffaf00fecd8f357449b43aca15383bfefad64e Mon Sep 17 00:00:00 2001 From: Microno95 Date: Mon, 17 Nov 2025 19:09:15 +0000 Subject: [PATCH 10/16] Adds interface to get non-normalized finite difference weights --- desolver/utilities/utilities.py | 23 ++++++++++++++++++++--- 1 file changed, 20 insertions(+), 3 deletions(-) diff --git a/desolver/utilities/utilities.py b/desolver/utilities/utilities.py index 77a0999..dcf409b 100644 --- a/desolver/utilities/utilities.py +++ b/desolver/utilities/utilities.py @@ -23,18 +23,35 @@ @functools.lru_cache -def get_finite_difference_weights(dtype, number_of_nodes, order=1): +def get_finite_difference_weights(dtype, number_of_nodes, order=1, normalised=True): + """ + Implements the algorithm for the finite difference weights as described in: + @misc{fdcc, + title={Finite Difference Coefficients Calculator}, + author={Taylor, Cameron R.}, + year={2016}, + howpublished="\url{https://web.media.mit.edu/~crtaylor/calculator.html}" + } + """ inferred_backend = D.backend_like_dtype(dtype) - nodal_points = D.ar_numpy.linspace(-1, 1, number_of_nodes, dtype="float64") + if normalised: + nodal_points = D.ar_numpy.linspace(-1, 1, number_of_nodes, dtype="float64") + else: + nodal_points = D.ar_numpy.linspace(-(number_of_nodes//2), number_of_nodes//2, number_of_nodes, dtype="float64") weight_matrix = D.ar_numpy.stack( [D.ar_numpy.pow(D.ar_numpy.astype(D.ar_numpy.asarray(nodal_points), "float64"), i) for i in range(len(nodal_points))]) b_vector = D.ar_numpy.zeros((len(nodal_points),), dtype="float64") - b_vector[order] = 1.0 + if normalised: + b_vector[order] = 1.0 + else: + b_vector[order] = math.factorial(order) if inferred_backend == 'torch': b_vector = b_vector[:, None] weights = D.ar_numpy.solve_linear_system(weight_matrix, b_vector) if inferred_backend == 'torch': weights = weights[:, 0] + if not normalised: + weights = weights/weights[-1] return nodal_points, weights From 453d953e2c96e8a688419f60603f645c38cada43 Mon Sep 17 00:00:00 2001 From: Microno95 Date: Thu, 4 Dec 2025 10:25:09 +0000 Subject: [PATCH 11/16] Fix minor issue of data types in the numerical integration and add the ability to keep integration results despite errors --- desolver/differential_system.py | 39 ++++++++++++++++++++++++--------- 1 file changed, 29 insertions(+), 10 deletions(-) diff --git a/desolver/differential_system.py b/desolver/differential_system.py index 8ea55f8..5f54093 100644 --- a/desolver/differential_system.py +++ b/desolver/differential_system.py @@ -1230,10 +1230,10 @@ def solve_ivp(fun, t_span, y0, method='RK45', t_eval=None, dense_output=False, if kwargs is not None: constants.update(kwargs) - max_step = options.get("max_step", D.ar_numpy.asarray(np.inf, like=y0)) - min_step = options.get("min_step", D.ar_numpy.asarray(0.0, like=y0)) + max_step = D.ar_numpy.asarray(options.get("max_step", np.inf), like=y0) + min_step = D.ar_numpy.asarray(options.get("min_step", 0.0), like=y0) - initial_dt = options.get('first_step', D.ar_numpy.asarray(1e-4, like=y0)) + initial_dt = D.ar_numpy.asarray(options.get('first_step', 1e-4), like=y0) initial_dt = D.ar_numpy.minimum(initial_dt, max_step) initial_dt = D.ar_numpy.maximum(initial_dt, min_step) @@ -1245,12 +1245,19 @@ def solve_ivp(fun, t_span, y0, method='RK45', t_eval=None, dense_output=False, def __step_cb(ode_sys): ode_sys.dt = D.ar_numpy.copysign(D.ar_numpy.clip(D.ar_numpy.abs(ode_sys.dt), min=min_step, max=max_step), ode_sys.dt) callbacks.append(__step_cb) + if "kick_variables" in options: ode_system.set_kick_vars(options["kick_variables"]) integration_options = dict(callback=callbacks, events=events, eta=options.get("show_prog_bar", False)) if t_eval is None: - ode_system.integrate(**integration_options) + try: + ode_system.integrate(**integration_options) + except (etypes.FailedIntegration, KeyboardInterrupt): + if options.get("raise_errors", True): + raise + else: + pass t_res = ode_system.t y_res = ode_system.y if isinstance(t_res, list): @@ -1264,12 +1271,24 @@ def __step_cb(ode_sys): raise ValueError(f"Expected `t_eval` to be in the range [{t_span[0]}, {t_span[1]}]") t_res = [] y_res = [] - if integration_options.pop("eta"): - t_eval = tqdm(t_eval) - for t in t_eval: - ode_system.integrate(t=t, **integration_options) - t_res.append(ode_system[-1].t) - y_res.append(ode_system[-1].y) + show_progress = integration_options.pop("eta") + if show_progress: + time_eval_iter = tqdm(t_eval, total=len(t_eval)) + else: + time_eval_iter = t_eval + for t in time_eval_iter: + try: + ode_system.integrate(t=t, **integration_options) + except (etypes.FailedIntegration, KeyboardInterrupt): + if options.get("raise_errors", True): + raise + else: + break + finally: + t_res.append(ode_system[-1].t) + y_res.append(ode_system[-1].y) + if show_progress: + time_eval_iter.desc = "{:>10.2f} | {:.2f} | {:<10.2e}".format(t_res[-1], t_eval[-1], ode_system.dt).ljust(8) t_res = D.ar_numpy.stack(t_res, axis=0) y_res = D.ar_numpy.stack(y_res, axis=-1) From 9bc8860460f784d8df09f76af3696681b1a78aed Mon Sep 17 00:00:00 2001 From: Microno95 Date: Thu, 4 Dec 2025 10:25:26 +0000 Subject: [PATCH 12/16] Add a least-squares solver to reduce issues with non-square systems --- desolver/backend/numpy_backend.py | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/desolver/backend/numpy_backend.py b/desolver/backend/numpy_backend.py index c0d1a4e..52bcab1 100644 --- a/desolver/backend/numpy_backend.py +++ b/desolver/backend/numpy_backend.py @@ -5,6 +5,7 @@ import scipy.special import scipy.sparse import scipy.sparse.linalg +import scipy.linalg import autoray import contextlib @@ -13,7 +14,10 @@ def __solve_linear_system(A,b,overwrite_a=False,overwrite_b=False,check_finite=F if sparse and A.dtype not in (numpy.half, numpy.longdouble) and b.dtype not in (numpy.half, numpy.longdouble): return scipy.sparse.linalg.spsolve(scipy.sparse.csc_matrix(A),b) else: - return scipy.linalg.solve(A,b,overwrite_a=overwrite_a,overwrite_b=overwrite_b,check_finite=check_finite) + try: + return scipy.linalg.solve(A,b,overwrite_a=overwrite_a,overwrite_b=overwrite_b,check_finite=check_finite) + except numpy.linalg.LinAlgError: + return scipy.linalg.lstsq(A,b,overwrite_a=overwrite_a,overwrite_b=overwrite_b,check_finite=check_finite)[0] autoray.register_function("numpy", "solve_linear_system", __solve_linear_system) From 2d9f9da9439363abaf7a5b4ced306a3800e085e5 Mon Sep 17 00:00:00 2001 From: Microno95 Date: Thu, 4 Dec 2025 10:26:12 +0000 Subject: [PATCH 13/16] Fixes incorrect escaped character --- desolver/utilities/utilities.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/desolver/utilities/utilities.py b/desolver/utilities/utilities.py index dcf409b..91927f7 100644 --- a/desolver/utilities/utilities.py +++ b/desolver/utilities/utilities.py @@ -30,7 +30,7 @@ def get_finite_difference_weights(dtype, number_of_nodes, order=1, normalised=Tr title={Finite Difference Coefficients Calculator}, author={Taylor, Cameron R.}, year={2016}, - howpublished="\url{https://web.media.mit.edu/~crtaylor/calculator.html}" + howpublished="\\url{https://web.media.mit.edu/~crtaylor/calculator.html}" } """ inferred_backend = D.backend_like_dtype(dtype) From 2fdde372288daa6f723fa07be7642b5702f78f85 Mon Sep 17 00:00:00 2001 From: Microno95 Date: Thu, 4 Dec 2025 10:41:34 +0000 Subject: [PATCH 14/16] Adds support for updating the timestep according to the leading eigenvalue of a problem when it is available --- desolver/integrators/utilities.py | 15 ++++++++++++++- 1 file changed, 14 insertions(+), 1 deletion(-) diff --git a/desolver/integrators/utilities.py b/desolver/integrators/utilities.py index c53d8e4..8c9ef31 100644 --- a/desolver/integrators/utilities.py +++ b/desolver/integrators/utilities.py @@ -31,7 +31,20 @@ def implicit_aware_update_timestep(integrator: TableauIntegrator): tau2 = D.ar_numpy.ones_like(integrator.solver_dict['timestep'])*10.0 else: tau2 = D.ar_numpy.ones_like(integrator.solver_dict['timestep']) - # # ---- # + # ---- # + # Adjust the timestep according to leading eigenvalue (where available) + tau3 = D.ar_numpy.ones_like(integrator.solver_dict['timestep']) + if integrator.solver_dict['eigval1'] > 0.0: + with D.numpy.errstate(divide='ignore'): + epsilon_current = (integrator.solver_dict['eigval0'] / integrator.solver_dict['eigval1']) + tau3 = tau3*D.ar_numpy.where(D.ar_numpy.isfinite(epsilon_current), epsilon_current, 1.0) + tau3 = D.ar_numpy.clip(tau3, min=0.1, max=2.0) + # ---- # + if tau2 is None: + tau = tau3 + else: + tau = D.ar_numpy.minimum(tau2, tau3) + # ---- # # # Adjust the timestep according to the precision achieved by the # # nonlinear system solver at each timestep # tau3 = D.ar_numpy.ones_like(integrator.solver_dict['timestep']) From f54579da49d181b64816cb4053449f5cc199321d Mon Sep 17 00:00:00 2001 From: Microno95 Date: Thu, 4 Dec 2025 12:08:35 +0000 Subject: [PATCH 15/16] Add conugate gradient optimiser for the least-squares sub-problem of the nonlinear root-finding algorithms along with additional tests to measure the robustness of the included functionality. --- desolver/utilities/optimizer.py | 378 +++++++++++++++++++-- desolver/utilities/tests/common.py | 67 +++- desolver/utilities/tests/test_optimizer.py | 62 +++- 3 files changed, 464 insertions(+), 43 deletions(-) diff --git a/desolver/utilities/optimizer.py b/desolver/utilities/optimizer.py index ff2c4d5..71f4975 100644 --- a/desolver/utilities/optimizer.py +++ b/desolver/utilities/optimizer.py @@ -358,12 +358,38 @@ def iterative_left_inverse_8th(A, Ainv0, maxiter=10): def broyden_update_jac(B, dx, df, Binv=None): + """ + Brodyen-style update for the Hessian matrix of a function using the SR1 update formula + + Parameters + ---------- + B : np.ndarray|torch.Tensor, (fdim, xdim) + Matrix to update, generally an approximation to the Hessian + dx : np.ndarray|torch.Tensor, (xdim, 1) + The change in the evaluation point + df : np.ndarray|torch.Tensor, (fdim, 1) + The change in the function value + Binv : np.ndarray|torch.Tensor, (xdim, fdim) + Inverse of the matrix to update, ignored if None + + Returns + ------- + B[, Binv] + returns the updated Hessian matrix [and its inverse] + """ y_ex = B @ dx y_is = df + # with warnings.catch_warnings(): + # warnings.filterwarnings("ignore", category=RuntimeWarning, message="overflow encountered in matmul") + # kI = (y_is - y_ex) / D.ar_numpy.sum(y_ex.mT @ y_ex) + # B_new = D.ar_numpy.reshape((1 + kI @ (B @ dx)) * B, (df.shape[0], dx.shape[0])) with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=RuntimeWarning, message="overflow encountered in matmul") - kI = (y_is - y_ex) / D.ar_numpy.sum(y_ex.mT @ y_ex) - B_new = D.ar_numpy.reshape((1 + kI * (B @ dx)) * B, (df.shape[0], dx.shape[0])) + kI = (y_is - y_ex) + # # SR1 update formula + B_new = D.ar_numpy.reshape(B + (kI @ kI.mT) / (kI.mT @ dx + D.tol_epsilon(dx.dtype)), (df.shape[0], dx.shape[0])) + # BFGS update formula + # B_new = D.ar_numpy.reshape(B + y_is @ y_is.mT / (y_is.mT @ dx) - (y_ex @ y_ex.mT)/(dx.mT @ y_ex), (df.shape[0], dx.shape[0])) if Binv is not None: Binv_new = Binv + ((dx - Binv @ y_is) / (y_is.mT @ y_is)) @ y_is.mT norm_val = D.ar_numpy.linalg.norm(Binv_new @ B_new - D.ar_numpy.diag(D.ar_numpy.ones_like(D.ar_numpy.diag(B)))) @@ -374,7 +400,170 @@ def broyden_update_jac(B, dx, df, Binv=None): return B_new -def newtontrustregion(f, x0, jac=None, tol=None, verbose=False, maxiter=200, jac_update_rate=20, initial_trust_region=None, var_bounds=None): +def estimate_eigenvalues(matrix_A, num_initial_vecs=None, tol=None, estimate_smallest=True): + """ + Estimates dominant eigenvalues of a matrix using subspace iterations and the Rayleigh-Ritz method + + Parameters + ---------- + matrix_A : np.ndarray|torch.Tensor, (fdim, xdim) + Matrix whose eigenvalues are to be estimated + num_initial_vecs : int, >0 + The number of dominant eigenvalues to estimate + tol : float + The numerical tolerance for convergence + estimate_smallest : bool + Estimate the smallest eigenvalues as well. Smallest in magnitude for a positive-definite matrix, most negative real component for an indefinite one + + Returns + ------- + (np.ndarray|torch.Tensor, np.ndarray|torch.Tensor) + Returns the eigenvalues and eigenvectors associated with the matrix + """ + if matrix_A.shape[-1] < 32: + return D.ar_numpy.linalg.eig(matrix_A) + else: + if num_initial_vecs is None: + num_initial_vecs = max(8, min(matrix_A.shape[-1]//4, 4)) + num_initial_vecs = min(num_initial_vecs, matrix_A.shape[-1]) + if tol is None: + tol = D.tol_epsilon(matrix_A.dtype)**0.5 + V0 = D.ar_numpy.zeros_like(matrix_A[...,:num_initial_vecs]) + for i in range(num_initial_vecs): + V0[i,i] = 1 + V1 = D.ar_numpy.copy(V0) + for iter_count in range(matrix_A.shape[-1]*32): + Y0 = matrix_A@V0 + if iter_count > 1 and iter_count % matrix_A.shape[-1] == 0: + eigvals_V0 = D.ar_numpy.linalg.eigvals(V0.mT.conj()@matrix_A@V0) + eigvals_V1 = D.ar_numpy.linalg.eigvals(V1.mT.conj()@matrix_A@V0) + if D.ar_numpy.linalg.norm(eigvals_V0 - eigvals_V1) < tol: + break + V1, _ = D.ar_numpy.linalg.qr(Y0, mode='reduced') + V0, V1 = V1, V1 + eigvals, eigvecs = D.ar_numpy.linalg.eig(V0.mT.conj()@matrix_A@V0) + if D.autoray.infer_backend(matrix_A) == 'torch': + eigvecs = V0.to(eigvecs.dtype)@eigvecs + else: + eigvecs = V0@eigvecs + if estimate_smallest: + ident = D.ar_numpy.eye(matrix_A.shape[0], like=matrix_A) + if D.autoray.infer_backend(matrix_A) == 'torch': + ident = ident.to(matrix_A) + max_eigval = D.ar_numpy.max(D.ar_numpy.abs(eigvals)) + eigvals_smallest, eigvecs_smallest = estimate_eigenvalues(max_eigval*ident - matrix_A, num_initial_vecs=num_initial_vecs, tol=tol, estimate_smallest=False) + eigvals = D.ar_numpy.concatenate([eigvals, max_eigval-eigvals_smallest], axis=-1) + eigvecs = D.ar_numpy.concatenate([eigvecs, -eigvecs_smallest], axis=-1) + return eigvals, eigvecs + + +def cg_minimize(vp_fn, residual_fn, x0, max_iter=None, tol=None, verbose=0): + """ + Conjugate Gradient minimisation of a linear least-squares problem + + Parameters + ---------- + vp_fn : callable + The vector product function, should return A@v for a given vector v + residual_fn : callable + The residual function, should return f - Av for a given matrix-vector product Av=A@V + x0 : np.ndarray|torch.Tensor + The starting value for the minimisation + max_iter : int, >0 + Maximum number of iterations for the minimisation + tol : float + The numerical tolerance of the algorithm + verbose : int + Print progress on the minimisation + + Returns + ------- + np.ndarray|torch.Tensor + Returns the value of `x` that minimizes |f - A@x|^2 + """ + if max_iter is None: + max_iter = x0.shape[0]*4 + if tol is None: + tol = D.tol_epsilon(x0.dtype) + + x_0 = x0 + dir_0 = residual_0 = residual_fn(x_0, vp_fn(x_0)) + Ad_0 = vp_fn(dir_0) + + res_norm_0 = (residual_0.mT @ residual_0) + alpha_0 = res_norm_0 / (dir_0.mT @ Ad_0) + + x_1 = x_0 + alpha_0 * dir_0 + residual_1 = residual_0 - alpha_0*Ad_0 + res_norm_1 = residual_1.mT @ residual_1 + beta_1 = res_norm_1 / res_norm_0 + dir_1 = residual_1 + beta_1*dir_0 + + dir_0, dir_1 = dir_1, None + residual_0, residual_1 = residual_1, None + x_0, x_1 = x_1, None + res_norm_0, res_norm_1 = res_norm_1, None + + iteration_idx = 0 + while (D.ar_numpy.sqrt(res_norm_0) > tol) and iteration_idx < max_iter: + Ad_0 = vp_fn(dir_0) + + alpha_0 = res_norm_0 / (dir_0.mT @ Ad_0) + x_1 = x_0 + alpha_0 * dir_0 + residual_1 = residual_0 - alpha_0*Ad_0 + res_norm_1 = residual_1.mT @ residual_1 + beta_1 = D.ar_numpy.where(D.ar_numpy.sqrt(res_norm_0) > tol, res_norm_1 / res_norm_0, 0.0) + dir_1 = residual_1 + beta_1*dir_0 + + dir_0, dir_1 = dir_1, None + residual_0, residual_1 = residual_1, None + x_0, x_1 = x_1, None + res_norm_0, res_norm_1 = res_norm_1, None + + if verbose > 0 and (iteration_idx % verbose == 0): + print(f"[cgmin-{iteration_idx+1}/{max_iter}] |F|={res_norm_0.item():.16f}") + iteration_idx += 1 + + return x_0 + + +def newtontrustregion(f, x0, jac=None, tol=None, verbose=False, maxiter=200, jac_update_rate=20, initial_trust_region=None, var_bounds=None, force_use_cg=False): + """ + Newton Trust-region method for the root-finding problem of a nonlinear function `f`. + + Parameters + ---------- + f : callable + Function whose roots are to be found + x0 : np.ndarray|torch.Tensor + The starting point for the optimisation + jac : callable + The jacobian function that returns df/dx + tol : float + The numerical tolerance of the algorithm + verbose : int + Print outputs at `verbose` interval iterations + maxiter : int, >0 + Maximum iterations of the algorithm + jac_update_rate : int + The rate at which `jac` is evaluated to replace the Broyden update jacobian. This is useful when the jacobian approximation with Broyden updates strays too far from the true jacobian. + initial_trust_region : float + The initial size of the trust-region, automatically determined from the dominant eigenvalues of the jacobian + var_bounds : (np.ndarray|torch.Tensor, np.ndarray|torch.Tensor) -> (min(x), max(x)) + Box constraints on the parameter values, uses a periodic sine transformation of the variables + force_use_cg : bool + The underlying least-squares problem at each step is solved using direct methods below a certain problem size, and conjugate-gradient above a matrix size (xdim*fdim) of 4096. This flag forces the solver to always use Conjuage-Gradient. + + Returns + ------- + np.ndarray|torch.Tensor, (bool, int, int, int, np.ndarray|torch.Tensor) + Returns the value of `x` that best solves f(x)=0 in a least-squares sense along with a tuple containing: + * success of the optimisation + * number of iterations + * number of function evaluations + * number of jacobian evaluations + * residual of the solution, |f(x)-0| + """ x0 = D.ar_numpy.asarray(x0) if tol is None: tol = D.tol_epsilon(x0.dtype) @@ -388,7 +577,8 @@ def jac_vec(x): else: jac_vec = None res = newtontrustregion(f_vec, D.ar_numpy.atleast_1d(x0), jac_vec, tol=tol, verbose=verbose, - maxiter=maxiter, initial_trust_region=initial_trust_region, var_bounds=var_bounds) + maxiter=maxiter, initial_trust_region=initial_trust_region, var_bounds=var_bounds, + force_use_cg=False) return D.ar_numpy.reshape(res[0], xshape), res[1] xdim = 1 for __d in xshape: @@ -469,7 +659,15 @@ def fun_jac(x): warnings.filterwarnings("ignore", category=RuntimeWarning, message="invalid value encountered in matmul") if D.ar_numpy.linalg.norm(Jinv @ Jf1 - identity_matrix) < 0.5: Jinv = iterative_left_inverse_8th(Jf1, Jinv) - trust_region = 5.0 if initial_trust_region is None else initial_trust_region + if initial_trust_region is None: + trust_region = D.ar_numpy.maximum( + D.ar_numpy.max(D.ar_numpy.abs(estimate_eigenvalues(D.ar_numpy.astype(Jf1, f64_type), tol=1e-2)[0])), + D.ar_numpy.linalg.norm(Jf0) + ) + if not D.ar_numpy.all(D.ar_numpy.isfinite(trust_region)): + raise ValueError("Encountered NaN in jacobian!") + else: + trust_region = initial_trust_region iteration = 0 fail_iter = 0 @@ -479,7 +677,16 @@ def fun_jac(x): dJ = Jf1 - Jf0 df = (df.mT @ df).item() ** 0.5 dJ = D.ar_numpy.sum(dJ ** 2) ** 0.5 - print(f"[ntr-{iteration}]: x = {D.ar_numpy.to_numpy(x)}, f = {D.ar_numpy.to_numpy(F1)}, ||dx|| = {D.ar_numpy.to_numpy(dxn)}, ||F|| = {D.ar_numpy.to_numpy(Fn1)}, ||dF|| = {D.ar_numpy.to_numpy(df)}, ||dJ|| = {D.ar_numpy.to_numpy(dJ)}") + ostring = [] + if xdim < 4: + if var_bounds is not None: + ostring.append(f"x = {D.ar_numpy.to_numpy(transform_to_unbounded_x(x, *var_bounds))}") + else: + ostring.append(f"x = {D.ar_numpy.to_numpy(x)}") + if fdim < 4: + ostring.append(f"f = {D.ar_numpy.to_numpy(F1)}") + ostring = ", ".join(ostring) + print(f"[ntr-{iteration}]: ||dx|| = {D.ar_numpy.to_numpy(dxn)}, ||F|| = {D.ar_numpy.to_numpy(Fn1)}, ||dF|| = {D.ar_numpy.to_numpy(df)}, ||dJ|| = {D.ar_numpy.to_numpy(dJ)}, {ostring}") sparse = (1.0 - D.ar_numpy.sum(D.ar_numpy.abs(Jf1) > 0) / (xdim * fdim)) <= 0.7 P = Jf1 diagP = D.ar_numpy.diag(trust_region * D.ar_numpy.diag(P)) @@ -487,7 +694,19 @@ def fun_jac(x): warnings.filterwarnings("ignore", category=RuntimeWarning, message="invalid value encountered in matmul") warnings.filterwarnings("ignore", category=scipy.linalg.LinAlgWarning) warnings.filterwarnings("ignore", category=scipy.sparse.linalg.MatrixRankWarning) - dx = D.ar_numpy.reshape(D.ar_numpy.solve_linear_system(Jinv @ (P + diagP), -Jinv @ F1, sparse=sparse), (xdim, 1)) + if xdim*fdim >= 4096 or force_use_cg: + JinvF1 = -Jinv @ F1 + JinvPdP = Jinv @ (P + diagP) + dx = D.ar_numpy.reshape(cg_minimize( + lambda v0: JinvPdP @ v0, + lambda f0, jv0: JinvF1 - jv0, + x0=x, + max_iter=xdim*fdim*4, + tol=tol*0.1, + verbose=verbose > 0 + ), (xdim, 1)) + else: + dx = D.ar_numpy.reshape(D.ar_numpy.solve_linear_system(Jinv @ (P + diagP), -Jinv @ F1, sparse=sparse), (xdim, 1)) no_progress = True F0 = F1 Fn0 = Fn1 @@ -529,7 +748,16 @@ def fun_jac(x): convergence_failure = not D.ar_numpy.isfinite(dxn) or fail_iter > 2 if success or convergence_failure: if verbose: - print(f"[ntr-finished]: x = {D.ar_numpy.to_numpy(x)}, ||dx|| = {D.ar_numpy.to_numpy(dxn)}, ||F|| = {D.ar_numpy.to_numpy(Fn1)}, ||dF|| = {D.ar_numpy.to_numpy(df)}") + ostring = [] + if xdim < 4: + if var_bounds is not None: + ostring.append(f"x = {D.ar_numpy.to_numpy(transform_to_unbounded_x(x, *var_bounds))}") + else: + ostring.append(f"x = {D.ar_numpy.to_numpy(x)}") + if fdim < 4: + ostring.append(f"f = {D.ar_numpy.to_numpy(F1)}") + ostring = ", ".join(ostring) + print(f"[ntr-finished]: ||dx|| = {D.ar_numpy.to_numpy(dxn)}, ||F|| = {D.ar_numpy.to_numpy(Fn1)}, ||dF|| = {D.ar_numpy.to_numpy(df)}, {ostring}") break x = D.ar_numpy.reshape(x, xshape) if var_bounds is not None: @@ -537,7 +765,38 @@ def fun_jac(x): return x, (success and not convergence_failure, iteration, nfev, njev, Fn1) -def hybrj(f, x0, jac, tol=None, verbose=False, maxiter=200, var_bounds=None): +def hybrj(f, x0, jac, tol=None, verbose=False, maxiter=200, var_bounds=None, force_use_cg=False): + """ + A trust-region, hybrid Gauss-Newton and secant method root-finding algorithm, similar to the `hybrj` solver found in `MINPACK`. + + Parameters + ---------- + f : callable + Function whose roots are to be found + x0 : np.ndarray|torch.Tensor + The starting point for the optimisation + jac : callable + The jacobian function that returns df/dx + tol : float + The numerical tolerance of the algorithm + verbose : int + Print outputs at `verbose` interval iterations + maxiter : int, >0 + Maximum iterations of the algorithm + var_bounds : (np.ndarray|torch.Tensor, np.ndarray|torch.Tensor) -> (min(x), max(x)) + Box constraints on the parameter values, uses a periodic sine transformation of the variables + force_use_cg : bool + The underlying least-squares problem at each step is solved using direct methods below a certain problem size, and conjugate-gradient above a matrix size (xdim*fdim) of 4096. This flag forces the solver to always use Conjuage-Gradient. + + Returns + ------- + np.ndarray|torch.Tensor, (bool, np.ndarray|torch.Tensor, int, np.ndarray|torch.Tensor) + Returns the value of `x` that best solves f(x)=0 in a least-squares sense along with a tuple containing: + * success of the optimisation + * residual of the solution, |f(x)-0| + * number of iterations + * the value of f(x) at the best x + """ x0 = D.ar_numpy.asarray(x0) if tol is None: tol = D.tol_epsilon(x0.dtype) @@ -593,13 +852,19 @@ def fun_jac(x): fun_jac = transform_to_bounded_jac(fun_jac, *var_bounds) x = transform_to_bounded_x(x, *var_bounds) + low_precision_dtype = D.ar_numpy.finfo(x0.dtype).bits < 32 F0 = fun(x) F1 = D.ar_numpy.copy(F0) J0 = fun_jac(x) dx = D.ar_numpy.zeros_like(x) dxn = D.ar_numpy.linalg.norm(dx) + f64_type = D.autoray.to_backend_dtype('float64', like=inferred_backend) - trust_region = D.ar_numpy.max(D.ar_numpy.abs(D.ar_numpy.diag(J0))) + trust_region = D.ar_numpy.maximum( + D.ar_numpy.max(D.ar_numpy.abs(estimate_eigenvalues(D.ar_numpy.astype(J0, f64_type), tol=1e-2)[0])), + D.ar_numpy.linalg.norm(J0) + ) + trust_region = 1.0/trust_region if not D.ar_numpy.all(D.ar_numpy.isfinite(trust_region)): raise ValueError("Encountered NaN in jacobian!") iteration = 0 @@ -608,16 +873,40 @@ def fun_jac(x): if verbose: df = D.ar_numpy.linalg.norm(F1 - F0) Fn0 = D.ar_numpy.linalg.norm(F0) - print(f"[hybrj-{iteration}]: tr = {D.ar_numpy.to_numpy(trust_region)}, x = {D.ar_numpy.to_numpy(x)}, f = {D.ar_numpy.to_numpy(F1)}, ||dx|| = {D.ar_numpy.to_numpy(dxn)}, ||F|| = {D.ar_numpy.to_numpy(Fn0)}, ||dF|| = {D.ar_numpy.to_numpy(df)}") + ostring = [] + if xdim < 4: + if var_bounds is not None: + ostring.append(f"x = {D.ar_numpy.to_numpy(transform_to_unbounded_x(x, *var_bounds))}") + else: + ostring.append(f"x = {D.ar_numpy.to_numpy(x)}") + if fdim < 4: + ostring.append(f"f = {D.ar_numpy.to_numpy(F1)}") + if ostring: + ostring = ", " + ", ".join(ostring) + else: + ostring = "" + print(f"[hybrj-{iteration}]: tr = {D.ar_numpy.to_numpy(trust_region)}, ||dx|| = {D.ar_numpy.to_numpy(dxn)}, ||F|| = {D.ar_numpy.to_numpy(Fn0)}, ||dF|| = {D.ar_numpy.to_numpy(df)}{ostring}") Jt_mul_F = J0.mT @ F0 with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=RuntimeWarning, message="invalid value encountered in matmul") warnings.filterwarnings("ignore", category=scipy.linalg.LinAlgWarning) warnings.filterwarnings("ignore", category=scipy.sparse.linalg.MatrixRankWarning) - dx_gn = -D.ar_numpy.solve_linear_system(J0.mT @ J0, Jt_mul_F) - dx_sd = -Jt_mul_F - tparam = -dx_sd.mT @ Jt_mul_F / D.ar_numpy.linalg.norm(J0 @ dx_sd) ** 2 + # dx_gn = -D.ar_numpy.solve_linear_system(J0.mT @ J0, Jt_mul_F) + if (not low_precision_dtype and (xdim*fdim >= 4096 or force_use_cg)): + dx_gn = -D.ar_numpy.reshape(cg_minimize( + lambda v0: (J0 @ v0), + lambda f0, jv0: F0 - jv0, + x0=x, + max_iter=xdim*fdim*4, + tol=tol*0.1, + verbose=verbose > 0 + ), (xdim, 1)) + else: + dx_gn = -D.ar_numpy.solve_linear_system(J0, F0) + xtol = tol * (xdim + D.ar_numpy.linalg.norm(x)) + dx_sd = -Jt_mul_F + tparam = -dx_sd.mT @ Jt_mul_F / (D.ar_numpy.linalg.norm(J0 @ dx_sd) ** 2 + xtol) if D.ar_numpy.all(D.ar_numpy.linalg.norm(dx_gn) <= trust_region) or D.ar_numpy.linalg.norm(dx_gn - tparam * dx_sd) < xtol: dx = dx_gn elif D.ar_numpy.all(D.ar_numpy.linalg.norm(dx_sd) >= trust_region): @@ -644,7 +933,7 @@ def fun_jac(x): x = __x F1 = F0 F0 = __f - success = D.ar_numpy.linalg.norm(F0) < tol or dxn <= xtol + success = D.ar_numpy.linalg.norm(F0) < tol * fdim or dxn <= xtol * xdim if no_progress: J0 = fun_jac(x) else: @@ -655,11 +944,23 @@ def fun_jac(x): trust_region = D.ar_numpy.maximum(trust_region, 3 * D.ar_numpy.linalg.norm(dx_gn)) elif D.ar_numpy.max(gain) < 0.25: trust_region = trust_region * 0.5 - success = success or trust_region <= xtol + success = success or trust_region <= xtol * xdim if success: if verbose: Fn0 = D.ar_numpy.linalg.norm(F0) - print(f"[hybrj-finished]: ||F|| = {D.ar_numpy.to_numpy(Fn0)}, ||dx|| = {D.ar_numpy.to_numpy(dxn)}, x = {D.ar_numpy.to_numpy(x)}, F = {D.ar_numpy.to_numpy(F0)}") + ostring = [] + if xdim < 4: + if var_bounds is not None: + ostring.append(f"x = {D.ar_numpy.to_numpy(transform_to_unbounded_x(x, *var_bounds))}") + else: + ostring.append(f"x = {D.ar_numpy.to_numpy(x)}") + if fdim < 4: + ostring.append(f"f = {D.ar_numpy.to_numpy(F1)}") + if ostring: + ostring = ", " + ", ".join(ostring) + else: + ostring = "" + print(f"[hybrj-finished]: ||F|| = {D.ar_numpy.to_numpy(Fn0)}, ||dx|| = {D.ar_numpy.to_numpy(dxn)}{ostring}") break x = D.ar_numpy.reshape(x, xshape) if var_bounds is not None: @@ -668,7 +969,44 @@ def fun_jac(x): def nonlinear_roots(f, x0, jac=None, tol=None, verbose=False, maxiter=200, use_scipy=True, - additional_args=tuple(), additional_kwargs=dict(), var_bounds=None): + additional_args=tuple(), additional_kwargs=dict(), var_bounds=None, force_use_cg=False): + """ + Uses a variety of algorithms to solve for the roots of a nonlinear function. If available, uses `scipy` solvers first, + and if those do not succeed or support the data-type, switches the `hybrj` and `newtontrustregion` above. + + Parameters + ---------- + f : callable + Function whose roots are to be found + x0 : np.ndarray|torch.Tensor + The starting point for the optimisation + jac : Optional[callable] + The jacobian function that returns df/dx + tol : float + The numerical tolerance of the algorithm + verbose : int + Print outputs at `verbose` interval iterations + maxiter : int, >0 + Maximum iterations of the algorithm + use_scipy : bool + Whether to try using scipy to solve the problem + additional_args, additional_kwargs : (tuple(), dict()) + Additional positional and keyword arguments to pass to `f` and `jac` + var_bounds : (np.ndarray|torch.Tensor, np.ndarray|torch.Tensor) -> (min(x), max(x)) + Box constraints on the parameter values, uses a periodic sine transformation of the variables + force_use_cg : bool + The underlying least-squares problem at each step is solved using direct methods below a certain problem size, and conjugate-gradient above a matrix size (xdim*fdim) of 4096. This flag forces the solver to always use Conjuage-Gradient. + + Returns + ------- + np.ndarray|torch.Tensor, (bool, int, int, int, np.ndarray|torch.Tensor) + Returns the value of `x` that best solves f(x)=0 in a least-squares sense along with a tuple containing: + * success of the optimisation + * number of iterations + * number of function evaluations + * number of jacobian evaluations + * residual of the solution, |f(x)-0| + """ x0 = D.ar_numpy.asarray(x0) if tol is None: tol = D.tol_epsilon(x0.dtype) @@ -767,7 +1105,7 @@ def fun_jac(x): else: x = D.ar_numpy.reshape(x0, (xdim, 1)) else: - root, (success, prec, iterations, F) = hybrj(fun, x, fun_jac, tol=tol, verbose=verbose, maxiter=maxiter) + root, (success, prec, iterations, F) = hybrj(fun, x, fun_jac, tol=tol, verbose=verbose, maxiter=maxiter, force_use_cg=force_use_cg) success = success or D.ar_numpy.linalg.norm(F) <= D.tol_epsilon(x0.dtype) if success: x = D.ar_numpy.reshape(root, xshape) @@ -777,7 +1115,7 @@ def fun_jac(x): else: x = D.ar_numpy.reshape(x0, (xdim, 1)) - root, (success, iterations, *_, prec) = newtontrustregion(fun, x, jac=fun_jac, tol=tol, verbose=verbose, maxiter=maxiter, jac_update_rate=10, initial_trust_region=1e-4) + root, (success, iterations, *_, prec) = newtontrustregion(fun, x, jac=fun_jac, tol=tol, verbose=verbose, maxiter=maxiter, jac_update_rate=10, initial_trust_region=None, force_use_cg=force_use_cg) success = success or prec <= D.tol_epsilon(x0.dtype) x = D.ar_numpy.reshape(root, xshape) diff --git a/desolver/utilities/tests/common.py b/desolver/utilities/tests/common.py index 26d0174..657f3b0 100644 --- a/desolver/utilities/tests/common.py +++ b/desolver/utilities/tests/common.py @@ -14,6 +14,7 @@ def fn1_jac(x): fn1.jac = fn1_jac fn1.root_interval = [D.pi/2, D.pi] +fn1.min_precision = 16 def fn2(x): @@ -24,6 +25,7 @@ def fn2_jac(x): fn2.jac = fn2_jac fn2.root_interval = [0.0, 1.5] +fn2.min_precision = 16 def fn3(x): @@ -34,17 +36,20 @@ def fn3_jac(x): fn3.jac = fn3_jac fn3.root_interval = [0.0, 1.0] +fn3.min_precision = 16 +def generate_problems_kind_10(n): + def fn4(x): + return D.ar_numpy.exp(-n*x)*(x - 1) + x**n -def fn4(x): - return D.ar_numpy.exp(-x)*(x - 1) + x + def fn4_jac(x): + return -n*D.ar_numpy.exp(-n*x)*(x - 1) + D.ar_numpy.exp(-n*x) + n*x**(n-1) -def fn4_jac(x): - return D.ar_numpy.exp(-x)*(2 - x) + 1 - -fn4.jac = fn4_jac -fn4.root_interval = [0.0, 1.0] + fn4.jac = fn4_jac + fn4.root_interval = [0.0, 1.0] + fn4.min_precision = 16 + return fn4 def fn5(x): return 2*x*np.exp(-2) - 2*D.ar_numpy.exp(-2*x) + 1 @@ -54,7 +59,53 @@ def fn5_jac(x): fn5.jac = fn5_jac fn5.root_interval = [0.0, 1.0] +fn5.min_precision = 16 + +def fn6(x): + return np.where( + x == 0, + 0.0, + x*np.exp(-x**-2) + ) + +def fn6_jac(x): + return np.where( + x == 0, + 0.0, + np.exp(-1/x**2) + 2*np.exp(-1/x**2)/x**2 + ) + +fn6.jac = fn6_jac +fn6.root_interval = [-1.0, 4.0] +fn6.min_precision = 16 + +def generate_problems_kind_11(n): + def fn7(x): + return (n*x - 1)/((n-1)*x) + + def fn7_jac(x): + return 1/(x**2*(n - 1)) + + fn7.jac = fn7_jac + fn7.root_interval = [0.01, 1.0] + fn7.min_precision = 16 + + return fn7 + +def generate_problems_kind_8(n): + def fn8(x): + return x**2 - (1 - x)**n + + def fn8_jac(x): + return 2*x + n*(1 - x)**(n-1) + + fn8.jac = fn8_jac + fn8.root_interval = [0.0, 1.0] + fn8.min_precision = 16 + + return fn8 # ---- # -test_fn_param = pytest.mark.parametrize("fn", [fn1, fn2, fn3, fn4, fn5]) +test_fn_param = pytest.mark.parametrize("fn", [fn1, fn2, fn3, *[generate_problems_kind_10(n) for n in [1, 5, 10, 15, 20]], fn5, fn6, + *[generate_problems_kind_11(n) for n in [2]], *[generate_problems_kind_8(n) for n in [2,5,10,15,20]]]) diff --git a/desolver/utilities/tests/test_optimizer.py b/desolver/utilities/tests/test_optimizer.py index cc0a6bf..d545e51 100644 --- a/desolver/utilities/tests/test_optimizer.py +++ b/desolver/utilities/tests/test_optimizer.py @@ -39,7 +39,7 @@ def test_rootfinding_transforms(fn, dtype_var, backend_var): var_bounds[1].to(x0.dtype) ] - tol = D.tol_epsilon(dtype_var) + tol = 32*D.tol_epsilon(dtype_var) bx0 = de.utilities.optimizer.transform_to_bounded_x(x0, *var_bounds) blb = de.utilities.optimizer.transform_to_bounded_x(var_bounds[0], *var_bounds) @@ -273,7 +273,8 @@ def test_brentsrootvec(tolerance, dtype_var, backend_var, device_var): @pytest.mark.parametrize('ac_prod_val', np.linspace(0.9, 1.1, 4)) @pytest.mark.parametrize('a_val', [-1.0, 1.0]) @pytest.mark.parametrize('solver', [de.utilities.optimizer.nonlinear_roots, de.utilities.optimizer.newtontrustregion, de.utilities.optimizer.hybrj]) -def test_nonlinear_root(solver, tolerance, dtype_var, backend_var, device_var, a_val, ac_prod_val): +@pytest.mark.parametrize('force_use_cg', [False, True]) +def test_nonlinear_root(solver, tolerance, dtype_var, backend_var, device_var, a_val, ac_prod_val, force_use_cg): dtype_var = D.autoray.to_backend_dtype(dtype_var, like=backend_var) if backend_var == 'torch': set_torch_printoptions() @@ -305,7 +306,7 @@ def test_nonlinear_root(solver, tolerance, dtype_var, backend_var, device_var, a if backend_var == 'torch': x0 = x0.to(device_var) - root, (success, *_) = solver(fun_fn, x0, jac=jac_fn, tol=tolerance, verbose=1) + root, (success, *_) = solver(fun_fn, x0, jac=jac_fn, tol=tolerance, verbose=1, force_use_cg=force_use_cg) assert (success) @@ -320,13 +321,19 @@ def test_nonlinear_root(solver, tolerance, dtype_var, backend_var, device_var, a @pytest.mark.parametrize('ac_prod_val', np.linspace(0.9, 1.1, 3)) @pytest.mark.parametrize('a_val', [-1.0, 1.0]) @pytest.mark.parametrize('solver', [de.utilities.optimizer.newtontrustregion, de.utilities.optimizer.hybrj, de.utilities.optimizer.nonlinear_roots]) -@pytest.mark.parametrize('shape', [(1,), (4,4), (2,3,5)]) -def test_nonlinear_root_dims(solver, tolerance, dtype_var, backend_var, device_var, a_val, ac_prod_val, shape): +@pytest.mark.parametrize('shape', [(1,), (4,4), (2,3,5), (8,8,8)]) +@pytest.mark.parametrize('force_use_cg', [False, True]) +def test_nonlinear_root_dims(solver, tolerance, dtype_var, backend_var, device_var, a_val, ac_prod_val, shape, force_use_cg): dtype_var = D.autoray.to_backend_dtype(dtype_var, like=backend_var) if backend_var == 'torch': set_torch_printoptions() tolerance, tol = convert_tolerance(tolerance, dtype_var) + if D.ar_numpy.finfo(dtype_var).bits > 16: + numel = 1 + for i in shape: + numel *= i + tol = tol * numel ac_prod = D.ar_numpy.tile(D.ar_numpy.asarray(ac_prod_val, dtype=dtype_var, like=backend_var), shape) a = D.ar_numpy.tile(D.ar_numpy.asarray(a_val, dtype=dtype_var, like=backend_var), shape) @@ -353,10 +360,10 @@ def test_nonlinear_root_dims(solver, tolerance, dtype_var, backend_var, device_v if backend_var == 'torch': x0 = x0.to(device_var) - root, (success, *_) = solver(fun_fn, x0, jac=jac_fn, tol=tolerance, verbose=1) + root, (success, *_) = solver(fun_fn, x0, jac=jac_fn, tol=tolerance, verbose=1, force_use_cg=force_use_cg) assert (success) - + conv_root1 = np.allclose(D.ar_numpy.to_numpy(root), D.ar_numpy.to_numpy(gt_root1), tol, tol) conv_root2 = np.allclose(D.ar_numpy.to_numpy(root), D.ar_numpy.to_numpy(gt_root2), tol, tol) @@ -364,10 +371,10 @@ def test_nonlinear_root_dims(solver, tolerance, dtype_var, backend_var, device_v assert D.ar_numpy.all(D.ar_numpy.to_numpy(D.ar_numpy.abs(fun_fn(root))) <= tol) # Check with jacobian reshaped to be "strange" - root, (success, *_) = solver(fun_fn, x0, jac=lambda *args, **kwargs: jac_fn(*args, **kwargs)[None,None], tol=tolerance, verbose=1) + root, (success, *_) = solver(fun_fn, x0, jac=lambda *args, **kwargs: jac_fn(*args, **kwargs)[None,None], tol=tolerance, verbose=1, force_use_cg=force_use_cg) assert (success) - + conv_root1 = np.allclose(D.ar_numpy.to_numpy(root), D.ar_numpy.to_numpy(gt_root1), tol, tol) conv_root2 = np.allclose(D.ar_numpy.to_numpy(root), D.ar_numpy.to_numpy(gt_root2), tol, tol) @@ -470,31 +477,56 @@ def test_nonlinear_root_dims_no_jacobian_numpy(solver, tolerance, dtype_var, a_v @pytest.mark.slow @pytest.mark.parametrize('solver', [de.utilities.optimizer.nonlinear_roots, de.utilities.optimizer.newtontrustregion, de.utilities.optimizer.hybrj]) @common.test_fn_param -def test_rootfinding_robustness(fn, solver, dtype_var, backend_var): +@pytest.mark.parametrize('force_use_cg', [False, True]) +def test_rootfinding_robustness(fn, solver, dtype_var, backend_var, force_use_cg): dtype_var = D.autoray.to_backend_dtype(dtype_var, like=backend_var) + if D.ar_numpy.finfo(dtype_var).bits < fn.min_precision: + pytest.skip(f"Problem {fn} requires {fn.min_precision}-bit precision") if backend_var == 'torch': set_torch_printoptions() tolerance, tol = convert_tolerance(None, dtype_var) - x0 = D.ar_numpy.asarray(fn.root_interval[0] + 0.5 * (fn.root_interval[1] - fn.root_interval[0]), dtype=dtype_var, like=backend_var) + x0 = D.ar_numpy.asarray(fn.root_interval[0] + (1/np.pi) * (fn.root_interval[1] - fn.root_interval[0]), dtype=dtype_var, like=backend_var) + + nfev = 0 + njev = 0 + def fn_counted(*args, **kwargs): + nonlocal nfev + nfev += 1 + return fn(*args, **kwargs) + + def fn_jac_counted(*args, **kwargs): + nonlocal njev + njev += 1 + return fn.jac(*args, **kwargs) - root, (success, *_) = solver(fn, x0, jac=fn.jac, tol=tolerance, verbose=0) + root, (success, *_) = solver(fn_counted, x0, jac=fn_jac_counted, tol=tolerance, verbose=1, force_use_cg=force_use_cg) + print(f"Stats: {fn} required {nfev} function evaluations and {njev} jacobian evaluations using {solver}") assert (success) assert (D.ar_numpy.to_numpy(D.ar_numpy.abs(fn(root))) <= tol) - root, (success, *_) = solver(fn, x0, jac=None, tol=tolerance, verbose=0) + nfev = 0 + njev = 0 + root, (success, *_) = solver(fn_counted, x0, jac=None, tol=tolerance, verbose=1, force_use_cg=force_use_cg) + print(f"Stats: {fn} required {nfev} function evaluations and {njev} jacobian evaluations using {solver}") assert (success) assert (D.ar_numpy.to_numpy(D.ar_numpy.abs(fn(root))) <= tol) - root, (success, *_) = solver(fn, x0, jac=fn.jac, tol=tolerance, verbose=1, var_bounds=fn.root_interval) + nfev = 0 + njev = 0 + root, (success, *_) = solver(fn_counted, x0, jac=fn_jac_counted, tol=tolerance, verbose=1, var_bounds=fn.root_interval, force_use_cg=force_use_cg) + print(f"Stats: {fn} required {nfev} function evaluations and {njev} jacobian evaluations using {solver}") assert (success) assert (D.ar_numpy.to_numpy(D.ar_numpy.abs(fn(root))) <= tol) - root, (success, *_) = solver(fn, x0, jac=None, tol=tolerance, verbose=1, var_bounds=fn.root_interval) + nfev = 0 + njev = 0 + root, (success, *_) = solver(fn_counted, x0, jac=None, tol=tolerance, verbose=1, var_bounds=fn.root_interval, force_use_cg=force_use_cg) + print(f"Stats: {fn} required {nfev} function evaluations and {njev} jacobian evaluations using {solver}") assert (success) assert (D.ar_numpy.to_numpy(D.ar_numpy.abs(fn(root))) <= tol) From eb2d39c967c2104148e3b4a34e4ef6b38cf43de0 Mon Sep 17 00:00:00 2001 From: Microno95 Date: Thu, 4 Dec 2025 12:09:06 +0000 Subject: [PATCH 16/16] Adds estimation of the leading eigenvalue to implicit solvers for better time-stepping --- desolver/integrators/integrator_types.py | 94 ++++++++++++++++-------- 1 file changed, 64 insertions(+), 30 deletions(-) diff --git a/desolver/integrators/integrator_types.py b/desolver/integrators/integrator_types.py index e02feed..b7f2d03 100644 --- a/desolver/integrators/integrator_types.py +++ b/desolver/integrators/integrator_types.py @@ -4,7 +4,7 @@ from desolver import exception_types from desolver.integrators import utilities as integrator_utilities from desolver.integrators import components -from desolver.utilities.optimizer import broyden_update_jac +from desolver.utilities.optimizer import broyden_update_jac, estimate_eigenvalues import warnings import abc @@ -154,29 +154,23 @@ def __init__(self, sys_dim, dtype, rtol=None, atol=None, device=None): tau0=D.ar_numpy.abs(D.ar_numpy.ones((1,), **self.array_constructor_kwargs)[0]), tau1=D.ar_numpy.abs(D.ar_numpy.ones((1,), **self.array_constructor_kwargs)[0]), niter0=0, niter1=0, newton_prec0=D.ar_numpy.abs(D.ar_numpy.zeros((1,), **self.array_constructor_kwargs)[0]), newton_prec1=D.ar_numpy.abs(D.ar_numpy.zeros((1,), **self.array_constructor_kwargs)[0]), newton_tol=D.ar_numpy.min(D.ar_numpy.maximum(D.ar_numpy.ones_like(self.dState)*D.tol_epsilon(self.dtype), D.ar_numpy.min(self.solver_dict['rtol'] + self.solver_dict['atol']))), - newton_iterations=32 + newton_iterations=32, + eigval0=D.ar_numpy.abs(D.ar_numpy.ones((1,), **self.array_constructor_kwargs)[0]), + eigval1=D.ar_numpy.abs(D.ar_numpy.ones((1,), **self.array_constructor_kwargs)[0]), + jac_refresh_interval=32 )) self.solver_dict.update(solver_dict_preserved) self.adaptation_fn = integrator_utilities.implicit_aware_update_timestep self.__jac_eye = None self.__rhs_jac = None + self.__steps_since_jac = 0 + self.tolerance_failure_count = 0 + self.tolerance_failure_patience = 4 self.solver_dict_keep_keys = set(solver_dict_preserved.keys()) | {"num_step_retries"} def __call__(self, rhs, initial_time, initial_state, constants, timestep): self.solver_dict = {k:v for k,v in self.solver_dict.items() if k in self.solver_dict_keep_keys} - self.initial_state = D.ar_numpy.copy(initial_state) - self.initial_time = D.ar_numpy.copy(initial_time) - self.initial_rhs = None - - if self.final_rhs is not None: - self.initial_rhs = self.final_rhs - if self.is_fsal: - self.stage_values[...,0] = self.final_rhs - else: - self.initial_rhs = rhs(initial_time, initial_state, **constants) - - if self.is_implicit and self.__rhs_jac is None: - self.__rhs_jac = rhs.jac(initial_time, initial_state, **constants) + self.pre_step_update_states(rhs, initial_time, initial_state, constants, timestep) current_timestep = timestep try: @@ -195,6 +189,8 @@ def __call__(self, rhs, initial_time, initial_state, constants, timestep): self.solver_dict['initial_time'] = initial_time self.solver_dict['timestep'] = self.dTime self.solver_dict['dState'] = self.dState + if self.is_implicit: + self.solver_dict['eigval0'], self.solver_dict['eigval1'] = self.solver_dict['eigval1'], self.__leading_eigval timestep, redo_step = self.update_timestep() if self.is_implicit and not self.solver_dict.get("newton_iteration_success"): redo_step = True @@ -219,14 +215,59 @@ def __call__(self, rhs, initial_time, initial_state, constants, timestep): else: break if redo_step: - raise exception_types.FailedToMeetTolerances( - "Failed to integrate system from {} to {} ".format(initial_time, initial_time + self.dTime) + - "to the tolerances required: rtol={}, atol={}".format(self.rtol, self.atol) - ) + self.tolerance_failure_count += 1 + if self.tolerance_failure_count > self.tolerance_failure_patience: + raise exception_types.FailedToMeetTolerances( + "Failed to integrate system from {} to {} ".format(initial_time, initial_time + self.dTime) + + "to the tolerances required: rtol={}, atol={}".format(self.rtol, self.atol) + ) + else: + self.tolerance_failure_count = 0 + + self.post_step_update_states(self.final_rhs, self.dState) self._requires_high_precision = False return timestep, (self.dTime, self.dState) + + + def pre_step_update_states(self, rhs, initial_time, initial_state, constants, timestep): + self.initial_state = D.ar_numpy.copy(initial_state) + self.initial_time = D.ar_numpy.copy(initial_time) + self.initial_rhs = None + + if self.final_rhs is not None: + self.initial_rhs = self.final_rhs + if self.is_fsal: + self.stage_values[...,0] = self.final_rhs + else: + self.initial_rhs = rhs(initial_time, initial_state, **constants) + + if self.is_implicit: + if self.__rhs_jac is not None and D.ar_numpy.any(~D.ar_numpy.isfinite(self.__rhs_jac)): + self.__rhs_jac = None + elif self.__steps_since_jac % self.solver_dict['jac_refresh_interval'] == 0: + self.__rhs_jac = None + if self.__rhs_jac is None: + self.__rhs_jac = rhs.jac(initial_time, initial_state, **constants) + self.__steps_since_jac = 0 + self.__leading_eigval = D.ar_numpy.max(D.ar_numpy.abs(estimate_eigenvalues(self.__rhs_jac.reshape(self.numel, self.numel))[0])) + + + def post_step_update_states(self, final_rhs, dState): + if self.is_implicit and self.__rhs_jac is not None and self.initial_rhs is not None: + updated_jac = broyden_update_jac( + self.__rhs_jac.reshape(self.numel, self.numel), + dState.reshape(self.numel, 1), + (final_rhs - self.initial_rhs).reshape(self.numel, 1) + ).reshape(self.__rhs_jac.shape) + if D.ar_numpy.any(~D.ar_numpy.isfinite(self.__rhs_jac)): + self.__rhs_jac = None + elif D.ar_numpy.linalg.norm(updated_jac) > D.ar_numpy.linalg.norm(self.__rhs_jac) + D.ar_numpy.maximum(D.ar_numpy.linalg.norm(self.initial_rhs), D.ar_numpy.linalg.norm(final_rhs)): + self.__rhs_jac = None + else: + self.__rhs_jac = updated_jac + self.__steps_since_jac += 1 def algebraic_system(self, next_state, rhs, initial_time, initial_state, timestep, constants): @@ -278,8 +319,7 @@ def step(self, rhs, initial_time, initial_state, constants, timestep): tol=self.solver_dict.get("newton_tol", D.tol_epsilon(self.dtype)), maxiter=self.solver_dict.get("newton_iterations", 32), additional_args=(rhs, initial_time, initial_state, timestep, constants), - use_scipy=False) - self.solver_dict["newton_iteration_success"] = self.solver_dict["newton_iteration_success"] and prec < self.solver_dict.get("newton_tol", D.tol_epsilon(self.dtype)) + use_scipy=True) if not self.solver_dict["newton_iteration_success"]: self.__rhs_jac = None self.solver_dict.update(dict( @@ -308,13 +348,6 @@ def step(self, rhs, initial_time, initial_state, constants, timestep): else: self.dState = timestep * D.ar_numpy.sum(self.stage_values * self.tableau_final[0, 1:], axis=-1) self.final_rhs = rhs(initial_time + self.dTime, initial_state + self.dState, **constants) - - if self.is_implicit and self.__rhs_jac is not None and self.initial_rhs is not None: - self.__rhs_jac = broyden_update_jac( - self.__rhs_jac.reshape(self.numel, self.numel), - self.dState.reshape(self.numel, 1), - (self.final_rhs - self.initial_rhs).reshape(self.numel, 1) - ).reshape(self.__rhs_jac.shape) return timestep, (self.dTime, self.dState) @@ -446,8 +479,8 @@ def __init__(self, sys_dim, **kwargs): for i in self.dim: self.numel *= int(i) self.dtype = kwargs.get("dtype", D.ar_numpy.float64) - self.rtol = kwargs.get("rtol") if kwargs.get("rtol", None) is not None else 32 * D.epsilon() - self.atol = kwargs.get("atol") if kwargs.get("atol", None) is not None else 32 * D.epsilon() + self.rtol = kwargs.get("rtol") if kwargs.get("rtol", None) is not None else 32 * D.epsilon(self.dtype) + self.atol = kwargs.get("atol") if kwargs.get("atol", None) is not None else 32 * D.epsilon(self.dtype) self.device = kwargs.get("device", None) self.array_constructor_kwargs = dict(dtype=self.dtype) self.array_constructor_kwargs['like'] = D.backend_like_dtype(self.dtype) @@ -486,6 +519,7 @@ def __init__(self, sys_dim, **kwargs): self.stage_values = self.stage_values.to(self.device) self._adaptive = True + self._adaptivity_enabled = True self.__interpolants = None self.__interpolant_times = None