From 51af294d07fcdce3343d7ee7161a0e20fab1c9f8 Mon Sep 17 00:00:00 2001 From: justin-richling Date: Thu, 22 Feb 2024 14:35:46 -0700 Subject: [PATCH 01/59] Update adf_diag.py --- lib/adf_diag.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/lib/adf_diag.py b/lib/adf_diag.py index 610fecb67..c22628531 100644 --- a/lib/adf_diag.py +++ b/lib/adf_diag.py @@ -616,6 +616,8 @@ def call_ncrcat(cmd): # End if height # End if cam # End if has_lev + print(ncrcat_var_list) + print(hist_files) cmd = ( ["ncrcat", "-O", "-4", "-h", "--no_cll_mth", "-v", ncrcat_var_list] From dd765c6cdb9ba82d342528658c50bcc784563e46 Mon Sep 17 00:00:00 2001 From: justin-richling Date: Thu, 22 Feb 2024 14:41:44 -0700 Subject: [PATCH 02/59] Update adf_diag.py --- lib/adf_diag.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/lib/adf_diag.py b/lib/adf_diag.py index c22628531..efcd48e6a 100644 --- a/lib/adf_diag.py +++ b/lib/adf_diag.py @@ -629,7 +629,7 @@ def call_ncrcat(cmd): list_of_commands.append(cmd) # End variable loop - + print("here?") # Now run the "ncrcat" subprocesses in parallel: with mp.Pool(processes=self.num_procs) as mpool: _ = mpool.map(call_ncrcat, list_of_commands) From c7a8a591f3fc9168e9b613d7ba1d703fbfd4c71f Mon Sep 17 00:00:00 2001 From: justin-richling Date: Thu, 22 Feb 2024 14:50:48 -0700 Subject: [PATCH 03/59] Update adf_diag.py --- lib/adf_diag.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/lib/adf_diag.py b/lib/adf_diag.py index efcd48e6a..63febedc7 100644 --- a/lib/adf_diag.py +++ b/lib/adf_diag.py @@ -627,7 +627,7 @@ def call_ncrcat(cmd): # Add to command list for use in multi-processing pool: list_of_commands.append(cmd) - + print(list_of_commands) # End variable loop print("here?") # Now run the "ncrcat" subprocesses in parallel: From 79147f644f85439d60ec7e40807ef5c13ba9b463 Mon Sep 17 00:00:00 2001 From: justin-richling Date: Thu, 22 Feb 2024 15:01:16 -0700 Subject: [PATCH 04/59] Update adf_diag.py --- lib/adf_diag.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/lib/adf_diag.py b/lib/adf_diag.py index 63febedc7..239473dfc 100644 --- a/lib/adf_diag.py +++ b/lib/adf_diag.py @@ -630,9 +630,12 @@ def call_ncrcat(cmd): print(list_of_commands) # End variable loop print("here?") + """ # Now run the "ncrcat" subprocesses in parallel: with mp.Pool(processes=self.num_procs) as mpool: _ = mpool.map(call_ncrcat, list_of_commands) + """ + call_ncrcat(list_of_commands) if vars_to_derive: self.derive_variables( From bf4aa3922ddf294476a2345ad465bdb8fe90e00a Mon Sep 17 00:00:00 2001 From: justin-richling Date: Thu, 22 Feb 2024 15:04:35 -0700 Subject: [PATCH 05/59] Update adf_diag.py --- lib/adf_diag.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/lib/adf_diag.py b/lib/adf_diag.py index 239473dfc..3bbe4fa27 100644 --- a/lib/adf_diag.py +++ b/lib/adf_diag.py @@ -635,7 +635,8 @@ def call_ncrcat(cmd): with mp.Pool(processes=self.num_procs) as mpool: _ = mpool.map(call_ncrcat, list_of_commands) """ - call_ncrcat(list_of_commands) + #call_ncrcat(list_of_commands) + subprocess.run(list_of_commands, shell=False) if vars_to_derive: self.derive_variables( From e3d99b6f41f8cc6d1484f754de775e2e2be13324 Mon Sep 17 00:00:00 2001 From: justin-richling Date: Thu, 22 Feb 2024 15:05:20 -0700 Subject: [PATCH 06/59] Update adf_diag.py --- lib/adf_diag.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/lib/adf_diag.py b/lib/adf_diag.py index 3bbe4fa27..312f63d5f 100644 --- a/lib/adf_diag.py +++ b/lib/adf_diag.py @@ -636,7 +636,7 @@ def call_ncrcat(cmd): _ = mpool.map(call_ncrcat, list_of_commands) """ #call_ncrcat(list_of_commands) - subprocess.run(list_of_commands, shell=False) + subprocess.run(list_of_commands[0], shell=False) if vars_to_derive: self.derive_variables( From b200a4f986f94623199c7ba19b32fd18a35791cb Mon Sep 17 00:00:00 2001 From: justin-richling Date: Thu, 22 Feb 2024 15:08:50 -0700 Subject: [PATCH 07/59] Update adf_diag.py --- lib/adf_diag.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/lib/adf_diag.py b/lib/adf_diag.py index 312f63d5f..504e55f27 100644 --- a/lib/adf_diag.py +++ b/lib/adf_diag.py @@ -636,7 +636,7 @@ def call_ncrcat(cmd): _ = mpool.map(call_ncrcat, list_of_commands) """ #call_ncrcat(list_of_commands) - subprocess.run(list_of_commands[0], shell=False) + subprocess.run(list_of_commands[0], shell=True) if vars_to_derive: self.derive_variables( From 12fd449712568ca10e8feff3decd9f6c7f449da2 Mon Sep 17 00:00:00 2001 From: justin-richling Date: Thu, 22 Feb 2024 15:13:08 -0700 Subject: [PATCH 08/59] Update adf_diag.py --- lib/adf_diag.py | 1 + 1 file changed, 1 insertion(+) diff --git a/lib/adf_diag.py b/lib/adf_diag.py index 504e55f27..c5c5cce6b 100644 --- a/lib/adf_diag.py +++ b/lib/adf_diag.py @@ -636,6 +636,7 @@ def call_ncrcat(cmd): _ = mpool.map(call_ncrcat, list_of_commands) """ #call_ncrcat(list_of_commands) + list_of_commands =["ncrcat", "-O", "-4", "-h", "--no_cll_mth", "-v", "SNOWDP", "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pAD/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pAD.clm2.h0.0001-01.nc", "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pAD/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pAD.clm2.h0.0001-02.nc", "-o", "go_to_hell.nc"] subprocess.run(list_of_commands[0], shell=True) if vars_to_derive: From 404ab792473a56dad132beb33ced0f68fcb6f5de Mon Sep 17 00:00:00 2001 From: justin-richling Date: Thu, 22 Feb 2024 15:13:46 -0700 Subject: [PATCH 09/59] Update adf_diag.py --- lib/adf_diag.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/lib/adf_diag.py b/lib/adf_diag.py index c5c5cce6b..8482c0bc9 100644 --- a/lib/adf_diag.py +++ b/lib/adf_diag.py @@ -637,7 +637,7 @@ def call_ncrcat(cmd): """ #call_ncrcat(list_of_commands) list_of_commands =["ncrcat", "-O", "-4", "-h", "--no_cll_mth", "-v", "SNOWDP", "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pAD/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pAD.clm2.h0.0001-01.nc", "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pAD/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pAD.clm2.h0.0001-02.nc", "-o", "go_to_hell.nc"] - subprocess.run(list_of_commands[0], shell=True) + subprocess.run(list_of_commands[0], shell=False) if vars_to_derive: self.derive_variables( From 6ea5b460e781ab4e511c33fd3625170af1ca875b Mon Sep 17 00:00:00 2001 From: justin-richling Date: Thu, 22 Feb 2024 15:16:11 -0700 Subject: [PATCH 10/59] Update adf_diag.py --- lib/adf_diag.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/lib/adf_diag.py b/lib/adf_diag.py index 8482c0bc9..bde55d9a4 100644 --- a/lib/adf_diag.py +++ b/lib/adf_diag.py @@ -637,7 +637,7 @@ def call_ncrcat(cmd): """ #call_ncrcat(list_of_commands) list_of_commands =["ncrcat", "-O", "-4", "-h", "--no_cll_mth", "-v", "SNOWDP", "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pAD/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pAD.clm2.h0.0001-01.nc", "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pAD/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pAD.clm2.h0.0001-02.nc", "-o", "go_to_hell.nc"] - subprocess.run(list_of_commands[0], shell=False) + subprocess.run(list_of_commands, shell=False) if vars_to_derive: self.derive_variables( From 22ca8a7e712a3a0bd336211c2605854176f5012d Mon Sep 17 00:00:00 2001 From: justin-richling Date: Thu, 22 Feb 2024 15:19:10 -0700 Subject: [PATCH 11/59] Update adf_diag.py --- lib/adf_diag.py | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/lib/adf_diag.py b/lib/adf_diag.py index bde55d9a4..816ddf48b 100644 --- a/lib/adf_diag.py +++ b/lib/adf_diag.py @@ -636,7 +636,10 @@ def call_ncrcat(cmd): _ = mpool.map(call_ncrcat, list_of_commands) """ #call_ncrcat(list_of_commands) - list_of_commands =["ncrcat", "-O", "-4", "-h", "--no_cll_mth", "-v", "SNOWDP", "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pAD/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pAD.clm2.h0.0001-01.nc", "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pAD/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pAD.clm2.h0.0001-02.nc", "-o", "go_to_hell.nc"] + list_of_commands =["ncrcat", "-O", "-4", "-h", "--no_cll_mth", "-v", "SNOWDP"]# "-o", "go_to_hell.nc"] + list_of_commands.append(hist_files) + list_of_commands.append("-o") + list_of_commands.append(ts_outfil_str) subprocess.run(list_of_commands, shell=False) if vars_to_derive: From 8eb43206eaf06028331cfbcd8e77daca49ffd1bc Mon Sep 17 00:00:00 2001 From: justin-richling Date: Thu, 22 Feb 2024 15:19:48 -0700 Subject: [PATCH 12/59] Update adf_diag.py --- lib/adf_diag.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/lib/adf_diag.py b/lib/adf_diag.py index 816ddf48b..21f51c71c 100644 --- a/lib/adf_diag.py +++ b/lib/adf_diag.py @@ -637,7 +637,7 @@ def call_ncrcat(cmd): """ #call_ncrcat(list_of_commands) list_of_commands =["ncrcat", "-O", "-4", "-h", "--no_cll_mth", "-v", "SNOWDP"]# "-o", "go_to_hell.nc"] - list_of_commands.append(hist_files) + list_of_commands.extend(hist_files) list_of_commands.append("-o") list_of_commands.append(ts_outfil_str) subprocess.run(list_of_commands, shell=False) From 9da453c37c97e357c6a3c72b8b5012b0f287755a Mon Sep 17 00:00:00 2001 From: justin-richling Date: Thu, 22 Feb 2024 15:21:34 -0700 Subject: [PATCH 13/59] Update adf_diag.py --- lib/adf_diag.py | 11 ++++++++--- 1 file changed, 8 insertions(+), 3 deletions(-) diff --git a/lib/adf_diag.py b/lib/adf_diag.py index 21f51c71c..e374b920f 100644 --- a/lib/adf_diag.py +++ b/lib/adf_diag.py @@ -616,8 +616,8 @@ def call_ncrcat(cmd): # End if height # End if cam # End if has_lev - print(ncrcat_var_list) - print(hist_files) + #print(ncrcat_var_list) + #print(hist_files) cmd = ( ["ncrcat", "-O", "-4", "-h", "--no_cll_mth", "-v", ncrcat_var_list] @@ -637,7 +637,12 @@ def call_ncrcat(cmd): """ #call_ncrcat(list_of_commands) list_of_commands =["ncrcat", "-O", "-4", "-h", "--no_cll_mth", "-v", "SNOWDP"]# "-o", "go_to_hell.nc"] - list_of_commands.extend(hist_files) + print(list_of_commands) + hist_files2 = [] + for i in hist_files: + hist_files2.append(str(i)) + list_of_commands.extend(hist_files2) + print(list_of_commands) list_of_commands.append("-o") list_of_commands.append(ts_outfil_str) subprocess.run(list_of_commands, shell=False) From 6823bca3eba4bc89e76e787d302a88e84c222f52 Mon Sep 17 00:00:00 2001 From: justin-richling Date: Thu, 22 Feb 2024 15:23:41 -0700 Subject: [PATCH 14/59] Update adf_diag.py --- lib/adf_diag.py | 16 +++++++++------- 1 file changed, 9 insertions(+), 7 deletions(-) diff --git a/lib/adf_diag.py b/lib/adf_diag.py index e374b920f..c435cf4b4 100644 --- a/lib/adf_diag.py +++ b/lib/adf_diag.py @@ -636,13 +636,15 @@ def call_ncrcat(cmd): _ = mpool.map(call_ncrcat, list_of_commands) """ #call_ncrcat(list_of_commands) - list_of_commands =["ncrcat", "-O", "-4", "-h", "--no_cll_mth", "-v", "SNOWDP"]# "-o", "go_to_hell.nc"] - print(list_of_commands) - hist_files2 = [] - for i in hist_files: - hist_files2.append(str(i)) - list_of_commands.extend(hist_files2) - print(list_of_commands) + list_of_commands =["ncrcat", "-O", "-4", "-h", "--no_cll_mth", "-v", "SNOWDP", + "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pSASU/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pSASU.clm2.h0.0001-01.nc", + "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pSASU/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pSASU.clm2.h0.0001-02.nc"]# "-o", "go_to_hell.nc"] + #print(list_of_commands) + #hist_files2 = [] + #for i in hist_files: + # hist_files2.append(str(i)) + #list_of_commands.extend(hist_files2) + #print(list_of_commands) list_of_commands.append("-o") list_of_commands.append(ts_outfil_str) subprocess.run(list_of_commands, shell=False) From 9f1b25b255174e21d442c93dc66728573c36b60f Mon Sep 17 00:00:00 2001 From: justin-richling Date: Thu, 22 Feb 2024 15:24:22 -0700 Subject: [PATCH 15/59] Update adf_diag.py --- lib/adf_diag.py | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/lib/adf_diag.py b/lib/adf_diag.py index c435cf4b4..9aac252d2 100644 --- a/lib/adf_diag.py +++ b/lib/adf_diag.py @@ -637,8 +637,7 @@ def call_ncrcat(cmd): """ #call_ncrcat(list_of_commands) list_of_commands =["ncrcat", "-O", "-4", "-h", "--no_cll_mth", "-v", "SNOWDP", - "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pSASU/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pSASU.clm2.h0.0001-01.nc", - "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pSASU/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pSASU.clm2.h0.0001-02.nc"]# "-o", "go_to_hell.nc"] + "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pSASU/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pSASU.clm2.h0.0001-01.nc /glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pSASU/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pSASU.clm2.h0.0001-02.nc"]# "-o", "go_to_hell.nc"] #print(list_of_commands) #hist_files2 = [] #for i in hist_files: From fcfa3da83c4a850a96162e91d3f340603f9e2666 Mon Sep 17 00:00:00 2001 From: justin-richling Date: Thu, 22 Feb 2024 15:26:13 -0700 Subject: [PATCH 16/59] Update adf_diag.py --- lib/adf_diag.py | 10 ++++++---- 1 file changed, 6 insertions(+), 4 deletions(-) diff --git a/lib/adf_diag.py b/lib/adf_diag.py index 9aac252d2..b5f3b7ee7 100644 --- a/lib/adf_diag.py +++ b/lib/adf_diag.py @@ -636,16 +636,18 @@ def call_ncrcat(cmd): _ = mpool.map(call_ncrcat, list_of_commands) """ #call_ncrcat(list_of_commands) - list_of_commands =["ncrcat", "-O", "-4", "-h", "--no_cll_mth", "-v", "SNOWDP", - "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pSASU/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pSASU.clm2.h0.0001-01.nc /glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pSASU/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pSASU.clm2.h0.0001-02.nc"]# "-o", "go_to_hell.nc"] + list_of_commands =["ncrcat", "-O", "-4", "-h", "--no_cll_mth", "-v", "SNOWDP", "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pAD/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pAD.clm2.h0.0001-01.nc", "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pAD/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pAD.clm2.h0.0001-02.nc", "-o", "go_to_hell.nc"] + + #list_of_commands =["ncrcat", "-O", "-4", "-h", "--no_cll_mth", "-v", "SNOWDP", + #"/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pSASU/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pSASU.clm2.h0.0001-01.nc /glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pSASU/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pSASU.clm2.h0.0001-02.nc"]# "-o", "go_to_hell.nc"] #print(list_of_commands) #hist_files2 = [] #for i in hist_files: # hist_files2.append(str(i)) #list_of_commands.extend(hist_files2) #print(list_of_commands) - list_of_commands.append("-o") - list_of_commands.append(ts_outfil_str) + #list_of_commands.append("-o") + #list_of_commands.append(ts_outfil_str) subprocess.run(list_of_commands, shell=False) if vars_to_derive: From be3c364b754af3f1ef6e3cc73f5345ef6b6948d4 Mon Sep 17 00:00:00 2001 From: justin-richling Date: Thu, 22 Feb 2024 15:27:06 -0700 Subject: [PATCH 17/59] Update adf_diag.py --- lib/adf_diag.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/lib/adf_diag.py b/lib/adf_diag.py index b5f3b7ee7..1d23b0ba2 100644 --- a/lib/adf_diag.py +++ b/lib/adf_diag.py @@ -636,7 +636,7 @@ def call_ncrcat(cmd): _ = mpool.map(call_ncrcat, list_of_commands) """ #call_ncrcat(list_of_commands) - list_of_commands =["ncrcat", "-O", "-4", "-h", "--no_cll_mth", "-v", "SNOWDP", "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pAD/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pAD.clm2.h0.0001-01.nc", "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pAD/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pAD.clm2.h0.0001-02.nc", "-o", "go_to_hell.nc"] + list_of_commands =["ncrcat", "-O", "-4", "-h", "--no_cll_mth", "-v", "SNOWDP", "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pAD/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pAD.clm2.h0.0001-01.nc", "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pAD/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pAD.clm2.h0.0001-02.nc", "-o", ts_outfil_str] #list_of_commands =["ncrcat", "-O", "-4", "-h", "--no_cll_mth", "-v", "SNOWDP", #"/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pSASU/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pSASU.clm2.h0.0001-01.nc /glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pSASU/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pSASU.clm2.h0.0001-02.nc"]# "-o", "go_to_hell.nc"] From 33b09ca9e8f653a328e9ee94a21f2c445bcb7be8 Mon Sep 17 00:00:00 2001 From: justin-richling Date: Thu, 22 Feb 2024 15:27:35 -0700 Subject: [PATCH 18/59] Update adf_diag.py --- lib/adf_diag.py | 1 + 1 file changed, 1 insertion(+) diff --git a/lib/adf_diag.py b/lib/adf_diag.py index 1d23b0ba2..bd73973be 100644 --- a/lib/adf_diag.py +++ b/lib/adf_diag.py @@ -630,6 +630,7 @@ def call_ncrcat(cmd): print(list_of_commands) # End variable loop print("here?") + print(ts_outfil_str) """ # Now run the "ncrcat" subprocesses in parallel: with mp.Pool(processes=self.num_procs) as mpool: From 09895a8f2e0bcb3e4b780412fff07e5d135c9a23 Mon Sep 17 00:00:00 2001 From: justin-richling Date: Thu, 22 Feb 2024 15:37:46 -0700 Subject: [PATCH 19/59] Update adf_diag.py --- lib/adf_diag.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/lib/adf_diag.py b/lib/adf_diag.py index bd73973be..de4f52596 100644 --- a/lib/adf_diag.py +++ b/lib/adf_diag.py @@ -637,7 +637,7 @@ def call_ncrcat(cmd): _ = mpool.map(call_ncrcat, list_of_commands) """ #call_ncrcat(list_of_commands) - list_of_commands =["ncrcat", "-O", "-4", "-h", "--no_cll_mth", "-v", "SNOWDP", "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pAD/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pAD.clm2.h0.0001-01.nc", "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pAD/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pAD.clm2.h0.0001-02.nc", "-o", ts_outfil_str] + #list_of_commands =["ncrcat", "-O", "-4", "-h", "--no_cll_mth", "-v", "SNOWDP", "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pAD/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pAD.clm2.h0.0001-01.nc", "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pAD/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pAD.clm2.h0.0001-02.nc", "-o", ts_outfil_str] #list_of_commands =["ncrcat", "-O", "-4", "-h", "--no_cll_mth", "-v", "SNOWDP", #"/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pSASU/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pSASU.clm2.h0.0001-01.nc /glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pSASU/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pSASU.clm2.h0.0001-02.nc"]# "-o", "go_to_hell.nc"] From a4d5600b0412c141d7301e5e6d8ba140ce8393e0 Mon Sep 17 00:00:00 2001 From: justin-richling Date: Thu, 22 Feb 2024 15:38:53 -0700 Subject: [PATCH 20/59] Update adf_diag.py --- lib/adf_diag.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/lib/adf_diag.py b/lib/adf_diag.py index de4f52596..a95bd4c66 100644 --- a/lib/adf_diag.py +++ b/lib/adf_diag.py @@ -631,11 +631,11 @@ def call_ncrcat(cmd): # End variable loop print("here?") print(ts_outfil_str) - """ + # Now run the "ncrcat" subprocesses in parallel: with mp.Pool(processes=self.num_procs) as mpool: _ = mpool.map(call_ncrcat, list_of_commands) - """ + #call_ncrcat(list_of_commands) #list_of_commands =["ncrcat", "-O", "-4", "-h", "--no_cll_mth", "-v", "SNOWDP", "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pAD/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pAD.clm2.h0.0001-01.nc", "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/ctsm51d159_f45_GSWP3_bgccrop_1850pAD/lnd/hist/ctsm51d159_f45_GSWP3_bgccrop_1850pAD.clm2.h0.0001-02.nc", "-o", ts_outfil_str] @@ -649,7 +649,7 @@ def call_ncrcat(cmd): #print(list_of_commands) #list_of_commands.append("-o") #list_of_commands.append(ts_outfil_str) - subprocess.run(list_of_commands, shell=False) + #subprocess.run(list_of_commands, shell=False) if vars_to_derive: self.derive_variables( From 1a891f6e1dcf2aac88f50239ce6784adfe416917 Mon Sep 17 00:00:00 2001 From: wwieder Date: Tue, 7 Jan 2025 09:15:46 -0700 Subject: [PATCH 21/59] modifications for LWMG plots --- config_clm_baseline_wwieder.yaml | 418 ++++++++++++++++++++++++++++++ config_clm_baseline_wwieder2.yaml | 418 ++++++++++++++++++++++++++++++ lib/adf_variable_defaults.yaml | 18 ++ 3 files changed, 854 insertions(+) create mode 100644 config_clm_baseline_wwieder.yaml create mode 100644 config_clm_baseline_wwieder2.yaml diff --git a/config_clm_baseline_wwieder.yaml b/config_clm_baseline_wwieder.yaml new file mode 100644 index 000000000..5f25d509f --- /dev/null +++ b/config_clm_baseline_wwieder.yaml @@ -0,0 +1,418 @@ +#============================== +#config_cam_baseline_example.yaml + +#This is the main CAM diagnostics config file +#for doing comparisons of a CAM run against +#another CAM run, or a CAM baseline simulation. + +#Currently, if one is on NCAR's Casper or +#Cheyenne machine, then only the diagnostic output +#paths are needed, at least to perform a quick test +#run (these are indicated with "MUST EDIT" comments). +#Running these diagnostics on a different machine, +#or with a different, non-example simulation, will +#require additional modifications. +# +#Config file Keywords: +#-------------------- +# +#1. Using ${xxx} will substitute that text with the +# variable referenced by xxx. For example: +# +# cam_case_name: cool_run +# cam_climo_loc: /some/where/${cam_case_name} +# +# will set "cam_climo_loc" in the diagnostics package to: +# /some/where/cool_run +# +# Please note that currently this will only work if the +# variable only exists in one location in the file. +# +#2. Using ${.xxx} will do the same as +# keyword 1 above, but specifies which sub-section the +# variable is coming from, which is necessary for variables +# that are repeated in different subsections. For example: +# +# diag_basic_info: +# cam_climo_loc: /some/where/${diag_cam_climo.start_year} +# +# diag_cam_climo: +# start_year: 1850 +# +# will set "cam_climo_loc" in the diagnostics package to: +# /some/where/1850 +# +#Finally, please note that for both 1 and 2 the keywords must be lowercase. +#This is because future developments will hopefully use other keywords +#that are uppercase. Also please avoid using periods (".") in variable +#names, as this will likely cause issues with the current file parsing +#system. +#-------------------- +# +##============================== +# +# This file doesn't (yet) read environment variables, so the user must +# set this themselves. It is also a good idea to search the doc for 'user' +# to see what default paths are being set for output/working files. +# +# Note that the string 'USER-NAME-NOT-SET' is used in the jupyter script +# to check for a failure to customize +# +user: 'wwieder' + + +#This first set of variables specify basic info used by all diagnostic runs: +diag_basic_info: + + #History file string to match (eg. cam.h0 or ocn.pop.h.ecosys.nday1) + # Only affects timeseries as everything else uses timeseries + # Leave off trailing '.' + #Default: cam.h0 + #hist_str: clm.h0 + hist_str: cam.h0a + + #Is this a model vs observations comparison? + #If "false" or missing, then a model-model comparison is assumed: + compare_obs: false + + #Generate HTML website (assumed false if missing): + #Note: The website files themselves will be located in the path + #specified by "cam_diag_plot_loc", under the "/website" subdirectory, + #where "" is the subdirectory created for this particular diagnostics run + #(usually "case_vs_obs_XXX" or "case_vs_baseline_XXX"). + create_html: true + + #Location of observational datasets: + #Note: this only matters if "compare_obs" is true and the path + #isn't specified in the variable defaults file. + obs_data_loc: /glade/work/nusbaume/SE_projects/model_diagnostics/ADF_obs + + #Location where re-gridded and interpolated CAM climatology files are stored: + cam_regrid_loc: /glade/derecho/scratch/${user}/ADF/regrid + + #Overwrite CAM re-gridded files? + #If false, or missing, then regridding will be skipped for regridded variables + #that already exist in "cam_regrid_loc": + cam_overwrite_regrid: false + + #Location where diagnostic plots are stored: + cam_diag_plot_loc: /glade/derecho/scratch/${user}/ADF/plots + + #Location of ADF variable plotting defaults YAML file: + #If left blank or missing, ADF/lib/adf_variable_defaults.yaml will be used + #Uncomment and change path for custom variable defaults file + #defaults_file: /some/path/to/defaults/file.yaml + + #Vertical pressure levels (in hPa) on which to plot 3-D variables + #when using horizontal (e.g. lat/lon) map projections. + #If this config option is missing, then no 3-D variables will be plotted on + #horizontal maps. Please note too that pressure levels must currently match + #what is available in the observations file in order to be plotted in a + #model vs obs run: + plot_press_levels: [200,850] + + #Longitude line on which to center all lat/lon maps. + #If this config option is missing then the central + #longitude will default to 180 degrees E. + central_longitude: 180 + + #Number of processors on which to run the ADF. + #If this config variable isn't present then + #the ADF defaults to one processor. Also, if + #you set it to "*" then it will default + #to all of the processors available on a + #single node/machine: + num_procs: 8 + + #If set to true, then redo all plots even if they already exist. + #If set to false, then if a plot is found it will be skipped: + redo_plot: false + +#This second set of variables provides info for the CAM simulation(s) being diagnosed: +diag_cam_climo: + + #Calculate climatologies? + #If false, the climatology files will not be created: + calc_cam_climo: true + + #Overwrite CAM climatology files? + #If false, or not prsent, then already existing climatology files will be skipped: + cam_overwrite_climo: false + + #Name of CAM case (or CAM run name): + cam_case_name: b.e23_alpha17f.BLT1850.ne30_t232.093 + + #Case nickname + #NOTE: if nickname starts with '0' - nickname must be in quotes! + # ie '026a' as opposed to 026a + #If missing or left blank, will default to cam_case_name + case_nickname: '093' + + #Location of CAM history (h0) files: + #Example test files + #cam_hist_loc: /glade/derecho/scratch/hannay/archive/${diag_cam_climo.cam_case_name}/lnd/hist + cam_hist_loc: /glade/derecho/scratch/hannay/archive/${diag_cam_climo.cam_case_name}/atm/hist + + #Location of CAM climatologies (to be created and then used by this script) + cam_climo_loc: /glade/derecho/scratch/${user}/ADF/${diag_cam_climo.cam_case_name}/climo + + #model year when time series files should start: + #Note: Leaving this entry blank will make time series + # start at earliest available year. + start_year: + + #model year when time series files should end: + #Note: Leaving this entry blank will make time series + # end at latest available year. + end_year: + + #Do time series files exist? + #If True, then diagnostics assumes that model files are already time series. + #If False, or if simply not present, then diagnostics will attempt to create + #time series files from history (time-slice) files: + cam_ts_done: false + + #Save interim time series files? + #WARNING: This can take up a significant amount of space, + # but will save processing time the next time + cam_ts_save: true + + #Overwrite time series files, if found? + #If set to false, then time series creation will be skipped if files are found: + cam_overwrite_ts: false + + #Location where time series files are (or will be) stored: + cam_ts_loc: /glade/derecho/scratch/${user}/ADF/${diag_cam_climo.cam_case_name}/ts + + #---------------------- + + #You can alternatively provide a list of cases, which will make the ADF + #apply the same diagnostics to each case separately in a single ADF session. + #All of the config variables below show how it is done, and are the only ones + #that need to be lists. This also automatically enables the generation of + #a "main_website" in "cam_diag_plot_loc" that brings all of the different cases + #together under a single website. + + #Also please note that config keywords cannot currently be used in list mode. + + #cam_case_name: + # - b.e20.BHIST.f09_g17.20thC.297_05 + # - b1850.f19_g17.validation_mct.004 + + #Case nickname + #NOTE: if nickname starts with '0' - nickname must be in quotes! + # ie '026a' as opposed to 026a + #If missing or left blank, will default to cam_case_name + #case_nickname: + # - cool nickname + # - cool nickname 2 + + #calc_cam_climo: + # - true + # - true + + #cam_overwrite_climo: + # - false + # - false + + #cam_hist_loc: + # - /glade/p/cesm/ADF/b.e20.BHIST.f09_g17.20thC.297_05 + # - /glade/p/cesm/ADF/b1850.f19_g17.validation_mct.004 + + #cam_climo_loc: + # - /some/where/you/want/to/have/climo_files/ #MUST EDIT! + # - /the/same/or/some/other/climo/files/location + + #start_year: + # - 1990 + # - 90 + + #end_year: + # - 1999 + # - 99 + + #cam_ts_done: + # - false + # - false + + #cam_ts_save: + # - true + # - true + + #cam_overwrite_ts: + # - false + # - false + + #cam_ts_loc: + # - /some/where/you/want/to/have/time_series_files + # - /same/or/different/place/you/want/files + + #---------------------- + + +#This third set of variables provide info for the CAM baseline climatologies. +#This only matters if "compare_obs" is false: +diag_cam_baseline_climo: + + #Calculate cam baseline climatologies? + #If false, the climatology files will not be created: + calc_cam_climo: true + + #Overwrite CAM climatology files? + #If false, or not present, then already existing climatology files will be skipped: + cam_overwrite_climo: false + + #Name of CAM baseline case: + cam_case_name: b.e23_alpha17f.BLT1850.ne30_t232.095 + + #Baseline case nickname + #NOTE: if nickname starts with '0' - nickname must be in quotes! + # ie '026a' as opposed to 026a + #If missing or left blank, will default to cam_case_name + case_nickname: '095' + + #Location of CAM baseline history (h0) files: + #Example test files + #cam_hist_loc: /glade/derecho/scratch/hannay/archive/${diag_cam_climo.cam_case_name}/lnd/hist + cam_hist_loc: /glade/derecho/scratch/hannay/archive/${diag_cam_climo.cam_case_name}/atm/hist + + #Location of baseline CAM climatologies: + cam_climo_loc: /glade/derecho/scratch/${user}/ADF/${diag_cam_baseline_climo.cam_case_name}/climo + + #model year when time series files should start: + #Note: Leaving this entry blank will make time series + # start at earliest available year. + start_year: + + #model year when time series files should end: + #Note: Leaving this entry blank will make time series + # end at latest available year. + end_year: + + #Do time series files need to be generated? + #If True, then diagnostics assumes that model files are already time series. + #If False, or if simply not present, then diagnostics will attempt to create + #time series files from history (time-slice) files: + cam_ts_done: false + + #Save interim time series files for baseline run? + #WARNING: This can take up a significant amount of space: + cam_ts_save: true + + #Overwrite baseline time series files, if found? + #If set to false, then time series creation will be skipped if files are found: + cam_overwrite_ts: false + + #Location where time series files are (or will be) stored: + cam_ts_loc: /glade/derecho/scratch/${user}/ADF/${diag_cam_baseline_climo.cam_case_name}/ts + +#This fourth set of variables provides settings for calling the Climate Variability +# Diagnostics Package (CVDP). If cvdp_run is set to true the CVDP will be set up and +# run in background mode, likely completing after the ADF has completed. +# If CVDP is to be run PSL, TREFHT, TS and PRECT (or PRECC and PRECL) should be listed +# in the diag_var_list variable listing. +# For more CVDP information: https://www.cesm.ucar.edu/working_groups/CVC/cvdp/ +diag_cvdp_info: + + # Run the CVDP on the listed run(s)? + cvdp_run: false + + # CVDP code path, sets the location of the CVDP codebase + # CGD systems path = /home/asphilli/CESM-diagnostics/CVDP/Release/v5.2.0/ + # CISL systems path = /glade/u/home/asphilli/CESM-diagnostics/CVDP/Release/v5.2.0/ + # github location = https://github.com/NCAR/CVDP-ncl + cvdp_codebase_loc: /glade/u/home/asphilli/CESM-diagnostics/CVDP/Release/v5.2.0/ + + # Location where cvdp codebase will be copied to and diagnostic plots will be stored + cvdp_loc: /glade/scratch/asphilli/ADF-Sandbox/cvdp/ #MUST EDIT! + + # tar up CVDP results? + cvdp_tar: false + + +#+++++++++++++++++++++++++++++++++++++++++++++++++++ +#These variables below only matter if you are using +#a non-standard method, or are adding your own +#diagnostic scripts. +#+++++++++++++++++++++++++++++++++++++++++++++++++++ + +#Note: If you want to pass arguments to a particular script, you can +#do it like so (using the "averaging_example" script in this case): +# - {create_climo_files: {kwargs: {clobber: true}}} + +#Name of time-averaging scripts being used to generate climatologies. +#These scripts must be located in "scripts/averaging": +time_averaging_scripts: + - create_climo_files + #- create_TEM_files #To generate TEM files, please un-comment + +#Name of regridding scripts being used. +#These scripts must be located in "scripts/regridding": +regridding_scripts: + - regrid_and_vert_interp + +#List of analysis scripts being used. +#These scripts must be located in "scripts/analysis": +analysis_scripts: + - amwg_table + +#List of plotting scripts being used. +#These scripts must be located in "scripts/plotting": +plotting_scripts: + - global_latlon_map + #- global_latlon_vect_map + - zonal_mean + #- meridional_mean + #- polar_map + #- cam_taylor_diagram + #- qbo + #- tape_recorder + #- tem #To plot TEM, please un-comment fill-out + #the "tem_info" section below + #- regional_map_multicase #To use this please un-comment and fill-out + #the "region_multicase" section below + +#List of CAM variables that will be processesd: +#If CVDP is to be run PSL, TREFHT, TS and PRECT (or PRECC and PRECL) should be listed +diag_var_list: + - SWCF + - LWCF + #- SNOWDP + #- TSA + +# + +# Options for multi-case regional contour plots (./plotting/regional_map_multicase.py) +# region_multicase: +# region_spec: [slat, nlat, wlon, elon] +# region_time_option: # If calendar, will look for specified years. If zeroanchor will use a nyears starting from year_offset from the beginning of timeseries +# region_start_year: +# region_end_year: +# region_nyear: +# region_year_offset: +# region_month: +# region_season: +# region_variables: + +# Options for TEM diagnostics (./averaging/create_TEM_files.py and ./plotting/temp.py) +#tem_info: + #Location where TEM files are stored: + #If path not specified or commented out, TEM calculation/plots will be skipped +# tem_loc: /glade/scratch/richling/adf-output/ADF-data/TEM/ + + #TEM history file number + #If missing or blank, ADF will default to h4 +# hist_num: h4 + + #Overwrite TEM files, if found? + #If set to false, then TEM creation will be skipped if files are found: +# overwrite_tem_case: false + + #For multi-case + #overwrite_tem_case: + # - false + # - true + +# overwrite_tem_base: false + +#END OF FILE diff --git a/config_clm_baseline_wwieder2.yaml b/config_clm_baseline_wwieder2.yaml new file mode 100644 index 000000000..fbdf4d68c --- /dev/null +++ b/config_clm_baseline_wwieder2.yaml @@ -0,0 +1,418 @@ +#============================== +#config_cam_baseline_example.yaml + +#This is the main CAM diagnostics config file +#for doing comparisons of a CAM run against +#another CAM run, or a CAM baseline simulation. + +#Currently, if one is on NCAR's Casper or +#Cheyenne machine, then only the diagnostic output +#paths are needed, at least to perform a quick test +#run (these are indicated with "MUST EDIT" comments). +#Running these diagnostics on a different machine, +#or with a different, non-example simulation, will +#require additional modifications. +# +#Config file Keywords: +#-------------------- +# +#1. Using ${xxx} will substitute that text with the +# variable referenced by xxx. For example: +# +# cam_case_name: cool_run +# cam_climo_loc: /some/where/${cam_case_name} +# +# will set "cam_climo_loc" in the diagnostics package to: +# /some/where/cool_run +# +# Please note that currently this will only work if the +# variable only exists in one location in the file. +# +#2. Using ${.xxx} will do the same as +# keyword 1 above, but specifies which sub-section the +# variable is coming from, which is necessary for variables +# that are repeated in different subsections. For example: +# +# diag_basic_info: +# cam_climo_loc: /some/where/${diag_cam_climo.start_year} +# +# diag_cam_climo: +# start_year: 1850 +# +# will set "cam_climo_loc" in the diagnostics package to: +# /some/where/1850 +# +#Finally, please note that for both 1 and 2 the keywords must be lowercase. +#This is because future developments will hopefully use other keywords +#that are uppercase. Also please avoid using periods (".") in variable +#names, as this will likely cause issues with the current file parsing +#system. +#-------------------- +# +##============================== +# +# This file doesn't (yet) read environment variables, so the user must +# set this themselves. It is also a good idea to search the doc for 'user' +# to see what default paths are being set for output/working files. +# +# Note that the string 'USER-NAME-NOT-SET' is used in the jupyter script +# to check for a failure to customize +# +user: 'wwieder' + + +#This first set of variables specify basic info used by all diagnostic runs: +diag_basic_info: + + #History file string to match (eg. cam.h0 or ocn.pop.h.ecosys.nday1) + # Only affects timeseries as everything else uses timeseries + # Leave off trailing '.' + #Default: cam.h0 + hist_str: clm2.h0 + #hist_str: cam.h0a + + #Is this a model vs observations comparison? + #If "false" or missing, then a model-model comparison is assumed: + compare_obs: false + + #Generate HTML website (assumed false if missing): + #Note: The website files themselves will be located in the path + #specified by "cam_diag_plot_loc", under the "/website" subdirectory, + #where "" is the subdirectory created for this particular diagnostics run + #(usually "case_vs_obs_XXX" or "case_vs_baseline_XXX"). + create_html: true + + #Location of observational datasets: + #Note: this only matters if "compare_obs" is true and the path + #isn't specified in the variable defaults file. + obs_data_loc: /glade/work/nusbaume/SE_projects/model_diagnostics/ADF_obs + + #Location where re-gridded and interpolated CAM climatology files are stored: + cam_regrid_loc: /glade/derecho/scratch/${user}/ADF/regrid + + #Overwrite CAM re-gridded files? + #If false, or missing, then regridding will be skipped for regridded variables + #that already exist in "cam_regrid_loc": + cam_overwrite_regrid: false + + #Location where diagnostic plots are stored: + cam_diag_plot_loc: /glade/derecho/scratch/${user}/ADF/plots + + #Location of ADF variable plotting defaults YAML file: + #If left blank or missing, ADF/lib/adf_variable_defaults.yaml will be used + #Uncomment and change path for custom variable defaults file + #defaults_file: /some/path/to/defaults/file.yaml + + #Vertical pressure levels (in hPa) on which to plot 3-D variables + #when using horizontal (e.g. lat/lon) map projections. + #If this config option is missing, then no 3-D variables will be plotted on + #horizontal maps. Please note too that pressure levels must currently match + #what is available in the observations file in order to be plotted in a + #model vs obs run: + plot_press_levels: [200,850] + + #Longitude line on which to center all lat/lon maps. + #If this config option is missing then the central + #longitude will default to 180 degrees E. + central_longitude: 180 + + #Number of processors on which to run the ADF. + #If this config variable isn't present then + #the ADF defaults to one processor. Also, if + #you set it to "*" then it will default + #to all of the processors available on a + #single node/machine: + num_procs: 8 + + #If set to true, then redo all plots even if they already exist. + #If set to false, then if a plot is found it will be skipped: + redo_plot: false + +#This second set of variables provides info for the CAM simulation(s) being diagnosed: +diag_cam_climo: + + #Calculate climatologies? + #If false, the climatology files will not be created: + calc_cam_climo: true + + #Overwrite CAM climatology files? + #If false, or not prsent, then already existing climatology files will be skipped: + cam_overwrite_climo: false + + #Name of CAM case (or CAM run name): + cam_case_name: b.e23_alpha17f.BLT1850.ne30_t232.093 + + #Case nickname + #NOTE: if nickname starts with '0' - nickname must be in quotes! + # ie '026a' as opposed to 026a + #If missing or left blank, will default to cam_case_name + case_nickname: '093' + + #Location of CAM history (h0) files: + #Example test files + cam_hist_loc: /glade/derecho/scratch/hannay/archive/${diag_cam_climo.cam_case_name}/lnd/hist + #cam_hist_loc: /glade/derecho/scratch/hannay/archive/${diag_cam_climo.cam_case_name}/atm/hist + + #Location of CAM climatologies (to be created and then used by this script) + cam_climo_loc: /glade/derecho/scratch/${user}/ADF/${diag_cam_climo.cam_case_name}/climo + + #model year when time series files should start: + #Note: Leaving this entry blank will make time series + # start at earliest available year. + start_year: + + #model year when time series files should end: + #Note: Leaving this entry blank will make time series + # end at latest available year. + end_year: + + #Do time series files exist? + #If True, then diagnostics assumes that model files are already time series. + #If False, or if simply not present, then diagnostics will attempt to create + #time series files from history (time-slice) files: + cam_ts_done: false + + #Save interim time series files? + #WARNING: This can take up a significant amount of space, + # but will save processing time the next time + cam_ts_save: true + + #Overwrite time series files, if found? + #If set to false, then time series creation will be skipped if files are found: + cam_overwrite_ts: false + + #Location where time series files are (or will be) stored: + cam_ts_loc: /glade/derecho/scratch/${user}/ADF/${diag_cam_climo.cam_case_name}/ts + + #---------------------- + + #You can alternatively provide a list of cases, which will make the ADF + #apply the same diagnostics to each case separately in a single ADF session. + #All of the config variables below show how it is done, and are the only ones + #that need to be lists. This also automatically enables the generation of + #a "main_website" in "cam_diag_plot_loc" that brings all of the different cases + #together under a single website. + + #Also please note that config keywords cannot currently be used in list mode. + + #cam_case_name: + # - b.e20.BHIST.f09_g17.20thC.297_05 + # - b1850.f19_g17.validation_mct.004 + + #Case nickname + #NOTE: if nickname starts with '0' - nickname must be in quotes! + # ie '026a' as opposed to 026a + #If missing or left blank, will default to cam_case_name + #case_nickname: + # - cool nickname + # - cool nickname 2 + + #calc_cam_climo: + # - true + # - true + + #cam_overwrite_climo: + # - false + # - false + + #cam_hist_loc: + # - /glade/p/cesm/ADF/b.e20.BHIST.f09_g17.20thC.297_05 + # - /glade/p/cesm/ADF/b1850.f19_g17.validation_mct.004 + + #cam_climo_loc: + # - /some/where/you/want/to/have/climo_files/ #MUST EDIT! + # - /the/same/or/some/other/climo/files/location + + #start_year: + # - 1990 + # - 90 + + #end_year: + # - 1999 + # - 99 + + #cam_ts_done: + # - false + # - false + + #cam_ts_save: + # - true + # - true + + #cam_overwrite_ts: + # - false + # - false + + #cam_ts_loc: + # - /some/where/you/want/to/have/time_series_files + # - /same/or/different/place/you/want/files + + #---------------------- + + +#This third set of variables provide info for the CAM baseline climatologies. +#This only matters if "compare_obs" is false: +diag_cam_baseline_climo: + + #Calculate cam baseline climatologies? + #If false, the climatology files will not be created: + calc_cam_climo: true + + #Overwrite CAM climatology files? + #If false, or not present, then already existing climatology files will be skipped: + cam_overwrite_climo: false + + #Name of CAM baseline case: + cam_case_name: b.e23_alpha17f.BLT1850.ne30_t232.095 + + #Baseline case nickname + #NOTE: if nickname starts with '0' - nickname must be in quotes! + # ie '026a' as opposed to 026a + #If missing or left blank, will default to cam_case_name + case_nickname: '095' + + #Location of CAM baseline history (h0) files: + #Example test files + cam_hist_loc: /glade/derecho/scratch/hannay/archive/${diag_cam_climo.cam_case_name}/lnd/hist + #cam_hist_loc: /glade/derecho/scratch/hannay/archive/${diag_cam_climo.cam_case_name}/atm/hist + + #Location of baseline CAM climatologies: + cam_climo_loc: /glade/derecho/scratch/${user}/ADF/${diag_cam_baseline_climo.cam_case_name}/climo + + #model year when time series files should start: + #Note: Leaving this entry blank will make time series + # start at earliest available year. + start_year: + + #model year when time series files should end: + #Note: Leaving this entry blank will make time series + # end at latest available year. + end_year: + + #Do time series files need to be generated? + #If True, then diagnostics assumes that model files are already time series. + #If False, or if simply not present, then diagnostics will attempt to create + #time series files from history (time-slice) files: + cam_ts_done: false + + #Save interim time series files for baseline run? + #WARNING: This can take up a significant amount of space: + cam_ts_save: true + + #Overwrite baseline time series files, if found? + #If set to false, then time series creation will be skipped if files are found: + cam_overwrite_ts: false + + #Location where time series files are (or will be) stored: + cam_ts_loc: /glade/derecho/scratch/${user}/ADF/${diag_cam_baseline_climo.cam_case_name}/ts + +#This fourth set of variables provides settings for calling the Climate Variability +# Diagnostics Package (CVDP). If cvdp_run is set to true the CVDP will be set up and +# run in background mode, likely completing after the ADF has completed. +# If CVDP is to be run PSL, TREFHT, TS and PRECT (or PRECC and PRECL) should be listed +# in the diag_var_list variable listing. +# For more CVDP information: https://www.cesm.ucar.edu/working_groups/CVC/cvdp/ +diag_cvdp_info: + + # Run the CVDP on the listed run(s)? + cvdp_run: false + + # CVDP code path, sets the location of the CVDP codebase + # CGD systems path = /home/asphilli/CESM-diagnostics/CVDP/Release/v5.2.0/ + # CISL systems path = /glade/u/home/asphilli/CESM-diagnostics/CVDP/Release/v5.2.0/ + # github location = https://github.com/NCAR/CVDP-ncl + cvdp_codebase_loc: /glade/u/home/asphilli/CESM-diagnostics/CVDP/Release/v5.2.0/ + + # Location where cvdp codebase will be copied to and diagnostic plots will be stored + cvdp_loc: /glade/scratch/asphilli/ADF-Sandbox/cvdp/ #MUST EDIT! + + # tar up CVDP results? + cvdp_tar: false + + +#+++++++++++++++++++++++++++++++++++++++++++++++++++ +#These variables below only matter if you are using +#a non-standard method, or are adding your own +#diagnostic scripts. +#+++++++++++++++++++++++++++++++++++++++++++++++++++ + +#Note: If you want to pass arguments to a particular script, you can +#do it like so (using the "averaging_example" script in this case): +# - {create_climo_files: {kwargs: {clobber: true}}} + +#Name of time-averaging scripts being used to generate climatologies. +#These scripts must be located in "scripts/averaging": +time_averaging_scripts: + - create_climo_files + #- create_TEM_files #To generate TEM files, please un-comment + +#Name of regridding scripts being used. +#These scripts must be located in "scripts/regridding": +regridding_scripts: + - regrid_and_vert_interp + +#List of analysis scripts being used. +#These scripts must be located in "scripts/analysis": +analysis_scripts: + - amwg_table + +#List of plotting scripts being used. +#These scripts must be located in "scripts/plotting": +plotting_scripts: + - global_latlon_map + #- global_latlon_vect_map + - zonal_mean + #- meridional_mean + #- polar_map + #- cam_taylor_diagram + #- qbo + #- tape_recorder + #- tem #To plot TEM, please un-comment fill-out + #the "tem_info" section below + #- regional_map_multicase #To use this please un-comment and fill-out + #the "region_multicase" section below + +#List of CAM variables that will be processesd: +#If CVDP is to be run PSL, TREFHT, TS and PRECT (or PRECC and PRECL) should be listed +diag_var_list: + #- SWCF + #- LWCF + - SNOWDP + - TSA + +# + +# Options for multi-case regional contour plots (./plotting/regional_map_multicase.py) +# region_multicase: +# region_spec: [slat, nlat, wlon, elon] +# region_time_option: # If calendar, will look for specified years. If zeroanchor will use a nyears starting from year_offset from the beginning of timeseries +# region_start_year: +# region_end_year: +# region_nyear: +# region_year_offset: +# region_month: +# region_season: +# region_variables: + +# Options for TEM diagnostics (./averaging/create_TEM_files.py and ./plotting/temp.py) +#tem_info: + #Location where TEM files are stored: + #If path not specified or commented out, TEM calculation/plots will be skipped +# tem_loc: /glade/scratch/richling/adf-output/ADF-data/TEM/ + + #TEM history file number + #If missing or blank, ADF will default to h4 +# hist_num: h4 + + #Overwrite TEM files, if found? + #If set to false, then TEM creation will be skipped if files are found: +# overwrite_tem_case: false + + #For multi-case + #overwrite_tem_case: + # - false + # - true + +# overwrite_tem_base: false + +#END OF FILE diff --git a/lib/adf_variable_defaults.yaml b/lib/adf_variable_defaults.yaml index 22366861c..8d1a0fea5 100644 --- a/lib/adf_variable_defaults.yaml +++ b/lib/adf_variable_defaults.yaml @@ -731,6 +731,24 @@ RESTOM: category: "TOA energy flux" derivable_from: ['FLNT','FSNT'] +SNOWDP: + colormap: "Blues" + contour_levels_range: [-150, 50, 10] + diff_colormap: "BrBG" + diff_contour_range: [-20, 20, 2] + scale_factor: 1 + add_offset: 0 + new_unit: "Wm$^{-2}$" + mpl: + colorbar: + label : "Wm$^{-2}$" + obs_file: "CERES_EBAF_Ed4.1_2001-2020.nc" + obs_name: "CERES_EBAF_Ed4.1" + obs_var_name: "toa_cre_sw_mon" + obs_scale_factor: 1 + obs_add_offset: 0 + category: "TOA energy flux" + SWCF: colormap: "Blues" contour_levels_range: [-150, 50, 10] From 15897e0b9350e1f3bf139145a2540402b6fd111b Mon Sep 17 00:00:00 2001 From: wwieder Date: Fri, 17 Jan 2025 11:39:18 -0700 Subject: [PATCH 22/59] adding uxarray plotting functionality --- lib/plotting_functions.py | 205 +++++++++++++++++++++++++++++++++++++- 1 file changed, 202 insertions(+), 3 deletions(-) diff --git a/lib/plotting_functions.py b/lib/plotting_functions.py index aa5af2413..7605d2335 100644 --- a/lib/plotting_functions.py +++ b/lib/plotting_functions.py @@ -99,6 +99,7 @@ from mpl_toolkits.axes_grid1.inset_locator import inset_axes from matplotlib.lines import Line2D import matplotlib.cm as cm +import uxarray as ux #need npl 2024a or later from adf_diag import AdfDiag from adf_base import AdfError @@ -429,7 +430,8 @@ def wgt_rmse(fld1, fld2, wgt): Notes: ```rmse = sqrt( mean( (fld1 - fld2)**2 ) )``` """ - assert len(fld1.shape) == 2, "Input fields must have exactly two dimensions." + wgt.fillna(0) + assert len(fld1.shape) <= 2, "Input fields must have less than two dimensions." assert fld1.shape == fld2.shape, "Input fields must have the same array shape." # in case these fields are in dask arrays, compute them now. if hasattr(fld1, "compute"): @@ -1377,7 +1379,204 @@ def plot_map_and_save(wks, case_nickname, base_nickname, plt.close() -# +### + +def plot_unstructured_map_and_save(wks, case_nickname, base_nickname, + case_climo_yrs, baseline_climo_yrs, + mdlfld, obsfld, diffld, pctld, wgt, + obs=False, projection='global',**kwargs): + + """This plots mdlfld, obsfld, diffld in a 3-row panel plot of maps. + + Parameters + ---------- + wks : str or Path + output file path + case_nickname : str + short name for case + base_nickname : str + short name for base case + case_climo_yrs : list + list of years in case climatology, used for annotation + baseline_climo_yrs : list + list of years in base case climatology, used for annotation + mdlfld : uxarray.DataArray + input data for case, needs units and long name attrubutes + obsfld : uxarray.DataArray + input data for base case, needs units and long name attrubutes + diffld : uxarray.DataArray + input difference data, needs units and long name attrubutes + pctld : uxarray.DataArray + input percent difference data, needs units and long name attrubutes + wgt : uxarray.DataArray + weights assumed to be (area*landfrac)/(area*landfrac).sum() + kwargs : dict, optional + variable-specific options, See Notes + + Notes + ----- + kwargs expected to be a variable-specific section, + possibly provided by an ADF Variable Defaults YAML file. + Currently it is inspected for: + - colormap -> str, name of matplotlib colormap + - contour_levels -> list of explict values or a tuple: (min, max, step) + - diff_colormap + - diff_contour_levels + - tiString -> str, Title String + - tiFontSize -> int, Title Font Size + - mpl -> dict, This should be any matplotlib kwargs that should be passed along. Keep reading: + + Organize these by the mpl function. In this function (`plot_map_and_save`) + we will check for an entry called `subplots`, `contourf`, and `colorbar`. So the YAML might looks something like: + ``` + mpl: + subplots: + figsize: (3, 9) + contourf: + levels: 15 + cmap: Blues + colorbar: + shrink: 0.4 + ``` + + This is experimental, and if you find yourself doing much with this, you probably should write a new plotting script that does not rely on this module. + When these are not provided, colormap is set to 'coolwarm' and limits/levels are set by data range. + """ + + # prepare info for plotting + wrap_fields = (mdlfld, obsfld, diffld, pctld) + area_avg = [global_average(x, wgt) for x in wrap_fields] + + # TODO Check this is correct, weighted rmse uses xarray weighted function + #d_rmse = wgt_rmse(a, b, wgt) + d_rmse = (np.sqrt(((diffld**2)*wgt).sum())).values.item() + + # We should think about how to do plot customization and defaults. + # Here I'll just pop off a few custom ones, and then pass the rest into mpl. + if 'tiString' in kwargs: + tiString = kwargs.pop("tiString") + else: + tiString = '' + + if 'tiFontSize' in kwargs: + tiFontSize = kwargs.pop('tiFontSize') + else: + tiFontSize = 8 + + #generate a dictionary of contour plot settings: + cp_info = prep_contour_plot(mdlfld, obsfld, diffld, pctld, **kwargs) + + if projection == 'global': + transform = ccrs.PlateCarree() + proj = ccrs.PlateCarree() + figsize= (14, 7) + elif projection == 'polar': + transform = ccrs.NorthPolarStereo() + proj = ccrs.NorthPolarStereo() + figsize = (8, 8) + + #nice formatting for tick labels + from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter + lon_formatter = LongitudeFormatter(number_format='0.0f', + degree_symbol='', + dateline_direction_label=False) + lat_formatter = LatitudeFormatter(number_format='0.0f', + degree_symbol='') + + # create figure object + fig, axs = plt.subplots(2,2, + figsize=figsize, + facecolor="w", + constrained_layout=True, + subplot_kw=dict(projection=proj), + **cp_info['subplots_opt'] + ) + axs=axs.flatten() + + # Loop over data arrays to make plots + for i, a in enumerate(wrap_fields): + if i == len(wrap_fields)-2: + levels = cp_info['levelsdiff'] + cmap = cp_info['cmapdiff'] + norm = cp_info['normdiff'] + elif i == len(wrap_fields)-1: + levels = cp_info['levelspctdiff'] + cmap = cp_info['cmappct'] + norm = cp_info['pctnorm'] + else: + levels = cp_info['levels1'] + cmap = cp_info['cmap1'] + norm = cp_info['norm1'] + + levs = np.unique(np.array(levels)) + + #configure for polycollection plotting + #TODO, would be nice to have levels set from the info, above + ac = a.to_polycollection(projection=proj) + #ac.norm(norm) + ac.set_cmap(cmap) + ac.set_antialiased(False) + ac.set_transform(transform) + ac.set_clim(vmin=levels[0],vmax=levels[-1]) + axs[i].add_collection(ac) + if i > 0: + cbar = plt.colorbar(ac, ax=axs[i], orientation='vertical', + pad=0.05, shrink=0.8, **cp_info['colorbar_opt']) + cbar.set_label(wrap_fields[i].attrs['units']) + #Set stats: area_avg + axs[i].set_title(f"Mean: {area_avg[i].item():5.2f}\nMax: {wrap_fields[i].max().item():5.2f}\nMin: {wrap_fields[i].min().item():5.2f}", + loc='right', fontsize=tiFontSize) + + # Custom setting for each subplot + for a in axs: + a.coastlines() + if projection=='global': + a.set_global() + a.spines['geo'].set_linewidth(1.5) #cartopy's recommended method + a.set_xticks(np.linspace(-180, 120, 6), crs=proj) + a.set_yticks(np.linspace(-90, 90, 7), crs=proj) + a.tick_params('both', length=5, width=1.5, which='major') + a.tick_params('both', length=5, width=1.5, which='minor') + a.xaxis.set_major_formatter(lon_formatter) + a.yaxis.set_major_formatter(lat_formatter) + elif projection == 'polar': + a.set_extent([-180, 180, 50, 90], ccrs.PlateCarree()) + # __Follow the cartopy gallery example to make circular__: + # Compute a circle in axes coordinates, which we can use as a boundary + # for the map. We can pan/zoom as much as we like - the boundary will be + # permanently circular. + theta = np.linspace(0, 2*np.pi, 100) + center, radius = [0.5, 0.5], 0.5 + verts = np.vstack([np.sin(theta), np.cos(theta)]).T + circle = mpl.path.Path(verts * radius + center) + a.set_boundary(circle, transform=a.transAxes) + a.gridlines(draw_labels=False, crs=ccrs.PlateCarree(), + lw=1, color="gray",y_inline=True, + xlocs=range(-180,180,90), ylocs=range(0,90,10)) + + st = fig.suptitle(wks.stem[:-5].replace("_"," - "), fontsize=18) + st.set_y(0.85) + + #Set plot titles + case_title = "$\mathbf{Test}:$"+f"{case_nickname}\nyears: {case_climo_yrs[0]}-{case_climo_yrs[-1]}" + axs[0].set_title(case_title, loc='left', fontsize=tiFontSize) + if obs: + obs_var = kwargs["obs_var_name"] + obs_title = kwargs["obs_file"][:-3] + base_title = "$\mathbf{Baseline}:$"+obs_title+"\n"+"$\mathbf{Variable}:$"+f"{obs_var}" + axs[1].set_title(base_title, loc='left', fontsize=tiFontSize) + else: + base_title = "$\mathbf{Baseline}:$"+f"{base_nickname}\nyears: {baseline_climo_yrs[0]}-{baseline_climo_yrs[-1]}" + axs[1].set_title(base_title, loc='left', fontsize=tiFontSize) + axs[2].set_title("$\mathbf{Test} - \mathbf{Baseline}$", loc='left', fontsize=tiFontSize) + axs[2].set_title(f"RMSE: {d_rmse:.3f}", fontsize=tiFontSize) + axs[3].set_title("Test % Diff Baseline", loc='left', fontsize=tiFontSize,fontweight="bold") + + fig.savefig(wks, bbox_inches='tight', dpi=300) + + #Close plots: + plt.close() + +## End of plot_unstructured_map_and_save + # -- vertical interpolation code -- # @@ -1650,7 +1849,7 @@ def zm_validate_dims(fld): if not has_lat: return None else: - return has_lat, has_lev + return has_lev def _plot_line(axobject, xdata, ydata, color, **kwargs): """Create a generic line plot and check for some ways to annotate.""" From ee6904bd8adae32e5beba67fa9f2a8bb92d2edbe Mon Sep 17 00:00:00 2001 From: wwieder Date: Fri, 17 Jan 2025 11:56:27 -0700 Subject: [PATCH 23/59] notebook for testing uxarray plot --- lib/plot_uxarray_test.ipynb | 202 ++++++++++++++++++++++++++++++++++++ 1 file changed, 202 insertions(+) create mode 100644 lib/plot_uxarray_test.ipynb diff --git a/lib/plot_uxarray_test.ipynb b/lib/plot_uxarray_test.ipynb new file mode 100644 index 000000000..b2c52cbf0 --- /dev/null +++ b/lib/plot_uxarray_test.ipynb @@ -0,0 +1,202 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "39545902-0870-4a3f-93f1-493e56403d38", + "metadata": {}, + "source": [ + "### test for using the _plot_unstructured_map_and_save_ function" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "b75e38a9-54ff-438b-91cd-2f72ef3abd95", + "metadata": {}, + "outputs": [], + "source": [ + "import os, sys\n", + "import shutil\n", + "import warnings\n", + "warnings.filterwarnings('ignore')\n", + "\n", + "import numpy as np\n", + "import xarray as xr\n", + "import xesmf as xe\n", + "\n", + "# Helpful for plotting only\n", + "import matplotlib\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.dates as mdates\n", + "import cartopy\n", + "import cartopy.crs as ccrs\n", + "import cartopy.feature as cfeature\n", + "import uxarray as ux #need npl 2024a or later\n", + "import geoviews.feature as gf\n", + "\n", + "#sys.path.append('/glade/u/home/wwieder/python/adf/lib/plotting_functions.py')\n", + "from plotting_functions import *" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "07650a02-db90-4ee9-8880-e3f4ac140871", + "metadata": {}, + "outputs": [], + "source": [ + "# Load datataset \n", + "# TODO, develop function for this too\n", + "gppfile='/glade/derecho/scratch/wwieder/ADF/b.e30_beta04.BLT1850.ne30_t232_wgx3.121/climo/b.e30_beta04.BLT1850.ne30_t232_wgx3.121_GPP_climo.nc'\n", + "mesh0 = '/glade/campaign/cesm/cesmdata/inputdata/share/meshes/ne30pg3_ESMFmesh_cdf5_c20211018.nc'\n", + "ds0 = ux.open_dataset(mesh0, gppfile)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "c24b54f2-4239-4326-b8ef-583871b50aef", + "metadata": {}, + "outputs": [], + "source": [ + "# Set up data arrays to plot\n", + "# TODO, this should be wrapped into appropriate plotting scripts\n", + "spd = 3600*24 # to get bigger fluxes\n", + "a = ds0.GPP.isel(time=0) * spd\n", + "a.attrs = ds0.GPP.attrs\n", + "a.attrs['units'] = 'gC/m2/d'\n", + "b = ds0.GPP.isel(time=6) * spd\n", + "b.attrs = a.attrs\n", + "c = a-b\n", + "c.attrs = a.attrs\n", + "d = 100*c/b\n", + "d.attrs = a.attrs\n", + "d.attrs['units'] = '%'" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "73f75d1f-1c10-4dcd-8370-1f0c9b4b76d0", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'/glade/derecho/scratch/wwieder/testFig'" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pathlib import Path\n", + "wks = Path(\"/glade/derecho/scratch/wwieder/testFig\")\n", + "str(wks)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "55ceea85-e3e2-4e2e-a88c-03c1313acf31", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/glade/derecho/scratch/wwieder/testFig.png made\n" + ] + } + ], + "source": [ + "case_nickname = 'jan'\n", + "base_nickname = 'july'\n", + "case_climo_yrs, baseline_climo_yrs = [10,14],[10,14]\n", + "mdlfld = a\n", + "obsfld = b\n", + "diffld = c\n", + "pctld = d\n", + "area = ds0.area\n", + "landfrac = ds0.landfrac\n", + "wgt = area * landfrac / (area * landfrac).sum()\n", + "\n", + "plot_unstructured_map_and_save(wks, case_nickname, base_nickname,\n", + " case_climo_yrs, baseline_climo_yrs,\n", + " mdlfld, obsfld, diffld, pctld, wgt,\n", + " projection = 'global')\n", + "print(str(wks) + '.png made')" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "b288e743-1371-466c-8b03-7c3096ec9697", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/glade/derecho/scratch/wwieder/testPolarFig.png made\n" + ] + } + ], + "source": [ + "# Subset data for polar plots\n", + "# set the bounding box\n", + "lon_bounds = (-180, 180)\n", + "lat_bounds = (50, 90)\n", + "# elements include nodes, edge centers, or face centers) \n", + "element = 'face centers'\n", + "\n", + "wks = Path(\"/glade/derecho/scratch/wwieder/testPolarFig\")\n", + "case_climo_yrs, baseline_climo_yrs = [10,14],[10,14]\n", + "mdlfld = a.subset.bounding_box(lon_bounds, lat_bounds, element=element)\n", + "obsfld = b.subset.bounding_box(lon_bounds, lat_bounds, element=element)\n", + "diffld = c.subset.bounding_box(lon_bounds, lat_bounds, element=element)\n", + "pctld = d.subset.bounding_box(lon_bounds, lat_bounds, element=element)\n", + "area = ds0.area.subset.bounding_box(lon_bounds, lat_bounds, element=element)\n", + "landfrac = ds0.landfrac.subset.bounding_box(lon_bounds, lat_bounds, element=element)\n", + "wgt = area * landfrac / (area * landfrac).sum()\n", + "\n", + "plot_unstructured_map_and_save(wks, case_nickname, base_nickname,\n", + " case_climo_yrs, baseline_climo_yrs,\n", + " mdlfld, obsfld, diffld, pctld, wgt,\n", + " projection = 'polar')\n", + "print(str(wks) + '.png made')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ded6d0b6-1dca-4170-8a87-039f297773a2", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "NPL 2024b", + "language": "python", + "name": "npl-2024b" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 0d25ef37913cc6186a4e03c307584818ffe2c3c7 Mon Sep 17 00:00:00 2001 From: wwieder Date: Wed, 22 Jan 2025 14:01:46 -0700 Subject: [PATCH 24/59] conservative regridding ne30->f09 --- scripts/regridding/regrid_conservative.ipynb | 3716 ++++++++++++++++++ scripts/regridding/regrid_se_to_fv.py | 65 + 2 files changed, 3781 insertions(+) create mode 100644 scripts/regridding/regrid_conservative.ipynb create mode 100644 scripts/regridding/regrid_se_to_fv.py diff --git a/scripts/regridding/regrid_conservative.ipynb b/scripts/regridding/regrid_conservative.ipynb new file mode 100644 index 000000000..4bc707ac6 --- /dev/null +++ b/scripts/regridding/regrid_conservative.ipynb @@ -0,0 +1,3716 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "3c9c6614-73bd-48e7-aabb-b293041f93e1", + "metadata": {}, + "source": [ + "#### Created weight file The first one (from mesh files) didn't work\n", + "\n", + "```\n", + "ESMF_RegridWeightGen --source /glade/campaign/cesm/cesmdata/inputdata/share/meshes/ne30pg3_ESMFmesh_cdf5_c20211018.nc --destination /glade/campaign/cesm/cesmdata/inputdata/share/meshes/fv0.9x1.25_141008_polemod_ESMFmesh.nc --weight /glade/work/wwieder/map_ne30pg3_to_fv0.9x1.25_nomask_c250108.nc --method conserve\n", + "```\n", + "\n", + "#### This sencond one (from scripgrid files) has the right dimensions for dst_grid_dims (192x288) \n", + "TODO:\n", + "- what's the correct method here?\n", + "- appropriate to use scripgrids\n", + "- provide these for more common resolutions?\n", + "```\n", + "ESMF_RegridWeightGen --source /glade/campaign/cesm/cesmdata/inputdata/share/scripgrids/ne30pg3_scrip_170611.nc --destination /glade/campaign/cesm/cesmdata/inputdata/share/scripgrids/fv0.9x1.25_141008.nc --weight /glade/work/wwieder/map_ne30pg3_to_fv0.9x1.25_scripgrids_nomask_c250108.nc --method conserve2nd --ignore_unmapped --ignore_degenerate --pole none\n", + "```\n", + "\n", + "Trying to get the pole in lat (as in the FV09 grid), didn't work. \n", + "adding pole all required a method other that conserve2nd\n", + "**Currently using this**\n", + "```\n", + "ESMF_RegridWeightGen --source /glade/campaign/cesm/cesmdata/inputdata/share/scripgrids/ne30pg3_scrip_170611.nc --destination /glade/campaign/cesm/cesmdata/inputdata/share/scripgrids/fv0.9x1.25_141008.nc --weight /glade/work/wwieder/map_ne30pg3_to_fv0.9x1.25_scripgrids_conserve_nomask_c250108.nc --method conserve\n", + "```\n", + "\n", + "```\n", + "ESMF_RegridWeightGen --source /glade/campaign/cesm/cesmdata/inputdata/share/scripgrids/ne30pg3_scrip_170611.nc --destination /glade/campaign/cesm/cesmdata/inputdata/share/scripgrids/fv0.9x1.25_141008.nc --weight /glade/work/wwieder/map_ne30pg3_to_fv0.9x1.25_scripgrids_nomask_c250108.nc --method bilinear --pole all --ignore_unmapped\n", + "```\n", + "\n", + "\n", + "#### Also added area and land frac to single variable time series\n", + "```\n", + "ncks -A -v area,landfrac,landmask /glade/derecho/scratch/hannay/archive/b.e30_beta04.BLT1850.ne30_t232_wgx3.121/lnd/hist/b.e30_beta04.BLT1850.ne30_t232_wgx3.121.clm2.h0.0012-10.nc /glade/derecho/scratch/wwieder/ADF/b.e30_beta04.BLT1850.ne30_t232_wgx3.121/climo/b.e30_beta04.BLT1850.ne30_t232_wgx3.121_GPP_climo.nc\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "09508471-56bc-4cc5-8011-49456d42afea", + "metadata": {}, + "outputs": [], + "source": [ + "import os, sys\n", + "import shutil\n", + "import warnings\n", + "warnings.filterwarnings('ignore')\n", + "\n", + "import numpy as np\n", + "import xarray as xr\n", + "import xesmf as xe\n", + "import regrid_se_to_fv\n", + "\n", + "# Helpful for plotting only\n", + "import matplotlib\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.dates as mdates\n", + "import cartopy\n", + "import cartopy.crs as ccrs\n", + "import cartopy.feature as cfeature\n", + "import uxarray as ux #need npl 2024a or later\n", + "import geoviews.feature as gf" + ] + }, + { + "cell_type": "markdown", + "id": "1ea71ab6-09b4-4a2f-8979-a1532b5df098", + "metadata": {}, + "source": [ + "#### Conservative regridding\n", + "- set NA values to zero\n", + "- Weight fluxes by source landfrac, \n", + "- Regrid, then\n", + "- Divide by regridded landfrac\n", + "- Mask should be where destination landfrac>0" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "bac26d5c-492e-4b35-9476-b6601de4bb06", + "metadata": {}, + "outputs": [], + "source": [ + "con_weight_file = \"/glade/work/wwieder/map_ne30pg3_to_fv0.9x1.25_scripgrids_conserve_nomask_c250108.nc\"\n", + "gppfile='/glade/derecho/scratch/wwieder/ADF/b.e30_beta04.BLT1850.ne30_t232_wgx3.121/climo/b.e30_beta04.BLT1850.ne30_t232_wgx3.121_GPP_climo.nc'\n", + "ds_con = xr.open_dataset(gppfile)\n", + "\n", + "\n", + "fv_t232_file = '/glade/derecho/scratch/wwieder/ctsm5.3.018_SP_f09_t232_mask/run/ctsm5.3.018_SP_f09_t232_mask.clm2.h0.0001-01.nc'\n", + "fv_t232 = xr.open_dataset(fv_t232_file)\n", + "\n", + "\n", + "# Fill in with missing values\n", + "ds_con['GPP'] = ds_con['GPP'].fillna(0) # fill in missing values with 0 for this test\n", + "ds_con['test'] = ((ds_con.GPP)*0+1.)\n", + "ds_con['landfrac']= ds_con['landfrac'].fillna(0) # fill in missing values with 0 for this test\n", + "ds_con['GPP'] = ds_con.GPP * ds_con.landfrac\n", + "ds_con['test'] = ds_con.test * ds_con.landfrac\n", + "\n", + "regridder = regrid_se_to_fv.make_se_regridder(weight_file=con_weight_file, \n", + " s_data = ds_con.landmask, \n", + " d_data = fv_t232.landmask,\n", + " Method = 'coservative',\n", + " )\n", + "ds_out_con = regrid_se_to_fv.regrid_se_data_conservative(regridder, ds_con).load()\n", + "#check to make sure NA removed\n", + "#ds_out_con.GPP.isel(time=0).plot() \n", + "\n", + "ds_out_con['GPP'] = (ds_out_con.GPP / ds_out_con.landfrac)\n", + "ds_out_con['test'] = (ds_out_con.test / ds_out_con.landfrac)\n", + "\n", + "# TODO, add a global area and landmask field from the destination grid for calculating sums and plotting.\n" + ] + }, + { + "cell_type": "markdown", + "id": "e42505aa-4d41-42d3-8311-497209386c38", + "metadata": {}, + "source": [ + "#### Bilinear regridding\n", + "- Include a mask\n", + "- set `skipna=True, na_thres=1` in xEMSF regridder\n", + "- Weighting fluxes landfrac degrades results\n", + "- destination Mask where destination landfrac > 0 to avoid bloated coastlines" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "72f6f0b2-bb21-47eb-9205-934aadde8d57", + "metadata": {}, + "outputs": [], + "source": [ + "bilin_weight_file = \"/glade/work/wwieder/map_ne30pg3_to_fv0.9x1.25_scripgrids_bilinear_nomask_c250108.nc\"\n", + "ds_bilin = xr.open_dataset(gppfile)\n", + "ds_bilin['test'] = ((ds_bilin.GPP)*0+1.)\n", + "ds_bilin['mask'] = ds_bilin.landmask \n", + "\n", + "# Read in weight file and regrid\n", + "regridder = regrid_se_to_fv.make_se_regridder(weight_file=bilin_weight_file, \n", + " s_data = ds_con.landmask, \n", + " d_data = fv_t232.landmask,\n", + " Method='bilinear',\n", + " )\n", + "ds_out_bilin = regrid_se_to_fv.regrid_se_data_bilinear(regridder, ds_bilin).load()" + ] + }, + { + "cell_type": "markdown", + "id": "3d49c3a6-db67-4795-9ceb-ad7e7a8cea1d", + "metadata": {}, + "source": [ + "----\n", + "#### Quick look at g17 vs. t232 masks and regridded results" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "7186b5ff-76df-4af3-a974-fd0f4840af9c", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApAAAAJLCAYAAABQTKa8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9d5xV1dn1Ou3W6Z2hNxFQUCwIFmIMzViixpBmrFFfk08RY9doTDSWRIyvaGJiSTW8iT2xgCaSoNgQO4hSpM0wTC+3nvL98Tx7n3tnBrgDMzDIXvz43Tvn7nPOPm2ftZ+yHs3zPA8KCgoKCgoKCgoKOULf2x1QUFBQUFBQUFDYt6AIpIKCgoKCgoKCQo+gCKSCgoKCgoKCgkKPoAikgoKCgoKCgoJCj6AIpIKCgoKCgoKCQo+gCKSCgoKCgoKCgkKPoAikgoKCgoKCgoJCj6AIpIKCgoKCgoKCQo+gCKSCgoKCgoKCgkKPoAikgsJ2sHDhQowfPx7hcBiapuHdd98FANTV1eGcc85BWVkZIpEIpkyZgpdffrnL+qlUCj/+8Y8xfPhwBAIBDB06FNdeey3i8Xiv9/Wjjz7CJZdcgilTpiAajULTNLzyyitd2r3yyivQNG27/y+++OJe71tfQtM0/PCHP9zb3VBQUFDY76AIpIJCN9i2bRvOOussjBw5Ei+88AKWLVuGAw44AMlkEieccAJefvll/OpXv8LTTz+NyspKzJo1C0uWLMnaxre+9S3cdddduPDCC/Hcc8/hggsuwN133405c+b0en/ffvttPPXUUygpKcEJJ5yw3XaTJk3CsmXLuvz/3ve+BwA47bTTer1vCgoKCgpfQHgKCgpdsHTpUg+At3DhwqzlCxYs8AB4r732mlyWTqe9cePGeUceeaRctmzZMg+A98tf/jJr/dtuu80D4C1atKhX++s4jvz+t7/9zQPg/fvf/85pXdd1vREjRnhDhw7N2s6+AADeD37wg73dDQUFBYX9DsoCqaDQCeeccw6OOeYYAMCcOXOgaRq+9KUvAQCefPJJjBkzBlOmTJHtTdPEd7/7Xbz55pvYvHkzAODVV18FAJx44olZ2z7ppJMAAI8//nhOffnoo48wY8YMRCIRlJeX4wc/+AH++c9/dnFR6/quP8r//ve/sXbtWpx77rk73Y5wgf/lL3/B1VdfjQEDBiAvLw8nn3wytm7dira2Nlx44YUoKytDWVkZzj33XLS3t2dtY8GCBTjuuONQUVGBaDSKgw8+GHfeeSfS6XRWuxUrVuCkk05CRUUFgsEgqqur8dWvfhWbNm3abv88z8N1110Hy7Lw29/+dpfPiYKCgoLCjmHu7Q4oKPQ33HjjjTjyyCPxgx/8ALfddhuOP/54FBQUAAA+/PBDHHvssV3WmTBhAgAifAMHDkQqlQIABIPBrHbi7/fff3+n/aipqcG0adMQjUbxwAMPoKKiAo899livx/w99NBD0HUd5557bs7rXHfddTj++OPx6KOPYv369fjRj36Eb33rWzBNExMnTsRjjz2GFStW4LrrrkN+fj7uvfdeue6aNWvw7W9/W8aGvvfee7j11luxatUqPPzwwwCAjo4OTJ8+HcOHD8eCBQtQWVmJ2tpa/Pvf/0ZbW1u3fUomkzjnnHPwz3/+E88++yxmzZq1eydGQUFBQWG7UARSQaETRo4ciXHjxgEARo8ejaOOOkr+1tDQgJKSki7riGUNDQ0AINd/9dVXMXz4cNlu6dKlWe12hPnz56OxsRH/+c9/5PZmz56NWbNmYf369btwZF3R3NyMJ554AtOnT8eQIUNyXm/ChAl45JFH5N+rVq3CPffcg0svvRR33XUXAGD69OlYtmwZ/vznP2cRyLvvvlt+d10Xxx57LEpLS3Huuefil7/8JYqLi7Fq1So0NDTgoYcewqmnnirbf+Mb3+i2P42NjTj11FOxbt06/Pe//8XEiRNzPhYFBQUFhZ5DubAVFHoITdN2+tvs2bMxatQoXH311Vi8eDGam5vxwgsv4LrrroNhGFmuYtu2s/57ngcAWLJkCQ466CBJHgW+9a1v9dqx/PnPf0YikcAFF1zQo/WEK15g7NixAICvfvWrXZY3NjZmubFXrFiBU045BaWlpTAMA5Zl4Xvf+x4cx8Hq1asBAKNGjUJxcTGuvvpq/PrXv8bHH3+83b6sW7cOU6ZMQWtrK15//XVFHhUUFBT2ABSBVFDoAUpLS7u1HjY2NgLwLZGBQADPP/88hgwZghkzZqC4uBhf//rXcd1116G4uBgDBw6U61qWlfX/97//PQCyUlZWVnbZV3fLdhUPPfQQysvLs6x8uaCzFTYQCOxweSKRAABs2LABxx57LDZv3oxf/epX+O9//4u33noLCxYsAAApcVRYWIglS5bgkEMOwXXXXYfx48ejuroaN910U5dYyTfffBOrV6/GnDlzMGjQoB4dh4KCgoLCrkG5sBUUeoCDDz4YH3zwQZflYtlBBx0kl40aNQrLli3D5s2b0djYiJEjR6KlpQWXXXYZjjvuONnurbfeytqWcHmXlpZi69atXfZVW1vbK8eyYsUKrFixAldccQUsy+qVbe4MTz31FDo6OvDEE09g6NChcrnQ2MzEwQcfjL/+9a/wPA/vv/8+Hn30Udxyyy0Ih8O45pprZLs5c+agqqoK119/PVzXxQ033LAnDkVBQUFhv4ayQCoo9ACnnXYaVq1ahTfeeEMus20bf/rTnzB58mRUV1d3WWfgwIE4+OCDEYlEcNdddyEajeL888+Xvx9++OFZ/0tLSwEA06ZNw4cfftjFffvXv/61V47loYceAoCsvvQ1hIs/M7nI87wdZkxrmoaJEydi/vz5KCoqwjvvvNOlzQ033IB77rkHP/7xj3Httdf2fscVFBQUFLKgLJAKCj3AeeedhwULFuDMM8/E7bffjoqKCtx///345JNP8NJLL2W1vfPOO1FVVYUhQ4Zg69at+L//+z889dRT+OMf/5jlwt4e5s6di4cffhizZ8/GLbfcgsrKSvzlL3/BqlWrAGRL98RiMTz33HMAgNdffx0AxVDW19cjGo1i9uzZWdtOJBL4y1/+gqlTp8r4xT2B6dOnIxAI4Fvf+hauuuoqJBIJPPDAA2hqaspq949//AP3338/vva1r2HEiBHwPA9PPPEEmpubMX369G63fdlllyEvLw8XXngh2tvbce+99+4wXlVBQUFBYdehCKSCQg8QDAbx8ssv46qrrsL/+3//D7FYDIcccgief/55TJs2LattIpHALbfcgk2bNiEcDuOoo47CK6+80q0MUHeorq7GkiVLMHfuXFx88cWIRCI47bTTcMstt+Dss89GUVGRbFtXV4czzzwza/2bb74ZADB06NAuWdtPPPEEmpqaepw8s7s48MAD8fjjj+OGG27A6aefjtLSUnz729/GvHnzskju6NGjUVRUhDvvvBNbtmxBIBDAmDFj8Oijj+Lss8/e7vbPP/98RKNRnHXWWejo6MDvfve73dLIVFBQUFDoHponUj4VFBT2CVx44YV47LHH0NDQIJNUFBQUFBQU9iSUBVJBoR/jlltuQXV1NUaMGIH29nb84x//wO9+9zvccMMNijwqKCgoKOw1KAKpoNCPYVkW7rrrLmzatAm2bWP06NG4++67cdlll+3trikoKCgo7MdQLmwFBQUFBQUFBYUeQUWXKygoKCgoKCgo9AiKQCooKCgoKCgoKPQIikAqKCgoKCgoKCj0CDkn0SQSCaRSqb7si4KCgoKCgsIuIhAIIBQK7ZV995Qj7M2+KvQSvBwQj8e9qqoqD4D6r/6r/+q/+q/+q//98H9VVZUXj8dzea33KuLxuFdVYfR5XxcsWOANGzbMCwaD3qRJk7z//Oc/O2z/yiuveJMmTfKCwaA3fPhw74EHHujS5u9//7s3duxYLxAIeGPHjvWeeOKJHu/38ccf92bMmOGVlpZ6ALwVK1Z02UYikfB++MMfeqWlpV4kEvFOPvlkb+PGjT06/v6GnCyQqVQKtbW12LhxIwoKCnJZRUFBQUFBQWEPobW1FYMHD0Yqldrjlr1UKoXaOgefvT0YBfk7j4xrbXMx6vCNPerrwoULMXfuXNx///04+uij8Zvf/AazZ8/Gxx9/jCFDhnRpv27dOpx44on4/ve/jz/96U949dVXcckll6C8vBxnnHEGAGDZsmWYM2cOfvrTn+K0007Dk08+iW984xtYunQpJk+enPN+Ozo6cPTRR+PMM8/E97///W77P3fuXDz77LP461//itLSUlxxxRU46aSTsHz5chiGkdM56G/IScantbUVhYWFaGlpUQRSQUFBQUGhn2FvvqfFvms/GZIzgawas6GLUSoYDCIYDHa7zuTJkzFp0iQ88MADctnYsWPxta99DT//+c+7tL/66qvxzDPPYOXKlXLZxRdfjPfeew/Lli0DAMyZMwetra14/vnnZZtZs2ahuLgYjz32WI/3u379egwfPhwrVqzAIYccIpe3tLSgvLwcf/zjHzFnzhwAwJYtWzB48GA899xzmDlz5k7PWX+ESqJRUFBQUFBQ2G24PfgHAIMHD0ZhYaH83x0RBMjCuXz5csyYMSNr+YwZM/Daa691u86yZcu6tJ85cybefvttpNPpHbYR29yV/XaH5cuXI51OZ22nuroaBx10UI+209+gKtEoKCgoKCgo7DYcz4OTQ20S0aY7C2R3qK+vh+M4qKyszFpeWVmJ2trabtepra3ttr1t26ivr8eAAQO220Zsc1f2u72+BAIBFBcX79Z2+hsUgVRQUFBQUFDYbbjw4GLnBFK0KSgo6JG7XdO0rL89z+uybGftOy/PZZs93W+u6K3t7C0oF7aCgoKCgoLCbsOFByeH/7mQzEyUlZXBMIwu1rq6urou1kGBqqqqbtubponS0tIdthHb3JX9bq8vqVQKTU1Nu7Wd/gZFIBUUehHT9TPlfwUFBYX9CcICmcv/niAQCOCwww7D4sWLs5YvXrwYU6dO7XadKVOmdGm/aNEiHH744bAsa4dtxDZ3Zb/d4bDDDoNlWVnbqampwYcfftij7fQ3KBe2wm6jN8jSYvdvvdCTnqGvSd6Otr83jldBQUGhL9HTGMieYN68eTjrrLNw+OGHY8qUKXjwwQexYcMGXHzxxQCAa6+9Fps3b8Yf/vAHAJRxfd9992HevHn4/ve/j2XLluGhhx6S2dUAcNlll+G4447DHXfcgVNPPRVPP/00XnrpJSxdujTn/QJAY2MjNmzYgC1btgAAPvnkEwBkeayqqkJhYSHOP/98XHHFFSgtLUVJSQl+9KMf4eCDD8ZXvvKVHp+L/gJFIBWy0J8sZ/2pL70NRS4VFBS+aHD5fy7teoo5c+agoaEBt9xyC2pqanDQQQfhueeew9ChQwGQRW/Dhg2y/fDhw/Hcc8/h8ssvx4IFC1BdXY17771XakACwNSpU/HXv/4VN9xwA2688UaMHDkSCxculBqQuewXAJ555hmce+658u9vfvObAICbbroJN998MwBg/vz5ME0T3/jGNxCPx3HCCSfg0Ucf3Wc1IAGlA7lfY08TtB0Roy8yWewrKKK5Z/BFJPtfxGPa39EfdCA/WlmB/Bx0INvaXIwfW6c4xT4OZYFUUFBQUFBQ2G04Hv3PpZ3Cvg9FIPcj7E0rX3dWDWV13D/Qk+vcn2Jhc+lLd+v2RwteT65BZtv+eCwK/Rd96cJW6H9QBPILhP448Cvi2DvoL9cT+OJdv52d21zu4f50fbqD6F9Pr11/HFMU+i9caHCwc11DN4c2Cv0fikD2Q+Qan7Sjdl+0l/z+in3ppa1HIoBtAwDcVGqHbfel4+oO+2r/d5VIbm+dffU8KPQNXI/+59JOYd+HIpAKCgoKCgoKuw0nRwtkLm0U+j8UgdwL2JXZf3czfeUe/uKiP1t2tmfF8lJpeHY6p22IdfvzcX6Rket5V+OJQk+gCOT+BUUg+xA9HXw7D+qZ63f3wu3Pg/uOXlC740ZT6D/ofI1nhr4DT2MJD8/dbrsvEnbk1t2d5Jy+xs7c0bk+m0oOSCETrqfB9XKIgcyhjUL/hyKQfYTeijHqje3uKagXxv6NFxN/3ttd6HPsq8/oHu+3pmP2iB/Rd46HfX7Tvb23/R5gX62UtS9CWSD3LygC2cuYbsyhL5qeZYXJxGL3bz0f1Lqx7GRuT+6/h5IpvfnS6KlbclcG5f74cu4LKBdv/8Gu3nP9SZIoJ/AYY0QjgEYveI+ToqBp0EJB+ioqZwQCgKhDodO6Xksr/W0YcIuj9FP73n3NmAOqAADOtgYAgFFYALuhodu2mmnBGD4EAGB/umbPdPALBAc6HOxcSNzZA31R6HsoAqmgoKCgoKCw2/BydGF7yoX9hYAqZdjLEBYAzbRyTijoArYELHYWdvlpRuDbANDttnvborg72FPWl/5yvL0NZXnc+8jl3tqT16k3vRYAoAdDAHzJJXNwNf1gWVKOSSIcgmd0eunrOmDTtt0C2pbHlkvoGjzevdFG2/csA6kStmLyW8eI23jpP9dv9xBmHnYTba49Kbdrf/IZgN079/uajmcu6A+lDBd9MBTRHEoZdrS5mHHw54pT7ONQFsheghiQjPx8AICXTEIwc820stpqugY3zQN0d4M7L8v1hbHXk1K6eVHtKRfsXj/2PsAX4WW2r2JH95GRn48XWh7us+0DO06kywmaDk0nEqcFAgAAvSAfCNJ3WDQWeSELWiO5m3V2PwtxPrcgLF3YenMH/Za2ofHrwjPF8+7BLiM3tcEET+cadW7ARKqMSKUdofWMhAPPYle3aJdv4bhT7+Lt0YeRpHEk0JiAF6B1nRL6dC0dKD8EADBjyk8BAIuW3dizcwRAD4ezjlmhd5D2DKQ9I4d2yon9RYAikL0Es6IcAEmZAIDnOH6sEBMrz6GHRguGoFvZp95zvdwsljsga30FzTDky8iNx7v8rovfkokuv3VXyULF93UPdT76J4zCQgCA2xHr833trpVRMwzoBXm0KM7PYzgMhJhAthEh1GwbCJI1EGIsMnhbug4tQVbD1OAS2papwWomkqilxOTXg7Wtnb5aNNa5YSKoTsiEG9Cy+qh58AkbWzM124OeyJ5EC+9moioCI0ZjppGwuR867BDty+qgZdP1M+FOm8T74kNI8ljr+Ns2GqiviMWhmXTMWikd3+zRV8lzIY5FHmc8IQk1eEx//rO70F8g7pnHmx/ayz1RSTT7GxSBVFBQUFBQ2MdxauH39nYX4Hg6HC+HJJqdR84p7APoEYE8tfB7MDWrTy0lXWbgO8hmNvLy8ELrI33Wl57g+dr7AWT0P7PfWqcHytBlGpqwSmZZHzOsCsKKKa2Z4jdDh5dMZv3WnYzK7rjBjTy2ZLiu7w7TsmeObizWY/Hozn/32v20k5gvhf6DSf8zH4BvbdL5FjLSHnQ2/ATa6Nn4z9NX7unuAQDM8jLuCN/7gyp7vI3ZA34AAHDbyPpl5OdDqyRvhbPucwD+GLBT8P1tlpXIrGfkkQvZ3VJLfzsOtOIiWjaCn9+OJDR+YXvF+dzOf4ELN3Fm8qybR+5nPcWWvLgrrZIaxz16pu7HPIpYyIAYpzSYMbaK8r7tcIZrk1cLNiUQq45kLTPitJ7VkoIbzHaHpvNMmHHqUzrK/Z51hPxdt7P3ZcYcab10ivl8VBTA6OBSm+zGB1ss7eFVMtbTz/PIh8G/63G6UWce8RPYeXRfSOuo4bv2zQ3b6HuEXOXPf3I79ge40HKqc61qYX8xsFeTaGaVXUhfhJshg5x4HNit6bpcLmQkhOvFKymAk0ffRZwNNIq1AQBrcxNv34G9YTNvj7ZlsMv5+c3/u8M+zjjqFgDAotd/DACYPeYaX7pCfGqa/O5t5YHDMOClabB5sf33XbY7M0qzRTfBweEZpEfE52jBYPY+MuE40l0u4DmOJHPdxgZ24+7yhEuJly12/4aZoe9Q3/gayHgh3q/YV2fohXRvuK3tu5xA1JuB8fsKvsiu60N/MB9WR/YQE95mww7TvSjcnIJsOEFdkgCPn9VYuS638ebv5+2RfgPArOILAABaaTGAbLflV6bdRl/4+TTiNhLl9JwEWvkZXHo9jRcA3AiNU3pHAl6I3LxaQwsAwK6to98CAf+5EW5fw4BeRm5W8HjiVZRkuIyZxHAMordqDfRBlAzj8T61thi8ZiJKnhhvAOgiacakbYnYRs125ZjsCUKo60iXRvzfQeTSaOGQFo7p9vLoHKRLwkgVWnxuaKxwQjqsDh43eLhzLU0SNo2XpfNon3raleNeOkKfwSYHoW20Ty1N20oMyJP3k5Hu9DpzPXgmr7vNT8RxmJgGa5hAivE7YMLJD2Ut0xNpSbKTHNcptg0AGpNx0X/ddmE1ch/jrIH5ye2YVXAurcZhQHphAY3xANxqmqxoSbrGL7z/M/l+FBMCLxzocs9kvjceb35oryfR/O29AxHJ33kMZKzNwZkTV6kkmn0cPSKQX8KpvWaBnF11if/QClIST0iCkkl2BDHxqughEwNZOs9EOkrtAu30IIW2tMvYFa2pDQBg12ztYg0UMYh6VQXsgaUA/Nmz5rg0eAHQWymOSIvF/fV5pukWMNFL2dASPPBzOy8Wl4O1iA3MJIZagAZXYZnQDAMIZCfbIG1LS4PWKQgetp31MgAAL52GG6M4rUwCKWIU5XkWA5+u+Qk+/LL2UimfHGZkg8+wvpm1DXEsmTGRWaS103kWZHS76ERue0Mj0igpRurQEQCA4LvrAWC7+m97E18UAnnUd34J18wmA+F6G8E6irsTpKdjcFRm6DpBJpBxuietNltm6EqSaWpwQvTd4dvVM4BwA1u9+H316t9/1KP+zjyUMnyd/ICcgFqL3qb+DBkEcJwc+BkFgOe3PgAAmD32WgBAqpKT5gwdVjM/+wE/4UOcB40teZ6pQ2eSIGPsNtTQb8mkTK7TebKsDxkoyZmbH/E7L6xkTPr0DvZGOB7F7AFAmMmO48Krq6evLS3coa6eHTFO6IMHSvIpYho9Q5fjo8FWOM3x4PI1lckxPM91wiY0HmfSUWqTytcR2crr8q49HV2ut5g4OCFNbk+0iWxJIvDRBmo/epDctxvg+4PjI8U9obmAxYTeaubz4rqwi+lcmnzNhCHCtXR5LHaEjzfhyu0L0qjbHsyO7Ex10UZPudCTfB1bOG7W0GGvXkt9EkaM0hLYowbS/pnQ6sKSa+ryu7WlmbaRTPkT+HZ+pjKMCKlEG17B03uVQP713XE5E8hvHvKxIpD7OHrkwtYMA5pm7LQM1o4wM+9s+uK40HlmL2b40DRocZ5J19OL3nNd+ZBoHTQAGCJQO6AjmBIZe/4AKmZ9IjhcMwxoOhNGtjw6VTyr39YsB0ariQeTSEA+0MlhFEAf3MbWT0OTbptUEQ24waYkEObZPs/A9YYWP5NRuDZYGkOzTP+3fHKrwPOAaJS/8+hqmr6chrC+ipcDTGiBbMut2xGTxC4rK5xJqM4vRE8k9cQT0jUtyKjObmvaIGeDG3O6uoUzshe7vfbcXkqElJZKcttdIk7n7XeXfLMziHazJtwAAEiXRuHyi9YRAsf9BF8U0pgFTUO4kV5w4c+ZqDgeYiOLAAA2k0BogMmJE4KAGCn/+gviEWyi594JGtCahJuQ7/WgLkmoyY/ItJPZQuh6WPLPq7K6NmvijUgX86SHn/d/r/iJ/H3aiXfSvk44jPaTcuEyOXOCNGaYcQfTj7mVtsHEUU68DA3JciIlgoDoSReBhpg8NwCgpVxpOdOYZKCaXeMBEya7VL0idrdqGtwitvzxem7AhOZ2chmDxwcX0KLsoRHkMpaS+zDLabKMRBLgEBjh0XHLaazzbNfPfo4Ixk7WYQCwIyF5PlxBtsLi2mry2OW54Z+Cra70Dgk4IUM+o6kCnsBnDgVsZLA62GvienK7Op8PO6BLK2c6L/uVZrWlJakMtPO4094BMIGMDc0mL5pHiT2ZsCOGtDKaGfepmCwJi7lokyoOwNNoXA1ERFKRAQymRJ9AE43hXiIFgwmmvGbCOBExpevfLeL3wgebuxgB+lu4jgsdbg5C4i52ardS2AegkmgUFBQUFBQUdhuOp8HJQSQ8lzYK/R+7RCC7E8nO1SoprFDmgaORLudZtoiBcTzA41n8EJaPMHSYsex9pQtYNiao+9phdRTv6JYWkEQFAKeKLJvewFIYn1PMSHp4BQDAqiP3dmxslYzDShbTbDTQYiPNZngxy/SqyHphdjiwo8I/Qh+pwgACLHHhhdjKV5QHr6KImgmXehtbIxxXxjOJAH2vKM+3nIpJum0DNs842SKguWxpiMVlgLZoY5QWS5e4WUqWBs9zoXVK4hF/e/BjTcX1dFtTclYrhIY1w5C+KTED7k6yZ4fIi/jzUqE3l+M2emqNFK5Ssz2FZAnN3kNjhgMAnI9W59jhXcMX0rK4Exx5zt0AgEDcRXjJxwAgE0VSg4qlBUomOER0pIR1LMWWnXaOk4sYcPRs64QZs6VLULpMExrilSxeLaIfRLheGjjmjF8AAJY+Tm7t2LACP8YuQiscfeYvafsdjrR6OmxRSxaaCLTyc5UWln6yLgF+nLWwVhlJx3ej6v4yGevHLnI7asHsYI8KS+tIi6TnwRlAz60uZHQq86QlVPRRT7vwDPaosEXMjvK2HFeeZ2G9c4MWnFIrq73RloAXKOZzzr/F2cprGXKZ8MR4eoaVmOMMPU2TffJd0vybpUl5nqCwHpuatAYKS2WqwECokV3MHIYUq+D4xFbXT8QR5zmWBthjJWM2PcBoJeti3layfHeMo/svUWrBTHKfonS/pIeUIFUgYubZnSwtmAacQhGDydbPdgfJYmqfKBauZj/Zy0iJ88F/J12A3xvi2hkJR/4u+u1Fg9A5AcdoZJc0x8eajR1AK4dOiDKRo4dB30bvObuOY+37GXIvZagskF8E9IhAeo4DT9ORayXL6fqZvluRA4hFXVI3EpADlpPH8YABXboBhNYXDA2uxQ95UgRv+wH34oH2DqVYEt32gGoiplo6w90wqooPgh/2IO0ztC2OZCkL3opYnUITdjg7livF6vpGvg6DBySdT4MTNpAIcgB9Eyf/BEw/03ELBzyLTOrCAukukq6tZDojOUfsNA27hrIrDdag8wbTcWgZFRm6gyDqu4NcCF53hKm7ZXsywUWP0TWwP/kMeZ/QveC0t+9old1GT4njjCMpOcuob4U9oIi28Sq53mcefjOSZXQ/SaLi+VmnS567Cv0Bky6mTOr8OnqOw8tWwz50NP0onjNTk89JKuJPFIPN7Op+fyMAwGXi5BlhmDGOH+MJlWf4MVUy1s7QpBs8WZDtPk1HgEAb7f/Yr5Fb27U0SSTEeoKUeJYGjeduQgjbSHlwwtkkF4Ynn2mxbrrAH0JF7J7JiSLpAguJskDWb5rjydg2uzDA/eG44lfekdsSI6zxIWBOnpB1Tt2gmZ3RDN996oQMua4gQE6hLmMmTTARL4nIPsnxVVSa8Sg8KPM3cUxAxoTf8yRBCjTTCUyWBOQ2hGvaEOQvbsvzlioNyj4mC5kM2/65p2MCUjyRDzXwuyIakNfZ5veGHTZgbaNz2j6eww1EUlbAlKRWEHVz2ceweELZNoqNBiIUanMKyWLqW5LfLcliU8beCriWJlUChGtfEGzP0OQ9I84fdN1/H4nknFgqKxseALy19DwgEIDT3EztDh1H2wpaMEUCExsKug0H2otwPR1uDjI+rpLx+UKgV13YUlC6myor4gVuFvnEyWWS6MgAaF2+bMTDpif9AOZUEc+KLTHwAVaMXwoxoYvjP7ThzyhwHMmUn2nIVjuniF/QHSk50NohQVS9jMxA+i3QzoNxIDO4n/vq+oOea/LAaAcQ/YiJY4SD3zmO0QsH4IZEcDrvJ2jKOBgtY1AxhSiwsLyYncwt/Qh9TRJzJWmCWJuVFbC31u31/mRCxOlZ4t4fViqzWkVmr1XbiFCSYuy0FrZMFOfDNaO73efewPhriTjm8bMXWUXnODblAEnARAKCa0AmwARbHLlMkCgRZxsbRMfmBHU5kdNtYaFzZWauSLqxOlyEOKs2soriBu0162iTX5okiY2QoUkXWNKbIDJ6xdihp9ws6x4AwPPlZzTbP6bO5fxCdQnulyHJU2ZfA3zMsUrhQdCQyqfnPLyNPRMicWLaJOnVEGOi5vqxgT6x8jOLIZwWQu4m88UseLXrSU+NmJhrnm+5FRDxg66pyX5Iq5lhorMiBI3NYiwWllkmUbqWkejDbXRDhmoKL4QT1H2SxRDk39P8YS5RJs6fJxNfjA76MVFiITayWJ4vAEgWUXsz6cpjd3l81QdUAhxPn7eG+yg8R5pGMe0AzBht346Y6Bhg+scFwIp78j2QFbMpDi8gzpF/DwU2N9NvNVvpM5mEwULmXjn3f9RQ+uxIAGPpe5r7ZrUm5dhmFBXRjvoZgVQWyP0Luy3jM92YA4DIo6iAYG8j4tatJeronwEgt6/IrJOz57AuZ27C8uKZmqwqICAyJp2wke02AJB5X4qBK7K+xR/8atj0P4gtoSETqSIhBUQDRrguiXQ+S1AkxSyTE21aUjKAXbh50nkmOqq4XJewVnh+4LewfOhJkTigyYFWwAnpMqtPWFg1z+s6Q5XuLD8YX2f3jRcOwPnwE3xRsLvu4FmH/BhafTMAwN5Ss9f60R2E+9Rqd6TFzdpAz439+cYu7Y2DxiBVSc/XvxZf0+v9yRUHXTkfQc6PCTWKpA7fciXIgMiC1R0g1MTWxvXNAIDGSaUofZ1Ip5ehGwgQmUoOLODvguA5aB2RkYEMIJ2nofIf6+kPkWgmsqYtC56YjDEBtweXSTLphJlccIKLFwnIZVIfEH7YSKrQD5kRGoVizLJaiWwkKsIy21iMa54GWPHsTPFUviFJdrCR+h0vZxey4yFUzxZCQboC/ljhsNXRDmkI15HbV7hWhRs4lWERDbSy1S5o+ONYBjGV427QT24CaCySxFHX/N86vSmySKg4ZjGv1XzyKeVt0p68P8QyO6wh0ObK4wKACB9bR1UAQQ4jSBSJRBh/4iCSGM24I98Rfga3Ic+ZJLVCISDtSku2ILJCW1KzXVhryOvjDKFwJz2WQsMkdvcLI0PCg8FRSOKdJSYhRsqT+5TGAB2wOHlGjNcwfIk6MTFJl9JEKlEelO+00DbfE6S384Slm1Ac20vv9Szs37xzGMJ5O7dLxdttXDRpucrC3sehkmgUFBQUFBQUdhu5Z2HvvI1C/8deExKfdvJdvtJ/xmy382wxHdFhcTyLtEryrC1ZZMrZvj/b1rPidQDAjKWRKKc4R6EJFthCZhSnJAo7n2ayIoDeSLtyHzYH3IuYmsyZeIDFYj1dR8sYjrVjF41u+zFIYpZptYu6rm6XagpG0nejifOhOZ505csZcwZkXJWUdPBg1bIMCAsMOx+s6rLeztDZ4rYr1Wy6FTLfzX7sCmYfcDUAwP5sbc9WzNDA7Escce7dvmuSL6PV7sp7IPiPt/dIP3YGEUuYKjB865HQ9W+hBemoLo9BPCNWh4tQA8cyinCwlCut+J0F8p2gIS3wutBJ1DQ/dEO0C5uw2IIoNPyERUpPe1IqRfuMrLleKgW9IruyDDiuOHXAAPm8axlFDQKrNgEA4oeQK9FqS/vSLaKPrOnYMrZQxkZDVl7RkbeJrGXCIpYsNmQIjoj5E9sMNTm+TJEIAU97/vkO+bF2TidLntiWnvZgcGy5wZZtN2TI5CNhbXTCOqw2ES+ErH7YEUOGCggLo9tdxIyWbV2k7YvzmN0OAKwOT4YPSAmmpOd7nTJc9OJTjNexahq/XcuPifc1QTV57mV/HN8NbiaExZe2ZTYnkKzkZE2hycjWPjOW9oXSWVszMahQhhEI3eHMYxDhTWIbgeaUHIfdwgj324DRxu8LTp7yNA0pjr/3dU79d4W0VNf69cY9TqgxtpC3wksk4DRSYk1/EBK/b/nknC2QPzzsDWWB3Mex1yyQetL1xYTDQsDb57LxUo77SXowOL4xNiAglwFA3oYO4B0iSOkvTQRAwd6pIhHPQttKFZly2yJOqX0w6aIF2l1EV9MD6BZwVqeh+8LCbb4rnb5kDKoiY25LE4r5Zdd6QCG3zxycOOA+6icAiGOWZFeHzNgUMFqTMo4ozaLAImg/0OJnposMVc3xuhAlbfIEf0Bk98eOkm92lhTTmRBuj+T1l6owqWq6HvqabKHynWIP6au99cieq6zSUxzyw/kyTrBkM5GtdF6+JI6hZjpHqTw6t1bMk25IMekL1yWxeOn1AIAvzboDAJEv8SL0J0v8Au/ISCZzMtioyGZtZrezkQdtK2nFmrVMHoYPoE/bBVZRPKQzgZJ69Pc/laoMMuawlCZ9gY1NsCvpPjE+ovU004THrvFQDYv9N7dJzUSnUGg+8nMcd33yIsil7WVN7gAaE/ROOoOiekqi2JBx1YL02GEdLhMlsX2r3ZPJJWJcE9s0O9IyRlAm/KRNaKyda7FLOFUckkoTgvwJkuQayCCVvO8MQihj/jLc1D6pE2wRXSZG6ahP9ARCjbY8X3JCLM6VpslEGZkAVe+XN5QKGRmJlg6HU4gkSNfQ4FocbtDGcbHbmhDaSCEt6QnD5Tboi4c0hzQ5FX4FLkeSd3Ed/ePqrANpNsX8LPMSJohBHSjnGMykP0mRFXTYcCJiZs2WhB9iIHU9NXltRUiOPmk8wASyP0CVMuxbpFIp1NXVwXWz309DhgzZK/3Z4wRyxpSfAgD0sIlEiRgZeUYOIMkvIzGoaQ7QPIoeIDGoFr9OlQi81jbEZh0KwJ9ZF3xYD+PfnEQxdDAAIHFAJczFb2f1QwwN7rRJMqHGZCkFuzQPwa300hBlrVxXZCX6VhZZXSIaRIpFhEVmnh32Kwn4VTf8SjeBFo57qxMvp1YZy5UeM4j37WccCgIrBuh4WYACxIEs64k+hYi0ztJH7hvvy9All38zSuhFikFVcN5fCaDnYt3dEcSeksbMfc4IfBsAupRi3F28/Mp1AIDjZxJ5MV96JydyuD/K8QjMHjIXAJB3+CDkvUyyPO6YYQAoAcXmh0dzxYQI8jeBUD1ZHQV5BHyVA80FzPZOpS6lGkFKKiQI6RvP0HxyEeG4t031cAdRjFqqlBUQGnmCVBAEDh9D7cWzOmoobH7+0uyNkFan+oxyeoWUvJQeUgaHkxdCH1MZVEQj8IKcaBLKNsmZMRfhNURoE8MoMUK3PZmYIshAuC4tx4PQRvYW8DHFB0R8QpH071HRN+EFSef5cX0izlqMNWZzXJJajbOP9S11smCBqGYTrGmFbnPMejS7j07EF2mXhE/LGMdEgojjybEnM/aRtuW38xMMNWmZFsmSetpFvJyvaTJ7QhJqdKQHyMiIMxSxsY68nzx5bjxdkGJx8jyYMT/GHgDSIyphvkvviEAtybkJC7cbCsBso3vXLRLi3pqUIhIJna6p+YSxI9uSm6rIlxN9QbADLbYkodKb5Hhy8iAVRoTQ+qp1cETJQy4OkTx2POIsDRcupvee+98Vcqxqbd37xRIcT4eTQxZ2Lm0UfHz66ac477zz8Nprr2Ut9zwPmqbB6aa08J6AioFUUFBQUFBQ2G3knoWtCGRPcM4558A0TfzjH//AgAEDoGn9w4K712Igj595h4zVEbFL8TIDhtBjSwkXjibdEQLlbzVzIx2xgSLGhG7I/E+aZLaqmEkaa7bAZjO/qEPqdcPYU189ktqkXQRaWM+RXdMiIzNZHJS/iYxNz/LlPTyWC0qUBfxMSuHWkTFgnpzRiuxIc3MD7AFkuUgLfbiYLeVIvIz4JFrgdZE88nTNFz1mZFp6RJksvPauXNYXlrZdcV/vKYvfl0+4HcG1LO3DYQH2J2u69mcvxxzuTcweQeLb6UHF0mW29VjSaTSSXhfZEuHeNOMerA6Rmc0l7kKZOq70TAdafeFut5NcVmZMpIh5Npa+B2MguafTQyiO0QmbMvNWxBdKr4Xr+XHVopRloKtcjHh+4HpSx1C40j1DR7JU1Ef21ws0s+eAz4tQQugYWSQtbsK4YnX4YTpiX66RoSvZyf2reYAmRLpNf1syE1qcl7Tn12ROZ8dRhpetRnriCOrrJhrz0tVFMsMfFsuHhSxf5JxDd4QaRbzchB3sGqfZ2coIAJpQbOscI6n511uO6RlZ2JlyP2LdrqUB/fsineGZEnXTg800tiVKAzJEoPNYmw5rMltaaElmSjF1sbR6nrQQZorFGwmxLsfE17VSFjUAm4sVCGH78FNvyPHsmNNJ0F53PHltpZXWRRcXtlA0CLTasua3y2VY3VRqh+NkX7ync4XY951vHZtzDORVR/xXxUDmiGg0iuXLl+PAAw/c213Jwl6zQJJsDX8XWmKGBl3PeAkASBb7M5XIVnrI4gOJIKajuqwGkP8pJcW40WC3MicnfPnnAIDAhkZqt5mkGqBr8Fi3MvjiCgCAUV0p46VkHek4V0uwdOgJdg+LmtxhE6aobypImqYhyG7qRLGohyoCpF0Zp5nmChJWRbUcEKXQbNyGF+UYICatTsgXLBexQEKI14y7SLJWZngr9SedH5CuE6udZYKOIlc2Xn+vy3nqDRgHH5hT8o45il50z6++o8tvM0PfkYksL8b/2Gt9+9fLXe8N4T7XAhZebP99r+1rnwUH+aeKA5JECddj3mZbahoK95xfp9hvJ5IuzLiLpIxZo2WxClNqQkpdPU4wSxXoGW5cltU6diJSvA0RpwcAmsMVSzrXyQ7oPkEVRMzUZJiLEBIXsWie4cfaif5rnifHJVlr3gSSJSKWkBIsNA65sMO+m12QklS+LsNuDJbo8sJGllxO5/Molonzp7mZsX68XlCTxNHk8VIQvrYTDpTnIbBeVIDRJeFEktlcwAJEHfIGCqMJtdKYEV7vSs1ETYqeh5AsFnJDtIl4qS+jFqp35THT3zZCNTTAi4SVWJUlz6lIWNTc7JhKcXz+eckmhJ6uwQnx+S20/HZadrtUVrILv0tYCshMePI6i7j0gObL7shY9UL/XjOSrEkqiHtJmf/e4s9lf7kCnbH0CZqMfWn2nbDaWGqpWCRt+sk+ot//fepKAMCXp9+OjqNofPzP01d22W5/hZujBVJlYfcM48aNQ319/d7uRhfsNQtkJiZdNB8ADZCdrRvpqD+DDTZnd/WNP/ZOAsKxp9EsMfxPqgThHHMwTH5B6FzsXhS0dwOGJG4CrqXDaqH2oqRYqsj0Y4Xs7P3paVfGZgl9M9325CxYvBA1z5PEVI/R9tsOKvM31CmI29P9l42MKXM8uczJEEoH/AQhoHeqm8w84icA6BwJzT2RyWiv+rTrChyT6YRMSey+PP126ttrH3epsrA/xyXuDo48+24AwJu/79nzcuQ5d8ukGJHIEWj1kI7SsuJP6doGOF44PrhAWs4EOWsbHMDy317eZduzJlDVndgwTl7h9kbcRvvgUFZbzfWfIUFCXUvzv4uKJzJOzr/HZaJD2pVeisyEFoCeHxFrJ+LajKSXpcUoIGLtxARNaETGy010zgvQ3Ayrlyxt5zeSFkvuv56Vce1bZgUJlQRVoyS9TGSWFhZVfsR2jaQrrbUBYX1PpwGOi5RFFoS349PPZZywPmQQd8iRotU2Jyu1DwsjKDQ+Of4z04IsEtjaB/uTkHReNsk2kp6MV5RhccIya2iSYInYbxEzKH4HKGErxdWIhAqGJOXtJPot9iXOh7jO4hz955ncSNoJx5MhIl1gwg4K7xD9lkkgxTtF9CP/w22ySo6YHLz69x/ltM9c0R8skLe9eTxCOVggE+02rjvy38oCmSP+9a9/4YYbbsBtt92Ggw8+GJaVXRppb53DfkEgd4TDz79bEkgx+xODhWsA797X9eW0qzjqu/Si9TLcL8IlF1z8LgBAHztSJtaIAS+zvq0Igm49IE9aZkRQuMmiwmbclaLDYrYdavAtO7LGatKTVgdBKmNVbAHp8C+b1caEM6NqhXwhuhlZlnnZRDLQ6skX7Ot/6r1s4ONn3iFd5+KaeYYu3ZrCqiGSFDzdH8jFZ/TjOthr1wMATH6JuVvre9Ua+UXG9Kk/k1Y1YdUy435t5u4ssZ3xpdl3onWIKDNKy97938sxdQ6JoEvh5610rdP5ZifrUfeTvGlfvVOW/GweI+RU6DcjlVERSljZYp4ksPI+0X0y6VsN6dNMeNKtLtp4hiZrWwtLpHSdGhqcQPY2qBINfZUTwbRf/1hkmUuSafrPuSCyuuM/e+F6Yak05DrJIvZu8DZ12+93dLNf4UYmyLTQsubxvmSQcNlKK6yly+37GeDIKtsIAMFtSeiiEEETy8Tkhf1z3CnGSrNdaFyH2Suid4AXCfh1vNuJXKYHkufGCRnoGCBKDQpG6GdTCxJlZyReCSIp62obvotcrJcO+1nsgthnkmdBPjPd52J7hVyxKFEZkc+EqJXemzj8/LvlNc3bQve5nnTQMZDeG8se62qp7A30BwL50ze/nDOBvPHIfykCmSN09oR2jn1USTQKCgoKCgoK+zxyr4WtXNg9wb///e+93YVu0e8I5IR55M4OtPguKOEyEzNZkys7JUt6d9+ZVrgjziNrZJLjbCLDSWfJXbMB3qQDqD8RPxZMuLVjVRxIvS0tE146B5hrjiePRcQTxSpNOWsV5bs8XROlgqVuZGSrr/nYWRbCakz6QeoiGF8DkiKWR3i3eZ+JEk3uc/L32Pqq+xaXIOv8vfZ/PZsxa64Hh8+NLDFm6FLGyGGJCynlkSGi7rCFKTGyDCZbINHBCQtjhveoH/szYgPDaB1C90V0a7Y7N1e88vxVmPQ/HF7C986Ey+fDGUHbDTbyvipFXXffIlf0WQKdccwZ5NZLVpoZFmf6zZXxi77VTuq4FmjSCyHd1hmuYCkTk/GcdW6neX6N6s4ubM2DTLQQ0Bxf01JYszzDlyoSVkyhk6l5QKhJSOvQjR0vM6VlMLhyCx3LkUP8WGj2IoTYOhmrsmT96rahQpM2w+Vt0bK8LTbiXBtauLcTpb7kkUgyMTsyijIIPVnhmSgOyJhozyzIOh96Ig03IAQg6cNsbIZbTeEz+rZm+qmtA24D3QSxrxxMn+X+RRBjkThOx4K0FkfrOOY1T/cTXiIi7Ib+9hx/G1JfNO7JeE/Zzsr4LjR6ZeKTh4J1dPPEqykMKVd3da4QSYOt350CADBd3yIcXE/nJzG8tIsG5hcRaU+H0SWjqrt2e0Zn94uCadOm7e0udIt+QSBFDKTmAgEe3IUrDABW3N97bupc8dbDRCYPu5D6tvVLlfxLJcrfbgYAtIzihJZWF146+4XYMjzQpTqDbrMOWUbFDiHKHGjzNcFEbI2RkbUoYoHES9Bq8wV4xYtAS7tda2xHDPmScZksCkIOQLruEkX+y1QMwh4nsRxx3t1ycM8lZCBWYcmXmBb1BeHli5sTjdJ8XtwCXdbDlXV/QzpC5fTCSo0n8u4EDRz9dSIhvR0/9EXDq3+7AlO/wfW2OXQiUWT0OG74nQfoeotn1I4ABoU+StegdDnqfqzky/+6tsu2mkfQvZC/2ZUJDfI5F25ot6t+IODfs4Io6LYn4+LEvSZCNFxDk+3F8xhqcn2CxGRR6lk6VNuY/vD7IVylfjKN/xzKjGF+ZnXbk8+jeGZLF61BbNJQAEBybDUAShYSEzORBNIxkAskJDyEmrhzssKM3+/2QTRYdAwws2pJAxl6g+2unwSi+RNHKTQe958v6LT/4FYRM8OhQeGAT8SEduYB5VJ9QmRywzLhDaTsfNHHYIs4P0Cay5dLd3vGddE8XxNUEP/MGE/6zU92EXANf3wS58BIeNKdLe9JR+zbJ/u9TRwF4qdNBuCf44KVrcCn6+nHwXTd9bSLdJ7V3epfKCgdyL5Dc3MzHnroIaxcuRKapmHcuHE477zzUFhYuNf61C8IpHjpQCNrAwB8fOueJ43dYfmD1A9BJD0D2DqlCID/4nJCuswMlGW5kl7GYEm/ZVpIkoX8kmRDjRMCUvnZ7bU2yBeatFgKS4mmwWplGSER/B7y46X0uMhMDcISmX4i6FxYJgxNxm2JWCQ75A/gIqHcDvkWoCPPuTvrWN5+yCckIjYOpt9fIyVi1jyZKOEP8iJoTetiOdA8IH7oMFqXLaxEUOj3SRfT9RBB8+/9qn/cL3sLs0fRy1EIRTsFQRicNSsqOWmFBr4y7TYAwEtLruvZDsT1MX1rnc0EQVyTFfdfjjE/pesy/hr61G3AYrUFkEY30hFNWqUCpOPsx+cG/V36SS5dLUxOUJPLxHMTaONJVtSPaRR9TeXp8r7OYwu/bJ+XUQEm7svLCOIhYwmhwWTCGGqgDYt702xL+woMLGadOHiILFkqoNuOX6GKJ0shWZkkU6aLPkK1KVnuTjy3kZo4WkZF5TrUR/p0DU0m0YiJZbw8gATHWworKTw/cxuizGu7L5btZiTgAICma9KDgGJKvtEcR8YxRzbRRU5w9ZZYhe9RkWQ+Y4KRKPavbWcu4RNIrQtZ9HTNz8gW59TJsBKLS5AWv3ldpM16G52JLz5dD2/cSPrO1lp9yTt4Yz9IAvRyrETjqUo0PcLbb7+NmTNnIhwO48gjj4Tnebj77rtx6623YtGiRZg0adJe6Ve/IJAKCgoKCgoK+zaUBbJvcPnll+OUU07Bb3/7W5gm0TbbtnHBBRdg7ty5+M9//rNX+tXvs7D7Gw6eNx9pPgURlpIs+jSJ9sGsE8YGBzusSWuKsIaI2M1Qoyv10oQVR0/7bjRh7fN0P8ZKZh6yEUB3/LigQHtG2TMxOzf8WbHvQgdvn91YVkZdXql1p0l3tbAW2CE/VlIsc/izZFUaLSOyM8M1r6vFSHcgXdjSpS5KtCVd2EKrkrNbnYDmmxhEEqehZcl4AEC8RGj7eXj9z32T3djfMWPKT6VckpDFCW1LyDJzouxeqtDX4Qs1kommO83U7jD5LD9GtrN7WNwL6XzfUhTgqmpGws/gFtZ218oIkxCfGRnV8p7JkL/q7DbPXFfedyKONqDJe15mRNuQWdjC/SzOQUd10P+NranR9W1yP0kuUxqrtJC/gaWLalncmTUz3bAls5rtPFqmJx2pPABhTU06SOezZZgVG+SzbenQ2Vqm2fxbwoYjSh1yfHU6T/cz0JF9royEh2Qh7TNSL8qqalIXUTy/+ZtseR7kMyVK8yUc6V63Wm0+JkNmcoc3U9Z2x/ACabUMfrgRALD1lFHUH8fX0RRjgRPKcD9nuJjF/SGtjMI4pUGOAcI1Dg1djh1e5hhH7SLbHLnN4FaKoa4/lEzgoWYXry3svbHi6DOzVQmK/7kSDot/CyROOQL/fbJvw276Qxb2Fa+ehGAOrvpkexq/PPofPe7r/fffj7vuugs1NTUYP3487rnnHhx77LHbbb9kyRLMmzcPH330Eaqrq3HVVVfh4osvzmrz+OOP48Ybb8SaNWswcuRI3HrrrTjttNN6tF/P8/CTn/wEDz74IJqamjB58mQsWLAA48ePl21qa2tx5ZVXYvHixWhra8OYMWNw3XXX4etf//pOjzscDmPFihVdhMQ//vhjHH744YjFYjvdRl9AWSB7CDMJgMZPGeMT2NYOi+tLx8uYCHV40i1nspxhoF1IA7mSpIVZGzReqiHcnh0zGa635QtIDIzRJasBkGCwcBMnSjgpJeVrngn3cNHbWxEfSXFKbUM41irpvzikDIhwe9kugs3UJ1HhIx3W5UvJY1Ks82DfdKCF9+8m9/HEyziW1ckInBcvEc8/D5I0ZMQ+SSIr4Pkiv3qmNp+QNWKRdtf0xYSFW/udX+9f7mw7YiE5iG5GIcjtGb6ci8P3kNVqA5zAJMTnpx/9M9rIsve66GzOmngjGg+l+9rO8xNKhLtQhGGIkItAq08C5PUPapIQpFl2ULd90tlZTzjY5CFRKuI2eKHnu7bF5MoJQpKLyDaOPRQJJ5o/SRIhGvkbk7IudaSWNV65IEAooPtuZb7XEpVRGfMXbOAiAboGs1l853uzjQZuPWbALSD3rSCBglB2RvjzZtoGJ6qIggRmRwp6h2DZIghSh4h8CTWIkxWQlVmkHE7IJ1BiDBCTVHjIEOKmz/ZqE8GW7JhNPUPqR1wzRyQCar4EUKIqyuclCWv9Nlp2MMUpBzmWOV7iJ8cIspgpPSbGODPpQeNxwWr3Q2uoX76bXUwEEsV6F3d1uMmfVQhXvbgXvIAGkwlN2fvtvG9DFpZoGs2knCMCPri752NH5PHXAQCN50+lbU0YDuPV9wEA7acfAQC9Slj7M/qylOHChQsxd+5c3H///Tj66KPxm9/8BrNnz8bHH3+MIUOGdGm/bt06nHjiifj+97+PP/3pT3j11VdxySWXoLy8HGeccQYAYNmyZZgzZw5++tOf4rTTTsOTTz6Jb3zjG1i6dCkmT56c837vvPNO3H333Xj00UdxwAEH4Gc/+xmmT5+OTz75BPn5NHE566yz0NLSgmeeeQZlZWX4y1/+gjlz5uDtt9/GoYceusNjLygowIYNG7oQyI0bN8rt7w0oC+Ru4OAf+YSp7H16KbUOY5KW9i2PYuAUL/SCv7wBzaCBufUbhwMA2qs1lH7IL7RtNKImKsIIbqMXiuaK2CwWzI1aMkYryQQylWGZiNb61ofiFSTyW3s8CdkKS6cV98mAjEcEuiyLVVldrAOBNrF9XeqaibJd7dWGbC+tjRlZs53JouZkxH0Kspjq2s7scPysVC87qci1NEne3/3f/YtAzhp/PWIjiwD4SR0A0DqMXpwiCxWaJqu8CC1VgcI/LIN54Gj6rYKYXrwyKImJ1PLTKE4W8O8Fiye/yUJ/kiCs7Z7ht8+0YoteihhIPwYWkniI58bT/QzdYCtbyWKebCesh8liTthKeF3uEzPuIryJdhYfSAOuiI1zQoa0BmbG/gU+IxeDM4iSubSEDb2JLUvsRoLVdQ4uYpLdvJAshSqg1zXDLSvKWiaebS2WhBew+DudSK+xGVoBvyDyieXERhYjUewTOwDoqGLL6VZPjgHS8hf04wYFcQ81+wkqsrqKyN/JMCDJBJhuxNQjmzqQqOCY25AwLYqT4MeTWkzE7XxLtgs20LJEWUAKvIt7TPQx3ODI51tMVjKPOdNSHeLEJEE4ozVcLSyoI8AVvowYa3FGLZkc1DqUBmlBIN+fv+tjh1AsyP88LWNfX/5312SyvkJ/sEBeuvTUnC2Q9x7zdI/6OnnyZEyaNAkPPPCAXDZ27Fh87Wtfw89//vMu7a+++mo888wzWLlypVx28cUX47333sOyZcsAAHPmzEFrayuef/552WbWrFkoLi7GY489ltN+Pc9DdXU15s6di6uvvpqOL5lEZWUl7rjjDlx00UUAgLy8PDzwwAM466yz5HZKS0tx55134vzzz9/hsV966aV48skn8Ytf/AJTp06FpmlYunQprrzySpxxxhm45557cjqHvQ1lgdwNJIvo07UAdyUNXGVvNwEAUhVRtLFbW1j3EiX8gisskC+2oveI3CULyxBZxVUi2BwdXmdDC3I93grSLNIc4ZoxYcayX06aYyJcx4k1IiuyyUPLQaXcj2yrTDJfkyW8dNsfoMULzWWy4Vg+wRODdoyD5zXXw+EXkHtTYytloN3LypAEAM/wpNUh0w0PkKVVkGHxErFDmnTfixeWp/sC6Yni7PauuXuD/74MraUN0ZX0cnz+0zu7/H7s1+4CQCLzooRg/npieKLqS+yMo2TCRFa5wAxRZ4CvHd8qkXom8UIMOoOTChLimv4LXxBJLcMwlyzm7cvkGN9dLXYUbPaktax9gC73GW7IyCgGEOBjS0cNOcER2zXjjgzTkHWv+Rm0mhLSfSugJ9NAhCyKRiMliHghyy8FKNDCDLgwH+hgJl1SRNtoTfjnhCeMDmctA355VI2rTMHzoDU2Z23eSyahaSyzU0PjQygSQKyclska2PVi4uVBc/2kFYDcucIaKTwCmUoMIrRAnA/dBgKiDCvLA6UjugyVkdJjg/PkJC/AxQy8jApYNpM/o512YLTF4ZnZVlfd6Vo9JlNuyunERTTHD3fwxw9XjgcFG5gssgU6nWfIyYSdT+NxssiSZWOjtdRvMf7sDsT4miwxseRPu1/Za1+ECz2nMoWiTWtrtqs/GAwiGAx2aZ9KpbB8+XJcc012yM2MGTPw2muvdbuPZcuWYcaMGVnLZs6ciYceegjpdBqWZWHZsmW4/PLLu7QRhCyX/a5btw61tbVZ+woGg5g2bRpee+01SSCPOeYYLFy4EF/96ldRVFSE//u//0MymcSXvvSlbvufiV/84hfQNA3f+973YNt0z1qWhf/5n//B7bffvtP1+woqklVBQUFBQUFht+F4Ws7/AWDw4MEoLCyU/7uzJAJAfX09HMdBZWVl1vLKykrU1tZ2u05tbW237W3blnWlt9dGbDOX/YrPnfVt4cKFsG0bpaWlCAaDuOiii/Dkk09i5MiR3fY/E4FAAL/61a/Q1NSEd999FytWrEBjYyPmz5/fLeHeU1AWyN2AJdxvFrDtEPZXTyRLYfWrMYQ5iN1gSZ0gGSfReMpYlL5BsUMeWybKl7fBriZzjPkJlxbriEPj2EoBp4BuFrMpBjfK39kSacYdKW4u4gfDdUmYwrIU8LXX6Isfb2TznWCk/PKG4jcz4UmrpYhHlKXn0r7bNLPkW2fLlZHy3Yq+ZIpwj+m+vp4lpFP8GC5xLI7l9ynGz6pI1tifVSGe33Rvt8uFKL83QohOA2/8IVsL7yvH3QoAaDgoIsMjhIXHNX2XtIBnUH1hAAg1CSsfXeTABr/UX6wiI/5OrJsR+ypDHNhoJ/ZpJDOSyDS/vbCYiWQKEi2n333Xqx/LJ0IhgrW0A83xLZDmWhL1dttZX8hxZZKLNmwwLfp0LYzhpOHorKcEEU3XoJWxBZG35TQ305/xOHRRW3rLVvocWg1sqKHfC9lt3mECrTxwFLF+G9eiRnOGNUbEQJqm/K5xCUHYbsY5Es+jb/mzWB4oupGOL10UlM9JyXLad2xEEZIFYjzgc9VIF89IujDi2crq7dWBLl6Cws/icMJsUewk++OZGjSha1vMbu6gIUucmk3Ut3hVSK4TauRSkxx7bYd0OX4UrqX1Gsf6JklpqdbI3U3ngxal89lD4gGxKhqbI1tohUhNHIuW3QgA+PJ0st6Eajvd6LuAvipRuC/B9TS43s4HY9Fm48aNWS7snZGh7ZXy60n7zstz2WZvtLnhhhvQ1NSEl156CWVlZXjqqadw5pln4r///S8OPvjg7R5DJiKRSM5t9wQUgdwNfHSHb/oW+neBZvp785cikjAGmzkrso5dVg7QMJniEUtf+AwA0PjVUdJNl8/xlFooKMUYRSyVWS8K50LWlDb409M0uEUsDsyVEMyGmIz9cYbTS0zoydkhTca4iRe6E9BktqWsI6xrMjDfHxsyMl4tP+hdLOuczJMs0CXBFHGRYt+JYj1DkBly30LMfUc4/Py75fcp3/pl1rHsL4Hr28P73SQEiHADQTjcg+jlrqd9gpdigW3P8MW2BUmz2jMSMQb4lZgAQAtoUhA+UsdhEBmaoEL7T3M4GQ1+7FnB50ySHE/G94nsXN3O0PnjfZlJV5IWQYB8YfMM1moKMVMbGrtSPXYBuXG/Wo7G5wNMFgHAXrMemTBKSmHXEDk0B9AMxhP7dlzYW+uy2uP9FoDF+HUOS9EiEUkmBWmFcFu7HrxUtotc03V4CY6DtpigbqpFMbu97Qp6+Yqs6XiZiQjHhGoxTgJq7oBbSNdZayICGfkM0EYU0W5FYto2TghqjZO7HkAoQedqYEMCiSrehhAlb03Kcy4yyxOl7Jq2Pb+iUEade6ONiRq/WPPWtiJdnJ18ZHD8YMDzEC+NyuMCaMIh9pni05gs8N3rbVy7PVMlRoyrZgfdxC1j/KQDl++P+MAIFHYfXo6lDD1uU1BQkFMMZFlZGQzD6GJtrKur62L5E6iqquq2vWmaKC0t3WEbsc1c9ltVVQWALJEDBgzots2aNWtw33334cMPP5SZ2RMnTsR///tfLFiwAL/+9a+79P/000/Ho48+ioKCApx++uk7ODvAE088scPf+wqKQPYSPrmRXtYH3OYn1nRQEQJE+L1iNdGLoLiuAy3jigAA275KshdWzJPZodogugm9zbXwtnKaNr/0PGGZAKBX043rBdkKUBBGiCUrhDXJLQhBX/U5AKBgIw2uzSfQPlN5uiSTAk5Qg8HlB4teJUtNfNwAdFRzcH+moC9YWFqW6OJlAcB2taxluuNJK6MQLZfVahzf6iTLx2VUIekOwroW5Gau6csmBVpVmSwAmD2G4nZEFSXNgyyjJ863rGgSyRRfpk8no+qHiJMzE36ShiCGQpDb0+llThuG/BQERSTWaE6GCDlvq30grVf2QVIm+BhsIDSSnp9QJSpVWZofGyvKdyb8WFkxcREkCoYmLX2esDwKeC48ITsVFwRHh5FH5MXh9va2BrmKvaUmaxNusmvpRrFtAHCZGJpFhQBL9KCdza8iISeVlsenhbmUoeNA04Tpln8LheTmzc3UJ72DLZyJMAINTFZb2VScSELbSh4PsIVHa25F5DOeSBbTceqtfOzNrdCiROpSw2iiG6hrR2gLn1/OHtdiSXiF1BcR3xzdQPs26lvhlhDh1dv43MTifhWbNE+mI2GghPalOdnPbbwqLK97skgkc/kxtLKaVwRIs7dC3MNyQhwEQuuy5ZXSYTkLRkdVdslGhd2DAw1ODiczlzaZCAQCOOyww7B48eIsiZ3Fixfj1FNP7XadKVOm4Nlnn81atmjRIhx++OGw+D6cMmUKFi9enBUHuWjRIkydOjXn/Q4fPhxVVVVYvHixzKZOpVJYsmQJ7rjjDgCQMju6nk2uDcOA63b/viosLJQWzIKCgh1aWvcWFIFUUFBQUFBQ2G24HnJ0Yfd82/PmzcNZZ52Fww8/HFOmTMGDDz6IDRs2SF3Ha6+9Fps3b8Yf/vAHAJRxfd9992HevHn4/ve/j2XLluGhhx6S2dUAcNlll+G4447DHXfcgVNPPRVPP/00XnrpJSxdujTn/Wqahrlz5+K2227D6NGjMXr0aNx2222IRCL49re/DQA48MADMWrUKFx00UX4xS9+gdLSUjz11FNYvHgx/vGPf3R7vI888oj8/uijj/b8hO0BKALZy5BWnKQfo2NxhqLO1hCvpg55+TRzbx1Bs28z7sLkbE83yG6g4kJpLRHZ2JqRMYNhF5zG4ox6KADX4sxHdhV5QQvuaNKq0hMspxHyrYcibkxY7Yr/uxEez5YctmAE67YhNHIY9Xc8xXjK2DZPk1Yt6UJMZ8a0+dYpcW7yN1I/WlmXUnc86f4WFofMLNHuIKwQcdYMNNJAOk+4SOkcTTv5Lix5tm/q3+4L8NjiVvEGxVJsOb7Yl3jp5AZ0wkCYLeUyK1YHIlvZ4sfXuL1ak9dW43ADYVEGMgS/hZUoY3ItMmp1IyNLW4jV8yYSxRYs1kOV+p9xV1oZhSSLHfaza0V8rsF6l2aHA+jc70J+vhrapdVLL2SXGYs9u53cxgBgFOTDaWnpsnx3Yddtk9/NkcNp2Zp1XRu2t/vthg7mZWyxLMz3ralsFdU4fjK4LQKPJYBQwC7vgOXbe4Tb3HEAfr71PLZoCi+H5xejM1vogjp5Id/9zPGLCAVgtLKwOl8LXcgWWaYUt5fZ6bou9yGsqYjFYbaxBTLJoTY8NupJF0Yy2/rqBDRpIZclV1MZ8bXi8ETxhri/borDe0S8JOCvl7clW9FCYdfg5ujCzqVNZ8yZMwcNDQ245ZZbUFNTg4MOOgjPPfcchg6lWOWamhps2LBBth8+fDiee+45XH755ViwYAGqq6tx7733Sg1IAJg6dSr++te/4oYbbsCNN96IkSNHYuHChVIDMpf9AsBVV12FeDyOSy65RAqJL1q0SGo0WpaF5557Dtdccw1OPvlktLe3Y9SoUfj973+PE088cafH/uUvfxlPPPEEioqKspa3trbia1/7Gv71r3/1+Hz2BpQOZC9jun4mAGDd7VMR4PfP4Oea6ctqflE4jh8bxe5qxBNIjSKXtIjV0dIOsJYD+KPs8xOXyzBkHJFcpmnwiumGdcVLwfNkrGTHENb3K6WXjxX3YDNZiNbQABpoSSFZRguD21hwOZmGE6UROTaAtitE0l2rqwi4E9B8Ii3jKTU/Vk14I7n7rqVJopHkvAI3AES3iOOij1CjI9f9z9PbJ4azh5E7wi0uwIsrfrLddvsbjjznbsQqsl3YIsZRs33SL8hfoAVI8eMezOBSbazZK5JpJNtwAVtwlmb6zHxPyO9a9vdMRGo9GR8pdAQDzTZSRdS58FYO83BcpIp44mT7eo4Ax8RxLGa4ht25acfXZGzjiVojEWstGJTEymnyD1RnjcfuCKY5gJ5Vu6b7DNBdhnRXd+PW4t+MvCi0ADOkIH+yvJeXTMnEHpPjvBANwxNyQ0JmJy8qj19nVz1CdD69ljZyLQMAjztufgh6bWN2fwxDut89TugTYw1sB+gcKhAO+wQ2E0ww3SrS22w7gG66UH1aTnBTLHyfKNbhCF3RjIpdglSK4g6ylniTJ/VERTGE5b/13ZVHf520a0Wi3pu/33ncdX9Ff9CBPOvf30KAQwV2hFR7Cn88/jHFKXKEruuora1FRUVF1vK6ujoMHDgQ6XR6O2v2LZQFspchqnmMmH83jATPytnyJ18JpgmMGQYA8MRLrb4RgQ00QHsFnLWYF4Qh4qPEZyLp/+2Iuon8GcrIYBMz9rAlvwsyl1UOkMfzeAWLkRdmWHbyqR9F7zVAZ8tm4QccB5bmfpuGTAgSsMMARCyS4Ltpv4qMSJQRJMKOQA74slpNCkiUiKxusWUjp/jG59fP32mb/RFvPjoP46/NPjciy1VzMrKe2SqYKgTC27LjVlMFkJWKhLVRaDlqtp9V7fhhevJFjwwrkbgHRDtDXHdDQ7CJLzjfE/96+RpM+yrpWzosAG212lIUXegexvgeDjU6fgKHmGQZGtzP1mcdu8F6jV4yBaeT/iLQPXEU6EwcNdOSpE8k1sBzoQfpALuLkTQr6LkRVknNMHzdV1GaTNNhjiJLpRcQF0sDhHZkG7F4e1t9xnFlKzd4re3SmqpHOBEmacpiBl6Kz7fwaISC0oop4q60rdvgOk7mZqGFgtDE9hq5P4avIQpBTMWYFY/L3z2ZSOTvw2GdRnHd7aghCWRmNr8YR1xBJN0Mvi1iooW12/FjdTOJ4xHncjIZV655+3f7LnHsT8iU6NlZO4Wd4/3335ffP/7446xkHsdx8MILL2DgwIF7o2sAFIHsO2RYXmKjyO0b3kwXXwuH4H68lr6X0W9uPO4H8FPuCoyRw+COIveVt/wjAIBZQbN0ZA7mLO/h5oXhRsUgzC9QU4POCSnClR5ooRdGojQAl13istKDpsmkiOKP6eWkJW20HUz91FP0wog88Qb9PWk8IrW0vVgVj9peBjkUZRkbHCn4LEWjOSvbCUAO/KLOuNXqWxUEyYmVa3jr4b6tJ/tFR7xS3AtCdsX/TZbV5FssvM2TyQuy6kfKJ/md66PD8smizKDuhoN5BqTlu3NCBDw/GeZfL/vivUv+ScLMx8+goPRkWViKygvXuHDPN44zkP+5IJdspUw68KZNAAAEtpA1zvmUPAKevfuz96xtCO9CMASvE+nK/F0k5QgiZ4waDrAb1/2cPA/myGFw8+gYOoYR6Ypu6IDH3gz38HG07gAio1ptvW8V5Oxt6TaGT0zdWEySSRGyoofD/vEI8swB/k6bXxtcwNB1wOLj7jzRjcd9a6NIEhBelKxzoUn5ovSBdAxWBye9RAwpUi/uDyfgJ2OF62m7rUN15G+gdZoOoHMZYmOpYwFvP9SVHEphfCaoR55DhPLNRxWR3B30pQt7f8QhhxwCTdOgaRq+/OUvd/k9HA7jf//3f/dCzwiKQCooKCgoKCjsNlzkqAOp0t5zwrp16+B5HkaMGIE333wT5eW+ty8QCKCiogJGptV/D0MRyD6CE3VgRzlua+knAPxZvZdKwWUXsC5iFwwDHi8TVgtjy1Y4h5BKvcX1cF12WWmWBa2UXVW8DEVR6HHeB0ttOCEDWlpo7LGkiEi0SXtZguAAkCwAzDhbp5rIMhEfWSotAWGW3jFHjQAA1B1aKF3ihatZwqMjKbXdkqVkinKCmrSK2myJTHG8XDofWHUzuZeOOeMXsn3TAdRO/KawfYy6iywowhoYaNGQKmZB6fV0HtuHu7JkpYg5DXFEQrLQj3eM1NF1ilVocDrpQGq2305YgvJYOrF5jAenhNaNbKF9Wu1Amq+zX3sZCHIuSbLEXwZQ22Tx9oelfy+6eru/jb+a3PN6CugYwG7tygCfD/japCw+GWhlF/LmLdvdJuC7hDXTzEqCyWpTWOgn3QjpnmTCt0ZyzKJ47jMhnndvW4MsHGAOZg0wz5PyOnkvcTx0dSXAwfk6y/h4eXyhAgFfFL2UvRuf+9qWBq8Hz4OTkagDwP+703IA0hWffdAGPFHaUcjyCGtnZoy2gG3DK6BzLzQ5EbRgHzCI9h8QyX3ZZRcBP6nOSEGG3aTy+ThtoH0gjWkiVleUQX39T91bFEUioRCmFwl4k8+6W1qy33pEWSN7Cg9aTuTQUwQyJ4hEne1J/extKALZRyh+1/RdezyQyheF68mXTGc3FgDoQgMulYLVFJffAXJ1A/TC8pp5tKz0ZyUiiD1dJFS9PTSPppeLdEPafjKLqKUrBs1Au/+710B+oEBhBPZIevG0V7PIs0nBvFbcQ2Qr9S1ZTq629LCwX5UmQxhcEAgh+pss6koQlz6uXNQ9xYTL58MZwa7pVnbd2kBoK7+I2XNotegyUcbk/AZR0QcAIhtoG0LA/aCr5iNVRMvWzqVlY346XwrkiwQcQSjXXDEPB/5kftayWLWL6KZO7iq3q0C50IW0WoGOql2bUQth/1F33e1PjOL+fRir5kzygbTzITXhrhvpBg4nm2RCEELpot7eAM/Puc5kTrdMInmAX4GGkS6LwuSsZk0k8+gJuIPpIrnlNGnTbFfGJHus2CD0Lr1YTCo3dBfD2Z0rOhd0q3OZTEg3uC7c0yIeOxwGXPruVpT42+Ea2MgTmdZpuBzbaXDSlMs1tFP5WoarmT6NpF9zuqOKs+7jvotbKANsjzgClDgTFWMy3yduxuEp4rjr6GklGoXc8POf/xyVlZU477zzspY//PDD2LZtG66+evsT676EIpB9hGQxULSGg+rFQC4yLJERFyUC7zMXxTP+eH9lt9t3WttgCDkSUZEj7cDjF4sU5TUMvzSdeF9pvhVKZuFmvv/EYMxiq+3DopIIiozGghUczOt6aDuEMlLTLKfiGsgIfverhFjtQueHPj68U1kWewPvz78cw/+Xq/DwrRNsBgo+p4vmk3m/nKTISO1gUhUb5GDVzdnkPfP6jLuOiKFT7MlsGxELGWcL46T/mQ+dE38/u8lfd9SdtK6wVFrtHtqG0DYsJrIav8A9E4huyiZjky72E3/yNxDjTBUZaGcC8UGnijufXTkPY2+kdQQB8TQ/UUf0u+kImgQVNTR2SxJ3BEHOjDw6+MyqNpkQlnqXpWkyn1GXq70ID4ETMmXVKPl6jUbhsUXObGDLoOPAa+AMco5h9sT+NW2HyT+9DUkco5wwI0ixaWTIjPki8C5LLQXq6FgSgwtlMpSIfRUTSyPlIVnARI836xT45U7FmGSHut4DO4KbYdkUlkgxkXnjj4o87g5UDGTf4De/+Q3+8pe/dFk+fvx4fPOb31QEUkFBQUFBQWHfhbJA9g06l0kUKC8vR01NTTdr7BkoAtlHiFe5CDXSLKuoiMQNHa6Vq+kaoFlZ7T3HkdZImZVZUkziu4Cssyu03byBFdCa2R0l4olCAWhsfEgMI8tIe7UhzRnCOiUzpMO+dIswjuppX7Kl5gwqeai5/mxfxAptnU4xWprtby/TiilLybHxIVyXRlq6ptTss7cRrPfdeQDp3wkrcKKEznve5rQvGcrXyqIEWJS/oQMXb3/7Qjey8FMNyx8ka8/k71HcpdCD1Bwg1ED7FDXK335onrwJhKyVE9RkP6XcijBSGUDLcDoWYfVMjfRQuJpj1ppYm9QOwAnQygfeRO0G/jfB29RRVMoajmxxDW9Lww2KrG22oLLIvT1+GPTX6ER0mzW9A8i4Qa3rPW2WlgJsDdT5UfVCloxp1NvpWEQp0uDmJLwIu7fz2awbj0P/jAXP2TWd2UfhQhahLXscHG6DEMd4cv89y4DB8mVCMULrSCLA8kOpQRTr6QR1OGyVFDXQRYnTdFTzJUaF98TNcDvzsg/v6pknI1mgy7EwU9pHYfdhezq0HKyLtrJA9giDBw/Gq6++iuHDh2ctf/XVV1FdXb2XeqUIZK9j3PX0Mou6upQqqZtNF73sT+wm81zpZtJMSy7rDLe9Q7q/RTt3GM1C7LwAAiz5IVxccAGwe0y6hZJ+PJpwA0lpFa2T61q06SSfY8Y9GSsp9PVkgHtGLWzRhkgpx1Ya9Fv7QKtbOQ2F3oGQzUnx7aRt8qSbOlJH7N8O6wi00sVNDmXNxCa6Pjtz3YmJRkfGWPXGH7LXOeDW+ZJMRjPyUgRJbKV8MASa/LjMVezqPuBn9Nxorj/RiWylz/xNQN5GJoccLxes60CAJ2jFH/BkhTVV7eIIopuziaC1rR2uELtO02/xwRTXmygLIMr6i0LSJhOSpHXzm0TG8yuf1XgcelTEiPgWF7cgO/ZSurIdF8YW1p9JEtGy6zuJd3fal9NZrHsXYBQWZvVRCJFvt72ohuF5UuPRLaZBRpDjjrFliK4jy4jGcZoIBZAYTPtqrxY3qk8IRVKWkBTT0/69kFnhSExmnG7yenKBawKBBN0zE+fSfffePYpI9gaUBbJvcMEFF2Du3LlIp9NSzufll1/GVVddhSuuuGKv9UsRyF7Gx7fSQDTs179A3hphcaPfNH6ZeBnxUlI/TtN9yyPHNrrxuBQl1jvFFNoRA4EOFvsVFSQsE8kKikWyOjgg3dQRaBPC4LwJoUfs+skzQnNRt/1lop0d9ivF2IHsLF64PpkU7QNtfuxSgksNykxchT6BtAKypThRpCNay2SxiONiXb/iRoQ19Jb9JbfBR2S35m3Zfjbg6usvx/hrOFYy6L8ggo0cd1nGsX5xHcmS7O2I+69grSet3Abrl4aafDIoYug8y5Cl77QkE8dyLhu2rR0eW+7dAhbyDlvQ6+kgEqM5KcX0LaLdkUNBBHW2BurlpXDrSCxTVG/JFPCWx8JxgVp+HiAqumRkX+tbeSLJ8YLuhk10TABQTRNEl8sMaoYhxwjRH8/OOHedJp56IOBrMTr+b52TYPRgyK9AI6yIXNVGH14Nva6Z1hME1tCh6dlWIy0vKpOHUhV0zHaYz5UDJCZQBmloE533dFlUrpu/gZMCLQ3BehrH4tX0u8OThLcenif1GYW1UfMgtUnf70HcY1a/PT+rW1auUegVKALZN7jqqqvQ2NiISy65BCk2KoVCIVx99dW49tpr91q/FIHsI5htupxRR2v4Bchiv+7Hn3VpLzKvAcDlTEnPcWS2pyCfDsvzBBsSfimyIaxEbxkINLGlxqT2AR1o5dKFrKmcNRiLGb6oHCNdRcgQd4ZPGDuTS5j+b6KGcipf61JubPUNaobflxCZ0QKuBbQN4qotLGniGhoK13PGfGHPHn3htu4Os4fMBQDUnzAE4FKJJb97jX588HKsvIXWHfNTIpfBFiC8LZuMiLKfbsb9JO5N1yBXJwAYSf7R8+Cy21RMvESVmvZDyhBsppWD24gYeoYhJ19mO93sgUYiLnZBRgWnDIjt2kwazfJS6SrWi4t4Gamue2kbWkAoH3AfdU3KaUlXbCgAbQCFoYjM6SywHI70UGSoM2RONmV2t8zo5v2EgvA6RFkfDokJBKAjuyKOm0zI/oqxBVy6UXM8eEU84yuj49QbWjIqXzEZzov4LmuWDgpt80tNijAWkZmdzrPgCdWHqEjEcvHi2zcDAI76DiWCCRUAgIoHAECokbaVKNFk4l9PccR5TEbz/G18fJsal3oTikD2DTRNwx133IEbb7wRK1euRDgcxujRoxEMdj927SkoAqmgoKCgoKCw2/CQm0i4t9MWCt0hLy8PRxxxxN7uhoQikH2Ez66ch8O+LzTxyHrSPIH00Io+j/i6jkJyw/NkHVyhE+e1d/juKy78atY2U5u2drjC0sGacVo4jNRItohkuOeEe7OzoDM8/7uIMXJNPyZJwA1ASgEJiAlkpstbWB093U/O6Im8hsKuQ1h/hWXFSPnW5AjXs/YMQGONz9f+L9t1PfOIn6B2KoVOROrovmoZqUvpmxSHyVW+baOjii64sEqmRpFLOFqTxluPsJzEHd1cd77XOgYAA5ZlC2oXrmMrVVSHw5bCcCMtcywN8QqylgkpqMaxISm9EmJdQCHJko5qUgomWExu7YKVrdJKZ7TQQTmFdLKM9jQ6Tp9Mx/D029RVx4FezpZCFup3GhqlLI+9Zj0AwKwmCStnWz3MQewJMERQnwmtpV1+BwDogM5aj0JSyRxDyWpIpuG10oOjszUQmt611GI38dLC6uklktLKaA6o4t8cOCyAnhnPKTQhDXZNy7rXKQNuMQ0W6SK6sYyIBZMLCwh3vBcwoSXou9WWzjqmZGlYWo0L3qfz7QY0uSwz9vror1PxADeva2KFSJA58mw/YUvE1Ip4cxE2tD2I+FqLrZm6AyTLFIXpCygLZN/g+OOPl89nd/jXv/61B3vjQxHIPoTI8Jswjwawyjd4AA5Y/hwtQyDcFNVmWtmFbadhckyUDMLv4KD5vAg04VISLyfbhsEaksJ9lCgJyjgfMWjrGfWPpVCveL/ZGS5pkSGb9gmKzIAUSeSer6HmZrRPFdH3kXfTwL9mnkqg6Uu896vsl+j4q+fD5pAzcc0KPmvHotd/DACYduKdACAz49uOLYDFt2eKX+SlHzlSOF6QPyegyaQcgZf/lVsMzic/3v6L/r9PkgblxEvny8lMrNyPhTv8ArqP0hVCyN6fEAm9y9A2uvfNtiTcME3C2obSrKb1wAIUfsTPBmcCmw38/DgOQlG6eY0yIo3uoAqAYyY1rjVvmKZ8Xs3hQ+S6AGCOGAYv0tWdpNlcl1rqs3pSTFuI/nvseteSaWhM8JCih8ppb5dubFmhqrAQjhgjOEbas7vqUNo1tV2WyXjOokK4ohCBILxinwOLkC6mY5GEL+3K37MSgvKpXaqA4zN54hovNRBo44nIIRS6E2h1YMbpWokkGjtkwmQBcZGg1x2EXilc/g/Azt9ucwz74+0AgMjKIALcbfEcBFoBPaUITF9AEci+wSGHHJL1dzqdxrvvvosPP/wQZ5999t7pFBSB3CMQcYCpEhpsI3lR2Bw4n92QBXI5vkoGuQMyfssniw60AnoZeEU0kmot7RkSPeKF5Wc3CkJh84vX0zKSZ4SRw8sQXxaWRd2vFCI+RXs9BSTYOiWyI9N5gJ1Ho3y4Rsk17A2kinyR7oK1xAxTxSF8aTYRR5giuYk+o1tdWSEovMVvX7KSLrQdopsisr65V/t58I9ociXKJ773h+4nGsK6GNlGfXxt4RWYfBaRSp2FuAMfbaDGhfnQm+jgiz8hC2Dq4KHoGFkEAIiuZhFuUT3G1WCwJU3I5+jNHfCayRooSxQCMLkCE5i4QSSwBU35/AqyqDf4VV+0NBOxeApOCZfz42xwLSHKmerwuNSg7Ft7exdpocz+ZCXU5AAhBwYA+qHjaHtMtsUxuQEdJlsUW4dQX6MaYMS4fCJnu7shE8lSIugJlk2KVQi5JQ/xsmxZHs015HUUiXdWhys9NJmxj50R5vsjXqHJyczq6/wJyYh7WUifiaGhB3jfQJyrLYkxK7rKxn+evnK7+1LYdSgC2TeYP39+t8tvvvlmtHdTenRPQb3dFRQUFBQUFHYbgkDm8l9h9/Hd734XDz/88F7bv7JA7gG8ex/NlE/40m0AAK8gCnPEMPqR3UJuQyM81n6TbizLgpdg86GweHC2I6orpCtOq6H4JndwJawask4kS8lS4pokqwP4bqBUmah350JvY2sJW0hcC3A61SnWU9nuacCPgUwVedDTbM0qYAtG0JVupp3FJyn0DSI1ZFUEgPqJZFWL1tpStNlI0W95m+mCmm1pmM3sw+YyeeZyX6ImwgL2CId8l2cv4INf5HZ/CEv5awv92E1hzbK4LJ54ftDoQGNJGqFoEFi3DUZlEQAgOZBc0maMLGnmtjZAZAyzi9pragEyMqAFvBhLZ4WFT5+tiG5Ixg3qNVTfHqGg7+4VMYrhIOwo9c0ppwfNbKd+BDY3IzGAthFm66TRlr/L9at3BqGbaXzOlSwGkqmuY1CRVGBIkt434pUmhqxnFzeXZWwZFUbrUJElTe1EHHSyWJOZ08KVnSjWkc7na9buyWXC0yFixrsT9xblB9NRwIlku7qHPfALQEhNNuhZ/Wkf4iHvc1q3dRStp6yPfQfP0+DlQA5zaaOwcyxbtgyh0C4KovYCFIHcg3j5lesAALPKLgQqKNkFLATsxuMwRPJMC7nOtKoKaEn2C+fRTSKFjj/fAk/IbpTwKO95sv5s3nsU/9T21YHShRTkQdUVYuMlHlDGgsVt9DLTHMCOclyV0AqP+24jGR/Jg7iW1uDwy1RoEFoxA59eq4jjnsTxM+4A4NcgD5WY6Kikl2kZJzEENjf7EiyCHIm4tngCdgMRHykdJUTuAdiiVrTnSiHp2ZX/Q4tYnuqFd2/p3YPKwDsPZN9PEy+bj8KtfCybmABJsubIOGJRIcZra6cYRlDNaQBIFdNx2tFihFbyNkTt9lCwW41HAY/Po4xPbGiCLs6t0EuMJ/w+Wf5Qq7lCTojatw0lN3hhKl+2F/I4emkJ0AcEUp80Hp6Ik54ymvbJt4SRcmX1ovxNImlJR/NBRQB8Qtg2RJPSYAkxv2APeToKdFSxFizrkHqmTzCFPmyw0Q+ZKajbvju+8/UH/OQYvUCDVsEVbop4+ymeGFsO3r3yuu2fCIVehQstpyzsXNoo+Dj99NOz/vY8DzU1NXj77bdx44037qVeKQK5V/BC/YOYPeAHAACvgjKztcZmeOlO2ZbbGqCVMjnk38QLy00kZYykyxYBvSUmLSReJa1XvDqF5lH8MhK6ekFmg64/W3QDopacBifC+nE2xys5gMe/Gx161m9uwIMRp++fXqNI496C2UH3h9FBEw4nWIAwi4UHNjH5a2sHONPfrWWrdTd6g1IZYDtweIJjVnE8IFvhZg+6FPYWImKL3b/J9rMm0gCXrCLrWnBLK7xP1wMAXkz8uSeHKWGkgMh6srYLMic0Go28vIzEk4zj48lY4FPqo8nPXmxYvhTRlhqOiYxMswwIa6AeZjM9E3AvbfvWSBYSRzDgE0gmpl7IhNXEVky2AFqlRNQbDopKa5w3igKLB7y842shqshkxkXmAjdgIlVExyxKi4oSj54OpDg2NlFCn3kbfe9Dw3jqpBCGB/zxwIyxl6MQCNMtJpOdPA0wef7r8OnWbUDnTP+2QT2zbKdKRQA3UBCliXP8Qxr31qoJ7F6BioHsGxSKalEMXdcxZswY3HLLLZgxY8Ze6pUikHsPnNmpbaOXu+c48GJMAvJoxNUK8iRxhM7EUZQuy8iE1D7bSF8CAWiFFOgerxIpuL5lIUnvS7ghHvgjNtwkv2ijQr0ZQJgGZo/9WI5pQmM3tWfyshC7qyMO1p5/1a6dA4VewcxDb4JuCAkWIiXBxhQCa8kc5DaQ6dlNJKkOO/zsXSEJ05NkDDmJYSLpcravHghAD9JkZlbheQCAF1oehlZLljzr408BAI7jSMvgDOubWdv0HMevADOIFQhsG24N1TXUuUpTwaHDoDUQaXI61YF22tvlMyTIsLutXvZN52dEnKvIpg44ZbTMaBCyOwbVogfgsPXVyMvza1+L7GeXyWsyATDn1JlICsmcTOhpGxCC43wOCt6j6xSpLESqkH5LlNDQ3H5AMfJa/fMAADZL8gDdE0dj7AG0eZbbsT9bC++YQ7LadAwMyWosghiK6kFGypOqDKEG3w3dPFoIttNvgUZdhrYIL0SsmseFsAsj4VdAAoB0PpAs4epC9XwfGkDeBu5nsIehEXls8fWAylNXAsieuCjseSgXdt/gkUce2dtd6BaKQCooKCgoKCjsNpQFcv+CIpB7Cc+v/DkAYPYwcrUY0Qhc4TYT1sVwSNb01dhVpmWWPGQLkM5ixkgkpchvZF0zACBdngfPIDOBsBwgyskDQRs2+8y8QIZFky2PHscRmcW+O8/mZUUlZAlt3lzQ42NX6GWYOlyuHyxqGFt19X7cYgY8p8uiHkMIW3cWuHZTKd86yZa/6fqZ29mIm9WfzlI1AKTL2W1sgsv3tctxidaietidmgu3shuPw+noWttaCGxrMR72+JnSgwF4XLJPajmGA9Aa6fkyioS11k/eEP3tIvINSFe2G49DE/GkwsKaTEr9VhlHybGZpm0DHrkJhJ6ip2uIH0QC5cGtdEx6S5ssQ9glwUbToYlj532bo0fCSfH55bElXJeGN4B+N5JsNRSyXZaGYCstEzJP+ZtsWSpSFCaA548pIvbWDbOmY0JHgIsJCHkvIwG0D6PtJjlmMjbEhXgNiaQbUfLykxt37IZef9Y1/h/f22FThT0EZYHsPRQXF+9QPDwTjY2Nfdyb7qEIZD+Bl7b9qjMBJmW2A61NiP2yO4h16ty6eoq7AuDVs4uyvQP2sRMAAIE6erEkygJIUI6Dn+SyibXrjCCQRy8Wi2Mbw1s1BFqzK40c8PhPkd5C7jirndolohxbFu38GlfY09A31UFjAuTWZcc27ml0SwR3cRv2ps20IKP2847gZrqyd9BeuqHZhQzPhckxkOmh9LB4uoYAu7g1cS4DARgiyYVDSYS7PZNIinOvazo8TmrzOHNdMwy5X42zJ4XSgpZIwqynvrmirvfAIAJMXFPl9AwG3WGywo1ZSf21P1vrHzfXwvZEuIvjQg+RG9wzad+W7SLILmM7wpn5aaHN6CBRJLKZOYnmwCASA+l86J/7rw1BOkVctdCh9XRPZsmLBJt0kYv8ddSg9RBR+kpD+xBaFi8T+4fCPgovRwukIpA7xz333CO/NzQ04Gc/+xlmzpyJKVOmAKAM7BdffFEl0ezPeH49zban62fKmClR5hD1jdCqmP3ZXOptAAXTms2t0mKpcTKNUVoMfRu9WJIDiITqticH9fQAfsmlaMH6i36UUx9Xn9H1Bj3g7z+lvrZZGPZ7ygBef/bVOW1PYffQxaqn6dDqKYNaxjZ+UZFB+rr81KliS5f1Oq/Df2umJZ9DgZmH3gQvyBVjeNKGVFrKaOksIO5uJ9kGIFIp+qTpIjvG8xN2OiXGQdf9ZBthKay3EaugdRvH0Ofg51y0H0pWSauVY17bKKHJSyR9maXMuFb+rrdxWcHCKGqOoeMr/Iz2qfNcUHP976IkZP5GG83juUwhxzFmVXMRu9L9+0/IgSWHsjSSrSHYxOvE+XyEHTglbNFmS6ydr8jFvgoPWYb6HbZT2DEyK8ycccYZuOWWW/DDH/5QLrv00ktx33334aWXXsLll++dpDElJK6goKCgoKCw2xAyPrn8V8gdL774ImbNmtVl+cyZM/HSSy/thR4RlAWyn2Cx+zeZuSrd1ZGwbwXhdtIVZpowiskaKV1V7R1SQsRjseTwlhg8gzJM15/be9nS9iayegaHtCPZ1rUGsELvY0fxhL0R27hPYAeu6UzLo3Ati1hB2LaMo5SWxwzpohmBbwMAFqX+AgDQWzp80f5M5QMhCL4jV72WMS8X+2DrmhawZGynJ/rB0kqIhOGUcnlSkVXvejC4RnQeS1XWHV2GgvUcH8rC8Ct/MgwAUPKOKXUaxTYSxZoUBK9YQeeg4bwOpFrIeto0iuNLHdpW+XMhhJrp+MIcWrX1MBODX6RlHVyusOWADDsSH7IoKuDpQDqff4/TOTASOhoO5SzscorTDFg22lrJVBndwK7scijso1AxkH2D0tJSPPnkk7jyymwR/KeeegqlosjDXoAikP0IIiDeHDIIAODW1kHnpJnUIHoDBFZxDe3CfGjsPhPaj9A16T8If8pSH4aBEU/w6N6LBRiEDEeqWgcSXSt2KCjsaWS6sGU8MZNAN237EkadEnc0sxv3djwOTxC9ZKfkNsDXfORtaoFAF4IKzRdilwgEZDEAEQMpRcYtU9bH1jnpxbN0BBtpu+l84QYH4hW0bZuldyKf008dA4GGAUxMk/TcRwe1ItVBbvMNwzjZKhZAKI+Ob3Q5jRUxm7b5+YRBKHuPE+hitC0no9hFSkjSeYDHh+gZ7HoP+PsWmpZCFszVPRiFrMVpcfy2p8GwmJgOpm2svWz7NbEV+jdcT4OmsrB7HT/5yU9w/vnn45VXXpExkK+//jpeeOEF/O53v9tr/VIEsh9BaJhNN+YAAMzB1Xj+0zsBADOmUMyhM5jKjblhE9Ya0t/TxAvI9XzrRimN8vEhBeio6H2C9/HPKOZi/DXzEVQBLQp9Cc/tEvu42P1bF4tsd1ZBmUyk6VkWx8z2mbGK4tmD53arKSh0K0WsqSCQmd89V5fbFxZQLUJWNi8/mqWkkNXXSAAeV4nSudSkubYOqVH0zNtcOcaKeVL8O9jCYvGcF+QENASaaDxoG0XHF9uQD2sAkVYjTMR6UHEztraRZ6IoQBPQshBtZE1+tSx5KYS/Sz7ysG0i9S1ZyiTR0eDp2VWrEOJz6mjwDGHpZYtoyIPB39M2bSuVtKCvp3OzVhUi2OfheTnGQKp3Ro9wzjnnYOzYsbj33nvxxBNPwPM8jBs3Dq+++iomT5681/qlCGQ/xGJnIQBg9uDL5DKjhnxJsYOrAQDhDa1SekTr4HrZ7R0yQF9kWxoJB7GqvrvMH92uBv09ge26r/cXdLIQTtfP9CdcuZwbz/Wr7sgSjT7h7I58dt6uZlpYlP5r9m/CyphBcjXBUz1XyvggQ47LExI8xRRuonGCnLGpXj7T6SIimU5VCewwbTBSQ0SvdWRUFgeIl4vKUPR3shhSPkfn6jBaWkOyldzkgwZTslXSMTGggGXAWLbL5o0GtxlSnkeIi2+bRAl5QEamddCRsTWCSOqCUEYc6AE6rkCQa24bLoJseexIsITQ2rA8lmEP3gUAGDicpJpenX4HFPYtKBd232Hy5Mn48597Xrlr0qRJPWqvaRqeeeYZDBw4cKdtFYFUUFBQUFBQ2G0oAtl3cBwHTz31FFauXAlN0zBu3DiccsopMIwdexjfffddXHHFFcjj6lw7gud5uP3225FMbl9dIhOKQPZnJJKYdciPAQAvsMzI1Dm/BAC4IwphtXPw+wC6McJrNCn3ozdyzd68IEpW7S8ZFgoKO8fuaFUKy6NweYukm521N0uKaIGmwQvRsOuyWLjh8MvUNKTnQNQ2pw7Th1FPz7RVGULhJ+RbdiJc9pFjJhvHR+Fy8kyolk2FGuAU0LLqaKvcbGOSXMcJh7bRmmZ9WA2w2cvePIW71qohyAk17cPZ2liYgsd9dzu4HxZZiisqWmBzUk44QMeSSFuIpzh2M0XnwHD95KDQIbSDiohQKlfY1+C4GuDunBw6ObRR8PHZZ5/hxBNPxObNmzFmzBh4nofVq1dj8ODB+Oc//4mRI0fucP0rr7wSFRUVOe3rl7/8Zc79UgSyPyMUlHpwAq8tvAIAMOwPt+PAu+iF4uRzfFXQ9MUR+IWSLrBQc3TvqTVd//7pAICP20iYuDLUiqFhcov9etmXAACfq9rYvYb93nW9A4hz08WVvTPh8RxEybtdLSNWcnt96IzOy798wu3+9gxRi5r6kxpRAT0hKsbQR7ogAKudCFjLoRQLWbDar39tNtFvjYdSBRurw0OimIkpGxGSxUCghMJchHxKQzyCBCfNCBd27T+GAADsSXG0FbLOJVeWcQtspAbxTtlNbZguwKcjzRYlhytV2Y6ObVspDjv/Q3JXF86qQf1qyhhde+kV8hgO+BlNjscUUOWkxqNpPMGuXSaFvQiKgczFArkHOvMFwqWXXoqRI0fi9ddfR0kJPesNDQ347ne/i0svvRT//Oc/t7vuunXrUF6eu7TBxx9/jOrq6pzaKgLZj/H8xl9t97cBVc1YexNJ6Yy8kWRG3FAAWge/NdgS2XxRKzyWyegNlHEdswKLXkilVgcsjfZ15dEvAABmLtmCF6fd02v7VFDoEXaRIHZBN6LlMnN7J26j7SGdbyDYyLGYohgLV53xNE2WMDRiRAyD9b61NLKVVRcMDRon1Dh5ZCp0ORSzbqqHglW8Ly5olR6eQJBJ4rpmevkMzG9B+1/oJdEeo9/aTuQOtQVQ+BlXnCrjijSHNqIsSuPM8HyyFNbECtDGVsttrVwhK4M8hApoe7Eq6tywYBxLM4ijQGoQnY98HlMWboeMK/R/KBd232DJkiVZ5BEgaZ/bb78dRx999A7XHTp0aI/2NXjw4JzbKgK5j2LZjNsx4ld3AwDcaEYyQJQGdI1jGFq2FGD8gRtz3u7h59+NpnH0ffAhWwAAr5zwC/n75WMXbXfdn398IgDgksGv4IzXLgEATCrcAAC4fvw/cu6DgrI87i52WJUmV+SgObk9y+P2kCw04On8jHImtxMURBUwk5zIIpSAUg6MJpq0rT+FrP5DXnCl9XLLcZSIkyinbQUaDCmzs+omP8Ft0nM3APAJ3sbWIjQfRyR15KO8M/FS1zy0HpHI6nfA7erFqOvIw5DCZupHA+3UYkmebRuLsf7C3HTD1p+jKlh9UeAhtyozygDZMwSDQbR1rnsPoL29HQGRqJcDXnjhBeTl5eGYY44BACxYsAC//e1vMW7cOCxYsADFxcU96peqRKOgoKCgoKCw2xAWyFz+K+SOk046CRdeeCHeeOMNeJ4Hz/Pw+uuv4+KLL8Ypp5yS83auvPJKtLZSHPQHH3yAK664AieeeCLWrl2LefN6rr+6T1ggj3zhOgDAUI6R+dvUB/Zmd/oN9CQ9hHYBWTT0hAM3n74HuPbt8MddbLuc3EtTFl0DgKyX20PjwUB4ON1gpeFYj/pz7bjnAAAjF96KKw6h8krPbp0gf5/4D6qp3d5BbrdrDyWX9wUH/LdH+9kf0COJmv0c3cVCbk/zcW/jzd/Pw9FnUpB6ezX1UYh0D/hPGzTupx7n+tCahtTAIgBA+Qr+LWnLZJvoFrLlxAbT8x751EB7Nx6od078GQDgqBevBQC0xEIylnHz/2PR9ThrVualMX4wZbasrKG4y5RtYEszWRmrIzQ+JG0Ty98bAQBY/z8/AgCMf/pmAMCQkXU9Oi8KXxAoE2Sf4N5778XZZ5+NKVOmwLI4Ec22ccopp+BXv9p+qFtnrFu3DuPGkYvx8ccfx0knnYTbbrsN77zzDk488cQe92ufIJB1tTRwNXf0XizfFwF2Pr1QpOhvUwIaE8fUAAqAah0aQMF8On8bzrO3u61xT90MAHCLw0jEySQ+PNqwS/1aM+d6ANcDAC4Z4y+PcDbmSUM+AgB0uER2f/TeHPxi4sJd2tcXHt3E4e2VbvSGS3gPIVNkvDvNx97ax67i1b9lxwEediElkegdSbgFrP/IguLJkhDCn3PSjEio0zSZfV36NsUjtg2h5JREGfDZ1dvXZn195s8BABOe/TH0AnJTh/i5TDKB9DwNpk73m3BJx9uC0LjaTGOS3OYjSxrw5Mm3AAAOfII+Jw6g4ga2p5xb+yVytS4qC2TO8DwPLS0teOyxx7BlyxasXLlSComPGjWqR9sKBAKIcSWsl156Cd/73vcAACUlJdIy2RPsEwRSxch0DzHrH9VGL6DqpTqCDRT76Fpsoai1EaijG4aLYWDmkrnUxtMQ0OkFMbiY2tcsKUTRSRT72FNSJ+IeR0a34c6J9II9640LAABFVhxHVdC+VrVXAQCsAq63q6dkn7a2U3WMd7/60x7te79Cb5BK3obOVYzctL3jmD+O19tphvNeRKYlUhBeWSnGMHqH/Gq9T4xayYiHYEsJCj4kQiiIJDQgXU7JcgZbJd2gCbOJyN+6rxNxjBBvw4r7cxP2H1O6De/VUBKNIJBWiCaY4SV5+OwdejGFT6BJ5LDSRpgaT05Z+XvVpkq5PYclez5rpv60v10GTM2pKxJirJhW/AkA5ZnYF9HXlWjuv/9+3HXXXaipqcH48eNxzz334Nhjj91u+yVLlmDevHn46KOPUF1djauuugoXX3xxVpvHH38cN954I9asWYORI0fi1ltvxWmnndaj/Xqeh5/85Cd48MEH0dTUhMmTJ2PBggUYP3581naWLVuG66+/Hm+88QYsy8IhhxyC559/HuHw9o1jnudh9OjR+OijjzB69Ogek8ZMHHPMMZg3bx6OPvpovPnmm1i4kN7xq1evxqBBg3aydleoaaKCgoKCgoLCbqMvYyAXLlyIuXPn4vrrr8eKFStw7LHHYvbs2diwYUO37detW4cTTzwRxx57LFasWIHrrrsOl156KR5//HHZZtmyZZgzZw7OOussvPfeezjrrLPwjW98A2+88UaP9nvnnXfi7rvvxn333Ye33noLVVVVmD59elbiy7JlyzBr1izMmDEDb775Jt566y388Ic/hK7vmIbpuo7Ro0ejoWHXPIKZuO+++2CaJv7+97/jgQcekNVmnn/+ecyaNavH29M8b+dzgdbWVhQWFqKlpQUFBQU977XCHsPB88gaKWQ9BiyLwWxha8VNtDAaItmMwQXNqGmn6zmmmGKW3t4yGCNK6Ub953H37rF+K3SP2aM4k1XTAIctf7Hs2FQvlQZsDk8w2aLY1tbFWubZad/yGOJMYBErqGnwOHNfE7Nh14Ub52xctjr2mhWvB1ZMLcN66Pc349jEtnhZpri3sEoa+flwuslizNwHbaqbGtf824uJnpcR6wlmTbxRuqljQ8kSr6U9WUJQCI/XTLWQLuKYx010zLtSUnT4n8mdPbCSYstTNt07ngcYfyJLYrKItt9ydByHDtuUtf6nDWVobSDraG94iYQXYlwhmVPnH/LX3d7m/oS9+Z4W+x720I3QI93Xes+EG0tg/fk/7VFfJ0+ejEmTJuGBB/wciLFjx+JrX/safv7zn3dpf/XVV+OZZ57BypUr5bKLL74Y7733HpYtWwYAmDNnDlpbW/H888/LNrNmzUJxcTEee+yxnPbreR6qq6sxd+5cXH01PQfJZBKVlZW44447cNFFFwEAjjrqKEyfPh0//WnPvWv//Oc/cfvtt+OBBx7AQQcd1OP1Fy1ahOOPP17GT/YW9gkXtkLuqLrnNQCA/RKJAnecYGFrPT2gwxbQy2DDRfT58fsjgZGk7faBQxIhE6pqkHCyb4tz3zoXmyaTlMjuxH4p9BxOOV0719JltRG4tMwLELHRE2loyXTWekaqFEgzqRSEMxAABCEMdBpIHAdaHpEBBLkQcjwuZ8dO6/bJV64Q8Yiarsm61LmtqEMP8rphejl5ySQ00U+eA3vpdLerCxj5RMoEkZT9sUy48bjcF0BEWRDHHvV1N9A0sRjFK2jyJgw0dp6Bwndpctd8GFWSCNcBeRupn+/8Ztdq0R/z0lWorqCd1DXTeakoovMStVL4ZAbFTZcv4brdMQvvbiAXl8bxkYcN3oS1JunSDfst1bFe//3cpHsyMYbjJ0tY03JgsKnnB6TQL9BTF3bnuLtgMIigeK4zkEqlsHz5clxzzTVZy2fMmIHXXnut230sW7YMM2bMyFo2c+ZMPPTQQ0in07AsC8uWLcPll1/epc0999yT837XrVuH2trarH0Fg0FMmzYNr732Gi666CLU1dXhjTfewHe+8x1MnToVa9aswYEHHohbb71VSursCN/97ncRi8UwceJEBAKBLi7vxsbGHa5/8cUXo7GxETNnzsTXvvY1nHjiiSgsLNzpfncGRSC/YOiO4InsaydEg33ZMxQEHzp3MwqD2Xpv9YmI/H72m+cDAGrjhRjEFv3F68YCAKYPXwmFvoMoWRkJiExdA+2D6QWrdTLeBVot6Gm2nLHAtOZ60NhiabbQYONEgzC5HB4MUeZOMBUHMNkKxxqDyAtBi5FV0ozyfZFMwe6BK0UPhqCXl2YvNE3oTNi8RDKrP05Tix+/KD4tE5oI4GXNM62yTPbdjdAykZk8M/QdaS0Uz8PsYZfLdSEIJFsZtXAIOls4M8niovSetYBt/XIaoXoa1PWUuI4u3Chdd4OXvXfvrpHGTCz9yp1dlgkLYH0sisindK6aOAkuVBJHwOSEmgSRSlN3kGSrJcxdT6v1uKydZdD2I/qeIewKfYAeZmF3Fq2+6aabcPPNN3dpXl9fD8dxUFlZmbW8srIStbW13e6itra22/a2baO+vh4DBgzYbhuxzVz2Kz67a/P5558DANauXQsAuPnmm/GLX/wChxxyCP7whz/ghBNOwIcffojRo0d3ewwCgtDuKtauXYv3338fzzzzDObPn49zzz0XRx99NE499VSccsopGDZs2C5tVxHI/QBStmdG198O+DuZ04MBslbpLxWhbQq93LeE+GX2RgHME9cBAD5PlwEAnl1L8jwnj3i/z/q9P6OjkjPr+WVtB3U4ASY8PPiGt9E18wwNqTC1F+TSNTVYHfRCbh9C5MuMubDyaHtGgq83WzU9XYdndXJ5Gxr0pCCtXP+4PQEzn2ShwC5vSUJDQd+VzlYENxKUtZnldnUdmkvb0DgxRHOZ7BoGUEAWMQiLoukPU04Z/eYGTak4IIijxiUBjfIyTDfmAAAWOwv9PrLZwywlQusykXRb28m9j71rYdebLbQPonNV/Ak9g66po30kHXPb4F2rfpMrRPWoE/49D+3MtcW95nkaYjG6pqJcYcoxMbCQMsQTXON6Z6Udu0Oqie6xDW20/WV5VNf3kl08DoW9h55Wotm4cWOWC7s762MmtE6lfT3P67JsZ+07L89lm7vbxuXx7aKLLsK5554LADj00EPx8ssv4+GHH+7WBZ+Js88+e4e/54IJEyZgwoQJuOGGG7BlyxY888wzeOaZZ3D11VfjgAMOkGTy8MMPz3mbikAqKCgoKCgo9A56YIwuKCjIKQayrKwMhmF0sTbW1dV1sfwJVFVVddveNE2U8iRye23ENnPZb1UVqYrU1tZiwIAB3bYRy4UGo8DYsWO3mwTUGY7j4Mknn8TKlSuhaRrGjh2LU089FabZcxpXXV2Niy++GBdffDE6Ojrwwgsv4Omnn8asWbMwb948XHfddTltRxHI/Ryrv07i3sP/RDMgfWoc+Xlk/aj8GVkVthwLhEyyLDU75MpUEht9C+Gm/NJscjUamgurnUbmyDvrAQCe7et6isQXt6wIANB8UCESpXT9xHpOUEOwmWbCTpge/XQhu381IB0lS55I1tAdD0aC4wvZOBneZsDgeEQ4FDOpb9pKbQrzkR5CYRLCle5pvrXTCZly31Yr14MW1kPRPn8AnCjrEbKL2UjY0rroBjlJKKAjWMP6iB0U4+nxsbuVxTDaKbZXWCLN6iogxTI4/JtwV/eXuN61c+dhxGO3AQBKPmRTsqmj4GOKb2oeWb7H+uIcSOeoII9CXBo/LwLY1fzNYykBYVRoK1IeXY9nQR6JT/50aI/3JeImhQtdaEie8dol+GoZeTjOO2DpLhyFwp5GX9XCDgQCOOyww7B48eIsiZ3Fixfj1FNP7XadKVOm4Nlnn81atmjRIhx++OEymWTKlClYvHhxVhzkokWLMHXq1Jz3O3z4cFRVVWHx4sU49FC6/1OpFJYsWYI77rgDADBs2DBUV1fjk08+yerP6tWrMXv27J0e/4cffohTTz0VtbW1GDNmjFy3vLwczzzzDA4++OCdbmN7iEajOOOMM3DGGWfAdd0eZXsrAqkAAFj33Wu7LDs+QoLHwcfypah4u7PzDDuF3kP4s3r6YhqAiBdkF7IcgpMpGUOobaQKItaIfBhcqUi4skN1cbSMIXdooDU7m9oO60gW0DaCrURe8td1oGMwkURBIBNlAQTZJS1iJQMuERs3aMEOc9wiE0I3qCNRHsxaptse0vlMQtnFY8aIZLqmDjuPk1d4++GEjXQRu8Qt0d4B2iixCxyfqbXQ3+6AElnRRcRR2pu3yGPNlTDOjJLIrkjceaH+wZzW2x24zUTo20ZwtnzKQ2wAhY2E9lBuyYb6EkwcROerNUXnffbRH+PtJkrME/W0K80WfJIky4rOZiehJbkrmFi0GYCfRLMxWYo324YDAM7b5a0q7FH0YSWaefPm4ayzzsLhhx+OKVOm4MEHH8SGDRukruO1116LzZs34w9/+AMAShy57777MG/ePHz/+9/HsmXL8NBDD8nsagC47LLLcNxxx+GOO+7AqaeeiqeffhovvfQSli5dmvN+NU3D3Llzcdttt2H06NEYPXo0brvtNkQiEXz729+Wba688krcdNNNmDhxIg455BD8/ve/x6pVq/D3v/99p8d+wQUXYPz48Xj77bdlveqmpiacc845uPDCC2VW+c6wadMmFBUVIS8vL2t5Op3GsmXLcNxxx6G8PPeJqiKQCtvFQUVktn+5chCe+GgiAOCmI/6xy9sbfTtJDBV9QqNH0adk6WwdHsYbf+x5Hc79AfXHknskUmsjWE/WIKOFLW6c9IKABa2FE0PYEpn/6lpASDYERUCbhqL3UvI7AGg1RFA9z4U3g2a2BasoM1JPpJDHpC82kEha3ieNSJfT4GNtpX50jC4CAJhxF3aEK6gU0PbLX1yPxHjSGgsuWwUAaJ11EAwmh0KiRhBPN6DLl4uRICIbrwrBaney2gMAiilG12HRbaORrGbtgyMo+JRjPZn8IRLG8+vu7nx6JTqXjFzs/g0vdvxhu+37CprNUj1fJiI28EUD7QOYNMf3TB9KCzowJEJWz/lTKZFo+iuXoyqcnYm/pG0s3msiMXJBKoeV7jgbdEcQxQfmLKMX8/j8LWhNqwnrvgUNGVPbnbTrGebMmYOGhgbccsstqKmpwUEHHYTnnnsOQ4cOBQDU1NRkuYOHDx+O5557DpdffjkWLFiA6upq3HvvvTjjjDNkm6lTp+Kvf/0rbrjhBtx4440YOXIkFi5ciMmTJ+e8XwC46qqrEI/Hcckll0gh8UWLFiGflR8AYO7cuUgkErj88svR2NiIiRMnYvHixRg5cuROj/29997LIo8AUFxcjFtvvRVHHHHETtevqanBqaeeiuXLl0PTNHznO9/BggULJJFsbGzE8ccfD6eHMm2KQCooKCgoKCjsPvq4FvYll1yCSy7pPr3q0Ucf7bJs2rRpeOedd3a4za9//ev4+te/vsv7BcjCePPNN3ebQZ6Ja665poskUC4YM2YMtm7d2qWyTV1dXU6Vaa655hoYhoE33ngDzc3NuPbaa/GlL30JixcvlqQ0B0nwLlAEUmG7+N9JJIVyRuISxGyy6HwUG5jTurd8eAoA4OG3jwYAfOPQt5EuPRIAYKQ41o6zfhtOjmHayaQjl/whWTBq15fCaGdpl3Kymq3/Xs8fvH0dbz1MltmRd98NVNPjandQnOHIv3DWcdyGKR7+BJ2r+PhqhFdx4LdwfTsOtGaeYRZx4DrrQWoBC0X/5dk7i4x7IQsu12TOe5ddwLaD9AgacKxazuRmCaHQu+uROpZm04VreJ+eh0AjWU61QtqnmXAR/YBc7YiRWW3bySRjUfZmIxoOo+MLNVFfjYSLVD71o+AdPiZdg1vMrvwkS/Cw3E10cxzeUHKtau3UD69maxcro8E6aF6GdI8UKt9LWPf/KGxExEK2DbKQZiPGnrJAFobiyDOSWcsKAkmYXPbU5QJmHzQPQJ5F505oxz5/3K92f/8WHeiGRAkC+q67xBX2AvqYQO6vuO2223DppZfi5ptvxlFHHQUAeP3113HLLbfgjjvuyNLT7C4p6aWXXsKTTz4pM6yPPfZYzJkzB1/+8pfx8ssvA+iaRZ4LFIFU2CnyzCRqO+gt9mk7iRmPe+pmAMDHX7tZtvv5xycCAK4d9xwqLUpw+OHkfwEASowO3HH8/wEAlh52AK3bQhlqR0dbkLiOiMzU4s8AAL9adSJ+eOILAIBGm+LwFq8bu9/qT66ZNw/D7v8FACBvIMX6tYwkAqS5AYQaiTyFtxJZC9bH4ZbSQKI3kWsXrgOIFzITNykoHg5J8unmseaiqUMXAuXCFdzajkQJDRsRjkGMl9F1jLge8j+jgUxr4AQXw4CWEtI+5EqPvrMREK4SFiov/wddd3vUQJR8yO74NLVJF4UQWd1M7bl2Nwwddj5tL1nEFZY+p/WMtgTSZXTPpAcRyYymbeiCKHLWoiSOGW6bXqm00wvIz6fr0zIiCD1NA/snP94zYR665iHpZr8aHp96v3y+18UoRqq2LR+t64poGRPf3kBJgO5XAy4sJq1/W3MYAODMkct7bT8KfQBP81Xwd9ZOIWecdNJJAIBvfOMbkugJi+HJJ58s/9Y0rVs3dEtLS5b7OxgM4u9//zvOPPNMHH/88fjTn/60S/1SpQwVegQhLi4G+dWtFfhKOcW2VVsU/N7mhlBoUHzc6gRZgtqcECZENgIA5n96AgBg1iAigxEjiRabYuxELNU/1o2H+R8iSOd+/3m5/ZBOhObUEe/20RH2fwjybuj06MYTFsIhOi+Rv9M5K36/GVqcCZIQDU/bvk4jQ5BMOJ7UYhTJKF40Ak0QTUEgY3G/pCK3FyQQrutrQopPy4JbymX5Etnxl4BPEtEe8/sqfhfC364Lj4muG+VkmpCBdacQ0R34Hxa4LiXrYdlLn8vt24OJ7BhtcWh1neLzmEjaNV2FiPtLZvaIx25DcCUdJz8iSFeleqV04PZw8fKzYLGgqPBCZGLYb2giE6o1sOqm3Rc13x6uf/90JD267km2cHbXHwVCfyhlOOi+n0AP7zxu1Y0nsOmHNylOkSOWLFmSc9tp06Z1WTZhwgTcdNNNWfGfAGDbNs4880y888472LRpk4qBVOhbTC0kS1FEJxfXwZFN+Gc9SXicUv4uACDhWpgappdygU4E5J34MKxL0sv8wBIqzSaslBE9hZBGxOajDgrKP23E+1hbRdmnn8TIwrVeL0WBSRa299hF/uODnumLw+zXCAezS/blhZLY2kCDsFbK0jdjChGpoXOVKCPSlfdZM7QEz17DLN/DLmo9nULjoTxD9eiz9NUav0wgJ71omgaIqjBMTF1RZjBlQ2tl8llElj+nMIJUsSCCvJ5HEkEAYHawGzxEbfSGFiDMYsIs4+MFA5Jois9Ns/NhiaI6SSI7pe+wG8eykBxO947FdeCh6wC70GGzeHpTM62flwenvX+W6vTqg1h5C5G0Cc/+GAAQ0fre/7e2vXS7v62/6Ed9uu/vvPF9AIDrleGwQpoMvNE0ok/3qdBLUC7sPkF3pLAnmD17Nh588MEuBNI0Tfztb3/DGWecgU2bNm1n7e1DEUgFBQUFBQWF3YbmatDcnbunc2mj0Hu49dZbEYvFuv3NNE088cQTikAq9D0uGtPVlH4ehTTi95+S+GpIT+PFdsoWc1iuIe2a+NMzxwMA5p5BVsNykyxGr7WNRm2CrENRk9yc7zYPwsFFlLjxeYySKgaHm9CQjmbte8l62vm0Yat74ej2DcwZSlmF/6g5CABp8LlcXq79CLL42h+G0TyafJ4dI8hiGf68FEEOTRQWgEArfWk92YMGssIdMZCSaT75VgUa3yOLsBMhK9+wZ21YrWR9TgltxiBrUNoe9DRdxzQnvTgBDSaLkTsBamfFXCTzRI1vLtkYpL/NkAljG90Xbj4LlTe2Sze4zSLjg/4dQ8egUNaxxAdRm9DWjEQYxzd1CKurcNFrhdTea22HWV6G/ojM2MLSKIWN6H1sgfz1YX/EnR+TuPEfP6WA/bNGv94r2xYhMGEjJffVGX+e/FsAwO9WH4stKbKGFwb2UAaRwu5BWSD7JUzT3GGogGEYWbJEOW93dzqloJCJs0e/BgB47fMRWJOiZJu320kIeFxkC/IOITHyzUl6KcRceqF/qWAVnkqTgv9HjaR7aDs63gNlfLexmHHMDsB2iXBUsCbd863kPv/z22dj+bZBcl0AeO+kn/bJce5tXDWOYkJf3EpJFQHDQXkFMcNogF7Mg0c2y6zZFCdENI8Koy1N53LTVroGmsHi3qvzEeQQwcrv0Lk1Sx20H0txrSGDSOjbgwYj8hwNRMPO/RQAsOpZyqAONvki5BqH0thhTVa2EWLkHZWmjOe7/LynAAC/+vXpAICSVToCOsVxGpxBnRpaCrOVM7n5xaOnXRR8yu5ydq8nS4lQ6m0JWOx6dzjRxmjzM609kVy0iUIptICF52vvR39HBz8HhaG+J1Pi2XyzjbLqV71/Om6d8MRubfPZtRPQmj4WAGRyzGUrvoVfHfpYt+232fk4KExx0/tjqMo+CZVE069RV1eHioqKXtueIpAKvY7BZhwbOVbN0olQ/Or3X8Mp33wVAHBcPiXdNDhkAUp5hoxtLOKXY0B3ZELNgAgRmvpEBGUhMsO/vmlY1j4t00FrM7GSklIiFme9cQH+OPl3vX+A/QQvH0/C2Ge/eT6qwmS1q4vTOZ1W/IksO/niVqq/elLVB3jscxKdtdZQPOInN3ZNgrjxAyrZNSGvCa80kIW3lYmn4+qInUj7WvE5EfbqE0iSp2nxAKS4mg0bmHDT//sDDglSPOzsR66ibQQA6wDaxsItJCshChx1VJuIl9OwFGqmfYa2xmXso7WGttU2eYgUGo98so0+WUgc8QQ0LnloxDlpSCdiKX6nZdTX1JjcpKn2Nt6cdVuvbk8kY1Xk0/NyVPl6AMClpa/h5oPI+n/uW+cCANqdwC7vZ/G6sQCAh2u+jKIAPb9RlgkKG+ntWjmvHffcLu9TYS9BWSD7LdatW4eZM2di9ere89bpvbYlBQUFBQUFhf0XXg/+K+SMm2++GZ9//vnOG24HH374IY499licc845vdcpKBkfhT6AXTsK12wl3baqQDMAYHnLUJxeThpuBshylPbIStTmhrAuQRnaW5Lkviyy4tICuSVeBAA4ML8WA3h7v/n0GABALE5Wqkg4CZfd21UFZN0amteEqQWUNX7eAX5t0y8ijnmJrHtTy9cB8MvC7Q5mLpmLiEmu6xWrKT5myJBtaImTubBlE12rwkHkPp8+eDWCGrXfEGex8+g2nFFI1/21GLlDl7cNQ9yhWMb6JMU5nlNN4Q9b0sX4zf9R/F2YPMwoXJtGoIGshkKXUqtvlhqW8QMp7CG0gfrRMrEEBSu5HGMHrZccWgy+7WA1k5VbS5B18oWPbt3FM/TFwGHPXw/AD/0IGA7emk3WThGzODKyDcubqRb208fc16Pti3jKD9oGIt+i6zEw2AwAcDxduad7Cf1BxmfwL36as4zPxh/dqDhFjjjssMPw3nvvYdq0aTj//PNx+umnIxTKrczna6+9hpNOOgn/8z//g1tv7d2xTrmwFXodD7UMRIwJgsXBcFEzJSV9NqZJIkSQxkIzjjx2YYc5OK7NDmGAyPgINwOg5Jyna6kmd36I4+PSdAvnBVPQOEBOkJ4SqwNt7v5RS3fpV+7s9W2+OO0e/w8qKIQfvTcH/95CpbOsUrpmxWG6rk+vPhjjBpCL+dAiil2rsFrxaYqu84cd5PLemvDrww6ONAMAPk9REkvCtWDzJTMSQuonDS9AiTFaG8f/WSaQouscqiEXbOPhdF9ZHS40EQNZQgTVbEnBaKRQiLaJLHy+ufusxP0NJ1STS2t542AAwNot5Tj+X5S8E09TvFRQtzE6f1uPtjt/5QwAQH2aJhqjo3X4oJXCBUaEaVs/GvvibvZeoV9BxUD2CZYvX473338fjzzyCC6//HL84Ac/wDe/+U2cd955O62FPWPGDJx//vm9Th4BRSAVehH/Wj8GAOCgGmMiRCQ2JumlfnDeJkkcN6XIOhXkqii65iLhkCWx2KSXersTRIlJMW3CEvlhW7XcV10zZ9DybxErhYIAkUqR8BF3AvionV5YGzeToPnggTW9eMT7H0qtNhxavhkA8LZLhKMwSESydOAWlAeJpK3pINJYZ+XjQ06GEpOJYdEGbIpTEk8Hx9atjROBfGH5BBRy1USRHGNHTJgxjmVM02ds3ABE1jcDAFKlNOnI20SBl5rrITGAdChDW6g/yco8v3INx2kuffzHu3s6vhAQ1upL3vkuAKA1EULaJcKecuizMtgqn8dc8PtPp0LX6LocwJqw2+x8HFxA987aeHnvdF6hX0Hz/ES3nbVT6BkmTJiA+fPn46677sKzzz6LRx55BEcffTTGjBmDCy64AOeccw4KuTxrJqLRKGpqamSlmt6EIpAKvYYEV414ZO0UjCquBwAcXUQu5EIjhq023dw6B8DkGwn5m0DaoxfWmEgt6rkIcDuTy4HhFqxrIRKaFyGyKKyOAd2RGdoBi0iGqTsoDZB1qpa3MbgXj3d/RNo1pWV4eBFZ98bkbwVARF/UUA6FicSnPQNNXIqy3WaxcM2TRDPOBFJOJuIG+LZAw6FEOIMtJuonUDsnSKRk8IttcMN0v9l52fWrQzVxBLZQHxNDiagGGmKSaL71yJ4pCbiv4f5JVM7s/73zHXzYTGEBMwZRwlvESOKFOkrGunxs13UfXk0hJS2cuBXUgzKTu8qka7EN+diUKObf6Xr//OMTZbKMcJd/pfgjAN1LB13+7jdhM7lVVWn6IVQSTZ/DdV2kUikkk0l4noeSkhI88MADuPHGG/Hb3/4Wc+bMyWq/dOlSzJw5E+eeey4effTRXu2LSqJRUFBQUFBQUOjHWL58OX74wx9iwIABuPzyy3HooYdi5cqVWLJkCVatWoWbbroJl156aZf1Ro8ejaVLl2L58uX4wQ9+0Kt9UhZIhd2GcH2NiZDV4syhKxDkmtXC7dVoR6V1sZDd1CUGWQeLjBhcFhw3eGra4oRRxrXqhgcpm2J1YgBGF1HslEi+KLDI4uV6GoZGSciwwKA4uZCextAAWUKjWnb5P4VdQ4nZjnqbLMOHF1FWoAgtGBGpl1blfL4GW1LFSLNlOMyhBYbmyWV5LByfx+tZrb7weLCe7pfGsYBLxkZYXK2wfVgUBSsbeRlZs5pHUfBk5HMbHsv4BLbRvZYqj+Dfi/qufvQXCf876c847uUrAQAfNNO1HV9YgzkD3t7uOsLaKD4Tnol2DmZdC3JXr4lVSNf40HCDXCYwJEzXM8plUs947RI8PjVbn7PDDkp9U4X+Bw05urD7vCdfLEyYMAErV67EjBkz8NBDD+Hkk0+GYWR7Xr73ve/hyiuv7Hb96upq/Oc//8FXv/rVXu2XIpAKWTjqO7/E63++YucNM9CUIrfV/zVQ5vXE0s2Ykk+ua4djFHXNQ6GRLYBs8EhTpMcQ0zmbWvcFn8W6MZd+i7sBFFm0DbebISjM64rfalKFshLOZ0lKnEhsGIK/NE0BANxa8RYAIDhgbY+Od3/E9e+T0He7U4lhIXr516QoJOHIwvUAqD66oVGqc5tDOpMxNyDdleITAEyNBr8ki5wL1yY8oKOarlmQNMwRLwdG3b+eV6T1Np45GNEtdN/FK4i0WHG6n9yACbuQlsXLiHnmLeydSir7C4TQ/JhBFJ7QaofwdvswAMB53bT/4YH/AuBnXKc9Aw47uNJ8jUusDjmJPC5KrvHrx3+GA5+4BQCQaKHn8plyqrDUXSGABw//fZdll634Fkotmqguqj0QQN8klSnkAJVE0yc488wzcd5552HgwO1r1paXl8N13e3+XlxcjJdffrlX+6UIpEIWRNWQnqAxyUkM15DFIf5rS5LDRo5/S3iWtC5aGhEJ8TJZny5DgBMs/N9MuPwCEi+isJ6CzloshUwMRYKN7RmSvIhkjZGhOtSkigD45OVfHWMl0fx5w8EAgJXrLwYALJzy6x4f+/6Cd5spgzrPSsk4R3Geqy1iemfkNWGTTS/yP7fQZGJNezlG5pHVWFyftGvI6yY+hbC0HfGQHEDbzV9Fw9OwKRvg/JiITPrLVLEof5MLcw1l21gF2SW4NNdFspDFyBvoui92d1/WaH/C2m9fB4CsgADFqoryg79a9RXZ7rIDX8paT8Qzpz0DMY5vFRO6iJFCQ4qSm8YFEnKd6cM+AeCXN3x27UE96murHZJSX6MLu2aKX7biWwB8ObC/TX2gR9tX6AFUDGSvI51O45FHHsEZZ5yxQwKZC8LhcC/1iqAIpIKCgoKCgsLuQxHIXodlWUgmk72eQd3e3t7FYtlTTU5FIBWy8Obve56h+snnJJEzrIJu8CIrLsvoCfczuTIpBk64lXWXRhEDLqCLWEZyOTY7EWnhEpbKtGfI78JyJeLqXM9GmUkxkx/HKG4rEk5Jy6MlPjUHQ4MUF+lwcWY9n/px2qs/wLvvjAAArPt/PXPjf9Hxz+PuBQBcvPwsGecmro+IZW13kyjSaUg5PEJhAa83DpduanHNkq4J18vO3xPWJ2tEO5DiMoT86fy0Ev+fvfOOj6LO//9rZms2lVASQgtdqiIooiegnhQLWOFsYBe5OwXsHbugAufZT7/YTsWGcv6kqYAiWKgiIrbQCSW9bJ/P74/3Z2Z3s5tkN8kmm+T9fDzySDL72ZnPzszOvOZd1RFU5seWT9uy/+aEP5dibh0/kSWyYgg9neefkg4XDcfO+25tgE/feqn00ffR5TOjwktu7X7JVArrT2d7zNzyNwDAmek/AQD2eagvukXxo52FjtUhL92U0s2VxnFum7MPADB5/TSUetsZ2wAAhz0QxhINC09YiFu3Uuapnun/yq/Uc3treVfsqaTKDR4Zf3n+N39HkYssMavPeCqmbTE1w2V84sM///lPzJkzB6+88grM5rrLtry8PPzjH//A6tWr4XIFvAB6iR+/P7b4YhaQTL3puEw/jejka2OuDBF9ABWINpDawRCDUOCWwlEXdUW+ZCMeUpWuT00oRgkPPQg/X3au6WAtM9xnA5Op1lxP6yH84aHYx0D3G5PRLcUN2qZdCtuRmb+heAC54XOfe5ommeJDhywqQ9LQvYibIy8OfRNnrKKHjMFtSLjp9T3tihfJ8pj1t5Jb+8bOq/Bp0XEAAE3R3daqkQiRaycxr4cauErsGNp3FwBg0xHqXNPuRw2qi8YrlW5jLkePJXdomox3VN10jCs6C/x+G5fqaQh0UefyWaDKu/6mUgoZyLBUYpCDhGB7+RDx8KDFACgWUv9+64lVBd5UI65Zp4OtzBCpw9tRUpZe0DyYi9fdCADo7CgyHkRKZZJOt6RCHHRRMo5+fVhVRLGQR13JqPDS+VFSSaKxa0aRkcwzds0MAIDdRA+YZ7Xfhhv6rol29zBVYQtkXPjuu+/wxRdfYMWKFRg0aBCSk5NDXv/oo4+iWs9ll10GAPi///s/ZGVl1duqyQKSqRdnqhcjbQjVh/vlxhRjuX7zCEa3WNllnKNuhdKgwi+zcvVlNtVrxE/qQtKi+GGzhHYP6WAlq2NnayHamukmZvLT1Wmvty06yfg8/cblh2okeGwoywUApMkuOF1tBRjVgZJ/DnxDMX+mA1aUpNKNqt/iBwEAO85/IJpd02LRb+B/lpPl6OTU3wAA+f50zH6JMvI//vuTAIBB1gIcSSVr5CHZkSTYGn2cfQ+AQOatba8Ff/5AVqy2HtlNxmaCuYiOe+FJsm1hoQ9Zn8nesLJ12tFTZEZvN+4w01CsOp0epKZ+f41hwSv10v4+LnVvtS1Cb++/NKr1//v4/2LaxisABBKqRrf/LWxcrHGLl3x7Pc3VbYdJpQeLNsl0XphVDWUu8oxk2mnZ4HR66Fx2dCBu6Fv9ei/77joAFPe9dOS/YppTq4AFZFzIyMjAhRdeWO/1/Pjjj9i4cSP69q3hJI8BFpBMvdF7CndYRzeYI8enoq2VRIaeeW1TvbBLy59uydCtgnoBciDg3jZBIEvWbHHJntkW1WeIUJ0ca4Hxd743AwCQYaJEDhcC69WLGW9xdcPOShIhS7dQEs2EIVsBAP/358lIsZGQ6bqcbiwHTnHAl0fC2J9M8x00az4AYOCkHXjnpJdr30EtjD2HyeLYNoME+7/yzgAA/KXDn7j9akpWKZSF2zNUN46zUVvDBcV00TIpAr+XkPj8VKNjcGgzHZPOp+zH/h/IFZ37KZ07qtsHzUFWpMwNMknCrxm9sLUU2laRLHD9+6R7G/TzMsDJ6b8b39OvCvsAAHZWZjXIuvdXZgAAzs/aDKBh+tbr38s7f7wIveyUgFXoo+/xxpJu6JZBD5YuP11b3v+NkrM0oeCqH64CAAxO2S/fl4w/K+l8Peqih1rdYsmEwi7s+LBw4cIGWc8JJ5yAvXv3soBkGIZhGCaB4DI+Cc0rr7yCadOmYf/+/Rg4cCAsFkvI64MHD45pfSwgmfpzgJ7w0/6kp/Ov3hiGEVdsAkCJLACV98iQMYpGfTjdza0FrJC6C1tVNJT5yVWml3+xqd6wUkA6ncxFhqVSp9ifbLiuNzlzAQA/lndBhnSD9+lJyQDbiigJqHB3BgrttK1e0sKQuk+DsNCclMM03/ZbyUpZfF7DlkRoLvS4lCxFjq/IAqVbYz55/xQMmLIIAHDFW9QRoeM6Lz76DyXg6AlNObYSpMqwgc/fGk7j/iDLcuHBTkiWh9Zvo/3tSzbDWiDrfyaTtVEtLDdqQjo7kWXJXM43pXgRHBd4s/yd+8YT6LaZQhXOG0rf938NeSfmdf/v1H/Xe37V8cTgD/DQTxMABBoYDE3fjcMysef7o10BAGkOOh99mopNhyh8Ra85W+xNgstP16cMWX6IS35VA7uw48YHH3yA9957D3v27IHHE5potmnTpqjWceTIEfzxxx+46qqrjGWKonASDdM0rNTex5nqxQAAzUo39LRdPsNNrSfPZFm8hhu5WKMM7VIpEIGAOzsSuttaEyqg13qs8r5SzW4IzQJfIBbTJcj16ZXiMsNSife+O5HeW07z9beTX8YUH2y7ZNZ4Fr1m8gDyvoOUfVLI7isGAAxIz692zi0ZvabioCUUC1peSsfxtsuXGLU7H578NgBg7q5LceaDlNGeVCCP453bsPkIuam1U+mccBbTDT3pqIC1TNYELaQbuD/VCr+DjripQh4rVYFw0LHacz6da0l59NL8HWMws9+KBv3MTDh/O26DkciyuZBE17lf/xMAMLTNHnyUdywA4LTOFNNYF3HZEOjCUQ+h2eHsiEMumRkuBaFHJgslWbzYn0/Z5r+k0QMSxzpGD7uw48MzzzyDe+65B1OnTsUnn3yCq666Cn/88Qd++OGHmNoTXn311RgyZAjeeecdTqJhEgNdUIzvSCeyr2cODjopYaJHEsWs+YVqFAFPVUkYeIxM7cBpqCdXeIXJyI7Ws7DtitdYpgvTA7K0SJalxEjEOOSjbbc3l+GIbLunr6ODtRTjhv4IAFj+CyX/wE+ip/2XFqTl0dx8DnlD2V8GxwESKu629FuTSTVnpm2LcU+1LMTXGQCAtoV0N3ghbSSu6PU9AODt58cAADxZgDuTXld/pv08OGUvvvr0OABAm1/lA0EFiUahAN4UOi/Ke9Kxc+QHMq897ejhw+b1Y//pdOz/NvQbAMD/fj0FAPBjef2K7TLR8cTgD6DlUzzkueXjAABHneSF2GHuCLOJjq2eHPPPTZfh38f/FwBw7YYrAQBOvwWqNEftLqfj+dUZTzboPPVC93pJsfbWcuO1Ei95EW7ss4q2XXYMvgZl/+8ubNOg82gVsAUyLjz//PN4+eWXcckll+D111/H7bffjh49euD+++9HYWFh1OvZvXs3lixZgl69ejXIvNTahzAMwzAMw9SCRk6i2n5qcDgxEdizZw9OPvlkANRNpqyMqo9cccUVeOed6C37p59+OrZu3dpg82ILJNNg+A4dpj96dERuMmVH63GOlZoVu2TBYC3Cc4vuptZjIU0QcMj6cfo61CC/hx5Hqdd+NEEz4iKLvGQFOepNNdxXmTIzO9tcgnIbWRDNVtqmuoP+dxz1wVxOLlJfMn01yvpkwNmOtpW6j9a/7wyycOb7MqLdNS0SGcYITzq5QSry0rG+LRViTzufakQe+iYHmdJQK43AePfus5BESdfw2WVtSBnP6LcA7ja0rEw+JHdZZoX9KB0XodJr3kwHOpxL2d0f/Uqu0hT5IF61SDkTP9TsXwEA/y+7+jHL88jSv7Y8kPk5tg2dFC7NgkI/hZzoLQ8H/+9+AECn9BIc+DAXAOA4TCfP+ndiL/B/cc+NIf/f8+MFKPLQNWJfOX2XPzZT682Xh71ulBXaBmpI0PPdx/DH3+6OebutErZAxoXs7GwUFBSgW7du6NatG7799lsce+yxyMvLgxDR78xzzz0XM2fOxLZt2zBo0KCwJJoJEybENC8WkEyDY6rwYPv1dNM4+m+q89c1qRBHVelOllcPPWYx3VSJ9rKLTKGfLuyaUHGsjer8WWSB8q2uriEiEgDam6nUzwFvG+z1ZgIIrUH5RyXVBmyf9gdtW9GwvTQnZB3WYjnvSj8UD4lEcwX9drY3o91mmpsng1xgIy6mJ7jCoFjL1kjxieRaVotkgsHPKv78g1Tf8ClbAAAlhTmwldBx9iWRQCjvZIKs8oOcv+0CAJQ9RcWjXW1MsFJYJLLXkhCsbK8Ybu2Mn4ppXel2FHxA70mlqAaYXXRu/LBkIHBiQ35Spj6M7f4z/Q5apou6z/IGoqeVHjy3lVMc5Y/nPgQAyH3pKYy6jDrcvH7iqw02n0cHB4ouj/ziNgDAvzt9bSzTrzF6bdq2GeVGaZ+FJzRMOZWWCsdAxofTTz8d//vf/3D88cfjmmuuwcyZM/HBBx9gw4YNuOCCC6Jez7Rp0wAADz30UNhrnETDJAZ5+1B48UAAQLrMXjziSUWymQRHhY/Ug1dainJsJSjTyAqoW4+8woRVZSRCx6eRYEs3VRrxkl0sZOHURag/yKqpWzPL/TYMSqFOGRUy/ul3VxYOVpKQtdtIeZQdR9YtzWpD2h6ab9pOEqaOfBNcWRQnVXo9LfupgLK2Xxn2Wp12T0th1xV3AgBGXErFpt2pwClXkjD48dHjAAAOmwaTN/RuYS0TGDyV4lC3Pk9lI7xdA8HcSQV6XCT9FooJ1lJpoe5Iol2YFdiL6HWzUz6QOGUcpWpBjwXzAAB/zuCONInMWd1/Mv4+uVvoa7tuiH8byoOFZIE8pxNZIFdqwPPHvxUyZuyaGSh0J4e9l2Eai5dfftnoWz1t2jRkZmZi7dq1OPfccw1RGA1Ve1/XFxaQTIOhJ9OcqV6M1D0kzoruIivRpgl2DDuZ3F1WWc6l2EPCzKOZkW7RC47Taykmt2FJ/MVNFsPe1nzs9VERaz27OhkkSnOtR7ChokfIfCyqhiLZzUZvXXbQlY4DRzIAABlraPvqSNq2c7ATGX+Q0NRLw5R3MqO4LwmUm3uup9/HfF6X3dNiSc2T5Zn6JmPtm3QjTpXdP6xlGkyVJOySCmicu0MynPLBot2VZGU2yweBA2/2gGaWfc73U7JDRXYGUvZ6Q7a5/7QkyAgHo6Rc2m7F+D+jT/SB5Uzz5PoNUwGQV+Hb/FwAQPZd9F3d/wh937dNeLDGdbRJpXNy9/vV179bPmpBPWfaimAXdlxQVRWqGjCSTJo0CZMmTYr6/ZdeeinOO+88jB8/HqmpqQ02LxaQDMMwDMPUG3Zhxw+Xy4Uff/wRhw8fDrMk1ha72LdvX8yZMwdTpkzByJEjMXHiREyYMAFduoT3nY8FFpBMXLBtophD76DuAIA+rx7FkWW5AID8v5PpqGM6uYTTrC6jH7XeZznV5DJ6Yf/iJJfxIV8aTnZQr+oKaYFMVel9FkULc2enyTaKAHDIQ3XfujuOorIbvddzuezte4AyADq+Y4e1mNzZu88iS2TOWh+uvpn6+g53/FmPPdLyGN/vLgDAoTEUZ5q61w+bjF+0lJMl2ZNqRmVX2t/pPjo+qk/D789R38Hs62mfbttDVuYOFRqs5TTu0MkZAADHIQ2mSlld3CStjCpQOYCOffuVdKySD9CxK+9sw5GC6ONTL1w3Hb8ebU/zqMVixSQOPyw8DgCQceE+dLyVzg9hoe90p3vJ6v2X157C2o/CXeEnLKWkmHbJlFxXUNy645kbFBaHDc6yZcswZcoUHD16NOy1aGIXH3jgATzwwAPYt28flixZgk8++QS33HIL+vfvjwkTJmDixIkYMmRIzPNiAck0OMHFxf02qqnmy3DAcpQEXefH6CJf9ggJi5+OZMPcgUTD8HQSFKmq08iw/qGMRKhXmLBFpc4RJyWRQNV7Z7s0M3rZqCPODheJkUxzOf5wkbjRXdgHXBnY+T7Vrhtz5bcAgK2FuQAA1a3B56BxHTbQVbCwjxldrOQOPaHrrvrtmJaGi8IH2m+WLuwkM/w26WaRD8gml4Zk6cLWa2tai1zwJlHM697/0vlh7SBX2QawFdH4Nr8GMq8V+cStuOm1bp+Vo7wr1YTUE3LkqYDkfA8cqa5apz906T0AgMHtnKjIS4/+czONTt+Hqf+83y7w+20U15r1Fd1MlS+tgCyIrMiHFMjM1EjiEQDcsnC4S/72VfCtsEFgF3Zc+Mc//oGLL74Y999/P7Ky6t6DvnPnzpg+fTqmT5+OsrIyLF26FJ988gnOOOMMpKam4txzz8WNN96IAQMGRLU+/tYwccX+HXWh0Pp2hbJrPwDAN0SKhn9R1rS/nRmF1xYDAMpld5q2pnJ8XEAn8c+H6AtzTIfD6GAlq+V/jowCAByXQlneWZYS/CBjINtaZEa3LwUdZUpvG1nOZ2dFFnpeRFbMrUUkNM0lJBqFWcAsEzGs+2XB8gxHWNvE1o7+cGDuTAW79e4wpkov/Mn0UKC3ITS7gp6M5U3DVOpCO+qGiMrOJAJNLhKejqN+WEtp32tWWiYUBa4sWUD8CAlDU3ElbKm0Lb1qj7lUFhxXFFQcrT7podv/zaVhZooF+nb9YKhsgEo4es2dj96vUSOCHq5A67ZBh0hMdi6i7znMJkAvR1IpvQ42G2pCSE9H8YeU+d3mLHpIvOTb6/HOSS83yPxbI+zCjg+HDx/GrFmz6iUeq5KammrEUvr9fqxevRpLlizB+vXrWUAyDMMwDNOIsAUyLlx00UVYvXo1evbsWaf3O51OrFy5EqeddlpYEk1paSlWr16NsWPH4owzzohpvSwgmbgQnJENAOZ9R4EMikO0/EhNi12jyZWcsaMcv3xD1sPK4WRJGNX+dyMeUmyh9+0e7kWahSxQE9tS83i9rE+ZPwlfPn8SAKBwMLmxxp20BW0tFOP0bUEuACDF4kFeEVk+h2ZTIWrfCWTCcm3NgeKTNeAstMxvpzaMTARs1pB/1YJSqLLgsyWFLIYQAkLPHpS/Knq3QfI2CjewSiuiVRqTrAfKIBy0TPHR8fcnWWA/RBZkXypZlkwllTC5fPJ16YZMo9eEoiAjuzRsurmvzQEA9HyHjvG+02i85YQiCC9fChON5AMAPDL73iML/OdmofObVM1Bd1vD70f5ELKG2wrICm35g/rUj+98E5bueyZs3WUFZKHuKEtBFW6ia8L3fezASQ3+UVoNbIGMD88++ywuvvhifP311xELgN900001vv/ll1/GkiVLIibbpKWl4ZlnnsHevXtj6qsNsIBk4kxVIQkApowMAIDjgEycsZuQ+z8SeocGkC9xua8f+rUhkeEbQK8VHklF1y7bAQQSZR5++VIAgKUCOOvvVAz43ZV/AQCU+ez4o4y63+hFgf8sbIu2MnB+j+y9m2Khm1OFRYGrHX0lvA66OZUM9UTsnMMAwkoXMW8GlUOyFZQasWfQXY5C7y8CQMY9Jm/eD8iOMtZ8Uo56jKMwq4CeYaiQG9xSUAFIEWrdXwwA8HVIg3iQaoEWfkKZhLJNOtpuq8TWcx4Om2/P12m9uvD86ziqQbjuYHe0Ta2IfQcwcWF87kwAQIectoBbxsGmk9VEMysoH0EPm3q8rStDRdtt8vjpnYp6UeKdZec+jO8ob4ryAXbpjseRskMWv99MRcxTf6dzuODYVGBy3D5ayyfOFsjnn38eTz75JA4ePIgBAwZgwYIFOPXUU6sdv2bNGsyaNQvbt29HTk4Obr/99rC6iR9++CHuu+8+/PHHH+jZsyceffRRnH/++TFtVwiBBx98EC+//DKKioowfPhwPPfccxFdwUIInHXWWVi2bBkWL16M8847r9bP/fbbb2P58uVISkrC6tWroSiBurmKotQqIP/73//ivvvuq/b1GTNm4KGHHmIBySQmIYk1xcUAANOv0sLYvROE/EJ0vJ9+75yZiUw7WZ3M28la4Ovsw5tbhgMALjuWxtkL6UokVAXfTzseANDrcYqL1ISCHAdZopJMdCM6ZE9DkYtuFhk2ErB2EymPbaN9UEvoK2Gn0CvMOfkDowg5Q6hW3UJI8Y2GJbBDG5j2kOXHsA7ZAgkOBnYbxa0BUKTg1KTVUS11Qkui/a14af2K22cIg9LBlC3tOODCye3Ikv1ZBQnIjEvJovz5c/MiT1zflrQub3qasg673ZiHfWWcRJMwSNFo2rELHhkvbXLSOWY5UgFTJZ0fmrQ8u9OSYCqn77KnfaDQPAC4TukBSxmdR/bt1FTg1POeRDsXPUy4O9Nxtx6imqOZOyrj+MEansd/Pgu/VlBc3L/6/quJZ4O4CshFixZhxowZeP7553HKKafgpZdewvjx4/Hzzz+ja9euYePz8vJw1lln4brrrsNbb72Fb775BtOnT0f79u1x4YUXAgDWr1+PyZMn4+GHH8b555+PxYsXY9KkSVi7di2GDx8e9Xbnzp2LefPm4bXXXkOfPn3wyCOP4Mwzz8TOnTvDXMYLFiwIEYDRcO+99+Khhx7CnXfeGVIPMlp+++03HHvssdW+PnjwYPz2228xr5cFJNNoVLVG+guLAADmpCQgVbYwlELimCdLUdA/FwCQkkJXG2uZGeUnyALlPnKR2v9GgsX930Az3m7JtF5V0Yy2ZCNSKXHmvcoTcHQZubswjpJ6FDmmfXYx/Fn05SzrRNYyl7CEtEZkAE26E9US6SZuTxdIf7IF3mOpnYj9J7pZwxeUgCQti4fOyEHWV7JveinduFXZwhKKAtUpk2GkIVJz2FDRg7ZRMICOhbN9MlbfdzIA4Ji7qFXef4f/p8Z5CxMdW3MFrb+4N/3fRfWjwskPCYmCyKJmAYrHB1N5aAF5xe2BqYC+31pfSoBJPuQzrhtmPaGrlASl6JYBs1xHxTC62Zd0N6PTu3Q9QJq8ucuHC1fPDKMXt95SMZEp8iYbzRcSgXi6sOfNm4drrrkG1157LQASYsuXL8cLL7yAxx9/PGz8iy++iK5du2LBggUAgH79+mHDhg146qmnDAG5YMECnHnmmbjrLipJdtddd2HNmjVYsGAB3nnnnai2K4TAggULcM899xhtBV9//XVkZWXh7bffxg033GDMaevWrZg3bx5++OEHdOzYMerP7vF4MHny5DqJRwDw+Xw4cuRIRKENAEeOHIHPF/t5xL45hmEYhmHqj4jhB5TAEfzjdrsjrtbj8WDjxo0YM2ZMyPIxY8Zg3bp1Ed+zfv36sPFjx47Fhg0b4PV6axyjrzOa7ebl5SE/Pz9kjM1mw6hRo0LmVllZiUsuuQTPPvsssrOzEQtTp07FokWLYnpPMAMGDMDnn1ffQW3lypVRZ14HwxZIptGpaokUJaVQZHycWkyxTMJhg6VSJmSU0dUmqUCB4iP387JD5K4eftIvAIBD+zIx+bXlAIBHl58HgJ5yrzx9DQDg+zJyhbn8ZqgjpQVDRuclmejJq8JtRbKNLBhJdvrtFSZc2+frBvz0zR/9+I21XwYAMOdJC21aCvzpdHyMMiqaH5Aub5SRtbHDd0WG5dEgqBCuUkZuRK0txayppU7Yj9L6MnfQ72sfWYxFB4cBqN3yaKzXr5s0ZQ9tGTZX6bPglwvuj2odTPwY3+cOAAjEzCoKTPlVWlKqimE1NFWSCEgqdUPIslGuDnT+mWRCVdLuYqBc1ilNppt2yn4VlcNyAQCO76nurL87WYPMlX5kP0y3xe67qMd73j9vaaBP2PDMPfZ94+/S0vDEsUYnRhd21U4oDzzwAGbPnh02/OjRo/D7/WFlbLKyspCfnx9xE/n5+RHH+3w+HD16FB07dqx2jL7OaLar/440Zvfu3cb/M2fOxMknn4yJEydGnG9N+P1+zJ07F8uXL8fgwYPDkmjmzasmbEdy9dVXY9asWRgwYADOOeeckNf+97//4ZFHHql1HZFgAck0OZrLDVOpTMO1y/g3n8XocWx20w3ffsQNj4wncVbSi9uP0E3hmn9/bsQqnjFiGwBg1erBhvu53B/IGFZVunq1lTGW5V7p/jJpKHWSkHUX0I3o+449cG1DftgWhO7KRmExAHJnKCm0//xZFFum+DSoh0iw625CJf8oik8nQZ+8nywOQnaYse4vMRJmdITDBsVP73W2o9cqNWvMPYpVj0zUMclzoheJ1r+2/yWm9TD1Z8xJ5B425ReFPWDALG9LmmY8WAgnuaSV9DSj1qMq42ghBFBJ54fFTu9VvXSsNZsFqouW2faTwPI52sCbROdR4ZjeAIDMtRRy4crqCHsZrb/3f2n1YwfP4H7YURKrC3vv3r1IS0szlttqqd9ZNXZQCFFjPGGk8VWXR7PO+o5ZsmQJvvzyS2zevLnaudbEtm3bjE4xP/30U43bjcT111+Pr776ChMmTMAxxxyDvn37QlEU7NixA7/++ismTZqE66+/PuZ5sYBkmhzh90PIm4KeVAHVhL1n0kU+93/yZmANxCL67TTOtIwyqUu6O2CXabjHJB8EAGSeWYFSHwma7w9QbJ5pTTrcfyGxWuym1+xmskAqioDXTV+JUwZTqZDNRzo16GdtSVS1JKs+H1QZX6gly0QHiwlaF8qEVzR5zHblI2MVWX58PamYu5BJMjCpRukWtUx2kxECSKVjlVRA58LCvBH4xzHRz/XYGfMhm91QpjcA2Eic5FiKol8RU2fG977diIk1vskud6AIeIqMg9WLgVstgHxGUXSRKQTgkFZuvcSPJgA7vW4pILOy4pEWbVUxErC0JNqOY3cZnDmUbKOXj3IeQw+iydsOATY5H2mw3l2QieP+H2Wwtj838LChn/915fmdp+Gb4l4AoreiJzwxWiDT0tJCBGR1tGvXDiaTKczaePjw4WqLa2dnZ0ccbzab0bZt2xrH6OuMZru6Ozo/Pz8krjF4zJdffok//vgDGbICic6FF16IU089FatXr67x869atarG16PhrbfewoQJE/D222/j119/hRACffv2xYMPPohJkybVaZ0cA8kwDMMwTL3RLZDR/MSC1WrF0KFDsXLlypDlK1euxMknnxzxPSNGjAgbv2LFCgwbNsxwAVc3Rl9nNNvt3r07srOzQ8Z4PB6sWbPGGHPnnXfixx9/xJYtW4wfAJg/fz4WLlwYy66oF5MmTcLHH3+M7du34+eff8bHH39cZ/EIsAWSSRSkWxEZ5PrUUu1I71EMAHC2zwAAJHs1Iy7SrxshUuh9JkVDpRZa2LrQm4zPN1FgsJoq2+MN8kIU0psrHGThKnJSRrdzSybaDaP6Pet+o1pzeZff1WAfsaXjO3IUJtkfW21LhZlFuzSYSmRMo7Qiap07QN1LNT7Nv8ls7fSAFULIAuXCSpcnYTEZFiVLuSwd9HIbYHz0c2u/qRLudrLQuHSX3zx8BQBgcq8fYviUTKzodR1htQKy9JNhRbRaA/GvFbKEjj5GUQI1QfWi9YoSKAslrZki2QFFZu4rMtMe3iDrpHSJq4eLaZnZhCTd0yHX78sk62flgCw4dlCFgMoudF3o8LpAUS8Kndl3LwmCzo9ETtyIhel9V2F6vdeSYMSxjM+sWbNwxRVXYNiwYRgxYgRefvll7Nmzx6jreNddd2H//v144403AADTpk3Ds88+i1mzZuG6667D+vXr8eqrrxrZ1QBw8803Y+TIkZgzZw4mTpyITz75BJ9//jnWrl0b9XYVRcGMGTPw2GOPoXfv3ujduzcee+wxOBwOXHop1SnOzs6OmDjTtWtXdO/ePeLnveCCC/Daa68hLS3NyO6ujo8++iiqfVhdnKyiKLDZbLBarRFfrw4WkEzTIzQo8obizZIxjll2eH3kX8ooDCRYaPLmjxS6QVjLSEAu/PQMTDmbzPxujU7rvRUZSM2muKqyYroZKBY/LPkkZApSyI01uAuV8/mxtx2Hj5CQ2XXFnQ39KVsFioxhhZBFu8tdRhcRxSMFockEf1e6mPrS6YJl20c9y+HzQ/GSMHB3omPhTTUheY/MeJE3Hk9qbM4Tb7oVSXvpXDjrnW8AABmm5lXzr9miu6g1zRBsooCSYxRFDYhDnz/0fW4PhDyP9JqjMAUddz1e2uk23NQiSdYotchbm8tjvGa8t7zSOMe0LAqB0R8q4A8oG1cGjbeVaMZ55x9M51B93dctljgKyMmTJ6OgoAAPPfQQDh48iIEDB+Kzzz5Dt24UnnTw4EHs2bPHGN+9e3d89tlnmDlzJp577jnk5OTgmWeeMUr4AMDJJ5+Md999F/feey/uu+8+9OzZE4sWLTJqQEazXQC4/fbb4XQ6MX36dKOQ+IoVK8JqQMZCenq6Ed+Ynt4wdWozMjJqjJns3LkzrrzySjzwwANRlQxShB5VWgOlpaVIT09HSUlJVPEKDBMNRuycwwG1E8WOeHLoi7J/tB3KYHpaUjbQOddhkxeluXQzkhoR6njqRlL5XVtcMekLAMBeF90U8srbokImyBw4kkHvK7Ki30AqOL2/hLbVHOq9JTIhXYaqXugUBYouEJLoIUFrmwrNJsWkvEaZZP0+YTLB01ZaKi0yS/5gJXwpugWKfqkuP1auuzfqOY649GkU9KeNPX0puYx2uumcu7Xf8qjXw0SP0ca0L8X5wemC0LPvdatjpNuP7o3QrY8AIAWhcLmhtsuUr8v32m0Q8nXF6GIkT5SSMiMBRxeSwaLVn0Pxud4MKUaFgLmEzkW9ULmrnRXeZDp3LBW0/n3n+RLuIbMp79P6tvtPfwwmm73W8X63Cz8/fzdriigQQmDPnj1o3749HA5Hvdb1xhtv4J577sGVV16JE088EUII/PDDD3j99ddx77334siRI3jqqadw22234e677651fWyBZJoen89wb+qk7BU42p0u6tLYiCPHWeCR+iTjV7p5lLnoRtBumx9HzyeLoiZVSbfkIhR56Avnb0vLOnQpx5AMEpCzR34Spw/UughJpvEHuR8BwGSCkO5EXUiqpU4odtkGsQ2JSlc2uRAtZV6j64hfJjP4ki2wFDlDtulLr/0mFcz6t2/BmX95FABQ9jdZ6qWu/dSYqNDPi/G9bqMFimKU69ITYITbDSFFnyKFo9At1iYThLQUqtLaKICApdISyNY2LJS6gDREoxpYr7RmIsVhbF/vYKPjS7XCnSVbcx6hcy55V6A2oTdTut59Kvo8Nh8A8OvdM6PbIa0ARaOfaMYx0SGEQO/evbF9+3b07t27Xut6/fXX8fTTT4fEPU6YMAGDBg3CSy+9hC+++AJdu3bFo48+GpWA5CQahmEYhmHqT4yFxJnaUVUVvXv3RkFBQb3XtX79eqMcUDBDhgzB+vXrAQB/+ctfQkIBaoItkEyToyQlBepzSbeU6gWERxYHbi9f8yvw5pB1oqgHWRBO7/oHAEC7W4FPo/FZNnJ9F3sdRrHwFCtZEdrbyzF7IFse440mLUBqkh1G0RbdKmQ2A0ImNvj0404vqR4//LKWnyeV3udJMyFzH5XaWfr7k3We08q198i/7qlxHBMnXBG6jCgKIAu8G9FU0ortdzqhyrAH3V2tJiUBuhVTb70WVITecH/rNSL9mhH7qOjDfP7AOGnh1Puumyu9sBTLkmI+OS+LCc4cspDb8+m1tB9T4Tm1LIYP34pgcdjgzJ07F7fddhteeOEFDBw4sM7r6dy5M1599VU88cQTIctfffVVo6h7QUEB2rRpE9X6WEAyTYciL+x2G5RKGQNnoQt7ZQcF6T/T6Vnaly7uaqoHx3Y9AACwy+4xZjVw81ClCinw0sXeYfLCLJdl2qQ7yhS5VRbTMOguR+GTLkqfOexGryQnQ0j3tJG8IMWDL9kKk1sWj5b+EWu5Bm9ORiPMnokHvuwMAID5kBJ4iNBdzqoaSG6R54DQ64WmpBhCz3BrW62BguO6CFTVQKKOjl6QuqISQrqr9cQaUVFpnJNKNlUH1WtEQgkUZtbrhRYOTkPGL5RwdWQYJUVUjqhAz7ZVuuQwce2F3Zq5/PLLUVlZiWOPPRZWqxVJ+oOVpLAwunPxqaeewsUXX4ylS5fihBNOgKIo+OGHH/DLL7/ggw8+AAD88MMPmDx5clTrYwHJNDrj0q8GEIh58h06DJOMk/PkUsB9m998KO4hO0gcpnHWjm4UPp0LAPBOI3P+t/uo3M7pg3egTCPLhE8qjyIEusykWOgGZFE5+CaeaG5X2DJDVEoRYGqTblh8VDfdrHUdaSl2wZ1FDwC2UjpWrgwVRVO8cZ03Ez/Mv1OVA61zB6i6gLSSYFPMpkDcou6F0IWhyQR/CWXnm2QBZq0ykDmvSJGoWC2GCBVpdO4olUEPinoWdnBWqdy+XrTcXCCLjaclQZPlo0zyoTZzawnyT6HtZ39dDAAo65aBvVZf9DuhtRDHLOzWzIIFCxpkPRMmTMCvv/6KF198ETt37oQQAuPHj8fHH3+M3NxcAMCNN94Y9fpYQDKNjnDLmm36TcRkgpDuLT2BQpgt8GTQeHdnEg+d/p0E7U7qCJAmBWF6L7oBHKhMh1VaIz3SlW03+eAwy64m0hJZ7outzhUTPSu190MysgFAcwaSXxSztDoWlUDRj7fsa6x1lPU/rWb4HHT8zBV0PCv6mTCy8x/xnTwTNzz9yDXmzrQgxS2tgUcC3X/0El6GtVHWg/SXlBhi0l8SXr/OpI8HoKRVKZeiZ2hbzIDe0Mgts6vLygKucekFEW3o/YrHB7PspuRPowfSsu7JRoiFbqkUZoG+7Y9EuQdaD2yBjA9Tp06t83t//PFHDBw40CjL061bNzz++OPVjt++fTv69u0Ls7l2ecgCkmEYhmGY+sMWyLjh9/uxePFi7NixA4qioF+/fpg4cWKtQm/IkCHIz89H+/bto9rOiBEjsGXLFvTo0aPWsSwgmUZH72vrL6dYJsVkgqljZwCAuYIsFN50C3zJel9s+m0u96LIQ+81SVe0HgupJ8sAgCbob4fZg1IPWRFcsnWNR+NTvjEwt6f6esLvhyZr/+kWZ+HxGtYmRbq1LUdojJZsg6WUjumRY8lF6W4n8McJ0ozEEQjNji9WUTen08bMgZZEx1TNol7ESpkzECNbxTNhzuoA/1EKVTFnUlC/v7jYiJHUQyP08UAgGcbAbIaSSuW99CQexW0NWCylVVIpJ0u5SHUYiTV6rVK/TYFb5hTsGU8ucn8HN/qnHox9Z7Rw2AIZH3766SdMnDgR+fn56Nu3LwDg119/Rfv27bFkyRIMGjSo2vcKIXDfffdFXUPSI6/J0cB3U6bRUWTbOlXGPmmVlUa3Ej1w3VbgQfpvdMJbttAN4vC95XC76AbklW7q9skkPOwmH1z+0NO50mc14iGPlNNN5IvT5sXnQzEAgmr/dfw7AEAxmyF85K4MxLapgTAGVRb2lPFv3jQbVJn9qnem9Ds07vzRAnC3McNcLl3YJTKm1aQCJnmg9VhIKeqCVYZew1GV3aPCKKWMaK0zJcUY0Y5Ol5FQ4+tEotX08y5qoQgY2doiPWi90tWneGmbSYd9KO9M16DU3TSn5KHl2OPMjOJTtzLYAhkXrr32WgwYMAAbNmwwMqSLiopw5ZVX4vrrrzdK8ERi5MiR2LlzZ9TbGjFiRFiSTnWwgGQaH3nRVlPoaV6rrDTinlQn3VicOSlGt5lDf5E3lsJkQFoXkUoWqXIL3Rw0iwK/Rhd+3RpZ5raj1Emv/3ze7Ph9HiYceWyhKEYChNERRIhAQWlpfdLSZSHxYic87ejBoaILHfdd025tnDkzccVvU3BgJB3nLp8FzgW96LyiC0dzILva1K6t8bdOWGeZ1BQjecZoRagXsldNRpMCTzqJQEfbNkbpIL0kkFJB6xQOW0DI6i23k01QpJG0mIw/6JZUiXKfLfad0NJhARkXtm7dGiIeAaBNmzZ49NFHccIJJ9T43tWrV8dtXlxInGEYhmGYeqO7sKP5YaKnb9++OHToUNjyw4cPo1evXk0wI4ItkEyjo7Ujt6VaLItJl5QFynDIei4+h4rKHBqvuqRLKcMPk4msA34/LfPJ3y4lEAdVIeMknZsysfM+bjPWFCz9bS4A4ORJTyN9FZVi8csSP7pFEgAVFUegRZxmVbH3DFq26++zGmm2TGNQnqNAL8Oq13vVi3UDCJTW0a3TXl+gRqQeJ+lyY1nhf6rdxpiTqK+9J13vbQ0o0iqpX1uE3QLFI2uN6vVIU2ibaqnTsE6W5cq46RQVdtkExCXzEIpdSRwOEwm2QMaFxx57DDfddBNmz56Nk046CQDw7bff4qGHHsKcOXNQWhqoUtCYvcVZQDKNztHj6ARvs5NOP0ul03A5eVPpwu9sZ4LfFnqV8VVY4DfrLir67baRy9svVHRMoS/R0TLpDg2v/ME0MiXdVaT+lgUAMEsxoHVsDyWocDgAeDLoXDBXakjvzwWaWyK+ZBhuYUNAenzwp5FQExmBhwgAUD2aERv7+VfRdQ9a8e39AIAzT34EAODMtsNWRNcIdwZtM7ncacRAarLrkdBd5Ck2lPYhlWhy07Zd3QORM6IjPQQVl0aXkNDaUIQwvtu1jWOi55xzzgEATJo0KVDoXu7Dc8891/hfURT4/f7IK4kDLCCZRiP3P9SGLjWNTjtFtrFDWgpQIQv6llMcVOpeMyo6kXVAk4YJoZog0ulmYNlPQrO0ktaVllNqJNEk22kdm55k62NT40sGjpyYAQCwldGDQ0W2iuSDZOUpzaUb9/bH+Vi1dLzpGlw5dHPbY6cs6LS8QPKKXmvRL7/vG16tuwVat2ya3Bo8GbTC0lzZ1nRve6iy21FZdxKtjsMyuUcIaBYal3yAzKWVWUnwSKOO30nXmN3X3F7nubVo2AIZF1atWtXUU4gIC0im8ZDWQ1lRB0X96Cm+3Qd/QrFLl5NMoinpYYH9KI1zUUUYCKsANNkxIpcEpwy3x4/nPhTnyTN1Yef9LAwZ4s+bbkH3fz8NAPDp14C+Cn67q+HPkRXfkyVy4G3z4ThC150kWfe7vIsNSbpg1AuEy+oP3jQrLOUyeessmmTq7sB6e/XIb/C5RstTO8Yaf9/ab3mTzaMmuIxPfBg1alRTTyEiLCAZhmEYhqk/bIFsVbCAZBqFAZ/MBpyhNdwyf64AACgpyRBlVM9RyFZhlgoBv01aG+VZKiwazEkUTK/K4uJ6Ug3DMIlP3j9vadTtudoBfjtdR3Y8TJbO0898AoV9yeORckC6sjsHkvDKcum33yFrT/pUWOjy1KSJM5V+G9zyYnjZd9cBAP47vPqEoqaALZCtCxaQTKOQ4XDCKQOJNL2e9BHKcvHlH4aqu7Blr9y0P10o7k0upIzf6GpTXmmBsxO5mlI6U2avx8unMMMwkfn9jnD3+N4zbPAn0TWlrAddTxwH6DVvKuBpQ6LSJKs/aGbA1bYRJlsL9w9cgmkbrwAAZFoqm3g21cAWyFYF332ZRiHF6kaHfhSEVLiBukWIIwXG60J2olF205XcbOuGNjtlFmR7WSzcbILqIfVZYpLdbMpNYBiGiRZfsgZTpcy6ltnVHtkQKWUPkHwidU5yfk3B10WD/bAUJcZ1JsdGD877XFRQ+vatF6PcT9fHJ3o932Tz0mELZOuCC4kzDMMwDFN/RAw/TNQ4nU5UVgaszrt378aCBQuwYsWKJpwVWyCZRqJ7SgHyQH4g35/y6pHbiX5v+wV6PrWQNazUgwXwDOwMADC5KBapw4r9ODymKwDAuoVO3c3PcZYvwzDRU1scZu7rcwAAux5LrGvLo9vPQZGP4sh/KSEvTv+MfBR5kptyWmGwdbHhmThxIi644AJMmzYNxcXFGD58OCwWC44ePYp58+bhxhtvbJJ5sYBkGgVNqDhYSm5nV0/yG9mLyG/k+DngHtJd2aKsHNYCKtXjS6Giv0t3zW+0+TIM0zrZNfWOpp5CRO4Z8CnO/fqfAICOjjIAwBF3Kj48mVzXwd1ImgwhjOLvtY5jombTpk2YP5/ufx988AGysrKwefNmfPjhh7j//vtZQDItG1XRUFpEdR8d0hLvOEB/CE1AUZWQ8UqnbCiVJCZNZo60YBgm/vRc9ChSU6jbTEUlxRb+dvG9TTkljF0zAwBgVjRk2GhuR11kdVw+akETzSoyHAMZHyorK5GaSsX3V6xYgQsuuACqquKkk07C7t27a3l3/GAByTQKSSYvTFa9ai/9UqVA1KqIR1ooAA91gljx82ONMUWGYVo5XdoVYX9hBgBA29O07QpPWn4XACBZtnY8VJmKP45SYo/F3Hjt6mJB8QNKFM/7SmJOP2Hp1asXPv74Y5x//vlYvnw5Zs6k8IrDhw83au/rqrBph2EYhmGY+sNJNHHh/vvvx6233orc3FwMHz4cI0aMAEDWyCFDhjTZvNgCyTQK8497F4u3UnB62m4yQSqVbuN1oVW5olRUAubEKJ3BMEzrYPUZT+HEZXcDAJwHmy455fjP7kWFKylkmUX1Y8sFDzfRjKKDXdjx4aKLLsJf/vIXHDx4EMcee6yx/IwzzsD555/fZPNiAck0Hi4ShO50WaB3H9V8NLVrC8hC4r49+2msqnLSDMMwjc7342TIzLjG3/aAT2YDACr2ZyC9K9V8zD9MyYa7rriz8ScUK5xEEzeys7ORnZ0NgBKmvvzyS/Tt2xfHHHNMk82JBSTTKJy5eiaEpSMAwOwkAak4KMZIKyo2yveYO1CMz9I9Cxp/kgzDME3AyC9uAwAIQVZPS4kJpcV0fWwWwlHCFsj4MGnSJIwcORL/+Mc/4HQ6MWzYMOzatQtCCLz77ru48MILm2ReHAPJMAzDMEz94RjIuPDVV1/h1FNPBQAsXrwYQggUFxfjmWeewSOPPNJk82ILJBNXzlg1CwDg9lugVpIL23E0NAVPaAKqtEYiuWkzHxmGYRqbCg/VurVbfQCAyrY+wNf87DtsgYwPJSUlyMzMBAAsW7YMF154IRwOB84++2zcdtttTTYvFpBMXCmWgeDele1gpyYKSNpLsT1aeYUxTrgpoUbTYyAZhmFaCR4v3Yq7ZlAf7vReTqw6/emmnFLd4BjIuNClSxesX78emZmZWLZsGd59910AQFFREex2e5PNiwUkE1e8PrI6OjsAFtkowZdGCTOq0IxxmpcuKIqJM68ZhmldbJvwYFNPoUFgC2R8mDFjBi677DKkpKSgW7duGD16NABybQ8aNKjJ5sUCkokrThe5Ztpv0lDZgVwyQu8so1ecFRrMfXsCADxZqY0+R4ZhGKYBiDa+kQVkTEyfPh0nnngi9u7dizPPPBOqSvfOHj16cAwkwzAMwzDNG7ZAxo9hw4Zh2LBhEEJACAFFUXD22Wc36ZyaX5Qu06wwmTSYTBpS9lZC9QGqDzCVe2Eq90JRFeqBrajQ8vZCy9uLL1bdhS9W3dXU02aYuHDilfPQb/GD6Le4ZbgsGSYETUT/w8TEG2+8gUGDBiEpKQlJSUkYPHgw3nzzzSadE1sgmbhiMlGco6t9MiqzaJnqoh7YSgYVyNXKyrG84o0mmR/DNCbfvzarqafAMPGDXdhxYd68ebjvvvvwj3/8A6eccgqEEPjmm28wbdo0HD161OiN3diwgGTiikklAXngFDNMvcsAALvQFgCQ+xFdRVRFiXp9A+6i7jQV3WQpIDv93nXlHQ0yX4ZhGKZuKIjShR33mbQs/v3vf+OFF17AlClTjGUTJ07EgAEDMHv2bBaQDMMwDMM0Y7iMT1w4ePAgTj755LDlJ598Mg4ePNgEMyI4BpKJK06XFU6XFVoXJ9zlVrjLrXB28cHZxYejJ7bF0RPbovyk7tGvr4OAs4OAmu6Bmu7BrivvYOsjwzBMAqAn0UTzUxeef/55dO/eHXa7HUOHDsXXX39d4/g1a9Zg6NChsNvt6NGjB1588cWwMR9++CH69+8Pm82G/v37Y/HixTFvVwiB2bNnIycnB0lJSRg9ejS2b99uvF5YWIh//vOf6Nu3LxwOB7p27YqbbroJJSUlUX3uXr164b333gtbvmjRIvTu3TuqdcQDtkAyceW3i+81/u7xDBXGFfKxpbQ7OTJS9/rD3lcdf87kGDKGYZiEJI4xkIsWLcKMGTPw/PPP45RTTsFLL72E8ePH4+eff0bXrl3Dxufl5eGss87Cddddh7feegvffPMNpk+fjvbt2xu9o9evX4/Jkyfj4Ycfxvnnn4/Fixdj0qRJWLt2LYYPHx71dufOnYt58+bhtddeQ58+ffDII4/gzDPPxM6dO5GamooDBw7gwIEDeOqpp9C/f3/s3r0b06ZNw4EDB/DBBx/U+tkffPBBTJ48GV999RVOOeUUKIqCtWvX4osvvogoLBsLRYjabcmlpaVIT09HSUkJ0tLSGmNeTAsk9/mnAADmMioWnrqblqcc9KNgAC3zUeMa/HpP08R0MAzDNEea8j6tb/vU0Q/AbK69M4rP58LXqx/E3r17Q+Zqs9lgs9kivmf48OE4/vjj8cILLxjL+vXrh/POOw+PP/542Pg77rgDS5YswY4dO4xl06ZNw9atW7F+/XoAwOTJk1FaWoqlS5caY8aNG4c2bdrgnXfeiWq7Qgjk5ORgxowZuOMO8oa53W5kZWVhzpw5uOGGGyJ+nvfffx+XX345KioqYDbXbsvbtGkT5s2bhx07dkAIgf79++OWW27BkCFDan1vvGAXNtNo7Jp+K3ZNvxW/3zETv98xU0ZcA85MFa72Aq72Ap72Pnja+5p6qgzDMEysaDH8gFr0paenGz+RhCAAeDwebNy4EWPGjAlZPmbMGKxbty7ie9avXx82fuzYsdiwYQO8Xm+NY/R1RrPdvLw85Ofnh4yx2WwYNWpUtXMDYAj92sSj1+vFVVddhYyMDLz11lvYuHEjNm3ahLfeeqtJxSPAApJhGIZhmAZAESLqHwDYu3cvSkpKjJ+77opcA/jo0aPw+/3IysoKWZ6VlYX8/PyI78nPz4843ufz4ejRozWO0dcZzXb137HMraCgAA8//HC11slgLBZLxLjMRIBjIJkmY/Nz7KZmGIZpMcQYA5mWlhaTu12pUvJN78gSy/iqy6NZZ0ONAcjdf/bZZ6N///544IEHqp17MOeffz4+/vhjzJqVWDkALCAZhmEYhqk/cSrj065dO5hMpjCL3uHDh8MsfzrZ2dkRx5vNZrRt27bGMfo6o9ludnY2ALJEduzYsca5lZWVYdy4cUhJScHixYthsVii+vy9evXCww8/jHXr1mHo0KFITk4Oef2mm26Kaj0NDbuwGYZhGIapN4omov6JBavViqFDh2LlypUhy1euXBmxPiIAjBgxImz8ihUrMGzYMEO4VTdGX2c02+3evTuys7NDxng8HqxZsyZkbqWlpRgzZgysViuWLFkCu732ZCOdV155BRkZGdi4cSNefvllzJ8/3/hZsGBB1OtpaNgCyTAMwzBMvVE0+olmXKzMmjULV1xxBYYNG4YRI0bg5Zdfxp49ezBt2jQAwF133YX9+/fjjTeoLe60adPw7LPPYtasWbjuuuuwfv16vPrqq0Z2NQDcfPPNGDlyJObMmYOJEyfik08+weeff461a9dGvV1FUTBjxgw89thj6N27N3r37o3HHnsMDocDl156KQCyPI4ZMwaVlZV46623UFpaitLSUgBA+/btYTKZavzseXl5se+wRoAFJMMwDMMw9SeOnWgmT56MgoICPPTQQzh48CAGDhyIzz77DN26dQNA3Vr27NljjO/evTs+++wzzJw5E8899xxycnLwzDPPGDUgAerk8u677+Lee+/Ffffdh549e2LRokVGDchotgsAt99+O5xOJ6ZPn46ioiIMHz4cK1asQGpqKgBg48aN+O677wCQOzqYvLw85Obmxrw/EgGuA8kwDMMwzZxEqAM5+oR7oq4DufqHR1lTREl1yTOKosBut6NXr16YOHEiMjMzG3VebIFkGIZhGKbeBJfoqW0cEz2bN2/Gpk2b4Pf70bdvXwgh8Ntvv8FkMuGYY47B888/j1tuuQVr165F//79G21enETDMAzDMEz90V3Y0fwwUTNx4kT89a9/xYEDB4xC4vv378eZZ56JSy65BPv378fIkSMxc2bjlsZjAckwDMMwTP0RiK4LDevHmHjyySfx8MMPh7j709LSMHv2bMydOxcOhwP3338/Nm7c2KjzYhc206w5U73Y+Hul9n4TzoRhGKZ1wy7s+FBSUoLDhw+HuaePHDliZHNnZGTA4/E06rxYQDIJS7A4ZBiGYRIcgSizsOM+kxbFxIkTcfXVV+Ppp5/GCSecAEVR8P333+PWW2/FeeedBwD4/vvv0adPn0adFwtIpkXA1keGYZgmJo5lfFozL730EmbOnIm//e1v8Pl8AACz2YypU6di/vz5AIBjjjkGr7zySqPOiwUkwzAMwzD1RwNQfWvq0HFM1KSkpOA///kP5s+fjz///BNCCPTs2RMpKSnGmOOOO67R58UCkkkoonVbs8WRiSeRzsOWds7VNUQk2v1Qdf0tbf8x4XAMZHxJSUnB4MGDm3oaBiwgmYSA4x2ZpiLacy9REraa+rtS1+039byjhYVuPWAXdquCBSTDMC2WeImWhlhvXS15THxpDdbnuMECslXBApJhmGaDfnOv7YbOootpSKI5n1hkggVkK4MFJMMwDMMw9YeTaFoVLCCZRoOtQi2LeFllollvSziXWsJnYALUdDxbi3WSk2haFywgmbjAN8fGI5H3dSLPjWEai1ZTXYJd2K0KFpAtFH4abrmwKGOYlkmiZPrXGU0AShTiUGMB2RJgAdmCqEs5kmiJ5mLGwqZ+8P5jGKZZwxbIVgULSIZhGIZhGoAoBSQ3w24RsIBsIFp614Wayqew5ax+8P5jGKZFwBbIVgULyFpIlK4LiSJIWezUD95/DMPURqJc72PG7weEv/ZxWhRjmISnRQvIlnSzbkmfpSFobhZfPn4Mw1Ql0a9bMcMWyFZFixaQDMMwDMM0EppAVPGNnIXdImgxApItPK2b2o5/Yz7p87nIMExttDjrI8AWyFZGwgtIvhkzDUG86qvx+ckwTEPTbOtBCkQpIOM+E6YRiElATkyfArNiaZANczYv01TEep5VPVf5PGUYpr40dN1en/DWZzoNA1sgWxVNZoHkmzDTXOBzlWEYJgo0DYAW5TimuZPwLmyGYRiGYZoBbIFsVbCAZBiGYRim/rCAbFWwgGQYhmEYpv5wGZ9WBQtIhmEYhmHqjRAahKg9vjGaMUziwwKSYRiGYZj6I0R01kV2YbcIWEAyDMMwDFN/RJQubBaQLQIWkAzDMAzD1B9NA5Qo3NPswm4RsIBkGIZhGKb+sAWyVcECkmEYhmGYeiM0DSIKCyQn0bQMWEAyDMMwDFN/2ALZqmAByTAMwzBM/dEEoLCAbC2wgGQYhmEYpv4Igah6YbOAbBGoTT0BhmEYhmGaP0ITUf/Uheeffx7du3eH3W7H0KFD8fXXX9c4fs2aNRg6dCjsdjt69OiBF198MWzMhx9+iP79+8Nms6F///5YvHhxzNsVQmD27NnIyclBUlISRo8eje3bt4eMcbvd+Oc//4l27dohOTkZEyZMwL59++qwFxIHFpAMwzAMw9QfoUX/EyOLFi3CjBkzcM8992Dz5s049dRTMX78eOzZsyfi+Ly8PJx11lk49dRTsXnzZtx999246aab8OGHHxpj1q9fj8mTJ+OKK67A1q1bccUVV2DSpEn47rvvYtru3LlzMW/ePDz77LP44YcfkJ2djTPPPBNlZWXGmBkzZmDx4sV49913sXbtWpSXl+Occ86B3++PeV8kCooQtduSS0tLkZ6ejtGYCLNiaYx5MQzDMAwTJT7hxWp8gpKSEqSlpTXqtg2NoJwflUbwCS9Wi8UxzXX48OE4/vjj8cILLxjL+vXrh/POOw+PP/542Pg77rgDS5YswY4dO4xl06ZNw9atW7F+/XoAwOTJk1FaWoqlS5caY8aNG4c2bdrgnXfeiWq7Qgjk5ORgxowZuOOOOwCQtTErKwtz5szBDTfcgJKSErRv3x5vvvkmJk+eDAA4cOAAunTpgs8++wxjx46Nah8kGjHFQE6cORZJtqR4zYVhGIZhmDrgdDuxev4nTToHn3BHZV30wQuAhGcwNpsNNpstbLzH48HGjRtx5513hiwfM2YM1q1bF3Eb69evx5gxY0KWjR07Fq+++iq8Xi8sFgvWr1+PmTNnho1ZsGBB1NvNy8tDfn5+yLZsNhtGjRqFdevW4YYbbsDGjRvh9XpDxuTk5GDgwIFYt25dyxaQVqsV2dnZmDl/erznwzAMwzBMHcjOzobVam307eoaYW3+Z1G/JyUlBV26dAlZ9sADD2D27NlhY48ePQq/34+srKyQ5VlZWcjPz4+4/vz8/IjjfT4fjh49io4dO1Y7Rl9nNNvVf0cas3v3bmOM1WpFmzZtop5/cyAqAWm325GXlwePxxPv+TAMwzAMUwesVivsdnujb7cuGkEIAUVRQpZFsj4GU3V8pHXUNr7q8mjW2VBjqhLNmEQmahe23W5vkhOTYRiGYZjEJp4aoV27djCZTGHWusOHD4dZ/nSys7MjjjebzWjbtm2NY/R1RrPd7OxsAGRl7NixY7VjPB4PioqKQqyQhw8fxsknnxzdTkhAOAubYRiGYZiExWq1YujQoVi5cmXI8pUrV1YrwEaMGBE2fsWKFRg2bBgsFkuNY/R1RrPd7t27Izs7O2SMx+PBmjVrjDFDhw6FxWIJGXPw4EH89NNPzVpAQjAMwzAMwyQw7777rrBYLOLVV18VP//8s5gxY4ZITk4Wu3btEkIIceedd4orrrjCGP/nn38Kh8MhZs6cKX7++Wfx6quvCovFIj744ANjzDfffCNMJpN44oknxI4dO8QTTzwhzGaz+Pbbb6PerhBCPPHEEyI9PV189NFHYtu2beKSSy4RHTt2FKWlpcaYadOmic6dO4vPP/9cbNq0SZx++uni2GOPFT6fL567La6wgGQYhmEYJuF57rnnRLdu3YTVahXHH3+8WLNmjfHa1KlTxahRo0LGr169WgwZMkRYrVaRm5srXnjhhbB1vv/++6Jv377CYrGIY445Rnz44YcxbVcIITRNEw888IDIzs4WNptNjBw5Umzbti1kjNPpFP/4xz9EZmamSEpKEuecc47Ys2dPPfZG0xNVHUiGYRiGYRiG0eEYSIZhGIZhGCYmWEAyDMMwDMMwMcECkmEYhmEYhokJFpAMwzAMwzBMTLCAZBiGYRiGYWKCBSTDMAzDMAwTEywgGYZhGIZhmJhgAckwDMMwDMPEBAtIhmEYhmEYJiZYQDIMwzAMwzAxwQKSYRiGYRiGiQkWkAzDMAzDMExMsIBkGIZhGIZhYoIFJMMwDMMwDBMTLCAZhmEYhmGYmGAByTAMwzAMw8QEC0iGYRiGYRgmJlhAMgzDMAzDMDHBApJhGIZhGIaJCRaQDMMwDMMwTEywgGQYhmEYhmFiggUkwzAMwzAMExMsIBkmiEWLFmHAgAFISkqCoijYsmULAODw4cO48sor0a5dOzgcDowYMQJffPFF2Ps9Hg/uv/9+dO/eHVarFd26dcNdd90Fp9MZ1fYPHDiA2bNnG9sN5qOPPsIll1yCXr16ISkpCbm5ubjsssvw22+/hY295557MGTIEGRmZsJut6NHjx64/vrrsXv37pBxGzduxN///ncMGjQIqampyMrKwl//+ld8+eWXUc03kVi9ejUURcEHH3zQ1FNhGIZp8bCAZBjJkSNHcMUVV6Bnz55YtmwZ1q9fjz59+sDtduOMM87AF198gX/961/45JNPkJWVhXHjxmHNmjUh67jkkkvw5JNP4vrrr8dnn32Ga6+9FvPmzcPkyZOjmsOBAwfw4IMPRhSQc+bMQWVlJe655x4sW7YMjzzyCDZv3ozjjz8e27dvDxlbXFyMSy65BK+//jqWLVuGW2+9FZ9++imGDx+OgoICY9w777yD77//HldffTU++eQTvPLKK7DZbDjjjDPwxhtvxL4TGYZhmNaBYBhGCCHE2rVrBQCxaNGikOXPPfecACDWrVtnLPN6vaJ///7ixBNPNJatX79eABBPP/10yPsfe+wxAUCsWLGi1jn88MMPAoBYuHBh2GuHDh0KW7Z//35hsVjENddcU+u6P/vsMwFAvPrqqzWu0+fzicGDB4uePXvWus5EYtWqVQKAeP/995t6KgzDMC0etkAyDIArr7wSf/nLXwAAkydPhqIoGD16NABg8eLF6Nu3L0aMGGGMN5vNuPzyy/H9999j//79AIBvvvkGAHDWWWeFrPucc84BAHz44Yc1zmH16tU44YQTAABXXXUVFEWBoiiYPXs2AKBDhw5h78nJyUHnzp2xd+/eWj9j+/btjbnrRFqnyWTC0KFDo1rn7NmzoSgKfvzxR1x88cVIT09HZmYmZs2aBZ/Ph507d2LcuHFITU1Fbm4u5s6dG/J+l8uFW265Bccdd5zx3hEjRuCTTz4J29b777+P4cOHIz09HQ6HAz169MDVV19d4/xKS0sxduxYZGVl4fvvv6/18zAMwzDRYa59CMO0fO677z6ceOKJ+Pvf/47HHnsMp512GtLS0gAAP/30E0499dSw9wwePBgAsH37dnTq1AkejwcAYLPZQsbp///44481zuH444/HwoULcdVVV+Hee+/F2WefDQDo3Llzte/5888/sXv3bpx33nkRX/f5fPB6vfjll18wY8YM9OnTBxdccEGN8/D5fPj6668xYMCAGscFM2nSJFx++eW44YYbsHLlSsydOxderxeff/45pk+fjltvvRVvv/027rjjDvTq1cuYg9vtRmFhIW699VZjH37++ee44IILsHDhQkyZMgUAsH79ekyePBmTJ0/G7NmzYbfbsXv37hpjNfft24ezzjoLHo8H69evR48ePaL+PAzDMEzNsIBkGAA9e/ZE//79AQC9e/fGSSedZLxWUFCAzMzMsPfoy/SYQv3933zzDbp3726MW7t2bci46khLS8PAgQON+QTPIRI+nw/XXHMNUlJSMHPmzLDX8/Pz0bFjR+P/4cOHY9WqVUhJSalxvbNnz8bvv/+Ojz/+uMZxwVx//fWYNWsWAOCvf/0rVqxYgWeffRYfffQRzj//fADA6NGj8emnn+K///2vISDT09OxcOFCYz1+vx9nnHEGioqKsGDBAkNArlu3DkIIvPjii0hPTzfGX3nllRHns2XLFpx99tno2bMnPv7444jHj2EYhqk77MJmmChQFKXW18aPH49evXrhjjvuwMqVK1FcXIxly5bh7rvvhslkgqoGvm4+ny/kRwgR03yEELjmmmvw9ddf44033kCXLl3CxrRr1w4//PAD1q5di//85z8oLCzEaaedhoMHD1a73ldeeQWPPvoobrnlFkycODHq+ehuep1+/fpBURSMHz/eWGY2m9GrV6+wTPD3338fp5xyClJSUmA2m2GxWPDqq69ix44dxhjdtT9p0iS89957RthAJJYvX45TTz0VI0eOxMqVK1k8MgzDxAEWkAxTC23bto1oPSwsLAQQsERarVYsXboUXbt2xZgxY9CmTRtcdNFFuPvuu9GmTRt06tTJeK/FYgn5ef3116OejxAC1157Ld566y289tpr1Qo9s9mMYcOG4ZRTTsG1116LL7/8En/++SeeeOKJiOMXLlyIG264Addffz2efPLJqOcDIEykWa1WOBwO2O32sOUul8v4/6OPPsKkSZPQqVMnvPXWW1i/fj1++OEHXH311SHjRo4ciY8//hg+nw9TpkxB586dMXDgQLzzzjthc/n444/hdDpx4403hoUTMAzDMA0Du7AZphYGDRqEbdu2hS3Xl+luZwDo1asX1q9fj/3796OwsBA9e/ZESUkJbr75ZowcOdIY98MPP4SsK9jlXRO6eFy4cCFeffVVXH755VF/js6dOyMnJwe//vpr2GsLFy7Etddei6lTp+LFF1+s0eLakLz11lvo3r07Fi1aFLJNt9sdNnbixImYOHEi3G43vv32Wzz++OO49NJLkZubG5LgNH/+fCxatAjjx4/H4sWLMWbMmEb5LAzDMK0JtkAyTC2cf/75+OWXX/Ddd98Zy3w+H9566y0MHz4cOTk5Ye/p1KkTBg0aBIfDgSeffBLJycm45pprjNeHDRsW8tO2bVsAgYSbSIXHhRC47rrrsHDhQrz00ku46qqrYvocv//+O/bt24devXqFLH/ttddw7bXX4vLLL8crr7zSaOIRIPe/1WoN2WZ+fn7ELGwdm82GUaNGYc6cOQCAzZs3h7xut9vx0Ucf4ZxzzsGECRNqXBfDMAxTN9gCyTC1cPXVV+O5557DxRdfjCeeeAIdOnTA888/j507d+Lzzz8PGTt37lxkZ2eja9euOHToEN577z18/PHHePPNN0Nc2NXRs2dPJCUl4b///S/69euHlJQU5OTkICcnBzfddBNeffVVXH311Rg0aBC+/fZb4302mw1DhgwBQNneM2fOxEUXXYQePXpAVVVs27YN8+fPR9u2bXHrrbca73v//fdxzTXX4LjjjsMNN9wQVupmyJAhcXUDn3POOfjoo48wffp0XHTRRdi7dy8efvhhdOzYMaTDzv333499+/bhjDPOQOfOnVFcXIx//etfsFgsGDVqVNh6LRYL3nnnHVx77bW46KKL8MYbb+CSSy6J2+dgGIZpdTRlEUqGSSRqKkSdn58vpkyZIjIzM4XdbhcnnXSSWLlyZdi4Bx98UPTs2VPYbDaRkZEhxo0bJ7766quY5vHOO++IY445RlgsFgFAPPDAA0IIIbp16yYARPzp1q1byFwvv/xy0bNnT+FwOITVahU9evQQ06ZNE3v27AnZ1tSpU6tdJwCRl5dX41wfeOABAUAcOXIkbL3Jyclh40eNGiUGDBgQsuyJJ54Qubm5wmaziX79+on//Oc/xnp1Pv30UzF+/HjRqVMnYbVaRYcOHcRZZ50lvv76a2NMpOOnaZq46aabhKqq4j//+U+Nn4VhGIaJHkWIGNM/GYZhGIZhmFYNx0AyDMMwDMMwMcECkmEYhmEYhokJFpAMwzAMwzBMTLCAZBiGYRiGYWKCBSTDMAzDMAnNV199hXPPPRc5OTlQFAUff/yx8ZrX68Udd9yBQYMGITk5GTk5OZgyZQoOHDjQdBNuBbCAZBiGYRgmoamoqMCxxx6LZ599Nuy1yspKbNq0Cffddx82bdqEjz76CL/++ismTJjQBDNtPURdxsflcsHj8cR7PgzDMAzD1AGr1RrWf76xiFUj1GeuiqJg8eLFOO+886od88MPP+DEE0/E7t270bVr1zpth6mZqDrRuFwudO/eHfn5+fGeD8MwDMMwdSA7Oxt5eXmNLiJdLhe6d0tB/mF/1O/Jzs7G1q1bQ+Zqs9karPNVSUkJFEVBRkZGg6yPCScqAenxeJCfn4+9e/ciLS0t3nNiGIZhGCYGSktL0aVLF3g8nkYXkB6PB/mH/fh9QxekpdYeGVdapqHXsL3IysoKWf7AAw9g9uzZ9Z6Py+XCnXfeiUsvvZQ1SxyJqRd2WloaHwyGYRiGYcJISVWQkqrUOk4DjalqlGoI66PX68Xf/vY3aJqG559/vt7rY6onJgHJMAzDMAwTCQ0atCjHAQ1vlPJ6vZg0aRLy8vLw5ZdfssErzrCAZBiGYRim3viFgD+KvNxoxsSKLh5/++03rFq1Cm3btm3wbTChsIBkGIZhGKbeaBDQULs4jGZMVcrLy/H7778b/+fl5WHLli3IzMxETk4OLrroImzatAmffvop/H6/kfSbmZkJq9Ua8/aY2mEByTAMwzBMvdEg4I+TgNywYQNOO+004/9Zs2YBAKZOnYrZs2djyZIlAIDjjjsu5H2rVq3C6NGjY94eUzssIBmGYRiGqTfxtECOHj0aNZWtjrKkNdOAsIBk6s2Z6sUNvs6V2vsNvk4gPnOtD/H6nAzDMI1NU8ZAMo0PC0gmjEQQWdXNoTrBlQhzrgvB82YxyTBMc0aTP9GMY5o/LCBbMc1RdDXHOUdLXT8bC8/4UtNxibTvI41PtGPUHObIND/8UcZARjOGSXxYQDIMwzAMU2/8gn6iGcc0f1hAtiIS1Xq3Uns/YeeWiDQnS1Fdjmtjfb5YLYuxriORiGae+pjmdH4xiQW7sFsXLCCbKbHGCCYi+lyby024KUi049mSjlW0+zbRjkG8aQnXFqZp0KDAj+hbGTLNGxaQCUh9LCOJeoOPZGVM1Lk2NYl8o24oa3Eif8aWSLSxmjVRdTwfQ6YqmqCfaMYxzR8WkAzDMAzD1Bt/lBbIaMYwiQ8LyEakNstiXS2Pwa/FalWItxuZrRSxc6Z6cULvt6pzq8u5w/F2TU9N+z7amEk+fkwwLCBbFywg40gsN9bq6gHqy2u64dZH/DWmcOSYx9ZHaxEYkb6/tZ3nibpv6nrdqo1E/bxMw6EJBZqIIgYyijFM4sMCMgGp6aKcyOIr1qSERP4sTPS0JmEQSzZzdSRClnlroSGqAHCx/+hhC2TrggVknKitUG+82v815U0jVrdkfS7GLf3myC7exKGuYSFNQUv/XsRKfa6JvC9jxw8VfqhRjGt6jj/++JjGK4qCJUuWoFOnTnGaUfODBSTDMAzDMPVGROnCFgngwt6yZQtuueUWpKSk1DpWCIEnnngCbre7EWbWfFCEqL2reWlpKdLT01FSUoK0tLTGmFezpSGfWuvSJq0hS6zUZ13spqsfbHlseqI5t5riOLWkcz7WRJ6G2N8ttY1jU96n9W2v2NYNyam1WyAryjSMGbS7STWFqqrIz89Hhw4dohqfmpqKrVu3okePHnGeWfOBLZAJTH3rtDXWdmtaR7wvzC0pnrIl3MRaCvGKY6xPJYaWSENc4xpaVPL3sO54hQleYYpiXNM7sfPy8tC+ffuox//888/IycmJ44yaHywgG4hEuPDX5QbUECVZaqKlPu0zLZOmEI6xjGEC1OShCX6wjPUhM1Etz82B5pRE061bt5jGd+nSJU4zab7UbmtmGIZhGCahmZg+pamnAL9Qo/5pDlRUVOCrr75q6mkkLDFZICemT4FZsQCI3xNYc8p4DCbelryaCH7qruvTdmPuR7ZKMq2lfiBbFeNHtOXO4nEMEuk+lUjnmAYlqj7XzaUX9u+//47TTjsNfn/Tu9wTkZgE5CclbzRowGtDxtrVlWi/2A3d/zfeF7VYtxUsJJviglRfIdsa48cSmYY8Fo0Znxbt94bdnEwsxDP5UV+PnsjSlGhRlvHRwM2wWwIxZWGPxkSYFQvX72tlNKY4a43nVksRGk21/xsyLjGSBT/eD34M0xD4hBer8UmTZmG/u6U/HKm1pGsU7AAAhYxJREFUJ9FUlvnxt+N+bvLKLpmZmTW+7vf7UV5ezhbIaqhTEg1nrLUuYk0saKjWirGeW4mckd2SvydNvb+jCYmIVixGGtfUn49hmgsaVGjNyALpdrtx4403YtCgQRFf3717Nx588MFGnlXzgbOwGYZhGIapN36hwB9FkfBoxjQGxx13HLp06YKpU6dGfH3r1q0sIGug3gKytrpm1S3jp3qmNppjsk2iz6+1EE1MLV+DGKZhib6VYWJYIM8++2wUFxdX+3pmZiamTGn67PZEJa4WyLrU4GKaFzU9JATT0o9/rMKxLvsj0cRpczimzWGODNNS0IQKLYoSPVrtqReNwt13313j6126dMHChQsbaTbND3ZhM3UiXpadmh44Ek1ANfZ8mqLkUiJT9Vzhh1WGaVqamwWSqR/17oUd642eL+4tj3jfuOPZ/SOe24+G5maJPNM0OfCP0GJ7s0I3lpX+RaHrqcu6Ytxm3NbPMAlCImRhv7RpKJJSardLOct9uOH4jU2ehR2JtLQ0bNmyhXteRwFbIBmGYRiGqTfRZ2EnbieaKGxqjKTeAjLaeDd9HLuZWh7RWqEb+5i3tOLiTWF5DLMUAvW25kVcpxJ0Q6nr+iNZG4P/VqrctNgqyTANSrRtCptLK0OmZuJigWSR2LxpiBCEhu7c01Q0ZueTRKGhRaP+GcdY/iZXVcMTvtDChV5143Sqjo/0/kjzZ/c2wzQoLaGV4eWXX55wbvVEJa4u7ESwQjHREa2Qachj2hgPGnXdRiIKuyahjnGOOiv9ixpwMvUgGlHKMM2ESNen05TzGn8iVWgJFsgXXngBAFBcXIyMjIymnUyCk7hHkWEYhmGYqPik5I2mnoKRhR3NT6x89dVXOPfcc5GTkwNFUfDxxx+HvC6EwOzZs5GTk4OkpCSMHj0a27dvj2rdc+bMwaJFgYfdSZMmoW3btujUqRO2bt0a81xbC42eRMPu7cSiISxtdT2mjVmqh/sZ14HarI81WPUUlVxUwe5wfVnM6wyah2IyyUU1jIvV2ljdNtnFzdSBeF1rmoNXRBMKtCi6zEQzpioVFRU49thjcdVVV+HCCy8Me33u3LmYN28eXnvtNfTp0wePPPIIzjzzTOzcuROpqak1rvull17CW2+9BQBYuXIlVq5ciaVLl+K9997DbbfdhhUrVsQ839ZAownIuN20I13ka7qB8M3AoKEvSA3xcNAYorIhe3e3RHShJzQ1/PuiRFgWAT3OMVg0rvC+CyAQCxk8LmhBkEgUgW1WN77q3OpCtHGXDFMD8eq81hyEo44WpXWxLlnY48ePx/jx4yO+JoTAggULcM899+CCCy4AALz++uvIysrC22+/jRtuuKHGdR88eBBdunQBAHz66aeYNGkSxowZg9zcXAwfPjzmubYWGk1AxqM2pGIyBW5U8qaj36SipV517Zo5wfu9IS5S8RJi8S6g3Zwu0LEwxnppyP8rPG9H9T7h99MfimoIq4CoFNVnM1cjwqp+J4UmovquBW+zqvWyRiEZLcHzjvQZWtn1oDVTm9BrSC9L1XW2JKLvRENjSktLQ5bbbDbYbLaYt5uXl4f8/HyMGTMmZF2jRo3CunXrahWQbdq0wd69e9GlSxcsW7YMjzzyCAASpn79esiEkRB1IGNNzNDFIhQVK/3R3RSr3XZQkH+wZUS/kRg3U76ZMM2IsfbLwpaNsfzNOK+jEZOKqkQQhf7Q1xFwJ9fmog4RtDWU1IkkDmvN3A5eZ20Wxarf5erK/jAtnqr3ntpEXTSirzV7NPxQ4I8iw1ofo1v9dB544AHMnj075u3m5+cDALKyskKWZ2VlYffu3bW+/4ILLsCll16K3r17o6CgwLB0btmyBb169Yp5Pq2FhBCQDMMwDMM0b2K1QO7duzekZE5drI/BKEoVT4UQYcsiMX/+fOTm5mLv3r2YO3cuUlJSAJBre/r06fWaU0sm4QSk4VKO5EqKcyFg3dUWbL1RVNpFmtcX+zabURB+Q8QexjtB6kz14hbp9okbdTzvQpIA5Pcx2LpY1dIYyfIYKQayxvnUJwaxpsQbdkkzEYjHdaQ1Wx51vEKFSZiiGEffxbS0tAapuZidnQ2ALJEdO3Y0lh8+fDjMKhkJi8WCW2+9NWz5jBkz6j23lkxCCciqMVs6jS0alrv+i7FJV9A/JroBqbpL2+eN7E6LlGxQ9e/abqAJdoOLNkayMS+c8Y6HbFFEOO+ijYMMrKJ6cVjTmEj1H4331SO7O2hlNX+vuOsMUw0Nfe1g4RigqepAdu/eHdnZ2Vi5ciWGDBkCAPB4PFizZg3mzJnToNtiAjSZgAyOxzIQmnEzijUZpqFZ7nwTADAu/WpaoMq5mlTA46W/5U0pYmJBJGq64SX4Da6m4PKmKM1UdVutXVAaVnM9PthkgqKQYBNBMeD6Q1rUQrLKOauoSpiA1P9f6V9kWCwbJDmttvdV9zpnVDMRSJRrRKLMIx6IKDvRiDp0oikvL8fvv/9u/J+Xl4ctW7YgMzMTXbt2xYwZM/DYY4+hd+/e6N27Nx577DE4HA5cemlkwxRTfxLKAskwDMMwTPMknhbIDRs24LTTTjP+nzVrFgBg6tSpeO2113D77bfD6XRi+vTpKCoqwvDhw7FixYpaa0AydUcRQtRaD6O0tBTp6ekoKSmpc7xCSIYzQktzNLW1MRrGtbue/vD6IKQFUs/QFtWk+YeUPqlKglscoyWRCnS35Cf7mhibMhXQv8ZKcKyiDLvweOi33x9Wlme567/VrvdM0+Soin/XWlInGhdz8NhmFDvMNG8a8ppR2/Uv3tenhrhP13fbt3xzDmwpllrHu8u9ePqUT5tkrkzDEXcLZFXhqN8c6lt+p6lQrNbAP27pwvbXLBbDXotUZqSZ3iw5sSUxUMzyqyyFpNA0LCtdCAAYmzyFXgs6N/VzMdilrd8A9TJZ1YnHOtdgDBaGkUrvMEwj01gx1a3lGhltm8K6tDJkEo+4C8jmYF2MCv2maVUBC+02Rd6sVUWF8HnD3hIxE5UW1L3tGlMtrTXBRrFYjGQvY5lfC1jNg4vtx5IJHSGxK9hzECmZJqp6jcHb4u8BkwDE69rR2q5F8WxlGC/+3//7f1i8eDEyMzNx9dVX45hjjjFeKyoqwoUXXogvv/yyCWeYuHAMZJQsK/xP2LJxba4FIDviVOhu7Oqr1gcLSaOXb6RuGM2MRnNdc0mWyPj9gCb3h3yoWVa6EOPSrgIAKFZyKQm/H9Av3LrQk+fkWPtlgfMzglVQRLBeVqVa8ViTtb3KayEilK2TDNOs0KBG1aawLq0M48Hbb7+NKVOmYNy4cdi5cyf+/e9/45VXXsFll1FSop7JzUSGBSTDMAzDMPXGLxT4o7AuRjOmMXjqqacwf/58/POf/wQAfPDBB7jqqqvgcrlwzTXXNPHsEh8WkPVgWdErAIDx2dON5ynhlQk2bnf1b1RUKKpeAigxnsRqpDGso3V1YQa9L1LtwdaAHutYFUXv6qBbFv1+owSVUOTx9FdvDQxZVyS3dU1xjDU1AqjBkhxccojd2kxzorW5qyPR3FzYv/76K8455xzj/4suugjt2rXDhAkT4PV6cf755zfh7BIfFpANwNL85zE+68aQZYrJZGRrG/Uig/tqG9mwwW7CJnDZResmrOvNvKYM3Fri36rGjgbH04bUGZRjjUL0cr0tJv62jiw98mLI/+MyrwOkO1sxKgnEVtw+oos50vjgYxvpeEdzjrPrmmlkzjRNbrUPog2BiLKVoWjgQuJ1JS0tDYcOHUL37t2NZaNHj8b//vc/nHPOOdi3b18Tzi7xYQHZQCw99AIAYHyXmwEAwuk0sllFZSX9DkqqCYgjk/GaYZWsPoyyYYnULYcmE59t1NStJwI1CcCoLGIMgKBi+EIYhcaFVsXyV0NyTNVxERYG/q4qFqsrms/xjUxTUk1cLovH+uGHAn8URcKjGdMYnHjiiVi6dClOOumkkOWjRo0yRCRTPXynZRiGYRim3mgi4Mau+aepZ0rMnDkTdrs94mujR4/Gp59+iilTpjTyrJoPbIFsaMyyhp6iQugZ2VWsLcIfsOSoRl3JILNjU1pnamuzWFPWbG3EYBmMpoB1bePG2i+rsVB2a0H4fACCakWGvBhoURg4PjGawOti8eU6kEwTEdL8QIbCcPxiw6BF6cKOZkxjMGrUKIwaNara10ePHo3Ro0c33oSaGSwgG5ilefMAkCtbcVEijYii97XweQ2Xt0G8y9ZE20s4wrhoBV6N240gPIJLyRjlgap0TwEiu7fDitYzAIDlFW8AoI41xh7UO9cEiUrj/KPGNdBkB5sQIjxMhJSnqqYrU7WwcGSagKox1IaQZBd2vdCi7IUdzZim4uyzz8Yrr7yCjh07NvVUEh4WkI1BFWGomEzGzVe/4SpmS/jNNFLHmngTtD0jJi5YE4gIcZo1WSWjEAghYjR4+xEEdU3CtbUnzdTG8vLXqe0hECgubqVLgPB4DUtlpLjSwLEwBb0UanmOqUNNDJbHldr7kWuNtpBuTkzT0Zza6TYHmlsZn0h89dVXcDqdTT2NZgELyHghRMDyqItE/SasqAHhGJy4ECnJJJqbYkO6AYOLR0cyJkXaVhWLYq1CIpIo1q1ZwaJRKGHjlzvfrHndTI2oSUkAAmWmDIuhqoR7roUWLuKD0M9dvVyQcLqin0g0DxZB29ZdjBGFJAtHJgqC3dRVH0Rbaxerhqa5ubCZ+sECkmEYhmGYeqMhyjqQCezC7tatGywWS1NPo1nAAjJe2G1QpEtQkxY5w9qjBKyNtRYSj8K6GNHVXFdqs3rW9bWQTYRePEKsXHpPZyGwvIITYKJl3IB7Qv5XvD6jveHS358EAIzvc4eR5AW9zr2sA6nYbYalPMRirlsZDeu5ElbfFPI8V61W4xyPGAsZraVQnvOR3Io1WYhCYmbZKslIqp4zwbHSIrhPvHyN3dl1R0QZAykSWED+9NNPTT2FZgMLyAZm3HH3AwAURTFiysKI5P6tjihuhDEnLtRze/XfBF20OWC9YRjffRaQlgwAUIrKAABaYZEhDvW4R8VqNcSh5grtlKRomnEe6Uk349tPM4qRG4Xyk+xQpKtaK6+gZUFucDWJ5qG7yKtup1bqEfOrC4Ux1kuN8IcG/W4wzY5IDxyRQmxiit9lqqW5daIJxuVy4ccff8Thw4ehVamTO2HChCaaVWLDArKBWbblIQDA+B63Qug3z7qKshZuRRmbdAUAjmusL0vz5mF8r9sAAKKsnBb6tYCV2+MPLNMtihb51Vfk/ynJQJX2myGdbFJTAn/L96gOBwBAKysLvCazu43Mb/tlxs1Z+AKxslWt0ME38KqvkSCs0hEnyGpdtVTTCs/bxrkVSzIX0zyJOW4xQnIiJ9M0DM01BnLZsmWYMmUKjh49Gvaaoijw84NoRBLrKDIMwzAM0yyJroh4dFbKxuQf//gHLr74Yhw8eBCapoX8sHisHrZAxgmRYodaIS00+jLZ0rBBaKgakfXN4I52HhHLA/EXs8GoEi6hWC1GrKKiG+uEBuEVxuv0mwrZC7cby46+HLba8V1n0B82WfDe68XS/OfptfbTaB0ysxt+v+HO1l3ey13/DVgDgysPVKkhqQQne8vX9PcpqhIW3xt87hg90PW3m0wQPm/YZ6m6/oTsOc/EnWDrtX4erfBy9nVD4BMqlCisi74Es0AePnwYs2bNQlZWVlNPpVnBAjJOCJMJiu7qS6G4ME0vcxJLMkGsyTOx3KiC11/XG1wtxciDC4Ov8Lwd27qZ6JFCUHEEiTlVllUKikPUXde6cFxW+B8AwPjONxlucD3pBkBIUhO9MWA5CHFxg8SmKCmlf6TreHz7aZSgA0AJSs5Rkmmeumgdl3kdvc/nCyTieKUoFlotPbhD1WWN4jHofYo5kGlZ63vqCvdlb3jkPq1zDHXQdS/QCYxpCJprDORFF12E1atXo2fPnk09lWYFC8g4IezmwE1X3sj1i5XmjrJeXiRxVtMNKfi1SOMidIDRn8Zjrt1Yw9yCY9j09XNLwfgxvtM/AT2mUQ06ttJqKLxSHPm0QMyjJcJX3xMuoozOSr1vpwVSDEZi6Z4FGN/5JrktEn9L8583rJgmafUULrdROzJsrn4/IjXKDamX2kCIqvVZ4wBb22unxhqfccI45nE89q2R5iogn332WVx88cX4+uuvMWjQoLAyPjfddFMTzSyxYQEZJ1asv8+4mQoXCUbdbYjaBGQka2A0lowagsPp5XCrYE3JCYH3icDySJ1oqmxLMVsClism/ni8AQEZjC4WddHnUY1lhnVPsnTfMzVuYulvc8OWjc+dGbIdAIYlNGR9+vmWZKfffr+RpR02Zas10LtbRLCw69TyABNV8kwN53Kk9YasLxqLvaIGxikiMDcWkxGJlAzTkKJSD4kAAsXvl5X8X4Otn2m+AvLtt9/G8uXLkZSUhNWrVxveQ4CSaFhARoYFJMMwDMMw9UYguiLhiVY06d5778VDDz2EO++8E6rKxo9oYQEZT8xVemDLWEilsjLcChFlrFSoSyy8V3Q1b5K/tCr/K4FC5oLcl0JTw6yQiglBhc+rfPWDSrLocXXB9QaXlS6M6nMxdWfpkRcxvset9I9Pnlc+n5FEY7iwhQhYXmTsYzD6OrRMKtkjVNWIW9RR8wsDFkc9fizIKrf0z6fC57drPq2/zx00zBYocm6MOfgcjel8k1EaQi8PpNhsYRZL1eGAosd4ejzG9g2MecsQjVpiHI3wEn1dQetTpXU35LUqPcIjlSESmmBrI1CzR0VooQXgg1jpX1Rj6IxeELym0jvjs6cHCt+b9HapaiBWmGlQmqsF0uPxYPLkySweY4QFZBwxbpwd/w4gUKNPTUqCv4IysqvWvAsmkmvNiNsyWyLGhYWtL0jghbmwg/8OSiioGrelmEzGXPSbqdHBITijNkh4KsmOaj8X0/BUFW7j+9xhuLWVQ0cAAKK8IpA0kz09bB1G1nZBIf1W1UAogl7LUQgjXrE2t3cYSpArO0K8pb5OPWbSuJTbbRB60XJNdzv7w+PXRNBrxjYD8cfVdskRWqg4rDK+6mshb43wfTREj98fYU4tM+au6kNnyINmhNjrwBtrruKgJ8qcaZpc/TpqQPh8xsOH/oALkxr2AMM0DM1VQE6dOhWLFi3C3Xff3dRTaVawgGwM9Bg03RKkiTDxFyzEDIJaHgaWBcZEY91QTKYwa4mRiZtkDzydB3cM0W+EwcJUWq50q4/x9TeZArGd+nibFWAB2bT4/FDkMTWEYVJSoKOMLgjlzVV4fWFW5uBzxzjvVKXON9+lO58w/tYfqvTfxpiDz2HpngVh7zWScyTL9j2DcelXhyzTZFxnSNyvUTrIbGRd1xgfKT9nTaIxEsLvh6LKhytp7Yz0/YwkbgMvNjNRU4uYCxyHgJW2pmSomgqChzwYV7Foju93F1CsZ//LfWiW1zhFhZLZRo4PbFNUOmucO1M3mquA9Pv9mDt3LpYvX47BgweHJdHMmzeviWaW2LCAZBiGYRim3jRXAblt2zYMGTIEQHgv7OCEGiYUFpCNgexJrOjt4Morocriy5oz/Ek4UKsvUAw6ktvNWBbsQo5oMZKv6/X42mXSaxYzFJe0tEi3JdRApq7h8tG0wN86utXRaglYLx20fpHqwLIfH6lubzBxZHyXm+kPiyXg7tWtMpoWiIf0R3D3SkJcvVWs11BUo01hfdBjHse1uz5kPtUSVBbImKfeb7tKRnmwpSvYhawXKzfiFv0IGRP2d4zEarXU4y7177vw+wO9wxPZGhkhLKDqdUdRtVDvCqqEuAR7vKP4rME1O9WMNABBcbO9bgt4eXSPin59knHnAKCl0JjlGx+sdXtM3RBCgYhCHEYzpjFZtWpVU0+hWcICshGo6pIbm3SFUUhZkTe/kCB//aJsMkGVF0YRYZxxUdUvwEFlfEJikvSbqb5e3X2TkgytDV1gVb1LjqKQ+Ah+X5UbNIDABdrrC1ykdeHpjO1GytQfo06jnrjldAYKiEvxVVVoVUuEmLXAw4qIKnkhWiJ1v4lEsHAEgoQyUPN8dRQ1TNAYrlU/ohds1ZXviUHwGd9NI2ZSfm+S7FCjiLtsavQ4aMViDr+26J9NE8aykGtRlf0kNGHsUz3OMVKB8OXON8OWje93l5yQCl+HdFqfhdblc9AcVZ+GL1feGcvHY+qBBiWqLOxoxjCJDwvIJmC5802MTZlK/wTVTgyIw8BFWPjpRlJT9rORSY2gm2OVm1NEVAWKv8p67bZAvT5f0E1YlXOqYsFCUDbj0l/nVL8tJm6Mz7oRSJYivlw+CKgKNJmoFTFWNhrBE2mM0AzLXdUWgsLvj3jzH9fmWnpdnjvC7Q6bU03xbxHx+aqPIQyuvxj0GQzLo/49C7Kk1au4v7GBKtusppOUEYss4/R00aXY7YG2kEXFAACtIdufNhBqaioASlDRry5h1ydVgWII9HAhGSnxTzHF1hXGJx9+TWVOVHSm/bbuvVtiWgfTsDRXFzZTN1hANhF6e0M9mFvzOAMWEnN4cHpY20KhRS4MHvY+NWAV0DNq08iV7k9NguqRVql0cgsJuwWaTfZJlq5PxWmGUhF6IxPpcv42C5ZvmB3VZ2big/B4IcoP0z96oXCPN9y92NDbrSLEIpVkWelfBK2cqg/UlPQVXDBaF5NGH26v13BX6qJVtduqt9JFKKgvfN6AO76q5T5oWa09tKMoTB72niqvGeJJL5geXDpEPpCpMtNdOXwUfrn/mppIYTeK9FYYYlg/xhazYQFXjLHmwAOt3rs9qNSRUWYsSnyptG1PWxsLxwShubqwmbrBRY8YhmEYhqk3ugUymp9Y8Pl8uPfee9G9e3ckJSWhR48eeOihh6BxOaYmhS2QTYQe06W79xSTCXq7s2D3s14aREe4IreA098X1uPVpBolW3RrgT9VWhLsJqjO0PUJswqY9AQE+q2l2YFkmYAjrQWedlSmx1JUw3yYxsHvN467noQRnADT4FS1qlXj6gbq1opOf48phSzlSlqqYXnULYT+cm9gHpHiEiPMyUgOCouFDOw/1GaJjKaFYfAcqrYWDY4HrBpeoiiAXjBdT7DplA3ToaM0y+Li2rcZJ1Sb3bAyiiDrIaQx1/hcektNTRjXICHL5whNMzwvih4CoyrGNU1UUxu0OlYtv6MuH4WJI/GyQM6ZMwcvvvgiXn/9dQwYMAAbNmzAVVddhfT0dNx88821r4CJCywgmxgjKzYYPaheVY36i9BdWrqLKJI7UFEC8VS2oHgiERqfZNpPhaVNJlPgNblNtbTMWKaL3DNOfxyaDE5X3bRdc5m8kaeE1stimgZDONbScaVGohRH4Uko8em2ortuVY8n8ueqmjwTrbgz6l0GizvpRg2qNhAWAlBNJ5VqCRKPwVnEhtjShZh0YWtFxYabODBYgdarCwDA5OlIm/x9d/1jIxUVpjSKZfSXlNQ6XE1PDYRHyIYIUFF9z3uzCRBByTaQD7C6xai9rATh8hjClJ2azR8RpXVRF5ClpaUhy202G2z6PS+I9evXY+LEiTj77LMBALm5uXjnnXewYcOGOs91yZIlUY+dMGFCnbfTkmEB2cQsL38dADDWflkguF4v1u1ICgg8mdiilIa3TjNiu1Q1zEqgKGrAolmlTVNwdvi4tKvoD5MJy4peCRn3xZd3hc177NAHaP2ahtHjKHlm9TK2CDQGYVa92mLzoiGGdVQtHxVvqhWosVgDI644IED1jPKx9svkooD1P3j7kQpgG3OJlJmtJ+ro1RT8/oBHQN4oNafL2KbevlFtQ1nFcLqgVtDDgTeLLLLe0wci+ccDAADf3gOhnyVKTG3SofXqTNvd9EvI51ST7GFlnoTPB8Uur0HBXg69IL2qx5fKm7+qGgl3Ska6sUwcleXCrHoCkQJFxlzXWsqJSXgEwuwV1Y4DgC5duoQsf+CBBzB79uyw8X/5y1/w4osv4tdff0WfPn2wdetWrF27FgsWLKjzXM8777yoximKAj+3JI0IC0iGYRiGYeqNBgVKDGV89u7di7S0NGN5JOsjANxxxx0oKSnBMcccA5PJBL/fj0cffRSXXHJJ3efK8ZP1hgVkgkDFjyOc0DJuUSRJF7bM0hRl5QE3trRyCE0LlMTQSwEpSsAlvf/f1W5/WenCmOarOsm6oGmA7UjilRppVTRErGNd1tFIxa6rtUBGs/1orJTBGdLB/d9161pQzGS1rfhqm0tQrUd/EbmMlapZ7IDRgs8ol5XigCK/v5Yj5Dq2FJrgPCYbAGDq3gFAUGjJb/vgLykNnZOiwtSW2vn5DlM85aFJ/aDKTYjjTqBNHSSvRfLm/YHt6/NRFAjpNtfd/CI4i13/DLp1Uggj5tpocar5obRvS/OQRb01qwpzGWXTq4eKIuw4pjkRawxkWlpaiICsjkWLFuGtt97C22+/jQEDBmDLli2YMWMGcnJyMHXq1HrPm6kbLCATheCyPEEXYb2ntOKTF+vMDPrf7Qkk1KiBmEnjBqh/KT2e6HwKMeJrQ/MyVXggOHqpUahLQkpLZaX2fnT7o5aajDpVi1iPtV8WNj5S2EiNAjWoVquRUOKMUG9SD0FJSgnERJuDLs16PVZFxgo6nbAdkglujtAYZH+vTtCsXQEAlVkk0rzJSlCAYU+ajkfAlUkL/dLoU96F1p97uC1MxbKGqEWG1bi8QGWVuqJCBBKBkoI6UwHUncpITAo8zGqyW5Ve6FsRAkIm7UXqgc40LzShQIlDHcjbbrsNd955J/72N2piMGjQIOzevRuPP/54gwnINWvW4KmnnsKOHTugKAr69euH2267DaeeemqDrL8lwgIyQQju6mG0dwOwdOcTAICxQyjmUL9hmMsDNxs9ZlJoGhS99WGSzJrW/IFWgw3Iym/uBQCMOvdJ2PclRp26lgyLx/qhqEogaaYmISn3c3WFzcOOQ02JNUIDFOlB0LOrlYAV03ibnmCjKFBlvKCWTg9oakkltDTZtUqv2aooUN3yu6/HKOpCz6dBlQ6BFCeN97S1o6wLbcNFhki4MwGz1LKu7nJuFXQ78KZZobjktvSatH5hFDkXRh1IJVD/UcZoG54STRhWTH0ZhICwyw4xXima/RpMRezBaCkIEWUMZIw2jcrKSqhVYvhNJlODuaHfeustXHXVVbjgggtw0003QQiBdevW4YwzzsBrr72GSy+9tPaVtEJYQCYgioNuHnC7Mb7j3wEEguq1ZLoY+7MzoZZXAAi9ORmuMvkN9XVqC/P+grjN1dnWBNVD8z3j9McBABU5Nnz71qy4bZNhzlQvNkReNOJa+P2GwAv0wg5yjUdoh6hbJSNSi+VRR9WFlfEdDU88UqVXAY4kQFooNZlkoiTbjXGa/lBoNQcEnuwkpSAgJPXuUrq41KwKNKlRPRmB7bra0dxVi0yY8UmLpF2Ft53MBpcfz2xSYJLXFEW3OqqKUW5I6OV79IfZNIfxGXzpUlT6BPx22veq9KhYjlYarVU5Ga/5E68yPueeey4effRRdO3aFQMGDMDmzZsxb948XH311XWdagiPPvoo5s6di5kzZxrLbr75ZsybNw8PP/wwC8hq4ELiDMMwDMPUG11ARvMTC//+979x0UUXYfr06ejXrx9uvfVW3HDDDXj44YcbZN5//vknzj333LDlEyZMQF5eXoNsoyXCFsgERI8FGt91hhHfuPTnxwAAp59BLm1/mgWOg2T5M+KqTEqgfE9hMQBAy0qF1rb2IOW68v1rAUvjuEH3AABsSabqhjMxwq7r6ol53+j1H/WQwhoskSHrDq7nWOU90fbwNvqBezyGy1rRe87LzFNhtxjWPfNRKufj7Zhu+PtUj7QyqiZ4M8hCaJLJM4p8zXS01LhmaJlU59F21A1nJs3b11W2FyywAla5PwqkZVNaICvbm5BUQH97k+mzJ+/TYDokrzNy3lqKzXCrKy5ZF1bWlnS3s8NUKS2gemMCk2JYHvXEGaWsEkih65g7k29HzR2/pgBa7eLQH8WYYFJTU7FgwYJ6le2piS5duuCLL75Ar169QpZ/8cUXYaWGmAD8jU1glu5ZYIgynS+/uBMAMOrsufD0okxMi4xJEk5XWHcLX5IJ3tSUBptTj2eeBgCk7KIbi98CmKV3buu2RxtsOwwTLbG4soOJugB6SB/rUKdNbTGTOnpt1XFpV0EoVdzesjC3ovkhSkg4KjJrWnf5AuQCpj8CISp6Aoqqfxa7FaLKNcCbaoEnXU+0o/eZKlRYC+V3WCbR+FJoXqXdVQhVCk4ZTWOutEL1UvFvvamAudxjXG+0jOSQbSo+AdVLc7IW0AWislsqbAco3tGbQRtd8e18nDaGXNfl2ewQa+5QDGQ0LuxGmEwM3HLLLbjpppuwZcsWnHzyyVAUBWvXrsVrr72Gf/3rX009vYQl4QRkz6fmAQD8benJVmjA7mtub8opNSnLqhFlxb0tsBfQ4cvcl0EL/YWBLE4ZV+VLNkH1xfZtzX2NLuhqKa3/z5tuQbdXngQAWNx0Y/HK+4XPAajU2AaDZ82n11KAHQ/NBFN32PIYPY26r+pbushkMqyMeocWvVQXkuyALPEjUgIdafQSPe52svSNWYG9wCPnQ9/tim7S2ljshaWARJqrI62jrLMZ9gIaVyYvBX67QLtt9I87lYSbV/42OwFnOxrnak9jSnsqSN4r2xDKXZB80AZHPl1vTDImUxe0iibgS7aEjK9sZ8JXnzwQtksKj6EYyYouCaYqmJiJVwxkvLnxxhuRnZ2Np59+Gu+99x4AoF+/fli0aBEmTpzYxLNLXBJOQP5xK7lEB95OYkQoQK859Pfvd7Ao0anMBmyybJqR+WgNahVWTjeRyg7tYXJHf2EefsU8JOfIwPgRgRZnu6+9rdb3Dp5Jx8lSDvS7n/5mIck0FoZ7WRONVqMyWhe2zrKiVzBuMFUwQKU03euVE2wWKOkUbiIM653TEIl66RvHkUApIL/MalaMWosCng4k9L76JPCdPXkSeQ5sSbQtZ7IF1jK5DivdzN0Z9NteqKHoOJlgUxGwgHpkJEz6n0KO86O4N4naTS+SZ0TvUGUudWPZloei2idbn+FrREtBINBlprZxicb555+P888/v6mn0axIOAHJMAzDMEzzo7laIIMpLy8PKw8UTbHz1kjCCsif5tJT6ZiTHsLRIeSe6TVXWiJv5ydW+1FA6PXG9RpwSXbAK8t7yLIhHdYV4+DoDADAMbNp//0yO3z/9ZhPoQPmfgocx1K/2jZJsdVny/iDtl14jNlwcec+/xT9kaRBtdHrWjm5trK70Xa+Hft4TNthmEjotVTPVC+OmCCjJ68IvQNME6G45XdUWh59XchfbN59GHBL17Qs2q3a7RBt6PrnbE+Xa3cbE8wusuF4DLcz/W+u8CLvvPCb3br3bgEQ9D3vVAmvrOtYkRV6Mz843md0xdINm203mGGppH8OD6VlbX5yIbOCPsPICRTiYtaTe2QNSqaV0UxNkHl5efjHP/6B1atXw+UKWPiFENwLuwYSVkDqrPj2fpx6PokQL2f3Gmx7aiaG/J0E4ZETMgAAabuTA/XViuhLoOYXouPXdIM4fGJ6teszd6WakooikGIj8XmwuPrxkfhqSc1u7uNvpPlWZtH/FdnkKh/8v/vx47nRubtaC3VNDGFo342xUMeK4HqNDSkcY3VdB6M3B9AZe8KDAACtY1sov+8NHez3w5dJT2OeVNlG0ayg7Tb6jjr2kuD0p5A49iVb8Os91T9g/zmTQoRyF85FaS7tm/LeJPYsRVJ0+xTAI+MyHfRa220uoxtW/kiZNZ2VhDX/o+/8iVNJmDp70y3FVmytbTcwLZFoS/QkmAXysssuAwD83//9H7KysgK1TpkaSXgBCQBfL761qaeQkGx+jm4Uw6fQxbs014LUPbJHtSwEbEMmFNm32i27UPR9mIScJ0ODSKUbRFK67AyxMQ1iFIlJkym2OLITl91N6/WbsOXs0PpcuW/MQbqFbiom2cii7ABZVuwdKg3LiOagbe66gY95o1Bbr+hoeknHm1raEOrWxrFJVwAAljvfDOlfDQRK9yQiFV1JIKZuOwJNdo0ySvz4/DBvozp09s7H0PgsFX4HfWbNKguVy8O05v9Fl3ColJvgTZV/u9WQdaiVJsNCpN/nf70yCYpHv6nSsTgyKHD7KOuqFyGn/7c9HX0jgR4L5Hc/0xOyfNeUO6NeB5MYxKsTTbz58ccfsXHjRvTt27epp9Ks4LoJDMMwDMPUm3gVEo83J5xwAvbu3Vv7QCaEZmGBZGrmuzcCT/tjTiRXsOlIMQCg5MROSNtB6dqK3v1Mb02b4YVZxiWm2MnykXL6PlR4KLNy+8TZMc3j+3GPVfvaril3AFNiWh0DQLVJC1Mk92uwe1a3uOmxf7W5a/W2fkZfZlOY1U4xmYwYwia14NXUbxoIzDt4nPxbMVkDY6qxYgZ/zuDt6PtS3x+a14eV/kV1/hjVod9LPZ0yYN6zj/7R2xB6PIa5ps3nv9O4C/qgPJsu3Rv/U7d48GOO3YNfN3QDAFhLZBxlf6q6UHkgBbaj9Nn9TroWZG4XsJbR/jt4Cr1W2dWP42+Q1RZeqntcelK+LGCux6imcvxks0Uo0bmnE0xAvvLKK5g2bRr279+PgQMHwqKX1pIMHjy4iWaW2LCAbGGs+P5+AMCgW+jC7rcDnlQqANxhM7mISrvRTVXbbYNmpRuE568kIK0mP5xKgvkXWjNBYk4nzD2rqUbSgy6SVKs1TGyFiCT5mr4sICQD6wcaWDUG94GO0SVuiDn5W/P6wgQezIHLmR6jODaZnloUTQREcJVtKyZT0GcOLFOsdBPRZEJLfeIea8Lx0XcAgMoLhiNFP85632m7DSI3h5YdpJ72yfl+ODPr5zxyei2wlNJ+y/qBHjYOajLmuasbbdbR+su60BhrmWbUk006RMscpxfiqKctAOCEq8gN/cPC6F3XOmaZs6B3wlGsCRxvwNRIc3VhHzlyBH/88QeuuuoqY5miKJxEUwssIFso254OWAR0Mdl23c8AgI0rXgcA9Jw3D6ZKGbu0kwIkd3W3INlOQvO0Lylz0y9UJJnpJlNYSQH0A9sdBAAsPGFhXD9Ha2VsylQAgNpBVnQurzTaVMIj28BJwaRardDKKW7VEEdBYkpRzcb7wgSj0EVo+BVdaCJgjdStQ35/7PGQUjiqeuHsoJjGqpa/kKxpXUwFWQN1Qa2aTFBkC0B9md7Sc1z61VhW8n+hU7BaAL32tk+3Tsp1ms0wWaWlUu5bzevDivK3Y/ucdUQXpkOmz0daCsVD6p9FOF1wG/HMJNbKO5qw+fn6VaIorHTAk07H/MCpdGwzjqWOAEeOphnxkO1+pO+92ek34iJT99GLJS4rug08AADY4+1U57no2zK56Dj+dsnddV4X08Q00yzsq6++GkOGDME777zDSTQxwAKyFWCIyadDl/8xaxZ6PUmWA/sR+sJ0eTAPv983CABQ4ZTLvnCi9J5SAIAGWrbq+4G0khPiOfPWi6LKu6pfirV2bQIdTHx6M2e9x7AKVU+60IWhXwNMoVYqcaQgUJdFt97p2wsucKC7wT2eMCumYjIF3E9V3ODBgjNim0ApahWr1RBqxmVan4/fHxC5usALsr4qUuhB0ww3r+KgVp26oNaKS4zsdaPvdJCbOtiaCwDw+eCX84mXlTEaPOmArycJMXXzTlpoUmHfS9+9vefSw8T2J+pfxixS1QP9gdGdUQmh0H6u7ED71OQ1Q5O7zS3bIno8ZmTaKSPuUM/SOs9FF5AKG3maPc21DuTu3buxZMmSsF7YTM1wEg3DMAzDMA2DiOInwTj99NOxdevWpp5Gs4MtkK2c5L30JKjHIe27YTCS9Th+aeyx/LIXadJdaFXJTFDe0dao82xt+MvLAQBiSG8AgOrxB+LiZG9kxSNd2hYTRFuKX1NkBwWlwhWwUEp3qOpwGPF8qOqyVtSA1VCj9YbGXQZbG6uvxxrJyme4mvX/kx2B8bpbXk/W0URorKQ+V92VLuMSoaqAndbr60gxvuY9h+UYq1FQX5+PmmSHKq2oml5sX3eja6JJLY86rrYCu88hF3aPX8iirFgtKDuGwkusdTfyRUXeng4AgIz25fDZaX8nFdI+Ku+oGr2qNZvcj5UWbN7Vud7bVUdTQwFfKbnq9XJgLq+Z68M2M5qrBfLcc8/FzJkzsW3bNgwaNCgsiWbChAlNNLPERhGi9nDW0tJSpKeno6SkhFv6tAL6PEYxk6qMGTO5Actf6CLfr+0hAMA7J70c83rHd74JAODuS0kBX37Bdd6q49ib6RiY9GPgErAX04076SCJQL2wszAHCa6g2B39dUN4enxQikmYwiuztKUIQ6UzICpTU+RGVYijdNwNl7PJFBJfCQCQIlBJdkBUyLkZLnWVfoLnZgm8X8s/IsfJ14LFYtXtAFAcJDJgs0KkkdhSyqQolv3fhc8Hf6ls9CyqxDsiICprE43ju9wMAFi69181jmtI9G5bvZ8MuLD9udkAgIrOJLy/+SC+NVK7vfIk9Dw6+346Bs7OPtgO09+eLpRwpxZYoTloX9rbkSvbWUzHfffV0dWjBIDcN6mwusVO51FaCq3LogZibVPHUwZ6Igj9RKUp79P6tru8+EAgnKYGNKcLe6c9mDCaQlWrd8ZyEk31sAWSCePXuynGqu9DdDODAMq3k5VHO/VInde7f1J3AEDmDhIvZ5xOLQz/mKJi15V31Hm9LZGt/6Jj0P3fFLjqOKBC9dNFziMFniOf9qPiF0YHIr/NZCxTZPyknj2rWExQbPLJWheVushMTzGEqGaVyTleP1Q97rJMCs+kpIDY062BsiWf1iYFakFZyOfQ2iTrdacBuX611GlYRUMsihLDQqkvM5sBffu6ZcCvAf4qz75SDCtmBxQpZPV4TcVkwnLXf1EdetKSzvLy1xtVOFZlx9P0Xen6oYrKdnRM9faF8SarcxF80uK86bpHAFC3KLWjzMJeTteCkqEe9M2lZLrdBbQsFuGos+uK0AfJXu89YvydlkLnye5HTo55vUxToCAosrmWcYlD1d7XTHSwgGQYhmEYpv400yxspm6wgGSqZef9ZAXr9upcmJPJvXSoMiWq9w5deg8AwPkNZY76jy+DexC5NrLXyZg8F60zNVPB+H53AQAOPkWn5JazH0bvx8kC2mYIWT3bO8rx/0Y+U78P1cwQVrrS+m1AcW8Zl0ahfrAXyJI2AHzSamiEFlkUCOm2Nbnp6dpa6ILilq5r3bonLZG+jCQo0qKnZ8W62iTBnEqBsIqP3Eyqy2/EWRrF3Bw0xptmA9Jscpsy9tDtgyatoqpsqaml2iHakJVRzaT1KsXSculIAnxV3EU+P5Ah3Vx6zKTdBmGXn9lB8Z9qhdt4i2HZ9AViIc80TaZxugs9gotcuN1hyxqT32+n71zuG3MAAO40EzSzLLXVSGHH6XYnOicXhyxLS3Kh0kPH2ZlByxw7rdjppBhIxx4ZInBBbNs65qOHYDHT8d42gXqC+0rogwqTgCOTAj+d/eIcAMo0DM1UQD70UM2xtvfff38jzaR5wQKSqRVTuRnSe4oj5SQgT1pOgu/bsY9jxApyQaVY6ea7cvR85KTQBX/3cLqxOEuS0KFjMQBgz+0kJF35JAoyzcX44zIK4PcWkbgcdu08WM6hdYzttAMAoCVY4HVjENwTfMh0WRxeCgl3G/r62o96DeGo2QJ9jVWvTHow6S8Gd2qRwjSFVqaZVZj0hBOP/O01w5tK27CUSiFmBRS3nkyh13WUbmK/BkXGUWpWXaCaoLrley2yPJDVZGxfd5ejAyWKKF4/FEMMS4Fc6Q7MXYo+f2qSIWR117uQn1NLssFUxQ2uFZcanWqUKjUfQ6iawNNUyBvsoVP9aLOVPvPRgY1z1y10OrBy9PyQZWv/Ohd9PqT+9pp8hnTkA+020P7a8ErdSgtlJDuRlRwa9iBM8nNqCtb+dW6d1ss0Ec20E83ixYtD/vd6vcjLy4PZbEbPnj1ZQFYDC0imVv68OdBdYvD/6Ivk9NKpc8LSu9EhmeLNHLLY+OT105BikTF5MpYqq30pemeQJfH77wcAAJSeJBYLj6ZC6k3YN5G4LBwgIPamAgAOdiYL04DkA3hqx1gAwK39ljf0x0x42m6n5IJdZ1EiSWl/mcBwwIqsDSTSVGltdGeaoUjrpb1QF39mKF6/8TcAeNJlqr1JMYp6Cb3wuAAUKUL99kCHFE2vxSgx4igB+KVV0OegldmKBODRhZ0UfzYTFCkgVWmpNFXSueNPs8HdhqyHfilCrWV+WMqk9VK3xtlNsH6xmT7DGUMAAEn51LJTpCbBdVwuffYdFKOnWMyBRCAZ5K+56IFHMZmCOv4gsRAKPPQ1QJ/B1Kv39q0XY+6x8Usmsaga+n88GwDw83mzjeW/XngfgEDXGVuphrUf1i2hZ/xXlKDk15LxyV+eDXmtezcysbt8FpyykmKjy910zm095+E6bY9pHJprJ5rNmzeHLSstLcWVV16J888/vwlm1DxgAcnEhMNKN/JOqdQ3t8DpwM9bqafuicN+AwD4hIo0M92cc9tQFm+Z14bv9tE4T1dp+fHIu7VPQdkxsuNFsbQ+mQNXmA2HugAAjqSnGGWErt9ASQ8vD3u9gT9h4vL5GipvoocHdE0rBgDkd0vFvlSy4Oplmfw2wFpGf+utK62lVmT+TPvc56D97E2V7mWvgKuNdFG2o/el7vFDSGFlKaf97ku1wG+VrvRDdIwD1kYYwtDkkqVezKqRiFPSwy7npiBtF50DJuk29ydLV7lfwFpM50KpHG92KcY2KnLIYlqRraDTOhLSJk+oS91U5oRpxy7avhSJMKkB66LM5Fb1zEqP17CiVu1g01TsmkrCqcfbj8GbQvPtmXoUAPDFgT7AsfHbdt82h/HVr/2rfb0u7QqrsnRk9QlKJpl9nW53osJL50WKLYK1mEk8mqkLOxJpaWl46KGHcM455+CKK65o6ukkJCwgGYZhGIapN4qmQNFqd09HMyYRKC4uRklJSVNPI2FhAcnExLdjHw/5/8J107GnLVl5fszvCIDimraV0t/d2pEFsq29Euor7QEAvlvIknJgO9W3a78RMFeS1SH/InJrd2pXbATt++XFRlUE/iimfsA2M7m1g2MxWwsF+zIAAP4csqi1dVTAl0bWtPZbyV1d1sWGomNov6WQ5xOWCoG888iql/kTLfM6aIzJC7ho16Kih0y0ERYkHZVWPa8sIZSiQpVWQ2cWWQP1WEtFBEKbVGkV9KaZ4exgMbYBAJXZgHZQxia6ZdkhTS8r5Icqs3jshfSZyjqb0eE7KuNjl5bIggFWoAvVE9VkDGTpMGoDmLa9IFAUXe/b7dOMguZClgTS60wKTYS3N0wQ/rw00BdajzXWw0LihU+oaNerAED8vl9nrCIr5henzQt7TV/2z02X4Zt8KmfULb2oQbfPxIlmaoF85pnQ5EwhBA4ePIg333wT48aNa6JZJT4sIJl68eHJzwNVSrTlvvmEcYEodpL7zaepRlzc/h1ZAADHAVIbzrZAxWB6rX0bCqg/XJKKjGSK+fPLJrx5xZnw+qQLVmb1ZDhozBmrZoUl2aw6vUrz7xbCrutuAwDkvk6Zut4ME+yZtB/23CiF2V5AqHQQigaTiGq7yQQb6Xkjri5tt4yJNClIPkjjnFm0jyuzAbu8b++V19D23wKK3M+lXWlberFzxQ9YKqXgdEuXc0fVKEifckDGYqpmlHWiS481jbZlqaBt24oUmGS2tmNfhfzEyfCl2eV7aduOfODgXynDP+s7OmcOjqAPlfq7JVCjMqjrjNElR8/Cli5v4XZjWcUbSHQ6OEj4HqpIjet2/jv8Pxi05AEAQLr8fg34ZDa2T5xd73X/5XOqE9lRrvfsr26qtrJCtq0EbR10DuQmF9R720wj0EyTaObPD00aU1UV7du3x9SpU3HXXXc10awSHxaQTINjS/bAXUI3fK8Uf2JuBxwYKwWHbJsowxlR2RFI7UdKRbc2piS54ZcXGbOJxEXBn5kwSWun3iqjvIy2Y3d44PHQ6aw3PDlx2d34ftxj8fiICYEeJ3fsp/ehsoysazYHia9Jf12LAi91aln5+zEAgIxLClCUL0XX63RcVi8LL+DeYz5ZgDSrQFlXaf110bFzt1HgkRV19HI/ek3g9N8FPCn0j01aKa2lAoo8zu50mZGfrSGDGougJFcWF/frSTomZO6Q5Ye8dNzth93wJ4Um52SvLTbKAlXmZgAAui4nIenNsMOyRz7BmOQkfVqYlVHIAuhqanSlqZqaqskm9UXPqhbyO+dIou/W1nMehlsmyQVbO/UEuljbCz6/8zQAwA+luRCCYnWPuihLvm/64Wrfd8+AT3FPTFtimpxmaoHMy8tr6ik0S1hAMgzDMAxTf5qpgGTqBgtIpsFJSXJD2UputmIzWcEqR1qhWWVrPY+0aowsBgAMyCww3M9HnTS+otIKu5Xcj7obqyA1Fcpu6RLvQNYjUxKNMa1Nh68XmbosbcnE6RdKq8jW3nrOw+j2KtXL69KZLDrlfhteHPomDRga4U2XVL++P2dSfFr/u+dDk57grO/oin/gDB8UmSGf9QW9WNhfZln3Ugx3tbM9HWNzZcBS6UvWtyBwYJwsQbRHutylp1nRgIIBtN7UfdKtbQ6EP2gWaRHddxhCZlgnHaaYWn+frgAA68FSIEVurFj26e7WJfAB9Roiei3Kg4eq3xktGL0sj15S54/DZJ0+Y9UsDO9MdbX+LJUxxxYfXJ663S7K/eQl2FWWiTIXWcr7taPEhCJPcrXvY5ohzUhAXnDBBXjttdei7sV92WWXYf78+ejQoUOcZ9Z8YAHJNDh+TYW8Z0CRcXieTh5A/t1v8H4AQLks0aEJxagh2S6JxKJJ1Qz3mf6ayaohTXoaKnqTSHQfpBtQ2SAPUEkuSk265Pyaip+Ls+LzIROM3dfE3oO4Nn5+LLw4dO7LTwJ+GQOZGxrHZC4HKrrpxcjp2Dm7+eBoQ/Fu7lIZx+hVYUsj8efpQwIvOZn+L9ubpkcnwNWB1m8/YoG9gBbaSmXcosdrdI1RZLFw8z4SkhAiUNy8HQmg0sHt4ThI54yzA4mYlJ0UNrG8vOU+XETDgPR8AMDhCnLlF7uScGr7PwAA63ZREkuyw2080EXDnT9eBLtK39t8t+xGJVQI+aBY6KYHwaoFy5lmTjOKgfzkk09w5MiRqMYKIfC///0PDz/8MAvIIFhAMg2GHiNVUWmHliK7fkjR2KtbvtEe7aiLblT6zcRu8qHSR1anTFtl2HrNsi5cbtZR/DGYMm9NebQO1SLrCHpVw/Ko43JbjL9bgyWyMRAmAUVakj0yptGfJDOuM4VRv1NLISGZnOY0YljNbejYpiW5kF9AWfRmq8y0LqAHgT6vVxgFxy1HKGnkj8vbwymv2Rk7SSymJTug2GRBc7tszaPKGEenMzBhGQOZumonRC6dO95kEi/Ltj9a9x3Rgjjipu/SJbkbAAALfx2BvEoSfRlpdMw8XjMUJXqzkU+YsE9+zwvcdGw9PjOSZB1Zr4x5HbHiTqwf80QDfAomEVCEEZ5e67imRgiBPn36NPU0mjUsIJl60+NtSlTJ6SAF3Ko2KBlAN4qRPf4EABx1JyPfGeoqsJnJotHGWgmv9HNqImB11N3apV4SCHaTD6ZM8pH6i0g8mMtkIexsJ6zSQmKSolVRRMJ1PGgJ6ELCL0sHqSnSQmzWjAeGJFn42WrywyPFgv7AUOq0IzlZhhlIK7NfhiL4HWZYCkm0lAwi66E3TYMiq/GUy6Qey6huyNhCKeV+2VfbXECCE5ofqJAi0knbUdLSoJTQer97c3b9d0IL4vUTXwUAvLRzFADguOz9KPaQyB7c7gAAIMtWhv+3a0C165i/YwwAYI87EwBgUTT8Id3fVpPsNqRq8HjpoS7ZQueHfg0AgEu+vR4AMDCVtunSLCj1kdX6X0PeAQBc8d21KPfR9WDxKc/V8RMzcSOOLuz9+/fjjjvuwNKlS+F0OtGnTx+8+uqrGDo0UoxO7axatSrm93Tq1KlO22qpsIBkGIZhGCZhKSoqwimnnILTTjsNS5cuRYcOHfDHH38gIyOjzuscNWpUw02wlcICkgEAjO9NMXRLf5sb83vNeWSt2FtJ1gVbJjC4D1Wv1q0FHr/JsETolsUOdrIYpVlcRskep19aKMxu42/dvZ1mdaFPDiU8HE4PLb1iCrI22ixk1XB7zbCa5TbR9DE3zZljPtJLt9ihmGQcok3WkJQxkY5UN1LtFJdokTWa/EKFX9aENMllSRYv7DKuVQ9POKiSddpvT4bWkRKwCgbS+y4d+TV+LqPC9Fs39jDm5GtLlsfS7nT+2drL2MbtRwBZJBwy0caX0wYr13JRmJq4oe8aAMDmjVdgfzmFGGTZqTTSUU8KTu/ya7Xv/dNJTQL6JZP1sMSfhHZ2svjuLm0DgGrBDutA14VeDkr22u/OMMpGXXQ6xaQOTtoDAHg6bwzGdvw5ZDsezQyHmdsaJioKonRhx7jeOXPmoEuXLli4cKGxLDc3N8a1MA0NC0iGMJOb8a+jHjP6JK9eWntixuBZ82GSWq7jalpH/l898Mj6j3qiDACYdT+kvHq4pED0CwU2NTxA3yT9HCYHZYSWee3GOuzS9aWLUVURcEi3WKXcpqLAECo/FZAA6f/xbKTYadzx7elmZmQrM9Xi3k9xbEqqzxCMqlnGuZoCdwxdOOr1P1OtbpjkMdNd2BoU42GizEOiT++xvusSIGU7HT+96Pni905F1xd3AAD6mqiA5J6r+sBvJeFY3FfOxyvrR7rawr5Hth8rLAYAFo8x8OLQNzFx7T8AAIdcJOaz7GX4s7xdte/p5aAHu0qNjl2Jz2G8lmwlEZ9mdcMsz49CmZL/ryHvYOmfVI/ygzUnAQDeSzoRAJDzuYq7Fj0Vsp3vtvXEruupkP7YNTMA0HWlTIa5lLvp96azHgEAnLl6JifqNCYxJtGUlpaGLLbZbLDJjlHBLFmyBGPHjsXFF1+MNWvWoFOnTpg+fTquu+66Bpk2UzdYQDIAgMruZCVY81ls2bylgz2AzLjt9ixZKMou7gS3j04tl7QeJlvd8Ak15L2qfFQt9CQj2Uw3GV00+oOeUXUxAgAuv+xgYpJdTYJESVrQjQoAVAijYLEuJE3JmiE6Nx6m0i56u7aDezOx+9rbYvr8rQXVQ/tMlJqhpdO+N9tkIW6ZJFNWloScNLohmDVadqg8FSk2d8i6ksxeOGUsnH7DN0lLpPCqKDuG1tt+HR1rzaLAX0jWKfc5JC5MHqDNL5SxX9qDnmB8Dhl/+UcBPDlkQbMeTswWhYlM7utz8NcB5B34vYREY1dHEbok0zG4cN10ABS7/Mqw1wAANx/zOQDgzd9IBOZ7MtDZUWSMA8i7UCATdoal7AJAcZcDsgcCANp3o21+8dWxAIDDw4CBt5H4++lJqgiQ2/MQTvvyFgDAqtMXAACmfn+N4WEoKA8tC6QqAud+/U8AgVjMD09+vk77hYmCGGMgu3TpErL4gQcewOzZs8OG//nnn3jhhRcwa9Ys3H333fj+++9x0003wWazYcqUKfWeNlM3WEAyDMMwDFN/YhSQe/fuDanDGMn6CACapmHYsGF47DFK2BwyZAi2b9+OF154gQVkE8ICkgEQu+VRx1Roga1Q1tyTxZtT7W7DjaxblryaybD86XFvemyjT6hQpZszzUxZs+U+O3zS8qhbKsu9VlilCyzgpqbXylw2OD2Bsj30WqBmdLKV3NbtkiqMeZR4KMNTf19yuwr0epLisSylNGbHw+G1EFsjf9xCxcW7//tp2FJl/UX5mr4/FVUYx0cvx3SkIiWQaa2pxniz4damdaRKq3FpuhvKr3QeqV560ZsCVFwkLVsjaFsmN3DgL2TN0uRVTI+Q8HTOQFkXuhF9v/rFhvj4rQq9RSZALmAAKPXZ0TWJYgr0cJN0sxP/3HQZAOCoLAh+ahsKKzjWsRsm+d38roziVrNspfAK+k5f3WctAODxn8/CntIMAECRDEnQW1/+ftussLmtPuOp8GU/9cVVJ34DILwMWDt7hRHPqYdLjP7iVuPvjeO5lFNDEmsZn7S0tKgKeXfs2BH9+/cPWdavXz98+OGHdZlmGE6nE0IIOBzksdq9ezcWL16M/v37Y8yYMQ2yjZYIC0imXvRZsAfOAVRfD7K+nt3sDROQQEA46r81ow6k1yjfc9RDoqDSZ4XdRK5MnywDo0ExSsLo6K+l/P/2zjxMivJc+3dV9To9PfsGDDLDIosgKmIAlYCIuMWFRDFyNKLGY1RUMHH5jOLuUaNozCc5eBJyOMbERGPUnCjgp6LggoKgQFhkX2aYtadnunt6qarvj+et6mmGpWd6ept5ftfV1/RUV1e93fV21V3Pag9FxapYZlVUUxwabvCWoMMUnXbhBm+XaJ2RZXXYLtyxLfU0jhEPL4SoJILv7mExqZQHEBEdSarKqXB3UIQV+EM25FnpBqDASmV0Ti/fh20tpTHbsEgaip10oTeOmRF20Ox0IiCRGAm7aH5Ehvtx6EQhUg/QwbD4YSpYq6jeE3bTgro72/HtJff10Cfu25xRtAcAsNNfgnxLrDjLVdpxUCsAANT4SAR8Jg0BAIxxHzBvCgc6SHhu8A7E2Lx9MdvQdNksFWScA5TTNRzOiAXkyi6YVIdi0WzAiIOeNa4eHx0aBgBmmMyZK0gEN7QONOerUToqYpXRLs4LxnpGiMv/m/pcHN8Kc1SSVMbnzDPPxNatW2OWbdu2DYMGDeraho7CpZdeipkzZ+Lmm2+Gx+PB9773PVitVjQ0NOC5557Dz372sx7ZT2+DBSSTEFpjExwHSGy1jqS6b1apBvkOEhCGRSqkKabQsIh+d4aQbArmIM9KAsIQlZouoSlId4O5IjkmxxI2LVfGe41YS7ctaCbuGEkbIdVixt+pRp1JSLCLMTmEgAxa6eKRawmiupAudv/6lmJCC7braBZJGsP+gy5i2+/tu0Lyuyt/idP++UsA0Q5BM8opwWVtyyDUBijpwinEv9vSjhH5lHHbEqYbjHbVAq+wAEW7DdExPqXsIFYrVEvQT3lPGFDiQbOP5kKrS1iemxX4ThBJPBExZ+ziBmK/u2c/dB/m8ZP/Rn83XYwtPpEJX083jO1hK7695OHjbmO6fAUA4NSvW+CWY4v933/SPzDnyzkAgOocuiE5xR0rMgHAKRqG1O4oxue3PNnp9Wu+uDHm/12tNIc0VYZWT3OtVfz15rngEFb0qjz6vQ93URLQA99ejjaV1lt4yp877ecna26g7eoS/ud7/3X0D91XSZKAnDdvHiZNmoQnnngCV155JdasWYPFixdj8eLF3RllJ9atW4eFC+n8/vrrr6O8vBxff/013njjDTz44IMsII8CC0gmIbRAAIrwQ9qbSATUeN3ol0/JFEZwu01WTQEZ0WKTaTRd6pRgo+kSCmx0sQl1cGUbgfDG+tYO/xvi01hH1yUUmUKWxGJTMMe0YhodOKrzG2n8csTMGg9VikSc9VaUrRMWU2H8nHYOXcCaRjjw9Ut9T0wa32+Viy6+/ayULOFQ+kPTSegZ3+2hdrd5XIwkjIim4ICf3Iq1XrJcGRZJAIj0FwlVu+lC3uzLMTuY9B+5n7Y70A3/7gJar79470Ha9847O7s+mcRoiThxSi6V1zkkbhI6Vlg4Fiu0vx7z9U2iQsIVw78EAGwPVnRa53i/M0PMGR2nBrlprlW7mzBkJKlPwwux3lOJ7fVkFf/0O3Kvrw4PBQD069+MweJ8YHD3hisQFHESde3UEskoQcbEkqxONOPHj8ebb76J++67D4888giqq6vx/PPPY/bs2d0b6GH4/X643TSvly9fjpkzZ0KWZUyYMAF79uzpkX30RlhAMgzDMAyTOEnshX3xxRfj4osv7sagjs/QoUPx97//HZdffjmWLVuGefPohqWuri6uGM2+CgtIJiEkRYG2dRcAQJ12CgDA9bYDwavJKmS4if0RqxmbaFikjBhEi6yZVknjtRxL2LQ8Gmi6ZCbUmDUlheHSJqumS9WgwNZuxlEaBc3bQtEsP6dwjdf66c7TlquarnHjBCerOqxtsTUqbbVUXLn5x33z5/P5DLLA3vvNjwAA63xVAIA9rYWmJXGXh1yILa1OlBaQtaafk6zSYV1GvZ8slMUuimfrWM+zrJTW820kK5Esa2ah+Xqf0Ucd0B2iMLmDjvHEszb0+GdliKfHRq2It42gv0OfXogzllLMoK9cxDNPITd0IGjF5sseimvba85/Qjx74pjrxYNRZzIiaoK+NjGaRPWbLecAAIL5VgzIoTqh6xuoNV2jh+ZVXVMePD4Ktbh89a0AgH5OO5pDZN2uziXr5EunvWJud/YXVIvQOI/06TjKJLYyTCYPPvggrr76asybNw/Tpk3DxIkTAZA18tRTT03z6DKXvnkFZHqM5eE/mzFOFj8JLUezbAalG5nOEVVBuYuEl+H6MlyhMnRTLBoxkx0zdS1mHGV0uhpCMk/Uj4zocjTppoPwNISJ4bbOtQVRI9ymBTmxwfoH/Xkososeyj5av+40BYVbSKW6DooOGKI4NfTCOL6h3sufV1FmtC5iD8sHeFAoQgbKc+lYt4csZtKDT6Xj3tDuMo+fgVnfU1ajx3YfbTc3t81cdqiNLtKDC5vwnbjpyM+hfRpuxqkf3IUPz3m2Rz8r05nxk/+FA+MoFMHjod+UXfze/K0OVL9Ix2DgqFoAwMfTnknKOOatv8qMV+wo7A4nR8Ree8MONIqs8ZFFFPu4307hMrKkY18T/a4PtNJnO17P7TI7zfWDPrZUJcuFnWx+9KMf4ayzzkJNTQ3Gjh1rLp82bRouv/zyNI4ss2EByfQY1l2ULCGHirG7gSxQZw7aCQCoDeSZ4tAixwo3DZL5miEUZEk34xaNOMqOFsjDybUEzRJAXiNtGoBToYuGYYFsCTlgFe0NC4VYbA6SxSHXGoJXdLSwN5KADBVoCOeQUPH1Fx1S9tOFwlYcmxDQ1xj2Kon3liH0/dWdm2fGpFbmkoXHYYuYNwdGUpSmS6b115gLRvmVPa2FZmb2oVOF+H/1BHiraZ+hMnFjsrMAej49N6yYBVbaxvcG7Ozxz8p05k8TFuO178YDAD4sILPkh3soG1q2aNAK6Pjki1jmRzZegu0+iiEckUuicmNrfwzKoVjaM3OpEcHP/0hJNZFhAajN9JtzVtAxnlC5G0vGR9vZAYAvcuTagQbGGPeHKNZSljSUCtHX307z9JbyDwAAO8JleNc5BgDw6W6adDevveaY3aoOT7aZuPxeMzmsUFjkl33/+WOOsdeQpRZIAKioqEBFRWz87RlnnJGm0WQHLCAZhmEYhkkcLVqP9XjrpZuZM2fiD3/4A/Ly8jBz5sxjrvu3v/0tRaPKLlhAMgljZFlOV2YBABS3C+FaskCGBtIUy7GE0SQsfR2tjMZrhrvasFa1qxbTde2PkBXC0uHMZMRWGm7rPEu7aW0MGxnakoZiW5v5OgC0hSsBkTxquE09fhqXyxpCTStZF8N5NLaCLbJ5QnTWCxd5KblR3TmxdfH6GlKEjo8iCn4Xf2JH/XkUS3ZiAVmjVU2CJyAsvKKkkkXWzLJKFnElMdx/+/cXw3KIDpCRjR2st0MRxt68TaJYvASUXETZtd4gWZw3esjCVBd045ae/rDMEZk1lDKnZxkLxnVe5/fbzgIAbA4MMOOeSyxkARyXH81w3dheCQA44WzK9m4NOjD+RHpu9NouUDr/5haf/t9xjdHg5xtmmT2+G2VyZX/gGwkAuG/UP6HqFJqxpYmspevqB+KFLecCAHa3U2vHI5X4MfjsvP8wnxtZ4X2GLLJA5ufnQ5Ik8znTdVhAMj2GbBM1+kJhDPkrXfw3VpFLwGmNmPGIhpszx3BjShqK7ST0jFqBMnQMcHoARGPb6oJus76gRbSrMApW+yJ2U5AWW33RMYkzVVNYdDeRdNO9tP0gXSD6l9J+DrTko5/o5dwapjgo9/4IXNupJAhaabt7rq0CAGy+4P4ufkO9i2ApHatgPn2fLVP80A/Q97zGSgV+FVmDLyhc/1Yh+i0R2GRR91OEJ+xvLqB18oIoGUAuzQMH6SakbZBminhHE+2rvTjaR9sqXN4n5NJxGufmshuZhNF15kjc9NVPOtz40c3jiilUj+/nG2bBLtHv3ei13RP8auxrx3z9mmGfAwA+aSHxt6WlDJvaKNmm1NbapX1900g1My9ffetxYyl7A9kUA7lkyZIjPmfihwUk02NoIboQSI3NkEvoDt9TS5YlqZ8XqkoX/6AsCn6LC79NjiCginaC4mICAE0i0N2IbXMpIVNwGMJRERYslyVoPlcRzeje6yMRYtSNDKmKuV+LlUToABeJRrsSwZbv6IRfsFfUlGwOQRd3qTv/vaq7X02vZOU7vwAATJpFyRJtO3KgWenK4GuieMeicq/Z9cMQ7r4O9QNrmujOP9xEVsTSE5rMTkGQjT6HEdhyheDcRfNKs8IUpiVuEvbGzcX2QHlPfkwmiRzLeng8oWdkPwNRa2FXWxManWhWT3/qmGO7dNVtnZbFg1Gx4Ief3mIWO+cC5JkHtzLsHiwgmR5jhUon/OnyFbDU0oW++g2yQO49rxD2Krp7NyZde5iERUizwC1a4CnCYmiRVdNimauQeCi0+hAW1kirkWAjhGGhxYcWlSxiLZEcc/09fuqOYwjI9ogVBSJTON9Ff3NEJrcvVIjqKnK91u0ii4O1vg31k6iczLhzqePKnyb0TPeD3oLzEH1/No8TSoiOWZtCx6m90ILSPLIuH9hF7j8lL4zcXPruw+1iNthJzAcjFtNSqQfpRkNSJYwYTMdlax7Nq5xawHoa3WwYSRo5QkAOdtQl42MyGUaVk0rqfFB7IipEhYdRf38IAGATN4frL3r0iO8d9PunxbPiuPb11lm/6f5AAbwx6aWE3p81ZJELuyOHtzI844wzYLPZuJXhcZCPvwrDMAzDMMyxMVzY8TwyiXXr1uHss88GQK0MKyoqsGfPHixduhS//vWv0zy6zIUtkExS0BtFe7saSqoY9K4LNRPJne09QbSlG3oQAFBsbzNd2AdFi7s8axCDRKs8v0auyhwAg+xUqNghYqN8mt1cxyGR5Sos6r255XbTitnUTtZJox4kEI3J2+Ely9jkiu+wpoFi94QREwiGMeMOiuGa4v5Xt7+P3sj5JTcBAPbfTgkI1iOEhwXbbbC6yQLpLKVQBF2XkCNaExYNiE2ECQStZt9ryUahBlZn2EyaElMB4RxAP6wwfa7ItHGJ+Mp4eWnrVPP5LcM/7NJ7mfSx3kNJN3n2drOJQLCdJogi5sCQ1x6HbSPNp389Gm2HqDhpPsn7ad798FNKu+ozlsJkkmHiMB64lWH3YAHJ9DgrtL9Gi4v72sVfGwb9L7kt1RwSi7unk1hrOcOJsyqodt9+XwEAoNQRVSMREVzv12xoipAgLbdS/TarEI39rT5TTG71UwzcF01VZrFy4wLT5M/BgRYSqUUii9ro0W2VVDT6KO5SHUKvNZ3ZH1cWkGt+7An7EvhWeh+SU4jyQhJ6ebsl+EVHEt0iriJ6NHygQIQM1NQUwi56pRsowiSR6wihPSxOSyJx5tITv8WONhL5oX50HJV2q/nexgAdM78oVJ4jB/Hk5gsBUFbt0fhg93AAwGees3Fu0ea4PzeTeqpepiLkjgMWbHmIhGCJI5ost6dVJL25aY55GmlOoNUaIxwNVJ+Iyy2k88PG2s79t5lukKUubG5l2D1YQDJJRauh8hsdJ1oktwAAUPkBicsDkTK0XbIfAPCjfusAAA45jG/9AwEAjaKNWIE1YFojP/MOBQCMdJEVc2XLCOzwUjxTk5/WrypoNsv87GmhC4ymyfAHaBvhiOh+Y422Ksx1kOWi1UPbCOdICCG2pSIjUEgYFm8Q3UfKJAQL6CWj1a3FokXLNgkxb3OFzEQmw3o4vFDEnrbnIjePLMgjBm0EALSp0Qx7XYjK0u8fRLmTLJvGzUa+JZpYtc4z6LjDX3SQWtttqOlvFrZmMgujm42lnH6X8h4Lxv2UsrRbplOh75H9DsEvErM8TSQc3d/QzWToKNVZ7IfojBQqFrG3NfS+qt/+Crtv/nlPf4w+QzZlYXekYyvDc845h1sZxgkLSIZhGIZhEidLLZDcyrB7sIBkkormF4V/99dAV4UFqp2sCXqBcEd/qWDFKGqFpg0hq9bZ+VuRp5BF6e09owEAFYVejC0ki6NR2seoHRfWFOSKupJhBy3b35qPMhdZqVRNZAe3OsyTlz2XLI/DiygOz6/ZEBCZ4XpY1KwM6GjX+GfSETM8oR+5/XLqRIvKK5qQd1iR+FBEgXJYa4qKQi9KHHT8jMLx/RwUkjDEVW+2uzsp5wAAYJN/AEa5awAAp0/cDQD4xluJbc2UHW+4yCts5BZ3yUGzaP2RmLDsPgDAMNFqT43IpvubyRxOfGwhpMGi130DxSpWfhVC3WniWO0mq+G/dg+GdRgde6mFfr/2ZjEPwxImXk1WzM9evcvctmF5VPw0d9RC4YXwK+b8NhokZAur9qTfUpatFkiAWhm2tbVhxYoVmDx5MpxOJ8aPH28WG2c6w1dGJikcfvKdLl9hFhrXGig5xigBkBMIod9fKG5x+XnUh7Z8khcjnSQWJ56wGwDw2b4qU4yMKyaXd5WNkmqGldZimYfeu7yBxGgkokAXLtJ8J7nLW71OKCI5w+iMUmijWKq1jQMxrJC2t24LubzrTwM8mpFRwwCAZBEiO0Dfqc1Dwn3fthLkDqILuaKIuEhHO8JCJLpt9H0PyGmBS5RmMmo37vJRjKNDCeOq0i8AAGv95KL0RpwYm0sdSc527gAA5CsBhISwL3fQPr2ijNND2y+J6QYCAEOeew5nTNoCAFA12tcnW4eKDwQM4dI/GcPQp8lFrTt16I3kih74/0RCVVsEpd+KerJ59Nc7SIa0huLUcmk6oeM936Hv0Tlg7B203Q0vzIPio/fam0X4hVP83yRjxx/TL8S6wn9to+zh/mkeB4CstUA2NjbiyiuvxIcffghJkrB9+3YMHjwYN954IwoKCvDss8+me4gZCQtIJiV0FJTGHT6aPQAA2ZUD9xoSIcP3UuHvP/rPxqVT1wAATnCS4NxTUIiQSHjZ5aN4xxFOypzLV/xmvUiDSFABRCy90a4QAGw2sjYERbLGZg9Z0g7UF8It2uepLrpgTTxlGw6KrjQMYViSJSt9fxYvfWfF651osNDxKKtuMtc3rJEVThJ6/ewtmJxLYm57SHz3gQIAwPi8Xeb33Rwm4f7R/qE4WELBbPnlZLmsstVjiIuEoBH7uKpxCAB0Eo8AoJaEsMND69fV0L5yt5EQlid5zGQsJv0YbSttXgmWAAk850G6yVNa/FBa6bg5I/QblSNFsLTT80Cx8Ei4RCOAVh2Fm+i5SloU0855Evql9E+wiOamvZ7eZ/EDk4ZuT9pn62k+2T0U9ZETAbCATIR58+bBarVi7969GDlypLl81qxZmDdvHgvIo8ACkkkbmrBgSbIMCFEi13sAAANW5uAfwe8BACKVtJ6uSygtIRHij9BF5FCYhMW3vkoEhBvSLgSirkvwiGQYd55IsLBqCIfpYtHoJxe63SFcmSHFzOwcO3o3AODMgu+wNxhfseG+giTTBVnzUniAXEyCL293CLkHyZKz7zpS7mWFrWbppLoAictKhwdfB6oAAO0aHcfT83cDAFrUHHzcQJbBMgdtv7XGja930XEeO40szw45jLPdWwEA/9tMMUvvTn7hqGN25IYwMM9D46gja5Voj46qokZsa+/XtS+B6XEuGH4vAKBfNc0niz+CYDEJPUkXiiMYhCQ6XkGiuZa3ucnM2JeDolRYNZ0L5AhQtMEDAGgZQa8dPNMBm+hOKiJgEHaLBgZ+Cbu82fN7b9JykS9Cfc6q/BpAens6Z6sLe/ny5Vi2bBkqKytjlg8bNozL+BwDFpAMwzAMwyROllogfT6f2cawIw0NDbDb7WkYUXbAApJJOYY723Bl6+GIGaist5EF0LXdA+0ssgToXrJSWVsUKGV05jHKv5RYRAkXxY8vvRQzZ9aA0yWI1tlo9ZILW9ckWB2iKLWwRGp2UVTYoqKunaySZt3ISC4eP/lvPffhewHLw38GAExXZtGCvZTsYtd1aA6y/KjNZG2sabYDOcK6LK4aH4aG4ftl38Vs02hJ2RxxoUUUfd+2T/S01gCUkrmwyEJWyYUbpkH10r52//QXxx3zwKJmVLuo9d1XIZonEcrLwOi8g3h0zJvxfHQmiWi5dKF27hThDxEV1oPiBxwUVkdFBoTnAk46gFJbAFDot+zYRx4KiyjlFSqwQXXRPHHvoffJYQe8VTTfjPwupZ32o4SA/evIGTxRJYvokUIiMoVLB683n3u93qOvmCqyVEBOnjwZS5cuxaOPUutLSZKgaRqeeeYZTJ069Tjv7ruwgGTSj65Bj5CIk2SRWmORoRuzU7iZHI1A3WbKvFVHULLLpy3k7hyftwu1wkWqh+gN1rwgVPFcFT2Xbe5QdLchEYzvFXeYso6tB0i0GG5tb4jvPo+HHqLvSj9Qi8hpwwAAIxfS8VHzc7D/XDou9QGKb3X3a8WWNop9/Nc/af2w0Pzy8FaEg+LAC+3g6t+GcwZSXJpDFuEG7Za4hKNBpctj1hM1Mm99o2guXFW4pguflkmEGa5rAQByGcWjIhwBRHKd2VdXoxsOqBpguK7DIjtGNtei9wLQ29shOYSYFDei1kN0Y2mt1QEji1ZsywUgYhTBd4sYywZ6LZgnmWKybiNVA6iqeQq7f3JPAp86luF/ewQAcOmQb/H02OzK9D4e2erCfuaZZzBlyhR89dVXCIVCuPvuu7Fp0yY0NTVh9erV6R5exsICkkk7uqpCEvFM0IRJQJKguukCYasjC2TYTTFKANDoIUuhs4y6w+wPFaE5QAKhuH+Lue22gCgoHKCpHvbYIbuMi5Eo9eGl13QJsFeShSs/p71nP2QvZIVKHXoMS6QeCsEmLtzwU1yWbFEw6E16fmgKXZCb5FxsVul4OxvExsRhD4YsUPbQxd15EgWqjavYh7CwUNZHSIzC17Xi7nmWdnywj5INbM2i7M9JVL5pZ7gEY7q0Naa7SEIsGvMDmh4ViYY4NP7XO6sM3R8wl0uGBdJqBURCF1QxkUSpMCgyIIu5YiR97a1HYYBiBYOldM5QHWI+1uvwSKLLUSOda1plK4a89jgAYMes+7vxqWMJ1tI+d1SU4qz37wYArDr36YS3mxFkqQVy1KhR+Oabb7Bo0SIoigKfz4eZM2fi1ltvRb9+HB99NFhAMgzDMAyTMNlqgQSoDuTDDz+c7mFkFSwgmbSjazoko0edsEIEy11wFgor4F6yCGh2IDxIxDEJr1R9kCxSVklDULQmLHSSdaPR50KwRWRxqvQGKSLBWksWLq1ItNMrECVc2mWU55EF7eBnAwAAn/+ycx9d5jDEsdNVFdo+qt0pl5C7WgqGABsdv9wD9D0HSiwI6GSFCYwV7kqFrigKgLKvRJmgLylr9sNLh2PcUKoDafRFH3/KDox8gOr6HanXscHwR2idM2a4zGUW0UJ5kJssnJ+1DcWlXf7QTLzMyP0JAApPkYyEBMOtbIlWYDD/inhGaBoQoWW6cX6wWqLeCou4fNntQEBYNK3Cemi4vDUFUIU1soOlU66lOEtnPXkr1P5ivkY0uB3k3ZDDtH7YZYHaSvP1gqEUNvHud89045sgdt9CrRKrX3wWUgmNzShu//mMJ7u93YwgSy2QAODxeLBmzRrU1dVBMzxhgmuvvTZNo8psWEAyaccoCwMAujjxR5wychwUo+bNjXaVQJNwgZWRkMy10An4DPcONJSQSGhX6SKy91ARFCNhxkIXJT2gwEG5FAhW0EmioJjc1t4Wp9lHu3KluOj8sgc/aG9FXNB1VYVsXPwNgaDpQKtIjNpK37fFV4BgIZ16PENpfV8VCQW11YqGk2lZZLjoYuSxm0lT9SLJ6cLSb1Fx+fGTBk546FMAwNYzhiH4TQEAwC50ijdMLtD/PuN3Xfu8TLfQVRW6EHqSMU9kGZJd/KYNgSfioaHp0ZqjYn1dVaHrIl7a+E17vVFhepj72yh2H7uNsOnqNvYtBWk/mssGi0/0xy6iOVqwXTNjJevO6blqi7vm3nX8lbKNLBWQ77zzDmbPng2fzwe32x3TfUaSJBaQR4EFJJMR6JqIaxL/N420wFdH1kVjkqp2HbqF1nOIJJe2CF04XHIQ04r+BQBY1kCtD8cOOoC93gIAQON++gtZR8tpJExtLvp7ahnVFlxy0ZLogH7QYx+t9yOsQ5LFal7w0UKWXElRgFxRHsMQA6qGnBq6sAdKSfT7nKIdojOMYETMAhG3WnxCM/KstL7R+nB540n4+gtKoHrxtKMPzcj4H/zqE1HDltArcib60XoxkqJANxJfDAFntUAXGda6qO8oGZZFXTetjKYFEjDnke6jGwwpxxmNnTbmnyEAIhHTAq4Hg9HXRDykkbwntwlhq6rQbDQnNUV4LSQdstC0zaJ5UdWSp7F7zt3d/CZ6LxKi5/DjrZdJ3HXXXbj++uvxxBNPHLGcD3NkWEAyGYFhhZTzyW2pWQDJKixWInFGswJqKV0gTigk92Otj0TmzlAZHBKJyiG5lBwR1CzIsdBF6fMWuihYbBHMHfURAOC2ER8k9TP1FQyRNsN5TTSJwbAiuXKiViGR2GBt8kPNJetfwXe0zNdfJDsVWCALAenYT4qvbHAbzimkm4NXDlBx+baQHTvnzY97jI5NTgSExVnNoe1/W8PB8SlBNUIcNEpq6YCuaVExIcSfJkSmZLVELZViLUlRTNFnbiMUjrFQxmCxkBXceG7sxxCwxjKjqYFFgSQ63Iga9wjlRitC2EWFIc3Kl84jIWnR0kjHWy+TOHDgAG6//XYWj11EPv4qDMMwDMMwx0HvwiODmDFjBr766qt0DyPr4NsoJuWcZ7s6doHU4T5GuKKsPiBYT1YpwxKgOnTkFVI8nVHou85HMXFhXUF/qwcA0CBKvRwIFJjxkAX59L5RRYdglQ6zUjA9gh4Jm7FopiXI2wrJEVtLU2psgbL/EP0zYhAAIKdWFJE+JMPZRHOgtZKsTnubCzH4hDoAwLYdZDXcc0PX3IebH5+Hk+6lhBrDmrT5jge6tA2mmwj3sxaOQMkTZZg6uJrNGrBGiZ+ObmjDFW1Yti0yJDf95mHUH9W1aFad3iH2FoguB8y6kUfEsGq2B2FpoQniqqFzh8MhI+Kk7YSF9bptSIaZ0DKJDBOHR+Ptt982n1900UX4xS9+gc2bN2PMmDGwGslYgksuuSTVw8sKWEAyKcdwV+sdhaPhqhJio3WwBksrva7a6IykFkYwMN8DAGiP0NRtaqKLycHyQox1UqZuY4iWFVgDCGm0XpGT4qW+l78T/z58ZTI+FiPJnWr36apqdhcyxIBckA/JRa4i3WrU/hNvkAFrmxb9B4CvxQmbEP1dFY4d2fQfnFGfFozfdjhi3iDqHftZC4GpihAHJZfCTfRg0CwybsY9ShIQFPNDCEhIkhlTacwx06UdCkVrRBp1JlXVTNYzXOqSJMaoapDa6TV7PZ0zVJcNVotYr4SEhfNg1+qQ9hWyqYzPZZdd1mnZI4880mmZJElQDw+NYACwgGTSgJEwYyZfyBbTchUZUCxeA8IF9KO1lYqi1LpkJj7sbSmg1UR5no2eCrPY9Ed7qLtJgSsAp5UuVBaZ9uXXuLNMslgeepXiIAHz2EKSoUfCsSt2yHBU/PRa8SbxNlmCrz+JBsVIoPUpuHEDZUF+OygpQ2eSiNYh81o3RZ8Qc4oMiGuzLG4eVXHDISkK0DHxBYCk64CqxyyD1RKNaTSEo3Fusdmg+UWyjSg8Dkmi7XRElAuCxRKNh7Qp4q8FSlgIX5kEpK0FqFr0KwDA7p/9vIvfSC8mi7KwDy/Vw3QdjoFkUo4kS2SFlGTzQiLZrJBsVqhOBapTgXunDFujAlujAotFhcWiwmqNYJ+3APu8BQiFLQiFLZSpG7Bgb10x3ts0Gu9tGo32Nhva22xw2YJwWCJwWCKIaDIimoxNbT1XhoM5AooMKDJ0TacbBV2DZLHSw2aDZLNR9mwoBIRCkA81Qz7UDGutF9ZaL2wHW9BeJKO9SEYoHwjlA/YGBYUuPwpd/nR/OqYbGMf/iOg6tFAIWigEyW6HZLdDdtADuhadM6GweISgh8NRCyIQ45rWVZXCJ1QNUDWyQGo6lQTyBaD7AuSu1jR6hCP0kKWou1tVAVWFFIxACkZgaWyDHAxDDoahhHQoIR3lX7Ri+Kj9GD5qfxK/uezDsEDG80iEJ598EpIk4c477+yRcS9duhRB42alA6FQCEuXLu2RffRGWEAyDMMwDJM4KUii+fLLL7F48WKcfPLJiY7WZM6cOWhpaem0vLW1FXPmzOmx/fQ22IXNpB7D6mjEQmq6GfsoCVdR8aYQdv+ApmeonmKiZFcYrkIq+q1Z6L2BHFEovN4OqYjc1eUlVGA6zxaERdSLCITJAsJFo5PLsrb/BtCh+4jNFk1QMOrx+QIAhDvRqA0pXouU5cPZKI5ZGc2Twq06Pn6g+50/mPSyPPQqAOCCytuhNXtooQhj0UOhqNtZuJqNBCyloMB0f8t5ueb2NC+dAyRHB/vHUWLU9HCkUzHyjiEUpktdILlc0a42hltbliAJt7mzltzbEZcNuspxkIfT1RhIrze2GYDdbofdfvQwo7a2NsyePRsvv/wyHnvssUSGGoOu6zHFww3279+P/Pz8HttPb4MFJJNyDLFgomtmsLwm4o5C+RbkHKALRNnXJEB2XWVBa4CER6hdTF2f+CsBuiqSLoK0rTa7DYEI7etAbWFyPgxzRIwLsyTL0EWskWTU93M6zKLOZlyaiDuz7PLDUl4NACjcQu8L5bKjpDegt7dHs/SN468o0Yx9iX6rco4QEHYbZKNupNFZJhyBbCTZGIk4oHlGT6SY9ek1ET9p3MCEwtHKAMZrxv+6Br1cxGEbiTt2K8L5NE/9FbSNsEvG2nOe7ca30MvpYgzkwIEDYxYvWLAADz300FHfduutt+Kiiy7Cueee2yMC8tRTT4UkSZAkCdOmTYPFEpVEqqpi165dOP/88xPeT2+FBSSTcgxxYV44dC0qIHyiPM+pNqhCW+yfItqNtWlo99PFwyhEK2t0AVBzI+ZdrT9A6x+S3PDup8LkHOieWjpae8yLu/irh0LRAs5CVGoiA1fOz4McoQPZNIq2se1+zp7uDUiSDB1HKPRtWAgNEWeIwGCocwJMJNJBcArxJ8uxRcI7bkPXolngcofEHS2aZAMgWvbHajXFp9RM3ZQig8vNYK+2AeImdWy0RSLTgS4KyH379iEvL89cfCzr45///GesW7cOX375ZWJj7ICRib1+/XrMmDEDublRS7fNZkNVVRV++MMf9tj+ehssIBmGYRiGSZiuurDz8vJiBOTR2LdvH+644w4sX74cDocjwVFGWbBgAQCgqqoKs2bN6tFt9wVYQDKpx6i9ZrinIhFzmeHCBoDwSLI+RHzkNlKcEegeshjY62m99goRL+W1QM0na5baKMqBrM/B7ifZepUOlgX+BwBwfslNIuYRlHkNRK1FHZAGVQIA2oYVwNZCx3Hb/b9I/kCZlPFu/W8xw0XlmKQOc0ByOmPWM2MiIxHT5W1mWisKlnmX4HDOL/opPRE1H00LuNUCXVi3TaujopjWSClH7FtYLHW7BRCtDOF2mdv39aPzTkSsrgU5/vGIJKmMz9q1a1FXV4dx48aZy1RVxccff4zf/OY3CAaDUJTuH5Of/IRitkOhEOrq6jqV+DnhhBO6ve3eDAtIJuUY/a6jC2RAuKgsbSQygiV2SOI2tX8lNaBt8TsQFJ6pdplO6M4DImYyTwe02G4UrpoMKDbWx5GczpiLPwBI5SVAQ7NYJtza4l7C5o1gx0845rE3ckHl7aYrWpI6hDMY7mnx1yg8L9msZrjLey2/P+a232t6mfZR/rOYbaG5xXSNm/tUVUjFh8VEt4rEnCavKTTNxD4tF+1FdE6J5Ar3dpDn6JGQdL1zjc2jrNcVpk2bhm+//TZm2Zw5czBixAjcc889CYlHANi+fTuuv/56fPrppzHLjeQaLiR+ZFhAMilj+pkU9GwxTtDGSURVzRhIuITFQZMQ9tLzGg/9ld1hoFYITaFJjM5lSrsE1Sq2a6Mf+5o/3JukT8LEi16cbwqEcAXdOHiGOVGwnWKNZJF1f2g8/b/h12wx7q3oxfnwVVPSRO66A2KhFs3INrKrDQtkWRHe+/bxLu3j3UOLAAAXDKOORVJhPrT6Rnou2ihKsmQWHtedQiR23IhdxEUK8SoHQrD4qHOScZOaypjq6leeBADkFfix4eJHU7bfbpEkC6Tb7cbo0aNjlrlcLhQXF3da3h2uu+46WCwW/OMf/0C/fv2OmJHNdIYFJJMyIrnkirYYJ+ggWRs1bytk0XtUddFrufuANpkuJEYvbE2XzDh4a6sk/tL/3yxk4ZGJvLe+c2swpm/y3oZHMWP8w/SPS/iC8114t4siMR7e3f60+fyC0pvpSSGVY9Fr6oB28moY1kmzakBBHnRhjdQHUd/1ppPzoYRJ8YRLjtFPO0mcUk3Fyn9QuiHl++4q2dTKsCPr16/H2rVrMWLEiHQPJatgAckwDMMwTOKksJXhRx99lPhGBKNGjUJDQ0OPba+vwAKSSRmGu1IrEZaADVtoudMZLZ0hAthtrTqcNWRlDIs6rnqrAmcdPVeFEVPnUCSGyRqWfbkg5ft8t/63Mf9fMPI+6LX1AACthQpZy25yb+t5LugF9LxuQgEAoPzjBuy9tAQAsOeGu1Mx5BjePPP/AgB+s+UcPLn5QgDAfaP+mfJxxEO2WiCfeuop3H333XjiiScwZswYWK2xtYrjyRTvi7CAZFLChGX3wWkpAAA0n0Q/xsJNorCvqkIS7mzFQxm7rhorHM0iU9IIlbRKpmBURReKQBHHqjAM0wU0HehfDgCQjThskejV3t+Nlmo6L0nCWx0pciF3X/oVz7Nrp+MnYz8HAPzXtrMBAKWWVpQqJIJHF65P19CipNAC2ZOce+65AChZpyOcRHNsWEAyKaHQ6Uf7vSQSWz+kki2FZocIG3RdlNhopOxcuwyEi6mMhqVFlOGwyFBz6OQeKhAxk1Yup8EwTPyEK/LMlqmGx0NpprhHe60Pnn+jpK/q34t2qWV2Mws7nQy9Zh0m7ySvzc5QGQBA1SUciFBGeeKpJImTrRbIDz74gBNnugELSIZhGIZhEidLLZBTpkxJ9xCyEhaQTEq4ut8XUMRt5+IvZ9LCDm3HJCPmJCLamjV5zb6kUoh8STos0GzkupZDtK0vl8xPxfAZhuklvL/y/5jPp5z/FADAaqXzyorVv0T1i9TjOkBebnz26l2pHeBReHjXWtSrFP6zsnk4AOCsgu14v3EUAGBGadqGFkOmWRfjobq6GnPmzMF1113HRcO7AAtIJiVMydmDv7WeBABoPIkyYAZ8IUp5qGq0W4RAkiXIdU0xy9478GLyB8owTJ/ho/fu6bRs11whGOemeDBH4fz86wEAN6wrxBdtQwEAA5weAMBvtk7Bt5dQaSSv15uW8cWg69H6vsdbL4OYP38+/vCHP+CRRx7B1KlTccMNN+Dyyy8/Zm9uhgUkkyIGKG580EA1tvJ3k5VRD4fN183oE1HoUQ9HACEqpdxoSzGGYZhkMfuLn5rPV20cBgBw7bBi8xPpqzN79qdUemK9bxAG2qko+r5gMQCY4jFTyNYYyLlz52Lu3LnYsGEDfv/73+P222/HLbfcgquvvhrXX389TjvttHQPMSNhAcmkjLYwWR41S2ywsqQo0CPkpjZ75MqyeZf6LlseGYZJATY5gk92DQEAlHxOYTWN49KTgXvH1z8GAGg61TH734/H4YQxBwEAH037VVrGdDwkFZDiKK0mZWhS89ixY/HCCy/gV7/6FV566SXcc889WLRoEUaPHo077rgDc+bM4WSbDrCAZBiGYRgmcbI0icYgHA7jzTffxJIlS7BixQpMmDABN9xwAw4ePIj7778f77//Pl599dV0DzNjYAHJpIS9kVY0+MgVXVpDfa+NnrfQ9Wj/W8MSabNBN3pmMwzDpIDVewbDMDCFqT07yj6TgZtTO46x/3gAgXZKjsl3UW3ckhENGWt5NMhWF/a6deuwZMkS/OlPf4KiKLjmmmuwcOHCmNaG5513HiZPnpzGUWYeLCCZlPBm6xjzxOyrpDpr+Ztp+um+ACSrmIrGSoqMZc3/nephMgzTh9n2owcw9QNKojn0fbqZXXPZQynb/9h/PAAA0D8oQvAkihFvPJgDANh5e2Zkgx+TLE2iGT9+PKZPn45Fixbhsssu69SJBqB2h1dddVUaRpe5sIBkUkJNKB/BEE233HbRttCwOipyZ2tjKAyGYZhU8+E5z6Z8n2PephaP7ZuLAAA2KyCFKJgwK4SjIFstkDt37sSgQYOOuY7L5cKSJUtSNKLsgDsJMwzDMAyTOHoXHhmELMvYv3+/+f+aNWtw5513YvHixWkcVebDFkgmqVy++lYAQLHdhYCH6j66N9YDEKV6ICyRRjykKC7+XsvvUzxShmGY1GKcH0eV0nnPfe4eAMD7m0ZmnMiKh2y1QF599dW46aabcM0116C2thbTp0/HSSedhFdeeQW1tbV48MEH0z3EjIQFJJMU5nw5BwBQH6D2CDtfG4oiUStcbxAFwkUcjK6qZh1IFo4Mw/QVdjaTy/qcyu0AgElu+nvp2evwg8HfpG1c3SZLYyA3btyIM844AwDwl7/8BaNHj8bq1auxfPly3HzzzSwgjwILSCYpLBlPsSKDfvc0ACDXCVh9h8U+hkL0vyxDF5bH8/NIeL7n5VgThmF6NxsufhQAcNb7dwMAPtg/LGZ5tpGtFshwOGx2nXn//fdxySWXAABGjBiBmpqadA4to2EBySSFU25bCADIKaRstuItEWhKNMMaQLTrTCjUIftaSek4GSaVnDP9P7DzCprju2/6RZpHw2QKq859Ot1D6BmytA7kSSedhN/+9re46KKLsGLFCjz6KAn4gwcPori4OM2jy1w4iYZhGIZhmIQxLJDxPDKJp556Cv/5n/+JKVOm4Mc//jHGjh0LAHj77bdN1zbTGbZAMkkhLNpXOxvob86uFkgBclnrQfoLUbpHstlMC+R7TS+ndJwMk0rs39WhfFUl/XNTesfCMD2OptMjnvUyiClTpqChoQFerxeFhYXm8ptuugk5OTlpHFlmwwKSSQqBfnSCkMMkDLUcGyQ7ubOlZg/9Nfpeu5x4d/fClI+RYVLNu7ueS/cQGCZ5ZKkLGwAURUEkEsGqVasgSRJOPPFEVFVVpXtYGQ0LSCYp7LxzPgDgtH8nYejvn4PmYRT7VblcWB5ryTypFebFvd3pZz1O2+tH3WxW/zV7iuwyDMP0ZiTEmUST9JF0DZ/Ph7lz52Lp0qXQhGdMURRce+21ePHFF9kKeRQ4BpJhGIZhmMQxyvjE88gg5s+fj5UrV+Kdd96Bx+OBx+PBW2+9hZUrV+Kuu9hIcTTYAskkFUcz3c2F3DL8lfR83wUFAIB+n1LZBIsv/raFbQPJ8ugv53sfhmGYTCJby/i88cYbeP311zFlyhRz2YUXXgin04krr7wSixYtSt/gMhgWkExS+fQvdPf2/R88g+IN5ML2nOcDANSqlGnT/xPNdE2vWHX/Mbf32Z/4bpBhGCYjydIYSL/fj/Ly8k7Ly8rK4Pf70zCi7IAFJJMSgnky7C101nB+QcJRFobHmrNcCLvpefWLzwIAds1locgwDJNNSLoOKQ73dDzrpJKJEydiwYIFWLp0KRwO8nIFAgE8/PDDmDhxYppHl7mwgGRSwud/jArCyZc+AwCw11Nvw4ZTXfCd3A4AKCluTf3gGIZhmMTRxCOe9TKI559/HhdccAEqKysxduxYSJKE9evXw+FwYNmyZekeXsbCApJhGIZhmITJVgvkmDFjsH37drzyyivYsmULdF3HVVddhdmzZ8PpdKZ7eBkLC0gm5Xz8FrdwYxiG6XVkaQzkxx9/jEmTJuGnP/1pzPJIJIKPP/4YkydPTtPIMhtOZWUYhmEYJnGytIzP1KlT0dTU1Gl5S0sLpk6dmoYRZQcsIBmGYRiGSRhJ0+N+dIUnn3wS48ePh9vtRllZGS677DJs3bq1x8at6zokqXN588bGRrhcrh7bT2+DXdgMwzAMwySMpNEjnvW6wsqVK3Hrrbdi/PjxiEQiuP/++3Heeedh8+bNCQm8mTNn0ngkCddddx3sdrv5mqqq+OabbzBp0qRub7+3wwKSYRiGYZjEidc93UUX9nvvvRfz/5IlS1BWVoa1a9cmFJ+Yn58vhqPD7XbHJMzYbDZMmDChU1wkE4UFJMMwDMMwidPFJBqv1xuz2G63x1gBj0ZLSwsAoKioqIsDjGXJkiUAgKqqKvz85z9nd3UX4RhIhmEYhmESxijjE88DAAYOHIj8/Hzz8eSTTx53H7quY/78+TjrrLMwevToHhn3ggUL4HK5UF9fj1WrVmH16tWor6/vkW33ZtgCyWQl0+UrYv5fof01TSNhGIZhAHTZhb1v3z7k5eWZi+OxPt5222345ptvsGrVqm4P83D8fj9uu+02LF26FJpGAZqKouDaa6/Fiy++iJycnB7bV2+CLZAMwzAMwySOjmg3mmM9hMbMy8uLeRxPQM6dOxdvv/02PvzwQ1RWVvbYsOfNm4eVK1finXfegcfjgcfjwVtvvYWVK1firru4re7RYAskkzUcbnUEopbH6fIVbIVkGIZJI8nqRKPrOubOnYs333wTH330Eaqrq7s7xCPyxhtv4PXXX8eUKVPMZRdeeCGcTieuvPJKLFq0qEf311tgAclkNUcSlQzDMEwa0BGnC7trm7311lvx6quv4q233oLb7UZtbS0AyqLuiVaDfr8f5eXlnZaXlZXB7/cnvP3eCgtIJmPpijhk6yPDdA+OJ2Z6jCSV8TEsgB0thABlUV933XVd2taRmDhxIhYsWIClS5fC4XAAAAKBAB5++GFMnDgx4e33VlhAMgzDMAyTOBqAzg1djrxeF9CT3PrwhRdewPnnn4/KykqMHTsWkiRh/fr1cDgcWLZsWVL3nc2wgGQykuNZH9lKwiSTo82/vjDveuK3d6x4Zab3kqwYyGQzevRobN++Ha+88gq2bNkCXddx1VVXYfbs2T3iIu+tsIBk0g7HMTLppCvzz1g3U8RQOn473d1ntvzOM+XYZiVJcmGnAqfTyV1nuggLSIZh+gQ9KWB6YlvdFSrZIsSylUy7ScgqslhAbtu2DR999BHq6urMWpAGDz74YJpGldmwgGTSzgrtr3xRZI5JVxI9smUuxfOZsuWz9Ea6+t2z4ETWCsiXX34ZP/vZz1BSUoKKigpIUjSQU5IkFpBHgQUkwzAMwzCJk6QkmmTz2GOP4fHHH8c999yT7qFkFSwgmZSRTrcfQySjZMuxjmt3th/PPOmNlrne+Jn6Ej39O8hGsjWJprm5GVdcwb+/rsICkkkKyboYcnzSkcnUxAYWRQzTh6pKZKkL+4orrsDy5ctx8803p3soWQULSIbJMliUMUzvotdYLzUdkOIQh1r6BeSvf/1r8/nQoUPxwAMP4PPPP8eYMWNgtVpj1r399ttTPbysgAVkL6I7wqJjL+mO/6dq/8yR4e+SYZisI4sskAsXLoz5Pzc3FytXrsTKlStjlkuSxALyKLCAZBiGYRimB4hTQHa1GXYS2LVrV7qHkPWwgOwBOlqL0uFuSMRadfh7493W4ZZLJnH4u2QYxiCrXNcGWWSBPBpG28SOpXyYI8MCMk7ivbgnSwQc62SSDjHHYqdr8PfFMEy8ZKV4BABVBXT1+OtpcayTYn73u99h4cKF2L59OwBg2LBhuPPOO3HjjTemeWSZS58QkL3h4t0bPkNPwtnYDMNkO73u/JWlFsgHHngACxcuxNy5czFx4kQAwGeffYZ58+Zh9+7deOyxx9I8wsykTwhIhmEYhmGSjKYjrvjGDMjC7siiRYvw8ssv48c//rG57JJLLsHJJ5+MuXPnsoA8Cr1OQLKlrm+RyeUveC4yDHMsep0nJUstkKqq4vTTT++0fNy4cYhEImkYUXaQsQKSL75MohxpDvX0iZrnKcMw3WGF9lfz/NFrhKSOOAVk0kfSJf7t3/4NixYtwnPPPRezfPHixZg9e3aaRpX5dElAXpp/LSwSFdhM1kTnCzKTTBKZX5x5zjBMT3Gk80gi55aIHk5kOD1DllogAUqiWb58OSZMmAAA+Pzzz7Fv3z5ce+21mD9/vrne4SKzL9NtCyRfRJm+Bs95hmGYY6BpALQ418scNm7ciNNOOw0AsGPHDgBAaWkpSktLsXHjRnM9Lu0TS8a6sBmGYRiGySKy1AL54YcfpnsIWQkLSIZhGIZhEidLBSTTPVhAMgzDMAyTOFlaxofpHiwgGYZhGIZJGF3XoOvHj2+MZx0m82EByTAMwzBM4uh6fNZFdmH3ClhAMgzDMAyTOHqcLmwWkL0CFpAMwzAMwySOpgFSHO5pdmH3ClhAMgzDMAyTOGyB7FOwgGQYhmEYJmF0TYMehwWSk2h6BywgGYZhGIZJHLZA9ilYQDIMwzAMkziaDkgsIPsKLCAZhmEYhkkcXUdcvbBZQPYK5HQPgGEYhmGY7EfX9Lgf3eGll15CdXU1HA4Hxo0bh08++aSHPwHTFVhAMgzDMAyTOLoW/6OLvPbaa7jzzjtx//334+uvv8bZZ5+NCy64AHv37k3CB2HigQUkwzAMwzAJk0wL5HPPPYcbbrgBN954I0aOHInnn38eAwcOxKJFi5LwSZh46FIM5KXzZsBpdyZrLAzDMAzDdINAMICPFr6V1jFE9GBc1sUIwgAAr9cbs9xut8Nut3daPxQKYe3atbj33ntjlp933nn49NNPExgxkwhxCUibzYaKigrMW3hLssfDMAzDMEw3qKiogM1mS/l+DY2wqvafcb8nNzcXAwcOjFm2YMECPPTQQ53WbWhogKqqKC8vj1leXl6O2trabo2ZSZy4BKTD4cCuXbsQCoWSPR6GYRiGYbqBzWaDw+FI+X67oxF0XYckSTHLjmR97Mjh6x9pG0zqiNuF7XA40jIxGYZhGIbJbJKpEUpKSqAoSidrY11dXSerJJM6OImGYRiGYZiMxWazYdy4cVixYkXM8hUrVmDSpElpGhXDhcQZhmEYhslo5s+fj2uuuQann346Jk6ciMWLF2Pv3r24+eab0z20PgsLSIZhGIZhMppZs2ahsbERjzzyCGpqajB69Gj885//xKBBg9I9tD6LpOvcU4hhGIZhGIaJH46BZBiGYRiGYboEC0iGYRiGYRimS7CAZBiGYRiGYboEC0iGYRiGYRimS7CAZBiGYRiGYboEC0iGYRiGYRimS7CAZBiGYRiGYboEC0iGYRiGYRimS7CAZBiGYRiGYboEC0iGYRiGYRimS7CAZBiGYRiGYbrE/weyHrelRwyw8gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "mesh0 = '/glade/campaign/cesm/cesmdata/inputdata/share/meshes/ne30pg3_ESMFmesh_cdf5_c20211018.nc'\n", + "ds0 = ux.open_dataset(mesh0, gppfile)\n", + "ds0['test'] = (ds0.GPP)*0+1\n", + "\n", + "mesh1 = '/glade/campaign/cesm/cesmdata/inputdata/share/meshes/fv0.9x1.25_141008_ESMFmesh.nc'\n", + "fv_g17_file = '/glade/derecho/scratch/oleson/ANALYSIS/climo/ctsm53n04ctsm52028_f09_hist/ctsm53n04ctsm52028_f09_hist_annT_1850.nc'\n", + "fv_g17 = xr.open_dataset(fv_g17_file)\n", + "ux_g17 = ux.open_dataset(mesh1, fv_g17_file)\n", + "\n", + "#CLM output already has area masked\n", + "fv_cam_file = '/glade/campaign/cgd/cesm/CESM2-LE/atm/proc/tseries/month_1/AREA/b.e21.BSSP370smbb.f09_g17.LE2-1301.020.cam.h0.AREA.209501-210012.nc'\n", + "fv_cam_area = xr.open_dataset(fv_cam_file)['AREA'].isel(time=0)*1e-6 # convert m2 to km2\n", + "fv_cam_area.attrs['units'] = fv_t232['area'].attrs['units']\n", + "\n", + "# Plot the two masks\n", + "fig, axs = plt.subplots(nrows=2,ncols=1,\n", + " subplot_kw=dict(projection=ccrs.PlateCarree()),\n", + " figsize=(8,7))\n", + "\n", + "# axs is a 2 dimensional array of `GeoAxes`. We will flatten it into a 1-D array\n", + "axs=axs.flatten()\n", + "\n", + "fv_g17.GPP.isel(time=0).plot(ax=axs[0])\n", + "axs[0].set_title('f09-g17 mask')\n", + "\n", + "fv_t232.FPSN.isel(time=0).plot(ax=axs[1])\n", + "axs[1].set_title('f09-t232 mask') ;\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "ea20b3bd-f303-43c6-bf13-b7d7e23db4bf", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPAAAAFICAYAAADeYgC8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6JUlEQVR4nO3deXwTdf7H8Xd6cgcoQqlUBOUQwQsFiwcoCKiIiIqK28VjwV1ckEvFa2VdAQEFXG9RxJ/i4q6KynoAKuLBpSi6iuJBQRAqHrUVBFqS+f1RE5M2bTPTJDPpvJ4+8pBOvt/vfDMzST7zzffwGIZhCAAAAAAAAIAjpdhdAQAAAAAAAABVowEPAAAAAAAAcDAa8AAAAAAAAAAHowEPAAAAAAAAcDAa8AAAAAAAAAAHowEPAAAAAAAAcDAa8AAAAAAAAAAHowEPAAAAAAAAcLA0uysAAAAi27dvn0pLSy3lzcjIUL169WJcIwAAALhJbeJRiZg0lmjAAwDAgfbt26d2bRupcJfPUv7s7GwVFBQQMAEAAMCS2sajEjFpLNGABwCAA5WWlqpwl08F69uqSWNzM16U/OJXu+5bVVpaSrAEAAAAS2oTj0rEpLFGAx4AAA7WsFH5wwyfEZ+6AAAAwH2sxKMSMWmssYgFAAAAAAAA4GD0wAMAwMH8MuSXuZ8vzaYHAAAAqmIlHg3kQ+zQgAcAgIP55ZffQh4AAAAgFqzEo4F8iB0a8AAAcDCfYchnmPv10mx6AAAAoCpW4tFAPsQOc+ABAOBggSELZh9mvfXWWzrnnHOUk5Mjj8ej559/vsq0V111lTwej+bOnRu2ff/+/RozZoxatGihhg0bavDgwdq+fXtYmqKiIuXn58vr9crr9So/P18///xzWJpvvvlG55xzjho2bKgWLVpo7NixKi0tNf2aAAAAUHtW41GzMSnxaPVowAMAwMH8MuQz+bDSgLdnzx4dffTRuvfee6tN9/zzz2vt2rXKycmp9Ny4ceO0ePFiLVq0SO+88452796tQYMGyefzBdMMHz5cGzZs0KuvvqpXX31VGzZsUH5+fvB5n8+ns88+W3v27NE777yjRYsW6dlnn9XEiRNNvyYAAADUnpV41EpMSjxaPYbQAgAAnXnmmTrzzDOrTfPtt9/qr3/9q5YuXaqzzz477Lni4mI9+uijeuKJJ9SvXz9J0pNPPqnc3Fy99tprGjBggD777DO9+uqrWrNmjXr27ClJmjdvnvLy8rRp0yZ16tRJy5Yt08aNG7Vt27ZgUHbXXXfpsssu09SpU9WkSZM4vHoAAADYjXi0evTAAwDAwRI1hLbGevj9ys/P17XXXqsjjzyy0vPr169XWVmZ+vfvH9yWk5Ojrl27atWqVZKk1atXy+v1BoMlSTrxxBPl9XrD0nTt2jXsF9UBAwZo//79Wr9+fcxfFwAAAKqXqCG0NdbD5fEoPfAAAHCw2ixiUVJSErY9MzNTmZmZluoxY8YMpaWlaezYsRGfLywsVEZGhpo1axa2vVWrViosLAymadmyZaW8LVu2DEvTqlWrsOebNWumjIyMYBoAAAAkTm0XsYhVTOr2eJQeeAAAOJjf4kOScnNzg5Pzer1eTZ8+3VId1q9fr7vvvlsLFiyQx+MxldcwjLA8kfJbSQMAAIDEsBqPxjImJR6lBx4AAI4WmATYbB5J2rZtW9gcHVZ737399tvatWuXDjnkkN/34fNp4sSJmjt3rrZs2aLs7GyVlpaqqKgo7FfPXbt2qVevXpKk7Oxsfffdd5XK//7774O/cmZnZ2vt2rVhzxcVFamsrKzSL6EAAACIPyvxaCCfFJuYlHiUHngAADiaz7D2kKQmTZqEPaw24OXn5+vjjz/Whg0bgo+cnBxde+21Wrp0qSSpe/fuSk9P1/Lly4P5du7cqU8++SQYMOXl5am4uFjr1q0Lplm7dq2Ki4vD0nzyySfauXNnMM2yZcuUmZmp7t27W6o/AAAArLMaj8YyJiUepQceAACQtHv3bn311VfBvwsKCrRhwwY1b95chxxyiLKyssLSp6enKzs7W506dZIkeb1eXXnllZo4caKysrLUvHlzTZo0Sd26dQuuAnbEEUdo4MCBGjlypB566CFJ0qhRozRo0KBgOf3791eXLl2Un5+vWbNm6aefftKkSZM0cuRIVqAFAACow4hHq0cDHgAADhY6f4iZPGa9//77Ou2004J/T5gwQZI0YsQILViwIKoy5syZo7S0NA0bNkx79+5V3759tWDBAqWmpgbTLFy4UGPHjg2uDjZ48GDde++9wedTU1P10ksvafTo0TrppJNUv359DR8+XHfeeaeFVwUAAIDashKPBvKZQTxaPY9hWFhKBAAAxFVJSYm8Xq8+2NhKjRqbm/Fi9y9+HdflOxUXF9NrDQAAAJbUJh6ViEljjR54AAA4mN8of5jNAwAAAMSClXg0kA+xQwMeAAAO5pNHPplbrt5segAAAKAqVuLRQD7EDg14AAA4GA14AAAAsBMNeM5gfhAzHG3VqlWaMmWKfv7550rP9enTR3369El4nRLhiy++0KRJk9S9e3c1bdpUzZs310knnaRnnnkmYvpdu3bpsssuU4sWLdSgQQPl5eXp9ddfr5SutLRUf/vb39SuXTtlZGSobdu2uuGGG7R3796wdFu2bJHH44n4WLRoUdSvI5p6lZSUaOrUqerTp4+ys7PVqFEjdevWTTNmzNC+ffui3pck3XPPPercubMyMzPVrl07/f3vf1dZWVlYmu3bt2vcuHHq3bu3mjZtKo/HE/UEogGbN2/W0KFD1bRpUzVq1EhnnHGGPvjgg4hpFy1apGOOOUb16tVTTk6Oxo0bp927d7t+XwAAAAAA96IBr45ZtWqV/v73v0dswLv//vt1//33J75SCbBs2TK99NJLOv/88/Wf//xHCxcuVIcOHXThhRfqtttuC0u7f/9+9e3bV6+//rruvvtuvfDCC2rVqpUGDhyolStXhqW95JJLNGvWLI0aNUovv/yy/vSnP2n27Nm66KKLItZjzJgxWr16ddjjjDPOiOo1RFuvb775RnPnztVxxx2nhx9+WC+++KIuuOACTZkyRYMGDVK069JMnTpV11xzjYYOHaqlS5dq9OjRmjZtmq6++uqwdF999ZUWLlyojIwMnXXWWVGVHer777/XKaecoi+++ELz58/Xv//9b+3bt099+vTRpk2bwtIuXLhQl1xyiU444QS98soruvXWW7VgwQINHTrU1fuCu/kNj6UHAAAAEAtW41Fi0hgzUKfMmjXLkGQUFBTYXZWE+v777w2/319p+9lnn200aNDA2LdvX3DbfffdZ0gyVq1aFdxWVlZmdOnSxejRo0dw2+rVqw1Jxl133RVW5rRp0wxJxrJly4LbCgoKDEnGrFmzLL+GaOu1e/duY/fu3ZXyB87922+/XeO+fvjhB6NevXrGqFGjwrZPnTrV8Hg8xqeffhrc5vP5gv9+7733DEnGY489FvXruvbaa4309HRjy5YtwW3FxcVGixYtjGHDhgW3HThwwGjdurXRv3//sPwLFy40JBkvv/yya/cFdyouLjYkGSs/OdhYvzXX1GPlJwcbkozi4mK7XwYAAACSVG3iUWLS2KMHXh0yZcoUXXvttZKkdu3aBYdwvvnmm5IqD6ENDPucNWuWZsyYoUMPPVT169dXnz599MUXX6isrEyTJ09WTk6OvF6vzjvvPO3atavSfp9++mnl5eWpYcOGatSokQYMGKAPP/wwES85qEWLFvJ4Krfu9+jRQ7/++qt++umn4LbFixerU6dOysvLC25LS0vTH/7wB61bt07ffvutJOndd9+VpEq9zgYNGiRJevbZZ2P6GqKtV8OGDdWwYcNK+Xv06CFJ2rZtW437evXVV7Vv3z5dfvnlYdsvv/xyGYah559/PrgtJaV2HxOLFy/W6aefrrZt2wa3NWnSREOHDtWSJUt04MABSdKaNWu0c+fOSnW68MIL1ahRIy1evNi1+4K7+ZRi6QEAAADEgtV4lJg0tjiadcif/vQnjRkzRpL03HPPBYdwHnfccdXmu++++/Tuu+/qvvvu0yOPPKLPP/9c55xzjq688kp9//33mj9/vmbOnKnXXntNf/rTn8LyTps2TZdccom6dOmif//733riiSf0yy+/6JRTTtHGjRtrrPOBAweiehhRDgutaMWKFTrooIPUsmXL4LZPPvlERx11VKW0gW2ffvqppPL57yQpMzMzLF3g748//rhSGXfccYcyMjLUoEEDnXzyyXrxxRejrmu09arKG2+8IUk68sgjo9qXJHXr1i1se+vWrdWiRYvg87W1d+9eff3111W+rr1792rz5s1hdaqYNj09XZ07d65UJ4/HE9YgXVf2BVRkWBiqYDBcAQAAADFiJR4lJo09VqGtQ9q0aaNDDjlEknTsscfq0EMPjSpf06ZN9fzzzwd7Wv3www8aN26cOnfurBdeeCGY7vPPP9fcuXNVUlKiJk2aaNu2bbr11lv117/+Vf/85z+D6c444wx16NBBf//73/X0009Xud8tW7aoXbt2UdVxxYoVphfgeOSRR/Tmm2/q7rvvVmpqanD7jz/+qObNm1dKH9j2448/SpK6dOkiqbwnXmg933nnnbB0Unmj3siRI3XGGWeodevW+uabb3TPPffo3HPP1bx58yo1fEYSbb0i+fjjjzVz5kydd955ERuVIu0rMzMzYk++5s2bV7svM4qKimQYRlSvK/D/qtJu2bIlbFtqamrYea0r+wIqYhVaAAAA2IlVaJ2BBjzorLPOChsmecQRR0iSzj777LB0ge3ffPONunbtqqVLl+rAgQP64x//GBwuKEn16tVT7969tWLFimr3m5OTo/feey+qOnbq1CmqdAGvvPKKrr76al1wwQXBXomhIg23rfjcmWeeqcMPP1zXX3+9WrVqpRNOOEFr1qzRjTfeqNTU1LBj1rp1az388MNh5Vx44YXq2bOnJk+erMsuu0xpaWkyDEM+ny8sXVra72/DaOpV0ZYtWzRo0CDl5ubqkUceCXsu9LxI5Q1RgXKs7MsqM/uqKm3F7RVfW13ZFwAAAAAAFdGAh0o9gzIyMqrdvm/fPknSd999J0k64YQTIpZb09xpGRkZOuaYY6KqY2jvp5osXbpUQ4cO1RlnnKGFCxdWaiDJysqK2MMsME9e4HVnZGTolVdeUX5+vvr37y+pfP65adOm6R//+IcOPvjgauuRnp6uiy66SJMnT9aXX36pI444Qo8//niludACw4OjrVeorVu36rTTTlNaWppef/31SmnS09PD/n7sscd02WWXKSsrS/v27dOvv/6qBg0aVNpf9+7dq31t0WrWrJk8Hk9UrysrK0tSeY+1Vq1aVUob6fW7YV+Az0iRz+SUtT5rsw4AAAAAlViJR8vzxaEyLkYDHixr0aKFJOmZZ54Jm8g/WvEYQrt06VINGTJEvXv31rPPPhtsdAzVrVs3/e9//6u0PbCta9euwW2HH364Vq9erW+//VY//fSTDjvsMBUXF+uaa67RqaeeWmN9Ao1zgcbMc845p8peh2bqJZU33vXp00eGYejNN99UmzZtKuWtuK/A8Q7Mffe///1PPXv2DD5fWFioH374odK+rKpfv74OP/zwKl9X/fr11b59+0p1Cgxflsp7v33++ee65JJLXLkvwC+P/CanrPWLaAkAAACxYSUeLc9HTBpLNODVMYEFFvbu3Rv3fQ0YMEBpaWn6+uuvdf7555vOH+shtMuWLdOQIUN08skn6/nnn6+0+ETAeeedp9GjR2vt2rXBxqsDBw7oySefVM+ePZWTk1Mpz8EHHxzscXfzzTerYcOGuvLKK6utT1lZmZ5++mm1aNFChx9+uKTy3liBHlm1qdc333yjPn36yOfz6c0336yyAfX444+PuH3gwIGqV6+eFixYENaAt2DBAnk8Hg0ZMqTa12bGeeedp7lz52rbtm3Kzc2VJP3yyy967rnnNHjw4OAQ4p49e6p169ZasGCBLrroomD+Z555Rrt379bQoUNduy+4G3PgAQAAwE7MgecMNODVMYHePnfffbdGjBih9PR0derUSY0bN475vg499FDddtttuummm7R582YNHDhQzZo103fffad169apYcOG+vvf/15l/oyMjCobmMx65513NGTIEGVnZ+vGG2/Uhg0bwp7v0qWLmjRpIkm64oordN999+nCCy/UHXfcoZYtW+r+++/Xpk2b9Nprr4XlmzlzprKzs3XIIYfou+++07///W89//zzeuKJJ8KG0E6YMEFlZWU66aSTlJ2drW3btumee+7Rhg0b9Nhjj0U1BDjaeu3atUunnXaadu7cqUcffVS7du3Srl27gs+3adMmYm+8UM2bN9fNN9+sW265Rc2bN1f//v313nvvacqUKfrTn/4U1lNMKm9skhRcWfX9999Xo0aNJEkXXHBBtfuaNGmSnnjiCZ199tm67bbblJmZqTvuuEP79u3TlClTgulSU1M1c+ZM5efn66qrrtIll1yiL7/8Utddd53OOOMMDRw4MKzctLQ09e7dW6+//nqd2hdQkbUhtPzaCQAAgNiwPoSWmDSWaMCrY/r06aMbbrhBjz/+uObNmye/329pBddo3XDDDerSpYvuvvtu/etf/9L+/fuVnZ2tE044QX/+85/jss9IXnvtNe3du1dbtmzR6aefXun50GOQmZmp119/Xdddd53GjBmjX3/9Vcccc4xeeeUV9e7dOyzfvn37dNttt2n79u2qX7++TjzxRL355ps65ZRTwtJ17dpVDz30kJ566imVlJSocePG6tGjh5YuXRqcP68m0dZr48aNwYa0P/zhD5XKufXWW8MakKpy0003qXHjxrrvvvt05513Kjs7W5MnT9ZNN91UKe2FF14Y9vd9992n++67T9Lvw4SrctBBB+ntt9/WpEmTNGLECB04cEB5eXl688031blz57C0f/jDH5Samqo77rhDCxYsUPPmzfXHP/5RU6dOrVSuz+ertCBIXdgXUFH5kAVzv16aTQ8AAABUxUo8GsiH2PEYNd19AwCAhCspKZHX69WzH3VUw8bRL+QjSXt+8en8o79QcXFxsPcxAAAAYEZt4lGJmDTW6IEHAICD+ZUiH4tYAAAAwCZW4tHyfMSksUQDHgAADsYceAAAALATc+A5Aw14AAA4mF8p8tMDDwAAADaxEo+W5yMmjSUa8AAAcDCf4ZHPMDcBsNn0AAAAQFWsxKOBfIgd802oAAAAAAAAABKGHngAADiYz8KkwT6GKwAAACBGrMSj5fmISWMp6ga8ffv2qbS0NJ51AQDA0TIyMlSvXr2E7tNvpMhvctJgPxMGo44iHgUAuF2yxKPl+YhJYymqBrx9+/apaYPm2m/sjXd9AABwrOzsbBUUFCQ0aKIHHlBu3759ateunQoLC+2uCgAAtkmWeLQ8HzFpLEXVgFdaWqr9xl6dknau0pQe7zoBAOA4DVpk6qXChSotLU1owOSX+QmA/fGpCmCr0tJSFRYWatu2bWrSpInd1QEAIOFKSkqUm5ubFPFoIB9ix9QceOkZ9ZXmyYhXXQAAcKy9P9nTC92vFPlN/uJpNj2QTJo0aUIDHgAACWQlHg3kQ+yYasDzZGbKk0IDHgDAfTyeMomptwAAAADYwFwDXnq6PCkMoQUAuI9HmdLuxO/XZ6TIZ3LSYLPpAQAAgKpYiUcD+RA7phrwAABwrXR7fsDyyyO/zM6BZ36OEgAAACASK/FoIB9ix1wDXnqaRA88AIAr2bOKFj3wAAAAYCd64DmDuQa8jHQa8AAA7mTY1ICnFPlMTgBsNj0AAABQFSvxaCAfYsdcA15ampTKqFsAgPt4vfWkzYnfr9/wyG+YHEJrMj0AONWZR9wQs7Je+Wx6zMqSYls3q2L9mgAgEivxaCAfYsdUa5yRkSaDBjwAgAsV//yr3VWIq7feekuzZs3S+vXrtXPnTi1evFhDhgyRJJWVlenmm2/Wyy+/rM2bN8vr9apfv3664447lJOTEyxj//79mjRpkv71r39p79696tu3r+6//361adMmmKaoqEhjx47Viy++KEkaPHiw7rnnHjVt2jSY5ptvvtHVV1+tN954Q/Xr19fw4cN15513KiMjIyHHAkB8DTz6lugTZ8Tu3qOq/b760T+iThsmhnWzKrSekV4HACQT4tHqmWvAS0+VkZoar7oAAOBchj03an4LQxb8FoYr7NmzR0cffbQuv/xynX/++WHP/frrr/rggw90yy236Oijj1ZRUZHGjRunwYMH6/333w+mGzdunJYsWaJFixYpKytLEydO1KBBg7R+/Xql/hY/DB8+XNu3b9err74qSRo1apTy8/O1ZMkSSZLP59PZZ5+tgw46SO+8845+/PFHjRgxQoZh6J577jH9ugDYZ8DxUyI/ke6s+4mI9XRYHaNR5fGuxtL3zedBuKqOe6RjGymt3efAiXWC81iJRwP5zCAerZ7HMGqe1KekpERer1enHX+j0tLqJaJeAAA4in//r3r9wztUXFysJk2axH1/ge/eaetOU71G5hoP9+0+oBt7rLBcV4/HE/aLZyTvvfeeevTooa1bt+qQQw5RcXGxDjroID3xxBO66KKLJEk7duxQbm6uXn75ZQ0YMECfffaZunTpojVr1qhnz56SpDVr1igvL0+ff/65OnXqpFdeeUWDBg3Stm3bgr+mLlq0SJdddpl27dqVkGMPZwq8JxL1HoR5/fOc0wNs2epbHFUfp1i22kTvRxuYPWfxfj1V1Sd0v7W9zuw4J9HW2enXixsl+ruwNvGoVLuYlHi0MmYUBAAgCkaaPb0xfPJYekjlQVfoY//+/TGrV3FxsTweT3Cowfr161VWVqb+/fsH0+Tk5Khr165atWqVJGn16tXyer3BYEmSTjzxRHm93rA0Xbt2DRsKMWDAAO3fv1/r16+PWf0BAAAQHavxaLxjUrfFo6aaUP3pKfKn0eYHAHAff4o9339+I0V+w+QQ2t/S5+bmhm2/9dZbNWXKlFrXad++fZo8ebKGDx8e/AWysLBQGRkZatasWVjaVq1aqbCwMJimZcuWlcpr2bJlWJpWrVqFPd+sWTNlZGQE0wBIjH6nTo24/bW3boq43Z9u/31CoG79Tp0qOaA+dqvqXCVSVddRRA47Z9H0QEvGXmrRvlfNfgag7rISjwbySfGJSd0Yj5qbAy8tRQYNeAAAF2rctKEt+/VJwV8vzeSRpG3btoV18c/MzKx1fcrKynTxxRfL7/fr/vvvrzG9YRjyeH6vf+i/a5MGQO31PT3yCqavv1G+umpVcX9V+WTDfcLrb9wQVp/gv118zxI4f07x2ls3VX3NRMlprynZRWqAM3OOQtNybtzBSjwayCfFPiZ1azxKDzwAAKJQUrzX7iqY1qRJk5jO0VFWVqZhw4apoKBAb7zxRljZ2dnZKi0tVVFRUdivnrt27VKvXr2Cab777rtK5X7//ffBXzmzs7O1du3asOeLiopUVlZW6ZdQAFU7bcCMiNtXLL3+9+cj9MIJPC+F99IJ3V5V2TXuL4aqqifKj3Xo8XGC0EYeK9eCE19TXVNVQ1xN5yvwPOcH1YllTOrmeNR8Ax5fkAAAFzJ8yTeENpYCwdKXX36pFStWKCsrK+z57t27Kz09XcuXL9ewYcMkSTt37tQnn3yimTNnSpLy8vJUXFysdevWqUePHpKktWvXqri4OBhU5eXlaerUqdq5c6dat24tSVq2bJkyMzPVvXv3mL8uoC7pfc6s3//IiPw5EEyTkaKVS66ttL33ObOC2/0hZURTdk37i5XQeku/NxyE1RGO5a/mWqh4buuC0Oty5ZJra7xOnXQMep8zK+r3bjTvPye9NphT2yG0seL2eNRcA16aR/40hq8AANzHSLfn+89npMhnMvgxm16Sdu/era+++ir4d0FBgTZs2KDmzZsrJydHF1xwgT744AP997//lc/nC87/0bx5c2VkZMjr9erKK6/UxIkTlZWVpebNm2vSpEnq1q2b+vXrJ0k64ogjNHDgQI0cOVIPPfSQJGnUqFEaNGiQOnXqJEnq37+/unTpovz8fM2aNUs//fSTJk2apJEjR7LyKFADs3H6Kefd+fsfIXmD2x0S97+9eFJU6VYuuTb8NcGR6nIjTsTrr+J7q5r3VbTXuhWW3hsO+QywwuzrDT32oXnjeU6SiZV4NJDPDOLR6plfBxgAABey6wcsQx75Tc45YliYo+T999/XaaedFvx7woQJkqQRI0ZoypQpevHFFyVJxxxzTFi+FStWqE+fPpKkOXPmKC0tTcOGDdPevXvVt29fLViwQKmpv6/gu3DhQo0dOza4OtjgwYN17733Bp9PTU3VSy+9pNGjR+ukk05S/fr1NXz4cN15JzflAAAAdrASjwbymUE8Wj2PYRhGTYlKSkrk9XrV49zblZZeLxH1AgDAUXwH9mnt8zeruLg4Ib+8Bb57r111tjIbpZvKu393mWb1eilhdQUSIfCe4Lqu7KQL76q07d3/TKz2eave/c/EmJZndt/xYtdrird4HjOUM3PtJPp8OO26dvLrD9StYh6nvYcS/V1Ym3hUIiaNNZNz4JU/AABwG79No0j8hkd+w9zOzaYHkJzyhv92oxkhPg8+V8XzoVY/FX6DGpY3Qpra3g+sfmpixH3UJJCnYn1jIXCTbqVeThSPY4Rw1b3/pMSegyqvW4fdu9f02WI1bVVCG9+iLc9pDXZOYSUeDeRD7JhqwDNSmQMPAOBOTRo1sLsKABAmVnF5zz/ODt9QTbk9/zi71vNi1baMnn+crbX/N6FWdahK4Ia+0jFJAvE6JqispmvY7Lmo6noLlFPj9ZjE9+hVvrYIr6liWjPHOdLnZWh5vH+QDEwuYiF5mDUPAOBCP/+y15b9+pQin0wuYmEyPYDkc8IVs22ZzXrt/00o33eU3pv/+02xmXw1iVRW6L5qy889DyIIXndVXB9WrsHq3ss17c/NIh3rE66YHdxe8d81HcOaPp9i+fmSjKzEo4F8iB3Tq9B6krh1HwAAy2wKnhlCC4Q7dex9Ss0on5N5/cPjY15+91Fzok4bj/1HK/Rm0kydrQrsY/3D44P7jma/ofniPZKnYn1qc34YdeQs0VxriXg/xvK6CL4mrjVLIl4TaZ6w4xrLY+yE74buo+bIV7ovLmXXhCG0zkAPPAAAomFTgO1Xivwmf700mx5INrG6OTp2dKQbwFrmj8KH99dcf1NlR6hz6D6s1jOS0LI+fDj6fRw7ek4wfSzrU9M+peiOd0XrHx6fsHoiimsiivdl2LVp4ZxHY32U13x1zwXqRi/PuivS+Y/FZ/KHD4/XMZdNt1yv2rASjwbyIXb42AAAIAp2Bdo+wyOfyV8vzaYHksmBenbXAAAAe9j1HWglHg3kQ+zQAw8AgCj4/TbtlyG0QCVHj52jj/5prYfN0WNDej7YFNeG1aEqtaxbIl6n2X0E04ekDZzHqI5JgiVLDymr7wW7xfMajXQ9WTlOFcsJu17TKpcb6Rqvsswkub4QG7G43u38nGQIrTOYXIVWMvigAQC4kLd+fburAEC/x6NHTfj9Rubj2dHfmBPLOkvwPFZxXkLPbeg5t7QPmbtWAg0zVvcba2bq7mQ1nfO47zdETdfXx/8cH7Y9Ut3D8vH5gjgzfHbXAHYy1wMvVfKkxqsqAAA418977FmF1jBS5DfMzR9imEwPJJNI8WjXayM3sHwyq3KDx8ezx1eZHs7mj8F9SKRzH+k6ifV+zaipPsku0cezOl2vnRM83pHq1fXaOZKD6gvYxUo8GsiH2DHXAy+NXy0BAO5k2BTA++SRTybnwDOZHkgmZuLRI28ob6z5dPr44L8l0UsmCXw6vXIjVqSGrbDzGieJuv+J9JqrYuV1myk/Xo68YY7j3n/BY+mwegGR2NUAbiUeDeRD7JgfQssvEAAAF7LrByy/YX7+EL8Rp8oADmA1HiWGTR4bb4/c0NTl5giNVlGc10B5FfNXtZ+K4nntRFuHiqzUqcvNcyzvL1bseB9WPP8bbx8f+VoCkkAyxaOBfIgdfmcAACAKdt38+y0MWbAyxAEAAADOlkzxaCAfYodVaAEAiILfpkmD/fLIb3L4gdn0QDLxp0mbKvQi6jylcm+az6eEpwn0womUFs4Seo4+nzL+978t3odEyl/x+qjOxtvHx+S6MbPPmiTT9RxWR5PnMHDMavM6K57/zlOcN4wXiFYyxaOBfIgdc0NoUxh+AABwJ77/AGeI9GN+pIaRTv8Iv+HfdMv4YNqKz8G5Ov2j8iICgXMZlibOAteY064dM99NFY9bvFQ6RrX4/gyWxXcwICnydyDcw/QiFn5+rQAAuJA3o74t+/UZHvlMzjliNj2QTKKd/2fTLePVYXrkxhbiWXt9eUPkhqSqzleN6Uycz6r2HS2r105t91uVRDXK1STsnNTy/RU4VtFeD4Cb2DUHnpV4NJAPscMiFgAARKHo17227Jc58ADrIjWaHD6zco8uxN9X19Xc0FTl+bKwH7P5ovXlDeNNlR3N664LYnWPGHq8uO8EKn+GHHbrdFvqwRx4zmCyB54hI41lRAAALmTXpMHymF+FlvlGUId9OPHqWuX/6rrxOmz27BjVBjX5esKEWuU3e76CaUPucmpbh0h1irhPF4vVPWLYsaSnLJJA6OdLrD4LqvvM+nDi1fLedmNM9mOGlXg0kA+xQwMeAADRsOn7z7AwabBBsARU0v6fd/3+Bw0DCbF57MSYlBO4mQ07hyZEyheruknhN9tW65js4nGPuHnsRNceTySHip8jtf2siuXnUqxZiUcD+dxk6NChpvM8+OCDatmyZVRpCV8AAIiCkWpPA57fsNADj/lGAAAAECNW4tFAPjd5/vnnNWzYMNWvH93c2U899ZR2794dnwY8w8OqJwAAd+L7D0huVfVsaHdvbHr4FPw1+p4Tsdqn04W+TjPHp8pyYvg53O7eu2pVp6o4uQeNGWbPXSy/I0P3x3cv4ilwrVX1mVzw14mmPq+r+6yKx+cNnOmf//xn1A1yzzzzjKmyGUILAEAU7Pr+YxELIL4i3VQd+uCdUeXd8udJtd5ntPtyM+4/Eid4PaZF2Kaqr/l4nKNDH7yT8WKIm9BrubrGtZoa3sI+w+vw9coiFtFZsWKFmjdvHnX6V155RQcffHDU6WnAAwAgCs0a1tM3NuyXIbRAYrV9ZFZCb8K2/HlS+T7ruIqvceufro06b+BGO9bHKVCembrUdVbv9UIbQ2J1nrjvRDzE8v2e6O8LOzGENjq9e/c2lf7kk082ld7U5eZJNeSxaQ4gAADs9NPufbbs129h0mBW/ALMO/SxmZIkT4UVp7dcfl3c9x24oQzUwQ0qvtaqjnNouornJpZ1ScR5TgZV3euZOT5W7hcjlc99J2Iplu/xqr4v6jIr8WggH2LHXHtxqr/8AQCAy9h1I0EPPCD2Dv2/OypvDLkR2/LHyYmrTIjADWbE+tVxFV9z4Bxsufy6hByPqvbvBmGvvYoGiUCaqI5LlPeLW/44OVhuTe9JoDZi/n420SZSVz5L6IFnzv3336/nnntOzZs315///Gedfvrpwed++OEH9ejRQ5s3bzZdrrsGJAMAYJVNP2AFAiazDwAAACAWrMajboxJ//nPf+raa69V586dlZmZqbPOOkvTp08PPu/z+bR161ZLZZsbQpvCEFoAgEul8P0HJLN2C38PnkOHPRVceoMNtanelj9ODquv29lx/9Fu4XRHXhux1m7hdFPDAAPXZVXHxkx5ZvcNWBXp87Q27+9Ar7qaPqfd8BmCyh566CHNmzdPw4cPlySNHj1aQ4YM0d69e3XbbbfVqmxTDXgpqYZSaMADALiQwRBaIGkdtmiaUkIaCr6++Eb7KhMlt8fchy2aJqn8XLn9WMRTVcf264tvDJ6DSA5bNC34PgpNl0KDHJJE6DVsVXXvn7qGIbTRKygoUK9evYJ/5+Xl6Y033lDfvn1VVlamcePGWS7bXANemk+paT7LOwMAIFl5G9ZTgQ37pQEPqL1kvJki5v6dXcei4zP/kCR9ccEttuw/Eao6th2f+YdSo7xT5FpFsqrte7zitV+XPytowIteixYttG3bNh166KHBbUceeaTeeOMNnX766fr2228tl22uAS/FUApDiAAALlT06x5b9mvI/ApefFMDyS/SjWDn52o39CYZdX7uNqUwa3fcVLy3+3zo3yRFd60F0nB+4FZuahuxEo8G8rnNySefrGeffVannHJK2PYuXbro9ddf12mnnWa5bFMNeKmphlJZhRYA4EJ+m4I0euABCPh86N905AtT7K6Ga3x67hS7qxB3gQa7irjnA2pW1funLqIHXvQmT56s9evXR3zuyCOP1IoVK/TMM89YKttUA146Q2gBAC7FHHgAnCDQqHTMS3V3qFaibDj7H8F/RzqeodtC07pBaOMl1xrqumNeusV173GzaMCL3lFHHaWjjjqqyuePPPJIHXnkkZbKpsMzAABRSK/jP2C99dZbOuecc5STkyOPx6Pnn38+7HnDMDRlyhTl5OSofv366tOnjz799NOwNPv379eYMWPUokULNWzYUIMHD9b27dvD0hQVFSk/P19er1der1f5+fn6+eefw9J88803Ouecc9SwYUO1aNFCY8eOVWlpaTxeNgAAAByCeLR65nrgpfiUmlK3b2AAAIjEb9P3X6J64O3Zs0dHH320Lr/8cp1//vmVnp85c6Zmz56tBQsWqGPHjrr99tt1xhlnaNOmTWrcuLEkady4cVqyZIkWLVqkrKwsTZw4UYMGDdL69euVmlq+NOHw4cO1fft2vfrqq5KkUaNGKT8/X0uWLJEk+Xw+nX322TrooIP0zjvv6Mcff9SIESNkGIbuuece068LqKs2nP0PnfBK8i3OYbf3zoy8smo69ziVBK6vdLp8oI6r6nMBv0tUD7y6Eo8ahqGxY8fGPHY1Nwdeil9pzIcAAHAhX4o933+JasA788wzdeaZZ0Z8zjAMzZ07VzfddJOGDh0qSXr88cfVqlUrPfXUU7rqqqtUXFysRx99VE888YT69esnSXryySeVm5ur1157TQMGDNBnn32mV199VWvWrFHPnj0lSfPmzVNeXp42bdqkTp06admyZdq4caO2bdumnJwcSdJdd92lyy67TFOnTlWTJk1MvzagriIuj52ajmXessmSpNX970hEdRyB6wt1ScX3bt6yya56P9dWohrw6kI86vP5lJ+fr4KCAlOvPRrmeuCl+pSWyq9TAAD3aVavni37NQyPDJPBj9n0NSkoKFBhYaH69+8f3JaZmanevXtr1apVuuqqq7R+/XqVlZWFpcnJyVHXrl21atUqDRgwQKtXr5bX6w0GS5J04oknyuv1atWqVerUqZNWr16trl27BoMlSRowYID279+v9evX12rlLqCuCdx8nvr6tTbXJHlUdaxW958VdVq34PpCXRS4ntNTf//3W30rv/8Rzko8GsgXK8kQj+7bt09Dhw7Vzp07tWLFipi99gDTQ2jT6F4OAHCh4rL9tuzXL4/8MtkD77f0JSUlYdszMzOVmZlpug6FhYWSpFatWoVtb9WqlbZu3RpMk5GRoWbNmlVKE8hfWFioli1bViq/ZcuWYWkq7qdZs2bKyMgIpgEQjuGf8cFNfbm3+s5S3xUT7K5GjV4/bbYkJUVdYZ/Qz8vANYOaWYlHA/mk2MSkyRCP9uvXTz/99JNWrlyppk2bmnp90TDVgJdBDzwAgEv5knAOvNzc3LDtt956q6ZMmWK5Lh5PeD0Mw6i0raKKaSKlt5IGwO8yiM9r5ZVT77a7Co6XTNfY66fN1plvXWN3NeAgoe/x0Gs5cJ3wGVCz2g6hjWVM6uR4dNWqVbrnnnt00EEHVVsfq0w14AEA4FbpSXTzErBt27awOTqs9L6TpOzsbEnlv0a2bt06uH3Xrl3BXyezs7NVWlqqoqKisF89d+3apV69egXTfPfdd5XK//7778PKWbt2bdjzRUVFKisrq/RLKAAAAJwvFjFpMsSjc+fO1aRJk3TooYfq7LPPNv0aa2JyCK2fLvoAAFdKsWkRi9rMgdekSZOYLPrQrl07ZWdna/ny5Tr22GMlSaWlpVq5cqVmzJghSerevbvS09O1fPlyDRs2TJK0c+dOffLJJ5o5c6YkKS8vT8XFxVq3bp169OghSVq7dq2Ki4uDQVVeXp6mTp2qnTt3BoOzZcuWKTMzU927d6/1awHqogzi86i9cPK9dlfBcc59568RtweO1bnv/FUZDl+JtuJ5ra5HVVWvF3VP6HUROO+RruVz3/krnw01qO0ceLGISZMhHh07dqyysrI0fPhwLV68WKeffnqtXnNF5obQpvhowAMAuFJKEg6hNWP37t366quvgn8XFBRow4YNat68uQ455BCNGzdO06ZNU4cOHdShQwdNmzZNDRo00PDhwyVJXq9XV155pSZOnKisrCw1b95ckyZNUrdu3YKrgB1xxBEaOHCgRo4cqYceekiSNGrUKA0aNEidOnWSJPXv319dunRRfn6+Zs2apZ9++kmTJk3SyJEjWYEWqODCVX+RFPmG1K3+0+sBu6uQVC5c9Zcqrx8z11fguF+46i9h/3aiF06+17F1Q+xU/Czgh47aSdQqtHUhHr300kvVrFkzXXLJJRF7+tWGyTnwDig9lQgBAOA+TTLq9iq077//ftiKWhMmlE8CPmLECC1YsEDXXXed9u7dq9GjR6uoqEg9e/bUsmXL1Lhx42CeOXPmKC0tTcOGDdPevXvVt29fLViwQKmpqcE0Cxcu1NixY4Orgw0ePFj33vv7r96pqal66aWXNHr0aJ100kmqX7++hg8frjvvvNP0awLqusAN6qVrR9pcE+cIHIuFPefZXJPk8J9eD8T0+gltNMlIPRB1vsD5qk1dasobek3w3qkbzLzPq7se+byoWaJWoa0r8ehZZ52lxYsXm3rt0fAYhmHUlKikpERer1fD3xiujEYZMa8EAABO9+svfv277/+puLg4IT3BAt+9xz0zQakNzc0T4tuzXx9cMDthdQUSIfCe4Lqu7PL3Lre7Co7z2AmP2V2FpFHb66fisY5UXiBNTft67ITHuJ4RNTPv8+quy2SS6O/C2sSjEjFprJmbA8/jV7rHnjmAAACwU7rHnqEXhqSaf2qrnAeAe7g9Pn/4+MftrkJSs3L9PHz84xr1/ghJ0qj3R4Sdg+rKC20wCeQPNer9EUqvosNOYB+R8sF9zL7v3f45WVtW4tFAPsSOqQa8zBSfMlKi7woNAEBdUUbgB8ChMl0cn99z3EK7q5DUxnxwqTItzpBU1XUXaFgZ88Gl1eZ/+PjHK6W557iFNeZz8/VeVwXexzWd+9rgukGiGYahZ555RitWrNCuXbvk94ffSzz33HOmyzTVgAcAgFtl2rWIhTzyyOQiFibTAwAAAFWxEo8G8rnVNddco4cfflinnXaaWrVqJY+n9sfC9CIWmanuPQEAAPfypNo0hDZBi1gASF6B3iuTPrrI5pog2WSaWGiiopp6P0Z6vuI1mvnbnPJ3Hv101HWqTZ3hbNFcM1ZM+uii4LUWEHrNoWaJWsSiLnnyySf13HPP6ayzzopZmaYa8NI8PqV5WIUWAOA+fo89Nwx+wyOPyeDH7+JgCXCzNJvm6rTDHUc9Y3cV6oQ7j35akz++IOr0kY67mfxpFb6eIpUXaFipqlyzdYbzRTqfgWujqs+1yR9fUO3nQGiZFa87mGclHg3kcyuv16v27dvHtExTDXj1Usosz5EAAEAya5he35b9GoaFRSyYMRhwpTuOekZTPjnX7mogyYQ2glR1/Uzp+kKVz9czcX8YKCca9VLKqnwuUGeu97rP6udaddcPzLMSjwbyudWUKVP097//XfPnz1f9+rG5jzDdAy+dHngAABfa7fvFlv0yhLZmxx13nKn0Ho9HL774og4++OA41Qiwj10rZqNuqOr6mfrpoN+eT1xdQhv7pn46KFgHSbrpyP9WShOaNjRd6N9wtsB5raim6zJynphUCb9hCK15F154of71r3+pZcuWOvTQQ5Wenh72/AcffGC6TJOr0B6gBx4AwJX2uzf+cLwNGzZo4sSJatSoUY1pDcPQHXfcof379yegZkDiZbqg18mkI5baXYU66c7PBsTtXq+25+ymI/+rOz8bEFXazJSysP254T1R10U6h5OOWBr1NRFIDyTSZZddpvXr1+sPf/iDPYtYAADgVnatQksPvOhce+21atmyZVRp77rrrjjXBgAAoO6gB555L730kpYuXaqTTz45ZmWaasBL9/iUHoNWQwAAko3fpmFpLGJRs4KCAh100EFRp9+4caNycnLiWCPAPqG9TO7+vJ+NNUGyCFwn8RxyGNjHNZ1fs1xGtD2oKr4HGEqZPO7+vF/EayTSuY/m3NbmekM4FrEwLzc3V02aNIlpmRbmwHPvCQAAuJfPpgY8FrGoWdu2bU2lz83NjVNNAGcJ3Lzev+k0m2tSO6M7rbC7CnXW/ZtOS2gDV8VrMdK5rel6NXM9MCdk3RXp3PJZET8sYmHeXXfdpeuuu04PPvigDj300JiUaW4VWk+Z6nlcfAYAAK6VkVrz/GrxUB4wmR1CG6fKAEhK9TzJOwfYFR3fsbsKdZrd18b8L8KHll3R8Z0a6xSaJ3B9VNwW+LsefU/qrNDrhM+J+LMSjwbyudUf/vAH/frrrzrssMPUoEGDSotY/PTTT6bLNDmE9gBdkAEArvSLv9juKqAaZWVluummm/Tcc8+pefPm+stf/qLLL788+Px3332nnJwc+Xz0xoD7XNHxHT3x5Yl2VwMOlO45YHcVwjzx5Ymm7jcD13VoHrNlIDnRaAenmzNnTkwWrghlrgFPfmXQDRkA4EJ23QywiEV0pk6dqv/7v//TpEmT9PPPP2v8+PFas2aNHnrooWAaw80/A8P1nBbDX3T4e5Kkp786weaauJvTrgsAzsQiFuZddtllVT63d+9eS2Va6IFH8AsAcJ90pdiyX+O3h9k8brNw4UI98sgjGjRokCTp8ssv15lnnqnLL79c8+fPl6SY/woKJJNAg9lzXx+bsH0OPezD4L9D9xu6PVCvUKFpn/v62LD0qJ2K55+eatEbetiHCX3/AE5iJR4N5HOrq6++Wvfdd1+l7Xv27NHZZ5+tN99803SZ9tyNAACQZNJsGmYU+MXT7MNtvv32W3Xt2jX492GHHaY333xTq1evVn5+PkNnAQAALLIaj7oxJg1YtmyZbr755rBte/bs0cCBAy3HpSZ74Pn4lQYA4EoZHr89O6YLXlSys7P19ddfh63ylZOTozfeeEOnnXaaRowYYV/lAAeJ56qc57T/uMrnzPSiY+XQ+OHY1g7HD65FFzzTli1bppNPPllZWVkaP368fvnlFw0YMEBpaWl65ZVXLJVpeghtBkNoAQAuVGZbA56FXy9d+Gvn6aefrqeeekp9+/YN2x5oxOvTp489FQMcJsNhixZEkgx1TEZLC7oow2VfDwPabdTSgi4xKWtpQRed035j8N+IvQHtNtpdBVTFam86F8akAe3atdPSpUvVp08fpaSkaNGiRcrMzNRLL72khg0bWiqTHngAAEShQarX7iqgGrfccos+//zziM8dfPDBeuutt7Rs2bIE1wpwntAb5De2dAr++/RDN1XaZpcB7TY6oh51ReBYuvU+Lpa95gLHckC7TdU+DwCS1LVrV/33v/9Vv3791LNnT/33v/9V/fr1LZdnehXadMu7AgAgee3xF9myX8Mof5jN4zZt27ZV27Ztq3y+devWDKMFKkjX7w0bb285/LdtzhCpbgGnHPpVoquT1EKPpdu8veVwnf7b9VLxOopF2RU55f2TrN7ecjjvb4eyEo8G8rnJscceG3HRtMzMTO3YsUMnnXRScNsHH3xgunxTDXipHr9SXfrLDQDA3dJlzxeglQmA3TxhsN/vV0oKa3QB0QjcKK/a2j64rVfbzWF/2yX0Jt4J9UlWq7a2d/39W+D6ieVxiOa49mq7OeqyAKezuiCF22LSIUOGxLV8Uw14aR6/a7teAwDcLTXCr2kJYXjMzx/ismApYP/+/br44ou1ePFiu6sCJJVebTfrvW8ODftbUti2RKhqf73abkloPeqSdLvmb3WgEw7ZIilx13VgP4H9VqXi+89tTjhki6tff9KwEo8G8rnIrbfeGtfy+YkaAIAopNl0ExQYsmD24Ta7d+/WmWeeKcONLx4AACCOrMajhGWxZaoHXoZ8ynDzOsAAANey7fvP+O1hNo+L/PDDDxowYICysrL0n//8x+7qIMl99E1u2N9HH7LNppokVqReQhlxmjst9BgHju9H3+QqI4r0oXlQtcAxq+qYupGTj0m83mtOVfE97LbXn5SsxKOBfC7SvHlzffHFF2rRokVU6Q855BC9/fbb1c7jHMpUA16Kx1CKx2VnAAAASRmpzSR9a3c1EMHJJ5+sli1b6vnnn1d6OlOIo3aOPmSb/retTfDvwL+75W63q0q2iXXcHziWKRFGVFXXKBd6PgJ/u/F8mME9m/3MXKOB67/itR5LofWJ134C+wgtP5rjQKM86oqff/5Zr7zyirxeb1Tpf/zxR/l80Tdgm+yB53fkLxYAAMTbbv9PtuyXRSxq9vXXXys/P18NGjSwuyqoIwI3nJu25QS3bdqWo065O+yqki0yZG7qgMDxinScNm3LsXwfEakeoecmEredq4rMnjs36ZS7o8brxy6JOm+RPuNiIVAebQZ1D4tYRG/EiBFxK9tkD7zIv5gBAFDX2XozREeKav373//WpZdeqoMOOkijRo2yuzqoQzrl7tCX2515o58IgUawWByD2txD1NQYF6l+X27PUYc27m3Ei+W5q4vifXysXnuh13os61ZVfWL5Gdehjbs/L12BeLRGfn987xfMNeDJUCpnDQDgQnb9gEUPvJqdd955eumllzR06FA1bNhQl156qd1VQh3i5kaggA5tdmjz9tZRp4+UNrUW+69YXvs2O8Oeq6rs6vK5BfdulW3e3jp4LTj5+MSibtFc87E8BqFlmXm/RfrMcOP71cnogecMrEILAEAUUuxexMLsw2VOO+00vfbaa7ruuuvsrgoAAEDdYjUedWFMGk+meuCle8ofAAC4jX3ff57fHmbzuE/37t21YsUKu6sB1EmhvWG2fRt9b7yq5B4cfe+a6nri0Eunety7VS/Wx8fMdV0Tq3UzW4dYHYNt37a2/H7kOk0GVuLRQD7EiqkGvFR5lMoJAAC4UG2GfyFxOnbsaHcVgDov0ECw41vmu3I67t2ql3vwzphcxzkHx36ofaLOXSz3EziWZo8H1ykQHZNz4DHmFgDgTmkpzSUVJn7HVoYfMFwBQAKE3qQXhjSCZP+2vbCahpHqngstA9YEji/3bpEFjk/2wTssH6N4X6M5B++o8X0Symp9nHCNhNaB975DWR0OS0waU6ber6keDw8ePHjw4OHKh9//U7y+i6uXgPlGDhw4oJtvvlnt2rVT/fr11b59e912221hK2kZhqEpU6YoJydH9evXV58+ffTpp5+GlbN//36NGTNGLVq0UMOGDTV48GBt3749LE1RUZHy8/Pl9Xrl9XqVn5+vn3/+2VyFq7Fv3z7NmjVLZ511lo4//ngdd9xxYQ8A8ZF98I7gI3Sb1c9c1I7d35nJ8vh+x8Gm0ke6zp1wHmtTn9DXFHjU9rjW5nXCoRI0B15dikk/+OAD/e9//wv+/cILL2jIkCG68cYbVVpaaqlMkz3wPEqheysAwIVsCyoNT/nDbB4TZsyYoQcffFCPP/64jjzySL3//vu6/PLL5fV6dc0110iSZs6cqdmzZ2vBggXq2LGjbr/9dp1xxhnatGmTGjduLEkaN26clixZokWLFikrK0sTJ07UoEGDtH79eqWmlg9CHj58uLZv365XX31VkjRq1Cjl5+dryZIl5l5jFa644gotX75cF1xwgXr06CEPNwOArbh3sAfHPfaycrbXnCjG7DqPid5v6P5+3NEm7Dk7jjsisBKPBvKZUJdi0quuukqTJ09Wt27dtHnzZl188cU677zz9J///Ee//vqr5s6da7pMj2EYNbaJlpSUyOv1auvnOWrS2AmdbAEASKyff/GrXecdKi4uVpMmTeK+v8B3b5t7/66U+vVM5fXv3aftf7016roOGjRIrVq10qOPPhrcdv7556tBgwZ64oknZBiGcnJyNG7cOF1//fWSyn/ZbNWqlWbMmKGrrrpKxcXFOuigg/TEE0/ooosukiTt2LFDubm5evnllzVgwAB99tln6tKli9asWaOePXtKktasWaO8vDx9/vnn6tSpk6nXGYnX69XLL7+sk046qdZlwVkC74lEvQcRPz/vyK32+aY52yyXZzZvXVXTMUZ0qrueAsc4EddcrN8zsdpvdczUKdr98P5O/HdhbeJRiZj0gw8+0GGHHaYZM2bojTfe0NKlS/Xuu+/q4osv1rZt5q9nWuMAAIiCbb0ZajFcoaSkJOyxf//+iLs4+eST9frrr+uLL76QJH300Ud65513dNZZZ0mSCgoKVFhYqP79+wfzZGZmqnfv3lq1apUkaf369SorKwtLk5OTo65duwbTrF69Wl6vNxgoSdKJJ54or9cbTFNbBx98cPDXVwAAAMRALYfQujEmNQwjOPT3tddeC76G3Nxc/fDDD5bKZAgtAABRSMZfvHJzw3/RvvXWWzVlypRK6a6//noVFxerc+fOSk1Nlc/n09SpU3XJJZdIkgoLyxfvaNWqVVi+Vq1aaevWrcE0GRkZatasWaU0gfyFhYVq2bJlpf23bNkymKa27rrrLl1//fV68MEH1bZt25iUCSC2muZsU8mOQ2JWXuj9SWi5TXK+idk+kk2gp1Isj7MbVHfNVLy2EtkbzAlDaZvkfBP19WT2vRd6LLlm6yY3xqTHH3+8br/9dvXr108rV67UAw88IKm8EbJi/aNlqgGPiSUBAG6Vmtpckg3zsNRiDrxt27aFDVfIzMyMmPzpp5/Wk08+qaeeekpHHnmkNmzYoHHjxiknJ0cjRowIpqs4n5xhGDXOMVcxTaT00ZQTreOPP1779u1T+/bt1aBBA6Wnp4c9/9NPNi1GAiBM4AZ/z07zDe0V81R1f1IxXcPWWyPur2HrrabrkCy4dzOnuuvRzmNZm/dLbVR8zfE4BqGvqWHrrVyzTlXLOfDcGJPOnTtXl156qZ5//nnddNNNOvzwwyVJzzzzjHr16mWpTJM98Mr/AwDAdWxahdZjlD/M5pGkJk2aRDXfyLXXXqvJkyfr4osvliR169ZNW7du1fTp0zVixAhlZ2dLKv+1snXr1sF8u3btCv6CmJ2drdLSUhUVFYX94rlr165gkJKdna3vvvuu0v6///57y79EVnTJJZfo22+/1bRp09SqVSsWsQAcLtK9xd6d7VS/dUHw3wGBbVbvR/bubOe6e5nQxsnQY4nklOjrN0Upwfed9Pv1VNW1FJrWzD6q+9tKmYg9K/FoIJ/kzpj0qKOOCluFNmDWrFnBhTTMMtWABwCAW9l20xcyf4ipPCb8+uuvSkkJf32pqanBeTvatWun7OxsLV++XMcee6wkqbS0VCtXrtSMGTMkSd27d1d6erqWL1+uYcOGSZJ27typTz75RDNnzpQk5eXlqbi4WOvWrVOPHj0kSWvXrlVxcbHlXyIrWrVqlVavXq2jjz46JuUBiK/Qm/PQRoFIDQTxaoAKbTAEklE8r+HA+y60/Ooa2M2WW1Pe2uwDMWQlHg3kM6EuxaRVqVfP/GIgAcyBBwBAVKxELbHYrfUhtNE655xzNHXqVB1yyCE68sgj9eGHH2r27Nm64oorJJUPMRg3bpymTZumDh06qEOHDpo2bZoaNGig4cOHSypfaevKK6/UxIkTlZWVpebNm2vSpEnq1q2b+vXrJ0k64ogjNHDgQI0cOVIPPfSQJGnUqFEaNGhQTFb7kqTOnTtr7969MSkLQGLZeZ+xf2d7SVJm68221SHe6rcuCL5OWGP39ZHoc1jTe7I2DWpV5aW9waFqOYQ2WnUpJvX5fJozZ47+/e9/65tvvlFpaWnY81amdaEHHgAAUbB9FVqzeUy45557dMstt2j06NHatWuXcnJydNVVV+lvf/tbMM11112nvXv3avTo0SoqKlLPnj21bNmysBVf58yZo7S0NA0bNkx79+5V3759tWDBgrBhAgsXLtTYsWODK4MNHjxY9957r8kXWLU77rhDEydO1NSpU9WtW7dKc+BFM3wDAAAAIRLUA68uxaR///vf9cgjj2jChAm65ZZbdNNNN2nLli16/vnnw16PGR7DMGo8pCUlJfJ6vfrxi3Zq0thd80YAACBJJb8Yyuq4WcXFxQlpBAp89+bO/odS6pvrau/fu0/bJtySsLo6SWDYRVWTG/t8PjuqhRgIvCfceF270YHCw23df1r2V7buP17sPq7JzmnXRej5jEfdKl4vsdxHoOyqyox0rTrt+Nsh0d+FtYlHJXfHpIcddpj++c9/6uyzz1bjxo21YcOG4LY1a9boqaeeMl0mPfAAAHCyBPTAq0tWrFhhdxUAxECkG/VENj7Fs+HCToHXQUOeeXXlGjAjLfursGulpka3aFUs043HNukkqAdeXVJYWKhu3bpJkho1aqTi4mJJ0qBBg3TLLbdYKpMGPAAAopHSrOY08UADnil5eXnKyMiI+NwPP/yQ4NoAqCti1XDhFLVtyKt4HGgQtEc8esRFU76V94PZa6SuvNfqDBrwTGvTpo127typQw45RIcffriWLVum4447Tu+9954yMzMtlWlhEQuG0AIAXMhfZM9+E7CIRV0ybNgwPffcc5VWMPvuu+/Ut29fffLJJzbVDEBtOeE+xF/YUSnZX9hdjZhJy/5K/sKOlbabfY2BxpZIZSE5RDqH/sKOMXvfOeH9i1pI0CIWdcl5552n119/XT179tQ111yjSy65RI8++qi++eYbjR8/3lKZ9MADACAKdi1i4THKH2bzuNXOnTt15ZVX6rHHHgvbdvrpp+vII4+0sWYA4EyxbJCMVFayN+rVpQbbRIr2vHN8k4OVeDSQz63uuOOO4L8vuOACtWnTRqtWrdLhhx+uwYMHWyqTBjwAAJyMIbSmvPzyyzr11FM1fvx4zZkzR99++61OP/10HX300Vq0aJHd1QNggdMagAL1oeGh7uMcx19d69VaZzGEttZOPPFEnXjiibUqg36sAACgzsjKytLSpUu1ePFijR8/XqeddpqOPfZY/etf/6o0rBYAAACIlyeeeEInnXSScnJytHXrVknS3Llz9cILL1gqj0gWAADUKW3atNHy5cv11FNPqUePHvrXv/6l1NRUu6sFwAKn9b6DO6Rkf+HaXmG1ed3+wo7BR23zRyqrtuUDifTAAw9owoQJOuuss/Tzzz/L5/NJkpo2baq5c+daKpMhtAAARMOmVWg9sjAHXlxq4lzNmjWTx1P5Vf/6669asmSJsrKygtt++umnRFYNwG8YJuc+ydjIwjVaLnAcEnUOk/FacRsr8Wggn1vdc889mjdvnoYMGRI2H97xxx+vSZMmWSqTBjwAAJyMVWhrZPVXTACJFXqTXlNDSTLc0Mdi9VY4B+euspTsL+L+XqxpHxXPS02Ni6HPc05jiFVoTSsoKNCxxx5baXtmZqb27NljqUwa8AAAiIa/yJ79sohFjUaMGGF3FQBEwQ0302YaKQGnq6nxruL1bqXnXjT7CH0vhS4iY7Z+qAUWsTCtXbt22rBhg9q2bRu2/ZVXXlGXLl0slUkDHgAATkYDXo1KSkrUpEmTqNP/8ssvaty4cRxrBKAiN948u73xINHDMK1y47mJVqSGs6qYPc/R9qSraVu0Ku6H824SDXimXXvttbr66qu1b98+GYahdevW6V//+pemT5+uRx55xFKZNOABAICk1qxZM+3cuVMtW7aMKv3BBx+sDRs2qH379nGuGQAAANzo8ssv14EDB3Tdddfp119/1fDhw3XwwQfr7rvv1sUXX2ypTBrwAABwMI9hYRELl/3aaRiGHnnkETVq1Ciq9GVlZXGuEQCEc3tvPKfiXCSHWA7JjZSO66BmVuLRQD43OnDggBYuXKhzzjlHI0eO1A8//CC/3x/1j81VoQEPAIAo2BZ/MIS2RocccojmzZsXdfrs7Gylp6fHsUYAULXQObzcIBELISD+zC42UVF1Q2XNXB+R9lPb66u6xjyG3v6GIbSmpKWl6S9/+Ys+++wzSVKLFi1iU66ZxH4Z8ssfkx0DAJBMjJSmNu1YNODVYMuWLXZXAUCMueGew194ePDfadlf2ViT+HPa+azrxzteqjuPKTXkra7hK1K5oeXV1GgWeP5AyHvKqpQayqnpddZZNOCZ1rNnT3344YeVFrGoDXrgAQAQDZtWoWUILQAg2QUazGLRwAL7RGr4DJzTqs5tNI2l8WhQDS3TzHUXzes44KLG9wCG0Jo3evRoTZw4Udu3b1f37t3VsGHDsOePOuoo02XSgAcAgJMZnvKH2TwAkMRo8EE8Ba4rtzS+2CmejV0Vz2Osyue6iMBKPBrI51IXXXSRJGns2LHBbR6PR4ZhyOPxyOfzmS7TVAOez/DL5+IWVACAexlybwACAHbxGc4aehkvbulV4bTz6ZbjHk+Bxq79O2te2d0XRZqaZLbe/Ht5v11PVZ3HaOoUSaCeofsKFdrAF2kfVeWDuxQUFMS8TD6zAACIgm03HcyBBwAAADsxB55psZz7LsDCIhYuPgMAANcybPr+Yw682NmwYYOOOeYYu6sBwITM1pu1d2c7u6uBGOFesu6qqddZPN7HNe0z9Pnq9l+/dUHE50O31W8duTdVtPtIdsyBZ93GjRv1zTffqLS0NGz74MGDTZdFDzwAAKJgW/xBD7xaKS4u1sKFC/XII4/oo48+sjTfCADES1WNAkBdU9W1XrHRK5AumsazWOy/uv1aFSijTr2/6YFn2ubNm3Xeeefpf//7X3DuO6l8HjxJ8Z8Dz++4BcABAEgMI6WZpK027NjCr5cuDpYC3njjDc2fP1/PPfec2rZtq/PPP1+PPvqo3dUCYAF3IHVH/dYF2rMz9sPKkLyqauSqqfEr0nXUsHX0cdqenW0jpg/db1VpqhLIG6ib2fyOZrEHnptj0muuuUbt2rXTa6+9pvbt22vdunX68ccfNXHiRN15552WyjS5iIUhn+HiMwAAcC3D/5NNOxY98KK0fft2LViwQPPnz9eePXs0bNgwlZWV6dlnn1WXLl3srh4AiwI3wCU7DrG5JrHVJOcbu6tgC+4nEQuRrqPQz4iq3l9mPkesNr7VmUa7UPTAM2316tV64403dNBBByklJUUpKSk6+eSTNX36dI0dO1Yffvih6TKZAw8AgCiwCruznXXWWXrnnXc0aNAg3XPPPRo4cKBSU1P14IMP2l01ADHCfUjy+3lHrt1VMC20zk1zttlYE4Sq6fOgqvMWmi+QhvOKePD5fGrUqJEkqUWLFtqxY4c6deqktm3batOmTZbKZA48AACiYNuNIz3worJs2TKNHTtWf/nLX9ShQwe7qwMAAFB30APPtK5du+rjjz9W+/bt1bNnT82cOVMZGRl6+OGH1b59e0tlmu6B53PzGQAAuJZdDXisQhudt99+W/Pnz9fxxx+vzp07Kz8/XxdddJHd1QIQQ4FeMj/uaGNzTWonK2e73VWwjdPuJX/c0aba85Hs11pdEXoeAucrmmsp0rl12jWYLFiF1rybb75Ze/bskSTdfvvtGjRokE455RRlZWXp6aeftlQmQ2gBAIgC33/OlpeXp7y8PN19991atGiR5s+frwkTJsjv92v58uXKzc1V48aN7a4mgBjg8zh5Jdu5S7b61kXf7zi42r/NinROv99xsA7K+bZW5QIVDRgwIPjv9u3ba+PGjfrpp5/UrFmz4Eq0ZrGIBQAA0fA0k7Qz8ftlCK0pDRo00BVXXKErrrhCmzZt0qOPPqo77rhDkydP1hlnnKEXX3zR7ioCqCXuR5JP4bc5dlfBlGSrb10Ui3MQKCP74B3BbVV9fkRKixAMoY2J5s2b1yq/yR54YhF3AIAr+W1ahZYhtNZ16tRJM2fO1PTp07VkyRLNnz/f7iohBnbu6KgmTQrtrgZsFHqDvYOGlqTg1HvIHK4lx4nHedjxbU7wXDv1WozGjm9z9Msv9rwChtA6g7keeMyBBwBwKZ/dFYBlqampOvfcc9WrVy+7qwIgxkIbYLZ929rGmqA6TruHzD24co96p9XRreJ1HpL58yGZ647YMtWAV2aUPwAAcBtbA3u+e2vUoEEDbd26VQcddJAkaeDAgXrsscfUunV50Ltr1y7l5OTI56MpNtm1zvnC7irAobhPcS4nnZv2bSJPh+GkOrrV5u00VEUSem2Wfwd67akI7xHbpdhdAQAAksEBu4IWw+LDpG+//VZ/+MMflJWVpQYNGuiYY47R+vXrf6+GYWjKlCnKyclR/fr11adPH3366adhZezfv19jxoxRixYt1LBhQw0ePFjbt4evAFdUVKT8/Hx5vV55vV7l5+fr559/Nl/hCvbt2ycjZF6bd999V3v37g1LYzBvFgAAgHlW41EXxqTxZHIOPI98srZaBgAAycyuOVMSMQdeUVGRTjrpJJ122ml65ZVX1LJlS3399ddq2rRpMM3MmTM1e/ZsLViwQB07dtTtt9+uM844Q5s2bQqu7jpu3DgtWbJEixYtUlZWliZOnKhBgwZp/fr1Sk1NlSQNHz5c27dv16uvvipJGjVqlPLz87VkyRJzlbbA6opfAJJD+zY79eV2585j1qGNeyfHD/R6s/P81HT8a7rPdfP5SxQntDV8uT3Hcec6tNdoSUmJLXVI1Bx4yR6TmlksbfDgwabLN9eAZ5Q/AABwG5/dPfDM5jFhxowZys3N1WOPPRbcduihh/5enGFo7ty5uummmzR06FBJ0uOPP65WrVrpqaee0lVXXaXi4mI9+uijeuKJJ9SvXz9J0pNPPqnc3Fy99tprGjBggD777DO9+uqrWrNmjXr27ClJmjdvnvLy8rRp0yZ16tTJ5AsFgHDcqzibHeenU250jTFcO4mzaZtzG9ql3+sX7bUTTVmxKs82CVqFNtlj0iFDhkSVzuPxWJrWxVQDXqlSVMqoWwCACxkpzSQlfuXL2vTAq/grbWZmpjIzMyulf/HFFzVgwABdeOGFWrlypQ4++GCNHj1aI0eOlCQVFBSosLBQ/fv3Dyurd+/eWrVqla666iqtX79eZWVlYWlycnLUtWtXrVq1SgMGDNDq1avl9XqDgZIknXjiifJ6vVq1alWtGvA8Hk9YD7uKfwNwB+5VnK1T7g79b1sbu6sREddO4iTLsf7ftjbqlru95oTVCH2tgWu/tmXaIVE98JI9JvX74ztmx2QPPI/8BsEwAMB9Dvh/srsKpuXm5ob9feutt2rKlCmV0m3evFkPPPCAJkyYoBtvvFHr1q3T2LFjlZmZqT/+8Y8qLCxvuGzVqlVYvlatWmnr1q2SpMLCQmVkZKhZs2aV0gTyFxYWqmXLlpX237Jly2AaqwzDUMeOHYONdrt379axxx6rlJSU4PMA6j6n3qscfcg2u6vgGIk+Rx99U/5dWNU5CDwvBwzfrMt+P85SMh3rmq6fmgQa60Jf/0ff5LruMyHaH5XrQkwaTyZ74KUmTWs5AACxlIxDaLdt26YmTZoEN0cKlKTyXwuPP/54TZs2TZJ07LHH6tNPP9UDDzygP/7xj8F0FXu0GYZRYy+3imkipY+mnJqEDrUA4F6lSrW7CqiB085RTfU54ZAtialIHee0855oSd9gV8shtNH+qJzsMek///nPqNOOHTvWdPmmGvAAAHCrMrt+wKpFA16TJk3CGvCq0rp1a3Xp0iVs2xFHHKFnn31WkpSdnS2p/NfK1q1bB9Ps2rUr+Atodna2SktLVVRUFPaL565du9SrV69gmu+++67S/r///vtKv6SaNWLEiFrlBwAAQBVq2YAX7Y/KyR6TzpkzJ6p0Ho8n/g14B4wUlRn0wAMAuM8Bm4ZgJmIV2pNOOkmbNm0K2/bFF1+obdu2kqR27dopOztby5cv17HHHitJKi0t1cqVKzVjxgxJUvfu3ZWenq7ly5dr2LBhkqSdO3fqk08+0cyZMyVJeXl5Ki4u1rp169SjRw9J0tq1a1VcXBwMqOJl586dmjp1qu6999647geAvZxwr9Kr7Wa7q+BoTjhHoQI97FZtbW9vReo4p513swLXh1vf37WdAy/aH5WTPSYtKCiwnDcaphrwfEaKfEn+xgMAwAqfXXOoJWAV2vHjx6tXr16aNm2ahg0bpnXr1unhhx/Www8/LKn8V8Jx48Zp2rRp6tChgzp06KBp06apQYMGGj58uCTJ6/Xqyiuv1MSJE5WVlaXmzZtr0qRJ6tatW3AFsCOOOEIDBw7UyJEj9dBDD0mSRo0apUGDBsVkBdqNGzdqxYoVSk9P17Bhw9S0aVP98MMPmjp1qh588EG1a9eu1vsA4Gx23auccuhXtuw3GQUaQN7ecnhC9hftueE+N744vkkuQavQ1pWYNFRpaakKCgp02GGHKS2tdoNgTeUuU4rKXD52HQDgUileSTb86pqABrwTTjhBixcv1g033KDbbrtN7dq109y5c3XppZcG01x33XXau3evRo8eraKiIvXs2VPLli1T48aNg2nmzJmjtLQ0DRs2THv37lXfvn21YMECpab+HjssXLhQY8eODa4MNnjw4Jj0ivvvf/+r888/X2VlZZKkmTNnat68eRo2bJi6du2q//znPxo0aFCt9wPAud7Y0kniXiVpJOK+8vRDN9Wc6DenHPrVb9eQtfyoHu0ISS5BDXh1ISYN+PXXXzVmzBg9/vjjksp7ErZv315jx45VTk6OJk+ebLpMjxHFsmwlJSXyer169qOOatiYNx4AwH1Kd5dp8FFfqbi4OKohALUV+O7tdM00pWbWM5XXt3+fNt19Y8Lq6gR5eXnq0aOHpk6dqocffliTJk1Shw4dNG/ePJ166ql2Vw8xEHhPuOm6hjlLC7rUnCgOBrTbaMt+k108zxfnxHnsen/Gmt3XVqK/C2sTj0rujEkDrrnmGr377ruaO3euBg4cqI8//ljt27fXiy++qFtvvVUffvih6TLN9cAz0lRq0IAHAHCfMsNvy34TMQdeXfDZZ5/p8ccfV6NGjTR27Fhdd911mjt3Lo13gIuUGqzPl0wGtNuoJZuPsrsaSJC68v5csvkondP+Y7urkXC1nQPPjZ5//nk9/fTTOvHEE8NWtu3SpYu+/vprS2WabMBLVRkNeAAAFyqzK/BMwBDauqCkpERNmzaVJKWlpal+/frq2LGjvZUCkFDcpyQfzpl7cK6TXIKG0NYl33//vVq2bFlp+549e8Ia9MyoG83gAADEmV2BJz3wordx40YVFhZKkgzD0KZNm7Rnz56wNEcdRW8PAAAAM+iBZ94JJ5ygl156SWPGjJGkYKPdvHnzlJeXZ6lM00NoaTkHALiRXUNo6YEXvb59+yp0at/AohUej0eGYcjj8cjn89lVPQBxluie0hcd/l5C91cXDT2sfA6op786IWZlcl6caehhH8b0PCPB6IFn2vTp0zVw4EBt3LhRBw4c0N13361PP/1Uq1ev1sqVKy2VaXoVWubAAwC4UZndFUC1CgoK7K4CAJtxn5K8OHfuUBfOc36HNXZXAUmiV69eevfdd3XnnXfqsMMO07Jly3Tcccdp9erV6tatm6UyTffAS6sjk08CAGBGiqepPTumB15U2rZtW2OaDRs2RJUOQHJKVA+8Kzq+k5D9uEkszh3nxflsm08YtUcPPEu6deumxx9/PGblmXoH7TPS5eFNBwBwIcNfbMt+Pb89zOZBueLiYi1cuFCPPPKIPvroI4bQAnXYPiM97vsY3WlF3PfhRoHGt/s3nWYpP+clOdT2PEuRz3VtykN0rMSjgXxu9fLLLys1NVUDBgwI27506VL5/X6deeaZpss01Rp3gFVoAQAudSABN4YR0QPPkjfeeEPz58/Xc889p7Zt2+r888/Xo48+ane1AMQR9ynJj3NYt939eb/f/mXuPF/T+bVqnw806v1ePmKOHnimTZ48WXfccUel7YZhaPLkyfFvwCszUpXKhyoAwIV8rELreNu3b9eCBQs0f/587dmzR8OGDVNZWZmeffZZdenSxe7qAYiTOz8L9G6I3+f0pCOWxq1s/C7aBjzOR3Ky0kBr5lxf0/m1kM+D2ErENRdad6dd46xCa96XX34ZMf7s3LmzvvrqK0tlptS2UgAAuIFtvQIMiw+XOeuss9SlSxdt3LhR99xzj3bs2KF77rnH7moBAAAkP6vxqAtj0gCv16vNmzdX2v7VV1+pYcOGlso01QNvvz9NHr9NQ4gAALDRfr+bZ/FwvmXLlmns2LH6y1/+og4dOthdHQAJtD8O9yc3HfnfmJeJmjmt1xFiK3B+p346KGx7LN9voddQxf04XTw+y2CfwYMHa9y4cVq8eLEOO+wwSeWNdxMnTtTgwYMtlckceAAARCEjpZF9O3fxr5fRevvttzV//nwdf/zx6ty5s/Lz83XRRRfZXS0ACcD9CZBcEtVAHrqfKZ+ca6mMKV1fiFV1ahSo75RPzg3WN5H7rxHxqCmzZs3SwIED1blzZ7Vp00ZS+XQvp5xyiu68805LZZpbhdafLoNWYQCAC3l8v9izX+bAi0peXp7y8vJ09913a9GiRZo/f74mTJggv9+v5cuXKzc3V40bN7a7mgBibPLHF0ji/gRA9fYlUTtGaF3LP+N+d+Oh8xNdHUnMgWeF1+vVqlWrtHz5cn300UeqX7++jjrqKJ166qmWyzTdA49FLAAAbuSzK/BjFVpTGjRooCuuuEJXXHGFNm3apEcffVR33HGHJk+erDPOOEMvvvii3VUEEEMHuDcBEIVk+qxwZF1ZhdYSj8ej/v37q3///jEpz1QDXqkvTfKZygIAQN1gHLBlt/TAs65Tp06aOXOmpk+friVLlmj+fHt+tQYQP/tjfG9yz3ELY1oeAGe48+inw/4e88GlwX/fc9zCSn/bKdafa7FADzxncN6VAQCAA5XaFUzRA6/WUlNTNWTIEA0ZMsTuqgAAACQfeuA5gslVaFNl+GnzAwC4T6mfCAQAnGZ/Le5NHj7+8RjWBEAyqdjLzu5ed5I06v0Rv/0r8ufaw8c/rpKSksRVCI5j6huvzEiRx0iJV10AAHCsMpu+/xhCCwBVs+uzGUDdcfl7l0fc/tgJjyW0HlV9niW6HpEwhNYZTDbgpUn0wAMAuFC9lAb27JghtABQpVKL9yYLe86LcU0AJCurnyOxdOnakYrUPOOYzyqG0EbFTA/JJk2amC7f9CIWhgMnVAQAIN7KfHvs2TENeABQJdvmJwVQZ9j5OXLhqr/89q/wOvyn1wOJr0x1aMCLStOmTeXxeKJK6/P5TJdvrgHPnyrD78AljQEAiDOPTcEdQ2gBoGqlJu9NXjj53jjVBECy+k+vB3TuO38N/p2Iz4nf91f5M8yJn1MMoY3OihUrgv/esmWLJk+erMsuu0x5eXmSpNWrV+vxxx/X9OnTLZVvbgitP4UGPACAK3ns+v6jBx4AVMlsAx4ARJLIRrMz37pGkRruXjn17oTVwTR64EWld+/ewX/fdtttmj17ti655JLgtsGDB6tbt256+OGHNWLEiEhFVItZXwEAiEKZn69MAAAAADVbvXq1jj/++Erbjz/+eK1bt85SmSbnwEuV38evXAAA9/HZ9P3nMQx5DHM/X5pNDwDJpu+KCb/9K/rP5tdPmx2fygBAFKx8bjmFlXg0kM+tcnNz9eCDD+quu+4K2/7QQw8pNzfXUpkmh9AyBx4AwJ0apTa2Z8cMoQWAMKe+fq3M3AC/1XdW/CoDAFEqq6YtxfGfUwyhNW3OnDk6//zztXTpUp144omSpDVr1ujrr7/Ws88+a6lMcw14vlQZ9MADALhQcdmvtuyXRSwAINxbfWcpb9nkqNMH0q7uf0e8qgQANQo00oV+fiXL5xKLWJh31lln6YsvvtADDzygzz//XIZh6Nxzz9Wf//znxPTA8/lTJB9zAAEA3Mdj1w9Y9MADgDAnvHKjmMobdUn5NV3uvTOn2VgTJEKyNNqFoQeeJbm5uZo2LXbvadNDaP0MoQUAuFCqTYtY0AMPAMJVNwwtkg1n/yNONQFiw+w1DSQaPfCi8/HHH6tr165KSUnRxx9/XG3ao446ynT5phrwAABwK4JrAAAAAFU55phjVFhYqJYtW+qYY46Rx+OREWEhD4/HI5/PZ7p8cz3wDqTKf4AbGACA+/gP2DRciyG0ABCmLMr7kU/PnRLfigAxQi9ROB5DaKNSUFCggw46KPjvWDM3B57Pwxx4AABX8tv0/ccQWgAI9+m5U9T5udtiVl5oWZ8P/VvMygWAuoIhtNFp27atJKmsrExTpkzRLbfcovbt28esfFN3I36/hwcPHjx48HDlw5veMGZfvqYYFh+1MH36dHk8Ho0bN+73ahiGpkyZopycHNWvX199+vTRp59+GpZv//79GjNmjFq0aKGGDRtq8ODB2r59e1iaoqIi5efny+v1yuv1Kj8/Xz///HPtKgzAdaL53LZSFgAgAqvxaC1i0mSOR9PT07V48eKYlRdgqgee/0CqxBBaAIALFZX+atu+E/nr5XvvvaeHH3640sS6M2fO1OzZs7VgwQJ17NhRt99+u8444wxt2rRJjRs3liSNGzdOS5Ys0aJFi5SVlaWJEydq0KBBWr9+vVJTy+OH4cOHa/v27Xr11VclSaNGjVJ+fr6WLFmSuBcJIOl9ccEtkqTDFlW9ul/gua8vvrHKNKFlAQCqRjxqznnnnafnn39eEyZMiFmZ5hrwfB7Jxy9TAAD38dg2B55R/jCbx4Ldu3fr0ksv1bx583T77beHFGdo7ty5uummmzR06FBJ0uOPP65WrVrpqaee0lVXXaXi4mI9+uijeuKJJ9SvXz9J0pNPPqnc3Fy99tprGjBggD777DO9+uqrWrNmjXr27ClJmjdvnvLy8rRp0yZ16tTJUr0BuJc/inuTdgunS5IKLr0h3tUBgLrJSjwayGdSXYlHDz/8cP3jH//QqlWr1L17dzVsGD6aZ+zYsabLNNWAZ/g9MmjAAwC4kBu+/66++mqdffbZ6tevX1jAVFBQoMLCQvXv3z+4LTMzU71799aqVat01VVXaf369SorKwtLk5OTo65du2rVqlUaMGCAVq9eLa/XGwyWJOnEE0+U1+vVqlWraMADYFpoo9yh/3eHjTUBAMRCXYlHH3nkETVt2lTr16/X+vXrw57zeDzxb8ADAMCtDH/yLWJRUlIStj0zM1OZmZkR8yxatEgffPCB3nvvvUrPFRYWSpJatWoVtr1Vq1baunVrME1GRoaaNWtWKU0gf2FhoVq2bFmp/JYtWwbTAAAAwFlqu4hFtDFpXYpHbV+FVr4UVqEFALiTXT3wrEwA/Fv63NzcsM233nqrpkyZUin5tm3bdM0112jZsmWqV69elcV6POHHwDCMStsqVaVCmkjpoykHAGqy5Y+T7a4CANRNVhekMBGTEo/WzNwQWh9DaAEA7tQsvYG+sWG/Hn/5w2weqTwQatKkSXB7Vb3v1q9fr127dql79+7BbT6fT2+99Zbuvfdebdq0SVL5L5atW7cOptm1a1fwV9Ds7GyVlpaqqKgo7FfPXbt2qVevXsE03333XaX9f//995V+TQUAAIAzWIlHA/mk6GLSuhaPVrV4hcfjUb169XT44Yfr3HPPVfPmzaMu01QDnueAR54DNOABANznp7K99uy4Fj3wmjRpEhYsVaVv37763//+F7bt8ssvV+fOnXX99derffv2ys7O1vLly3XsscdKkkpLS7Vy5UrNmDFDktS9e3elp6dr+fLlGjZsmCRp586d+uSTTzRz5kxJUl5enoqLi7Vu3Tr16NFDkrR27VoVFxcHgyoAAAA4TC174EUTk9a1ePTDDz/UBx98IJ/Pp06dOskwDH355ZdKTU1V586ddf/992vixIl655131KVLl6jKpAEPAIAo2PX9V5s58KLVuHFjde3aNWxbw4YNlZWVFdw+btw4TZs2TR06dFCHDh00bdo0NWjQQMOHD5ckeb1eXXnllZo4caKysrLUvHlzTZo0Sd26dQuuAnbEEUdo4MCBGjlypB566CFJ0qhRozRo0CAWsAAAAHCo2s6BF426Fo8Getc99thjwcbLkpISXXnllTr55JM1cuRIDR8+XOPHj9fSpUujKtNcA55hrdskAADJzu0/YF133XXau3evRo8eraKiIvXs2VPLli1T48aNg2nmzJmjtLQ0DRs2THv37lXfvn21YMECpaamBtMsXLhQY8eODa4ONnjwYN17770Jfz0AAABILskUj86aNUvLly8P63nYpEkTTZkyRf3799c111yjv/3tb2Er5tbEYxhGjW2iJSUl8nq9ajvjdqVUM5kgAAB1lbFvn7Zcf7OKi4ujGpZaW4Hv3h6D/6G0dHPfvQfK9mndi7ckrK5AIgTeE1zXAAC3SvR3YW3iUcndMWmjRo303//+V3369Anb/uabb+qcc87RL7/8os2bN+uYY46ptEpvVRhCCwBANOrwEFoAAACgKokYQlvXnHvuubriiit011136YQTTpDH49G6des0adIkDRkyRJK0bt06dezYMeoyacADACAadn3/1WIRCwBAdA6fOSfs76+uG29TTQDAgWq5iIUbPfTQQxo/frwuvvhiHThwQJKUlpamESNGaM6c8u+czp0765FHHom6THMNeL7yBwAAbtM0s74t+6UHHgDER4fpvzfaBX6i+fKG8cHnAv8GALejB555jRo10rx58zRnzhxt3rxZhmHosMMOU6NGjYJpjjnmGFNlmuyBJ6UcMFU+AAB1QtGBvfbs2DDKH2bzAACqFem+ptM/yhv1UhJcFwBwNCvxaCCfyzVq1EhHHXVUTMoy14DnpwceAMCd+AELAJJf5ymVe91F8vkUet/BnULfI7wPAGcx1YCXckBKSa05HQAAdY3fb89+GUILALHR5eY5Vfas23g7DRWIXpeb50TcXheuo9AfLKt6nQHVvd5IeevC8XErhtA6g6kGPAAA3Mq2HngsYgEAAAA7sYiFI7CIBQAAUbDr+48eeABg3pE3VO79Y9Na4khyZq6lQNpPp9vX0yxSfc0w8z6pbl+Ryqlt3eLJznOWDOiB5wymF7HwMIQWAOBCHrt64PmN8ofZPADgYrZ9ZiOpdb02Ng2/kcqJ1iezzDckhe6PhmprAsfQyvF3BSvxaCAfYsbcHHi+8gcAAG7TtH59e3bMEFoAMO2TWeN11ATn9vZB/ISe949nR26MqeracMLqwzXVP1LdnVDvusLM50ZV11edxBBaRzA/hJZfswAALvTz/r12VwEAEMHRYyPfcEfbE+mjf7roJtyiise4NsesqvNlpdxIZXlqeL5iGier6fXBXlVdX3ymIF7Mr0JL8z4AwIVsW4VWFubAi0tNAMAZjh0dftNc29uTY0fP0Yf3u/eGu+LxjKTiMY4mT7Rl1aZcbk3hRDVdx8n4eWMlHg3kQ+ywCi0AAFGwbxVao/xhNg8AAAAQC1bi0UA+xAw98AAAiIZNDXisQgsA4Wz7QaUO6D6K+dMAu0V6H0rS+oed2zOPVWidwWQDnqGUFM4AAMCFDtj0/cciFgAc5IQrZptK/978CcF8gX/Xdp80ONWsqvPEsQNgCYtYOAI98AAAiIK3gT2r0HoMQx6Tww/MpgeQPHr+8feGmbX/Z61BrDb7NXsrEJovtO7VWft/E8LScvsRHY4ZkLwS+XluhZV4NJAPsWNyFVpDKXb1QAAAwEY/l+yzuwoAXCRv+F0Rt6dEkaY2Vj81MeL2wM1lPPZZUd7wu2iAiqCmY88xA5JPVZ+5QCTmeuCV8cUAAHCnFLvGAPh/e5jNA8BWJ11Yu4Yuu2LumupdV+8FAq/73f8492Y6pczuGgCoDSd/vtTISjwayIeYMT8HHrMQAgBcyK4pYBlCCySHU867M+zvutrQVddVPI8Bby+elOCalAutD9cUkNwC72e7Pk9qgyG0zmCqAQ8AALdK8bGIBQAAAFyIRSwcgR54AABEwSizqwHPKH+YzQPUUWefN0dvv35rXPfR+5xZpvPQO6pui3RNrFxybVzLl7iugLpi5ZJrg+/z3ufMsvz5cfZ5c2JZrehZiUcD+RAzJufA8yvFYBAzAMB9DJ89338eo/xhNg9Ql502YIYkacXS6+NSNo0miEbgOjQrcN2G5ueaA+q2it8tVj8/7GIlHg3kQ+zQgAcAQBQaN6pndxUAKDwe7Xv69NiXH/MSgXCB65ZrDYBZKQdoj3EzUw14ngN+eVhGBADgQiXF++zZMUNogTDEowAAJBhDaB2BHngAAETBk2LTEFp/+cNsHqCuIh4FALiVx6Ygz0o8GsiH2GEVWgAAopBSZlMEQg88AAAAKMni0UA+xIz5IbSGL151AQDAsTx+uwKm3x5m8wB1FPEoAMCtPDYtqmYpHg3kQ8yYa8Ar88njJ2ACALiPXd9/HsOQx+Svl2bTA8mEeBQA4FYeX/LEo4F8iB1zDXilB+RJTY1XXQAAcCyvN9PuKgAQ8SgAwL08vgN2VwE2MjcH3oEDkp+ACQDgPsVF++3ZMXPgAeGIRwEAbpVi036ZA88RzDXglZZJKXZdMQAA2CjdxjlHzO6aWAl1GfEoAMCt0pIoHg3kQ8yYa8ArO0DABABwJ8OegIk58IAKiEcBAG5l06JqzIHnDEQ/AABEo8ymOUcM/T5sIeqHuV1Mnz5dJ5xwgho3bqyWLVtqyJAh2rRpU3g1DENTpkxRTk6O6tevrz59+ujTTz8NS7N//36NGTNGLVq0UMOGDTV48GBt3749LE1RUZHy8/Pl9Xrl9XqVn5+vn3/+2cKBAQAAcJmkikeJSWPNVA88o6xMRoonXnUBAMC5jDKb9hv/OfBWrlypq6++WieccIIOHDigm266Sf3799fGjRvVsGFDSdLMmTM1e/ZsLViwQB07dtTtt9+uM844Q5s2bVLjxo0lSePGjdOSJUu0aNEiZWVlaeLEiRo0aJDWr1+v1N8WHRg+fLi2b9+uV199VZI0atQo5efna8mSJeZeI1yLeBQA4FaGP4ni0UA+E4hJq+cxjJqPaElJibxer05vcLHSPBmJqBcAAI7iU6le37NIxcXFatKkSdz3F/zuPfp6paWaWwH3gG+/3vhohuW6fv/992rZsqVWrlypU089VYZhKCcnR+PGjdP1118vqfyXzVatWmnGjBm66qqrVFxcrIMOOkhPPPGELrroIknSjh07lJubq5dfflkDBgzQZ599pi5dumjNmjXq2bOnJGnNmjXKy8vT559/rk6dOpmuK9yDeBQA4HYHjFK98WtyxKMSMWmsmeuBV3pAhodfPAEA7tO4RX1pjw079ksy+9X72/QoJSUlYZszMzOVmVlz8FVcXCxJat68uSSpoKBAhYWF6t+/f1hZvXv31qpVq3TVVVdp/fr1KisrC0uTk5Ojrl27atWqVRowYIBWr14tr9cbDJQk6cQTT5TX69WqVascGyzBWYhHAQBuZRg2DaG1Eo8G8omYNFZMNeB17tVWGWnmW10BAEh2W77YXnOiOKjNIha5ublh22+99VZNmTKl2ryGYWjChAk6+eST1bVrV0lSYWGhJKlVq1ZhaVu1aqWtW7cG02RkZKhZs2aV0gTyFxYWqmXLlpX22bJly2AaoCZ+T6m6nNLR7moAAJBwmz4qkH5M/H5ru4gFMWlsRNWAl5GRoezsbD3w1l3xrg8AAI6VnZ2tjIwED92rxRx427ZtCxuuEM0vnX/961/18ccf65133qn0nKdCryfDMCptq1yV8DSR0kdTDhCIR1cWvqiVb7xod3UAALBF0sSjgXwiJo2VqBrw6tWrp4KCApWWlsa7PgAAOFZGRobq1auX2J3WogGvSZMmpuYbGTNmjF588UW99dZbatOmTXB7dna2pPJfK1u3bh3cvmvXruAvoNnZ2SotLVVRUVHYL567du1Sr169gmm+++67Svv9/vvvK/2SClREPAoAQBLFo4F8IiaNlaiH0NarVy/xFwkAAIg7wzA0ZswYLV68WG+++abatWsX9ny7du2UnZ2t5cuX69hjj5UklZaWauXKlZoxY4YkqXv37kpPT9fy5cs1bNgwSdLOnTv1ySefaObMmZKkvLw8FRcXa926derRo4ckae3atSouLg4GVEB1iEcBAKi7iEmrZ2oOPAAAkGC16IEXrauvvlpPPfWUXnjhBTVu3Dg494fX61X9+vXl8Xg0btw4TZs2TR06dFCHDh00bdo0NWjQQMOHDw+mvfLKKzVx4kRlZWWpefPmmjRpkrp166Z+/fpJko444ggNHDhQI0eO1EMPPSRJGjVqlAYNGuTYyYIBAABcr5Y98KJFTFo9GvAAAHCyWqxCG60HHnhAktSnT5+w7Y899pguu+wySdJ1112nvXv3avTo0SoqKlLPnj21bNkyNW7cOJh+zpw5SktL07Bhw7R371717dtXCxYsUGpqajDNwoULNXbs2ODKYIMHD9a9995r8gUCAAAgYWq5Cm20iEmr5zEMK82oAAAgnkpKSuT1etWv4wSlpZpbAf6Ab79e+2K2iouLTc03AgAAAATUJh6ViEljjR54AAA4WQKG0AIAAABVStAQWlSPBjwAAJzMb0gek8GPn2AJAAAAMWIlHg3kQ8yk2F0BAAAAAAAAAFWjBx4AAE7GEFoAAADYiSG0jkADHgAAjmYlYCJYAgAAQKxYbMAjJo0pGvAAAHAyeuABAADATvTAcwQa8AAAcDK/IdO/XjJhMAAAAGLFSjwazIdYoQEPAAAnM/zlD7N5AAAAgFiwEo8G8iFmWIUWAAAAAAAAcDB64AEA4GTMgQcAAAA7MQeeI9CABwCAkzEHHgAAAOzEHHiOQAMeAABORg88AAAA2IkeeI5AAx4AAE5myEIDXlxqAgAAADeyEo8G8iFmaMADAMDJ6IEHAAAAO9EDzxFYhRYAAAAAAABwMHrgAQDgZH6/JL+FPAAAAEAMWIlHg/kQKzTgAQDgZAyhBQAAgJ0YQusINOABAOBkNOABAADATjTgOQINeAAAOJnfkOklvPwESwAAAIgRK/FoMB9ihQY8AAAczDD8Mgxz84eYTQ8AAABUxUo8GsiH2GEVWgAAAAAAAMDB6IEHAICTGYb54QfMNwIAAIBYsRKPBvIhZmjAAwDAyQwLc44QLAEAACBWrMSjwXyIFRrwAABwMr9f8picP4T5RgAAABArVuJRiZg0xmjAAwDAyeiBBwAAADvRA88RaMADAMDBDL9fhslfPFnxCwAAALFiJR6ViEljjVVoAQAAAAAAAAejBx4AAE7GEFoAAADYiSG0jkADHgAATuY3JA8NeAAAALCJlXhUIiaNMRrwAABwMsOQZHYVWoIlAAAAxIiVeDSYD7FCAx4AAA5m+A0ZJn/xNAiWAAAAECNW4lGJmDTWaMADAMDJDL/M98BjxS8AAADEiJV4NJgPscIqtAAAAAAAAICD0QMPAAAHYwgtAAAA7MQQWmegAQ8AAAc7YOw3PfzggMriVBsAAAC4jZV4VCImjTUa8AAAcKCMjAxlZ2frncKXLeXPzs5WRkZGjGsFAAAAt6htPCoRk8aSx6BPIwAAjrRv3z6VlpZaypuRkaF69erFuEYAAABwk9rEoxIxaSzRgAcAAAAAAAA4GKvQAgAAAAAAAA5GAx4AAAAAAADgYDTgAQAAAAAAAA5GAx4AAAAAAADgYDTgAQAAAAAAAA5GAx4AAAAAAADgYDTgAQAAAAAAAA72/xitq+k2cVAFAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axs = plt.subplots(nrows=1,ncols=2,\n", + " subplot_kw=dict(projection=ccrs.PlateCarree()),\n", + " figsize=(16,4))\n", + "axs=axs.flatten()\n", + "(fv_cam_area).plot(ax=axs[0]) ;\n", + "fv_t232.area.plot(ax=axs[1]) ;\n", + "\n", + "# add wall to wall area to clm history file\n", + "fv_cam_area['lat'] = fv_t232.lat\n", + "fv_cam_area['lon'] = fv_t232.lon\n", + "fv_t232['area'] = fv_cam_area" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "2527cd61-ebea-4762-a7b3-4cd5e8782285", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPwAAAKECAYAAACTnCRgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydebwcVZmwn6rq/a7JzUZCSAKEJSIgQREEg2whKMOgo/ihiBuC4CCgKIgsAoIsAjMIMo6ooAiMg/sIJKCgSARUBAEBlbBmX+/aW9X5/ji1dnfd231z9/s+/PKjb3VtXV1d9dQ5531fQymlEARBEARBEARBEARBEARhQmCO9g4IgiAIgiAIgiAIgiAIgjB0SIOfIAiCIAiCIAiCIAiCIEwgpMFPEARBEARBEARBEARBECYQ0uAnCIIgCIIgCIIgCIIgCBMIafATBEEQBEEQBEEQBEEQhAmENPgJgiAIgiAIgiAIgiAIwgRCGvwEQRAEQRAEQRAEQRAEYQIhDX6CIAiCIAiCIAiCIAiCMIGQBj9BEARBGGdcfdF0Tv1I22jvhiAIgiAIgjBJeeqpp3jn27O89tpro70rQgyGUkqN9k4IgiAIglAfb7zxBgt3nYthwL33PcQ73/nO0d4lQRAEQRAEYZLx7iObePjRPj74ry18+45to707Qg2kwU8QBEEQxhGnndzOxs02b94zxYqHevndY70YhjHauyUIgiAIgiBMEn7/+99z9NJDuPfOORzx/jd4+unn2W233UZ7t4QKpMFPEARBEMYJ//znP3nTmxby5xU7MWeHBLse8DLfu/1nvPvd7x7tXRMEQRAEQRAmAUopDj2oiSUHZbnk3A5O/fw6Orsd7v5p12jvmlCBNPgJgiAIwjjhQ+9rJZUyuPX6mQDc8F9buP1Hnfz56T5MU9LyCoIgCIIgCMPL/fffz4n/7xj+8Yf5tLVavL66xB7veIVHV/6Zfffdd7R3TwghTweCIAiCMA7461//yo9/1c1F50z1p512chubtjj86Ec/GsU9EwRBEARBECYDSim+dO5xnPfvU2lrtQDYcXaS005u40uff8co751QiTT4CYIgCMI44IJzD+SUD7Uxb27Sn5bJmFx4zlQu/NJJlEqlUdw7QRAEQRAEYaJzzz33sHZDmdM/2haZ/sXPTOGRx/I88sgjo7RnQi2kwU8QBEEQxjh/+MMf+PXvejn/s1Oq3vvoCa0AfPc/dxzp3RIEQRAEQRAmCeVymQvPP5ELzppKNhttSpo+LcHZp7bzpc8fiWSNGztIg58gVPD000/zsY99jAULFpDJZGhubma//fbj6quvZvPmzaO9e4IgTEIuOPcwPntKOzOnJ6reSyQMvvKFDi67bjP5fH4U9k4QBGFsIS43tBx66KEceuihA8738ssvYxgG3/ve9wac96Mf/Sjz58/f7n0LM3/+fD760Y8O6TqHm/nz5/Oe97xntHdDEOri9pt2pFiCT5zYVvP9s09t57kXi9x///0jvGdCHNVPDoIwifnv//5vTj/9dHbffXfOPfdcFi1aRKlU4o9//CO33HILK1eu5Cc/+clo76YgCJOIBx54gCefKfCjb+8QO8/7j23m6m9s4ear5nLOxRtGcO8EQRDGFuJyQ8/NN9882rsgCMIoUygU+Mo1m7j8/A6SSaPmPK0tFuedOZUvnfuvHHVUrxSUGwPINyAILitXruTTn/40RxxxBH/60584/fTTOfTQQznyyCM5//zzef755/nYxz422rs5aJRS9PX1jfZuCILQADox8nv4whlTaG+zYuczTYPLzuvgyv/cQldX16C2dfPNN/ujYRYvXszvfve7fud/+OGHWbx4MZlMhp133plbbrmlap577rmHRYsWkU6nWbRoUc2H7IG2++Mf/5ilS5cybdo0DMPgL3/5S9U6CoUC//7v/860adNoamriX/7lX3j99dcbOwCCIIx7xOWGlt7eXgAWLVrEokWLRmy7giCMPf7r2rm0tph88F9b+p3v0ye3sW5jmXvuuWdQ2xEfHVqkwU8QXK644goMw+Bb3/oW6XS66v1UKsW//Mu/+H87jsPVV1/NHnvsQTqdZsaMGXzkIx+p+lEfeuih7LXXXjzxxBMccsgh5HI5dt55Z772ta/hOE5kfZdffjm777472WyW9vZ29t57b/7jP/5jUJ/HMAw+85nPcMstt7DnnnuSTqe57bbbAPjKV77CAQccwNSpU2ltbWW//fbj1ltvjeRbOPfcc2lra8O2bX/av//7v2MYBtdcc40/bdOmTZimyY033jio/RQEIZ6f/vSnvLa6zGc+3j7gvMsOy7H7Lkmuu2x+w9u5++67Oeuss7jgggt48sknOeSQQ1i2bBmvvvpqzflXrVrFMcccwyGHHMKTTz7Jl770Jc4888yI3K1cuZITTjiBk046iaeeeoqTTjqJD3zgAzz22GMNbbenp4d3vOMdfO1rX4vd/7POOouf/OQn3HXXXTzyyCN0d3fznve8J3L9EgRh4jOZXO7vf/87J554IjNmzCCdTrPnnnty0003Va3j2Wef5aijjiKXyzF9+nTOOOMM/u///g/DMHjooYeqPuNvf/tbDjroIHK5HB//+Mf99ypDelevXs0HPvABWlpaaGtr44QTTmDt2rU1P8f3vvc9dt99d38/b7/99przFYtFLr/8cv/7mD59Oh/72MfYsCE6cr1UKvGFL3yBWbNmkcvlOPjgg3n88cfrOqZe2PE111zDVVddxfz588lmsxx66KG8+OKLlEolzjvvPGbPnk1bWxvHH38869evj6zj7rvv5qijjmKHHXYgm82y5557ct5559HT0xOZ76WXXuKDH/wgs2fPJp1OM3PmTA4//PCaDQVhbr75ZhKJBBdffHFdn0kQhpvu7m6+esNmLjuvA8uqPbrPI5s1+fLZHVx4/ocol8sNbUd8dBhQgiCocrmscrmcOuCAA+pe5lOf+pQC1Gc+8xl13333qVtuuUVNnz5dzZ07V23YsMGfb8mSJaqjo0MtXLhQ3XLLLWrFihXq9NNPV4C67bbb/PmuvPJKZVmWuvjii9WDDz6o7rvvPnXDDTeoSy65ZFCfCVBz5sxRe++9t/rhD3+ofv3rX6tnnnlGKaXURz/6UXXrrbeqFStWqBUrVqjLLrtMZbNZ9ZWvfMVf/r777lOAevTRR/1pe+yxh8pms+rII4/0p919990KUM8999yg9lMQhNqUy2W1aLeU+saV05W9ZmFd/x76yY6qpdlUGzdubGhbb3vb29Rpp50WmbbHHnuo8847r+b8X/jCF9Qee+wRmXbqqaeqt7/97f7fH/jAB9TRRx8dmWfp0qXqgx/84KC2u2rVKgWoJ598MjJ969atKplMqrvuusuf9sYbbyjTNNV9991Xc/8FQZh4TCaXe/bZZ1VbW5t685vfrG6//Xa1fPly9bnPfU6ZphnZ1urVq1VHR4faaaed1Pe+9z31q1/9Sp100klq/vz5ClC/+c1vIp9x6tSpau7cuerGG29Uv/nNb9TDDz/sv7dkyRJ/3t7eXrXnnnuqtrY2deONN6r7779fnXnmmWqnnXZSgPrud7/rz/vd735XAeq4445Tv/jFL9QPfvADteuuu6q5c+eqefPm+fPZtq2OPvpo1dTUpL7yla+oFStWqG9/+9tqzpw5atGiRaq3t9ef9+STT1aGYahzzz1XLV++XF133XVqzpw5qrW1VZ188sn9HlPvXjJv3jx17LHHql/+8pfqBz/4gZo5c6babbfd1EknnaQ+/vGPq3vvvVfdcsstqrm5WR177LGRdVx22WXq+uuvV//3f/+nHnroIXXLLbeoBQsWqHe9612R+XbffXe16667qu9///vq4YcfVvfcc4/63Oc+Fznu8+bNU+9+97uVUko5jqM+97nPqWQyGTmGgjDaXH5ehzpgv4wqr961Lh/Nv7qr2mV+Uv33dTMa2o746NAjDX6CoJRau3atAiI//P7429/+pgB1+umnR6Y/9thjClBf+tKX/GlLlixRgHrsscci8y5atEgtXbrU//s973mP2nfffbfjU0QBVFtbm9q8eXO/89m2rUqlkrr00ktVR0eHchxHKaVUT0+PSqVS6tJLL1VKKfX6668rQH3xi19U2WxW5fN5pZRSp5xyipo9e/aQ7bcgCJq77rpLzZ+bUH2v1CdX3r+l78qpc89oV9u2bYv8836zlRQKBWVZlvrxj38cmX7mmWeqd77znTWXOeSQQ9SZZ54ZmfbjH/9YJRIJVSwWlVJKzZ07V1133XWRea677jq10047DWq7cYL14IMPKqDqWrf33nuriy66qOb+C4Iw8ZhMLrd06VK14447qm3btkWmf+Yzn1GZTMaf/9xzz1WGYahnn322avlaDX6AevDBB6v2o7LB75vf/KYC1M9+9rPIfKecckqkwc+2bTV79my13377+X6plFIvv/yySiaTkQa/O++8UwHqnnvuiazziSeeUIC6+eablVLB93b22WdH5rvjjjsUUHeD3z777KNs2/an33DDDQpQ//Iv/xKZ/6yzzlJA1bH2cBxHlUol9fDDDytAPfXUU0oppTZu3KgAdcMNN/S7P16DX29vr3rf+96n2tra1AMPPNDvMoIwknR3d6u2VlOt+NGchnz0+zfNVDvOTqitW7eKj46ij0pIryAMgt/85jcAVZXA3va2t7Hnnnvy4IMPRqbPmjWLt73tbZFpe++9N6+88kpk2aeeeorTTz+d+++/n87Ozu3ez8MOO4wpU6ZUTf/1r3/NEUccQVtbG5ZlkUwmueiii9i0aZMftpDL5TjwwAN54IEHAFixYgXt7e2ce+65FItFHnnkEUAXFDjiiCO2e18FQYjy8ssvc+D+WVKp/kMnKjn0oCz3/XYubW1tkX9XXnllzfk3btyIbdvMnDkzMn3mzJmx4Vlr166tOX+5XGbjxo39zuOtczDbjduXVCpVda1rdD2CIEwuxqvL5fN5HnzwQY4//nhyuRzlctn/d8wxx5DP5/nDH/4A6NxWe+21V1X+vf/3//5fzW1NmTKFww47bMB9+s1vfkNLS0skPBrgxBNPjPz9wgsvsHr1ak488UQMI7iXzZs3j4MOOigy7y9/+Uva29s59thjI59p3333ZdasWX74sfe9fehDH4os/4EPfIBEov56lMccc0ykoMCee+4JwLvf/e7IfN70cGjfSy+9xIknnsisWbN8j16yZAkAf/vb3wCYOnUqu+yyC9dccw3XXXcdTz75ZCT8O8ymTZs47LDDePzxx3nkkUc4/PDD6/4cgjDcbNu2jW2dDksOzDa03KEH5Xh9dZn29nbx0VH0UWnwEwRg2rRp5HI5Vq1aVdf8mzZtAmCHHaqrZs6ePdt/36Ojo6NqvnQ6HUm8fP7553Pttdfyhz/8gWXLltHR0cHhhx/OH//4x0Y+SoRa+/f4449z1FFHAbqS3e9//3ueeOIJLrjgAoDIPh1xxBH84Q9/oKenhwceeIDDDjuMjo4OFi9ezAMPPMCqVatYtWqVNPgJwjChUDgN/qdQLFq0SAta6N/555/f77bCD2Ogk8NXThto/srp9ayz0e3Wy1CtRxCE8cFkcblNmzZRLpe58cYbSSaTkX/HHHMMgP+gu2nTpqqHWKDmtFrbiiNuvbNmzaqar9b0WtPWrVvH1q1bSaVSVZ9r7dq1kc9Ua/lEIlHzO4pj6tSpkb9TqVS/0/P5PKBzmR1yyCE89thjXH755Tz00EM88cQT/PjHPwYCjzYMgwcffJClS5dy9dVXs99++zF9+nTOPPPMquJaL774Io899hjLli1jr732qvszCMJI0qiPOugG7s2bN4uPjqKP1t8NIggTGMuyOPzww7n33nt5/fXX2XHHHfud3xOKNWvWVM27evVqpk2b1vA+JBIJzjnnHM455xy2bt3KAw88wJe+9CWWLl3Ka6+9Ri6Xa3idtS4ud911F8lkkl/+8pdkMhl/+k9/+tOqeQ8//HAuvPBCfvvb3/Lggw/6yYMPP/xwli9fzoIFC/y/BUEYehQKW9UeERCHoxSWZdHa2lrX/NOmTcOyrKrex/Xr18c+FM6aNavm/OEHrrh5vHUOZrtx+1IsFtmyZUukV3X9+vVVI0gEQZi4TBaXmzJlCpZlcdJJJ3HGGWfUXMbzs46ODtatW1f1ftxok3ofSjs6OmoWyahcr3eMa22vctq0adPo6Ojgvvvuq7nNlpaWqnXOmTPHf79cLlc10g4Hv/71r1m9ejUPPfSQP6oPYOvWrVXzzps3j1tvvRXQjXr/8z//wyWXXEKxWIxUEj3wwAN5//vfzyc+8QkAvvnNb0ZGHwrCWMBWDqj6G648f21tbcWyrAHnFx8dHuRKIggu559/PkopTjnlFIrFYtX7pVKJX/ziFwB+uMMPfvCDyDxPPPEEf/vb37a7Aay9vZ1/+7d/44wzzmDz5s28/PLL27W+MIZhkEgkIhfevr4+vv/971fN+7a3vY3W1lZuuOEG1q5dy5FHHgnokX9PPvkk//M//8OiRYuYPXv2kO2fIAhRHFRD/9TAq4yQSqVYvHgxK1asiExfsWJFrKAceOCBVfMvX76c/fffn2Qy2e883joHs91aLF68mGQyGVnPmjVreOaZZ6TBTxAmGZPB5XK5HO9617t48skn2Xvvvdl///2r/nkPukuWLOGZZ57hueeei6zjrrvu2q59eNe73kVXVxc///nPI9N/+MMfRv7efffd2WGHHbjzzjv9UTcAr7zyCo8++mhk3ve85z1s2rQJ27Zrfqbdd98dwK8WfMcdd0SW/5//+Z+GK4IOBq9RtLIK9H/913/1u9xuu+3Gl7/8Zd785jfz5z//uer9k08+mbvuuovvfve7fOQjH5Eq88KYo1EfdRo0UvHR4UFG+AmCy4EHHsg3v/lNTj/9dBYvXsynP/1p3vSmN1EqlXjyySf51re+xV577cWxxx7L7rvvzqc+9SluvPFGTNNk2bJlvPzyy1x44YXMnTuXs88+u+HtH3vssey1117sv//+TJ8+nVdeeYUbbriBefPmsXDhQkDnYjn88MO56KKLuOiiiwb1Od/97ndz3XXXceKJJ/KpT32KTZs2ce2111aJC+je8iVLlvCLX/yCBQsWsMsuuwDwjne8g3Q6zYMPPsiZZ545qP0QBGFgvJDeRpdplHPOOYeTTjqJ/fffnwMPPJBvfetbvPrqq5x22mmAfoh+4403uP322wE47bTT+MY3vsE555zDKaecwsqVK7n11lu58847/XV+9rOf5Z3vfCdXXXUVxx13HD/72c944IEH/Pyf9WwXdCjIq6++yurVqwGdEwp0T+qsWbNoa2vjE5/4BJ/73Ofo6Ohg6tSpfP7zn+fNb36zpBsQhEnGZHG5//iP/+Dggw/mkEMO4dOf/jTz58+nq6uLf/zjH/ziF7/g17/+NQBnnXUW3/nOd1i2bBmXXnopM2fO5Ic//CHPP/88wKBHkX3kIx/h+uuv5yMf+Qhf/epXWbhwIb/61a+4//77I/OZpslll13GJz/5SY4//nhOOeUUtm7dyiWXXFIVkvvBD36QO+64g2OOOYbPfvazvO1tbyOZTPL666/zm9/8huOOO47jjz+ePffckw9/+MPccMMNJJNJjjjiCJ555hmuvfbauke2bw8HHXQQU6ZM4bTTTuPiiy8mmUxyxx138NRTT0Xme/rpp/nMZz7D+9//fhYuXEgqleLXv/41Tz/9NOedd17Ndf/bv/0buVyOf/u3f6Ovr48777zTDykWhNHGwcGg/hF+qkF/BfHRYWFUSoUIwhjmL3/5izr55JPVTjvtpFKplGpqalJvectb1EUXXaTWr1/vz2fbtrrqqqvUbrvtppLJpJo2bZr68Ic/rF577bXI+pYsWaLe9KY3VW3n5JNPjlQn+/rXv64OOuggNW3aNJVKpdROO+2kPvGJT6iXX37Zn+c3v/mNAtTFF1884OcA1BlnnFHzve985ztq9913V+l0Wu28887qyiuvVLfeeqsC1KpVqyLz/sd//IcC1CmnnBKZfuSRRypA/fznPx9wXwRBaJyvfe1r6v3H59S2N+Y29O+SL7WpE088seHt3XTTTWrevHkqlUqp/fbbTz388MP+eyeffHKkQqNSSj300EPqLW95i0qlUmr+/Pnqm9/8ZtU6f/SjH6ndd99dJZNJtccee1RVXxxou0op9d3vflcBVf/C18G+vj71mc98Rk2dOlVls1n1nve8R7366qsNHwNBECYGk8HlVq1apT7+8Y+rOXPmqGQyqaZPn64OOuggdfnll0fme+aZZ9QRRxyhMpmMmjp1qvrEJz6hbrvttkhF2f4+o/de5T3g9ddfV+973/tUc3OzamlpUe973/vUo48+GqnS6/Htb39bLVy4UKVSKbXbbrup73znO1XHTimlSqWSuvbaa9U+++yjMpmMam5uVnvssYc69dRT1d///nd/vkKhoD73uc+pGTNmqEwmo97+9rerlStXqnnz5tVdpfeaa66JTPe+lx/96EeR6d496IknnvCnPfroo+rAAw9UuVxOTZ8+XX3yk59Uf/7znyOffd26deqjH/2o2mOPPVRTU5Nqbm5We++9t7r++utVuVz21+VV6a3cl+bmZnX00Uer3t7efj+PIAw3b7zxhq4+++qODfno83+arYDI+V4P4qNDi6GUanwogCAIgiAIw8pVV13FHx/7Cv/9jfqTkAPccFMnf3/5PVXhToIgCIIA8KlPfYo777yTTZs2yQgyQRD6ZfXq1cyZM4eNr87Bsuof4bdmrc2ixWsol8t15fAThgcJ6RUEQRCEMYoC7AZDdKUXTxAEQfC49NJLmT17NjvvvDPd3d388pe/5Nvf/jZf/vKXpbFPEIS6adRHG51fGB6kwU8QBEEQxigKGk563Oj8giAIwsQlmUxyzTXX8Prrr1Mul1m4cCHXXXcdn/3sZ0d71wRBGEc4qAYy+A0up7Qw9EiDnyAIgiCMUZRS2A1m3pBEHYIgCILH+eefz/nnnz/auyEIwjjHVqqhMJJG/VUYHqTBTxAEQRDGMI3WOBO9EgRBEARBEIYSBxoa4dd4jV5hOJAGP0EQBEEYowwmh5+E9AqCIAiCIAhDieTwG59Ig58gCIIgjFEUYDfoS6JXgiAIgiAIwlBiKxqSTEeEdExQd4NfPp+nWCwO574IgiAIwpgmlUqRyWRGbHu6aEfjywjCREV8VBAEQZjsjLSPgoT0jlfqavDL5/MsWLCAtWvXDvf+CIIgCMKYZdasWaxatWrEJEuH9DaiV+A0OL8gjBfERwVBEARh5H0UPB+t3zEb9VdheKirwa9YLLJ27Vpee+01Wltbh3ufBEEQBGHM0dnZydy5cykWiyPa4NdoSIQURRMmKuKjgiAIwmRnNHwUtI8aEtI77mgoh19ra6sIliAIgiAIgjBqiI8KgiAIgiAMjBTtEARBEIQxisIYREivIAiCIAiCIAwdjYb0SoqZsYE0+AmCIAjCGGUwOfyUCJYgCIIgCIIwhEgOv/GJNPgJgiAIwhhFKXBUow1+giAIgiAIgjB0OMrAaMBJZYTf2EAa/IQqjjTfXzVthfOjUdiTeGrtYxxx+17POsba5xYEYXIxuJBeESxBEMY/4qP1LS8IgjASSEjv+EQa/CYJjQjJcCw/mmzPvm/v5xY5EwRhe9AhvWZDy4hgCYIwVhEfHZ3lxUcFQdhetI82EtIrWaXHAtLgJwiCIAhjFIXReEhvg/MLgiAIgiAIQn80HNIrPjomkAa/Ccx47gWdKAxFqIcwMRgPoUnC2GNwRTsEQRDGDuKjo4/4qBCm8nyQ71yoBynaMT6RBr8JgIjUxOBI8/2jfsMdqbyGgxHPkTjPR/r4D/YzjfZ5IowcCgNbSUivIAhjH/HRiYH3PY6ma4xknu1GnVR8NIo46eTBViY0NMKvMX8Vhgdp8BsniEQJg2Woz52B1jfQjb/R/RnJc38sNLoOxFjfP2GoMXAazOGnpMFPEIRhRJxUGAzj3UcHu8xgGAuNrgMxlvdNGB4cTIyGinZIg99YQBr8RgmRpcnNUN4kx8K51Mjn2d4qdUPBeJYUCcOYXAwmpFdG+AmCUC9jwSGE0WU0RsoNF+KjI4ekqpl8SEjv+EQa/EaAsXADFEaPiXrzG+rPNVGPkyBsD45qPKRXinYIglAL8VFhIrqW+KggjAyNh/SKj44FpMFPEARBEMYwjY7Yk6IdgiAIgiAIwlDiYDQY0isNfmMBafAbYqT3VICR7R2sta2ROA/HQ767ehmJsIT+1rc939d4CqmYSOfMSKEwsBvMgSKCJQgCiJMKmpG6746mj8ZtfzwyEqlbhiucebyknZlo58xIoX20kZBeyeE3FpAGv0Ew2QVqpCpUjWdG+0ZSud16ExsPpnruWGWopGU85rbZ3kTWw7nt8dRAORZQ0HhIrwiWIEwKJruLDcZdJiOj2dk2mEbARp8zxoNDDEXH7njM/z2aPlrP9sdLA+VYodGQ3kb9VRgepMFvEEzWBq/wRTD8ejIei3oZKyOa6t2HsbCvjTAc595gjsF4+w0M5Xk5FJ+9nnWMt3NzqFBSpVcQhBgmq4+COGmjjHZHdJh69mEs7GcjDNd51+hxGG/n/1CelyPlozD+zs+hotEqvdIBPTaQBr9BMN4upkNF+HMPtgrWZD12wuAZ7nNmst60xxtj6WFlJFEY2A0mPXYkiZ8gTAoms1OJkwqjwXCeM5PNb8YzY2VAx0hjK6PBEX7SAT0WkAa/BhAxqM1gRQsm/jGdjDeDoWa4Q3bi1jvRQ4W253PFjazY3vUK1Sgaz4EiOfwEYWIj19l4pPGvNuKjQ8NwjqqdrD4Kg/9s/fno9qxXqI3TcA4/8dGxgDT4CYNisD2rkwU5JkPHUEjAYNYlkhBPfzlPhlJM5XcEShk4jebwU40EXAiCIIxvxEn7R47J0DFUTio+OjQMlBd6qBpo5TekcRrM4deovwrDg3wLgiAIglAHH9n1MyO+Ta9KbyP/JIefMNE5ru0jo70LgiAIgjAqjNY9sFEfbTQHtTA8NDTC77i2j5AwksDwtXRLL934o7+ek4G+w4mYcHq8n7f1/gbH8m9VhvWPLGMhvGUk7kk25WHZRn/oKr0N5vDDEMUSJjzDnddzLN/jhHgGum/EIT46NqnndziWf6vioyPPcBzfgZ51R9pHRwtbGSjJ4TfuGNWQ3kZLZTdK3M27kR/iWPhxCeOL8ZbItb9zvN7zf3t/Z0ON/G4nNrW+30bOwYHOj7H0+5UqvYIw/IyEj9Zaj/ioMJyMt2JXQ/E7FB8VRprK73ii+ig0nsNPRviNDUatwW8kLoBx25CL78hRj9xOlGS0Y+2iPBBj9XiP1f0Sxh+DPZfilmud1gIbtmePGkcpsBvMgeJIj6og1I346OSgnofwieKjML6cdKwe77G6X8L4Y6h9dLSwlSkj/MYhg27wa2To6lg7WYXRYSKHU4x1sRqN41rvSIbx+p0Lk4/OjV0jvk09wq8xYZIRfsJkQnxUaJR6fBTG5/ky1n0URv64DuWIK0GYzGgfrd8xxUfHBkMywm8s504Qxg7jLdS1PybK5xhJRKIEoXF0Dj8J6RWEetiekFlh8jDeQl0HYqJ8jpFEnFQQGqfxEX4S0jsWkG9BEARBEARBEARBEARBECYQQ57DT0b7Cf0x1pLpDpZaowjGauJV6cUUhPGLwsBusG+u0RBgQZioiJMK/TFRRoTWOs8Hqio6GoiPCsL4xsZsKIqkUX8VhodhLdohF3ahUcZC3pTB5PWQc10QhOHBaLgIh1LDtCuCMI6R+7TQKKOdW7q/hjkpBCMIwkjjKAMacFJJMTM2GLUqvcLYZqQa3ka7N7Xe7Q/FcZhoOWMEYbIxKlV6abyHVEb4CYIwkRiJhrex4Gb17IP4qCAIo4WM8BufSIOfUJOJ2kM4WLkZ7V7eRjnSOmFwCxoVF2blbP/OCMIEYVSq9CoDR4p2CIIwiRlP/lUv2+OjMH6OyZD5KIiTCsIo4yizoRF+jUaoCMNDQw1+P9t2O62trcD4udEI45OwCI2Vc217JWu4e1KPSn6wvhlrSdT2zluPhHnrEmEThLrRI/waDOmVBj9hEjDeGj6E8clY9FHYvo7oMeOjMPROWq9jGqb4qCA0iI3R4Ag/8dGxwKBH+NW6WYylG6EwthnJMIKh3laj5/5wfdZ+e03jJCYkS4Y58EVYOXUmA2tE2Aa7LhEzYRKiGMQIP+lRFSYR4qPC9jCZfHQ49sHfbpyTDpGP6lXV4aTio4IwbDQ6wk816K/C8CAhvYIgCIIwRhnMCD95FBEEQRAEQRCGEhnhNz4Z0mbXFc6Pav4Txg6T8TsaiZ7+uOM64sdWOdU9j4bp/zNMw/8Xnu6/b1mx89fbAzvgvDW2G/nX/8rj569ctp71CUIDtE5rGfFteiP8GvmnBnlrv/nmm1mwYAGZTIbFixfzu9/9rt/5H374YRYvXkwmk2HnnXfmlltuqZrnnnvuYdGiRaTTaRYtWsRPfvKThrerlOKSSy5h9uzZZLNZDj30UJ599tnIPGvXruWkk05i1qxZNDU1sd9++/G///u/gzgKwkRgTNyPhX6ZjN/RaPvoiB7fIfDR/py0HobVR2stXzm9cl5BGOc06qONRqh4iI8OLePy6uPdBCpvBKO3Q4O4SYwwA93ox7JsjcV9GotUSpP/OzGNyO8lMt37F34/LEgV53P4txdeR63whv4aCyvf6+9faKGqaZF9r7G/kWlj8HcpjH3C18bb//GNEd++Uga2Mhv6N5gkyXfffTdnnXUWF1xwAU8++SSHHHIIy5Yt49VXX605/6pVqzjmmGM45JBDePLJJ/nSl77EmWeeyT333OPPs3LlSk444QROOukknnrqKU466SQ+8IEP8NhjjzW03auvvprrrruOb3zjGzzxxBPMmjWLI488kq6uoIjKSSedxAsvvMDPf/5z/vrXv/Le976XE044gSeffLLhYyGMfX627fbR3gWfMe+kY4zx7qNjcb/GGrUa8SLeGfqtVPlo5fsVHui/rPRRdz21Ghr7dcuY9/t10hr7VuWjFfsbXm4s/i6FsU/42jha98BGfdQeRIOf+OjQYyilBkyI0NnZSVtbG9u2bfOLdjTCUPZo+TcBAOX4+Rz8m0sIVS4N2Xard6R27om6c56NQP6H7ZGS4e6F3F5hamT/JqqceflSInLhnVcVv4UBe0PD83vz2nbN83nIz/chrMQW3h9vPyP72EhxkdobGNR+CeODga4V23svbJSrrrqKO357I++9anFDyz1y69+Zuf4t3HHHHXUvc8ABB7DffvvxzW9+05+255578q//+q9ceeWVVfN/8Ytf5Oc//zl/+9vf/GmnnXYaTz31FCtXrgTghBNOoLOzk3vvvdef5+ijj2bKlCnceeeddW1XKcXs2bM566yz+OIXvwhAoVBg5syZXHXVVZx66qkANDc3881vfpOTTjrJX09HRwdXX301n/jEJ+o+DsLYZsz5KOh7hntvUI6KNgq4jJSP6j8bvEePcR+F4XVS8dGh4UjrhLp8VE9q0Elt212lqpgtup4hOd+H0Ukb9tG4/dmOfRLGD/1dL0baR1evXs2cOXO48C/HYlr1dyp3rc9z3eHLKZfLWOHrQz+Ijw494yOHX0WPjv+3mYBS2Z2lugdoefGHkSSy4RuRcm8ewSJG1bT6dq26lyhM7M0nfAEfpot2WELGmmRs7771VzVtrH3WelmaPalq2v1934+df4V9NwBHpU4EvEbvpH4zfB46KnJu13oY8TENcM9Z5aiawhZuZB9I2vzzv/J8ryd015u31vTwuiJvV+9P9OFnO3tVparbhGA8XSMcjIZ7SBUGtm3T2dkZmZ5Op0mn01XzF4tF/vSnP3HeeedFph911FE8+uijNbexcuVKjjrqqMi0pUuXcuutt1IqlUgmk6xcuZKzzz67ap4bbrih7u2uWrWKtWvXRraVTqdZsmQJjz76qC9YBx98MHfffTfvfve7aW9v53/+538oFAoceuihMUdJEAZBpY9600xXp0vlWB8F6nJSv7OqQScd+P4nPlqL4fTRwa5ztGnUR0E7aT0+CjXO9zgfdZfxz90Kf4wM+qD2b6By3prnez1OWuu3McBvp79nxCHx0ZjtCuOH8XZ9sJXZUGE42523s7Mz0uAnPjqyjEiDX80qUjHVnOLkxEwmvBn8m4CRSHB/T/9DWr1GkTBHJT8YXZ/eWHS7A11A/d5cM9qjVfF+fZVQx55sefOMh0p34+1iWcnSpo/oFzWkKPw7qXUuQ+gcSySCc9E0gx5RbAwz9FM34s9JwzRR6OUMZQChBxpo+PysOcqunlCGsIT1J2SNrCtuf+ohbh+2NyxjEota5UNS5e94qK494/36ADQcoquUwXPPPUdbW1tk+sUXX8wll1xSNf/GjRuxbZuZM2dGps+cOZO1a9fW3MbatWtrzl8ul9m4cSM77LBD7DzeOuvZrvf/WvO88sor/t933303J5xwAh0dHSQSCXK5HD/5yU/YZZddau6/MDkZch8FMA2MhJ7WqJMelfxgsM44H62YVkXIR4FqJx3nPurNJz46Mixt+sjQ+yjoqBHPL+twUsNdTmG7PgpgjbyPetsKb3c0fXR796G/dU5SajXaD9SQPxTbGo84ymioSq/nr1OnTo1MFx8dWUZthN8K++6aPUiRC45RI1w3dBO6b9t3BrXt5aW7OHrKJ/XmSiV3G4mggSRf8G9UNYdfV+aUiNt//3P0fwE2rFBv1xAOJY+j1sWs1vvCCGMYoPoPV6jF/fkgbO/o1o/pF7aNcrzzNZxjxAz+Vt5IPgds94HBDp1rluWLXtDT2s/DQK3Rd4b3AFJjfuoQnXpGA/a3bL3v1zvisJ55G2GgkRUTcERhretOvdOg8evTQNe7sY7CwG4w3a6DwaJFi3jkkUci02v1poYxKh68lFJV0waav3J6Pescinm+/OUvs2XLFh544AGmTZvGT3/6U97//vfzu9/9jje/+c2xn0EQRttHAY6e8smoj4K+j+cLepplNe6jlZ/Bnb8/DLeNRtm2+OhkpsITYft8FFzXrPRRb1thHwWwnWofBe2k9fio3kD0/bCP1limLh+tXG8jjHUnHSCCZqKOKKy89gynj3rLjFcfBbAxG6zSq8+bzZs3V43w6w/x0aFlfIT0CoIgCMIkRKlBjPADLMuqO6/LtGnTsCyrqvd0/fr1VT2ZHrNmzao5fyKRoKOjo995vHXWs91Zs2YBumd1hx12qDnPP//5T77xjW/wzDPP8KY3vQmAffbZh9/97nfcdNNNNau1CYIgCIIgCPXT6Ag/L/y3tbW1rhx+4qPDw6g1+NXsTfWo7IUJ46gB80jUgxd+geUNNXf89mqrKYdycwMSyaHidX2Geooqk7D2t81+8vv1m/tvoLDGQfa2jJWe07Gc22W4OSr5wSDsoUay45rh4v3g945C0DNrGMEIPkK9qi6GaUJS51pRfX3BOWYY1XW8Qzn+GuqBjJk/PPKvZpiFcoJk5zGFcgbaj7qSJA/mNzTUVdYGm9dwHDHZft9DgcLAaXCEXyO9rwCpVIrFixezYsUKjj/+eH/6ihUrOO6442ouc+CBB/KLX/wiMm358uXsv//+JN3ryYEHHsiKFSsieVOWL1/OQQcdVPd2FyxYwKxZs1ixYgVvectbAJ1r5eGHH+aqq64CoLe3FwCz4tpmWRaOM35/L8LI0K+Pgh5FF+OjMHBus3owEomIjwIYaB8FtJPW4aN60sBOWmu0VpyTxt2bJ7qPwuS6Z3nh5YZlDb2PgnZSbxSM7eCdVWEn9V8nk9pH9cRgufAptz0+WmNaeORf1W8oXJinXBpeHx3ovVoMR9Xf/tYpPjpp0a0l9Z9vjfqr+OjwMOINfhGxCl8kwwlc3fwo93V+d9j2494N0RbWpc0nBzcaywqGZtpm0HDihzcmgtdUDg+P3hAjFdsqpkeoqrJWkcOlngtvsED8vGOc8R5+Nxj8pMMEITT+tJBgLc18KBIuUcmR5vuxWlrclUbPr/BfnoQZ7kUwgmVFQi5q5lbxqjPpoUfhFUfniztnK3PD+A8roYa/Wo2AkbxGoQecWvn+wsvGhUls7+9kgPCLepKl13VtqF5o3P7GtyeUYVAPhIYZm2tovKAIkh7XS6MjAgHOOeccTjrpJPbff38OPPBAvvWtb/Hqq69y2mmnAXD++efzxhtvcPvtOkfZaaedxje+8Q3OOeccTjnlFFauXMmtt97qVzsD+OxnP8s73/lOrrrqKo477jh+9rOf8cADD0RCjQfarmEYnHXWWVxxxRUsXLiQhQsXcsUVV5DL5TjxRJ0gfo899mDXXXfl1FNP5dprr6Wjo4Of/vSnrFixgl/+8pcNHwthchDro1DlpMPpoxB10qXNJ+vtmqbf8GIYhvZRiN57K3wUKlNohAqD1OujeuOhlzXuq3H39xEIAx5Jxnv43WBQjk4kAYBhxvooEOuk/fkoVDtprI9C/04a9lGId9J6fdSdN+Kj7roa9tGq+VT/+7Q9v5PR9NHK7Y8Ttvd5s2EndY/VeHdSWxmDKtrRCOKjQ8+wNvj5MmXFXGhD+cH6a8gYCe7vvo1lMz+t/whVNTUgVE0qNGKqVknqcOerV1gk3ElWKg/qolhXlbXoAvHvjZWL8gA3pKNSJ/pV7SYaS5s+EowgDeXf0d9tRVW+cC+6YfoV0JYXf+gLl4eRSEbzoIQFKHRsq3ppQ/lTjESippxFdymUG9D7GuMapUNV1nzCr8M9tJFt1JdUWTmqdqXDuEaxoT7/qxrqjZrv1xrJWNkrHFuRcQI16MPgJWswhYTGu1hpjEGE9DYuWCeccAKbNm3i0ksvZc2aNey111786le/Yt68eQCsWbOGV1991Z9/wYIF/OpXv+Lss8/mpptuYvbs2fznf/4n73vf+/x5DjroIO666y6+/OUvc+GFF7LLLrtw9913c8ABB9S9XYAvfOEL9PX1cfrpp7NlyxYOOOAAli9fTov7QJlMJvnVr37Feeedx7HHHkt3dze77rort912G8ccc0zDx0KYmCzNnlSXj0J8Q8ZIcH/3bQDaSUNVTb1ftb5XDIGPQsP3k4Z9VC9Ue/pYuZfV4aPAhHRSr2icKpUjI0WD7zZ0IlX4KERdPeykVT4KFQ3VMU4ayh3oR2L146RVuapN4kf91eOjldP87QzspJU+CkRzYVae78Nx/seNPAy9X2skY61RinU56Vj5DW8Hg23Ub7SQ0MTw0UEU7RAfHRM+aig1wNM9upRyW1sb27ZtqzsnEISqjxqGP3puuHtJtwe/wa8C1ZcHwHGHlxvpdHBRVyqSZLbmKCdPMMtl/wI6YCXggRIxE70BNTJvxRvRfa1n2mAZ6EZUMY+3TS+p9UTh6LaPByJUKsffVF2CSmdGJPxXFYv6dagH0kil9EvbDgrPhNdvGNWV02oUC6kiLGwhVMx0f70edvz5U/n5+z0etUJLwpLq/b5qraPekXGDGaFQEVLlTav5cBSzrtj3J1iDX5hGJKshsRqmERmDvRcOlquuuorvPPRNjvrqOxpa7k/fe44FmxZxxx2j25EmCEPN9vwGlzZ9xL8vGaY5pn0U+nfSOB8F977s3XMrfS7ko6DvlQNWAq51f6vcp6Hw0Vr7O5o+WjEfypmYPgr6WaYUnBNxhH3U/9tzzWIx1ke9eSt91F9H2Efd/YmlH++MdHZHdrw+Hw3vb+Xr2jM7sT7qLb9dPhpaZ+V2B5q/ViNelZP2s57Y9ydYg1+Y8eSkI+2jq1evZs6cOZz++Acx4zrOatC9oZfvHf1TyuVyXTn8hOFh2Eb4+Y19AEqNebECIJvR/y/bvgyhFIY73fRuan19Qe4JywoaVpRCFUMNevoFpnvT0xdJryS9gervPqKc4P24hoOBCN1Q4oRGOdU/WsOqLntfNV+dDSDVk41+358s+I11homRckMZQsIVOU5hsfKkJdRwpwzvuzAJ50ypJRmGZUHSqwDozlsuB+u1LCK5/7zX4VwE3jZMs2bFJFX2PkOwjAr37IZ7iU0DQ0XzDvWbF7Mi5Nn9IO56Q8sNFG40wINNXdSYN9ybayaNSB4cw/BGangz18gT4623xv4FI0HHwQjeOmlktF/dI/wm2LVFB1c1XrRDEARNpY/C2O589slmtI+Cvk97I/GzmVgf9f7v9eWrot2PjwLYocaJmP3wPNAOlht05IlyBmg4rMyr5oV1hnKo1boH1tEAUvstY8LdMwaDKhaD7zYVGp1XKsf7KGhPDDXcxfkoVDupv45kIuqj3nrDDdnhhsAYH9WLVeRDj/NR0E4aDsH1PlvIJQfMixkKedYEPuovN5o+6r5nJkOO7y1iqPp8tMY+1uWjNZYb6zQy2q+uEX4T8NpiYzQURTKYEX7C0CNVegVBEARhjKIYRJXeQeRMEQRBEARBEIQ4Gg7pFR8dEwxbg9/9PbcP16qHjXtfvr5q2rIdzvArmBpe70c264/QCodOGpZVc2SF487r96xSGWY5wNDu8Gi/MP0M2479u2oVtYdrV/beRJNAh6YPELoRGzYR3i9vW15OGbyev4k59Pe+bd8Jcp0opyptn57s9i4mg95T5VSEDrj5TQy/J7bkv+XnPgHd81lrtJ87j4KKvEahPCZ+XhS359MI95I6wXKOQhUK+rUXVhseIRjOIxjuEQyFEw0YOgEDhB8MMvR1oB64eouRAEYiGe0N9z5buVT/yNyYPC/h31zNdY3FntQBrz9DJwITNbG6UgaOaqyXWHpUBSFgPPooVDvpsh3O0C+SyVgfhYrIk4p11uWjEH8/CY/2C1OPj8ZNi7xd+36r73shH63YR+UMnAZn+3wUJqKT3rftO4Cbf887nlWppGv7KFDlpHX5KFQ5acRHodpJ/egNI95HveU87yoU4n0U3BzSUR/1Pm9dPqpnjpk8iNQw0LiP9rOMkXCfXcOjWB2lqwxT58jcmFzYlc+AVesaiz4KI+akE9VHAe2jDThpo/4qDA8ywm8A7l1zE8t2/rz+I60FyUhY/s3J6e0NJMs0MbNZIAjZ9OQKwAkPjR+I/vJ2DSBRDV2wDC+ctPb6o/LlCqSjIsmf+91urWS8MZiZdOQma6TT/c4/UfBuvkY6jZms+Ekahh+CG5Eb2w5JTyi0Iiwp4Zwo3vcQyu2jjJBA+ZsLnVsNuG04d4t/4y+WojIQ9qda1XRjVz5AqE74/aGsvBveRvj9WlWBQw9JgejZoYejOuWxjn1TTgO5X0aaBvLSDFasaoVRTGS5gsYb8CSkVxAmHveuuQlAO2mMj4LbEe3e/81Qg2Clj0Kd1+GBcogN0NHcsJPW5aMAVtAYVVmLbAh8FJi0Tup91oiT9uejoFO0xPkoaCcNp48J5T8fch8F3bgV56Mw9E5ay3+GqvJueBuV74fT5FS+xmt8tP1pQ+6jcfs62jSQ83N7fBSiqWYmh49KSO94Qxr86iGdjP4/X/DzqpgJC5XXI5tUsRjkYHPzspkQJLQNF2gI3xhqyE24AEEckZ61UMNDf1WXIkTK0ZvRv8PTvXn99VbfUCLbMEM5PcI3+GQi2vMGYNsRiTL8/DLBvhw95ZP+6/u2fLt6H8chtSoALm0+OfjDH1lngpdIOXQsVUjcfYkNJU+OiFY4/0noO4jKmOX/z+8pjas4poLl/XO0VnJf5eCUqsWp3xx9oWXrorKxbzDJhAear3K9/axDjzIYwka+frY16jTwEDjUuTsnulCFURjYEtIrCIJHOhnrowAqXwhG/ZXKsT4KVFcRjfFRf94Y4nxU/6ka99HKabWmOypoBIwr8FHpoxBpuKqMTqhs1DNSqQnvo1DtpHX5qPtewz7qrTP0HVRHoVi+lirlBM8fofOs0kf9abWK0PTjo/rtIXDSWp3PjTppPT5aud6YeYJReEPUyNff/ow2o+ijMLmc1FZGQ44pIb1jA2nwq4N7/3YlAEcdeBkA1saQICWTsSXlAT3EPZTcVvXVV62p30SvwUz+8irUGFerYpQvSKFGmnB1rbAURfY/LFz+69D6w8PW/YtoWOxCw+hLZb9Bz2huCjZVCgqkREJIneoev4nM/d23cVTqRAAMV4TMXM5POqyTKocSJnvHVVWLEJYVNNyFMAwzkChvYrgimQpGAEZwwysMQo21oW0q7KC3dAABqJT/YQsFaCQh8kAjaMPv1WqoD62n32I845XKB7+47yxuZEdMuNf9fd8f+n2dYOgcfo2JaSMJlQVBGF/c+7crY30UqHbSGB8Fqp20xn1zwGJY4fkrfLR6f8x4HwXtpLVcUqnqBkDToGEf9dbld86n4n3UWybUwDiZfBTgqNSJ8T4KhAvIoVSsj+q3Kwo/eOeT1Y+PQrWTxviot13lyahNXT4KxDvpUDZoDRQB0aiTxjXUV6xjojppv421MR314fDmWp0Q4qQDIyG94xNp8GuA5SsvBGDZbl8M8kuEK0ZZJqrHzY3g3rTMVCqoHmWa/vB4HRarG7/CYRZ1NU5UUscyfm9vaCSWsu0gx0MqSbiKVbDqAW52Vmj4ven15jrBusLrDImSPxIyHC5QUebbf2+SCBYENyA/50lTFqMQiFVEeEM5ZkDLkSdQkYa7sJAlrCD3nyduoVwrQPR78Lbn52AJKvqqYikUzl6jQm5MVS/9ViBZlUPpK3Px1JSveobqD7antL9tTMCKW4OhapRmTO9pVU+qGaoubdsc3foxYJxUzBQEQRgjxPooaO9yp6meUqyPgg7ZDMJiU/X5qF5B7enb4aOAzoOb8nKPRbcxmj7qvz+JfBRcR4vzUYh10iofBe2k4U7rhOeliXgfhWonjfFRcJ9rwg1B/bhipWf6/h2ZXt04VOWk9YaODjaaJG4b4qNADR/VEyPvRxr5KgbCGJblX3+Obv2Y+KgwIZEGv0Fw74tXacny8HqbDDMYNu1elJ1CHsOukSePoNclnIw49oZQo3Eibgh6Ze8qBL1tRqqfRBg1RCYSAuEl47XtaE9pZRLfSJ4OM/KAXzmsPJKLLpHwb9qUy5D2GlInj2B5YRVHt3286r1Ij6kZ5OUL95BHeqc9ObYsv1fWyITCVTzxt6xgNGXF+vzv0fveLCvI4aKi0lPZ2xY+PyvDfWr1rPmyZVX2uoZCNaoOilnzt9FQr+xAv7l65p1kVIVoeVRKVsVoEsOyouddjYcqIYou2tFoSO8w7YwgCGOKKh8F7V1eY4tt1+Wjel5C9/EBRiNVNE70FxKpwqG31OmjUOWkER8FUKHiCuGRjIYR66Pe9pVd7RWVPgpuQ5LrT6TNSeWjoJ20Lh8F7ZpxPgraST1vLZfjfRSqnDQyMrUOH4VoQ1B/PurNG8xgRnzUWz6Yp/pZxltOfHTkqdtHQZ8zYR8FMM3QCGNx0oFovErvMO6MUDfS4CcIgiAIYxTFYIp2TK6HUkEQBEEQBGF4kaId4xNp8Bss3lD0ckVp+XDvqEtk1F94NJOfWDUojqDK2zckXDlmUK0s3MMUGrrs9W44fflQD0cwJD4cdhdJ1lsr8a6jwM2+4YdDhEbu+KEAFa/D3Lv25qppR0/7VBAGUHa4b+O3+vnUExDv+KbTQWhuuKc6NILPv5SGe0RLJYxkEK6tvDCMUB7AYL3RUGHDy4lTY4RWZBcdx/+ezaZmv3iN1xtumAZmW6u7P2VUX95dMLTeiv2G6IgEZYd6ZuvInzfp6a+693ass7L3tLKYSzBrRbiE15Pq9eSHQnqE+ml4hN8w7YcgCGOQGB+FiggSqIpCiVzflRMK77WGxEf1uqjLR/1pXsBLsVRzXj80t9JJfZdQQ+6jehMOuMdkUjlpnI9CdGSl48T6KICRDMK1VaGofdRbR9hHw//HddIaI7Qiu+hHtJiYTc16Wr4Q66OAdlIVWm+tfQ/9XpT/siJUWHw0nsGOdBxgfWEn7ddHvWVCOT0jPupOE+qn0RF+UkRubCANfoNEpYL8ckYpaCjzL0beMPBQ40Vk+crQ1nIgX8HEmOpj/e6YQySJcWVOOAjCO00juPnaNqpcdOdNogy3McltNIoMcw7n6bDtaN4TdAOTn2MjHLYXTrzrXXwLRWoxWWTq8MOu9J/OH/zN+f50L4fEEe/8KlaPvjmZW3pQnZ2Ae4PzKho7gYD539fGTb4MO9u6grCFKe3gVDwUOKHwX9sGI0jwXVWERqlQomUrSHZt24EAhkMovHyBpuknVzbSOYxc1t9nT/qcrm79vgoeUFQ5yOdiJJIDP4AMF2G56y9fS1xIR9z8Q7lvA703mPyglbPWEKtIOEU4xCt0nfAEy0gkojl/WlsAWLbwC9z796vr3o/JhMJoOOmxJEkWhMlD2EcB7aThXKoN+ii4TlrrHlZvvrLIPFEnjfNRcDsovXDbctHPM60Mpy4fBSJOWuWj3vLio1UcfpguUIiqz0cBVGdn4AWpVLyPAti29lEA5WgfhaiTOkHjod+gawQuGWlgrPBRQDupt5xpxvoogCoUMNI5PS2XDRy2WIz4qF7erPJRqGOQxnBR6ZpxPgpV4fc+I+2kI+SjejVGfT4KVU66bOEXAMRJY5CiHeMTafAbJCrp3lwcx7+JqFK5uve0asEGLrCNJGQN9XrUymUQyVMSTlDs5b9IJvybqH4oj/agqnwhUqAhsmnvJprN6AmpVCipLtGeOZd7/3FN/Z9tArL0LRcDYKUtDFcYjjz4qxiehLrfhQkYJfe7c+xAUrPZoFffu5hmMzgZ3QhoppP+vEbZ9hvV1JatMHumnt/NRWOUHciHRNdrwI7LZeE9VDRlfZm6940bWTbz03p6uBHZbeRTfflguWQCvHMFwJ3fzGnxoqsbp69PLxcSrJo5U4YBT+SCDYd/s5b/W1N1VIAbdmKuETXzmWBF89jUnKf2NqrEKrSsmbKC3nXbiXxPy4s/BODoqacAoEzHr+ZsZDJBbqSY0RaCN3BFRvgJglCbiI8CJBLBKKaYRr5g4WFw0sq8vJWFueJ8FCCZCF4rFXooNyM+6q2n1n3MSCTifRSi0QuIj4J2UivtnkdlhyMP/qp+bTvxPgraM7NuB27CivdRd17DG4VaLGofBe2kYR+Faietx0cBHMW9b9wIwLKZn473UXdZ/1yrcNKwjwI4fX2j4qNQ4aSVPgpgmEEl3tF00gZ9FGjcSf1BNTVySKJ9VK83KFxY6aQRHwWwXR8F7aTio/3SaF7pRv1VGB7krB4ERx78VXAvKlbJ9h9ane6e7b/Yxo0O6o9IgtmgQQLTCHrLwqsL7aMR3k74IueJlZ90N1poIXyR9nto/caoDPe+8DUAv6cEpLekFso0MdwRdYbtYPa5QuGKu0ong1F2uSyGO6rPacpgdutGMT8kpjmD44p/aWqWRJcWJmv1Rr9x0Ghrga16lGB5nm74M8oOpvfA0FcMzg87aMwOD4cnnfan3fs33SN8pPl+/zMlpk/Ts1oW9677JuCGxOww3V2vAi98PDQC1BulYKSTmF3u5+zLB/ujnEgBmEERU+nMTyIeGhngPzCFQu4jyw4UxjHC4lWrEErcfhiRsP2YERs1riP+8QmP1CuGqupZJsv7vg/owjN+sm+vRz6VDHr9wxUT7VFuOB3TGJLDTxCEmlT5KEC5rH0Utu8+NBQ+6i3v3S8cFeuj0L+Thn1UrzbeScVHG0d5hTMM5R8/s68U66MARiqF06QbS8zuvlgfBUh0FbWPAiQs7aMAWzsjPgpgJi3to6C/b+/7DLtHhY8C3Pu3K+vzUdBOarvnTbEUGQEa9lEAsyvlh52Hw3jDBWAapp/Ku4Zlxfqo937wZh1hxWPFR2vsS83n17gRi6HrSD0+CrC87/u+ix7d9vGIjwLaScVH68bBwJAcfuMOafAbBE7KxOqrqD6FfhgecIRfA0Rkptb9JE7CwqXGqV7Q6y2qvFH5r8vl0Cim0Ki+GlXfIqN/3B4ypzmovCVSVZv7n/wKAEcsuQLHS1lSKGMU3Zu619tZKAXnWKnsN9x5Pfqgq/R5+L2ySlGYpr+P3OZ0EKqSzUCPbihMrFqjp7W3apEDVDoRjBKwHXB7aFXClZCSHeQJKpRYtvPn9bp2nh80LvsV7VL+/pgL5mCu2RTsQzkYXu+F5Bhd7gNKLuufS4mpUyhv3qKnK6dKrAwrNGqtoRAjqkYh6M8cVF+L/DbCIfc11jHqI/0g8lsM73tEDI0g3MFrPPYlN1xFu7I6oie/Xih2e6t/Hjn5Lf5893ff5r++b9t3WNp8sv7DGz1sW5BQ/va8B7p7X7q20U87aVAMYoSfDPEThElBfz4KdYzwa4B+nbS/RsFQB1Olk4Z9VK+3wkk9VzDM6iiT0LRIjmzLEh9tkPuf/ApHLLkCAMfQPgpgFMvxPgqQsOryUYDCtIz2UdBO6o2q6+mL+CjoxkWVdr0jNFqLTCrWRwGW7fx57aOgnTTGRwHtpNnQyC6PUjnqowDZDImpU/Ssm7f4v6lK1xq0j0KksRwIBl7Y1VWBIyH3lU46RnwUajeIVjppEM6fqstH9byJhn0U0E4a9lHQTuptK5EQHx0ARxl+qHtd80uD35hAGvwEQRAEYYwyqAY/ESxBEARBEARhCGm0wU+KdowNpMFvECjDwM7qQ2enLbzsCkZXN3iVSoeiMlHFKLvK6UFF4Ohwjkj1scqiC4bh58rQlbGC5LZeIlvS6aAntUZIh2FZ+BV6wp8zLseGEIsyQLnhOGbRDnpK3RFlRqkUfIflst8LaRlGtEfSxdrWq9eVSmDmQ3k/vDDKsu0PYycULuBk3V72clABzUgm/J5UJ+fmYukpgDfaq5RAhXre/JGB/jljYG3pDd5ze1JVUwaclD+PsVmHGPu5A7cWQ6E7Qe9frVGuyrYxvTDnUrl2CFJcuETo9+OHBth21e+pEn97xeLI9KTWOYpQVzd0vzsVujZ44cqWFTQDJRKhCt3uvCUDw/s+k4loGK93TWnSeW2cTArVontXl796Q/w+eeedd05ZFrgJk+99+fp+P4+gaTRfil5mmHZGEIQxRaWPAiRxfRS0kw5VpczwiLqK6XE+CjWcNM5HIVIAzDBNP2RT2Xa8j4KWKfHR7cK7zaiUhVl0R5clrXgfdf9vVU5zCfsoUO2k3ui8VDLio6Cd1Ch7IeFBrj2VMGN9VH+GCieN81GAbEb7KGgn9Txlc2fER8ENqVVBhERdPgqRkaf+3/4ORvPR6YraIe/yRvjV4aROMRT+PNzUMYow7JcRHwVd8M/7zBAUUwk5bJWPQnUYb4M+Cq6Thn0UIJMWH22Ahkf4iY+OCaTBbxD8+sHzeNdSPWxdGUCHvuiketow3WHFtUq5A/FhD7XybPkiE1pHeMh3RUVgqBgSrVTQiOffOJygQpVtB+87jr+cKpWqG5PCOb8SiUi4iJdA2Ru2f/+fvlL7Mwo+hx+qQyfKuQSGezU0SwlwG/ysLjc/X+h7IZvxwxqKs1pIbKkoLgEY23QYgpFJ+7lQ7v3HNRx14GV6vS+v9W+SKueGVijl5w4sTs9hlLWwWH0llCvNTtI912yF0esKkGUEeS8MAza7IRDe+dnVHTQwWVaQR3BrKQgxtoIGRr/4TU9vMK3GUP7I57UsX3R06IA7vVboUWXxifDvJ7ydGmEWpne+O6r/fC1D9GDlhzdFKuAGyafDn88PiUoGVZUDaTT85OVGOu3nN1Gh8GjD9HLVpCDtNsQWisF5l0r5352Xq0clLZY/ftHAn8NrXA7f8d1rpFA/MsJPEIRaVPkoQEeOVE8bAGZPX7yPQuNO6ocyBsuGU75U+Sjoe4nfWGLG+qj/vtcgY1naRyHqpOGcX15jQSiljsoXxEcb5PBDr6Cc80JolfZRgKQV76MAtkNxls7FV+mkYR8FMMqOXyDlqAMv0z4K0JSL+Cjo3IHF6W4F3XIKy3VUZZnxPgraST2f29wT76Og8whudc+vsPMYRtRHvWkN+ijo30ldPupP817HOKn7OzOTCd/zYp10qBr6IRKurH/vgY/607x5E8mgYc4wIj4KYGQz2kcBiiVUKDw61kdBfz/eNSVhNeyj4DppZQuUOGlDNN7gJz46FpAGv0Hym/u/CMA73v91VN5NMjujjYR7c7A3uXkEwhdw92+f0AVYOdFRPOGErapcqjkyKZJU37s5pJLRpMf+6CjvBhm66FfmhHDFShVLwX6kQiOxvBt8Oo3ToWXSy0UnbD/KJPi+3Nx5Rj7ImaIsg/ue08mnDz/sytrrmKLFSyVMnGzKn7585YUALF18cdBI5603afmV10rNCf+hIZcvY/a6MtSU8vfB9JIHpxO+mBuFciDp3ilmmkE1tHI5KiXhHjavN9+TwkwaWpr1fMUidHXFHbKKdZqhCl1Bw1xYqiK9jqGcQcprCAtVYYvgPVQoFfnd1BStgcSqAQkzs5nq3EbFis/hP1SFRj2Ei2R4FfQgEKt8IViv9/CUTAYjQc3gwY500u9R99fv1CmPfiJkJ/jb3cahR1/FQ/d9sb71TGLUoIp2CIIwWQj7KIDKO5gztKMlenrjfdSd5lPppCEfBbdRzbtHhotdhRr8Kn0UqHLSenwUtJN692aUE/FR0A0H3ghAp6NNfHQI8YrtYhqxPgpw33Nfq8tHgSonXbr4YncbZsRHAYySTanZG7WnfRTQThrnowCOo33UfR3no1Dpj6FBDaYZ9VHQTuqNootx0kofBV01NtwwF+ej3t9+o3WxFO+joAdeeJ63PU7aoI9W7ifuIYlEmKRSsT4KVDmpP2jEsuJ91Ns/N9942Enr9lFwnTTkowDJJIcerTtNxEkHRop2jE+kwW87sYqO31tQbk6SaNU3OMOthOrOpf8XqnYZacQzDbxk+l5xgMqRSIZZfUHzR88oFb2Q+g0vjt+IFx6d5ye/tW1dutxdR6QirydyrmAZqWTQCGOakSS9QuN4o/qskoOTCI2ScwmHJXihBUZoWrE1gdWnf76eNBU7cjBTf0flnElmY9Gf/+h9de+XuWlbIGFemEVfifv+cikAb//Q1zG9ArpbeylPbQJgxSMXAG4S5kTw3fuVzPqKfqim3xuXsDBstxcQgsZB0/TPO2XbvkT45224hzadDgnJAJXQKkcv+PLinsuJZCBvlVLUn+goJxidkEqhvB5cQiEKtSr3xoU91NHT6ktfb6//WzRzbm931vJDHAzDDMQqmQxGQXghVJl0IE3dPf6Dl5HN+o1/RqtOkh0OGXfaWzB78sFHcSvZ2V4oTbE6nLySZbt9Mdi211venMFxHx5ErOpjcEU7RLAEYbJhFT33U5Sb9bU30doS76PuvJFGPL9DWcX6qP5fRaXNOB8Ft+HFveeXSrE+CnrUn9/4E0rTYVhW1EdBO6k3QlCcdLswHIVV0sfaSZgN+yiA1ZeI9VGgyknNTdv0+qe0RHwU4L6/XMrbP6QbsM2S9lGA8tSmWB8F7aR+dd9MOt5HQTcOeuePE0Q9mNlM1Ef1Bw4qAhsm9fgoUMNJ6/DR0PKx05Xyfw+qWPSbVJSj4n201nrrHPmnbBvV64ZEW1bURwGSiaBh3zJDaYTKUR8F/Z5bRdwwTP86oZQT66NAlZM27KPetkM+CjokWHy0fmSE3/hEGvy2k9/+7FyWHKMrf9lZ068IZrbqG53qywc3TqX8CmVeGJ6e2ajqdVXlUs2Kv+GRf35vZxgr6CnDNINKWt6FOGH6D/qRXCrhSlOplD/c2mjWDT5kM34Pmt2a9W+4wvbRPTuF8iIkNhmk3PACw/s+7CCEojy9xa8ylrYMP6zBdCtNGbbye12tvOP3nh/5jssJn15GXm/D6yG7/4+X+O/94Y7PcdAHtGTZLVm/YdJjxSMXcPTeX9Z/KBXIdnMW3FGC/jD8pIXR555HhQJq42Y9byl0c1YOjptryD/nLAt63dD4KS1Y83bUrzduRvW5lbgq1lFJrerTRjod/BYty28oM2wrUg2tFo7bA2nadhD6Hgq3rRyhG7dfVdSRn89v/HPlx2xvC3KaJBKBkIYelHyxsqygV9pxgoc8I3TD9hoJvYZXb7tehbwtXRiGez1r0/MUW7LEsXT/S/SLlgymK+N2q7tce1rEqlHUYEJ6BUGYbPz2Z+cCsOSYq7Gz7qiq5nSsjwIo7CofBSJO6jUIVlb8DY/8i/VRb1vefapUjvdRb94KHwV9/w77KOh7lN2q70XipNtP92xv5Jz2UYDU1lKsj4JudEu73ukkzVgf1dMcjnzH5XpaaLtGvhTrowAHfeDr2K5zhJ20ykdBD0hodv2kZMf6KLhOWcMlna7uqI8C9Pb5neXWvB0Dn+3rGxofBbDMoHJsjcq8YZx8Qfuou3w43HY4fdT7DBEfBe2kXsNeOCxfqaiPgnZSv0E1GBFsKCPWR0H/3o0tenSlYTTX5aPgOmmLntdMWBEfBel8bhQp2jE+kQa/IaDYri9imY1llHdB88qF9+X9C6NhWUHugHAoXigvRiS5sXsDc/KF4AJsBaOjvAujkQ7l7TMtMIKeKcMbledh20EvTCYNRbfRI5UMhCyR8C/Qyh2Cr1IJHLcBoNRSnTtOaIwHfqvl9G0fvY7MZn3T9qQI8EecO21NlNv1zakwJUmqyy3a0VNGJaIXUcN2SK9yJaQlGxFo222ITmyzoFPfMM1k7Z9/sseTiGD9Rx6kJc3sK0UHZ3vnaCqB6b72tgWQ8HrkTAunL08lhmVhNgdhAuA2CHq9f0r5OTuMplzw+3BDKpxiMRKSUEuQzHS1OBipZCBeqaQfUjDQqLzI9oYiOfJARUZqkc0E+W5MM+jNNs1qsTINVIvbE9vbFwq1Cj2cedeTUtlvSAyHRi3b8/wgSbaXyNsIwsdS28ohsbex3JEWdtrCdMMvvB7YZFc/ISpCTRSDKdohgiUIk5Viu0Vmoxu2aFnxPgraScOheKH8eREfBVDK7/xCOX6DnnKceB8F7aRe6o6wk1b6KEDRDEbwmWZkdFDYRwGcdEJ8dIh44LcX8LaPXgdAZrNdl48CpLrKWD3uuRZy0iofhcggA7s5rX0UoLMr1kfBddJ6fBT0OeqNFgy5L0R9FKhyUj+aojkT9VHQERJ+aGoKw82FbSQSsT4K1U4a56PevP7rcLGdGCf1C3XUUUSjLgbpo4B2Uu833lcMnicz6YiPAqiWnPZR0OdEgz4KesBCnI8CKMvAyrvPVknLL2hkppPio9uJjPAbn0iDnyAIgiCMUQYX0js8+yIIgiAIgiBMTqTBb3wiDX5DgOP2PJWbLJSlezsyRd2LaXT3gjt8nFQyGP5cKAQjjBKJIJ+WFSTg93tiS2Uwq78qv/e1rRXHHfFjOA5GyV2H7USHVYPuzXVDKEkmMZp0iITKpv3eKyeXwsm4iVHdsFE7bWK7uRqchPx4h4rHv3eOn6dEhapcmX3uiE+l/BAGw1GUc3p6anUXJKI9idbGTj+hLWUn6EGzLEy3t+3eVdcNuE8P/98XAFi2+3moivwoRl+Be1+6Fgh6WT1Kbo9nsU2fl5kNheDNYjHSexip6OXl+fHCf+wePzxY9fSCWwhHlUp+vp9aIRSV1QcjYUpE8xCpYikI4zXK/rbDlc/89YZzooSmDyn1rDMUyqLc71kZBmTc3ux8OQirDp0a/gjAZDIU9hL6DXujMEq1ezudTAo7543U0+tP9JQwp+jrjJM2gzymueAYl1qCa1Z6o/6/l1dKaADV+Ig9qdIrCJMXxzIoN7kjlKxMrI+CG5LnhTjatu+VSjkRHwWdVsLw7r0VThrno4B2Ui9XXzj1RIWPAhhNTaisu7xS/uhyJ5OM+CiAnbXER4eQx793DqBzOdfjo6Dv+anVbhGLkJNW+ii4UQbeKDrTrMtHQTvpst3PA4g4aX8+CtpJY30UtHeFc6l7681moz4KULKDir09vUH1aNupy0ch6qRVPgo6jNdw12WZ/qjHsINW5Y2ufD0UNOijoJ3Uz/WYSWgfBe2kFYXAjb5ikONPqYZ9FMDOJeN91N0/8dHhQSkDJKR33CENfkPAY9/XN8mj3napX43Kf/C2QiEJthM0MvTlQ6XhTV2RCKDsLhdOkhuudhROntycc9cb3FkKM5v9C56Vt0mt646sT5kmRjaQMU+mVCpB2X2ot9OmV0MEO6PXVc4aFNr06z9/8+y6jotQH8leN5eOCaabNNmvOmUrv2BC06pOP/8ejoNat1W/3BYk5PaEwkgl/fByI5WsvN/WR7GIoZL+ayA4P4EVj345MvsR79T5Be1UkORYeaE5m7YEYhUWHdvGcXOhmG0t/vsqLBNeTg/b6b9qWQjDsoLthPMIedXZisXQzGYQahCq7utXJCMU+jEcjX114n/2fAFl6WNVmJoh6YbTGAUbKqrpmj2F4OGqKRc9FgV3fZ5smcqX58h2MwmUu5z3EImJv95S1sQqBd9XPhtKcu3OU+xwc5sWR+/4jVekSq8gCI3w2PfP4ai36UJcKmHG+yjoRgbv/mZZfqONkUwOiY+Cfgj3wutS67pjfRR0h7MXslvOJf3GPUNFfRSg0GaKjw4DyV7lV+k1S06sj4KbE9oryLJua6yPgg4v91437KResTSVrMtHQTtprI8C4UrTEITfOhs3R3wUqHZS9/dTj5P6uS5DuaP79VHQ6VhC1X3DPgquk44RHwVQVguFqXofkz1l7aMQcVKzx0sHoLSPQjTvfKFUl4/q7ZmxPgpUO2koxZH46PYhVXrHJ9LgN4QYJTtIbrtug/5/IuHf4Jyu7qBQwIxpQcXezk6MjHfx85KalvxGQMMwcdzqSMq2g8ZBT9KyGZxs0FPh3ah7Z6Ywi3q9Xk9IqTXlj0hM5G2/QqyyDF+mlIGfk8tOu8l4LWnoGw6WvPtqUr36u0lu6fOPu+EKurF+M4bX4OUoP6eF6stjd3dHV2aYqIJ7ThSLgWSYBqZ7zhy970UY29zluvU5de+GW/xVHHb41zDdbZsz21n+h4vq/ixeXkKv6Ie1rRejU2/LKQR5KFU56FUFgjwk29xeYsv0q5cZra3gFuqgpzdUyCZGsrz1GmaQaLzo9khXil2o+p9yajSReEmJW1r8ZW03V8uo4Cc6t7Cz1T2TTjaJnXULbbgymizZ/gOcSiX83DaG42D2eEVLBm4estze2u6d3OtJSfkPXcUW008bmt7m4CSDRN1OSr9++H8/39hnFXykSq8gCI3iO4Rtx/so6PvtjGn6taNQnW5DTiYX8VHQjYBezj2nN7gfG8lkrI+CdtLemV4e2Fysj4KuEOv7Z8b0B5Ioy4j4KIiTDjVL3q0LEKZ6bZJb3MJplhHvowDJhN9gHHHSCh8FtyPWbdAxk0mO3lf7pbGtO9ZHAcySjTmzHaBhJ431UQDl+JWoq5w05KMARiYdVJDt6wsiT2w73ke99RreCNlSvI+6+1OzgREiPuotP1Z8FKhyUu8aYGcTUR8FXazHy8OZSvgNymaPWZePgnbSOB8FnTY0vc3tREgafk5KJ2WIj24nEtI7PpEGvyEknFjUY9kOZwRhteCLE7bt94zgqKCHw7sJZK2gSqZSGO4NU9l2pIfVw3vQN8sO5XARA/fmWmrVstU3LYHpDZjKmiHZcrDdB3UnZfhC5bhnyB9vPaeeQyDUyZJjrwF0o4hZCHopzc3uDdwVKBUKgVD5Ava2Gj2BXi9f5RB/9yKrbPxQBCOZDM67EEdPPQWA9PQOHLealfHiKxxpneBuKhgBt8K+21/Oez88reUlt4rWlq5gRGs45KFyX128hj/DNPxGbZVNB31DpVLwOwgvGD4O4UbFCqqmucuZuRy2WyQkvF9+dVzlYLS61dmSCezNW6rWPZz4iaTdHlHV3uKHqWAYOKVQxUOvwdi7wdo2TtYr8AFWr3v8DCNUbdg9/5IWR+9zIQD3PXWZv/3lKy/0X7/9wzoEp9Rk+KFU5Sz+NaVnZnDteeo/RaqGBAnpFQShQeryUdBO6jU45AtBQ45SER8FdJVM11WNYjFoqKhw0rCPAlVOGuejoMORE+7DuZ00/E4jxxIfHU6WHHuN3yhS5aQxPgpUO2mcjwIoww91VT29weCFGCdNT+8AwGnJYLz4CqCdM85Hvfcb9tHK/SXqo6Dd2Q81Bz/k1CgW433U/X9dPuoua+a059ndPbE+CmC0tmC5AwBGw0nDPgpuKh93FJ1TMoOOZsuI+CigndQ9TFZvMQgFtqwh8VHQTio+Ojw0GtIrjA2kwW+YUaE8BEYiEeTlsx1wc5cZSgVV1Lwh6o6D//W0NAWPb319wU3SvfGW5nbguMPWlQmlJrcho6T8vAXFVj1vfkrwI7XykN3khWxAvsPLjwLJbn0L++O3RayGg8xatwGuWMbwKocViih3NJvj9kRGKnw1OHw/vKzj9gQafXkct9fVC7dYmvkQRtqtyrxmHeoldx9CyysnuHEeab4/2IgrN0daJ/j7Z7rnteOoYJRdZfXcfqqPGZbli4GxcXNQ+SuZRBnVjd01j0utKmO1lgX9m6yxDj+coqfPH9VgTJ2C1y87EpJlWJb/3RjTpgJQak2T3uLKZslBJb0wJ8t/XWrRe2n1ZTDcimROIkl+ls7ZGa5OltjgNjL39gV5VWL4ww/09WDff7/eb3W1ClCYol8/91UZcTHUDK5K7zDtjCAI45ZKHwV9//NG4JDNBpVIc9kKHwVIQIu+hxjgj743kslYHwXtpKYbYldqScT6KLhO6k7Od5jYbn9VsluJjw4jmbW9visYPXkouJ2DfX1D4qOVyztdXRhuQ6JTyEd8FMBIp1Fr1unlXuqrz0cBDNPviEY59fmou1ysj4KuKO2mn8EM0jBVOelQ+GiN9YR9FHTklzFVi5fFyPko6O8m7KMA6S0lDDclkUqalL1OgqQZ8VHQzz2O+33nZzUNuY+CdlLx0eFBRviNT6TBTxAEQRDGMI2H6IpgCYIgCIIgCEOHFO0Yn0iD3zBjJJOoQigc1wuXsIJCAbS24LjVrIyk24PS1YdyXztNaX9UkeE40QTKEEmOX84lsFNeQmQw3J6wUs6dZgW/09I0KExxwwXLUHbTCOLAUzdIT+pwYm5ye7GUg/Jy6ZTKKK9aXp3FKerFDwcI95J6vZ0QJEGOXUFMb26t0NxweEb4/Rqht3Hr8tZhOE5Q2dowMKe261nX65xEuqpgMvJ5YvdXOZEqad78jpcjsB+8eczmHOw4C9C9ql5vqzdqsmFChUziep290Al7mg6dUJZJcpMOQTbKDnaz7jVVrUnKbh5OLyTK7AuOiZMy/RG/dsb0Kx42uaM7rLVb6h4aZlQcXulJHT6UGkwOv2HaGUEQxi1VPgraSb2QXNMAN32Fk05GfBRAJS2cJj2ixyIotBFx0gofBbBThj/az3DMWB8F7aRemG85B7ibECcdXsxNXUFKlK5ucMNeVaEw5D4K+vyL9VHo30n7G11YGZob56MQH4Icsx4/11x7m3/Om1Pbh8RHvWXq8VHQTmp6hXJ2nOU/I6qeviHxUYiPzDGbchEfBUhu6sFww5Tt5gyqVX+2csaM9VHQI369/PFO0hwSHwVx0uFERviNT6TBb7gxzaDKKPgJk/0KaQCFIqZ7IynP0I0bZiqB4ebb8obZA5DN+CGO4bwp3sUTwPTSqhQUiR79R8Z9rzdhYrt/2CktXKAb/Ez3/lrr4ikMHUdPPcVv7DUME+Xmj6sUoHHLQCENA+BUiJ7qdBtHU0k/hMEPQe7LR8WqVujEQPsWXi6UNNmXsfDvbGoLdrPedqI0HcNNhp5o1mFO5U2b+v9wFdu03MY8I5fV+XFAV2wLVz90GzkL09xwiLIi4QlZ0qLUrvennDb8h6eym9y83JbBzrgdB5ZBeqs+Vp3zgsppytD7bs7OUS9P3iQyNZI02oAn7X2CIFRR4aPgOmmFjwKYjhPxUQCjt1jto956Y3wUtJNaBX1VSvTYsT4K2km9Bj+zKD463Hj5mzENP3WJ6u6p2Uk8LhliHwXXSd1nOWPqlHgfrdzWAI2KVcuFCsvF+SiA3ZwmUZqu5123YUh8FED19gUVhCucNOyjAAnL8geplNrTvoMqI+qjAHbG8vPHp7eWxEfHGUrRkGRKB/TYQBr8hpl737iRpc0nA26VJzefBI4T5EVJJoJiHt4De3OKRNnLh2Bhuz2lqXVd/kXV+xUpA+x0UOrdlyVbkejTN2ur4FYoSiRZeefnqvZz0ZevJ+kONLNT8Kbzrwfg2SvlQjpUeLlGzFQqqNqlHJxS7ZwdEwrlNCRZ/mLlEqrkNm719fk5X/xGOcuKJj8e4Bj6lc8q9sfP06KMSPU0QD8MuZJlbu6i3KqlpTytiaSX48iVokQ65T9Q2Zu31u4Z93pJUynsN+8CQM+OWZJdel3ZV7b51eRIWJQ7mvVirlgVWyzMor6O2DkrNKLXQLlXdMftFLAzFj2z3B5nE1pf0b3djmVgu5cib3mrqEj0yZ15rKEwcBoM0ZWiHYIgVFLpo4B2Us9FHUf7KGgnDfkoQKLs+P5p5xKk1unOOJW0Yn0U3A5lt/pmos+uy0cBkt1BQ+Cbzr9efHQIifgogGH6BSGcUu28xhOGAfLoxS7mjUIsWX6+baMvH++j4W3V3A0VnafSSd0e3IiTeo3zlukX+Su3ZihPc/Mzl+2ojwKUy9ibt0Y+Q7Ch2j4KkOyyyb6yTc/W2e1X5C13NEd8FMAsZrFz7rUhZfgFI1Ui6qMAPbOS/ojf1lcKfuOfnRUfHQ84GBgNOGaj/ioMD9LgNwLc330bAMvmn+0Pk8cwcGa6o5VshdHnjuZzbwDFtgROMujh8JIcJzeZGKVoj5uTssi366vnn/47KkSVCW1XOj+quY9zrniUDWccpP8wg9F+wvZT+R04xWI0vHUQDWEThdhQ1hDh8ARPsvzQA3M7biQhETOSbmZww8AwK74PwwgegowgnNZuzWJPcSuVmbpRrtSa9EUn2V3ypQigOEXLlzf6wUkY9E73QhmgvLN+nZ47jSkvuo18toOTdntN3WI8iYJDz2y9LtNWfk+bMvErlXn312JrAsftGDbL0LWT/pz5DvzGQS9ZurnFQMaGjU0azoEiX6MgCDWI+ChoJ/Wqa86cguE2zBl9xYiPAlVOmtzk3odDTtqfj0LUh/rzUUA7qRdtLE46ZIS/A38EWzi8dZI6aWwoawVVTjoUPgrVTur+LiNO6oXPJxP+dpOberBb3U7gKbmIj4LuDE52u4XeKpw0zkdBO2l6ro61n/Jis1/cx0lbER8F6Jmd8hv1UfgNek7CiPiot35vYErXTmnyHe5iCfHR8UDDVXolpHdMIA1+I4mjgp7UbBZzg+456X3zbL9KUWKbe7UzspSa9c0ns7GA5eY4KM5oIbVRNzg4Of3Q3zc9UVOsAFbECFWt+RZdcL3/d3pr/R9LiKeqgpiHqn9U2oShViXcOsJFakqYvy4r2nhacwX9y6thWYFYpVJBbk0PR/mhLhSLGJ16PxJdvX5IRalDN6Q5KRMn6fVWpv0GuGKzQbEtul47CY7bAWtnoDhDG1DvHBMMPYqw5Y2yL2i+YG0o+zKlnCCE30kYOF4jntuJa6fA9sIpslByn9ecFBjucl4VxGIb/Om/q0dbCIIgCBMMb3SR44AbeWJu2Ebvm2cDupJ72EcBSs0WmY16lLiVMSnO0Pe/1MaeunwU6nNSbx5x0qEl1kdBnJT6w5erOqqH2kdBdz57oy/DTur+bg3D9EfyGZ02ia5e/fbUloiPAjhJAzvrTksYFJtdLw05aaWPgnbS3jle8s0MLW+4VZzLKuKjoBv4vI9s2kHns5OI+ihoJy27ESalXLBdwxYfFYThQhr8RpB7X72BZTudBYBqSoOln76tokPPjvoK29qlL+CpLUU6F+hpZjmFWQp6WpPb9A3By6FQyg1Nb5yfK0UFjQFvOeN6f9qTN0s4hTDy1JKwQIpMUAMklK5HXsM5jDyh8sMh7EC4EhZ4+U0SJsrdj6T7u7UKFk7CS0ZsgRUKt3VXX2p1N5MEO+smN2+1SbXpB6lSX4L8VG09yV6L3Fr9+VJdeh97ZyX8js9EXvm/W2VB2Q09Lrk9tIYTiJWe4P7PBtM9bF4of+9sWHil/r3//Xz5rY8VBlW0Q0IoBEHoh3tfvQGAZTudpX0UwMphFd0ROztmIj4K0Lkgg1l2R5eXlD/yL7nNGnIfBddJ3XudYUd9FMRJhdGh0kmH3EehykkjPgraSd0QW3JZlOudyrIiPgrgJEztowBWKNyWeB8FSLUVKPXp33h+appkr15Hbm0p6qPuyhJ5152dID982TIjPgpUOan3vGmWxEfHA1K0Y3wiDX6CIAiCMIZpuGiHRMIIgiAIgiAIQ4gU7RifSIPfCOP1qh550OWYBd0TlNxaYP2+uoc1tc1NvNpVItmrfyU9sxJ+z0kpa2CV9DzFFt2jY5WG5tfkDbc2y0HoX9JNmSYN9I3Rb+iEsN0EPaz9hGAMEFrhJatWjvJH8KlCASPh9Vi6v6t0KqhGWCqhvFF7SQuVcrsx3VGByjJQieDH4rgJiFPdDmbZDXFwQ37LTYpymxsikXQo9brdoAq/oIaTgHyH3h8vv0oiD+ltwWcqZ/T6StlgNJ+Xg8WxgnAJjOA3bhUgrTMKkNk8ufP2jHUURuM5/ARBEOrg3ldv4MiDLgfALJRIbtUjzdfvm474KECyV9HjjuhJ5BWlrJtgv9Q05D4K+n7l5foq5cRHtwdx0uGjLh+FaJ7EGpipVFDIwzRQBf1bNBKJqI+CdtKSW0TEMvxiOiplRXwUqHLSVLfeB7NsxPoooJ3U3aydxU8Zk+9IRHwUqp3UuzaUs1Ef1fuAH21ip7SP6nWIj44HGs3hJ/46NpAGv1FCJQxKTfrpvJyzaFulbxRbF+orY6I3SfPr+mJebDbYulD/YMwSOG4BAS/pfrF1+/dnnzOvx2hz19cGhs75Svtj+gbQOU9OlXoRsRolKgRhhX03EP0+wvmDljZ9RL9wyoEglUtBzkC3crZhGL5YlWd3+Mtb2/r8ea1ubT2laU2QDPbDdkUnWYJUt9to7+ZPyYfSvaAM6HG3m3Z8sXISBj2zDH8W0NXLvBx+hdYgZ6Aygwa9vpl6W1be8GXKSQQPT2YZWl7Vn2nbznoniy34CdKFMYRqXJhEsARBqBevQaDUlKXsVtpsW2VHfBSg+fWSn/9r60LDTwvhJBND7qMARpv2UdBOKj7aOOKjo0SNBqsV9t2xPgqukzqupDnKr6hrWFbURwFKpSof9eaN+ChUOWnS/d2mulW8jwL0WKi0V1E7yMvXM8uI+Cho/yy0BjkDPUe1U1EfBd3A5zmuWQ68tOXVkvjoOEAa/MYnY+auueTYa/zXD//i3FHck5HB6iv7rxOA4SZXVYd3ArD5lTYSbu6EpjVltu6uL4JmMci11zNT/780pb5Es7XwcqI4afwel/A2Nu+h98GSCmnCWCfccxqSrdgk4V5PqnJwiqEqg3m3VzWl12ckE2C6uVAyFuWMfm20Jsm8pn+vXvXt5MYerLT+rZbnt/i/Iztl+BUPvUZAlVD+LifXp3DSrji1lTDdpCe9M6E4RU9PdAcjBL1cKBiQ8EY9WMHvNtGn30/0Qm6dXr5rnkFujbdtePj/vgAEidFLzfj7IIwdFMYgcvgJgrA9TCYnrfRR0E4a9lGARF+CpjV63q27J/3KuYYzND4K2kmdtLcTRLYhPiqMGxr1UdBO6i5X6aQRHwUwLRzXRcsZC8OtyJt5rTPiowBWOkl5vi6wYzjaR/VrFeujoH1QtenWQbOUpNf9jRenqIiP6nUF1XgTfUEOP8OJ+ihoJ+2ap6fl1gSDVx7+vy+Ij44DGs7hJzmlxwRjpsHPo9hscvB7rwXgkR9/fpT3Zvi4/4mLOWLJFQD8esV5/vQ9fnwpAOa0AnZahxFmNvSR7NJXZcOB3Hp9Iyi0uxf75vgf01s/dh0QDLcuNZl+CGCkkpoZNNinNwdDsD2cMXemCML24fWexuImTVbFEobbc2mUHTLrdYOgSgZFObxwC7s1g3ILZxRaTcpeyFNB4bi9rN6v1eo1cdr1PjS/HvSedrabtP3TC8mAzVP0/IWZ7u/eAcMND050m35FtURPEL7r/ZadJDSt1tsotKfIbKkOJ/F7WktQbhbBGotIDj9BGHmKzfqaffB7r53wPgpwxJIrYn0UwE5nyGzQPUzJrqTfwZRbb9flo6CdtB4fBX0fS2/Wr8NOKj4qTET6ddKQjwIYrSZGWU/LrC/4Ib1YRsRHAZRl+qPvylkDq6Dfd5JmrI+CdtLOdr1c2z+V34i3eUrUR0E7aaJbz2tntI+CdtKwj4J20kK7ltVKJxUfHftIDr/xyZi7beanmDSv1r0Thx+qG8QefOhLo7lLw8YDD1d/ruffexEAO995BXZaXyXtXJKke/FURtCj4o38UW0l3vxzLWx//ZevRNaX79DzZrbqv82yiuRz8CugOWC4r/963dnsfqnuZZnxZ/1d9E5PMP+2qwBIrE3R9k8975++dbY/3ePlk79Y1+cXJjED5NfbbupY7/LSXQAclToRwwzm93pQjbQ7zMC2oU+HSCQ2Jf2HESedAC+8wg3t7dq5CcvNt1nOGn71sS17GDgpPT23JghrKHlVyzLQ8ZyWrZ4DbLYeq4cwFHuTJLP6N1ju0oKUailSdF8bXSaFaW4+lpLpS5Y3KqIwBR66r//f4/NfkQpoY5pBhPRKkitB2H7yU/TFvnl1ecL7KFQ7adhHAey0gZ3TT+3JnvCDvFGXj4J20lgfBVDBSHVDaR8F2P3S6yM+CjD/tqtIrNX3wrZ/ah/1pnuIjwp1MUB+ve2izvUuL93FUakT3d2JOmnERwH68tpHAUzXR0E7achHAay88jufDVv7KICTUrE+CtpJew5w000dW6TohvYns+WIjwIUu1IYXW5n9zQHs+Tm+OuJ+ij076Tio2OfxkN6h3FnhLoZcw1+giAIgiBoFIPI4Tc8uyIIgiAIgiBMUhpt8JMO6LHBmGnw83KkvOWM6zHdJKBOWvdSvOPfruX3/ztxwylqkUyX2byflzshS+vLupdl8yLLH5qddfNx9cxxMN3eoH1+eSFPvecyfz1ezgTTG3edschPDbbz5M21e1NeuEhP9/LYWEWFudnNI1gOEjMvuPHrpGa7PTybMoP9uBOL4ewpnCB4FXKdYnFYjlW/eVJq7U+Lm98knYImt0S1l+OvqxvV6yZENgzI6WI7VncBo6R/l1613nLGYPMeQQhEskd/tj99sfr6tdtXryexTh+H7gU2Xbvrm2JrrkChqC/N6eYihU7ds2tYen/mTN3KarfCjvFGkuxqvb1SSxAO4eX1e/HL0ls6EZAGPEEYWR7+xbl+jmOzqCa9jwJs3q+EWdL3v9aXbTYv0sek0GrG+ihQ5aRxPgr9O2nYRwHMzUk/4X+xVfsoQGp2UXzUY7ijKSYIZiqlfRSG/Fg16qOgndTwKvI25SI+CqB6+4ICHrksVrebe7pkR3wUYPMeQZqYZI9Tl48CdO1u0JrT6y0UE6Sb9fEpdKYjPgqw2mjDeEM/I2ZXm5S0UuMkxEcnGo36qPjr2GDM1cB58qazSW0tktpaxEkYfl6ryUY2XWLe/A3Mm7+BYotbdt0yaP+7Q7FVy03vHEXvHEXipay/XF8hxYIbv86CG7/OvFuvJtWlSHUpMut6yKzroW+aSe+uJXp3HSB/mbcfv3+R7O9fpG+6QaJP/zMc3WCvDEh2mpT6EpT6Eph5EzNvsvBr13Pwe6/l4Pdey0EnfJ29zr2evc69frgO1ZjDMIfvnDUSSYxEcsD3zfQYk13DxMxmMbPuuWqZYJlYXuPaELHC+VHDcrW8+EPu2/zf3Lf5v7l3zU3kd55GfudpFHeaSnGnqZDNQLms/ymF05zGaU6jUglUwkQlTB1CYVkkexROUucqUSZ0zrfonG/V3G65xaHcalNutSEbCGYyYZPNFMlmithlk1RzkVRzkXRLgXRLgaZk0X+/2O5QzkE5B3ZaUWrV/wrtUGiv7/Mv+MbX9b8bg3/CGEIZqEH8Gww333wzCxYsIJPJsHjxYn73u9/1O//DDz/M4sWLyWQy7Lzzztxyyy1V89xzzz0sWrSIdDrNokWL+MlPftLwdpVSXHLJJcyePZtsNsuhhx7Ks88+W7WelStXcthhh9HU1ER7ezuHHnoofX19DR4FQdA8edPZvpNOdh/1nLTYgu+k7X93fCeN81HPSefderXvpEPho56TGg6+kyY7Td9J43zUc9LJgmEaw+6k/b3n+eiYclLD9J3Ux/XR4XDSRlhe/KHvpPeuucl30oiPek6qlO+kKpXwnTTso56TKjNw0lpU+ajrpMmE7TupXTZ9Jw37qOekxXbHd1I7rXwnFR+dWIiPjk8fHTMj/CL84SkAMjl94d30wX1Gc29Ghb+8+zIOfkBX0Sw1w5qD9A+m46+QW6/by6e+oHthnITBtr3dhKwFyy+HbpjQtZNebuqftFAV2xrbj9c/sQjQSVhf/FKQS8VL3ppbC32OvpEndMcT5Sbonq1nyGwNEr1OFsxsFhL6p6WKRVShEHlfhSpxNYJhWRgpr6SWg7Krq+GZnqxYJgxTb+VgMFMpv/rtCudHHJX8oJ4+cwaGewGs9XlGg2KbVwlQ/5CSU1qCXtW2Fj9RcrkthekW7bCz+nvZtJfJtKf1+yvv/Fy/29lhz/W8sdod3tCdwHCTaG5a3YbVo380qS0G1lu2AdDbpUf6vbSpg4TlVnLL2di9boVvC5TVeF+aanKPuyH9cGOWEfhq7r77bs466yxuvvlm3vGOd/Bf//VfLFu2jOeee46ddtqpav5Vq1ZxzDHHcMopp/CDH/yA3//+95x++ulMnz6d973vfYAWnhNOOIHLLruM448/np/85Cd84AMf4JFHHuGAAw6oe7tXX3011113Hd/73vfYbbfduPzyyznyyCN54YUXaHFH565cuZKjjz6a888/nxtvvJFUKsVTTz2FaY65fk1hvPGHpya9jwIc/MAXKDXraWsOMuj4q36dW69ifRR0Q4M30KxrJ2NIfBS0k3r5ppWlfRS0k8b5qDfvZMFv1EokUK4Thp1UeSPHGvREw80TZ6SS/rKVDhfxUdBOOkZ8FHT1W69B7qjkBzFnzgDA6OsbMz4K2kkjPgo68qTNjUwpO5Tb9GcyLSPiowDTnnYa9lEAw1BsWq1/pFaPRWqLm+/vLdsiPgqQsBycnD5mdq/p/8YadVLx0XFAg0U7BuOv4qNDz5hs8BvM8OeJyCNHXA3A/H9cy9SdtgKwMTGFzHp9wng3AAzo6QnC/ow2fVO3Ujbl/fSNfd073ASq9hbM7vp72vzGw3CFeYUvfeUmSHbp130zvCHjhh9moczqir8THWPGNL+Yg1Eq+SGgyp2mMgkMWx8ro7vPT8LrrFlXJRm+jAFmLofRrJPwqq5uX94M90HEmDYVldEHW7302vaL1WBDk12zNywr6Fm2zEgvc/hzWrNmAlBe7dp63DZHKFQ6tU2fvKVmN1xpZjOZPi015fasX2233JRgw7762Odn6v0yimpAsfL4/ZFXseeF+mHFSUG5ya2slrT9G2THMzbdm7VwNbk5m/Mz0pTn61h9I+lQbtHH0uozUW7NtUaqGOamuOsyoFSeRE9C44TB5PAbjGBdd911fOITn+CTn/wkADfccAP3338/3/zmN7nyyiur5r/lllvYaaeduOGGGwDYc889+eMf/8i1117rC9YNN9zAkUceyfnnnw/A+eefz8MPP8wNN9zAnXfeWdd2lVLccMMNXHDBBbz3ve8F4LbbbmPmzJn88Ic/5NRTTwXg7LPP5swzz+S884IqowsXLmz8QAhCBeKkmkeOuJr5/7gWgKk7bWVjQmfhz6w3Y30UwGgrYqX0faq8X2HIfRS0k5a1HpHsivdRmFxOasyY5r4wtI8C5LIRHwUwbKV9FMC2cdas0++HXK3SRwGM5iaU1yFaLMb7qF7BdnyQQYYmx/iofiveSevy0cHszyBIbStHfBQg09dBuV0/WzhJk3KT/h437JuL+CgM3PkM1T4K2kntpHtclPZRgO7NbREfBSjP78VIup3hLTZWn9sRjSE+OsFQNFq0o/ERfuKjQ8+YbPATorx82ud5xwpd1ajjza+z6nHdyrz6CPdBP1cm81d94Z9x+BukE9puUqbNxj5tQEXb7Y0zFCk3H0s9PHtVdc6F5y+WPAz9oZoyfm43EhZ2m/5u+mZqsU11lv0H8kTSonue/o6c5BwSboXXRI/t/r/k5+ZAKZTbUKh26PBLH5Va3DuvYZDcrG+WjltVtmEM0+/9BHAK+ar3I4LjSo+ZTPiVwRx3xJ5hJnz5Y84MWPU6AEubPuL3DgPg5inxQins7u7g/dD2wrJZi6F6KHvjULf62Bb999QXFeXputem1JIktVV/H8X2JKlOPY8nN15FwXrxcmwWU8H9Uxn450exxaR5tT4X8lPc0RKWQV9CHytrdh/pVv0d9a5v4uVPnVv3tvf48aUAOI5ebzJpU8rLLWHMoRqvctZoe1+xWORPf/pTRE4AjjrqKB599NGay6xcuZKjjjoqMm3p0qXceuutlEolkskkK1eu5Oyzz66ax5Oyera7atUq1q5dG9lWOp1myZIlPProo5x66qmsX7+exx57jA996EMcdNBB/POf/2SPPfbgq1/9KgcffHCDR0MQhDhePk3n/3rHii/S8WZ9T1/1+E6xPgqQTpRJmfr9jX1N4qMjiGrS3mmUbEjo4263ZaM+CqC0jwJ0z2vCSc4BIJFXsT4KoGylfdSdNtQ+CsQ7aa1OYMPUPgpgWfE+CrDqdZY2fUS/X+GkYR/13w818o2Uj4J20rCPApSnt1Bq0Q2qqa0Fiu3u686h8VEIUjfpP7SPAjSvtiM+CtCXyGHN1sc63Zqnd71+rmnUScVHxz6qwRF+jfqr+OjwIL+mccLvj7wq+ONQ/b8Dl+uTUimDdbP1TXZDdzOZlBsuUUpw6I7/AOD5Tn2D29yXo6VV38BO//OHeXrzbAC29Wb93pTn33vRsH6WCY8TCIgyTWy3B9XroTMUJDsDyc2t1QJVziUw3XBR7yZqOAq7JROZ5uGFlhqueBhlB+UKW2L2LJ3jA3C2dkYkKSI23t9uCLLZ3ITy5Mw0SUxt19v2pimFExIgww0XMdIpyhs2RQ9DqQzbdItYfsnuNG/QxlLesMkXODW1NdiPaVoazWIRs73N367d3eNuOziuwzniwnQjoS33/30dFkbZMyAoTNXfh5M0sdzDYg3SZwsH6mNZ2JbG6nJ72kuGn13VThn0TdffV8l1VZWAtBtakdy1wMFzXgLg3u43NbTtpqw+7zZt0N9B0TZgECHBwvDT+Ag/A9ux6ezsjExOp9Ok0+mq2Tdu3Iht28ycOTMyfebMmaxdu7bmJtauXVtz/nK5zMaNG9lhhx1i5/HWWc92vf/XmueVV14B4KWX9G/gkksu4dprr2Xffffl9ttv5/DDD+eZZ54Z9Z5VQZhoVDppnI8CZFIliiV9fzt0x3/E+ijA05tns61Xe0WpbImPbi8VPgpgZxIRH4VqJy3nXCcsO3X5KGgHjfVRgHIZZ6u+J8U5qf86kcD0Ilr68uDue2Jqe6yPAhjZrF/sIuyklT4K0Lxhiz+PmUrF+iiA2d7mb9fu7hkxH9X7EPVRQDup+90Vpmb8yBMrPzQ+CmB1JbSPApjaRwH6plsRHwXtpMldtVMePOelhn0UtJOKj459Gq3S6/lrZ2cnVui3Lj46skhyG0EQBEEYsxhBV3u9/zB47rnnaGtri/yrFQoR2ZIRlTilVNW0geavnF7POrd3Hsd9qD311FP52Mc+xlve8hauv/56dt99d77zne/E7r8gCIIgCIJQJ436qNvgN3XqVPHRUfRRGeE3jll51NcAOPKhs9m8gx6L3fNGM9Zc3YvVtamJX2zSCabfuvsqABZPfY0+Ww/9LimLtpTuCkpbZQq2nA5DgdFX9HP40ZShnHOHqHfrsIjs693BvLbCaUlVrcNJeIUYTOy0Xt4shXKpJEzstJsfxe1pTW3K+6HEqr0Z3A5Is6UZs+wu29Pj95T646wz6WB/S2VYsGOwHS+viaFH3BllB3Ote1Hr6sLw3rdr5DFRDok5egRpelMBNUMnBDa3dQWzJC1Kbh4Sy+05TvT11ewFhpHJpeQlG962u/5s6U0WqS436feGgt+DbWdM//Ufbz1nUNvqaNWjF9cWEn6i5ERHHlY1+fMUm6P7hYLeeXoU7w6pEh1JvY59F7ze0LYtt2tfuT24yY1JnLSetuDGr7Pq3+vLRSgML2owIb0KFi1axCOPPBKZXqs3FWDatGlYllXVe7p+/fqqnkyPWbNm1Zw/kUjQ0dHR7zzeOuvZ7qxZenTI2rVr2WGHHWrO401ftGhRZD177rknr776as39FwRh6IjzUQBrbiddm/Q97Reb9on1UYC2VJ60pUebiZNuP0afOzTMMMAN7y3nrFgfBaqctB4fBbDTyXgfBXC0jwLaSXvc6A3TjPqot78ld9RhpZPG+Kj+DHZdPgqgZkyt8lGAUns24qNQHSnjMVJOGvZRgFSXRWaD/hyGo7Azpv96SHwUoDuhfRSqnDTso6CddAc3uqwj2dOwj4J20jgfBcRJxwgNh/S6/9+8eXPVCL9aiI8OD3I3nQCsOPT6mtPn/9e1qIS+8b28TSdXXt3Tiv09HU7RO9PEXqIrgE5v7iZhDH/y2UmBafphFEaxTGadm4TWC8HdsCVoYDMMEq4gFWY04bg5QlKb9E223JKi7IZeOIkEdlrPm91QwipoATBKXmhv6PszTT9WQyXTvpCZlhkkUnbDeI1y2d8flU7ipN1QjnwJJ5eKrNvMl/1QYbOlxX+tCgWsKW7JPS+kI5vx5S25oRsKWgaMqe04bmiF8Y/X4G27udtwZbOru6ZY1WLZDmdw75qb6pq3Xl64UOd4mH+TlgwnCcUWfXxyqx3/WDlJA3M7C7l5D0lhdvvfyyhO1ce1y0lgZ9zjknKPqwPz5m8AYHq2h79s1TKctxN+Xr56wqAeP/oKvb17dAXGcmcCTK+KoWK3/9XTX/y3Cwf34YShYxCRLZZl0draOvCMQCqVYvHixaxYsYLjjz/en75ixQqOO+64mssceOCB/OIXv4hMW758Ofvvvz/JZNKfZ8WKFZG8KcuXL+eggw6qe7sLFixg1qxZrFixgre85S2AzrXy8MMPc9VVOqxw/vz5zJ49mxdeeCGyPy+++CLLli2r6xgIgrD99OejACrhxPoogL1kG9ObdSOUOOkQ4HXwOg5GUXtFZl1v1EdBe43rNgnLoDDDzS1tmLE+CmCnDbIbtNtZBTveRwEMhUpqJ1QJE9MtnqEyyaiPuvuj3E5tJ53AzOttOLlUvI8ClMt+FWJrSlu8jwIUShhu2hpnW6f2UYC37RbxUaiRz7oGw+GjoJ007KOgnTS32j3GhoGT1N/d9jhpnI8CFKeW6XKrb9gZFfFR0E46PasbDP+ydUfybmP9Hj++tO6w/MePviLWR719ER8dAwyySm9ra2ukwS8O8dHhQRr8JjAvn/p5dncbALb16FFUmXSJ4q76JlvscFCv6pvklgU2CatxuXrncdeQ7HJzxbmNSr9Z/sXt3vdxTakU9FbmC5heGi1PeiwreL9UwtygG10zJRvl5SFxhSZhGX6PacJWGO5yiW35YF53mrm1B+XmLnFa0pi9bhXf3gLk3J6UZMLfD5X2cqWYOCk3mXMuuCQoy/B7fL0h2UZfEebMcpdPBg2JvUUct2yXn9vFMLA2uWLV0wfNOumHM6UJs+jKW3cP6efeCPYNKPf2RnpNvaTKAMtmfjp6rIexxPnLZ+jexPnfuobemXrfmt9IUs7qbebbh2fbxU1ZSGtrK+1Y8Ksbpt1qadl0Cdtx89kYDrhfY1kNbn9Mt2HY6Sj5o0KxlJ93Y8EdV7LqQ+cPat3C0DASVXrPOeccTjrpJPbff38OPPBAvvWtb/Hqq69y2mmnAbqi2RtvvMHtt98OwGmnncY3vvENzjnnHE455RRWrlzJrbfe6lc7A/jsZz/LO9/5Tq666iqOO+44fvazn/HAAw9ERh4OtF3DMDjrrLO44oorWLhwIQsXLuSKK64gl8tx4okn+vOce+65XHzxxeyzzz7su+++3HbbbTz//PP87//+b+MHQxCEIeXlU3Wxj91/fGmsjwKoV1vYssAtEtGgk77zuGsASHaVxUc9vMq8SkFeN4SZnUR91HvfndfcsI2MNzrPsmJ9FLR/Jrblg3ljfBS0Jxq9btGPXNp3Pkwz4qMATsqq8lFwRyHG+Ci4DYmu+zpN6XgfBWjO4UzRDZtmsYTj5otOP/dGxEeB+px0hHwUoHdmguY39GcuZ83h9VGAtE1pR7chNWVHfBTAdsyggd4aeh8F7UEL7tBhoOKko8dgc/g1gvjo0CMNfhOcF2r0rCxr+ywAf3t+R5Kb9SnQ3Z0NsvfGcNwjnwHgqZd2xFqvb+QdUyysvHtVdhd/11FXxUqWd3PsXbwAgId/9YUGPs34YOvb55Bbq4Wj1JLwwwcSm7VMKNPEKLhhFo4Dpju6zrIwt/VE1mX1FTF79E3dKDvQ5b6fCHpJVM69IZsmyi0QYvaVgkrBjuM3zDmZDIY7MtArJlLoSJFbrQUoubEPc5NugCzuMtNv8PN6hlUmiUq5ItSSopzxGh1zfkhBZp2WP6s7j8q6yZNntWJ16c9cbs2QmK+HPJuvrvUTITsb9Gdb4fyII8336/dTqaAyWg2Goze1ksSWBPnp+jhsWxCEupRzw7M9o2igvHiJpjLT27WkrnOTGVumQ7Mb6rAxn2NWToekOA3eVN9+vxamdjdSY21XGsMtHJLcoZdyyXsQGPRHEYaCRntTB8kJJ5zApk2buPTSS1mzZg177bUXv/rVr5g3bx4Aa9asiYQjLFiwgF/96lecffbZ3HTTTcyePZv//M//5H3ve58/z0EHHcRdd93Fl7/8ZS688EJ22WUX7r77bg444IC6twvwhS98gb6+Pk4//XS2bNnCAQccwPLly2nxRnUAZ511Fvl8nrPPPpvNmzezzz77sGLFCnbZZZfhPGyCIDRApZOGfRQguTmhfRTqctKnXtLLWetTdLiVQ628U5ePgnbSie6jALm1RUot+v6e3lSI+CigndQblWcafody2EmrfBS0k9bho+BWCna3oRImTsatIFywIz4KkFvdR3Kj9lJz0zaKu+hwOcNWsT4KUM5YGMqtsJsxY30UwOoqUm51Q3fn74D5qg7lU335iI8CHGm+P6gWHOOkI+WjAPnpasR8FNBO2qSP+/T27oiPAjSnFRvzeidm5boa9lHQThrno4B2UvHR0WeQI/waQXx06DGUGjg7UGdnJ21tbWzbtq3uECFh7HLSY58E4LHX5lHs0TcMK1Mm6fbYxA2/fv+jurHuta521ryuQzLS65Lk1uj3c+vdYfZlRe4NfYEuTsmQfuivgB4Sb+b0DUEt0if98scnZgW2hV/TYS0te2+i8DudP6D1ZX18Utts0htdCdnW64/2c1qzmJ1uz6PXK1sqg5cnL/xTzeXArR7m9ypmMzjuSD5zW4/fkOi05YJcKqkEZo9ugOyb1w5AekMvxiv6S/Sq7gLYO07DWrNZ/+HlAEylgvVOafb3SSUtiu1629lXtupphkFxlr4A2hnTbxjum5kktU2vL7dqK3g5VLxQjmQSZ5MOMzFbm/2QDKeri/vzd1Qe6mFnz4uup29XfawTa1Mk3d1VCXj+4rP7WXJweKFPHt7IiPm363ALM+kwY6reiZ5CCiP0UPT0sZfWvZ19fqlDI7zo8r+8+zLm36aHpCeyJVKpsv/+s8dd0vgHmYCM9L3wqquu4tKf3cn0T3+woeW2/fJhjklM5Y47Rv73IgjDifjoxCLsowDFnhRWRt97kkm733DA9z/6aV7ragdgzetTSK/TjVG5NfE+CpB+6K9+iKaZy014HwXtpC1764q0hd91RHwUIL0xr30UQCmcVu2CZmdffT4K2knjfBTANHDa9LxGyfYb68yeQsRHAYxX1lT5KKCdNM5H3f3ycvEV29OxPgq6YbhvZtI/DrlVel62dUV8FMDZtEX7KICj/JyBI+2ke16kny36di2SWKuf35Jd+NVyh9pJK30UtJOGfRRgxtQuegpuCqDtcNI4HwVIpcr+++KkI38vXL16NXPmzGGn730Vo4HRrOUtnbzx2Sspl8t1hfQKw4OM8BMEQRCEsYz0aguCIAiCIAijyQiM8BOGHmnwm4R8/4BvA3Cy8QmeXKeH+ytlUCjp0+HgB77Api49rtq23Z4wy+Go+VsByCWK/jDuvh2SbJ6re7263J6epsezKEP34mU2lzB30tvglddw3PBNy02OO1C4xXjl7+fpXrbjf38Gf3ur7vVaM18fE7M3QbJb9zR2PNNEy0s6ZNMo2X7IgeHn+Cv7vZlKORheT2oyAcoNqXDz4eE4QcJj0wh6KAFjs1skI5tBub2u2efcoZm2DW5oBZm0H55hrdns53zxR/L19mE0uzlP1m5GTdGfQyVMMm/obXg5U0odTeSn6d7RTXuZzPiTuz8Kemfoc61nh2nkNujRotnVbu9y2YGZeprKl/3wZ8Mb0TjCzDr0dV7fpPenOM0A5fb4ZhS7X6Z7W71CH0NCtgy43Zh2EBYxY4Y+vvlSgg1b9W/OLlh+Lo2XT67/d7Top5fgJf9znKCnbvoMHc5tGNCU0t990U5w4PLzgNpJnYXhxsA/HwRBECYQYR8FeHLdHD/nU6GU4OAHdJjtpq6miI8CHDV/K7mE9gLLdOjbQd+bN89tjvVRQDvpK9pBnb78hPdR0E56/O/PAOBvb01FfBQg2d1CxzPa7Vpe6g6iQrKpWB8FtJN6ufiUE++jUOWkRlZ7p8qloz4K2km9ir0JK4g2yRdifRRATWnxU9hk3uiM9VFAO6lXZXZGgp4d9CjC3IYpUR8FmDkFlXejHgrFUfVRgNc3TdE+CqCSOG5xt90vu34YfBTAiPVRgA1bm7WPAihjED4KYMX6KGgnLbrFQA5cfp746KjRqJOKv44FpMFvEtOe7PWTItuOQTKhb7QdmV6/KEBnn74hW6ZDa0I31r3aO5U1G3VF1ky2yMK56wBY16Ubf7YtSmK7Q/WnvgCJTr0Oc/o01DpdXdRw83yYZYelb/0KAPc/cfEwftrR4SfvuIm33vslADp21mENs5q6WN2th1+vnjGNHUtaWJpe6wlyqLiNckahCCk3Z4rjgCdImaQfGmFtDkJijT7XXhwFbkOZuX5rsEO9fRi9bthwqFIwbm4Sr8FRb6PVFzajz210yxdQbU3+NKNTfyart+BLn92iv9uu+Rk26iJGNC3YyjqrHYC5K/K+sPXOTrNlF3e5pF5vekuZRI+3vTL2dH2s7J2mxhzl4eU3h33dDy2YtsM2NpV04x9lg+IU/Tl2/qGuePvSiV/a7u0ZpgpFyxh+dbaXz7jCn2fn668DdC5jY5BV2bzf/tP/eok/rSmlj3tTsojj3qRtZVIqJQe3EWH7GUwOP+lRFQRhHNGe1A0sCcvBdvS9J5mw6cjo6bZjRnwUoDWR59Ve7QVrNraRyer718K562J9FLSTmtN1445at2FS+SjAW+/9UsRHAVZ3t7J6hj4mO5aatI+CdtI4HwXIZlAZtxO0LRfvowCFYpWPAtpJwz4KkEpV+SjoKr5xPgpgdPZoHwVIJmJ9FGCd1a59FEApemfrz7lll0TERwESPUUMt8HPnt46qj4KMP+2q5i2g24Q21SaAmV93IpT1JD7KHjKrrcx/6avR3wUtJO6tTW2y0njfBTAwcB2i4GIk44iMsJvXCINfpOY/3jLneDeAHe5+6u0NOsbX8Yqs1u7bphbndI32W35LGsKupFvSz7LlHYtA4umrqMlqZcru42E7Qv6eL1bF2XIrzPJrHfzdCQsDFcWvAYms+hQatU32aPefinL/zDxcqg8sUzfGL2iJ73lJL1FfRxmzd/EmoOmAzD7902kture0WK7fj+zIUNi3TZ/XU6L2+CXtFh9iB7llXLFNrfeJtWphST9RmfQm5rNoNLuT90wMPJuD6zX8Necw27TUlRqTeMX1zIMv2Eu2aWXsbb2YXS7yyUS/veIFfTKeb2rWxcaLDnoaQD+/P29mfG6VyzEIrnNvYEnDBKumxXa3MqzvSZWXr8uT2uib7reRmGYqpDVg9dbecLK0/xpmzc3Y7l5L5tyhSHblipZflUyEg60VFcqfOnsc7ZrG63ZAn9YemXV9K6i/i1uzWeZ27oVgLRVpmRL3g1BEARhePiPt7jVFN+ifRSgpTlPxtIes1v7hoiPAqwptLHFfT2lvYdFU3Xnc0syH+ujAJn1CUw3ksFIJWN9FJiwThr2UYDeYpJZ83WOvzUHTWf273WDV2prKdZHQTuplzNv9SHN8T4K2km9Tut0wm/cM/KliI8C2G1Z/7tQJkFDoFLxPgr6u6zDRwFmvG5ju4XnktuKOAm3AnEh6qMAVt6kPE0fk77pqVH1UdBOWumjAFbSHnofBe2kCddFh9hJW7N6fyudNOyjAHNbt5J2rwfipILQGNLgJwDwzxMu4IKn3wtASQUX0rSpL65vmG0U3KHU6USZkqPn+cysBzn1mQ8D0Jt3G38UOG16uW0LkyTci3Vy2g6kN+peMXOD7gUsNSf8ymFO0uDww/QFP/XGNu59YWIN1z5uxl8A+Nn6fZndqgWos5Dh7Yf8DYBHM3uQWa9lqG8H3ZBkFrJM/as+fokCFFpdQbKh8Fbd6Jpu1sLz+oZWjG1azFpemo7lRhzk1jvkXTnJbSiT6NU3ayvvJjDOJvwK63bGxE67opN3cLzqvin9/5RlYHmJlvNFX/QwDF+svNHbVh5e3DpDL9elSHa7oSCWQXFKcK5Yed24VWp2q4ElDYxSUMmt9Wnd+Hzvi1fVc5iHlbsPvIWFP7ocgFxzgenNOhy7JTV0gvXyx77gjwot2kGIgzfNa0AeDPO/p49hsqmp5vtvnaGrXpVD1wBbGeQz0ps6qsgIP0EQJgn/POECAC54+r2xPgpQsBOkE24DgGPxmVkPAnDqMx+O9VGARD5LcppuBExvnBrrowCHH3YlqTd0I9dEctKwjwLMbu2ks6D98+2H/I1HM3sAkFmfifVR0E7qjegqvLUn1kcBrGJQTCXfbpLb4I6e63UiPgo6U4lXXMNOmyTcom9Owoz1UdCd4V7joEqYsT4KkOy2/ZDf4pSUf9+08iriowBGyfEdt/XpDWPGRwEW/uhycs36C5ne3D3kPgraP4t2kAZmKHwUtJM26qOAOOloIiP8xiXS4Cf4fHXvH8e+d/qfP0yzpW8iCdMmn9YX22cLc+j8uw5x9KRq1uwtbHPDBftMxZaiWwm4YGK6+R6SXo7ANFhemjgj4fcIqkySo/fRVURLHTke/PX5Q/Y5R4sVmxcB0F1K0Z7WoyJ3a1nPrLSWyX0Oe50nts4HYFZGNwjOzWzmhwv3B2Dj6lZSU9zKcqYi5R7jg2a+DMCrLVP83tppb+1hcdsrAHzjD4fTMUvnN9n46DSa39BX3+zGoIey1OQOk88ZlHOu6BgmnQvdhjc3B8uMJ7Lk3Ep4qU0WZkH3tBolG+VWbfIEavbv89hP6AbelFPCsPV2zaLt53TJdyQpu4XYPGnMt1tkdEc9dtoimRhbPXnqZd0D3TcnT8d0HW60S9OG7VrnLnddQbMryrNbO9ltql7vsxtn0ZzRP5BmV+KOfOhsVhx6fcPb2PsXF7FgJ91IXLQTLL5XP1T9adlX/XluWfx9AL794iEU3bJvBSfJG8Upg/lYwlDhtcjXjeRMEQRhfBPnpKf/WXcyN1sFEqYWh3w6ybMFnS+68+9TYn0UYEsxhVXQvmKWErE+CpDqLPshq0fvcyGlDn3/H+9OGvZRgPZ0nt1a1gMwK72NfQ7TueKe2Do/1kcBUlPymO5xTVlOrI8CLG57hW/84XAAOmZtZuOjOoS4+Q0V8VHQTlpyXbScM1CGm2ZooRProwBmoRTkHzTNWB8FMGylfRTANMh36HWVs1EfBcis0z4KjEkn7Zujnw06pvcOiY8CNDf3+YMTdpvay7MbZ+npmULER4GGnXTvX+iRswt26vHz8i2+94JYHwUoqgQFR39H4qSjiDIac9KG/VUYDqTBT6iL+ZlNbC67OS3MMrs16RaZ779+AFZe/5idqVqqNmxpwc67N0RTkZ+jxcvqtMhs9G7g+u3WV21/9Fl+ionhNjIYqplyTq+jlDNY/Cl9M/nTt4a25PxIcufbvwXoQh7T07pHeVZ6Gy2mvlHPTW1m6jQ9YuzP3fMAmJbo4lO7PgLAEzPm89QGLbR/PuZyf70fe+JjAMzMdPH8Nt2DaRqKjSXdY7rkTS+wtahb1Xb411e57086nGHa4/r4du9ocNGH7wLAwuH8x48HwNmaYsn+evRh1h0ueF9qb9qe1Tfc5tdNDC/l4OpezB4tAFaf/j67FjT7vaQdf9riS5jdnKEwXfckG0EOZ5Juyph0pwPuehO9Ze59bvt6EIeaf5y7feG0caQsfXxakwWeeG0nAMoliz0XrIvM92pX/aKzYtWenPHnEwFozjrs3qaFfkuxiec3TY9d7pO7/a6hfReGEUUop2P9ywiCIExE5md06OnmcpM/6m+3pnV8//UDALDyRqyPAuTnlLE63YacjUasjwIYKoGhdLhkOWf5jVCLP3X9hPFRgOnpLr/zucXMMzelO4mnTuuO9VGApzbMqctHATaWWljyJp1IcWsxyw7/qkdw3fenvSM+CnDRh+/CckXw/MePx9mqGyaX7P+3WB8FMBztowBmTyHWR0F3VNvN2kUL0zPxPgrgaB8FJpWTtia11z/x2k6U3fDesJM26qMAZ/z5RJqz+rju3raeLUX9bBnnpOKjYwvV4Ai/hv1VGBakwU8QBEEQxjIiTIIgCIIgCMJoMphCcsKoIw1+Ql2UlEWf7VbiUiYPrNP5PV5+djY0uT1gvW7uja0GtOqesFSuhNWie4j6Sk2Ybg9R01q9TPM/O7H31PlY+joMrIKennlhrV9lNv/mnShnJ06+Bq9SGsBXn30PT3fPBWDnjvV02Xok3s37/QCAgx/4AluX61wzz1xduzd55WsLAHjrnFf9hLZFO8HWkl5XbznF8+t1T2vznAKfPWQFAPYhurfTQvF0r96HN2Vf59g9/wrA+kILO2R0j+9Oad2jPvvAbfxzH90L9+e1O+I82g5Aoi9Dysvj64ZQJPIOmU161FrXwjbcyBt6p4dy8nQqmtbpO4fjXo265lhALvb4TUQM0yGb0mEmuUSBhFsxu9iT4tkNOoxiyZx/AvC34sy61/vVl97NrHYdkrFL60amp/QI0q5yBiXD7McHisZDIkTGBEGYoHh5/frsJI5bZeyBdXtoHwXtpDE+CmC1FOgr6VFFZsmK9VEAq+BoHwUoFMm/2R19P0GctNJHAZ7unsvOHToaoMvODomPAmwtZekt65F6z6+fQfMc/Wzw2UNWRHwU4Oneubwpq8OKj93zr6wv6IiVHTLbYn0UwHm0nYRbzTnlEOujAKZd7aMATetUhY/CZHJSw62CnU2VyLnJGhMJm2KP/u6e3TBr0D4KMKu9k11aNwIwPdVNV9kt5CJOOj5oOKR3+HZFqB9p8BP65eTHPwHAW1t7KSWDG+PrW9oBUJbCsN2ktm5ZeGWCcvTrUiGBkdWSpdIOZtkr8qD/1ze72X+d6laktrqVJhyFyusbTea5N8hP0yEF7zzuGgB++7Nzh/iTjg4XvOmXkb+PqXj/kSOuhiP6X8fz762uIvepP57sN+50JHt4oms+AH/fMp2tBd0QOC2jYxY6Sxl/ubKyWJvXMpS3E7zWp4frtyV0iMTBzS+wrFVXOvtB8kB+tmAxAFNfMLGbtACbBS1V6Y0FrGe0FCR32YnVh7cDUJgCaR0tgpMwaH9WNyr2zNNCl93k+JWCH7nn8/1/+AnCm2avpegWwmlP9pFJaVHuSzh0urlynmvWYtWcLvDu354JwP+98z9rru/NP78YgGwq5VfbfXvrS9joA/t81yxaMkOX2FkYXgwRpmFFKcU//vEPSqUSu+22G4mEqJEgjDXCPgpUOalyq9sbthHrowBGtoRK60YNs2zF+iigndTRr1W+QOa5NwDIT5s34X0Uok66PT4KunGnw42VfaJrPn/fohvrthaysT4KsDbfRt5tNHytb0qsjwL8bMFipr7gFvtoSsb6KMDqw9spuBGp6c34VXrbn90W8VHQ59Fk8lGAomPRntS5pTOpMn1uld7O1a0RHwV492/PrMtHQVfbfXvrSwDYmDzfpTu1xUnHB4ZqzEnFXxtjuHxUrFaoyXOv6VxxaTO4u++d1fk2lhf2orDJrbSQVEGvTFLfDIymspcqBRTYZTc5cq+F26ZBzyw3r8Yck6S+d5Pd6OB4AmcaqKLb+GcY5Fa7+eHcm/fR+1zIfU9dNmSfd6IxM93J/k2rANg5uZEfdr0DgM6WDG0ZfQN33O+t7Jhk3J7YNflWMlYw0szrPe+10wC0m33sm9JC1j79YUpv1d/Xb15fTNtLen1tL+qGxuKUDIkWnfvGSVt+MuxkFxR1myI9+/ex7RC9bsfN8dfyl9SkvEFMTesfwtNbZjOzWed4NAzFZjd/kO1W6y3btRNGe9WDAXaduRXQ+QC94i07p9ZTQi/bkd6Rz8+5z5174Gpz73v0dADW9mgJ/v2Ro1+hblIhOfyGjZdffpnjjjuOZ555BoC5c+fy4x//mP3222+U90wQBI/nXpsT8VHQTrq8sBeAdtKk2zCnjFgfBe2kZq9bcdSK91FAO6lbJEIVi34F2NzqQsRHAXHSGGamdZTB/k2r2DmpR3b9sOsddLZol2zL9EV8FCBjlVmTb3VfByPNHGXG+ihA6a0Wv3ldd0S3vWTE+ijoAi1JrVoU27SPAmw7JB3xUZicjRZT0708vUWPmp3Z3IXhHoTNqnnQPgq6eMvOKT2CtIRFR1qPztROWp9bvu/R08VHRwup0jtsDKePSoPfBOZI6wT/9Qr77rqX27p6Ll2OvsktyOlqT9MTXbxQ0EP5H129IJjZMVBZfWNM5NyMt4YikXQLEGTzJNwKaWvyCQpT0+48+n9mMUiOC1Bq0TePtBEaLmzbJDe7FuZON/qKdX+eychumTXMT+iwh4zh0DJPj6I7fO6L9JT1d9Dl/n9u0xY/8XVXOUPJbZVNGg7ZRD6y3ulWCdCCtUuimb9t1b18hamKrpLbq5rSN+HMVgdnhq6KhmFg6nZElAWFnfT3N2NKNxs3awnDrZpXbIcXLhq/ybAHw88O/ob/etFPL+Gdc3VP9LR0D2uzvZF5N/U0+Y22lWTS+iB70tyW7GP3zBoAmswC/yzq0O60Wea7Gw8G4Ofb3gvAn7fO5U1tumf3lZ6p/ojDnx38Db/anmV6cdvCiNFo+AQgVXrr54tf/CL5fJ7vf//7ZDIZrrnmGk477TQef/zx0d41QZgwbI+PAvx/9u48Pq663v/465xZs6dJ2qZ709KFAspSKKAsylrkKoqAekXc6UVFQGVTZPOKcBU3FkVRRFEQAbcfIAUEQSqylCKUne5tumfPrOf7++N7ZpJpMm0mzTJJ308eeZCenDlzZsmcdz7frdUL5+RRgNfiE3rkUQBTks6bRwGCAY8NMX8V+ppI3jwKNpPumEcBm0mVR/tktp9Bpge3EvVXequY1swxU14HoD0VycmjYDNKZqhn0gsQ8m/XPZPumEcBXmkaT7zGVhhak27ePArgJm0eBZtJx42xxcEt28pz8ijsWZl0xzwKcOSUt6iL2F+O7pl0a7sdGr+zTNo9jwLMiW6gzLXFv7cS47J/f/xyy7vz5lGwPQ4z59aRCimPDhet0jtoBjOPquAnvWpM2y5Y08K2aFTqxrlv9f4ANG8ux/FbTwmY7J+WYb/YYIxDIND1Qby1xV4Q6AiSqLFhKbNyVrLC4IX9QlHEJdJkj1Yei+P5Q3qdQIpAq3+BifoFw4A7cA92FEqaIO3GFmkqSPHRmc8CEHLSbHFtAAr6k+qNC7fSkbYF3rRxsi2tHg6d/vbMBbnCyf3IOHa8XXHtVx2T8RcFJtVqb99cHSCy1d7eCwXwG2VJlZAN2Js2V+Ju94tJCbtxTwpWvVl+yhXZIbvloa4/JDKvy4yarVwz7T5/6w+yP6+tbKcsbH9nwv5r25qKsDllX5jNqQqa0nYemspgLDsP0unVz9j7CsZ4vskOnX//2KW83Dk5e+zM8erKtw/Y45QCqIffoHniiSf43e9+x1FHHQXAIYccwrRp0+js7KSkpGSYz05EwGbS7nkU4L7V+9O82RZ6nJAHmSG95M+j4GdSf46/RE06bx4FiDQ5lPtZ1IvFcfzREIHWDuXRPkoa+1y3mxAV2OfvozOfJeTYXLHFrcjJowAd6TDpTBY1Dp4fGjvT4bx5FGwm/VWHzS7Jivx5FCAd8fMogGPzKIC7PaQ86lt+yhWAHbKbL48Cfib9QfbntZW2OFgWjufkUbBZNJNLm9KlVPpF3KQJ5M2jQI9Mqjw6TNTDb9AMZh5VwW8UC46thbQNOieUfQKwQxIeSt6509tFnGD2QhvA3v5fbXuxcX213RZN4fpzORjjYPw5/DI9+SpLYmxrs4WFls4oiTa/S3zK6RpSEfG/KU2TiGbmyAjiX+uhrBTHH0bhBALg+IEq09JqDAv3vsQ/mAed9oLxwJof9u3JGeU2JKuJ+QW/g0tWsN2foHpVRy2HVtu5MzLzo4ScNBvjNuiE3DQJP1glvQAlAXuBd/2u/L9qmcOXqu3Q7jYvxv3r9wFg3IINVHzJHs9E7P1u27+aZIX9PlUaIO43riarvGxLfGlVJ8vPvHgwnoIR7aU3bbAJlSc4YLKdMyjTy25DWyW3b7fz1XxnStdtosFk9nUKB/zhKME4q+J1ALSkotkh2sdWv8zBETukIuT/Tn20ciknldsFWyYHDb9vPDh77HJ/KEbm+J999pNs7LSBbUrZ9mxge6WlPnueYTedd04XKZAC06BpbGxk7ty52X9PnjyZkpISNm7cyPTp04fvxERERESKiQp+g2Yw86gKfiIiIsWq0HCVuY30ieM4uG5uDx3XdTFGT6LIQAmOrbXfpL2CG6DBjj7o3gANsHF9NYGo7e3lBr3sfNIm7eRtgAZItIWzi3pg8jdAA7YRusze3nEd2wBt/5HTAA3YRmi/kZ3OmBqgfRuS1QDETIiDS+zc0tuTZazqsO+JQ6vfzmmABtgYryTk9wxL4GSnmikJJPI2QAPcv34fxi2wQ4grvhTI2wANEK/xG6ABPIfSKjvkVI3QPb305mRC5bYDwAGT1+U0QAPcvv2wHg3QYBuJuzdAA6yK19HiD9f2jMux1S8DcHBkU94GaKBHI3S+Bmiwo1heabGLgXSkQtlehmqEHgAq+A2awcyjKviNYiaR7NftXkxAdcAOoX2kxfbgemzjLJyEfROGq1PZ318v7ZKZETnhr8C7ra20a0LXRNeErl60a1hFdgLcgAdJv2eYC4lK+2Hfvs84yvy5UojFs5Mmk0p3/T+zLZ3uClwTvsADG27s1+MeTV5smcz+VTYIRZ0UmxN22MumzjJmjLc9u+ZE1wPwaMs+bIvbQFsT6cD1X92Qm84OnYj6E/Bl5s4B6DAptrfbLsYdm8rYO2mPa8rthbxiZQzjD3VpnRwiZOdtJjbO4Lba17wj2LUim1jTb/oujr+a7t6zNlIeskE2M6RlbGkbr7XauRMfXTmHA8P2d3WvqmPYHLOv8+SSJgDSOLzQZHsLRgMpaiN2jponWuewPGYnY4469jWeFt5MhWvvK+S0MKGkJXtOHSnbS7fSP5efz7+N/3riS/a8jEPcs5eS8lA8O/dfazLCMX+/IHvfoLDVb5oDZdAYY5g9ezZOt3m62traOOCAA3KC17Zt24bj9ERGhd3Jo2Azafc8CuAkXMLV9tpi8PMogGsGJI+CzaTt+9i5b8vSaZtHwebP7nk0sy2TW41h4YQvAOzxmfTFFptB9q9anc0bmxPlbOq0I09mjN+Uk0cBtsVLswuZuZhs8S/ipvLmUYDt7SV0bLLH3Tu5KW8eBQi12DwK4LYGlEd7Mf2m7wLg4LL3rI0AlIdiOXkU4LXW8Ty6cg4AB4Y72KvqGAA2x8pz8ijAC02Ts5mwNtLGE632dstjE/PmUaBHJs2XRwHiXjA7MiXhBWhN2uHEx/z9AuXR3aU5/AbNYOZRFfxGs0zwAP7Wfnufb7bVK2Nzyrba7F9mV/i8u/mA7LxrkXCSWMJeMB23q+qceXumPRcv3e0XPDOvijGQ9Ftg/W0kXQIx+yYOxCFl6060TQwS2WLHgAY3t3a1pHqZ1rg0pEzXtkz1O5XmxMpP2ftI+pM2m65g97fYHX1+HkayZ1dNZdredm6NxlQFKb8I0xKPZldJa/Tn0NivdA2vNNsCUshNZwt+Hk62BS2zbW54A5lJku9tm0NHiy341f8jQGyGHTqaWbkuvKmNZJ0NXmUbU8Rj/jnM8/AyBa1pGwbj4Y8amZZRgLBffO0gRK0/efK1qxZmf37iuOU81LE3QLb1tCSQyLbEesahIzUGgMpwjKakfe1q/FnK1yXGUOsvWffn2JhssffCZacB9g+eTOHvPY9+hXePXQvA623jafXDeE2oI7vPuGhb9hhlfsvu5589i3Z/Xsg7Fvxst56bPYVD4SsE7okrCvbXL3/5y+E+BZHRbzfyKMDmVGVuHgVwbB4FiCVCfcujYOeezmTGpJM3j4LNpG0T7Z9KkS01No+CzaTd8yjYTJrZZky2EHhi5af2+DwKMG3vrdncmfICtMRtTpkR2pKTRwFeaR6fLfK5mGyByXVM3jwK0NFSQv0/bNaMzajLm0cB4rEALfP81ZhxlUd3IV8eBaiNtPfIowAPdeydk0fB9rjLFOY6UmOoDNvCXVOyJG8eBVvstXkUYFzePArQ6qap8Zfc7kiFGRdtyx6jex4FaE+HlUcL4JjCMqbKfX03mHlUBb9R7MHmX/Trdt945RQWTrYf1p+rWQJAYlNJTpU+lej21sn85ge65vXzUjY0ecluS7anHPBXcnXS/m1csvO5AdleYE4KOibagkQ0EiDYHPO32/twOh3MZlvQciLhroIgYLoFSwDjmWzIOj78MR5K/LaPz8TIleoIcvcThwLwl0n7Eltre365CYePp21BdF6dba27eOIDNI2zldYXWqdkL4bQtVhHyP9/uxfmPwk77OHvW+dS9rK94Fa92kzbdHsflcvtisDGcQg22X2DLXFiB1YD4IQ9wtX2Ph44UkNedrTynK/m/Hu/P18OwJgyG162t5fSFLO/G/Pr1jAxaocw7BVp5PmIDdYTovY1eG7bFOJp+7saS4VIpu3vY3MiyqQy+8vWmrRhLGVcyivt79mPD+z6Q+SMJYsoDeauQhgOpHm0cbb/fYr6UhvMSgIJ3lXzJgBTQtto9/wVoT17H1uSFdnepl9e+tHsojC3zP9Vr8/FcY/ZCbPrS1r59YKf533ORjUN6R1UZ5111nCfgsiotzt5FGDh5OW5eRR2nkn7kkcBkm7ePAo2k/qdjuiYWEI0Yo8RbI7l5FEAs3mrzaOQN5PumEeBUZ9JU/4CKXc/cSh/mbQvALG15bj+whgfT38qJ48CNI0r5YVWO0Z0x0yaL48ClL0cpupVm3/appfnzaMAsQOrccL2tQhXx5VHe7FjHgWbSbvnUYCmWAnz62yxdmJ0O3tF7Aq7z0em5uRRgHg6SMxviE6mAzQnbD6cVNbSpzwK5GTSHfMoQH1pa7bA+K6aN5kSsj2i2r1ITh4F29v0y0s/CthFYfqSRwFl0kL2lz4ZzDyqgp/0YP5ay721RwDwwnG2K37Z6gBpP2N1jIt0tZgayNTv05nhEsbB+D35HM/JBign4WSHSbh+K6qbdLItqYFYVw8/EwQ32yobpmKLbfUx/upajudh/KEVprMTp7wse/5uqT2I12EvSCbRvQCYWwwcrVZ9+kIOPPv7AET/UU6o04aa9vEBWqbZQPrC/bY32HMfX84Rpa8DUObGs6tnregYy4ySzQDsF7UXcg+Xzy0/E4Cty+sYt8ZvHY0EKd3gDz0ttcd32+PQ6a+UV1GCk1nYeWOYE977n0F65KNPa7M/bLrTX/zGMaT8oUurS8cwrWRLdt/eAsg5z38cgK3xcpr8YBV207zZZOfPybaW12wi4vYcduV1W7k5Mw9K0PFw/EJ/0PVo8Y/bFo4wyZ+Dpz7YnB2SkVkR+D/uZCoCdluHF2Zluz2H4x47n8VHf7/HfZf688CUBPo3HEykL+6++27++Mc/kkwmOfbYY/n85z8/3KckItg8CnBv7RE5eRQgXWLzKGAzafYPSyd/HgXwHBy/2GTc/HkUbCb1F5n1M6m9Dldsac/JowAmFsd02qLSjpl0T8+jAAee/X2i/7ANfqFOj/bx/qiPaeGcPApwROnrlPmrMW9OVbCiYywAM0o2582jAOPWeHgR+4KVbojlzaMAjmfzKKBMWoDW5pKcPAqQSrusLrU98fqSSbfG7fugKRHN5so3m2r7lEcz/8+XRwFaElHawvazYZKTpj5oi44VbiwnjwJUBGJ0ePbxrGyvzRb2dsykyqMyFAYrj6rgJz1UrkwSbbIfiI2H2+JP5wRD5Zv+8vYbS/BK7Aetk3a6WkpNJlR1deG1BT//+25V/mB7t3391tN0t+kz3CSkQ3afzhqHQEOVfx/+scaX4dcG8daux7TZgqATiWD8ce5uhb2geLF4dsVfgOMCZ2S/X5y+q69Py4jz/E/tRWvh1PMgbFvTSl+ByhU2QG8937Z4/eAnpzLnw7bg9+9XG/j8gn8A0JkO8XanDVmZlta2ZJTSkG0121TqEdluX9xAWxwnad8TmRCMZyBkP2KSNaVsOtTuu3JRzxZDyW+lP4H0tJ//H2B7SGbmKlr29mT+9O4bdnr7mw78Ta/b59x7lT2e/++WZO/z19x9+M27PMcP/tPOVbSmfQwbOu3v6pry2uzPJ4VtL8Q50fW80w/rMS+YnaA75oU4/4WPALDFD4I14XbGR3PnDoSuVlboGchGKw3RHTy33HILixYtYtasWUSjUe655x5WrFjBNddcM9ynJrLHq1xp/7iONgVy8ihA5ZsOzRtt8cYrSds8CjaT5sujAF7heRRsJu2ssfsGGqpy8ihAKTaPApi2dpyILTgY182bR2HPyqQLp55n/xEOUfqK/bZyRW1OHgWY8+HX+ferDQB8fsE/6EzbDPt259i8eRQgst0j0GYLhU4ynTePAmw61FMe7YeVZ16ck0fBzp+57G1bQNudTDoQeRRsJl3TbguQGzqr8uZRgHdG1xDz56EOOWlinn2vnf/CR5RHe1HwkF7l1z4bzDzq7noXERERGTaZSZIL+ZI++fGPf8zXv/51XnvtNZYtW8att97KDTfs/A8WERERkT2O8uigGcw8qh5+0kPJmmYIVAPQ7q909o2F9/LtP30IgPB2l0RmypOkg5PM/WV2k10VfeOAyYyscMGfUgHX/78XBn+aL3Ah6vcET4chYdcNwfGgaWYw53bhNoMJ+SuntbbhtdgJWdNt7bgltmXIKcv0AfTnTbHfdJ2os2fUu9ONm3Cj9kl2qippabCtVAfXvwrAsu1j2HzVdPvzj3nML30bgL2j6/j6i6cAUHmvbVmPNnUNQZkSMNnJrN1UGZG1tst890mrTaZFtSLIzLtsM/mhT17Pv35zwSA80tEtusGfi29iEq/dvoZjXgqw9xu2VTGxbweBN/3VlufbFZM94/Cuevt67le6lk/PfjJ7vLnj7D5rWqoB+M/qicyp2Nivc3t9i+0JagwsP+UKAL70/H+zPmZ7+7X5kyu/3TmWOaV2YuwDS1bywcqlAGxOl/FAyztyjpk0ASb78xNGuw3t8Pa08NCfOfykz95++20+9alPZf995pln8vnPf57Gxkbq6+uH8cxEpGSNnysC1Tl5FODbf/oQ4e02xyWMzaNATibdMY+CzaSZ6WUCifx5FGwm9aeaJVFJdmqSppnBnDwKYELjKGu1WdRraSPtjzxxS6LKo750o80dbjSCU2VDfktDOCePAmy+ajrOx+zzM7/0bfaOrgPg6y+ekjePgl1gxU3ZHpeRtc158yjAzLuSHPrk9QDKpAXqnkcBvPYwY16yv597v/F9EvvaIeyBN0tz8ijAu+rfZr9Su8jGjpl0IPIo2EyaWZdn+SlX8KXn/xuA9bGqnDwKMKd0AweWrATgg5VL2Zy275/umVR5tBvN4TdoBjOPquAnPThNbYS323DSsdxefJ+dNJ2yve2HXfyZGty4/yHngL+oUjYIOd0Dlptb8PPn2s0O83WTNmSBDWP+Yk44ptt2t+v7iL8SdWyMQ8kmP2SNr8XptF2sXeNhEv4FaOv2rgfVPVjtbNso9FDit5wQtRc7J5HIvgb/XGOHS7zvvKdZ8q1DAJh2Z5rLxp0CwNdn30/lfTZYhVv9YOUZ8IejBGIe5evscxhsS3YNnTBdn+6Ov0pddFNn9jUPxMMD/yD3AK9d1jV0YJ9LbJHPTUCkyW4LPFeKPwcxHf4q2mnPZVPcblwcm8dVv7oWgJVnXbTTYRdHPvI1Ov1jbH2tLrv97fO6QvGhf7vEvw+HgNvzUhL3ggT9D4UVbXY4RWkwSdoftNHqRZkWtgvvnF6+lRbPDiu/s3MBAJtjFazrqAZyh4ikva4/jA558FIAJlU0k/K3/+WIH+d9XCOWFu0YNJ2dnZSXl2f/HQgEiEQidPhzbonI8HGabAEtvL00J48ClO29nfgzNQA2k/qxNNSeP49CbsHPTZE3j4LNpJnbe+Gu23nh3DwKULLJYMbba53TGcP1M6ZJJJVHfZkFSk6I/jdOwlZM3VRuHgVY8q1DmHanzY+XjTuFr8++H4DK+yry5lGA8nUewTZ/rr5QIH8eBfCUR/urex4Fm0kzBfBIk82jAMmK3DwKsCleweLYPACu+tW1rDzrIiD/UOAjH/kaAJ2JUJ/yKNAjk8b9IbtBx8vJowBpnOxCHtPCWzm93ObSFu915dHeqOA3aAYzj6rgJz08sOaHnPjOywCYsMReDDvfG2JypW1pfT1aQyDmL9QRNdkPeX86LtxUV1hyTdf3Xgj8OVZJ+u/nnCKgC/Ea+8kQbnay86Z43a7HmV5/AJsPtBeRie2lhLbZooa3aUt2RbQdV+vdk2WeC6+ljZqlNniGW2zvq39GD8H4z/GGD6UIvGBbvf5Stz+bTrBzoUy6J5Q5kg1ZQLI8QHSLffGN44A/d6LT4S+mUhLOzusXaOwKu6XBPaMlezBF/KfTMYZkqf0Fc9OQrPSL4H7ASjSW8kzSrtxbURZj3Hj7O3zg/d9gfLldaez1DbanrLc5SlVDEwAzx7Tz3Hp7u3C7k/3jqbvGxurs95nA1p2HwxvbbTgLB+z7oDMYoilug9WYug5eSU8E4Fuxrpart5rsbf51Qu9zVjx2zHez32dC3mhW6Hwp0DVnlfTNz3/+85yQlUqluO2226ir6/rj4txzzx2OUxPZoz2wxq6ceuI7L8vJowCTK5t5PWoLfoGYQzpqPyjdRP48Cvbf/jRd9rqZJ4+CzaThZv8am8yfR8Fm0on+qqWhbRV4m+yQFZNOK4/uwKTT2ZE5NUu35+RRABO2eRQg8MJY/lK3PwCbTojnzaMA0S0Jm0cBXFd5dIhEtts8CpAsdbr+1qs0OXkU4JnkVCrKbCeNceObOfD+bwAwvrw1bx4FeG79VMLd5tvsrnsehZ6Z1PNT0Rvb63LyKEBTPMqYOltQeSU9UXl0FzSH3+AarDyqgp/06sFlVwNw4n5fByDgGCaV2mLBy/VJwusyaQmSfugJ2foBJt0VpoLxrmM6XtfKZ5mgZFxI+0MoUqUG/G756YiT7TnoJiDpr9mRqLY/96Iekc32At85LkJonT9k1XUAf+U0v/s+6TReomsJ98zQiR0nTh7NuodNN2YrqZsPsM9TbEKKhgbbdX7q/42Fr9mhE6/9775M9m/TMsUPU00uoXZ7pd3yzgCTH7E/DzZ1ZFdDMxVdk+06/n15W7bhjrOFRMfo0393Pf+TrtbV2f9re/tFtkHpWvuefunLtmC/3wXfp9W1k5qHKrpaiOLJIPUlLQBsKLe/jE1bI9mfP/fmVMpetv9OlUOyoudr1luRr7v9y1ezbLMt6E2paAIgGkiybJPd9nxwCg8caf+YO/KRr3FQrV3MY1qlDeOnPnUOUX81tDsW/KzX+8gc13VMdt8zn/5sryvDjWjq4Tdopk6dys9+lvv+qq+v59e//nX2347jqOAnMoweXHZ1Th4FmFTazMv19nM/vC6ULdIlK/uWR8Fm0rx5FCBgSEfsdTXU3jX8N1mVm0cBIpsDdPqrBofWRbplzED+PArguHtUHoWembR7HgVoaNho8yjA19bx2v/uC8Bk8udRgMmP2DwK4JWG8+ZRAHfcWOXRAbJjJs30fi1d6+TkUYBWt6RHHgWoL2nJm0cByl6OkPLrIDtm0r7kUYBlmyfm5FGAZZsm8nzQLgTzwJE/zPYoPKh2zYDkUeh9teIRSz38Bs1g5lEV/GTnVtv5th55dQ4nz3sJgHfOWs2yzukAhJsCeP5IzkwrabDbEFzH6xrSmwld9nZd33eOt/8PtTkkq/yCX6kh3Z7pqt+tl2DET2kladJRe+BkmUNykh3qEeqMYeJ+i54/f4qXzDTZYoNVwC8I7mEBC8AJBDAR+2tf+bZ9rmtecekI2SJMKUkCV9sW83C8k2372Lksmufb59T9V4RIs71d+WowAZuwO6dW4abt9shKe6X3qkqJT60GIFhVSspvSQ2+sTa7UtsDq38wWA91j/H618/P+7P/XN/7z6b/6lpeidpWzEkVtpB/6IKVPPgfG6rD68KE/T+YcOCohcvy3ofXOBu3/vUe278491G+ODd32/kvfCQb7l5ZOQGOtNv/ccz/ccLj5wFQHbatArFUkPVtO3Sh2EFmxbb/euJLbIvZ1uOEP8/TqKLANGhWrlw53KcgIn3RLY8CnDzvJd45y/9DvnM64Sb72e8F8udRsJm0L3kUIFllSPvFv3S7k220Nk5uHgVIRwMky/zbTRpDyJ9qxsTjefMo2Fy2p+ZRABMJ5uRRgI7QREqxRZPA1TWE43YY7rZ9yvLmUbCZtHOq7SHgpk3ePAqQCroE37BzyS2cep7y6ADJl0l3lkcBXonW582jgM2k/q9JvkzqNc4G6JFJvzj3Uf//XdvOf+EjgC04vrJygt14pM2jACc8fp7yaG9U8Bs0g5lHVfCTnUq32r/6x/0twv3BfQD47DuepPRA20L51EuzspO3Zgp7qRIItfU8lpOGuK0lZYfrOmlIVduwlIqkcVvssZxk15DeVCkkxvjBqtzuGypJ4vndsWNjHJJlthfTmPAkwkvtIgXZYGW8riJfMASBPa8Lf+bxEwjg+UvLe0F75QxvSROI+UMdOtM4aftcpyMBth1jL3bhsP15ydYQTtJ+eleuSmRb1MPb4piwfx/+cAovEiQdsjsEwgGCG+2F3NTXkhrTNYG1DL2VZ13EtFuvA6BzvP2d+39H/oiGp74HQHxCkpA/6fLLH7iix+2b1k+h3LUtsC5u3pC1o7+tnEt8gy0ir/zCV3J+dvPMuwA45nHbclVSFicU7NswqL8c8WMOfsDOnxIJpfjovz4PwO8OvaVPty9q/RjSq4DVd7FYjIcffpiTTz4ZgEsuuYR4vKsrUDAY5KqrriIajeY7hIgMge55FOD+4D589h120v/SAxM89dIswC4o0Jc8CjaT5sujAG5LMLsIiJu0eRT8TNotjwJ4wVB2Pr9kWQljwpMACC99O38ehT03k/rPgxcN5+RRgEAsTaDTfu+kPdIRu++2Y2L58yiAa/MoYDNpnjwKENzYjKm387kpkw6fTO+8abdelzePAoT27ehTHoX8DdHd/W2lrf7FN5T1yKNgM+lA5FGAj/7r86Mjj6IhvYNpMPOoCn4iIiJFy+nq4iwD7le/+hV//etfswHrhhtuYJ999qGkxDYivfrqq9TX13PBBVrFUURERPZgptBMqvzaV4OZR1Xwk51a7N0NwMLp55MstfMo/KHqgOyKWaccvZRvv3oiAMkl/mppCUjb9yZeqGvePhPo6gWYqLC9yNyYg9vpt252uNm5UJyEwU3ZD4lEVdfKaI5rf15d3sHmctuiExsbzLbWlq8PEmqwrarBTAU8mcy28plEMjuXygMbb97NZ2cE8YeOuNVVJMptq3J2tbmgg+t0fSC7LfYF65w9hmNn/QeA6pDt7fXcoinEf2yH/0bXtOMkbOuVs70Vr9afaNGfE8XtSGLq7GvkhV2Mv0qdUzuG0IbmPp32whlfhczr9dp3CnzQsjOrPnNhj20rvtSzlbM3lW4Jq1O2t0WrCXD2VzNDNb7H9tl+K3ocXroudwhHrDNMsM3+fO7l3+fVK7t+PmOyHa61wi4ozd73XUki2fdL1DMLvw3Aux/u+bhE8rnjjjs4//zc9+lvf/tbZsyYAcBvfvMbbrzxRhX8RIZZ9zwKkCydyh+qDgDg67Pv55SjlwLw7VdPzJtHwZ8mxs+iJpA/j4Kdn89J+Jkm5ZDIxBw3N48CbC6PEBvrj1JJ2zwKEGqYlDePgp1veo/KowCOi1ttn8xEeSgnjwI9MmnnbDttz7Gz/pM3jwI4iRTOdptNvNqqvHkUwGzdjlPrTwfUh0y6cMZX7TehoPLoINgxk/Y3jwJ+JrU9BLfPdgn4naS6Z9JYpx3tFGxzmXu5nV9wx0yqPCpDaTDzqAp+0iemrZ2KtTacrHq7hq/HTgGgqjTGdfvcA8Al7ocA6HimloA/H2vnxHR2IQ63I0Cg0w86Yb+w1xHMdsnHOKSr7HYv5ZCo9At+YzwCtfHsdoCtTeWEa2xhKl0ZINXhB6t/eNmVuFJT7WpPwc0t2cfhhII8sPzbA/KcjCTZ+WFCwezQiMyce6GWFG7KPu+psiBu3F4Eo5vjPP2b/QEwx9hi3YcalvGrD9mJlGf/wGDCfrgtL8WNJ3PuM1Udzc6ZE25s7Zqk2XWho3On53vwp68HYMz4quyKase5p2UDvwyvA77zP3S8ywbs0LIypr1gF30x4QCOZ//Q6hjbc5jS5HHb2fSa/esr80dYPq988PJ+nduTx17Xr9sVNQ3pHTSvv/46s2fPzv47Go3iul3v3UMOOYQvfOELw3FqItKLzHx4FWuTrHrbXm++HjuFqlKbCa/b5578eRQgYHA7bA4KdDp58yhAusrL5s5EpZOdXiZQG8/JowDhmhjpSnvcVEeQ0D/84ybTefMosOdmUv/xpyOBnDwK4KY8UmX25248THSz/Rvg6d/snzePAphwEKe81L9dVybdMY+Cv3BI5rO+D5l0zHhboAw0buc49zQAZdIisGMeBZj2wsbsNEOOV5M3jwJseq1EebQQmsNv0AxmHlXBT/okvW07pW/ayW/LVo+nw7MBJ9VWydnrPwnA2QseA+CByD6sW+pPgBrxCJTYC3jKNYS3+b3Lmv0FN2qTTJxij7utrZRUuy02uWNTxGr8lr6gRzRqL9ztjfZ+nYoEU2rth/XU8u08vW6aPc9wKckx9pPb+C2Fieq6rgUlGnuZzGVPEgoR7LCvR8kWf1GUeNe8FKGWrtXj3FiS6tft857YaIPOH2uPpn5bphdme7alGoBWf1nlqG1FDTbFSEf8eVE6OjGzbA9RkzY4wZ1PZNs22Z/PpaWEcr8YycSagh6q7J6F8+wcJLS0Qan9nWrf2y4Ln5oXZOrN9jUMr9mQbUV32hKUr7S/Y8YpZ0enTlrKrc22Rb51rxjTfm4nR1712a8N3gMZ6foxh58GUPRdc3MzwWBXFNq8eXPOzz3Py5lDRUSGV3qbzX6lb26jbLVdZaPDKyflT6p/9vpP5s2jAIGSFCnXfqiGt4Xy5lGAVHsYd6zNTLEaBzdojxGNJnPyKMCU2u1MLbfn9vS6aaTD9hjJMSXKo70J2b8Hgh2pPuVRgOrXk/nzKPTMpHnyKICZNRXjvxZ9yaThFpuDylOe8ugwWDjvUptHAUpL8udRAGNw2uz7p3xlW948CnBr80Ra97KNBdN+/n/Ko7ugOfwGz2DmURX8pM/SK+wyWOOWjiG2xr51ArE0TTPtRfunyfcAcO17f88vgu8C4LUVE0i1+73vtgWJ2CyECfgX5YoE40rtB3hHIpSd4BSg4xXb1d5M6yAe9xcGCdmLe0lZgoYKG8zWdVQxZ6z9pVgzYSZjltsPeQ97AUhXunj+Rf3vy64emCdjpEomCW63zd1uomvZeydTVAPwv4/XlxHdbINRqM0+/xUrPYwfqNIVURzPPq+BzS3g+cfwW99d182ummeqyrP3YRyHdFX+5rSDP309nUfY90FbS4jOOhviO8f28zFLwRbOuThbxAPsMCSgrd6+D6b+YUPuDfzVCHFd3Db7fenGEDv61Q/eR1WjfW2NG822/O1z0fd5+dr8qw3v8dTDb9BMnjyZl156iTlz5vT68xdffJHJkycP8VmJyK6kV6xm3FKbE2NrgtnFx5pmhvLmUYBUe5DQNnsti2zPn0eBHpnUTLP5KR4P5uRRgIaKbazrsMWoOWM3s2bCTADGLE8oj/bGzxXB7R05eRR6ZtJ4ve25Fd3cmTePAjiesXkUbCbNk0cz95G9fZ5Mmhlt0nlEirYW+57orKtUHh1CC+dcbL/ZIZPmzaNgM6nfM8pti+XNowBVjSmbRwGMzaOAMmk+6uE3aAYzj6rgJ31mUvbiHH15LVF/da3OfSZSsa5rFSyAS575IBcc8DAAja0VtC+3LWGRrV3zpsSn2YC0YMra7PHrK1rx/GEUb704mfFL7QW/cVJXd9ZgmT2H+soWVrXZoOcZh7mVdkjhm9V7kRhjewm2TLcf8B31kI7uuZ84x7mnda3S297ZVaTzCzMEu1YyI52GlF9sO6iKkpdsUdWp9FvHQgGcTvvamWioq8iXSELY773p9wZzEkncdr8lwnEwIf8c0gbcnn2QDvqcvchWr4iTDtuLb+v0rjkg01okc+h4XjaMA3TMqwegaoXf4h6LZ8NXYtYEwm/525PJbAtsqDPG0QvtcIbHHrDzmMTHgJuy74Nxz8dIVNnPjM7anbeuF4Nrlp+E21k25PfroBbSwXTSSSfxzW9+k/e97309Vj7r7Ozkyiuv5H3ve98wnZ3k871XT+XKQxYP92nIMDKpJNGXbYaMBgJ07mN7j1esc/LmUYD25TVEtvrHCOTPo2Dz5Vsv2j+wxi/18uZRgFVtY7IZdm7lRt6s3guAxJiw8qgvMxTWCQSg3TYoO57JzaNgM2lmGphUiraDbCG15KVt+fMo2Oziz41IOJQ3jwI2k/rF1x0zafc8CpAOR2mdbn8WiCmPDqnM3xk7ZNJ8eRSwmTSzf0sbIb9R+uiF1+XkUbCZdNzz9ueJquCIyaOxtuSudxwE6uE3eAYzj6rgJyIi0gcd6b4tNjOgCm1NzdxG+uTSSy/l97//PXPmzOGLX/wis2fPxnEcXn31VW644QZSqRSXXnrpcJ+miIiIyPBSD79BM5h5VAU/6ZPuE9Me556GG7GV55K3IrhT/CEV1bZLfueWCP9v034AjCnppLnetsIE4mE6ZthWlKNmvQnA+EgLD6yaB0DogWoCcfvJEJzhkPqEHaZ73Nh1rGizvQTLQ/ZY08u2EvKX5p0QbuaVdtuq43iw8WB/KIbtnEZyZifjalsH7skYgYzfq8+k0zhl/tCFpD9UJTMcE3LmP6lbsjXb28/JTGgcjWRbQp3OhG1ZA9sSm9ne7D/XoSDJOvvecONpTMhfvbUtd/6Bvf7PDpkY1+LPqbOxlW2fsvs6LUFSfqeqksaek+7KwFo45cv2m1AI0rZVNT2xjmCH/V0LtPtzOs4cz8ZD7PtowlMdEPBfm/Kq7PAop7mdUHOC7uqWJSlZa3tDpMujOMafGiABs66xLepvXKJhFD2o4Ddoxo8fz1NPPcX//M//cPHFF2My81E6Dscddxw33XQT48ePH+azFJGMHfMogBuJUvKWzaDulDF58yhAc32CgL84WceMWN48ChCIG4Iz7DUt9YnNHDd2HQAr2mpy8ihAyEkzIWwbhV5pn5BdJGLjwSHl0R0Yz2QXcnPKSvqWRwFSqfx5FGwmzS4Q5+TNowAm5PbIo2Azafc8CrDtUy5Oi80rqTLl0aGQk0cB0h7piXbevmBHOn8eBZtJy22vUBNwcJr9RT26ZdK6Zfb2JWtbSJf7Q8JNkIC/y6xrvq882hsV/AbNYOZRFfykYN3D1gllnyDiX3zrN9hu9p3jxvLWJvuhnOgM4QbtxTU+OYm72Yawl2rsEMHG0gqqSu3tY8kqts/JDA82nDbNTqh6QMlKWsfYD+P1SXvB7vAilLr2Ql0TbKe0wn4f+XiKtZ3VAGz2h9+Fk0HKwnv4pOvGT56uQ6omd1hicFt7V9iKJ7LFG6e9AzKThzp+uInFIeWHqWCga04N183ua8r8iZGDLqlyuy0cT2dXBzZulEf+fgkAnRsaSI0/295F2u6bHFtO5Qs2jAeP3cr2bfZ8l3/pkt19FmRXMgVcz8Pzg1WyOkIgZt8fyTH299dJGco22Ne+Y0KU5sOnAFC60eD5b5kxr5YQaLK/2/t+zRbzIpNCRDf5Rb6OBG0T7WvbNNfgFumv6JeXfhSA8kCUysDwDPXQoh2Dq6GhgQcffJBt27bx5pv2j/+99tqLmhpNzC5SzHbMowCRjs68eRTADaaJT7Z/7LubI3nzKMD2OQ5exH4AnzZtKQeUrASgdUw0J48ClLpxaoK2sFBaESfycXvdXNtZrTy6I+Nli3XdM2lwm7/4RjJl8yhAwLV5FGzOzJdHwWbSzKqWwWDePAp2deDM3G2P/P0SOjc02PMZf3ZOHgWofCFM8FhbdNy+rUx5dCh0y6MA3sQ6kn4hPxBL5c2jAM2HT6F0o93mBW0eBQg0debkUYDopiCBDvtea5tYRtNce7tizKTd82gQDekdjQYrj6rgJ7vF6+zEJOwHZWqOnT8FB1Jr7AW8bEYL7dvsBTdQkiK41n7Ati61AWxbRQ01e9mmz9YT25n+Y3vRfvuUKK7fPHr31kM4s+6fAMSMv4pv2nDd4ycBcPV77iGNvcBPiW6jLGg/pU8bvwaAfzTP5qn1DYPx8Ecez2RbW7buZ1+jcf+KZ+f1M5XlOJmLa2kYd6s/+bHf0w/PI7GXDcfhlZuhxJ9jIBjAhHM/TpJjSog22pDmJFIsfuobPU7nvz7yOcLH24t2i11omZJNBn8aHGaN2cK/tw/9vGl7ohNKzsSd4LccGQ8vbH8XQy1x8OvFmR4LgbY4Xtj+znkhh9qXbICO1QZJVmRWIwyTrrfvj7h/nap7KYm7xfaAMBWl2eOagCFdWpypoDFm//Dbq2wT/zPrVi7mD8N8RjJYampqOOSQQ4b7NKQPvjL3nuE+BSkyXqe/+moikTePArRvKyVQYjNNcG0obx4FmP7jAG+fYq9jruNx91b7+XBm3T9z8ijAdY+fxNXvse/LNC5TovZYZcG48mhv/NyJyc2jYOf1M/5cfY7n4ZX6z/XWlvx5FGwm9Yt/3TPpjnkU6JFJ/+sjn7PHOj6Sk0cBjGPzKKBMOgR2zKMAXjhg8yiAlz+PAtS+lCZW6xdtKxwS1fb9k66P5uRRAHdLs82j/nFNwL7mxZhJu+fRr8y9h6uoGuYzksEy0HlUBT/ZLYu9u7NDKsJL3wJgXPls2ibat9b2cRGcdnvxndGwgdVvTLU39D+oa1502VphV2Hde8Z6Eq69eOPAr352IgDlGzzGXWcn557kt57+JzGebxz9ZwAqAzE8v+DXnC6hIWIv/PXBJgDWdVRTW9Y+4I99JDLxOMEtdohCMO5f4FJetgXN8ZzsRMqUR7sCWWbIZkmU8Nub7LGqykhX+K1m7XGcuN+9foJ9Pb2QS+cEex//+HPvy9w//PilNNxxDQDjnrfF4HQ0SP1/2RWhp5VuZdzeGv4y0E6s/BQmMxGy30vTSyRgg138xgmHCPqt6KaipGuSa5MJvw7h7XboTbIyQjpq9420pCndZI/rJrtW2at+3f68bWKQklf8uw0HKfdX7PXCQZJFmqG3xOx7eHb5MIU/zeEnIrJLmd5+x7mn5c2jAE57gBkNdmXP1W9MzZtHAZtJ/QbIX/3sRMo32J3HXbc4J48CfOPoP1PprzLm4dKctvmoIbJZebQXJm6LN8Etrbl5FMDzbB4Fm0n9IZd4Jm8eBUhXlBDwF+dw4smC8yhAwx3X5ORRgPr/Ws20UtvDT5l0YJ1Y+SkAm0nz5FGAoOPaPAp2IcA8eRQgHXWJtNiG6NJNXt48ClDySldxuLwxhed/X4yZdNjzKGhI7wilgp8MmHRTEwDhpiRRvwAQfjtKvMZ+0E4ua2LTVlvwS3dbIX3iA/5KnS2TWH2K/X6fA1fwWscMACItDhX+9f2RDtvstjpRx5FlrwLQaqJEHVtsGh9soTZoVwn9R9tcAFLGpSW+5y6p1b0oaxIJaLFhpep1u2Ldtvm1xKtssKpcnaL8XysAcFc3ZnvwJafaFvDGBSVM/Ie9vQkGsgVBJ5EiNca/OvrbQs1xth5WsdNzu3DZadT/v0MBKH/L9vzqmFbBwWPsanmbE+X88uBf7s7Dl24WTvqS/SYQ6Jrnxuu6GmdW4nZCQUyTfT2ceBzK7WtrQn7YCroE/KE3TsojVeH/IZX2MEH7yxqrDVO21raop0rstkSFS3pcZmk0cJL2vute7Mz26jzo83a4xXO37P7cKXOv/H72j7nYpBTTZ9oA+dgx3+3zMR55z/XZ71taWnb7nPpDQyJERPouXx4FiNd4TC6zP9+0dWrePAqw+pQg+xxoM9FrHTOItNgLVYWbm0cBjix7lVZj7yPqJBkftNeL2mCb8qive1E2MzqIltacPAoQr3KoXG0bBMv/tcLmUYCSaP48CuCZbA++1JiygvMoQP3/OzQnjwIcPGYtmxO2x6Ey6cBZOOlLNo+CzaR58iiAaWq2eRSgvCxvHgVIVURw/HmoTdAlVmt7+JWt7cjJo4DNpP7fmE7SUPei31PYGYQ8CuDZPAowfebGEZlHNaR35FHBTwac25ki3Gw/wIMdYeJj7W/72HAb7f4oi7Ev2A/iZKnD+qPsz6teDXH6e+zQ3aZkCfucbL9/vHEvqlybyB7ati8ATzy7N6XvtWFhcngrUddeGKaHthAzdt9PVv8bgDteOZhwODV4D3gEMZ7JLsYQ3GoLo/FDykj4OShWE6BsvA1czsat2QmUA343+khTCe1TbPGndEMs25JKKk2gze6bmmAPtnXfEur/1bbT81m6fTLt9fZKW7HCn18n7rHB77a+pq16tx6vwMKxi7Lfm8xcjt0mw85MnI3xcILR7M8zrapEIl0t6j4vFMD1A7aTTBNszSzeYkj7LawlG2PZ1tpIs7/4iwmSLrWXnXhNmLIVNqw76TTJWvu+CsbsbWZ/+/u8fukATJjsP1Qn7rJy7djdP95wUA8/EZGC7ZhHAeJjDWPDNpu0T8yfRwFOf88/aUrawsI+J/+Txxv3sj93Qzl5FKD0vQkmh20vsKibZHrIDgGNmZDyaC8yi8mR9nLyKECiwuZRgLLxtTaPAnTG8uZRsKNNMvP6BdpiBedRgPZ6NyePAmyIVSmPDpAembQPeRT8nn4Rmy+7Z9Id8yhgM6k/1D5dGbF51N5hTh4FSJcGidf4BcEVrTj+OSRrywY+jwI4No8CIzOT9mfUiQw7FfxERESKlcKViIiIiAw3DekdkVTwkwEX2LCVjr3tUId4jSEwxrbGPbJ+NiV+r/xkiW2xKdnqEWyzLTOte3ms6rCzqQYdj5A/I+uihn/w4TdOAeCYsXYY7/n/9RBrUnbfKcFt2fvenC5nWae977EVLwLw10NvYs6U9YPyWEcc42WHUTh+773KlSnaJtmPgkhzt9a2aCS7eq/baodm1r4YwPFXOOuYVo5baVtBS99KZrvSZ9S8tuslrlpunULdertf2xQ7N4VjoDpku9S/HK/v3+MUwA6bcUv95zUczm53wqHsCnlO0J9Hr6Nr1TyM6RpmkUyCP6TCidn3TiAZwIQyqy672VZVHCfbq88EXfDnTfEC9riBhCHl9/BLlru0zrLz61S+up2Oent+kSZ7rOiWILOusUMg3rikfy2rr15+fnYYRSDmYJKhXdyi+Dj0Y5VeBSwRkR55FCAwJs4j62cDUNKYP48CrOqoIehn0ZDjsajhHwB8+I1TcvIowJpUTY88CrCsc5ryaG/8EQcmkcjJowBtk4I2j4LNFVG/Z1cylTePAriVIUrf8oeCdsukfc2jAHXr4zl5FGwmVR7dPZmphdzS0p55FMB18udRsJk06a9MGwrmzaPg9/Rzum6fmWqGpJeTRwFSpUGS5fbnrbMqqXx1OwAd9eEBz6Ngh/YGYv682CMxkxY4pFcFv+Kggp8MuPTGzYQ67Fx9TtqlssIWb7aurabeX/HK9efuchMeFavsB3XpJlgStCEsNDbG/Cl24YaYF2LR5McBmOEPkah20zSm7YXhry3705a2YeDhdXPYu9bO0/VA4zwA/v7e7w3iox0ZcudN8cOQPxdGuCmJO85+FHhBh1SVvyJdSYjW6aXZ7QDla+ME/YCVLA9kjx/dFM3OmxKI2Z87qa4JePOJNKez37dOtRfc/U97mcqgfc94xun1dlKAzIp2rgt+sDKpbkOKur1Gxi/wOoFA1+1CXYEkG6BTHrEp1QAE25J4EftecONpAu02hHmREE7MHiOS6ppLpWOCHR5lXPD8Q3vRMGF/guXMamuhVvD8t9j0269l5Scu6tfDz4SsEUs9/ERE+mXHPApQWdHJ1rXVANRvMnnzKNhMGhpri1Hzp6wm5l+0Fk1+PCePAjSmU/y1ZX8A2tIRHl43B4C9azcqj+4gd27pZE4eBXDHBbO5M1UVxS2xz3vr9NI+5VGwc0sPRB4FqAx2Ko8OlFTK5lGAcKhveTRzuz7kUQAvEsD13xuB9gRexN7OiaVy8ihAx4QSjH86XsjmUYBwSzpvHgWUSQvZX4adu+tdRPrIccFxcSvLcdIGJ21IRwyTKpqZVNFM+RtBwq1pwq1pTABMAHAd6pa2U7e0nc4al7HP2K+y0jhbYmVsiZVx++pDeaJ1Dk+0ziFmgsRMkEmBCtYkalmTqOUva/blsQ2zeGzDLFpfrGXpX+ax9C/z+Pt7v6dwtSPHxUsk7Fd7B157B4FYipItaUq2pPFCDsnKEMnKEOlokLaJLm0TXZLlDslyB8czJOtKSNaVEKt2SJTbr86JZZiQbWULtCcItCdwO5K7PJ1kuYuT9nDSHqWbDKWbDE++OZOH1s3loXVzeeF9Vw/BkzK6ecmU/ersxMTimFgckilMWzumrWu1wGyoots8KoBpacVs3YbZus32+EymwDNENrYR2diG25kkEEsRiKVwk2kb5FwXN57EKwnhlYQwAcd+uQ6BmEcg5uEmDaEO++WVBAlvTxDenqBpRoCmGQGCcUMgDoE4VNXsfO6d0S7TotrXr/4GrJtuuomGhgai0SgHHXQQTzzxxE73f/zxxznooIOIRqPMmDGDn/zkJz32ueeee5g3bx6RSIR58+Zx3333FXy/xhiuuOIKJk6cSElJCUcffTQvv/xyr+dkjGHhwoU4jsMf//jHvj94ERk98uTRTCYtfyOYzaT58mgmk5aVxrOZ9PbVh2Yzafc8msmkf1mzbzaTtr5Ym82kyqO98F+jHfNoJpN6ISebSdPRYDaT5sujmUzaObEsm0kLzaOZTNo9j2Yy6Qvvu1qZdABk8mgmk2Zy5c7yaCaTmpbWbCbNl0czmdRNprOZ1I0ns5m0ex7NZFI3abKZ1CsJZjNpvjy6J2fSQvNof0ecKI8OLPXwkwHj+iu6MrmedMS2hHnVKTa220lzx7yRJhDLHfZpXDB+a13nOEhU2+3RVIAVm+ziEW7A0DSmJOd2Hh4r4nay07RxeX7ht+wPThzoRzW6LE7fxfGhjwBg/BbVwJZWSv2XJVETIVlhPxbchEvJVvtJ3T7BvkbbZ5cQbvdbxwLQ6S+4mo4ECbXYXpbBZn/oRMDhoX99c6fnU/laCyZs769sg+0ZVrI8ypYJ4Z3dTPrBeAane+tpdpVe+3o6JSUQ8187z2R7ghrPw8lMru0Pu8F1s0NwnEgY4v4qauGuS4oJBbKto+kS+3oG4mnwh1O4KYiN8VtYx5ZQ/aY93rjn7f/TEZdUxN6uNbaHvx+GoIX0rrvu4rzzzuOmm27iXe96Fz/96U9ZuHAhy5cvZ+rUqT32X7FiBSeddBKf+9zn+M1vfsM///lPzjnnHMaOHcupp54KwJIlSzjjjDO4+uqr+eAHP8h9993H6aefzpNPPsmCBQv6fL/XXXcd119/PbfddhuzZ8/mW9/6FscddxyvvfYaFRW5Ky/+4Ac/wHHUE0NkT5YvjwJsbK9gzBt+759umXTHPAo2k0ZTtviwYlMtbsB+GHfPpJ6/FPyK+FjSfleh5xd+S3l0Fxan7wLg+NBHcvIoQKln8yhAsiKIm7DPa8lWkzePgs2k6YjNIaGWSMF5FGyO6Z5HAWXSAZZZsKVHJs2TR8H2BDWZn3smfx4FiAd75FGwI0hy8ihAwMH1OxnGxrh0jLW/29VvxpRHezMEPfyURweeY8wu+jhjl36uqqqiubmZysrKoTgvGUGOD38MALfMDv80ySStJ70DgI0fipNO2gv1tDtdwk32IhqvsxfyppnB7AqxyQqDV+9/wDvguPatud+U9byr5i0A9orYSQCb0mW8HrPzaXznHX8YzIc36hwXOCPn34ExVTDeL55Wl5CssF3fvYhL83T/gpn5vDLgj56ms962lmc0/NkfvrnRttKZoMvfnr1il+dz4jsvs/v7F+TYhDJa/TkFn//JCO/6PsyOc0/LtpQaz2S/d6ORruES/tw4TjiU3UYq1fW9vbG9XeZiFgx0DckoiWaHCqfGlOLG/XkfWzpJV9sV9JLV9j5MwCFW6xcHHQh1+CtGt6cJdtrw1To16u/bNfR/42Gw4otfGYinZLcM9bXw2muv5du3/55JH/h4QbfbsuQRjptYxR133NHn2yxYsIADDzyQm2++Obtt77335pRTTuGaa67psf9FF13En//8Z1555ZXstkWLFrFs2TKWLFkCwBlnnEFLSwsPPPBAdp8TTzyRMWPG8Lvf/a5P92uMYeLEiZx33nlcdJEdQhOPxxk/fjzXXnstZ599dvZ2y5Yt4+STT+aZZ55hwoQJ3HfffZxyyil9fg6k+CmPyq4cH/5Y3jwKkE66TLvTXr/CTYm8eRSwmTSz0rtr2M+ff+9dNW/l5FGA12P1yqP90D2TBsZU2W/GjyVdbQsvyYoQXsS+Xs3Tg3nzKNAjkxaaR8Fm0u55FKB1UlB5dDdlhnA7gUBXwS8QwPUzqEmm8ubRzM+zjJc/jwKEQ6TG2M8AN57CbbHTBKWry3LyKECsNkhmtHaowyPY7q/025nOm0dh+DPpUF8L169fz6RJk5h70Xdx3L4PEE22NvPmDVeSSqUIdOu5uTPKowNPQ3pFRESKWMFDKIB0Ok1LS0vOVzze+8TliUSC5557juOPPz5n+/HHH89TTz3V622WLFnSY/8TTjiBZ599lqQ/sXa+fTLH7Mv9rlixgsbGxpx9IpEIRx11VM65dXR08NGPfpQbbriB+npNri4iIiIykPo7pFd5dHhpSK/sNpPyh/75q7+6NWOyQ/XSCZdgo21NidUa2ibZnkBxvxHPBO1kqAA4DvEm21XaOGDCtvfPhrZKtlTYFbjml9rVuWImTFWwY3Af2CiV7fGVmRMjFsdtti9CwO2ayDZtIOD3mE/ZRk6MA0n7UuCNixMI2deo9N+l2cmRH3zhqoLO58FlmhNlMGVaUqHb72oy0LUyWsC+3iaRzLauUloCMf/FTyS7Fvvwf8dJudnbm81bYfIEAIJb2jD+cInsampAZKOd7yRdFskOr4pXBUhU2PsOdHrZFtaO8fabmleStE+wl6jTjljCPn+6AoCXP3BFv5+LEavQIREGli9fTlVVVc7myy+/nCuuuKLH7lu2bCGdTjN+/Pic7ePHj6exsbHXu2hsbOx1/1QqxZYtW5gwYULefTLH7Mv9Zv7f2z6rVq3K/vv888/n8MMP5wMf+ECv5ysiewaTSubNowDBxgixWvuh2jYplDePAsSbwtlrkwl7bGizPWm2VJTn5FFAmbSfnEAgJ48CuM2tmWiCCbqkMwu1xvLnUYBAyKP036X+vumC8ygokw62HTOpSdq/SZxwKH8eBZtJ/almCIfy51GAyRMIbrG505SE8+ZRgHTEIV5lzyFR4RLo9IeJO/nzKMA+f7piz82j/RjSW1NTk7NZeXRoqeAnu2Xh1PNw/eXVnaC/0mt9DelMr+o1Eca8Zn/bAzFD8wz74Zks7/q0cFP+SlxlHlTbD3AHMJ7d3tIRJe7ZYwf8T46Qk6Im0DXBqxTAH57pZJa8T6UwrW3+NpeAv0JVqiSA66eszDL2bprsa2vaQpgq+3q17h+nc1zuPItSBBy363UGTGbavkSCQMgfWuvPfWKSKQKZgBUO42Tm+HPcnEU87DanK6Cn07j+UAuzbTvOmGp7H9UVpEv9+SA7/TDe2omZ4K8CnTIYN/O7H8jOE1i1wh63bVII/9eepAkQcHPn/9xj9HMRjnnz5vHkk0/mbItEIju9zY5zjRhjdjr/SG/777i9L8fc3X3+/Oc/8+ijj7J06dK85yoio9vCqecB4IbDefMowJjXDIGY/axqnuHkz6MA1YmuEaSeQ0uHPVjcC+bkUUCZtL+Ml5NHAUxrW3bYYCAaJlXiT0eSNnnzKICpStC6v80byqRFxnH9/+VmUs8v3AVCwbx5FLCZ1D9GTibdIY8CuMkUZtt2++Mx1XjVdvhvujSYk0cBzIQobsqfJ9B1SJX5BUjP5M2jgDJpIfsD27ZtyxnSqzw6tFTwk93ibdqc/d4pt81u6XAAz+88VL4WSjb7c4WlDYF45oPb/mIYF+Kz7Qd8KJJi1jh7vNZkhO3ttpVudt1mxoVts2tjyjbFpnGJurtedUt6coL+HH1x/8LqmWyxxQVc/4IZLJ1AIOGHKP+TIh0AL+QXcNtdKqbYC+Yv9vsVNdnXQ/OcFIvF6bs4se7zgC3sZVrPe+O4DvgXSNPSAmk/zATcromQM/N2hILZFdXc6irwA5tTMwYTte8ZtyNOIGIv7qka+9lgAg6Of1gv5JDye/u1TnMIdPr3cVQTAPMnrOaxp/cFoC7Uxhkznu/v0zCiOfRjlTMDgUCgz/O61NXVEQgEerSebtq0qUdLZkZ9fX2v+weDQWpra3e6T+aYfbnfzHCIxsZGJkyY0Os+jz76KG+99RbV1dU5xzn11FM54ogjeOyxx3b1FIjICNeXPAo2kzp+Y2YgHs6bRwFmjdtMa9L+Ybq9vZTZdfY+xoVbc/IooEzaT04wlJNHwRZbMnNOuek0wVL72R9IhPLmUYCKKZ38Yr9fAfiZVHm0WGQWaTmx7vNdhb08mbRHHgWbSf0egE4knD+PAiQSODV2VUETDeF2+EW+SCAnjwI4ns2jAKmIQ+s0+32gM5w3jwJ7biYtcOXdTGmssrKyT3P4KY8ODs3hJ7vFSyS6lkz3PPA8ghuaiG41RLcaSjel7cpnLqSjLpHtENkOwQ77hQOmNYRpDREKpelIhehIhSgLJXjH+PW8Y/x6ZpZtJuaFiHkh3oyP5834eFYlajlr1lOcNav38fyS3986f83fOn+NEwzZ4p/xsq+h19GBiccx8Tih9U2E2j1C7R7BTgja2h7RrQ7RrQ7pyjSzxmxh1pgtvJEYT7UbpNpVG0LRGT8Wxo/FmT6F4Lg6guPq/EmTPbsCbySCE4nYCZDTHqQ9nGjUBquAa7el0vYr7X/F4jiBgB0eHk/Y4U+OYydP9plIECfl4aQ8UqVBUqVB0mGXdNghHXbwglC6JU3pljShFmib7tE23WNcRSvjKlo5pXYpCw+3X++vfIG6YCt1wdadPNBRzPTjqwDhcJiDDjqIxYsX52xfvHgxhx9+eK+3Oeyww3rs/9BDDzF//nxCodBO98kcsy/329DQQH19fc4+iUSCxx9/PLvPxRdfzIsvvsgLL7yQ/QL4/ve/zy9/+ctCngoRGaG8RCKbSfPl0UwmTUfdbCbNl0czmbQslMhm0pllm7OZtHsezWRSKdyOeTSTSb2OjmwmDa1vymbSfHk0k0nfSIzPZlIpQn4ezWTSTJbcWR7NZlJ/207zaCaTBgPZTGoiwWwmzc2jbjaPZjJpqIVsJs2XRzOZdI+kPDoi86g+DWX3OG52Tjj8XyoiIUq2+b3EOtIkKrveZmNes606m/e3/fATVYboBnv79rIoqzpsL593Tl3HhKht1akKdhLxW05fbbcV9Z/Pv23wHtMe4qHEbwG7QlrO6q2Z5e0rPSJbbc+ttol2aERsrCHY4bfXRNI0lG0BYEF0LdUTNwzl6UsfPfjy/wJwzHuvIez5q+3G4phOfzhDZsdAAOMPp3ESCcj8XncbLuGU+UNk0l7XnCgBB+PPseIkU+DPAWnCQVLl9vfZTdn7TZUGCMTt915NEC9o30t1/4nR4Q/1PX3icwDUuG0cW/UyAPUBQ8DZc4dPFNrDL/+gh/wuuOACzjzzTObPn89hhx3GLbfcwurVq1m0aBEAl1xyCevWreP2228H7ApoN9xwAxdccAGf+9znWLJkCbfeemt2tTOAL3/5yxx55JFce+21fOADH+BPf/oTDz/8cM5Q413dr+M4nHfeeXz7299m1qxZzJo1i29/+9uUlpbysY/ZFeLr6+t7nRh56tSpNDQ09OPZEJERJzNkMBDIm0eBHpk0Xx4FWNUR5p1T1wEwIdpClV9pirhJ5dEB1D2Pwg6rt3bGcCrt9T+yNZE3jwI0lG1hQdR25VQmLU4Pvvy/HPNeu9Jq2PNw/V5+prMzfx71t2Xm1jTpdN48CmBKS2weBQi6mLD9nU+Vh3PyKEAg7uHV+FMABB3q/mP/BuqYEM2bR+1d7ZmZtOAefv2YkkZ5dOCp4Ce7L7MIRJXtJp2qKSPcZD98vbCbnfC4ZWqA0jK/GOD3LfWiXvZDN9gYzg69KJ2RIOLYY2xPlTGvZN1QPJI9khuNdBVtHQfHX9belEXw/CGZjj9dRrDd6frwTru83GwD7xeaT+P/TR7Ks5Z+2dYE0DUZMnQV/lKprvlREkmcMnt5cCKRbMjKikYw1Xa2bKc9DiH//ZNK48T9OXgioex7xe20b6BUSSA7V4qbMNnin5tIY4J2+8akHZIxK9LIzJAtKLd7Hp+d/cTuP/6Rqh9Degt1xhlnsHXrVq666io2bNjAvvvuy/3338+0adMA2LBhA6tXr87u39DQwP3338/555/PjTfeyMSJE/nRj37Eqaeemt3n8MMP58477+Qb3/gGl112GTNnzuSuu+5iwYIFfb5fgAsvvJDOzk7OOecctm/fzoIFC3jooYeoqKgo/IGKyOgWCOTNo2An42+Zaq9ZpWVu3jwK4IVsHgWIOEm2+ytGKJMOjkyRz+lW3HFKohh/gQUvEsibRwFebp7AF5pPA1AmHQm2NfUpjwI4ZUGbRyE3k+6YR8Fm0pTfUB1PYSL2j0vH5OZRsPNJu4nMEH8PN+HPBxg0efMosOdm0n7O4VcI5dGBp4KfiIiIcM4553DOOef0+rPbbrutx7ajjjqK55/f+Tw2H/7wh/nwhz/c7/sF26p6xRVX9LqiWz6ZCZtFREREZORQHh1YKvjJbglOmUh8lp2ocsu+tuWlamWa0tV2bgNTFSVR4Q+zMJCosK0y8Vr/AGVpAuM77LatJRCxLSdtyQhrHTvh6pLV05m+r50oWUMnBp4zYwpOp99lvjMG/vDMjqlVdIzzu8Hb9VOIboPOcf4N4y7NCdsb8MljrxvKU5Z+6KgPE9pYA4CTSmdXMTT+UAgnHAZ/9TQnFIISf7iElwY304PP9t5LTBmDm/CH5o4tJ15tW08jTUlC22wLrRcKEGi376tUpf1sCLWmcPzFQEKVAYKdXT38krX22EubpwCwPl7FAeW2BW96eDPTB/LJGGmGPyuIiBS14JSJAMRnjc+bRwESFW62Z1iiwsmfRwEiHm3+oh1rnTEsWT0dgOn7blYeHQTODHv9dzoTNo8ClJbQMdX2tOoYF8ybRwGaE1Hl0RGgo972oA1trMHJ9MQLBvPnUbCZ1PO7d7qBvHkUIF4dIuL37A1t68TzR6EE2hM5eRTASXuEKv2evZ1dPfyStam8eRTYczPpEPTwk4Gngp/sluZDJtMxzl5oW+baD8mSLS5l/gpo6UggG6zCLYZUqb8SUqm/+lLSwfhjft2yJF6TvQi0JCIE/SXPE9ujfHHuo0PzgPZAsUmVhJv8FaxaQiT9C2Y62hWKXX8qDONC2K50j5MO8OQiBauRYtNBDmALfuWrY7idNvS4FXaIEqk0nj9vEalUds4Td3s7D7z9XQCOc+1QmUdW/yB73H0v/D7RbfaN4oXChLbY1dICrZ3EJtlVYuNj7LHCbR6uP4w3kDDE/HlTNh5cSbDUFgrfWWXn34l5Id6K2TT/r5YZnDDIU19sXj8p+/3YicU1XKvQOfn6M4efiMhI1nyIHcPZMc7Nm0fBNj6HW+y2VKmTN48CeE1hWhL2Whl0PRLb7TVSmXRwZDJDuClOoMUWepJjy0lHuzoO5MujgDLpCGHzKEAN5attYdftjOTNo2DnhXa323z5wNvfzZtHAaLbDF7ILypuaSfQavNlbFJlTh4FcOMeAX9Ib6wmyMaD7XswWNqZN48Cg5pJiz2PFpIxlUeLgwp+slvaJrtk5y0tsR/KkZYATtyGpWB7kkizvVCnog7xKvurH91k/x9zglBli00VlZ3MmGY/2GaVb6IlZT/sF+z71pA8lj1Vx/hQ9jX0IsHsvBYljTEi2+z3XsAG3mS5w0vXnz8s5ym7J13u0fg++3tZ/c9SqlbYMJ0p9nohl1SZ3RZd38rfnruyxzEWe3f32PbSdedz4P/YkIUxtM+wLfGR7cns5OjtE+xnQLzTpWSLfbOlI12fB+0NSWorO3KO25kO0Zm2ge2x12bDwf184H3UmHaI+r8IYwf3rgrTj1XO1KIqInuatsl+Ucgjbx4FiDS7pKL+aJMqJ28eBZgxbR2zyjcB0JKKKo8Oso7x/lxrns2jYOdaK2m0RaHItoDy6CiQLrdZq/F9Sar/abtsVq0I5c2jQI9Mmi+PAjaT+sMo22dUEdluf/cTlcGcPApQssUjHen6PGhvsPt2z6Q98igMaiZtTPt/KzteceVRUA+/EUoFP9kt8Xe3EvNbPJ24LQ4ly1yM33062NRJusS/aEeD2VJ/pNm/fQ0k2uyHaG1lO67fpaw8ECfiN+P95KBfD8lj2VP9+1cXcMgnr7f/MCGiTbZl3Iu5PPL3S4bxzGRAhT1Mu/1dbJsCIf/7yGYbagKJVHYIrvFX2u2r52+2IWvO1d8n2G5vG24JZidDT9gGU5sT/B7BXggi2/2JkluDLDx4OWBbUgHa0xE2dtpJcFd8fPDfh28n60j7vTsefe0ozp7z+KDfZ1849G+VMxGRPUn83bYwENsezZtHAdIlQZtHAZz8eRTAdQzlAVuEiLgp5dFB9u9fXQBgM6nxCz5NabyYzQ3KpKNE2Bb8THuQNjtqllB7cEDyKNhMOudq2xAdbHcJt/hT2Li5eRRsJs0sGBnZbgi02n0XHrx8WPMoQNo4PPraUQDFk0mHYJVeGXgq+MluWbT3kzy21bZ2/Oc528053JruWkHJmOzcColyN9sVP9Jkt1W/7hLbYgPWeq+GJZ/+zhCevWT8+7YLhvsUZJCt/NSFzLzeFna9iMkG64H02mW5re17XWsD18xDVwH2j6e3H58OQGxiEjdqi8un7LOMCeEmAJrTtrU3FQrwxOoZA36O+bwnuo2l/pyU7V6ExSv2BuC4hleG7BzyUg8/EZGdWrT3kwA8tnV23jwK4CY8EuW2iOCm8udRQJl0mCiTjm4rP3UhADOvvx4vYn8vBzqT7phHwWbS7nkU4O3HpxObaHv1udE0p+yzDIAJ4aZhzaMASxNR2j3bo3Xxir2LJ4+qh9+Io4KfiIhIserPkF4RERERkYGkgt+IpIKf9Mtv31wAwIbEVOZUbARgWck0AJIlLlF/wn+MwfHsb3vZxhQBf8L+zrG2m3S8Gjom221OWlN7igymty4YulbzZ1ZPxwufC8CJ4+xw3QNLVvL0qTMB+NvGvTm8bgUAk8Pbsi2pL7XalRbDbpp0qvChHLsjYezQr5nhTYT8+fyWrbbjTf7a+k6+NOW3Q3o+GYUOidAQChHZk/z2zQVsSEwFYE7Fxrx5FMDxDGUb7XCTQNxTHhUZJkOVSZ/xV9f2wufm5FGAp0+dyd822hEdh9etYHLY9q5rTpcOax4Fm0lnhu0coiHHK5o8qiG9I48KftIvx5XalYtmhjbxQsyGrMx8XaH2dDZYJWpKskucx6sCBBJ2p2SJP0HqGAiMs/OquAF9KoiMFgdPXclPT7EhalvarvwcM0HeU26HJGxKVrIxbidTmRbZQk2wDYB17XbRj0llzbx5+jeG7HwrJ67m8A32j8TlSYemdEnOz+uCrUN2LjnUw09EZKeOK13LzJD9w/iF2NS8eRTATaSJV9nGnUDCVR4VGeUOnroSgJ+esndOHgV4T/krbEraLLoxXsm0yBYAaoJtw5pHAQ7fMI3lSfv51D2TDlseBWXSEUoFP+mXWtcunf6q8diSshOZOhFb2EuVBElV2DkHcCBWZ+dE8YKQLHWz2wFMAIxnt02q2zpEZy8iQyEz38gPXz0WsK2V/2idC0B5IMaBZSsBCDkpXu6cDEBt1E7aHEuHhvRcvcbZlDj2c2tSoC27PROyQk56SM8no1+LdiiMicgepNYt41Vje+dtSVXkzaNgM6nn//WTLHWVR0X2EMc1vJKTRwH+0TqX8oBdBfrAspWEHNv79+XOycOaRwFKnEhR5VFQD7+RSgU/6ZdNafsBtDI5NbuKUWmF/cA0bgXJCvvWitUESIdsmkqVdd1+2Q/8VT3vvSq77e/v/d6gn7eIDL0vz304+/2i584E7Orbz6+2vYOf6JjNsmZb8NvUYVtf/3nctUN6ju/5zGf5+60/z/670rErxJUF7WTOxzW8QktLy5CeU5YCk4hIXpvSbaxM2utJzAvlzaMA6ZCjPCqyh+qeR8Fm0szq28+vnsoTHbbYtqx58rDmUaBHJi2aPKo5/EYcFfykX2L+EIlXOyfyals9AInXbNfnUFsS4xf5AnFDosJ+nw5Doir3OK996JtDdMYiUgwywerttRMo81dPPK1iOVNCtkfFVa+eDMD0G7/Hyi98ZdDPJ9OS+ptbWuk0tjey/Xyz5xb15/IbNgW2poJaVEVkzxIzhlc77Xxbr7bV582jAIkKh7T9qM/JpMqjInuenxz0a95eOwGAMsfhtAo7x9+U0NYhz6NgM+lvbrFDdjtNOPv3NjjDn0dRD7+RSgU/KdhrayaSGZnbEN3MC022Z07Q9nwmWRHIDpcIdhrCrfa3PVbrkC7Rb76IQJUboNmzwxLWpKLZeVVKQrYF84z3PAIMfsD6Y7vt6vHekk6SpitMNXl2GNjBkaEdytErfWyKiPTw2hpb5Ct1bR4FeKFpct48ChBuNcRq/YZoZVKRPV6Va3v/Nntp1qSigJ17eqjzKNhM+t4SO5fojpm0aPKoeviNOCr4iYiIFDPN4SciIiIiw0kFvxFJBT8pWMgxhPzhbjEvxJrmagBK7QJpuMmu4XDpqJNtXXU8SEeHvzuyiAy/MW4pyxP286DDhLNDepvaS3Z2swHxqzcOB2BWuJFWz05JEDNpkn4ymR6sYMbk1wf9PPqkH0N6FbBEZE8Q8j8cQzjZ+aTXNFfnzaNgF5DLjIxTJhWRMW4pAMsTHh3+1C5TQluHPI8CtHr1xIwd/ZLEMD1oF8Yslkxa6JBe5dHioIKfFGxdqozagO1uXOomiMVtyJr2YjsAqbIQyXLbPToVcrNDeptLHUxE4UpEwK1/naa33wGAh8vKRB0A76jfAMAl8+4f8PvcvH4SAPVBO3HTC7FpHBRdCUDAcXgmZs9hyowXB/y+d4sCk4hID+v81TdqA52UunahpVg8lDePgh3S21xqi3/KpCLi1ttiWtPb78DDfk6sTNQNah4Fm0m751GAg6IrCfjzWz8TqyvOPKqC34ijgp8ULGZCvJqwLQ5lbpxx1XZy0a372UlPK1cl8YL2w6qzzqHNTvGHCXus+syFQ3/CIlKU/quXIPPlAb6PzKIc69KtpP3gsSlVmf35lGAcABe31/MZbg4GxxSWmDRJsojsCWLGNji/mqigzLWf5eOqW/PmUYC2yTaPAsqkIpK1YwYc6DwKNpOuS9u/m9MmN4+CzaSuX3QsykxqCsukheZXGRwq+EmfPbpyDgCNqTE83z49u70qHAOgxe/5vG3vEBVr/FZTr+uPz7fOHZoJT0VEdvRoRwOtaTsZc4e/IMe7y16jPmAXC8m08BadQltTRUT2AI+unENjagxAj0yaL4+CzaTKoyIyXB7taACgNR3NyaMA9YHy4s2joEw6QqngJwXbmKri35tt1+O057Jpq+3tN2mlnXOg7PXteGX2AyzYEaX2ZT9lfW3oz1VEBODkstXc3jwPANefwGlGMAaUD+NZ9Y3m8BMR6Wljyg6H+/fmaaQ92ytm09aKvHkUsJlUeVREhsnJZasBuL153g55FIo9kxY6h59GnBQHFfxERESKmQKTiIiIiAwnzeE3IqngJ3323um2u/Hbrx/B5mbbAlFakoBNttV06zw7P0p0YwluPGlvZCAdcYf+ZEX66KevHcXZcx4f7tOQQZIZGrF+zWTS/mqNAT+BJDHFPXQC+rVKr1pURWS0e+/013j79SMA2NxcbvMowKZo3jwKyqRSvH762lEAyqSjmFv/OuvX2Mnt0zg5eTTz82KmHn4jkwp+0mdfXXYGAKva9yWVtKuetaajpCtTAFQ+a99OWw4oY9zTzQCkSl2CHVoFTYrPO8/9PgAfWVSWXdgBiv9iK/2z35S17DfcJ9FfCkwiIjm+uuwMVrXvC0AqGcjO0ZquTOXNo4AyqRSld577fT6yyK46rUw6uu03Za39/zCfR7+oh9+IpIKf9MnW9ZM5qcpeiJ4OzWT5n+zFqG1OkqP3tT3/3vibnR+r/uFNpGptD8BYTYDn/vDVYThjkb75+YvvZsb8zQCcVt48zGcjkqvQ1lRAAUtERq2t623vmJOqyng6NBOA5X+aTdsc25Pv6H1fy5tHAWVSKVo/f/HdAMyYv1l5VIqSeviNTCr4SZ/UTlxL01sHANAYryJ2QCcAYyo6OanGLht+8+ftamnexRU4KduCWvtC606Pq1YsGS7LfnQ+AJ999pM83mJXoD5jr98M5ymJ9E6BSUQEsHkUoOmtA2iM20U7Ygd0MqbC5tKTal5UHpURZ9mPzuezz34SgMdb5iiPSnFSD78RSQU/6bOksW+XMaEO3rOXDUPfmvAQ4wK29fS6hF0Jre0dFQRj9jf8X3d8pddjdQ9W3bcpZMlQ+/n824b7FER2zvouYgABAABJREFUSnP4iYjkSpogY0IdALxnr9f51oSHABgXKB+QPAoq/MnQUh6VYqcefiOTCn5SsD+uegfvmfQGADHT9Zv8zAF3228O6NrXa/xpQYFJIUtEREREduWPq94BwHsmvdGnPAqF5Us1RIuIyEingp+IiEixMoDRJH4iIiIiMoyMKSyTFpxfZTBobXrpszP2eoYz9nqGdNrl9ZZxvN4yjh9uOWqXt/MaZ/cYMuHWv96j1TSzTa2pIiJdMkMo+vqlep+IjHaZPJrJpD/cclSfM2l3yqMiIn1TaB7VkN7ioB5+UrCySIJwIA1AeyrCNVtteDqk9C0AjilJ9/lYClMiIrugwCQi0kNZJAFAOJCmPWXn7btm62zlURGRwaBG5RFJBT8p2L9OuCa7ktTeZRt4cvteAPzsn7Zl9cr33MeZFVt63E5zoYiIFMYx4HgF3qbA/UVERqJ/nXANAJ999pPsXbYBgCe379WnPAoq8omIFMLxwClwfxl+KvhJv2RWkvrVG4fz/rEvAPCVEx4EYGKgE6jI7qtAJSKyG9SaKiKS18/n38av3jgcgPePfSFvHgVlUhGR3VJIJlV+LQoq+MluOWvWU8N9CiIio1d/5kBRwBKRPYzyqIjI4HJMgT38lEeLggp+IiIixUyrnImIiIjIcDIFTuKn/FoUVPATEREpYoW2kKpFVUREREQGUqE9/DTipDio4CciIlKstCKaiIiIiAw3TTEzIqngJyIiUqQc1MNPRERERIaX5vAbmVTwk2F3nHtaj22LvbuH4UxERIqN6cccKEpYIiKFUh4VEdkJzeE3IqngJ8Oit1C1488VskRkj6dVekVEBk1f8iio8CciUnAPv0E7EymECn5StLqHMAUtEdljqYAnIjKslElFZI+nBugRSQU/ERGRYtWPHn6aM0VEREREBpLm8BuZVPCTQbWroRIiIrILXoGJSQFLRCSH8qiIyG7yCmyF9gbvVKTvVPCToqThEtIXI32ux/78AVLo49UwpBGuwPmRs7cREZHdpuum9IXyaOH3M5Kfrz2W8uiIpIKfDIqhunDI6LNjaOrrhNrdDdd7Kd+59nY+/e1tsDu9FHa3h0PmcfT3OIu9u4vq9RoJHDQkQkSkv5RHpb96W7BlZ++nYso3xZ5Hd/f2A5FHe7u9fvd3TkN6RyYV/GS3DdQwiZHeOib909v7Z7BCRF+CTl/fg4Wc42gZSjRYr4tafHfBFDqkt38J66abbuL//u//2LBhA/vssw8/+MEPOOKII/Lu//jjj3PBBRfw8ssvM3HiRC688EIWLVqUs88999zDZZddxltvvcXMmTP53//9Xz74wQ8WdL/GGK688kpuueUWtm/fzoIFC7jxxhvZZ599ANi2bRuXX345Dz30EGvWrKGuro5TTjmFq6++mqqqqn49FyIyMg3E9VYr8+65BjqT7m7hrS/vQeXRgbu98ugumAKHnSiPFkUeVcFPioY+WEe2QoLKcAWO4WyNlMIVU2v5sOnPoh39uJu77rqL8847j5tuuol3vetd/PSnP2XhwoUsX76cqVOn9th/xYoVnHTSSXzuc5/jN7/5Df/85z8555xzGDt2LKeeeioAS5Ys4YwzzuDqq6/mgx/8IPfddx+nn346Tz75JAsWLOjz/V533XVcf/313HbbbcyePZtvfetbHHfccbz22mtUVFSwfv161q9fz3e/+13mzZvHqlWrWLRoEevXr+cPf/hDP54NEdmT7XHXmVGokMbc4ch2yqMji/KoNRQ9/JRHB55jzK5Lry0tLVRVVdHc3ExlZeVQnJcUscG6yOyJH5xDZWevWb6hCsVWrBPpi8H8HBnqa+G1117L9T+4k3n7faSg261e8RiHHlLDHXfc0efbLFiwgAMPPJCbb745u23vvffmlFNO4Zprrumx/0UXXcSf//xnXnnlley2RYsWsWzZMpYsWQLAGWecQUtLCw888EB2nxNPPJExY8bwu9/9rk/3a4xh4sSJnHfeeVx00UUAxONxxo8fz7XXXsvZZ5/d6+O5++67+fjHP057ezvBoNo2RwvlUelOeXRk6kuvN+VRGelGUx5dv349kyZN4qhjv43juH2+XTzWwpInvk0qlSIQCPTpNsqjA6/vr5iIiIgMKQeDYwr7Akin07S0tOR8xePxXu8jkUjw3HPPcfzxx+dsP/7443nqqad6vc2SJUt67H/CCSfw7LPPkkwmd7pP5ph9ud8VK1bQ2NiYs08kEuGoo47Ke25ANgSr2CciIiKy+wrNo44//Fd5dHjzqJKw9Jla0gZGIfND9LVnXqG37ct+er1lJBp1c4EawCv8NsuXL+8xX8jll1/OFVdc0WP3LVu2kE6nGT9+fM728ePH09jY2OtdNDY29rp/KpViy5YtTJgwIe8+mWP25X4z/+9tn1WrVvV6blu3buXqq6/O29oqIiOfMsruG6g8OhC339k+eq1lJBqVc4F6FDam18+vNTU1OZuVR4eWCn6yU0N5kR11f6jTvxVmB+rYInuqvv5ujJTPG6fASY8dY5g3bx5PPvlkzvZIJLLz2zm5Kc4Y02PbrvbfcXtfjjlQ+4BtRX7f+97HvHnzuPzyy/Oeu4iMLEOdR2HkXCP6YjDz6EDcXmS06svvxkj5rOnea6+v+4NdzKL7kF7l0aGlgl8R29UEoZpAVESk/wpZPW/YFLggWkYgEOjzvC51dXUEAoEeraebNm3q0ZKZUV9f3+v+wWCQ2trane6TOWZf7re+vh6wLasTJkzY6bm1trZy4oknUl5ezn333UcoFOrT4xeRXdvZIgjKoyIi/Tci8igUnkf9/SsrK/s0h5/y6OBQwa8PClnpabDuc1fb+/rzHfV1WfihMlJbVdWyKSIjVTgc5qCDDmLx4sV88IMfzG5fvHgxH/jAB3q9zWGHHcZf/vKXnG0PPfQQ8+fPzwabww47jMWLF3P++efn7HP44Yf3+X4bGhqor69n8eLFHHDAAYCda+Xxxx/n2muvzd6mpaWFE044gUgkwp///Gei0ejuPCUiRauQYZgDfX992d7Xn/dmx8cz3NlqJI48Ge7nTESkv5RHB8ceX/DL1yq5swvm7lxMB2retYFSbMGgmIJVsT03IrKHKnBIb396BF5wwQWceeaZzJ8/n8MOO4xbbrmF1atXs2jRIgAuueQS1q1bx+233w7YFdBuuOEGLrjgAj73uc+xZMkSbr311uxqZwBf/vKXOfLII7n22mv5wAc+wJ/+9CcefvjhnKHGu7pfx3E477zz+Pa3v82sWbOYNWsW3/72tyktLeVjH/sYYFtSjz/+eDo6OvjNb36TnRQaYOzYsX1eGU5kOO2sl9xgzW22s8w1HBmo2HJXsWTSYnteRGQPZQocdlJofkV5dDDs8QU/ERGRomXA6UcBr1BnnHEGW7du5aqrrmLDhg3su+++3H///UybNg2ADRs2sHr16uz+DQ0N3H///Zx//vnceOONTJw4kR/96Eeceuqp2X0OP/xw7rzzTr7xjW9w2WWXMXPmTO666y4WLFjQ5/sFuPDCC+ns7OScc85h+/btLFiwgIceeoiKigoAnnvuOZ5++mkA9tprr5zHtWLFCqZPnz7gz5eIiIjInsQxha3Z0Z/8qjw68Bxjdl16bWlpoaqqKruscLHa1dBbtZAVv2JoTdX7RGTPUchnzlBfC6+99lq+/73fsu/c0wu63co1/2DB4XXccccdg3RmIsNjpORR2PXQW2WN4jfcmVTvEZE9S18/c4b6Wrh+/XomTZrEe999FY7j9vl28XgLT/77OlKplEZbDKMR18OvkIufLpQj13DMm9jbfek9JDJ6Dfcfc33hGHC8wm8jIoNLeXTPMJwLkqjjgsieYSTkUbB5dCeL5fa6vwy/oiv4jZhVamRQFDJPzWC9JxSoRKSoFDyHnyp+IrtLeVSGO5Mqj4pIUSl0Dr/+TCotA66ggt8Hqj5B0Om5rPBAXOQGY7UvGd30nhCR3VHoZ0hZXckgnckuKC+J5BjMPAo7/2xQ9pDe6H0hIv1V6OdHyiQH6Ux2odA8qvxaFAakh58uciIiMtq1bGkd+js14AzBKr0io4HyqIiIyOBwjMEZ5FV6ZeAV3ZBeERERyTD9CEwKWCIiIiIygAod0quCX1FQwU9ERKRYGaDQSY+Vr0RERERkIHlAAYt2FJxfZVCo4CciIlLECh3Sq1V6RURERGQgFTqkt+ApaWRQqOAnIiLSB5V1FbB5GO5YQ3pFREREZDgVPKR30M5ECqCCn4iISB8Mz6Id/ZjDTwFLRERERAaS5vAbkVTwExERKWaaw09EREREhlOhc/gpjxYFFfxERESKlGP6MweKEpaIiIiIDBzN4TcyqeAnIiJStDSkV0RERESGmYb0jkgq+ImIiBQrgxbtEBEREZHhpYLfiKSCn4iISDFTDz8RERERGU4q+I1IKviJiIj0QWVdBWwe4js1aNEOERERERlehS7aUWh+lUGhgp+IiEgftGxpHYZ7NQVPeqxJkkVERERkIGnRjpFJBT8REZFipsAkIiIiIsNJQ3pHJBX8REREipUBvELn8FPAEhEREZEB5BlwVPAbaQoq+KVIam4gERHZI6Wd1DDcq9GiHSI7UB4VEZE9VYrk8NyxeviNSH0q+IXDYepqx/Lk1vsH+3xERESKk4H6+nrC4fCQ3mfhgUkBS0ancDjMuLHjeHKz8qiIiOy5xo8fP7R5FPpR8Bu0M5EC9KngF41GWbN2NYlEYrDPR0REpGiFw2Gi0ejQ3mnBPfyUsGR0ikajrFq9SnlURET2aMOXR9XDb6Tp85DeaDQ69G8qERERERGf8qiIiIhI32jRDhERkWJlTD8W7RicUxERERGRPVShi3YUml9lUKjgJyIiUsyMV+gNBuU0RERERGQPVWgeLTi/ymBQwU9ERKRYmf6s0quCn4iIiIgMIM3hNyKp4CciIlLMNKRXRERERIZToUN6VfArCir4iYiIFCuDeviJiIiIyPBSD78RSQU/ERGRotWPIb0iIiIiIgNJBb8RSQU/ERGRYqYefiIiIiIynFTwG5FU8BMRESlWxoBX6KpoClgiIiIiMoA8D5xC9lceLQYq+ImIiBQzFfBEREREZDiph9+IpIKfiIhIsTL9mMNPAUtEREREBpIKfiOSCn4iIiLFrNAhEcpXIiIiIjKQPANOASFTQ3qLggp+IiIixcoYjClsDj9DgXP+iYiIiIjshPLoyKSCn4iISDFTDz8RERERGU7q4TciqeAnIiJSrAyaw09EREREhpfm8BuRVPATEREpVsaAV+CQCAUsERERERlIngdOIfsrjxYDFfxERESKWcE9/AbnNERERERkD6UefiOSCn4iIiJFyhiDUQ8/ERERERlGpsAefgXnVxkUKviJiIgULdOPAp4KfiIiIiIygNTDb0RSwU9ERKRYGbRKr4iIiIgMr0JX6VXBryio4CciIlK0DBgN6RURERGRYVRwHtWQ3mLgDvcJiIiISB4GjGcK++pnwe+mm26ioaGBaDTKQQcdxBNPPLHT/R9//HEOOuggotEoM2bM4Cc/+UmPfe655x7mzZtHJBJh3rx53HfffQXfrzGGK664gokTJ1JSUsLRRx/Nyy+/nLNPPB7nS1/6EnV1dZSVlfH+97+ftWvX9uNZEBEREZEdFZxH+7lKr/LowFLBT0REpGj5PfwK+erHmN677rqL8847j69//essXbqUI444goULF7J69epe91+xYgUnnXQSRxxxBEuXLuXSSy/l3HPP5Z577snus2TJEs444wzOPPNMli1bxplnnsnpp5/O008/XdD9XnfddVx//fXccMMNPPPMM9TX13PcccfR2tqa3ee8887jvvvu48477+TJJ5+kra2Nk08+mXQ6XfBzISIiIiI7KDSP9qMBWnl04Dmmv10BREREZNBce+21/ODim9jXPbSg2600r3DIR/fjjjvu6PNtFixYwIEHHsjNN9+c3bb33ntzyimncM011/TY/6KLLuLPf/4zr7zySnbbokWLWLZsGUuWLAHgjDPOoKWlhQceeCC7z4knnsiYMWP43e9+16f7NcYwceJEzjvvPC666CLAtp6OHz+ea6+9lrPPPpvm5mbGjh3Lr3/9a8444wwA1q9fz5QpU7j//vs54YQT+vw8iIiIiEiX9evXM2nSJI5xPozj9L2/WNx08oT5C6lUikAg0KfbKI8OPPXwExERKVIeHikvXtCXZwprRUwkEjz33HMcf/zxOduPP/54nnrqqV5vs2TJkh77n3DCCTz77LMkk8md7pM5Zl/ud8WKFTQ2NubsE4lEOOqoo7L7PPfccySTyZx9Jk6cyL777pv3/EVERESk71ImUVgmNYmCjq88Oji0aIeIiEgRmjZtGptYyyYKn/vjw5NPpqWlJWdbJBIhEon02HfLli2k02nGjx+fs338+PE0Njb2evzGxsZe90+lUmzZsoUJEybk3SdzzL7cb+b/ve2zatWq7D7hcJgxY8b0+fxFREREZNfKysoIEeZx/lzwbadMmUJrayuu29XPTHl0aKngJyIiUoQ+8pGPcNJJJ/Xrtt/73veoqqrK2Xb55ZdzxRVX5L2N4zg5/zbG9Ni2q/133N6XYw7UPjvqyz4iIiIikl9VVRXNHU3ZHnOFuO6663oUwJRHh5YKfiIiIkWqsrKyX7e79NJL+cpXvpKzrbfWVIC6ujoCgUCP1sdNmzb1aMnMqK+v73X/YDBIbW3tTvfJHLMv91tfXw/YVtMJEybk3SeRSLB9+/acULlp0yYOP/zwXs9fRERERPqmpKSEkpKSgm932WWXceGFF+ZsUx4dWprDT0REZJSJRCJUVlbmfOULWOFwmIMOOojFixfnbF+8eHHegHLYYYf12P+hhx5i/vz5hEKhne6TOWZf7rehoYH6+vqcfRKJBI8//nh2n4MOOohQKJSzz4YNG3jppZdU8BMREREZJsqjRZBHjYiIiOzR7rzzThMKhcytt95qli9fbs477zxTVlZmVq5caYwx5uKLLzZnnnlmdv+3337blJaWmvPPP98sX77c3HrrrSYUCpk//OEP2X3++c9/mkAgYL7zne+YV155xXznO98xwWDQ/Otf/+rz/RpjzHe+8x1TVVVl7r33XvOf//zHfPSjHzUTJkwwLS0t2X0WLVpkJk+ebB5++GHz/PPPm/e+973mne98p0mlUoP5tImIiIjIAFEeHXgq+ImIiIi58cYbzbRp00w4HDYHHnigefzxx7M/O+uss8xRRx2Vs/9jjz1mDjjgABMOh8306dPNzTff3OOYd999t5kzZ44JhUJm7ty55p577inofo0xxvM8c/nll5v6+noTiUTMkUceaf7zn//k7NPZ2Wm++MUvmpqaGlNSUmJOPvlks3r16t14NkRERERkqCmPDizHGH9WQxERERERERERERnxNIefiIiIiIiIiIjIKKKCn4iIiIiIiIiIyCiigp+IiIiIiIiIiMgoooKfiIiIiIiIiIjIKKKCn4iIiIiIiIiIyCiigp+IiIiIiIiIiMgoooKfiIiIiIiIiIjIKKKCn4iIiIiIiIiIyCiigp+IiIiIiIiIiMgoooKfiIiIiIiIiIjIKKKCn4iIiIiIiIiIyCiigp+IiIiIiIiIiMgoooKfiIiIiIiIiIjIKKKCn4iIiIiIiIiIyCiigp+IiIiIiIiIiMgoooKfiIiIiIiIiIjIKKKCn4iIiIiIiIiIyCiigp+IiIiIiIiIiMgoooKfiIiIiIiIiIjIKKKCn4iIiIiIiIiIyCiigp+IiIiIiIiIiMgoooKfiIiIiIiIiIjIKKKCn4iIiIiIiIiIyCiigp+IiIiIiIiIiMgoooKfiIiIiIiIiIjIKKKCn4iIiIiIiIiIyCiigp+IiIiIiIiIiMgoooKfiIiIiIiIiIjIKKKCn4iIiIiIiIiIyCiigp+IiIiIiIiIiMgoooKfiIiIiIiIiIjIKKKCn4iIiIiIiIiIyCiigp+IiIiIiIiIiMgoooKfiIiIiIiIiIjIKKKCn4iIiIiIiIiIyCiigp+IiIiIiIiIiMgoooKfiIiIiIiIiIjIKKKCn4iIiIiIiIiIyCiigp+IiIiIiIiIiMgoooKfiIiIiIiIiIjIKKKCn4iIiIiIiIiIyCiigp+IiIiIiIiIiMgoooKfiIiIiIiIiIjIKKKCn4iIiIiIiIiIyCiigp+IiIiIiIiIiMgoooKfiIiIiIiIiIjIKKKCn4iIiIiIiIiIyCiigp+IiIiIiIiIiMgoooKfiIiIiIiIiIjIKKKCn4iIyAhz3TfHcvYnqob7NERERERkD7Vs2TKOPLSENWvWDPepSB6OMcYM90mIiIhI36xbt45Ze03BceCBBx/jyCOPHO5TEhEREZE9zPuOK+Pxpzr5yCkV/PyO5uE+HemFCn4iIiIjyKKzqtmyLc1+e4dZ/FgHTzzdgeM4w31aIiIiIrKH+Oc//8mJJxzBA7+bxLGnrePFF19l9uzZw31asgMV/EREREaIt956i332mcXzi6cyaUKQvRas5Lbb/8T73ve+4T41EREREdkDGGM4+vAyjjq8hCu+VsvZX91IS5vHXX9sHe5Tkx2o4CciIjJC/PeplYTDDrd+fzwAP/jpdm6/u4XnX+zEdTUtr4iIiIgMrr/97W987KMn8ea/plNVGWDt+iRz37WKp5Y8z/777z/cpyfd6K8DERGREeA///kP997fxjcvqMluW3RWFVu3e9x9993DeGYiIiIisicwxnDp1z7AxV+qoaoyAMDkiSEWnVXFpV991zCfnexIBT8REZER4OtfO4zP/XcV06aEstuiUZfLLqjhskvPJJlMDuPZiYiIiMhod88999C4OcU5n6zK2X7RF8fw5NMxnnzyyWE6M+mNCn4iIiJF7l//+hePPtHBJV8e0+NnnzyjEoBf/mjyUJ+WiIiIiOwhUqkUl13yMb5+Xg0lJbmlpLF1Qc4/u5pLv3ocmjWueKjgJ9KL2267Dcdxcr7Gjh3L0UcfzV//+tce+zuOwxVXXJH992OPPYbjODz22GPZbVdccYVW0hSRfvn6197Llz9XzfixwR4/CwYdrrywlquv30YsFhuGsxMR2TOMxnw4ffp0PvnJTw7KsZcvX84VV1zBypUrB+X4gynzWv3hD38Y7lMRKRq33ziZRBI+87GqXn9+/tnVLH89wd/+9rchPjPJRwU/kZ345S9/yZIlS3jqqae45ZZbCAQC/Nd//Rd/+ctfcvZbsmQJn/3sZ3d6rM9+9rMsWbJkME9XREahhx9+mKUvxfnK//Ts3Zdx2n+VU1cT4KZrpwzhmYmI7JmUD/tm+fLlXHnllSOy4CciueLxOFf+31au+FoNoVDvjRSVFQEuPreGS792Cp7nDfEZSm9U8BPZiX333ZdDDz2Uww47jA9+8IP89a9/JRKJ8Lvf/S5nv0MPPZTJk3c+nG7y5Mkceuihg3m6eXV2dg7L/YrI7rETI5/MhV8YQ3VVIO9+rutw9cW1XPOj7bS2tvbrvm666SYaGhqIRqMcdNBBPPHEEzvd//HHH+eggw4iGo0yY8YMfvKTn/TY55577mHevHlEIhHmzZvHfffdV/D93nvvvZxwwgnU1dXhOA4vvPBCj2PE43G+9KUvUVdXR1lZGe9///tZu3ZtYU+AiEgfjZZ8KCLSVz/97hQqK1w+ckrFTvf7n7Oq2LglxT333NOv+1EeHVgq+IkUIBqNEg6HCYVCOdt3HLLRm96GbEyfPp2TTz6ZBx98kAMPPJCSkhLmzp3LL37xi36fY+aY9957LwcccADRaJQrr7wSgBtvvJEjjzyScePGUVZWxn777cd1112XM9n/jTfeiOu6bNq0Kbvte9/7Ho7j8IUvfCG7zfM8xowZw1e+8pV+n6uI7Nwf//hH1qxP8cVPV+9y34XvLWXOzBDXXz294Pu56667OO+88/j617/O0qVLOeKII1i4cCGrV6/udf8VK1Zw0kknccQRR7B06VIuvfRSzj333Jxwt2TJEs444wzOPPNMli1bxplnnsnpp5/O008/XdD9tre38653vYvvfOc7ec//vPPO47777uPOO+/kySefpK2tjZNPPpl0Ol3wcyEiUqiRkA+TySQXXngh9fX1lJaW8u53v5t///vfve7b2NjI2WefzeTJkwmHwzQ0NHDllVeSSqVy9rv55pt55zvfSXl5ORUVFcydO5dLL70UsMOfTzvtNADe8573ZIdA33bbbbt8Ll588UVOO+00qqqqqKmp4YILLiCVSvHaa69x4oknUlFRwfTp07nuuutybh+LxfjKV77C/vvvn73tYYcdxp/+9Kce93X33XezYMECqqqqKC0tZcaMGXz605/e6XPY0tLCCSecwPjx4/M+dyKjUVtbG//7g21cfXEtgcDOpyAoKXH5xvm1XHbJf/f4zNgV5dFBYESkh1/+8pcGMP/6179MMpk0iUTCrFmzxpx77rnGdV3z4IMP5uwPmMsvvzz777///e8GMH//+9+z2y6//HKz46/ctGnTzOTJk828efPM7bffbv72t7+Z0047zQDm8ccf79e5T5s2zUyYMMHMmDHD/OIXvzB///vfzb///W9jjDHnn3++ufnmm82DDz5oHn30UfP973/f1NXVmU996lPZ27/66qsGML/97W+z20488URTUlJiZs2ald329NNPG8Dcf//9/TpPEdm5VCpl5s0OmxuuGWvSG2b16eux+yabinLXbNmypaD7OuSQQ8yiRYtyts2dO9dcfPHFve5/4YUXmrlz5+ZsO/vss82hhx6a/ffpp59uTjzxxJx9TjjhBPORj3ykX/e7YsUKA5ilS5fmbG9qajKhUMjceeed2W3r1q3r9bNaRGR3jOR8eNZZZxnHcczXvvY189BDD5nrr7/eTJo0yVRWVpqzzjoru9+GDRvMlClTzLRp08xPf/pT8/DDD5urr77aRCIR88lPfjK73+9+9zsDmC996UvmoYceMg8//LD5yU9+Ys4991xjjDGbNm0y3/72tw1gbrzxRrNkyRKzZMkSs2nTprznmHku5syZY66++mqzePFic+GFFxrAfPGLXzRz5841P/rRj8zixYvNpz71KQOYe+65J3v7pqYm88lPftL8+te/No8++qh58MEHzVe/+lXjuq751a9+ld3vqaeeMo7jmI985CPm/vvvN48++qj55S9/ac4888zsPpnX6u677zbGGLNmzRqz3377mTlz5pi33nqrX6+ByEj1rYtrzYIDoya1fq8+5dHY6r3MzOkh87PrxxV0P8qjA08FP5FeZALdjl+RSMTcdNNNPfbfnUAXjUbNqlWrsts6OztNTU2NOfvss/t17tOmTTOBQMC89tprO90vnU6bZDJpbr/9dhMIBMy2bduyP5s8ebL59Kc/bYwxJh6Pm7KyMnPRRRcZIHuu//u//2tCoZBpa2vr13mKyM7deeedZvqUoOlc1bdwlfk64T2l5mtfqDbNzc05X7FYrNf7icfjJhAImHvvvTdn+7nnnmuOPPLIXm9zxBFHZP+oy7j33ntNMBg0iUTCGGPMlClTzPXXX5+zz/XXX2+mTp3ar/vNF7AeeeQRA+R8hhljzDve8Q7zzW9+s9fzFxHpj5GaD1955RUDmPPPPz9n+x133GGAnILf2WefbcrLy3Pu2xhjvvvd7xrAvPzyy8YYY774xS+a6urqnd7v3Xff3ePx7kzmufje976Xs33//fc3QM71IplMmrFjx5oPfehDeY+XSqVMMpk0n/nMZ8wBBxzQ47E0NTXlvW33gt/SpUvNxIkTzRFHHGG2bt3ap8ciMlq0tbWZqkrXLL57UkF59Nc3jjeTJwZNU1OT8ugw5lEN6RXZidtvv51nnnmGZ555hgceeICzzjqLL3zhC9xwww0Ddh/7778/U6dOzf47Go0ye/ZsVq1a1e9jvuMd72D27Nk9ti9dupT3v//91NbWEggECIVCfOITnyCdTvP6669n9zvmmGN4+OGHAXjqqafo6OjgggsuoK6ujsWLFwN2IYHDDjuMsrKyfp+niOS3cuVKDptfQjhc2OqNRx9ewoP/mEJVVVXO1zXXXNPr/lu2bCGdTjN+/Pic7ePHj6exsbHX2zQ2Nva6fyqVYsuWLTvdJ3PM/txvvnMJh8OMGZO7qEmhxxER6auRlg///ve/A/Df//3fOdtPP/10gsHc1d//+te/8p73vIeJEyeSSqWyXwsXLgTsfFkAhxxyCE1NTXz0ox/lT3/6U/azfyCcfPLJOf/ee++9cRwnew4AwWCQvfbaq8fzcffdd/Oud72L8vJygsEgoVCIW2+9lVdeeSW7z8EHH5x9/L///e9Zt25d3nP529/+xhFHHMGRRx7J4sWLqampGYiHKDJiNDc309zicdRhJQXd7ujDS1m7PkV1dbXy6DDmURX8RHZi7733Zv78+cyfP58TTzyRn/70pxx//PFceOGFNDU1Dch91NbW9tgWiUR2a6GNCRMm9Ni2evVqjjjiCNatW8cPf/hDnnjiCZ555hluvPFGIHdhj2OPPZbVq1fzxhtv8PDDD3PAAQcwbtw43vve9/Lwww/T2dnJU089xbHHHtvvcxSRXTMYvAL/MxjmzZtnA1q3r0suuWSn97XjHFLGmB7bdrX/jtv7csxC77evBuo4IiI7Gmn5cOvWrQDU19fnbA8Ggz3uZ+PGjfzlL38hFArlfO2zzz4A2T+izzzzTH7xi1+watUqTj31VMaNG8eCBQuyDcO7Y8eiWjgcprS0lGg02mN7LBbL/vvee+/l9NNPZ9KkSfzmN79hyZIlPPPMM3z605/O2e/II4/kj3/8I6lUik984hNMnjyZfffdt8eiK2Dn0u3s7OR//ud/iEQiu/3YREaqQvOoh12ld9u2bcqjw5hHVfATKdA73vEOOjs7c3rEFZvePlT++Mc/0t7ezr333svHP/5x3v3udzN//nzC4XCPfY855hjA9uJbvHgxxx13XHb7I488wj/+8Q/i8bgKfiKDzGBIG6+gL88YAoEAlZWVOV/5/lCpq6sjEAj0aH3ctGlTj9bOjPr6+l737/7HY759Msfsz/3mO5dEIsH27dt36zgiIrujmPNh5nN5x8/bVCqVLQZm1NXVcfzxx2d7MO749ZnPfCa776c+9Smeeuopmpub+X//7/9hjOHkk0/erVEqu+M3v/kNDQ0N3HXXXZxyyikceuihzJ8/n3g83mPfD3zgAzzyyCM0Nzfz2GOPMXnyZD72sY+xZMmSnP2+//3vs3DhQhYuXMhDDz00VA9FpOgUmkfTxhb8lEeHN4+q4CdSoMwS3GPHjh3eEylQpgjY/UPWGMPPfvazHvtOmDCBefPmcc899/Dcc89lC37HHXccmzdv5vrrr6eysjI7JEJEBo+HKejLFHj8cDjMQQcd1KNXxuLFizn88MN7vc1hhx3WY/+HHnqI+fPnZ1epzLdP5pj9ud/eHHTQQYRCoZzjbNiwgZdeeqmg44iI7I5izodHH300AHfccUfO9t///vc9VtE8+eSTeemll5g5c2a2F2P3r4kTJ/Y4fllZGQsXLuTrX/86iUSCl19+GejKnLszaqUQjuMQDodzGr4bGxt7XaU3IxKJcNRRR3HttdcCdvqb7qLRKPfeey8nn3wy73//+3d6LJHRrNA86hWYSJVHB0dw17uI7LleeumlbBDaunUr9957L4sXL+aDH/wgDQ0NQ3Yeq1atYubMmZx11lnceuut/TrGcccdRzgc5qMf/SgXXnghsViMm2++uUcrRMYxxxzDj3/8Y0pKSnjXu94FQENDAw0NDTz00EO8//3v7zHvi4gMrMyQ3kJvU6gLLriAM888k/nz53PYYYdxyy23sHr1ahYtWgTAJZdcwrp167j99tsBWLRoETfccAMXXHABn/vc51iyZAm33nprznCoL3/5yxx55JFce+21fOADH+BPf/oTDz/8ME8++WSf7xfsUJDVq1ezfv16AF577TXAtqTW19dTVVXFZz7zGb7yla9QW1tLTU0NX/3qV9lvv/3UC1lEBsVIy4d77703H//4x/nBD35AKBTi2GOP5aWXXuK73/0ulZWVOfteddVV2T90zz33XObMmUMsFmPlypXcf//9/OQnP2Hy5Ml87nOfy2bECRMm0NjYyDXXXENVVVW2QXjfffcF4JZbbqGiooJoNEpDQ0Ovw5UHwsknn8y9997LOeecw4c//GHWrFnD1VdfzYQJE3jjjTey+33zm99k7dq1HHPMMUyePJmmpiZ++MMfEgqFOOqoo3ocNxQK8bvf/Y7PfvazfPjDH+b222/nox/96KA8BpFi5eHh0PehqabA/ArKo4NBf62L7MSnPvWp7PdVVVU0NDRw/fXXc8455wzpeRhjSKfTpNPpfh9j7ty53HPPPXzjG9/gQx/6ELW1tXzsYx/jggsuyJkEOePYY4/lxz/+Me9+97tz5kw59thj+dnPfqY/pEWGgAHSprACXqEtqgBnnHEGW7du5aqrrmLDhg3su+++3H///UybNg2wLZSrV6/O7t/Q0MD999/P+eefz4033sjEiRP50Y9+xKmnnprd5/DDD+fOO+/kG9/4BpdddhkzZ87krrvuYsGCBX2+X4A///nPOZ/FH/nIRwC4/PLLueKKKwA75CoYDHL66afT2dnJMcccw2233UYgECj4uRAR2ZWRmA9vvfVWxo8fz2233caPfvQj9t9/f+65557sZ2rGhAkTePbZZ7n66qv5v//7P9auXUtFRQUNDQ2ceOKJ2QnpjzjiCG677TZ+//vfs337durq6nj3u9/N7bffnu3l2NDQwA9+8AN++MMfcvTRR5NOp/nlL3/JJz/5yQF/LsC+Lps2beInP/kJv/jFL5gxYwYXX3wxa9eu5corr8zut2DBAp599lkuuugiNm/eTHV1NfPnz+fRRx/NzlW4I9d1ufXWW6moqODjH/847e3tfPaznx2UxyFSjNLGUEjETBceR5VHB4FjTIF/SYiIiMigu/baa3n26Sv52Q2F9YT4wY0tvLHy5B5Dt0RERERECrF+/XomTZrEltWTCAT63sNvQ2OaeQdtIJVKqQF2GKmHn4iISJEyQLrAHntqxRMRERGRgVRoHi10fxkcKviJiIgUKUPhQ3T7M6RXRERERCQfD1PADH79m1NaBp4KfiIiIkXKGFPwHH6aqENEREREBlLhc/gpkBYDFfxERESKWKFrnCleiYiIiMhA8qCgHn6Fr9Erg0EFPxERkSLVnzn8NKRXRERERAaS5vAbmVTwExERKVIGSBeYlxSvRERERGQgpQ0FhUxPgbQo9LngF4vFSCQSg3kuIiIiRS0cDhONRofs/uyiHYXfRmS0Uh4VEZE93VDnUdCQ3pGqTwW/WCxGQ0MDjY2Ng30+IiIiRau+vp4VK1YMWciyQ3oLiVfgFbi/yEihPCoiIjL0eRQyebTvGbPQ/CqDo08Fv0QiQWNjI2vWrKGysnKwz0lERKTotLS0MGXKFBKJxJAW/AodEqFF0WS0Uh4VEZE93XDkUbB51NGQ3hGnoDn8KisrFbBEREREZNgoj4qIiIjsmhbtEBERKVIGpx9DekVEREREBk6hQ3o1xUxxUMFPRESkSPVnDj+jgCUiIiIiA0hz+I1MKviJiIgUKWPAM4UW/EREREREBo5nHJwCMql6+BUHFfwEgOPc03a5z2Lv7iE4k9715fz6YrF3d7+PNZyPX0T2TP0b0quAJSIiIiIDR0N6RyYV/EahgSqODdVxh9LuPIbdffy9FQzzHVPFRRGBzJBet6DbKGCJyGgykPlzoPNVMWRjZUYRGQo2jxYypFezShcDFfxERESKlMEpfEhvgfuLiIiIiOxMwUN6lUeLggp+o0wxtDRK7/TaDJ3uz/VwtXwX+nqrhV56079FO0REittwZaJCRlaMlNxWDJlHREY/LdoxMqngNwKNlAAi/Zd5jYciuA3HnIZD+R4erjkbC50vUnNLSm8MDmmjIb0iMjKNlMw6Us5zV/rzOJQjdt/uFpKH+zUoxnOS4pM2LhTUw6+w/CqDQwW/IjZawocMj8F+/xS60MtIez8PZdG1v4r53GSgOHgFzuFnVPATkWFSTNf63VmobTQr9uxQbCMkdme+7WJ+/+3q3EZCDpah5eHiFLRohwp+xUAFvyFWzB/8Mjz6eyEttvfSrh7Hrn4+lI9ntISXHZ+z0fK4pEt/hvSqh5+IDJSRuLhY5tyKLScNl2J4rUbya9GX568YnuPBMhI/A2RwaEjvyKSC3yAZyRc2GRyj8cI4kI9pdwufo/H5LcSe/vhHK88UPqRXi3aISF/194/5Ysq5O/bkK6ZzGy7FlgkGordlsT2mkW53563U3JF7nsKH9CqPFgMV/ERERIpYoT32tGiHiIiIiAwkD6fAIb0q+BUDFfwGkFoUJWMoWrqKYUW5YmjdG4j7HazJind2jIF+rYrhtdiVkXCOxcbgkC5wDhQFLBGBXffeK7R3X3/n5R2sIba6juR3nHta0T0/uzuvczE+ptEm3/Or+f4E8PNoIUN6NYdfMVDBrwAq6ElfDdeFb6iLgMV8Yd/dxz2Qr+FwFmJ3ZaBfw77et4p//5+98w6XpCzz9v1WVaeTJwdgmCFHkaBIWMAwzIxhkfVzcfVDF9fAuvspqICJBUVUDOCa17CmRWXRNe06wOAqSFAREQM5h8nh5NOpqr4/nrdSd9c53WdOz5zw/q5rrulTXakrvXc9sTn50HpKrwEsI6M5q2aewWnP32B6mmFlsmNZO8bA2v0zdftmj2YjE9TecxNdp9PpGEw2zTdN0+m3GbWmVlN6W+VXo/bIGPxakIEJUe2Deq4fj/E0HbyRe3v77dSeeInY09vfU5qq62IqjoEBxHT5pkuvkZFRG5X2/J1u41uzY4DpzDszNJvH9Gaj4dLUzmMz1+6N3en4bBzT9Wq1S69xQE8PGYNfC5prD8k0TfY4zFUIM2Huu6c9cc3MxXMz3nXZjKF6b0UtzrVz5aNwWyx67JkifkZGc04TlaaYymf23uC5VsaA3W0CNls0V8fNvaG9mVkxkWbbdd2KJvusmsvHbDy5vmoxws84oKeDjMGvCZmbvl4GHpqTOU4zQ3P5Hp9MdMcG7/ppUUNyLsin9RoopoafkdHc0XjP3d0xQrSrtm18XbvzIt4OvpptmTyGQduv6ZSaO1Ou21aeLVPxHJrI8dFofebeaSyv5Rp+hkeng4zBrwnNNgCYCk02zHmupQNPh5TemazduT6MQap9qj2OwbGe6mgSc++A7yu8Vmv4+a0kXBgZGRlNfZ2udq+jnXw1k7nfjJt7TlNt7Jtsk53ZoN15/uzuNW9Sd5uX12INv1b51ag9MgY/IyMjIyOjJvT6g/55j29zMl16/ZYqrBgZGRkZGRkZGRmNLxerpTrRrdagNmqPWjL4ndX7ehyVCf9uhxV8OlrZZ7NHZSo0UerfeJqtdf2my7U7GTV7D07HezVQu+oWGTVWu45xK97uPdFt2KU6pdtoRtKlt8UafiiDWEazWmf1vp5f+D/a27ux17W3xrdW2a1dY3K7046NjBqpHWm8U5WaP9c0UR3q2s8TaTqlaI+ns3pfv1e26/oK39Twm3HaqxF+u9vFaCKlAUkrRerNQ7a9Msd372sqIGMiw8xkZYrtGjVSo/O7uzVhpqtMl14jo8ZqZy236VyAP23be+K5Fj/mk3mJ3hPHaqrT/Yymj5q51mba+Z5JPDId1Uwd6nY7GdLUrmtxb14zrdbwMxF+00N7zeC3J8Fkd6cbTV4TGYJmY4TfTIGNdh930yXPaG9rqq+lnoXdsG1KVzmhfB/cFmugeMajajTL9eOBb9HT0zMl65qKWnKTUTNj5FQ4vqdqXXGlRVc348jf0/XIdsfYOBsZdTprqmtDtrvGY+32xtuX8dZhNDvVrs7pG7zrGRwcpLe3d9L7Nlm5vmUi/Gagdsvg16wXzQyWRpB+fcyG9MvpPnDvjeNqng9Gs02D24f2+DYlwq81YDIRfkazXUGJmZnsWNqbju+9uY3xXoKnw3mZqZruHJqmdp7zqUr5TuPZyRq+m53HaPZpqozaVb8yBXvTuoRHm2dMw6PTQ1Ma4Wc6khqNp9l4fcy239NOGbgxMmpdUsPPpPQaGTXSdK4la9S8WqmbNVmWmOy1Mt2MkbPlOt9bx3MyUVe1kZ7NlhUxMpptaj3Cz6T0TgeZs2BkZGRkZGRkZGRkZGRkZGRkZDSLNOU1/IyHw2g8zbbrI14bZrp2dpptx9zIaC7JR+G26JtrNQXYyGg2qJXmUaY229zWTOjuO932ZzZrogwk86wwMhK5WC1lkbTKr0bt0V7t0mtkBNOvht9kas1Nh/02MjKajVItN+Hw/TbtipHRDFQrjjmj6aU0Y22tZtN5bcXQN5nfPR0MidPxfE3HfTIymm7yfAUtMKkpMTM9ZAx+RntVteCxp2ulNAs+U9k5bE/BloEXI6Op1V7p0kvrHlIT4WdkZDTTNdWNvtL4cjoYwPbkPszGetrNqPb8GweAkVHrMhF+M1PG4Gc0pzRZyJkpYLDaPif6Q+mHrO81vwJV82BuZVkjo1muvdKl11d4pmmHkVGdasfzZtI0p1sDBqN01TbZ2N1ztrtpvFPFgVNpbJtJ1/Nq+5xJ8+gG9zpZx278ztplZ8IxMzKabvJ8q6UIv1YzVIzao5YMfj8e+BY9PT2AeVAatVftSvPdHc/m7oJVuz2qZ2Zeg7Lkwep74+T01Rr1xlOz804EcfH1GCOikVHTkgi/FlN6jcHPaA6qmVTPYJ6Z4sQzEjVjrNsT53MmGdjStKei+87MvAaYgEehKc4MndnNMKnhUSOjtslFtRjhZ3h0OmjSEX6zvYaGUXu1J9MJpnpbrVz77fydiWi+WqVBTAx0AuPgeJoQ1Bqsd7dlogyNjEL5TCLCz3hUjYwAY9ibztrdlN3dOa97K6W1XdudLim6Dbl0kjx6U+V7QGQ4lFU1waTt5FHZialbv5HRDFOrEX5+i/xq1B6ZlF4jIyMjI6NpqslE+JnXESMjIyMjIyMjo6mUifCbmZpSs+sG7/qG/4ymj2bSuVltvXpKm2W0U9Pm2ve9eu+jsqJ/iCdVWSo5Xf9Ttt1w3nCZqVCD7abuY3z+tGUn2o6R0RSpZ2H3Ht9mEOHXyj9/kkP7F77wBVatWkU+n+f444/nV7/61bjz33LLLRx//PHk83kOOOAAvvSlL9XN84Mf/IAjjjiCXC7HEUccwQ9/+MOWt+v7PpdffjnLly+nUChwxhln8Je//CUxz+bNmzn33HNZunQpnZ2dHHfccXz/+9+fxFEwmgn68cC3mp630Zhsov72jprho6lgqXYzWKvrngnMPeVqgkdlUj2PBtF94TKxefc0j4b72GB/mubR2uWMjFpU7TOxlTFwKtUqj7aaoRLI8OjUamZG+MWMAg3Du/d0uPUMCPlOA43pnJo9nfdtOkruhyYApdH3sfmUJddufF3h13bNBD+YN7oP00AsmKcVUEvc48qqq1Eof9t1+5C4/0y9FqPdUPw5NDg4SG/vt/fo9n1f4bYITJMpknzddddxwQUX8IUvfIFTTjmFf/u3f2PdunXcd999rFixom7+xx9/nJe+9KW8+c1v5j/+4z+4/fbbedvb3saiRYt41ateBcCdd97JOeecwxVXXMHZZ5/ND3/4Q/72b/+W2267jRNPPLHp7X784x/n6quv5hvf+AaHHHIIH/7wh1m9ejUPPvgg3d1ihD333HMZGBjgJz/5CQsXLuQ73/kO55xzDr/73e849thjWz4eRrNbU5rq22BsCrU3xpxpWBZjd41drZ6v3W3Q0Yz2Rg3BmaJaHg2mxf5I/w5Yk39dzbteEzwK4HtN8ajM6rfMo8Fyjd5DDY/ObbXDoTQdnQSub7VUNqZVfgXDo+2Q8n1/woII8pLTy8DAQNi0oxVN5SCobFuikNAP1OCBGQOuQL7r4rvulG07uSONDStN1zzbAw/63XlQtBtcpuIhNtE+TscH5VQqqJWSiIQb534YV8H1XHsPVarjLJJicG+k8a73KTSYt21/mlnOaNYo7dmxu2Nhq7rqqqu49tbP8jdXHd/Scrd97WGWbD2Wa6+9tullTjzxRI477ji++MUvhtMOP/xwXvnKV/LRj360bv5LLrmEn/zkJ9x///3htPPPP597772XO++8E4BzzjmHwcFB1q9fH86zdu1a5s2bx3e/+92mtuv7PsuXL+eCCy7gkksuAaBUKrFkyRKuuuoq3vrWtwLQ1dXFF7/4Rc4999xwPQsWLODjH/84//AP/9D0cTCa3ppuPBr8H449vpcwBgQKWLQtTDqO8aSpMbHN49pUs9hUnsN2cWJas5jZrrDeXg2Pyn8tMqme/8aRb7Gm8/VAOpM21bAuUCtNPZpdJnVTbdqfZpYz2mPa3Xqkza4vrj3Noxs3bmSfffbh0j+8Astu/l4e2lrk6hffRLVaxbYbWenrZXh06jUzIvxixgvlZMJBQNlADJ5uLMrLzZqCHOCbKtHLzmr7nBDOgIaRSbXfNbdraty/Ux/2e8DLE3/QTDfYmIp9a+RNmW6/sxUF122tbhxrHFG0wb0OgDOzrwX0tWdn5UulILDlxwzjCY9mGkTEX1xqgK1WEwFcPDqvJQXzN0oHSW5gz+xPfPsGsma8ZtJzwqP1CD8fheu6DA4OJqbncjlyuVzd/OVymbvvvpv3vOc9ielnnnkmd9xxR8Nt3HnnnZx55pmJaWvWrOFrX/salUqFTCbDnXfeyYUXXlg3z6c//emmt/v444+zefPmxLZyuRynn346d9xxRwhYp556Ktdddx0ve9nL6Ovr4z//8z8plUqcccYZKUfJaC5qt1/MankUwFJhtNGNI82nWQVjN1AXmRSf3qwajX9NGf/azKNTxaLtcESvtl7dlvFgJo0x4ynOpWksmlDcuBfnURAmjfFlIjKuAZMl7qXgXS9mUG+8+fEj+uL72JLS2G+Ce6dt+xNfzjDpbmui7ttTEWFcu62ZqtYj/GTewcHBhMHP8Oie1R4x+DVMzUzpMNoITpSlImNd/LNS3NAArhoNSoFxBMQDFXpmneiBGXpgvSZe6kMDipU0JNb9nokfxIlQ9Wli/Jvo4TfdNFMfoIHXEhBDdg2Q+9VKeK/Er+G4wnvGtlGOvqUtKwQkX3lhRyVlE8FXw3VZ+F7kQY3utcmBRUte17ia3U4zoBRb127vT+32drcmyxwGtVqDfbvSo2bqsyGuVlN0fV9x33330dvbm5h+2WWXcfnll9fNv337dlzXZcmSJYnpS5YsYfPmzQ23sXnz5obzV6tVtm/fzrJly1LnCdbZzHaD/xvN8+STT4Z/X3fddZxzzjksWLAAx3Ho6Ojghz/8IQceeGDD/TcyiqvRc6JRd9BaHoXWjHxx3VT+Tvh5Tf51CR4FnaXiNTH2xngUSGXS6cKjRtNfCTbVOjPzmvA+aJlHAVxXeBTAj4zk4zEpJI2OYZ1p2HM82uy29hSPButptL3dYdI5er/Hn/0T1RYdTzPlfXl35fmqpS69Ab/Onz8/Md3w6J7VXovw2+Be1ziiKVHroLH3JzDMTRqyKt9j3aLzZV1Vbdxw3ciDVC43rBfRVLrkRB6gBlI2dcA24Tp3QxMZ/+bKQ2s6KJ6qAEQptYm6deOf/yCyFWBt7xv18h6+F7+XtMHPspLeVpD53OAFI6XWSLhf4xjDG0XfBd7e2DWenKUJ0JkswDRptG9qG7VFmqdKE0VWzJGIwkbPoalKkZjp0b8+CrfFJhweiiOOOILbbrstMb2RNzUuVfPi5ft+3bSJ5q+d3sw6p2KeD3zgA+zatYubb76ZhQsX8qMf/YhXv/rV/OpXv+Loo49O/Q1GRo20pnBu0nCWwqNTpRuL17J23pvkj4BFXRfKZaABGzZbvmOiKPkahUYY32sLj+5Oqmu7HNEzfYxoq+KO6N3gUaCOSVVgCIxlpITzuONct83waO0ytTwaTCM+S5OGt9nKpBPV/pxlEYVTeb/PpfdmF6vFLr1y3ezcubMuwm88GR6dWs2MlF4jIyMjI6M5KMmCajHCD7Btu+m6LgsXLsS27Trv6datW+s8mYGWLl3acH7HcViwYMG48wTrbGa7S5cuBcSzumzZsobzPProo3zuc5/jz3/+M0ceeSQAxxxzDL/61a/4/Oc/37Bbm5GRkZGRkZGRUfNqNcIvSP/t6elpqoaf4dH2aK8Z/NLqlcULtSrVwNvi+c3VkWhWduRhCqyzyrbDwrDJAsv1F2orxZGbqe/XMMR7Iu/NbnhbpoNXYjrXGmy3zsy8JlEHKJQ+p/GuX02p1kvaYHroVdVSlhVF9sXTBGwrqgMYKL4/E3lDm0h/TUa3NrjmY6n2yVWN34E4rtRuacmZxl1HQ011lMdEhaJngXd1rt3fUyEfhddihF8r3leAbDbL8ccfz4YNGzj77LPD6Rs2bOCss85quMxJJ53ET3/608S0m266iRNOOIFMJhPOs2HDhkTdlJtuuomTTz656e2uWrWKpUuXsmHDhrC7Wblc5pZbbuGqq64CYHR0FACr5tlm2zZe7bPQyGgcJdg01szqpuLkMkpa0Q27vgrA2vlvls2rKH3Yr1TbyqONltkTPNpsxN+eYNV21fOb8Yrx6I3F77WwXAqP6u+C6XEmvXH4m43XFbyrxZl0d3i0wbRkdKtfP28s1T751RTz6ETfNVIboo7HjfibwTxqIvt2Tx4KWmDSVvnV8Gh7tMcNfgmYij8kg4egbYUP/xtGvt62/Vi/LWlhXdtzXvRHrBMwlQqJ5gfjSIwXzb1oNRxMEn+mFHBuuOEJwrBnkOZiakUAD8qPUoUaFTNek39dIl2iVqutV2N3denlxnnABmHHsXnCl4pyOVlPZbzaKhbJe6LZ1KHa+z4s8hwz/Pn1n+MKaxVZKllfLzZvomtio33a3ftkgvSLZl6+JnzpapTSO4PTfHfnhWpSYKWs1FpDM0U+UdHjZtVqRCDAO9/5Ts4991xOOOEETjrpJL785S/z1FNPcf75Uv7ive99L88++yzf+pYYPs4//3w+97nP8c53vpM3v/nN3HnnnXzta18Lu50BvOMd7+C0007jqquu4qyzzuLHP/4xN998cyLVeKLtKqW44IIL+MhHPsLBBx/MwQcfzEc+8hE6Ojp47Wul6cFhhx3GQQcdxFvf+lY++clPsmDBAn70ox+xYcMG/vu//7vlY2E0N9SQR2NlNabUudyCbtj5FUBzaawTMJWKzBBvfpCiyHgx8bOg4fgUG9MSY/NE2s0Op2kGwFaL5k9Wc7W7LiQ77Mabu8V5NLhnWrk3xuVR4IbBr4fp7GFaO5pHITL2QTqTBrOkMWmzPKrnrbvm40bAulTgFB6tmbeOZ6fy3W1P8WjatmYIk+7N+3m2PEtcX02qaUcrMjw69WqrwS+EKUs1fkgHDxJL7TWwCnTD4NdZt+Qf5Q/Pxw88WmTwA8giMko2lBuLjmpUU8V1G0YrpakZD2zKgunfTZeH8gQD0pnZ1yYKWs8mrel8fQ1YRF70hvVRYucs6Op3U/k7rMm/LlwumjXymCautXgNv1rF6qeM14CmdhsolYSsRtddbU3C2s/NaJzr2ff8xD5PeH9N9fVfZ6hXDb9vFMk4qY7eMH3u4Ulqskb9Vuo3zRawEqlJpPS2DljnnHMOO3bs4EMf+hCbNm3iqKOO4mc/+xn7778/AJs2beKpp54K51+1ahU/+9nPuPDCC/n85z/P8uXL+cxnPsOrXvWqcJ6TTz6Z733ve3zgAx/g0ksv5cADD+S6667jxBNPbHq7ABdffDFjY2O87W1vY9euXZx44oncdNNNdHd3A5DJZPjZz37Ge97zHl7xilcwPDzMQQcdxDe/+U1e+tKXtnwsjGavwpq5NUw62ZrQ7dQNg1+P6k37HgqJVBAmbYJHIZE1k/xeN/XaDSbd7Zpn02UsG4dHz8y8hpsqLUS1zVCtKZwbc76qGKfUZovI3wF/pjmhV1uvxuro0OvQjuwaJg2mr+19Y+SAjtWYbplHIemIrj2vU8GjjdYb7kv9Po97f7Xj+k8Y6hvc98pqGMnY0vtmm7t6t1ON+HF3eLFZLp1NTNpy0w7Do9OCR5Xv1+bs1WtwcJDe3l4GBgaargkESbAKo/YG2xe1t7sKDX4xAwiAXywB4OkwTZXNRt2nYmHpuF79w8+2o4GoWo11Am4cuRRqokLMJB/Grcxb80Vim01Nm6wmGojG2d5sAq54NKlfLk+cetMAelQ+F16X8WOlslmZ5LpR1F4tZIUdBusLJqcquMZr5vNTpofrDVRbgDm+jhogagqQYmCagNTxXmKajYybTIRCfH9i0xp6VVPWlfr9LDP4xdUKBE0mumOqIWuyY+FkddVVV/Hvv/wiZ155SkvL3f2N+1i14wiuvTY9ItjIaCZqd+7BNZ2vTzi/pjOPBlq39G3yoYZJ03gU9LgcL9MRqIZHAd0JePyxqeH4VqMp4dHafYiN2Ru861ltnzP+fraiZnhUzzdbnc9xre05L4yoi5+fm8rfCR3N0JhHg4CNNYVzU3k0WLahI9q2Gxr8UjUOd/qet1s8Gt/f2s+NZ/ZSeTRYfrd4NJi30XYnmL9RqnEdk46zntTvZ7DBL027y4ppfNpOQ9+e5tGNGzeyzz778LbfvgYrzdHUQMPbRvnG2h9RrVabquFn1B61LcIv0XnU92cEWFHIR5+r+gFdraLy0kkmyMf2x8bwYwNVaFjxffxyzKAHUC5j6UFPHpJ64LMU/njjiO9F36cZDiZSbEBJA5pGXdgatb1P7RCXtt3Ur9SE8wTfz1bIumHw61H0q7JQWX0sqtV6b1u8pqVth+k9ACojt2+8Pkric6Pad7YNerkQeqrVCIZsO4KluCEwHhkYbMOyGnZMCuEutowfT0GK1wm0lKQyk4x8azbaTebTv9OPLZd2fU1kwG6lDkqDeX3XDadbGZU8X7omaXhfN6oTE6x3kvfXTIOvVqL9mo7wmwVpvHFJl97Wm3YYGRklNR2j+CaU5k+qbmikU/lcKo8G/we+fL/sjsOjAG7MOJGyD2Htsmi5lpk0NvaObzisrasWG0PDbIgWDCATdSVuoutyPLNitsqvVKNzm7XCa+3M7GvTeRTqmDSNR6GeScN1ZJwkj4LwZ/C97ycNgSk8KovVRKGm8SgIk8adyMFv81UdizfDpLU8Gk7bmzyqv7MyMcYPFlF+czy6O/s4Q5h0qstJzaaIvlq5qJaySCYT4Wc09TJdeo2MjIyMjKapfCbRpXcSNVOMjIyMjIyMjIyM0tRySq/h0Wmhthn8ZqIndf0T19RNW7fsn0CnS8Q9R2Hoeyx1Utk2fsxrGsjT84aeVZoIE48rHu0X1zhh26l/162icbh2rSc1XoMsMX2C1I3UtIn4fgXTY6klyrYnVRx4xihez228ayGt/qVS0XUZePLDWpNBlGasOUejaD+9vA81dYBidU7CdcS8uvGagcE14fn4pVK0XLDeuCc1rJ8Si2BzI89pU/fEuOkHk0x9bbW+0HgRrE4m6Q0Pflu10nxkbu12G6QxN1zXdPSktqFzXFrx9tnqUfV9hee3dhyNR9XIaHaoIZfu+/ZUHoWazJNYZglMDY/KMjXTm+HRtGmJrxuXtFiTf120jVgNsmi3Ji6D0yqPynqbqyU34xWP8HLdMJoxns6bxqNBV2kcJ51HQZYNIu1qo/3iPAr1TBpmb6hUHgXNpAF3lUrpPBr8Hi8WwRYE53l+8/dEaomWSZSGgdZ5dJxllJPRX8eiWD0fv1rRq2yCSRtttzaNudG6piOPQluYdK7J8y1ogUlb5Vej9shE+E2g9Zs+z7qDL5Y/SgJKSqlwcPLGxhIh45ZOvwgALIArAK9SbQwkaZ0445qo21Sz9Ujq1ABkGnRni88rANRosQbbjRmelGXVhfgH0wF8pUJYQCmUbqU96xWkXedy1DXVUCpMwVXx1AHXjaBHxWAqDinxmihxYNWpE76KAVS4udj2GzFuI2Mf+nqvrZ/nJhuSEOenRt100zQR6MS/n8rOu/FtxL9v1BU4lvYQgZ4bezlq4YVqgn3zvQbPi+miFurStPacGl+z1dgXqFUDnknpNTKavVr/zGdYt+ICoJ5HQTui9fhv5XOpPAoNnsPj1XKOa7zvJ2pmNa5qwCOVR2XeyElcu1gKjwLxuuK1TBrnURCH6kwMYGhVac03gncaYHweBSnRksajIEwaLx8TyPWmnkch2Sixlkdh6pm0Ef9MVefd+DZqv4+Xyan9TGB8DK2ZU8+jafu6t9VCDfrd5dHZzqBxCY+alN6ZJmPwa0J+VndG6ykAYA2XYKwonx0bXxsC/VJJ6mAQDZIWhAObX6kmaiokHtaBGjQgSFMikihmeGjYdWm8DqqQjMCKK3iYW5GHTVn1A0piGzEvoLKsaGC3LVQwkAYFo8tlyMmxShTuhXAda+e9KZx0w66v1u/jDFQjuFrT9Yb6GS0rMtDhhcfEj4E78Voqwef4tROvfxI7j0kYs8P/4lF7kVFRQ7DrRl7SOEzFASl2bXiVSZgeWgGHWmPfeMWE04xRE22vdr3j7IdEGUyhkW+cbe11tfAS2HTtziY1l+DKR+GalF4jI6OY1j/1aQDWHfqeBI8C+KVyGHHvV6qpPAok6s4mHFpQH8UzzpiWxqOyWr91Hq2dBkke1fOFRsDa8T2NR0Gzkv5tns8NO78SLra2940yPdbcLGRQpRLzzgXF66+vnfemJI8CKNU6j+rlEl1z664tO8TSeNSeGBUb82g4bbrwaHz7td/vDo/WrjdlnigTa4qMfOPtz97WFPHomdnXzupanVMh11ctMaZJ6Z0eMga/JnTDX64E4MyTrgDAne9gb9MPT8eJwCBmWAm8hiqbjWDDtnFHRus30ODBP26h1waKUjlIph+oGkCKGWmUk4mm14bq+zXApZSmRUi42uJh6/F5w+3HvHyuC9p4qnSDFFXIxzxwXnLZ+DrmgG4c/maYPhGcQyuXw48bR+PFuYNz5PuJZQCw7YTHM5Ck+sZSHCABWr7v1XQwC7yxMUN00B04tk0fN/KWtuhNazrVtVXVGqXHi6KdKJoh/l3a+vS0cZvxzFQ1m76REtkRpfQkv5+V6fpTLKnh15qhtJWCykZGRjNX6x/8GOsOukj+CMp81DTfSuNRoJ5JGzhzJ2yGVaM4j8a3Fa4jjUdBvmvEkr5fP10smNE8zfCo3m6q87i2qdkc4c/xFJTXsbo6kzwKEi0ZfwdK4VH5uiaaMuQCP51HoZ5JU3g0WKcfwKjLpDIO2sqk4/Fjq0yaZqivWcdsZdJxG6qkOOqVpVJ5FAyTNiOT0jszZQx+LeimOy8FYN0hl8Qi0bzos23hj+jaCHrQsrLZRDdVK9amXtnyOZ5mMZm6YakRSPGQ+6DGS6wrVbw2icpm6tNJiQyXMlMD8LGi6fEUicS6El2hojoSdbvrRJej73sJYFi/5Yv1256FCjxLYZfrzgKqFIFVwuOtPfSB4ses1ssZHkvHibqZBeAWq7UCRLVT4rVrgnNTjbYZj1hN1JVLCaNvBFTKUnWh9PFaPBMalsaDucl6Ssfbhqn/AdScb5mQ+C6YVudJrYm2WNtzHsDM6OJuZGRkNB0V59Hgbz2O+yOVVB4NpkUGumxzPArpY+Fu8Kjsg40KHMM1TFpXEqaWSa1oeiqPQjKdNEW1PBrs27ol/wjMHSYFIu6s5dH4d5Bg0joehXomDY6xZaXzKMi1HLs+0ng02FaCH8dhxVomDR2Uiekx4+JEhqVmmXO879Mi1QyPpqrhuall0pjTujbDak3XG7hx+Jtt308jo70pY/CbhNY/dJWkUYAMeoG3qYH3xisVUdXGcBF4XeRhNcGA0eAhn9ZCPTKmRMtEhr2afUm8tNcb9FS8DlxQjNd1G84bepHjdToyTv2gH/8cC89fv+1LYepEItU3Mwcv06DQ8PAIKp7yHMhSdak5yrbDz/g+BHCccUKvrIrXYwkMf7WNOGKFv+MecUC2mUk2Cwn2RxEVuQ7+j0d4hder7zVM74nmjdZhZaKBPCg0nFCjOnp6G02rmXtuMuudxapL0QoUhyzbrouySKT4z8H0qMlImna0mtLbpp0xMjKadlr/0FUAUb1p24qcq7Hon/F4FIRJEw3bmnWoxbgzoURKbxM8CuMyaYJHAfxYc4WaedN4NNj+2oVv0YtZCR69YfuX63YpdMDmcnOSR4MahmsXviWdR0EyS9J4FIRJA4NztZrOo1DHpInGH03wKIDCTeXRYFpwHdcyaZxHg3mtTGRINDw6fdQ0j0LCQB04nFUmEzaeMUw6sVrv0tvGnTFqWnNv5DIyMjIyMpoh8plM0w6ThmZkZGRkZGRkZDR1Mk07ZqaMwW+yslNCqQOPgop5p2KRTYlopgaptX61CY/NuF5XFduH+nom8agtb6yYqL3hlyvRvDV1XqR5RIPCu54PuvpG6PmMF0SOpUUoxyGq7xF14F2/+Qvh53hdlcADO6dSJ7SCOhLrlvwjfl8PAKp/MOHZDiL4wuMe94hWKmGXY+U4+BUp6k2sDmCiLkosEkvFp8W9qgQf5dx6nhd6aFU2E3lzdbqO8p2EN9gbHY32s1GB7mDf3Xh329j900T9vGmlFjrWTuk245qK7cdTc4NJKSlR8dSJxHMk8OR7UY0fE4bWvFqO8GvTfhgZGU1jNSjLgrLSeVR/Hz7ffS+RWtsUj8bXVTc9VtKhCR4NpwXZJOVKkk3iPAr1TBqyhN8cj+rl4jzaSHOhS28zumH7l1l75PsBzaOQyP7B81J5FCSSKjjufqUYsqJE7dVcQ3F+CP4GOZ8pPArCGsF7xNr5b07lUUCYtFGDmAYZL/H6zHWpwjOFR2HvMukU8aj8F7sGxuPRYJlGNT1jzwAT2de8Wo3wM03kpoeMwW+S8rNBYV8XFSt5Ej2EYmmsDR5ytR2TQrBKq9PQ5IPSd12U0wCs4vVIgvROS4W1UnzXxStL8VsrmwU7qM8R1ScMFa/T4bp1KQ4qmwnTcRt2/oXwobv+8atTf0uj1IrZphe/6KPh2/nPf/Heuu+rB++L0iBkj5XwBwWylLIgNKJEdXtUTupCqoGh8BrzBoai87d0IaqoDbu6ix9eLP3XdaN5412TGxhpVD6HykvzFX9oOJoee+kIri9sG8b0tVjIoToK4T4HQOYNDOnloxT3eNqEsu29V3w4fl+OB04192qj1JG27dtE302mPmjtrA3AKpFOEfv9fiV5rQCS+m1Hz4sgBW39wx9veh/mmnxUy0WPTZFkI6O5J1+nyNYzaWs8CppJx6sb1sR4FjXkSDJpGo+Cdh4G7FIuhXWvsVVTPAokmHSqeNRI5PUI89ljugv04GCUPp7PpfIo6PcM/RnbgqUL5ftiJcmjIOsJU3djpUAsK5VH5f98OO2GnV8J0zahhkcBxhSqoJfrKETXV7mc4FGQFPdaHpXfNN7RaqNq04fHawJSw6R1Rv927NtE09vIo7Ialfj9AY8mOvCGjgdnbtbmnKRM046ZKWPwm6Q8bfCzyoReAt918cKaFS3UYWikVouxxrweDWsZBB5Tz0vU2AjrX2QcLDfo5JYJB76wgG4xxYtFZExUXZ0yoRANuGJAijXfeOQTrf2uWao1x14GgOrOoqpybl5y2pVYlSCCTQ9aSqHK+pry3MgL2t0RQa/SRtuuPH4uE35vFbVns1SJPKkbt+Htv1Q+d2nQKVdRI7FOZ8E5T4tiDWqtOHYCkNctOl9/rwHJdRPRm2t736h310leIxrCrI4O+XtkBF97+93hCLAavZRMuZRVDxGJ694O7zW/iQ5wbev2FijlOdHwGYCd2J/G8zTeRt0xiS1rZe2omHrMSx8Hq6A+CpaKnj8dhfA6X3fwxcbolyIJXDERfkZGRhMo1mQrNJpVqhNkhTTBpLvBo/H/o22m8ChI3WfNpZbrRUYay0ry6Dj7rhwnnUcBbNuwaAO95LQrAVBVH9+Rc2ZVvLBh4ZknXZHkUZAxv1uzm22l8iiAVSwLj4Iw6cZtsqr9lyZ4FKhn0iZ4FOqNtuM1BFvb+8bIOFzDpHEeBfDHinuFR6HGsFXLo3q+0PC4N5m0RR6t3Z+mmLTRManhUVmv1xSPAviVahiEsO6gi8yzYQK1Wle6VX41ao+MwW8SWn3qlZCNPKZBdylveGT3PSZpnUPHU6LAbGSQwFJR8weiwSnuBVXx7WRjaQ3BYFZNdoKVXWyQggnhccC2Wf/gx8LvTRRPuqyKh6poMMdBFTXsaCD28g4qiP7sKKC0t9vr7cAaGE2sy8tHkZludxZ7WK5Re6wYGnZRCmtwTObpEyD2O22soIj2aCm6Bl0v1kUt9sAu1KdsAFR37JBZcwJOte3t1fw+2V53RxRlGGt6E0TNqnwWNagjBkdGG0fMTRa2UiIWwiLiGSf09ocp7vHl4stOlMaxh1MnGjVCSdsPZcXSo9IiNho8R0I4jj0r/GIMzG2LG4ej8x4YeUNPfDYTev1x4s1ijIkqXcrU8DMyMkrV6lPFUGPp8V9Vq8KjsHvj0FTwaLB8MD55fiqPAuMzaRM8Gqzzhmc/2/w+G7Hm2Muw8vocVFw8/XqoilXWPvdfZKYaHgVQ2SxerzboDYyGDWTOfP6HuOm3styLX/RRAOxhW3gUhEk1a1mDYwkeBbBsW3gU5DoMjDeO0xSPNqMbBv6dtc/5gP6dlXB/sK0EjwLCpCOj0f5oSebJ1PJosF4V4/YEj8aXDZafKTzaYF8avr+mRSzGniPN8CiQYFIgeo4E3cBzWeFRvV6j8eWhUKaG34yTMfhNQl42enhZI0TRWBknUe9hd5VoDd9oPGlQy0B2Kt4ZtR6QrFinssRAFdZNKUdRTI3Co3ETIBimcPZKrTmvK9Z5C2Poa6Qb7/kgAC85/SPh+bNKVSzt/fQ1uFujseuoUo0GJQhTJ+LeqNXWq+XD6cdRXiCGt8JOBwLI6iiATr+1Yx5TT0MNOQcVRGtVXdAeWj+jDWJVDwLwcF3WHfBuvQIXZ5mOHNTQtO7gi6kukmtiwx0fCFNv1Fg5GnCVBYHtb1jDVCEfeludhfOpbt8p032vDqyUk2ntnmuUmhSX64brS2wrVgNpsulNu62JthUzXMb3PeEJVdH9rMJUKf197LfXdUfMJqN4/b4eVJDSU9zGjcPfbLxP8c7egHJtCNisUoWc9so/9snGyxtJ0w7TpdfIyChFG26TumpB5gB+9DKclsY7GY3LpGk8CrqUQxB5k2TSOI+G+xtuxBce1etP8Gi4zdj4H+6DxbpDLgGiDsZG4+vGez7IS07/CCDH1yrJebJKlXQehYZMCoTGPiD055UX5IVHQZg0KO0yNBzy6Pr7xTi45tjLIKevDc8THgXIZVJ5NNC6lRdG+xiwTCGf5FGtG/74YVlm1TsjxqrU8Kj+31k4H0CYNKwzHWOt3eFRqGfSGIvWGRXHY9JpwqPQ2CBay6RROn+2KR6VeZ0Ej97wlyub3vUEj4Iwqb6e1z97TdPrmavyfIVqJcLPGPymhYzBz8jIyMjIaJpqUgY/A1hGRkZGRkZGRkZTqFYNfqZpx/SQMfhNQn7M21Dty5MJukMNDkMQTry7nYl8L6qFUefZSXpSE0XzIVEQOax7EYR8KBWlaSoVecXijRZyucgDEuy7HaXfKdsGKxZGH3hkvD3gVZpl8hX4OsrJKruh5xKdNqHK5VhHOi+MjFMZO9mhrkbOUAmrHF0H7j6LALB3DUfrC67VfI7yIknJyO4qht40lXHCtIZqn3hinYEiBNFepUoU/m5no2ssWK9jY+s6LGuPfH+UjtxTCNOYUQq1Y0D/Zu0xLpWijr8TpEr41UqYQuyVy41TkBqkBMfTjvx4aoDrNq5xEltvUEQ8sb12qskoQrkv9bnzo98W3J/KtiMzkOPEOh4GdUxiQfrZTJhCoxwnSpno6QLA68xBp0Ty3jRedF5s24DUY9Ldo9c/9elxf4+RqNV6KbJMm3bGyMho2qraJ2NhxvOishjF0tTwKIDKNE5frB1Pa7u61zJpGo+CjPk1PAq6fE6cR0HS+sJxzInxiG14dBIKhhk/Z2OVdXRZxk7nUYBqVXiU+hrdQcaJc9yRAFhlJ5znzOd/SHgUZJ2aG9cdLs3rbrz/o6x5nmTCoFQUsZp10nkUWHfoe6LIQd9P5VEANVbCmydRYqq7I2LfHQMJHgWp89Yyj0Ii8jT8W6u2rIo0rIuVTwki/NKYVC9nZbPJ7bVbTUQRxvkywaMAth0xIYTPgDjD1vEogOtFz5JsJsmjrey+ZviwPmgmY3i0BbUc4Wd4dFrIGPwmof/9+Xt44ZmSJuBlLZgng0t2dB5WfHDQCjvwQuM0QmgY2h0+MGPt4BvXR0kJifb9KN02HDi8cJrvutH3nhcu51cqyZTLYNNB6kUhH97B67d9ibXz3iQz6GVuvPuDjX+jUagXnyGpE9UOBxUM8AUnBCd7QOrsJd7c89kQssqLusiktKIHqaWiOmQQXP/IJ8IaP/h+CEO+/h7fJ7tD0hcq8wsoVwZDe7SCr9M1gme7l3ewByU92HesCNItC9U/lNyJ/sFowLbtMPXD2jEYpYMoFa0juP6GRxKNXsIXiUbvGbaNVyqGn4N5GqYe1d57YcoByZSBBveiFUuPGrdey+6+WAWriXX3jdKXIgdAwsAfwItth78jgkYl9yv6xUmnv/ix9GiljfeqoxCl55TKkNefs9kwtdvryIbbTaTspP2OeA0mkOdGqdR4ZqNUmQg/IyOjieQGz+x5BbKj8wCw4g40angUmmPSeKH8MJUxNj1RE7aGR0HG86D0jWWl8mj4vRcZ9sJGHdVq3b6qjBOOb3g+67d9qfFvMWpK1Y4ghdZHFYKGfnY6jwLr7/sIL3qx1Oxec+xlYbmauIJ60wGTQpIf1h18cYJHAdYcfxmV+bpOoJvFHtXs4tjcfMv7ADjzBR9K8igIAwWNPOJMWsujAI4tPArJ9F+lkjwaXwZtmGuCR0Huk6Z4VE9TwWbSmDQw8sVKSKUy6RTxKJDo7islnpIBKbVMGj0PVIJHQd4hA0M+5Qp+LD06lUdBmDR4puQyIY82w6KJ3xJwaWCJMkzaklo3+BkenQ4yBr9J6hc3SX2QU179KbxM0M2qB2dUN0TYtiOcN1mvoPED2PeSUTzxgq1+tZIArmT9Ev0QDQaHbCYqepwYZPS8rhfNW/OQC8DKL1ei/cjGBrkArHp78LqjjlY37PoqRpOTqvF8BJ3R/IIuJlsqR3XQbMUN9wlYBYBVqw3e9YDAkleIjDNhjZ/jL6O2HoaXc7BHZEAtdzsEVNQxXMEa0wNtbF1hzZRCFlw9kBdLSSMeSFe9wAA+NBzBoueHkafxeyM0THUUoLtLb6sMo8nmJHHV1qpTTgQhIYjEt+EEHf/iNYW8sCCyX60pjBwsF0CG6ya8vA1BayKwagLCAkCyCvnohSh4CSrXeE8DcIoDV7xJRiHydodgNVaMnacgojOKviObTXTFCw19epmmAStwKAT1d7o6qC6TOjhnrL2KX95wSXPrmcPyJ9W0w8jIaK6p0iXjgpdRWBWpV+aMjqXzKIzPpDEeBTGwhWNkvNlVrMZzLY8CwqQt8igIk4bNCnwvwaOgmUHXjja1+nZPLz7jI6GRLy7fUak8OpHiPAokmDSu9Q9/nDUnXC7z6Lp9G27/AKf+jc4eUMKjQMSkgeI8CuD6wqOQNOLV8ijIbwmjzqx0HgVh0iCKLoVJG9VOjtf18103lUeDZQLO88uVVB4FzaTB9naHSZs0CvqejxUcE8tK8Giw7+HvyOVSeRQQJg2uI98THgVQiht2fgWAdfu+PcmjUM+kDWr7NaXgnHdJZlPApEbNyTTtmJkyBr/dlF32UFV5eFQ7Mzi6iKja2R/NZMUOc9A1N27EsxRB4eF4hFL4QI0XJo4p8FL4rhtF+RQKiVSGYIALBxnHiULxY4MLvh95gX0vloKn1+s4IVj5hSz+ONFlRhMriOqzyh5uhzY8WSo0APqxlJbAWKJi3tX//fl7OGOtAO7qk6XocLUrE85T3beL3I4IjM58/ocAsHcM4i3s1RuReTfcHhUwfsHrPoWlGcPePkh1aZ/Mow2Gq0+9Mur464EfdHUbK0VpFLEUirABiBcV31aZGNS4LlZg3It7j4OBPJOJAckE6RSej++W4xP0hwi8Qs9efFu+Pz4QxaPhstnodxBLUWjUuTct7aGFYs7e6Gh4L1pdcpyUbYfnQCkrgiAnSgEJQSmTgaAr7vBI6AxQHR34QXp4YBCMpVp5XQVU8JuLFZQbdI2WfVlzwuXc+LvLG+76ukPfE/2R18bIoAlQdyH8yhj7mtPkmnYYwDIymmu6/fp3AXD6Sz9OtVPGAKerM51HQcbmuBEvfFF36yLmfc9LHY9TeRTqmDSNR8NtBMaASjXpBI/zKEBvD36KEcmoNSnPxyrLsXY7bPywPEhzPDqeGmX9nPn8D2Fv3QUgTNqAR6uFIJhCeBQImRQk2i/OoyBMGjQUo6OQyqMAfrkcZtX4XsR5VncXdXUxlIq4KuWdLK6ADeuZtAkeDedtuGK93ug+88vl0KTiezGebabBXLORf76Hpw2dyraTPAqQcaJgE9uKUvVdN8mjIEyqIyeVslAdYnjzY1241z/zmbpdWPucD0g3ZUC5fsijrWjdqneGAQUBj8abuBhNLBPhNzNlDH67qVt/fBGn/bXUpKjmLPy8PNCsoHtQqRQZL3wfXw8SoWcHEtFGQZSU77qRF6Km5kOYWhvAj6Uir45jQyU2eFRqUnMdK5rXtht6iFQ2G0YNKV0jgUIeX6f1uV250ABktHsa3jeLpy+FDguy/cFgFoMJfb69nkLYRQ3fR+WTt6/y/RB6ZB3yx4tf+FHCYTGTwdJ1TNyY8SXQr699F6e+Sryq3oLuBNSBGP7WHnOp/FH1QsOv39MBQV2+APyzDtaITm/IV/B1lIFfqUbeP9fFG5S0i/CayzigI2X9+T3Y+0j3X3/HrtDY5sVSlOJwE0btxTyjobEul0umu8eBZILUiLBToOdHNUZi6ba1Ebp1n9PURH2+0Dus98Hq640g13Gi31SpRh7owNBm29EzwPOi464UyqqBzVwufDG78Z4PRue5WEJpo6Kra0R5uXTQCqN/fR9rVOnltCe1K8P/bhj/5cCoRv5kUnqNjIzmqnxHUc1pJ0s+k8qjAD5uHY+CfpGP8yjI+NegBpnKOOk8CvVMmsajUBdFH643l0vwKICfy3DDHz7U9HExStfNt76f57/hagC8jPAoCJM24tH1D9ZnmbzwzKtwdCSe2+mEPFrVkaf5rUVcza02hAYga6QUdueN69fXigH71Fd9Em9BN5A0NNbyKIBv28KjIEyawqMA/rYdUaCDFdU09waHkjwKMDqGP1+CHux9luLvEGOlXy6n8ijoqL0meBS0ITv2TjZe+Ri/XI7eEeO1/yzVVh4NfkOCR0Gui4Cp49xZLid5FOS7wPhqRRHByspIZB9AZ0c4z/qHP673T4UGXGVbIY++cM1V/OLGdAfymhMuD4+xlc8leNSodZmmHTNTxuA3Bap0yUPSGfXC1Dc7SH8tlaJImljjCywVpQnGlChuHETbFEuE3iQ7FkodrDefi5ZTsbpqSqGC6KlArhsDumhbKhcLj3ac8AEdeE/9rIPbIQ/HwHNsNHndfKsYTJ//91eH01TFRwX1dYL/ejsoL5DByS1YOMNyHTijFVAaHPQyVtkj8/hWALIaTAIFKZhrj7kUNSieNSvutY3JLmpwcqxw3UGEoKq4scYPVghfXt4JiyfHvW7WqPauZjJ4Qdg+UcQAysLq0mkCYQ3JaggLyvfDlwbV3YUK0jeGxEjolcuJlIRGKRBBEeW4VDYTgp7KZvDHgvovjaPyErVSmoSiphRvMjLR+oJnRyEf1buxLNRo5MHGqgErwA+O79Bw9AKWid3DwfOkUk2kTNxw7xUArDvifdFzrRQ1Wznl1Z8CINdfwbMDT7yPkwnSyizczqgeJIBVSqkXZZQqn8k07TCAZWQ0V3XrTy7ir14pjmivI5vOo5BwYtUyaYJHAXxf8yiAG44Xvuel8ygQr9WbYNLxeDRYLlhXPpfgUSBkUqOp0W+/+c7w8+kvFSOLqnoJHg2i9U47S64vZ9gVHgXsrN0Uj0JrddfsohfW6FM1NSgDTgkMf8r3hUcBsk4qjwL1TBrUx+vKJ3kUoFKNjI2OHV7HqlxJ5VGoZ9I0Hg22FX4es8ZlzUQ96Wb4sRnVNr0bb50xHgWESYPaiaOliDWtXIJHQZhUBWnVjt0Uj4Kc63VHSP1GryOb4NFxf1bGxstop3Vn1vDobspE+M1MGYOfkZGRkZHRNNXkUnrbsy9GRkZGRkZGRkZzU8bgNzNlDH5ToDu/I2Hnf/XKT1DpEQ+kNaK9mMMjidbilq6DR7GUaCoQFNMPPaO2FXliK9VYceQowi+ct6cbT0f8KN8PUyuV50XF8gO5XqzjUSb0Uvm5bFjfwuvIhsV1Q69I3qbco/dhD3R9nyv67Tcij+rJ53wKuyTn1CrriDLHwhnRKRKFHNVOOQe5p3Zi1XQ1s7fuCovQ4rqoYUmLtbyOcBuBN3Q83fI/FwNw5klXYA3q1Npc9Ki44Y9SMzCoHRjIy8u1Uu4Tb11uVyVKIR0eq/cegqTh6vod4byV4TBawB8ZDb13fjkqGN0ohaK2a1oiTQkSxZL9ciWZxqu3bWWcurp8fk0a05R4UmvVQl0/IEyv95UCXVDbGqtEadWxgtpBzZOwlh8k6vVh6eNSrbL+sU/XbdYrZKh26Ui9oj4vjorOhWOFXZyrnVaYSl7uy4Q1KYOov6ApjVEL8luP2DNdeo2MjAAqPdlUHgWESXXUXrypgO97CR4FqbGlKlGEYLyhVCqPAlTcqH5anElreBQkAtDXY5XyoqwZr5BN8CgQMqnR1KvSLcfWLjkJHl19iua+hXKOq502uad2AgiTpvAogBoeS/BoswqYFKRG8NrnRDXXAh5txLYvPuMjIY/+6kcXse7w98oXw0HXYa+OR0FqHCd4FKBaFR4FUCoq8+L7TfEoJJm0jkchmcZrKaygcWOMQevqRtd+ngq1yKMgTOoHkXaFjPAoCJPWNHhRxUo9j4JcO5pH1z/2yYab9TTvVruyCR495f/I/JkRfZxUxJuZnB1eB8o3PLq78n0FJqV3xskY/KZQhc1j4ecw7DzjRPWUPD8MV/bGxhLpEwEsRekWmdDokQhrVrF6f8FgWqmifFlXaXEnnq7dYpU8cluGE/voWxaqUxuKqhFM+VmHqk6P8LLR9iqdAWBZlLvlpv39Fy9s6ngYtSar4keAHNSbGCnh6ppoHU8MRsYbgGe3AOANSDHjRNe8bCasrxemwbaom+68lHUHvFvWEa/HoVVb6Hb1qVcC4GaDDnw+vh5YgwK9sptR6oTvunhbt8lv1cZwFb9nLBV1YXM9SZloQsrJRPeJHW0rOL5+fD2xDoLS+EMXbtZp7UqpKPWjHca+JhVApTVWxF8kx6o0L0dmRD8zilXoSKZkWSOlKEWisyMJViV9XAOw9RqHhflZJ5yn2q2fF5YKDf/lbhunpJ9rtmJssT5unh928lO6htMtP7sYo9ZkuvQaGRm1qqZ4FMDz8MZk3lomTfAoCJPW8Kh8b6fyKICXs7D0GBFn0loeBXE4Bym71Y5MKo8C/Po/Ioep0dTK0mO28v1UHgXqmDSNR0Hq693weFTGZjJa/+DHQi5lAh60qj6/+tFF4d+pPKr3N2A/b+u2BI+CHlODecuVsNlMM0waGPqUbTfHo3pbUeMPN8GjoNORpwmPAviLeijNk33MjFSFRyHBpEH9cDxPeBSSzudSLEggRcGzAUuFPPq/G94TdnQua0O1U/LCUjNji3Nho0TfVtz644swmrxMl96ZKWPwm0KpkgsBmwxITQc8P6xH4g0ORR03ly0JBwx/cBBVkIdfaKQoV6LIJ8Af0ZFWgArqHQRGiHwu9HoAeHoVY8syWGVpzBB036p2RwDlDFdDD4ebsUJDoa/AzelBJaPCacbQN/U6/WUfD2vmdfbHAL2sQXvzDuyNsc5iAXyMFXGHk8ZcVKzbXrkceQfHiqxbKefO7+1C7RgAGnfBetGLP4alo8RuvvX9qV62Rgoauaw54XLZnYqLGhKPaByKpA5eZJIIvaOD8ntUrPiv6ukB3WmaoeGweHSjWn2yQH09P7+swdW2w5ed+PLKtiOvKUQQFXZs6w7vS1fXatkbCsE044SFr4EQlvx8ZLQPouwy5Sro2jd+xsbLBV5OH2tYPz+CwEuvMTzedOel4eeT/k7q9tllP3xGFOdZ4OtnStGn3CXTu591uf26d0369xqJTJdeIyOjVnXTr6Maaev2+X/yoYZHQcY/a9kS+d718Ae1IafQkeBRoI5Jg1FTZTKpPArCpGPLdERhuZDKoyBRN66O5PNyUfS4m1MJHjWaep3+MqnbZxe95ngUxIisz32CSWt4FCSDYk3hXABuHPv2pPezWS6NNxdce8yl6Tyq9zeQV6kmeRTAcYRHQZhU16BTrpvOo1DHpM3wKFDPpDEeDeabLjwK1DGpn4+M9gkeBWnWE9R6zmVCw6c1XAx5dN3h723YyCXOo4FOfdUncfMxHgXwLZyirLfcpbj3M+b9dapkUnpnpozBbwp14z31refXLnwLyosudl8bL5TvR4aM+IM9GFysqOOv8rxkt7SaQqa4XthtyKp6hFZHRSwyR74fW+hg6Weum8mEEThO0cPVMOXmFJ7eDf0ez+++ZjypU6nTXyEFj62KH4al44HVrwfwwGtWKoUFb/1iCXeggSewpitY8Dnq8OVGna1yuRAc1i06H4D1277E2vlvBiC7bDGe9rivKZzb0Hu5wb0u/LzaPqduWthxbHAkShWqXU98X/XvCLdVLmNr759fyKGCee2U9J0GBYYbAZhfbWzQsrq6cAcG6ucPjIu+h+oRyLIzDu7OXY33o00KnQT6Zcvv6aTSo425lsIrBU0y7CiiTg+wqlzF0007fMfCHpVj7CsVHk/l6mdLduLhIFh/qVeFzwt8KM2Tj96QAaspl0npNTIy2g2tf/azQD2PgjBGmFlQKqXyKICfz0SOoUo11mE3xqR1PApgET6SLJXKoyBjjKOdoG5GRc5nB+76uuHQdun0V3wijOqzi9XQ8GL1D6XyKFDPpCk8CgFTaf5c+jYIShwNDrF+0+fr9mntkWKw8zpzqD89LJ/jWSZx7pxA4/Jo7f4qK8GjAHZnB34hSFX32sqjQB2TxnkUQPV0YwfGtr3ApHEeBaj0OPj6fdMr2XhB2qytEjwK4HXlwyYs9mg5SgW27ZZ4NFCp10rwKMA9XzAc2i61mtJrND1kDH5t1g3bv8zahW8Bgkgi/bAuV8LuRsp18TskEi9MnYxH2/R0hbVSGB6JIvz0gFM5YAleEMWTjdIe7JJPtVNOcalHphXnW+ED0S5DYbseRCwYW6TTJbKQHZKZfvdVA1jtUG67AJQ1Vglr7VEqh0Di6rSIyGin1UIIf3xZd4fUWFEDQ3glvW2dvrMm/7oIUp58JjREe/Ftx7yUq61X101fbZ8T7ptVkGvZz2bxtMe37nfEoaimtp/U0dPr2r4z6vyVz6HGokjX6Ic2qGXSoC5Lbfe0EEJTUjLCdIqRsSg1ZdECHP25um17w+WmUsq2xUirtw1Q6SuQ7dcRFxUvjNKtdjj4OjIiqL/jDOWjCEBLUVwqcJYdKOPplzRnS1GvK1aHJkVBCtVx/3hN6AywynDflQau2qXJdelt084YGRnNWNXyKCD194KyGYV8FEXfUUjlUUCYVKdGqkwmlUdBmNQuyUOp2umk8igIkwZjy9giC1ev44/XmDGmncptL4Z119TwWFRbsVhK51HYLSZVOhPKKxWFQ2O6sXgt/pPPyB+lUkMejXPnBu/6aJrWBvc61nS+XhYZj0eDdcaNlTEelUme8CiAZaGCFNuxsXQerVlX4vtaHtXfNcOjoNlQM6Fj23uMR0ECB+I8CpDtr6AqmqkdRbVDH7eMleRRkAhAbRwsLu0kq43Gnm21xKOB3JwKnxn3fN48J9otE+E3M2UMfkZGRkZGRtNYrafoGsAyMjIyMjIyMjKaOpmmHTNTxuC3BxQ25ChXotALS4UFj+npjsKXdRi0GhyNahx05giCx5XrRssF3UutqGNmtWDjZnXHUReqOh0iiPrznKhUxVgPFOfpTlwVqOhGbqoKf7zGRPa1U/YWHa7ve/hBvUfXDVO+x60JMgmF6QAxz2ajzmLpK0j5vsH0sAB4uZz0pDaK6mu0LmWFx8EDrC6JSsO2sRYtlFk3bwl/TxCpmEg/Tll/vEtakFIR7O948nR3NquQx1u+WHbHdfF1hEOzzUTqpI+Jsu3oWMU9wsoKf391ca987VhktuvIiqoXpmBXerNU80EtPR1JXKqEEZJel0VZpwJ7WQtX1+zs1PVV7G2DTe+2H3NO3/0V41Ftp3x/MjX82rQzRkZGM1oJHgV5WFgxptTlK/ysk+BRQOrA6vHGhjAaEKVSeRTAzSosPWs1p1J5FIRJ7aDBZ5fwqFH7ZW8ZiLIeBobC0i9+qTTlPArCbqk8Sk0mSd3C9XzXaP74tDoehfQU5PjfQYO5UinIchYmC0qtLFo4JTwKwqTN8CgIk1o6S8xbvhg7OF/DI1PCo6DfF+LHIYh67OpM8ChAZvtI2BzI68xR6ZXjUM1bSR4FsCy8Llmu3OOEdTzdnDUpHjX15fesTITfzJQx+O0B+aM6DdHzUPoBjetFJFN1sQJAWiIPUZV1wo5GqhIbpAr58AU+3nEzSOWT+ie6hpoL2aEgZTeob2BR1fYTLwPoBmmeK6l5Ms8U/GijVK2d/+aoGDbgBR3DEnX39oDa3OEr/lsSBq0JFKQcAzqVQ6f3dnXiL5Y0AkunmLgjo0m4aZQ6kdiplN8cN0YGUBN0LIzVJ/IW9VHtFEjLlBeFnb+cPrlvq7rjcLMKahWqjkL0nCiXE/Vh/AVSIK+0UKeQuH6YVuxnbMrz5ZlSzamowLk2+rvd+bCekm8p8jsEuPoPyoVddj1H9sFZkm96v03axJ5VqwY88wg3MjJqpDiPAsKkbvBSX4Wqbg7g+wkeBemyWcejIEyawqMgzZyUXiw75CZ4NHAYHXbZNTItJzwKmknNw2zPaChquOENj0TGvz3FpHuYR2unpamWRwE81wsdsf7iBek8CuMz6Xi/OW6MVFYqjwJUOzNkyotkVs+fEh4FeVaEKcY1TBrnUZC04iBIpTw/Hwab+CrJowDVrkz4DMjvqNB/kF6XNzkeNdqz8n1aei4bB/T0kDH47QGFYJXNovL6IVatyj+AQiGslxFEznhdmRCs/Jwdth/PPTMQtZaP3UWlXu1tqkRgpTyf/NMSSZZ/VL/oP28pd3+lvnPmmSddwbbjJMSvmoMj3yvw9ZePmhf7qVLgbbSyWfxg8Ix7OdsMPHtT0pm3vphxU8tpuf39qLBmkO7ia9vJ4scTrDvsfFZTVyU0wPoqYYyVDXshZFnb+qFTwKq6oINMZb7MU5H7y1m+LLyv3R0702vFIF3OvCNWATC8ojM0zhee7A87xJFxqCwQALJL8ttKfQ72fAEyt8OOwMpS+PqJXs0GXQ5tRpeIwc+zoecJHUFqQ1U3XPTtoHan8cJNR/kovBZTdE3TDiMjo0a6YfDrAGGjLpXPRyxarQqPApTKCR4FcT77OV3DtjtL7hnhSz9jp/IowJ3fjZhz3RHvC3l0/SOfCKc/8MF61jz2n66hqp3SR773GsOjU6g4jwJi0Ilngsx2HoWkUa2F5W6qfI8zM6+RVQyPpPMojLv+BI8G+6OlbDtMm0wwaWCcty3hUYDORVQ1J2Yq85M8ClCthnW80+pp1/IoiHG+8KTexuBw2MSnsqAjwaMA9vwCbod+NuRUaNDznSSPAowuyeDpn9TzRAlff652GB6dCfJQqBYYs1V+NWqPjMFvD+jG4W8CsG7lhaH3FNvGWybRSnge1rC8iFtl+X5sfjb0dACMLZJTld1iJz2sgFtwqBTkhrr7P5KpuLVh7nfGACsu/zd/xDvxZPnDMmkUU6nac+CVyw0jyuaimon8i38ffi5PwTGLgZjK6LcKpaIGOSo2SAXdCh2HzA4xOro9BbxeuUeDjmTV7gyejmrIDu4TdjxUvk9pnmzDy0YGutElQcoT9B8k282vXMS8ByWtSlW9EJICsHLGPEaWC6Rb1ZjrTBF1KtP/lfoyYdFz5cLgStmH0vzIuRDAlnLNoDxd1XINFONRNTIyGkdKN9+g6obRO96yBWGDDmu4lOBRoI5Js1t0ym+MSd2CEzZ3aqT1932k6X30MkAwHBsmbYvCiLSaiLK5qFYi/xJlcqaCR6GeSTWDKstK8igIk+r0/MyOEdweMdR7vR0JHgXwbCU8CuD5YVfu0rxcKo+CMGl+pTi45z3YHaXs5uwEjwKMLM/W8ShoJo3xaLD+IDBlcGWOkvab+5bh0Zmglrv0mpTeaSFj8NuT8vzIC1rIY+2SKJ6xgxZid8uLeHarTFNLCmFno/z2MpkRGVBKS7vJbZF5vA55Ko8udlLraAWdqybSBu96jrpIovq8DOQGJljAqCml1iFp1Fl2tqvB72wqXaRRSoT+XwyGLSzf6GvbjsAqm43qGQXyfFSwjmIJpaMhnOExvPlimKt26VoqWSv0TI4VcnhOUENTUeoL0pjkPzcLngYrNw/lxbLe0f0UIOvrerYaRkmUuwJDoh/V0FMROLlZhaef6EENJDenwv3xbajE0vmtcB75v9w77mEyMjIyMpotCqOL/DA119o1zNhBUifX7s4leBSk+3t+uxiIMiMWpaUy/uW2DCd4dKrkZrTRD8OkU6mGXDrLmXSDd3397675nc2mL6+2z4m6AluvnnoeBXE+B9GXcSYNnMjKgqIu+1St4gxLqr43vzvBoyBsOFbQDmdHUemU9ZX6VCqPgjCp8ChAnq5nhVGtip/gUdAO5MDf7EYRep6T5NFgfwLDXqUzusetSsSjpja0kdHUyhj89qDWP/Vp1q24AAC/IxfW4ivNc/Ay8sSbt1OKI+d2lBk4SCDLLmewddHTSrdNdpectuJi/VBP1n2dtIKHsu8QDgLH/pOuq+LDPV8wD2CjvaAYlCUgi1hKRIvrqf8uth6dMqHymjyqbgRcjh2+HPkZO0zNzgzq2i45B1sXMa5026FT1rOtMOiqog1rXgbcgq7d2eOS7ZV1uBWLok7ZzYzYdGyWGzPfrz2pS6PHtl3yw1p8vgXVgt52AFDVKHU3LuWCrUvTZHTPmKGV6YfHaO9pUk07TAqFkZHROFr/1KfDz2uf8wH5YFn88oZLADjx9VcneBRg4KACdlkGF7vohU7p7C5nynkU4M+fuDAsL2Oilndf4zbCMGpevhcey7SgigmP9YSN8pJMmuBRECZ1tNWskA9LPfm2neBRANuxwntVKeFRkFsqjUcBsr0l3IrMW5xfIDMi6+jYXEnlUZBafIFTulqwEjwK9UwaOK3tYsSjRtNXpmnHzJQx+BkZGRkZGU1jtdy0w7wcGxkZGRkZGRkZTaFM046ZKWPw28MKvKovPuMjZPolxKbngUG2ntwHwNAh8n9hawlnTO6S4aUOmVHxppS7LayKuEdKPdpjM0XR9/d+WiL4jvjANVR1SHdGHLxRCqFRUzKe1PZo3JSMtALMKZ5UK6cj9eI1AksllK6LEo5SuWzUjbBYwtcRfH7Gxsvr4uS61pFvK3wnyGtQYcRddsTDquoUB11nr9rpU+0Vl6fKeFRGAjeoH3pAPQeKC2V/RpbIujIjkB3SHfQUuHm9voJKLAdSuyVI04AoXcIuQX6H/L7MqP6dT5mbfDrKR7Vew8/IyMioSVXm64L//UXWHHsZAOWT+xI8CuCM+QzriJ7MqEe5WzezqnRMOY8GCgv65+G48yXaL+BRk3Vi1KxWW6+uyxCZynXXKa1J3TiRfVYuX8ejgDBpnEdBmFSn9PqOFUb4eXk7waPyvQrL1lQLFtkRXaezqlJ5FBAmtXTUX0fElcWFToJHQZg0wBQ3r6jquvLx5YL61rVMasvPIL/DD3n0uH+8ht9/0dzf01Gt1vAz/Do9ZAx+e0le1sbVNU+KS/J0bpYH9NC+8tAeOKCDBX+WVL5yt2LnEfJwtUvgaYNE8NAsd+/+/hzz9mvCGl6VbrD1uvsekwGg/wBzqRjNAMXqo2xwrxt31rU95wHa4BcrwBwWbi7L/aeUCrueVVcsCpe3+8ewNGTZO4V6vGwPOAHo+WHxY2sUssO6Fl+PrvGXIax5gqdgNEjP8EJAcjOKYlD7T682qOkn67JCiPLtCKxGl8o8dkmFqbteFuxysA7o2Cr39sCqjF7XuIfLaG/Jbx2YDGAZGRk1q5//8n0ArD75wxSXiHPrns9fyDHvEAPbwAFiEFzw5wrlbnm27DzCCl/UPceZUh6N674PRy/9f/VKaTpneLR1GSd0e47BhOtU1oQsGmhtz3mRwc91w8/KtpM8ClCp1PEogJWxkzwKwqTaYOhmhUdBmDSVR0GYtKAbdThRU7hin0rlURDDXmCo95wkj4Kk7gbPC7sc1ZPu2Fo1PDoDZAx+M1PTZtQ8/RUykN/y04v28p7sGf3ipkt4yWlXApAZruLq4qr3/uu7AVj57Y+RHZBwnO6NVXYcow1+26zQgzq6VP4P6i1MRkGNPj/mcbFcUPoZvvNQuUQs0yHNaDfUsGDyVKs22m8iBeDke3gxaPGCQshZXcsv44Clu5d1OLgZHdXQlSH/tK4krjsbZraPYBcEWCrd3Vj61vQcha89pUGNI9/2w7B4Z0sWT4OV1VkO6yQVF0FxgY7EG9LeUVuhAiBT4ARRuA6gD4FdlO+dInQ9LcsPrlJ0PiufxxYqbvmfiwGJ6AUozTNx99NRPmoSNfyMjIyMWtOGOz7Ai1Z/LPz73n8VY9vKb8u07ECO7o0CgzuOsbC3yViovKnh0UDPuVDGpEoXuFLOFqsCD/xobrwfGLVX7Yr0SyjGo6vtc2S7Exj+bhj8OmdmXgNQx6QJHgWwbNwO+exmLKwuYcb80wMJHgWwCxkq3WKJt1zCZnK+5afyKIBX8LA6xUtslzMUtX2xuMBP8CggTBqUuh7VPArgJXkUhEkHV8m0zmd9xhbK51v+52LDozNALdfwMzWlp4WmjcEv0HHnX0OXBopbfzLLB3dtcPjfDe+p+yqTr1LpEoNffvMomYHI3dGxVYCquCBovZ6+ieedd7WsT4dJ+zaUuwTS7v5y5Dn1MlHqRHZX9DlQ7d9GRjNdNwz8O0AIWHXSzTv8cgXVq9OVKh75XUIt0rRDw472xLq9Pfi6wUepx4rSkbqj1IlAmQGLcp+4NrueITT6jy2FnseizmcBZJUWyzZKPiidHpwZsqjqzruZoSjCL/C+ehno3CTbKC7I8ruvvbPuZ3p6HzODZlCerjI1/IyM9qxOf8UnGNpHHqhdG6uzn0e10ngUoNKVI79ZPEy1TNoMj9bqpNd+qo5Hj/2na/D0mObbwqPB5yMvEWNA4JD+88dNyp/RHFGMRwFUr42qyLT8rmKsaYdK8CiAbylKOvrOt4VHgQST1vIoCJOOaUN+z2N+mEpfXJTkURAmzQzJDNXOqPmG55DgURAmLS4Qo2Itkxoenf4yNfxmpqaNwS+I7Dv2n64JHyovPuMjQJRuMNt08y3pv6tassN6W27BITuov/Cjh3S5T99FXVWO/onUXfnTX38wuR5dR8EJnso+YZph8DfIIPDA5RE8HfkeAav5DwrojS2wWfmNqwAoPJalY7PMd/eXL2TlN69KbPOJN1yS/qONjCC9vslUqZX1Kgtlae+pE7UYVEHdPteFMTHyZXZmUFWZtzqvI+y0HcDY4AEdYacyN6fCWnsDByncnEzv2CT3pFUB3KCuCsx/QIfRnl5h4OXimS2PZMgUZLq3Sx4ITl+JypC+iQcsiot02odrk9UBh0FEbqlPoonH0wMfNC9N01qTSOltJd3CyMioXrf89KIoA8Ka/Tw6nqolHeGeEx4FhEk1P3oZleDRiXTSaz8lH2p5FEklTlOQ0jumjYsrv3EVT/y94U2jKVBaDegpULMpvQA3Vb4HiCM6lUcBxopkdsr3quoJj4IwaYxHQbrnujlhguyQx+++GhnZjrpYnnG1PAqaSU8XI+DAy0co6zrTmUI1waOAMOmA7ui7yOWByyRb7Zh3XBPy6J8+OTFrGh6d/mo9pbeNO2PUtKaNwc/IyMjIyMgoKZ9J1PBrz64YGRkZGRkZGRnNUbVq8DMO6Omh6Wnw06muvq6Vdcr/+SS3f//de3OP9rjynWVGD5Pf37+lwIL7xUWy7RgnDM0ubJF5i/tVUTrH4Zj/vpR7X35FuJ7AU6N2yP9eRoW1ViC9y9lfPibTT33VJwHIDfrY2pvk21DRKRcHXHM11hLxOHml6Xk57RW1O4JthsvK6hoh5XJbjlFQo6Xp/dH1TVQuy/pNnwdg3UE6hWtgCH9MCiIrgA65qezhEqqiva1d4kn1LcWOo+Xc9zzm8+tr35W6zYM/ek1YK2V4lcvQoXIPz7M90M01cl1lSgO6m7At3y9fMMAmJR12nMczPPQ2eTYe9sFrwi69SntUH/qA8ZbOBhkDnpHRnlcQbfZXZ39yzvMowOhhFv1bZPxbcH+VbccI85V6rASPPuen/wLAH1/xobp1Hf2ua+gOatvW8OhECkpo5AZ1E4CdGQ77oEQoZftheIV+Ui4phjz6xHkXN7+B2aw2RrDNVMVrS1vZrPAoTIvjZHV3o3RH3vWbPp/gUQB/bCyqjNZRwB7WtacrboJHAXYcbYVlYmqZNEiLr+VRgKFDfeFRgLLwKEBpIJ/gUYBNqhfncXlHfOht7w7vS7sj4lGj2aFWedTw6/RQE5Xt96zu+fyF/OqH7+ZXP3w3me1jZLaP4WXnnnU4l62yz7Kd7LNsJ2MLFW5W/vU97FHplk66Y0t8xpb4ZP7ciVI+SvlUXZsDPvMpDvjMp1j59Y+TGYXMKHQ/Mkj3I4OMLlZUDxijesBYU/vR9YsH6frFg2w6WWEX5Z9vSRqGm4XMsML35J816GANOhz8sWvC5V/wf6/mqIuu4aiLrhlnK0bNSjmZRJh/2vdWobAH92pirbbPwSoUov2yFFgKu7NjSrezwbu+ZWPfTeXvcMPOr3DDzq+Exj6A8or5lFfMh0IeyhX553l4XTm8rhx+1sG3lfzLOvhZB2fMwyqDVYZS3/jPrYffeyHVHleKnOc9lCfNODKWS0ehTEehjFu1yHSVyXSVyfWWyPWW6M6UyOcq5HOVMO0f5H4szZN/lR7514xWfe5T8u+zn2rpuBntIfkKfxL/JqMvfOELrFq1inw+z/HHH8+vfvWrcee/5ZZbOP7448nn8xxwwAF86UtfqpvnBz/4AUcccQS5XI4jjjiCH/7why1v1/d9Lr/8cpYvX06hUOCMM87gL3/5S9167rzzTl70ohfR2dlJX18fZ5xxBmNjzY11RkZpmus8ev/Zl3H/2ZeFPBowad/DXsikjXi0kXaHR2/7wbu57Qfv5vbr38Xt17+LR9/5Th647EIeuOxC/njNhWSGVcikjXjUaOrVLI9OJyZdbZ8TNdIImFHzaDuYdDIKeDRg0gSPBkzqeSGTBgxay6MBk5b61LhMWsujAZNmLDdkUrdqhUwa59GASd0cUSmqbMSkrfCo0fSX4dGZyaPTOiTL2iGeg0pH717ekz2vP7zsCk69WTyTpYU+G48Rz8qCm/MUtutIoIfFC2MXPbafoAv+j2Sj6FnlM7S/fFx8h3hpSvPAKzffgWP72YcD4IwpHnqfeIIO/dA1+HqMz+8AfIlAUtpr68euKs+emw0/7K6g6rSPV3OD+54/KQ+ism2svIym7ogbrSPWkdbS21W2HXabnRbeymw2rD2ywbs+hC1nv+UwErSZ3fv7GVelSy7kzLxuGBoGwF/QG9Xw681iBdHIjpyDHUfZzHtQvr/zu+nRfYE6l8t6R57pBt3Fd9sz86As68vtsHCOkefgiI70e2zHAhztda10xzq5Zfzw3vNbeLJ7haAGoOKA70qdqsf+bu7VqZrW2gMu0uuuu44LLriAL3zhC5xyyin827/9G+vWreO+++5jxYoVdfM//vjjvPSlL+XNb34z//Ef/8Htt9/O2972NhYtWsSrXvUqQIDnnHPO4YorruDss8/mhz/8IX/7t3/Lbbfdxoknntj0dj/+8Y9z9dVX841vfINDDjmED3/4w6xevZoHH3yQbh2de+edd7J27Vre+9738tnPfpZsNsu9996LZU07v6bRDNSN93xw4plmuW5ffRUH/UEawW08psyCm2VMKmz3G/LoAd+R8cTfkcPvljCfzP7ZSfPoCf8g2x48UMbdgElBus3nh/Uffr4hjz7/DbL8b79Z37xqtsvu6gyLacWZ1PeCQt6t8Zey5bxZ+ZzwaLCOFB4F6TY7HTgvyDBZk38dNxavBWTfnP2Wywwjo9NiP+NK8CjA0DD+Ank3VlWPaq/8JkupBI8CzHvQa51HASxfeBSgbJHbIet1jhlI8CiAY3t1PApy/z1ycfP32/5f+7j8JldhdUv9QMOj00wtNu2YDL8aHp16Kd+fuJzi4OAgvb29DAwM0NNjzPR7Wiu/9EmOPvJJAO57dhk8Iw/aJXfptIaSx7N/qzs32T5eVS4oO+NiOzJodRXE+DNazHL/2Zc1ve2gK5rvwH1XClwd9sFrwk5Kyo+6MQWh4YdecQ0PXiqfT/iHqxlZLnB2/xVzJ70wDL8vV/C7NfQEsJXLoDzdJGJoTKLdAO+ZjfhBQd4GKcFWVxdKex/9wSF8nX6gOmSaWjgfr1MbXx99Cnd4mN2Rsu1of1pa0AqXV/q34Tj4JbkGb6p8L+yMay9cADptofr0Rpk3DbQmSEmZrCc1TSefIxFvuV1V8k/sBKCyNOrCW+102HasWL7Hlsh+5XZYieY3E+nwS+X+8jKR8c7r8FAV2cbyX/oM76MLpuvi5sWFoA7QTT0GclhjcrytsuLRdwlYHXCNvNg8duHEoBU0/PF8RbksUPnwqz/Q9G+YS9rTY+FVV13Fh//7Oyx9+6tbWm7Xj25lDYu49tprm17mxBNP5LjjjuOLX/xiOO3www/nla98JR/96Efr5r/kkkv4yU9+wv333x9OO//887n33nu58847ATjnnHMYHBxk/fr14Txr165l3rx5fPe7321qu77vs3z5ci644AIuuUQK9JdKJZYsWcJVV13FW9/6VgBe8IIXsHr1aq64IippYTT7ZHh0+ujA74lBj2fyqTwK4FUt7Iw2CDrepHnUaPJad9BFEhUG+N2dCR4FUJ4nPApgKbxnhMd8103lUQDV2YE/qNNMy+VUHgV2i0kDo2HLTJrCowB+qZRokmEvFOMVuWxzPDrO9+3kUYD8EzupLI268FY75TdtOzYT8ujj/29iI19ccR4FYVKvQ7+rVBTLfynXzPA+doJHQZi0PCABCdaY1fK2AxkebV57eizcuHEj++yzDwd+74OoFgxX1Z2DPHH+J6hWq9h2cw4ew6NTr2kd4WckeuL8qF7MGT9/N0/slKInm/5aBu+OrhL534inZ+GLN5Kz9YBgV9lZlMG3XNXeOKs1U/tfrqo3Xjxw2fgGjcDYB/Ut1+eKfG3EUhkHt1dSGUaXC/zkd1ZCj4eTsRleJR4B//il2CUZXDPaY2qPudhDxWi9OrrMW74Qqyznudqra7xZiswuATY3iJprVcoKvZ/QAK5qjW4aeqyMg9LLBVCnLCeEP1Ysg0fEaL2m8/UhZK1bdD50y3JBKoU7PJxME9HbCz3Re0j9B8tvW/hHi+oiOUeV3iy5LXKMy32Z0Nid157P33+xNaO2o09TuRdUcFgtPyxyW+626H5GzsHoQg28Foxl5Vjl9huhrIHd3xGdt2YMfYf9l9RX8nQIhGO7VMbMkDDt5Lfe5azVO6VcLnP33Xfznve8JzH9zDPP5I477mi4zJ133smZZ56ZmLZmzRq+9rWvUalUyGQy3HnnnVx44YV183z6059ueruPP/44mzdvTmwrl8tx+umnc8cdd/DWt76VrVu38pvf/IbXve51nHzyyTz66KMcdthhXHnllZx66qktHg0jI6Nm9OhrJPJm5Rc+mcqjADm7Sl5z6c5ix6R51Gjy8nNZVEbGd7e3kORRAF94FGB4VTf+8fKeYZe8VB4FYVJvuVh9rHJ1ynkUSGfSRk5gZWHp36my2XQehZBJQRzR6xadL390ZxM8CtQxaRqPTrWhL1CcRwGqi7qp6Ki+3JYxyn26g+5QxKOtKs6joJk0uEd9Rblb1tv9jJvgURAmze2nHdG5DAd8WjudL2jtHbBUMTw63eW3GOHXKr8aHm2PzN00w/TLF38SXiyfT7pJLsq+/Bj3HyaD7FNPLaJvsVghiqUMq1c+CMADg4sB8FC84Mb3AvC8RU9x7y4JYd8+1Ml9r7x8T/2M2a/A+YeFl5eBsdKlIy8rDplBXcVWKTo2CUBVOx2sijZu6VRRVXVxu8Rr5tsqbGgDUVOb4GlqlTy8rB4sly+FqmzD29UfFSMm8pQm/g7SM7q78McioHPm98kmgmm+j6u9uVYmAiiVzVDdui2xXq9ShYFBAAaOOZwFm+R7b2CQM7OvBaR+3tqj3y/r0N5Vq1zGWiQA6Q+PhNuLg127oCr5A+S/kaUOqqpHLM+nvEDuNTdn4QQO8crkXlysF0rkYGlnF9YOATZrzAohys0qRhfr6yfIEs9AbpdcBx2HFVl9yL0AfO8Pz2tp290FOac7B2XF5cEcud7ieIsY7SW1XAPFV7iey+DgYGJyLpcjl8vVzb59+3Zc12XJkiWJ6UuWLGHz5s0NN7F58+aG81erVbZv386yZctS5wnW2cx2g/8bzfPkk/LC9thjjwFw+eWX88lPfpLnPve5fOtb3+LFL34xf/7znzn44IMb/gYjI6Pd1xNvi5zS6259R8ijt774EwA8938upViS8W31ygdTeRTg3l3L2T4kY5Jh0imUJTwK4OXtBI8CwqSaLzs2FcOIMavipfMo1DNpGo8CVKt4u/plH1KYNPxs21jdEkVYy6RpPAqS8aKycq3FmbSWRwEWbNrGmvzrALixeC3rt0nNr7VHvz/BowDWooX4w2LQcgeH9iqPAsKk2uhYXpDHzel02zG4+8uTy6aK8yiAtSMTZpBI7XY516OL7QSPgjBpx2FyXlYfcm/LPBrI1Rlq5cGcabgzTdVql96AXwcHBxMRfoZH96xMcRsjIyMjI6NpKw1XrfxDcd9999Hb25v41ygVIrEllYQ43/frpk00f+30Zta5u/N4ukTCW9/6Vs477zyOPfZYrrnmGg499FD+/d//PXX/jYyMjIyMjIyMmlSrPKoNfvPnzzc8uhd51ET4zWDdeebHAHjZrW/Hyev0zu15PE8uuuJgjp/84RgATjjsCQCOmbeRUVdHEimPzoz2XnWb1IqplCrqWimd+dBTmh2Uh0DhmaiOiap6uD3awxE7BV5We9XGLNx84Gl1o6LLGRv0PJ72tOZ2FFEVSXfw+7pCj6DV3YWlH0AMDIGjPSxBnHUhH224UsU/YL/o72oQiRgVB7b1Q80dGAy9n7VRg7J+D2d/WVf30yW8fcWrz+AwypL9WVM4l+pJR8h+9kjqszM6irtFPLN+tZJY5R7xpGqV++T/ahcUdIpEfnsZ5Wqvao8dfr7r65NLXe/Iyu8btL3Q/ZLZd4TKk13hPIEnNaiZolwYWSXLzXeq9Oo8jGMPfKqlbQfjVXVEp4Jsy1AekfO46rOfmnQNFqOplT+ZlF4fjjjiCG677bbE9EbeVICFCxdi23ad93Tr1q11nsxAS5cubTi/4zgsWLBg3HmCdTaz3aVLJTpk8+bNLFu2rOE8wfQjjjgisZ7DDz+cp55q7b4wMjKavNaf9q9wWnLaH152BSu/cRUAP/nDMak8CtCZKRsebYNUsYKva+pVO51UHgWESZvhUQDfFx4FyFrpPArgEUbtWZ4nPArCpCk8CtQzaQqPgkTkNcOjgDDpoPz+NfnXhSnE1ZOOSPAogLtlW4JH9ySLQpJHQZg0v13zt+tT7pHfPNnoPoB7X15fb+xQXfqllknjPArCpPMdOV+9zmjLPBoozqNG01Mtp/Tq/3fu3FkX4ddIhkfbI2PwmwX6n9M+03D6/v/+cVRGBvAHtomx5dmhXjJfnA/AwCoH/4X9ACzoHGn/js4lBZ6FcpX8ppHENGvzzsjaohQZ3VGrtKgDT6fpZnfoNN/uLNVO3eEs4+DmdMrF5jKqrItka0hLWAYsSzqqAH4mF6ZW2Erh53XNN124WJWroCHNz2XwchroRsp4Xfnkvher+BqA7N6e0CDol8vY83U3L1cX+e0ohKnC2U2DUNKwtGAeXr90nqVaDY1m9ojAi7tjZ8PCzHsasKqd8jucYSusXVLYFKVxeA5Yk+hpEldgtI/r+PXvZ7uugzO8IkO1Qxt5C7Jta8xi/5ViEF1UGOGOHQcCUHRbe5z/dq0UXD/4+g8DUBmzg0sG3zYvXNNKkzgdtm03Xcg5m81y/PHHs2HDBs4+++xw+oYNGzjrrLMaLnPSSSfx05/+NDHtpptu4oQTTiCTyYTzbNiwIVE35aabbuLkk09uerurVq1i6dKlbNiwgWOPPRaQWiu33HILV10lRoSVK1eyfPlyHnzwwcT+PPTQQ6xbt66pY2BkZNQ++doRrTJeKo8C+C/sNzzaDvm+sB4Ik8Z5FIRJNZdmHIvSIinX4mWsVB4FcHOKjs3a8FT203kUQPn4GXnJ97JOaKzz85kkjwLYCl/XJ/ZyDpbmQ68rn86jANVq2NDOnj8vnUdBmHSBcKvXPxDyrHL9BI9CsnbgnmZRSPIoSH3nWh5th4IGO9t78wyv0KnSHX6CRwH2X7mNRQW5b+/YcWDLPBoo2y3HvTJms+pz0qjE13UE46UDjPaiJtmlt6enp6mmHYZH2yNj8JvFevKNF0feGV0kebScYfBvZOBSAxY8KYNk5sDJWS7+6uxPkh0QQ87P//e9u7vLs0fBQ21wGCsooxVAjx3zZlYqWFv7AchXXHztKQ08rY6twlopzkj0hM3sHAuNeEG3NWvnMH5Bw1R3DmtUQ9hoKQw19rOZcD+CbeFYeFndCbYjeiT4di7cj6ChhBoro1at0OtywnVYo2XcrphnFsBW2Nu1B3dkDDrFY+rN70KNSvE7v1rF+aPUOwggLWjoEWhN5+vD/28c+RYA65b8Y3hM12/6PO3QE/8kEW4r/+2TjCyR39n9pE2lR45RuSeqtTeVunvdlez/7x+XPw4dJu/IvVnRtXY6O0q4njYMW1U8HS7vVVXYiOOBv/mXprdn23JyK91VHn+9dJ1a+a2PcfgPPwhAIVfh9y/98G7+KqPdUes1/Frfxjvf+U7OPfdcTjjhBE466SS+/OUv89RTT3H++VLI/L3vfS/PPvss3/qW3IPnn38+n/vc53jnO9/Jm9/8Zu68806+9rWvhd3OAN7xjndw2mmncdVVV3HWWWfx4x//mJtvvjkReTjRdpVSXHDBBXzkIx/h4IMP5uCDD+YjH/kIHR0dvPa1rw3nueiii7jssss45phjeO5zn8s3v/lNHnjgAb7//e+3fjCMjIymVE++sb4e13N++i9JHgV4sme3eBQgO1AxPFor2w6j2axBkjwKwqQVYXlraz/5IDovYzfFoyBGvDQeBeFENSoGJKWU8CiyL3EelXXZdTwKwsZpPBrsb8C+CSat5VGAzgLefN1teHQMXxv8nD8+lsqjjRTw6PotX5xgzskrzqMAI0tsup/U9Z17HMo97anQdfe6KwEJIOFQuX7yjpvgUQDXs8haum64r/Cqcp0c9l8fmhIeBTj8hx+kkJNr1DDp3tNka/i1IsOjUy9j8JvlerDBg3bdre8A4Ikd86k+IAa/gcGOCdd11m3/DMD9W5bgPi55hovzCmdEBpoXnnlVOO8vbrqk4ToC403x9KMAuOVns7Mo6/ARuumEBQXdlMPZNaKnWaiSLlgcpMyiQWVX0rNtj5WxdIi7qnowrNtoOQ520L22o6Cn2fgFnR5TrIaQhudFEJXLoUoCcm6nzDu2OEvXU7LezPYxrO39ABQPX44TGPy019UvZEMwq3ZnqRYCWOyg2iHb6Ngov9ceKeF1yb5V952H06+9xF1ZnAP3lf18YlPoOQ2MeQCrrVcD2pMadEOzokGjnWBVq+wOm+Ji2YeBA3N4juxHtdC+baqSLqhteyzslmviqWfkmio5Ll05gazNo93s2ynRkl6Lg2pQLP2Bv5E6Giu/eRUHfEY8qtnlFcq6yPrYcOOwe6M9pFa9qZPUOeecw44dO/jQhz7Epk2bOOqoo/jZz37G/vvvD8CmTZsS6QirVq3iZz/7GRdeeCGf//znWb58OZ/5zGd41ateFc5z8skn873vfY8PfOADXHrppRx44IFcd911nHjiiU1vF+Diiy9mbGyMt73tbezatYsTTzyRm266ie7u7nCeCy64gGKxyIUXXsjOnTs55phj2LBhAwceeGA7D5uRkdEk9cdXfCjBowDVB3qa4tFGquYDY5TVFI/OJQ0fsTB0UBY2FRM8CgiT1vAokGDSOh4FYVIdnWf7XiqPhssE5WUcC0+n9KmSm+BRgK6nRslsF8Octb2f4uHSYNCpeqk8CgiT+nL9VDusVB4FcPqLVLtkOefAfbGe2CTrdd0Ej9ZqTeHckEdvHPnWHudRgOJin4EDtUHVUW3lURAmDYxx973yclZ+U+6vknZId+VKbB6V8XjfzoGQR1sx9tXOH+dRgHIpY3h0OmiSEX6tyPDo1Ev5/sTVgQYHB+nt7WVgYKDpFCGj6a+TbnoPm7dKLQwn5/Lwqz8w7vxn3/5PADw5MI+dT/YBkN1l0yFjJB1btXHI9em5T8Lgx1b0krvlzwB4pSJWTtcQ0XXbZqsX9uCPXSMfDhwhc48YR3sfl+OTHXTJbdMQMjAaApDX14k1oA162tNKpQpuVCslVFcnFMXoE9bky+XwuuX4Wv0RpHm9HREg5TJYI7Lc6CqBnsLGYXhGahaoQiHcTuXApWSe1F3OqnofstkQdLy+zmgbOYfyfBmIC4/1h9PLS+UB6HbY2KOyjrElGXK75HPhke0wnEx5xnGobpSLyu7rC+uxeEND3Fi8lj2tA6++GnehnA9nU5aM3l03Dw+9b/L1UsbTyi+KFxdPhZ7dQId8/wr6ugSEh4tZMhq4fF/xx1d8qOltPG/9+wCwdbrEr9d8NIS4XHeJrF6v5yv+ctblk/4ts0l7eiy86qqr+NCPv8uif3xNS8sN/PctvNSZz7XX7vn7xcionTI8Ojt10k3vAWDz1l6cnIw9zTDpkwPCMTuf7CO7S1ihY1M6jwL88oZLQqeilcvPeh4FzaQHCrxk7ulM8ChAbltReBTA80K+swZGm+NRECZtgkdBnMhByq41UkryKMAzm4VH9bYqB0rtrMyT25riUYDy/FwqjwLYoy5jS2Qfcrtc4VEQJo3xKEB14ybsvj7Zd9vGG5Jowb3BpAArv3UVziYxVmZGhEehzUyq0/LjTHrI96XuX1/XGMNFvT+OG0Z1tcqkaTwKkHXc0JBomHTPj4UbN25kn332YcU3rkRZzUeUVncN8uw7Pkq1Wm0qpdeoPTIRfkZGRkZGRtNZpqSikZGRkZGRkZHR3tQeiPAzmnoZg98c1tHzN4WfR0pZDvpPqYmwqG+YkZJ4aopl8X5Vig7nHL0FgC6nxCO6G5PrWWzdKp6Foax4DLvuLGBVxVuXGXKxli4CwH9mI56ui5G972lA0oBnY7rFw+8RL9vZt/8Tj+QkFXPT/uJdtMYcMkPyeeG9HXQ9Kd5PVXHxC3LcgzoolCuhN9P3PVSHTnXJOJGntay9r9lsVPA4Pl0plE7TVfkcfo94Qjv+vFG+d13Ia/dgPhfWdsk8uS2KItT744+OoXr179i0A39hn6zXsSJPqnb8VBZ0Ulwo18+2Yy2W3aF3x4WRpfLoGVyxjM4tss+FjWPhcbCWSVclNVKCoq5FGEs32ZNa8dxn2dgvkQGlJeDvkN/k5n0OvUIiOR+8dIq9qh3Bua33onV3FtmpU56qI1meOK/1tPgjfnQ5Ssm15rrRNhYsloKThUyFnC3Hu1g13dL2rpT+Z2RkZDQ7VcujAAf954d55G8lyu85P/2XkEcfetWlABzavYUuRxjlEaca1rbdurUnlUcB1q16Z5Q5UC6HPDqbFTApwNG5yxI8CpAZ6mbhvcIVXU+ORB12C9lUHgWESXUDD1w3nUeD5XU9abW9H5WXrBC/pzPJoyBMqr/HsqJsk2IplUcB/IV9KF3CpvBYfyqPAiy7I9ZldqnD4Arprtm5pZrgUQBr2QLhUYBiea/xaKBcV4mSbljq78jg5ttsVelweeIN9e9q3Z2SrbRzsIPqiNy3k2FSgNFyNpVHAW57yccntV6jqVarTGr4dTrIGPzmsAp2mYwtg1nVtbAdGcA7MmXyjjxgd1kCAENViw5LDC+jbpYtO8TIly+UOXiFGAK3aCPWwFEZqgW5tOY9pMgskHntqkt1o253XRADk3J91jxPmgPceNdl7fuxe0k/POXzYepk50oBkv26+3lmWAxIzy5YyP7r5RjnN0fpvXTo2ibFEujCxsrzwsYXfsbG6+0DwN6qu4JUKjJPoFgB5rBAc7kSGv/CTsEgqREQGhwB/I4cSsNXWGi5WMLv1UWOh8dQA5J+YY84YfFnr0f2cXBVnu3HCYTsd8RGnikITB3wX8VwG6NLcvQfpLu9ZcUQmd9RwRmtRD9D11upHL6YvaFfvOhTYWrBvvvu4BlLjJGULEpLvHGWnLyUrpXiZ2Dl56WOSZBGcfe6KzngmqsBsCfZJTiechFPjcjqFfZmY+eoksVoL2oyNfyMR9XIyGgG6csnfDP8fMSPLgfAdjxe/It3ArCgU4U8euB10kjgDUeWGXVlfNqyo4d8QRj14BVbUnkUILOgB1sbrqobN4c8+qIXf4z//fl72vYbp4vymUqCRwGeGe7l2QXinN5/fYfwKAiTpvEoQGchrKPn9fal86ieFjSpw7JC46Da3p/kUYBsto5HAZTrpvIogBoYFh4FsO1UHgV4prCsjkcB+g9yEjwK1DHp3uLRQKWhHPvuK+fwGWsB6LrPK7/8CZ54y0VTvj1le6z8hnDwE38fGf6Cph4HXHP1pHn0mP8WA75tqXF59GW3vp2dRXkG3Hnmxya3MaPdl4nwm5EyBr85rH89Nupec+B1V4bdllZ07SKnuy1tyoph6knm8VRRiirvGOtgQZ8Yeo5auIkuWyCrqr2r8w8Y5ekhKbBb2mpR2CKXmeXYWJnkJWdV3LBD7OpTPsyG28ev2TITdde6jwDwht/+AwDbi52Mak/1soO288wZAg7Lbu8k1y9QUeqT7wtdOZxturOY7+N1ao+n67PxNAHarAbbjq1u6MHOPTuICjythTx+PorSCr2usU5lbrdAUaUvF3ZhC7YJkBkSILb7IyMfjgO63TmODa42Umnvav8hitUn3QvA7790DMt36u5bnQ7ZQdm3aofC0btR7pbtZgcVvoa/8tJuRpbLb67WNAHekwo8m3/367cwpGsVjpWybRvIfH0vYYFfqKeoxy58526tv5Cp8us1H039/tmhXvbv3QUQOgWMjIyMjIzarZJuGNXZUWJFl4xDOaua4FGAp4rz2TEmBoAFfcMctVCiBLvsciqPAhS2OFi61lycSa2Ky+pTJNNlNrJooLvWfSTBowCj5QzLDpIads+csZhlt8v0XH8llUcBYVJXPm88rTuVRwFhUm1crWPSGI8CuN0FKn06ArCGSVN5FIRJgzqCrpfKowDLd3pUOmW57GCFaodu+jKW5FEAX6mwBuDI8hy//o/dY7Dd1RNvuIS/+/VbABianxMehfYy6Thl23aHSe99+RXjfv/skNz3+/fuMjxqZDRJGYOfEQCPnvP+8PP7//g3VHztscvLE77qWZRcuVxyTpWKJ9//6z4/57R73gDAaDEacKp9YlTadWgGZ0wGcGfRMvLLxWhoaWhwCw5eVqeQDpR58QvFCPHzX8y+4sn/d5HktH7u2RezvEcAaLCU5+UvuguAHxeOJ79FQKa4j+5qViqwQKdZOEUYXSTwYZdh7HjxwHb0SkrwM1t6YVjOUfejC7HL4q3t3OwyukTOV9ezVZxRMbzZRfGMVjsclIaEasHCzenzMerh6nMTnKOsrbDz2oA7XMLXxZFRKgSrwFiXGYE/7ZSovuyQT3ZIfpNnK8rz5FqxquCMycbLPSrcljWmjZWWYt5dWwFY/+De9+h99wVf5oDvigHXybjsv3BnW7az73Lx3I5VMpQrcoyDrrrjGeomUuChzXY17oJ4UK8A/8LcMCNVge0l+aFJb89oimQi/IyMjOaIankUoOLbCR4FKLkOOV1epuLZ/Os+PwfgtHvekMqjAM5YAWeRsEl++fyGPPqS0yRy6eZbo32ZTYrzKMDynkEGS8KfL3/RXfy4cDwA+S35VB4FYVLt82fs+NFUHgWwywvp3CwGm9ElNl3PynqdUS/BowDKFx4FcHMWGc2tbtZK5VFAmFQzqO9YqTwq/1fxtDGxPC+LjnPAGfMTPAoIk+oGIQGT7m199wVfDj8HzTPayaRjFbl/jv7JZfzprz84ZesO9v2h/3NpYnoQxXfhH6Rp2Ug1Z3h0OshE+M1IGYOfUZ2ufM5/1U37f79/XVjTy7FcynqQvaecZ/AR8bZ6vWKkWbqsnwGdkjjmeOwaE8OBVbawtPEiNyDew2oebF0Wo9NRZAZlG+sOvpjqIkkF3nDH7PC0rl51PwBf2vQ2HEuOz2E9W1icFePfP79wA3f1rwJgaX4AgCM6NvK1g08BYMv2bjp0t6qSa2HrjlknLn4SgCc65zOq660tPG6U5/U9DsDnbnsJRx4qnx/9+Sq6n5anb2G7gIzyodQlnysdKvRy4lsMHqy9uI78v/iuAh1bZBtZ28Yq6ZSMihuDLPl/+a2j8KsevXwlrANjVzz8inweOdRBZ+SEtVTGFtoUdEkdz1FgN98Nak/IekaguDTPZel+UwMfB37vI/T2iAF3/95d7N8tBP3E4PwwrcHW18zqX17IhjOuaXkbz/npv7BoiQZ3BcevlxeZICUD4NsnfhWArz70V7i+HPchby+GVhqJ/FZroJiaKUZGRjNfaTwKkLOrOJaMj+W8wz1lGasGH5mXyqMAu8ZyWLo+rlVxUnkUJM0395QYUaqLemYljwI4lsdhPVKeZ3F2kH9+4QYA7upflcqjAB3dJUq67prtqVQeBXhe3+N87raXAHDkoY/z6M+Fd7uf9hM8CsKkFc2i1Q4FmkcGD/ZTeRTAKlXCunviiG7Mo7ItH7uiM1MqPiOHBuVlkjwKUHha8yjTw/lcq1K/XPtTxaS1uu0lH+eUDZLpkrVdTr354nD67uh5699Hn9h6OX79+xM8GujIjmcBcH3L8Oh0kK9aY9KW+dWoHTIGP6OmdEBhG5vKElads6oc2SU1MD78xMuwR7UnbJ4Mwlt3duMVgxoaHmP7akPhgE1hi8xb0Q/47qdcSn0ykI8ssSnoAdXLLKDSLes48fVX85tv7d3w+amU56uw0PTCzDC2dn8ckN1K93xxm94zvAKAAbeD/Xr6Adine4AnB8S4+pezPhyu7+zb/0nWlR/mgV1SxdfpGGJ7RYDslOc8RH9JoizP+Ovfs/6e58j8v5HjW5wP73/z9wDIqCoX3f63AKgBh1OfL1DYl5F0i5/ax9L7gABW1zMWKig5+Mwoli5obBWFlEb27wzTIhbeuiks7Oz2Figtkv2xS+DpzI6szswobHdBe139jMX6+z7S9LHdE3rkovZci0qTbtZyuetpOf/Vis2x+z+jp8t9tHm0u6X1XvmXl8u63BN4/jK5b4cqeR7cuSh1mTcd8qvWdt6offLD7KmWljEyMjKajTqgIA0cNpV7w/IzR3Zt5MNPvAwAe1Sl8ijA2L5VnAFtyNmiUnkUoOAovIzU7a10O5z4eqmfO1uY9AcnfwGAc3/zJhZmdE1mfA7IShRb9/xiKo+C1KmOK41HAbZXujnlOQ8B0F8qcMZf/x6A9fc8J8GjIEyaUXJuL7r9b1ED8v2pz78/lUcBlCc8CmCNlNJ5FCDj4PYKi5YWFUJjr5ep4VEAW+FnppfzOa4n3zR1dfsO/J4wd1/vCAf1SbbJdSd9iU3b5R3w2P2fCXn0hf8rtaV/8aJPNb3+K//ycq59+AQATt53I0MVMeKlManh0eklv8UIv5b51agtMgY/IyMjIyOj6SwDTEZGRkZGRkZGRntTk2kkZ7TXZQx+Rk3JRVHy5HLxfIv/2XQUAE/9YR+8Lh3mNaovp5IFfRIyn+2oYOs01LFSF6oqHraOrfK06H5kEPdI8RqNLVRYVZ1u+sBmCiXdFfiElRz/ZklhvPsrF7bzZ+4RxT2iV/7l5dw/shSAg3KbGfUk/flLx38bgLNu+2ce/cmBAPz5441/+/1bxIt69NJNYUHbrFWlvyKey6Kb4YGNso2u/ctccIqkarin6HNhlfnDiHhwj+54mrOO/gMAm4u9LNOpHCvzUttt6V8N8NBxsr0/bV9G6VbxfGeGc4TOT3052CWPrgH5o//5S8kOyeeh5dFjJ7/To1M3btaXF4P7O3iO7rw2RwYVZXnkdS2iBbnhMCPTK9k8sE2aurxy1R8BuH/HkpbWfev2gwA4dtmzLNHp4yPVbJgqbDTN5dN6SsQcuW+MjIzmnlw9QJY8B0+nev7PpqN46g/7AAiTpvAogN1dYqykGaOqUnkUwKr6FB4QSCmUyoyesBKA4998zazg0UDfPvGrYTbA/SNLOSgnv/mth97S0noCvn31Hf+Y4FGA/kqBoisReQ9sXErX/sL4F5yyIcGjAH8YWcHRHVLb5ayj/8DmopyXZfmBVB4FKN26gMywcHTGIpVHAbJDXh2PAnRuTvIogOd0zRkeffQ17wPglA2XCI8Ch/zgCjzdGOSBbYsnzaMgTHrsMknTXZIdZKQq6zVMOkPUckpv+3bFqHkZg5/RuAo6ef1V3ygDTlTo/9mdfQB4WT+8mQNjnm/7+K5O3S06KA1Zfs7DriRD4seWd4Wfs0M+uZ26+q/n4xfFUNjx60cprz4YgNPO+gQAt/546tvO7w29/8j/Hvf7H5/6OTh1/HU88Df/UjftLb97Az26qvKCzAh37zoAgEd6FzBckcF1YV6KKw9W8nj64e1hsXGsD4CyZ/P0mKQQz8vIvKd2PsRf9/wBgG/nTuI/V50IgHufhfJlvc6QnMPc9hL2nx+Vzyv34dmXiHGwtAByuq6wl7FYdpOA5fARUti5+xmfX/3w3eP/6FmmI5dvDguRd9klchkB5LKfY2SL1Bf643x5menKlXjZrW8H4H9O+0zD9R39k8sAyDgu+/XIuk7reyhsxvOH/n1Nt7MZpLnyorG35Ps+jzzyCJVKhUMOOQTHMWhkZDRd1WdLymYtk3pZ/aD003kUQHVU8HO6eVmMSWt5FBAm9eSzXyzR8WthmoBJZ5Mm4tFWdP3JX6ybdvG9r2aBZsm7dx3AI73ChMOVbIJHQUrfeLot7MaxPsq6UeDTY/NSeRTgP1ediHtfUA8wm8qjAM++ZAEl2QVyO4VHAZbdtDnBo8CcY1KAvtwYXTrPOZepUvbFkDqypTPBoxMpzqMA+/VUOa1PUrsrvs0f+vcF4Ldrp1f5HqPGUn5rTGr4tTW1i0cN1Ro11H1Py8M8Z0mB3bLv8JyOpwDYsOsoyjskeswvuKiiDMRkBKCsrgqWF1n/3aou6Dtih/XaRhfL98PLM2SCWhk7vLAjFpbCL8tA7VcqdGyWz8qVJ8faYy7lhnvHb+U+l7UkN8iqnNS5eV7hCa7f9VcADC/JUS6MJuYtug4duojxpmIPHY4c6y7lhd7zUVcG+vn2KEdmBLLPX3AbpefLI2TDU8+n61m5Dub9SeqrVBbmcDplXjefxQnqowyBLgeJd/gID7ygTz6X5Nz2/GVuPpbm5+S83LFtFSv6dgHwtPIZ3CkGv6Luku2neNYOvv7DPPxqKSi+b18/AB1OhRP6ngCkRmQFO9zWv+z/U73kVRPu26vv+EcANo5I0evbV0+8jNEUytTwa5ueeOIJzjrrLP785z8DsN9++/Ff//VfHHfccXt5z4yMjOJ6y+/eAMBzdX3n53Q8xYZdkm1S3lHAL4hBQRXtVB4FYVJ7RMZCL5POo6C7tOrurH65jF8RVurYXOYlp4uB4uZb3jf1P3YW6rDCJp5XeAKA63f9FcNLhCvjTBpwTodTYVOxR38u06ULRnu+lcqjAKXnO2x46vkAdD1rp/IogFMSHgVhUu9wMSQ+8IK+Oc+jIJx4xzZprLKibxdPa8vN4M7OCXk0rjiPApzQ90RYI7KCHbLvb55cxYn7Pz6lv8GoDTJdetumdvLo3H2SzRGtts8BYIN7XdPL9G/cL0yZeG63GPmWOv08VpbUwl9v2j802StX4ecFspxO3dNe+WTz8rm7UMTRhZI3FTOUBmWgDcLl7SJk9YCrPChrkMtB2PUV3yezfST8DKCqXtO/Zy7qkPwmVmQkjC6vPKorBXrOOuA+RqoCS0P6/1VdO8LC10PVPBXtSc0oj4KOEgy01I6e3Cudbu7ZKZ654mIfpaHat8Sal9/l4S0XL6lyXXT9ZXwHSjqVY5++IZ7dLFGE9qCc+3LfVByBmaUfn/q58PNh//Uh9lveD8AxizeysUugN6+7ZG8d7qIvN9ZwPc/5qUR7LukWQ+287ChH5KVRR6dV4uGypLJ0Z4p8Z+cLAPjJwN8A8NDwEo7ukTSLp4rz2VbsCvct8K4r46rb82o1fQIwXXqb1yWXXEKxWOTb3/42+XyeT3ziE5x//vn89re/3du7ZmRkpPWnp/flud0SVbfU6QfgsfJi4VEA5aN0JJ+fd1N5FMCxPTYVxftcGsym8igIk+aCnVAqZNDM9hFTjb5FHZjdSl4f2OrKMc464D4ARqq5BI+CNAccqkq0X8Wzyejl4kxay6MA9+zcl+Ji/Z7gqVQeBVBV4VEQJt2nT07+s5vnhTz6p6tnT9p2q/r2iV/lsP/6EAD7Le/nmMXCkhu7ehI82kgHXy+NBQv5coJHAY7Ib6TTkgiAh8tL6c7IOf3Ozhdwor6dX33HPyZ4FGBbsStk5bNu+2d2FMWAu7udgo1alOnS2za1k0eNwW+WS2nP5JrCuQD41Qo3Vb434XJDnhjmgtSJRfYQn3h6DQAD27pQWRl8leOFN3M2J94bz1fYdmSQ2zEoEUqM2JQWy0Brj8gAUO328XLy2c1ZONqu110q441GXj9nSH8u6JbsyjxAxlPFdyjr9E0bn7876ncA9Dpj7LTkfDiWnIul2UFG9fnu91UsvVcx5sr0jCXns0fliOvly8QL8e+3LWdscZACI8v3r7LJ7ZDlfUvh6lNXLRDaI57dNA9ni55HT3vwX+YuYIGkaAcpu4FHFGC0Ki8opyx/nH9e9As9NUrpXdAzQmdWICqrz+1AucDmigDvtmo3/a4A0jxnlB0VuQ7W9P0JAEv53LVLaOvsJffwTH5+uO4g3fjg3m1T90ONmpeJ8GubfvWrX/Hd736X008/HYDnP//57L///oyNjVEoFPby3hkZzS6dmXlNUwxaqyEvm+BRgE88vYaBbboWX9YTHgXwVSqPgmZSHeFXWuym8iiAMyI8CtQzacCjRuPq3x+SujT7ZWxsPTj93VG/o9cRx+VOqzPBowCjXpb+gEV9haehcczNpvIoCJP++23LZd7FfiqPArh5zaMASngUwNmS5ZGLZkcX5t1VUDLoZbe+PZVHG2lBj7zMdWZLCR4F2FzpZVtVDLT9bgfzHLmvdlQ6+dnjErF7WPfBCR4F6pjU8Ohekonwa5vayaPTt8e4kZGRkZGRUQRYzf4zalqbN2/msMMOC//ed999KRQKbNmyZS/ulZGRkZGRkZHRNFOrPGqYtGm1k0dNhN8sl93XB4A3PNL0Mjnl4OrabbZucXXb6CFsfEa8K3a+iqU9qb6vwoLIQepuT6HIjiGJHhocy1MeFq+achXoLIuguLLf6VLWxZM926H3Ub0T+RwoXXjXUuFnX0f2Kc9j7dHvl8/FCugGH+uf/temf+ds1qZKH0VfPHCL7WFK+vNv+pdy6rxHAKjqCMAOu8TDI5KunbOrlLUnteLZFGzxbDtKPHRfGjiA/9f3VLidn2w8WrZx6kY6X6uL3ywQL+n2ExdS6Q08qlDSzrlKjxd2TluwZIi7X3/l1P74WaC/PCqp0irrcsIqOd7DupPZgwOL+ZYjBao/tl+0TN6pYOmU26Db2bzsKJsqfQDsqnSENRn/z/y7ODYraRS2vqdOzv2OjX0SNr7Ihjc+emy47iCFOFj+Tb/7+/C7glWhUxdovLd/nzAacMMZ1+zWMTDSmgwwGcBqWkopLCvp+7QsC9+k6xkZTbnsvr6WMk7GNkkNMde3EzwKsPGZ+dg6XddyvLCemO+qVB4FKA9nw/Rfquk8CgiT5nUkmbLCrBmUFfLousPfK8s7lvAosP5hk2YYKGCQop9hsS2cWPIz/KZfSoycOu+RBI8CPDyymJxOGy2jwlIzBbucyqMgTLr4VF3G5LXDqTwKwqSVHg2jnvAoYJi0gf7ntM+w6tqPAnDCqqcSPNpIeR0NaCk/waMg18OuimSbeL7F/5l/FwCnr3yIEZ2iX8ujAIuW3xauvy83xtef93WgnkcBOp0SH3vO9wFY/csLDY9OpUyEX9vUTh41Br9ZLr9abXmZP1f8sDvWPaPy8P3N9v1RRZmW7auGaZ++B742MpSr8lTeOdwRfl8t29G+5LwwbTOoj4LjQVlfhpZPpUtmGD1qGR3BBV4shUWTVUX/nqqLquiVeX5YS2Xdsn9i/abPt/ybZ5v+PLSco7oFejLKY1tJ0l42j3Sz/xIJgz8i/wwANww8h50lGXwX5kew9NM5Y7lh3ZS8HkQXOUPhNga9MXYOy3IjOzs4bFh7IPZbAkDPE6UwdWLXYTkyA/J1cYkPutGLZUaCxhqTe+2IA58Jm6h4sbpsQffk3z+1guNWCPAe1LudId3hbmleDrbnW9y9awUgNQCX5iVd5vSVD/Hx+9YB0KFrqeyX3UmHks9PV1VYowUIr4+lBVn+qyd8g3PuPB+AbK7KmCsG5S6nHILgqTdfTEFDX5DSkdZV2GgCmRoobZPv+xxyyCGoWJmI4eFhjj322AR47dy5c2/snpHRrJJfrXLj2Lebnv/PFWEEDyvBowCqaJHtk3HK8xV+mNHrN8WjMm86jwJUuhSjRy0DECbVzmUsleBRQJhUd/Rdt+/bQdeKm+tM+uchSbE9qntjyJTbSl1sHpG0zv2XbEvwKAhzBJ17LXwymiEyykvlUZDzPbJTeOWw4S2pPAqQGdA8ClC0DY+Oo5Vf+CRHHrUJkCYqXk2d4Nf95s28a9mNABy34il++eJPAnDOnecneBTg7l0rQr5cmh/k9JXSsffj962jwzoQqOdRgK/e8Y9h9+edpQ7Ou+s8AL7+vCSPAiGTAjiWx6k3XwxAwakY49/uytTwa5vayaPG4Dfb5cng2gpgbXO76HfFI3p8p9RnuP6+48K6a7lshbGSjtqz/PCxH/zvehaeG7vBg8K6vo8q60i9YFrZwi7JvHZRocuKMbSvQ267jijcPgTBhe4F3jgXqn40LTAOVl3W9sgg4Acw5kf1W24sXtv0cZjJuvPhAxheKVBzUufD4fTBsTwHZrYDsNUVI+BfdT/IA4MCRRnLDaGn4lthXZVg2tG5ZwGBqf8a3p/RITEwLb/ZpvKCIwBQGnizW4aoLJJtdGxx8TJynocOBdUpwHbXuo9M9U+fVco7VSwNyB062nKwnKNgy/F77+N/A49fAMDaxRu5advhAGR1ncb52RGGK7pRjq/YrLveATw0Kue8LyOg/ERpESd2SfTnrQOHhcbBi+99NdtHpFj6wpwA+Gk/v4jDemW5p0fm0ZeVz4vyQ3h6G4vzw+G+B01hzrvrPIa1UTIAN6PxpQh7JDW/jHlvaVpf//rX9/YuGBnNGd2w66stzb9Nc0q/25nkUQAlPAowVsqitJFOMQ6PgjBp0ACubKXyKEClU3gUILd9vvAoCJPGeRSESYNpvh8aAtf2nBfyaCssPlv03Rd8GYBX/Or/1fEowIGZ7QkeBXhgcElo5LPwqWhjkRNj1FoeBRgdyrP8ZjHsVl5wRCqPAngZxdChsi+qs2J4dBw98bZ3h5/Pu+u8BI8CFOyK8CjA4xewdrE0ZBmsHJ7gUYDhSjY0wtcyaSMeffWBdwOwZlW0P+tPS2Zz9WYiHgVCJgWphb04L5GllvI4/26JMC7pbj1BpKBRc1J+a4xpzH3Nq508agx+s1w3DPx7y8tc+sBZPG+xRA29f+nNAKinCqhCZDhzK5GnNLzz7SjN13NlcPZiHlWqSv4R86haCrzocaDr9aKqMLKvDOS5jgyZfnl4K1dD2qjCe1a8TVZPd2L/Q0Nf8Lc3995+/YrFwz8/AIA3HfIGvF3aozlo8Qb77wF4/hI5x+9asoFXLPkjAHcNrgzTMwtEhppM0MXXy/KsK8D7i12n0fUnWW/Pg/30HynNIeb/TgyKvlI4uySEv3vXKDuPFQNuYfEwz1m6qT0/fJYoDlcHXifpJSsWiUdn+3AXo9qI99Llf2FId0M5KLeZ3+ckmm9JXs7RPTv3oezKY77i2fSXoqKvQQHlICqw6lsckN8KwGePiwzj5911XgjCb/jtPwCS+v2XXZKOo5RPV0aumQ67wknzJC9//+x2Rj25PoJmIZtiLZj/3+9fFwLXl0/4ZsPjsPqX0sBlaWGIb5/Y2ovirJFJ6W2r3vCGN+ztXTAyMkrRpQ+cBcDzFj+V4FFgfCZthkf1/2k8CsKkSiPlyL4d5DokcijTP5bgUQDv2U11PApJJj0z+9rw803l74z/42eZHv75AbzpEHneertyZAblvLzB/vsEjwK8YskfuWtwJSDpmQG55KxqKo8CdP0pR8+D/QD0H9mbyqMAO4+dT2GxGILuP/uydvzkWalbHzsowaMAo5UsL13+FwCG3DwH5TYD8PvcigSPApRdJ0zRrmXSRjwaVxTV9/WQRzeO9jBaiXgUoCtT4t33ngPASfP62T8r18Gol6vj0fPuOo8ubcCMs69RikxKb9vUTh41Bj+jOlU2LOSXPdK+fseZ8jDvehpK82RwHl2aw6vGoUh3vApgylf4lcCwFwGUKqvQk2qVZF1WJfKk2mNRxyzPBkt7Zb1MhuxW7VW19TaKpTBdwtvVj+rSoYGej9Uj++wNykDuVythDcDV9jlscK/bjaMzM/TkGy/muLdK2PrSX9v42lM6skwxcJAYYW7//nMBePPbbuGUgnjSbDx26ujOB4aXsTL/NABH6f8rvsPL73kTAEOPzmPJM7reTS5Dz2O6zluHGKOskRKMiiHI7yqgS7RQebiH6wxcNa3gvnr8mUUAZArRy8MfB/floM4IihoZxd72+/8LwLZid9hZDeDR/gUA2Ppt56iFmxhw67tABRF5QBixV5sSse7WdwCSujtPt9pe4eyk2xKICrzzd1krma+/H/Wy3DsgtQrTaqw4uhtfzq7WfWdkNFW6/vrr+dGPfkSlUuElL3kJb3nLW/b2LhkZGSE8CvDLnoUJHgVh0tGlwjO1TJrKowCeQpV1WRrbT+VRECbVtgksV+FlZAzNbh1K8iiA6+Lt6pdtdXWG6b1WT1cqjwJzgkkBHrj8Qs5YexUAvuUyskyO9cBBuQSPApxSeCSs2bjT7eSBYUmrXpl/OpVHAZY84+Hl5Bz1PDaWyqMAvi08atSaHj3n/az81seAeh4FuO6kL4XTXnFA/fJv+/3/ZVtRDONxJr3+5C/yvPXvA5rj0W8+/2up+7ju1neEpWTmOSOscMRA2W2VEzwKMN8ZYdST6+Ts2/8pzIpJ49x9OiRF+asnfCN1+0ZGk1W7eNQY/IzqNO/BCuVeAZmNp8hgOLTSp+cx3d5+SwGvoGuWuArcCKJAovfCNF9PhQ0alA++hrLMcGzeoAxKRxQsmC2Dq1NAq3lFZlVfuA4AtayLgiOXr7dxE75uSqJyubBuodUn++5tLUeFlokgC2Y3aP3+3yQ6am3vG1GLxLjT8RD0PCWfh98ltfze+Y5/5uhL/wDA/9zzHP7hRCmMW3QzPFsWiPrLiNRgGarkWdwl4DrQ0UO2X06IPVJCleW4+1n9WPH8sNi1n8uw9VT5/sk3XtyeHzxL9cS57wFg/69JEXC3v8DIIgGW3/Sv4rrXfyl1WYAvHPcfDadXdI2joo6yG6wUKHmZuvniqbdpqQ9BPZb+coHfVSS1pssu8kRRXtZW5AS2jik8yYkFScsq+g4ZXXw7aBIEkQe3YFfYv1Pu2+W5gfD7IOoP5k5jEJOi2z59+ctf5vzzz+fggw8mn8/zgx/8gMcff5yPfvSje3vXjIzmvOY9KCm75V47waMAPY8p+reIUcAruFEjDlel8yiAFz1T/apK5VGQ+bJlvdqMoprXDLuqL8GjAAXHwdso2Qv+8Agqp/mnWk3lUZg7TAqQv1NSdtWiBXRI6TZ6nlqQ4FGAoy/9A/9zj9Tz+4cTb6Ooa7I9W56XyqMA2X4fe0QMe6pcTeVRgK2nVg2PTlJ+RZjN7Zf7b2SRxW/6dc7tSeMvm8akACO6XFQzPDqe8naVfp3F8rvK/nTZ0qTuieLCBI8CnFh4nKIv10lGuS3x6FxUyym9hl+bVjt51Jp4FiMjIyMjI6O9pqBIciv/jJrSZz/7Wd7//vfz4IMPcu+99/K1r32Nz33uc3t7t4yMjIyMjIyMppcMj7ZN7eRRE+FnVKeOx3ZhregDYMSVKKCvvOrfePP33wpAdpdFWVvsrYqKuuUSTIt5TxVhKqdvgW44is70w8uCLvOFl4EOKfuAm4NKYI72of8gJ1w3QHbQp9wtIf69t47iDUjKrzs8gpXVDUWc6PIO6/jFGngEaRWzXd5YEWur1K9Q3V0MrpDjc8oSibT6vT+P+953tHz/Oo9jO54A4ITOx3jffWcDkPueRPrld1bxHTnf+ykYXSrH2Cl2kH1We71iRat9R07+yP5dHHituM5f8L9X8+v/eGe7fu6s1ZP/IJ7oAz91Nf4WSWvofVxx2GMS5VY5fBTnIQlL6H2eeMtLVZt1K+4H4JD8Zt54yG3h+g6YvwOApwf7ALjniX058Mhtk9q3h7ZLurHvw32vvByAnz1+FP+7/TAg6pj22NgiDu2QCIgTOx7j73qlGPPDlXlh6rHnywNhqJJnRUE8sQszUTc+b67Bw2Rq+Bk1rccee4zzzjsv/Pvcc8/lLW95C5s3b2bp0qV7cc+MjIw6HtsFgLWiL8GjAG/+/lvJ7hKOK/vCo0CCSWt5FIRJgyAep5zOoyBM6uppFYvwWdx/kJPgUYBy9zJ6b5X6cN7AEK7OPLGyWcOjWkFd8bU956G6JTJycEU2waMA973vaNTr5Pgc2/EEJ3Q+BsD77js7lUdBmNQpCgdlnx1I5VFAmPSNbfups1oBj8Z1zDuERQ977Boqh8t94DzUEfLob9dO3BQl4Mfd1UPbF4W9HOPrPOu2f07wKMChHZs4sUOur7/rvZuHK3J9ve33/7chj/7LUT8J1/fiX0TvMj9/4dVTsu/TXqaGX9vUTh41Bj+jeg2PkhmQUOhdf5AH4i/2OYL5R4rRaOjXi7B0JzMsyAjThIWPVRywrKTBzwrKPeh5rYpAFoBdjmr4KT+CLIim58VGwdgCxdLfSpEVf8kC1Kh8tnwPP6jtt217tII4WI03bRbqpvJ3wkLRVjaDLmvBL56Rzqvv+sQP+bf3vwqAlddW+cL+LwTgawdeT/Z6GfiyQ3qh2IPeLvt0bhTidYbK+Lmax4nvo8qyXGFTMZxslevD9I2a16PveifHvF3AyikSnY/fd1AVjg1Bp1TOsL0sE58eO5wPfVPq5zzxhkv48anje42CWio7HlzIYxfUG2hPuklSje8882PYVv299NuRA8NOaY8OSWpvT7aEqxOshrw8+2YEoF7XvZMf7JAHRVW/iZVdhz8PSurOlaf+V7he14tejI5f/34AVvT0U9XTf/pXnx33d81ImaYdbdPY2BhdXV3h37Ztk8vlGB0d3Yt7ZWRkBLD+fkllOvMFH0rwKMD8I7cz9GuZZpVUmLOUGUnnUUga/KwqqTwKwp7B8rVMGudRgKW/HcNfIiVT1OgYlmZM33UNj9bIK5awssKClpvkUYB/e/+rWKmdxF/Y/4V87cDrAchePy+VRwE6N1ZwhuTkJZg0hUdP/ttPAXDHf75rin/h3JMTNMb1hUcBql0Rjx72Xx8C4NQVj015/bs4jwL85azLG87Xlx1L8CiAi2LIEyf6vpmdvK5buPQHO+xx6wRCkkfnjIzBr21qJ48ag59RndY//a+sPeZSAJb+RgbIzMtdVvT2A/DHwiJsbfCrdvihd1SX48KqRp5Uy48+e5koQq8iDV3xVWQE9C0oL5AnQ7ZfhfMGtVQAyr3RNp5aI1/s+3NFdocUgPW2bA29p767W4dhdikAz+ER5v+hH4ChYal58sXcq1D6SfD0eVUyP18JwDcXPpedL5WHzNLv6UK5ykdVA2+2TWGrLoLsWKBrwlkjAlN+IYuqynadjTtAyYXQVe1rz2+cQwpeRvBhVAJdye8ANy/nZmBE1zV6tItfVASkc7kKPfPFOn/Mf1/KIfPlBeSZYbmpNj+0iK4V0ib7jH0fwfWlHkto3K/Rpk3zws9/fMWH6r7vsov8abvsXM6Rm3ysmmHbmDSFmbdolEe9JQBcOrac5fl+AG54Vl7mfr2mcc2KX774k+HnF9z43obzzCa1Wi8FoppVRs3pq1/9agKyqtUq3/jGN1i4cGE47e1vf/ve2DUjIyPAGqskeBRgRW8/fyyIwc8uKaoduklGOZ1HQf4OIvisSjqPgjBptl+F86bxKAiT7vtzmTe7oxtvizTU8j3f8GitfC+svT3/D/0JHgVQjvAoQObnK/nmwucCsPOlo6k8ClDYWhIeBaja6TwKoJTh0SnU3V+W+soHf/Sa0Bju5v0EjwL8onIwRzxzOQCO7YWddQ+Zvz2VRwFu37yKwT+JQf2RS6JazpDk0Ub65P1rAPjT9ucleBRg21gn8xbJu86j3hIuHRNH8/J8f8iYrfDosq7BWe2ANjX82qt28agx+Bk11A33XgHAukMuAaDi2yzKSVpdZUmF7LNRlFYAPVl5NuO7kZfUiRxpKC+KBgwBywJXz1vt8sMuvm5OkZFavNhlKHfrbfXJ917eI7ddBvjR5TmyT+pLWVkoHVGogg5qgFeK74il/5s7r8U3Vb4HwJmZ12CNibVo23E6oqrT55gTHgUgd8UKFv2LVFL+3zedzLIlAlZD+8i8+X6L3ICrl7dYcaPuaLdzBK9HD+r6f3wfVRSrrbd5K9a+MoiGMGY0af3+SxHsHPSJII1A8chFyUi857/harYX5Bx2HTKCpUfebbu6WbRc7ucnBwWUfNsnn5Hz9cDgYnbprnfegsYdcp94wyXj7uN+mZ1hB+ADeoX+Ou0ytz51IAA3lA/n7nVXAnDazy/i5EWS0rOsSx4kZ932z3RlxKB87YlfabyN7n4A9u3YFaZpnPubNzXsVjyjZSL82qYVK1bwla8kr6+lS5fy7W9/O/xbKWUMfkZGe1E33HtFgkcBFuWGqCyRMauWSZvhURAmTeNRkHHRzQXN5iJnW7k7yaMAue02o8slDDD7pBOxpj0Oj4Jw6xziURAmPTPzGgCssXKCRwGOOeFRclesAGDRvzzE/77pZACWLcmn8ijAihsV9k550fB6Cqk8CmDtu9zwaBv08HsvHPf7Az7zKboO0enuymfbLnnBW7R8KJVHAXY9Om/SPPruw2/U/8PrfvNmQHgU4NanDuSG8uEA3L3uSk77+UUAnLzo8ZZ4NG4UPP/uc8fdnxktE+HXNrWTR43Bz2hceRulqN63/3AiLz3yzwAcfdDT/Gl0JSD1/AJPaUUbpB0L3MAB50YpvV4GKvrGz8SaHI3ptPTcTkVpoTb4dfi4QwJATokwZMXLaUoruFQLuktURlHdR7w+TrEU1uzwBsVi6JWDcChAWVgZfdnHAGzOSFlhmkPPozqacsjn2d+LEaaDyv9v787j5Kjr/I+/qvqeMzOZZCaTQO6DBOQIEhNEFJdAkF1gUeOx7O+3q64sq2tgXUCUBUHBoILrAio/WV0FARFZ0QVNkAUNBIQAEQgJEHKRyeSc++ijqn5/fKt7pjPTSfdkjp7M+/l4zCOTnuru6u6aqvd8j8+XA182ISuYTBCvMO9x6+lmrH7w8SgRx9yv8i0Pzw+pnbOqsf2e1ujbpnHHrSwhPtVcvEOVJaRC5v0Obt7JsmNXAPDY9u8M2UsdKw5u5OvtT//V/8+m/XglrzaZ0XfpRsAPL3meb51oVgicdue3KGn0g/C72/p9jMNZPut5ls/qe/ucbaYzYf/e8sxtf/jgN/n4s2bp+bA/53xfdwn7u0v6PkAv6RXb/vKPn6ctYf7Q6k4dhVPGFZiGzNatW0d6F0QkD73zKMB5C17lhFk7AHilc1qmnp8byp1HwWTSTG71cudRgHiNh+OPHHTaLJNHAazsPAqQitk4IX/2y+TxJo8CuG7OPApgh4L8rvveAbwjo5z/+r1IMCuPAux8cSYlmAafA18+lmDSvG/xCjtnHgXwbIvOWdUA2CkvZx4FSIUCBDfvHNrXKH28/c/9T59+3+//NWceBShptNnw9SOfet2nwe7U7P/+4YPfBODjz/5DQXm0t43NZvbK4UYIjkpq8BsyQ5lH1eAnh+T688Zn/sjjsU8tAODTJz1N+GRzElz32nQijeYwcv2jKRUjMzqv99wyywW/Rmqml9RyIFVlemxStS52i3kQK9kzpTdZAvEaP1iVmucNlyZw9pvE1l1tkSw1J+Lq0BSCfzKLFHgp/wE8N9O7agVDWKWmx89Lh7ExxLIt3KjpwvYC/tSTthTRJvP+BrocLMef/hu02fNB80GFw/773uZlhmeXb09mHiOytxunzE/Q/tRdNxrCCZlAF4gECe42qdqrqyFZFRvKlymHsfX/XsXUu28BYNIUUxQ9Ha4ACHlYp5nPq79aKM0Nx1BmmwY2u9di73bdG4d83vn/fT2JveYvsa2XfjHrZzdP+TUA1+78kPn5nvFEo8m8Xk/vaRPvffxKLnnu0wBHx0i/AUzpVcDKX3d3N48//jjnn38+AF/60peIx3uuDcFgkBtuuIFoNDpSuygiZOdRgMc+tYBPn/Q0AOGTHda9ZspQRBqDeeVRMJk0Vx4FsFuCmUVA7KTJo+Bn0l55FMDZH6K72mybLC2hOjQFgOCfXs+ZR4FMJh1r0qMa3Wg4K48CRJtcAl3m/bUcNzMSb88HEznzKJhcG9lrRlA6ZaGceRQguLsFr65nmpyMrHRD28G2XvbFfm9P6y+PHi6L9jbt+9/qk0cB7nvPXZnvZz7wdTYv/3Lej5me6vvex83iJkfTzBNN6R06Q5lH1eAnIiJStKyeIlQy6P7rv/6L3/zmN5mAdfvtt7NgwQJiMfNH+MaNG6mrq+OKK7SyuIiIiIxhXqGZVPk1X0OZR9XgJ4e02jUrYy0Nf4KaaWbc8y+rT+T6uWY0zidr13LzG8sA6Fjjr5aW7JlC4YYg4DdOezaZ3/t4dXpEmYXd5Y8Qag9kaqFYKQ87ZTZOxHrOLVbA/Ly6vJPGMvML0F0TyPTWlr8TJLDAzCMM7DRLweP0VEv2UqlM7+pv2/9r4G/MKGVFIqT8kXjpotRu2MJyek7IdqvpHU3UlXP6XFPbryZsusj/fGk91s3mcw4d6MoUQbaa2rBq/aK5/pJcdkcCd4LpdUuVBgnsMytfWRPGEz7Qmtf+Lpt7deb7xzZ9o7AXK4e07VNX5vzZ1s/86yHvW2HH2Jg0NVjmhGLMv/ufAEiM/xZ23BxYb3+h7wUpkQgSbOl/Kv20KbsA+OkU/4ZFcNzDXz3kfogcqXvvvZfLL8+uOfSzn/2MGTNmAHDPPfdwxx13qMFPZIT1zqMANdNO5ZfVJwJw/dxf88natQDc/MaynHkUTCZN5x+s3HkUTH2+9MIQdsoikS4JZ2XnUYDGshjdNf7oPdfkUYDAglk58yjAb/f1jCQaS6yInw/LQll5FOiTSRN1pgTI6XM358yjAFbKxWoyZUis2qqceRQgsO8A1oTxQ/b6ZHgcnEcB5n39NhLjze9af6P3AGb9/GsABFtKD/schYzu623NX9wyoPvJ2DSUeVQNfpKXVYmfcc6p1wOwaWE11yQvyvzs399lFoS4wv0oAPHnqgn6i3O0zXLAX4jD7goQbPcv4mG/oag9iNXlX+BdcCr9+nspi2S53+BX5RKo8Vfa8kPA3uYyov6qSsnKIKlOcyiHnnCw42Zof2qqqaEQ3NPSU68vGOCx174+GG/JqHK2/REAgrUTcSL+arqp9IrIPdMmU6VB7G6TigNxh9d+alZMdc8x0z6Xz3iRH/+DadibsdLCC/tTsEtjWN3+vBg/YKWqoj11/Xa04PUKuvlKTSgnsGFr5jWkA7+MrMX/einJj5sG3PaXxzPzHn81wlCAfadV57zf1AkHaHjFhKu5N9zGpn87dHHn1y+6ruB9OyoDlqb0Dpk33niDOXPmZP4fjUax7Z5p6qeddhr/9E//NBK7JiL9WJX4GQDnnHo9mxaa683BmTRnHgUIeNhdfk3hditnHgWTSV2/8zlZbpGo8hsHa7qz8ihAdEInyUqTiVKdQUJPmOez48mceXSsOtv+CMFasxiDEwnkzKMAdneIQNy8l6/9dH7OPArghYOZKdJWdyJnHgUKzqRnv9f87RDYsJXfHuh/4QYZfgfnUYCZ9+zB8+uGn/rCrbzww74NJFMnmPs0vFLK3BtuAzhsJhVUw28IDWUeVYOf5M3eZgoml22rpN2tACDUZvP3jaZe1mXvfQKAB+2TaXnRL9YXdQnETC+mY0Fwj1/v74D5Nzk+xZSp+wDY21qG1enXNBmfoqvKr5sS9CgtMcMEW3ea57UrEkytMyfrY0qb+cM2s+iEFwyRqPF7a/zfkcRxEwl2mH34/RNfGrT3Y1QqLSHQZd6L2H6/1kXCwQuY70OtiUzNE7sjwbjN5vOI/8wsY/fziR+kZq8fjhNNmYf1bBsrPWrPr6cYbOrGCfsFbw40486b7j9uHMs6dM2aWSvNxXfCsVHKU8eY+8XrB/iiZSCWzb/GfNPWAWXmc2yfa/646pwRZOIt5rbanbsyodrqjlOxpazvg/kurn+JH+4xn+eBJQmm/tDUbNn26UOPKBzTBlDDTxMo8tfS0kIw2BOF9u7dm/Vz13WzaqiISHGwtzVSts1kk3a3glCbyTF/3/jpnHkUIBBLkR5AFtwTzJlHAazOEJa/MmhXlYUdNCfj0pJ4Vh4FmFp3gGNKmwH4w7aZeH6NvkRNqfJof/ysGOhKZeVRAC9gmzwKYFnYHeb7cZtDeeVRwGTSHHkUwJ03HbvDnNuXzb36kLNIZq28jQnHmqGi6Uwqw2/ZMV8w35SV8NjrZiGMzglWdh4Ff1Vm89nmyqQX178EwA/3HMOBJYl+t5G+VMNv6AxlHlWDn+Qttd+sdlX3bCcd75gLX6gjRdMscxjdyVkA/ODsH/H1sCm8v/2dGlId/ui7piAR/5qcLqjM9Dj1paahqLkzRqTSb4wKJznwiimmG5jZTle3v9BEyFzcyyu6OLnqHQBeaprCgjrTGNkwaSaVG81wf6fUhC0nZGGHelrIxyR/NTRSKUIHzMhIO+FmfmzHey1170/T7Tq2jFiD2Tbof4blW5xMmHLKo5mem2Bjc6ahkBbzedoBm1CrP314YnVm5KUXDeJEcjf4vfvvb+WET5mpxJsbZ9E5wUzlSB5+1L0MJqfn+KDLjLDde5I5DqbftzuzGjaOC4meYB7szL3Qxr1fOZ9y/+dtDWHciJJAXjTCb8hMmTKFV199lblz5/b78z//+c9MmTKl35+JyMhJ7d9P3bMmo3S8EyXkN6Q1zQrmzKMAqY4goSZzLYs05c6jAJHKFLGwv1rsKzUEZpp82dUdzsqjACdXvcNLTeZcsaCukYZJpiO6cmO78ujBLBv8Kc2hA51ZeRT6ZtKuY02jTayhM3ceBfD8PAomk+bIo+Y5knhR81iHyqQAJ7z3LTY3mnJB6Uwqw6t3iR+6upl3vRkYMP1/DsqjYDKp/zdJrkx671dMnbTyziRtDeZvzJm33spmle84NI3wGzJDmUfV4CcFC766lXFvm4tjx8JjKN9hTrBOzBxOn3vhE6w85SEAvp44j5ZXzRDr6D7w/BkMXVPNCfi0KTszy7BPGddMRci0XL+0Zg4TXjKP2zzLI5Hwp1+UmhBQV97Gc/umAmBbHtNKTWPklopZJMabC3/LDHNx75gEMLanTmQa/Dq6MqN/gu3d/jeBnsY6x8mEsKazxlH6ol93r8LvIQsFsDr86dWl0Z56NIkEhMzn71WbXm+rK0Eg/Ryel5n+C4DddwzSKZ81F+/yxhS7vmeCcucJEPQfwgkP6OXLACybe3VPI57n0X6SGV1Z96x/W1d35rPvPPEYSjb4varxBIFd5phZNu1yHtt6W9bj7j3RpuwdcyxO/W0XbVPN7+rxV97Gq7cU91SKmzech901/K3OFuohHUrnnXce//Zv/8aHPvShPiufdXV18dWvfpUPfehDI7R3InIowVe3AjDu7RgdC83Iq/Idbs48CtDy6niiZiAfXiB3HgWoCMV5aY2ZYjXhJZfmWebniUQgK48CPLdvaub+00r3s6XCNBAlxkeVR33p8jJYNnT4dfc4KI+CyaTpfJlK0XTWOABKXzyQO4+CuU86u4SCOfMocNhMCnDmeaZESLx6Jp0n+LvYXeCLliOSaehL9EzRbj+pPmceBUwmjZufB3YdYNk0ky97Z9K9J5osWvaOzdTfmmOxbWqU46802xR7Jh0pGuE3dIYyj6rBT0REJA+dTsvwP2mhvanp+0herrnmGn7+858zd+5cPve5zzFnzhwsy2Ljxo3cfvvtpFIprrnmmpHeTTnItzdezFdPWz3SuyEiIjLsvr3x4pF5Yo3wGzJDmUfV4Cd5Sy+YcLb9EexOM42i9E8O8eNNj0rkgFkBq3tXjPt2vweAaDDF/lrTy5LsjtB5sulFee+MLQDMKNnHQ5vNKmvlD1Ww3x/FFZgGXX/TDMCHprzB+iYzwmhc2HStTS/dh+sXRZkdbWRN82zArLzW8F7Tk1rxtl+sd2Y3Ff6UizHLM6MlvVQKK+b3GvhTbOnq7hnh18vkxw9kRvtZnf77F4tmemCtzjh0p5dg7jmjW/v9RpFwiMQEM3Ui2JHA8adOHDx1Y9Y3bwWgyt+d2I4W9v6D+Qzd7eUkA2bfIk2qTDbUltX+I2CmvFj+9ChnSg3hVvN9sM38Lidm1vLOB8xxNO1XzT0PEI3gVZhRcNaBVt6/zPSOP/mYWRF48h8SRLeaEYCpmnJC7eZYKNlTvFOcPv/iJwGojx5mw6GkBr8hU1tbyzPPPMM//uM/cvXVV+Ol61FaFmeffTZ33nkntbW1I7yXInKw3ot4nRP9JKV/MqN84scfkzOPAuyvTZDsNj/vPLkrZx4F2B82eRRMJv3QlDcAWN9Un5VHAVxsZkdNeZk1zbMzK882vDekPHowz82sUmzFotl5FPpk0smPm9xAKpU7j4LJpHnkUQAnGszk0dVrelZhnfXNW6l63Xw/3l/gY+8/hHC3++VlAsqiw6F3HgWwOlI4U8y0/HBrKq88CuBVlGZqjL9/2S1ZeRQguvUAqRrz2Yba3aLOo2k3bzhv5J5cDX5DZijzqBr8pGC9Q9bZ9kcI+40+dTvNilsd9RN4bY85ILvaI1i2OWDjU5KEtpmpwK+UTQJgT3kZ1WV+nbh9Jew4258Wanl8avoLALy3dBNLykyR3sbUOAA63TAhy4S78kA3Z1ZtAuCUf9zOM01mOug77zb3GZcKMqG0fVDfg1HLskhV+w0yrvlcAs2dkPTrpcQT4C/gYbV2QLp4aHpKcFc3JPxgFg71BCvbzmzjjTNBmaBNqsyEsdABB7ciktmH3/9vT7Hqay74JQB3vWxW2UtMLCf8uNk2dO4BWptNMd4NXxzjBa6Hg39MWHubcI8xv8PJykimyHii2oQqK+VRscVs2zWljMaLxwEwbpOHEzFhuPq1CNEGM9XphCvMFIno5BCR3aZVP9CZoH2yORbbR0EN7PZUlIrAyEzF0qIdQ2v69On89re/5cCBA7z11lsAzJo1i+rq3CtOy8j6l3kPjfQuSBH5Xfe9me/Prfp0zjwKYNke8Skmx4S2xXLmUYAdZwfx/BPwp6a/wHtLTdZcUlaZlUcBQpZDecA0WJ1ZtYlT/nE7AM80zVQe7Y/fqJeqLs3Oo2AyqT8lk4Bt8iiYTJorj4LJpOlVLS07Zx4FcCsi/P7JvqNlrrngl1l5FCD8eITQuabRMZ1JZYj1yqMA7jG1JCvN73CwI5UzjwI0XjyOcZvMbU7Eovo1c79oQ1tWHgWI7A4T6DTHWvvk0qLOo+kO6IpglKvm3c8NVA77PmhK79AaqjyqBj85IqvdBzk7sByAwFQzCs/yIPGGOQnF5rTQ2WIa+YKlCYL+Krzdf64C4K2KSmrnmN7R9s+1Mf0Ws+3bF0YpsU1D4k/2nc7f1jwNQIdrTtquZ/EfD/4lAF/52AN0u+Zxk16AKSXm4nD+hPUA/GbviWzaP2FIXv+o43mZ3pZ9J5oLY+0T7eA3ZHgVZVh+I55TFiWwx19lxe+JxXHoepe5GsZe32V6WAGCAdwSE3qtpAlTyfElxHaakPa7l76ac5d+/pEPAND6l349jR0Onn9mmjd+L39qmXokr1jydE7sEuxj/JWQk0nckB+Om+KZYyLg92wHmzopiZgg7QUtJj9pwlJnbYikX17HiQZJlpvfy646c9uEVxKZnlavooxgpz/qoSJ71GcxebXZ7Px7J7zNP86+m6v5xQjvkQyV6upqTjvttJHeDRE5Ak5rW848CtDZEiNYaq5Zwc5QzjwKMP2WGG9faHJOiR3nJ/tOB+Bva57OyqMA//HgX/KVjz0AQLcbIukXrZ5S0qQ82p90h7F3UB4FCATw/Fp9lufhlJnPILCnKXcehaxRf25JuOA8CiaT9s6jAF7Q5FFAmXQYHJxHAdxQgFCT+bvQ8ryceRRg8pMJOmv9vwvLyMwwSpaHsvIomNko6WMt2OmNmjwqR7fBzqNq8JMj508X5e0dAEx4qYL4OHOx3FcfwWo1h9mCmTvY/IIZfZdegKH6FZs9400P2sePf4FnrVPND2z4z++YBr1xm+OM+88nADg9tg2Al+N1fOuTPwLMNIr09N4Wp4RpfjXm2WEztaI99W7GlWgKBYDXHSe4zwRZO+X3UqacnlF9rgXtpofVq+rVi5kuaBwrJfaKWR2ZirLMaMFAWzd2i7lf/FjTC5GsCLLvXYefB1n5fROiyn5gQneqJMjiS140twUTTDyubSAvVQ7h3Iq/w0uvapYuYJ1K4u40odkKBgmmG4HLYpltAultQwHCzf5U/cowTtQcP+E2h5I95nHtlJtp8KveYO7XOjXMhFdNWPeiQWL7TZgu3RJkztdMr+sbXymuQsmON8LTO1TDT0Qkb6udBzi34u+AvnkUwGoNsmCmyaubX5iZM48CJpP6l4D//M5fMm6zaXAY959PZOVRgG998keZLOpi0+KYDDUtui8rj/75L28Ymhc+CvQuDeT5s4OC+9qy8yiYUX2unzvbO/PKo2BGCwbazChLu6Wz4DwKJpP2zqMAiy95kbKgyTwPfPL7BbxiGYiD8yhAMBAweRTA83LmUQAnahNuM8dSyR4XO2VyabI8lJVHASa8msqs1hzb71C6xXw/52u3FV0e/d+zvp35vrW1dWR2QlN6RyU1+MmgcdpNz1ykOQn4Q6U3R4mPNyfaaaX7aWycAYDlmAu25XpM/B8Twp79f+9my4Xm+8XveZ2XG+abxw3bjPOnBb+WGAfAS53TWFZhekzb3CgltmmcmBRqZlrYNCA91mpqsXQlQ7R2j2QBrpHVewr20tDHoNU0oFVtND1i+86sJ1lmPo+ynQ7lz5he8OAb70CpubgmjzV1M3YtLuGY35gGVaeqpGfIfSJFaqK/GppjPu9wS5L13/niYffv2Q3mmDjuJTOasGNGJR+o3AjAowfexX+ddveAXrf0tWzy5803ltXTu+5/hp7rZQK4HbPgQLPZtKsbSk3Y9sIlmftnGo6TJaTK/dGdKRcvaP7gaZsapfJN06PuBcxxlCizcetqMvsT6DbHyqRnexrkF243DX/r7jryoDXvq7fhz/zHPamNTX/9bwU/xh8++M3M9yMVsDQlQkQkf7nyKEB8vMu00v0ANDbOyJlHAbZcGGHxe0xBt5cb5uOEzfVtnO1l5VGAZRXraXPTowEDTAo1AzAtvDcrj4rJpUtDHzP/aW3LyqMAyTKLsp1+2Z5nWkweBSiN5c6jAK6HlTCdiqmJFQXnUTCZtHceBfhA5UYePfCugb5cyWHZ5M/jtfs5MZXKnUcBDjSbPApQWpIzjwKkysNYfiOfF7Rpm2p+Lyvf7MjKo0CfTDqUeRTAcuD1G4qrIbEQmtI7OqnBTwadHXcIt5gTdKAzgFdrftsnhttommNuH7/B722JWTSeab6f8rsQHz9rDQB7E+Vc+Mk/AvDQWydRFzC9d3+3/RwANm2cwrv+YnvmOZP+HNATou9wwO9V/YfqZwF4uXkKe9vLhujVji6e42QKJQf3mgtk15ISHL+8XqjdpixdIHf3/kwB5YBf5DjSUkLbfPPzkl3dmboXpJxMr6pbY0b97TkpytLFNwKwau21h9239JTgcEuSTd2mps6WNtXQOlLLJlza98ZAIDMtxnP8FjHPxY74NVECAax0TZxeU2TS3FAAOz0qNJEi2Opf0R0Px6/VWL6tO9OomF70w7OCuDHzuJ2TY5S/6RfUdl2S4/3ako65z5ybbuONa448FPmzrUh0juI/tDTCT0SkYAfnUQCv1mNi2OSfpjlWzjwK8PGz1rA3YUb9XfjJP/LQWycBUBcoy8qjQJ9MekLUNFIdcEqy8qgY6ezhpVJZeRTAiZg8ClA2sdrkUYCu7px5FExt4PQowUBbd1YeLUTvPAqwqXuS8uhQSCQzJYVIpXLmUcBk0l5lhNIOzqOAyaR+lnQqIiaPAnheVh4FcGMhOiebRsDyN1vAn/2SHF866HnUPC9Mv+dmALb8zSisTT6QWScy4tTgJyIiUqwUrkRERERkpGlK76ikBj8ZdMGd+2k+yxTSjVdDYJzpjfvNzuMpMWVMSJSa3piSvSlsv9e18TSLtzrMymphO0WTX9Nj5Um/5H2vXgjAR6aY2m63TH+IjQlTN2VeuJGQZXpk3kxO4IWO6QBMG/ccAN+a9hBzz2gYstc76qRXNYv7tWjecuioM59BpNXFy/SmhTM9Xen6fOP/HCLQbnrKOqdVYlWZXtCSNxJYcdNr5kTM/WvX5Vc3cebPzHN0TzA9d27QYmrEL5wd1xSKI+X60yWsWE8PtxUJZ+rgWEHzubmdbk9tHM/r6XXtjme+t7rN77KdCuL5K+F5tp3pVcW2MyPqvICNv+4Onv+4wbiXqbGSilq0zjHTZSpeO0DbVDMysGSv6eHtqgky+2YzBeLNLw2sZ3XjdZdnplEEdkUG9BgjzWIAq/QqYImI9MmjYDLpb3YeD0BJY+48CvBWx0TCtrm+NaVKWHnSLwF436sXZuVRgI2JOub5tfpClsubSbM4xwsd0zN59Ndn/MfQvdjRKpHMyqMAHXUBIq3+lMxAwORRANfNmUcBrKowJW/4izHEU1l5NN8ZJzN/5mblUYCpkX3Ko4PknNglffMogG3lzqNgcqg/zZdAIGceBX+kX/o2y+RRADuenUfB1P1LRc1trXMqqXjNrMbcNjUy6HkUzNTe0ZpHofApvWrwKw5q8JNB5zTsJtRhpi3YjkVJuWn42bWlhnq/oD/+edx2oHyr+U/VxgTPx2abH0yIc8bMzQDsTZXzrzNWATAjZBqCSi2HqG0arh5uPYV2x1w8HnxhIVbAnF2emDwHgKfPXjlUL3VU8hJ+GPIvnJEDCbpqzHB2N2hlpmQSrKZ1tpkK7YTMZ1S+rTtTKDdR3rOYQbQsgt1lPo9gp7lgWym350J9CKkyE8j2zzOno49c8iS7kya8vXje1wb4KiXNS5nPxUoFwZ+m6/mrnpn/9HxGXtL/7HpN+SXcq3HQr4lipRJ0zjBFrSN7u0lV+SvodaUItpjjyo2FsLvNY4T9aRFe0KbDnzqBBf7i2rilESLNJlilg0Rsv0fcL60y75c3sHEA9fegJ2SNWhrhJyIyIAfnUYCS8i52bTEXl/o9bs48CphMOsFc086YuZm9KTO9919nrMrKowBRO8nDracA0O5EefCFhQBYAa8njx4zdK91tPISiaw8CtBVE8s0tjkVEQia1trW2WV55VEAuytZcB4Fk0l751GA3clK5dFB4qWSJo8ChEP55VEwmTTcq3EwRx4FSFVFCXT503tb4plSMnZ3KiuPAiaT+ucAN2TyKECk2ek3jx6pMZdJlV+LwggvPyhHo0BlBXbKw055uCGP6eMOMH3cASo2Bgh1uYS6XLwA5suC2ufaqX2unaZ5YWrXQu1aqKjoYk93GXu6y7jr7TN4ouU4nmg5jk43RKcbYlqwnLfjE3k7PpFHtp/AH3bN5A+7ZrLtU1dS/mqY8lfDPH32SjX2HcyycZMp89XegdvegZ1wKdnrULLXwQ1CsixIsiyIF7TpnGi+kqUWyVILy/VI1pSRrCkjXmmTKDdfXVPK8EIBvFCAQEeCQEcCuzt5+P0B7LiLHXcp2+VRtsvjJ68s4q5XT+euV08f4jdjbPBcD8/1cLu6TE96IgmOi9fekSmWDIDVcznwHMcs7GFZeC2teLv34e3eB8mU+XJcYjvbie1sx06kCHSZLxwPgjYEbeyuJE5pGKc0jGdZ5su2CHa6BDtdLMcj2GW+3FiQkh3tlOxoZ/+8IPvnBQnEIdhuEWy3iITzO5aOVuke1Xy/Bhqw7rzzTqZPn040GmXhwoX88Y9/POT2Tz31FAsXLiQajTJjxgy+//2+qxc+9NBDzJ8/n0gkwvz583n44YcLfl7P87j++uupr68nFovx/ve/n9dee63fffI8j2XLlmFZFv/93/+d/4sXkaPOwXk0nUkrNgYymTRXHk1n0oqKrkwmvevtMzKZtHceTWfSR7afkMmk2z51Jds+dSVb/+9VyqP9seyeTNorj6YzqRskk0m9oJ3JpLnyaDqTdk0py2TSQvMo0CePpjOpDI50Hs1kUsfNZNKMg/JoOpN6La2ZTJorj6YzKY6XyaR2VzKTSXvn0XQmtRwvk0ndWDCTSfvLoyf+5lpO/M3h65IfrQrNowOdcaI8Org0wk8Gje33vLjH1maGTCerHHa1m9W3qjb1XHDDbf5QfRs8y2zbVQNt0833pY7NGw21AFi2S0eN32PX68zxcpvpKj241+2Vb43y3pMhtNp5ILMymudPoQjubaUkaXqoE9VREhXmtBDoDhFpMu93R535XJrmlmSmWbhhSPmDtTw7SGSf/xl1+p9zwGLVs4cflRXZ7xdbTpjHbd0Qo3uie0SvU3rx0u9lIFMQ2Qr0fJ+Ztl1aklkVDdfDi5ueds9xehbwSK+QZttY/khRQiECcfOZe5GehTG8UCDTg5osN7cHEi6e32tvJyFeaX7eOSFGtVmYmdp1fg9tNECyxNwvFkkc6bswug1DD+kDDzzAihUruPPOOzn99NP5wQ9+wLJly9iwYQPHHntsn+23bNnCeeedx2c+8xnuuecenn76aS677DImTJjAxRdfDMDatWtZvnw5N954IxdddBEPP/wwH/3oR1mzZg2LFi3K+3lvueUWbr31Vn784x8zZ84cvva1r3H22WezadMmysvLs/brO9/5DpZ/TRGRsSlXHgXY1V6RVx4Fk0lLHXOdeqOhFss223bURLLyKJhMqlFg+VvtPADA0tDHsvIoQEnSIVFtZg4kKoIEuv2Vlpu8nHkUTCb1bJNhI/siBedRMJm0dx4FlEkHk+cC/gI6jpMZwec5Ts48CuDFEz0ZNhzKmUcBAvFknzwKZlRf7zxqbrOw05WOKm06J5jPvHqj8mi/hmGEn/Lo4LM87/BjnFtbW6msrKSlpYWKiorh2C8ZRdINSHaJqbnnpVK0n3ciALsuiuO55mCf9lObYLs5q8bHm8ah5plBEv4hlSoFp96cXO2gh+tPvzhtxjZOqjSrn82Pmlp8jclKnmyaC8B977lrSF/f0ebswPKs/wcqK7DqTK2ZVFVJ5mLoBSyaZ6a/N9tabs80zM46D6c8PUXbY/ZP/Hoa/gpqv3vpq3ntz7knmp6ydONQ8/xKnvvpFQN4ZdKf3p+3HTJB2IpE8PxajlY04t8WztyWtVqa62WmBQeqq/wHsjP1USiJZb5P1ZRh+7Uc7eYO3CozJTwd3N2ARddEfx8cCHWa4yfU5hBqM8dNxxRzHknXVAHY/V6XrZ/94pG+FUdsuK+FK1eu5Kaf/JzJF/xNQffbt/b3nF1fyb333pv3fRYtWsQpp5zC9773vcxtxx13HBdeeCE333xzn+2vuuoqHnnkEV5//fXMbZdeeinr169n7dq1ACxfvpzW1lYee+yxzDbnnnsuVVVV3HfffXk9r+d51NfXs2LFCq666ioA4vE4tbW1rFy5ks9+9rOZ+61fv57zzz+f559/nkmTJvHwww9z4YUX5v0eSPFTHpXDWRr6WM48CuC5FtN+aq5ZwfZkzjwKJpPaQfNnkutYnDZjGwAnVW7PyqMATzbNVR4dgN4ZJVBpPgCrbgKpKvMZJstDeAGTB5pnhnLmUcBkUr8hdvZPEgXn0bRzFl5nnm+++WyVSQfPwZnUipjfPy+RzJlHId0g6Df+pZK586h/W6rG5E87nsJuNqMH3aqyrDwK0DUxiD8rn1CnS6jN/CfUlsiZR4ERz6TDfS1saGhg8uTJzLvqW1h2/hNEk20tvHX7V0mlUgQCgcPfAeXRoaApvSIiIkWs4CkUgOM4tLa2Zn3F/VEUB0skEqxbt46lS5dm3b506VKeeeaZfu+zdu3aPtufc845vPDCCyT9mjy5tkk/Zj7Pu2XLFhobG7O2iUQinHnmmVn71tnZycc//nFuv/126urqcr2VIiIiIjIAA53Sqzw6sjSlV46Yl+lx8Uf2jK+mq9q0JbuOTegd02PTVeOSmGbG3SdMpxluCEJtPY/lNJmfOzZ4UdPLsq21irpoCwCLSvyFPKxy9aQOkOVPb8l8bvE4Vms7AIGAhRvyV7YK2QT9EfNJv7fbDUHSdJrh1CYIhM1nVLa2BFxz8i60J/W3628c8GuRwrj+tAc7EOiZpuuvXubFE1i9ekfp8ldZTiSxy8wBkJliYduZ+7vv7MKaPRWAYFNnpjgyHZ3gj/CLNJhpOm5ZNDOlNz4uQLzCH2XR4WSKNTfNMbfVvJKifZK5RH3lA78CRn6E34gpdEqEBxs2bKCysjLr5uuuu47rr7++z+b79u3DcRxqa2uzbq+traWxsbHfp2hsbOx3+1Qqxb59+5g0aVLObdKPmc/zpv/tb5tt27Zl/n/55ZezZMkSLrjggn73V0TGBs/1cuZRgNA7EbpqzCidxLRwzjwKJpP6d8OLOmxrNaOK6qItWXkUNNtkoCzbysqjAFZrOwF/BJYbsvH8XBrszp1HAQJhx+RRADdecB5N+926gd1PCuMmEtj+qC8rHMqdR8FkUn/Un11WmjOPAlizpxJsMqs5u7GQyaMAVWVZeRTMlN74OLMP8Qrb5FEAzztEHoUxm0kHOKW3uro662bl0eGlBj85YkF/WHV69VenvhrHP0+H3olQ/br5bQ8kwF8sjVTM3GZ5YJf69VXKXajyV5AFU0EZONBWAhP9x8Mfap0efy2F84vhpmvR4Dh4rSblWsEAgZhpoE1WRbBT/lSWdN01B5Jl/tm7PYhbYb5vfleStkUaMFyM0g28AF56lm5XF4Eyk5TToclLJAmkA1YohJVeOc2ye6b3poOXZWVNrUhP4/X27MOuMRd1t66GVJlpwA91p1eGTpGK+sefax4GIFkexE6ax6t+3TxX25QggYS/Ap8XZMGvrgfgtQuuP6L3Y9QZ4CIc8+fPZ82aNVm3RfypM7kcXGvE87xD1h/pb/uDb8/nMY90m0ceeYQnnniCl156Kee+isjYEKyuyplHAapf9wj4Zbg6phwijwJUJciceTzL5FGAicqjg2VV8v5MaSD8rOG1tmEFTSNMIBYhWeXXiE55OfMogFvh0fwuk12USYvTwZnU9TuXA2VlOfMoYDKp//eL5zg58yiYabzeHrOKtl1TjVtninKmysJZeRQgFbWx3J6HSpabY8lOejnzKMCCX10/9vIoDLjB78CBA1lTepVHh5ca/OSIpU/Wtl97wwsGSPqZqGwHxPb6S6s7HnbCbwBwegr3dx1nhpEFIw7z6nYD0BSP0dJpTvZzavYyPmTqL+xIjQfA8XQhH6hMgVx/SXs3kcDyL5Z2UwuBlLnAubE67GR2DT/HBjfiN+B22pROMZ/9gyf9kFbPr5rMNcPxMiRPgRrzO+MlkzhNZqRsz0IeZEbWWbaVKZjstbaaldMAAjZWLJr9oKEgXnpUaF0tpHvla6rxYuY4sNu7CETMgZP0a6kABOPmcbtjAZywOQ+0TbWINJmLv3N2MwCn1L3DH5+dD0BdsJmPzCyui+dwsRjAKmceBAKBvOu61NTUEAgE+vSe7tmzp09PZlpdXV2/2weDQcaPH3/IbdKPmc/zpqdDNDY2MmnSpH63eeKJJ9i8eTPjxo3LepyLL76YM844gyeffPJwb4GIHCXcrq6ceRRMJrUcP/MkwjnzKMC8ut00xU0WbemMMadmLwDjQx3Ko0MgPQvBcj1sP68EUg5uzFwH7GQoZx4FKJ3SxYMn/RDAz6TKo8UmUDMez+9Qdppa8sujYDKpPwIwK5MenEcB4nEsv/PZi4Wx2/1GxUggK4+CyaTdMXNQOWGLtqnmfBBpiuTMo8DYzaQFrrybbhqrqKjIq4af8ujQ0FVKjpgXj5th+K4LrkuwsZloE0SboHS3g2eZwXpuxCa2D2L7INxqvpwoeF1BvK4gsWiCtkSEtkSE0lCCd9U28K7aBmaW7iXpBUh6Ad7qruWt7lp2p1Sse6B+1/VTftf1U9NT1qu3zHMc3M5OiCcgniC0fR/hNodwm0MgDgF/9Hxsl01sl40Tczlh4i5OmLiLchuSnk1SwbfoeNXj8KrHYU0YT3BiDcGJNZlVes0KvGGscBi7vBwvmURSj9kAACzQSURBVMRLJrFiMaxgECsYhGTKTKNIJDO/43THsQIB8zjpqRIAoSA4HjgeXjSElXSwkg5ONIATDeCGbZIl5ssJW8T2O8T2O4TaoHWmR+tMj7JonLJonPPHv8zS083XGbE9TAkfYEr4wMi9kSPJG8BXAcLhMAsXLmT16tVZt69evZolS5b0e5/Fixf32X7VqlWceuqphPwe+VzbpB8zn+edPn06dXV1WdskEgmeeuqpzDZXX301f/7zn3n55ZczXwC33XYbP/rRjwp5K0RklDtUHk1nUjdiZzJprjyazqSloUQmk84s3ZvJpOk8+vdz1vD3c9Ycfsckp1XJ+1mVvD/z/3QeTWfS0PZ9mUyaK4+mM2m5DeU2vPvYrSPzYuSQHtt1B9aE8ZlMmsmSh8qjfiYlmerJpDnyaCaThoKZTOpFQ5lM2juPpjOpE7YymTTURiaT5sqj6Uw6JimPjso8qhF+cuT8RiMi/givQIDYPtMzE25OkRjnH2YejF9vRurtOdUU4UiWe8R2mJ93VERobTZdsSfP2MGkqOnVqQx2EfHXTN/YYVrUf3jqj4f0JY0FqxI/A3pWWQawY7FeIzbLiTT5w+On+J/RMR6hNr+/ptTh5AqzevKbyTLOnPbGcO26FOC3r30dgA9+4GbC6ZGcnV2ZFdDSU59w3Z5V0RJJSPfEBQKZekhWmT9UIpkC/NsCNl6F+X22upPgj/DzgjZOmT8NJ2HOB8nyAOF28318nI0TMcdS7fOdxKvNY3/y2D8BUBdoYem4VwEoscbwparA3lTo6VEtxBVXXMEll1zCqaeeyuLFi7nrrrvYvn07l156KQBf+tKX2LlzJz/5yU8AswLa7bffzhVXXMFnPvMZ1q5dy913351Z7QzgC1/4Au973/tYuXIlF1xwAb/61a94/PHHs6YaH+55LctixYoV3HTTTcyePZvZs2dz0003UVJSwic+8QnA9Lr2Vxj52GOPZfr06QN4N0Rk1LLsnHkUMJnUP6eOX9+RM48CtDaXcPIMMzRwUrSVyqDJRxE7mcmjMnisXiOA7JgZWWlGbJo6iZGmZM48CnByxXbe9Av71Q/XTkvBEnVm0EbY9bA7ze+Ul0jmzqNgMmlmhlIqZx4F8CpKTR4FiIXxguZ2pyySlUcBwu0u8XH+zyMWtc+bBsN4dckh8+in5/xxcN6MUabgEX4DKEmjPDr4xvBfUTJYMotAlPvLl1eXEttjut/csJ0uxUfrtABO1FzA00Py3YiLE/X/syNG0DUbl8xJELPNiX9HdxXHl+4E1NA3FKxAAMsPVjgOVtQEXa8kkvls0ifsYIdF73I1T+2bA8D/enM5c9pw7bEMiOdlChdbZaXQZaYueZ3mNs9xesJUMoWdrq8RDvUU2/OnWxCN4Jab2p12Z7zn55AJWV5FLPO7H4ibgyZVFsiELTvhEezyp3K4XqaOUotjziMuNtNC+wHY7STHbLgCBrRoR6GWL1/O/v37ueGGG9i1axfHH388jz76KFOnmgVZdu3axfbt2zPbT58+nUcffZTLL7+cO+64g/r6er773e9y8cUXZ7ZZsmQJ999/P1/5yle49tprmTlzJg888ACLFi3K+3kBrrzySrq6urjssstoampi0aJFrFq1ivLy8sJfqIgc1SzbyplHwcw4aZ3mT+GLxnLmUYCga1Eyx2TRmJ1gR7e57h1fulN5dAikG/ysWCxTz8+KRvBK/JIf0UDOPAomk37xjN8N2/7KAKWzZEenyaMAXd058yhgMml6sTnLyp1H0z/3Wd1JvAr/b08rO4+C6ZC2/fp8wS43Uw8wFfNy5lGAGYPwNoxKA6zhVwjl0cGnBj8RERHhsssu47LLLuv3Zz/+8Y/73HbmmWfy4osvHvIxP/zhD/PhD394wM8Lplf1+uuv73dFt1zSBZtFREREZPRQHh1cavCTI+adPA+AhiVmGP24zSlKt5pVX5NVMRLlfpFVzyx5DtDlr7pLzMGqNT06zr4YRE3PS3M8xnbLFFx98tW5HL9k57C8lrHod933suy4L5n/tLaDvzJWx7RKuqtND1jKHwAYOdDz2VmtQTpTprft9x+4dVj3WQrXNTFCsN38Ttkd8Z7FW9JFssPhzLZWOATpXlfH6an12GyKaFvjq/Ci5vKRqIzQNM8cIFUbuwg1m5GDbiRIsMP0hGZW621JZnpXQ11Bgp3+aL+kgzvJ9Mw+e8AMeX+rcwLvH7fJbGs5Y7c3FQbUQyoiMhZ5J8/LmUcBEuV2ZpRYvMLOnUcBog7N/qId261qnnx1LgDf//ufDsMrGXt+130vgMmk/kIMlMTomFYJQHd1IGceBfj1Gf8xrPsrA/P7J81iKuecej12h7/oWyCQO4+CyaT+qE8sm8fe/lafx/3g+28CoGlejKqNZqpwqLkbN2KOj2BHMiuPghnxF+ryf97pYif9hQsnxXPmUdAIv4K2lxGnBj85Iif8y21EjzMNA22zzEmwbJcN6RNmuGcRh3CLl6nZ5UT9JdSdnmHXdnkSb58Ztp9wAzQnzFU9tiPE5+Y9McSvZGyL15swFbEskhNMUHaDVmYZ+kDc8m8zIQvATtlq6BtF9p9g44ZN3ZTyLZ3YJSb0WJV+/T3HwykzK5/Z3QksfxVnur1MsDrb/ggAqw/8v6zHPvVT5jjomBKlapepvRnsStA9zUyz6K42l5pQh4vXZc4JgW6PzjoT5BrOCGNZJpydNO4dAFzP4heNCwFoT4b5xKzBeR8OZW/DZAAm1BdXB0OhNfkGUsNPRORo0HRcaV55FEzNrlx5FMDbFyHhms6x5kSM2I7Q0L8AIV5fScSflpmcUIYbNN8HEl7OPCqjx9wbbwOgal4F5VtMI7tdEs6ZRwGslMtjG755yMdNNySe+qlb6Zhi7l+1q5Vgl3mM7mlVWXkUwOuyCXSbc0BnXYiGM/xsbHXlzKPAsGTSYmRRWMZUHi0OavCTI+LEINWVLppr6ixEmmwsfzn1YEeKaHN6lJhFvMpsG91r/u22gnjj/ML941s5dlozAPWxZg4kzIl/43WXD8trGcvSC6s4JVVYKXPhizV24/khK+mP+ktUWLz6TX0eo1G8LkXjVPN7mXimlNJG8/sabvHroyRdElUmyEQbHH7756/1eYzV7oP9PrYb9o8TG/YtMV3u497oJOnXSOmYZMJ4sNOmZI/ZNhWzSEXN9/FjE1RW+L2xfu/p/lQpje2mJsbzy24a8OsuRLIIht33MYBVztSjKiJjzfyvmEaESNTKmUcBos0BUjH/2lNl5cyjAMdOa6Y+1gzAgUSp8ugwSYwL4pSYDkMr5RFr9GsOBy3l0aNAvM78LjZOdUk8Y/7WK21M5cyjQL+ZNJcX7r6ChZ8x54N9SyYy7g3TqJgsC2TlUYCSPVbmfJCKWsSPNY2DlRVdI5pHARp21lM/uWHYni8vGuE3KqnBT45I8sQOOjtMj6eX8Bv2Siw82x/F09pFsMQcZqloENc/4iLN5t94NSRazai+ipr9mSmicTdIyD6oGq8MmfS0azyI7TUX3NXPfGUE90gGXdDLTHtpnQGhDvP7Gmozv2er13w5s+k5C68b0FO0HwuWP0oiWVaaKajdPd78G7Ggs9Yvlh6GULtJAlZbkI+9ex0ALSlTJHl7ZzXjYl0D2o+B+mOXGeHXvOlMPjv3qWF97lwsBrbKmYjIWJI8sQOAzo5QzjwKECwJkvJLUrjB3HkU4IHF3x+u3Zde1jz0xZHeBRlCWz/zrwBMv/3btPpzY0MdAf743/86aM+x7v/1NAaf9HnT+Gc52XkUTCZ1/BnEoXYPq82cGz727nUjmkfBZNLlw/6shzYcq/TK4FODnxyRz53wJGsOzAbghXVmfHOwIwXBdAOSh+1PDUyU2QRNJx3hNnMGqHzTIr7PNPJtCkxiwTQzle7OU+4ZrpcgwJ9+fMVI74IMsa1/dyUzbzVTb9+68tC94r9b99WCHvvF7/X/eMdda0LW+HfvBmBctIttv50GQMeMFIFSM23qEwteoDJgwlTS7xVwPYsdB6oK2o8j9e6omb7xcryO1VuOA+Ds6a8P6z70SyP8REQO6XMnPAnAmgOzc+ZRADvlkijzR/l0586jIjK0tnzuX4bleV7+j56MunjV1YDJowDbfjuNjhlmoEOgNMknFrwAQGWgKyuPrn7/bcOyr729O/oOv9x8MgB/PfOlYX/+fmmE36ikBj8REZFiNZApvSIiIiIig0kNfqOSGvxkQH721iIAdsSnMafMjN75U8yMy06VBPBCZjoFloXlmN/2kr0pQlvNHL+uCf7U3XEWHcf4hVMTNv/zvu8O22sQGWs2XzG8Izn/4ROPAbArYRaFObfyz6y/ZCoADzecyHtqtgJQE2on6Zlzxmtt9QCUBBOkhrkQd6NjagOND3QQtczow007zP78ovUUPn/Mz4Z1f9IKnRKhKRQiMpb87K1F7IhPA2BO2e6ceRTMggAlfumS0FYnZx4VkaPPGbWbAZNHAdZfMpWHG04E4D01W6kJmdWhk14gK4+OhEYnxviAKVXw3LbpjLPNisYjnUc1pXf0UYOfDMgZse0AzA7vZn33MVk/C3a5WP6qaImJpZkGv0R5ILPSVrLE/7ccwrWmmGpJbGROqCIyNE6NvQ3AgYhZ+bkxNY5FJW8BsHtCBSm/ka8m2MqupJm+u7vTbDsh1sFbHx3eOpInh825anuqnZ2OKdCccMw+VgU7hnVfMjTCT0TkkM6IbWd22HQ+986kB+dRMA1+iXJzXneDlvKoyBhyevmbgMmjAItK3mL3hAoAUl6AmqBZsGdXsiorj46Ek8Me21OmAXKnUz7yeRSUSUcpNfjJgEwOmD+Gd6RS7E6a0TtWyPSMpkoCJMebQqeebZGo8FeADUOy1O9p9U8WidoUVtz8fELNgeHafREZBmdMeyvr/7/bMp/H244HIIDLu0p3ANDmRHm7qwaAJz/4LQAuevqfhnFPjYhlRnpU2nFaPdOT2uyP+kuP+BtuA1q0Q2FMRMaQyYFydqTMqL3dycqceRQgURHMFOlPlgb6zaMvf/jaYdx7ERkuF8x4Oev/N7z6VwQw54tvnPgLfrDpTADe7qrJ5NGRErFCVPqj+lq9+IjnUdAIv9FKDX4yIE2u6QXdnJiSmYpXOs4UQLWcUpJl5tDqrgrg+EshpUrIBKv1/24KqM795Q1s+ut/G8Y9F5GRcs70DZzT6/8vbj8WgG4vyN9UbAVgwa+uB+C1C+4Y1n0764Pf4PF7zffldogK14zwePf0rZltWltbh3WfMhSYRERyanI72ZyYApipeLnyKIATsfAX3wSvJ4+KyNjzb8c/kvX/z859aoT2pMdZH/wGAI/fa/IoQIWbKJ48qhp+o44a/GRA2lwzReKVzmPY1mnWOE+8bkb6BboTONH0CmgeiXK/wS8G8YMW3VRjn8jY1LCznqhfU2lG0OOuZrMqbkeL6cGcdse32fpPQ7+Cm9s4B4DTv7OAuGd6TdvcJJXFUsKpwN5UUI+qiIwtba7DK51mKu+2zvE58yhAotwiZS4zfTKpiIxdG3ZMpj5gzhc/ajmOf3/+gwBs/durhnU/Tv/OcwDEvSRtrsmlxZJJNcJvdFKDnxRs0456SvwTz7zYLjZ3TAAgYDpUSZYHSUXNH/LhdpeAGY1M10RwI/rNFxGotEOACTJvpgJ0umaO1aLZWwA4qXI7MPQNfi8nugG4publzG1VdpS4lxry586bTpsiIjkFLJNHATZ3TMiZRwECcZNHAd66UqP7RMQYZ3u8mTIjgTvdcCaPDqcXtx/LNTWBzP+r7CgAkUlvD/u+9Esj/EYlNfiJiIgUM9XwExEREZGRpAa/UUkNflKwkOURtcwQPxeLrS1mTkSJWSANy/EI+AucpWIWnn+UpUo8vIB+80XGsvQU2pgV4S3HjLhodmK0+HOsNuytBeCBxd8fsn34rzeXADAh2Mr+VD0As4IN7HLMqL7ZobKi6k3Voh0iIrlFLRsXM5Jva0tVzjwK4AVNHhUR6W2vE8gsjNGSimXy6HB4dItZ0G5/qp5ZwQYAdjkp5h7TMGz7kI9Cp/QqjxYHNfhJwbo9G1zzh3q53Y3jmsa/2uebAYhPLMXxzG3JUht/8SPslEUqVkTT5ERk2Nl1b2S+P9H/9z/feC+VQTMH65W/+uqQPXfjTtO4d4pf0+m5rumcVWJWEm7x4I2kKU8w95g/D9k+DIgCk4hITm2uS7ltyjM4rp07jwK4sPmLV4zEbopIETvx2B385xvvBaAy2DWkeTTtlR1msaGG5HQAzip5ixY/8809ZteQP3/BNMJvVFKDnxQs6dlsTJgCKFE7SVnEFOnb++5JAFRsS+KETU9q2xSLrlr/tz3gse1TVw7/DotIUfv7OWuG/Dncxjnpvgc2xM25yvFspgXLAdiY7OAvZxRZQx9g4WF5hSUmFUkWkbHk5XgdUdvUhC2LxHPmUaAnk4qIHGQ48mhaw856NsQnA2Q6JqYFy7M6xouN5RWWSQvNrzI01OAneXti61wAyu0A6zpMT0TSC1Bb0g7A237n6f75IaJN5hc83AavfUM9qSIyMtJTiHc6bTzabr4/4JQCcF7ZK4CZvjH/mJ0jsn+HVWhvqojIGPH89mkArOs4haRnCt3XlrTnzKOgTCoiI2vHTtMh8Wj7nIPyKKQzadFSJh2V1OAnBdsQr+epPbMASKSC7N1vRshMbnQAKNvURKLO3Bav0iEmIiMn3VM6uXEODuavwKhlSgtMCY6O1KIafiIi2Z7YOpcdSVOm4ak9s0ikTN7cu7+83zz6xO+vHpkdFRHpZXLAnJMc7D55tJhH90HhNfw046Q4qDVGRESkmCkwiYiIiMhIUg2/UUkNfpK3s6ZtAuCXm0+mqaMEgEgohb07AsD+4019lFhjjFCrqevnBS3ev+wWAJ58TPX7pPj8YNOZfHbuUyO9GzLE2t1u4m4IgPpQEwCdnsP4Iu9NHcgqvepRFZGj3VnTNvHLzScD0NRRQiRkRsrYuyP95tEPnLMSgP/93VUjsLciIkZ6FF+8aWkmj46vf2ckdylvGuE3OqnBT/L2xfXLAdjVfSpdnWEA4oEgqQozdaLmJVM/Zd/JpdSs7wQgUR4g2On282gixaHbC2XqvEHxD6eXgamo387l9SO9FwOkwCQikuWL65ezq/tUALo6w8QD5k+aVIWTM4+KFLN/3/gXAHx+3HZl0THg8uNWjfQuFE4j/EYlNfhJ3r404WkA7mudw5/XzQegbUGSs07cAMDG3x8PQN3q3XTOHg9Ad3WAdb/44gjsrcihnfjPtwHQNuM8qj/0cwAumf3sSO6SSB+F9qYCClgictT70oSnua/VdNb9ed182haYVXrPOnFDv3n0aWVRKXL//tvzAKj+0M+5pG6Ed0akHxrhNzqpwU/y9mLcFBltcUrofLfpMa0u7+KMyjcBeOHjxwJQvrmUyN5ugMy/h5IeXaXeLBlO6797OQAf/N8rWNtmFqG5ZCR3SCQXBSYRkSwvxstpcUx5mc53d1Jd3gXAGZVvZuXRp/5H5WRkdHh7RXoFaa0kLUVKI/xGJTX4Sd4OOGUA1ATb+MBM08h3c/1qxttmSfFve6ZmStOCMpyw+f7FH1ze72P1nkLZ+zY1+slw+/0Hbh3pXRA5JNXwExHJdvb013l705kAfGDmm9xcvxqA8XZpVh7Nl0p7iIgcmkb4jU5q8JO8LZ/1PACLV13NvKrdALS5LuNt8/NXFv3MfLOo5z5u4/f6DU7p2w5u+NNoPxERERE5nB9vWwzAvKrdtLmmXvR4++A8qtFSIiIydqnBT0REpFh5gKcifiIiIiIygjyvsExacH6VoaAGPylYZyLE5tYaAO6OLObGia8O+LHsujc0qk9E5BC0aIeISF9rl34DgPf9/l+5O2JG+x2cSfPNmMqgIiKHpim9o5Ma/KRgM6oOEA2Y1dD2Jsq5bu8CABaXmbp+58YSWdsfLmwpZImIHIICk4hITpNLW9ibMAvLXbd3Qb95VJ3LIiJHqNBFO6QoqMFPCvbw6Xfw6Rf+LwALynbS7kQBuPrVvwbAWfDffKik7+q8WpRDRKQwlgeWW+B9CtxeRGQ0u+89d2W+//pr5x82j4qISOEsF6wCt5eRpwY/GZAfnvrjPrd9oGwGAOPtbqBnZTQ18omIHAH1poqI5OXLC37Dlxek/3fDSO6KiMjRp5BMqvxaFNTgJ4NmydS3R3oXRESOLgXWS0nfR0RERERksFhegSP8lEeLghr8REREiplWORMRERGRkeQVWMRP+bUoqMFPRESkiBXaQ6oeVREREREZTIWO8NOMk+KgBj8REZFipRXRRERERGSkqcTMqKQGPxERkSJloRF+IiIiIjKyVMNvdFKDnxSNs+2PZL5f7T44gnsiIlIsvAHUQFHCEhEREZFBpBp+o5Ia/GRE9G7cy/VzNfqJyJinVXpFRIbFwdlUOVREpEfBI/yGbE+kEGrwk6KlEX8iIqgBT0RkiPTXAZ3OnOp8FhHpRR3Qo5Ia/ERERIrVAEb4qWaKiIiIiAwm1fAbndTgJ0PqcFN386HeVREZ09wCE5MClojIgA1GdhUROeq4BfZCu0O3K5I/NfhJUVIjn+RjtE+3GegfFQN5zaP9vRqzCqyPnLmPiIj0K99rr66ZMlaprJL0S3l0VFKDnwyJgTRk6IIi0LdhKp8FXg423MdSPsd775pAw/F8+d4vn/06+P0cjIZKhcn8WGhKhIjIYCnkWidyKLmOpaPtODpc5jvU6y2GjC6DR1N6Ryc1+MkRG6ypDxqBNDb1d/wc6TGVTwg70qBW6D4W6xShfPZrMH/H871d54JevEKn9A4sYd15551885vfZNeuXSxYsIDvfOc7nHHGGTm3f+qpp7jiiit47bXXqK+v58orr+TSSy/N2uahhx7i2muvZfPmzcycOZOvf/3rXHTRRQU9r+d5fPWrX+Wuu+6iqamJRYsWcccdd7BgwQIADhw4wHXXXceqVavYsWMHNTU1XHjhhdx4441UVlYO6L0QkdGvWK+7MvoUciyltx3JHDOcx/7RkodB2fOwvAKnnSiPFkUeVYOfFA2dZEe3QhptRupiP1QNiTJ4DtcoO+bOEwNZtGMAT/PAAw+wYsUK7rzzTk4//XR+8IMfsGzZMjZs2MCxxx7bZ/stW7Zw3nnn8ZnPfIZ77rmHp59+mssuu4wJEyZw8cUXA7B27VqWL1/OjTfeyEUXXcTDDz/MRz/6UdasWcOiRYvyft5bbrmFW2+9lR//+MfMmTOHr33ta5x99tls2rSJ8vJyGhoaaGho4Fvf+hbz589n27ZtXHrppTQ0NPCLX/xiAO+GiIiMVUPdyZmPgZZukSNTDI21xWw4Rvgpjw4+y/MO3/Ta2tpKZWUlLS0tVFRUDMd+SREbyguKTrBDI98pLPlMsxzodG0FERkOQ3kOGe5r4cqVK7n1O/cz/4SPFXS/7Vue5D2nVXPvvffmfZ9FixZxyimn8L3vfS9z23HHHceFF17IzTff3Gf7q666ikceeYTXX389c9ull17K+vXrWbt2LQDLly+ntbWVxx57LLPNueeeS1VVFffdd19ez+t5HvX19axYsYKrrroKgHg8Tm1tLStXruSzn/1sv6/nwQcf5G/+5m/o6OggGFTf5tFCeVQKVUj2UAY9egxVnh0J/e3/aNn3sWAkzhvDfS1saGhg8uTJnPkXN2FZdt73i3e3svaPN5FKpQgEAnndR3l08OX/iYmIiMiwsvCwvMK+ABzHobW1NesrHo/3+xyJRIJ169axdOnSrNuXLl3KM8880+991q5d22f7c845hxdeeIFkMnnIbdKPmc/zbtmyhcbGxqxtIpEIZ555Zs59AzIhWI19IiIiIkeu0Dxq+dN/lUdHNo8qCUte1JM0eAa71/FIH6OQumoDpeNHhstRVwvUA9zC77Nhw4Y+9UKuu+46rr/++j6b79u3D8dxqK2tzbq9traWxsbGfp+isbGx3+1TqRT79u1j0qRJObdJP2Y+z5v+t79ttm3b1u++7d+/nxtvvDFnb6uIHH2ONGccVdeNIXLwe3wk79lgLp4ykMXdRpPRvv9Hu7GyeAtg8mghc3r9/FpdXZ11s/Lo8FKDnxzScF9kjrbaCcMRQhQERLLl+zsxWs4zVoFFjy3PY/78+axZsybr9kgkcuj7WdkpzvO8PrcdbvuDb8/nMQdrGzC9yB/60IeYP38+1113Xc59F5HRbbCzz1HXWVSggbyfQ5U/lWvlaHAkqxsXq96j9vLdHsxiFr2n9CqPDi81+BWpQ/UWHI0nkLTRvO+9KayIFL/BHGEwZApcEC0tEAjkXdelpqaGQCDQp/d0z549fXoy0+rq6vrdPhgMMn78+ENuk37MfJ63rq4OMD2rkyZNOuS+tbW1ce6551JWVsbDDz9MKBTK6/WLiIwlyqgiI29UjgwsNI/621dUVORVw095dGiowS8PgzmE/Ujlc5E+0umgIxkE8pnuOtL66wVWeBKR0SocDrNw4UJWr17NRRddlLl99erVXHDBBf3eZ/Hixfz617/Oum3VqlWceuqpmWCzePFiVq9ezeWXX561zZIlS/J+3unTp1NXV8fq1as5+eSTAVNr5amnnmLlypWZ+7S2tnLOOecQiUR45JFHiEajR/KWiMghFJp50pnpSEbRKWcVTu+ZiIwmyqNDY8w3+PV3MTzcKLqhXGZ9pKbQFotiauQbqmNARKQgBU7pHciIwCuuuIJLLrmEU089lcWLF3PXXXexfft2Lr30UgC+9KUvsXPnTn7yk58AZgW022+/nSuuuILPfOYzrF27lrvvvjuz2hnAF77wBd73vvexcuVKLrjgAn71q1/x+OOPZ001PtzzWpbFihUruOmmm5g9ezazZ8/mpptuoqSkhE984hOA6UldunQpnZ2d3HPPPZmi0AATJkzIe2U4kdFipDpHB5p9et+vkJILylqF03smMnoV09/B/fIKnHZSaH5FeXQojPkGPxERkaLlgTWABrxCLV++nP3793PDDTewa9cujj/+eB599FGmTp0KwK5du9i+fXtm++nTp/Poo49y+eWXc8cdd1BfX893v/tdLr744sw2S5Ys4f777+crX/kK1157LTNnzuSBBx5g0aJFeT8vwJVXXklXVxeXXXYZTU1NLFq0iFWrVlFeXg7AunXreO655wCYNWtW1uvasmUL06ZNG/T3S0RERGQssbzC1uwYSH5VHh18lucdvum1tbWVysrKzLLCxepwU2/V61X8RrpnQ8eIyNiUz7lnuK+FK1eu5LZv/4zj5320oPtt3fEHFi2p4d577x2iPRMZGaMljw6WkcokxTYbZbiMdAbNx9H63ouMZYWee4b7WtjQ0MDkyZM56703YFl23veLx1tZ86dbSKVSmm0xgkbdCL9CLnS6KI5eI1U3sffz6PgROfoV+x94lgeWW/h9RGTkjdYcMVr3+0ilX3exXxdEZPQazecXy4VDLJbb7/Yy8oqiwW+sBgvpK9exkKvW4pE8R7EtWCIi0q+Ca/ipxU9kJChDHB2KbfVMHVciR49R3bFQaA2/gRSVlkFXUIPfBZV/S9DKvazwQA9cFeaVgTjSY0bHnIgUch4orYkN4Z4cgvKSyLBTRpCDDWbnc76PLyJHj95tHkeyavmIKTSPKr8WhUEd4acLlYiIHK1a97UN/5N6YA3DKr0io0nvDuih+INJeVbyNdBjJX3c6lgTGTsO/n0f6O9/yksOxu4UzPI8rCFepVcGX1FM6RUREZH+eAMITApYMnaowURGIx23IjLqFDqlVw1+RUENfiIiIsXKAwoteqx8JSIiIiKDyQUKWLSj4PwqQ0INfiIiIkWs0Cm9WqVXRERERAZToVN6Cy5JI0NCDX4iIiJ5qKgph70j8MSa0isiIiIiI6ngKb1DtidSADX4iYiI5GFkFu0YQA0/BSwRERERGUyq4TcqqcFPRESkmKmGn4iIiIiMpEJr+CmPFgU1+ImIiBQpyxtIDRQlLBEREREZPKrhNzqpwU9ERKRoaUqviIiIiIwwTekdldTgJyIiUqw8tGiHiIiIiIwsNfiNSmrwExERKWYa4SciIiIiI0kNfqOSGvxERETyUFFTDnuH+Uk9tGiHiIiIiIysQhftKDS/ypBQg5+IiEgeWve1jcCzegUXPVaRZBEREREZTFq0Y3RSg5+IiEgxU2ASERERkZGkKb2jkhr8REREipUHuIXW8FPAEhEREZFB5HpgqcFvtCmowS9FUrWBRERkTHKs1Ag8q6dFO0QOojwqIiJjVYrkyDyxRviNSnk1+IXDYWrGT2DN/keHen9ERESKkwd1dXWEw+Fhfc7CA5MClhydwuEwEydMZM1e5VERERm7amtrhzePwgAa/IZsT6QAeTX4RaNRdryznUQiMdT7IyIiUrTC4TDRaHR4n7TgEX5KWHJ0ikajbNu+TXlURETGtJHLoxrhN9rkPaU3Go0O/0ElIiIiIuJTHhURERHJjxbtEBERKVaeN4BFO4ZmV0RERERkjCp00Y5C86sMCTX4iYiIFDPPLfQOQ7IbIiIiIjJGFZpHC86vMhTU4CciIlKsvIGs0qsGPxEREREZRKrhNyqpwU9ERKSYaUqviIiIiIykQqf0qsGvKKjBT0REpFh5aISfiIiIiIwsjfAbldTgJyIiUrQGMKVXRERERGQwqcFvVFKDn4iISDHTCD8RERERGUlq8BuV1OAnIiJSrDwP3EJXRVPAEhEREZFB5LpgFbK98mgxUIOfiIhIMVMDnoiIiIiMJI3wG5XU4CciIlKsvAHU8FPAEhEREZHBpAa/UUkNfiIiIsWs0CkRylciIiIiMphcD6wCQqam9BYFNfiJiIgUK8/D8wqr4edRYM0/EREREZFDUB4dndTgJyIiUsw0wk9ERERERpJG+I1KavATEREpVh6q4SciIiIiI0s1/EYlNfiJiIgUK88Dt8ApEQpYIiIiIjKYXBesQrZXHi0GavATEREpZgWP8Bua3RARERGRMUoj/EYlNfiJiIgUKc/z8DTCT0RERERGkFfgCL+C86sMCTX4iYiIFC1vAA14avATERERkUGkEX6jkhr8REREipWHVukVERERkZFV6Cq9avArCmrwExERKVoeeJrSKyIiIiIjqOA8qim9xcAe6R0QERGRHDzwXK+wrwE2+N15551Mnz6daDTKwoUL+eMf/3jI7Z966ikWLlxINBplxowZfP/73++zzUMPPcT8+fOJRCLMnz+fhx9+uODn9TyP66+/nvr6emKxGO9///t57bXXsraJx+N8/vOfp6amhtLSUv7qr/6Kd955ZwDvgoiIiIgcrOA8OsBVepVHB5ca/ERERIqWP8KvkK8BzOl94IEHWLFiBV/+8pd56aWXOOOMM1i2bBnbt2/vd/stW7Zw3nnnccYZZ/DSSy9xzTXX8M///M889NBDmW3Wrl3L8uXLueSSS1i/fj2XXHIJH/3oR3nuuecKet5bbrmFW2+9ldtvv53nn3+euro6zj77bNra2jLbrFixgocffpj777+fNWvW0N7ezvnnn4/jOAW/FyIiIiJykELz6AA6oJVHB5/lDXQogIiIiAyZlStX8p2r7+R4+z0F3W+r9zqnffwE7r333rzvs2jRIk455RS+973vZW477rjjuPDCC7n55pv7bH/VVVfxyCOP8Prrr2duu/TSS1m/fj1r164FYPny5bS2tvLYY49ltjn33HOpqqrivvvuy+t5Pc+jvr6eFStWcNVVVwGm97S2tpaVK1fy2c9+lpaWFiZMmMBPf/pTli9fDkBDQwPHHHMMjz76KOecc07e74OIiIiI9GhoaGDy5Ml80PowlpX/eLG418UfvV+TSqUIBAJ53Ud5dPBphJ+IiEiRcnFJufGCvlyvsF7ERCLBunXrWLp0adbtS5cu5Zlnnun3PmvXru2z/TnnnMMLL7xAMpk85Dbpx8znebds2UJjY2PWNpFIhDPPPDOzzbp160gmk1nb1NfXc/zxx+fcfxERERHJX8pLFJZJvURBj688OjS0aIeIiEgRmjp1Knt4hz0UXvvjw1POp7W1Neu2SCRCJBLps+2+fftwHIfa2tqs22tra2lsbOz38RsbG/vdPpVKsW/fPiZNmpRzm/Rj5vO86X/722bbtm2ZbcLhMFVVVXnvv4iIiIgcXmlpKSHCPMUjBd/3mGOOoa2tDdvuGWemPDq81OAnIiJShD72sY9x3nnnDei+3/72t6msrMy67brrruP666/PeR/LsrL+73len9sOt/3Bt+fzmIO1zcHy2UZEREREcqusrKSlszkzYq4Qt9xyS58GMOXR4aUGPxERkSJVUVExoPtdc801/Mu//EvWbf31pgLU1NQQCAT69D7u2bOnT09mWl1dXb/bB4NBxo8ff8ht0o+Zz/PW1dUBptd00qRJObdJJBI0NTVlhco9e/awZMmSfvdfRERERPITi8WIxWIF3+/aa6/lyiuvzLpNeXR4qYafiIjIUSYSiVBRUZH1lStghcNhFi5cyOrVq7NuX716dc6Asnjx4j7br1q1ilNPPZVQKHTIbdKPmc/zTp8+nbq6uqxtEokETz31VGabhQsXEgqFsrbZtWsXr776qhr8REREREaI8mgR5FFPRERExrT777/fC4VC3t133+1t2LDBW7FihVdaWupt3brV8zzPu/rqq71LLrkks/3bb7/tlZSUeJdffrm3YcMG7+677/ZCoZD3i1/8IrPN008/7QUCAe8b3/iG9/rrr3vf+MY3vGAw6D377LN5P6/ned43vvENr7Ky0vvlL3/pvfLKK97HP/5xb9KkSV5ra2tmm0svvdSbMmWK9/jjj3svvviid9ZZZ3knnniil0qlhvJtExEREZFBojw6+NTgJyIiIt4dd9zhTZ061QuHw94pp5ziPfXUU5mf/Z//83+8M888M2v7J5980jv55JO9cDjsTZs2zfve977X5zEffPBBb+7cuV4oFPLmzZvnPfTQQwU9r+d5nuu63nXXXefV1dV5kUjEe9/73ue98sorWdt0dXV5n/vc57zq6movFot5559/vrd9+/YjeDdEREREZLgpjw4uy/P8qoYiIiIiIiIiIiIy6qmGn4iIiIiIiIiIyFFEDX4iIiIiIiIiIiJHETX4iYiIiIiIiIiIHEXU4CciIiIiIiIiInIUUYOfiIiIiIiIiIjIUUQNfiIiIiIiIiIiIkcRNfiJiIiIiIiIiIgcRdTgJyIiIiIiIiIichRRg5+IiIiIiIiIiMhRRA1+IiIiIiIiIiIiRxE1+ImIiIiIiIiIiBxF1OAnIiIiIiIiIiJyFPn/fxxj+8pJifgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# lats are not the same on destination grid, adjusting now\n", + "ds_out_con['lat'] = fv_t232.lat\n", + "ds_out_bilin['lat'] = fv_t232.lat\n", + "\n", + "# Plot the two masks\n", + "fig, axs = plt.subplots(nrows=2,ncols=2,\n", + " subplot_kw=dict(projection=ccrs.PlateCarree()),\n", + " figsize=(16,8))\n", + "\n", + "axs=axs.flatten()\n", + "ds_out_con.GPP.isel(time=0).plot(ax=axs[0],vmin=0,vmax=1e-4)\n", + "axs[0].set_title('Cons. raw')\n", + "ds_out_con.GPP.isel(time=0).where(ds_out_con.landfrac>0).plot(ax=axs[1],vmin=0,vmax=1e-4)\n", + "axs[1].set_title('Cons. regridded mask')\n", + "\n", + "ds_out_bilin.GPP.isel(time=0).plot(ax=axs[2],vmin=0,vmax=1e-4)\n", + "axs[2].set_title('Bilin. raw')\n", + "ds_out_bilin.GPP.isel(time=0).where(fv_t232.landfrac>0).plot(ax=axs[3],vmin=0,vmax=1e-4)\n", + "axs[3].set_title('Bilin. dest mask') ;\n", + "\n", + "## Go ahead and apply the mask based on destination grid?\n", + "# Currently conservative only has mask based on remapped landfrac\n", + "# Bilinear with destination landfrac mask\n", + "ds_out_con = ds_out_con.where(ds_out_con.landfrac>0)\n", + "ds_out_bilin = ds_out_bilin.where(fv_t232.landfrac>0)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "9231d764-7083-4af8-a10f-6edbf81a7271", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA78AAAKLCAYAAAA+fD+VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXhcVfrA8e8dn2Ti7kndUqdeoI61uENpcVhsYX/ssgKLLL64FC8uhVKgUEqdurtLmrSNuycj5/dHtoHQpJlJo9P38zzzPOTec889d6bMO++9RzSllEIIIYQQQgghhPBiurZugBBCCCGEEEII0dIk+RVCCCGEEEII4fUk+RVCCCGEEEII4fUk+RVCCCGEEEII4fUk+RVCCCGEEEII4fUk+RVCCCGEEEII4fUk+RVCCCGEEEII4fUk+RVCCCGEEEII4fUk+RVCCCGEEEII4fUk+RWn7N///jeaprVY/U8++SRz5sw5YfvSpUvRNI2lS5e22LkB3njjDWbOnHnC9sOHD6NpWr37OgJP2t/Sn7EQQojm89lnn/HSSy/Vu0/TNP7973+3anvEqWut3zzeRNM07rrrrrZuhmhnDG3dACEa8+STT3LZZZdx0UUX1dk+cOBAVq9eTa9evVr0/G+88QahoaFMmzatzvaoqChWr15N586dW/T8LaWjt18IIUT9PvvsM3bs2MF99913wr7Vq1cTGxvb+o0SQoh2QJLfDqa8vBwfH5+2bka74O/vz7Bhw9rs/GazuU3P31ROpxOHw9Fh2y+EEN6iLWJ6e/neV0pRWVmJ1Wpt66YIIU4j0u25HTve1XTTpk1cdtllBAUF1T6l27BhA1dddRWJiYlYrVYSExO5+uqrSU1NrT2+uLgYg8HAc889V7stNzcXnU5HQEAADoejdvs999xDWFgYSqmTtunHH3+kf//+mM1mkpKSeP755+stp5TijTfeoH///litVoKCgrjssss4dOhQnXKbN2/mggsuIDw8HLPZTHR0NOeffz5Hjx4FarqslJWV8eGHH6JpGpqmcfbZZwP1dwGaNm0aNpuNAwcOcN5552Gz2YiLi+OBBx6gqqqqzrkfffRRhg4dSnBwMP7+/gwcOJD33nuvznuQmJjIzp07WbZsWe35ExMTgYa7Da9YsYJx48bh5+eHj48PI0aM4Mcff6xTZubMmWiaxpIlS7jjjjsIDQ0lJCSESy65hPT09JN+Bse98847dOvWDbPZTK9evfjss8+YNm1abft+38Znn32WJ554gqSkJMxmM0uWLGmw/e5+xkII0Zr27NnD1VdfTUREBGazmfj4eKZOnVrnu33Hjh1ceOGFBAUFYbFY6N+/Px9++GGdeo7Hjs8//5x//OMfREdH4+/vz/jx49m7d2+dso3FKHA/3p199tn06dOHX3/9lREjRuDj48ONN97IRRddREJCAi6X64RrHjp0KAMHDqz9+/XXX+fMM88kPDwcX19fkpOTefbZZ7Hb7XXO8+OPP5Kamlobt34/bOX33Z63bt2Kpmm89957J5x73rx5aJrG999/X7tt//79XHPNNbXvR8+ePXn99dfr/bz+6HgX1BkzZtCzZ0/MZnPtZ+NOvcc/t88++4y//vWvREVFYbPZmDx5MllZWZSUlHDrrbcSGhpKaGgo06dPp7S0tE4d7rx/x9/DPn36sHz5coYNG4bVaiUmJoZ//etfOJ3O2nK/j7H/+c9/iI+Px2KxMHjwYBYtWnTCe+Du+7dnzx7OOeccfHx8CA0N5fbbb6ekpMSt97k+x9v5/PPP88ILL5CUlITNZmP48OGsWbPmhPLff/89w4cPx8fHBz8/PyZMmMDq1asbPU9rfkbu/L/5R0op/v73v2M0GnnnnXfcfPeE11Gi3XrkkUcUoBISEtRf//pXtWDBAjVnzhyllFKzZs1SDz/8sPr222/VsmXL1BdffKHOOussFRYWpnJycmrrGDZsmJo4cWLt31988YWyWCxK0zS1cuXK2u09e/ZUV1xxxUnbs3DhQqXX69WoUaPU7Nmz1axZs9QZZ5yh4uPj1R//Kd1yyy3KaDSqBx54QP3888/qs88+Uz169FAREREqMzNTKaVUaWmpCgkJUYMHD1ZfffWVWrZsmfryyy/V7bffrnbt2qWUUmr16tXKarWq8847T61evVqtXr1a7dy5Uyml1JIlSxSglixZUnveG264QZlMJtWzZ0/1/PPPq4ULF6qHH35YaZqmHn300TptnDZtmnrvvffUggUL1IIFC9Tjjz+urFZrnXKbNm1SnTp1UgMGDKg9/6ZNm5RSSqWkpChAffDBB7Xlly5dqoxGoxo0aJD68ssv1Zw5c9TEiROVpmnqiy++qC33wQcfKEB16tRJ3X333Wr+/Pnq3XffVUFBQWrMmDEn/RyUUuqtt95SgLr00kvV3Llz1aeffqq6deumEhISVEJCQm25422MiYlRY8aMUV9//bX65ZdfVEpKSr3t9+QzFkKI1rJlyxZls9lUYmKimjFjhlq0aJH65JNP1BVXXKGKi4uVUkrt2bNH+fn5qc6dO6uPPvpI/fjjj+rqq69WgHrmmWdq6zoeOxITE9W1116rfvzxR/X555+r+Ph41bVrV+VwOJRS7sUopdyLd0opddZZZ6ng4GAVFxenXn31VbVkyRK1bNky9d133ylALViwoM417969WwHqlVdeqd325z//Wb355pvq559/VosXL1YvvviiCg0NVdOnT68ts3PnTjVy5EgVGRlZG7dWr15dux9QjzzySO3fAwYMUCNHjjzhPb/iiitUeHi4stvttfUGBASo5ORk9dFHH6lffvlFPfDAA0qn06l///vfjX6Gx2NR37591WeffaYWL16sduzY4Xa9xz+3hIQENW3aNPXzzz+rGTNmKJvNpsaMGaMmTJig/vKXv6hffvlFPfPMM0qv16u77767Thvcef+Of1YhISEqOjpavfLKK2r+/PnqnnvuUYD605/+VFvueByNi4tTo0aNUt98801t3DQajWrVqlV1Phd3rjMzM1OFh4ermJgY9cEHH6iffvpJXXvttbVx+Pe/edx1vJ2JiYnqnHPOUXPmzFFz5sxRycnJKigoSBUWFtaW/fTTTxWgJk6cqObMmaO+/PJLNWjQIGUymdTy5ctPep7W+ozc/X/z959XZWWluuqqq5Sfn5+aN2+ex++h8B7ya7YdO578Pvzww42WdTgcqrS0VPn6+qqXX365dvs///lPZbVaVWVlpVJKqZtvvlmdc845qm/fvrVJ3rFjxxSg3n777ZOeY+jQoSo6OlpVVFTUbisuLlbBwcF1EqPVq1crQP33v/+tc/yRI0eU1WpVDz74oFJKqQ0bNiigNqFviK+vr7rhhhtO2N5Q8guor776qk7Z8847T3Xv3r3BczidTmW329Vjjz2mQkJClMvlqt3Xu3dvddZZZ51wTH3J47Bhw1R4eLgqKSmp3eZwOFSfPn1UbGxsbb3Hk98777yzTp3PPvusAlRGRsZJ2xoZGamGDh1aZ3tqaqoyGo31Jr+dO3dW1dXVjbbf3c9YCCFa09ixY1VgYKDKzs5usMxVV12lzGazSktLq7P93HPPVT4+PrU/8I/HjvPOO69Oua+++koBtYmiOzHK3XinVE1CBahFixbVKWu321VERIS65ppr6mx/8MEHlclkUrm5ufWe+3jc+uijj5Rer1f5+fm1+84///w6seD3/pj8vvLKKwpQe/furd2Wn5+vzGazeuCBB2q3TZo0ScXGxqqioqI69d11113KYrHUOX9D5w0ICDihnLv1Hv/cJk+eXKfcfffdpwB1zz331Nl+0UUXqeDg4Abbc7L37/hn9d1339U55pZbblE6nU6lpqYqpX6Low3FzfHjx3t8nX/961+Vpmlqy5YtdcpNmDDhlJPf5OTk2ps7Sim1bt06BajPP/+89j2Jjo5WycnJyul01pYrKSlR4eHhasSIESc9T2t9Ru7+fjye/Obl5alRo0apmJiYE95XcfqRbs8dwKWXXnrCttLSUv7617/SpUsXDAYDBoMBm81GWVkZu3fvri03btw4KioqWLVqFQALFy5kwoQJjB8/ngULFtRuAxg/fnyDbSgrK2P9+vVccsklWCyW2u1+fn5Mnjy5Ttm5c+eiaRrXXXcdDoej9hUZGUm/fv1quyl36dKFoKAg/vrXvzJjxgx27drVtDfoDzRNO6FNffv2rdMlHGDx4sWMHz+egIAA9Ho9RqORhx9+mLy8PLKzsz0+b1lZGWvXruWyyy7DZrPVbtfr9Vx//fUcPXr0hC51U6ZMOaGdwAlt/b29e/eSmZnJFVdcUWd7fHw8I0eOrPeYKVOmYDQaG22/u5+xEEK0lvLycpYtW8YVV1xBWFhYg+UWL17MuHHjiIuLq7N92rRplJeXn9Bts7HvX3dilLvx7rigoCDGjh1bZ5vBYOC6665j9uzZFBUVATVzM3z88cdceOGFhISE1JbdvHkzU6ZMISQkpDZuTZ06FafTyb59+xp8b07m2muvxWw21xkC8/nnn1NVVcX06dMBqKysZNGiRVx88cX4+PjUudbzzjuPysrKervP/tHYsWMJCgqq/bsp9V5wwQV1/u7ZsycA559//gnb8/Pz63Sr9eT98/PzO+HfyDXXXIPL5eLXX3+ts72huPnrr7/idDo9us4lS5bQu3dv+vXrd8K5T9X555+PXq+v/fuP/+b37t1Leno6119/PTrdbymCzWbj0ksvZc2aNZSXlzd6npb+jDz5/ZiSksLw4cMpLi5mzZo1J7yv4vQjyW8HEBUVdcK2a665htdee42bb76Z+fPns27dOtavX09YWBgVFRW15Y6PK1q4cCEHDhzg8OHDtcnv2rVrKS0tZeHChXTq1ImkpKQG21BQUIDL5SIyMvKEfX/clpWVhVKKiIgIjEZjndeaNWvIzc0FICAggGXLltG/f3/+/ve/07t3b6Kjo3nkkUdOGNvhCR8fnzpBCGomp6qsrKz9e926dUycOBGoGTu7cuVK1q9fzz/+8Q+AOu+huwoKClBK1ft5RUdHA5CXl1dn++9/1BxvZ2PnP15HRETECfvq2wb1/xv6I08+YyGEaC0FBQU4nc5GZyjOy8tr1u9fd2KUu/HuuIa+i2+88UYqKyv54osvAJg/fz4ZGRm1ySdAWloao0eP5tixY7z88sssX76c9evX144ZbUrcAggODmbKlCl89NFHteNZZ86cyZAhQ+jduzdQ8945HA5effXVE67zvPPOAzjhWuvzx+tvSr3BwcF1/jaZTCfdfjz2e/r+1RdPj8fCP/5baihuVldXU1pa6tF15uXltVgcbuzf/PHrauj/I5fLRUFBQaPnaenPyJPfj+vWrWPfvn1ceeWVMsu5AGS25w7hj+urFhUVMXfuXB555BH+9re/1W6vqqoiPz+/TlmTycSoUaNYuHAhsbGxREZGkpycTKdOnYCayQkWLVp0wl26PwoKCkLTNDIzM0/Y98dtoaGhaJrG8uXLa79Yf+/325KTk/niiy9QSrFt2zZmzpzJY489htVqrXNtze2LL77AaDQyd+7cOolyfesJuysoKAidTkdGRsYJ+45PYhUaGtrk+o87HryysrJO2Fff5wMn/huqjyefsRBCtJbg4GD0ev1JJ7KBmu/G5v7+bSxGeRLvoOHv4l69ejFkyBA++OADbrvtNj744AOio6Nrb9JCTXwqKytj9uzZJCQk1G7fsmWLx9f1R9OnT2fWrFksWLCA+Ph41q9fz5tvvlm7PygoqLYX05/+9Kd66zjZDfTj/nj9zVWvOzx9/04WY/+YRDYUN00mEzabDaPR6PZ1hoSEtFkcPn5dDf1/pNPp6jy5b26efEbu/n688soriYyM5B//+Acul4t//vOfLdZ+0THIk98OSNM0lFInBNV33323ziyEx40fP56NGzfyzTff1HZt9vX1ZdiwYbz66qukp6eftMvz8fJDhgxh9uzZdZ6glpSU8MMPP9Qpe8EFF6CU4tixYwwePPiEV3Jycr3X1K9fP1588UUCAwPZtGlT7T6z2dzkO9oN0TQNg8FQp/tPRUUFH3/88Qll3T2/r68vQ4cOZfbs2XXKu1wuPvnkE2JjY+nWrdspt7179+5ERkby1Vdf1dmelpZW2729KTz5jIUQorVYrVbOOussZs2addKni+PGjWPx4sUnzJj/0Ucf4ePjc0pL/DQUo5oS7xoyffp01q5dy4oVK/jhhx+44YYb6sSo44nj72O/UqreWWs9jZsTJ04kJiaGDz74gA8++ACLxcLVV19du9/Hx4cxY8awefNm+vbtW++1/jEhdEdL1VsfT94/qIl9v5/pGmrWT9bpdJx55pl1tjcUN0ePHo1er/foOseMGcPOnTvZunXrCeduad27dycmJobPPvuszsoXZWVlfPPNN7UzQLcUTz+j48c09PvxuH/+85+89NJLPPzwwzz00EPN33DRociT3w7I39+fM888k+eee47Q0FASExNZtmwZ7733HoGBgSeUHzduHE6nk0WLFtVZ8mH8+PE88sgjaJp2whik+jz++OOcc845TJgwgQceeACn08kzzzyDr69vnSfOI0eO5NZbb2X69Ols2LCBM888E19fXzIyMlixYgXJycnccccdzJ07lzfeeIOLLrqITp06oZRi9uzZFBYWMmHChNr6kpOTWbp0KT/88ANRUVH4+fnRvXv3U3oPzz//fF544QWuueYabr31VvLy8nj++efrvXN//O7il19+SadOnbBYLA3+oHnqqaeYMGECY8aM4S9/+Qsmk4k33niDHTt28Pnnn7v1BLYxOp2ORx99lNtuu43LLruMG2+8kcLCQh599FGioqLqjNPxlLufsRBCtKYXXniBUaNGMXToUP72t7/RpUsXsrKy+P7773nrrbfw8/PjkUceYe7cuYwZM4aHH36Y4OBgPv30U3788UeeffZZAgICPDqnOzHK3Xjnjquvvpr777+fq6++mqqqKqZNm1Zn/4QJEzCZTFx99dU8+OCDVFZW8uabb9bbDTU5OZnZs2fz5ptvMmjQIHQ6HYMHD27w3Hq9nqlTp/LCCy/g7+/PJZdccsL79fLLLzNq1ChGjx7NHXfcQWJiIiUlJRw4cIAffviBxYsXu3Wdf9RS9f6RJ+8f1DwFveOOO0hLS6Nbt2789NNPvPPOO9xxxx3Ex8fXKavX65kwYQL3338/LpeLZ555huLiYh599FGPr/O+++7j/fff5/zzz+eJJ54gIiKCTz/9lD179pzQxqVLlzJmzBgeeeSR2uWrToVOp+PZZ5/l2muv5YILLuC2226jqqqK5557jsLCQp5++ulTPsfJuPsZufv78ffuvfdebDYbt956K6WlpbzyyivN8ptMdECtP8eWcNfx2Z5/v3TRcUePHlWXXnqpCgoKUn5+fuqcc85RO3bsUAkJCSfMjOxyuVRoaKgC1LFjx2q3r1y5UgFq4MCBbrfp+++/V3379lUmk0nFx8erp59+uradf/T++++roUOHKl9fX2W1WlXnzp3V1KlT1YYNG5RSNctSXH311apz587KarWqgIAANWTIEDVz5sw69WzZskWNHDlS+fj4KKB25uWGZnv29fU9oS31tfH9999X3bt3V2azWXXq1Ek99dRT6r333lOASklJqS13+PBhNXHiROXn51c7hb9S9c+WrJRSy5cvV2PHjq297mHDhqkffvihTpnjsz2vX7++zvb6rqkhb7/9turSpYsymUyqW7du6v3331cXXnihGjBgQG2Z42187rnnTji+ofZ78hkLoZRSy5YtUxdccIGKiopSgPr2228bPWbp0qVq4MCBymw2q6SkJPXmm2+2fENFh7Zr1y51+eWXq5CQkNrvp2nTptWuZqCUUtu3b1eTJ09WAQEBymQyqX79+p3wHXf8e3bWrFl1tv/xO9HdGKVU4/FOqZoZhHv37n3Sa7zmmmsUUO/SQ0op9cMPP6h+/fopi8WiYmJi1P/93/+pefPmnRA38vPz1WWXXaYCAwOVpml1vr/5w2zPx+3bt08B9S679Pv36MYbb1QxMTHKaDSqsLAwNWLECPXEE0+c9LqOn/f3ywR5Wm9Dn1tD8bS+31Duvn/HP6ulS5eqwYMHK7PZrKKiotTf//732qWfjreb/y2l9eijj6rY2FhlMpnUgAED1Pz585v8/u3atUtNmDBBWSwWFRwcrG666abaJbF+384ffvhBAWrGjBkNv/Hq5L8F6vv3MGfOHDV06FBlsViUr6+vGjduXJ3lMRvSWp+Ru/9v1vdv7vPPP1cGg0FNnz69zozWonHeEus1pX7Xr0EI0WEVFhbSrVs3LrroIt5+++22bo44jcybN4+VK1cycOBALr30Ur799lsuuuiiBsunpKTQp08fbrnlFm677TZWrlzJnXfeyeeff17v7PZCCNGazj77bHJzc9mxY8dJyx0+fJikpCSee+45/vKXv7RS637z4IMP8vnnn7N///4TJvoUorl5S6yXbs9CdECZmZn85z//YcyYMYSEhJCamsqLL75ISUkJ9957b1s3T5xmzj33XM4991y3y8+YMYP4+HheeukloGa5iw0bNvD8889L8iuEEG5asmQJ//rXvyTxFa3CW2K9JL9CdEBms5nDhw9z5513kp+fXzuZy4wZM2qXphCisrKS6upqj49TSp0wFspsNtc7Jr4pVq9eXWcWW4BJkybx3nvvYbfbG12TWgghBKxfv76tmyDaifYY79trrJfkV4gOKCgoSGZgFidVWVlJUoKNzOwTZ4BvjM1mo7S0tM625ppQBWp6LvxxDc2IiAgcDge5ublurUsthBAtZenSpW6VS0xMREYPirbWXuN9e431kvwKIYQXqq6uJjPbScrGBPz93J8BvLjERdKgVI4cOYK/v3/t9uZ66nvcH+80H/8BKbNvCiGEEO5rz/G+PcZ6SX6FEMKL+dpqXu5y/u8hhr+/f51g2JwiIyPJzMyssy07OxuDwdBsa3oKIYQQp5P2Fu/ba6yX5FcIIbyYC4UL97vleVK2qYYPH35Ct/1ffvmFwYMHy3hfIYQQognaW7xvr7G+WZLfpg6yFkIIUcNkMrXIjJ0uXLg8LO+p0tJSDhw4UPt3SkoKW7ZsITg4mPj4eB566CGOHTvGRx99BMDtt9/Oa6+9xv33388tt9zC6tWree+99/j88889PrdoPRLrhRDi1LRUrIeWj/feEutPOfk9lUHWQgghakRGRpKSktLsQdGpFE4PJmTxpOxxGzZsYMyYMbV/33///QDccMMNzJw5k4yMDNLS0mr3JyUl8dNPP/HnP/+Z119/nejoaF555RVZ5qgdk1gvhBCnrqViPbR8vPeWWK+pU5ymrri4mICAAFI3Jno0yFoIIU7VNYfGNVqmqqCcZVd/iS9+9DIOw0dreEDMtznvNmfz3FZcXExcXBxFRUXNNu7m+HfzkT0xHk+AEdfjWLO2RXR8EuuFEO5ytzttir3crXJ37ruq0TJKKXbf+j0VxTkkDb+CgIguJy0f+NNOt849+9ibbpVzR0vE+uP1Srx3X7ON+fX30+Hvp2+u6oQQolFGX1OjZXbPWI2GxiDTWIzayWcw9MYv//Y2Bkh0bBLrhRCNcbc7rc3uXqJm8G189uG8FfsozT1Mt7G3EBjdo/E6tcZ/P0DH+l0g8d49MuGVEMJrlaYVkPrDTrrq+zea+HorFwqnBEMhhBBeyuVwkvr+MvyjurmV+HoriffukeRXCOFVXA4nBTuyyFqTyrGF+7CG24jL69bWzWozcidYCCGEt1FKUZGWR8H6Q+Qt30dleiGdz5ne1s1qUxLv3SPJrxDCKyilOPDZZvZ/vBFHWTWmQCvhQ+LoOnUw+pvaunVtpzUmvBJCCCFaS+HmVA6+8DNVWUXoTAb8+8XT45GL8d0f09ZNa1MS790jya8QosMrzyjm4BdbSJm9naTL+hI3qTsB3cLQdBoAlRS0cQvbjut/L0/KCyGEEO2No7SS3KV7ODxjMX69Y+h0zwT8+8ahN9esGevY38YNbGMS790jya8QosOyl1Wz+YkFZK44jM6kp8+9o+l0Wd+2bla74vRwDJAnZYUQQoiWppTi6KerOPrZapTDRdi4XnT+8znoTJLG/J7Ee/fIvxohRLvTeVHD43Zc1XbK1myjcscBqld/hFIuki2jCTfEY3jfSNX7ZSccM7/y05ZsbrvmVDUvT8oLIYQQTZXicG8Jo0k/3H/S/RW791KxfTfOVe9Sbi+gU9Aw4gMGYEnzgz+fWN51ZLPbbfy54mO3y3YUEu/dI8mvEKLDcOQVkf3Kp1QfOoYpMZpYY1dijd3x0fm1ddPaLekGJYQQoiNRDgf5s76jdMUaDKHBRFpj6RNxDsHWuLZuWrsm8d49kvwKIdo9R24BJUvWU7JoHZrJSNSjd2DuFEu3O/a1ddPaPRcaTjSPygshhBCtzVVZSdn6zZQsW4k9J5fgay/Hb8QQer6U09ZN6xAk3rtHkl8hRLvlqraT//FcSpduQDObsI3sT+Al49AH2Nq6aR2GS9W8PCkvhBBCtBalFKUr11Iwey6quhprn56EXH8l5gR50usJiffukeRXCNEu2TNyyX71MxwZuQRfex62swejs5jbullCCCGEaCauyiryv/iGsvWbsY0YQsB5EzAEBbZ1s4QXk+RXCNHulK3ZRu6736IPtBH16B2Y4qPaukkdltPDblCelBVCCCGaqjo9k5x3P8ZZUEjotGvwPWNAWzepQ5N47x5JfoUQ7cpns4vJee0LfIYlE3rjxeh8LG3dpA5NgqEQQoj2Ji3VQeZ/X8MQFEjUX+/FGBne1k3q8CTeu0eSXyFEq+j+wR2NlqnOzuLY+28SRjR91/ZAW7fnpOV/dn7ZXM3zWi6l4VIeTIDhQVkhhBCnjwez3Hsy+9OXw06631lVybHZMzE6yhgdcgOG781AcYPlXUfS3TrvfC9cvsgTEu/dI8mvEKJdKNm2hezZX2IMDKR7yUA07fT8Um5ucidYCCFEe1GVk8nR2TNxlBYxMP4yDHqZy6O5SLx3jyS/Qog25bLbyft5LkWrl2PrO4Dwi6/A8rj7C9WLk3Oiw4nOg/JCCCFE81LKRfHOTWT8/DWmwGASp/2ZkLXGtm6WV5F47x5JfoUQbUI5HOTOn0vx2lUopQidfDEBw0bJE99mpjzsBqVO025QQgghWkbR9g1kLf4eZ3kpAX0GEznpUnQmM1DQ1k3zKhLv3SPJrxCiVSmHg9IdWyn4dTHVOdkEnz0eW98BmMJksouWIN2ghBBCtDalFBVHU8hbu5TS/Tvw7zWQwAHD8InrLDe5W4jEe/dI8iuEaBXK5aJ022byFszDUZCPtXNX4i67BnN0TFs3zas5lQ6n8qAb1Gm66L0QQojmUXEsleylcylPO4gpOIzoKdcR0HtgWzfL60m8d48kv0KIFpWT6+DL70pJe+Ep7Pl5+PbsQ9T1N2GOlLV7W4MLDZcHY4BcnKbRUAghRJM5qpykrMhg8+f7ObIhB3NoJLGX3YStS080zf0YJJpO4r17JPkVQrSI+UvKeOXdQhYsKwfA2rMfEVdNxRIb18YtO71INyghhBAtpSC1hHUf7GH/wqNUldqJSg4m5uIb8OuWjKaTpLc1Sbx3jyS/Qoh6rax0uVXuoQdur/O3cjk5tHUOmSn7sQXFkdBnEqGxfTEZbZAOpDc+v+ACWb+32XjeDer0vBMshBDepMBV7la5l/LOcLvOr1fWLVu6bhN5n/6C3s8P2+izCBncH2NkBPHzFex2AY38jkh1b/1e5bC7VW6C7nK3ygEscM1yu2xHIfHePZL8CiGaTWnhMVJ3zqMwez+dB1xKROLQ3ya2cC+XFkIIIUQ75iwqpnjRrxQvWobvsMEEX3kxOpOprZslhFsk+RVCnBKlXBRm7ePY/mUU5RzA7BNEr+HTCYrs0eix9qpSivMOYwuKw2wNaIXWnn5qxgC537XJk7JCCCFOD0opqtMzKVmynNJ1G9F0egInn4P/pLGNzt7scjkpyN6DxScEH78Ime25hUi8d48kv0KIJtm1uZIPXs5nw8qHcTqqsAXG0m3ItYRGJ6Pp9CeULyk4Ql7GDkoLjxLT5Sz8Q5LYvvItyoszAbDawgmJ7kNgWFcOHTpEp06dWvuSvJLLw0XvT9cJMIQQQpyoJKeSZa/t5uDKLEqyv0Mf4E/gBZPwGzkMnY/1hPKOgkKO7N9IcUEaASGdiO18Jod2/EDG4VUAGM02gsK6ER47ELsjhwBDWGtfkteSeO8eSX6FEB4pK3Hx5tN5/PB5MV16mojtPo6AsM7YguLrvZtbVV7Ahp+frLPNLzCO1F3zqCjNpc/IW7FXlVGUe4Cj+xZzdN9iOnd+C7vdjsEgX1GnSsYACSGE8JRSig1fpLDklV0YTDr6XZTAAfMorD27odUTm5XTSdar71C1/2DtNqejiorSHDJT15LU63x8A6IpzDlAzrHNZB/dBMBQ22QCDeGtdl3eTOK9e+SXpRDCI68+kcuSuaXc83AoF13vzz8fHHvS8kW5h+r8bQuMJTN1HfaqEszWIHz8IjCF+RMW25+i3BQqSrP54YcfJPFtJi50svSBEEIIj+yaf4z5T21jwGWJjL2vF1Z/E+nLezVY3lFQWCfx1RvMmCz+ZKauBcAvKJ6AkCSCwroCcPTAEjqbB+CvD23ZCzmNSLx3j/y6FEJ4JCPNTnC4gchYA0X5jc/cHB4/iNDY/mhOF2XFmaAUW399FYCqikJ2rfmAzv0u4fCun6gozabXsOlccMEFLX0Zpw2n0nAqD5Y+8KCsEEII71R4tGa26PhBIZTlVWHxM560vDE0hPhXngZNI/TrTIxmG+sWPgWATmdg59r36TPsJrKPbiYzdS3RSSPpUtD43CDCfRLv3SPJrxDCI9feEcRj92bx0C01Y3V9/P9LQHhXrL4h2KvLcVSX4bRX1pZ3Oh0ol53YrmPwD05EKRd9Rt6Gr38kVRWFbF32GluXvYLFN5QeQ6YSHNnwnWXhOaeHY4Ccp+mdYCGEEL/pe2E8O348wncPbQTAL9yCK+kopvg4VHUVrtIynGUVoGqWclBOF6qyEmufniQEDAOg/+g/odMZMFkD2PLra2xd8QZ6vYmEHpOI7jQKVh5q8PzCcxLv3SPJrxCiXv1M1fVvH2/gpu3RpGc4WbW2iiUrivl1xSrSDjsJDtYREqzDL0jH8eG/JpPG6rVVpLkc9Bp1C6DDP7ILAD4+NpLH3EVlWR7BUb3R6Q24gD4PvuhWG929aRn9/Bq3ynnj+sIupcPlwRgg12k6BkgIIbxJkM7HrXJTAjbXvyMArl0cTHFRADs2VbN+ZSXLV+zmyDcb8fE34BdkwNdfj05fE4h1eo3MrEoKd+8m9d3BaDodEFVbXfDEm6ncsQ9rvx4ofxvHAJ/+vd1qo3+Ke2slBs7f61Y5gHMCbnSr3M9F77tdZ1uTeO8eSX6FEB7T6TRiYwxccYmBiy+pme1RKVXvhFdKKcZOyuFYQf1rANqCYrEFxTZ4LqVcVBfkYgoMqXcW6dbwzDPP8OKLL/Lmm29y8cUXt0kbmkruBAshhGgq/wA9I8ZYGTHGyqSqyAZjPcCXz6Wx6LMsqGe/Icgf2+jBJz2XvSgfncUHvdnSLG33VKEjm00VC4kxdqWbeXCHW5JJ4r17JPkVQjSLhoLE0WNOtu+0033YQACqK4rJTFlDTtpGqsryAUhIPp+YbmfXe3zuuiVk//oj6HTYErrhE9cZS2gkeosPlbkZlKenUpl9DFNQGBFnT8YUENys12Q0GrHb7QBcc801LF26lKFDhzbbOVqaC8/G9bh3f10IIcTp6GQJ4caFBYyYEspBTcNVbad8zRZKFq/Fnp6NqqrG2q874fdPr/fYioyjHH7/BQAs0fH4JnTGEhWHwS8Q++E8SvPSKM1LQ9PpiekznoDIbs12TVvKl5DlOIyGDoWLw9U7MGtWEs19mu0crUHivXsk+RVCtKiUFAcAPgFRlBdns2XBcyeU8QtJbPB4S2hNtym/Tr1QDju5qxfgsv+vS7amwxIejTUyjtKUvRx45ykC+5xB6NCxmIJObQbJwsJCAOx2O08++ST33nsvEydOZMqUKezevZvg4OZLsluS57M/ul9WCCGEAHA6FDlHq4jt5sMBp5PMx17HfiSzThlTp7gGjzeH1ix3ZPALwBQUQtH2jeStXvLbflsItpB4qsry2bP4bfwjuxLdexz+4Z1P+QltniMdgFBDNMnWM0mp2sHeqvX46TtGnD9O4r17JPkVQrSoXXscGAxg9gmiojjzhP0RScNQTgfVFcWYrP519lXmpNeuJxjcfyS2pO4olwtHeQnO8lKMwWHojDXdqZ1VlRRsWUXe+qUUbl9H5PiLCR4wssntDgwMZM+ePUycOJHXX3+dyZMn8/DDDzNp0iT27t3L8OHDm1x3a/J83b/TMxgKIYRouszDFTjtishECzgVqtpRZ78xOhxzUhz2jByMUWF19tmLC3GUlWAMDMGvezIR46eglMJVWY69uIigfBtGiw0A5XKRf3Q76TsXsWfRDILj+9JlxHX/G2PcNGf7Xcnm8sXkOtLJcRyls7kfqdU7KXBmN7nOtiDx3j2S/AohWtTipZUMH2qmoOAI9spiAsK7UpS9nx7Dp5NzZBNZKWvISqmZkGr4Jc+gaTqUy0nat+9Temh3bT06kxkATafDaAvAaAuoM+GV3mwhdOhYggeOInPxHLIWz8GW1ANTYEiT2969e3dWr17N+PHjuf766xk4cCCJiYkMHnzycUtCCCHE6WTbr0UYjBr+IUYqFuzBb+xQCj7/kaCrz8dZWELxvF/JfuEDACIf/hPmzjVPgXNXLSJnyY+19dTGek1Db/VFb/XFWP5bB11NpyMkvh/BcX3JO7yJg6s/Jzd6I2Gdzmhy2/WagYE+49lRuZwdFcupNlfiwkmkIbHJdYr2S5JfIUSLSko08N7MMuD12m0RnYYTHN0Lp7OKvKNbMVn8ie9zXk3iq1xkr1xA6aHdaAYDylFz99gcEu7W+XRGE5FjLqT04G6OzH6P6HOvOqX2R0dH07t3b77++msCAwMpKyvDaDz5eoftiQsNF56MAepYE3wIIYRoexEJFhx2xT+nbAe2A2CIDMVvwggcOQWULFkLLhe20YMxJcUAUHpoLzlLf0Lva8NZVgqAOSzSrfNpmkZo0iAKju0ideP3AAQovyZ3gdZpOoL1UWTYD1HmKgJqkuKOROK9ezrWpyqEaDU2XfPMtvjMX83EhRXSr7eZkWdYSUmzs33PQd795F/s31jJNZf48d6L4ezcu5J5ixbwzidF5B6rSXiPJ76TJ/ky5+8fenTebZMDuPHeLLZ++hK5E0YQOOVs9AG2kx7T6fMnT9hWvGgdeV9/h2YxsaNHKLlLc4h6+BYyHnvHo/a0FekGJYQQoiGDTPWvxFCfPsasBvddMlmRVBSMwwEjLjCSm+Pk6BEns2c9ztKFlcTH6vnqu1CKCg+wfu0zzPqinC0bayaTPJ74+gdoLHhyHjbb/Dp160+SpBUUuHj4YcXsb78kf0A8ne4Yg2+nsAbLH5e1KrrO3xVHUzny9sqa890yGd7Yy45BhZzb7a+N1gUwb98zbpVrSRLv3SPJrxCiRQUF6vnX/b91Pd6+p4qb//zbOJrv55fim1SCywVWi8aVF/nxydfF/C/vpVtnI++/GOHxefv2MrNmXhyvvFvIg0+tp+SX1Zi7J+B39hnYRg2o9xjlclF18CjVqRlYeiRijAkn773vAIj4v6lYuidQsmAN+R/9iPMRJ3p92yy95AnPlz44PYOhEEKIptPpNG6ZWjNvR5qjCl+bxmUX5FJVVbM/7bCTUYOzOD5f5YjRJs4YYmT9upoE2GSCDz8KwmbzLAYFBel49dUgLrmkkpv+r5BNt36INT6Y0NHdiL92GDpT/alOdW42FUdSMdhs+HTpQd7CnwAIHX8e5shogs8cT8HKJZTHdsLHGNCEd6T1Sbx3jyS/QohWNWKwlcf/GkJOnhM/mw5/v5pXnx4m+vc24+OjIyHWwIJl5QwdaOH+24MIDmpakmkwaNx/exCvRN5G+abdlCxeR+6MWVTuSSHoiono/X97EmzPzCPnlU+pTvvfpFyahrl7AgDWAd2x9kwCIPiGC8h45C1efvll7r///lN7M1qBS2m4PFn6wIOyQgghRH1MJo0n/xvIxvXV2Gwavr46fG0aCYl6eicbCQ7Rs2JhBfbqMnr0MHDl1VYGDXL/KfQfjRljYfD7V1KwKZXcX/dx5NM1FKxPoev9k7B1+W3YlKvawd5n55G7dG/tNnNkDFVZ6WhGIwFn1EyUGTx6HMVbNrAr+xcGRV/WIdb8lXjvHkl+hRCtymTS+Pt9J18+4OEHQnj4gaZPVPVHej9f/M4ajO3MQZT8spqCrxdQumwj1r7dCP/ztWgGA0U/LceRX0zkP2/C3CmWkmUbqdyVQuDl4/GfMKy2LkuXOPzPGc4//vEPLr74YpKSkpqtnS3B5eGd4NN16QMhhBDN6/wpVs6fYm1w/8SJFiZObJ4hVgA6k4GQYZ0JGdaZiAm9OfDKQjbf/hHWuGB6P34x1tgg8tccInfpXsKnXI5fn/5UHkmlaNNarImdCBg8HL21pr06s5nwKZeR/sm7pJfsIsa/d7O1s6VIvHePJL9CiNOCcjhxlpThN3E4vsP7UvTjcop/XE71kSzMSTFoeh36ID+svToBEDBpOAGT6l/OKOiKCZSt38drr73Gf//739a8DI+5lA6XB+N6PCkrhBBCtDdVuSUE9I1l4Ns3kLt8H/uemUfur/uIu2YomrGmJ5mte2/0Fiu+XXvg27VHvfXYuvUi3LcLKQXrOkbyK/HeLZL8CiFOC/mfz6Nk/irQ6/E9ozflW/diiArFGBUKgDEihJIl63GVV6LzOfmdaJ3ZxMUXX8z8+fPbffLrRMPpwYyOnpQVQggh2pP8NQfZ+c9vAQgZ0YXytDw0vY6gMxIBsEYHAlCZfgRb98YT2mi/XmzJ/J5KRwkWg19LNbtZSLx3z+mZ8gshTju2Ef1r/sPppGzNNqzJXYl6+HZ0lpo1BY3RYeBw4iqvdKu+oUOHsmvXLioqKlqoxc3j+J1gT15CCCFER+TfJwadpebZXt6qA7gcTvq/di22rjUTZ1pjgwBwlpa4VV+ApWZW6OLKhme6bi8k3rvn9LxqIcRpx9w5lrgZ/8Q2eiDo9VRs2Yum/+0r0FlaDoDO5uNWfSEhISilKCsra5H2Nhcnv90Ndu8lhBBCdEwGm4UR391D0q1nYfCzUJVZTFXOb4muo7TmBrfO6l6sN+lrxgA7XNXN39hmJvHePdLtWQjh9f4zdM5vf4wzsG15Z565cR/3dZpDREJNF+dZq46yMkTH/nM+dmtWx2HJNd2lLu/715N2hZqX9tKpNP2UyRggIYQQzcGsGd0q19XoXjl3HXO695R2Wtzq3/54ABx3D+DOAWsYUL2FMXE1T273ZRWxBhh0fgHB3XY0WuehdV3hIFREWSmLD22w3ATd5Y3W5VD2RsucCon37jk9r1oIcVorKahZRNhg+u0rcO/GEoYNtri9nEGFoxjQMOiab6bKjuyNN94gKSkJi8XCoEGDWL58+UnLf/rpp/Tr1w8fHx+ioqKYPn06eXl5rdRaIYQQ3q6s2IHLperE+v0bSzD76AjsFORWHZXlBQAYTb4t0saOxhtivSS/QojTSlZqJe/8PYWuA2wER9bcnd69rpjda0u45HxbI0fX2Ly9ir1FKwmzJGLQNe8d7ubmVDqPX5768ssvue+++/jHP/7B5s2bGT16NOeeey5paWn1ll+xYgVTp07lpptuYufOncyaNYv169dz8803n+rlCiGEECilePHmXRiMOpLPrEl0y4ocLPo4nQHjQ9AZGo91jkoHu9Z/iMHkQ2Bo55Zu8ilr6XjvLbFekl8hxGnFYNKwVykKc6rZuaoYpRSfPX2ErgNtXH2Je8nvZ9+UoNMM9A2Z2MKtPXUKDZcHL9WE2R9feOEFbrrpJm6++WZ69uzJSy+9RFxcHG+++Wa95desWUNiYiL33HMPSUlJjBo1ittuu40NGzac6uUKIYQQaJqGpoG9ysXmhXnYq13Mf/8Y1RUuLn0gwa06srZkUl6SRc/B16E3mFu4xaeupeO9t8R6SX6FEKeVkCgz/5nTm4BQI09N28s7f0/hyN5yhp0bjF7vXiDIzHZiMwZj7ABdnpt6J7i4uLjOq6qqqt76q6ur2bhxIxMn1r0RMHHiRFatWlXvMSNGjODo0aP89NNPKKXIysri66+/5vzzz2/eixdCCHHauv+93oy8JJxPHj3EoxduIXVHCV0H+xMc6V4iW5lXs5qDf3BiC7ay+bRkvPemWC/JrxDitJPY25e/vNUNgNz0anQGDaXcP764xIVBM7VQ65qXS2kevwDi4uIICAiofT311FP11p+bm4vT6SQiIqLO9oiICDIzM+s9ZsSIEXz66adceeWVmEwmIiMjCQwM5NVXX23eixdCCHHa8gs2cuNTXQmONpOVWgE6z2J9dWk1ms6ApulbrpHNqCXjvTfFekl+hRCnpU2LCwG4+fFEDEYNe7XL7WMT4w2U2vNQyv1j2ooTnccvgCNHjlBUVFT7euihh056nj9OFKaUanDysF27dnHPPffw8MMPs3HjRn7++WdSUlK4/fbbm+eihRBCCCA/s4r89Cqu/VcnrL567JXux21btB/K5aCiLKcFW9h8WiPee0Osl+RXCHHa+eWTLN5+KIWuA22ExZlJ7O3L3Hcy2Lar/q69f3T1JX5UOIs5Vra7hVt66pp6J9jf37/Oy2yuv5tYaGgoer3+hDu/2dnZJ9whPu6pp55i5MiR/N///R99+/Zl0qRJvPHGG7z//vtkZGQ07xsghBDitHR4ewmPTN6MLdBAnzODiO9lY8/aItZ8n+3W8ZGDojCZ/Ujds6CFW9o8WjLee1Osl3V+hRBe78OrzgWgyl7KwfSlHM1NJT58KAlM5KOrdTizQykrmsfNjxfz0LtdGq+wRwBBkf6k2Q8ScMakFm79qXGhw+XBfU5PygKYTCYGDRrEggULuPjii2u3L1iwgAsvvLDeY8rLyzEY6oYfvb6mW5nypE+aEEIIr7emMtqtco/Pr4lByu6geMUqCudtxBQZS8htN/HmDh8cgcXAY7zzf/uJ/2Aamq7xeBc8upTMRd+R3cmB3tzwPB8xPzXeNVpTLnC6dSlN0pLx3ptivTz5FUKcFhzOatbsfovMgp10j51E99hJ6LSar8DI4D5YjP5sXlrMly+l43I1/qXs6x9FWXEG5cX1j3VpL5xK8/jlqfvvv593332X999/n927d/PnP/+ZtLS02q5NDz30EFOnTq0tP3nyZGbPns2bb77JoUOHWLlyJffccw9DhgwhOtq9HzlCCCFEfXI+/oyCOT/gO7AfEXfcjN7XBwC9vx++gwYAkP3CTFxlFY3WZQ6LAuWiZO+2Fm1zc2jpeO8tsV6e/AohTgvpeZuptpcxss/d+JjrLm5vMvgwOvk+Qse8yxcvpFNV4WLqQ7EnrS8iaSh5GTvYvuwNBp3zdwzG9jnz8++7Nrlb3lNXXnkleXl5PPbYY2RkZNCnTx9++uknEhJqlpPIyMiosw7gtGnTKCkp4bXXXuOBBx4gMDCQsWPH8swzz3h8biGEEOK46qxsyrdsI+Sqy/EbMbTOPk3TCLvhWmzDziBn5sdkPf8+EX+7BZ254QksfWKS8OuWTPq8LzAGBOGb0LWlL6HJWjree0usl+RXCOH1yipzOZC+hMjgvickvsdpmsbFd0RiNGt89OQxhk0KpNvAhtf9tfgG0+2Ma9i6+CXKizPwD0lqqeafEqV0uDxYyF55uOj9cXfeeSd33nlnvftmzpx5wra7776bu+++u0nnEkIIIf7IVW0n9+PP0QcFYjtjUIPlrN27Ef5/N5H5xJsU/7ycwAvHNVhW0+uJvWga+157hLK0g+06+W2NeO8NsV66PQshvN7Wg7MwG/3pGX9uo2XPuyGcxJ5WPv9veqNlLb7B6PRGju5d2gytbBlONI9fQgghREdT+OM87BmZhN80Dc148ud75qQY/MePoPjHX3E20v1Z0zTMYVEUbFqBq9q9iTHbgsR790jyK4TwapWVLkors0mMHIFB3/jC9jq9xuDxAWQcbjzAGYxW4ntNojBrL05H+w2IQgghhLerSjuCT98+mONPPmzpOOugXqiqapyFxY2WjRx7Ic7KcsqOHDzVZoo2JsmvEMKr/bqm5o6urznE7WPKS1xobn47Bkf2QiknRbmHmtK8FudSni5/0NYtFkIIITxTWujAnp6JISzU7WNURc1N64bWqf09c1gURv8gylL2NrmNLU3ivXsk+RVCeK2ychd3/jWbQFs8Ab7u3QkuL3GyZFYuQyfVPzb4jyy2UMzWQAqz9p1KU1uM639jgDx5CSGEEB3JzCeOolD4jRzm9jHF81dgjI3EENl4wqxpGr6J3Sg73D5jPUi8d5dMeCWE6LBmlQacdP/y7/JISXMwOvJs9DlFjdb3/rFRHP1pFxUVivILLuD9Yw1PeJXf47c1/awp3ck7sp/AHo2v89faXGi4PBjX40lZIYQQoqmKXY0vNQTwRdb4k+6vzC/n1zmbiDnrUkIyg8CNFQjL+mdTufMA0fdehG9gdYPlqkJ+mwna3Lc7hdvWUqYvwBAYWKecZm58WJWmNChvvG1NJfHePadnyi+EOC2k7i4nLNaEr9G9p7gAhTsy8OsUgiWs4cT3j3yTulOdl4W9uLAJrWxZrbHOrxBCCNFWig7kAeAX283tYyr2HgHAt38Xt4+xdukKmkb5/vb59FfivXsk+RVCeK3cjGrCYhq/G/t7yqXQdJ4FBN/EroBG6aE9Hh3XGqQblBBCCG9WkVUKgNHP/Rvd6viAVw/ivd7HB3NsHOV721+sB4n37jo9r1oIcVoIiTKRl9Fwd6b6BPePoXhfDhVZJW4fo7f64pPQmeJdmz1tYotz4cnkF551mRJCCCHamjW8pqeWvbTx4U3H+fSKBw1K13k2gZVvnz6U796Fq7LSo+Nag8R790jyK4TwWpHxZnKOVeFSTrePiTizMwB5G494dK6APoMoP3yAqhw3Bhu1IvW/MUDuvtRpGgyFEEJ0TLbYmvk/qoty3T7GGOKPtXscZVs9W6nB1n8gyuGgeMN6j45rDRLv3SPJrxDCa0UmWnA54WjZTrePMfiY0FuNOEo9W7fXv/cgTMGhZM7/BqXaz/oBni17UPMSQgghOgprhA1NryNv1xqUy/2b3YYAX5xlnj3BNQYF4XfGEAp++RlHqfs9xFqDxHv3SPIrhPBa4bE1432Plrqf/AIopwvN4NnXo85gIGLixZSnHaR41xaPjm1JMgZICCGEd1Mop4uig1txVLo/nbJyeR7rAULOPQ80jfyffvT42JYk8d49stSREKLDWlbc/aT75/5rMdZgC8lFZ+DMaLw7ckFZJwBcDhdlDgu5Zb4Nlq3odeLdYn2vRHwO9ibr1+8wXtwVzWDgnKCbGz2vQ3k2LtkTnt7dPV3vBAshhGhdVs3oVrnt6VEn3V8wdxUAPYdOI7jABwoaf/qbfsgfZ4kOzWik6pB/g+Vc1np6cll9CZxyLvlfzsY2dhTmuBi0zvGNnlNzVoFn9+I9IvHePadnyi+EOC3odBommxEfzf1li5RS4FJo+qZ9PQZeOh5nQTHlG3c36fjm5sn4H0/XCBRCCCHamqaride+/pGeHeh01h7rKb8Rw9AHBVKyYlWTjm8JEu/dI8mvEMJrJZ4VR1FaCUq53D5GOWvKNqUrFIApNgJztwSKF6xuV2N/hRBCCG/ke0YPACpKczw6TrlcTU5+NZ0Ov2FDKNuwGWdZWZPqEG1Dkl8hhNcqz63A6OPZ6A5nSU13Zp3Zve5Y9Qk4/0yq9hyman9ak+toLjIBhhBCCG/mKKiZeEpvMHt0nKu8HM3s2TG/5zd6BGgaxctWNLmO5iTx3j2S/AohvNahxWkkjI5B09z/qivechgAW89Yt8oruwNnUQn2zFwc+UUopbAO6I4+yJ+ytdub0uxmJcFQCCGENytdswu9vy9+wQluH+MsKaE6MxNLgnvHKKcTZ1k59tw87Ll5KKcTvZ8Nn37JlG/e1tSmNyuJ9+6RCa+EEF4pbVU6efsLOeOOfjgXuX9c0br9+HSNxBTq13CZTYfI/HIT1YeO4iqrqLNPF2DDZ1AvTPGRlG/chUt1Q6fpm3oZp0wmwBBCCOGtnMVlFC/aiN/ovh7d6C7fXTMvh0+vXg2Wqc7JoXDJQir2HcBZUFhnn2YyYunWBWNYGPbMLEr8s/GzhDfpGpqLxHv3SPIrhPBK2z7bQ3jvEBLPjOEg7q/7V7Yvg4ChXRvcn7tgG4df/BFT5zj8zx2JISQQnY8VzWpGVVRRuT+V0uWbcBWVAnDYsoNOln6nfD1NJcFQCCGEtypetgVXVTXBl4+Bue4fV3XkCMbwcPS2+ifErM7K4tjLL6OzWvAdNABjRBg6qxWdxVKz/+gxyjZupmJHTRK9J/0XBiddi6a1XQyVeO8eSX6FEF7H5XBxdG0m/a/v6VEgqs4ppiqjEN+u9S+roJTi2Me/EnxWL/xurj/I+QzqScB5o8j678dUHzzC/soNaGgkmvt4dFe6uSjwaEZHmaJLCCFER1G2eT/m+AgMAQ0vTfhHSikqDh7EHN/w8kSFS5ag9/Ul+qH7axPe37P26Ib/2LPI/3oOJctXkV96mE2HvyA57iJMBmuTruVUSbx3jyS/Qoh2x64cbpX7cXPfercrhwPlUuxcVkze6L50Z5Nb9aV/uwmdxYRlYE8q7SdOeFW+/xj23BL8xw6k6/STj/HpqoZwQLOSpvaxr3I9/n0Uy5Ytw8fH54SyxcXFBAR87FYbPSV3goUQQrRHx5wVjRcCnGkNJ7bVqbk4i4up3uN+7CrM2Y89K4uosy7CknXiccrpoGLnbgL7nEGvFzNPWpdSA8gI9GVb4QJySw6yZNd/2blzJ73q6U5dE+ufc7udnpJ47x6Z8EoI4XUKv50Pej1BV012+5gqVUneT+sJmTIUvU/9sz/mfrsaY3ggvsmJjdan1wx01w9g4cKFAGzYsIHvv//e7fY0F5kAQwghhDcq37MHZ3ExQeedh76eG8sNSdvzC9aoeHwTutW7v3DnBpzlpQT2OaPRujRNI9qnO6mpqYSH14z5/c9//uN2W5qTxHv3SPIrhPA65eu24Dd2OOYuiW4fU0EJqtqBtVtMvfurjuVRvGoXYZeMQNO7/9U5btw4Xn31VQCOHTvm9nHNRYKhEEIIb1S6ZQvGyEgCx451+xilFGVF6Vij4usduqRcLvLWLMavazLm0Ei3642Pj+fXX38FYMmSJW4f15wk3rtHuj0LIbyKI68AZ0Ex5q5JHh0XQAg+PWLJeGsevj3j0NvqjtnJmb0SQ6CNwHH9PW7TjTfeyLZt2xgzZozHx54q6QYlhBDC2yilqDp8GEuXLh7N7aFpGjFdzuLI5sX49+iPT2ynOvuL926lujCXmMnXe9ym7t2789xzzxEUFOTxsc1B4r175MmvEMJrKLuDgi/nolktWLp3avyA39E0HbF/uRRneSWZH9ZdG6k6p4jCJdsIvWg4OpPn9wx9fHx4++23GThwoMfHniqlNI9fQgghRHtWvGIF9pwcfJOTPT42vvt4rNEJpM/7EuX8bY4RpRS5axbim9gda1Rck9r1l7/8hZtuuqlJx54qiffukeRXCOEVqg4cJvPJ16nYtoeQaZej83V//M9xprAAwq8+m4KFm6k8klO7Pffb1eh9zARNGtScTRZCCCGEBxxFRWR9/DF5c+bgP3o0Pt27e1yHptMTNfFSqgtzKdi6pnZ76cFdVOVkEDp8fHM2WbQzkvwKITq8wu8WkPX0m2g6jci/3YHPoD5Nriv4nEGgaZTtSAXAUVJBwYJNhFwwBL3V1FxNbjUuNI9fQgghRHtTvncvR555hsoDBwi75hpCL7qoyXVZwqLxje9CWer+2m1565ZgjUk8oSt0RyHx3j0y5lcI0WG5qqop+Pw7ylZsIODCCfifPxZNd2r39HRGA+aoYKr+9+S3aOk2cCmCzxncHE1udTIGSAghREemlKJk9WryvvsOS9euhF97LXrrqa+law6NpPTQHgCq8rIoP3qI2Atv8GgMcXsi8d49kvwKIdqdb8rCGi2zbXkRumfeQeXm8v777zN9+vSGC7s5/CbhvWdRLhdOh0ZViUZxji/Fu3IxxkZRbg+H33pCs93+hXuVtjFPx/WcrmOAhBBCNI8KVeVWub+mXdRombL0YvL/8zpFBSlExw+nc+z56FYYAccJZc3ZZW63Mb97IEq5asb8alCZXbMag29iN+o8EHWceJ76TNBd3mgZh7K73b6mkHjvHkl+hRAdzqHtpbxw+z7OHD2WRYsW0aVLl2aru2TBChyZOQRfdzEAztJydP5+zVZ/a5M7wUIIIToie2kVKx74CXulRvLgmwgOrX9d3qaoyDxCwZbVhA4dB4CjvBRNr0dvOfUnym1F4r17JPkVQnQohTnVvHDHfuJ7+jB37lwsFkuz1e0sLaPo+wXYxo3E0qMzAPpAP6p2H0Q5nWh6fbOdq7XInWAhhBAdjXIp1j66iMr8cvoPvgcf38Z7hHkia8n3mIPDCRs5EQCjzR/ldFKVn4M5uHnP1Vok3rtHJrwSQnQYSine+XsKygV/fqNrsya+AOVrtqAcTgLOH1u7ze/MoThy8ylZsKJZz9ValIcL3p+uwVAIIUT7ceCbHWSuSmPoo+ObPfEtq8ylPO0gYSMn1d7UtnXuhdE/iMwFs1HK1aznay0S790jya8QosNYMSePLUuLuPHxRILCm3/mZWW3o5kM6P1ttdtMibH4TRxN4TfzKJwzH1dFZbOftyUpQCkPXm3dYCGEEKe10qNF7Jixls6X9CZyWHyz1+901YzjNfoH1m7TGU1ETbqMssP7ODrnQ6rycxo4uv2SeO8eSX6FEO2eUor5H2Xyzt9TGHlhCIPGBbXIefTBgaiKKpwldSfNCLz0XPwnnUXJL8vJfuk9lNPZIudvCbL0gRBCiI4id1sGS+/8DkuwD8l3DGuRc1hM/gBUF+bW2W7r1JOYKddTkZ5GykcvUV2U3yLnbykS790jya8Qol2rqnDy5l8O8dHjaUy4Lpxbn0pqsXOZu9es7Ve5e3+d7ZpOR+Bl5xL+wC1UHzpC6Yr1LdaG5nZ8DJAnLyGEEKI1KaU4MGs7y+76AVtcAGNmXITBx9gi5zIZfDCHRlJ2eP8J+wJ69qfzzQ+iN1vIWvxdi5y/pUi8d49MeCWEaLdKCuw8OXUvWamV/OmFzoyYHNKi59P729BMRpz5RfXuN3dOwNqvJ2W/rmvRdjQnl9LQZPZHIYQQ7ZRSio1PL+Pw3D10uSKZvn8ahs7QshNMGgNDsBcX1rtPb7YSMnQMmQvnUBUyALPOp0Xb0lwk3rtHkl8hRKuwK/fWygP44IbJAOw++B3ZeYqBve9g79eR7P26brlrVrpX37k9H3KrXNXYXFS1HUtiZ7TK+gOvbcgQct6eyZDu0wiyJTRa5/yNj7rXyBZyfGyPJ+WFEEKIpnq9oJdb5VLf6gpAfupWDi/bQ+KIKwmyDOHIe3XLBS3f6lZ9rv7uLYXkcFRSlrqf0GFjaajnb0CvAWQt/p401366Bp/ZeKU5uY2XaWES790j3Z6FEO1SSVkmGTlbiIsajp9vZKucs3jpCkxxMZgSGp5gw9qnF6b4WLYe+pqdqd+Tmr2mw84M2VFlZWVx/fXXEx0djcFgQK/X13kJIYToGJz2Ko5tmY8tPImwLkNa5Zzp2ZtQTgeB/RoeU6y3+hJ8xpkczF/N1owf2JuzlGpHeau0T7QsefIrhGiX9h6ai48lhIToUa1yvrLqAioP7SHkuivRtJpbwcrlomTZSkpXr8MQEkzINZej97MRcs3llL3yJSUV2RzL24JBZyYmdECrtNNT3rju37Rp00hLS+Nf//oXUVFRtZ+XEEKIjiVr969Ul+bT5ayprXI+pRRHMtbg36M/Rpt/7fbSlL3krlyAy2EncsLF+MQkEjZiArrtqZRV55Ndup8KRxH9oy5slXY2hTfG+5Ygya8Qot2pqi6hsCSNnp0vRK9vmQkv/qig/AgAPgP61m4r/P4nihctw2dAPyr3H+DoPx9H7+uDzs+PYFMAUcHJpGavIatwjyS/rWjFihUsX76c/v37t3VThBBCNJFyuShI20FAbC+sga3Tw6uquoSKynxCe1xUu6300B7SvnoHa2wiAIc/fhW91Qe91ZcAbET4dQOlOJS/FpfLgU7XPtMnb4z3LaF9fnpCiNPW/oN21m59HYPBQmiQe+N3mkNZdT76oEB0ZjMA1UePUbxoGYEXnkfA+DE48vMp37YTV0UFzsJiKjansfXQLCKD+pBdtBelXGha+xtJ4o0TYMTFxaFO18FKQgjhBZx2F3vmv055/jGi+01otfOWV9SMzTWFhAHgcjjI+HkWvkndiL/iFpTDQdGuTTjKSnGWl8LuY+zP/ZUY/z44VTVFVZkEWWNbrb2e8MZ43xIk+RVCtCtPvFCApukZ3u9OzCa/VjuvUW/BVVSGq9qOzmSkaOFSDCHB+I+pmejCEByM/9mja8t3Kctn0ZanqLQX43RVU1ldjNUc2GrtdZc3ToDx0ksv8be//Y233nqLxMTEtm6OEEIID22em05pzmG6T7gN/6jWu9FtMFgAcJQUYw6JoHj3ZuzFhcRfeSuapkMzmgj63Vjg+OIs1h35nAp7MQClVbntNvn1xnjfEiT5FUK0G9/NK2PWd2V0TbgAs8m/8QOaUbitC/tyllK5bz+WLp2o2LqdgPMmojUwgZJeZyDIlkBB6WFs1ggsrdxed9UEQ0+6QbVgY5rJlVdeSXl5OZ07d8bHxwejsW7X+Pz8/DZqmRBCiMbkppYx/5X9BMb2btXEF8DPNwqzyZ+SAzvwTexK4fb1+CZ0wRwS0eAxIb6J7M/9tfa/2ytvjPctQZJfIUSr6Lnk5pPuL125lZwZX+M7JJnY9Va0Izua7dzOg6mNlrEohQVffN5Zia+2E+VwkDzPiPXnTfWWn1/5KXfckc2MGTN4/sVHue2225qtvc3JG8cAvfTSS23dBCGEOO3ssZe5Ve6tbaMb3Fd9JIuMJ99H5+PHSEZg+fVoo/U5yt2bZVm3cY9b5UKd4RRt2Uno0c7syjxAn6DxxH5yuN6yzqwc/F01N8FtBGI+WoyTYrfO09q8Md63BEl+hRBtrmTpBnLfnYNt9ABCb7kY3fTmS3zdpWkaIbpIUp17AQjXxWHVfE96TM+ePQGYPHlyi7evqdT/Xp6Ub+9uuOGGtm6CEEIID1UdTifjPx9gCPYn6u/TsTxd2SbtCNFFccx+gF8zZ2LW+RJp7XLS8pb//RaI17fuU2pPeWO8bwmS/Aoh2lT5lr3kvjsHv7FnEDJtMpqu7SaN6mboT7m9hCoq6WU4o9Hyd911F9OnT8fPr/XGJnvKW+8EO51O5syZw+7du9E0jV69ejFlyhRZ51cIIdohR14hmc99giEskKi/T0dv8wHaJvmN0MWTaBvAkbId9AuZhEFnOml5H82Psw2XYtROXq6teWu8b27tb2pSIcRpwVVtJ++Tn8h6/mOs/bq2eeILYNTMDDaOY6TxPEyapdHyOp2uXSe+wG+3gj15NcEbb7xBUlISFouFQYMGsXz58pOWr6qq4h//+AcJCQmYzWY6d+7M+++/79a5Dhw4QM+ePZk6dSqzZ8/m66+/5rrrrqN3794cPHiwaRcghBCi2SmlKFm+maMPvgoaRD5w3f8S37ajaRo9AkczPvo2gs3uTV7V3hNfoFXifWvG+pYiT36FEK3OUVBM1vMfYz+WTfDV5+B/7og2T3yP0zQN8KK7oR7eCaYJd4K//PJL7rvvPt544w1GjhzJW2+9xbnnnsuuXbuIj4+v95grrriCrKws3nvvPbp06UJ2djYOh8Ot891zzz107tyZNWvWEBwcDEBeXh7XXXcd99xzDz/++KPH1yCEEKJ5KYeT3Pe/p2TJBmyj+hNywwXobda2blat9rg84Slp4Xjf2rG+pUjyK4RoVdXpOWQ9MxPldBH16O2YE6Ja9fz7nVtJ0HWv82TXoewUqVz2O7ZiwER/4+iOcZfXDa2x9MELL7zATTfdxM0310xq9tJLLzF//nzefPNNnnrqqRPK//zzzyxbtoxDhw7VJq+eLFm0bNmyOokvQEhICE8//TQjR470/AKEEEI0K1dlFVkvf0HF9gOE3X4pfmcNbNXzH3Xsx6YLJFAXVrtNKRclqpBDju2UZpbQL3gSAaaGZ3nuaFo63rd2rG8pXnbLQwjRXimlKFm6gYxHZqBZTEQ/elurJ74HnFs57NpFquu3GSFdyskqx09sci7FiYNilcfq6nkUunJbtW3tTXFxcZ1XVVVVveWqq6vZuHEjEydOrLN94sSJrFq1qt5jvv/+ewYPHsyzzz5LTEwM3bp14y9/+QsVFRVutc1sNlNSUnLC9tLSUkwm77hpIYQQHVXl/jSO/XMGlXtTiXzwhlZPfHOd6exyrGVL9bI623fYV7Gm+ifyXVm4lJO12V9zpLT1J9hsb9yJ920R61uKPPkVQrS4Q6l2Mp/6gMqdB7GNHkDw9eej9239rk/+WggAua50XLhI0vUmy5VKFRX01Y8iQh9HJWVss69kvX0hvQxDiNF3avV2NqemToARFxdXZ/sjjzzCv//97xPK5+bm4nQ6iYioe/c8IiKCzMzMes9x6NAhVqxYgcVi4dtvvyU3N5c777yT/Px8t8YCXXDBBdx666289957DBkyBIC1a9dy++23M2XKFHcuUwghRDMrL3fxynMlpL//NuakaGIevQ1TXOs/WfXT1TxlVLjYXr2SeEMPDBjIcB0mQd+TzoZ+6EOC2FO0nJ2Fiym259Az8Ex0WseeMLEl431bxPqWIsmvEOKUdPt16kn3O/KLOfr3GRgLXAzQn03omihYc/JJiX6xf9GcTUTXPQmACJVIrwI/dqX/RKmrCBXog4YOc7EvEd1GEPRuEeBPePXFbPrvCnb+sAY1tZo+N5848/O5sfe4de55R19pzkvxnNI8G9fzv7JHjhzB39+/drPZbD7pYTVjpX9XjVInbDvO5XKhaRqffvopAQEBQE13qssuu4zXX38dq/XkN0ZeeeUVbrjhBoYPH47RaATA4XAwZcoUXn755ZNfnxBCiFp5LvfW7gU478c/N7hPOZ3kzPiQyr15dPcdRkJJMrrnq4EjDR7jyHGvh5Xm5iz+roHdATACw8oiWb/jHTKcKRRqhXRLOg/2QETvs9HZotl3mxEdCQQvW8+RD+eQE1BO2H03oDPX7T3UeWakW+fWL9/a+HUoFzjdqq5pWiHet2asbymS/AohWkzlgaNkPvcpaBpnGMZj0dp+hsfYoH6AorD8GHHBgwA4UrCZQ7mrGUQvAPQmPYP/dia2GH+2z1iHwWKkx3X9267hp6CpY4D8/f3rBMOGhIaGotfrT7jzm52dfcId4uOioqKIiYmpDYZQs2ayUoqjR4/StWvXk54zMDCQ7777jv3797Nnzx6UUvTq1YsuXU6+VqMQQojm5ywrJ+fND6hKSSP8jmkkzWr74Sc23wj697yO9KxNhAZ1JTigEz7WUPam/MjgPjfXlvM76wyMESFk//cDcl79hPD7pqIZOmZ61JLxvi1ifUuRMb9CiBZRlZZFxlMfYQgNJPbpO9o88T1O0zTiggeQHHsBfpZw/CzhxAcPIjV3HS6Hq065nlMH0Gv6QLa9sZYDs3e2YatPQQsvfWAymRg0aBALFiyos33BggWMGDGi3mNGjhxJeno6paWltdv27duHTqcjNta9ZScAunbtyuTJk5kyZYokvkII0QZclVXkvPE+9sxsIu6/A2ufnm3dpFpB/on07noJEaHJ6PUmuiWeS1FJGsWlR+uUs/ToRNh9U6ncfZDcGV+inC35eLYFtWC8b6tYn5KSwv79+0/Yvn//fg4fPuz+BfxOx7y1IYRo10pWbiPn7e8whgcR9dDUdrW0QX0iA3qRmree/F3ZhPat28Wp982DsZdVs+n5FVTkltPn5sFouo6zFFJrLHp///33c/311zN48GCGDx/O22+/TVpaGrfffjsADz30EMeOHeOjjz4C4JprruHxxx9n+vTpPProo+Tm5vJ///d/3HjjjQ12g7r//vt5/PHH8fX15f777z9pe1544QWPr0EIIYRnqo+mk/PuJzgLi4m471bMifUvd9NeBAd2xmCwkluwD6g7n4e1d1fC7ryGnNc+Jfu/Mwn909XofdvHTXt3tXS8b41Y/0fTpk3jxhtvPOEp8dq1a3n33XdZunSpR9cAkvwKIZpZ2fpdZL8yC9vIvoTdMgWd9eRjRdsDP0tNl52SI0UnJL+aptH/3hFYQ33Z9uZa8ndlM+SfZwNt363LbU1YvsgTV155JXl5eTz22GNkZGTQp08ffvrpJxISEgDIyMggLS2ttrzNZmPBggXcfffdDB48mJCQEK644gqeeOKJBs+xefNm7HZ77X8LIYRoO87iEjKffx1DaAhRf7sHY2R4WzepUTpNj80nnPLKPCz17PcZ1JuIB28i59VPyXzkNUJvvxKIq6dkO9aC8b41Yv0fbd68ud4lDIcNG8Zdd93VpOuQ5FcI0Sxc1XbK1u8m/8tFWHomEn73ZQ1OgtDe2J010+6bA+sLhzUJcI/r+hPYNYR1Tyxl/vVf00N3JlHWbu3+GlvjyS/AnXfeyZ133lnvvpkzZ56wrUePHid0nzqZJUuW1PvfQgghWo9Siqr9hyj6ZSkoRcSfb+9QT0jt9nL8fKMb3G/p2ZnIR+8ib8aXZD4xA1PcaJISx6HXG1uxlU3TGvG+pWP9H2maVu/ShkVFRTib2D1dxvwKIU5Z5YGjHPnzy2S/Mgu9nw/hd17S7pPC38svPQyAf1LQSctFDo1j0seXEXFGDNsKfmFD3ncUV+c0+bw7d+6sdyxLs2rhMb9t4cYbb6w3GJaVlXHjjTe2QYuEEML7OcvKyXrpLbJenIE9PYPQm67rUIlvZVUx5RV5+FrDTlrOGBZMxN9vJfDSiRw9uop1618mO3s7ypPZpH6nSlVSqNyb2fqUeGG8Hz16NE899VSdRNfpdPLUU08xatSoJtUpT36FEKfEnl1AxjOf1Izv/ccNmKJPHlTao5Tc1YTaOmOLbnx2Y3OgleGPjSdsU0/2Fq9gVc4XhFkSSbINJNgc49b5qqureeSRR3j66acZNGgQixcvPtVLOAntfy9PyrdvH374IU8//TR+fn51tldUVPDRRx+16fqBQgjhjaqrFTlvf4T9WAbhd92EpVf3DnWTGyAtfSV6vYnI0GRSGimr6fUETB5D97SeHDjwEzt2fo7NN5LY2BFERQ1y+9ozXWlsd60GYJTuglO8gsZ4X7x/9tlnOfPMM+nevTujR48GYPny5RQXFzf5t5Mkv0KIevVYeX2jZZxlleTd8zpmpTG0cgimv+UC9d/dnF/9WTO3ECboLnerXPZd9c9ECOByOijdkUvgqPF8nuT+F+nHa0JxOnqwck4OCz/OYP3e2Yy8KAxbkAEfPwP9xwQR39OXLs/VnXzJUVhA5kcfUnW0Zu3D/SYz/V9+ze3zeszTu7vt+E5wcXExSimUUpSUlGCx/NZN3el08tNPPxEe3v7HnQkhxB8VuMrdKudy80t6U1VA44WA2+Y1vHbvcUop8j6dRfX+TQzoeyNB2xJhm73B8s78ArfOvcA1y61y50b9ya1ye688+SRK2a9mYe7Xg9Rrg3hh5Cdu1XlkSAgQx4F1NpZ+mMaOxbNRIUuJ7mHDYNSRNCCAHqNCeOuruomty+Ege943FG1eC4Dex5eMu4bBs3PdOm+TeFG8P65Xr15s27aN1157ja1bt2K1Wpk6dSp33XUXwcHBTapTkl8hRJMop5PMF76kWpUz1DgRk1b/eNn2zllZ84NDb/G865beoHHmZeGMujiMOa8dYfPCAqqrXJTk25n90hE69bVR0i0On5490Vt9KD+wn+wvv0BnMqLz9UVnMhFy7vnYCwub+aq8U2BgIJqmoWka3bp1O2G/pmk8+uijbdAyIYTwXsULllK2ej29ul9GUEBiWzenyZxlZRgj61+TtjFdhgTRZUgQW3/JZvF7qexYlEN1pYsFbx0mMMqMvpsR/94DMAQGYy/MI/O7z6nKTMcUHkl1ThYxV9+Mcjia+YpOD9HR0Tz55JPNVp8kv0KIJin6ZQPl2w8xyDgGX517d5jbo7xtK0DT4RPu/vqyf6TTa1xybzyX3FuzzIPD7mLr0kKWfpHFoW9m1Vl13tqlK7aBg8j56gvCL7uC0u1byZn11SlfR4O86E7wkiVLUEoxduxYvvnmmzp3fU0mEwkJCURHNzyRiRBCCM9UZ2RR+P08/CeOJapyQFs3p8kq9h/AnpFJwLgxp1RPv4nh9JtY08NIKcWRnSWs+vIYa79bQt6y+bXlDAFBRF8xjYzZnxA4eASapiPl9adP6dyN8qJ4/0fl5eWkpaVRXV1dZ3vfvn09rkuSXyGER5RSlK7cQe7Hv+DTrwshuyIbP6idyt+1juwNC4kcdh5GW2Cz1Wsw6hg0IZhBE4J5ZOZ4qo4ewVVVhSEwCEunTmR98hHmuDgsnbtw+N//arbz1ktpNS9PyrdTZ511FlCz6H18fHyHG28mhBAdSfXRdHLe+wTNbCLgnHEwp61b1DTVGZlkvTsTS7eu2Ab2b7Z6NU0jvo8/8X38ye08jsqjqTjKStCZLfgmdaV4xyZc1dWEnDWJ9K9moqoqm+3c9fKieH9cTk4O06dPZ968efXub8qMzzLbsxDCI/lfLibzpVn4Du5OxF2XtHVzmszlqCZj5fcE9TiDsMHjWuw8hsBAfPsk4zdoMNbOnWu67RqNOMvKweXC2MQxK+5SyvNXe7d48WK+/vrrE7bPmjWLDz/8sA1aJIQQ3qVi7wEynn0FzaAn8r470Jk70Nr2f1Dw4zwM/n5E3HQDml7fIufQmy34du5OQN/B+HXvg85kRjMYQblwFBViDo9qkfP+njfG+/vuu4+CggLWrFmD1Wrl559/5sMPP6Rr1658//33TapTkl8hhFucpRXkfbmY/K+XEXL1OKLuvwJDgG9bN6vJ7GXFOCvLCezh/qyNzSXo7LE48vMoWLyI2Hv+TPB5LTgDpBcuffD0008TGhp6wvbw8PBmHRckhBCnG+V0UrZhM7nvfYylayeiHrwXU5x7Kxm0V9Xpmfgk90Znad25Sfx69sUYFELm3K8ImziFiClXtuwJvTDeL168mBdffJEzzjgDnU5HQkIC1113Hc8++yxPPfVUk+qU5FcIcVLK7iD/2+Wk3P5fCuasIOjCUQRdcmZbN8stDuWgWtXfzUhnNAPgslfXu78lmSIjCTn/AopW/IqrshJb3+SWO9nxblCevNq51NRUkpKSTtiekJBAWlpaG7RICCE6vvLtu0h/7DlyP/gMU0I8oTdeh2Zs/yMklXJR4SxpcB1ezWTCVd36sV5nNBF9+TSqMo5Sunsbtu59WvaEXhjvy8rKaldxCA4OJicnB4Dk5GQ2bdrUpDrb/79oIU5jgzddcdL9SinyF24j9731uJx2+pwxncN752Mw+tCt32X1HlPYyb3/7RNmrCPTlcoh504qVAlx+m4k6Xth/tkKP++tLTe/8lP3L6iZ5d3W8BJGZVmp7P/hDZTDztCNv3D7XTZ69Dbi56dhMGhsWFvNde/Bv66ew6gza8aS7G945YYTvH6w/vf3j+J/rj/gRjsGsUr7hZyXZlBenuP+iT2kqZqXJ+Xbu/DwcLZt20ZiYmKd7Vu3biUkJKRtGiWEEH+wpsr92X2vW3nnSfdX7k2l6KcVlG/cTeeJN1Oek0Zh6g66T74bneHELsl2m3vn7fFzNgUVRzmUu5LcshRCfJPonnQh/ioCPqgEfruBPG+Xez1r3F2GcJK18SUVAbKnD2xwn9Nexb5ZL1BVlIPhqWCCLjoTn0Hd0VnN6ExGnGUVuMpL0AVq6CIr3Drf7728eaxb5RJXVDWwJ5TioC7kzv0Ou71lfy95Y7zv3r07e/fuJTExkf79+/PWW2+RmJjIjBkziIpqWldySX6F6KCUS5H2yo/kL9hau23Dsv/W/ndDyW9jXPYq8neuZV/1L1RSTqgumn6Gkfjpgk65za2pLCsV5bATO+piSgp/YPo1+QDo9RAYpKOwwEW/AUaGjWj9cUwul4PcnF04ndUtmvgCXjn741VXXcU999yDn58fZ55Z0wth2bJl3HvvvVx11VVt3DohhGhepSu2kDPj69pBmgfnv1O7r7IwG59Qz1crUMpFyaFdHEmdT2HFMWymUPrHXEyEX/cONZmgvaSAqqIcgnsOpcq/hJy35tTu0/n5oKrsaEYDAePPaPW2KaUoLEzB6azCbi9thRPidfH+vvvuIyMjA4BHHnmESZMm8emnn2IymZg5c2aT6pTkV4gOqDbxXbSN8MuGk/31agBCo/qiaTpKi442oU4XuVuXk71+Ac6qSqJ08STqe+GnC2zm1reOwKRkMjb8TEVuOgvmh7Jlk52cbCf5eS7y81wEBumYcrEVg6H5g7xSiorDOThKKjFVJ2Iy2aisLKSoKJXKigIyMjZQUZFHUFAX/PxjMehNHDr0S7O3o6Yx3jf74xNPPEFqairjxo3DYKgJYy6Xi6lTp8qYXyGEVzme+NrOHEj5+p24yiuxBkcTmJhMxqb56M2er1FfmraP9KXfUpWfRZA1loGxlxFm69Khkt7jzEHh+ITHU3J0H3Fv34c9qwD70SycZZU4C0pAp8N3SC+MkS3TK8iRW4g9K5+KimAsliCczioKC1OorCggN3cXBQUH8fEJJy6+5kbtkbRfW6QdgFfG+2uvvbb2vwcMGMDhw4fZs2cP8fHx9c794Q5JfoXogHK+X0/+gq0kPDCF4LHJxOeORK83Y7YGsGfzFzjsFezd+hX+gQkYTb6ERPRE0504w6FSCmdFKQV7NpK/cw1VBTkEJw8nfNBY4j8/1AZX1nwq8tJRTgcGqy+apjFgUMs/4XU5nOT8tJnsuZuoPJIHwF5ApzPictX0qdbrTQQHd6VP8nXYbDXLRDkclS2Y/OJ1d4JNJhNffvkljz/+OFu3bsVqtZKcnExCQkJbN00IIZpN1eF0ct6ejW30AEJvvgjn5ePxWwrmgHDyD2wEIH39j/iExWGw+BIQ1wuD5cSJKJVSKKed4oM7Kdi5ltK0ffjGdiZm/BV02+5m/+h2qro4D2dVRc11axqmqBBMUS0//KV86z6KflxB5Y6DAGQCmqZHKReg0DQdfn4x9Em+jtDQXmiahsNR2cLJL14V7+12O927d2fu3Ln06tULAB8fHwYObLgbvDsk+RWiA1FKkfXlSjI/X0HYhWcQPLZmoiQfW3htGatvKEX5KZQUHCHryAYATGZ/TBY/knqcR1VAEIX7NlF69AAVWUdQLieaTo9/l77ETbgan8jjCUTHTH7tFSVkrJtH3u41BCT2IXLgRGB3i5+3bH8GKS/8SEVaLkGjehB/23hMof64Xi3FXl2CyRxAUFASRmMrz5DtZcHw97p160a3bt3auhlCCNHsyrfsJffdOZhiwwm98UI0nQ5DkD+WQCsAJt8ATLYgKotyKEjZCsqFzmjGZAsmuMtAAgYMoXDvZkrT9lF27BCu6pqxuz7RScSdcx0B3QfUPOnd3sJDb1qIy+kgd8dKMtfNw+gbQOL466luhSfXzuIy8mb+QNma7Zi7xBF6+2WYu8QS8nEhFeV56A1mAgOTsFiCWv9JupfFe6PRSFVVVbO/j5L8CtGOFa7cQ/Z36/BLTkAzG3AUV5Dz7VrCLhpC9LQx9R6T0G08Cd3GA+ByOSkvySQ9dTVFeSlsX/sOrAW9xQdbbFcCR/VHb/XFL747BmvHvvtbWZhDxrofKU7bg6bTEzvqUkJ7D0fTWn5S+9yF2zn88jysCaH0enkavl0ia/fZIjq1+PlPysuC4XFHjx7l+++/Jy0tjeo/zOL5wgsvtFGrhBDCc6kHq8l4/B1MidHoA/1A0yj8djHmznGE3nJxvTMu+0V3pc9V/wJAuZw4KsvI3vErZTlppK//kfT1P6Lp9fhEdyJ00NmYbIFYoxKwBEe09uU1K5ejmvQ1cyk6tA17eQkhvYYTPewC9CYL1ZS16LmrUjPI+u8nqKpqwv50Bb4j+tYmZiEhEdDW8y16Yby/++67eeaZZ3j33XdrhzmdKkl+hWjHyvYeo2znEcp2HkHva8FZWU3ElSOJnnq2W8frdHpsATF063sZTqedvMwdVESb8UvshU7vXf/7p6/5gbLMFCIGjCO09wh0RjPpa+ZSmLKdcxcUcv4UK7ffbasd47tpQzWffVRGxjEnRYWKokIXRrPGldf4cNV1PgQEupc05/y8hcMvzyN0Yl8S/jQJncm73tf2aNGiRUyZMoWkpCT27t1Lnz59OHz4MEqpU+4OJYQQrS0r3UnlnmNU7jmMZjGj7HasvTsTfvdV6HwaX5tW0+kx+vgTM+QClFKUpO+nwp6Pf+dkDNZW7m3UwvL3rCd3+wpC+4wktPdILMGR5O/bSPamRTi+rsTSPZ7QG85D719z3fbcQop+XEVVaiau0oqaV7WdGedbmXxjGDGd3Fv7t/pIFhmPvYMxIoSIR27BEBLYglcpjlu7di2LFi3il19+ITk5GV/fuv+eZ8+e7XGd8itNiHYs/NJhZH+7lvBLhhEzfSzK6ULTN+1Jpl5vJDxmgNtLHXUkSilK0w8Q3m8MkYMmAHB05bfk7lxFSM9hnNFvM2++UsqObXauuMaHj94rY82qajp10ZPc10TvZI3AIB0Zx5y8/nIJb79RytQbfZl2s+9Jk+CS7WmkvjafsPMGkHDXpPY5WYgXToDx0EMP8cADD/DYY4/h5+fHN998Q3h4ONdeey3nnHNOWzdPCCE8MmS0FVOnGHC5iPnPXSiXC03XtFivaRr+Md3o4J25GlRy7AC+UZ2IHX0pAMWpu0hb9Cn+ib2x9A2ieOlmjv7jLUJvvICydbsoWbYFndWET3JndDFh6P18UE4X6xetYuGXeYy8IJDL74oktnPDSbCzpJys5z7CGB5E1L9uRmc1t9blesYL431gYCCXXnpps9bpfb+ChegATrZ+r6O0kqyvVuEoLKVHxTqsZgtbXvnm5OuZndcCjXy5BepsZnk97biqqtAMRpzVlVR39ye/jwuA3PfXYjtrBL6XXkj+3VH0VZksX7SapYsKsBFIMgMJPxBD2UGNMiAd0A3szfDupaRmreatV9fxzut2EsKHERs2GLOx7i+JoINH2FH8A4G6cPqvGoBudW69bfw5v/HZh4uLiwkIePRU3456eeO6f7t37+bzzz8HwGAwUFFRgc1m47HHHuPCCy/kjjvuaOMWCiG8WYGr3K1yd+2c1uA+5XSRN38zpTuOoJSi+lAK/eIuJvKpk3fdde7aetL9v53A5Vaxea5Z7tXngQVu1unuOr+VgQpneRkGXxvV1cUYg4Oo+t/qizmL1mIKjSD66hsJ3ueicsSZ7F75HplPf4zRbCOh5zlEdh6O3vC7hFUP1vizSPfZzIb5y1nxw16iQvqSGDkSm0/dbuFd9E52HZoPBZUMibsR6zsGwHlCG7XNOxu9Dk3Z3brepvKWeP/9999z7rnnYjQa+eCDD5q9fkl+hWhH8hZu49h7C1F2J5aEMAo0B5988kmTF/L2ZikpKaT9+SFwuYh9+lGMURGULF2BpXtXDEGBmLt0onT1OoxRkRSpfPwJZhgTqaScQEIbfEprNtroFjuBhIjhHM5cSUrmSg5m/EqIfycig/oQEdQTg95MoTOHClcxyb5noWuFccVN5oVjgHx9famqqgIgOjqagwcP0rt3bwByc+u/CSGEEO1F+aEsUp+dQ+WRXHx7xGAvLKNT2Agi/Hu0ddPaHZdycezbjyjZs5WYi2/AGh1P4ZY1lKcdwie+Ez7xnSjZt53sRd9j9O2L0Wyj75i7KM5NwT+sM3pD/Ss96HQGYsPPIDp0AMdyNpKSsZyMvK3YrBFEhiQTGZyM1RyIUi4yc7eRED0SqzmwdS/eU14S7y+++GIyMzMJCwtDr9eTkZFBeHh44we6SZJfIdoBl91B+swl5M7dgP8ZXYm9fSKmUH82nfdEWzet3dq0aRO4au5s63x9CJl6NTlvfUDG0y8Q9df7CLvpevI++5r8z2aRDxgw0ochhGru3UgwG210j5tEUtRosgt2k5G/nZ2p37H36HziwgZTXZUNgL++rWe4OP0MGzaMlStX0qtXL84//3weeOABtm/fzuzZsxk2bFhbN08IIRqUt2Ar6TOXoLdZ6Pbfafj2iAEg/K/tNBNpY04clOypedptiYjGN6kbFRlHSP3kdWIumUrQGWeiXE5yfv2ZfMcyQCOu1wRie4xza8JLnc5AXMRQYsIGkVt0gMz87RxKX8bBo4uJCO5NgF8sTlc1/r7yEKK1hIWFsWbNGiZPnoxSSmZ7FsLbKJfi8LNzKF5/gIgrRxJx+Qh09czsKOqaPHkygZPPxdKzO5qmYY6LJepv93PskScpXbuRwHMnEDb9WuyTzyH232s5xC62sJI41YUu9EGvufcemww+xIYNIjZsEBXVRaRlrSEtex1OVzXx5l5u19NWNDzsBtViLWk+L7zwAqWlpQD8+9//prS0lC+//JIuXbrw4osvtnHrhBCifrk/beTI6z8TdFZvoqePxRTm39ZNaveMmonoC68FdJiCwwBIuPZO0j57k/x1v+Lfox8hw8YS0Hco1u155B/bwZFdCyjOOUTnQZdj8Q126zw6nYHwoB6EB/XA4awiPXcLqZmryMzfjs0nkmD/Nl65wQ3eEu9vv/12LrzwQjRNQ9M0IiMjGyzrdJ7YBb0x7ftXmxCngdwfN1C0ai9J/7yMwOHd27o5HYbJZCJg0rg62/Q2XwyhITjy8mu3qepqjpJCKNFY8OUIB8jmKCPUOR4nrlZTAN3jJtE1djzVBw9g0TrALJpeNgGG0+nkyJEj9O3bF6hZ8P6NN95o41YJIcTJVaRkcfTtBYReMIi4O2RiPk8E9B5U529Np8MSHU/xzk11tuWmbUJvtJCQfD6p2+ey6een6Dv2XmxBsR6dz6A3Ex8xlLjwIVQ5SzAZfdHpOkDK5CXx/t///jdXXXUVBw4cYMqUKXzwwQcEBgY2W/0d4JMUwntlz1nHsXcWEHreQEl8m0HlgUPYj6UTMGlszd+HDpP9xjtoOEgnpbacCxdOnOib+BWo0/RYdR1kKk0vGQN0nF6vZ9KkSezevZugoKC2bo4QQjSqbF86B/72CebYEKKnj23r5nR4ruoqirauw9atDwCO8lLSPn2TqtwsdDo9LudvE0s57BVNPo+maVjMAafc3lbjRfG+R48e9OjRg0ceeYTLL78cHx+fZqtbkl8h2oijpIL0D5cQNnkwMbdNbOvmeIWKbTvRBwXiM6AfrooK8j7+AlNUJMNTBuDCQQG56NARTAR6Td/WzW0dXhQMj0tOTubQoUMkJSW1dVOEEKJRx95diDk2mK7PTkVvqX8CJuG+8qMpOCvKCBl6Nkq5yF70A/aSQvqPvx+zTxAl+anYK0sICO+KyeLX1s1tPV4Y7x955JFmr1OSXyHaiKOoHFXtwKdHbPtcH7YD0swmXGXl5H85m/KtO1B2O2G3TsPw5GEKVAE7WIcGhBNLV9WXSsoxY8GiNd8dxfbGW5Y++L3//Oc//OUvf+Hxxx9n0KBBJyx67+8v4+iEEO1HdXYRfv0SJfFtJjpTzbJFuasWUpWdQVV2OlHnXYGPNQJHdQUHN86iqrwQv5BEkvpNwWC04HRU4RsY08Ytb1neEu8HDBjg9u/iTZs2NV7oDyT5FS3ix/KGFwv/o4nWUrfKGdv5xEIAhx0lbpULfNGGUr5kBHUm9801dNo8tP6CLbF+rxeJXVT3mztSP5r9wcco37yf8PDexHYbi3lXENl3RXN47nsYC0II7jWEnE1LyaycC0BAl/4knDsVgIg317p97vn2L5rvQlqSF94JPuecmvFyU6ZMqRMgj88K2ZQJMIQQv1lT5Wj2Oi2ae3X2NbmXIOpouyXmPijq7VY533cCAYgOG0nqwnl0MVzU4JNI154NbtW5wPmlW+U6AuXmd7Vvet3A5KMlUNV3HPmHNuMTFEXiuRfjF94JV5Ui+/BmqiqKSBgwmZyUDWxb/HLtccOufr72v/VHstw697yM190q547i4mICApp/XeVaXhLvL7rootr/rqys5I033qBXr14MHz4cgDVr1rBz507uvPPOJtXf/rMJIbyUpmlYLAHY7Sdf0F64z2C00nP4dACO7lvC7rUfYjT5YunSjeKUnVjD43BUlOGs/O09Nwc339px7ZKXBMPfW7JkSVs3QQgh3Ga2BrZ1E7yKpmnEDjyP2IHnUZxxgCNr52Cw+GKxBlFelAXKhctZjcv12w0Xn8DoNmxxK/GSeP/7rs4333wz99xzD48//vgJZY4cOdKk+iX5FaINFeQfJDwiua2b4ZWO7FmI3mDG5bBTuKrmKW9F9hEc5SWYgyKoKqi562sJkbX7OoJLLrmEmTNn4u/vT2pqKldeeSVms7mtmyWEEI0qyj2Ij3/k6TX+tJVk715BeX46AbE9yD74W++t9N1L8Q2KobI4GwBbSFxbNVGcglmzZrFhw4m9Iq677joGDx7M+++/73GdbddnRJxW8jLtHD1YSUGOneoqFwDff5DLe/9Jb+OWtS2D0Yrzd7MSiuZjstgIje1HtzOuBiDm7MsI7X8WUaOm4BuVWFtO03n3xFfHxwB58mqP5s6dS1lZzRP76dOnU1RU1MYtEkL8UVmJi4N7qslKd1Be5kIpxdb1lTwwLZOyUldbN6/NGIyWOjMQi+ZjtNqwBITRdfzNGEw+RHYbRXTPscT1O4/QxIG15bw91oP3xPvfs1qtrFix4oTtK1aswGJxf4jl78mTX9Hi5n6Yy3tPZuD83XCfzr0tHNxZCcDGy80M6nd6PcGpqiwiK2sbFeV5+AfI3cjmVpx3mMqyfGxBcVhtYaDpSP/1W5Trt/FF4YPHk71hIa7qyjZsaSvwknX/evTowUMPPcSYMWNQSvHVV181OLHV1KlTW7l1QogdGyv5221ZFOT+luRGxxtIT6sJ/t9+XsY1N9nQ6drnd0xLcDqqycvYSX7mbpTr9E3+W4qjqpyio3vwi+wMgDUggqwDq+vEer/wTiiXC6e9qq2a2Xq8JN7/3n333ccdd9zBxo0bGTZsGFAz5vf999/n4YcfblKdkvyKFlNV4WLOe7l8+mIWk6eFMPLcAMqKnWQdrWbPpnJiO5vZu6WCkeemc/kUX15+KoTgIO++M5eW6uDf/ypm1Ypn0On0hIT2IDFJ1vxrLvkZuzi0bQ5V5QX4BsYSGtMXnc5A7JjLKDywlfDB4zHaAnFUlOATkUDuthXYS738CaKXjAGaMWMG999/Pz/++COapvHPf/6z3tkgNU2T5FeIVqSUYsWCcv7zl1ySuht54o1gKstdFOY72biqkv5DIGV/NS8+UcjP35Xxz6eD6dHHu2c9ri53MO+lA6ydtxSXsxq/4AQSesiShs2lqiSPQ8s+oSzvKHqjmcjkmt9RCQMmc2TbfIJiehKaOJCy/GP4hSVxYPVnVJcXtm2jW4OXxPvf+9vf/kanTp14+eWX+eyzzwDo2bMnM2fO5IorrmhSnZL8ihaRl2XnX9encOxQFVfcGca190fU+aF6wf9+mzqdiqwfMnnw33nc+X+K914Jw9fHO3vjZ2c5ufKSfMwWjR49LyE0vDdGo7Wtm+U17FWl7F3/Kf4hiST0OpeQ6GR0upqvuODewwjuPay2rDkgBACf8DiKU3YQOuAsdHrv/Dr0lqUPRowYwZo1awDQ6XTs27eP8HAvn6xMiHbO6VQ8em8Oi+aWMfRMK4+9Fo7N/7cYfs4lv41x3b2+jCf/ns/f/pTHax+HERvvnd+5Lqfio/u2cmhDAbFdxxEeNxiLb3BbN8urpCz/DHtlKfFDLyIoPhmjT00vIFtIPD3H3FJbLiCyKwC+wbEc27GAqrJCzL6BbdHkVuEt8f6PrrjiiiYnuvXxzixDtKnKShdP3ZFKRZmT137uynUPRDa4XpderzHtaj/+889g5vxUzidfubfsUUditytmfVHO9Vfno2kw69tgomIGS+LbzKoqCnE5q4npNoawuAFuJbNhg8ZRkX2U/Z//l6qC7FZoZRtQTXi1cykpKYSFhbV1M4Q47c14toAlP5Xx2Gth/PfDiDqJ7x8NGGLm6TdCOXLYwYtPFLZeI1vRgbX5fPCnzexblccNr/YnvsdESXxbQGVRNsFJAwjvMbI28T2ZsKTBGC02ts37L3lHtrVCC9uIF8b746qrqzl69ChpaWl1Xk3hnbfdRIvpsfL6k+5XSpH1+reUbbMzNPoqfrgzstE6Oy/5jM0pVZjN0GuMnoOO+sdl/OvIOW618YGYn90qN8zs3j9/d9fuBbj5hntr/9vlcnDs6BoyMjdSVlpCcHAXOnU+h4f+L5rFi/7mdp2iYTkDfusmr5yx6Nf7cbRyK/YB3euU233Lmw3WsflP0Vx7RyauVf+lesD/YTR42U0JTye16ADBMCEhoa2bIES74sK98aSr3Zzi4LpFtzdapmzNZvLe/YLYYRcyZ+tZzNl68vJn3rmWtAOZQCaWs/rxcX79/x+XOdybAyTBmudWOYDbg7a4Ve6h9HFuldvwTv86fxce3k7enrUUp+3CEhRJwtnXs3H9AMKX7XK7jT93lLXjm5Gmd2+oW1HXug9QLN27k3dsK7bLz6lTx60Xz2+wjtIH+vLNY7vZvfRjJv3pDLZUXN60RrdnXhjv9+/fz4033siqVavqbFdKoWkaTjfXiv49SX5Fs1AuF+XbD1GyZAslK7bRN/x8AiyNJ74A33xRxvszSvnT/X5Ex3jHP0mlXOzfP5eM9PUEB3elR49L8PeXia1akqbX49e7H6V7dnh03IBkC99/HM3Qc49QWb6Y7knnt1AL24gXjgESQrQde3oWZWs2U7JgOb4jBhHW60y3jsvZV8iPD64iZkAY3SZ6TzwsOLSVwws/xCcsjvizrya46+AGe7uJ5uHXdwCl2zZjz8/FFBbh1jG2EDPXPteXGdPW89U/dtI1+TLv+5y8MN5PmzYNg8HA3LlziYqKapbPzDsyDdFmnGUVFC/ZTNEv67Gn52GMDCZ0+rlE/9qz0WOVUqQVb+GXvxVx5fU+3HGvrRVa3HJKSlxUVRWTn7ePo8dWU1qSTrfuFxETM7Stm3ZaUEpRkZaCOTrW42O7JJm46Rp/XnlnG10TzkHnTUsieGEwFEK0LuV0UrFlFyVLVlO15yA6mw8+QwcQfO2FaJsa/zFampXCt3csxT/Glykvj0Kn77ij7hxVTuzlxVQWZpGz/VeKUncSmNSPxPFTvS+ZaqcqU1PQWSwYg0M9Os5g0jHhT51595ZNRMUdxS/Ie27CAF4Z77ds2cLGjRvp0aNHs9Upya/wmLI7ap7yrt5J6codKKcT27DeRNx+IZaeCTVf/r8Wn7QOl3KSWriRvfm/cv1Nvjz4L/9TDhpVRZWsfvAn4i+1c/n0gFOqyxM7ttt56P+K2LXTATwFQEhId7oMuIWgoE6t1o7TWXV+HvnLfqEq4xhhk6Y0qY7rL/fnv2+mkZm7jejwAc3cwrbjrRNgCCFallIKe+oxyjdup2zNJpwFxZg6JxByy1X4DExGMzb+E1IpRWnmQQ7Me5uovoFc8PxIzH6nNtOzcilWPLWGVeUlXP3CoFOqyxNVJdUs+/cKjqxOx2Wv6WZuCY4ibvTlhPQYKolvK3BVV1O4chmFa1YQOHy0292mf6/rsBACIs2kH1xO98HXtEAr2443xvtevXqRm5vbrHVK8is8Ur4zhayXv8GRX4wxOoSgi0cTMH4QhiC/xg8GXMrF/vwVHCveTrWrgviAAfztkSyP27Hz7XWUHM4nYlg8jnI7VQUVHJ67m+rCSl7fBwOGWenSs+WWUlBKsWO7g2++qmD21xUkJul59oUAPp55ERZLIDabe12+RfPIW/IzJVs3AmAvyAO6elxHck8zoUHdSctY5VXJrxBCeMqRX0jeu19QtS+l5invwD7Yzh6OKT7a7Try9m8ga8siKguzsIbEcPHrwzBaPfvZmbr8KNs+3kmn8Qkol6K6zE7KolTy9xcAsHtxJj3GRLRo4lmaVcb+nw6xZ85+7KXVDL17EFk7+6IzmrFFdULTOu5T7I6mdOc28hbOA8BeWIByudB0nr3/Or3GmJuSmPOfLST1uQCTpfEJs0TbeeaZZ3jwwQd58sknSU5Oxmg01tnv7+/55yfJr3Dbe58VcezRmVh7JhD99+swJXgecLLLDpBSuI6EgEHE+vXBzxwGfHbSYyorFWmHHRz4aRuHv9tFZUEF1YU1s3akL0vBYDVi8DURfWYSgd3DyPp8FdPPP8Y5l9gozHdy7e2B9B9iaepl1+utN8p47ulSIiJ0XD/Nh9vv9MXPX8e8uc3XLUO4L2ziZIwBQVRlppM99xt8uvTAGBDocT1Rof3Yvv8rqu2lmIwduxu+txkwYIDb3zebNm1q4dYI4b0O7q4i87FX0IwGwu6ehqVPN4+fsDkqy0hd9gW+4Ql0OedW/GK6YbSuP+kxyqUoSCshfV85O77YQ/HRYspzKgDI3JyF3qzH5GskuFsQZ183isM/7OLTezbSY0wE1RUO+p0XQ/8pMegNzZeMZm3PYe6t89H0Gp3GJ9Bvah+COgVS+U7vZjuHcJ9fcn+c5WXY83IpWruSkh698O/n+dP/ARdEMec/eyjM2U94XOv1HhCeGz9+PADjxtWdjE4mvBItbtfeKv70t2z8xw4i/JbJaE0Yr1NSlcPu3EUARNl6/C/xbdjuHXa+n13OgnmVZBxzAjnEjOlEzLguBHQJIWpUIrjUCW15+dY0/nRlBj99XbNs0qrFFfQdbGbihTYGjrCQ0PnUnwj/NLeSieeYefXNQAwG6erU1gx+/oT+P3v3HR1llT5w/Du9pE96T+i9d0RAAVFUsGFXbKtr2XXVdd2fa137rtjW3l0EsYJIE+lI7z3UFEJ6T2aSaff3RyRspE0gyUDyfM6Zc5KZ+973mUlm7jz3vWXUJbjKSjn46rPU5B4+reSX35IrdQ4MBfJZC5kDNGHChLqfq6ureeedd+jSpQuDBw8GYPXq1ezYsYN7773XTxEKce5z1iieeiAPXVgEUQ/dhS4ooMF1uKsrObx+HigvQfHtCU48eadwVaGD7T8c4ODyHHK31a7gHNHJRqcJ7QmItNJ2bCo6o+6YecKjrgphwRu7WfrhfgAOrC5i4dt7GHh9Msm9bST1CkOrO7P2OWNJJqZgIxO/m4AxsOlGkwnfaPR6woYOB8BxYB81hzLhNJLfuov1Z2l7d9paSHv/vxYvXtzodUry28ItcPj2J/7b5LtO+njmgqloLFXk//QrJtOptyEY/N2r9X5319hZ//2/AYjvOgpP5y6UGmrrueuhh+rKKaUoy99HdtpiyvL3YLSEEBzRg67DBxG2Nhfr2iBYW1u2Cvtxz/2PC+4F4x6i4jdSnL8Lt8vB/j02/v1kHigv0Yn96NBrIks++PCUzwPggQPHLoefH/gjBRVa/pJ5ab37jev3+FSnaByWPsX1ftfllQJg7lhV77G3SpN8qs9QVrvNli6/FL3e3ThB+llLmQP01FNP1f1855138qc//Yl//vOfx5TJyspq7tCE8LvXS9r6VG7qmyffMrB4z3oy9x9kcNcJBH2pBRynrNNpq/+hsXHNR5SXZRKXOJh4SzcCMpwALHun/uKP1WUF5G9dTNHe9Wi0OgKiUki9cByxB40EaiLQ/FqboeTMOP55F03qiTuqLwE9ZgJQtXUL1bpwfnn7AMqVht5mI+mRv6HR6xl8zd5TPg8Ah6f+kEpDeCDOKhceSwCO/7nAFJLu9Kk+T2mpT+VaK60t1Kdy5u4lx95pcKGPctV7bJWP7wOP0wMsxlDswKqtOmnZ0VrftkRa4P3Gp3JNqaW09/9r+PDhjV6nJL/ilJwVJZRn7MLWqb9Pie/xaPVHe0yrSrLZ8ct/sJfmkNxnPPFthgFQWZzF/k3fUVVyiIDQODoMvJHw+B5oflt591QfUP8rLLIDYZEdKDi8FaU8RMX3xuN2snvjVIrzdqG8DR8mcUTGzG0UrM4gdmS7065DNA3Hwdr548bo0NM73l2OBg1GXcvb67cl+eabb1i/fv0x9990003069ePTz75xA9RCXFuUx4PRWnrMIfHEGTxbfuY4znSZtdUl7Jnx/eUlaYTGd2dhKRJaDQa3NWVZP76PaUHtqC3BBLb5yIiOg9Bb6r93A3K8X1xG31ICDE33ULN4cOY4hMIHXY+aLWU/bqColkzcebmYEo4vRV9C3cWsP61NWgNMqf3bOOpdODKL8MQFXpax9tzahdlNRl8W6/mnNLC2vsj7HY7mZmZOJ31O5569OjR4Lok+W3Fsg862bHBjkYDnhoHut8aHuXx1A3/dJYXcWDWB2gNRiJ6Djvtc2m0WmI7DcdRng9KYS/NAcBorV2VuaxgP7tWfIQlKIou591FSHSHRlnAIjLu6JtCpzcSldCb4ryd2KsKTqs+5VXsfvdXNDotKVf3OuP4RONxl9k59M48AromYoyznVYd+fb92MyJaDWy1dHZzGKxsGLFCtq3r7+w2YoVKzCbG3d+vxDnuqoSJwfWl1BeUENNWSGmkNrtYZRSKK8HjVaL1+UkY/E0qnIOkDr2dsg//fPFxvVDr7cAirLSdACMpiA0Gg0uRwV7fnobT7WdpPOuxta+H1q94aT1+cIUF4cp7uhiXEH9+lM0ayaOAwdOO/nd8fkWAPo/PPiM4xONRylF1msz0Rj1hAw99baax5PzawZajZ7QQNnq6GxXUFDAbbfdxty5c4/7uMz5FT775oMiPnk5H6Vq81x94L+JHXQxldkHKN23Ga/LCap2KX9jsI12V9yHMSjstM+n0WhJ7n0ZAPayXEpzdhPbeQThiT0ozUojbc1/CbIl02no7ej0TTOvRikvh/YtISA4Dmtg1GnVodFqMIZacOSUs+PNZdi6xZJ6bW8s0S2w9/AcU7psB57yKpJfu/20Ok4qS5wUOTLoGHZ+E0TnPy1xGNSDDz7IH//4RzZs2MCgQYOA2jm/n3zyCU8++aSfoxPi7HFgfTGf3reZ6go3Wp0GxSvEDboUT3UVxXs24KwoBq0WvF40Oj2pYyYRktQZ8k++XeHJxMT3JSa+L16vm2W//IPAoFjad7qcgopiDiz4FE+Ngw6XP4A55OTrfpyJ0sUL0ej1BHTrdtp1mG21FwS2f7aFvE25dLiiE1G9ZCcHf3MeLqZi3V4SH74CQ1jDF6ZUHi8ZP+0iNDAJve70RjOerVpqe19SUsLq1asZOXIkP/zwA3l5eTz33HO8+uqrp67gOCT5bYXS06r59F/5XHG7jRv/FEFFmYd7rrCTuWAqxmAbET3OwxAQgkajRWs0EZzSFZ3xzD4gnI5yyvP2U5S5idKcNABydi2hIv8glUUZhER1oOPgW5os8QXIyVhNZVk2PYfed0ZbEwz75HoKVmeQt/IghxftIWfxXga+fgWByad3tVE0jrK1ewjokoQhvOEdERtm57Lg3XS0Gj1h5vgmiM6PWmBP8GOPPUabNm144403mDq1drX4zp0789lnnzFx4kQ/RyfE2cHt9PLNP3YS3S6Qm/7dA2uogX9fX0b2rzPQGS2EpHYnICYF5fGg1esJim+PMejM2jGP20lZWQYFedsoyN0GQGVFDts2fUFR4W6MASG0v+TuJk18nXm5lC5bStioMRhs4addT/9HBpN6UVvSFxwgb1MOC+6dw9BnhpMy2rd5paJplK/dg8aoJ2hAhwYfW7K7gJ0frqUio5QOCQOaIDo/a4Ht/aJFi5g5cyb9+/dHq9WSnJzM6NGjCQ4O5sUXX2TcuHENrlOS31ZGKcXbT+cRm2Tktr9GYTBqCAjS0X7i3biryjEEhTX6fnmFGZvZt3IKAEZLCIG2RCoK04Ha4dAdB92CLb5bk+6V53JWkbF7PtFJ/Qm2JZ9RXXqrkdgL2hN7QXtqSuys+csPrH7wB7r+6XwiVYxsdO8HrpJKKrekk3DvxQ0+tjSvmil/3UFM+0AGxV5PsOn0RgWcrZqrJ/idd97hX//6Fzk5OXTt2pXXX3+dYcNOPVXi119/Zfjw4XTr1o3Nmzf7fL6JEydKoivESSz9NJ3iww4m/acXobG10wGSR15PbL+LMAaG1s3NbSzV1aWs/XUyXo8Trc5ISGgyJUW1C03VVJcQP2AcEZ0GozM27dSEwpkzMITZCB0+4ozq0eq0RPWKIapXDF6Pl9XPL+fXp5ZSkVVOsDu5STvrxfEppShdup2gfu3QWRr2+iuvYsMLi6guqKL/UxcSNntIE0XpP83R3jd3W19VVUVUVO33MpvNRkFBAR06dKB79+6nva2hzOJvZXasc7BtjZ0/PF6b+B6h1ekxBtuaJHHzuo9OTnc6yqgoTEej09N55N10HXUf4Qk9mnyT+Gp7MW6Xg+qqItJ3zaW0cF+j1GsKszLwtSsIaR/Jpqfnsc4+jwpP8akPFI1GeRWHP1qA1mw8rfk/3zydRkCYgQe+6NPiEl/gaE9wQ24NNH36dB588EEef/xxNm3axLBhw7j44ovJzMw86XFlZWXccsstx+zf5yun08mhQ4fIzMysdxOitXNVe1j6aTpDrkskut3RoaEajQZTcHijJ76/1Y7XU9veez3OusQ3pd1o+g3+M9E9RjZ54gtQk30Ir8tJyYL5lK9fW7uOyRnS6rQMenwYna/vxrZPNrNu1esU5G1rhGhFQ5T8soXqA7nYRvdu8LEHvttO+YFiBjw3hsQxDb9qfE5o4vbeH219x44dSUurHTHaq1cv3n//fbKzs3nvvfeIjY1tcH0gV35bneXzyomI1dN/RMPnSZwuW2J3Du9ahCUkhqg2AzAF2rAERaHRNl/fizUwGktgFGVFBygrOkDWvsUsX53AsEFnvqqvKcxK/1cuJ391Orv+vow1VbMZEDCOYJ0Mg24OOZ8vonTZDpIeuQJ9UMP+njVVbnYuK+TqJzpiDTnzRVfOSs0wDGry5Mnccccd3HnnnQC8/vrrzJ8/n3fffZcXX3zxhMfdfffd3HDDDeh0OmbMmOHz+fbu3cvtt9/OypUr64d+BpveC9GS7FtTjKPczcBrEprtnGZzCJHRPXDYC0lMGYbFGkFAQHSzXiFVXi9B/QZQtnwppUtq9wd1FxXDdWdet1anpc8DA2g3viMr7t3Oji1f0r7zBOITB5155eKUKjbuJ/vtnwgb3YvAPg0fen5o0T7ihqUS1bf53hPNronb++Zu66F2zm9OTu0iuU899RQXXXQRU6ZMwWg08vnnnzfsCfxGkt8Wbouj/hBfZ5iH0uIyVh6KJSjy6DxeTyN/71819eHf3fOPxj3BSXT9+2v1fq/KOsChHz7D47AT3KkXloQUNBotvXpuwKVOvZfrrA7zfDtxB0gxPUruK2+x0bKV6If/KEOgT9PoIc/5VO6xh97h+u+KeezxIO66ZxWw6rjlLpry6HHvr8k5jPIuZWXeRWyakcLeA3853ZDPWqc7DKq8vP6CNyaT6bhbnTmdTjZs2MBjjz1W7/4xY8Yck5z+r08//ZT9+/czZcoUnnvOt7/3EZMmTUKv1/PTTz8RGxsr7zPR6sUZSuv9XhNbewXWlZFPXJej7VxNiG/1aTNzfT63Oe/o50Jf40gwAqW/3Siqe8y02rdFtFRNjU/lotbV72B2OspJW/k5lcUZBNqSCE/ogUIRYe7NGrtvX3cfjfOhvY+DKx56CPeMb9m3eS6uK3ujDzz+WhNtN5z+QqHnstG6a30qZ7/St3m354eu4NO35pEyOJorXmqHVrfnuOW+XdPvhHWUpFcSNLw7G7anAtApbadP5z4b9u/1VVO29/5o6wFuvPHGup979+5Neno6u3fvJikpiYiIiAbXB5L8tjoDrklk0Qf7mTM5jYkvdG/xXxpdFaVkffsR5qh44sZdjzH0aGNpNm9q9PNpTUbCrrqU/Lc+wrF1B9aep7/SpDi1t9+spFt3PXf8werzMcrtpiptF9VZGTjz80CrxRB++ouinPVOsyc4MbH+FhBPPfUUTz/99DHFCwsL8Xg8REfX3xc0Ojqa3Nzjf4Heu3cvjz32GMuXL0evb3gztHnzZjZs2ECnTp0afKwQrUFq1wC6Dgnmm9cP0W1IMAEhLfvrnlJe9qz+LzX2ErqM+CMhkU27KJVGoyH8okuo3LqZkoU/Ezn+qiY9X2u37fsD1JQ7GfNkP7Q630YNKqVwHsjEsXMP3soqvOWVGKKbbqG1s0ITtvfN2dY/9NBDPpedPHmyz2WPaNmfhuIY1hAD4x/vwtf/t42KwhrGPtiBhK4+dgWfg4rXL0d5vSReOQmdJaBZzmnp0hFzp/aU/DAHS7fOaHQtaM/YZlRakcnWtKm0TRxFfPSxvbkej5NVa508+UwwWq1vnTjK6+Xwpx/gOLAPfUgoWouFiHHjT9hr35plZWURHBxc9/vxrvr+r993pB0Zgvx7Ho+HG264gWeeeYYOHU5v3lWXLl0oLCw8rWOFaC1u+Ucy/7xxF09evYNr/pLAgLEtdypOWf4+KgoP0um825s88T1CZw0gbOSFFM2fQ8iQYRgjW+CaEc3AWV3Brl8/xhIYSYeBNx63zIHlOaSeF0tQtO8d3eVzF1E6cz7aACvawAACzxuAtbdckDiehrT3zdHWb9rk28Wp072AJ8lvK9R3fDyWIANzJqfx1sRVxLQPxKHJxRQegyk8Bo1Wh7MkH501kNCOfc7J5E0pRe6C7ynZ+CtodXjdLtzF+RjDIpp8cS2AsCvHkfPC61QsXkHwqOFNfr6WprBkD5t3/xcAdYJuzILiXXg8cN75vs8nK12xBMfB/cTddjfWDh0bJdaz3mn2BAcHB9drDE8kIiICnU53TM9vfn7+MT3EABUVFaxfv55NmzZx//33A+D1elFKodfr+fnnn7ngggtOes6XX36ZRx99lBdeeIHu3btjMNSft+FL3EK0dAntLTw5tTNfvpTJW3/ejy0mC2dAFaaIaEwRMegDQ6gprH3fhnTpg97afGuBNKbi7O2krfwMAJPVhqM8H1NAGFpd06/jEDJ4GGWrfqXwpxnE3npns65l0hLU2EvZtuQ/OO2laDXH/67pdJSTvbmQCx71fZGrmvQsSmctIPiiEYROGNt6/i5N2N43Z1u/ePHiBjyJhpPkt5XqckEUHc+PYNv8XA5uKGHrinIqM/fiqa4CQGsw4XU5KVy/mNRr7kVvObcaRbejipLNv83/9HrY+/azAIR07UP8ZTcBUFbuZe8BF317Ght9+LcxMZ6gC4dR8sMcjEkJmDvIvoANsXP/D3U/7z7wI3GRfdD+tjqp1+vmcMEm9qbP4/wRRlJSff8YK1u5guD+A1tP4kvTb31gNBrp27cvCxYs4Iorrqi7f8GCBYwfP/6Y8sHBwWzbVn+V1HfeeYdFixbx7bffkpqaespzjho1CuCYlSNlwSsh6otvZ+HRjzqStqGCDQtKWLpYUb5rM67yEgA0ej0oRcGK+SRedTsBiedWW6WUIm//0bUetvz877qfB175IlqdAeX1kLW1lOh2gRitjfu1V2swEDn+KnK++JiSRQuwjbqoUetv6Q7tWoDTXgpARXEGFUUZBIXXrlWjlKK88AD7N3yDOdhIx4sST1JTfRXLVqOPCCN0/EWtJ/Gladt7f7T1TUWS31ZMp9fSa1wcvcbFUfnRGJRSeByVeF0uDMFhVBccJv3bd8hd/hMJYxq+VKLX60Xrpw+dolUL0VkCMEfGYAixUbplDQBGW23vlKfawZCLs9l/0M2I88zcfkMQl11kZddeF/sOuLjoAishwWcWe9gV43AdyqHgw/8S+9if0Ie33CFnjc3pqqz72aAPQKPR4nZXcyhvPVm5q6hxlhMb2Zu3389uUL3uinKM0ae3NP45qxlWe37ooYe4+eab6devH4MHD+aDDz4gMzOTe+65B4C///3vZGdn88UXX6DVaunWrf7Qs6ioKMxm8zH3n0hT9woL0dJ07BtEx75BHIyobcs9NdW4K8sxhoXjqXaQ9f2nHJ7zFe3u/BsaXcO+Gp5o2GNzKM1LozQvDVNAOEndLmbvmikABEW0ATQopdi3bjqrv9tIWLyF8+9oQ6fhkSgvpG8sJqlnGLZE34fSHk9Apy7YRo2leMFcjLGxBHbt0QjPrHWorqq/NaTREoxSXoqyt3E4bQmVJVkEhCVw7ef9sYSefOrN//KWVWCIjjonRy6ekSZu75u7rW8qkvyKOhqNBr316NxHS1Q8YT2GULz1V9ToiT4NFz548CDTpk1j2rRp7Nu3j8svv5ybb76Ziy++GF0zfgiFdu+Pq7SImFFX4KoopWz7epTHQ8HyubjKiqjOP4zZ4eW5/wvjoykV3HJvwTF1XHaRlU/eisR2mtNBNTodEXfeRO7Lb5L3xodEP/xH9CEyHPNUysrK6n7W68x0a38NLreD9ds/wFFTSkxET5LjhhBojcZqfbtBdZtiYqnOygBOvSF7S9Ecm95fe+21FBUV8eyzz5KTk0O3bt2YM2cOycm1Pfg5OTmNuv/u8OEylUCIM6EzmdGZavfc1VsDiTr/YjKmvYMjLxtrXPIpjgaXt4a8moPkVO+l2HWYUFMscdbOxFrbo9f6nqScqaDwZMITexGVOgBrSAwBofFUlWZTUXiAHUvexhIUTWHmRobdlkrO7nJmPruDmb+rw5Zg4frXehPf5fTXPwkbOQpn7mHyvpqCdtJdWNu2P7Mn1kp43EdX9k7sOhajJZS9a7+kMGszIZHt6Dz0DkJjOhGWtK5B9RriY6hctR7l9cqV31OUb4jmbuubiiS/4qSUx423pprKzL0EJZ94qOjatWsZOHAgAFarlfHjxzNx4kS+/vprLrvsMoYNG8ZHH31Eu3btmuVqsDkqjsSrbgfAEBJG57/+C0+1g+yfplK6dS1GWxSzv4qhb08TD98XwnufVvDYP4t54K5g/v2f2uRr1nw71TUKzmAtJF1gAFF/vpu8f79N/psfEvPoA2hNzbfn4bkoODiYTm0ux+2uJj6qLwaDlf2Zv1DjrGBwzwewWk5/ZWZr566UrliK8nhaT49wM1z5Bbj33nu59957j/vYZ599dtJjn3766eOuJH0qdrudzMxMnE5nvft79JArL0I0hNZQm7CW795y0uTX7XXxa/HXOLwVANgMcbQPGUxRzSF2lCxiX/lquttGYzMlnHAOZ2PSGyx0GHRT3e89Rv8Fr9dN7t4VZGz9CXtZLm37X8vFj9Ru5ZKzu5x3b1hF3wkJrJle+yW9+JCDigLftlc6EY1GQ/TEGzn8xcfkfPExCXc/gCku/ozqbA1SelxO8eFtRKUMwBocTXnBAQqzNtOu//VEJfc97XotPbtQPn8JNQcyMbdLabyAz3bN0N77o61vbJL8tnCP2Pb7VO6ncYePuU95Fbs/XktQp1jibjWiDzhM6luvHlvO7Sb/49qNpgMHD8R25eWMunwOkMlfrg1h95pufPToGjp27IjJquWCG2O58OZYwqJrG9vXrkrBUV1CQsJgtNoT/0suWvjYCR/7X3Evn3i/sVjVngoiCCm28advz4Nvjz7W9QYPCysVOtMzeGrsAIx+/Ep2vD/bp/MC3H3+ouPen9ejB+9ct4qYX9/jiqe7cXHsQZ/qm5vzNitWrODVV1/lhRdeoHPnzj7H0lxGa6/xqVzFDYMBqKkspixvLwZTIGEJXY9b9qUFGb/9NIfsgzU8dNkeLr0tnNv+r/5w1xS9bz0TSfOrAQgsjqekpobIWbnHT6J9+xc7tzRT8tucCgoKuO2225g7d+5xH5c5v6K1GR/g276886/cftz7l/1jMcYgI0MfDCWs3XZWRB772ayUonLjRhzTKtCYzST+9VH0ISG0659OO/riyC1ny4u/sH7zDNBqiBnWhrY39SekQ+32MiW3a8kvTyPB1huz4cSf3d4dx9/D9fdCVmac8LFQlUJMxNUE6EMxHrbw2XcD6x5LfWwCJTodwb2/onzTWgDm/BDL6sILuP4231aZ7TM87bj39xw6lEV3F1I262NGfXIlVbExPtUHsGfPHl599VVGjx7N1Vdf7fNxzeni2Pt8Kpf7l0F4ahxUZuzBba/E1mPwca/ADrthA5AAHMZdnckPdywgvEMYo97RoNEe/VuMD9ng03lXLajdN1h5k8nXaAn4JZeYg22OW3Ze+ac+1XlOaYHtfVOQ5FecUE1BOe5yB0l/uxh9wLHDmJTXS9WGTZTOmY+7pBTb1RMIGjb0mLk/nQaG8OxPvdmztox9mypYOCWHuR9mozNo0Ok1OB2/ApCTs56wsLagFFX2Atq0GU1IyKmHXzWEXqMnjOPv86bR6tAA3a/9BzXlheyaMZni/b594J5KdLsgLnm0EzOf2UGn8yMB3yf633XXXezevZtrrrnmrEx+feFSTnJ2LaEkazsVBbWJv0ajZcAN/zrpcdkHa3j61v1Exhu49oFjVxNsKLO5dt51dXXJGV1BPpdofrs1pPzZ7sEHH6SkpITVq1czcuRIfvjhB/Ly8njuued49dVjO+iEECdXnFZE20vaEdbu+GtTVGdkUDxnNtX79xPQuzeRE69F+7tV1i0xwQycPIHiLYcpP1DIwa838+tdX6HRadEadXgcLgCyijcSGdQenc5IZXU+sSFdSbD1atTno9FoCDMdf32HI6N+osdPJGzoCPJmTKd8y3rCho444/PqzQYGPn0hv9z2HVvfWUNbjl0I6ETeeecdPvjgA2pqas7a5PdUlFLkVO8hc9avVOzfgfK4AbBExmGNP/H3Hpfdxc+PraD0YBnjPxqNxsftC09Eo9VhtIRQYy85o3rONS2xvW8KkvyKE1Ke2i6hmoKK4z5evnQFJT/8iLVHN6L+cDvGk/RwWoP09LownF4XhnPJ3QlsWVSMo9JDdZWHnXMGYDaHcfjwWkqK92G3186/LSlObfTk1xc6gwlreDyRnYeQv/NX1myMZ2Af8xnXO+CaRNKWFvDdk9sYqO+BSefbIhvffvst27Zt45prfLvCerZRSrGN1ZRsLiYwMhm9KRB3TSXRHYae9LiV80p5629Z2KIMPPVpG6xBZz6EzuOpHdqm1zXfnDS/a4E9wYsWLWLmzJn0798frVZLcnIyo0ePJjg4mBdffJFx48b5O0Qhzilej6Iq347yqmMSD2duLoffehN9RATRt92OtUuXEy5wpdFpCe+TQHifBJIn9KBwXQaOvEo8NW683xuJDGzLoZItFFel43Q7qHFX4FWeRk9+faHRajFFxRB23khypn9OyYpFcMeZ1xuSGkaP+wax6bVfCU7uRmSQbytoP/nkk/To0eO4K+eeK9Ltm0mrWIXFnIjJFkl1QQ7m6ATMUXEnPKb4QBk/P7qMilw7YycPJ6pL43RMe9xOdPpW1NZDi2zvm4Ikv+KEzDEh2Aa1Yd/rCyhZd5Dw89rjqCjH63DgKSundO7PGOJiibpzUoPqtQbpGTz+6GbwxZv6ABAaVtsruHvX9+TkrCcpeURjPZXTEt19JAW7VrJmg6NRkl+NRsOVz3bj1UuWkeHcRoeggac+COjatStdux5/ePC5IJ9DFJNPaGwXKgvT8bhqSO47nuiOxy465aqupCh9I89MOsCm5RUMuSSE+19IbJTEF8DprO3IMRrPYCL3OaY5FrxqblVVVURF1X6G2Gw2CgoK6NChA927d2fjxo1+jk6Ic0+na7qw/vU1zJ70I23HtcNeoUO53XjKKyhfsxqA+PvuRxfk+2enVq8lavDRq32eZbXHdoqt3aqsoGI/GzOm0yby5B2hTS2oSw8KbRE4MnybjuSLdld35dDSg+zbtczn5Ndms3H77bc3WgzNrdpTxd6KtYQYoql21VBTnE9I5z7Ej56I1lB/rROvx0353m0semoV+xZkEBwfyNX/HUtY6ukvOlavfq8bt7MKg7l1LTLaEtv7piDJrzghjVZDl2evIHfuNnJnb2HPy0fn12kMeoxJSUTc1PAtkE6mqCiNnJx1hIW182l16abgdbsoz05DZzCj1RtJz3I3Wt2B4SZ6jotlyze7aR84wG/bQzQnJzVo0FCRfwCPq5oelz2GJfjo0HNXdSVlOWmUHt5NcdZWUBDYz8RfXkvi/MtCG/U1clQXo0GL0Xhu7Vt9RlpgT3DHjh1JS0sjJSWFXr168f7775OSksJ7771HbGwr28pKiEbQ5fqu2Dra2Pnldta/sRblqd0eEK0WfVgYMXfd1aDE91Rq3FVszZoBQKDp+FORmppSCkfGQbw1DvTBobjKSvB4FDrdmbc5Go2G9td0Y+Xff6aiOp8gc9SpDzrHeZQLLx4cnnKcxQ4Sxt1MaKfedY973S6qDu2n8uAuytK24K4qx9YulD63daXnTZ0xWBovJampqh3ubLQ0TjJ9zmiB7X1TkORXnJRGqyF2XA9ix/XAXVVD5sZAtBYLWovljJISpRS7VpUx96Ns0lavR6vVERc/CIuldr5RaFibZk8MvW4nhzfMoyBtDV5Xdd39b3zoZM8BJ7P+G9coMbUbFMHa6Vm4VA1GzZlfUT7bmbGiUMR3H03mxlk4q0qwBEfiqq5g34oplOftBxTWsHjiu40mqt0gnnzl+0aPo6oqn8ysFYSGpp50YbUWqYU1cA8++CA5OTkAPPXUU1x00UV8+eWXGI3GU642KYQ4vpg+scT0icVT42b5/CTQ69EFBJzxVjGVmSUc+Goj+bvS8Sg3YdYEOsWOwe2tIcgcjcXYvFfnlFKUb15H0aL5uMvqzwkdeb6OaV/biI8/89FG0f1qV3uurC5oFcmvWVfbqZxo6cJB9w6q8w9Bp94or5ecxTMo2b4G5XZhCAoluF13bL2HMvqB7EaPw+1ykL51FlqdgeDw5p8653ctrL1vCq3sG6A4E/oAE4bwM5uLUVniYs1PBSz/Np+s3VUkdw0gOWUkVZW5ZKQvAjRYrBFERTb/BtgHl06jLGsnUV3OI7xdP6rL8jm0dhbOyhIKizyNloyHxVsAqHKXYDS2/KtU1djRoCE8uTeZG2eRv38NGq2OzI0/4rSX0WbQRELiOmG0NN0XoOrqMjZsfA+jMZBOna5ssvOI5nHjjTfW/dy7d2/S09PZvXs3SUlJRERE+DEyIc59OpMefVjYGdXhdXnIX3WQQ3N2kb86HVOYlQRbLzQaHfvzV7Bi7/votEbaRA5ppKh9V7ZhNfk/fkNQt14EX34NWouFkpVLqdy+maxMD43V7663GjDoLFTWFDZOhWe5ak8lAKHGGExB+ZTv20FgckfK9mymZNsaogaNIbhDT0zh0f/zfapxk1+lvOxa8TH2shw6DLoZnaHlX2AQDSfJrwBgSdffb/t+fLNTffsg+fcDN+GsqcBVU4nREkJu1jqK83dRVpKBBrBFdaZ7/0GERrTHsnQHSoWTadDjxUuS6ohuWwFQcFrPZYH3G5/KDb7h6KqwSnkpTd+GVm9E64LiHWtI7nM5IRckcnmHd3nkj759Efibbd8py9QM8PIOGkpNlYRGnNkXjLNB7kMn/vLidbvI/GoNFn0K69+Zxj/b2XjhjS0UZ2wmNETL8p8S6Nl1I9C08zQPHlqCRquj9+D70BsstKaNcFrDHCCr1UqfPn38HYYQfmPR+Lawzz/ijr892O89OdT3K5+7PmqHozgHS1gMpRnbKTuwlfJDaXhdNVijkkgcNhFb+77E/lI7WiMkMozSmlwSgrpi1YZAhb1efb624Q3R7dHX6n62b9sGgDEgnMoNG4kefimBY26gKCyOL59ZS1zcqZ/76PAdPp33Z1s8JdoiKjucuq33ddtAXaCP03Z83MteY7X4Vh+Qfme7Ez6Wt2AmFGspv3Mo93fYy4f/l0v6t++h0cAdz6ZwwXUlwJJ6x0wMLPLpvAfd9lMXAooP76CiKJ2u599DSNSJY22pWkN73xgk+RVNQinFhuWv4XJWAaDV6gmNaE+7LpcTEdMdo6n+h7dGoyXZ4L9tfDQaLfHdRpGbtoKc3UsAiOk4DHOgjScfbtwtcXakOVEogi2+7/93LlLKS/b86VQX5ZA68T5gDk88FM7D94SxP8NFYpye0JDGWcjqZPIL3eQe3kBK2wvRG3xv5FuMFjIH6KGHHvK57OTJk5swEiHE/8pcOp2SfUc7MK1RyUT3uoCQlG5YbMeOboqytiHKevy9V5tDWM8hOEuLKFqzEABrQiq2noOJHDSKdu0btyO2quwwMamDG7XOs1Hp5rWUrFlK5KjL0ZnM9BoRypvLepGfVY3RrCU8tnlWXc5OW0JwZNtWmfgCLaa9b2qS/IomUVGaWZf4xiUPJrHtBZjO8lX3ErtfREn2Tuwl2Wg0WkoObSe20/mNfh6zqXa4T0te6kopRc6iGZTt3kTipTdjjT0678Zq1dK9c/NtP/DVD7UrPMcm+La6dkvTUnqCN23a5FO51rCInBBni+piB/aCLABMwRGkjLoZa2Sin6M6ueD23XDbK8j5+Rt0ZisVe7dh69k0CapWazh1oXNcxe6t5M6eTmjvQdgGDq+7X6fXEJvafB3O+/a6qCzOodOQSc12zrNNS2nvm5okv6JJ7N4yHa3WQEh4KqkdLz5n9lprO+Aa0jf9SHV5Ae7fkvfGtn5L7V6zZoN/OgOeeuopsrOzeffddzEYGr9h9rpqyFk8k5Jtq4kbfQ0hHXs1+jkaIm2/C7M5FIPRt32VW5wW0hO8ePFif4cghPid7R9vpKasAEtEPEnDr8MaEe/vkHwS0qkXVelpuO0VeBxN09YX59TgrKnAZPXP9KZ8VwZZNbvpYh2KRdv4OxwopSjbtJq8+d8T1Lkn0Rdf7dfOx4P7ayc0WUNOvKdwi9dC2vum5p+9ZESLUlro5tWHsrhrxG4WfV+CUopqexFtOl1C9/53nDOJL0CALYGuF96LVm/E43I2yTk2bavBarRhMYY2Sf0n8+OPP/Lss8/y8ccf8+GHHzZ6/c7yYvZ+9i9Kd60nfsy12Hr4f7jXslUOQm3+G2Lnb0d6ghtyE0KI3/O6vWz7aANzrvuGtS8tB6Aiq4yQ5K50uurhcybxBdCZLCSOn4QpIhZvE7X1h9KqQHkJje7QJPWfjEvVsKnqFwrdh9htX9Xo9SuPh0Nff0zunG8I7tGfuPE3nPGq4Gdq3WonJmuY3zobzgbS3vtGrvyKM/buk9msml8OwOt/PcSHzx4GwGy1+TOsM6LTmyg+tJWYjsMave7gIC12ZzGHS7YRHdIJXTMOi+rfvz/du3cnNzeX/v37N2rdSimyZn0BGmh366OYQs+OVXdtoVrySir8HYb/SE+wEKIRHJiVxo6Pa+fElmeUkrcum6rDFUR2O3c7F7UGEzVFeVQc3EVQauOuO2IJrF3TIu/AaqLbDMLcjEmZHiMxhlQKXFnYDI1/JbRw2Xyq9qcRP/EOgjp0bfT6T0dIqAa3y4HyutHoWv5w8+OS9t4ncuVXnLEhY49uIh4RY2DczeH0GHg3tqhOfozqzLQfciNOexnp6xt/v9n2bWo/lLcd+pFS+6FGr/9kYmNj2bp1K/n5+Y2e/NqzD+LIzSR+9MSzJvEFuOmaYIoKdlFWku7vUPxDncZNCCF+J2Zg/Su7Ub1jGfLchcQNusxPEZ25yCFj0FkCyPy28UdChSeY0Wi0HNqziNwDKxu9/pPRaDT0DLiAUaG3kmxq3ORUeTyUrFuObeD5Z03iCzBuvAWv20l2WiueIiPtvU8k+RVnpLzYzZTJuQAMHx/KR8s7ctPDMYSGn7s9wQDm4EgASnN2k5vvbtS6b7wqiJSI2uHAFmPLG57j76FPv3f79cEEhSSRtv1b3O4af4fT7GQYlBDiTCml2PKftQBYogK4fOYNDPzHcJIubINWd+4OItQZTQQktwegLG1Lo9ZtizHRffi9AJgDGnfXCL/SalBeLxpt0+/W0BApqXriO47k0K6FVJY074WFs4W09745dz+xhF/86y831/3sctrZte4LKks19D7/T3hVAq8+XPvYstl/9VOEvss9wXRUpRT2bTvRBgWC20NYiO/J3HOFvl3tdtn3E6API6BSC5SfsJyv+/5l//3Ee+3+XnU3h0/l9EYP3monnrIqPOVV1GTkUbVxD9V7sgjo24HoP04A4M7ba3u07aVOXvxRh6XgW25+6tg9V/e7K32OcbfTtyvHLx8YW/dzdU4p9owirKkRmKOPjkbwuj3Eelayx76atOUf0892qc9xtAgyDEoI8Ztq5Vt7tmnu0SHASnkp+GU2JasOEnXxVYT2G0LahqMLGyVP2exTnW67b3u1NgVH1PE/2Jx5uThdtdNivIlBfFwyyKf6vt3Xy6dyhkO1+wHHkYL58MnbXl10lE917n3Qt218PPHVPpVTLh3K7cZTUYW3ogp3QTGObWk4du5FFxhA1MN3oAuoXTDyyaHf4fUqXv3FyoGNi3jpQzta3bGLXO2rjvbp3B97zD6Ve2nB5XU/e+x2nBlZaAOsmJLqryweV7qGQ8rD1oWvc2HSvRi0586aM41C2nufSPIrGkwpReaeX8g5uAqFly4DbyMwNMHfYTUax7YdFHz0GQBxjz2MyfRjo9bvcXkpqD5IvLX59jVWSuEuL8WRk0VNQSnmrm0xRNlQStWtzqiUwlNWietwAfYNu6j6dTOe8v/5sqLVYG6fgHK6KV+4Eds1I9EYdDgdHrb/kse81/eABobfkdpsz+uIirRctj34JcrtRWPQ0fXFawjpmYirzM6up2ZQUZmNBi02Y+tbBVKjFBrlewvXkLJCiJatIm07hYvn4MzPI3L05YT1H+rvkBqNx+Hg0L//BUDkdTdgTkkFGveKYX7xLoKsMZhNIacu3Eg8djs12Ydw7snDEB+FuUMy6rfP9SPtvddRjSuviOrt+6lYtgF3TkG9OvTREeisFpzph3Bs2Y2la3s0ZhN7N5Tz3eQM9q4vZ+LfUo6b+DYlr9NFzsuv4S4uASB03EWEjh2N8nop/mEW6bm1C7FFW9uhaYWDW6W9940kv6LB0nfN49C+xcSmDCG+7TAsLWk4D+CpqL1CqQsOwhAb0+j1712Rj9PrINbS9CtAel1OitcspWz7epzFRxs3jdGAPiIUV14RWrMJjcmIt9KOcroA0AYHEDy8F6Y2ceiCreiDA9BHhaILsFAyexWFn84l/Z5XAXjitzq7jIzisr93whbfvFsKeV0eDk1dhUavI/HGwWR+/isVuw4T3COBnf/4nprcMgbariDMGNuscQkhxLmsan8ah7/5DGtKO6IvugJrant/h9SolPPoKs+mhMZfqdpTYaegNI22CSMave7fU0pRuWUT5atXUp1+oN5jhvgo3AW1yaI20IqqrsFrr70qrDHosfTuQsjY4WiDA9EFBaILC0YfFkJNRja5z7xJ0UfT6+p6CYjvYOXhz7rSZXBokz+v36tcuRp3cQkhF4+mbO4Cqvfuh7GjKZ3zMxVLV9DZNpKkoJ6y37s4KUl+hc+UUhzat5RD+xaT2mUcCe2Gn/qgc4zyeilfuhxT21Sibr+l0T9APW4vi/6TRpgxjiBD0y4KpZTi8KxpVO7dQXDX3kRdcBnm2EScPTwUff4TKEXwmEF4HTWoGifaQCv6yDAMMeEY4iMxmI/fIxg2bjDWHm1xF5WhnG6GBGwlqWcoMe2DmvT5/C9XjZf0tGpK96TjOFRC8cp9hPVPJfPzX4m8sDNxV/bFkVVM5e4cOj97BWHvtOLEV4ZBCSEayH5wLznfTyGgTQfir7vjrJvf2RhKlyxGa7EQe/cfMUY3fkd34TfL0Gi0xEX2bvS6f69i3RoKvv8aS/sORF51LebkFLQ9gyj7cQk1ezMJPL8vaDR47Q40RiP68BAMUeEYEqLR6CzHrdOUHE/85MdxZeeiXB68VXZuHbqDzoND0GqbJ7lUSpF7wIFj9x60ZhPF381EFxZKxYpVGOJiibjxWgAq16wjaNgQkjN7NUtcZy1p730iya/w2XezKzm4czZxbc4jvu35/g6nSTh278GVm0f0A/egC2rcZM7rUSx4bRcF+ysYaBvbpD2T7qpKDv80jar9u4ifcAvBXXrVPeYJcBB1ry9ziT0nfMSUGIUpsXZ+0oDOJWcYbcMc2l/N07enk3/IBeyvu79k3UG0ZgPt/3oJGp2W6pwyAIyRzZeUn40auqhFa10AQwhRq6jAw6GpH2COSyJ2wo0tMvH12O1UrF9HyJChmOIb/6pv5fo9lMxeTfvE0RgNgY1e/xHK46Fk4c+ULP6FoAGDiLpyYt1jHm01oRMuOHUdrhM/pg8NRh8aXPd716HZZxRvQzirPbx3/052rigB1tfd7ykpBSD2L/ejt4XhdTjwVtnRh4ZAZrOFd1aS9t43kvwKn5SUenjlrRKCbam07Xb5qQ84RxVN+xpdWCjmdm1Puw6Py8vyj/eRvr4IrRaCYyy4HB4ObS2h9LCDMY90QTvNt8UgTkd1fg5ZX3+EcjlJnHgnge26NNm5fFVy2MGW/U569DI0KOmvKHXz1Vv57N5op21XCzc/Es0X/8pDq9XwyjdtmFpyPrufmUl1dm0CHndVPyr35ZM1ZSUlaw8Q2CEGa0oE4NvCHy2S9AQLIXzk8Sjee6MCNBrir7sdnSXA3yE1iaJZP6Kqqwka5NsCVydSvnIHZYs347XXYIgOA6VwHiqkev9hAnq3I9nYdHOkvdXV5H75OY59e7CNGkvoyAub7Fy+sle4ydxRiblbCHqj750mXq9i0efZbFlYhCVYz6X3J3NwSzm7V5dy52udmVs6gdJZc6nauBkAY3IiGpORoq+/p3L9RtDrsPbsDludJz9RSyftvU8k+RWn5HYrhlyaRX6hh5RuF/s7nCahXG7QajDExuApKwevF3Qn/+DOznHz1YwKdu918s2sCi4cZiX1L0mkLc5j8dtpRLYJpKKwhqoSJ+YgA+2HRdPr8gQSeoSxaloTPAevl+I1Syj8dQGGUBuJtzyAITi08U/UQMs+O8jsf6UBMPW7cPoNMPp0nMeteO3hQ+xYX0ViWxPzphVTUebhcHoNfYcH0alPAAEHIun64tVU7ssj7dkfKViwg0PTVmNNCqfNfRcSNaYbWn3Lu2rRENITLITw1QtPlPHtl1VEjLq8RSa+yutFuV0YY2Jq23iP95THuGs8bJ2VRUlWFTvmHUJv1BL8p2hAw+FXv8EQGYqrqByvvQZtgAljnA3bFUMJGtgJzatNs+hS1e6dFM76AW9VFbF33I21XdOvIXIqezeU8/pdO6mu8jD8bicX3O/b7hcAi77I5tuXD9D1/DC2LioibXUpQ66KJjLRTL+LI/llQTjhN07E0r0rZT8vxJmdw+EXX62dvnX+UIKGDkYfFgo035Xps5G0976R5Fec0q9rHezZ72LZzAQe/zjF3+E0OndZGYee+CfaACuRd0wi7813yP/oM0LHjsaUnHRM+Q1bqpk5r4r3Pi+lqMSLTgdKwcy5Vai5C+vKFRyoXTir/4Od6XdNcpM+B09NNdnffUZVxl7C+p5H5PCL0Zl820KgKRUcrGTua3swB+mprnCzb4+LPv0Mp5wvVFPt5aV7M9i0opLH3k6mON/Fni0Orrwrgn/elYE54OgXCnNsKBpd7e81+eXEXNaLNvddWHdfqyc9wUIIHzhrFD99b+fuPwexOHiEv8NpdEopcj/+CMeeNGLv/xO6gAByP/mIsDEXEdjr2Hm5VUU1bPz2IHuX5nF4ewkGiw6Xw4NWp6H44ffryrnySwEwxtqIf/TaJn8OxT/PpWTRAiztOxAx6S6Mkb5tkdSU3C4vn/9jH4GheqqrPGRtLsFR7sISbDjlsXPey+TH19MZeXMcF9wczxNj1nH+dbGUFTgxWY52XmuNRgL79absl8XgdqO3xRJ9zx3ogppuWPk5R9p7n0jyK06pylH77vjbPwvZlTCH0CtGojGc+/864ZtrEzCXQ88hwFtlh0W7AHDs2IW2wE6nS//EuH9dAkBRdRYHKzZQWJ1Vrx7Pb1NjdRjpaRpGmbeQw+79OFRt8rvvJQs1r4bVO+bHon+h0+nQ60/+OrZ75bWTPq6UovrAPoJmPIW+2MMv38Qxcmgu8KkvL8Fx6/tudiXrN9ewdmM1O/fUDiHq2dXEi4+H06fHsQn19QdPPKdo5eQFWKIC6f/4CJbcN4sn/17OU/9XhVIeuvS4gYjILiil0OnqN5BpSz8iz+mgd+BYNvw9gV32lVi0Fbx3g41Sx36yvxzKU/+tYlPVv8jKyiJhVAJpff/CgQMHuOiii9Bqf5f45pzWy9EiSE+wEOKIGN2J3+CVyovbpVj4k4PDEV8SOn4MelvYCcsfoTH7tpfqgsrPfY6zsUVuUiilKCypbdOcP63AU16OB8j/cgpJri7o9EaW/DqUansJ6dt/oiR/Dx730SkzLkdtY+/1KDq1uRyFIrdgC2UVmWg0Osx7NCS8+rs2vaISNBq0mlN3xu555OTTrVyFhRTN+hH7oh3c9NdYJvzBgkYz78TPWVdx0vp2b61m5UI7q7ebOLyzDJfDTVCUmWF3daDr2LjjTlF6e//xFzotnLeZnIMOOr11B4X3f8yBNYW8dN7PoLxEdhpK0sAJeD0utHpjvXqrFy9ne/oy2sSej37HCL7/415gHbmLB7D94AzaxY/kv1d1In3HI/SOmUB0YHvaGK+kJCaLcH0y+k+qgKq6+twZWccG14pIe++bcz+DEU1u1DArf74rlJx8N6tnr8Cx8yCR912DIfLUjeK5wGAJJHXEzWSu/Ja87Yvr7o/rUzvEWynFnrJfOVixod5xGrQovOgw4MGFzRxHhC6eCOJJMXQj3bUdL17i9Ec3pFdKsa1mOWazmVdffZWHHnrotOO270mjaO5POA9n06+niRmfx9GhrW9Dio+npNTDvY/l8/XMSlIS9fToYuK+20PQajRMn1lB/4uySE3SU1jspcrupX8vMwu/PfFCIUopcldnEdEzhoCYIKwBUdir8lGq9gvEzq1T68pqdUY0gN5gJSAgimLnPrpZzyfCULt/tNNbg8NbwV7HOlLNPQnRR7CpchMAmZmZJCQk0LFjRzp27Hjaz7/Fkp5gIYQPAgO0PPdMCBs2Ojnwy15ydqYRcccNWDq1O/XB5wCNRkObQdeye/GHlB7eVXd/ZJsB6PS1bWfh4W3sXvvFcY7VolTtEGmDKZDoiG4YDFYSYgaQV7iNotK9tE2qP+f2UM4adh+YhS0ghf5tbjztuF1FRRT9OBP7zp3oAgP527upDBh9+vsGezyKrz8q5YN/FRMUqiU4OZTu4+IxBxnI2lTMd49uYP6/tuP1KBxlLgLCjNz47iBiOp34nOUb9qMPsaIPshAypANlK/fAb69Xwe5fKdyzGuX1oNHp0Wh0aPUGzKHR1BTmEBPWjbaxI9BoNDjddgC2p88gOCCO5KjB5JXW/q3Ka/KJDmyPUWchOtD/w7zPStLe+0SSX3FKRqOGyc9GArD8gwvIf+1LDv1lMtZ+nbF0b0dAvy7oQs7tYSehyd0ozdxOyYHahCo0pQcajYa98z8gvdBOUU393sRgQxT9o65ke9FCdFodPcIvAsD728brOo2Otsaex5zHoSrI9aQDUF19eoswKaUoX7WCwpk/YG7Tltjb72L1c4sbtJCU16vYvL2GRSsc7NrrpLzCy5KVdlwuRWyUjvQsN3+6M5Q//6G2gyM6Ssfdj+Sj1Wr4x19szF1YxZKVDvZnuOAEnf4ajYa+j5zH2ueXsuiPM0lJvYzq6hIO7puPyRxKTGwfzJYwNBotLldtg+d0VlJRnk24PoFY49EvXB2tA9A5dIToI0kw1s4j6hVwIe9ueJw2bdqc1uvYmrTW3l0hRMPcdmsAt90awMqpd1Lw/hfkv/YBxtQkrL26YuneGWN8428J1JzMQRHEdRnJwbXfAmCwBBPdcSh7V0zB63FSlrPnmGN6j3yIypIsDu6czcCLn0aj0WAoqAFq27mYyB7ERPY45riM7BUAeLwnWU75FKozMsj96EO0ZjMRV11FYN9+DBj9VYPqOJzlYuNKB2nbaqgs97Jnew2H0l306G9my9pqoroZGPVg7cKYuWll7FmaR2VBDcPv6YDXC8s/2MPBtYUnTX5jbx7O3r9/yY673iP6igFEXzSSPfNrh4ZHdRmGOTgSndGCu6YKpbx4XTXYiw+jMQTRLm5k3feX2PDu2GuKUMpLm9jhaLU6Ym3dsHkjMOlb3hz0piDt/alJ8isaxNw+iYTJD1OxdANVv26h6NNZFE+ZQ/BFgwm9fDhaq//nmZ6O4v0b6hJfrd5EafpWStO31j2eGtSXhIBupJWtoNpdQa+ISzBoTfSOvKRB58l3H6r7+eabb/b5uMotmyiePxdPVSUagwFPRQUh5w0nfNxlaLRaNJoldWULCt18+1MlifF6xo0KQKPR4HYr1mysprLKy6r11Uz9voL96S6sFg3dOhlBA107mmiXoufTr2qHSiUl1A5F/mRaGXc/kg/AA3eE4HbD2k3VXDomgK4djZB+4riTx3bA1jWaNc8sYtf2r+g/+CGSU0ee8vma1u+r97tZG0C3gPrba2k0Wkl8faFU7a0h5YUQrZouOJDoh+/BsX03lUtXUzZnIaU/zMXapzuh4y/CEOP/eaano6aqtC7xBXA5ytk+9+j0oqCwJLoMup1DexdTlLOD1G6XEhASS0BILNEpA3w+T5W9AEdNbWd4aqTvK0o7c3Mp+Ho6rvx8NEYjnooKTMnJxNx+BzqrtV5Zt0uxal4pjkoPI660YTRpUUpxaF8Nxfkuyg6UsXhOJVvXVaPVQkp7I9ZADUGhWkZPCGT9CgcAtqTapDJ/bzmfTfoVgISeYcR0CmHB5J0Ex1joMS7hpHFbkiLo+uE95Ez7ldzpKzEMjKLfba+e8vnatpbX+12r0dE+/thVqy2G4GPuE8ch7b1PJPkVDaY1Gwm5aDAhFw3GU2GnbM4Kyuetwr5uJ3Ev3IfWdPpDb/0lKLY9wfGd0JksRHYeyp7Z/6l7rHf4pURba+fi9Im49LTP4VYu9rlqE+wRI0aQmJjo03HOgnzypk3B2rEzQQMHoWpqMKe0wdrh2CG+DoeXC6/OZvc+Jx4P9OhiJDHewMp1DkpKa4cghYZouWxMAG+9EMn6LdUsW1XNL8vsBAVqSc+s7aG2hWlZvtrBr2vtvPZ+WV39cxfZmb/Yzl03BTP5mcgTXm32uj3krMwiY/5eSnYXUJVTgU5vxmiUntvmJnOAhBCnQ6PVYu3RBWuPLiiPh6rVGymd/Qs5z79B9CN/xJR88oTobGQwBxLVbjDVFQXEdhlJ5sYfcZTlARDT6XzadhyHRqMltdulpHY7/fY+/dAyADRoiAr2bYiuUorcTz5Go9cTesGFeJ1ODOE2Anv3QXOc9UE+/uchfp5au6Xi9Ddz6dArgMw0B7mZR7f76T/Mwj8mR6EUrFlmZ9ncKrxKUVLoobTIg04PlYU1rJ6yn0Vv7q6b1xwcbWb6g+tI7hfO5c/0JCD8xPO6q/bkUPzLViq2ZVCTXQyAOTjC59dKNB5p730jya84I7ogK7ZrxxA4tCfZf3+bikXrCbl4iL/DajBTkI32F91V93uP65/GU+OgprKYyJ2+LeZxKnZvBV5qG5ZHHnnE5+M8lZWgFOEXX1q7PcP/UErVbsv0m4Ur7OxIc7J0RjzDJ2RT+7DixiuDiI7Sc/lFAbRJMmC11i6+cckNhwH44j/RTLw8CINBw94DTt7+pIxvf6okO8eNwQAuF9x4VRChIVq27dLx3r9OvE+x1+1l6YNzKNh4mNAOESRc0IbglDD0y4ZgkOS3+ckcICHEGdLodAQO7Y+1f09yX3iLsh9/JuqB2/0dVoNpdXpSB1xV93vQRX/G5SinuqKAAFsSGm/j7BKQU1Db0Z1o64PGh8WujvBUVBB28cWEnn/swlLK40Hz2xaMNQ4vv3xVxE1/jWXD4nIy91RT4/DQbVAgAy/S02d4EAN7ebH+tjPCE3/MZem8Km59IIyJd4QQFKKjoszDT9Mr+P77CrbPy6777I/uGEz7YdHs/DmHy57uiS3pxNPacqatIOe/yzCEBxIyoD2Rl/QhoEsigRs7+/ycRSOS9t4nkvyKRmFMiMbapyOVv24+J5Pf3zNYgjBYgjCHRqHdldkodZq1VgwYseliueQS34ZLK6XQBdUO98l6/V+EnHc+lrbtqNq+jZpDmbiKS1BuFw/uD+apR2ysXl9NcJAGr7f2Ey01ycDN1wRz18N5lJZ5OZjp4t5JIazeWE1ZmZcAq4Y/3BzCjVcdHVLUvo2R15+L5PXnIvnzP/KZv7iKVbOTCAvV8Y8XC9HrTj63eO832ynYdJjzJ19CzKCjV7fz18qwJSGEOJdpjUaCRg6h+KuZeCoqz/ltZnR6I7qgCMxBv12ptDdONmALbYujupS20cN8P0gpNEYjxT/+SE1GBoF9+1GTkYFjzx5cxcV4qyqxdOxIVlcNlWVuvF5o283KlH/Vbmdw2+PxTP5zBpl7qtm0rJzkNyLYvbUGe6WX9H1OUjsaueMhW93pgkJ0XP+HUKJu6MqepblMu38tf/jmfGI6hJCxoei3mE4crn1/HjlfLid64hDibj6//vaCGxvyagnRvCT5FY0mYFB3Ct6ajiuv2N+hnJWMGjPDrRPRarR1w4VramrYu3cv3bp1q1e2sLCQ119/nYw33sBTVYXGYEAfZqN87WrKli9Fb7Nh7dCJoD7heGtq+PSrBUz9vpyiktqrwCOvPMwVFwfw4eRoOg3NoE93ExeNDOBv/yzkk6nl6PWg12u4dHQA//dn2zGxHtG7u5n/fFxGWYWXsFAdbVIMZB12s3l7Db26HXtF3J5XyY6P1tHuqq71El/hPxpv7a0h5YUQ4kSsvbtTPG0G9k3bCTrf9/msrUmvLregQYu+onZhS6/yUFVdSJCl/qgppbwcKtlCZtF6Kh+tneerDQqiJjOLqi1b0JhMBHTthrVLF7RmM2UrlvPQpUV4f9ti8Zlb9xMeY+BfMzrwzv9lUV7i5k//TuLjZ7OZNPYQGg3oDdC+i4kHnznxUOS4rqEA5O4qJ7ZTKKHxVjRaSFuay5CUY1f7Vl5F5n/mYk4MJ+6mYfUTX+E30t77RpJf0SA/DH33hI85ensZ87mG4dvf58KR4T7XuXDx3xsjtAZb//HpbzN0pjo9/Rruqkr2//tJANr/30toDUfnSmd98S6OrHTuusVEh3YhTPumikPZBaxYF0VFBSQn6dBqM4Haq9K7cyL498uVfPeNo66OARfoeOPrAkrKPDz1SgAJiXra9bfxx1+vxNwhBY1exzqg37rjx9juTzvZbl8OwLCheroHnI9HuQnUzmLImEL6BY4lUBeGt6p2wQqlFFs8y9EqPQkzOlEys/5CFoudf2ukV080iAyDEkL8Jlzr29STD0d/ctLHn5hjJXfdT7z/zA5eGHD2D38Omra6UevTR/o2pzX9D7Xzfff/53lcpUUk3vRHAlLa1z1etHIhBdvnENixG9deH8qBjWWs+zGPP33ZmyBbe8JiTRhMOqAGqMHl7MaKLzL4/tV0jBYtToeXNn1DyCoysn5RObc+347ul8XwRJ8oXv22K+YObdBaLVQBz+cBC46NMXSjluLdtV8EZr+wl8ycWwAI71rDgld/Zc+m3oR16AtA9Fc7Acis3ondcZgBgZcSdmvRMXWqGt/22/U6HKcuBMz3fuNTuVZP2nufSPIrGo3FquXK6wP4bmoV/ft4GzTPpTVSLidotegsVlAK5XFTtT+N6sOHsB/cS9zVt/DyPxcBMPoCM33Py+Xhx8q4/55Aioo9/HeaneISD48+GEx8Fx2vTA7h+ZeDMRg0eDyKj96v4j9vVHHp5WYSEmvf6r16G7GUtD1lbDX7M1lZ8QNObzVJxi60NfcGQKfR0zdgLOsq57DVvpTBgZfXHZOt9lOgsumpOw+D5txb9KylkgUwhBCN7YrbbDx2SxZpW05vy77WRmex4iotQquv3UXBnnUQZ1EBRb8uJKTXQGIvvZbzrp3FkGviOLSrkq+eTGP8I23xehUbZueTsbWcARNi6Dcumov/kMCY2+PR6mq3Wtq2tJj/3LMLW6yJAZfWbksZHm/G2qvrKePylFdy4KevqDi0h+CkzsQOGlf3WPyQ8Xhq7GQu/oqA2FSMQbWjxCo9JaQ51pBo7ESY4dze+qqlkfbeN5L8ikZ1wUUWvvigkvSMJaSmXODvcBqsoqKCn3/+mSVLlrB06VIqKipo164d77zzDu3btz91BQ1gCLXR/rEX8DqdlG1eR/m2DVQfygCtjrCB5xPYpSdQm/wmJep59w0bf/tHKT/Oqe0pTYjXUV2tuPO+YuYuru2FNhg07Nju4pkny9m0wcWtt1n588PHn5PlLi2ncsk63PlF6CNtWHp3xpQSjyungLx/fUKwJph+QZdg1QXVO86ktdDNeh5rKmezsmIG4URjVxUUqsPEa9sSpZXhzmcV2fpACNHIOvexEB6t5+NX8gkJO/c6u5VSlFBQd6vGjh4jbehMlCa+0c+XPOlPeN0uqg6kUfLDFMp31E6KtSa3JWrU0U5krVbDLa90Ycrfd/H+H7cBYLLqCIk28fkjO2nTO4S4BB06vYbyQicz38xk2fRcupwXynX/1wajWXfMub1OF1VrNlKz9yC64EBM7VKx9OgMHi/5b32Ct6iUNpfeTXBi/R0kNFotCcOuojJ7P3u+f5Pg5M4UVpWS60rHog2io1WGvJ91pL33iSS/olH17GvitnuD+PSdxcTF9sNkOncWOVqyZAk33XQT2dnZtG3bluHDhxMcHMzrr7/OW2+9xZtvvtlo53JXlFGxezsanZa8WbXDeSxJbYi//g6sqe3rDYE+4uoJVi6/xML2nS6qaxQR4VouGp9P+3a1b+MN651MvOLofOtxl5n5x9PHvv6u/GLKfviFqjVb0eh1GBKicWxJo2zGQkKvvgjHlt3oQoPpZx+L/gRXcEP10fQNGMNh5z5yXRmYNVbaa3uRqG3cDgJx5qQnWAjR2CxWLY+9Fstfb8iic69tRMb29HdIPqtWdrazllIKMWAklAhCsHGYdPaxnSgaL/n1upxU7N6Gp9pOydrluEoKMUXGEHnBpYT2HYLOZD7mmIROgfzt+34UpDsozqkmvlMgH963jaAII9YQPZUlTp6dsImS3KNbGj34Uddjth701jgpm7uIyqWr8dodGJMTqN57kPKfl2Hu1hFjYhzO7Bw6TPgz1sjjb1ulM5ppe9k9FO74lYqsNBzuahKNHUkyd0WnkRTibCPtvW/kP1c0ukl3B/H5e06yDq2kXdux/g7HZzfddBM5OTm8/vrrREZGsnPnTqZNmwbA6NGjG+08ubm57J/8TL37gnv2J3bC9ac81mjU0KdXbUJ60fh8SksVCfF63nq9kh++s9crO3tWNbfd6aR3n/oJbNH703EXlhI28SICh/VDG2BBeTyUzVxE6bfzAYi4/0b0U04+dDnCkECEIQFvlf2k5YSfyRwgIUQT6DkogN5DrezdtoSImB4n3Pf9bLOfnZRSSDIdCCKMGhwUcBgXTmJIarTzKKXInPIO1dlHd4zQWQNJvfvRUx6r0WiISrUSlWrll48zObi5nE5Dwvj5gwzsRTX1El+AhZ8fZtSk+kl7+fwllP+8lKDzBxF0wVAMUbUjxBzbdlHw3hSqt6cROGzACRPfI8xhUSScdwVwdM6vOEtJe+8TSX5FowsO0ZIQP4isQyuJjx+IxRzm75B8csEFF/Df//6XBx98EIDw8HAuueQSpk6dysCBA8+4/pkzZ9KtWzcmT55ce4dWB14P4cNGEzZ4OB57FXlzv8fjsBM5+jLM0XEnrW9APyMH0928/3ElAJ99GUaHDnqiY3TMm1PNfXeXkpHuoXefo8csW1JDzb5cIh+8BWvvo/vwaXQ6Qq8cjdZqpmrVFizd2gGHzvg5N5eSkhKmTJnCNddcQ0yMzEH6X9ITLIRoKtffG86jN2ZRkLOFqLhe/g7HJzYiySGdDPYAoEVLKBF0ZyBRnDwR9EW5qxCXqsGjXFQXHE18gzr3JHLExSjlpWj5Air378I2cATBXXqdtL6wGBO2ODMZ2yvYvbKEMXfE8895fYlOMWMv9/DggNVk7Kysd0xliYuKRRsIGjYQ23Xj6z1m6d6ZqAfvpPjLHwgY3A8qzvgpNxuv18vnn39Ojx496Nu3r7/DOetIe+8bSX5Fk0hOGkFu7ib27v2JHt1v9nc4Pvnkk0+46667SElJwWazYbVaG60nOyMjgwkTJhAZGcn06dOZvn0fltR2HPr8HYqWL8BTU40hOISK7ZvQWQLI+uxt2j74xEnr/OcTofzziVBmz3Nw0x1FzJ9bzbDzQwDYtLG2V/i8849evd200cnjj5Vh6pSKpVen49YZPHYYwWMbsC/hWWLhwoX86U9/YvXq1Xz55Zf+DufsInOAhBBNpNfgACJiurN/1yxskR3RGyz+DumUYjXJBKoQtGgxYUGHvtHaeqUUK0u+BeA827XYBo0guOdA0t9/mYpdW3BXlBMxfCyFy2pHWR3+/gt0lgACUk88ZajvuGj6joumotjJ4+f9ypofC7jyoRQ0Gg0ZO2qT3pTuR9fmKCtw8vGje1BeRci4Ucet09w+lbinf9vxYlNjPPPmkZGRwe23305gYCDl5eXnzGiDZiPtvU8k+RUN0t3oW8NW2TmEKDWarF+/ozhVi1Z/9q/+q9frGTasaRK/Rx55BICCggKGDh1KzMCxlO/ZWvd46drlhPcfAUBwh56UbFlJyaJfmDrp2P31jjEUjIYNTJtSQdau+zCbQsgv2glMY3CfEpLjz6NN4gWs2PAvdDobO5f9Qps2bU5d7y2n8UT9ZPz48TzxxBNcf/2ph463NtITLIRoqCFm36ezhF5+E4UfvEBWcCZB7budsNwY4w0+1fezc6rP5/bVgkbeKme07trj3p+tDtT9XFWSQ/TICXidNXX3OQ4dpGzjKrRGE+bYRGoK8yhcPAdr3L18m93neFXWEz22jNy52/n3Ax0ITeqGy1EBbOer5w7w89QwkgaMJ2vdj5RkOujh6U/UY2mnrFNj9P37mcfHrYka+/U+IjU1lU8++YSIiAhJfI9D2nvfnFvL84lzit5Uu5+gy34OjalpRBs3buSPf/wjb775Jr169QLgP//5D8bfGhpLbBJoj74Fi9YtAaBky0oACtcuYu+60lOeRylVN7Tc63UDEGHrSGLMILzKzcFDS0g7+BM1zgo6tbnMt8T3HGMwGHj22Wfp3LnzqQu3Nuo0bkII4SOtubZT3FVZfoqSLZNbudjt3UiadxNWVXsFNpRIbEQDoDEYMccenUtcvmszXmcN9ox9eKoqqM7PpvDX42zAexzBnWJrz1lT2zlhsASRNOgqAIoPbCBr/SxKMrYS1WkoUdrGX7X6bHDbbbdx2WWX+TuMs5O09z6R5Fc0mcr8g+gtgRis586Kz43prbfe4r333uPPf/4zRUVFLFiwgHvvvbfucUNQKMlX3nncY/WBta/Z+p/yTnoOpRTfPLePsopMurS7AqslHACtRkfHNuOItNUmg4fzN9I26ULCglMb46mJc8iRnuCG3IQQwleOwxkAWKJbZrJ1KsXkcYh9ZLGXXaynr2YkvTTn1V2Z1Gg0JF5zxwmO1qA8XorXLkV5vCc9T8Hyvex54xfC2/YlvF2/uvujOg0hoX/tdknF+zcQHN+R2O4XNspzE+cWae99I8OeRZMJju9I4c6V7PruFcI7DsTWri/GwHNj8avGkJp6NNGMj49n1Khj59647bXzdQwh4YR27UdV1j7QaNDqDVRWlrNieg7XP9PxmOOOWD7tMEu/zKZTm8uJizp2yFTPTr4NMxNCCCFOhzk6AX1gMBlfv09ot36EdO2HOSax1QxLNXJ0u6IAggnTRJ60fPToK6g6uAePswad0Ujlvp0ot5fynYcJ6X78BbeqMorY9fxPRA7vQFLidcfsqxzTdTgxXYef+ZMRohWQ5Fc0mZCkLnS64i/kbl5IzsYFHF43l4jOg0kccgUa7bEbsbc0//jHPxg2bBgdO3YkLu74KzcHJLUj/pIbAEX2nGn1HtPoDQwaH37C+l1OL7PfSmfwVTEE5PRvzNBFS+JVtbeGlBdCCB8ZAoNpe8ejFK76hbIdGyjesAJLfAoJEyZhCGz5I79CNREM4iK8eAnWHL+DX2e2EjvuOoy2SDL++1b9xywBaPQGgruceIeH9M9+xRQZRKe/jsXxtQzaFCcg7b1P5B0kmpTFFkfqBTfT46ZniOt/CYW7VlKRvdffYTULrVbLyJEjT5j4Qu3Q59Cu/SjZuua3ezTog0Ix2qJAq+XSP514mPKOJUVUlri48LbERo5ctCgyB0gI0cR0ZivRIy+n/b1PkXj1nVTnZVO0drG/w2o2gZqQEya+8Nt2gj0GYM/YV/u7wYjOGog5NhGPo4qYMVeg0R3/K7mrzE7Rqv3ET+iN1ijXrMRJSHvvE0l+RaOrrDp23orOaCayy1AAqgoyUa10efUTOTL82RQRTXCHHjiL84kbdRWh0aYTHrNsWjZtegcT2y6gucIU5yANDZwD5O+AhRDnBLvdi/d3V440Wi1BbbtgjoqjOi8b5XH7Kbqzk8dRBYByObH1PY+awjyCu/YlqEP3Ex6TM287Gq2W6FGyoKM4OWnvfSPJrzhjSikcDi9ffF1OROf9hLTbz8YPHyJz+de4HEc3XtcZzYR3GEDOhnns+vYVSg5s9l/QZ5n4S64nZuR4PM4aijcsI3LIRYR27XfC8o5KN3vXljJgfHQzRinOSUf2/WvI7TS88847pKamYjab6du3L8uXLz9h2e+//57Ro0cTGRlJcHAwgwcPZv78+af7DIUQzcTrVSz9tZpLJ+YR1e4QwQlZZHz1Lo6crHrlwvoMxZ61nz1vP0P+inkoj8dPEZ9dwoeMIvL8iwnq3IuC5fOwxqcQe/E1Jz2maOV+bANSMIRYmylKcc5qhva+JbT1Mn5CnJGCQjcx3Q8e97HC3avxVG3lujcGENkuCHuJE+MfIsnYMIi1Uw+yd+EXdDt/C/CX5g36LBC2t/4XgTASICSBvIpZpHS9hISokbDXw+vfXH7c4yt3bcfrWcGq4qvY8E0Ue35tfa+h8E1z7Ps3ffp0HnzwQd555x2GDh3K+++/z8UXX8zOnTtJSko6pvyyZcsYPXo0L7zwAqGhoXz66adcdtllrFmzht69ezc8ACFEo7Jojh11NPa6bBYsPXb/36qMvRz84jXaPn4FYYM74Kl2EtM/Btuld1IwdxP5P/2CV5dFYsCQFrMI1gLPdJ/KDR/3yu/uMREbOILtuz4lNLwd3TvfjmanBnBR7Dh2tWxPtZ2K3XnEDLuc4p9qH4+bscOnc3t87HD4ueoLn8qJs19Tt/ctpa2X5FecEY1GQ5cORnbucZKSqOf/HrRx2ZgAbvncwoJ/76Qky867Vy5Bo9OgPAqdQUv3SxO4+LFuWEMNLHh1J57HPeh0LX8BrONx1lRSUZROeFw3AHQGMx6385THOQ7uRR9mwxgZ1dQhinNdQ+f1nEbyO3nyZO644w7uvLN2667XX3+d+fPn8+677/Liiy8eU/7111+v9/sLL7zAzJkzmTVrliS/QpylOrc31iW/Tz1i47brgsnMdnP++EMA7H/+B9Bq6hbRCeyeSMItw7F2iOXgv2ZRFtSeUH3rbLOU10NB7jbCo7ug0xnR6c24HMWn7AyoyklHeTwEpXRqpkjFOa2J2/uW0tZL8ivOSES4jm1Lk4+5f+ANbcjdVca22dkAKE/tO8zj8rJ5RiZbZmTWjbYoLCwkOrr1Dd9Vysvauc8AMGjcP9HpTYCGwsNbSew4iqqyw6S/9iVai5W4G25HHxxSd6xGb2i1CxWIhtEohaYBQ5uOlC0vL693v8lkwmQ69mqQ0+lkw4YNPPbYY/XuHzNmDCtXrvTpnF6vl4qKCmw2m89xCiGa12v/jOS1f9bfxicx3kDi3aPI/nwp3mpXvdVjK7dlsfuvUzBG1q74bPeUtdrkN23bt+Rnb6Rz7xuJjO0BGqgoO4SjqhCDMZDt6z/FsaKc+AuvISj56PaGWt1vX9OlvRc+aMr2viW19TLnVzQJnUHLlS/15c/zRjH64S6Yg/ToTb/9u/02zcAaZqTz6FgiIiL8G6yfuF0OAIJsyegNZjQaDZ3634yjIp/C7K3s2/wdruIiarKzqM4+Op9Keb1Upe3EFHfsECkhjuE9jRuQmJhISEhI3e14vbpQ23nl8XiO6cCKjo4mNzfXpxBfffVVqqqqmDhxYoOfnhDCv2Im9KfnlPtp87fLMSdF1F79/R+u0ioCOsURqo/xU4T+Z6+o/Sy0RdVewW3b+VJMpiAy9y0ic/8iykvScZUXU35ge73jyg/uRGe2Ygg+8UrSQtRpwva+JbX1cuVXNKnQeCtDJrWjy5g4vrhjJVUlTnR6DY4yF/YSJ7sW5ODxtM5hzwZjAIMvfR6d3giAx+OisrQ2yXVU5lNVll1XNqBDZ8o3r8dxcB/K7caZn0vU5Vf7JW5xbjndnuCsrCyCg4/u0Xm8q771jvvd8D2llE/z+6ZNm8bTTz/NzJkziYpqnVeFhDjX6QPMhI/oStiQjux/aSala/ZisAXiKqxAuTxU7T6MPbAMqy7I36H6Ra/B96LR6tBotCilKCtOx+utXQk7//DmunLhPYbiyMuicPMKDIHBFG1aRtTA0UevAAtxEs3R3reEtl7eTaJZhMZZue2L8/jltZ1s/ekQwdFm2g+PpsPwGIxGo7/D85sjiS9AedEB0nfMBsAW3ZmstIWYYuOoycnGVVJE3g9fgdcLGg2W1HaYk068B7AQdU5zDlBwcHC9xvBEIiIi0Ol0x/T85ufnn3I6w/Tp07njjjv45ptvGDVqVAOCFEKcjbRGPW3/bwK536wm55vVaM0GQge2I6hbIrYvT7znfUun1RnqflbKw65NUwCIiO1OeWkmAUGxVFXkUnVoH+UHdlKZsRuN3oDWZCG853n+Cluca5qwvW9Jbb0MexbNJijSzBUv9OGeb0cQGGEmbVEusZ1CTn1gKxES0Q5rcO2wsG2/vg8oanJqr/46Du5HazRhaduBdk+9Qvyke1rMqpni3GY0Gunbty8LFiyod/+CBQsYMmTICY+bNm0akyZNYurUqYwbN66pwxRCNBOtXkfc9UPp8ekfsQ3rTPGyXZhiQtFq5CsngFarJy5lKAA71n+Oo6qAqoocQFFTko/XVQNaLV3ueY4udz+L3to6r5aL09CEWx21pLZervyKZhfdIZjr/zOA965eysI3dsIF/o7o7KDV6ug94kGqKvIoydtNcc4OKkoyAcj/8RsMEVFEjr0cTSscIi7OQEP38juNff8eeughbr75Zvr168fgwYP54IMPyMzM5J577gHg73//O9nZ2XzxRe2WGtOmTeOWW27hjTfeYNCgQXU9yRaLhZAQ6RAToiUwhFhJefASXCWVpL81j2R1tSTAv2nb+TISUs6jtGg/hbnbKS7YDUDR5hVoDSYSL7oRrd5wilqEaF4tpa2X5Fc0iS+2DTxlGeNo2PrdIux2O1Zr69q8ffkPj/hULjAwkKqqKh5//HH+/ve/ExAQ0MSRiZamOfb5vfbaaykqKuLZZ58lJyeHbt26MWfOHJKTa1eCz8nJITMzs678+++/j9vt5r777uO+++6ru//WW2/ls88+a3gAQohG5T2yEo4P8g6HnvRxy8XjKPvnWxQHZBNhSDjDyM4tljX7TviYFQgjjFSGsdXoJse5j1hjO9pa+xCw1gxrdx33OE9ZmU/nXuD95nRCFuewpm7vW0pbL8mvaFbVu9Mpm7sSZ0YOnpJylNdLXl4eqakyf/V49uzZQ2hoKAaDgZdeeomLL76Yfv36+TsscS5phiu/APfeey/33nvvcR/7fSO3ZMmS0zqHEOLc4C4soXzeUmr2HsRdWAJAjdfu56jOXp0DhtIxYBAmrYWcmv2UufOJM7X3d1jiXNMM7X1LaOsl+RXNwlPpoGzOCspmLsWYFE1A/y7oIkKx9u4oie9JxMXVLhAyefJknnzySdLS0pgyZYqfoxLnEo239taQ8kIIcTqUx4N93VZKvpwJeh3WPt0IGNwHU9tk4t6t8Xd4Zy2Dtnbxy3J3EVsrFwFI8isaTNp730jyK5qUp8pB6XeLqFi8HuXxEHrFSEKvHIlGK/N+GuKbb2qHL7Vr187PkYhzTjNd+RVCtF5KKSoXraJ8/jI8RSVYenUh/I6JaK2WujIazR4/RnhuKHLVLnIZrIv0cyTinCTtvU8k+RWNSimFy1Xb+6vR6Sj6eCb2LXsIuXgIQWMGoQ+VVQt9sWDBAiorKxk8eDDFxcWsXr0agDvvvNPPkYlzzmlufSCEECfjcqm6785VK9ZRMnUm1kG9Cb7/FoxJrXdbo4aodJdQ5SnFrAskSBfOHvsaAFIs3fwcmTgnSXvvE0l+RaOoqfHy0Zfl/Onxgto7tE+jDw/BXVBCxD1Xo48MxXkgG02HZHSBlpNV1eotWLCAMWPGAKDX6/n73/8OwIgRI0hIaF2LhYgzd7qb3gshxO8ppZi/yM7fni1i5x4XADrbC3jKKrEO6k3IuJG4cgvQWkzoI8P9HO3Zza1crC6bgQc3AO0sR9fziDKm+CkqcS6T9t43kvyKRhHd7SAVlUcnDwSe1xO8CtU+kYpf1lCzLwsAjcVExB0TCBzSo66sUkr2rP0fnTp1Qq/X43a7cbvdTJw4kS5dunDeebLRvTgNMgxKCNFIXnithKf/VVL3e+f2BrKSuuEpLUPVOMl58rXazxCNhqBRQwmdOK5umpO09fXp0GPVBVPhKQEUJq2VXoGjMOsC0Wnk67k4DdLe+0TeXaJRvPxEBEtX2blwmJXPvipn5fLNdW8qY3IsMX+/DX2UjZJvfqHg7a/B6yXwvF7Yt+xBe4OW4OBgrrvuOl5++WVCQ0P9+lz8LTExkdmzZ7No0SLGjh1Lt27d6NZNhkCJ06SgAbuWtNphUEKIUxs60MLVlznp18vEocMe/vNxGez9FQBtUABhN47H2rsrVWs2U/rNHLzVNdhuuRJVXcOisim4cRKhT6CDpT9BOpufn41/aTQaegaNIrs6jQBdKHGm9tI5IM6MtPc+keRXNIq7bwnh7ltqN6yeMDaQiz6JwxBowhodSHj3GDRaDVCF6jeIDS9Vk/7etwTn7SIywkoeUF5ezgcffMDixYvZs0cWxRgzZkzd0GchzoQMgxJCNJSW4y9KecHQAC4YWrvfvNer6NvDzEtZvTCGBxLcNQ691QhUQ89O5LXxsvvluZicRYQPboMbJwCF7kMUVhzivJBrCdAHN9dT8ot5hR/4OwTRikh77xtJfkWjC7fpaHvl8a9UarQa+j42AmOohUOL9mPPqQCgd+/eHDhwgL179/LOO++ccA8xIUQDKRo4DKrJIhFCtCBarYZbJgbz2Y7jt/fRo7qg0WnJ/Gote1//BQAdBkyaAOyqlB1VyxgQcmlzhixEyybtvU9kvxnR7DRaDT3uHcSgZ0fV3bdp0ya++uorxo0bR6dOnfwYnRBCCCEaQ9TITvR85WqMEYEAeHARb25PsrkbkcZEP0cnhGiN5MqvaHbKq8j8eS/r/lm7kftll13GrFmz+Oqrr/jpp5/8HJ0QLYwsgCGE8JOKPXlsvHcKAIE6G5WeYvY5NjAm/A4/RyZECyTtvU8k+RXNylPj5ocLPqp3365du0hLS2v1C10J0SS8QEPWUGnIYhlCCHECO57+kcIVe+t+r/QUMyh4AjqtwY9RCdGCSXvvE0l+RbPy1HgIiA/G6/LQ477BVGSWUvRTFh06dPB3aEK0SLIAhhDCHwyhVgBSJg0huGs8W//6DVqNlkBdqH8DE6KFkvbeN5L8imaltxpoM74Lldll5K7KpCKrjC7t2/s7LCFaLhkGJYTwA1u/ZDQ6DZUHCrFnFANg0bXs1Z2F8Ctp730iya9oEm0DC457/+qP09j2zna0eg3GAAPVZU7aTbq4maMTohWRxlAI0UA1yuVz2Wr3scOYK9Ny2PH0jwCYokOoySvDqDFj0JsbLUYhxO9Ie+8TSX5FswpLDkRv1gEw/E9dydpQyB13yMIXQjQZaQyFEM1MF2DCnGCj+lAxEaO64SqzE7Ek0N9hCdGySXvvE9nqSDSrjqPiMVr1uKs9FOwp47IXB3Deeef5OywhWi7vadyEEOIMWBJshA2pXcvj8FerSL3/IpKsXf0clRAtnLT3PpHkVzS7lEFRANhSg/wciRAt35EFMBpyE0KIMxXcIwkAa/sYP0ciROsg7b1vZNizaFaZ6wvYOSeLqI4hdLs02d/hCNHyyTAoIUQz8zic7HvpR7QmPSl/HOXvcIRoHaS994lc+RXNyuOqHWMx4i/dMQW17r3+1q1bxx//+EdycnL8HYpoybyq4TchhDgTSqE8XiJGdyewY5y/o/GrvLw8Hn74YRYvXuzvUERLJ+29T+TKr2gWZdlVaHQaUgZFEdEumPVf7iN1cLS/w2p2LpeLqVOn8vPPPzN16lQAunTpwgMPPODnyESLJT3BQohm4q6sxllYgTUlkqhLepE/dzNJd45EZzb6O7Rmt2jRImbMmMFbb70FQFpaGiNHjvRzVKJFk/beJ5L8iia3bWY6c57cgM6opcvFiRTuK6dwXzlKKTQajb/DazZ5eXl07tyZkpKSuvvuvvturr/+ej9GJYQQQpw5e0Yh2+/7BOWuveJbuGAbULvtUUjP1jPNyePxcOONNzJ9+vS6+zp16sRzzz3nx6iEEEdI8isaZIHDt3+ZjXf3BMDjcbJi83y0WgMep4udsw7TJn4EJmMwm+7pVVt4VRMFe5ZZu3ZtvcT3ySef5JlnnvFjRKJ1aGBPMK2zJ1gIcdTbpR18LqumRAKQvWwuGvQonBQu2EZku0GYAm0EbOiG2mbGW5bZVOGeVaqqquolvueddx6LFi3CYGjdU71Ec5D23heS/IomUeOsIDN3FRVVubjcdpSqnes7pNeDmI2tc5XnsWPH1v185ZVX8uSTT/oxGtFqyDAoIUQT8bi95OxciqMsl+LMLXX3pw65nsg2/fwYmf8EBwfTu3dvNm3aREpKCt9++60kvqJ5SHvvE0l+RZOosOeSfngFAF3ajEcpL0EBsa0y8d20aRMHDx5k9OjRlJWVkZaWRu/evdHpdP4OTbQGXkWDendb6QIYQoiGc9V4ydr4IwBRHYcSFNUWrVZLaHzr29O3tLSUqVOncvXVV7N27Vo2bdpEx44dCQ4O9ndoorWQ9t4nstqzaBI1zgoA2iWOIj6qLwnR/QkJTPBzVP7xj3/8g6uuuoo333yT4OBg+vfvj14v/U6imShvw29CCOGD4kMOAIKi25LS/0rCk3sSltgdjbb1fb2cNm0a9913H9dccw16vZ7+/ftL4iual7T3Pml9n06iyRUXuNl5YAZxkX1IiTvP3+H4XYcOtXOnDhw44OdIRKt0ZBhUQ25CCHEKSim+emw7ltAY2p8/yd/h+F1KSgoAe/fu9W8govWS9t4ncvlJNLqPXswDIDX+fDQa6V95/vnnGT58uGxxIPxDhkEJIZrA5jm55KRVkDroYvQmq7/D8buxY8eyYMECkpNbz8rW4iwj7b1PJPkVjS4gSIdOa8Rqtvk7lLOC1WplwoQJ/g5DtFayAIYQogkYzLXrVlht8X6O5Oyg0WgYNWqUv8MQrZm09z6R5Fc0qr3bHSyeWUaUrbu/QxFCQG0ncIMawyaLRAjRQtjLXCz64ABhcWYsIdH+DkcIAdLe+0iSX9Egf91+9Qkfc+zP4eCTX2KMiWHn2iWEhoY2X2BCiOOTnmAhxG/yPZU+lXtn8/ATPuYpqyTvjWm4DrmIeew2Ij4t9KnOudVf+lROCHGapL33iSS/olGUr91DxvPTMSdFkfLU9ZL4CnG28HqBBqzo6G2dqz8KIU7NXVJO9mNvgcdL9F9vwdQmASjxd1hCCJD23keS/Ioz5q5wkP2fnwjq257k/7sGjb5171/r9XrRtsJtHoQQQrRcSikKP5qBRqcl/pU/owsJ9HdIfiVtvRDnJnnXigar3HyAksVb2X71i1TtyqJwxiq8NS7i7xvXqhPfwsJCgoKCCAsLw9tKe9PEWUi2PhBCnAbnoXyqNuwi8/5XKJ21jOrd6Tg2pRF+2+WtOvH1eDyMHz8enU7Hnj17/B2OEEdJe+8TSX5Fgx188ksOvTYT5XRTungr5avTCB7UEUN4kL9D84u33nqL66+/nt69e1NZWUl5eTl2u93fYYnTtHPnTjQaDZ999pm/Q2kc0hgKIU5DyfT55L86BU9xGaXfL8a+Zju60ECs/br4OzS/WLZsGVdeeSXDhg3jxx9/BGD37t1+jkqcic6dO3P55ZejWkq7J+29TyT5FQ0WNqpX3c/F8zZSk1VIUJ+2/gvIz5544gm++uorDh06BMDDDz9MYGDr7RU/18XGxgLw/vvv+zmSRuJVDb8JIVq9wPP71P2sapyU/7waS48OaDQaP0blP++99x4//PADq1atAqBfv36MGTPGz1GJM2G325k1axZOp9PfoTQOae99InN+RYPF3jkGU2IEuZ/+QkCPFKKuOY/Anqn+DqvZORwO7r//fsrKygCIiIjgzTff5Prrr/dzZOJMhIWFkZmZiclk8ncojUIpL0r5Pgy/IWWFEC2XtW9nov96C/n/mQ5A+M2XEDist5+j8o/XX3+dadOm1f3+0EMP8dJLL2EwGPwYlThTu3btIiMjQ9r7VkaSX9EgoR8GAUEE1Qwml1/QHdKQsLYHrP1dwcv8EV3z2r59O5988gkANpuNzMxMLBaLn6MSjSExMdHfITQe1cDe3VY6DEqI1mBOVRufykX9VJsMeD1dKFZGXDWVJBf3QT/32DZOFRT5VOdo3bU+lVvgme5Tueb0xBNP1P28f/9+2rTx7XUUZzer1Urnzp39HUbjkfbeJ5L8Cp8opeqGOpUW7mPX+v+iN1iJjOvh58j85/PPP6/7+auvvpLEV5ydlKJBO9m30sZQCFG/ra+xl7Jn6Se4aqqISO2LVm/0c3T+8eOPP1JZWbs/8vPPPy+Jrzh7SXvvE0l+xSm99GYxj79YxLjRAezb8wM5GasIjWhPp743YDAG+Ds8v1m4cCEAY8aMYfTo0X6ORogT8HpB04ChTa10GJQQrd2BLRU8P3ErliAdtmQL2dsXYjAH0m3snwkIi/d3eH6zePFiACwWCw8++KB/gxHiZKS994kkv+KUxo0O4PEXi5i9oAqoXehBpze16sQX4JlnnmHLli38+c9/9ncoQpyY9AQLIXwQ394KgKPCQ/b2XwBwVVdgCY7yZ1h+N2nSJDQaDTfccANWq9Xf4QhxYtLe+0SSX3FK3TubWPx9Ai+9VcyG3e2wV+ZTWZbt77D8buLEiUycONHfYQhxUsrrRTWgJ7i1LoAhRGtnsur497J+fPNKOrvW29AZTJRkbaOmqhRLcKS/w/Obnj17MnnyZH+HIcQpSXvvG9nqSPjk/MEW5kyNp33Pq3BWl2GL7kxNdZm/wxJCnIrs+yeE8FFYtIk/vNqRzhf8Aa/biSU4GjSalrMPqhAtmbT3PpHkVzRIeUkmbpeDkoI9rF3wPKWF+/wdkhDiZGTfPyFEA3m9Hspy92CwBLF11kukr//e3yEJIU5F2nufNNqw5/KK1nnpvDUoKvYy+f0Sqqq8HD7wKwDVVYUAFBzeSmBIwjHHlJeXN2uMQpzL5P0izhXS1p/bHJXuEz7m9SoWT80le6+djN0zQCkqi2unOJXn7cPtqj7ucW7l9OncHuXyqZx8HoqWSv63zw5nnPwajUZiYmJI7pveCOGIs9/uer/lZqwmN2P1MaVCQp5sroCEaBFiYmIwGptgKxGlgIas/tg6e4LFyUlb31Ic8LFcbQe31+UAoLq8gA3f/KOJYqovJOSHZjmPEP7QZG09SHvvozNOfs1mMwcPHsTp9K3nTwghxLGMRiNms7nR61VehdL43sDJ3D5xPNLWCyHEmWuqth6kvfdVowx7NpvNTfaHFEIIcQaUl4b1BMuwVnF80tYLIcRZTNp7n8hWR0II0YJJT7AQQgjR8kl77xtJfoUQogVzq5oG9e668W1RGiGEEEKcPaS9940kv0II0QIdWaBoRe6cBh/bpAtyCCGEEKLRSHvfMBrVWq95CyFEC1ddXX1aCxQ15YIcQgghhGhc0t77TpJfIYQQQgghhBAtntbfAQghhBBCCCGEEE1Nkl8hhBBCCCGEEC2eJL9CCCGEEEIIIVo8SX6FEEIIIYQQQrR4kvwKIYQQQgghhGjxJPkVQgghhBBCCNHiSfIrhBBCCCGEEKLFk+RXCCGEEEIIIUSLJ8mvEEIIIYQQQogWT5JfIYQQQgghhBAtniS/QgghhBBCCCFaPEl+hRBCCCGEEEK0eJL8CiGEEEIIIYRo8ST5FUIIIYQQQgjR4knyK4QQQgghhBCixZPkVwghhBBCCCFEiyfJrxBCCCGEEEKIFk+SXyGEEEIIIYQQLZ4kv0IIIYQQQgghWjxJfoUQQgghhBBCtHiS/AohhBBCCCGEaPEk+RVCCCGEEEII0eJJ8iuEEEIIIYQQosWT5FcIIYQQQgghRIsnya8QQgghhBBCiBZPkl8hhBBCCCGEEC2eJL9CCCGEEEIIIVo8SX6FEEIIIYQQQrR4kvwKIYQQQgghhGjxJPkVQgghhBBCCNHiSfIrhBBCCCGEEKLFk+RXCCGEEEIIIUSLJ8mvEEIIIYQQQogWT5JfIYQQQgghhBAtniS/QgghhBBCCCFaPEl+hRBCCCGEEEK0eJL8CiGEEEIIIYRo8ST5FUIIIYQQQgjR4kny24SmTp3K66+/ftzHNBoNTz/9dLPGI87ckiVL0Gg0LFmypNHqTE9PR6PR8NlnnzVanf9rzpw5J/xfS0lJYdKkSU1y3iNWrlzJ008/TWlp6TGPjRgxghEjRjTp+c8FGo2G+++/399hCNHknn76aTQaDYWFhacse7zPh9+3nU3xmSzOLU3RjkyaNImUlJRGrfMIu93O008/fdz/2c8++wyNRkN6enqTnPuIF154gRkzZhxzv7yfajXkc0qce/T+DqAlmzp1Ktu3b+fBBx885rFVq1aRkJDQ/EGJVmfOnDm8/fbbx02Af/jhB4KDg5v0/CtXruSZZ55h0qRJhIaG1nvsnXfeadJzCyHOXb58PvTp04dVq1bRpUuXZohIiDNnt9t55plnAI5J2seNG8eqVauIjY1t0hheeOEFrr76aiZMmFDvfnk/idZAkl9qP4isVmuznnPQoEHNer4TUUpRXV2NxWLxdyjCD3r37u3X80sDK4Q4EV8+H4KDg8+a9vREGvodwx/fScTZITIyksjISL+d/1x4Pwlxpho87Hn37t1cf/31REdHYzKZSEpK4pZbbqGmpqauzPbt2xk/fjxhYWGYzWZ69erF559/Xq+eI0Mrpk2bxuOPP05cXBzBwcGMGjWKtLS0emU3bdrEpZdeSlRUFCaTibi4OMaNG8ehQ4fqyiileOedd+jVqxcWi4WwsDCuvvpqDhw4UK+uESNG0K1bN5YtW8aQIUOwWq3cfvvtTJgwgeTkZLxe7zHPeeDAgfTp06fu97fffpvzzz+fqKgoAgIC6N69O6+88goul6veeWbPnk1GRgYajabudsT/Dt3asmULGo2Gjz/++Jhzz507F41Gw48//lh33969e7nhhhvqXo/OnTvz9ttvH/fv9XtHhle+9957dO7cGZPJVPe38aXeI3+3qVOn8re//Y3Y2FgCAwO57LLLyMvLo6Kigj/84Q9EREQQERHBbbfdRmVlZb06fHn9jryG3bp1Y/ny5QwaNAiLxUJ8fDxPPPEEHo+nrtyRYcOvvPIKzz//PElJSZjNZvr168fChQuPeQ18ff12797N2LFjsVqtREREcM8991BRUeHT63wihw8fZuLEiQQFBRESEsK1115Lbm7uccuuX7+eyy+/HJvNhtlspnfv3nz99df1ytjtdh555BFSU1Mxm83YbDb69evHtGnTgNqhW0ee2//+Hx4ZUvX7Yc8NeV8uWLCA8ePHk5CQgNlspl27dtx99931hgk9/fTT/PWvfwUgNTW17vxHhlQdb7hacXEx9957L/Hx8RiNRtq0acPjjz9e7zPmyPO5//77+e9//0vnzp2xWq307NmTn3766ZR/h+b8P/bl8+v3lFL83//9HwaDgQ8//PCUz0eIc01WVhZXXnklwcHBhISEcNNNN1FQUFCvjC/DWY83THPSpEkEBgayb98+LrnkEgIDA0lMTOThhx8+5nPE6XTy3HPP0alTJ0wmE5GRkdx2223HxDJ9+nTGjBlDbGwsFouFzp0789hjj1FVVVWv3JFzb9u2jTFjxhAUFMSFF154wviPDK/cuHEjV199NWFhYbRt2xZo+PeaVatWMWTIECwWCykpKXz66acAzJ49mz59+mC1WunevTvz5s2rd/y+ffu47bbbaN++PVarlfj4eC677DK2bdt23Nd6ypQpPPTQQ8TExGCxWBg+fDibNm067uuwY8cOLrzwQgICAoiMjOT+++/HbrfXK+vr81RK8corr5CcnIzZbKZPnz7MnTv3hK+trz777DM6duxY933giy++OG45X/9XFi1axIgRIwgPD8disZCUlMRVV12F3W4nPT29Lrl95pln6trEI+3w8YY9H/n7rlu3jmHDhmG1WmnTpg0vvfRSve+s1dXVPPzww/Tq1YuQkBBsNhuDBw9m5syZ9eLTaDRUVVXx+eef153/yPvsRMOef/zxRwYPHozVaiUoKIjRo0ezatWqemWO/C/v2LGD66+/npCQEKKjo7n99tspKys75d+huf6PvV4vzz33HB07dsRisRAaGkqPHj144403Thrf7t27adOmDQMHDiQ/P/+Uz0ecxVQDbN68WQUGBqqUlBT13nvvqYULF6opU6aoiRMnqvLycqWUUrt371ZBQUGqbdu26osvvlCzZ89W119/vQLUyy+/XFfX4sWLFaBSUlLUjTfeqGbPnq2mTZumkpKSVPv27ZXb7VZKKVVZWanCw8NVv3791Ndff62WLl2qpk+fru655x61c+fOuvruuusuZTAY1MMPP6zmzZunpk6dqjp16qSio6NVbm5uXbnhw4crm82mEhMT1VtvvaUWL16sli5dqmbOnKkAtWDBgnrPedeuXQpQb775Zt19f/nLX9S7776r5s2bpxYtWqRee+01FRERoW677ba6Mjt27FBDhw5VMTExatWqVXW3IwD11FNP1f3eu3dvNXTo0GNe84kTJ6qoqCjlcrnq6g0JCVHdu3dXX3zxhfr555/Vww8/rLRarXr66adP+TcEVHx8vOrRo4eaOnWqWrRokdq+fbvP9R75uyUnJ6tJkyapefPmqffee08FBgaqkSNHqtGjBmCLGQAA9KpJREFUR6tHHnlE/fzzz+rll19WOp1OPfDAA/Vi8OX1O/K3Cg8PV3FxcerNN99U8+fPV3/6058UoO677766cgcPHlSASkxMVOedd5767rvv1DfffKP69++vDAaDWrlyZb2/iy/PMzc3V0VFRan4+Hj16aefqjlz5qgbb7xRJSUlKUAtXrz4lK/179ntdtW5c2cVEhKi3nrrrbrnc6TOTz/9tK7sokWLlNFoVMOGDVPTp09X8+bNU5MmTTqm3N13362sVquaPHmyWrx4sfrpp5/USy+9pN566y2llFL79u1TV199tQLq/R9WV1crpZRKTk5Wt9566zF/31O9L5VS6t1331Uvvvii+vHHH9XSpUvV559/rnr27Kk6duyonE6nUkqprKws9cADDyhAff/993XnLysrq/sbDx8+vK5Oh8OhevTooQICAtS///1v9fPPP6snnnhC6fV6dckll9R7PY/EOWDAAPX111+rOXPmqBEjRii9Xq/2799/0r9Fc/0f+/r59b//09XV1eq6665TQUFBau7cuSd9HkKca5566qm6995f//pXNX/+fDV58mQVEBCgevfuXffZodSxnw9KHdt2Hnkv/+9n8q233qqMRqPq3Lmz+ve//61++eUX9eSTTyqNRqOeeeaZunIej0eNHTtWBQQEqGeeeUYtWLBAffTRRyo+Pl516dJF2e32urL//Oc/1WuvvaZmz56tlixZot577z2VmpqqRo4cWS++W2+9VRkMBpWSkqJefPFFtXDhQjV//nyfXo+//e1vasGCBWrGjBlKqYZ9rwkPD1cdO3ZUH3/8sZo/f7669NJLFaCeeeYZ1b17dzVt2jQ1Z84cNWjQIGUymVR2dnbd8UuXLlUPP/yw+vbbb9XSpUvVDz/8oCZMmKAsFovavXv3Ma91YmKiGj9+vJo1a5aaMmWKateunQoODq73uXvkb5CUlKSef/559fPPP6unn35a6fV6demll9Z7DXx9nkdeqzvuuEPNnTtXffDBByo+Pl7FxMQc83/iq08//VQBxzyfxMRElZycXFfO1/+VgwcPKrPZrEaPHq1mzJihlixZor788kt18803q5KSElVdXa3mzZtX9zyOtIn79u2rF8/BgweP+fu2b99evffee2rBggXq3nvvVYD6/PPP68qVlpaqSZMmqf/+979q0aJFat68eeqRRx5RWq22XrlVq1Ypi8WiLrnkkrrz79ixo97f+H/fT19++aUC1JgxY9SMGTPU9OnTVd++fZXRaFTLly8/5u/TsWNH9eSTT6oFCxaoyZMnK5PJdMz3u+Nprv/jF198Uel0OvXUU0+phQsXqnnz5qnXX3+93nfAI8+loKBAKaXUkiVLVFhYmBo/fryqqqo65XMRZ7cGJb8XXHCBCg0NVfn5+Scsc9111ymTyaQyMzPr3X/xxRcrq9WqSktLlVJH32C//0L79ddf131RV0qp9evXK6CuMTieVatWKUC9+uqr9e7PyspSFotFPfroo3X3DR8+XAFq4cKF9cq6XC4VHR2tbrjhhnr3P/roo8poNKrCwsLjntvj8SiXy6W++OILpdPpVHFxcd1j48aNq/fh+b9+34C/+eabClBpaWl19xUXFyuTyfT/7N13eBR1/sDx9/bNZtN7T+i9N2mKCIiCigWsCHaxnOKdp1f0d3eWU89eUE8Ru2dBBRWR3nvvNQ3Se986vz9ioiEJ2Q3ZlOXzep59HnbmOzPf2Szz2c/MtyiPPPJI7bJJkyYpsbGxtclDjfvvv18xGo11jt/YcQMCAuqVc3W/NX+3qVOn1in30EMPKYDy4IMP1ll+1VVXKcHBwY3W52yfX83f6vvvv6+zzZ133qmo1WolNTVVUZTfkt/o6GilsrKytlxJSYkSHBysXHLJJW6f55///GdFpVIpu3fvrlNuwoQJzU5+582b1+j5nJnU9ujRQxk4cGDtTY8aU6ZMUaKiohSHw6EoiqL06dNHueqqq8563Pvuu09p7D5XY8lvU/8vz+R0OhWbzaakpqbWO8cXXnihXjCvceaP27ffflsBlC+//LJOueeee04BlF9++aV2GaBERETU3nhTlOqbFmq1Wnn22WcbrOeZ5+np77Er16+ac7nvvvuU/Px8ZfTo0UpMTEy9754Q3qDmR+XDDz9cZ3nND+xPPvmkdtm5JL8NXUcuu+wypXv37rXvP//8cwVQvvnmmzrltm3bpgDKW2+91eA51Fzv1qxZowDKnj176h17/vz5Z/0catR8Hk888USd5c35XbN9+/baZfn5+YpGo1F8fHzqJAi7d++ud0P/THa7XbFarUrXrl3r/J1qPutBgwYpTqezdnlKSoqi0+mUO+64o97n8Oqrr9bZ99NPP60Ayvr16906z8LCQsVoNCrTpk2rU27Dhg0K0Kzk1+FwKNHR0Y2ez+9/v7n6Xfn6668V4KzX79zc3Hrf4xqNJb+AsmXLljple/XqpUyaNKnR49jtdsVmsym33367MnDgwDrrfH1968T+Gmf+f6r5jPr27Vv7u0NRFKW0tFQJDw9XRo4cWbus5rv8/PPP19nnnDlzFKPRWOczbkhrfY+nTJmiDBgw4Kx1+X3y+/HHHyt6vV558MEH63wGouNyudlzRUUFa9asYfr06Wftj7By5UrGjx9PXFxcneWzZs2ioqKiXjOJK664os77fv36AZCamgpAly5dCAoK4s9//jNvv/02Bw8erHfMH374AZVKxc0334zdbq99RUZG0r9//3rNN4KCgrj44ovrLNNqtdx8880sXLiwtnmGw+Hg448/5sorryQkJKS27K5du7jiiisICQlBo9Gg0+mYOXMmDoeDo0ePNvrZnM1NN92EwWCoM+Lv559/jsViYfbs2UB1k5YVK1Ywbdo0TCZTnXO97LLLqKqqYvPmzU0e6+KLLyYoKKj2fXP2O2XKlDrve/bsCVQP1nDm8oKCgjpNRt35/Pz8/Op9R2688UacTidr166ts/zqq6/GaDTW2Xbq1KmsXbsWh8Ph1nmuWrWK3r17079//3rHbq5Vq1Y1ej6/d/z4cQ4fPsxNN90EUK+emZmZtU2Qhw0bxpIlS3jsscdYvXo1lZWVza7f7zX1/xIgJyeHe+65h7i4OLRaLTqdjoSEBAAOHTrUrOOuXLkSX19frr322jrLa5qEndmMfdy4cfj5+dW+j4iIIDw8vE49z8bT32NXrl81kpOTueCCCygpKWHz5s31vntCeJOa61uN6dOno9VqWbVqVYvsX6VSMXXq1DrL+vXrV+fa8MMPPxAYGMjUqVPrXGcHDBhAZGRknd8OJ0+e5MYbbyQyMrL2//uFF14INHy9u+aaa9yq75nl3f1dExUVxeDBg2vfBwcHEx4ezoABA4iOjq5dXnON+/3nYLfbeeaZZ+jVqxd6vR6tVoter+fYsWMNntuNN95YpxtXQkICI0eObPBvd+bfuSbe1ZR19Tw3bdpEVVVVvf2NHDmyNu6468iRI2RkZDR6Pr/n6ndlwIAB6PV67rrrLj788MN6TbebKzIykmHDhtVZdub3GeCrr75i1KhRmM3m2rj8/vvvNzsm13xGt9xyC2r1bymD2WzmmmuuYfPmzfWasTf0+6GqqsqlpsKt8T0eNmwYe/bsYc6cOSxdupSSkpJG6/P0008za9Ys/v3vf/Pqq6/W+QxEx+XyX7GwsBCHw9HkCMX5+fkNjlJX86XNz8+vs/z3SSWAwWAAqP0RHxAQwJo1axgwYAB/+ctf6N27N9HR0Tz55JO1feuys7NRFIWIiAh0Ol2d1+bNm+sNVd7YKHq33XYbVVVVfPHFFwAsXbqUzMzM2uQTIC0tjTFjxnD69GleffVV1q1bx7Zt22r7VTY3+QgODuaKK67go48+qu3PumDBAoYNG0bv3r2B6s/Obrfz+uuv1zvPyy67DMClYdnPPP/m7Dc4OLjOe71ef9blVVVVgPufX0RERL36R0ZG1ta7oeVnLrNarZSVlbl1nvn5+Y3ur7ny8/PPej41srOzAfjjH/9Yr55z5sypU8/XXnuNP//5z3z33XeMGzeO4OBgrrrqKo4dO9bsekLT/y+dTicTJ05k4cKFPProo6xYsYKtW7fW3jxo7v+Dms/99z9EAMLDw9FqtU1eP2rq6urxPf09duX6VWPr1q0cPXqUGTNmyEjwwuuded3TarWEhITU+z/eXCaTqc7NUKi+NtT8H4bqa21RURF6vb7etTYrK6v2OltWVsaYMWPYsmULTz31FKtXr2bbtm0sXLgQqH+9M5lMbo+if2Zcdvd3zZnXLKi+bjV1LQOYO3cuf//737nqqqtYvHgxW7ZsYdu2bfTv37/Ba2ljsfHMv13N37ShbWvKunqeNeVbMi67s09XvyudO3dm+fLlhIeHc99999G5c2c6d+7cZH/SprgS6xYuXMj06dOJiYnhk08+YdOmTWzbtq32t21z1HxGjf2udzqdFBYWnrWuZ/5+OJvW+B4//vjj/Oc//2Hz5s1MnjyZkJAQxo8fz/bt2+sd+5NPPiEmJobrr7++ybqLjsPl0Z6Dg4PRaDRnHaQFqr/0mZmZ9ZZnZGQAEBoa6mYVoW/fvnzxxRcoisLevXtZsGAB//znP/Hx8eGxxx4jNDQUlUrFunXrav+T/d6Zy878YV2jV69eDBs2jA8++IC7776bDz74gOjoaCZOnFhb5rvvvqO8vJyFCxfWudu4e/dut8/rTLNnz+arr75i2bJlxMfHs23bNubNm1e7PigoCI1Gwy233MJ9993X4D6SkpKaPM6Z599S+3WFu59fTSL4ezUDRJ15gW1o4KisrCz0ej1msxmdTufyeYaEhDS6v+YKCQlh69atTe6z5v/I448/ztVXX93gvrp37w6Ar68v//jHP/jHP/5BdnZ27VPgqVOncvjw4WbXtSn79+9nz549LFiwgFtvvbV2+fHjx89pvyEhIWzZsgVFUep8T3NycrDb7c26fniCO9/jpq5fNWbMmEFkZCR//etfcTqd/O1vf2uNUxGiTWRlZRETE1P73m63k5+f3+CPfE8JDQ0lJCSk3sA5NWpalaxcuZKMjAxWr15d+7QXaHDucmj8N8bZnLmNu79rzsUnn3zCzJkzeeaZZ+osz8vLqzc9HTQea8/82zX0Nz0zfrt6njXlGzt2c+bkbWqfv+fqdwVgzJgxjBkzBofDwfbt23n99dd56KGHiIiI8GgS9cknn5CUlMT//ve/Ot+nMwd5c0fNZ9TY73q1Wl2nJWFbcvV7rNVqmTt3LnPnzqWoqIjly5fzl7/8hUmTJpGenl5npPWff/6ZGTNmMGbMGFasWNHsVgaifXH5yW/NiH5fffXVWZ8ujh8/vjZQ/N5HH32EyWQ6pyHUVSoV/fv35+WXXyYwMJCdO3cC1U0XFUXh9OnTDBkypN6rb9++Lh9j9uzZbNmyhfXr17N48WJuvfVWNBpNnTpA3cCjKEqDI7K68wQKYOLEicTExPDBBx/wwQcfYDQaueGGG2rXm0wmxo0bx65du+jXr1+D59qcHw6e2m9D3Pn8AEpLS+uMdA3V8yer1WrGjh1bZ/nChQvr3AUsLS1l8eLFjBkzBo1G49Z5jhs3jgMHDrBnz556x26ucePGNXo+v9e9e3e6du3Knj17GqzjkCFD6gTaGhEREcyaNYsbbriBI0eO1DZFcueuq6sa+jsCvPPOO/XKunP88ePHU1ZWxnfffVdnec3om2cbNbU1ufs9rtmmoevX7/3tb3/jlVde4YknnuDxxx9v+YoL0U58+umndd5/+eWX2O32Jkd3bklTpkwhPz8fh8PR4HW25iajO9e7lqxbS/2uaYpKpap3bj/++COnT59usPznn3+Ooii171NTU9m4cWODf7sz/8418a6mrKvnOWLECIxGY739bdy40eVuLmfq3r07UVFRjZ7P77n6Xfk9jUbD8OHDa1sE1VzzPRGTofrvqNfr6yS+WVlZ9UZ7rqmDK8fv3r07MTExfPbZZ3U+o/Lycr755pvaEaDbA3e/xwCBgYFce+213HfffRQUFNQZZRuqm8DX3JgZM2bMObeqE+2DW/P8vvTSS4wePZrhw4fz2GOP0aVLF7Kzs1m0aBHvvPMOfn5+PPnkk/zwww+MGzeOJ554guDgYD799FN+/PFHnn/+eQICAtyq4A8//MBbb73FVVddRadOnVAUhYULF1JUVMSECRMAGDVqFHfddRezZ89m+/btjB07Fl9fXzIzM1m/fj19+/bl3nvvdel4N9xwA3PnzuWGG27AYrHUmQYGYMKECej1em644QYeffRRqqqqmDdvXr1mH1D9xGfhwoXMmzePwYMHo1arGTJkSKPH1mg0zJw5k5deegl/f3+uvvrqep/Xq6++yujRoxkzZgz33nsviYmJlJaWcvz4cRYvXszKlStdOs8zeWq/Z3Ln84Pqu4733nsvaWlpdOvWjZ9++on//ve/3HvvvcTHx9cpq9FomDBhAnPnzsXpdPLcc89RUlJSO5m8O+f50EMPMX/+fC6//HKeeuopIiIi+PTTTxt8mrp69WrGjRvHk08+WTt9VUNmzpzJyy+/zMyZM3n66afp2rUrP/30E0uXLq1X9p133mHy5MlMmjSJWbNmERMTQ0FBAYcOHWLnzp189dVXQPU0XFOmTKFfv34EBQVx6NAhPv744zoBqebHw3PPPcfkyZPRaDT069evttlQc/To0YPOnTvz2GOPoSgKwcHBLF68mGXLltUrW3P8V199lVtvvRWdTkf37t0bTOBnzpzJm2++ya233kpKSgp9+/Zl/fr1PPPMM1x22WVccsklza5zS3L1e+zK9etMf/jDHzCbzdx1112UlZXx2muvNetJkhDt2cKFC9FqtUyYMIEDBw7w97//nf79+zN9+vRWq8P111/Pp59+ymWXXcYf/vAHhg0bhk6n49SpU6xatYorr7ySadOmMXLkSIKCgrjnnnt48skn0el0fPrpp/Vujraklvxd05QpU6awYMECevToQb9+/dixYwcvvPBCo90vcnJymDZtGnfeeSfFxcU8+eSTGI3Gejfs9Ho9L774ImVlZQwdOpSNGzfy1FNPMXnyZEaPHu3WeQYFBfHHP/6Rp556ijvuuIPrrruO9PR0/u///q/BZssXXXQRa9asqZOwnUmtVvOvf/2LO+64o/Z8ioqKGtynq9+Vt99+m5UrV3L55ZcTHx9PVVUV8+fPB6iNX35+fiQkJPD9998zfvx4goODCQ0NbdbT69+bMmUKCxcuZM6cOVx77bWkp6fzr3/9i6ioqHpJW9++fVm9ejWLFy8mKioKPz+/BhN4tVrN888/z0033cSUKVO4++67sVgsvPDCCxQVFfHvf//7nOrcklz9Hk+dOpU+ffowZMgQwsLCSE1N5ZVXXiEhIYGuXbvW229UVBRr1qxh0qRJjB07lmXLltGnT5/WOi3hCe6OkHXw4EHluuuuU0JCQmqHsZ81a1bt1CmKoij79u1Tpk6dqgQEBCh6vV7p379/nZFsFeW3EeW++uqrOstrRu6tKX/48GHlhhtuUDp37qz4+PgoAQEByrBhw5QFCxbUq9v8+fOV4cOHK76+voqPj4/SuXNnZebMmXVGjrvwwguV3r17n/Ucb7zxRgVocOohRVGUxYsXK/3791eMRqMSExOj/OlPf1KWLFlSb8TJgoIC5dprr1UCAwMVlUpVZ8RdGhnp7+jRowrQ4LRLv/+MbrvtNiUmJkbR6XRKWFiYMnLkSOWpp54663nVHPf30wS5u9/G/m41IxRu27atzvIzh4tXFNc/v5q/1erVq5UhQ4YoBoNBiYqKUv7yl7/UGQW55jvz3HPPKf/4xz+U2NhYRa/XKwMHDmxwiglXP7+DBw8qEyZMUIxGoxIcHKzcfvvttVNi/b6eixcvVgDl7bffbvyD/9WpU6eUa665RjGbzYqfn59yzTXXKBs3bqw32rOiKMqePXtqp7rS6XRKZGSkcvHFF9c5zmOPPaYMGTJECQoKUgwGg9KpUyfl4YcfrjM6ucViUe644w4lLCys9ntYM5JkY6M9N/X/8vefj5+fnxIUFKRcd911SlpaWoPf7ccff1yJjo5W1Gp1nc+vodFc8/PzlXvuuUeJiopStFqtkpCQoDz++ON1rjGK0vh3+cxzakhrfY9dvX41dC6ff/65otVqldmzZ7f7ESbXrFlTOxI5oHz77bdNbrN69Wpl0KBBisFgUJKSkpR58+Z5vqKizdX8X9qxY4cyderU2mvhDTfcoGRnZ9cpey6jPfv6+jZ67N+z2WzKf/7zn9r/y2azWenRo4dy9913K8eOHastt3HjRuWCCy5QTCaTEhYWptxxxx3Kzp07610XGzt2U5/H768tv3cuv2sSEhKUyy+/vN7yM683hYWFyu23366Eh4crJpNJGT16tLJu3bp6n3/NZ/3xxx8rDz74oBIWFqYYDAZlzJgxderz+89h7969ykUXXaT4+PgowcHByr333quUlZU16zydTqfy7LPPKnFxcYper1f69eunLF68uMHvyeDBg5XIyMgGP9Mzvffee0rXrl0VvV6vdOvWTZk/f75y66231putw5XvyqZNm5Rp06YpCQkJisFgUEJCQpQLL7xQWbRoUZ19LV++XBk4cKBiMBgUoDZmNTbac0N/34bq+O9//1tJTExUDAaD0rNnT+W///1vg9/73bt3K6NGjVJMJlOd0bIb+v+kKIry3XffKcOHD1eMRqPi6+urjB8/XtmwYUOdMo19lxs6p4a01vf4xRdfVEaOHKmEhobW5jG33367kpKSctZzKSoqUkaNGqUEBwfX+41wvvCWWK9SlLPcFhOiDV100UXk5eWxf//+s5ZLSUkhKSmJF154gT/+8Y+tVLvfPProo3z++eccO3as3gArQpwPlixZwoYNGxg0aBDXXHMN3377LVdddVWj5ZOTk+nTpw933nknd999Nxs2bGDOnDl8/vnnbo+SK4RoHTWtnL766qt6I/KfadasWXz99dd1RshvLaWlpQQHB/PKK680Or6HEMJ93hLr3Wr2LISob9WqVfz973+XxFectyZPnszkyZNdLv/2228THx/PK6+8AlRPW7F9+3b+85//SPIrhDgna9euJSYmhjvvvLOtqyKEV/GWWC/JrxDnaNu2bW1dBSEaVFVVhdVqdXs75YzRtqF6gJSWGmF206ZNdUbRB5g0aRLvv/8+NpsNnU7XIscRQpx/Lr/88npztQvh7dpjvG+vsV6SX9Fu1Uwa35TExMSzDmohxPmoqqqKpAQzWTkOt7c1m831mis2NaCbO7KysurNeR0REYHdbicvL6/RudiFEG3noosucjnWLliwgAULFni2QkIIoP3G+/Ya6yX5FUIIL2S1WsnKcZC8IwF/P5dntaOk1EnS4FTS09Px9/evXd6S84pC/XlNa35Uy8jWQgghhOvac7xvj7Fekl8hhPBivubql6scvz7Y8ff3rxMMW1JkZCRZWVl1luXk5KDValtsTnEhhBDifNLe4n17jfWS/AohhBdzouDE9W4B7pRtrgsuuIDFixfXWfbLL78wZMgQ6e8rhBBCNEN7i/ftNda3SPLb3E7WQgghqun1eo+MGO7EidPN8u4qKyvj+PHjte+Tk5PZvXs3wcHBxMfH8/jjj3P69Gk++ugjAO655x7eeOMN5s6dy5133smmTZt4//33+fzzz90+tmg9EuuFEOLceCrWg+fjvbfE+nNOfs+lk7UQQohqkZGRJCcnt3hQdCgKDjcGhHOnbI3t27czbty42vdz584F4NZbb2XBggVkZmaSlpZWuz4pKYmffvqJhx9+mDfffJPo6Ghee+01meaoHZNYL4QQ585TsR48H++9JdarlHMcJrekpISAgABSdyS61claCHF+cad5TbKtwqVydx++scky9qIK9t29AB+/cDoNuw6DObjRsivmP+ByHVtSSUkJcXFxFBcXt1i/m5prc/rhGLcHwIjrcbpF6yI6Pon1QghXWRS7S+VS7a61JPlb6pVNllEUhXUPLcGalU/4PVdh6pV01vK7r37UpWO3JE/E+pr9Srx3XYv1+fX3U+Pvp2mp3QkhvIw7zWvMNtcu3lrfpkckTP9gNSqVmp4X3YnWYDprWW+8+Le3PkCiY5NYL4RoikVxLd6b7a7Fep2vvskyWWtPYDmWTtTjMzEN6NpkeYn352+8lwGvhBBeqzI9n5yfdhPf7/ImE19v5UTBIcFQCCGEl3LaHRx5dyM+/Tq7lPh6K4n3rpHkVwjhVZx2B2WHTlO07ST5qw9iCPMnsuuotq5Wm5E7wUIIIbyNoiiUpRaSuyWFrNUnKD9dTOz9TXeF8mYS710jya8QwisoikLmV1vI+GITjgoL2gATAYOTiLlhJOoV5+/0Oa0x4JUQQgjRWvJ2pLPv+ZVUZpWg1msIGRjL4Kcupygxqq2r1qYk3rtGkl8hRIdnySoic+FWshftJOLKwYSO74Nvl0hUalVbV63NOX99uVNeCCGEaG9spRYyVx3j4OtrCeobRZ+5FxE8IAaNoTqdKcpq4wq2MYn3rpHkVwjRYdnLLZx4YTFFm4+j0mtJuPcSIq8c0tbValccbvYBcqesEEII4WmKonD8w20c/3gbit1J9ITu9H10PBq9DL73exLvXSPJrxCiVSTbXZu+CODS7x5pdJ3TZqN8526qDh/FumseiuKkb/BEInw6o/1BDz9U1ttmSVrj+/N2DqX65U55IYQQormO220ulZu6aO5Z11ceOkLlvoM4Nn9GhbWATiEXEB84EGO6PzxQ/8nl8UN/a2aNvYPEe9dI8iuE6DDshUXkzP8Qa9op9HExxPr2Js7cF5M2oK2r1m5JMyghhBAdiWK3U/DVd5Rt2Iw2NIRIn1j6RF5KsCm+ravWrkm8d40kv0KIds9eUEDpxi2UbtiESqcj6pEHMcTH0f2F9LauWrvnRIUD1/s+O90oK4QQQrQUZ1UV5dt3UbpmPbbcPIJvvA6/kcPp+UZeW1etQ5B47xpJfoUQ7ZbTaqNg4feUbdqCSq/HPHQQgZMnovHza+uqdRhOpfrlTnkhhBCitSiKQtmGLRR+uxjFasWnTy9Cbp6BIUGe9LpD4r1rJPkVQrRLtpxccuZ/hD03l+BpV2C+YBhqg6GtqyWEEEKIFuK0WCj44hvKt+3EPHI4AZMnoA0KbOtqdUgON5/8ulPWm0jyK4Rod8p37ibv86/Q+PsRNfdB9DHRbV2lDkuCoRBCiPbImplF7nsf4SgsIvTWG/EdOqitqyTOA5L8CiHalcXfVpK74BNMgwYQOuNa1D7Gtq5ShybJrxBCiPbmVKqdrBdfRxsUSNSjD6GLDG/rKnV4Eu9dI8mvEOKcPJLl2p3aXz4f3mQZS342qf+bR7i5KwMrLkW1oBwob7T8krRXXKzl+cupqHAqbgyA4UZZIYQQ54+7To10qdz6xf3Put5pqeL0VwvQOsoYmXgX2jUGoKrR8ksOPetONc9bEu9dI8mvEKJdKD68m8wl/0PnH0ivoEmoVOfnRbmlyZ1gIYQQ7YUlJ4uMrxZgLy2mf/cb0GplLI+WIvHeNZL8CiHalNNuI2fNDxTsWId/j4FEXzod49KStq6W13CgxoHajfJCCCFEy1IUJyX7dpL949fogoJJuPNhgvea27paXkXivWsk+RVCtAmn3U7Omh8o3L0RRVGIvGQaQQNHyxPfFqa42QxKOU+bQQkhhPCM4r3byf1lEY6KMvz7DSHismtQ6w1ARVtXzatIvHeNJL9CiFalOOyUHNlD3paVWAtyCB1xCf49BmIIkcEuPEGaQQkhhGhtiqJQmZ5M4abVlB3Zj1+fQQQOGoFPQme5ye0hEu9dI8mvEKJVKE4nJYd2kbN+CbbiAnwTuhJz2Y0YI2LaumpezaGocShuNIM6Tye9F0II0TIqT6WSu+IHKlNPoAsJI+rqm/HvI9MYeZrEe9dI8iuE8KiKgiqOLk3j+HvLsRXl49elD3FX344xLKqtq3ZecKLC6UYfICfnaTQUQgjRbHaLg1MbTnHwy8Nk7shCHxZJzIzb8e3WE5XK9Rgkmk/ivWsk+RVCeETKxkx2f3aM1M1ZAPh16Ufs1Jn4RMW1cc3OL9IMSgghhKcUp5Ww98N9pKxMxVpmI6xPKNHX3Yq5e19Uakl6W5PEe9dI8ivEeabQ6doAEy/kjXCp3HfrhtZ5rzgcFHz9HaUbNqFPiCPo6qvwHdCfTut8IBfItTW5zyUHn3Hp2KJp7jeDOj/vBAshhDfJcZS5VO6VfNfm7gVYvrVPnfdlW3eS/+kiNH5+mMdcSOiQAegiI4hfqsBeJ+A8+/7W/tXlY4umSbx3jSS/QogWYzl1mqLFP1F55BghM67FPHL47wa2OF8H1RdCCCG8h6O4hJIVaylZsQbfEUMInjENtV7f1tUSwiWS/AohzonidFJ5+AglK9dSdfQYmuAgwu+ajalXzya3tVrLKClMxS8gDoPRvxVqe/6p7gPketMmd8oKIYQ4PyiKgjUji9JV6yjbugOVWkPg1Evxn3Rxk6M3O50OCnMOYzSFYPKLkNGePUTivWsk+RVCNEvG3gLWv32QtO0/oFgs6ONjCZt1M6b+fVFpNPXKlxSnk5d9gLKS08QmjiEgKIm9W/9LeVl1n2CTbxghEX0ICunKyZMn6dSpU2ufkldyujnp/fk6AIYQQoj6ynIrWffmQU6uz6IstwpNgD+BUybhN2oEapNPvfL2wiLSj+2gpDCNgJBOxHYey8n9i8lM2QiAzmAmKKwb4bGD2LZtG0OHDq23D9E8Eu9dI8mvEMItljIbq1/ex+5vkgnvFkDAxPEYu3TGkBjf4N1ce0Ehp/7vaVJ+t8zPP5aUo0upqMij39A7sVnLKco/TvrJVaSfXEXnzu9is9nQauUSda6kD5AQQgh3KYrCzi9OsPb1A2j1GvpemcBJ4yh8enZD1UBsVhwOsl//L5ZjJ2qXOewWKstyyUrdQlKvy/ENiKYo9zi5p3eRc2onw4a9x+bNmxk+fHhrnprXknjvGvllKYRwy4oX9nJ4aTqXPNqfgTM689X6sw+WUXXiZJ33fv6xZJ7ahs1aisEYhMk3HEOIP+FR/SkuTKaiPJfFixdL4ttCnKhl6gMhhBBuObz0FMv/vYf+1yRx0UN9MPrryVrfq9Hy9sKiOomvRmtAb/QnK3ULAH5B8QSEJBEU1hWAU8dX8cQTTzB48GDPnsh5ROK9a+TXpRDCLcWnyjGHGQmINlFZZGmyvHnoYHwHDSD+JxtlZVmgwK7NbwBgqSpi/84FdOt9NSePLqGiPJc+g2YxZcoUT5/GecOhqHAobkx94EZZIYQQ3qnodDkAcYNDKc+vwuCnO2t5XWgI8a/9G1QqQr/OQmcws3X5swCo1VoObJlPnxG3k3NqF1mpW4hOGsU//vEPj5/H+UTivWsk+RVCuGXE7d1Z9NhWvvnDJgB00Tvx6dYFbWgozvJyHOUVOKuqassrNhuKzU6Q74UEBCWgKE76Db0TX79ILJXF7Nr8Jjs3vY6PKZReA24hJLzpgbKE6xxu9gFynKd3goUQQvym7xUJHPwxnR/+sg0Ac5gRpVMq+vg4FKsFZ1k5jvJKUKqnM1IcTpSqKnz69CQhoHqqxAFj7kOt1qL3CWD32jfYs/4tNBo9CT0mEd1pdJudm7eSeO8aSX6FOM8EqU0ulZsWsKPhFZPhoUlR5GY52LW1ihXr7BzctIWi9TbMQVoCgrQYzdraMQS1BhVH95VyuIeNiHtuA1RAZ4oB8CVi4r3YcwowDexFuU5LOQq9H3/ZpToGnDj7HII1/H7a61K5pWUfulSuI3Eqapxu9AFynqd9gIQQwpuEa8wulZseuLXhFYFw28oASor92LfTwtYNFjasP0jqNzsw+WvwD9Li669Bo62O9mo1ZGRbKDp0iPQFA1Gp1UB47e5CL5tN5d7jmAZ0QxVgJhPo/ZiLsT7ZtVjvv+KIS+UAfs571+WyHYXEe9dI8iuEcJtarSIiWsulV5lJvCwKqB4co6EBrxRF4cmr9pJnaLjJlCExFkNibKPHUhQn1sI89IEhqNT1R5FuDc899xwvv/wy8+bNY9q0aW1Sh+aSO8FCCCGayz9AzahxPowa58M0W0ijsR7g4+cz+PnTPGhgvTbIH78LB531WNbiAjRGExqDsUXq7q5NmzYxZcoUbr/9dp577rkONyWTxHvXSPIrhGgRjQWJ/AwraYcqCLt/IAD2ohLKVm+hfOMu7LkFAAROv4yAyWMb3n7LKnJW/whqNb6J3fCN64whLBKN0UTViQxKC1IpL8zA6BdKQr8pGH2DW/ScdDodNpsNgBtvvJHVq1d3qJEpnbjXr8e1++tCCCHOR2dLCLcuK2bslUEcU6lwWm2Ub9xDyYqt2E7nolis+AzoRuSfbm1w28qsUyR/+BIAPlHxmOI74xMZh9YvEFtaPqX5aZQVpKFSa4jtdQmBEd1a7Jyuu+46vv76a/R6PVarlRdeeIGIiAgeeeSRFjtGa5B47xpJfoUQHpWTWt3/VxcbiS0zh4y/vFSvjKFLQqPbG0Krnyz7de6F024jd+MyFJu1eqVKjW9AFObgOIqyDrN7yXOEJQ4hpsc4jObQc6p3UVERADabjWeeeYY//OEPTJw4kSuuuIJDhw4RHNxySbYnuT/6o+tlhRBCCACHXSHnlJWEbj4cdTjIfPJtrGlZdcoYOsc1ur0hpLqJtNYcgC4whOIDO8jfsuq39b4hmEPisZQXcGjNuwREdCWm53j8wzqf8xPaFStWADBhwgQ+/vhjXnjhBf70pz8xYMAAxo8ff077bk0S710jya8QwqPSj1ag0arQhgRhy8iut948bjjY7diLStAG+tdZV5WTUTufYNCgUZiTuqM4ndjLS3FUlBFaFIJGqwfAYasi68QmMo+uISdlG0kDriSyy6hm1zswMJDDhw8zceJE3nzzTaZOncoTTzzBpEmTOHLkCBdccEGz992a3J/37/wMhkIIIZovI9mC3aYQlWgAp4LTaquzXhcTjqFTDNaMXPTRYXXW2UqLsJeXogsMwa9rXyIvvgJFUXBWVWArLSY434zOWN2HWXE6KTi9j1OHVnBw9duExPaj64ibf+1j3DynTp3i6quv5pdffuGnn37i73//Oy+99BIbNmzoUMmvxHvXSPIrhPCofesK6TbEj4LkUziKSzD27krVgWOE/WEm5Rt3U7ZqC2WrqucBjH//GVRqNYrTQfo38yk7cah2P2q9AQCVWo3OLwCdXwCast8a7Wh0RmJ6jCOy62hSdn9Pyp5FBEb1wOgb0uy6d+/enU2bNnHJJZdwyy23MGjQIBITExkyZEiz9ymEEEJ4m11rS9DqVASEaqlYfgT/8cMo+HQJwTdfhqOwhOIf15P9wkcARP/zntqnwHmbV5Cz5sfa/WhqYr1KhcbHF42PL7ry32K9Sq0mJK4/wbH9yEvbyfEtnxOYuoPwpKHNrrvJZGLx4sXMnj2bWbNmkZOTg8Vi4brrrmv2PkX7JcmvEMKjIuKNrPg0GzbPq11mHjcC04BeKFVWKrbtRRPoT+B1l/6a+DrJXbecshOHUGm1KHY78FuTqKZoNDoS+0+lKPMQh9d/QJeh0/E7h/pHR0fTu3dvvv76awIDAykvL0enO/t8h+2JExVO3OkD1LEG+BBCCNH2ohIM2G0Kj0w5AlSPuqyLCsV/4gjsuYWUrNgGTifmCwehT4oBoCz5CDlrf0JjMuOoKAPAEBrp0vFUKhVhCYMpzDhIyu5FoAI/xa/ZTaB1Oh0XX3wxn376KUeOVNffbHZtxOz2QuK9ayT5FUI0aGgjozOfqZ8+86zrJ/xVz7yoQKJ7qBg4VM+pNDtHjxziy9d3kLrTxtRpRp5+wcTxoytZu+onvvyskrzTDoDaxHfCRAPv//GNevvWnOXCffCgjofn5nFg1WvkXTmYmOtHoA/yPWtde/xf/WkXinZsIvuHr1HpDRwOjCI3dzXxs+8n7YP69WmPpBmUEEKIxgzQuz6ychdtfqPrLr5cIfzZIBwOhYun6snLdZCebufrz59mxXILCbEavlsUQlHRCbZsfoH/fVHJzh3VTaNrEl//ABWL/v0zZvMvdfbtd5YcrbDQyd+eUFj47f/IHxhP53svwtwprPENftXt6brxvupUKulvvwrAEl31LfMBM28nf9Uv9bZtryTeu0aSXyGERwUFavjL3EDS7BYAjh5W+Osfi2vXr/jFwo/fZ+F0gtEIl13hw6KFlfya99Kpk4YXXwxw+7i9eun48YdQ3nu/nKef30Pm9zvx7x1DxOT+hF3Su8FtFKeTqow0LFkZ+MR3Qh8WQfYPXwEQe+Md+MQnUbRtAzk/f4fD8SoaTdtMveQO96c+OD+DoRBCiOZTq1XcPrP6SWmB04bZrOKKy/OxVId+UlMcDBucg/XX8SpHj9EzeKiOHduqE2CdHv77YTBms3sxKChIzZuvB3HN1VXc/qcidtz1Eab4YELHdCPhpuGo9Q2nOta8HKrSUtGYzZi69iDvl58ACJlwGYbIaIIuvITC9atISUkhMTHR/Q+kDUi8d40kv0KIVjVwsJ6H/mSmIN+Jr1mN2azC7Kema3ctPXvr8PFRkRCrYe1aC4MG6bjzLl8Cg5p3gdZqVdxzt5mf+91KwabjZP+4h2PP/0jxvnQSZo9FF2iqLVt5upDUdz/Gkv3rk2yVCp+4JAB8u/bClNAZgPBLp5H2/mu8+uqrzJ0799w+jFbgVFQ43Zn6wI2yQgghREP0ehUvvBjAtm02/MwqfH99JSZo6dNPR0iImp9/sWCzldGth5brrjcxcLC+2ce7eJyRofOnU7gzldy1x0j7dDOF25LpNnci5i6/dZtyWu0cfv5nclcfqV1miIrBkpWBSqcjYFj1QJnBY8dTums799xzD0uWLOkQc/5KvHeNJL9CiFal16u454Gz98J9eK6Zh+e2XF8bXYCJiEv7ET6pL1nf7STtw3XkLN1H4JAkejw5DbVOQ8bXW7GXlBB36xyM0XEU79pKRepxQsdNJnDob6NG+8QmEDR8DH/961+ZNm0aSUlJLVZPT3C6eSf4fJ36QAghRMuaeqUPU6/0aXT9+IlGxk90vdl1U9R6LSEjOhMyojMRE3px7LXl7LjnY3zigujzr2mYYoPI33yS3NVHCL/yOsx9B1CVnkrJji34JHbCf+gFaHyq66s2GAi/8lqWfvwen3zyCbfcckuL1dNTJN675vw8ayHEecdpd2ArKCPyqkEMWnAX0dcMpWjrSSqScwFQaTVo/PwxJXZBrTcQNHwMMdNnEzJ2AhofU519hY6/DLPZzBtvtP9+v05F7fZLCCGE6KgseaUE9otlyLu30vMvl1GVUUze2qMAqHTV3ZV8e/RGY/TBt2sPoq6/lbDLp2EIrzvYlm/3Xlx55ZW88MILrX4OzSHx3jXy5FcIcV5I/e9qMr/dgUqrJmR0Nwq3nsQnNhifuGAAjNGB2PL34LBUoTGc/U60Wqdn2rRpLF26lBdffLE1qt9sDlQ43BjR0Z2yQgghRHuSv/kk+//2LQAhIztTkVaASqMmaGgiAD7RgQBUnU7H3KPh8T9+76abbmL69OmcPn2amJgYT1W7RUi8d835mfILIc47oRf3AkCxO8lbfZjAwUn0eeUmND7VfYx84kJQHA6cVZUu7W/48OEcPHiQykrXyrcVuRMshBDifBHQJxq1sfrZXv7GEyh2BwPfuBG/rhEAmGKDAHCUlbq0v+HDhwOwa9cuD9S2ZUm8d835edZCiPOOX/cohn79AGET+6DSqincegKV5rdLoL2kOok9s4lzY0JCQlAUhfLyco/Ut6U4+O1usGsvIYQQomPSmo2M/v4BOt01Fq2fkaqsEiy5vyW69rIqADQm12J9aGgoACUlJS1f2RYm8d410uxZCHFODCrX5gPuqnOtnDvS7K7duZ2dsPG3N68Hsn9dT1694wBXmtcTHl89uMV3xamkBRkZcsVxl0Z1/Pt9+wCYet1LGIyBjZZbveRRl+roKe7e3T1f7wQLIYQ4O7PatcGpXC3nqhQXY/19iat+e/Mo2B/qwS39djPCvp2JiakAHNpWxkag54RyArsda3KfQ//+FgB/+mgRz+zKbrTc/hcedqmOniTx3jXn51kLIc5r5UXV8wpq9b9dAo/vKCG0T7jL0xlUVRYCKrRa1+4eCyGEEKL1lJU4cDpBq/8trh/eXobBpMa/U7BL+7AWFwCgNbXcDBSe4lDUbr/c9dZbb5GUlITRaGTw4MGsW7furOU//fRT+vfvj8lkIioqitmzZ5Ofn9/cU2wRkvwKIc4rOWmVfPjX43Qe6EdQRHV/36PbijmytZj4i12btqjgSB7JR34iJKwHGm3z5yVsDa0RDME7AqIQQgjvoCgKz8w+jlanYuCFAQCUFdtZ8lEOwyYEotY2HescFjvp381H4+OLKa6Lp6vc7v3vf//joYce4q9//Su7du1izJgxTJ48mbS0tAbLr1+/npkzZ3L77bdz4MABvvrqK7Zt28Ydd9zRyjWvS5JfIcR5RatTY7M4KcqxcmhTMYqi8OW/k+k80I+EiZ1d2kfKz8dRq3V07zfdw7U9dwoqnG68lGaM/ugtAVEIIYR3UKlUqFRgsyhsW1aEzeJk8XvZWCqd3PjHaJf2kbc7A0t+NnFTZ6LRGzxc43Pn6Xj/0ksvcfvtt3PHHXfQs2dPXnnlFeLi4pg3b16D5Tdv3kxiYiIPPvggSUlJjB49mrvvvpvt27e3xOk2myS/QojzSnCUgb9/O4CAMD0vz97Ph389zumj5QyZHIpa49olsTK/EpM5Ap2u/Td5bo0nv94SEIUQQniPv37QhYuuCea9J9N59IpDnNhXQc+hZkKiXGuxVZVfAYBPjGutwtpac+N9SUlJnZfFYqm3b6vVyo4dO5g4cWKd5RMnTmTjxo31ygOMHDmSU6dO8dNPP6EoCtnZ2Xz99ddcfvnlLX/ybpDkVwhx3onvZeb+edVTHxVkVKHRqkBxfXtbuRWNtv3fBQZwKiq3X+BaMATvCohCCCG8h3+IjjnPJRIarSczxYJaA4qbsV6l0aJSazxXyRbU3HgfFxdHQEBA7evZZ5+tt++8vDwcDgcRERF1lkdERJCVldVgfUaOHMmnn37KjBkz0Ov1REZGEhgYyOuvv97yJ+8GSX6FEOelvauqB7G45V9d0ejU2KxOl7c1R/lRUZaFori+TVtxoHb7Ba4FQ/CugCiEEMK75GdaycuwctuTcfj4arBWuR63faP8URx2rIW5Hqxhy2luvE9PT6e4uLj29fjjjzd6jDMHBVUUpdGBQg8ePMiDDz7IE088wY4dO/j5559JTk7mnnvuabmTbgZJfoUQ551Vn2aw4C/H6DzQj9BYAwm9fPn5vdMUHnNtwKXES7tQVVlI1ukdHq7puWvunWB3giF4R0AUQgjhPU7sK+ePlx/CL0jDwAv9Sept4sDmMtZ9X+DS9mGDYtD6+pOz4WcP17RlNDfe+/v713kZDPVbtoWGhqLRaOrd1M7Jyal387vGs88+y6hRo/jTn/5Ev379mDRpEm+99Rbz588nMzOz5T8AF8k8v0KIDmtLVaxL5Z75aRoA9pISipb+QunGk/iPHYPjiqk8u0RDSVQ4FZu+ZfULBwl/eHbTO9R0wdzpOKcKd6C7dOS5nILHOVHjdOM+Z03ZmiDYlHMNiAD9+vXD19eXMWPG8NRTTxEVFeVyfYUQQni3bS7G+seWXA+AYrNTsn4jRUt+QR8ZS/jdt/PCHhN2/xLgn7z+SArx8+NQqZuOjf4TL6bg+0WUBVeiNrbs/MUtrbnx3hV6vZ7BgwezbNkypk2bVrt82bJlXHnllQ1uU1FRgVZbN9XUaKqbkCvutD9vYfLkVwhxXnBaLGS8+DLlu3cTfNWVBF91JapfL8K+AwegCQykcu8Rir79BcXZdLMoY1gUVXmZVOU13LS3vXAoKrdf7vh9QPy9ZcuWMXJkwzcGKioqUJ/xo6M9BEQhhBAdX+7Hn1H43WJ8B/Un4t470PhWD06p8ffDd/BAAHJeWoCzvLLJfemjosDppHzvXo/WuSV4Ot7PnTuX9957j/nz53Po0CEefvhh0tLSalttPf7448ycObO2/NSpU1m4cCHz5s3j5MmTbNiwgQcffJBhw4YRHe3aiNueIE9+hRDnhdItW3GUlRH7+GPoQkPqrNOYzcT9/a8UbVxO0cJfUCw2gq4/++BLQX1HUHJsHylfvE7XO/+OxtA+7wj/vmmTq+XdNXfuXG655RaGDBnCBRdcwLvvvlsvIJ4+fZqPPvoIqA6Id955J/PmzWPSpElkZmby0EMPtXlAFEII0bFZs3Oo2L2XkOuvw2/k8DrrVCoVYbfehHnEUHIXfEz2i/OJ+POdqA2Nj/5sTErC1LcveV/8D21QED5du3r6FJrN0/F+xowZ5Ofn889//pPMzEz69OnDTz/9REJCAgCZmZl1pjicNWsWpaWlvPHGGzzyyCMEBgZy8cUX89xzz7l13JYmya8QwutZs7MpWvIz5kGD6iW+NVRqNQFTxqHSaSn84kdMQ/pg6JLQ6D71gSHEXn4zJz9+CUteJqZ2OhWCoqhxujF9kdKMqY68JSAKIYTouJxWG3kff44mKBDz0MGNlvPp3o3wP91O1lPzKPl5HYFXjm+0rEqjIXzWraQ9+X9UnTjRrpPf1oj3c+bMYc6cOQ2uW7BgQb1lDzzwAA888IDbx/EkafYshPB6OR9+hCYggJBrpjVZ1m/CKHTxURR+s7TJsvrAEFRaPXlbV7ZENT3CgcrtV3PMmTOHlJQULBYLO3bsYOzYsbXrFixYwOrVq+uUf+CBBzhw4AAVFRVkZGTwySefEBMTcy6nKoQQ4jxW9OMSbJlZhN8+C5Xu7M/3DImx+F8ykpKf1uAorzhrWZVKhT4qkpL1G3A2Mu1fe9Ba8b6jk+RXCOHVrBYntswsAi4e59JgFSq1GtPAXtiz85osqzH4ED7qUsqSD+Owtt+AKIQQQng7S1o6pn59MMS7NkCWz+DeKBYrjqLSJsuGXHklzooKqk6cPNdqijYmya8Qwqsd2lod1HRhoS5v46ysgkam6TmTX+deKE4HFadONKt+nuZU3J3+oK1rLIQQQrinrMiOLSMLrRuxXqmsvmnd2LR8v6eLikITFETlkSPNrqOnSbx3jSS/QgivVVXh4P0nUjF06oQhofH+u7/nrKyibO12TEP6uFReHxSGzi+IspT2GRCdv/YBcuclhBBCdCQfPp2OgoLfqBEub1OydD262Ei0kU0nzCqVCp9u3ag8evRcqulREu9dIwNeCSHanRJn09MPAHyWNfGs69OXHiHnlJWe18/AeFTT5P4qJloo3r4bxWol7NoR6Pwbb8psCakZHVKFT49ulKYeJbjhsbTalBMVTjf69bhTVgghhGiuQufZ+9rW+CRz0lnXWwoqWPfddqLHXUNQfhDkN73Pil7ZVB04RtSD0zAFWhstV1XyW6rk06sbZVu2YCstRBsU6FLdW5PEe9ecnym/EOK8UHI8D1OUH8aAMJe3qTyShiE+Al2Iv8vbmLp2x5aTjb24qBm19CxPz/snhBBCtKWSE9VjdJjju7m8TeXRUwD4Dujs8jbGbl1BpaLySPt8+ivx3jWS/AohvFZlThk+ka4nsQCKUwG1ewHBp3N1QCw/etit7VqDNIMSQgjhzSqzywDQ+Qe5vpHTCYBK43rM0/ia0MfHUnmw/cV6kHjvqvPzrIUQ5wWfcDOVOU2P4vh7pt6JWE5mYsstcnkbjckXn6TOlO3Z5WYNPc+JO4NfuNdkSgghhGhrPuFmAOxlxa5v0zMBVFC61b1E1tSvL5UHDuGsqnJru9Yg8d41kvwKIbyWb0wAlVmlKA6Hy9v4De8JQMW+ZLeO5TdwMJUnj2PJznJrO09Tfu0D5OpLOU+DoRBCiI7JFBsAgKWo6SkKa+hC/PHpFkf5HvemLjIPHohit1O2ZZtb27UGifeukeRXCOG1fGMDUBwK+Ue2uLyN2seAyqjHUe7aoFs1/AYMRhccSt6ib1CU9jN/gHvTHlS/hBBCiI7CJ9wPlUZN4f7NKE7Xb3ZrAn1xlrv3BFcbHIR5xDAKf1qKo9S9lmWeJvHeNZL8CiG8lim6ur9v3qHN7m3ocKLSND069O+ptFpCr5hG5ckTlO3d7d7xPEj6AAkhhPBuCorDSfGxPdgrXRtBGvg11rsf84KmXoZKpaJw0U9ub+tJEu9dI1MdCSHaHR+VzqVyBzIiz7o+49lf0AT40qfvTfictje5v5IT1f2GFIcTZ4EP9l/fN8Th66y3zDCwG6adfclb8j3GYb1RabVM7vl4k8e1OxqfUulcuXt393y9EyyEEKJ1aVxsdns4K+Ks64t+2AhA91GzCSryhaL68flMOUf9cZSoUet02I42PjCmEm6rt0xtNhJ4zaUUfPwtfpdegD4hhqQ3XmzymM5Kz/YTlnjvmvMz5RdCnBdUahVqkxEfX9cn4FUUBZxOVOrmXR4DL5uEo7iEin0HmrV9S3On/4+7cwQKIYQQbe7XGRpM/me/IV6P0wlutvKqYb5wGJrgAEpXudmyzIMk3rtGkl8hhNfyHdITW2Y+itL0XeBav05/0NyAqI+KxNApkZK1G9pV318hhBDCG/kOrR6osrIs163tFKej2Te6VWo15jFDKd+yG0dZebP2IdqGJL9CCK9lLyxFZdS7tY2jorq/kFrv3na/FzB+HJYTJ7EkpzZ7Hy1FBsAQQgjhzRyF1QNPabQGt7ZzVlSgOodY7zfuAgBKl29s9j5aksR710jyK4TwWuVbDuA7uDsqleuXusrjxwAwJiS6VF6x2XGUlGLLycVeVIyiKPj07okmIIDyXXuaU+0WJcFQCCGENyvbcgCNvy9+IQkub2MvK8WanYUxPtGl8orDgaOsAltOPracfBSHA42/GdOQvlRs39vMmrcsifeukQGvhBBeqWL3Maxp2QTPGA+H3Nju4AEMsXFoAwIaL3P0CIXr12BNS8NZUXdKJLWfH6Z+vdHHRFGxbz/OsBGoVc1rQt0SZAAMIYQQ3spRUk7Jih34jenv1o3uisPVPwx8e/ZqtIw1N4eCxcuoOnQcR0FxnXUqvQ5jzy5oI0KwZeRgzchEHx3VvJNoIRLvXSPJrxDCKxX9tBFD5xhMg3u4lfxWnUrHt2fvRteXbN9K7pf/Q58Qj/+4C9EGBaL28UFlNKBUWahKTqFsy3acv87/l6LZRqeQEed6Os0mwVAIIYS3Klm7G6fFSvB142Cp69tZTqWhCwtH49vwrA7WnGxOvfkKapMR3+ED0EaGojb5oPYxAgrWtEzKt+ymck/1D4yCbxYRcd+dze5D3BIk3rtGkl8hhNdRHA4q954g8IrRqFSuX9ztRYXY8/MxxMU1vF9FoWDpz5gHDCRk9o0N7tvUtzcB4y4k+935WFPTOJq7GoCk4GFu3ZVuKQq4NaKjDNElhBCio6jYdQxDfAQaf1+Xt1EUhcqTJzDGxTdapmjNKjQmX6Keegi1T/2+xD69u+E/aQyFny2idOUmqo4eI+ed+YTOvBGNr6lZ53KuJN67RpJfIUS7c9pR2XQhgNRGAozdDopC5c4UGGUCZ9Nz/AKU/7Ietc5ASGhvNNn1A0hFVjqO4mJCuwyn+z+PnnVf3ZXxHDNuI7VqP0dzV+OfUMaaNWswmerXuaSkhICAl12qo7vkTrAQQoj2KMPh2kwMjlONJ5PW1FwcJSVYj4DW4tr+CnOOYsvJJuqiqzAU1l+vOOxUHDpIYJ+hGAsafjJcI+KiazEFdyL760+pPHiY9Mee4MCBA/TqVb85dUlJCQGP/s2lOjaHxHvXyIBXQgivk//zEtBoCJ16pcvbWC2l5O/eQMjgsWj0xgbL5G1bjc4/GN+4zk3uT6PS0sP3ApYvXw7A9u3bWbRokcv1aSkyAIYQQghvVHH4MI6SEoIuu8ytp62pR5bhExWPb2K3BtcX7d+Oo6KMwL5Dm9yXSqXCv/9gUlNTCQ8PB+Dpp592uS4tSeK9ayT5FUJ4nbI9uwgYOQpjYpLL21SW56PYbfhENtwMylKQQ8nRPYQNuxiV2vUBrMaPH8/rr78OwOnTp13erqVIMBRCCOGNynftRhcZScD4i13eRlEUyksy8ImOb7DrkuJ0kr9lJX7d+mIIjXR5v/Hx8axduxaAVatWubxdS5J47xpp9iyE8Cq2wkIcxcUYkzq5tZ1/UDym6EQyVyzENyYJjbHuXeTcbSvR+voR2LvpO8Fnuu2229i7dy/jxo1ze9tzJc2ghBBCeBtFUbCkpmDs0sWtsT1UKhWxnS8kbedK/HsMwBRb97dCyZE9WAvziJl6i9t16t69Oy+88AJBQUFub9sSJN67Rp78CiG8hmK3k7/4e9RGIz6dmm6a/HsqlZrYy2/BYa0ka+0PddZZSwopOrid0CEXodbq3K6XyWTi3XffZdCgQW5ve64UReX2SwghhGjPStavx5aTi6lvX7e3je82Hp/oBDJ++h+K47cxQRRFIW/TcnwTu+MT1fDAl0354x//yO23396sbc+VxHvXSPIrhPAKVSnJnHrjVSoOHyLsuhloGhhYqil6/yDCR15K4f4tVOVn1y7P274Kjd5IUL8LWrLKQgghhHCDvaiYnI8+puDb7/AfMwZT9+5u70Ol1hA16RqsRXkU7tlcu7zsxEEsuZmEjrykJavcapyo3H6djyT5FUJ0eAW/LOX0W2+gUqmJmXM/5r79mr2v4H4jQaWiPP04APbKcgr3bSFk4Bg0+vrTHbR3EgyFEEJ4g4ojRzj13HNUHj9O2I03EjLtqmbvyxgWjW98F8pTj9Uuy9+6Cp+YxHpNoYV3kT6/QogOy2m1kPf9d5Ru20rQxEsJunj8OU8wr9ZqMQSGYfn1yW/xoR2gOAkeMLIlqtzqpA+QEEKIjkxRFEo3bqLg++8xdu1K2M03ofHxOef9GkIjKUs+DIAlL5uK9JPEXnmrW32I2xOJ966R5FcI0SoqFYvLZR9JvbrJMjlb03C8+zaOvDzmz5/P7NmzGy/8J9eO2/ePL6MoThRFqe0HVJlzGmNYNFqTX52yP+e969pO25i7/XrO1z5AQgghWkaZs8qlcv86fXnT+8ooIf77Raxdu5b77ruP//znPxiNDU9HyMOu13HwXS+jqXSC1Y6xACpOVs/GEBzQDW3Bb+UO/NuNnbYxifeukeRXCNHhFB7OYfNjSxg35iJWrFhBly5dWmzf+TvWYi3MIXrCtQA4KsvrJb4didwJFkII0RFZy6ysefhnQtRB/PLLL0yYMKHF9l2Rm07uoU1EDhgPgL2qDJVag9Zw7k+U24rEe9dI8iuE6FCq8ivY8vgSArqE8sMPPzR+B7gZ7JXl5GxcSsjAMZjjqhNqra8/5enHUJwOt+b3bS/kTrAQQoiORnEqbH5yJVUFlSzdsZVu3bq16P5PbVmEMTCcqEETAdCZ/FGcDqqKczEGhLXosVqLxHvXyIBXQogOQ1EUdj23CsWpMPyZS1s08YXq/r2Kw07YiN9GegzufwHWogLydqxp0WO1FsXNCe/P12AohBCi/Tj29QEyNqYz8p8Xt3jie/jwYcoyTxA1aFLtTe2A+F7ozUGkb1iIojhb9HitReK9ayT5FUJ0GOk/HyF7YyoD/nQhxlDfFt+/025HpdXVaebsExFH6JALyV73I9kbluCwuNaXqb1QAEVx49XWFRZCCHFeKz1Vwp552+h6TS+iLmjefLtnU1VVHcf15sDaZWqtnrjR11J6+ijJyz+kqji3xY/raRLvXSPJrxCi3VMUhRNf72XXv1cTO6kbUaOTPHIcnV8gTmsV9oqyOssjxkwhdMg48ravIeWbd1GcDo8c3xNkqiMhhBAdRe6eLFbcswhjiA/95gzzyDHi4qoTaktJXp3lAXE9Sbr4Fspz0zjy3StYSgsa2rzdknjvGkl+hRDtmr3Kxo5/LWffK+vpdE0fBj0+zmPH8o3rDEBZ2rE6y1VqNZFjp5B03T1UZqVSuG+Lx+rQ0mr6ALnzEkIIIVqToigc/Wo/K+/7Ab+4AC555wp0Jp1HjhUSEoIxKJLS08fqrQvqPIBe1z6KRm/k9ObvPXJ8T5F47xoZ8EoI0W5Zi6tY/4fvKT9VzJAnJxA7oatHj6c1+aHS6rCVFja43hSdiF+nXhTs2+zRerQkp6JCJaM/CiGEaKcURWHbs+s4ufgI3Wb0YcD9w1FrPft8zuAXgrW8qMF1Gr0PEf3Gkb7pO7Kzs4mIiPBoXVqKxHvXSPIrhGgVrxX2drls5ludAEje+jUVaZX0Gv8gmmPRZJ55k3aUa/ubOOKfLpUrjT2FYrdhiutMYzEhsO9w0r+bz/DI6QQbY5rc55KUl12rpIfU9O1xp7wQQgjRXC/kD3ap3Il5PQAoSN3DyTVHSBw5gwDDMJL/e0bBEa4d9+IJ/3apnN1eRWnmMcIGXYy9kXEz/XoPRLVlERcMnkHn+EsaLvQ7yzb+zbVKepDEe9dI8iuEaJcqCjPITd5OTK/xmIKiW+WYBTvXYYyIxScyvtEyfp17YYyIY3fuj4T5JOGnDyHBbwAqlfQiEUIIIdzhsFk4vXsp5vAkwrp4po/vmTIztuN02Anu3XhWrTX6EjpgLMk7VlFpKcSgDyAhehR6XcsPtilalyS/Qoh2KWX7t/j4hRHV86JWOV5FVT5lyYeJufQGVKrqx76K00nBrvUU7tuCPiCY6Ekz0JrMRE+aTv4Xn1Bqy+N0+QG0agOxZtefbLcmmfdPCCFEe5V9aC3WsgK6XDizVY6nKAqn0zcR2GUAOl//2uWlaUfI2bYMp91G9IXT8I1MJHzIBJQTp6iozCen4BBVlkL6dpvRKvVsDon3rpHkVwjR7lgrSyjNSyFp2LWotZ4Z8OJMhaVpAPh361e7LHvdj+RvW41/9/6Upx/n6Nv/QONjQmvyI0DrT7Rvd1JKdpFdcVySXyGEEMINitNJYdp+AmJ74RMY2SrHtFpKqKwsILzrVbXLSlMPk7zov5iiEgE48dXraIwmtEZfzAQSFtKTUKUHqafX4XTaUavbZ/ok8d417fOvJ4Q4b+WllLNvyUtodEYCo3u22nErKvPQ+QWi1hsAqMw5Tf621USMvZzQYRdjLS6g9MR+HFWV2MtLqDp0kt25PxLp252cipMoirNdNn2WATCEEEK0Nw6bk8NL36Si4DTR/Se02nErKqqnNzIEhgHgdNg5teorzPHdSLriThS7naKjO7FXlGGvKoOULE6krSAqbAAOp5WS8gwC/RrvGtWWJN67RpJfIUS7suKtY6jVGnpf+jB6H/+mN2ghWq0Re2UFTpsVtU5P/rZV6AODCRlyIQD6gGBCBo2tLR9deJJlaW9isZfhUKxUOcrw0bZefV0lA2AIIYRob/b/lE5ZbgrdJ9yNf1S3VjuuVusDgL28BIIjKDq6C1tpEUlX3IVKpUal09fpCxzuU86OA/OpshQBUF6R026TX4n3rml/jymEEOetA8uz2Lskk6heF6M3BbTqscOCeqDYrZSnHcdhraLk2F4C+45ApdY0WF6j0hJsiKHAcgo/XShGjblV6+uq6mDozrx/bV1jIYQQ3qwgrYzVrx8iMLZ3qya+AGa/KAyGAEqS9wNQeHgb5tguGIMbn84oOLAzhSXJ1f8O6Nwq9WwOifeukSe/QohzcthW7lK5/+4efdb1ZRv2kPv2UnyH9aV7ahTqjJQWqF01Zeu+JsuYFAWj2oxqyRa02mModjs99wfgc+hIg+WX5L7NvfdW8fbbb/PC609x9913t1h9W5L0ARJCCNES9lkrXSqXaWn85nXhiUKW3LcBvVmP321XkxfYchmYbv0Bl8qF2sMoPnCQwJwulGcep0/QJUR/l9pg2SVpr7By5UjGj19O//79Wb/zxRarb0uTeO8aefIrhGhzpau3kzvvK8yjBxB233TUbdB3VqVSEaqLJbVqH/vL1hChT8JH43fWbXr2rO6TPHXq1NaoYrMozXgJIYQQLS3/SAE/3r0Un2Ajl797KdrA1m3hVSNEHUWZPZ+1mR9g0PgSaep61vLx8dXNnB988MHWqF6zSbx3jTz5FUK0qYrdR8h77zv8Lh5KyKypqNRtd0+um+9wyh3FWJVKepvHNFn+/vvvZ/bs2fj5nT1JbktyJ1gIIURbK8sqZ9ncFfhFm7n09QkYAgxtVpcIdTyJ5oGkl++nf/ClaNX6s5bv0qULRUVFBAS0TbLuKon3rpHkVwjRJpxWG4VfLqPk54349O/a5okvgF5tZFjAVEBxaeRmtVrdrhNfwP3bu+frrWAhhBAtTlEUji85yeYXtqDz1XPJC+PaNPGF6pZePYLG0j1wtMuzNLT3xBeQeO8iafYshGh19sISMv/xLqXLtxB8w6VEPHJLmye+NVQqVbucsqjZ3Br8QgXn6Z1gIYQQLctpd7L+6U2sfXI9cWPimPbZVHwjfNu6WrW8KtZDq8T7t956i6SkJIxGI4MHD2bdunVnLW+xWPjrX/9KQkICBoOBzp07M3/+/OaeYYuQJ79CiFZlzcgl+7kFKA4nUf+4B0NCVKse/7iyj3i6olcZa5fZFTvF5HGicDVatZ6BfhPRqdv2znRLkakPhBBCtDZbhY2Vj6/h9JYMxj45iq5TurTq8U/Zj2FWBxKoDqtdpihOSpUiTtr3UZZZSv/gSQQYIlu1Xp7k6Xj/v//9j4ceeoi33nqLUaNG8c477zB58mQOHjxY2y/6TNOnTyc7O5v333+fLl26kJOTg91ud+/ALczLbnkIIdorRVEoXb2dzCffRmXUE/2Pu9sg8d1PCkdI5WjtMqfiYBNL2cV67IqNYlsOG4u+ociW3ap16+i84W6wEEKIc5ezL5dFs34ke08Ok169pNUT3zxHBgftW9htXVNn+X7bRjZbf6LAmY1TcbAl92vSy/a3at06spdeeonbb7+dO+64g549e/LKK68QFxfHvHnzGiz/888/s2bNGn766ScuueQSEhMTGTZsGCNHjmzlmtclT36FEB6Xnmon69kPqDpwAvOYgQTfcjkaX59Wr4c/QQDkkY2i7CGRHmSTjoVK+nEBUUF9qXSWsad0OVuKF9HHPJYYY/dWr2dLao0BMLzlbrAQQojmq6xw8sZ/Slg8/ydCe4Qw9f3JBHUOavV6+KmDAVBwss+6gXhtD7RoyXSmkKDpSWdtfzShwRwuWsuBwhWUWHPoGXQhapWm1evakpob70tKSuosNxgMGAx1W79ZrVZ27NjBY489Vmf5xIkT2bhxY4P7X7RoEUOGDOH555/n448/xtfXlyuuuIJ//etf+Pi0/m/AGpL8CiEalOMoc6ncZYvnnnW9vaiYrOdfQ1dSwWDTREL3xMCe02fdZklxyz4BVA/uA0CE0pteeaEcTF1MOcU4wwJQqfQYCv0I7zuew/dXD14VYOuN45Pv2LduNWkXawi8amK9fU4Y/bRLx162/q8tdRrN426/nmYkv7+/GwzwyiuvsHTpUubNm8ezzz5br3zN3eCTJ08SHFz9IyUxMdHt4wohhGg9Vy5+qNF1isNB7rsLqDqaS3e/USQU9adirpqKs+zv5OlHWrR+FZf2r/33wJIE9q59g0x7MoXaYpL6XglbIGjMRKyBsWTfXImR6YSv6Ez6f38gL7CM6MdvQm2oO/Lz0CV/cenY2yY/06Ln0izNjPdxcXF1Fj/55JP83//9X51leXl5OBwOIiIi6iyPiIggKyurwd2fPHmS9evXYzQa+fbbb8nLy2POnDkUFBS0aUsvSX6FEB5jSU0n9+0PQKViuO/lGNWmNq2PSqUiJnQQoFBUdoq4sCEAnMrdTnLWemBydTmdluBZ16AND6Hom59RGfQETL6ozep9LprbB8iVO8HgXXeDhRBCuM9RXkHuO/OxpKQRfvdskr5v++u4r38kvUbcRnbqVoIiexIY1gUfcxgn935P3zFzassFjB+MPiqE009/TOYLXxD95xtR6TpmetTceJ+eno6/v3/t8oZifQ2Vqm5yrShKvWU1nE4nKpWKTz/9tHa07Jdeeolrr72WN998s83ivfT5FUJ4hDUji5w330MTHETUn//Q5olvDZVKRWzYEPokXYWfKRI/UyRxYcNIzd6E4nDUKRdw+TgCpo6n6KsllK7a1Ia1PgfNnPU+Li6OgICA2ldDT3Dh3O4G79+/n2+//ZZXXnmFr7/+mvvuu8/l00pOTubYsWP1lh87doyUlBSX9yOEEKL5nBYLuW+/jy07h4iH5uDTu2dbV6lWQGgnug2+nrCY/mi0epL6XkFJQQqlhWl1yvn0SiT6zzdSuT+ZrFe/qfNboENpZrz39/ev82oo+Q0NDUWj0dSL6zk5OfXif42oqChiYmLqTBPVs2dPFEXh1KlTLp2SJ2K9JL9CiBZXvn0XWf95A02AP+H33Y4mwL/pjdpQZHAf7A4LlpPp9dYFXDUBv0tGUfDxdxQtXIridLZBDZvPnWkPft9fKD09neLi4trX448/ftbjNPdu8LBhw7jssst46aWXWLBgAZWVlS6d16xZsxp8srxlyxZmzZrl0j6EEEI0n/V0BpnPv4I1I4vwe+/A2Cmxrat0VkFhXdHqfCjMPlxvnalfZyLnTqds6yEynv4ER5lrsag9aW68d4Ver2fw4MEsW7aszvJly5Y1OoDVqFGjyMjIoKzst250R48eRa1WExsb69JxPRHrJfkVQrSoij37yfvgM3z69iLykfvQmNrHE9+z8TNV37W0Z+fVW6dSqQi6YSqB102m+MdV5Lw8H3tRSb1y7Zqbd4HBtTvB0HZ3g3ft2sWoUaPqLR8xYgS7d+92aR9CCCGax1FSStaLb6DSaol69A8YEhse3LA9Uak1mPwjqSqvH+sBzMN6EvPETKpOZpD26NtUHklrsFy71ox476q5c+fy3nvvMX/+fA4dOsTDDz9MWloa99xzDwCPP/44M2fOrC1/4403EhISwuzZszl48CBr167lT3/6E7fddpvLTZ49Eesl+RVCtAin1Ub59t0ULvwBQ5dOhM66AbXR2PSG7YDNXn2HV+3n2+B6lUpFwOSLCH/4Nmynssh84mUyc3ajdIBJcT15Jxja7m6wSqWitLS03vLi4mIcHbXJmhBCtHOKolB19Dh5n/wPUIh48F50EeFtXS2X2a0V6PTmRteb+nQi/rl70AaZOfX39zn1wSqcFlsr1rD5PB3vZ8yYwSuvvMI///lPBgwYwNq1a/npp59ISEgAIDMzk7S0324YmM1mli1bRlFREUOGDOGmm25i6tSpvPbaay4f0xOxXpJfIcQ5s6SkkfHP58n74FPUviZCbpnRaJPX9qigNBkAXXTDTypr+PTpRtQ/H8bYqysHjn3NroMLKCnLaPZxDxw40GBflhbVzD5A7miLu8Fjxozh2WefrRP8HA4Hzz77LKNHj3b/JIQQQpyVo6KC7NfeJvu1t7FlZBI6+2Y0vu2/dVcNS2UxFWW5mPzPHut1EUHE/vM2Qq4fT/Z32zgw5z0K1h1q9g3v7OxsNm1qhXFDWiHez5kzh5SUFCwWCzt27GDs2LG16xYsWMDq1avrlO/RowfLli2joqKC9PR0XnzxRbcGuvJErO+Yw5kJIdoNW14BOfPmow0JJuKBOzvUHeAayZnrCfXvgi4suMmyGj9fwu65kcDSvhxL+Zmte94iNKg7CTFjCApIdOl4VquVJ598kn//+98MHjyYlStXnuMZnI3q15c75d0zY8YM8vPz+ec//0lmZiZ9+vRx6W7wAw88wJAhQwgJCWH69Ok89dRTLh/z+eefZ+zYsXTv3p0xY8YAsG7dOkpKSjz8eQohxPnHalXIfe9DbBmZhM+5A2PP7h3qJjfA6eNr0GgNhMYMIL+JzE+l0RB89VgiL+xE+n+Xc/LZ7/BJCif8iiGETuzn8rl/+eWXzJgxA4DU1NRzPoez83y8b22eiPWS/ArRjhU6zzZD3m+cbty+22ZxbcL5+35sev49Z2Ulxf9+DYNTz7DQG9H/4gs0PEjEzy08dy/ApcF3ulTu2N8bH31Ssdsp356Lz1UX89LYz10+duqIMBz2/mz/PpP1n6az8+B7DLkiGt8gHT5+WnpdFEZMDz96/a3uXXFbSSGnvl5AVWb14FonMTL0X2+6fFy3uXt3t5ktuefMmcOcOXMaXLdgwYJ6y2ruBjdXr1692Lt3L2+88QZ79uzBx8eHmTNncv/999fOHSyEEN7GpthdKvdjRUDThYC5v9zUZBlFUcj/5Cusx3fSadq9+Go7wVkaLS05/bpLx3ZVz2//4VI5v7stZ11f+udUAkYm4ri/grd7fOPSPtNtITAugsNbjSz9IJNdr/6EefsG4nqY0OrUdB3kR98xgXR75uU62zntdnIXf0PJ9i0AaEy+jHv3Y5eO2WytFO9bkydivSS/QohmURwOcuZ/jN1ayrA+d6LXNdxftr1zVFTfYFA3Y2AujVbN8GtiGHpVNEvfOsH+lbnYq5yUFVpZ8toJ4vv6Y4sPwtylF2qjiYqUY2Qs/hy1TofG5Itapyds3OXYS4pa+KzOD9HR0TzzzDNtXQ0hhPBqJctWU75pG3ETbsQ3plNbV6fZ7CWV+MSHNmvbHsMC6DEsgG1L81nyXga7VhRirXTyw9unCY7SQ88A/PoNRBsUjL0wn+xvPseSmYE+IhJrTjbRM+9Acbh246LZvDD5hZaP9ZL8CiGapXT9JqqOHGNQj5n4+oS1dXWarWT9elCrMcTGAbuatQ+1RsXkB7ow+YEuADhsTg6uyWPTl6c4/ONX/D7CmBK7EtB3CJmLPyfq2hmUHtpD5o//a4EzaYSXBsMaFRUVpKWlYbVa6yzv169fG9VICCG8hzUzm6Lvl+A/6WKCug9p6+o0W8neVCpTcom8dvg57WfopBCGTgoBqp+Ip+wvZ9UX2az7fhUFK5fWltMGBhF14yyy/vcJAcNGglpNyiv/Pqdjn89aMtZL8iuEcIuiKJTv3E3h9z/i07M7If6d27pKzVa6dSvFy1cQdNlktIGuNRFzhUanpu8l4fS9JJy35l1AVWY6TqsFrX8gpvjOnF74EcaoOEyJXTj60t9a7LgNUlTVL3fKdwC5ubnMnj2bJUuWNLheRnwWQohzYz2VQe57n6Ay6Am4dDwkt3WNmqcyNZfj//gG/wGJBF/Yq8X2q1KpSOprJqmvmVM9plKVnoqjrBS1wYipS1dK9+zEabMSMn4SmZ8tQKmqarFjN8gL470nYr2M9iyEcEvRT0vJW/ApPn16EXrz9W1dnWZzWm0ULFqMeegQAsaP99hxdP6B+HXvS0DfIfgmdEGlUqHW6XBUVqA4negDQzx2bABFcf/VETz00EMUFhayefNmfHx8+Pnnn/nwww/p2rUrixYtauvqCSFEh1Z55DiZz72GSqsh8uF7URv0bV2lZjv14Rp0Qb50+fvVqLUajxxDYzTi27U7/gOHYO7VB7XegEqnA6cTW3ER+ogojxz397wx3nsi1suTXyGESxwVFZSsXkfxz8sJnDKZwEk1CaNrg3K1N46SYpwVFZgHD271EStDLriY4n3Pk79xOYm3PUzhzo3krvzBMwfz0mbPK1eu5Pvvv2fo0KGo1WoSEhKYMGEC/v7+PPvss1x++eVtXUUhhOhwFIeDip17KfjyO4xdOxF+722odB07XahMziVodA80JkOrHtfcux8FK5aS8+2XxN71AIaYWHIWSjcnd3gi1suTXyHEWSl2O8XLVnLqiacpXrYK/0suImDixW1dLZfYFRsWZ8OjT6sN1UHQeUb/kdZgCIskfPxUCrauxWmpwq+HB/un1jSDcufVAZSXlxMeXj2tVnBwMLm5uQD07duXnTt3tmXVhBCiQ6rYe5CMf75A3gefoU+MJ/T2mztE4qs4nNhyihqdh1dt1OG0tH6sV+v0RN04C0vGKcoO7MXco49nD+iF8d4Tsb79f6OF8EKbLa6N+HfTuvvOul5RFMrW7aT8qw0oDhtdxt/O6V1L0OpNJI6a3uA2Vj/XLnbdfkwns+wwJwu3UGErJD5gIJ0Ch2NI9oVXs2vLLTn+gkv784Tcaxvvu1Oek8rRH95CcdgwvreJoGkXoU+IQm0yoNJosBWfBkAdoaCKqu6H43DjfuBrO8e5VK7zuoaT73D7APJVS8l4bx4VlbkuH9ddKqX65U75jqB79+4cOXKExMREBgwYwDvvvENiYiJvv/02UVGeb14mhBBNcTXWA9y88Y6zrq86kkrxT+up2H6cruNvpzwvncK0ffS87EHUWl298uVRrsV6Ve8KLEdSKfp+NZV7j+HTtwvhD12PITH61xK/JY17Xv2Ly+fTkgwr/Rtd57BaOPblS1iKctFFBhM0bQy+Q7qj9jGg1utwlFdiLarEqvKhqNyndjsdrvUVfXLzFS6V67yssf68IZQGdaHgu+/ItpW7tK/m8sZ474lYL8mvEB2U4nSS//63lK3dUbvswHfP1/67seS3KU6bhYIDWziatoIqeylhpiQGREzFz9CxRnQuz0lFcdiIHTmNnIzNZD796zzDajUasw+OskoMXeLw6d360zY4nXZy8w/hcFg9mvgCXtkMCqr7AWVmZgLw5JNPMmnSJD799FP0en2D8woLIURHVbZ+N7nzvq7tpHls+Xu16yqLs/ENiXV7n4ripOzYQXK/Xo7lWBq6mHDCH7wB07Derd4V6FzYygqxFOUS3Gs4Vv9ScuZ9X7tO7WdCsdhQ6bUETGj9kaoVRaGoOBmH3YLNw4lv9QHxunjviVgvya8QHVBt4rtuJ/5TxlLyw1oAghL7o1KpKc8/1ax95u1dR862ZTgsVUT79iApcGiHS3prBCb2JWP7z1TmZxDzzH1YjqXjKCrFUVKOo6QMtdmE3+gBqDQtP/iFoijY0rNwllditYaj1/tSVVVEUUkaVVWFZGTtoLIqn+DAzvj5xaLR6DmZsqzF61FdGe8b/RHgpptuqv33wIEDSUlJ4fDhw8THxxMa2rx5HIUQor2pSXzNFw6iYusBnBVV+ARFE5TQh4zdv6A1uD9HfXnyUbKWfYs1PxtD9wQiHrkFnwHdUKk7Xm9IQ1A4poh4StOPkvDeH7DlFGJNz8FZXoW9oAQ0aszDe6GP8szgkva8Iuw5+VRWBmI0BuFwWCgqSqGyqoC8vEMUFp3AZAojPm4MAGnp6zxSD8Ar470nYr0kv0J0QCW/bKJs7Q5C77kO86iBxGlHoNEZ0fsGkLzuMxzWSpLXf4E5PBGtwZfAuF6o1PWTPEVRcFSWUXhkBwUHNmMpzCW4zwWED76YxPUeHpLfwyryM1CcdrRGX1QqFcZu8R4/pmJ3ULpyK6XLN2PLqH6imwWo1TqcThsAGo2e4KCu9Ot9I2bfSADs9ioPJr943Z1gm81G9+7d+eGHH+jVq7rpu8lkYtCgQW1cMyGEaDmWlAxy31mIecxAQu+4Csd1l+C/TMEYEE7Byer+jqd3/IgpNL421jeUDCuKgmK3UXbsAEV7tlCechRTfGeiLpuO+tLI1j6tFmUtzsdeVYnW6AtqFfqoEI8lur9XufcIJUvWU3XgOADZgEqlQVGcgIIKNX7+MfTtfTOhoT1RqVTY7VUeTn7xqnjvqVgvya8QHYiiKBQvWk3RdyvxmzQS86iBAPgERtSWMfiHoc5Opjwvjfzj2wDQmfzR+fgTO/hyCA2g6OhOyk4fpzI7HcXpQKXW4N+5H3GX3IApMuHXPWW09um1CFtlKZnbl5B3eDMBCX2IGjSREhf79pwLS/Jp8t79BtvpHExDexN8yxQ0wf4Ef5CF1VaGQe9PUGAndDr379KfEy8LhgA6nQ6LxdKhmuYJIYQ7KnYdIe/979DHhhN6+5Wo1Gq0Qf74BBqB6riu9w2iqiSPgpS9oDhRaw0Y/IIJ7jQIk/8wSg7uojzlKBXpJ3Faqm9o+8QmEX3Fzfj3GohKpaKKhselaO+cDjv5+zaQtWUJWlMACZNuwdEKMcFRUkbBR4uo2LoPfec4Qu66DkPnOMI+yaeiMh+txkBgYBJGY1Drxygvi/eeivWS/ArRjpVv20/Jzxsw9uqESqfDWVZByZL1+F86iqDpkxrcJrr/BKL7TwDA6XRQVZhJzpFNlGWd4Ogv7wCgMZowx3YlcNQAND6++MV3R+tjbrXz8oSq4lwytv1ISfphVGoNcaOuIbTnBahUavBwcC9bt5O8979FHxNB1D/uxZAUU7su4tdRCtuMlwXDGg888ADPPfcc7733HlqthDIhRMeVesJK5j//iz4pGk2AH6hUFH27EkPnOELvmtbgiMv+UV3pd93fAFCcDuxV5WQfXEt5Xjqnd/wIO35EpdHgE9eJ4GEXofMPxCcmAUNIRL19dSROu5XMjT9QdGIv9opSQnpfQNTIKWj0Rioo8+ixrWmZ5Lz8EYrVRug9MzBd0L82MQsJCcXzz5ub4IXx3hOxXn4xCNGOWY6nYzmaiuVoKmqTEafFSsAVFxF03USXtlerNZhCYkkceR1Ou43CtH04zTr8Enuh1njXf//TWxZTnp1MxIDxhPUciVpn4PTWHyhK3ofyowrzBf0InHZRbR/fqqOplPyyBXteEY6ySpzlFdzna+WS60OZcGMo5gDXPp/SVdvIf/9bzBcOJmTWlR1iWghvsGXLFlasWMEvv/xC37598fX1rbN+4cKFbVQzIYRwT3aGg6rDp6k6nILKx4BiteHTuzPhD16P2mRscnuVWoPO5E/skCkoikJp5jFKtYWYu/ZFa/JtcvuOpODQNvL2riek7yhC+47CGBxJ4ZEd5OxYgf3LKny6xxM6azLagOrztuUWUfTDJiypWdWxvqwSp8XGC1O0zLg9gPjOepeOaz2VRdZT76CLDCHsD7egDQn04FmKGp6I9fIrTYh2LODyMZT8vAH/y0YTPONSFKez2QNSqLU6QjoNcnmqo45EURTKMo8T3nccUQOrn3qnb/qWvIMbCe0xgqooK4XfrsaSfBq/i4dSvGQjVQdOoosOw9A5Bn1SDBo/H/qqdvP165l893YWk2eFM+W28LMmwVWHk8lf8D1+44cRPOvK9tkM1wsHwAAIDAzkmmuuaetqCCHEORs2xgd9pxhwOol55v5zivUqlQr/6G5oXJzqqKMpO3Uc3+hOxF5Yff0vSTlI2rJP8U/qjU+/IEpW7SL98XcJv+NyyrYcomTNbtRGPaZ+ndHHhKHx80FxONmwfCM/fFHC+Klmbn0wiISzJMGO0nJyXvoQbXgwEY/fhdrH0Fqn6x4vjPeeiPWS/ArRgvKdrg1lf+++2xpd5yirIufrDdgLy+hZtZo8g4HD735x9vnMbna3pi54zQP7bGGV/g6cNgsqjRaHtQpVRCBVQdXr8o5sIWjgKMLGX0XIYTuFw/pxcNvHVOw8gq9/ND2H3EJIVO9fm0UDFtCljmRUlzJScjfz3VvbWDSvkISw4cSFDMagq9ssvKu6gvUHvybQJ5YhBRNQv2xpsI5Ld/yjyfMoKSkhIOBf5/RZNMab5v1btGgRkydPRqfT8cEHH7R1dYQQ56kUe6lL5V48Pa3RdYrDSfKiQ+TtyQAnWE+e5quvvuLaa689+05vcKem3qG4sxNneTkas5kqpQRtVCAlXaqDVfbaLegiIwh+cDb+KWqs11xE8vf/JeOZT9D6mIkcMZmQvqPQ6OsmrMo1UzEd2sqalctZvvgUQd0GEzZwHD4hdX9rRRQrJG/+Hkos9BpzP4Z1fg3WccWquU2eR3Ws/2czP4WmeUu893Ssl+RXiHakYMUeMt9fjmJ3YIwPo1Bt55NPPmn2RN7eLDk5mUMv/xmcTro98C8MoZEUbF+Lb0JXdH6B+MZ1omjfFgyhkegrwjEHxjH4orlYqorwD05q9CmtQWeme/QlJIaNIDlnI8k5GzmRvY4QcxJRQX2ICOiBVmOguPw0lZZC+iZchVrV8tMltRgv6gM0bdo0srKyCAsLQ6PRkJmZSXhb96kWQgg3FR3LY9v/Lac0pZDgPhFYCir561//Kq1ZGmCz2cj98GPKd+8hfNZMDHFxlG7eQtWJkxg7d8LYqRMVe/dR8P1itBED0Jr86DLjD5SfPok5tgtqXcNPdNUaLSF9RhLUcxgFBzeTvWM5hUe2YwyJIrDrIIK6DULvF4SiOMlP2UVUrwsx+Aa18tm7yUvivadjvSS/QrQDTpudrA9Xkf/jNvyGdiXm7knoQvzZM8UzTwO9wc6dO8HpBKoH8Iq+7EbSF77PyQUvkjTzYWKvuJWMpV+SufRLMgGtzofug24gOKKHS/s36Mz0iJlIp4jRZBcfJrNwP/vTF3E44xfiQgZjdVQA4Gfq2NNEdCRhYWFs3ryZqVOnoihK+2xmLoQQZ5Hy42EOvL0ZndnARe9eTXDv6gGonhr5VBvXrH0qLy+nfPceAPQxMfh074Yl/RSZb7xF+KyZ+F84BsXpoGjJz5TY1gAqIkZMInzYJb+17DoLtUZLaN/RBPcaQWnaYYqO7iR7+y9kbVlCYJcB+AfE4bRbMAXHevhMRQ1Px3pJfoVoY4pTIe2F7yjdfozw6aMJu3Ykahk0qUlTp04lfOxl+CZ2R6VS4RMZS6dZj3D8nacpPrCdsJETiZ16C9Yxl2E+XELakWUc2PIB0Z1GkdjjUjRa1wa50GtNxIUMIi5kEJXWYlLztpKWtw2H00pc2FA0ap2Hz/TcqHCzGZTHanLu7rnnHq68srpvtUqlIjKy8RsPDofnp7cSQgh3nPz2ALv/s5bYCV3oc+8FmCI69iwLrSEwMJCwW24ClQpdWCgAUfffS9Zbb1O8Zi2+/fsRePE4/IYPw7C/iOIT+8jevJTyUyeInTADvX+wS8dRa7QEJPUhIKkPDmsVhYe3kbN7NUXHdmIKisY/sqsnT7NFeEu893Ssl1/YQrSx/J+2U7LpMAl/vY6AEd3bujodhl6vJ3TEJXWWaU1mdEEh2IoLapc5bVayUrYQHNELg08wGSfXk5exlyEXP+pyAlzDRx9Aj+gJdIu6GIuzHIPOv0XOxaO8aACM//u//+P666/n+PHjXHHFFXzwwQcEBga2dbWEEKJJxcfz2fvaBjpd3YcBj4xp6+p0KObBg+q8V6nVGOLjKNux6/cLKTyyE43eSNSYqWSuW8ThD56iy/UPY4qIc+t4Gr2R0H5jCOk7GnVmEVqjuWPMkOEl8d7Tsb4D/CWF8F65328h871lhEweLIlvCyhPP4klJ6M2Ka44nUzaV++Cw0lW2jZqOrg4nXacThsa3Et+a6hVGoz6gJaqtmd5SR+gGj169KBHjx48+eSTXHfddZhMpraukhBCnFXBoRzW3f89fvGB9Jkzoq2r0+E5LRZKt2zD1Lc3AI6yMjLffBtbVjYqjQbFbqst67BUNvs4KpUKvW/guVa39XhRvPdkrJfkV4g2Yi+tJOujVYRMGUr0Xa7N2yvOrvT4frR+gfh374/DUknGT19gCI1i4IDbcThslOQno1KrCQzrhkbTvpsrtxgvCoa/9+STT7Z1FYQQwiX7Xt+IOT6QC9+6Cq3PeRJ7PKjqZDLO8nICLroIxemk4PvFOIqK6HbTH9H7B1OemYK9shRzbDd0vg2PzuyVvDDeeyLWS/IrRBuxF1egWO2YesTIwD0tRK3T46iqIGvZN5Qc24disxE7bTaaPANlxRkc3vkZKlSERvcjqdflWCqL0Bv9MPgEtnXVPcZbpj4AGDhwoMv/V3bu3Onh2gghhGsqskoJGxwjiW8LURurpy0qWr4CW0Ym1owMQq+fjjEkEoelklPL/4ettAhTdCLRY69CY/DBabPgExbTxjX3LG+J956O9ZL8CrdstthbfJ86ldOlcgP1rn1d1TRvYviW8EFRP5fKBb7jj6L4kRPShYJ3tpB0eGTDBae0YOW8kDmj7pXbGDsWe9ppKk4cJSS6D1F9xmOwBuHQK6SfXIvBFEx44lAyjq4m51T1BTMktj/dR9xSvYO0TJePvbTgvy12Hh7lRXeCr7rqqtp/V1VV8dZbb9GrVy8uuOACADZv3syBAweYM2dOG9VQCO9wwl7mctkKp2tTvZUrriV+Iwzt/6fpJ0VDXSqX93QiABGBo0n56WeiLdehNzTyJPLHFqqcF/JNr5sImTRJ2IdfQtHhnRhDo4mZcTW+MZ3wP+Eg4+Q2bGXFJPWZQk76Do5/8XLtdqOveuG3fR4vdOnYP+97umVOojV4Sbz3dKxv/1cYIbyUSqXC4BOAzVre1lXxGlq9D90uug2AzAMrObZmAVqDiaDQrhRmHsAcFIfdWo7dWlG7jY+fl88T6yXBEOo2f7rjjjt48MEH+de//lWvTHp6emtXTQghGmUwBrZ1FbyKSqUiYvRlRIy+jLK0Y2Su+haNjy9mAqkozQbFidNhw+n47YGNb0B0G9a4lXhJvPd0rG+7R2RCCIryThAY1qWtq+GVTu9bhq2iGGt5Ean7qm+plxWmk5e+p07CawqQeXo7oq+++oqZM2fWW37zzTfzzTfftEGNhBCiYcX5JzCZIxt/6iuarWDXeqpyMlCpNWSnbqW0IBWAU8dWozf+9nmbA90b8Vm0D56I9ZL8ilaRm2Un9biV/Bw7lqrqZs5fzi/mtX/lt3HN2pZWZ8TpsDVdULhNZ/QjOGEAnUfdBECngVcT1XUsif2n4heaVFtOrfbuBjA1fYDceXUEPj4+rF+/vt7y9evXYzQa26BGQoiyUifHDtvIyrBTUe5EURR2bbNw3615lJe51sXJG2l1RpxOifWeoPX1wxAcRuLVd6LVm4jqNJrYruNI7D2ZsNiBteXUatea53dk3hjvPRHrvftXn2gXvlpQzOtPFfC71id076PnyH4rAJOvMtGrn6GNatc2LJXF5GbsprIiH7+g+LaujtcpzU3BUpaPb2gcRv8wUKlJ3vM9itNB5rHqMjE9xnP68Aoctqq2raynecm8f2d66KGHuPfee9mxYwcjRlRPHbJ582bmz5/PE0880ca1E+L8s2eHhYfvyqcg77ckNzZew6k0BwCLvyhl+m3+qNUd4xrTEhx2K/nZB8jPOYyinL/Jv6fYK8spPXkI37jOAJj8IshK2YTidNSW8Q/phKI4sNu9PNaDV8Z7T8R6SX6Fx1RVOvnivWL++2IR1832Z9xlvpSVOMk8ZWf/jiriO+s4sMvCrKlZTJhq4tGnggkI9O47c/npFXz/9EGOrFuKSq0hJLwn8V3Ht3W1vEbhqQOkbvsWa3khpuBYguP7o9Zo6TzoGvJP7SGmx3gMPoHYLGWYg+PJOr4BS2VxW1fbs7ykD9CZHnvsMTp16sSrr77KZ599BkDPnj1ZsGAB06dPb+PaCXH+UBSF1cuqeOKRArp01/GfeQFUVigUFjjYutHCoOFw4qiN158q4Jfvy3js2VC69fHuG97WCjvLXzvMthVLcTqs+AclkNB1QltXy2tYi/JJ//FjKrNPodYbCBtW/Tsqqc8UUg8tJTiiJ+FxgygrPo1/cBJHdnyO1dtjPXhlvPdErJfkV3hEbradP9yYRdpJG7feH8CdjwTVGbb82lv9AXA4FH75ppSX/1XAM38u4P9eDsHH5J2t8Utyq5h3yxZ0BjXd+l1LaFQftDqftq6W17BVlXFi/SeYwxKJHXAZwfH9UGuqL3ERScOJSBpeW9ZoDgHAHBRLQcYBoruN9drmz94y9UFDpk+fLomuEG3I4VB47IECli6uZOSFBp57IwQ//99i+JSrfWv/vWGLgxf+msff78/hpY8iiYn3zml/nA6F/83dTuqOfOI6XUx4zGB8TMFtXS2vcmrJZ9gry4i6eBr+Xfui863+TekXFE+fkXfWlgsM61q9PDCWtCPLsFQUYTAFtkWVW4W3xvuWjvXemWWINmWpcvKXu3KoKHfyybIY7vpjcKPzdWk0Kq6YYeaBx4NY9XMFP37tfSMfO2xOti08xX9v24ZKBXM+GUFk/FBJfFuYtbwIp91KdO/xhCYNqk18zyamx8WUF55iz7KXqCzNbYVatgGlGa8OxGq1curUKdLS0uq8hBCe9+K/S1n2YyXPvRnMmx+G1kl8zzRgmJF/vRnOqRQ7bzxV0Iq1bD3JW/P47IGtnNiUy/WvDiWh6wRJfD3AUpBDQPeBhAwYVZv4nk14/GB0BjM7V71E3um9rVDDNuLF8b4lY713PuoQtZy41sdkk4tdIW755d6zrlcUhfwPv6Ri/2m6X/4AL33W9Oh6o+7fxoYju9EYiskdNIpP8n0bLPeW3bWO7Uk+rg2idW/wDpfKPZ7helOl3fN+m+fX6bCTe2gD+ce2UVmYhX9MN2IuuJwlH8WwffFcl/cpGlfU7bebKoojGs06PzKLduEc27VOuduvWdboPk4fGs7nf9pD+uHXMQ75EzqdyWP1bRPuDmrRQYLhsWPHuO2229i4cWOd5YqioFKpcDgcjWwphPdp6Vg/99CsJsvkr9pP8tuLiRt2JV9tH8tX289e/sI/bCH1ZDZwGvNFfVlYlNBguc8drv00jTS43ox1ZqBr8f6JjEtdKrfty3513pcc20fhvi2UnTyIISSSmMtuYeexgez/8WGX6ygaV9q57vXc0KcrRcl7MN0yAZXmt+5yV926odF9jMofwZKndnNs7aeMeDCVVSVTPVbfNuOF8d4TsV6SX9EiFKeTqsPHKdu0nYqtu0m68CZ8Q10bVv7AdyfY8eFhht/TB7+ohhPfjkZRnKRv+Y68I1sIiO1Owujp+IbJwFaepNJo8Ovdn7LD+93aLqanP7PeHMQb128i9egyuvS+0kM1bCNe2AcIYNasWWi1Wn744QeioqIabV0ihGhZlWl55K86QPa3Wwm5pC/hsWNc2i73aBGL/7SRmEGhdJ/kPdPOFB/Zw6nFH2KMiCNm8g0E9Boi1yMP8x0ygIrtu7Hn5qOLDG96A8A3xMBVzw3hk9s3sPiJnfg+MsX7/k5eGO89Eesl+RXnxFlRSdnG7ZSu3YQ9Ow9teAhB068g2DyoyW0VRSH30AZ2LthO3+u6MOzO3q1QY8+xllmxVZRQfOowuYc2UJF/iviR1xLW44K2rtp5QVEUKtOSMUTHur1taIIvQ6+JZdOne+jUc4p3TYnghcEQYPfu3ezYsYMePXq0dVWE8HqKw0nRpqPk/LiT0j2paP19CLmoN/FzJqL6vukfo2XZyXx9zxoCYnyZ9upo1JqO2+vObrFjKy/Bmp9N/o61lJ44gH+3/sROnel9yVQ7ZTmRgsrHiDYsxK3ttHoNY+7twef3bESXdgpDgvfchAG8Mt57ItZL8ivcptjtVB06RvmOfVRs34PicGAa3JeQW67D0CWx+uK/pYl9OB1kH1jL6W0/MODGboyZO/Ccg0ZVURUrHlnBkMvDGXFTp3PalzvyDuez7l8bKTj6Wx+mgLiedBt2L35RXVqtHucza0E+BWt+wZJ5mrBJVzRrH4OuiGHtBynkZOwmMnZwC9ew7XjrABi9evUiLy+vrashhNdSFIWK41kUrj9C/sr92PJL8e0ZQ9KfriBodHfUuqZ/QiqKQln2SY7+8i7R/QK54sWRGPz051Yvp8KqZ7aiKi/nhpda71ptKbWw/h/rOb3pNE5bdTNzQ1gUUROuI6jfcEl8W4HTaqVkxVpKV2/Ab9zoOk2eXZU0PAy/CB9KVq4jbPaNHqhl2/HGeO+JWC/Jr3BL1dET5L3/BY6iYrQRofhPHoff6OFoAvxc2l5xOji9Ywn5x7ZhryojrNdoxv7R/Sd1O9/eSXFyMTEXxGArt1FZWMmxRcewFFn45XA+iUNCieze9CAIzaUoCvmHCzi6+BjHfzyBf5w/Y58cRcbGHuh9g/AJjvLYsUV9+at+pnRPdZ8uW2E+0PXsGzQgqpsfweE9OZ28zquSX2/13HPP8eijj/LMM8/Qt29fdLq6I8f6+3vu/78Q3s6aV8LJ5xdRtj8drb8PgaO6E37ZIEydI1zeR/6JHWTuWUFVcTam4BiueWs4Oh/3fnYmrz3Nro8P0eWSOBQnWMttHF+eRv6xIgAOrcyix7gIjyae5dnlnPjpBEe/O4q13MqQB4aQldwXtd6AKbYTKlXHfYrd0VTs2kfx4qUA2AsKUZxOVGr3Pn+1RsXI27qy9N+7sV89BW2AxIr2zBOxXpJf4bIf/ldC9kvvYuiaRPgDt6GLiXQ74BSlHSB73yrCe48ltOuwX5PEbWfdxl5lpyi9jONbCzj67VEqCyqxFFkASF2VitakRe+rJ+GiBEJ6hHDo4928PX0N/afGUVFoYfRtXUgY7F7TmKbs/XA/29/ciSnMh57X9aD/rL7ozXrK03u16HGEa8ImTkUXEIQlK4OcH77B1KUHuoBAt/cTETOQQ7s+w2opQ28wt3xFRYu55JJLABg/vu482TLglRDn5sQhCwfvn49Kr6XLk9cSMKQzKjebKduryklZ9wW+YfF0nXgn/lHd0PmcPdYrToXCtFKyjpWz5/MjFKeXUp5bCUDGzhw0Bg16Xx2h3QIZNPMCjn1/hE8f3EGPcRFYK+30vyyGAVfEoNG2XDKasy+Hn+/+GZVGReL4RPrO7Etgp0DKv+zY3bQ6Kt/B/XGWlWPLzaNs7SYq+vbCd+hAt/fT5/JYlj67l6ojxzAPk5vd7ZknYr0kv8IlKcesvPT3XMyjhhF809Vu32kDqCjIIG3TQgCCkwY0+XQ053Ahh39M4cSKdEqzKgBIuDiBpAlJBHUNIm5MHIpTqdd3aML0YD6YvZHd36cDcHRtDvEDg+h7eSydhoUSmnTuSU3y8hQSLorn4mcvRN2CgVY0j9bPn9BLLsNWXETyi//EkpXRrOQXam7mdIC2QK7ywj5AAKtWrWrrKgjhdawWhScfyEYXGkS3p29AF+D+6Pe2qjIydv6Mojjxi+5GQMzZ++qV51Wy79tkTq7LJHNv9WwNYT2C6DWtM+YwE90mJ6LRq+vF+gunBbPs1cOs+e8JAE5uzmfFm0cZfkMCCQODiR8QhFpzbk+E09akoffXc/XXV6M3n1tzbXHuVFot/uPHAmA5egJLSlqzkt/aBzcdJN65zAvjvSdivSS/Xu6lAteaf/7vlYlnXZ+y6jPUxgrylq/FYDA0ub/xXzxb573NVsGO9S8CkJgwjvDiILTl1U9vN74+tLacoiiUZh4ja98qSjKOojMF4BfZne6TLyDioA1TWiCkASsg++2Gj73+9n44Bsfip9pO+ZFDOCsryMo0kvbMAXA68Rs8lIhrb+CCGceaPA+Acnv9gKcP8cXuUFGJEey/LQ9Itri0T9EytP3qTnXhzK5+r+1SVWfdpkLX+oAbC6v7lRgySjHqmijcQXhjHyCACy+8sK2rIES78U1ZkEvlnvjs7H0cS/ZsJ+tkMvv2rqBPnz4u7XPoly/VeX98+XzKc1MJ6zGK4MQBtT+wl/93RJ1ylqJccnatovDIdlRqDabIRBImXU50igmzIRTV1upkN/nHho/7y7RA7P5DMPf+HlAoO7AHiyqE5W+eRLEdQRcUTOL9j6HSahlyy0mXzsWssdZ5HxSmx1ZuIzgA4Ld1oZeedml/omVMHb6r3rKP9ZUkxeQx+nfrdhe51o3OYa1+WhixwUL0sSbm/5rjej3bmjfGe0/Eekl+RZOsZYWUnDpEcNehLiW+DdFofksgS8sy2LnzHcrKs+jadQoBieMAKM9LJ3XTN1TkpeMTHE2nC28mKLEfql9H3jUdy3L5eKau3TF17U7ZvuoBufwGDMJptZL9xcdUHD6Ecg5NIo8vPEjmxnTixrfeoFrCNZaU6u+ILjywWdtXWotRoUKv9b65fr1VRUUFaWlpWK11f7T269evkS2EEA1RHA6Kd21DHx7pcuLbEJW6+qeltbyQ1I1fUZaTTFBCP+IuvxWVSoW9soxTaxdSfHwPWh8zEUMnEdpnJBqDDwB+2UUuH0vrH0D09JlYsk5jjIol8IILUanVFG1ZR+7P32PJycQY3bwRfbMP5LPuxZ2oddK6q72pKrFSmlmOf3TzpseszCoBwKD3wv6+XhrvWzLWS/J7HstLLSdlZ2F1MLJUov018ChOBzXNPy2l+Zz4+V3UWj3hfVyby68hKpWa+LgxlFfkguKkrLw6Sam58JRmneDYsvcwBoTTdeJd+Ed3a5EBLMx9+9f+W63XYx4wmPJDB7Dm5TZrf4pTYfcbW1BpVHSf0fwfB6Ll2UsqyHznJ0y94tFHBzdrH7klxwgyJ6BWyVRH7V1ubi6zZ89myZIlDa6XPr9CVCspsHF4WxmFuTasRXnog0OB6pZWisOBSq1GsVnJ+vZzKtNOEnPDbed0vNCuQ9HqjSgolOUkA6Az+aNSqbBVlHLiuzdxVFUQe9G1BHUfglp77s1sDJExGCJjat/7DxhG7s/fU5lystnJ7475BwAY++iQc66faDmKorD8iY1o9Ro6j49v1j6yNySjVmkJ8JOpjto7T8R6SX7PU2vmJ7PkpSMoCqhUoPM9RdSQyZRlnaTwxG6cdiso1UP56/2C6TrlPvRm15pVNUSlUtOly2QAysqzyd96lPj4sYSH9yH99BFOrv4I37B4ulxyOxqtZ/rVKE4nRWtXoo+KQR/m2qToZ1KpVRiCfCjPKGXHSxsJ6xdB9xv64RspgyO1tZJ1+7GXlJP0nzubdePEUlRJftlJukWOb7pwB+KNzaAAHnroIQoLC9m8eTPjxo3j22+/JTs7m6eeeooXX3yxrasnRLtwaGspL9xznIpSB2oNKKrnCZ0wBUdFOaV7d2ArLAC1GpxOVFot0TNm4du15zkdM7TLUEK7DMXpsLPz4z/jExxN/PBplJcUkLzkAxyWSrpc/QCGwLAWOsv6CtavQKXVYu7Z/JvUPiFGoDoJztiZQ59ruhA9sHm/HUTLKUorJWVdBhOfHolvqI/b2ysOJ+k/HiLQPwGtpnmtGdsrb4z3noj1kvyeh7KOlfLzK0cZPTORS+Z0oaLYymvXHyN19Wfo/YIJ7z0anW8AKpUatc5AQEJvNLpzu0BYLCUUFiWTk72H/ILqvrZpaWspKkqmpCQd/+hudB53q8cSX4CSLZuwnD5FzD0PNmvArhqXfnwNmRvTOL0+jdRl/9/efYdHVaUPHP/eaZmZJJNJ7yEESOgQeu8gWMCOqNiwr65ldVd3VdR1rati+WHHDmJDUFQMvffeEiCQ3vtMJlPv74/RsJEAEzLJQHI+z5PH5M65974Dknfec0/JJHtFJuPevhRDotF7wQpNVrM1HX23DqhDPNt263/lph0h/dPtKCQVwf6iJ/hCsHLlShYvXszAgQNRKBR06NCBiRMnYjAYeOGFF7jkkkt8HaIg+JTd6uK9f54grouWv87pRKBRyX0zlZT88gMKrY6Abr0IGZnofvqrUqFP6oLaeG6jZv7gtFsxlZyg4sReKk7sAcBSns/RFfOozD2EOiCIpKl3tWjhay0upGLjakJHT0IdfO47PYz+xwBSpiRyZFkWeTuLWXTnCiY+N5TkixK9F6zQZMfX5KH0U5I4Kvbsjf+kMr2Y9A+3YMquoEuHwS0QnY+1wXzfErleFL/tjCzLLP7PQULidUx+MBmVRoE2QEXK5Q9hr61GExDs9f3yior2cuDgVwD4+RkwGOKoqsoCQJKUdBp7M8YOPVt0rzyn2UzZbz9jGDAYXYfEZl1LrVeTMKETCRM6UVduYdX9S1n5l5/o9/Aw/OREsdG9DzgqTJj3HSf6rqb/ErSUmNj+bBqGpBAGd74Vg87zfSwvBG2xJxjAbDYTEeF+ChMSEkJJSQnJycn06tWLnTt3+jg6QfC9n+YVUZJn45F3OhMW7e5YjrpiBqFjLkIdZERSend6h81cwf5FL+Ny2FCoNAREJFKdnwGA1VxB9NBLCO0xFKVG69X7/lnJL4tQG0MIHj62WddRKBXEpEYQkxqBy+lixTNbSHtiE1U5JtQXh6HUtZFVES8gsixz5NcTJI6IQaNv2p+/7JLZ88IK6kpNpD45kdDlw1soSt9pi/m+JXK9mMXfzpzYWUHmtgou/XtXVJqTf/0KpQq/wJAWKdycrpOT063WaqqqslAoVPTtO4v+/e50L2rVwpvE28vLcNVZsJeXUrZsKbXHPFvp+Wy0ITrGvnUJwSlhbHxiBbt2f4jJ5PnCXELzyS6ZwnnLUGg1GIY1fZ/l3a+sQROkY8Rbl7e5whc42RPclK8LQEpKCunp6QD07duX9957j7y8PN59912io8+8jZogtHW2Ohc/fVjIxOvDietycmioJEloQkK9Xvj+fnX3lCnA5bDVF74xqZPpMfVvRKSObfHCF6AuPxeX3UbZ6mVU7drarAUu/6BQKhg/ezB9b+zKtg/2s/2OTylZm+GFaIWmOLQkk5L0Crpf3qnJ555YtJea42X0f2YKsRNTWiC680Ar5Pu5c+fSsWNHtFot/fv3Z926dR6dt2HDBlQqFX379m3S/Voi14snv+3Mvt+KCIrSkjKy5YYc/Vl4WA+ydGsI8I8kOnoAWl0w/vrwFi94/5cmMhJ1eASWzGNYMo9RsXoF+yYk0GtQ81f11YboGP3aZPI35bD9iR3s2Pku/frdRWCA+ADeGoo/X071+v3EPnwVysCmzf9x1Nop2pxNn4dHojFosbRQjD7VBodBgXseUEFBAQCzZ8/moosu4osvvkCj0fDpp5/6ODpB8K39m6oxVzsZf13r5XqNv5HgxD5Yq0uJ7DEabVA42qDIZk+bagrZ5SIodRAVm9ZQsX4lAPaKMril+ddWKBUMfyCV7pd34peXDnLw2R/p8tfxxEzt2/yLC2eVtTGfVc9tpfu0TiQMbfrnq4JVR4kakURYf8+2Q7ogtXC+X7hwIQ8++CBz585l+PDhvPfee0yZMoWDBw+SkHD6xceqqqq46aabGD9+PEVFRU26Z0vkelH8tnHR6ooGP8dGudhaYcW/uhhj+Mn5tdYg7953xcrH/3TkWe/e4AxGXPnfBj9XlWaSvvVz7LZaQmP7YAh1D02u7lLH1tqz934/FtP4CnOnuAquqnyYnPfeYF/xT8RNvU8MgT5HI6/479kbAd0uWcfBRRsZ8WBf+t2gBtIbbbd4S/9Gj9ty88ElUyT1onJfIif2PHKuIZ+32uIwKIAbbrih/vvU1FROnDjB4cOHSUhIICwszIeRCYLvBUe4h4TmHbUQ/z9PfmmBlLTt44f/56eHT9vO20ZNfaXBz7a6ag5u/4yaimwCjQmExfQCWSZc3Zd9dZ698fvCV529UThsmPEwduV3HH1vPdaIESgDT7PWRNtaP9Hrhl/j2YJFne91sXz2ZmIHRzP08aHYZEWjhVuF9fQd4DU5VUT1Tapvs37jE+cU8/mspfP9a6+9xqxZs7j99tsBmDNnDsuWLeOdd97hhRdeOO15d911F9dffz1KpZIffvihSfdsiVwvit92Zuz0CJa8k8fCl3O48+WkNl+cWS1VHNr8Mf5BMfTuNx2t/8nFPNR+q71+P4XGj7DJ08j/9D3Mhw80a6VJ4ey2fnSAiG7BpN7o+RAm2e7AcuAw1uPZ2AuKQKFA1ZaLpVZ68jt37lxeeeUVCgoK6NGjB3PmzGHkyLNvj7ZhwwZGjx5Nz5492b179xnbPvyw5x+sX3vtNY/bCkJb07GHPz2HBfL1nHx6DjMQENS2P+7JsotDO77EWltBr6F3YQxr+rDYppAkieBLL8a8aw8Vy9IIu/rKFr1fe3f4hwysNTZGPTEMhdKzUYOyLFNzKJ/KHSdwVFmwV9Sii2/egm7nvXPM99XV1Q0O+/n54efXcMSGzWZjx44dPPbYYw2OT5o0iY0bN572Fh9//DHHjh3jiy++4LnnnvMorJbO9W37t6FwCv8gFTc9lcj7/8ikqszONQ/H07HnuW0SfiEoOLYO2eWi6+CbUWuaP8TZE/5dUtB1SqZ02U/4J3droblVbV912QkObf2UDt0mE5V46qqMToeN3G3FjH60H5LCs04c2eWi6O0PsWYcQxlsRKHXEXzNVJQGsVVVc7TWUKhdu3Z5FE9b79QTBE/c8kQCz9yQzhNXH2L6Q7EMnnzu2xWe7ypLj1Fdfpweg25t8cL3D0p/PUETx1Hx0y8EjRqJOqL1hpi3Jba6Gg5t+AhdQDjJg29otE3O+jzih8fiH+H557jc+ZvJ/mQ9qkAtaqOeyIt7Ezq8i7fCblPi4xvucjF79myefvrpBsdKS0txOp1ERjZcGyUyMpLCwsbXujly5AiPPfYY69atQ6XyvORs6Vwvit92aMQV4egNKha+nM3sK/cTl6yjWrLiFxaFNjQKSanEWl6MSh9AUNd+F2TxJssymXsWUXh8E5KkxOW0Y6kpQRsQ2ipzjcMuupScua9RuXkdwcPHtPj92pryosMc3PTR7z813o1ZVnAA2SmTMCTK4+tWL1+L9UgmEfffjq57G13w4s9a4clvaw2FWrXKgyGJgiAAENdFx9PzU/j8xRzeeCCTkCg1VoMFTUQkfhFRKAODsBUXggSBvfqh8r8wOwFLC/ZzaPtnAPjpg6mtKUarD0ahbPnVmA2jRlC9bgNl3y8m8s7bmrWNYntkra1k3+q3sdVWopAa/6xps1RTuKeYYX8b6PF1a9ILyf5sA7HTB9Hh1pFIHj4tvuCdY77PycnBYDDUH/7zU9//9eeCU5blRotQp9PJ9ddfzzPPPENycnITgmr5XC+K33aq3/hg+ow2svXXMtK317B5bTXm7CM4LWYAFGo/XHYbpdtWkXjtvaj0F1ZSdNjMFJ3YAoAsO9n+q3uoRXh8KskDrgegrsZO6QkzsT2DvP6kSBsTh3HYaEqX/YRfTBz6jp29ev227sjOhfXfH939HREJA1Eo3InR5XJQnL2dzH0/0mFYNMYEz/f1rVm9noDhg9pP4cu5zwHyZBgUtO5QKEEQmia2s47HPkwmfUcN29IqWbVWpmb/bioq3euBSCoVyDJlK5cRc/1t6BNb56mpt8iyTEHWlvqfd64+OQRy+MX/QaFUI7ucZO+tIqqzPxq9dz/2KtRqwq65kqIPPqZy2XKCp0zy6vXbutxDadhqKwGoKc+ipiyLwNAOgPvvtro0k2M7vsHP4EfSxESPr1v40260UUEk3DKi/RS+nHu+NxgMDYrfxoSFhaFUKk95yltcXHzK02CAmpoatm/fzq5du7jvvvsAcLlcyLKMSqXit99+Y9y4cZ4H60Wi+G3HlCqJoZeGMfTSMIren44syzhrTbgcdtSGYOpK8sn6ei5Fa38idvJ1Tb6+y+VC4aNe0Nz0lag0evSGaLT6YIqytgKgC3DvFeawW3hn+nrKsmtJGhzKgKsS6DYukuJjJsqyzCSPDEcb2Lxe47CLLsVamE/hV58Rf/eDqIPb+FwTL7JbTfXfqzX+SJICh72OwhObyT+2HltdFRHx/bn4lY5Nuq6zqgZ1jOdPituEc+wJ9mQYFLTuUChBEM5NSv9AUvoHktHB3fnrstbhqKlGHRyKs85C/oKPKVr0FYn3/8NdEDeBL3N9RUkGlSXpaPWhJHa9iMM75wNgCOkISMiyTMbub1i/dCfBsVrGzupItzHhyC6Z4zsq6dA3iND45k2J0vfojnHKRVT+/CuamGj8+/TywjtrH+rM5Q1+1ugMyLKLsrx95KevxlSRg39wHJd8NAKt0fNtsuzlZnQJoShUF97IxWZpwZFeGo2G/v37k5aWxhVXXFF/PC0tjWnTpp3S3mAwsG/fvgbH5s6dy8qVK/n222/p2LFpn9+8SXzqEOpJkoTK/+RTNF1ELMF9hlG+ewMxF13r0XDh48ePs2DBAhYsWMDRo0eZOnUqM2fOZMqUKShbcfh0RIeB1NWWk9R7GlZLFcU5O9y9v4eWUVdbjrmqAKfLxqSHurLtmyy+/vup8wu6jYvk6hf6gucPFhuQlEqip88k5903yPvkXeJuvw9V4Jl71gT3PNA/KFVaUgZcj8Ney541b2OtrSA8vh+xnUfhb4hCrdvRpGtrYqOxncj2dsjntXPtCW7KMChonaFQgiB4h8JPi8bPXUyo/AMIGz+F3I/nUleQhy6+w1nPr6ysZNGiRcyfP59Vq1YxbNgwZs6cyfTp08/6BMmbDMEJhMf0ITJhIP6B0QQExWKqyqO6/Dh7N76DLiCC4rydjL4tkfxD1Xz/7CF49lCDa4TE65j5eh/iup973MZJ47Hn51Py2Zco7pqFLlnMLfWE02Gt/z6+x2Q0OiNHtn5Jac5ugsI70234LIxRXQmK33eGq5xK3zGM4t/2I7tkj9cEaQtaerXnhx9+mJkzZzJgwACGDh3K+++/T3Z2NnfffTcAjz/+OHl5eXz22WcoFAp69my46GtERARarfaU462t/YwFEM6J7HDgstZhzjpyxnZbt25FkiSSkpL4z3/+Q69evfjnP//JwYMHueyyyxg7diwZGRm4XK5Wids/KJpuQ27BTx+MITSRYdNeZPClzxIS1Z3irG24HFZufX8wo2Z14uFfxnLpP3ug0igYNevkkK9DK4twWJ3NikPpH0DsrXfjstnI++RdXDbr2U9q5wwGA537XkVij4sZMOlxjBHJ5B9dh62umn7jHyG537X4G87t6a2ud3dq9x5Edjbv7/WCco6b3v8xDOqPr9MVv+c6FOq+++5DpVKhUql49tln2bNnDyqVipUrV3rlbQuC4DmFxv3v23RgzxnbmUwmOnbsSHBwMLNmzcLhcPDcc8+h0+m4++676datG2lpadjt9tYIG5VaR9f+NxAcnoxGG0jqqAcYfsnzdOx+CTWVOZTm7yW577Vc+kgyd340gIe+H4rKT8HQ607u9VqeY6GmpHm5WZIkwmdej7ZzEkUffIw1N6+5b61dSOw9lZjk0fSd9Cjx3SZQU3qc0pzddB44gx6j7yY4uts5TUsLGdoZe0UtNQfb2d/DOeZ7T02fPp05c+bw7LPP0rdvX9auXcvPP/9Mhw7uDrOCggKys8//BwziyW8bd2VAgUftfrv6wCnHZJfMtx9sJqxHOIPvqUXjf4DOL79+ajuHg8IvPgEgcOBgwqZeTtnIQtZTRsyo8Wh3pbD1+WWkpKSg1KmJv7w3CVf1RRvmnkdcPCMLi72SDsb+p13wAOCXjJc8ei8BazNO+1qqPIgaQxJBqghWHu4Jh39/QQNJ/3BSKMsodc/Uz32e/3kv7nxqv0f3Beg1tvFOgs79prDq9u9w7vmcPn8fzZTkf3h0vV8yXmL9+vW8+uqrPP/883Tr1s3jWFrL5JA7PGqXf0t3AGzV5Ziyj6DSBWDo1KPRtuM/1AE64AiVWdVsvmE1PWckM+DBPOBkMrsy2LMnvzt/7QdAQHkHDtRZCf+hAp1/6KkN7/bocheWFl7wqi0NhRKEC9Xl/mUetds1bUOjx5f8Ywt+gWqueFhFeJcNpPz71DayLFOzdweFJ06g8NPS4f6/k28wcmDsASLGxjP1nqvZ9O91TJo0CUkhET+6Az1v6UNIinsrucypZoosmcT790CrPP06Ir/kvunRe/ErPX3BmmQYTGjPGPTaUDRqf+YuOzm0Oe4/V1CoVBKQ+RWmrdsAWLQ0hlV143j4uuMe3XvyiMZXo7UPTuWHWSVYvv2Iiz+fwtDrPdvHFuDTpy/j1VdfZeLEiVx99dUen9eaev/4lEftaqp0uGrrsOw/grPaTOC4QY0uBjb1tVIgGsjBUXecb25bQViykSnvuJAU2+vbXR28zaP75hjded0ZJ3OrSmJA9SYmJEZ4dG6b0AoLXN57773ce++9jb72ySefnPHcp59+utHpU61NFL/CaZmLTFirrAybnYrGX3PK67LLhWn3TsrTfsVRWUnYtCswDB1xSi9dSGocwz6+kYo9eVTuzyd70R5OLNiBpFIgqRS46hwA5FXvI0TXAZAx2croEjqSYF2sV9+TSlITrI5u9LU/VrVOeugJbOWlZL37KtV7tzfatqkMHUPodf8wdr+ylqihCRjp7fG5d9xxB4cPH+aaa645L4tfT9hdVkp2rKb66D5q83//cKFQ0OuB/57xvMqsapbet4KA6AD63978eVRavXvetbW2vPHitw2Sfv9qSvumaitDoQShvSo6VEnPqR0I7xLU6OuWnBOUpi3FcuIYgb1Sibx8Ogp1w88FAdGBjH9rMsW7C6k8Ws6hBfv5+ebFSEoJpZ8KR637aXCOeR/h2o6oJDU19jKi9cnE+zfeEXquJEnCGNj4Nmt/5Pqw6dcSNGYMpQu/xrR9B0FjxzT7vmqdivHPDefbG39h81u7CFB4vkLx3Llzef/997Faredt8Xs2skumcs0+ytcfo3b3YbC7P99pEqLRJp9+OL2t1s6vj22k4kQ1V304vtlDlZUqiZAoNaV57Wu0XWvk+7ZAFL/CaclOd5eQucjc6OtVG9ZR9tNi/Hv0JPrm29FEnX4oqjrAj4jhSUQMT6LjDQMp2Xgch9mK02JHuzgInTqInKo9lNWewGx3L4BQVpvl9eLXEwqNH9qoWIwDh1OxdQO7dhlJTT21+G+qjtO6U7gxi50vrmZ4cCf8VJ7tr/ztt9+yb98+rrnmmmbH4AuyLLPHvJLyDUXoozug1AXgtJgI7TP8jOdlrshm9bOb8A/Tcclb49AENP/vwOm0AaBUnXn+apvSCj3B06dPp6ysjGeffZaCggJ69ux5QQ6FEoT2yuWUqSmyNDpH0lpcSM4Hb6IOCSPm+ln4p3Q/7VBUhVJBVP8YovrHkHxVd/K35FJbaMZhdWD+RE2YtgO55oOU23KxOS1YXWZcOL1e/HpCUijQREcRNG4sxZ98StXKVXB9868bkhTE0L+msv6V7XQdfRhjTFePznvqqafo3bt3oyNmLhSlizdT+PFyNB1jUUeFYc8pRNMxFk1C4w8dAMoyq/j50Q2YCmu59LWRRHb3zuKgdWYXWn+x4NVZ27dDovgVTisgJpDY4fFsfWkDBZtziR/TgdpcFa46C47qairSlqGJjibqptuadF11gB8xk04mA8UqdyESonOvLru/6Fdyq/eSFDLEe2/mHIQMH0vltg3s3mn3SvErSRL9Hh/Db9MXkFW5k+SwkR6d16NHD3r0aP0PBt5SZD9OmSOPwI7dqS3IwmWvI3r05YSmnvr+HRYTlYd2snTzFnI3FZA0IYHRTwzxSuELYKtzb9+j0bafhcdaegGMP7SFoVCC0F71m9GJla/s5dPrV9Lzsg6YC0KRnQ4cNdVU7dgMQPzt96MK8HwFSIVKQdzwk09fS79zDz3uZnT/7i+pO8GOsh/pFOj509GW4N+7F6qwUOoyPRvy7Ime05PJXJlDzr5lHhe/ISEh3HZb0z5PnU/s5TUUfbEKXXIsDpMNe34J/sP6Enrb5Sj8GuZw2eHAvO0AaV9vIeO3HIJi/Zn++URCkhofedBUDpuLmgoHxvCW3+v5fNJa+f5CJ4pf4bQkhcSYVyZydEk6R35IZ+Mza4G17tdUKvziE4i41gvdpP+jxJxJbvVeQnUdkHw0IMNlt1F7LAOFnx+SWkNujvcWR9IG64mf2Jm8n/bRJfTUIeJtkc1Vh4QCc14mLlsdybc8hl/wyTk4DouJmhPpmE4courIXgCi+oQw7rnhdL4o0at/RnXmcpAUqP0urH2rm0X0BAuCcBYDb+xCZFcjWz/NYNVre3E5fl/4SqFAbQwmduadTSp8z8bqrGVP+TIAAlS+2QZQlmWsmcdx1dWhMhpxVFbgdAagVDY/50iSRK/rUlj26FpqKwvQG0//5LOtcFlsyHYn9qJKHFVmwu6dTsDQPidft9mxHj5O7d4Marfsw1lZg9w5iIG3dSP1xq6odd4rSUp+H+4cEtW+il+R7z0jil/hjCSFRJfLu9Ll8q7YzDY2/5aAQqtDodM1qyiRZZnyHTmc+GoHVccKkVCSYOyLTm0EIESf0OqFoctmo3TVr1Tt3IzLWld/fN5HNo4fd/LRJ0avxBQxII7jPxzE7qpDo9Q1+3rnO63CHxkXkUMmUbh2CfbqSvyCI3DU1pD98+eYc44BMtqIWCKGTCKk1xBG3X76RcvOVW1NEXnH1hIUmoRC0c5+9bXTBCcIgucSBoSTMCAch9XJ91/1QlKpUOr9G12oqCmqsio5+MU+cgpycMoOgjXRdDOOxiHbCFSHoVN5r6j2hCzLmLZto+LX33BWVDR4LWWYipXfxZEQ1/yiKW6weypYbWVhuyh+1eHup7bBF6VS+tN2bFkFMLQPsstF+Rc/YVqzA9lmRxkahL5/dwInDuHqSUVej6O2xsH8F3Pw0ynoktq6/2+dF0S+P6t29glQaA6NvwZ1SPMWCbJVWShckU7e0gPUHCvFkBxBUvBQTLYSjpVvAiT06mAiA1p//8+CRfMxHzmIcdBIgvr0x1ZaQvFvS3BUVVBW5vJaMa6Pdg+5NdvK0OjiztL6wmdxmZBQYExJpXDtEsr3bwalgsI1S7CbqoidNJ3ADl1RB7TcUGSrpZI9a/8PjTaQLqkX5txpQRCE1qDyU6I2BjfrGk67k7z1ORz7KYO8jTloQ3TE6XugkJQcrdnKuqIvUEpqOgUO8FLUnqvZtJmyb77FP7UvAddejVKnp2r1asy793A824G3+t3VehUqjR5LtfcLvPORvaQKAP9u8VRtP0HtzoPoenXGvGUfptXbMV4+Dv2gnqhjI/7n85R3/2xcLpmXb88gJ72W+9/ojC6gnc35FTwiit82Tid5trDPEzE/e9TuqZGe/S9zdF4K9toaHHU1qP2NlKVvoSr7AKaiEwAEJXSn8+SrCIxNJvKno8hKFwaCkWUnCfpeKOtUUFfj0b3+7NfS9z1q1+vhk9s2ybIL06F9KDQalFao2byFqNGXE3B1AhcHvc6dd3u2ONWk0FO3jPoz+0AXqyQFJUE1aJLCPLru+Sznru6nfc3lsHPii2VoQzvwz0d/5QddLEve2UNVxm70BiVPL+hGQrfjQMO5VjMCSz269zF7rWcxZqxAUijpM+o+VOq2/7T9f4k5QILQ9qklz3LzrJCNHrU7MMbzJ5UZr3amtrIAXVAUFXkHKM/ZS1VhBk6HFf+QeJIGXENYYj9C9rmLI4MpnkpLPnFBvdFrjB7f58/SNj7hcdvET09ulWg+7J5eo4wxYtq3HeO1Uwi97xrUv0ax/v7DxMee/anv0MCjHt330/hYKuy56Ho37+n5+cK58fSdIqUr1oJCgV91Lx54fAcf/LOIohfnIUkw69lExl1XA2xqcM61AZ5t0eVprn9yUQeO7DQx6f+mUNwnmmXlp2/r3Ul75weR7z0jil+hRciyzKHvX8ZR514pWlKqMMSmED/0Cowde6PWNRyKIkkKEvWeb//jbZKkIHzIRMp2raN0xyoAQlNHowkK4YGHvDs/tOCIGWQXAUGtv5J1a5JlF/k/L8RaWkDi9X8BNnP5fXFMmRVNcbaVkGgN/oaW/xVUVuqkKHsHCSkT2l3hC4g5QIIgtKhjW7+mLOvkvrcBoR2I7jaWkNgejQ73jQjoTERA59YMsYHAsYNxlJRTvXQ1AH7JiQSOGUzQpWPplpzp1XtZC/IJGjzUq9c8H1Xu3Ur5tjVEjp2K0k9L3zFG3lzbl+KcOjRaBaHRrbPDwoEv9hHZL4qoAW1/mHmjRL73iCh+hRZRW5JVX/iGdx9OZJ8JaPy9s4pfS4kcOpmazAPUFeeBQkH1sX2E9Rvt9fuo/P7oAW67i13Jskxh2g9UH9xF3OUz0cV0ANwrhvrplMSn6FstlqWL3fO3oxJ9u3q4r4ieYEEQWoq1ohZzeQ4A2oAwOg+7kYCQ83s6j75fD5zVZso/+R6Fv47anQcJHDO4Re4lqVS05VwPUJ2+l/xfFmLsO4SQQSc/MylVEtEdW6/D+dgRO6X7Sxnz8vhWu+f5RuR7z7SNcRjCeefE6vlISjWGuK7EDLz0vC98/xA7YTr6uE6odAE4LY3vb9xc2ftNAPjpfPNnMnv2bG6//XbsdnuLXN9ls1Lw6zdU7FxP9OSrMXTt2yL38dTxTAdanRG1pvUK7vOKfA5fgiAIHsj4eBt1NaXog2PpMnzmeV/4/sF/UG/0A3qijo3EVdMyub6swIrTVIPKaGyR65/NkiVLmDJlCjk5OS1yfVmWqdi9ibwln2NI6UP0pKt9uoPF8Uz3zhwhyc1bm+aCJvK9R8STX6HZ6sot7H5zI2X7i+gxawAdJnfBWl1K/LArCe8+wtfhNYkuMo6ka/5Cxrz/4LJbW+Qe2QdN6PzD0Opbf3uHJUuW8OyzzwLQr1+/0+7Leq5sVeVkzZ+Lw1xN9JTpBPdpmd70pti22YYhrKevw/AZ0RMsCII3uBwujny2jYKVRwnpE03vR8dhzq0kOLYHKSNv9XV4TaLQawm/70bKPvsB62HvDnX+Q87hWnC50HdJaZHrn0lFRQXTpk0D4P777+eHH37w6vVlp5Oc7z/GdOwgxj5DiJ50ZbNXBW+ubZtt+EcH4B/l2RotbZHI954RT36FZtvx33Vk/3YUc34NW/+9ih8u+gQATaBv9u7zBoXGj6oj+7BVnWG1hHOkDVBiMZdSnLsTp7Nlnr6ezsCBA+nVqxfh4eEMHDjQq9eWZZncHz4DoNOsv58XhS9AkFHCbj23xdPaBNETLAiCF+QsPciRT7Zhyq4g+8eDrJz+GaXbc/Dzv4BzvZ8Ge34xlr3pXr+2LtD9fKl66ybsFd7/LHEmRqOR6dOn4+/vz/jx3h8GXLJhGabj6cRfNYuYKdciKX3/LC3IKGGrseGyOX0diu+IfO8RUfwKzRY/Jqn+e12EP52v6kGXS+4lKP70qwCf7+KmzMRhqiR/5bdev3ZkonsOTPqur6guP+H1659JdHQ0e/fupbi42OvFb23uceoKsomeci2a4PNnFetpV+kpLzxEVdnxszdui0QyFATBC8IHJjT4OTQ1ln7PTCahzyU+iqj5gqaNRxGgp/i1j71+7fA4DSgUVKxeQdXmDV6//plIksRXX32FyWTi/vvv9+q1ZaeT8u3rCB04isAuPbx67ea4eKoOh8XO/s/3+ToU3xH53iOi+BWaxVppYd/7WwFImNSZS7+/gV53DSIw2ncrOXqDX0g4AKYThykp9m4v4qDLIojrNAYAnX/bm5vi66FPf3bVdB2BwQkc3fUNDnudr8NpdX8Mg2rKlyAIwv+SZZlD77oLOG14AOO/u4U+j40nZmxnFOfBU79zpdD6oe3u/rxi3ubdoikkyo+4u+4DQB16/nQIN5tCQna5kJTn1x66iR1V9LypN/s+3kPZYc+2S2xrRL73zIX7G0vwKpuH/SD7fjo5d8VpMZP73SfUldpIvO1hdFFx7P99u+CDHzzUEmF6lSWy8eOyLFN78ADKgABkh5NvXUNRlXv2S/7bo309aidXLsJfG0ZwpR9Unn6xjckhd3h0vcy/ef6U3Rbv2Vxm2abEZbXhqjbhNJmw5xZg2ZeO9dgJdL27EXrzNQDMvnUxAKZKO39fpCC48Cvun93tlOsds57mD7wR77s8WyHyv8surf/eXlaGvaAIdUwU6pCTw/Bkp5Noxw9kmDdxdMVHDAi9zOM42gSx9YEgCE10NO3kiC5ZdlGyYinlm44ROeUqjP2Hkbf75MJGhxac//k+PKKq0eOW7FLK6yoBCOuo4K3KhEbb/dlvxZ7lXMOGEgA6lXVCu8p2xraTP/+XR9fMuMOzTnNXsIfTqmwKZIcDZ40Zl8mMo6QMy4F0LAePoAzwJ+LB21H6uxeMXHj3XFwumfvXKjmwawWLPz+CUnnqIlffVA7y6NYljsCzNwLmpE2p/95ZW4stKweFvx6/hPgG7fwKMnE59rD05iX0vf45VJozfJbwLMQLi8j3HhHFr9BksixTuv43KnZsAFkm7ppZ6KIujBUePVF78ACFn7uHQMU9+AgqzTGvXl92OCmuyiA2tK9Xr3vGe8oyjqpKrHk5WI9Vo+3RCXV4CLIs16/OKMsyrioT9oISancexLxxNy7T/xTmkoQmKQHZ7sC8fhtBl01EUqmwWpzs/K2M71/PAmDKHa2/f7E1O4f8OW+D04mkUhF5zx3oOnfCaTJT9OHHWGtOIKEgRBPT6rH5miTLSLLnGa4pbQVBaNtq0vdTuupnrCVFhE+YSvCA4b4OyWscpjoO3P0BAB0fuYyA7nFAvlfvUVJ0gIDAaLRao1eveybO2lpsObnY6kpQx0ag7ZKI/Pvv9T/yvctSh72ojLqDRzGt3YGjsLjBNVSRYSj1OmxZuVj2HkLXPRlJ68ee7XW883IFu7dauf9fwY0Wvi3JZbNT8PLrOMorADBefBHGyRORXS7KF/1IzZp17uMJvZCk82sUWmsQ+d4zovgVmqxk9VLKNq0kuP9wQgaNPq/md3qD0+ReHEkZGIgmMhrwbvFr3nUEu6OWqJCWX4HYZbNRuWEN1bu3Yy8rqT8uadQoQ404istQaP2Q/DS4TLXINndPscIQgP/Qfmg6xKEI9EcZEIAqLBiFXkf18vVULlxC/j+eB+CP9aL7jgthxr86EhanbfH39b9kh4PK35YjKRUEXTSByp+XYT2RhbZTEkXvf4i9rJzBoVcS7Nf+Cl9BEIRzZT6WTt63n6BP7Ez85CvwT+zi65C8ylV38smovnOU169vq66jrOQQiZ0meP3afybLMuZdu6jesAlrZsPVq9WxkThK3AtuKQL0yHVWXLXuKUCSWoWuTw+CLhqNIjAAZaA/SmMQquAgrFm5FP7nTco+Xlh/rbuATilq3voykoHDW28P3z+YNm7GUV5B0OSJVP2aRt3RY8BEKn/5jZq160kYfAXhXYe1y8JX8JwofgWPybJM2ZbVlG1aScS4ywgdMtbXIXmd7HJRuWEt2sQkIm+82et71slOJ6ULVmIMSCBQ5/1k2+BeskzR9wswHz5AQK9UwiZfhjY2HkeiTPkXS0AGw4ShuCxWZJsNhb8eVXgwqshQ1DER4FA3el3DhBFou3XGWVGF7HBwSfR6kvoEEpfcetsL2G0u8tNNWNIzsBeXULvvALpuXan8eRn+/fsRNGYU9uISrFk5RN5xK8FL2+/WB2IYlCAITWU+cYT8RV/gn5RM3PRZSIrza36nNxR+txllgJaUF65Hl+D9Tvyjn21DkhRExfT3+rX/zLRlC6ULv0GbnEzYddfil5iIMtlI1U+rsB7NJmBEf1BIuMwWJI0GVagRVUQI6rgoFFLjHdZ+HeKIffkJ7PmFyA4HLlMtT41fw8DhWhSK1nniK8syRZm1WA5noND6Uf79YpTBRmo2bEIdE03Y9dN/f//bCBw5jIikC2t7Ta8T+d4jovgVPJb2cx3FK5YQPHAkIYPH+DqcFmE5ko69uIjwO+5FFeDZXBRPyU4XpZ+nYcspITX5thbdDN5hNlH03QJqMw4RNf0mAnv1rX/N5W8l7K7pZ4/3DK9pYqMg1l28jxp1tJnRNk1hppm5d+yjLK8O2Fl/3HLoMJJGTfgN05GUShylZQAojUagdbeUOp+Iff8EQWiK0hInufPfRxuTQMy0G9pk4euosVCWto/wy/qj7+T5ehSeKt50nBPf7iap8xQ0fgFev/4fZKeTyt/SqExbTuCQIYRNv6b+NZfCjnGqB9scnWEqsspoQGU01P88eOTW5oTbJLY6J/Pu38vh9eXA5vrjzopKAKIfvA9VSDAuiwWXuRZVUFCrxXa+EvneM6L4FTxSXeli3twadPFJRE28wtfhtJji7xaiMgajTep0zteQHU7KF62j9sAJJIUCVagB2WrHkpGLo6SSsJsnEbS/5ebFWosKyP/sQ2S7jZiZt+Of4vstp0rz6sgtqCC2l7FJRb+50s4vc0+Quaua+O4BTH0oiSWvHUdSwN8WpPLV7nEUzfsUR4l7ZcegMaOx5eVTuSyN2oOH0cTHoYmOAnJa6J1dAERPsCAIHnI6Zd6eYwJJIm76bSh1bXPUTM4HK3DWWgmf3LdZ1ylYdYTcZYdxmKzoY4JAljFlVVCVXkz4oATig0Z6J+BGuOrqKP7kUywZRzBOvgjjBO/v59tUpmoX6futODo7UWk87zRxuWTWfJbD/hUl6AwqJv8liRN7qsjYXMHNr/VkeeVlVP70C+aduwHQdIhH8tNQ9vX3mHbsBJUSfZ9ekNtCb+xCIfK9R0TxK5yVwyFzw+UllJc6iZh24e7ndyayw+Fe0CkyGmd1FbhccJZl/GuKLBz4NZey4zUcWpZH4pBw7NcmYtqWTtlXq9DEheOoqEFdbUah1+LfvwuG0X3RJcfBfpf334PLRcWG1ZSvSkMdEkLMnfejDjJ6/T5NtezjPL5+8QQAt346nIR+nq1U6XS4+PQfhzi2vYrITnrWLyzAXOWgOKuWHqNCSUoNQlMcTdQ9d2DLyaP448+o2badyrQVqCMjCL1yGgGDB5532zG0NtETLAiCp559opqvvqwlfMLUNln4yi4Zl82OLjEcSaVAdp09F9utTrYvLqQk28KunwtRaRSkPBkOEux65ld0UQbqSkw4am2o/P3QxxlJmtGPyJGdqHupZeae1h48RNmiRbhMZqLuvhNdcnKL3Kcp9myv46Fbiqg1yQy58xDD7/V8XZO1n+Ww+KUjdBsZyv6VpRzZXMHgq6IJi9eROiWSNWmhhF5/LbpePaj6bQW2vALyX3wVZBnDyOEEDh+KKtjY7otfke89I4pf4ax2b7eRleng0+/CeHFHR1+H43WO6iqynn8Ghd6fqJm3kP/e/1H4+ccEj5+INr7DKe0LDlaQsbKAnd8cx1JpQ1JKIMtkrCyAla/Xt7PluheYCpo0EOOkAS36Hpx1dRQs+ARL5hGMQ0YQOmEKCr/WXXiqMYWZtXz33yx0gUosNU6Kj9YQ3zcE6SzzhWx1Tj746wEObyjn9jd7UlVsJWtvDRNnxfPOPfvw058saNWhofWLWzgrKgkcPpTQqy5v90VvPdETLAiCB2xWmcXfW/jLgwEsDxjj63C8TpZljsxeSPWO43R97SZUQXqOPPU1sTeOJGT0qSOkaspsbFyYx4E1pWTvrUajU2CzuFAoJdbf/lV9O0tBNQD+cUb6PXtxi7+Hil9+pfK3NLTJyYTecTuaiIgWvacnHHaZ5/9RRpBRSa3JQf6eUuqqbWgNmrOe+9u7x/n5jUxGzYxj1I3xPHfRJoZdF0t1iQ2N7mQeV2g0BPRPpWr5KnA4UIVEE3nXLJSBLTes/IIj8r1HRPErABCuOH3vp8biBOCt56vIj1hK0OQJSOoL/3+diB3u92y3SmQBrlozrDoAQO3hgyhKzCSMu5/164cCUFl6lJxja6goSW9wHdnp/u2hVPnRO+kaqkx5FJTtxmKtACRCfnURv7PBKSzZ8DhKpRKV6sx/jp1ffv2Mr8uyTF3mUZj/DFKJnac/S6LX0Brg69OeE66sOeP11vxi5tBeKxt2KCk95m4b2TWIcQ/0ILq78ZRz3jxy+oXPTrz4HcrQIGIevIxjj3/O0n/v5ef/HEB2Oek86iaMcT0AGYWy4eJaOT9+TFFVNakdriPr3U4cyl+GTm1k0f1B1JTaqV41gQ9/q+F41iPk5OQQFxdH+oyZZGZmctFFF6FQ/Km3/a+nDbHNEz3BgiD8IVJx+pxjcrmw22V++7GOvIgvCLp8EqrQ4FaMruVUbw9HlmXspe6O17xPDmAvMwGQ+dJiFOqhKDQaDkVEU1NgYvMbO8ndXIDNdHK9CJvF/ZnB5ZSJG3E1IFNxZAfmohNICiWWLD0F8xs+INj8419QKBRnzfUAHd9+9Yyv20tKKV/0I5bfDnDvP4KZebcVSVp42vZayXHG6x3Ya2PNcgsr9xooOlSB3eIgIELH4FndSLkovtEpSo8du7LRa+Uv3UdWZhYD3ptJwZ2fk72lmP8bvQRkFxEpw0kYeDkupx2FStPguuaNGzh4NJOOcWNQHx3Hjw9kAJsoWTeIA0e/p1P8eBbO6MaJ3Y/www8/MG3aNMquv4W1a9cyfvx4DAZDo/G0VyLfe+bCr2CEFjdypB933O5PcbGT7T+voS7jGGG3zEAVGuLr0LxC7RdAlyE3krnjO/IzVtcfT+g5GXAXhMcP/0LusdUNzpMkBbLsQqHU4HLaCArpSFhQF8KCupAYPZwTBeuRZScxYan158iyi32Z36HVzubVV1/l4YcfPue4azPSKfvlJ2z5eXTqpePx95KJ6XjuT3trqpy8+kQpK38yERWnwtAljAEzkpAUEgd/yeWj61YTFKvDUmnHbnEQ0yOYGz86/cqKsixTs+MY/t3j0UQEoQuKxFJVhOxyd6YcXftZfVuFSgNIqPz06IIiqao8TM/YSwkLdM+9tjksWOyVHClcRcfwYQTpotlVvAGA7Oxs4uLiSElJISUl5Zzff5sleoIFQfBAgL+CF58JZvtOK8eWH8WyP4OwO2eg7dbZ16F5hSRJRF4+nbzP3seccbD+uKHfIBQa9xPK46uy+e3Rtaecq1BJuBzuX466UC3Bnfqg0voT1n0Ylcd2U51zmOgBkxucU3JgA35+DzN+/HiWL19+znHbS8so/34Jlv0HUQQE8PL7EYyapD/n6zmdMp9/YOKtl6swGBXoO/jR7eIE/ALV5O0qZeljm1n93924nDJ11Tb0wX5c+fZIIrqeviOkfNsJ1EF6VIFawkZ0pnT9UZDdnQXF6RsoObIZ2eVEUqiQFEoUKjW6oEjqygqIDOtFUvw4JEnC7jADcODoIgz+sSTEDKO43P13tWvXLqZNm0ZoaChXXNF2155pFpHvPSKKX+GsNBqJZ592965teeMqSt77lLzZL6Hv0wNt1y7o+/a64IedhMT2pDzvAGU5u9w/x/UGJA6u/QDJ6aSytOGKxgFBsfQecicZe79DoVDRNfU69wtFFgCUCjWdYk99ImqxVlBUvh+Aurq6c4pVlmWqN62ndPEitEmdiL7tDl56fGuTFpJyuWSOHLSxc0MtWcfsmGtc7NpsweGQCY1QUpjroNeMMAbPdH/oCQj1Y+kzu1EoFIy8M4Wj64vI2lZKRY4Z/Bq/hyRJxN07hew5P3L0H5+S0GsqVlM5ubt/QeMfTFjSAPwCgpEkJQ6rGRlw1NVgLsslNCCJ6OBe9ddKiR6HUqEiSBdDXIi7M6FvwpW8s/h2kpKSzunPsT1pr727giA0ze03B3D7zQGs/foWSud+TvF/P0CTlIAutTu63t3QxLXsFn0tTRMaTvDIcRQv+QYAZaAB4+CRFHz9GS67nWPHD51yztVfXULJgTK2vLmLm5ZfjSRJbP3APR9akiSCO6cS3Dn1lPOK96wCwGw2n3O8dcezKH73QyStltDpV+E/sD+jJr3XpGvkZTvYutHKwX02aqpdHNpvJ/u4g36DNOzYYiO4h5qRf+3tjnlYJZlrCzCX1jH0ru7ILpnNHxwiZ1vxGYvfjrcOY88j37L15nnEXTOAZO14Mpa744zsNhJtYDhKjc6d62UXTrsVS0U+fhoDneLH139+iQrrQ62lDFl2kRQ/FoVCRVRYb5am/ZeoqAv7/73WIvL92YniV2gSv44diHnmMUwbt2LetovyhT9Q8d2PBI4ZQdBFY1HoWn/Tc28ozdpZX/gqVH6U5+6lPHdv/etxSaOJ7jCYzINLsdZV0q3/TFRqHd3739ik+5RUZtR/P3PmTI/PM+3ZRfmyX3CaTUhqNc6aGoJGjCb0ksuQFAokaVt926oyB5t+qSQsRk3/sQYkScLpkDmyx4zF7CJ3dwVpi2vIy3Kg1Ul0TNYgSdAxWUNsBxU/f+MeChYU4+5Z3r0oi6XP7AZg4PVJuJwy+fsq6DI6ivDOgWdcSDl4bC/0ybFkv/oDx9Z/Sa+pfyem14Szvt/g3eUNftaqDfSMu7TBMUlSiMLXE7Ls/mpKe0EQ2jWlIYCIv99F3b50alZtpvqnlVR99yu6/r0wXnkR6qhwX4d4TuxVFfWFL4Czpprsd04ON47oGcbkOWPY8+lBjq/OYeiD/QjtHExo52C6TvP8CXhdZTG2Gncee/TRRz0+z1ZQSOn8r7EXFaPQaHBW1+CX2IGIu29DqW/4tNdhl1n5sxmzSebiq/zx0yqQZZkTR+2UFDnJO2ol7edadm61oVBAp2Q1en8Jg1Hi4iv0bF7n7oAPTnBv61h6tIqFs9wFe3TvUMJTgln7+h4Co/R0u+TU9U/+l3+HUAZ9cgtZX2wh+8stJAyMZuBNZx7GDRB0tLbBzwqFks4dJp7SLiEh4azXEhD53kOi+BWaTOGnwTB2BIaxI3CazFSvWEvN6vXU7tlP9OMP1g8fupAYIjpjjEpBqdYT2XkYB1f9X/1r3QfcTFhUDwB6DLz5nO/hdNo4mrsCgDFjxhAfH+/RebaSYooWfIE+pRuBg4cgW61oE5PQJ586xNda52L2jUfJy6zD5YQOXbWERWtI32nGVOUebhxgUDB8gp6Hngnk0L469mypY/t6C/oAiYJc9xwhQ7BE9o4ycnaWseXzY/XXP7q+iMwNxaRencikR3ue9mmz7HBSvf0oFav2Yzmaj62oCqVai0p7YY8QuBCJOUCCIJwLSaFA16cbuj7dkB1OzJt3UrVkBYXPvEHkP+5Gkxjn6xCbTOkfSNDAYdhKSwgZOY6SXxdjKy4EwDh0NNPmxKJQKhjyQD+GPNDvnO9TtMs9zFmpVDJt2jSPzpFlmeL35iGpVBgnjsNls6EKDSVgQCpSI3OGX326nEVf1qBQwIdzKumZ6sexdBu5WSfn+g4d5cd/Xg/GBWxcXceKXy24XFBe4qKizIVSBebSOnZ8mc76t/bjqHN/TgiM1LHk4Q3E9Q9n0uwB6ENOP6WqOr2QwmUHqNyTiyW3AgA/Q5inf1SCF4l87xlR/ArNogzwJ3jaFPwHplLwwhxM67dgGNdy+9q1FK1/CN1G3lH/84DLZmO3W7CZKwgJ9M4K17XWMlyye/GMRx55xOPznCYTyDKhUy5F86dhP7Isu7dl+t2+jTXkHKnj3ws68+SMo/B7J+CoacEYw1QMnBBEj0QbWp17QahHbikA4InXIxh3SQAqtUTOcRvff1bNbz/nUVNcVz/XqeelcWgD1ZQc0XLJU31PG6/sdHHsyfmY92Wh6xRF0PDuaBPCCM1JRe3X9rbOOO+JOUCCIDSTpFISMGIg+oF9KHruLSp/SCPiwVt9HVaTKVQqIi+7uv5n3Z0P4qipwl5WijY2HoUy4wxne648YzsA99xzD8om7DzgrK7BeOkUgsaNOuU12ems38WgzuJi8YIa7v1HMBtX1nIsw06dxUm/oVrGTFYwbKyOvr2V6P1/z/V3l7H8Fwt3/jWQG28PxBCkoLrKxaKvzHzxbTWHl2XX/+4PTzbScUQ0GWm5THpqQP2T4cac+GIzJz7eiCbUn9ChnYi9rA+GnjEoNnTz+D0LXiTyvUdE8St4hSYmCl3Pbpi37bogi98/U2sDUWsD0QdGoLB4Z09eP00QaqWOEEMSF1/s2XYIsiyjDHTPt86Z8wpBI0ah69QZ8/59WHOzsZdXIDvsfJQewvS/RpG+y4w+wD30CSAiXsOYK0KY+3gO5monRTk2Am/Wc3BXHaZqFzq9xGUzDEy6/GRyi++o4YHZYXR7uBfLXtzL0fVF3DZ/NDqDhlVvHnRv7XQGpUu2Yt6fRcdnZmDo36n+uGZhUFP/yARBEITziMJPQ8C4YVTMX4KzxnTBr/eh0GjQhIajCfXuMO7AuGRs1eU89dRTnp8ky0h+GioWLcF6IouAQf2xnsjCcjgDR1k5LpMZbbcUjne1UVXpwuWCbr3UzH3JCsCDT4byxP0lHEu3s2mNhZfeDGH/Hgu1ZheZR+x0TlFx799O5mFDkIKb7wpEce0wjq3N54e/rmfmVxMJTzaSu9O9VeOZaqOao8Wc+HQTCTMG0fHWYUjKk7ssmDc06Y9LEFqVKH4Fr/Hv34fSeV9iLy3zdSjnJY1Kz6jUR1FIyvrhwlarlSNHjtCzZ8PN4EtLS5kzZw5Zb7yB02xGUqtRBYdQvXUzVevWoAoJQZ/clcB+obisVlZ+u5x1SyqoqXAPWXrq+mMMnhTEvc/Hc//EQyT10NF3lIHPX8pnxTflKFWgVEoMH6/npvtOv4hFVLcgts3PxFpjR2fQEBzvT3WhhcLDlUR1NZ7S3lZSReGXawi9ZECDwlfwHcnl/mpKe0EQhNPR9+9FxZeLqd2xn8AxQ3wdznmp05Q7QFIQHu4uqu12O4cOHaJ3794N2jmdTubNm8dbb71F1r59SBoNCkMgtqxsinftQdL6oe/VA33P7ii0WqrXrOfGyWU43ame+28sJiJKySc/RfP8Y2VUlruY/XoYr80u5+pJRUgSqNTQtYeGx541njbeqB7u3TuKD1cS0TWYoBh/JIVE5pp8Qm46dYqV7JLJmLMcfUIIibcMbVD4Cr4j8r1nRPErABCh9Kz39r3J8077Wt0oFzd+q2Dw8fcZO8no8b1X/fYPj9t608av/+aT+wJ0/+frOGpNHHnD3Suc8siLKNQn50pnLXgHS+4JRlwXSWRSLFt/KKAyv4K/rxxMnclBSJwOhUIC3ItFWEsG8sPrJ9i0qKj+GsmjIlj6vQVTtZPp/+5OWJyWmH4RfLxpMNouHZGUSjKBv2xpPEbjJjtZazMBmP/XChLHTMHlsKMLKebTW3bS+eK70QVHEfm5exNjWZbZbV+DyqWkd1oS6uUnGlxvmeXf3vnDE5pGDIMSBOF3AQrPtsP7bNyHZ3z9sR91FG5Zyryn99Hv52qPrrnz4uc8atcS0p98yLsX7O9Zs45vuRd9yn3mBRxlZUTedze65JMLZ1WlraTix5/R9+7JtNk9yN5Vwa4l+dz++WACQv0IitKi9vtj2LQNh60/Rxfs47OXC/DTSVgtMikDAjlaqmf98lzuezGO1KmhvNo/nCeX9EPbLRGlvw4z8KQZ2HRqjJq9Wqr2uBfNXP7yQbLtMwAw9q9mzesbOHKsJ0E93W849vmNAOTIx6ihkP6MRjM575RrbnWdfbEroQWIfO8RUfwKXqPVK5h8nZGf51cycIgLSRI9gWci222gUKDU6kGWkZ0OTJnp1BXmUnviCLGX38RV/3InlW6jQvnP5E1888xhxt7aAVOFnc3f5lNbaWfSvR3p3F3LzS+kcOOzXVCqFbicMmnzcvn5nSwGXBxBWJz7A0/HPgZ0FWdfsdJ6PJtD332Jo85EePcRRPefBIBCpabz5Ds5snQuJ1Z9SdfLT36gyHMepcSVSx/1KNTShbfoWVslFsAQBMHbrr41mEdm5nFoT91pt7sTTlL466AMJLX7Y3dd5gnsxcVULl9JwNDBhM24hsHjVzDw6njyD1Xzw9MHmPy3FFxOmb0/F5Czt5J+02Lpc0kMV94VwbRZ4SiU7q2Wtq+q5j93niAsWs3Iy9wjuSJiNfgPOPu8W2eViZwFn2E+noF/p25EjLuk/rXICdNwWmop+Okr9PEdUQe5nw6b5GqOsJdYkgiWLsxVv9sqke89I4pfwauGTQrkuw/KyTq+isSk8b4Op8lqamr47bffWL16NWvWrKGmpobOnTszd+5cunTp4tV7qYNCSHn4eVw2G5X7tlG9fweW/CxQKAkZOIrArn0Ad/EbGqvjhhe78/1zGez5zT0XJzhai93q5LNH9vPszwMAUKoVZB80sfC5o2TurmbszFguu7/xLQocVdWY1m/BUVKGKjQEXZ/u+CXEYS8spuiND9AZIuhyyT34GUIbxq0PJGHUdDJ+fItDi16l3G6kVq6h1JVHnLIzkUqxJcF5RWx9IAiCl/XopyUsUsn7L5Uh/ct1wQ17dblcrFmzhlWrVrFmzRqys7MxGo3Mnj2byy+/3Ov3i37oflw2O3XpGZR8+iXmHe6tFbWdOxE87eQ2fgqFxLUv9uHbf+7ls3t3AKDRKzFEaln49z10SA2GJFCqJCpL7SyYU8SyBWX0HRnA7U/G4qc99e/BZbNjWr+HukMnUAYFoO3aAX2/FHC6KHzpcxzFVcTPuIuApIbDmyWFgqjJV1GbdYwTn7xJQOduVMvFFJGLDn+S6X3KvQQfE/neI6L4Fbyqez89194dytfvriQ6diB+fgZfh+Sx1atXc+ONN5KXl0enTp0YPXo0BoOBOXPm8NZbb/Hmm2967V72mipqMvYjKRUU/uLec1AXn0Tc1bPwT+zSYAj0H/pfEkWfiRHkp5uwW50EhGh44/rtRHZ0r6B8bGcVr1y/p779gIvDufbxU+fd2kvKqPrpN8zb9yCplKhjorDsO0TV0jSMl0/Bsu8QyqBAuky+G6Wm8SFyAZGJdL7oDsqP7qCw/CBayZ9kVT/ilcne+OMRvEj0BAuC4G06vYJ/zYnioRl5JG48TPDI7r4OyWO5ublcf/31rFu3jpCQEEaPHs2gQYOYN28ejz32mFeLX5fNTu2efbhqa6leux5HSSnq6CiCp15C4IihKLSn5tjorgbu+244ZVm1VBZYiEoJ5Iv7dxIQqkEXpKa6wsFDl2ZQVmivP2f2x0mnbD3ostqo/GEN1cu34TJZ8EuKoe7wCap+Wo+ubzJ+HaKwZheSeNMD6KIb37ZK6acl4Ya7qdixAXNmOlbMxJJEPJ1QSqKEON+IfO8Z8X+u4HXX3BXKt++byM3eQKcuU3wdjsduvPFGCgoKmDNnDuHh4Rw8eJAFCxYAMHHiqZuun6vCwkKOvv1Mg2NBvQYSc+mMs56r0ihI6OXuUHjj+u3UVjkIjvFj6f9lsXlxUYO2238uYdxNsST1bdgBUfbxAhxlFQRfMYWAYYNQ6HXITidVS5dT+cMvAITdOROlfOa5YYb4rhjiuxKWu/OscQs+JOYACYLQAlKH6Ok/XMfBbzZiHNHttPu+n2+eeuop1q1bx6OPPkr//v3Jzc1l8eLFlJeXc8MNN3jtPrIsU/jWO9iysuuPKQL8iX387FsdSpJEWKI/YYn+rJ2XSfbuSjoPC2X1B8dYX1nRoPAF+PGTUqbe2nAIcuWSdVT+uB7DhEEETR6COso9iqt2VzpFr3+FZXcGgeMGnLbw/YNfaARRk64ATs75Fc5TIt97RBS/gtcFGJTExg8lN3sDsXFD0OpOv5rw+WTcuHF8/vnnPPjggwCEhoZy8cUXM3/+fAYPHtzs6y9evJiePXvy2muvuQ8olOByEjpsIqGDRuOoNVOU9j1OSy0R4y5DGxFzxuslpgZRkl3L2s9zAfjrhz2J6eKPMdKPnctKeP+BQ5RkWxoUvwfWlWPNzCL83lvR9z7ZUy8plRinXoRCr8W8dTe6bslwsNlvudVUVFTwxRdfcM011xD1p72Q2zvREywIQku58S8hPHR9HhVrDhIypoevw/HIuHHj+Pjjj3nllVcA8PPzY9SoUSxcuJCrrrqq2dffs2cPZWVlmEymBoWvvm9vgi+dguxyUbVsObUHDxM0bjT+qX3OeL2gKC3GGB25+6s4urGMy28P5/+WdyUmUYO52smN/Q6Qud/S4JzqCgfVv27CMH4gYbdc0uA1fWoKUY/fTOm8HwkcnQq2Zr/lVuNyufj000/p3bs3/ft7uOpYOyLyvWdE8Su0iISOYyks2MmR9CX06nuzr8PxyLx587jjjjtITEwkJCQEvV7vtZ7srKwsLr/8csLDw1m4cCFf7zmKvkNnsufPpWxjGi5bHerAIKoP7kKp8yfry/+j871PnvGa0x7twrRHu7B3eQnz7t/LrrQyuo9wL0hxfE8NAN2Gn+x4yNxdzZezj+DXJQldr8YXwjBMGI1hwmivvOfWtGLFCv7617+yefNmvvzyS1+Hc34Rc4AEQWghqUP1GId3Je+DNIIGdkLp79lq0r5044030rNnT/z8/IiJiSEgIAClUnn2Ez0gyzJ9+/YF4PDhwxjGjSZg8CDyX3iF2t17cVZXY7z4Iip/+Q2Ako8/R+GvR5d8+jVF+lwcQ5+LYzCVW3lh1ErWLKlg5qPRSJLEsd+L3s69dfXtK0rszPlbNrJLJvjKMY1eU9ctkfhX7nf/sK/577u1ZGVlcdtttxEQEEB1dfUFM9qg1Yh87xFR/ApNMkJr9qhdRf9AQpUTKVj+HUXdaXQO6/lGpVIxcuTIFrn2I4+4hzmVlJQwfPhwIoZPpjpjb/3rFdvXETpwDACGlD5U7N5I2YblfHdxv7NfvBuodSdYt7CAatss/PyDKc/eB3zCP0ZuJ7rHWGJ7X8Tu759FqTZwcF0aSUlJ3ntz73vvUudq2rRpPPnkk8yYcfah4+2N6AkWBKGpBvnZz97od8Gp11C54XnKvqsgIKXn6Rte7IXAvOSPAtXbPvroo/rvs7OziRs0DZfVSv7vx6yZJ7Cs2IJC44c2Kh5rWRHV3/9K8PVJLM458xNggLBJpZQs28vjd/QnOK4H9roa4Bk+fDafRZ9F0aH/NLJ3/kh5jp0fvvuaqVOnnj3o6U14g895ecuoJurYsSPz5s0jLCxMFL6NEPneMxfW8nzCBUWpdS/E5DDX+DgS39i5cyf33HMPb775Zn2iffvtt9Fo3B0BuugEUJz8J1i2bTUAFbvdc2rKtqykam/OWe8jyzJ+Ae4nvrLLCUBwXHciU0Yguxzk70sja9v32C3VJA662ruF73lCrVbz7LPP0q3b2bd2aHfkc/gSBEHwkFLrfuroqPFsv9+2prq6mvvvv5+HHnqoPgeNGjWK8ePdO15Iag3a6JO7IFQf2o3LZqU2+yhOcw11xXmUbkzz6F4BXd3ToRxW94MItTaQxIFXAlB2YifZu36kPGcvkcnDPSt8L0C33norl112ma/DOD+JfO8RUfwKLaY2/zhKfQCqgAtnxWdveuutt3j33Xd54IEHKCsrIy0tjXvvvbf+dXWgkYSrbm/03D/+zIpXHj7jPWRZ5tjbKzGVnKDj0OloA8MAkBRKOgy8guB4dy98ybGtxPWZQmDkqas/C23bHz3BTfkSBEHwlCU3CwC/6FgfR+IbK1as4O2332bOnDncdtttrFmzhqVLl6L4vXNbkiQSrp51mrMlZKeLsq1rkJ2uM96nfH06x99aRlhif8KSBtQfj+wyjIR+7kK37PhOgqJTiOkxzivvTbiwiHzvGTHsWWgxAYkpVOzZyLFPXsbYazBB3fqjMVwYi195Q8eOHeu/j42NZcKECae0cdSaAFAbQwnqMQBz9lEkSUJSqXGYqin8aQ9dHjz9StMFS3ZTsHgXiYOvJrzToFNe7zL6Vi+8E0EQBEFonDY6DlWggdwv3sPQZwCGXgPQxsS3m2GpERER9d/37NmTUaNGnbF95MQrMB/PwGWzotBoMB09iOxwYTqUR2DP+EbPqc0q5eiLiwkd2ZWk6OlIUsNnV9FdRxHd9cz3FQTBTRS/QosJTOpO0o0PUbplBSWb0ihe9wvBfYYSPf4KJIV3Fpc4nz3xxBOMHDmSlJQUYmIaX7nZP6EzMZdcD7JM/s8LGrwmqdRETEhp9DwAl81B1mcbiZzck4iwoV6NXWhDXLL7qyntBUEQPKQKNJB4998pW7+c6n07qNy6Hm1cIrHX3IIqsO2P/Bo+fDj79+/HZrORmpraaBulVk/MxdehCQnnxBdvNXxN54+kUhPQ7fRPznM/X4cm3EDS3y5B+koM2hROQ+R7j4h/QUKL0obHEHfpTFLueYaIkRdTsWcj5qwjvg6rVSgUCsaOHXvawhfcQ5+NPQZQuXfL70ckVIFGNCERoFDQ4ZYRpz23fEsmjioLsdcMOG0bQRBzgARBaGlKnZ6IiVPp9OBsYmfcjrUwj/JNq3wdVqvp0aPHaQtf+H07wd6DMGcfdf+s1qDUB6CNjsdpMRM18QokZeMfye1VtVRuPkLk1P4oNOKZlXAGIt97RBS/gteZzKfOW1H6aQlJHQ5AbWE2cjtdXv10/hj+7BcWiSGlN7byYqInXoVfWMBpzylYshtDjxj8O4S1VpjCBUiiiXOAfB2wIAgXhNpaF64/PTmSFAoCunTHLzIGa2EestPho+jOT85a90JVst1GSP8RWEuLCOrRH0Nyr9OeU/LbXlAoCBt3YeyjLPiOyPeeEcWv0GyyLGOxuJj/jYn47rlEdcnlwH8fJv+3r+uLOgClRoux5yBKNvzKsU9epip9t++CPs/EXjKDyHHTcNqslG9fS/jwizD2OP0TXYfZSuWeHCImdG/FKIUL0h/7/jXlSxAEoREul8yaDRYuubaQsM7ZBMRlkfP5O9TlN9yZwDhwOLVZxzj2+jOUrv4V2en0UcTnl7BhEwgfOYXAbn0pWfcr+thEoidfc8ZzKjYdxTggCXWQvpWiFC5YIt97RIyfEJpEJ/k1+Lmk1EFUr+ONtq3Yu5naknSSnrwKbYdwHNW1JA4fjWl/EsVLtpP742cokkoB3+4b5wsRu21/OhINqmjW1PxIUpcpJPiPht02KmobHzJdlbkfXDLK0gFU/xDB7s/b35+h4Bmx758gCE3lJ6lPOTb5ujzS1tSecrz2+BGyPnydjv+8EuPQZFx1NrS9owmefDulv+ym5KfluMhBlv/WbhbB+oO29M9HAghImcjREx8QGNOFzuPvQqpy/5lUboo45XynpRZzegHhE6fWv374S5Hvhca1Rr6fO3cur7zyCgUFBfTo0YM5c+YwcuTIRtt+//33vPPOO+zevRur1UqPHj14+umnueiii5p+Yy8Sxa/QLJIk0T1Zw8EMG4nxKv75YAiXTfJnwBtJ5H24AmtBBYfu/RAUErhkJJWSkHE9ib97IgUGHXkfrcT5qhOlsu0vgNUYm9VEVVUW4RHu4UxKlRan88+F8alMeUfQGELQBp+aLAWhgabO6xHFryAIjejWRVNf/M5+JIRbrzOQnedg1LRcAI4//319rgcI6JVAzMxR6LtEk/XfJWzbto1Bg07dlaA9kF1OKo7vwdihJwqVBqVGi62m/KydAZacE8hOJ/5durZSpMIFrYXz/cKFC3nwwQeZO3cuw4cP57333mPKlCkcPHiQhISEU9qvXbuWiRMn8vzzz2M0Gvn444+57LLL2LJlyxnnyLc0UfwKzRIWqmTfmg6nHI+YOoDaY4VUrDrgPvB7MpQdTsrS9lCWtrd+uEVpaSmRkZGtFvP5QpZdbFzzHAAjxj2NUumHhERJ0T46JI3DVFPAoc8XoPTT0/Hi21AHBNWfKynVokgRPCLJMlIThjY1pa0gCO3H6/8O5/V/hzc4Fh+rJu7OCeR/tgZXnb3B6rGmfdlk/P0L1OHuFZ/T09PbbfGbtXYh5Ue303HcTQQn9QUkzCU51FWVoNYFcnTZB9isVUReeg3+nU7u8iCpfv+YLn4tCx5o6Xz/2muvMWvWLG6//XYA5syZw7Jly3jnnXd44YUXTmk/Z86cBj8///zzLF68mB9//NGnxa+Y8yu0CEmlpOOj0+jx8b3EzhqH0t8PSfM/v8RlGWWQDuPwroSFtc8Fmxx2CwAGYwdUKq37KXqf66k1F1NStI+Mg99jqyrDUpxDbcnJ+VSy7KLmxEF04affFkEQ6rnO4UsQBMFDEZcPotfn95P492loE8LcT3//h6PSjD4l5rRDI9sDS0UBAEEJ7nU64gZPQ603ULh7OYW70zAXHcdeWY4pfX+D88wZB1Ho9KiNwa0es3ABOsd8X11d3eDLarWecmmbzcaOHTuYNGlSg+OTJk1i48aNnoXnclFTU0NISMg5vT1vEcWv0KL8Io1EXjWErm/fjjokAIVegzJQC4CzykLlhsM42+lCGGqNPyPHP0u/QfcA4HTaqalyDx+rNRdjqsmvb2tI6EZF+nZyVnxFdtp86soLCes72idxCxeWP3qCm/J1LubOnUvHjh3RarX079+fdevWnbbt999/z8SJEwkPD8dgMDB06FCWLVt2rm9REAQfU/prCRnTg65v3UbQ4C6gkFCHBQIg253UpueTkZHh4yh9J+Wyv5I6678oVBpkWcZUlInstANQfmxXfTvjwOHU5edQ8MMCSlYspWLLWoIHDkdSioGawtmda76Pj48nKCio/quxp7ilpaU4nc5TRmpGRkZSWFjoUXyvvvoqZrOZa6+9tvlvthnEvyahVfhFBpHy35vIm7eS8lX7UYcFYhjUGeOgLmg0Gl+H5zNK5cn3XlVxnMwjvwAQGtaVrMxV6MJjsJTkYasuI3v5VyC7AImA2M74R3f0UdTCBaUV5vy2lXlAgiA0j0KtIunxKyj8ZhNF325GoVVjGNyFwB7xjB071tfh+YxCdXIBMdnl5PiKTwEI7tgHc3EWupAYLOUF1B4/ivnIQcxHDyOp1Ci0OoyDRvgqbOFCc475PicnB4PBUH/Yz8/vNCdwyjx1WZY9WshuwYIFPP300yxevJiICN+uVyOKX6HVqEMCSHxkKpFXDSFrzlKqNmUQPUP8Uv+DMaQT/gFRmE2F7N7xISBjKckDwJR3DKXGD11EPEmX3QGS1O5WzRTOX21lHpAgCM0nqZREzxhB+MX9yJu3krLlewkd3wu1+tQVpNsjhVJFeI+RlBxYx7G0jxpsN2MrK8Zls4JCQed/PIekUCAp2ueCoELrMRgMDYrfxoSFhaFUKk95yltcXHzWdXsWLlzIrFmz+Oabb5gwYUKz420uMexZaHW6jhF0etq9r13+J6t9G8x5RKFQ0n/I/QwY+lc6dBxLYFB8/Wu5q79BpQskZvhUJIUSSRL/dAUPneO+f57MAYK2NQ9IEATvUQXpSXjgEgz9ksh56xfsdruvQzpvxA25nB7TnyBhxLUY4rvXH6/cup66wnyir7gBhUotCl+haVpwn1+NRkP//v1JS0trcDwtLY1hw4ad9rwFCxZwyy23MH/+fC655JJzfmveJJ78Ck3i8nA1nLJc41laGAkYM4qKn9Kora1Fr29fm7evWvYPj9oFBARgNpv517/+xeOPP46/v38LRya0Nee67198fHyD47Nnz+bpp58+pX1bmgckCIKbp7keoOLImTutAsZOpfq/c1i1atUpnWRt3Y4PPNuTd+bMmXzxxRfccMMNPP3003Tu3LmFIxPaopbe5/fhhx9m5syZDBgwgKFDh/L++++TnZ3N3XffDcDjjz9OXl4en332GeAufG+66SbeeOMNhgwZUv+ZQKfTERQUdNr7tDRR/Aqtqu7IcWqWr8OWk4+jshpcLoqKiujYUcxfbUxGRgZGoxG1Ws2LL77IlClTGDBggK/DEi4kTezd/aNtU+YAQduYByQIgnfYy8upWrGaumPHcZSXA5Cfn3+Ws9qvt99+m1dffZWIiAi++uorNm3axMyZM30dlnChOcd876np06dTVlbGs88+S0FBAT179uTnn3+mQwf3lqcFBQVkZ2fXt3/vvfdwOBz85S9/4S9/+Uv98ZtvvplPPvmkSff2JlH8Cq3Caa6lOm0t1b+sQh0bhb5fT5Qhweh6dxOF7xnExMQA7jmVTz31FOnp6XzxxRc+jkq4kEgu91dT2oNnc4Cgbc0DEgSheWSnE/OuPZR9twgUSvz79EI1sB/ajoncfPPNvg7vvPXHU7A9e/YwY8YMAFH8Ck12rvm+Ke69917uvffeRl/7c0G7evXqpt+gFYjiV2hRrloLlT+mYVq/FdnpJOiS8QRdOgFJIeasNsU333wDIIZCCU3Xwj3B/zsP6Iorrqg/npaWxrRp00573oIFC7jttttYsGDBeTMPSBCEcyPLMjXrNlC1ag2O8gr0vXoQdv11KPW6+jZikcaz+2M+5cCBA30ciXBBauF831aI4lfwKlmWsdvdvb+SUknZF99h2Z+OYcJIAscMQxkU6OsQLwhpaWmYTCaGDh1KeXk5mzdvBqhfTVcQPNYKWx21lXlAgiB4zm6X6z87mzZvpey7H/Dv34+IWbfgFxfr2+AuEIcOHeLQoUN06NCB3r178+ijjwLw0EOezRUWhAZaId+3BaL4FbzCapX58MtqHvxXqfuA4l+oQow4SssJvXU6qtBgrFk5+HVKROnfvha3aqq0tLT6RUFUKhWPP/44AGPGjCEuLs6XoQkXoP/dyN7T9k3VVuYBCYJwZrIss2xlLf94toyDGe7Vm5XG53DW1ODfvx/GSeOxFxWj0GpRh4X6ONrzm8lkYuDAgZjNZgCee+65+tf+dxSNIHiqNfJ9WyCKX8Eronsep8Z08h+R/+BUkGU0SQnUrNmELdP9wVfSagm98Ur8B/Wtb+vpwjjtRdeuXVGpVDgcDhwOB9deey3du3dnxAixJ7JwDlppGFRbmAckCMKZPf96BU+/UlH/c7cuavKie+KoqkK22ch78b/u3yGShGHUCEIuv6x+mpPI9Q35+/vTuXNn9u3bh8vlIi4uju+//56EhAS0Wq2vwxMuRGLYs0dE8St4xYtPhrJ2Ux3jRur45KsaNm3eWf+PSh0fQ8SDt6MKD6Vy8TJKP1qALLsIGNwPy/50FAoFBoOB6667jpdeegmj0ejbN+Nj8fHxLF26lJUrVzJ58mR69uxJz549fR2WcKGSoQm7lrTbYVCCIJzd8ME6rr7MxoC+fuTmO3n7oyo4sh4ARYA/oVdfgb5XT8w7d1G++CdcVith069GtloJDg6mqqqKiy++mBdeeIHevXv7+N34liRJfPPNN8ybN4+UlBRmzpyJQqyHIjSHyPcekWS5eWV/dXU1QUFBVGQkYQgUm3ELUFbuZMi7SagC/PCLMBDYPRZJ4e7tlV0yR1/7leK0A0Rf1hdNaABZ89bVn9ulSxcyMjJ8Fbog+MQfv0erqqo8WmG5Kdccl/oYKqXnTxEczjpW7nrRq7EIFz6R64U/c7lkvvi2huey+6EJDcDQPQal/uSWaCXLD3DklaUED0oieEhnMt/4rcH5mZmZYrcHoV1piVz/v9cV+d4z4smv4HWhIUqip6Y2+pqkkOj88GTUQXpK16ZjLawCIDU1lczMTI4cOcLcuXNPO3xSEIQmkmniMKgWi0QQhDZEoZC46VoDH+zr1ejr4RN6IKkU5H61pb7wDQwMJDY2lsOHDzNr1ixWrlzZmiELQtsm8r1HRPErtDpJIZF4x2hCRyaz9373nrW7du3il19+4e2336Zr164+jlAQBEEQhOYKG9ONoNQO7LnnE2ylJmpqarj55pspKioiOjra1+EJgtAOieJXaHWyS6ZkxUGOvPwzAJdddhk//vgjX331FT/99JOPoxOENkYsgCEIgo+YMgrZe597i7PevXuzd+9eZs+ejdVq9XFkgtAGiXzvEVH8Cq3KZXOw6ZLXGxw7dOgQ6enp7X6hK0FoES6gKQusNmWxDEEQhNM4/OwPlK8/uYbH3r172bZtGwEBAT6MShDaMJHvPSKKX6FVuawOtDFGXHYniXeMxpJbTs2yYyQnJ/s6NEFok8S+f4Ig+ILaqAcg/qYRGHrEcuAfC9FoNGJqkyC0EJHvPSOKX6FVKfUaIi/pQ11+BRXbjlOXW06fLl18HZYgtF1iGJQgCD5g7JeIpFRQe7wES04ZAJ06dfJxVILQhol87xFR/ApNYpXtnrWzN/6/VsHXm8j7ZA2SSoFCp8FZU0fnWy7yZoiCIPwvkQwFQWiiapfF87aWU7dWqT2SR+azPwCgjjBiL64kPDwcf39/b4UoCMKfiXzvEVH8Cq1KGxuCws/9v13cLWOo2ZfNrFmzfByVILRhIhkKgtDKlHotmthQbHllGMf2xlldyzOX3ebrsAShbRP53iMKXwcgtC/Bw1NQ6DS4rA5qjxeT9PdpjBgxwtdhCULb5TqHL0EQhGbwiw3FMMQ9t7fk2/XE3H0x99xzj4+jEoQ2TuR7j4jiV2h1htSOAOjiQ30ciSC0fX8sgNGUL0EQhOby79kBAF0nsZ+vILQGke89I4Y9C62qZl825asOoEuKJGRcT1+HIwhtnxgGJQhCK3NabOS++j2SRkX0HZN9HY4gtA8i33tEPPkVWpXL7gQg7raxqPxPXSSjPdm2bRv33HMPBQUFvg5FaMtcctO/BEEQmkOWkR0ugsf3RZ8c6+tofKqoqIi//e1vrFq1ytehCG2dyPceEU9+hVZhLapEUigwpCai6xBO8eJtBPXr6OuwWp3dbmf+/Pn89ttvzJ8/H4Du3btz//33+zgyoc0SPcGCILQSp6kOe1k12g4RBE/uR8WynUTdMgGFVuPr0FrdypUr+eGHH3jrrbcASE9PZ+zYsT6OSmjTRL73iCh+hRZXmraXE68vRVIrCRnTA0tWCZasEmRZRpIkX4fXaoqKiujWrRsVFRX1x+666y5mzJjhw6gEQRAEofnqsks49tB7yA4XxnF9qFy5B4DajDwCerefzm6n08kNN9zAwoUL64917dqV5557zodRCYLwB1H8Ck3yVkVXj9qpPnMvZuV02Mj7aS0KpRqX3U7FqsPE9piIRheE+vMwd+MpLRXt+WXr1q0NCt+nnnqKZ555xocRCe1DE3uCaZ89wYIgnPRmearHbdUq93Sm3IWrkVRKZIeLypV7CJ2ciibSiKFrJMrf27QHZrO5QeE7YsQIVq5ciVqt9mFUQvsg8r0nRPErtAibpZrCjHWYK/JxWGuRZXfi63vJY2h0Bh9H5xuTJ59c9OPKK6/kqaee8mE0QrshhkEJgtBCnA4XxYu2YMkqoXL9ofrjCQ9fRuj43j6MzHcMBgOpqans2rWLxMREvv32W1H4Cq1D5HuPiOJXaBG1lfnkH3Iv7pA08Fpk2Yl/cGy7LHx37drF8ePHmThxIlVVVaSnp5OamopSqfR1aEJ74JJpUu9uO10AQxCEpnNYXeR9uByAsEsHENArAUmpIGhQFx9H1voqKyuZP38+V199NVu3bmXXrl2kpKRgMLS/zz2Cj4h87xFR/AotwmapBiC+9xQiOg3ycTS+9cQTT/Dzzz/z3HPP8a9//YuBAwf6OiShPZFd7q+mtBcEQfBARW4tAAG9OhB/z0U+jsa3FixYwF/+8hcWLlzImjVrRK4XWp/I9x4RWx0JXldTYiVz69eEdxxETDexsmFycjIAmZmZPo5EaJf+GAbVlC9BEISzkGWZRf/ahbZDOB3/dZWvw/G5xMREAI4cOeLbQIT2S+R7j4gnv4LXLX01HYDYHuORJNG/8p///IfRo0eLLQ4E3xDDoARBaAH7f8mnML2ahAcuQRWo83U4Pjd58mTS0tLo0KGDr0MR2iuR7z0iil/B67QBKhQqDdqAUF+Hcl7Q6/Vcfvnlvg5DaK/EAhiCILQAtda9boWuU5SPIzk/SJLEhAkTfB2G0J6JfO8RUfwKXpV3sIrdS/MJievj61AEQQB3J3CTkmGLRSIIQhthqbKx9oMjGGN0aOPDfB2OIAgg8r2HRPErAFDoNHnU7p2do077mvVEHkUvfYwqIoojO5ZjNBq9FJ0gCOdM9AQLgvA7T3P991mn78C2V5rJeuFb6rKtJD07g92Xv+it8ARBaA6R7z0iil/BK2p3HqJ4zheo4yKJfOQWUfgKwvnC5QKasKKjq32u/igIwtnZy2pIv/8DZKeTpNnXoe8S4+uQBEH4g8j3HhHFr9BsTlMtpfMWoeuTTMQDNyKp2vf+tS6XC4VCLPQlCIIgtB2yLJPz9lIkpYKU/7sTdXCAr0PyKZHrBeHCJP7VCk1m2X8U04ZdZM2aTV1GFtW/rEe22gm97Yp2XfiWlpYSGBhIcHAwrnbamyach8TWB4IgnIO67BKqtmRw8JY3KP52I+b92dRsO0rcPZPbdeHrdDqZNm0aSqWSjIwMX4cjCCeJfO8RUfwKTVb00jxK3/0G2WbHtGEXtTsOou/fHVWwwdeh+cRbb73FjBkzSE1NxWQyUV1dTW1tra/DEs7RwYMHkSSJTz75xNeheIdIhoIgnIOCT1dx4t9fYy+toeirdVRuOIQqOADD0BRfh+YTa9eu5corr2TkyJEsWbIEgMOHD/s4KqE5unXrxtSpU5HbSt4T+d4jovgVmixgVP/6700rt2LPK0bXu4sPI/KtJ598kq+++orc3FwA/va3vxEQ0H57xS900dHRALz33ns+jsRLXHLTvwRBaPdCxveu/95VZ6fsp+0E9k9CkiQfRuU77777LosWLWLTpk0ADBgwgEmTJvk4KqE5amtr+fHHH7HZbL4OxTtEvveImPMrNFnIjZeijo2gYsEvaLsnETR1DLoenX0dVquzWCzcd999VFVVARAWFsabb77JjBkzfByZ0BzBwcFkZ2fj5+fn61C8QpZdyLLnw/Cb0lYQhLbLMCSFjrOvI+vl7wGIuWNSg4K4PZkzZw4LFiyo//nhhx/mxRdfRK1W+zAqobkOHTpEVlaWyPftjCh+BQB+NnfyqF3MYg2gwVY3iO38gqYYOh3tDkf/1PBGr4d43tm/fz/z5s0DICQkhOzsbHQ6nY+jErwhPj7e1yF4j9zE3t12OgxKENqD1RbPfrfVpAe7v9EbkFRLcZpMqCKGYDraSI67xIsBnqeefPLJ+u+PHTtGUlKSD6MRvEWv19OtWzdfh+E9It97RBS/gkdkWa4f6lRVfIT0TZ+h0ugJjWufvcAAn376af33X331lSh8hfOTLNOknezbaTIUBKFhrndUVlL40Uc4zWYCBgxA0mh8HJ1vLFmyBJPJvT/yf/7zH1H4Cucvke89Iopf4ax+fi+HRa9l0XtsMEVZTooyNxEU0YXkwTei9vP3dXg+s2LFCgAmTZrExIkTfRyNIJyGywVSE4Y2tdNhUILQ3h3dbWL2NQfRByrRDAmicvlylAEBxD74IH6xsb4Oz2dWrVoFgE6n48EHH/RtMIJwJiLfe0QUv8JZ9R4TwqLXsti7qgJwL/SgVPm168IX4JlnnmHPnj088MADvg5FEE5P9AQLguCBuGT36KXaGie1aWkAOGtqUEdE+DIsn7vllluQJInrr78evV7v63AE4fREvveIKH6Fs4pL8efRL3rxy3u5FByPx1JdjLkyz9dh+dy1117Ltdde6+swBOGMZJcLuQk9we11AQxBaO+0eiVvr+/L/Jdy2JUeiuTnR+2+fTgqK9GEh/s6PJ/p06cPr732mq/DEISzEvneM2KrI8EjyQODeODDHnTqfw1WSxXB0d2xWap8HZYgCGcj9v0TBMFDwZEa/vJaJ6LvugvZZkMdGQmS1Hb2QRWEtkzke4+I4ldokpqyLJx2C5WF6Wxf+m+qio/4OiRBEM5E7PsnCEITyU4nlowMlIGB5L7wAmXff+/rkARBOBuR7z3itWHP1TXt89F5W2ExOU77mqnCTtrHeVgtLgqPlgJQZ3b/tzR3L/7Bp26dUF1d3TKBCkIbJP69CBcKkesvbLUm52lfk2WZ5V8WkZNhobRsEcgy1jz3FKfaI0dw1dU1ep74/SUInhH/Vs4PzS5+NRoNUVFRdOh/wgvhCL6T6WG74gY/FWVuoihz0ymtgoKe8EJMgtB+REVFoWmJrURkGWjK6o/tsydYODOR69sbd16XLRYAHCUlnPjXvxptGXSa44IgnKrFcj2IfO+hZhe/Wq2W48ePY7PZvBGPIAhCu6TRaNBqtV6/ruySkSXPE5yY2yc0RuR6QRCE5mupXA8i33vKK8OetVpti/1FCoIgCM0gu2haT7AY1io0TuR6QRCE85jI9x4RWx0JgiC0YaInWBAEQRDaPpHvPSOKX0EQhDbMIVub1LvrwN6C0QiCIAiC0BJEvveMKH4FQRDaoD8WKFpf+HOTz23RBTkEQRAEQfAake+bRpLb6zNvQRCENq6uru6cFihqyQU5BEEQBEHwLpHvPSeKX0EQBEEQBEEQBKHNU/g6AEEQBEEQBEEQBEFoaaL4FQRBEARBEARBENo8UfwKgiAIgiAIgiAIbZ4ofgVBEARBEARBEIQ2TxS/giAIgiAIgiAIQpsnil9BEARBEARBEAShzRPFryAIgiAIgiAIgtDm/T/DczerQYYD9AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lon_bounds = (105, 145)\n", + "lat_bounds = (25, 58)\n", + "fig, axs = plt.subplots(nrows=2,ncols=2,\n", + " subplot_kw=dict(projection=ccrs.PlateCarree()),\n", + " figsize=(12,8))\n", + "axs=axs.flatten()\n", + "\n", + "fv_t232.landfrac \\\n", + " .sel(lon=slice(lon_bounds[0],lon_bounds[1]),lat=slice(lat_bounds[0],lat_bounds[1]))\\\n", + " .plot(ax=axs[0]) \n", + "axs[0].set_title('raw destination grid') ;\n", + "\n", + "ds_out_con.landfrac \\\n", + " .sel(lon=slice(lon_bounds[0],lon_bounds[1]),lat=slice(lat_bounds[0],lat_bounds[1]))\\\n", + " .plot(ax=axs[1]) \n", + "axs[1].set_title('conservative remapped, no mask')\n", + "\n", + "ds_out_con.landfrac.where(fv_t232.landfrac>0) \\\n", + " .sel(lon=slice(lon_bounds[0],lon_bounds[1]),lat=slice(lat_bounds[0],lat_bounds[1]))\\\n", + " .plot(ax=axs[2]) \n", + "axs[2].set_title('conservative remapped, destination mask')\n", + "\n", + "ds_out_bilin.landfrac \\\n", + " .sel(lon=slice(lon_bounds[0],lon_bounds[1]),lat=slice(lat_bounds[0],lat_bounds[1]))\\\n", + " .plot(ax=axs[3]) \n", + "axs[3].set_title('bilinear remapped, destination mask')\n", + "\n", + "for a in axs:\n", + " a.coastlines() ;" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "f4c5ceb6-e10d-410b-b4e6-193afe90e56f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "768.7117\n", + "766.0552\n" + ] + } + ], + "source": [ + "print(ds_out_con.landfrac.sel(lon=slice(lon_bounds[0],lon_bounds[1]),lat=slice(lat_bounds[0],lat_bounds[1])).sum().values)\n", + "print(ds_out_con.landfrac.where(fv_t232.landfrac>0) \\\n", + " .sel(lon=slice(lon_bounds[0],lon_bounds[1]),lat=slice(lat_bounds[0],lat_bounds[1])).sum().values)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "7edf1061-927a-45b2-b454-88cbb18ddc3d", + "metadata": {}, + "outputs": [], + "source": [ + "# look a grid structure for ne30\n", + "#projection = ccrs.PlateCarree()\n", + "#ds0[\"area\"].plot.polygons(projection=projection)" + ] + }, + { + "cell_type": "markdown", + "id": "eb590654-1ee0-4dc7-9de5-7e3274c4b38e", + "metadata": {}, + "source": [ + "------------\n", + "### Check global sums\n", + "----------" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "358e9579-c679-4907-9f7e-c1f59b4707cc", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "source, ne30 land area = 149.188288 1e6 km2\n", + "destination, f09_t232 land area = 149.189408\n", + "conservative regridded land area = 149.18937599999998 1e6 km2\n", + "bilinear regridded land area = 151.03866439950346 1e6 km2\n", + "\n", + "orig ne30 GPP = 104.964 Pg C, globally\n", + "conservative regridded GPP, t232 landfrac = 104.92\n", + "conservative regridded GPP, regridded landfrac = 104.963\n", + "bilinear regridded GPP, t232 landfrac = 105.007\n" + ] + } + ], + "source": [ + "# Not the right way to calculate annual mean from monthly climo, but it works\n", + "\n", + "spy = 3600 * 24 * 365\n", + "km2_m2 = 1e6\n", + "g_Pg = 1e-15\n", + "\n", + "print('source, ne30 land area = ' + str(((ds_bilin.area * ds_bilin.landfrac).sum()*1e-6).values)+ ' 1e6 km2')\n", + "print('destination, f09_t232 land area = ' + str(((fv_t232.area * fv_t232.landfrac).sum()*1e-6).values))\n", + "print('conservative regridded land area = ' + str(((fv_t232.area * ds_out_con.landfrac).sum()*1e-6).values)+ ' 1e6 km2')\n", + "print('bilinear regridded land area = ' + str(((fv_t232.area * ds_out_bilin.landfrac).sum()*1e-6).values)+ ' 1e6 km2')\n", + "print()\n", + "\n", + "GPP_sum = ((ds_bilin.GPP * ds_bilin.area * ds_bilin.landfrac).mean('time') * spy * km2_m2).sum() * g_Pg\n", + "GPP_sum_regrid1 = ((ds_out_con.GPP * fv_t232.area * fv_t232.landfrac).mean('time') * spy * km2_m2).sum() * g_Pg\n", + "GPP_sum_regrid1B = ((ds_out_con.GPP * fv_t232.area * ds_out_con.landfrac).mean('time') * spy * km2_m2).sum() * g_Pg\n", + "GPP_sum_regrid2 = ((ds_out_bilin.GPP * fv_t232.area * fv_t232.landfrac).mean('time') * spy * km2_m2).sum() * g_Pg\n", + "\n", + "print('orig ne30 GPP = ' + str(np.round(GPP_sum.values,3))+ ' Pg C, globally')\n", + "print('conservative regridded GPP, t232 landfrac = ' + str(np.round(GPP_sum_regrid1.values,3)))\n", + "print('conservative regridded GPP, regridded landfrac = ' + str(np.round(GPP_sum_regrid1B.values,3)))\n", + "print('bilinear regridded GPP, t232 landfrac = ' + str(np.round(GPP_sum_regrid2.values,3)))\n", + "\n", + "# best results when using regridded flux and destination grid area and landfrac" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "a3a301cf-fb84-4fad-821a-fa991b79aebb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 6MB\n",
+       "Dimensions:   (time: 12, lat: 192, lon: 288)\n",
+       "Coordinates:\n",
+       "  * time      (time) int64 96B 1 2 3 4 5 6 7 8 9 10 11 12\n",
+       "  * lat       (lat) float32 768B -90.0 -89.06 -88.12 -87.17 ... 88.12 89.06 90.0\n",
+       "  * lon       (lon) float64 2kB 0.0 1.25 2.5 3.75 ... 355.0 356.2 357.5 358.8\n",
+       "Data variables:\n",
+       "    GPP       (time, lat, lon) float32 3MB 0.0 0.0 0.0 0.0 ... nan nan nan nan\n",
+       "    area      (lat, lon) float32 221kB 1.236e+04 1.236e+04 1.236e+04 ... nan nan\n",
+       "    landfrac  (lat, lon) float32 221kB 1.0 1.0 1.0 1.0 1.0 ... nan nan nan nan\n",
+       "    landmask  (lat, lon) float64 442kB 1.0 1.0 1.0 1.0 1.0 ... nan nan nan nan\n",
+       "    test      (time, lat, lon) float32 3MB 1.0 1.0 1.0 1.0 ... nan nan nan nan\n",
+       "Attributes:\n",
+       "    regrid_method:  coservative
" + ], + "text/plain": [ + " Size: 6MB\n", + "Dimensions: (time: 12, lat: 192, lon: 288)\n", + "Coordinates:\n", + " * time (time) int64 96B 1 2 3 4 5 6 7 8 9 10 11 12\n", + " * lat (lat) float32 768B -90.0 -89.06 -88.12 -87.17 ... 88.12 89.06 90.0\n", + " * lon (lon) float64 2kB 0.0 1.25 2.5 3.75 ... 355.0 356.2 357.5 358.8\n", + "Data variables:\n", + " GPP (time, lat, lon) float32 3MB 0.0 0.0 0.0 0.0 ... nan nan nan nan\n", + " area (lat, lon) float32 221kB 1.236e+04 1.236e+04 1.236e+04 ... nan nan\n", + " landfrac (lat, lon) float32 221kB 1.0 1.0 1.0 1.0 1.0 ... nan nan nan nan\n", + " landmask (lat, lon) float64 442kB 1.0 1.0 1.0 1.0 1.0 ... nan nan nan nan\n", + " test (time, lat, lon) float32 3MB 1.0 1.0 1.0 1.0 ... nan nan nan nan\n", + "Attributes:\n", + " regrid_method: coservative" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds_out_con" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "54dcc949-7255-45f7-84a0-33cd2eddffdd", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1.0\n" + ] + }, + { + "data": { + "text/plain": [ + "array(1.00000006)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJkAAAESCAYAAABehQSXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACU60lEQVR4nO3deXgT5doG8DspXdhalkpLlaULiwpWFqGACKilsigitCBHEA4iy/HUsojiRsHtAwUKKogeERGU5SAqR7DUBVwAZS0KCrQFCtKCIFBAsKWZ7490ppmsk2WSSXL/vHJZJpOZN8lM8s6T531enSAIAoiIiIiIiIiIiNyg93UDiIiIiIiIiIjI/zHIREREREREREREbmOQiYiIiIiIiIiI3MYgExERERERERERuY1BJiIiIiIiIiIichuDTERERERERERE5DYGmYiIiIiIiIiIyG0MMhERERERERERkdsYZCIiIiIiIiIiIrcxyERERERERERERG5jkImIiLzq22+/xb333ou4uDjodDp88sknqu7v2rVrePbZZxEfH4+aNWsiISEBM2fOhMFgcHmbL730Erp27YpatWqhXr16nmssERERkR9jP48YZCIiIq+6fPkykpOT8cYbb3hlf7NmzcJbb72FN954A7/++itmz56NV199Fa+//rrNxzRv3hybN2+2eX95eTnS09Mxfvx4FVpMRERE5J/Yz6Mavm4AEREFlz59+qBPnz427y8vL8ezzz6LFStW4Pz582jTpg1mzZqFnj17urS/bdu2YcCAAejXrx8AY8fio48+ws6dO13aHgDMmDEDALB06VKXt0FEREQUaNjPI2YyERGRpowaNQo//PADVq5ciX379iE9PR333HMPDh8+7NL2br/9dnz11Vc4dOgQACA/Px/ff/89+vbt68lmExEREZED7OcFPgaZiDTgww8/RE5OjtX7dDodsrOzvdoeAHj55ZdVH0N94MABZGdn4+jRo6ruh/xHYWEhPvroI6xZswbdu3dHYmIipkyZgttvvx3vvfeeS9t88skn8eCDD6J169YIDQ1Fu3btkJWVhQcffNDDrSciIndkZ2dDp9PhzJkzDtft2bOnReaDeZ9p8+bN0Ol0dofFaNnWrVuRnZ2N8+fPq7qfhQsXMmODvIL9vODAIBORBtgLMm3btg2PPPKIdxsE7wWZZsyYwSATSXbv3g1BENCyZUvUqVNHum3ZsgWFhYUAgKNHj0Kn09m9PfbYY9I2V61aheXLl+PDDz/E7t278f777+O1117D+++/L60zbtw42f6Ki4vRp08fi2VERKQNCxcuxMKFC+2u0759e2zbtg3t27f3Uqs8a+vWrZgxYwaDTBQw2M8LDqzJROSEv/76C7Vq1fLqPlNSUry6PyJfMhgMCAkJwa5duxASEiK7r06dOgCA66+/Hr/++qvd7dSvX1/6+4knnsBTTz2FoUOHAgDatm2LY8eO4ZVXXsHDDz8MAJg5cyamTJkiPaZnz56YNWsWOnfuLC2Li4tz78kREZHH3HTTTQ7XiYyM1Hw/yhd9SyJfYT8vODCTiVTz22+/4cEHH0RMTAzCw8PRtGlTjBgxAn///be0zi+//IIBAwagfv36iIiIwK233iqLOgPVqc4fffQRnnnmGcTFxSEyMhJ33303Dh48KFt3z5496N+/Pxo1aoTw8HDExcWhX79+OHHihLSOIAhYuHAhbr31VtSsWRP169fH4MGDUVRUJNtWz5490aZNG3z77bfSFJb//Oc/cf/996NZs2ZWp8Xs3Lmz7NeyN998E3fccQcaNWqE2rVro23btpg9ezYqKipk+/n8889x7NgxWYReZJr6nZ+fD51Oh3fffddi3xs3boROp8Nnn30mLTt8+DCGDRsmvR433ngj3nzzTavvlymdTofLly/j/fffl9pjmpJeWlqKsWPH4oYbbkBYWBji4+MxY8YMXLt2TbadRYsWITk5GXXq1EHdunXRunVrPP300wCMhfTS09MBAL169ZL2w1/Sglu7du1QWVmJ06dPIykpSXaLjY0FAISGhqJ169Z2bzExMdI2//rrL+j18q+7kJAQ2TncqFEj2b5q1KiB66+/3mIZERGp7/jx43jggQcQGRmJqKgoPPTQQ/jjjz9k61gbLmfO2nC5kSNHok6dOigoKEDfvn1Rp04dNGnSBJMnT5b1UQFjgeIXX3wRrVu3Rnh4OK677jqMGjXKoi2rVq1C79690bhxY9SsWRM33ngjnnrqKVy+fFm2nrjvn3/+Gb1790bdunVx1113WW17dnY2nnjiCQBAfHy81E8yfS6rVq1Cly5dULt2bdSpUwdpaWnYs2ePbDtFRUUYOnQo4uLiEB4ejpiYGNx1113Yu3cvAGOR5P3792PLli3SPpo3b273dSVyFft5wYGvJKkiPz8ft99+O6KjozFz5ky0aNECJSUl+Oyzz1BeXo7w8HAcPHgQXbt2RaNGjbBgwQI0bNgQy5cvx8iRI3Hq1ClMnTpVts2nn34a3bp1w3/+8x+UlZXhySefxL333otff/0VISEhuHz5MlJTUxEfH48333wTMTExKC0txTfffIOLFy9K2xk7diyWLl2KzMxMzJo1C3/++SdmzpyJrl27Ij8/X/ahVVJSgoceeghTp07Fyy+/DL1ej/Pnz2PAgAH4+uuvcffdd0vr/vbbb/jpp5+wYMECaVlhYSGGDRuG+Ph4hIWFIT8/Hy+99BJ+++03LFmyBIAxRfnRRx9FYWEh1q1bZ/d1TU5ORrt27fDee+9h9OjRsvuWLl2KRo0aSUXuDhw4gK5du6Jp06aYM2cOYmNjkZubi8zMTJw5cwbTp0+3uZ9t27bhzjvvRK9evfDcc88BMP4aCBgDTJ06dYJer8fzzz+PxMREbNu2DS+++CKOHj0qjadeuXIlJkyYgH//+9947bXXoNfrUVBQgAMHDgAA+vXrh5dffhlPP/003nzzTSk4l5iYaPc1IP936dIlFBQUSP8+cuQI9u7diwYNGqBly5b4xz/+gREjRmDOnDlo164dzpw5g6+//hpt27Z1qYjjvffei5deeglNmzbFzTffjD179mDu3Ln45z//6fJzKC4uxp9//oni4mJUVlZKnfWkpCTplzgiInLNwIEDkZGRgXHjxmH//v147rnncODAAfz4448IDQ11e/sVFRW47777MHr0aEyePBnffvstXnjhBURFReH5558HYMy4GDBgAL777jtMnToVXbt2xbFjxzB9+nT07NkTO3fuRM2aNQEYf9Tr27cvsrKyULt2bfz222+YNWsWfvrpJ3z99deyfZeXl+O+++7D2LFj8dRTT1n8QCd65JFH8Oeff+L111/Hxx9/jMaNGwOozuB6+eWX8eyzz2LUqFF49tlnUV5ejldffRXdu3fHTz/9JK3Xt29fVFZWYvbs2WjatCnOnDmDrVu3SkPw1q1bh8GDByMqKkoafhgeHu72a0zBi/08gkCkgjvvvFOoV6+ecPr0aZvrDB06VAgPDxeKi4tly/v06SPUqlVLOH/+vCAIgvDNN98IAIS+ffvK1lu9erUAQNi2bZsgCIKwc+dOAYDwySef2Nzntm3bBADCnDlzZMuPHz8u1KxZU5g6daq0rEePHgIA4auvvpKtW1FRIcTExAjDhg2TLZ86daoQFhYmnDlzxuq+KysrhYqKCmHZsmVCSEiI8Oeff0r39evXT2jWrJnVxwEQpk+fLv17wYIFAgDh4MGD0rI///xTCA8PFyZPniwtS0tLE2644QbhwoULsu099thjQkREhGz/1tSuXVt4+OGHLZaPHTtWqFOnjnDs2DHZ8tdee00AIOzfv1/aT7169ezuY82aNQIA4ZtvvrG7HgUW8Zw2v4nHW3l5ufD8888LzZs3F0JDQ4XY2Fhh4MCBwr59+1zaX1lZmfD4448LTZs2FSIiIoSEhAThmWeeEf7++2+bj2nWrJnd4/Lhhx+2+hx4LBMRuW769OkCAGHixImy5StWrBAACMuXL5eW9ejRQ+jRo4dsPfM+k/h9Y/rZLH5+r169WvbYvn37Cq1atZL+/dFHHwkAhLVr18rW27FjhwBAWLhwodXnYDAYhIqKCmHLli0CACE/P99i30uWLLH7OoheffVVAYBw5MgR2fLi4mKhRo0awr///W/Z8osXLwqxsbFCRkaGIAiCcObMGQGAkJOTY3c/N998s8VrSeQq9vOIQSbyuMuXLwshISHCo48+ane9Ro0aWQSOBEEQVq1aJQAQNm7cKAhC9QfVW2+9JVvvt99+EwAIK1euFARBEM6fPy/Ur19faNWqlbBo0SIp2GHqmWeeEXQ6nXDq1CmhoqJCdktJSRE6deokrdujRw+hfv36Vts+efJkISIiQgqEXbt2TWjcuLGQnp4uW2/37t3CvffeKzRo0MDiQ2r79u3Ses4Emc6ePSuEh4cL06ZNk5a9+eabAgDhl19+EQRBEK5cuSJ1Psyf54YNGwQAwoYNG6zuT2QryHT99dcL9957r8V29+/fL+t0LVu2TAAgDB06VPjkk0+EP/74w2JbDDIRCcKWLVuE/v37C40bNxYACOvWrXP4mM2bNwvt27cXwsPDhfj4eGHRokUW6/z3v/8VbrzxRiEsLEy48cYbhY8//liF1hMReY4YZNq5c6dseUVFhVCjRg1h9OjR0jJ3gkw6nU64cuWK7LFPPfWUEBERIf37H//4h1CvXj2hvLzcos9jGsgRBEEoLCwUHnzwQSEmJkbQ6XSy/p7YTxX3DcDiB0BbbAWZ3nnnHQGAsGPHDou2DRkyRGjUqJEgCMaAV2JionD99dcLc+bMEXbv3i1UVlZa7IdBJiLyJNZkIo87d+4cKisrccMNN9hd7+zZs1Lqrymx6NrZs2dlyxs2bCj7t5jKe+XKFQBAVFQUtmzZgltvvRVPP/00br75ZsTFxWH69OlSDaRTp05BEATExMQgNDRUdtu+fbvFlLnW2gcA//znP3H16lWsXLkSAJCbm4uSkhKMGjVKWqe4uBjdu3fH77//jvnz5+O7777Djh07pJpIYrud1aBBA9x3331YtmwZKisrARiHynXq1Ak333wzAONrd+3aNbz++usWz1NMQ1UyPbA1p06dwvr16y22K+5b3O7w4cOxZMkSHDt2DIMGDUKjRo3QuXNn5OXlubRfokB1+fJlJCcn44033lC0/pEjR9C3b190794de/bswdNPP43MzEysXbtWWmfbtm0YMmQIhg8fjvz8fAwfPhwZGRn48ccf1XoaREQeI9ZmEdWoUQMNGza06Bu6qlatWoiIiJAtCw8Px9WrV6V/nzp1CufPn0dYWJhFn6e0tFTq71y6dAndu3fHjz/+iBdffBGbN2/Gjh078PHHHwOw7O/VqlVLKkHgqlOnTgEAbrvtNou2rVq1SmqbTqfDV199hbS0NMyePRvt27fHddddh8zMTFkpCSIiT2JNJvK4Bg0aICQkRFZs25qGDRuipKTEYvnJkycBANHR0U7vu23btli5ciUEQcC+ffuwdOlSzJw5EzVr1sRTTz2F6Oho6HQ6fPfdd1bHm5svMy3Abeqmm25Cp06d8N5772Hs2LF47733EBcXh969e0vrfPLJJ7h8+TI+/vhjNGvWTFoujul1x6hRo7BmzRrk5eWhadOm2LFjBxYtWiTdX79+fYSEhGD48OH417/+ZXUb8fHxLu07Ojoat9xyC1566SWr95vOzDBq1CiMGjUKly9fxrfffovp06ejf//+OHTokOw1IQpmffr0QZ8+fRSv/9Zbb6Fp06bIyckBANx4443YuXMnXnvtNQwaNAgAkJOTg9TUVEybNg0AMG3aNGzZsgU5OTn46KOPPP4ciIg8qbS0FNdff73072vXruHs2bMWPziqKTo6Gg0bNsQXX3xh9f66desCAL7++mucPHkSmzdvRo8ePaT7xZpH5mz1LZ1tGwD897//ddifatasmTRhzKFDh7B69WpkZ2ejvLwcb731ltttISIyxyATeVzNmjXRo0cPrFmzBi+99JLNYNFdd92FdevW4eTJk7LAxLJly1CrVi23ppzV6XRITk7GvHnzsHTpUuzevRsA0L9/f/zf//0ffv/9d2RkZLi8fcAYQBk/fjy+//57rF+/HpMmTZJNxSl2IkwDV4Ig4J133rHYVnh4uFOZTb1798b111+P9957D02bNkVERAQefPBB6f5atWqhV69e2LNnD2655RaEhYU5/fxstal///7YsGEDEhMTZdOH2lO7dm306dMH5eXluP/++7F//340a9bMIhuNSKuuXr2K8vJyxesLgmBxIREeHu6RYqrbtm2TBbQBIC0tDe+++y4qKioQGhqKbdu2YeLEiRbriIEpIiItW7FiBTp06CD9e/Xq1bh27ZrD2eQ8qX///li5ciUqKytl05ybs9bfA4DFixe73QZb/aS0tDTUqFEDhYWF0o8LSrRs2RLPPvss1q5dK/WNxf2wL0Yk9+S/G6CiQsDct875uil+h0EmUsXcuXNx++23o3PnznjqqaeQlJSEU6dO4bPPPsPixYtRt25dTJ8+Hf/73//Qq1cvPP/882jQoAFWrFiBzz//HLNnz0ZUVJRT+/zf//6HhQsX4v7770dCQgIEQcDHH3+M8+fPIzU1FQDQrVs3PProoxg1ahR27tyJO+64A7Vr10ZJSQm+//57tG3bFuPHj1e0vwcffBCTJk3Cgw8+iL///hsjR46U3Z+amoqwsDA8+OCDmDp1Kq5evYpFixbh3DnLD6q2bdvi448/xqJFi9ChQwfo9Xp07NjR5r5DQkIwYsQIzJ07F5GRkXjggQcsXq/58+fj9ttvR/fu3TF+/Hg0b94cFy9eREFBAdavX28x24m1Nm3evBnr169H48aNUbduXbRq1QozZ85EXl4eunbtiszMTLRq1QpXr17F0aNHsWHDBrz11lu44YYbMGbMGNSsWRPdunVD48aNUVpaildeeQVRUVG47bbbAABt2rQBALz99tuoW7cuIiIiEB8f79VfKokcuXr1KuKb1UHp6UrFj6lTpw4uXbokWzZ9+nRkZ2e73Z7S0lLZLJgAEBMTg2vXruHMmTPS+WZtndLSUrf3T0Skto8//hg1atRAamqqNLtccnKy2z8QOmPo0KFYsWIF+vbti8cffxydOnVCaGgoTpw4gW+++QYDBgzAwIED0bVrV9SvXx/jxo3D9OnTERoaihUrViA/P9/tNrRt2xaAsU/38MMPIzQ0FK1atULz5s0xc+ZMPPPMMygqKsI999yD+vXr49SpU/jpp59Qu3ZtzJgxA/v27cNjjz2G9PR0tGjRAmFhYfj666+xb98+PPXUU7L9rFy5EqtWrUJCQgIiIiKkfRMFo/z8fCz4z3noAAx7ZKfd6zKywqcVoSigHThwQEhPTxcaNmwohIWFCU2bNhVGjhwpXL16VVrn559/Fu69914hKipKCAsLE5KTk4X33ntPth2xaOOaNWtky48cOSIAkNb/7bffhAcffFBITEwUatasKURFRQmdOnUSli5datG2JUuWCJ07dxZq164t1KxZU0hMTBRGjBghKzTZo0cP4eabb7b7HIcNGyYAELp162b1/vXr1wvJyclCRESEcP311wtPPPGEsHHjRosilH/++acwePBgoV69elLBSBHMiliKDh06JBWVzMvLs7r/I0eOCP/85z+F66+/XggNDRWuu+46oWvXrsKLL75o93kJgiDs3btX6Natm1CrVi0BgKwg5B9//CFkZmYK8fHxQmhoqNCgQQOhQ4cOwjPPPCNcunRJEARBeP/994VevXoJMTExQlhYmBAXFydkZGRYzByRk5MjxMfHCyEhIbL3k0grLly4IAAQCnY2EU4fbObwVrCziQBAOH78uHDhwgXpZvrZZwsUFP5u0aKF8PLLL8uWff/99wIAoaSkRBAEQQgNDRU+/PBD2TrLly8XwsPDnXvyREReJBb+3rVrl3DvvfcKderUEerWrSs8+OCDwqlTp2TrulP4u3bt2jb3baqiokJ47bXXpL5cnTp1hNatWwtjx44VDh8+LK23detWoUuXLkKtWrWE6667TnjkkUeE3bt3W/RrbO3bnmnTpglxcXGCXq+3eC6ffPKJ0KtXLyEyMlIIDw8XmjVrJgwePFj48ssvBUEQhFOnTgkjR44UWrduLdSuXVuoU6eOcMsttwjz5s0Trl27Jm3n6NGjQu/evYW6desKAGxORkMULFJ71BImjasnPPlYfaFHl5qCwWDwdZP8ik4QBMGrUS0iIiI/UlZWhqioKJQebIrIuo7nyyi7aEBsq2JcuHDB6eKuOp0O69atw/33329znTvuuAPt2rXD/PnzpWXr1q1DRkYG/vrrL4SGhqJp06aYOHGibMjcvHnzkJOTg2PHjjnVJiIiIqJgsWnTJgwd0geHtzWHXg+07HIM773/Cfr37+/rpvkNzi5HRESkgMGJ/9TUpUsXi1kaN23ahI4dOyI0NNTuOl27dlW1bURERET+qrKyEk9MvBfPPN4A9euFICoyBM9NaoCpkwbh2rVrvm6e32CQiYiISIFKQVB8c8alS5ewd+9eaebJI0eOYO/evSguLgZgnBluxIgR0vrjxo3DsWPHMGnSJPz6669YsmQJ3n33XUyZMkVa5/HHH8emTZswa9Ys/Pbbb5g1axa+/PJLZGVluf06EBEREQWi99+4HmUXDZgwqrrW7aPDo1BxTcB/5l1v55FkikEmIiIiBQwQFN+csXPnTrRr1w7t2rUDAEyaNAnt2rXD888/DwAoKSmRAk4AEB8fjw0bNmDz5s249dZb8cILL2DBggWyGYa6du2KlStX4r333sMtt9yCpUuXYtWqVXZnSCIiIiIKVn/99Reen3UWL06LRnh4dZgkLEyHl59uiOxXz1pM6kLWsSYTERGRHWJNpiO/NUZdBTWZLl40IL51iUs1mYiIiIjI+15+OhrrNlzCtg1NoNfrZPcJgoA7BpxAao9ayH71rFPb/fbbb/Hqq69i165dKCkpcVh7EwC2bNmCSZMmYf/+/YiLi8PUqVMxbtw4Z5+SzzCTiYiISAG1MpmIiIiIyHf++OMPzHrjHGY/H20RYAKME7PMei4ary08h9LSUqe2ffnyZSQnJ+ONN95QtP6RI0fQt29fdO/eHXv27MHTTz+NzMxMrF271qn9+pLiTKarV6+ivLxc7fYQEREpFhYWhoiICFX3IWYyHfo1RnEmU8sbTzGTifwK+3lERKQ13ujnAcBjo+vh2Ilr+PT9OLvrDR59EtENQvD2Bxdc2o+SWYSffPJJfPbZZ/j111+lZePGjUN+fj62bdvm0n69rYaSla5evYr4+Hino3ZERERqio2NxZEjR7zSAamAgAoFWUpK1iHSEvbziIhIi7zRzysoKMC7H5ZhxxdNHK77yjPRuPWuYvxrSj7i4+Nl94WHhyM8PNzt9mzbtg29e/eWLUtLS8O7776LiooKaSZhLVMUZCovL0dpaSmOHz/OX2WJiEgTysrK0KRJE5SXl3slyFQpGG9K1iPyJ+znERGR1nirn/fzzz/jphZhuKmV4wBRi4QwtGsTjhdeeMFi+Nr06dORnZ3tdntKS0sRExMjWxYTE4Nr167hzJkzaNy4sdv7UJuiIJMoMjKSnQ8iIgpKhqqbkvWI/BH7eUREFIx0esCgsAen0wEDBgzAkiVLZMs9kcVUvQ/LwuPWlmuVU0EmIiKiYGWADpVw/OVuULAOEREREWmDAAEVQqXidUNDQ1X7USY2NtZi+Prp06dRo0YNNGzYUJV9ehqDTERERAoYBONNyXpERERE5D+UZjKprUuXLli/fr1s2aZNm9CxY0e/qMcEAI6nySEiIiJUVmUyKbkRERERkX8QIKBSUHYTnJzg5dKlS9i7dy/27t0LADhy5Aj27t2L4uJiAMC0adMwYsQIaf1x48bh2LFjmDRpEn799VcsWbIE7777LqZMmeKx56s2ZjIFoVR9usWyPMMaH7REzlq7bLHVXkfb0MLzJCL/pDSAxCATERERkX8xKAweOZuwvnPnTvTq1Uv696RJkwAADz/8MJYuXYqSkhIp4AQA8fHx2LBhAyZOnIg333wTcXFxWLBgAQYNGuTknn2HQSYiIiIFDIIOBkFBTSYF6xARERGRNggAKp0OHynTs2dPqXC3NUuXLrVY1qNHD+zevVuV9ngDg0wBxJlMIE8+1hdcba87z5NZUETBjZlMRORPbnxuHvb/axEAIC0uGTftMnb7t5xMwnX3/iatl3syX/r7nqYd8UXxTgBA0uqxKMqc7LH2dB/4mnH/i95G0uqxFvcXZCyW/k6LS5balRaXjDrfNQIArE3Mk9ZJWj0WiVnbZdsQH9P6h+H4rdsH0uPZhyMiewQAFYKymkxKM56CmU6wF1arUlZWhqioKFy4cIFT22qMvwWHggE7Mv5Pq0NKSc5b303ifr76uSlq13VcyvDyRQPualvM70zyG+zn+ZekV+fi0PC3kBaXDAAozElBg33G4HbdYb/jq5uMBWOfPn0Ldt2qk9bxJGvBJ9PvzrP/a4XzBfU9uk9P8WTgjIjU463vpnXr1mHGjCHY8Hm0ovXvH3gGkyYtw9ChQ1Vrk79jJpOfYDDJf4jvlS+CEkqOE3fbpfRYFPej5rHrzdfYlefBwFRgYSYTEXlT28+mI/b+AwAAw1dNkHfj/wAAMbcORFpcsixw9Octxt+M//wlDkm/mGQJ5ajTtoQFcywXmgayCszuE3SAThu//lttux0MSjnHUNoSgDwbLembkSh68Gmb64rr+7LfdMeAVxHzZBEAYFXCV9DHHvJZW8j7BAiKh8tp45NM2xhk0hgGk8gaTx4X9rbl6MvdmXZ441j2ZUDPHq21hzyjUtCjUnCcyVTJ3gcRuShVny5dmMfebxJI+hlI+tk0eNRIlf0XZU52OgijiLcCTGJNPBf2d2934zDBb5Z1wr55Ez3ZKo9I3TwRf65oCgBo8O5Wq9lpBRmL0e6V8cifr077zYNCItN+jzQUcp4OSaur22h6XInDHHNPqtJMxUyfz4m7xuLEziQAQNLOJADG9jLIGCQE9t88iUEmL2DgKLB5KqDgq+PEmfZbW9cb7fa3oA2H2wUmA3QwwHGQiWP1iUh08vc4PNykm/RvMYBkK0uiMCel+sI8R+3WyakWYPImJ4JLBRmLpUCJ7Du6nacbZZu1rB/zLLVqNwBtjTVjztkY/njvoXvQ6PWtgEpBJtPjNs9G+RpFQZlMy0W2tqemfncMxOffrrO7jmmfzrR+GTOdAosBOlQozET3waHqdxhk8jAGlAJboAQKPPk8AuU1IXKEw+WIyJrU219CYUaEbJl4oX372smyYFF1Zodvgzli+0yDSooDTGoNfXN3uwoen5i1HRV5zQAYgwS+CGyYqg5UpMtqbDnDIqjDK2DFNh6aBWAWAKAo08ZQP1RnEJpmZoX8NQ8HRy5isCmAGJR+/PC3RIcYZHITg0rBwRuBFPN9qHlsaXWYmTPMXx9vBM48OYOjll77QDgevEH5cDn2PogCRVrN4YjdEgYAOJlShimF+43L4w9IF6Qhv/UE0Ep6jOlFv+nsZ6afsan6dJz7ZxcAQP0l26Tl5gEGa8EgV4Rc1iNv+GwAQPMbSqTlpjO6AbA665sFtYa+ubtdBY+fdfRHTD8WCwC4fdBr+H7tFPf26SGmx0aL/5uH5k9vtVjnxNo22N9lBQDj+9TqhcMAAENGSwY6PER8HU2Dj0WZ1f0k00ymtLhkYCT7UIFCgPIfCQX+mOgQZ5dzIBiDSHmGNUH5vB3x9ZeHo/fEmffN18/FHnePPU88Ny0c/2q9R848Ny0fJ4D3Z5dbm98SteuGOFz/8sVKDEo+FJTfmeSfgrmfZ02qPh0lU7oCAK5/fTcOz7rV7vqmQSUxGGQaHDIN5IjZKqYXqwBwz8DhAICCB2u513gzLaYZ92O4csXmZ/qVkngAwM1rHvPovrWuIGOxJoMz/znUHR+O7wcA+HLFEmm5Ftvqim6DX0Py03sBAAvbL5fVRQLk54gWnrNpv0lplpnpUEwOsXOdN2eXey57CD76n7Jadw8/8AemTn6fs8vZwSCTQlq46FSbGtkbgUbrF93+QI3jydn3xV+OaW/NBOgOX54T3g4yrclvjVoKgkx/XaxEevJvTrVr4cKFePXVV1FSUoKbb74ZOTk56N69u9V1R44ciffff99i+U033YT9+41ZFkuXLsWoUaMs1rly5QoiIiIsllNwYz9PLlWf7vSQJS1yNohiKG1pURtI/LvF5pE43HMpAIXZTt7kRrFvFnVWV5/mxtpQ14pPSMtyT+ZLx5Bppp94rKU+aPzu+uqbaaq0STzOAaBGYjwO/jtGlf2ICjIWI2HTPwEAR0c8peq+AOPzc3SO1rj+LzRL32eRXSnSyvWON4NMz2YPwYfrlR0LIwedxpMMMtnF4XIO+MvFqCe48uFi68OJSK3jQStffGQUTGniag2XW7VqFbKysrBw4UJ069YNixcvRp8+fXDgwAE0bdrUYv358+fj//7v/6R/X7t2DcnJyUhPl59zkZGROHjwoGwZA0xEtomfZ6YBJmtZSu6QDX9zIziiRNKqcSgYYswSURJsMq9RZPp34VAAME5BX2RStDlVn46jq4wX7JUlNd1tsm32Xis3Xj/zzDNyn+w8mnRD1dIbpPtN6xpZ6zt89Y3n2yQ/d8d6tah+0uqxCqYM8RzjuW7/s+ra77Vkn3MJC+YAARBYd4cAHcrh+IdEcV2yj0EmIiIiBSqEEFQIjjsgFVXXO2VlZbLl4eHhCA8Pt1h/7ty5GD16NB555BEAQE5ODnJzc7Fo0SK88sorFutHRUUhKipK+vcnn3yCc+fOWWQu6XQ6xMbGOmwvERERUbAzCEprMpEjDDLZwcwcI2Y1GQVDpoYnia+Xp48FW9tTa3++5MpzMT1OrR2zgfT6eFsl9KhU8HtkZVX3o0mTJrLl06dPR3Z2tmxZeXk5du3ahaeekqfQ9+7dG1u3WhZ+tebdd9/F3XffjWbNmsmWX7p0Cc2aNUNlZSVuvfVWvPDCC2jXzotzcxP5EVufjUqzl8wzYaTHmcx4ZpEt42IGTlHmZGXt0gkmw5LSVenH5BnWIDlrHgDgYoIHpjWzlbGkQrZXYtZ29u08zHyoad0i43fmhXblOPrwk17ZvzktDX1NWDBHGiJ4ZnxX7HlzotX1Ju41DsP6vOBmNMvY5/Rxai0Dc37/99Gv1lUAlpmNzORzrvA3OcYgE1mlxXG5vsTXwHmuBjNcnWWPwRMja6+DeeBJC8XV3ZWqT8fNvVo6XtGDDIIeBgXD5QxVw+WOHz8uqyFgLYvpzJkzqKysREyMvA5ATEwMSktLHe6rpKQEGzduxIcffihb3rp1ayxduhRt27ZFWVkZ5s+fj27duiE/Px8tWrRwuF2iYGNanNd0OI9pkMgepcEoTwy5c2UbhTkpqg0Ny8+ZqKxdSoYHqjVzXZXax/T4eU7VhX2m/XVJObF4d2GOvBbQnqcWAXCu4LW148i0vliPfrNxPM1GVrGGAkq2VAe9DFafa9wWASd73CZbX1zPdBIBpa+pGNTql3FVCjoXZBjrUmmhP6cdOkUlEQAOl1PCqSDTgKgRqKELBeD5iwwGNbTLUeaIvfv8/cLfX49FR+eTFs83V4NL5Jgvs8nU/K4o3HPUo9t2xNlMpsjISMWFKnU6eYdFEASLZdYsXboU9erVw/333y9bnpKSgpSU6s52t27d0L59e7z++utYsGCBojYRBQPx4thmoVx3gx46oTq4ArOaTAp4uiYUAGw40gb31CyX/u2pGa8Ss7ZLwTqrr6fKASQlLjfzQLYVySTMn4vEica6XMipDoSkxSVDn+ncsWXrGDceT1X32QowBYiTPWx/9yetHms1SGwobSmdx6Z/m9ZaMg2eJ6021qWyFdDr/m/j+fvDGt9mOA1a/ZHX9iUAMCisnuX7TzLt81kmk72LHncuiGz9Sq/0QocXtmTKH4oaOzpmXbnfF8+X557/s/Yemi9zZRZLW49JbNcc+Fp5+9xlAFCpYLy+M5cw0dHRCAkJschaOn36tEV2kzlBELBkyRIMHz4cYWFhdtfV6/W47bbbcPjwYSdaR8HmlrdeR1hFLQDAoWesD+NwRevseTgwzpjRMOBwGq72MB7vptlDgG+m9xb3WZSpIODkqqrgSsKCOdIFotIhb2pkHz223nzmyeosCXeyG8zfTy0xzQABAmtoUKo+3eqMgOK/1e7TFQx5Cxhi/DtpdUr1+ZPj3HaM558PZi5UuQC/p1n/3DAJwsn+tsNGlmbS6rFAd8t9mc4EGLElFp+2yAUALCmLwSMtv1PWeCckLJiDxFp1PL5dWwRBh3IFdTfFdck+nSA4ngZHnD6wJwa4ncnEC8nA5crFo5ZpObAk0tIMbv76PpP/iqgXhv+d+1D1qW3F78BFu29DzTqOf5u5cukaxrffobhdnTt3RocOHbBw4UJp2U033YQBAwZYLfwt2rx5M3r16oWff/4Zbdq0sbsPQRDQqVMntG3bFkuWLHHYJgounpwmWgzUAC4Ea6o67okTt1nUUREvcA4v7YgWI3cCMA4jURJ8EduUFpeMyl4dAABH7wtD4sRtOLy0IwCgxcidVmu3uJRJpHCInbPbdjYLylVPpn0GABjbaovTj1W7be6KbnkWP93zsq+b4RR3g5/iuVM4rwuKHp/ksXZZ0+PeV1Gz6DwAYMNXa6QgbpdNT6HOPYXGduSkIGn5ZQBAyJkybCx6DYDxeabFJWuqhpLf8nbgzOSzG5BfR/SJGQ8AuPbHGavvrWnwylSeYQ1S/7MYX44Zp3o/b926dXhy+jC8/mm8ovUnpR/Fc1OWYOjQoaq1yd+5HGQyZe+ClBeewUFJUMJfjgWtBpd8+foFWgCRAoO3g0xv7OqsOMj0WIcfFbdr1apVGD58ON566y106dIFb7/9Nt555x3s378fzZo1w7Rp0/D7779j2bJlsscNHz4chw8fxvbtlh20GTNmICUlBS1atEBZWRkWLFiADz74AD/88AM6deqk/MlTUBCP8XOHElCvRaFL2xAvEMUsit5DRqJokGUdMvIctYNOrmRPKQqIKAzCucv04lU8Ln2RLecKsX+VezIfvYeMBADL88mFQILpUDaRM/3ehPlzLfZZlDlZFsg13Z7pcrtDKbXGS8co2VaQsRhlVxJQPyHXa0GmnE8TFa3/RPoRPDflXQaZ7PDIcDkt1nch70rVqzNribf4c9u9gcEkIsAAHQwKij0qWcfUkCFDcPbsWcycORMlJSVo06YNNmzYIM0WV1JSguLiYtljLly4gLVr12L+/PlWt3n+/Hk8+uijKC0tRVRUFNq1a4dvv/2WASay69Z1/4Q+ojpg4UyQQcxAkOp+PKCDapUr/Gx4i1ocBZdcreckBmdSs5zv34tBnIKMlurVuVKgKHOy3xb2Np2hLWl1CjDIc9u2NpQtYcEcmwWlzYOGRY9bBjaNf1dvV7wvMWt7dSHwHLOC+mpzN0jky88WBrgAGI+5j7t77/pMcKrwNzni8ZpM/lDDhtShldo+rrAWKHWlRoxaGOQh8r1KQa+oA6K0k2JqwoQJmDBhgtX7li5darEsKioKf/31l83tzZs3D/PmzXO6HUSmTC8WRYff62h1KnKxJqY0HELNiyQtX4Bp4AIx7qZTFssKMhYrziCxNqTFtB+SezLfYUZQu51DFO3LXYE49bri4WIePM5Mj43ErOprOfNjxplgpex5ePu80PJnhCO+brsGPsNEGV/dD+BHr+xLAFChtCYTZ5dzSLXC37woJnOemDrd1f1aY6stPHaJyJoKIQQ1FHRAKhyPQifyK6YXi0Vpi5GqN9ZEyjOswcKDvQAA46J+B5Bs7eH+wxMZUhq4OPv+7tkWy/Sxh1BkktnjVH0pGOv5VD83xwW+G933Gy6qEGQwDXg6M6mPeTFsAHi+aA8e/my8xbZ99QPpcz8PrPrrdp/sXySe7x4dhmnvvTc97zQU4AhaQfv66xTNIAwwk0kJn80uR0RE5E8M0CvqgCidApeIiIiIrAs9e9Vr+xIAGBRnojOTyREGmYKYmplFvhwm540i5P5eg4qInGcQ9Io6IMo7KUT+J2n1WBScrK7fYsxgMirMSdF2vSRHWRJabLOTbA0fM83mUTpsrihzsiybRazb41LxbBde2/iP/zbu79s90Le/GQCQ60LfS1YrDJDqET38WYrFeoDv+ngrvvFuBpNp4XhvzVxolemxEQDnIHnObZ/sxgGv7Y2ZTJ7EIFMQC5RhYa50BHw1dM8ZWm8fUbCphA6VCn69UrIOkRbtG/dv2Qw+pkV/5UOJqgMZYsDBUNoSnw6chwHrJjrekbOBKE8NoQmCC9i7e7wM3Xd7AMj7OqaBlsSs7fjwxFYAQOf/2p7S3jTgUKNM71RwKc+wRtlMc2aEBuXGx4zY7bFAj3mwzJZ19+cAANpm1PTIfpWQ9fWU1mKqoigwZOfcsSzeTaQtWR+exvvtvbMvQQAqBWX9N1ZFcMypINOnF5ZJnQ9eAJMrTDsMvj6GlBT4dvRYT/P1a0JEtjGTiYKNGFQoyoQ0U5ehtKVU0+bQ251w7JEnpHUHKL1QdTbY40/BIR/XlCkaFA4MMqmpY1pPS8xyMqnN9PUDjXHnx1McbvdaXeefk3j8JGalKy5mrfszDABkNZQ8wXT2NPH4NW/ThIPDAAA/pM7y6L6tMZS2RL+UfsqLfFuhKDDkT+eOr/ljPSgtZ456QMaXA+G9wt86VAjKQiMs/O2Yy5lM5hfZvDgmkTdSjD25D2eOZTWeG88dIv9QCWVZSpXqN4XIZ/Sxh5B7smXVv/IBPGF75QC/ALJKxedqrzD1LeufBwBcOhJl/cGCThaUaJVTAgA4mOU4wAQARY/bznhyxBgwyq/OaLJxMZ+YtR26EOPkCvpMF4bk2WGahZVn8OimFbu7x8vYtGopgKrsLhdeUp8OawMsi3SLfwcCf3we/thmJzSrVw+HvbQvAYBBcfCIQSZHPDZcztkZvEgdwfI+qDlenrWWiPxDYrvmwNfe2x8zmYiMrA2bSlr9IgCzYUZKLoAC7ULVw2SBpUzb6+27d6bFslS9SQaR2et7MKuxxfrWhpVJs7nZ2bcj+thD8u3aeK9zT+a7Vu/JTxQNCndq6KDF403qbSVmbXc+C8oTmTqsn0SiyqrP7hDPHQfmNeXKysoQ9eg4j23fkUqF/Tce+Y6xJlMAsRcc0dIwNZE/1EUiIm1xZ5iruyoFvaIOiNJOClEgKch41rXsCl6o2hR6Qe/WD195hjW4/YHXAAAnezr+5d38/SvKnOxWcMliWzb2I0paPdY4NJNkxEBfalZ18fbck5AXM1fCH881BqE1yfR8lgWzneDWRAIqEFj426MYZPJzrha9BrQRbHI1+MVsI6LgYOtczzOsQVlZGeZHvey1tgjQKUql5lh9Ciatp88DAJQ3VG8MkmnWhpRZA8uaOoHm4HMKiqg78H1VvSWlAUDT13dQxwnYszNR+retmeucZR5wEi82284b75Hta1VBxmKXMpnE47wgYzH6xHcGAORe+QBAEBTrZnDJ58TzMy0u2WqfzFGRf/HxLT8Yh0PD35K25ekhse4SAFQIIQrXZT/PkYALMgVbdozpc9VK4MXVNjkKOGnl+TnibNu1FPQj8hV/OL+ZyURk6bcZ1gMhzT/4P+jPhQIAvn7gNdy5tqp2k4KLxsSs7fLPBNPsFrNMF9PZ0zTPyeFKqfp0/JWbAMD1YtTixR+gLLhhWnDb9IIxvMklaVuezDwwBpyMQaf96tfb9qhUfTrOf94CALCjj0o/eJgdM8bgkspcyR5ixpFyPnytTIffVn82AMmzx6P5wCIAwPrur8uC0uLnQLvvC61u07iucZ0acX/ht9s/MPuMMJ7fBU8AYiEyX9VFs0/nRLkDBpkcUT3IpFaBcKVDwzy9Xy1zNrij5YCcP1xwWmPr9dRiMJDIGmvBXk8Pt/XXc6BCCIFewa9cFYIme09EXnV0+FMm/5qMxInVnx22AkLWZj9zxPTz5ODxOABAn3WeybjxOCcvKgtzUoBfq/6R6toub90x1Kn1bWXa/H28DpKOG+8L9iFt4sV5Yc5YJParGsqG6qFstoJwaXHJKDhZPctdt0ljccpRbNTkmDEdTpiqT4eYY+ZSgNU0eGUe/FRaS80b9ZkCMXjl5eciZhIlfjVK9nlpepz+PFf+GEdZi7K+oMnxd+1kraqMJzca7CMClE3uIq5L9nk9k8ndrA1XL060HFBRg73C2MH0OvgTZjSRr5l/ZthKi7bGmePWWvDKHxgEHQyC4w6IknWIgkmqPh2Li78HANz98RQ0/s64vKR79TrGCyH3gkOtmpys2lZLtwose52CDCfTzAKLTC87xILg8W/Mgc6dCz+TNiYsmOOxoXP+yPTYMg3wpBljnDYvsE3fM0NpS8cBpiqmQxhNA7BuZe+5GyDyVqAkkIJLPiIer0c8cM76VeaoswQnJm7hYelQwA2XIyIiUoMBehgUFIVUsg4RERERaYOx8LfSTCb+mOiI14NM7mRp+Nuv3r6mhYyYYBkmpoXXmshVgXxuelKloEOlgiwlJesQBYMOG58BAJzLScHdH1f/8v3DGmu/qHsuM8Y4DEQjRZHtZSm5OBSoMCcF90T9E5UXLwKwn2F6+E1joeh6B0NQ1sKNVCazNvprRqqanHkt0uKSgRzb9zsqthyQmSSA03XLgo6Tr48zWY+OGEpbojDHfoZoi/fKoG/dwiP78zYBQIVBWWiER6hjXg0yKb0QV+sLy9N1Rcg59obwBRMOZSStcediwZVj1l8/Bzhcjsi+VH11XZq0uGQ0qFreAN4/78XhXAO+fww/74736r5l7F0QunExfeiFm6W/zWeOE597nmGNdJ9bASYrxCBHwoI5uP5r47a/++QJj+5DS+zNnmW+jpLC6Lkn85G02nagSNzG5fQ5su/Z3z8W3/e6DvehabYCrAww2efk6+Ptz92NGz/y6MQA3qVsBmGAmUxKqBZk0vp09Kx/4xuB9MuXO8eO6evAY5C0wpVAsLOfpf587guCXtF4fYGzy1EQSas9AgCwsXA7gGT0TRW/317yYauqfXr7G7in7ygAwKEX2/i4NYEp4rOfAATuj4mp+nRMK3J8USkGoBKzbL8O3x1NAgA8/Nl4u9uSAofdAHQzCUYVO24vAO0XzNZquwKMq7XcrLGXISpm3vlvgKmq8LfC/huPXse8mskUiF885JpA7Yg4iwEm0hpnA8HBEFwSVSocr690TD+RvzOUtoThSjIA28N6tGDDoR8AAEmr20hFlJ0abuSNC3YP7mPA948BMAbYFD1fN/cdsEO3qhTmpOCRzyyfY1HmZIssMnF906wmeRaU/eCSxzCI4x7TjOQAeS3Nj0tX1Im/AAC4dCRKWpaYtR36TP8NLplSnIkeGIeEqlT5udX8oiPPsEazHQ8iIrLkTPAoWD7fDUL1kDn7N+e3vXDhQsTHxyMiIgIdOnTAd999Z3PdzZs3Q6fTWdx+++032Xpr167FTTfdhPDwcNx0001Yt26d8w0jskMfe0j6DNDy50BaXDLS4pJls3SFn3GiC6wTlF9oujpc1nQfgs717QA4eLoRDp5uBMB4YWkRBDLftjPPz/zxZtsylLaULmQDRUHGYtl78mLf1Xix72qrASZR0uqx/jfDIYd6VxPPiQAJMIni/zcG8f8b4/I5eulIFC4dicLou75Bw706NNyr0/RnvzMEQYcKIUTRjcPlHFMlk8mfDjbztjKzhJTikEsix/zp+8ARg8LhcoqnwK2yatUqZGVlYeHChejWrRsWL16MPn364MCBA2jatKnNxx08eBCRkZHSv6+77jrp723btmHIkCF44YUXMHDgQKxbtw4ZGRn4/vvv0blzZ6faR+TvrH0OGUpbImnVOM9fRHpie25uo/xEbQCWtZo8tX3Z4wPsItwaY5Fu4/NMzNqOYZk/AgCeVVBc3vge+EGwKQjeR5usZfIFaAHykL/cyy+pW2h8/LvohYKX36paOsnNVmmDAOWzAzPI5JjXZ5fTOtbIISJynvlnZyAFl0QVgh46BQGkCieDTHPnzsXo0aPxyCOPAABycnKQm5uLRYsW4ZVXXrH5uEaNGqFevXpW78vJyUFqaiqmTZsGAJg2bRq2bNmCnJwcfPTRR061jygQ6WMPYVb/Dnjy82G+bkpA8eeaLLbIvs8y5feZZscF+rBBTfHkEFZr2wjAAJMn5M+faPIvz80IqhWcHdhzGGQinwmUC1JmwxEZ+fN5rISzmUxlZWWy5eHh4QgPD5ctKy8vx65du/DUU0/Jlvfu3Rtbt261u5927drh6tWruOmmm/Dss8+iV69e0n3btm3DxIkTZeunpaUhJyfHYfuJgkV64i4MynA8axjJibPXAcY+j2lwxTR7ynS9QFSUOVkKOnV4dB4Az87gR3YEUxDI2awqBeunxSUj92TLgAwKu0qAshmEjeuSIwwyWcFhUOQOHj8UCAI9YOQKg8IOiDgFbpMmTWTLp0+fjuzsbNmyM2fOoLKyEjExMbLlMTExKC0ttbr9xo0b4+2330aHDh3w999/44MPPsBdd92FzZs344477gAAlJaWOrVNomAlXmT9OPh6dP5vYAz7UIOtgJGt7B3jbFOBHWQCqvt6DQCcczaTyTQYYCsw4O6wrQAd9hVUnB3GZ+d+08w7BpgsKS53wIwnhxhkIiIiUkCATgogOVoPAI4fPy6rmWSexWRKp5NvVxAEi2WiVq1aoVWrVtK/u3TpguPHj+O1116TgkzObpOIiIgoWAlQXu6AYVvHVJldLlDwl3wiClbMxLOkbGa56mynyMhI2c1akCk6OhohISEWGUanT5+2yESyJyUlBYcPH5b+HRsb6/Y2iYLJQ4l3+roJRrZ+IdfqL+eCDgUZi6syl6olrR4bkDPNmRNn73OpHpOSAuqeLNJO/s+F97Moc7J0E49VXuNaEgSdVBbB0c2Vs0qNWYS1jJlMDnDoE7mKReSJAosas8uFhYWhQ4cOyMvLw8CBA6XleXl5GDBggOLt7NmzB40bN5b+3aVLF+Tl5cnqMm3atAldu3ZVvE2iYJJ75QPpO7twXhffXZyrFWxwk62Z6ooenwxxdqmiTEhBpWCpcSUOI7Q5k5+WebJ4tje268808JrEvz5HysU2lLIekzVKstWNnAv6qzGLsNYxyESqclQUm5F0IvIXpllKjtZzxqRJkzB8+HB07NgRXbp0wdtvv43i4mKMGzcOgHFmuN9//x3Lli0DYJw5rnnz5rj55ptRXl6O5cuXY+3atVi7dq20zccffxx33HEHZs2ahQEDBuDTTz/Fl19+ie+//96pthEFk+pslCC/OFZwQXxn15+tLhcvXIsygWCoySQqypys2UCTzUCYWgEPBpcsefk1Ma29JBanL0xfjLS4ZACAPpMBJnMClM8u5+y7qcYswlrHIBN5VaAGlWzNlMdMOPJn4nEbqOetswwKazIp/yXMaMiQITh79ixmzpyJkpIStGnTBhs2bECzZs0AACUlJSguLpbWLy8vx5QpU/D777+jZs2auPnmm/H555+jb9++0jpdu3bFypUr8eyzz+K5555DYmIiVq1ahc6dOzvVNiLSCG8WcLaxH3FIXL9DffCfjku90xZyS2LWdinIYBoIK8hYjLRBIwAAuWuXBU3mWbDIPZkPwLK4txhIZyaTNTrFmeiCAFRUVPh0FmGtY5CJPC7YLkjNA0j+FlBiICx4cUinc9TKZAKACRMmYMKECVbvW7p0qezfU6dOxdSpUx1uc/DgwRg8eLDTbSEiG3w5U5eX9htxWo9fHltksdx4QWrMiNkY65WmaIo0lDInRVZ/SrxQT9WnA67UZbLCNAvFpVpPqA4ImmesVM8SOBl5P4hLn0XiqheN+xtSU9kOfHkuBOKMeR58Tg336mTvu7W6aEmrx6Igg4EmUwKAa4rLHejw6aefYsSIEbKl3pxFWOsYZHKAF2CWrAUlgi2wFCjsBRkYfApMpu8531vnXDPooTM47oBcU7AOEWmLoiBBoF3YmqkOQEy0u16wSdWnA12SpX9LWT+CDtBVDUGzc+zM6GPsTw1vsV264NfHHkLCgjk2A0pTCvcDAMavrw5qOZNt1GPcGADAd58oWz/vh2cBGJ+rosCWs+dCIAaGPMn8tXGyhlN4k0u4YdAvACyvyWwdN0mrx1YNayWR0h8JBQADBgzAkiVLZMu9PYuwljHIRC5jYMnIU9kgvgjq2NsXAxCBxZVhnDzH5dTMZCIi38ozrNFsTR1v4RAa6/IMa6wXNFcSABB06Fv7hPRP89dXHNYk1soBjMGm8etTrDzGzvFpFpSI+Own6S5rbU/M2o7CFe0AAEUPPi0tt/lcre3PmaCRJwNMwRCssvMcpSw183PVYH/905WX0CikDgCg1+hHsOVzxxnRwUScXU4ZHUJDQ2VFuW3x5CzCy5cvV7y+rzHIREQUoFwJEjGwZJsAZfWWgqD7S0T+yEp2REHGYimYkBaXjDwbF6rkHPHCPi0uGQ0fP2FxvxjQFINL9oKc4nK7xcXNghJiNpJxfctgUWFOCvCH8W9DaUvpGHi890bM36QgY8pbgR4NzMqmNXdMeBQA8P3Hytbv/phx/ZI7dGjx5F4AwJYrDDBZ40wmk1JqzSKsdQwyOcAhQ3K8ALXkjWODtXPIWTxXPY+ZTESkiDtDgzw9rMj0It0suAQYsyGkITMcOuMRBRmLpSyTvvt7y4bIiRKztqMwJ0XKZAJMhyvKa0CJ7GXaiY81DRgpZbr+/E19nHqs6oIkuGQa7LWnxbR85F5e5tS2zw77y/jHidrYeORHV5oXFJypySQ4eViqMYuw1jHIREREpACDTERERESBSFkfT1zXGWrMIqx1DDIpFIyZJMyEUI8rGXLMqiNvEI8vnv+WGGQiCmxiEWZXZ/SSuJN94enMDRvbY+0l5Xp9PRnHflGeHZS0ahyKHjf+veHmKDx+0nIdsfZR9XA5y/sBY/aSIeoaAODow0/arK8kZqH1bdkNeFFxU8nHkj4yZhnpMw+hcyfjsLYff2qFHwfPBQB0/u8kAMBr/Yy1eBZlJTm9jwNdjY9NWj1WOm5Y8NuSAHWGy4nUmEVYyxhkItIIR8EjJUWa7c0Ux+AUiewdCwwu2cYgE1FgM72w9xkvzMJlGpQgx85dqeVyANLed6o+9pAsuHTbRmMB7nr9Dkv7MR16Z0ocbmduw6EfkLS6jVNt9AnWWgIAfLHug6q/nsNHKW8b/0wBAHHopPGzaMrnDxn/mePc9k1rctk6lqiKwP6bJzHI5IRgyiThhaa6nD2GlAYF7B2jwXT8km0MMLlOEHQQFHRAlKxDRGSVFy66+VnvnL39XsDCX3sBAMZF2a6dIwaizF9fW0FLsS4WALxzoTF+bFcCAEjKqd6+eVBA/HfuyZZIWm0MMv01yHwmOj+YJdFfg0seDgJXH0tzoP/b2HcwhAtSja1Wr5/CtcIj1QFFQWe1xpepVH069B2qAo3D63isrYFO6eQu4rpkH4NMRG7yhywhrbePnGPagbX13vI99zwDdIo6IEo7KUSkTXZn8aKgNKHVNyb/sn5sOJsJZx6sGlsVWFAylCktLhkFJ41Bqt8HXUR15ovx+BX7ABeHdUHdD7cBMGZhxf5gXKe0m6ImkjkVg2OGcOO2TTMNNx6eXVXMPUXx/m1l2926Yyj23euRpgYoHa4ZlBb+Zj/PEQaZiDzAm1lCSn6B5NA5Is+rNOihU9ABqVTYSSEi7RKzTJydqUvLqjNnJttdj1zjzcCkaV+wx4I5EANf4pAoWV9xeXX7dI+cBgAUpc5yv70c8uZR0uyCdoKM99y+R/o7VZ/u1PDNf7Xc4mrTgoIzNZnIMQaZXBDoF+lMow581t7jQD6mAwXPTd9iTSai4CEWZP7xxFyp+K6/Yz0W7ZICDC4+VhxClRaXbFFEXOTxmjwMLnmFadZaWlwy9Abje1iYY3sYphgcl7/nDC47ombh72DDIBNJeAHrOm8GaMz35WjolNL3NdCDp2Qdz3vlWJOJKHiYfjYmZhm/G92edc4HxDpBAFjs2w1iEKdf1/uArMYe337CgjluBZrEQIKtAJPpOoD4fAInSy8Q2Kq1JK+9atLXN/k8Mq3vBZgGLRlYUkxwov/GKJNDDDK5KNAyQXih6TqtvO9Ka/OYB6X43vsP8b20Vuzd9H5H+J67RlCYycQgE1FgMR0S70+BpsSs7fy89wDx4h8ADqoQYBJZG75mHngSv+cLc1KkAGLuyXwp807p+11aecmdplrS+tA5L8za6O4+bnxnPADg4HP21yuc10XcobSMWYruE6DDNUFhTSbW3nSIQaYgx86H/3N3pjqtBMnIfY5qcZF7BACCgv6jRrvYROSmPMMavygIbmuWM3Kdr2pzmX6n5xnWyIKc4t9Jq7oAOcZvnoQFc2TBxaRX5yL+yW3S48WA2e1rPZzhotXgksgb7XNzHxVRdtLQTBQMeQuAODSS57inGPt4DB55CoNMQYwfTETBgee6Zxigg46zyxEFtfAzxl+6/442SMEcTWQ3aT2TxI+lxSUDOb7Zt+mxlapPlw2Rkpi954U5KdXB0PDqbRiXcYicx3n53FMyNJJcw5qansMgExERkQKsyUREREQUgJyoycR+nmMMMhG5iMPMSIuYtaQeg6CDjrPLEQW1G17cCsC32UvijFGmtYI+uBgNAJixcZCvmkXOcrKGjyYy5sgSswcDggD23zyJQSYP0tLsXOYXmtbaxaLPrtPK+0xE3iMICmsysb9JFLBsFQFv/mkFAODogFC3tp+YtR25J/MByIv53vzUPMTNNga49JmHLO5/ONb4/xkb56Dnz1cAAK/9moYpN+a61Z5gZRrAK8xRaYiZnwcnxKLkSatfhKG0pvd27I0i3hSEdKhUmsmkcksCgbIS6qRYnmGN6oEbcR/W9uWN/QezVH06A0xEQUocLqfk5qyFCxciPj4eERER6NChA7777jub63788cdITU3Fddddh8jISHTp0gW5ufILyaVLl0Kn01ncrl696nTbiMiSGAgSfbliCb5cscTt7eYZ1kAfe8hitqj9/zdRcR/v3a964d2vemFS/SNutydYJa0eK90sCLrqOjyBxoXndeiOZd59TQI0wFSQsRgFGYt93YygplYfLxgxyORnrHUubAWcrK1DrmNwiXyN57FvVRr0im/OWLVqFbKysvDMM89gz5496N69O/r06YPi4mKr63/77bdITU3Fhg0bsGvXLvTq1Qv33nsv9uzZI1svMjISJSUlsltERITLz5+I5EwvChPy/omEvH8i7IbLPm4VuavZktn2V9AJxpsfX2yKWUgWnAjgJCyYg4QFc4wBUfE1McGAiXLj7v7SanCZvEccLqfkFphhTs/icDmVaGnonD3mU6MSkXaJ5yvPVd9Qa7jc3LlzMXr0aDzyyCMAgJycHOTm5mLRokV45ZVXLNbPycmR/fvll1/Gp59+ivXr16Ndu3bScp1Oh9jYWOcaQ0SKyC8G56DFw7sAVPf/fFU/pyhzcvXMYuSUUTtGAQBCLrVR9gA/z6jx1OyICQvm2AhaTQZg41jkbIgyeW3qYCpni/MthX08cV2yj0EmFZmO2yf/xveQiASFM4+InZSysjLZ8vDwcISHh8uWlZeXY9euXXjqqadky3v37o2tW7cqapfBYMDFixfRoEED2fJLly6hWbNmqKysxK233ooXXnhBFoQiIs+5uDEJAPBxYTsAST5tixg8mNCtMxaiurYQsyTse7fJDwCApG0Kg0x+zFDaEnkG4/HgyaBkqj5dGkqatHosIg8bM3uve3Mr2uwOAQDsOxeHUxubAABqngHqLd0GwDgE1erwxAAmnqsAf0j0PR0MijPR/TeL0VsYZAoSDJK4hq+b95lnAZp+2fL9IF9SOhZfXKdJkyay5dOnT0d2drZs2ZkzZ1BZWYmYmBjZ8piYGJSWlipq15w5c3D58mVkZGRIy1q3bo2lS5eibdu2KCsrw/z589GtWzfk5+ejRYsWirZLRMqYZg9NOfgQigyTpcLRvrhotva9WZiTgqJMrzfFbxhKWwZVgCNp9Vi0mm08IBJPljifzWRWfFsKVOWkIGl19baue9P4Y8m1L5ti3q0mwaxeJtuSlTILziy83JP5SFo1ztfNCGrOzC7HRCbHNBFk4pAtdfHCnPwNPweMmA2pLQKUdSzEdY4fP47IyEhpuXkWkymdTt6xEQTBYpk1H330EbKzs/Hpp5+iUaNG0vKUlBSkpFR39Lt164b27dvj9ddfx4IFCxQ8CyJyhjhcKFWfDmSaZg1556LZNJgkaxe/TxUJpgCT6POdXwAwHqu2jh+bbA1zMws+idtrNeIYerR7FQCwZf0TNjcb6MM9TWePTItLlvp5Pe59FUhl6MLXOFzOczQRZDKVqk8PuAtMMTNDrYwMW9sKtNeRiMiXnM1kioyMlAWZrImOjkZISIhF1tLp06ctspvMrVq1CqNHj8aaNWtw9913211Xr9fjtttuw+HDhx22n8jTTPspuSfzA3rYlnnfKzFrOwrndTH+w0P1Z1L16Tjyf11RMHWi9G/xYt70ItZ4n3E4zuGFnXF03BSP7J8CgxhYK8oEBv96GgAwK9feIxSwcYwfnNoMnw6cV/Uv20EmoLpguGYDfy7UkzIdFid+/uWZ1GCqcbECiVlVk3cw49A3FJZEIGU4uxwREZESghM3hcLCwtChQwfk5eXJlufl5aFr1642H/fRRx9h5MiR+PDDD9GvXz/HTRcE7N27F40bN1beOCIiIqIgIf6Y6OjGmkyOaS6TCQjMwmfmz8XVYTCeyPSytW/zf1tbL5DeE/I//jJro7McnVc87zRCYSaTs9NaT5o0CcOHD0fHjh3RpUsXvP322yguLsa4ccb6DNOmTcPvv/+OZcuWATAGmEaMGIH58+cjJSVFyoKqWbMmoqKiAAAzZsxASkoKWrRogbKyMixYsAB79+7Fm2++6VTbiDzB9LM7afVYFGQY6xUFckaTyFjM2DMzzZnWvQGq0yBk3xFmWRC5J8XaUClSnahgeN3JOWOiSgAAs1TafmLWdrTNPKFoXfH4LMiorpNVkLG4OrPJbEieUmKGlOnx7/RMkHb2XZCxWNp2woI58v05yE76avPTyttAqmBNJs/SRJDJ1oVjIA6d8wRng3C21nN0wR6IF/OkXVo5183bofZ5oJXnTY4JCqe3VTymv8qQIUNw9uxZzJw5EyUlJWjTpg02bNiAZs2aAQBKSkpQXFwsrb948WJcu3YN//rXv/Cvf/1LWv7www9j6dKlAIDz58/j0UcfRWlpKaKiotCuXTt8++236NSpk3ONI/IQ0x+uOu8xBlDrvR/4/byfy684tb6tvq8xQOT88KG2OeONf8QZTIYfzUH9n42DGRq8u1UaXtc3NR1f/PyS0/sIOC4GMfyZ2jXETIdwKpUWl4yCk6aBoaq2ufjeWAuuml4LKQo22dm3PvaQFMgFxiItLrlqH043lXyFNZk8RhNBJoAFbl3hi9eK9Z9IDc4cP9bWDfTPDVtZhuRdgkEPQcH0tkrWMTdhwgRMmDDB6n1i4Ei0efNmh9ubN28e5s2b53A9Im/LM6xBwvy5AIB67/u4MV6Q3PQ4BJ3x4lh2fWojkGHrQjctLhnIcX7/+/9vot37E9oaqjOtxhiDWUGf6WT+vmgx6OSoTU7UDTINbBZlTna+CLgCrhxTnurrFGQsRq/Rj9jMJhL3o7jguJ3XVrN1pEgBhdnqpIhmgkzBSkvDfxjoI0e0dLx6EoM2pIRamUxEwabo8UnGPx73bTu85ci/jTPPGUqrh//Yu/i3erFrdsFvHIoz2eG+TQMG4gx45vuITDwPANjdYRXavzgee9+oXsf0MUFLawEmwHGbnGhzYU4KhmwzZheu6vKWlHVkd5inwsCbVPDaB8WsxeFqALDl86mK1lcUJLLzvMXnm3syH/pM5YE12WcDwPPOFxT28UgZzQWZgvFij8EdIt9Q8nnD85MkSot6s5NCRFboYw+hqOpi291p2pVmhtj6nrN+EfuCFGCyvQ4Foo/iv3buAQoDTL68rnMrI8+F7LWBP/zL5efb+ofhLj2OPEtpJrrAwt8OaS7IFMx8kSVi7cMwGAN9pIynj09fHmv+sG8GtrRFUFj4m+nWRORIUeZkqX7LJcNV3PrfIEnrIk1K2TsYAPDTPdXBmcQsJ4tiwyRzCf53PSEbkupC9lr+rgQYEl0rrp/TfhUe+32U0/skzxHgRCYTf0x0iEEmjfFkvRnWTyKt4bFHfo8dCyLyEPFCNBKAacFlMYMoYf5cmxe7qfp0pO0vAwC8vfYe/PbIItk2iZxx5lBDAIDh1uqaXHmGNYoz7sTgkq/7efd23wkAmN/uI7e2k5i13aWaVK4W+35sfXWAiRmEPsQ+nscwyOQHArUODgUPX3c6zGmtPc7izJu+wUwmIlKLtQvLoscn2bzIL8xJwcK8qn9EVs8cV+SD2jcUOIzHkfGYM9Y0clyjqChzsldqLu0enAMAaP/fLJvruBNckvWrMt0f0uoMV4Na5EEC+2+exCCTn7B1QcngE/kb8Zj1ZJDEG4FY8/a6sz+lQSJ79aDUeB3JAdZkIiIvMx1+xItQ8iZrRbBNi2l7O2suUl9TaoM3ZnETn2vSqnGKh89NK9rn9n5T9elS8XVmJnoZ+28ewyATERGRIrqqm5L1iIiIiMhfCAaF/TcGoxxikMnPqZnBYW27zJoge0yPD9PjxxsZd8E6CxyHznkRM5mIyMusfb6bT3fuDrH4OMCsCbJkmblkv16QobSlaseRuN1UfXp1gW4VVT+PuYof80rCLQCAniedfx1M61qJ52XCgjlIXHUFeT8869S2yBVKf0gkJRhkCgCeKhau5DH2LmhNH8+L3uCjNODJY0O5YAuYaZ5BZ7wpWY+ISCX62EMoyPBMoMl0GwUZLZEWlxyU39PeGoIlI+hcmsXMm9ZergsASE/cZXGfGAhJGzRCCoJ4I1CZezIfSasth47Gf1KuTm0onSAF2/Sxh9B1iLFWU2k3K+t2Sa5az7lzyPScM5S2lAqIIwfIXbsMAINMXqHt09GvMMhETgumC99gzY5xhb3XSCsdVrXboWagjRMA+J4gKJveVvEUuERELhIDTYD12jnWiEEBW+snrR6LG/obqoMHJgGnVH31dPYTUjdhyo25brVfa9rtHCJlknit9pXGA0wA8HaLBOP/kY4PT2xF5/9OMrnXeBwlbttu5ZHqMQayLIty5334HoBpquzTdNa4rauqZn80KwxekLEYaVnJTm3X2g/0SavHYtKBzwEAE+otrjoPXW46KaU0W50UYZApQNm7IPXGhWqgFSXmBX5g8PVx6cx+nTnefP28ggaHyxGRhtxz30PGPx6qXmaace5KhvmJu/XVQagckwtpk8DLpPpHXG6zVuX3fwGoupC3OxzRlewjccYqPwgqmTMNuHX+r/Xg27XUjt5qjkQqym3yPs36MwnTYtXZn7Xz586uP+NYp8vSa6SPPeR0MEgs8C1lLlWZu6kfAOCxzMkMMHmT0tnlOAudQ3pfN4ACWyAFZngB7x+UvE9q1jHLM6yRbp7CY08jBJ3yW5D59ttvce3aNYvl165dw7fffuuDFhEFvk0/PY9NPz2PoszJSPrwMpI+NF7wJiyYg4QFc1CYkyLdEhbMQdLqsR4bYmcobSmr5xRIzC/4ZVwJFOkEvwwwKVUjb6fX95kWl2zxPr3z5V1I1aer0seztt3/dFwKwFhLyXQWSKVMM6FM+3mmdbDEc5m8QzAouwUaNfpwzGQKYLaKMHtbIGVZcPicf9DK++TuMR8I50wgUXqdEMDXEjb16tULJSUlaNSokWz5hQsX0KtXL1RWVvqoZUTBQfjpZwBAwSf5UiApMWu7lCnh6XpD1fsIvMkn8gxreGGvgGmham8z7eeZHuNqDHUcc/dXeCfnLrvtcEVR5mRYK6QuO1f9oG5XwBAQlD8SAur04ZjJFCQ8nVnhCvFXAF9f+JN3+fK4U3Pfts4pd49vniMaJjhxCzKCIECns+ycnT17FrVr1/ZBi4iCi/idZKzVtBgFGYtR47po5zbiwgWWaeZUIHE1OyWY5J7MlwI8viIe82oWHP+6TfV3mCf7Z7YyAYsyJ8MQAhhCwACTl4k/Jjq6BVo/T40+HDOZgoySmeG8IZCymyh4KD1PXD2+zbdvvh2tZGgFLaVD4YLol7AHHngAAKDT6TBy5EiEh4dL91VWVmLfvn3o2rWrr5pHFJTEC+6Np0yXKggCuXlBaxpoMoQKODp+ilvb8yXx+/aOr57Aif3OF/oRA1SmQZg7frkfJw/EeKaBPlaQsdgrM8k5QxYU9OAsc3mGNdVF8zFWOs6NmUjO691pJgCg4KGxSLxlonEfPefJ1mnauhQAEJ56tOoYcm1f5KQACx45omYfjkEm8il/DTZ5qhC4VoY0qkEr76lW2mGLK++71p9TwGLhbwtRUVEAjL+C1a1bFzVr1pTuCwsLQ0pKCsaMGeOr5hGRj+grdH7bxzP17V2vwnBz9ZTypsOxHuz5A366NURa3vjG0wCAP8rqWH3O36Ilkg54dtgiVfPEcWZtBsaizMnotu8Bi3VNi+wr3W5aXLLsGCrcd4Pxj57y9b+969WqBypsOHmGIXh+JATU7cMxyETkIiUBIndmeCEijWGQycJ7770HAGjevDmmTJnCoXFEJBEvpu/q+TK+2vy0j1vjOn3sIeSeFIME1ctfMnzsVBBAH3sIiVnG/mBIvXqoPH9elRpC3tAv+S6zTLnAIGZnZfQcjNWbuwAw9uEnHS4CAGR/9RCuXO985Cdp1TjjHznyDoKUfeXBzCtyUQAOg3NEzT4cazIREREpYdApvwWZqVOnysbzHzt2DDk5Odi0aZMPW0VERESkUJDW3lSjD8cgU5DTSpFhLbTBHabT1lubwl7JtPa2HuuP/L39nmLvuNbKuUfKKS0I6UpZk4ULFyI+Ph4RERHo0KEDvvvuO7vrb9myBR06dEBERAQSEhLw1ltvWayzdu1a3HTTTQgPD8dNN92EdevWOd8whQYMGIBly5YBAM6fP49OnTphzpw5GDBgABYtWqTafolI+0L3HfF1E9wmFpd2t58mPvaLP99Rp6+kZk1AQYeizMkoypyMjacC+3P95Ub7pL8Lc1IwqPZFDKp9EXGvbpWWOyp6fk/0o7gn+lHjUDkbnYNA6PMHFLH2pqObC9To53mKGn04BpmCmNYucHnRTYFOrRkWOXOjl6j0C9eqVauQlZWFZ555Bnv27EH37t3Rp08fFBcXW13/yJEj6Nu3L7p37449e/bg6aefRmZmJtauXSuts23bNgwZMgTDhw9Hfn4+hg8fjoyMDPz444/OP28Fdu/eje7duwMA/vvf/yI2NhbHjh3DsmXLsGDBAlX2SUSOaeG74VB2a5szaZGHqTgbWcEQ9S5ytUaswSVKWj0WSavHyoY3mtZtsqbyz3Oo/POc3fW0cH5SNbV+SFSjn+dJavThWJPJz7lS64cfZqSWQP81xleF2u3tK9Bf82Awd+5cjB49Go888ggAICcnB7m5uVi0aBFeeeUVi/XfeustNG3aFDk5OQCAG2+8ETt37sRrr72GQYMGSdtITU3FtGnTAADTpk3Dli1bkJOTg48++sjjz+Gvv/5C3bp1AQCbNm3CAw88AL1ej5SUFBw7dszj+yMix1L16Zqp+ZO0eiyKWHdGHYJO9anutTibnJryDGuQOGcuAODwP95yGFASmRb4FjOdklYrOwc7jjbur/5729B9398AgGejf4M+9hDiXzfOaFeYHlzvg9epdBqp0c/zJDX6cMxkIiKPCLZgB1Ocg48OCn/lqlq/rKxMdvv7778ttlleXo5du3ahd+/esuW9e/fG1q1bLdYHjFlK5uunpaVh586dqKiosLuOrW26KykpCZ988gmOHz+O3Nxcad+nT59GZGSkKvskCiYTdj/k9GOcDjCpOdSKLHjsxyoVA0yJWduRmLU9KAMbhZMnoXDyJIusJnvS4pKlGeTE7Cd7Bhw4iwEHziJVn44/kwX8mSygMCcFS7/ugaVf95D2LfYvdpWXu/WcyA5nSiIIQEVFhU/7eZ6kRh+OmUwBJFBmMDP/0vXn5xLo+N5ojzOdVr5/TlI6Fr9qnSZNmsgWT58+HdnZ2bJlZ86cQWVlJWJiYmTLY2JiUFpaanXzpaWlVte/du0azpw5g8aNG9tcx9Y23fX8889j2LBhmDhxIu6880506WKclWfTpk1o166dKvskCiZHBjREwhRjpkPixG12P7+l7wFng0wqZ8MkLJgj/S3OqsXvIW3j+2N8DUyPXU8xzQ6bmzNHOicKc1JQkLEYAKDPlAf3bmt6VJYtJQaSE7O2y2a05vvmCufqLX366acYMWKEbJk3+3mepEYfjkEm0jyxs8QPTNISpcEcbw9PNe1kOMJzy0lK6y1VrXP8+HHZL0Dh4eE2H2I6qwcACIJgsczR+ubLnd2mOwYPHozbb78dJSUlSE6u/tX3rrvuwsCBA1XZJ1Ew+XzHxupsksftr+vsMB1fEC+OTWs1BVu2TO7JfOvvkReGvymRmLUd4BBHGEpbIjHL+L1mnh149uQNGNqkGwAgr3KV1J8ylLZ0mMWkjz0kCwibBoyQYVzc5ol5+OXVibK2iOdJ653/QOH3sGhXYU6KLBDFPp4TnDjtBgwYgCVLlsiWebuf5ylq9OEYZAoggf4hYuuiOdCfN5E95ueFK0GtQMmCVJ2TQabIyEiHacbR0dEICQmx+DXr9OnTFr9iiWJjY62uX6NGDTRs2NDuOra26QmxsbG4dOkS8vLycMcdd6BmzZq47bbbVAtsEQWTQA3AJK0eK2VtBNt3kfE9tZIh4+MAE7PM5IyzChr/Nq9zdtt/JwLzjH8bSltKw9sWFl9yeX+5J/Ol8/2XV43LijInV907WVrv8KgEYLT1bUgBrhzg9i+nAgBq9j7C99QOHQCdQeHKAhAaGqpoKJla/TxP83QfjkEmP8cPC6aF+kqwv+bWnr+3spbULECupJMfbBcCIqWzijhzfRAWFoYOHTogLy9P9mtRXl4eBgwYYPUxXbp0wfr162XLNm3ahI4dOyI0NFRaJy8vDxMnTpSt07VrV+WNc8LZs2eRkZGBb775BjqdDocPH0ZCQgIeeeQR1KtXD3PmeH6oAREFBtMLYlHCgjlokG+8uNn57iTvN8pLTIdIaUUwfa97UtLqsSg4aQyYvn7+Jvz3/vkAgFvDIqTgk0Um1P9aGf8okG/HtEi+6XWO6bC9gtxVsmwpW0P6Th6oCmTkxEjrmA6voyouzA6shFr9PE9Sow/HIBORRuUZ1nAmwABl/sWu1feZw+nMOJnJpNSkSZMwfPhwdOzYEV26dMHbb7+N4uJijBs3DoBxZrjff/8dy5YtAwCMGzcOb7zxBiZNmoQxY8Zg27ZtePfdd2Wzxj3++OO44447MGvWLAwYMACffvopvvzyS3z//ffONU6hiRMnIjQ0FMXFxbjxxhul5UOGDMHEiRMZZCIKZi4O//oz2fgY0yFCgcZ0iLvVQJOXh87dc/ser+3LH+UZ1kgzvYlvi1Q/KfYQxEyjx2Plj8s9KQ4Lza8uJJ4J7O77IgDbASJz1RlNADBZCkatKrgN/2nZHICygGVhTgpS9enS0Frz80vs/xXmpJjtM8CpdKqp0c/zJDX6cAwyERERKaAzKEulVpxuXWXIkCE4e/YsZs6ciZKSErRp0wYbNmxAs2bNAAAlJSUoLi6W1o+Pj8eGDRswceJEvPnmm4iLi8OCBQtk09p27doVK1euxLPPPovnnnsOiYmJWLVqFTp37uxc4xTatGkTcnNzccMNN8iWt2jRwuXpb4mIiIi8RWk819kBZGr08zxJjT4cg0wUEAJ1+I4zRZy9IZBeWzXYyz6z99opGZbm7GOd3Y67jw/Uc1DGydnlnDFhwgRMmDDB6n1Lly61WNajRw/s3r3b7jYHDx6MwYMHO90WV1y+fBm1atWyWH7mzBm7hTCJyPNavzve+EddJyPeanEzEydp9VjEr3sFAJD30XsBm9VklZeymMRhewsD9fvbgwrTjZlL4lA1MTMpz87pZnrM2lpPzIgyLxiupE+1/VIiCud1qtrOWw6LjgNV2UwPtgcAfPWNvB/nD5MHqEJx/00b/TxPUaMPxyATESnG+leuUxroUfv15TBMN6g0XC4Q3HHHHVi2bBleeOEFAMbZTwwGA1599VX06tXLx60jCi6/jV4EwPJiVfPsDA07MjAMANDqvfE4PM2bjfKOPMMaNF/4GgBAf42TJWiZGDASh6oZMoxD4UwLf1/ZFI+avY8AUNavMw5JmyzbrjN+S28KPFbdPnEbjobhiefVPZGjUDrRWLPxcjMD0uKq2mWoHipnb3hdQBCcK/wdSNTowzHIROQHGBjwH+4W5Tatg+RshpOaBcEd7c+U+b4DJTCpRuHvQPHqq6+iZ8+e2LlzJ8rLyzF16lTs378ff/75J3744QdfN48oqIgXgIlZNur8uEutOkEKtlkRW+H5/WqEEFF1hXspxOv7Fo8T/pjoPNNgrlj4O2l1CpBjLLhtGujxZH2je+o/gi/O/QcAsPHwbLe2dejFNijKrJ4oBFYCXbkn89Hvtj7G/R13a3faFYT9N0CdPhyDTEFIa0OwiMiSJ89PT3YYbW3L2wEun2Amk0116tTB3r17sXjxYoSEhODy5ct44IEH8K9//QsVFYF7UUikdarMXubDSHpRn/8AmOqz/avpSF9jwCBp1TifvcZipgopJwaO4t+YIwWcCjIWW51RLmHBHNQ8qQcA/Jy1SJb59G2bT6T1xO2MuPNb/HBLmNW+14Zfv7XZJjGwVZCx2GpGo2n7xDY6muxFH3tICi4lLJgjfbbYe4y/CcYfCQF1+nAMMgUxZscQqcte4EXtYK+7X/i2Ph9cqb0UML+MKsxkCsYgU3x8PEpKSjBjxgzZ8rNnz+KGG25AZWWlj1pGFLzyDGtgKDUO5fGL2ipenklNa6QhSDrOxumPjjwmn/nNtPbSbaPmAgCmPPORNAtcUtxYIKdqhQPAnXMeAQCE5u6Qli/7+o7qdczYG7JWnTE1GYlZ1TPFidLiki0+Hy4Prs5mczQsrihzspTtpHRmPL+g9OMnwD6m1OjDMchERE7htPauUZIBZMoTwSdb75X5vx0Nv3O2LQEbwGYmk02CYP1JX7p0CREREV5uDRH5JQUBpoCsBaMGsYCxk0E7Y/BBhfYEuR3vTar6axKGmLy+Yl+pMCfFGFyCsQ8lBm7Cz+jx68yJcIfVfmZVgKj6fJqD0tur/rw9BYDyjLYZfdbAULrYbHt+yJmaTAFGjT4cg0xERBpkHqixFbhREjByJpPIU8FD8wBVQAQnGWSyMGmSseOs0+nw/PPPy2YnqaysxI8//ohbb73VR60jokAhDc1xoShyUHIxI0yVGl5kk6xPZHJs26vdZNrPE98vpbWexOCV+fqm/05YMMepYNHwFtux+GAPAMAYtPTvQFOQUbMPxyBTkAu0+kx+fQEbQIJiOnsvcJSB5AwlASrT9Uzvc6feUiBlNbHwt6U9e/YAMP4K9vPPPyMsLEy6LywsDMnJyZgyZYqvmkcU9MQLvoyeg7F6cxcft8Z17EsQGR1+szMAQF9RPQuhkn53qj4dUBBEdKU4+dhWW5x+jCYFUf8NULcPxyATBQR2PrTB3Swa0j5X3suAef+ZyWThm2++AQCMGjUK8+fPR2RkpI9bRETW/N8t/8Xqzf5ZO6UgYzHE6d0DWfL/nqv6q171Qo3WqTp4PA4tQusA8PMhUn6oxb9+BCDPOjMvLu4oUGQoZcaROR2Un2oaPCVdomYfjkEmIiI/pHZ2EIODlpjJZNt7773n6yYQUYAxBpeCJ4hxsaie5UIffKGIxaCtve7ifX3WVQcxijiEUVWG0pbSTHB5hjUuD2nMPZmPpFXGbEbW3rIhCPtvgDp9OAaZiIiIlArSDggRERFRwAriwt9qYJCJ/B6zLbQhUOru+ANvvdZaLtadqk/Hzb1aenenHC5HROQ11dkbPm4ISZJWj/V1E4JKqj4dhTljgRzjv/s0zQKmNHF9g1WZcYU5KcxYt0Zp/439PIcYZCLyA1oO4Gi5bWSfv3cwCvcc9er+OFyOiPyZOPwM8I9gwYlnuvq6CV6jtCizL/lDGwOF2Lc2Hxp3UGGAydqPhGlxyVKwCoJOCjSZr6clj3d7xqv7Y//NcxhkIgDuzR5FwYvHinf56vX292CUxzCTiYj8mGmNncQs6xexXiNUzYxl56ruhpe2Gv94YaIXGkSAMRBpepzIgh1mx0pi1nbjH6zJ5FGJr82F4OZ5KZ7XNvtvVedd7sl8t/ajJmP9rzTv7pT9N49hkIksiB9GDCCQNc4eHwxOaJu/neem7U1s1xz42nv7ZiYTEQUK0+/mhAU+mHVOwQelli+AA0li1nbptXamyDrfH3VUNqqA/rybl+hVQVzTbKXck/lIWi0PXokZjVoq3i62t7LXP/HJDxOwNOoN7+xY6Q+JpAiDTETkEANFvudvwaCAxEwmIgpAYkaKz7KabGBNJisUZIA5y9U+3j33PQQA2PSTx5oS1KRZ/c57YCiryfEhntfmASYIOk3+Kia2tyBjMS5hglf3rbjwt/ZeNs1hkIlsYkYTAbY7H3mGNTw2VMTX1rGZ657E/KiXvbdDBpmIKACJ3/M+yWiyI5h+4DLtU9kN9nkwKKBkuFuNpjfIF1QFuRLWXsGmn573WFsISFo5zviH3kudCJNjKWHBHBRlTvbOfh2obsdkoKzMuztn/81jGGQi8gNaDOg4ak8wdQ49SWvvs8hTxSFtPT+l2zVdr8zLnQ+dQdmvXJwCl4jIPS3f+TPoav14M9hnCFH2vfv59s8BmBSKrwpM6L7fq1bTAt6awg4AgCc/H4Ytg14DAPRYOwXQ+7JVJplUTgyZtCZVn+7S8EstUBrD1anbjIDAIBMRkY9pNbBkTVAXAWcmExGRV1Tu96+LU3/T4t/bgX85Xs8fZiH0N4NqXwQAPImq4JJGiMNTa7R+GhsPuJclLm6rMEc7GVIOsSaTR/k4ZkrkujzDmuC92KWA4U8BJlGqPt3ldvvzOSsW/lZyU8u5c+cwfPhwREVFISoqCsOHD8f58+dtrl9RUYEnn3wSbdu2Re3atREXF4cRI0bg5MmTsvV69uwJnU4nuw0dOlS9J0JEZIWgN978+bvCXQUZi1XfR+7JfBhKW0rZK6Qu8bVOWDAHSavHajJ4V5iTgsKcFNT6z3m3jo08wxrknsxH7sl8rxzLnqJDdca6oxuDUY4xyERERKSE4MRNJcOGDcPevXvxxRdf4IsvvsDevXsxfPhwm+v/9ddf2L17N5577jns3r0bH3/8MQ4dOoT77rvPYt0xY8agpKREui1e7D+dQyIiIiK3+LiPF0g4XI78UjD+wsVC7KQ1rg6d89fzV2mWklqZTL/++iu++OILbN++HZ07dwYAvPPOO+jSpQsOHjyIVq1aWTwmKioKeXl5smWvv/46OnXqhOLiYjRt2lRaXqtWLcTGxqrTeCIiKwoyFpsMrUlBUmZVMerHfNioIJC0eqxU+NuV2fv89XvcV7SYuWTLnp2JSLv9DwCuz+zob7WYRKy15DkMMpFf4Zeaf+D7RAHJyZpM5oXJw8PDER4e7vLut23bhqioKCnABAApKSmIiorC1q1brQaZrLlw4QJ0Oh3q1asnW75ixQosX74cMTEx6NOnD6ZPn466deu63F4iIlukmc0yzPoMQVbs25brdhovd//oqM6vFolZ26XizETmxBkOtTTrnFcwS8ljGGQiTWOwwpK3Zprja09kxskgU5MmTWSLp0+fjuzsbJd3X1paikaNGlksb9SoEUpLSxVt4+rVq3jqqacwbNgwREZGSsv/8Y9/ID4+HrGxsfjll18wbdo05OfnW2RBERF5AvsYtuljD2HbbGM9HLUyYHJP5ivKNhFr6ojtkIKDDAa6RtCpW7iRXOdMTU2+hQ4xyESaxM6H9nkr2EWkFTooS6UW1zl+/LgskGMriyk7OxszZsywu80dO3YYt62zbIEgCFaXm6uoqMDQoUNhMBiwcOFC2X1jxoyR/m7Tpg1atGiBjh07Yvfu3Wjfvr3DbROR/6ou8OudIT2JWdsZpHBAHEKIHM9uNzLxPADlw5nE9RKz0lGjVRI2sn/uHgaYtM3F4YFkiUEmIpI4G9xjMJDEQGNQHAtOZjJFRkbKgky2PPbYYw5ncmvevDn27duHU6dOWdz3xx9/ICYmxu7jKyoqkJGRgSNHjuDrr7922K727dsjNDQUhw8fZpCJKMDdtHi88Y/63rnCCorvCzeJQ9mSVqd4dLt7+73g0uP4nnkIM5k0jW+N5zDIRDYxS4WIqJo0da2C9ZwRHR2N6Ohoh+t16dIFFy5cwE8//YROnToBAH788UdcuHABXbt2tfk4McB0+PBhfPPNN2jYsKHDfe3fvx8VFRVo3Lix8idCRH7pwNhFAPyrOHGgq840mqPsAUJVNiuvkjXJfNihy3wQpBIzHf21mLdTePp4DINMREQ+xGGHfsaHHZAbb7wR99xzD8aMGYPFi40d1kcffRT9+/eXFf1u3bo1XnnlFQwcOBDXrl3D4MGDsXv3bvzvf/9DZWWlVL+pQYMGCAsLQ2FhIVasWIG+ffsiOjoaBw4cwOTJk9GuXTt069bNJ8+ViLzHW8El8UIbCKJCwm5q8cElHB5ex/GKDC5p2s1vVmULXudmtqAP3mdx6KarM835DSdqMvF0c4xBJtIcpuQ6Jr5GDE4QeY9OYQdEzc7HihUrkJmZid69ewMA7rvvPrzxxhuydQ4ePIgLFy4AAE6cOIHPPvsMAHDrrbfK1vvmm2/Qs2dPhIWF4auvvsL8+fNx6dIlNGnSBP369cP06dMREhKi3pMhoqBRkLE4ODIhPCx3x3QkLFCYzWSDWKyb/Wvf+fWFiQCMWUH+ljEYLLMQ6uB8JjrZxiATaQa//JznySwYvv6+w6Chn3CyJpMaGjRogOXLl9vfvVDdgObNm8v+bU2TJk2wZcsWj7SPiMiatLjkwM+E8BUHQ6iCJUjgD9Likj1ezF1tQRUcZoaSxzDIREREpIAWMpmIiIiISAVK+2/s5znEIBMREbksqDLgNJDJRETkbwoyFkOfGUTZEB4mDncrzLEx05yDXzaCKhOFbOPMdvY5UZOJHGOQiTQhqC5UNYavPZEyzGQiInIegxzuEftpztRmYh0mbcozrHGpxpat91Mss2AzAGmKnRPH+BJ5DINM5FP88vMtvv6BwbSmk+l76s81nkzbrpnjlJlMRESKcTY53yjIWIy0rGRfN4OsMJS2BKC88LdUMD/T+v1i/0itguLGczh4zl+dQWEHzkGtS2KQiSjoaOaCndxi7X00X8aC4h7GIBMRBRh3Zy6zhxlMnlWQsVgWSDDUMH7ZFD3wNuI/fwQAcHubw9DHHmKRdY06eu2izfvqJpwHAOzpuEpapvQc0sceQkFGSwDwSLBJDBB74xzu2Wc2Nm+cqvp+lFCa7KVTtxkBgUEm8hkGOzzDUSCBrzN5chZC8+16g9h2Xx/LHC5HRGRbUWbwZDz4gj72EIqsZrRMwbHR3m4NuSLhhhIkZhn7NLkn842zzcG8f/OCS9sWA0JFmU4Oo7Oi9ZLxAIBDT7v0cKcU9wlRfydKKP0hkRRhkIm8xtcXiIGOr6//Mw8GefI9tbYtf8twMh8O6G06g6AolVpxujUREREFFdN+jFoZZ6b7cCVb8dDTEz3ZHIe09GMieQaDTGSVv118EgUKb3zB+vP5bdr2teff9e7OOVyOiAKEsTYM4Ex9GCIKfN6uw5SYtV3KuDKUtsTvlcYhhdeH1AVq7fRaO3QAdEqDfuznOcQgExFRkHG3VpM3AmFarCfF4XJEFCjEYTrI8WkziEhl4sx0jobOVRfq964aifHS36b1pBKztmPteS82hMPlPIpBJiKiIKVWrSZP0GS7mMlERCRdtALAyXU3Y/+AbN81hojsMv1hUMxgTItLRp5hjTSULjFrO/SZvinU//l3n1gEl3yFPxJ6DoNM5HFq1pUhIs8yPT9Nax5pvZB8nmENysrKvLpPZjIRUaCYWvgLAGDseucLA2vle4CInCMWBxdrQUnF+q0WlFeX2M/MPSlfbvr54t1+ngAI7MB5CoNMRERESjCTiYiIiCggKf2RkD8mOsYgE6mCv3IR+R8lw+e8McObJofKgZlMRBQ47qpZ6esmEJEPJSyYI9VhSlo9Vhqm5q1rOLFG1PQ/rnllfw4JgI4fix6j93UDSHu0eoFHRORTghM3IqIAU5Q5uXp4DRH5tcSs7UhaPVZWD8lbqme3BFZ8czsKMhajIGOx7z9fNNDPO3fuHIYPH46oqChERUVh+PDhOH/+vN3HjBw5EjqdTnZLSXF+KLQnMZOJiIh8TklwWwsZksxSIqJA4IsLSyLSjmtfNgV+qf53jcaxqu9TKjw+aAQwxLjMl0XHzWmhjzds2DCcOHECX3zxBQDg0UcfxfDhw7F+/Xq7j7vnnnvw3nvvSf8OCwtTtZ2OMMhEREQSbxf+9pfgEgDoDAJ0Bsc9ECXrEBH5A3E4jVgwmIgCwzd3zsHd2S8BAEq61MLG319XdX+G0pbVwe0h1cu10scD4PPC37/++iu++OILbN++HZ07dwYAvPPOO+jSpQsOHjyIVq1a2XxseHg4YmPVDxQqxSATeYymPiSIyC1qns/ODMnV1OcKC38TUZBJi0sGUD0bFREFji+/fUb1fYjZS+bZkz4fGmdGad1NUUVFhcXsd+Hh4QgPD3e5Ddu2bUNUVJQUYAKAlJQUREVFYevWrXaDTJs3b0ajRo1Qr1499OjRAy+99BIaNWrkclvcxSATSdypxaSpC0Ei8nta/EzRGYw3JesREWnVLeufBxDlcL3ErO2a/CwmIv/QfNFr0FdYDs1NzNoOZPqgQQ4o7b/pBODTTz/FiBEjZMunT5+O7Oxsl/dfWlpqNTDUqFEjlJaW2nxcnz59kJ6ejmbNmuHIkSN47rnncOedd2LXrl1uBb3cwcLfRERESgRwQci///4b//73vxEdHY3atWvjvvvuw4kTJ9R7IkTkdan6dKTq03HpiOMAE6DNYD8R+Y8N/efJ/i0W+NbsZ4sgKLsBGDBgAC5cuCC7TZs2zepms7OzLfph5redO3cCAHQ6nZVmCVaXi4YMGYJ+/fqhTZs2uPfee7Fx40YcOnQIn3/+uQdeFNcwk4kkjmqxEGmBeHxq9guKHPJ23SdPUZpKrWbhSLUKQmZlZWH9+vVYuXIlGjZsiMmTJ6N///7YtWsXQkJCPP9EiMjrxM9WWW0UOxIWzNHckBYi8h83Nfkd0S2fBgBE9T2smQLftjjTfwsNDUVkZKSidR977DEMHTrU7jrNmzfHvn37cOrUKYv7/vjjD8TExChuW+PGjdGsWTMcPnxY8WM8jUEmkjC4RFpneoya/q3VoATZ53fvm8kvWA7XU4FaBSEvXLiAd999Fx988AHuvvtuAMDy5cvRpEkTfPnll0hLS/P8kyEirxO/Nwtz7AeYxGLfaXHJmhzSQoHNdHp7Fpz3fz/d87LxD62XEnAmE93Jbl50dDSio6MdrtelSxdcuHABP/30Ezp16gQA+PHHH3HhwgV07dpV8f7Onj2L48ePo3Hjxs411IM4XI6IiEgBMZNJyQ0AysrKZLe///7brf07Kghpj1gQsmXLlhgzZgxOnz4t3bdr1y5UVFSgd+/e0rK4uDi0adPG4XaJiIiIAoGuUlB0U8uNN96Ie+65B2PGjMH27duxfft2jBkzBv3795f9kNi6dWusW7cOAHDp0iVMmTIF27Ztw9GjR7F582bce++9iI6OxsCBA1VrqyMMMhEA17OY8gxr/C8bgYjIFU7WZGrSpIlUOykqKgqvvPKKW7t3pyDkihUr8PXXX2POnDnYsWMH7rzzTinoVVpairCwMNSvX1/2uJiYGLvbJSL/knsyH7kn86VMJUfYvyNfSFo9VtFwTiKP83HdTQBYsWIF2rZti969e6N379645ZZb8MEHH8jWOXjwIC5cuAAACAkJwc8//4wBAwagZcuWePjhh9GyZUts27YNdevWVbexdnC4HAEwdiQ8OVyOQ5lIDebHKY8t8iZnazIdP35cNl7f1gwf2dnZmDFjht1t7tixw7htFwtCitq0aYOOHTuiWbNm+Pzzz/HAAw/YfJyj7RKRf3J0Ac8hSuRL1XXAWA+MvEdpHw+AqoGmBg0aYPny5fZ3b1KWoWbNmsjNzVWvQS5ikIlcZusC3zxYxULN5Ek8jshXdAYBOoPjnoW4TmRkpKKikL4uCBkbG4vy8nKcO3dOls10+vRpp2oAEJG2VQeP5ri9LbFuTlpcMr+XiSgwKK6pqXI6UwBgkIlclqpPd6pj4ez6RESaojRN2s8KQnbo0AGhoaHIy8tDRkYGAKCkpAS//PILZs+e7dyTISLNM9Q0QH/FvYoZ/e4w1vrIPbnOE00iIvI5NWcHDjasyUQSV+orperTLTKXzLchbpcBJiLyZ84W/vY0tQpCRkVFYfTo0Zg8eTK++uor7NmzBw899BDatm0rzTZHRIHj6Jgn7N5vrW9nbuOhWdh4aBaH1hFRgBCkjHWHNwajHGImE6mCASUiCjgGwXhTsp5KVqxYgczMTGkmuPvuuw9vvPGGbB1rBSGXLVuG8+fPo3HjxujVqxdWrVolKwg5b9481KhRAxkZGbhy5QruuusuLF26FCEhIao9FyLyHbH4t7X6TIU5KQCAhAVzTOrjEBEFMAGAwdeNCBwMMpEFV4qAcygcEQU8lYbLOUOtgpARERF4/fXX8frrr7vdRiLSPjEDqSizunbm7x/fjKvFvpuNiIjIl3SKazKRIwwykVVKA00MLBFRsNBB4exyqreEiMhz2JcjIoLyHwkZi3KIQSayiZ0OIiITgqBs5hH+EkZERETkPwQomkGYlGGQiYiISAGlRb1ZEJKIiIjIzyj+kZAdPUcYZCIiIlJCAzWZiIiIiMizdAB0Sgt/s5/nEINMRERECugqBegUpCnpKtn7ICIiIvIbAljuwIMYZCIiIlJAJwiKZh7h7CREREREfobdN49hkIlUZT5DHYuJE5Hf4nA5IiIiogAkQGdQNl6OtTcdY5CJPM48sGTtPgabiMjvcHY5IiKZ8yebIP2GFADs2xGRHxMAKK3JRA4xyEQ+wWATEfkbzi5HRAQYSltKf7f/bxaKDJOl5frYQ75qFhGRW5SXO2BHzxEGmchl9jKWiIgCDjOZiIjQr0t/HJx4vfTvhAVzAACJWcnIYyYAEfkrpf03dvMcYpCJvIqZS+SvWWzOBFWdfW6m2/a31yWY6AzKprdVPAUuEZGfEANJAICJ16PV3BMAgGvFJ5B7Mh8AoM9kFhMFhlR9evVxzey84CAA4OzAHsMgEznN2QwmXjQHh1R9uuy9dnSc+LoovK32mbfDlYw9d7L83HlsnmGNS48Xn7Ov3xPNYyYTEQUZWXDJxLViY5CJ3xMEyIdQmvLXAE1hTgqSVqdU/Ut+DiRmbQcA5J7Mt/v8th5LAACkhFdfbvvr6xEclM0gXLUqOcAgEznk7rA4f81cIcfMjw01gitKgj5Kji2lbfPnYaCutt3W45hhZYazyxFRgDMNFtxz/0Mo+GQ5ACBp9VjZeoU5KaDgZZrpYzw2xlpdLzHLd9cA4rGctHosCjIWIy0uGQCkdotMl5sf59aIx74xCDUHBRmLpfvkj/+XlUfLA1biY7vmD8Lpg9HSctNAlth+6/tQznwbiVnb2bczx5pMHsMgExERkQI6QdmvXMoLRxIRERGRJrD/5jEMMpHqGCX3D0qHSnk708dXQ8/INlezyfyeQVA2Xt/ATgoR+SdZlsQw21kTOwbPq/prsvqNIp+zGDYpG05mm5j1Y5n5VM00aweoziwCnO9b3Pr5cwCAssJ6kLKrBJ1xnzmo2r9Zu20tF3TG/zuYMtbVzCJ7j5VnS7m3D1v7yj2ZL2V7cRhfFQaZPIZBJrLAC3NtUjKcTMnwpkAcNuZPbfVXztbYMhUoAShmMhFRoCvKnGyzDpOoIGMxWv/HGFw69Kw3WkWeYChtKQUaijKtBwcNpS2lII8nh0QW2glKmQdUxKCP2B7AGHiy1pdI1aebtbOe5Q4cBIlscvVxalAY8HKGadCpIKN6mGxaXLIsICgGAXv+fAXP3Pw/j+1fcwQBOqWFvzV0aGiVThAc94bLysoQFRWFCxcuIDIy0hvtIh9Q60I9UC4wzTlTr8bVC3AGTyhQqPE54K3vJnE/d976FGqEhDtc/1rl3/h67//xO5P8Bvt5wcvyIl0ZW0GKYNZt8GsAgFof/+jWd16/bzPx14vXAwC+WvauFPRxZpuOAoVAdY2eUcXd8d32m1xoKREg6IEjj6nzeeCt76Z169Zh5LAJ6Np8pKL1tx9bjkVLXsXQoUNVa5O/YyZTkPNGECNQCn/be604pIvIPiXHueY/Izi7HBH5MfFzWFbg2FqASUHWRLANs0mYPxcAkDhxGxYW/2D8u0YdKQCk69gWJQ/VNq58R4oU5GnxwSUYdv0CwPi6H712EQAwtuntKJzXBQVD3gJgPpSpGdAf1ctzqtqgIHAEwPj+6Ryv5okhWBS8xCDld1eBVH31kEfT4Y6AH/TtRAKUlztgP88hBpk0wFF9E04rTkTBQOkMgz5jgKKOOwzqNeHcuXPIzMzEZ599BgC477778Prrr6NevXo2H6PTWW/07Nmz8cQTTwAAevbsiS1btsjuHzJkCFauXOmZhhORz1kMS7JFwZCc6uwat5ulSWJAp+U7f+LQmAbSZ39hTgrSPjZ5/XLsb+fw8DrAQ10AmL3uOQAgqBPo0dIwLwpYsmM3R1yWYnFOiOdSYtZ2HF1l/Nw42H2ZNgPUDB55DINMVnhz2m4lU4c7c581SqaA94ZUfbp2LhbtYGYREVmjhZpMw4YNw4kTJ/DFF18AAB599FEMHz4c69evt/mYkpIS2b83btyI0aNHY9CgQbLlY8aMwcyZM6V/16xZ04MtJyKgOgMIAPokGoMOfwxvh53Zi6Tl1gofu9qHEvs0J5/sCjR2qclWebJejy/N/+1uAMC/6xVbrUV0aEwD5RuzlgEm6AIn6GP+XFytE+Qvr4kKdZA8zh/aWKUwJwWo6o4krR6LokzftseSABgCNGruA0EZZLKVGWQtuOBOwEErtXa0EjTxdYBJK68DEfkpHw+X+/XXX/HFF19g+/bt6Ny5MwDgnXfeQZcuXXDw4EG0atXK6uNiY2Nl//7000/Rq1cvJCQkyJbXqlXLYl2iQGY645U3flU3/qJv8uv/K+IfBqtZAdWPAZCTIhsuJQ5VAYC069sBgvHiKM+wRurvFM7pggKpgK9ng0LV+/e/2kymgb75m4yv+3zAYVaSQ35woe8W8+cXCAW17fGHdvpDG6sUZCzGPU07AgA2lX/o49ZYweFyHhUQQSZ7mUdKAgtqBR8Y1NAGvg9E/sXXAWmbnAwylZWVyRaHh4cjPNxx4XBbtm3bhqioKCnABAApKSmIiorC1q1bbQaZTJ06dQqff/453n//fYv7VqxYgeXLlyMmJgZ9+vTB9OnTUbduXZfbS6QVbabOAwA0fm2rPANHNuOVPIDjaBhT/CflGLRoEwBg3U2NpCBP7sl8mwGroszJ1QEgNzOBZO2bV/1nwoI5wDzj8CzoPDscSwws3fjOeM0PlzPv+8lfbwWviacyRMwfr9XMEy20y5kMJy20l5ymyeCSKUGjH2h+yG+CTIE47Xow8kV9KXv1rYhIOzQbXBI5GWRq0qSJbPH06dORnZ3t8u5LS0vRqFEji+WNGjVCaWmpom28//77qFu3Lh544AHZ8n/84x+Ij49HbGwsfvnlF0ybNg35+fnIy8tzub1EnmT6/S1mH5myG0y5wfg/pYEdJYGZI/eH4bXcqurMJkEeY9CqOmD1/n2LMDOhHQDg8Osp0DsTXHJ1WJFKF97S6xJlMA6/gzErSIu1VWTFzV2hVvBCq0EcX7XLtE3i/xlAss+PXh/5LJR+kPXIDCWP8ZsgExERkS/pKgXooKAmU6VxnePHj8um3LWVxZSdnY0ZM2bY3eaOHTuM27ZSxFsQBJvFvc0tWbIE//jHPxARESFbPmbMGOnvNm3aoEWLFujYsSN2796N9u3bK9o2ERERkV8SBA6X8yDNBJk0P6sQuU1pzStPv+fMXiIKPKn6dNzcq6XjFT3JyUymyMhIWZDJlsceewxDhw61u07z5s2xb98+nDp1yuK+P/74AzExMQ7389133+HgwYNYtWqVw3Xbt2+P0NBQHD58mEEm8olOI41Txp9pX3XOmWQAebq+kJoe/my8VOtHX+nkgzWcqXClsXFYSdLqsWi55HkAQOW+X6X7C3NSzLIY1GcobQlD1fSeLVeP9+q+NUOL2Ur2WGuTknZq8bl4ixafu43sKq1mOtrEwt8e41SQaUDUCNTQhVosdzco4MmZ1Mj/8T0nCk7OnvuFe46q0xBbDIKyzp3SX8KqREdHIzo62uF6Xbp0wYULF/DTTz+hU6dOAIAff/wRFy5cQNeuXR0+/t1330WHDh2QnJzscN39+/ejoqICjRt7cDoqCmrWhruZzqIGAB32Gs+d1Zu7AIxt+o1D/4yq+iul+mITgqxQeaNWZ7A97RWLx7rCtHC36TFUmOO5+lNe56kZ17QQgPCj4VzkIWbvtRhgTv7feTS6z/jZ70q8YNDqj9xvmzOYoeQxHslkYlCAiIgCno9nl7vxxhtxzz33YMyYMVi82FiA99FHH0X//v1lRb9bt26NV155BQMHDpSWlZWVYc2aNZgzZ47FdgsLC7FixQr07dsX0dHROHDgACZPnox27dqhW7duqjwX0qZb3nodLZ7aC8CzWcWp+nRZPSQpEylHvl7hZhc2rrULWn+Znl0tNp776YPRSDhY/fmju2Z83xKmbEPRa8ZC5UIN+WPH3P0VAGDaTRtkAStZ4e4c95usCf5+zJieh7aei9bOVVJN9flaDxerPvvl57AyNcorPNgqBwRBeSYTg1EOaWa4HBERkbYpDDIpqNvkqhUrViAzMxO9e/cGANx333144403ZOscPHgQFy5ckC1buXIlBEHAgw8+aLHNsLAwfPXVV5g/fz4uXbqEJk2aoF+/fpg+fTpCQkJUey6kTYVuXBDY5OZManZp7YJVa+3RKDGgZDzerL9m73x5V9X/PXgsyhrhxwFBrbWdQ9woEDB45DEMMhERkV9KbNcc+NqLO/RxJhMANGjQAMuXL3ewe8v9P/roo3j00Uetrt+kSRNs2bLFI+2jIKT17ARfXIxrLQBAclo/ZpXw57YTKdSsXn0c9uYOGWTyGAaZiIjIL/mkJpOSLCUnazIR+TWtX+z6on1af02CXSC8P94KZAZCQE4L3H0dg/R9OHb+nPd2JggQKhXOzsBglEMMMhERESkhGIw3JesREQUSf8vO8rf2Ostbzy2QX0OlPHEseerxah3XgX6+KKX0R0K+VA4xyERERKSEBobLEQWNQPnlPlAu3vztOXgry8ffXhcycubzxZn32NZ2PfV5Zu/x7uyDx7ER+28ewyATERGREpUKM5mUzk5C5K+8EQAy3ba/Xcybttef2k3OUeuCn9Sl5ueJre164zjgseYeAU703/haO8IgExERkRICFGYyqd4SIt/y9sWMvSnRtXhhpcU2kXdZOwa8cbw6s49gDYQF2/MlhViTyZMYZCIiIlKCw+WIiIiIAhP7bx7DIBMREZESBgMADpcj0gxnMxK0mvnkCcGYleLN99MTr6/Whkxp8VjhrHnkK4LAwt8epPd1A4iIiPyCmMmk5EZE6hAvDl1hXufJkwSd57fpDJ0QfBfMaj1fa++jL19f02PL18eZ2rw5a54n9hXI70UwEmcRdnRT0UsvvYSuXbuiVq1aqFevnrJmCwKys7MRFxeHmjVromfPnti/f7+q7XSEQSYiIiIlGGQiChyeusA0zYhwdZvidtQIIAR6UMIVjl5rbwavlDA9tqwdZ3x/fSfYArsBTjAIim5qpjKVl5cjPT0d48ePV/yY2bNnY+7cuXjjjTewY8cOxMbGIjU1FRcvXlStnY4wyERERH4psV1z7+7QICi/EQULbwcxtHRR50pgydbrJW7L08/P0TZN2xJM2TJKX2tPvg7entEsEKgVfCW/0Kxefe/tTDAW/lZ0U/GUmzFjBiZOnIi2bdsqbLaAnJwcPPPMM3jggQfQpk0bvP/++/jrr7/w4YcfqtdQBxhkIiIiv1S456hX9ycIBsU3oqDhbGDEny8W7bVd6YWwtdfLl0EC033by5axR0kgwPw+TwYPlGzH1X0FcgDHH6gVfPUUf/488wPHzp/z2r4ECE4MlzOgoqICZWVlstvff//ttfaKjhw5gtLSUvTu3VtaFh4ejh49emDr1q1eb4/IqcLf7e65CeE1ItRqCxERkSI7835G41aNgO1e3KnSopAcLkd+6vZGsQirVcvXzSAiIsKx06dx2Av7ueWWW3AZZbgklKGOLtLuupeFi7iI89i+fTtGjBghu2/69OnIzs5WsaWWSktLAQAxMTGy5TExMTh27JhX22JKUZApLCwMsbGxmPfFK2q3h4iISJntQGxsLMLCwryzv8pKQFfpeD1BwTpEGiL281aMesTXTSEiIpJ4o5+XmJiIOMSjAD/jVnSzu24BfkFjNMPcuXPxyivy2Eh4eLjVx2RnZ2PGjBl2t7tjxw507NjRuYab0OnkWXWCIFgs8yZFQaaIiAgcOXIE5eXlareHiIhIsbCwMEREeCnDVlBY7JGZTORn2M8jIiIt8lY/b/fpbWjcKA7nhD9QX3ed1XXOC2fwJ07hRMlxhIeH2wwqmXvssccwdOhQu+s0b97c2SYDMAbhAGNGU+PGjaXlp0+ftshu8ibFw+UiIiK815EnIiLSGMFggKBzXG+JNZnIH7GfR0REweq6665Dc7TGYezDbcKdVjODDmMfmqGlFNhRKjo6GtHR0Z5sriQ+Ph6xsbHIy8tDu3btABhnqNuyZQtmzZqlyj6VYOFvIiIiJQRB+Y2IiIiI/Ma+yz/ib1zFKRy3uO80fscV/IX8iz+q2obi4mLs3bsXxcXFqKysxN69e7F3715cunRJWqd169ZYt24dAOMwuaysLLz88stYt24dfvnlF4wcORK1atXCsGHDVG2rPU4V/iYiIgpaBqVTXjPIRERERORPatWqhbfeW4jxo/6FRsL10OtCAAAGwYAC/ILXF89HnTp1VG3D888/j/fff1/6t5id9M0336Bnz54AgIMHD+LChQvSOlOnTsWVK1cwYcIEnDt3Dp07d8amTZtQt25dVdtqj04Q2BsmIiKypaysDFFRUbgzLB01dKEO178mVODr8jW4cOECIiPtz1JCRERERNpQWVmJejUaojGaoZmuJQCgWCjA7yjE+Yo/UaMGc3SU4HA5IiIiBQSDoPimlpdeegldu3ZFrVq1UK9ePWXtFgRkZ2cjLi4ONWvWRM+ePbF//37ZOn///Tf+/e9/Izo6GrVr18Z9992HEydOqPAMiIiIiLQpJCQEa3NX4wh+RYVQjmtCBY7gAFau/5ABJicwyERERKSEYFB+U0l5eTnS09Mxfvx4xY+ZPXs25s6dizfeeAM7duxAbGwsUlNTcfHiRWmdrKwsrFu3DitXrsT333+PS5cuoX///qisrFTjaRARERFpUu/evRGJBjiCX3EUv6EOotCvXz9fN8uvcLgcERGRHeJwuZ66gYqHy20W1qk6XG7p0qXIysrC+fPn7a4nCALi4uKQlZWFJ598EoAxaykmJgazZs3C2LFjceHCBVx33XX44IMPMGTIEADAyZMn0aRJE2zYsAFpaWmqPAciIiIiLcrPz0f7W9sD0OHHHdvRsWNHXzfJrzCTiYiISIFrwt+4ZlBwE/4GYAxOmd7+/vtvr7f5yJEjKC0tRe/evaVl4eHh6NGjB7Zu3QoA2LVrFyoqKmTrxMXFoU2bNtI6RERERMEiOTkZTdACNyCBASYXcGAhERGRHWFhYYiNjcX3pRsUP6ZOnTpo0qSJbNn06dORnZ3t4dbZV1paCgCIiYmRLY+JicGxY8ekdcLCwlC/fn2LdcTHExEREQWTo8Jvvm6C32KQiYiIyI6IiAgcOXIE5eXlih8jCAJ0Op1sWXh4uNV1s7OzMWPGDLvb27Fjh1u/pJm3xVr7zClZh4iIiIjIFINMREREDkRERCAiIkKVbT/22GMYOnSo3XWaN2/u0rZjY2MBGLOVGjduLC0/ffq0lN0UGxuL8vJynDt3TpbNdPr0aXTt2tWl/RIRERFRcGKQiYiIyIeio6MRHR2tyrbj4+MRGxuLvLw8tGvXDoBxhrotW7Zg1qxZAIAOHTogNDQUeXl5yMjIAACUlJTgl19+wezZs1VpFxEREREFJgaZiIiI/ERxcTH+/PNPFBcXo7KyEnv37gUAJCUloU6dOgCA1q1b45VXXsHAgQOh0+mQlZWFl19+GS1atECLFi3w8ssvo1atWhg2bBgAICoqCqNHj8bkyZPRsGFDNGjQAFOmTEHbtm1x9913++qpEhEREZEfYpCJiIjITzz//PN4//33pX+L2UnffPMNevbsCQA4ePAgLly4IK0zdepUXLlyBRMmTMC5c+fQuXNnbNq0CXXr1pXWmTdvHmrUqIGMjAxcuXIFd911F5YuXYqQkBDvPDEiIiIiCgg6QRAEXzeCiIiIiIiIiIj8m97XDSAiIiIiIiIiIv/HIBMREREREREREbmNQSYiIiIiIiIiInIbg0xEREREREREROQ2BpmIiIiIiIiIiMhtDDIREREREREREZHbGGQiIiIiIiIiIiK3MchERERERERERERuY5CJiIiIiIiIiIjcxiATERERERERERG5jUEmIiIiIiIiIiJy2/8D3Es0bWl0EooAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Check to see if you get appropriate test values around the coast\n", + "# should be identically 1, but maybe this is within rounding errors for single precision data?\n", + "\n", + "fig, axs = plt.subplots(nrows=1,ncols=2,\n", + " subplot_kw=dict(projection=ccrs.PlateCarree()),\n", + " figsize=(15,3))\n", + "axs=axs.flatten()\n", + "ds_out_con.test.isel(time=0).plot(vmin=1-1e-8, vmax=1+1e-8, ax=axs[0])\n", + "ds_out_bilin.test.isel(time=0).plot(vmin=1-1e-8, vmax=1+1e-8, ax=axs[1])\n", + "axs[0].set_title('conservative test')\n", + "axs[1].set_title('bilinear test') ;\n", + "print(ds_out_con.test.min().values)\n", + "ds_out_bilin.test.max().values" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "c194849b-a9aa-4125-a579-a814dfc36d23", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmAAAAGwCAYAAAAOvdliAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyx0lEQVR4nOydeXgURfrHv9U9kwMIAeQIaLiRlUsu5VrlvgRZlVVc9ocEEFRU5FoUWZZDEeSKLq4HHqjIru6uouLBIQiKHCIQQUEEBAEh6iIknMlMd/3+6LunZzI9M5lMkvfzPP2kj+rqmq6uStW33nqLcc45CIIgCIIgiLghlHQCCIIgCIIgyhvUACMIgiAIgogz1AAjCIIgCIKIM9QAIwiCIAiCiDPUACMIgiAIgogz1AAjCIIgCIKIM9QAIwiCIAiCiDOekk5AWUOWZZw8eRJpaWlgjJV0cgiCIIgEhnOOc+fOoU6dOhCE4tNELl++jMLCwqjjSUpKQkpKSgxSRFADLMacPHkSmZmZJZ0MgiAIohRx/PhxXHXVVcUS9+XLl9GgXiXk/iJFHVdGRgaOHDlCjbAYQA2wGJOWlgZAKUyVK1cu4dQQBEEQiUx+fj4yMzP1/x3FQWFhIXJ/kfDjzvqonBa5ypZ/Tka9dkdRWFhIDbAYQA2wGKMNO1auXJkaYARBEERYxMNkpVIaQ6W0yJ8jg8xqYgk1wAiCIAiiHCBxGVIUqz9LXI5dYghqgBEEQRBEeUAGh4zIW2DR3EsEQm4oCIIgCIIg4gwpYARBEARRDpAhI5pBxOjuJuxQA4wgCIIgygES55B45MOI0dxLBEJDkARBEARBEHGGFDCCIAiCKAeQEX5iQQ0wgiAIgigHyOCQqAGWMNAQJEEQBEEQRJwhBYwgCIIgygE0BJlYUAOMIAiCIMoBNAsysaAGGEEQBBGS/JN1UbnOsZJOBgAlLcEIJ41O9yfKbyPKF9QAIwiCIIhygKxu0dxPxA5qgBEEQZRTTp+8Kui1K+qcsFwPFTZarqhzIibPifTeSO8zp7s0IEU5CzKae4lAqAFGlAtyf6qDjCtPlnQyCKLEyf2pTkzDRYMMZSp+PJ5VVBoiIdx0J0rdI3Fli+Z+InaQGwqCIAiCIIg4QwpYKeP4T7Udz2deearYnqf1eupfdSrgmhlz70hkCHrNHk88uMw5jp5wfncaWpqL610SRElQ1HcfDlrZcFJAnK7Zy7+GFsZ8XSri3mCqSzjhnNIRSRqcnuH0u0uibnMD2YAlFtQAIwiCIIhygAwGCUFal2HeT8QOaoAlEAdPhGNP4FwADp6ogyZXxd7OIJQaVJqUIl8YFYeP7BuIUo5zHRL9P81QZcPpWlFlKdh1ERw+Hl56wymvTmFEcEhgrn+TU5jiqHOJ8gM1wAiCIAiiHCBzZYvmfiJ2UAMsAdh7XJsCHXxOhKhO/3WSj1tmlq6p0CWBU0/VeO+hz9P7JUoC7TsMVfYDKbl5VaLJRUG4w1yhfpvTtVDPcLrmNnxRlPa6QIpyCDKae4lAaBYkQRAEQRBEnCEFLAFw6lXtOFYfAHBd3aOO50XIaFuXls+IBvt7196thv3dE0S82HWsLiRT9Sya5p9Jar851Pdp/5ZjTTjP1tIs2fr55t9yGYLl2B7efu2yy2u+EHGarzm9X3N4+7nSCilgiQU1wAiCIAiiHCBzBjnMSQ7B7idiBzXAEpRgPUxSZYqPy7K1OHx+tHHQsDfUP1TcySHKOFt+bAiJK8qKyFS1iGtKS1JUcdu/5VgRznfv9Gzt9wHAZe4JOA4V1uk8APggBLw/p2uh4tSuBYvLHAdgrROoDiCipWzoqmFSv359MMYCtvvvvx8AkJWVFXCtY8eOJZxqgiAIgogebQgymo2IHeVKAduxYwckSdKPv/nmG/Tu3Ru33367fq5fv35YtmyZfpyUFF1PlFBYd+Qafb93g/1xf/6aI80CzgmmWVAyGAR4w45P+z3KfUY88fhtG442DeiZmymJ90sUjbkMKCQbuw7T+zWnl0KQBZAD4zPuM3/Lbp1n2suFdi7c70pThrT0Od0XLO0AHN+F+XygWqhcE5kcvFyEcp9gvxZmXqw7ck2pK2sShKjs2aSigxAuKFcNsBo1aliO582bh0aNGqFr1676ueTkZGRkZMQ7aQRBEARRrPAobcA42YDFlHLVADNTWFiIN954AxMnTgRjxke1ceNG1KxZE1WqVEHXrl0xZ84c1KxZM2g8BQUFKCgo0I/z8/OLNd2JzKofWkFWe1eCaVaRci4Zf2iYUyzPfe+H1mGEio+SueqHVri54Z5ifcY5OdXyfgHo711Lg/m8PS+KKx8IZ7T8kJHsUC4UtPNyGbIKCaUO2a9pZdjp/QR86zz4+VDlwh53UXlhP08Qsabcfl3vvvsuzp49i6ysLP1c//79sWLFCmzYsAGLFi3Cjh070KNHD0sDy87cuXORnp6ub5mZmXFIPUEQBEG4g2zAEgvGOS+Xiwv07dsXSUlJWLVqVdAwp06dQr169fDmm2/itttucwzjpIBlZmYiLy8PlStXjnm6E423Dl1nOR7SeEfc0/DPQx3i/kwNzUeQ2Y9QvN6B+d2XxHsnwkPLJ4HJunpjx8kXVTA/WonA0MbbiyVee31SXMQiL2L1DvLz85Genl6s/zO0Z3y8pwEqpkX+PV04J6N/qyPl5v9bcZN4JTsO/Pjjj/jkk09w9913hwxXu3Zt1KtXDwcPHgwaJjk5GZUrV7ZsBEEQBFHe+eyzz3DzzTejTp06YIzh3Xff1a/5fD48/PDDaNmyJSpWrIg6dergrrvuwsmT1mXjCgoK8OCDD6J69eqoWLEiBg0ahBMnrE60z5w5g2HDhukjUcOGDcPZs2ctYY4dO4abb74ZFStWRPXq1TFu3DgUFhYW108Pi3JpA7Zs2TLUrFkTAwYMCBnu9OnTOH78OGrXrh2nlJUuXjvYGRJPLjpgEF75/vcAAmdp3X3155bjl76/oYiYSnamqn3WmPa73CAyGcObbHF1j6Z6vfL97/Hawc6u7yfiwwU5vDJin1HrdvZiPHnp+xsCymkssL8rp5mNjrMgXYYtCvusR+24OH5zPJHBorJrk0NOJw3kwoULuPbaazFixAgMHjzYcu3ixYvYtWsXpk+fjmuvvRZnzpzB+PHjMWjQIHz11Vd6uPHjx2PVqlV48803ccUVV2DSpEkYOHAgdu7cCVEUAQBDhw7FiRMnsHr1agDAmDFjMGzYMH2ES5IkDBgwADVq1MDmzZtx+vRpDB8+HJxzLFmyJOL3ES3lrgEmyzKWLVuG4cOHw+Mxfv758+cxc+ZMDB48GLVr18bRo0fx6KOPonr16rj11ltLMMUEQRAEET3xXoqof//+6N+/v+O19PR0rFu3znJuyZIluP7663Hs2DHUrVsXeXl5ePnll7F8+XL06tULAPDGG28gMzMTn3zyCfr27Yv9+/dj9erV2LZtGzp0UMxRXnzxRXTq1AkHDhxA06ZNsXbtWuzbtw/Hjx9HnTp1AACLFi1CVlYW5syZU2IjV+WuAfbJJ5/g2LFjGDlypOW8KIrYu3cvXn/9dZw9exa1a9dG9+7d8dZbbyEtLa2EUpvYDG+yBc8e6A5AWaLigd9tcHX/OTkFQOBaa09/18sSTuapEEzeqfVZUCHsONxijkt7lv3YCXvazcf2teqcn6v2sGWGZ77roR8DwNimnwa9T3vvSjqTLOecppm7zRsiNjzzXQ+Eo9BqdkZOaxYGswFz+j5lLsS8XJjjNT9HK6cP/e6TmDwLAEZevVl9Z0rZkGXjWzaXlYBz6jdvLj/mciAwHrb7BSebr3DKcnnCPts/OTkZycmRj4Zo5OXlgTGGKlWqAAB27twJn8+HPn366GHq1KmDFi1aYMuWLejbty+2bt2K9PR0vfEFAB07dkR6ejq2bNmCpk2bYuvWrWjRooXe+AIUO/CCggLs3LkT3bsb9Wk8KXcNsD59+sBp3kFqairWrFlTAikiCIIgiOJH4oLr4Vjr/cr/Tvts/xkzZmDmzJnRJA2XL1/GI488gqFDh+qKVG5uLpKSklC1alVL2Fq1aiE3N1cP4+QqqmbNmpYwtWrVslyvWrUqkpKS9DAlQblrgBGx5byUou/P39cfU5p9HPa9F+VAZSDWPfhYEkwNCIYIDgkMomo3ocn3Yph2FPP3GdJ94DtJCbzBAe2ZWlxaerTzU5t9FFY80TLn24GW42nNP4jLc0sas/I4d99N+n6wbyMY5m8u0crGnG8HBijI0XxXF8O0mdOeBbh/J+b3HU5exKucFDeKDVgUi3Gr9x4/ftwybBet+uXz+XDnnXdClmU8++yzRYbnnFv8d5r3owkTbxKrJBMEQRAEkdDYZ/5H0wDz+Xy44447cOTIEaxbt87SsMvIyEBhYSHOnDljueeXX37RFa2MjAz8/PPPAfH++uuvljB2pevMmTPw+XwBylg8IQWslDBtj7MfMsBq9+DEYy1Xxjo5OuEqXtP33hqQjvP+olWcRPGBFK4NSFF5YZ6pZZ+1JZpUNYkLro/DeYad6XtvDWkbM6fVOyF/zyN7/hhwbl6r/wacOyelOJ6PFjflwvz9Td97q2WGnP3bnPnNHzCzxXuu0+N03/S9yiQekXmLHP5xY6eUKDiVjWl7bivy2wmGpoybv2GNYN+9fbaj0+xH87miyoVGNMv2JCJylGtBup0FWRRa4+vgwYP49NNPccUVV1iut2vXDl6vF+vWrcMdd9wBQPHP+c0332D+/PkAgE6dOiEvLw9ffvklrr/+egDA9u3bkZeXh86dO+th5syZg1OnTuleDdauXYvk5GS0a9cupr/JDeXWEWtxEWuneg/t/lPQa/Z/MKJ6LHEGkXFIauUhMo6F174VcRomfz3EchxuXNp99vRohFu5lfSQSzjDjU4NL+032/NFw3wsQI5qerj5/lDPCZYXQHj5EU1eLGm7IuJ7nXBbNuKZF4D6z87hOcHSY6a48yIWhFMuAODpNv+KKP7JXw+JeV4ACHjnTnmR3frNiJ/plng6Yn0zpxkqpIkRx3PxnIQ7W+8LO63nz5/HoUPK4uxt2rTB4sWL0b17d1SrVg116tTB4MGDsWvXLnzwwQcWJapatWpISlIa4vfddx8++OADvPrqq6hWrRomT56M06dPW9xQ9O/fHydPnsQLL7wAQHFDUa9ePYsbitatW6NWrVpYsGABfvvtN2RlZeGWW24hNxQEQRAEQRQvMoS4+gH76quvLDMMJ06cCAAYPnw4Zs6ciffffx8A0Lp1a8t9n376Kbp16wYAyM7OhsfjwR133IFLly6hZ8+eePXVV/XGFwCsWLEC48aN02dLDho0CM8884x+XRRFfPjhhxg7diy6dOmC1NRUDB06FAsXLnT1e2INKWAxJtrezIgdIwDA0mt2QrAVBLsRbDBDcW069vPtlheZlrG7/g+AdYp3sKndAuN4tu0b+rV7dw4Lmh57z70oo1AntSZcwnElURSR5IX2bCf3FkY4XuS7dVLWtPOh8sKuoCRyXiy7bllY94/YMaJE80Lbt/4mI4/sYZzyybgvMD3xzAtzGiIl3LxY2v61iOK/d+ewmOeF+ZpxnzUvIk1vpMRTAftnTouoFbChrb+hpYhiBClgBEEQBFEOkDiLquEebaOfsEIKWIyJtjczZOu9+n5RvdNQBt92JcB+T7BepBvsCk0wu5VgPflI7VyK2zDW6Z0UZ14Age/SLdHmRah7jOvFnxf/6fxckWH+tG1MkWGCvct45YU5znjlRTj3RYo9XyKtp1Z0eNHVc4dtvzumeWE+t7zDSxHHG0viqYC9uvvaqBWwrDZfkwIWIxJnKg1BEARBEEQ5gYYgE4gBn42DtmxJ0B686Xw4YfRztkV+gykB5vtD2bCY4zLH70btMp8L+Ywwnh8t4byPUNeiyYtQzw/HhiVUXE7vJ+j96vmSzIv+nz2Ej298Ouj1mz9/EICzz6GiykZRqlhReaHFEU5eaPFFmxfhhnF6diwIlhdvdXpezQtnguXFrV/cDwBY2eUfYT3/suQN+YxQdo9mZDC83bloB59O/GHzA3jv988EnLf//lU3lNxsunCRuRDV7FmZBsxiCjXACIIgCKIcIEXpB0yKsR+w8g41wBKIC74kMFsv3UkBMZ93CqvtO9k/COCOCphTjz7UDCQNs2pg7nU7qQTh9vadnsMjsKNxg5PqEU1emM8Hvc/0zpzyI1HzAnDOj1jlRbf1k/X9jT2t08TP+4zlq5xmipZUXmhxmtHKmT0vnOIIRyEO9pzizItQOOWFtm/+a2ddt+ywn3HRb1XAinr35uMPb/x72M8JRu+NEwB40fPTifo541neYrdHJco21AAjCIIgiHKAjChdycQuKQSoAZZQXPQlWXqNjHG9d8scepXaOc6ZRa3Re6AoOmwoirKrMKPFa+6NO/X8g4Z1uK7t269bnxtW8orEaT3WovLCHKaovACM/IhXXmj7QNF5YQlbxHV7GCNs6HTt6P+E4/nrPn40rHAA8GmPRei09pGAtAHO+VVUXgQLG4po8wIw8sPNuzZ/f9HmRaRcv1rJK4FxbOu7SD/fcc3UIvMCAL7o/aSr531449/RfcOkoNeDqYKf9ljkFNw167plo8u6h/Vjp/za2mdeTJ4VD6J3xErz9mIJvU2CIAiCIIg4QwpYCdNq1d9MR56AXrhZmSlSHbP06q332W0kQqkwRc2CDNUTd+qRar1xswpTdG/f8khHO5egdmEh1IlQMxoD333keQGYFS/rfU62ecFUmHBmQYZSFO35Fywv7L/DHIeTmmJ/98Hywim9dkIpXk5cLFTsgrT3GpYqHCQvtPSFkxfaPeHkhbZvDhMsLwAjP8JRuYoqG5HmhVPZaPn+DD09Csq/jD03z7aEu+w3/pWEqmPafTwNO/vPCZoGJzQ1S1M+zc+xv9viUKPsql3rD6fr+6VtUqDEhbAWIQ91PxE7qAFGEARBEOUAGSyqCRrxmNxRnqAGWAlw9duPmY68jj1t+2fObL1KZd+4LjBepIJjv0e7L1ICe/+wHTv3zJ2UFc4DFRn92PbcgB5+NL1Qh/ok4D2GuG7ki3HdrgAEjTeB8sJ8T1R54RQohvzundkAjJlxTnmh7Ct/EzEvlHOB+RFM5eJ6eQmdF05hQuXF93+cHvwi7PWU9Z01fWc2DtxmqPeXC7xF5gUAfPuHmSGfGYoCf+h/V7tuejziuN2QM+CxogMlKKSAJRb0NgmCIAiCIOIMKWBxpMGKuQAAxmxrcak9xICZeKZe5OEh0yyXmvzncaOXqd9v6nXaowrRO+Xc+myt9x3smnYcTi8dMDrhlmvcrrQExqUcOKgJYdiHhYvjzDcWOi+cevf2vDCfc5sX5njteVHUNeV80QqWPS+0cwdv/ysa/9tQEtzmhfmeI3+eGngxSnyFniLzQj8fRl5YrhWRF4Dx/YdzTTkXnpqoX3NUIR3uD6ayFVE23OTJ94MNhazhP58IKBeN3lRt9xgHIIbMi6LUtnC4XOgJqy4ighO9I1bSbGIJNcAIgiAIohwg24a6I7mfiB3UAIsjvFAEGLd2UlmQfeUO5y47AH+htcdp7e0jfMUmFAxF2vOEq2JZeqiOPXrbOT18CJuWAIMkl5VDFHkRSn10mxcB9zumFcWaFwDww1DFx9OhO/4KAKi/fJ4tTOi8OJr1MIqT+q8/CUA0HhyG+lhSeQGYVeHAc8pB8LwIpRYr4dyVi6MjphSd4BBo34aSB3YcyobtuOE/n7DEEwn7bpkJALj6vyYbLO05XDkfC6WNIOIFNcAIgiAIohwgRzkESY5YYws1wOLI0RFTUP/5hTalxVk50Tu8tt54/WXz1fMmr18BZYKr9hrBVBlbF9mtqhxqVpdTL96px25e08Ku3HDrORasd+/wTNdEkhcs8L6i8gIoQqlxSk+4hLL7cVQWjetH7wquWh0d9gjqvTzfMS+Ojv5LBAmNkgLBKnJqSotDHnIgvLwAcOT/Au2iNJsn14SRF/r5SMqF6XyR5cIhPdFQf+kCgBkv1TEvAIAhQHFzVs4iw6xyNfyXqqz9KXJlrTwhcwFyFDMZo7mXCITeJkEQBEEQRJwhBSzOCIWmXi0DAnrApl6k0sW1Xtd6lvVfWGhRZLjFvoUp57QjwdoNtvZcnVJp7zYHkQJC2J1w2aEXbu65m1Uus/Bkn1nHWeA52MJbHhymbMGc3kmYeRGguiAwL2C6x/Qzo88L54ChlCwz9V6e7/BgZ+o/txA/3hed7VAscVLd6j9nV5S1v9wxL34cFd7vsdsqGQpOGGXDbbkAAr9zzsIrF05JgkO5iAFHx/wFDZaoayyay4DtO7e/ErtyFktI+XKHBAYpCmeq0dxLBEINMIIgCIIoB9AQZGLBOCcPKrEkPz8f6enpyMvLQ+XKlUOGbbRwsbLj0IPnWg/TdO2Hhybq+w2WLLKGBYxur1ZGnOzImIP4Eay7HGy2l4N64tRDtxzL1vvs4Zm55w/TNe4Ud5Ckh/LK7tRxM93sqESFyAvd1sgprDmMub6yzcKLNi/CVXPc0vDvqsqhJs783SU6ZoXGnhdHx06OOv56L88PPQvSlqGO5QKmc7L1vJOqxWw2kVDjdFTAuOmeIGk6NGVCkMQXTaNFRp1l+fbtNpG28lQceVEaaTw/G4A1D9z8z4gU7RmztvdCSqXIdZfL5/2Y0eGTYk1reYIUsBJEvMzg1PgCjH/6Bx9xriyFQgatM6KPnuk+JuwVoHXYM9A4n9mOgxAw3GfeZ7ZK3xSl9g/E9g+Dycax5V7ZOrwS3Ng42qEW23BwEXmhv1PBGI7Ur9nzAlDee7zyIgY0WrQY4IBgTrAcKhGJhzbEf3iS0mhs+JTSYPhh/KSYxP/jKHUijZloy4V23nxNRmBjSrYO4UdaLpo+lq3vH5jurjGmvdern8i2NMA4g1oulBPm8sQF06es1lNaI/+HcbHJl9JA08eyIZr2AffvP1okRDeMKMUuKQSoAUYQBEEQ5QIagkwsqAFWgogFcFRaAOC7mc49o6vnKD0nQTAZd+tDZNqwGFOdTgbGyzSVxT6EFgHBhkaMa8Z5e2/ffN2xt2+Px3FoJYQKENYPMN3KQhwz+3Vm7f0LcHzXivrFDNGLBckLPWz4ST/yYOyUgybz1G+KM+e8SGCaPmZVYg5Psw6X/jA+9sOnR++dbAx1OlDkcLp2jtvC2q4HVYjtw/LBrpuOg9FsWjb2zXGvwgiFcPjmnVXhwOFKjkN/KT/Kl4ZYgGJRrt1Ai3EnFvQ2CYIgCIIg4gwpYCWIeFndcVJPgiAUajsOBuAC048tNhg2VUY5p9qT2OLQw6tBOQvRmw7oaTM4KWC6zYoc5F7Z1vN3UseclDUU0dO3H9vfrcNv1s4HKGBBVC7F9iUwLwA1P2y9f6e8UOJhluVw7Eb9Wl5o+40WL8bhibFRd7RvinEE5MX+x+Jro+KWeNvQaGgKZKPFi42TTuotEKj8mvcd7CH1e2XTvpM6FkxZg7ty0XJStvWE6Tvcu9B4vy2mGGqjaLPxcvzO1e59gLosMFz9RLblWjBb17JCy8mq/VcJK2AcDHIUNmCc3FDEFGqAEQRBEEQ5gIYgEwtqgJUArR9Uen+iXTUx2U20nJgN8/Rurl4THXqVeg/UVDbMio0eHlAkL3NvFYHhglwKPkVeOxfE9kTr3VtsWuy2RqYwAfYttntDOagM124ptPsIWN4nN53TwurvWnDOC33f9DfQbQhzOGdNY6i80Gy3olUPxALtgda8+PbJsq1KxILDEyfq+QDA+dsMZr9oUoS18uBo9yWbyoX2DG6qNmxqmOVZLu35QjkGNtuscsH0U7XyYv7ubaqwxR4sRD1VVrHbf2n50eb+bEiFlx3vIco+1AAjCIIgiHKAzBnkKGZeRXMvEQg1wOJI+1GLAQaIZmMfu+2EracYzmw7LjhcC9YDVcPrKbCVJ7PNl7Zvtj2yBjb9DCeVy27jZVLEAhQwm80Xsx87xavfz23HCEqgrZc1L/Qw4eSFHgcC88J8TQgSL4x9Znq+Oa32vLDvA8pMwGhsoewK2J7FpHy5QfApfw9Mn6D4d3IoF/q+TfW123UF+87t91qOg5Ql5ZiHrRAHqsLWD/Lrpyeg7b2q7ZZN6XVU5B3KS8A19d5r/mbEG2wGeGmj3RjjWxARPC9YYfwMwyQIkKKYexfNvUQg9DYJgiAIgiDiDClgxUTPkUvg8aZg678Mfzeey1qXxwgXTFlR7IxYYK9ScLhPcI4nmGIT4JcHJpXL9BsYg8XWBHCwY7HbpTj04B1VLdl6HNQ+TOZGj98pXgAwraYVcvaXo02c6VwQpSpYXmj7TnkRLB6nvDBfM6fPKS/MSTb/1mumZ0c8Y9E8CzJnSdlQH+KJWX08MH0CrpmuqDkBNmChVCxulAvLsek+axnhAeXLfp8SlhtpgXG/BadyYTuvodVh5m9en+1rV4zN37293gqlnpURdi6dgI7/Z54l61BPcQC++ClgNASZWFADjCAIgiDKATIEyFEMfEVzLxFIuWqAzZw5E7NmzbKcq1WrFnJzcwEAnHPMmjULS5cuxZkzZ9ChQwf84x//QPPmzV0/y3tRhscr44ZbFhjnVJsKzgwpQ+n9qefNvUa7XZdgv86KDBvMbxUXEOD/K9yOTUBP2qxi2Wd8BbP5kmFRvZjMLb39AAXMEhbWXj23pymIGmb/jcHyQr0WTl4Y+w55ocXpZBNmyws9OcGUiCBEtQqAia//TqpXLNFswnS7LrMtVyibL9t3zmRu2ndQwOxlBgA4DyyH6nmNcMqFcp7j94MXGmEYg8fhO3dU59VyEU5YJ0W+rOC5pGTM5reVxcdvuFVdR9RUhzGf7HgvUfYpd83Z5s2b49SpU/q2d+9e/dr8+fOxePFiPPPMM9ixYwcyMjLQu3dvnDt3rgRTTBAEQRDRI3EW9UbEjnKlgAGAx+NBRkZGwHnOOZ566ilMmzYNt912GwDgtddeQ61atfDPf/4T99xzj7vnXJLg8Slrx9tn2lmUFgbdIRi39AyVqW7mXqTsMXqVYByyCP2aWYWx24Rpfnm0Z4CZBBO7TZh2DlACmWyP1Mcax2b7MK13b/fnBZPNl03xEiTTvWpvX/Bbe/8BvX0OQDIrYNxqTwEYsyIdKDIvAEBkYeWF+Zo9L7R9u02YU17oSbfbhAGBeWH5nabj+JmREEXw7TxFUWw1MduqepnLgN3mS7Z+54IEiwqslQvt2FxmLCqbxPVyoT0nYFZkEPSyYVHOjbpJKxeA9TvXyob2nev1lJooWXRQ7m02Yea6qyyhKV8angtKpffp2ocBAD16zwP8UsB9xQXZgCUWZexzL5qDBw+iTp06aNCgAe6880788MMPAIAjR44gNzcXffr00cMmJyeja9eu2LJlS9D4CgoKkJ+fb9kIgiAIItHgXIAcxcbL0iyJBKBcKWAdOnTA66+/jquvvho///wzHn/8cXTu3BnffvutbgdWq1Ytyz21atXCjz/+GDTOuXPnBtiVAYB4wQ/R47eeVHuUhk2Q2qPUFBORmdQTqzomi4DgY+AC168LJhWGC9zogYpaD1S7XoTNRTAFTCOUAhbEpsVuxyVIgfYtzG9cN/fuBQkWlUu5rh5LHJDNvXvjXtj87IQkWF4AgMDCygvlGnfMC2XflBfqM53yAjCpYcEUMDOkgJUK9iyegNYPZAex1TJ966Zr+nfut9uAGWE1lcu4zpVyAQCyTQHTbCZdlgtA+z5NCphaLpRrpvKhlg1NBdbqKe26YFLutXrqy1cnWh5r9i/W+gFlP+eZsmebqClfGuIFP7jfHyQ0UdYpVw2w/v376/stW7ZEp06d0KhRI7z22mvo2LEjAIDZnA9yzgPOmZk6dSommhZFzs/PR2ZmZoxTThAEQRDRIYFBimKmQzT3EoGUqwaYnYoVK6Jly5Y4ePAgbrnlFgBAbm4uateurYf55ZdfAlQxM8nJyUhOTg44L14ogCjaTjKmKi3qRyyqx3qvUghQw4xeJIMsMsNeTOCQ/VpYVVlRn8dEqyJmncHHHJWXsGYhaYpX0JmO3HZs7AsSBzP39iUOQTL10tV9QeJgfh7Yu9ePZaO3z7mqBpiO7TYu2rG9ER0kL5T3ycLLC/U+p7zQ9rW8AEzqlz0vACMP7IpYMGzq4+5ny55aUBbIeWYC2t+t+oLiCFDD9DIgGeUCUMuBppapZYX5TWXCrnrJshoP18sFoNp8OZULQDkXpFwAqk2Y9p0zZpQLwFENEzyaQsz0cgEAsp/pddMX/zH8IpoRNF9YzFDL2t6bjV3Pl+3vWjx/GVwqKDpgjJB5dHZcssNnREROuR7QLSgowP79+1G7dm00aNAAGRkZWLdunX69sLAQmzZtQufOnUswlQRBEARBlDXKlQI2efJk3Hzzzahbty5++eUXPP7448jPz8fw4cPBGMP48ePxxBNPoEmTJmjSpAmeeOIJVKhQAUOHDnX9LHb+Iphu4GH0GsGYMaQpChYFDIJg9DBFBu4xjrmHQRAFw5bCw8BEY19RwJRjJtqUGIufKh6owjCT2GK3BXPwNWXMbgxUvBx9e0maAmayafGbFDCz4iXJ6rHao/fLisqlHiNAAZON3j1XlTIewq9OEXkBqO8xjLzQ359DXmjxaHmhhA2SF+q71m3N1FcfKi/sykD7uxfjq5esdjVEYqD5BQvw7SWZFTCulwsAgYqXWi6UY1kvF9oxAhQwtQxo6pc+q7iIsiEYChhjTCkXyoFeLgBVrde/eaVscFUB0+op7ZiJxn4wvnpZ+XavH77YohiXZfo3mKiY3MnxVMAUY/po7nfDZ599hgULFmDnzp04deoUVq5cqY82AcA777yDF154ATt37sTp06exe/dutG7d2hJHt27dsGnTJsu5IUOG4M0339SPz5w5g3HjxuH9998HAAwaNAhLlixBlSpV9DDHjh3D/fffjw0bNiA1NRVDhw7FwoULkZSU5Oo3xZJy1QA7ceIE/vSnP+F///sfatSogY4dO2Lbtm2oV68eAGDKlCm4dOkSxo4dqztiXbt2LdLS0ko45QRBEAQRHTIY5CjsuNzee+HCBVx77bUYMWIEBg8e7Hi9S5cuuP322zF69Oig8YwePRqzZ8/Wj1NTUy3Xhw4dihMnTmD16tUAgDFjxmDYsGFYtWoVAECSJAwYMAA1atTA5s2bcfr0aQwfPhyccyxZssTVb4ol5aoBZm4xO8EYw8yZMzFz5syon8XPXQBXu77MprrodheiCAgCmNbLFEUwzXBMFJQep3rMPYKyacqLR4CgzcrzKGG5mptMVP3ymOzFDBXG5uWd8ahswAJmNtrsvJR9dRak3+jtC35DyWJ+GUwyFC+ldy/pYSEZx5Ako3cvq+dtChgP0csvKi+U9yeElRcAwEXBMS+UcEZeKGGZY14o+0ZeAGHYgNkQaCJVwvLla4q603nIIpMqzK2zIP1cLxf6dX1fNsoFAEiSUS7UY6N8yEa5AAIUsCLLhkkBAzO+eb2eUo+ZKOrqmFY29DKh1lPasSAyyOp+t/7zwT3GjMnP3/2L47sCgA53LUZZhp87r/yVC0s4Je6xu1sKZgvdv39/y+Q3O8OGDQMAHD16NOTzKlSo4Oi/EwD279+P1atXY9u2bejQoQMA4MUXX0SnTp1w4MABNG3aFGvXrsW+fftw/Phx1KlTBwCwaNEiZGVlYc6cOahcuXLI5xcXZVzkJQiCIAgCiJ0n/MzMTKSnp+vb3LlzizXdK1asQPXq1dG8eXNMnjzZsjrN1q1bkZ6erje+AKBjx45IT0/XfXhu3boVLVq00BtfANC3b18UFBRg586dxZr2UJQrBSyeyPnnIDOvcqCqLkxgyr6oHQuAx2NRWvQepyiCeTyAR+1xekS1Z6mqMF6jx8k8MrgoQPZqCo6itGz6cIqeni5/VNd0E6z2Yfq6h3Z7IzM2P2CWdedMdl5WT95mGxZV9fKZe/SmHr5PAtMUL7+seIbWvEP7/QE9fC4Z17gsm+xdZPAwbcCC5YXy/sSw8gIAuCg65gUAyF7BOgtSnT3JNXHCNHNV87lk9pqvRBj4E+w+lIKdIxIDrewJ5lmPfm6d9eiTrXZefhnMp6nAklEuALV8+B1VYS5JRrkAVBtJtVwARZYNvVwAgCgo5QIw6imTWq+rYWrZYB6TQqyWC+2YedT0qfWUZjMZiu2vl+1vevX/lqKP907I3Fd04BgRKxuw48ePW1QjJ/UrVvz5z3/WJ8l98803mDp1Kr7++mt9wlxubi5q1qwZcF/NmjV1/565ubkB3gyqVq2KpKQkPUxJQA0wgiAIgiDCpnLlynEbtjPbhrVo0QJNmjRB+/btsWvXLrRt2xYAHH112n14hhMm3lADrJjgkgSu9SShrQlpUl/UYyYUGuEEZqhhHg9YkldXZeARwbxeo5cpiTY1zJhJyEWG9RumWtLzxX+ta5JpdB6ySFHELAqY7YM0+RBiHLqdl309OifVC4Bu78U0BUzt3euql8+kePl8Rg8fAC/0KT16rbdvUrg0tYubndOE6uEDKCov9Gth5AWgqmEOeaG8Aw5usn/hMsAErs8Ik0Ujufp6k5oipitg5PiwtCP6rKoX4GAH6ZMDVS+fSfHSygWglAe1XACq6mVSuLi9jKjni8ZcZyllwygnhXq5AFSVWFOMtbKhKcRqPcUltUxY1DCO9Z9a66byDJckcE0SjwMyolwLMgEcsbZt2xZerxcHDx5E27ZtkZGRgZ9//jkg3K+//qqrXhkZGdi+fbvl+pkzZ+Dz+UL6+SxuqAFWTAgVUiGwMKa3mh0kMobV+cv0w37VRuvG6fAxwOcHvGql5/eCqftckpR//Kpl69ptfws7nVvemoQuty+yDXkF8bbHYVsCxbZvdifhNxkUq0b2+j8Xnzqk4lMtx30+Y9/vVwzpzcMr6rsBoFotakMfzEhyLLDlhY4kgRciMC8AwOtxzAsA4LIILgr6P1nZo0zV1/4XMg+sRvgCwGWtQQhLXmx5y9mBpcYNty7E5yudG9lEySIUmtxJ+E2dEvPkE59klAtA+b58PmNfLReA2uCSTP+0GTNZ84p6uQCKoWzYygUAo2yoy3PB58fHP5XczLLShFChAgReCFyMz/N4lLMgeQI0wL799lv4fD7dYXqnTp2Ql5eHL7/8Etdffz0AYPv27cjLy9N9eHbq1Alz5szBqVOn9PvWrl2L5ORktGvXrmR+CKgBRhAEQRDlAplHqYC5vPf8+fM4dOiQfnzkyBHk5OSgWrVqqFu3Ln777TccO3YMJ0+eBAAcOHAAgKJYZWRk4PDhw1ixYgVuuukmVK9eHfv27cOkSZPQpk0bdOnSBQBwzTXXoF+/fhg9ejReeOEFAIobioEDB6Jp06YAgD59+qBZs2YYNmwYFixYgN9++w2TJ0/G6NGjS2wGJEANsGJDqFwZgqAoYMF6g/1r34+PT/3DcmyGJXnxce6zyrWMscpJ3QVDoT4EwbxeQOJYs3NWRGn94j+T8PvbFqoPtQ1HAtYFt20KGCyuJkxDkJJsGN3ripemgKm9e7OzSP1hyjImumsOVUUMWeyFyI1KNQeWReK0lAugTvsPzAtAGWbiHkFXJsE5uGw4rJQ5Mw3pwOIexI2adeMfFkCQga43zQcAbPpoShF3EPHEUIK5rngJPtmmeElGuQCsDoYBvVwAqpsUk7qeaGWD1K9A+te+3zEvhPTKEOT4KWDx5quvvkL37t31Y23d5OHDh+PVV1/F+++/jxEjRujX77zzTgDAjBkzMHPmTCQlJWH9+vV4+umncf78eWRmZmLAgAGYMWMGRNNafytWrMC4cePQp08fAIoj1meeeUa/LooiPvzwQ4wdOxZdunSxOGItSagBRhAEQRDlgHh7wu/WrRt4sM4rgKysLGRlZQW9npmZGeAF34lq1arhjTfeCBmmbt26+OCDD4qMK55QA6y4qFgBEIuYmptWKeC4fxOTelGpYuC+02qonIP5gxty9u7yuO6iYv3GRx3DbH5HUVxuuGWBaVkiFmCAD24Y11ucrUrcqno52XyZFS8mAB5TYRaC9OPNTiGLwq3BeoiKIeB6sLD2/DDnBeeALOj3ClwEF7leiQmyYBjdcwAC8NmHVseU4fDZe+7vIeKHNvlEczWhnLPZfGmKl2YEX1TZMH/rRX33sS4X9jDhhC/vaHW9U15I8fs3HO8hSCI05IiVIAiCIAgizpACVky8vWtWkcZ9csUUy/HH3z+Jfq1NMxg5R79rpyv7FVNC9zploF/zacq+tpi0bjMi6i3tXl2fcHRT0XWAYj8kmBaE1mbg6TZgmqNVTdExL7CtLp2iu5rQlkvRYmJMn6YOwRi7VwKH6M1rC2QH68WH6kKEcKcRgIO5Cwv1vovIC0s8+nuQANlIsrJKjPr7uOKklSh7GLaQsuF6Rf0m9O/aI0ZULixxWB4aIkFRlgsgsGys/vqxEA8k5LQU5wuMQZbiV+7jvRYkERpqgBEEQRBEOYCGIBMLaoCVIFJaoJ+w1TnGiu+9Oz+OdVv+CgDo0+kx1abICKv1QtfsmAEA6Nt+pnHRYrtlWriXA4CAnt2Vtbu4h4ELzOgUywiYVmXMguTWWZBmv18+GUyWLT1jTYHTHZjqETqoWkKIawyOthMB9qBR2rowe29fX+Rbve6keskhrqms+Wqmvt/3ulkBeaHtb1z3iKvka/ToPQ8bIryXKH7WfaGU4b7XGbOUuciClgvAoWw4XQvirDfW5QIIUjbUYFodRQRHqqjW9Q55IfnDnG1KlDmoAUYQBEEQ5QBSwBILaoCVIJ98Ni3kdSnVyJ61WxVbsJ7dngCgqFKfbLLOaJSTTdlpWUDbpvSYbLPgh9LD1tQqxkMoYKqtl+4HjFvjYkz3ccWZyZ7F1lPnAT160zHTzhme7+1qWNA6IEazvbTZnsaxojxaVS4jDmaOxrRAOTjX1Q8NTa0EFIVTe3/2vHSD5nuNSGy4R3AuFwD0hdjt5UK9Zg7LVc/3ASoxgpSN4iwXREi69XtS2amg1s0OeeH30yzI8grNgiQIgiAIgogzpIAlKDcOWoDP1gfa9Wh+vPSelQlNbenZY67SU+W2WYxAYO/WrNgAAfYmyv2GvROTuSUO3d7EtHAvEKhqab125RqzKlmMWdeiFOzqmPPi1AGdMYfOmRaGOXXWbecClCzbCgA6smH/wrhTWKt9WDC4ac2+Xl2fcK2CaXZ8tLhx6WDt1um6gg29DNiUXrOSpdtDImi5sIfVj80EES04C69cAFY7UO2Y/M8Vjb+CfWarQxhf/HQQUsASC2qAEQRBEEQ5gCM6VxI06BxbqAEWBzoMW6zvm3uc296YGBC285BFyk5K6F6RFOK6lCyqSpX2TIfZkwHqj+qXSGZggrNfK13ZsfTMbbMWbSoXAHDNt5hW7gXF3iWYAubU+9eVtiBqmB7WBQG9f7NiyJnJlstQupTrLKgCxmQY3vE50K3/fN1m7tM1D1seZ7YB7Nl9Lnp2nxu2mtWzx9ywwhGJhZykKiLMVC7UY61cAEHKgL286OXLtO8wYzjqcgEY37gaWcCsSMIRbYURAOj4f4stebF9uVL/5+fnIz19elzSQwpYYkE2YARBEARBEHGGFLBi4sZx/4CYpHo/TtW6p9Yw7e9ebLEv2vHKRGx5a1JY8X/+bnD7i40fTwk4162/4umeyRycM+sMJvsMvxC9Wy4wS7Pd7JPI3qPX/YDZrmmzvfTevrkHb1PLAnv/9n37lM3gabf+ENttnBu9e3W2V4ANmOk6M6lcTGaWmY9MtoVT7+s6YD42fRiYN4DVHqwoevScBwY1L4hShexVVS2R6eUCUD4R8yxILthUX3vZcigj5v2Ylgs1YvMsSEeVjAiJL9WUCSVUdEkBSyyoAUYQBEEQ5QBqgCUW1AArJvwpAE9WD4LNttN6lRGi2ZYxmWPbitDKmVkV63rTfF2xYRxKb0xLRyj1S2QBM7V0FYYZvXpA7bEL1nBc1K6p95kUMbM6Zrmm9e7N6hms18Kd9aXcZAsaJC+UNS+Neyy9f9mucpmvGfYxTFKP1Wub3w+uWsoiw8bVDwe93qPnPOvP0PKCKFVoCujvBy+0lB8umr59wGL3qKljlmtmm0rmXC70fTNuy4ZZFYbxbe96bkIRv5Sw40+1Hl/7UDYAQCq4XAKpIRIBaoARBEEQRDmAFLDEghpgxYSUDCDZdtJuP6HZGkX4DG0WjVu4hwGSeiBDmd2n9XTBA1Uw3VZLs88y2amIxr7ZrksWAxUvs81X0N6+Zvti7sFbZkyaOupOCphLWxd7XuhRmG3AZLsCZth8aeqXsTqA9ZpZEQuFXf3q3vdJJU6newXQ2o+lnM1vT0bHPy8yFDDB9O3DQSG224Sp5QKwKV7q9QAFLAIbMIvne7We2rOYlK9Ikcz/D0z5IQWELD44Z+BRNKKiuZcIhGZBEgRBEARBxBlSwIoJKQWBChgQMLsuwMt6HNBnJ6qJYDID1+Udkx8wGZY15zT1S++li8yigJlVLtkDa+9etPburce2fbvNF3Po/av7AceuXkQQBUzLF7MfMNl6PVDlUhVEyayGAUxiYSlgAUlT37WWF6R4lT3Mdpvt717sYCdp3beowJaZw7AqXkFmSIaNrRxo5/Y9QepXNEgpcMwLKY6ikgwWlSPWaO4lAqEGGEEQBEGUA8gGLLGgBlgxISUDUN2AWWYX2RUv0/HvZmRbZhvtezywx9lyojJzZm8UthhKzzpQBdMTZFZsZADacmaq+qWrXmKgzZd2TTYrXKJyHXpYQxUDbPYsdnsXe+/fpgTo95t/UrgzvRzyAlDPmWYvKt7tA1Uv7f0wrihfAMBEQNC6tDIgCFy/5grG8OlaZ59hRNlD9rKAMmP55m2KGMzHQezBnI7DKhsOvr4OTCf1KxqaPpatzIp3yIt42oARiQU1wIoJOYUDKTz0P3zZ5tzQNsxlp9mj2WBJyn6LKdnGP30Z2JMdXgXZaegiMJFB0B7EoSytozkWNVUQjHOL2wkA1uVSBLVhBYCrQ46y+kXJpsaY0gCz/XMxN8CEwGuWBpnDkCSg/eMxXlSR/2zCyQvtmtOQo7kBZnr3TAa0dciZbPwWJivvS7vWftRifPVyeBMnnJzpEmUXyWsbprcP0ZuOAzolTkP0MSoXh/4S2UQfQqHxk0qHGSnKS3XqLMpxXGGRjPATC2qAEQRBEEQ5gIYgE4uIGmB+vx8bN27E4cOHMXToUKSlpeHkyZOoXLkyKlWqFOs0lkpkLweSDJXJjMXw2zTUBZMxNzjQZG42Dk41lC05yTQMJplUF0kZmhTM1yRA8GvHXFdeuMAAkYNrYRkDZ4YvDEvx4tYTXOtdm4zyDRVLGUKRtWPRUMOUoUlAFqzH+r0OQy9mdUzp4asvyTYcCcZj5IgVpkXHEZAXFtXLPOQoB+aFvi65DMjMdEwGrEQQvv77BLT4Sza+WWCU92v+pqgnugKmfY4irEqwwK1DkGq50I/NRFI2iIiRUwwZPVheyBIpYOUV1w2wH3/8Ef369cOxY8dQUFCA3r17Iy0tDfPnz8fly5fx/PPPF0c6CYIgCIIgygyuG2APPfQQ2rdvj6+//hpXXHGFfv7WW2/F3XffHdPElWZ4sgyebPM/oC7toa97zbmz7RGgG303nq/0gpkMMK9JARNMqou2ryleqr27FpUAhutGKssWCYLyHN1FhMwDVC9jAV4OxgN7PcayQSzQTkUzwvcYKpbikgIBilhQBUwAuMj1eBWbF8NGzVDAuGXKPUxKXpEEyQstGqe8YKpxvd3myzEvAMBv5IUaDUEERfY6Hwe4cRG5zU7S+O51+y+Lq5bg5eLo6ODLY9V/fmEEv4IwIydpFTaMvNCOVbgcv5qBRzkESQpYbHHdANu8eTO++OILJCUlWc7Xq1cPP/30U8wSRhAEQRBE7OCA0emM8H4idrhugMmyDEkKnDh74sQJpKWlxSRRZYJkSdksXR3oygugFgSZGdIIZ+CSsaQNd7I10lQYm+oiMF3AgeDXfajqz9F7PZxD4MzaEwsyK0pRv6yXPjMtKN15iLGUiizalh8SrYpXgCJmV8A0xcumgOn2X7orDG6aDcYV+6qgv8VeXYSRF4C6PFPReQEo+eGUF1Cj0/ICoGUniNDse2ICms5W7b5E4HvV9UPjBYsDFDCLXaQIw+ZLgFEuABwdEcVsWruCT7ii3ksLgGS1DrErkXpVxAGZHFGUV1z/T+jduzeeeuop/ZgxhvPnz2PGjBm46aabYpk2giAIgiBihOYJP5qNiB2uFbDs7Gx0794dzZo1w+XLlzF06FAcPHgQ1atXx7/+9a/iSGOpRPTKEJKsPUiuqi76OLrMLCoMZKbPToTMAMmwsVJsjYylaZjAdKUFqvqlKy9cMQPRFScOfYakfWkf+5A+44bsxSRl5o5uE2YrfPblUBS/YOqxqccuiwD3BNqAGcfcpIapCpemgIkcXOCGXZXAwUyKF7MfB8w00uzZbGkPlhda2DDyAlCf75AXgKpKcsMlU84SY4YbQTjB1TLx/aOm2c9eU7kAlLKhlgtAVV+1fVVlOTos+qWrjo6YgvrL5yn7MYivvFD/tScBACzJNLtcq6e0Y1N1xPzxtQGjWZCJg+sGWJ06dZCTk4N//etf2LVrF2RZxqhRo/DnP/8ZqampxZFGgiAIgiCIMkVEfsBSU1MxcuRIjBw5MtbpKTN4kvwQk5RpicZEO2ZRXTgHuCzoSguXTfKJrCx0rdl8cYkpvSeTx2tNDtZnPWqusrhm96UeC9b7LEv9QBF8zP0abTFpcK54drf9ti5/VGZHbf3vZFyftViPd9cLRq+95cRsQ9XyaJ7x1Z+m2YB5VLsVj9G75x61dy9qvXuub8ax+khBBmOwKWA8pEheVF4AAJfDzAtA9bkUmBeAoX7tfZKULyI8zMqXxg/jJyozEnU7SacyYahhTIidouJJ9scsrvJAgzfmQvAG5oVeT+kKmFFPSf74vWOZM2XlkyjuJ2JHWA2w999/P+wIBw0aFHFiipu5c+finXfewXfffYfU1FR07twZTz75JJo2baqHycrKwmuvvWa5r0OHDti2bVu8k0sQBEEQMcNkYRLx/UTsCKsBdsstt1iOGWPgtpxg6qC20wzJRGHTpk24//77cd1118Hv92PatGno06cP9u3bh4oVK+rh+vXrh2XLlunHdpcb4ZCS7IeY7LN8sNr4uyQz/VjmsqK2AJBlpqswsqTYHWnGRVxgABPAtdl3JnsnQVVgzLMeuWktQ5jWJ/zqJevabl1uXwSA27zxq8+QufIQk4f4G25ZAHgN+ezLV53XiguY5Wi2AfNwRQXzGD166GqZDCaaevQihyByvScpmHr7AlPsKkST/Qszue+224OFkxeAon6FkxcAwCXnvAAUJYwqLCIWHL13Muq/qtoWCVwvF8qxDMGkhgkxdGHv9SZufZ5oNHrzCYhJznmh1VPMdKz8BSSJVMbySlizIGVZ1re1a9eidevW+Pjjj3H27Fnk5eXh448/Rtu2bbF69eriTm9UrF69GllZWWjevDmuvfZaLFu2DMeOHcPOnTst4ZKTk5GRkaFv1apVK6EUEwRBEERs0Dqe0WxE7HBtAzZ+/Hg8//zz+P3vf6+f69u3LypUqIAxY8Zg//79MU1gcZKXlwcAAQ2sjRs3ombNmqhSpQq6du2KOXPmoGbNmo5xFBQUoKCgQD/Oz88HAKR4fPCoSpH20cqq53VNIZFkAbLMIGlKi8wgqfZXgsggSwJkvyatCOBM1pVGcx9XBlPsvjRbMlHdV49ls3d2B8wdZvMsSEiKERMzyTihOtetH8zWZ/qZ17QrivpLF+hqGPMoapfg0d6DDCZwiCYFzL4vwOhNCjYVzE5ReWHeLyovlGcyx7wAlDzYP5vsv4jYwDzqd+/herkAoJQBh/1YsP/WGTGLq6wjeqWgeaHVU4ZSbtRTfo8vbmmkWZCJhesG2OHDh5Genh5wPj09HUePHg15r1sliTGGXbt2oV69eq7uCwfOOSZOnIjf//73aNGihX6+f//+uP3221GvXj0cOXIE06dPR48ePbBz504kJycHxDN37lzMmjUr5ukjCIIgiFhCRviJhesG2HXXXYfx48fjjTfeQO3atQEAubm5mDRpEq6//vqQ9549exZPPfWUYwPODuccY8eOLTabsgceeAB79uzB5s2bLeeHDBmi77do0QLt27dHvXr18OGHH+K2224LiGfq1KmYONGwg8rPz0dmZiYqeAvh8RpqC6DaGcGkeHFlX1Kv+yUBsnrNLwmQBK5LV7IfUB1f6c/SvXNxze5LfY6szDrUJ0NJhg1Y2/uyses5B1VGX//RmAXJtKmU3BzGWgDbj1JmQcpJDNy9qZyCl4OJqqIkcggeGaLa2xcFGR5RhqD+GI8oQ2SmXiUzKWJQepWhbGCKygsAkDgLLy8AwxZMjd+8esD3U6z2cc0ezca+J0gRI8Kj/rL5yo4o4+hdj+DI/00FAFz99mN6uQAAwbQvmsoDER+uWal0wJO9ctC80OopQ6036im/t7AEUk0kAq4bYK+88gpuvfVW1KtXD3Xr1gUAHDt2DFdffTXefffdIu+/8847gw7n2XnwwQfdJi/seN9//3189tlnuOqqq0KGrV27NurVq4eDBw86Xk9OTnZUxgiCIAgikaBZkImF6wZY48aNsWfPHqxbtw7fffcdOOdo1qwZevXqpdsnBUN2uer7uXPn3CYvJJxzPPjgg1i5ciU2btyIBg0aFHnP6dOncfz4cV3tC5eKXh+8XuvK87Kquvg1ZUUWIHHBUF4EAT51XxAE+CVRtxOQGIfMBGPZSC7oWpTMFbsjWbOjkpkyk1HzrWX2WG/Loi/+Mwk3/mGBsZyizBXbLwCQZUBiJkXMem+HYYuBZFO8DGgxJVu5NQnY93iYao8oQ9DtWxT1S+tFekQJHlGGVzAUMa1XKTIZHkHZAEUBM6tfdiUsnLwAFBuwcPICUJeNNOXFD2MnB/2ZpH4Rbgi2jqPXI+nlAgC85jIhyBBZbBSw3hsn6OVD4gI+67kgJvGWJZq/NxNJ6kxRrZ5yygutntIUMK1uEhiHzxtPG7Do7LioARZbInLEyhhDnz590KdPn1inp1i5//778c9//hPvvfce0tLSkJubC0CxX0tNTcX58+cxc+ZMDB48GLVr18bRo0fx6KOPonr16rj11ltLOPUEQRAEQZQVXDfAZs+eHfL63/72t7Dj+v7777Fx40b88ssvAeqYm3jC5bnnngMAdOvWzXJ+2bJlyMrKgiiK2Lt3L15//XWcPXsWtWvXRvfu3fHWW28hLS3N1bMqeArhVd+uzA07I7PqInMGPxdQKClOsCRZgKgupuhjYuC6hiZkML03wmQOblqfUPN0b17vUfd8z4B2o7Ox88UgagznYGpeMIkrTsGCdXsYwLVEah72NaXNxTLvR+96BI3//TgA6OqX16P0KpNECV5RgldQjkVBRpKo9jiZYgNmV8AEkwKg9TRlffZj6LwAgEJJdJUXP9xF6+QR8ePbP8zE9asfhVctB15B0lWXJFGCJ0oFbPCWsQCAdd2ejS6h5QCvR9LrI62ecsoLrZ4yK2BaPeXzxM8GLN6zID/77DMsWLAAO3fuxKlTp7By5UqLX9F33nkHL7zwAnbu3InTp09j9+7daN26tSWOgoICTJ48Gf/6179w6dIl9OzZE88++6zFfOjMmTMYN26c7jR+0KBBWLJkCapUqaKHOXbsGO6//35s2LABqampGDp0KBYuXBiRn89Y4boBtnLlSsuxz+fDkSNH4PF40KhRo7AbTi+++CLuu+8+VK9eHRkZGZbhS8ZYsTTA7M5j7aSmpmLNmjUxfy5BEARBlDQcgUvLub3fDRcuXMC1116LESNGYPDgwY7Xu3Tpgttvvx2jR492jGP8+PFYtWoV3nzzTVxxxRWYNGkSBg4ciJ07d0IUlU7y0KFDceLECd0X6ZgxYzBs2DCsWrUKgOIgfsCAAahRowY2b96M06dPY/jw4eCcY8mSJS5/Vexw3QDbvXt3wLn8/HxkZWW5GqZ7/PHHMWfOHDz88MNuk1AqqCQWIMnDdT9TgDq7ThYhi+qsR1mEnwt6L8nPBTC/dZaMYSsgwtxP4iZZiysOrYxZkCIHl5ihQgmmiYxOHRhTqWSKUZNyIMsAZ7pn/FClV11aUbc7c+v/6tAdfwUAtHx/BvYOmoWOa5QZXx61V5niUbxFe5hVAfMIkt6r9AgSRMbxUvtXgz7n7q+yAATPCy1ep7zIGfCYHk/Td2Zb0k0Q8STJ49dV4RSPX69D3ChgY74aDgBY2t669NrbnUn5CpcUjx8ekxIZLC+0esqjKflavQ6OQrH0zYLU/F1qBJuM1r9/f/Tv3z9oPMOGDQOAoC6s8vLy8PLLL2P58uXo1asXAOCNN95AZmYmPvnkE/Tt2xf79+/H6tWrsW3bNnTo0AGAIvB06tQJBw4cQNOmTbF27Vrs27cPx48fR506dQAAixYtQlZWFubMmYPKlSu7fgexwMVAUXAqV66M2bNnY/r06WHfc+bMGdx+++2xeDxBEARBEEUQK0/4mZmZSE9P17e5c+cWS3p37twJn89nsTevU6cOWrRogS1btgAAtm7divT0dL3xBQAdO3ZEenq6JUyLFi30xhegOJAvKCgIWAknnkRkhO+EtixRuNx+++1Yu3Yt7r333lglIaGo4ClEsifQ/sgnCLodkk8Q4JdFeJiSDYWyqKs5hbKMghCz+Lgs6J7amcgBkYGrsxe5wAJswHQhzryv8tn7f0GP3vO0hyi2XwCYXwYEQfEFBsUvWICLLVu8386Nbqbf3kGKT50kVfFKFv1IEgw7iyRBQpKgqmGCBC+TdVsK834wKorKqgXB8gIAPMxTZF5oM9AIoiRI9fiQJBh2kvq+4IdHkIKqW2YqegqCXgvGrV/cD0CxkyxUy8u6btmu4ykrJHn8SBaV+kirp+x5ARh1k1e3CZP10Q1PHD3hx2oM8vjx4xbVqLhcMeXm5iIpKQlVq1a1nK9Vq5Y+iS43N9fRtVXNmjUtYWrVqmW5XrVqVSQlJelhSgLXDbC///3vlmPOOU6dOoXly5ejX79+Yd/buHFjTJ8+Hdu2bUPLli3h9XotYceNG+c2aQlFJbEAyeo/aa3hJEGAn4uG41VZRAHz6IXUI3sgMOU9CFJg40v2SIa/VI+kLz0ky0xZ0NpmhK83jkK4odDYsE4xJO/T6TFl6BEAJBmQZWMpohBtDu7QsIsGrVJLEf1IEiWkiEollST49UosWa3gNDl/4bVvFRlvJbUBFiwvAKVhFyovrl/9KLweMdqfSBQjDf/5BH4Y+mhJJ6PYWNctWzeWTxF9eqfEy2S9XADA5K+HBC0XWllww8ou/wh67frVyvv+st8TruMtrSSLfqRoDTC1nrLnBWCYR3iYOgQJowHmFePZAItyPUf13sqVK5fYsB2gtDvsduOxCBNvXDfAsrOtvR1BEFCjRg0MHz4cU6dOdXVvpUqVsGnTJmzatMlynjFW6htgBEEQBEFETkZGBgoLC3HmzBmLCvbLL7+gc+fOepiff/454N5ff/1VV70yMjKwfft2y/UzZ87A5/MFKGPxxHUD7MiRIxE/LJp7SxuVxAKkiBIkMH2YS+ICZDD4TO4NPIKEAlnJBtHsRBSBChjn0I3GZVlQhh6ViAFB3QBFCRO47iKCM5Pype53uEtZQmj769blciDZHbEax8bSRPrCOwHxxooUiwLmR6pJAUvWe5gSvEzCnFbvhB2vFnb2N4Mc8wIACmRPyLyItId/9ePZ+P6v5Iw1HpRl9UtDM5a/+6ssXXVJFvx6uQAUw/DZ3wzSHYIKTIaofs9pMRJxb/78QVyWPPiyn/NQZKO35uDwkGmxeViCkWJRwJR6yp4XgFpXmSYMieqQpAgOr3p/PChtnvDbtWsHr9eLdevW4Y477gAAnDp1Ct988w3mz1eW6urUqRPy8vLw5Zdf6sshbt++HXl5eXojrVOnTpgzZw5OnTqlO1Vfu3YtkpOT0a5du/j+KBOujfBHjhzp6KH+woULGDlyZNjxzJ49GxcvXgw4f+nSpSJ9jREEQRAE4Y5YGeGHy/nz55GTk4OcnBwAigiTk5ODY8eOAQB+++035OTkYN++fQCAAwcOICcnx+IkfdSoUZg0aRLWr1+P3bt34//+7//QsmVLfVbkNddcg379+mH06NHYtm0btm3bhtGjR2PgwIFo2rQpAKBPnz5o1qwZhg0bht27d2P9+vWYPHkyRo8eXaJDqa4bYK+99houXboUcP7SpUt4/fXXw45n1qxZOH/+fMD5ixcvYtasWW6TlXCkCgWoIBQgTbiMSqKypal/K3mUrYJYiApCISqIPlQQfUgVfEgVlS1F9Cnqj6AYdXoFCUkeCV51E0VZ3wRRVg3xlY0L3LDJsm9FwFRHrEyWAUn5qxjf8yINOL9ZEDt1R+tZpqjvI1VQtgqiT3lnQiEqiIWu1C8zQfNCzQ+nvIiakjM1IMowL7V/Va9DtHKhfdeWeke8jDThMiqodZO2RcuqG5aENMQvq+oXAL2OMtdT9rzQ80PNizRbXqTGIA8Sla+++gpt2rRBmzZtAAATJ05EmzZtdD+f77//Ptq0aYMBAwYAUNaKbtOmDZ5//nk9juzsbNxyyy2444470KVLF1SoUAGrVq3SfYABwIoVK9CyZUt9hZ5WrVph+fLl+nVRFPHhhx8iJSUFXbp0wR133IFbbrkFCxcujMdrCErYQ5D5+fngnINzjnPnziElJUW/JkkSPvroo7AX2QaCG799/fXXqFatWtjxEARBEAQRBjxKWxGX93br1i2kA/SsrCxkZWWFjCMlJQVLliwJ6TC1WrVqeOONN0LGU7duXXzwwQchw8SbsBtgVapUAWMMjDFcffXVAdcZY2EpV1WrVrXEY26ESZKE8+fPlwnXFGniZaSKHt3uC1BswCQI8HGl5S6Cw8dECLLmlM86zVAG0+9Vlh5ikAR18WhRgl9S9pkAgHHd7QRjUJyvmpciMruLCMGaHTPQ/2rVOa4sAZJoDPzbClKA/VgMSRINNxSKGqU4K0wW/EgRFHswzb4iEioIBY55AQCCzB3zQpt1FqmjSjfLMxGEG+wzHZ/+Thme8TIJIoxFoQXwmC3WTSj1lDZjW6unNBvVFMGn11HJ6r6o1isik/W88JANWLkl7AbYp59+Cs45evTogbffftuiUiUlJaFevXoWJ2fBeOqpp8A5x8iRIzFr1iykp6db4qlfvz46derk8mcQBEEQBEGUHsJugHXt2hWAYkRXt27diH1nDB8+HH6/0uLv1auXZUHNskQqK0QFQYKsql6AsvyNbFFdZPi4J6TzUM2HmF8Q4BcFfdaeKHB90VdJkMEEBi5ojljVGZBhqF6/H7wQm9+ebHuo1Q+YPgtSVhyxfvFfW/hiQJv1aO9VVhALkMKU/QnXrI04/gpCAYY12aYfP/NdD/i4UhyC5YccoXTfMFuZcSqWoL8Zonzx0O8+AQC8drAzhjfZop9/69B1RTorJsJHs/tS9pV6qoLqXy2F+eFlVjVM0BUwrvoCk4EolHzXxHsxSCIkYTXA9uzZgxYtWkAQBOTl5WHv3r1Bw7Zq1aroh3o8GDt2LPbv3x9+SgmCIAiCiJhIZjLa7ydiR1gNsNatW+vu/lu3bg3GmKNhHWMMkhRea75Dhw7YvXs36tWr5y7FpYSKQgEqCKJqA2YoYD7u0XtBgsBxWV1IGwBg8ssjQ4AEBp+gnPQLEgoFUV+A1yeIEFXFSxA5ZIGDmRUvwWb3ZS43tjLUrd+T8J5XemrrNk/Tlx6CLCtLE3FNAUPcjAC0BbUnfz0koFeZLETvOdqsfgFABaFQyQtAyY8QeeGWHyYotnKNnyy/S7YQJYNZ/QKAIY134KMjLSznVv2gdJplCHodpYUlQpMkGDZgWj2lKfTJgg8pTLNX9SOJSboiJjLFzlRkMpgQRwWMSCjCaoAdOXIENWrU0PdjwdixYzFp0iScOHEC7dq1Q8WKFS3Xw1HSCIIgCIJwAQ0jJgxhNcDMKtWPP/6Izp07w+Ox3ur3+7Fly5awFa0hQ4YAsK75qClrbpS0RCWZ+ZDCZIApsx8Bxdu6l0vwqjZglzmHyGV9ZgxkQFZnOcqcQRIY/KrqUiiISFJVMAAQBRmCagPGGFdmQuqe8AEwDpg84QddC5IrQS3Klqy+e0nCxz+UrJ+Uhde+hTnfDtR7lRWEAn0WZCxJEXwQ1cU1Rcgh8yJiSL0nEoCbGnwDANhwVHFSqX2XEhf0OooIj2TBj2RV5UoRfEhhft23mnkWZAorVGZBqvZ3Xhj7UhxtwGgIMrFwvRRR9+7dcerUqQCfX3l5eejevXvYDafytCwRQRAEQZQ4ZISfULhugAVzoHr69OmAYcRQlFXbL40U5lcUMECfBZkECYUQDT88MiDCo69HIKm2RoDaG+XG+oSK+iUjSVTXK5RkwwaMqTKWbvOlzYJUS4vT7Dt7QTIdf3w0sWyVkgWfbveVYrKriCUprFDJCwAQQudFpByaQutAEolDj/oHLMefH22s11FEeHiZpM/Q1uopTaFPYT7rLEhISFLVLsHkm02iWanllrAbYLfddhsAZZgwKysLycnJ+jVJkrBnzx594ctwOXz4MJ566ins378fjDFcc801eOihh9CoUSNX8RAEQRAEURRhrkkX8n4iVoTdANMcpnLOkZaWhtTUVP1aUlISOnbsiNGjR4f94DVr1mDQoEFo3bo1unTpAs45tmzZgubNm2PVqlXo3bu3i5+ReFRgPlRkiooiMcOWSIDJ5ksARM4hycr1FOaDrKpVPkFEMhd1n2GFggdJgh+Fqrd2DzN5txY4BIFD0hUv5Y95uD7Y0D1TJWmWwC6OU5h5NpFULLOzUgQfbmuw23Lume96AAjMi1jRakI29mSTKkYkBimCX6+jIuHur7IAGDOYywPzr/0P5u67CYBRT+l2X4JJAWM2BUz1AyaCg8dTAaMhyIQi7AbYsmXLAAD169fH5MmTXQ03OvHII49gwoQJmDdvXsD5hx9+uNQ3wAiCIAiCIILh2gZsxowZMXnw/v378e9//zvg/MiRI/HUU0/F5BkliZfJ8DLAC0BSe5Q+CErPh1t7PCmq6iUxBq+qcKUwP3zMo/emPEyCh8nwqDMfRcGwARMFWZkJqSpgMnM2+woGMy0Q1v+aqfh4/9ygYXv0nocN6x4JP/IY4DX5z0lhhcXyDCe7MmMGk5IX2a3fjOkzSf0iEonr6h7FrmN1FZvSMMje3wcAcE5KwXkpGR6WAgAYtv1uLO/wUrGlM9GY2uwjAMALB7rCy/x6HaXsm+3BjNEPZZ/r+3GDFLCEwnUDDAD++9//4t///jeOHTuGwkLrP8Rdu3aFFUeNGjWQk5ODJk2aWM7n5OQEzLAkCIIgCCJKOAtujxLu/UTMcN0A+/vf/45p06Zh+PDheO+99zBixAgcPnwYO3bswP333x92PKNHj8aYMWPwww8/oHPnzmCMYfPmzXjyyScxadIkt8lKOJKZjBQGSGAQVXVJZBw+zk1+dyTFT5hqI5Yi+HQv1F7mh1fwwytrxzIExvXeqWBSvJg2A9IyCxLO9pIBfsBUT/xaJ0zm6J8xVrl08RJYhVQgvbKS3vQKQFpSFG8lMu5pugn/OdwOgKFKxRovAuO9p+kmfV+z84gFzR5VZpnue4IUMCKxSGGSUkeFgaZKa/WUpuQIjGPwlrHIL1Qmap0vTMbFQi8A4FJBEnyXPTjy56nFkPqSRaunDOXcp9crXiYjCZL+jkRwCEz566NZkOUW1w2wZ599FkuXLsWf/vQnvPbaa5gyZQoaNmyIv/3tb/jtt9/Cjmf69OlIS0vDokWLMHWqUhjr1KmDmTNnWpyzEgRBEAQRPSZrk4jvJ2KH6wbYsWPHdHcTqampOHfuHABg2LBh6NixI5555pmw4mGMYcKECZgwYYIeR1pamtvkJCxepm7gurbiAyBCMsbRBQCyYX8kQzB6lUxUbJ9U31MeQdn3qL0ljyDrahhjVkVMUcOcPeFrBDXz4ByQlGdwSQKT5IQodbc32gkAWHfkGnx+tDEA4Ib6h2IWf4rqyycYmp1HTFDzotXEbHguKvu7nic1jCh5mmX+pO9/fSxT9wl2WfbgMvfiIldUrXwpBV6m7Gv1lOYnT6unNHtVpW6CaZ+j3ivzAQA/jpwSl98VL25vtBPrjlwDQFHVtXolCRJSmARBfQ9ecIjafjxH9cgGLKEQ3N6QkZGB06dPA1CcqW7bpixqfOTIEccFusMhLS2tTDW+CIIgCIIgQuG6AdajRw+sWrUKADBq1ChMmDABvXv3xpAhQ3DrrbeGHc/PP/+MYcOGoU6dOvB4PBBF0bKVdlKYgBQmwAuGJKZsKYzDyzhSmNIbSlL9wmibl/lN+4Gbh0kQmKxs4OpMSNlQv1Sly90MSGUWpLaBc3Aug3MZkJV9TbdmnGPD+vjOgLTTu8F+/R19fSwzZvFeV/cotv/YANt/bBCzOAmiNHNt3eNKHQUJN9Q/hN4N9iu2qWo95VRHWeopcL2e0uxXtXqKqVv9Z0t2rdniwFyna+8vhUlq3a9sSYzBC6b/n4gbmhF+NBsRM1wPQS5duhSyrEjL9957L6pVq4bNmzfj5ptvxr333ht2PFlZWTh27BimT5+O2rVrOy5vRBAEQRBEbNBWrYvmfiJ2uG6ACYIAQTBa7HfccQfuuOMO1w/evHkzPv/8c7Ru3dr1vaUBDwR4Vb9fsjZwzgEwwybMCxkSJBSqHtZFyLoNmMi88Ko9SQB6D9JjPoYxC5KZ7Cy0dSH1zkrAzEeHBGvDx5wDsravqGCWawmANsso1v5zimuGpZ19cxR7r1YTs8mmgkhorq173HJ8U4NvAADvHG4DkSkzG726Mm/M0PaYj2Gdsc00G1UAYEDD7MX4YcLEOPya+CDovr6MWY+CahMsqpWxlzEIYBDBIvMFFSlkA5ZQhJX3e/bsCTvCVq1ahRUuMzMzYpux0kCV2vtRuXLlgPMnf6oDr/oVy1CmIWvLU/ggQWSacz5JX6oCgL7v5IZCa4hF3D3hMBpXpgYXl9VhSbVBtuarmZHFH2Pa1j1WrPFu/7EBOtQ7UizPMLNnMRneE6UTkXG9w6LVTZqTUa2eEkyNLsH8n9uhnrp6juKaxXPR6KCUVrTJQV8fyzScrYJDBINX7SULYPCqFkACra9YbgmrAda6dWswxopsMDHGIEnhqQhPPfUUHnnkEbzwwguoX79+WPcQBEEQBBEh5Ig1oQirAXbkSOzVgCFDhuDixYto1KgRKlSoAK/Xa7nuxqdYacLLGCRTr0iCjEJN5eLcGIKEF6JqcA9oQ5D2Y8MNhcWEjpm2onBqU6s2fsoQZNl1EvjryStRo85PAecFxrHp6NXoWv/7iOJt/t5MAMDly14cHjItmiQSRELiZX6IUOpsrZ4y1Hn7sWEewexmEQ71VKuJqhp2Adj1QulVw8zDt8d/qg0vY471DfLzAaTHJ1E0BBkVkiQhOzs76EpAbtstYTXA6tWr5yrScCgL6z0SBEEQBFE+mDVrFl566SVMnDgR06dPx7Rp03D06FG8++67+Nvf/uY6vrja/5kZPnx4WOHmzZuHe++9F1WqVCneBMUJew/owPE6uu2EAGOxVt3VhKaOqT1K0dSr1LBM8Q4X83CythwRoKhe+q4S5uMfyt5UcUDJi9yf6gAAMq48qZ+/ru5R3dlruPT8VDEivlCYDIEpyzW5yg+CKEWIMKnxaj0lmtR50aTQa+e0v27KRcc/L8K2FaV/abrMK0+VdBIUSAGLihUrVuDFF1/EgAEDMGvWLPzpT39Co0aN0KpVK2zbts31Kj5xdEASGU888USZHY4kCIIgiLjBY7CVY3Jzc9GyZUsAQKVKlZCXlwcAGDhwID788EPX8SV8A6wsz5QEoC/Iau5BAurMIt2WQlXDzD1K20wjC9HaSZoXDCvj71/j+E+1LceiSxcXTnlx6I6/Rp0ugkhURFWxF011lLme0o6D1lFkz02UMq666iqcOqWomY0bN8batWsBADt27EBycrLr+BK+AUYQBEEQRAwgT/hRceutt2L9+vUAgIceegjTp09HkyZNcNddd2HkyJGu44vIBuzs2bP473//i8OHD+Mvf/kLqlWrhl27dqFWrVq48sorI4myXKP1EEVu85cD6DZhethwNWCnWZHhYLENk7E6f1mYN5ZONNuv4z/VxsETij3YZS5AhFdfVLd3g/0h47h9y30AUoo1nQSRCGhLdQm27z3qeiqY02gANw5aAAD47P2/hJtMIgjkCT865s2bp+//8Y9/xFVXXYUtW7agcePGGDRokOv4XDfA9uzZg169eiE9PR1Hjx7F6NGjUa1aNaxcuRI//vgjXn/9ddeJIAiCIAiCKE107NgRHTt2jPh+10OQEydORFZWFg4ePIiUFKMX1L9/f3z22WcRJySRePbZZ9GgQQOkpKSgXbt2+Pzzz4vtWaJd8WKyunF9SQvtfDDMSxHFYklNLsvgsox18n+ij6yUkHnlKd0WT0PLCzcYecHR5D+PxzqZBFFi7D1+lb6v1VHmeipUeTGXi0jrqJ7dnojsRsKAjPCjZvny5ejSpQvq1KmDH3/8EYDiVuu9995zHZfrBtiOHTtwzz33BJy/8sorkZub6zoBRXHDDTcgNTU15vEG46233sL48eMxbdo07N69GzfccAP69++PY8eKZ/kbgiAIgiASn+eeew4TJ07ETTfdhLNnz+or/1SpUiUi36auhyBTUlKQn58fcP7AgQOoUaNG2PHs2rULXq9Xn9L53nvvYdmyZWjWrBlmzpyJpCTFl9JHH33kNolRsXjxYowaNQp33303AKVlu2bNGjz33HOYO3dusTzTroIFw6yIBZ0B6RJ9TVyT7dea869FHW9pJpz8mPL17QCAs74KEFhqWHnR8KnF8Fxk8FxUjvc9Xnq9fBPlix9O1IYYZn9dgOEPzPw3Usq73VEsMa+DHun95ZklS5bgxRdfxC233GKxB2vfvj0mT57sOj7XCtgf/vAHzJ49Gz6fD4Cy/uOxY8fwyCOPYPDgwWHHc8899+D775WlXn744QfceeedqFChAv7zn/9gypQpbpMVEwoLC7Fz50706dPHcr5Pnz7YsmWL4z0FBQXIz8+3bARBEARBlC2OHDmCNm3aBJxPTk7GhQsXXMfnugG2cOFC/Prrr6hZsyYuXbqErl27onHjxkhLS8OcOXPCjuf7779H69atAQD/+c9/cOONN+Kf//wnXn31Vbz99ttukxUT/ve//0GSJNSqVctyvlatWkGHV+fOnYv09HR9y8zMjEdSi42Pj2aXdBLKDAdvV/yA1X9hIeq/sBA/jJ+I7x+dgH2PTwhL/epfnxQyIvbIuVfrW2mjX2v3y70QJsgNRVQ0aNAAOTk5Aec//vhjNGvWzHV8rocgK1eujM2bN2PDhg3YtWsXZFlG27Zt0atXL1fxcM4hqws9f/LJJxg4cCAAIDMzE//73//cJiumMJuVKOc84JzG1KlTMXHiRP04Pz+/1DfCCIIgiDIILUUUFX/5y19w//334/Lly+Cc48svv8S//vUvzJ07Fy+99JLr+Fw3wF5//XUMGTIEPXr0QI8ePfTzhYWFePPNN3HXXXeFFU/79u3x+OOPo1evXti0aROee+45AIrEZ1eg4kX16tUhimKA2vXLL78ETVNycnJEHnDNSGGOrMsmwVLmDHIMeiNaFDwW0ydLOQ2vUjwcm2d7BWP+tcoM0TFfDQ87Lxo+tRg/jJ9YZDgzfSspa6bKFy9CqFABANnoEdEhZHwf0X1u6ymtTERbT5lv54zpyrD8v9+oLBBxZcSIEfD7/ZgyZQouXryIoUOH4sorr8TTTz+NO++803V8rocgR4wYoa9/ZObcuXMYMWJE2PE89dRT2LVrFx544AFMmzYNjRsrix//97//RefOnd0mKyYkJSWhXbt2WLduneX8unXrSixNBEEQBBETyA1FxPj9frz22mu4+eab8eOPP+KXX35Bbm4ujh8/jlGjRkUUp2sFLNhw3IkTJ5Cenh52PK1atcLevXsDzi9YsACiKLpNVsyYOHEihg0bhvbt26NTp05YunQpjh07hnvvvbdYnmfvVUpcUP8yi+KlnXeCc6Zukadjze5Zkd9cxmiZeQLbf2ygv/N3DrfBOTkVw5s4T8Qwo+VFLPj4aDb6VTY6NUxQ0tO//gTIVStTnhFxw6mekjSFC4J+LhhamYi2njLDBAG9BWU2cnnyWRgN5Ak/cjweD+677z7s36+sjFK9evXo4ww3YJs2bcAYA2MMPXv2hMdj3CpJEo4cOYJ+/fq5erjTkkb79u0r0SWNhgwZgtOnT2P27Nk4deoUWrRogY8++gj16tUrkfQQBEEQBFHydOjQAbt3745ZeyDsBtgtt9wCAMjJyUHfvn1RqVIl/VpSUhLq16/vyg3Fnj170LNnT1SpUiXhljQaO3Ysxo4dG5dnNbnqJL4+phjtS2CQ7T1N2yix/XpQuG2/HPdcIsEpL57+Tplo8tDvPtHPLW1vtUHpuGZqYGRhvvsbBy2AN19x77J+46PWi8z0HagKtOYZ3FfZS+vkEcWOzJmuhMW8nrL/DYV5BEYtF/0qjwC7oirkKmkAAH96cmAZIuJuhP/ZZ59hwYIF2LlzJ06dOoWVK1fqbQlAGVGbNWsWli5dijNnzqBDhw74xz/+gebNm+thunXrhk2bNlniHTJkCN588039+MyZMxg3bhzef/99AMCgQYOwZMkSVKlSRQ9z7Ngx3H///diwYQNSU1MxdOhQLFy4UPc5Gg5jx47FpEmTcOLECbRr1w4VK1a0XG/VqlXYcQEuGmAzZswAANSvXx9DhgyxLEMUCRMnTsSIESMwf/58pKWl6ef79++PoUOHRhU3QRAEQRA24twAu3DhAq699lqMGDHCUaCZP38+Fi9ejFdffRVXX301Hn/8cfTu3RsHDhywtAtGjx6N2bNn68f21XGGDh2KEydOYPXq1QCAMWPGYNiwYVi1ahUAZZRuwIABqFGjBjZv3ozTp09j+PDh4JxjyZIlYf+eIUOGAADGjRsXcI0xpnvGDxfXNmDDhw93e4sjO3bswAsvvBBwvriWNEpkrq17HADw+dHG+jkJAiQuQFbtKmQw3eZCOw46u8hFISHlxJnO9X7AmiOKXxcJQlj2XwCwrW/kqyU45cXq/GX6fr/0kUHv7fjnRSispHwru14g/2FEbJG5ogqb7bwkk+2XzAVd9TJsw0LMgoyFIm9RwgKfceOgBVS/FRN2h+PBvAH0798f/fv3d4yDc46nnnoK06ZNw2233QYAeO2111CrVi3885//tCx5WKFCBWRkZDjGs3//fqxevRrbtm1Dhw4dAAAvvvgiOnXqhAMHDqBp06ZYu3Yt9u3bh+PHj6NOnToAgEWLFiErKwtz5sxB5cqVw/rdR44cCStcuLieBSlJEhYuXIjrr78eGRkZqFatmmULl1gtaUQQBEEQRNFoRvjRbIDir9PsgDySZfqOHDmC3Nxcy8ozycnJ6Nq1a8DKMytWrED16tXRvHlzTJ48GefOndOvbd26Fenp6XrjCwA6duyI9PR0PZ6tW7eiRYsWeuMLAPr27YuCggLs3Lkz7DTXq1cP9erVw4ULF7B//358/fXX+rZnzx7X78C1AjZr1iy89NJLmDhxIqZPn45p06bh6NGjePfdd/G3v4XvpVhb0ujf//43gMiXNCpLyBD0XqXWo5T0XqWg2GA4+NbR/FC5mn1Hfr+KxJwXscCtDzA7q/Ne0ff7tpsRVAFoNTEbexaTCkbEDgkMEgRjxiNs6rxJHdPqKXsdpf2NuJ5iTJEMTPaQTLDZgwkO9xEG0XqzV+89fvy4RTWKxBemNtLltPLMjz/+qB//+c9/RoMGDZCRkYFvvvkGU6dOxddff627i8rNzUXNmjUD4q9Zs6b+jNzc3IDnVK1aFUlJSa5G3H744Qfceuut2Lt3Lxhj4OqUXs0zRLEPQa5YsQIvvvgiBgwYgFmzZuFPf/oTGjVqhFatWmHbtm2OY6NOLFy4EDfddJNlSaPc3Fx06tTJ1ZJGZYmu9b/Hez+0BuAwBMmZ0iizHGtTu2Gd2k0+W2LCTQ2+iUk8R+91v0irKxzq02bTlCWl9s1RGmL1n1uopOW+Yk4LUSbxaR1A9WPzcU/gEKTeyLIfG64n9HrK/LeoeipYe0EQjMaY4NBJYkDH/1sMACisyGhoHoiZDVjlypXDHrYriqJWnhk9erS+36JFCzRp0gTt27fHrl270LZtW8c4nOIJJ0xRPPTQQ2jQoAE++eQTNGzYENu3b8dvv/2GSZMmYeHChWHHo+G6AZabm4uWLVsCACpVqqQ7ZR04cCCmT58edjyxWtKIIAiCIIjShWbTlZubi9q1a+vnQ608AwBt27aF1+vFwYMH0bZtW2RkZODnn38OCPfrr7/q8WRkZGD79u2W62fOnIHP53O18s7WrVuxYcMG1KhRA4IgQBRF/P73v8fcuXMxbtw47N69O+y4gAgaYFdddRVOnTqFunXronHjxli7di3atm2LHTt2RCRD9ujRA507d0ZycrKrlmhZRRti9HFRUcG0IUh130nK16d8RyAt3/iHBfjsPTJULYpnD3RHnqTMvJna7CP9/LDtd+NsYSrOFSrf/sae7ntBEcFYcGXAAVK+iGi4tu5xfH60MXxccZItcWbsq3WTroip9ZSh0NtcukQ6BMagDkOq9zNmDEFq57X/IfSvxJFEcsSqDSuuW7cObdq0AaAsabhp0yY8+eSTQe/79ttv4fP59EZbp06dkJeXhy+//BLXX389AGD79u3Iy8vTV7DRRtZOnTql37d27VokJyejXbt2YadZkiTdBVf16tVx8uRJNG3aFPXq1cOBAwdcvwPXxi233nor1q9fD0CR46ZPn44mTZrgrrvuwsiRwWdp2ZFlGY899hiuvPJKVKpUSZ9dMH36dLz88stuk0UQBEEQRCjivBTR+fPnkZOTg5ycHACK4X1OTg6OHTsGxhjGjx+PJ554AitXrsQ333yDrKwsVKhQQXdFdfjwYcyePRtfffUVjh49io8++gi333472rRpgy5dugAArrnmGvTr1w+jR4/Gtm3bsG3bNowePRoDBw5E06ZNAQB9+vRBs2bNMGzYMOzevRvr16/H5MmTMXr0aFdDqS1atNCN7Tt06ID58+fjiy++wOzZs9GwYUN3LwcRKGDz5s3T9//4xz/iqquuwpYtW9C4cWMMGjQo7Hgef/xxvPbaa5g/f75ljLdly5bIzs6OeG2l0o6PK1kicQE+LgbYfPnNxzAv72Fa4oMzwNzTsRca6h26ZmzTT/X9KV/fri/GvbzDSwCAG9crKmLbj/6KXTc9XuzpWfPVTH3/xj8sAEDuJ4ji5Yb6h/DRkRYAVBswtS7S6imzOu83H4MFLkWkqWBaPeX0j92pnmImlUtgJhswZr0WTlxEsfPVV1+he/fu+vHEicpEpOHDh+PVV1/FlClTcOnSJYwdO1Z3xLp27VrdB1hSUhLWr1+Pp59+GufPn0dmZiYGDBiAGTNmWJYsXLFiBcaNG6fPqBw0aBCeeeYZ/booivjwww8xduxYdOnSxeKI1Q1//etfceHCBQBKG2bgwIG44YYbcMUVV+Ctt95y/X5cN8DsdOzYER07dnR93+uvv46lS5eiZ8+elnUWW7Vqhe+++y7aZBEEQRAEYSbKIUi3Cli3bt30mYJOMMYwc+ZMzJw50/F6ZmZmgBd8J6pVq4Y33ngjZJi6devigw8+KDKuUPTt21ffb9iwIfbt24fffvsNVatWjciEKqIG2Pfff4+NGzfil19+gSzLlmvhuqL46aef0Lhx44DzsizD5/NFkqwyQaFqV+Hjor5px36zIgYGSTbUMK6qXoAy0yjcTyFG60aXKzT1y8xnPRc4hq33ynywy0o+HR2r2GFpMxQ9lwDPRSXcrucjV68+e+8v+mwvgihONIW+0FY3mesqrZ7SHbPKgsUeDKZZ2+FUP7pYxhi4SeViTAAXjH1o1/WwUf/cskecPeGXB9z4P7XjugH24osv4r777kP16tWRkZERMM0z3AZY8+bN8fnnnwcsavmf//xHN8gjCIIgCIIoi7hugD3++OOYM2cOHn744agePGPGDAwbNgw//fQTZFnGO++8gwMHDuD111+PWiYszWg9TL1XKau9SlnZ12zA/JZepc3BoWZjofUyHXo91DuMDz+OnBJ4Us2LWDpL3fZGcCevjRYthpSiPPTo/ZNi9kyi/GEo9B6rAiaL8Kt1lVZP+S0KPUz7Rt1UlL2qYz2ldfpFAUyzAxIFR/svqudskAKWULieBXnmzBncfvvtUT/45ptvxltvvYWPPvpIV87279+PVatWoXfv3lHHTxAEQRCEQayWIiJig2sF7Pbbb8fatWsthvNu8fv9mDNnDkaOHBmWgV15wmfuYcrmXqZg8a1jVrz0HqWpVxl0ZlHAjEiGHr3nYcO6R2L+Wwhn9j0R39mKhydFtwQSQWjc3khZN++FA10NtV6tp3y2GduyZeajWZ2HLk051lMOdRQARS4QYPEDBk0B0/yAaZKCoJzbvpy+fSJxcd0Aa9y4MaZPn45t27ahZcuW8Hq9luvhLEXk8XiwYMECDB8+3O3jCYIgCIIgSj2uG2BLly5FpUqVsGnTpgD1ijEW9lqQvXr1wsaNG5GVleU2CWUaTfG6zD0BM4vMdhWSLECSjVlG5l5mUPUrCJxWIEg4+nR6DEL+Zaz+tnyui0okNj4u4rLNXtWv11VKPSXpdZUxY1urp4L6KAyBNgOSq+s+MlE02YOJynnTLEjCAbIBSyhcN8A0j/XR0r9/f0ydOhXffPMN2rVrh4oVK1quu3HqShAEQRBEaBJpKSIiBo5YI+W+++4DACxeHOi/iDEGSZLinaSE4DJXhnR9sgcF6qYciyiUPcYsSC7onqhlmUGWmcW7NGAtLMEKDmcgL9EJCGeKPUv/zIeUE5cLgBRlvcmPjz8dEL7DsMVk70LEjcvcC59aN2n1lDZjW6untLpK4oJSPwFGPRWkbnKqp/SZjMwoF8oxM2ZBqud15ctUHRJEohJWA2zixIl47LHHULFiRX0pgWA4NaicsDtwJQiCIAiimCEVK2EIqwG2e/du3Tv97t27g4aLxBU/YaVA9qp/FRswv96rFOGXBRRKyrHZBkzmtl6lPgvSqohZiCCrend5HP5KXny6JjofcEQYMKizvNTuvigY+8HCE0ScKJC9hjqv1lOFus9CpZ4y24DJel3EHGZBsuCNAvt3rZULwFomND9gpvCb35kc1W8sk5ANWEIRVgPs008/ddyPhr///e+O5xljSElJQePGjXHjjTdaFtwkCIIgCIIoC5SYDVh2djZ+/fVXXLx4EVWrVgXnHGfPnkWFChVQqVIl/PLLL2jYsCE+/fRTZGZmllQy485lTQHjXosNmNbDlEyzIGXzzCIZgKqIQUZQT/gBNhZubCVofbWY0/ZeZV1IbS3Ibv2eBAB4GQMEARA0T9+isR9mXARRXFyWvSjghlpfIHssar1kmgUpq7O0ARj1lGaB4uAJ36mO0oJCKxeAUh60DrogKuf1WZCx/b1lBTLCTyzCaoDddtttYUf4zjvvhBXuiSeewNKlS/HSSy+hUaNGAIBDhw7hnnvuwZgxY9ClSxfceeedmDBhAv773/+G/XyCIAiCIBygIciEIqwGWHp6ur7POcfKlSuRnp6O9u3bAwB27tyJs2fPumqo/fWvf8Xbb7+tN74AxcnrwoULMXjwYPzwww+YP38+Bg8eHHacZQFN8SqQPCiUPbpdhWYD5jPZWeg2YBIDl4311hgHINvWVzMXnGCepoPQt80M5ba0pCLDEuFz7fhsiGpedLhrMbwXZHi0Hrw6o4tpXr8FwfAAHgxuxPv1U6SCEcXHYy1X6vt3f5WFQpsNmE+trwDVBkzSFDClntLrJtmq0BdVT3HTTEcmmNUwBq5e18ISRKITVgNs2bJl+v7DDz+MO+64A88//7xunyVJEsaOHYvKlSuH/eBTp07B7/cHnPf7/cjNzQUA1KlTB+fOnQs7ToIgCIIgnKEhyMTC9WLcr7zyCiZPnmwxjhdFERMnTsQrr7wSdjzdu3fHPffcY5lVuXv3btx3333o0aMHAGDv3r1o0KCB2ySWWqZ8fTsuSUnKJntxSfKqKpiihPkkw7ZC8y4tyQK4LIDLTLWtYGCyaS3IIiRnzoCNH08Jer3/1Q8DIgNEBi6wkGGJ6NAnszKAC8o7V5QvdbaXut+3/cySTipB6LzU/lX8q+NSXQUz6imm11PcVk8xF/WUY7nQyoZoKhtqHcUFslUNiv19R7IRMcN1A8zv92P//v0B5/fv3+/Kt9fLL7+MatWqoV27dkhOTkZycjLat2+PatWq4eWXXwYAVKpUCYsWLXKbRIIgCIIgiITG9SzIESNGYOTIkTh06BA6duwIANi2bRvmzZuHESNGhB1PRkYG1q1bh++++w7ff/89OOf43e9+h6ZNm+phunfv7jZ5pRpN+QJUGzDJg8t+JYsu+xVP0z7VrsIviUpvEurMIs7A9JlFUGwr1GOL7Kz+3f560V7T+zecDCR7DXsKsquICS2mKLMVxVC9SXXdO93PkSAa+0XlAzee8c18sgUj4oNWV2n1lF/1WchldZY2YNRTZhswk71qkevYauUCUJUv0dg3XyOcISP8hMJ1A2zhwoXIyMhAdnY2Tp06BQCoXbs2pkyZgkmTJrlOQMOGDcEYQ6NGjeDxlJhXjIRAG3YEoDS+JMMI3yeLKPSL8Pk1uzsBkqRO85YEcImBqYauFmkfCCh0u14I85+yKIALgmV5DyIGhPwHY/zlloWHBX2fM4aePebCn6oaPacKQAWbmE0VJRFnPu2hjFZc9/Gj8PlFvX6SJAGyuq/VU0w2O2KFsxG+HXXZNK5PVBHA1E6JXk+Zyg8RCNmAJRauhiD9fj+WL1+Ou+66Cz/99BPOnj2Ls2fP4qeffsKUKVNcOU29ePEiRo0ahQoVKqB58+Y4duwYAGDcuHGYN2+eu19BEARBEERoyAYsoXDVAPN4PLjvvvtQUFAAAKhcubKrmY9mpk6diq+//hobN25ESkqKfr5Xr1546623IoqztPNS+1dxWfKqm6KAFahboToE6ZcE+CVlcVsuKRtk+wbF0JUjYHNVgFTDVm1bv2FqMf3y8kOzv2Zb8sLSI2VMcTWhTqk3v3t7XnBTWG3YJWi8BBFHtHpKlpleTznXUXCsp2D6hgEYQ4vByoWpbHBmKhsEkeC4NsLv0KFDyPUgw+Xdd9/FM888g9///veWNSSbNWuGw4cPRx0/QRAEQRAmSAFLKFwbXY0dOxaTJk3CiRMn0K5dO1SsWNFyvVWrVmHF8+uvv6JmzZoB5y9cuFCuF/XWDFkLZVFXvgDVuaHftBSRX9TtKiBrdhXKIdMM8E2Grtr+1393YZStTu/m5Tg/YkGTuYpBvOADRFNehFSoNIeTmqNJbao9tPPBb3WtdBJEDNHqKUm1V5UlQV8mTaunzHWVNmkIgPNSRGZMjlh1NxTqvrlcbFr1l1j+pDID2YAlFq4bYEOGDAGg2GppMMbAOQdjDJIkhRXPddddhw8//BAPPvigHgcAvPjii+jUqZPbZBEEQRAEQZQaXDfAjhw5EpMHz507F/369cO+ffvg9/vx9NNP49tvv8XWrVuxadOmmDyjNHLRr8yCVOwoRBSqU7l9fsWuQvJrMx+Z3qtUZhbBmFkkw9rLdKmI9G03Q7nPI4CLZE8RKQ2fXgyhEBDM+RJidipgLCKs2bFwUT2h5QVgLLtizxaHeJtPzca3c2PniqL7BmWmszbjjSDsaPWUtvwQNDswQK+n7Gq947JpDmXDbN/FRQZ4BGNfsxEjgkNuKBIK1w2wevXqxeTBnTt3xhdffIGFCxeiUaNGWLt2Ldq2bYutW7eiZcuWMXkGQRAEQRAKNASZWETkeOvw4cN46qmnsH//fjDGcM011+Chhx6yLKwdDi1btsRrr70WSRLKLJqycP3qR1EoGX6/9F6lX/OnI4D71V6lX7UBU0d/7XYWkF26xTHbWDCGdZunRfmryg/1n18I5lPenyAF2uaZ88KxMjP7ARMQkBeAdh5BM5Vx0yUZuOZv2dg/OzYqGClfRFFo9RTXfH/5GZhWV2lqvWRShbUZkVA/62D/5DU/YOYFtzUbSXUh7k/XPlwcP4kgigXXDbA1a9Zg0KBBaN26Nbp06QLOObZs2YLmzZtj1apV6N27d9B78/Pzw35OpO4tCIIgCIJwgIYgEwrXDbBHHnkEEyZMCHCW+sgjj+Dhhx8O2QCrUqVK2DMcwzXmL6sU+BUbML/mTVrtVeoKmN/wfA/Ns7TdrsK8FJG632ZsNnY/G1oN4frMO27sEyGpv3SBsiMJui0e7PkgW/NCmfHF9f0ATJ7wLXnhVIYscbGAvP/dLGUm5nczaGkionjR6iluUr1gWqUD9jJhXorIMkuYBy0XgFJPrcmZWXw/pCxCDbCEwvV/1/3792PUqFEB50eOHIl9+/aFvPfTTz/Fhg0bsGHDBrzyyiuoWbMmpkyZgpUrV2LlypWYMmUKatWqhVdeecVtskJy9OhRjBo1Cg0aNEBqaioaNWqEGTNmoLCw0BKOMRawPf/88zFNC0EQBEEQhGsFrEaNGsjJyUGTJk0s53Nychz9epnp2rWrvj979mwsXrwYf/rTn/RzgwYNQsuWLbF06VIMHz7cbdKC8t1330GWZbzwwgto3LgxvvnmG4wePRoXLlzAwoULLWGXLVuGfv366cfp6ekxS4cbvh74GK5++zFj1qNfWe8RqiLG/Azwa7ZGyuwiQe9xwvA0DWuvsij1C4DiVRpQjC3E8BTLco8tLwAlP/S8AIyev9kPWJAeJWcAF5hjXnDBYQYknOPV7WvUNDR9LBsHppMKRhQfsl9QlGC1TMDPIOj2qaZyAejfplUVNvbt6OUCwNov/1ZMv6DsEsJ0NOz7idjhugE2evRojBkzBj/88AM6d+4Mxhg2b96MJ5980tVi3Fu3bnVUl9q3b4+7777bbbJC0q9fP0ujqmHDhjhw4ACee+65gAZYlSpVkJGREdPnEwRBEESJQ0OQCYXrBtj06dORlpaGRYsWYepUZW3AOnXqYObMmRbnrEWRmZmJ559/HosWWWdVvfDCC8jMzHSbLNfk5eWhWrVqAecfeOAB3H333WjQoAFGjRqFMWPGQAhhB1VQUKCvjQm4m2hQFJJPhKz2IrksWGYTwW4DZupVMtmqxFh6mGGwdut0AECf62frvU0iNPa8UM4ZeaEdB+vtB8z8Ykyd8cX0Y2MfAXZgzKYcWGbASsZkMZlM+ohihvsFi0JvsQHzM71cAKZ6ykGtd3SZwBjWf0pr0kYKuaFILFw3wBhjmDBhAiZMmIBz584BANLS0lw/ODs7G4MHD8aaNWvQsWNHAMC2bdtw+PBhvP32267jc8Phw4exZMmSgMbfY489hp49eyI1NRXr16/HpEmT8L///Q9//etfg8Y1d+5czJo1q1jTSxAEQRBE2SIiP2CAspbjgQMHwBhD06ZNUb16dVf333TTTTh48CCee+457N+/H5xz/OEPf8C9994btgI2c+bMIhs/O3bsQPv27fXjkydPol+/frj99tsDhjrNDa3WrVsDUGzVQjXApk6diokTJ+rH+fn5MVPwpELB6u3eLwBmX1+a3ZEfll4lk6zHexdHZvNDNhbhY88LQJ3dJVmPBad18ABAncFotu3ijBlKl2jsc/2vKQGc6yfMMy8FGeAyjO+GFDCimGE+pZ5iJtVL8KvXJKNcmI8F+zq2gDpcZkgujnaPhDtoCDKhcN0Au3DhAh588EG8/vrrkGWlpIiiiLvuugtLlixBhQoVgt67Z88etGjRQh/Su+qqqzBnzpyg4b/99ls0bdoUHo9zMh944AHceeedIdNbv359ff/kyZPo3r07OnXqhKVLl4a8DwA6duyI/Px8/Pzzz6hVq5ZjmOTkZCQnJxcZF0EQBEGUONSIShhcN8AmTpyITZs2YdWqVejSpQsAYPPmzRg3bhwmTZqE5557Lui9bdq0QW5uLmrUqBHWszp16oScnBw0bNjQ8Xr16tXDVt5++ukndO/eHe3atcOyZctC2nVp7N69GykpKahSpUpYz4g13C8YvUjNzkvrKfqttkaCH2DmXqbZBowodgSfNS8AJT8sCpjNBozJ3GpTYe/tCyav35wZ+4KD+gVm8qXErb7IJOjTl0gBI4ob5lNX4vBb7b4Ao56yKGA2GzAmKx8ys6nDAKlgRNnCdQPs7bffxn//+19069ZNP3fTTTchNTUVd9xxR8gGGOcc06dPD6mSmbH76YqUkydPolu3bqhbty4WLlyIX3/9Vb+mzXhctWoVcnNz0alTJ6SmpuLTTz/FtGnTMGbMGFK4CIIgiFIPGeEnFq4bYBcvXnQcjqtZsyYuXrwY8t4bb7wRBw4cCPtZWmMoWtauXYtDhw7h0KFDuOqqqyzXuNq78nq9ePbZZzFx4kTIsoyGDRti9uzZuP/++6N+fqSwQsHkQRoB6z0KNsVLn22n9jA1uwqi+Dk0RbGza/pYttHbl6y9fd3+yzwL0mwPhsAKTpv5yGQEzEg1hw2wnTHFK8iArH0bDGj212zse5x8gRHFgz7TUXKwi5SMcqEf29atNfuwM8/epn/+MYBswBIK1w2wTp06YcaMGXj99deRkpICALh06RJmzZqFTp06hbx348aNESUyWrKyspCVlRUyjN1XGEEQBEEQRHHh2iLk6aefxpYtW3DVVVehZ8+e6NWrFzIzM7FlyxY8/fTTxZHGcsvReydD8DHTBss+8xub+VgwzTQiO7D4ouWFlh96Xsim3r95jUi1R2peD09DnwXJGLho2nfyAWaPS900P0uWY3+cXgZRrmi0eDEaLV5sqqcQtJ4SJGs9JQQpG/r6qWrZ2PTRlBL9jaUd7V1Gs7nhs88+w80334w6deqAMYZ3333Xcp1zjpkzZ6JOnTpITU1Ft27d8O2331rCFBQU4MEHH0T16tVRsWJFDBo0CCdOnLCEOXPmDIYNG4b09HSkp6dj2LBhOHv2rCXMsWPHcPPNN6NixYqoXr06xo0bFzMzp0hx3QBr0aIFDh48iLlz56J169Zo1aoV5s2bh4MHD6J58+bFkUaCIAiCIKKFx2BzwYULF3DttdfimWeecbw+f/58LF68GM888wx27NiBjIwM9O7dW/cxCgDjx4/HypUr8eabb2Lz5s04f/48Bg4cCEky1IWhQ4ciJycHq1evxurVq5GTk4Nhw4bp1yVJwoABA3DhwgVs3rwZb775Jt5++21Xq/cUB4xz7vKVEqHIz89Heno68vLyULly5ZjF22RetqOvL/O+bhMmK/s5S8jOpyRo/nA2ANX2RYbFVk/wA4KfG9cldd+nnNeuMXVf8KsZLnNAtQGTPQJkDwP3aMdM2bxKUC4yyKpxgXIN4KJ2DOzJpu+CiD1N5infvaOvL8takEY9ptmHaWVE+ea1sFwvFwCw+Z3J8fopcaW4/mc4PaPlqCcgJqVEHI9UeBl7X340orQyxrBy5UrccsstABT1q06dOhg/fjwefvhhAIraVatWLTz55JO45557kJeXhxo1amD58uUYMmQIAGVSXWZmJj766CP07dsX+/fvR7NmzbBt2zZ06NABgOLUvVOnTvjuu+/QtGlTfPzxxxg4cCCOHz+OOnXqAADefPNNZGVl4Zdffim2914UrhWwuXPn4pVXXgk4/8orr+DJJ5+MSaIIgiAIgogtsRqCzM/Pt2zm5fjC5ciRI8jNzUWfPn30c8nJyejatSu2bNkCANi5cyd8Pp8lTJ06ddCiRQs9zNatW5Genq43vgDFh2d6erolTIsWLfTGFwD07dsXBQUF2Llzp+u0xwrXDbAXXngBv/vd7wLON2/e3HFxbSI2aPYUITfNlsI064iIP5b8MPkC0xQvZrPL0nwfBa57p9iBcZPtF1fXiLQE4+r95vh0X3A8IA0EURyEVUeZyoVZ/VLKBQ9aLmgGZIyI0RBkZmambm+Vnp6OuXPnuk5Kbm4uAAR4VahVq5Z+LTc3F0lJSahatWrIMDVr1gyIv2bNmpYw9udUrVoVSUlJepiSwPUsyNzcXNSuXTvgfI0aNXDq1KmYJIoIRCiEdQjSLPHL1muCBOx6joaZSgrLULBl+IXrjWTlOjeuqcuu2I2Ne/ScpwawPoOZKkPOORg3XJSAcQi651VAhnFMBgdEcSGo9szmRpT52LxvXqBeKxeAZojPjWsc+Hxl2Rx6LBFi5Ibi+PHjlmG7aHxlMtukIs55wLmAZNjCOIWPJEy8ca2AZWZm4osvvgg4/8UXX1jkPYIgCIIgyh6VK1e2bJE0wDQn6HYF6pdfftHVqoyMDBQWFuLMmTMhw/z8888B8f/666+WMPbnnDlzBj6fL+gyg/HAtQJ29913Y/z48fD5fOjRowcAYP369ZgyZUqJzygoy4gFsDjxZNyqgAmm5Tx2vUDqV0ki+tQdGRAkHpBPmuE9k4At/w5dZjasfwSASQkDjB6sphSow5KCekEGA0TVuB8M4ABXw3JyzksUE6JqBqTVU/rSWDZ1XisX5muCSSU2HBlzbH6b1K9Ykkie8Bs0aICMjAysW7cObdq0AaCsfrNp0ybdnrxdu3bwer1Yt24d7rjjDgDAqVOn8M0332D+/PkAFN+keXl5+PLLL3H99dcDALZv3468vDx07txZDzNnzhycOnVKH8Fbu3YtkpOT0a5du9j9KJe4boBNmTIFv/32G8aOHav70EhJScHDDz+MqVOnxjyBBEEQBEHEgDh7wj9//jwOHTqkHx85cgQ5OTmoVq0a6tati/Hjx+OJJ55AkyZN0KRJEzzxxBOoUKEChg4dCgBIT0/HqFGjMGnSJFxxxRWoVq0aJk+ejJYtW6JXr14AgGuuuQb9+vXD6NGj8cILLwAAxowZg4EDB6Jp06YAgD59+qBZs2YYNmwYFixYgN9++w2TJ0/G6NGjS2wGJBBBA4wxhieffBLTp0/H/v37kZqaiiZNmtB6icWM4LPZVdhsLHYuJdUrURB8au/eZpvHZMUgfstbESrFZoMBblpwW68V1aVfwMHVVYu5zBUFTNCOI3s0QRSFoCq/FmeqgM1elQfar8rcYjep24DRt1rq+eqrr9C9e3f9eOLEiQCA4cOH49VXX8WUKVNw6dIljB07FmfOnEGHDh2wdu1apKWl6fdkZ2fD4/HgjjvuwKVLl9CzZ0+8+uqrEEVRD7NixQqMGzdOny05aNAgi+8xURTx4YcfYuzYsejSpQtSU1MxdOhQLFy4sLhfQUhcN8A0KlWqhOuuuy6WaSEIgiAIophgnINFMRPH7b3dunVDKFejjDHMnDkTM2fODBomJSUFS5YswZIlS4KGqVatGt54442Qaalbty4++OCDItMcTyJugBHxZU/2BLS9N1vvFZLilbhYlQCu59nWf0VuI6nZggFAj97zAM7AoSkFDJaxAW6oB1yAEla1CYsmDQQRCrMNmL40FqxlwOxeQj+WDJuwzW9Pxg23LAAAfP7uX+KZ/PJBnIcgidC4ngVJEARBEARBRAcpYKWIXc+T6lUa+PK1icUa/4Z1ihrWvY+68gTjlp4tY8bSQ5riwMkxL1HMiAUmVcukwoIHKl76sRrO7OuLlK/iI5FmQRLUACMIgiCI8gENQSYUNARJEKUUffkWmUOQuL6Yt+DnEHzKxnwcQqGsH8eDdqOz4/IcIrHwFGgbh2jaPJetx6LP2AT1+ySI8ggpYARBEARRDqAhyMSCGmAEUUrR7Gj01RHU2pEzBqaNFQjK8acfTolbuna+OAEdhi3G9uXFawtHJBaeS9rUW2NtU8BmD6b6pdO95KvHRJygIciEghpgBEEQBFEOIAUssaAGGEGUUtZ/qiz91bPbE1bFAVCmQgL4ZNOjJZI270UZvx9seJmmNf3KNl1vXgBRU2QdFDB9hi7n6jqRRlhE4RiUIEoz1AAjCIIgiPIADUEmFNQAI4hSzvqNJaNyhcJz0ZjZtvHj+NmfESWD54LfOFBVLctwlaaGycC6zdPimjbCCg0jJg7khoIgCIIgCCLOkAJGEETM8Vz0Fx2IKDOIl8wKGNdn5gK2BZzJ3qtk4Ty6PKD8iynUACMIgiCIcgDNgkwsaAiSIMowfa6fXSLPFc8X6BtR9hEuFlq3y4UQLhVAuFQAdrnQ2C75SjqpBJEwkAJGEARBEOUBmgWZUFADjCDKGD16zgOTFCMcwRs/kbv/1Q/r+2u+fzJuzyVKHnbhsvWEbPtPLarfoUCDLiUJk02rEkR4PxE7qDQQBEEQBEHEGWqAEUQZY8P6R8C9ArhXgJwkxu/B584D587jY1K/yhX9M8YC5y8Y26XLgM8H+P3KxmVlZQbG8PGBeSWd3PINj8FGxAwagiSIMsiGdY/E5Tl9K96l7DCGNedfi8szicSCF/rARBEQmHFSFACvV9n3evDxvidKJnGEBZoFmVhQA4wgCIIgygPkByyhoAYYQRAR0Td1mDK8BGDN5RUlnBqipGBJXsDjATzqcLfXC3hEcK9yzMU4DoMTRCmCGmAEQRAEUQ6gIcjEghpgBEG4pn/GWAiVKoJLUkknhShpKlRQ1C9VAeMeAVwUsWb3rBJOGBEA+QFLKGgWJEEQBEEQRJwhBYwgCPdUqghIElYfWVzSKSFKGF4xGRBFcI/Sn1cUMAG9uiozHz/Z9GhJJo8wQUOQiQU1wAiCIAiiPECzIBMKaoARBOGajw8tKOkkEAmCXDEZXBDAPYofMC4K4ALTj7veNB+bPppSkkkkiISEGmAEQRAEUQ6gIcjEotwY4devXx+MMcv2yCNWb+HHjh3DzTffjIoVK6J69eoYN24cCgsLSyjFBEEQiY+U6oWU6tE3f6oIqYKIT9c8jE/XPEzqVyJBSxElFOVKAZs9ezZGjx6tH1eqVEnflyQJAwYMQI0aNbB582acPn0aw4cPB+ccS5YsKYnkEgRBEARRRilXDbC0tDRkZGQ4Xlu7di327duH48ePo06dOgCARYsWISsrC3PmzEHlypXjmVSCIIiEplv/+QAAnioCIoOsOrznAgMvN2MrpQsagkwsylUxefLJJ3HFFVegdevWmDNnjmV4cevWrWjRooXe+AKAvn37oqCgADt37gwaZ0FBAfLz8y0bQRAEQSQcMo9+I2JGuVHAHnroIbRt2xZVq1bFl19+ialTp+LIkSN46aWXAAC5ubmoVauW5Z6qVasiKSkJubm5QeOdO3cuZs0ij88EQZQv/Klq/51ZVS/ZoxwTCQh5wk8oSrUCNnPmzADDevv21VdfAQAmTJiArl27olWrVrj77rvx/PPP4+WXX8bp06f1+BgLrDQ4547nNaZOnYq8vDx9O378eOx/KEEQBEEQZYpSrYA98MADuPPOO0OGqV+/vuP5jh07AgAOHTqEK664AhkZGdi+fbslzJkzZ+Dz+QKUMTPJyclITk52l3CCIIhSjj9V9fslMFUFg3oMsgFLUBiitAGLWUoIoJQ3wKpXr47q1atHdO/u3bsBALVr1wYAdOrUCXPmzMGpU6f0c2vXrkVycjLatWsXmwQTBEEQRElBnvATilLdAAuXrVu3Ytu2bejevTvS09OxY8cOTJgwAYMGDULdunUBAH369EGzZs0wbNgwLFiwAL/99hsmT56M0aNH0wxIgiAIG9tWTAIAtBudbVHALPsEQQSlXDTAkpOT8dZbb2HWrFkoKChAvXr1MHr0aEyZYjgIFEURH374IcaOHYsuXbogNTUVQ4cOxcKFC0sw5QRBEAQRG8gNRWJRLhpgbdu2xbZt24oMV7duXXzwwQdxSBFBEETZQEoBOINuIMQFkLFQokKzIBMKEooJgiAIgiDiDDXACIIgiIjJWTIBchIgmTeaGJ6QMM6j3txy7tw5jB8/HvXq1UNqaio6d+6MHTt26NezsrIC3EdpXgo0CgoK8OCDD6J69eqoWLEiBg0ahBMnTljCnDlzBsOGDUN6ejrS09MxbNgwnD17NqL3FC+oAUYQBEEQ5QE5BptL7r77bqxbtw7Lly/H3r170adPH/Tq1Qs//fSTHqZfv344deqUvn300UeWOMaPH4+VK1fizTffxObNm3H+/HkMHDgQkiTpYYYOHYqcnBysXr0aq1evRk5ODoYNG+Y+wXGEcU7zSmNJfn4+0tPTkZeXR7MnCYIol/xuRrbevf9uxoSSTUyCE4//GdozbrhxBjyelIjj8fsv4/PPZoWd1kuXLiEtLQ3vvfceBgwYoJ9v3bo1Bg4ciMcffxxZWVk4e/Ys3n33Xcc48vLyUKNGDSxfvhxDhgwBAJw8eRKZmZn46KOP0LdvX+zfvx/NmjXDtm3b0KFDBwDAtm3b0KlTJ3z33Xdo2rRpxL+5OCkXRvgEQRBE/PhuFjW6EpFIhxHN9wMIWPM4mENyv98PSZKQkmJt9KWmpmLz5s368caNG1GzZk1UqVIFXbt2xZw5c1CzZk0AwM6dO+Hz+dCnTx89fJ06ddCiRQts2bIFffv2xdatW5Genq43vgDF2Xp6ejq2bNmSsA0wGoIkCIIgiPIAj8EGIDMzU7e1Sk9Px9y5cx0fl5aWhk6dOuGxxx7DyZMnIUkS3njjDWzfvh2nTp0CAPTv3x8rVqzAhg0bsGjRIuzYsQM9evRAQUEBAGWd5qSkJFStWtUSd61atfR1mnNzc/UGm5maNWuGXMu5pCEFjCAIgiDKAzHyhH/8+HHLEGSo5fiWL1+OkSNH4sorr4Qoimjbti2GDh2KXbt2AYA+rAgALVq0QPv27VGvXj18+OGHuO2220IkxbpOcyRrOZc0pIARBEEQBBE2lStXtmyhGmCNGjXCpk2bcP78eRw/fhxffvklfD4fGjRo4Bi+du3aqFevHg4ePAgAyMjIQGFhIc6cOWMJ98svv+jrNGdkZODnn38OiOvXX38NuZZzSUMNMIIgCIIoB2ie8KPZIqVixYqoXbs2zpw5gzVr1uAPf/iDY7jTp0/j+PHj+prM7dq1g9frxbp16/Qwp06dwjfffIPOnTsDUNZyzsvLw5dffqmH2b59O/Ly8vQwiQgNQRIEQRBEeaAEFuNes2YNOOdo2rQpDh06hL/85S9o2rQpRowYgfPnz2PmzJkYPHgwateujaNHj+LRRx9F9erVceuttwIA0tPTMWrUKEyaNAlXXHEFqlWrhsmTJ6Nly5bo1asXAOCaa65Bv379MHr0aLzwwgsAgDFjxmDgwIEJa4APUAOMIAiCIIhiIi8vD1OnTsWJEydQrVo1DB48GHPmzIHX64Xf78fevXvx+uuv4+zZs6hduza6d++Ot956C2lpaXoc2dnZ8Hg8uOOOO3Dp0iX07NkTr776KkRR1MOsWLEC48aN02dLDho0CM8880zcf68byA9YjCE/YARBEES4xNMPWLcOf43aD9jG7Y/T/7cYQQoYQRAEQZQHSmAIkggOGeETBEEQBEHEGVLACIIgCKI8YHKmGvH9RMygBhhBEARBlANitRQRERtoCJIgCIIgCCLOkAJGEARBEOUBMsJPKKgBRhAEQZQIrVb9DYxxfD3wsZJOSvmAA5CjvJ+IGdQAIwiCIIhyANmAJRbUACMIgiBKhBSvHwDQcc1UAMC2vnNLMjkEEVeoAUYQBEEQ5QGOKG3AYpYSAtQAIwiCIOLE7z+ZAgAQmPKf/Mt+C0oyOeUPMsJPKMgNBUEQBEEQRJwhBYwot9y4/i/6vmDT1jf2XBjv5BBEmaX3xgkAgFSPoX4RJYAMgEV5PxEzqAFGEARBEOUAmgWZWFADjHDN7Vvu0/dltTulKUj/6fxciaQJAPp/9hAA4OMbny4yDABU9Brn7QrYgM/GGdcYx6oblujHN3/+oOWa+a+dlV3+oe8P3jIWAPB252dDngOMd6zFK3Nm2QcC33WwuAiipKnkLbQca9/y4C1j6Xslyi3UACMIgiCI8gAZ4ScUjHN6o7EkPz8f6enpyMvLQ+XKlUs6OVEx/MtRIa+bVRntWGN5h5f0/T9vHw0AWNHhxZimz6zExRInNUtgoY0fQtm12NU1p3vs79It9vtfu/7liOMiiGj507Yx+n6o7zrWdUJpJB7/M7Rn9Gw2GR4xOeJ4/FIB1u9bWCb+vyUCNAuSIAiCIAgiztAQZDnh3p3DAADPt1teZDitx1pR/To0ZUtg3KJymY/t1+7dOQwyV9r3aR4ZMhf0NGjnNWQwvNT+1bB+x4gdI/T9St4QAbW41WcVpWCFQixCmbIrXNqzZC5AYHLQNIR6f9qxk3qgnQ+VF6Hye8xXw7G0/WshfxNBRENFT6Gj8quVh2jKIxEFNASZUFADLEF5aPef8HSbf0V074ScOyEyDkn9hywyjkoe41p26zf1sJO/HmK5t5KLL0KADFkVUSXOLA0V87G2L3Hr/GdzA+Kh3X8K+hxzg62SGH76YkU4/yycGkrab7a/Bw3zsfldRpTGIHkx+eshAWmo7OWYkHNnQBxafkT63RHlF3v5rWgqp/ay4VQXEHGC3FAkFNQAIwiCIIhyALmhSCyoAVZMzPhmGJIreTGv1X+LDPvInj8GnEsVgWl7bgvrWfYepl0lEpkMSVWRRCZj+t5bTWGVLo35uobEhSKP7c/Qrks8tJojh9kDlhLETFEMs+tXlCG9PS/s71AjnHdfVF44PcOJcPOCIMxo9ZYIuUhlmpyvOvPInj+i4LyvpJNBlBDUACMIgiCI8gDZgCUU1AArJiqJl5EiSpjz7cAiw6aF6D3aDbpDIapGrxIYRHBIpsF+MYJl7M0G5OHi9Eyn9ATDbrieSLjJCwD6bza/B+18JM+O5J3YnxlOXszddxOAovNiWvMPXKeHKBvM+Xagpd4KNdnETrh1QWkjnLreTpoIeMU4KmAyB6JRI2VqgMWSxPsvRxAEQRAEUcYhBayYqCD4kCIU4b7AYUp2Ub1IzRbJbBslQoYEwZWdkt2FgfF8Z9cG5nBFnQuGlmYtvfb0ByPUO4qVUubUgw+nRx/qt4STH/b35zYvnO4t7rxQniXj6e96OebFhGvWFvl8Inqy9/cB4Py+Q12LBRWEQtflAkBAPfXMdz3wwO82FEsa4439nZjrrVD1lCD4iz1tOjQEmVBQA4wgCIIgygVRNsAiMJ8ggkMNsGKikngJqWLxvV6zk0MZLOhyN8EQBefZiqJgmzXHEDizURVYLDPsXJh02NMrl3J7kGjzAnB4707nnN67er6k8uLuqz93FZ6IHWniJQDAS9/f4HANQa8Fo6i8NMcVym5Vw+m7speNkVdvDjt9iUKwdxrOO3HCI8ZRASMSinJhA7Zx40Ywxhy3HTt26OGcrj///PMlmHKCIAiCiBHaEGQ0GxEzyoUC1rlzZ5w6dcpybvr06fjkk0/Qvn17y/lly5ahX79++nF6enpEz0xlPlQQYu82OJgtRSgbsJC2Uk6CRzARJIywoWwe7LZRweyQShNO9nehbMDimRehnueURu13hJsXQxtvDytcWeOtQ9dhSOMdjudDMaTxjqBhJAiu36emWP3zUAdX9wWjqHgquCiiwWwh3diqJgJvHbrOkmYJgqv3EBZMinGEIZA5ohpGpFmQMaVcNMCSkpKQkZGhH/t8Prz//vt44IEHwJj1v1aVKlUsYQmCIAiCIGJNuWiA2Xn//ffxv//9D1lZWQHXHnjgAdx9991o0KABRo0ahTFjxkAQgnd5CgoKUFBQoB/n5+cDACoKBaggxGfhQkHtnZnXEhRMvUwZAgTmsxw7hdPDOpwLFjZYGpyeZ09TWcTpN8YyL4Kdd5v35SEvYsWqH1pZ3lsFQTkHWPNCU0aC5cV7P7S2qOL2cObnhOIPDXP0+ACgYinIvtL2vWn5mxKi7o8VTIijAsZlZYvmfiJmlMsG2Msvv4y+ffsiMzPTcv6xxx5Dz549kZqaivXr12PSpEn43//+h7/+9a9B45o7dy5mzZpV3EkmCIIgiOggNxQJBeO89L7RmTNnFtn42bFjh8XO68SJE6hXrx7+/e9/Y/DgwSHvXbRoEWbPno28vLygYZwUsMzMTLz99dWo6DAtJtoZc8FmE8UKp7UDw13fMVIinTkY7Qy+WMxejPS+cAi2jmM46ztGSri/p3eD/cXy/Hix7sg1rsIHKwPFnReA+7Ie63IRizQUhdP3tO7INSXynTl9G9G8B/N9Tnlx4ZyEwdd+j7y8PFSuXNltcsMiPz8f6enp6HXlvfAIyRHH45cL8MlPzxdrWssTpVoBe+CBB3DnnXeGDFO/fn3L8bJly3DFFVdg0KBBRcbfsWNH5Ofn4+eff0atWrUcwyQnJyM5OfIPmiAIgiCI8kepboBVr14d1atXDzs85xzLli3DXXfdBa/XW2T43bt3IyUlBVWqVHGdtgrMhwpxmt1i752HUqycrol2j9ZqJ03igvWa6bzTvcGUM6e4iks1KGnc/Gana27zIti95T0vPj/aGDfUPxRwfsuPDQEAKSyCvAAAFl5emO8PpxwWt8pc0hT1/X1+tHFA2IoCAs53rvdDsaRvy48N9XdfUYhv2eBhrCsbu4fREGQiUaobYG7ZsGEDjhw5glGjRgVcW7VqFXJzc9GpUyekpqbi008/xbRp0zBmzBhSuAiCIIjSD0eUDbCYpYRAOWuAvfzyy+jcuTOuuSZwjN/r9eLZZ5/FxIkTIcsyGjZsiNmzZ+P++++P6FnJgj8mM2ic/Etp5+3+mlKY3xLWfGyPw37Nad02XX2xX2PO9wWLU7vHHNbL5KDrWtrPJQpu8gIw3kc47zzkuwMc33mofHKbF06/I1Re7DhWP+BcpFxX92hM4tlxrL6e5hRBsKRRO+9lkeeFHk+Q7z/YtWDl0BxeC1tUXtifmSiE8oPntp4KlRf2PG1b9xgAYNexugHvq23dY9h1rG5AnHY/ZEoaAvMCMOqp4swLfzH4iyRKB+WqAfbPf/4z6LV+/fpZHLASBEEQRJmChiATinLVAIsnKcwfYGcSDSI4AAmSqYvtDeFROgWG/Zn9HtGkI2vXgoUPdU1Lk9M9TteCpdcpTaF+W0nj5rcB7vPCfI/9vQa7VprzYu/xqyK+15zWFFZ02YgmL+zng10z4pGC5EXgNaf0aue0e8L51koSN79Nw+lbDva7zeG189q342XO11JY8eSF9oxY5IU/njZgsgxEk2Y5Mb+90kriadkEQRAEQRBlHFLAiokUJiPFnfudsPBGYAXpBXfsTQaLL9Qzgl3TnuGk2LhNcyS/saSI5LfFKy/CfUZR6S0tRPrbnL7bUO/WzfMpL9yFL+68cPuMUMQqP+KqgJXAEOS5c+cwffp0rFy5Er/88gvatGmDp59+Gtddd50aJcesWbOwdOlSnDlzBh06dMA//vEPNG/eXI+joKAAkydPxr/+9S9cunQJPXv2xLPPPourrjLU8zNnzmDcuHF4//33AQCDBg3CkiVLIvJiEC9IASMIgiCI8oDWAItmc8ndd9+NdevWYfny5di7dy/69OmDXr164aeffgIAzJ8/H4sXL8YzzzyDHTt2ICMjA71798a5c+f0OMaPH4+VK1fizTffxObNm3H+/HkMHDgQkmQMOw8dOhQ5OTlYvXo1Vq9ejZycHAwbNiz6d1aMlGpP+ImI5nF4z76aSEsrun0rWnwIFX1NDKKqme+1hwn3mpsw0TzH6TcEux7OO4kVkTzXzW9xcy3c+KN9DuVF0deCPTtYuFjmhTlMSeWFOf5QvzfS31LUvbHMi0jTECpMtHlx7pyMVs1+iY8n/Ooj4RGSIo7HLxfik/+9EnZaL126hLS0NLz33nsYMGCAfr5169YYOHAgHnvsMdSpUwfjx4/Hww8/DEBRu2rVqoUnn3wS99xzD/Ly8lCjRg0sX74cQ4YMAQCcPHkSmZmZ+Oijj9C3b1/s378fzZo1w7Zt29ChQwcAwLZt29CpUyd89913aNq0acS/uTihIchiIoUxi1FwOHhDBA91zem6DEPejCbecMMESwPUdLhNfzjPDjddkRDrvACKfg+RvudYpiFU/JQXkYVzCqOVz0jvL4154RQmnPcQy7yINA2hnhFt2n0u/09EhcwRlTMvWbk3Pz/fcjrYijB+vx+SJCElJcVyPjU1FZs3b8aRI0eQm5uLPn36WOLq2rUrtmzZgnvuuQc7d+6Ez+ezhKlTpw5atGiBLVu2oG/fvti6dSvS09P1xhegrGSTnp6OLVu2JGwDjIYgCYIgCKIcwLkc9QYAmZmZSE9P17e5c+c6Pi8tLQ2dOnXCY489hpMnT0KSJLzxxhvYvn07Tp06hdzcXAAIWOqvVq1a+rXc3FwkJSWhatWqIcPUrFkz4Pk1a9bUwyQipIAVE14m6E4fCYIgCMKJ4lQsA+BcV7Eivh/A8ePHLUOQoVaLWb58OUaOHIkrr7wSoiiibdu2GDp0KHbt2qWHYTYVkHMecC4wKdYwTuHDiackoRYCQRAE8f/t3X9MVfX/B/DnBe4FQSTw1+WCMUZIEMQK0y7rh7Ni0EiaTa3Wwmo0K2wsrGWt4VopsWZro7KtptX8jP5IHFsW0je4RKYGUSIxo0mCfUHKISIIF7iv7x+fL6cuv7mce+49l+ejsck95755PX01fN1zzj2XaNaWLFni9DXdABYXFwebzYarV6+io6MDp06dwvDwMGJjY2E2mwFgwlGq7u5u5aiY2WyG3W5HT0/PtPtcvHhxws/+66+/Jhxd8yY8AuYmAfCDUcX51vH/5+39JrnNw3zWG2+69Sd7jjvqUWtNd3FHrXP9u2Uv/stbe+GOetiLmdfWqhdqrqnpP8Iyz2vA5vGevZCQEISEhKCnpweVlZUoKSlRhrCqqirccsstAAC73Q6bzYa33noLAJCWlgaj0Yiqqips2bIFANDZ2YkzZ86gpKQEAGC1WtHb24tTp05h7dq1AICTJ0+it7cX6enprud1Mw5gREREC4HDAcznvmMy9+dWVlZCRJCQkIDff/8dL774IhISEvDEE0/AYDCgoKAAe/bsQXx8POLj47Fnzx4EBwfj0UcfBQCEhYXhqaeeQmFhIZYuXYqIiAjs3LkTKSkpuPfeewEAiYmJyMzMRF5eHj788EMAwNNPP43s7GyvvQAf4ADmNv4GA/xVPPfsr/KrX1fWU7sGrdZWmztqneua7MV/+XovtFhfLeyFi2t68TVKaujt7cWuXbtw4cIFRERE4KGHHsKbb74Jo9EIAHjppZdw7do1PPvss8qNWI8dO4bQ0FBljXfeeQcBAQHYsmWLciPWgwcPwt/fX9nn0KFDeP7555V3S27cuBGlpaXahp0j3gdMZWP3W/nfs9FYMov7gBER0cJ1pc8BS8IFTe4Dds/iRxFgmMd9wMSO/7n6H7fWupDwCJib+Cn/ze3VjSvXe0x13cM/taizlidrcuV6i/E1sBfqreXq36UrP/Pfa3g6tzvXcXUt9kL9dVxdz5VeaPkyXRwOyDxOQYoLpyBpajxEQ0RERKQxHgFzE6PB36X7gPnPvMucnzM6zasW/3E1zuXnT7eu0eBKksm5utJ8K2AvJvJUL1xZg71Q93nzWcPXewG4/vvCqOU1YB58FyRNxAGMiIhoIXAIYOAA5i04gHkxv3+dIXbA9XPv419BqsVd66qVW03sBXvh6XW9sRfAP3UtpF4A6uSmhY0DGBER0UIgAsxnYOQRMFVxAHMTPxicXrHOf72F+X4Jb8ztjTVpwRtze2NNWvDG3N5Ykxbmm9tvPtdkzZE4BDKPU5C8a5W6OIAREREtBOLA/I6A8XSrmhbmSxYiIiIiD+IRMCIiogWApyC9CwcwIiKihYCnIL0KBzCVjb1CuHKV/6MSEdH0xv6t0OLo0giG53Uf1hEMq1cMcQBTW19fHwAg5tY/PFsIERHpRl9fH8LCwtyytslkgtlsRl3X0XmvZTabYTK5/oHe9A+D8KSuqhwOB86ePYukpCR0dHT43CfGX7lyBatWrWI2nWE2fWI2fZpLNhFBX18fLBYL/Pzc9764wcFB2O32ea9jMpkQFBSkQkXEI2Aq8/PzQ1RUFABgyZIlPveLZQyz6ROz6ROz6dNss7nryNe/BQUFcXDyMrwNBREREZHGOIARERERaYwDmBsEBgaiqKgIgYGBni5FdcymT8ymT8ymT76cjdTDi/CJiIiINMYjYEREREQa4wBGREREpDEOYEREREQa4wBGREREpDEOYCp7//33ERsbi6CgIKSlpeG7777zdElztnv3bhgMBqcvs9msbBcR7N69GxaLBYsWLcL69evR3NzswYqnVltbiwceeAAWiwUGgwFHjhxx2j6bLENDQ9ixYweWLVuGkJAQbNy4ERcuXNAwxeRmyrZt27YJfbz99tud9vHWbHv37sVtt92G0NBQrFixAg8++CDOnj3rtI9eezebbHrt3QcffICbb75ZuQGp1WrFV199pWzXa8+AmbPptWfkORzAVPT555+joKAAr776KhobG3HnnXciKysL7e3tni5tzm666SZ0dnYqX01NTcq2kpIS7Nu3D6Wlpfjxxx9hNptx3333KZ+D6U36+/uRmpqK0tLSSbfPJktBQQHKy8tRVlaGuro6XL16FdnZ2RgdHdUqxqRmygYAmZmZTn08etT5s+C8NZvNZsNzzz2HEydOoKqqCiMjI8jIyEB/f7+yj157N5tsgD57Fx0djeLiYtTX16O+vh4bNmxATk6OMmTptWfAzNkAffaMPEhINWvXrpXt27c7PXbjjTfKyy+/7KGKXFNUVCSpqamTbnM4HGI2m6W4uFh5bHBwUMLCwmT//v0aVegaAFJeXq58P5ssly9fFqPRKGVlZco+f/75p/j5+cnXX3+tWe0zGZ9NRCQ3N1dycnKmfI5esomIdHd3CwCx2Wwi4lu9G59NxLd6Fx4eLh999JFP9WzMWDYR3+oZaYNHwFRit9vR0NCAjIwMp8czMjJw/PhxD1XlutbWVlgsFsTGxuLhhx/GuXPnAABtbW3o6upyyhkYGIi7775bdzlnk6WhoQHDw8NO+1gsFiQnJ+sib01NDVasWIHVq1cjLy8P3d3dyjY9Zevt7QUAREREAPCt3o3PNkbvvRsdHUVZWRn6+/thtVp9qmfjs43Re89IW/wwbpX8/fffGB0dxcqVK50eX7lyJbq6ujxUlWvWrVuHTz/9FKtXr8bFixfxxhtvID09Hc3NzUqWyXKeP3/eE+W6bDZZurq6YDKZEB4ePmEfb+9rVlYWNm/ejJiYGLS1teG1117Dhg0b0NDQgMDAQN1kExG88MILuOOOO5CcnAzAd3o3WTZA371ramqC1WrF4OAgFi9ejPLyciQlJSlDhp57NlU2QN89I8/gAKYyg8Hg9L2ITHjM22VlZSl/TklJgdVqRVxcHD755BPlolJfyDnGlSx6yLt161blz8nJyVizZg1iYmLw5ZdfYtOmTVM+z9uy5efn4/Tp06irq5uwTe+9myqbnnuXkJCAn3/+GZcvX8YXX3yB3Nxc2Gw2ZbueezZVtqSkJF33jDyDpyBVsmzZMvj7+094JdPd3T3hFZ/ehISEICUlBa2trcq7IX0h52yymM1m2O129PT0TLmPXkRGRiImJgatra0A9JFtx44dqKioQHV1NaKjo5XHfaF3U2WbjJ56ZzKZcMMNN2DNmjXYu3cvUlNT8e677/pEz6bKNhk99Yw8gwOYSkwmE9LS0lBVVeX0eFVVFdLT0z1UlTqGhobQ0tKCyMhIxMbGwmw2O+W02+2w2Wy6yzmbLGlpaTAajU77dHZ24syZM7rLe+nSJXR0dCAyMhKAd2cTEeTn5+Pw4cP49ttvERsb67Rdz72bKdtk9NS78UQEQ0NDuu7ZVMayTUbPPSONaH7Zvw8rKysTo9EoH3/8sfz6669SUFAgISEh8scff3i6tDkpLCyUmpoaOXfunJw4cUKys7MlNDRUyVFcXCxhYWFy+PBhaWpqkkceeUQiIyPlypUrHq58or6+PmlsbJTGxkYBIPv27ZPGxkY5f/68iMwuy/bt2yU6Olq++eYb+emnn2TDhg2SmpoqIyMjnoolItNn6+vrk8LCQjl+/Li0tbVJdXW1WK1WiYqK0kW2Z555RsLCwqSmpkY6OzuVr4GBAWUfvfZupmx67t2uXbuktrZW2tra5PTp0/LKK6+In5+fHDt2TET02zOR6bPpuWfkORzAVPbee+9JTEyMmEwmufXWW53eWq4XW7dulcjISDEajWKxWGTTpk3S3NysbHc4HFJUVCRms1kCAwPlrrvukqamJg9WPLXq6moBMOErNzdXRGaX5dq1a5Kfny8RERGyaNEiyc7Olvb2dg+kcTZdtoGBAcnIyJDly5eL0WiU66+/XnJzcyfU7a3ZJssFQA4cOKDso9fezZRNz7178sknld9/y5cvl3vuuUcZvkT02zOR6bPpuWfkOQYREe2OtxERERERrwEjIiIi0hgHMCIiIiKNcQAjIiIi0hgHMCIiIiKNcQAjIiIi0hgHMCIiIiKNcQAjIiIi0hgHMCIiIiKNcQAjonlbv349CgoKPF0GEZFucAAjIiIi0hgHMCIiIiKNcQAjIlX19PTg8ccfR3h4OIKDg5GVlYXW1lZl+8GDB3HdddehsrISiYmJWLx4MTIzM9HZ2enBqomItMUBjIhUtW3bNtTX16OiogI//PADRAT3338/hoeHlX0GBgbw9ttv47PPPkNtbS3a29uxc+dOD1ZNRKStAE8XQES+o7W1FRUVFfj++++Rnp4OADh06BBWrVqFI0eOYPPmzQCA4eFh7N+/H3FxcQCA/Px8vP766x6rm4hIazwCRkSqaWlpQUBAANatW6c8tnTpUiQkJKClpUV5LDg4WBm+ACAyMhLd3d2a1kpE5EkcwIhINSIy5eMGg0H53mg0Om03GAxTPpeIyBdxACMi1SQlJWFkZAQnT55UHrt06RJ+++03JCYmerAyIiLvwgGMiFQTHx+PnJwc5OXloa6uDr/88gsee+wxREVFIScnx9PlERF5DQ5gRKSqAwcOIC0tDdnZ2bBarRARHD16dMJpRyKihcwgvPCCiIiISFM8AkZERESkMQ5gRERERBrjAEZERESkMQ5gRERERBrjAEZERESkMQ5gRERERBrjAEZERESkMQ5gRERERBrjAEZERESkMQ5gRERERBrjAEZERESksf8DnGjYNB6L07EAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ds_out_con.area.plot() ;" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "b7a88577-4501-4c0b-8549-b9e1bd1aece9", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmAAAAHBCAYAAADOwwcGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzCUlEQVR4nO3deXxM5/4H8M/JNoJkZF8qYlfEUrGF1k4oQilV/UUsDa0SIWopKpRYaknLraJqa5V7i5ZWbS1p00hpiDVN0dgqESUSS2SZeX5/5OZcI9tMZsnEfN73dV4vc85znvM8M27P17NKQggBIiIiIjIZq4ouABEREZGlYQBGREREZGIMwIiIiIhMjAEYERERkYkxACMiIiIyMQZgRERERCbGAIyIiIjIxBiAEREREZmYTUUX4FmjVqtx8+ZNODg4QJKkii4OERGZMSEE7t+/D29vb1hZGa9N5PHjx8jNzdU7Hzs7O1SpUsUAJSIGYAZ28+ZN+Pj4VHQxiIioErl+/Tpq1qxplLwfP36MOr7VkZau0jsvT09PpKSkMAgzAAZgBubg4AAAeBEvwwa2FVwaIiIyZ/nIQyz2ye8OY8jNzUVaugopCb5wdCh/K1vWfTXq+F9Fbm4uAzADYABmYIXdjrY2VWEjMQAjIqKSSSIPyIdJhqw4OljpFYCRYTEAIyIisgAqoYZK6Hc/GQ4DMCOR7GwgsQWMiIhKIQkB5JvmWWoIqFH+CEyfe6kotkUSERERmRhbwIxEUiggWdlVdDGIiMiMSWoJeGSaZ6mhhj6diPrdTU9jAGYkkq0tJCt2QRIRUckktem69VRCQCXK/zx97qWiGIARERFZAI4BMy8MwIzF1gZgCxgREZVGzW49S8VB+ERERBZADQGVHoeuLWA///wz+vfvD29vb0iShG+++abEtOPGjYMkSYiOjtY4n5OTg4kTJ8LV1RXVqlVDUFAQbty4oZEmIyMDwcHBUCqVUCqVCA4Oxr179zTSXLt2Df3790e1atXg6uqKsLAwg2zNpA+2gBmLnS1bwIiIqHQmbAEzdRfkw4cP0aJFC4waNQqDBw8uMd0333yD3377Dd7e3kWuhYeHY+/evdi+fTtcXFwQERGBfv36ISEhAdbW1gCA4cOH48aNG9i/fz8AYOzYsQgODsbevXsBACqVCn379oWbmxtiY2Nx584dhISEQAiBVatW6VQnQ2IARkRERAbXp08f9OnTp9Q0f//9NyZMmIADBw6gb9++GtcyMzOxYcMGbN26FT169AAAfPHFF/Dx8cHhw4cRGBiIpKQk7N+/H/Hx8WjXrh0AYP369QgICEBycjIaNWqEgwcP4sKFC7h+/boc5C1fvhwjR47EwoUL4ejoaITal40BmLHY2ADW/HqJiKgUKv03yNb6UQaaBZmVlaVxXqFQQKFQ6JyfWq1GcHAw3n33XTRt2rTI9YSEBOTl5aFXr17yOW9vb/j5+SEuLg6BgYE4duwYlEqlHHwBQPv27aFUKhEXF4dGjRrh2LFj8PPz02hhCwwMRE5ODhISEtC1a1edy24IHANGRERkAdQGOADAx8dHHm+lVCqxaNGicpVnyZIlsLGxQVhYWLHX09LSYGdnBycnJ43zHh4eSEtLk9O4u7sXudfd3V0jjYeHh8Z1Jycn2NnZyWkqAptojETY2UCwBYyIiEohTNgCZijXr1/X6LYrT+tXQkICPvroI5w8eVLnjciFEBr3FHd/edKYGlvAiIiILIA+MyALDwBwdHTUOMoTgP3yyy9IT09HrVq1YGNjAxsbG1y9ehURERGoXbs2AMDT0xO5ubnIyMjQuDc9PV1u0fL09MStW7eK5H/79m2NNE+3dGVkZCAvL69Iy5gpsYnGSIStNcR/Z2gQEREVR1iZ7j2hEgWHPvcbSnBwsDywvlBgYCCCg4MxatQoAIC/vz9sbW1x6NAhDB06FACQmpqKc+fOYenSpQCAgIAAZGZm4vjx42jbti0A4LfffkNmZiY6dOggp1m4cCFSU1Ph5eUFADh48CAUCgX8/f0NVykdMQAjIiIig3vw4AEuXbokf05JSUFiYiKcnZ1Rq1YtuLi4aKS3tbWFp6cnGjVqBABQKpUYM2YMIiIi4OLiAmdnZ0ydOhXNmjWTg7fGjRujd+/eCA0Nxdq1awEULEPRr18/OZ9evXqhSZMmCA4Oxocffoi7d+9i6tSpCA0NrbAZkAADMKMRNlYQNmwBIyKikgnJdCOBnhxIX977dfH7779rzDCcMmUKACAkJASbNm3SKo+VK1fCxsYGQ4cORXZ2Nrp3745NmzbJa4ABwJdffomwsDB5tmRQUBBWr14tX7e2tsb333+P8ePHo2PHjrC3t8fw4cOxbNkyHWtkWJIQ3F3TkLKysqBUKtG19XuwsalS0cUhIiIzlp//GEd+j0JmZqbRWmMK30snL3igukP5A74H99Vo1eSWUctqSdgCZiRqWyuobTjHgYiISqY2ZQuYKDj0uZ8MhxECERERkYmxBcxICsaAMb4lIqKSCRO2g6ggQYXyr3ulz71UFAMwIiIiC8AAzLwwADMSjgEjIqKymHIMGJkXBmBEREQWQC0kqEX5W7H0uZeKsqgArHbt2rh69WqR8+PHj8e//vUvjBw5Eps3b9a41q5dO8THx+v8LLWtFdS2/JcNERGVzJQtYOyCNC8WFYCdOHECqic2Pj137hx69uyJIUOGyOd69+6NjRs3yp/t7OxMWkYiIiJ69llUAObm5qbxefHixahXrx46d+4sn1MoFPD09NT7WWobCWob/muBiIhKZspuPRWsoNJj1qWq7CSkA4vtI8vNzcUXX3yB0aNHQ5L+93+Ao0ePwt3dHQ0bNkRoaCjS09NLzScnJwdZWVkaBxERkbkR/x0DVt5DcAyYQVlUC9iTvvnmG9y7dw8jR46Uz/Xp0wdDhgyBr68vUlJSMGfOHHTr1g0JCQlQKBTF5rNo0SLMmzevyHm2gBERUVk4sN1yWexekIGBgbCzs8PevXtLTJOamgpfX19s374dgwYNKjZNTk4OcnJy5M9ZWVnw8fFB2wELYGPLvSCJiKhk+XmPcfzb2SbZC/LgWV9U02MvyIf31ejV7Cr3gjQQi2wBu3r1Kg4fPoxdu3aVms7Lywu+vr64ePFiiWkUCkWxrWNq24KDiIioJGoTPkslrKASeowBs8jmGuOxyABs48aNcHd3R9++fUtNd+fOHVy/fh1eXl46P0NYswuSiIhKJ9Sme0+oIUGtx9BvNRiBGZLFDcJXq9XYuHEjQkJCYGPzv/jzwYMHmDp1Ko4dO4YrV67g6NGj6N+/P1xdXfHKK69UYImJiIjoWWNxLWCHDx/GtWvXMHr0aI3z1tbWOHv2LLZs2YJ79+7By8sLXbt2xY4dO+Dg4KDzc9Q2gGRx3y4REelCbcI+SC7Eal4sLkTo1asXipt3YG9vjwMHDlRAiYiIiIxP/zFg7II0JIsLwExFbSNB4hgwIiIqhdqEY8DIvDAAIyIisgAFg/D12IybXZAGxQDMSDgGjIiIymLKMWBqPbci4ixIw7K4WZBEREREFY1tNEbCFjAiIiqLSWdBchC+WWGIQEREZAHUsOJCrGaEAZiRCGtA8NslIqJSCFVFl4AqCkMEIiIiC6ASElRCj4VY9biXimIAZiRqa0CyruhSEBGROVOb8D2h0nMWpIpdkAbFAIyIiMgCqIUV1HoMwldzEL5BMQAzEmHDMWBERFQ6jgGzXAwRiIiILAC7IM0LAzAjEdYFBxERUUlM+Z5QQ7+B9CZcsswicCV8IiIiIhNjC5iRcCV8IiIqi9qEY8D0X4iVbTaGxBCBiIjIAui/FREDMENiAGYkwopjwIiIqHSMaSwXAzAiIiILoIYENfQZhM+V8A2JAZiRCJuCcWBEREQlMeV6keyCNC/8NomIiIhMjG00RsJ1wIiIqCymfE/ovxAr22wMiQGYkQgbAWHDVYOJiKhkpnxPqIUEtT4LsepxLxXFAIyIiMgCqPVsAeM6YIbFb9NIClvAePDgwYMHj9KOZ9XPP/+M/v37w9vbG5Ik4ZtvvpGv5eXlYfr06WjWrBmqVasGb29vjBgxAjdv3tTIIycnBxMnToSrqyuqVauGoKAg3LhxQyNNRkYGgoODoVQqoVQqERwcjHv37mmkuXbtGvr3749q1arB1dUVYWFhyM3NNVbVtcIAjIiIyAKohZXehy4ePnyIFi1aYPXq1UWuPXr0CCdPnsScOXNw8uRJ7Nq1C3/++SeCgoI00oWHh2P37t3Yvn07YmNj8eDBA/Tr1w8q1f+2EBg+fDgSExOxf/9+7N+/H4mJiQgODpavq1Qq9O3bFw8fPkRsbCy2b9+OnTt3IiIiQsdv0LDYBWkkQuICe0REVDpTDqtSQYJKj7W8dL23T58+6NOnT7HXlEolDh06pHFu1apVaNu2La5du4ZatWohMzMTGzZswNatW9GjRw8AwBdffAEfHx8cPnwYgYGBSEpKwv79+xEfH4927doBANavX4+AgAAkJyejUaNGOHjwIC5cuIDr16/D29sbALB8+XKMHDkSCxcuhKOjo65fhUEwRCAiIiKtZWVlaRw5OTkGyTczMxOSJKFGjRoAgISEBOTl5aFXr15yGm9vb/j5+SEuLg4AcOzYMSiVSjn4AoD27dtDqVRqpPHz85ODLwAIDAxETk4OEhISDFL28mALmJE86337RESkP1O+J8rTjfj0/QDg4+OjcX7u3LmIjIzUp2h4/PgxZsyYgeHDh8stUmlpabCzs4OTk5NGWg8PD6Slpclp3N3di+Tn7u6ukcbDw0PjupOTE+zs7OQ0FYEBGBERkQVQQfduxKfvB4Dr169rdNspFAq9ypWXl4dhw4ZBrVbjk08+KTO9EAKS9L96PPlnfdKYGgMwI2ELGBERlaUyviccHR0NNm4qLy8PQ4cORUpKCn766SeNfD09PZGbm4uMjAyNVrD09HR06NBBTnPr1q0i+d6+fVtu9fL09MRvv/2mcT0jIwN5eXlFWsZMiWPAiIiILICpZ0GWpTD4unjxIg4fPgwXFxeN6/7+/rC1tdUYrJ+amopz587JAVhAQAAyMzNx/PhxOc1vv/2GzMxMjTTnzp1DamqqnObgwYNQKBTw9/c3aJ10wRYwI5GsBSTryvcvGyIiMh1TvidMvRn3gwcPcOnSJflzSkoKEhMT4ezsDG9vb7z66qs4efIkvvvuO6hUKnk8lrOzM+zs7KBUKjFmzBhERETAxcUFzs7OmDp1Kpo1aybPimzcuDF69+6N0NBQrF27FgAwduxY9OvXD40aNQIA9OrVC02aNEFwcDA+/PBD3L17F1OnTkVoaGiFzYAEGIARERGREfz+++/o2rWr/HnKlCkAgJCQEERGRmLPnj0AgJYtW2rcd+TIEXTp0gUAsHLlStjY2GDo0KHIzs5G9+7dsWnTJlhb/28TzS+//BJhYWHybMmgoCCNtcesra3x/fffY/z48ejYsSPs7e0xfPhwLFu2zBjV1pokhGAzjQFlZWVBqVTC59O5sLKvUtHFISIiM6bOfozrb81DZmam0VpjCt9LM471gaK6bbnzyXmQh8UBPxi1rJaELWBEREQWwNRdkFQ6BmBGIllxDBgREZVOsjLlOmAS1Hosva/PvVQUw1kiIiIiE2MLmJFYWQtYsQWMiIhKY8pZkLCCSo92F33upaIYgBEREVkAdkGaFwZgRmJlo4K1jarshEREZLn4nrBYFtWeGBkZCUmSNA5PT0/5uhACkZGR8Pb2hr29Pbp06YLz589XYImJiIgMQw0rvQ8yHItrAWvatCkOHz4sf35yMbelS5dixYoV2LRpExo2bIgFCxagZ8+eSE5OhoODg07PsbISsDLh7BYiIqp8hAnfEyohQaVHN6I+91JRFhfO2tjYwNPTUz7c3NwAFLR+RUdHY9asWRg0aBD8/PywefNmPHr0CNu2bavgUhMREdGzxOJawC5evAhvb28oFAq0a9cOUVFRqFu3LlJSUpCWliZvZQAACoUCnTt3RlxcHMaNG1dsfjk5OcjJyZE/Z2VlAQCsrQWsrdXGrQwREVVuJpwFyUH45sWiWsDatWuHLVu24MCBA1i/fj3S0tLQoUMH3LlzR94E1MPDQ+MeDw8P+VpxFi1aBKVSKR8+Pj5GrQMREVF5CGEFtR6H4Er4BmVRLWB9+vSR/9ysWTMEBASgXr162Lx5M9q3bw8AkCTNCF8IUeTck2bOnClvMAoUtID5+PjAlrMgiYioDFZ8T1gsiwrAnlatWjU0a9YMFy9exMCBAwEAaWlp8PLyktOkp6cXaRV7kkKhgEKhKHLe1koFayv+H4uIiEpmZcL3hAoSVNBjEL4e91JRFt2emJOTg6SkJHh5eaFOnTrw9PTEoUOH5Ou5ubmIiYlBhw4dKrCURERE+lOL/40DK99R0TV4tlhUC9jUqVPRv39/1KpVC+np6ViwYAGysrIQEhICSZIQHh6OqKgoNGjQAA0aNEBUVBSqVq2K4cOH6/wsays1bDgIn4iISmNluvdE4Vgufe4nw7GoAOzGjRt4/fXX8c8//8DNzQ3t27dHfHw8fH19AQDTpk1DdnY2xo8fj4yMDLRr1w4HDx7UeQ0wIiIiotJYVAC2ffv2Uq9LkoTIyEhERkbq/SxbaxVsrDkGjIiISiaZ8D2hhgS1HuO49LmXirKoAIyIiMhScSV888IAzEhsrVSw4SxIIiIqhcT3hMViAEZERGQBOAjfvDAAMxI7jgEjIqIyWJl6DJg+WxFxDJhBMZwlIiIiMjG2gBmJrZUatuzbJyKiUkgmXAdM6DkLUrAFzKAYgBEREVmAwhXt9bmfDIcBmJHYWanYAkZERKXiLEjLxQCMiIjIAnAWpHlhAGYkdtb5sLXmX1YiIiqZZJ1vsmexC9K8MAAjIiKyANyKyLwwADMSWykfdlZsASMiolJIpmsBI/PCAIyIiMgCsAvSvDAAMxJbSQ1byXTruxARUeUjTPieYABmXthHRkRERGRibAEzEoWVCnZW7NsnIqKSmXIdMLaAmRcGYERERBaAAZh5YQBmJHbW+VBY8y8rERGVwoTrgJF5YQBGRERkAQT0W8tLGK4oBAZgRmMjqWAjcY4DERGVTCVxDJilYoRAREREZGJsATOSKlZ5UDC8JSKiUkhWeSZ7FlvAzAsDMCOxkVSwZRckERGVgl2QlosRAhERkQUoDMD0OXTx888/o3///vD29oYkSfjmm280rgshEBkZCW9vb9jb26NLly44f/68RpqcnBxMnDgRrq6uqFatGoKCgnDjxg2NNBkZGQgODoZSqYRSqURwcDDu3bunkebatWvo378/qlWrBldXV4SFhSE3N1en+hgaW8CMRGGVzy5IIiIqlXiGF+x++PAhWrRogVGjRmHw4MFFri9duhQrVqzApk2b0LBhQyxYsAA9e/ZEcnIyHBwcAADh4eHYu3cvtm/fDhcXF0RERKBfv35ISEiAtbU1AGD48OG4ceMG9u/fDwAYO3YsgoODsXfvXgCASqVC37594ebmhtjYWNy5cwchISEQQmDVqlUm+jaKYgBGRERkAYSQIPToRtT13j59+qBPnz4l5CUQHR2NWbNmYdCgQQCAzZs3w8PDA9u2bcO4ceOQmZmJDRs2YOvWrejRowcA4IsvvoCPjw8OHz6MwMBAJCUlYf/+/YiPj0e7du0AAOvXr0dAQACSk5PRqFEjHDx4EBcuXMD169fh7e0NAFi+fDlGjhyJhQsXwtHRsbxfiV4YgBmJraSCrcT+ciIiKplJx4BB0msdsMJ7s7KyNM4rFAooFAqd8kpJSUFaWhp69eqlkU/nzp0RFxeHcePGISEhAXl5eRppvL294efnh7i4OAQGBuLYsWNQKpVy8AUA7du3h1KpRFxcHBo1aoRjx47Bz89PDr4AIDAwEDk5OUhISEDXrl11KruhsJOMiIiItObj4yOPt1IqlVi0aJHOeaSlpQEAPDw8NM57eHjI19LS0mBnZwcnJ6dS07i7uxfJ393dXSPN089xcnKCnZ2dnKYisAXMSGzYAkZERGXIr4SzIK9fv67Rbadr69eTpKfek0KIIuee9nSa4tKXJ42psQWMiIjIAhSOAdPnAABHR0eNozwBmKenJwAUaYFKT0+XW6s8PT2Rm5uLjIyMUtPcunWrSP63b9/WSPP0czIyMpCXl1ekZcyU2AJmJFWkPFSRuHMWERGVTEjP7izI0tSpUweenp44dOgQXnjhBQBAbm4uYmJisGTJEgCAv78/bG1tcejQIQwdOhQAkJqainPnzmHp0qUAgICAAGRmZuL48eNo27YtAOC3335DZmYmOnToIKdZuHAhUlNT4eXlBQA4ePAgFAoF/P39TVrvJ5UrAMvPz8fRo0dx+fJlDB8+HA4ODrh58yYcHR1RvXp1Q5eRiIiI9GTqhVgfPHiAS5cuyZ9TUlKQmJgIZ2dn1KpVC+Hh4YiKikKDBg3QoEEDREVFoWrVqhg+fDgAQKlUYsyYMYiIiICLiwucnZ0xdepUNGvWTJ4V2bhxY/Tu3RuhoaFYu3YtgIJlKPr164dGjRoBAHr16oUmTZogODgYH374Ie7evYupU6ciNDS0wmZAAuUIwK5evYrevXvj2rVryMnJQc+ePeHg4IClS5fi8ePH+PTTT41RzkrHVsqHLYeAERFRKfJN2AJm6mUofv/9d40ZhlOmTAEAhISEYNOmTZg2bRqys7Mxfvx4ZGRkoF27djh48KC8BhgArFy5EjY2Nhg6dCiys7PRvXt3bNq0SV4DDAC+/PJLhIWFybMlg4KCsHr1avm6tbU1vv/+e4wfPx4dO3aEvb09hg8fjmXLlpXrezAUSQihUz/ZwIED4eDggA0bNsDFxQWnT59G3bp1ERMTgzfffBMXL140VlkrhaysLCiVSqw96Q/76uzhJSKikmU/yMe4VgnIzMw0WmtM4XvJf+dk2FQr/4D5/Ic5SBi80qhltSQ6RwixsbH49ddfYWdnp3He19cXf//9t8EKVtnZQg07E85uISKiyicfapM9S+jZBalP6xkVpXMAplaroVIVDSxu3Lih0WxIRERE5kMA0K3Pq+j9ZDg6B2A9e/ZEdHQ01q1bB6BgbY0HDx5g7ty5ePnllw1ewMqqYAwY/7oSEVHJbE28Er5kgJXwyTB0DsBWrlyJrl27okmTJnj8+DGGDx+OixcvwtXVFV999ZUxykhERET0TNE5APP29kZiYiK++uornDx5Emq1GmPGjMEbb7wBe3t7Y5SxUirYC7KiS0FERObMlC1gpp4FSaUr1zQ9e3t7jB49GqNHjzZ0eYiIiMgI1EKCZMJ1wKh0WgVge/bs0TrDoKCgchfG2BYtWoRdu3bhjz/+gL29PTp06IAlS5bIi7UBwMiRI7F582aN+9q1a4f4+HidnmUr5cOOY8CIiKgUeZwtb7G0CsAGDhyo8VmSJDy9fFjhhpbFzZA0FzExMXjnnXfQpk0b5OfnY9asWejVqxcuXLiAatWqyel69+6NjRs3yp+fXnKDiIioshFCz1mQbFMwKK0CMLX6f+uUHD58GNOnT0dUVBQCAgIgSRLi4uIwe/ZsREVFGa2ghrB//36Nzxs3boS7uzsSEhLQqVMn+bxCoZA3Ci0vjgEjIqKycAyY5dJ5DFh4eDg+/fRTvPjii/K5wMBAVK1aFWPHjkVSUpJBC2hMmZmZAABnZ2eN80ePHoW7uztq1KiBzp07Y+HChXB3d6+IIhIREdEzSOcA7PLly1AqlUXOK5VKXLlypdR7nw50yiJJEk6ePAlfX1+d7tOGEAJTpkzBiy++CD8/P/l8nz59MGTIEPj6+iIlJQVz5sxBt27dkJCQAIWi6BYOOTk5yMnJkT9nZWUBKFgJ39bgpSYiomeJrYlXwmcLmPnQOQBr06YNwsPD8cUXX8DLywsAkJaWhoiICLRt27bUe+/du4fo6OhiA7inCSEwfvx4o40pmzBhAs6cOYPY2FiN86+99pr8Zz8/P7Ru3Rq+vr74/vvvMWjQoCL5LFq0CPPmzTNKGYmIiAyFsyDNi84B2Oeff45XXnkFvr6+qFWrFgDg2rVraNiwIb755psy7x82bJjW3XkTJ07UtXha57tnzx78/PPPqFmzZqlpvby84OvrW+Im4zNnzpR3eAcKWsB8fHxgLalhzb+rRERUCmvJlC1gHIRvTnQOwOrXr48zZ87g0KFD+OOPPyCEQJMmTdCjRw95JmRJnhzMr4379+/rWrxSCSEwceJE7N69G0ePHkWdOnXKvOfOnTu4fv263Nr3NIVCUWzXpI2k5iB8IiIqlY0JAzAyL+VaiFWSJPTq1Qu9evUydHmM6p133sG2bdvw7bffwsHBAWlpaQAKxq/Z29vjwYMHiIyMxODBg+Hl5YUrV67gvffeg6urK1555ZUKLj0REVH5FbSA6TMGzICFId0DsPnz55d6/f3339c6rz///BNHjx5Fenp6kdYxXfLR1po1awAAXbp00Ti/ceNGjBw5EtbW1jh79iy2bNmCe/fuwcvLC127dsWOHTvg4OCg07PsoIId944nIqJS2HEQvsXSOQDbvXu3xue8vDykpKTAxsYG9erV0zpwWr9+Pd5++224urrC09NTo/tSkiSjBGBPLx77NHt7exw4cMDgzyUiIiJ6ks4B2KlTp4qcy8rKwsiRI3XqpluwYAEWLlyI6dOn61qESsFKErDiVkRERFQKU74nxH8Pfe4nw7EyRCaOjo6YP38+5syZo/U9GRkZGDJkiCEeT0RERGUo7ILU5yDDKdcg/OLcu3dPXlleG0OGDMHBgwfx1ltvGaoIZsUOanAHSSIiKo0px4CRbp5cYkpbs2fP1nrReZ0DsI8//ljjsxACqamp2Lp1K3r37q31vfXr18ecOXMQHx+PZs2awdZWc934sLAwXYtGREREJWEfpE6io6MREBAAOzvtmlNiY2MxYcIE4wVgK1eu1PhsZWUFNzc3hISEYObMmTrdW716dcTExCAmJkbjvCRJlT4As5IKDiIiopKY9D2hbzeiBXZB7t69W+vF43VdLUHnACwlJUXXWwxyLxEREZGpbNy4UautEwutXbsWHh4eWqfXOQAbPXo0PvrooyKR3sOHDzFx4kR8/vnnWuUzf/58TJ06FVWrVtU4n52djQ8//NAoy1CYkhUErC2tvZaIiHRiZcL3BLci0k1ISIhO6YcPH65Tep1nQW7evBnZ2dlFzmdnZ2PLli1a5zNv3jw8ePCgyPlHjx5xc2siIiID4yxI86J1C1hWVhaEEBBC4P79+6hSpYp8TaVSYd++fVr3kwIFg/eL2zvy9OnTWg9gM2e2ErgXJBERlcqk7wkh6TeOy0IDsO+//x67d++Gs7MzRo8ejeeff16+lpGRgcGDB+Onn37SOV+tA7AaNWpAkiRIkoSGDRsWuS5JklYtV05OThr5PBmEqVQqPHjw4JldmoKIiIgqj23btmHEiBHo3bs3kpOTsWrVKnz22Wd44403AAC5ublFJhJqS+sA7MiRIxBCoFu3bti5c6dGK5WdnR18fX3h7e1dZj7R0dEQQmD06NGYN2+exgA3Ozs71K5dGwEBATpWw/xYQ4I1LPNfC0REpB1Tvic4Bkx3y5Ytw8qVKzFx4kQAwNdff41Ro0bh8ePHGDNmjF55ax2Ade7cGUDBTMZatWoV232ojZCQEOTn5wMAevTogZo1a5YrHyIiItIB1wHT2Z9//ol+/frJn1999VW4uroiKCgIeXl5Om3B+DStArAzZ87Az88PVlZWyMzMxNmzZ0tM27x587IfamOD8ePHIykpSfuSVjJWMNA+T0RE9Mzie8K8OTo64tatW6hTp458rkuXLti7dy/69euHGzdulDtvrQKwli1bIi0tDe7u7mjZsiUkSYIopi1SkiSoVCqtHtyuXTucOnUKvr6+upWYiIiIdKbvTEZLnAXZtm1b/PDDD2jfvr3G+c6dO8tBWHlpFYClpKTAzc1N/rMhjB8/HhEREbhx4wb8/f1RrVo1jevatKSZM2tJgnU5u2mJiMgymPw9YYHdiPqYPHky4uLiir3WpUsXfPfdd9i8eXO58pZEcU1Zpfj555/RoUMH2Nhoxm75+fmIi4tDp06dtMrHyqpow2thy5ouLWnmJisrC0qlEpf/8ISDAxuXiYioZPfvq1Hv+TRkZmbC0dHRKM8ofC/VWvc+rOyrlH1DCdTZj3Ft7HyjltWS6LwSfteuXZGamlpkza/MzEx07dpV68DpWd+WyAoSrDgLkoiISmHK9wS7IM2LzgFYSQuo3rlzp0g3Ymk49ouIiMiEOAuy3JYtW4apU6caNE+tA7BBgwYBKOgmHDlyJBQKhXxNpVLhzJkz6NChg04Pv3z5MqKjo5GUlARJktC4cWNMmjQJ9erV0ykfc2TFdcCIiKgM7CkxfzNmzMDu3bsrLgArXDBVCAEHBwfY29vL1+zs7NC+fXuEhoZq/eADBw4gKCgILVu2RMeOHSGEQFxcHJo2bYq9e/eiZ8+eOlSDiIiISif999DnfsshhMDYsWNx+PBh/PzzzwbPX+sAbOPGjQCA2rVrY+rUqTp1NxZnxowZmDx5MhYvXlzk/PTp0yt9AMYxYEREVBaTvifYBamTV199FfHx8YiJiYGPj4/B89d5DNjcuXMN8uCkpCT8+9//LnJ+9OjRiI6ONsgzKhKXoSAiorKY9D3BAEwnu3fvxrp161C/fn2j5F+udRK+/vprDB06FO3bt0erVq00Dm25ubkhMTGxyPnExMQiMyyJiIiocsnPz8fs2bNRp04d2Nvbo27dupg/fz7UarWcRgiByMhIeHt7w97eHl26dMH58+c18snJycHEiRPh6uqKatWqISgoqMgK9BkZGQgODoZSqYRSqURwcDDu3bunV/nDw8MRERGBEydO6JVPSXRuAfv4448xa9YshISE4Ntvv8WoUaNw+fJlnDhxAu+8847W+YSGhmLs2LH466+/0KFDB0iShNjYWCxZsgQRERG6FsvsWP33f0RERCUx6VtCSAWHPvfrYMmSJfj000+xefNmNG3aFL///jtGjRoFpVKJSZMmAQCWLl2KFStWYNOmTWjYsCEWLFiAnj17Ijk5GQ4ODgAKAqG9e/di+/btcHFxQUREBPr164eEhARYW1sDAIYPH44bN25g//79AICxY8ciODgYe/fuLXd1V6xYARcXF/Tp0wdHjhxBs2bNyp1XcXReiPX555/H3Llz8frrr8PBwQGnT59G3bp18f777+Pu3btYvXq1VvkIIRAdHY3ly5fj5s2bAABvb2+8++67CAsLK/dm3xWtcMG7tORacORCrEREVIqs+2p4NrpmkoVYa66ep/dCrDcmzNW6rP369YOHhwc2bNggnxs8eDCqVq2KrVu3QggBb29vhIeHY/r06QAKWrs8PDywZMkSjBs3DpmZmXBzc8PWrVvx2muvAQBu3rwJHx8f7Nu3D4GBgUhKSkKTJk0QHx+Pdu3aAQDi4+MREBCAP/74A40aNSp3nQFg3bp1mDdvHv7++2+98nmazhHCtWvX5OUm7O3tcf/+fQBAcHAwvvrqK63zkSQJkydPxo0bN5CZmYnMzEzcuHEDkyZNqrTBFxERERV48cUX8eOPP+LPP/8EAJw+fRqxsbF4+eWXARQsyJ6WloZevXrJ9ygUCnTu3Fne/ichIQF5eXkaaby9veHn5yenOXbsGJRKpRx8AUD79u2hVCpL3EZIF2PHjsXHH3+sdz5P07kL0tPTE3fu3IGvry98fX0RHx+PFi1aICUlpdgNurVR2MxIRERERmKgQfhZWVkapxUKhcbaoIWmT5+OzMxMPP/887C2toZKpcLChQvx+uuvAwDS0tIAAB4eHhr3eXh44OrVq3IaOzs7ODk5FUlTeH9aWlqxY8fd3d3lNPoaPHiwQfJ5ks4BWLdu3bB37160atUKY8aMweTJk/H111/j999/lxdr1catW7cwdepU/Pjjj0hPTy8SvFXWvSALcRkKIiIqi2mXoTDMGLCnl2SYO3cuIiMjiyTfsWMHvvjiC2zbtg1NmzZFYmIiwsPD4e3tjZCQEDnd071eJe24U1qa4tJrk09F0jkAW7dunTyD4a233oKzszNiY2PRv39/vPXWW1rnM3LkSFy7dg1z5syBl5eXWX9JREREVOD69esaY8CKa/0CgHfffRczZszAsGHDAADNmjXD1atXsWjRIoSEhMDT0xNAQQuWl5eXfF96errcKubp6Ync3FxkZGRotIKlp6fLw6E8PT1x69atIs+/fft2kdY1fRw/fhxHjx5Fenq6xkxOoGDAvq50DsCsrKxgZfW/oWNDhw7F0KFDdX5wbGwsfvnlF7Rs2VLneysDa8kK1hIH4RMRUcmsTdj2IImCQ5/7AcDR0VGrQfiPHj3SiBcAwNraWg5e6tSpA09PTxw6dAgvvPACACA3NxcxMTFYsmQJAMDf3x+2trY4dOiQHGukpqbi3LlzWLp0KQAgICAAmZmZOH78ONq2bQsA+O2335CZmanzFokliYqKwuzZs9GoUSN4eHiU2fqmDa0CsDNnzmidYfPmzbVK5+PjU+4xY0RERKQjEy/E2r9/fyxcuBC1atVC06ZNcerUKaxYsQKjR48GUBC4hIeHIyoqCg0aNECDBg0QFRWFqlWrYvjw4QAKtkEcM2YMIiIi4OLiAmdnZ0ydOhXNmjVDjx49AACNGzdG7969ERoairVr1wIoGDjfr18/vWdAFvroo4/w+eefY+TIkQbJD9AyAGvZsiUkSSozYJIkSeuxW9HR0ZgxYwbWrl2L2rVra3UPERERVQ6rVq3CnDlzMH78eKSnp8Pb2xvjxo3D+++/L6eZNm0asrOzMX78eGRkZKBdu3Y4ePCgxuS8lStXwsbGBkOHDkV2dja6d++OTZs2yWuAAcCXX36JsLAwebZkUFCQ1stiacPKygodO3Y0WH6AluuAFc5G0Iavr69W6ZycnPDo0SPk5+ejatWqsLW11bh+9+5drZ9pTgrXW7nzZx2uA0ZERKXKuq+GS8MUk6wD5rPyA73XAbs+eY5Ry2quli5dips3bxp0q0StWsC0Dap08Szs90hERFRpcC/Icps6dSr69u2LevXqoUmTJkUajXbt2qVznjoPwjeUJ6eglmbx4sV46623UKNGDeMWiIiI6FnGAKzcJk6ciCNHjqBr165wcXExyMoNFRaAaSsqKgpDhw6tdAFYwTpg7IIkIqKSWVlyVFOJbNmyBTt37kTfvn0NlqfZB2CcKUlERGQAbAErN2dnZ9SrV8+gebKJhoiIyBIUroSvz2GhIiMjMXfuXDx69MhgeZarBezevXv4+uuvcfnyZbz77rtwdnbGyZMn4eHhgeeee85ghSMiIiKqaB9//DEuX74MDw8P1K5du8gg/JMnT+qcp84B2JkzZ9CjRw8olUpcuXIFoaGhcHZ2xu7du3H16lVs2bJF50IQERGRcRlqJXxLNHDgQIPnqXMANmXKFIwcORJLly7VWCitT58+8sq1ld0nn3yCDz/8EKmpqWjatCmio6Px0ksvVXSxiIiIyo9jwMpt7ty5JV4r71h1nceAnThxAuPGjSty/rnnnkNaWlq5ClGal156Cfb29gbPtyQ7duxAeHg4Zs2ahVOnTuGll15Cnz59cO3aNZOVgYiIiMzHokWLij2vUqnK3fikcwBWpUoVZGVlFTmfnJwMNzc3rfM5efIkzp49K3/+9ttvMXDgQLz33nvIzc2Vz+/bt09jl3RjW7FiBcaMGYM333wTjRs3RnR0NHx8fLBmzRqTlYGIiIjMR3R0NNatW6dxTqVSYdiwYUhMTCxXnjoHYAMGDMD8+fORl5cHoGD/x2vXrmHGjBkYPHiw1vmMGzcOf/75JwDgr7/+wrBhw1C1alX85z//wbRp03QtlkHk5uYiISFB3kuqUK9evRAXF1chZSIiIjIECf8bB1auo6IrUIH27duH6dOn49///jcAIC8vD0OGDMH58+dx5MiRcuWpcwC2bNky3L59G+7u7sjOzkbnzp1Rv359ODg4YOHChVrn8+eff6Jly5YAgP/85z/o1KkTtm3bhk2bNmHnzp26Fssg/vnnH6hUKnh4eGic9/DwKLF7NScnB1lZWRoHERERPTv8/f2xe/duhIaG4ttvv8XgwYORnJyMI0eOwNPTs1x56jwI39HREbGxsfjpp59w8uRJqNVqtGrVCj169NApHyEE1Go1AODw4cPo168fAMDHxwf//POPrsUyqKe3GBBClLjtwKJFizBv3jxTFIuIiKj89F3Ly4LXAQOALl26YOvWrRg8eDAaN26MmJgYuLq6ljs/nQOwLVu24LXXXkO3bt3QrVs3+Xxubi62b9+OESNGaJVP69atsWDBAvTo0QMxMTHyGKuUlJQiLVCm4urqCmtr6yKtXenp6SWWaebMmZgyZYr8OSsrCz4+PkYtJxERkc44C1IngwYNKva8m5sbatSogbFjx8rnyrMZt85dkKNGjUJmZmaR8/fv38eoUaO0zic6OhonT57EhAkTMGvWLNSvXx8A8PXXX6NDhw66Fssg7Ozs4O/vj0OHDmmcP3ToUIllUigUcHR01DiIiIjMjjDAYUGUSmWxR2BgIOrVq6dxrjx0bgErqTvuxo0bOhWiefPmGrMgC3344YewtrbWtVgGM2XKFAQHB6N169YICAjAunXrcO3aNbz11lsVViYiIiIyrY0bNxo1f60DsBdeeAGSJEGSJHTv3h02Nv+7VaVSISUlBb1799bp4cVtaXThwoUK3dLotddew507dzB//nykpqbCz88P+/btg6+vb4WUh4iIyBC4Er550ToAK1yGPzExEYGBgahevbp8zc7ODrVr19ZpGYozZ86ge/fuqFGjhtltaTR+/HiMHz++wp5PRERkcBwDppNWrVrhxx9/hJOTk1bpX3zxRezYsUPrBiStA7DCZfhr166N1157DVWqVNH21mJNmTIFo0aNeqa3NCIiIqLKKTExEadPn4azs7PW6XNycrTOX+cxYCEhIbreUqwTJ05g7dq1Rc4ba0sjIiIii8YWMJ11795d670eS1quqiQ6B2AqlQorV67Ev//9b1y7dk1j2yAAuHv3rlb5GGpLIyIiIiobx4DpJiUlRed7atasqXVanQOwefPm4bPPPsOUKVMwZ84czJo1C1euXME333yD999/X+t8Crc0KlzWv7xbGpkrNQTUUFd0MYiIyIypLbFZqZIw9uQ7ndcB+/LLL7F+/XpMnToVNjY2eP311/HZZ5/h/fffR3x8vNb5GGpLIyIiItJC4Ur4+hxkMDq3gKWlpaFZs2YAgOrVq8uLsvbr1w9z5szROh9DbWlEREREWuAYMLOicwBWs2ZNpKamolatWqhfvz4OHjyIVq1a4cSJE1AoFDoXoFu3bujQoQMUCoXOA9iIiIiIKiOduyBfeeUV/PjjjwCASZMmYc6cOWjQoAFGjBiB0aNHa52PWq3GBx98gOeeew7Vq1eXB7vNmTMHGzZs0LVYREREVIrCQfj6HGQ4OreALV68WP7zq6++ipo1ayIuLg7169dHUFCQ1vksWLAAmzdvxtKlSxEaGiqfb9asGVauXIkxY8boWjQiIiIqCbsgzYrOAdjT2rdvj/bt2+t835YtW7Bu3Tp0795dY5/F5s2b448//tC3WBVOJdRQ8S8rERGVQiVMOFte31YsC36nGWoJrieVKwD7888/cfToUaSnp0Ot1vzLo+1SFH///Tfq169f5LxarUZeXl55ikVERERkcIZagutJOgdg69evx9tvvw1XV1d4enpqDJyXJEnrgjRt2hS//PJLkXU2/vOf/+CFF17QtVhmp2AdMAv+5wIREZXJpO8JdkGWW+ESXH379sW8efPw+uuvo169emjevDni4+MRFhamc546B2ALFizAwoULMX36dJ0f9qS5c+ciODgYf//9N9RqNXbt2oXk5GRs2bIF3333nV55ExER0VMYgJWboZbgepLOsyAzMjIwZMiQcj3sSf3798eOHTuwb98+ueUsKSkJe/fuRc+ePfXOn4iIiMgQCpfgAiAvwQWg3EtwAeUIwIYMGSI/uLzy8/Mxb948NGnSBDExMXjw4AEePXqE2NhY9OrVS6+8iYiIqCguQ1F+hlqC60k6d0HWr18fc+bMQXx8PJo1awZbW1uN69r0g9rY2ODDDz9ESEiIro+vNNTcCZKIiMrAN0XlYKgluJ6kcwC2bt06VK9eHTExMYiJidG4JkmS1gPRevTogaNHj2LkyJG6FoGIiIiowpR3Ca4n6RyAFa5Yr68+ffpg5syZOHfuHPz9/VGtWjWN6+WNKM2FSgiohAW31xIRUZlM+p7gIHy9bN26FZ9++ilSUlJw7Ngx+Pr6Ijo6GnXq1MGAAQN0zk/vhVjL6+233wYArFixosg1SZKgUqlMXSQiIqJnlr7juCx5DNiaNWvw/vvvIzw8HAsXLpRjlBo1aiA6Otp4AdiUKVPwwQcfoFq1apgyZUqpaYsLqIrz9AKuzxquA0ZERGXhe6JyWLVqFdavX4+BAwdqjAdr3bo1pk6dWq48tQrATp06Ja9Of+rUqRLTPbkoKxEREZkZxnvlkpKSUuwi8QqFAg8fPixXnloFYEeOHCn2z/r4+OOPiz0vSRKqVKmC+vXro1OnTrC2tjbI80xNDQEV/6YTEVEpuBJ+5VCnTh0kJiYW2b3nhx9+QJMmTcqVZ4WNAVu5ciVu376NR48ewcnJCUII3Lt3D1WrVkX16tWRnp6OunXr4siRI/Dx8amoYpYbuyCJiKgspnxPVMQYsL///hvTp0/HDz/8gOzsbDRs2BAbNmyAv78/AEAIgXnz5mHdunXIyMhAu3bt8K9//QtNmzaV88jJycHUqVPx1VdfITs7G927d8cnn3yCmjVrymkyMjIQFhaGPXv2ACiYyLdq1SrUqFGj/BV+wrvvvot33nkHjx8/hhACx48fx1dffYVFixbhs88+K1eeWgVggwYN0jrDXbt2aZUuKioK69atw2effYZ69eoBAC5duoRx48Zh7Nix6NixI4YNG4bJkyfj66+/1vr5REREVPEyMjLQsWNHdO3aFT/88APc3d1x+fJljaBo6dKlWLFiBTZt2oSGDRtiwYIF6NmzJ5KTk+Hg4AAACA8Px969e7F9+3a4uLggIiIC/fr1Q0JCgtxLNnz4cNy4cQP79+8HAIwdOxbBwcHYu3evQeoyatQo5OfnY9q0aXj06BGGDx+O5557Dh999BGGDRtWrjwlIcqeAztq1Cj5z0II7N69G0qlEq1btwYAJCQk4N69exg0aBA2btyo1YPr1auHnTt3omXLlhrnT506hcGDB+Ovv/5CXFwcBg8eLC//XxlkZWVBqVTizyQPODjovNEAERFZkPv31WjY+BYyMzPh6OholGcUvpcavBsFa0WVcuejynmMix++p3VZZ8yYgV9//RW//PJLsdeFEPD29kZ4eLi8v3ROTg48PDywZMkSjBs3DpmZmXBzc8PWrVvx2muvAQBu3rwJHx8f7Nu3D4GBgUhKSkKTJk0QHx+Pdu3aAQDi4+MREBCAP/74A40aNSp3nYGC3Xu+/PJLBAYGwtPTE//88w/UajXc3d31ylerCGHjxo3y4eHhgaFDhyIlJQW7du3Crl278Ndff2HYsGFwdXXV+sGpqanIz88vcj4/Px9paWkAAG9vb9y/f1/rPImIiKh4pt6KaM+ePWjdujWGDBkCd3d3vPDCC1i/fr18PSUlBWlpaRpbECoUCnTu3BlxcXEAChp48vLyNNJ4e3vDz89PTnPs2DEolUo5+AIKFkpVKpVyGn3Y2Njg7bffRk5ODgDA1dVV7+ALKMcYsM8//xyxsbEag+Otra0xZcoUdOjQAR9++KFW+XTt2hXjxo3DZ599Js8sOHXqFN5++21069YNAHD27FnUqVNH1yKaBfV/DyIiopJUxvdEVlaWxmeFQlHshtR//fUX1qxZgylTpuC9997D8ePHERYWBoVCgREjRsiNLR4eHhr3eXh44OrVqwCAtLQ02NnZwcnJqUiawvvT0tKKDYjc3d3lNPpq164dTp06VWQQvj50DsDy8/ORlJRUpEkvKSlJp7W9NmzYgODgYPj7+8v7Sebn56N79+7YsGEDAKB69epYvny5rkUkIiKipxloFuTTE+Pmzp2LyMjIIsnVajVat26NqKgoAMALL7yA8+fPY82aNRgxYoSc7uklrIQQZS5r9XSa4tJrk4+2xo8fj4iICNy4caPY3XuaN2+uc546B2CjRo3C6NGjcenSJXkfpPj4eCxevFhjrFhZPD09cejQIfzxxx/4888/IYTA888/rxHYde3aVdfimQ0Vl6EgIqIymPQ9YaAA7Pr16xpjwIpr/QIALy+vIks0NG7cGDt37gRQEAcABS1YXl5ecpr09HS5VczT0xO5ubnIyMjQaAVLT09Hhw4d5DS3bt0q8vzbt28XaV0rr8LxZ0/udy1JkhzklWf3Hp0DsGXLlsHT0xMrV66UB8d7eXlh2rRpiIiI0LkAdevWhSRJqFevHmxsKmxVDCIiItKCo6OjVoPwO3bsiOTkZI1zf/75p9yNV6dOHbkxpnAoUm5uLmJiYrBkyRIAkHvJDh06hKFDhwIoGEN+7tw5LF26FAAQEBCAzMxMHD9+HG3btgUA/Pbbb8jMzJSDNH0Zah/sJ+kU8RTOBBgxYgSmTZsm9wOXZ+bGo0ePMHHiRGzevBlAwY9St25dhIWFwdvbGzNmzNA5T3OSJwoOIiKikpjyPWHqdcAmT56MDh06ICoqCkOHDsXx48exbt06rFu3riA/SUJ4eDiioqLQoEEDNGjQAFFRUahatSqGDx8OAFAqlRgzZgwiIiLg4uICZ2dnTJ06Fc2aNUOPHj0AFLSq9e7dG6GhoVi7di2AgmUo+vXrp/cMyEKGHPtVSKcArHAmQFJSEoDyBV6FZs6cidOnT+Po0aPo3bu3fL5Hjx6YO3dupQ/AiIiIzIqJV8Jv06YNdu/ejZkzZ2L+/PmoU6cOoqOj8cYbb8hppk2bhuzsbIwfP15eiPXgwYPyGmBAwcLtNjY2GDp0qLwQ66ZNmzQmA3755ZcICwuTZ0sGBQVh9erVelS2eBcuXMC1a9eQm5urcT4oKEjnvLRaB+xJXbt2xaRJkzBw4ECdH/YkX19f7NixA+3bt4eDgwNOnz6NunXr4tKlS2jVqlWRWRaVReF6KycveKA61wEjIqJSPLivRqsmplkHrFG4/uuAJUdrvw7Ys+Svv/7CK6+8grNnz8pjv4D/Df43yRgwQ80EuH37drHTRh8+fMhNvYmIiAyNe0GW26RJk1CnTh0cPnwYdevWxfHjx3Hnzh1ERERg2bJl5cpT5wDMUDMB2rRpg++//x4TJ06U8wCA9evXIyAgQNdimR21KDiIiIhKYsr3REXsBfmsOHbsGH766Se4ubnBysoKVlZWePHFF7Fo0SKEhYXh1KlTOuepcwBmqJkAixYtQu/evXHhwgXk5+fjo48+wvnz53Hs2DHExMQY5BlERET0X2wBKzeVSoXq1asDKFgJ/+bNm2jUqBF8fX2LzPTUls4BmKFmAnTo0AG//vorli1bhnr16uHgwYNo1aoVjh07hmbNmhnkGRUpF1bI1W6nJyIislC5ZSchM+Dn54czZ86gbt26aNeuHZYuXQo7OzusW7cOdevWLVee5Vp46/Lly4iOjkZSUhIkSULjxo0xadIk1KtXT6d8mjVrJi9DQURERMbDLsjymz17Nh4+fAgAWLBgAfr164eXXnoJLi4u2LFjR7ny1DkAO3DgAIKCgtCyZUt07NgRQgjExcWhadOm2Lt3L3r27FnivbrMbKzsMyzUQoJacDIBERGVzKTvCXZBlltgYKD857p16+LChQu4e/cunJycyj1xUOcAbMaMGZg8eTIWL15c5Pz06dNLDcBq1KihdUHLM6WTiIiIyBScnZ31ul/nACwpKQn//ve/i5wfPXo0oqOjS733yJEj8p+vXLmCGTNmYOTIkfKsx2PHjmHz5s1YtGiRrsUq1ZUrV/DBBx/gp59+QlpaGry9vfF///d/mDVrFuzs7OR0xQWHa9aswVtvvaXzM3NhzTFgRERUqlywBcxS6RyAubm5ITExEQ0aNNA4n5iYWOy6Xk/q3Lmz/Of58+djxYoVeP311+VzQUFBaNasGdatW4eQkBBdi1aiP/74A2q1GmvXrkX9+vVx7tw5hIaG4uHDh0XW79i4caPGyvxKpdJg5SAiIqoo0n8Pfe4nw9E5AAsNDcXYsWPx119/oUOHDpAkCbGxsViyZIlOm3EfO3YMn376aZHzrVu3xptvvqlrsUrVu3dvjaCqbt26SE5Oxpo1a4oEYDVq1JB3aNdHvrBCnmALGBERlSyfrUoWS+cIYc6cOXj//fexatUqdO7cGZ06dcLq1asRGRmJWbNmaZ2Pj49PsQHY2rVr4ePjo2uxdJaZmVls/+2ECRPg6uqKNm3a4NNPP4VarTZ6WYiIiIxOGOAgg9G5BUySJEyePBmTJ0/G/fv3AUBj00xtrVy5EoMHD8aBAwfQvn17AEB8fDwuX76MnTt36pyfLi5fvoxVq1Zh+fLlGuc/+OADdO/eHfb29vjxxx8RERGBf/75B7Nnzy4xr5ycHOTk5MifC2d6qoQVVGwBIyKiUqi4Er7FKneEcPv2bZw+fRpnzpzBP//8o/P9L7/8Mi5evIgBAwbg7t27uHPnDgYMGIA///wTL7/8slZ5REZGQpKkUo/ff/9d456bN2+id+/eGDJkSJGuztmzZyMgIAAtW7ZEREQE5s+fjw8//LDUMixatAhKpVI+TNF6R0RERJWbJAq39NbSw4cPMXHiRGzZskXunrO2tsaIESOwatUqVK1atcR7z5w5Az8/P1hZaRf3nT9/Ho0aNYKNTfENdf/880+ZwV/t2rVRpUrB7u83b95E165d0a5dO2zatKnMcvz666948cUXkZaWBg8Pj2LTFNcC5uPjgz1n6qGag3Wp+RMRkWV7eF+FoOaXkZmZabT1L7OysqBUKtF0XBSsFVXKnY8q5zHOr33PqGW1JDp3QU6ZMgUxMTHYu3cvOnbsCACIjY1FWFgYIiIisGbNmhLvfeGFF5CWlgY3NzetnhUQEIDExMQSl/l3dXWFq6urVnn9/fff6Nq1K/z9/bFx40atgsBTp06hSpUqqFGjRolpFAoFFApFkfN5whp5ggEYERGVLM/U3XrsRjQbOgdgO3fuxNdff40uXbrI515++WXY29tj6NChpQZgQgjMmTOn1FayJ+XmGmaXrJs3b6JLly6oVasWli1bhtu3b8vXCmc87t27F2lpaQgICIC9vT2OHDmCWbNmYezYscUGWERERJUJx4CZF50DsEePHhXbHefu7o5Hjx6Vem+nTp102jW8MBjS18GDB3Hp0iVcunQJNWvW1LhW2ANra2uLTz75BFOmTIFarUbdunUxf/58vPPOO+V6Zp6wQS5bwIiIqBR53LLOYuk8Bqx79+5wcXHBli1b5LFV2dnZCAkJwd27d3H48GGjFLSyKOxr357YBFU5BoyIiErx6L4Kw1peMMkYML/QKFjb6TEGLPcxzq3nGDBD0bkF7KOPPkLv3r1Rs2ZNtGjRApIkITExEVWqVMGBAweMUcZKiWPAiIioLKYcA8YuSPOicwDm5+eHixcv4osvvsAff/wBIQSGDRuGN954wyDdhURERETPOp0DMACwt7dHaGioocvyTMkTNmwBIyKiUpl0DBg34zYrOi/EumjRInz++edFzn/++edYsmSJQQpFREREhlXYBanPQYajcwvY2rVrsW3btiLnmzZtimHDhmH69OkGKVhllwcrzoIkIqJS5bFZyWLpHIClpaXBy8uryHk3NzekpqYapFBERERkYOyCNCs6B2A+Pj749ddfUadOHY3zv/76K7y9vQ1WsMouT9jARpRriB0REVkIk66EzwDMrOgcIbz55psIDw9HXl4eunXrBgD48ccfMW3aNERERBi8gERERETPGp0DsGnTpuHu3bsYP368vFVQlSpVMH36dMycOdPgBaysHgtbSGwBIyKiUjw24SxIrgNmXnSOECRJwpIlSzBnzhwkJSXB3t4eDRo04H6JRERE5oxdkGal3E001atXR5s2bQxZlmdKPlfCJyKiMuTrthugXiQhIOnxPH3upaJ0XgeMiIiIiPTDQUpGkiesYc0WMCIiKkWeKVuV2AVpVhiAERERWQAOwjcvDMCMJEdtA0ltW9HFICIiM5ajrugSUEVhAEZERGQJ2AVpVhiAGQlnQRIRUVnyhemawNgFaV44C5KIiIjIxNgCZiSP1bYQHANGRESlMOkYMHZBmhUGYERERBaAXZDmhQGYkeRzHTAiIiqDKceAkXlhAEZERGQJ2AVpVhiAGUmuygZQ8eslIqKS5apMG9VUVDfiokWL8N5772HSpEmIjo4GAAghMG/ePKxbtw4ZGRlo164d/vWvf6Fp06byfTk5OZg6dSq++uorZGdno3v37vjkk09Qs2ZNOU1GRgbCwsKwZ88eAEBQUBBWrVqFGjVqmLKKOmOEYCQ5amsINb9eIiIqWa7ahF2QQhQc+txfDidOnMC6devQvHlzjfNLly7FihUrsGnTJjRs2BALFixAz549kZycDAcHBwBAeHg49u7di+3bt8PFxQURERHo168fEhISYG1dMMxn+PDhuHHjBvbv3w8AGDt2LIKDg7F3797y19UEuAwFERERGcWDBw/wxhtvYP369XBycpLPCyEQHR2NWbNmYdCgQfDz88PmzZvx6NEjbNu2DQCQmZmJDRs2YPny5ejRowdeeOEFfPHFFzh79iwOHz4MAEhKSsL+/fvx2WefISAgAAEBAVi/fj2+++47JCcnV0idtcUmGiPJE1aQBONbIiIqWZ4J3xOGmgWZlZWlcV6hUEChUBR7zzvvvIO+ffuiR48eWLBggXw+JSUFaWlp6NWrl0Y+nTt3RlxcHMaNG4eEhATk5eVppPH29oafnx/i4uIQGBiIY8eOQalUol27dnKa9u3bQ6lUIi4uDo0aNSp/hY2MEQIREZElEAY4APj4+ECpVMrHokWLin3c9u3bcfLkyWKvp6WlAQA8PDw0znt4eMjX0tLSYGdnp9FyVlwad3f3Ivm7u7vLacwVW8CMJE/YABwDRkREpcirhMtQXL9+HY6OjvLn4lq/rl+/jkmTJuHgwYOoUqVKiXlJkqTxWQhR5NzTnk5TXHpt8qlobAEjIiKyAJJa/wMAHB0dNY7iArCEhASkp6fD398fNjY2sLGxQUxMDD7++GPY2NjILV9Pt1Klp6fL1zw9PZGbm4uMjIxS09y6davI82/fvl2kdc3csInGSHJVNhBchoKIiEqRpzLlLEiYbB2w7t274+zZsxrnRo0aheeffx7Tp09H3bp14enpiUOHDuGFF14AAOTm5iImJgZLliwBAPj7+8PW1haHDh3C0KFDAQCpqak4d+4cli5dCgAICAhAZmYmjh8/jrZt2wIAfvvtN2RmZqJDhw56VNb4GCEQERGRQTk4OMDPz0/jXLVq1eDi4iKfDw8PR1RUFBo0aIAGDRogKioKVatWxfDhwwEASqUSY8aMQUREBFxcXODs7IypU6eiWbNm6NGjBwCgcePG6N27N0JDQ7F27VoABctQ9OvXz6wH4AMMwIwmV20NoeZWREREVLI8E74nzG0vyGnTpiE7Oxvjx4+XF2I9ePCgvAYYAKxcuRI2NjYYOnSovBDrpk2b5DXAAODLL79EWFiYPFsyKCgIq1evNmxhjUASQp9V2ehpWVlZUCqV6LM/FLbV7Cq6OEREZMbyHubih97rkZmZqTGw3ZAK30ttgz6AjW3JA+LLkp/3GMf3zDFqWS0JW8CMJE9txRYwIiIqVb6ac+EsFQMwIiIiC2BuXZCWjgGYkeSqrKFWsQWMiIhKlm/K94QJZ0FS2RiAERERWQC2gJkXBmBGksdZkEREVIZ8vicsFgMwIiIiSyBEwaHP/WQwDMCMJE9lDcExYEREVApTjgFjF6R5sZj5r7Vr14YkSRrHjBkzNNJcu3YN/fv3R7Vq1eDq6oqwsDDk5uZWUImJiIjoWWVRLWDz589HaGio/Ll69eryn1UqFfr27Qs3NzfExsbizp07CAkJgRACq1at0vlZKrUVoLKY+JaIiMpBZcp1wDgL0qxYVADm4OAAT0/PYq8dPHgQFy5cwPXr1+Ht7Q0AWL58OUaOHImFCxdy1V8iIqrU2AVpXiwqAFuyZAk++OAD+Pj4YMiQIXj33XdhZ1ewXdCxY8fg5+cnB18AEBgYiJycHCQkJKBr1646PStPbQ01Z7cQEVEpVHxPWCyLCcAmTZqEVq1awcnJCcePH8fMmTORkpKCzz77DACQlpYGDw8PjXucnJxgZ2eHtLS0EvPNyclBTk6O/DkrK8s4FSAiItKHWhQc+txPBlOpA7DIyEjMmzev1DQnTpxA69atMXnyZPlc8+bN4eTkhFdffRVLliyBi4sLAECSpCL3CyGKPV9o0aJFxZYhL98a6nz+y4aIiEqmMuV7gmPAzEqlDsAmTJiAYcOGlZqmdu3axZ5v3749AODSpUtwcXGBp6cnfvvtN400GRkZyMvLK9Iy9qSZM2diypQp8uesrCz4+PhoWQMiIiKyRJU6AHN1dYWrq2u57j116hQAwMvLCwAQEBCAhQsXIjU1VT538OBBKBQK+Pv7l5iPQqGAQqEocl6lkjgLkoiISqVSldzDYmgS9ByEb7CSEFDJAzBtHTt2DPHx8ejatSuUSiVOnDiByZMnIygoCLVq1QIA9OrVC02aNEFwcDA+/PBD3L17F1OnTkVoaGi5ZkCq1RIkNf+6EhFRydSmfE9wJXyzYhEBmEKhwI4dOzBv3jzk5OTA19cXoaGhmDZtmpzG2toa33//PcaPH4+OHTvC3t4ew4cPx7Jlyyqw5ERERIbBZSjMi0UEYK1atUJ8fHyZ6WrVqoXvvvvOIM9U51sDHIRPRESl4GQty2URARgREZHF4yxIs8IAzEjUKgkw4eBKIiKqfNSmHIQvBCQ9xnHpcy8VxWl6RERERCbGFjAjEWoJgi1gRERUCmHKWZDq/x763E8GwwCMiIjIArAL0rwwADMWlRUXYiUiotLxPWGxGIARERFZAs6CNCsMwIxEqDgGjIiISmfS9wRXwjcrbPskIiIiMjG2gBmJlC9BymcLGBERlcyU7wluRWReGIARERFZAnZBmhUGYEbCFjAiIiqLSVvA1AWHPveT4XAMGBEREZGJsQXMSCTBfy0QEVHpTDquil2QZoUBGBERkSXgOmBmhQGYkXAMGBERlYXvCcvFAIyIiMgCcC9I88IAzEjYAkZERGUx6XuCY8DMCmdBEhEREZkYW8CMRFIVHERERCUx6XtCANBndj4bwAyKARgREZEF4Bgw88IAzEikfMAqv6JLQURE5kzwPWGxOAbMSCT1/7ohefDgwYMHj2IPUy7YLfC/gfjlOnR73KJFi9CmTRs4ODjA3d0dAwcORHJysmaRhEBkZCS8vb1hb2+PLl264Pz58xppcnJyMHHiRLi6uqJatWoICgrCjRs3NNJkZGQgODgYSqUSSqUSwcHBuHfvXjm+JNNhAEZERGQJ9Aq+dJ9BGRMTg3feeQfx8fE4dOgQ8vPz0atXLzx8+FBOs3TpUqxYsQKrV6/GiRMn4OnpiZ49e+L+/ftymvDwcOzevRvbt29HbGwsHjx4gH79+kGlUslphg8fjsTEROzfvx/79+9HYmIigoOD9f/OjIhdkEZilQ9YWVd0KYiIyJyZtAtSDUCfVS90bK3bv3+/xueNGzfC3d0dCQkJ6NSpE4QQiI6OxqxZszBo0CAAwObNm+Hh4YFt27Zh3LhxyMzMxIYNG7B161b06NEDAPDFF1/Ax8cHhw8fRmBgIJKSkrB//37Ex8ejXbt2AID169cjICAAycnJaNSokR6VNh62gBEREZHWsrKyNI6cnByt7svMzAQAODs7AwBSUlKQlpaGXr16yWkUCgU6d+6MuLg4AEBCQgLy8vI00nh7e8PPz09Oc+zYMSiVSjn4AoD27dtDqVTKacwRW8CMpLB/n4iIqCSmfE8Yahakj4+Pxvm5c+ciMjKy1HuFEJgyZQpefPFF+Pn5AQDS0tIAAB4eHhppPTw8cPXqVTmNnZ0dnJyciqQpvD8tLQ3u7u5Fnunu7i6nMUcMwIiIiCyBgVbCv379OhwdHeXTCoWizFsnTJiAM2fOIDY2tsg1SdLsFxVCFDlXtCiaaYpLr00+FYkBmJFI+YDEMWBERFQKqRIuQ+Ho6KgRgJVl4sSJ2LNnD37++WfUrFlTPu/p6QmgoAXLy8tLPp+eni63inl6eiI3NxcZGRkarWDp6eno0KGDnObWrVtFnnv79u0irWvmhGPAiIiILIGJZ0EKITBhwgTs2rULP/30E+rUqaNxvU6dOvD09MShQ4fkc7m5uYiJiZGDK39/f9ja2mqkSU1Nxblz5+Q0AQEByMzMxPHjx+U0v/32GzIzM+U05ogtYEZipSo4iIiISiJM+Z4w8Wbc77zzDrZt24Zvv/0WDg4O8ngspVIJe3t7SJKE8PBwREVFoUGDBmjQoAGioqJQtWpVDB8+XE47ZswYREREwMXFBc7Ozpg6dSqaNWsmz4ps3LgxevfujdDQUKxduxYAMHbsWPTr189sZ0ACDMCIiIjICNasWQMA6NKli8b5jRs3YuTIkQCAadOmITs7G+PHj0dGRgbatWuHgwcPwsHBQU6/cuVK2NjYYOjQocjOzkb37t2xadMmWFv/b5zPl19+ibCwMHm2ZFBQEFavXm3cCupJEoKbOxlSVlYWlEolmo6LgrVdlYouDhERmTFV7mOcX/seMjMzdRpXpYvC91L3RhGwsS57wHxJ8lU5+DF5uVHLaknYAkZERGQBuBm3eWEAZiRW+YAVpzgQEVEpuBm35WIARkREZAlMPAifSscAzEjYAkZERGUx7V6QApD0CKLUDMAMiQEYERGRJWALmFlhAGYkVvkCVlb8y0pERCUT+XxPWCoGYERERBZBzxYwMFg0JIsIwI4ePYquXbsWe+348eNo06YNgOI381yzZg3eeustnZ/JMWBERFQWk44BYxekWbGIAKxDhw5ITU3VODdnzhwcPnwYrVu31ji/ceNG9O7dW/6sVCpNUkYiIiKyHBYRgNnZ2cm7rgNAXl4e9uzZgwkTJhRp9apRo4ZG2vKSVAJW7NsnIqJSqFUmfE+oBfTqRuQsSIOyyE6yPXv24J9//pH3onrShAkT4OrqijZt2uDTTz+FWq02fQGJiIgMTaj1P8hgLKIF7GkbNmxAYGAgfHx8NM5/8MEH6N69O+zt7fHjjz8iIiIC//zzD2bPnl1iXjk5OcjJyZE/Z2VlAQCs8iw0uiUiIq1Z5VV0CaiiVOoYITIyEpIklXr8/vvvGvfcuHEDBw4cwJgxY4rkN3v2bAQEBKBly5aIiIjA/Pnz8eGHH5ZahkWLFkGpVMrH00EdERGRWSgchK/PQQZTqVvAJkyYgGHDhpWapnbt2hqfN27cCBcXFwQFBZWZf/v27ZGVlYVbt27Bw8Oj2DQzZ87ElClT5M9ZWVnw8fEpWAdMnxWHiYjomWfSscIcA2ZWKnUA5urqCldXV63TCyGwceNGjBgxAra2tmWmP3XqFKpUqYIaNWqUmEahUEChUGhdBiIiIqJKHYDp6qeffkJKSkqx3Y979+5FWloaAgICYG9vjyNHjmDWrFkYO3ZsuQIstoAREVFZTNoCxnXAzIpFBWAbNmxAhw4d0Lhx4yLXbG1t8cknn2DKlClQq9WoW7cu5s+fj3feeadcz7LKU8OKM0aIiKgUVvkmfE8I6BmAGawkBAsLwLZt21bitd69e2sswEpERPRMYQuYWbGoAMyU2AJGRERlMWkLGJkVBmBERESWQK0GoEfAx4XJDYoBmJFI+WpI+vxFJyKiZ55k0jFg7II0J5V6IVYiIiKiyogtYEbCMWBERFQW086CZAuYOWEARkREZAm4Er5ZYQBmJFK+GpJQVXQxiIjIjEkq9pRYKgZgREREFkAINYQeQ2P0uZeKYgBmJFKeCpKaLWBERFQySWXC94QQ+nUjcgyYQXEWJBEREZGJsQXMSKTcfEjW1hVdDCIiMmOSKt90DxN6DsJnC5hBMQAjIiKyBGo1IOkxjotjwAyKAZix5OcDaraAERFRKdRsAbNUHANGREREZGJsATOW3DzAivEtERGVQp1nskcJtRpCjy5ILkNhWAzAiIiILAG7IM0KAzBjyctnCxgREZXOlGPAyKwwACMiIrIEagFIbAEzFwzAjETk5UFYSRVdDCIiMmPChGPACgIofZahYABmSOwjIyIiIjIxtoAZicjJgdCnqZeIiJ55QuSa7llqodd7SbAFzKAYgBEREVkCoYZ+XZBchsKQGIAZicjNh5A4BoyIiEomhOlmQbIFzLwwADMSkZ8HwfiLiIhKIYQJB+GTWWEAZmCF/0LIR55e690REdGzLx8FAZgpWpfyRY5e3YiFZSXDYABmYPfv3wcAxGJfBZeEiIgqi/v370OpVBolbzs7O3h6eiI2Tf/3kqenJ+zs7AxQKpIEO3UNSq1WIzk5GU2aNMH169fh6OhY0UUyqKysLPj4+LBulQzrVjmxbpWTLnUTQuD+/fvw9vaGlRF3T3n8+DFyc/WfcWlnZ4cqVaoYoETEFjADs7KywnPPPQcAcHR0fOb+w1KIdaucWLfKiXWrnLStm7Favp5UpUoVBk5mhguxEhEREZkYAzAiIiIiE2MAZgQKhQJz586FQqGo6KIYHOtWObFulRPrVjk9y3Ujw+EgfCIiIiITYwsYERERkYkxACMiIiIyMQZgRERERCbGAIyIiIjIxBiAGdgnn3yCOnXqoEqVKvD398cvv/xS0UXSWWRkJCRJ0jg8PT3l60IIREZGwtvbG/b29ujSpQvOnz9fgSUu2c8//4z+/fvD29sbkiThm2++0biuTV1ycnIwceJEuLq6olq1aggKCsKNGzdMWIvilVW3kSNHFvkd27dvr5HGXOu2aNEitGnTBg4ODnB3d8fAgQORnJyskaay/nba1K2y/nZr1qxB8+bN5QVIAwIC8MMPP8jXK+tvBpRdt8r6m1HFYQBmQDt27EB4eDhmzZqFU6dO4aWXXkKfPn1w7dq1ii6azpo2bYrU1FT5OHv2rHxt6dKlWLFiBVavXo0TJ07A09MTPXv2lPfBNCcPHz5EixYtsHr16mKva1OX8PBw7N69G9u3b0dsbCwePHiAfv36QaVSmaoaxSqrbgDQu3dvjd9x3z7NveDMtW4xMTF45513EB8fj0OHDiE/Px+9evXCw4cP5TSV9bfTpm5A5fztatasicWLF+P333/H77//jm7dumHAgAFykFVZfzOg7LoBlfM3owokyGDatm0r3nrrLY1zzz//vJgxY0YFlah85s6dK1q0aFHsNbVaLTw9PcXixYvlc48fPxZKpVJ8+umnJiph+QAQu3fvlj9rU5d79+4JW1tbsX37djnN33//LaysrMT+/ftNVvayPF03IYQICQkRAwYMKPGeylI3IYRIT08XAERMTIwQ4tn67Z6umxDP1m/n5OQkPvvss2fqNytUWDchnq3fjEyDLWAGkpubi4SEBPTq1UvjfK9evRAXF1dBpSq/ixcvwtvbG3Xq1MGwYcPw119/AQBSUlKQlpamUU+FQoHOnTtXunpqU5eEhATk5eVppPH29oafn1+lqO/Ro0fh7u6Ohg0bIjQ0FOnp6fK1ylS3zMxMAICzszOAZ+u3e7puhSr7b6dSqbB9+3Y8fPgQAQEBz9Rv9nTdClX234xMi5txG8g///wDlUoFDw8PjfMeHh5IS0uroFKVT7t27bBlyxY0bNgQt27dwoIFC9ChQwecP39erktx9bx69WpFFLfctKlLWloa7Ozs4OTkVCSNuf+uffr0wZAhQ+Dr64uUlBTMmTMH3bp1Q0JCAhQKRaWpmxACU6ZMwYsvvgg/Pz8Az85vV1zdgMr92509exYBAQF4/Pgxqlevjt27d6NJkyZykFGZf7OS6gZU7t+MKgYDMAOTJEnjsxCiyDlz16dPH/nPzZo1Q0BAAOrVq4fNmzfLg0qfhXoWKk9dKkN9X3vtNfnPfn5+aN26NXx9ffH9999j0KBBJd5nbnWbMGECzpw5g9jY2CLXKvtvV1LdKvNv16hRIyQmJuLevXvYuXMnQkJCEBMTI1+vzL9ZSXVr0qRJpf7NqGKwC9JAXF1dYW1tXeRfMunp6UX+xVfZVKtWDc2aNcPFixfl2ZDPQj21qYunpydyc3ORkZFRYprKwsvLC76+vrh48SKAylG3iRMnYs+ePThy5Ahq1qwpn38WfruS6lacyvTb2dnZoX79+mjdujUWLVqEFi1a4KOPPnomfrOS6lacyvSbUcVgAGYgdnZ28Pf3x6FDhzTOHzp0CB06dKigUhlGTk4OkpKS4OXlhTp16sDT01Ojnrm5uYiJial09dSmLv7+/rC1tdVIk5qainPnzlW6+t65cwfXr1+Hl5cXAPOumxACEyZMwK5du/DTTz+hTp06Gtcr829XVt2KU5l+u6cJIZCTk1Opf7OSFNatOJX5NyMTMfmw/2fY9u3bha2trdiwYYO4cOGCCA8PF9WqVRNXrlyp6KLpJCIiQhw9elT89ddfIj4+XvTr1084ODjI9Vi8eLFQKpVi165d4uzZs+L1118XXl5eIisrq4JLXtT9+/fFqVOnxKlTpwQAsWLFCnHq1Clx9epVIYR2dXnrrbdEzZo1xeHDh8XJkydFt27dRIsWLUR+fn5FVUsIUXrd7t+/LyIiIkRcXJxISUkRR44cEQEBAeK5556rFHV7++23hVKpFEePHhWpqany8ejRIzlNZf3tyqpbZf7tZs6cKX7++WeRkpIizpw5I9577z1hZWUlDh48KISovL+ZEKXXrTL/ZlRxGIAZ2L/+9S/h6+sr7OzsRKtWrTSmllcWr732mvDy8hK2trbC29tbDBo0SJw/f16+rlarxdy5c4Wnp6dQKBSiU6dO4uzZsxVY4pIdOXJEAChyhISECCG0q0t2draYMGGCcHZ2Fvb29qJfv37i2rVrFVAbTaXV7dGjR6JXr17Czc1N2Nrailq1aomQkJAi5TbXuhVXLwBi48aNcprK+tuVVbfK/NuNHj1a/u+fm5ub6N69uxx8CVF5fzMhSq9bZf7NqOJIQghhuvY2IiIiIuIYMCIiIiITYwBGREREZGIMwIiIiIhMjAEYERERkYkxACMiIiIyMQZgRERERCbGAIyIiIjIxBiAEREREZkYAzCiZ9TIkSMxcOBA+XOXLl0QHh5eYeUpzZUrVyBJEhITE5+p50qShG+++cYoeRNR5cYAjMhC7Nq1Cx988IFB84yMjETLli0Nmqcp+fj4IDU1FX5+fgCAo0ePQpIk3Lt3r2ILRkTPPJuKLgAR6ScvLw+2trZlpnN2djZBaSoXa2treHp6VnQxiMgCsQWMyIDUajWWLFmC+vXrQ6FQoFatWli4cKF8/ezZs+jWrRvs7e3h4uKCsWPH4sGDBxr3z58/HzVr1oRCoUDLli2xf/9++Xphl9m///1vdOnSBVWqVMEXX3wBlUqFKVOmoEaNGnBxccG0adPw9DavT3dB1q5dG1FRURg9ejQcHBxQq1YtrFu3TuOe6dOno2HDhqhatSrq1q2LOXPmIC8vDwCwadMmzJs3D6dPn4YkSZAkCZs2bQIAZGZmYuzYsXB3d4ejoyO6deuG06dP6/RdxsTEoG3btlAoFPDy8sKMGTOQn5+vUZ+wsDBMmzYNzs7O8PT0RGRkpEYef/zxB1588UVUqVIFTZo0weHDhzW6BZ/sgrxy5Qq6du0KAHBycoIkSRg5cqT8XUVHR2vk3bJlS43nXbx4EZ06dZKfdejQoSJ1+vvvv/Haa6/ByckJLi4uGDBgAK5cuaLT90JEzwYGYEQGNHPmTCxZsgRz5szBhQsXsG3bNnh4eAAAHj16hN69e8PJyQknTpzAf/7zHxw+fBgTJkyQ7//oo4+wfPlyLFu2DGfOnEFgYCCCgoJw8eJFjedMnz4dYWFhSEpKQmBgIJYvX47PP/8cGzZsQGxsLO7evYvdu3eXWd7ly5ejdevWOHXqFMaPH4+3334bf/zxh3zdwcEBmzZtwoULF/DRRx9h/fr1WLlyJQDgtddeQ0REBJo2bYrU1FSkpqbitddegxACffv2RVpaGvbt24eEhAS0atUK3bt3x927d7X6Hv/++2+8/PLLaNOmDU6fPo01a9Zgw4YNWLBggUa6zZs3o1q1avjtt9+wdOlSzJ8/Xw581Go1Bg4ciKpVq+K3337DunXrMGvWrBKf6ePjg507dwIAkpOTkZqaio8++kir8qrVagwaNAjW1taIj4/Hp59+iunTp2ukefToEbp27Yrq1avj559/RmxsLKpXr47evXsjNzdXq+cQ0TNEEJFBZGVlCYVCIdavX1/s9XXr1gknJyfx4MED+dz3338vrKysRFpamhBCCG9vb7Fw4UKN+9q0aSPGjx8vhBAiJSVFABDR0dEaaby8vMTixYvlz3l5eaJmzZpiwIAB8rnOnTuLSZMmyZ99fX3F//3f/8mf1Wq1cHd3F2vWrCmxjkuXLhX+/v7y57lz54oWLVpopPnxxx+Fo6OjePz4scb5evXqibVr1xabb2G9Tp06JYQQ4r333hONGjUSarVaTvOvf/1LVK9eXahUKrk+L774okY+bdq0EdOnTxdCCPHDDz8IGxsbkZqaKl8/dOiQACB2795d7HOPHDkiAIiMjAyNfH19fcXKlSs1zrVo0ULMnTtXCCHEgQMHhLW1tbh+/bp8/YcfftB41oYNG4rUKScnR9jb24sDBw4U+70Q0bOLY8CIDCQpKQk5OTno3r17iddbtGiBatWqyec6duwItVqN5ORk2Nvb4+bNm+jYsaPGfR07dizSfde6dWv5z5mZmUhNTUVAQIB8zsbGBq1bty7SDfm05s2by3+WJAmenp5IT0+Xz3399deIjo7GpUuX8ODBA+Tn58PR0bHUPBMSEvDgwQO4uLhonM/Ozsbly5dLvbdQUlISAgICIEmSfK5jx4548OABbty4gVq1ahUpPwB4eXnJ5U9OToaPj4/GGK+2bdtq9XxdJSUloVatWqhZs6Z87snfAyj4Xi5dugQHBweN848fP9b6eyGiZwcDMCIDsbe3L/W6EEIjoHjSk+efTlPcfU8Gcfp4evC+JElQq9UAgPj4eAwbNgzz5s1DYGAglEoltm/fjuXLl5eap1qthpeXF44ePVrkWo0aNbQqV3F1LgwmnzxfWvlL+751ZWVlVSSYLRwL92TZni7Lk9RqNfz9/fHll18WSevm5maQchJR5cExYEQG0qBBA9jb2+PHH38s9nqTJk2QmJiIhw8fyud+/fVXWFlZoWHDhnB0dIS3tzdiY2M17ouLi0Pjxo1LfK5SqYSXlxfi4+Plc/n5+UhISNCrPr/++it8fX0xa9YstG7dGg0aNMDVq1c10tjZ2UGlUmmca9WqFdLS0mBjY4P69etrHK6urlo9u0mTJoiLi9MIbOLi4uDg4IDnnntOqzyef/55XLt2Dbdu3ZLPnThxotR77OzsAKBIndzc3JCamip/zsrKQkpKikZ5r127hps3b8rnjh07ppFHq1atcPHiRbi7uxf5XpRKpVZ1IqJnBwMwIgOpUqUKpk+fjmnTpmHLli24fPky4uPjsWHDBgDAG2+8gSpVqiAkJATnzp3DkSNHMHHiRAQHB8sD9d99910sWbIEO3bsQHJyMmbMmIHExERMmjSp1GdPmjQJixcvxu7du/HHH39g/Pjxeq9lVb9+fVy7dg3bt2/H5cuX8fHHHxcZ2F+7dm2kpKQgMTER//zzD3JyctCjRw8EBARg4MCBOHDgAK5cuYK4uDjMnj0bv//+u1bPHj9+PK5fv46JEyfijz/+wLfffou5c+diypQpsLLS7j9bPXv2RL169RASEoIzZ87g119/lQfhl9Qy5uvrC0mS8N133+H27dvyDNVu3bph69at+OWXX3Du3DmEhITA2tpavq9Hjx5o1KgRRowYgdOnT+OXX34pMuD/jTfegKurKwYMGIBffvkFKSkpiImJwaRJk3Djxg2t6kREzw4GYEQGNGfOHEREROD9999H48aN8dprr8ljkqpWrYoDBw7g7t27aNOmDV599VV0794dq1evlu8PCwtDREQEIiIi0KxZM+zfvx979uxBgwYNSn1uREQERowYgZEjRyIgIAAODg545ZVX9KrLgAEDMHnyZEyYMAEtW7ZEXFwc5syZo5Fm8ODB6N27N7p27Qo3Nzd89dVXkCQJ+/btQ6dOnTB69Gg0bNgQw4YNw5UrV+RAsyzPPfcc9u3bh+PHj6NFixZ46623MGbMGMyePVvr8ltbW+Obb77BgwcP0KZNG7z55pvy/VWqVCnxufPmzcOMGTPg4eEhz1CdOXMmOnXqhH79+uHll1/GwIEDUa9ePfk+Kysr7N69Gzk5OWjbti3efPNNjeVHgILf/+eff0atWrUwaNAgNG7cGKNHj0Z2dnaZ4+qI6NkjibJG6RIRPSN+/fVXvPjii7h06ZJGAEVEZGoMwIjombV7925Ur14dDRo0wKVLlzBp0iQ4OTkVGWdHRGRqnAVJRM+s+/fvY9q0abh+/TpcXV3Ro0ePMmdxEhGZAlvAiIiIiEyMg/CJiIiITIwBGJGZ69Kli7zZdWJiYrFpjh49CkmS9F56gooXGRkp/wZPb8pNRFQeDMCIKoHQ0FCkpqbCz8+voovyTLty5Uqxge7UqVORmpqqsdUQEZE+OAifqBKoWrWqxp6GFSUvL6/I9j+WoHr16qhevbrG4qtERPpgCxhRJbRv3z40bNgQ9vb26Nq1K65cuVIkTVxcHDp16gR7e3v4+PggLCxMYxuk1NRU9O3bF/b29qhTpw62bduG2rVra3SxSZKETz/9FAMGDEC1atWwYMECAMDevXvh7++PKlWqoG7dupg3bx7y8/Pl+zIzMzF27Fi4u7vD0dER3bp109hQ/PTp0+jatSscHBzg6OgIf39/rVfJL6teX3zxBVq3bg0HBwd4enpi+PDhGhuMZ2Rk4I033oCbmxvs7e3RoEEDbNy4EQBQp04dAMALL7wASZLQpUsXrcpERKQrBmBElcz169cxaNAgvPzyy0hMTMSbb76JGTNmaKQ5e/YsAgMDMWjQIJw5cwY7duxAbGysvLI7AIwYMQI3b97E0aNHsXPnTqxbt04jUCk0d+5cDBgwAGfPnsXo0aNx4MAB/N///R/CwsJw4cIFrF27Fps2bZJXfhdCoG/fvkhLS8O+ffuQkJCAVq1aoXv37rh79y6Agm15atasiRMnTiAhIQEzZszQqmVNm3rl5ubigw8+wOnTp/HNN98gJSUFI0eOlK/PmTMHFy5cwA8//ICkpCSsWbNG3qPy+PHjAIDDhw8jNTUVu3bt0vJXISLSkSAis9a5c2cxadIk+fPMmTNF48aNhVqtls9Nnz5dABAZGRlCCCGCg4PF2LFjNfL55ZdfhJWVlcjOzhZJSUkCgDhx4oR8/eLFiwKAWLlypXwOgAgPD9fI56WXXhJRUVEa57Zu3Sq8vLyEEEL8+OOPwtHRUTx+/FgjTb169cTatWuFEEI4ODiITZs26fZFaFGv4hw/flwAEPfv3xdCCNG/f38xatSoYtOmpKQIAOLUqVPFXvf19dX4foiIyotjwIgqmaSkJLRv315jQ+mAgACNNAkJCbh06RK+/PJL+ZwQAmq1GikpKfjzzz9hY2ODVq1aydfr168PJyenIs9r3bp1kbxPnDihsdehSqXC48eP8ejRIyQkJODBgwdwcXHRuC87OxuXL18GAEyZMgVvvvkmtm7dih49emDIkCFabQ1UVr0aN26MU6dOITIyEomJibh79y7UajUA4Nq1a2jSpAnefvttDB48GCdPnkSvXr0wcOBAdOjQocxnExEZEgMwokpGaLF2slqtxrhx4xAWFlbkWq1atZCcnKx13tWqVSuS97x58zBo0KAiaatUqQK1Wg0vLy8cPXq0yPUaNWoAKFjWYfjw4fj+++/xww8/YO7cudi+fXuZG4iXVa+HDx+iV69e6NWrF7744gu4ubnh2rVrCAwMRG5uLgCgT58+uHr1Kr7//nscPnwY3bt3xzvvvINly5aV+mwiIkNiAEZUyTRp0gTffPONxrn4+HiNz61atcL58+dRv379YvN4/vnnkZ+fj1OnTsHf3x8AcOnSJa3WEWvVqhWSk5NLzLtVq1ZIS0uDjY0NateuXWI+DRs2RMOGDTF58mS8/vrr2LhxY5kBWFn1Onv2LP755x8sXrwYPj4+AFDs4H43NzeMHDkSI0eOxEsvvYR3330Xy5Ytg52dHYCCFj0iImPiIHyiSuatt97C5cuXMWXKFCQnJ2Pbtm3YtGmTRprp06fj2LFjeOedd5CYmIiLFy9iz549mDhxIoCCAKxHjx4YO3Ysjh8/jlOnTmHs2LGwt7fX6Noszvvvv48tW7YgMjIS58+fR1JSEnbs2IHZs2cDAHr06IGAgAAMHDgQBw4cwJUrVxAXF4fZs2fj999/R3Z2NiZMmICjR4/i6tWr+PXXX3HixAk0bty4zLqXVa9atWrBzs4Oq1atwl9//YU9e/bggw8+KFL+b7/9FpcuXcL58+fx3Xffyc92d3eHvb099u/fj1u3biEzM1Or34SISFcMwIgqmVq1amHnzp3Yu3cvWrRogU8//RRRUVEaaZo3b46YmBhcvHgRL730El544QXMmTMHXl5ecpotW7bAw8MDnTp1wiuvvILQ0FA4ODigSpUqpT4/MDAQ3333HQ4dOoQ2bdqgffv2WLFiBXx9fQEULF2xb98+dOrUCaNHj0bDhg0xbNgwXLlyBR4eHrC2tsadO3cwYsQINGzYEEOHDkWfPn0wb968MuteVr3c3NywadMm/Oc//0GTJk2wePHiIl2LdnZ2mDlzJpo3b45OnTrB2toa27dvBwDY2Njg448/xtq1a+Ht7Y0BAwaU/YMQEZUDN+MmMnNdunRBy5Ytjb4Fzo0bN+Dj4yOPi6KiateujfDwcISHh1d0UYiokmMLGFEl8Mknn6B69eo4e/aswfL86aefsGfPHqSkpCAuLg7Dhg1D7dq10alTJ4M941kRFRWF6tWr49q1axVdFCJ6RrAFjMjM/f3338jOzgbwvzFOhnDgwAFERETgr7/+goODAzp06IDo6Gi5K7Ei9OnTB7/88kux19577z289957Ji5Rgbt378qLyLq5uUGpVFZIOYjo2cEAjIjMxpPB5tOcnZ3h7Oxs4hIRERkHAzAiIiIiE+MYMCIiIiITYwBGREREZGIMwIiIiIhMjAEYERERkYkxACMiIiIyMQZgRERERCbGAIyIiIjIxBiAEREREZnY/wM2CgKGJ/JHAQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fv_t232.area.plot() ;" + ] + }, + { + "cell_type": "markdown", + "id": "c70c59f8-562f-4bf8-b808-78f31a74f15b", + "metadata": {}, + "source": [ + "----\n", + "### Make plots\n", + "---\n", + "\n", + "First we'll look at ocean masks and regridded data\n", + "Using the correct destination land mask gives nicer coastlines " + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "0898c0c8-56bb-4880-a515-bfd091a82007", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'bilinear remapping, dest mask')" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPoAAAJCCAYAAABZM6mOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5hcVfnHv+eWaTvbNx1SaELoJBIDSEAkoQoIEgFpIgpYIKFK+VFUkGKCSFOMIiAhooCAIIQWKUEBAYUIqCRE0ttm25Rbzu+P0+7szm5mNluT9/M8eTJ759x7z61zz/d+3/dlnHMOgiAIgiAIgiAIgiAIgiAGNVZ/d4AgCIIgCIIgCIIgCIIgiM2HhD6CIAiCIAiCIAiCIAiC2AIgoY8gCIIgCIIgCIIgCIIgtgBI6CMIgiAIgiAIgiAIgiCILQAS+giCIAiCIAiCIAiCIAhiC4CEPoIgCIIgCIIgCIIgCILYAiChjyAIgiAIgiAIgiAIgiC2AEjoIwiCIAiCIAiCIAiCIIgtABL6CIIgCIIgCIIgCIIgCGILgIQ+YlBy0EEHYcmSJf3dja2GM844A2PHjt1ku4MOOggHHXRQr/enGPfeey8YYwXnRT6fxznnnIMRI0bAtm3stdde/dI3giAIgiC2DB588EHceuutRb9jjOGaa67p0/4QxZ8Bib6HMYbvfOc7/d0NgiBAQh8xiPjZz36GRYsWFUxrbW3F9ddfj/Xr1/dTr4iBzF133YWf//znuOKKK/DKK6/g/vvv7+8uEQRBEAQxiOlK6Fu4cCG+8Y1v9G2HCBx55JFYuHAhRowY0d9dIQiCGBA4/d0BYnDjeR4YY3Cc3j+Vdt55Z5x77rkYP348Nm7ciPvvvx+PPvooTjnlFCSTybKWlclkkEgkwBjrpd4SA4H33nsPyWRyk28XOefIZrNln0cEQRAEQQxM2trakEql+nSdn/vc5/p0fZ2xtT3XDBkyBEOGDOnvbhAEQQwYyNFH4D//+Q/OPPNM7LjjjkilUhg1ahSOPvpo/POf/yxo99JLL4Exhvvvvx8XXnghRo0ahXg8jv/85z8AgOeeew6HHHIIqqqqkEqlsP/+++P555/v1rqKceihh2LBggWoqanBO++8g4cffhjPPvssLrzwwi4fZJSd/9lnn8XXv/51DBkyBKlUCrlcDgAwb948TJ48GRUVFUin05g2bRrefvvtgmWcccYZSKfT+OCDDzBt2jRUVFRgxIgR+PGPfwwAeP3113HAAQegoqICO+20E37zm98UzL9mzRqcd955GD9+PNLpNIYOHYovfOELePnllwvaLVmyBIwx3HTTTfjRj36E0aNHI5FIYOLEiR325TXXXAPGGN5++218+ctfRlVVFaqrq/G1r30Na9as6bAfStlOtb8+85nPIB6PY5dddsF9993XxVHZNNdeey0mTZqEuro6VFVVYZ999sGcOXPAOS9oN3bsWBx11FH485//jH322QfJZBI777wzfvWrX3VY5uuvv479998fiUQCI0eOxPe//314nlfQhjGGX/7yl8hkMmCMgTGGe++9V3/3ne98B3fffTd22WUXxONxfcxK7S8g3upPnjwZ6XQa6XQae+21F+bMmbNZ+4sgCIIg+poPPvgAJ510EoYNG4Z4PI7Ro0fjtNNO089KgHh5dswxx6C2thaJRAJ77bVXh+cd9aw4d+5cXHHFFRg5ciSqqqrwxS9+ER9++GFB27fffhtHHXUUhg4ding8jpEjR+LII4/Ep59+qttwznHnnXdir732QjKZRG1tLU444QR8/PHHBcs66KCDsNtuu+Evf/kL9ttvP6RSKXz961/HscceizFjxiAMww7bPGnSJOyzzz767zvuuAMHHngghg4dioqKCuy+++646aabCp4vDjroIPzpT3/CJ598op8toi+No6G77777LhhjRZ8Lnn76aTDG8Pjjj+tp//73v3HyySfr/bHLLrvgjjvuKHq82tPVc00py1XH7cEHH8Sll16KESNGIJ1O4+ijj8aqVavQ3NyMb37zm2hoaEBDQwPOPPNMtLS0FCyjlP2n9uFuu+2Gl19+GZ/73OeQTCYxatQoXHXVVQiCQLcr55m4WOiuWs8bb7yBz3/+80ilUthuu+3w4x//uMP58P7772Pq1KlIpVIYMmQIvv3tb+NPf/oTGGN46aWXSjoGUVTfb7nlFsyaNQvjxo1DOp3G5MmT8frrr3do//jjj2Py5MlIpVKorKzEoYceioULF25yPX153Eq5XtvDOcfll18O13Vxzz33lLj3CILoETix1bNgwQJ+4YUX8t///vd8wYIF/NFHH+XHHnssTyaT/IMPPtDtXnzxRQ6Ajxo1ip9wwgn88ccf508++SRft24dv//++zljjB977LH8kUce4U888QQ/6qijuG3b/Lnnnit7XcV44YUX+EEHHcS/9a1v8b322otfd911fO+99+Y/+clPeFtbW6fz/frXv9b9/uY3v8mffvpp/vvf/577vs9/9KMfccYY//rXv86ffPJJ/sgjj/DJkyfziooK/v777+tlnH766TwWi/FddtmF//SnP+Xz58/nZ555JgfAv//97/OddtqJz5kzhz/zzDP8qKOO4gD4m2++qef/4IMP+Lnnnssfeugh/tJLL/Enn3ySn3XWWdyyLP7iiy/qdosXL+YA+LbbbssPOOAA/oc//IE//PDD/LOf/Sx3XZe/9tpruu3VV1/NAfAxY8bwiy++mD/zzDN81qxZvKKigu+99948n8/rtqVup9pXxxxzDH/iiSf4Aw88wHfYYQe+7bbb8jFjxnR5fDjnfMqUKXzKlCkF08444ww+Z84cPn/+fD5//nz+gx/8gCeTSX7ttdcWtBszZgzfZptt+Pjx4/l9993Hn3nmGf6Vr3yFA+ALFizQ7d5//32eSqX4+PHj+dy5c/kf//hHPm3aND569GgOgC9evJhzzvnChQv5EUccwZPJJF+4cCFfuHAhX716Neec6/Nhjz324A8++CB/4YUX+HvvvVdWf6+66ioOgH/5y1/mDz/8MH/22Wf5rFmz+FVXXbXJ/UQQBEEQA4V33nmHp9NpPnbsWH733Xfz559/nj/wwAP8xBNP5E1NTZxz8RxTWVnJt99+e37ffffxP/3pT/ykk07iAPiNN96ol6WeFceOHctPOeUU/qc//YnPnTuXjx49mu+4447c933OOectLS28vr6eT5w4kf/ud7/jCxYs4PPmzePnnHMOX7RokV7e2WefzV3X5RdeeCH/85//zB988EG+884782HDhvGVK1fqdlOmTOF1dXV822235T/72c/4iy++yBcsWMD/+Mc/cgB8/vz5Bdv8r3/9iwPgt912m542Y8YMftddd/E///nP/IUXXuCzZ8/mDQ0N/Mwzz9Rt3n//fb7//vvz4cOH62eLhQsX6u8B8Kuvvlr/vffee/P999+/wz4/8cQT+dChQ7nneXq51dXVfPfdd+f33Xcff/bZZ/mFF17ILcvi11xzzSaPYWfPNaUuVx23MWPG8DPOOIP/+c9/5nfffTdPp9P84IMP5oceeii/6KKL+LPPPstvvPFGbts2/+53v1vQh1L2nzpW9fX1fOTIkfy2227jzzzzDP/e977HAfBvf/vbul05z8Tq+VU9A0bXs+OOO/K7776bz58/n5933nkcAP/Nb36j2y1fvpzX19fz0aNH83vvvZc/9dRT/NRTT+Vjx47lAAqe00tF9X3s2LH8sMMO44899hh/7LHH+O67785ra2t5Y2Ojbvvb3/6WA+BTp07ljz32GJ83bx6fMGECj8Vi/OWXX+5yPX113Eq9XqPHMJvN8q9+9au8srKSP/3002XvQ4IgNg8S+ogO+L7P8/k833HHHfmMGTP0dPVjcuCBBxa0b21t5XV1dfzoo48umB4EAd9zzz35vvvuW/a6ivHTn/5Ui1JTpkzhixcv5i0tLfyHP/whX7duXafzqR//0047rWD60qVLueM4HX7wmpub+fDhw/mJJ56op51++ukcAP/DH/6gp3mex4cMGcIB8L///e96+rp167ht23zmzJldbrfnefyQQw7hxx13nJ6uHgxGjhzJM5mMnt7U1MTr6ur4F7/4RT1NCX3t95t6YHjggQfK2s4gCPjIkSP5Pvvsw8Mw1O2WLFnCXdftttAXJQgC7nkev+6663h9fX3BesaMGcMTiQT/5JNP9LRMJsPr6ur4t771LT1t+vTpPJlMFjzg+77Pd9555w4PeaeffjqvqKjo0A8AvLq6mq9fv77L7emsvx9//DG3bZufcsopXc5PEARBEAOdL3zhC7ympka/DCvGV7/6VR6Px/nSpUsLph9++OE8lUpp4UI9Kx5xxBEF7X73u99xAFoUe/PNNzkA/thjj3W6zoULF3IA/Cc/+UnB9P/97388mUzySy65RE+bMmUKB8Cff/75grae5/Fhw4bxk08+uWD6JZdcwmOxGF+7dm3Rdavf//vuu4/btl3wvHDkkUd2+kzUXui77bbbOAD+4Ycf6mnr16/n8XicX3jhhXratGnT+DbbbMM3btxYsLzvfOc7PJFIbPJ5pbPnmlKXq45b+2f5Cy64gAPg3/ve9wqmH3vssbyurq7T/nS1/9Sx+uMf/1gwz9lnn80ty9LPgeU8E3cm9AHgf/3rXwvWM378eD5t2jT998UXX8wZYwUvvjkX+25zhb7dd99di9ucc/63v/2NA+Bz587lnJtn7913350HQaDbNTc386FDh/L99tuvy/X01XEr5Xrl3Ah969at4wcccAAfNWoUf+edd7qchyCI3oFCdwn4vo/rr78e48ePRywWg+M4iMVi+Pe//41//etfHdoff/zxBX+/9tprWL9+PU4//XT4vq//hWGIww47DG+88QZaW1u7ta4o3/ve9zB+/PiCaRUVFbjiiitQV1e3ye1s3+9nnnkGvu/jtNNOK+h3IpHAlClTOlj1GWM44ogj9N+O42CHHXbAiBEjsPfee+vpdXV1GDp0KD755JOC+e+++27ss88+SCQScBwHruvi+eefL7rdX/7yl5FIJPTflZWVOProo/GXv/ylIKwBAE455ZSCv0888UQ4joMXX3yxrO388MMPsXz5cpx88skFYShjxozBfvvt19lu3SQvvPACvvjFL6K6uhq2bcN1Xfzf//0f1q1bh9WrVxe03WuvvTB69Gj9dyKRwE477VSwL1988UUccsghGDZsmJ5m2zamT59eVr++8IUvoLa2tlv9nT9/PoIgwLe//e2y1kkQBEEQA4m2tjYsWLAAJ554Ypc5zl544QUccsgh2HbbbQumn3HGGWhra+sQZvilL32p4O899tgDAPTv+Q477IDa2lpceumluPvuuzsUWwOAJ598EowxfO1rXyt4fhk+fDj23HPPDs9ptbW1+MIXvlAwzXEcfO1rX8MjjzyCjRs3AgCCIMD999+PY445BvX19brt22+/jS996Uuor6/Xv/+nnXYagiDARx991Om+6YpTTjkF8Xhcpw4BgLlz5yKXy+HMM88EAGSzWTz//PM47rjjkEqlCrb1iCOOQDabLRru2Z72zzXdWe5RRx1V8Pcuu+wCQBS7aD99/fr1BWGg5ey/ysrKDufIySefjDAM8Ze//KVgejnPxO0ZPnw49t1334Jpe+yxR8Fz5YIFC7Dbbrt1GGOcdNJJXS67FI488kjYtl2wbsBcB+rZ+9RTT4VlmWF5Op3G8ccfj9dffx1tbW2bXE9vH7dSrlfF4sWLMXnyZDQ1NeH111/Hnnvuucn+EwTR85DQR2DmzJm46qqrcOyxx+KJJ57AX//6V7zxxhvYc889kclkOrRvX9Fq1apVAIATTjgBrusW/LvxxhvBOddVcctdV2e89NJLGDt2bFnb2Vm/P/vZz3bo97x587B27dqC9qlUquBBAwBisVhRkTEWiyGbzeq/Z82ahXPPPReTJk3CH/7wB7z++ut44403cNhhhxXd7uHDhxedls/nO+TWaN/WcRzU19dj3bp1ZW2nat/ZurvD3/72N0ydOhUAcM899+DVV1/FG2+8gSuuuAIAOmx79IFbEY/HC9qtW7euR/pYrDJbqf1VORC32WabstZJEARBEAOJDRs2IAiCTf6erVu3rujv5siRI/X3Udr/nsfjcQDmd7S6uhoLFizAXnvthcsvvxy77rorRo4ciauvvlrnBlu1ahU45xg2bFiH55fXX3+9w3NaZxVXv/71ryObzeKhhx4CIF6ArlixQgttALB06VJ8/vOfx7Jly/DTn/4UL7/8Mt544w2dy66cZ9QodXV1+NKXvoT77rtPi1L33nsv9t13X+y6664AxL7zfR8/+9nPOmynesHcfluL0X77u7Pc9s+0sVisy+nqWbfc/Rd9WatQz3Htz6VynonbU+pzZbH+FJtWLpu6DtS2dnZthWGIDRs2bHI9vX3cSrleFX/729/w0UcfYfr06fScTBD9CFXdJfDAAw/gtNNOw/XXX18wfe3ataipqenQvn2l2oaGBgDAz372s06rjakfy3LX1ZN01u/f//73GDNmTK+u+4EHHsBBBx2Eu+66q2B6c3Nz0fYrV64sOi0WiyGdTneYPmrUKP237/tYt26dfrgodTtV+87W3R0eeughuK6LJ598skAkfeyxx7q1PED0syf6WKzicqn9Va6HTz/9tIO7gSAIgiAGC3V1dbBtu8uE+oD47V2xYkWH6cuXLwdgnjXKYffdd8dDDz0Ezjn+8Y9/4N5778V1112HZDKJyy67DA0NDWCM4eWXX9YCSZT204r9rgPA+PHjse++++LXv/41vvWtb+HXv/41Ro4cqV/sAeJ3vrW1FY888kjBs9I777xT9na158wzz8TDDz+M+fPnY/To0XjjjTcKngdra2th2zZOPfXUTiMFxo0bt8n1tN/+nlpuKZS7/9RL6CjqOa69OFbOM3F3qK+v77I/vYna1s6uLcuyikaf9BTlHLdNXa+K6dOnY/jw4bjiiisQhiGuvPLKXus/QRCdQ0IfAcZYh4elP/3pT1i2bBl22GGHTc6///77o6amBosWLcJ3vvOdXl1XTzJt2jQ4joP//ve/HcJ6e5pi2/2Pf/wDCxcuLCoUPfLII7j55pu12NTc3IwnnngCn//85wtCAADgt7/9LSZMmKD//t3vfgff93HQQQcBKH07P/OZz2DEiBGYO3cuZs6cqR8YP/nkE7z22mv6rX252+04TkGfM5kM7r///rKXpTj44IPx+OOPY9WqVVpADoIA8+bN6/Yyy+3v1KlTYds27rrrLkyePHmz10sQBEEQ/UEymcSUKVPw8MMP40c/+lGngt0hhxyCRx99FMuXLy94HrjvvvuQSqU6fdFbCowx7Lnnnpg9ezbuvfde/P3vfwcgwhF//OMfY9myZTjxxBO7vXxAiG3nnnsuXnnlFTzxxBOYOXNmwW+9euaJPqtxzotWCm3vCNsUU6dOxahRo/DrX/9aV46NhoWmUikcfPDBePvtt7HHHnto19Xm0lvLLUY5+w8Qz7WPP/54Qfjugw8+CMuycOCBBxa0LeeZuDtMmTIFt9xyCxYtWlQQvqscoL3JZz7zGYwaNQoPPvggLrroIr0fW1tb8Yc//EFX4u0tyj1uap5i12uUK6+8EpWVlZgxYwZaW1txww039HznCYLoEhL6CBx11FG49957sfPOO2OPPfbAW2+9hZtvvrlku3U6ncbPfvYznH766Vi/fj1OOOEEDB06FGvWrMG7776LNWvW6DeXm7uunmTs2LG47rrrcMUVV+Djjz/GYYcdhtraWqxatQp/+9vfUFFRgWuvvbZH1nXUUUfhBz/4Aa6++mpMmTIFH374Ia677jqMGzcOvu93aG/bNg499FDMnDkTYRjixhtvRFNTU9H+PPLII3AcB4ceeijef/99XHXVVdhzzz31Q3Gp22lZFn7wgx/gG9/4Bo477jicffbZaGxsxDXXXNPt0N0jjzwSs2bNwsknn4xvfvObWLduHW655Zaib+ZL5corr8Tjjz+OL3zhC/i///s/pFIp3HHHHToP5OZQan/Hjh2Lyy+/HD/4wQ+QyWRw0kknobq6GosWLcLatWt77LwhiGLsxvbFaizHCv+THhnkEASxdTNr1iwccMABmDRpEi677DLssMMOWLVqFR5//HH8/Oc/R2VlJa6++mo8+eSTOPjgg/F///d/qKurw29/+1v86U9/wk033YTq6uqy1vnkk0/izjvvxLHHHovtttsOnHM88sgjaGxsxKGHHgpAvEj+5je/iTPPPBNvvvkmDjzwQFRUVGDFihV45ZVXsPvuu+Pcc88taX0nnXQSZs6ciZNOOgm5XA5nnHFGwfeHHnooYrEYTjrpJFxyySXIZrO46667ioZN7r777njkkUdw1113YcKECbAsCxMnTux03bZt47TTTsOsWbNQVVWFL3/5yx32109/+lMccMAB+PznP49zzz0XY8eORXNzM/7zn//giSeewAsvvFDSdrant5bbnnL2HyCcbOeeey6WLl2KnXbaCU899RTuuecenHvuuQW5moHynom7wwUXXIBf/epXOPzww3Hddddh2LBhePDBB/HBBx8AQEHuvJdeegkHH3wwrr76alxzzTWbvW7LsnDTTTfhlFNOwVFHHYVvfetbyOVyuPnmm9HY2Igf//jHm72Orij1uJVyvbbn/PPPRzqdxje/+U20tLTgtttu69R1SwxOVq5cienHbYef/OwvXd4DiX6i38qAEAOGDRs28LPOOosPHTqUp1IpfsABB/CXX365QwVVVdnp4YcfLrqcBQsW8COPPJLX1dVx13X5qFGj+JFHHlnQvtR19SSqEtcbb7xR9PvHHnuMH3zwwbyqqorH43E+ZswYfsIJJ/DnnntOt+mseuuUKVP4rrvu2mH6mDFj+JFHHqn/zuVy/KKLLuKjRo3iiUSC77PPPvyxxx7jp59+ekHlNlWl68Ybb+TXXnst32abbXgsFuN77703f+aZZwrWoaruvvXWW/zoo4/m6XSaV1ZW8pNOOomvWrWqW9vJOee//OUv+Y477shjsRjfaaed+K9+9asO/eyMYsfxV7/6Ff/MZz7D4/E432677fgNN9zA58yZ06E6Wvt91tUyX331Vf65z32Ox+NxPnz4cH7xxRfzX/ziF2VV3f32t79ddBtK7S/nnN933338s5/9LE8kEjydTvO9996b//rXv+5qFxHEZtHS0sJjSHAbNv/Nb37T390hCGILYdGiRfwrX/kKr6+v57FYjI8ePZqfccYZPJvN6jb//Oc/+dFHH82rq6t5LBbje+65Z4ffvM6eFdXzjWr/wQcf8JNOOolvv/32PJlM8urqar7vvvvye++9t0PffvWrX/FJkybxiooKnkwm+fbbb89PO+00/uabb+o2nT2PRTn55JM5AL7//vsX/f6JJ57ge+65J08kEnzUqFH84osv5k8//XSHyqvr16/nJ5xwAq+pqeGMMR4dTqFd1V3FRx99xAFwAHz+/PlF17948WL+9a9/nY8aNYq7rsuHDBnC99tvP/7DH/6wy+1S6+3suaaU5XZ23Dp7hlbPoGvWrNHTSt1/6li99NJLfOLEiTwej/MRI0bwyy+/nHueV9DvUp+JO6u6W+ycKPZM+9577/EvfvGLPJFI8Lq6On7WWWfx3/zmNxwAf/fddwu2EQC/++67i+7r9n2/+eabO3xX7Bx57LHH+KRJk3gikeAVFRX8kEMO4a+++mqX6+C8745bqddrsfNw7ty53HEcfuaZZxZUFiYGP+edWc0rUowfcmCyv7tCFIFxznnvy4kEQZTCkiVLMG7cONx888246KKLumx7zTXX4Nprr8WaNWu6lRuHIIjBx45sd6zGMmyD7fExFmFjbkOvhmMRBEEQRE9y0EEHYe3atXjvvfe6bFfOM3Fv8M1vfhNz587FunXr9O/sJZdcgrlz5+Lf//53hwJ9BLE1sXjxYowfvz2eeWgUvnTacjzy6PwOVc+J/oVCdwmCIAhiENDY2Igl+BC743Oow1B8go+wR/xz+IB3zI9DEARBEERpXHfddRg5ciS22247tLS04Mknn8Qvf/lLXHnllQUv01588UVcddVVJPIRWz3XXLYnvnJ0GgdMSuLi82px+cVHYuGbbRSePYAgoY8gCIIgBgF7105GJWpQh6FgjGF7vis+wNtobW1FRUVFf3ePIAiCIAYlruvi5ptvxqeffgrf97Hjjjti1qxZOP/88wvavfHGG/3UQ4IYOCxatAi/e7wF7y0QlZq/+40a3PbLRjzxxBMFBXaI/oVCdwmCIAhigLNq1SqMGj4K++BAVLN6AKIy3ht4AUMxCv/m/+znHhIEQRAEQRBbOl8+Mo3hQx3cfsNQPe32OY2454GNeOe9NioUN0CwNt2EIAiCIIj+5LPDD0AthmqRD4Bw9WE3LMGHaGxs7L/OEQRBEARBEFs8b7zxBp55sQ1XXFBXMP3sr1WhuSXEQw891E89I9pDjj6CIAiCGMB88skn2G7sdtgXhyDNqjt8/xZfgGrUYzH/Vz/0jiAIgiAIgtgaOHRKBfbZI44bruhYCPLeeU340ez1+NdHLVQobgBAjj6CIAiCGMDsN/YgDMU2RUU+ANgBu+F/+DdWrVrVxz0jCIIgCIIgtgZefPFFvPFOFhefV1v0+68dX4mYC/xy9jbdWv6dd96JcePGIZFIYMKECXj55Ze7bL9gwQJMmDABiUQC2223He6+++4Obf7whz9g/PjxiMfjGD9+PB599NGy1/vII49g2rRpaGhoAGMM77zzTodl5HI5fPe730VDQwMqKirwpS99CZ9++ml5O6CHKbkYRzabRT6f782+EARBEMSAJhaL9Wm1vQ8++AArsRSfw9RO21SzetTyofjs8AOwlP+7z/pGEP0BPY8SBEEQWzt9/TzKOcflFx+Bi86tRV1t8Rx8jsNw7aX1uODKNTjzexkkk8mSlz9v3jxccMEFuPPOO7H//vvj5z//OQ4//HAsWrQIo0eP7tB+8eLFOOKII3D22WfjgQcewKuvvorzzjsPQ4YMwfHHHw8AWLhwIaZPn44f/OAHOO644/Doo4/ixBNPxCuvvIJJkyaVvN7W1lbsv//++MpXvoKzzz67aP8vuOACPPHEE3jooYdQX1+PCy+8EEcddRTeeuutfstZWFLobjabxbhx47By5cq+6BNBEARBDEiGDx+OxYsX99nD1TC2LVzEsAvbp8t2LXwj/obn8fGSjzFmzJg+6RtB9DX0PEoQBEEQff88+sQTT+CsM4/Df/46FumKzoNCOeeYdNj/cOIxlbjkujUlL3/SpEnYZ599cNddd+lpu+yyC4499ljccMMNHdpfeumlePzxx/Gvf5m0Neeccw7effddLFy4EAAwffp0NDU14emnn9ZtDjvsMNTW1mLu3Lllr3fJkiUYN24c3n77bey11156+saNGzFkyBDcf//9mD59OgBg+fLl2HbbbfHUU09h2rRpJe+HnqQkR18+n8fKlSvxv//9D1VVVb3dJ4IgCIIYcDQ1NWHbbbdFPp/vkwerv//971iLFdgPh22ybZpVYyjfBvuNPQjL+OJe7xtB9Af0PEoQBEFs7fT182gYhrji0hNw+fm1XYp8gCgU94PL6vG1b6/EGd9Z3aF/8Xgc8Xi8YFo+n8dbb72Fyy67rGD61KlT8dprrxVdz8KFCzF1amG0y7Rp0zBnzhx4ngfXdbFw4ULMmDGjQ5tbb7212+stxltvvQXP8wr6M3LkSOy222547bXXBrbQp6iqqqIHK4IgCILoA+bPn48GDEeClRb6MArj8B7+2su9Ioj+h55HCYIgCKJvWLlyJf75rzy+cUrxXNHtmXpQCumUhYsuugj3339/wXdXX301rrnmmoJpa9euRRAEGDZsWMH0YcOGdergX7lyZdH2vu9j7dq1GDFiRKdt1DK7s97O+hKLxVBbW5i7sNzl9DRlCX0EQRAEQfQdFmyAlVY3y4KD+hF1vdwjgiAIgiAIYmvDjXOECDfdkAHxOMNJJ52E22+/veCr9m6+gtkYK/ibc95h2qbat59eyjLLXW+p9NRyugsJfQRBEAQxUGEAs0p7SGC8/x4mCIIgCIIgiC2XgIdAic+aHByxWKwk931DQwNs2+7gflu9enUHt51i+PDhRds7joP6+vou26hldme9nfUln89jw4YNBa6+1atXY7/99it5OT1NaTYBgiAIgiD6ASYcfaX8Awl9BEEQBEEQRM8Tgpf8rxxisRgmTJiA+fPnF0yfP39+p0LZ5MmTO7R/9tlnMXHiRLiu22UbtczurLcYEyZMgOu6BctZsWIF3nvvvX4V+sjRRxAEQRADlTIcfST0EQRBEARBEL1BiBCsl541Z86ciVNPPRUTJ07E5MmT8Ytf/AJLly7FOeecAwD4/ve/j2XLluG+++4DICrs3n777Zg5cybOPvtsLFy4EHPmzNHVdAHg/PPPx4EHHogbb7wRxxxzDP74xz/iueeewyuvvFLyegFg/fr1WLp0KZYvXw4A+PDDDwEIJ9/w4cNRXV2Ns846CxdeeCHq6+tRV1eHiy66CLvvvju++MUv9sr+KgUS+ogOTDxrFmp/vbBg2vzw4X7qTXEOtb5SctvO+l7KMgbadhMEsbXBSs7RV3I7giCIQUCx57SB9lzWV8+jXc1PEATRFwSco1SzHi/P1Ifp06dj3bp1uO6667BixQrstttueOqppzBmzBgAwiG3dOlS3X7cuHF46qmnMGPGDNxxxx0YOXIkbrvtNhx//PG6zX777YeHHnoIV155Ja666ipsv/32mDdvHiZNmlTyegHg8ccfx5lnnqn//upXvwqgsLDI7Nmz4TgOTjzxRGQyGRxyyCG49957Ydt2eTuiB2Gcb/owNDU1obq6Ghs3bqQqZ4OUch5EiJ6DHsoIYsuhr38Lb7zxRtx6xd3YI/75kto3Bmvwaf0/sGzZsl7uGUH0D/Q8Ovih59H+gZ5HCWLLoa9/C5cvX45Ro0Zh7dJRsO3SHH0TD1iJn9/zZxxyyCG93DuiM8jRtwVDD1P9T0+86SW2DAaDM4EYeDBmgZX4NpCh/94aEgRBdAY9j/Y/9DxKRGl/PtAxJ0rBk8G7pcDLzNNH9Dwk9G0B0APUlsGh1lf6/Ye2r8KZt/vpLADA9jMWdtnuv7Mn4+PzZ5bct82lr/d/d7epv88Too9hlKOPIIiBDz2Pbhmo49ifzxp9mV6nXBGUnkcLoWfSrYdyQneJ/oeEvkECPTwR3aWnz53OlhceuDcA4PmXLu9y/u1/MgvbX9y1wKfbzliIQ2f03bk/EMTWTTHQ+0f0MIwBVom590ou2kEQBNF96JmU6A599Tyq2NTzUnf601fn/kAQWzfFQO4b0TuEKP2VMumB/Q8JfQRBEAQxUGEo3dFXsvOPIAiCIAiCIEonIPluUEFCXz9Bb0O3bnryLdhAOJfK2Z7/XjgTuLDj9L7cjsH8FpLyqmyFlOrUI6GPIIgy6a3f3k5zi3ZVHZyH4EHQK/0hOqc/QmB7i3K2ZXOrIPcEg/kZjnJPb30EHKVX3e3VnhClQEJfHzAQfviI/mNL/dHr6e3aUvcTQWwWjIF1NTAuaEpCH0EQndOXz6M8FMM81u5FBQl5/cuW+KxFz6ME0TeUE7pL9D8k9PUwJOoRQN8+JBRbV1+ch4Mhn12p9MVbya6WtznHazC9Ud2Szpk+pVRHH+XoIwgiQr8+k/JQ/NfXul5nL0Zkf7ZG+up3tz+fRztb/2CkLyI3esvNOFiiTra0c6avCEQ+mf7uBlEiJPR1g61dzOurilODmf7+AWm/3lITFpdbeWwg01MPK4MxpGVzE1T35roHkzA5IGCMcvQRBFGUreZZrBPxbn4wD0C7/bAVC3qd0Z8v2boj/pU7zhgMzxA98UJ3MKb96c/n0VLWP1iEyYFCyAFGobuDBhL6usHWKnRFb37Rz1vjviiVgeJgKrUPA6Gv5dAb51539sFguwZ68rzsiW3f1DKcnXfE04uu3+z1DFpKFvBI6COIrYkt7nk0Kuh1ItipUOBnvYf0NHom3TT9/QI6Sil9GAj9LIfeOu/K3Q99cv6r67QHRPWePC/74nlUMdjOz56CHH2DCxL6CIIgCGKgwhhglZajj0J3CYIgCIIgiN6AhL7BBQl93WBrfVsY3e7omwxn7BgAgL/kk6Lz0ZtWYnPo7XNma30rN5jwP/j3gHIj9C1lCH0lFu0gCGLLYKt5poo4h1TOv86eSTdFh2fSyH1TuQWpYAjRGb15zQ205xvmuOJ/2y5077V39DHLvGgMIwGb0etWTeehnp8HwaANtR8oEVt9jccthLw0oY+TINjvkNBXBlvNA1WZPP3xLSW3LTd33GBna/wR6Gm6kz+wHDpbrlrvnufPxtCfvdYr6+5PNmd/dhbGv7nLJYrAQDn6CIIoYIu9z3Y26GeWEBvatS0myHVX9JtWcZpZnRQlokIED/nAFiU2EU5Jz6M9Q2+Gy2/qebRH1ivPE8t1AMfIAPr6Ui8WwxAsmZBfMiCU14Hnd1xk5Nrk0fMvIvrp6ttBCJ7NFU4DMC19Oqxk0sza3Cz+38T6ns0/qD/3VzGYrYkAFkp19FGOvv6HhD6iW3T3TerWAu2TnqO7P9Kb+4Ov2g7t1tq3bLpKXtyTD6R0HUlKrrrbvcXfeeeduPnmm7FixQrsuuuuuPXWW/H5z3++0/YLFizAzJkz8f7772PkyJG45JJLcM455xRt+9BDD+Gkk07CMcccg8cee6x7HSQIopAezJE1ENADd2YVCmsSy+04XOEB9H441J6up6sCHWVTxInELAYWT4lJuRzCfL57y+4t5PZHBRMedjw36Le05+jq2UadxwXns+SZzP0lL6ecdbZfDyv2vKDEvUTcTEomACXkhRyIx+QXcn7eTqbxPPG14wNKYC/ycpFZrhYFYdsdlxcEYGpdnBded6rv8TisCiH6Wer7MARvy4jZ2tr0/WFa4pQOfXgm+1v9eX74MKa6XxXzdeI2jB4v7nsdlqeWQwAhZ2AlOvqI/qcsoe+Y6tPgMGHj7a0TngSkwUexH6BPfrgfAOCjy2d0Oe8Wl0gag/+8LfUaHMjXKr3V61sGwtvtvvhNqmhIdtGyl+jlqrvz5s3DBRdcgDvvvBP7778/fv7zn+Pwww/HokWLMHr06A7tFy9ejCOOOAJnn302HnjgAbz66qs477zzMGTIEBx//PEFbT/55BNcdNFFXYqGBNEd6HlUEhHGBjWbSDvA0hVgsk2YkYP9iNOHWUwvY2rs5I7uP3QUWop9Py15KgDAqq4SEy1LO5xYLAYol9FAEfyUKNpJpPGAPW/LYMI3Z+vPb/2i+Jhi/6/8RH9+9eELe71P5VDsvCtHuCvp+pZtrHiiQwht1PXKqqvMc4LjAE7EiddeTLcAqMhczsGTMbMcTy5TXYMhB/yI805df7ZltiUu7tfcscACKbhlsoAvl8U5oPoQ3X710WJgUqhk1ZUR4TAEl/cEBKLDhzV8EywlBfrmFnHtop0PrVh4vuPAqpDz5fP6XgNmacdvKN2IUeYH8woEx6jQ2JNEzxufFxckexvK0Te46FdHX7klr8ulMxGpnB8+Ege6x5grZajjJoS+LZHBlrehq3O81PN/c6+znqZYf1ZdsB+G3brlheBujRQ7vuWcg5s6rzubr2ltcwm96wVKzr1XvqVv1qxZOOuss/CNb3wDAHDrrbfimWeewV133YUbbrihQ/u7774bo0ePxq233goA2GWXXfDmm2/illtuKRD6giDAKaecgmuvvRYvv/wyGhsby+4bQfQVU2Mnd5imxCIeBEXvGXZlpfjgOjoULYo1dAh4Wjhm/vyPH4r1SGeJIlo5dlMcPuxc/dlpqAMA+GvWdjlPQUhdWCSQaoCIhAVihBQqouIdb83oMLAwly0yPwDGI38HehlFt7sTrPrawglBoAUMzkMjYPQnZYhAgy237Z7fM6KeLS8pN8PhJ8U5MfEbswraOxlxbFW0KQuB/aYL0Y9HDtXCB3tH/GOO285NyQv+B/e029SWAhIA2Ok0gta2jsuLuvG0a5cV5rdrP49tG2dnIq7FMCWEhc0tRtxLJcFj0nUYcCOyAWDtQmTDqiS4K3diwGHljLDk11aIeaRzz8p4RvzLe0BOCuFBCDhyO1S4rm2DS0cfS8TBlQDo2toJyPwQ8NVnudwwNNth2+BxJQoygFfqfgIAy3v6umUNdUaWymSNQJgX2xNmMnoac12wlHihyyrTsFS4clOzvvadOnGP4Bub9P5QLwhU36alT5fLNveqzpzG0fu63p7IS9unV9xRdL7+IuAWUGqOPnL+9Tv9JvT1hYDW2TpIvOs7ugrxaz9tsB+XwfIgpRio+7u3+kUi39ZHd8+lAXVtMFZG6C4rKylKPp/HW2+9hcsuu6xg+tSpU/Haa8Wvl4ULF2Lq1KkF06ZNm4Y5c+bA8zy4rnhov+666zBkyBCcddZZePnll0vvFEH0MYcPOxdWWgxctagTBNoRYyWTevCHIAQq0+KzcnVZFrzdxor5bEvr7W5jDiwr2hy+zfcAAHZ9HSDdJf62DfjigT8Sn1MO4uvEoJDlZR8sC5acHzkPUH1wXYQVQkC0thkKa+V62R85EHdshE3mpYRyvjEbHcNiO3uJ0I8CYKEwJwb53PeMmFFEbOuQP08JhJFllfIy6OlPbxNtI6HAan1WVVoPwJnjdthHA62Ax2B6Jt3nXCHwRX/q4k3yXLUARxqrQgfaTGR5RttVol7oRhbAeVT77RaH7X4FAIDlAy0GOTtsp8+D8JP/GXEvcvwtGRJrpSuMaBOanJKMWVBnsXamtj9/9bVqQV0H0RBcHSacTABxKe7ZFni6MPJA9QUAwnQcPCaG/lbGA1OiF2PgNtOfxTb7QnAD4NUk4FdGHH1qPhUmzpjeP1YzM8KabWsnIJfL5QlHC3JhwkaQFP3hFtP6ke2FcFpkqHDWCJBhUomCFqx8oL9X90x17w2rkuBq/3iB7i+vToFJwZK1iJPKSqeM+MeYFvR4MmaOXUONdgDq+iPxmBAOATDLKnQVyvmid9fDR31X7xP128F9XzuVYcv/UynjbLSYmS8IYKfFbw/P58VvQj8QwgIjR9+ggXL0EQRBEMRApuTQXQAcaGpqKpgcj8cRj8c7NF+7di2CIMCwYcMKpg8bNgwrV64suoqVK1cWbe/7PtauXYsRI0bg1VdfxZw5c/DOO++U1m+CIAiCIAiiJJjjAh3rlPQ65YTuUjGO/qfbQl85uUsGlDuC6Dc2dZ4M5nx9A/3NaX/s11LcnMXaEQQRocyqu83Nzaiuri6YfPXVV+Oaa67pYrbC5XPOO0zbVHs1vbm5GV/72tdwzz33oKGhobR+E0SZMNsGY8J5UdbzaMSppXC2GwOm8kupUKu2DJTlhkVE8nDMcPhp4VBRThSvwoLlS7dPW4gwLl03SQfukhUATCVKNrQB+WEizCx0LWQbxDJYAHjSKWjnRNvEmiwCGTrnj6xGGJMuNYfBzgp3ibMxj3C4COO1mqSjpKVV56QCY6ZyZpHqlTzvaRsVj+adY24H51xBXrqecvxtKi1BV+thViTUMSgsQlEs0b48oDzkmyzYob4/rPYbYKoyqWODDRX3NL+uAs4a4ZoMPl7S9Tb0NJvY9wP9eRQAJp5VGILrSnNSqFK7eYCTjYRiW9IBZjOEwtQFxgFbtok3yjBMx9LXnx9nCBLi876nz9LaBJPmuL/eP7No3z5/7M1gchcnkuLat5DTTi+W940DbLcdYcmQVbZ6PSAd7WG9+A3mvq/jirllwdogX8Ll8mCJKrkdpkiFLmIBgKt7URCYNAKqUEQQFBbScIwDLKwQfebSIcYq4jrXHmymnXXwAqCpRS4j1CGyumpuyMGks8xKbwMeyu8dc80qx2ToWnqfBTVJgMkwZc61U1DdL8Ghp/GIZhQkLK0Mcdf001KOP8bAHTktH+pQYca5Dg/WfbMs89lm5hkl4OZ4KIe0BTPNsRBGcxFK16CVN8dRbTRPxU0BEwCoEfdv1thiQoGVU7wiiTAhw5V9H7DFsc/Xp4pmXImtbJZtI+dDJAdiOekIeppyQneJ/qdHHH2DImEx0e8Mttx1XbGlbEdfQoIeMdipaqgE1vT1WssoxgGGyspKfPrppwVTi7n5AKChoQG2bXdw761evbqDa08xfPjwou0dx0F9fT3ef/99LFmyBEcffbT+PpSDF8dx8OGHH2L77bcvcXsIogQiFWg39YJJh7EFISyZ5y6sMqFuVpMU3pIJk48tCMCrxIAtjDlGGJOrdXIcdpscEHoB4qtkOFdzBqgWop4Wm7J5MJkwPjc0hiBmlmVrHU0sODs0gVAOiL0KKxKyyGFJASNwLSTWCIEvlCF7VhDqHFkFYX0WMwnopTDALMsIgAkzaOU2A2uWOcTkoJK1tZlchEFohL8iIbMFlCMKdtW2feEJxs2Ak1mQum+HwhTFBsVK8N2U4MccB7k9xgIAMkNdLVDE1/twVqkYPrXN/Re6O9ieSbnFwORxSa01+y2UQg5rdxqo4g0WoCt+soDDzoqGoStFrZDDaRXns93GtDjuJy0EcVawjskn/0SLfiyEFutFGKv42DJWXPdWkEKsyZfzW7Dy8jetzUOYkOJe7Si9DHWNw2NacOKWhTBZL/rWkgXLyRB9R4WY+kbo29isXzCwRNyEdapr1XXAZc4/cU9SOxD6eUGtN3StyDSm7ylhwgarF8uw8oHJsadO6zAUy4a4P6nlBXHzAkAdQ+ZzLXiCWfCqZIgti4RTq8uQRXQixgo0Ix2CHTJwS4l6Zn61Pm4xBBXifmXlfCP6SWGMuyblSWhbYJ580eJ55njIMOBA/g8AdtaHlZViKuc6/DeoiMGSx0uFHcMCIO/fYcyBXym3eZtqxBpzehkAECQc3XcrawPyGFgRIc9ukyHFOU+IhQB4Syu4rHbM817kHhiA99P9JgQrI3SXBMH+psdDd0n0I7pioBVt6C7FBhPdTfDf25DARhA9Q78U42AoL0dfAFRVVZXUPBaLYcKECZg/fz6OO+44PX3+/Pk45phjis4zefJkPPHEEwXTnn32WUycOBGu62LnnXfGP//5z4Lvr7zySjQ3N+OnP/0ptt1229K2hSBKoEDEKVKBtv0zKZOOG7hAOEwmVbcsnX+KNygnCmCpwWFkHcwPtejgtKmBrRj8A0CuMoZ8rViWuzGJMNYxn5wSGiyP6/F76DKRf0wtUPbLzot1xVpCXZCAW0b4cFs8hCphvkxOH1bEwIaKe4DVmtPJ7sG5nk/lumJeYHIC2rZ2xvjpGKxKIRw6qzfK3Vuh8wByzjvsa/FFmU6/zXEG8lC7+FhkNzPbNvnSeNjBmRjN57cpYTi7zzj9Obm2MCcWj7noT+xdd9KfVS45APjzP0Xex0MOjhRT4oVi5/MvXd67neuEz50iCmW4ACypm6Q+adaCklcj3WgWjDjFgDBmxB7leO0s/56VNU6vIFDqrw0rkOd2Qglv0Ncct436pK45OZuYJ2bBl4Ke28a1syxI2UZECgFYUohR51zoGgEM0OJVWF9hcszpQhvcCFbpJFirKeSgzjXt/oscT782oe8/foVtcgm2KcXOrDcqqvkVjn5ZYeVC2HnVd3WfMSIc4+a+xW1mciMqIccx+ySMWXq5oWMEOy3SRftjG1E3WjyF24CfkMdDue0YYHtiGXbW09vJHRtcVca2pfCbsOGnjMSh0w9yx7jkQrXtAcKEdE6nXFieFEjjtnE/AuCVykoqt9Nl+lzkFtNCspXn8OTvidMmReecuc+CMYTqeHoh7Gbxokb3K+dppyBLJcHa5IuctesjLzH676VCIOT2ktpS6G7/06s5+khgIMplIBTm6E6IKZ3rBEH0GuXk6CuTmTNn4tRTT8XEiRMxefJk/OIXv8DSpUtxzjnnAAC+//3vY9myZbjvvvsAAOeccw5uv/12zJw5E2effTYWLlyIOXPmYO7cuQCARCKB3XbbrWAdNTU1ANBhOkF0F+Y4YMwFfK94EYSIs8yS4WfT0qdroY8NHwKuRK8K44iJDmZV2B8gRDkAsDM+uGvcdIAYBPtJFdYl3C2AGEh36FYIPepkITeDRts4BFX4IosxeBXK+REZEDMgkMbEthEJE+q7VjjsrKwHq7FVLoQhkIJdGDcigFqvExEhrJwHrGgEALhD6+A1CDeTrpDZ2qb3NS8SBtwvKIeLX4ZgWIa4+OIzlxoRzbbNYH1js3FH9iJdvSA+eOqNcFqN+KgEmoMOuxEAYDkMthQamBciUMJHyQ7xnsdLGedd5f9MGCoL2vUpEqYZ2ua6dFtDxGTRGr8yBq9SuuGkgcppjlSGTbtGzPE4QmVsV5GycbNOJ8P19cdtIdaIz8Y9qEKJ7WxYIFpFUYKbDhMGN0J8ZHlAVOzSjWFnxPFyNmZNqGg+DyZdf7oAQxiYPgyvFAIf1H6SLuC0WZcVRF5WKJ3LYfpew5ml72tqGhjTLwbEywyzL6ycctbJZbkMQdxse4GwqLuhxFoeEQqhXc2Mo0DA1GHBSni0jeDLPAexJumAC0LjMkyo/WDpfcItcy9PrOWwG4VTWTsUq5J6Oxl4xIHJCl2IrhGIFWqbuW0cqpbPzUuiQDkJjWOStWTB5D05qIibfSxDp8PaCi0U2+ubzW9EPr95L0Z6CArdHVxQMQ6iKH0luPW3m6/U9ffEflDL6O9tJghiEBGthrcJeKnOvwjTp0/HunXrcN1112HFihXYbbfd8NRTT2HMmDEAgBUrVmDp0qW6/bhx4/DUU09hxowZuOOOOzBy5EjcdtttOP7448teN0F0lzCXQ8hCGbJpcq8pWJFrgVkmhC1MJ7Rbw6ty9eAtiBkhQg2IWcD1uMavNG11TirHrEuFEgKF4YJuq5hueVwPmL0K43yx/MIBJCCcRVp8sJgWG4M4g5c0AmAgXYNBTKh/6aWByB8lUY4irzqmBUnVT+4kYGeU+43DVoNc20ZshcwnpgagGxpNhVG/0N3W22xODudS81l1+mymzoO16xCsXSf/MPkBe7LabinPhwdPvVF/9qTLSLmxACCxQoT9saZWnTMOAIJ0jZzHwYSzRZXbt+6Zsdl97g7cYgjkuZgZXV0gYgNAvsYGU1oygxZc3KY8QpWzzWEdXH3i+jRhqoFrRHW3VYbXS2HcyVp6fisX6usyur4wMPcDNZ+dD/X3Ubcvt1iH32AWhCaE1LHMbznnOtw46tgPZPh86Nq6bRjZzuR/1sod4SBMd0zJwYIi53pEpAMHrIgrUIVBc5tBmx8j/eGu2SfmXsW0CqfFrQA6pJUz6BcUYnmqH0q4NdvDQhj9j0GfACw09z51D+Uscs9NWMjbkfx4sh8qTFjvWwBONtSuyyBugw9JF+6raMXgfKD7yQJbt/HSjj43oxqXCtW2PK7DuVkQaqGvwEmrnImNG8FyQpm2nDqTS5BFHMLqPMl7Jm9sO5GPyQiOvsbjNsIShT5Oobv9Dgl9BEEQBDGQKaMYR3c477zzcN555xX97t577+0wbcqUKfj73/9e8vKLLYMgCIIgCIIon558wVAOYRmhu0T/Q0IfUZQtNRS1u266wVYReDD1lSCILmDodaGPIAYrzGLGscVD2Gnp1pAVFXkuD54ROY54Po/853bW86pwriBudYhEsgITXuZkAh2Oa+UDHQKpHIF2G9ehvzwS7uZkAh3KpxPSw7jpQofpvHuAcf1pJyE37iMWcl1N1MmYcLdctaXdOqoaaeNn0khsCPQ6dIEAbtw1KqzN2sh12Bu3GfwK6RDL+ghVsnuZnN6ytjXuklxOh+8GG5t6PaRsc55pOuToKyfMFyYvGq+rAcaIIkUsFwD/XiIaRKsRl0F3n0dffPZSAMB+03+i3U4sBBLrZK5FGXIdW7pCn/uh5yNmbwcAaNx+aLfW2112nyncg1Zg6tvYea7dszxhcuWp8xoAYp6y1XHjnMoH4BG3VOjIQhjKuRcYp1bgWghUnjeT7s644hiDN7JGfN+Ug5WVxzEIwVXl1SKOrDBh8rxxyzL3A4cZ92dgrlt1n+C2CUfmlimKoe4HLOQI5T3Jq7R1+DCYCRHNbC+LeeRCBDJMVTjhzDVutdd/Ql6YLE2Z9AIAXmGIstxo0992KQ0AlTuvnXMxEnYrPrf7DsYJZ3tcb1votnNBqr6FKHA7A4DbEmhHcq7aVPm181y3iYbPqvUFLoPFVNgtN3kOYe4Dqg9BwoHTIlMgcI68zBnppW29X3WYb2Q7rXyolxtNyaAKrXDLghXIUONRQ4Gsp5cVpmRqBF3MxDgMw/pqsFAUdLLa2nRldCudBud5YCP6nLCM0F3K0df/lCX0/XHjfTrJNwkJRG8SfQAaKOfa5oYz93bI7kDZTwRB9CSsDAGPhD5iK4FZRX+TlcCHmAyBW7deC4HMYnBffFtMn7w7LF8l549pwSTWrBLkm1x7oc10kQruMD1wV8n07awPbqvvI3n9cj4sOdDLVwtBwk/ZWtSw8xxuixkK6UTzsshHELe0MADOdH/AASanx1o4ctXic17m5LI9oDktVuK0cbitHQegCjGANZUz1ciMV7hmYJ6UedDSMT3otNs8WKsbxWcA8OVI27Z1lciwrQ29TqTicodpkOFtkUqV3eHpRdfrz1OOvhkAkPi0xQiIxfrQB7w270Ls9Z3Z+m8mYy9jMuI63HmMLgaTq4tp0Ti9zMOCpy7p1b7tMWM2LBndnWiTwlvMVLPlViS8k6PDT5eT5SYcmQvRHBBFYnRFW8Z0hd0oWqBv83Ul0zDhgsnr1R9aLf6vdHWIpdXYjHC1EABZPA5WldbrAICwphJhSlzDVj7QxR/CpGPCfzOBqVAdmnPBl3kEg4R5ocBtBkcKfLbsQzSkNXSYFimtgGsBS4n9QcKkIWABNyKUzzukACgoYBKEsHMyz6ZlKgJH0xcUC1HldjSnYOS7qGiIaK49RD4XhvlyhoIKyEqws3yuqyDb+VDvCzujRFWTWsHJGbEwiDPkquS9T1boddvCgnBlHSrsm/utXm/OnEOiKItcbsIxIiRj8GVeVCejtoPJm58Q9NxmsxzmF1Ywhs3gV8tCM3YS7nr58imyDiUKhq4Fpykr++YB6xvFMmIxfc8JmpoR8L5Nn6AIYFFI7iCi246+YqIFCQ1EqfRlnrqeXlc55/7iGyfjPxfP7NH1b2qdBEH0DlUNlcCavl0nZ8Y5VEpbgtgacMaZ6s1Ff5Pt6V3Oz0IA0pXj5EI4Mpk/Uw4Xx7hvEKDAmuA2C1eFvXS1mFCVRlAtBEarzdMVbUUye7GO+HqxAjvrIkjJCo+Rgb/lc5PjSiWfd1hhzi1LOYACxDeI5eVqo7n4xPd+yiTZz9aaapBOhiPWLPqj8pWFMaMK2PlQu4yCpG1yZEmXkdMWaMEgjDmwlHAWBFpEsyrTojovAC7zUBXkyOthMczkySucpnMJBoER4lh7BUT0p5xnRO1wSrl6+4v1oTN6+nn0nds75tj7/HG3AAAyw5PIp802J+Sx6y2RL1r5Nz6xHolGsb7YBnG9bNw+AV9Vq42Ziq5OlmsBUAky8Q2+cUVFqkwDRqABDyOFbdS0SIEbhyGQrlTmhzq3nyeL5Ni5ELFF/xPz2Tas2hqxiNY28BohaAfSbRXG7YggY8FZK4rd2MvXAkoUBABVpEYKgUF1SueHU0KrWAbTQpStdMuIkGX5HMWr1KptgxbZrLxx8TGGgjyAAOA2B7rIh5XzwLLKImeDq0Ih3BQNUe5Bv8IyTkuXRXLtRfLuqcMSubQ40E5slPefnGrAC/MhRpqp4+9VmPymlif65WRCuBHRTx1zJ8dh5+R5FTf/K9FQuCrlJrd4otCJ2lkQ9zLt2rUtBFLQ9RO2zlHIQg5Hzqb2NWcmL59wfZuqxUHC0fMBIpemuo/amRDhcHGPtPwQsZXNoq1yGnu+zrEapmJgsQYxPQx1G8fzgTAHfIw+J+AMnHL0DRp6NHS3O9VKib5lazxGh1pf6XVhkQpsEMSWT9Pa5v5ZcZHx6Wa1I4gtnPnBvKLTD93/h+ID56ayYTaMOFTkgBowSeIjrhPWFsJW94GKlPg+UuTD2tAE9t9G0bYyrcWuYIOIsYoPbQBqhaMIeQ/BEBEl0zYiaUQLVbExMtgHY+CRMEJfDkbDuKXDGm0p9PEc144/KzBhkbGWEMnVUnBskaPuMERueKXcDjMo45b5W4ksYdwUE3AA8HqxHSweB2uVVX6DALxNuFXsoUP0OnzplorSE8+jxVx6m3LuMYsZN55T3jCoZaRon6uyUdM2FgBg/VcUKwpa2zYpZPbF8+jLj17Uq8vvDJbzweNi/8SaQ13kJeogsyNRzirU3LMYbOnOUv+HcUtX6HXbQl3B2s4GMkeYcKcVFFRo35+Q63PYCjnsDcJhGsQr5foZsnuIolOWV1hAQYXjejLEnXEjLNnrfTAp6PljhyFfJTbEyQQ67FOFwFteqCsfe9Uu4mvFdce8EJlR4v7hVYl1WT6H22IK42gRniFyH4BcbpEQXYjr1pEifky6xoKUGwlXhXlO4FyHi9phCEvfD6VbMRbXRS14pPJxwfqiUfERZ56+d0Yq1/pxFfJq7qeAuT9xy7jmouvSVci5VeCUtJWwFmmrQnjF/Uv1kWl3aa4uZlIrrBL3ZFZrhNpoCLPlc11oyfK4dgMqB6aVN+cftxmyQ0XnvQpL9zm+UbqzY5apGBxCC4RWPjTx7Blx7gRLl8GuqxHLHTHEvDjiXAt9zLMBdQ/vYyhH3+CCcvRtJWzqwWIghsoqBlt+PIIgthyi98Zjh57W544+sDJCdylHH7GVwJMdK06WQq5BzOc2+SakzOeAHNCpHFDgRiSIVr2MrzHzwRWP0PmRlcirwfqQkYivE3m0nP8sA5c57ayEdGhsaES4SjgBmeOCLVsJAKj4pwVr1AjRplIMGO24E3GdWHpQaWV8hDI/V3Klp/NI6crAcatgIK3uCl6FhYRy7EmnE7eZzm/mp2wTTpgNtQNFiwwcuvKvn7ThbytEShZUwm2qEfO15cHWNhbudM4jVZBtPOs9hK7okefRqHtPim9K3GOOC9jdeyvy97uEg+6QL9wAv1YcJ2uPHcT/rXkwKfqF2ZwREy2mQzq3aDhHboQ4J7jF4FVKsazSCFm6um7UkZXhkdBK8b8ft/SJm09bOlwSsLXgwpmtxROnTZ23PtyPV4mmsRgyOwmx2a9wEA5P6n4AQmRRYpBXFQnT5CZ/oL54uAmtD1IOwm1qxHITtr4+cnUuMkPEdaWcZ06zB1cKMtxKoWm7lN5dKmRehaByxrRAz9ulwVPXnRIjQ7djxWGFFriUQy/pIEio5TiIrZIvKnJ5cy+LuWCu7IdU7+Lr87AC6YgMLHiq6wy6mnE03Fc9fvCQ6W0DTDiukzUdVoJa4BbmZdTbHH2UUUa3JBPnBQA7D+Qr1f3JLNuK5hxULj2rMNeg+g3I1wzR8+scj5E8piwi7jEu3HcA4DZKgY1zvY9D19HCdq7aVFPP1Evx1DPnXegwODKdgp9yECSEu8+R7lEnk0Uow3WtyjTQJsXWZAx/fuc6vVu+uFvvht93RsCtkh19RP9DQt8WzJZUeKL9tmz301nYfsbCLuf57+zJAICPz++d0FmCILYsNnXPvO8/t6O6+v4+6k0EytFHEAU88tqV3ZpPhabmal3EIjmVvLQYkHkVquBFJJl73Axcm8dVwJGCQXRe5cSxPI6W0eL73O476fx4dfP/AwDgvg/HFmJI2Npmctv5IfiadWIZeeE4YtVp+NVihB66FgIZhmklbbgtsvCCZQa06j5he0Be6aDMCCp+gmH9eNE3p025Uzji68WyYhv9SKL5QlEGEMvxU+qPSJEPn8OTrqZ8TQwxVcRD5kez1jZuUtzrDHVPnpY4xeRalAIaDwJwv3ieKmeEKJqBWAyQuQLDUXJg/8kK8Kx0VlndE/yef+H7+vOh+wmX6IY9quHusBsAoOr1pUDWOG7CFuF4fCbTD78ffUUQ6usIANqGSlFGijBuhsPOGbFDh+sGRgTRoaAM8KXY5iWZdnI5bYEWiVhoBKN8lRRUEha8PbcBIIRrdW34SUsLcuqa5NGceZYJpeUO0+KTLgTRGurQ29BmEeHa3DtCl5n+SCHZaQbyQ4WQk680obBAJATUjqiJUaebms6Mwy3qYDT5/qKhy4ClwqOTsiBRQXisDe6I+4/d5ptCO00ZQLnlpMvPyXk65DfOmH65wG0LflJVVTGCX7ZWCukB9HEGoF8eKDdj26gkAksJXYWFkKIvKPQ0fYzkzgAQxE0+URaakF11rgUxEwatXKKADOtXYdAps1ydG9FmJh9i5AWPneOwPFUIRBzE0GUFRUDUct1WrvNPJmVRpMBl5t7JObINsoBL5P5ty1yObMQYVL4tbuBP//umjjtE8shrV6K6+uZOv+8tQrRTobtgK3i9MeAhoY8gCIIgBjCl5ugjRx9BEARBEATRG5Tl6CPnX7+zRQt9A9GZ1pdEt32g5ZDb3L59fP5M4PyOy+ru8gYCxc7VrrZlc6sAE8TWyqC6RzBQjj6C6AU8WZnWyodoGyrdKvIaylWb3FJOhgOq0EWc6QIHyuXnVTA0jxLLqlzG0bytGdz4KfH56ZV3AgAO39GEW7Xtt73O1ZT6aC3CtHDgeDUydDfjwZF5xXhDhXb4hDFL5yyzvNBU4hRGOnBW6GJR2DnAk/1RlXrjG0XhDUCE6zoyn1gYySmlnDEsUv2ThVy7nkLHOKe4zZBJyjhByP/HVWLq5B/ofjy78KoOfdskzIJdLZxRiMmcVZYF5EVeK57J6lxXLJUErxWuSK++AtwWyexVnjI3CLWTkgM4fBfhzgvTCTzzxtVld21+xF16+Kjvmi9kP59e9rOyl9nfHPKFG8SHSMjx8y9d3uU8T398i65KHDoMgXSVhtr1xZCU+fqSq/PaFOSlHeOkzRqXqMOViw86tyQLQuTqTKi6Os9z1bLATdJMC+IR9xYD1Ap96UyzfOMk5JZxb7HQuFlVrjUvxeDIcHDGAT+prg3jrGOhcYapcFW/0jVuvLDQpZeXrq9Yi7LOMr1c3i4NmiksEdnhuvq3yYkXxpg+ZDqvaGQety0UTkeI69ryZH7BuAu7tWPON9Ymri+rqQW2CndPJhBThUJkpVi/oUIfw/h6H26zcArazVl9b8iOqtL70pMVwkPbbCcLI9scqZRbOC0S/qtyiIam0nC+SuYXdMz9O5pfkdsAi1R+BkT4cLQPKiTYaTPr4xYDi5ljp+b3KvSeMseIGyeoKu7khECuJtrWbMfrv70Qgwmquju46BOhrzcr9JaTe66n1z2YKFdYG0wi0qAatBehq308kMVagtgc2udhan9+99VvxICHMZHsvwRKdv4RxFbKK490LFSw6/dn689KnIhthK6yyLgcDEIM/HJVKiM+0/OkVoqB2+sPdJ0qpH0olhJUmvYcilyNCRsGgPgGG6km0Ql3bStYjRQC066ujKny6EXn81MmJ1UQN4UOwICYCltsM9umxD9uWQjiMb08FZKoc/Q5DLbUAqxcqCtSBkkG5keS58cig3i5juZxIk6OBcABXxZVYdP/acSf//HDLveX4pnM/bqQiq5GajEdHsyCQBdXCVIuwpgUbh2mwyH14HrMSODfS8R21Nb0qBN6MIp67Tn0gB+hbbTMP+hBV1pWIh4ALHji4qLz2lmVp8zWwocquhEGJjTeT8R0eKefMsUL/ITJlaaLyDRzLcpz1xTpANoVg4AIsVTrax83WEz4ihagMWG1RrSxIsUWVDgm48aoFBWqgMh0FQZsR6pXx1AgWhmRUUxysiZXYdg+d51ECUjxRl+vy84G4LJoRrbO1WGsRpDipohOxmwzjzGE8nL3Km3EN8jrXeaiszM+GBfXV7BNA7gU+qJVkNWLCLvNQ3qp6jyHLQVCry6lw/pbRshj6BTeG1ShDM7MMWAhzHWrjhcz+4Rx6OMb2AxBRNRTy7Ll/o03Bvp+GT0n9HniMrz5S3Pf3vMC8Xvw1j0z9LTJJ/1Ef9b7F4XHSJ0zsVaui3CoFycbd0joc/vNX5rlDkY8bsMqueou0d/0m6OvJ9x2W1IOur5EbfvWWIF3S2QgF1IhiPYUu++UOg0o/xzf1P1uUEAp+gii13j/hhmYdNosAEC+MuIAUq4eh2m3nJcWA1XADBSZD7w5p3u5gFWut91nztYVSdWA0DIpBBEmYrClqBUkHfgxJSQwLXwoIQJc5EMDALvF5EXzUpG8aJEBsRr45yKD1lgLR6w50MtT61IORBYCjhJqEEmuHzPrUIN5IXqobeJgoVzfhDp89kyx39/4dfH9d/i255s/Rosce20jTFEFOy2rm+ZDBNKpFcQjubUyISzpDFPb6VfF4Y4eJXcEQ1AtlsfykR2+FeOnHPhKzIgDjiNzneV4pwUgFC/Mv0x/nnC2EEyUkGX5XF9Hlm+KwAQxk+9RnfNOW1jgttPFbgKuhWkWmmUrMZs75lwMHSO8MW5EQTXNCjoKhYARbMQf5poyedzMZzuPgt9d1TcjWHHdN8uHrioLbuZT22xnQ7jy+so2uDqXoNgHhX3MV9pa5Pfjrl5Wcm2A0FGCnNxPYPpazFXbZl97kTycDAWVjQHAbs0DWui0EMRVjj6mC1Ooa8dqzWlxz2+oQPOO1QCAtiGWuddYhf+LPqBw/8TNyxPeznkXFfc6U5DMsTU5VnM1tt6XUSeyOk/a37vfvbWjELdwbnHX3d7niXPcznP9oiXWHCKxUgigLWNNRV8lqu52yWy8d9PgFftCbpURkksPpf1Nvwl9myNIDOoB2wBioIhCW7NrbaAcA4LoC7a267vHoBx9BNFr7HPubCClQlmleBU3zg0vAfgyRIuFQHZIoX3k4+9tfuhVGIeujBmTRTH9JMPaSQ2yXyHcVjEAz1faujowt4yrRAsqngnjtTwAEQdK1B2j5zGGvwJxUbeVg307G+oBPkKOXJ1YiZ3nWiAFM0KJGs+HjvkjdJhxVkXC8D779Vm6P7Fm6RbKhkhViYEyy+TApYChwvNizaFeMAt5QQilDmV0GRhXIY5S8LMt+PVpuSwXfoURCJWbRwkj//zJ4B2Ql4sKK3eGVcPyhYAaOuac4DZDWMZPjJNrp8ZwI2LHmgP9mTNTmELROtxG1VIZXm0bl6gfKeIROkxXwtVVU8NCIalAmJSfXVWwwWWF4p9yyEWXobRuy1THdXOR7zkQJMxOUWKPuh68FNOFbxgHYnljJ6z4VIhBlhLIapK6ymtyVagddF6VYwruSCyPI7VShjPnAzTtpM5nW19fSkBjgbEgcssUDOGhcSzaOW6EeeWeZCld5Vf0Xyl2JvxZRRG4fgjIe0O+xtUhyE6G632s7qemgrKYX72gKAhXjop6ql+RY8QC4wSM3nP0cq2oq9kIiE7OCHJ/vW/zCzXqe50PVCwTx8PKh7A2imNb9dcNAICVR4/R+3ewE4CVHLpLjr7+p8+FvnKEjd4cFPZWmBixeWwR7pteolh4Y/vvCWIgs6lzeFPzdofBfi8RjpvS2xIEURp7f1uG7DJoIap1qBwQZs111zaS478Xbf6gsCvev8EISlOOFOG93GFoHSYe01tG2rA8lVuMa2HET7BCxwuUc0QKI0njjLFz0C5F7eoJjKAn3HbiM7cig+NMRAmMjNzi62X+Li+EnZVVd6vsDq4vyzMVTUM3EjrITB4tY/sxok3oM2TGCGdQZqijhQtd0ZNH82xZsJUo4UHnIeMOQ2AVjrCZz5GvFSJl6DDtvgptwG0Ry87Uiz7s+v3ZBcdmi0amiLBbckgvk6JqtQs7IyuHRsLE1Tm64E+XoBiHWl9BcOZk8Ufkd0mddzpXHUTIqsqLph2noQnzDd1IhVlm5o2Kemqa7XF9TlntDJrtK/taPkegzkXbuAoBc85Hr41odeuoS9HylQvNuBRVrkHl0hXL4rBlBVrL48jVy/Doqrhclknyx21L72+nLTDh86p/zXnYMqzfr6tA1Uctog8VLrL1bsH2CoFeuv+Slhbc1DUpVsj1/s7Wylx7Gy19rbHQ3HOsXGjC5yPL8KvFdjCfI7FO7Px8tY2cypsnHdCcMfPZijj3bJhw3ci1XRByrT6ziBuTQ9+/zXFBwb1Mic52zjj6Jp0qXi789f7u3dv3+u7sgnx/zkaZ18BmCOrEm6HWbYQLOdbEtSj6zu2D+35SnqOP6G8odTdBEARBDFiYeKot9R9BEARBEARB9DABWMn/uuPou/POOzFu3DgkEglMmDABL7/8cpftFyxYgAkTJiCRSGC77bbD3Xff3aHNH/7wB4wfPx7xeBzjx4/Ho48+WvZ6Oee45pprMHLkSCSTSRx00EF4//33C9qsXLkSp556KoYPH46Kigrss88++P3vf9+NvdBz9Kqjb6C490pdPzmiBg6b4/wZ6GzOeRZ1PNL5SgxGuuva7U6BoC3iHsJKf3lKL1kJonN2uHE2nIz4bPmArLtRkKcrlBPfntV/rgvlktr3jFnaleOnGHwZjuu0MTjSGYS4caRpU5xd6ALW9wU34u7LK9ecCd8rcEDxaKVK0TafsnUoH7eYqcDLRRikWAbXLxzU97EWrl18oW0ce9w2ucN0f5mpRpqvtKHi9izPOGJ0RcsQOt8ft7kO77TyXIdAoqDYgqp6YEJzo/dMFkIXG0mvMIUSJn5DOH+iCfu3FKZNvAaAzE+YkOG6CQd2RuzkWMgRytxsVp5rB1coKzEf8oUbdJ7JaROvMWHeu30GjtyXqpCN7ZlzIoxUq+U2tMtOHRfLNzknWWi+55HiF9wUey4IRdchne0wTkAVGs4jbjETYsqCSM4/uVy3xdduMm4zE9LKTd5CL+0gL6v/qnDdik/b4FfKEPdMoF10di4wxS1scz2oIhfM5nDaAtmf0JzPEqs5pzfebsqAu7KQRmDDbZEh/jKvoZMJTd5Cl+lrNXTNdRtrRYcXhX7C3FvcNiBTrUJsbZ0DVK3LTrnIDI3rabqICTMpCbwUOmK1C7VW96Awcj8KTVvlkGTchM1Gz4mokzLad7Vfm7exkFwnQ7els3GPGbPxj9nl3+/f+dkM7HOOcIXHG0OwUHS0dWy1PjZRF+xgd/IpejNH37x583DBBRfgzjvvxP7774+f//znOPzww7Fo0SKMHj26Q/vFixfjiCOOwNlnn40HHngAr776Ks477zwMGTIExx9/PABg4cKFmD59On7wgx/guOOOw6OPPooTTzwRr7zyCiZNmlTyem+66SbMmjUL9957L3baaSf88Ic/xKGHHooPP/wQlZWiyvupp56KjRs34vHHH0dDQwMefPBBTJ8+HW+++Sb23nvvsvZFT8E4bxf4X4SmpiZUV1dj48aNqKqqKnnhxQZkA3ngRcLJwGQgnzPdgc4zghCUc20PBIGvu7+F3eXGG2/E7Flzsev46SW139j0P6xY+UcsW7asl3tGEP3D5lyDO187uyA07F/XDeyB16RTZ+lxkpdiesCcWMdR/Z9WAMCGnSuQrZUDcF2l1IQecssMaP2EqSqsBslO1ogSbpsp3OFkQiTf+QQAkP+MKFyRr40ViARqUG35HBX/Frmo8kPTaBshQxE9IwQqocbOhbAjecpUAY18WoUWMh1aFzowBQvyJvTPrLcwrE+tz87zgtBKFS6pBJ4gYRcWCokIHEocMJVSTdhx24iBf86UyyEHi6rPLAhhZZWwFK1g7CBIip3CQq5DolUONgA6NLP+H626Yitsho07ivBFXYnW1bMUiHHcNiKcamN5RoAGolVsIyGdkeOv2grxVy0Y+vwJXCMSJRpVOWCuheBoigwnY4Q1JXhaed+oipYFlpPVnrMeeFIIeX5NUuetjBaFcDeKtnabr/NMsjDUufnUvoaFSPEPrvcld229Pn3/8gPAk0pYGAAxud5kDF6dUNRUpVkvbWuhz08wnRtR3QsAIcK2L3TBHXOfsHMcfqQIiupHrEV8iDeFuohHbHUrcsNFzsCNY2PIV8vlRUJxo9V11X3Lyhuh3W3hhfn6oK5VOck2xzm0ESm2IablqxhsWTXdbQvhtplzSd3DlEDbvK0FX9QUwaIflX59737hbL0+p03sA0DsM7WvVAqA3sj12dfPo8uXL8eoUaNw9TtHwYqE3nfFbUe9gHlz/ohDDjmkpPaTJk3CPvvsg7vuuktP22WXXXDsscfihhtu6ND+0ksvxeOPP45//etfeto555yDd999FwsXLgQATJ8+HU1NTXj66ad1m8MOOwy1tbWYO3duSevlnGPkyJG44IILcOmllwIAcrkchg0bhhtvvBHf+ta3AADpdBp33XUXTj31VL2c+vp63HTTTTjrrLNK2gc9Ta85+toPyrY0sYYgCILYPMpx93XH0bdFEElATRBE+ex8zWzzh7yW/nXtwBdsmsYxOCL1FtxWIFQ5A4cw+AkxkK781IOflPnx5IA6X2mElKpP8oh/ulH8sXYDNkzbSSx7jBz4M+gcY7GVvnYRWfkA4UhRCMRdJ0RFtzELr0aojV61qwfgTmuA/FDRH8sLtRCnEAU4VO4xhkC6waI50fSAOcP1oN3yuRZ4vApmCjYoIcIyQkTomJyCVsC0G8jKcz2wjxLNI6jcWdHqwEps9NKm4vIWiXKsrWpGWCXUDr8ybgSwaIXVmNXBCRk6TB/voMIMKYOYBbdVzKdyv1leROxjRnAJY4WCElAoDkfztUVzrEVzSqrzxPF4pFpvZHlx008l4rGACwEPKHB+WvlQCGkwTjDmh0bo832wvLzAghCsSV4fmTyc9bKQRUKcNCzvA6ESP21wT67HZtr9aPliWWHSNeKfYxmXnh+CZSLJ/gAgm9M5FXlbG9jQpNxmS19r8VWiIESQrETrECmkJ4zIBmbuE9zvWBAFEbdvrpYVuC31vgrE9sSboMW/7Ii0LnDjZkyVbbdNCmE8kh+Qm2vRj6PgelfnZqwp6hw2fddVfJkpiKIF1nwkL18eBfkV4xvFBuSqVZVhU7xol/+bXbKY/8+fzMBuF4vfltA1LyuiDnG/mItxkBOW8VBaTuhuPp/HW2+9hcsuu6xg+tSpU/Haa68VnWfhwoWYOnVqwbRp06Zhzpw58DwPruti4cKFmDFjRoc2t956a8nrXbx4MVauXFmwrng8jilTpuC1117TQt8BBxyAefPm4cgjj0RNTQ1+97vfIZfL4aCDDipjT/QsvSb0DUZhr1ift7pBJdHrUNgtQfQ8g/E3p1R4ibn3KHSXIDrywTUDX9QrRvsBpxpUqgrAANA01kXV/8TAtTUnRpi5alMUILa6VTiXAPB8HumlIna5eVsxArVzQNUSMdqPr2zVmbtZ3gdbvV7MF0jRIx6H6wnniNNq1C+WzYM7UuCI29pB56fUSJyb4gscYNq9ZcJ8TYVMFnFDsYLBvBIltEjHI0VFssa5GMTQoUAJAF2pOOoss3OmCEEQN6JeKP/3E9Bj2vaVPbcEVNjt4Tteol1jts0QJMTxVGG7gAnXBYxjNHSNKJoZ4ppjFBiRVhc7cQqr3OpCGg6AiJMPECJgQSi6cubFzDHyk0bQjTpY1XFKrchpETdfEzNFOKSj1PJDWHkV/2kcdOAcVkZ0RDnwAIC1SItYJgPYETVHEYRgGdGGxaXDLhUHy8qNsgIjjwSBEOsiWG22duZFf8pZSxbw5DLk/zzvgcXETmOuC7Rl5LZ5gOxz0y7iWm0dbonzGMI9Fw2Tj1audddLN690v+VqLORUuK4dqb5smXBcJ2NC8j1ZBISFXFdDTq7xkVguyoiztY2i7dA6eA1JOZ+pAoxaB3l9rgCuTLOgqyy7xv2n+gFEwn1hrlu3mcNpM5U71MuFIMG0A1W5/JwM1ykdeJHD2hX6/mRHRD0GvHvr4PzNKYWAW+BlPGzm83k0NTUVTIvH44jH4wXT1q5diyAIMGzYsILpw4YNw8qVK4sue+XKlUXb+76PtWvXYsSIEZ22UcssZb3q/2JtPvnkE/33vHnzMH36dNTX18NxHKRSKTz66KPYfvvti/a/L+jzqruDDRJlCIIgBg7F7slbssgXrQi6Sai8FkFssbx3sxg87nT9bK0E+AmgeZR4lK/8nxi1W76jQ8dWHFyH2g/F9GRrG+xm4Qyqf1+MiDeOdbRjy1q+GlCDr5hrRAclMiQT2snE2mX9UQNwFnCTh80xIp7+7JiBuRWgg+WDR3J2BVYkfxkz62RaN4k4utxI2C0zud78JNP5AfOVkf4od1JoBqx+HEbUM9HFOgQwsb47qeUHCZYFlhMHxvYCNI8Tbs7QZQXOuug+BsRxVa6v0GXg2sHETI5HVvg/IHPpKUdbC0wlZiX6MOPe4u1Gqmo5ThawsybsHBDnX2KdFCyzPqys2KZEPkAYlyHIgexYJDTYyub134xzIJuXn2XbTBbcF8tizDIOMdvWzjpwDsQL7Z/Mi6jDbRlALgN+AJ6XLj01v22BOUb8Y+oFXxhqsV47Dy0Grq5F2wa4qvjqgyVNRWlAOH3VNee0RoQzRziFAaBqaYCYDDH2KsV+yjILnooIDREJhTXuPxX+m6uxkVynJnLhWIQQz5t3qhGfdxP/J9f4+p7j5AIdGg7OdV5H2zOOTyUkR6tsR6KyhQjZqnIGqp0HZBqkq7CNm+s9mn/Rgv5effZS5b0tff9GcU/e83vGNf7uT7dckQ8AQs5Kf6vMgblz5+KII44omHz11VfjmmuuKToLa/dim3PeYdqm2refXsoye6LNlVdeiQ0bNuC5555DQ0MDHnvsMXzlK1/Byy+/jN13373TbehNSOgjBjzRQf2WMqAn9yhBdJ8t5T5QChxmoLpJqOouQWzxeJUhfFmoILncXPMto4Qy4rZxVC0WIkKsMYfm7YQF0N5xBDZuL0bm6WVi5F/zHw9OiwwdbG0DWsTInzkOWJVIMA5XLJevWacFDlZXYzoUhGAxETccOhasnBjwxxvF12HMgpc0YW3KUWd7RoxQbjwxhpQuoXg011lk4K/mz8vcYhAuPl1sgXOdQy6MuPvUshg3rkhuA15ahp5WBWj4m8xBl1DhoSb/F7eA/ab/REz3OF555CJsKTz94Y8L/p58sthOFhpRNLQi4Z3quPgml5pw6RU6NHUbyBDciEsvkMfL8lAQbqtXUMRJGUbyxrktXIeDqqIQTquvw24RwoS/eoEWl7RIzTl4RKTT8+VygBIDpeuO54wAF5V7eRDAUteJ4wAbhXsNtlkuV8sIArNcHgKs45s5/VsfFSlcVzsE9TTbVnVqwD0fTO33TBZstbi2a/8hGti5ajTuaBQyJe45bVxfP26LD2eDUPJCx8SbWlKLjG00123FikDvb+7KnINeqD87bT5aR4n7jJ80OQGT68z+1yHRAdeuS7eN61x5ocPALXlOcOMqVIIldwuPQxgJAwfE9alE6XyaaccnCzhyNdLZq3IDeibE2yk0WZbMu7dt2eJeFI/bsEoU+jgYTjrpJNx+++0F09u7+QCgoaEBtm13cO+tXr26g5NOMXz48KLtHcdBfX19l23UMktZ7/DhwwEIZ9+IESOKtvnvf/+L22+/He+99x523XVXAMCee+6Jl19+GXfccUfRasB9Ab3/JwiCIIiBClOD39L+EQRBEARBEERPE4IhhFXSPwCIxWKoqqoq+FdM6IvFYpgwYQLmz59fMH3+/PnYb7/9ivZl8uTJHdo/++yzmDhxIlz5gqqzNmqZpax33LhxGD58eEGbfD6PBQsW6DZtbSInpmUVSmu2bSMMQ/QX5Ogrga02CTzRp1CYOLG1sTU58zaLUp165OgjiC2exd+9EJOfFYnDNzQO06/sleMmdBjsnIqlZUitFLacMGbpxPYqL11ydQ72GpE/KToU4b6v3X0FyNxkPPIdc12wFpkjLAhgLxPfte02UqwraemcXUHEqRVfl4O7dK1oM2YIAKB1ZFznEwtdZsLzGPSIxTjzmA4d5HbE+RWa/G52zriAVF4xt5XDaRMLaRsGJNaIz17egSedfjrsNOJAjDWbsOQtvUDSwgcvBAActseVCGSRjsadktrdpwodhDYz4byRSpyha/ah75jp0dyJJvwXsPPK3RfxaaloVQ/6/MmnzfqCGBDfWFhgg1vm0LAwUkADAFNhs2ogHv29jH52HCCMlAWGcM2FMtSWWQw8jPRT5rC0qiOVT6Vzj+dyOkSXB4GZj5urjclritm2rrjDg4hLj3O9Dt1PNzJ8DwKdR5P7vnYfsk/ENlQ3NiO5eigAwE/Z8GShDMYBt1nsk9iqFrBmIVQkZK7GIFkLKxBtLd9UWg5dBjsnXXgrxbUexhwEaVkUqDamXXzxxhDV62VKgawq9OObsGnH0nkSuc3A5AkmHH2ygIjShEJTObkg1yAHvPZFL5LmHsA4EHomDDifNtPFek148NbkzOsuAWcl5+grN9nBzJkzceqpp2LixImYPHkyfvGLX2Dp0qU455xzAADf//73sWzZMtx3330ARIXd22+/HTNnzsTZZ5+NhQsXYs6cObqaLgCcf/75OPDAA3HjjTfimGOOwR//+Ec899xzeOWVV0peL2MMF1xwAa6//nrsuOOO2HHHHXH99dcjlUrh5JNPBgDsvPPO2GGHHfCtb30Lt9xyC+rr6/HYY49h/vz5ePLJJ8vcEz0HCX1lQIIfQRBEz1FO1d2tFY4y0qFs4YNPgiAEC6eKUMvP/HW2VujUINjOc109N/nPTxGu2wAAsMZtC8sTYYahTNjPAo6wRqpbNeOADxablUhRQQkRsJgRGmIxUyDAsnQOMdaaAyqEMKTEgDBu6XtTYoOH+IcyRCqTRSgFQ3utKPxRvX4bbNytDoAU2SIiUdGcb5sYSVp5rsP6VNt8msGWIXqpVUCsRXyxvpKZogVS3HObI2G8XpHKpFs6jOkiHIFr8vGpXGahywpCqaMogVTn2rNhwnztQqFGFUNQ4d52nmvh1goix9yJCNoxU6xF5d2z8oHOywfOC4Q+o2TLD5ZlzmfGIpV3bUBFyqpQdd/XIXBCVDMnghbZZCEOAODKwROE5vug+Mmjvw95gQDImbpGA4RFBEIFixQGYbatQ4JVyDAYQ2yR6Fss5EBCKmepJMJUxFmlwoqbxTWZWJGAnZEhuBW2FmO5BXhVqmKtOBhWa87ECFY5SGyQOfgyoQ7TtaSAqAqdAAD3mX55YLf5WrANXUuLbzpfJo+cU3FTBZihsBKwmD/yQsAzeR7V9a22AxCh6eo02PP82Vt8jr3NpawcfWW+EZk+fTrWrVuH6667DitWrMBuu+2Gp556CmPGjAEArFixAkuXLtXtx40bh6eeegozZszAHXfcgZEjR+K2227D8ccfr9vst99+eOihh3DllVfiqquuwvbbb4958+Zh0qRJJa8XAC655BJkMhmcd9552LBhAyZNmoRnn30WlZXiN9V1XTz11FO47LLLcPTRR6OlpQU77LADfvOb33TIUdiXMM75JgXXpqYmVFdXY+PGjaiqqtpU860CEvv6h61FEKDzi9iaGCzXdV//Ft544434yW0PYZe9TiqpfVPjUqxe8iiWLVvWyz0jiP6Bnkc7sutlIhG8Guy6raaSbuK1DxDKkCLmuLBq5D5T4kBFCkGdEPq4xeCskTnGmltEEQDAOKAAna8PYWgKC7iuGSlHXFThSFHQwa+M6aqXbouvRcGgwoHdKgscqHUxhnyNEBe8Csvk7rNNNV4lAFiBEYNCx+TrE20ibdV8cfN/fIPcNJ8j1mzcYGrwv2538WHomwEqlgkVKjMsoSv3ghnX25bOIQddD0A4+pRYatyjKBDvVE63IGbypen9npCVliHnkR/jjUwXeog3ylxpWePuC2IMXloWlqg0zk07L/LFAUBCusbsFk+IToDIuafEO883btSY/N8xXhfGuTnfOQfLR/L1odDBiryHMJPpsJ9YPG6cfL6sjttOvCsLlcMvOn+RaVFxj7mOEf4cU+SCK1He97WwaKVSYKmkWXbkGgQA1FYjTMjqwXFbFxbhtm3y8S1fb/olXYZhVVIXPuEWtGNPzc/yRpXjjgMuKzz7KRe2zO/ppxx4lfI4RfI+KoHZTzJ9fomVyv9VIR8XJo9k9L6QMLn5KpZLl2i1EaPsHPD2HYND6Ovr38Lly5dj1KhROO9vX4VlW5ueAcD9xz2BP/zqURxyyCG93DuiM8jRR/Q7pRSmGCxCQE+x9BoR8z/6mtf6uScEQfQ7VIyDIIhO8GXYWqxRTgihCw/AssAcV7cNm6SQpwb7lRXmu7iNsEJYXljcAVasEZ+jQp8SDBwHSMkV25aZzo3rT1cc5dDTvEpXi2Why+BKATC1SLj8wvoqxBqFuJJYltNCQ64hgWxD4ZCFBcbtEw2rDV1W4ATUxSSUMTFv9hnzWYFj7+8/7zjIP+iwG8VmZkPYWbHCl/58aYd2WypWXmyznzDhjkqk444RUkIbpqJrzHyOVkJVrrD4+nbr0MtQIZZGxI2aguy8EWMtTzjGACHwAcL9FlRLR2lbHqxNutqCADwtpodJZQvjJuzdtiKhwgFUaWcWceHxViHucd8zrrkg0CG28I2YaGZqJ/JFhbpiQl5n8yohT4mVvvnOSqXA0vI6tiwjSkbCeRFxDSqhL2xrA6QLkdk2WExZL03VUksVAWFMiKXqc6R6sJglBJP3AysIYLkmdYAqiMKli5g7DiA/+xWuFg2ztS7cVnVwGfKV4rMSfEMnUqAlLHTkRUV+wJx7gKzILTeDW+Z8VC8RnAzM+dzu8BEdCcDAt/TcBVsQJPQRA5KtRdjrrKLwh/8nHjYPJaGP2Ao41PrKVnPNl00ZURIUuksQWx+Bzmkn/rc9bhwutgVLigBhJqMH6DpXWEsbbDmAt10HYYWwX7FP14Grgb0SLxgzLqFEHHCi0+VnPzAOQCkosCAEt9Rgn+kBNguB+Dpp5YqJkXhmZAVijcIWZn26CtYIkVvMqXBh52RF3Mj8qlom45GcWxYKnGfKUaYdQNwIhJYVycG3sdje3XpEvTFzbgIAsJBhydkX6+nzX7sSALDDjbPhCHMoYlIvtrx2vzvys503rsrUGnkw1kAfF7c1ROsImY8tcox03j7PiLV2nsPKixntHHQFVTvH4WQKw2HDhFvwd/QcVQKfcohZfohcjbh4sg2uFrjijQHiMm+jnZPXQMh1jj4AsCtMyGsYraobzd0HCIFOCXbtq+x2JgIW+07+zQPTVgmMLF0B3lAjPnsB0CoPkhTbmG3rPIGWZYF7Siz0jPMwCMD8QrWMeb6uHswsq2joMYtFhEAVIOhH4mgtS4dVIynahkkXXDnCGNPirpMLYUtROVvraody+8rcgLjn6TBcy7iZlTs3dCKhvT6QaJKfA1NxOywsZAwAyAwFdrpeOKQ/unxwOPv6mvJCd4n+hoQ+giAIghjI9E46FIIgCIIgCIIoiTCa42ATlFuMg+h5SOgj+oWt3b1TLAffYM7LRxWDiWJQAaMegF6eEgTRBTpnmUrDlWCwM9K5l80hVHnGIm4jFVoXrFqjp9l1NfCHbwsAiFnMOHiUMy8aluiYz5wxHYoH1waPyVxd8n/uWDohv6isKfvgc9irZcXfWmGzyVXbCB3hlkqPGIrM2GrxvcuQWiHcf1WLhGMpqEoiMyyhlxvN4adyunlpk5NLFXwIncJ8fR9cQ86d3S+ajVi9cLzZeWDHG4SriXHo0TqLhOZGx/m+TPPmZExBjtAx+10RuIAvc6x5KVtXgG4bxrSrUtfJCIFsvfgc38Bg+dx8r6sum6IyoczraGd9PPeXKwAA0yZeA+7IHHOuOV+tNnGhhClXFxrJVTG0DRcLTqy3kKgTna9YLuaPez7Q2ChXbOliG8x1TThtgA5OPGbbBWG2RcN0VVhuQYqOSIGNeFw755gKiXUc47S1LZNfDwCrFsUBguG1AIC2EUnEN4htji1rBF8ui+EEFnRRER7qdXZaPCTST50OQO2HRNw4+UJLh/QiFtOuQF05GC78CpU/0LhrmceRrZWuSztSgMUy/6tzyktFwmyZuZ5z0h0YOiLPIyBcoOocfuueGdj7PHlu62IvXOf+i68Fcg0guiAEA719HjyQ0NcNaNC6aYoN8Ld2cW9LRB3T3S+ajeFdfE/XzNZD9JjTce8JIpUuN9mUHqoIYmti3M9+AiZzzNlZKVQ0hrA/EpUJw7xXdD4l+rGIoMfbMogtXi0+5z3wdvOyZFKHA6p8WwBEXjAZrivEExOmCwgxhkfEGSXaWD4HVFGDeiFOcMuE6HlD07qtkwkQyKT92Z2EgFHwAoRzk6+vhWtxoGVbhv9cIoS88ZfP1s1J3OsczkwYdDQPYr6Ca3Elp8NfjeCS2GDCanPVDDEZLqmOhZ9icFtNaKXKqZhaDWTrZHim1I/8eCSM14H+bQsjVVMtD7pggxKSX3z2ioLnDmvv8eJ7L8Azb14DADjo8JtkfywdNpqvMiHc2Xog0yCmN40VClJD5TAkP10utsePXBtBRGCzGEKvvYcpKPgezNXLMAKhEtJjOjSexWJgFTKRZDyGsFJ8Dl21vYHOgdk2tlrv49hGH3ZG7CR1vQDQgiY4131vL+Tx9mHH7YmED6u2uihD3jNhvo5jKvvapkiHCulneR/Md+X2MHB5DLL1jhbknEyoc2eq4jtBPBLiHanabAUmx6OuvsuF3ggA7941A3teIK79Pb8326Q8blfcBxA5J+2OdVaICAFn4CXnk+ndvhCbhoQ+olchca84PSmARfdxXwsran3FRL7o98TWQfRcLMflSfeJzuGgHH0EQXROcrVKKm9ylzFZhZG1tGrxIeoYMq6dSIJ/zwdfuVp/rwfzbiqyMqm0RF4qcMsylTPTboGoBwjBT+XZ4szkSAttgA8Ttq1cfULPox0+QYj4pyJzvjc0rUUdNTDnlhng2x7XOcJCh8GrUNV6zUhz0fUk7nXGP2+ZgZ1+JMSQaIGNaMVSp824Jl1Z78HJmCInybUBXnnkIt1+/xNuAQBdfMXKA07WVPMIXHneZjlSq2WFXdfkY8tVyz4Exn0VVACWZ4Qf3U+52ClH3gQc/lndByUUe2kb+5wrnVzbCJGpblErskPFeVf5vxCtedHPIGHOQSUmBXEL1o7jAADhR//Vue06LaoRrYqr3G/ti2vI+ay4+J7FXCOGJRPGCWfb+vpSFakzQ4woBga4LaHup7tWOHjtZesAADHf1wIib2o2fW9PGdWB1b0kKngyJe4lHH2fCFMxI9LKSrzZIXH4KbFtsY0Bgrjc7zGTjy9fFXEPKzNnxCUauhGnny3y8AGF5+27t5nr/d1bxee9vz3b7Df5f5AwAnMYB/51Hd0nuoJCdwcXJPQRBEEQ3aa7Ih2JeyXCSn6mKrkdQRBbBtzh8GRy+daRckDt2kinlSBnwYqZrPMdBvk81G8IWEVauHEABOsbYVdJgW+bYeL/fKCdfMwPRcguAMQteFUyRNIyYpBy6oS2EYO4xcDVyMNlaB0nBEkVOsdC4+jL1cfRNly6k+ImfFMtlwU84jzj2qHjJ5mupkqUjq5GmgBsGfbIfCN62RnzObFe7PhYSwhbVr6NNRWeW7YSmGV4Z6yZa4EHMKKf5XMEtjn+QGGF38AFEi2qLSLFXHiH37xMg1Po9FJCX4rpgh6OLMTbNjJpXHx1FjxxKiK1Eog3yT43CoUxuawZLCNmZI7bLrzVhLara01fZ8yKhLzbCHPZDtN1OK7rgLmu/qzJ5WBlxHK9bcQ16SUZUmvFehNr83ClEzdctx6BLA5SjnBXlEjBD7OthSH8LBo+rITJWAxcipd+VUI7e5XrMl9pa7de9OUkZyaEm4URcVfdvpgQ4gDp6FPdiBTYeP/HXYt00fNFFTHyE/QSoBx8bsGih81BAwl93YDykXUNDeA3TV+eP3S+Er0BXed9CIXkEgRRhCXnXoTdLxJOJTUgzlcCuREiFDaxuhI8Z6qF8hYhQGiRwS4sPakcOsxiwLbCq9+8Uw0AILUiC7tRxLVxmyGoFMnZuMPApKASxpke2EdRAk7ookAIzFWZyqpimvk+U2/p+Zws124f7RS0GXxllmIW0kuFzSxXndZusP9eOLP4jiMK2Pf0WeCj1IGBycvHTW5DyzdVjuMbhQrjtIXwK8S55FW2q3grsXPiILrNHl5+TOTP2/eMWaj8RAhS+RpXO7JsKQYl1wPNsj9hBZDjKn9eKIRcCGencrHmK4Xw4CeZFnDSy0ItLrmtUbed+M9PmJDyipUh7KwUsUOu2ydWtJr5VF7KaC69aPVb2+4ghom/O87HbLsw3x4AlkoZJ1xVUofpWjkPXk2yYF9W/i9A8lMRG81WrUMoK+3yfB4dqvx2JfhF8wOqz+rekIgblx7nCDfKUsu2ZartRrYHcTnNdRBKB2IQt/T1mq+S02ImTNpPsIJrXD3rcFuEUwPGrRdGTi8WmjDd0AY+vKo0oS500cHRZ3VicCSKQ1V3Bxck9HUTyj0moMF+39Ld847OV2Kgcaj1Fbp/lEIZz1T07EUQWx//vEUMcre/ZRYAoGI5Q2aIGBXHthkKtmS5bsviYuDOZIggHMcIEJ6vw19ZLCbC7gDkakRbtzUGu1k5khi4K6Zz2zjoWMiN069I3Ba3YF5cGBOeGbQzDh5TDqCIwytuwn8dKTYFMWhnUG4sw2u/+79N7iuic2JSx/ETJjQXMEKIm+GwPBMeDgAvPnspPn/cLUWXl08r4UwuN2lcQH+7dyYOPOZmAOJ3y20VApmfEiJT6BjHFgtF2C8gwtPtXKCX52RDuS6Vuw66yAcLuHYVAgDzZI45eb7Hmny4LbJojQXE10txzmZgKgy8QlwDfoWD2FohpiGa246HogiHWodyuCnxznH0NYUg0GG8zLZ1MQ2WSpp5pPvR2tACKybz+a1eCycmiuQ4bSpUloNlZVGRllZwT25HNM9e+1BhyCI8qm+WVZCnTwt8VeIlQTisFrl64SBsHekiuUasI/m/JrBGaf/0ZH/iMUDeW8J0HH6l2G9h3ILbLOYLYkZy0AV5AiC1SnzvpyxYvhL6GHLVUuiVu4f5RvTjsYjTrwwC1xQtUnsqSADjHrgBALD4a98vf6FbGeWF7tJDaX9DQh9BEARBDGSowBlBEARBEATRj3DOhKuPGBSQ0EcQg5xSXHqbarMpxx85AolyKfWcI7qGU44+giBKwG1RRTmM28WvjCOmXEaMgaULwwURBOAy7A8xVzv+eC4Hr0p8dttkbrNWTxcLAEzOLQAIlbvPtbTzTlU0jWL5kRC8yL1NOfOisIghKUgwkzBfFmzwE9AvN9hmpiPb2om1hLBlkYt82tIhsdwyodLxjQHsrAzZbTbh4K3DxPmVXAsccLwpwKFyKao8eVEO+PItiLWJZYWRCs7K/fXqw5fqKsl2Dqj8n7Bh+RU2Xn34QgDApFNnaVuWLbvjpYHYBlmYIsF038E5rKDwHGMcCJKi7+76DBxfugOHVsBp8fR8AGDlGLhyvLXfGBXyGovpHJcq5JUHgXDKQrjtmDx3o22148+xtaMP2Zx2vrKqKtgbRfx0UCVCe7lj6VBivRyxEvCwMGSX2bYOtbXqagGVB9C2wDLCocubWwr7ASCMm1jZbC1D87bSjbhXPao/FpWvqxc16jZhUublq4jpMN3QYfAThc5gALBlfsbQBtqGiraJxgAtI+XxaOW6anPzWPF/bKNxl3ILCFPy2OQ3LTp95jpxLrmhKbzB5f/5Gk5OvjIIwcDorfKggYS+zWRrzX9Gg/T+oTvnWjmCy6bO5631fCdKhwS+XoCeqQiC2AQfXCNCeD/79Vm6YIFX5SBWLZNdZXNGSFA5tixmwg2DwFT9rKlGfIUYaSf+LZO0ZbJAXQ0AGa4rwwT9tANPhU5GquZGRxiqWqblRQRCbsRAlWTf8kwYrx9nCGU3Q1cKexG4ZZLwf3QFJdPfHFhoKt5yZsJm7TzXFV3djXlYMvw1XysOxgHH34JEpJAGU5WaPa6rI+tw32yIKUfcJNrGLUCFb+aNSvvC85fpz6pAwl7fna2nqVBdAPjr/TN12LAq7BHEosVaTO4+y+dwpfClzEhOUwAmxT2vJqlDgmPLm3UBES7DTYOki9wQsc3xPT4D55MVAICwta0gp50W0GXYLXNdQAnpLa3m+krEAV2lVoqCjqWLWFjNtgmpdx0jmmaE0sVdW/eNDW0AaxGx1rwtg1CKd8yS3yeToqIvAKSSerncsoCE7CfnJiRZFvNwGtuQr681+16Gc+fqgI3by6q5TSLM186HWrAN4gxehRH1VB5OSy7eznL9OQT0841XYekQ7VwN058VfhKo/ER8zldBF09R94vO2OWq2YAS9xyxHADwKsU58/EMyuNZDiFnYCU6+nhHjZ/oY0joI4h+YLA55AZLP4meISrGdXbs6ZzoO0qOkiBBkCC2erJ1DBUrpSOLicT+AGDl80BGjp6V0Jf3zGisqlILgTzhGveeEi8ScdEekUqhEOKecm0FcauDu47b0C6/IG5cOSw0VXOV6BPEmB6I+0mYCr3MVO5V+QC5BQRJGkn2BC8/ehH2PV3keIy1cthSUHNyHPG1Mi9jwOHVClEqX6lcojCFO0KTw88KQp3TTQl5LB/oY5evicPyhNpjeSHCmKnk2p6KFYEuQsGCEIfu/0O53ADYRii96vyLtZj5LI/rwh2hw8Bk31zpSnTXtOg8d3BshBVi27xhaTgbpVgm++iub4OVl9/XxMGCoeJ7PwRrk1Vum5rBc7Iyr7p2XNeIfsmIUp2Ig1eK/HeBvD65BXBZudb1Qy28sawHMLkMKcIx39dOQaSS4A018vsK2L6crq5x2wJfIavyfrzE5OmMxcAqRB/U/KKRKubB4MgchpbvICeb+GkO9bCh3Hi2F8mZx41TN3SYfi5R33sphtRqVZEZyFeqIjsMbou6nk3ez/9cYkT8Pc8Xoq9XaRzMLAC2e/B60WBVwsyeE9+7DPBT6iRlSK2QfVtHD0zdoRyhj+h/SOgjiH6krx1ypbipKIyXIAYQDKVX3e1mdd4777wTN998M1asWIFdd90Vt956Kz7/+c932n7BggWYOXMm3n//fYwcORKXXHIJzjnnHP39Pffcg/vuuw/vvfceAGDChAm4/vrrse+++3arfwRBlI6VB3xVLJPZcKulE2ljG2BJ0Ua5myorIjMC3JEiQBiaAb+uNmpp8SFMxbTrycoFYAnj4PEqVOiuXJVlBvss4Dp0l1sMTDp7lCDjpYxThwXGCcht4zILXVXhNwSSFLPbU/ztN8LZNOHs2bBkGC/zQxOWHWeRisni/9BlOgzT8rgubsH8ECyQ4px0ylltOe0miwF49vXSiqe8+vuLMHXyD8xy83IdeR8vP3o1AGC/6T/R7VXf4EG7CpNrA1jSSWpJoY+tXm+KUYQclnTmxWqqENaI60KFdzIvgJUT63W4EQBZYwu4ctPl84DcZiXCMd83gjljujItTyXBdVVdX+5LG5YU0oNUDHazdNL6PrjsjxIj7dUbEKwS4p2VTOptD7I5s02dVNvlbdJh2NYGNDaKbfJ9BNsOAwDkGsT9wq+wtWDHbRSEyYdxsS9zNWqicfKGtrluARP6rXDahOAPSIevcnb65thVrA70y4EobqtYWLaB6cIclgeEG2Vosm1CrVU4t+WZFwZBgutiLNmGoruH2AQk9A0uSOjrAbY24YNC7wig43mwtZz/WzJ0bQ9MerPq7rx583DBBRfgzjvvxP7774+f//znOPzww7Fo0SKMHj26Q/vFixfjiCOOwNlnn40HHngAr776Ks477zwMGTIExx9/PADgpZdewkknnYT99tsPiUQCN910E6ZOnYr3338fo0aNKr+TBEGUzLu3zdAhkgB0SCKPuabCpwrvi8UA6UKC4wAyBJe7Nph0Uanqu1ZLTi+T27YJvfRCfe+xfK4H6F5K5tJLRSq3tpmblJdCh8q8KoQXALw0N5VXORBIcYHHxYrjtVl8dPxVJe0TonRsj+vQb3COICFDQDnXIaSq6m58gw+3SRxcZ00T+IZGMVsma3LMKWdZpOKrHZbnxNTCmh8aF16kYuxr8y7sMM+UI26C2yrzVrYFOuzYWdNk+qhXwBA0i7LDlu/Dkn33G0RoKq+IgfnKhRaCbRBt+cYmI6wFAUIp8FnSmcf8AICKWbWMy65gm6RLNuYglOG4PMbAVb6/WEy3zYwR/UkGAWzZ/7CpBWEusi1dwSwwFbobOQZhUzPsxTJ0WVb4hc105eQwYrhkHkMoBXZ1PvhJ4bIDRI5Qdb37SSP6JdaK/63A3BtCx1TBtTLG4etVWHj9gY4hteolAguBQFXj5YCVUxXAlejMtEiZq4mIkDGgbQT0MojyKSt0l8JM+h1K3U0QBEEQAxlW4r9uMGvWLJx11ln4xje+gV122QW33nortt12W9x1111F2999990YPXo0br31Vuyyyy74xje+ga9//eu45ZZbdJvf/va3OO+887DXXnth5513xj333IMwDPH88893r5MEQRAEQRBEvxKClfyP6H/I0UeUDLl9ep6+dsEVW19X+djKOeZbm7OVKB26d3Sf7lTdbWpqKpgej8cRj8c7tM/n83jrrbdw2WWXFUyfOnUqXnvttaLrWLhwIaZOnVowbdq0aZgzZw48z4OrKvpFaGtrg+d5qKurK21DCILYLFTOMjvrw1nZKCbaNuBLd59y9CXi4NVp8T3nYDlZ3bQqjVAWXLDbZIwcY7BahavPyuS0oy+sSiDWJNr4CRuWdAGphPssAPLV8nMIk3y/yuTtUgn1uW1Cc7kLHfcXOFw7+VgoFkBuvp7lkINEnrPqfKjDsoOkuZ/HPt1gQlOjtMrQ1WxO56jjQaCdbkzlrXPMslguh8O3PV/8kYjrAhBP/++nus3Ufa8z7aXD7s/vmGmbYsFTl2DyySKkN7Y+p11xaGzSfdRE3G08kwHWrgcAOHI/+MOq4VWLk9VtygMq315rm8lrWcSlyINAF+vgvq+r3DKWBGTOQLXtzHHAamXOwTxgyWsRng/IHIbKVejVJBFvEReV5bqwVHhwzEW4bKWYPk468zg3x40xE5Lf1IxQhh2zHceicbxYnqqA7SeYDrMPXVMtm9sczFeOT/l9zITzhr5x0/kVXLdRIbN+woTo+kljzGQh0y67TRnG4uuBxt1lNeP1jr6n8EoxLVfB4DTKyr8u15V5w3iIj86/qOuFE13ihxYYI5/YYIGEvh6k2GB2SxE9aKDeswy086KcggvFhEE6P7YMih3PUgpzFIPOiR6ClRe629zcjOrq6oLpV199Na655poO7deuXYsgCDBs2LCC6cOGDcPKlSuLrmPlypVF2/u+j7Vr12LEiBEd5rnsssswatQofPGLXyxtQwiC2CxefPbSDtMOHzcTUIn6ZQEO3tIKVFV0aMt8DjtUub7Ef0HKRRiXoZfNWZF/DGIArwou2IyZ/G1F6itwW4TyAkC+2ogASiPhDtdJ9MWy5f8xDuaKdSw5rfDFBLH5TPvstUCFUHK4w2C1yUq761rBmlXV2DZTsVWFjWYyBcvRYlckP1yBoCZheUcIz51w+NgZsKWYxuMu2Hohzk11vwookYGHeNZ7qHC+bb6Hpz+9Tf9d9aGYz2rJ6bx5us+RfvEg0H3noa+r2FqyjQMgjIkXVaFriWI1EEVptFhm26aCtbo2glCELKt1SFHP8n1RqAMwwhsPTXh8EOjwevg+mLwWE8vFslp2qAJQAwCIL2fgjskDaI0W6TFUWC1sR+cDDFIumAxhxpAqhHEx3U/ZWuDLyrx7QRJaQAudqCjPdAVeJeDna8NIjj6mDxELIjn4VMR1zCzXyQBBpEaJyrsXpEzhjXd/aopxRD+P/c2Nou9VASBfAjgpsRLL4rBqxP6rTbdh4dQfg+gZygvdJfobEvqILqHB+pZPuaJjsfYDTbgkeofOXJvLLt8PALDohzM6zEP0AGVU3a2srMSnn35aMLmYm69gtnZFPDjnHaZtqn2x6QBw0003Ye7cuXjppZeQSCQ6fE8QRB+RzZkKu0qQ8HydSy1Ix2G3igz23LVgK9FB6RBxI8wE6QQslVwruooGV+d3U7m5/JRJyO+lAa9SuvTSgf6CBTL3W0tkHRWBFvcYSODrTazGVrievD8HAdhGpeTkEW6U+eh8c7yLCXqboiAnXDYHls/r6Spv3LSK00R/amuADRvF940bEagKs6KDAABmMRxqTxef5flsV1fhsNpviPkyGVgN9XqbeJspbgEUESALxEn5v6oyvbEZMVk9l8ccU2AjHoel3H2c62tJzceDwBS+CblZp++DpYTirStY+75x3uVyWhTkvg+mcv/J5aeXWNgwXibFs6rhbpBOwYwHrioY6+vW0lWNw5ilc3Zxi6FtuFDvghgzeRkjVa1VEQsWGIeunQXijeJzVu7e1DILtrxd+AnAr1DrBrgqniMLo9h56MrauSrA3Wjmq1otC/ys5fAqunaNLTldvMwYe78R8fyc6PC4UWvw4hd+UnQ+YvMoqxgHKX39Dgl9RFFI4CMIolRI4Otdyi2yUVVVVVK7hoYG2Lbdwb23evXqDq49xfDhw4u2dxwH9fX1BdNvueUWXH/99Xjuueewxx57lLEFBEH0OMmkKbxhRwbRKvTQseDVSBeVa4FXq9BdIVqEMVs7h6xsoAUB5oVaXPCTJmxPh/o55rNYthz9MQ4mk+fbaSmMpBkCXyzLiQUI8mJhJPL1Mk3NYJ4U8rI5LYpxz0coBblyRL2iRIU0PwSPhP8pYQ1yXe2dgkUXF3T8HESLYwAIV6wCAFiuo6cXhNh2tk1KnFNVppubYUkxktVUg8tK1Ly2Ekwtty0DFitMXcEzEadgRPQL83mTJF+9iLMsQAmEkQq+PAhMYRMl/jGGqsViHzXulESyQlbwzXMkVgsHptUm9iVbsQ6soQYAkGuII6xSpayBXI3ohZPhSK4R29Hwtpjfr4xhw06ib74p7Atud6xY67YYxx7zjdAH2zh0HXlILd+4A4MYB6qZ/mz5oj+VnwawvBJVoiDygGSJeUjk6z04LyPMhPL09Tsk9BFEH0PuN2KwQy8C+pByCm2U+UwVi8UwYcIEzJ8/H8cdd5yePn/+fBxzzDFF55k8eTKeeOKJgmnPPvssJk6cWJCf7+abb8YPf/hDPPPMM5g4cWJ5HSMIouexLRO6GxE7WCArVeYDsKz83rHQMkaM1l3p5HNaPT1fGLPAZGxukHThJ+VnlxlRQN6PWBiputsE+LJCZtYGUCHW57hSnHEBT0UvehbQSsOU3kQ56ACAKZEpkzGiWJGw2x5ncwXEyDK4X3xZWqwECkJ/N7lY6WLkALBRhgE7DpgU53hVCpCVrJnvG6efdOmxHCuauw+I7Nu8KjvLCsOJo/MpF2JObIe9oQW5nYeIdYRAEBfrtXMB1u0pXvRVLRVt3VTMhO7GLOSqpOvQYrDyYh35NENqpVi3ysvors2gKiaWu3Gc+W1v3YYjVKGyTXK5cZN3z0sBYUw5Pk0ov6+Mj67RiRJrGNq2VS8aOFpGi/W1Dbe1C3hTLDmjY5oCovcIwcBIwBs00C9oLzM/fHjACTul5BKk3Gs9z0A7DwiCGPhwMPAuwmgL2pbYLsrMmTNx6qmnYuLEiZg8eTJ+8YtfYOnSpTjnnHMAAN///vexbNky3HfffQCAc845B7fffjtmzpyJs88+GwsXLsScOXMwd+5cvcybbroJV111FR588EGMHTtWOwDT6TTS6XTZfSQIYvN5+t836bBG5ehjbkznArNsc/9g2RBhTFyrOVUIIOQIEmI+r8JCarlom6tzYWekU8k1ObdYxOGj7EuxJsCVKd9C28JH3+44SB/7i5tFf9psLRaOvesWLDmXkuj3FOp5VOeUYxa4Fwlp7QnxbVP0xTq6Wi+zygs9bi/MAWDrPFFMBBA594oI6WodzGIFLsT2y2WcmXVE3I7MYh3zGXoe4quERS6IpSLFdwK4GdG2aYywzfFxcVSskqG/XohYs1g2dzhyleJzvgpYs7donxkmlhXbkEBchtWydv22pFjvNciceIERArllcmuCi/UAJnQ318B1WHHVx0yH7fO0D1+2tbJWQa5OYuBAOfoGFyT0EQRBEMRAphejJKZPn45169bhuuuuw4oVK7DbbrvhqaeewpgxYwAAK1aswNKlS3X7cePG4amnnsKMGTNwxx13YOTIkbjttttw/PHH6zZ33nkn8vk8TjjhhIJ1dVYUhCAIgiAIghjYlBe6S/Q3JPT1AZ0lsO/NdSnar5Mcen0POfkIgug2ZVbd7Q7nnXcezjvvvKLf3XvvvR2mTZkyBX//+987Xd6SJUu61xGCIHqVP2/4JQDg8FHfNRN9GbJXnQKTecGsjAcnI/wYrcNloYOcjVC6/vwEM3nDQsDJylxmjqtD9D4qkrs1+jz0difPozue8zcAwOIbJyNISIdPruvE/ETpRI+BcZDx/nPYDQSYpQuC8LD4vlD7yl+/AXaVKITBHAfwVMhz1uxPVdU65DoEl1mseNiw/mzr71nUwWcxsR5EC3cEsBtFwZRkzEauTrjx/LQDt0Usr3WYaJuvBrK1jvy+fTEc6SZ0OJijcgLKMOBxGbTl5fr+WwG3RXyMNTJkRwmHoN0i11EfgOXl/cBnRV86erJ2SOhwWLJt8xgOXi9i9WMJH54spoFMDJZHYtJApKxiHES/Q0LfFkJnAl6pwt5ADDHeEqB9Sgwm6EXAAIWeqQiC6A0Y02G8zqqNaN1F5P1yMi7i68QAPFMncpDlqiwk10lBL2YjVyfC9ZzWAF6lGE4EceCjKzsvzlTKb4xqM/YXNwOe6JvbRDfBzaXL59GtUeRrJ7bpsFrWtajMLIawRaheVjoNLoteFOTXi+Y4lMsryLnXyTqUwMdcRwvpcB2w9u19X4fcO+ssWFlZNKMyjnyNuC5Ta8T6nAzT4fRBCnBaVJVtIfABAPIWnJQMw5XVtHeoXwtLJsp7DyPA/ylydrIAYFJ4j20Qy8oOjfTNEmKeaMx1aG6YkEJiPNQCvp30EUuYisqJlCwgUpHDomOvKbqPiP6FHH2DCxL6+pDBKKZF+0siAEFs2VBuzgEKFTgjCKIHeXrZzwAAh4+dAV6ZAgBwx4GVF4Px5m1iqPlQJNNT4l7TGAdum3IkcbQ1CFGiuiVApk5W3U31XB9ZztIigeUBu10yG4AQEwHgXz+gau9EL7AJ0TMq3oWtbQVOQFW8o9PlRRx9PJTuPYuZ79RnxwGLx/RnVRlbF+XwfTDpGoQXA8vLqrs5B7FGOVurFOOaLORqZEGdNmaqYdsOvAa5PIvDdcXnUTUiMV/C9pGXBXdc10euSqyvcgmDJatht46RgmY8BMuofI8cupKGw3UxDi4r4loJH0x+tt1QP7YEgYVci9jmoSMase+fLwcA/O2w6zvuU6LfoBx9gwsS+vqYvgzjJfoPOr4EQfQILJLYehOU2o4gCAIAnl4yG9M+e634ww8RXysS/K/eJwYnK5x8sSYZ3hcCTbIqphUAnqyr42Rd5GrFwE+FBfYELGC6Wi8Y9KiR7nPlQ8+kvQMPgk4r/WqKufeKTbOYCdm1mBD4FO2qH7N43Dj+LAtczieqYYsLxUuLaV6FJULtIa4dSxoQ4xuAUFXjrfeRjBeKlB+uHwLbEtvW1pREPCOv8TTQOl6Wxg5lHwKGMKnuE0YE4jYHs2U6gJj43nED2HJaMu6hNSvEPa8xDnet2ObVmTp6cTlACcoJ3SXnX79DQh8BgB4CehLalwODYqJ61KlGx4kYDHCUkaOvV3tCEMSWCHeE6BBUuAgSYuBf+1GANXuJz/EN4vvkOo5snaqcGeqBeOhaWnwLR+Q2uz97f1s49xLVDFyOUoIYEGsWn3vSNbilQ885vcSmQp2LCHnzg3ldRklNqzgNXDr3WMhNBV/bFhV9AePsA4DKCjmNw9oo8vU5jgWrVVyD+epa0dVIV0IXkGY6uK1A2Cgu4ra0hdZMvKA/TRuT+hq31rtwZLXs1u18cBlSbykXX6UPy5Vh/b6lBUA7FqCmRszo+aJtNudqUdEPLC0mJpY7yFdL119NHpazFYaTDwIodHdwMWCEPgoR7R/oIYDY0qH7SXHIXTxIYKDQXYLoY6YcfbP+vOCJi/uxJ70P10U1OKxA5fUKsfch/wEAvLl0WwCA9VoKFcvFPJkxgQ6/4xtjyG8jbEJ1ta2b1ZcJZ89GmDR/M6l1WAxoGS0/F4mOJIgBRbFwXXT9PMocB5DFNphtG1HPtnUeTdOYIUyo0F4LQUrmy1zfqguBVPx7PQAgXp9G03biogpdUygjiAFhpOZHPivWndmQ0N22Zd4+u40hXy3aWWlPi3C8QoYHxz1Y8n6QzbrggXkY8WVxj9ZWISRanybg7yzuF82fVCNMCYHwk6tnYOzPb5HLC1CZyna6r4j+g0J3BxcDRugjCIIgCKIjJb88JaGPIAiCIAiC6AU4Byl4g4gBKfRtDQnho4U5ejOcsKvlbcn7lyAIYouAHH0E0S/k08KJcuAxN+Mvf9xyXX3zX7sSAPDFKdfjhfmX6ekHPX8RAGC7YWsBAKvs0ahaKpw4G3Z3ELpitJdcBeRGiJuPY3UdbjflyJvgtAqbXq4uhnyl2Md/+81M3YZHXEaxJvmBQTuKwgE5ciGIzYPFYkCFtLNmc+AydJfF4yZfnzr3gwBMfd/igeWku48xcEsWCqmUobicI18prk8/DtgyR59XCYSyiZWxwNOiTcViVa0DaN1OfGz4gMOrEN+vr3dhVYvw4IoK4bqrTOTgBbJwhxOgLaP6A+30c2SOvuT/GBrrRILP5FoLgHErWjmxjvzqJGLbb547mOgdKHR3cDGgfy63dMGv2HZ1N5yuJ/dVZ9WBi00r1nZLPV7ElsXWErq6qeuRrtdBAAl9BNHntI4QA9Dqj0McPPVGAMCLz17an13qVZ5bcHnB3y8dIsLo9vrTVQBErq8gIfaJ3WpB63EMSNaIAf/2NWtxzlunAgDunnB/h3Xkq2wwqQWykHcorMFtI/R5lcCi60Vl3d0uno3EWjldFgEZe+ctSC8Rjas+CfHavAsBANvd9hO9vI+/d2GJW09s1TBr03n3ukuJy316zd04fCd5fwlCEcoLAPEYIMU7HhPnOwu4LsYRppMIqmRYbMYH84Sg1vgZcaHYHoev0u9ZwIZ9RDhurDIPb40I03WbbHitQuBT12TdogCZ8WJZqw4NtYvLSfjwZZgvSwnBjzGOVik21qdbdd69xqYUWmTIbnWlKPTz1m1XdboP6Hod+JDQN7gYMEJfV4PuQ62v0GC0RMrdV521LVUE2dJFEmJwMtDuF8X60xfXzkDbD0T5UDEOguh7FjxxMXa/SBSFsHMcTOa9Oujwm/DS05f0Z9f6HNcSg/0NO/uwPDFsqPwEaNxF7JNcDUN2jaiQEdsmQL0rnDin/+0sAMBv9p2jlxXEWMH9LF9VeHP7+90zivbhvZtnYJ9zxPFQQmF8rQ1L5vDLpxnG3vdjAED9js1Yt7S2W9u6xaHyw/WWiLWFwCwGHvbOvirrOUyKd7wqDZ4Q15rVktM5+rgU/1guCxbIPHlpG1ZGXAhWztPL8JPSgbcrQ9VisXgnw/HPr3e8f2136yxYbWIdbWOFEOjtlkcyJpbr+zbGNIicf/9dMUS/VByabhHLtUKsXF8FAFi6oQGJKiMABnkhTr51+I9K3w/EgKWcHH1E/zNghD5FZ24yonT6e/91tn4SHYjepjvnWPt5+vv66Ws6c+oSAwQK3SWIfuGftwjRadpnr4VfqRLf92OH+ol0XFbSHbUBLUuHAAAqP+GofV/ccJq2AxJDRGXNV5eMw0m7CEGgMS/CEMfeeyNilSJesCKdRvV/hZCwcYckNu5Uuqgy7ImPAQBLvi7iCZ1WgAkNEtxicFYK59DGhK9Fi/FXzsbQt8T6grjs7xgH7/60uKC4pcEsKRyFveNYY44L7hevjsIct6APYT7f4+vvFlL8ZBYDDwI9zUqK/oZtbT22qnKfpZ7+8Mcdpn3xwB+By31oZ6WynbUQVIvrizs2EMrXfHkGbou2ifXSVfcZpudv3rb4Q0JYEQCuaG/LENsgbwNS6Esl8/ClEGo7oS7EYzHxfz6wEVOiYNZBKKvuWhYHd0p/BTn2HlEEyarwdKjvRyd07gAk+p6ycvTR2+d+Zyt8ZBkcDETBc2sJdSR6l4F4bvcGJJYRPQU9UxFE/xG+9R6cuAhxyx2+Zz/3pu958QsiFPaA5y5Bo0whtnYvoPrf4nNqOZBYJMIEQxtYOrYOALAhJxtHwnNbRwLD/iKElLahKWATOf2irDxGCHy2LMb53s0zMPGsWWK9MYb6f4o7YMu6CkhTITLDgKbRQsBJr5AiyVb0QoTFZUinZWlRi3u+/l4LXWWKgMyWIaQxV8+rlwUI4axCuDx19VjPHxDOQismRHvue2ZcY0+HXV0vpudyhdvSz/ipyFBduvWsjKdz8QVJG4ErPsf9UIf3rtlbTGt4l+Nv93YtbO89fgn+8b9RYn2t0jVoAa1rKwAArRZHc6NwyY7YYyVacuK8yvmyLePI52U/Wx3k8irEmIFVlF4m264SYnAqmdfVeomBRTmhu/RM2v+Q0EcQBEEQAxly9BEEQRAEQRD9SHk5+uihtL8ZkHL5/PDhDv+2RrbmbSeIwUqp1y1d20RJMJEcu9R/BEH0LPPDh/FM5n48k7kfrzzy/+zdeXwU9f348dfM7J2TJJAQlENEBbGeXym0iK0FBQ+8Kh6l1Xrxo9YCWrwLXljUIrV41NaK1oq2tbZaLQWrUi2oqIiKgheHAuHIfe01M78/PrOTLAlhN+TO+8ljH2xmPzszOzO7O/Pe9+fzvrazV6fTvPG9u4lnWcSzLIIHVVF+VJzyo+LU90v+DFq97UBWbzuQnZVZ7KzMwhuMYegWhm7hHVnJZzdl8NlNGcS+WY2eE0XPSbFLpzOMgWY1jNOnx9Utkg2xTI1YpoYnAuECdQPwRGw8kYbckt40vJRe1A+9qB9aUT/0A4rRDyjGGHwgxpCB6nbEoeo28lA8w4a6N90fQPcH0Dxe94amuzc9FFK33Bz0rCx18wfw9C1Qt0EHohXkoRXkqb5+tr1/2XyJZaf7tMT6Gwa6z6ey+QwdDN3NSgTUulnqZhTkt7y8xtNbsU7p8pVF0GM2eswmnukhnunBzPBje3V10zVsj7ptH5vFxjNCbDwjhBm0MYM2by+etc9lPPetB/CuD+JdH8RT4cFT4YG4BroNuo1ea5C/FvLXQsWy/lR/0ofqT/qwuSSfzSX5ZHqjeL0mXq8JQZMDBu3mgEG7IWhiW3rD+If7kJ9TS35OLQWZNVi2htWb3qzdRGK/pHJrjQcffJAhQ4YQCAQ49thjef3111tsv2LFCo499lgCgQAHHXQQDz/8cJM2zz77LCNGjMDv9zNixAiee+65tJdr2zZz586luLiYYDDIiSeeyLp165rMZ9WqVXz3u98lIyOD3NxcTjzxROrr69PcCm1HMvq6gc7s6thSZWAhWqO9juWucFx29jqks/ze0H26x5BzXSFEF7DxKlUV81vLr2PEyB0AvPv2MKonV7ttjP/lAJDx3V0AFGTUUhSsAmDtrgFuRc5IzJPWZ9uaB5p2P3z78X0HMXqzeKHaF3rUxPaoYEs85MX0O4EXZzw3LBtPvequWlfowxipoqRGvYW3VnX1tXUNb3nyBattWdh9VZdO22tQW6S6a2umTWCb6j9tfdm6Me8augf73DHorEi4UYNmxh3UdHdMQM3nU89NPOR3uuwWqdemlezm5MBF6r7H61a2JTMDI6KCz2ZFRdK6JJZhJ3r27iV42ZbngjuPz8Jbp16/v0ItL5bjU5V3AW9lBHJUV9pgqY0eV69/7a/Te2/oiXh74j3psTH8at9bMZ3aYrV9MrbZRPo4BT8iart8tqsv2SG1b0KBKCWl6rjb9MPUq5Sf+t+rCcdyARUXjkUkRNElpTNGX5qeeeYZZsyYwYMPPsi3vvUtfvvb3zJx4kQ+/vhjBg4c2KT9xo0bmTRpEpdffjlPPvkk//vf/5g+fTp9+/blnHPOAVTgbcqUKdx+++2cddZZPPfcc5x33nm88cYbjBo1KuXl3n333SxYsIDFixdzyCGHcMcddzB+/Hg2bNhAVlaWu6xTTjmFG264gd/85jf4fD7Wrl2Lrnfer/DyLuom2qNqpxTNEN2VHKOit0ir6q4EBIUQHeB/4+c3/DEGfvqeCpi8s/tAduep6ps1u9T/2YEwn1WqIh4e3SInoIJFu2syKchKrtD7SVmhO1uvYSYvR6QtEdwjEkeLOsUS+gaI5KgAjRFVV+y+KhM9qoJI/gqT+r7q8jCSo2PrHqct2INUQCmRUempt/HUqqhXPKRj+Rq+hCyfuvjNrB2sJsRiWLtK1WN1dQ1FMRoF0dzgXjCgsgEBKyPgVr327K7ADjcE+6zKquR5eDxoXqcISCgI2ZkN28KnXkf1MBWECuQG8Lyjjj/NtDAH9nPbGnpiLDy1LC0j6C7DLK9MCvC19/loPAgeJ74azXKq7xoavkq1P82gF8sJ2Hrq7VZn9meP2wnA7ko1Lp9d48OqVdtSr9Mx1a6n4lCNaF+1bCOg/g/vCjHgkAoADs3ZyfKaw9JefqY3Sm2dWkh1LIieRhEP0XFs0um6m54FCxZw6aWXctlllwGwcOFC/v3vf/PQQw9x1113NWn/8MMPM3DgQBYuXAjA8OHDeeedd7j33nvdQN/ChQsZP348N9xwAwA33HADK1asYOHChSxZsiSl5dq2zcKFC7nppps4++yzAXj88ccpLCzkqaee4sorrwRg5syZXH311Vx//fXuOg4bNqwdtlTqJNDXjUlxDNHbdNUAX1ddr9Yar3+/x72mbkuq7gohurjfHPMnAL757xuIFaiL/4xP1EW7dYBGdVjdj8Y8DMouB8BnmByYUQGATkP1zvxQrfu42D/eXTXqjm1jhZzsNg08YbW9Mzepx22PjhZzqq0W+NDj6nFb09xres2CcK5T/dXJ/vLUWe73Tjyo4xRhxfI0xAKqvuEEeestfJWq4IVRWYdWq6o52xl+tKhTKMSvLkujfTOJZanAmq1raE5Gn35gFr5S9TyjJozhFBtxs/GCAeyA13mejpnhvGYb4llqurdGLctTHXELhlhVNdhOoYtoHx+egFoPX1WuenpdPVaNOi4bF+roiPMkIwY1B6h1SxSZ0XZAcId6n2lxGztbra/p01j9h9ZluQ7N3Q1AXVRtp8pqH6G+aoGRqmyMRLCxj41mOtWcy9T2zzuonIDhVOg1Yhw1YGvay9c1C9PJEDR2+7C8ap8PfvBeADZN773DJnQlaVXdTUM0GuXdd99NCpIBTJgwgZUrVzb7nFWrVjFhwoSkaSeffDKPPvoosVgMr9fLqlWrmDlzZpM2ieBgKsvduHEjJSUlScvy+/2MGzeOlStXcuWVV7Jz507eeustLrroIsaMGcMXX3zBYYcdxp133sm3v/3tVm2TtiCBvh5gb180EgAUPV17BKQ6MoDe1pm6ieemM0bg3paXzrxEO5NAnxCiG3jz5KZZFwBHPD8HAI9h8XWNyqiqCfup+L3qFlXfV3141fxfPV5dBVKCvtSrdYq9sBORNxstrrLQAjvq3W6f+tcqiwsnCw4g6DWoHqICYJ56m4xtKqstku/D9DpZbU7mXriPgdev7pt+3ACAt06NKQcQzXaCcJqGGVD3jWwvvkoVLYwU+DG9Tndb5/l63MbyJLLULLdbcTjPC31U8M7I8KD3UeuZqEyrmQ3Ps3watpOZ5y+P4StzsvOczEbbo2MVqyw+rT6Mse5LNd/jDsEIO22qVSDUrKlpeTsDJwcu4t/hP+2zXbrWLpzJwfeo6tJGRL2eWKaGbTjZfbpN3OmKnQjQtsafRv2uybQj/3kLAHV9Y9Q5GZF2ToxQttqWsZia9r0BG9CdnfdVfR+KAirT8qRXZ/Gf7yxIaflLvvkII0rmAlBf6W3ITHQCft9+eTZvfO/u9F+YaFNpFeOwVSCtqqoqabLf78efCNI7du/ejWmaFBYWJk0vLCykpKSk2dmXlJQ02z4ej7N792769++/1zaJeaay3MT/zbXZvHkzAF9+qT4/5s6dy7333stRRx3FE088wUknncRHH33UaZl9EujrwTpibL/m5i+BAbG/Gh9DjY+xjgxeS8asItl9nU+65AohurMPz7gVgO+8cg07q1WXTtPUqTwokUXlBCh2BKhyxgULx7xNZ9SC70xQ3XyNiOkGuF7+7037ve7dWtzJPjMttIiTCVfeKBiUCPDZNsRUYNXYXkZ2IhhmGOjOfa9Xd7uIJgJKmtkwtl88o+GS0r87jOlXQcFYZgAAT9jC6wT3zKAHy3ncqLewdXU/nJsIXqlMNrUODV+AviqTWKYTbPTrbjDI8jYEBU2fmhjN0giUW25bb6maoRZ2Zuz1YGWpYIMeDLgZe/6Pv3K3ixVV65t0TmpMce9P8F3ojgnYnj7/ucrSO2TefWq9vJCZ5XHua8SD7bMOlaWq67PmsfAUqZS+wj5V9PGr+wdn7XLbHuArAyDHU8entYW0hqE7x1VBBDuu9qPH+Tyoi/oY/MdfArBp6vXNz0C0v7Sq7sKSJUuYNGlS0rQ5c+Ywd+7cZttrWvK8bdtuMm1f7fecnso897eNZanPmiuvvJJLLrkEgKOPPpr//Oc//OEPf2i263FHkECfEEII0VVJ110hhBBCCNHJ0um6awMXXHABixYtSpq+ZzYfQEFBAYZhNMne27lzZ5NMuoSioqJm23s8HvLz81tsk5hnKsstKioCVGZf//79m22TmD5ixIik+QwfPpwtW7Y0u/4dQQJ9PVxbdg1M9XktZQDtOQ/JFBJ7SicTVY6f1uvtmYrdigT6hBA9wKvf/VXS3yfmqHG3Nn2mLqR8pQaRGnURGNnHxeTQp+dh71RtfWU62f1VFlZoB3irVdbWhG/exrI3f7HXeZxyxE1UH6qqxv7vrz1vDLCK49RFaHBnzO0266uMYVQ6lXCdmhJaNNbQzVfT1A0wyqrd+75oHI+zb3C6AeuVteBRGXZevwfb7xTCiJlYPlWBN/MrlRVnhOMY1arLZzwjm2iO110fcIpwOKuQtSmKt0plIOq7Kqg5qlg9boGv2qkE69GxnW66Eaf7cDTLwHbqcpgBDSOi1tNXEcF2uh2Hi1VGqX9XHbFs9Xrsgwfg+VyNK2fX1WNHKgDcrrjjjSnoAacQSeMKvIDtjB+4LPoU7c30O9WHPRr1Bc4YhhpuF2W7ra/qI06GpaVhOtl2I3J38O6uA5KaDc8uYVNEjcW4K5KJX4+nvagT/vNz+qg6INRUB9AqnEIgxeq9XFERAktOcjpdmmP0+Xw+srOzU2p37LHHsnz5cs466yx3+vLly5k8eXKzzxk9ejQvvPBC0rRly5Zx3HHH4XWyckePHs3y5cuTxulbtmwZY8aMSXm5Q4YMoaioiOXLl3P00UcDqkvyihUrmD9fZZIPHjyY4uJiNmzYkLQ+n376KRMnTtzn628vEugT7aI3BxE6ost0T9bStutqgb2OWJ90uhDvz/rIcdt1SdVdIURP1DeouktuylCBgajRcBWpe629PQ2AUChCrYotEMXP7pxEt1IvWZuccdzCNidMvse5r+bnqYmhO8UfNPZvXLOubtWSawA4+O77sAeq7pb+D0Jkb1FBuOBOFUTxVkUwqpxLQtPCThS38Hog4nR1jdShVzvVIIxEn1nbva/V1DcU1Qh43W3s3VmtpnkNYnlqTD2jPo5mqkCVpypCzOmGmrtBzV//7Cu0YNB9Hd5qNS//1xXgdKfF53ODk/581cXU8uqYTiGN+r4eAjvVa9bCUeJ5TjVZpytwPDtArRMc9lfqZFSoKr9aWQWaTx0/E4umq3UsyHMDnnY05nbz7YjgXmPeGiegmWNT54xr6a9oCJC+99DMvTyzlZxzCtvUMOvUdn3kuMfdsft21antnu3LpS6uttnXVTmJTcXbp8xLeVG7qzPwGOo9uvGiGxj8xC+THg9mRN1xAEXnSWuMvjTNmjWLqVOnctxxxzF69GgeeeQRtmzZwrRp0wBVMXfr1q088cQTAEybNo1FixYxa9YsLr/8clatWsWjjz7qVtMF+NnPfsYJJ5zA/PnzmTx5Mv/4xz94+eWXeeONN1JerqZpzJgxg3nz5jFs2DCGDRvGvHnzCIVCXHjhhW6bn//858yZM4cjjzySo446iscff5z169fz17/+tV22Vyok0NcLpToIf0foqeN/yfhuvUNXKliRzjqke1x2pdfZ60jXXSFED/WXMQ8BMLpGjbm1szzLfcw2NU5eMQOAbZU5xOIqMJQVVFlhB+dXsjOoAg0VoSDRqDNmmaVRe5AKGMS3ZFDuBJRyPlOPByo8+KqcwFGJhb9MBY6OuOY+PvxVGwdKuojPZ89k9DJnXLMTq9hekgtA6FOVpWbU+8j9QgXWQlvr0MxEFVwvmukEXONxdxw/4s6XTUbIrXKrhYFERVrNhxZOzurSInE3IOX9qgw76FRlzvKTscap0uqMc0UgAEE1th8eA/9GVRGW+no3uGdX16D1Ua/DKFGVnLW8LDcgl/1ZxJ1fvE+ISB+1nhUHq+Mg7xPcMf5qCz3UO139Mrfl4N/pVNj1NmTv6XXqONFqwuhm51SEHvZdNeD/h58fiFXqjK+og+lczR854z7WLmzDY9intp+mgWY0BN4PyVP7o8YJ7n1RUUDMcrL/bI33Jt6R8iIO/dttAJhxD/XRhu1dVFgJQIYv0uQ541+byfIT70vnlYi20k5VdwGmTJlCaWkpt912G9u3b2fkyJG89NJLDBo0CIDt27cndYMdMmQIL730EjNnzuSBBx6guLiY+++/n3POOcdtM2bMGJ5++mluvvlmbrnlFoYOHcozzzzDqFGjUl4uwOzZs6mvr2f69OmUl5czatQoli1bRlZWw3fWjBkzCIfDzJw5k7KyMo488kiWL1/O0KFD22eDpUACfaLT9eQggmRJdX+p7MP2PIabm3dbHlM98X3Xk9ikVeBMCCG6najZcIGvaYmMPhtfowq8uq4CDX6vCiANzdxNRUQFg+qq/WhO10KPz8QynQHS+8TQ/WoeVZYKZMVLdDKdZXnq/Oj1an45m0xO+o4aMP0/r97QLq+zM62aoDKkzlk5nSMPV4G1jweoLtO7qjIp6au61/VfGXIz4dAs7Ay1jfVYDDzOZWMiu83vc7vrWpkBjEongy4aR2vcFRggFsP7VZm7PlqlyvQzKqoa2iQE/G4AEYBslQlIhh+t3gm4RaJYmWqf6nWJbr6V6NVOd9yAFzNLrXvVkCCVQ52KtcPUOtYXBhi4zCkOEjDcyr91/TzYusr+c7NAa6MNXZv9XrR+Bc1s4fb3wtjfADD4w3sxnThofYEqzgGqa/PQe1WV2y+unbXfy2sc3LOd99Tg393DpssfSmo36NG70ZzH9bBOa/j9cdadd7P7dyLAl+lV+6gq6idmOd2VpftCp0m36m66pk+fzvTp05t9bPHixU2mjRs3jvfee6/FeZ577rmce+65rV4uqIy9uXPn7rWISML111/P9dd3nWIxEujrxdorcNBakt0nuqqutg/b4n3SE99rPZIGpHre3LrzayGE6FTvTrzTvZ+orBnKCuMzVJDuwOwKamIqe8ijOePDYZEXUEGbcL9KBmerIJKu2XywQ43pVg8YHtU+UqQCBnX4SHxYWt4AmV+pDEFfVZxojrosGjNFjSW48plr2v7FdrJnxzzIvZ+cDMDBoZ0ArMkcyIceNZj8znAfCj5UgTVfVZxIrooiBXf68ZZUJc3LyvJj+VTwpeSbITxOV05/lU1gtwqgBnY43XHjptvN1/YaoKkgnRaOQb3aB2SoaWZO0B0/r3GmumbZGLVqvkZlPXq1M9ZgYty8gB/b33Bpa3vU8ioO1TjyxE8B+PxPh6imZZY7tp1/dxgzqJ5nxDxud2493ijQ5XPma9jYIV9zm7bDbJp+LYMevdv926hVr9/y2JDZdtmGiYCaptluV3o90HT8vc2Xzm71MrKdDN3VE5O7+SaCepsq1BiaxdlV6KbaL7XRpsUcRAdJq+uuBGQ7mwT6hBBCiC5MxugTQgghhBCdqh277oq2J4E+AXSdLqaN10EyjkRjXeF46Ij3yd6W0Rbdg7vCe1ykKZ0x+oQQopvbNFV1e5r5/vkYjQbf3x5WXUtzvCqLr7+vkphTYjVqGpyS/xEA89dNoL4mUSHVxow5FV2dYhPBEjCdro7RTM3N6ooHDer6qjaRXPX4EdfeR+7nKoPp9b//vM1fa2cZG1LZbStqDwPguOzN6M7Ve9l3K1jXfyAAgRI/9Qeocfk8FQFyPlUZd9461TbcR3PH3YseX0NeH5Xxt7Myix27VFZgxsZcAPzlkLFDbctwnkHIuW+ELfSYykKLhxouSxNVgk2fjrdeZZNZhupmC+D16hi1zviA9WodbZ8HjEQFWt398ctbBR/tUN2Us2rUCgfK4uhRZ75e3b1vGCamTy1bd44NzbQbVSiOs/Tj1ItMtJdEFt2QJ+/C8qrXFMquJzvYdEy71kq8F7/98mxMZwy+uKlz0quqW/B/vrNgv+Y/6NG78WRmNPvY2L5fALjvcYAaU72vy6Oh/Vqu2A8S6OtWJNAnXC0FEDojQCBBP9FbpPP+am0X9z2X0VzgsKt1URZCCNE73XfU081Ov+XDswDIMurp71MD9nuzTcriqtto5MtsrFwVROrXv4LyahUUiGeqabFsH7pTUyKWCaUj1WBn8SAkYgpOPAF/GegxdVX73fG/JOpUh33jb9e21cvsFI/t/jYAcecFDwyUcUbBGgAy9AglRbkAvFp+GEMzdrnPW/4NFRj8eosqXJGRX0fQrzZmpq0xsf86ADbn5lM9QG3XwaNLASiPh1j6+jEA9DtsF7v+20/NY5tNaLdT/CMxnF+mTiyk/jD9GnVOFeCqg22skGrb740Awd1qf/hLVfdPPRyHiNO1VPO5Y/8VvR3GWpMYa9AZzy9qoYfVumsxk2iBCjiZPl0F9gA94nSDjVtoTmGPxgU6ugJjW8CtqDw0v5QDM8r3a36H/PV2AHIz6xmSo7rDj8it54NS1R3e5zHd6rffX/n/gIaiOqn6xgu/AKD4wKjbPfj//nVjUvfdO7/xNwCWbxwOQNj2UmGq9/KHdQem/8JE22jHqrui7UmgT3QLPaFgR1sGUbra+Irtqavt8662Pi1p7bHRnV5jbyDDoQghhJLnUWO+VZtBvJoKxBwe2spfS44FQItp+LLUeHyRuMet85CYFh4CernKBAvs1Ig5RRN9FWA7MaJEwE+zIZKr/ogHPcSDambD7rqPz27ovhV6Hz72j0BDoCbi8xB2Kjrk6nUcEfgagKyCetbVHwDAsaGNHD10MwBvFx4EwGs7hvG/8fPd+d70wdkADAqW8nG1Cgz186ksv/6+CrYemwvAjtosjjz9EwBWrTmEgnfUNq4doLbv3Rc/RkBTQbifvHch0VIVpDv68E0UBtT8lnqOIGetWueMDCdr04bQVhX0MmojGPVOAY5sPzGnTeYG9XwtboKTsWf7PG5WoenX3bHgEo/j0d2A1L/fmZvCFu44n89un+PQa5h4nGI4//niEHSn2M0hhTvdQN+u+uaz8Zqz6Ws1BuSEt6YT9KvnH9ZnB3VxFVXfUNa32eeNH/JJ616AaBe2ZPR1KxLoE6KDpRKkay4oKMEXIXopCfQJIUSSmG24wan3qw/kgw2qu6mWa2KYTgZYeYisXBX46ZOhCjfUBP2URXNUW8uD16kv4a2BuNMj0HS6afqqbLK/VM+zNY2ykRnO89r3tXWUxplYiUzJFZHDuLBgFQC74tnMHfkPAE7979V88Z8hAKy/tfng0j+3HA7Adw/4DMv5QtoaUcUUBvpL+WbelwD89otx7nO+dcwGTviu6kpsOkVS1tQNZmL2BwBcffir7Iip/TXIv5tB3t0ATDjhI9YcNxiAV0pUgY2y/xbhCavAkT9uYXucIhVejcwvVPYnToEOK+QjnqmKamimhe0UCjEiDTvXcrrwYhluRl+PlwiMG3G38I3HaxILq5DB11U5HNVvGwCbyvNSnu0PN/wAgPysWgZmVQBQ6K9mu+0UaJHgUfcggb52Yds2n3/+ObFYjEMOOQSPp21CdBLoEy3qatliPSGzr7F9vY5UXmdzbbrafmutnrKf29q+3gc9Zf8L0hujTwJ9Qoge6pLVlwDwf9kq0ytEBL+uAn2fVxa4Y8URjGMnxlPTbeJO0K8mogJAHt2CgMpU0mMe96I10gcMp/irt0b976tuCO4YtREyt6rAUH0/L0P+dBcAGy+6oW1faCe5/Yjnmkz7bqP7L55wP5zQ8jzWnnZ7k2mJAKJXMyn2VgBqvMQScgGorAu44wMmgoM6NiHjUAA21xcQsdTlasw2yDFU4PVbge18N6iCflnOjnvw4Dzi61VbT6YXrIbMPG2n6oZK4gI6NxM7N1G9VSceVEHB4FeVxPuoiK/ldNO1fDr/ee3mll98D1GcqwKiIU8Mv65SXIP+GJbzPqooyWZzUAXPM/wqS3b8azNZfuJ9zc7vkGfVMeH3qm1alF3FsTkqM9Svx/isRnXhDnqbVvMVXVA6XXclIJiSTZs2MXnyZD76SI0ze+CBB/K3v/2NY445Zr/nLYE+0ayuHiho7ThlQvRU7fme3XPe8t7rODZSdVcI0btt21qMXz8padph/u28UasyubbvzsHIcgoyWKB7VIAuOzNMLK6CNeGoEwAyLKhW9229oZtuLBu81eq+3xnmLB7SiWWr4F6gog5vjQpG6FEvdrUKMg5+QnVd3fTD69r0NfcUiSDcYf7tDHMiqPMqdCK62gd6ro3fUNu1NKIyJgNGjHU1quuvV7PcgFNZNINP9AEADPXu4iif6tJ7Sa7K/qs+JsBfNqpoZM4XfjcbMxbUsfNyAdCq1Dpo4RhGvQr4xrK8bvGPyiPy3ACFk2xGJFdvs+3RXQQ8cT6uKAQgP1TrZtzFo4YbkA3H1T7M8ic/96CnGsbaK+6n3lSJfXx0n68Z4t8JgE8zed+rxtu7afg/gbtSWrez/vcTt9vwG9+7O81XJvaHZoMmAbw2dd111xEOh/njH/9IIBDgnnvuYdq0abz99tv7PW8J9AkhhBBdmQTwhBBCCCFEZ5Kuu23u9ddfZ8mSJYwbp4Y0OP744xk0aBD19fUEg8H9mrcE+nqw1o7v1tWz+UTP19syxjqzuMq+ltfb9kWXk04vCQkICiG6oKOuaujW9/6i1IsHWM7YaxWWRrFfdSkc6tsBwLrIAJaXqCqwumG5xRIMr01GSFVWjZs6uq6y+3KcaR7NojpbXTxF8gw3o0+PN2RwOUP/Ec3UyNrolOgNRzDqVAaZZgUbLnZN+eBtSX+vSo/sa9RiOhstPCDGiSM3AFAWCVEZVfsj368KrXg0k1qnSEOd5XeLQmR5wpQnBlJsJF9X2V1vlw0ikq/2d5WpEw+q6cFS0x2bD2csPjQNvVZ1PTV8upvRZ+uaexxUDVL79pPbu2/hlXS9dtK97v2DlqjMvNEHbSTbp94/pcEwhjN2XzSm3jz6XlK8PH6TuKna9A+pzL5DgiVuoZVd8Wy8zrzu2XYKA8qnALCmbAAjctT7vCzmVM22DJ4Z/bBzX8frHBOig0nV3TZXUlLCYYcd5v59wAEHEAwG2bFjB4MHD96veUugTwjRpfT2wNJy6y8SbBeN2KCn+PNpqu2EEKIb+Sqe43b3C9uqK+2fthxPSVk2AD5fHM0JNsRiHjfwYKG5XXcTY/TV1Pqxq1QkL5ZjokdVVCeeYWP6Ehew6n9vNXjKVPDJ3FqCXq26fRqjstEjTmDIGTNQNK/SVIGaUjNISFPb8sSRG7CcYEH/YBXVTlAvy6O6+VbHA9SZaj9btua2rSbg7ttcPQYEkpZ1Sr+P+cxURVnC/Sy8tc6+DRpkbHYq8/rVsmyfAYkeuZZNPOAs40CNcL5axhfX9p4AX3O+vOBGAL798mwyvCooatkaMVO9f4bmlwLw24OeBRa6zwtmqLYZ/igZToAw7kRPK8wQZfFMAOosH0FDtfXoJqfnrFHP16Osry4C4Iy+atrGSD93/gEjTv9gVdu+WJGaXlKTpiNpmoauJw8PoOs6dhtUqJFAXy/RE6u3NhcM6SmvrTeRfdb9pBqIlH3bBiSjTwjRzcWy1P+2DgffrbL7LK/NlzNnpTyPbGest7/tPhaArZsKCPVVgaOgP0Z9RAUfbBs3MJThj7K7UgUV6mudAE+NFz3WcFFlG+piyg6amF71vKipLo8CpWB7GtpqhgoWhXZZ7vS6ehVsOvaK+3BiUwRLLVYtuSbl19aTbYnkA1BtBRgT+hyAimiQzZWqGu93BnxGvRM48moqS2tHfZYb0ItahlusI27rbiXY3+wex6+K3gOgxFQB2D98Nhq9WI3LN+zmanCq7lYekY+Z4ewc5+LZCvrcdYxle6karPbnurt6d3CvOV9vy0dzMmMPPmAnEef9saUyF4C528fzyICG9iGfCt55DZOQRwXC+/rVPtoZzaYspjItTVvjlD6qAMFR/q34nX3+wz5vUZGj9s9g5/lX7DzWnX8fX52b5Xnt2il8VaeOpeJghXrcU8cnNSpQWBPzqwI8wHPfemC/t0WvJ11325xt2xxyyCFoWsNJfE1NDUcffXRSALCsrCzteUugT/QoUqRDdHfpZPN1VuZfqlmHUsSjjbRzAO/BBx/knnvuYfv27Rx++OEsXLiQsWPH7rX9ihUrmDVrFuvWraO4uJjZs2czbdq0pDbPPvsst9xyC1988QVDhw7lzjvv5KyzzmrfFyKE6JISgb50bYmr7n5Fhod/Vh8JwFtfD1IPxjWCfhUEMC0dy2q4IKqtc7L3bD+m073Qjjp9dC2wnexnu3EShQ2ak93n1H7A9EHtwSqIEPJ7ieSooJ6vysSJNxHcpf43ohDJ1tznf/ts1QXyjb9d27oX30O8W6aKLYzM3U7UqWy7ubIP1dWqu26Op57DQ1sBeLVcdV8rC4fI9qvAbtzS3aCfbtlELTWPRFAQYL1zgNWHvVhbna690VKsnFwA/OVxtLjaYbE8tVyjNk403zlOij1uFp9oMPRXCwAw8JJ/uKpw7NNNN5CeF1JB1Q/L+rNik+pmPzYAA3O+B0BV1M+BGarrdqKgymc1/dz9me2t59VKtc8/8h1AyFDZfwf5dpFlqMq+Aa0CaAgUAtSaPvJ0tex7j3yGc1ZOB1T3XlCZghkeFWyMWh4qIup9e/KKGW6g+MUT7t/v7dMrSdXdNvfYY4+127wl0NdL9KYL7JYCEL1pOwjRFpp7P7U2wNgTM4s7RKqBvlYEBJ955hlmzJjBgw8+yLe+9S1++9vfMnHiRD7++GMGDhzYpP3GjRuZNGkSl19+OU8++ST/+9//mD59On379uWcc84BYNWqVUyZMoXbb7+ds846i+eee47zzjuPN954g1GjRqW/kkKIbs30N1zxfXFN6ll8Zc5geV/F8xjiVxG1cKXTXVMDwwkY1McMN/gAYFnqvm1q2KbTxdZZBU3H/azUY5qb0afVGXicrp66ihEQD0L1ASp4YHqz8ERUkMCot/DWqECTM5wf8ZCOz6naG83SiGWoeR132QIC5ep5/rIYmqnuv/zfm1LeDt3Zpp0qo29gZjmbYwWAquKaCPT191a4XTmHZaju2Z+W9SXuVduv8X6N2zpRS1269vdVErFVoPeeLWcAYG8J0W+Nk/03IB8t5mz3rVXECtUy9IgTINQ16vqqfVvfF+K5MuZbSwwnKy5u626GXNQZf++AzEqu//Rs9bipc+qB6wB4fddQqmPq/Wp4VeAubHrwOdl4ZZEMQk5ArjyaQVFAjcNZHstggFP6+l/lKsDv1+Nc/8G5AFh2HlVxNd+J//0Zo/O+BmBDraoSXBUPuIHBiOmhT5YKCurYbibgRW9dDkBd3CeZfmmQqrtt70c/+lG7zbv31QsXQgghuonEj6ep3tK1YMECLr30Ui677DKGDx/OwoULOfDAA3nooYeabf/www8zcOBAFi5cyPDhw7nsssv48Y9/zL33NgzgvXDhQsaPH88NN9zAYYcdxg033MBJJ53EwoULW7kVhBBCCCFEp7LTuImU/eUvf+Giiy7ivPPO45FHHmmz+UpGXw8mGTNNSdferkX2RVN7bpPO6J7bEVWAU8nukwxARztl9EWjUd59912uv/76pOkTJkxg5cqVzT5n1apVTJgwIWnaySefzKOPPkosFsPr9bJq1SpmzpzZpI0E+oTondLJ4mvszq9PA+CI7K0c4FPjE3l2qhw6M8NyM4oiES92IovPavRBaONWxU10y8UCLeZ0sY01VFhFA83psut2yy213W68lhfqM51uo7U6mqmuZD31qrEebyjoEAtp6E6NDj0O8aBaSDBqYjiVXk/5xs0ALP3gjlZtm+7CjKht9sqHw1l/gMq4Kq3OQNuiMvruqj+V/CKVyXXJkFUAjCnayJqyAwDwG3F3Xr5GlVZ3xLJ5uGIYABt3q6zBjK0a2V+qcRvjmV58O9V9KzuAp1ptdy2q5lc3OJu6vmp/1Q+LsPmHyd+Dovn37SHP3k5OyMnOi6n3Yn3Mx7BclXGb5Q2779U8fzEFTmbd+iq178NxD2En/BA1PRi6Og76+OvZVp8LQMCI0c+nim385pg/uctOZOEFjJhbrdenm6zYdTDQUP33gIwKMp0xPQfn7CLPo46DCjNEpamW59VyANhpZ/Gjty8FVHbfX8Y0/yPnyStmAHBgRgUAvz9ucfMbTYg0PfLII0ybNo1hw4YRCAR49tln2bhxI3fdddd+z1sCfUL0QFK5tXdqLhjWHY4DCcC3QCPtAF5VVXI1Or/fj9+pNNjY7t27MU2TwsLCpOmFhYWUlJQ0O++SkpJm28fjcXbv3k3//v332mZv8xRCiOas/4cK5KwLDEM7Sn2uhXaox6LZOtV9Vfc9M2q4AT3b0sAJ9mmm5gb1tETAzwQ94rTVwVPvTI+DExvAo4YKIx5sCNh5LfVcUEG9cK5T0TXkdDH1NGRVWw11HogHNfqsVzP2lNVi+1VwxAo1atSDbXICaMNvuY/dO9T3QnAn7vdaVV+ILldder++OA+A4zI3ukGbbfW5fFauHu+Xv4MDg6pLp2Vr3P/udwAIfKqOg8ytFpZPBRY91VHMTPW9p9fF0CtVsMfOUNNiIR3T6QWe37e67V94DxWt8VHl7JuAT705qur9lAXV2Ih5vlq3bXNBs+nv/YDSiOpGXRENuMHbz0sL8HrU/eMLt2A0kxKW6MYdtwz8HhWwbRz8TdyviIbo63PG9PNAvqH272DvLmottf/XMBhQwcFap+rzhup+fOOFXwDwwem3JS07MW+P1ru7eEvX3bb3m9/8hptuuonbb78dgMWLF/PTn/5UAn1CtEZvyRJKvLauFujpydu8PexrP+5re6aSLdea57dmXm0xj97y/k2S6lmVZlNdXU1OTk7S5Dlz5jB37ty9P01LjiTatt1k2r7a7zk93XkKIcSecr9QF9XRbJ3yw52x8lTMh2AJRHc4kZqA1VBIw9SSM/OcoJ8bD7AaMvY0Gww1fBd6vKGNc92PZoNTQBTLANup5xHN1LF8TvaeilkQy2gIFJoh0Jx5eKvBW+pklmUG3MECjUqVFTWx/0/Aqaz4r62/SXsbdRef3D6TUT9UxR089TaGM95h7ucaW85SAaN///ZbALx59la2vanKuPqPqKCmSu3n92MD+CozF4CYabjBQtPZ1v7KOEaNitJq0Ti2R13m6rVhMJyArBPoC/fRWX+rVNhN16YfXcfBf1ZZqLZTpdq0dD7+qj8AL17UcpGLB495stnpQ/50F7ozXubWrBwGBUubtFnyzdS6NE7878/4pEpV3f3C6MtnQRVg1jXbHftviF+NBzk8sJUKUwUpY7ZOjTOm4PdX/j/iTrpvYaCKQqeQTNCIuctJZPkB/HvcwpTWrdtr7TgxYq++/PJLLrnkEvfvqVOncsUVV1BSUkJRUdF+zVsCfUKIDiXZW20rnSBbR2z3rhpg7s5SPqfSICsri6+//jppcnPZfAAFBQUYhtEk027nzp1NMvISioqKmm3v8XjIz89vsc3e5imEEM3J+lxl8VWMzCVeqzLgJkx4H4AV/zoKX7m6EI/maBjhRHdc3PGhjChg7THTRlnSegQS1+2WR90a89Y2BJEsr6bmB4TzGtq4FXqD4NSUQIs7WWuArzr5hxq9TGUa2RWquyrxOPi89AbZnztRVQ1wfvipHBokmKsyrgLlKpii/7IA8xS13QbmllObofb9ps+LyFiZ7bQ1OTDx3WirnRDO86DFVddMX0mjLD3LAsPp5p2vAjlZX8c54pr7APjwVxLwS0fiNzvbOTmJhT0EP1HbdeiCBeQOV0G6ss/zGDBcpeBWh9Ub6f+KvuLs/HcAmDTkI3ee2Tl11IfVfl63uZiDs3a1ev0+39HXLb7z+Xk3c8GbVwBQEQ1SEVTHx3pNBSYHBso4OrQJgKl9V7I1pqpsLysbSZUT9IvbBv396v3auNpz3OqFpQ5k/L02V19fT2Zmpvu3YRj4/X7q6ur2e94S6BOih5NuvD1DW4ybl3jecusvLQb9Uske7MhjKp2sRAkiQ3Z2dkrtfD4fxx57LMuXL+ess85ypy9fvpzJkyc3+5zRo0fzwgsvJE1btmwZxx13HF6v122zfPnypHH6li1bxpgxY9J9KUKIXkwrVRfXpi8X3zb1+fJmwSAAokPCZHygLsQtQ3MTn71VDRl7epymF6V6w48nerwhUIeNO16fUwgUs3HvWk2N05eY7qlPbpO5BeKhpq/BW2thBVQjvTYCEadfsKkCBrZpQnjPaGTPtHylGpcwMT4hgGYFCW91KuJeoqKj0Yf7cuDLasd8OrAfB/XbDUDxfzQ8TtVczW60H6Nq+wXrTYx69Tzb50GzEqmbGmYfJ2srw0nL1KQLYmt99v2bk/4e/Mg9hAvUxrTyYlR8rH70w2dT74zjF4mq/yujQf5ZfhQA05fdy6YrrwVg7Wm3N7usg+9RWaB6RKNRL13Wz2k4vxjx97lq2U7gTdM0Gncg2Frb0MthfVj94BjwqAh/vekl5qTq9vdVcHbmBrW+tpcXdqqKvzvqs9hep86rXjyhIWMxHG8I0B/zktomhZnV6M6HTuO2PYYE+trF73//+6RgXzweZ/HixRQUFLjTrr766rTnK4E+0YQEhoTo2dr6/d0ewbW9zbOzgo2dxdYaLj732VZPezg/Zs2axdSpUznuuOMYPXo0jzzyCFu2bGHatGkA3HDDDWzdupUnnngCgGnTprFo0SJmzZrF5ZdfzqpVq3j00UdZsmSJO8+f/exnnHDCCcyfP5/Jkyfzj3/8g5dffpk33ngjzbUTQvRm//rq1wAc/ZP7yNimppUfmAFAKLseW1eBPm9tQ8DNE240ll6Mhg9F5+LU1hu64GqmysQD9fxE19tEACiaqeYNKjvQdK7r9TjYnob5AVQPAZ/qFYivRmWMAQQ3VaBFnGhiVTV2vVqIHW8oMtHbaDtKwad2WO56L4FStRPMV/uq/30aW090ukquyWD3WBVVLR+tUfyG2qFG2AJd3Y9mq50RKG3oVomhYQZVFplh29QNUIG+un5qh4V2WRKwaCNaRMf2qI3pC0WJ6844lBkm9RF1P+zs43V6IZqmgm1aZozBi+ermUR1AtvUfvRVQlgdCphZar7+soazmz3Piep2ZiT9vemKnyf9XRtVx1p5eQYev/pwSIwHWBUJkOdVmVMVsRB31amukpats6lCZfftLQj5v/Hz3fuJQF9Pp1lp1IeT91dKBg4cyO9+97ukaUVFRfzxj390/9Y0TQJ9QgghRI/TjmdLU6ZMobS0lNtuu43t27czcuRIXnrpJQYNUlkz27dvZ8uWLW77IUOG8NJLLzFz5kweeOABiouLuf/++znnnHPcNmPGjOHpp5/m5ptv5pZbbmHo0KE888wzjBo1qt1ehxBCCCGEaEeS0dfmNm3a1G7zlkCfaJaMsyVE17WvrLaOeP+2RRZfS+vZ2qIbPW4MyHSq7rZyfOTp06czffr0Zh9bvHhxk2njxo3jvffea3Ge5557Lueee27rVkgIIRpZ88BMxk26G4CyY9UHXYY/SoXTIy+wqyFLLx5oyMLTbBvLyfoyYs7VqQam82FpRG3iGYkBxxqy9OKJLruaKsIBqoCExxkyKZapEXVGSEj8b3tsjKiaV6DUIvC1GotPM21wsvgAt/AGllPEKBhAy2imz28PZtXUogVVRpVeEyY+SGVk1fVTG7v8+CiDn1HbcssPIxQ8nAtAwGtRV6Da+Ks0dGefVg1S29Q2vIR2ONvVstBjahm1Q3Pdeed+rvplGxGLUIlELNrCxp9e497/v3/dSKmu9qe31MPHP54LwGFz1HiIdbFMPAXq/aBpNnZY7RctM0a0j7rvrdbwOEVzvZVq3wZLbSI5TgZncr2xJhl8eyrOVGN9VlYHKcpV98NOl+Ld5Zl86FPj9b120r0c8fwcAI4p+poDstXQARP/+zO36u4/vr2o2WX0zVArHLd0t+3kN65q8TndkVTdbXvhcJiXX36Z0047DVA9aSKJIR4Aj8fDbbfdRiAQSHveEugTQnS4xmPFif3T0jbc34q7qdhbYK25aS2N/deadeo1P0i0c6BPCCG6utDqLwHwf/tQAGKFBhysInrxugy8TmDANsB0roc0W3MDdYnxvWxdc4OClkfDW52YDrEsp220YVqC5QGj4dqrYR5+p4punaa6gwLemkaDiTUO8tk2dkx1L9W8ziXYAYVE83pXoA/LRnMq4to+D56I2oZZW1V3Zv9yD5ql7g95REN3LnorDgtReahq2+djjWCpuh8od/ZB1CbSRwVwPD4df6na9rEMHSOs2uim+t/2aJhOJd6RP7+Pj+6RghxtYfXEeTCx6fS9VTgecZMKANb317AC6v1TfaRJ5ocq2u70qsWIgM95r1YfEW12Xpe9czEAvz9ucdL0F8Y2rWb97ZdnA2DFDDZt7etO//CMWwE44T8/pzCoPlSilsHOuswm82gsUXX32y/PpsQZzy9u9sBiHWlV3ZWT0lQ8/vjj/POf/3QDfYsWLeLwww8nmCgcs349RUVFzJo1K+15S6BPCCF6meYCa3sLtqUSsGtN4LYtg7x7rnuPCyTLOZUQopeLl6kB8PqsV4GanVm55B1cBkDZoQb2Fyq65y9rCNCZPtwsPM2td2G71XPjwYYPTT3WUEwjUXTDW43b1og2VOCNZTRc6ybGA/SEwfSqifGQjh1wLrG8XogmSvvaaE5Gn1agChbE+oTQY72jGEcSpyyq5fcSyVbbJFCmNmbG9ih6ouiGZWP5VFS19Bu4Y8F56hv2c8YOp23cxvI51ZdNm3iG2pG+ahMt7gQD651MwkicSIG6kM7a2gu3fxfx8Z0qADjipvuI9FH76Isrr+XIGSoAGHfec9EBGut+2TRYePzSG+nvZOyBCsb9bM0F/ProJU3aNrb1EzVOIDkxNv3w+iaPn1z0CX/ccDwAoUAUK8Xg1hvfu5vhz6lgoekUB/nOK9fw6nd/ldLzuzzputvm/vSnPyUVrwN46qmnOOiggwB48skneeCBByTQJ9peT86Y6TFBgB6std03xb6lmoWXjuaChy21bfz4nm3T/czpsZ9V6fSTkP4UQogearn5DADjv30nALGMEKVZKnNm3IhP2T1QdRf8eO0g8j5QF9hGzHaDebGA01030hAgsryNinjUNwQFE0yfU9ADMCI20cyGDJ1E4NAN+MUhHlJ/2IZOoExdYhmahlsC1GOgoSIXdqYKTIbzfbzxt2tbt1G6Kc3nhURGn1fHNpzt5mxeW9PcYIJRUUfk4DwA9OKGHbTz/0L0e8fZp06lXSNiugVVjHAc28nYqz7A42Z25n6u/veXW5h+9fzaon1nXg1++F4AAv3qWH/2L9J9yWIfEgG/hLULU8uwHJRdju6c+7z39QEAVCweyLeCan9VDTTQrabztDJUwNeo8DL0V6qy7xfXNARSbjr8n9x0uLqf6M6bqk/OUu0PeVYV8dB70LlZWl13e87LbleffvophxxyiPt3IBBA1xs+k44//nh+8pOftGreEugTvY4EjLq+vY3ZJvuu92jtvu6Rx4hk6gkhBABGpQr2ZG/yUlekonQrOAQjqII9J495n6XGkQDkfWi447jVFyQicg1dc/VoQ/YedQ1BvcQFqhloCD5FMzViTnHPeKhhHt4aJ0jlUeMDggomJjLSMHQIOaV9YzGV4QfYhoo89bYgH6iKw4nMRtujq3EMAU+t2oeaZRPPVNtJj/jwlamuuznLMyg/QkVtrKDFrmPUPA5cpp4fzvfhr1A7Ua+LYmaqoGo0E+oOVM/L/qrhAjoRYKw5sOWIxCF33ofHo/ZXvCqr5/Ua6MY2/3YYpertTr931H4Mfbkb2+Nkzlp9qM83mjwv8XmhlXvQzJZPshLdedP16Tm3tOp5XZpk9LW5yspKPJ6GkNyuXbuSHrcsK2nMvnT0wM7jQgghRM+RGBIllZsQQgghhBBtLZHRl8pNpOaAAw7go48+2uvjH3zwAQcccECr5i0ZfUIIIZroiC6w8qt4CjSk664QQjis9V8AEIwMIjSoCABb96E5pXL/vesojj1GtXnHP5jsjxMZdOr5pl8l2QH4KxvmG83FHSPMU6t+NfHWNlT4jGVqblVe28At4pH42I2HIJKbKAqhuRlFaoZq4VZWANtrOPPo5bkWTndmvT7udnPWow1j5XmrIm47o0bdz/rah69Gbb/6fANPOFFhVzX1l8XwVCcGYLTwlKvszwNeMdn+7Wynrcrksrw63mqVddn3vZb3RbQ4RmCzcxzp8Onv/691r1m02sThN0C1U047GKBuWAEAWoGHg/6q9rOnNFGRx0YLq2MmY4sXW29aSMPjU/s++JXmZnQedP+v+PLqa5q0FY1IRl+bmzRpEr/4xS849dRTm1TWra+v59Zbb+XUU09t1bwl0Cd6FQkodH09boy1bqij90F36Zb9w4Ov6pwFSzEOIZKcuuJGXj99UWevhugEtqku0O3dZeR8qcZuy9hhuEGiyoO8rK0/GICRozaxzlcMgH+j6sZpRMBfoeYV2mlSV6ACR5F8sL3OFayWKKrRsNxAKYQbinM2jPPnXElFCky8lWpe0UyI5jrVXysMsNS6xbP8mAHV5rWl1+3XdujONKNhmxjV9fidfeqOZWjb4ATvNMvC8qtt6d9Vh6dOBXR9VR68NfGk+dqGhuYU+bBDPoiqx/Wqevq960lahqcqgscJJnqrmr8cHnvmParttzzEMhuiG4HccLPtRdubeEij90ni+IjH3fOdvJXbQd8jUNuo0rVeGyG408ue8p5T/fC9tSb+cvX8cJ7OobepIiAbftG1qzCfuuLGzlmwBPra3I033sif//xnDj30UK666ioOOeQQNE1j/fr1LFq0iHg8zo03tm5/S6BPiB6uuwTOust6itT1pIy98fr3yXAq9HWoRuO4p9BUCCF6BbOigsCnJeqPUJBIf5WxlfW16Y5/9/HaQRx59EYA1oYHqcc/8eCvSGTe2Q2VdLMtbF1Nj4ecTDEbQl9rznzjhPOdzDOzIUPQcop5+EoNLL8zHuAAm9gWFTywgl7MoAo01A7wE8nuvZ/UE7znA6D5/WgxZ0DE6lr02np1PzFOla6pYA5A3MQ8WGVu+j7bjp6TBYBR40WvVgEdO+AEcjQN4ipCqNk2ts8p+OH3NFQ2TlT79XnQYnsEGB3fvEhVSM3aqQKBeetClA13gr9ZJmaVf7+2g0iDnUiZbQjqRg7uh98Zt5FI1A0aW/2coi3RKMSc9lU1eJ3A36gfLuCtJ2Y5bRLZoDZZXzkB3zofmtX1M22/80rnZR1Kt9y2V1hYyMqVK/l//+//cf3112M7x7ymaYwfP54HH3yQwsLCVs1bAn0iJY0v1CUgI9qSHE9dR2fui+4QFKzaXd05C9ZTPKtKtZ0QQnRTzZ2PegYegH+LU3m1XzbRLJWKF87X+aREXSAZWSqwVDfAwBNRQZtwnodIHzUvWwf/bhW9y1/nZJtFLGoGqEulHf/nIZbtTA83BIYSxTxsw8bOUevgKfFhOMU46vuHMOqd+3ka4YI22Qzdmh2NYfucYgg+X0Mwp94J+DXO0NI0fF+Xq/vxuNt9U481BNu0eqe7rm2DE+QlGkWrUsuw83PYfaTqvpmzUbU1/bqbEaiHTXdeR111H7mlzn4sV8sqOzyE5VPrqEd1tPquHwzq7k6ceDcAQafbO+EIVlEikGehOdmaVmEfonnqR1j/DqfrrqZB0OkC6fNCnTqugjsT1XYg42s1zVNeS7yPyu7TTBtvrXTjbZFk9LWLIUOGsHTpUsrKyvj8c1Ua/OCDDyYvL2+/5iuBPpE2CfqJ/ZU4htI5frpyAEi0rDt/TnT6umtI110hhGhG4/OCU7IvAdSFTR9nTLdwnzwqy9UFv16fyLCzqCtSwYPQ9oZ5+Sp1N7svcSFbU+zBdDL2IkUxt1KnpYFZry6htKgT9NFA96iAkeW3KRuhlmHUgxFV92NZqpJvb2W7XXQbIgV2bsP4aVqtk6VlmRBvlG0XcQJ5Hg8EnJ3k9UCVE9hJTNN1SCzD48HKV1memDY1B6q7GTvUvvj6JA1vpdoZn940kxP+83MAornFboafmaUCSMESjcD3VCXM0opMvrigk7pN9iLB91QmLn61b+38HOJZ6s2oh023O7deH8PrjMuYGP/SLM5rCEbpGoZTXTm4ucLN1gzk+NznG3Xq+ZGcEJUHOydSDcNFdhkXvXU5ALad02nrkFZGnwQE05aXl8fxxx/fZvOTQJ8QokNIoK5r6/SAVjeQXZAFu/bdrm2l8/OpnFUJIXons0YFfXTTxDz2UAA89RDYqi51wv1VAMhbZhDNVVfxmV/pZH6lnh8PQfVg9Rm6+xsqeDf4xRpKRqtAlOa1sapUcCCjfw1WQGUH1VerYFHmhz6qD1PLMuyGTD/LgIgThzL9NlpcfpHBthoCckC0SHXH9W9MZOZpEHKGyrBtbJ/amFpVTUPQrz5M5FBn/MVPnYhtMOBm9IUH98EMqP1o+nRyP1X7trafenzjVcljsIVmqp3kGwe1RWo/emqdIioeKM6qAqAmLN1229uE0bejF6nUVzMjEcTV3HE49foYmtNd1/bo2InCLk5XbB2wnazQeJYPclSGr62D5XUK7VSq40jfXQFZKqPPiIGWiBPXdr336dYaFeDTOrPvrGT0dSuSeyyEEEKk4InPO2nwfy2NmxC9wIvj5nX2KgghhBCdotO+A+00bqLTSUaf2C/Lrb9IJpDYp71l88nx0zlkm3cfGqn/eitxPiFEb9V4SBDvp1sByPEPxFetssF2BVV2lrcGOFiNz2Wvy8BXoz5fA2UWkVyni222U7m1UZGGwuVeAs7YbXU/jWI5n7iRsJp/zcgohtfpumtpxKPqEssKWFjZzlhwfhN7Ry/uu9uIHVUZkXpNPVrc6b6byPKzbbfAAvVhNK+nYXqCz4d/vdrPZKqMLCsrgFav5uvbXUfdgWq+sZBGLEPtrzUPNl9NdekHdwAw4ub7yFuvsr0spyuo/q0KQh417Zjir1v7kkUzJhZNB8AuzHenabruFkpJjJNo6zo4+8M2tIautZqGHnHG3nMKsdhBL5qpjhVvVcQdzy+eEyC407mf5VTFpqHLb2B3jOwv1fR4sOudUZXVqczEvpk1nbYOUoyje5FAnxA9XFcOpqWyXtLlt+101eOgsbYsyrG315vOvBu3raqq2u91SpuM0SeEEGkxS8sA8FQWEXQCAplfqy6A8SDE6tXFvK/GxlPfMBhXwQcquOCvUIGDHaMyqDpETTMihjvWXlFmNZ/t6guAFVPTfBlR9zPY1CHm3Nd8FpiNinf4u+DgXx3EDcYaU7DjTnCmPoy3rA6A6CDVXdPyG/h2q2laRSU41W+1QAA7WwXv6gfnENxUqdo73Ts120ZrVFXXX66WEdxWz4YrWw6wDl48X/3/DvhKVOGtRCXngswaapziHy+M/U2rX79INvGAq8HrdMuuj4LhdDTUdQg7XbR19d7RTLOhKrPP6wb9sG20RpWWAbSY2VBRWdfd8fyM2ihmQM0jmu28b/vluuujx2zyPk4EFjWO/sl9AKx5oPngcDqOu3SBe796sHpNsYPr+TKN8R4/OP02936nnI9Cu2frPfjgg9xzzz1s376dww8/nIULFzJ27Ni9tl+xYgWzZs1i3bp1FBcXM3v2bKZNm5bU5tlnn+WWW27hiy++YOjQodx5552cddZZaS3Xtm1uvfVWHnnkEcrLyxk1ahQPPPAAhx9+eJN1sm2bSZMmsXTpUp577jnOPPPM/dso+0G67gohRA82Xv++e+tOutv6tidNs1O6yc+sQgihij7YpgmGhu3c9DjocbAN0Ko8aFUefNUmXuemWVA1yKBqkEE4z0s4z0vNEAvbp26V36pn24k220600TWbcI2PcI2PwJfqFo8ZBP1Rgv4oRfmV5BRWk1NYjS8jysCBuxg4cJca48+w1a03sy1sy1a3aMwNzJhBD2bQQyzDIJ4TIJ4TQMvrg6bpaJqOHQ6jxeJosTieOpNYv0xi/TLdAJ8WiUFU3fSqMJZPx/LpVIzIZPhvahj+m71nQnl2efHs8hLL8mD7vdh+L0bExIiYlNeHKKnJoqQmqwM3Us90Sp/LmNh3GhP7TnOqJOvqZlkQi4Ozf/EY6qZpzq0hZKFZlmpvWSpzz2ljew1sr6GCfLbdkAGqq5vtNdCjprqZoJsQLQgRywsSywviK6nGKKvFKFPBvkC5RaDcYui9C5p5Ja1jGxqeOtTty2CbzbejJE41U7qlOe9nnnmGGTNmcNNNN7FmzRrGjh3LxIkT2bJlS7PtN27cyKRJkxg7dixr1qzhxhtv5Oqrr+bZZ59126xatYopU6YwdepU1q5dy9SpUznvvPN466230lru3XffzYIFC1i0aBGrV6+mqKiI8ePHU11d3WS9Fi5ciKZ1jV/eJaNP9AqSFSZ6o+4eLNvf7L6unM2aFsnoE0KItBmV9ZhBpwutc8UTzYGMLSpo4CsPYztZRJ46lbUHUOcUbNDidqIAK8GMKKE+KlC09uNB+PLCahlHq/+zDJO8kMpCy/RG8Rmqi2BJPNtdnyMP38Q/vt1JY712NbbTzTIaRXMq7HpqVQae5fO5WVp2wIvmV0VQtFgMwiq7z1taC073zFg/leWnew089SoTTAWD1KKyv6zf5+oMeFXtL19FlHChU7zB4xRu0GvcfSta5+TMHwGqW27iPadZVkOWnqZBXO0DauvA2efoTuaeroFpuW01ywniGQ3FODASKbW2m8pka1rDsaTr7vN8lc6x1qiYR/2gHEIby9X9ogDBXapN1mY/h8xT2X2f3ti67L53Hp0FwJFX34fHORyNcKtm1bnaMaNvwYIFXHrppVx22WWACpj9+9//5qGHHuKuu+5q0v7hhx9m4MCBLFy4EIDhw4fzzjvvcO+993LOOee48xg/fjw33HADADfccAMrVqxg4cKFLFmyJKXl2rbNwoULuemmmzj77LMBePzxxyksLOSpp57iyiuvdNdp7dq1LFiwgNWrV9O/f//22VBpkECf6PEkyJc8do0Q3c14/fv7FezrzhI/ZqfaVgghhKOuHj2qxm/z1jpdOj0Q2qkeNmqj7vhctu7DX6kCAoEyFXiKZnkJ207V3pAX03SCgrkR8rJU4KdvSAX/4rZObUwFJ2piPjZu6QeA7jPZUqG6+f73ktnt91q7kaQf4eJxN3iXGFdNj9ru+HhWwIfWt4+6H/Ri+Zx9UBNFr1NBPdvp3mkGPRhBJygYtzAiTvdNa9+RCd1Ztu3RCOepfb7zeDWtUFdZnKINaFrD/tB1lYEJKpDnBHyJm2Akut7aDY8ngn7RaEOA0LbRPEbiruJplP1n29hmYtE2elj9oVlqudG8IJYT0NUsG9un5uutNjGdY81bYxPcodoM/t09AGy6/Oetevlr79//bsCdKp1Anw3RaLRJN2O/34/fn1y9OhqN8u6773L99dcnTZ8wYQIrV65sdvarVq1iwoQJSdNOPvlkHn30UWKxGF6vl1WrVjFz5swmbRLBwVSWu3HjRkpKSpKW5ff7GTduHCtXrnQDfXV1dVxwwQUsWrSIoqKilrZMh5Guu0IIIUSXlUY/CSlzJoQQQggh2kE6XXcBlixZQk5OTtKtuey83bt3Y5omhYWFSdMLCwspKSlpdl1KSkqabR+Px9m9e3eLbRLzTGW5if/3tW4zZ85kzJgxTJ48udn17QyS0Sd6rO6eySNkHwqBBrqeWgBP12167zDvQgjhSIzn5fW63UItp1uf7bHdzD0Azcn6Mjwm2V+oDLGqg1VX0D6fm3x1iDPQf8SDWaqyULx9wwzIUoUgJuSvA+C18kP5dJu6EPQHooQ+U5ll/vK9V3rt1RqNuUZUbXc96nThrYtj+p2MvqAH3WkaKfCjx9T3oacmipmjxjgzQ05Glwboat/5dtRgVDt9I+NWQ7fOvYgHnUzBWtDjahn+MjVtx65s3vxB0+CESJ1mJLrgNux3OxJBCzhFUqLxRmPqNdpXiUrMlgaa8761rIasQJ8XnB6/mq3mbetOt2BI7hZhauCuR2LFcIc90WMNGX2+0jrKjswBnAxfrdEx1puleZKZyHBrbM9svsb2HNvOtu0Wx7trrv2e01OZ5/62ef7553nllVdYs2bNXte1M0igT/QIEhBKTUePWSb7RYj9o6G6m6TUVroWCSEERoYaYw2P4V6YRp2h8rzVGt6qRGRAQ0uMFac3DHMaznWqYg4w0OvUfSOsEc9SbfOzaxkYUpV9i7wq4Be3DCynuu7HZ86FM9vntfUUy81nAJjguxDb6b6pV6nBy7SYiZahAqVmwINmqiCLEbHcbrXxYCaeOhUEivud/ZWpY0Sc8Rd3airA51j6wR0trk+4j1qG6Q+gJw4P538qfK1+ncKRCLBBQyVdw2gI5JkWtvNe1JoLBMXjboVedL2hQq9pNgT9nOCepjUaz8/Q3WCMjQfN+eHUDKh9atTHieep+5FcL3axup/zeS19PlFFOSyvjulXAUm9vnd3hky37pvP5yM7O3uf7QoKCjAMo0n23s6dO5tk0iUUFRU1297j8ZCfn99im8Q8U1luohtuSUlJ0rh7jdu88sorfPHFF+Tm5ibN55xzzmHs2LG89tpr+9oE7aJ3H62iR5BgUvcl+06IFGgp3oQQorfTdDV+l8eD9dU2t6JrLAtiWeCtAk9dDE9dDDQNM+TDDPmo7+enbGQmZSMziWarwGC4n40R1jDC6gPWV1CPr6CenEA9X9f14eu6Pvy99Gj+Xno0cVtn40U3sPGiGzp5A3QvtmliR6PY0agqwlBbh1YfxaiJYNRE8NRG3baxTAPNUoldpl8jmuMhmuMhkqsTydWp66tR11enrm9DsQc3s2sfVj82i9WPzaKmWMeIWBgRi/x1JvnrTILb5HJ5f2l+n7p5PW4VZcCtjmvbTpaeZWNHIiqAlwgCQnKgsHFmlaarwi62lZy9p2vqZjdEpTTLcuer18XQ62JukiCAv9wkc2uEzK1qzMhIQYBIQYBYlhdvnYW3ziKwSyewqxcfD3YatzT4fD6OPfZYli9fnjR9+fLljBkzptnnjB49ukn7ZcuWcdxxx+F1gsJ7a5OYZyrLHTJkCEVFRUltotEoK1ascNtcf/31fPDBB7z//vvuDeC+++7jscceS2dTtCnJ6BNCtKl0g3cS7BOp2N8KvN2WZqeeqSfBPiFEL6cZhpsxpGdmUO9UUE1c0Id2NXyexjN9RPLUBWEkR8d0MsM0J77gqdPc55k+iFSorJ7yzBCHZO0CoN5Sz7d6fZ++1tF0zc3os2tVgRNN09AS+xAwM1VgxTI0TJ+znTWIhdT9iOphSbQP5G5wimp4DZauvT3t9fngPulm3S4S2XiNA3iG4Vba1TQdm0aBvUSANhHgs+2GabrekLHXeGgTd1rjgh+Ngn2WjRZ2in+EnGBw1HS7g1t+HTuSyPDVqOmvwiS5n9YTSWT9HaayTof85lds/Ok1rdoU3Vm6GX3pmDVrFlOnTuW4445j9OjRPPLII2zZsoVp06YBqmLu1q1beeKJJwCYNm0aixYtYtasWVx++eWsWrWKRx991K2mC/Czn/2ME044gfnz5zN58mT+8Y9/8PLLL/PGG2+kvFxN05gxYwbz5s1j2LBhDBs2jHnz5hEKhbjwwgsBlfXXXAGOgQMHMmTIkPbZYCmQQJ/YL1LFVQgh2leql49ymSmE6K0m9lUXZXrAj5YIKvTJIZapAgVBFZcjc2sUzenSGQ8ZRLLVBX+kj4buJI+ZTs/fWI6FM+wXWrwh6FcT9lEVV0G/uN2Ls3vagG2abuTAdqrvYuhoTtdMjQBoaltrNg37wwLT6eFpJ2JBhk3VQeqbMJqV0zEvQKTG57wna2MNgbdorGE8Pl2jcZzPDdQ1Dgq63XzNRpl7eqMMv0SE3mgI+nm9EHeCe8FA0hiBAJppNnQB1zVMv3pcj+tkb1IfCJE8H7YzxqMVUwdbC8PG9WxpVt1Nx5QpUygtLeW2225j+/btjBw5kpdeeolBgwYBsH37drZs2eK2HzJkCC+99BIzZ87kgQceoLi4mPvvv59zzjnHbTNmzBiefvppbr75Zm655RaGDh3KM888w6hRo1JeLsDs2bOpr69n+vTplJeXM2rUKJYtW0ZWVlZ6L7KDSaBPCCF6qI4ek1G0PRmjTwghUuBxLsCNoDspnhvC8qor8pwv1UW7t6zeHbdPjzUuzKG7QaJYppPhkxt352WHdYwcNY8Mf5SdYVX0weNE/3T5/G2dRNdLnKAfoEVjUKsyp7BstFwVefXUmcSD6tLV1sFyAnyGEx+0/DZ9j9wJQMAT66AXIFLxr8/vAWDigJ82BNs0DWLOfrJstEQw0GzUnzaRxWfbDdG1xlG2aKxhbL9EgN+2GxXd0BoChLbdMLZfo3nZiWCjZRPNVc+L9DEoG6HaxjNtsj93uu9nqM+AvKKKVmyFHqAV3XLTMX36dKZPn97sY4sXL24ybdy4cbz33nstzvPcc8/l3HPPbfVyQWX1zZ07l7lz57Y4n8Zsu/O/EyTQJ4QQQnRVmgT6hBBCCCFE55IhobsXCfSJbqvXjdXVRhLbTTK9hOgeUu4iImdfQojeKpDox2m73f48JRWE/CpDx1ta6z5uBVVbIxzHDKqsHTOguZkqlk/d0QzLrdJpBGNkhFTqWNQ02FalKknGnYqw6ybPbb/X1oMtN59hYuH/Axp13QXsxNhtpolRWgOAJ+DB4+yvSI6Ov0rtm7pCp1tllklNWO3bzOyGeYkuJBRsOKmJRt1uvHYkguaMc2nbllusw25ckMOhOcV2ALAsNBLZe810o7fshm7Dho7ttLF8TvXmLB+WT00zohZaXM2rrkjHSiwiO07FcNXmiEKVMVodbaYycG/Qzhl9om1JoE90SxLk239tHfCTfdI1SWC3e9OwU+4SpsvZlxCil7KzM9Qdy3LH4KM+jG9bpdPACSgEfVgBdTFvVEcx+6kLdssA3empm/jItWs96E53XZ8v7g4tFol6qS9TXYQ3X/bzdnxVvcO/djwEwMQDf6YmxOMNQb9oDLxqH3gqwmhO8ZRojoYRVk1MNYQfRihGfoYK6C4/8b6OWXmRln99djenHPULALS4CZbat24V3j0luvFqWsN4fqYFTpd8fL6GwGHjrpJ6o18+nW68ts8D8T2qMOu43fttTSdrowoqR3KziWeZ7my9BepgKwxWA1AT86X+onuQ9izGIdqeBPqEEEJ0eb02kJxW1912XhchhOii4jlOwYa4jR5VETtd06DOGevNpy7MLb+XeEhd/sSyvJgBJ3NIb6jMa9Q6WT+mhpGnJhq6RW2dkwnoseRitx1Y/XIB0MJxtLIKZ6IFeiJjCzTTybCMNAo4JOo21HnZunqA+uOkDlll0Qpmhnovaj4PxvZGYyk62XaapjUE+BJFWQyjIWPP42nI4NV17MT4nInx/Cw7OejnzMP26OBtOJbA+bxwqu7qccsNBNo66FHncyBoEQqqgGR1TH3OvPrdX+3PJui+JKOvW5FAn+hWeu3Ffhcn+0WI9qFho+spBvpSbCeEED1NJE8FD2xdw4ioi3V/qY7hBPpsr7rkMTO9xDPUxX48qBPN1Jz7EHeq7VpBy2lruhdKtXV+jC9Ug8iBETZdLpl8bS1cpLIyjbCFPxGoqanDyleVLaN9AsSdrrv+SptwH7XvDKdasm3DZ9fP7NiVFmmrHqLeR8FdMYxyJ2BXb7sFdfB6IOZ03U50u42bqmouYPs9bsA33ieE5nTVTxTV0GIWWuL4sW03w9dOBPnALcijmZZbytlTE0NzuozHMsBT53w24KE2pNZzY2Vem2yD7kqz0hglRk5JO50E+kS3IIGkrkn2S++wZ/ffxvu9p3QJbvw6utJxrXqrSNddIYRoSdVAdUljRMCIOWNuhX0YiWww5yLf9OkNY/F5VIAPIJ4BltcJGDhXskaNgZnhjOEXMQg4vYA/vfH6dn41vVM4X+1DT52FZqvgnhbPwHYysiyv5kYZbE0F+9w/gI9/PLtjV1i0Sl1fJyBnevDvcDJxNa2hIi5gZzlZeH4n0KdpaDHVlXbp+7c1ez76nZPnA6DHLPRIo7H9nF62lk93g4J6zAn+GTq24VTbzvZRN0wFmy0vxLJUGyvDRHc+U3Zszd3PV79v//evG937qyfOa/flpUUy+roVCfQJIdLSlYIgov00t5/3Nq2nBPu6Kqm6K4QQLYvmqP/95aBZTiZOhoHfm3ypY0Qtd/B9zWrU/VMDI6yeZwacgF9+lGBAdS2stzRqDo0h2o/lxGTNgE5doROd0cBbm+hO2VAwRTdtVj11TSespdhftrOfa/rreGtVQDewy+tm5EVzffgqnDRNZ0yS5W/clDSP5s5HX/33dQCMO/0evE4Wn+U3iIcaZfI5x4+nXgUC4yHDnRYL6ITznPH69IbPBk0DzVB/BL/ytuYl9xjpjNEno8l0Pgn0CSGEEF2Uhp1ypp4mP7MKIYQQQoj2IBl93YoE+kSXJxlk7auljCzZ9r3HxrvGMOSGla16bntX9u3o43C8/v0udeynWmRDinEIIXqrSJ66+vRVa3jLGypr2j4nm8cZs0uLW2hx575po8fUB6ceBdMZLsz2Jvr2apim0w3YY/GldA1tV6sfmwXAkT+7z+2O6wnjBhZWLZEMvp7AGRIP2wOVg1Uooj4/A191o4q4duur2q544eccM01VXTYiNkajRNzEshPpZqZPx3KS9PzlJt4a1aB2QEMXfmIalkdNXz+348aAtNA48p+3ALD2tNs7bLktkaq73YsE+kSX0pUurnsT2e49354B3Wb3+XX7dwKz5zy7c5fe5sZ/6QxpjdEngT4hRC9lexoG5PeE1X3/7og7EH9i9P3EIP4AerzhYt42wAwlxnxT/22aKmPxdYa1v5aCGj3ZR3er/TvixvuIZappa++f1abLeO/hpsfQ8RcvoN7pmhvu44zpGcYN9FUfoFNfqN78ZtDC9jcEHj07Wh94TFeGz6nwG/VjWSrAeOQ/b+kawT7J6OtWJNAnWqU7X8AL0Vt1ZNCqp3xGNH4dz1Y82inrkPLYe/IzqxCiFxr2lzuwPWpQ/3gATL8zzpZXx/Y5lzpOwE+PxNHj6sre8jTK4ms0jJdcyArR/j6e1zEB3aG/WgBAPhDJV9MS43B66jQ8tWpauK+Nma/S/2xLQws7BUF8Np76jv8lNRY3CPrU+uiazWF/u02tZ62PDyZP7/D1ASTQ181IoE8IIUSba4siHR0ZmOyqRUU0bKm6K4QQLQgFI1RmqksaM2hgGY0uyi1nUP4sFdHT4hZaohtv456CekPVXSFEz/HFNSpb8KD7f+UGqWxd3YmELCyPivLrMY1ErV7NY6HH1GeKZVhsuKXjskxfO+leAL7zyjXURtXnVtQ0yAqG1bp32Jo0lVbXXfk47XT6vpsIIYQQ6Vtu/aXTu76mqisG+QDQVEZfqrf2VF5eztSpU8nJySEnJ4epU6dSUVHR4nNs22bu3LkUFxcTDAY58cQTWbdunft4WVkZP/3pTzn00EMJhUIMHDiQq6++msrKynZ9LUKInsNjWG6miR5ruBjVoya2x4Pt8TilMzXiWX4sj+6OuWVE1E0zwVeu4yvXMerVTQjRc3x59TVNMtKMOh3bY2N7bMyQpcbu00Cv8GLrNrZuo0U7NptvyqppTFk1DV2z3Vvj8ztDt1p4djuz07iJTiffYkIIIUQXpUHSyV5Lt/YuxnHhhRfy/vvvs3TpUpYuXcr777/P1KlTW3zO3XffzYIFC1i0aBGrV6+mqKiI8ePHU11dDcC2bdvYtm0b9957Lx9++CGLFy9m6dKlXHrppe37YoQQQgghRMo02075JtG+ziddd0WnaK5KZ3fJ/BFCpKfxe7txkYuWsui62ufBcusvVFVVdfhyNc3G0FL79TbVdq3xySefsHTpUt58801GjRoFwO9+9ztGjx7Nhg0bOPTQQ5s8x7ZtFi5cyE033cTZZ58NwOOPP05hYSFPPfUUV155JSNHjuTZZ591nzN06FDuvPNOfvCDHxCPx/F45DRFCNGyurAP6pxudh6IZqhfPbS4BU7mnuVU3zX9OpbPGcPP0Hh/keqSd9jc+9z5Jbr6CSF6li9nJL+3D777Pj6frT4DBi+eD3VON96wju5U6/30po4tDlPx0yJ1554qLKdakG1rxJySwR+fObdTzkdBDXcgdd+6DzmDFp2qq13MCyHaV3NB/uaM17/fIZ8PXbbLriOR0ZdS23bsurtq1SpycnLcIB/AN7/5TXJycli5cmWzgb6NGzdSUlLChAkT3Gl+v59x48axcuVKrrzyymaXVVlZSXZ2tgT5hBAp0TQbPdzQFTdYqkba0mImttEo6AdottFQabdRv6b1c6XSqxC9zeezZzL4ifkAGAETX44aB68+GCCwWVXaPeqq+9wfBNrbd165ht2/cEoRV2e5gT6PYbbwrA4kiXrdipxFi7R19QtjIYToKVpTjGPPX3r9fj9+v3+/1qOkpIR+/fo1md6vXz9KSkr2+hyAwsLCpOmFhYVs3ry52eeUlpZy++237zUIKIQQCUOfngeAP9C4kIaGJ6Lu2x4d28no00yn6m7UgpDK2mnHJGghRDfhy4gC6kfVSFhV5CamYzmVuCuGd9wHxcav+xHKrgcgHjewnUBfTDfIDEY6bD32Jq1iHKLTSaBPCCFEr5LKjxVdJttYSyejD6qrq8nJyUmaPmfOHObOndvsc+bOncutt97a4nxXr17tzL9phw3btpudnrxeyY/v7TlVVVWceuqpjBgxgjlz5rQ4TyGESFxxmpaO7iS8eGvBW6ku3LW4ha2rQJ/tdN21dQ3NSpTelCtWIYQSrvWRSPe1DdvtutueDrpvAQBW0Akm2gbRgFNBPGqge9Rn1Bffv7H9VyYV6WT0ycdrp5NAnxBCiA7XGWP0pZqN3GWCfKTXdVfXbLKysvj666+TpreUzXfVVVdx/vnntzjfwYMH88EHH7Bjx44mj+3atatJO7dh/gABAABJREFUxl5CUZEaZ6akpIT+/fu703fu3NnkOdXV1ZxyyilkZmby3HPP4fV6W1wnIYQw6xtdEDvT9Ch4vy4HwM7wo9lOgM953KiPE+njPM8no00J0dt9es4tAG4XXgAtrBPPUPc3/eSadlnu4MfuRvOozydPtfoEi+eaWHHnx4kaL19Mu7Zdlt1aktHXvUigT3SornQBLYToXF1tDL6u+PmkYbtdcvcl0S47Ozvl+RcUFFBQULDPdqNHj6ayspK3336b448/HoC33nqLyspKxowZ0+xzhgwZQlFREcuXL+foo48GIBqNsmLFCubPbzihrqqq4uSTT8bv9/P8888TCARSXn8hRC8Wc8J74YaAnekHs1BlNetVYWwnezgeUpc8sUyDRIny1Y9J0Q0hhLLph9e1+zIGPXq3e18zNYzEZ1cik1C3McPqs2pzFwvyATJGXzej77uJEEIIITqLrtkp3dqzGMfw4cM55ZRTuPzyy3nzzTd58803ufzyyznttNOSCnEcdthhPPfcc4DqsjtjxgzmzZvHc889x0cffcTFF19MKBTiwgsvBFQm34QJE6itreXRRx+lqqqKkpISSkpKMM0uMvi0EEIIIUQvl8joS+nW2SsrJKNPpG5/i3B0xWwZIYSArvv5pGnpF+NoL3/605+4+uqr3Sq6Z5xxBosWLUpqs2HDBiorK92/Z8+eTX19PdOnT6e8vJxRo0axbNkysrKyAHj33Xd56623ADj44IOT5rVx40YGDx7cjq9ICNFdDX74XjQno89Tq6OrYfnQbLANpxtcQQZGTcSZbruPv/GX9umKJ4QQ+2LUNIRfLGeUEivo/LCpweYfz+6EtUqRbcvYpt2IBPqEEEL0WDuvVt1K+92/spPXpHXSGaNvHzUx9lteXh5PPvlki23sPU4ANU1j7ty5ey0GcuKJJzZ5jhBCpEKPqg+9wG7w1qhpwVILz06n8nhVNQTUGKW+aBwAf1xK7QohOofmszAz1WeRp9KDM4QoOIE+j69r92SQMfq6F+m6K1K23PpLl816EaK19jdTVXRtaxfOZO3CmXt9vKt/riUCfanehBCiN9g07Vq0uIYW1/BWg6/Gxldj46+IESvKJlaUDT4fWLZzAyzcKrxCdDUjbrqPETfd19mrIdrRpqnXo0V0tIjufiZhAREdIjpfnN9FquvujZ3GTXQ6yegTKZOAiOhJGh/Pje935aCPaL3uu19TL8ahyZmVEKKXOGzOffjD6r4RtfHUqUw906fj26HS+8yiPIztpQDYAXXJo4XjHb+yQuzD+DF3oI1VZV4HP3ivm4qzqSsWZBD7ZdP07rtPNSuNsffklLTTSaBPpGR/gnzd9wJbCCE6l67ZePTUunJ4dOmSJoTo2Q5auAAAPaS5V5zZmyJYPhUZqSn2EvpSfWYa27dBRhAAy68Gw1r+7q0dvMZCpCZrq4qMWH6D+uKu3YVT9E6arYJ9onuQQJ8QQgjRhaU8Rp/8fCqEEEIIIdqDLf1yuxMJ9ImULLf+0i5dd6XLpOgsieNNjkHRlWmkXk23vavuCiFEZ/tyxiwADpl3n1tpt3aAH81Un3/RbI2y/+sLQN4rtWCq9BPPV7tanO/stQ3nAncfKecComMtX3kz35ipxufz1sAn0mVXdEGanUbXXdHpJNAn2tXeAifNBQ3H69+XQIvocHLMia5MS6PIhibFOIQQvYTWqGdjbT+NaB91+Wn6IVCupluFfdCcKrtL197e7HyuXTvFuaejo9pOe3cqAA8f+8e2X3Eh9uKD+/ZeOEyILiGd00w5Je10EugT7Srd4F0iACjBFyGESFTdTW1AFKm6K4ToLTQLgrvV/UgO2Ia6b4Ysdv6fur/7Gzl4DlKFOY5fqqpZvn3KvGbnV2d6iVrqsihmqZn96O1Lefz4R9vpFQghRPciGX3diwT6RMqa6+qYiuaCd9JtUggh9k3DxkgxgCeBPiFEb7F+zkyOu1QV5vDWaW6GXzxDQyuqByAQiHFQnqq6+/G2IgCGPnMnX0y5yZ3PvUc+A8Bl71zsTpPgnhBCNEPG6OtWJNAnOpUE94QQomUyRp8QQjRl6yq3RLMgUZw8Y4uGuSMEQCQXPsgPOY2dPJS9/CDy++MWt+OaCiFE95dORp9k/nU+vbNXQHQ/rQ3OtUcxDyGE6MnUGH1WSjcZo08I0Zu8+7uZvPu7mVgesAx189ZA/icm+Z+YBHaBt9SLt9SLUadj1OloMZ3Bv7uHwb+7p7NXXwghuhc7jZvodJLRJ4QQQnRRaow+yegTQgghhBCdR8bo614k0CdaJZ3x+qR7rhBCtI6GjSFdd4UQYq/e/81MRv78PgCi2RDJU8U0LK/q1gu4XXc3TbumM1ZRCCG6P8ve6/AHTcgpaaeTQJ/YLxLEE0KI9qNpNp7E4FP7YOipVecVQoie5qN7Znb2KgghRI+mWaC1Y0rfgw8+yD333MP27ds5/PDDWbhwIWPHjt1r+xUrVjBr1izWrVtHcXExs2fPZtq0aUltnn32WW655Ra++OILhg4dyp133slZZ52V1nJt2+bWW2/lkUceoby8nFGjRvHAAw9w+OGHA1BWVsacOXNYtmwZX331FQUFBZx55pncfvvt5OTktOEWSo+M0SeEEEJ0URpgaHbKNyGEEEIIIdqcbad+S9MzzzzDjBkzuOmmm1izZg1jx45l4sSJbNmypdn2GzduZNKkSYwdO5Y1a9Zw4403cvXVV/Pss8+6bVatWsWUKVOYOnUqa9euZerUqZx33nm89dZbaS337rvvZsGCBSxatIjVq1dTVFTE+PHjqa6uBmDbtm1s27aNe++9lw8//JDFixezdOlSLr300rS3Q1vSbHvfe6KqqoqcnBwqKyvJzs7uiPUSQgghupSO/i6cP38+j694gNPuGpVS+20flvLqdRvYunVrO6+ZEJ1DzkeFEEL0dh39Xbht2zYGDBjAuPHz0LTU8sTeeuNeXnj+aU466aSU2o8aNYpjjjmGhx56yJ02fPhwzjzzTO66664m7a+77jqef/55PvnkE3fatGnTWLt2LatWrQJgypQpVFVV8a9//cttc8opp9CnTx+WLFmS0nJt26a4uJgZM2Zw3XXXARCJRCgsLGT+/PlceeWVzb6ev/zlL/zgBz+gtrYWj6dzOtFKRp8QQgjRRWmaKsaR0q2zV1YIIYQQQvRM7VR1NxqN8u677zJhwoSk6RMmTGDlypXNPmfVqlVN2p988sm88847xGKxFtsk5pnKcjdu3EhJSUlSG7/fz7hx4/a6boAbhO2sIB/IGH1CCCFEl6WKcaQ29p6eYjshhBBCCCHSodk2WspRPJtoNEpVVVXSVL/fj9/vT5q2e/duTNOksLAwaXphYSElJSXNzr2kpKTZ9vF4nN27d9O/f/+9tknMM5XlJv5vrs3mzZubXbfS0lJuv/32vWb7dRQJ9IlON/rCXwGQ+fSb7jQp8iGEEIqe4th7qbYTQgjR1Hj9+02myfmoEEI4LNTg0amwYcmSJUyaNClp8pw5c5g7d26zT9H2qPRh23aTaftqv+f0VObZVm1Adas+9dRTGTFiBHPmzNnruncECfSJTtH4ZCpzL4/LyZUQorfTsTG0FDP6JNAnhBBpaS6419zjck4qhOjt0svogwsuuIBFixYlTdszmw+goKAAwzCaZO/t3LmzSSZdQlFRUbPtPR4P+fn5LbZJzDOV5RYVFQEqs69///4trlt1dTWnnHIKmZmZPPfcc3i93mbXvaPIkD6iyxqvf9+9CSFEb6Vjp3wTQgjR9uScVAjR66U5Rp/P5yM7Ozvp1lygz+fzceyxx7J8+fKk6cuXL2fMmDHNrsro0aObtF+2bBnHHXecG2DbW5vEPFNZ7pAhQygqKkpqE41GWbFiRdK6VVVVMWHCBHw+H88//zyBQKDZ9e5IktEn2pWcEAkhROtpWjoZfTJGnxBCNEfOR4UQYj/Zrai0kaJZs2YxdepUjjvuOEaPHs0jjzzCli1bmDZtGgA33HADW7du5YknngBUhd1FixYxa9YsLr/8clatWsWjjz7qVtMF+NnPfsYJJ5zA/PnzmTx5Mv/4xz94+eWXeeONN1JerqZpzJgxg3nz5jFs2DCGDRvGvHnzCIVCXHjhhYDK5JswYQJ1dXU8+eSTVFVVuWMT9u3bF8Mw2mWb7YsE+kSXJF0kRCq6exfv1lx4pPt6Gy+jO2+r3krDTjmAJ113hRCibcn3pkiFnI+mv5zuvL16K81OfYi+dE2ZMoXS0lJuu+02tm/fzsiRI3nppZcYNGgQANu3b2fLli1u+yFDhvDSSy8xc+ZMHnjgAYqLi7n//vs555xz3DZjxozh6aef5uabb+aWW25h6NChPPPMM4waNSrl5QLMnj2b+vp6pk+fTnl5OaNGjWLZsmVkZWUB8O677/LWW28BcPDBBye9ro0bNzJ48OA2316p0OzEqIUtqKqqIicnxy0TLMS+dNQXhuh5jr94AW8vnuX+3Z2OpT3X9atfqJTu9XNnNmk77K77GHzT3suyd0WJ7drazIjl1l8YNXUBANl/WtVkvl1dR38Xzp8/n2deX8iF93wjpfZb1lbw7DVfs3Xr1nZeMyE6h5yPinR1p3MI0bU0Nz5jusdTVzkfTWhufbpjtmtbnI829/zu8t7v6O/Cbdu2MWDAAE4acxualtrIbyvfvY/n//kMJ510UjuvndgbyegTQgghuigNMFLsJiGD7gohhBBCiHbRjl13RduTQJ/Yb231S1B3T3sXrbPn8ZMDjH9i/46p/fklM9VjMJXj/sDbVMbe+NuaZu4NTmkpXcv+vtfH69+nud8dpSvH3mla6l13NRmjTwjRy7XFOalU2u29mjt+9ueY2t/MulSOwXTWrztm7zWnLc5H9zVd3v/NkBhftyKBPtFlyAdq95bOCUpnnWi014mBaB+tPentSVRGX2oBvFTbCSGE2Lve9j3TE6XzI25nnNvJ+Wj3IuejimbbaBLt6zYk0CfSJl8u3U9z+yx6yv8BsOKl2c22a4sgXXc8VrrjOvck+9r++3q855142SkX2dDaa4RkIYToguT7untKJctNzkeV7rrePYGcjzZDuu52KxLoEymTL5u2kU5aeEvbfH+eC+BburrFdrK/RXfU04YA0LAlo08IIfYg5yj7r63OR9vi+S21kX0tuqMeOQSARepldyUe2Okk0Cda1JFfrj3tAh32/9eg9nquED1Zqu+N7vB5owFGimPvpZr5J4QQ3U1Hn49C9/iOSFV7no+2xfOF6KlSeW90l8+a9LruyjlpZ5NAnxBCCNFFadjoKVfdlZMqIYQQQgjRDqTrbrcigb4ubF8Df8rAoEII0XrpVMPrLJqWTkafdN0VQrSPloobyPmoEEK0Xnc4HwUk0NfNSKAvBelUbmqvZe5reqqP7ynV8u4dpbt2l5AuC0KI9qAy+lIM9MnJlxA9XjrjqrX18lKZnurjzdnz9XT2uVV3HFKms7eZEKIHS2eMPtHpen2gb2+/Qrb0Rbk/X6JtMVhtW+pqJwRd6YSqq20bIUTvo8bok667QvR0LWXFtVeRgpbOuTrjHKirnXd1lXPSrrZdhBC9U1pj9MkpaafrUYG+fWXepfpF2Z5fqPJl3fUdMes+AIo6eT2EEO2vq1zI7Y2uWXi1eEptPZrZzmsjhEjVvjLv9qcKaVuRc9KuTfaPEL1LVz8nxbIko68b6XaBvnS+9OQLsvvqjO7SCR8umKnuLJgpx5AQPViXP6HCyehLueuujNEnREeR89HeoTPHH+xqXZmFEO2jO5yPAjJGXzfT5QJ9+xqMctdPxtD3gZUduUqiA6XaPcUeezQvr7ixQ9dBCCE6moadctfdVNsJIfat2wyOLtpNOl2m2+O4kPNRIUSXImP0dSt6Z6+AEEII0R388OCrOnyZiWIcqdxSHjellcrLy5k6dSo5OTnk5OQwdepUKioqWnyObdvMnTuX4uJigsEgJ554IuvWrdtr24kTJ6JpGn//+9/b/gWIHmNyzg87exWEEEKITtFZ34Gabad8k8y/zpdWRt/knB/i0bxNprfFr1ipVu/qu99LEj2B9voa+aVTCLFf0v0MMUltrLy2pIpxpNh1N8V2rXXhhRfy9ddfs3TpUgCuuOIKpk6dygsvvLDX59x9990sWLCAxYsXc8ghh3DHHXcwfvx4NmzYQFZWVlLbhQsXomnyU7FITXtmVbVXQTbRc8lxIYRorW7z+ZFOAE/ifJ2uTbrudpuDUwghhOhGNOyUx+gz2vGs6pNPPmHp0qW8+eabjBo1CoDf/e53jB49mg0bNnDooYc2eY5t2yxcuJCbbrqJs88+G4DHH3+cwsJCnnrqKa688kq37dq1a1mwYAGrV6+mf//+7fY6RM8m56NCCCFEO7FskGFiug3puiuEEEKkILsga9+N2oGOndIt0XW3qqoq6RaJRPZ7HVatWkVOTo4b5AP45je/SU5ODitXNj9u7saNGykpKWHChAnuNL/fz7hx45KeU1dXxwUXXMCiRYsoKpJ650IIIYQQXY5tp34TnU4CfUIIIUQKqnZXd/gydc3G0KzUblhUV1e7Y+glbnfdddd+r0dJSQn9+vVrMr1fv36UlJTs9TkAhYWFSdMLCwuTnjNz5kzGjBnD5MmT93s9hRBCCCFEO5BAX7fS5aruCiGEEELRSL1Lrg5kZWXx9ddfJ033+/17fc7cuXO59dZbW5zv6tWr1bo0M36ebdv7HFdvz8cbP+f555/nlVdeYc2aNS3OQwghhBBCdCIpstGtSKBPCCGE6LJU1d1UJNplZ2enPPerrrqK888/v8U2gwcP5oMPPmDHjh1NHtu1a1eTjL2ERDfckpKSpHH3du7c6T7nlVde4YsvviA3Nzfpueeccw5jx47ltddeS/m1CCGEEEKIdpLOGH0SD+x0EugTQgghuigdG59mptTWo1moHMDUFRQUUFBQsM92o0ePprKykrfffpvjjz8egLfeeovKykrGjBnT7HOGDBlCUVERy5cv5+ijjwYgGo2yYsUK5s+fD8D111/PZZddlvS8I444gvvuu4/TTz89rdcihBBCCCHaiWWmUYxDIn2dTQJ9QgghRBelYaOneFKl2qUX6EvV8OHDOeWUU7j88sv57W9/C8AVV1zBaaedllRx97DDDuOuu+7irLPOQtM0ZsyYwbx58xg2bBjDhg1j3rx5hEIhLrzwQkBl/TVXgGPgwIEMGTKkXV6LEEIIIYRIk1Td7VYk0CeEEEKkILsgC3Z17DLVGH3pdN1tvxpbf/rTn7j66qvdKrpnnHEGixYtSmqzYcMGKisr3b9nz55NfX0906dPp7y8nFGjRrFs2TKysjqngrEQQgghhGgFGaOvW5FAnxBCCJGCzqi6q2GnXIwj1XatlZeXx5NPPtliG3uPSmuapjF37lzmzp2b8nL2nIcQQgghhOhk6QT65FSu00mgTwghhOiiNI2Uu+7uo/itEEIIIYQQrZNWRp9E+jqbBPqEEEKILkp13e0aGX1CCCGEEKKXsqz2GgpatAMJ9AkhhBBdVDpdd3UJ9AkhhBBCiPYgY/R1KxLoE0IIIbooDdBT/PU01XZCCCGEEEKkRQJ93YoE+oQQQoguKp2uu5LRJ4QQQggh2oVlQ4rjRsspaeeTQJ8QQgiRguyCLNjVscvUAD2NtkIIIYQQQrQ127bSad1u6yFSk1agb/gJB+Pz+NtrXYQQQogua+Mnmzt8mTrgS7GcrldCfaKXsD0Wh59wSGevhhBCCNHhNrz3GVR0woJNKcbRnaQU6PP5fBQVFfHQf3/V3usjhBBCdFlFRUX4fL4OXWaqGX2pthOiu0qcj64oeYEVr7zQ2asjhBBCdIrOOB+VqrvdS0qBvkAgwMaNG4lGo+29PkIIIUSX5fP5CAQCHbY8TdMwUszo01NsJ0R3JeejQgghRMefjwLpFeOQnrudLuWuu4FAoOMPJiGEEKIXU2P0pRjok59ZRS8g56NCCCFEx7PTyuiTSF9nk2IcQgghRBelqu6mGugTQgghhBCiHaST0Sc6nQT6hBBCiC5KQ5OMPiGEEEII0bksGzQJ9HUXkgAghBBCdFEaYDjj9O3rJmP0CSGEEEKIdmFbqd9a4cEHH2TIkCEEAgGOPfZYXn/99Rbbr1ixgmOPPZZAIMBBBx3Eww8/3KTNs88+y4gRI/D7/YwYMYLnnnsu7eXats3cuXMpLi4mGAxy4oknsm7duqQ2kUiEn/70pxQUFJCRkcEZZ5zB119/3Yqt0HYk0CeEEEJ0USqjL7V/mnylCyGEEEKIdmBbdsq3dHv4PvPMM8yYMYObbrqJNWvWMHbsWCZOnMiWLVuabb9x40YmTZrE2LFjWbNmDTfeeCNXX301zz77rNtm1apVTJkyhalTp7J27VqmTp3Keeedx1tvvZXWcu+++24WLFjAokWLWL16NUVFRYwfP57q6mq3zYwZM3juued4+umneeONN6ipqeG0007DNM30NkQb0mzblvxLIYQQoouZP38+a966nccf6JdS+7ffC3P+FRpbt25t5zUTQgghhBC9wbZt2xgwYADfM76PpqX2o/L/4i/y/Mt/56STTkqp/ahRozjmmGN46KGH3GnDhw/nzDPP5K677mrS/rrrruP555/nk08+cadNmzaNtWvXsmrVKgCmTJlCVVUV//rXv9w2p5xyCn369GHJkiUpLde2bYqLi5kxYwbXXXcdoLL3CgsLmT9/PldeeSWVlZX07duXP/7xj0yZMsXdZgceeCAvvfQSJ598ckrboK3Jz/9CCCFEF2XGobYmtVu4vrPXVgghhBBC9EQxK0bMjKZ0s9NI6YtGo7z77rtMmDAhafqECRNYuXJls89ZtWpVk/Ynn3wy77zzDrFYrMU2iXmmstyNGzdSUlKS1Mbv9zNu3Di3zbvvvkssFktqU1xczMiRI/e6/h1BinEIIYQQXdCgQYO4/vpa/vrCxpSfM2bMmHZcIyGEEEII0ZtkZGTgxccK++8pP0dDJy8vj6qqqqTpfr8fv9+fNG337t2YpklhYWHS9MLCQkpKSpqdf0lJSbPt4/E4u3fvpn///nttk5hnKstN/N9cm82bN7ttfD4fffr0SXn9O4IE+oQQQogu6Pzzz2fSpElpPScQCLTT2gghhBBCiN4mJyeHyroKN1MuFYZhcM8993DrrbcmTZ8zZw5z585t9jnaHkXlbNtuMm1f7fecnso826rNnlJp054k0CeEEEJ0UdnZ2Z29CkIIIYQQohcLBoMEg8G0nnPDDTcwa9aspGl7ZvMBFBQUYBhGk+y3nTt3NsmkSygqKmq2vcfjIT8/v8U2iXmmstyioiJAZe31799/r22i0Sjl5eVJWX07d+7s1J42MkafEEIIIYQQQgghhGgTfr+f7OzspFtzgT6fz8exxx7L8uXLk6YvX758r4Gy0aNHN2m/bNkyjjvuOLxeb4ttEvNMZblDhgyhqKgoqU00GmXFihVum2OPPRav15vUZvv27Xz00UedGuiTjD4hhBBCCCGEEEII0eFmzZrF1KlTOe644xg9ejSPPPIIW7ZsYdq0aYDKDty6dStPPPEEoCrsLlq0iFmzZnH55ZezatUqHn30UbeaLsDPfvYzTjjhBObPn8/kyZP5xz/+wcsvv8wbb7yR8nI1TWPGjBnMmzePYcOGMWzYMObNm0coFOLCCy8EVNfmSy+9lGuuuYb8/Hzy8vK49tprOeKII/je977XUZuwCQn0CSGEEEIIIYQQQogON2XKFEpLS7ntttvYvn07I0eO5KWXXmLQoEGAypDbsmWL237IkCG89NJLzJw5kwceeIDi4mLuv/9+zjnnHLfNmDFjePrpp7n55pu55ZZbGDp0KM888wyjRo1KebkAs2fPpr6+nunTp1NeXs6oUaNYtmwZWVlZbpv77rsPj8fDeeedR319PSeddBKLFy/GMIz23Gwt0uzEqIVCCCGEEEIIIYQQQohuS8boE0IIIYQQQgghhBCiB5BAnxBCCCGEEEIIIYQQPYAE+oQQQgghhBBCCCGE6AEk0CeEEEIIIYQQQgghRA8ggT4hhBBCCCGEEEIIIXoACfQJIYQQQgghhBBCCNEDSKBPCCGEEEIIIYQQQogeQAJ9QgghhBBCCCGEEEL0ABLoE0IIIYQQQgghhBCiB5BAnxBCCCGEEEIIIYQQPYAE+oQQQgghhBBCCCGE6AEk0CeEEEIIIYQQQgghRA8ggT4hhBBCCCGEEEIIIXoACfQJIYQQQgghhBBCCNEDSKBPCCGEEEIIIYQQQogeQAJ9QgghhBBCCCGEEEL0ABLoE0IIIYQQQgghhBCiB5BAnxBCCCGEEEIIIYQQPYAE+oQQQgghhBBCCCGE6AEk0CeEEEIIIYQQQgghRA8ggT4hhBBCCCGEEEIIIXoACfQJIYQQQgghhBBCCNEDSKBPCCGEEEIIIYQQQogeQAJ9QgghhBBCCCGEEEL0ABLoE0IIIYQQQgghhBCiB5BAnxBCCCGEEEIIIYQQPYAE+oQQQgghhBBCCCGE6AEk0CeEEEIIIYQQQgghRA8ggT4hhBBCCCGEEEIIIXoACfQJIYQQQgghhBBCCNEDSKBPCCGEEEIIIYQQQogeQAJ9QgghhBBCCCGEEEL0ABLoE13GU089xcKFC5t9TNM05s6d26HrI2Dx4sVomsamTZs6e1VatGnTJjRNY/Hixe0y/5deeqnbHn9z585F0zR2797d2asihBCiB0nn++XEE0/kxBNPTJq257nda6+9hqZpvPbaa227oqLDDB48mIsvvrizV2OfLr74YgYPHtwu866rq2Pu3Lnd9jjWNI2rrrqqs1dDCLGfPJ29AkIkPPXUU3z00UfMmDGjyWOrVq3igAMO6PiV6uVOPfVUVq1aRf/+/Tt7VTrVSy+9xAMPPNBtg31CCCFEZ3rwwQf32eaYY45h1apVjBgxogPWSLSH5557juzs7M5ejU5VV1fHrbfeCtAkuC2EEB1FAn0ibXV1dYRCoQ5d5je/+c0OXd7e2LZNOBwmGAx29qp0iL59+9K3b9/OXg0hhBBCdGOpBO+ys7O7zPne3qR7DtwZ58yd6eijj+7sVRBCCIF03W1369ev54ILLqCwsBC/38/AgQP54Q9/SCQScdt89NFHTJ48mT59+hAIBDjqqKN4/PHHk+aT6M6wZMkSbrrpJoqLi8nOzuZ73/seGzZsSGq7Zs0aTjvtNPr164ff76e4uJhTTz2Vr7/+2m1j2zYPPvggRx11FMFgkD59+nDuuefy5ZdfJs3rxBNPZOTIkfz3v/9lzJgxhEIhfvzjH3PmmWcyaNAgLMtq8ppHjRrFMccc4/79wAMPcMIJJ9CvXz8yMjI44ogjuPvuu4nFYknLefHFF9m8eTOaprm3hMbdO9auXYumaTz66KNNlv2vf/0LTdN4/vnn3WmfffYZF154obs9hg8fzgMPPNDs/tpTIn394YcfZvjw4fj9fnffpDLfxH576qmnuO666+jfvz+ZmZmcfvrp7Nixg+rqaq644goKCgooKCjgkksuoaamJmkeqWy/xDYcOXIkr7/+Ot/85jcJBoMMGDCAW265BdM03XaJbq533303d955JwMHDiQQCHDcccfxn//8J2mezXXdTSxn9erVjB07llAoxEEHHcQvf/nLJsfDunXrmDBhAqFQiL59+/KTn/yEF198cb+65mzbto3zzjuPrKwscnJymDJlCiUlJc22feeddzjjjDPIy8sjEAhw9NFH8+c//zmpTV1dHddeey1DhgwhEAiQl5fHcccdx5IlSwDVvSOxXxsfmy11Z05so1WrVjFmzBiCwSCDBw/mscceA+DFF1/kmGOOIRQKccQRR7B06dKk53/++edccsklDBs2jFAoxIABAzj99NP58MMPk9pZlsUdd9zBoYceSjAYJDc3l2984xv8+te/bnEbrl+/noMOOohRo0axc+fOFtsKIYQQLfnqq684++yzyc7OJicnhx/84Afs2rUrqU1zXXf31FzX3YsvvpjMzEw+//xzJk2aRGZmJgceeCDXXHNN0rk0QDQa5Y477uCwww7D7/fTt29fLrnkkibr8swzzzBhwgT69+9PMBhk+PDhXH/99dTW1ia1Syz7ww8/ZMKECWRlZXHSSSftdf0TXZnfe+89zj33XPr06cPQoUOB9M+72/v8IbGtn3zySWbNmkVRURHBYJBx48axZs2aZrfDunXrOOmkk8jIyKBv375cddVV1NXVJbXds+tuOtcvtm0zb948Bg0a5J6XLl++PKVjpyWLFy/m0EMPdc/Vn3jiiWbbpXr8vPLKK5x44onk5+cTDAYZOHAg55xzDnV1dWzatMn9gfzWW291zxlb6s7ckdcKqVwj7sm2bW688Ua8Xi+/+93vWtrUQoguRDL62tHatWv59re/TUFBAbfddhvDhg1j+/btPP/880SjUfx+Pxs2bGDMmDH069eP+++/n/z8fJ588kkuvvhiduzYwezZs5PmeeONN/Ktb32L3//+91RVVXHddddx+umn88knn2AYBrW1tYwfP54hQ4bwwAMPUFhYSElJCa+++irV1dXufK688koWL17M1Vdfzfz58ykrK+O2225jzJgxrF27lsLCQrft9u3b+cEPfsDs2bOZN28euq5TUVHB5MmTeeWVV/je977ntl2/fj1vv/02999/vzvtiy++4MILL2TIkCH4fD7Wrl3LnXfeyfr16/nDH/4AqC4dV1xxBV988QXPPfdci9v1yCOP5Oijj+axxx7j0ksvTXps8eLF9OvXj0mTJgHw8ccfM2bMGAYOHMivfvUrioqK+Pe//83VV1/N7t27mTNnzj7349///ndef/11fvGLX1BUVES/fv3Snu+NN97Id77zHRYvXsymTZu49tprueCCC/B4PBx55JEsWbKENWvWcOONN5KVlZX29ksoKSnh/PPP5/rrr+e2227jxRdf5I477qC8vJxFixYltV20aBGDBg1i4cKFWJbF3XffzcSJE1mxYgWjR49ucZuUlJRw0UUXcc011zBnzhyee+45brjhBoqLi/nhD38IqONm3LhxZGRk8NBDD9GvXz+WLFmyX+N+1NfX873vfY9t27Zx1113ccghh/Diiy8yZcqUJm1fffVVTjnlFEaNGsXDDz9MTk4OTz/9NFOmTKGurs496Zo1axZ//OMfueOOOzj66KOpra3lo48+orS0FIBbbrmF2tpa/vrXv7Jq1Sp3/vvqzlxSUsIll1zC7NmzOeCAA/jNb37Dj3/8Y7766iv++te/cuONN5KTk8Ntt93GmWeeyZdffklxcTGggpn5+fn88pe/pG/fvpSVlfH4448zatQo1qxZw6GHHgrA3Xffzdy5c7n55ps54YQTiMVirF+/noqKir2u14oVKzjrrLM44YQTeOqpp3pVpoEQQoi2d9ZZZ3Heeecxbdo01q1bxy233MLHH3/MW2+9hdfr3e/5x2IxzjjjDC699FKuueYa/vvf/3L77beTk5PDL37xC0D98DV58mRef/11Zs+ezZgxY9i8eTNz5szhxBNP5J133nF7Y3z22WdMmjSJGTNmkJGRwfr165k/fz5vv/02r7zyStKyo9EoZ5xxBldeeSXXX3898Xh8n+t79tlnc/755zNt2jQ3eJjOeXdHnD8k3HjjjRxzzDH8/ve/p7Kykrlz53LiiSeyZs0aDjrooKR9MGnSJHc7rFy5kjvuuIPNmzfzwgsv7HOb7Ov6BeCmm27irrvu4oorruDss8/mq6++4rLLLiMWi3HIIYfscxnNWbx4MZdccgmTJ0/mV7/6lfsaI5EIut6Q75Lq8bNp0yZOPfVUxo4dyx/+8Adyc3PZunUrS5cuJRqN0r9/f5YuXcopp5zCpZdeymWXXQaQUu+Y9r5WSPUasbFIJMLFF1/Miy++yAsvvMApp5zSqv0ghOgEtmg33/3ud+3c3Fx7586de21z/vnn236/396yZUvS9IkTJ9qhUMiuqKiwbdu2X331VRuwJ02alNTuz3/+sw3Yq1atsm3btt955x0bsP/+97/vdZmrVq2yAftXv/pV0vSvvvrKDgaD9uzZs91p48aNswH7P//5T1LbWCxmFxYW2hdeeGHS9NmzZ9s+n8/evXt3s8s2TdOOxWL2E088YRuGYZeVlbmPnXrqqfagQYOafR5gz5kzx/37/vvvtwF7w4YN7rSysjLb7/fb11xzjTvt5JNPtg844AC7srIyaX5XXXWVHQgEkpa/t+Xm5OQ0aZfqfBP77fTTT09qN2PGDBuwr7766qTpZ555pp2Xl7fX9Wlp+yX21T/+8Y+k51x++eW2ruv25s2bbdu27Y0bN9qAXVxcbNfX17vtqqqq7Ly8PPt73/ueO+2xxx6zAXvjxo1NlvPWW28lLWfEiBH2ySef7P7985//3NY0zV63bl1Su5NPPtkG7FdffXWvr3NvHnroob2+RsB+7LHH3GmHHXaYffTRR9uxWCyp7WmnnWb379/fNk3Ttm3bHjlypH3mmWe2uNyf/OQndjofl4lt9M4777jTSktLbcMw7GAwaG/dutWd/v7779uAff/99+91fvF43I5Go/awYcPsmTNnJr2Wo446qsV1mTNnjg3Yu3btsv/4xz/aPp/Pvvrqq93XL4QQQrRG4vul8feSbdv2n/70Jxuwn3zySXfauHHj7HHjxiW12/PcLnHO1Pj84Ec/+pEN2H/+85+Tnjtp0iT70EMPdf9esmSJDdjPPvtsUrvVq1fbgP3ggw82+xosy7JjsZi9YsUKG7DXrl3bZNl/+MMfWtwOCYnt8Ytf/CJpemvOu9v7/CGxrY855hjbsix3+qZNm2yv12tfdtllTbbDr3/966R533nnnTZgv/HGG+60QYMG2T/60Y+aLGdf1y+Jc/gpU6Y0u+32PHZSYZqmXVxcvNfX2PiaI9Xj569//asN2O+///5el7tr164mx3ZLOupaIZVrRNtW78uf/OQndmlpqf3tb3/bHjBgQIuvVwjRNUnX3XZSV1fHihUrOO+881r8FeeVV17hpJNO4sADD0yafvHFF1NXV5eUQQRwxhlnJP39jW98A4DNmzcDcPDBB9OnTx+uu+46Hn74YT7++OMmy/znP/+Jpmn84Ac/IB6Pu7eioiKOPPLIJl0q+/Tpw3e/+92kaR6Phx/84Af87W9/o7KyEgDTNPnjH//I5MmTyc/Pd9uuWbOGM844g/z8fAzDwOv18sMf/hDTNPn000/3um1actFFF+H3+5OqrC5ZsoRIJMIll1wCQDgc5j//+Q9nnXUWoVAo6bVOmjSJcDjMm2++uc9lffe736VPnz7u362Z72mnnZb09/DhwwFV7GLP6WVlZUkp+elsv6ysrCbHyIUXXohlWfz3v/9Nmn722WcTCASSnnv66afz3//+N6mrb3OKioo4/vjjk6Z94xvfcI9DUJljI0eObDIuzwUXXNDivFvy6quv7vU1Nvb555+zfv16LrroIoAm+2j79u1ul5Hjjz+ef/3rX1x//fW89tpr1NfXt3r9Guvfvz/HHnus+3deXh79+vXjqKOOcn95h4ZjofG2i8fjzJs3jxEjRuDz+fB4PPh8Pj777DM++eQTt93xxx/P2rVrmT59Ov/+97+pqqra6/rceeedXHzxxfzyl7/k17/+ddIv2UIIIURrJb5rE8477zw8Hg+vvvpqm8xf0zROP/30pGl7nnP885//JDc3l9NPPz3pO/+oo46iqKgo6dz2yy+/5MILL6SoqMg9rxo3bhxA0ndswjnnnJPW+u7ZPt3z7o44f0i48MILk4bKGTRoEGPGjGl23+25nxPnXqns531dv7z55ptEIhHOO++8pHbf/OY3W10dd8OGDWzbtm2vr7GxVI+fo446Cp/PxxVXXMHjjz/epOv1/mjva4VUrhETNm7cyOjRo6mqquLNN9/kyCOPbKuXKYToIHKl107Ky8sxTXOflWJLS0ub7QKY+CJPdB9MaBxAA/D7/QBucCInJ4cVK1Zw1FFHceONN3L44YdTXFzMnDlz3HEaduzYgW3bFBYW4vV6k25vvvkmu3fvTlrG3roo/vjHPyYcDvP0008D8O9//5vt27e7gTaALVu2MHbsWLZu3cqvf/1rXn/9dVavXu2OedbaoEpeXh5nnHEGTzzxhBuUWrx4MccffzyHH344oLZdPB7nN7/5TZPXmejau+drbc6er781883Ly0v62+fztTg9HA4D6W+/xl0/EoqKitz1bm76ntOi0WiTsT/2tOdxCOpYbLw+paWlza5Pc9NStbd57vladuzYAcC1117bZB9Nnz4daNhH999/P9dddx1///vf+c53vkNeXh5nnnkmn332WavXE5ruW1D7d1/7HFR34ltuuYUzzzyTF154gbfeeovVq1dz5JFHJm3jG264gXvvvZc333yTiRMnkp+fz0knncQ777zTZNlPPvkkAwYM4Pzzz9+v1yWEEEI0tud3sMfjIT8/v8l5R2uFQqGkHyZBnXM0/t7csWMHFRUV+Hy+Jt/7JSUl7nd+TU0NY8eO5a233uKOO+7gtddeY/Xq1fztb38Dmp5XhUKhtKvI7nnemO55d0ecPyTs7Vxwz32X2KfNPTeV/byv65fEPNryvDExz729xsZSPX6GDh3Kyy+/TL9+/fjJT37C0KFDGTp06D7HRk5Fe18rpHKNmPD222/z6aefMmXKlH1eywohuiYZo6+d5OXlYRhGi4Obgvri2759e5Pp27ZtA6CgoCDtZR9xxBE8/fTT2LbNBx98wOLFi7ntttsIBoNcf/31FBQUoGkar7/+uvtF29ie0xr/CtbYiBEjOP7443nssce48soreeyx/8/ed4dZVpTpv1V1wg2dZqYnMQQBQUSCCjpkUYQBwyomxBUUMbv7ExAVFAVUdEGYcRXTGlYxILJiwCW6RgQTKoqYRcIwwzCh8w3nnKrfH1X1VZ3u2zO3J4d6n6efe/vcE+qkqre+8H7/jd122w0nnXQSrfOtb30L4+PjuOGGG7DXXnvR8t/+9rczPq/JOOuss3D99dfj9ttvx5577olf/vKX+OQnP0m/z5o1C0IInHHGGXjLW97ScR977733Bo8z+fw31367wUyvnzVw+bCFKiaTrE4FLFauXIkkSdDT07MJrQYdb33t2dh9/uIXv9jgPu17c+GFF+JFL3pRx31ZnZp6vY5LL70Ul156KR599FGK7nv+85+PP/3pTxvd1k3Bl7/8ZZx55pn44Ac/WFq+evVqDAwM0P9RFOG8887Deeedh6GhIXzve9/Du971LixZsgQPPfRQSX/vlltuwWmnnYZjjz0W//d//1d6ngICAgICAjYWK1euxKJFi+j/PM+xZs2ajk7BLYXBwUHMmTNnSnEKi97eXgA6k+aRRx7BD3/4Q4riAzCttu10HHh9mLzNTHn3pqBb/mAxHRecfO863dPp+OXGwO5jOt64MVF9dp/TnaOPbp8fADj22GNx7LHHoigK/OpXv8LHPvYxnHPOOZg/f/42cabOZK6woTmixWmnnYYFCxbg3e9+N6SUuOiii7bGqQQEBGxGhIi+LQRbuer6669fb9TYCSecQKTDxzXXXINarYYjjjhio9vAGMOhhx6KZcuWYWBgAL/+9a8B6NBwpRSWL1+Oww8/fMrfwQcf3PUxzjrrLPz85z/HHXfcgRtvvBGvetWrSFTXtgEokxilVMeqTZMjwjaEk046CYsWLcJ///d/47//+79RqVRKaaG1Wg3PfOYz8Zvf/AaHHHJIx3PdGHKypfbbCTO5fgAwOjpaqjgMAF/96lfBOcdxxx1XWn7DDTeUvMCjo6O48cYbceyxx5bu4cbiGc94Bu69994pqQE2AnRj8MxnPnPac/TxhCc8Afvttx/uueeejvfn8MMPL5E2i/nz5+PVr341Tj/9dPz5z3+manKTPc9bGoyxKcT/f//3f7F8+fJptxkYGMBLXvISvOUtb8HatWunVAXea6+9aJJx7LHHbnLEYkBAQEBAAAB85StfKf3/9a9/HXmeb1Kl1Jniec97HtasWYOiKDqO+da514lXAcCnP/3pLdq2zcW7N4SZ8odrr70WSin6/4EHHsCdd97Z8d5Nvs+We22O+7x48WKkaYrrrruutPxnP/tZKTV5JnjCE56AhQsXTnuOPrp9fnwIIbB48WKKnLPzrG3BGf3jAuufK9htOs0RfVx00UX4yEc+gve+97248MILN3/DAwICtihCRN8WxNKlS3HMMcdg8eLFuOCCC/D4xz8ejz76KL7zne/g05/+NHp7e3HxxRfju9/9Lp75zGfive99L2bPno2vfOUr+N///V9cccUV6O/vn9Exv/vd7+ITn/gEXvjCF2KfffaBUgo33HADhoaGcOKJJwIAjj76aLz+9a/HWWedhV/96lc47rjjUK/XsWLFCtxxxx04+OCD8aY3vamr451++uk477zzcPrpp1NlJh8nnngikiTB6aefjne84x1oNpv45Cc/iXXr1k3Z18EHH4wbbrgBn/zkJ3HYYYeBc47DDz982mMLIXDmmWdi6dKl6Ovrw4te9KIp1+s///M/ccwxx+DYY4/Fm970JjzucY/D6Ogo/va3v+HGG2+cUl2tW2yp/U7GTK4foL2Xb3rTm/Dggw9i//33x0033YTPfOYzeNOb3oQ999yztK4QAieeeCLOO+88SClx+eWXY2RkBJdeeulmafs555yDz3/+8zjllFPwvve9D/Pnz8dXv/pVipLzNeJ++MMf4pnPfCYuvvhiXHLJJdPu88wzz8SyZctw5pln4rLLLsN+++2Hm266CbfeeuuUdT/96U/jlFNOwZIlS/DqV78aixYtwtq1a/HHP/4Rv/71r3H99dcD0OTyec97Hg455BDMmjULf/zjH/GlL30JRx55JEXEWRJ++eWX45RTToEQAocccgilT2xuPO95z8MXvvAFHHDAATjkkENw991348Mf/vCU9InnP//5OOigg3D44Ydj7ty5eOCBB/CRj3wEe+21F/bbb78p+124cCF+9KMfYcmSJTjuuONw++2346CDDtoi5xCw5fDFjy3At28Zw/XfGd4sRvmAgICATcENN9yAKIpw4oknUtXdQw89dIre2pbEy1/+cnzlK1/Bc57zHLz1rW/F05/+dMRxjIcffhg/+MEP8IIXvACnnnoqjjrqKMyaNQtvfOMbcfHFFyOOY3zlK1/BPffcs8Xatjl594bQLX+wWLVqFU499VS87nWvw/DwMC6++GJUKpUphp0kSXDVVVdhbGwMT3va06jq7imnnIJjjjlmk9s9e/ZsnHfeefjQhz6EWbNm4dRTT8XDDz+MSy+9FAsXLpyiK3z88cfjRz/6UcmANxmcc7z//e/Ha1/7WjrHoaEhXHLJJVNSd7t9fj71qU/h+9//Pp773Odizz33RLPZpKq2z372swHo6L+99toL3/72t3HCCSdg9uzZGBwc3GitwQ2h27lCN3PEyXjrW9+Knp4evP71r8fY2Bg++tGPblSUa8DOiZUrV+K0U/fBVR/78Xrn7AHbCNuiAsiuhPvuu0+99KUvVXPmzFFJkqg999xTvfrVr1bNZpPW+f3vf6+e//znq/7+fpUkiTr00ENL1UOVchWZrr/++tJyW0HVrv+nP/1JnX766WrfffdV1WpV9ff3q6c//enqC1/4wpS2ff7zn1eLFy9W9XpdVatVte+++6ozzzyzVOnrGc94hnrSk5603nN8xSteoQCoo48+uuPvN954ozr00ENVpVJRixYtUm9/+9vVzTffPKWy2tq1a9VLXvISNTAwoBhjpSqnmKZ61V/+8hcFQAFQt99+e8fj33///eo1r3mNWrRokYrjWM2dO1cdddRR6gMf+MB6z8se9y1vectG73e6+2ar2f7yl78sLfcrpFp0e/3svfrhD3+oDj/8cJWmqVq4cKF617veVao8a5+Zyy+/XF166aVq9913V0mSqKc85Snq1ltv7djOyVV3Oz0Tr3rVq6ZUTb733nvVs5/9bFWpVNTs2bPV2Wefrb74xS9OqWx34403KgDqU5/6VMdr7ePhhx9WL37xi1VPT4/q7e1VL37xi9Wdd945pequUkrdc8896mUve5maN2+eiuNYLViwQD3rWc8qHeeCCy5Qhx9+uJo1a5ZK01Tts88+6txzzy1Vjm61Wuq1r32tmjt3Lj2b/jWZjOmu0V577aWe+9znTlk++Tlbt26dOvvss9W8efNUrVZTxxxzjPrJT34ypWrhVVddpY466ig1ODhI/cvZZ5+t/vnPf9I6nZ6poaEhdfTRR6vZs2dPeQYDtm+MjY2pBfOEqteY+uIXv7itmxMQELALw44vd999t3r+859P4/Lpp5+uHn300dK6m1J1t16vT3tsH1mWqSuvvJI4U09PjzrggAPUG97wBvXXv/6V1rvzzjvVkUceqWq1mpo7d6567Wtfq379619P4RHTHXtD18Mfb31sCu/e3PzBXusvfelL6v/9v/+n5s6dq9I0Vccee2ypPf51+N3vfqeOP/54Va1W1ezZs9Wb3vQmNTY2NqWdnarubmj+opSugPyBD3yAeOkhhxyivvvd76pDDz1UnXrqqaXtDzvsMLVgwYKpF7kDPvvZz6r99ttPJUmi9t9/f/X5z3++I2ft5vm566671Kmnnqr22msvlaapmjNnjnrGM56hvvOd75T29b3vfU895SlPUWmaKgClazIZW2uu0O0csdPc59prr1VRFKmzzjpLFUUx7bkE7Fp481n9ql5j6oTjqtu6KQEdwJRajyskICBgh8Hxxx+P1atX4957713vev/85z+x995748Mf/jDOP//8rdQ6h9e//vW49tprsWbNGoqIe8c73oFrr70Wf/3rX6cIbgcEBDj8x0WDuOF/x/CmswbwvivX4M9/G99ikaUBAQEBATsnbCbF9ddfj5e85CXrXffVr341/ud//meDhdq2BO6//34ccMABuPjii/Gud70LgJaamT17Nj7ykY9Mq5UdEBCwZXH//ffjwAP3xa1fW4R/OfMR3PDN2/GsZz1rWzcrwENI3Q0ICNhieN/73ofddtsN++yzD8bGxvDd734Xn/3sZ3HRRReVjBM/+MEP8J73vCcY+QIC1oOhoSFc8fF1+NqnF+KZR1dx5cfX4TNLd8dbLli1rZsWEBAQEBCwSbjnnntw7bXX4qijjkJfXx/+/Oc/44orrkBfXx/OPvtsWu/HP/4xFi1ahNe97nXbsLUBAbs2LrngULz0+T04ZnEVb3/zLLzr7c/FXb+aCKnd2xGCoS8gIGCLIY5jfPjDH8bDDz+MPM+x3377YenSpXjrW99aWu+Xv/zlNmphQMCOgw9fsg+e/KQUJxxbBWMM73vnHPzbhavw6n8fR71e39bNCwgICAgI2GjU63X86le/wuc+9zkMDQ2hv78fxx9/PC677DLMnz+f1nvuc5+L5z73uduwpQEBuzbuu+8+fP07Y7j3R7rK87+/dgAf/ewQbrzxRvzLv/zLNm5dgEVI3Q0ICAgICNjO8eijj2LffRbitq8vwhGHVQHoqnpHPuchvOi5PbjgA9NXdw8ICAgICAgICAjYHHjRc3uwYF6Eqz80j5Zd/bkhfObLw/jtvROhUNx2Ar7hVQICAgICAgK2JT540QF41rE1MvIBAGMMH7hwEFd8fB2Ghoa2XeMCAgICAgICAgJ2evzyl7/ErT+YwLvPmV1a/rpX9mF0TOJrX/vaNmpZwGSEiL6AgICAgIDtGA888AAOOGBv/OymPXDwE9Mpv5/40odxxGEVXPaRtdugdQEBAQEBAQEBAbsCTnxGHU89JMWH3j045bcvXDeCy5atxR//MhYKxW0HCBF9AQEBAQEB2zEuvfAQvOg5PR2NfADw/gvm4D8/M4RHH310o/b/iU98AnvvvTcqlQoOO+ww/OQnP1nv+j/60Y9w2GGHoVKpYJ999sGnPvWpKet84xvfwIEHHog0TXHggQfim9/85oyPe8MNN2DJkiUYHBwEYwy//e1vp+yj1Wrh3//93zE4OIh6vY5/+Zd/wcMPPzyzCxAQEBAQEBAQELBe/OAHP8Avf9vE2988q+Pvr3xxL5IY+Oyy3Tdq/4GPbl50XYyj2Wyi3W5vybYEBAQEBARs10iSZKtWh/7Tn/6Ea785it/9YM9p1znisCqedWwNl737AHz0s+tmtP/rrrsO55xzDj7xiU/g6KOPxqc//WmccsopuO+++7DnnlOPef/99+M5z3kOXve61+HLX/4yfvrTn+LNb34z5s6dixe/+MUAgLvuugunnXYa3v/+9+PUU0/FN7/5TbzsZS/DHXfcgcWLF3d93PHxcRx99NF46UtfOm11xXPOOQc33ngjvva1r2HOnDl429vehuc973m4++67g0bMTorARwMCAgICdnVsbT6qlMK73v4cnP+mWZg9qzO/iiKGS985B+dc9BjO+n8NVKvVjut1QuCjWwCqCzQaDbVgwQIFIPyFv/AX/sJf+Ntl/xYsWKAajUY3Q+dmwUue36PecGa/Klbst96/335/T1WpMPXPf/5zRvt/+tOfrt74xjeWlh1wwAHqggsu6Lj+O97xDnXAAQeUlr3hDW9QRxxxBP3/spe9TJ188smldZYsWaJe/vKXb9Rx77//fgVA/eY3vyktHxoaUnEcq6997Wu0bPny5Ypzrm655ZaO7Q/YsRH4aPgLf+Ev/IW/8Lf1+eh3vvMdNXeOUMN/23e9fDR/5PHqsENSdfl7Bme0/8BHNz+6iuhrt9tYuXIlHnroIfT19XWzSUBAQEBAwE6FkZER7LHHHmi321vFi/rrX/8a/3v7OP585+M2uO7BT0zxouf04L3vOBgf+0w5VSBNU6Tp1LTfdruNu+++GxdccEFp+UknnYQ777yz43HuuusunHTSSaVlS5Yswec+9zlkWYY4jnHXXXfh3HPPnbLORz7ykY0+bifcfffdyLKs1J7ddtsNBx10EO68804sWbKk630F7BgIfDQgICAgYFfH1uajUkq8+50vwbveOgs99fUrvzHG8P4L5uCVb1mJV//bqint68RJAx/dMug6dRcA+vr6ArEKCAgICAjYCrj99ttxygl1LFrY3VD9ulf241/OXI5r+vtLyy+++GJccsklU9ZfvXo1iqLA/PnzS8vnz5+PlStXdjzGypUrO66f5zlWr16NhQsXTruO3efGHHe6tiRJglmzyloxM91PwI6HwEcDAgICAgK2DlauXInf/7GN1/5r/4ZXBnDS8TX01DjOP/98fOlLXyr91omTBj66ZTAjQ19AQEBAQEDA1kOSABKyq3XjVKG3byEeXv7H0vJO0Xw+GGOl/5VSU5ZtaP3Jy7vZ50yP2y02134CAgICAgICAgI04lR1x0kZkKYMp59+Oq6++urST+vjpIGPbl4EQ19AQEBAQMB2CgWFQnVn6JNKAmBdRzoNDg5CCDHF27hq1aop3k2LBQsWdFw/iiLMmTNnvevYfW7McadrS7vdxrp160pe1FWrVuGoo47qej8BAQEBAQEBAQHrR6EkoLozXCkoJEnSFScNfHTLYP1J1gEBAQEBAQHbFBKqy7+ZIUkSHHbYYbj99ttLy2+//fZpicmRRx45Zf3bbrsNhx9+OOI4Xu86dp8bc9xOOOywwxDHcWk/K1aswL333hsMfQEBAQEBAQEBmxHd81E1o/0GPrplECL6AgICAgICtlModJkmARhTn5jR/s877zycccYZOPzww3HkkUfiv/7rv/Dggw/ijW98IwDgwgsvxPLly3HNNdcAAN74xjfi6quvxnnnnYfXve51uOuuu/C5z30O1157Le3zrW99K4477jhcfvnleMELXoBvf/vb+N73voc77rij6+MCwNq1a/Hggw/ikUceAQD8+c9/BqA9pwsWLEB/fz/OPvtsvO1tb8OcOXMwe/ZsnH/++Tj44IPx7Gc/e0bXISAgICAgICAgYHpISDBsmVTUwEc3P4KhLyAgICAgYDuFAlCo7jyjssv1fJx22mlYs2YN3ve+92HFihU46KCDcNNNN2GvvfYCoD2SDz74IK2/995746abbsK5556Lj3/849htt93w0Y9+FC9+8YtpnaOOOgpf+9rXcNFFF+E973kP9t13X1x33XVYvHhx18cFgO985zs466yz6P+Xv/zlAMpCzsuWLUMURXjZy16GRqOBE044AV/4whcgxMwMngEBAQEBAQEBAdOjUArdBuvNlJIGPrr5wZTa8G0YGRlBf38/hoeHQ5WzXQQn8pdutn3dLq/fbPuy2Jzt2xhsiXMKCAjYvrG1x8LLL78cv/r5pfjM1XO6Wv9Xv27hVW+IsXz58i3csoCAbYPAR3dNbM+cdFvzUSBw0oCAXQ1beyx85JFHsGjRIqx+cBGE6C6i7/BjVuLTn7kFJ5xwwhZuXcB0CBF9uxi2BSFZ3zEnk5PtgTB1g8ntDCQrICBgS0ACyLpM3c1nqIkSEBAQsK2wrfjedMftxON2RE4a+GhAQMCWQmaSd7uBCpx0myMY+nZC7CjEBNix2ro+zPQ8AhHbPNgUwr493INO7d8e2hWw/UAptUVTdwMCAgK2JHYUnrejtHND2JjzCLxj07GpBuRtfQ+2xzYFbH+YSepuwLZHMPTtJNieCMrt8vrtqj3bC7bnAXN7I4YzIUwz2X57wIbadiJ/6Xb9rARsfXRbTXemVXcDAgICNje2p/E38NHO2N45xvbmPN8UTro9P3/d8FFg+39eArYeJNB1KY5gD9z2CIa+gICAgICA7RQKQNElXZKBVgUEBAQEBAQEBGwBdMtHA7YPBEPfdoqN9R6x6Sq7MN55udIxIKooum7bdLBt2569V1sL24P3a0e+D91ev+3hOm8JzETXMmDnhq662926m96LBwQEBJSx0dFMhncyzjouL0FJ76vquHwmCHy0jO2BN+zI96Kb67c9XOMthU3NsgnYeVAodF91d4u2JKAbBEPfNsLGdpobGiiVVFNJFTaPIc9HJxK1Iw/imwPb24C3OYju9nZOOwM2VfA7iG7vWlDoPiU3kKqAgICZYkvxUYvJvLRrPjoDI9/kFN1dnY8C2x8/2Bxp1NvbOe3oCHw0YKaYSepuwLZHMPRtZmwoEmdjCJX/2wY7YCWhig0fb1Mwpa3TRQua9uwq2F61LGb0/EzC9npOOxumu75Bzy9Ap+52R6u6rYQWEBCwa2BDnHOmnHSmfNTitmzLRNh1bOcGMlh2FWyP/GBT+KjdZns7p50Nm8JH17d9wM4BzUcD19xREAx9mwHdDlbTeT5O5C9dbwe5scRokwhVB6J0e3Hd1GVB6HinwM44MHeqsruhZ3V7uQ4b61FdH7aXcwuYGRQA2WWoXrfrBQQE7LzoZkxYHx+1n9sFH12PI3kyJw3pujsPdka+Mvmd21H4KLD5Oen2dG4BM4NUAAupuzsMgqFvG2G6jnCrExSfRHXwdnYy7k1ZJ5CrHQY78+DarbexE7ZVxbYZwb6r23lUwqZWcA6pIGUosBDRFxAQsMWw3fBRi2mMe93wUSA4oHcU7Mzj+6bwUWDLXptd7d3YlArOgY9ORYjo27EQDH0BAQEBAQHbKWaSutvtegEBAQEBAQEBAQEzQTD07VgIhr5NRKf0wPX9vrHY6lFzJmpoJpoLG+vtOCl+uT7kZi4Ysq0QNES2HmbyPmzte7Kx7yqLYlc924/e8yP67HfOyvmak6L9lFRbPQJwY/uqXc3L3C2kYsjUenRQPeQqkK+AgF0VnfrQTdVEmw5bNGpumjFra/JR15StP4ZuTgTdtK2HnY6PMk5clHHWOatkfRrtk9alatrbgJNurB5kwFRkikN2yTVVMAhucwRD30Zic6Q6dKt/sjkHhCkd3nQdrum8bSd/UvIK3Nb+6mZrh4/bsq8BAJZUz3DGPiW32aAwI3QY+AKh2vLYXrRNun7fGQePTXcbuW6XDHqcA1I/Q6xaAZgZHKWEyvKpu7PbAVD++zFJpI1xBhT69yXVM0rP6a3Nr0zb3BPFaaX/u02ZKm2zgQnm5HsU3pvO0BF93Rn6ZJfrBQQE7DxY3zi0KZx0q/PRLrEljVc+HwUA5nFRVRTbNx/tgDCubnlsL3wU6PJ9N/MWHkeA5ZKMgXFO3wEAQjiuGQniqKooHNc01bSZZ/CbwkmVXpeZ+Z2Skt4v33F9a+NLnc9pEh8FZs5JZ8pHp1sWYPlot4a+gG2NYOjbhtgSgvsz2Q8TomSoUp6RgIwSHqyn0xKhzY1bG1/Cksq/6ralNahWCwAg2+0tcryNBuPagOLBVpQL2LLo9B6Qx1GI9RqvZrJPoIvINMadQZx3GPQYB6+k7t9qRX+xn1IBaWJ+ZESGSsgysMgY+qwRnJWPxXhs9idLpA2A3qfZjqWJO4ZUOGXuG/V32/Y0pe/RooWO1E006L20fQTjbGbXuoNB/KT45bR8SzkRdgYosK69p92uFxAQEDAZW5uTlvbRYSz1OSkTgn6zy0+KX75F+SigDX4sZtQG4qPbi8Gvy8J5AVsGk5/hUgQc1u9Q3eD+PHSdKeE9D/67RAY7IcCMs5lVUiAxHDQSjj9ag5/PSZUCcs1FWV44PtqpCRBuH2wqJ2HeviAVGQZPHny9Z1iMaB/RvEG9LC+gzPu3pH5mqQ2bykd9Y2J4f9YPqRhY4Jo7DIKhbyPQybuwpbEx6XAbTNlYT8g166nrT7OObDQosuhEcZobQBjfrJN0PmvAfOFgdgAaHd2+jH1KQu0cWcY7FDb07G8SoepQlGaD75qS4Kkx2tn3QapSCjrr7zNfmIvki7xoPN+gbpsgDRECoKqJ21dm9pvlzpuae9F+QgDCkivzmcZQkZlAFQpoNM12hSNxtg3+NeDunFglBevvNQ3W29z8z2WlS3Hy4OsBALes/i+cPOu1+vu6z2oyBjiD52RyaK7JybNeSwRONhrUHrvdrePXYFfFTDT6tpOpZ0BAwFbCtkovm2k03rR8dLKBj/HSBNw6nVmaOkOEGStUq0V83E8t3KyctL+XjqtaLTdMt5qb7RibhO3F4LiLYdpn39yPW5szN0BvSmSu7/Cm98SLRLXzKVarApaPcY8zck7flTXOcZRJhc9Hc/NDbjhdnpccycSJGXPtse9RJLSxEACyHCzL3Lp2O+54MmLjzOaMmBDLc6Cl+4GbV3x8yvU4efD1uGX1f+nv/a/BLcOfB6ANhNxcC8vVS2nJghNvRVFAehk1to/aUs6FHQVBo2/HwowMfS/oPxMR0y/c5g5pPSl5hf6i5Hq12kRvL72w2wq+tX9y5+un1AFlj6RZMOPj+ZpvMyFXG9KKKxkkOCsRLTWuJ9u29ZNJDRm6mJpi+GScbXpHmOcu/HvSNd0m2EB14p0Vh7926ZRlUUM/FTwHmLkUP73+bVulPSzS/c90Xv9ucaI4rXM0HuOAKkcNTL7f9I4zrj2iAH1CKcjRMfM7A2pVvTgR2tAGOGIEgHkkQvaZdWMBmHV5K6Pf81nG+C4leCMz2xdA26zTalOaLoxxD80WtVelCbVTpbE+DuBShnMJ5PZ7Qct9oqZSY5g79D2O1BUKzBjoT9n7PLDB2fr7fu9whnu7bjtzhjylwAyBY7UqWG+PPmcbSTgySsc9ZY+3Qg2P0LWgdGa/jzDk9NaxL2JL4ET+UtQHq1tk3+uDAkPRpUafVBwhWSJgV8CW5KOAjhabVj7Epr6ZCeN0KWdbAyUDmuVivo4r3BjXcaycIZ/x02Zn4oCeNt3WHF9J296C2lsa59sZoEyWx+T+32zPuP6f5hMGm2z4KznUnKzNNtOV3kX5KAAc9vplNMTxQkG0DFdyVAl3fn3L89HSXG9DOnUbAL23HbKFgPXoRHoclrhxJXV81HBN1W47h26tBlU3vLVQjo8q950ZZ7SMYqiKMbR7/BAckNXyvIy3c7C2eU/ameOlPh+xhjUZkcNbVVOgr6a/R9yl+fp81HLRQjouWa1A1fV2Jx9yEXFmy6nZQD9O2ed8/X32AE7Z8xzdzlkD1A5lDYxZDmWjFZNEZ78AgBDgZrlqtYkTn9z/Gr3M7xcm3SPb126pbJUT+UuRq2zDK24BFMrNkzYEFSL/tjlmZOj79vA16Ovr2ywHPmX+m9xkLc/BbCckFXhVT6aYmSSjkICZBKLdphe2vc88KPJGAPGQJgGsqa38bN2oG6CTBDc/+JHu2vbECwE7wVaSvAmybqN3AL5yLQAgmjOHOiw5Mjol8uSk5BUekVHTDwgbGKzXV+K7Gy/QhghZmQAWULn1sJS1+qas30GUVUln/JtpCLT1zJyUvAK8z9xz5gaxUke6kxTv2NZ4yptddFZlnYS1KSjOwGwPYZ1sGcDsrReANCktR7xyKQ3AP/vKliFZ/nNvifzkZ+CUBW827WVlPRHo6NSbH/uUPo8kmbbQhT/hsL/ZyDImhEvBTVPnAe1xBiBufwcge4xhLYmccc4SFcaghPN6WpLEcolsQO8j7/U8qOQt5aXUXD5qJkWAM8gZz6tijIgaCgVZ0b8X1QjKTv6sHEsmEY2ZNjY9A2Q1horNxLZd0O9E6rhnpBSCIg+ZUlD9mogx05+ysQZ4T43a7mvBUPSiXTY44AiZhCNfjSZpyShrNCwkbbek51XUdt7fh5uXf4z+t5GHzPPeombaE0fOmzwy5o49oY9xu7weL5x3JrY+WNfae3q90C8G7BrYXAa+k/tf4+kDmwljFLvokSSmvpXFkYvONn3OKfu9A9IbA2hiqpSLfBkd14tGRmnSbSNO1odTnnCB/tJuu0m54C7iRUnA9FHCZGKooiCnj2+EnMJHgfUbKdbDS6fjpBsy+vkO6G74qJIdNGrJGOJFx0vl8dKsdF4by0cB4OaVnyDpipK+ruWkk9u9NQxv9hibaGDaHvHkf9N8lClANPX9jFogXuoHenFvqFPm1igGHPGvV9HyLcVH/WAGKigo1RRD3cmzXuui5qQqZTXYoBXKePCfn1Jka0G8lIzgUUzzZpamLkovTYCk/Gz6DmVVSyGr+nfezEtxWaVIPkBr6plkKllNUPSZPtBL6bUObBVxcJs9IhiY3VckoJKI1tH75/RdJgJFag2LDExaw62CMDyUt7z2Gwe1EhzM9HGsmYMpY5CrxKX1CPayKgVYjmoiApF714ExmvOrOALEVEOV7dNZs03Rxchz6nNVu0332e87uDFM3vzoJ2lfJw++vsxHgZLjWu/QXOOxcZK0ul1ej2eyF05p29aABAcLEX07DELqbkBAQEBAQBdg0dYfMkPqbkDAVNhouoCAgICAgF0NPEnIELs1MZPU3ZBfsu3BlOqkAF/GyMgI+vv78UzxInw//8ZGHWhyeme0z14u2q7RpKgJwHgnALJuy93nIe/RpK6oRsjqJrokV4gm9NRGphzxsH7i4z8+BABQSoIZEc/2/F5IE5XSHIzAbLCOzfxqSVQeM+mphaJIGplwqEg/0KKpN4qG21Q9iI80gDHjqW22nBXeenUmVcxUNpyZM9Kk0g2ZGjlX0qXbnF5Cc6zbi+s66w12iHTyNQwYZ+T9ns6Dac9jY1N4T5n7RqdlNqsf+WztqY4eGwUAFP/453YR0bcjVmU6/GydjivMoyiF+x6PexGTHJDGmyWNg9D3sqZDGaT1yqUcearXLSqc9mvHgl984bwZtfHkg9+tvwhBkWM33/dBLDn8Et0O45G75Z730zZLnnKx1u0AtMfQRH3xdSbls9V2HnmvSAWlqAJQjaZ7rqy+SZ45/ZOeuvO+9fbQe14Mag0738sICfIGKsYghnUfx4ZG3HFtaoWSdDwWR8j3210v554X1IAVXhUzCZfK4BX0sJGCRTWikVYJ5qLtmbtPpTSYhm47zyV5d1XEwNt6eTRqoqZzl0KhIk6iyTIWzturFHl7Kfovl06L0Pfq+tovJmqQtz3NF3+YKrzv1vM8NObW4Ryo6+gaWUncMyEE2nNqpe18JCtHXfTNyBh5Tm0Kimy2UCDH97PrMTw8vNmi29eHyy+/HLfe+UFc+JHdulr/j79t4PJ/y7B8+fIt3LKAgG0Dn49GLN5ojnGiOI2MhXz2gEtta+r33k/VQhyBmchfNbvPRVzX9DYyYcQleaYo+ihd04RYua60X8zqRz5HZyvk9QhFqlcuEgaRmQimCd0HivGcogNlIiBNlIqMGYTpk0UjBx+32SxmIB8dc2lpfraGz5ls/+1V0FSFS5stSaZ4Y+G06cybCIrym8xJ15eyOKlAR4kTdoh621iRfYoEr1ahZumxXtYSiHUT+lCrVgMAipHRbZpKuyPyUQB42mucRIx9d0QLiBo2dRPEJaVgUN6jadcRTRNNxRlkYnkrR2F4qZ9t+IsvzoyPAoaT2vldoXDLHy4DAJxy4LtonnfzX6+g9Zc85WIAWn5FedFZrGH6gUajzGsmQeU57VdXezbvoE1NjSOnu5cmLqKvWoE0qbnSRNIx5TgjGKP2iOEG2PCoOSdPrsXvD0xmlRzsR1E3mSJ8arQZk4r6wFK2BhwftfMFFbFyRgn97jgqzxVEy/DRzNxbxhznyySicU/CZtKxlBDlaDwvJZh4nt1OMGqvigVk6iK2LR9lWVGK1CZ4fJR+b7bc3N+LbKTCJ5xRxKGsp5CJjVI00ZqFghjTzwkfbVLEtmo2iY+qdhu5yvD99tbjo4888ggWLVqEm//6BIgOkY6dcNaz/o4vfvZmnHDCCVu4dQHTYcbhCX6I8kwGTSJURr/JpnoBAB+JXDqcEC5lqk8bd2TiUqoUByKjySAmCnDzoqaPNsFGjbHQCMczIQCbxltItOYZY2HC3GBCtjSO5jzdBikYGRPBNHEDAG4mxkXMUXlMH0v2VMHtxL7VLqf1AbrdlnxEkStfnuVAxU1u6QUf1cQBUoFNGBLRbFFIsGy3pxKJyeH7XRKNE8Vp067bMT2YcjY9o59Ax8IUlgxubCWjmx/7FI48XYffK8GQrtWdZvSoT962nqFvRyVQk3H42UtRW12+bjpcfuq6rFBkD7EVllihiFDJmFOYfTSeQ0yYwTrRW+VVR7IWn7EU3Bp9CuDO61w6xbGnXlk6bhEz3Pl7TaKedeJ/EDl41gn/gcgOjiY8/4TjPwiem/1WIiCzxiln6JPVOQAAMdYEMykAKhIunUFKwJAdlnr6JsJ7V80kUNVrRJ5KQsXMHdc6FMAYOQmkYJQ2y4yxibcLR1AkvAld5NKnI05pDRZMKrDcpjcU9C5mfTGRJJtSDQUiyIp57fT5D0n1OfLF24wMgEwqWm6JHm/lLkU3l1D2eJxBWg2jTJLIsjXoqWqMourSSig1o5l5RkpBx6KUjUI541zC6B7kvSbFYvd+JEa6AUqhsLoyUoE3rRA0A8/LD7qYyFxa8dAYlHXaZJlzythUt6JA79w6sApbHbJr72lIpwjYteDzmJmM07ySgg/0AwDUnH5yVrBWxXxmjh8JAVXT40JRT5wj1+6rrSAya3graJLGRiacc6nP8L1CEt/LegTaPY5rFra7M2Morwvqe/Mad5PgQoGZddNhDtujcnsOWeYcLkI4I2ZJ4N70kcI5XJgnecFy6SRsjNNDNZrkAFFZ7qU7d5DB8LE+TmrWLxn4OqzfKT1YFXCDmVfxVBVFx3Zs7PzFplg/4zlXoDVLH6O6OocY0cEBaitX4t1Z+KhN000kkIx6Rr1OsH48KNL94rmi+ZmdnvBMIjLOaMUYOTSL1PHRI1651BxLUdDHZE46WRb3jt9fhmed+B96u0zi2cdpjspm1ci5u+RplzqjnuFthZ9CKhjQq/sR3qg6B6g1nksJGM7EWoz6DhbHLvDBd+z6msu+Yc2mtxouKn3uFzFy4BfVCNzy0Ux67TGHUAqF4VqyIpxjP3bHsted5Yr4lRIcueG7MvGMaL60JDmdWXmZ5bARg7RBNi3HZym1V3LtyAbAIz617VxB2v6AgzgzgyzxUQAoKhHtl2WynCps161ETqPQ0ypE6qUg16wEGSBakwIGvHkWBQMAbr4AQBjpHN5sa+c1AOU5bbROqeOjchvJtEiwGaTuBk66rTFjQ5+vnVES/p2EyQMRlao3ETmKc4qaU4M114lnkl44C5ZLigyJJgqvI+BomX20ZyWIh00URzK1eIOMGA0IgruOStIVYGQYEG2FZEyfU151RkHbhngsI88q0gjSTH7ZvD7yrKrUasq5qBZZjd3kuJ3ThBYRp4hF3qvPIVo1DMa1oRPtDBR42YlIzJRcbCwZ8USTma9D65Mrs54fmUhGvw56LOsjLNXVU4VGVTJVF2VzYmchUNMhGVOoPaCNWtZYkg2kbgBmzqMmE2fssZ41Vn41CbxZ0MSiKCwhEeCFMfpVOB1DRsDiMzXR+vk156FIygOBEo6IYV6MeMINlEXNGMsyjxRySy4EhR5y38NnJkpyTt1pzEkvKi4rwIy+Eht3RWfss1byhgLIZxmHQMSR18vkK5qQzrDGWcmglteNsdDKlLQkRWUoUfZw2ussI6fjR3Z2MCBy18QaVhUHESO7LyYVtUFx5wlnEiWvuG4DkFcMseLc0+5TEDZShKL4BPWXTEgyYtoIF8A4SZUn5AwAEuCGAMmKQF6z94tDGmJcIqy9NpSUUZ8tWtIZHlNrmFTIzFgQTeREslg7JyIpk5ieG2GcQqXJbJqQLiybaECu1jqszpFRYGT1KLY2FBiKLjX6uk3xDQjYqeAbi7rgo4Cu5G0jx2UtIQeETGzRI+XGGW/cY4XT3YtsIgpzE7bW7ASsX+9LzK2V+jO9L0WGPCY13wQ0J5W2T7ZRSIyTIyuakNTfgYHGDt520dfWEYOeOTRZZVnhtGABmggr60DynExQCspqUqcReEPvQwxrpzPzosYnV5gnbC0+arZ12mWyFOk3udjcZMyUjwLasFRdbXXDvHNnW6bf3dn5aDqin6XaygzxqDaWWk4g47KByDpNAUYRXvpH82FfDQnKQIBUYIXNABNg0kbP2sgyNxdcfMZS/PxL55nf3f20c8QjXrkUbK55r5vKOZhz5YxPhXLOX3/eaI1IyrWzqMbuPOzvuaRsMZYVLkKXMajEva/6PCXNM/P+Cgqrv1zhU3j7dE7eosaRG+O/5qOGo4oyj7Tb0f9ef0Jdo1B0LZVgpe+0ncejie9Onq77XRXdf88YZvpL0faMcYLTtbDzEBk7QyDgngmmlIvCs0Xv2gXZDWQ1Ik4Nzsi46beN2h4xMiDa//VOnGPa9hO8XTgezBgdj7cLp99tzynLSWeRzZ0DZiL65LohV9tgG2oxaz7arfM5YFtjRoY+FkVghXnAOw3wngdtSeVfcWvzKwC0GClbMFf/YKLYZD2iF8GfzFI6GVwknWjk5JkoYk6kK69yetZYrmgiXWqS7XSFE/kEc4SKjA8CYKZzz+oMPHfbU8dsgvUmFlaoA62sbutoFAB8aJw608IY7GQqSh6YyDNAUEXNFUOI5+lIx2zQiCmnCdi4iegrCu/l3vLoRC5mUgBkCjaSyCWPGXLZziniClsoXXcmhOrEoz9A3+1zm9ciilgTEzlNEIpahP/74bs2Y0s3DjZdt3dd7ipfFV5HXfL26UUyYpTKm6zRBrC8N0HWa4xtLSAa9arC9hijjJfCJE1wHJQzygCucu+Rp19Fetq87dJOybDfdBGEvtHKBw3EDGCwg7xnaPZJCXfkw/YdopEjGjYGPs5JXNdWHkMrA6QzEKoFOmI4rwsyrNmdZT3uWLwU0u+McNT3MO48rgJ0D1ihSl5NRhV4zfXxHBVFytHRsEjNcBMzptygWyTMTV59YWU7h/PSY2TCwDLdtyYjhpAU0kUaep7e3ItAKSocldXmnRgyfVnEUZhoblYoul86AtOLQrRNj50R06JIuTN+WoKdKyLNrJDOoZIVYGP63rLeKgq/2hwA5AWkqWashIBYa/oZxpx0QilaBVsdCphh1d2AgJ0fTAgwJgAU6+WjjDMSRL+1+RUtjg89gVKmwJoSrv9xTgQOeJUl7URRtCQZ9dyE2PXJijMK+OtooFfMZah4ESxaKkN/Jwd0yrxoesdnmdIRfgBQJAkiM0Ymw7p/FmMtnfIFAIJD9us+10Y6+4jGM1cIqpUDI7oP5HNnIZtton3GzZif5y66JM82mtvNBN3wUcBy0un4oXEibWLacbpqHKxhxoVGU/8Brtr9ZsJM+OiSp12qvyiFwhjJrMONF8oZvZSLzN8eOOnTzlqK6pDJyFo17oon+E5ny5k8XpqMFohHjFGwJ0Zu3lHW9rIcrLEnFZ6BsPz+AEDh8UCeK3Iwq5RNiRRkXvSgaE4KSPGNaLbLsO81cxxOAZ7jVqGwlWetoZjp7BgAEHnTcbMs05VqAfesycJlpfSlyI0TXHqGM8uDfYkXJsuOZJ+P+k5jOjXvNG0koH6uVGldmbhgGXhGQZ+z+1FgznFd5uiltFhqh2fwtdcvF4jHXSSk49Km/044iqqNqmTUR7JCIhoxmXM2QlEkLqJPqnKqMd3HznxUxa5t9pxE22Xd0GdWuH620QYzY4+sxlNTpnuq1AY+4Qp7oPAKZW5DzKTqbsC2x4wMfbLVAueu+qSaHHnXwWumf2CQPYZQmQ4t64vpZSkS7r1kbhJmn6O8163LJFB4Hbc1AgDG8AdnUIjHJXXMMnLpuIqDDHn+Cyu8jotS2DJF+8uqZlkOFMYaXyQV9DxoUo1rKe3LRhRl/Qm1SzQlVKSvg2i4wUhEnKL7khUj5mQKyHVDer9SbZWXe33kYkaGPThCdXtx3UZ5TgGAPboGAFCsXlMi7cA0huYZYmO9pVlvTN50i8qKMbARnfZnKzYBQNEzgONe8GEAwI+//faNa+hmAE1eqhyNPXW6kiU9igHtAUvk4YwZCkSoZNVWzWKlgZ9SJ7kjZUXsjDA/+ZY+5+NPvhx3fv2dAIBnPP/D4MZQLiNWOh4AyML1B37Umx+275+X73WkkHjPE0ckQikXJu9tU1QSIkRKuHQBe57Vv62mNCdbRdcdr4O/yjPSUaSyFxVoJ25KMFDwo+85jd010X2VJYGOiFC1ucIZP7O6b9C0bXFpGkx5jg/mjdPK3S/qk1NW8pBbB0xbeAL40otE8dIPiFBlzhio5va46+VXDG5bsVQGZi6GvaZZT+SiEb2hxU/XIS9tIZ13vEQUOdTQsF6n1QKPtEOFdA+ZFyEsGOmfoNHsOBlkWyhyY32Q4MimuL07Iw+GvoBdBLLdhmQKpZRNb3wgPjophZOZyoeyXkFhooDzelzWlkW5v2SFm/zlPU5agaKJOKhfszp7gO43LX+0zi3eljRG5lUvYrsAuDUq2GGsKDu3fEdMbvloAYrmsfuqFMrJQjBGbZOpID5q+1AlOHhuokcyCW54LJMSySqdPkYaUX7q7lbQSJ6Oo20KH+20fbdckA2PQRmns/LGCLkZHPEby0dbc0yquQSNp6lxzPIRpwOn4gjZPD0OH/eCD29TPgrod8bqUzYW9Tg+Gtn5ljOyAJ4WXyN3hnbujGgUZFF1vEEmzinIWxI//o4+Z5uC+9PbL8Bx/6L5Oc+8d00wx29s9K1nNOWZchVfvSg9sDIfBQxnJU7oMlsUvHVJyxkoUt0niVoEprQTsog5IqMRH6/W8wyWFZAmcMbXce6U+qyP6YyJFNGmVImPKjL6ufPx90FtzxkUd3zUHtc6t6VwBjcVTd2fFJ4BVZbn4SU+SkY71wY7d+dVDmUqX7NCEacnZ4kvLdSUFJwjY4HcpCv7zw7pSRcuQppFLntEpkKnQPvXB5RQBN509gbu6QBStLR3DIxPgBmuydHrDMWR149bo2kr03qxmNrnMs62SWBfpgRkl4a+ICez7RGq7gYEBAQEBHQBtQ2E1hWmiQzqANnlegEBAQEBAQEBATsmtlVBSjmD1N2AbY8ZGfq+PXxNqbKL9YqJHhOtUavi5pWfmLLdLWs/g2eedDkAlIRRS1Zxa01XQNSwIu8uf96KXCrGICZsmIyLEGSFou06CYaKpqRIHesJBVyVUT+cmbdcWLZMOemwWN2GVj93aXgxMPQEff6VdQUtJ/0G5bwVeV2ADytz/sJ5iOsxidJbvT/ezMD5HnrDRtOJIWc5imET9beZJ52+l5MqoM3Qc2phPewnJa8oLZ+J1/LmFR/X+zjifWBWD+Wv/9SffkXiLrA5tU5+eMs7KcS/ssYUdxisI3lwhf7eaJCHNxH7YGjfeZvt2DPBoW9dBkBXLxPm/SoSDmVS0CkTwNMjSTJFnsyf/s/5lBaivGgpGTkNFapeXSgUNr3e6rw1nee0ev8anLLfOwAA8W4DECOmolSzTakIylZenRSRJStO582mBlB/EDGnWVK491YxFymhPN0662X0Uy9khVM6Mm877yt5m/edQ97AoiK8SDjl+gx/vKX0IG8ZA10rUCSFP1CqchqYF7VsdfPQIe3Bb4N/PL9ujqDoN1VKL/PbBpQ9qzwH4jHd4LzK0ep3mlKAjn528gZOr0YxF9HJGXdeX7qnrs9SnFEqWTTW1lGPANoDOqIk6xF0XVlRPs+S3gqs19x5RanicpGBLTLvXzNzeqk1o6uaFaUIQznHRrv2gttiSKav4T09gGoDw9iqUIp1nZLbrZc1IGBHh+jvw+1D15SWnchfCtFrirH16GiYm5d/rLTOzQ9/FADwzJMuhzR9fJ4yL/Jbf/DM9Wu8LUlriUlVigAHbESJ2dyL3IjGXRS5HXvAPO0sIZCb8ZgpQNiov9z1a5RCKP2xDMhN27M6ozHXjsHtniri8ZT24fedFCVTaruJkEoFmJHAYZl0EUxG8oBXKxBjJu2t3dZRbQBko7FFJp2TOelG8VEv4tMW4/AxI056/1IsOexivdusAFuhq+3Ktetm1KTNzUcBrTGXjNpoTXPfxsYh16yldUXfAQCAocdXNtvxZ4JD37oMwtTMEp4sUtYjpuqmK1BRDeFF4514zGUUTad4ASk8LojytEhGTiuO5wwnPf19AIB0SEfFnXLgu1Axae0sK0hjXe/PkiH7YquSrrrTK+ZUpVV6nK4U8edzO6v/xrzMMfueSVDF4KLKnf4bZ2j36WMUSS9dE7svXVBP0X4npyhjUiaMayOm4aPmlIWXCqxcpkmRMo+XesfyZGLg9TmTkkdK/FHG0/BRBSizE1s0U7QVzVfaPU7GS2d5mO1shKGXbaOEK8rC28rxUSLKLq2dcQ5uoieZYqT9nNVdVoU/vyc7ReG0GvWP5Sg9MKbTdAEwMeD0FwGKzKToP7j7IWfVwc3vXCmohtGXTlMolm91PgoYiZiuI/oCtjU2KaKv02DlV7WyqRO3ZV/DD27Tg9EJz/oQACCvJJTSkIwWrmPKless/VLczHaIBRnFlFctDACJD3PzYrX7Y6dbELnU3HjMPXp2EiwmCprYq8jltbFc0ZPKzECSjCm0+m1nwyDM+zraEyEyRkirHeBPQAE9oAG2apozCKi6SYG0HWFVgPXYl78XYsKE+a4aIgkI5KanFIJ0U6SZnG4quk231dV4J6XGcAa/MtCm4rafvZdK1VORD8Y3u6FzJmgOWJJsUq5HAHnAXgAAmQi0ZtvqpBJ3f+bcrdYuW8UsnlAQiQ3JdwacrM7ga6BZEKFqS/r9WSf+h3sGCxd+bjVEfDCliyAAoGdVVmIqTZ/P66c0X55J8CFTEGTVajBToZr19dAx5IAmM7IWUzqK4pxSiGmAbxROyNgbJPNeQQM7pX8Kp9MhMllKabWGtaLCnNPBM/aTdqg3ieOFG+TLqQf6Q7QkXTfRKjwBXzNB8+QLFCuPm8pL6Z2aTuEZDcFKk7jJunu+rmGRemnJ0iMrZl+iLZ3GSEOWpBVspXOry1KkDK0+YzRtM8QTXiq2x6F8oWI6rl/RzEurtkY/In2M0SQ4aiinYyMceYpH3b5Y7ioY21SYvD+FEprIx2sbunKadwwVCZqIRyNNp5u6dggwleJtn1OMjKIQ2yKir/tiHCGiL2BXgTQVsn104ihLKv9KjjfGGW7LvgYA+MFt78SzTtCOKMUF2hUnsQKYiaInI2OF3f0JpPCE1kv9u+l/eSaJI0hjQPMnjEwqpzMFZwDk3uSbHNYc3lgHCONEUS0gM7vMa2YcS4G2cV5FDXeMUjEt08a8JtyYlyvHfSOOvGbaZfVP6zGYkWEQo23wddrpLMZTSumFEOQckQ1brWTT0Q0npXU8Tlrio9MYPGaCW+/Wzs+TjngfxBYuDjcTtPqZM0TBGGb794BM9qR17Pi9tTjpof/POJvNsMqZ4zYyYvR8QQG+FhoAJGOS0nWZdE5jFnO6vT7v9GGf82RYEQdVMSdjfD6o+WVRjUhmKX5sBHLlKr19JQWrmcaZVFpVrzhDjZTUYGvkA0x/YLmXx5ltgZGi6hzFirs5Kb3vXoqtjBjxGO45Oq1zovD0Q1mhSjID7gfzqdw7zNuSNMTBnexKXhVOb66DDUfPI5wxdvI62rjHvO/+8jKnBvPScYXjjLxwBjtdmFN/F57Uj6LK4a5isoyBdq/jo/o83XVgypPr8jpBStdtu2KCijGaS+S1xHOOl4OH6NwsP48ExETh2p5PmvsyhsJI/yiWIhrP6PyVsHMVVyVYmEJIfKINDI3QPmwlZtloQsoWtgUK8JCSuwNhs6fuWhJFFXkngaqVtSQi84yyTDlvTMRczrnXX9mKTOLBVYAxCBT9VXBrVKjGZFCzHWy6tgXRNB1sTSD3Jv52kktETjiNsVJHyRmEse6n63SDW7N8LT5G5EoKoDnLEi39GTUUlY2PxwvnzYGrmiYFo06bJtcVrisMw3purLhuQcKc1ojGe3uoQq9qtcpkZpIxbFM0T+w601U0s8dVReGIlke4rD7KxkDa6py2kARnXjXM9WNLVC777dVbz3i3IdjKgWsOn4PeISPKva6N4X21lSSPGHnBFHNGParAqoB0nR5UfnjLO/GM516hl08qJqE3kkQ+fIFfMGdEspX/WC7JMJfVIxqsk/seAgwh5bMGoGzRGWPcK2qJq8DKGRnGotXjEI9oD7rtA/TOrWgHR9FvtDcySTqAFipybRTSPZpFwksRFH6VWn2dmPMyM4Ab7yL3g8E8g1U8at7bRk6GI9bMARsFYkWnlYsMKVKOvG69sy4qTnkR8iVdKF8MGJN+tw0FdB9rhal9PUS3ChHIrO70pHgmiGTHntHPPgdRS0G0XF9nt9OC8W5yHI/p86diJ4xRX8aUIoJT1GLkVmfK03iMbI2UwhE03pZe1LeNjHHRgUwqZMaoXFQ4hDkPuaAObtZPVo667c3zo2qpi/RLBkkgmcasLEd/fwTcja0KBaDo0nsqA/kK2EUgHrfnhleCLsAxHR+1/QHLOUUw20k3PN1ZlAphKMRDJiL9URPJVa+iMJFBvJVTH68Yc7pp5pPnSSmS0M8CIZ0y6wDyijGVzr0pkQzpgajdn3j6pvr3vObGrGbFRfzFY4qyWGz/XtaplpQRU1Rc1o2NMhItTnxYxcKJx7fbjo/Wa1S93HLVkoadx0k3VYPvRHHaBnWbS3zUgAlBc5WNRVGLIeycg9qw4e22VCXd7YWT2ojH4QP6UDOPbvVRzQPGdk+oYJmMAcdTHO+yTsVoQuJHN+kskOP+5cNkqCkVD/MiaR1HdcEVMmJg3Gn/WqNcZozu8ViG+H5t3EOeg/caXpkXUP1GH88WVkw48RXRKiDWad4qHlkLVI1HUnDAGngst+mtOodvUzp+GTFMCdRnZWesz6VKheTgRT5CRytS9DE8nVHL1xoFxIQ1HGVgXpAIs3NLT1OZMu8qzEUYxl57JzmmdYPguCq87wykA+hH3VGUI+vsgPD5qGgLun52HiHa3j1vgOb30tjeVeQ5xKWLtosmcsTrjAPCPidJRI5kFXMUtppxxRVzYcrNnbjnwLZGU9EsKJJWxpy02u1xs56IgolEpkhXVbQl4rUmSs8W+pGSMpxkPQUqg2ZfkoyQPJdQWRP4O7Y6CsWggkbfDoMtptE32ahjK5XaEuF+hwfGnE2Pwb1YllhNSIjVphpiveZV9mHkUWR/HwIznbT1LBbrhpHO0y8IZvWT0Hoxtw8TCw0RsUaLTLrqOH4amDeoUNn31BkGRMagzMDEIkapZrYTTsYkqqt0e8RYiyaPrQW9ZQF+S+xs+HChiAwqwehGqTn9LgJq3Hi0iwLKiCWLeXPpGPmq1V2TiplU1Z1MqOz/06X7TlukZQa4/acXAQBF9vG/P4jCGIimi+zbUoRqe0UyKnWRF5QjyISX5SxjIKPlij5t+gfg3r+8HhGpt5FCrJBTxI8tiJTYdASpiAwVaS95w5qH7OVSSzJJA7tNx83qoiTUK9aaaIwsR/64+QCAdp9+F6NGgWjMVGCrx7RfMZEj69frpKtbZnuJxiJtCMz6InqH4zGvSlviBKB97yN5GScRefveRuP6h2RtgyrfsVIKMpxX03iQhZTgwvaHHDLR77WMecnrPRmlugxeZJ6fCmI71Dx1Ysu+SLOM3Lo5pXK7Y2mxZJuu6zYU1rDmrctzv/9yRJRnoMhWSmV7dBhsljPS+uki9jxssSWeuahn4aWR+cL4zXm68VmdE7lNhwsUNqUlYU7Yvu32YQ3NaLRRPLhcL5o9ALVQV4eX1Ri33fUeTMZLDt/61QoVWNeResHQFxAwFZ2cjCcecxn1YzxXU8Y1XQldL/IlIvh4oYscAEDFRGhwTv06XzcOZQqpsUpKQupyVHPYyry5QN2GynEUA/p7c27FtccWhvPTwfzxluvxDtCOEdt2kRne2lJgpogTjxwfjZoK1UdNoYaJjPaVDRhjhhexoo0L9j87IfajThh4W0v5MM7AWt4k1Xznc2br3xtNkpzphpdNX1V3EpTsbFxT0vFRzxhIYN31p+vD/33/Qjzj+bqQQ+1PpoLmIyunjWLcVfiofRbjcemiY/20Us/ma40yGWdedJteZo18ej2GojBGEgAgQ8s0fNSrMOsKK0oI43C0Uf55LYI8YCG1269QbN8vygzhjv9F9t0BkO8+iPaA5jlRo4AYtxkttsCdkwDIEoZ0jX1PFFqDqWmHk0aJJlwbFBWPw5T0W65854NbLoUOKgGAaNgUcUhEx7RSXRDNODqLAiw3DvjcdBg8JmObjMp8jebvngOa2uMdS3FGtlnrrGXKRfHpjBq3rk0J9vmolYABOPFRXSzJi4SkSErnJC/Nq+2cfiCm+xytM4VNGPMq8HqctHAZhroAi50zmflLy3U+MhZozjJpvrWyA8e2ge5TQyKyRfYUnASZsV3Ix9aA9+nAB8ydRZG6t9zzfvg48fHbxrgfNPp2LGy1YhzWUHPC8R8EoDs/kGaep3fAp1a9TB/LnRcnjtDeTb8A7b4IfO5uep01cxD9TU/YrG4Ir6RUuVY+ugrMVuhZvhL135t8/UW6k5e9FQgbgs1YudKSCaG1HXd1ZUY6Uoo5rRR/Im1fgazOUbGaKPXEeWNiRmnFUdMNiHZQYVJRR8gzRSXk8z36wAp9/vHIAABATLTBVg+5g5trtSkRdBuj0Udecy+tdnOTm1t/cyl9p3Tevz8I2TTGHCGAzWBY3JHQWqjJtuIMWa8xlvVGXpQaShFZtvofGdNy4KiXXaX3EQGqx0TQNVxcOqWoMkEevmhCUhp9/I9HKdWxsb82luT1CHKBiXLIHYlSXBvabJvJ0Odpl1D6a6bIACh3H6CoLzvAt2bHaMzVx40bEtGoJlnxWAuK6wnUyD42PwSUosTbLhWURQx+Wiyta7XtMkkToJLn0QMRilhQildRAXimvyePjgJ2ImT7siQGi811VQLpWjM5KhIwQ2qzmmuTH+VHFXEZoEwpMH1uluzo360HEjBRb4ZY+7qM6HDukK7KeJ5yMha3ez1Car2bmSpFNJLnmTuyZglte2Au9ZMydsRHcYBZLSpP/8RG3MRDLTdGxALSVEH+yTfPpyY/7TVaN7MxR7hUoVxRG6Jxhbxm74321ke1BJHVmVo7hFs7aMz6+Pz3L8A3+j+03nU2N5QCiq41+kLqbsCugW/8+tINr7Qe3H7Hu0t81EYS2/FNcTcuKOGMaYkvR2AkBLL5PWjNMlkHi3oQj87RP480wZc/po9hxke5dsilCApB0gC1JAYzjmnZZwxvaUx8xq8iyVs5RRdF46AIZnIUx8zZsgpnXMmrLvKZKgZHjCJN8rpwETOZojGnU2XNIuVoLDL63AvqiM3YK0abYGuGzQHNgYtik/goMHONPuKjnjFwc/PRH91Yrlz77Gd80EWv/+OhbSaWvy2hSCOdU1pou9/8xryMEs8QI9rlKCkAOPqlV1F6JyoM1qKkBHOSIMxFXNkMjmgiR/ygyfxIErR3HwAAtAYrkEIbZK3BjnsRrNKrgA04vuWnvzJzjKw3AbOBHx6Pac2KoebE5pz0wnRtG9zqsakEo4+r0rWgKDxPh7Pk3PX56KR1Jw/1xAk9w5ENZNEpw/q9F4lAtNYYuDydOBYJKGs0NRwtVoqssawQmo+adpFOvSc/Q45w5TQD/bRiG60J5dpfpMxda/+cvXmAPZ+s6uYJ3DMY64rT018fxV00oowYmvNMavtA4lbyIgxpv7mirD+uQHOY2GiM+5kkRYV35KO5F7gk/HRic33ymkBeNXy0X7criWNgVFc8v+V3H8B0+MavL0V//0em/X1LoVC864i+gG2PrWLoO+ZFV9L3JHZvn9Wry+qcjA+6vLg/cQVG964jMgYDf7t4rKCXemzPKloH76+XGz2S2bf/DcoQjUj0QdoIsDwHbGTKY2v0sdq9YP2atOT9FRqgih4OXrXHM54PzzgB5jT62im8aCBzqArD2gN126MJRZqA6docybCJVCqcOKifukH7qHHyRvDcRblkJqqpPZAgsUU8JrKSMWxTYYnRkuoZRFpUnnVcN1qoo62QJIDRClxy2MVgD5giFc0Wbh374mZrm3+ep+zxVv2luW00C7Yl7PsAABPzrM6QQmzeKdFyxg4lnBGIiJUCPbd5wvGzL58HADjy9KsofVx56br2e7tPQBjDdHbo7mS4Ju2fqpuYxOMKykudd1ofLj3KGp947ork8JanpecZcO05y9iRs7bgiEzgb3tenYxSpRQHc+56mzKpAYw3zxyGHA6FF+HLXESdTl02+7XnUK2WUxps9EPU51InDLniIw2KvkVWIDJpvqKRI7VRJRVBEzpr7IdwpKU5SziNvZYjEVaLMF3dwsQi3f8UXJHnuERmOgTEsknRHEXqPStmG0qraCoi5EXCy2SGjH7ms+YZnZXznjKppjh4REuBZ3rlVn/kiWoDP73+bVPa/MvP6+f2uBd8mIhjXnNOpOZg5EU8mnejV4At3AsAcMc3PobtETqirztSFSL6AgLWD8tHmQJYn9WNdX1j2zq6PCdJ4UUGj+9RhZjnoq8BrX1reWdeYRjZ01bYqAAYAADMuVcbgJJ7HwBP9DLkOTmmVasFGMc0twaygV4UfeZYCXepXy1BWrn+hJYMgQVDYRRmlHB9fFZlGNovNfswDrIJRVw0Gc7JuQIALHHGFb1/P8LJpQuicHIJWV+CyEQIRms0D7zlD5dhc4D4aOVfdRuKoqMxjQkBMd8UYYoE5KPa8HPK441hbmycNB43Jyf93o9cxPcp+70DzEzWbcGxXQG5fV4jUBEvO0+LG4p4ihQMysZW5J4xmYw77v36xRfOw+Gv1YaT+oq8FOUqLXc12pcy5cj6dQBIkbgCbDq6X29H803u0tP9IBMZY0pEVjyhyBnpa+n5hR6KxHEzyzWiVCDr0Sfa6hcUxajP1eyDHmFnFANDqYCPz5XsufsOauJVhWt7XndGRYusRyA2KbrReAYxrr24bKJF81CrW8hbnDS30zWctJFlxMih7WvYtfusI34SHzXzCCs30JxXIX6eV8opzKXicpPm04o7jqO4KvHR0ncYTWqPM1LEH2cum8WYFXzjqualU9ujgxUMH53lzt3y7zu/Xuaklo8e8a9X0TKSN0qBvOICiyhd2cxrmBrA9350BbZX6HvQHdecJjYiYCtiq0X0BQQEBAQEBMwMCjOJ6AuGvoCAgICAgICAgM2PGUX0BU66zbFVDH133HB+x+VPfdMyANpKb6vYQjlvCzKbOsbIy8oLpSuHAhhdFOEPl5/bdTuOPVV7cnlbovYX7eGTPdqknw1UIBpGOH7dBNSgDqWVwqXx5nUnWkqVjxL3HPuRLBaipfP1AX2OqcloKKqC0nWjidyVSbfCpwl3FYE8IdEiYZBROXJKCYaGFYNFhTzWtRWNjjpTM8Epc9+oz3n2AKjMfLtNXmgIQcLLapZOKc7m1KGEEQ9VCrH1ZuY5eWJvbX5lk9o1GTc/9J+bdX/bCjaVyOL/frhhTTAbJSoj58WXwnmtqq0C1VUm95KBvItZ3UUu2CjRn33jPNpvz0NNEhFuzXap6vY5b/UL8oiJtqIIL4reYuaA0KK2NtSe514pe1VOC9Jtd+9MxDh51PJquaiI3YZSkAtQZV8ZMW9/zivaNn1HMiZpJ3m1LDJsYT11pYg3xlw1L+beV+l5E/31bTXavCZcykFm9AXTGGJ8agQqm2iDj+hIACE4CT0nVo8kEshN/5TVOVKjYRiPZhCj5r20UWyL+uhaZj3MeSoZSp5jvY3nTfUCHn2tQbpvUtE1a/dx5xH19qGjP813qiIMSh/+1efOo/SGdi9HNFE+3s+veRsWn7GU2uMqR0+5ZACAI16p100zhcicW2tA72dHxkyq7na7XkDArorp+OhT3qz5qI24aSk3hoiWqxya1RiYLEcfZzWGibl62b0f7p6THvPiK6nv7Ll/3OkrW53XXGltZwCKpV50Ekdu6DvLnZ4zjcHMi9jP4aQw2m5stTyaKV18CdCRN7b4kIyFx3OdlI0brxWNxywSJT6a18qpcc886XIqqLcpnPTkvrP0fmcNmBMSQGaqVzaaFHnP+nqh5uh80by/ArmfzjaxwvnJ31qUVrykfiZuHb9mo9s0HW7+6/YbkTMTnPDMD9G97YaPWnkVnoOq6jrdNIaKKUpTXe3Eo7OeSEs4AZQqCehIPoueh/V9TobbaPebSrjMvYN5avmcmzvJiBEH8fmolSXhuZfl4e0Lyqtya97PrAZEdg6k3LtWpKwjH7U6gkVNlLIV/Ig/qz0X24g+5grn+Bqh+hq6Y0yGaMMlqCSsxEfp0yyLGxJF1aZXJxBGzkSMJxATk+RlADAzL+aj41RgBJXUFeIxuvvZYA/dw2S4oOg9MdakfbUW6jliq59TPyQjd55+O+310l/M5+Qptnd9XKaRuS8xo6xAvW8bgen4qOXDMgZ+9Vn9rD3lzcsgTYYKb7vIxJ9f8zYsPlNzTCfpMDWF2sJy12Ri6vzsri/u2Jw0VN3dsbBNI/p+/cmphOipb1pGL7edEDKl0DIvLzjD76/snkj58PPnj36JNoa1BpweWbrOaKWMNBGvNhoGA1VkPUaU1ZKeinuzo4aiqruKe+lsnjEgMSkdaqJMDG1RkSJ1OgEUuisVaRiKltOfUDFDYQYpK7YMeAYH4Y4xurfTJttY5PvvTu0hUduJDMym8QpBxQdkYtMUGaVDskIBe+kwevz1n46gBUzBka+4CnyuTavRF9CKPQNT9WAsbMGMVr9L45QxIM33rM6RVxKzX5eiZAe5vOKJxAI46jQdap70RCQGnNXcM+8Xg6A0jBgdY7RLRMNu76Xg6rRa8zzblGKv2EJWZ+VUDs9QRftjdl+MRGsVh9N38UiCE8Z1qVlMucldSbvOgOdAOpTTsVzVQY7mbNs3OGOiJW9KMEQNd87KvqOmXVmvoD6H5RLCaIEylaHYfdDsg3spGSbtZN0EpVP0PKiIcImJNrLZttiIbtfYwojSY/y+gWf+dTP7l3DvrVdBrUhYOZ0CQCEY8XGtCaO/i1whHSrMNeFTngkZA7/yDG82vWE6/PxL6//9qW/Qk/NkXCEdNgLUEzmGH28qTld2fDKiwJCVKrBMjzxo9AUEbBR+84kOfNT0L1qUXS9TAlQ51I5r9/znxnHSO77hOOkxL7qS+KgtSFBdnaPyiDb0xWsnwKRxTPfExEeRgvpZO6blFTfOFgkjZ2CJj9ohS2lnl/5HOH7LmFtuETEI45ui6sTQ23fko6buEi8E8Y5NQXHwvvqLZwCwRUWYlKQPV1RiSvtUMXfjmuUSs3qBNet02+bO2eR27Yx4xnO0oVL1RuQI7oqPGmNqxkTJeQvolEWbziuThJymeZW7lFabzuo9Lse+8MPg5nluzq04o6AC8RtXdEOVC5Z5z0pHPuo94k7mhZX4qN2/NU75Bjs/zRPMHY7SNBPhuFTs8V/lOC8VdWu61F0WT8NHTd+QDueOd7UkBYu0BqISHwXKnF21PGd84gJZ2r0RklETzGKKTIhGDqZMEcvdZlPqruJwBfVGtCEvGmuj50G9HSskmNlHPqtGRdkm5lrJHXfdmEK5QMt0fNScjyS7gHexo5J92F2r3F4r6eSLmLsudvtfeIa3TuOAxc+vWT8fPez1eryImgoVw4PtfGFkr6Tj/dwRkSkB3nXV3YBtje0mdffJ/2YIlfQ7SP1b1uM6c1/fYFPw0/85v3TcvMJK4p7SGkYmMtIiyG00kWBk+MjqrrOJGwpizEy6jQEkqzmPkj8hVpyh5b30idkuGbU9v/NQ8LYsiZlSlXkrtJq4Y0jh6w0wHH629ir4A9sv/3v9nZUPW0TlmBdd6SoN97iqRUVF0KBC2loNCa5s4QVGmh3xnovI43rSkbp60KZGHO5MyFOmSTuAKLJaPKpkhOuE799+AX0/7HUuSpaqmCYANyRcxszTwlPm06v0BUfg230RkRwiOF5hD9FWjmQJ5ipneRMI35vq9PHK7bdkxy1w75Svl8GUV0HYG2N8z6CNNhBtRe+zrSrra37wHBRRG7clmoO6Y7E6S0CZaLZ7dSOKCkeeWqYBVFebqsSR0y1itkKh0MZXfTxVEly218RGCYtmQVopKBTp8hWpcP2AibQo+qvgJhJQTLQpum90v35MzOV0rew5+OdhSWLp+pBn2rtfHGXj3nqeQX1v3eSxNWA0TcfLkcgA8LOvbB5PptXrSRq235SorNQhgWOPc1V9ZTJ12x0NSrGui2yoYOgLCNgsePK/L6P42LzKiHvmFSA3UcVd2t+7wh03nI+Dz9Pjt40eFC2BitWHjZxeVlGJiI/KiJERzUYqMeU4aDKuyKBSVFhpPAVQ0sxteU6daEKRVi6J4gvmVSZ144nWru3MRwHNrzMTOfT0Vy1FMuoKfkxnMOoEy0dtdg6TCqJpdRYlCqM9VqRsWj4KaONDtM+edGpLnnYpAODWX17cdVt2dthozlY/p2eJZzPjozZK1r5Hoq2Ig2m+63ipqxytf48ajpMqwZDXXVQpOfA8HkhFGLw5kPQiribzUUBz0k7vsM9Jfce0he80FW3XDsWcc9Fy41g67hcVHRzQcO8Rb0lEJgKsNRB15qNmu3avm3v5Ds3KOlmqYkttNstafaJU2MM3ohWV8sUQ422K7pOJIEO6Eoy+Q5no3Yk2RQTmg3VM7KU7yeZsx0lkh2vNMxcYw/Pp+Shgrvkkp/N08J0zrT5eKkJIfPTL3c+FN4SnvmEZYuNoSYcKpI9qL//E7tr5LmPm5iI7OKRfEXCD2DmMmzsytgtD3xGvXIrIGDiKlCEzL8Pvl26cl3Qm+O3V+hhP/vdl5L1cvXgQ6bAxAowXNMm3XiQdLeS8TraTLhL33Q5gQNkbQZ21G++mVA/SO1NkiOC5pKid1uyEOsV2rxvsyPsEzyvFvYIC5NFUNElmcvqImlP20YbQbI/Z+lh7V4icAa7IgmLl8wNsFSpnpKRiAnN60DaRRlY494hXLt2sne2ODJ67e2efCSUY7uhQeGA6RJ4Arh0I8wojA3JeYSWSA3TwUtn7mDCqGEXEPXLRATJ2qU0dxXS9NsRNV8FPCW+MYICYvI/Cfedthbjl/W4jyjxiYwfwdq/zuEYTjpAmbUcY6w9rYxCfaCM3guEsV6g+aiYCglNFYD99wRK12soWmEk9Gdm/pyQ+DGjCYgkrlEufVoLZQtRkFBMtR0RkTwTFauZYnhi6Ut59NN5UxhBbwfRcoj1g3qkqcyLT5EF3y+y2gHZQTElX9kmUAIlcl/qXbOoywPMQc1B6Qp4yeh79FJxNxVPfsAyReT/qy/XDwdsSfFjf276fr8PK5+8FoDOx3NGgABRdF+MICAjYFFgJgKjiIvdas4A/Xbzl+ajlvE+6UBtI2g2GNU8ZAACkIxLxmO50272iMx+1RjyPSwCA8lJ6J/M1f1xlcNxDS8aYde2Y1ZSlYh3tfldh1F4rf2xgXrelPKNfkVjReUXyDRbTctLHvx3ZbvpaZHvqsZu3vQgoqUoplJ34qE3dVZyhmKXH23ZfTJk0i89YusEo8l0Glv+oMh/96XXd81FrqPKNyvZZTcal45Uel+h0/Zl0Uacy8p3KriCMpArRZaOYz0eJp5FRcKqDGtAVVqcUgmDOIFVyTnvnxOCiau37kFcZKtbIJF22DgDUHtHRcFbCJe+vUPSkaBYUbZfVpxIZ3laorTTRrHmB0b2dnIszQtr2lqV1rFFeScdHeVbmo3rdmjPsT4LPRwEgkqBMr3Z/TNdENJVnsLPzQpBEi2KOtys/XdmfR9h32YvGY17aNeD1a2a7UmG9xGXdRE21wci8mcBGfUdNhZ4H9f3kuYIwfLSnoe/t2G6DO43NqwDrOnU3RPRte2x1Q99T3qJfilKlz3kMkUnjX1/Y7JbEbz92Lo57gQ5LH58fYWw3E4mTed4P06n4VYKY8qNGGGmW2Y5NtECzL54r2geTLqLKH5isNyNqqI4dXrq2TYYA68ls94nSYMYzb0A0Xminm+aipcAURfxFLedBu+Mb5+Pmf2iP6ZGvuMqchzM4aJ0tE3GWScBM/m3VVRUxFNwNTHbgas9KnKfNSye0hsfGHDYjzcWdAac84QKoqn6AemZXHXFumPTHCsexL9TP5U++tWHPt013L3kLc+V06uAiOm2Y+VPftIxITmWdhDSeU8Uc+XEVv9yzKoWXEqTKBmv/2O53E1XgEQ36Hc5g578bUIpmC36Uoo1Q9CtrRU3lIv7gRfdZg3mm0JqjvQi8L3UTFuZF0FU4VQij6mYAIqMvJEaayGdrQtX3lzEUdX3Bm3NiOh9noOc0GStSBr+ylz03q5PYnMWRDntRnNL1OTZtn4zr3n7y/pTer8qaHG0TQdjqsxosjojJ2N07JTxPtpfWRP2arzUo3YSNtlEgN72+L247SkNpqc1q4LPwdVGiYWMFFgyFuS/ju89FMqKvyW8+vuNP2hS6j+iTQaMvIKBr+HzUcpJiN8vBgHs+sm34yB8+pI977As/jMYc3emOLRTgueWlzpFVJG5CS7piMUgqAsz127zt+urS2FxMWgYTRWUzDDxnkYuoUUjWtWk70TLavz1TjRJFysjRJ730RT02uXYAmg/GJqopHpf48bc177n5bx+mCpZufHTGCcSc0kZV7iqhqshpnJLyR6HQ7o9M27hzjCXAoW/Vz4TVl7P3YlfAKfu/EwCgainiOcbxWDgDqUw5zZPsfVkfaM6UesusfErkDGS/+MJ5lI3iv5OVIXM/ay4SVfEyH6W0WK9KLqM5l9cY5Yxabk6lAGv0Eqw0J/MzXgCU9CnBXHt0tsZUPmqjICdzUssPWaHQnqW5P+91UalO+oWTNmbUkE4b0xrdJzIIkzabz6qh934tN1VU4xIfBayB3gRcVDkZvSZzUstHrWZ+MuqiOVnh5q+8JTvz0d6U1rWpq+0e7vgoRRq6Y+vvZgcc0/JR+rTfubNFMye5TbyUFShF/9k+bHMb8u0cWxaAaBr5nVaBfI7OLGksNHOOzAUW7eiYWURfwLZGmBUEBAQEBARsp7ARfd38yY10GX/iE5/A3nvvjUqlgsMOOww/+clP1rv+j370Ixx22GGoVCrYZ5998KlPfWrKOt/4xjdw4IEHIk1THHjggfjmN7854+MqpXDJJZdgt912Q7VaxfHHH48//OEPpXVWrlyJM844AwsWLEC9XsdTn/pU/M///M9GXIWAgICAgICAgIDp0C0f1ZF/M0fgo5sXWyWi74BLljlRTLNMCR1Ftz3Beqie9pqlVGAjT4BowkYMGVdC6sK9S7oPntmUjN2xF93XZpDWm1qoKd4mwAsTFwztmvXeylK1S1esxIuKYu53q/enOPOqCjmvle8ZI72HOqMUZR82wpDnvleFQQkTLp+4KqQ2sgglXQhOT5kUU50AOpRdf+9ZofD0V+vovi0RCbQ94eRDtNYMKjFkxei0NXKqrCqN1gxvK/KYHXvqlaWCMp32GR2iU62L2GmdMKlIHFsxUOUo0kcRzmuZ1VkpBJ4iuLyILspoZV6KrU3pnATneVWu+IX0otOES4OwaQaKAfGYaZCEi/7LJB2citr0RBTFFk0oSs3NexOKipRU1KagyD0lXFQhKxSYeZ6jiYIqDTMvuoGP2vxhBTGitTdULMAKo0dnU6r6IoqMVcJ5d4vYRdfa9zYZRym3yeqsyAiITQXaRj+DMtGxsfFIxmMFhCmA05iX0rF54VKXCiN/kE2ux+NF4VmQELL0PODSrSva7nqTeLSXYuFHUvptZ4XCQW/X3vnqGhPNmbKORZhmgt984lyqLM5Mlcrxx/XTs1FU+E6VfjWjiL6N8LJed911OOecc/CJT3wCRx99ND796U/jlFNOwX333Yc999xzyvr3338/nvOc5+B1r3sdvvzlL+OnP/0p3vzmN2Pu3Ll48YtfDAC46667cNppp+H9738/Tj31VHzzm9/Ey172Mtxxxx1YvHhx18e94oorsHTpUnzhC1/A/vvvjw984AM48cQT8ec//xm9vbqC3xlnnIHh4WF85zvfweDgIL761a/itNNOw69+9Ss85SlPmfH1CNi5sf9lJtVqvMxH7/no9sVHAR3Fb1PDANevA4zSIovYySXQrMrTZlV6dY3IrSvaZvzLQXyOF15aoirzUQBo10Qp6o8inBTK2r8eH7XLIu74hs9HpxQ1YECr1+nD+bCRSJZvsAhgdr+Rgszt756EBmfESa2WLiLXBh+iDYi1hocM62VPO2vpjHStd1QsecrFYCa7RFYiRBOO1Dm9cEXXzRbmmE5jcUnlX1E5/hAAQGOuE1e3z4QUTkbmaa9ZSpF1br1JxbS8jCLXrjIftZ+dKtPaYwJl+RQ3D1OlCDLuFbABtIyTm+M4fugXKsx7IrR7uFlf/15bPoGiaqpoF24uJ1oFfbeFY8CZFzWoXHZJId3xzAnz8RadvBhtQsUmHT6NSFvTzulEU9I9lHE5utbxUTllfpZ7mp7xBNDss1F4nLLwrCwQr0VommKC0XhBKb+Kc4qOtRlvPian61L/Iz0JALuMe/Oawu+f3D4okrLlIgVF5vqXg96xDOmQ2c5c9l9/auP7fhuld9RpV4GbiL7xx/XStbcp3JvKe7cnbEmNvsBHNz+YUp4Q1TQYGRlBf38/hoeH0dfX1/XOD7jUEBTpJop/fN/2/7AvPnMpaQYUFaBiJqn9f9Oh0esOqKM5y3R4EZCM6u2ihhsonEiqI1asAHWO0YSi9ATRUmQcqP72AQBA+wmLKKzbNxJETUVEq/7XdXrdeT2YWGgEUX2xXOX0IISns2AFV9s9nHQvisQZL8GcEdYWK9HHNT97aX08U85AY8cqL32RSUXHKxUK8Qwcfji3JYs7O7F69nGXAQB4syhVML7tF+8FABx/iq54xqSilGi/At5dX30bTjzqA3odm4IqGIb30+mLipUL1/iGOCeU7QZ7EgP2SlfpKrZmG0uAPIMvL1Q5pH4S4Spil7ZQGSpIZxLcETzFXco4aZM0cvC2FYVRgKlOzVoZWFM31KY75wNVqujlF4WIhzOICVMp15B7JiW4EQtWQrh4ZsacATGXjjC1zEWRAMttCePcCcokCbXDVrstUk6pS0owIqp5hbnJmIHIvGumQOLNrHBkJa95hlfzmYxJpCM2fb9Askr3S60FPRh+nG5Pu99dX6p8F3nEKNJpXIAztMdjqkS43Lvqnhm/ih7p70igbQigaAKxKexi+zfAkUmmgNE99IX/3SZosNrJr70OrAA5Z7akk2Bjx8KNxeWXX46v/PhjeMnlT+1q/Yd/tw7/+/Z/YPny5V0fY/HixXjqU5+KT37yk7TsiU98Il74whfiQx/60JT13/nOd+I73/kO/vjHP9KyN77xjbjnnntw1113AQBOO+00jIyM4Oabb6Z1Tj75ZMyaNQvXXnttV8dVSmG33XbDOeecg3e+U6eUtVotzJ8/H5dffjne8IY3AAB6enrwyU9+EmeccQbtZ86cObjiiitw9tlnd30dAnYMbMo7+IT3L3NjVrFj8FErbSIjN4akQwoDfx4DAAzv34OJQWs4078nY1oby8Jq2uZVVwzATp6jJqgAQDzhHHKiKVH9/cMAgGyf+QC0RrRNJ5Sx0yMTbYXqP4b0unPraMx3KXwASiL6oiWn5aO6ja5gmIxAY9JvP3Yu8VE7ZomszEGscUa0nEGFF8qTv9DrypQ7J3jEOvNRKi6y4erwOwOe/YwPgjdM6mFREA+67WfvpQq8TCoUVavNprfjhaIgiZOe/j6nvSYYhvfvKa3r60b6gQ5+KqflrTybykdpH5aaeIZpu25JdkShxEcj89wkI9aApsgIXCpa5j2j3FRNJU4KAIyBmf9Zo13igVYz2b8+8bDmkqJVkJQKyyV40+OjwJQcO8vtVSyIj5IBu5CajwKAkkBieHAlJj5KGn89gq5fXnG81Oekk/kooHmi6yeULj6JcgptMqa/JKMS0bheOVkzgdZ8PRcZflxS4qN2/8R3peu3eFtzSMDwx0nWCf2uml0Ir73MkxewQQB1VyE8npDudwbqG+w8vzHI8PurNm0seMqbl1GquRQMDdMn/27ZlhtjtjYffeSRR7Bo0SJc/NvngU8yzE+Hjz7v+7juc9/GCSec0NX6gY9ufmzRiL6tIV68JTAxyBDruTMkBybm2g5SD1q9D2fIjYem3Q+0tSEXPAP6HtAdd/qwcQeuXod1S/YHAIzsxZDbzj9nSFbqTjqaKMCNwL/cbRAAEK8ZRzyke7xsoIKs34rtgTrT9rwec1xJhAvwC3Aoj6xwc1zfG+s6x3jcGRB93Qbar6+XULgBO08ZeGE9uebc2q7wgo+yjqD0juWMjdb7cfDblm1yx7s9I35UW4dlX5V0LcAZnnXif+ivZr0icYRUsfK9Kerl17dIOHnysjon452M4ZEdRpqSFEnXKhuH/Yqt1uDke+ud4YghypzHnqrxWk2PlLkovtx52Hk7L0V9Ws+fNaaxQjnjpVJAbghVO9PkBgAb0S9o3GgjWmuEgysJkS9ICRjypDLr6mMkKs7zDNK8w3yi7aqJxYKOzRqeuErTMAbOoSZ0yBqbV4WyRkhjxEwfnUBR1R3C+FxOVbZ8ckqVCieJCcOL9m3NctEPk7UPecGQjph/JNBcqPuBvC4o6o+ZShrxhHS6TRFzkcPK6ebYZyqrOxKVjPiRw67tFCXC3ORRMWc0jFqeTqKnr5gO65No9UdE5J50wTL84T827h23kwE7OVRi07yy2zu6Tcmdaepuu93G3XffjQsuuKC0/KSTTsKdd97ZcZu77roLJ510UmnZkiVL8LnPfQ5ZliGOY9x1110499xzp6zzkY98pOvj3n///Vi5cmXpWGma4hnPeAbuvPNOIlbHHHMMrrvuOjz3uc/FwMAAvv71r6PVauH444+f0bUI2Pnx5/fseH3EuNUMHAMRg8YgQ5Hocab34QyZ0YptDejfW31AxZDN/n+0kK4wA8aadRh61uMBAMN7G8Mac5q3yaoC0bjuq3mrgJw7Sx97nR7zopEWsgE9qLUHYlfcYKJANldP7HkmXcEBqw8buUglJRjxUVaU+SigOSk5kQpFOreAcx75jkLLY6TwMlCqosRHWQc+6qMjH7VjTC+jyPR7P7zjPT/dIlo9DmU4Ud6b0nzghGd+CCKygQ+C+GhB1VHd/ckGUrqnWu9YX1dbFZrnZQc0GXSTMh8FysZhX69NtFQ5G2NSpB/PPB1AwcjgzXOUqgfrZZL0B31OynJJczIyVucuowS5BLNGtrwgPpo02ohXOz4KQHNSaV8UQYY+cND+uDHiyWoMZqLCIJhzOueyzEcBzUkN/1QTE2Bz55jGu3ctWW0yXGq9VP02r5ajZ6flowDgOfabs31dQjg+a+Z/NuAFAJoL6uTw9oNEaD7JnLPfnxcWicdHa4z6O6u5zFRnHXK/2rEFz1xxQtF2HJ0p7SAHAMUjcz4MB75bv+P3XbZx73heBdq5K5C0JQ182xqaZ3bHNTcYSeYh8NEtg+2i6u72hsnVfg+4ZFnp/5HHxeh7yITotgQJl8qYUXSNjV5S7TZ6HtSpfqN71MjD0PfPDOlKsy6H8w6tWqu3KwqwVM/E46wP0ThV/ACzXqDIDCipoAi6vOYUSqXwJvYUveUm37pCpjdZL9xyW6SDovi8QZfnCtxM1ouUkYe4VALdIK/y0sBuB1or+upvLxO48uMzm6/ueDADP2tlEObe3Paz91IkH62WOBIVNRRdy8VnLAWfawV89TJWqJLXk8RuRZkYk1fV85z6EVfKMyxaImbvUV5lbtD2IlhZAdRWmAqohji1BxL3zLRdtT7eLkoRdER2GiZaL3LnzMaaQEO/P9ZwV0IhwRr6YWRpAlUzkQTNjFgLPUpF4Qx2APiEDX9ISo8bGzMPd5bRp2obb2oSg8Xmwk00wM1ymDaPPLEP4wsMoao4r6WfJu9Xro1NmlA0odAacELIyiNUFCVs3o2o4QhXNid2RUcyhepj+uZUHtGsi60egpyn07mzwSpFcSrBgFm6cW2bWh8BsbnUSjhCrrxRwo/stJAJEI/a83CVO4qEkzHQijHHE4qcC1EDGw2q4GhTk3fi/kKCoZhh6u7IyEhpeZqmSNN0yvqrV69GURSYP39+afn8+fOxcuXKjsdYuXJlx/XzPMfq1auxcOHCadex++zmuPaz0zoPPPAA/X/dddfhtNNOw5w5cxBFEWq1Gr75zW9i33337dj+gIAdCZ2iDg981zIy6ikeo/dh3SGLlinGNOCi/+KRFmA5Y5ajvlyPbyN76s5TNIHeB/SgVFkx7sTsmznYGp01QuNftYI405Ej0XjixvFWVuajXkS6XlguCGb56ORiW4DmhC4ayqX2Hn72UlfMDvZ3Z4jhuSd/EXfmo7ZAR+HoNETLFcXKKy57pm2u765SNpJlOUlhxK0Mt/xeZ50864T/oOJ7RczofpHRLHdF+9TciPiNyJxBjorv+VkizN0jGYH4qJMBcc+Lz2Fl7M05IuaO17QnoshoWFvRJKNfuz8u8VHddmfQQ6EoGhF+tF3sFRa03LDR6MxH8wKsabi0McypWgrWsoQpB7OGvkl8FDCc1EbmIQKD4bATLaBlLozhpaqdgSUmJThNgXFNqFheQJg2j+yv39Xxhc7pXCrE5jlpAZelYTlaa4BTIIuKHO/Tjl793UpbyYhRERAmXeBIbVVe4qMAIOfNRjao83ilYFDm+Wr18VJasZWB8bOPiFN7tiafj9p+LxlRFPiguHMuFBUG9JmUZvMMp0OqZKjcGOjK0PafTdvX9o5CcagZyMS02+2uOGngo1sGwdDXBf50iSZaB79NG/zyCjC6SF+63ocy8Fx/z2sMK56pJ9Wz/qw74+r4BISp2DnnDwmGH2c9CBL8kVX6AGkKmA7bdvIsy4Cq7klZO3MDkAeX6ueqQcnI0zyJmFuHooVQIi4UocOBwn4XvrfFEDkvjJ5Jr9JQ5A3AdvJdZRQa3e4ta7BwWe4c8hSus/Z0NTbWq7Kj4Oa/XtFxeWOuHcX0B1NeKokX0ccLp5WiSIfNpXn6FXMBz9tZKPAxu8wz+lDEX9mwQ9ub36OmSwmKJ1yUXmVNRhWnrE5FpV1ApnpnrJAUTafXMezCJ1dmGVMSMMY7ledgzD6YypEr7i1LPSN45rkkJ4wlKXeeV9Vuu+2NXh+LHNlijDnvq5dqTOkd7QzMtkG1AGEM9FbbJmKUpsByrQMFGMOZua42WrjvwQKJSenIeiM0zXlmfaC0CJ0Ka5ph+WgKtAZ0G6prCnddBSPD/ej+A3rdgwbI+MdziahlqjlXI5qkRZQG5Qy+ReKcBIpjclY2lAC4IYXxmPuhMSgo6kIK12Y/vZ+iMjahFNQ9/7lz9w+T0a32nlQMo6Oj6O/vLy2/+OKLcckll0y7HWPl/Sulpizb0PqTl3ezz82xzkUXXYR169bhe9/7HgYHB/Gtb30LL33pS/GTn/wEBx988LTnEBCwo+K+D56LA9+l+WhRBUZ3M3z0YT2e8CxCu1e/IyuO6cOc+zSXrPxFQowbPvpHPWYN7xO5CqOPrCIOikoKGOMdvW3Vio6sB6ZyUmFDwMt8FLAORvO9mJ6P2nWJM3qcRzF3THKWKS/DwNPDBhwfzWrOOEVOeV8XjDnZGiWArMe0zbQxHgXuvWLnH29u/svlHZdPLIiJKwL+NbaRj6yUYut02Mp81P+0m9vt+Bg8o6D/zJjtIpRICPHRRpmPAnoeUVmjn3HRzMmBXGnlkImJkJPuWbXgzTb9z6QEbKqs4aJotqBsdolf8lUIx0cZc3M5m6Lbyt26zZbjl+2szEcBQHDio8yTrYFSlM1CkYecOQO8kICwBLEAq8Sla9nud+9cNOE584X+HwD6HsiRjOiV2n3GaM84MkslpDOmRk2Am+2s0bXdy1FZZwyTuXJzipRh5AkDehcH6c/q6pykeqJWjrzmyu5GngF5cjo34M1Z3SIwL/vIGuwUByYGTVRhqxw5TNWVzeKooYg7byx25gi+yZCTJ5jrgwKuvfZaPOc5zyktXh8nDXx08yIY+mYAm0r6pHe6CL+xRTENMH33t5EM6U56dB+dxiD2W4jhfbXVumd5joG/6Y45Gssgx01POTYOZglVn3GfxDHUY2v0d6XAZg+4htj0xUT3wDLi4GYCnw55ugxV7vTYrLcsc52n7zlVjEGm9rtnVKBiAs7TJjLXuUvBiHxZDTmZeJ0xc51pXncDjDWeAk6DJq+4aLHFZyylffziizu/PorFz68pn+vTznJebDAv9drrZ1UnjZHcS2nwovQK4TyglN7AzQ7NB/NsZVR0xiyLx5TTYBtzaT4sL8g4RekGWUFRfEwpIjuKO5LE8gJoGUuTJTLNFlTLGd/8AV0ZPUNu35MoAobNyC7cflWzRevSfpXUjGASFHcTAQAUscd8A6I17gkdFQEAjDMoG024Si+b9TsB0dLv5dB+zkIWjzsdJCsmHI/liNbp7WXkqmbwNpAM6+8yBuorCrO+STeIOaWbqJgjMlqE44tSegdtZEN1jXTG+sJLn84k9VuWmGsngbl+ynneWQ4opxxAsIZmmbhUGBkBbZN+HzXc8Wy0oozcJE20FI54pX73f/blXecdnymkYsj8Gex6kIOjt7cXDz/8cGl5p2g+ABgcHIQQYoq3dNWqVVM8lxYLFizouH4URZgzZ85617H77Oa4CxYsAKA9qQsXLuy4zt///ndcffXVuPfee/GkJz0JAHDooYfiJz/5CT7+8Y93rL4WELAz4L4Pag71+CuWoWZeo7FFuqOOJxRm/VmPodF4G8P7GZmX9lwMPV4b/Xoe0R3xrD9niI0zWo5PAGPaE8WEABsws3wbZbRqNR2/xEmlAmbr6CElWImPApqTZlUnszAdHwWsk9Isq8KL7ivzUcByUkXbU/EvpUppodLyUS/C3kqYKFGWGTr4PM3vrZ42k6AicTzf9caqn33lbfS9xEcNuGfU0VF6Hh+1vlJPq9HavDS3NI7r3HEIx2OdA3oyJ7X/J6NO39zyo2g8d5rKElCJ1RmSZT4KwI8ohVIuHbfdBsw+VNNmeDiDXYmTZjl4v5u3lfio2a/liUrK7vgoMIWT+nwUMJzUGuzaGRg32oCNpuOjvzeRa+1+zUdN462zWUs22e+F46Oxx0cNX0uG3Hvb+3BBElI2Go+3JaVxRxM5JnbTnKPdw2m+WF1jzx3uXhSK7n08LinNG7GbPNroMb943+RME+lFAgJGTsgz9tsoRS6BxhyXSg7olGLbzxzxyqW73Ds+U2RKgHdp6FNgOP3003H11VeXlnfipIGPbhlsQkxFQEBAQEBAwJaEAoME7+pPmSG9r6+v9DedoS9JEhx22GG4/fbbS8tvv/12HHXUUR23OfLII6esf9ttt+Hwww9HbIzk061j99nNcffee28sWLCgtE673caPfvQjWmfC6GVyXqYyQghIGzkREBAQEBAQEBCwyZAz4KSA5nvdcNLAR7cMQkTfRuAPl5+LJ12ovX4ydh5J0YrIC1NbaTykCSch0azOUV2lvazisRH4t92GhFtvaglCQHnLKeJoTKcm8qKAWK5/nzhoN/Kcikyh8CK1ACBd00L8oPbKZnvNxbjxuuQV5xFh8KJyvbRRpqzn1UWIsQI6vwIuck+0XJh4UXG6D79b2tlL4ldy8iMQk9FdRBylA048RuujYP8qpaBELadzIyOX6mAhY5f+nPv6JtzdG53+q7+LtvGmZn4uN0oaKzY6y25TJEA6bKPxPI0+gPRd4KX0MPtcc17yUJa+R1bAxZUGtlFzst0Gsx5i6bXTRvb1e5WmCkmRgKrdpog+2k65N44J4aL0JIcqvCg9234bEcgYEHtdpd1vUdB7a4/LHsjQP6Q9utVV86hiclYXdA/iUb1N8ugY2KgeGCqtDEV1lj6nwgmJ51VG76UVOI9XjkMaL3XRE1N17rzCkJqqX/1rTQpXs3DV4gpFWoK8XThBa/OA6Yg+o1WUwqUPt8uREPoLkDmnL1B1fQAV/8hc9cS2SYfyNSCLhOGej+466Q4bCwWg6NJ72u16Ps477zycccYZOPzww3HkkUfiv/7rv/Dggw/ijW98IwDgwgsvxPLly3HNNdcA0BXNrr76apx33nl43eteh7vuuguf+9znqHoZALz1rW/Fcccdh8svvxwveMEL8O1vfxvf+973cMcdd3R9XMYYzjnnHHzwgx/Efvvth/322w8f/OAHUavV8IpXvAIAcMABB+Dxj3883vCGN+DKK6/EnDlz8K1vfQu33347vvvd7874WgQE7Gj42zvOJSF5G+mmBANvm+i+lKP+iOajRcqRDls9Z90R11Y0IR7T+kklTloUwLDRVfJTE22Rq0mclI2YSY6sQDysOebEIbsD0NklwvCMwovUSte0ED+kM1fae+lCdBO7pa5QVMycXARDiY8CmpNSJKAX7QPJSnxU2PReE1kUjyn88r8781HioOZYvHDHs1rYuxpOOvL9+ssT6yU+CgBQfuqzG39KfDQu81EApQIbMgIEL/NRxUChc6LtMlCyutPoy1M3T2D51PkCU8rpYSvlOJ3/PNPKXmZHFJF0i5WOke0M0qTaMs5KfFStHdLt7O9zqbUmck+1WpSiq4piWj5Knyb8VBW5475+220bfU4qJZTR+1N57jJNzLL+oVFUH5unr1lVUKEMJjvz0dRwxnp1AMzcXJEpyhgpUoZ0nW5/9KjeRsUCvMcUBZqdIKvarJICqeGjVt6HtXPK9lCx8AqiJO69jRjavR4fBXT6sEn28VP8FYCsDvePPorLzpeAzN381aWXa+Q1Rn3HriYLszEoFOtao2+ms/jARzc/gqFvY+FNgq3+VDRRoPp7nTIljYgx33sP8EyHdcuIU+cmB+rAwN56J3+63+3X6joI4QYMxpxuSpa5QcoOROMtoK57LtGSkCZ8WjGgsk53sOmfTUhqowlpCJpYvRb9azURGz5otkdwvJDxTppvG3hzedvpx0G5VL7pQCKxsdZD0ctciumRr7gKd331bZ033klh0699/ZOs5ow+fip1aTtD9Atfr4a57346hS2GkA65Z5gVLm1bMWfgIU3GxGkussIJGfOmp0Pia/dI74tPrqjyGAPlH9jMBKXIQMjh0nUBl79BRjyrn4JyWoQqCm+7qZiOcCnGwcx2ssPvgJfG6383ZFA1W3RuyX1NJHYflRSoGfHhmufJsmkco+OorNAvgmikyOs25cJd78zopohmDD5uqwADMMsr6ySlsVCKbisjjRoAULbstxAQEzbt2vRJMSfDHJOg50TGLq3KknwGl/Zg19HXD2C2ilvk3m2/WqHVOv39RwKh6g6sa42+mQgkW5x22mlYs2YN3ve+92HFihU46KCDcNNNN2GvvfYCAKxYsQIPPvggrb/33nvjpptuwrnnnouPf/zj2G233fDRj34UL37xi2mdo446Cl/72tdw0UUX4T3veQ/23XdfXHfddVi8eHHXxwWAd7zjHWg0Gnjzm9+MdevWYfHixbjtttvQ26vH1DiOcdNNN+GCCy7A85//fIyNjeHxj388vvjFL07RhAkI2Flhx3dhxnTeVpTKWPvdw46PPm53iIXaOSZtpXkOyFnGEzNQL/NR3wABGL1am1oXO+ODBzbWBHqNdI1xTsmUE39Mh3JU/mL46HiD+Ghs2tj/2G4YOWg2ndd0fJQ+p+OjNm00K/NRwCsS0gG2wJOh7UiGnDZZUeE46jRdeOLO63YdTmq1j/3qyRlJ9bBJqdQOvpY3fTL3nbikdFpxqZEtiVoK0tNydMU4vP3Fnp64nQ8VEsykjjMpO/NR65SOODk3GWNe5V1R4qOAdlqTn7Mo4PNRyxFLkjP2GIV0fHUaTlpySk/io/qcimn5qF6Bk1GQCeH4qC0WNzKG5D7dtqSQpP+OehWy5qUEm3RlZtKPq4+kiBomGKQmKDhAMSDrMXzUFLXjE23AOo/7Y1TX6naKRuHujS062cxd+nRRUP8iJniJj9p33773TDrZqCJ1hXNYUS5yB5jnS7nt7DOTV6ZWzz74vGX4XTDwdY0ZafTNsDJJ4KObH0wpNd0wSRgZGUF/fz+Gh4fR19e3odV3KRx8/jInrv/PDJU7/wQAkCaEk0Ux+IC5ZkIAdc0iitl10mKIHhsFRk2FBDs4+KGfceyW57n+H3DGEm8wk7sNIu/VPWGRcMRjZqQ0HW1RjyCsrpp0FTLbA2mpEq71zNl3uUicwYkVXlSYsyG4DjhxHtsidVWQ0nXOK2e9cIoDd107lTCddOT70ZivB6O8yjuusyvgsNcvKxlcqGKuZ7yzVbOKxHmsi9RVxdKVls12CkiHTISYIa/pkCI9Gp45bZush1HFLevtEm2nGVdZm0GMmcix8ZbTRbFkKcud9z8RVJUP8DRSvGeX2epnrVYpWgCGrEhbfdcDS1Nn3Muzjsa7GYHxqdtOWuYb95jxqtKyyLELlWVUCEQVBXhNv/us5rkT7XvNGDBL6yHJSgKVOp1DZa+h0UKJHlnrtF3iCLLPGBDTyBVdMdeSZQWRKwCuMmIlQl7T/YgwpDivRch6zbG4Z2CssZL+pmu7+eQukgTMI1xwz+AfPqRJ1OFnL0W73w38v1u6Y5GrrT0WXn755fj8Dz+Jky47uqv1V/5+Ne58171Yvnz5Fm5ZQMC2QeCj0+Ogt2snSjwODPxdE4P0F3+FHDP8knEIq61nx6y+HhQDemxSjCEy0X0YG5+ejwJ6nLOV6eO4Ix8t9pirP2sxCjOmxaOZLs4FIK/FiCYytz+D9iw9cGR17kXsuXHDatDy3FVYldEkPmqdnqnjozYyqKgAlbVmRQWkI7o9WY3hV5+bGul38sHv1u1a0ItWvx5Df/o/509Zb2fH8SdfjtE9TOEx34hn7ahiej4KaM1FGZczSADNSX0+CpiCDzYKNGFUXCarO8OPaAP1lfofKsAxloHbQhrNrDMfNUXilO+09aL/oFSJjwI6gtVG96lWi/iokspF5CVxiY/a3zeJj+qdrHeZb9xjcVTmo+Z8lH1X89xpXddqYD0mFE5Kd/4WswcgK0afMxVk8FVCQJnCJtHyNa5dhg/LvioVPtHRxYaPWgNs7nmJhYCsmIKWvQnpexaVMh/Vn6a4Dky2Cxlj4Qz+5vIUMei55JkzKud1V8n8aWcZffia47u//diOw0m39lj4yCOPYNGiRXjzL14OLviGNwDwpVNvxDc+/02ccMIJW7h1AdMhRPRtKiRowstzF7XEIlcmSI6YMLWiAO+tu+WG+Mh6BcwMPFjxmN7eJ1ZZ5jrsWs2JvNqOW7kIKZYVrsNjDFmvbkdu0nllzBCbaLHafSsh5+jOIRlqobJcD2iykqA1qIlWc9AzztjIcemFy0vnLfU9rzbyR3oDf14DmIkoIqLmETMft931ns4/7GK4+7/OxZP/XZN3KBdhxzN3jSkSM3Hf/Uqoos2QrsUU2GsvBUOROCOu74CxHloyIGWgqDExllH02y1/uAwnP/m9eh8TtrhGAdVjjFDV2FU444AkoWKA20q5JhSMeV5PNd4gwgTGiaBY7yVyR970Bp29nfRbJ+LkowOhYkJA5W45Gex66vS+k2HSS+eFFzWoioKM/7aiMBNCE0NAE0vzDvM0cZOmLHff/erBpp2sVgO3pC120gG2IIqKuDOwRhx53Qg2xxzNWSa1a9zeXJcqwTPl3mfmRVLYYGJRnlSVqh1S9CegJnGBImUUSfrrT+44hGpbQoE5CYYNQM7QexoQELATwXbZhRfhFEVlPmqcylYeQ/T1OMNcTwwxbqwy1QR4ZJXex2Q+CmjjnhkLEQldwAAo81EzaUc1Jqdx1hNR2rCMGGKbQnzvCr1sdi8Vtas80oZMddvbs1M05pWrQunz1N+TUa/ab8xcNJDy+KiNPGu69D1WOHF+4QKySrjl95d1/mEXww9veScOeofmozYCT0WO40uxHj5qIFr6vlRWl/mB5aPWqFMkzohb4qQZZbdqPmrSqSNTUEYxhlvu0anGSw6/BHzUhmMWUCabQtat5VGRYUgKVzyNtx3v8vmo5XCq3Xb8kEvHGyfzUaCz49gu30g+CqDMSXt6wEwQCRiD8uacet3cfZeKeLScmJiWjwIAGxrRfNTsF7ZYCWMlPqo3kWCmP+BZDp66gBTio5YvRxHJyOT1mJzYzVkx4oZZlwGtPvNemowjGTmjPZNlPmozTEimyLsNRQIqKOfDOp2jCT3XCugOBRhU4Jo7DIKhbxMhY5D2CCTICMeNl0Q2Gi6qRypgTA8UIsshrPejnoI9rL0ilnxBCJT0IipmYIr85aYnywvncS0K8pYqLqAmVTRjEkjXmIEvSdDYTbczGWqDP/yobvvCeYjqNtpHHyNPmfOitVxFV19no5zqZ74nbjnzsjct4bKRPgHTo6mzWJCMemTI72PJoOeiKmuPKeAx87vS1awAYHyhcOm9XpVlmTljrR1UeVsR8bUVq0RLIWp4xKfiRs9bfvs+AMApB77LtItpAx80ebNVtloDFTQHHaFIh0yFvsdMpGErpwhUq4kCAKLuUl6l1SMpClpXH7MDifLRyTM6efmkZaqAR+oYeUDV4AB5OGEraHveVNVukyiryoTz8NrPogDLnbWMKr4JThOrTqkeLPEMgUo5wgU4R4NNCa4m7h4Ip5MoBUNk0qpEW382Z8VElmTktI8AF5lnU3HBHbFKRp1RUAqQPmdlBPj1p8rvtx8ReOg5y3BPSN/dIBTQdepuMPQFBOy6sGO6yJSLuBa8Ix8ljIxBWKPfSEypfPyBlVB2HLEid55GH9LEcVDGAGEHCcdHbeQOk4rS+vyxhUkgfcx4fsx+m7v1IFlnxv37H4bYXVc4FPUYwujC5d72UXNqUpIvUVKkcJkJdlkMuj6+NvR9l4XxaENom8AhMqzkKGfn+XzUPI+1x8yFX+VWqwwVGN1dz4GymhdxZR4jkTljLc8U3fuo6fho1FSITIYSZSF5kUa3/uoSnHzIRfqfyVwIAM9ztAZMUMMcNx1OhwpUVunnkjWtR1w5rT2pwM2+GOfT81G9guOXkznphhzTHdZV1i/uRyPWqlBzdEYIywqn9S48Z7VpOxcCqm2Nhdm0fFTvK3f74Hx6PgroPoDke6QzCnJe4qMAICsRVOTab2UEopaEmNDHaA7G5EwmyaLEpWoXFW8O4xn64jEzd+AutTeecBlMd39m6jue1zQfBRA4aReYWepuwLZGMPQFBAQEBARsp1CKQU4OjVzPugEBAQEBAQEBAQGbG9KvhLIBzLQYR8DmRzD0bSJE5tJQRSOnykfS6jp43h0eRygefcxta7RS8gV7ILEaBNZj4gmUAnCeU+jQdL3M6nQJKFOFUyYRVGSjepRXWdO0IVcQq0yFtVl1tPptCkWKnoW6KlPjcf3kQamt0G6QvvsmUBgtsMb8SknDz9d0059OSy5quO8hem8q9vvQMkqPLRLncf7Lu/S12u8/loH7hTQM8qorpmG3l5Gn4QenUZPXGDKTHpOMKEzMN551G4wnAW6ej+YcIF3n9G8oKsCGyyvnfZMDKX5w2zunnNPN932w47meePQH9HYJR6tP73BiAUNlrd5fZbZufP2RBKn1Bg4NkYdTSekqTtuouQJTtUpQTmvYkHixhucdNWXfraeSxZFLnRfCpc57eiasX4cMFAtmYWKhfk/SdRmS5UO6CY+sBAp7A221E0nHnbZ4iC+ybNOvpASzEb557vJY8sIV7bFtLAoAJn2/HpWia5mJRLYpvEo4J50/jsvIVdj1C7xYb2pLuKp7UdOlP/nRfE95s/aWigKl4jIHn2cKc+xgWn1bG91G6oWIvoCAXReWP+QVBtEwlevHxkmU3x9juMkoKR5bQ8vEnFnIFu0BAEj+njtdLy8yyBXj8PRoGZuWjwKaM9jKmirhjo9miir0qsEBAEBzQEBGenDpmTeIiccNmH0xx0fv1RH0RX8VjQU6IsvX8CsShtaA/r85CBr3kmH9KWPgvg+GMWcy9v6YLjTC2wy87a7nXy90fJTknm36rNKcH9DF9Oz4X7gEDOIHTIK09vJqhGhC35h2LyulWgKAyoGGLsSMyjpGen2QKEUQSpP2Kfv0ASdz0lt+94Fpz/eEZ32I0kbbfRzju+nl6VqOKvFRvd9USqihIXMiHhkXYlo+CkyVfllfFJ/PSZXkJe2/Eh8FNCf1tfg68FE5dwAAML5HHelaPVFIHhnWfBQwnLQzH/U/O7XT56MANCeldN7c9RNpOomPAkCk+SgAKLjicW249HygXHQH+pmzz1JWn5Se6/FRu66dI/G8HMlHfNSbF1vtvye+Zxn++P7QN6wPmmd2yzUDJ93WCIa+jcQ+y7SIZ3+ToTJkUuD+8iBkexrROWijH/MMempC90LJ/ascEfO2Z1UjIhI74x0ApwtmPmUtdsKnEXPV1JgjfrYIBs8VYIsazOmlwbpIGbJ5PbSOTc8sjEhqc/9Z5Uhdq+EggcSESv/yv6eKGAd0xsHnG929OW4QYwqkSXLApfr3ol/RYNbijMLTlQAqukgdaUs8+d+W4d4r9Penv3opVZaLx5VXvUqhZtInmrNNOHzsRKoV8wt+MEibqmnAM5BArh2cu8XtP9UpFEe97CpK/5CxNi4CQGNQt2fkcSkGe+cDAKoPP+JSC9qZq1Jrm8gZZOa3oyj9pr8YQ1aeeYSsABPGKBZFjkTVazolCYDsrZk2CtJpYVmBicfpFAnFgWTYpDw19IWy7wugDZo0EWpnHQ15anKax9QVKFXDrssFpwIlEBzMGiErHqGyZJBzV+ksj8mArwRzqSqmCVFDktOiSJgT0E4doSJy71U547nbh+TAPZ2095j7tI4BAKQ5GTA9FBiKblN3Q0RfQMAuB2ug6Zkw+suPSYi/6MqEcgNjD+PMTewnGkj/bgxvUjo+avlerUZOZ21YM/0N59PyUUAb+nyeQ3y0UFBG9kLNn6U/uec8XjSL1hUtiaJq+OgTZpmdeRlkSpEBMR5XgY/OEAefvwzxLJvS6mRgWAE84X2Gj/YpGvetvhnLndO4ukpRMZMn/9syKrZ12Ov19oqBjHsyZnRv03UuzTIzMuaFxz01JzXPUtWb17QVsh5T9TWfeezQ/33/Qhzz4iv1foU759ZsoDnH8NG9NREa7J2H6gMP6fMoCvdueJx0Kh8FgKJsIDO8U7bbJT4KQP9m+BxPElcoI4lJ77owxnNWFLrSLYDx/WaToTsZyoiPytTno5bEqY6Gf6A7Pqq3m8RHAc1JfYdA6jmdPT4KAKzlKvH6fUNjbgRuC/81JaX4u0+X2q24e/d57nQiaY7kBT7c89EyJ6VqzzaVP3GFPdjMH6NdDoVi3WePhOu5zRGmWRuJf5yrB7OnnbWUtCNYXx+Y0UawnX3JQ1MUJX0Fq8enVq4ql1cHwOOaO1i14jS54Ax8ylYq6olLJMqRK+Z5QpyGlpqvLSutORWntSedrlf68BgZ/axRp0hYqSAD6RIqZ0Q69P8ZjYNJnWrAVPz+Sn2N9r9sWanAxuTiJNGEu4fxuPNQSQFUV5cH6d9e7a47K9zApzVsjNh2zEjTprZKf9711bcREWv1gwZaVgBF3bbNDbRk4PE68Gc89wr6bglX1iMwMU8/P37hhTu//jYc8a96YjLe5kTo/IIPRWoI5357Q/7l73p5nk3VOlGdPaUsiqd6Thmn7XgaO+FhzsGqVhiGu8ps5v1qD6RozPWMYvZ+jElqZ7xau7HF8jVIrFczikgUWeXTOABmUI2NnASewZNVUsAaF6sV0lciLb40QnOuJqp5jSMZNgb8lBOpte9vu88vauJIkowckbd9gBLAfR+YwXuu3Ke930UM/OHy0FdsCFqjr7s0iWDoCwjY9XD/v78NAPDUN+pxnGcSzFRhZGPjjndO4qP6szy2qBVaq9mvYs/rk/goMIWT2vHSFoAD3KRZRQyFcTJpXWfHR9kCXZm3NVgrbaM3VEiX6wyUbH4P2j0mCjFxUTuWj4hMkUESjOFJF+prETJJusPvrzwX+19mDHqJyxTxOalsMOI/thhHNO7WrT3mOKnPR5Mxo8/cyxEbfT02psixGE9IMlT95hN6bnX42UspKpO3HT/Mexwf5TkH9ws1GDzrxP/QbRttozBaeq1ZMSbmGj76ade2O76hqycfddpVpN2X1b1n12rCpRz8gH319/v+5jjddEU1OmSaAJ5xbRIfBeAyNQDNSe37yjlVpm0P6HUac2PKjpARQzJiCmwkHMmjOvJVjOgqKPFfCjIgqpHRzc9HAW1otxkllQr1E7LmNKVtUY7G/AoViEzGpNN4jnQ1XQBQ/WU+an+nYi+x46PgM9PXpLmGubx51RXsmRGv3UURUnd3LARD3yZifDcGaTqvnp6K67gTpzpf6lSV62FYXRvTWBShWDsEABB9hlDtPh8wJclVxMFM6LdiDDDGhazPlD3nnkFPsFLFWypLbu90zDC+tyaAWc0V2ChShtYcPYBMLKiQB8UabZRgFMHFvFBrMNcxo7v3PsBDPOYMH6IJKmRAhU8a7ntlrSLCJBoSP7rpHVP2d9wLPqz3KxhVRv7Jt96OI1+hDWtRU9E9LQyxWnzGUtz9JU2uDj5/GaX8VsYUececeLYq9e9Pf5WObFXznCeODH01RiTsiFc6g7iO4rPPMFAzWQTpiD63ZKhAdbk2kLFGi1IEyumt1gMq6F1TeeY8p0LApiHIllHhZV4qRByRl5HFsfM4AoBJu+cNvd9s9xoy84zXVheorNasNr5/FeQaXc64MCn7MyFKU9ApfWNyCr89N+tFFZzSdVUaI+8zaUw2grNQaBtjfV5hpahcKwFgjXja2K+/FwmI0Es/os82pUOW8fpgtysqziMbUqe6g1QMeZekquhyvYCAgJ0PEwvMFxWhXjVGA8YpTReeKD/BS9ljlRTMROIUa4dcAaw9dUEMNDMnDZNLJyOTcuKjAJy0i+9gtlIQnJX56P662li7x+xXOr7Rmp1gwqTmFikr8VFAj2/WICOaEtIYAFt93EmTBHQNWx03r7riBSyfxEfN9baO4mhCImroFX54c5mTnshfqrd74WK9TbPAHTdow9rTX70U8bjLNLJVkBefqTnlr645j6Q9ihSorDPzj7VAYQyEirm5jeWXR7/kSuQLzbO4MKFnpt3DyTC2+Ax9jMpQQZVdm3M5WgPm3FYC6agJfFinyU7lkVGwUW3d9NNxNSedho8Cmnfa90+q6fko9FwQ1gEdR66wR7tNfLS9p/a+ZzWG2mO6DbV1bSR/1wZ6+dga5PYYm4pJEjcu8tCTurHfGXO8NEmgjPEy76sQH+Wm8FvWI7zIPO6M+8zjo4WLzrPPBqD5KKDvO817Z2hNIj5qs1aSwEdnglxx8MA1dxgEQ9+mQrmKXq2Fvais0v+oliNTakx3+EwIly7o76Kduc50D83URvcfID0SMdQgYlP0Vt0k3gxgMmW0zAeTXiSOZwi0+mii7dJCFQMacxzRslFflPKpHLnKY0AZo8SdX3/bhq9RwLRQDKVoJzvg+doSlsCkwwV+8q23AwCOPfVKHH+KjqKbTK4AneYSjzoD811fdffp2FN1qoI1KopC4YhXauIjFzFIE8XXUgyVtXpg/uXntSHw6a9eShXP2r2cjLxFBehZbqLMDJmylX7tueUVl1JeX2kMlk1OIfx2/cqKcbddJJxXE5hiDGNClMiHMwRO2s787uubsJoxqlcrkEZ/UsYCvKWvWzZQpWvZ+5Deb/XhEbBHtaaRHJ9wkyY/0nBDxj7/HDzDpPXmskpKzEUOj7p0CM95QOQqTchIKSsRRRja56jdF7nIvdjpiZaqFVpvq3AV9fx0HLs+4IjXny6eGSmidHA1NWo1YMPoNlJPBT2UgIBdFtY4k9eB5h66M68ODZBMDBijTBJm5+c+JxWcuCvjDNhLi5aN7j8AQGs2i3Um1ZYxFP16jFQRc6l4MS/p5VnYMUTGZT7aHNANEW1rxHO/T8yNyDgTNcsSJHb7tjECJMMKP/72VC4UsJGw9EDpqqWANr7Y+2QjyH78nbfjmBdpTnn8KVd05KP2flmdOAD4xRdcavVxL/gwWG7mJdYYd+ZSqAVmzpECLam/V9dISg9+2muWIjLPfFbnZl2G3HDY+gpJ2n718XxKJFdW48R/qmskRMvyJ4V4zPJRY/1UiqLitKHPzevoPH0O6kf5WYOdx0lLDltr3KtWtAQLANlfI6M6n2gjm6P5atTU7ep9qED1YR3tylathTTZZKXAkukq+PqYho8COqqQsl0AyKFhsw0r8VHaxkYkxhHpcxap0+RszjFOhMQLHiicE0C0UNKGbvWbfdu+wzukzyM3lo86rdAZbb7LI1Td3bEQDH2biNZshfoj+oFvzI2R7K4LWrB/PkLrkLg/507UnzNXftwLebapd60BjnhcfxejTS/02SNRVmdAKudZneTZIKO797t9PXkOSGMRUAmjaB4m9WAJOENf1FJkMMgrDL+9JuifbApsJFzSx8izFXv2LTvwxA1FRMUa/NaHH39bGwKPPP0qCo2fjJ98U3tUbbptXhP42Zf1/TzwXcvc4NcGGfUsWOGIRrtH0DOTjCgy8AlPo4QEuDlDMqKf93gsp+cyXSucd94at+oJCfUmqyc8AV/A1wihY3iCxKRXpxRtZyMCNbEyBKZWde+ilODrNJnjSQy1SmsURYkWJY8mMsBGszYzR6iyfKqmiU+o/EiKKNLvP1DSRSFC1dcLaTSKWnNqGN9Nt7n6WI7qQ4bMDRnCmWVO/yRNIXtMam5vAmlTiUf1tbZ6LoB+r23UZe3RHHlNr/vzL+nn4YhXLkXL6O7IqhddmgPKHK6Y6qfoDl735GvvBGwYCt1X3Q2puwEBuy5ac/R4VF3B0BzUY0i62yDY/csBAIxxkqyw4xGiyBkgspycTCxJIE1UoB0X4rEYYsSL8Ilsxojrn3ihKE3X56OUCslR4qMk82fGG8kUpJdRQlkniUv/jY3dMq8AbeO4/uXnpxYGC+geT3/VUiQ9zvhio/sAEAeNGk6jz0ZnrQ+3y+sBaD4KAGpu2nG9H3/77XjG83U2io2w+/k15+FJF+iIPiiXHuzzYJ45Ptoy0iNMKSQjdl1JnAdwwRH2CU7aOTnElWCoWX1zwagQXWH5VT1CssbwqYfduU/WufP5qFvJisEVJT5KxeWsHnvkCtzwdWNQhuepfz4EUX28PqcJcwMkwFodCu74nHQSHwVMtpl1HnM+LR8FALlgNjJT5GRkrxS1R/Xxqg8NOz5qpWrSpJSum/eaOW3KERvun9dMdg7z+KUCeh/UN1dGnAzFR7zSpW7bqE3F3NyoSLHxUbs2Zddw0YlFm5CJswtiZqm7gZNuawRDX0BAQEBAwHYKpbo34AVDX0BAQEBAQEBAwJaAUixwzR0IwdC3ifj7+efhqW9yArZ5r/Z+JJ5uAevxyqFbAeTxCQrXZmkKZXTBrPcknlCIxq3rzFnO/Uqntqy8irkTM52UMkFeUuv5YM4Qb9P4aN+eU8NqYFi9Nhm7yLNgoN90kNZexkibJmqoKdWg0uECoqmfmWjUpT3YqLzpcNe15ZRqm1qRjOZUldnexp9eX15XGLm53ocy5PWyPhwA8tKLNpD1mPNZJ+mZIb0NpcALL1XBOjWrAvFa7ZKPcon2PJ1nEY05UV/esumkovPjZlMMkoSi+Fgldd5JL9qOWRFwb12dhmHFLCVgNfYYIxFzMazbWPRVXMRCJNw+ABdhKF2KBHlFkwR8to7SQxw7L2pD55qo0THn6Y0EZOrck81Zus2je8RgT9bFc/r/offVf98QrSerMfK60W7pi6gfyCsuMthCNBXpd07Mi1AZKnuibVSnxYHvtsLuXjpFbWZiKAe9Xe9DWQmBGPjj+4MWyszAILvsdIP3NCBg18Xf3q778MNe77R283qMxBuzuK3kaZcVBeSojs5hlZSijFSWoT1Hkz6rpRaPZo6PSq/YQKFQJBvmo4DJJPH4qIuumcoVfE6aVxmdk80CyHo8WYiATUIyKiHaNjWaIx4z2T7c3Y/K2gKipXkDRZYBpLs3HSbzUQA4+qVXUZaHjJxe+M++4ta1vCNqAn3/1Py33d/5hkeGwrX6GOqP6jZmPQLxmOM5vEx5wAugqOn9xWsbNL9qza/rTA6AihTy9noimDrxURPdpvKcsreUVC5lvpKW+SigZVgsh221KeqWzRsERjRvLEiHmUMZDsuEAGIbMitLfNT+brPG+JzZ7t0XHMyk9atRL4TT7FemEfH9dj/D+CLzAj5lEP3/0NqaJT5qMtKKakT3ScYMmc1Us5WapYvMlAIYW6R/rz6W074m81EA2P8Dy6gIjBSA6hwgul488T3LwK3On7kX/3xLkKCaCSQYWOCaOwzCELkZYDusImXI+kzKYb8Ru2q2HCFKEkqRYEK4Dp1zsAEtRpCu0DHnlb82AGMQwOwBl64rFXJjOLRl5ZnyCJF3R2XkwpzJQKgc+ZJ+BdXcS9dNHBHLvTQ7O+gG0dJNh6309fRXLfX0apz+idUHiYfb4Cb99bafvbe0D2u8s/onupKqSW0ZlxBNj4inlpy7lIvv/98FU9p13wfPxZP/fRn9HzXLIe0//9J5pPEXNV06ty7Wor+3e02KQK4QW0MYAyKj6cJy6enfFUgeMYU3zHuikshVSptbQXrIE/TxHlgBOe7EkAGjZ2dJSxLTJAXjE4BJsbUTE12h1ozwlZSMdyqNwUfNiM8Zad7Zd443MqoWppJIky5AVzM0JEmad5XxiNIwWBIDtSrt11bLRsUY+L30YjRbiIb0ubXnzHLXfxxoaT6F4X1NlbKRXghzD2XESevEatQAIB1OXmgDn/1Od5O59Z/6Bn2/87qr1Pzbq88lAeTeB5x2X2Y+n/D+Zfjzezr3A098j96fjN2tsfvKekMNrplCIUT0BQQEdA8ZOdmVvB4h6TUeuVbb8VE7FkoF7jmTSd6iWkXFVLyt/snMrhtNKG98styk3Z+U+ajlm552tIytIL+alo/qfcIVhUoZcVGtMau/2/FEJsFxtLlwxw3nk6QM4BvZFOnxxcPO2TyZjwJaV8/eW8UZ7SOesLy2oIIpSJw+czQh8X8/uHDK/uxc47DXL3PtGXfWup9/6TziwdGEfhbzlNMzxTOFtk3plUAyairTmt+joYzamw1UyYhZeXAIkyvF5vUEzflaJ69SPB7Rw6b4RaPhUnCTuMRH9bLEcVH7ial8VF8zDtmvjyGGJ1xKfVQp8VHbLmWkWfi8QTArKTPRKPFRAGC1mtOnrldJM1BFwvFRKZ3B0Ti+xVAD7cfpualigDDdQGsQWLe/46MAINqSgghkwhwfZWU+CmhOar9LT5Mz6xF42ln6GWwNMDLq2SrJSjiJI144Prk+PgoAT3zvMupHohzIjTx3KNizcZCKgXWrGx0o/zZHMPRtBthCBUe80hltrLg/b7eBhhkckwTwSpHD6CBASijT2cLXTbGDQDtznTScd42qp3pip4DzUsiIUVUhMvhJV6UMEmQYyquOPKkI5GW1EUDoPiU/YAb4xRed1+rol1yJyBbeWG2MvIXCbb/QhOqol13lwvAUIMxgbfVTeCHJI8bbEqxtDcmdSdl0qK8wHtuWJG+mDxtNeOypVyLpoONiC3TIiIGZZXGzQPyYiRpoZs5jWE+RzdeTkGjYkJOsQLx2wpxHimzAaFwW86j6NJsw7tuRUYqGZZzryDlAG/2qk8TgKilUrx7hi74qPc9KcMS5FWQpdPsAgBkC1GyBWR2SLCfjnRocAGvq6Ahhf/f0T9SKVZD/+KfeR5qSR5XVa7Q9QUoiltFYDp7r9701AOQ9Xkky6Gg8YXVKEpDHVXE3ubPPSZHo6myArpJn+4l2rxuoreceYKXK2X+5SBOnQ9+6DJnpquIxp+EzLWyERk3ROdVWmNNcEwxRM8VMDH2BVAUEBPzmE+fisNcZh0vCIXsMHy0kYCN3rJh+njvj30AfYMZ8VYnLfBQAKimY5bCMkTY0U46P5lVOfJPGWO64ZNHDHB/1CpCRjFnCaCKeVxyfBfOi9yw/DRP1zQqfjx51mtbVS4ZzJEOGb0kQH7UGNukZc+NcQbSsyDNDNG4Kv+Q2Kq6gDIQf/9/bu25XZW1B/JLJMie10YTWAR1PuCKDoq2Q1a3RzwVEJBNGL3r1OJidn0UC0lSZbu4xgGSd4aNts+7aBoRxQOezKojlXP071sNHASCS5Dxm1Yp70CfxUQCAUpCJMUxmKfFO1miTLjMzRjiW5y4TpbcHavaAXl6vlfkooIvsPKINk8Vf/gFuC7+lqeOj8+e4ttlP5u4hz2K0jI0/rytEhpNMzI/MtfY0nJWXBRK758P2AdlsRlWbmXQ6m3mVIRk1OqOr1ZT3+68XnotD/5/u19r9QDzeWZt+MpQAioqJIIwYeh4y51Fdz0YB02Imhr6AbY9g6NuMyFNAmbjsuF8bGdLhCYAbo42SUL11t4ElQVHqBi/7GQlHsoqCQqKZlODG68QqblZuBzMptCdNr+A8q1R9l7vIq7zKkBlClfW5ybuMHLkio2GsINMgWLoloQQjQkRp2SnD8Sdfrr/PimjQFE1XpCMec2TKGuZYqwC35IPPrEP+6f+4NIwlT7sUAHDyoe/R+23nuPmPHwIwNX3YEj9rPL77v87FM5fotvNmAbZqrT6PoiCPIhcCyYAOE5MD+t1QsTb2AQBv5Ygs58gKEgBW1nvZbtPEBFnuDHLcVVOzBEnVquSd5a0c0n5vZyhqtvBNg8SFlWmPrKcQq9bpc3t0FXjVsYPCEC1KGZ6mupmamAAmjHtyaAgAEOU5ij3mAwBagxVKk1a8PLmhimOpSSsZYDTRYdKRJz+FiXnEx3pFi9Q3+Lu0fnss6zWdjHhcoTloJnT28mbA4z55pfnOKNVaNBkiO8mLHLmyfVJzsOMhAtaDmeihdJviGxAQsHPDVqvNagx5v5GUGZ1wlT5ttP0kTqoqjmuW+Cigx1Uz1sm+KhXQ4q1iEh81kT0e77RdGM+Vt9yNQ1b6I6u5yHGWOyF+n5fKxDi5e12qX8DmhXXYVtYqKOu8TBiedcJ/AACkKfZSJAxR0xaMk1TcguWK5jXE58Za9H0m8DnpSU9/H5Y85WL6/9bfaI7aSc7mmBddSYbIX37+XOLSwhj62Kq1zrCd52DmPCvDA8RHLVhRgLfsP97ydaOU9qqyrMRHAYBlGUXJgjEXvTeJjwI6VVYYySZVicAMt0c7K/FRABCr1iF/dJX+bjJdAEC225BU6LEzH5UNU82m0SjxUblIGy+b8/TEMK8LMvop4c6bFUBRNXy033Mul5zOZrFyEXt2+2gCLgjFe4VZ4TKU/BRuH5FteuQyUPIehcddo59LPmQc9Jm7SZUGQ3vAHIMpKvJRBEPfRiEY+nYsBEPfZkR9heuxbAi4SmJd4RMAGk1XkrzVcl7SHkEdPjPeMFlLwMdatD9lBwrp0iVKxCmyJMl5Q3kGxBPllzGroeT9kJ7GQdbjOnTSUzPGBZVKPPDa7j1wAd3j6a/WoeosZTSoFhXjAVSKQvZFSyFdZ7yLIxmix3RajVo3pD8brjozSxLyIt786Cc3um23/lITqlOeYNJ8i+lJmk0Vvvu/HOGyz2r02Ihun4VpZzE6Cm4Ma9wsywd7oYzXt0QW141CDZtztu0oCiI1XHCw3LavcBMa+87BEU6WZ2Am7UEmEZQxTqoocpF3Zt3GXr2omuOJRhNyRJM62fLOZzpY7RbOplTolSOjEPcXpol7AOY+t3u4i6SFIyyyat57wbxUWEd8eOalNNkAjNUuXSKrMVouMoCbispsA97QrO70cywx+tOl52Kfjyw17VHgpo2K6yhEwBghzaX/7dUhvWpT0H1EXyBfAQEBQG2lMTRI9f/Z++4wu6py/Xet3U6fnpn0Hro0AWmCYgJR78XyUyxXvd5r4VpQUKRZkCpFwlXEfu0iV8V6DRAVsBAVIYQaQnqdmUw9/ey2fn98a699JpkkM2EmmSTrfZ55srPPbmfvs/d69/d97/spuw7h2OpFGvJlnyUcoCQHEccGooSTyZVMMAou8EI85gm7rkOoFyo+alaFqiKP/vXTcZLJLDM15kSJZtog/RM6Mbf1s3F1FhNAkJIDkUELb/zPT432tGiMFNH1MBhEhoIn3AsRSi/GqHLPGQhhyuCeuSM/PB+N1EmGgQde2Hc+ClBF4eKjpMzX23Og16yEO/FRKRXuGoyPsa56LciTjYwRhOByvt/RSMsaDEzyWRYKsF7aRjgwiPquuhE3VSqsIIyDfwYHnPilS/FRz5X/WupdMLAM8Oi9L5lQlYUVKaVNuT7MCmVOw3xx73y0jotGqOekYaEIvpmO005Mk8fL4CVl0H4nTupn5TuuPEY/CXi5SIodV+16yZiPJnfIzXrxsyE0oRQqhhu/7+wO0fstRDy95vLLMPsu2dlZPYdi6XitRYBFzYodgedu2tX/T2PkGJV0VyefDzh0oE9DQ0NDQ2OCQoyiGYeu6NPQ0NDQ0NDQ0BgP6GYcBxd0oG8M8cjv4uzi4nmy+s0wAFllJCpVldkSDRmVBWI1D36OfMrCJpL8GmVfZcN4qQZeiT0yQtl1KepY5ScMcNm5lQexBNdtiGV/0T3p5WIfBe4PleZGnTHBBAIzruQDABbqm3o8cN65N6HBjc5xqJpQRLC39MfZwHqUShCRbLQWy0dVNrFWAzNpW+cn34UHKj94Sce59IUv7HWZ+t8/QBILM5JpDOTjKjxASXcBQEQygh6S9pphCL+dspZegw0rL+vzkwlqsgEoSdHOVXLq+xsGdTsDVJdbxpKAF5sNq+5oTWklAeA1L84SR14pvlDNQ5xiA7j0AeScK8PlcGsnzZs9vS67G/vuIQwBmS0OpeyYzZ+FgaPpe/oJproOhhaGGJALWb3A/NiPJKqUCx2B0I+r6fx0bHJO8+Ju2cKIK/6CIL6no2fEiR9aghV371p5t/K/d50379YlQNS5LOujlo7MrU2Esvvb+o/qTmZjASEAP+R7XxBAoJ/TGhoa2ImPHn01TQRhbE0hG0kxx4ZoyqplWY1KX/y2DNwWKpkxS1GH1YSq6uPFquruFOYSsAclH00a4H7MRwGS4LoNcjqMRSVeLm6wYUiKK0wgkNJcYUGVnAe2ACL7mJo2jB4PnHfuTQCocq8xavKWiF8T7Q07VGXYEFlo1LnV9RSf25mPAgAzLVyQey8A4P78d/b5OCP7mL3h4aXxPbDoFdcpL2bRS1YswveHcNEIolIBemnalBZK/qQcvAYiXtagS3wUACtXyEIGxEej7ywi2bvvK64pfB8saiiXTsV8NOKoNQuiiSS63A3UvQjPj/moXMVvSMAqk8adW5ZSxMCy4G/YSMd+xDyaF4pYhs95zFHzhZiPzpuJgaNiPgqQfDuqxqvnpcIQ4HV8FBjaxDE066pyU7EvfOTpGThxlZ+fjF9xWMjU9k764JJh7WSG46NzltyhKhXDJroWXpNAWKNzNmV6H5Yv2vs7jMbI4IccjOln8MECHegbJyxdcxsAYPHsyxSxghDKWwy5nfwfpJGxEUZeX0CQkkEEx4QhyRXzfeV3FckxDMbigF1deTUQB/KiEme3QcQPZgEIM/JYqSvn5oCwtTRiPBF53yFtQUjZNS+HsHrloFuQAa1i3HlLVKqxt0YdVLCrjniJnSS2EbliyYSSsi7d/N+7bGvxUVdBONLjoi+PYDsFsCJy96D74xF/R2OwrIJmYaUyRPYbkyEBEcqAnLw3eBCoB1NoN8d+hQlLySEUOTEM1YEXvg8RMQbLjPchA6Lc9+NmHWGozhcv1uJjq1TV/crkvZjYZqI4T5oGoRHOtkjmG/sA8hlTaZ7BAEOSOstQ9zDzQqBNehE6UuqQMhShqjay2C+kznQ8sKEIlSkfHW4D4DZFweG4gxzjcZA/Ct5xr84gmcUy36CuT0nkuxfUy6j2Aj8XqJcuM+VhzVs/PfKVNUYFAe3Rp6Ghse9Y+hwFcBYvuALwvKEflipAowz01XXzYYGAWY64K/0TpCyEjjTfL1SVJ67gLLbpACDkGKj4KItf/AUfno9GXnzCEoqPCibibTghNrxX89HxwvmnfB5M8hVhMHDZzM3qLSk+KgpFxbciK5adOene+Kjw6fd3QfP744ZphoGlm+7c5ZiiAHXoWOA9AwCAoLNr3/hovgpUKQgUysBcPScN62TAoeeDhbIhnAyQmX4AMb2ZPrc5RNRV1zJ3y0fpu4eAFajzEJ037vuxrYzyaA9iy6YgUAFAuJ661xJb6EYpzM8hYVJ3DGcbJz4KUAONeXNof9E8I7aHClKWkiCjNav4aJAwlC9j5GHnJ6GKREKjrkjEY7AGpDxfUmO3MYwDekb8TspCgAXSfijy1EtAedSblfh5IBiU36OXGTmXCRt9FQG1U/T7Wv3/PjPi9TVGh9FJdzUONHSgb7xRrcXkyTDiaiHGEGSkqWrJhZDBDKMYV+4JJ47aBRkaELmxE0kDUG21EDix30H00GQC8KhQULUhDzKBeiCygMEo1u0jHXlLhNj4niteyrfW2Av4ABEDy0sossEGS4AkIOEgVX9FpAiQBGo35rrDYYj/RtSpy3XV/PMT76QPDQMPlL5P0/2DEAPkPRIM8T+hY1xkvU2tvyy4F4vbLpbH6eP+/m8BABZPu0SuEqiqAQrCDePvN4QMyn9dD0x+f9u2yAsIoEyk9DfhEUEUcWdX4XpDmmJEx6nm+T5Yim4OZplxAD4IyTMTFBRUlYCR9x9jyGyg+7P/6CzAKetp9VfBpIeRsGMPTeFITxPbUH42HFAB+nIHsaXAZuq+re9qLcw4YMcDwJBczxmgf6stQGpr5JMTV0T4aUBEVXayqi60WUyukkBNkjJrMF4v1y0Dnj2jGJLT8W9DB/nGF6PruqsDfRoaGsNj6epbsHjyh+k/slJJ1HXdDbIJGKWospzDHKwNWX8IJ80mYESl8HUod9iqIVd91U6UfPLSsZfXznwUwFBOmgnATFpxw7uv3LcvrTEi8HwlbpQRhqrxGVx393yUJka8jyGctFgCkw3KRBDg/PS7hyz7QOn7gKy8w2AeQV1ymHHa5858FAAWd3wIoka/y/v7v4XFMz4udy4gpKpCDNOsgnE2NCBZx0cBAAODsGQSXNim4qXMtsFl51qSSkg+Wqe0UY1v6iv+PF+tx2TQEHWN6lCrxaod3weT63HpPZ1dz9FzIhG6nNEIu09W6FY86pgNxM39HK66+QaOgegOE5yhPJn4aGjGfLS+W3YUgGdBXKFrVICErHgsUz85pLZxVZXrJ4iPAsRJo4KSaPuGF7+n1rKA0ye/fgJId9Ix7+wvv0cYQj1HdIBv/DGqZhw60nfAoQN944yl27+CxVM/Sv8x6kpdw1BlW7zGhAr0iYZIuuupB7MwOXg1evOHysZEwQU/yepamccP5vrW5NGLP5gAk1JAI+NByKxJ4BswbdpH4OqS3HGHJBzM8ygYDJLSRAREZRxHQaJ2QX0QLZIs1JVbR0QGrouF/C0j22RdrG6hcVGc3Q0CLDQuGrIsr6+qq5dH7O47RWQoCBAW6PxwzsAaKbAmTENJjCLSI8qVmCQBEJW6SsGdOuGGrgv17R0n7mrtekp6gSCM14uMpKs1JTnIra9gYAGV3iXTBrhL3yvRLbO/ZRdsOzEg1tqIWitF3sKcqQa8WiPt16wIJHfQvlpXlOFniXD1L3CUxBaIq3LrO9ZakoNzL67I89NQJuVRRYRZqetqaMeSKDQwNR3JrLJbRt4Nb8O79EvXfoMYeQBPB/o0NDT2CCdqdBVXGUUBAWFyeE1JOc3gN8V8FKDkVdSBldcCZZzPvBBhoo6PKksYyG3F1UAsrOOjPOYFZiPxoDDDEfi0AdPxEdR2kqlojA8GBsFqMvtXranKM+F6Y8NHd1pf+OFQPholo2VCdE+cVAxDVSL+Wc876wOBPOEMkdgOd0zDHavisMUSDMl3WTYDJrtTh5MaVeMOUSoP4aMAVT4OSTpH2/XD2LamXlYrA4vCdeOOwHUBRBa9L5gcLU8ST+49IYt0MrovQzg7pCJIdt7mnX1AG1X/+W0OvKz8HiFQlXzULgoke2h/rU/S+l7ORt+RUSAw/k6hDZQ75PeTl9Aqxg13uFvXNMMQ4NWI80LtN4him7aA2xBVEApwee9nRsNH360LU/YnhKgr0d4rNCc90NCBvv2BqHKobnBhgVCl8azqAzLoV5xJaRDLMWJflFCoyiAWGsrHzU9G3ZniLpxgQ2V7Vl4egvQ0qRrAhg+Td9YR910HyIetVwMCTz6xS/pnMd5Qpf678TQZV7xUsla3nSiAOBwUOQRIajHC/Qrfi5NAg3nwyEvPcSBykj3ITtbM9+OAnWWCRZKfYXxXgLrqPtdTkughkuL69SLpRc2F0U+RtdqRbXEHWoer7tq9x8vM6iYXVoqIkbAMBPK+reVYneSe9uFmGFKdMrietGD10O8gZ3MMzo7JYmmarM6LpLJ5A0FUuWfEnQtDW6jBV0n2E1Dem4IBiR2yqnB6qLKsxRl0jOUO/UI1EaGbcWhoaIwZogCOSoQJFVDgNR9MjmnCMlCYS3zUHqSxwSp6SqESOoYKEAZpS/HR0Iz5aDQOGZX4vTDRC9SaopIhhnUfow6YR9x3HS1rhqgVZVW8x4GK5qP7A2GpDBYFmSqVOMC1nznpcEG80WxjCO+sQ73EuD5BvdfN1lUxRglo5vtgTY00M2nFfn1+7K3OpCyX1Woj46MAwJlK9jPOdstHAcDoKaB0VBut5gt4KbpnnFqI7tPo2BrX0LJ2wkQoqxEDh8OTnsqhwWDUaB+VFobmVbSPyJfR6SqhUQbz87OtuItta0h8E8RHabt1vDMZ+0hDMOUzHVX01VvHJLsYinPj6xDx0Uqr5qMTFboZx8EFPYLuByztonbyF7R+AMyST79KFbyujTirykHKJq1tzTbAlBkuh5emh19qG1Brpge2UZHrWPGDk3nAqs/FZqUnfXAJAMCSCZ5Vn4sN8l9402eHHOecO++QGwFmffV2AMCG//okNMYGUYaSGYbyGBGev0vl2bhif+xjd/sdzsR5b6sFAZZu/TIAYPHUj4L1SkIkm9rAsoYNpEOEKjM8HHEUQaBKzylbGmeWo/Vg1BEN6WvkdFUQ2BRZ476AISttrQotm59pQ8ymY0t3+cq3yC5wFVirZWlfbg7YcSI9DyrtAnY/3cTOYCzdrQeXwXqv1QMP6qoY62QWsd9RLN2ttUamnEBunSShAYPISPP0yKezqit5JyJGJ90d32PR0NA4uKH4aPP7AVAzjij4Z3CmlCa85iG0JB9tovGNBwJBQiaNGw3kNsgxrdlSfDSwSZ4LxNXkz90Yc9JXn/cFmLJC8MHlscxuZz4KECdlsupv1ldv13x0DDGEjwIA40qmWl95Nq44QHw0Vm2MPAENxD5+y6rfUhJ47roxHzXNOm+++n14cpLtlo8CIE6qZL47cVJjp8CX7yO5nV7sQjMNLqv3jFoIJ0/ThelSajyrEelOX30ekUZhCtRykldmgJ7jaPnyZBno60vAlsUiLIwbgSBkSuLvtdJ3474VF3kxqOAeRFzBG0o/8mpr7M2ZW8vAPMnFcz4Ceb8LpgN9ExXao+/ggg70aWhoaGhoTFRo6a6GhoaGhoaGhsYBxuikuxoHGjrQtx/BZCMBAIAfIGiQRqxBCC5N/c0Kxb9LHQYM6U0SGkx15wRjSjpoymqi0LTw3A27thwHMGx78t0h8lcIEkJVD2mMPaiCbPRGxocUZAXdEHnCMOdiiDlyuQImZbxRhZ2oVIdIkJQXSijiyrzhKglFCCDOZLP6bKlcL9oXNe6gfRgDJSSlN2at2YafoWWsIm271G7CJUtBVJtM+HXNcIJMlOGV2VtTKKNxEXAYs0laUnZNYK2U8BcBW3Y3q06VGdmiCbdFbsNlYH70PXc5ffCyQBhV7LkMhZny/LTUYCdoe15NntOKvesGNA44dNddDQ2NsYbqeFoHb1JWeUAbZTce16Stg1kxVFUOefHJsTIETOmPGzgWVn1+97zzj38Yhb9r7EYB7uln23ggrjwbXbO3QxFK0ru7xnd188IC2bmwhBN3ny5XICK/vci3LwgULyU1zzB8V03Hah+2UwXfED4KAH4ALi1lko6JWjPxNz9lwOmj46ksoAq9WiNQa6T1vCzgp6VaLBtAyBdKZggwO5Jr071mzSuj4tI2wjUZ2KRchj3AUJ0lJcQD9LnbEoC50p7Gi33jaYM0322U584S6n4uzBZgLeQ7aNkBPPk9hX4HnbAYVTMOjQMOHejb32CRLJDD7KLupqWj2mBW6GHp9NIDr9KcVCXVyd5ANeaoNVswS/Qw9rJ0+YK6+OFLgd8gB3yPw8rrm3isMKyp8GFAqJaFPx363YchNiLAENnscFhkvQ0A8KD3E1zQ9D5arxw1z6jvkhYMkUvs4ouym/0ww4jJE2OAnGb1y0fy4EoVZq+UNlUd+Fm6+dxGun9TOwTMSuxDEkj/PLPIEMigH5OBN7gcZkrKHgwP81p6aJoJPIPJ9J2eTisZL5PEx+5nqE6q+wJRIx4z7jwWdTAMEyGE9PYLEgJGkr5HFOQDgESKzuXz77xq2POjceAx4ko9Tb40NDRGA85Voziru4DyvGaanbWQ2kbSwFqjlPA2cCR7pV1FmaEqbWSsYjDmfBQgyV/0SLMG9Iv/WOFw5KS78FFgl+88RG67Byyy34EH3R8DAC5oeh/CCgXchOfXWcbUeRxGVj31noC746NRotky4/dFyxzKRwFKdstgotlbBK/SjednHdSa6L5M7pBB+yof0uDNlLJbv0HEfLRiwMpGDVFo3tzmXnDJKZ9hHQhXRs3wAMhCFLtfJqLtuhimESeYwYTio5HFlHBC9Zww0h4sJ+ajyTQdw3Oaj05Y6Iq+gws60LcfEXmNAcAFx10DITMXf/r15TjlveSP1/gCEatkb4D8TFktVObqgV5uNdBQpMGi0iy7nKUwJtjwgcsBkC8K9/aysMaIMNJutoc19kIwI3K00LgIy4J7d7vcboOKdRV9ke8J4yyezxl5q0D6FUVVg1Fm1vchZKCPCQF40mTZNcBlNZw9QIuaJQ47LxtwNBowyzLgZgHCkBnVVpn95QKWRdNTGweRMGjaDQ01v5YTyG6ImnjQdkszAxW8Y5W6DDETgCRXkSmy4AI8EZk7CxiWXA9AEMjjLOpKvokMIUbu0bcbz28NDQ2NIRjCR1/2aQCAMAw88hvigSe/fwlanyTvvpTsDj8wx4RVkokuXyjDfLsQoDxJmvLvWii4z1j/kU8o72ju72Vhjb1C89ERYm+c1PdUl9/dcdJR81FgqA+faRIfldP1fJSOwSc+CgCeD+ZKH03XhNNPs+0Ck/8aqDXKqtxyXVds01J8FFzANOk+n9pIRSgmC5VKwDYDlLO0v+wGBi73V5ohk/a2gAijCt846QxTxHxUVg/yhK+CiYYZqmCiW7NQyw/tWqwx8aA9+g4u6EDfAYJI2IDsWHb+y69FaRHp/cwqpV3sfKAkuvkZHDwqtssAZlWWYzdJM9Ts2N5K3IOSAR57OTXz8FPYoxxDQ2NnLORvwbLwp2p6rLe9RwyXLd15XpQ5NYy4A69Z90isy74q2T1jqsuvMIy6bth0D3oZQzXO8ROxfIG7UOQrtOQLUYuPpBNH1F/oow5qBg9RztNzwKkweLISsHR0TW6AAVHFXjIAC+MBNzJAZoYkVHYA05KyYyNU+ytVbXgD9J2sHvrOs+6+HRs+pM3OJxoEGIIRB/p0llVDQ2N0CNM0FvCyiwtOoKYY/iub0Hs8VfCkt8tkUQAUZFdM7pEkECBOWmuU8rymsa0MY3UBPsVHZbOPVddqTqoxMux3PlpvGTMSPqrmR1r1OAENxobwUWAnKyjOFS8NbQPcpWWrjRR1dzM8tn/isU2T0w+lFvMbh/JRAFjd14qkTDoXBpJwpFrFzQHV42QXY1nZh4AhTEpLmYDFVjKmACI+KrmoaQUw5Lyk46FcpYBmuMOBWabvMesrX8SGD8fNIzUmDoLRSHc1Jz3g0IG+A4QHHvsczjv3JgBAkDDw3E1EWBbcQETG6edI9tJLe7WZodYqyRMDQksGGiLJ3uTamB7bmssvU9MnXRwH+jRGDp05JYzpeRDhnrdXR5z2VPkX4fz0u+VmQxWog+/HWVVLZhbDuheXbFqVTfHBEsyoQ2GJ7kG3oWmIN0koN8EFYJXkPOm5V85wlCoxWcsPSm0FA3gfrWiWgdIcmcH15L4qBpCledwKEPrRg4DBkB4rjY1UGez5Bqo1KeNwPPiyis/gIRLbTHnM8vs0uns9ZxoHBroZh4aGxngh6n678Kwb4TbRS/fKL12KBTcR/8vPpjGk8UWBfAs9Y2pt8bg4aHKE8m3Cmlwe02Nb+8k6PvpBOh4vO6a7OCygOenY89E9bVNV6cHAg95PRrTJ8zPvGTojsowxjF35KGNATmaBgxAsT/edkTBhdFOrXN7cTodax0kDW8XdYJWAQPLRIM1RrAzV3ecHUyjJ4BwfsGDI2F5pjg9U6IbnZcmXcz64rAgMfU4JaVCyOeKjgZxXrjgqqFjzTFhyPfRxuDmZrNZ8dMJCS3cPLuhA3wHEHx6+GgDw6oVfUPNWf5oCfnPvvRH8UYqupbcBlZkyU8IFxCARMXcaPQibm0ov+ViOv2SJqhwC4gDFqq/pjKnGS8ew/ihjjTp5xN5kvgDwQOn7AIALWj8QGx+HYRzoM+rYEYs872xABveClAWzT957UkKRfrEPTgvdSPk5SYRW3CgjkCqMsE6d4VbpEVzpT6g4pZHyYEjJr9sA8Iz08Ysad6Q5bEmSOBeoygrfyEAZgArolUoO+BbK6vpHuihspMrhMBVg4+fo3p719dsBALYzNGOsMTEwKumubsahoaGxj1j2l2uG8tGraYw4eek1AIBSsRWpTvqsOtdTL/NiwIY3jZJdLenqSz6OEz5KAT03F88LEsALo2gup6GxO4xXZV896v349ibzjfBA8XtY3HYx/YezOKhnGEP5KAAwhjAV264EaZo2+0qAIz2j1/QBAOyWDAbnUiI5sONqu8AGRBQFYIArveJ7+mhZZoWx9UuJqwC7kfIUHw2TdFyJhAcu5bjVij1ErRzx0bJs+MbXpOEfR++vlXU5pOeSVHjV5y7FrK8SH81mX/pzRGN8oKW7Bxd0oE9DQ0NDQ2MCQ4yULWlWpaGhoaGhoaGhMQ4QApprHkSYMIG+c/7lNgDkJWCVKRXwp19dfiAPab/hj8uu3GXenPYedBkzAAC5TS76j6NLFVoCyS5apjaZIuomH7knyllvuh1ulrIr//jeZTj5/ZQ5FXXVfHYeKuNz9Kfp89DUfigjhZZI7IqJfE5YJg1UqRpB+H7sfRL5o5hQ/ijM98GKVE3Haraq9BORP0rWUVEZN8vgR53F3FhuFMp5vMIhMrR+er2lBs7SHKB1lfT8SzP0tVCWlTfQMabTVWQTNO0FhpI9lCu2um+jzKppB0huppkDzRls/Miunie8JqsHu5O7fKZx4CHAtHRXQ2M/45x/uQ2FKTQGZDd7eOR3nzrAR7R/MBwfzdo03hTSQNsKqsTpO9EkTwoAqS7AnUHPHmsUfPSVF96mmso99h2S6J78gSUIoko+BljU0BRWATjqM5KvyqF51ec0J9U4xJCU3Ww8D8KTXDOZGMpHASAIwDzJS8s1MFfKfFnMAYJG6bkkBNxc3Bgu4qK1JqimGUaRI0hKPrqBdiI4UD2C7ue2VQJemj7v7zDBDDq2tOySm0tW4fp0L6dsF4UKfY9QMJhSK+zI7rr2VqCvnV46N14aS/MBgHu0j9KGHDQmJrR09+DChAn0RZ2+XnbZEjSso4fCqxbdAgB46MErDthxHSjsKGWUr0KQ4DBkpzMDUC/zyUYqbZ7b2LPX7Z27+FYAAHPYEL+Gx7+5Z6IUefR5GTLrB6AN+zVeOuqNiscBI/Hoi7B0wxIsnv4xAAAzTSDqdBY13bANsCDqbMsQZqQEIueAV6SsQRKugSMyMDxa1ncAyK/55F3xfRbdR1begFeSslsOND8nu2kfHaBroTwvAjCldMKXMl+WqoFJclaq2WjJkHz4ydddj7n33ggAKJYomrjmrZ8G3rzn77/uEm14PKEhRuPRN87HoqFxmOCR31yO4y6LAkvssOajA9XYPzZqQGUUuWoEJTiQbiADr9kNvXvd3rkX0LmEzVVHzgiPf2P3nFTxUdmMY/ZdX8T6YZJXGhqjBuMTg49uuhMAsHj2ZXHXXTuW6ApH8sBAxInmlAO/ke5RXvNhDNK92H8k3SiGF9sxMR949o7h+WhQkgUl8p5sXhWi7wQK6HW/hqlktOEECOr4KAAwJlRwb3pzPx5bTB708396A/JFmr/mrdTdGxfu/vtrPjrxoQN9BxcmTKAvwlN3XBoHpeRby7mLb8XDSw+PbGoEiwfoP1Ia7nsmshtp/sBRQnU3q+6gbI09LcA1T70JAHDjy+4bsp1T33MHACBZd09GmZ3RgIWA00NP/5ddtgT2IF2bnnNctLQVAAC9m5oAABs+eJgHAseRMBzMqPdFiYyKRTgxzpWQpsYiYYIXZXMb6YkiTBOsRkF1FoQQGboPeMUHr8kuZZJw+UmGvmNoOrceMCu7Rl6iQPmcO+8Alx3GyrM8eMdSpUTS9uHLzOjM1j6s3d4m90H/TMoUVRVvZ18Om/pbAQBH3ncdmAygBu5Ob08aBy0EmPbo09A4AHhavhC/8sLbwH165h6OfDRhEhcdnFlFfju9tDe+APQfQ+NbrZGh0kN8NDu1hg898W8AgLtP+uEu2zr1PXfAScgMGGOotI78mRX5SKuuob0cx18iG9jlBbrPlRVQZgjWS8mudR+7bJftHJY4kLx0nBO7+4p672jGGfFRYEIcp0glIZIUnXvgn9di8VFX0XxZ2cdqVbBA+uRl4qQzr3kQ5tCGjb3HMvUO+cRXhwbSIz46+8tfBK/SCpWZdB/tONZFQipGfMfHzDby/Fu3rU3x0ZY0JZoTpo9t1UYAwLJzl+CI+66jYxBc89FDDKPx6NM48JhwgT4AikSd9+qbacaEPMrxxWOLb8IpS6lZR3FTG7IbiVA1PcuQn0PLJNqok9FfN8zG24/qG3Y7npQGNqylB/fgvCQGF4x8EHtiL8045t26BIOy4igKWhz96SV47obDV1KxLLhXme+ONWFgpqwA8709fs44Q+hOoK5V9R1xw59ikf0OAABPWgjLY9elLwomjhb3P3ujmn7NK2layGCkUfUBSYCChiSEGTXuEIArA5YG/ZvoCzFwBFPr/+O7u3/JWPfxyzDru1TZYNhBTIZsH6kkXTs/5DCk6TGTMinOBNyAlrVtX2VJF/zseiXZFaYu7TqUoD36NDQOHP70q8txwTHUkMKf03hgD+YA4G/nExc//cEr0TdJBvpeFGh6jsa6/Gwg1UxVRA8+dxTedsI/d7utUgdDw1op/z0qhdKRI+cpT9++Fz56CwX92JwSQkmRDnc+Ot5gpjUiPgpgwnDS+uYYEWdcZL8DRpqCw0GxOGb7GgtOCgBuO+ltjaqU6Fa5kuYKgxMfBQCXQdj00uwMEnfknoFaw573t/6jn8Cs7xEfjRpteFUTtk37S6dqKuHIzRAisoeRSeeqbyL04oBe4BNn5lxoPnqIYVQeffrSH3BM6BDaH/541YE+hAMKVfr85BL0nEDzGl4EUttoOvEcpTdDA9g0qxkA8Mo/XI5NW6nCx067wBRapv1PFEwpT0oBo/BQOfFDsVTimdtisnTSf9H8lqJAsZfKwy3ZgLTSDpz0Qfo8s93Hn359eHgt1sNIywE4CCA8f8hnIgj2KQDIDAPMlvX3IhzS1YsW4OByvwhDINrvBMhOctvGIuttAIAHvZ+oYzcaWiBq0h9v5+9zgOCndnosMgZeISIrOEeQJDITWByOrPIQNs3bcSJH60oa2f7x3b2/XBgJmS0tmSoWWupJoyRJVGGgCZNfRm0OizUioTXfVNJd142PtTaQAJOdd0dTVRvJfVNJV3VHe/6Nnxvx+hrjjFFJd3WWVUNjPLDzi/fhiOWLvoA5z5JKpGuhi+blNCalOgFnFQUimkshth7RCAA46/eUtN+yuRWJBqqKr01Pw5BV8+XJKaAy8mqf09/+RQDAwHw5Tl0Xj7EnfngJWgdoPC72psEknXAb4/XPejPJFP/y88NPdWKkU4pjCc+Pg2/7yBNVEM+21LoiCIYkdXlGaqyjTJXnTxg+CgCLrLfhQe8nACh5zhonAQBYpTJh+GiE0JH3iVSP8IoHIaeDpIFQVvExPwSTx77jBFqncY3YY9I5wtQpVDCyZVMLbYsDpW2yjDbto7CGVFuTj+lCoUr3vhfU3b/VeNov0TkWIbDxP0deAT3nx/TeayV8FSxUkl+NCYHRSHd1nO/AY0IH+jQ0NDQ0NA5nCOhAn4aGhoaGhoaGxoHF6Dz6NCc90NCBvoMAL15VZ5z6jdtgd8uy7DzNExx4bNt0AEAYclhJqj4yeAh+7CBt4xrKrJl2ARve9NkR73vF3cNXJe3s86AxFKxDZgYZi7OZkXFu0qaKOwCsFlf7hZu27pJFrP8/T6XAstJLrlyBqFCGnOeijFs69pXr2vHSM6f76OkSZXohQjBDZvgMDlbvuh1tNwxhtFL20O/uGfpZ/XFE8/fg9bKvEqFlkxIAAKLRSURBVImdYfdRtYGfpYyknzHBZTWdsLiS9AqTYfvZVMVQaad113xqdPeFtUqanGcFgpy81oYAL9G5alkJDHROpn1Mot/R4OQUjp1BZb2WFSj578b37ZtJfEsDleKm7Rq2DexF36Gx/yFG7tG3r8047r77btx2223Yvn07jjnmGNx55504++yzd7v8I488gssuuwzPPvsspkyZgk996lO4+OKLhyzz85//HJ/5zGewdu1azJ07FzfeeCPe+MY3jmq/Qgh8/vOfxze+8Q309/fjtNNOw1e+8hUcc8wxQ7azfPlyXHPNNfj73/8Oy7JwwgknYOnSpUgmdSdpDY2xxLq6LpkL0tcDALztKbQ9FnX1ZHh8+zSalp5ndjZuIJWdOYgXryT5LzdK2PCWkVfrLL9n90b9K76y97H3cKzki8AmtYJxvuv8pGz0EIZgbsRBOML1mwEQB1WeyvV8VKpHWDoFUSbZtqjV4iq+dBqwZPfWzm6a91I46T76/A3HR1l0XHXfhxkGINUlxqQ2+Hs65npuvBuePFZ8dGf4GTp2XnMgrMiLj0GYdI22vzKLcgfda2s/OTo+2vvXDgCAlZYN5RoDCIumWdlE6wpabnBbBypyH/k2+h0cN2sreJak2bO+cys2vHfffEwntZDne8L0sKm7eZ+2oTG+GG+PPs1HxxY60HeQYcMHLsecO0k6UbiwoOYbf6UX9PSrd6BVmqN2JPNYuWMqfS7lujVPX/L9gbBBSndNDj9FRCNwJFExmPLTMCsByu1EtIxjW2FU6DpZJQoACs5g9VfUdoUMEIq2JgiLSEupgx4eLBBIbKNrH67bN987kgdHxE8glE0o4gV2IjWSfDHO1HqsrkNY1DVMdLSCdcbdoSMStHjqRwFJDI0akYRgYCAOENbtQwTYL4Sq+1QK3lllukbOQAivQX63QMAalM06Ghwke6Vvnr9vgx6PLGsYAOljYjg+Qo++c2kKR3qbNDxvkg0/agZe3EENOnKpKlIJ2sjcn9yEtW+7etTHUJXPBCEAr6afDxMS46h/uPfee/Hxj38cd999N84880x8/etfx+LFi/Hcc89hxowZuyy/fv16vPa1r8X73/9+/PCHP8Rf//pXfOhDH0JbWxve/GZq8bx8+XJcdNFFuP766/HGN74Rv/jFL/DWt74Vf/nLX3DaaaeNeL+33nor7rjjDnz3u9/FggULcMMNN2DhwoV44YUXkM1m1b4uuOACXHXVVfjyl78M27axcuVK8GFeajU0NMYOq9/8GQDAzP+5Ffwd/QDoUcV/T4nO5KtpzG9NlTA3S9N/65yFdJp4RaVqQ2P/IGjNqmRzkDThJ3eVTJtlCnyVpjowj2xW86yiL9czYO8Yyi1FGEK0k6QTjKE8WQb6AoFEF/FRsY8+zCowV8cpw0qlboFhgmyMq8Aks+2hfDRBCdtwGv0+jQ3b1WcPej/BBQ3/Qct1NMBooneqoK9/yLFE+xBRjHCn/Y9XgG9wNn2PdBft2MtZ6jN7oAavgb5bok/AKr1EPpqONhzCsGh/QcVEaTKdg+wWgQqdQogazXtxRxvaW6n6pDefVh7zkQXVSBHITt4l11Y8WGOCYTQefaOE5qNjDybE3msA8vk8GhoaMDg4iFwutz+OS2MUOP3BK9HzOJUUvXjVpTjvIcq41gITrk8v7mmbghM9xQxySSJZ8xp68Hxfu9qOZdAD/a8Lb9lvx34o4jXn3ASjJEdMIVCZShV3tQYaEA1XwM7TubYKHrwsDdiVNhOhjLNE3bIMN55mYdzF1SwF8FP0QWjHg3r0eebZHYBHlZ3hjt644QXjQwkLZHAvSRl21tqMMC2nhQDrGaDjqcYBv3Awr9ZD1AHMssBSMlsRVRgCyhS4sKARiR30GzT/+QIeKH4PALDo9OvVssYAHWO4YQtYOqn2EfRTVWq94fN4kal6vPw/KaDO/TjoZw/64B4ROz9pwMvSuXz03t1XGuwJr3iAfEh7BtPwilEwkYEXZbONQYZQ8tTaJCLbRspDWKCZcxdswxENlHletvZIvDiK6ogIkUdf6HGs/7fD2xd1b9jfY+Ett9yCG377Y3Rc8pYRLV99cTPCr/wWW7duHfE+TjvtNJx00kn46le/quYdddRReMMb3oCbb755l+WvuOIK/PrXv8bzzz+v5l188cVYuXIlli9fDgC46KKLkM/nsXTpUrXMBRdcgKamJtxzzz0j2q8QAlOmTMHHP/5xXHEFVavWajW0t7fjlltuwQc/+EEAwCte8QosXLgQ118fP0s0Dl1oPjqxcd5Dl2H9U1TRF3W8fdUfP6FsBUqujYwT89G0Q1zpqGbyon22dzK4rP6LmoBovHQsPOMG8BpxqMq0TMxHa5Lb5ANYBfrcy5ioTCJeGhoxBzVr8XT0om9WQlhF6TWcNhA4MR/lLi2Ue2oHzfA8hFK5UR+wU1V3qAvuJRywVgo2hrkkIONpvGcAom7diB9yWaUH04yTzo4NNMbPiIiPDhxHgcnMpgqMx18AADxQ+r5abtErroMxSPsIN2yh7WdixUzQ2zekGnB/8NGou7RdkNerEMIZJE7IfKEq/dwsx/If7xsffd2fLgEArOsllU1lIAl40hOwymH3yXcOC6hNlsox2YwxLNg46iiqAj0y14Vfv3AcAGDtRdeM6hiO/y0lD/IDKc1H94L9PRZu27YNU6dOxdyffH7Y6uDhsPFjd2LpD+7FeeedN6LlNR8de+jyjUMAyxd9AVgU//8Pr6IAxfG//QxcWa0zM0dZKdsIMD09AADgiLt3tqRKsI2JZT57sMLaUVQaujBlK4sCsyqDcBuKEJFxrhcgaCVSwn2hzHWjqmgWAtVG2f3VBcxyJBcA/KTchiRcoRmvl39ZG0xZHWgPtsAYpCAaK9UgZGexSKYhHBNuGwXnvKyhpKksFODTKUth90pJQ7EKw6H1wTkgA4QiYUHIB3+QlpEpAfgyiGkVA5gF2gZPp3B+8l20yIlHwG2i5c0E/VbtfKOSgoTFkiJU+4NM1aM4jc6DVQJYF81LdvlgvuxsmzP3OcAXYbgXmaN/eS1qeRq0jQrgNknphGy0IfocNM+h+zlh+EgZRLhOmDry4E49ApmRNXp0dcWEhBi5JHe00l3XdfH444/jyiuvHDJ/0aJFePTRR4ddZ/ny5Vi0aNGQeeeffz6+/e1vw/M8WJaF5cuX49JLL91lmTvvvHPE+12/fj06OzuH7MtxHJxzzjl49NFH8cEPfhDd3d34+9//jne+850444wzsHbtWhx55JG48cYbcdZZZ43uZGhoaLxk/OFVdwCvGjrvoVd/EafeTxU++UoCsxpo/DJ5iGmSjyblOOYGBlpSpf12vIcLzP4S8VEQT+SSx2TXUYdZYXIwl4I2frujPheMqeAe9wRK7fQfQ+ayrTJUpaCX4oqPBhaJVwDiowDxV3sqBZGMwTJYUUp+M8mYj8rGZu6kLLxc3SuqHNz4tMwQPmqacYAPAJBKQiSIdwoAQYY4KhhUUt0ZlM3gKr5Kcp+feKdSj9RefRzMJC1r5xtpW+UKQsmjRRDsdz4aSNpdTsr3AY/D2C4DfaFArZmOd1+DfADwf6/80i7zTvg/CrwNrmuEIfP9bmNMNEQvHVjz3H6YjN45HO7jpOlb9ukY8oOkhuLdzj6trzH+GFXX3VFA89HxgQ70HcIIQw7ToAfvliKVoRerDga+RWWolTaG4ik00Fo8QNL2ht+QxugghJLmMj9EoovOMQskUdnSDVhxBjMpJbiF2SlVkZfeJjvUtdgI5OeBzVBtomnLYWrgjx64VlmAe7Iba47HMo0EhyHL/O1BF7VWWjGwZEBPxKQvNJkKEJqVAFVJHiCDcUbaBG+igdhPmeo7hSZTlYVRoNDp92D30fdgrq+Cm+GUSWDSX9B4dh2Mly+g6aqUKxeKCIpFdX72N6GK4GeklLbG4GXkdzM4hOyI6zvjU4ptmQHKbXQvlm0TooGmUzk6Z55n4jVTKQvNmcDmCmWnOxL5fdpftN3KoIVZX6GuhrBDbHj/4dcte6JitM048vmhvwXHceA4uxLnnp4eBEGA9vb2IfPb29vR2dk57D46OzuHXd73ffT09GDy5Mm7XSba5kj2G/073DIbN24EAKxbtw4AcO211+L222/HCSecgO9///s477zz8Mwzz2D+/PnDfgcNDY39iygJkUnWsLnQCAAoVB2U7yJ7mcIM4jbFUyo66TweCAWYT9wu2RlXxPFt0lLFMhVvTdkmCrOI55lVgfRW4gjVNkdVlAWS71WbOCw5HdTlCq2yUNWCtcZIlsKUEsVssGD3k3Kj1uYoPhrB8ARCKT4xy6Gys6m02UALjWVG0oSRo21EQTwWCITSry602RA+6vRILu4F6njETPJAxgsbAJ/2YQ964FKVE+zoBbD/FSU7oyo9mu1++j5uhkEYkV80V995rNGYoHM22JxCGTJQ3OChsZmC8YU8nf/XTH0Blmx1vaY0aZ/5qCM95qtZE7O+Rl2yYdB315x0YmBUzTgEBdJGwkk1Hx0f6EDfIYyn//Xzu8w78r7rMDhHDhRNAuiibFbe8UftpQAAr1p0C4waPdx//8jo/cEOSfgBEETNNmow+ndKfVhWzHo9D8Z2ammfc30IKVvgMrNqWRyhHMy5L1RgzawE8NNDb1+np4rAofW9TAJmVfr9DboIkrRs6BjKB1BwWrbayGOpsAdFHgAoibGXkcFGJ142tOKgYGBzuFlaL9EfqmWtXhq0WdVTxsxh1gGXWdSwWILz3Ob4vAAIXXevROr8xDsBAA9Uf7TH5V4K1lxOsqMFNy1BKOOdmayJUBJSPzk+xGrl66/H7B9RpZ/ZUUF7Ew2QTQ4RrnnZHWrZaXYfGkzKMq8utSvZflTVOxIYMnDJWmsQviThjo+Tfkcy4L7eDDa868rdrq8x3hhdh7NCoYCGhqFNVT73uc/h2muv3f1abOj2hRC7zNvb8jvPH8k2X+oyofQs/eAHP4j3vve9AIATTzwRf/jDH/A///M/w0o9NDQ09j+G45dH3ncdtv4rcQzeL4lFdwLFpLvLsiPBq84n2xmjGmg+uhOEaYANUgLV6BeADIAhsnIJQmX3YmzvQ05yUGEZ4DIJa1scghEZipLDLBDK28/PmGqoSnRXEEbVeTIYZ1ZDWIN0bf2UiTAh1QSVUPHRSnMUFIyrBoXBlDLGzgcxH20wIQxZvRfJi6shPBlMdDMcyT7pMedwWD2Sj9ai72ZCSC7KEw6E9CLkT65W5+1B98d7PbeL7HeMeNl9RT0fBYCKAcXrvYwxbnz04fMo2Db7hzejbT4FPSdn8ih6FPR79bQX1bJTHarUzZhVPFeYAoCk/KPho5ZJ18vNeFj3drqH5/6Enh2nP3il8pv/y2tu3efvpPESMaquu8A999yD1772tUPm7YmTaj46ttCBPg0NDQ0NjQkKMUrpbjabxZYtQ2Uzw1XzAUBraysMw9glW9rd3b1L5jJCR0fHsMubpomWlpY9LhNtcyT77eigDoCdnZ2YPHnysMtE848++ugh2znqqKOwadOmYY9fQ0NDQ0NDQ0Nj9BiNdFcAePvb34677rpryPzhOKnmo+MDHeg7zLDqTZ/FuQ2fBABseLEDdi9lxmrFffNDKE22kJL+ZQvPvAEAwIIQD/7tsy/9YA9SLH3xVrz6vC8AINmsPSizpNLfAyHAXCkDEEJJbMEYjL6CmgYA2/VhRtfGD8EHpXeNacByZLdUR0oWvAChTZnTzGZXSWGNQhV+mjzf3AZLHQ8gTY8FkN1AqVMrXwPfMQAAKJ4wBdJyA3ZBGu6aHEJKBGoOgyubUQgDCBLSO6QmvQEHaqozcHVKFo7s1ublHIh5JNcx12xVfnz3D35l2PMZZUuBOGM6npV8OyNwYilIpdVQiaxIEjIeEK7MWHOhMpcnL41NjY/K0YC0odaGHTXyV3S4P6rMaYT6yt/ZXybpLp/iYWCApDsIx+97aowQI/VDkcuN1JjZtm2cfPLJWLZsGd74xjeq+cuWLcOFF1447Dqnn346fvOb3wyZ9+CDD+LlL385LFmVe/rpp2PZsmVDfFEefPBBnHHGGSPe7+zZs9HR0YFly5bhxBNPBEASkEceeQS33EKVO7NmzcKUKVPwwgsvDDme1atXY/HixSM6BxoaGgcGq970WVWFvjklO7e+kEFZygFHi6jSC4KaTwAACw9vPhqheEQTADrHyc4qjIKU70a2z64XZ5TCmJcaPYXh+aisXuGDZVUVaNnGED4aSN/lzFbil0bZh5Gn/XrZBrgNkaWMpyr6osq93HoXVl76Onf1Y/AV02nZvK/4aGBxtXytifZVcwwl+fXTgLFNKlvyHkSCqtDKsxvpPGwtws/QMRhHzIDxgnwZ93zcP/g/uz2Xi6y3qekHvZ+MayXfzoga9oUZoCwbpgT2UCXOuOy3Fjfx+9VZd+Flv6F7arVB7XePadiOFysU8OiuZZXn5mg56XB81JpCVX7dfTkE1V27RWvsZ4zSo8+27RFxUs1Hxwc60HcYIirFnrXtC3CN6G7d+1173K8/BwAolRxghxzsT2DgPt1M2Q3Sx60q8MoLb5PTIR56gDrUnH/K58GqNOCX5jYCAP78y0PTc2HT+XR+xIwKnKcoYJLbROQ12e0pAmPkTSXzFZwreStkdzTUyuAFGdwzuPJQgcGVkbEyMU5Y4HLa6i6oIJvXnIJRkaa9gQFT7tvL0r4aXyiBv0jyWZaMCbZVCOBsGaD/uFJDYduKDDotGYSWbMCRMFFpo+0luuVxVV34zWk6NoPBz5FEojTZgjNI66UHmsH6aB+L2y6Ov2dEOBmjbmcgme+BwNpPXIY5dxJZKbcxOAPy0MapvTwACNl4IyjHj2g/oHO2o5xBzm6k4/FtbMmTTHMPle3D4uhfXgsAysfzqX+5TvkBAkAyTdecj+cX1RgRRurRNxo5RYTLLrsM73rXu/Dyl78cp59+Or7xjW9g06ZNuPhiuh+vuuoqbN26Fd//PnUlvPjii3HXXXfhsssuw/vf/34sX74c3/72t1X3MgD42Mc+hle+8pW45ZZbcOGFF+JXv/oVfv/73+Mvf/nLiPfLGMPHP/5x3HTTTZg/fz7mz5+Pm266CalUCu94xzvUMpdffjk+97nP4fjjj8cJJ5yA733ve1i1ahV+9rOfjfpcaGho7F/UN48DgIEOD2yEb5ELfn493JLknd0WxFmyQVnAkVsvm5y5wLkX0ItYNJQ99MAVOP8UCijwwTIKx1KziL/c98kx+EYTE52vMOB30JieWp1GdiPx0lQ3jfnWYA3GYCzjjTyVYZm756MAcdKEPO/FylA+6km/5+644YfXQnzOLPkQrrQKyddU0K/5KVqWr9sylI+WaLvJ9f2AR3wWjkVWOQCcJkp4hgkDfop4Ew8sODvIX5BXamrf0e/AzyVQnEK/k2SfgVQLdfnFYH4oHwUgXE/JnXk2e8D46JpPUbBi9pe/iNJkOraIk44nWMDQvaFZ/f+pf7kOAHDW7z8FANhcaULRo/eerYUGmFJiOxqcev/VsE26tn95za0QjfS7M6VnZ9JxEabGxxtbY+QYlUffKKH56NhDB/oOY0xuH0B3f1b9f86PyQdh3TuuVkE9z6eBf9WbPot5LWTa253MYCBFA7DrmghlxU9pDj3Y/U1p9Mtuvg0vmjjjIsrK2K1JOJ2yK1PfvnmwHCyIBmMAOL2Z/M22dzYCAFKrHRgVIheNa5NIbZUdcYMgzobK4B98X/mmwGdAmsiZSFhgsgMWgshY2AaTVXxA7EPCBGBtJh9AkXQQZmkwTq+QXVrDEEjIzmTJBGDStXPW9wAVmfWVgTdRKII10fcwOvvBmuXvhzHkXqzF2wPgN6VQa6LvMzDPRLPsfi44UGqnR0+lpQWZbRSocrqJOEUBSgDgZResKIlacOAMusMGWdHYawGSZwTj+PRkNp3DDe++Qs1b+Xpq1774Tx/D2oFWAIAXchUEemLxDaPah+vKa+DG57ujfRAAkLZr+1QdqDEOGE32dB9ishdddBF6e3tx3XXXYfv27Tj22GPxu9/9DjNnzgQAbN++fYjsYPbs2fjd736HSy+9FF/5ylcwZcoUfOlLX8Kb3/xmtcwZZ5yBn/zkJ/j0pz+Nz3zmM5g7dy7uvfdenHbaaSPeLwB86lOfQqVSwYc+9CH09/fjtNNOw4MPPohsNh63Pv7xj6NareLSSy9FX18fjj/+eCxbtgxz584d/cnQ0NA4IHCkN5fTWEMoE12zfvAF5Q978tJrUK4Sb3r+jcRPXzf3WfytexYAYDCXgC/5ahBwlOdI37h1GQzOl3zrBXpAnv3G22E2Eedxyq4KIh3KqOekZ/3+U9jaRdV9iVV0HsyKjabVMhm9rQQmvbeFY+2ejwJAOqW63DIhhvBRXq5TrkB6NUvY67qJbwIImlLIRHw0CuIlEupzGByp57tpulKJ+WjeB5PBOaOTOC6b1KjUFo3PxcsGDSm4sqlc3wL6nbQ+LVRFYGGKieJkqkjLbGlGokvyUTsmerxEHJcVqweUjwIAml2E0mM9cIY2QhkXOCE2vOeKXWa3Jek8rR9sQaFK7xbPXnjtPu2iv5CCX1c5OKlN+lMn6R3pgXPu3KftaowxxqnrLqD56HiACbF39598Po+GhgYMDg6OWBKkcXBh3v/eoCqCjuzoQleJfrg1SZyyiRpe0UadZR7vnYYN2yjQwLiAadOAFwX8/LIF7kiD5c1JpKTsPbM1RKpTluLLCrPy9BT+8vNDN4sKAG9+9EMAgDaHZLnPDXRgR56yj/4LOUx+lM5ForuiuqIh6tA7UIiJD2MQOVpPJC0VEDMG4w5q9ZVwqA4TTHXdoctESMgKxFSdhJtzRdpYRW6r5iJsbaSPyzVAds9FwlFkL8gS+Ricl8LgXNqHN78CvoXmz3jQRSBNmAOLwc1S5CzZI6XG1RCm7HjGS7X4nPgBlr54YAx4Z91NVbB2vwFDfuXQgpI2r7r20t2suW+Y/UMybRUhw4Z379oIY+a36TywgGHDB0ZfFXvEfdepSr56UhbJqDKWi7xLvwUvNLTxscT+HgtvueUWXPere9D2X2/b+8IAams3gX/zV9i6des4H5mGxoGB5qOHPubcQ0lnxoA5HdR8quzZqHjEMaLq9nfP+zuWdh4DAFi7ZRK4KSvI7EAFC/2SDTtLvDNcR/wp2QnkNssOtF1VFRjqPyKJJ74+tmP5RMSbH/0QpiWpccKKvmkAgB35DILn6X6a/BcPTh8RHeaHMR/tzysFSgTRmFEJamEZw/JRwWXFX6U29ECioGEY7ipJSDhD+GjUqI75fsxHqzUEU+hdRFnjVKoxn3VMBFkKXg4ckUJeNiI0jqOEZnlrFnN/FjUHMZQtTaXFQLKHuK8pg8Bm2QMv1p0TiaXPHxiD/Vl33w6zIJv3xfl9sBB44TNj/xuOGsQBwPp3XrXL5zO/fSt4hY5n/Uc+MaptH/Ora9V0PR89cxkFFhtlI7qyb8GTumzNSff/WLht2zZMnToVM757IxgfWWXl1stvx/0/uhfnnXfeOB+dxu6gK/o0AAB+zUQqS4OYbQSYnhsAANVZyWQhuDTzaE5UUJ1EA+WsXJ+S9j3VRV2WKgAMSbhqHa5qyQ5whBYFezKb5b7yPs5+A8l8D1UZ78/PuBsAcPvz5wMA5qW6sSIzAwDwtDkZ3VXKrLY+nYKdpxG71kjEKdntwOqM25JH1XihbaDzFVTdZ5alR1teICGDZYmuEriUNMDgcZUcS8ZZ1ShIl04iaCAy5OUcleEEACalwkZJBuEGK+AFSagMYwihihBJPgaOYDj+XOpetuZHC5DoiyTKDE4P7TtImjA8KbOQXdx4HYkStglIefn9B4hQAcCGD1EwOgqwAYBRMhCa4ytr5dbw8oeN//mpl7TdF940vGdRRKI2DDRhSo5+dzzQ0t0Di1HIJMZJTqGhoaGxvxDK7u9O2kVHkhKkRctBVZbRh/I51+k2otEhLjG1ox9zcr1qG092kQ9wBYAhk1puR03Oc8Bkm1Y/mUR2I22jYb2Lc15LY/wjv3tpY+xExs/PuBvfWn02AGB6girhVmam40mDzlmX24iWZ+Q1GPRRbSY+mtpuw9pB0trIRiZMO8rnb9vZGZgVyUcHBRK9ER+VqhU/UPJXYRkAI97JXB8oyQBhmuYF2SS8Rhno24mT1vNRo0fy48j2JuHsxEdp5YEjGE46h7yz1n99AQCgwRUIHPqedr+L0Ik9HiOvacVHhVAef8IP8cCK2EvuQGDDhz4ZJ3y9uqDL6BWzI4Ogwo7d4aVw0t1VAGZsul8je5opuTwCT0t3DzhGJd3VnPRAQwf6NDQ0NDQ0JirGWbqroaGhoaGhoaGhsVeMo3RXY+yhA30aAKB8UADgkysvUtPbq1QO3GBVMNmmKj5PGHClB98FLc/glmcXAQAqshsXMwQCT5bZ500kpXQ3sAA3I7N5MqvnJw2UZROHYy9fgmduO3RlE2enqLrtkdKReHmOZNAcAn2vHgAAPDt5BhKddA4r06QJ7UACDdI3xSoLVJvovDEBuKdSZrW5iTKa3YNZdO2gKr/0+kY4pMxAustHtZmuR6rLh1GVmUpPetik4sdAkOAIbMqYWZVQdS+LpLaWxWGUpB9LxYv9SwymKvmiRI+VB57popbk2aJAoo+ysNwNVRMP7oYwpNFutF/OGVhURRbKbO8EQX3Wctb3b0EqV9nD0vuOqR108YKQ45SlVwMAHlt805htf+69N2LtRdfsMv9P51F17adWvkXNKwb71pFbYwyhA30aGhqHCer56KVPkm1Be6Kg+GjWpAq8DnsAgSQcbmDgve1/BgB8dOXbUS7EfLQq+SgKUinRSb5mAOClmOpYGjocFcmV5iwhj9p1l142Lt/xQOPVqTUAgO8PnAoAOD63GaGsvnEXdeOxqXMAAM52B7UZsmtuXxINq4ljWiUabMrtTFmY1E4pobV5AACwfTCHWg9x19RGqshK9DYgs534XGGqidxG4rlGNQT3pJ1Nmq4RhEAgm3wENlc+iqFtDMtHeZmOMXQsQF5PYXIlCXb6gCe3k+qopSwbyg34qmFIaHNw6Utocqb2zeW7Sr2EeaJw0p35KAA0thTHZV8LpnehIhsvnrL06jHlo/P+l/yl17z100PmR5581z5DnU+roYW8nxiz/WrsI3Sg76CCDvRp7ILbj793l3mfefqNyBoU1JhsD8LK0YDY52dQW0fkK2ykwW/S5AH0F4gM+BkfXk52P/MAOZaj91h6WPtJQETBJAc4/pIlAIDGtR4MlwbgPy7b1aPsYMRpM9cDAL75z3/HDCmX+NfWFUhzKk/v7GjEQ/1HAgDmpneo9Za9jOZt2dSCdAtJIJKOh4wkuIsnPwsA2NjYgsJUOq+zTu9Fv0/X4P4/n4RJR9L2dvxpEtLb6Amdkh4kggFehkiNl2IIHNpumXPk50l5RoqWnfSXBJI99NhweqvgUfOPmg8wKdGWxKrjH1WEK+h4uFcDl9eTVz0wGWR0W9MqwBcF93gtAKRcgoUhlj43doRiLGHYAea29O59wX1A5D/yigeugi1Nyhc+TEHwZecu2eftnv4g3UttjWyPAcSFuWdQFbKRSpDa5/1pjBG0dFdDQ+MwxJITfrLLvM88/UYAQJZXVQLaafCxwycuWlmXg5B8tLVlAH156rYaZGiel7OVr5mXAXqPruOj8q3IlorQ4y5bgtZnoiASxyO/OTQsZuZM2w4A2Nb5HgBAs13CG1qfAACkeQ3/2rYCAPD7/mOwIN0FAOAsxO9PJD66oYu88RpyZTBp3+PXLJw/+TkAxEcHp1Cgb84rqJFfv5/CAw+dBAA46fTVeGYpSWgzW4TioxHcrAEvJQsCEgxRF7TCbIEgNwwf7ZN+dRWP+CgAMFsVFbT/owL2d1pWcOkB7YXg0sqG+SFqk+h3EjocTAYAjYq0ugkEmGw0d/+zN47gDO9fCI++5xHNO/ay5L7hgXPuVB7OnmHgX/78UQDAb87+8kva7vG//QwasnRedxdAPDNNRRIeDHWPaxxAjGPXXY2xhw70aYwIzWYJhUBWlrEAx6TI7P1nnSeDyQHGztLgWfNN5atrZ11UZ9M077eQ6JbNGWSTGnsAEHJMFkbc9r7WaMBP0s/zhI8uwZNfPnQq/b718u/imqfeBIAyVI2cgnfHJbYg20rB1GcrZJB8cmo9TpxL1X//aJ+DG1923y7bi7Y1M9mL5wqUsZxk5zHZHgAAbD25UTVXOf5fnsfyFUSuWv9JxKg0leHWf/8OACDBPHz4CWoV7vYmcOIxGwAA7Qlivfebx6FhJQWA0mlDXa/U1goM2ZHMqMhrnHPgpWkfmRfy5M8CAJypSkDuBcojRXnBcQZE1YETeDBZ+7arx2xbC352PdoaKBM7K9eHH532TQBAbz6NBe3UbS7ywjz3D5/Ew+fdPvJt/5y69SYdFye1E2Ev+w5e6Gvb7ToLZz8/+i+hMT4Qcf+cESyqoaGhcUij1SLfvkKYgMWIVxyT3IL/7T4FAGDUGIxMzEcjOLIpR3UOwHuj6j4GTw6F9gAgZHVaKAvLuA9UJtF/3DTD8R+jRNvK/z40OOk3Xv49AMDFj78LgzKpZyDEXJt4h90c4Pkq8coZ1gDm5yiQNDfbO2T9CB/4JwUOpyQG0FujzH6rRdxmsj2AzaeSJ/XagRac8DriGcufXICWx+k6uVT8h5s+9B2VBH/f8vcgHKBE8nHHbsSsNCXKf81OQMOzdG2yW+JurektxKl5qQZDckk/Y6HaQPvIrZQdfBkDTFpP2CYMmbgOTUvxUWFGTUBCCHPivjK/VN/meiz4GXHGllwJxzSTJOtbL/8uNvVQh+N57TuUT+a+BPy+9+IZuPnpCwAAp03bhmpA13B3nFTz0YkFoSv6DipM3KeWxoSDJ0vvqqGFJwvTAQBPvTADrJGIliE7oeX7U8g2UsCqKV1GMUkaiT63ASykn5wV+ecWAVl4hiAE7Dw9PXLryhAyWth3bBoLbiRytfqaQ4NcRQG7zzz9RjxSowzpO1qX4y1zHwcAvGWYdS7cy7YuffJtSnqxtdaEGQ4RsVc0r8PX156jlj/zJDIkfuWrKUsWgGNFeRYAYHHuKVxyzEMAgC6vATMdysTOtOjfRa98BiteTsv+sXMB+v5E0lyz6sCRVXgRMQothsxayrbD5AhTRNT8jA0mO7cJgyvT4wihzRFphqMM6qGO1f/vM3jVH6lTmclCHHHfdQCAwDOVEfEJk7YBADb0N49q2y3ZEgBgRnYA7bLz83bBRxw80pgA0NLdcYEQAmvWrIHneViwYAHMCfwip6GhMRSeMFCWnPKJ/Aw8vpLkpmgMhvDRXBMFfhpTxEuLCRd9lUYAAAsNyLghrBJV9dF8+tcuCuTW0hgqOEPP8VT1teCmJVh99aHBRwHgayf/QFVK/rmyAP+v9TEAwEXzHhuy3H/sZTtR4C8K+AHAoCwSaDULOKWJEtdPP/NKrJEn+cwTX8B5r6ZgTvSe8Y/SXPxrA1UVXnbi77HdbQQAzE7sUHz0Na9+FiteMRMA8Ej3PABA50PTYEkbIVsI9R4R2BzZF4mPijRVcArLgJ8lXsr8EMKg30w9Jw2l4gSheVjxUQB45R8uB5ekYv5Pb1CNMLYONuCsqesAAH/eMnfU2//h1tNwlEw6T04MYnOFgr8WD/a0msZEgQ70jQvGi49qVqsxIjjcQwo1OW1hzSCV7TMBIElZsCgTyriAL0lWsebA5PKDRAAuO6xGD4laE2DI5q9WEbAL8UAaVYhlttoqo3qo4frjfjFm29pZ4vL1Fyi4N8UaAMvTee9EIwbLUk4rL0IIpqZTxhHYWKFrWwtNRboaDCLKZya249VJIllZo4q751HQyV9lwszIaxTGlXmsmzKvME2gkbK7otFBJMPwkwaSm4l8+U0U8Q0tQ5GrPzw81LPjUEbKJImIw30kHZoOA46BTpIqbEzSS0racfe6raiKz7F8dOToPjq5YSMcTtt9sTgJK19//dh+AY3xgYCW7o4DNmzYgAsvvBDPPPMMAGD69Om47777cNJJJx3gI9PQ0NgTEozGMcsI4HHiKC8OtMUNHlP+ED7q+bRMsUYBIJOHircarqHsY2qNQ/koANj5Ok5arKFhPQWGDkVOOpZ8dOdKPwD471WvUclja9DAjs5GAECx6sCWWuqouoszgUfMIwAA6ypt8GXy1xPGED66KEn8scmkYOyS+ZPgPytlvL4NoyItagwG1iWtVix57Rozko8CLGBwG2l+5plu+O2UYI38pJc9evhw0QgNdhVcBmOTCRelgN4dBruyWJuj94TR8FFT+nG35zhOb6JAocM9PD1AFaNj6funMY4YjXRXBwRHhPHkozrQp7FHXPz4uwAAL8sARzrk6fGX0gJs76FB0Mh6ilBxkyZymaoiVlXXhGnIBQomhEyORcTKy0FlU51+wE9Jr7icjcQADeZW0Qd3aQCe9TWSLG64+JPj8G0PLUTXa75VxE0DdF5r3ARvlEbEBhGr3loaCYOI87PFKbDkwO5wH30uZa+f51MBAHOtHTjBpsH+vY1PoXASTf90/SvRsJYIU24dXTcvySGaGwEALF8Ek14oRiWAl6XrGSQ4Bo+TFWpyQBAc+NuPPjGWp+KgQMKk6/HcQDtaUrKCQAC+Kysk5VtM1d/7Y3tSA91UjuHjxKYtAIDZTjdsKXN60pqOJzbNAACcNGPTGH4LjfEAGyFZGulyGsAVV1yBarWKH/zgB0gkErjttttw8cUX4x//+MeBPjQNDY1hEPNR4jNHOtuwvDQfANDVk4PRREktETDFRxuyFVQlf6y6NHYaXIAN0rzQAEJpL+zlYrWJM0D/+kmufKYTfSVYgxTYYIGFWd+lBggb/v2K8fi6hxymW704I0GVXF/sArwscRuzJYQhB6+iRzwyY9XwbJECQA73kTTovA94KWVtc6TdhQ6DruO/5VYBAPpPSuPeNefSNrZwND1HEVs/wYEmqQsuEkdlFVcFAr2spWIXA6e0K2+/yCfwcETC8PHEDlJvtWcL2BbSfVdyDfhyOgj3fn4iPmrKd4sTmrditiOl4SxQSe4nNs3QfPQgABOaa441xpOP6kCfhoaGhobGRIYmVWOOP//5z7jnnntwzjlU+Xzqqadi5syZqFQqSCaTB/joNDQ0NDQ0NDQmGLR0d8wxnnxUB/o0hsVzm6mCa4pzMgBgrt2FZ2s0b1nnkeCySk8IBsOiOz6domyqH3BwKddtSNVUFqeQS6LWLI1vZUUf96Gq/EILcDOUHcqu94CqbO5QToCF8oeuHy4jRptBVWEBBKpTKWN27rEvoK9GEtlBl85pi1OCKSu9Sr6DchjJWwJkTdKxRB1869HC0/hHH/mj1FpC5INIjktVgMneQDXVgMFVN15ecmFIaW6Q4CpzGv0O/v79y8bi6x90+PkZdwMA5txzE06fQx2ac3YNvUm6Boa8j1zPGHb9OT++CaZD17E5Q8tMThWwIElmygnmqY5lFgtx2zYyQ76HCvtw3kOX4egGyrb3eSkllbn39K8pw+WiR5UND736i2PxlTVGglHJJA7f6oPRorOzE0ceeaT6/7Rp05BMJtHV1YVZs2YduAPT0NDYBdu2TsHLMiTlPMahZnAvuu14oPMoALGiBAAMK1R81PMNJRnMSJmhbfgoNpEaoTaYQOgQseQeG8JHAcBLM5gF2XnV82GUaRtmOQ24fDy+6iGLNqMAT5L40lSBV51KMrW+Whr9LnHM9iRVf9ncR8Gja1T2HSUhbbAqGPR3ffFt4rT+n3fMRaVd/hYER2BTI7pUdwBhSe/naCXOwUuyA69jgCUkh00wVFpoqWduO3R8GEeLn57xVcz5Mclp26YVsaCVGrH0ZlKw5T1V9YaXsM+5h9azHB9NsilfW4beSY5Mblfy+y6/ARmLOO6Xu87DdyQf/Zc/fxQva6D7vNejd4p+N417T/8aAOCNf/0w+qv0OxhNczqNMYDuujvmGE8+qgN9hzhO+Ag1sXjyrtENVpt9KnGPyqurwsaPNp0KAOjsy8G2SWbImIAnffeirqAh2BBPlGKJAkcib8FroMGBS4LkpwUCO3pgMCXjNftKCLZSgIIXijBOowAFr2liNRLcterVOD5Bg2CKlXDusdSAIxQMk5OkTSn4dF2yZhUFXxKqwFbdtELBUID085PXtpF7gJwHABdMeg4A8GIwA9VJRK6sUuy/l94oiZXjQNhRdBfKx89PMBSm0/6evfnwJVT1WPf2q3HW76mDWtpy1fXwpHfN3JbeYddLpl3ll5K2ZdBdcAzITnp9fgZlqVFKGi5MaXz8yAbqwnxG6zFYVaDmKv/atgLra5PUthNS5h39djT2M0bqAX54eIWPCRhj4HzoeMI5h9BdajQ0xg0nfGTJqPkoAPSGHFleGTLvu5tOx/Ze4qq27YNzundd11ScJRBc8dGSpJqdxRzEII2FblsAXon4aKA82aLEpFkGzF6SfwabtwCMPjfPPAUYgWxRg7z5AGCOnUIgKNhzwhlr4MpGKu2JguKjjRZd47yXQDmgaxQKBlNej4KfUNe2he864P3r5Kfw5X+StLc824NdIN6Un2kgvYn2x5KyGYdjAgZtl4UCfpKmB+cwrP605qMAsO4dVwMAzlx2BVIW8csg5BiQQbazp60ddr1kSnJRx435qJT7DgYp1eG5ECSQkbLs7loW966hztlH5WbhqUEqLvl/HdSkcIefHbKP45q2j8E31Bg1NM8cc4wnH9WBvkMcUav6ebdSwC+0BNZduueKqbBzAaKfRk46E9/XczK2biDz1VRbSTULqNQs1b0zCkikHRc9g9R4oVJyIIrSXNeLf8TCkK3rkwECi9ZzAxMJGcMQZrwsMwykdoRD5s+/eQlyVPSEwB59IPNQx6ZaCwohkZkzUmswIKv3Ng424VVTXwQAVGTgyGIBuio0gHIm4MpKLg4BX6a3o6rML/ecgy92PAEA6AyK+J8XT6dlp5Qx/9NRlJbWHzyuBUFamt8IgTBpq+PzcpJ8zeI6wDcM/vKaWwEAs394M+ZNo2B7LaB7ctNg47DrpGwXlsyyRp4nbU4R3S4Fyfu8NAJ5j17Q9Izqprdhy2QAwLub/o6BBrpGs0wPbfP/prbdZJOnTWSw/cmVF2FzmTqlTUkOoMmkzz977K9V9d9vzv7yvp8AjRijkUnoGNWIIYTAggULwFj8sl4sFnHiiScOIVx9fX0H4vA0NA5JuI3AvNvuAACEJkbIRwkRH72n9zQAwJb1bUi1UeAoYfuoyaSzEDEfzSRq6O4nflOrSF++gg3uy/veZzEfTYTwzeghSjzG6WcQZlxFzyzaR6IvRPZFmj9nCX2f5meAUCaun/iq5jURttaIK9RCC42cuIIbGFjd0wYAeM2MFxQfTXIK+rxQmaQCem5oqIZxvuCKj97RczZubafOvBVBwaRvv3gG2Czax9Ef2gI00LUfOKVD8VHmUuLSb0yCBbRdL2ui91h67h9K3ZTHCn9deAtm/eALAID507tQ8el6reiZNuzyKZuuo2UEyMgAYXuC3hH6/LTy//YEx9ta/w4AOH/2c9ixjYJ7r05tw+Ymur+myERzx9RtavttThFfPulHAIiPRtzWkuqkVquITx29FABVB2o+OobQ0t0xx3jyUR3oO8Th07MUaz418oFrk19Ah0E/jd8WjgcA/H3LTEASo6TjIZCZmTCMf4ClMmXkisJBIOWFwjVU9F9woWQRCgJgsrqP+xS0A4DSvCakHBpIag0J2Hl6eMvxHckdgEwCoZZjOPMtJCVkgcBf7tONOh7vm45jGynb5SYNbBwkolUoJNFgUsb0mBSVxT/UfyT6qpRdyzlVlXXjTICHMdEC4kEUAFZ5WVSqkjhvTQEuRWnDhkYAgNPvg/l0wbzmJIwSDdZui4PiFPp9VVv0aDEc5n6RXhzajinAlpV30YtLc6qM0x+8EgDwhQX34ZxZqwFQx7KFD9N9Pj3dD4BMrF8sUmUeZwI5mS1/aPBIPPP0GwEAKeNEAMAceweyBn2eYAO45p/vAUDBvZK8MT/6xDsBAF8+6V68+dEPAQD80FCVggCUpOO8hy5THbcfOOfOsTgthy+0TGLM8Z3vfOdAH4KGxmEHt0FgzeUjt+fYGlBwIBQmVpZJ1/fwxvlyY1wlnYOQww+G56MikCqFmnzlCYmPAjLpXPd8jfgok3w3NIHyvEYAQNI+Am4bcSVnIEBEh9JdsvqvEqLaROuf+ZYvqiDS4c5JH++jhg5HN3Th5Snikhv6m1HMUzK6wazguBQ1DVvWdzQAoKeSRmOC+IgfcsUl/JArPmrW8dHnPLoG5YqNcDtdo7BYAmaSSiHR64N5tI3aZAr+mUUPbjP9TvrnmXCn7L2D7OGKuXfcgbajSNFh8lA18wtkheur/vgJfG3+PQCAI6ZvUx10X/enSzAjJfmoXOeFQrsK4jbZZZw/m5RB1z5zIVL8ZQBITZbmFLzdEdB1+9jyi5V0t9dN42Mr3g4A+O8T78W7/v4+AHFFaA8y6thtI8B5D12mjl3z0ZcI3XV3zDGefFQH+g5x7Etmqi+0sNmnTqizHfJkqA4mlLGFwQQqMpAX1t3soZQxiIBBSMIlhFI6AIw8UIC4oo+VDZhS6sldILLeKEwzEFhyMK6FMCpSFlqkgd1C3KHXLgBuVsob0xwvfx8FSRL9tM5ffn74kaw/vOoOvPex9wIANnqtqotroZDEZGsAAEk5AWB+uhur+yiz6lt8yDWNKvoiicVkexA1QcT6tk3/CrGJCNWkFQL+1BYAUGTK2ZqH10774LUAkF585TYDFdod1n7y8PTj2xvWfiI+L+c/8nEAUETXDQxMywwCAK5c/Sb4z5O04nXTn0Uo5gKA8rYxrAqqshLQ5gH6ahT5/9VZd+Gi5RcDADoStK1+L42pDhGy185+Bt+YHh/Pj0775i7HeHyOiPkLpXbk/VjOnZIR+KZsWWXhP/TEvwEABr3ksNvS2D0YdNfd8cB73vOeA30IGhqHHUYT5AOAzoACMTuCDObJjq3V7tgzOOrWWnZNiN3w0VBKdyP1CeNQfJa7POajJQNmkTiPLB6EnwLyM2gMDawsuE/LmuUQdiEONAGAlzHgDMhgUgOHl6ZtnfIfd8AZPLz5KAAsfPhSbMgQ+evI5fHiIBH+ydYAuqR/8MkNGwEAq/vbVNI5FExNg8d8dJodV7dct/FfAABicwrtj8sg7vHz1efO1jzcDnqnMKryugmgMI22VZ4idPfkPWDtZUM5aZTQrcjr0pyo4D9WUVfs0lOfwRtmPgUAqAZz0efR/TrZyMt5pkpgR17hAPBCsR2THArs93gZnJt7nvYnA4Hnz46PJ/K0jhAF+LZUGgEAOen7BwAZs6ZUKV5oqHejspSLR8FDjZFBd90de4wnH9WBPg0NDQ0NjYkKLd0dN/z0pz/FL3/5S3ieh9e85jX4wAc+cKAPSUNDQ0NDQ0NjYkJLd8cF48VHdaBPYxfcuOX1OC5Hss4oY2Z2WwjScUVRrUaSTREyiJ0NiQUAKZVgLlfSXeaxuKKvrsqP+XIyBJK9svuZH3c9q2QM1eAhkkKYlVBlVv0Eg5eSHV09WhcA/CSts/DMG2DIzlr3P3ndPp+Xgw1/fJq60a2a1o7eAlVysU1J3Fx5HQCgpYMqud47eznO6CDDwxV901R5PQCVdYvQ5eXwtQHKkq7vaUF6K5333LoS/AxdMLubqgfDXAJmgc47c32UZ1HGttzG8Pz12gNlpFjfQ5WSDSnKWFY9CxXZ/XZ+4w5kZeZymt2HZmcKAKDVIfPwVfl2VH0pk4YJN4gf+VGl3zaZAU0YHibZuzbbeOff3w9b3lSW1M53VbMoevMAkCR4WnoAAEkvTmugjGyzWVKNQAaDpFy/AW//Gw1eNg/wvVO/vY9nRUPjpeEb3/gGLr74YsyfPx+JRAI///nPsX79etx8880H+tA0NDQkbt2yGAAwO90Td5DfThV6bksIN5DTrqm46BBOujMfBYCQ+CggVSZyccFj/hgh2SPUvNBmqErfMLsYqvlmOVD/ug30uZ9kyl6Ge4CXOrz5KACsXTEddxaoqk4IBnszVVTdHLwWU6fSu8Z7Zz4KAHjVlDX4Rw9JtXfHSbu8BvyoQJVaa3uJJ6W3MGTXEf+pNSeQ3EKcJswlYOVJCspk5+Ty3EYMzqf3iPqKNY09Y/WWdrS30nkt1YiL1gITp7ZRNWaPm1Hvjs3OFDRbdI2eHSQZdcWz4HK6T7ww9r8seg5C+XKYMDzskFWe9XjfP/8dAPCtl38XFz9OFYTbKw0oeu0AoGylclYV1z5zIQDglFwB7Ra97wwGKdXUY3OVlGtv/OuHkTHpt/GD0761r6dFQ2OfMZ58VAf6NHbBql/Nx7MJCuawE+hhnuoC3Bw9QAttCQSufDgHdYE++S8LmCJRLGDKx4TXmArwmRX5uR9LJMwaVNcr7gFWFCAMoIJ61UbZHS3FIav3IRhQZxGmttG0ijZs9pUgpN/foldchwf/9tl9PzkHETb+B3VunX/zEiS75UwG5KVs1l1GzVW2/HszXp6hQB9nQgV+XuxvxaQWkspMT5KkMxQMX3r8VQCAxOoEMlvpIoW2oYJ6QYbIGy974IMU9BNpRxHdIFZ5aowAq9/8GQDAEffRS0HC9pCv0DnuS6aGEJP3Ldh1/Ug221vLYMCNT/6vzroLAHDC/9H2T23fBGOYNB3JZuh+/85pu/pIvO5Pl2DApYBem11Uo0qLUcAsi6T/pZCOdwVmKW+Wku/gFQ9cBQAouxae+pddX3qixh5TUwP42sk/2PXLHSYYsUxCZ1lHjC9/+cu45pprcP311wMAvvvd7+KjH/2oDvRpaEwgPP0ADWpPmQvgnEA8JCX5DBMchXYa04KaEXfBFUz58g3hoxGn9Bl4LbKRAYzq8HwUID7JPbleABgePWSNmkC1WXIaR0p763hoaMf7qzUwNK0mfmTuKCDM0jEvegWNeYcLJ1136WU48nPUGNDOAxEbcSczFH9DQSDro/TCcFJ6g2qwsK3SiOd2UCDn2EnbMTNFQaRKaOMzj5LXcGI9nfzMthChLRup9FQR5CjJaBRrYHkKOCEhOy5nOayC9r8dLda/8yrM+TF58OUaKAFdqtnYUiEv8HpZ7e446Y4qBdvKsqkHQA3cIj76io4Nyl6oHiU/vsn2xAkv/MtH0G3SPlLcxSSDEtCzrF5U5cvjctB7rsN9lKSM9/QHr1TBy5056eI/fQwAMDPdt9f9H8rQ0t2xx3jyUR3o09gFjWsDFdTrP4YGzKAVkMlUuF0JIEEMhrkcPIhJEiDJjSRcPEBc0RfGDwdDjrfcl8sA8J34c9sFokSPMAA3I706ZEczLwN4stGIUQVk4RCYA1iy+avVKyvLMgllzmIMVrB48oflzjmWbj30OzE1Py9gViJyGqJxDZ3DTW8k9vrA18/E395EFZzb/jYVznEDAIBiPoEnPeqAtTnTCADwAkNlvwMHcAbpohvFmupkJkx6rPBSFTDkdUs7yqR61ed1Nd++IPCl76XFVNbyuc2T97re3Sf9cI+fFwpEhLdmGzAz2bvL5/e84ht7XP//XvklRYCez3dgrUGR5BeTseFy5P032+nGUQn6rQ0EKXgy8l/04gDkG/9K92d7Io/2JD0Ekoa3x2M45DFi42P90jJSrFu3Du9973vV/9/1rnfhAx/4ADo7O9HR0XEAj0xDQyNCy7NEEGsNHMVjiFvUqHAdyS6g2i3HDlsMTTAPw0dZXfI4moYHmEQViY8qRYj8XADOAE2GFhAaEQflCE2arlAxGdwcIBvQI0jGgT/DBZztsrKsoc5fME9RxcWTPwzIzoqHOied/DcKeLo5E0aNLkLjOoZNb5Zdcz9BgbuWKzbg2YdJNWAdO4iS9PN7SkxBZ5YCOF5ogFv0+4gSyPagryomecVDKJP8rFwDZPdkYUuVQxPHqs9pProvCCUfrbkyyB1yPLFOGjufsed198RJC0W6kF3VHCWOd8Le+GgENzSwsdistuUJuvbdbhazEsRzIy56YnIDBkK6L2uhiXJdMDHioy1OCVPlrTvccR1WGE0zDo0RYTz5qA70aeyC7Jo8Bo5tBAD4JXrgLVr0JB5ZegIAwO7ncBvoJjeqcbYzqiYxXKjgHgAVGAIDZBMlRO/toQlVmQcAliRcgQOEFlPbkxXWCtwnIgUAfiYOMia7Abuwa6qB99GDWQwMAr5c2LZ2We5QxN+/fxkWnnkD/YcxDM6lE5dspIhoot8A/wJV9wUXCMxopKBMKW1jwxp6wKQfzcllA0yPrqfwUW2mi8f8JOzOwtAdhyFg0OBaa0kgu2UnTYzGqLDmrZ/eZd7Rn16CuXeQ0XXjUb3oW0M3ytSjqBLzL6+5da/bXfu2q1/6sXVRcE+IoccZBQAHkvSbW8UmY0aCsqEnpjbgXW0k09nqNamuaaEgoucLA5Mdkltcf9wv1Daj7mlAbPJ9SEP7oYwLKpUKMpm4YsAwDDiOg3K5fACPSkNDox7ZF4iP4Igm9BSp6ub9b/oDAOB7vzgPTp9sGNYgVGUe97B7PgrIDkc0yWt1fNSILWOiz+088VGAOKkhOWylJX7RjYKDQQLwctJ+psaQ2So/d4c+wHkvcSUxQOObcF2whLP3k3EI4KEHqOHFwjNvABidw/ycJHJNdE5YQM/kwWunI1hM52124wDcLH2+bkM70vcRH032BZhqRsFdughugwmjRhzCLrtAZBPkB4BFfLU0iwKFmpPuOza8+8pd5h35earWnPPfd6BpAQXT+l9sxuSjqAT3rwtv2et21150zZgc35quNtV8p56TnvfQZchn6PfxbIkyBjMSfXh5eh0A4H2THsFzNSpwiIJ8ADW4m5mi73RY81FAc9JxwHjyUR3o09gF9z95HU75D3pg2duI9fytdSbc2ZR9TD+VUFlNJgBL2npFGVLuY+hDQA60gsWESPmgiNivz3SHSh8iohVa8XyTqsQR2EBmE037KQyBVZJyUlmez0s1oCbZWRBABLKEsLoz+zt0YRTiDlQspKBLdavsiPvebrhfo0DN9N/7WD1jEgBgzqQeTPkDXQSzRueMiTiRw90QyQrNNyq+ypKyMEqbMwRNdHG8dFwJ+LLLluCpO3QWdSxQbRUIm+ktZeC5FsCmG6/i0X175H3X4biO7QCAn57x1THd99G/vBYA8NwbrsWLb9k1CAkAJekluKpKspuE6aES0LF5wsBkewAA8KbMC6gJmv++BX/e436r/uERoB8CLd0dF3zrW98aQq5838d3v/tdtLa2qnmXXHLJgTg0DQ0NAPc/fSMA4LR33wF7MyUOf9n2MgBAMK8CawXxGdOMA29WfigfjaZVEQqv4zF1VXywYz5qRZSxPv7GARHE81X1nlym5dkQ5da4O2yUxE70CoRpaWlSGMpH6cAERLU24nNyKMDcPgAhzwlEEvktFLw75jOrAQCbbl+A6Q8St9k+P4eTOzYDAGoPTIFZjX36omgOd+kiO9UQRoXWCxM2mC8vvsERyGrKyL9bcOKjADQnHQO4TXSuRbOLgedlmaspEMqbbf5PqeDgjJnrx9yf+ZhfXQsAePZC+nd3nDQUDM/3yQIGm+65WmCqir92axDvbVgLAPhj31F77ch72PJRzTXHHOPFR3WgT2NYRD536W30//7paaRyFGUTPBFX3tmAKWNIyovPQ1zFVxfIE0a8TFSNF9ixJwoTgCt/41YJysg4sGIiJiJfPg4UZKt1ux+IKqmzW3wkNwzQ9mpypXwBokI7Ef7hmcFjXVKSadtoXEUDU6KXLkLwUBsCKYneeq6B5ArSRPecXUH/6TR/yl+iCs4Q4DTt5kwkeusklTL4GySJvBlCoCxr3cuTOFI7IrY9Ht/w8MS6j1+GBT8jTwefWwjTdINVZLOcam8Sz3IKsh3zq2tRlhURwuOANCZPbKObyh4EqtK/0cuGSG3jaj/RPfzcjTEZLnen93hsJy+9Bv395NliOnRclhkgL7PtzVYZAx79Pm4udygT5uN/Sx4tK19//bDbrc8Kn/Q7InPtmQK4/GH93yu/tMfjOtjARJ3MbG/LHj65i5eMGTNm4Jvf/OaQeR0dHfjBD2LfHcaYDvRpaEwAuFmGFOWs0NNLFVm5xjJ8Jhs9FWO5rVmtC/S58filAn6c+ChAfNWXQ1lgx8nkiKt6TbRtQNrE2PF6Yqc3qB0ncCTIlhZ2EchuJH6U2jAABHLnA4MqqCdcyZ/4YSiDq9XAZMCz4QUHiQG6eJv+QKZuwmDY+Ho6wZmHmtD9hgEAwPazgKkPx3yUyapAt4GWTfR4EFIGzRAoz2gjDFGaSRe61EGfpztDzUfHEOsu+QQAYOHDl2JtD8l4w0SIwbL00dxO1/hvxkws2ET8zi1bKuoufAZzgK5jegtDVcY3/Nl0U1prk6qi9rkbhgZmS1175qORumTD9g5YCXoPLJj02+gtp5GdTO+IeT+By8tU6TfJKYyKj568lKoRO9KxuulQ46OAtOEa6bL6/hoRxpOP6kCfhoaGhobGRIYmS2OODRs2HOhD0NDQ0NDQ0NA4eKAr+sYc48lHdaBPY1is+AplS855LXl89Z3MkHaoxG6gASprKQzAlya4UZUfEwKhzFAanoibN4DBkF4lfjrqjhZnRX0bsVzXgGogYZYBLxNVkUH9K0zZYMJlSPRStjSxpQgWyCdQJZarRkbHCAVYkg6YpXfS/B7CCIt0cVgyAC/SefFldrM8yUD/qXRtZ93LsOndlDJr/VojErL1cblVdjHLM3DZdS4/k0MYVDmW6hJKsss9SoWX5jaiPInWa1zjKuPlVKceIcYSq//fZ/b4+ay7bwcAmK1VMJleE1UDLEPVBG4TXSOrwGDKygVrkCPZS8vWGhjchl23u+EDl+9xv48vvlFNv/IPtGzVs9DTT2W7T9uT8fB5dGzH/fpzOKljCwBgWo58ixb/6WOwZaeeqEPwznjitTeo6df96RCtvBpFhzMmNP8aKarVKn7/+9/j9a9/PQDgqquuQq0Wy+dM08R1112HREK3CdfQONBY8ZVLsfAsGlMGTibe4ZgBynJsSvQAXKro/GRchceEgJBVX9yXT0dGfBQAzJqAl42bdURy26Cu4WfUGM4sC8Vz3Uw8Lka8VJgChkvbSvaESG6T3tCMgZWjUkEW81EhOVMqCzRk9+3EHKRYuvXLuKD5/QAAo1CBN4v4qJ+i87djYQ0zf0gnvusDRbhXkaXMlMkClWbJRwcZDCnZHZwdyXEtxTG5F4C7xCHKcxpRkbLq1mfoOc/dEOmtesQcayw7dwlw7u4/n/OlL8KYTPcDN0PwLVTpJ2aWEZZlwxTOVJMcrKPPnX6g1jj8NvfGR5e+8r/VdOSrVwvoZt+yrRl/FSQRW/n663Hcrz8HADh9ygZ0SG/IhQ9fipRJnHl3fLSe8160/OI9Hs/BDN11d+wxnnxUB/o09ojUY2RQ6px1BLx2yXbmleCXaVC2irEEIup6xQRTxIgH9MAGaLmoS1nUGVdwwJP8pl5iAcSEy6izLon2FToCRpm2ldoRwirWeXbUB/gA8j/x6AHNLBOYRlLGpU/dgMMGIT2VmWkqLz2zRvOyW304yyJ/PR+zvyFJca2GgSMpGDp4BC3b9BxTAaBEv1CB21qTBdOmi+f00vn30hxGVRKuQEDIax8YdRdZY9yx4UOfHHb+7Lu+CICkFQBQOD7AhneTUfaJH16i7runv/jSvWv+dN5te/z86X/9vAoGtifp5cgNDXSXM3tabQg2DZBM+KhffB7Pv/Fz+3ikExGj6HCmO6GNGN/73vfw29/+VhGru+66C8cccwySUeOYVavQ0dGByy67bE+b0dDQ2E8wntsAALC3Hg0AqLaawDyKBgSlNGzpFx2adXw0ZLHcNrKA4SzmrfZQPhoF7SIJr1f3SBUG8dT6/wPERwFqwJHupPHULAVxgLFQqlsp5qNgxIXCae14YMXnR3MqDikI24QpE8FWic5l++9ssJAu2JQv2WDynPkpjv5jaZnWJxhMyVOSO6LEv0C1hSK+VsKA00MXstZgqG1HzVlCm5N/tMZ+RSTx3Rmzvn47uOyQXTyxivX/dhUA4GWXko+iMyjw1B0vfTzeW9OMp/+V7sWFD1+KRpveZwbcBHoqe5YH1+PFftId13tZHzIYVdddzUlHgvHkozrQp7FH+H3U8axplUB3thEA0DyvD31HyKzL2gQcaqKpgnSBHZsUkydKNADH3n8RuBc30witmHAZbp1HnwN48vkaPVtYEHsDBhaDn5LZvIQJWDKtG/mfhAIs8uxobYHXdPhU8kV4oEI6/8Xt/4XQofNTy0mPtr4A6e10snktAJNBwdA20Eue16p60qzE1zndFYD50bIMPIiqNWn7diH+3KgE4NIzsdaaHLfvqTFyrP/I8GQLiCt6d4dT778akzN59f/dZTiHw6zvfwHArl3bdg4GnvS7Tw+p2NsbInK24OfX41V/pO/20Ku/OOL1JzR0M44xx49+9CNceunQ3/mPf/xjzJkzBwDwwx/+EF/5yld0oE9DY4IgGKQxp+Mx4hJbso1onE8EtG+BicRa8txyBur4qBMHj2IPU6H4pZeKOanhxnzUk29HViHmooYbK1i8zFA+ChA/8hNRF1gOmPIgEg5QkqQ4jB/SfDp5gZWmjzyhdUhBNiMJHQtult4pkjuIt6e3u+BRE7hQKA/onuMBYUhe6UE1BkztoGW5JxDaUQVniCApPYjzgVKjGFX6/XA3gJsbefBGY3yx4YPDJ6WfWrJ3Pjo1S0qQRpvus++c8p0R73fuT27C2rddvcv8ZecuUdOjTSBH3HXBz8nbb+HDlw7Z3kENLd0dc4wnH9WBPo09YllwLwBg4Vk3wpNS195sDuccTZ2xemak8dzKmQCA5qeI1BieUAE9L8FUZZDgFMwDhnbRNeu6R9cbHRuy4szNxBVg9d3TmMzO+ikGYURBKxMGi9iX/Nc0wCCbEGQS+P0juz7QDxuYJoQlg6KSIAkOlXmGAIwBuiC1ec3gU4a29u4+JYVJ/5Sy7IoPQxIxoxqTp+haFKaZqrKzcQ3g9NPFCxyd4TnYMTPXDy5r95/YMg3nvI4k/n6S468/G56sAcDM/7kVRnFkXcpGE+Srx+o371nKfNBBS3fHBatXr8aCBQvU/xOJBDiPx5pTTz0VH/7whw/EoWloaAyDiI9ecDw945ueaUavlLy+5tjnsX0WleM9+/RMtDxJ9zL3BQIZfJMN32FW65rEmXWddVldM46o6suqa9zhCoRZyZ/Yrt18jSrgpSMFC4efIUJr5yvxlzANcFmlEebo3z/9es+yw0MVzKbzIyyuuGJ0LgVjajAzBsqoTSOdtJhSBef0QdcpSXQsl8tUQ/lvoN45jLKn+GhpsqmueQMJlWD3VzUfPQQwNTuobF4e76QmIMdfsgSerM7duXFHhFnfpOQyrzjDfl6PfVWJHHJ8FKOU7mpCOiKMJx/VgT6NEcEYLCO3gVhSucPGI6AfpJH0cf4ZTwIA7jeOBwA0P22ozFmllanKXe7Gsoco4Iey7NILACKWWwhOHigAVfNFWdZofavIYm+/RCzv5bUAiKShKVk55nmqyk8Yh2eZ/vnpdwMAeHMThMwyR16GZslXVXx+xgKvSXLaV0PDMsp29h9HJCpMhthxEq0//UGBagst6wx44GW6OFGXMzcDlKfTernNdR1cjZETq3m3LFG/nzWfeukSUo2xwcavz0cv3e6Y9E+B1LoeAIAwOc56E/nuVVoMPP7NodfMSPpg/XTjzrt1ib6mI4UmS2OOwcFBmGZMgXbs2DHk8zAMh3ikaGhoTAzcv5KqZBadeh1K0yjQ93t+lHr7vPCMf+JXeDkASkBHSeNqS9ShNeadZjXmoyykYF00DVAQMHr8emkGVxbfBam6bUgbmcCpm1eBqkgDZzEf9X2IjPQkq3uRO9ywyHobjEltAIg3yDgNrKJMGHPiowDAKzaMEs1vWZZC7wlSSZIKse0cOvezfy2vcasNp48uAi+7CNPER6tNQGUKXdQo0AfGlLJlJJh3C1VkTXo8xKP/u3tFhMb+xY47ZmPLa2i6/VG6nk1P9Kgq0NM23YG/f3/XSigufarZYAJzbyc579pP6gr+vUJX9I05xpOPHr6jjIaGhoaGxgQHQ5xBHcmfxsgwbdo0PPPMM7v9/KmnnsK0adP24xFpaGhoaGhoaExcaD469hhPPqor+jRGhPufvhGLF5BRf2pmBwSnSi7m23hgxwkAgJNPWgsA+KczC7nnogq6WBZhcMAZHLpdtxGoNUWVZSzuaNYQd9oVZiydiDz8mIir/GqNcaezqFqNNkgrhdkEhEXTD/7ts/t+Eg4FMAZeocxooo9uf+4q4xpY+ZqSPBvFGrJbZHVfkc5fpcWAWY39bqLMqVlwAV+aUPeT3HfaHwNsPysnl/URSsmwVQhw2rsoe/b3HwyfPZv1HZKCJirWkAYtGvsfi6ddAshO1UtfpOvCBDDnZ3Sdzd4iIORvolpDehPd+3+579pdtmXaAZKbpdnydM0CRoTRZE/1KR0xXvva1+Kzn/0sXve61+3SyaxSqeDzn/88Xve61x2go9PQ0NgbjPXbkNp+BABAcFtV0/2m9xSccuqLAIDHjLloeE5ywaijrhNX7iV6YxlvrQmoNdND1CrIrrxl4qkA4GeYqv4LTcCSNrWRR5+fBIozJJ+txmoW2iDtPMwlNR8FqBGJVNjwmo9EL/FS5suTaXDiowDAqTMvAKS3WTCrdC4rLQbMihz05D9OnxevFwgYg7Te9AcDbH21lP/K8sHQNmAXacWTPrgET3x99wqD+T+9AUaNFC5dp2m574HC4ukfo4lMCkufvxkA4KU4FnyfXh6N3qjdNgPku05m8/CVUJZDn6fWM+Rna/I0YuiKvjHHePJRHejTGDFED5keN6xrRrpLDtBuiME5xHxWVuYBAI49bQOetclk2FnvKFmtMwCkumWr+1Zav9YCCEs+MRhTwTuACBgAVNvqjkESstAEaq20LWvQUHIKt9GCORC1QqPAk591ECQOT8luBGbE5yQiTI40QgZjKlCDEGDyvIWOBWeHDOaUI68ZU0krgFiGy4SASEmDRVcaHecrmPS4qfZhSvJl5muw8nt+9Jg99LmX0aPJgUIU2AdjgE/XNPLia35hB1AvO6rrdM1Luy8vb/5FGlaJfndOP1fd1PZmtnzYQwf6xhxXX301/vd//xdHHHEEPvKRj2DBggVgjGHVqlW466674Ps+rr76MPZz1dCY4AgG82h5hjhKustRPm0Dcy2s8OYDAE4+cw0eT5GPtLOROIpRIz4KAOluHyX5KlRtAcKIj8oonZ+KE81ON1Bpp2nuq0WUt3Rthguzi/5TywFuo9xfoQpEzcqyjvKNO5zBbEtxdGOwAkcmiqNEM/M81R2XhSHCDL38OjvKMKWnml2wYPeTZYzynDZiPhumHfCIj5ZqaP8Hcd+o0sgcqKBB8lLh7Pkdwe9Kgqfldh090B4ILD6iroFbtYZX/BsVDDQ/1h2/w0T/1nFSo+JhOEz6gXzhFD5CKZucf/MSvHiV5qN7hA70jTnGk4/qQJ/GiBEMDAAAEqs7ld9IbXIO2S304h753z23ciaOP3E9AGBldSayz9PPzBkQMFx6OkRVfl4uhJDGun5KqAE4tYUhu4UG6GqLqfw7IsIV2oDdK7O0jkBlKq3obeIIkxR4DOS/pakOarnDNwO3yHobmEMnnHkeUKDMFy9Jg2jTJA8ZgAI6MqMazOuA/eJ2WlYaXhtFC7xAA6hIWHHDEz8EkwOssOl6C8cE9yK3aoFQzmdeEK83DBaecQOaF9AA3HcUg58NXtL31xg9Fs//lAruAUBt3iQAgNMng3g1V5H0cFIzuBu1MPSBPGVUF8+6FEs3DO0yxl2h/CCzm2uwZAD5+I8twcr/1uRqd9DGx2OP9vZ2PProo/iv//ovXHnllRBRVSpjWLhwIe6++260t7cf4KPU0NDYHYTvwXxxCwAgs6MB1ZlNAIDcZh9Cvrg/vnIOXnMKSaKW+UfT589acAbofue1EKEM1Hm5UD1soySjMAUaVlNgLrvFR7mDtmu4cYVgVOXnbLYRJKQ/9VSBYA2tFyZsBOmYj9Z3+j3csMh6GwAQJ625av4QPgoQJ404iB/AnUKyteRT3TEfLdngA8RnRUq+VHAOeLIDbxhCOFJdxLlSr6hkdtIiPord+yWe9yqqGps8ycaOE6UXY0IPtPsTKunsx+8C5aM6kFsrJWDliuKjwXSqDDG6fMClAJ/R2Y/Fs4hf1nPSqNGjXQjQupJ+fwPlJI64jpZ54bOakw4HLcsde4wnH9WBPo0RY1n4UzUdPTSdTT6MSSTPdLMUnKm2cDzfST9II+uhPJUCcmaNodpMP7ka8TEIDjg99HnLsyGMGj2si1NNdJ0iq7pyIYzqUGJEndAkEWvwYXZGmdoAlcl0HEaFBoVKM0O1dUxOwUELIQc8Yfuq01mc+aoMrc6SQTh7S39MtKLgoBd3p2IVN96GYQAy2MPy0ky5pQE9x1OpZcN6F4EjpbtFH3/441VqOyd8hAbVxjW0frK/hL5j6BqGtgB3dfZ7f+HcxVSxlzQNoEpBvbCjOSbIMjsetjfBbaZgv9NVjAO3yQRgy7eecgXnXnALAODh+4mopbdUYPbTb8lvSquGMFZp4rOGV/3xE8i4I+sYPKbQ2dNxw+zZs3H//fejr68Pa9asAQDMmzcPzc3NB/jINPaG1z1yNf78L3cd6MPQOIAYwkmnfwyJZ+XYMrsDiRzxymqPgb9ung0AMBI0fpWnmiStBdDbaqvunMIQio9OWhFllwWKU4iDdJ9swm2SFiUlrpLUIhoWBBC2EI+xtjpggdzf9BTsAZqutDDUGsfsFBy0EK4HIbkoY0wFajCc4TxjSK6VEh/fj/moHyeNWUUGDYVQkmC4LphcVrQ2ovd4kt42P0dBneL0WCL3tx/GNjInfGQJcpvpeqW7yC9o3ZtbwGWhAvcO30Dt/sQ5ryU+6jTTdTO29CCYQi9zVskfwker7fTOkNxU5w8l5fIinQKTCejT3h035mhYI+W+O/LwJ5GsOzEQIrQn/jvHq/74Cfh7UM+MKzQnHReMFx/VgT6NfUJ9VmTx/E8BAJqK9NCpNjVjsJ8GUF7hCJM0gJc7DKS2D92OPchVdR8EUJxCP8nABmodMhuT9BFGEomKrApzedzN1wxUKX3f0QYMmRg0XBrsvWzczfdwhAiCIekX0ZgZ8jkr1YAwMpmpq7aruXF2NSEvkmWqii0knDhAGARq2bBFsuZAoEid7pHuMrDlPNru+o/EQT4g9r+J9htkk0h20nTiNTvQOzD0eDXGD8knqBIXjgPRQsTHz9rgVelp40Rd8DxYBSmZsQwEU+RAJKCqQw2DIblxAADwind+EQCQaLDBpYzCKLuoNRA5G5w3cYnzO//+fgCAEA0H7BhGmj3VWdZ9Q3NzM0499dQDfRgaGhr7iKWb/1tNX9D6ATQVKNlcbmtGIS/56KDkKLZAuYPGnOxGAU8qPux+Q3FFU1pM9B9hKyVJdYoHIxUlMgG/XMdHASAEDFsqIlIhdpxIn5tFwKxKPpoG/PTYfveDCUJZxgiVKBaNmVimW5HBizCIK7gYi6WYphnzUYMD/TKwk5IyTNMgPgoAjCPsiLiJQJ7ivWj7B+2j6zQH6z+6a/fcwlkV5H4slUENlNDMreEwFlGwsb//ML6A+xGpFRtpQr5biNZG+A0UHDaL3hA+qiTccll/RitYpCjiDIaUdjet6B3CRwEgUUnCkEGzamN6Qvv1vecf/wkAEKLpgB3DqCr6Ju6pnLAYaz6qA30aLxnhtk4AQHAymSKbFSCxVXqeTA5g9RHBcRtDZDYTIcpspnX9FFCYRU+CnpdxzPo/CiJ1np4Bk14pYd5GejLNDxMUJKgUEsg8TQ/pwpEmjMhizgJCScpqkgsEjgDzJ24gYb9AyAEviEvf3Q6SPzjrXUDI85NKxuTLtlQWTEksKlXUjpD+i6u3qyYNMAxUZ9HAEyToGgc2R+Nq2lZpkoH1Hxm+DN6WPK0kJTFmyVCSmCnZPIpVZ9j1NMYWi06/HryDsqVB2lEBO+6GKjgXSV6EySFkYJZ7gWrfLjiHn5UVow2p2FPTomWtQRe8Z4BmZtMwpHUKm8Dq7K1FCvAxJvCjM65GA27Z/wehSZWGxhD83zk3HehD0JigCPNF8Mkk4bPKQGIdjUnVKdLXud9QlXl8DUOa1L/w00B+Ls3fvJCCCHPuK6LzdEo2MitEOEjbSk8uAkniRaUBCgY1L7fRewqtZwRMPY/9FDWYA8h2Rj+nQZy0no9OkXz0BSnHNLiyCIIQEElZ/ddfiPloOUDpNIrepZ/YEq8nK/rKR7UA0irEzRloep6mH3j883s8tAWfy6PrXAoU2wNSfm0Cs3IDAIBK7QBU9h9mWHT69eCTKEgbpCNZNlNKLVb1wev4aAQmf1NGsabspPysDWTpXYV5IQJHBvalFQ3b0Q/k6B63iyFYMHEr+p7spvev1nQJvz7nJjTgK/v/IHRF30EFHejT0NDQ0NCYqNBddzU0NDQ0NDQ0NA40dKDvoIIO9Gm8ZDxQ+j4AYHHHhwAADc4M2AXKeO1IGrBkURjmVSCepZL3qKV9oi9ErVFKGnJCVQkBQPsy2kai10f5o5TBC6Vet1a1UDyW5hlWgFBqe33XRJiQRrs52W3LCbD27Ydv98Rl4U+xkL8FAPmi8KLsPOZLSWwQ1HXdDZVEgllmPD+CbcNZtZWmM2mEUZas4sHuoe535em0XS/F4KXpuqy4e/emtlGmu3mVvMaWAX7mAAAgZbp4/o2f24dvrTFasKqvjKnN/lJsTm0ZqqNdJK8BY+A1WY7nhxCy8Q0LBCzZxY65PvwG+n0ku+le9LOWGnSEZSDRQ9vIrbOUV+OTd00sA+SHz7tdTefz+f2+f4ZRSHfH9Ug0NDQ0Jj4edH+MC5reBwBoWJ9Dqps4ZmeK/rUKgLGAKsdYmIFVpoEt0S9QbaFlau1xM6ro8Tv1NxZS24kfDVzjIpAl6xWLxs2+M2swTMk/AwbflVLhZIgwairGBTa854ox/84HCyJfxYX8LRDS15kXK2CB5KNhLLdU05UqEDXbqOekjoP0PzbQdIbeLcLGNFiZtpvYUkR5FlUKVlo4+k+Ir+me8PwlbZjxgPR/k914W1+7BSmTtqs56fiDuUP5KCAbplh0PYTJh+WjTHZvDlN27AGdr6nfhN+aRno7XVu3mX5TyU2Batri9PvIbKHq0WMvX4JnbptYfHTl669X0weCjwK6GcfBholbn6px0CHo7UPQ2wdz0EWy20Oy20NmC8A9+vMqFuyigF0UMCshzEoIJoDWpwK0PhVg1m9r6Dotja7T0sgvCODmGNwcg5c10JEpoCNTQKnioFRxEHoG7LQLO+3CdAIYWQ9G1oPX7CNspD8IFktSD3cwDjAO4XtEmipVWH1lWH1luDNbUT2iA9UjOhA2pCBqNfrr7lGri1wGIpdB+ahJEI05iMYcgoYUeacwBiYEhG1C2Cacfg9Ov4fG54tYcfelewzyAcCkf7qY9E8XdmcBdmcBwmBozRTRmimi6GnZ7lhi8bRL6G/6x7B4wRX0d9RVWHzUVWRsXHXpz/PByhX6K1UpCFj11fWGEGB+SH9CgHkB/dU8NR06FoySC6PkgvsC3BdwswbCSY0IJzVCmBzcE+CeQPNzJbStoL8TP7wEJ354yd6/zAjw8v+8Q/0dtBCj/NsH3H333Zg9ezYSiQROPvlk/PnPf97j8o888ghOPvlkJBIJzJkzB1/72td2WebnP/85jj76aDiOg6OPPhq/+MUvRr1fIQSuvfZaTJkyBclkEueeey6effbZYY9JCIHFixeDMYZf/vKXI//yGhoahxyCfAFBvgAr7yLRU0Oip4bsJiC7ifhorWKhVrFgFwKYVQGzKsBCoO3JAG1PBpj/fRfzv++i69QM8sd4yB/jwc0w+CkTfsrEtNwggpAhCBlC10DoGrCTHizHh+X4MHIevBYfXosP0exCRJZ0XL8hAxTwE0FAnn2VKqy+Cqy+Ctz5k+HOn4zqAuKjESfF5k76Qx0fPaadAnyZNIKmDIKmDHET+ScSJpw+F06fi4Z1Hja+73JsfN/lez229GaO1PoBpNYPQHAGwRlmZAaQdxPIu4ex4fc4YPG0S7C440P0d8SVWHz01Vh89NXEN8sV+vP8mJOWqvRX8WI+CijeiSAEAslNXV8FDMOsgzDrwCjWwAIBFgh4GQNexoBob6GgckgNISc9VsCkxwqY/FfNR4eF5qMHFR/VgT6NMYMatA0GIf+4DwiD/ljehF0IYBcCWPKPhUB+poH8TAPVZgvF2SGKs0MIO8TgmRUMnlnBtnMFOKO/atFGtWgjsc6G7xnwPQNJx0VHyyA6WgbR0F5QAcAZM3ZgxowdCPP2gT41BxzLgnuxLLgXIhTU7cyNAzJB0oSXNuClDfgNCbDmJvpjHKJahahWwTwfzPNhlgN4kzLwJmWITNU8sJoHuB54vgqeryK0OUKbY+DokTXR8LImvKwJ4VgQjgWjFqC/kkJ/JYXOYnacz8xhhuhtw+CK2CgS5flkZG0akkBRcBggbz4WLR+GlCmVJEtYRkyy6rPtnKr2hGWAuwH9BYDbmoLbmoLXnFTBXaOvpFZL9IdI9IeYe/vYkKHoWXTMVWND1g4EogzqSP5Gi3vvvRcf//jHcc0112DFihU4++yzsXjxYmzatGnY5devX4/Xvva1OPvss7FixQpcffXVuOSSS/Dzn/9cLbN8+XJcdNFFeNe73oWVK1fiXe96F9761rfi73//+6j2e+utt+KOO+7AXXfdhcceewwdHR1YuHAhCoXCLsd15513UvdGDQ0NDRECIoQwOHnKmhzMB1jESfMWRN6CVarjowIYnGlgcKaBIEl/hTlCJY17F1axcbGFjYstmCzE4PYcBrfn4Gy24WwmnulYPhzLR1tTAY0deTR25MGtEHNmdWHOrC4YVriXAz98EL0ziJoLeAHgBfBTBvwUBWD8XAJ+jjgpOAM4G8pHSz7c6U1wpzep4B5zfcAlTmoMVlSgrjht5L563IVKXJtFD2bRQ2cli84S/WmMIYSg5ioJh/ilvHbM8wHHob8ooMd4XFxQz0f9kBoDcg6RsCASFv0O5Of1SrF6PspCgIWAOymN6pQsqlOysLqLMPrLMPpJoWSVBKySGDM+ChAnnXv7HWO6zf2J0fDR0TIyzUfHHkyInbV5uyKfz6OhoQGDg4PI5XL747g0DkJE8lDzyPmq0UPvMQmUptLnTh/Q8Td6eApDGtzaHANz40Bcfh79HIMmH+lmWjZlu9ixmRo92M0km7CsAKZBZd3NqTIyFpVlFz0bnYP0G23LkWb4T+fdNg7f9uDEQv4WcNmdjE/pAAB4HTm4TXQN7H4X5oCU9vblAU/KMx2qrBONGUCWw3uTMuA1WVq/I08BIgC1KaTF5V4AU8o473/yumGP55zX3gp7gK5ddAzCZKhc3A+Aru0D59w5Bt/88MUFuffShG2BWZLsplNxd2VfylmqNcCR9yI3VDMOhEJdW7WOETfjgMHUbwI87noGgyn5b5iI5RZhnXFyaNI2Uuv7UTi6hQ4zT8fTd6SD8mRabvXV+y6fOP6SJfGxyUN+asm+bW9/j4W33HILbvrB/2Lqhf82ouUrWzfCXfZTbN26dcT7OO2003DSSSfhq1/9qpp31FFH4Q1veANuvvnmXZa/4oor8Otf/xrPP/+8mnfxxRdj5cqVWL58OQDgoosuQj6fx9KlS9UyF1xwAZqamnDPPfeMaL9CCEyZMgUf//jHccUVJHWr1Wpob2/HLbfcgg9+8INqvZUrV+L1r389HnvsMUyePBm/+MUv8IY3vGHE50Dj4IHmoxojQcRHjWMWwGshWWffMdTcoTQVsGQTsKmPFBBI64nQ5uhfQGOgIZu89h8tSCECIN1cRmOK+NHW1ZOQmCzlvzLDYpkB2jLEO1Omh6JH29ra34iORpLZaT4aI7pGPJkEn0ZNBvw2eneotdiwB4h/mv1lsF55wXx/CB9lNSnDnEzPAu6FMLvkspyjNpPeHcyCC16lZXfHR9VxnXED/Iz8TTjEV5qv3ICyT/M0J31puCD3XsCWdi+WpWTXAIby0ai7skw4g7O4gYtdV8CxMx8FiJPK1YRpxvMZQ+hE3bfjxoFcctjA4kit7QMA9L+8DalO+g3uONFBTTZwfil8FJCcVB7byjv3fVv7eyzctm0bpk6diiOvvB2Mj6xObO3Xbsbv/vcenHfeeSNaXvPRsYf26NMYe5Qr4C49uK2SUB1UU92AUZIt0COfBW7DGZT+KH0B3Cw9/KvCRDUl29sHHGYjBYyasxT8a0sV4Ut/lJJnK0K1ftMkcJsGgk0DbeP6NQ9a1A+kIF817soOx5aBMCG7m7U1IawjwABgFl1w6XUhOEOQpItrJG3ljWHI4F/U7WxP4IGAkMGeajNtq/tUgXYpb9GEagzA6gJ20eDsenEgzw/if43YR0h9zg1AeukgCuIJASaDf0IAqO96FnVtDuIXIF6VndJCD24zvWyFJgMLow7PJqwCLRPI35pVFEh2vfSM2MovTSyPlVFjH5px7Ozd4jgOHGdXGbzrunj88cdx5ZVXDpm/aNEiPProo8PuYvny5Vi0aNGQeeeffz6+/e1vw/M8WJaF5cuX49JLL91lmTvvvHPE+12/fj06OzuH7MtxHJxzzjl49NFHFbEql8t4+9vfjrvuugsdHR3DHrOGhsbhCVasgGdpzLFKEc8BMtvoc171ldcX8VFaJrOZ+JGbTaDiEQ/ysgZ6C8RtjdYqGtMU9GtKEi8NBUNFBoMKLsfmJyl4ZZYZNk7RNiS7RRAAtZr8DwX6uCtUUjBM2OBtFLALUrbyzTPzVRXoi/hKkDBhRB163QBGWX4+iuoar8FGeZLko2cSL0kFpuajY4no/YDzuIsyZ6QwAYiPRtyU1fk2cpl0rlRVsBBCAFbMTQGQl5+cZkJARA2eTQbmygKFivQFb00hlIFAFgqIROTXF6j3k2SPQK15bCq0DjdO6rruiDip5qPjAy3d1dDQ0NDQmMAYjWy3UCigoaFhyN9wmVAA6OnpQRAEaG9vHzK/vb0dnZ2dw67T2dk57PK+76Onp2ePy0TbHMl+o3/3dmyXXnopzjjjDFx44YXDHq+GhoaGhoaGhsZLx2itZO65554RcVLNR8cHuqJPY+wQlVdbFpjMxIQGgzDpbo8q9wCAyaovwwyQW0tZlfy8DJrW0PzNC0KwGv08g14HVhvpKKZmqSR/UcuzeLj/CADA6m3tcBK0jQ3/fvh2MxsRWF1sP+p45gYwZdYzcAyEskqPc6DWShkX7tE1NIsuggbKjgcpI+51wjOwu0iyYhSk5sUP43L53eChB67AwrNupE348nfSx9G1Q0uyxgx1JfZCZs1ZIgG4MnMaZUB53bUKAiCMpA5h3P0uysLaFhAlygWHLK4l3xQWSyQQRHIKmYXliE07WPy7ErYJu5eqIvqOJ+l3oi8AGK0381u3jchE+5CEQNxdbm8IgWw2iy1btgyZPVw1Xz129hIRQuzRX2S45XeeP5JtvtRlfv3rX+OPf/wjVqxYsdtj1dDQOAwRcR3bBpfdOyO+EtpAoo8GMGFy1d3TqAVoWE08pu9Y8hhuftHHhmPl861sgeWp2oe3VTE5Q1UqF7Q+AwD4fe/RWLN9EgDASbhY+4nLxvMbHvyQ10iEQlV1Re8OZinueBsmTeIWkBYvkoaYBYagiaxo/KRUGBgMkNZBzta8UhHBC/bKRxUENWcBAKeT+PCq1MSozjkkUO+ZV6uBJemdAlV3eD6q+CcAyNI8IQB5aWFb5OlXt21hxuqSIfsMecyJ5e+BfBzlLDeEsOmaJ7fk0XMK6XWTvQHsfpo/65skv9/w/sOUk47SZjSqcKvHnjip5qNjCx3o0xgzGGkacGEa6kHg5gCrQDeBlffjDkmCFhA8fu+vNjJ4U2mw5mUGo0qf+NkQLTnyQpmRIu+EDmsQfkjLrn3b1eP6vQ4lLAvuxSL7HQAA4ZL3BM9XFNFlaRtBgh4LLDBg1Og6RbJaP5mBWaZlfYfBy9DoaNQ47O5IChqPAvc/dcNej6k0lbqY8Wic9gEM6AYqY4ZoYOIMLAq4BbI7GQAh70W288AbSbwtq44Y8Xj9KOgXhvHgF4RqGcYYhBximJRiBwkbRoW26zfbqDXSS5OYYqNhDd3jTc/Tv6HFETjyt1E5fIvPGUbeZCNabqR+La2trTAMY5dsaXd39y6ZywgdHR3DLm+aJlpaWva4TLTNkew3kj10dnZi8uTJwy7zxz/+EWvXrkVjY+OQ7bz5zW/G2WefjYcffnhvp0BDQ+MQBLcjz19D8ZtqU8RFAasYBwZYKAOBBgOvyoBSjpYtt5vgJWlLUrbg52jZloYSZqV7AQDTbfq3r5bUfHQUWBbcCwBYZL8DQvpBG4Mkh+aOhSBN1zBImGDSV417/7+9e4+SqrrzBf7d59Q59egXTYPdQCK0hlHRmImQRWAW6oSAYpzoWlmRJBOSOzeTG8YbFTCKoI7GTNA2KjMGH+MaVzIma4QxxGjuQAImExIjcQwhaNQxk9hAoEHk1e96nbPvH3ufU1V0N5zq7np/P2v1oqjeXXWqq/rUr357799PItGsFwFE6mH16Xg0qmKEdMxAOqIuhw9CNWUAIIUIFI8CQHyS5U9Ceh9QZG/wZh50BlYm9SBMMxNrOu7w8aiXsHMcFY96hotHDe8zpsxs/TWNTIwqTcDW27zD6ras7iQSk9X9DTZZ6J+iXncT3uxF85u6rrxloOGAur++C2u7oU6+jd9s2w4UkzIeLYza/fRE42aRuRSLzKWqflcoBPdPXX4XzlSDDqp6gNBAph26E7PhxGwMnhXG8YvqcfyieiQbgfhZEvGzpJ/kAwB70iCaIurrwEAzDgw04wfHPoi0NPw6fRSc3+ksmYRMJoH+AYjBJMRgEmZfAqH+JEJ6FtRrP+91p3LCAsmmEJJNISQmGBiYLPRXVo023aH1R69/PdDxvLTpZry06WaYCdXavuV1B51fvhmdX765II+/1ggrpL6yV3NKCSl1UOVKwJVqtZ/jZIodm2ZmJZ7X9cy/UcPvaphzvSEynX2ReS14t2sMpPzXEqBqoIRPOKg/mPBvIjEpgsSkCFINFqwBF9aAi8i7Nf53LgN+5cm2bcyePRvbt2/PuX779u2YP3/+sD8zb968IeO3bduGOXPmwNJB+EhjvNsMcr/t7e1oa2vLGZNMJrFjxw5/zG233YZXX30Vv/3tb/0vAFi/fj2+9a1v5fOrIKIqschcCmFbELYFufdP/vtPqgF+TGoMpmEMpiFNAacuDKcujMHJNo79eSOO/Xkj0hEgHQESLRJGQsBIqPe5SOsAIq0DaI4OoGtwAroGJ+D7x+bg+8fmwHFr/H1qlKTj+N1W0dsP9PZDDCRg9iX8mNSTqjchDbVIwAkLJCaEkJgQQrLRQLLRQN8Ugf6pBvqnGmriUccjQeNRAPjVd1fBSEkYKYm6LqCuC9j7d18pxEOvSSKk4lE/JtXP0ZB41Ous6/HiUSBnpwpMMxOP6u67kNLv1IzslX1ObjxqDKh61bqxNuyTDur/lFA1Ol0X6QZLfcVCsPpdWP1uTpftmhQ0Hs0zJmU8Whhc0Udj5q8S0jMpRn0dBlvV6j7hArF3M3/t6Xp1ckxMVH+AiSYDTljPwDiqaLH3c44+jyZORnCiXt3enzW8CwAYdC08+xePFPBRVS+hnydvRZ/sH/Bnu4Qh/Oy/U2/4BWod29uOCaRi6nKiCUiq+siY8Jb0G6z8aM/XRnVcP3++RpfBF5rXQMNxMoFSOu0HWdLbCgFkgiozU8gYrpsJqhyvKPIpgVN2h17vspT+LKuI6+7NMcMvhGykpN/RTiZcSP1zfVPU8U74/SASE/X54vzBUT/8ipfH7Gk+s6yeVatWYdmyZZgzZw7mzZuHJ554Avv378fy5csBAGvWrMHBgwfx1FNPAVAdzTZs2IBVq1bhi1/8Inbu3Iknn3zS714GADfddBMuvfRSdHR04JprrsFzzz2HF154AS+++GLg+xVCYMWKFVi3bh1mzpyJmTNnYt26dYjFYvjMZ9Sq5La2tmELHp999tlob2/P/5dBRBVPmKa/asiIRhCfkruaJHYk05HTiVpINGfi0XQ0E48CQKgvM5Hl2kD8mNpmeDRa58ejJ1Pqup8tfKAwD6jKCUPA1c3hDB2jCCEg9IotQy8OANSqSzeUFY9OUJeTarcuks1A/Ru6JEjEGnU8+uL3mdgrGMsCoGNC01QJXgBCGLnxaPauEkDHlF4MamTi0exEXtYqvpxVft4YITLxaJ3eQRZPwUhldVmOO/7YEzPV667l9ThSdXrb/kW5jSVqTb4r+vLBeHT8MdFHY2boFujCOxk3NyFVr06g0XeB+oNe7Q0X6Zi6PtGo3sATzQKGnqxzYkCqKWtLbzqT9OuLq5NtT1pt5eNKvtHbltoIQM16A4CMJzLbLU0DAup3DBHxT+aZGmyAo1fUSxOQphrQc45AsqGpOA+A8uNmBUM6oPJnOgFkx1V+YJSdFMxe5edvAzayVvI5ars+oAIv7zyQTgHRSGa8JvRthQYcpL1OeWEDRlqNadyrTgiJibaqtwPATZlo3/AgANTmSs88u+7mY+nSpTh27BjuueceHDp0CBdddBG2bNmC6dOnAwAOHTqE/fv3++Pb29uxZcsWrFy5Eo888gimTp2Khx9+GJ/4xCf8MfPnz8fGjRtxxx134M4778S5556LTZs2Ye7cuYHvFwBuvfVWDA4O4vrrr8eJEycwd+5cbNu2DQ0NDfk/UCKqCUZ9XU48mmzMxKMAUH8gCaFLjKRjJpJZ8aipSww7uhJNaoLr1/YTjvBr1w7EbfTp2ei4w22dY7EttTE3HgXUdsusMiCo158zXOlPCgqZiUddr+mqAfTMUN8/OXNikR4B5UVkJd6SqVPqQ3tDjNx4FFAxqXc5nc7ElafGo951fgdeC0jpD5r1MfhZfu/7UmZKEhkC6YhOACZCaP69+rn4JNuvI55Kqe+3f/NBdN5Qo/FogWJSxqPjT0gpz/g09PT0oKmpCd3d3YFr/1DtWNJ2vbqgT7Tp9inom65mOCPH07CPqhoHcIHkZBU9eYnARJOBnnOEvk7CbUllbjiu6781JTFR1+ibVKf+DQkXP1zwzcI9qBqwyPgkAECErEyyNhz2kzPOtBYkJqrr4y0qipICGGzJzKb2T1fBcuv57yISUs/df37kwaI9BjqzJdNuyPzHC4ZSqUwQZZ6yWg9QgVd2U41TpZ1MLZWcGn6matQBAINxwKvbqe9Dhi3IkLqcaorA0bV0kk2Zxi7HZ+laO/USjX/QH6ou68PEBnUe+dUVw3eQLYZivxd2dHTg3m//O9675LOBxg8c2of4z5/BwYMHC3xkRKXBeJTOZEnb9Zl49Jwp6DlHvQ/FjqgYxT46kKkjPTmGVIOKR5P1Brrfl4lHAQyJSc0m9cF/YmO/H48mHfXzP/nLhwr4qKqbVzvaI2wLhtekoS4KZ4pK2iWaw5l41AAGzspdgdk/XeI9Fx0CACTToZLGCzS8Je+9KfMfmWnEAmDkeBQYWkLGk86arbaza/iZmet6VZMdNDX6t+HGMnUA0816EUnURGKCTvSlgKMf8Go/SjT+Ue9au0rV5DSFi1eWrDvj4y2UYr8XdnV1Ydq0abjwpgcgjGCLbX7/rXux5XtPY+HChQU+OhoJV/QRERGVsYC9AgOPIyIiIiLKhwBjzUrCRB+NXcRbO69mQEOHTyIWVjMi1rF+f3m0Gw3DjKuaC47ukOVEhL+017UlhKlXCRkSZlTNpNbFEv6MaVePmrXYc/Xo6m5Qxnb3GQDAlU3/279OptP+1krzWB9CugNvSD9fiSYD4R71hA20CrgNamxfPIydH7+vaMdOwW09qFa+Lvmz1UBSz5xKXewYgNBL6aR0M3X7HCfnNoRX58/713Uh4NXmPGVmz1spaFuZlXx6jGuHkG6w9WUDZlL/vadNDLTpMd5dNKZx8gJ13ftbj6A3eUpX4FpRwG0SRERVJxrxVwSF3ulGrF6t8gkf6lXflxJuVL2fhPpTfq3YVH12PT5dX9Z0IXQNE2NCCo31am9v0jGx/4QqUvz6NXcX9vHUgG3JfwMAXNn8t+oK14XUNdpE2oF5VD13lm0iXeeVABKIHtPx6GS9Sqs5BVN3++JqvvK09U//hCUzb1X/SaUAqf4+ZSJxxnjUb+BhGjnx6BCum1nR58pMGRkhIHWpGak/p6YbbLh6p4mZdGGk1fUDrZnY1mlK46TebbKgRXVn/VPfhNE8/Mo3yuZvVBpM9NGYyQbdeEPXPMFgHHZXt/6mhIzqD/YRE2avSjQ4Z6kgyzUBQ9dbFRKQ/bqAclMStp32bgKJpHojGDweLfjjqTWiscEveivjiUwdNyuJ0EkV1ArdPCXZlFXDJgKYMTW2RW9hofIlY2EIb4uDm8ztwnsqJ6ubriEy2ygsfZ1tZ76fXf0hu9aKaULa+i0mnb0NQx+CJSD1MTR09iExQSXx0zp5LCVgTVIvttZob81u1RfIoxlHQY+EiKj8yYYYREq/1w3GEdl/Ul3W72MyasON6knM4/1w2lQSQApA6HjUO+nKPgvGBDUpFg6n4egaffGkhcQxxqPjTbToDm/xBGS/LvuTSPp1gEPdcYgW3aSryYClh3g1FcP1CRwfiBXzkGkUZJ36mxPdaT9RNyQm9eJJPSEMISANfTntZupwZpeP8eJRw8iNR3W8KqM24J0bssJSqRu8OMJAw+9Vs41E4wQkJ7j+j1uTVTw60Vafd76z8F/yf+BVoJDNOGj8MdFHY+Y0qGDHSKoIyRACGNBdMm0bblidjNOxEFIN6rJXm0saqsEDAJj9BlxHnWzNiS5MfULvHwjDDKnL+/6WnVnHm3vWBAi90lIcP5nV1cr0kzLCUWd1M5F1gpeAM6CeT3abK39OnQ2hE2/moay6Q0ZWwWsvoWcaWd20s2ZOvdW7huHPigrXzaziy076mYZfjw+Wd1uA0AWNjZSEkc4EbV7DFyOpV/ZFXcSiamKgNxUZy0OvfFzRR0QUiNMQgZHQ8Sig6sUCfqMoN2whHdWred7ThHREJwGy4tFQv45RTcBs0asDTQe9PZnk3t4vMh4db25zPQBAJCP+7hK4rh+DSFNA6HjDTMJ/z/Pih8Q7Mbz1d+yYW+7SjSqWNCIhmPveUVeGzBHjUUB30/YSepaVWaXnun7i0ItBRTKdqd0nBGDqVYOmAEI6Qeh9vknLTFyaNSntWoCR0itFhUQsqhL+RxLl3Xyh4Liir6Iw0UdjNqhnQ82EOkGGjxkwdaJPWiE4ettEus5EWm8BTeotEukokNaTb27UhVOvO3JCJfgAwPxjDG+tXVmUx1KLfrzrq/jIQrXtNiwl0KemSN2WBiT9ArXqeQt3S8SbdTI2Cez9m1tLcMQ0Gtt/eQf+8ooOAIB5IgwM6ndqr2OuFQJSOuFrW5kgKRqBDKu3ih+99vUht7voL/4BIqVnPaXMBFppF9JL8HlcQHjBmzQQ6kvpsWmk6vThDOhzA0Lo18WSO7truHuezHz4PKOg44iIqtRgawRmSr0Phd8xYPbqHQcxlaRz6i1/+2c6IpBs8ErJAI7O47lhqcc6MPR2wr7+CKKvqQGv38uYtBB+/MpdAIDLr+xA1Ft51TcAZ6JKrqQmhP14NHJSYnCiem5C+il+604m+SrBCz+/HQBw2cfuR+wdPYGcSmfiUdNU23oBiIj+kBgK+TvEIOWw8ejCyzPNMUL9KX+st+NMmpkFDF68ZKRcOHr7fqgv5SeYk41AqF/Ho9LCQJ06zjePtY7+gVcB4eaxe4QJwZJjoo/GbGCyOjGbKV3jIG7DNLzkgQnH9pZUZ+pvpXUwla4DXEtvkRCA2ad+zqkz4CTU5Uh3ER5EjUs0qydGyAaItMq4SNOA623V9HZpCpXs8/9DFePiletRN1E9z+F3ImrGFMh0OQMgGzLdcb2tDl7gPZLtv7wDCz+iauEYiezuZ6oOHwB/Bt5IuZBe3T5TINWograBmXVw9SRrqkFFX26dA0OfU945OCHvx1s1WKOPiCiwgckmzKSuGd1vwdSrgLyJJ8c2MrWhLQFHLwZK1QOOrs3nevmGnhBkvS45Ew+h/iBPssWQaA7BTKrknkjX+XGDawl/9Z4UQOSEej4SLuPRSvKBG9cDAGJNJqL16gOhSKQzdZ1DRma7bTjTSfdM8ehPfrYWALDwL++FE1M/J5zMBLRrGX486q3icy1DrfSD6urcP0vPOksgreNRp96Be1SdKHpSNb5lnyv6KgoTfTQmF9y5Ht45WOg32nSdibCVeWl5Bfdd2/BXpvjbPwVgxnVthIiEbFEBVTSSwqC+vdc7OHNaaN5W6oFW20/qWf0upFfjwit74Ujs/LebS3CENFbSBPqmqOfZ6m9A5F29lUE/x8kJNuyTulmHENj+4u2Bb/snP10DAPjopV+H6xU4jmWt5vMWDw46meslkNKvu/jETPDunRuEAISp/rPvC4VfOfqhrWv9y68sWXeakcXFGn1ERGd23j0qeRAJZ8WjURN2KPejjpl0/QYcwkXmQ6sAQoM6Ho3pFUCTk7AsNYGVjofw8lOrCvwoCACcsEDPdL290wEiJ3Tt3qzt1dIAXv4On49K5OhFfH1tBizd1MJIuv5nEcMB7GNqq2yqSU0I/2xr8DjwJ/+5BpdddT8AwLVFTskhT2hQvaZSdWbOayrZlLvAAVDxqFdW5u2bivea+9DWtWUVjwL51ehjTFp6TPQRERGVM67oIyIiIqJS4oq+isJEH41JYqKE3aty9taJTIEoaXurdjK1EURa+k0dvAKnRjIzsyMtib1/vaZIR07ZfvVdzopWu9ceWIkLb1MrHrpnhDDYorYnvPKt8XvuvborAPDhzz7kX/ZW60HA38rvWkBYz9JbfQb6p+mx3hRgSsANZbYVF4NbjvOP+cyeMvgiohqVnKjrRJ80YA1kFSyNZOp6Aap+rNA1/IQLGLqUV3Y8Cl1SppMxaUn817cZk1az331D7dS6cM16dM/QJWV65Lg+7zu2ZFYAZsej3rZ8r8WbYxt+6ZjwScev99g/TWbi0bgBd0JWE7siKceYlF13KwsTfTQmMiT9rX+huC5+fDThJ/cA10/uAYCR1j/n7Qg1ASfm1XwrxhET1a7X7yveNvjs5PH7V6kEY7w5BFM3QHQtoPc9KpE32CrhRPVWqXDmA9q+ZbcV6WjVdt3ZW1Wi8v3P34XXPv7Vot33GXFFHxHRaUlD13s2suLR44lMgk83dxCO9PeUGSmZqQVmZMWjTvl9wCaqNsVqapMdj168UsWjXm1yM56pH9/7XgODrbp2X8SF1Al/I26g8/Ori3Ks2WzTwcU//HsAwKt/dU/R739YXNFXUZjoo1GZ+cw/AABkKIK0nhZxwjpYsgxI2+u64cJIqOyekbb8k6m/ii+7KSdPHERVKdGi/nUi0u+qG+oH4pN1Z8OWFKSuqSTiuhizXfwTQiqtTkhRO4UP/1it5DjZrwovx/ttvHrN9UU/JgA8NxIRncbMZ/4BMFUw6oThd2aVppHp/u7tKEk6MLxC/CEg7cWjoawV5exgTlSVEs3q33S9OgeYgwJWj/5ei4Q7Qa9IERJiQJ07vIRfsQ2mLIRMdTL60Na16B1U57iSx6OMSSsGE300KrGoKpLaXR+CE1UnQtfMmgF1dQOOhnBm666UfsFTjzQyXXeJqDp5AZU0JBK6yLkbMv0t/A4AEVLXGyn1tuSaxf+k1VKn9mz0J8NIOuq81hBVSxBLdpbi1l0iotOKhFNwdNd4JxLN7BoxMiv5nCbd3TPtZhqMpU8pGK8bQAmu6COqSqkJeveI/hN3oi6koScDXOGfAzBowkjpUjOyNMFVc3QA8bTaV5x0TMQiSX08pTs/5bV1lzFpyTHRR6PizTBAZuqbeH/4RtKB9LqcCYF0g5ouza63ZSb0tx3APqGuf+vv2V2XqBpldyk790FVK0WGJP5wi7p+xr92wDhpDRlbbIY+iRlCQpwSyZhGCZd4MKgiIhqRbaXRJ9VqF5HOikdTLlyvRp/eoptuCMMNZbbreuUkIIH6vSoeffUhxqNE1ejtG2/O+f856x+CDKkTxh9uWYUZjz8AALBOmPifNaU9DzTaCT/RBwAhHYeGTKdUh8QVfRWGiT4iIqIyJSAhAs4mBx1HRERERJQPIYPHpMwIlh4TfTQqA3E9QzoQ8uvuJet0ja20C+jVe65twgl7lwWk3t772w2cLSWqRX+8eeiKvb0lKHJ8qivm3A18Q112pYDUWyNSumXwG9fejZ6enuIfmMSQkgenG0tEVGviSQuyXwWj0syKR5PpnHgUAJywAWmp77uWwO5HGY8S1aq3V+bGpHuXf6VER5Jx5cV3AADCj2Z2k8h0CP+15Ov+mJLEo1DxKAsbVA4m+mhUvG1tRtzwt+FGj+mOZinHT+iJtAuhO25IobZJEBEBwLkb1wEA7HAKg91q21Vkn5pE+O+7ivvhq+vvJdDbAEAl+rytEXuu/lpRj2NYnDwlIhqRlIDRr2JNI5UVj6ZdP6mXqRdtQhp66y4/sRKRNuOpDtgxVQcveSSKhj+qc8prDxY3Hv3vLzcBABpPGP6ks1HK8jHZuHW3ojDRR2OiGmnoLpoJXXA/ZEDqGVThuDCS+uQUM/HyU6Wrv0VE5cWyVXezRNwCvKLH5ul+YvzNeKoDABBrFEjrrrtSCrz+ybuLeyAjYTMOIqLTklLADXsfhM3h49GUTvS50k/w/de/MiYlIiVSn0AqmUmNDLYVP6g6d+M6NE5RhUMH4za8XbJ/uO6Ooh/LcPJqxkElx0QfjYrjqsDJcABLNaqE1a1mQUTahTTU96WdmTkVLs8MRJQR79clAKSA1J3OvOY+xTDj8QfUPi8AyUgITlJd7vzsmuIdRBBc0UdENCJXCghXxZpWf1Y86kjvFA9p6bhUCLgWl/IRUa7EoAXpeAtVBEIDxTtPtG94EAAgQzbiIbUiOdVvYe//Kn1pmxz5rOhjTFpyTPTRqCT0B3QDgKHiKVgHTgAAZF04s10XgDmoVu389Ce3FfswiaiM7V2mzgkznuqAiKvg6r+/WvgtEu3fVAFVKG4gPUEFVG7aKL8EH/KbPeUsKxHVolQ85K/SEw5gdR4BAMjmBghX17gS3tZeFy9tunnY2yGi2tX512sw4wlVrFnI4pSQmfHPqsuvmVAxsNOQRrJPfcYuuyQfuKKv0jDRR6PTn3npOGH9b6uqKWD0xCGFirjSsRBS9UXei0dEFWXv54oTzHgBXCjuLfEQkIaKWN7+zNqiHMOoMKgiIhqR22P7TYukATjvmQRAx6N6h0mqwQIApGMsFk1Ew9v7f24p2n1N/5dvINSr4lE/eSYk9n6+jBfGsEZfRWGij4iIqIxxRR8RERERlVJeu0wKeygUABN9lLf2bz4Iy+tulsz8wUtTzZKmJ9XB7FOteIWUePH7pW9VTkS17Zx/eggG1HnLVQs74Ead8o9EJOBXYz7jWGb6iKh2TP8XtUrb6gnBjOsrs87pqcl1fkM4M6HKNPxs663FPEQiohwzHtPbdZOmX0M03aA7hZd9TCoZa1YQJvoosBmPeycmA5Gj6jqrD4geU0FU6EiPurKnF4io/bw/3fXVoh8nEdGpnPo0Qt3qLc8LrBB1sK9I24bHIvBKPcZeRFQjZjz+AMykmmCOvAvYOgSNHndhHldd4szuHqCpEQCw9a37SnKcREQ56lTteqPPhqt70gndkM6rXV2uWKOvsrBQBQW2d/lXsHf5VyDSAlYvYPUCdp9E+GQK4ZMppNoakWprBGwbcCXgSlx54e2lPmwiIuz7wq2Ai5yvYtUGHDMZ8IuIqEbsXf4ViJSASAlY/YDdL2H3y9x41LKARAJIJLBk1losmVXGtViJqCbs/dxt2Ps5ldCThoQ0JPb+za3Y+zcVsNo4aDzKmLQscEUfBXb+XesBAOE4YCbVX3BowIVjq3yx/U4fAMBpmwjz0DEAgIzwJUbl7cLV69E/XS2Z33s9t5lXsz9+ZVWpDyFvQsIvMn/GsQHHERFVuvPvWo9IUu1zCw1KhAbVCdCxDNhH1Io+Z0oLzHdPAgDcsFWS4yQK6sI16nPW4FkSb6+svHiF8vOHWyrvORZuHhVvmOwrOWZhKLB0TF8QQONeVYPPtQ30TVXBU+xtlSwxD3UBdVEAwI+5dZfKXMNBCTfMztBUppjoIyIaItksYfWqj5xNb8fhRNT7eN9UC7FOvTXu4DvAWaoD7493Mx6l8tbyhnrdHjX58ZzKUz6Tz1R6PJMQERGVMxY+JiIiIqJSktyXW0mY6KPADEf/mwT6p6lmG8KRSDaqGdXjH5oMAJj4035s3bu+JMdIlK9ffbfyls5TbQla+JgFkomoVphxAaEWQKH37AgMR50AU/UC3RerVXxNv+zH1jfWleoQifLy8+duKfUhEJ2WkHls3aWSY6KPAvv92pUAgFlr16P/LPVnnmwWcFTOD5ET6l+3tTnwbX5lz1IYUGuA7//AM+N3sERE1SCfyVMm+oioRvzPbSv92tEDkwUSE1Vc6tpA5Lga407OLx71PPCBTeN3oERE1SKfOJMxackx0Ud5ix4FEk3qsjQBJ6YSdUc+pK47enFT4NsacCwkXb4MiYiGI8AVfUREw4kdUf+mowAMfbnOxTvz1OUjHwoej/albSQYjxIRjYgr+ioL39Eob7ueWIkP/l81iyocIF2n/uRF2yAAIBJJ4a9+cQMA4IcLvnna23r0ku8W8EiJiCqdDF6jj7X8iKiG/OYxtdPkki+tR1h/+kzHBNAaBwA0T+jHx35+IwDgPy59+LS39fjs7xTuQImIqgFr9FUUJvpoVLyOO4YD1O1X0ZXzjmrLm5gAvNqiLk9/6xvY97esOUFENCqSK/WIiE5HhgAjpS7X7Rdw34kCAE6cFcGxlkYAQPv+ewEAnZ9dU5JjJCKqdPms6OPKv9Jjoo9GxZtFBdRMKgBMeFt16zjxPhOABQBwI+zBTUQ0JqzRR0Q0ot2PZGLSi1euR/0BfTJ0BRIpGwDgRBmPEhGNCePMisJEHxERUbnKY0UfV/4RERERUSGwRl9lYaKPxuw3/7zyzIOIiGh0XNboIyIK4tX1jEmJiArCzWP2mSFpyRmlPgAiIiIanpCqJmrQr9F49NFH0d7ejkgkgtmzZ+MXv/jFacfv2LEDs2fPRiQSwTnnnIPHH398yJjNmzdj1qxZCIfDmDVrFp599tm871dKibvvvhtTp05FNBrF5Zdfjtdff93//vHjx3HDDTfgvPPOQywWw9lnn40bb7wR3d3do/tFEBEREdGwGI9WVjzKRB8REVE5kzL4V542bdqEFStW4Pbbb8fu3buxYMECLFmyBPv37x92fGdnJ6666iosWLAAu3fvxtq1a3HjjTdi8+bN/pidO3di6dKlWLZsGfbs2YNly5bhuuuuw8svv5zX/d5///146KGHsGHDBrzyyitoa2vDokWL0NvbCwDo6upCV1cXHnjgAbz22mv49re/jR/96Ef4whe+kPfvgYiIiIhOg/FoRcWjQsozPxM9PT1oampCd3c3Ghsbi3FcREREZaXY74UdHR146B83YtbFnwo0vufkfhw+8AMcPHgw8H3MnTsXl1xyCR577DH/ugsuuADXXnst7r333iHjV69ejeeffx5vvvmmf93y5cuxZ88e7Ny5EwCwdOlS9PT0YOvWrf6YK6+8Es3NzXj66acD3a+UElOnTsWKFSuwevVqAEAikUBrays6OjrwpS99adjH88wzz+Czn/0s+vv7EQqxOkm1YTxKRES1rtjvhV1dXZg2bRouW7QOQgRbJ/byiw/gh89vxMKFCwONZzw6/riij4iIqJzJgF95SiaT2LVrFxYvXpxz/eLFi/HSSy8N+zM7d+4cMv6KK67Ar3/9a6RSqdOO8W4zyP12dnbi8OHDOWPC4TAuu+yyEY8NgB/0MslHRERENI6CxqN5xqSMRwuDkTAREVGZEpAQQbdA6HE9PT05V4fDYYTD4SHDjx49Csdx0NramnN9a2srDh8+POxdHD58eNjx6XQaR48exZQpU0Yc491mkPv1/h1uzL59+4Y9tmPHjuFrX/vaiLOrRERERDQ6QkqIwFk8iWQyGSgmZTxaGFzRR0REVK4kADf4V29vL5qamnK+htvykE0IkXuXUg657kzjT70+yG2O1xhAJTc/9rGPYdasWbjrrrtGPHYiIiIiGoU84lFI4Omnn84rJmU8Or64oo9KbpHxSf/ydveZEh4JEVH5CbqiT0igoaEBBw4cyLl+uNV8ADBp0iSYpjlktvTIkSNDZi49bW1tw44PhUJoaWk57RjvNoPcb1tbGwA1kzplypTTHltvby+uvPJK1NfX49lnn4VlWcMeOxHR6WTHowBjUiKibPmt6AM+/elPY8OGDTnXDReTMh4tDK7oo5JYZHzS//Jsd58Zch0RUU0bRT2UxsbGnK+REn22bWP27NnYvn17zvXbt2/H/Pnzh/2ZefPmDRm/bds2zJkzxw9oRhrj3WaQ+21vb0dbW1vOmGQyiR07duQcW09PDxYvXgzbtvH8888jEokMe9xERMMZKR71YlIiItLyjElt2w4UkzIeLQyu6KOywYCKiGgYedboy8eqVauwbNkyzJkzB/PmzcMTTzyB/fv3Y/ny5QCANWvW4ODBg3jqqacAqI5mGzZswKpVq/DFL34RO3fuxJNPPul3LwOAm266CZdeeik6OjpwzTXX4LnnnsMLL7yAF198MfD9CiGwYsUKrFu3DjNnzsTMmTOxbt06xGIxfOYznwGgZk4XL16MgYEBfPe730VPT49fC2by5MkwTTPv3wcREeNRIqJhyFF2fwuA8ej4Y6KPiiZI4MRtElSruIWdhiXVltwggo7LtnTpUhw7dgz33HMPDh06hIsuughbtmzB9OnTAQCHDh3C/v37/fHt7e3YsmULVq5ciUceeQRTp07Fww8/jE984hP+mPnz52Pjxo244447cOedd+Lcc8/Fpk2bMHfu3MD3CwC33norBgcHcf311+PEiROYO3cutm3bhoaGBgDArl278PLLLwMA3ve+9+U8rs7OTsyYMSP/XwgRVb2giTy+F1OtYkxKwxESGLli3tgwHh1/QsozLwHo6elBU1OT3yaYKB9nCqj4BkJBne61VOmvo3xWEJzpsQ53W5X++ykHxX4v7OjowD8+8G+46LzrAo3v7v0TDh79IQ4ePFjgIyMqDcajNFbVHEdQcY30WqqG19F4xaSMRwuj2O+FXV1dmDZtGhbOvwdCBKv89tKu9Xj+/23CwoULC3x0NBKu6CMiIipnBdy6S0RERER0RgXcukvjj4k+GnesbULjJZ/X0iLjkyWfJSzWa38091POf5elft7KXtCYirEXEZGvnN/3qLLkG48CpY1tivnaz/e+yvnvkvHoGTDOrChM9BFRWRiPN/6x3ka+b/DlHKxUknJI0pYtCYiAK/WCjiMiIqLhjVdsN5bbGU1MxJh07MohSVvOhJQQzPZVDCb6aNxtd5/hm00NOvU5H+lNspxfG2cqPlzOx17pxrNGYXWR3JJLRDQKjEdrV5BmEuX82mA8WlqMSUfArbsVhYk+GpNir6CqRePZ+Wo8Cwef6bmv9CCk0o+/mtVUMXUJwA04Nug4IqIqw3i08IJO6I7mtsZyu4xHqZSquSnLEC6Ct91lPrDkmOijwArxRlPrW/bKpa4FgwiqFtWYBAy8JZcr/4ioRox33MJ4tHxq/zImpWpwptdxJZ5v8tu6y5i01JjoIyIiKmeBE3gMqoiIiIioALh1t6Iw0UdUJJyhJCqtilztJ/Oo0ccVfUREdAaMR4lKryK3/DLRV1GY6KsQo3lTzi5CPNqTBoOB/PF3RkTjijX6iKiM5BvneDHoWLbHMrbKH39nRDSu8qnRRyXHRF8exrMpwmjvd7Q/F+Q2sgMxyg9/Z0SVqaxnTgEIGbxGn+AkK1FNqPZ4FGDH3NHi74yocpV/TJpHjT7GpCXHRN8wgrxJjvcb6en+sIsV7DA4GBl/N0TVp9wDKgBqm4QbcKme5JI+ompSingUGPncWMwJYcZdw+Pvhaj6VEQ8Cqh4lCv6KkZVJvoq8U2wEo95vIx1ezER0ZlU9PmFNfqIKlKlxnaVetxjxXiUiAqtos8vrNFXUSo+0VerwUg1KreipHxtEVWPsdSGKikJ1ugjqhCMG6oD41EiKpSKnlBgjb6KUvGJPiIiouolg9fo4ywrERERERVAXjX6GJOWXNkl+jhrRaca7jUxXrMgfL0RVbfsmlJjnUX93Pu+PG7HlZfAW3cLexhE5eKaps/hP+UPCnofjA/oVIWMR0e6fSKqHtl198ey0+Saps+N52EFl8/WXcakJZdXou+aps8hJCwA47/clG9ulI/Rvl7YxY2otgz39z7ac4CD9FgPJ38SgBswWgo6jqgKFHL7E+MECmos8ehYfp6IKs+pf+8V9/fvSkAw1qwUo17RV3EvTCLwdUtEo9c4qQF4t9j3KvNossHgi2oP39epEvF1S0QVh804KkrZbd0lIiIqRz1He4t/pxLsuktEREREpcVEX0Vhoo+IiKicsUYfEREREZUSE30VhYk+IiKiciVlfjX6RGEPh4iIiIhqUD41+pgPLDkm+oiIiMqVlIDrBBzrMNFHREREROPPdfJoxsFMX6kx0UdERFTOAq/oA2AU9EiIiIiIqBax625FYaKPiIgogJJ03WUzDiIiIiIqNdboqyhM9BEREQVQkq67kHkk8Bh8EREREVEB5JPoY0hackz0ERERlTOu6CMiIiKiUsprRR9j0lJjoo+IiKhcSQm4brCxQWv5ERERERHlw3XZ9K2CMNFHRERUzrh1l4iIiIhKiTX6KgoTfUREROVK5lGjj1t3iYiIiKgQmOirKEz0ERERlbOgW3K5dZeIiIiICsGVgGAzjkrBRB8REVEAjZMagHeLfKdSQspgNfokV/QRERERUQEEjUf16IIdBwWTV6LvgkvfBzsULtSxEBERla3ON/cV/04lACdoM458AjCiyiVDLi689M9KfRhERERF99Zv/gc4WYI7dtiMo5IESvTZto22tjY89vMHC308REREZautrQ22bRfvDtl1l8jnxaM7Dv8QO376w1IfDhERUUkUPR4F2HW3wgRK9EUiEXR2diKZTBb6eIiIiMqWbduIRCLFvVN23SUCwHiUiIgIKGU8yhp9lSLw1t1IJFL8FxMREVENk1JCBlzRF3QcUSVjPEpERFR8Mq8Vfcz0lRqbcRAREZUtGXxFH5txEBEREVEh5LOij0qOiT4iIqJyJRG89h5jLyIiIiIqBFcCgsFmpTBKfQBEREQ0EglIN/jXKDz66KNob29HJBLB7Nmz8Ytf/OK043fs2IHZs2cjEongnHPOweOPPz5kzObNmzFr1iyEw2HMmjULzz77bN73K6XE3XffjalTpyIajeLyyy/H66+/njMmkUjghhtuwKRJk1BXV4ePf/zjOHDgwCh+C0REREQ0IsajFRWPMtFHRERUriQgXRnoazRddzdt2oQVK1bg9ttvx+7du7FgwQIsWbIE+/fvH3Z8Z2cnrrrqKixYsAC7d+/G2rVrceONN2Lz5s3+mJ07d2Lp0qVYtmwZ9uzZg2XLluG6667Dyy+/nNf93n///XjooYewYcMGvPLKK2hra8OiRYvQ29vrj1mxYgWeffZZbNy4ES+++CL6+vpw9dVXw3GcvH8XRERERDS8oPGodGXeu0wYj44/ISWL+hAREZWbjo4O/OOaR/F+c16g8d3yGA60voGDBw8Gvo+5c+fikksuwWOPPeZfd8EFF+Daa6/FvffeO2T86tWr8fzzz+PNN9/0r1u+fDn27NmDnTt3AgCWLl2Knp4ebN261R9z5ZVXorm5GU8//XSg+5VSYurUqVixYgVWr14NQM2Wtra2oqOjA1/60pfQ3d2NyZMn4zvf+Q6WLl0KAOjq6sJ73/tebNmyBVdccUXg3wMRERERDdXV1YVp06bho+YnIUSwdWK/TP8Hnn/hB1i4cGGg8YxHxx9X9BEREZUpV7pIOclAX2k3lddtJ5NJ7Nq1C4sXL865fvHixXjppZeG/ZmdO3cOGX/FFVfg17/+NVKp1GnHeLcZ5H47Oztx+PDhnDHhcBiXXXaZP2bXrl1IpVI5Y6ZOnYqLLrpoxOMnIiIiovyl3FTgmFTmsaSP8WhhsBkHERFRGZo+fTqO4ACOyOA1Pj589ofR09OTc104HEY4HB4y9ujRo3AcB62trTnXt7a24vDhw8Pe/uHDh4cdn06ncfToUUyZMmXEMd5tBrlf79/hxuzbt88fY9s2mpubAx8/EREREQVXV1cHCzZ2yB8E/hkBAxMnTgwUkzIeLQyu6CMiIipDn/rUp9Dd3Z3X10c/+lE0NTXlfA235SGbECLn/1LKIdedafyp1we5zfEac6ogY4iIiIjozJqamtA9cDKveLS3rwfPPfdcXjEp49HxxRV9REREZaqxsTGv8XfccQduueWWnOuGW80HAJMmTYJpmkNmG48cOTJk5tLT1tY27PhQKISWlpbTjvFuM8j9trW1AVCzpFOmTBlxTDKZxIkTJ3JmUY8cOYL58+cPe/xERERElJ9oNIpoNJrXz6xZswarVq3KuW64mJTxaGFwRR8REVGVCIfDaGxszPkaKdFn2zZmz56N7du351y/ffv2EQOTefPmDRm/bds2zJkzB5ZlnXaMd5tB7re9vR1tbW05Y5LJJHbs2OGPmT17NizLyhlz6NAh/O53v2Oij4iIiKiEgsakjEcLRBIREVFN2rhxo7QsSz755JPyjTfekCtWrJB1dXVy7969Ukopb7vtNrls2TJ//Ntvvy1jsZhcuXKlfOONN+STTz4pLcuS3/ve9/wxv/zlL6VpmvK+++6Tb775przvvvtkKBSSv/rVrwLfr5RS3nfffbKpqUl+//vfl6+99pr89Kc/LadMmSJ7enr8McuXL5fvec975AsvvCB/85vfyI985CPyAx/4gEyn04X8tRERERHROGE8Ov6Y6CMiIqphjzzyiJw+fbq0bVtecsklcseOHf73Pv/5z8vLLrssZ/zPfvYz+cEPflDati1nzJghH3vssSG3+cwzz8jzzjtPWpYlzz//fLl58+a87ldKKV3XlXfddZdsa2uT4XBYXnrppfK1117LGTM4OCi//OUvy4kTJ8poNCqvvvpquX///jH8NoiIiIio2BiPji8hpQze+5iIiIiIiIiIiIjKEmv0ERERERERERERVQEm+oiIiIiIiIiIiKoAE31ERERERERERERVgIk+IiIiIiIiIiKiKsBEHxERERERERERURVgoo+IiIiIiIiIiKgKMNFHRERERERERERUBZjoIyIiIiIiIiIiqgJM9BEREREREREREVUBJvqIiIiIiIiIiIiqABN9REREREREREREVYCJPiIiIiIiIiIioirw/wExljbEbetUzwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Define the figure and each axis for the 3 rows and 3 columns\n", + "fig, axs = plt.subplots(nrows=2,ncols=2,\n", + " subplot_kw=dict(projection=ccrs.PlateCarree()),\n", + " figsize=(16,7))\n", + "\n", + "# axs is a 2 dimensional array of `GeoAxes`. We will flatten it into a 1-D array\n", + "axs=axs.flatten()\n", + "\n", + "(fv_t232.area*ds_out_con.landfrac).plot(ax=axs[0],vmin=0, vmax=0, cmap='viridis_r') \n", + "axs[0].set_title('area * remapped landfrac')\n", + "\n", + "\n", + "ds_out_con.GPP.mean('time').plot(ax=axs[1],vmin=0, vmax=1e-4)\n", + "axs[1].set_title('conservative remapping, no mask')\n", + "\n", + "ds_out_con.GPP.mean('time').where(fv_t232.landfrac>0).plot(ax=axs[2],vmin=0, vmax=1e-4)\n", + "axs[2].set_title('conservative remapping, dest mask')\n", + "\n", + "# Mask out coasts based on land mask\n", + "ds_out_bilin.GPP.mean('time').plot(ax=axs[3],vmin=0, vmax=1e-4)\n", + "axs[3].set_title('bilinear remapping, dest mask')\n", + "\n", + "#for a in axs:\n", + "# a.coastlines() ;" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "b251911d-2f91-4207-b3ac-aab7c519cd74", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf8AAAF0CAYAAAAthjClAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5xcV333/z63TJ+d7VWr3mUVy7Zsy024O4ApNgRTQ5KHGggQQgp5AgRIHkzAJNRfIKGEFsCUUNwN7kUusorV+662l5mdfsv5/XHr7K5kYeQ+H7/knblz77nnlvPtRUgpJXXUUUcdddRRx0sGynM9gTrqqKOOOuqo49lFnfnXUUcdddRRx0sMdeZfRx111FFHHS8x1Jl/HXXUUUcddbzEUGf+ddRRRx111PESQ53511FHHXXUUcdLDHXmX0cdddRRRx0vMdSZfx111FFHHXW8xFBn/nXUUUcdddTxEkOd+ddRxynAD37wAy688EI6OjqIRqN0d3fzyle+kvvvv3/W/X/4wx+ybt06YrEY3d3dfOADHyCfzz/j8xwfH0fXdX72s5894+eqo446nr+oM/866jgFGBsb47zzzuMrX/kKt956K5///OcZGhriwgsv5K677qrZ93vf+x7XXXcdZ511FjfddBMf+9jH+Na3vsVrX/vaZ3yev/jFL4hEIlx55ZXP+LnqqKOO5y9EvbZ/HXU8M8hms7S1tfGGN7yB73znOwBYlkVvby+rV6/mlltu8ff9/ve/z5ve9CZ+85vfcNVVVz1jc3r5y19OIpHgxz/+8TN2jlMJy7IwTZNoNDrjt2KxSCKReA5mVUcdL3zUNf86XnL4+Mc/jhCCHTt2cN1115HJZOjo6OBP//RPyWazNftKKfnKV77CunXriMfjNDU1ce2113LgwIGnPE86nSYWi6Fpmr/twQcfZGBggLe//e01+77uda8jlUqd0BwvpaSjo4P3vve9/jbLsmhqakJRFIaGhvztn//859E0jcnJSX9bLpfj9ttv55prrjnhvOfPn8+f/MmfzNi+adMmNm3a5H9/17veRSwW49FHH/W32bbNJZdcQkdHBwMDAwCMjIzwnve8h5UrV5JKpWhvb+fiiy/mnnvuqRn/0KFDCCG4/vrr+dSnPsWCBQuIRqP89re/9Z/ZY489xrXXXktTUxOLFi0C4JFHHuENb3gD8+fPJx6PM3/+fK677joOHz5cM7amafzLv/zLjOu6++67EUK8YASiOuo4Fagz/zpesrjmmmtYunQpN954I3/7t3/L97//fT74wQ/W7PPOd76TD3zgA1x66aX8/Oc/5ytf+Qo7duxg48aNNczWg2VZGIbBoUOHePe7342UsoZZb9++HYA1a9bUHKfrOsuXL/d/nw1CCC6++GJuv/12f9sjjzzC5OQksViMO+64w99+++23c8YZZ9DY2Ohv++Uvf4kQgpe//OUnd4OeAl/4whdYsWIFr3/9630h4xOf+AS/+93v+O53v0tXVxfgxBkAfOxjH+PXv/413/zmN1m4cCGbNm3id7/73Yxx//3f/50777yTf/3Xf+Wmm25i+fLl/m+vfe1rWbx4MT/+8Y/52te+BjiMfdmyZXzhC1/glltu4TOf+QwDAwOcddZZjI6OAo5Ac/XVV/O1r30Ny7JqzvelL32J7u5uXvOa15yS+1JHHS8IyDrqeInhYx/7mATk9ddfX7P9Pe95j4zFYtK2bSmllA888IAE5Oc+97ma/Y4ePSrj8bj8yEc+MmPsZcuWSUACsqurS9577701v3/605+WgBwYGJhx7OWXXy6XLl16wrl/4xvfkIA8cuSIlFLKT33qU3L58uXy6quvlm9/+9ullFJWq1WZTCbl3//939cc++pXv1q+8pWvPOH4Uko5b948+ba3vW3G9osuukhedNFFNdv27t0rGxoa5Ktf/Wp5++23S0VR5D/8wz+ccHzTNKVhGPKSSy6Rr3nNa/ztBw8elIBctGiRrFarNcd4z+wf//Efn3L+pmnKfD4vk8mk/Ld/+zd/+29/+1sJyJ/97Gf+tv7+fqlpmvzEJz7xlOPWUceLCXXNv46XLK6++uqa72vWrKFcLjM8PAzAr371K4QQvPnNb8Y0Tf9fZ2cna9eunVVrvfHGG3nooYf48Y9/zMqVK7nqqqtm3U8IMeucjrfdw6WXXgrga/+33XYbl112GZdeeim33XYbAA888ACFQsHfF6BQKHDLLbc8pcn/98XixYv5+te/zs9//nNe8YpXcMEFF/Dxj398xn5f+9rXWL9+ve8G0XWdO+64g507d87Y9+qrr0bX9VnPN9v88/k8f/M3f8PixYvRNA1N00ilUhQKhZrxN23axNq1a/nyl79cMy8hBO94xzuextXXUccLF3XmX8dLFi0tLTXfvaCyUqkEwNDQkO9n13W95t+DDz7om5TDWLVqFRs2bODaa6/l5ptvZt68efzlX/7ljHOOjY3NOHZ8fJzm5uYTznnevHksWrSI22+/nWKxyAMPPOAz/76+Pnbv3s3tt99OPB5n48aN/nG//vWvMQxjhsBzKvDyl7+cjo4OyuUyH/rQh1BVteb3z3/+87z73e/m7LPP5sYbb+TBBx9k8+bNXHnllf69DsNzF8yG2X574xvfyJe+9CX+/M//nFtuuYWHH36YzZs309bWNmP897///dxxxx3s3r0bwzD4+te/zrXXXktnZ+fTvPo66nhhQnvqXeqo46WJ1tZWhBDcc889s0abz7YtDE3TWL9+PT/60Y/8batXrwZg27ZtrFy50t9umia7du3iuuuue8p5XXLJJfziF7/grrvuwrZtNm3aRDqdpru7m9tuu43bb7+dCy64oGZ+N954IxdffDFNTU1POX4sFqNSqczYPjo6Smtr64zt73rXu5iammLVqlW8//3v54ILLqg5z3e/+102bdrEV7/61ZrjpqamZj3/iawf03/LZrP86le/4mMf+xh/+7d/62+vVCp+rEEYb3zjG/mbv/kbvvzlL3POOecwODhYE5NRRx0vFdQ1/zrqOA5e8YpXIKWkv7+fM888c8Y/j5EfD+VymQcffJDFixf7284++2y6urr41re+VbPvT37yE/L5/Enl+l966aUMDQ3xhS98gXPOOYd0Og04QsHPfvYzNm/eXGPyL5fL/OY3vzlpk//8+fPZunVrzbY9e/awe/fuGft+4xvf4Lvf/S5f+tKX+N///V8mJydnZDIIIWYISlu3buWBBx44qfmcCEIIpJQzxv/GN74xI7APHMHmHe94B9/+9rf5/Oc/z7p16zjvvPP+4HnUUccLDXXNv446joPzzjuPd7zjHbz97W/nkUce4cILLySZTDIwMMC9997L6tWrefe73w3Axo0bufrqq1mxYgWZTIZDhw7x1a9+lf3799ek76mqyvXXX89b3vIW3vnOd3Ldddexd+9ePvKRj3DZZZedVPGdiy++GCEEt956K5/4xCf87Zdeeilve9vb/M8ebr75ZorFIq9+9atP6rrf8pa38OY3v5n3vOc9XHPNNRw+fJjrr7+etra2mv22bdvG+9//ft72trf5DP8///M/ufbaa/nCF77ABz7wAcARoj75yU/ysY99jIsuuojdu3fzT//0TyxYsADTNE9qTsdDQ0MDF154IZ/97GdpbW1l/vz53HXXXfznf/5nTaZDGO95z3u4/vrrefTRR/nGN77xB52/jjpesHiOAw7rqONZhxc5PjIyUrP9m9/8pgTkwYMHa7b/13/9lzz77LNlMpmU8XhcLlq0SL71rW+VjzzyiL/PX/3VX8m1a9fKTCYjNU2TnZ2d8jWveY287777Zp3D97//fblmzRoZiURkZ2enfP/73y+npqZO+hpOP/10CdSM39/fLwHZ0tLiZyxIKeWb3/zmGVH6J4Jt2/L666+XCxculLFYTJ555pnyzjvvrIn2z+fzcvny5XLlypWyUCjUHP/e975X6rouH3roISmllJVKRX74wx+WPT09MhaLyfXr18uf//zn8m1ve5ucN2+ef5wX7f/Zz352xpyO98yklLKvr09ec801sqmpSabTaXnllVfK7du3HzdrQUopN23aJJubm2WxWDzp+1JHHS8m1Cv81VHHixjVapX29nY++clP8r73ve+5ns7zAsPDw8ybN4/3ve99XH/99c/1dOqo4zlBnfnXUUcdLwn09fVx4MABPvvZz3LnnXeyZ88eenp6nutp1VHHc4J6wF8dddTxksA3vvENNm3axI4dO/je975XZ/x1vKRR1/zrqKOOOuqo4yWGuuZfRx111FFHHS8x1Jl/HXXUUUcddbzEUGf+ddRRRx111PESw0kX+SmXy1Sr1WdyLnXUUUcdddRRxx+ISCRCLBY74T4nxfzL5TILFixgcHDwlEysjjrqqKOOOup4ZtDZ2cnBgwdPKACcFPOvVqsMDg5y9OhRGhoaTtkE66ijjjrqqKOOU4dcLkdvby/VavUPZ/4eGhoa6sy/jjrqqKOOOl7gqAf81VFHHXXUUcdLDHXmX0cdddRRRx0vMdSZfx111FFHHXW8xFBn/nXUUUcdddTxEsPvFfBXRx2z4TLldf7n2+wfP4czOTmE5/tU8K6nv7+f3bt3U6lUqFQqVKtVKpUKn3nrFxEIBIr7V9R8/8Ldn0LTNDRNo729nZ6eHjStvuzqqKOO5xZ1KlTHSUFKiZQSRXGMRVNTU9x88838/es/SZUyJgYmJu2iB+n+B5IocWws93cDCwuB4v6nuv9XEdP+Kqho6OhEiBInQYoYCW6XP3nKuZ4sc5dSUqVCnqz/r8AUIBEIQNAk2jCoUiD3tO7bhRdeWPNdIIgSJ06SGEniJNzPCRKkiYqZqTkvBIGqjjrqeGGhzvzrABxGODIywis6rsPEwMaiSgXDZY7jjFCljIJKmgxVKpQooKIRJYZGBA3N13gV16OUJ4uKhoZOnBQKKhLb/c/Cxsag6n/2tjvigjMPDzpRLhJX+8KGhYmJiYXpCxtei8oEKRpoIk+OHOPkmEBikyBNkgbiJBmmj8PsAUBBJUUDSRpQUHwBRiJJkGYBK2igqUZoca5RILGRSAyqHOBJDCoYrrBjUsXE8O+LhUmZImWKwMiM53Ap187YdpnyOqSUCCFO+nnWBYY66qjjRDiplr65XI5MJkM2m63n+b+AEdaILWn5DBdgkCPsZeuMYzR0EqRooo0EKUxMcoxjY7OY1SRI/V5M6Xiwpc0T3M8Yp76KpEAhTQYFlSJTVKnMut9KzqRbzH/a5xmXQzzGPU/7+BY6SNKAQdUXvLzPFqZvCdHQ0dBZwXoSIn3c8eoCwDOH41mXnq/3/ETWMCklJgYqGoo4uTCw5+t11nHy/Lqu+b/EkJdZ9rJtBpPViYQ+R+lmHs10kCTt6r+2q9/atNCJhoZ6Cl6fsiwxySijDMyYU5Q4Vcq+Ph8jwRLWuJYGhwGq7jzCREtKyRST5MmSIkOKTM3vhqxSpohBlQmGOcYhKpR9a8XTRbPo4Hz5R1QoudaBwEJgUHU1/hIViihoFMgyyFH/+EnGKFFAJ0qEKCkyRIhSpUKRKSYZw8Tw93+SRzmTTcedz2XK654XRNowDC6JvIYqFSJEiRCjRIEyRSLE/OcZFiJP1bxnY3pH5X4qlDCoECHmu5le+VeXMjQ0xB3fvZdeFtIgmk/J+Z4Kz+YzklK6lrxhsowxxSQVStjYqGg0yVaa6aCD3lldUHW8eFDX/F9kOBHx2S93cJCdRIlToUQ7c+hiLhYWgxxm9Glo3XNYxHJx+u91jCUtikxxhL0McgSJRCOCSdA4KkKUFjppoIk4SXQipGk6ac3khYCKLNPPQZpoJUEaFZX7uAkjdB9UNCxMwBF+UjSQIkOSBppoJybixx3/mWQqlmWxSbvaZ+IZWkiIFHnpMBYLiwM8iXQtS2GoqFghdw44bpcEaSwMTmMDGdEy63l/n2s63lo4mbiRBprYIC456XP9oXimBYDLlNdRkFM8wC3+tkZaaaCJGAmixCiSZ4IRJhlFIumgl14W1TyL54MwWceJUdf8X6QIE7SKLDPKAJobFhcjQYzEcc3wXtBajDgdzGGKSfo4wGlsoFP0YknL90eXKDDJSI1mCg6R9vzwCdL0snjWcw3KI+zkUUDQxVxsbHJMUCTvHx8lxmJW08lcDvAk/Rzwj69SoZfFNIimp32vnu+IihgLWeF/N2S1hvGD4wroYh5NtKEJfdZxnimCfDzmOSAPs4PNNdsEAkWqvqCioc/K+AEsLDR0GmiiRIESBWws8kwCMEw/GWqZ/9O5xtmOuUx5HWvYiEmVJ3kEAAUFnSi9LCJKnCixGec/FXiuGWeEKI20kmMCGwsNjQaayNDi040FrMCQVY5xiD72M8gRTpNnY+K8m6vF2aRpJEH6GbHU1PHsoc78n2PMRmDLsshOHmWMITdQDNZzIY2itWa/zdzpBo4FEAjiMkkjrSziNCYZZQ9P+FHzrXRhYdLHAZ8JF9QCDSKKSpQkUeJk0OQEo9ZMS8A52pUk7OTxL0g6BP8we3ztro8DNNBEgjRpMlhu/L/Epp8D7Ge7H3vgoZFWUmSe8v69mKCLCEvkavayjQ7msIx1REKm12eTwJ7IgpQk0CYWspIeFjLCMSxMUmRopBVVqFRlmRGOcYCdVCj5xwgU1/pUJkqMOClUVKKuUNqI854/E9d7vDFPxkUy2z15ITE9XUR8N9Gw7Gcf29jOw/7vURkjShydCCamm/ECO3nUFRZ0XzhVUEjJDKdxNgmRetavpY4/HHWz/3MIwzAYGBjgbfPe72t1WTnGVh6sIZYAXcxnlTizZttW+QDD9J/wHAtZxQF21GxTUVnISgY4Qp6sv10gXO/67K/EXJawVKw94fmqssJhdjPFJOMMA7CMdfSKxTwgb61JmUvRSNr1ySdIESdJnCSqeOnKpI/I36IRYS0bZ7XgPNfMxmOAOTnOHrYyyShR4rTRTZQ4vSzy32VDVhmmn508SowEKqqbShlAJ0Inc1km1gHP/fW91DAyMsLl7a9xY1FKbixEFRWNKSb99Zoig0RSpuhbdwDuv/9+zj333Odq+nXMgrrZ/3kEKSVbtmzhmvVvYph+CuRcRusw2UZafYl8J4/NYPwAnfTO2Laac5hgxE9Nq1LxA90K5ChRoJl2BDDAESoUsdz/9rINgEWcRlo0+SlpUkKVEjkmZgTgHWEvjbKVdtEzYy5Dso8dbPatCW10s5CVtNHta/DtdHMMw7++PJO+qTeMjfLKl6Q2YUqDEkUqjLGbLSyT607KP/1coEE0cyabmJKTHGU/fewHYIxB1snzAHiI2ylTpJVO1nIeB9nJAZ6sGcegylH2sYx1wAuvYNTJIpfLMT4+zsTEBIsWLfKJsne9z9W1trW10Sq6ZmyXUrKFe/3A3qqbeWJPi9XYuHEjizmNOSxGc4X2F9NzezGjrvmfYoSJly1tBjhMH/uZYhIN3WeEnt8NIE0jTbQRJU6EGKab3qUTwcLiMLuxMImTYhVnkTlOFPKEHKFEARODLGMUyVOhhIXFHBb6Oe3HQ4ZmelnCdh7yt8VJMpclVCgxxhAtdLq/SCLEiblz3sK9NZHoF4hXEhVxbrP+Z8b9GZNDPH6clDiBYAOX+D5jr1yQVwxII4Iq1BNexwsNk3KUR/jdjO1ncylp0fi8J6aXimvZzRZfAPAgUDibS3hA3splyuuwpU2WMV/DjJMiRYY4yRlWjuf7NYchpeTIkSPs2rWLiYkJPnHdZ/2iVgWmyDE+Q6A/k00z3Hjw7MZvSCmx8FJ+LSI4LqYc40wyhuGmxPZxAIlNG92kaSRJA7t4fMY1eQW98EtkKaTIkKGZDM000V4TsPtsP2PvHXRcF9KvxDk9W+iF9O7Nhrrm/zyAjeUGvTmwsJhkFIA4KQSCEgWmmMTEoELZFwgUFFroZJJRn6lKbDZzJxEZQ2KTponTOd8nnNt4iCplwFl+3czHJsMUWY6wlx4WMskoFUo1jLqBJjroZS9byfJQKO1PUKXCbrb4+zpWCwWQMyK2VTQaRRvtosdh/GYt4/fQIjo4S76MIfoY5Kg/Z+caJQ9x+3HvqUCQko0+QWmjx9c4XqjQidZ8X8AKelnk+/ufLyl7x0PYOnGeuMp/x7/3+NdZt24d8MInqGEMDAxwRfdryTHOFJNMMTkjUPOpMD3G5engZNMKDVllghGK5P3iWAVyvlvOg4bu1/7wYjAkkiTpGb79NroBJ3NnjCH62EcDTajogEQKgS0tppjgKPs4QBWdKGfIC0mJZyeWZ3pw9BPcxxSToVJgDgSCmEySIEWCFMvEOtroRiD44uOf5n2n/wMRoi8qAQHqmv8pw2wL0ZY2R9jrS9ARN1krQwtDHPWZagsdqGjY2IwycNxzKG6gVImCv+1CXuEziUfk73zCC7CY1dg4i7NEnkZaZ8QIpGmkSoXT2ECeHEWmGGdohm/WOb9KjDgKGiqqW4vPoEgegLPVy/3o/FuNH57UPfPyjvNka6rnhWvlA27VP4sKJbJMuJaNKZI0sJIzj2sNeaFASsnD3MkUE7TTwxox04/6YiA4LzSE1/UhuZvD7PYZfZQ4aRoBKFOi7FrdPOhESJD241k+9f1/YPHixZx22mnE48dP0Xw6cwujIkscZBcFchhU/biecG0MDZ02uoiR8NdcjklUVBppJU1jDbMT2sxME6EfX+iWUlIsj5NlnJwc54hrdTyLi2es1VP5Xh/vnmyXDzPIERKk6GEhEkmRKbeOaNW3knroYh4DHJ51LIHgXK4gIVLPyzV5svy6zvxPIbxc2h087GtzXnCMgkKCNBo6CopbUz6HF1ynoDDByAypNAyB8MvoqugsYDkdYo7/u5SOkXyYPg6yizJFt0J+hMWcxm62zMgOmMuSmsh/cFLwnPkLJBaGV/0LxS2nayCRRIlhYvqa+xrOnTUe4PeNon7K/dU/BmCfvZV+DmBQpZfFLGXtKak2+GzDkE7a2QjH/G2XcM3zMuDvxY7ZmEdJFhjgsB+vsJpzSJKmn4MM0UeVMjoRWuikiTaSpEmQJiKiM8Y61c9v+nxzcoKHuQOADnrR0MjQQhNtxMUJsnRcqI2NMzfOwiLEtOZUdtGhK1VZ5qHyTZRk3v9NJ0qT0k63soB2dU7tcdXqM35PwHGJHmIX44wcNwXVQxNtrOQs9rKVYfpm3WcjV9RU13w+rcs6838WEX7ZJuQIj3IXABlaiOMsOAvT98d7te3DpsKlrKOVDvax3W9ukyBF0i3q4uXheulTAxxxBQmV+SzzNW5TGhxiFwMcRqD4JXmnmGAJa6hQ5jC7j3stcVK000OOcTey1/KZeytdSJxSoE7JWYM0TRTIgi+YqH70dytdaEI/5QvjiuRb/c9S2hw197DLeIR2tZdV1hkvmJiAvMxSpkSBXE1p5SbaWM+FPvN/PhGWlwLC63lUDrCF+wBHG+xlMSUK7OZxbGy6mU8b3WRoOa5Z+GTN8yd6zuEx9sntjDJIxa1SGbaShSPxLxbXoLhrQWuepV5GfJYKfpFpGv5UvuarrBozGD8AivOujlaO8kj217NeQ0tkDrZRdatpClR0NDQ0PU5ndBFd0UU1+x8b285BuQOdCDpRNw5IoitR2sQcHqre4jcaOxHC986UBhOMYGGyiy01hcWaaWcpa0nSUCN4m9JwXaUmOvqMktrPt/VZZ/7PMrwXbJQhtsr7SZDiTDbNKMxiSoMRjtHPwRoTvQcVjWY6kNi004OGzgCHSZBijOFZo+M7mctpYgMDbmEdT4ufx1JKFGaY+lvpYjmno6BymD1kGfNTthawggPsoEqFBpqIEJvmihCuUJLGwmKcoRPel7PF5aRFY8226UGATxdXxN/iE52hyiG2WfeTEhlOU88lKZz3VJrGiYZ4TuCUH57gYe6c8dsGLp5RVvb5RlxezPDWsSVN9vAE/RwEYJ66grnqMnaamxm1+2mjm5XRc4iKBLeU/vukxvRQlHn2spU8WXSiRHHy67uZT4Nook8eIE+Whayc1Xpwn7wJFZ0O5qATcTRZ1WGCqnCi85MNXTRGOoKDmmb62e1oLW1Spooz9pnO/JmN8U+zUEkpqeoWBWOCfP4YCgoHCo8DkNHbiShxJ9hQVjHtKllzhLKdd9yJQkVRdFShYdiO0tES66Uqy1i2gawalGWRKiViJDgzckkNM76l/L2Z85uGS7XXcdDeyQG5Y8ZvbaKHBcoqNEvx+2i80IoZ1Zn/swjPDD0uh3hM3kUr3awW5zj56m7RGyklR9nHfnb40rlOhAwttNBJhRKH2AU4EqiN7QsHaZooU/AtBQtYQZZxJhhGQ2cjV6KLCA/K22uEgwt5JRERZVj2s5UHAKfKFzjphROMYmHSSCuNtDKXxWzmTiRwOuf7ZsIjci972UqL0sUa7Tw0oWMbzjUMyaNsk87Y4fRFD3GSdNBLp5hHSmQQqqOJ3Fr9/h90z6+Iv2XGtj5zL0+aD9ERXcTq6u9XcvjZxF65bYb15SL11eh2QFhfCETmxYqN4gqe5FGyjNHNfBazGpDcx81oRFimrqdDm+czheMx/9k0fkNWeYy7MajSTo/rcXYyaVJkOJ0LeIjbfWvbXJaQZYwqVT/7xfNNn61dQYNoRigz3UNKU2PthpNh/oVyzXcZq/1dFGdpiGWatd9nEQ5kPIJtWwih+PdMlF2hfDKHLS0GKweoRiS2NLGk4f41aY7NobNhRe14hsFI6SCPDf+CjsRi1lobnB/icYp2jriSQhEqN49/HYArUm+rOX5L8U6GZR9R4iioQZrzcVyujuUhgkaEZtpYwErulD/1f/fo/6lSav5QPCPMP0GaCBHmsIhOMfdZqUddkgWG6MOkSpwUv9jzA5YsWfKMnvfp4DL1j9li38sox5wGGbTRxTwaaGKKLEfZywQj6EQxqKCg0kATBXIsECuZK5Y6bVtDL2BZOma9tGikLEvcz03Y2KznQppFOzk5wWbuZAlrmSsWU5R5hjjKCAPkGEdBpYu56ETIMcE4w8RJ1gQMJkizhNW0iW6klNzDr91qfCl6WOBr0IbupAJ5i9dj/pa02CLvBk2jQWulWe+iJTKH4vggWcaYkMMMcRQLk4xoRWKjEWGpuo4GrTbV6ak0qNlw1Zz3O/ORFrce+woAMSVFUmukJ76clmzqeVU06Jg8RD8H/DQwDxuZWdvgxSoAnPGOG/zPUkp++tHXIoQgEokwMTFBX18ff/mJH5BqmkskHhCv+378V8/ovDxm7fXAAFisrmWOWIyCwm/NG2kRXSxW1/jWrBMJsT7zFwqGrHBE7uUoe5FIzlQvpkE0IS2LPnmAXTzm7Or+F84G6KSXqEj69TyOyYNUKZPR2jm38TUAWJOTNedWF8yrnUz1xNkIZvfMcsZqvlYYsNK1bgKtf+yEYwIzrAKzCQd2w8zgR2WiMGMbWuDOG586yMODzvo4Y/51NCV72Td0D4dGH3CyjmLdWNKgYIwDgqTeTNTUmZAjVG3HwrG26XI6igENshSJIZ16BmYE57MsY9gVDFmhbEwxaB4iKmK0qb20qnNorDb6bkZb2kgdLAxsJBGiqGjcWvnDFJ2TxcDAAN/5znfQNI0Pf/jDp5b5e4iR4HzxR6eMOF0eeSNFmacgs+TlJBNyhJwcRyD8HvIRon6wmobuLhCLuJphXuw0PvTvb+P6d3+NuEiRVDLERdL3d4mFvdy89VPB+fQ31Jz/ZCLTp+OqjncDMGEMYthl7ur7MUIILkhdRS46xbg5wIQVmMR1IjTTTovo5kn58IzxelmCRBIRMYSUtNI1w1xelHlMqjVm4e3yYYY4ShNttNJFM+0kaaBKhaPsY4RjmBikacTCIsuYEx1PM3myHGUf4wyzkJUsYAX72ObXA8jQwirOIiqSM/zongbvf58W+WuXgshZE4snuM9JqSFJVo5SIEdCpEmKDCmRoUXt5uHyLb93wJ7H/AGOFfdwMP8oU8ZMd8omXnXc2vjPFkxp8BC3+8JXL4spU2SEY7NWcIQXtgCw9v031HyPj9lUYja2UUGoGqXRfvof/iWF4dmjqgGiyWb0WIpM1zLmrLoMEfLxPvD9Z0YYOE9cxX5lBwU5RV469TkaRAvjMih6FSXOeeLlvp//Nut/uLLh7f7vN+e+6X++TP1jHrfvYYwB5rKUBZFVREMNmY5UdrKLx/3vLXQisRlnmFa6WCfO89eb2uXU2ShHHddeTHdN3tna7BxrbnvNd1GerqFP85VPYwNGJmD0kZH8DMav5mutAGJ4vHa4jkCYEFnHdSBTtUy+3FPLmKIjRabH4onQvDzLg9XiCMmTU0fYefCX5ItDCKEgpc2i9gtQFI2JwhEiaoJkpBkJFCqjlIwsjfEeFEWjMDXIgoYzaIx0+uPb4xP+Z6XdFQqmCStTlVGODNzPiBikbGRRhIYqVT+WazoUVBq1dhZZK2sbJJ2ElcDjMc5Atc/rpoEvz9j/da97HT/5SZB2e0qZ/0JW0UATjbTwW/nzp5z8yeBlrW9hx9TdjFSPAA5jz4hWMkorQggSIk2bModIWweWNDmcf4KKVUBt66Dv0N1Y0vDN6ELRkHbwkgsUNDVKTHduQMWYIiriNGhtJKpRp5ysSDq1xTee4R+nZR2Jt2qWKFUn0NU4Ml9gpHSQ8fJRCtUJKlae9sRiBgqOhhARMRbM2URUT3Pw0B106YsQCLLWMBEzQgNNtNBBNNlIwc5yX+kXT3lvLlVeH3yRs0eomtLgGIcZY4CxkP99NWfTRg/D9HOQnUSIYmFRIMcSVtPJPDSh1aSYzWc581nODh6uiTwHJ2JXQXHThRwzWJI0cZHEkk7M/4Qyjo1Fq91BgjQdzJmVmdvSZoijfvnQPDkqlGihizXiXNRprXVPNvofYG/kSY5V9tIbW0nWHGbMcOIdvLiI5xKb5W/JMru2tITVzBPLgBc2w/ew/t03YOkgbZvcoScp7X6SwngfxckBpB1klsRbeuhaewlqJIZSNFEjcSLxDEIoFIYPs+fBwBrU3LuGpp6VNM9ZzcM//vtTMs+rlv7NjG037fkMAFfE3sREdZg+uQ8L001sNcgySlt0HuubX4EQgnJ2hH5jL4pQiYkEUZEgFmsiZgT+4j3FzRy0drBRfzkpJVCkpOXci13mYwxxxLUMVjlPvBwtlXKK5bgChshMI+SpRPB5NuZvBaRd2VfboAvLQi4NWQdOwPynQzFq63sIs/ZYtVhrZbBSM+MWzKTDVKVLHuxo7ZrXp1zX6HigRJS7ai1jkckKIlsiXxlhrHCIqJakK7MKu+HkWxGrfaOQmGZ5CFlJjLmOEKAWaq9JSklpcoDRwgEsYaMpEbSKRBU6quIop9X8BBW7xOHKdnQR5azYFZiySkm6zc1SSTQlQkxNEVHimMUpLGmgiyiaEqEo82zN3eEohUqMiJIgqib85mpX//mFdHZ2smrVKlauXEmhUOA//uM/WL16Ne9617tOLfOfmJigcbZUkN8DFypOG1CJTZE8R5R9GHaZZalzaYn0EFUSUJ5mogpFoAo3P7a6OJDYCs0KCBBCpVrOYQ0MULRzWGYFy6xQLo6jTxlE85KKUiZnjlKwslgyCAZLxFtpbVlOJt1LMWUztP9+8uN9hOvcK0KjMT3XzYFVGSjsJtW+gDmLLmJk5z30j26p2R9wXgahUbVLgCAlMo5lwkpwlL010bk6URppoVPMJ0MziUQzdqnsVuIyKStFpuwJCjJHlYrTXIMGEqRQUGuqxC1ghW+6nA1RYixnPa10cQc3+ttTZGilCxubdrqxsSiJEoflLooUXL9+rSCioBAh5tflz8pxv7bBBdqriImASM0IwHMl9oM4ATgtdHC6uMD/+WQZYZD+t41D7CSmOISibAcBS5dqb6gRRp7tYMBheYw9s6RbLmQlC8VK//sLkfmf+Wef9z/bEYFtVhnf/QjDW++ikh0hnukg2dJLsmkOkUQGU5hokTgNPcvQqzMFROn6sSf7d7L7d98AQIsmMSsFFFUn2TYXPZZGi6fRYyn++3N/zfnnn4+uP7V158rVH/U/i0pII1ZnRo7/ePNHuWrZX6AN5GosR1pnO1W7jNWeYdvBnzE+dWDGsbqI0qi0055egiVNdmXvBmBhYj1Lkmcic3mf+W+3HmRAOhaQLjGfeeoKMolORCQSDJipjTI322v9+NOZsgy967Mx/9qdA7plrqvt1CmnWQmEaYc+T2Mf0x5ltTFS812Ztn81PTMzJzZeuy7lNAXCjihEh2dxC8yiaEyfuz+PqZnxC8K0sDIBrbLjtVq/mq/UXLtzgtrrkdMsosrwONsm7qC/dHxaPB2qGmFO73mUSmMMD20lFm8mlerEzGepmAVsaaEqGooFZbuAKR1+GY/HufDCC7nmmmt4xzvecerN/iky9CpL6Lbn/d5RkBuUS9ks76jZ1pxawKLOi2hKzQVAmQxJsO5CliFzjLU8kFarDcFiNFLBTU8eC3xV2nAOOVhbyUq0NCGlxLDLZDsUSsUxho2DTB59ErPsMIvGzmW09K4lme7ErDrSZ2exHVWNkF0eSKDRyWAR5atjRI9MoCg641MHiUcaaU7MQx8vUDKnGB3fRc4eoyDyFKxJKvYs0bVAWmlCApY0MFQLyywfJxhFMFsTnjO4iAaa2cc2jrJvxu9NtJEnS5pG1osLsaRJmSL7eZJh+lBQfd/jWVxMVCR4SN5GhmZOU85x7h1V+tnPfrl91oY/d8qfhcoXN9GqdtNmdZKmcYY1YKt80M+nVVC5UL0aXUR+L3fMVW3vAhzf/6jRx0j1CEfLQR35nu6zWbb0Vaj3bXvGmL6U0m9ZbFB1C784LZInGaXIFAJBI62000MbPdwjf/WMzOXZRJjxG6U849vuY3Df/ZiVAo0L1jBvzoWkm531PZ1YWlEFGaKXiWPTiLIQWJbBRHqKeEM7lcIkI32PU5oYwCjnMUt5qqUsVrWEGomT6VpG45xVbP7ff6e5OXCPrd74DrY/8HWaOlbQaDUS0xtoSS0g1u7knWtjzrqvmkXGlBEmcoeYnDpMrhBYwHq7zsW0ymCYFCvjZIvHEAgSsRYK5RHSyW42RC+nEoeSmSNbGWC83MdEuW/G+m3SOjmrwbEcCF1n6+QdHCsHQaCNoo2ztEtRMw1YC7qD2xFi2nZUR+oBc5PTeJ8VC26snqt952u082nPxAxp/UZqpjCl5w13LrXHVVpqNXwrpM1rRQszXsuI5SyBimFo5YDRagVr1n30yZl9UETVxGxK1GyTqoI+MXNfo2lmvIFaMGru86yY7p6wazdIRaE4z+ETUtpY+48wVTyGriWINHegKI5VyDTL2CPDVM0iqqJDOsnE5AGOHnsQ23buc3fjGlbPeYUz8JEg88pTDCuUKMgsb/zMK7jpppvo7u7mv//7v08t80+Scbs8ST81pUssIEFixjHThYErm/6c/soetpeCmu4LuzexsPsi36xlNAUvT2zPkM/8PViNQZEKO65hJKdJZkbwANSShTacq/m9PN8hBrG9gXm8sDpoalFsFpiVIlJaRBKOsBPJOWNqlVAgXlOwqGz3YyQf/J46lIfpEuKeg/5HpacLbBvTrlI2c2QrQ2wbvsn/PR5rRlQMZFRD2jZVswjSiYQFmJs4jUa9k7w5zuHidixX8hMoNNBIA81+Iw4vFa+VLvJMUg5VsVrNOUGRIKEwIUcYkkeZz1LGGGQnj3EaG+jnIDkmOEu9hJQdaB9PyPsZ4diM4j6GrPIgt/lRyV6MhkGVHrGIFepZEFosWTnGDvkwBtVQNcQoDTSzRKwlyclX0rqq7V2OKyNxP9lju2nsWUlD5xLmx9ai3fPESY3x+0JKST8HOMyemmBKcKw5cbeuoxeTEdYgX4hafhhrPngDkZxE2hbHHruFoR13IRC0LTiLrmUXktJnBpIBICVSEdh6wAD0qYDgKpZEqVi+NqcWDIzGgD4Uup17KCyHuBbH+8ke3sHEwJMUJvpBKLQsOJ3Fy16JHk2Sn+xjy+/+bcY0zln3PkqVCYYLe8mOH6KYd9ZLLJKhoXkBw4Nb/H2jkTSxaBNCKESVBM2tSzGMIkcHHqKpYR6L515OLOrQDW1wErvJoVdVs8jo0A6G83sZLR7ClibzY2tYPucKf+xqXOWhvf9JoTwCQFNyHhsWvhkAOxZoz2GmlF+QJpIL3bOqhRXSVsPCgNRqGa1nVgdHk57tGK1o1jD/E41hNNTSYisyjdGH5xIS9oQF8gTxuHrerhEiPMRGaoVEperQE3Uq5CaY4zwLtTytDHnZrHGJQC3v8RAZdQsXtSTcudYeo4+XKPUGiuB0AavaGNy72GitNVsp1+5rJWp5XaWaZ3xiD6lUN42VdJCJEbIE2UdqU7i9gOlsNktjY+OpZf6bxGtQpEqOMQY4zCBHsdxylq10+dGNKRroZB6qUH3idmXTnzsXKU2y1gh9ld0MGPtJxdrpaV5Hy5INRKLBjQxLheGXLjpUmmGOqXmxdIVquvZ33ZMaZ7lSK66ABCMZvGBGQiAkKKHnY+uQGHHG8Ri+kVKx3GcWdYWExNFAm7dSOtpEGSsdPDB9MBBIjM4GtFwFwyyx7egvKFdziEgUpERVdVSho2kxonqaY0OPYVhFUqluTl/7ZySPuS+mVWK8fBSlUKFgZRk3Byiak0SIESGKjU2UGMtYR5ki93ETjbSykJU00XbcALuCzLGF+yhRIEqM0zibJtHm/16VFQ6yk6PsYxGrWCCCdJxwoSNwi9ZoF/OIdTtZOcYG9XIyisMUZIiYOZrzFDkmKJFnUB6mRJFu5hMlRoI0nSLobjidcb7sCsdX23/0Qfbu/DnzFl5Cx8Y/Ij5Su9D0Wx+Z9ZqfDgxZZSePMkw/ncyli7l+XESMRE2gZHi+YdMzwM3bPj3r+Jds+ucZ2+743anxd58KrPngDZilAkd+8x2KR/czb95F9PZsREmnZ+xrxYN7EV6zqhFamC6BVUKEVp8ICH01o5PL9mGqJslUB3o0hdHgBva6r1LRzjFxeCt9W26iY856Fq19LWW7wCP/+3HSLfOJJJsYO+LmnXctJzuwi3iqnUzzAjItC2hoXkAs0YRatrEsg3JpHNMo0qR3YaemRbwXTewwUwytJy1XxmgMNMvo0QmqKY1KNUsy3oYy6QiK+eoYT4z8hqnSIBE1SdUq0JFcyrqOVyKEwGpO1zCnsKk8zPwBpBqim38g87enMfAw85uuxUPwHMOMXzFqlSBbV7CPw+yle5hwT6NUZxLsxOC0QEPTco8NzmlHnfsTtnx4luFkX0Cf1bE8VvPMqod2dJogE1Wn/X58wWb6fZn+fPQphxYpZQNRDZ7BjEyKkZAF3AjRr0itGyUsAHjM/xlJ9VuhbaBd7SUq4tiVMpY0+S0/9/fL0IyJSYEpIkSZoy5hgbbKSbWK6kxaI4ybx5iM5MgW+jGsWjPM6evfSWPjfMzUTCKhuPdQmwpuRFiyikw62ystwc3x/Euqaz4KL1LFe1FDD6vSoKKYEiMRWkCKqCFEALFxZzJhV4NWqj1HfCSQ9PTxEmZDFP1oEOxl9AYakZZzXmjPBBXpn/R/s5POS2FaFezDR1DWr/YFo+jBIKrdHh4JPhdndyeAw5inVyM7HkxpMMRRGmnlUe5CJ0qCFBVKTLn1BFroYAVncLdrvvbq9R/gSQyqxEjQzXwO8CR97KeLeazUzvYzMTwT/IA8wpDox6BCh+ilV1mKbVY5yE6G6KPk9g+4VFwLHF9jvnL1RxlvKLH5/hvo7DydFSuDoEn1d4/X7nycIMoTwZBOHfA8WYbpY5xhFFRWcVaN9eOpNPqLV3yAvUN3U6xOYFplGrtX0t17DuXSOGPHtqEoOolEGxMT+xkd24ltG9i2yfnn/h333D9TIHgucM6bPkdh4hh77/4mdqnMupY/oiXmWJIqyzqx1ZmCZaVJQytLpLSpFCfg6DANyW7MLodIeRocgJ4NEXp38+Gxh9lzIKggp0USxDOdJBo7ibZ0okWTlHMj5Af2kxvc64wTb0CNxDCKOSyjTPuScxk9+Bi2WQEEjW1LWHP6n/gWSI/peXMJr39bUxCWrGGEwnL2C2vd4evwYCVUYoNFRCWgYRODO3l45Kc1+y1puZBFzefUFNiZ2rjA/yxFrXIU9qOH5ypCUzCjIaGkUkvPwnRR2MFvVsgqEwlZZTyaHKZ//m+hedkhZVYv2Nh6rYIVxvRYABH6qlQlVqyWXkXHTaLjgXvXyERD+zsXXuwM8wL3OJdPRA8HrmSz1RFUpws71jQls0b4SUwTjKY97rCbQplmBQ4HD4qqidzrxHrYpy8Ljh+ptVqbbQET14azwfaDR/zPXgbBM8L8wTHHttODLmK0Kl0oKByzDtErliDANRGPMy4d89kq7WwSIs1mw+nUpqGTaZhLY3IOE/kjjE8F5vDuZS9j3pqXO/tV7Bk+LI9he1JsjZQaerH0vIUdCX4MS8rRCTczIPQ8Sq2zi6JmLLTA3AcfXijxMcePZcRDlgnXAmC552/aNun/5qW8gJP2Um0PtKNyi+4LDFITaFPBC6LsDh6wXNyL0eC86NGjE2BamIfdYJ6nwcyeCiVZ4HHuoUgeFY0oMRpoJkMLHczxK5B5zM40TW655Rampqb41HU3uI2FBhmmnx4WskKsn/U898ubKZKnSbQzIYdJkWEhK0nTyB6eYIRjfmDciRjrlas/imGVuWv3l4iocVb1vJzWam3FPHNg8DhHz0RFljnCHrf5UK6m+UcjrXQwh3bmcLf85UmN97LLP4NtW9z7u09gW6FnrOi+jy8SbUDaFoZRIBFvpa1tFZFImr37fkU63cOa097Cvff/y0lfwzOF+ZveyJF7f0KssZ01p72FWLyJ+I5jVJYFwbhmSNs3kgqWWeHw479k9NCj2JZzvaoSpat1Db3nX+sz4EjOQs8FzL/S7AjBlllh355fMXTYSZeds/BCSkaO/PhRqsUJ5LQ1EI030bRkPValyOShbTR3rWLRumuQZpVqcZJYvBlFdda/UrFRK8HxnrnZ2xbWJLWCM3dbD7kAXeYhbIkwJWYy+C3MzOKHs5S7nbWfmzzKtse+iapF6eo9m7mT7SQ0l2BP8yPnz54ffAkHrh5HjldCFpWweyWMGgtraJzp2nl8NNBSa034ITqbmd2y44wXpqXh80+b8zQhICy0ACAgMRiaS+i61LI9I4DQ1kVNXJbHiJVKsM0LWvSen1qclhYZusZKa62GbodON91S4b03asXyLRQAYlpgJk8GwaKeADC9xoKdCAQZdX8Qh2KOBQqlRxefEeavut3cIsT8wKZuFtBMG+30cJDdHGInKRqJihhd6gI6lbmUKHBv1SGOmcb59PRuJJ5ooRK3sc0qWiRBduIgx568k+7lL6N76UU1pkA9FzwMrVCl3BGY0qQI+QoVRzL3b1LoARe6HSYVlmCVik2pLeTTch+kCD0bvWDXvOARdy5hqVcxJIUOrVYCd6fctG1yZmMMd1GXejMzxopNBFqBJwBYMc0nNgBKNtDszf2HgutNJbGmZnbje7pwGP+9VCn7WQle4FILnbTSSStd3Ct/Azha/5PyEY5xaNbxjtf4B5wqgvvZjgS3c2EgKEWIspz1PCHvf8o5X7XSMYkXqxNs3X8jWUY5T7ycmEigRCLYlfJTjBCgIHM8wl2AJEMLKbfPQoI0vxn9H1pajuPPfgpsuuxfeOi+z1EuBQt3/aq3U6pMkp5SaYo698jQJbriFFaqdmfYf+BWDh/5Hel0D0v++K949OsffFrn/0NRLBaZe/rFjO15iJalG+g977VkBtzKbSHNMSxUey60HXd9lfzYEeZ3X0hDspvJqcMc6nei4M8+50PonV01WlN47ZVaNWJjJnZEkB07yLZ7v8rG7rcwXNzPvsn70aJJ0g09ICUTo3vp6D2Lpate6wsUsYEChQXpGkacPJClOL8BPRsyrQqBUg0F1kVcK5XLKKdH1du66gsK062EVlTxmYAdUXxtWiuGrlERNabk2HDwjlYzIR9vSKGZzvzV0iyC/3Hi6cL3NHwvLD2IwTieaf54CI9TIxxMC+rTC848zYRyfKHFlDOYfmLIpNgZmlRYmBq3aqwUMIsmXrJnnE+fqnUH+nN1/+pjAZ31mG9hjuP/V0OWHe96VdeiEuY7YQuQMC3/XdJCgq3IBeeR8VDsQeg5hZl/WHiQW3dTkWWG5BE+89OP8dBDDxGLxfjYxz72zJX3zefzrEivY4IRCuRQUbGwaIi0c2bnNcjBEadBq9D8esvrzvg/7Hryx1TK2ROdjgteeX1w/e7C8aQzLWQyqTY5UlhkooyZjMAsL5NnqqmRUBu0GgLjmZQqjSFf2pT70Dz/k1XrQgBnMYdf9FKL52tyF3ip1oQWm6x9YfS8G0MQEVgRxV9ANcEhocejFQzMpCOsaPmQ6WhvYBn4Q5i/LW0GOEyWMUwMRhlAI0LErT++ig1YmOxgc01fgi7m08MCUmS4m18isVFQa9IYwWHqnfTSQa/fiAgc94JEIjWFY/YBBu3D5Mkyn2XESNJOzwwLw4ngCQAlI8td+77CqoWvoedYKFj0JAWAw3IP+9jGBbyciIid0uC8lVe+n523fNH/riga6ze8h4a+KrriXGvh2EEmrCEm5QiTOIWRYo0d9J53Demuxc868z/tL/+Vie0PMfzQrVjlInPPu5aOuWf5BB3AdK1gZsgappUklA2GDjzEoS0/p71tNS3NSzl85C6KpVGa0vPp6j2bjvY1GG5qmBLSwL114QkTkbxNuTDOI7f9CxEl4Vdsa48vomzlyVWHAcmyzkuY33YOcr+7PpY6pnNl0Hl3ZXtgEZK6ipmKoIVSwMyGWI1F0aMlasl5r+2QL9iMqzUMPKwRRqasGjrh0Ru1bNeayaOB5SDM3MIafNj8XeNaOF4y0Cw4EfP35+J+Dls/pwfqeQgraiK05OU0r4AacjcYqXBcgKw5Z20QY+2FlUMCpa3OZPKxyVrBzJwtWHCilukrFQu1GGwzGwIGLKe5riquq9nWIZKdVu/Ancv0AEPPLTQdYatRdCAw81c7A4twWEgIpy16AoDcupuj9l522U6FyGQyybve9S4+97nPPbO1/b3ylQU5xQjHEE0ZokqC7WO3BidAYZ5YxiLlNG43fwTA+Rf9X7KTB5kY348QKkOj27CMCrZZIZZo4axLgsIbYTOc50PUQjfXiqpEJkLE3JWITTdKVcuGGKkqKHYHVgMvyM972SqNqh/d7y2c6JhzvJFxo4tneY5S1Ka12DpUMoofDKiFQhuqaWg4Grg0PAnSSCqo7lSFJWs0qPDi1wrO6jLTek38Q3h//YjLmC0bs7+2WM/xIKVkGw8yTD8NNDnuGVpqagX0sphxhimQm7WO/yZejUmVQY5iY/n9wz/9s4+STCb508vfRR+OiWsJa5jLEoQQPCrvYgInZmGFchatdjt72MoYg5zPHz3t6HgpJR0tKxnPHmTlwlfSddRhLPZTlDr1hKB9bCNDM+vE+U/r/E+FdX9xA/t+9mUKx/bXbHd6Oqp+L4ckDaR7l9PYvIjWztXcc/PfnbI5PBVWf+DzlEf6KWzfyuihxzByEzQtOZ2uM68gmmlDD2W51JiN3UdmlgtMPH4/AwfuxyhP0dS8iFJxlHJ5ktbWlSxq3UgmNQczFBSL+y6bCYfQh9e7NlGmON8hjpMj+yjs287w5G7KRpaLev4ce8U8TLOMECrxB/fWCM9Kh1v1zq0+WV3mWFjCgrRHYK148M7ZuoKWn5keKkwbK6nXxB5BIPjEh4JjwmZ3K6b4QXFhF2WYEXtLq9qgEhszfR9zJGQFrYmoDx2ruzRCKYWC+kIui3Duvcfcws8uzPCtkLUhHJAXZv7evMNjeJ89Baj23QiZ6kMCgRayXmjF6alzwedSu15jygcodNSaKiL52uPDAqqH6Ni0jIGKGVhUpvnpvbQ9qPX3i2kW/DC/imRN1JKbFhmyBsiw0JgMWXZC9yU64gi0lbYgky42EGqydDRwXUrTpN/Yy47yffzZn/0Zn/nMZ2htbX32G/ucrVzOI/KOmtrUAJeor+N280dcdv6nKZXHeWzHtylXJgFQVJ2OuWdCMkFv0+lEMrXm1JoUC1lLDCI7nfxwq9ftYKUGzN/z3YQZIwTRm/m5juVALYfN9bUavuaOcTzmL0LRrNGxMrklwUtSbFVqjrHc55zuC44xkgK1Gl4AQbRz2KVRE5Hr+s/MqPCtBHZU9QOk1HDN7VkYnTkSaO2mNNnHNvo5iMSml8UsE+v834dkH5OMMsUEOSZpoYMpJv1CNSkyNNJKkjQZWkiSZoAjVCiRIE2SFFE1yZScRNigorimdIgQo0V0EJFRv6Swfx/QsbG5kFf4zP/3ZbwXvuqzmGaZfU/cyEj/E3QrC1hmrz1hrf+izPMYd1OmSDs9LGc9ERF9xlLy1v3FDUjbxizm0A6OUy1NUillqapVEk3dpNrmk87X+hnv+s1HnpG5eLhy9UexbYutma2Mb38QY2oCNRKnsXcVHadtQpvr5J2HfbeRnPQJtPd34vBWDt71fUDS2bWe7kXns3PLDzEreVau/GOaGl1NvFJr5g/M6yHBX1fQQgGAMqQ1Ccui1JHwM1fi9+9BhiOkXRLnMX+zs9EZ01tT7vnC2p+6/xjV0+bVCAa2rvr1AMLFYIzGaI3WX027jL1go+Utn/4UukMBaO6pIlMWVjS45rCmaYWD9GYz6xOYqsPWQm0yUIYUt2CanQy0WTsSvP+GWyul0hRsC1ttmIWxz6YAOXOfuY8Woq01pnkxzXoQooFGcvaMhVS/MSPwryao0f3NTx2UM8cWtuPqCWN6gyMhpR9XVaPURUSNJaiW0YcUsXARpJDWb4QsCoPVfUyNHkZRNeZ3XYBQ1Bo+5TF/uXVa+/UznGJgXnZDqTzBxNgeqmaB1rklHnzwQT760Y/y6U9/+in59SnvePKQHWj9L9NeS5kCKTLc5mr9U/ljPLLtG+h6gg3nfoComxcr07HA1Fe1axaTx+yEKVENxwfvR2umU7WVnSyJemQQFbDGxuHMVcE4D7k90y883d/WuNMxk08tSGFFhb/g1LIT/COnVf3y5mhP8/Hpky7jLQeBgclBN+q03SUGRTASMDXH9UFOOPsmB6ooIYGm0ua8JGFNQFiSaibs83LPMy0NBcBY2IF+wAm4DDN6bfFC52+mAevQUYfRmXdSocwCsYKUzNBM26yMrlKpYJoml6Zey4MEz3gJq6lSYQebAadHwVH2EiHmdyYjtMijxFnCapJkmBCjjMtBP3MgjE5lHo1KG5r19Bg/wN2/+GvWv/sGlqlvpGM4yZPGQ6AqnKafewLTv6RMsSZ98ZnMxd/ypVrT/QWv+VcA7vnZh5+xc54IV67+KFJKHjn0AyZLfbQu2UDTOWuZfzSDIlSGOtuwjnOssANfsW2Z9D3wczItC1i25o+JiwSGZlMt52huWkxTZgG2pqCWTaQqEKYM1rktZ+RUA5iZqM+oAdS84QdgCRzBPfqwE+EvdB1rxXwAlCccwdLodcz8wrApdsd87dJTJtRDrjZleX5pFTMRJzZcQjk26ngVU0mqPRnfOuH5cJWKQ7MS+8ZJAIWlzrnMlIqeMzHSGpEpm2paITngxvK4a1etSMy4m1VkSZ9JqmXpM7ca5nsCdU1Ydo370xOSwn5iPy5BU4iOWVRaZi+HW6PJuzS2Jic/7JoIxTtJRfjHGtNq6ChmMG54LFsT6EVJpSFE9z3ZzJTEJmzMRCjgMhQzEQ6snA0eTfcUq8LCDMKWJB9x3EHe0XbXzBgereRmdjVoCOlYaq2I4qdKepZbqQr/nbVVmEwVKefHqVTGsSKC1kVnIRSF5IDB2Ohudj3+LUCiaBHm9ZyPUAVSFUTGHT5ix3S0AwPQ2oI1Gihz+eIwE1OHmSoNMT6xj1J1AoFAU2PsO+ZYtMJ9eE6EZ7Td2W/N2hSWSy/6Zw4P3I9lV1m16HUkEkFHJelq2r6kJYMIUe9llZrA1FSSDx9y9mnKkC3088TA/xLV0pyx6k8p9aawOufAfY+iySrxR3YgNN0b0hnv7scRqkrmPmDdCsTBfhrcpANZKFG6fA1SF5i6SmygRKUjHkiyRdM3R4YRLkBSsz3lvNSe+cwTALQKmAlBZMp9YWKqLwAktw1RXtLmX/Ns/jxvPkZS9X1ulba4X2jCPOYSMqHMmgVQ7cnwaN+vURCcqzod5U5UUS8ajRKNOql+a9kIOEF/ilAYcxuepMjQgOPLP5tLUVEpMkWFMglSWJgcZT/72E6MBM2yg2baWc56bCyKaokpOY5AYZm23klHjP7hr2ihR0f/s2uZs6uXI7/7H4Rl04FTL0BBoYFmP/XRdm+2zsnHGJxKPFdM34OomCAl2VI/3Wsvp3vtZQAofYEQqVYdbcpjUlKDakMtgZ168jEq5SzL110H7Rk/R6K9Zx0jA9tqNCj/3KYMmLsQCCsQvhVTOlqxJX3tWClUiBcqlOcGxK6yYYmvDeuuy89et9Qd30ZqCsVuN302oaAVbYyUG0vgjpE/b5Ezvruu8vNTMD9FbKzWihbZ61RbK6+aUxO0O3GGs3YjU04gmtWi+9qnXpRUM3pgQve8jNPWuMdMpSICn7orcFgxxR8vsS3I8/bq0P++iI6VkYrDpYsdmk9vPKYZ1q5rottdr0JYsw5r99726YKLp/F76X5qxaGPvovB2992zi0V4cdTeXFTRlrzLQRefJZ3n0yXb9TMKxqM71UOLK53qk7qIdfw9IqGHvMXRuCKDcejaNlyTbW/Yesou/b8zLdqe1VYTbNENN3CzifvIT/ouvmEoPu0S9BM1XczVJtDKYsVt65KdyvjW+7msNzN6LYBp6qk3kRrwyJa0gv43Zavk8lkKBaLTE5Okkql+MhHnto6+Kz1Oh0cHGTP/l+jqTFUJcK2nT/k9Mif0piZj6lLhFQphyLv/YA7agvwCAuyFy6k4a797B+5l32jTsXAojHJ5FwNMzvIljs+5++f7JhPumcpPdsskpEGLFWiCJVELIM1Po58dLszrqb7nbPit26ldPkaYgMOyYoOlRCWhR13yINWNDFU3TfNABhu8GHysGNJKM1xzP9CKpSblJoFFMmDFQ0WVX5OlObNbp6+mwNsq6KGoOglG61so5YtKo16jaQpReCm8AgZV57hL+LEvkBy9LIDnow9AkjO0C4mxswSl8fDHfLGGdsuU17HxfK1AL62P8YQ3WIeDdSm2a2imTlyEfvYRo5xpphEJ8J8sZxmRUda8515GhUG9KN02guIKic/v+l47KuBZn3xy/6Z6JICBw/eTr8ZpJjGSbFErCFhJ9nHNmIkmBNdhiJUroi/5Wm1Gn4hQwhBXMtgZ6eITlroBYuK24Et/B6rhmvqd4m5XpC+ybihZQF6rIFdW3/EQvFqGntXYmvOOjWNIvv3/IYFiy/HUKsUiyNMZfvIlQYwqkUolVCTDcxvPJOmhnkoO5w4EfN0p5W3pzGXVzrvlhc4O11ILncEGq0VqRWihS1BCF9rVCs2xrI5/u96KCDY0zjzPVFS/RU/fdETFkptbpMaRTB+pkOwhQyCzRRLYuti9nihaeZ0YUg0QwZxAC7DqaYUIjkLw52vUJ3tpRVBhVLvGDWUnx474K79kBtERB0GY4ca7sSG3Y6pJWebmQrG8JjdxNJQXIZw4jqUasDw9aL0BSbFciL2w0HO9rRCQx7zt8JBhSIkCImZGVjlxpDZ3VN6QtaC2KTtBwlKgW8V9twsUgnm69U7yPc670mNi8K9l9WM6gf2ldod/hQfmZYKqEC2R+fQtl8xdOghMm2LWbDsWmKpVh78xSfoXXcJfZtnpgI3dCyhe+GFFKQJg+PE4k1M9u1nKL+LwngfzXPXEtMb6Nt9JyV7iJTeyuqmq+hKr0ARKtKtAeNp+olEgkQiQS6Xm3Gu2XDKff7Hw6J1r+HAEz/3v0diGarlLJFImmo1TyLVzpJNf0KswVk8ngbhRYV6jE4xYWJgF/3bb2VqwjHbtK7YSCrRwUT/k2QH9wCStvOvINLUSn7rE+QHD2BVagvf6CJKg9ZGQ7KH9nyj3yZXqGqNpqx0dWA3B9GXZiZWU/EpOlLEjgVCi1JypMhKWwIjVGmw3KT4Pn8vmFCtBC+ckRREs665MSb8XFYjpRIbc99cz5QWWphiWhaCkVb9z+HMBM+kGu3LUTEL/G7Pv7FSPZseZeEJe5L/PrhM/WOklDwkb0VBYYO45CmPuVv+im7msVis9rdVZZlHxN0UZY60aGZD8io0ode0Sf1D8LKz/y9Vo8DkkhhmucDYL3/kWy8AVuvn0aUueMkxfYCrFjqWhwerN4GULHvZn2O6PDSadc2m2QFUNOKpVsrNofoaBed3n1DnR9l5739Snhph9Zv+iYRMUM6NMLLrAQYO3AeImi6cs+GMjX9J6zbHR1s6P6giWW7VfBoRrgGvVOyawl1mVPHXm5EQ6IWAsUZyFlZU8YPo/FiDacFeXjqwF3CsViV63iLqmmhzCxM1QXIefKueHgS2KRa+y86zYFRTiq/pRycsX+j3mGA47c67t2p1ZtnbsKvEu0bPtRENRbjr/RO1Ew234w75qIvLWmu0XM/fHs4y8BnisDN+qU33LbUNOwMmNHmaw6C0sqTQMdO0D4ElYXqWQjiDwGP4tjqt+JoMaqyAQ2/DUKe1jKh1Uzh/zbhA2jYyV8CsFlFUHZmOo+oxQJI/8CTZgT1okQTRVAutC9YjFBW7UGDrLTdgVvLMX/0KOhecA64ied+P/4pCoUD38rPI9e0EBO0da5DNSbJ9u9HjKUrjg9im0+ZaWibRVAuJxi4m+59ESptM+xKWKutojvUihOCmA//KiXCy/PpZ0/w7F2wk0dDF+LHtqHqMroXnMTmyl9KoY7Y6evB3HNz2K7AtKvlxus9/FZHBEhNimEhVpXvFxQghqJh5dt3jdPlaeNrVHNj+v4zuvJ9RIUjOW0rruZfSWmiBc9ajaBodnWdQTdpUxkeo5sbo/O0wpjTImiNkmaB/ahsHrSKZeafRtf4K5v7GMeWJJfOdiedLKONT2K2BaVGtWFgRBSOlYiRTaBVJZKIKtsSO6lRbogjD9pm9rTtBfb7ZqSR9QmPGhC/dFjoVopOB5AwQzQZvvlowkZogWrH8lD+fkCgzfV/VRo3IpOlEF7sL156XoZivwh4YbyggUgVM00TT/rBX4Yr4WwDYLR8jT5Yl6joULfKUkfXNybkMVQbQFy6ju/ssKlaRJ7d+DzNbZW3kQnZUH+DR0m2cEb/sD5pfGL996JP+5zPecQMLu64lZ4xiSYOIpXP3+A9O2bmea+TzeY4cOYKu6xSLRVatWnXCZ+0RlrnLn+DYgfuYarWCIjjDUxzefhPDBx9G1aKs3PhnJOJu0J5nAnaZRX6yj7G+7VTyY3QuPg89nsIARGMH7XNfzZw7FvPw7v/yz6uqURRVx6g6AXWRVDNz5m0kme6kfF43hS53zjIINDTjjm/ZSKrEx1wTu+vjNpKKz3DDgWhGUtSY2NWKjRlXagLq8j21JVTVqqxh/ODW5pBOoJ9elD7zl4pA2I6mX24WvgXTigqf2UdyFpVM7Vr1UG7VauMdfM1V+uM4f9Uas/ZToZoJFBS9/zg7hRi/fWyQ2LFBlO7Omnk4k3E+Z9e0Oib7UGBi0xPjofGc+Y2f1eILLYVONygv7D7w5BLHQu5baPznpFBjWveehZ/9VfEUKGdsc5olQSsHwai+QOVq/1VZYmDLbeT69ziNosp5ZtRlAYSiIm2LaLoVyyhjlvNMHttJJNFAKTtMtegIVIklK7jvRx/hrLd/HoAz3vIZ+h77Dbm+nSRbelm+8JVIabP1iW8Tbeog2tBKpm2xK2BA05xVxBraEUClMMlU327a5p7BAz+d2Xr6D8Wzxvzv+9lfz7p91d/dgFUuIb50L7nDO/ztB3/59Zr92k+/BEyLybH9KKqOUDUiPXNZ2PgmRDRCsn0eZm8DOz7zQVb93Q0A7PiXE+dBX7XkI9jSZnfPMQa33Mqun32OI/FW0ulu1L7tKELB7mqhc8l5tLoLJrKzD7u7Fast4VcLtBIq1aZagiFr8oMdM79Wlr7py8vl9bSDvBsEqBhuqmCjFhQvUgWRyZlM1DM3egTG9xNqwj/P9OhYK6YQMRtoaltGNtvP4MR21ix9LXM6zuLWB/7vCe/XU0LXGKkcQxEasXQLSqIZxWvHXCzVBB8CqCuW0luIUhy6k317f8WRw3dTqWRRtQhrN/w5LY+PE1E38bj1Ox4p3Mwl0dejrXECOG/Z/LE/bK4uHv2PZzdX/tnCJRf/C+XyJI89/h+Uy5P+9p/+9Ke85jWvecrjW7vXcHT3Hez79vWkF63CzOfIH9oFwPx1VzN6ZAv7H/kRG3g/aijCbGpeDCkl22/6T5CSjp4zWLz45RQFpAac9RIdKkHDPBLRZoqVcdq7T2fhRW8iOmFhmVWMlIKVjjpdz4rOOx2ZklTTHtHH1w5915lbAEarSJ95mIlahu0JDVJxtpWbHQ4UnbT8GgLTK+FJEaoyJwJtPT7sXEs1rRCZsn2m74zv+ZYdIcCz6HnzrzZ4RYPcc6iegjDzOcRGHc5YzWikDju9AHKLnJoV5rR6IuG1nnS7I1anNdwRpqS41LGueqb+6UGBUlOg2Yl7MDV3rh6jHXXmEO5ilzrqNuMaCmqMFJY4sT9eEzSpQqUhSGkUlrNNWKH74Ln8zeNnFIQzEabHDvjZA7LWouCZ6UttGlI4aYBmBEYPPcaRLb/CMis0L1qPnsigJ9L824ffxIe/dwe2aWBVy9jVMn/9yo1ccMEFvOf6Oynlhtl267+R69+FnmwkkszQvHA9kVQjeiJNpVKhMHqUcm6Ewa13UM6NMO/0q1kcPYPx7H4e3/kdkh0LWHzpn7Dlu/84+4U+C3jWzP7Hg8eorVIBU7NQkymM8VGMnQcpHT7A2L7NLLzozUwM7CJ3eAdWpUQgIkLrpqtoPf8yksckj/znh572PF520ScZHd3JxMR+CsVhjBjYtkllcoTGpoWsOuNtCCFIPHYYu9sJrPGadhhuScmaspXuO5qbqxHNShSrNpLV943N8qKHJfpwjr9nDSi2uX5Kl1gopvSzDDxTf6XZ1dbCY5m1rhTFkOy5778pDh1i9ZLXkU2ViSWb6RhO+gFwN2/91MndQBcXbfg79hy6icGRJzht1XXMKbiaQ9EN+co4749XTxucGtrZ7BH6+u6jqXkR7R1riFbc+T++m6w1wqPGnTSk53D6kjeiKvopY/4vNlx2ftAgaPP2b1CpZOnuOosDB4MMjY7esxg88vAJx7n4sv/H5OQhDhUeI390L3qmCb2hmYa2BYxsu5dKbhRpmSzYcC0dC88heazCxNI4WkVSyg6x7X+vZ+ll7yA1f3nNuNr+EQ4//r9MTB2mZcHpDOy9h0iikfWv+gfAMXt7TNnTCM2E8C0LVjgeSwQWhxkBdO5fW6tNF1OsYB14ljjf3CwD4dyPEPezd4Jxvc9hZm1GxYw5qIb0GVI479wLmvMEh0qj4rtMPKEmMehmBIRSfCOTFcZWp0kd80zsrsBTDLRvb2560XPB1Ao+4Zr63py8CqpeAKM5v8O9B+5zCLlBfObvsY1Q2drCitqAw9zcmR0Gw1aXcI0ItSoptUxzY7g/K8a02Ihwusl0b0vYquPSTs+F6glHhdwgB574GbnRAzTPXcu801/JYz//JCeLc6/7XM13Kyp4+Fsf4vT3OLzswG++Qe6w00483tLDkrPeQKKxC1sXHH38NwxsvwMt2cD8l7+dvf/zhZM+78niGSnv+0ww/zDWve8GSo0mpQceY+SJuymPOgVqtHQDdqlM6+oLGN5yZ41Zpv3tb6W5Zx07P3lqNLj1777B/2xrMLnvCQ7f/G0yvStZJ88lrjVQWdyOPl7yTVHhAhCehFxsVUkNmP4CiI8H/nxfE/DiGby1Fcg0zljuCx8OfvTgMfmqW5VwOvOHoBiFp4lYvmkyuL5KbowdP70eaYXcC4pOU6KX7qY16C/biFBUNn/z5ASry877FFJKtu7+AVPFATae+xE/j9uKhfKL0yqx4YpfjGm6nxVAe+BJ//Nkq8XDfT9kQdNZLFlwJQC3PPqJk5rTSw2Xnf9pypVJ7n3kX1lw/nU0Jns58PjPSSXb6T94L62dqxkZ2Pp7jdl72Rvpu73WHdK64AzGj25nzRUfJJZu9d/noa2/pX/zr9jwyn9Cc82Z5WaVzV/7S9KtvRjlApnGuYwObAOgc/XLmH/ay2vMteHiMJ427jMAGWLurjCgTI/BMmsFBa0iaxoNKVbwXchav3rYzB9mLpVM7fz0oiMsKKHAM4/p+vMKN2TL28QHihTmJHw64aeH6Y6AY+vBMZ7b0Gfs7jEe8wdHABBWyB2RqJ23dx/9mANX8An77b35e5ULPbO+x/z97Ap3jerjQdUyLwWwNNehgWGG7zHp6XVOnHsRzDc24SosoWA+J1iPaemEHB/h/cKxD+HiSkaF0Xtv4dieu4mlWph39mvJdDmZIA995+krjh5Of88N9N19I6M77qN90TnMXftykgXnRYgOOVaWseVRxg8/wcEHfsScV7yZzIr1bL/+1Fofn3c+/+Ph7Ld+HmlbjB1+gtLEMSaObKM8FZiHFT1KYt5ims++iHhHL5ElC5h8/AEipy0iteFMDv/tH2iqDmHV390AjbXbEuvXsqj6Jxx58KfcL25k9es+SqbPxGiOo4+WmFri3FwjJYiNWz4BBMi7fsqwTxDASCjoRRvFcgiUVFzipAknijbkD5MqlJuDbIHopFt/wIuwLdgId/FONzseDx6hs6ICra2VZdd+CNsyiUcaKedGKAweZPLoDrYe/TmJXz9Ky6Iz2LLlYtauXTtrC+Crev8ymO/CDvKtKsZBG6tou2ZH1z3hdtTyKqKV24NoY0/zUaq2n8lgbXACvPSBLJHqGCA5OPEwLa3LUc9ac8JrfKlDNiTREmmObbudzCXvZuml/4ctP/0nAFK9S3/v8ca23kuyZxFzz7yanb9wBOSqWUIoCnsf+gFLX/UXHPrtf1Ma6aNayNK2+Gyf8YPjXjn7qo9RnDjG4vPfQvPctTQO78QsF2icuwpLEzUm4DAUw1k/fiU51fUZh9WW8GcRMH5bE0Tc6m62FjAQW3U0dZ8ZGg6DDNfP9yPN3bUXyUmqDQJLdyLG9aL0A+qk4jAxj1HHRy2STw4DMH5uFw0HA4aZOFam0BsnMVih1BZxil9VnBRGj/GrFSefPLPbNaW7Cs/4mgzFdi2wcByv6MJJYjrjD7f+9bV7948XaGzrQansyHDRr7hYblR8bd4TRryCR2pV+pYSWxXYqsByl3+5ScF2BQMpguC8mv4CgmAfd5NerN3Hf7bhrAJ358mD2+m776eY5Ty9q66ge9lFKIqGxalh/OvfeQPV3BijO+6je8Mr6F1wEUIIIm7rdRnTENv2oewaZjDtuLfVxMy2188mnlPNf//+/Vxw3fsY3nY3Vrkw4/d4ey9t7/xTtIYG9n+49gEt/PfPceD9f3XK5hLGqr+7YQYRit++j8ce/gqN81bTvuFyEq09NO533uZ8T6Bi+H6oZGAG9LQBP9ffi4r2LH3hNpruPlKEBAIXnvTupTZJTTgNSbygILcZSclNcfIIW6nVM99553D/er5MWTu+N6/80GH6Hv0VhZHDSNsi3txNrKkT3dTQIjGSWjPdczYQ3+lEypt2hcGGSQ4cvoNSZYJFl/0pnfGlTjCkCzOp+XP34LcoHnf3C72SZkIjfmCc7OpWhg89zMC+eynmBmmeu5bE8hVEWzqI9PYiFOUpYzxe7LhqyUcw7QqHY0cwzQpZRhjf8wiKFuX0az7Grtu/RmHsCIoWZffO7SxevPikxj37rZ/nyZu/6LTPbepiYPsdfmSyh3hDB6XcMO1Lz0XRdLpPu5SHv/93rH//FxBCIX2oQm7iMFvv/xrzznw1ncsumPEeakU5w3TuabC2Glov7hrzCL+XTlZNBb3ibc0JsvX+AjXr0Yo469OLEA8L3HZE+Ja0aoMSEhjcv3rAYOKjbh64dJiaXrIpN6pE3fSw5JPDlBe2ohVNv7aBZwkz0zpWVHEEFLdojB/M5pr748cKKNkilblONlJkxAmIzK5qcq/Fjfdxr9ETXrw0Qy/uwaM5Xk+TcovmXp/zu6d9T6+l7wXT+VH/7vOIHQoyBoqL3UwpV+P2qgV6wX017pFZsnZ9K0l1lm0hbd8veASoIYtK2LpiRWp/M8bHOLz550wd3EFTx3LmbHwtsbRTzOfhb//hTD+M7o2vYGjzbay57uOoepSW/3nCme9qZ51lFyfZ/uvPYZSmaFp1Nh1nXordEHnONP/nhPmve9e/cvDmb/p+EQ/J+UtJL11NVEkRbWzHPCNoDTqd+T8beNkVnwHAti2ktNlffoTRrfdQLUyy/PV/jdrbQXzUXVQlOcNs5REpr5KV991M4DNcL+Cvmhbobulmz1flES1bc4lROMhJSrSKRJsyqDZFHK06ZCbzykp6DZG8wiY+XIHBSDoWi3y3NiOn1tcqqga5Y3sZO/AoRjEHlSqVUhajnOPci/6e+3/3aTpXXcTQk3cD0NC2kDkXXEOz3e6fzi+bXKxVVQw3IMkTgMLdyXz3RLh0alwweugxju66lWrWyWGOtnUy94/fxZ4vvnTjAK447e8ZHN3K7tG7qNpFhFCxpQ3Sud/pzBw6Fm+kpXs1T/z23xA29C7axO6txy9i5PXumHj7uYzseoAj9/+EtpXnMfLkfTT0LGNq4ADSNhCKSnP3aTTPWU1k3nxyfTvJHt1JfmA/SEm8oQPLrFDODSNUjQVnv47mpWcC1BR20Twh2auyOa0sK1ATzBVO19LKjt/bC84LCroE+3hCuFQcRqVWg4JB3vtn6cLv9RHOnlEqNuUWzddWWx7NMnJ2I0nXnyxD2QBelTavYItSsRHSafPrlSz2hGArqtQE83qCcGTYJQaGM36Y+VvpGPm5cWLjTiaPkVCITlqoFYtSqyNRGSnhX48zP2e4xHAgrADkuz23ofPdoz2+sOC6Eaczfz3nzDm30Clz7AXVeUJFOAW00uhdnCMIePewphzwLCb9mgqn7u9auDCnnLmvJ6DFJiSF0jA7bvyMv8+Zl/0d0XiGY83DJEcVYuk2FFXjzq+9k9tuu43LL7+cRCLB08G6993A8GN3MvTwraz5k0/TebdjvfYEo+rRw/QPP8LRoYeJpltZ/lan+dj0Cp+nAs8rs//izwR+dL0AshWqOYdwp+etINWzmMd/+nUu/sL3n1fa229vcdIrmuasYrLfEVQ6zryc4cfu4MCvv07PK96E7tYn10qS6KQTvOOZHFWXz1kRZqSaWBHnXpgx4Uu54KbsRR0TpxURjpnfI3IyON6TyP0sg+NY+os9jqjtEUqPyPnM1jWxJYecyVZTyoycZaFrZOatoLHXMcPbmmB05wMcuffHFBY7pis94bxk7SsvZNGqq93pBvO2dOea7AYNYUu0vIWZUmd0MLNiil+lMHx9TvMkgQCal51J87IzsatOVO2ee77F8M9+yIq9wyTnLOKRbzz7guJzhSvO/Di2tHj04PeYKB6hvWkFS+ddiapGuOvRz9DZeTqK0JjMHWbfoz8iqiRYdfpb2ffkL9iz7SececZ7yGR6uePOv6sZE6AqKxTJM/7w78iPOoV2VDVGQ88ycv1BzXFpW4wP7CCf66fy4CgIhVTnAtrPuASzlCe7ZwtCCOZvfD0tC89wUgdlbdMYbGctKKZT2rem85wnjEpXqPZL3oqgWE9coOctTNdP7WmyXnS4l+4l7Np8eC/YzXRz6+PDFT82JXHEMbmXOwIzd5j5tD00SXFeikSfY7UMd4NTigaxooHtNm6x4qpj7TJClUtnydWPDOeRuorUVSf63s3Bjw7kau5J6kjJ6V9StjESCpVGFWF5gceSaFZiJANa5DHcUlttiqGf/z7Nv+4hO0/zaY6nqCQGDYx0xMkcmrL9OCMhJXE3OyHf4xYLcnmpx7w9zX+6QiQ10MLGX/ecXm2JcrMgOhn8bEUDi4IZd3ZXTEiMepYcgZZqoHX5OVhGhUL/frbd+1UisQa/Pkw808n8K99G7+kXMbH3UT784Q/z2c9+duZNOEmk2xczYP6KwvARhjYtIN3n3Itis8KWO/8bNIXmNRu56es3sGHDhqd9nlOFZ5z5L//4Df5JvAcvFJXSuGMqXvc+RzDo6Oh4XjH+4yGuZlj66g9w5L4fcfjGr7P67Z9EKCoNe3KYDTEqDTGk5vgczXgQzZ8YDlKVqiFXT7XR+avnwUyC6roGbS2omOZJ48J0OkVVMxrxe3dT2OREUldTCtVUNMTYZ3a1CqMaKgTkpz95UcZDhq+dWLEgZxocE6iHVJeTCpQ9tJ1177uBjrUvIz96mPzwQarnCLQK2CGJxEux8eZoptSgT0KklgB655W6U/zEr3VekZgJxS+UIrQoDZ2Lmbv+lfRvuZldt36VZS9/Lyv+0Xmndv7T8/99OhUQCErGJC2phaxd+gYAJvNOw6vGrpXsetxprgMgCyX0xd0s734n23/1eXbv/hmLFl3J5OQkjY2NAEyVhth15CYmOOIc5xTBJJpuoaP3DOKrrmK8fweWUSLVvgChqAzuvodyboSe06+ioWcZstnte14Gznp14D/GiZP1zLlCOhqgVpIYCYGlCtf/XXOBDkJaP3iR94L4qGsy1wWxCctnVmZU8QPeYmOGz2ij42UKcxLEBp3FZqYjREfc3hzZErqrbdvpGFJViY6WyS9IOm4EXaCVbAoL06glp5qcMG2sRASlbNVcp1IxUCoGdlRHKeA3HbNTEWKHJqh2Z0jum/Cb7iiFaZVoylWwLUjEITuFSDgEVHWtdl5fD68CXbgi6O8LW3fup+laGasp4ZfP9Ri0R78s3ZEoEiPOD9F+p5hPZY6jAGTnR9CnoOT2WtPc+mpWxBkrPgIFt5iiZ+qPueUBPOuMt7/zVxCZCmI9PFoVfhe8Pim2Jii1eC9MnEXrrwWglB3i2M7fUp0cZfkZb0bT4xzY9gt2//jz2LbDpD93wxe4/vrrZ41reipYEdDn96BEouSP7SPVuQDDKHLs0P2McQyzPMXct72PhpYFzwvGD89ywN++v5lJjLd88flPoFtf/8eUvv8fVIb6OfTQj1nzJ/9Mz6Zr2Pc/X+DJ73+altMvpJ11ADTtKTNyegzVcKXeUCOLyJREL9oknZ47FNtV5n5xG0fetxpbcxagGYdItvb8mhsc6DHL9O07mY7EkEGhy1mUkbyNFXHKiSqmJPWkY4Kqdmco9Mzeg+D3gVQh2tJOw/yV9D/4S1Lzl6NoSRrmreLIXT+kqOSJx12LQClYzOFKZmpFYifUGT28Vc8f6plFwz3GNYFSlU652cagyElX7waal5/F49/+WyaMfppZ+Adf4wsFtzzycS5+2T8TT7WTmxqAqslUaZC9/beiawmq1SlA0jHnTNq61tCSXIgyZFDq0Fm+7FU8sfXbPLH1W/Suupclr3wPm7/8frYf/DmWbbCy5ypYtww9nkbVY06hk4ROFUiucCoyOrns0LPxatRK4Ic37YCw+8KrFWignkZua4FGCUF0umd2nh57o1iOadezGsTHnCp9aiXQQLWShZHS0E3Lb7wCEJ0ImGuyr4hSdfoYRCoG2LafvSN1DWGYKBOOKmq1NpDZMkJ2XZufdx8/PImMaJR6nPdcLVaxEhFE2cSO68i4jlIJOZ9D/QgiLpOPHMtiNTtWBXXIXfRRHVE1/TLfABRLyKk8TOVhwRyQ0rEOuEwqcdDxv4+d7eTvG26WjxWrzZCY9a/7DJDBvS81e3EH7j33TO6lIKso1e/MTy1bGG1JP4jXjCtEczaFLgU97yg94PQ5ACi0a+79DxQUKyLcIkiBgOG5CpID0nfdVFOO9dC7JiuCLxiWm4J0ULXqxAFoZceCpBVtMkobmVWvd+fsnLdxw3t54P7PQMVg/mVv49Bt32bxX/w9kZb2p6U4CEUlMXcx2cHddNmXcXjyUY7tv4NU5wJaL7yC+Jx5bPvU84ffPePMf9fHnz8X+3ShpdLMfdt7OfQf/4oxOc5UZYBE7wIWXPc+Dv7gi4xve4Bjf7IJ1YCGwyaN+0y0ksXg2W4N7Qjk5wjSR2zMmCDz8yfAliQBIjpzv7iN/v+z2jFlVaCagUjO8dul+gNnWGSijBQCe8lclFKF5L4JZEQjAVRbEjRtzTKxJkN0wsCMq+hTzgKtzGl0rqNo0LDfJLcw4bsNvNoDXjqhrQuk6tU7dxZsxU0n1PPSMc+VnboCS5e9hi3HbmDP966n+9xXMrHvMaLJZlL5GFbKcS2YIfOcrTkM3NYFpPFTHoUdaC1GSkUqTiCTVIK0HUt3TLxeJTafIJRyjE8dpP+JW5C2hXFsAK0A2z73wn/vThYTux5mYmIfET3FvU9+iVJlAl1LsnbpG3h81/cAGOp7hDndZ2NlIlg4jFisWcrCtrez55avosXTmKU8vWsuZ6o0yOnn/AUNjb1Yrqm66tazF0XnmQpmpl55hFsx3eh5P2YlsDCplcAfPZ3Be1qfGRdYOMFnnmBgRYVf910xZY0vH5yodcUIzOh63tXeXauSFmrXO1vHQAAx5dqdwxUQbQt1eAKiUTL3O+ZiUoFfOLHLieiX6ThqoYJUFLTRKaeORdUAVUUpVrDTMZRJZ3w77R6vKX6zIecGViGqw0QWEgnkxCQiHaQRBxMVKFNlolNljK4MAMcub/fdh4brpRDS0bqrmUB794QvPQ/pfsu/twB5r/qeFo6rcG+DCtUUxD23h5fi1x6dUYY4PmoQH4XoNvd+ufFHpTMX+qbwMIrtjhtImLVW0eRA8D548K6xpixwlZC1x/kbMZxMKPBchop/vJFSMOICc2+fUzdGKESkI+nE+0y2f/n3px3bPvdBVv3NDaQXrWTg1p8wcuRRhp+8m4b5K1l02Z9SauOUpaOfKjyv8vxfSDjtr29A2hZ9v/k+uV2P07LpSlo6VhFr6SJz1Pa7QQ2dEUXPh0uSQtf/9zi5V60l/WOnDa7ccBoARy9LYmvQus15aVMHazMghJQouRJy0CE4nj9Q6Dp2p1Ngw3QbDJlxlcTOYYw5TaE0HmcB5Oc6xEdz/YUQEGphSX9heyZ6z0dpJBR/8fldBaeyHHr4Rib7diBUjSXnvYWGRc71eNqFHzFc9fx3ao0FAIKF6i/SMP31rQPOPuUmhYlDW+l79Fd+0J+H9MrTmfPqt/Dkp59fC+2ZxMsWvIej2S2UzSkUVaMjvYz79/83f7TpMzy+7weMDTvxKkKorLzkPZjVAtWxYSwspsYPMTGwEz2awqjkQQjmrLiUuSsuBwKtvdSsOm1XS9InsIrvxxUzorgjudnJit/ERTq53l7ufDgvXjEda4AZpYb5Nz7paMeVNuf9rWaCKpiRnOFH02t5t0BOQkctOJ+lrqKOB+tJhvpxAIhBN704GgVrlvw5JVwyLoZ0m3yJqVLQiTC0jxxx30shEPGYfxw4zF8ZncTubHZM/XnXLu5VzTMdi4QsOxaCmuNdlwSuC8Bj/iPr4jMYoyd0VzKBbz/qGhhathUpdXg96wPm7/nivTG8gObcAuELEJ7vPX3EC8ZwhTm/wZJLN9y1nLzf6WJnLnM6aXoCmVdHwCtW5AXr1TT6ceM0wq2BQ14g/zpjk6H3Lex6mZYt4AmoUsCun9+AtG1KuWFaF29gdP/DdK+/gs41Fz/tuKFV/+eT7Pr2p7GNCqnepcy57I+JpJt44gvPHj16Xkf7v1gw/11/xeH/7/M124Sm03PRa2lZfBbN+x0pd3yZ69OzgriH5KBN5uZd2FNTqPPnYnQ3AnDksjipo076Uny4iv7oHvdkPcj9R1DmdCOjGhw+BrqGaMxApJaQSVUgPP+hS5jsptSszN+rMR7kDQeducLtRr36BdOZv7DAiEFprJ94pBEtlkTYQUMRP3LbZfJ+KlKs1p/opUYNHHuE4YObMewytmkgpUkkmiGabCYSS1GRJaq5UQqDh0gvWIVsjJB//PHgmbzt/bQxj4e/9dIJ+gO4atnfEu51f9POf2HVkmt4ct9PZ91fUXWEFgEk0raJNbbTsex8Uj2LSMlM0DDKkJTcinueEOgHcVkztXchnWI4HvO3I6ImRQ5cpiSDaG9P0IvkJGZC+P7bcNpZst/xz3vMvNyZRDFkTWEaEapNL0zb96HbiQiiaiIm8z4DZnxy2g0RtRq/x8ht22nSIiXEXKlHCBACGdMRbiMvOTTirEd3DFmpBvtalt/oRURdW7qmYY+OI9wxxfR+C4pAliuIiBvwWqn48xPeetc0Sqf1ADCw0RVGZBA491TM33OtVd0KpVNzVQrdzj2PTrp0Q4WWHa5LLvQ8JhdrpI9Yfu8RL07He0dyvSqZw6ZfjdTLMvBSDb3n5gUk25pDE4KCQIHrwUvlC1sF/KBPAYr7OT4SPP/p1QIjoWqCnkC5+Zcfp6f3XHKTRxCKipJIMjm4i1Wv+1vUSOxpCwALXvnnWEaFxiWns/WLzz4del5F+79YIZZ3El+5gtKTgQ9emgZ9d/wPQw/fSs+GV9DZeBqJYbsmDVDYUGxXyACFV51JwxPDjJ0Wp/XxAvN+U2BsdZJyo0LcVfClZcF+x4Qm3f720rLAspwg3b4BxJwuX+IVFhCLIIVAxl1CYdoI08ZORnyia+mOP8yrBHjii3X++FXRFDdKXwU0QbzDieCxqxJUsBuCxioevMBBn+irAlTQihYjU/sYOfAw44e2gFBQYwmEomAWchhTkxRGD6MmkugtbegNDfRseCtyRScDn/s8emMLxqSjaR369r8z1rmIrjW/oWPVhaQqCe796Yef+vpe4Lhp9/+bsa3Y6Nz/TM8KotEGUi1zyReHGd5xFw1dS8mPHcEsTRFJNTHvgteTSnc55l1Aql7B9doMEakIP4AL3Dxy6Qh3fiZKybHWCMt5F1ULvzMgOEKADIZ3xnY/JIYdAh4fdjhXqS1C6mixRpsTVZP4kSy2+24LSwbaZiIClvT94QBKrgSuFk2p7PxzISsVRDSKrBrBdo/JJhOOdc3NKJATk4iYeyHJBBzsc+YfOpc1Nu63BvfHUVXsfAGhqshS2WX4znwcBq8jq9VAwwcnoDUWdc4dgojoyFK5Zlt83yg9lpO7fmxjNJTu6/4+AvHRIPuhaYcToBfNu8JRJE12noZShei4cy3JQRkqfxzUG/GscM1POs/HTKjEhstoeYPRdY6Lwssw8Kr9ZQ65PR1Gy5gJ3XEnusJasq/I1HxXGXHphRl1sj5sPSh65HRGDARPqQYCgK3gZIvEhd8/ID4mqTS68zfwi0R5QshYRwmjUsBY3Ep5+wFURRBvTmMcmmLo0Ts4tuMOni4O/vIbT/vYZxN1zf8PxMJ//xyNLfvp+869jP72SaRRazJM9yzltI3v8IttNP/iSYoXLCO7UCNzwPQXWLFDJT5ikxh0Fratq0Q2O+lUMmyGtCVKxhWB4zHskTGEoiBdk6HS24199Fgt4ejtdIgiYEdcCT2i+IzcSGtBTr0ufEIaG3eLBrVqvnYmlSAX2c/ekIF5zdPWhAwW54yOZJHAhGioVQ7d/B2mptV88KA3NmNMjvvf53zxkyixKMmfHGHX7V9DTzex5LoPQq7E+J5HGN35IFokTmn8GJFYhjOv/ChCiJeEADAbTNNkYcc5ZEv9lEQJoahU8+Moqk7b8o00zVtLqrUXIZTaQjdutUkARPAM/SI0LjG2HeMB4Pr5jVpLgG8tcPmakMH+VjT4nBiV6F6t+YLll59Vy6bfHS7c3U0YFiiOIOBp1UiXSXtFrypGUHu+HAT7USpjFx0JRqgq0u086WnZVqGIcN9xtafLX0eyWAw0+1I5EDhKQfU+cNarEnE6WvqCgNsrw/suTYeriWjU3ybiMUdIcOchInpwbVWv9J9Sw/xlpQJCQSRdDXpJL8fOT9G+peI39TFjIqjjP2USOeS6JGyv8UCE0kInH73UpvsWGo82JQdNvwCXNlFERlwzves6MRoiRCYrjK5LBemAQ87++oQzV795UNUjFG4RopRzrdWMM6ZakRQ6tRkNlmw9SBc0woXxQu/TbOnO4b4pWjkIWBwcfoy+33yPJe/4v+z7r8+AbSHd+yEUjUq5iK7rMwd8AaCu+T9L8KoMntv2tyQWX8HonTdR2BV0J5zq38NYZIQms53ohElpo1NatfPrj1O6ZLVT6nNOvMZkBaBNueZE23Y0i5CM5hEemffse6pDQGwb++ixYBDT9LUPtW8U2ZBCGXDMCeWzl1BxO25pRdvPIfZqjAPE3Spe8cezVFbPBRzi4KXgSLW2RgE4DN6LEvbSFoUusFzi70nywpYYdpnd//N5qlMOMUq2zSNz5rmku5cw8vBtjG97kNaetcy/+EoGOsbRbJ3I0SRGBnbe8iUA5q59OXaxhC0rdPVsYN7iSxg5+Cj7H/wB1XKW4tQgyUzX8R7fix6Tk5McHX8UgIbuZaixOJF0E4s2/DGJqEPwDUUgcVPnXKIrZIhhW7VV1HzfsuYcIxXHPGxrjvblN6lx4WlrSjUwuYbr5INzbKVRITrpBYF6QoRwtETDdjT8UA8In5F4ZnUvVkU6mr9UBagaomI6rjFbOmtCESipJLJUxso7xXSUSASrEJg0pC0RisAeHEZEozU9730tPtTZTk6LE/BaWUvLchm/IxAA2JWye7x0LHeVCqiqE9HvXoM1OYnW3oY5MAhCQWtuwp6aQnpWmBOU8O6+N+/3zHhKRIKC+6U25xjPYldNOQJgbp6G1q7RcKiK1dVAxK3tr06WKM91Yg48rV8t20SmLKQiiIw5+wnDcv6VnZdIairSdcXo4yZWOkZstIqtCay45vcumJqjI1VRUxoYwIoLnwYJK8TzZS2ztxXHLVATDyAgq44zdN9NxDvnoqczSNMZvPm0c2lZs5Gv/ulVL1jG//ugzvxPER64/P+x7KEb6H7D2zl4w6cxsxNoqQxmPkv52BHobkfPmxgpjcRdO5FA/I5t2GsdYSA24bzw5dYo6W3DWE3OYjLPXIa22WmlimUhEgk/IElJJrALRcePKCXourMQ4jHHBwmIliYYzz39C5sI8g494hCGb3oLmeHUMjXSeLhGutfGMz/Zx+6f3uCPs+KP/pJU61zfQmKXKkQb25m39HJA0GR1IDUwRwtUSlm0xibMyQn23fUtuGvmtFNNvRRzQ4wcfZzHb//czB1eImhpaaEzs5Lh3B5yx3aT6lzI/E1vIqY2Ovn2hjzh8eEcb7+srsf8zUAL8xqxRCbd46TrjzUkkWxgAfACuLSy9PPIUaDYIUgMSdSKjVKx3Brvlm9lEpblt5xFSkdzVBSEYSFVQTbfx2Sxn+GpPWSSc1jSdbETbOf65NE1J31O0xztecwRbNV0GmtqCrtaRYnHMYp5xhkiqiaIySSKqRCNRh1zfTyGLDr9DKRlOUz7ZCDdTJpKSGN3hQJZqcwQHHCtEubwiH+8OeYIyELTnfFULwneLfVdKCGScZTdjntQr1SIetXqYlFkg0NPZExDunUFxMQUlJ1CRrGjGpFJNwAwpmFHVeKjTiU/L5DS1lX0rHMNouTQq+hoCTMdoWm3FRQhskExLD/gUmoKSrHqxDFoCtggiq5wFNFQClXMjBsX5Vp8vKJLXi0BKyL8qH9hgmY6qYwI5z3TQsYXL23asz5VMsG7W54a5uAPv4qi6cy5+m2IUJBmeXKYaKaND/3vVp645JIZj/HFhjrzP4XY/X+diM6uzQ8x+Juf0HPZ6xm69zekWudjuC9u/F6Hkctq1ZHiH9pGUlmDunUfojFDFCAaAQXslQucfVcvRj006B5n+GZBACUVVB9DU8G0kBOTENEdE6VhgKpAJILI5SGZwG5vRKnaxIdsjLTq+nFtzLhC0+Zh7CP9znippE901DvHaOx0yvVOnT2PSsbx6UvFIexO6pcMIsBDEbtO4xInL9fTID3GryUaWHX1h9Djaf8e2TqkF69ict/jPPizvyPZMR8tnqZh4SqO3vlDABZ98BOUp4Yc7UtKKoP9jN30K/+c+YmjziV0LeTcN36OB77/zPSBeL5DCMHa+ddg2yb7e0Y4es9P2PPrL7P8svegdDQDjnbnaVJaEV+V8rrMgUNIqxn3sxqkjNkxm9hwqPxyoxMHkBiWvjvI0SRlTW5/qdU1zVfBDmUPSE1gZHS/8p6SLbJr8HZGcnuJqSmWdVxMMtGOVoLB/G6O5B6naExSMfP+HHKlQZZ2vsyZqxscJ2zbWQfgWA+8oDnDRGtvY7hyiP6pzU5BFgxwmYVOhIvM16HgmNulYfrMHGZq/L8XpA04VruacYQS+n3aIaaBmk4jTff+ZBqwc3nHklGtOrEL7rHe2kUoqCXn4Sma5h+LUPzzilIF1bSQUQ2lWHUELbfWgD2nCds12ytjuWCO1SoiC5Fs3M9UqMxzYg8Uw3bGcIMj7VQMUfYEMWcsM+OYlryof32qCliYCefZeA3R/CqAoZTQatqJBwgXg/KyUOyAPAYVGRWopCVHf/ZDlEiEOX/6XhpH0tgDgUmr2Lefkc130rHxyhn3/cWIOvM/xVjxjzcQ7XQKcYiWFIvf+ldEJ51Ct2ZcRSkGpkWhqo5fb8seUBTM/gG0ni4wDMc0poY6mXW0IIbGEJ750dV8AEf6DwUdiUQCWSyCJxhUqo4G7xG83YdQ1jsWh+iEjZlwxoyNVrCaEphzVwFOMI+edcz9UlXAzfuPThpEsm68QIPmR4YXQ6VDhcTfrlWchamVnKhbIyFY+aoPg2mRaO7GaFAda64MAr9iZ6xBuSuBXSpSGDoEwFRfUFJ26n9/w8INr/OZupSSnTt38t5XfZWqVeQoB4hGG2jsWv6SZfwebt7yTwBctvFTJK5+H3t++WX23/tdFr7x/UBQhRIcTV4t46d8VRtC1h0NzLQbiV8R2DEbY3ycic2bYThH6wVXEEk2ouedVq3Tzf9q1Xn25WY3GNDz37u8SCpQblJJH3E1asNi/8QDHBnbTFRNMmH08eDh7wBwdvu1PDH8SwBaG5fSFs3QN7SZWCTD+Sv/ws0mUEF1/M1K1QRddSwBmhOVL02TMXOAofFD9Bm7SdFIL4voFPMpyhxD9DPIYQoyR4PupNJKw3SE9lkYs8+0wfldKLPvF8J04UGJxhyXwbTjFE+L93p2hJi40pDCzuVPKIhYngVP2ghNR4lFHXd51bkfcngEJZmAjpYZx+rHJh0aAg5t8gUMiQgrHxGd6EBgZfSyi2RU9xm/HXfL/qYjKKaNkdIoN7ttz73aAoak1OIKGwaolvPeIAO31PTOp7aXgWI7x3hCqxlz3mXbNBj46Q8p9R2i903vREs38PBnP8iaDwXWR8CJ+j9R6+AXEerM/xTDSEu0hLsgRvIIt0aHV/ZTRKP+ApaWFQQpef7DkC9PzVeotiawYirRkoG1wPFdqweOIQtFp9ynK1kjpZMDHI9B1Zi9OEhEB01DiegoR8cweluwNcUvl2kmNIz2aG1bU+GsouRduxGpJOWV3c51mNJvygNgxhQiU05L1KpXFpSgGI9WCfqe6wVJQ9xp2mToAq3kNGWZ3LeFo3f/BNus+h3joq3dGNkxbKOCbQaOvy988i+57rrr/O9CCFauXMlv937xqR7RSxa33f8PADRt+C3l/ft8P6qR8PpMACEfPtT6UMOw4jaJI4LD//Z5bMNRrya3PETnGZfTvf7KoHe7cJq8xCZst8MeJEYkxbaQsGo57VnNmKBpjzOWNTjAtpHbGRnbyaLeS1nUcT6HBu9nT9+tANghl/fopJMOq6kxzlr9ThSpYkc0Kq0xokOOPdiOORqtjEcQbtzAsHmELcVbiZFkjrKEJXINiq6y03yEfrnfv4B4NYK03Zx7RTi9kqYxds+HDzwlwz8uXOFBiUSCuADLQonGwLIRS+c7aYtPHoR53Yhjw9he3M8pghgY9S0kslgKBIpQ3FHY8gg41kUAIxSbpCjgMn87qkFUQ7jBl3Y0oBuVJqd3gFc50Q/8897NuPCtiFJxAkqrDQLFBiNM4mxI90k/MLnQLRBepsBEnr4bv0lx9Cg9r30bR777NQDWfOgGjIIjrCh6lGVXvofHfvTPxGKhrIsXMerM/xlAQXH8ieaiDGbMKYqRGDKxowoiEgkigAG7WHQkaWk7AUZDo9jVKnKeU6ozctdWjPNWI3IF1FwBe2QM27IDC4AXEBjOE04GFTGkoji1qrWnX/c7edfuGduiB4bRR8YcbQEgmSR7ZhdKVaK5gV92RHgZTYCbJyy9yH+ngZCoWkxOHWFy/+OMbr9vxnnMYg7bqCA0ncTchSQXLmfvjd+pZ53Mgnn/eT0ixBUP/Z+/nnU/szCFljz5+ycs0HaNMrr9dlQ1StOi9WQSc5C2iW2UaVl+DoXBg5Qnhxh89FYSTd2kl62h6gb1qeWgkqQnDEazQd54dNKi0OkGlEUUomNl9mYfYWRsJ20tK5k/fxMiV2FO41rGJvcxlj/A5qGfhGcISEyrzINPfJlFS64kfdpG4uMWlY6401NeQsM+LwfOREjJ3vzDSCTncjmKVKhicHfVGbdN66VbXYiomCjuPZWW5VjrFOEw+ukCgCJqtW/vN6EEv023DgQHA7VxAR7sStkRALzvKxf4NQxEPDYj9c8fUtP9rIKngr+OZx0oJKiFGL9IuOZ+E+evZxFwxxLFCjIRRc2VkFFHibASnhtGYmsKiQE3i2CqSmGeUyPEiuDTCb0o/RojKE5AsVezoJoOXAGKDcV2N1jSvVVSB/YNc/Cmr2MbFZa+/L0km+cF87dhaq/TuEIoCntu/zrzX7aTd16+gX+79U4m7r/7adX5f6GgzvxPMayYxHADdVpHm6nMgUqjIDEEwkt5m5z095eW5SxSl7B4mr/6UJAxED06QWVhO5HH9yMiESf4yNPszWk2Ki8vGZBuWh+65vyT0jXF6Yiqha2rWIlAKKim1KC3eskmvdsRYkQyQfa8eY7pDWjcW8IeHME+Yzk2MDU/TnTcdPKxCSJ/vchurWg77VZjAmELNzZAMrDjdwxsuwOrWkJLZ2jcdAmx+QsY/NY30NIZzKkssa5eGs8+n/3/9UWi0T+8L8GLGeU9B8j98k6sfAG9rYWGL/0QVBWttQVVaNjYCEWheHgf6eVr/fgLrewW2lHALOYpHz2MaZaJNLQQVZP077iDqR2Po0ZiSNtmcPc9/P/snXWcXOXZ/r9HxnXddyMb94QoFiC4FCiFCoW3QmmpUCi0tLR96wZvaam38GuhLcXdggSNu8tKdrPuO7Pjc+T3x3NmZpcESCBIYS8++TA7c85zZOY89/3ccl3lJ11I/sxjKSyeRu+eNeRNmEfN/3yNvb+5kcbn/kFZ8DKCFVOx63bRFjgsb2soIrRrSjkHwNeSFpXdCYOIV6d3YC+lhbOYPuEinn35RgDOmP19Zk/4BM1dq9D0JOWl8/G4Cnhm9fdob29nztRT6AnXs2f3A/gGtlH1iS8gKQqJYpOiTSZ9s0R1YuH6AYzqUooiNURiA/TTRSFlqKjYcZEiTpVzKoVmCaaRxtTS2VW9YTHsyZbzbVg1AK+bCrBgGqZY0ae1nPMwcoORjoGF7Oo/PwjWAkB8IIv6A0D2eUWR73DiokxLYSoFmpbtPgBRN6BHhjkFqRRGxoE4RDQj01lw0IofRjIfgogupq3CSkkSnRaKjKQlSVSJugNDkbIMnxnjHZ6Y6xYAKdd9pIjfSKZeJFN3klnhS4YVnZJAsxto7V04CkrBhHjDPpqX/xPV7WPiOV/C6c5n499EXZZhGETr9xLatxVXYSUTT/kcLduepmfDCn605mkAxn3z++y/6ccHX/MHBKPG/x1AdNMWHGNqUGwO3F05NT/nC9tzuhqZh2pY0Y1pkfbINjXrFGQwQvlOkTFCYRFFcNgh05bidY9oCQQwVRWLthrDacsqgWUqeLPKeqrgzs+E25SUCW0Wy1BBnhjL8hMiVU7c9qkk88RxX1sxXvJST7bXOjohKLbRrAnEmvQ6BrbTuvFxCmYswXnCfByVVTTc8A2mfe2XxCfPJR0fovS0j9Jy/+1ver9HASXHnUX3yqdwFJXhqaghGe5H02OYmk507y4wdCRF/K5sBYWULD6DlOVLqXFIFMHg08vpWrv8oLEVh5vCuSfhLh1Dz+rl2LxB+rauJDj5GKrO/R+829bQtP4BfC+VMfHK79H66L/ouP9OenxBSuacjHvhPJQ8lxCsyijS2XM91xmSKXtIJ+1X2bvyATQ9SUXtCdlUBYjahVPljzGGAp417htxjuXl5UxZ/BnGOjT2vfwPBroa2PPn7xNcejJ5+SczMFkcw9ti0nKmaHGsNT9C88btDNJLIWXISJzguoBXE4+wI/oSRVIFE+U5qNZzONxgZ5yADCRZQrIq8DOGNrvyHmbYs8+2LGEaIyMHalV5bkAjFyXLsgQOg+l3YxYIZ0a3K7Sc6sHZK+hzPZ06vnoRzpYaWzAl+aAiwmzbYcYpOJxUhWFiptPILiuyqOsjFx8HsRTKuRSCXcXRFSVV4AaLYyRj+DMMkkgiSiQ0HkyGKiwHJlPa5BD1IXqGXyRzyhLE6+roeuFR4j1teKsnocejxHtacVeMY+wZn2XHbTdmT2vW12+hZ9NLdLzyCADO/FLwuSmZu0yokvZZeg29b6NL6r8Ao8b/HYA+NIStRFTGpyzGKffmZkynAyMSOfROkixWE8MeclPXUQJ+MAwcL2zNCXFlHjJNExzfFmWoqcqCEOU1BBmip+vgQxpqzsOWrNV4NlJpkjsX0xzBtX8oODuiJCqt9sQKF7rTmuzS5kF5Y1OCSLvIqToVP62//032s523fgv41hsfbBQHwZEn0kRlZ12Mq6KGtC/XpienAROSRVaxWFoiLYNhtUeZiomkS0Qa9uAvncDYxRfzyh3fYsHlPySeHsAfHIPuhL3//Dl6Mk7+tIWE9m2l8a7fUrPsUkomLCYR7ubA5sfJD3eQN3ku5SeeT/emFbS98jDymicoP/0SPPNmY2sxs0Vbaa8E1uMwvMhqoG8fpWMXo47LhWhPOfnnmC+sI1TrIRRto3LCUsDEG6xk66v/D4fDwYtPfZNjL7qZKSd/gVhvK53N6+h86gmcFdUEiiaQyjMZnARgokYkDpwdoHRLDc36PvLMIgqkUkikmOdYxgFtNy3aPvrNLirUWsaakw5enb/GYGZW/8Pz/8MdACOtIdvUbPGe5HKOpAy2jH18cilqTENOWFS4kQSxMUF0qyJOSRi42g6eRxKFMObBPgynHalPFPjp8fghCwGHRwJeD7lFSe76ZJdzBKnRiHSBLOdIiVQF06Zk6ytAiI9lIo32PhG7D493I2tko4rxAiXbSTK8JiV73pYssOYWxl+Pxeh86D9E9+7EVVpF2bHnEWrYis0boPi4M2m8/8/Iw6ITs74uCvz6tq0kb8JczLTGYNM2dtz1Y2TVhiQrlJ57Cc7SSpwlFW96j/6bMWr83wG4p08lsnY90XMk/E1CAU+vKUHa0YDs9b6uA2CkUiI/qCgjJhlt/4Fs6M3U9Zwdz4Th4gmMkjzRWqNI2VCcab1OFmTYWqSsUt/bgS1qoMQ1fLuFZrxZlEe8JoDmzInymK/xP9ANBrv20tW0Dj2dZLBHFGm1bXmasb/4JftvGDX4bwdP/Ow6Zj5+J0lbEsWfE5J6MxjJBIn2FuL19UR7mymdciIObz4+n4/dD94MwKnyxwidP1sooAGuYDlVp51I3cp/se/BWyicvJi84BhcCz5G8+ZH6W8QpEIzLvg20uyPsO+Zv9D62J2MHVcF5Gd/G2m3cEBtAxqSKZHIV7FHDPJKJtPe8AqhngYmzlgl2tm6e2myv0i6PoJNcaE4PRiKSVv9y3gCj5BfO5c7b/4O0v5OkqkQerEbW14BNIHe0QtFE/C0WtGoSpO8fcIoFZ/yedKv/I2t8dXMMY8jTyrClXJQaY6nhX3EzQj16S04ZQelVOVuXGYF7XZn2QKBbB3A8Px/Jl8vvUaDA7c7t3L2OEmWB0Yw2xlOhfA4F+AVBEyWXXWnTEJTA3ibLbKdcJyx90SzLHpHHcPYCY14QkQ5rBScmdZyegXDBY8sAiYtaIkwBe0k81V0e653PzxefJZ250jAMME0DdQESJIslE7TousEcqyimcVI14MPEttfT96SpXSsePpNU4Nbf3MNc666BdXpZaBhCxgGgclzUVxuYu1NVJ17GUpZ4VuS9P1vw6jxP8owVRMTIxveDI+RyNtj0jfDR+EORhh+SbWBlhahfy3Xn2vqIFs831r/gPW2SBPIdjtyWYl4r39QrMpL80ecQ4bYJF0eEO2FVsudIefC/bpTVPnrVjpBMsyRlJoSaLNrAYhWOLIyrQDJgIKStJOYPwYQLX72IfMg0R+wQnaJNKsf/faIc3SUVuD0FOA8fi7yh4BN653GlClTUJxuknvq8FdORE7mepwNRayYXJ3iu057wNkD9t40e578I7G+ViRJoabieMYHT0JujB80fuu2p3N/dA+y5dVfsvCSfFG30biSnvhKvPk1TF7yP/R37qJz7ytsf+jn+MfPIDBuJsktK3A481B7hXx0dLCDeLSVprUPCYY1ScLpzscZKGawQ2hlRMPt1O3ICBNJlFTNo3TqUly+EpL5CqYKqe4uevesYaBhM2eeeebIk1YUfPPm458+J6srn/ZIlK4x8G3vYXBeMZ6GfmYXns2GlnvZwkpqzelUmuPxSJ4RQ+0w1hKwl+CxBUV+PBOp0zRkt1sQ/pjDungQz7ckS1nxHvFlWNGXjOOe4eIYiuLYG0Wrtrg0xrlJ5InnMVM7U7jKSsMNhnCGwtnUg36ItsIj7lZ7A26BQ9UoZDQRALDSAOawKn6twIuk6dkup1Qg55jEihQM1YmsmSPlelNJuje9QP/21Th8BdRcciWyTWgVKHFI5YmIpGExSyYaGols2YRv+myKzjjvsGuCTAUc+UXEupqQVBvxnjbGXfFNJEli188++EY/g1Hj/w5A6+0Xxr83CoUeBibLuDsQfbF2O1i0nlkMDydaD1+mI0CZMQmzrinLPw5gdHQxdN5cfA0+dKcNdWAYLany2iX3MHY1VUK3ZdpmLJIV3Rzxd2Zb3SGR8lkrFkP02ma8bTUJ4WoxeXm6Dp5mREtXhsDdIJbozX7m8ZdROGkRjtOXIMniGvd848PzwL1T6O7uRk/EsRUWCv0FJUfcgwnOPsj86NydJs5+g/o19xDv72DStIvIrz0GWVZ4/nU0EGwukV/OL5tKT+tmANbe8y3mf9ZG1ZRlxPZsp37/cna9/DfKp56cDWOHG7YTZjsAA2tfRpm/FDUusePhP2CkclXqBdOPpW/7qySiOYlmp6eQsVdch2d/kkRAwql4BP1vhpJ+yMTuKqa06HSi084hMdhFMjaAGsjHHkqRrsonNsuHo1NEotw9Gq5e8DQMAhDc2A02FUXxMFGZxVr9WfayBS8B8ijCS4AIIdySj2om4NKdYMMKfSeyYfzhz/Xwan3Z6cBIJEc861KR1UefSovi3mTuudZqiglNyCjX5FIhzgHdKoR7DYZ1ExxqDjkSZOYb2ekGVR1RlCwOIYFpILucOVY8u00IHVnkYgC6xR6YLLBSkcNal9PuXJ4/EZRREyZqXMwT0e5m9j/3T7T4EKauocWH6Nv0CpIkkQj34ps4A7tvArLNRrKlld5HHiTe3oSzegx5Jy7LEqwdDgwbJEO9+GtnkD9zCU0P/oVkywGc1TVvvvMHCKPG/yij6UvXseekc5gybRqhfVsosh+Lu9sg8PgOQc2LCGtlK/KHxHI6U4CDLGWreAHMuibhLGTEP8aPITwtt9JXu8NZ3nFTkdD9uTY/yTCzVbWvFcrIIPN5yicLUZ6srnpOycsWMV53/2iJii1ugpRzHGTNJGXT6dz5Am1bcivGRTOuwucu4Zk133+jWziKt4CZx5+HpCp4Jkx53W0yBXamAsl4iK6Ozfz2t7/ha1/7GsddeDNq3GDpmb8C4MWnvjliX7tDGP/+jl34PDmthPX/LydZOjQ0xJgpx9K+8znrHYlgyUQ8s+cw1LCTrhcfxV07Cb+zDHdRJZG2ehyefMbPvYiNz/wWl7WCPOac72Pm+zAdCkkbxCfaURLg3ZvCUCR0p0ygKZVzahUJSZIISkWkykrRnBJuTYN+sNWBI2zg7E+T8uWmu1RlUFyXRUoTytehB2axhADCQAfkIiJGiDJ1LFXqVEFwk8z1+4MVkVMQz/Nr+PZNw0D2uHNyvcNU+7TKQgyHgmyl4eTUSCc6uDcXIVS6wzAUGZFrP5ycvXWi2ToEYITi4Ih0xWugBIPiWnU9u8I/qNrf5cxGMlAVTFUl7bda+dImzu4YsSqrDsgpYUq5/L2SFFGYge1r6W/dzlB3I87CMmqWXUr9w4Kro2vlk8h2B7LdyeC2tfinzaP0kk/Rt/wx4u1NlJ1xMZ5F86n73yMX7VJdHrR4FEeeiLRECnowp5Yc8Tj/zTgMLddRHCkmT56Mo7KSvo0vo8WG0JwS8ROnZj+XrLy+pCgi9G9V/Et2G7LbLYr8zGHVvrIkKvvtdky3nWRQJhmUGZgeGHlgS8zEcCjin10WLHuSZeRNUdgnaSZKXM9W3h8WTNGjrSZM0i4JWTdR0uKfKQsREM0p/pmyRNP6B0YY/pKzLmL1tj+MGv53CLH+NhzBItSUghoT3BJqXPyzxUZqsQPoaSHAUFdX96ZjP2vch6dsLKrDjcOdR9HExdnPQqEQO3fuZOFp3+XEc7+Pv2BM9jNPfgWTTrmC1qf/Q+umldgLS2i97za0WITghDkAuDyFbHn+9zidTgIVwnGxp1VUXUxNng4TT4eJLWqSzBDAJAzSHiXruALYw3r2/3k7wzhbQ9jCKfJ3RfE2i/Y4+5CGqzuJ7nehxDWUuEZ0Yj4pLcbenhcooIQiqRzZWkGPMyYToICG9DZScat6fhhHh+RwiDx+5jkyTBHqt/4BmOm06MLxukXle4aUC5CTOko0iRJNws4GTFUmuCdCcM9raoIcNox4HDMl2PUO0hQYHvY/glW/7HajFhSglpfB3MkwdzKp+ZPovWAKvRdMIfyRWWiLpkF1mfjndWeLi7NwuzA8TgyPEy3oxHDIGI5h9UrWnIAkQvau/hzRl7m1jsZ19xLraaFo7HymHvt5rj0t57xWfOQyJl3zUyq+Jlb1mfSgY6ygPQ/t346pSkz4+UiWvjfCpB/fQizdz1DTbtxja2l9/h5Urx935QykPgdj//Xzwx7rvx2jK/93COUf+RQHbv8d9ffeyrTzriNS5sBpedpZqk5VQfZ7RY4ws9qXJYxwJCvRKaVzBXzoOslCV9Zo6w4JvcCLHM/RbQJImmEptMloLkUUASJWSGmLMENJmhiKlNNq1wU7X6YYy7QJOk0QhD2SmUspSKY5khLWLaE7RDhNtdqQ+/aty94LWzCfvNk5gzGKo4+KMcdSv+UBhlatpHTeaThCRpYZTdbEJOzuFr+x5GAPTVsewm7zcdVVVwHw6oPXMfeLYhL1N6eZdbV47e4WHA1bHvsF8fj/EovFsA9bAY6dvJiBzt0HnY/XV8bs2Vfwyr8FtbLP56P6ki/Q8JdfEn95FWWFk2gFBrv38cQTT3D++eeTjoVQbW6SiUFUPCTywGtF0d09uigotX6fw6NMhsUkJ1uV5fFyD+79g9l0mO53iucAhNObzihQSchJA1lSkJBw4iZmRnBbtJwOyUmJWUmYAWxKpmjPnpP1tSR7Tf01uf6MnoDNJgx9hvzG6wFrxa42tIkIX5VgupRLi5DbBzECYm7Q3TaU2EiCnmzBoG6MzMFnjP6wdkLZZykuKbI4rqVYaGb+b803pmlgluShu6xz1o1sHj5aLtE31YXudjLh77l0TCaCYeb7MewquqUgmMi3ZSWdNbdMothNIt8qAlZyNSiufpNkQMacVI1rTxHxSA+png5CziFuuOk/5FVOx73gGNyVY9n1i29QeO75AAxuWYPi9pB/zlk4q2rouOM2Bl5eQf7SZbwZNE1j2s9/R2rjblqfuwfF6cEeKKT31Weo/sQXke12Gq++9k3H+SBh1Pi/Q7DnFzFp0afZteJP9O5ZQ9HsE5HGWzz57d1iYgChxOdyQqZYZVC06EjWg2zaVKTiwpzYDuBt03A19mO0dSDn52GUiD58KZk+NB2rboqJLmVgWq02GRW2TEueLWpgKCY4M3lDM6vnnfbIyJqZlfpUksKbt8UPjhxoHuGUjPvKd2n8/U8AKLv0c+z+6YfrwXq3UTpmEfVbHqBj/dNE2htRVSfFU4/HVzIOo6cfY2iQ5JBOMjXEzn2iR37ymLOZMmUKAwMD1NfXM7h/O1oiQrg7Tiwio8UjRBv2YGJQNPYutGSUwc592dXlxHmfRB7GRaGqTjQtQVHRDHbufJ6ioqIR51j3+x8RfPoROjo20t+3L/t+ba0oLN29ZTVTps1n75Z7GWd8BOxFmLKPVLif1GAYygsxgqIQT49ECPftx+0tQXY5cZierBMAkKjwC9rYlhBKOIHHcgRMVRGiWR6HKJZ1yKQmlVHBUloaVtBOE5XmePzkIyPTQzsmBim7gVO2WvTclmNuUzETyRzbpoUR7W+v6X03gsIoy3Y7UjQGw8P9mpatkpecthwbXlKIeZmHCPVn+AIkRckWCUs+b3ZOwADJMDDyrePGk3CgI7u4IJVG7uzHpovt4xWHoAUH6j5TgKdFomhLAsVabGgeO6Yiobll7JYQU9pjFRTbJIaqFdR4rk8/Q+wEVq2RzcGkc77KgRfvpr9zF/3//iU2fz7pcD8DrTvwj5kGv/0+/oWLSbd1EN25nb5Vz6N6/bjOOZZA20n0P/c0wdkLD3nOGWzevJl5CxfhLK0g3rIfd+0kqpdeQrijHoDtf/7lh5IxdNT4v0PY84NrmPqdWwj0LaR92zPk1c4mND2PwI6BXJEMiEIZTQfVqmLy+5BVNbtakGw2iCeQLQIQZ2sIKTWMCyAWQ0qICVHSDOREGs0vHIlUwJZdIUmGmc35vhEkwxxRpPNGyGiym7IoLtOGFUg7Y3lIsoJp6Ngryl5nhFEcLbz84DcIlv+VWKgDLRklPTRA40v/Ilg5ld66taLOxELAW8ncyZfR6w0RLJ5AqLdxRLhYUewY9SaSJJNfMR1sKpGu/didPmqnnEf9rocBiA11MuWYT5OoaqW3eROdvdvRSFBVfdxBhj+DmpqT2LH/j8SjggXz2FN+yDVXPsyzK6dTXV3N+LkfY/srf2LbK39AWqkQrJrGQPM2AGTFTvHkJaCb9LVsIR0VjrJqc7HgvB/hbk+QDtixD6ZQYmmkeJpEVQA5ZaA7FVyN/UhpLatcJ+DCVCXGTDuDislL6Vm9nAP962lBGAYbdkpdtTh9+ciSkiPUcjkxHT6kaBKztw/J44bEwRK/Zn7OqGSErgChMWCamFZUT3I5s0I4AGpzN2aeMNim045UVYqcYfeLxJCS6ogagKOJDJmXGgfHAAyJKDvxEhiqduDqsaIoyWE9/H6VtEfOGnolneOZkAxwRE0kPVdgnIlKORQPtSd/lqHuBgbjbQy17CUd7gfA6Ra1F43f/RZ891sUzz+Fng0rMPrD2AdlfCceR+jZFcSbG7PnMe6WX4t9rhGLjYk//DUtt/8OxeUiHR6k5MyL8C9ajByXGFy7FVtJMb5MlORDhlHj/w6jeOnZROt20fjoX5h8+lWEpucBeQTXdABgRoeQgn5BqKMoEImK8H2RVdQ3EIJEEjNg6XEP0yiXy0qEfG8Gmo7hUFHiVkgvaENJGaTdMiAhGfKIKv+0cxjLVoGMkhTvZ1MBmZIDK5SXtpjY0l7BtmUO+/UYNrJpAlMGRZIoW/ZR2p+5FyN1mLrno3jLkCSJUEduNT3r7OvZ9uTN9OxbDUBZ/kzsNg8eZwH9Q828tOlXGIaGO1DG+Fnn4ymoxuYOYHN4cIYMkh7ANLGlZdS4jlQqJnolruGpVth64AEKnNXYQ2lUXxl51adSW3UKUSOM23WwMlwG3rxKFi2+jo72DcRiPaxa8WOqiuZRW7ECtyOfbY3309p6AwMDA5z1ievoa9lCftVMyqcspbthHb316zBNEz0Vp2zMEjqaVqFpSVw94pmwhVKoHf2QSmMG/ThaRa5erw4QH5ePfTCZM/ymiXt/CNOuEqvyosouqo45lwmNS9CMFKkCF86YhByyjG4qhRmPI+VbkbZ4Chw2YfhBtPSZ5ggHQUpqJGvE9kpMIxUUKRNXWwTT7cgVzEWS4HEgJQ7m4jc27kCtrszOAQS8SOEYipFpe7CLNjurlkDf0whdVlugJCOXlyD1CoNKTSXmhOpchEEzRtQX2SIaakycf6xM9NdrQUtkq2NkS26k0j5CUteUcoXFmfB/hpsgPFbCe8BESlqpRhNSPgnNDSBhdup0r38OQ08xcdGnKaiYQdo/krfAP346PRtWYJs5QVz2kJiApJTBuLt+Js55ZwPR7dtx/OFW9N5+ZLebdEcXlf/zJbyVE0gFTGx9EqZpkm7uwJlf8oHm738jjBr/dxCZntFJPREaH/g9DRvuY+yiiynePCRW/pkHX5JHVAqbBXlZRSyK88V2lnMgaVqOxMftQEq6wXIGeM2PWNZNGLbYT3nlbD7PVORs219mW8M2vOUvx7CleSUMFRKWP2LYR8pmAmhuMyvzq8ei9B7YTHjji9jKi9E+2ERZ70v0dAnBktKqBfS2b6MntBdNF06YzeahasqpuEqq8JXUYjoV1IQpuj1MkFM6bstfk1Np0E0k67cqh2L4DVFomkqJwrQXlh8+QdPK+3OV2RWFszFNjQPda7Pv1dXVMWHCBCorK6madhpV005j1T2ibqCgejZaMleh7vNXEAlW4XQEkTQDtVW0lJqDIaF90dIuNqwqx9XQB5qOXhLAcAsDrPRHMR0qUjKNLZwLv+sFXlBk7IDUeQBTN7L5djMazxb4SflBCEdyrHaZAl2fCIGZdhXDrmLvjpIq9ggugy5x/lrAOaJFl3Qa0+5B94lwvNo7BM3th7yH+raDayxeHzragdbcn7v3oZaXZblB0oUOEvm27NxhSjkiHSUOenDkaMmARNrK8WsOUU+SYeRL+8BjnfJQlYQazynvubpyY5iylK0Z8rUYhMoM6lf9G0W2MXfJV3C5C9AkeUQnCYA9Lu5zsrWVoXVridbvQbY5UJaWYiRThJ54lcEHnsdWUoIkq8gBH0YkRtHi06C2iJ7tK9HNBL5NcXo7tpGO9lN0zgVHcC8/WBg1/u8C9v77l1Ts2kr7luUMHNhOsKCWcbYZFHvGIxUXQigMfhF6MiqKkOLpLD2nUSZWUVIynXMWAD3fgzIQEwU9ljOQLgsgpQ3kiFVZUyxygLaokc3FZXr1U14J3SUecBCSu0rCJO3P9PnnCvokTQhqZEh+9FzH0ggkfRqRTZsZeGY5ev8grqk1lHzpfPZ/7oa3dwNHcdgwTZP777+fzs3PUj7tFKpmn8XM3WcQr/BihiPEY704A6XohW5Rw5EAtT8tVnz91gp3IJQtDDMSSZg9ecQx1nfcC0CJVIGt7/Xbxd4MU2vOY2zBIlq61iEho8o2ampyvdYZo59BSf5U+lu24vQVUT7lJILBCTTsehS/R3iX5jB52+EV8fqeehS/DykviNIVIjm2EADNHcTeIxwYySras/XHoL07V8EvS5ipFEZ02HVmxh4MiTa4TK++qoDTkdW1GP682ruj6D6nqL9BGEDDbUcJjQzdJ0rEwyUH7bgz4wwNjTTgbxNG30C2tsheXkoqUIRiUQmnfAezBNr6hLFP5evYhnKf625I+U18+6WsAxAvtj40IVph4uqUsosEQ5VIWOUQuk0sLhJ5Mv42nbyK6fQ0rqNx1+NMO+ZyVt438rsHMILi3vQ98zhqMI/gsSeQVzmDpKbR/NkfZrdL9/YOo0mXcI0dT9svb0GPRJAcdoZsdtwTJ1E55xJabv/9W7mFHwiMGv93CRMKl1Ixexyh8AGamlawyainPDiT6UWnIQf8mH0iLCerCkRyE43c1IFeW5GNscuxFHp+LrmulwRRmjoBUDxOdL8DyZL7xMxVRatxg0Te0aP/TPtNDJuYyOSUhCFpdN1xO4nt+7BXV1Jy9ZW0ffdnR+14o3hzzJ75P9Q3PEU01k2wcioVM04d8bnN5sIWqMJQZfTXGeOQ2LwrpxJnt+ORAyT0CHX7lzPePQdd11GUI/9tPbvxR0e0/a4td2Ga/2bJp0Re98DL9yFLKuPGLkOt7xgmUmMipSzq2QwHxrD8uMOmkrT6/BMVfhzdUdShJKlCd844D2+nk6QsA6ekKJipFLLbjSTJVi98hrXPlqPcRoTUlcFoNiKgSFLWMTBVCVNVMO1W6NrnQe4fgmqxCAiPseHeFsMM+FCmTETq7kPrG1Zx/w4is0DIhvQz+T9J1AFk0n2Z31DCKu+whQULH0CqSEMdtIiDrPy/7gTNWjjIaZEeVBOg+WxUnH4J3k017F9zLwNK/yHPa88dP2NCMg6SxM47fsHUX91K1/MPEv3XupEbjtAyMDlw159wjhlH5de/AeVi7mz64pFzA3zQIJnma2TgDoFwOEwgECAUCn0oqyKPFpad8FMAnnzueuZUnsOunueYXnwa5RHhLksOB1IwgOl3Y1iTgrJfxNHi80TVjWmTUSMiRGnrjWB4HFnjb5QVIfeFsr24sQmFOHoTpCxu/0S+ko0AaC7rn+VH2IbA1WsyVJPp9cuF/2xRSOaZ2AfFZ6kCa0Vj6ZzHO5ro+9c9pDt6uP+++/joRz/KmD/fPPqAvYs4ZtJlbKr7N0H/GMZVnkShWo4WEN+7ocpIuoG92WJaVJRcjQmI17F4rv0rnhihA3+QDr0q0aDtoNnYjYH4LTgULwXuGsrs4yl01vB0660jzs8wDKaNO48DnWtIpsK41QCFWjHj5Kk8p41U6DscLJ15HS/v+A01Y05iYmAJUsMBUQ2facNLJrO99kYqJdT0rNW87HTA2EqxnU0hUeIWMtNJHTUqqt8BUWuTTGIaxghCHMUqEDN1HTkYyEZJMAzRCRC05sjMyr1PUHTjdmH6xQOXKhb/d+wVzy6yJHrmLd377sVBSh/dL44T8CGl0rl0n9MmunF27BXnM2OyyOFnjpdK575bRYb+wayDog8OIk+bSHiiSN1obgndnsm9CwrwjHHXPCKdl3EG5LSEpzX3eaTGkuyO5lIGGT8hY/yd3ZkaI7HalwyrQNglXmdag9UEGOkUe+7+FXZfHmMv/BLbfnfw6n84UqkUDrcLdIPiL36e3rvuwQgPifEKAzhqSsj7yLEobc2UnDuXtWff9IbjfVBwuPZ61Pi/hzjjjDNYvWIzC22nE1ZChLVe8m1leMdOzfbUyz0hjJK8rDiPfTC3IjHsFmuXtVpRe4ZExfFw4z+QzG4XGufMte/5xEOYEcywh4U3HrMK8w2nAfqwPnG3iZzOkJNIGC4DQ4H43jq6/3Q79poyCi4/n/bvjZz0R/HuoCgwgaQZ55jZVyJLCnJKRw5b6R8ZpP5wjp1OVQVZjKXhbqRSWcY64A216TPkVKZhoplpBj1DJEiQkBN0R+qIpvuZHDiBam0MyyN3AHDmmGtoDK1n3+BKSvNnEtB9hFO9dMT3omLDR5AiuQKvFMRuOFilP5Utwjqt4ipi2iAAL7Tegc0qpptWcy67DjzOidOuxRU1MTp7RtDdmlp6RC98hp9eUhRh/DNOwrgK0gFnNuwvayZqW182+qb1D4jtQThJw50gRR5B+pM9VmZ7n5XwzqQFFDnH8meYmKqCNCSsnzkUEfvlWUY5z03vbOEglD7WLJ7p1xj/zN9SSsNw2bIKeobLhu60IoVpY0Tdj+5R0W0y8SLxedojkSggy59gSmSp33Q7mOpI428PQbzM4jVQTOSkjJLIdf1kKInTPgPbkJzN9WturLZDayxd1APYQyLS4O42SeRLRFrqaHz4zxTOOo6ezS8fdG9fi+KvfZreP92NY2I1id37ybvwBALeFFUXH0N3QqR39lz44SIWGzX+/wV49tlnOe2005gTPJPGwXWEEGG9irxZTJp9CQD2lgFQFfSAa8S+ciyF4bSLiT3z0DtUlME4hk9MPprPjhoRKzjDroww/sk84dkPz+un/SaGw6rSDWqYmtUmKJvIgzZh9B1m1vjrkkHbd3+CraqE4q9fTvPnb2QU7z4OHDhATU0NkyaeT2XpfICRxr+lXTDEvZbR8S1ywGdEpoAck52uY5omu/S1dJrNBOViCpRyipRK/CXj2Nj9CGk9wTHpY7NjheQBes1O+owOwuRCvQ5cFFKKyxGkJb2PpJHL5RdTiY8ADezEqxZwXMknMYciwpkZFq0YLnTzWqndLNWt3Ybs9YDPS2KcqK1RoxpSSkdptrpx4gkR9s84Tg6HEPYZdv8y42XuS0ZwR8kLiFbdTK+/IoOlZ4GVhjCHtQdKzlz1v1mcj+ESz3HraT6qH+odyccqSQcZfxCRDMOujDD+clInHRALgmipimSSnQdS1iIgMxe81vjrThNnj9jW02kyVCVl0wH2QZG3D9eaKIlc5xBYiwfA1SaL0L4bEU3MRBhsQlxKsxwAV5+Ju0M4STtCz9Cz8UU0Lf2m6STDMFDsdkFD7HIw7i/XIbsc7Lvoe2+43wcZh2uvR3P+7yGWLVtGob2KveGVBJzFJFJxCpQK2ga2MjZ1Nna7l1RlXpadDMDVNpSrKraQ6euXk0LSNx0Qfzvaw6QLvYTHir91e64w5/VgmiaR9RtJdDSBAbLbhR4O4yioIDBvCUYkKciAyhxI0T70cJiis84ZNfzvIUIhUbzlT3qxdYjXhIdyFdxH8VgHaby/ZjU8SZ6DR85j0OimIb2VuvQm/M35JIjiwc9wlZuAkUeAPMYxmQQxJFUlqofoNTvopZ1EsoliKqkpPJ3kUB+7kmsYYoB+ushzVDDNnIfR23dIvfrhOfrhTo4ki/y97HaDaWImU+ieFJ2bn8VnL0R1evE7SnIr9HiCrHBPZoxMHYElwZ11qkwDI5W7H/pACMXjhgzjn6KAx+oEiMasWgJrqazrlgEbxv/vs2PvHqL6kSTtpxdSsk5EI6SUjjIYzano6QYYYDreXk2PKVt5eKs8wpRA1qTsaj5eKKR33V25zh8AT4v4UjU3pIK5Fj97yEoxOkV4X9Yhae2X4QAwZbEQSRRK2CIKWncPPRtfAECWh3s7h4Ysy+R/6lyiKzcR/PiZaKaXpotGC4wPB6PG/z2EJElMLl3GygP/IJmMo5tp8p3ldGlN7G98nskTzsOUJdS4jmkV7sUrfTj6h1Uyu17DIOa042wSOcZ0qV+Q9mRCetbDbegavdvXEt2/Fy0awVFRgZlK4507B6k6j95/3w2ArbIMIxZHDbqJrdlC6OUX0MNRQKLsGxej1s5EcruI7ex452/WKF4XqrWyjIXaybdKq01Ny1asD1eae128RhL2rUIxVWr0WmqoRSdND+20UE+AQiYz59CHliRceEAHJ8UUSMVMNGdiYKDINugHzCJqmEiYAWZKizB1hW6tGQc2ZFXNUesqyghn4PVeZxzogVAz6wafYziOG38lrlJBqqVkqHutvL5kt4FlsM20NkLuNjv+sPSDHo2hWPLAZlobqadhmiNZ+1KpnKMwFINiH6liH/buISQdUnnCAemZoZK/x42nxYqISGnkSBxtq6gRkJbMRvMIR8BQVUwp13efKJBwd5vYYuLvojX9SH2hbFdR32w/hpVy1MtEEd/QJHFd3oacc+HsF2lCOZUL9ScLOIhh1D5knaJ12fZBSAVFRCFeIqHlW3wDCYuauCCIYnNh6CkaGxsZP348b4a+Ox56021GcTBGjf97jFea/x+1nm00xDYCsCP2Evmuato61lJRMJuAtwI5niZVJOJlsWI1S8nr6Eshp4wRLH6HQoZ4I5kHRmcfLcv/Q6yjCXf5WOx5ecT37UPWoGPjOiSbmGACC45lcO2r2THWrVvHD37wA0466ST+965/0PHreym7rgzPnFlEX91IJBLB6z00Nego3jnMdpzI7tQ6PHKAIrMMfWjorQ10FAz/a8dRJIVSqiil6oiHkSQJhZGr9h7aCdFHn9lJr9ZJC/Ucw0kE9YJsSD8biXiT68mw48lWrLraMY3CZAHbpbXs63qeubaLMJx2TL8XOgRhjqQoIoRvGf+s4X+9Y5kGssOZ6xzIdAfAiPRD9jPDFJEGBLOnw1IcHJqcz2vRP1mha74I6RZtNnD1pJCLxd+mnGPQS7slNJeEYp2Cq8ckWiJRtE04HakiL6naIL7t4hrzdyp0zzv0czw0UUMNKdmxFUms6lNB8bnmMrOOAIqJoYi0AojwfoYDwD4o6geGJmlZpwCg6xgVUCko+zjdf/s76fTBhEejOHoYNf7vA9TaZ5MnFbMh+hQA/fEDAGzbcxfTaj9K4ZAPeybUX5kLP2oeFSVhkLLUzjS3jK8xRmSqKHQxVMGm5e7RieQZtD/+AKHt61FdXio//2WCHtFBsP3X12AYBrOUxSTSMW647euceeaZI85xwYIFPPnkkwD8zp+m/Vu/ILJ6Hf5TTyKydj1Vl32cgQcff+du0iiy0DSNWbbFDNJLO00UKZVMkY7BnpQ4Sib8yHG0nIc3wFTmsZpn2EzOKbWRqzlAko84guHBh4cAsWQ/+dIUpnqOZWtkBW2xvZQ5ZyCZJvgtY5hIihRARncDRh7rtce2Cg+zRt40ctEBS8lzRAEhDNvWzFJ8uzviGKqbeL74rPrxPkyHjcYLXz+fa4+I81CtXHxmNR+pkNE80HWMnZINbywLHGgwGZwgYaoWB0KvDaMqTtJqA5IMsYL3tEpZByB7HZqE4TRHEI/1zdNwdKrZsWNVMrrbQDJFZCBVlSLd3cfAo08g+3xMmDDhDc9vFG8Po8b/fYCnB27DowYBmOBfTF14NV57IWCycc8/mFx2KmMScwHBmZ2ZBLzt4qG0hzTiJTZSPgk5refC/BJ4WmJ0LfHR9sLDhHdtoujsC2i655+4M8qCFmRZplQSwkOf+9zn3vB8J31pM61qEkW243IX4qiuJFnX+Ib7jOLowDRNLrzwQnaxARceauWZjGEy6AaGkcoZk3fBGOdO6t05lkfyEzDzCQ0rDtzGahaYp6BIarYIMVOPkC3Ee4NogCRJVDOB3eYGmsw91EQmUWofz/YDD7G/7UWm5p1Evqc6y9sfD3cjmzJ22Wndaz0b9pcUBVM7+BjZz4d1VEiydEhnYQSSKXA6UHqHcNtk0j7h6PQsLMB/IMW4ewcB6J0fpG+GM1tZH9h/eCvmrmPs2Bb3E405aP9YEACj34HPepQT+RKa28TTYNH9TkqhdDrRvAZqJHeusTKrhVIjO/e8NvyfChpIupRlDe2bLf6veMS52gs04q12en7/L4xYgqIzz3tL3BGjOHyMGv/3Ccrdk6kfWktdeDUFzmr6Egcocddi9+RT3/0KqsNLWf4MnH0a0WkW41ZEwaZK2d79DNztIj8ZmujFtMnodhhq2UfejIV0P/bA657Ds8bh9Vs/a9yHd8kxhNevwfOR4/DPXEDPI/eza9cupk2bhtvtRpZlDhw4QF5e3lu8I6N4LZZJF9FKA3vZwiyWUCSVi+VnxoC8mwb/PcIsjuVlHsOFl9ksYS3Ps4fNTGP+QYV/I+oAXiclBlBmVhOmn3p2kCTJNGMepd6xNCd2sK73IcoGxuInSJvRSMQcBGC+bRlBikaG7zOyuq8bDXiNMTONXD8+ogWTjEJgZsWcSILVOuhsFzl++6CNVNBO/xzRFqjbhbGNCuoCohU2UsVWwaNqUFHeTyRhFf0aMqYuUxIUhaFNO8sx/RozxlkMgpXQMiYoDr0hH2+rlGPtGwbNa4BXQx6w5Uh/HAZSpkPIut2JwgyjIaBJxGrSuJvF/KWWx5BkiwBJMQg9+yLp1i5Kr/8qHb/4zcEHHcVRxajxf5+g1jefAnsFO0Iv0JcQYf+uWD3Tx19K8kCUHU0P4XUVEWzMI+ASYf3BWoX8vQY2K8RnqBLhWi++/dERY5etjFJvU9H0Nw7zHQkKl53LgS07GfjPY+TNWAymyU9+IiR8YxYhysqVKznnnHOO2jE/7KhjGweoo5yxwvB/CGGXHNSYE2mlERU7k5nDLjZQZlaTL5Uccp9DdQMMhyzJTJGPAUOixawjqocp1sdxjOdMmuJb6Ug10EEjDnLttvvTO5nATFx4sivUEamH4cfPRgaGhfUz7X9WOk/2+0Sb33Bq4EwnQAJsXUMY7pGtOu4uDXsojaFK6C6VtNfivvdLJC1KXjUGvaWlJEuse6BJqDGJpnLxua0sxtIx9cjWUn1IcxJ0xhlMjGwtBjA1CUevRCpoVfd7RYuwadH3Zgw/gGEzkVNS9jN8GmBCWiZWk8buTyHLOYcs1dFPePlzFF6wmMIlARY8/R3WnTHKEPpOYtT4v0/wVNvvAEGI0q10s6nxLgDa9r9KxbKPse/h37Kz+xlm+04FhPHXnRArUnAOWAQlaZNEvoySFCH9vG2DdB1rrbwbFbTwwFE7X9XnI/+i8+j7570kNu8CWWFj3mQmfOFGeravJHGgkWOPPfbNBxrFYSEcDnOAOsYxlbFMea9P5z1FDZNop5l9bGE6C2ljP9tYwxLzDOzSG/SyvlFKxDAoNEtoo4F+s4v+eDe7ois5w3UpY2yT6Eu3so012c176aCXDmQUfOkAHvx48IlUPQl0dMBEMzUSZhwTgyksIiCJ4j1JUUT74Gvls4e18ZpWwZtkGKAqyIqc/dtucvC+RxFBZ5ym6jRy2oa/weoUGLARrTYgz1pEDNnQXSZKPGfkTdU6f9XEkA1Mm8WFYI0rO6xojGQiSSa6IYOW5sDND6N4A3inn0nvPx/DM6kcznjHLm8UjBr/9x2earqFU2bm+lQHIk0Uv7qF8o9eTs+Kx9nQ9QDzd34Sl91P33ThBCTyZOIFEmpC9NEaqlgBuLodxIsgmQyT7Gyl+KMfP2rnWX/9tYz7za/Re8OEV7xI/pKl2Dw+6v/+K5K9nZR99NOjIf+jhFPlj9FiCn35Ako/tBKkGdglBxPMmexiPYWUs6FuDRMmTKCTA1TzBkVib5IWKaRs+MYcL58NQFgKsYM1BMgnRgQ/+UyUZpMwIwwxaP0L0UkLMjJ2nCgoSEiopg235CVihtiYfJbFznNwKT5B0GNR+orDWUYznmvLzHYXACg5HQDdbUfz2rIsoKIff5gUtyHh6RSvdTs4+yWSBdZvxqdh5OmUFopOgnjahirrrO8S9T757hjtA4Hs7VKjEC+22oxnxjHTMmZCRXbmVBAzxGCmzcS0Z1JQIDl1SFstfDZh9D0eUTtht2lE4w6kdJKOPz1Ouqmdsiu/TNd//kl8n6AtTn4vicPxJsQko3jLGDX+70NIXg8Tyk+mofMVDCPN3t6XmNBcRun8z7Nt3V9Z3fR3ph5zOcG6fEJj5SxhRgbJfIhXpVFjbnQHxGMNADhPOvKWq0NhzpdvAaDxD9fC13Oym3OvvAVHYRnJ3k6Gdm09Ksf6sONU+WN0mS3sZQslVOFn1KECKKOaTprZyTpsNhuFlLGPrUTMEFOY95YcJEmSON48h+2sYZBeViK6bzChiHJmsJAeOtjOGtJmknyphDKzmn3myN/6qfLHgJE1NOFwmMJAEdtSrzLBPocCWxWmriOlc0bUTCQEIyCApmdz/RnWP6lfGGy1z0SfWIZzn9AFGFxSSSIok7Z0OpSkkN0GcPaZYED+dmGEoxV2UkGDAaeIDk4q7mZtVw29HcLg97u96EPiHHz7VDQXJGbEcW0bmQYwEio4DCTVxMwk+DUZKZ2RDBfv2bwiSqCoBl5XkrSWq3GI722h8/8eJT3YT8l5l5BqbxWGX1Fw1FSOGv53GKPG/32I51Z9j1OXSBSXzGbT3juIx/qo23APi877CR11+5h66gx2bbuNOakvolSMIRkU+0VrdOSUjO7XRg7YJLyD/Mq3v2JMp9MM1G1msHM3nrF/AkBy2nGOHUtZ4XxqFl5EXaQPz8QPd2j6aMEwdfayhWIqmM6CD/2qPwNJkigxK+mnm0+M+QIzWUw7+9nDZgoooeQtcAsAOCQn88wTaaUBFx5kZEwgjyJkSaaEShTpOFrNRlrNelpp4Hj5HF4xcm2uhyqc9fv9THcdT31iExsSzzDWnEmtZ/6IEkApGMjpAMhyNhpgBv2i5TB16Cr+4MYeME0G51kCYQYkghbLoENCMsHEINrZTMKQkMrLSISFYW2y5xHq92SNtGkcmlUvPjOOHlNRhlQMj5hPbL4UpglaQjgLskPDSIvX3sIYPmcS3RL/6ukO4LBpuNID9DcnaH1qAwPPbsE1oZwtr2xjypQpOGvG4KiuIdl6gOAp097wexrF28f70vhPmftJmDUOe6CA4L40Lz35zff6lN51PLvquwAsnm+wduPvyC+ezKqHv40kSZxw8+k8/YUn2dl5B/PXXsPgTNHvmx6TxjAkpLj4WlMB8MzsJ7qvE9lhQ7a/va971qd/wp6Hf00qcnDtQHTPTvpty7EF8vGMn4h/+qHZ3EZxZBikjxRJyhkzavhfg3xKsONkIy8zi8XsNjcJsazl696y8QfhWFRR+7qfF5qlFFJKiiRreJY15rO0trZSWVn5huNuij3HGYVX0hDfSH1sI3abm7F20cKbrfq3VvnZqn/AdNshpZGcLNISajSNo3VwhEjQ68E0TWI9bSQ6DtDy8v0A+PYfS/6nzj3k9ja7hm4l8CUDYpOTWNkFHIEkhi+F15WyTlHHNCXC5BwALE7/ZFLFYdMYGPBgahr6zS+wY89zmJpwHGSni+KzPkr7o/dkCybV8gKiazYBUHna69//URwdvO+MfzKZZN/W+3C0lxGonclgZ4LFp0RZ/fwP3+tTe0+wev0tRKM/we12Zyf/XgqZdP3pbPrSv+hyb6d8x1wkzWBgmhO1MIFvrfDqDRskkjZsQTdGKk28+Y31wE88+1fYBlMMRTvokTpIyUkMXcNXMpa9y/9M3VN/yRp+//R5hHduHpFHNdNpUr1dpAf7iO6vY9VZx7Nw4cLRft23iGQyyXbW4MZHPofot/qQwyV5WGiewjZWs401GIbBjBkzeHn5q2++81GAXXIQMAvooQ37MO7/N8LTvX/h6aef5swzz6Qv3sIYxwwA4mYEOWHHiXPE9qbfg5RMI8WSOJstkS6fU4gEZeoEZAnD48TXILp82k72MbDuFWLtTcQONJCOh7Pj+RcfR/j5lfjPOhE1z49d0am9TWf/VWLFn4iqVC636H0dBuAguTgi/tZlHI40BZ4ofVFPdkyHQ4OeTrrufhUzHsc1uRrPwmkMvLSToYZeBlbuw7BUEv1nncTzP/wVEydOPEh0Ju+UU4mu2YRv8UI2XPTbw7qfo3jreF+q+u3atYvzf/Z36v59c/Y9r6+Cvt7Gw37IPgxwlARx60UcM+lyAOo+JYw/QHC5m1iJxKSz61HSSZ76+D2ULamm/sGdrzveolO+y47VfyMa70aSFBS7Ay0ZQ3V6SceHmHTB1YRb9+JYegy2/ALqvn0Nmqaxd+9e7rzzTn7zp9tJDfXhmTCFaN3u7LiV006jfOKJrH3wO+/sDfmAobm5mTFjxlDLDMZIk97r03nfottsYxurWbNmDdu2bePKL1zJQpbhlQLv2DFN06SJvTSwgwnMPCjv/2b7jg8uYH94A2WuCaT0OH2pVvJd1cyv/TQA0mAkJzvsdSLFRKHc0MwSvHsH0PPcQsIb6DithNJXBuhZIOpBooEke2/+No78UtTaCtSAiZxfiHPKGFSKafnBTyi47ON4F87DVpRgzG/IqgC2fzlFMi5W8UZSQXFpqFaxXsb4l/iHrOuQiCZtDDz4Mo13rsVe4EEOBojvaRHXoMg4KvLxz59A/snT2X3VX9/03nR0dFBcXDy6YHgb+K9W9Zs6dSqO0nKmfPXnyOvqadz+CJGhNsoqZ7HqlYeZNGl0IqyrqyPVHcJZXEi8RKwW1IiCbrgo2DwyPKzbHFQsHcv+x/bw0X+fxQOfevKQY3ZGdhGN9zBz3ufwlYxjoDjF3v/8CleJCGfufei3zP3iLQwNoxpXVZVp06bxy1/+kmf7S2hZ+QC9u1eJz4oK0Hr6aN35DJ31K1mz5mT6+vooKCjgI7f/BVtBAfbyMhq/9o134A7996OyspJ8imlkF2VmDQ7J+eY7fYjh9/v59Kc/zTVfuI5NvMI0aQEF5jsTMdnGanpop5yx7DW2HNG+kiQxqfQUnLhoie1CdXopck+mP9SAmTF6wWH8+pa63dDMQ/MYZJAMgBYdYuCxZwB4+oH/sHTp0oO2c9/3AAP3P4bLVwbTy6n7gs6Ev6azDsBrYVq0fXrMhm7T8dpE2L+hr4C2v75E+OnV3PCtb/H973+fmf/6Ng1f+QNmSsM1fxrR1duO5NZQVlb25huN4qjgfWn8AbbffE329bJjx/D8qu/R37OHWbMXEo8NfOjzn1VVVcgOlZQnQsQeweb2U7jVoGeeRO8i4akXrlXY0y0mv1O+OpH7t7Ty4o/XcVntZ5EkiTsW3J4dzzRNIj0HcLkLyC+YgK7IDOxdhZ6MU3XKJ7LbbfrzNbweUnkSxWdfmDX+Wk8uzaC4PCxevDj7t2RTMdMasttN6ROv0vH0gx/67/S1UBSF8UxnPSuIMYSD99D4vxe0wYcJN8JQdnR0MGXKFGaxhD1sYovxKvOUEwmaRUf1vDVTqBWWMYaJzHpLv9un9v6CM6bdSKVnGQAt3evpHdyL4bbIeQbSELO0de12TK8LV5fVBmhTUIYSmHbhKPhadXZ/xUfizufoWf0MEjJVx3zkkIYfoPDSj9N50620/uEWCj/7STwnzKT1Oh3QsSkGCUv3e/J4ocSzd2+F2NGpM6agnzKXSCO0NXURfupF8j5+Dj//+c+pvunLtP3gdkyrgyG2ZjuhUIhA4J2LwIzireN9a/yHQ5IkXO4C4rE+vP4KDMP40IeFnE4ns//vY2y94SG2PfwzSk/4CFUliynaaKI5xb0JnxnFJpvEhhw8vX8eZ1/fzh2fX82zX36amlPGUPHotzDC9SSbOohubSB1oJvJBSfhbOil+dQAHY89ATaVyLGHd6/Lbl5FwowR/Og5KB43235+C6f8+DbMnhB9e9aSHBTKYSXLpqIsO5fwUy8QeWkdXc88zNKlS7nttts46yPXk6zy4qkYh92Xx9bfvr6z8WGAU/ER1Ast0pijDMugC0761+eDl1RbVsPeSCTfdw6ABz92nFy67LNMkxfiUQN0xlrJdxRzwKwn31WFEYsdFQcmaobZzloAghTwgvnW5WSf3vnT7Os777yTyy9/HE1LoKqWk+d2kS4Sjo2km+gO8RzKsTQSZPv+PY0hwk+vZ/CV5RTPPonAKSejuDy8Hg7c8H2qnTIt13yPyPr1+E6dQnxIGHxfMI4nIJyOpKYiSSa4xG9PseukdIW6cCET/L2EdraDIuNZMlvcmw17MHWDym9/krb/ux/P4ulHlCYe87ebiG3bjaQPIAd8OCdVs/9/fnLY+4/iyPBfYfxZtYUpyz5PMjZAsHjCh97wZ7Dxy3exqPxr7PvBejqevZ+BwCv4CmsonnMKTn8h/qc9OPsN8q2qDvf3xjH1OwE6lu9i7a9WA6sBUAsDuKaNYaayjLxWEz3cRnuLCNfZigqRkofXb9v7pSU0/fFnDD7QC0DFnfeyZcsWzvz8t+nduTK7Xddzu+C5XSP2ffnll7nxxhup3/0I7AZHfimTLv3wdXm8FnbDTpgBooQppPSoji1nKspVVVDTvo5RlL2eLJuclNYOKV7zXiIjzlNvbkcz0sySj8Nms1El1bLb2EC/O0xeyvWGDs6bwTRNWmmkhTrSpJjKfEp44+r+I8HChQsB6Nc6yA9ORIkoSGkdW08k6wBkkCp24+iKWudlsLZoFaEHVlA++3TaNj99WMebN7+Dsp+dwbrvPE101X5c8yYCMNTmo3qipRB0czHOb7cdcv+6cCHy4kLk/2yh/88PYn7lR8j5JZjJNK0/uwtbeTHBC888oqiI1ttPz+//nv278PPnwf8c9u6jOEL8Vxj/wxWc+TBizQW3Mqb1Zmw7piAfWEfvS7voO7CFwrknUjJ2MU58mFJOaKN02RRKl02hY0MnfXUOnBNrcY7TKQkMcWBvCdI4oZim3i0qfBvXrn/TFqbhKPjIxcRfeYBkfxcul4tEIkHZhOPRfDIYJraYRG/dOlKDPRTPPAnH3KmgSMhOFxcvXcBzK7aS9krkTTkG89Atxx8qKGVFGO0G9mAhctoN+rDuCl1/WwZNzgtaL2Qkmw0zHsdIHT39h3cT41yzcSd8bDNW0W0KkZpyo4ZOmtnY8wgL1NPw4TvicU3TpJ9uumihnSY8+JjCPIqliqM6L02cOBGb7GIg1oLPMwXV40CJiDC/nNIFd79fTNdqTKzE48lBtjU9QCjWTtUx51Iy9cTDPt5Dx/6BC/gySmGQxJ56XPMmYpomWlcPTBy57fhKEbELJ5wkNBuFLuF4TKyVGPrkx+n62+386U9/oudPd9Fw3Y854Z9/Qa0OIqlHtkjT9m9FUhWO/eenefUT/yCxt/mI9h/FkeG/wviP4o3R9NXrsq8XPnQ12kPL2XbfCrrXPY87WErRmHkUj1/Ic/snEfTESfUNMRAJ4DupCMVx6HByuqsPVIWKiorDPo/Nf8iE6P9AOp3GZrGVbbxrYXabeV+4hYKFS9HiQ+y67eD2zYsuuuiwj/dhQKfSDpj4KyZhBCuQUhY3umFgeOzISZFflTQDOZrEtFkiM40tItQNyC7XYYfrZbsdFAW5qEC8YSnNmV0imvN2nI0sjiD8PkKWF5GCEENI2XFMLY2kKJTaxtCWaqTZFPSwss3OHHMpr+qPU6/uZp5yHMChHZzh5yTJaFKaOmMrPbSTQhjhYiqYwSKeM+9/a9f9RtcpSTgrawiHW0h7ZWw+G6ZqseWpMoZNxhYR33UyaKNxLnTceR/pRDelV1/FgVt+f8THvH/RrTiidyApdrTBGAN3PUJs3VaU6y4geMJ0iqNpuu4ak9UOiY2V0R1Qepqgmo6k7eSdWUWsYTFfvvpqft34OMWnTaftB7864nM566WvMvjwK8iqjLssgGvOJNLdg0c8zigOH6PG/wOGtRf8Fi6A0O9C3Hvvvdz0wE+pf+4JDmx7Av9L4whPNuhauR8ME9VtY95npjLnf6axoacGd3mElK4Qb+om/LQo2vOOL6GoXKVt2wAoCrYCH9WfWkT+sRNYddrrP+QZw/9abPzrhzuHf6SIp0NISHidRUK9166QCthIexXUhEHKJ/LDru405LuIVIj7rszIw26pPcopE1s4he4Wj7u9O4qpypgpiwlSkjBL85Gsv2Njg9moi6yDszOGsS/XK/5WIak2ZGcuhWTE42+quDdcEle225HcgpYW00RyuzD6B1Hy8zCqSpC7B6mIzmJb/3IW2E9lXepZAH7+859z43e+izS+HEmSMBr2jzzEsDSiaciYhs4+NtNOEzVMpIBS/OSxwnjoHS1K9RTX0LP1JbRUHFDRXSqG5QC4WsLoXiepdIRtG+4icn8rss3OmGMvpiA87i0dr66uDj0eZeiVVQytXI2p69iqSuh+aB2OBXPpXOQmXmrif1Z8R9ExJkowxeZdY5gztSk7Tt4lZ2MkUzT831OkesJw2pGfS6InQrJHRBv3/HUN8c17yfvEeW/pukZxeBg1/h9QBAIBrrjiCq644goW3fUF+tY00vLsflINGqWnXICrvIZ05CXW/mETzY0Ggc/WctyYJla1jgF/EO+ccaQ7+3FWFYAWoujkKWiKk/j+Tvb+6GGKlk2DNzD+o3j72LJlC/v71lDqnYwSihMv8rxhKkSNpvE3C0MZqXAQLxBGzVAkkGyoCdP6zI6hgCpax1ESBraoQdpjUcI65axIjClLJP1egmmrvdYw0HfsPaLrUMtF+5aZ70f3OUGSULbVH7Sd4vWiR4QBkO12kOSsTK7ssCH7vRC0RGecNugdRM4PgtvF4FQ/tmovbr2EvMc2syG9ggnKTMZIk9lkvISJgV7gRZIklN4Aekjo2UuqDaW8BKOnj0G9m27zAN20EmOICsYyQZr5rqUd/fMW0LP5RTpefhjbyZ/AMaAdtE1Hz1Yigy2Mm/dRtr74D7xe7yFGOjxMnDiRBTccx7YnelECXurve4ypX76CwceXk+q34wtD/HXKTDbvGoMcUfjEKa8yUOOGYybzn58GafnnCnZ+cyfTph0ZPW+eX/xu3fOn0f7sXopOm8HYy0Ypwt9JjBr/DwHWfPKvLC25jvTcU/HszZEk1Zy6FPf4Evbd/DSR3hR9V09El8tQfC7G/vBTuO0ixLuwuInN/ZWEE05M06Th2tsY3NT0Hl3NhwdXXHEFWjpObcVxIMs4emKEJom8te6Q0O0KalxMmrZwElN5d4ok1Em16PVi9ZxZucsuS/hFkrLiNFJekHRVPjGvmGZcLbnogT6zFiUUQ9LNXB2DaaL0WsQ2VspCybPaxOx2cDow/OI4UkrDKBaEE1rQiS1q4OpKEC9xcozndOoTm6jXdtAvdVOqjKNf66bfHcbjK8UzUAhhQVRDnpf+rr20JvbQzn7sOCiglMeef5iTTjrpXW0/dTrzKDrjPDqeuA+vcSIldmF57QMpEhV+ME3SPQaK3UXxuEVvy/ADyLJM7fmT6awVSoilpaXYykowU2m07l6gDN1h0nRhht9XwzRB8Yu0ia45aIoXMN0nigKP/0otTzz+IsuXLz9i42/3O3BMGkdsvSAh61uVJtq/nOJHuun8w23I8mgB0NHGqPH/kODFU24+5Pvzk9+h1u2l8eYnePjSvci2J6g+eSzexVMoLIyjOhWqqmF5aAp5XmtCNnWCEwrfzdP/UOLOO+9k+rQZtId3MqHweBJlnmwo34hL+Da0QlIs32PHjMVd10dojuB1UJImGRV1yTAx1Mx7EC2VMWWQBsXf9iHxf81ttf7ppogWICRh1QT0zQlaY4F9yMC05KTVmI6zO0602mNtLyGnxXiyDo7+XH59aFIemCam1TmQmuTCHjFx9Yht5JSBlO9B3teCXJAPHjdGQIT5dbcNU5ZIBW24W6NoAadwHIBEoR1XVwK1N4ILUEpKmNA6iwKlnM3JFzB1E0mS6ezfQUV1BardpM8/QEKP0tb7DFFjEAmZKczLaiicfPLJR+U7PBJs/c01jP95GumZR4g17CU1sRwAV5uGvT1ErLYAl68YPRUnIcWOyjH/vfBvkCvJYeIZbrr/rJDatxVfdz7NyQ0onRq+WfPQxzspfsbO0m+uym4/mHbxaq/g4bfbdfJnlPLSSy9x7bXXvvZQb4j/LPorJedcSfdewQJoRKLENmwhtmELvrUbiW4aVQk92hg1/h9yrD/zZ3AmRL4R4fjbPseBNT20vbKd9PLH2WFt03HM10h81s2g1TIQaQvjP3HmWz5mMpnENE2czlHGujfClClTcNnziBuR7HuSAe4NTaIQT9Oyoi6u1XVgU/HvEI90eFo+hvV0ezrSOFvCxGqDYts+Cc0BulMY4Uipij1qoltBIUORkS3D6urVkUyIFYkUgmSCLaKTzMtNHYZNwVs3SGRC8KBrSHvVbOGaYQNXl4Y6JIx9rNKNoz9FvETUAXjaRGGdMbGKVNCBYZeRU8LZSflVUj4JV79BrNIDpom7RdwX/5YwJJLgdqH2RohOK8aTTJHfKzPbtpTN6RWYGITqt2AfSLGlZTVpksgo5FHIBI7lme6HKCoqOuj8T7N/UhQXAssT/z6cr+1tQVJVHBUVRHtaSSyUKNidRAvY0b02EgUqRko4WVIo+o4c/5VzbiWwdCV9971A00/G0X/9AwAkWzdwyk+OY/YNMRTJYEg/+NmtdvdTXuvm+XUrOeWFa3n+pF8f0bHtRk/2ta2ymHSr6DKIbd7G1J9cSGBODavPvuVtXN0ohmM0ljIKALxeL5u/fg99d68g1dbDrl27qDhPGPhtffcQ2KyTSqkkwjpGPEUy+dbCofMWfQWfrwCvJ8Dk2vOoKlnAsoX/ezQv5QMFj+wnFGnBiAzh3tAkDP8bQOofROofJLCulcI1PRSu6cHZPgQ2BUdfCkdfClvUwNOhEdyXJLgvSV5dAn99hEBDkkBDEm+HRt6uGHm7Ynh39eJqjyHpIL1JbZ63bhBJB1kzkTWTRFBmqNpGIqiQCCoYikSi0Eas0k2s0o27Iz5i/1SenWiVh2iVh7RPJeVXkNMmctok7bUiETYJ3SYhp0xShW5She6cwI0FZ0ccrboIU9cpUEqZKR0LQDTWzYGWV3BLPnbu3IluavSanWw2X6WoqAjTNJkrL2WMNIXe3t4j+6KOEuqvv5Yb/udyQq07SUcG6ZsykmNj4MA2bE4fDnf+64zw9qGWj8VMptFDOaczvKONRz52H+vvbQLApyToTXk5L38zy4r2sKxoD3HdTlefgs331pz6ppvuY84coQbqXjiN4m9+Hjko0ly7v/cQ9f+3/O1d2ChGYHTlP4pDYsqUKUz6+imULJvM5m88QOMTf6Nw8SdI1IseaueEw2sBHPefn5J8rpX49h0YqRShreuyn+1teAyAUKSVu++ewsc//vFDjnHmxG8BEJ4pVmYr77/ukNt9EJE3/yS6X76dVb33MqPyIwTMYO5DVYFMfj09jA72HYQaN7ENJnHuF9TNyep8YhUu1KgIG9giOrpTrCnSHolgfSqbBnAc6Mfs7Sdy0uTseLFyRzYdoTllLBp5NJeEqUC8xIary1KzUyXUpPBA0l6FwIYOsW1ZEGUwd+1KKMbQtEI8MydibtuH5jAgAS7JSyjZn+1ESafTLHQso9/sIiqHGTIGSSLGWbFiBRdffDHw7qz4h+PrX/86P7rpJg6sfZDSyz5LXp1MskjBUCHS34p/zFSSJe+cwJkaFKx8PXc+S7DUwQUPX4yW0Hn0f7ex/Ja9FJ48BYfPzlxfM8+GphPVhIMSah4guv0AZy89l7uPcNU/7ccX8J1xF7F8+XLGXnAaoQdeAF7gK1/5Cr//vWhj7H1hN52dnZSWHl2yqw8r3peqfqN4f2HhD5ex7gfP454/E+8Jx9D9f/+Poi9eTvef/vGm+/pPmc/Qig0AqD4//uNOoP+px8XfqhOPswhFttEfbiSYPw6XuxBJNxlbczKDXfvo7t9JIj7AUKoHuytIKj7IypUrWbJkyTt5ye8rlF72GQaeXU6qp4t5Ey8n3z9GfGCAHBU5fykaE4VzFrFKYmIJzjorjGpYS3bZammTJbTSIGpdq/W5CR5XThfe687xBcgyqSI3trA4jtLUSXx2Da79Qto5PLNIrPSt8Lzrld20XSEiRqVroii7m0nNGQ/kjH/4NFHFrcYNbBENe+sgAKnyALa+XDi7d0EBtrg4p5RHJhWA/L2iAt5d34+pWt0JfhfRShfeZrGv7lTpm+6ieGMEKa1jHGhlx8AKOrX9jHfPI66HiRiDxLQQmplCxUaeXIJb8uLAxT59My+88MLrcuO/G6g4/1LaH/k3lddcT1AqQ00AKZ1t/7iRvAnz6N216k3HeKso/cYX6fr1XwDwn72U0OMvAEI7oXJcDcHJRVSeNpmzPu5ny1A17b0Ouu5ZSfdDawlWeVm3fAO1tbWHfbxQKEQwGAQEqdKTTz7J2Weffcht165dy4IFC97eBX7A8V+t6jeK9xde+faTOH7gILZ+G6gqzknV9N/zIHuuvoHJk8UqLhKJsG3bNmbPno3b6sXu7+9naMUG8k87i4LZx6E4nCSkSNb4l136eSqjY4gVSpj3/oVEvB9NS5KMD9LesQEwkZAwsQxAfBCA7u7ud/0evJfovPPvjPvpr2j7003sCD/ChGs/RnxgIvk7wBEW99o+4ME2EM/26tt7YxgBkR+WEylIpiFDbpNMoQ5FRAU9gMMONhUsQRYGQlAk5GElTcPeH0ceskRlVBV7KMXAMSIKk/fyAUin6bpgAr4DhyYAcuywmNp8XiS3C3tIHMe1uUmwFFrb2Xr6QJKgIqfEF3h6DwCRkybhHABX06D4IK2hFQVRB2IYDsWKOIjpLJlvJ5kH0Uo3ntYYakERM21nQt9yGmKb8Cp5BB2llDjHUyiX4zP8SJKEWVtF05bHkJGzv+v3Cv4ps+hc8TCxVRvwnXwuzn6T/SvvwdBSpMP9pFKpd0zeXIvkwv2+GTlDW1ZWxqIfLWP7bRvZdvMLRFcVM/bGUhq+/xCxug7KLlpE6cWLjsjw67rOrFmzAHCWBwGYPHkystuBYckYZ+A9ZgLz589/G1c2iuEYNf6jeFPY7XZKL1lC5z2riK3ehL2iENnjZvbJiyk5YwZuh07dvTvQ+0Url2/xVH5zs8kvrhKTfvVFxWglCSCBOazdK+lqYfAjBWg7A/h/cgV+ILBbweyPEDqwE3sMxugTkMIxdnU/Q1eiAS0d56t/vZ/zzz//3b8R7yEab/wmM/N3s+8nj7Dvxrspv+o6wH3QdqZdRUppSGkdLSja4uRkWhj3TARAtyIAhtViZ1MxHbasdKyUTCFZ/P2614mcOrjf/FAYqrbhdjiofESowRFPgMuZHdf0OJFsKq6tB8TnqpptCwQwo1YFe1s3yBIF2+wYtVUAOAbS2HoiWTGbdJEXSTPQ8twk8m1EyhWCDdawcQN7SFxjtNJNbK4XT2cB03o+wzRENwNWC5+kG8j9UQyvA1NR6JO7yZPL3vPQcu1ZB2hdO53Q9i0Un3QOodY99NVtwOYOEG7bS8H46Qzs34WqHv0pXO8fzL6ObNg44rPyY2twz5/Ejp8+TcNze2j/8kMkOwZY+eLLI1Q7DwcT7vk+TV+6BW1AOBvFP/gaAOPGjaPoxEl0PSX0RWb+75ns+OWzRDbUUbp0IjN/eA7PLh0t/Hu7GA37j+KwMO+pG+muk4ht3kX/P4SSmWRTMNM6kiIhOR0YUbE6lBw2CgogGtaZefWxhOedRKzL4lV3awze9TDJ5k5Kv/EJFL+H9JAdd77Itca7PRRsFBO3s1/HlCV8DcJhkKJJXuy9g2RfJzXVS6mpPpGXXvnBu3sj3mOc+eCnefaTdzP/izPpWXIBhi4Mq5FSqHpIxjEgVt/qQCxr/G29UZESsNoCSVoRgEzvtN8rjH/aotANR8Bnte5ljH/GUdBNpL4BCFjzQDIpxtMsx8JuyxpW0RSuYFoRCGQZTBPDKVaskmkid+Rkn0mmiB8j2Opcjf2g6xCxBGwK8kAGw+WwzstGKiAcB90uMf7a3WzqFBoU+X/34N3bT/vpIoLgb9aJlCm4u8U52iI6knU5ajSNEk1h2FXiyUFe3fYbphafys6u9764rPSaq+j6zZ/wTplJZO8OkCRUfwAprZOOhsk/+1z6HnvkqB/XUVtNqqEF3zG1DG2op/RbX6bjFyPpg7///e/z4x//GLWokOLPXEbbL//viI/jmlxNYm8LABPvvJ69n86Rhh13z2fZePX9pAdiyE4b6bAVeZIlTnriKlacceR0xh8WjIb9R3FUsfHMn8KZIkwX3L+IyEsbMC1jYeomZjTBrJ+dx9bvPIpvUikzLqyiaGo+U6bI3FMnM2ZCJwAFrhglP6tlb2gJkKS552Dp0ZAVNUx3KOTVayRKxDZqwsmEwo/Q17iRlpZX6enZQWfnF9/zVdq7iacu/CcnLGim6aUdfOfzT7EtNRaA55sm0n0ZFNwt7pUbIQgDYDhsGB476gFrAnXYhTNgrbr1gAsMSFYI0hj7oAu1XQg8KfGEMOIOq+rcNEW6IJMisNmE3rylECj1DeSMv9eD4XWh5Ynqb1vfwb3pZsCHlLLSBaqCa5swBgR84liZsVQZhqkJak6F9uOF8zJzYQO7bpuG22pPjBeAFyheLxyHVL4DV6+RJURSYxpyWryW0jpSSkNJabR2rURV7JSWzT3Mb+OdRectf+SW6glce+21KH4/ZTdfS+sXf0TxaecR7+8g9OILJBKJo94ym2oQ30E6LiP7vUQ3bjtom29961tUVFTwyU9+Ep/vyAWTAIKzKok6JHrX141IYRiGwdbvPEaiSxAx6SmdaT84l5Qnn7rr76B9bxzOeEuHHMUwjBr/URwRFEVh6MX1tLa28t2NV3LH+U9mPxsz1c3Q2ROIdw0xvlamaopEoe2NOeH1lIIzL4FplXnbC+KkDLFijZkKqaCKQ9SWUbhVp3RVH/JXPol/8FQa7v4NlVMmU3njt2m67lvvzAW/D/GjH/2I008/iR9dsovPf6ODeUv9uMeneXL/FGKXDwIQeT4fh0Xi4+7U6FpoI7hPhND9dVGUgQhakVgVmDYZOa7RfLHYvqA4Tm+H5VAZEu5mleItVp6+OQRuB7pHTNaGXQEJTIsUyNE38LrnnSgfaSRMGWTNiRIXY6uDcbAMuBSNYRQGMAuEQyLHRLRCsgKVaa/C3EV1AEz0dtERG4evyYoelTgxZSGGA4IhT43KJIPC2VHjMppV0KjGQPc70SJhWgY3U1O8iOe3/Pywvod3A9dccw3z5s1j6tSpLFrxZ9Q8Hwk5jP/ksQytW0tXVxc1NTVH9Zhr167lj3/8I3fe9S/MtE583Qb+8Y9/8PGPfzzraHg8Hq688sq3fIzyn15PLGTgv/iMg2oXVq5cSaRxZKulV02y9vo7AFBD700b5gcNo8Z/FG8JlZWV5PX6+Mrqj9L4YhvlMwuIFXg55vpjef6Lj7Li93u4/G8iBzimoB/DMu5fK3+Oa3d/jIEBsUI1DQktpaKnrRB0QsG/T0zM7m6DoWoZe9gq+AuoJC8TYzqCRZSPWcKBuufp/t1fGbunC/++JGZHDx5XEfL4GiRJ5tUHP3htgUuXLuXf9+bz9e+Z/Phz+/n09aUUfWLim+43+9otbPn1bJq+KZHuLEGJyRipJEFepW1zL5HfRzF1g0GnhmPJiTinHn7hVgbauPIMsSBpv12wBVokP2mvcBRsERGR0J0yhgGa2+osUOTsilx2jRSGMhw2cIHhsKiCe1Ksrx8DwHrGUJkw0bzD9lEkDIcYV06lkTQjq1egOxTUqIg2SCkNJImG9hcBiTG+98eqfzhOOOGE7Gt7VTHxzTvROw+ARLZK/mhiwYIFLFiwgKd6t9H9xGZMw+Qzn/0M1996I8f84DSeOu/vb3nsmY99HyOZpvdP/yLd1snQio3UXXwdEyZMyG4zefJkxh5bwuzzquhpHOLVv+ylb3mO4e+4BYdXgzKKN8ao8R/FW8Yts+8WLxaNfH/quBo6t3TjUxLMdjbzgjqZyT4R9h803PQ35OPoFca+8LgOkmmVgSFRvGbadcIThbHQ3AqHIBJDsaLErk+eTVXrVNruup2m20cWANn2eSkon87Uzw2x6/aDpYP/23HRR/p4tuJS1v5xG/+8aTsTXljO9/+wFVu+WM07p6S5qfE0tEiCaPcAl1Vup9mYzuxrt7Bi/0RS7R0MPfsKkW1bMVNJ7CUB5MIiJFXBPdBJ929v47O3L6BtzAL80xNUXSRW9D0pLwndRv1fRDX85C/uYvu/pmWjDPaIipLIhed1p5xlBzQVCc0NpiWfq7nh71+4lSt+Iwq91LhCwY5cakCOJrPth6ZdwXA5sjwAulNh0u+s3n7TxHDakFI66TyHED+SJNQh8UNJB+wYtmG0wykDJWb9iAyIRNs5MLCJiWUnY3O9tRD2u4ImD/nHn0Prn36LwxjihG8vIBAIvO1hK759Kezcjj3fQ/VYhYqFZdx1xr2cc+NU/r58GyUfXYRncjnNv3yIlVc/wvmuz/Hwqbe/pWOlekK03PQgel8fpTd8mq7f3MOkaVMoOGUG9Xe/SCAQoKioiMZXxXzR0tLC3EfHUf9KFyDSDb844xdv+5pHMVrwN4p3APM/UkbT9ghfffQkZrkPsCI0hQvzRNXwX7tOZOOTU0mME2HcYGEEXZeJxXOhP71f5JfdrcL4Z5jllAREx+q4WzIrOtBcIA8kSfZ2IHWF8ZaPJ97XzkDnbgb2imO+/NzyI65E/m/Bx1Z9iZ7N7Wz84TM4FJ2rv+Vj+mw7K55J8vg9YZoac7R8NrtETa2dQL7C5tUxbIUBik+fTtHJU9l4+V+z26XTacbOKUJWJb585zE8tzmIp7Wezj1hbv1hit/1nE59SHD72xSd8f5eErpYdbf8amI2BRAtkbnpG3+lXRNtgye793Pivdej+8Q5efar/P0LtwJwxW++hhoHV5/FF9CVwJSl3Ao9lgJFIp1vtTY299K7VBT4OUIGvu3d6HlWiiCRQgpHBQUyoBf5Sfvs2fNSYxpyUqwejWSCtXtuxzQN+sNt71j73NFENBrF7XYfNdEh33EziazcjuK2o8dSuIvdFH7/KpSCAAe+8HPGHFfG8T88nt27TDZ86d+MO38a++7ackTHaGotY8Gvz6Dvz3chuxzM/PG5+CeXEmsbYN1lIpLwyiuvcNxxxx20byKR4O9//ztOp5PPfOYzR+OSP9AYLfgbxXsGu0uld38EGZ26ZAkOWeOvXSfyhZKX3nRfpzNNwmIuTQQlpA4n7lYxycXKTYpXyTgtqdO+KSqyDrLTgatyDGXNUaQ6Ayil0l9JxydPoumx21iyZAkVV3yF1r/+7p265PcM9y35EyyBtvPbWPqJeXz/GrFCstklZp1WxNIvFVBY7eLMwpv45qPfoW93D7vrVYpOn8mBh/59SGNns9lwXHoejd/9NzceswI9nVvJfzo0nr//5jnuVI8H4OkNs4hW25mcL7gXZn53C+fkbeGn33zzSXreeTu5vecEjg/s5fqr7uG7L30Ud7OYknxuF7FiCVefCP0E98RQQvEsCVBoQQXBvSJKkGlLVKyWMXQDo8CfbQvUXSppr4Ks5dY5mseOaZrsrX+QWGqAhdOu+K8w/CDy7UcTeecuIb5xD4FpZZx8w1we/uILdPzk75R+53J8py+m6clXKOkv4LjZLexZMIXWLf1HfIxtW9P0/vEu/DMrqb3hPM6b2EBjzMYjf98EgHNsyes66E6nky996Utv6xpHcTBGjf8ojjr2rBTtW9G+FM7inHzEX7tOZOWmScgFBopDrP6GhlzoCYVAoZi4890xZL+YpHsiXoZsjqwwjK9ZIpkHyYD42SppSNvB3W1N6qbo4c6s8GweHyX/8xla//I7ep9+FPjgGf8MKioq+PgfFrNtl0ykbYirlzXS6hAFfldNEgxtUzzTAVj/pJBbfSNj551ew/ifXsrYno1ECyo5aVGSVXc18+JtDfy/sQHUy974fG781d9pT+dxX98Cvlgsjt+uObnqjOUYppXyUYcYb+8mKIvw/YazfkPCFIa8QvEx7qEvYFiFecF9EqlyH44mYXhCY2QCa/vQygsAhNSv5aNoQSemKqHEraiHYeLsTWZD/YkyD+pQmqamFXT0bWX6hI+xatsfDuMufzDhrK1gxk/OY9uNj/Dc9SGKv3Ix3X+8n7Yb/0zeR5ehJ9I0/+NVFt9Qgx5PISnKYY078YEfQyRMor6dzj/EcY8t5Jt/rUW176E37WXvUwcYfGE7NVedSsnZc1AOc9xRHB2MGv9RHDVcvvpyVv98Nf2tcU79ci15RSrj7J30pn1s6yrPbmcENDKPuaFJSDaDVFr8FPtjbhRZGHOPI0XIZaDGLZIYBZIBUaENYI+ALSL45odD0k1sgwkCjTaSc4IUnXQWHQ/9m6rffouWq3/5zt6E9xA/nvEQzHj9z/+58DbxYuHrb5PB1nN+DOe85s2TYGZXNY8/2sN3vyQ03J8dmkNfa5Bt1veXTKsU2MTqvD5aREyzszwinA6npLE5XI3LKtpokgvocvo52bMbABsaeYro9PhbqIz5sxrYmMwVgpmShOka6bCo7X2YkSiSzwvOTDuiA92moEbEcVJFLrwbWjBKRUhJiaTY3/wi+5ufZ9zYU9m+7943vyEfYJQHQ3jml+P7y8VsuOYBzGdeYcJNl7H/l4/R/5+ncC+cQ9t963l5YTm+mgBdj23m+Hs/j7PY94ZkO333rKD//hfBBGd1IZ/901wm+AQBlE3S6W1NgCzx/ZO3Mnv6HuCD+2y+HzGq6jeKo4L2tnJ237ObusfqWHxxOVd+1c0kZwcnu3p5sWMCQ30ehvo8KPlJJMVAksU/xa5TXjyILJvIskkqrZK0/kWTdhzdKrqd7D9kiFYbI46dDFhEN3ZBIoNpIiXT2ENp1BgEKqeBqtB7+0NU/+VH78Hd+eAg2hVl0ni41F/Hpf46vC0SSlgh3O0l3O1lUnE3g2k3g2k3kbQDp6Kxa6icXUPl7IyW41MTeJQkHiVJXLfRmQzwUnQyL0UnEzN1ZOu///G3cM+45ymf3nnI83D3mBgFfowCv+AsiMUFo2A8gRLTMG0SqYCdVMCOocDgcdUMTPXRNcZgy+5/sb/pOUrnn47vjNGGcYB8R4yayS6qvngaodV76LzpXiZ/92zsVaXEVm8C3WD9NQ8RawsjqzL7/7n2kONU3fINnLXVXH311YSeXE3R8RNYcMdnuOz+01lU2Y1fjuOX49Q6Opl7+VT8Ponf/yr0hudmGAbPPPMMsZjw+hf/9DQcRT4mf+88jnvum0f9XnxYMLryH8VRwapVSdb/dj0A3/2uE8UuVl1fbTmdoYQD2ZFrz1EduSK0ivxB0oZC0B1nMOY67ONFqw2kZhlbBGwxE90h0TfdRenLVlggmUaOayhJUHASOPUkQk89R3Jf09u/2A8pwuEwzZsGOOtKN4OG+D6j5XDWSRvZExZsem41TXtCVKCXuIZwyWkiulitRzU7AVucpKHikHO/h7ZkkArH4Oset3x6J209ZdhDUNZkVembEJ4kipmCQwnBMGilDJRQDLtLJe0XRYhKWqSCBvdspHHzQ+BQqbzkc7TcfdvRuzn/xXjxlJuzr8c1/Iy5t7jYfN0DjH31VRbdcjZtLzUTa+6h/b4NhFbvBdOkb30zsnRwrXj37+5GH4zwxztvx11TwLgrT8BVGkCSD9bjkFUZ16QyNq9r4483hXBefAHLf7Ce3j6JWSf4UYIeVLvCxnv207eji5/+9Kd85zvfof6BHaR6I+z9yWO4awrf0XvzQcao8R8FALO/IsJ3W35/zRHvu+GZaj52cT+uPDsX3bIIj6+DxJv2kOTQN+TB6UhjU3Vsss64oMjr1g0UkipPAcJ4aC4TJSlhH7RW+komIiBy/M5BE33HXgCUKROREynUuFAK07oEMYhaUHDE1zcKgXQ6ja6ZlJa+9dzsQMqDbHHrBmxx4rqdIvsQIc2FV8pNRzZJpU0fYuDZMgBi01IY++20nivIh2QdCpcL1ULToQpVQ7+o9scwkdIGakQ4GImgyv5dT9C54wU8s+dQeMGFNH3/u2/5Gj7oCM6ooOTkSdQ9UseCjx5PyekibeMvcrLnj68SnF5GzcUH8yGk02lSTR0UfPY8Ks6fgdeRotgdARJM97Thk+PoVrC5MVWMHArRu10UqP7j9hj67x/OjvXS1oOGz0p+p6M5x9EIDR2lq/7wYdT4j2IExt2S0+FuvObaw9rnkaejSBL88rFpBIsFf/ytLcsA2N1WiqIauDyp7PaplIpkrRoU2cAwJZIp66doh109JQAM9XmQhxRSBSJSIMdldIdJukQ8/Ga7DdMmmOIA8vfmVOX03fvE+HMXY+ga8d3CKei66c84/9/9VNaeiruggm3//t/Dvzkfcrz88ssAzDneid1qM5t1fB3tiQDz8gUlbEOkCKeV0w/a4iR1lcGUaM+TJRPDlFCtfQdSHtxqkqQpVuheeSSpQ8KUmH3hLgC23TeVoekp/C+KbbsXG+TtFS2EztYQeD2YGa0Cu4xkGJhWq19z/bN07niBgrPPo+exh49ai9wHEY2f/A4Ar9pe5fjjj6f+lmcp/MK5SIpM4NwlVDT10/bkLv7yvdUcV7sJ+E12X0mSQJGwKSmKvREMU0IzxHcyZDhpThXSlc7xEnSt2o8e1zj5rk/h62jkkW+sBqBkQQWGrKI1tjPQnWbs3ADnXlvLuHFC9yE4qZDQPuH4LZqV5Lqtl6CgMXAgwpYHmigrl6hdmM/N560c/a7fAKPGfxQApH2QegsUDnv27OGmPw6w5GPlTC6PA3H+3buYndsF5ahSkCTPF8tOAsm0imCWEA+lYUoEPXH6QqJ9KZW0occtnviIAoaEnLAeYAkMm4lkF85AKk/GsMu4Oq2xlNc86JJsFQMqTD3zajrNehJdB4isWkdDw98AcD93O8UVcymsmcOGh0YdgTfCrbfeSsmUIO1lE6nQmwBI6QrbmypYOG8/AG1KMLu9S06xO1SCXdGz22qmjGyJ+KqyiADYrEjADV2z+EVJbsn30c2fz9I+x+bHmPK1VvR+QTaU8i5E0sW4Wp4btS+GVih+Q0okieFQ0VwKPe3baNvxLIWnnEXP40dfBOeDiPH/JxYABVd8jObb7qdoUpCJF02leSiPtE9Ezv7WNIO7y6dwvyKYJeXSfaiqindSOeEXNpO6cCKFviQFdlH8mTRs7I8VYVjPfSxqkFy3B9UGz1x8B5dcLMiVqisVah19rHglkT2f9Y95+fz+XJXq7AuqaX5sN/njA8j5fnY/1cCT314DgMNnY1NCQ0+bvHTVPHwfPYmgQ4z10LEf3o6OQ2HU+I8CgEShmJAPd7Wfwa5du0gmTS79uMRDA/MAeLG5FjUqjL27OoEiGySsanAto0JniEmgrT+IYUiYumXA0wqkrBWcBKZiYqoW37sugWJmowaSJvZRLLG6eLGKu6Yqe27J2mJsQ8JABB0F2IuKSXimULe9jurJp5HKUwnVb+XA1sc5sPUJph3bys6Vfzui6/8wIS8vj8HdBmYyRcKi2W3oK0Dut5M2RSqg2tXPPI9wBO7rmU931Eu+W9RhyJJJSleyzoBmyGiyTNIQYw2vAwA4pWofTzwpJn29LI3W04taK1Z/3vZc3YgylCJZ4RdSvYDpd5IKqLSn6jiw+1GcMybi/tTx78g9+SAjMGkR8rLdbLttM8WnTsNh05h66XTi+1p57lsvsfSvBfAaBui5Xz6Gl696mJ3/+yhf+tss4oZI2W0NCUIm1XL0dv3uefa9GOO2v/0DWZZ5aoXGwvNLaNgUGmH4v3SVh8/v/8iIY/imVnLGzSfgKxfO3vWLfs6TnATA5HPHcdInS7nr27vY/1wzMz8Kpm7Q+nw9wSvLMVIaBbPKqblgJp7KIE+ccOs7cu/+GzBq/EfxthCJiP78L13Yxpm3tDLmhMq3NI6sGhjaoZtP5FSm1c8UBr/HUokLS6gxiIssAWmPROxjwvgH63XUuIEaEwZFQ8XbahBIuimZ/010t0K8QBEKbtMi7Hz5z+xadRvOgsfwBMsJFk6kgBJM08CBE6czyHMv3/iWru2Dgl/84hc8PG0K9/yymZk/PfzizDdDRHPgVZMj3ru6fT6PrZ+D4hQGvewZBWXaRJLFYoXobQhhqlY0qdSDKYF7ZysAsVlVNB14idbNT+CYNI78T3+M5s/ccNTO98OEysuOp//lPez+21rGXnUKqtfB+B9cwq4r/8zKbzzB1Wud/ObHRcx+4nucX7ONwlkVTLpsLvX3bcfQZ2LoBrKae641U0aVDKLdMUrnl3P55ZfzyiuvEBtMM+2UUqrn5HPf/+5GUiS2bt7KjBkz+OqmTwFww7aLAKgP1TJjSjsDzUMMbo3xHf+9fPPJY3n2j41svmsvW+/amz3eLG8z//naerrXHiB/wRi8Nfm0P7ePpge3kTetlElzV1G4ZDyBScVIknRYzsAPfvADmpqauOWWW8jLyzvKd/zdw6jxHwUADd84shV/BhdccAE33PhZOlp1KgbrWRYI8WTX7OwPy21Po+kyiVROdEWSIEMqrWsKhi5hWhEBDAlTyXwIkvHmOTs1BrYhcPcYpN2WutxgmniRHUvYDSVhoLsVdKd4I+WTcfVYFeulXgJjp5PcE8ZdPpZEZxuNjVtoJFO1KFGRN4uTpvTwwu7fvKX79EHAxIkTyfvUeTx/x8MUlldx9hXl1OQPsHe/nzxVhHdLbCG2xasBWBBoYmdPaVbUKfP/lG7RM0smdlNHlQximp057qY3PQd7tyjwkgaGkKwCP1MGV1uE1CTBJTFUbND27HIcVdVEduxFVUenuSPBa+eCyWt2svcPL+MdX4Rz6QLml7cx4XcnsvaeA/z+9s08XnoaAYucb4a/jUvP/y4X3nkhP5vzCDanQtX8Inq6DMYtq8EzZzy+8YV0bu9j7GkiivPQQw8BsPmpTjY/2YUraCc+mOLbvzqRx//Zz+/m/huApVfPYNVfd1M6LY81G4cr+71E01kz+OLCL7L58ZGpu7+c/jjJcIoLbj2OcSeUo5sSqcRU9jy+n+b1PTTev519d2zEX1tI+bJJnNHxCZ6+5D+ve280TeNXv/oV8XicO+64g6effprTTz/9bd7x9wajT8Uo3hZeeOEFurphwjw/My8aT6cm425X0KzaLd2QiKXspBNWHl82MQ2JjF2VZFO8zrTuJ2WGm3s5JWXD+yChu4ws178pQ6LAJH+nWPUPR3iMg7Rbwu4U70sG2GIGaswSoAnpWUdAd0iULD6T0gVnAqJ1MCFFse1sR5YVwh31NHa+TFdoD8dMDbNh1/87Wrfvvw69f3+QoobTueemZ1k9WIvnrDx8TRIPtM8BoPuxKo79lKBsrfT1c1ntWh5qnQ2ATdaxKXq2RcypaMQ0G36bWPW3pAvoM0RLmCwZ2AvjjLndEuNJpIiOD+JpGDzonNz1GbpZEY1o2/siyDD+e2eOGv6jgPgxZ+JdmmT7TSuo8VexdmY1OKHswmIO3L+ZMcFBKgs7qLSL7+G8887juF+fjWugk3UPtNG5P4GjLI9tf90I8mbMlFWwO1nkDD7xiU9wyy23sPlJUflvKCqynOKVJ8KkUqksE2VHp0k6odOysRdviYtIVzx7jh1PbufyPz7Grx/4G6FtIgLk8qvYPQoXfn08Hz0rAuwjYdoZdLmZ9mkvoU8W0Rxdwo6XBtn/2G7q/r6GPX9eSd7/PsfL961gxoyDGbNUVaWjo4Nxp8ygf2MLZ5xxBs8//zwnn3zyO3b/3ymMCvuM4m1h3Lhx9Oh2aj7yGQLnioc/cW8pukW2FlqUQHXopKMjJVozeX1TNZFSMug5Iy1ZrzFBjUsYNusnakjImtgGRK7fPgi2qJndV3NZdQAp8Z6r1yo288kk8mR8beLvtFvKjhOzKIhdfWKfpF/C06nj3SuKy6RYnEShg2377mVgqJkJVct47NlbqaioOOo86/8tKJp/Cr0bXmDCGVfgHj85q744+cJ99N8oVv6X/fUxgkqMHXGRCqqPFRHTHOzpKwJgYn4vc4PNNMdFEZksmSx/UbSQBfdIpLzg7RRfkqc1ganK2A+I31j/4jIC9SLaoPSL/0cnFRCLdLN51e/xTp5OaMv6d+FOfDigaRreaRNINR7Af/ZSAueeTFH/OjZ+81Gampqoqal50zGuWPlxHrh6NYpDhVSaY35yJk+d/hcAyi9ZTMe9aw7a56tf/Sq33ipC8Ze8+nm61reRP7WIB0+/M7tNfX09Tz75JFdeeSX79u3juAtPxlfuYbChn2jbEL6gwvkfcXD5Z92UjbXjtB789YlK9ibKiFiTVeugi6bV3ey6bT3h1iHG3Hgxjd/714jz2bNnD8FgkLLysuwC5uKLL+bPf/4zuq5TWPje8w6MCvuM4l2BaZoodieyeoSiKHYDecAmDLAJWb4QI2eUJV0Y9EwsQI3k3gNQUqLPP2PwJQOc/VYlecLEsEkkgwqSYbUDShCuEiFn3QlZXhnL1whX5woIfTt60IrFg6MAqsPNnMmXsqfpSeoOPMukSZOwSQ4WFF7Iq913Hdm1fwBQcuxZxLtbObDyASaN+w7w+umZ6a5Wfnvlx1Fu7KKpp4DUkPitbIk7SBkKl5aJFq8ezY9xohgnfpydA9+diH0gV/wlJVLEJgnHIX91B2hWgaBhgle0E+7vX42s2Gh64ZmjfckfaqiqSsn1n8V86Sla/vMSyf1teJeJNIskSZim+aZtdX879m7+tuHQnw3syIXxT/vqeJ75XQMgCoozuOe42+Bg0T9qa2v52teELPSMGTMI1fVwyuNXUnfbasZfEiTRHeH+x3bzzzt6mXFuFZ/+xTQkSaJIHWKZbwcPD4pC5bF5EZrnzaKydg77//fftP3pKU4pOhf3uGI2/fxFFI+Tlid2jTh2ydQgN9xwA/Pnz6ehoYHu7m6Kiore+Ga+TzBq/EfxtjB27FiaXngBM5ki3ymqunfXQt4eYYQdDU7ilWmxukdU6EuGlAvzvwFkHbH6t9g/JYMRK39M0N1kPXBbxNoHkQYwJQmbxfufdktoLiELDJD2ktWGt9rMs5/JOiBJgi4YUKyCJdtQmhkFpzLRmMaQOci2gWdojY2cDD4sKFsXx+5ZxOYDdyJt2EexW6z8+jdUUfwLUe1/5xXncMPf/8nPv3D5G471r47FtN4xnkBTkrRHOGdKwiBUa6dog0gJyIkUkmbgarJ+DIoCcq6QzLSrDI5XCa/YTnHhdE74yT/Y/n9HTlg1itdH8+e/x4SARO2UMTT88D52bROFdTU1NchOJ0XnzKbsU8ez+fxf0dvbS2NjI3PmzMFms73JyJC3eCydjS04p4xjzzGf5oTr7mPr3XVcf/31b+lc99+1kZZHtmP79Hwa/rmJP20/lpfv6eTunzby6gkVTDq1kt60jwn2Tk717wDAIyfRkWnzB6m8djavfu8FVnzpcRz5LpL98YOOMeXEQi79v5nMmTOHOXPm0NDQQO1x09n70lZKSkre9xwDo2H/Ubwt3HrrrVx99dU4issp+f4nUQuD3LXoNi55/CsABPbJRGpyPzE5KSGnyS4UJV0Y9BHIRPnt4rViPXd2S7E1Vmr9PQiGDZxWytdQydYa2OIgaWTTD7IGmgtUy8BHqsimE7IkQTusczKhYG0Puk/kkOV4EmkohhkWJ2Amk0guJzsiLxHSehjSjlzi9IOAgYEBigpLCXqrmLng8wC0H+tgyqn1APT/YgzqUDob1Vn4uw282DUBm+WhVXhD7P3bFExrkhxu/JEk3K1RDpwh5puq5UMoQ3H0gPhOlIGY4PIH8LoZmpKPGtXZtPr3RKKdjPvE1dT/M0dbO4qji8bGRiYtWYjW1Yt71kzUYJDwSy+j+l3I3iCpjk6hseG04542hmXfncMXZokH7KyxO476+Ux75AfZ1zs/8gMc1SWkWrop+cYn6Lw5F5nzTq3CV2jnmJ+exbRAB5qpUGwLAzDH1YSBRJW12niyezzXH/MKAN/4xje4e9tj9G/vxFMVZPyn5nHRaSLddN2U5TQ2NjJ+/HgAZFmmuLiY3bt343K5cDgcR/163wijYf9RvCv42te+xsknn8zcRcfTd+uTVHzq81ySvJJpM5oBONAwFme3RMoi9pIMsIdzq25ZJ1vAB8IQZ1b2ut2qAXiNe+rugFiZ2FdNCKMOwhHIrN41p4gEJIWQW9aBSFh/F24xSORZrWLWewmL+dfbZqAVeFEiw9rP0lquRQEwE0kCZgFt+j4ikQher/eI791/O/Ly8pjsO5adoRdIRQZxOPzYIrBpj4gCfOKna3npF4tx9grvbtX1CznnlpfYMVQBQNc3xxKQEsSL/3975x0nR3Em7Ke6e/Ls7Gze1SqsAspCILLIZXvvugAAbM9JREFUORgbm2AbR3wOYPscz+eID3z2YeyzwXc48J1tsHHCJhoHMEEEEQxIKCKhsNIqbk6zk6e76/uje2ZnpV2xkjZIbD38BvV2V1dX1/T0W/XWG5yXo9QEUnOXcIq+8yn/6EPL5LCDXkQun6bXBq8zo7R9Hrw9Jpkyg4YlV7DumZ+Q6do/lrxi5JgxYwaR00+n++//ILlmLZ4pNfimTiOzcwfEUnjqapn/npnsaQ/Q/feXefrzraRPFcxcEOCG0lvQfF6arv8Spmmi6/p+s+TZ/3U7gcWdCCFIrnJ+oFrRe+KNmw6s1Zn6/U+Sbe7EN8XJOXHusn8jvr0Ds7WL7l4fLbEQhlZDT8bPvKhjaNjdp7HuL7uIrU4w74QgN75zN3m9w6c//Wl+MP0HvO25zxau8aV5/W6BM2bMYNGP3k/rP9bR9cQGWlpamHzcDBI7umm45jjmfPw0Hrvwp4fa3aOCEv6Kw2bhwoXUnXIpO5f9gb71q/E2zBuyrGY6Ajo/29YzoFmyEJ1P2I4Qzx+zPTiaAgAJ0n1ig82OZsD29At0X7erLcCZ9ZvB/sGAnnW2LXeg0H68hs+x58PjahSCrc6oI7KxC4RAdPYiq8qcWX8qjUy7gwHN8VVM2jF8IjBhjf4AagIzeL33aTo636B+0skDjr36+RPQKiBZ63yhsz69kX988Wwuvu1ZAPbeFCH70zpsNzeD1ASamQ/gJLG9OlP+0R+7XZg2uXJnbd+TNRGm8331LCwlXi8o22xhpp2lp1Dt1FG8awVA5JwzCZ95KokVqwj2vk7r6h7802eQbW0h19zCup/3YFRVY6dzxLrT/GMHQA/wDao/93HKP/AOev/yNHYsTuC42QTsKhK7tmCEImTTveQ62pl5ywfQKCe1YxupLZtJbt9KtrOdLe+7nGOO6U/3nGgd+Bvc8t6b92vv1juWkelKAkleu/o23jh2BktvOpPGvkqyvSle+ZcHSPdmKJlZyfP/aOXXt2tc+J2lPP3Dtcw7+2SO+Z+Ps+5dQ8cBWPu538LnnCyEs77zAUrsbtZ+6zGa7ltN24vbObH2FX73u98xZ86ckej+w0YJf8WI0PTk7yifto7OR/9K3duOKYRuzZaBv6Nf2NtDaMA0SyI1gZ6T/csAAqQu0HKuFX6ZwNb7BXygDaTulEO62+6MMdRuk6zqXxPWzP4ZvhkEyy/Jrz3klwYib7jW/RnTUSlbFqK9GxlPIK2iaYctkR6dDnsvZXrtEb+2N5rc9c9v0tDwS2RHJ16zi0nxMNUr3C9IG7xfln3idAAy9X48SQtP3M3dYElsj6P2jzV4iG6VhefG2wMi0/8dCNMm5wb8Mf0Cb59zvs/jaGCSe3eM9K0q9mH7Z/4NwJ0N12CsnoaWEUjLIpXYiLW9ieyaOJanFNsjSe3Yip1wRuNm1166f/e3Ql2p1ZtJ4eTjyHT3a21sy6b5z/eQXLF6wLWz2eyAv5s+cWDbgOpAgklLqknGbDxVUYIN5XT+fSVPf/RBfDMno4UDJDvTnHLj2fzz28/Q1tZG/ZwZbPrbdhr+4z1s/be72PSJn3BW+xbK5jtRxf58xo8HvZamaRxzdjVQTfnielZ++c/kelOsXLmSd77znWzcuPHNunZMUMJfMSIIIZjPCbwYX0/82fXEpjiqXTk/jng6jO7+VqXu5BEwXDW8ZklXcO8vKKRwZv2GmyIwl3MMBfPqPysAuaCjIcgLcDfKLJoJoVabTKkjPcxg//JArtRGmKIQFjjfFpF2VAwy4EWk0uD3QTqDcP+Veetyr5fXwxtI9PUy+9hrRqD3jl7yL2G/txQMHZHK0XWKs8ajpyXTP7qFtu9MB2DPzcdw2W1P88QnBppsS00Q/fpOYv85pfAcxGZJPElPwWXT25sFXaAVDQC2f9L5t+IxSeWqGLbfg48ayqMz6V7+FLZtoxUZBSpGh0JUvLP2P7bwy0620EwZaDM6Mbv62HrDj9i9ezfHrrkaMdMPmkb3A88UzqlaehGBaTPQp9Ww+/Yfk+vqBMCorSR85kmEzzyRBQsWHFQb/3janXDawH2n3v1htt71EvG2GLnVWwmeuIDdVc7AtLq6mslfeCe7brmXSPzvTHvHQnY8vI7l19/P7A+fyJyPnjzIVfZnar1knRf62h37gDfeeINUKkUgMHIRMg8VZfCnGDEu1N/Dans5sXKL2h9+HqFpXLfkRe5ZdhaBZuclbCQcVX2x2t9IOdb3AJ4ECNt9JN1BgRv6HU9SYnn6BwmpKvD1Oi8WAJHrXysONUuEpBDxzww45c2Io5Ew4hpVq5xt0w0EVLbWnfl39DiW5Lobi6CrB2nbICVSSjaUvMGetpXMnXMlkyuO44kXJnZ62HK9jpzHYmnDdchomFSdo5o3khbZiFFQ5fvbM1gBHaPXGTAkpwQx/YKaTzreAbH/nILtc/o8F9CwPeDrduMylOh4Yxa+FuclKj06jV80mHyPQa5Ex9+VKywd9bZsYvWau6k46Vw6Xlk2dh2hOCQymQw1J59J71onLkPFx6+i4//u55iPfY2tv7wVgNr6E9m765UDatne//LHCbgZJX9x4q+Gff2GX3yDvudWEbnwZLZ/8OYBxxb+6IM0fudB0p3JAfun/9vlbPvBX9607jOe/DLdr26n8efPowV8pDbsILq4nuO/9y6WXXzHsNt4MCiDP8W4MF0s4NWuJ0k8/xrhs04s7E/V2dhlOXxNPvztQH4ZwHBm5b5eN5JbDrIlxVn8QCvS8Emt/9xciXNufuau5ygMFIy0JBMRhUyFls/VCrjhgvV0v21BwUU9Pw4OhyCegLxq0TAgk0GbVEtj1z/Z07aS+bPexaSK4w6zt94azPQey4r04/Sk9lIanU2gOUnnohIiOy38ndnC2jy2RE+aCLefbV1QdUMT7Xc4mgERkRiZ/rlIaE+GbJmzhKBnpTModAV8ttzH5HucbU+fhZ4w8Sad70uPzqJ07vEkdm4dk/tXHB4+n4+eNa+QSCR44403OPbYYwEIhKpoeMfHEGUl+GsmDyn4T37s6xxT1s7rv1rNmjtXMOWMyXz0xiv45cVvnsVx+h0/pON3fybx8uvOjg8OPH7thd2sPf7dxJp6WL3GQ/KldZi9CTxzZwzr3p6/4PtwAfA1mP7/vkTTDT+kZ80eEk2dwzp/NFHCXzFiPGH9EYDa6Hy6/vQkNaGTuMdzCouWbGfN9sET/oTaJKavP1APfvDG3YGA6dgBpCrdwC9Bgaff/gst57oK5gcH0vEkyCN1UVgO8PY6AwXhau6NBKQqnFFEPkOc9LohiNM5x5rcVRkLXUcKQdKfY1vPP5k060zKFp3GEw9+6ZD76q2E7oZfFqksyUlBUhX6oOW0TA6tN0l6hhMFrexfd2BKjb56p59LdtsFLYyRcQYMgT3OjMss8aKZNtK1CUjUeQjvcWZ5tiHIRr34U+7fXh1/QsfODt8Wo+6zVyFzOaIXnsgbV/7HQd2/YmQIhUKccMIJhb/X/s/w8400v7yb7Y9uAWDX87u5553N/Mk/BY6twdzYghAajatfpq6ubsB5diZDco0TUCj291f2C1b0jQV/dTbOdv5Z9Mihp/32VJYy6483MzXageYdf9E7/i1QvOV47pWHmTt3PqkH/w7T38HqxDT+7/y7AXho/gk8sWUeJc8PXPPS0xLL77gEZsqcH5+/S5ArKmb5HTuAvL8/QMkuSbLGHRxUQPmG/JJB/9IBUNAi5Gf5ZpCCHUKyyhEoobyNmOEKr3xceCnJlOis2vZHdN3PnOApLFOCH4Dzjat5Q6zCb5QQiUwmZcvCso3UhLuGP/i6e+y2Kch/bUc/34mT0JnxUPFHx2pby0qsgIGe7A8CYXQlnOA+QGR7msb3OlqB2uUCX7dVGBgIKTHrS0m9PryZf0dHBy13PAiAt7aCC6++hifs+w6yJxTjRfr+x3j1l6sA0MJh5gROJVXlobezidj6rXj0MKm2XfziF7/gm9/85oBzE1vWINNpSk49lb5//pNJ199A8//9vyGvte4d3zrkdm6+6ptvXmgMUcJfMeLMnj2b6dp8tu1+lmOfPo34WVV86kEnCIwVtrnl/Pv4lvdtAGRfKyG6xcnGZyQl2Uj/qLv3GIm/VRQC82S9jr++7qqGS/LC2hXwWhYsV5UvfIJsiWNTkKp2XAR93f0DC+g3Dsy6gYGwigYO4VB/+Fifl9Vtf6Mv2cwp86/H8E08n/6h2GKvJU4XJ9dfiy4MciGtEFXR467tWwHnNZOtDOJP5dBdoz0z6GpefBkSD9WRWWjRcoVjhTn954J0pZd0uTMYCDW7IzXXz7/nmACa+xy0nGUz/UFJrsyHpzeDnjCRNQHsNf2hgYdi+v99hY47nFDAwjBI3PwoiDMPu18Uo0NPTw+7d+9m4cKFAJx45r+x7vlV1J8+hbO/dwEvvrKAqXd1IfqS4J9DqiHE86tuA+ADH/jAfvXJ3k6EYVB+6aWkt20nsXbtmN7PeKKEv2JUqNWnsc1aR6y1EY0qfJ2uarhN57ub3sv8q5xZmf/y3az+2zxCe50XueXrX7fP44nnhbKjGUi4SwSZqCTQOjAXQF9Dfh1YIHXIRAFNIixnySC/RGAGITbTOdHX4Rr2uTNH0q7Ff875OxPx0Nu4k7kz3s4/X79zJLvpqCaRSLBXbqchdByl/trC/nxQH2HaSI+G0ed2ui6wfR5nBg/Y3hJi99Zi+foHZHUP+dxjJr6uXGG/EcuApiEyTl3VT++ltMmJyrTt3Tq2V8PXnsIKetDjOfScgcyZbxpzvm/5GuLrV1N23Gl4yipof/FxNv/0xCHLK8aHc2f9K8813omNM/irCc+m5t0fYfu6+/BEypjecTmdn6pgbrIV6fU4+R6A+K5NWNkUM+ZezvTp0/erV2bS6KEwHm8JRqSUvpf/SfikE+hY/gJ+v3+/8qNJX18fJSUlY3Y95QejGBUCWR8RymhZ+Q8ye3bvd3zrA7PY9OgsXlozm0+871G6FkLXQlc4C+ejp8WAuAD+HomwHKGfiUqs6hypOknO/b0YKTADEjMgneWDcgmaq4J25XqqxvnYXpC6ROpFUfsMDenG8RfJDNJrIL0GdtBRL3/tpqtHvJ+OZl544QUsTOrCc8FjgMcg0pjYr5z0aIichUi7xn6aBpqGlrEI7TWJNOWINOWoerX/daSnTOwizw4tmS24YgIgBN6WPrwtfUz5uwBLYgUdtY8eT1OzyUCaJlu3Dq76P/Od/82ipZ+g55Hn8dXVM+ncq/GFK5GZLEZqzwj1kGIkaG1t5YXtv8TGosxTx4LaS+hINvH6779DX+8uZngXE9LLwHTsdEQiCZYFlsWWzuV4PCGmTFk6aN2RjWHsvgS1L+QIn+v4AiZWvEbFouPH8hZZsWIFkUhkv2WJ0UTN/BWjghCCY+VprDFfZO+P/gej5jRmTDob3RegZ06QRH3/i/3Ha8/m/Rc4MbR/t+xM/K391v6hvZKgm5Y3XaZTsluSrnUz97V6MOICaTiW/5YXZjzsmP7bHo09Z/sLFv3eXsfdLx/NLzXTmUEGt3gLRoC23xkhSI+TNCYv9PumB+BZQSKxv2CbyHz0kk/hF0FCZgD63PS6lo3mGt5Jj45IWgPOEe3d9J3qhP8teWEbRkUZVtQx7BA2eHsctb/t0TCSJsJ1E7TCfmy/jpZ26tO744i48137WwMIKfuva2h0tm/B543Q0NAw4PpSShZd/m90bniJ1h2v4Jszi6oPvo94uU3z7xzjrp5XdsGnR7SrFIdIKpVixpR5CKFxRvX7CXvKQQhyV8yhe8traI17iWpViJz7I5YSTEfwA1T6prIt9iprX/gZjz9+AhdddNGA+s1cEk03kDqcsKyK7nfewubWf9D90rPMvukHbP7W2Nj25N8t3/nOd/j2t799WHWZpvnmhVAzf8Uo8YR9H8vl32hPtzBDzmNX68u8tPYOdvatJrIpjp4EPQnR9QMtw99/3nJsj2OcF9kh0XMgcjYiZ4OEzgUCLaVhl1iYlSaZSptciSRXIjHLnYe+8d1+LL+O7XFzA7jLArmIMwAwA+Bv8uJv8pKcZJGY7ny0rI2WtZE+D2ZliL6GoPOJJEFKysvLx7obj1gu8ryXLtlGlXCCOZHNOp+uHkRrJ6K1E62lC603gdbT53w6ewfU0Xf6DERvH0Z3EqM7iX9PDL2lG72lG6MnhZ7IomVyGC096G3deHZ3OxqEnIUMOAOz5MI6N8KjxPYbWD6NXV2v0dyxhun1Zw/IKLfgIzdj+IO8/vfb6dq1jinR4zh56nUEzAhaSsNsc9LK+ofpxqUYPc669FamNpxNMBgkmetmQcUFhL0VIAR9J0+hvq+WhbWXcXzl5ZTZ5dAXh744ZlUEc2q1Yxiq68wOn8KS6KXYZo6LL76YmrlnsOTd/wk4A8GOjjeomLQIgSAxv5pAQiM02wlPnmlrGbP7Xbp0KR/+sJP98n/+538OqY4///nPzJgxgyVLlgyrvJr5K0YVn8/HdDGPJxr/wle+8hXuu+8+dvmWMbv9YqrL5rHrkhL0xiAPBxzf3uNq+lWuvTME/g6I1zkveiHBrMuC1a81mPFQlkzUecEH96bY+j7HQKzpch2w8XW5QWNCjrFgrtYZCViuS5m3OkW221nbsw23XltHWLI/rHBbMwCLFy8e8f45msmSxscBIpVZFqRSjtskQMAPFoTzYZTbOsHnhVjcUdf6vAUPC5ExEbEEaPmQjTpIG6253fnbMEgePwWAre8NMO3eGLu7VrN354ukkh1ETjyV119+eEBzerasxs6mOXbKO6n1zEATGpsu8yFMidnXi/AYRE47Hb+3fsT6SHFo7Gx8ml07niv8XeWZTHKR8734O7IFuxF8XrIza8hFnOcmuK3H2Z8Px10SprLuZKp2TWNn7g02bn6O9i0v07BkJf9366fJxNqZ7D+D8JpmCPhJTy6lLj2NZk+AnocfYca8OrZ99t9G/X49Hg8333wzv/71rw86KuUHXriOlX9tY8v/PoWVzL75CS5K+CtGnbzb1J/+9CeWei9jQ/YV1my9l+MnX8WUv86n6eoykilHwL/20AIWvMPx193wmJO4w9/tCOHEJEc4R1c6wl7q0LHIQ2KSc53pf9GxA66gyWqIaLaQTVAmPGhJDdtwE8cI8NQl3fwBzr69ZwWY9FyKvWeG8PX2hwOOv7EDdJ1Zs2aNUg8dfUjLwk+QtJ2AbA7cyHz25Jp+AZ0nP/vOmW7CpO7+Y7kcFKc87ctnWQoiQ8GCgZ8MOQM0Wel8oVprN4EdjiYh12HzyoqfkTJjBI9fxOTj34t/2vQBL9Gznvp3erasorRhEbWVx2F7dbTWXmy/TcXUbvY+3YTMmZReeRyNnxu+f7lidOjY9grlnkmYMsds3wlooX5DOJGzybp5HYTl/N69Pa49iA0ilSE32xkoaFkL22fgEYJp3nlUVU9jvXcVO1Y9wsUXP0KwpJby+oXYQiCyJnrGIj4zQOU5l9D65MNEEwMj+40mDQ0NDCPg7n68dservPHHDQBUnnEM6+57br94BoOhhL9iTHkx+3fOEVewPrSOVbsf4FgP+DpPJ+l1JG18do41yx2hL0slZkBQ6sTgILrVJlPhKQjlxOI0DfdolG8EzbTRe5N4y9yEQl1+ZMIgUudEBUoYEgtngCENG0yt4PNv9LizTdsZABhJR1OQrJOE9gh6n19OaMEiDEP9XIoJU0oLO2nIdBKumw+AWerDYznLI4VgSflsiADBQCFsMpkcZLOYk52gP0Z7UYSmTAZh6AWrbdHdB4aBAFKzqzCCTqrWru6ttNxxP6LcS+MLW5gxY2iVvW+ahtztLA1JQ8OsKWXq3yQ1X+2iqXEnWkkQT61a2hlvFs26moTVw1T/AiadcBlSE6S9GnrO1dqFDLxtbphnTUPL5DBdl1A75MOqCmHEnUGj7TXIhQ1wBwPBTbtpuPBD1O/ZQ7KvjWm56eh7e5y6ykrQkzmSU71YHWHHfqBj7IT/oSKM/kFuzUXzCQaDwzpPvc0UY84z8s9cIK7mRdrp0NooB4LNglCLTcsZGmaN88Mtfc1L7JQ02hv9M8OKNRDodF7gicWw60IPs37bTa4iCLqO7YbvxWcTLE2RzTmPeFVZHx2a84IwE17qnxTsucytt8ypz0x6MNKQjUAuauOdnCCW1LDifYQXLBqDnjm6mMNxxOhiffafnBp3jPg83R56FjnJFsqe3eEETAq6o7X8rMaysSrC6Nv2gteL/oYbsMHnJX6q444VfnUn2DYykP/ufaRmRB3bD2DLuz2U/OAFXm96hFDtdKZf8KEDC/4Lm6iQYZp8G8lWJ7BDlXgSJm0nGEzVsmT+uYaSU+bi8R78zEsxMlx87I30JvfwRtPfqI0uoG7RJQB4OhOYZcHCd68nMoVnSVgWVsSPMC0QAj2eRuRcTZOhoWVNfJ020tUCxZfOpHJNH53HTcZvTsb7hJNXAiEQ8RRWaZBJywRmbg5doRB7fnYHNa+tY/fjDw2wHzmSkFddySkXLMEI+fBVDj8GiRL+inFBCEFQhjH37iGy08byFh1M6fjadYw0nDGrkc3/mD/gXMNNAUu3F7PaUfd53MQbuZgjLOb8Mo3UnMe758YkIW+GTuFGj/ObtFydQ5duSt+ss65s+yQmglypjYy4A4w3ngYhMKa9uRptouERXqbLebzOqyTMbkJGGSJnUdKU6i/kqmUBJ2hSOoPV0B8TgGwWUePM/MnkCL/c5Gy7L+t8yGUtkyOwq49c1FH/l/2/jaxp+jOhpSfQ+9zL6PrgIYXzPGHfx8kNH2DrjvWk4x14qSQXMph57naa13aS2NvH+d+opWbS/m6pipHn0smfBdMkZ2e48uYT+Mq/fYtsLk7WSlISqGVu9QV4OvufI09LDDvsxoBwvXC0/Pq2G8dB70mCEEi/q8nLmoXYHUaP834IZnIgBBWrY/TMj5A4cSrB5ZsRAT8yEkJLZLENP5rhp/5LXyD+l6dpe/ZRSidNZ+p51/LGH/97xPrgzjvvZPny5Xzzm99k7ty5h1zPhncNjDoYi8WGKDkQJfwV44aBh2w6jqfPJNjnCPFkdaiQpS8bhjVtkyjtc9V9XoFW5MUy7e8WRsIkNdlZ/9NMyYz7bLa/D6SuITXo/Vq/e140nKSzxxkZ63q/ULKyOrrPBDzYPgllWUgapHY20nHvMkrfdiHG9MpR7Imjj7wdRzqdpjQQZXvXq8z3noJWOjBISWLJZKTmvJxDyzeDLdHyM/3KcuiJQUc3meMaSJd5KH3VMfiUpWES0yMEm5xlGykEVsiLGXJeWZltTs73bQ/9/U0FP0DDr75HvP0F/EaEcKCGrJsgqC4Y4x+PNhGoDvH4DX9RKYDHgObmZl7veZrWVCNZO8VTn76LaHAKNRVziIamUO6fgh5Pg3eg8ZoWd5eP9FxBqEuPjshZaAn3mGmBlI5XSNZE5CzQNKyIM2jUUjlsnxsPIiMLRr4ylUZ095FaOInSTX30zilh7j+8SP8l7LzqZDbffztb//wTLOvWYT1vw+Gr3/0xvTtf5/e//z2VN1xNyVnHs+3ar49I3cNBCX/FuKGjY0kT26dhu7Pvkl0WZmjgj8twfcV9XRbJWh+5Eue4npFoaYtdVzpq5ZJZ3fR2OsJ96w0ak+83mFvuqPXipo/uP01BO9eNLmcLggE3/KylURWN05rLJ/KRnLyokb/d/TqeulpKL7mApk/8+2h2xVGL3+9nKsfQaL7OZDGTaLwc3V2D7DtlaiGdL4CcVofWGUPG3fXazm5EMEBm3qRCmfQxNQD4WuOEtvUiUq7Bn8dA70nhc20Aakvn07j3Gf7rv/5rWK5RsSdfoDvZxJzq8zDrooWX/rbeMtqWb6Xm3NlK8I8yJ4YvIUYXO1MbsLGoD83H4wlRH1mI3wgXcmpIoUEo0K81ymfX9OYNfYsiNkqJsGRBQwQUBH8xcpDv1tNnYQU0EmfNdssIwlt7kF6D0k19aIkM0uehJluHcdKH2fDqPdRe8x7aH7x/RPpj2tKr2dixm1yyl4477ye7bTe5q/99zJYX1NOuGDeyZPDirulK55Mu0wsR/Dwp6OvtdyWzDQ1Pn4XUnYQxLad62Pm2EoyEwEgIendEkZZAWoLyijj6Z1rJ2gZZN16wcUU7kWUhIstCeL0mlq1h2Y7grwn1UVnhfLw+k033riW9ag31p1Ry3OKd49A7Rw9TmU2IUlbnnsXOpJG6jtR1PHGr332yGMsuvNhlMoW3LYG3LYGvp/+FnSsPYoV9jsGgbSNSGUQqg+3RsD0aXefVE5o1n//93/8llUrtf419SL/4BlFvLQ3GPKQuCG2PEdoew97SRLYzgfdEZdMxmpwaeBsrE/9gS+JVop4aTq96L3PLz2JmyQn4PSWQyTreIDnTWb+3pbOuLyV43TXBeBLiSUTWKjwXgFNGiIL6X6T3Efy6cDJKZnJYIZ8j9TTQczZSOK6D/o4sgVYnF4TWGUPrjIFl07Mwiq8zS0XdAoLz59Hx0AMEZ85m5o3fOew+WfOHm9m1bROhSY6tSuzxf/LFL46dp4ma+SvGjRRxyqnB15HB9jqj/ujWNLGZjoquZ44k+pIfT8xx/zKDHoyUhe6me9VTOsKCxFT377TAP7nfOjdtenh5teOeZ/Tp1C5pJn5Jf6CZ2oizNhb2ZEns6aXn+Y30rt1NX2ua9JZdVF+0kDW/ep5IJDLKPXF0owmN2SzmNfksiXgrJWln3cbTrWN7A0h3iiGyJjISgl5HlS9CQWQ8UZil+Vr6HDUtkK2NkKr1E+5xBLtIpsDjKYRfrn41QTpWRg+QTCYJBA4QbwAId2uYHi9UOm1LTHe+09YXduCNBph1SumI9YdifzotJ1bGlMB8FkTOdgS1t8jQJ+AHVyOEZUEw2J9YyzAcd9FM/zKAyOTDcoIwLWQhE6dW2O8gwUPBhkTL5LAD/df1d+XIljl/e3qz9BxbTnin8yx5dncj3GRfvs4sM6vPZWNzC6ltW4i99urhdwpQU1PDjCs/RdfGl+lc8zwXX3zxiNQ7HJTwV4wLUkpSJAgQwuhOFlx14lMcwe/pg1yFRflGs2DYYwCW3ygsCwTaJZUrewDY9NFSEJB73X2JL+glDYgSx5agamYHlq0xrdzxMe9IhEhnNbpf3U5q5WZ2/GUDUgoCk6bimVmBMake7+WXKsE/DJ6w7+MUcQFAIfFKHi1jYwXcGABhv6OSneoaT3Y5g6/01CgAvr0xZ80W0NOuDUbI0Qzptl04BmD7dEzbWecdzhpsdNbxbFlxL6lYO02fLSm81Ht+uIvqkyfz2Dn/ewh3rhguKdmHV/iZ71+KzOYQoaDjAuqq8tH1/sA8lu3Ef8gnZDJNsIUzQMjjzvpF1vXvzweDsm2k10DkBw6a5nzXpunk6tB1NHcpCdvj2AAYA13j9KRTp13qvJOE+9yJE2dylvgSL2z+GbFVK5jy/ZvRS8I0ffLwQgCvvWP0gwgNhhL+inEhTRIbm5BWiu3zoLkjeW/MwtPXvxrl6UoVjHvyg4BcifPYVqzto/P4KP5ui8lP2ew9S8eY78zsPYZFIulD2q6LT9pHWSjJJdWvA/DUmigv/udzdG5ox6gqpeKas9jxy78RDAY5+cNOCtBXPq2CvQwXj/CDhJTZR6nr12/V9Bv/GUkLM+xBT2loruDtPXNqIa+Cr9dE+jxIvzMLs/xGIVWzWeLFLPXi3duH0ZdFSklbbid7u9aga95hrZGWljquiIl4K+EtczCDkGlvpXdzB5Pfe/JIdYNiCFrNndR4+7PqyVQKEQzCvkF0pARtkKUiTe8vWxwIx+cDj+EsBQDSZyAsq3/g4AbvKbgGuudLj46WySFsG9sQaKYkF/bgSRR5pwDR1R20neHElMhnFz227h2s3HIPzd/7X2o++/FD65AjACX8FeNCAmfWFxIRR1Xn/jizpTrJaY5E0Hsdoe+khu3f9vY6I3Mr6MHyC8IbnJjsnFFDZmsEqyaLucOHFZZogG9aH5OjPSyJ7qItG+GCtuV86V96IVLK888/z9KlSwekfX3l10roHyzLrb9QV1dHb3s7ta7w9/SkkR6dnOyP02AGDQz3u45sjNE7P0LpG65rkhAgJWbEhxkyyJZoeEtcFa0NImfS0raJra3Pksh0EPZV8fhTfyUUCr1p+/yBKH5flA3x5yhdY5BItZJcsQotHKKv4syR7QzFfpQY5XSZzdhCogl3cJ/L9a/bF5NfDsgfy+Ugk+mPFFko5/5t9WuERMpG+j0DM0ACGHphecn2e538EF6DbHUIX1eaTLkfzZRkSwXdCyOUrY8hfTq24adivbPs2LUghNGbpowK5rzz82x98me03XEnLdd/gdraWo42lMGfYlxIEkdDI1jq/mhc4Ruv1RAZ5xPdLAqjdHAixtleHdvQHOO/tj5qnmlj0ydr2PTJGoyUwHIDBGk5sP02vmnO+rIhbBYE93CMtot3fDCJvy7KKf93LaeffvoB870rhocQgjPPPJNOuxmZyyFzOURvHC2extOVwtOVKgRpyZOaEkZI6Dq2lK5jS0nVhzAjzkAhF9DwJCVd8310zfdh+TSaK/pYs/MBDOHhpGkfYOmMj3HmmcMT3OkqLzMu+Rie+km0PHY/iZdXEDrlBGo/80l2fParI94fioF0my2k7BjbM2sRhoHIL9VoGtKykDnT+deyBq9ACMcbwNBde4GigYCbvhfLdfPLOGGkMc1+uwHTcj52PsW3MxjwdDk2Jb6uNGbIsSEC6F4Yoe0kN4Swa4dSvj6OFfZhhX1Ek6VMf8enseJpfvnLX45sZ40RauavGBcypPERRAsEsFZvRG+Y6h4pRbhR+gIdlpOju8guKFXjJxtxxqyx6VXE6wXeHshW2EghIOW8VLJlkkBNgqnl/XHk/9KxmMwbO4i3JDnn55fw9NvVOu9IcsUVV3D//feTtVN4NdcAL5NDuMZWHtN2LPiLMP2CULPzgk5VGYWYAADtx2n4upztrrkeon93tr9161f43Oc+d1Bte/WuvDbnv2lubqakpISTb/n5wd2g4pCwi2b3lpV11vw9xkD1vZQFIz2ZSiH8Rev7huEIc1dwU+y2p2tgAdLuP5YfzOv6APV/HrFPytu8saCWtbE8OqVbnOUFLWM6WkdDQ+QsuhZFKNvo5p7AhydcSqhuOq++OjLGf2ONEv6KcSGrZfHJAGgaWmmE7GTHCjtXFCNGTzvGO1bAeUzNEseYz/S5kfkC4Ik7qXoB9AwEdrtBYMolqY4gZtSxAfBqFieXNvF3w4ndnuobYoahOGTOOussANr6tlCvz0QIDUrCiFTGWceVHrRkDjvgztrc93GizsBIS6QGiRpXy+O+y/MBn+pezJHrdkYCixYdnltePunJhlu+cFj1KIaHpmlU+6fTlt5OfWgewucK9mwONIHQdaS1j/o/l+tX8wuxfwKo4oGDXbTGb1oDbQZM0xkE5BGiEDsCXUd6DTR3iUCUeNAsSarGaZ+vK4unJ03TO5z3zuRn0oWlKT0nkaf3Yj+W5fHGLYfVP+OFUvsrxpyLKz9Bj91OULhxqGuqyEY9ZKMepAEVq50PQLouRDbqJRv1kpjkI13W/8j6eiSW+x7xdmtIAyy/8zGSAm+7QePuahp3V+PVLZ7vnkXCzf7lix7YNUxx8EydOpUqJrHFXE1ftgs7lXKy9Gn7zLoEIJwUyrYuMNLOi1zPSmwDbAPSZZCL9AuE+GQPHZE4mmYUBhmKo4fFde8ABG3ZHf07da3fP794Zi60/lm+s8MZCORy/Z9Mtv9j2f0xAfLl8+Q9RNIZ51N8TXC0DUXn6mkbPWMX3Iltv8G0v/Yx7a996CmzUH+iVied8uKdOofUxk1M+c9vjmBvjQ1K+CvGnLbsdlLEmepf4ORzB0Kbu8mUakQ3S0obU5Q2pvD2ZPE3Jwo/RikgExWkKyFdCfF6QS4MmXKbTLlNutYiG3U+uRKbbJmFN5jDG8wRz3mZJbez+a6X8ZUHiEyPjm8nvEWZJ07Eg4/Vcjm5ZMIZAORfvElnfVWPpZC6wBO30EyJFCDdwUC2FLKloJng69TIldrkSm1aJ7WzO/sS4QW1KrviUcjj235EnW8mW/peJpOOITMZpGn2C96iAaK03Nl7XtBDfzkp+wP82HZ/9L/8QCCbdZ6z/N/gCPp8Zsl8QCAAXUO4oYABvN1p0ASWm57aDBnYXp0dby9hx9sdleTeM8PsPTNM9UvdeH05gosWgGVhdveMav+NBkr4K8aclEiiCw/RkimQTJGpj9B1UkXhuNGdxOhOoicHxvYOtuWYtKynMHM0QyAkyFITWWqiR90feMhC+m200ixmRicaSmHZ8KsvrKevsYO/3/dX/nLOz8buhicQXuHnWE4lTZLdbHH8qxNJ5xNPIBIZzLJ+v2pfr00upJELaQXXPgAjDcICUZEhl9pJ6w9vg5zJpBsuHYe7UowEc+suRBM6O7KvF9b080Z+wuNB+LwInxc04QwAbOl88gMAXXc+muZ8PB5n1p/OgGkh05mBywHQP9MPBZxyORPpMwrqezufBChnYZZ40dwZv+XTSFUZdC4MYrixh7a+O0R8YYb4wgzbr3LWo/zZjSCg7qTR77+RRg2hFWOOIbxYMoft96Ch4d/Wge1zfGl9rQNDtUq/geZaiZsBnfSkEFp+EB8GM2w7IwBACAkhZxQfqEwS9GfR3WNb/tZE26u7mfLN93HeeeeNxW1OSJ6w/silNZ9kSt98tqc2MknOxJcC4fU6L+JcDk+L49onJ0cBnUCHEwY4XaYR3uN8X7mQwN8FyZhG+08eIFwTZMot/4IR9g99ccURjc8IE/ZWktactfPCACCddrxDXBdAITSktAuW/wLAspGuUZ8wDMcIEBwNgbtEIPyuTYBtD676DwXA45wnfc6/ts/AdN1JbV1gBXT8nc6kI1vix85nB05AZrIJVv98+djaZpa9vInIgkmU1hanJT06UDN/xZjTabcQ8VajCdcQJ50h2NhNsLEbvSeByJiF8J1WwMC7qxvvrm7QBH2TPQjpyHstB1KTiF7nF2pldbzhLN6wm7DH1uhL+ejY2sfu//ckwZMWs/M/fzcu9zyReLT1Z7y261mE0NjEmoH+2dls4eNpj6Nn7EL8/0wUzIDADAhsD8TP6cN64k9kd+9l+ucvZu27f8Brlx1+THXF+PDolu9TFppCe6IR08qAZSETSbBshGE4At/9iCIjPWlZyGy/FlBmc4XZv/R4sIRFRmQw7Wx/bIB8oB8hBiwp2EEvwrSdjxtsSgrhfNxy+WWoiled+CGJKTaJKTZkNTCc+jPTskwJdiM6Orn29Lfz9Hk/HNW+Gw3UzF8x9ng9aJYPWRJEmDbE4s7H9eGVJY5aOB/HPdPgWOhLDfScJOeaieuZ/irzAwAtmHMvYSIlJNdsZc9tD6BHImz/6+NjdYcTnoqKCuZNfztrt93PJH0mVZ7JzgxNB1JpCPgRiQze7ix9U/uD9Gg554Wcjkhafvp34s+s4pjPnEdfXEXheyswddJSdnavZFdiPdMDxyK8RRb9+5KPymcYjmW+lGRlCssj6OzbRkdmB53p3ZjSeRFowmBK6WJKRJSawCw8etFsvCiPgHRT+oqsiZa1ClkCbUPHNgRS758T+7sksbzdaVYgg4BhU1vdy95Onc7tMebeMHdkOmeMUcJfMeb4Sqvp6t2G9HmwSnSMbK4/GIeUhR+nFTAwQwZ62lHbpct0LM/Al4SvUy8kjsk1pMmkPJREnKWD2Jqd7PzWb/EvPIbKT72X6urqsblBBQDR8BQAkmEbEa1CdnU7L/mCetbCChj4evvXWQHMTIpdD/6BeOMGqq96L3KSEvxvFfTqGsK7JtOrF0V11HUnc6ObnEmmUo7K3xXCSauXVmsnOxPrSVnueQiiwXoayk4k6ImihcLEknvZ3f4aO6wk67ufYk70TKbNOBctmUV6dKxkAjsr0cNu8B5DQwrR78svwdeTw7e3l8ykUqQQJKsEvg5BptJ5Rr0BZ3KRyQqe/ekGAN7znveMUe+NLEr4K8acVLIDbyBK+wkRSrdl0aIhtBY3mos7Qs9FfVh+nVxQI1vSPxK3ApB1/fql7viDZ6udgYPhsQgGspiWRrwN2n72NL66ehJr3lC52seB//rJlZx55u1QWUauqhSPaYFtYVdFAci50fzSUQ0pJazfxa7EBrrWvoBt5pj+to+x7f7/G8c7UIw0nfU5Es+3EqmdDMIdBOZMR43vJu4Rto3MZBDRUnrTzfxzzx+RwKSyhcwMNeDRfESDU1i28TYu1K6BpcfxxPPfAOD8c24hk4nxwj+/x6ae5ZT0zaAsOoNsto9nG39EaWgyJx17PcK1+tdyFpZhOMsAHg0zoOMDfHt7kV4DM+QkGQMNMyyxmhwt1c5/3E/XsnXM+MRZhbgRRxtK+CvGlLlf/wGd3VuoXHB6YZ80tP6oXR6DXLQ/mIewJKabFS4TyQf3cRPDrHyZTOceyk47H72kBNPyY9aaSMum7fu/xWxrZ/Z5H1OCf5w4/XTnO97Z9AyTKhdjS4vO8jRd7ctp61hPzkwhpYVnRYRkzEn5qhleKqYdR9UZl+AJR8ex9YrRoOmZe7GyacJ1s6DL6/re6yQzXWxqfpxkrodMLk7QKMVKQSLdgc8bYemCT2Lofv7x6k0D6nvCvm/A308983XOvfh7nHn6N1n3+u9Yve2PzJv9LrY0OuEhY0nnOZNCgC6Qhl609u9W4hoQ7r7IWW5MTHX+tn023uoUqRdjdD21jvIrr0DOO2NU+mkwTNPk1H98E6EJXr30lsOuTwl/xZjS98ZarEyS8unHIWzone6lck0Ga1I5elvMifhl7vNjzMfukJAN99cVX/4S6b276HvyBTxVVQQX1pMsD9C3spHMjnaqv3I9G757x9jeoKKAEILIpNnE9m7mhZW3IaQg3dSFrnmpqFuAzx/FDnrIxjqJ1s7BiEbZsOy3w0rUozg60SLOD3j35qfRppyBP2ezu2sVbbFN+I0IpVPmU6aHyHS3YWheKiIzqZqzlKee+e6wr/H0P77C2W//bxoWXMbqF37Muo1/KByT0qIl00hF9TyQEk/cJFPpTDa0jI3p12g9t6ZQ3khCutq1PTCdF1L38r/iraiiYu5SNn92bNLx2rbN1KlTaW5uZsFPPzYidSrhrxhTul9dTnDaMUT8tZCUZCICM+TFt93NzJfJoaecdTVpCKTe/4jqGXdA4I4Kqt7/AXbfcTsyncbOpsnsbCW+KoZ/Wg01X70K36yGMb47xb707tnEjHd9kvaVy9C8PqbP+QAVshbN/V6f/cu/j3MLFWPJpEvfQ3ThiTQ/9RAb1v4eAE8gwrQlV1A96Tg8Pmdw8ML9X+Lsy75/WNda+dz/MPXM3XRveIVkz97C/k0bHmDxtH8nlPRiBg1s1+APn4Y3ZlK6oh2AXVfXYwVAy7kGgR5Jansride2UPGBi9n8nbF7djVNIxKJ0NzczOuf+gW1L2yh5bfPHFadQsp9oyLsTywWo7S0lN7eXiKRyGFdUDFxWb9+PYsWLWLyO68jMudYKtfmyJQbBNpy+Hc7MfiloTnuOJYkF/FhBXUypY7bTy4oyJT2x/IHyLa30nTH97jxxhv57VzHS2D7+7825vemUCiGz7yv/RDRnkBaJkEzxMrffGVUrrPkhtsB+P7Vi7j+P+5ix4qHsHJpfKEyFl38BYJpH+kKA0/cxvILMiUalh8m/WUPO99TT6LBAk2i9+lYAZv2n/+G7J5m6r76BXZ+YWzfM01NTcxaNA8r7kQinP2TG/BPrmDN5d8eUG648lrN/BVjwszf/Ad7b/0NWjhEcMF8Kl/rz7ftb+oqWPaKZAbh6/cLl6Lf/UszAUQh8Ibll9hVZfhmNfC9732PdDqt1vcViqOAjd8dG3X5a3f2J29qvOACABZf+Q3WPfJ9dnWvoOLkcwjvleTCGtmwEzrc2wt7315PfKaJltaQPolVYiG9OdIbNlFy4blo3rEP6tPQ0MBxP7yGldf/BmzJ5k/+jNqPnA+XH1p9SvgrxoTk6s2kNzQRufg88BlYAcd9z0jlg3LYSL8HYdmFWNt5bPcpzYYF0o39IWxAgNWdINfawUXnn68Ev0KhOCAzf3gbnF6Bf8NMujb8k8i844k1OFn7tCxI26I1sBmjrgrDiAAaue2tJNeux4x3Y2cyBPwV+LrG512z4hP3UPvCXlrveQqAzkdeofaGtxPf0IwdT1L+4SvY8JHhaSSU8FeMCfnQmyVnnoqtQ9ccR4pXrjfJ1UYwehzffOn3ILKO656nN43lc1T5lpnFkho5n47ZFcOM9ZLc/Aa9q19BCMGvfvWrsb8phUJxVFJx+dvZ+3//jy0/+0+8kybhnVZPtGouna89T2rXNrRgkLrvfJ7eRx4j/sxraMEAWjhI+JxT2XL3nYTD4Te/yCgROGYSAHO+eQV7/7ya1v/318Ix8/Kzh12PEv6KMSE6t5xmILN7M4FpleQiEN4FgV1xrIivEM7XrCrB6EqQrS3B6MuCLtBMWPXX75NN9gyoU/j9BI9fRNkZ51BTU7P/RRUKhaKIxn/7YmF7akUJqbWvk97eRLqxid0vvoIeDmNUVmB2dbPni7cgDIOqd11D6IyTwOPM9sdT8F/2p2tp+cnf0UN+fCfMZ+YpC2j7w3N0PPsGVixJ2bGVw65LCX/FmCA7ukCAtCXChFBz/zGjI4Fd4gT40NI5srUl/QctidRA2jYIjdpLrkYvi2CUlFKiVZGc5UGhUCgOlp1f+w8AGn72A4w+nVxnJ1owiKzyYvXFSbz6Gv75cwgFJrHli194k9pGl0uOvRGA9ot2k26JoYd90NFJOgd7f/c8dXV13PmbP/COd7yDWCz2JrU5KOGvGBNantyEpypKaPHJiE5I1jr7Y/MilK7pQqRy2CEftt9ZDjDNNM1sJ5qdjqkFyaVj1C08n71//yNzb76dN24e3x+jQqF4a9D0yS8Vtk3TpOq9l6OFg4TOPBYrkaS3dTVTPvFZAtOms/kb4/PeSWa72dT8FNV/nMP8Ty1ly71r2XHnkxgVEYRH5+WXX2bKlCkHVacS/ooxIdPUgn9WPULTyFRZRNc7Qj68M42QEqsoVavt0di44SHaW9eB0MBN5ekNRQGU4FcoFKPC1O99gZ4H/gFA168fGnBs5jdv4bh/vZ3VPx7b98/ZT3yBldvvJZntoi22CX7q7O/tigNQ/+nLDlrwgxL+ijFgxu+/Q2ZbM2nLIjhnI6XTFxaOSc0JtSnc3N1a2knoI6WF4Qli5pJUzziF2jln4qs+OmNoKxSKI5/pv/suoVllGHWVaDpUXHUmtr8Mq7OLjl88jJVM0jNv7F38tv74aZK5Lo75yttofnIT8ZVb0UoC2H0pqq86lapLjzukepVvlGLUyTV3YqezyJxF6913kelux5OQeBKO/75VGsD2eZAeHenVEaZkUt3JmLkkAKm+NoKltbzyqy8e6DIKhUJxyHgDOTSPQeV7ziG7uwNRPxPv1Fo6fvEwemkJPu/YBbibcfttTL/th1S8/0r2/mUtVdddgpy/iGxHAr28lPpbPk1bWxut97/Eqrf91yFdQ838FaNObm9b/x+GQdAop/KxRgDsSZVocScft1XmuPUZyRytPRsBKJt2LDULzsb0D5LvW6FQKEaITVf+B3Me/E9CJxyDXl5K+4/uwepLABA+YQlCN2j69Oir/Bvu/j653S10Pfxn0tu2UXLmUsJnLWHrh51kPpO/9xk8lWVUVVUd1nWU8FeMOtLsT9QSmDULb0qn+epZ1N2/1dlpWVhVEWyvG8HHtGnftZIpcy6k5rRLxqHFCoViIrLpSscDoG5LjJ4HHkePlhA99wJ806ay8d9HX/CvW7eOvTf9iNyuZjw1NVR/5qNY7TGaPvVDAIzaavTIVBrf+6U3qenNUcJfMeqk1m1EBPzogQCRBceRrIO6l0wIh9BiqUI5S4ddXSvp3LsO2zaJ1MzEG5e8cN/YhAJVKBQKgOZv/Ri+NbbXrPrXD9H583sxqiup/vh1lJcvIFGZYc8v/ovAgtmUXnQBRmU5TTccvuAHJfwVo8y0X91CZts2ggvmUfWh9xPaqeHZ7RyzoyEylQEAfC0JNm5/gNbWNZSUTaVq8hIiVTPGseUKhUIx+kz75ffJtbTT+X9/IDBvHlXvfx+a10tKs+n526NIM0fldZew49OHl+VwX5TwV4wa037233TcdR/ZHXupmXMOka0almssG2jqQfq9+F/digiHyFopWlvXMqn+ZObMexfLnvjq+DZeoVAoxgizrQWZM0muW0/bL39NYPYsEuvXkWnaQdl7LsKoiI74NVVKX8Wo0dfXR1l9PVZfHwiNBW//IsGyOvSMpHR9FwCipRMA6dFZw0u0NK8i4q+lvnQRG1oeH8/mKxQKxZgw7de3kFy5AXtrL/E1qzC7OjFqKoheeRnhkxsAaHzv14dV13DltRL+ilGl/G2X0f33R6meeSpTll6JL6UR3uaEn8xFXZX/2ibwerBqymhtXcPrLY9R6q/jpIb389jrh+bGolAoFEcTDb+5FWOvkwBNepw0wgBNH//3g6pnuPJaqf0Vo8bsb/w3sWeeo3zx6cyY9y7IOfu7F5ZSsXwvvu4E2YYKpLQhk6GrbxubO57FsrNMKV8yvo1XKEaJYz5zE7GNqwlObsA6roqdn79xvJukOAJo+uDYLnUq4a8YFWb86DZMXwIrmWByeirhnamCK19uqju6jcXwrI2BLckeU8f6VT8i4C/nuLkf4KU1Px7P5isUo8K8r9/G1h//Z+Fv7zOTQQl/xTigIvwpRg096ATt6ZghQQi0nE2q2osZELReVF8o15nbw8pV/4+smWTBrKsIh2rHq8kKxahx4dLvUP90Al3rDxH78cuvGMcWKSYySvgrRoVtn/8inqwHI1pG78ZVAOy8yBkM9DWA5YPm988j7TFZGf8HmtA5seIdlLSbPPHigWdCiUSCL75yJf/y4MXs2rVrtG9FoRgRnnjxRp586Zts2foGM6/9ArM//FXuuOOO8W6WYoKi1P6KUaX02BPpfP4pmt/uzHY6FzjjzfhUyTG/6SFVFka22EytOYUKOYVHd/3PkHXZts3J181j5W82F/bdzVTO+NbZLP+PZ0b1PhSKkWL69Ols/f1t490MxQRHzfwVo8bmr38BX5+Bx19CV+Nr6H0WuYjE8jsOJqlsD6sqnwFg7a6H2fWNJCc/NrQ7SyqVGiD480jb5sOvfHRU7kGhUCjeiqiZv2JUqZl/JulYK81/v5fWJx+m/pyr0N5xPPaWJ3hu4z/6CwrItHQTbKji5Me+ziuX3LJfXcFgkFtvvZU/Nd2LZmj4o34qjq2jdFopvz75l2N4VwqFQnF0o/z8FaPO9LOvpem5ewt/a14/djYNQPSaSzjt/VU8c/1DBGvCBD/2PjzV5QA0vucb49JehUKhOFpRfv6KI4btz/6BOdfW0/jQT7EyqYLgL62YQd30C9jxkkbkA0Ha7/wNnZ+9jcDiYzCqaqnf3MOeb/73OLdeoVAo3nqoNX/FmBCorGf+R26m9tx3YpREAciketj14N10Nr2GEfcQmDsXgNSaLfQ9uZz4iyto+LkS/gqFQjHSKLW/YsxZ8MUfENu6jlTbLhI7t5Judtz1hM+HEY3iqapErykj+s5L2PmvSvWvUCgUw0Wp/RVHLK/f1p+PesHXbsdM9JESMTwVVTT+x1fGsWUKhUIxMVDCXzGuvP7dL4x3ExQKhWLCodb8FQqFQqGYYCjhr1AoFArFBEMJf4VCoVAoJhhK+CsUCoVCMcFQwl9x1HOhdg0XateMdzMUCoXiqEFZ+yuOOoYS9Bdq1/CEfd8Yt0ahUCiOPpTwVxw1vNnsPi/48+XUQEChUCgGRwl/xVHBvoLflCa7aSRGFwFCzGTBfmWUJkChUCgGRwl/xRHHUDP8XtnFdjbSQfN+x6qYRJTKAfuU4FcoFIrBUcJfccRiS5tWdrGbbfTSOWiZSuqoYxpR4Qh+JfAVisPnQEts6jf21kAJf8URQ/ELJy5jbGUtHbQMKLOIU6mkFglIbJ6Rfx7jVire6hQ/hzmZJU0SCxMDDz4CeIT3LSMAD8ZLpku20Ukri8VSKqhFFzpw4MFAvv6czALgEd4B5xxoae5glu2K7yN/zoniHDawgjt+8T989KMfHVDurfL9HQ4qq5/iiOJUcSFbWEcXrXjwMpmZ9NFDB83M50QmiYYB5dWPWHEoDCYsLtSuQUpJG7tpYw89dJIhtd+5ISLM5XjKRNWA88eLoQT4brkNkyzTmIMQ4pDrj8lumthEG7vx4CVHFg9eGpjLZGagi/3nkCmZoIWdtLEHkxwpEgCUU81MFhIghI4+6LkAaZkkTi8AAcL48JMhTY4MGhoP7fkNH6r/LGmSJIiRJomJiTMlsMmQpoNmMqQQCE7hAsKidNBrPWHfN2gfjvf3eqgMV14r4a8YN4p/cFJKNrOGXWwlRAm1TKOXzgHr+4tZSpWYNGhdR+sPVTG2DPaSz8oMLezCJEsPHXTRRoQyyqimhCgBguh4MHG0AFtYR4YUUzmGGqbgJ4AX/wABK6VEInlKPvCm1z/YZ7d4Nh2jC4lEQydDmjRJ555Is4utAFRQQwV1ePGSJQOAgQcQZElj4CFCGRam+7FIk8SDl27aaWYHfoLMYAF1TCVJnB1sopkd7rnlCATSFbqOIM6hoVFNPT4CBAkDgh1sIkkcAIFGBTWUUk6AMAYGOXK0s4c29hxUnwgEOgbC/c9HAC8+6plJI+tJkyBCOQAWFhKJhYntbuP+X0NDx8CHn1qmUsc0hBBH1ftFpfRVHFV00cYutjKD+VRQw2s8h4GXBZxEDZPRXBXjvhxNP0rFyHCwqttigWvKHJ200kkrCXrRMeimAwAPXnz4mccS6sWMIeuLyip2splmdrCTLQCUEKVWTiVECRnS7KWJXjoJi1KChPETxE8QD14EGuVU4ROBg75nS5r00kUzO2hhpyuy+jHwuOJPo4G5lBCliU1sYY07SNAAgY0FgI5RJAD70dCxsfDiYy5LqGd6YXATooT5nMh0OY9dbCVFojAAiVKBnykEKaGcagzhGVDvJNlAF21YmKSI00krTWzCwiyUCVHCHI6nijokkhQJsqTx4sNLABuLDCkypPETIEQEP8EhtRtlspLdNNJHrztI0AuDBR0d3B4DsLGwsNjFVrpoI0eGx7c9gpRyv/qPdm8iNfNXjDpDqSVtaTs/OyFIyjgv8hgLOZkcOTaxitksZhIN+71A9uVo/gG+lRiN9dR9nx1HLb+HPnoIE6GayUPOrm1p000bPXSSJE6CGAliSCRBSohQhkmWMqqpYxpe4TuotlnSJEEfKRwVdwctSGwAolRSzWRXJZ0gRZIMSSxX6AYIcTLnF9bAhyKvkk7IGFtZX7iGFx8NzKWSWjQMLEx8BDCGUKNL6cx0dQyEENjSRiLRhY4lLfroxsCLBw8CDQ9ebCwEGpoY3UCwTtssTHIYGIU2jicJ2cfrvEKMbgC8+IlQRoAQAUL4CRIkjI8AFiZt7CVClFIqxl1ToNT+iiOKgcZ8vbzOCuL0EKGcBZzIBlbSRzencCE+AmxgBa3sQiCoZjJzWIxX+AfUqYT+wTPcQEmHW+dQ66hDXWc4hmc5mWUL69jLdrz4yZImTCkRyrGxqGISVUwiTZKNrCRGF5Y7ew0SJkSEEsqooIaACB30fb4ZlrTIkcHAM+SA1ZYWKZK8wpPUMpV54oQh65NSYpIjRhfreQUDD1OYRRlVhCkddwE5EcjKDL100kMncXpJESdNEtsd5O1LgBDV1FNCGV58+PDjJzjAtmG031tK+CvGnaFe6K/IZVjkqGcG29mIBy9J4pzIOQWXPXCMhtrYww424SfIiZw76CxkIg8CDtYl62CF/wXiajpppZ09lBDFJEeUKqKiAnC+ow6aSRJHxyBCOSn6SJIgR8ZVLzsqVj8BDDyUUEalqB2yDba0yZAiSZxOWojRRZI4WTIIhKOGFtPplu3sppEkcSQQpwfdnQX7CTKZmVRQc0QJyl7ZyS4aaWEn9UwfIPxNmWMza+ily50HZwvq8AhlHMcZB62dUIw8UkpyZEgSJ0MagDKqSNLHHpropLlgWwG4xpFziFLJy/ZTo/4sKuGvGDfeTMC8KB+jglrmiOPokm28xnJAciynUS3q9yvfIztZwdNUM5mFnDTo+v9EGQAMZ4YspSRGNzo6QUqGpba1pU2aJGmSOHbWna6avK+gUs6QQkfHwmISDegY7GEbEkmAMFnSrqGXTogSPPjcNWZcUZYmR5YcWcqoQiDIkMLGUUHn/8uRKaxBe/FTRiUhIvgIUEkdvn00QHlispsOmgkQooLaI05QJmSMl3gcAB8BTuGCQhvTMsl6XqaPXuqY5mgP8BAgSJASQkRGXf2uGBnySyxZMmRIsYtGOtiLjU2ICKWU48HrLLtgoKG52zoefPgJ8FjbA1RVVR3S9ZXB3wSlpaWFZDJJfX09Pp9vzF1YBlujbWU37eyhi3YsctjYzMCZOZaLambIeWxjA+t5hRPlOURE2YA6oqKCRfJU1vMyuyhjGnPG5F6ONAb7LlvlbvawrSCgJ9HANjYU1ipDlFAua1x3K2emkhfQldRhY9HrrokXU0KUMKVUU0+USkqpQCIRCHaxtaCxmcR0ZrEQQ3iwpU07eymnesi17Pya/R62oWNQTk3BACtveOV1zbjy66rDnSlFRBkRyt684DjhJ1RwlQsSLgj+nXILW1mHhs5xnF5wIVQcnQghCoO3IGHKqHLtTxzPiT56MckhEFiYSBzbJ9P1tgCorq4mQIgSolQzmRomD/gdjMR7T838j2L2FQaWtHiah/Yrlx9d5sgO6iu/L/lHYrgP24Fmo87M/rlCO/IP9wmcjUSSpI929tJJq2tME2aJOHPQulbIZ9AxOF6csd+xt/ogYN8+TskEO9jEbrZRRhV+QvTSURDi05lHgBB72F4wpMr7S3vwkiHNbrYRJEw51YSIFASus0Y5uHeF4tCRUvIsj2CSo4YphCghhqOtmMIsZrLgTY1bFW9t8jYhffTQSye7aUQiOZ4zqChaKjvQ+07N/MeA4heyLR0r3qfkgwcsO1JCqvjanbKVVSwnzOBBLBzfXYcNrKBa1hdmanlVbJAwujDIyBSreREbi6nyGEKUYGPzzDPPcNZZZ6Fp+6seLWmSIU1QhPc75vhLV9FNe8ESGmAlzxa2877CfXTvF5+/mBoms4nVxGXvfgE7jka3m6ECzQxGXPbSSycxuulxVfIGHmazmCnMKlhwp0m61uzOjHkSDUNe/xh5rFIljyFCCObKJexkMz100E0bAcLM4wQm0XDE2CUoxg9NOEtmIUrwSh972E6QEKWupnQkUTP/IRjsxbzv/jxZmeE5/lL4O0wp05lHBTU8gxN+NkolAUIFFeupXEiISOEHb0ubrz3xSTo6OnjXu96Fzzf0euW+beiTPbzMkwBUUY9FDnCEft7wKkCoEGhDYpMiURAU4ChcDTyY5PDiJ0iYbtoHXKcwK8Rwy4Tw4i8E7ggRQUPDxiZMKTVMIUiIDGl66SJGF710kSsyhslfO0wpVUxiKrOHdFcyZY5n+DNTmMUccdyAY0ey4D+YEKr7Ykub13iOHtcXPb9m6ARuqVUzRYXiLURWZuikpRBIqYwqdiW3847Qhwpl3uxdpwz+DpILtWuwpU2SPmJ0E6eXLBm8+NAxyJLGxiZACAMvErtg0gGwl+371Tmb49jM6kGvlxe0AcLoGKToK/gAh4gwh+NI0oeBl8p9XvKDuUm9Ll+lmR2FyFbTmUcVTjS8XjppYhMmWSQU3E/ywUcMPMTpJUcODx6qmIRPBLCkSYoEGjpZ0m4UtFzBeCtJ3LX+rqSKScTpRXPXb3vppI+eQht1dCKUFwZBjvrZcYXZNzpaMba06aKVNCla2EkPHfsZBh6pgv9whH6eXtnFqywDGNIgUqFQHL3Y0mYHm12Xwg5McnjwUUkd21Ib8fsHN3Adigkp/Pd92drSppdOUiQIU4qfIN//5ze47tRPEieGjY3t2mWmSZGgr6CaDriz2hwZ11fYj0CQJlEw1jDciGA2dsGKOR85Kx8xat/IWY6RUzURyvDgJUEfNpZrGFKNQLCWl0iRcENm5q2effgIUko5PvxYmKRJFcJ5amh00TbgWoPNkEeSvB/yUMZdfbIHG8tNhxI6KLWmJU166GAbG+ilC4EgRIRjOJYKUTOg7JEq/Is5mIGAJS1XS9JJC7uJu4Oo07iYkCgZpRYqFIqxREpJB800soEEvZRTQwlRpjALn/Af8nttwgj/A71U18gXaWfvfvsFgiAl6OhoaAUhHqKUEkopIXrI6tTiqHXQbzyXt5QejgC0pU2MLsKUkiNLF21kSJEiQS+d5Miho7sz+BDCDdeZdy3Jq/MXcQo1Ysoh3cdYYcocCfrcTy9JN4hGnF4kspBEJUrlYa2JjtcAYajnMx/VLEuaNAkS9NFHL32u1inv+lNODXVMo4KaIZOgKBSKowtb2qzlRTpoIUoFx7CYUlE+oMxoC/8j9m1yoXYNpjQdN6BBXvpDdUxGpumkhT56CoL/HN5JF62uP3KIEJFRs2be14Aq3/a8JmC4deQN3ww81DP9oNogpZPZarwsti1p0c4ebDdhhuUG7wQKft8SmzixAfHJHSsCJ+zqJBooo2qAXcThsK8QHu3BwIXaNaRlkjb2FAY0jqBPYZLdL0KYo9lwBp71TCdCOWFKlUGeQvEWZC/b6aBlyGRlYzFZOSjhf0Xph/abEY9WI/PGXQB1chqAq1rPkCVLnZhGFXWYmG5gEmetPp860vGQrCRCGYYwqGbirJUKIdyEFeNDPhzpvhh4kO6QwNG4eJjJQsqpIkjJmBqvDTYYONw1elM6oVi76aCbdnrpRCBcF7oQYaJO8Bk3+E3ecNJPAD8hJegViglCnBga+pAeWsN9Fx2O/D3smX/exepQX5wZmSJOzM3Y5C9E79KLmhajCwOvGzShhAgeWtlNCzsB8OAjRAmV1FFKOWVUDxkFTDH6BAhRTvV+NghV1LNAnDhOrXJIyD5XMHeRos814gxzjDiWGiYPO+a7KXM0s5M4PSSIkXQzj4ETzjNKJXM4jlqmDem9oFAoJiaTmUE7e1nNC8yUC/DgdSYJIjhmbRiRt9KhCn5b2iznbwP2BWUJtUxxg14spJH1JElQipcaJlNONToGs1iEjeWksFT+sUcMPbKDFTwDMMBgESDA2D3Y+2JLm+1sZAebsLGJUOb4wqOTIk47e9nKOmbI+cwQ89+0vtdZQTt7CBMlRAllVBMkTAnREVuqUCgUby2cJVkLP0HmsYTVvMBaXiocXyLPolxUj0lbxnVK4mSddvJGa2iEiNBHD9vYwC4aOVu8nVo5hXaa6aSFDawYcL6BBw9edOlEsHNiikeI4IT5VPGwx54EfQCUUMY8lhCmFAtzxAZpCdlHlvRBGQD2yR42sZpeOpnGHKYzdz/jOVOabGcD29hAnZz2phqABL1ukpooIEkQo5t21+PDxpYmAcKcKM45pPtUKBRvLdrkXt7gtYKGcDDytlHD4XCX3MdX+AvBufKdBRV+N+2FwUAJpUgpCYgQU5nFVGaRkDHSJDExMckVbAAsLNfv3nEP28O2wjVOlRcRFkeWh8JbmWrqyZBiD9t5lWVUMokSonjx4pFeN75AyQHzmG+Wa5BIPHjdQZ2BgUGcXnaxtZCP/WR53qB2AjHZzU62FOVRTxEgxBLOGhA3XUpJhjRJYsTpI0EMgD56CHBg4T+ThexkC0l3sGO4WevClKKj004zPXTwrHyEU7hgTNV5CoXiyCImu1nLi1RQSx1T3WmvXrAHGg/j7HFfjBRCUMsUapmClHLQ2VyL3EUvnUQox3CbLF1Lch8BSqlw08L2EaeXLtoK682Oy5wS/mOFR3iZwXwmy5nsZhudNLOLDjfAUP8SgE/6iVDuWrVHCFOKFz8aGjvZ8qbXyZJGG8KocQtrB0QnzEcP7KCZPXJ7weo+TaJgdS/QKKGUycwoeFpIKQsGio5/ghMOOUMKC5MKakiTIkeGHFkyxAoGqfl4EY6rZjuTmHZoHapQKI5qumSrm7kUFnHqiNgAjYSh/bgL/2IGE/xSStbz8qDldQz3lWwP2FdKOdOZSzWTKRHR0Wqu4gB4hY8ZzGMG84D+gEApEoVBWi9dNPHGAFWXhoYHH4L+2Ag6BjoGAs0VxpI5LB5ySecYFtHMTjcmQpYsGXaxBdzRtu4mzyylAh8BAgQJuNEO/QTpo5tdspEY3QdU0eUDL3ndNJwGpXjw4sWHBx9BQgSJKIM/hWICkyZV2F7Js8yRiymlYtztgg4qyM85XDEuscQtaRKjmy7a2E0jObIAlFHF8ZxBjB5McoTdnN/j3amK4eOo3h2PD2cGncN0BXY+YFGaZOE7d9xjIkQoZwqzChHvsjJDnF7ixNx/e0mTIFuUR0B3wzlBvzFifglJ7uN3H6GMcmpco0CtkHDWix8fAXwEVOY7hUIxLKSU9NDBRl4jSR8+AlRQ46bLLidIybDl1kjF9j8qpiS6MCijijKqmMkCkjLOizxGhhQCjagY+YxHirFBCFGYcQ+FlJIsmYJQj9NLG3vYTSNVsp44vaTcVLYCrbCMUEktfkIEXDsDL74hf2CWtIqiI9qUU6MGkQqFYkQQQlBGFafJi+iijQ6a6aKNvTQBzsQkIh0PpHwgukrq9nsHjWRcnYMS/nFilMgoutDJySx99FBCFI/wYkmTbtrJkC4kf7Ew3Zj1VQc1snkzmtkBgATW8wpe6aOKOic2vnphv+UQQuDDjw8/FThx/S1psZPNtLCLcqopYz5hogQJH5KHhy50goTdzIcKhUIx8ggh3IycznvMlDk342k3ffQQo5tWdmOSo5xqQjKCBx9evPzs6duwbRtN04jH47S2tpLL5WhoaDjo5D9wkGr/PH6CZEgVDLhKiBYS1ICTwc3A42arSxQstyOUFzK6efHjdRO+BAgdVNzymOxmD9sL1v5pkm72OQ0PXgy87r8eJ56++x/uv7NYqKyvFQqFQnHEIaWkjT3sYis5MoSqA3R2dmJZFpWVlaRSKRKJxIBz6uvrmTVrFjNnzuTUU0/lE5/4xMiq/RdxCiYmCWIEKaGUcjecaTs1TKaKegL7hCl1Rjad9NBZKJslXVjDzeOTTopXA0/Bf9/AM8DCOkvGTXjiuH7lDcEcLwBvwZ/cJFvIfz4YU5h1QDWzQqFQKBTjgRCCGiZTw+SCmt+2bV588UUef/xxotEotbW11NbWous627Zto7Gxka1bt7J27Vp0fXi2SONm8GdLmxwZ1/o7TooEObLukkHWNfzKoaG5Rlb+QlpdC7PoY2GSK7huDXAnKzLOyp9fQnTQRAoKhUKhUIw3h7uuf8Qb/GlCKwjmvF/14ZK3HJeu/7+K7qdQKBSKI53xSDl+VFj7D5e85bhCoVAoFEcq4yHs9+UtJfwVCoVCoRhPjgTBPhyU8FcoFAqFgqNHcI8EByX8TXLwpuaB8Ofeew61PYpR4orSD413ExQKxVHCRH2Hx2Kx8W7CYTPcexiWtX86nWb69Om0tLQcdsMUCoVCoVCMHrW1tWzfvv2AwX+GJfzBGQBks9k3L6hQKBQKhWLc8Hq9bxr1b9jCX6FQKBQKxVsD5QivUCgUCsUEQwl/hUKhUCgmGEr4KxQKhUIxwVDCX6FQKBSKCYYS/gqFQqFQTDCU8FcoFAqFYoKhhL9CoVAoFBMMJfwVCoVCoZhgKOGvUCgUCsUEQwl/hUKhUCgmGEr4KxQKhUIxwVDCX6FQKBSKCYYS/gqFQqFQTDCU8FcoFAqFYoKhhL9CoVAoFBMMJfwVCoVCoZhgKOGvUCgUCsUEQwl/hUKhUCgmGEr4KxQKhUIxwVDCX6FQKBSKCYYx3g0YS9LpNNlsdryboVAoFIojEK/Xi9/vH+9mjAkTRvin02lKA2VkSY93UxQKhUJxBFJbW8v27dsnxABgwgj/bDZLljRncBmG8CE04RwQWtG2gKJtoWn9+wE0rX9bCIRwj2tiwH6Kz3N371t3/toD9w3eDlm4PgOv425LIfoXcArH6T9PMLBsUZtk0XmyuK3udvG15YC6i86Dwv58u2XR7cgB199n/37XpqhNA8sUGLB/4Pb+1xCD7j9QHbLoUoMeL77fQa859HX2v/f9279fHQxex1D1IeSw24GQ/fdT1AZZdHyw6xXvl0XXpOinsN+5yKJtEKL/yqKorCiqTwg5aH1CyKLHWBbOKzyuQhbtl4Pu1xhYR2F/0Xlacdmi49og26Lo3P3KMLBuTdhF5xUft9GLrqkJ290POvl29Z/bX7ZoX/G2sMn/QnVhF+rT3Ws520XXIX89ie5u68IutM/ZzpelUEYTdlF5WSgzsHx/Hfl70ZDoRe0QRfegF/VZfttpKwPq0wDd3acjCq9CXQg09xvW6N929muF/br7Ho/3Saad0EQ2m1XC/62IgQdDeBBFArh4e1DhPthxbbjCf3CBXqiveN8QZQ9N+A9+3qgI/+IX/CgK/zcV1iMt/Ic6TtHxkRb+g9XBm5c5LOFfdJ0xF/6DbvfXVyy49y1fLLj3LTts4T/Y/kMU/o6wPnjhP/C8oYS/LBKGByf8tUGFvxxie/jCXxcSPS9chShsO8K/X9AWyhTqEEXC3y4S3LLoHnhT4a8fhPDXhyH8tf5f9oRAGfwpFAqFQjHBUMJfoVAoFIoJhhL+CoVCoVBMMJTwVygUCoVigqGEv0KhUCgUEwwl/BUKhUKhmGAo4a9QKBQKxQRDCX+FQqFQKCYYSvgrFAqFQjHBUMJfoVAoFIoJhhL+CoVCoVBMMJTwVygUCoVigqGEv0KhUCgUEwwl/BUKhUKhmGAo4a9QKBQKxQRDCX+FQqFQKCYYxng3YKwxyYHUEFK4e4q3BRRtC6n17weQWv+2LRCi6Lhw9wtBYUwlRKG4s7+4DCC0ffYVbcv+bZkvLxl4HXdbCuEcG1A3/efZDCxb1Kb+WxRFt95fplCHVrQ9oJtE4dIIQMtfp6jbRPH199m/37WhuNsHtInB9g/c3v8aYtD9B6pDFl1q0OPF9zvoNYe+zv73vn/796uDwesYqj6EHHY7ELL/foraIIuOD3a94v2y6JrFP4X9zkUWbYMQ/VcWRWVFUX1CyEHrE0IWPcaycF7hpyJk0X456H5Jfx120X6t6Lz8tsbA49og26Lo3P3KMLBuTdhF5xUft9GLrqkJ290POvl29Z/bX7ZoX/G2sMn/QnVhF+rT3Ws520XXIX89ie5u68IutM/ZzpelUEYTdlF5WSgzsHx/Hfl70ZDoRe0QRfegF/VZfttpKwPq0wDd3acjCjNaXQg09xvW6N929lPYnz833jfgl/CWZ8IIfykl4XCY5+N/d95B1ni3SKFQKBRHEuFwGCknxiBgwgh/IQTxeJxdu3YRiUTGuzlHFbFYjClTpqi+O0hUvx06qu8OHdV3h0a+30SxlvEtzIQR/nkikYj6QRwiqu8ODdVvh47qu0NH9Z3iQCiDP4VCoVAoJhhK+CsUCoVCMcGYMMLf5/Nx00034fP5xrspRx2q7w4N1W+Hjuq7Q0f13aEx0fpNyIli2qhQKBQKhQKYQDN/hUKhUCgUDkr4KxQKhUIxwVDCX6FQKBSKCYYS/gqFQqFQTDCOCOH/05/+lOnTp+P3+znhhBNYvnz5Acs/++yznHDCCfj9fmbMmMGdd965X5kHHniA+fPn4/P5mD9/Pg899NBBX1dKyc0338ykSZMIBAKcc845vP766wPKZDIZPvOZz1BZWUkoFOId73gHu3fvPoReODSO1r7r6uriM5/5DHPmzCEYDDJ16lQ++9nP0tvbe4g9cfAcrX23b9lLL70UIQQPP/zw8G/+MDja++2ll17ivPPOIxQKEY1GOeecc0ilUgfZC4fG0dx3LS0tfPCDH6S2tpZQKMSSJUu4//77D6EXDo0jte8efPBBLr74YiorKxFCsHr16v3qGG85MShynLn33nulx+ORP//5z+WGDRvk5z73ORkKheSOHTsGLb9t2zYZDAbl5z73Oblhwwb585//XHo8Hnn//fcXyrz44otS13V5yy23yI0bN8pbbrlFGoYh//nPfx7UdW+99VZZUlIiH3jgAblu3Tr5nve8R9bV1clYLFYoc8MNN8j6+nr5xBNPyNdee02ee+65cvHixdI0zVHorYEczX23bt06eeWVV8pHHnlEbt26VT711FPymGOOkVddddUo9dZAjua+K+a2226Tl156qQTkQw89NHIdNARHe7+9+OKLMhKJyO9+97ty/fr1cvPmzfK+++6T6XR6FHprIEd7311wwQXypJNOki+//LJsbGyU3/72t6WmafK1114bhd4ayJHcd/fcc4/81re+JX/+859LQK5atWq/9oynnBiKcRf+J598srzhhhsG7Js7d6786le/Omj5L3/5y3Lu3LkD9l1//fXy1FNPLfz97ne/W15yySUDylx88cXyve9977Cva9u2rK2tlbfeemvheDqdlqWlpfLOO++UUkrZ09MjPR6PvPfeewtl9uzZIzVNk4899tib3vvhcjT33WD86U9/kl6vV+ZyuSHLjBRvhb5bvXq1nDx5smxubh4z4X+099spp5wib7zxxuHc6ohztPddKBSS99xzz4B6ysvL5S9+8Ysh73mkOFL7rpjt27cPKvzHW04Mxbiq/bPZLCtXruSiiy4asP+iiy7ixRdfHPScl156ab/yF198MStWrCCXyx2wTL7O4Vx3+/bttLS0DCjj8/k4++yzC2VWrlxJLpcbUGbSpEksXLhwyPaPFEd73w1Gb28vkUgEwxjdlBNvhb5LJpNce+21/PjHP6a2tvZgbv+QOdr7ra2tjZdffpnq6mqWLl1KTU0NZ599Ns8///zBdsVBc7T3HcAZZ5zBH//4R7q6urBtm3vvvZdMJsM555xzED1x8BzJfTccxlNOHIhxFf4dHR1YlkVNTc2A/TU1NbS0tAx6TktLy6DlTdOko6PjgGXydQ7nuvl/36yM1+ulrKxs2O0fKY72vtuXzs5Ovv3tb3P99dcPec8jxVuh777whS+wdOlSrrjiimHd80hwtPfbtm3bALj55pv5+Mc/zmOPPcaSJUs4//zz2bJly/A64RA52vsO4I9//COmaVJRUYHP5+P666/noYceYubMmcPqg0PlSO674TCecuJAHBFZ/fZNoSilPGBaxcHK77t/OHWOVJl9GU6ZkeKt0HexWIy3ve1tzJ8/n5tuumnIto80R2vfPfLIIyxbtoxVq1YN2dbR5GjtN9u2Abj++uv5yEc+AsDxxx/PU089xV133cV3v/vdIe9hpDha+w7gxhtvpLu7myeffJLKykoefvhhrrnmGpYvX86iRYuGvIeR4kjuu0NhLOXEYIzrzL+yshJd1/cb/bS1te032spTW1s7aHnDMKioqDhgmXydw7luXpX6ZmWy2Szd3d3Dbv9IcbT3XZ6+vj4uueQSwuEwDz30EB6P503v/XA52vtu2bJlNDY2Eo1GMQyjsExy1VVXjaoK9mjvt7q6OgDmz58/oMy8efPYuXPnAe788Dna+66xsZEf//jH3HXXXZx//vksXryYm266iRNPPJGf/OQnw+6HQ+FI7rvhMJ5y4kCMq/D3er2ccMIJPPHEEwP2P/HEEyxdunTQc0477bT9yj/++OOceOKJBcExVJl8ncO57vTp06mtrR1QJpvN8uyzzxbKnHDCCXg8ngFlmpubWb9+/ZDtHymO9r4DZ8Z/0UUX4fV6eeSRR/D7/QfTBYfM0d53X/3qV1m7di2rV68ufABuv/127r777oPpioPiaO+3hoYGJk2axKZNmwbUs3nzZqZNmzasPjhUjva+SyaTAGjaQJGh63pBozJaHMl9NxzGU04ckDEwKjwgeVeKX/7yl3LDhg3y85//vAyFQrKpqUlKKeVXv/pV+cEPfrBQPu/C8YUvfEFu2LBB/vKXv9zPheOFF16Quq7LW2+9VW7cuFHeeuutQ7pwDHVdKR33l9LSUvnggw/KdevWyWuvvXZQV7/JkyfLJ598Ur722mvyvPPOG3NXv6Ox72KxmDzllFPkokWL5NatW2Vzc3Pho/ruzZ+7fWGMXf2O1n67/fbbZSQSkffdd5/csmWLvPHGG6Xf75dbt24dzW4b1j0cyX2XzWblrFmz5JlnnilffvlluXXrVvmDH/xACiHk3/72t9HuuiO67zo7O+WqVavk3/72NwnIe++9V65atUo2NzcXyoynnBiKcRf+Ukr5k5/8RE6bNk16vV65ZMkS+eyzzxaOffjDH5Znn332gPLPPPOMPP7446XX65UNDQ3yZz/72X513nfffXLOnDnS4/HIuXPnygceeOCgriul4wJz0003ydraWunz+eRZZ50l161bN6BMKpWS//qv/yrLy8tlIBCQl19+udy5c+dh9MbBcbT23dNPPy2BQT/bt28/vE4ZJkdr3w3GWAl/KY/+fvvud78rJ0+eLIPBoDzttNPk8uXLD7EnDp6jue82b94sr7zySlldXS2DwaA89thj93P9G02O1L67++67B32P3XTTTYUy4y0nBkOl9FUoFAqFYoJxRIT3VSgUCoVCMXYo4a9QKBQKxQRDCX+FQqFQKCYYSvgrFAqFQjHBUMJfoVAoFIoJhhL+CoVCoVBMMJTwVygUCoVigqGEv0KhUCgUEwwl/BUKxUHT0NDAj370o/FuhkKhOESU8FcoRonrrrsOIQRCCDweDzU1NVx44YXcddddB50M5Ve/+hXRaPSw27Ro0SI+9rGPDXrsD3/4Ax6Ph9bW1sO+jkKhOLJRwl+hGEUuueQSmpubaWpq4tFHH+Xcc8/lc5/7HJdffjmmaY55ez760Y/ypz/9qZClrZi77rqLyy+/fFzTjCoUirFBCX+FYhTx+XzU1tZSX1/PkiVL+PrXv86f//xnHn30UX71q18Vyt12220sWrSIUCjElClT+NSnPkU8HgfgmWee4SMf+Qi9vb0FTcLNN98MwG9/+1tOPPFESkpKqK2t5X3vex9tbW1DtueDH/wgmUyG++67b8D+nTt3smzZMj760Y/S2NjIFVdcQU1NDeFwmJNOOoknn3xyyDqbmpoQQhRSCwP09PQghOCZZ54p7NuwYQOXXXYZ4XCYmpoaPvjBD9LR0VE4fv/997No0SICgQAVFRVccMEFJBKJYfSyQqE4WJTwVyjGmPPOO4/Fixfz4IMPFvZpmsb//u//sn79en7961+zbNkyvvzlLwOwdOlSfvSjHxGJRGhubqa5uZkvfelLgJN3/dvf/jZr1qzh4YcfZvv27Vx33XVDXruiooIrrriCu+++e8D+u+++m5qaGi699FLi8TiXXXYZTz75JKtWreLiiy/m7W9/Ozt37jzke25ububss8/muOOOY8WKFTz22GO0trby7ne/u3D82muv5V/+5V/YuHEjzzzzDFdeeSUq75hCMUqMa05BheItzIc//GF5xRVXDHrsPe95j5w3b96Q5/7pT3+SFRUVhb/vvvtuWVpa+qbXfOWVVyQg+/r6hizz6KOPSiGEbGxslFI66VwbGhrk1772tSHPmT9/vrzjjjsKf0+bNk3efvvtUkopt2/fLgG5atWqwvHu7m4JyKefflpKKeU3v/lNedFFFw2oc9euXRKQmzZtkitXrpTAgDzpCoVi9FAzf4ViHJBSIoQo/P30009z4YUXUl9fT0lJCR/60Ifo7Ox8U7X3qlWruOKKK5g2bRolJSWcc845AAecpV900UVMnjy5MPtftmwZTU1NfOQjHwEgkUjw5S9/mfnz5xONRgmHw7zxxhuHNfNfuXIlTz/9NOFwuPCZO3cuAI2NjSxevJjzzz+fRYsWcc011/Dzn/+c7u7uQ76eQqE4MEr4KxTjwMaNG5k+fToAO3bs4LLLLmPhwoU88MADrFy5kp/85CcA5HK5IetIJBJcdNFFhMNhfvvb3/Lqq6/y0EMPAc5ywFBomsZ1113Hr3/9a2zb5u677+ass87imGOOAeDf//3feeCBB/iv//ovli9fzurVq1m0aNGQdWqa8xqRRSr6fdtt2zZvf/vbWb169YDPli1bOOuss9B1nSeeeIJHH32U+fPnc8cddzBnzhy2b9/+Zl2pUCgOASX8FYoxZtmyZaxbt46rrroKgBUrVmCaJj/84Q859dRTmT17Nnv37h1wjtfrxbKsAfveeOMNOjo6uPXWWznzzDOZO3fuAY39ivnIRz7C7t27efDBB3nwwQf56Ec/Wji2fPlyrrvuOt71rnexaNEiamtraWpqGrKuqqoqwFm3z1Ns/AewZMkSXn/9dRoaGpg1a9aATygUAkAIwemnn863vvUtVq1ahdfrLQxmFArFyKKEv0IximQyGVpaWtizZw+vvfYat9xyC1dccQWXX345H/rQhwCYOXMmpmlyxx13sG3bNn7zm99w5513DqinoaGBeDzOU089RUdHB8lkkqlTp+L1egvnPfLII3z7298eVrumT5/Oeeedxyc+8Qk8Hg9XX3114disWbN48MEHWb16NWvWrOF973vfAeMSBAIBTj31VG699VY2bNjAc889x4033jigzKc//Wm6urq49tpreeWVV9i2bRuPP/44//Iv/4JlWbz88svccsstrFixgp07d/Lggw/S3t7OvHnzhtvVCoXiYBhvowOF4q3Khz/8YQlIQBqGIauqquQFF1wg77rrLmlZ1oCyt912m6yrq5OBQEBefPHF8p577pGA7O7uLpS54YYbZEVFhQTkTTfdJKWU8ve//71saGiQPp9PnnbaafKRRx7Zz/huKH7/+99LQH7iE58YsH/79u3y3HPPlYFAQE6ZMkX++Mc/lmeffbb83Oc+VyhTbPAnpZQbNmyQp556qgwEAvK4446Tjz/++ACDPyml3Lx5s3zXu94lo9GoDAQCcu7cufLzn/+8tG1bbtiwQV588cWyqqpK+nw+OXv27AEGhgqFYmQRUipfGoVCoVAoJhJK7a9QKBQKxQRDCX+FQqFQKCYYSvgrFAqFQjHBUMJfoVAoFIoJhhL+CoVCoVBMMJTwVygUCoVigqGEv0KhUCgUEwwl/BUKhUKhmGAo4a9QKBQKxQRDCX+FQqFQKCYYSvgrFAqFQjHB+P8fxAEp4NS8dAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Look at raw data too using uxarray\n", + "transform = ccrs.PlateCarree()\n", + "projection = ccrs.PlateCarree()\n", + "\n", + "#projection = ccrs.Orthographic(central_latitude=90)\n", + "# TODO, calculate time mean with correct weights\n", + "dc = ds0[\"GPP\"].mean('time').to_polycollection(projection=projection, override=True)\n", + "dc.set_antialiased(False)\n", + "dc.set_transform(transform)\n", + "dc.set_antialiased(False)\n", + "dc.set_clim(vmin=0, vmax=1e-4)\n", + "\n", + "fig, ax = plt.subplots(\n", + " 1,\n", + " 1,\n", + " figsize=(5, 5),\n", + " facecolor=\"w\",\n", + " constrained_layout=True,\n", + " subplot_kw=dict(projection=projection),\n", + ")\n", + "\n", + "# add geographic features\n", + "ax.add_feature(cfeature.COASTLINE)\n", + "\n", + "ax.add_collection(dc)\n", + "ax.set_global()\n", + "cbar = plt.colorbar(dc, ax=ax, orientation='horizontal', pad=0.05, shrink=0.8)\n", + "cbar.set_label('Data Values')\n", + "\n", + "plt.title(\"ne30 w/ uxarray\") ;" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "eaa75249-1414-44d5-b061-c98ad3f566d4", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABiUAAAMrCAYAAAAmyZGtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5wdVfn/3zNze9vesn2z6T2EFjoJ0qWIDQsoKirIVxC/AirFhhRR8Ks/rIAgWBEpIi30QEggvbdNsptsr7ffmTm/P2bv3b1775YE0sh58wp379wzM2fOzD33nOdznudRhBACiUQikUgkEolEIpFIJBKJRCKRSCSS/Yx6sCsgkUgkEolEIpFIJBKJRCKRSCQSieTIQIoSEolEIpFIJBKJRCKRSCQSiUQikUgOCFKUkEgkEolEIpFIJBKJRCKRSCQSiURyQJCihEQikUgkEolEIpFIJBKJRCKRSCSSA4IUJSQSiUQikUgkEolEIpFIJBKJRCKRHBCkKCGRSCQSiUQikUgkEolEIpFIJBKJ5IAgRQmJRCKRSCQSiUQikUgkEolEIpFIJAcEKUpIJBKJRCKRSCQSiUQikUgkEolEIjkgSFFCIpFIJBKJRCKRSCQSiUQikUgkEskBQYoSEonksEFRFG699daDXY0PHZdffjk1NTX77fiLFy/m1ltvpbu7O+OzU089lVNPPXW/nVsikUgkEolE8uFkrHODBx98EEVRaGho2O91StLQ0ICiKDz44IMHtR4SiUQikRyq2A52BSQSiWSsvPXWW1RUVBzsakj2ksWLF3Pbbbdx+eWXk5ubm/bZr3/964NTKYlEIpFIJBLJYY2cG0gkEolEcvgiRQmJ5EOKEIJoNIrb7T7YVXlfDL6O44477mBXJ41IJHJQ2zeRSKAoCjbb4duVT5069WBXQSKRSCQSiURymHAozw0OBT4M8wOJRCKRHBnI8E0SySHOv//9b2bOnInT6aSuro57772XW2+9FUVR0sopisLVV1/N/fffz5QpU3A6nTz00EMAvPHGGyxYsAC/34/H42H+/Pk888wzafuHw2Guv/56amtrcblc5OfnM2/ePB577LFUmW3btvGpT32KcePG4XQ6KSkpYcGCBaxYsWLEa7j88svx+XysXbuWBQsW4PV6KSoq4uqrryYcDo/5Ooa6aCddoBctWsSXv/xlCgoKCAQCfP7znycUCtHc3MwnPvEJcnNzKSsr4/rrryeRSKSd77bbbuPYY48lPz+fQCDA3Llz+cMf/oAQIq1cTU0N5513Ho8//jhz5szB5XJx2223sWDBAiZPnpxRXghBfX0955577ohtkzzuv/71L2bOnInL5aKuro777rsvrdwrr7yCoig8/PDDfOtb36K8vByn08mWLVsA+OMf/8isWbNS9+6iiy5i/fr1Ged78MEHmTRpEk6nkylTpvCnP/0po0zyXK+88kra9mxu6ABLlizh/PPPp6CgAJfLxfjx4/nmN78JwK233sq3v/1tAGpra1EUJe3Y2cI3dXZ28vWvf53y8nIcDgd1dXV897vfJRaLpZVLPisPP/wwU6ZMwePxMGvWLJ5++umRmlwikUgkEolEcpD5IOY42cI3vf3225xwwgm4XC7GjRvHjTfemDH+H4mRxrVJNm/ezKWXXkpxcXFqTP2rX/1qn9ohG1u2bOELX/gCEyZMwOPxUF5ezvnnn8/q1avTyo02P3jxxRdZsGABgUAAj8fDCSecwEsvvbRP5zJNkx/96EdMmjQJt9tNbm4uM2fO5N577/3ArlsikUgkRxZSPpdIDmH++9//cvHFF3PyySfz17/+FV3Xufvuu2lpacla/oknnuD111/n5ptvprS0lOLiYl599VXOOOMMZs6cyR/+8AecTie//vWvOf/883nsscf45Cc/CcB1113Hww8/zI9+9CPmzJlDKBRizZo1dHR0pI5/zjnnYBgGd955J1VVVbS3t7N48eKsuQKGkkgkOOecc7jyyiu54YYbWLx4MT/60Y/YsWMHTz311KjXMRJf+tKXuPjii/nLX/7C8uXLuemmm9B1nY0bN3LxxRfzla98hRdffJE77riDcePGcd1116X2bWho4Morr6SqqgqwJjLf+MY3aGpq4uabb047z3vvvcf69ev53ve+R21tLV6vl/nz53PBBRfw0ksvsXDhwlTZZ599lq1bt2aIC9lYsWIF3/zmN7n11lspLS3lz3/+M//zP/9DPB7n+uuvTyt74403cvzxx3P//fejqirFxcXcfvvt3HTTTXz605/m9ttvp6Ojg1tvvZXjjz+epUuXMmHCBMASJL7whS9wwQUX8LOf/Yyenh5uvfVWYrEYqrpvGvVzzz3H+eefz5QpU7jnnnuoqqqioaGB559/PnVvOjs7+eUvf8njjz9OWVkZMLyHRDQa5bTTTmPr1q3cdtttzJw5k9dff53bb7+dFStWZIhpzzzzDEuXLuUHP/gBPp+PO++8k4suuoiNGzdSV1e3T9ckkUgkEolEItl/fBBznGysW7eOBQsWUFNTw4MPPojH4+HXv/41jz766JjqNdq4NnmO+fPnU1VVxc9+9jNKS0t57rnnuOaaa2hvb+eWW27Z+wYZwu7duykoKOCnP/0pRUVFdHZ28tBDD3HssceyfPlyJk2alFY+2/zgkUce4fOf/zwXXHABDz30EHa7nd/85jeceeaZPPfccyxYsGCvznXnnXdy66238r3vfY+TTz6ZRCLBhg0bxjQPlEgkEokkK0IikRyyHH300aKyslLEYrHUtr6+PlFQUCCGfn0BkZOTIzo7O9O2H3fccaK4uFj09fWltum6LqZPny4qKiqEaZpCCCGmT58uLrzwwmHr0t7eLgDxi1/8Yq+v47LLLhOAuPfee9O2//jHPxaAeOONN0a9juRnt9xyS+r9Aw88IADxjW98I63chRdeKABxzz33pG2fPXu2mDt37rD1NAxDJBIJ8YMf/EAUFBSk2kYIIaqrq4WmaWLjxo0Z+9TV1YkLLrggbfvZZ58txo8fn3aMbFRXVwtFUcSKFSvStp9xxhkiEAiIUCgkhBDi5ZdfFoA4+eST08p1dXUJt9stzjnnnLTtO3fuFE6nU1x66aWpeo4bN07MnTs3rU4NDQ3CbreL6urq1LbkuV5++eW0Y27fvl0A4oEHHkhtGz9+vBg/fryIRCLDXuNdd90lALF9+/aMz0455RRxyimnpN7ff//9AhB/+9vf0srdcccdAhDPP/98ahsgSkpKRG9vb2pbc3OzUFVV3H777cPWRyKRSCQSiURy8Pgg5jjJzwbPDT75yU8Kt9stmpubU9t0XReTJ08ediw6mLGMa88880xRUVEhenp60rZfffXVwuVypeqZbdycnLuMVo+h6Lou4vG4mDBhgrj22mtT24ebH4RCIZGfny/OP//8tO2GYYhZs2aJY445Zq/Pdd5554nZs2fvVb0lEolEIhkJGb5JIjlECYVCLFu2jAsvvBCHw5Ha7vP5OP/887Puc/rpp5OXl5d2jCVLlnDJJZfg8/lS2zVN43Of+xyNjY1s3LgRgGOOOYZnn32WG264gVdeeYVIJJJ27Pz8fMaPH89dd93FPffcw/LlyzFNc6+u6TOf+Uza+0svvRSAl19+ecTrGI3zzjsv7f2UKVMAMkInTZkyhR07dqRtW7RoEQsXLiQnJwdN07Db7dx88810dHTQ2tqaVnbmzJlMnDgxbZuqqlx99dU8/fTT7Ny5E4CtW7fy3//+l69//esZLujZmDZtGrNmzUrbdumll9Lb28t7772Xtv1jH/tY2vu33nqLSCTC5Zdfnra9srKS008/PeWivXHjRnbv3s2ll16aVqfq6mrmz58/ah2zsWnTJrZu3coVV1yBy+Xap2MMZdGiRXi9Xi655JK07cnrG+pyftppp+H3+1PvS0pKKC4uzrjPEolEIpFIJJKDzwcxxxmOl19+mQULFlBSUpLapmlayjN8JMYyro1Go7z00ktcdNFFeDwedF1P/TvnnHOIRqO8/fbbo55rNHRd5yc/+QlTp07F4XBgs9lwOBxs3rw5a3jWofODxYsX09nZyWWXXZZWR9M0Oeuss1i6dCmhUGivznXMMcewcuVKvv71r/Pcc8/R29v7vq9TIpFIJEc2UpSQSA5Rurq6EEKkDaqTZNsGpELjDD3G0O0A48aNA0iFZ7rvvvv4zne+wxNPPMFpp51Gfn4+F154IZs3bwasmK0vvfQSZ555JnfeeSdz586lqKiIa665hr6+vlGvx2azUVBQkLattLQ0rQ7DXcdo5Ofnp71PTnCybY9Go6n377zzDh/5yEcA+N3vfsebb77J0qVL+e53vwuQIcwMV68vfvGLuN1u7r//fgB+9atf4Xa7+eIXvzim+ifbIdu20dom+flw9zj5efJ1pHPtLW1tbQBUVFTs0/7Z6OjooLS0NEPMKS4uxmazZbTH0GcKwOl0Ztw7iUQikUgkEsnB54OY4wxHchw5lLGMdccyru3o6EDXdX75y19it9vT/p1zzjkAtLe3j6muI3Hdddfx/e9/nwsvvJCnnnqKJUuWsHTpUmbNmpV1jDu0fZJhsC655JKMet5xxx0IIejs7Nyrc914443cfffdvP3225x99tkUFBSwYMECli1b9r6vVyKRSCRHJjKnhERyiJKXl4eiKFljqzY3N2fdZ6ghNy8vD1VV2bNnT0bZ3bt3A1BYWAiA1+vltttu47bbbqOlpSXlNXH++eezYcMGwFpV/4c//AGwVhP97W9/49ZbbyUej6cM8sOh6zodHR1pRuTkdQw1LI/Fu+CD4C9/+Qt2u52nn346bUXUE088kbX8cPXKycnhsssu4/e//z3XX389DzzwAJdeeim5ubljqke2+znWtkl+Ptw9Tt7fZLmRzpUk2RZDE0sPnWQVFRUB0NjYmHHMfaWgoIAlS5YghEi71tbWVnRdT12PRCKRSCQSieTw44OY4wxHQUHBmMa62RjLuDYvLy/lcX7VVVdlLVNbWzumuo5EMh/ET37yk7Tt7e3tWecXQ9snOV7+5S9/yXHHHZf1HEkBaKznstlsXHfddVx33XV0d3fz4osvctNNN3HmmWeya9cuPB7P3l6mRCKRSI5wpKeERHKI4vV6mTdvHk888QTxeDy1PRgM8vTTT4/5GMceeyyPP/542koX0zR55JFHqKioyAhHBNYg9fLLL+fTn/40GzduJBwOZ5SZOHEi3/ve95gxY0ZGiKHh+POf/5z2Ppl07tRTTx3T/h80iqJgs9nQNC21LRKJ8PDDD+/1sZLJ7S655BK6u7u5+uqrx7zv2rVrWblyZdq2Rx99FL/fz9y5c0fc9/jjj8ftdvPII4+kbW9sbGTRokWpJHaTJk2irKyMxx57DCFEqtyOHTtYvHhx2r41NTUArFq1Km37k08+mfZ+4sSJjB8/nj/+8Y8ZAsZgnE4nkOl5ko0FCxYQDAYzhKE//elPqc8lEolEIpFIJIcnH8QcZzhOO+00XnrppTTBwzAM/vrXv46671jGtR6Ph9NOO43ly5czc+ZM5s2bl/Evmxfv3qIoSmr8nOSZZ56hqalpTPufcMIJ5Obmsm7duqx1nDdvXsqzfF/OlZubyyWXXMJVV11FZ2cnDQ0Ne3eBEolEIpEgPSUkkkOaH/zgB5x77rmceeaZ/M///A+GYXDXXXfh8/lSLrejcfvtt3PGGWdw2mmncf311+NwOPj1r3/NmjVreOyxx1Ira4499ljOO+88Zs6cSV5eHuvXr+fhhx/m+OOPx+PxsGrVKq6++mo+/vGPM2HCBBwOB4sWLWLVqlXccMMNo9bD4XDws5/9jGAwyNFHH83ixYv50Y9+xNlnn82JJ574vtppXzn33HO55557uPTSS/nKV75CR0cHd999d8bAfCxMnDiRs846i2effZYTTzwxI0fESIwbN46PfvSj3HrrrZSVlfHII4/wwgsvcMcdd4y66ig3N5fvf//73HTTTXz+85/n05/+NB0dHdx22224XC5uueUWwMp98cMf/pAvfelLXHTRRXz5y1+mu7ubW2+9NcOlvbS0lIULF3L77beTl5dHdXU1L730Eo8//njG+X/1q19x/vnnc9xxx3HttddSVVXFzp07ee6551Ii1IwZMwC49957ueyyy7Db7UyaNCktF0SSz3/+8/zqV7/isssuo6GhgRkzZvDGG2/wk5/8hHPOOYeFCxeOuV0lEolEIpFIJIceH8QcJxvf+973ePLJJzn99NO5+eab8Xg8/OpXv0rlTxiNsYxr7733Xk488UROOukkvva1r1FTU0NfXx9btmzhqaeeYtGiRftc/yTnnXceDz74IJMnT2bmzJm8++673HXXXWMOmerz+fjlL3/JZZddRmdnJ5dccgnFxcW0tbWxcuVK2tra+H//7//t1bnOP/98pk+fzrx58ygqKmLHjh384he/oLq6mgkTJrzva5ZIJBLJEcjBzLItkUhG51//+peYMWOGcDgcoqqqSvz0pz8V11xzjcjLy0srB4irrroq6zFef/11cfrppwuv1yvcbrc47rjjxFNPPZVW5oYbbhDz5s0TeXl5wul0irq6OnHttdeK9vZ2IYQQLS0t4vLLLxeTJ08WXq9X+Hw+MXPmTPHzn/9c6Lo+4jVcdtllwuv1ilWrVolTTz1VuN1ukZ+fL772ta+JYDA45usAxC233JJ6/8ADDwhALF26NK3cLbfcIgDR1taWtR6D+eMf/ygmTZqUuubbb79d/OEPfxCA2L59e6pcdXW1OPfcc0e8zgcffFAA4i9/+cuI5QaTPO4//vEPMW3aNOFwOERNTY2455570sq9/PLLAhB///vfsx7n97//vZg5c6ZwOBwiJydHXHDBBWLt2rVZy02YMEE4HA4xceJE8cc//lFcdtllorq6Oq3cnj17xCWXXCLy8/NFTk6O+OxnPyuWLVsmAPHAAw+klX3rrbfE2WefLXJycoTT6RTjx48X1157bVqZG2+8UYwbN06oqioA8fLLLwshhDjllFPEKaeckla2o6NDfPWrXxVlZWXCZrOJ6upqceONN4poNJpWbrhnpbq6Wlx22WVZ20kikUgkEolEcvD5IOY4Q+cGQgjx5ptviuOOO044nU5RWloqvv3tb4vf/va3GWP74RjLuHb79u3ii1/8oigvLxd2u10UFRWJ+fPnix/96EdpZYaOm5Nzl9Hq0dXVJa644gpRXFwsPB6POPHEE8Xrr7+eMW4ebX7w6quvinPPPVfk5+cLu90uysvLxbnnnptWfqzn+tnPfibmz58vCgsLU/fsiiuuEA0NDaO2qUQikUgk2VCEGBTHQyKRHPIkEglmz55NeXk5zz///MGuzpi4/PLL+cc//kEwGDzYVdmvfOxjH+Ptt9+moaEBu90+pn1qamqYPn36+3ZXl0gkEolEIpFIDlcOxzmORCKRSCSSfUeGb5JIDnGuuOIKzjjjDMrKymhubub+++9n/fr13HvvvQe7ahKsZNDvvfce77zzDv/617+45557xixISCQSiUQikUgkRyJyjiORSCQSyZGNFCUkkkOcvr4+rr/+etra2rDb7cydO5f//Oc/Mrb+IcKePXuYP38+gUCAK6+8km984xsHu0oSiUQikUgkEskhjZzjSCQSiURyZCPDN0kkEolEIpFIJBKJRCKRSCQSiUQiOSCoB7sCEolEIpFIJBKJRCKRSCQSiUQikUiODKQoIZFIJBKJRCKRSCQSiUQikUgkEonkgCBFCYlEIpFIJBKJRCKRSCQSiUQikUgkB4QxJ7qORqPE4/H9WReJRCKRSCQSyWGOw+HA5XId7GpIDiByniCRSCQSiUQiGQ05T5AMZkyiRDQapba2lubm5v1dH4lEIpFIJBLJYUxpaSnbt2+XE44jBDlPkEgkEolEIpGMBTlPkAxmTKJEPB6nubmZXbt2EQgE9nedJBKJRCKRSCSHIb29vVRWVhKPx+Vk4whBzhMkEolEIpFIJKMh5wmSoYw5fBNAIBCQkw2JRCKRSCQSiUSShpwnSCQSiUQikUgkkrEiE11LJBKJRCKRSCQSiUQikUgkEolEIjkgSFFCIpFIJBKJRCKRSCQSiUQikUgkEskBQYoSEolEIpFIJBKJRCKRSCQSiUQikUgOCFKUkEgkEolEIpFIJBKJRCKRSCQSiURyQJCihEQikUgkEolEIpFIJBKJRCKRSCSSA4IUJSQSiUQikUgkEolEIpFIJBKJRCKRHBBsB7sCEonkwHKG+vG09y+Yfz9INZFIJBKJRCKRSCSHCr27q9LeB8btPEg1kUgkEolE8mFHihKSI46hRvl94VA15O/LtY20jxCCH7x5HW+99RbhcJg/3vwoArP/PwMTEwAFFQUFtf914D814++r770Cm82Gx+OhurqampoaKisrsdlkdySRSCQSiUQiOXgMNcrvK4eiMX9frm2kfUxTsGptguUbbqSvr4/e9ruIxQXxuCAWs14BNJuCTQNb/6tmU7DZwKb1vw567yu4DZvNhsvlorKyktraWqqqqnA4HPt83RKJRCKRSA5NFCGEGK1Qb28vOTk59PT0EAgEDkS9JJIPlI6ODpYtW8Y3z7qJGBF0EiSIY6BjYiIQiNSrwIYdJ24MEuiD/hkYqKioaP2vA38raGhpr2r/XzZs2FP/XLjw4Mem2FP121uRY1+FFSEEEUIE6SVIN0F6CdGLiZkmJSRlhgghEsRR0bBhG3StA9cNpLXd0LYUqRY2Mz5PoqDgxI0bLy48/a9e3P1/O3GjKMqw13WoikQSiURypCHHjEce8p5LDnf6+vpYsmQJG1Z+gt17DLq7TXp6TXr7BLG4wDDAMAZeXS6FygoboZCgt8+kt9ekt88kFBbYbQpOp4LDAU6ngtNhvXc609+7nAoOp4LHrRDwKwT8Kjk5KsVFKrV1NvLyBqIsF4xr3Kvr6d5dmbFNZfhxdBIhBE27DdZtSLBmfYJ1GxKs35AgFBFoKthsoGkKqgqaBnuaDVpaTVwuBb/PujaHw7pWh8N6ryigG6DrAkMH3RDo/a/We+szXbfaNvlZPD5QL0WBslKNqkqN6kqb9Vplo6pCo6rSRvk4DZtt+OvLHbdrr9pPIpFIJPsHOWaUDEWKEpLDjsEGeSEEBjoxovTQQRdt9NGD2i8F+MnDhZutrEUnAYATFzYc2LGjYR+yut/6O06MOLFUGUtQsKFhy/AUGPxqYGR8bqCjk0h5FQymjBqmKfPGfO2Dv66DjfRJsaGXLkwMvPjx4MeuWKuKDGGwg43sYBMGOgB2HPjIwUsgdV1JoSD5twMXhZQSIH9EUSBbPTPFCDNNojDQiRAkTKj/NUiEEDEiWY95HB/Bp+y//kcKGxKJRPL+kWPGIw95zyWHEh27K1J/CyEIhQWtrSbLV8Z5Y3GMlasS2GzgcStMm2pn0kQ7d93Ty55ma5xeXKSSn6eSE1AJBFScDssInzTI2zTo7RM07dHx+/rL+RUCARWPRyGhWwb1aNTyFojFB71GSb2Px61t4bCgt1cQiWZOyU8/1clfHi5AVUceg2v9gsNI84TG3QbLV8Tp7hHUj7cxsd5GQb6KoigIIfjDgyF+dFcPPT3WMfw+hamT7UydbCeQo1qijA6GOSAe5OaqLDzVyTHznDgcmXUcTggRwmoj3RAkEtbxEgmI6Aa6DomE1R47dxrs2GGwbbtOww6dbQ06uxqNrMd88m+FnHSCa8R2MhjV7DEseysMSSQSiSQTOWaUDEXGS5EcFvzxj39k8eLFbN++nXfEuyljf5wYYpCx308uOeQhECSIs4cG4sQoppx6ZuDCg6rs//zupjCJEEyJG3FixAjTQyddtKXKdbCHzWIVMSLEiaGjp0QMo/9vkWUArWEjXxTjwU8f3fTRRYJ4RjmHcOLGR5CelBgBUEoltUzBux+M/IYweJl/fWDHU1EpYhxuvIA1kbE8Xax2TRDvf42hoGLDjh1H6tWFJyXOjMQZ6selMCGRSCQSiURymPHEE0/wzDPPsGPHDpp3txKNWcb+jk6DaHSg3MQJNo6e50BRoK9X8MyzUX7z+xAnneDkb3/Ooa7WhtM59kU4ScxhjN12ss85TFPQsMOgudWgrcOgrd2kudlg+co4i16Jpcq99kaMH/+0lz3NVplgUBAM9b8GTYIhSxwYusTQ5YITjncyc5qDdRsSLF8Zp7WtP+SqMlA+L1dlfK2Nnj6TzVsG5gkLT3fyv9f7mT1rYPw83LUMRyLLYiywhIqiyqaMOu8rDgfMP9bJzOlWXYUQdAUN2jtMOjtNOvpf2ztNVAVyAiq5OSo5AYWcXJVxZRpFhdqo5+nYXSGFCYlEIpFIPmCkp4TkoDI0DFFYBIkTHbSi3sSFh7d5IVWmiHLceNCw4cCJHScOnPjJzTA+CyGIE8OBc69W+r8flolX6KY9Y7sdJy48OHHRzp7U9mR4IgdObNj7AyXZ+j00bP3hlIBBq41iROmgmShh/OQSIK//Xz4aGmGChOgjRG9/CKYYHbRk1OloTiNHKfjA22CrWMt21vfXWk15mSSvzcAgRpQEsYx9NWxpAko5dUQJESVCol+EyCbU2LCnPDCGMpm5VCh1Y6q7FCYOLMk+4INo930Ja/Zhud+jXXuyL4wRwUDHTx42Ze/XJXxY2kuy/5BjxiMPec8l+4vmpnHp75sNtjfoCIG1oj4uqKnROPGUgXH3aac6mTTBhsetUlioUlCgUpivMnmynZLidOOzEIK2dpPCAnVUb4RsDCdGjMSN3+vhDw+EMrYXFCiMK9MoKdF45dUYev9wtqJco3ycRlGRis+n4POp+H0KXp+Cz6ti748GqyjJfwodnQavvBpj02adKZPtzJllZ/ZsOzNn2snLU2lo0Nm8RWfbVqs9u7pMnnshc0z+wO/zOPdsd8Z2Y4j5QNvLOdZDD4f49g09ANjt4PMqeL3W9Xk8CvGE5d3S2popbLicEB1U1QvOdxGJCBqbDDq7LAEinrlOC7/fqmNfX+Y9++bVPr53Y86o9Y4Jk3Hlu8d4lZIPgl1NZQBUlu8ZpeTo7B7Sn4yFD8v9HtqXDkUIQUenSUuLSXeXyZRpdnJz934h54elvST7DzlmlAxFihKSg0rSkNYpWtjNDprJnhTORw4mlvcBKJRRRS5FBMjFgz/l/TA0bFAy58P+FiRCoo8gPQTpSRnjB5NDPkF6Mwzm8zkTj+Lfr3UbiiF0OmklTB8V1KMpo68OOhB10kngwEWYPt7i+dRnyVBULjzYcaSEqMF/27ARJkiQHvroppt2eulKHcODj/nKWWOqy+FqdD1D/TimMNFJYMeReuZjIkKCRH/YMvtBy80xnNFcFwn66E55vBjoKSHOi5+v/uZzrFq1in/+6ik8+LDjoIzqtJwsB5ND5XkZ2r5REaaTVjpppZcuIgQz8rgEyCefYooYR0DJG9N5DpXrlRy6yDHjkYe855L9RUNjGS5FYfnyOI88GubRxzJDfCoKTJ5swzRg23Ydw4CPnu/ipBOdTJ9uZ9LEAe8H07TCBCVzGGgaeDwK7IMgsTc0NuqsXaOzYWOCO+8KZnw+7yg7W7fpdHWlT8sf/2cBxx479gTP9v4x3lDRYG+IxQRL3o3x3rIEX7zcSyCwbx7mSaEisQ91GXrGaFTQ1WVSXKzS1yeYMn1goVVdrUZtrY2KSo3CApX8fJW8fEuMys+z3ufkqOzcqbNhg87atQmWLovzzjuJtHNs31aaNQRVNg5Hw+uupjJ03QoVlpOjoGnWtXZ1mbS2GBSXaOTmKql5gpHlttVUvH9hYKT6ZSMaFaxenaCr3+ult1dgt1vePtU1GppyL8uXL6elpYWi4ifJzVW56GI3BQXpT5E2hpwqQ4kPena1fewiPggx5YOgoTG9fdvaDN56M86bb8RZtSrBtq16Rh6X6dNtnHSikzPOcHH00SPPIZMcjt8NyYFFjhklQ5GihGS/MNYVy1ERZh3v0kkLXgLEiOAlwDTmpfI7tLKbRrYSpu9912sis6lS6t/3caB/RQHNNLCBbjoAK0+DgpK2mt+FJ+XJ4CcvZVjVsB0w743DCSEEXbSlEl4n2yguYmxgOTrx/vwdJnYc2HHQQXMqZ4gLDz5y8BHof81JE66G41Aytp6hfjwVF3jwM2IKo//KTTppYR3L8JObCmWWDOGlYcOLH4Ggj+7U/ipqv1eOC2+qfQLkUDCqOPV+2mek/mCrWMN2NuzV8SYyiyplwj7XZ39wsJ+fZBtvEWtoGNSefvLIIR8vAZy4ceFCRaObdjpppYs2EsTJIZ8K6imhHDXLs3Cwr09y+CDHjEce8p5L9pahBrLh6O4y+f53e/nPM1HKKzSEsHI7/Or+XAIBFU2DN16L8aeHwqxZPbDwR1XB7F9kPzhc0WhcfbWXG2/44J7hpUvj3PfLIIsWWUv7AwFwu1W6ugZW85eUqMyYaXkxzJxpp7pWIz9fxedXcGljEwT2JleCfZBxNrGPORb29RhjNQyPZgxeujROXp5KdbWG3W4VCAZNbrulj+ZmK2RXNCrwehVKSzXeeCOW8rooLbG8ZiZPtjFpso0pk+3U19twuw8fg2vy+2OaIs3DJx4XRMJWvpIVK+Jc9z+9VFdr6Dq0t1teJEJY4b3q623Y7QorVyZS3xWHAwqLVEpKNOrqNCZPsTNhoo25R9nx+0d+Ft+PYDGcIAHw8qIYl32+a9jPs3HllR6++/3hv8cJAa5B86v4GDuIfRUm4OCLE8ln5u9/DfO/1/emtk+caGPOUXYmT7FRWqpRUqri86qsWB7nzTfjvPVmnNZWk0mTbXz+Mg8XXOTC6818FvanYCX5cCHHjJKhSFFCst8YizCRNKDlUcRU5uFWvFnLCSGIEe0P4xMmSpgQQUL0pK2IH415nEquUjjm8kkSIk4nrcT6QwjFidNDJ0G6CZBPDZPIpZCdbE4zCCZDM9UxlXyleK/PKxmgQWxkC6sztudSQA4FFDEOHzkjrqA/WIbV0b4LpjDZww7C9PUn/g4RxXLtr2ICdpz00EErTZhkT/CXpJxaAKJE0LD15+PwECNChHAqqfjg3CZHcQp5SlHW4+2vNku2SVgEaWIbdhxsYU1GOScu8ijGgRMnbtx4KWLcQRX0DkUDfbI9N4j3aGRbavtU5jFOqRl2P1OYtLOHRrbSSSsOnIxnOuVKbarMoXi9kkMXOWY88pD3XLIvjEWYePSRMN+9sZcpU23cdV8uUydm934WQtDeZtLYZNDUaNDUZNKwXWfzJp2VKxKpUEijcf9vcznz7JGTJWcjHDZZ/Gacpiajf0W3YN26BO8tSzBhoo0rv+7llJMcvPB8lJtuHFhkVVKiUlGp8ZUrvXzkrLGfN1u2Bvsow6JsK9+HMpzR9f3smySR5Rh764Mx0jn++XiEa6/pydg+e46dGTPtnHOuk8mT7eTm7T/j+r6ycdfooXX+81SULesT7NxhsGunzs6dBtGo4AtXeCkr01izJsFzz0ZTicqH48KLXfh9Cnv2mCgKLFzopH6CjZZWk91NBg0NBtu367z1ZjwlVnznJh9f/Zov6/H2V3slhYruLpN77w2Sl69y952ZXkYuF5zxERdFRSrFpRrjylTOPtuV8o7K9txl44N8Fg+2AJGNzY3WM/aH+4Pc8eOBPui67/i58qqBRYDmkPYyTcFbb8R59E8hXn4xhten8KWv+rjmGwM2GylISPYGOWaUDEWKEpKsjNXTQQjBCt7Ahh1b/6r15Ap3N95RE0sbwmALq2lkKwKBEzcxBlyzT7FdjENxjliHFnMnq4w307bVqtMYr84galghS1x4hjdiioGh/S6xlY0sT7238hRY6/LBWmmezGHhwkMl9eRRhIlBhBAh+mihkS5a0xJPT2Am1crEEa9DMjKWMBVhIytoYzd5FDGZuXj3IvzVoSpK9IlulvAiAPkU48aHGy9h+tjDTkCgYaOcWnIoQEEhTow2dtNJ64hChdIfxMzEyMjF4cBJgDwmcxQuZSBm8ME0Qp+knEcfXWjY8ODDiTvjuzu0fvuSS2K4Yx2uDG0DUxhsZAVNbMdPLjkUkEtBqk0duDLaNSR6Wc4beAlQSiUtNBIlggMHbnzkkE8O+Xjwp+37YWlDyQeDHDMeech7fuSxblf5mMoJIbjhf7pIxCEnVyUnV6G0TKOqWqOiykZ5hTZiyBxdF/zm/4L87tdBolFrFXdnh5kylj73ahG1dSPnR1r6dozPfLwzbdsln3Tz47tyaGszCYcEldXDh3p1KgNjp/88E+Wqr3an3rtcoGkK4bBACCs/Qn6+Sn6BSkmpxqcudbPgDCfxGDQ2GuzcofPMU1HeXhynuXlg/nH5l7zcdEvmd8c+aNyWPW308CRE+vUMvo5h9xnGk8E+Bm+I2JDz2cdwvsEMni0OV4/BaFnq1NFh8ou7+3j0kQjTZtj48U9zmDVz78J9HoqiRGeHwUnzWjEMOPY4O9U1NqqqNDo7TB79cxjDgEQCvvJVL1PnOPA6rDBNi16M8erLMYJBq60GexAlsdvB4VSIRUWGeBfIUZgx084N3w8wfcrA9+xgGqHfXVnCqpUJ7HaoqdEYV65l5IMZWr9tY/TMSjL4WfywGNyTokQSXRf8v18G+eU9Qeon2jjqaAdz59mpqbNRXKJRWKSmvJCSNDXqfOMrXRgGfPPbfh7/W5imRgO3W6F+op0p02zMOcpB/URbKjwYwKTKQ8PDSHJoIMeMkqFIUeIIZDgDniF0trGu3xAVRkVFICiinGkcnTW8S4PYkLa62YY9FUYHrLjlbrxUMZFyajEwWMx/iRPtN+47CFBADvmoqEQIpeVkWGD7RNZQIgB9oosdxiaaRQNiyFB9gjqbasYoAgwSJdrEblayOPW+igk4cWPHgZ+cfm+NMBHCRPtXtEcIpyVsVlH7BRlLmMmhgFIqZaim94kQguW8ThftTGY246jN2qaHmoF0rAbznWIzm1hJPsVUMYECSsf0zAghaGEXW1hDlPCgTxTqmIZJAg07duyo2ND6/7PjIEB+6hyHWru9Hz7I5NmHC9meMyEEzeyikxa66ejPyWOhoODAhRMXJgKDBDoJEsTxkUOQHvIowoOfOFHCBAkx4O5dxDimcQwvi38dkOuTHD7IMeORh7znHy5W76rIul3XBQ/cH+TJf4TZsU3H4QTTgLnHOLj3N/kEcjIXIT39RJjvXNOdeu9yQTQ68LmqQlm5xqc+4+HyL3ux2eD8he1s2ayTl68SyFGYOdvOrDkOfH6FbQ0mv713YJXvu2tL8A+T82D7Np1H/xTib4+GiQxJRfG5L3j47m2jJzYeynvL4lx6cUfq/bkXuJg+047XqzJlpp2eLtPy1NjV77GxS6dxp0F728Bcw26H8gqNikqNyiobk6fa+MSlnjQjXpKhq5azkTT+DxUhRsPoN/zvrXiQPE82UWAk7IoYcx33NsVH8rjfu76LJ/4e4Zpv+/niV33YbJkHmlrZtHcH38+MJkgkefapCNdf0830WXa+8CUvC89yZVyfkUXMEULwxqsx7ritl+1b01WHr37DA0LB5VLIzVNxua1E4y63lVB95mx7SjScUPHhMSwnRYq6D4ngMBaGihJJXno+yssvRXlvWYItmwaeD0WBgkKVohIrbF4oaBLsE/R0m9RPsrFpvc7MOQ4mTLHT12vS2JBg43orp4/NBjNm2bn3/jxOmteS9bySIxc5ZpQMRYoSRyjZVtVuZR072Ji1/Emci3PQSuokukjwCv/Ouo+Ghg1HyvPBjY9jWZAqn0shOjrB/pj3+ZQwg2Ppop3NrCJCEAUl5YVheS0IDPT+GPpRQIFBg2IvASYxmzyK9koEMIRBF20E6aaXLlqxBqxzOIkCpQRDGLzMgPEt6Q1iCQ8DniFuvFlXIEveP0IIXuKfo3qdHG6G6MHfxRbRSAMb6KMbD37KqSWXAnzkoCnZVwKGRC/v8FJ/HokAKhodNKeV8eCjigm48RIgH7tiJU083NpK8v44RfkoUcLEiBAjmnpVUbFhI0GcFhrRSZBLAXkUkyCOTpwECaL93mBJ+vr68Pmyu/NLjlzkmPHIQ97zDx9DhQldF/zt4RA/vSUzPA7AP/9bxOSpmSvS4zHBnAnZDX8ut4I/oNDZbmIY4HDCK8vHceZxe+jrFUyfbcdmU1ixzPI8rp9k4w9/K2bzhjh33trNpvU6qgo+v4I/oKbEiUjYJBIWtLaY2Gykrf4uKdO48Qc5nHqGC0bJNTb0+t9bEmPr+hgb1ur8+3FrbvPju3O48BNehBCcMb+VPU2W52pxiUpltY3ySo3yCo3yShvjqmxUVGkUlWhZBYgkZr+B3aWMHK4zPsaAM47+hVvZDNYfJEmRYiz1cozi9xEVAwvS1DGKJhqChce3sPAsFzfcMrLgdKgJE6OxcmclAG+/EeV3v+zl3bfjlI7T+NRn3Bx1jIOqKW58fjXrM9PeZvCxs9qIxwX1k+wEclReeSGaVqawSOWLX/dTXWtj8jQ7RSVW+8+obNz/Fyc5ZHh9dTl7mnRamw3aWqwE6G0tRn8/qxKNCJ5/JkxHm8mEyXZOP8tFb4+gt9ukt8ekpdlg07qBxak7duygqqrqIF6R5FBEjhklQ5GixIcUXdd54403eP311zFNE1VV+ePNj/bnRIgzgRl4FetejiQsAPjI5Thl4bCfd4t2+ujGgROzP9hRmD566aKP7jTPiTmchIrKWpYOWdWdjgc/k5hDRAlaq3dFAp04CmpqpbeKljXHAFireGcp80dsIyEEUcL00EkDGwjSg4YNHznkUUQpVfj62yguYrzN88T7PSJs2PESwIETGw5UNAx0FEjVrYhxw8bpl+wbi8S/KKOKSczhJfHPg12dD4ShAqEQgh462Mlm2tidCrlUyxTGK9NS5YKih3W8Sx9duPFxDAuwKTY2ihXsYgsAfnKx46CT1tR+NUymXpmeUQ8pUHz4Gc1r5y3xfMobIikqa9hQ+sVfAxMDnbpJNRxzzDHMnTuXq666Crt970IjSD7cyDHjkYe854cfpmmybNkyXnrpJWKxGJqmsb3tZ7S3GHS2G3z+6znMmmflOBBCcGL9DoxhbOR2B7yxqQpFUdCyGJu3b07w5itRiss0DF1gJAQ7t+usXxNn/ZoEXR0D+9x6Vx5TZ9i58ZpOtm4aPhGEqsJv/lzAzu0GfX0mfb0mvT0CVbXEDrdbIb9Q5Sffyy6i1Iy38fiLJRlhX4bS0mywZnmcRx/o490lcVwuhfrJNmYf5eScizxMnO5AURQMQ/Dxhc3s2GbV2e1RqJtop7BYwxdQcbmsEE+qCh6X5TFy9PFOTj1jYMGXOQYvgqHCgl0Z3rifECOLA4MN2KOVzXa+wcLBaGVHq9tYvC6GEyeiYmDRzsdObaK23s4P7yvk5Mk7Rz3m4UBSkBjMhrVxHnsgyHNPRYhGrXa54JNebr4zP1VmT5POrd/qZPXyOD6/yiPPllFQpPG3B3u5+xYrH2NdvY3KGhuvvjggUhw938EvH81cVX9s9fYP+tIkhxjZnrXBfPXzHbz9qiXIOl0KgRwVj09B0xSEsETocNikILeOuXPnMnv2bK655hq83uw5QyVHJnLMKBmKFCU+RCxULqGDZlpoop3dJIhjw47WP9RTUNCwEaaPmcynWLEGHKYw2cJqWmlC7w/h4cKDBx9eApRQiRMXTtwj5ocYzGADZzwep6uri3A4zJfrvp3aHqSXbaylk1YM0icefnKZyrx+Y5glArgUDwCdopU2dhMhSDvNOHEzg2MJ0UcXbTSzkwB5HM3pw3ssKCrLzdfSVpRXMJ5JytyBfUT6YDqZ0yBID9tZTw/p8WmzsVC5ZNQykpExhUmIXvroZh3LUtuP5jRylIIPtTH9aOV0lvEyAHYcjGcaAfIBwQZWoBOnknqKqcCpWMaDTtHCCt7Egavfq8jARw5eAtiwUcH4YfNwfJjbcm8JBoOsXr2atrY2urq6+MnlP8eLn3xKhu1XDuf2O0P9OLpIYGBgx0EHzTSwIdXP2bDjIweBmdb32bBTyxSqmICBjomZ6reTrxo2FEU5rNtnMNnEnQ/LtX0QyDHjkYe854cHbzbUsmJJlEXPhHj9hTBtzQZev4LboyJMUDUI5Khs3ZjgW7fl8/HLBu7ln3/bw98e7CURF3S2mxQWa1SPt1Ez3s4Z53spGadRVGLD4cwuTEC68Xh+9bbU34lEgu7ubnp7e2lRFgCW6NC4I8EDv+zh9RfC9PWmT1dLxmn88L5CPD7LMO72KJRXWQL5htUx/vtEiD2NOq8+Zy2A+uO/y9i+OcGa5TH+9ec+/AGVZ5ZW4nAOLwT89MZ2nnhsIOzhcSe7+NkDJSkvB3uWVekdbQabNyT420N9vDpkNXo2XlpThdeXfW7lUgbmRmPxckgMEQmy1W+4stnOmWTwfRvKWM8xUrnBDBYnRjrvYIHCMAQ7tibYtDbOz3/YlRK5fv5AMUed6uekmi1jOvfhyL/equLi+btS76/9Xi5zj3WiKPDbX/SwdmWcz301h1M+4k77fnzjc604nQqGAcFek5oJduom2vH6Vc6+yMe02dnzOUphYoBIJMKaNWtoaWmhq6uLZVuupbDExslneYcVOw/nZ3HJjlqiEZNgn4k/oLJuZZwH/q+bd163+jm3V6FuogN/QE0JF0m+cn0en7wigG6qxGMCRbHCQ6GAqii4PJawcTi3z1Beb6hPe/9hurb3ixwzSoYiRYnDjGzGEF3o7KaBXWwmQggPfooZZ8WkR6GbDoL0oJOgizYEgkrq+8UHNy68uHDjxosdaxCiKRo9opONrKC33wClojGT4ylUSkesoynM/hXeJma/AauHDmJE0LARJUwuhZRSxQbeG/O1+8ljCnPZxlraB4kJbnxUUIsdJxo2DHR09P4Y6VaoJwdOnLgHiSs2Vou3CDKwgspLDserZwLwgvHXEdu/QWxgK2tTq9jzKKKcWtz4UFAwMVKhnAQCgdn/av1npR7WxizyHKnsFg2s571UzhA7jlQC8akczTilGvhwGgSTz1qf6KaDZtpppoeO1DOnoDCHk3hXvDqm44zEh7H9RqKzs5MNGzbQ3d3Nd879QUqMNUgQI0ovXWl9w2BKqGSGcuywxz5Uk6knSf7kJ4UVXSTopp0eOtD7xWETkya2kUshldSTQwHO/rB0MRHhHRYRI4KKipcAfXTjwjOs95uVvySPHAoIkE8uhdiyhCM7FJ/Dwe0qhBhTaL5D8ToOJHLMeOQh7/mhw6sNmeEt4zGTl57s4x9/7Gbrhjgl42ycfKaHExZ48HgV1i6PsWltnL4ek7UrovR0mXz8ijxifQmKy2yUjLNRWq5RWm6juFQjbNhxulSatkW55+Z23n3TMkBpGvzvHUWc/THrGdCGWSkvhOCNF8P0hVUMHTaujrLuvQh7diVwulTa9ujUTXZw2dcD3HJN+5ivvXq8net/kM+iZ0L869EBMSE3X+XSL+eQV6Di9atEw4JQ0CQcNAkFrZW9gRyVohIbRaVWeCW3V+XeH3Xy5ksDxjWnS+HVDda4czjjbNIQ9ew/e/n599uJRqzf3MkznXz00wHqJjvQbAoirlNYbLWpoVuGdcOwXk0D7HYFm0vFZh/5N2eseR3igwQCx2hhoYYIFntTfrSyScYisozl2t54Ncb3vtqcamdfQCXYaz13X/1OPpd+NQ/4cBoEF++oA2DH1jhvvxJhyasRlr8dJR4faLdb7y3ilmtahzsEYBmbR+NIEyN6e3tZv349XV1d9Pb2smTrNwgFTSJ9Jt2dBhtXR9myLoaRxZmrfoqD3z1VMWyItoP1LGb7bciGEAIhSAkrkbDJ+hVRVi6L0ttpoKggBDz5SDe1k5x87At5zDzWTfE4G6qqEOw1+NanG9myLoZmg/GTHGzbFKegyEZbs56RaB3A41OZPNPJ1Nkupsx2MfMYN/6cTOH0lJpN76sN9geLGial/tZMfVTvO/hw9kd7gxwzSoYiRYnDjGyGp3fEopRw4MGPCw9xooToQ2CiouEnFxt2okQI0YOGhhtfKpxTEg0bRYyjmAoiBNnMKpy4qWMqLeyik1byKEqthnXhZgrz0pJgd4t2lvFK6r0DF4WU4caDiYGCShPb0LBTx1Q6aaGHzn7DYByDgQHtBGaQSyHddLCZVQAUU0G4P665JXsYJIineVskwzypaCgo/ULFQBipJF4C5CgF5CqFFCiluBQPzyf+Mqa2T4g4LexiDzvpwUp6l0waa/YHOhGjDKitnBlJg10+OeSnxfw/0gmJXhrYSAfNxInhxMUxLEx5BQzmSDAE9vT0cEbuRahoOHDymnj6YFfpkKe5uZmzyy6hl276+kPKZTOeJwXNwe9t2FP9S5Lhwl8l2Z/P4UjCgylMooRTOXf0foFlF1tIEMfEwOjvl1Q0cikkTjQlvjhwDhJRBbkUMIWjxmSE3ybWESFMHoWp3D8AKAoCQZg+ekQHvXSmPPiqmEAtUw65ROtDRYhtrKODFiIE0dER/b99Cmp/snAnHnx48Pe/+lK/w9m8Q44ELws5ZjzykPf80CGb4emXt7Xxzwe7ASgqs1E70UFnm0Hj9jjRiMDhUKif4iAnX6W9zWTzmhh2h0LVeAcdrTrdHQPjcodT4dhTPZx6jh/DENz+rRa8fpUvX5/PyneiLHo6yKQZTpwuBaEo5OUpfPMnZeTkD8wTWpoSXHrigJHTF1A5foGXyvEO4jGBpim88kwf7Xt0brynmGWvR1jzbpSeLoNgr0EkNDC2/szX8zhhoY/mpgQ/+Ia1YGnhhX62rY+hqpDQIRET9HYbKWM1WIlYnW4Vh1PBbleIhE2CvSZDZ8XlNXamznExda6bo070UF7j4PSa7Pn3hq6MDQdNXnsuxPP/6uO9tyKYJuQXaQgT4nFBPCZIxEeeJ2iaZbCbNN3BtDlOps1xMXW2E19+9pXsg1FHyduQJIGGnbGJCXtTFsAcJb+EPYtnRpKosFb2jyROtDXr/Om+Dpa8GqZ1t47Pr/Lrx8upqU+fR0WFnTNq14+53ocr4XCYR1+YgM0GgVyVi0/YNfpORzgdHR389pk5bFkbZcvaKFvXRmlqSLcZKAq4vSrRsJkyqrs8CoFcjVhU0NdtpLYv/KiP7/+ieMTx8/4ySv9n+/DzE0MXtDcnCPeZREIm4ZBBX5fBU3/qpLNFJx4ziUVN4lGBZlOYfpSLaNhk01pLfPHnqBSW2hACTAMqx9v53n1lOJwjf8cNofLkw12sfTfCrOM8BHK1lPABYJgKzbvibFgRYcOKCF1tBi63wnmfzuHK7xRi70+0fqgIEv/ZPh2XMvB8/POBLl77Tx9NDQmCvSZ6QqDZQNMUNJuCL6BSXuOgvNZBRa2D8hrrtaTCjs2uZPRLz22fmnHOM2vX7ffrOpDIMaNkKFKUOAwZatToFC3sYlu/MSqBo98jwIOPXArxkUOIXlbxNlFC1DODMqyVPkmDW5ggEYJ00EIXbQCoqJj9A1obduZyEq3spp1mfASIEqKbDmZyPMVKeao+QdHD27yQVsf5nIVHGUiIulq8TS9dHM+ZbGc9nbTQRw8mBrkUUkgZzexEReUYZQGmMGhgI92000tXmsCgoqXCVMWJZYSCyoYDF1XKBGq19I5/OEFiOJL3Ii6idNJKiL4BLwg0VFSU/v8nDVkwIKaYGKmV2ZYwYxk/iylnpnL8XtXlw0xcRNnJFhrYwBSOolwZflXPh83AJxk7Z6gfJyR66aKd7v5/SQHChp0AefjJxUugv9/rI0aUKGHCBDH7J9oKSn/iesvI7MbHL/7zE+bOnUtJScl+v4bRCItgSnjooYNOWummI1X/weRRRC6FKZFWRUMnThftOHCSSyF5FFpeXkMmUIpt+FwRin3A08GMRLIUyJykCCFopZGN4j10dE7lgqzeYgfyOzxSe+8Qm9jMKkqoxEcAG3YU1EHebyZxYoQJEqaPMKGUV5eGjWNZyEZWECbY7znn7Pfac/V77ln/kr+NH5a+S44ZjzzkPT+0eGrbTAACqhVWY/umGL+9owMhBN1dJnlFNvKLbJRVO5g61039dBedrTo/ubqRTatjXPr1fC68LBebTSEeN2nvttG9M0hjQ4LVyyK8+UIIAJsdTNMyUDmcCj/8QwXrl0d487kg5TV2gr0my14LcfUtRVx0eV6qfsFegwtmbU2r88//WsHMYzyp9/f/uI1/P9zNM6vqeOKRHt54LsSW9TFCfSaTZjg47sxclr0apHlXnAffsISYJx/sZMWbQTavjtLdPjAXcDgVPD4Vt08l2GPQ1z26sd6fq3LmxwJceVNR2srX4QSJkXhu+1SCvQYr3wqxbX0Mm13B4xSWIOJQsNkVNA0Um4qmWaGrEglSBsLeLqPfmySaEogmz3Fz/+MVGeca6uUwFJeSIMHIZfYWO0ZKQBiObB4UQ8MzjRbiKZs4kTxGqM/g2ce6eODuNi69qpDP/U/hsMc5EsQJSXae2jaT5l1x1r4TYsOyPtYsjdC03Zp7u70q46c6qZ/mYsJUB5GQyc6tcdpbdFr3mDQ1xIgErb5D1aC03E55df+/GjtnHvNHZs+eTWXlyHkZ3i8jCQ9J2vck6O02iIZNNq4Is+rtMGuWhAgHM/u++uku5p3mx+lUcLhUnC6FaNhk9TthXG6VKUd7mTbPS+UE55i8AAaTFCU9SizLZ5nHEkLw3hsh/u/7zTTvSvDHNydTUJLZt5xft2qv6vF+GKm9X3u6hzuuaeS4072Mn+HBn6dhsysYOpiGwNAFPZ0Guxvi7GmI0dQQJ9afA8buULj9r3U891gny18PUl7nJC9fJa/QRl6RRkGpncISG/klNipqrdxFHxZxQo4ZJUORosRhwlhDcwzHevEuTYzd9bKCOvroTosd7sGXSuhsoJMgjgsPczgpTXAQQtDCLkxMEsTYzGrsOHDjxcBAJ06MKFOZRzcd7O6vVw75OPHQSiMA0zmWNSyhjBq8/StP3Xhw4iZIT9rq32T4FTtOPEr/KlVU6M+m4cSFikpcRGhnD5v7E2Qfy0L8Si6wbwah9xMaJ7Vvv1FOCEGYIGvFEnrpJJciipVyKkTdER/maY1YQjPWap/JzKFCGT9i+Q+LcU+SneG+d52ilfd4DSAVLiiXQgLkYcNOB8209QurBjp2HHgJ4MWPB3/q1Y03w0B/oJ6pkfqUkOhlM6vSwtdp2MilkHyK8PV7xNmwoaVebSOu1tJyczG6uzO2j1WQGImYiNBrdtBjtNNjdtBjtqMTR0VlPNOpVoZ3JT8Q7T1a/71SLKaN3ThwUkw5+ZQQJ0qYIFEigOjPm5FMBQ5RwvTQQSFl1DONt3lx1HrM4FhKlIFJ7OHef8kx45GHvOcHn6QQMRYcWVanP/p/7fzpnrYxH+O0jwboatNZ9U4Ys9+WXFBiIydfIxq2VuL29Zp4fRrf/0Mt9TM9aSv3336hl2CPVY/7vtOEN6BSVuUkHjMJ9Rl0tuh8+n+KURD8+RdWvcZPc1Fe6+C1p3sB+PHD1Xz3czs44awA9dNdFJfbKS53UFhmo2l7nO52nXhMpOoT6jPw+FTKqhyUVjmwOxWr7gLyimw4PSrdnSYrFwd58I5mIkGT7/+umqNPt57pfTGEZVv1OpThDE3JsCDJ3AxCCFqaEvy/21pY8lKQiTNdHH+Gn3MuK8LtHRAaBq/iTTKSEJEsP5qwMJZy2bwohpbP9vylHaNfnAiZ2b1Bsu3/xzta+dtvLK/1T341nyv+tzijTFgMHO+CuhUj1kFyePP41jmpvweLXU3bY3xtobXivnqSixlHu5l2lJsJM1x4izysfDPIkhd7WPZyL31dBr6ASkW9i/I6JxV1TirGOymvc1Ja6cgIrXagDOX/2T592O9G++44j97dxBtPdqW22Z0Kk+b6mHacj/EzvHgDVng6l1fD7VPx+LUR5wmmUPGomaLCaIzkJWUI63zBHp0tq8JsWRVm80rrtbtdx2ZXOP/yAr5wQ9mwxzgQ7T2SIJEQNn53WxPP/KkdX47GMQsDHHVqgGhfnN0NcVqbEpgmCEVFUQfCYXW1Jli7JMik2R6+fV8lV5w0utB9+Y1lXPilgT7tcO+/5JhRMhQpShxmnKF+nCaxnQ28Rw4F/Ub5ZA6FgdwJbrxo2FIr9ZOr9d14YdCqfRWVtbyTFp5kME7cePH3eyLY+kOa2FKhTUqpGjHUkBCCNnYTpIcoETS0lEBRShUtNLKNdcSJpnk/uPAwnum0sIsgPcSJZawCTtZJ7f/RE/1ZLJKiyVAUlLRwSgWUMI2jcWQJBZTkQBqHzvR+HrBivO+JbKKNPXTQTB5FzOR4bMrIk4UPI1ERYTVvo5MghDUJLaOaacrRI+53uBv1JJmMZECOijB72MEuthInyiRmU6lYYRR6RCdbWZPKpxMgj0LKKGIcPnIOyRwB2a41LIK8xXMoKEzhKLz4UdHw4N9n0VLLzR3+w2GGBootuyBhhgdCYjXrDayKv556b8dBjlpIjlJAjlpAnlKSFvJvKM9F/zxyxYdwhvbJYfMAjfkYWdpcCEEPnbTSSCtNRAmnvGhceCAlRZAKewXgJ5cJzERVVEKijx6s0FW9dBEjmvJyseOgmAomMitrexyu/ZgcMx55yHt+6PDUtpm89VwPd1+7iwkz3OgJQSRsEg2ZRCMmXr9GbrGd0monPr+Vs8But8JMKCqUVjlRVUFcceB36tjtCg/d1UzDhuxJm3MKbFSMd+LPs+Hyqrg8Gh6vgtOt4fGpzD87l4JSa/w6XDihd1/tY+vaCK2NcZwuFW/AWiV6/IUlrHunj0d+uouuVp2+roGxvSeg8YXvVbDqzT42LQ/S26UT6Us/vtun4vZqOFwqpikQphXCJBIyiIYyQzVpNgVDH9g4ea6Hb95VwbgaJ+FhjICfrF866j35oPj71qMA0OMmS//TzjuL+li6qJfK8U5u/kMNeUXp84TBiaZdahahYphE0kNDKmUrN1zYpahpH1Rm9DBPIxkuRws/lRAaoV6dn1+7g449CXZusp7RWSf6ufkPtWi24cd3h7tRT5LJYCFiKMGOKK891cOLf+9ix8Yo536hmMu+a3kaNW2N8ue7mlj5Wi+JuKBqgotjFgY4ZmHAElNVZUyh0A7k6v1kXzCYUK/O109aQzRs8oXvV1A/24vdoVBW6xo1xNJwmGLv9zNG+E67FMvetG5pkO9/eiCElcujMnGOl/pZXupmeJg5349rkNA6tA+6tH7JXtXp0S3H7vU+Q0kKFIPrIoSgYUOUxc92s/jZHpq2xVBUKBrnoKjCaQlXpsAU1u+PMAWmsH5nr7i5HLdXo2W3zoZ3g2xZGWLLyjBdrQnCfQahXgO3V2Xe6QGu/EEFvkDmPOFw7cfkmFEyFClKHAYMNZZsE+vYhrWqpohy3His1bCoGCSIECZCCBO9P72ymfJaEAj85FLEOKqYiE2xERQ97GFnSqpw4sJHDl4CwwoOfaKbXrpSYkYuBeRQkGHgi4gQjWyjgxbcePASQGCSIE6COOXUUkApDWxgOxuyhh9JoqAQII8aJqeFzLAS1FqeG1HClFOHjxxAkCBBjAhh+hBYYZFiRAjS0591IimyWHk3CihNM/4fKKNQUpAYSqfRzIrYK7gVH3Ocp+OI7Z3b5OFOj+hgKS+n3udRhI8cJimzU9sOV8OdZN8Y2h++KZ4lghVKopQqyqginxJMTLaxlh1swk8u5dRSSBkuxZNxzNGeobF6qu3Ls3i6chE72ESEEFHCxLBCISVzFlhTISvMXhxrwj1RmU3VEC8DW35exrEBcA8vuuLILnSKjq6s24cTJAAY5NK9oud5mmPbBj5Cw2PLIWaEMDGZos0jLqLEiBATEQSm5dmhDPLyUOyUBabiUAfq/2zb/am/Z6jH0yGarZBIihN7vzdcklytiNcTTw5f31EYes+FEMSIYsdBL53spoEwwVSOjHyKKaSUXGX4kBFDj5dNEPsw9GdyzHjkIe/5weXRLcemvX/l72387ibLC3na8QEqJ7nxeBVcHpW+Lp2u1gTNO2JEQyaJBJi6gZ4QBLsNEnFBWZ2LeQvzOPdLpeTnK7Q2xnjxsXYU1YqT7c+3UTnBTc1EBzkFmb8jmiLYsMFg5/ow3W0JdF1QN93LlGP82Bwq2iADX1drnJf/3s7SF7rJK7ZTMcENWCtog90G8xbmcupFebz41zYevr0pFT4lG6oGpdVOPvPtcoI9Bq2NMRq3RAn26MTCJuE+g93bYpxycT4T53hRFOjrNuhpT7Bne4xo2OSohbnocZPNK0JoNhWXR02JLeXjXcw9LRd/3sBv4YESJbIZIQEa1oe5/UtbsdkUbvzDeKrrR841Mdiglk2ogHRhYazlRsoNASMbKiF7eKfkavCRjt22I8JVCwbCMdXP9FBe5+SqO6pw9F/q4Wq4k+wbg8WJqHBwz9c28e6L3QDMOyOPUy/OY+6pOSgKPPm7Fv7xyz0UjnNwxqWFzFuQS1VN5lh3tGfooc3zU3+PJGB8bsLbe3cxwO/Xn8DzD+5m95YwXc0xuprjYJoomopmU9DsCkZCEO7T6dht2WXOuqKMT32nZq/PNRRjGFHCO4LnxHDf9aR3BMCjt+/gvw8M8vq2KZTWugh264R6dC7/XgV6XNDZmqCzVScWMXF7tZR3h9ur4fJpzDy9gPzSgT7vsgmLU3/f8MAk3nq6E3+eDX++nUC+DYdLTYnR5VP83HjW8jG1Qzb+vW126u+oabfCI7Yl8OXYaNwS5aW/ttG4OUKwW0dzaEw5LsDRJ7mZeYI/5TUxUr84eJ4wtH883Ps0OWaUDEWKEocBQ40jYRHkPV4jToxjOB2fkjPqMcIiSDM7U2IGWJ4GLryUUUkVE4kRIU4MHzmplbdxYeVocCteOkQzLTQRpo9u2jPOMYGZqXAcyRWmy/oNyqVUpZJvq2hECAKWR8QEZrKat6liAmVU9wsXlpgSJUIzO2lgQ3/Ij2kUUMpmVtFBC0C/tGAn1m+wm6DMYofYQBzrB1NBxYufCGFUVAQmOgkcuHDjIUGCKKFU/ox8ihnPNHLUooxrfL+rccfCUIGiL97Bcv0VBDDHdjJ+Jd34KPTsk4XDlXfES/TSlfKCSQpfeRRxlHJK1n0+DIY8ycgM7QcNodPMTtbzHgBFjGOWMh/V6aLD2MN6/R2iIkQd06hiAqqi7tVzMpwQYQqTProIEcTZnxzaiRs7jjQjsxCWHDySRwBAt2hnGa/gIxcvPpy4UVAw+yVlgdmfN8fyTkNRKKUap+JOO85eixLDCBL0BYev7HCixGDjesLqj0xh5csJ6d0E9U5CehdOzUtbbCc9iRY0bDg1L07Vg6po6CKBYcbRRQJdWK8BWwFF9mo0xYaqaGiKDc3pQVVtbO56k7gZwaY6ieuhrN5xfiWfEqWSKnUimmLV/fn4o8Nf3wgkn4eEiPMqw4sd0zmG1WJJ2j7Z+DD3WXLMeOQh7/nBZago0d0W584rNrFrU5gbHpjMtOOtexI2HeRo4ayr/ruaY7z73zb+cncjen/yZZdXpaTKxayT/Hzqm2X0dRvs3gPlEz2plbfhPp2+thiltS62rQrx+uNttOyMsvbN3oxznP2FEj57UzUappVjaFecb521Bj0hOPasPEIhwe6tETRNoW2XNaZXNfjfh6fz00vXcOLFRZz+6RKqpngRgJEQdLfFWf5SF4//YieGLjjzC+NY8NkS/nL7Dpa/1IWhC+xOhZwiB+2N1rzgk9+p5qU/N6feazaF4irLIBaPGnhzbHTuieP2aZRP9BDtS9DWFCcWtuYJk47ycdHXyxh/YvYcU1+a+HrW7R8UQwWK5t0Gd35pE53Nca799QSmHpv+HdTGsMo7KuxZwz7tbRkY2dA2VGAY+iyO5F2R3Pe+67bzxpNdaDYFT0Cjr9Panlds555X5mT1kNgXY7Dk8GKwMACgJ0xWPN/O/11r5a8pKHNw32uzCZsOtq/q45FbtrBrQ4jzv1TCJ64pw+FS+fj4d/f5fClMg50bwjRuDOPPs5NbbCe32IGW60VVFTTF+j4KIYhHTZxuDXWEZO7tTVG+c/q7lNW5GTfBQ36pA82mYhomRsLEMEDTwO234elfTT/vIwUUV42wKGkMDCdIjES2PBFDj5UMBWXogq52ndadUZo2R2jaHMYTsLFzXYhVr3VjcyjklTjJKXLg8KjEQgbR5L+gTiRoUFTp4rhzC7G7VBz9/zSnDbtL5cWHdtO0MYS/wE6w0/I+GMq4ejfzzsznI5eV4cu15kWDhY294a9bjk5d12emDP8cfeJ/q/jrHTtS73+/6aSMMjlaeK+excMNOWaUDEWKEocJZ2ifBCxxYZlYhA07MzluREEiKHppYhutNKVW34LlceDBh588mtnZv01NJei046SUSgwMmtmBiUmAPGtVK1HyKe6PqT0QrsOJi6NZgEtxo4sEr/F0mtdDCRXMUI4DLKPeqzyJgY4TNzkU0Eojx3EGPiUHIQS72Mp21qUM0oWUMZFZqKgsZREadmqYRBHjsCsO4iLan1xbIUGMfEqoUMbjJYALL6qiEhMRNotVNLMDa52WgR0nCTLVfj95HKMszIwrv59FiTPdn8u6PSrCLI8tIkgvE9U5VIrhEz0frnSJNtqVFnaJzalnJ5dCytU6XHjIMfMzwtR8mA17knQGG3jjIsZbPE+CGEWMo5J6CpyVxImwMfEuzeYO8tQSptqOwaum95HPRR7ep3OCZWhfxiv0kulJoKBQwfiUF89y8TodtFDNROqZkepLkmLFYA+2t3ieudqpFKgDsVOVYZLJqXm52Subl/23wHRmFx/UUPZQHMKVXl5psWI0j0mQGIwr+2rNmD1Bx+41lLrGow4VbIwBw0l7vJH1oTfRRQJT6BgYmCLdmDEhdz7jc44Bux1T6JjC2t8UBm0736PV3EWraKJMrWG6/bis9RlLqKiP2D8FQFD00GhspYlt/X1UMjCi0u+loZCrFOJVAthxYlcc2AwrZKH1z4kdR6of+7D2X3LMeOQh7/nB59cbTwOgryPOzz+3gmifzld+MYmJ87L/NtgVg/amGC8/1syy5ztpaRj4TVBUKKpwMfHoAG/8szVjX7dP4+izCnD5NF77ewvRkEl5vRs9YdKyI0b9UQF62+O07hg4pt2l8v3HZ1M23oMQghsXLKOjaWD8XVzl4vYXBoztN37kXVp3RPHm2ph+Yi5Lnm7n+j9OYfqJuQC89VQbf7tzJ10t1jxh4jw/n7u5loJyJz/+1BrCvQbnfHkcx55biD/fRiIu+P75K+nrTKAnBBUTPJz95XGUj3dTXO1CsdkI9+o8cd9OXnpkDza7gh4XuH0a0bCBGGLX9+bauGfxsaha+m/g/hYkshmwAMK9Or+9Zh3rlvTy0SvL+MR1lWnhmw4GQwWGsOkY8fOhnw0tv3N9kHeeamPlog6at1vPVkm1i/O+Wk5eqYNJc7w4PenXLMWII4fBIoGhC244czltu2JMOj6XUz9XwdxTc4iGDB7/WQOv/bWZyilePntbPbUz/WnH2Zvv8EOb56fldzBNwW+vWsPqlzsyyqoazD6jkK/dOxmAP31vM6//vYXjPlrEF346EVv/oyuEoDvmRI+b6HGTHGecb8xbwmd+PJnjLh4+x8KBYqjo6Fet7+JYBImRjpMkGBRseHE3cz9SmBbCaeixdq7t46GbNhHuSRCPmMRjJoloekd9yqdK+ext9cSFzWrPRL8gZMKuZW0se66TZc93Ujfbzzd+PyNrIu8rJ72atZ6D+c1Ga9Fke2OUN/+5h1ce2U2kz0BRwWZX0OwqNpuCAKpm+KmY5MOba8eTYyMnV8Wba8ebY8OXa8Oba8fuVImadq6evGjUcx+OyDGjZChSlDjESYoRYIVCelM8gxsv85QFOJO5EIaMlOMixjbW0sg2NGyWpwNeyqkln2J85KKqNnQzxmreRkUjjyI8+LBhp5WmVFLhKupx46WBjfTRDUAl9UxSZhMXMbaznl1soZ4Z1ChWQjZdJHiFf6fVaSKzqKQ+ZZiLiyjttNDIFvrowYUHAx0/ucSJ0kd3f2inMnwEUom0V4g36aObYzg9Y6Vw3K6zJvE2PjXARG1uyvBjJtINWavNt2lhJw7FQ1xYwooNB35yCBMi1i+2WMlNKyhRqsilEHWIUW5fV9yOxnDCxC59E+v1dyh1jWd27pkA6C2Zk8XDkYgI8SbPZmwvppyZyvEZ2z+sxjzJyFg5dbbRzC66aGMmx1OslKc+XyHepJt2JmlHUabUZHxnRxMkRlrZbgqTTaykie3MYj55FBInRpwoMaLsYgvdtHMKHyVBnOW8QZg+wAqzp6HRTXuamAuk+miA42xnpXlCZRMmPghRYqyCRKoe4WHctPVhQioMI2AId/ZwgEp00MrL7iGra/2+gf2FsAQKoWMKA6fmRbFlMbr018swEyxp/hu98TZOc3wsFY5Q8VhGsagZxKX6Ur9L/+38HQBn+i7LWs/FoScJ0k25UkeuVoQuElYoQhFLvcaJo/e/H5wnaTAaGg7c1DGVUip5Ufwj9dng3/wD4Zm3P5BjxiMPec8PHkkxAiDYFecHZ72DAL7917kU11jhCocmBo6GDJ68v4mXH2xE1SAeNQkU2Dn5U2VMmZ9H1TQ/Cbsbjwjz4E2b6NoTZ+bp+QQq/PjyHWx6o413/t1CJKhz0qfGUT0zwCt/amTTkm4AZp9RwFd/OY1In87Lf97NM/+3g5M+XsJnbrVyPQkh+MZRbxMLDRilT7y0ggu/MyEV3incm2DDm10s/vtuNr7VRd3cAC3bwlTNCBAPG2x9t4c5ZxUx56xiSsd7KR3vQVEU/nrbRt59ppXrHptL6Xhv2nWHexI8dvNGbA6VT/9gEg53dqP9k/ds5YXf7SS31ElPawxhgtOrUjPNR+eeGO1N1ja3X2P2wgKOObeIKcfn0qd4M451/ZTn9vqejsZwwsSKlzr49VXrqZ0d4FuPzQUyw6wMDc2UxKUmRhQxkgLCSPsPZmgi3pGSW4+0Iju5qjweNbhq1lsZn1dO9XHD4/Mytn990ssZ2yQffu7dsJAVz7Ww4skmVizq4pKb6jnt8xWpz/9y2ybe+ucezvvWRE74dAW5zvTvx2iCxL0bFmZsS343hBA895udPPWL7Vx252RmLSwi1htndzP0tsVY/tQeVj3fwrefOQGvT+OR/13NliXWIqe6o3IpqvGw7d1u2hrS5wkun0Y0aJ3jqj/MYvL8/L1vmA+I4YSE4XJPGMMIFR41ey7T4fqgoccfnHh78D5CCPS4JU6Eowr+AieqpuDMmlNHwzQFv/nyCjYu7uSGp4+jpt6R+kwIQdeeGLmlzpRYkRQJ/m/D6Vnref9XV7H21Q7mnVNE/fxCYmGDcE/C+tedINKTINSdINSTINyjE+nVs6bws7tU/PkOTrusgpM/W8E1Uwf6s5+v/0ha2WunPJ+1Locyh+KYMRqNEo9nfy6Hw+Fw4HK9P48kicVeiRL5FOPBT4A8cinEo/gOCeNg0pAUFzF66OC3S35OfX09+fkHr9P+oDlD+yTbxFq2ibUA5FNCDgUUUkKOUgBYHXGEECt4kzB95FFMF6248VHPdBw4MRSTGBFKqbbCigxd+tNP8rEYEBFiLGUREUJUMJ7JykC8xo1iBU1s5wTOSgkFutDppKU/WfMe4sRw46WGyXjwkSBON+200pSKId7DwKoCFY0K6qhiQloM+NXibcIEmc0JgIIDZ6qOqiO7wWuoKLFbbKdZ7MTvKsar5eK35ZNjK7JCiHR2oYsEPXT0h6vaRYwIuUoRBUoZURHCxKBam4xfyUPRMn8892Yl9kicXXFN6u/m0CZWdD+HXXFS5p5AwoxR5KymxFWHaO38QM53sAiJXvroQUEhRC/dtNOJJbYUUsZs5YRh9z0U+p9DlaO+8vO09+/+9toRy8+/5C6UIZ4ob/79Wx94vfaFwWLBG+I/RAnjJcBk5pDrKEHtH5BuNN6j2dzBLO0kcpSBHDdjFRCziRImsIcGGsR6IoSYrM6lUp2Q+lwYBjvEJjazCg8+HLjoph0NyzCfFBx8WL+hXjUHDQ0VDQWFHtFJo9iCTgKb4mBhwRdSxza6u7PWU6utzty4FwMpfVxB9uMGM8UKw28NtmwtPUMOMnL86DSyeFMInztdjBiCGXBnbFO7QiOfJylQ9IeQCiW6eLPpYTTVwcyqCyn011nHFiYrNz5Ka2IHTsVDob0Cr6eIUKKLkN5Fwojisefi1T24FR9dRgthNUTMCBMzQ0wKnEB1LMs9GPR7oHo8mMJAF3HiZtQSLkSMaG87CeL0aN20GjvJV0sptlVRpFXgjGUXc5LixJmuz6Rt39uE4Psb0zR56623WL16NV/72tcOqcmGZP+SnCfUzy8gr9zDuKkBqufkUTrBz41T/3Owq8ft684BIBbS2b6skytn3Ud9fT1FRUVZc7scjvx642m89fgeHrlpIwDj5+Uwfk4OdccVMvH4gXlCqCXEn/53HVuW9TD15HzWvdaJr8DBJf9bS0G5i2BEo2NXmLnnleHyWX2SqmTOFUKGnYAaSRlr4hGDn312JY1re5l2ehGX/9/APOHVBxp45u5NXPfP4yifbK1KTsQMtrzTxfpXWlnzcjvdzTH8hQ4Wfrmaikle4hGDbe/1sOqldoLdCermBFj90sA8QbMpHHtRKad/oYqS2oF5wr/u3MLSp1r4zj8tQ7Uvz45m37swJGtebuflP+2ipN5HcY2HcRN9VM4I4HBpmEIlHjHYuaaHzW91suLZFtp2hCmd6GPueWV07Y4Q6dWZ/+lKao/Ky2qs+9+pmYtw9oXBxqmGFd388jNLsTlVjr2wlGifzsRjc5l7TjE2b7pAMDgEUzYj4GCBIZsIMdTDISrsI36eJGbaR8wPkelZYdW7tyXMpre78OXZaVzXx841vaxZZIURHjfBy41PzMvwWAEIGq4PrK0/jCT7xSSj9dWGYfCzjedlbD8U2niwWHDfZ99l27vd5JW5+NStEyiaXUKu33o+Xv3TDp65ZwtX/Ho2E4/PT/X/e2PYHSpMBHU7a19o5rXfbqZpQ4hTv1TL2ddOSn2uKibLn97DX25aQ6DISWGVh61LO9HsKk63Rqjb+r4VVrkZP7+Ykol+7C7NEmjtKi2b+1j55C7ad1pRL3685qyD9rs1WuLrwWLDcILEWAWM5LGGK5+t7/KosYyk2IOJ9n+WPHaoO8GPzlyMHje55IczmHV2KYqiIITgiR+u4+2/7sKXZ2fyCfkUTwzQsStC67Ygfe1x8ivdjKtzU1zjYeeaPnauCxIN6XTuinDCZ6v5+HfrM84/2PvLpeiYhiDSZwkWoX7hItYTI9yTYMeGCMv+1UTlzBxmnlnKlFOKKKt1Zb33yed3b7/TBxohBCtWrGDRokVcf/31h8w8IRqNUlvto7l1eO+9bJSWlrJ9+3YpTHwA7JUoMZQFfCxthd/+5COOS1N//zf6CBs2bOBj0z6HThwVjQ5a6KQFMSgmnxsvtUwhRgSlP63xXU/+gPPPPz/j+NlWRj4XfGjkOvWHdHg+8Zd9vaxhObvkawA82/L/UtsSiQTHO86ghw666aCHDhLEKaYilbw5aQCrVibhVrzsMRvoIdNoPUmZQ6UyYFgbTpwYTFgE6aadMqrTOkRdJHidZ8ijiErqyaMoLcyOlV+igwY20M5AUiMXHnLIp51m7DiYyGwC5BIhRAfNNLINBYUZHEe+UgxAi9jFapakjlHFBCYqs6w3SvYfrWzCgWLP/oNlRiJpxxFCsI6l7BEN2HHgwoven4OiXBtPrlqMV8nBqwRSCbI/CFFisCABENF72dz7Nh2xRmJmumEul0LqmEIexYfl5HqrWMt21qOiUc90yqklQZwGNtDINo7mtJTwNpQjXZSYdU268LDyPkt4GCpIAMSD3TQvf4FYTxuKZkNRNYRpkAj3kOjrRk9E8eSU4i+oIVBYS6CwFntO9jwFbz164MWKpGDQIDawky2ppM8OXMywz8cm7EREiNXGYgQmHvyUK7VUMnEgXM4YV54PDpf3nniVKCGKKKdOm0ZgsCdDf9/yduxZeunCjY8IQRy4OEo5lR1iA7tpAGA806hVpmTtjwAiPit/hN828KwfSFFiJEEis2ym54QyVBx19g+8h+mThC9TdAAQjmEmE8P8RKk9oQExYghGgY9QpJ0NW/5NZ2gHHkc++b5qEnqE1t5NTCpbSCTRQ3vfVqLxXrz2PHz2fOyqk5DoIxRrJ5LowessIE8rIWFGiZtRCp1VjPfPA7XfG68ze2JwsMQJcjMH3OaeFpr1BnYlNtJttiIQeJVcimzlOFUPhtDRSWAIHUMk0NExDKvd7YqV3NuBi8eXP8KMGTOAg+tlEQwGmT59Ojt2DMTJPVQmG5L9z3DzhBtfOZ2fnPLSAanDrWsuSP19y7Qn2Lp1K2+88QaPrbwdp8fG9mWdbHi1FT020Jn4i5yc8tWJRHsTKKqCzalx+Zzv87GPfQxtSF/947WZxrjvTnt6xDr9YM1HAbh5+vB5aPaV5LEHH980Ta772/E0rOhm+/Jutr/XTV97nGmnFRINGuze2Eek15onzDyrlOlnlLD4zztpeC+zDzv9SzWcd501T+gzXOTYwhnhdAC0QfOuvvYY6xa1cszFZWlCgKGb3HHmG+SWuTj9SzVMODYf3TnwGyCEYM+GXt58cBsrn9md2u4vdFJ9VB473uvC0E3O/tZk6ucX0r07wrZ3Onj7sZ1E+xJc8pOZzDjTCmuyY3kXv/nsQMie6R8p5dKfDwgkY2Uk49tgw5sQgqd/vpWXf78dd8BGbpkbUzdp2Rpi9jll1B9fQPF4H8V1Xtx+a57wQRhxh66WDXUneObnm9n4Rgdde9J/zyum+DnzqlqmnVqIqinEBgkNniwJa4eKDEPzSAzOA5FtBfJAOQeuYUSIweLEaHkllv57N4/daC3KO/sbdZz02QrCup03H27g5fu38pl7ZjPzzNKs5zkUDOYHk8H9IsCt061IBkONlwDh7jgv/76B3Wu70eyWQVyYgr62KL0tUcJdcQprvNTMzaN6Ti61c/MIVPqzzj1H6xv3F/duWMiSf+3m6Z9vo6/NeradXo2P/3QWRSU2In06D127ikivTqDExdyLKjjlS/XYXdpe1fveDQsJmw7C3XF+/4V3aN7UR/3xBSz46njq5qUvig2bDv553duseaGV/EoPnbvCOH02Pnf/cWxb3MKiX28G4KiPVXLRbTOHPWd3U5Bwd4KK6aPnEt0fjCZIDGY476fBIZ6S/ehw4kXCzD4fGOqVlSo/jJeFR42nxIhsdDTrPPvTNax7YQ85pS7qj81H0RSWPd7Egm9MRI+ZbH6jjfbtQQqrPRTXefEXOujYFaFlW5jOXSFySt1MOL6AaFAn1BmjbFKAj944JSXq2tXhxViXomf9bbUrBpvfauf1hxrYuqQTPW5SUOlh0smFBMr9xMM68bDR/6oTjxgkwglMQ+DJc+DNc+DNs/PDz/yJ44+3ok4M7g+SfcGBZN68ebz77kCujENlnpAcw25/t5qAf2zPeW+fSe1ROw6Zazjc2StRwoYdO068+CmlklKl6oAYBRfYP8EesYOg6CIsgvQKyxivoKBhxyBBjlJIqVZDoVpOPN5HhCBNbKeTVjRsKCipUApu1Y9HC6CgEjPDKH4fvqANr5KDRw3gUJxo2LEpdhy1ddg1F0IIYnoQNu/EoWSPlQ1gHj+DF1/7btbPzpr1fQD+u/KHWT8/s/Zawr17sKsunKqbxsgGWmLbCdgKqfZMxx4f+JIkRAxV2GhIrKEltg0vfnzk4icHHzk4cKF5vZjRKC8bj2dNApqNHAqYy0mppKBjpUlsZxvriBFBw0Y+xal/HgYGLAkRJ0bUMr4puYRFkMX8l7mcnBIeBq4xzmrepos2JjGHCqUOIQTv8moq0XYJlQTItZJWK37ceHEwoCIPZwBMihKmMNGJ41BcliCRBSsGvJFqE1OY7GQTjWxLC8XiUryUiEqqlAkDoaWE+b6/I2don8RWZiXT6wvt4a3uf6Xl60jiwMXJSuak+VAkeV+azG2sM5eOWDYZLmwwR7oYAZmCRBJHS5Te6B4SwR4Umw1VsxPcvYWWNa+i2Z34yyYghIEwDFRTweHJwenMQbO7CHU10dexnUhfW+p4FTM+QsX0j2Sc50AJE2dP/A7PbrojbduZrs+QEHFCoocViddTAkU2pivHUapUAWArLUaMkMj5v70PpL0/xnMWSyPPMUGbTa1t6rD7GUJndXwxPXQwQZnFBvEeKionKucSEj2E3XHytGLcqrVCVMnJMniJRKEoi3dfT1/m+aqKM7Yp0Sx9vC3LwGqYn/xEzthWeTjaM70VMgSJ5KlKsouJhs+J1pPunh4tzz6gM/uTqbp3pt83ZZjrUMIxjAJf2jYhBO3dm2jv3kxX11YiiW6mlZ/LuLwZ6efqX02qDhJoTNNAUVQURcH0WW2kNbZnPTcwrEAyNKSVmWOt7FXDcRJGlI7QdtqCW2kPbkMXCTRhJTfXFGssotnd2FQ7IpEgbkaJiygxM4xOnHLHRKboszNOmU2YOKvwK1mrl+yTTWGgYF1vUnQZzLN7fpV1f13Xqa+vZ8eOHVRXV7NjhxyoH0kk5wlOnw1XwEHheD9180uY9+k6fjLrX/v9/N9ffj7rnt9N05puuhvDNK7uItQRAwXcATvRoE5xfYCpZ1cw6fRxxGKCSFM3q//TxNrn9+DwaGg2lUivNU/QHCqVs/OxuzSC7VEUTaW4xkNhjZfCGh++QicOj4bDY8MecOHJdVheCB0xFCHwFTqHXSQSM238eObj2a9j9UUA/HBG9ja78b0LCe/pxebUyCl1s+HlZpb9fQfF9X6O+XQNgbKB8EGxkI5qg5X/buS9fzRQUOWldKKf0kkBSicFyCl1ETGd5Ngi3H/ZErYvG15cHUxBtYcrHzkOX77VXw4WJYYaVgYnb92wqJnn7l5L564wNqdK7dEFjD+2gLrjCimdFEh5XMRCOn3tURLhBGWT/Zi64OY5z3PJj2cw8bx6fLaB/jkRNfjrd9ex7r+NLLiqntO/ZoWJ/ctNa1n1bytnXv186zz+Qie55W4KKj34i11ZY4cPJmmAM01BuDOOrzD73M8QqpWwNmzg9NpS+7z7z50sfmgrXTtDqZ/dQImTCaeWc8zn68mrsO6VgcpPZ76/BX63rrmAHM2aw7TsSXDfxW8S6cluuPvpmjOzPptJg95wIkNSyBjOCyJq2kc1vMHY80okjXmbXmvhz1e9k/G5ogwMZ6YuKOGy+9KFpyNdjIBMQSJJJArBbe10NYWtWPcOlT0benn199swDcGEE4sRAoyEiRDgL3ZRUGoZOJs3BWl4r4s9mwbGpjPOKuOTd8/NOM+BEia+u+pigLR+9fZ15xAL6bTvCPG376ykbdvwnrZnXjeZk744HoCw4cCuDr9aeqgh98qnz+K35z/H7IurOeeWgTYYegxTN3nuzjUsf2IXF/1oNs/dtZZwd5xvvfQRQm1hGjZEKZqQQ1H98GOmHFuYoH7wVmSPlMB+MMOFZsqWcyJhDrOoCDXjOMPlrEgew6Nlnnc4oSJbYvHtS9vZ+EoLW5d00LG1l4XXTEo9F0mS/dJgYcRImKg2BUVRCBtW/+YcoS8c7joyPMX6j2VXDRIRne3vtLPptRa2vN5KuDuO02NLjUOSr6rbgaZaAmO4M0awPUqkO874k0q49JfHZHiUZRMmblh1ybB1T12vpqCoClqWFWPDjW8AFixYwKJFi1LeKIfKPCE5hm3duHeiRPEkOdf5oNgrUeJULkitBk+yv42DMwML2BBcTELE8Gm5uDU/OfZicqJ+cmzF2BQ7Qoi0AZZaaBl2hBCE9W48thwSE8aRSERoXf4CUTNI1AwhhIlWXIphxIiE2wmH2zD0zBUjds2DbsYQwuosXKqPgL0Qr5aHK6rixodL8eLGA/Nnp+1r6xkYPAshCMU6UBQVh82DECYdbRtoC2+jJ9ZMWO8BBKpio8RTT2toCy7NR7R/ZXxN2QmU5E1lx6YX2Z3YzETn0VQ5ptCY2ESf0YmaMHHhIZ9i/J7SASEgGmSX2MIWc9WY2vwk5fyMfA1j8aQQQhCkh3b20EFLSjjwk8exyoJ+j4lONrOKHjr6k23n0kIjuRRQRg2lVFlhpfrpEm28i5Vg6CTOxYELgaCFXexhJ1FCxImlxe62xCobGpolLuHA0S+mORQXol+ISBCnk1YihChQygiQi0fxU6pUoyoqwhjdhUsXOmF6CSpBekUne2gAFOYqJ1ur+7O02958ZwavfAXYYq6mia2cWvA5FFRCnbsJ0cs6sRQFhUplAjXK5P4bMvo9O5gIIXiJf45YxkcOczkJhzIwCJOCBMz92s8x+rtiIUz6GtbTs2UV0T07ifS2ZhieVc1O8YxTKJ1xGprDakt7OLPrF/2T9FVP30mkpwUAT24Zntwy3DmlFNUcxbtP/GA/XpklQozEUIHiNPViYkSsRMhYCZGtvw1cecUUOCvSwlK1dW2kTW/Eobhwqh6cihu3Mxen6sWeSB+sCSFYGnqWiAhyouOjGYnWB/cRe8wG1phLmK2cyEqxmArqmKTORfNlxpiGYYQJnydjk+nNNISILAYFdcuuzONl68P6nw0xccDbYqyChJrIPJ6iDzOEUEALpU8QDF92o47uTTfYC2VAjBiKvW9goG/vTBeSo2W+ocUBcO1MDz1lCjPtXpqBfZvkaY3t4Mnu8THYcyVRVTiwTyj7ZE0NW9vFECFJ6c2cSIt+ocoUJqvDr9Ch7+akks9h64uTEHHCZi8GuuU56vNiU+04NR8uzYuqaJghKwyhIXTsimU8VTSN5uhWVvUuQiBwqG6cqhuH6sGhurGrDkynHTMSTon0Pi0Pny2fJ9bcz7hx49B1nXA4jGEYFBQUyIH6EURynvCtN8/D6UufJ4w0Qf0g+NivTuaFH71LX3OYvBo/gTIPpVPzGX9UgNIZhbgCjox5wmDjSteuIP4SN9gd6DGDzU9toqsxTG9zhETUwFPgxkiYdO4I0rkjSKQ78zvszrGTiJnoUauP9BY4KZmaR0Gtn6IKJ3nlHvIqPOSO82A60vtBVRnoQ4UQlhHbFHjyrVjYW99qY+vrLTSu7KBrVwhTF6g2hUmnj6NhSSsuv51YMEE8bDD7E3XM+lgt657YxtK/NjDvE9Wccd001j7XRMM7HShuB4XFGnXHFpI7sTCVt0g1Eiz7WwP//emaMbX5lx9fQNH49O92NkPeUMOPEIJd2xJse303299soeFtK1Snr9jNlU+fic2p0ba5h1fvW8PW15oJlLmpnFvA2mcaKZ4YYNZFNcz8aFXaM9a2tZffXWx543zhsVMpnZILAja9sodVT+ygc1eIUHuUaO+geYKKJSi5NBxeS0jz5DnJr/HiK3AhFJVob5xIT5ymlZ20beqh8qhCymcVEChzM/38auzu9DAggxlsdEpEDToagjRvCdG8oZtVT+4kHtS5+O5jmHBqWVZD396IFEMNz8v+1sAzP1zFt187k5w8hc5mnc6dIf5711o6d4Y4+pM1fOQ6a5GFliUs194w3GropDgRG0PoJxjZEHzH/GeJ9g3vjeH02fjS3xeQM25g/LS/+5zDgetXfhKfZtkghBDsWNbB6meaaFrbTduWXswhYzfVpjDv49WccuVEfAVWHzWSEfnv17zF5let6AeugI0pp5eSW+pm9kfLuefs/Z/PIylEZGPo/f/usvNS/Xkiaq0sT0QNzFgCl89O2dFl2BwDtoeWNe2sfqYRd64Df5ELf7ELrSCAv9iNP9+WIeo9c9M7bH6tma89fQae3IH+3a4aBI2B8WXju2389YqX+ejdx/HfW5dRfUwxF/zseLS9iC6XzQgcNIZfLPt+8GkDNrGxChKmGCZkU5b9DaFk9J/DnUcfIi4kn+3hRI2kGDFUqBguJ87QdjV1E3XQeHzw7/RQhrtmsMSJbF4QkC5sJAUIGF6oTfaRg58pAFuW8snrEabgxbtXs/TPW7ni2fPJLXMTDyfo2hkkHrS8KjAM7C4Nb5EbX5Ebu0tDwcSIm8TDOi6/PdUWO5e18fg33yIR0fHkOfHkO/HmOfEWOHHlOIglFIy4gRE30ewqebUBCsbncO/5D1FVZS0Q7OnpwTRNCgsLD5l5QnIM27yxaq9EidJJOw+ZazjcOWQSXQ8NO9DW1sYpdRezKfQ2BfYKJvvn49EGzi0iWVbGOgY6GsU9YCiI12e6dEaKBr78zm5r8CSEIJEIEdWiGHoMQ4+RiPURCbXj6VHwRDQModObaKNXbyek9xA1g5AadCt43IUUFkyiKH8yAX8lkXEeelu30Lz1Lfr2bCZhZK7G93vKyLeNw2fPx2PPpS28jfbIDgIVk6medAbOPUG2N7/BrtZ3MIWB3eZBVTQSiTACE4HAby/EFAYRvRcTA6fiJkctwqvm4FVzcCdcbDVX04llaCzRqlFQ8Ko5eHQvfnJx40FRVFS3C3NI+yqqgjAFpjAI0UeUEDo6CBMPPrwMhC9qFNvYwHupfb0EmMvJvM7Aiol6ptNJKyH6iBHBhh2dBC48TGRWKnntcvEGHYNCPuVSyCzms4ed5FGIX8kFrJXKESXMLrGVJrZix4nZb5gcHNJLQUFBxYkLGw48+MilgBYaiRImShgbdmZrJ5GnlmTcK6FnGRgPMm4lRJwV4nWC9DCXk8lR0lc+74tBffB3Y5fYwkbxHm7VEudiZphevQ1DWM9wHsXMsy/IepysdT/I6CJBkB7a2E0rTUSwDHAKCsVUMIW5B1wIPZSYd8U9ae+X/eE65n7N8pAwDZ2uTctoXfUq0a4WPIFSfMU1ePMr8OZX4PQVoGsGpqGjOVzYHFafaIsN3+WL1ErFLnYuf5rOHSsAS5iI9LUhDINAST3ugnHY3T7sLh82l5+/3Pk1ZsyYgd2efbA3GmfNGPAuU2JZVpdkGbE/u/721N9n116HvrMpo8wLxl85u/wbqfftvj6WbbLC8tk0J7qRLkK7VB+5ahH5WinFtkpceaUsaf0nXfEmcu2llLsmUuke8JgwBoXt2WKspklsI4d8euniKOU03JoPVdFQ3S6UoTlvcvwZ9dWLM12yswkBH4QokXbe2ZlxT4caxwEUPXMylFWUyDI+j+emX7+jJ5EhRqTK+jMnGVpCpAkSaXUd1B6mY6DeztYsXh1RHeEe/jnNdt0DOyuovdm9chR9oK2NnAHjiOnOfo227uyeednuj9IbwszLHHuprZ1s7l3C1qDlbWZXnCTEMEnJ+9FUB6aZSP0uejxF1NQtpLhkOkveuodopJuKqhPQVBvxeBC9t5u4HkY3o6iKzXqedWF5KuldKa+9QCDA7NmzOe+881iwYAFHHXWUHKgfQRyIecLX3/ts2vuf1v+aT/x8Ia/ft4r82gCn3zCHogm5qc+NLIYCfZABw2sb+K4MNXgAJMz0viBpoAl3x+jrNoiHdBJhnXBnjM4dfXh9Cp5SHwhoXt9Ny/ouOncE6d0TTjMA5pZ7GH9SKRNPLaNybgGGw0Xzmk6W/2UzO99uJtie+R3Or/VTdUwJxXVeCmp87F7dxdr/7GLcnCKOv3Iabp/Cske28M5Dm4iHdBxeG558J30tEehf8VxYH8A0BH3NYRIRA3eeg4pZ+RTW+imo9VNS52HV040s/UsDABMWVqBqCnnVforqfJRMySW33ItmVwnpTgK29D4sbDrQFIGpm3TtDNK9yzJ6CMMgt9JHQa0fd7/BbturTfzzfwaSFttcGlcvOo9fL3yGeNjq50+5ZjpNy9voaAjStSuEw28nEdZx5Tg4/qqZTLuwDkVRWPSjpax5fGvqWIEKL5f+5Sw2/mcHhRNyKZtlicJ6zKC3KcjmF3ax5DdrcOc5MRImRszASAz8tqk2BdWm4sl34g44CJS5qZ1fysYXG+neFaKv1bruC+8+jvGnlmfcq2zGN+fgHA4RnSduWMrWN1q4+BfHM/6ksrSy++I1MViY2PhyM3+55h18RS7K5xQQ7Y7TvL6bWL9hv6DGy5X/zvR+hZENbzC88S25Kjib8W1oqJXU6t9RDG9gGd8SEZ32LT00vN7Exheb6Ng2sEK/7oQSzvvhXHwF6Ua6I0mUGNov/nruI1y/0po3mrrJ5peaWPanjTSv7SS3ykfVnHxKp+ZRNjWX/Bofuq6gxy2jZPL7ma0/HGoEDnfFePVX61nxz+0IEwrq/PS1RIiHdMbNKqB4WgHufBeefBeefCffn/8zpk+fjts9zEKOUUheUxLnkJBiMZF9XHf3rAGP0WyeI7dO/3eawNG4Pc6fLnwGALvHRiKiM1hb9Ra5KJ+ZT+VRhUw4dRy2knxeuu1t1j+5jcIJOUw8s4pjrhiYJ2iDvlOr/rmVF3/8HjMurGHDc7u49MHTsI/Lx+ayEbBF6R3iBRGwRQnpQ0Xsg7PgMFvopuHCLiVJ/mYOJ0gMRc8iMDi17OP+ob/PyfMN5xkRGxQKyq0NPDvZnvXkszXcM+VW40SGERqcSmLY/QaLBxFjoMxwXhWxYcJX2dXMZ8CmGBnPCoBNNVj9z6289KNlALhyHER7Rg73a/faMKKGJVgAvlIPR10xg0nn1/GfbyyicWkL0y+ZgKfARaQzSrgzQqQzRrQ3ngr7pjlU9KhB5/ZeEv2/6V6vl+nTp3POOeewYMECTjzxxENmnpAcw+7eWLFXosS4SY2HzDUc7uyVKOElwDillgqlHptqy7qSfF8MhgvUj7NJrKCDPZj9RvYEVkdWlDORaZUfxW6zfsTU7oHBiOgY5GrsyOwAjMmZcbdNu5omSCTx7k43NEQLB8p4F63LKK8U5BGrK8Y0DWKxHiKRTqLRLnp7dtLWtQE9aoWa0OwujEQUT04Z+eXTCRTUWmbx3Z0IYZLnr8HlsB7knsnWKk9nd2a7Gk4V26Ymuvp2UpQ7kZ5QEx09W3A788iN+slxWOE8DKHTFWuirXszQaWHoNGdloNAVexW6BZMFJSUYSKgFlBvn4OJji4S6CRI6JH+v+PoJOgT3YQZLMKk48CKcW1i9JeD2ZyADyv017u8Rh/p7uEatlRoqXLqUomO53MWHsWHKazE3DEiNLKVlv7E2AmsDrWUKiYyC4dqPR8NYj3bxXpOUwcGGKaw6tMidtHIVvzkMFc5Oes1rBVL2YMVE7tem4WXAHlKMXbFMapRf7tYTytN9NFt7a/OoEYMJLraV2P62UVfTbuW9vguOvQmevR2nKoHEJh+D23t65gw/hwqK09Ae3N1ap9DTYzQhU4vnXTQTDt7CNGHgkIeRRRTzst7/kNpafbYsEcaQ0UJgLiI0L52MW1rXkcPB8mpmUZ15ckECmrTC2bp2g2nytDxl2d3diNmqOL/s/fecXIcZf7/u9Pk2Zx3Ja1yzrYs55ywMQaOnHO4ABw+4Di4g+PIwffFHBwHHBkTDdg4JxxkyZaVbeW4q815dmLH3x89PdPd07uSbNmY3+l5vfTSTnV1dXV39VNVn88TIuTG+hClEJFEHbqaY7hvF6NHt6Omx9DyaQy1DEpISoTqtkXUtC/hqdu/SX19cOgegGw2yzlXfoRQpIpwtIaqY9mKOkZ1DHkwFUhIFJISE5PdTPTtYzTfw1jhOHOrz2Fezbm2VxsWRlUMVc8wMnmYkclDSFKIWc3ncrDnYcbSR2msXsDKOa9FO3qYQsQip6eYKPQzVuglVejHwqIm1GLnIxJkUtoQqpmjJTyXRYnzCGNvHoQiEbNz/EEGCodJyHVMaDb5G6eK85Tr7OcT5BnhIybM6ligN4F/7W5EKhfRSqryO5eyAQtP37jQA7wkTpqQMCrHWKHe2//wSKGCkADQo5XXcEgxwbQCy90SGTk5vaZMBf47UiQ0jFjlGkJU7blYDAqN5SKLtKayh4aUqeyXMI3Xnf+5WqKIYAZvOq2AcErCwAjpBpnxdDd5dYxouI5wXQuyHCmGnRLR9Tzm0CAFbRLVyCGLIZucqInT1/s0oyP7icebEQSRdLqPmto5rF77HkL9k9DVV3FNx2jBskxyZEhbE7z+P17Gxo0buf/++0kmkwwODp5ZqP8fEmefkJyRZM7Vc1jy+iWEq4KtN3949g8Dy6eTD2x5E1u+9wz7/nQYQzexdJN8SsXUTdrPbuGSfz2XRIvtleYGGZKuUD9BgEdcLlQAQTFJCwQ8oDIUhAO6BIEHmiURkzRMwyQ9mGOiJ8NET4aB3WMceqSXyX573gsnbE+HmhkJ5l/eTsuaVuSIhD6RRcsbtK9uoKbD1jEFw77OVECNOp7lyBMDtK7vINWb4cC9XSTb4rQtTNCxphGwCYrenSPsf2KYkT2jjB1Nkeot7xOkiASmZYdoEAVM0wILqmcmufCja7AMCzWjoaY1tEwBNa1RSGsUJjVGD08weqTSCtuRcHWIeEMUQRQYOTAOwDVfu4jaudUkWxPc//FHOfKI18BAjkglD5S5l3dgGRaH/9zDK797KTPObsY0TDJDOdIDOfbf18WOW/cTb4qSKZIHsy9u5+J/Wk1Vm/0M9919lHv/ZRPv/fOriFSFSs9ksj/DwQePs+vXB5CjMm/6bTkcqht82/KDZ3jq2zsAOPt9K2idH6NjTQPxusgJwbedvznInj8dZeDZUUzDYtmr53HJJ9eVCLLnGsbpQ9veUPrbMi26Nw/Q92QvPTtHidWG7HlOFDn8SC8rXzuXSz66ygPqBoFo0aIFcxD4Nh1o57fadcC3qYA3h5xwW3vreZ2xA6McebyPw4/1Mbh3HARoW1HHwiva+d+/u53Ozs7A9v6viZ+UAFDUHM/88QhbfrqfiZ4MM9c1seati5h1Xos3J2SATjQQiEnedcxU+jAhFRjsymEZFnWdSbSczt4/D7Dv7mOMd6fJjeXJuzzL5IhExzmtzLqgnVv/9ve0trYGtgugqiqv++HLiNVHSDTHSFZVrgMLhkyVnAsch1pe59jOFAPbB+jdNkTXxn6WvGI2l//rupKFuGqIFFIqPU/107WxF0s1WPv2xTxz2yEO3NdFw8IaXv/Tq1DHsowM6Ez2ZxjaM8rAziEGdg7bZO/CWiLVISzDItWXYbI3w6zzWrjkY2uQ222dW6PkSOshnvr2dnb8+Fla1jTTu9k2uAwlQ7z9/lchKcFguhSAuaSNYED8hZaEy+vgRISEI0FEpp8ISMr5KcdixbnFelGfB8RUZMRU5Ke7vnu8O3OsW5z59rkeA8i6SIiT6ZNb/PVzRgh5Cs+yoPEiiwb9vQYDO4aYODpBoi1BXWeCSFUIQRIRJAE9p5MbzpIZzJIbKyCHJZS4jByROfxgFwfvO0ayLUG8IUr/jiGqZyR4yx9uOOFYtCyLzECG8cPjXKNfw+bNm7n77rvJ5XJomvaS2Sc4a9juve2nRErMWNTzkrmHv3Z5zomuq6lnDkuo8yXXfS7A67zIGg4VtgEQF6tpVjoJt8ykObmAkOwNfeEmJUris861RscCCQm1qnLSkjQTKRf8YcuDKW+7/babsVDvTf6aWW5Pqrl6W5lYlklmqJvceD/W5CSxmnZqGxcExvCUCxb52mAl5JAThi+MReKoLya6A2rsP1LRhtjeij4yRMaYIGNOkFdUcloK0YRxtY8Jzb4nWQihW2UFLyAiy1Ek3UIJ2+RARh0u1VWEMBEpQVZPUbAyREmQFKrRLA0DDRGROSytyBNhWAZPcDcFVwx4CZkktTTTwQDHUclzLleVn1fRE6HL2s9+azutdDKXJfTTzUF2sZDVzJQXkLFSPGU8QK3QxCrpggrS7Lh1mH1so5kOlgnnBD7zPusY+9iOnXLWLJE3tUIzzeIM2oQ5pbAfnvYtky3WI4xhx+IPE6VV6KRaqOfnO/+bOXPmPGfrEDcp4ZaBwhF25B/B1AqIokJry2oWzL/B9nZ5ZGvgOS+GaJbKID2o5LEAjQI5MuTJUSBbIpRCRGighXpaqKfZ4xHxf8kbYirxExKF1AjDOx5l8MhTWKZJY+daWhddTDLUWHmyVQnqmkql/lEm7TEsZ12bxQA9ZRYTVmbafLpW1dELGdTMOBN9+xjv2U1mpBsEgWR9J7VtS7j3V19j0aJFpXMufOXXGOzeyv4tt5bK5FCMULyGWhqZv/AGZMkLZqlahsmevYwY/YxPHmMy029/m4KI5QpTFgnXkC+Me84VBZnaxCxy6jjZwgiCIBGSYyya+woaa23SUO73nqMaOQaEHoYGdjFc6MK0dOJKHaqZQzNyLIqdy6zosvIjUxTyRpp9kxvpyx8gLtWQMcZpr13Bso6Xl59jxLt4CwKrX1BSIshLIoCU0HzhVyw5aOzYY8YB7qGSkIDK+QvK9+MmH4KIB3deOneuTDlfCdobYZHwaBAhUK4rT3oJOEH1giR6bdnDwfKRYcpYmdwwXcm4jXjlusIMiYSGK4k2v2g19pzgD0NV6p+LnNBq7bpqTQB41Ft5vp50uYIXw0gGES8A46kujnb9GcNQqY/MoKV6MYlwOeSUn5jwe1IC3Kf+ArAJx23btr2kLKDOyAsvpX2CBE7Kq5o5Naz5wBo6zu/whEF4LqTE+k9eyJNffByAWHOcWVfMIdaSYNFlLSSavfuEIMtHv1VmQlKnBFX84IhmiR7LyunqOkBJELigmjLRotW4ZVkM7x9naN8oudECDbNizLhoJmIQCW/KUwK6OVOhRsl5AA9HThbIyBkKUS3NeNckY8cmGe3Nk+7PIEkwemiCnqds8CxcHaLgsrAUJQElESIUk5DjIQRRYHS/bXikxGXCyRDx5ji5kRyp42nizTGaltQXCQ0VURJZ9bbFzLl0ZqlNCZsM+c1b72F4/3i5PCJR3VnN/Ovn07e5j4HtA7zmjtcgR7xA0LGHj/Hwxx9mxkUzOPtDZzO0a4jHPvMYy9++nLUfXEt2OMud77iTSF2E6390fcW+7NjDx3j8M4/RuKiWV33/ylK5e6x0b+rjgU9twCgYmLod4gIBWlY2MvvSmSx+9XyUYr/8BNk9/7KJffd0YZkW4eoQi66fTevKRr501beYO3cuiURwCMITiZuUcEvvtiH+dNPj5McKSCGRuRe3cc3n1qFE5AoQzQ2gPddjUAbfpgLeALIZkyN/Ps5kXwYsi/yESqY/zWRfhsl+GxQDe8zNPLeNmee3MePcVqK15fXKt9f8bMr2/6+In5DIDOXY9av97P7dftSMxpzLZ7LyLUuoXeTdi79QILBuShX18qpAfrxAZihLz9MDHHv0OP07hrFMi4bF9cy4sIMfvP+HrFq1qvQ9vvfptzGyo5fb3v1AqZ1wUiHRHKdhXpLzP3o2sTrv2rUwqTK8a4CjW0bo2zbI4O5RTM1ECksYhfJYrJldzfgRb0hPURJoWdWImtEZ3juKFBKRIzLrP3I2C663cwr4daea0eja0MvRP3dz9PFetIxGoi2BqZlkh7Isf8tS1v3DWaX6smCQHy+w+b93sOe2AyTbE0z2pmlZ28rl37y23JcAb6W/lHfEdOL3nAgiH5zwXx7jgJOYn93tezwaA8as5uqHxwNiirpTzeWq25PC5d3lNzhwz8XTHcu5wkSFAubvnKGgTPFe3WMtV9KnJ67reEoEjRcpYFy5CeTJonGGP+SiMx7HDo6y83+3kxnI0Lq2hVmXzaJhcQOnIs7aT1VVNm7cyCWXXPKS2Sc4a9hje9tOiZSYtaj3JXMPf+1ySqTERbyCEfrp4RA5MhTIESFGK520Cp3EqIyH7Rc/2HhN7btJ6SMcKmwnbYyRNSdQhAgz286js+V8RLH8wWu1XsDDEgWih0YqrmHUeDco7vAJmitchKQFfLQ5g1xTmOQzQ57yfGdlAtLIAdsa1iElHHHIiaD9jqiBnDMDQ6iYEqhVEkHh8ULpcv34sWKIm4CwHkYyhLRlH2K7z/rAZ3k5muvmqd6yS2M02oAix7BMHdPUMc2ip4Rhh2yojXYwkj0KwJz4WhYkbVDfsiyGGWT/2KNMqt5nFiFGFXXoRVjaSU5eIEcLM5nNIlLCBEetPWQoE0BLOZtWwUUqFUkAw9JRKRAV4mCZ9FtdPMNTLGYNYTHObnMzCiHOli63PRt8gN826zFGGGAZ60qJb92iWgU2cR8CIlXUMkQvYSLMFpcxaHUzag3SLHSwXDq/4nk6UrByjDDAqNXPCAMljx+wk3IvYCXhYn6EUwXeL73ajqWfbVJID3ex5/7/orp1IW1LLydW34EoSkSHNJT7nj6ldk+XGJbOfnbQyzHAQqHook2YCDHPvzhJktQEEnVnCAlY8ZFyEmvLNOh//E6Gtz6CokRpWnA+zfPPIxRJIudPqL49gLabmHAICUdEn9W7qJrFcyonZyfef77Gq6wk1ULNpRjr28NY724mBvZjGhr1c9Yyb9ENKCF7jrAsk20P/yfZVB8zF13JZG6QsWO25WGkuollN3wMY+sz9E3uYWL0CLm0TZ6Go7XUxWdSk5xFomUeshxm88b/RNdzSFKY+pr5NDcsRRAkO49ELEqD1oCQjGNaBv2D21G1LB3NZ3uIDzNs34ccEJrHnEgxkj3KQPoAo7lu2quWMWf2FUgTXiDYiEc4NrSJ/b33s2zmjRzoexDD0Lhw4QcIyfZ9+0kJgMzMynkzlPK+G0sKAOx9RdMRB6V7CXnfZVAkBjMkVoRk8rcdFEZJq6q0EjJO4npBhkGC4SUkphIlbQaSHgCxvjxmwDNxxjWANOnLSdFRNr6Q8t53IDneEgHeIYigVQdbhTvkhFrvfc9BXibKaI7cDC8oFUQ2uYkJqbiWUAJibot5b9lUpITnet2Vayp8ocfMgFBp9+Z+Wvr7xQjlc0ZeWuK881fc+zaGt/dz8HfPku6eINM3Sbg2ysyr59N53SKq51Supf3ym/O+4/n9liffzWRPih3f3cL4oTHGD4+hRBXm3riI5e9eg+Ia135gxLREYnKlN6AfUNFdv+MuUE0LCFkRlTQmtUgguOGv79RRfeCFA3oEeVgUTDuUR9CxnGGTELmAuNhu4CPnscr0rldzhkJSyZ+w3kR3il+/6g/lPjdESbQlbSA+r6MXdLSMRmG8gCAJtJ3dSs+mXgDmXzeXyz57buncI9tTbP+vpxjcVgzHKgAWROqiNC5vxCgYZIezFMbzCKJAbiRHy9oWzrnpHMYOjLHvtn30bymHcl3zwTWsePuKimdg6iaTPZNUz7J1+cC2Ae5+392sfNdK2s9t57F/ewxDNbjuh9cRb6rM97Th8xs48McDrP27tSx/63K7Tdc71fM6d77tjxQmCjQsa+L4Y10IksDZH7+AgccO072pj6al9Vz/31diSQEe/JZAYaJA71O99G7qpefJHrKDZQK79Zx21n/8XKJtNQD8/JzvVbQxnbxj8zsAe9xNdE9y29vupXZOFes+sJKmZQ3IYclDjrnFPd78JNh0x5yxGAS8gRccNHWTp7+zjWd/sw89pxOpDSOIAuFkiFhzgmRLjERLgkRLnOpZVTQuqUeUxApA+AwhYetFRyzLYvfPdrHjf7YgKhKLb5zL8tcvItmWOCkQ2D3GpwOBp9JvQfpwKrBYNWUKEwW6n+ih67Fuejb2oKY12s+fwUWfWFfyeLMsi/tvephjjx5n2avnoZsCe39/oNTOOze8idSBIfbdfZSerUOMHhwDC6L1UdpWN9K6uom6lW0k25P86Z1/YuLIBEpcoXl5I/Ovn4sUkhAlAUMJ07mqCiMSs3NvPHSMiaMTLPub+URqysRHpmgRLgcAvpam0belj64/d9H7ZC8d53Ww9O8uQAl7n7MoWBy9/xBP/OvDrP77czhy1wFSXRNc99MbqZ5VU6rjF1EwSWunnvvsROHYYPp8CFOeg0DCN69WzL0BIFggcREwRweFitJ9ZXFJDZyfKw0FtMB6UDQUCJjH3cSr//i0utDxCgvwZMwZypQ60pl7cz7jgiAjAkUwS2OxVC9gTLqJiew0ZIV/jAQlAPfXyerPzVPHvbZ7qe0TnP4c2dtK8iRJiclJk9mL+l4y9/DXLqeW6Fp4Zcma2U5aPEKfdZR+ujDQkZCZwVxkFGSUYpJhmRoaUAR7AAeREm7JGimOhY/RPfw0iWgTM5rX0VizEKGpMhSI37LSD5yEB2zAwR/TuQLMKYJuarJyA6BkigrhBE/JiNhtaPEABRktJpLz6T1TgdiQ3b6fiHB7T4RTZSUS6/ZaXxoJBXksj5GsVBBKv9fTQ2upQk4V4/tZBsdHtqEbeXJSjkIhhSBISFIIJWchJuJIUpgqqYGxTBfHhp4EoKV5FbM7LycSqSF0rAxeWJaFOjqILCgYlsaY0c9IoYdJfQSFEGGiyNjP18KkhZkkBHvTsN3awDB9rOMyktQGAtVBolsaz7KZIexNUD0tLOGsEujvFsuyGGOIHTxBHc2sFM6tqDNujfA0D1NLIyIiIwzQRDsrFTvU00FjJ0fMZ1krXUadL99EUCgzy7JQyZMjTYpxjli7sTCZw1LiJJGQiJLw9HcqQN4hJAAMQ+PJx74CgsA559+EqEw9OSj3b31REl6nrRS72ESeDLNZQiuzAt+DW4Lu1Z1bwJF7dn3+hNe//JIvVJQ9+OdPnvC8l6o4pISeS9N110/Jdh9izuwr6WhfjyQVww0EWMs7YkTLx/z6TtIClJlhVZASylglkKPVhAMTEKvFCdxvGKfKOiNHttD19O00zjuH+QttrwFdgadv/wyiKLPy6ps4svU2hru2IUoKDbPX0jT/XJ655z+JJOqprZ1LVd1squtnE46VvdQkn7W8UJzKpJyBHqvU5XJWrwSpg7zXisSEY8UOEO4ew6z2gsrieDnchWrkeGbwHgYzB+msOYu8nqY/vZfmqkWsqL8GyUWu5+d6LUuC8iecDlIiiDg4WVLCLX7wPCjsUtCY8hMSYoARQFBbgRJE8KtBuSwEYn1T53wICn/kEFJB35OWkIgfD/Z4kEbSGHWVoJZDTvhJDSNc2X7QtxT0ToKek3+MQDAxIaV85FmyUi/LQz4PVM3Xjj8fCpXExBlS4v+2OO/8lfe/AyVeHi+jB0Y5eudeuu47gDqeB1Fg4RtXocQV5HgIJR5CiSvULWkmUiTugkgJt2SHMjzz6/0c+s1OIvUxFr1+KR0XzSLaVJmn50TWnDHZJiD8gIcf2HBAkyDrS+fciA+8qCAiiseDwjyUjvnOyRsK1Yr9DfsBCzfw4T7mBz7yhkJSLlScD5WgR1YPl8os0+LIPQfJDWVQx3JkBjIIIsgRBcIhonEBJaYQ7Wxk8tg4e36yDT2nMeOS2Sx771qqO2srknhPjFlUJ+3wW4M7Bxh4uo+RPUOEEiGiDTGEqjiCZeelaD13Jg0rbQOrnd/ayP5bd3D+V6+lZf3MUoJuR6YC3wzVYOvXH+fIHXsBqFvWzLpPX0bCRUC7ZXz/MBs+djeRhhiXf//VQHmMAKT709x246+pX9xIpDZCz4Zu6pc0cNX3X4EgChy4bQ+bv7KBc/71EmZfO9/TdhD4ZpgChfE8k8cnGT88xs4f7iA/mmPZO1ZTu6gBOSITb00QbvT291fn/ndF3x1CwnnWt7/pdiZ7J3nVb19FsnFqT+2CMQUwVxyLQV46OUOZMoQYBFs+FwYmefCTjzK0e5ilb1nBvFcsJNGanBJ4A/ifs35ccew1T3ygosyvM4LklRv+tqLs9+f/1wnPe6mKoxf1nMbG/3iMYw8eYfGblrP07asIJYuJqqchH9xjcTqS1pEgEDhIHzpjyV/X0Yf+sZYriHQ/eozNX9tI08pmrv6KvecumDJ3vOUPTHaneMWvXs3e3+zm2Z/uQgpLtJ07g1XvX8s977qdUDJE21kttKxupmV1M3JrnQdHOFV9mPXF5Q8anw4I7AZnE0q+4lw3CKznNLb+50YO376P9svnEWmIc+hXO2he28raz11LqCriOi8AGD4REBUgLyQpcapt+OdH+7wTe1uEAvRM0LibkhT1XSMiaRVzs7vdoHac+kH3kDemJmVVU54yzFJI1EvnOhJELkzV1wrPnYB1xcl63fj7ESQnQ16cSP4aSIlDe1tOiZSYu6j/JXMPf+1ySqTEZeHXIgtlBWwWiiEBLJ2dbColJFYIoVNOpCgh08E8OsNLCQvlhZF7Ewtw8dKPMJ49zkTmOAPje8hrjnudQHvHeubNexmiKKMnysrIASaCrERl3wZdrVEIjQcsvOq9G25RtzAloUxIuMQBtUQfCGO4QAMt5v7b2y+3V6Pb0Cky6r2WVrxHOedVHs71o0OVscL9samV7hG0GZVkjkNMlK5VGyXUM15Rz4yXJ8iClsaoDhMKlTd9ligQPjLsPWfQ6y0BYGanD2ORszKoFCqSQp+MWJbFAN2YmLQyix4Oo1KgnhZERArkmGCUfrrJkSZEhGWcTZ3Q7AHFrxRfg2VZ7GM7GVJIyNTSSDtzkJA4zG6OsIc6oZkV0gUlkg28ORssyyJLGlXSsDCpE5rBtMAyUa0CB9hZylkBECPBecI1nns6kafAxVd+gT27fsnQwC4WL3ktLS2rPcelP2+b4mGdXnLCtEzGGGSAHvrpIkqcFawnLlQq5pPxfnAICVXPkNNSFLQ0giBQn5iN2lEGo61MDkEQkYpWaIX8OIPDu8nlRpBEBVEK0dG+nkcf/9xputMXV9a/6esAZMZ6OfDoDzFzeVbVv4z6SEepjjqnaVpSArzEhCOWUAkguy3HAZSJon7wDRcjLPDU1v8inR1AECSqq2YQrWkl3NhKrLqZWHUrcjiG7rIMMvN5hg9tpmfHvcQbZlAzazmmrqJEkwiZAke2/YGqhjkkW+ZyfOc9SKEoplbAskzkcIxzLvgYslzWQ37AXFRNBLNMSHjvVagA1N2hfMrPSQ58Dn5RinpTKJS/d2FsktHCcXaM3kvByBASY8hSmKw2xrKma+moXl7hVeWQEpprHjN9pIMYEI/bTxr515W6zyIr0BvPN0/6czcYvhBf/vkHTo5I8BsMSAHPNsgDx5kvJRfhEGTgJFiVpIRjGOCW5NGcJwG1p/4Uya6zLSGC9jZVOwYD6wMYdXEMXxgR/17AIcqCPCTc5ISz1wry1PY/+1h/JXEoZbxrA3+IKqgkJvyhKvXGSh0uD3rDHehHujy/7zfKnpcvtc3GGXnhxXnnV9z1PuR4pdeQqRnsvvlhjt9p52hTqiPoaRWrqJPFkET7tUuY/Ya1RFrKAOy9F/+np51r73gHY7sHGHt2gP6Nx0gdLBvHtF8xn5X/dAlyLITuT1Kt2N+FH/SoJCNEYnLlPiGoXpWSDwTvpgIw3ECKG8Dwgw7u8/LTkA3OeUGgR34Kq0w/6JE1QoFASCVZEVzPDVQUUnmsgkrMlWMnq4dOChg7EeBRGMuROjpG4+q2k27DLX1PdDF5PMWcVy6l55HDTBwcoWX9TJRkmNxgmolDI3Tdd5CJgyOEqsKs/uiFzLhingdEcUDtvf+7meHtvUgRmdrFTcx51XKUqjBHfv8sz9zyONVz67joK1cRbSyT1m7wzbIsMj0pMkM59JxG09p2kjH7eecyBjv/Zwv7f/0sVnF+lsIyr3ronR6gNYiUcMvbn3o7T37tSfb+Zi8rP3g2S9+60vuspgCUVFMOBN7se5gaeAyyig6JOqZhMrhjkEMPdnPs3oPIUZkLP38ZjcuaKur/9JzvT3dLQJmQUFMFMn0p8iNZTM2kZf0MCpKLeFELYIFcnOe1iSx9jx0hdWgEKSwjRRVmXruQe1/1kxNe86UozljM9KZ48p/vJtM7wZp/uZz2S+aW6sRkdVpSwv4dFO9f9BBxUAkCO3ov5gvVpFsiT3z6QboeOAxAw/Jm6uZWk5xdR/WcWqrn1BKpiyIIQqlNUc1z7IHD7PjuFpTqCAteu5zCRJ5wdYRwGJ786kaidREWvnk1m7/wCEo8hKEZmKqBFJa45hevI95axib8ums60LhELrgsz4P0HEBWV5B9CYb9dR0dlNbK7VWF8vTtTbHlM/eRPjaGHA8RbUoweWSURe9ex8K3rQ00xhQFy9OOX78lZJX0c7RYfz5SSeyfOL9b4DjzzdEnM++6z3PXn75eeYwGAfwRSQskOaYT1ZQITUE2TCWyaASC/+5x6ZBc/nEG3rGW1ZWTqgeV4yjovJOZo51rnup5brn7ov9X+vultk9w+rN/T/MpkRILFg+8ZO7hr11OIkBCWZ4s3EtYjLJGuawUVx9AEmTarFmM0E+YKBcK12FZFqZgW4oftw5znIN0Fw4wS1rEfMUGUS+LvI4RaYghrYtRvY+CZYPXkVANpuWePCx6jm9kMtXD2rO8FhJmSKiwLPQTBm5xhz1wQBE/MAM2AOSAHGpSIjzmC4OhCIiahSUJmCGfhWrWpFAVrOD0SLmuG2TKNpVfhZItl+tRES0qeLwlAHKNIYyQQKLHBiXcMamFiXLOCaV7BCsRLcXKNhWpFEbCfd9qe00FMWGFJcR9NvAQAegBdY3vo5MlcIE+Zi6PGHWBiCcgJACiQpwolRanJyOCINCCHYpp1BpgL9sQEDlMOTm5hEwT7SxidUUOFH9bi1hdUX7Qeoaj7GUOS5htLUYwBCyCJ+F9bOc4h0oxlauEOhZZq6kSagkJYZZyNguslQxynH1sp46yx8WJgHsHtI8CdUIzQ+yiplDe/IX3Fi1XW8qLfb2vn9MhhmWQZoI0E2RJUyDLMP3oaERJMIv5dLIISZCfc/ile3Z9nmUd1/Nsz124XZNC4Sra1HOJxuoZ7NvO6NA+AJKJNhAEUqkuBEEiFq3HMHXy+VF0Lcvll0T/ar0lRo5u4/CTvyZS1cT6qhuJyuXvrrDQTgLu6A89gHzQ4iJy3kLNT5KZ6CU72Y860E880kBz3VIioapy2KCwRGgyYHFVVPGFYtxWyzJRFCf8ksH4xFEKeoZ815OlvA5KJEmktgVBlMiPD6BmyontU737mew7iCiHMLQ8giBhWQb1bctpXHo+Ne2LGTv+DBESROP1xKvbkPGCp471v5aUSySCJYKFUHoepit2uSUJHrLByRMgGGaJjJhK9LjkAZaNWIzoMS8wa9Um2fHsPRRMW89ZskhDdDb14rk0SbMhU9R/LmIisrOLyfN8Scl9YspCIDHxfOREhESQ+PtgCaCky2PF7cHhAOZ+QsJUKgkId1+UrFVB3hshoQLUFwzLU+bMuw4Z48dRwqN6MY9U0Z16ND9liKV8nXcsOPuW6LArruysMjEaPjaG3uC1yhZV00OaiTl7rKr13jFsSWWyLIiMKNUTy8SEE05LmTSQCuWxZMoios8YwYiHbGKiSNRZigS7D3sbX73Q81NvrEIeKhMT8lAqkJg4I2fkRLL5pj9g6SZnf+OVKC7yS1QkWq9YWCIlLvvDe0AAUzXQUnl67tnD0d9s4/gdz9B2zRIW/+NliLLI5ff8LaNbuhjaeITRrd3k+uxxGqqPE6rxWn/3PHCAvkcPc90D76voV0rzfvsOSBIEhLg33yXwLaBeyhVOQzdFInKlRW5E0kgXrx2RvESEWvzo/eCGu133sanO0U2JvCFXAA2qKZPXZapC+eJ9uYA3V13dEsnqClVKwXX/laCHbokVgEdKC5cB7mgIopD16aSUGqYqVEmgusUPmlSAHckQ0eXVpKc2zp9W4mfPJ3429B8cYvPnHwYT9v6kbMAjhiSazp/D3HeeS8O6WYiKNOW1Fr3z7IqyI394hp3feJTZr17Okg+ejxWScFJ1ucG3hKKy7+c72PntJ8u3NrOGFR+9iMa1HRCCxX93EfPesZ6+J4+z66sP0biqrbRvOREZ8eonPlj8K0bVipnwm71EZ5aN004GfDsZq9kgMVSDbNcIYwdGGD06SX4ky8DGLgpjOaKNcTqvnc/Sd6wmXB3hp+f8z3O6xm/O+w5rvngDOz5zF6Yrn5VSHWHm9UupXtxM38MHGXj8MKZmUDW3HiUeYnRXH5ZlP2tTM8j0pBh6+jivbP7bv1pvicHN3Wz+t/tQEmEu/u6rqZpTfs+mJZT0jiN+ENgOwaOipvKMHxghdXiUiaPjRJsTtF82j3h7teecQF1ZBPPd9ZRE+Vse3jVAfjxP9q5DpfcVqo5QPacWOaYweXScdG+qvOUbyvL0lx5FjiloGRVBFLBMi9mvXMbs6xfRsKKFrgcOISYiJNqrqZpXT7zZOw84951QCp6x7ADSIVGvCD8zlT4MAmLdktLCVCkFDzng6NFSHTXCjq/8kfQxez9kAXXLWpj5hnW0XLaAjG4/u1MFeP8ShESQ+J9RJRFW/u0YBwSNRf/9uM+LyVrFOVldqSAjgut5jRTc87RuiqTN8ncSkfTSHHsicc/FQec4c3Te8WAwHCOC8ljL6zJ5Kudup7+yaFY8X/ccrJti6Vx3vROR/O7znLk32Kvi9O5D/xrEpMImc9q6Z+T0yXNKdN3ObPLY1soJqmgX5xITEhiGgYWJJMiYlslBdpIni45KxpqkQI56oYW1ocvQLY1H1D9goKEIEdpD86lpX0J1vJ2wkkDTcxzs+zNqFERRppAbp6F1OfXz13n6JmlWRfJOPynh9qJwdFyQlaYbbHEAD39oDYecCCLScw0nALkiXkUtGhahSYt8rS9G40jRYqauUsk55IThIkJqd4176jikhJXwTtSqz7U9X68QHVI9z0eerPTAcIgJAGveDLSqMOHuMtioHzrqPeFFCBfkl36ri2fZXPLOiRCjhZm0MpMYyQoiwu8lUbDyjNDPR773Pr7+nu9gYWGgoaFxDBsEv0L4mxP24ynrQTJMMp/lxEiynx2kSdFOJ23MJkaCA+ykl6PU0cQy1vGIdcdJ36dDTIxlutne9TtMTBaaK2lhJoIgIBcJidNBRgxbfRznMBlS5CiHqokSRyFMPc000c5G876TDrkVJJdeZYemGh87yvan7Q1XJFxNVaKDqkQb2dwofcM7sEydZFUHTW2rEASJyZGjmKZOi9xJU3we1gyb4Hl8wxcQRIkF819OQ/1iHvorIiZWv+ur9Gy6naHdj1M7bw1LZ7+yFK4JvECy87eflNDidvLnvr2P0L3zbizLRBQVouFasvkRLMukqXYxcy99e+m9BYaCSRVKhIQjZkigkJug99Bj9Bx6lKVnv4P2oWoGFspkJ/rITvSTSw3YBEZ1PYN7HrPbj1TTOms9re1nEwonyZFhqHsrgijRNvcCD9jsB8uVCQ0jInnAWEeMsFhR7vYgkTPlTZSpeJ+TAyB7nqluoce99fxrsuixCfJtZV1ayE+QzvRTyE9Q17iQcLSG2PZu70kuUiK7elbx+tOHkpoiBGpJ/PNcUCJzb3vTtz+FhzAA0WF9inwQ3kK12vvs/OcE5ngI4MP8fQsiaPyeISUpFsf6yxsPy/dsnNBfQaGzTEUgPF7ZKVE3EQuV5Q5h4CYkpGwAmhUQgqvQUBlKyb+3CQpT5Yx5qdifIG+QipxTPmLCXL3QmxfF1z8z5t0gSod6Pb/1EW/uCfec+lKzgDojL7z49wlNVyxBzxSwDJPYjDqarlxKYl4TlmlhFjSkaMiO3/3jJ8h2jaKn8xT6J8j3jhOf28SKb74JMSSz5U3fIT+YRoootF+3lOqlbVQvaSHclMTSDA5+bwNaVkOURfKDk9StnUn7q9Z6+mZZAlHFC6hVeEwEWG1OZ33p1Ak61wE9/OVQBjIikp/AkAPLQ6JBSgtXlDvnBFlrOmBDXpcDy91/Twd4OMerQoVpAQ+oBD1k0ZzWyneqslM5fqoyvLmLbf96J2bBwDJMQjVR2q5eRNuVC0nMrkeUvcrXbdV5/v0fR0/nGd10iI/Pv5Gv7/klmCZ6VkNPFzj6i80AXHr/h0hGvKCXX7Z8+i4GNx5h3tvOoeGsmez5r8cY39VL++XzmH3jUmoWN7HnB1s49KttVM9vYM1nryHeVs0dF95yUvfpEBOpI6M88bG7KIzkWPy+9cx+9QoEUfCRY957dsbTyZannu1h3y92kDoyRronhVUk3KPNCcI1URrXtNF+yRwefPdvEQPCJ56KXP3Ih8keH2fD23+KpZuE6+NUL2qiamEz2mSenjufRc9qJDrraLtyIaHqCBO7+1DH8zSfN4uq9QtLIeKeev+tZHvHWfCBi2i9egkPXPafz6tvL6Zc9fCHOPzTpzj0o03UnzWTZZ96GYor9I9ftyUUNRAEtiyLnrt2s+eWRzFyGoIiEWuvIdc/gZnXaVjTztlffjlSuKxHTgYE1k0RdTxH1x3PsP9/n2TVRy+k7upVMDBC6rD9L31sDD2rUdNZzf5f7gRssmLW9YvpvHEpUlMdkVyKIw8cpjCeZ+Fb1yKIwpR60imfSh9Opwvdum0qy3N3Hb8+hGAQ2F1HHcuSOTRAfmCS2pUdxGbUTqsT06oNlAsvso70y4nCMll+rwmlEkOajqTwt+HM0yeanwFCUuW79tebypvB0WNuos2v25wxlg8IixSR9FMqd/rhHhNBfQsiN4LGpGqcuJ4zNnJa+Zr+8VQxbgN+O2Mx6Hy/nGg8Pnr5V0t/v9T2CU5/nt3TdEqeEksXD75k7uGvXU6JlGhhFhYGGSaJCHEsTFLWKAphOoR5VFNPVTEnQEZIsdG4h2rqiQgxQkKUVmkW1UIDgiBwb/7n/PCHP+Tv3v1hsmaKlraz6Jx7BeFwNYIgoFbLWJaFIAhYlkkmM0Bm5DjZiT5a519EOFZTEYZESXknKSMiBod1cpEPiFCoUTyEBJQ3+45k2uyP0m9RLBZMco2VTLqTV8ofY13JFK17fQBAqNh3d0gPsIGnTLNcAcr4vRAtCeq2jVEhLjAsN6M68BqRMe9mzSEm3OEo3OAegDjh9YD4SxITI1Y/23icKmpJMcYM5tHNQQAEBBpoo5E26mmuSDJ9pfgaVCvPZv5MjrKHiYCAjIKBjolJG50sEc46YV8mrFH2sZ0UoySppUloR7UKDNCNSh4BERGR+aygndk8YP32lO712iVlgF3Vszx74PcM0MVq4WLqhWZEV+xvJ7zac5ED1i6OsY9q6qihgRhJElSToOp5eUNMJZde9WU0LcuubT8mNeEKbxVt4Lw1HyYnF5AOHCemuOLqhiutntW2ajKZQbZu/x6almHl8rexfeePTmtfXyg5evQoS9ddRG6kl471N9Kw5Dyqjns/dD9g7ydCnbw1h57+NYNHNtO66GLmRNcQCVdjYdE7sIW9R2wS7NzzPkEkUo1WJSP7QtX59VOuQSYyopeAdMsy2XD7J1hafyUzqlbQm97D7tQjYFnU1M2hpn4e1bWdPLv1p2hqhrMu+ShhpXLCjvRlyMxOVgD/8cMTZDurUCYCPJIEAVH19tcM2TrNDbyLflAWm5jwJ0b2h0VyjrvJDs1HVMjZyrb94bIig97vT632WQE9B1JCcodTOgEP6H+H/vs+FVLiZMT/DityXoiVHVYyJror3OF0RIx7DgwkJIKeh2PA6wqP6A9RVTrdN2U5oav8fQrK22DX83lMjuUC67nB/kyHDZD4w1tV5IEpWBVrEn+4MTcx4XwP/lCNQso7b1tRnw49BWLCGB+327AsNFTuSd+Kpmncfvvt7N69my984QtnFur/h8TZJ9Sun0O4LkFqTy/hxiSCKJA+MABA+6vPIrmkjeSiFkRZQs+qbLzhm8TnNBLpqEOpilB3/nxq1naWCPOb0ufx2c9+lu3bt1N7zlxmf/Byws3VCKKAadnAGgAW5HrG0Y4cZ3JvP63XryA+s64CNKlIlhkA2AEYrjLdEkmGCoHgm1scgMMPLAR5UUAZWPCDK6dabntDuL0cbPGDHkHhR8ALZjgAhuQPU+L7ndFCJEOFlxTgMZ2kDwyw/R9+QayznsyBQdpfcxY9v3m6dLx23WzqzptPzVmdRJrtdebjV3wFsAkJI6fy7Md+SXpfOVG3IIpIMQVLMzHyGvXrZ7P8319eIjeCAD3LEjD6Btl7yyMMP9VFfGYtzZfMx9JN+h7cR35gEqFoQDH7betZ9MaV3HnpqVnyX/nnj5T+1nMqx77/GEdu28WqT1zGzOsWe8anG9z1g2lTgXJO+aHf7OSZb20g0VlP45o2Ep11VM2uo2puPXIsxB8v+NYp9ftEcvUjH8Yo6Oz6/D0MPnqofEAUuObhv2dy3EQbSxPt8OYmDBp3heE0T3/4t+R6xln0j5ez5+sPnNa+vlAyNDTEgmvXMb71KDPefD6L3r4GS/QZ3JwkCHz0J09w7CcbaX/ZEjpffxbRtmoESWDgzwfY+dm7AVh7y+uoXtqGYYoVxG6Q3vSTFA/9zQ9pvWYJc995HsNPHWXfNx5AmyxQu7KdutUd1K+Zwe7//DMTewa45H9fQ/Xc+orxphoSVaHCSZeDrfv8xEEQMDyVPnTrNajUh069jIt49RO6Qfosp4U85SfSac9FJ2ZUFxl8grj//rBr8ZCXVDhVUqKi/YCxF3URF0Hn++doyxKIuMgDI2DcOedE3SGdAuoFve8gLwo/6O/MuadaDl7jgKk8IqbrZ84J1eQbX/4xmdeVivEy3ZjMFcfuieZtv5zKmHSPRX0yhxiS2XjNv3P33Xfz0EMP8a1vfesls09w1rA7d58aKbFiyRlS4nTJKZES4+PjHksogO3bt3PJ6stJMY6FSYwkTbRjJiN0TW7n3LY3Ux1uxuzt85x3b/7nABiGwZLlr2X/3j+AZSJJIULhKjQjh17IEo7XYWg5dLW8mZ5z9mtob/G6z1qSUEFKyL7YymqtDUh7NvNB8aoDYj57wlTEinEQKyx0RQo1leylYJTJCLeIhlWRrBVsi0sjJFRYwubqy20bRa8LOVcZE7zxqVEAJhfU2HUyfgBPKCUhdXRHZNjHbvuGhR6XiQzmin8XFWTaF7v6gDfGtDFZTp4pz+xA7zrO6RDd0tCx/3VxkF6O2GGZELEwWc2FFLABwQG66eYgeezxU00dKziPEOHSonWPtYUejtDKLGIk0NEx0NDR6ce+p0baaGYGjbQiCdOjd5ZlMSwN0mceZdjqxcJiIauIEmeCEdroJCLYYNSpgvtuUsK51oP7b6az7QLmDLdW1H8uxIRhGTzM75nJfOazAkEQTjsJESTnvOUbDB7YyNEnvUTN0pVvprFpGQCR/V4PEL27t9TnSUbpXRtl9NBW8mMDNCw6h/ZzXoGkhNnyvY/wUpPl/3gzAKauMrrjCYY23Y8UijL78rcRb5xR8phyRI8KFb/937+oga7l2P3n/0YyBM5a+0EMQ6N/YCtdxx4lVxijpnYuLc2raGldg+4Dyt06zdENQR5gobTJpts/RTLUSEdiGc+OPIBp6TTF5qIZOcYL/Vgux8a1nW+gITkHAOtQUU8s8IYwynba3gfxw94QSVqt7fElT3oBVjNi6yFHH0Gl7pZyOpYslMI2OeL2LjHDInLWqLCa9xPQWlzykEJS3qwMVeQD/t3ERKE+XJmLyJcHoSKvxXSz8ymSEv51pBuc93tZ+L36HJJdCshTEdS2EECa+70k/HOiljjxItDt0ZOvLVo6DQTH2Mg2+3I8uC7nvrbbuMGd28MTYso1hzoEQpDXhCUH34MykkVtKocoLNRUGjJIqlnyugjqM/iMJazgHClumZKUiNjfvdqSnLa+/3783hfWzn10mwfYa271lJ9//vls2LDhzEL9/5A4+4TR0VFqa2s9x44ePcqKGy8hvbcHq6CjNFZRd8lSEAQGfv0Ecz71amrOW1gBejmgsGVZLP7Mqzjw5TsxCxpiWCbUmMTIqOipHEptHMu00EbLhiVtrz+X9rdd4mkvpqiBgIdbIrJGRg17QBD/OYYpeo6Xyl31nCTAftBBMyWSoUIgiBFk/Vgw5MCEwgVDJhkqTGsB7CTUloRK8CJRJDFyboDOVS+vK8RdIZeCAA//OVktVDrnuQAeOU0h5gLFsmrI83sqsKN03DVhGjkVI5PHyKoM37+TwT9uJjKjgdjCNtLPdrP0u+9DTo0gKjJDj+yj94/byB2zvb9inQ10fuq1hBqrEIoEw/CvHqH7J49Te+48kovaMLIFjKyKkS0w9KAdkqz6rNnUX7SIuvMWkKgNyOnlG2vD244zeN8zjG44gJFTmf32c6lbPZPRbV00XTifeGc9GTXMpqu/OOUzCxI3KeHIxnf8lOoVHSz40OUVBNlzJccef9V/U7dmBiv+5SpEWfR4lryQsvizr2TvZ/7gKZv/4Stpu34FUDnm8sUxbuoG2YMDpJ89zvCje0nv7aP+ooXM/tsrCNXG2XDll1+U/p+KrLnrUwBYhsnoAzvp+9mfsQyLBZ+4npq1nRX1pyIg/ECwUdDY/dk7mDw4yLpffRDLMBl+ZB/Hf7mJ7JFhqha10HzFItpfvgJL8q5X3PpwOhDYsES2vfdHIAp03LCCoz9/yvYUWDsLy7JIPdPjCcG16J+uou3apYA95ibVcIXuc/TeVCDwVPqw4CIuptKHuWm8xhx9mPfVCQKBsy6iIh4qlHThVOf49drzBYU9bZ8iKXEimY6EcMaeQ2xM5xERdNwojVVtynMMD4FQ9FQMmJ/9dYwpLJ78Y0FzEbbuseceP6dSrgR4Q5yoL+4xVmEcIJgVY9Bfx0s8KEgnmIOnGo/OHHs6xuP4pv0c/ncvtrN8+XJ27dr1ktknOGvY7adISqw6Q0qcNjklUmKqh36l+BpMy2CcEbo5RIpRLBEaY3NYWn8lx9O7+PS33k0+n+faa6+lubm5oo3zLvok6ck+sukBCmoKRYmjyBHSmQFyYo6q5rkc33EPhppjwarX0TzD657tibPsAhbCozYo5BASjoTGymCRngyOyycYFlJaqwDu1Cq3B4GtcPzgkkNOhCa9yiI8olKoC1VY5zrkhD+Rq1sfO5auuQafAlZA9hllRsYrLS/91pj+EFZuYkKtlgNzc8iZstKdipTQV9qJtpQubxLs50tKZK00+9nBMGWCS0ZhDkvIMEkPh4lTxTlcjihIZK00h9lNP10kqCZClGHKoPZyzqFZmEHWmuQIexmiFwERGRkZBQkZE5M4STKkSDGGiEQtjcxjGUmhxtO/49ZhVFGlU1xcIi50S2Ov/jT9dLGeK55zEuip5Kr1/872fb9gItPDOcveRyRUhbB9H6Za6UJ5sjJs9bGdDazifBqEMtHxYhATAOve/HV6dz1Az857ABClEK0z1hGOVBOO1JDYNUhICJOxUoxbw4ybg6QYxcREQiYxcyGta64m1tDxkiIjVnzEJiF23mz3admHvsbYs08x+OR96JlJ6heto2399cjhGEq6/O05AKqblPATFJFRE13N0Xd4Az0HH8UyNDrnXE5IinP4yP2oaprm2sXMbrmAqridKNKt99Rqe5HjJiXkvHcxlW4PU/PMRIk8OH7gYQa7t5JNlb+pZfVX0ZFcSnpODanxY6iFSWrr51E1JmId7q4gOx1iQuz36gqryU56b7lDLhXP1at8IaVcekxOT5GgMWy3owaAwZ56xcs5Yfr8YH0lieCE7inWEwSvN4vvdp8vKaG49K+Ts6DUd1/ic7XGO2+5SYrSmrjY/smSElDp/edfj0p5X/jEgFwJbpFzVgUhETj3+JJuy1nffCYL5AMItPC4USIwHHGHP4wPlp+j5vLacN+nXJyf5ZzPozKrIxYqAUO9yrb+lV3rDK0hWlHP72UZmgjy7vF5VU74vKd8xITfi0iPe8dBuM+b1Ho6YsIhJcRc8bvq9oUFNAw0q8DG9B3krEkkSeLQoUPU1ta+pNyyz8gLLyfaJ6y9+1+wDJPsgT6G7tzK5M5jWKpOfHE7s/7pBiYe38dX1r+FVCrFVVddxcyZMyvaWPebvydzcICxw+NoQymkRAQpGUXtG0MdGCexajaj92wlf3SQjrdfROvrzvecb7gW1EEhI/wWmIbp2ksoemCdEonhI1Q0F2hmmCLxUMEDeEAZxCj4LH11QyIeKpx0uRv4cAALxe9NoVWCan4wo6DJSKJvb3ICwAOYFvTIaTKxkFZx7HQCHqW2sVBH0/T878OMPPxMaX4Twwotr12PqZv037oBMaKw/OcfQoqG0EbT9P9qA8N3b0NpqCKxuIPRh58ptdnxvqtovOFstJFJ+n/9BOOP7sbCQo6HkWMhpFgIy7QINVahjqaZ3NWNIIkklnTQ8eYL7LwOlAG40Q37SD/bTedb1yMn7LWMqep0/XQjPb/cxNKvvZ7qFTMrxtmpEhNuufShj7L/mw8ycN9u1nzrjcQ77dwDmikFgr7ACctT+wfY8sFbmfMPV9Jy3cpSPYdIfKHlggc+xuD9z3LgK3eVyppuWEuosYpQQxWRpiRKbZx83zjpPT1MPtNNek9vidRMLmmn4w3rqV416yVFRiz5w2cA2H2j/f/qP/0L44/voe9nj1DoGaXmgsW0v+cKQg22jj0VINi0BIy8xvC92+n79Sa08QxNN5xF3ap2jn73YfJ9E9ScNZv216+nankHgiCcEAQ+kT7sv3sXfXdsJ31wEIpr4863n0fnW9ZTyFtM7ukl3ztO1coZ1MxIklHDyD7dNZWenKpcEY0K4DZIHwZ5PzhlBc1uMx5SpwSBp/ISm0of5optxkIaWbV8biKser0bTkEn5gqVexq303UspJINIHCnkiBEMBrWisdO1Sti6rph2fs+jIC2/XP0dPOzI7LkMxb2j09F88zN7nohH1mru+q5x+SJyv3jF0DV5cDxpkgGeW3qOdlutxIg98/TfpLOP2/6x2RBnz5vhj8i98mMyaCx6LRlqjrH/u2n5PbYOOHu3btpb29/Se0TnDXs1t3NJE6SlEhPmqxZcibR9emS00JKBMm1c24C4PEjPyDNeMXxeqGFFeJ5PKT/rlR25QWfx4hKTKZ6GB7ajW4UiERq6e7dSCFdjl+8+Ky30NC63NPeVKQEeMG10J7jGLMqSRH3F6gnFOSJAFC32G62rQwuaPHywHWsOP3Ws1LexIiKhEe8bWpFIDAoP0WpW5p9UEuWJ12z+N1nfeSEm5hQizhD8rjP3csFemlxscLS2h8epgIc8t2b7AtlUREP3kVMTEVKyI0N9vGh4cDjYFvKbeERcmSYzWKixJCQiVPFKIPsYlOpbh1NmJiMM0yICO3M5jiH0PA+/1ZmsVSoTFjnFneYp5yV4Rj77UTWwHlcQ0xIlPr3IOWxXCc00ybOpt5oQkRiE/eRoJqVwnmB7T8fWX/1v7Lt0f+HkNdYppxLvdjiOX6yBEXBytPFfro5RB2NrOR8jwv0i0VKACx566fpfeJ2BFFGz01ijI1RyE1gmt7xpkSSJJpmUxfvpLq2k3hVK4JgfxeP3PWxF62/JyMrPnIzpqGTOX6IzLM7GTv+DHp2kuqFq2lbfQ2RmsZSXTcpAV4gtwLUPdDPsf6NDBzbjGUatMxez8ymdRw8cDcjw3tobl5FZ+elxGN2+2LBKIH0Jan47k1vHdNCnvBaUWc7k8S6JtH0HMOpg4ynu+lYfR2KEvOE2glt2O05z1mpis1N3vKcrcDUhe3leysSn26LbSPqs2ZKq6i1kSkJCcGVdDPXHqs4LuoWqmsBEh3wxR4vgsL5+qLlS8YseZpBJdlbsXazQK1yLWJ94HrI5eFn+Ejp00VK+L0m/GPITUIYoenrCqZ3znLfr7+u/3eQp4UfdBcMb6gm//MCyNdJJI67rKl818k1KYF5ITLNwV5uoYxZ8aylIuHknwPDI8EJW8WCXrmS9yV8zbfGK8J2ucNXKWmHgPTekD9vSrTfa4Ug+Lw2LN/37SYmjLDomafDQ96QToVG7zcS6StbnweREo4cV/fzbH4DN998M29/+9upra09s1D/PyTPNT7w2rv/hYNfuoPUo7sqjoVnNdPx6Teh1FWx55X/BsCi2/6dcEij0DvK+CPPYKTzhFpqGX1gO/nDA6Vz295/LfUvs0NuOsBEJDS1BaYbUDFNgXBAuCWPJ4SsB4aRcMAVt3W5v54DfrjBDdWQiIVUTxmUAY6pysEGPKAS0FANqQKMqCAidLnCWtQNeOR1ORCQcIMeeVUhHi6vM58P4JErKCUQzH2d6QAPRyzLoufm35PZdpCG11xEuKMBMRIi1FaPOjjG0Y/9oFQ3sqAdKR4ls+MQYiREzbVnM/n4LrQBr6dmYsUs5n/xzZ4yP/i2/brPAbDyT59GG51k7MGd9P/kYQCWf/udRGaX95w73/EdCv3jAETntdB47Wqq1i1Arolz6OM/wtQMlt3yjor7fD6kBMDa39/Eno/8GHV4krkfvorGSxad8BzdkCoANj1ToOe2bfTd9hTRtlqW3/wGxFB5Xn2xSAmAFb/8MD3fexDLtDAmc6hDKdShFGbOu+eREhFiS2YQXzqT+JIZROe2IhYNXnZc/7kXrb8nI0v+8BkswyS3r5vJTXtIP7kXdXCCqrPm0vrWS4jNLe/vTgUEVkczTNzzJEN3bkNP52m4fBlNf3MuA797kpH7dtjtv/liYvNbS237PWr8ILBhiR49mVWVCrDZAYGNbIGJ7ceY2HqU5lefS7i52gMCn6reCwKGVZ+XhFvXOaDtVPqwoE/tSeEcF116cSpr83yRbIiHVfKaXHF8KhEEKKhTR2Fwnx8Na1PqQ6et5yonRgSdeicO6xQOBe/Jgs73kF8h7YReFf45Osj7wDAFz3j0Ex8hyQicw6cC4FVDOmlvsqA+T9WPIMKgwjjANSadsSr66gSNybw6NeEx3ZgsqMGekSdzbmXd8t+TWw7Q/blf8LGPfYx/+qd/orGx8SWzT3DWsE8/e2qkxFlLz5ASp0teMFLCkTXixfRbx7CAUfpRsTf0AiKXSq/kQb3sznPlBZ8nmxvmqZ3ftWP6yxFy+VFqGubRNucC1LBJY3wuslJpcQgBYZesSmvf0J4yMG4UE+P64yi7SQU/yF46t7jpT88sW+26LUTdoIo7RJNcTIDpEBLl61RewyEkAMIjtsVlan7CU8dNTDhtGD5S3CEmtLh9X5IvcaafmPBbYlZ4b7jCWuhhoeRh4YCYigu8lHq8yTCZBiAPIiXGrKFisugJLCxms5i5wlJv/yyTNOPIhBimj/3soI4mmulgknF6OFJKgN3MDGpooI5GIsQQkYp5SywmGEFFJU6SKHEk2X5HlmWRJ0vYCGNhsY9t9NGFiUGCauqFFuqEZqrNWvazk16OePoXJ0meHK3MYpGwulR+OkD+i15hJw0q5CfYv/XXjA8foGPuxSw4VI8onHxSuSPWHo6wFwGBGcyjk4XIgvKiEhF+WfV3tmfB9m/ZngUX3PhVdC1LITeBVphEbm4mFC/Hjo0Me8ftX5qUcJKSA0zk+tir7CB1eDemmieUqKN21nLq551NrLYVNemKf+tb24RSViApYVkWvQ/9hr7up1CUKG0d59Ay+zxC4SS7t/6E8ZFDLFn6WhrrFpfb9oOXHut5+29R8yojxxPBTUpYvqTRgmGQb4l7yqJP7Lfraq6FqWu6cZMSektN+XqOvnHpYSnrXdxKh3pRl82q8NZyklnLI2Ug1agug6xajW3B7g+zpPoWINEBzaP7M22+MFeu7oQmDYyw4Jk3KvM5lH9PR0qoVbKnHTljeKzz5XFvODYxX75/M+7ND2C6gAKtyjvfFGpdiQtdXjdSwZqWlJiOQIeyV4SoB5BnPg8KT24HodIDA7xzlVQwydcFhMQoNpPoKVo7Ryr13lT9DgwZZVXOkQCJgxMVZUYi7JmnAQTXGNeKHhP+fB4OMeH28vETDw4xEesvrpl8BIffQ0IoGKguQiFfL5MZ70XNjmMaGk3xhUiSYwjhI1oCiInQg9vsH2uXeI5ZrmSlQkFjMtePqmWIhKpZeE6OH/7wh9xyyy38/d///ZmF+v8heT77hNlfeTdj92/FUnXyB3tRe8vrxnnf/ygH3vW10u9Ft/07+tgkXZ/8PkY6j1QdRxsYJTy7lbpXXYgiqEgL5pNoKutDP/Dg3vVEQnog4OEWwxRLnhLlMjeJIRJSKkkMx8LRDYy4Q5y4gQy3pePJxKl2jnnCNemOpaaPZHABCE6dqUCPqQCPgip7yIK8KnvAhr8k4JE/0k/f/9xN/lAvlqpTc8Vq2v7uBk89y7LIH+lHiobJHeql5+u/I7pwBlUXLkMfSTH6pyexVPsdxlfNJbFuIdEF7YTaGxAkGUGWsCyLwuE+tKFxQq31KG31CK59gj6SIt4cAVFg4NZHGfrdRixVJ9ReR2LlHJKr5hBZMpuR2zcy/OtHPf0LtdZi5lRiC9uZ/enXlsodwuP5yLp77LCvejrPsVvuYfTRPTRcuZyZ778SJX7yVtSDd++g6/sPYao6Tdeuov2N56PUxJ43YfJ8ZO3d9jp7y7WfB2D57Z/GzBTQRlJoo2nCLdWEWr05JtzylyYl5v36P0p/q71DTN71OJNP7cOYyCDXJkics4jqi1cQWzRjWiB4OhB44NZHGfz1BgRFovaKVdRet55QSy19/3MXY/dtYebfXUvdFStLzyhXUAiHyvrMrQ8dINgPAjv6cDoQWDfECtLC0Ycn0oVTlbvL/PH6T6QP3eSpXx/aXmM+L9QAEDivuokHz2HP+XlVIRpWPSCx/22erE5UfeRFKKR7yp4rKXGyhEQopJ9wLHp+T3HcMRKYbn5213fGZND87EhY0QM9KExnnCmOQcCJvQ+mE90QK8bVVCKLZgVR7z5X1Zw5N8hzxyp57di/g8ekQ2j5x1DQmPSMQcFC7R1G6x/DzBWIr5qHFI8EtuUXQbAqxmKwWGg9Q2hD48j11bxpOMGXvvQlPvGJT/ClL33pJbNPOENK/OXleaa2PLFsNR8B4ErpdQDkBXvzGxW8ANaV5/8HvYPb2Hv4DsKhJOtWvB+zpQbT0BBEGUEQ7NAiFqCaFaBSkEiaWQKHwsfG7MJkAibT3opFMkPqsq0A9bltge1ZT+7EvGi1pyzRlS8lgZ6cXSYM3B4UblLCiW0upw10V8JpJ2yK+76cEE/KeBkMrDqQLhETgg7xfvu8bJPL2jILmsvYcbJDJDJWVi5GSKDqWIFMa4jkkbLFZaHR3sTpCcmTDFxUTcyQ6E2Q7Zo18g2hivjrpWu111cSE5QJCHnenFKZMFYGfUzLYL++lW4OUk09C1hJmBh12EDmdGB5JpMhHo9zvnAte/DGum5lJg1CK8etQ+xlGzIK66zL2c3TjFMmRQQEInqcMFFypCmQI0qcVmYxl2UsYBXDYj/DVh/9VhfHrH0ICERJkKDG4x1UQxN5IUOntbBUdrrA/kf/+E+ATU4sO/ddDN79aw4cegxVbGelchGCIJxUXokR+pFROJerUITQae3jcxWHjHDk8T/8Exe+8msooTiP/f6mv1CvTk0sy+Lw0AYODj1OJFlPy+ILqZ25go4DCoIpMFzbcFLtOKCqOxlxqm8/fd1P0rnwGma2nYskhTBCIqapMz5yiKaGZTTWLi6tCAWjrA+D8ub4yQjwgqZ6ddhLFBQ9EwoNRWLWCZVgWISfOlDuu6JgLO60j+3YXyrXZtSV67iurcfsm3QTykZMIbS7G6OzpZRsN/TMMbuPna2Ivfa3W+ptwp5f1FZ7kSBl9RIhAba+dXRt7OAoMSCzoNwfPSF5chTFe1UybSHifWUSwHBZo0sFywPuC4ZlP+uinpTylgcYd+/nCtVypXeF04+4VBEy6IUUm1wp/7Z8K1rThV9MF6bJlH3kvmGhFZ+PkrMqkk1bAliusa1kKx9IttGfI8Jbx8n15D4WlLPJHX7RnfvC3X+HmHETKZk51YCd80QYHrePF6cMo72xeF2XJ2K1y2ChOL87c37Q+zbCIhGXN6WS9n6nliyWiAnHW1OLeZ9jvK8MSozueIL9e24r/Y6sfw+1DfOL9yoQGi2vK5zvx5HQzso525FcYZzR8YOMThxidOIwml4mNJ4oOkWNjEx9/hk5I3458rHvw8fKoUvUkUmsvIrSWu8BE+f+8gtktx1i8Nu/RZBEZn31fSgtdZiqhqDIRQOTomeb8ym5PbksAcVHHrgtTt3khD9ckwMMOICIn4RwgAUHEFFc4FtBl0qgiLvcHcLDDVKcqNxdliuWuQENN2CiugANdx3HI8ENeEAZ9DBNgYJmExEO4JErKBXgWChUfk5BgIdbThUrOxHgYZkm479/hNHf/ZlQWwP1b7wKua6K6NLZqKrMgdd8aspzM5+x9wmz//eTHH2XF1SPrV9O3dUrSW3aw9GPfR9Mi1lffg9jdz1J6pGd5YqigNJQg1yXRB9Po/WPItUmqbpoBTXXnUPVKy5D27mHya0HSW89xOhdT4MoEGquJTK/nfyBnlJT8dXzKBwfpuXNF5fKTgchAfDUNV8AYPnt/8acT7yC6rPmcOzb95HtHmXBV96KIJ0cADO27RimZrDkfz6AWF+LBmy5+t9PSx+fqzhkhCO7bvgcK+74V6REhMisJna+/C/bv5OV1AObGf7x3UjJGMmLVhNft4TwvHYEUSx9YyeSQvHbc391ha4BBm59jJqXrafutZcQr5VLOi2z7RDxpZ3ELz6LQnHp4OjPgip7iAlH/KGA/CCwW9dBJQjsgLN+fagaUqnOc9WFuimiFdsP0oeqT9f59aFd5sJKijoNyvrfrQ/Bq+MsywaBNc3ug4bkUXq5gjfJtYV9WHPruedA1p4cMHz6RFXl6T0lXMdk3xhyn5dXlQrGwjmuKJXEh987JIgUOFEdVZMr5mhnLLqW7ydFjAcRG+7rOmNRo3JMOv10EyFOP/zt+sdkxXHPGBRKfde0SqLCPybTWw7Q+4WflX43vv/VJC9eU67wHI0H9PFJcrsOkd15iNyuQxhj5RyzXyr+/1LdJxgIGCe5WjnZemfk5ORF02T3G7+a8tiV5/8HqXQvew7+gebG5Sya83KEZBwxa2DDTN6EolPpQsuXSFOXJeSsUSYkHKlKYlkWwvgkoiBhVMdKhASAfKgXY2S0XP+ssmW++KhtPWhetBppw06EVWUr5OSRNMIRe5E5dm3ZNdYqAjBuoB/KQKM/YTaA5ALkHDBNLYZwcsAgf+JQ0aX7lazdvlrkSfK1AnIB6vaUAWo3wAYQ3zVAZnmzncBVFjyTRQWIKQgeYsLtTVFojKKkXG7yvb6QD1Ywu2wZBoIkYVomu4wnGKKXBcIqZjDvlD77eNwGJCVkWpiJhkotjXQwB1lQsCyLI+wFQEfDxMDCop5mlnAWGSbJMEmONKqgUkUN1VYdIwxwlH0cZR8dzGGeuZxmoR0LiwyTjDFElkmyQgbD0siRAWBx6CxEoYx4OUneT5es+cDN0FaMf/nuN7PiBwl2aI9yvLCXdmH2SbXRzAz2sR2TFw8AfS7y10JGOJJVRzk4+CjNiy+k46yXI4pFUFKwQcCGJ4cZuKgRKQBAARuoVauK+iNnlY5blkX/k3eRrJnJjDmXgCCQq3bGmETHnIvpOvggnSuuJ6qGMRURyW1Z7RAVjkeXLyybY17heHxZklBh/S9mbFAzmimQm1WNYJXB4MK6IvgpCiiuUHjmygWByES2zQZw3XkC9IiEJQsoaZ3Q7m77zo72gySCYZJdVyY0aZpBbLtdR13oIpWL/TFiMqJqYIYkD7ma3FNeFMX3j5JZUFcCzI16hciIVgqd588PJBUMCrVKSY+77x9gmvWqR+Sc6Xn+ekSganPZo0+b6SKu/OGRXB4r/iTE7rxFYdexfGPUk7tAj7i8Joogd1CYJcu3WnB7f0iql3QxFKG0lvXPHZovH4qkVVpSucF2hyBw2i95CvnHrEscMs1URJTJ4qY4XtwYFPtjSkLFPfnFIZrknFV6t9nOKuisIv60HRtVc4VTkFzjV5nIoye93itKSkdzkSJO38r3KnrCgUmpAkbR28KyLIYn9jMmDFPoGyWfsf+JoRALr3w/cjxBukNBEzVGDzzN8QN30DD3bNLDXYiiRGTOAkgFbyL0Oa3Ih/swi+QKw+Xvwnh6J/11E/RN7iWrjVEwMoBAdayVGXVrqKuZSzRUQ16d4EP/egWqqnLDDTfwmc98ZvqHe0bOiE+cOOpTiT48zsA3f0lk4SyaPvgahKo4WgFABr8TrgVyqHI942zUFaVsXWqZIqGw18q4oNnAi6XpCIqMIhseC01Vkz0kRshnAazpEopskFcVzzFNL4NvboLCDaYElQeVuQEX0xRRdYlISEPTpRIg4rf+zKtKOcZ5ABCX93kx5AqKB/RwiAjnOToAHFQCHlpBRgm7cvb4wbPn4S1hWRbD/3snqQc2U/vKi6h79SUIyslvaZ19giBLJC9diz6WIjKnjeprz0WqiqOqMPKHTaU1RCGlYRRMQjNbaPnk29D6RtB6htEGRrAmU4RmNhF74+Xk9hxj4oEtjN25iaqLV9LwtmuoX7OMegvU/lFyzx5BPT6E2jtih5UqegXV3nAeoaZa+1oqpXBlp0uW3263l9dCxC9eS2dzE4f/+Uf0/2oDja+72FNXlswK4EuWTKovWMb4o7vJD2eJ1dt9XXHHv77kgP+XWn9OJGa+wND37yBx7jIa338jYtiXx/IUQGDLwvPNDd/6MHJjDQ1vvhJBkcm7ok/WvPJiBr/9ezJHRonPrkNVZRQlWCfZbQsePWSaQgWpG/F5a/j12lT60N2ubpTJhRPpSHddvz4URRcw7NOHqi6BAxa7dI1pCoii5QGUg/ShW++59SH4dJcFuioF7nvsusHlfjEK3jbksI5eeHHJiJIUb08KB+AFvnGqTddH3xztHuN+osUyRQ/BYVlC6R3Zx4trdff4tITiey6L33vFkZBrPLlFkQ3PdaYrd5f5x6R7vLn7YJjCCUNIqaqM4JvH3WPMtAQMvdxG7pnDFI70og2Mog+OoQ3aGGjbJ95EqK0BvSBhGTqZTc8w8tM7ia5cgKXpaP3DxNYt83bEEirmaaNQvG/Xq7Z0g8yTO8k8tgWtfxhj1DYyVma0EF+/ivjq2YTaG9HHUnx93uVMTExw/fXX873vfa/i3v/ScoaU+MvJX0ijecWSRTLqKBYm6ewAhgyKZmIVgQU/+GCGxJJSdAPzRkQoJYV1JPxMt/fc6jg9Yzt4dvBeAFZffhOxqhh0zMGyTNTxIbRHN1El1BERbGtEYbtt3SuEI5iFPIIkIW2wrWWs7XuwinGVpbra0nVq796LlcmRu2pFqUxPSET6bM+EQnM5BJUT0kmtdcV9jkhE+jJorgTdoUm9REwAyEUyI1cvlSxLTdlr6RpKl3NQAIwujpSIiZCT8LJQXkTEdw2Qn18EJgTKzzksIudNdFdoDD8IJQUkJwVQr1lL6J4tqFfbycljB8uAh37oqKeuOKuDZ/r/xFC6l5Xi+TSKNsB4n/bLwLank0etOwLLrxRfw2rrAro5SA0NJIRqqqxahukjLEQJEy15ZJREsIH7edZyujnIUfYyTD8hK4yETA31zBYWl1y5wfb2MAwVdAsT+x2L0QhXJ94GwL3pH5/yPQXJ1u98xCYmilJ/wTW07Emzp38LY9YQTXSU1KaTqNsd2smyLI5zmBoaCBFBDEe4N/fT09K3/8siFHRCxVhqtfFZRFMABkrGoNBedvPzg63TN1qs2zPI5MRx2uZeWJFLACASq8UyDUAoAbSGAz4Lvlwwjn4VHC8KE7BKXl1+7wrHk8G9XXHWLJZYTvTs6G2t2n4GyoTqWcQIukmmPUpsoLxL0mMiCAJyxiiRzFpCRls3m/hTR0iv95JsTrx/PSaROq/TvneXtbkel5EzOqEDfaUy7ZxZpb9Hz2qk7ukhxtaW83m4revz9QqSapWegVqtnNx7wiZY3PkDLNGnI6cIDSgHWPefqrhD7Ewn2SlyLBhhwaPfTf8Qc71HJeNbsBZJHWd/4fY2joyb5OpcXoTFYeiELHOTEf5QUpaIl5Tx5bbI1Zc7GRl3WdS1uDYeRWJJMEEyLSheX48KFUSMERZKIaXsfgildyOYkF0z075/F+lmxBTyjWEkf1LuoreLHpUQimMgKDSkJ4xSsQkpVSAdyrJ3/+8ZHT+ErEQJx+uIxOupb1/O4LGnOPbUbXSc/XKG9mxgaP8mDC1PrKEDQzTJTwyw5JL3I+sCWkwoJXHX44rXM7NQ/gaElYvIb9/OcesQ3eYBtCGVpvhcOqIrSFS1U5/oRJHtNcw92ysBoFQqVVF2Rs7I85HOn3yZQu8Elqqj9gyjpw2ISIjK1IYUumrrBD+gJ4eMCtBDdYNrhkl+6y76v/FrANo/806iS2YX27JQB8YxevsJzWgk1GJ72LmtZx1gxAE9VF0qgSaSCzjTdMljjeuIc567PKiubogYhugBLPKqN4FrKayDaOGAIm4PB70InrjbcFtb6qXzXeEmXKGbvHUrwQo/KDUVCGcUJKSwEQh4BMnYrXeRuv8p6t71KpIXn41uAAYcfcsnpj/RJ4ff+jl4a6VHQudPvkT9e17P5H2PoLTUE1s+D7VrgOyWvUiJGPLiJNFF5fWIY6MVOWsV1a++msmHNjP2+4fJ7jyC0lCFEFYItTfS8LZrcE9klmFgZFWERBQn0qVlisz9pe3dcOj1nzyl+5lKdt3w2RIxARBbNIP6V11I/88fJbO/j9orViGIAropIUgisaWdhIse/w7JNXzXFkLtdUTntpBXFfa/+tOnpW//l0UvyFhINvE5awYmMcygtFXTAcE+cb45M6+S2byX+Lql6GYIQRWQXfpSbqixmzbNkj50wPYgEBjKYKsfBDZLHmpK4HH3MVWXKkBgp12/jnP0np/sCNKRjj4Mh/RAEFjXJZw7cus70xIQBaukC/3HHR2nuz0kAvRhSf9x8iHoDNUHmof1sg6cRv5ihIRLgvsZrLgr5uni4wmcoy2Q3GSF40HgGBG4Hq0cMkpjDex37DYekBXfcdPx1BGQ5Mp5EspztGGKGKprvyKaJQIhqLyirDgewTueDFPE0MWKcGBOHd1FeDl1nHsQRMs3zsrnG6kMwz+6nczGZxAiYZTmWpSmWmJrFpLZvJf+//ojTR96A5MPb2bygacwxicJzWxBqqsi/fDT1L/3dSBFMSqirE8xli0wsznSj20hdc/jGKMTRJbOI37BGkJtTUSWzkWqthPcBs3LL9V9gmkJU+YDCap7Rk6f/MW12sXnfYqJyW6wTGZ1XMSx44/S3f04M2dehEzRQtAVJiPXEGy16og7bJJgwMRFc6h+9DAAhaTM5qM/Il0YKtcvoiKWZfL0PV9AzTshhASS7fOpnrmEji0pEkItoiAiJcohmsxcrkRIABijYwiygiCV+xu9bye5q1YQvXc71opy+J7wQA7BMDCjZSIiNKaiJRUPMKGM5T3ERPyY7QKV6yj3IzRpoSaFEkHjj59tiXZZaNJWLOmOMHWbhwiS7CIbjHdbEysugCU8rlGoKS46JAHBsMrW1EIZ0DPCkieBqUNIABRm1BLutplbeW6nh5joT++lL72HVS030DgcnDvkdEhCqGYx5T7VUE83B8la6VLy6iAJCWHmspRqq44hejHQSTHOJOPMZjGW7k7QJyIXQyEZEZG0OU4t9rs8XYSEI1u/Uw51dPllX2TxoldRXT2LI4fvo1/r8tSNk2S+sJIGoQ1Mk366yJBiXegaJNF+5ldH33KGmHgecu2CjwOgiBFkMUwuE+ymODG7bEntj2NvieA4rriBXz0qEIk30LHgMo7vfwjT1Ji5+BokJVEK75Qq9IMgcGjvncxqv5B4okiyCWAYGimjj/F8L4XcGIauYugqkigzK7maqoRNBEo7D3r6o6+eXyIkAPIzq0t6Qil6gbmt4kshjLDHvxEp6zEjVPbEyjbbz0AwrdIKy7FqD6V0jLBIaEJDW9hBeEyjUKugZHxxaV2he9LtYRI9BfSoVGxLRl9le1KMXdLper72tUbPKobesbzlJYt6xQvQC2YlgeS23vcD0uXzKhd2WtwVAsplIZ9b3Fr625MYuTbkIU0ih13jypW7Qwj78kskyr8jg+X5Rc6Vy/WEz7W9YDIxNyDetG8N5g7FpGQtT2Jod7gxhyiIjhbDg7hzE0WFilBERuQEiz2hHHLJn48iX+MmPsr9KVS5kukV+2NKIKqWxyDIEgVP3hDn/brvVS6SGFp1iEKV6An1ZBTzQTikilr0YnJ7qJzQRE6E9KwEA0ef4ujWO5CUKEsueA81LfY6YsNvPgrA3EvewuFHfsbYsZ1ISphofTtWoUBm+DjqxAgzVl1HddO8wEvkRwcYGtvL6Pghkg2zaOs8HzWfomffQwwbOxAEgY7kMjrrziam1JSfhxwJbO+MnJEXQmZ+998pHO7CTGWo+ZurGf/13Uzc8TA1r7m6FKrPs292HAADPCUAdBeYUiILQsW1a67AwNd/Rv7Zw6U6WsbAWY0e/+T/UDhU9mQLL5hJbO1i4ktnEJ7ThqjIHsJDkk0PKOIAFW5AxAHiVFWuKDf0yrqGLnrIDcsUPKCHc3036OF4LTiAh6p6E7c6bUwFeFimWALijADywWO5WZAQfeCpqU0FtLn0phvkcmKbBEh+31FSdz9G7RuvI3nx2VO0+/xFbqyl9k03FvsGoc5ZWJpO9pnjRBbPrajvAG9iLEL19RcSnj+T9GPbMAsqWs8Q2e0bqX7tyzx7REkBKWGPLlPVyO/rIbJkNoIgnDZCwpFdN3y29Pfi33+WhjdcSrizmcGf3M/kF73hWuWGaurfcDnJC1cgy5DZdYTM9kO03PQ6Cqat/xf87nNniInnIbN+8BWEEAiCgNxUhzY4GlzRpdsqgeCpQWAxEqL+bdcz8qM74Ju/pO7NL8NM2CSqoJjkj9g4wMivH6H6ZRcSW2yv/S1TtC2fjwxSOHwcbWAUM69iFVRApOrSlUSXdCIIQgW5WwECu0DikwGBPf+7dJ9DQkylD0MhvQQAF4qW5VpBRpRMjCIJOJ0+LD03vw6ssFAv3lderjzu1pcustYM0JdT6TajIOMHgS11Kt3pbu/kSJCTlpMEWwULKOn6abyXVZ9ud7ehVHrxO3OM5csPISre/ZWW9+1bZN9xF3kjK15vR0MXMZ2QYS7SxD9/O3UNF5ksyWbJO8EpD6rrjG3LFNA1CdHjzWP3xfR5Z3gIM1PA1Kc+bllgaiLZp59h5Md/BMOg4YOvI75+BYIgcOTN/wxA27++l77/+D7df/dlBEUmNGcGUm01ancf2sAoVddeRPzclQSJPjxOdttu8jsPorQ0kbzqIixdJ3X3w2Q2bcXSdWJnr6Lq6osJz20KbOOvSc54Svzl5AVPdH0iicTrKGTHSr/lUBxdzaKE43S0nINq5Snkx6hrWETNivUILgtQd4JmJ2GlA5C7QQrLMhk/vIOje+8hXwQHF138bqpbFqJmJ0iPHKXQ30PX4Yepb1rCnGU3MKAdZuzQNtIDR7AMHVEJEa5vQRqcRLdUwlKMKrmR6uK/8LiJpHiBIEGSKkIVia3NmHVJT5leHUFUTbRk2VLLTUyYkaKLda5MXxaKCS01l+eEFhdKIEgp2bXre5EK5RjZdZuHGF/tjWcfGne5VLpIiciI5rFQ1XzglRuIdANmpi9uuCe3hguQCh8vs6Ub9/w3CmHWyJdwn/oLXmi5UnodWCaGZbCBu2ikjcXC2hOf6JJD1rP0cJgLuT4wmVoqlGan+ih5K8vS0Pl0hOeXjt2T+uHzvofp5PL1n0E38lgWjC+KoaZHGbr9l4xaA0SJY4kCqpmjQWxjVajswn2GkHh+cu2ccpipxyZ+Ray2nTnr7eSFugvPC094QXyAQo3jIVau5yYlHN1mWRYDh56g65m7EUSJVdd8HClu6wU1l6K3ayPje57G0PI0zlxLITNGPjtCbnIIy7K9KCLxeiQ5hCSFyGfHUPMTNHWsYfGy1xHZsKd0zdwF5TB1APkG2aN/3db9Tjg6B5h1xBKFiiTKWkxAyVhe4B3bSt6dANo5X9SDAf9co60jTV+IqcioTtgVOz81J+Y5bvep/Nshbkv3Ylhli38Dj4mOP5yVW9z9cO8V5LyJmvAS5454wvb4rPbdz8fRo/l62RPuKjxWRtGVnuKcKkkeQsK+qGvDmAwmJdwhBf2Jo0U3edJkP3ctKlTkgXCHj6ra47WISc/zriMyzS7L0eKfjhdFxd7Icexxnl3ACsZPzJf64qobTpkV7RdcZIbzbeoucsSdpNxUhECvGb9np7MmAVATYonMMA0dQ82RnAwjCGLJ4MKpr+ZSHHryl0z076e5cx2dy69HVqKe9jf85qNYlsWMdddjmgb58QHGDu8gXN1A64ILCcfrSWd6ichVmIbOwIEnMA2VmtZFjPfuIT85jCgpJBpmMjl8zA4zKIjISoSWueczb2IWimQrrLsPl5MNn0heyDXjGXlpygv5zqPLFpF/dl/ptxCNYBVUhFCI5JXngmagDY0QmTeL5OXnIiguPz7XBy6EDBswL5IVbsDDsizyuw4w9pt70Lpsz7r6d7+KxEVrMCez5PcfQ+vqZ/z3DxKaO4PmD72W/L5u0k/sIL/7iA3YKTKhjmYwDcxsHjEeITS7g/CcdsKz24nOacASvUSvG9wo9cUQECSrokwOGxV1HdDDAdfcoIehVXpB+H+bmugLwyCWno8geC1CK85Vy+SDpUqVwNhJgHAURBvUKoKtJ4OFDX37x+iDI7T824cQRJFj7/rYiU96HtL5va/afVM0+j71TaS6appvemdwZf98VPyd2bCJ4e//gVk//PdymClXXfX4EEO3/Bytd5Da111J1csuLx07+taPn6Y7CZb5v/4MRjoHVhGoS6UZv+1h0pueRa6vAknCmMgQam9kxpffW9rnnCEknp/M+sFXSn8P/ddPsFSNpg+/e9pzSp/YiYBg19jKbNrB6C/uwMoXaP33D6E0NSKEDIxMjtS9m8lu2oI+NEbikrMwxtLoQ6NovYNYmr0Gl5vqEKMhhFAIYyKNPjhKeNFsWv/lPR6Q2A8gW6aA5AJ73eCrAwIbPkBWkk30glSh/4L0ZGCZZHotzU9SH5qaqx3fI7WPu4mBYH3q6EMPieDWif5XVXBdM2J6f7uvdrK4ZwAxIeRPTGhYkROHYTrJy7nODygLm5XHfKHHPO3L/v2e15vCU8d3rjMWnfHpH5tQOQ4sw3uOuwwojcmTLQNK46piPvf1xz8nO78tw8BMZxGr4iX809LLc7aZzTPy49+T3bSD6Jol1L/tRqSapKc9h5iof9urMMZTGGMTpJ/YilSVJHnV+YRnd1DY1217NQgC6ceeQh8ZJbZ2Bfk9B9B6+kGSCM+dhdrVi6XriNEICJC8+FwSF52DVGOv+Y69+58qnvNU8lLbJzj9eeiZGaeU6PqyZd0vmXv4a5e/qKfEBa/6GgvPfjOHd/6R7OQApl6gaeZaWuecT9eeeznW/SjhaA2KEmX/7ttoq9JoXnUphmgiiCKJnkpFasq29b4TK3q80Ef3fT8jOzlATeMC5Koa8uODpLJ99Dz+KJM9BwCLULiKqtpOouedTWZREwmaaFi0nkJEJzfYTbbnCIXRAZIjcWQ5Qt7MMKb10Z23MzuKgkxLZAE117yC9j8cRRCFEiEhzO/EOnAUsbXZrjtqezuYdUn0YjJMMyQiFYxS8tR0Z9laP9Zvg2pmNASmhVbliqs4qXuICUm1UBOVylcq4nJ6RMCSYOASm80MT7jDXMgkerRiuV6ONw92KIniN6qk9RIxIeVNL1Anlq2cS8dPQXJWhiaxA4CrV/8b92777AnOeO7iJF9HEJlgGMMyKYh5RMXeNJpqhQ9boNQ2L+TIwB60jhpiSk0JvLlSfA3ZcIGt+QdJiDXUis3sVp8gLEVplDtekHvyy4ObPgPA2vfejAIosSSxd32M2bf9meFCF5Jpe3N0RBZy78jp9d44I7ZEkg1kx22QQw8wMDYMjd79j5BPDTJn5SsJj0c8SZPduWKchLlGSEQQBOpmrKBn70Mo0SqM+iims2ipqaG19VoaV11C1wM/p+/Q4wE9s2zCNZLEtAx0LYskhYjHbD2VP98mIjKt9rce67c7ki+Cp04fLRFkVy51N6HpgMG6EybGURVCOVSPFi9aUWkQSrk8z8IiUsGcMndAut3+Tt0eJqJhYUpCqUxLSIRdxmcOcO4OIeSWfJ1IZNQshbwzlXJYH1Pyvgs3uQBe8NljZe+ywNcjojfsnSsvgxGWSv02/DyCC+DX4qcwbRsG4oQrJJAv5nYolSv9Lbty/4ht5TwJCAKZhfV2eQAhAXby6uhQ+aYjveWkZpbk3RSNL6su/V2o8W4y3CC/oZTDOjnHPXsSqUg+CJRDHU0RQrB8L953CJCvc1nFubxZnPHpfl96rGj8UArBVLyPsI6Wm0TPp+3/c5MYk2kKSgFJiSCGwyhWFCkUQZQUJrp3M3rgaQw1Z3vURZPMXPNy6jtXY8oCom4xdORpJvr3k2ybz9zVf1MCghwPCbcoUozunXcimBYLFr6cto5zME2DJzZ9FaOQLYZyg+rWhRh6gZGuHdS0L2HmmhuoapmPJClouUn69j5Cdvg4C9a/BSUUQ9naX3GtM3JGXkzp/N5XqXv9DYz85LdoPf2Y2RzRZYuoe+0NTNz5AJP3Po5UXYVUW83Yr+5CH0xR97pXYJkmgiCWgRBsC34oWm26VIU+NMbw936Oerib0NyZRFcvJv/MAYzJPIM3/5zcjn1gmojJGOF5M4lfsAaxuoHYugZi61YjiBqFowMU9h1F7epHCCuIsTBGKoN6uIf0I1vtLJqSRHTlAmpuvILogmYsQ0A3XPpHskrghvO/u8zx8HAADlMTK0AP07DL3CCI25OiVF+cWleaFTHQvV4Q7mNmQSrz3AHxp4FgsM3d/kmEK3GLMTROeF4ngiieFOj2fGT2t75O0Wkf7fAQ5mTWvs+Cb03jiGu8uY8pHbMAyO85TmTRXI6+wyZSZv/si2gjkwx89X8RI2GSV5zL2K/uR0xWk7jwrBforrxy4LWfAWDurz5vgwI1CZo+/AaSe7rIPPUsYkhCiIRInL+SA3/zry9Kn/6vidzUQPbJ7Xa+ywDjNsswSD+yicK+w9S94cZSWJRyhYBGi2MxunIR0p8exgqHkJL2eZYqIcgJqq+7lKqrLmDkx7cx+cCTlcgw2Hl1qpNYpoWZzoIsEZ7dDpT1yVQgsEMEWIbgAXvdFu6lc1z60CFmS7rPKOu+oDKnH359WPJoCNCHbiLCY33ukAoOMAw+fSgAFpZz767jHn0IkPfp0qmQ/LyXHBZcv62IiZh/noTFNHIiHXpSThiW3U/n70ApiN4Ou+uFfViRRen52r+L82HI9Jxn6SK4AH7B56ljauVrOgRGxRzrmwtNTSyPZ7dXTnGeOtkyz5gyBEzVwJhIY6QymKlJ++/JNGY6jxAJIUYjiLEwYiSCEA2T33OYzKNPY0xMgiAgVSWouu5iqq66oLQfym7fQ3bTDuTmBhr/7o0lLzyHiHCLGE4w8ciDmNkcNdddRdWVF4Ek0feF/0TrG4Ri5Jfw3E6U1mYyT24lumQh1dddQXTpAsRoBDObY/LhJ8g9u4/6d70euaGu4jp/7WKdQvimaXP9nJFTlr+4p8QFr7IBXMu0kw2LosvVqmiVWMiPs+nPX6Rh2QXo2UnGD+8ELNoueAVJtYrJWJb8cC+ZY/uZd/V7SYTqS20MDO7k6AM/JVzTyLLrb2Lk0GaObvwNohIm0jqTmqVrScxdghxLVCQRffaLH2HFP95c+r3zGx8p/X1t4/uhpgrdVEkVBhnP93BsfCsFM0PdvLW0rLqSjtuPATYp4cjEsjpqNvVgNpSBGT1ZDPHjShbtBvbkgkVoxBtkUq0Pe0JRQNkzQU0InlAS4LXeDI+b5OtF9Kjz21vXISYABN1CyrniSrpDbsTd1miWq7yopHXLE6LDT1C4LXCdkCeP3/cpInKSqlgbVdFWZs44395YAvdtPL1WOVdH3wLAkNHDdu0R6oQmVioXIgtFq+uTICWkxQvQjQIP7fsGyVAj1S2LmDXrEmQ5wkS6iz27foUkh1h91gcIP76HndYTDBs9rI5eSoNpg7+nO/H1ieTa9r/3/L6755YX9fp/DXLpJf/BZKoHSbK/TU3Lct8DX6ShoeEEZ1bKgjWv48C2X3P2Vf9CbllZN0k5i4kju+jdcDtaegJBkokmGzlr2bvJzyiTkkGkxORoF0NdWxkd2otpaKw+/+8JR6p55M6PcfHLv0pqZlmPNj05wSM7v4Gm50jWziRe1UokUmOHlcqNkjdSCKKMUlNP04JzkSN2OIzYoF4iJADPQtABi70gsv2tR0dcHleucHoOuO9OLqwXQXn3ojcyapCvkwi7PLecc6fKgWAFgM2SaqFMuqy0wl59masTS3pRMC2PZ5c7PKCStVBdVhPTrUE8RlHuBM+uXYroA87d3iP+EF72Bb2eEvHe8lygupIme0JMuQgSd7gmJzG2NJ4FV+JzcxpCwiOueWRihc/TbsJ+AW5CAgDXcxg92x7/guEjJKAUiql0KXcIYb8Flf8x+fYzfk8JKIdbcsQZex6io/i3f/4MvCaQ11Icf+p2Rg9v89dGisaQlDCGpmKq3lCPciRBw7yziTfMRM+l6d5yB+FkPdHqZvRCBjU7QT41XDJsWPzKj7L7NnutdPY7vlFqR8umOLLhV6R69tIwdx0z1lxHzVgItTDJM7t+QSrVzZJX/ROheDXCpIpS/Lbd73XTz/6x8saep7zULKDOyAsvL+Q7L1mqmybohtcToiiWadL1gU8QP2cNiCLZp7djaTrVL7uC8OyZaEOjGOMTZJ7cQuN730ZoYdkwJL/vKIM3/w9iNEL75z5G4XAXg9/8AUJIITSzjfg5q4iuWWZbIMpeRXD0rZ9g9s+/WPp95E1lMGDOrV8oghEaalcf6qFuUvdvQh8YIbpmCTU3Xk5oRjtiyPCGaDCFijIH9HCXeUEPsVJJGWIJWCuf5DpHExHc06K7rmoTOpbbU2IKq19BwEs8nAwI56hfHxg3nTj6uedzX8YqqITn2OBJ7YWXIRbHxKF/PL36bPa3vg5Aoaub/lv+G6W5gaa/fydSVREUnmoH7VsoWIbJ8Y//O2IyRnTBAqquvhS5pppC/3FGfvQbzMkMzZ/8W6TqasZuvY30n5+i/p2vInHOOQAcfc/JW6CeDpnziy94fh9+4+kNJfX/B5nzta+h9vSAJCGIImY2y1P//M+0t7efclvN//B+Bm/5Li3/9A9EZs70HMvtP8job/+A1j+AGIkgxmO0fuTvkJLJaYFgtXeAzIbN5HbvQx8Zp+Xjf0eorYWj77uJzu98DctHoPV/4b9Qu3oIzeogNLMdub4GsSqK3j+GMT4GkohUU0XyknORa20Mww8C+8e9IJseK/ISQOwLP+dIkJ6bqsxUJY/OKluXF+udgj60SmSt9zCiZetCmFYfCj6Psmm9xAQLYQqviCnbmEKcxy0VTj84aoStk48KdZL1rJAVXD9o6xNyxnaw5zkAvvnYHZzEP1fj95aQzMoNXdANm4J33Djt+MeSv55TnM4zftt9TD78pG2c4BIxHkOMRTALKlYuX/JOAhCiYeLr1xBdMg9jMsPE7Q8gKAqhzg7MbA5jbAJ9ZKwYVg0a//4dDH7zf0vnd37H3jOYuRyjv/oDmae2El25lLrXvAK5oRYzn2f4h78kt3M3zTd9gPCsdsxcvjy3QWkMvhDzz0ttn+D0575ds4ifpKdEZtLkquXHTukeHn30Ub761a+yZcsW+vr6+P3vf8+NN94IgKZpfOpTn+Kuu+7i8OHDVFdXc8UVV/ClL32Jtra2UhuFQoGbbrqJW2+9lVwux+WXX863v/1tOjrK69qxsTH+4R/+gdtvvx2AG264gVtuuYWamppSna6uLv72b/+Whx56iGg0yhvf+Ea+9rWvEQoFhG5+EeQvnlPi8dtumvb40n++GcusR96cZPiZxwk1NhPtnEPu6CF6H/9jRX1JDqFH7Bjgpq5hTk7aianFEJZl0TBvHVVtC5Grqktgdy4m8OyXP1LRFniJCLfcPfTfpb/XvudmEpzNYv06hvdtYmDHg4we2EJXvJma6k6UyX6knIHamkA6GCE9v522Mftc8fggzqvPrSwvRJxklEYxVrpa7zOdxQ4/4SYmBMO2sHUAFcfi0j5meUKTREZM0h3F+Is1AuFxqxQiplAjl8E8SUAqG9OWZHyBzWhILtzenUTUsTh1ExNGRJzWcyLfIDNj7cvJDBwlkxmjv/d+ool6muqWTHnO6ZC8lcHCRJdN8tUiVUodhJQyR5UtPwB9aLjifFkKs6T1ZQwaXfT1PsXw0LMIgkg2O0Q01sDyVe8gumEfCCIrOJdd4hNsyz3MSvkCmqQOrj677A1y7+Z/e0HvFc6QENPJ5Zd9EdM0eHb3LxkaetZz7POfT3DzzTdPcebU0ly1iMNSiG1//k+qBlcTa+ukMDpI9thBMn2HSc5cxJLz34Opq+x68Jt0H99Ip3Qx4LXcnpwVKXlS7X/ktxi5DDUN8+mYfRHhSDXpdoW1772ZBFDVZeuP8EAOSxSJRRqYzPZiGCot7WtJVLd7gNt8neQhEJWshZaQSjrDCAsYLhzI9M0c/oTDJQDY+U8CvWh57gDvpiwEkhtuy3WwiQ0tXvlcjZDtEeGsKU3ZJiYccFuPCigufFwsmJhhkWxDpVWQQ06UdKcieLzIPPdq2evYUh4JV3Nufejk3LF/WERGyovN0LgrpNTc8s15QwWd7G7g1MWoiSForkRydeX42LrsirfuCkOlDJYfppuQiA56yVvBFWIrM7+W2MFxoExIAORrfRtXD5lTvLbzfJ31f/HxBREObrFk7/7Gaa/k+eB3sPR5aID9HpLdGrnG8kC3hLInhmUa9O/fwPFd9yLICh3nvIJIdRNKNIkSS7LlJ59i7U1ePWvqOg/929tJpVLMmDGDC977rRLZlu47RG5yCD2bRorGqK5ppXF+DUpVLeGqemJ15cXo5h/+I6vf8DlSfQfoevL3CBYsvOhdzNA64Thk84Ns3v9DLNNg/nUf5JnffJEzckb+muVEG+LZt3wdAZHQjA4yT25FrqslunAB2Wd2M3HXAxX1xUjYBpEs2wLZGBxHUBTESBjLNIksXUD7lz6JlKwqx/8PmSXrdr+4iQi3HH5DGcjt/MmXCM+ZReKyc8ls3M7EHx+i719vQW5tJLJgNlJNFYIsgiAiRiMobY1EFs0tgRyemNy+spIVsCXYRIPkA1D8VsBuYsJ0AXGOxaxTv+Cz3i1MQyBMUX5S4JvPC246kQoCdVdcRXbfPvTxcSa2P4CsxKi+8MKTa+A5ijE+gaVqmDkV/dgw8vzqKeuWgLdSAQiiSP0bX01m2y4yW3eQ3b4LqSqJ2t2DVFNF44feiVwEC2pf/0owRUZ+8DusgkXyovV0frccPu/o+6bfN58OOUNCTC1zv/ENLMti5A9/ILVhg+fYh/r7+e1vf3vKbcZnzEWqrmbglu8SX7WSyML56MMjFA4fIbdnH+HZs2i96UOI8Rh9X76Z8Xvup/41r7JJvSlk/Dd3Ujh6jMiSBdS94VWE2loQCwJzvvl1UCq/TaWxEe14H5amEV21hOiSBV6M1gFjQ443BFiePDCCNz+AKXhDGbmJCEMsW6o7VuamUNZzjg46UZnTni6WHbH9+jBk2ISEcw+iBQWxvO4L0oduksGlDwWKDmGqAAhT662iThPVcoUy/j29snOfEygvknF2BdFxElsS06/7fCKolYZopXMVy1dX9FxTMAUvkWYK4Dwrp55SJjIszUVmmICrfcsQwKicU90PV/AREVaRFHOP18Cy4ndimSaZjdsY/82dWJpOzY1XEJrVhlidQKpOcPiDnyUUCtH54y+X+6XrbHnF+0ilUrS0tLDkV98qjUWte5D8gUMYE2nEeJTIonlIdTXIdTVI9bWEZs/wPs9cnsLho4zcehtmJkvDm99A4qw1CIKAMZqh/5vfRh+foOk976D/K//FGbHFsESMoNi8gXVPvf1MJsPKlSt5xzvewatf/WrPsWw2y9atW/n0pz/NypUrGRsb48Mf/jA33HADTz/9dKnehz/8Ye644w5++ctfUl9fz0c/+lGuv/56tmzZglRcs77xjW/k+PHj3HPPPQC8973v5S1veQt33HGH3XfD4LrrrqOxsZHHH3+ckZER3va2t2FZFrfc8pfBCf/inhLTydJ/LgOAlmFg6hpWVRgsCyM9iXmoDwSBsBpm713fZM7Fb6Fm5jImBw8xfvQZRo9sw1BzSNE4pq5jaQVqVq+n+WWvIWFHU+HpH5xeq5rLL/kChqExOPQMY+OHSaW60AQVyzKxDB1DLYAAa87/EIkqO5lpbKvtUWG22UCPVlNO8Kwli14HJwj5V6guK1cj7E0i6rbMFXUb7HKHDXHEbaXrkBKON4M7Pni20Z2ctXy+Q0q4E14DFOpcbpruUCsua17NFQrF6e/uh76Dlc5wzvL3Iwgimfbyc0nuHy/9fc/O/6i4l1ORK8//D8ZTXew5/Edy+THOXv4eaidcJJCLlKC6PP71hjKbbETte8xmh9m//w+EQgla286mpna2J+67uHUPpmWyS9/AoNnDmgVvpr5qDvDiEBJnJFiuvODzgB1Gbd/+2+ntfYrFC1+NZZns2fc7AJra1xAKJ2iecRZP//nrJ932ZVd+iWxmiN7ezfQNbUfPTiLHkoQbWqlfcyF1TYtIHd9PuucgxsQE4z27WfWKf0GRoyWr+LEF0RLQr6s5tv7q08w+/7U0zFtXkadhy/98hItf/lXU/CSj+55C03PUrrmQo9v/yGjPMyw87+3UzlpGeKysVNxEgGOhLlh2aCW3B0KJmPABxY5YIhVJocFLYrj1lqPXHF3gvpdS264pypTtTYD/nuW85bmG/7puPaW7dJ+/v+ANASQYEEq7PApca1iP94RUzvthKmUyONZfvrDbE24qUqKktwWQs2U97b43d+4GtzeGe45wJ412919x5ekIHegr962jTDJYU5AS8nCmfF33skF3Xdh1bmZ+belvt+fOdIZJStq7HFGTU+++JJ8jW3mDWfzPNzYDN3IBqx9Js0qhyhxx50eZGD7M4e2/Jzs5QPO8c5mx4hqs6vhzXkuc+4ZKXeK896d+5G2zfvE5TBzZhVGw56TatiXMWfcalIg9FyWO5ejuf5J9R/5EctYiahaupXbRWnb8v2DjihdKXmoWUGfkhZe/1DuffUv5+7EMA0vTEEP2+s2YmECbHEOfSBFpncnxz32BuhteTtXFF5I7fpjcjmdJP7UNc3ISMR7DNAwoqESXLqbpHW+Fotfv6QaBO3/0ZSzDILt1N/ndBykcOIqZyWEZpn0P+QKYJo0fehfRZXZi+1LoCcda2G0hrBdBELcRrwPMad75rlzBQpgijrqgClgRswRaWlMkc3VE1CoLTyaqwQnBtymu55bBX/yC3MGDzPjEJxBDIaR88An7P/n8dODcr38Dta+Pod/9lsKxY7S8+z1Eli844Xl+8M1ULIyJFCO33gZA4ryziS5dhCC6FheKhWVZjP3qdiYf2kDDO99IfN3q0uEXg5Q4I5Wy4PM2JmFELcYfeojRO++k/sYbkWtrGfjhDwGIL1mOUltHYukKur/7zZNue+43voE+NkbqqadIP/00+ugoYjRKqLWV5LpzSKxZQ/7IEbJ792Dm80w++SQzPvZxlPoGzHDRCLAglP62TJPuf/43qi69iJprrqwYh4f/4aN0fudrGNks2S070AeHSV58AZOPbCD14CPUvuYVVF9kE30lINjjEeFqzPQScaU1tR8Edh233Fbspo+cwKXnCNB9QWUn0IelcjdB6zhUOHrIox9df/r0oX2ua+2t+sjaKdwLLMF+RwBm2Ar8+6QJBwGknIARtUo6z4hYU+q/5yyuWzEiJ4HAnkyVqYgL/6RhgRlyjF2nGHuApfiVrOvvabwlLNmq2P9ZslXpUREggiFgSVPfrNrdy9gvXlL8IAABAABJREFU/kDh4FFi56yi5jXXoTQkOfq255YfyE1Kl6Q4Bv1GGzVXXsHkpicx02kAwnNm0/jmN6DUl0MtZXY9y+D3f4jS3Ez1+ReSPOccDn/sxZ1XXmr7BKc/d+6cQzx5cmEhM5MG1604/JzvQRAEj6dEkGzevJl169Zx7NgxZs6cycTEBI2Njfz0pz/lda+zw9D39vYyY8YM7rrrLq6++mr27NnDkiVL2LRpE+cUvS03bdrEueeey969e1m4cCF33303119/Pd3d3SUvjF/+8pe8/e1vZ3Bw8C/yTv7inhLTybNfLC8il/7zzRCXbH0tCCTUaqy2BMPPbKBr0z1ISoRE02wOPPA9JvsOoiRrkaMJDDVHuKkVbXwMbaLA+LZNNFxyLZm2JHs+d/o36g/+2bYuWfOBm2nlPFp9x3VBZ/+tX+Xgs39g6dq3oYRiEPF6QSjjOTAhO6scwsWUbNDJA9q5wLNCtUB01NauYhbAKnlRRMa9yVX1qFBWxAIlBW+Eyok79Yg9NByiIVcvlcKyREZND+mg1kildqWipbHbKyI8qpeICcG0SlbJpixgRCoXD06M+dZ1L2Pfn27h6YHbwLLQ940TTTaSrJ+NkK8nHm4IjL35XKSmaibrlr+fp5/5Pjv23co56z6EJIUQC64Y98VnEu4e8xASeqJsQh5NNrJ65btKv8Vs+Xxxm+0tIQoiy5UL2C5tYvuBWzlr0dupjrZy9VqblLh3S9lz4oy8uDLeYtH7yNO0rbqamrnncGzXnQAIoszkeBe5zDBKOHGCVrzy0P2fKP2t6zqpVIpLP/tjJrp3k+46wNCGe8kNHQdg7nlvZOz4s3Rt+xNzz34NmTZXIuIiUJka6gIsom2zp7zmcP4Yex76Lo65zuim48QbbE+seJP9f6FWqrDMd1uRO9+hA4i7CYiSNbuzjnZZm5cW+q7Fnqjj8bTwt+dv1y2lsEqOurPscE5GuDJMnbvfbs8wI2SD2KJmESrqTUc/uokJ0bCwRF/oIJ+4gXp3mCenn6JmlTYW2ZYQsX6VTGsxRF/xHWbaFE8y7ERv+YKOdb4eE0rPQ9QrvVOej7gJCb2zufS344kD3vsUdROt2R73oX6X+4mLkMgsLhMbbhLiRDIVeCWpFtERx3tP9BBCgkUp7wf4xo1FOddEpfFTqU7F9VzzabalqOvHy6ER1PwkR5/9E0NdW4k3zGLptR8mXt/Bkz95foYNG2/9aImY2HhrZb6I1R+0gZBU1x5G9z1NtKGd5hWXEqlpYsbBKMJRC0gBML68mmjrahqlISaGDtJ938+pnrfyefXvjJyRl7Ic+fvyNzP7lq8jusDdUKQOJVRDunsrfb/8Jogi0cULGfr5rWS2bEVKJpGSSczJSZSmJsxcDq1/gNwzu9GGhggprZ72T5ccfbsNTMyyvkpsdcD3qVkM3Pxdxn51B0p7ix0qxbFIdoAQU0DQhPJvimCfWATfdAdoc4FnedEFpnmBOMFHELjDKgmmUDpPDPKWKIJwYl7ELIaTkfLCycU7D6gj5YUSACblhGnr1l98FV07djD4vz9GDIfRxkZR6uqJzppNZNZswi1tpQShz1dCra20ffBv6f/BDxj82U/puOljyFNs3M0pQp+ImoAYq6blne8s1xXL6wjBFKAgIAB1N96IlSkw/KNfIkYjxBbaXuOzb/n6CzIuz8jJiZixmHj0MarOPpe6sy9ifONjpWPa0CCZ3btKeZxOVtxhxyzLYmRkhHU//jGFI0fIPPMsff/93+QPHwKg/sZXIiWTDP/+97S88132N+n0rQhuq/1DmLkc0Y7OKa+pdw/R95+3YObzCIpCfs8BYkXyKzJrVqme3xvDAwIXh66jPzyAsyaUCQe8ILBDHGAIpfYsXURwyIuiXhPcFu3TlTnPYCp96BNBtb0eHH1VuhcRW6/667v1oSYgTOclAd4cEG5PDEfturwQnL+fSwgmKVfux2knJPzXOoX2jXAwYC9YIDj36ZogTH/94k/R5y0BPkKL8vtyiAtTcREZbk8V/3nOmHG8KwyhPP6gIqR7xb0Ylc/DzOUYv+M+Jh/egNLSRPOH309kwVyOfuD5Af5H33dTiZgIIqXn/Kcd1jV/7BiTG55AjMWof+UrUBobiTR22HOgk/tRsIjNmEvVeeeTO3SI4dt+S3T+fOZ+7Rscuun0h3P9axMDAeMk2UGnXiqV8pSHw2HC4coIN89FJiYmEAShFHZpy5YtaJrGVVddVarT1tbGsmXLeOKJJ7j66qvZuHEj1dXVJUICYP369VRXV/PEE0+wcOFCNm7cyLJlyzxhoa6++moKhQJbtmzh0ksvPS39PxV5SZMSjpzz1m+QAJ78yT+y6u9vxijkGNi1gZFnnkBLjxOqqicUr+GZP34ZU1Np/5u309CwnL4DjzD44O1ku4+AZRJftYLa61+GzAtDSLhl63c+UvL0CI9DocYuV9IyHZe8hqN3/i+bH/86SxIXEo0vRBAEtDrbE0AZtq0gY8fSFcSEYFglsChdjPfugDO5OrFETOgRO7SJE4IklPYSE6bssqx1gTfOJO60W6hxnSOd+COVXSC8O4/FiRJeu6/rSKK5k+ZllzB2dCfhqgaiVU1kJwYY6trGYSwiSjXttctZ9frPokSTbP7hc1Om92/4FADnvfbrdCZew64H/x/pdB+1kXJsNoeQAEgvmTqvQCjlRVrNSNG93rAw1tmJg5W+CURgldnEw0e+w+HeR1g99/XPqe9n5PSKvm03lqlT1TofgJnLXsaMJVcR0iSOHXiQY/vupa5p8XNuX5Zl6urqmDy2n2N//AGhqlpC8VoiNc3kxwcQqxLMWH8Dxx7/Dcn2+dTPXm0Tka611PDejSjxGqqNOoS0iRvr3/Dbm7jgFV/mwIafkaifwYKL3oHe18ezm3/ExMhh4o0zEWur0QkmAJxQRDYwX86zYIk2sO/87SYc3OCwm2iwxOI/n9qQS4mjXQvSIN1iWXhyGgiu0E+SUA5v5CzyfSSHmrRDTiX6g3VPZMwuL3kjuMNTKTYxUXXE1sWCC3xPz7I9GzweCw6p8f+x995hklzV+f/nVlXn7sl5ZsNsDtqkXWWttJIQSESRDZhgDMbYP7BFMDiAZWODDUKLwV9sTDDB5CCCUEAoZ23W5jQbZnYn587dVff3R+XuntnZ1SoAc55nn52uuhX79rn3vu857yn6jwccQuJMlrEKiHu/F2/2mp1FUYi6ixDNk8TllfrykiV2cWql4BLCxblNzv4ZZqkCEBjJIIPmfUohIGS+tPR8l6Sd7PAUbi3pY74i357XEky636W3AHp41HDGIEUv6UueccsZs4KgpUvaeK0SSGRlm7jjnntQullFGgbjWx/n5O47EUJhwYY3Ur/sYkf+8ZJ33HZeiImpbMeXb2butW+h+4EfUN26lMWX/TFaMEJotEjeKv8R6jcfumb3OGOramh/6ZsJ7HyQvi33IGMaF/zNZvZ89rmd88zarL2QtvRTmwmicPATN7Pos5sxCnnGn36K8ccfpTA0iFpdQ3jefHq/+GWMdIqG17ye+FWXktr1DIPf/g65k92g60SWLKHuFa8g0PbcEBJeO/GejzL/y1ZdvaB0iQFVUPdHN9H/H/9D7ydvpeY1N5K4+jKzsLMNpNjkgm4RE7Ymun3yUrCuEsFgF2qdoui1kneJBR8IJ93zmYCaB2DLurUttIygGLHIBS/RMAPwrSIA5rmubcH6RuqvfzljTzxCoK6eYHMLhaFBBu/6Jeg6ajxBYu16FvWNEKipY/8/n5sfPPph08cv+dfNtLz2LRz7t38kf6gLbcPaiu2VnPCTElMBcNIC3uznszcHJAJB/R+9keyRLsZ+cQ/Rv3lupWxnbWaW6z2FPjlBdJGZKVN96ZVUbbgUJRBgYvsW+n/6fWJLz/27EkLQ0NCAfryP3q98BTUaR6upJdQ+h9ypblQCNL/mTZz+9leZfOARaq/cBNIfyT7x1JOIYJBwx1yUkt/SkY9+iEWf3czQ//0AtaqK9o9/FCOVoe9//oexn9+JWlNDqLnDBN9lBVmdaUBgYV/LnpsFXD/lA3EDhum77POVSPO4vpDpt1Xwh95MCa8/NO/bcWjmYVkFURQYQWNKf6jkXd/nm4Na/qg8y6Gyf1Ozpj+cEtyfAQ6q5s7c5rk2fQZYa6Vn9PrD0qwLL0nj9YNeOSj7eIc0km4bbyaFUnCJDKlJF9+y+619nNWPfBkw3kwJ79LxDMU1pJSktz3D6E9/iZHNUvOaV1B13ZWO/OP8/7r1vBATU1nXX3+Ilj//M/q/+nVC7R20/PG70KprKvcpKVAjEVpueD2Te3bS+6NvE1Djzzmp9btiZyffZPaLOXP80ln/+I//yC233PKs7yWbzfLxj3+ct771rU7mQl9fH8FgkNraWl/b5uZm+vr6nDZNTU1l52tqavK1aW5u9u2vra0lGAw6bZ5ve9GTEpe8w2L/JoZYeOXbKKYn6T/8OPnMODWL1qKGYwzteghFDVB36SYSK9YSamgmb0DdxVcRqKkjow8TW7cWraYagP0ffO4X517pKZuQAMhXQXDFIlaG/obup37BM8fvIr2ujTlyke/4fFOUXLX79RTigvCI7sg0eSOcwQXISrcXogqBtEExojgkhB2x7K33IFX/YOsFJ20gKVejEO23hb1xil4HUgbC1tpWhAOOebMifPcU9wweHiDRGwlsA4WtG19N68ZXA26xW72QJdV/gtFjOzl2bAvKz7fTsvolbN++iVWrVhGoUATRazfO+Sv//SywfpTNIcb6Dprb6mNko+7IGxxzI5mVguIDrmwLpHSHMLKBwLI2vePO3xO5AXQjT76QYniiC/WiNect82PWzs4KcbPzxQLzCZ6q4+S2XxJ85fsJ5TQgyPF9D3Ly4D0kmhagtJY7+rO11P5nCMXrWP2qj2OEFY49+D2yY/10P/kLGpdfQaSmheOP/5iajhUQDNO74x5Gu3ahaWGSg8dZeOUfo8dUnvr2h7jiDSao8dhPPsJVr/4cup6jkBlnwcpXooVjaJ2LWDf3FopaEcUq3G2DxULHkx1lZh54x+LS6HQvYVkxTde7Tfh9iiNNZP2OFV1SDImKElCOtJuUKAXzt+8t9qzoEkMVvnoOtp8KTkjyVW4NjGSL4hATisdPlVpkSCfToNLwsCeLoKXGbK+piKKOVBRi3RlkwH1J2Xrznao5lzD2ZloEJw0ip13pI68c1chqc0xKN2lnrJXwfJgtyyRV4fxdjKjoVsiQEXClpoID6fIT4Jdg8pIqXrkrNS8d+SVDFQ4pVbrYSTf7J4aKR7LJlzni+TqLUbcbBtIV2mJ9P/a6QyvpC55A4vRAD92P/IT04Enql11C55KXEwjFIAd6mGdNRpzJLnyfOY8YeuYRquaupPNl70azMoBytRqJ4+YDyrCG2H0EgPDBNIfaDpMaOIkWcYMaZomJWft9taWfMn8nhYkxWt/0DvTJCSZ2bSPXf5r48lUklq9m5PEHEapK1cWXEF+1llB7B4aQxNasQf3zKPnuHmKrVhFobATg6Aee34hBb6aCyAtCjW20feKjjP3iLkZ/+HOEVEhcdbl7gKWN7s2KMME1ac71LcDPiczNm/tE0YryBR+xYISkX07JE33rkAml2Q/TTFdtgMMLdPhAjzNMdc8GfGvYsImGDZt824xCnuzpbiYPPMPEti2MP/U49ZdfyxNPXMqFF154xijG5Z/cXHlHCNKHDgCgBENTAjnCCxKXRGY4ANwU4Bu40laFkQmKwyMEmptIPbOH+OKV5y3zY9bOzuw+GalqItTcztCvf0HV/BWoWgAIMLFrO/23/4BgfROxpvnP+nrpvftAKCz4y79DxjRGHryX3KluBu/8BY2vuIlQ+xyGfnMH8QvWEKiuJfnIE4w9+ShqNErmxDEaXvoKNBHh0EdvZtHnTCzlyEddv5Yf6KfuJS8jGKqBUA3zPvoPkC9gxDWEqjo4rFIQZX3VBwLnS0BdT1uvT3FAYAOzXg1+EFjkFGce7Ejj6G5Eeuk2H25oiLLAFTvY8Uz+0HkGH9HKtFlcXmLVuaZFUtj9RA/Zf7tttUzlDLIyf/cihgIq+uYpMPupCIyp/KY3WElID4E9na8sIbmlZ77v638Bf/aavc/OoBDSnyVjqN5Aqqm/kMLgEMM//hnZA4eIrllF7Rteg1ZbY9/NsyYjzmSL/80cqyYffpxQaxsd7/uAK6Ury6VuAfRsjr47byfTcwKhqijhMABL/mUzh/7hD3udYCAwZvgDtNt1d3f75I7OR5ZEoVDgj/7ojzAMgy9/+ctnbC+l9GGIlfDEc2nzfNqLmpRY9+e3kc32MrDrIUYOb/WBOYFwgokT+9GzKao6L6D+z9/pTNT2f6T8B7Xgi6Y8QtcHn5+UV1t6yiYnSkm3utEodUvewpPj/fTvfZjwFc1oDQ3UHM2Tb4oCEBovkqvWHBA/W6c6YKKWlRRi7qBciApf5K4eFI7GeSGq+ByxVF0SQylKRxLKLuAK5n4vWGMTAoW4SiBZOS1Vy5jblby7P9NsOjphuECjDf6dq6mBMNXtS6luX0r7hS+n++lfcGrrHaxf/0vUQJi6hRdSs2AtaihCJKmgaiECoRihtPU8K9oI7zvtO2c+n+TYQz+mb2AnreteSlXMEt6S0kdIFGPmT0YpSIeUARPkLMQ1Asmin5Dw9NliVKO4oI5I14j5HBevZUFjjt6jj7HtyP+RmHiCzovfwKVv+7wDxukhv4zZrJ1fu3GxVbhyoVmENxhKUL/sUnq33Mmur3+M5S/9/0g0dTLWexCEYHKgi+NP/wSoXPByJnbJO25DKKr5TyiM7HuakaPb0MJxk5h44mdO29NP34kWjNK77zfUdK5BkQptLYupm7/WAURTLf7fkoKGEApZXNBYRjRUy91768loHp9hBAS6LzLE86cnkwpMMsMGeu2MA8DJxvKCwIYm/OB0TDELVNsEh1ZOqhqaIDRhUIgKx/coeZOYsCXiVCR5S4LJyVCwa5JOWBkVAfNcuSqFyJDrl2zCNJAxCGRcv+dtk11gZkQpBev5Aooj5yYKhkNMKEXp+D7zHjyT2uCZwYP6baY/GF/pRj0ErDo03ho8mmcSXwyZ5y16akf45LWszLRsvYYdVpavctuGRwNl5/daaLxcW0vNud9z+Pio83d6UZ3j84QuiWV0Uq0B33eebvISEqbUn3l99/z5av/1jIC7+LG/Hz3kZrQ4+0qHEk8fLkRBtd23vcAu4l9flMy99BDo+Sz9T9zN0K5HCNe1sOwG0w8AFIGnv/X8AJbbv3IzK978t2SGT9G65iWoujnW1/9wl9NGrlrk/C92H2F/20kmuw9R1bmSeMfi5+U+Z23WXkgr9g0xuuURxrY/jtQ9fl5VyXYfJ7l3F+E58+l41/tRrKCVgx8rn1ctvM0E7rxSKs+1Hf8LE7CY/+Vby+QgAlqcxte/EX14lORjTxJeuIBQY6srUeIB2lxwTfgkTLxRvkreD+QpOa8sk/D5Qi8BoWbdfd51wtTEgWfRK/1AYcVjnoP1rxIIEp23kOi8hTRsupHB++5g+NHfcvnldyO0AFVL1lCzYj1qJIaiBUyCIRJH0czJiwroEf859VyWoXvuYnTLo1SvvYTE3OWIXDnwZs+XpgTeQvhANh/4hrnPzqbQamppetsfM/7oIwx+7ZuMt7fT+Po3svDW21xgWMKRCv151s6PXfBRcx1v9wklGKLusk30/vy7HPrMx2h/47tILFtNqusQKIL88ACnf/ItjM98DOUcCaTln9xsEgNCIFSV9N79DN//G9RIDD2TYuD2Hzpth+/8FZG2uQzcdwfRRUtQI1FqLrmSmsuudgDG4Ljbv5Z+ajMq5m9ETyWd7YqiQlg150iewBpvZo+a9RMUwhA+kNhHbEq/1NNMQGDnvFZmhfT5MovIsLPAjBIiFtff2P5QgJs1VrDoWI8/tLc7mRDeLAmHZPATGs7vWnjmsDMgGpQK4PBMTc1MvU+PTL8fmCJi/tzvx77umaySv7f9YyXCwgHQvSSEV6q1gq+0paJsfyjy7vFO/5P+vumrv1R0Jc29mT12n5KaLBubpSohpzN23/2M//Y+1Koqmt/zp0RXWBlSeei6+fmZRxz++M0s+OS/kD50gMaXvgpVV0Fn2nF1/JGHmNyzg8Sy1YTXXYaWFzPKgPlDMAPFCcQ7c1uzv1RVVZ3XGgyFQoE3velNHDt2jPvvv9937paWFvL5PKOjo75siYGBAS6//HKnTX9/f9l5BwcHneyIlpYWnnrqKd/+0dFRCoVCWQbF82UvOlJi3V9upphJ8pZFKvt/8AVy44O+/Uo4QrxzKaqhoUUT1C5dT3G9W7lhKj2054uMKDUvoLzi782JTfNWd2Tq7NjEwf0/Y8+PP03dskswNr4WvSZI4648yfbyiH8bhHJSqm3NROkCPTZxUYiZxESmwdzu1VhPNSvE+i35koBw9LSFdKNbvZkUXivEVafAanjIM8pazJoRVB1iIjRaIFdrPkdoyB2d9GC47LyaRzu2YAXkejM/dM/f9jOqahXzr3s7c4tvJjvQw3jPAYYOP83ggcfLzl9bv5g16816D3d1/wfr3vIpCjt2M7T/QYZGDoKmMm/jm6hffDGM2CisoJhwvwfVI09VjJszKG/UdTGqQtTcrmZsbd0ixaj7U8ssqMMIKWhFaJ9zKQ3LLmO89wDHt/6cZ+74dwKJGkJ1zUSa51Bz8ZUOsTVLTjw31p88zKH7v05GnyQQiFHXfoGzb/LQLuqNZtat+VMKlwoGTmzlyPYf8a1vfYt3vvOd53Q9PQCR5jn0H3iE4b49jA8cQQ2GWXD9uzn0qy8SDFejqgFy2XH6jjwKCBrnrWfh+j8iX6Oy7as3YxgGW7du5XUf+zzB6gYije1sfOW/cfr4E4wNHQYgNdqDFBZB4In+ts0mJIRBeeF7e9Kuu0SETTR46xx4i9WDq8uvFqAQEY7/cIhPw/UvwjDJiLwnc0rLSrSM4WQc2GSFvVhRLDJDGKavsuXpCjG/xE+lyZV9r/a5vUWinYWMhPTyJqL7B5x9RkBxiQlFOMQkgB6aeuKiZnWMoELsiAXgF1ygPzfXLDhmExJTmREUUxIHYH6HXmLifJluyc4pOU/9IM9l9DrTQefq3BftfZ/eWh/ZOqVipE4xAliLGu/35ZN4CpVHvnn3Of20QFmmyVR1QQzNqnHiichSCy5BM35wF91P/ZxiPsv8FS+nbcGVKIqKPXoJAy55uwlePvWd527RsfYDpt9PjZ8CIF4SeZm9eiUAoRF3XB29aTWD3/02sfq5zH3JW82Nadj5n7Njx6z9/tgFH92Mnsvy/kUx/uZf/43cQK9vvwgEiXUuQYlFUUIhEqsuJNwx14n+OviJyr+H55OMKDWbnLALd3tBkOqrNzHw7W9z+jO3El21ioY3vYlAKGrWLSg4eQ8O0GJHjjrAiwWueduWyjn5gB4bfMu7frIMUJtm2Cklk89kasYFuM4Irp3JKoGDMkz7NW+g9aqbyA32kjxxkNFnnmJ839aytqH6Zha+628QQrD/n29m+V99honTB0kd3k/y8F6MQoHG615F3cUbnf40FTkj5BTAm7e9NVQaQf9nV/5JUL3iQuJr15E9foyhn/2MU1/8AmoiQbCphWBbG9WXXsGifzfHi1ly4rmxVPdR+h78BbnhAZRAkOqV6519E9u3kGhZTMf1f0T7S95M6vhBTvz0q3z605/mH/7hH87pemoGYvVzGMznmHjClKpGGnS87X2c+NptKMEQgdoG8sMDTO7byeS+XcQWLKHjDX+KVlDZ87mbkVKyZ88eXvp3nyZQVUO4pYPlf38b4/u2kDq8HyOXI3+yx5yf+SLR3b+F9IDwJVNRGwRW8qIiCAyWzylZQ/jA4YBZ5NkrKe0FgU1yokTGRxeIohuQ4pxPLfeHShEnk8zrD0sJWue9ewgH94Luu5BiirmldNtNl+VV6hPVrJl1q2Yrt5+JPWuf+RxfV/fAPd4A2anek16ieGu/b++x3mx9Necnynwkhqf/gYcQs7cZwldrwpt1YWjmetdHSFh/Zg8cZuinP6UwMkLNpmuoue4lKMEg6Ga/VIpUzE4637b0n02/Xzw9YMpPzpnv7pwiS0JKydCj96JGIrS++i0Iqw7XH3qGhG3nIt90Ps0mJA4fPswDDzxAfX29b//69esJBALce++9vOlNbwKgt7eXPXv28NnPfhaAyy67jPHxcZ5++mkuvvhiAJ566inGx8cd4uKyyy7jX//1X+nt7aW11cTRf/Ob3xAKhVi/fj0vhAkpz/xGn68K6ev+cjPpgW4O/WSzf4eiUHPBBqqWryM2dxH7PutPhVp4qxXd9DtSoOWal/07xWKO8QUBFC2Ans0w1rWLnod/StsNf0TtKrMDBZI2SGd+Rd76DlJQptdtp6wVw37n7UulLPgddsAKkvAW+dSDwi3w6TWvX7YAKC3nJy6C44WyawpP+LWwgMF0Wzkp4dWPt4vVhkd0km2WhrknCtre730Htja4Lgyy44MYxQKB0Sx6IUfPwd9C0WD9pf8fD9zzMaSUhKsayCdHiNS0UDNvFe3zriAQijvnsZ/DAVrTlTNEbHLCC/zahAT4M0cACtXuF1CIut9pXikwdnI3k7l+smP9pE4eQRoGC9/9YQ7/96crXnvWZm4v23CL87fIFUjlhjl46l4G0100RDupbV/J2NhxBgf3UNO0hLGBQ077lo6LWLDh9QhF5fC2HzF4chtVtfNYsuoNPP3gZ8947euVNzp/j/7JZUgp2f+L24jWt1O3cB2H7/4fonXtVHUsI9V/nOTgCarmLaduyUVUz1mOgkoxm2Ki5wDj3fuY6DmInvPI5whBVdNCJvqPUtW6iHhTJ/UL1hOJNTgLAT1YGSFQiq7skFoBAHcmb2ULEu+PXPi2FUtIDj3oL0qtZWW5XJGUvutLVfivgUmgBic8xGDMBc/Bzgyw2oagfts4AIOX1BDrc0kBqQpCowXrWPd8eQ/IHhzNo0esmjBF6RATpaREcKx81uclKoMDlpMtISWCA2bBaL3KDTcqxk3fkK1zrxHtN8+faXBn6l4JPN2u++GJMosOWBkdnteXbLPIUs/ix+v37cy6lEcyqfaQ9WyerzMw4T7vxIKo83dksGhdU1r3GyBb557LK2NYKvPlbK6QQCcqFERXs2CEKrfRShZ3Tiq99fp8CxsVwqPuhlxqlF23/4vzORSvZ9Vlf0b6wkaKqUkyp08QmwgRrm4iGKmiEBds+c8P8r3vfY+amhpe9apXld/sOZpNSuQnRtj/7X+h86XvZunxRmd/elGd87foH+ZI9/30p49QTI6hBqOse8MtFGrNfvR8kxLP15xx1l489nx+50ve90kO/8+nyrYnVqyjesU6YguXcuDfyrMZl35q85SExIvNFnzhNox8AbIFlHAYI5shfeAAQz/5MTWbrqXuerPIoVIQ6CHpL+ZqRftKpSRyGReYU/NMKcXklbeDyuSCmvO3cbZnXRDKlyHxLEC30utOG9E5w4hgKQ3yo0MY+RxGsYCRzzGy41GyA6dY+v5b2PM5s5/E5iwk3dNFoLqeqsWrqLtwI8Gq2rLz6ZWWNNOsrp1nmKKNqeVf3kYWdZL795AbOk1+YIDssaPo6TTt7/v/6Pnyf0x9wVmbsa35oItB5JNj9D55B+P7txNpm0/10jVkB3sZ27OFcEsH+eF+jII5J0osuoCOV/wxSiDIwGN3M/jEvUSaOmi/+nUc/tEXzuq6dv84+ZOvYRgFWq97HUf+99/REjVUL11LfmyIya59xOYupmbFBqoWrzIzH3JZUicOMtm1n+SxAxRT/gKssQXLSHUdINLRSXTuAqpWrCUwt71iPyzFESr1R7BIDJuEMEr3SR8ADBWAYXu35l/TC12UFyculmRPFE3/V1rPrpI/VAr+oE67rRe4LfWJNiBuBN2/p838moKIVex56FkSEC+GGhJnsnONsDcl7ko2TuEPvURZWRtP3yz1ud6s/bJ9nvWGTYjZ9VO8RIRRkikhi0W6/vFvwcrKVBMJWt7zZ4Ta2pDJLNljXRDSCDQ0EKitQykIDv7tX/Pzn/+cdDrN2972tsoPeY629J83Y+TzHPnM39P8kldTt2Gj56E9z5vPMfjQ3SQP7SE/NgzA4r/6J9SEWRPwua61W2ovtnWCfT/f23kB0cTM1FzSkzpvXbvnrJ4hmUxy5Igpt7tu3Tpuu+02rrnmGurq6mhra+P1r38927dv54477vBlLNTV1REMmj+E97///dxxxx1885vfpK6ujo985CMMDw+zbds2VKuOyY033sjp06f5yle+AsCf/dmfMW/ePH71q18BoOs6a9eupbm5mc997nOMjIzwrne9i5tuuokvfelLM3tp59leMFLCjuqwLWBJbqvdkxz91VcIRBPE2hcQrmsh3rGY3V/52/Ny3ReLbdy4kUcfNaOghaKw4u2f4OivvkJ+coTGK15G/YUbCWbMjuWVR8lVKb4BoBgxC2kXLWzIl5JmZ6FZztp+x/ka0Ky/A8nKx6g5lwzxmtepa57i1TYx4ZAS4Awcxbg7KhTD7sXsyGUv8Oik0PmAKvODt1B3ae0M897KJzr2fR2556sYepHFr3o/2//rZja85zZGjm7nxKM/prZzDUvWvtm9rxJSovS5S4HS0ralpuQN1Kw5eOVr3ZHV+4xevXX7/ou5NLt/9VliDXNpWXk10fZOtn39udUm/H02LylxvOdhDvc/RDiQYPH8G2iqXY5QFNLZER7b+QU6519HR8flpLKDjI+foOvIPbTNv4KFK1+FUcjT272Fnq6HiCaaWXeBmTFx3/1/W/F692y9xSElUq9Yx9jAQQr5NEd2/gQ1GGH1Gz/B8N7HObX3t+gFc7YqVI1grIbcxBDBeC3h2lYmevaDlEQbOqias5xY51IiDe2kuw4xdOAJKBSpaV9B86qry57dS0h4+50308Gu2WD/7n2LAzl11KOj2Qo+abdsrem/bLAbzGwuLzkRmNRNYsEzDKl5iZYqz0gKjporB7vofHDYJGWyzW6dAzCJCfv3Wr133N3eGiPsqYNQrHIdqZLTUdKm7zJi7m/UJiUA1IzuErBeTUa9nMANDKWQAYvQKFQmM22/djakhO2b7MwQMDNSwB0DoByYN+/T0ritQEp4vyOblPD6PG+WXbTPfE+65cvzCcUhJMzjzLaDa9z3a9+b0PEDLJ55nyzJxPGaPV6V3n9o3JuRIQiNlRzo6bNF6zXbi1fvuGpLbhUjgsxoH/nkKHI8yamdd4FQqGtZzkDfLvS0STApWpA5V7+JusUXMnnqMEd+9V+AOVdKJNyi38/W1n5gM0oe9n7vU1TPX0XH5TfR/GC/Q0jYxdFPPP1zhrq2ULvyIhILVnDgu/9xXjRNz9VebIuNWXvu7bn4zr0gndcKSp4TP/sqUteJz1tCqKGF2JxFHPh/nzgv132x2Fvf+la+//3vmx+EoOMvb2bkN3eSPnqY2iuvoeb669CE+Tv3ASwF8KoPKAWTlC2t3wTuuO5E/1YgKqSoDI6puXJQSc3OPEOi9FwvtPU88GNSPUdZ+vaPs+uLN7Pmg5uZPHmQk/f8H5HGdua9+c/P6bzGVK64ZM1gr+2mCiqrBLAZ+Twn/+cLKOEI9ZteSmzeIg7+8+w64dmY7XdG92+h58GfogaCtFz2cmpXXIwQCsVsmv3fuIXapetpu+omsiMDZAa76X30lyTmLWfeje9EGgajB7YyuONBhBCseM2HEML8UW79mj+AcsN7bmPr1z7kXFcaOpMnDlLMTNL76C/RcxmW/+k/MX7kGQZ3PEBhwsqwFQqh2kZyI/2okTixjgVMdu1F6jqh+mbincuJz19KpG0e2f4ehp6+H0PqRNrm0HTNK81zTLFu1UOeflihP04FAoMnq9q7z3CPUTxzvJmAwGBlT3iIBqlKlJLP4BIPTna17ddKAp+lqOwPHV85hT9Ucv7PZSbcOaqXgDhTHQm3/sSzM6+M97la4bnIvp5C4m4mbSv1US8RVnpOo0RkxIcJBfAXsAZ/3/BlVfiPd/qUDvnhIQojwxQzScYeegA9OUl85WpShw9QHDEBf1SVhhteRc1lGykMD3Fi82cAOHbsGPPnzy9/qGdhK/5+M8e//SW0WIKO17/LvHxJfxrccj8Dj91FzcqLSSxYwb7/+w9isVj5yZ4ne7GtE+z7+c6OVWdFSrx93e6zeoYHH3yQa665pmz7O9/5Tm655RY6OzsrHvfAAw+wadMmwCyA/dGPfpTvfe97ZDIZrrvuOr785S/7Cm6PjIzwwQ9+kF/+8pcAvPrVr+Y///M/qampcdqcPHmSv/iLv+D+++8nEonw1re+lVtvvfUFWz++IPJNy27Z7Luw12Hs+d9PAp8E3EjBnV/63Yhsmqld8vbb2LPvOACRmmZykyNE8hEWvfb/o3frXfQ/9Cv0sVE6LnstAFWHzEiHwQ01gOloijGXbMjVuEx/dECST7gDSn4KfKQYMwmJYswiNqw5jqG5AJW3WJAdiWpLnABEHj1IatMy8zoWYZCPhzyFrt3jg8mZV3EthoRv0mIP5tF+b7FpS3oq7DoOG6izdea9luhYwukn70DPZVj7AbP/1S28kOzEEP27HyR72etRtABajooFbgIpSzPdQ0goHo31qbTjba11PawiA4oDAuueQtnFqFuEHOkWB1cjUdrX3ciJp37KWM9eGpZeyob3mNdJtZmp5bM2c7tn6y0OUTCe6UVVAly+6L0oVe6PZCJpSqXMnbuRU6ee5vjJB1G1EELRKKYnUdM6+eYwjXUbUWqrOPzYdxgZOUJd3aJKlyRfTLN87ssZkNsYYxjjjp/49jcsvphgMUDbsk00zLuQ4ZM7CScaiDXNRwtGSY+eonvXXRRSE8y95HXUzF2JVl2DEXDJxJr5q6iZvwowAeGy+ZY3gsgLAgvQVbdmQ6lJq8iXU0dClmi+Gu49GCpEhoq+AvCREQ+xYMkc2YRHeLjgSB/ZBEQxqhA76SENEkHUTBE1Yz6A1ATacJqAlXFgJEw0JNyfQqoqyU5zcqXmpXMfqQXmd2tnLmWbooQH0hhBDSVrZxP4n19J5TFiQZRUHiUFeGtExC3CQkoQgmC/me1gxMwBXI9oBIZSvvPJgOonJsbNY0TURMm1bAEZMc9rhMwXHO3PU7R8mzdD4lzNkbvLuRFHwoCi5o8cszPQvMd4Fzk2IeG1mp2uBFWuowppETaBSSiUjD++RVjQvIZUKSlM5z/GmypfddJDcHnmTEZAEJy0+qxevqjx/gYMzcyOMDTh+GNb4jCQgkhtC1XBJqiDWG07fc/cx0jffqrjHSy49DXkY4JTu+/lxH3/R/bAASbksHPu5W/4M3ru+X7ZOzpX2/mlm1n14c1E5y0i2XsUgP5NzSR6CkgpUU+NMaoOM3ZyN1Wr1tN6tTlneCEJiVmbtfNh69/rXycUXe6WfV/4GHzhY4Cr925Htv8+2a927wMg1NpOrvcUgVgVLW97F2MP3Mfoow9QGByg9W3vAtw1gAN+Gf76OWreI++UpwxQKwXNKuqfV5AnqRT16w1i0M6RpDiTPRfgW2LOEkb2PEFufIj1790MEUjMXUrrFa+i574fYoxMEIhNDTxUihg25W9m1lbNMaWMDtIvY+IAvMEgDde/kt4ff5tT3/4KscUrWCrMYDckHLjl9+938XxZZug0Ui+y6O0fJxivcbZnh83tjeuvZfzYXk4/+DNznSAU9GTS6puC5vkXEYs0cvCOLzFyZBv1iy8qu8aG99yGns8yf+ObGT21l2TPEYyCH02sWXIhWjhKw+orqF22npG9TxGsqiPaMo9ArIrsSD/9T99DbqSPlktfQfXCVQSr601ZZ4s0jHcsIt7hWaeU9Elff6zQZ42SaahPFkb693v3eUFgpWD5Bi+B6i0YrWFJvLrEgpq32uvuNl/hasXEJxzCQrGuY0tBTeEP7WOhvC6EnUU2ZQaF9z2UFbX27Mv623itTMappI12lpJMpeuYZ2OBtHTm8Wdj3jG61CoFStlW6gsrydtN2wY/EeEdu7xrC1O2y/PR7od2PRKjArnvaeftD8H6BkI1Zt3BWMcChh+4h/SRQwTiVbS/5d0QDDD+1GMM/frnZLuOYujuImTDn76fofvu4nyamoV4+yJGnnkcJWs4BCiAnk2THe5nfP8OEnOX0X69GST5QhISL2bTz6KmhH4OhVk2bdrEdPkAM8gVIBwO86UvfWnajIa6ujr+7//+b9rzzJ07lzvuuOOM13u+7EVVU6IUZP19IyNse+o7H2LFDcc4/Ph3yIz1IRSVfEgnoEaYe8nrkIbB+NE9JJasIdo23zmu9lCWwXVuWJJacIkJqZiEBJhRrcKQ5KoVgpMQ69dJN5WzfobmOvJcHQTH/fu9tSYCGcMHwoe2HD7jc+pB4ZARdoSxUpTE9w0BkG+rdtqm2s0RR83OnLw44/U9EjJVi9dw+qlf07vjN7Rd+RqKEcHOL93M0rf307v9HkZGD1G94AK0CgCtFC7pYoNYak5iWLUjvNHmikcORfXIwvgkXzzAraGZmvE+DUTDTUVtnXMxdcs20LvrPnq338OcS28iM9ec/S3/5OZZYuIszY6On7P4Wvq3fZn+/DHaCiud/ePJbkCQCxn0Du4kFK6irmk5ejFLW9MGACL9BTLNAermrKa6ej6793yXRKKd5jW/ofXil6OoGtv/+2YMQ2fLwf8lnR2hLj6PRfELyHTEiTd1EoxWk0+NEm+cT8Hqp7KqhrrmTQCoWYnQIVbXwdJr3wt4ouQKJuguDP8ESy1IDM0vb2AEhNO3HD3XokkO2Atym3RQs2axOHui7mQtKeVp1t7Mi8iw7hRBVgrSkXYzLNJBFCWBovlbKMRUwsPmTM8+Rg8phEayJjGqYC4ecgWCOSsiPxZCHS+foSujJvivN5ggQfxYimRnjKCnSLMt76RHFNSMQeS0JaVUssCSQiAjAZRMASVn/jNC1ovTJagCJZUjmMqBN1NK9U9cbAIFKRH5IuTs3O/K2RLTWfTYKADjqxqcuhG23Js3OtWnG07J35XmNtY2LSOdOkTTmZfk1q0isfFTBYdwLTTGCAymyHW4YM34fPMFByZdAtwen1ItwqcZG+1z/w4mDSbmmQ8U9pTbKJV10oMuOS4MM7utGBYmwaF69nleu/278Mo1ZWv935+dxSNVgdAlNWoTNeve4msTzxrULnoDp2PzOLz3dkDS/qZ3M/r0I4we2npe/fKqD5uAa2zOIsb2bqWQmSQYSpBsC9B13zcZO/aM+ZyBINVrLmL352fHg1n7/bZdX/T38d9HMsK2p3/0fdZu3ESu1wyWEAZoIkjDtTciVI3RR+8nc+Ag0fmLwMrMc8iJknoSYPpABwyzABo7ir9UjmnKYtbTDBnnEul7tuAbnD8AziY2bACupmkZp8Jx+h+5kwXXvQMtA9u+ejNr3v4v9AhB8sBuGldcMSX4Zj9/pSjgM4FqUEFL3VZPrBABrBRwxvKqzhXEP/5pxnc+Tf8vf0RhdJhgnSn1t+yWzbPExFma3Sdbll/N0K6HmdizjZY11zn7cz09ACiTeSb2b0cNhKhbuB49n6G2c7XvXPHm+dQuWMeJx37C0MGniFa1suGNabRghCe/+2GklBy59xsk+7qINc+nefW1KFqQaH0bkbo2MiOnibcuQljgvUaY1mVuNnQRCNc1M++Gd1R+lrMhxMAHAnvXEqVAcSlJoeQr9FMPCCw8mRLCW6vOmtuZRa+tw6zgElV325dusz97yQeTrCh5rin8oTfYxesTpyteXZGAKPGTZ+MDz8X3lVogff4wE7+5TswrMz2dnel5KkncwRS+MOS7hcp1eDxtlAp1Ubx9ypvh4wTa2WvcUhkne7tTA8XfzhusJxUIxmtpfdUf+dsUIfyS1xDt6KT3p/+H1Is03/h6Mt3HmNi5jWWfuI0Dnzo/kvPedcLgU/eSHThNpLkDNQenHvk5Q7seth5EofWSG1Fzv7/46vkwQyoYM6wpYTwHNSX+kO0FJyX+ECdLyz+5GS5ewLxlf8XR//hnpKHzzDf/jjXv/jf06iA1F1zMRNcejv3oPwkkaii86QN0HDVnwY07shQSGmOLNEcSwy42lG4SRAekE80fGjcckKXxm9sZfNeFNH1vNwCn3mtGVpex+8LUK4+fcoE9ZSo8raOZ2JFRZFAjCuTrXf2QVKs/f07JG2XZBFIxNePVbBGkOcPxkgI5K+MhOGkRGx4wX1qaaTbwn252Z0iBpHkOr0yMUVdDy8U30Pvkr0nMW05izhIu/PPNRIJ1CC1AduAU9c0XOFIo3owIe1JTWtTXvif7vsyCweb28LCLFnsJCVPqxjxP0VMkNzTmvuRC3B0h9aBAK6hEIyYjP1mXRbMQ1VlC4uztvvv/luuu/Qz9/bsQQiEarsPQFCbGT9I7/AzdQ1tZOu9GlGwBDINUsp8lS19DTc18CjEVJ6NXB4Fg/g3vYuDA44yf3s/YMw/StHoTihVJd3x0C+nsCBde8UHiCbOIkB4S5KotOaJodaVbdPqtobqTeC8JoBTLa8PY5KFNZqk5f90B3/mtbAVvpKEzoceKVPL8drwF5u3fgFKUFKIKkWHdei6FQFL3/UaDY+bbKljybWreQM0bDvGgWXJJWhpTDklKlKz1ANZnDAN1MuMcIzLls1d1aAK9oQp1PE31TjPTItNZS+TEmPlsQW/Kl5WFlMqhx0IoGfMeZMR8mUYkgJIrgG6gpHNONobPFAGGxLBkl6Rm/o7Vfg+rGyrJH1ZUKHpqWkwmYTIJnR2+c2jjWQo1fsSjevcQw5c0MlMLpM7cxjYtI8nUCcfv2QtNpeiu7exFY2So3P/ZsnSFxhjFiPkMxYhCaML02anW8old7WHP2GLVEJnsCDgEdtUJw9ffvYW8J+f4+3Ss1+PjPV+zM5+0XannsGytKEvbL31nmrXQ04PCqXNSsIhpNWsghKCt9SKOHrwDQy/SVHsBesMpBvc/DpxfwtjQILbQzEgcGT5AS9tFFHMZxo7voWn1JuqXXUKoqoFsi8ryT2x+3nVhZ23Wnmvb9tU/vD697BYTaJj73r/myL//A0iDrs/dwoK/+ScC0QRVK9cxsWMLPd/5Cmo0xty3vI9wS4dbM8ICFEtlSJxirfa81kNGKDkT6FFKADevnS3x8GxrSQQykkJEPIfgGziIVTREx2Wv5fgD32H48ArqF2/g0j++jbAME4xVkx4ywehzAd+mBN48t1CpjRf8VUoj0C0TElRdIVzTZJ43497gH+Ia+9natq/ezPr3bma0aydISbimBSkl2dFeRo7uoP+Z+2ldfjVRtRqZy5NPjhJPtFI/d415ghLp4wXrX89AopWx3oMMHH6cxgUbiNfPBWD8wHaSfUdZuum91LQtdY6xgeBE2+KK92j/Lp6TvkgJyO4FgS2rBAL79tnbPSCwUvCvk+1ttkmthGiYAgQubSOKHlfl8X92e/scUikpUl1CKDjkxBn8ofNurOecTnrpbP1fwOo7hYhw/rbNt+15BEMDaQNmmDlRmCbQaap3MeM+WiLZ5JXSKvOHU+wr3e7tW0ZJ8JPd1iglJ2xZJ0+/c7Ip7GOsz4llqxmMJyiMj1K1bA2KojGxZzsYxnlbJ+z+/M2s/cBmEo2dKIEQqSP7idd0mBJyB7dRu3QDjes2EappRNECZzzfH7o915kSsza1vSCkxB/6JGn/P9/M8k9uJlBVw6K/voUT3/oSjZEQ93z6XVx36/eItM9lyZ9/kpHtj9D3wC+QeoGBdbWoBag6YaIpNUeKDK12vz4jAAhIdghAkDhpetnY3c84kb2N39wOQdMhtTyRou8yM3XLHlDz1RC0amIl2zWHmAj1Z5zIJDuiyFg8F6UEIAzvPkl21VyCg2mUojvKFC1d9tCw2T7XUePsU7Ml6NBzYGpWEj+tE2u6klTDfrp+8RUaVl5O20Uvp3/XA2AYtDRf6Ksl4USJeSZXdh0LIyDAkiWxQVqv5jpAtt6coXnJVm8NDj1gEjJlEehhV+IpWyXIjvfTv+sBho5tRQSC6L2jHP7+P57zu5g1yBzeT3fPY2hqmK5TD5NM95HNjxMIxFk45zrmtFzKjt3/RypphnCPjR4jHK5FjdWVnSsQSVA7dyV9e+4nXNeKFjU7xqobb+bYyQfoaLvEISRsC43r5KusegMGKGmbpPKfuxgRZUSYHnKJB5t8MzT/ZEotIRG99QJy1YJ8QpT1Vz0sHBBayUtXEzUkwAIxavaNM77MJFyUIoQmDIeEsDOElIJbENq5ftL9jRtBBS1ZLgEkiuYxMqCaGQa2KQoYBmLcQo01z5CVy0EoBIaOOmBmFRAKQTpDZG8G4iZJKvJFZFBDTJqrN5kwQX81lUMqCkoqi5LKUmxIoA1YxIJFeiqTWUimIGL6MyNhEa9a+YRFb65G7R607iMAo+a5ZM50IiIR95279PmlpqBMZlHibkc4/VITZLAn1QUr2zY4CQXrdN7oM/Av+AJWYkjilE0euQuGZIv5DPYEu1JgSOkkHSB+uugsUDJN5sWEpOx7jwwViJhJcYR2n3R36Aapyxc6hARAosftE+kmT1ZZUDjSgfmEu0j0khGl2R6yEjlhmTeaD9zfXNC6vC3T5y5OBXpI+BY1k3MCRId0eo4+jFHMIxQVJtIoeQPFECROSp7+5vmJgNr9+ZtZ+bHNaLEE4dY5TB7ZQ1XTIk49/GNAUrdhI+FALdv/+w97TjVrv3/2h0hEeO3ALTez7JbNqKEwi/7mU5z64TconjrJr975Bt7w3XsIxxtY+L6/ZfLALk7d/m30rDm+eaWZ1Jw/QrhUtsk7z7XdohfosYkNn1TLFHau4NuM2p4FIRFIGb6aS2djgbRBU8tqJudfyImHvkfy+H7mbXgNIyd3k0+O0jz/Yt99TwXAzRR8O2O2hCwB3oKe7Z4sivz4CEM7H2Zs22MIVaM4PMqBr26e/mFnbVqTw2OcevoOhKoxsvdxTj/1S7ITg6iBCC1LNjJnzSs4vvVnTPSbBUtTw91Ea1qJVDWVnUsLhKnvvJDT++4nEKkiUt0CwIbrP8bJHXdQO2eVj5CAmQHBXgDbd72sdNar560v4u+LAlepwQcCl0o5VQCHfUSHDfh6shyMUnKiAggsdEwCwpofGmpJjQibWMjjK1INFjkxVTZEwf/sM/GHDkkxQx9oB54Vw+XEg22Vttvb7HnqjGwm5MWMCAerr53Bt1a671KpqtKaoOfSR719U+B+b76aJ94sCvyyd14fKjXrsx0TZ5RkT5RkSth9olIbhxSz5BIn9u2gMG6uT2U6B0VbVUCw71/P3xxn55csYmLOEiaO7aVp0eV0P3E7ejZF09IrCDe0Oe1mbXozAH2GmpPPZajEH6K94JkSf6jmY0c3l4PMQijE5i0FoTDa/Qzt8ZcAMDFPc4iJlqdMz9i/3kRWbA3v0JhZV6Hx2zvMk1mRvQBGOo28+ALz+CdSdF/v15SLDBnEj00daquOp9GroygHj0PA7D4CEJasR3DQjFTWRrMUayvn6oVODGPUmoiaHSFsDwaFqOKA9w57bWcieMdCmxyxImpVD8BlR5iUR5krrLj6ffQdfpSTe+9meP+TSEOndfnVhOP1btanNAcvb9aGDaAZQUHeBmI9gLE9QHonC7onE8LQXAko+3mCE27bVIv5LqWh03fsSVJH95MaPEkx534XspAn2XeYFX+/+bwOZn9oFgvWsbhuI5niOBmZoTG6gJbmZTxx7DvccJVZiGp++0aGx0yJsmNHf0PPycdY//p/cs6hpXSkNAjoKoylkHqRgBLh1H0/YnKgi+zkIJGqZloufjkFS+JHLUg3vdnWRbWslJCwzdBEmVRAIQbBCVOqqVKhNj3oyW6QkI8LgskS0qzOk/1QcM9j93ObuFBzEj0kqNlnAuzVBybINZrAfL7a7LOBSd25V+9vQrUyIfSo+UNUU3lUqzvbRaDVEXODURVBmcggw/4oDtFno9rWC8qVrJy8nxUF0p6wMd0AVfFnSgBiMoNMRBCZvG89og2ZtR7kyJjZrrHeJCQ8pkymMRJRlL4RjJY6lJR1/WTa147JEh9qGMjxCYRFboj6WnP7RAqsGhl2jQnbCk1TF0zOJypLRMzUbEKiknkzIiY6Ld+rw6RVbyJ+2r4Hi1hzFgFmtoya00FKp3h0ZOcJ9+RWUfCQJ5PMCCroIXd2Hx0w30emUXN8cLrB/aZCY+VEBPgXKYqn3gmU6MgKCI9Zi8Im8zylizy7CLk3wi+fEM7ialgd5Ni+O2lccjnDXVs5vfMe4k0LKGQmSE30OoUrz4ft/XeTmKhbvJ7Tj/ycQ8cOoQRDzH/luwkmatn+hdmxYNZm7ffRfAFc//Z3nj33ACCEIDpnISIQZHLvLmLti6wsQ6aMArazLMsyKHCJCS/o5pV1UrP+4q2l5gVD7c9em8mYpaUNitYc/lzBtymPm2G078LL30p161JObv8FO27/FNLQqZu3lkTjfF+7UgDOi2OUAm8wRW2JUuDNfve2jE4FrX4pJWMHtjF+dDeZ3hMUkxO+c2S7jrDqI5vZfevs2HCu9sT3/44ll+8kOzFIPjNOVc08Fqx4FTse+i+CwSAbX3sr7XOvYODIkwD07n+Q3v0PcuVrPuucQ0qJlGZmZX4yjV7IEY7UcmrLHYwPd5Ge6CMUqWHh8ldNUSPl3IBgKfy/vdLfZDEsZtYXS6bbdl+0z6Z6JMRKQeCZSjn56jaomPKtU4DA4Eo5mScHlBJZJ082RGnNCKXg3vyU/tB6QDXvnzfaZvvDSsWsS81+16V+0Lvf97mEfC1GFWfbs5nvn0/z+tbpcFvbh1dqU+l9zMRfegOuKhHlZfJ29n2W1okokXISFepMeEmxskwJtfJne5v9WZ+c5PSvf0jV0jWkerrov/+XNFx8LQDpIwdZ9eHN511ytX7Berp++032/ujTIGDe1W8h1jQPsrOBHjM1AwVjhpkSM203azOzWVLiRWa2Pu7yD36GEz/9b0QgwNB9dzLy+INE69uJz1lMcfWVqKEw9ftMj9m8LcfIUpeYsK33feuI9bkDSOLHW3zXkppCxwMZTl4fwdCgYbfZNtkZc4gJ5cAxmN8OgMiZYJE6njZ9eqHoEBO2KTl3JAgMmu2DKS9wOLNFwbnadNqHQgcjrNK06mpiy1czcngLNU1LiDXOQ0pX0sOeBNiEhzeiF0zdc+8A6hSELSEkpJTohQypaA5p6Ka2pxBoMkaAkAOs5arNtvm+0xx//IdkBk8Rn7OE8AXLSe7YTqixlVz/KcJtc6m7eNOzfEOzdu/RL3Dj0o+bHzz9UVVV7n3sH3jJ5f/MeLLH2d7cvp5cdpz9D/4PgXCCzMQA2YkB9KLbr7VQnMmhLoqFNFUti+hYeyMNzSvNKGrd338ydeaMxVDBsCLXbSk2ty9JpwC1UoB8lSA0LslV+38/XmkbO6rdCJRP2LzHeWVu7ImbXfwXyvt7VVcaI+wSC7aFh9zfuh5SCE64n4Xu/hYCg0n32tEgIl/0Z0MAyoQ/B12ctjIO7O9Hr6AhZ2VR+CxszVqztvirgcjkzULSmv2CDEQq655jwiIjcvaKybymHBxGRMLITBYyWUTIXJEpVjulbwQSFqkbj8KgpwgCmPUmpEQEA8hsyeouk3WyLwBT2mliEjSNwNEMmQtMn5utt27J+ko0D9dhf8c5SwXMXkCGPCpS9btNssSWkJPCIhI8t5JuMk8eGvP3LZuQ8FpoDEaWB0ic1D0ygeZ3qYdVpCYQHmLKCCmkLuk0r9NoFfEeML/L0EjekfRTc7pTeBxgYpErBWiobt8UhtvnfaRDyYLSq1Ms8US9GX7SJdbv7z+T7apvu1RKin9LMytuvPcUSIP5q15BQA3Tf+QJ5q98JSfDVfTvfZj5G9983omJVX9ZZOzwTsL1LbRe/krUyDRVBWdt1mbt99bsoJTlf/d5Tn73ywghGN35OOP7thNqaiPesZD6tRvRonGXUCj4gTjbfHUmKthUxVu95gWZpgLgALSMQTGioGUMplM9OCsy4jmwYFrS1nwhjdcuoe/4U8Tr5lDduAhRIWOjOMWaY6r3UClKWM9nKOYySL1oSeQI1HAUNRR1iv7alk0Pc+q+H5M8eYho+wIS81cwtn8rgeo68qNDBKtrab7yxnN67llzLRQKMXfuxrLt1735izxy+0eQUjI5ehIhVKTUaZqznnxukmce/W8isXrSyQHSkwPoBXduqwWipCZ60fUCVfWddCzaRH37alR1ekmVsgzOSiZwflul6+Ay8NsTqe+1MxVkL11XTAUCC1kO5NrtS6WcfHUmzgAC2/ttYsJeszsgcQkZIQwzu6I0G8I+zs708PlD+5qlGRRnkGdyghhLfval7/5ssr5KSQotXbIOej6Jigp9rxCrkEpttdUylZ/Tfq+23KttznsqzarwZHeXkWSevimkv386BJrEybbG0y9Li17j6TMAGG6Gjn1ee11R+lno+Osx6uY1CwMDyEKepstuINV9hN77fkrHS99KuLGd4e0Pk+hc7tSDOB/kxM4v3cyF77mN6rkrUbQAHZfeRCBadeYDZ81nulTQZ1hTYqbtZm1mNktKvEgt065TnHSjX4xMmmTPYZI9hxnc/gDtl9+EWHIhdUdNb1t30CQmbGdpS3ukWhSHmFASCTNCd8A8b6GtBoB5d6Y48fIY2RqF2kPmCKvHAgS2HfLdk9FzGqWjDRnSkDZIqOsoLVa6arDyxErGQgiLmDBqLBDPSmETRQMjFiR2KktyrgnS2YWg7YwCO2oVcIro2nIxQvgjWr0Dmh2pKxRrsLMxyaAgSB0dF7zUc5Pmf46WeKh8BK4UreJOooRTC8LQoJCZ5MhD3yQ5cLz8hQCoGoF4NYFQlGI2TTE9iVHME6pvZv4ffxCxtIWezZ8nNGcOuRNWpLGUhI6OE4rXcfG7bkMK2PK/5wf0+kOzuw7+25T79o3eT++Jh5zP/ae2oQbCRGvaSE/2Eapppm7uagLhODmZITPSy2TvEaoal7L0uj8DzMmKk01qF0O251yeeiXCkMhpiDp7vAtO2ACwRA+adUzsiY8skW8CfyFgJ1rIC9xK95x2FoW3HgRAvDttHS8QuuHUe4icNFHvXKs52VEzRaeujZrKYUQt6bIKUYlK2nRQUlMQYy5ZYQP0Dhlh32bevGlhyTbJjOmfRMwCrW1iwpZEyuUhFDTJiXQGrHYi6z68HBz2kan2uUUoiGFlRohgEHQdmUw555a5PCIURCZTiHgMY2gEhkYQFhEitJLhVDccUkWEQ2a2mm4g7ewO+9mm8JuVrBjzExPTmU1ITGeptnJCItlu/t24w3Ru3iw0u49oKZ1CXHUICa/pYddPTswx312lKEBvdoRdGwgg3R5x6p4YmtlvvTUm7AWGwJ+WH0y6CxE95I4JTrq/dQuZBuHWHbL6raH5+2qm3qrx4VlQhsYN57eqZ9MIRSMyqRAqBlBQUBSV9mWbOL7rV7Qtuopgq1+27dna7v/3Ufh/Hz2v55y1WZu1313T0oLC5BhG3ppf57NkerrI9HQxtPVBWq58BfUrLkOxMpntehKl4KK9HaYG37ScpBgSvgxioByE8xAPlaJ7pwKr/M9VIQjh+QLgPEOBRoSOZddN3Zbpn6dSkJQXfNMLWY4++j3GevZWPoGiEoxWoUbj6LksxfQERiFHIF7Lglf+GdEFS+j68X8SqKqlMDYM0kAWdYqjYwQaoqz5q80gy4vDz9rM7JHbPzLlvv4Dj3Dk4K+czwPd2xBCpbpmHsmRHqKxBhrmLSMYSlAs5Egle5kYP0kwGOeiy2521q5koaw6M5wdCGyZ3RdLgW8pykFgsPriNCAwTA0EVwKB1ZynLpkn4Mm8Cb+Mjo9IKCks7AV91QJI3f0MrtSTs7ax77FkrVNWwLpE3kktlEvaTfXcpTalP7RSznwE7AxMS1Uu3vmiyJCYYokaSOlnIMrE1KRthfdSqW3p+52OpDBKs8qkZ7udxVP0bNc879dTMN02px/ZZEQJ6VX6WRgWYWbH0qXNNVggGEPVrHWiotB4yUvovuNbpI4cILZo2XnNltj+tQ8Bs7jQszEDgTFVp6/QdtbOn82SEi9SUyIRmt79TkbvuJPCwCBKJEj9yitJD/aQOnGIkw98n75tv6H1ohuo7VxHZByiA6aTz9UoBJLQ+OO99L5zJekmhdZv7wNADo860iHDF0Ro2GEiXPPuTDG8KsbokrBDTAAm+XDU1QOXIQvAWzAH2dXtu2fZ04u0IpeVOW1mxKwddRwpraIlyiLIz6eVTqwqtol4MiFswsIqrm0DWoFk+cBpD1CGKpzj9JApCZIrTDJyeCd9ex9C1/M0X/VKFDWAEVbpv+sn7kn0IlJIqI4RW7wI2R4jnqsnvmgluXaVkV/9iuL4GPMufw3HT3wdgGxvNwfv+W9CVfWEqhqp61zLRX9yG6Fxg0d/NvXkedbOzuo6VjHed5hoQwcNCy/CSKWI1XYQitWw/7FvMH5yL9r8IGOn9jE5eByhKCTal9J+0SvO+ZpaCX7sZEDYE6mCS8iVmjd1uRguSW/2mO7BvqNDEj0A4VG3LkTslDvDyzS6szs768EIa24haiAwlvG0kY58gpLOgxAYwSmGl6KOKJU7siSTbHOAe5sQmLQIDJucSKVNYkJVzH8AhkSm05BOI8JWFkIqDbEosrffulHrvVpZXsa4SdAKb50HTUPm8whVxbBJEHu/XVunRNYJwzCPiZTkv3uOqWQ2IWGTLbZFjpiyVe26mSpx+sqQK15pYxrWdx6xeJzIkNnA8WseIiaUtECroCkJZS8OQyPWd99nntQL/peal5AACCR1ilHzvYQHsmjJAkNr49b5dIeQENK9p+rjVradB3RyCAmL/Ir1pJmc72ZKmItHK7IvZEqEGZowF5n2wjfgX0xIFV+RRM9rIzTmfh+pZrPvRIaniNIKC4R0szuEIRmfrzK67xTBukZGLgihH8lDKMBYeBzR3kTgYIIT23/BsmvfN+W7nLVZm7VZe7YmhGD+a97L6Qd+SnaoFxSF+jVXUExOMn54J70P/pzBp++n+eLraVh8iZ8494Iv09SM8IJCZQAcFrBZMsbZgJMU5aCaljamHBOfDQCnJQsU4+e/iGfAAxZOBcAVK4DFcopo4WJEoZhLM9q9m779D5NLjtC+5ga0oJn5dnLbL5GGjcLqZpa1FiHRvJBApAqtuoqqeStQg2EGtz9Muvc4nS9/D8fu/BoAheQYh7//eRLzV6BFYlQvXMPqD9yGgpjVEz+PVlu3iETVHMKRWto6LkEvZonGmojGGjm0/+f0ntqCogQYG+1idOQoSElN3QLmL7jeISTOts+eCwhst68IjgtRJoU5HQgMJTUiKtSOsKWb9BJyAvwgsNCtTIlSaR2sLIgCZTUXS0HgUvKhLFPCIlvLyIjSbAibtJjCD1bye97t2hR1IUrf+blIMUnhqctX6jdfAKLW/OxuKMSnWOfZfdxDkJXVlvD2VSHK3mMlmdbp+qdLernrmdKi1951sOrpm06foXxbKTnhZOiUkhGeficMyPb1oIZjaKEoMm/VFkzn0ESQcH0rpx/9BUvmVC5kP2svnM1mSrxwJqQ8cxWciYkJqqurGR8fp6pqNhXo+bIFX/w8ANXVhzn2pXsY336cUH0LQlHJDpxy2gUTdSy95B3EazscMLPuFyYJkd64lPEFGtVdRR/glG42vWtk0CDWk0FqAiPgzg6CWw4CuBkRthkSpdrSOvcAcHJ41PzfQ0oALikxMOTUtWCOWeTLjqg2glaGgSXlYWc4FBLuYGf/7p1obqvbhkfM+8s0mG3tqAy7vR3Z6tXltycEpTr63omCm2JqDW7WwOeL2PUUlpXSoPeJXzO488EpF1zh9rmokTipI/t82+f8z787k9Rj7/4w8y++ie7td9By2ctpuug6jGIBY3SS7od/THrwJOGqJnKTIxSzk6x7yUeJJsxMlVli4vxaKpXivvvuY+/evWz+5q8IxmuZ7DvCxOlDBKPVRGtaqVmwlpo5FxCwFpSlGQtOBLZ3puNMoK1ocNXODHInT96ChmZb838bnHV+D54Ib09tebcvW//rIffvqCVf4yXcAikdJW9+9hWft4kQBV9FJ1HQ3XTXachFO1vCkXUrWj+aSnJGmDVvwCUBnIlc0HwheiqNWl2FMenq1KntrY5vkWmX7BCa5oL93t+kEM51vCZUFSOfR4lGXVLEU8jGS1zIopXlYNW6sPd5SQlZmgmhG242Wd7+Qi3d1RJSQjTWO3/nOi1i4nLzWm2Pm/eWrzKdnZ2CH7S+z8CkJZt3fNg8d5UL8GfmmL57fJ5mncPcXkpKxPrMc4RG3FWaNmplzlhkkxEOkGsIER5w790mJexC6tF+93g9bL6j0JDb3ivjZZ9XD7t+365bApCtdd+/N6vHKyHgFMWuLl/QllUksyLanL8pX2xonq9FzUqy9QIpDQ7+9z9Rs2IDLVe/iq7vfwk1EsNIp0j1HnPaL7v2fey/77/5Q7TZOeMfns1+5y+Mrb7ZlH8wJpP0PPhTxo/tJhCrJpioNf2RNfZp0SrmXvsWquYsdbLf7PHZjvq1/y41NSvRw+WgkWOlpERJpHYZCFfWvkgxqrngW4U2LzQANyX45mnjNUempAQkPn34YU7sudMlHkosXNNKpKqB0ZO7fdtX//Gn0MJmpvnW//lrFmx6Kyce+yn1yy+mY+PrMYoFZCHPyYd+RKq3Cy1Rg57LUJgYofNV76Vq3nJgttDp+bZ8Pu+sE774me8T0uJM6iP0D+8hGEgQizTQXH8BjXUrCAXjMz/xswCCbZsWBK7QHioDwb79FQL+SkHgUtMD5etrr4ys/dsuCyQp/eyRx6n0eap5HFgZYt5sccvsdZjZZnqCxjY1W44Z+I7L2gUx7Qcrb+NIsqbNmy1GVMcP2tvK5rBn4RPVZIW1TyXzPLMer1wHdLq+CP73XKlNMapVJtO822ysJlx+Mu+xeoXaE14rLc5um08JwM6UsKXDPO+5dA3vLXpd2i/BT0aUfj78w82EqhuYf/3bOf6b75AbHyRU08jY4R1O+47r/oju335/2mf6fbUX25zRvp9bt15JZLrx3mOZZJGPbHj0RfMMv+s2mynxIrauD34YgMt+83GWf/rNfLnxzVx81TUUk+O+dvnkKCePP8i85e8gZEmyZC5f4sgeVXdZ0al5SWgoR7otTGTQU2S5I0K0L4tS0H3EhDQMc2CxBzW7WPb4pElMWLroxuCwU+haqKoZNXy63yE0bHmTszUj4C5upAPcWiCnNemIHDfJkMgO850M3bho2nOWEhLgEg42EGxL0QjDlZJSSoBXB1DWBCKn0/3QDxk5vNXZH0jUULPqEqINHajhCKNPPszoyWdoXHQp7X//WbK9PWT7ThGK1JI4Yr67QjXMWfsyTu/+LfWdFzKn82ryOqgiQCBRx8qN73XOv+++/2IiO8n+J/6X9S/92Cwh8RzYP/3TP/G5z30OTQmZer3HdqAXzIneyhv+mmCkyuwHOhRs7sFTnL0iWH+GBB49ZKYmC7tQr7BqT9hpzRUm1eDWpIDKxbeca0uzaHB4TJKrUQiNuX7ACCqoWd0hCZWM+yNxnqXonb2BKFpt1EqRgu7DOoWD7VOWgvMeCSuhquhJMzNC8ZARtul2doMiTCKhbwClqdH/qLYkk1UTQhoGQlEwMv7aFVLXEaqK1HXHXxnptLnNkIDu3MOUViwii0VQVTOjw5aUs46T+YJJTKjuzNUmVaTlU5VIGJnLIUIhZC6H7DntECLBMdO3zU3OMS93ltGgYswicIJBogdzZBbUUXPE7CSZRstvW/eRj5v3PmGRFlqTRu2BdBkhYVtoKEe+xvTvE/PNc0UGzffolXEKjGax71oUPJGnmh2KpCCKBiJfdCS+Up3uBE/NSYcoEYZkYp77nZSl6uOXFXAWGRV+e4rhb+OtRWFf1zy5+V94WDJ+6hDF9CTxhcuQCuQnhomEoqR6j9F29U18+k9uYseOHbzvfbOZErM2a7P23Nozm02Qee0HNjP/xndy+4duYvmFl5I63eVrZxRy9D99D7XNS5xtU2VB2CSEmvVvKzUHfAMXgJvCbKDNsRKwzEdITGNqMoseD/v+n+qcZWaNzTMG3yrcXxkAVwK+gX8sctYwSI4fvJvurgfdfaEYTfMuoqqhEy0QYahnJ31HHyccruKit32O9NhpUkPdqMEIISII6zuav/HNnHzsx8Sa5jFn/StR8hIVDSMcYMHL/sQ5f/fDP2Fo3+OcuPtbrHzPv6Dps0v+821f+cpX+OAHP4iqBIgEa8kVJino5jxz3ZzXUxO1AvRyQM5eXE4PBKupHHp86nVzIFmcth+C2xe95ovcV8wFQSkIrGVkGYDsBYIrAfU2EFxJ6tPcbm/zXN6S0alUl6KsRkSFmhFKwRt86N+PZz3mLXztkBb2fZY853QkRKk/BCsbyuMDp8uA0DI2k1KZ0LD3l/pJNWn2BTWZQ48FUZMlAV1njiuesfl8qddKyasy8kugJ4JT7tfSRbdPlfVT1bf+s9+ntw96+2jpd1BKUlSqK2FKh1mYjadfejNjpsqCADerZ6oC12WZEgZkh/vIDHTTeMGVIM11ghaKMXZkF83rrmfzR/+ELVu28IY3vIFZe3GZIQXGtClp/razdv5sdobyO2BPvNTUv1/6qc10fuQTjG99koE7PFJAUjJ+ZCeG/laUokpo1AJvdOmAgZH7dmOsMRcj0dNZUh3+IpnZhhDRnjRKVjeLW1cyaTiRwTJtTa6s/2Wh4BATXlNam5H9pr6IaLaAwxETVFRHQFbFzYDr3gHzPi4xU9lyteUg50ws0eMH2+xByX4PshR8skGpaXBHPQw6wtUo192BTc/nOPbbbzHZfcC8/rwVtCy6nOrWpehWjYn04QOMnnyGhgUbWLDylagHBDCHx379H6z82Gb2/vvNLP+EGe3Wu/9B87ztVYxmu6FXYBRyGNIg2jwXLRJD33mQaLyZeM0cTh96kMnRbq58/a08+tNZYuJ8Wn19PUIoNFUvJbRyJdVtS9E1gV7IEAgkzni8VN2oITuLwalBEgDCwv8Zc0Kkq+Waz7blqgSBlDspE7pEGBAch3y1cCZLdqQ6mESHloVMvfDXlQDUnCXNpAm0lOk3lLyOVAQyoLgSQIp/4SJKC0zbGVVCOG2FlOV1JUon0LacRC4H0QiiJGPAyNv5uPbqw3D+loZEGkWEIpAWUWHXipDpDCIacWpEmO2tya5NltrZGBWKaEtdd65j5PMowSBGLosSCmPkss49yUwWJVAyjEppkh8VsjHsc9rHCEUgDYmRyZp/56YWslUOmjJ6AatNKGoxURbpK6vMKDxpZRrImJXFMWqRElnz/3C3uX/0QjMDwyYk7DoKpQu10WVRqo6bxwRHTH8vMgXUbBFpZbvZhITXIoMFpCJQM0X0qLlfG7fksKx+JQCpeXy9RVLoiTDhIfO7t7OBDE8NCi/hp1QIONUjdmabu00pwbzUnGdB7E3jr2QCcjWCiVOHOfnAN4nOWUi0Y4F5y/FqJo/tRY3EqV91BbdtH2HXf3xhihPN2qzN2qydf7Mj4Df86W2sfO3fMN69n6O//bqz3yjkSA0cJ58cJRKsrXgONScdH1iJhLDnC+AhbtM6elRFy+hWtG9pMdYzg2bqZN6Jtp72WOuzDZ5NCaKd6XrnCL4BFKumBot94Jvn+HwYDu/5Gf09ZuBSVV0n7fOvoL5lBUI1x9aJ/CB9Rx+npnU5iy76I7S8oCrazp4nb+OSd9zGU9/+EJe/+fPoIcHwgScBCEVqSA+fAgRGMY/Ui0TrOwhEq5gc7UYoKq0X3UjvlrtIHtlHTefqmb2gWZux1deb86jGxGLq4vNoiC9CFSr5YopYqOGMx1fsi0L4wecKIDDgB4JLz2sHFT1LEBhKfIEor7lor1cqgcDgCSb0gsB2MWuPTJPh2QaVQWAvGVF6fS85YQTMICj7TtVCOdmi5q1aGCXrLTUn0UPCDUrxvAPN9oFTuDXHH6aK07aTArSkfeN24OcU57T6gpqaWmdPTKb95zpXK+1rVbFp99umTnruTSlpKwTFWOVgKpuM8a4VS+XwtKzhW5cUQ+5aRS0hkrx900dQOEXN/aSQHhC+YtheYsHcgK/QuhMwyBSF1XVIj5zi6B1fIVzXSs28VShFCESqGD+xx/TJy6/mtnt72fKN2yq+k1l7Yc1AQaeU9Z267aydP5slJX6H7OAnbmbppzZTveFSxp5+lEBtPY0XXMnxn34FgMJAP4TayNVqxLuzaDuPAJhRvF5TBLHTWfSI6WnzlkySOppEr41jrOh0JDS0LQd8h9rRvHYGhYiE3YJd3sEwEHALjDY3IvsHkf2DJjERDpXJt8hOM5rElpDR0haJYE+erFPXbjHJC+OkJV8VNwfM4rApVaLeb/5fYxXfHr6+c7pX6phqzws9ch5SNQcZR1KnZEzNTQxx6PYvUsyaUd0dG19Py6LLEbqnJgCgtpr3EutcTr7ZDWm/8H2bCWqw7i83UwwlUWWUcMdcMse7GHv0QcZ4cNp7Xr3pA/R3PclQzw6irXNn9JyzNnN75zvfyZdv/RkjyeMkH30GNRim44rXUbd4AzIrkUCuyg/k2pNyp0aEJ53YOAtvm7XUe9zoEus8ebNvRQYrRC1a+Lualx65M38bIwAokG4WxE95oiQ9hARQVoBb5Lzim9IlHjzgsC4MxrO9ZAsTjGd6kUiWtr/M9A+lE1kbyLfPG/WTpGrCJH10K6NACYcwsjmKskBGpkiotQjhnwzIYhGKRZdssAnTEqC/NDNiSrMJEGk4RIRDSNjnUsTMzuU9Jx6yBZccQbWrNM/wXM/Sqg+bfsv29ZEhqyj1hEUGBCxSxsqeC9iEQsbPbIWGMtRadSFs8tctXOjxg6k8UlPMTAjF9u8lE7qigQxqKNbiq1htES6qYtYoAopxd8ESGXFXcXrQ1Ue2Fxha0SSVzWtZ2zzJMkrB/7u0F8rCekQ7c0RqMHFsHyd/9U1iHQuZc9OfIIQl2WX1Qz2TZHj34zSs2ciav9rMrv+YlcmYtVmbtefXtn79Q2z409uonrOcRNsS9FyazkvewN47vwBAdqCXSIdJSpQCOoCTUanlShAyW27EIh/UrO74eXv+4EQDl5iWKrjrA+86wXMJKURlYsJ7a5MlRP95AuBkInqGhtblhKgMvnnOVYwHfZ/z+Ul2bvlfkqk+AObPv5b5nddhxAI+kDSmVKMoGjW1CwjLMMJ6/1e95nMEBWy86XMUyKAZYcKJBlLD3Yyc2MXIiV3T3vOCl76bUE0To0d2UN++akbPOWszt1e+8pV0Vm1gJNPNvvH9KCgsqb2CeYl1iELmzCcA3/x4pn0RPEBwKQhs/V0JCK4EAuvRmYPA4PcbU4HA4ALB3gyKoirJDHaTT46SGTpFIT1Bx1WvR9GC02ZGeD/bVpoBYV9HNwpkB/uJJlpQVM33LHa2uXtv5c/k/WwTsWVZELaftMlYj+/z1kxDgJr033iZn7MVKSyZXCWVrewvwSMJNbMC2s/WxIS1sLTXW0rJWk4I8/Va/clIVM5C01KF8iA165R20JK9rXQcKZb2z5zhl3QKuY54yr5pfwXe7Bzp9hkjIBCGdAky1T22LFOipJ96MyVSAyc4euf/EKpuYOHL/ww1GDZVBRRrXWro9D1zH+0bXsFF7zZJiS3fmC1M/WIyQyoYM6wVMdN2szYzmyUlfsfs4CduZtWHN1O34lL6H/4VkZe8lfoLryZ14hDhWAOFgKD2UIlEST5vyoQ8ZWmUXmZGywSfOkj+kqUktvZAyK5KZf5nF4iSqxYhdh9BScRdjfRSqRYpzQHJK/Vk7xodM4+xQceC5c0t7XUxYQJjMlzzLN7K1BacsKNArOjqEi1+xQK67Cja4hR6haVFu4yJSfb94NPO/oWv/gtq6xcCUIi75zACoIXqCNW20PPYzzhx33eYd83biDXPx1B0gok6kqeO0nXHV2h77duZ+5Y/J1sYN6O6pYE0DJRQiMH//irpCbNYbyhWSy41yunjj6MXs1TPWfEs39KsVbKWlhaWt78MgFOrNE49+QtOPPA9CukJ2pdec9bnU4ruZMjuh/lq67OnYDqAETYID0w92DkyZHZpgpwEJLlq9xipWFEbzf50VcMT6Jet1wiN6xSqAwQmXPJSSWbJFZKcGttNNjtKa/1q6oJtjtyOSJtA/1hxgP7JQxT0DEPJLrLFCd99Lm7ZhKa6F5RBWy7IQIYCCLvGhC0LZcs6FSyQo6mRrJ5kZOI4g6KHfk5ioKPpQQIEkRisDV9Dle65hiXJVCrVZO87K5tu4i8NnEr3lcyb3XGWplRXYUwkUeIxp66G7X/t89lErH0dNWN2JsUuBm6T0bbvszNEMlbUlfXulZBGoe7MC2FleML/XPk8YhyIRgiOp8nNK4++tQkOUdBBCJSUSxA50k2e8aRYHUadyJFvdO8nMJkHzHvNNpnjRnRIpxBVKIYFWlY6tTC0jKQQEwTSkkJUOJF1zjN4+PliyM2ysIkJJxuuZB2YNsY4ecc3iS5aSsub3omuacS7LJJkfIyq1sVM9B7m9EO3E6lpITZvtnjdrM3arL0wtvXrH+KSd9xG8+LLOPLQt1ADYeaufzV9Bx6lKt5WmYzAnwnhbMsa6GEFNWs4YJoDGlkgmk0oqOnClNG+zvrAs05QUiW65y8QAFdGdkwBwNkBWEY8UtLejQj2gm+GUeTRbZ9xml2w8i00NpvrLzXrn4toqFQ3LKLnyIMc3/drFlzwauqaliGFJBiuJpMcZOdD/8HcVS9n8UVvYe6KG5DSQEoDXZOoWpATW3/BWM9eAMLVjWTHBxk/uovc2ACtK80560V/chtb/ncWBDtfVlVVxdLaKwEoGDmOjD3BgdGHyRQnWFZ7tRu0N0Pz9cUz9EOEwIhVAIGt/WqpZNoUIHBpX5RCoEfctcR0ILCcTDNwbAvZ5BC1rcuo6lzp7FMLgIRUqo+Rrp0Us0kme4+QnRj0Xa9l9bWEq5vcdbmv4LUbIDU1WSEpZJJMDB5nvHs/o1070QtZlECIQCSB1IvMv/gN1LQvt96PeW9T+sG8LMcyhDkvdPyhRwrLR0hkii7pMAVpapKb1vqkVPbuLIhWOZlEJOLu/+OTiKo40sJVZnS+qfpnWZ9TIHHmmihKqbyU4vZVmEKuzMrq8RFlMc3Zpmb8JJkUfnlYNWf4nsNeD5RlUQT9/Qvc4us+6THVxYaEdAkKk5xw+6Pi1Hi0/H0uR9fdXydc08zil74HVY2gWBk2heQYscZ5pAZP0LfnAaLVrdQtWT9LSLwITUegn0lr29N21s6fzZISv4NWjEF40QLkgzrp7CAtm14NgDrhAR8ff8a3NrBlQgCUnYcQVoRq6KAZvUOhAIEAUlOdaFe74K1ctQiO9yGCAWS+4IB+aKor62KDfXah1+IMwL/RcReEPHjcvLcLTYmp0KgFvFm6mFrKHEX0WhOsKs5dae23o3jnIi3NdjWnU8TUyA+NmQuE4DhMzLcKa09BSOghK41Pt9M0Pe/PAa+sdxMI03LBNQSjNdTNW4NsqsIJ2jAA4QLQuRqouvgSBu/5BQAnHviuc96ahWuZOLEfgNTjTxJauYRAop7Df+uPsl23LcVY/yHaUs0IFA4PPsR43xEaOzdQ1byIJ7734TO87Fk7F7t75z8DcP3l/0Jzw03sTdRz+qk7UIRG0wVXOSSC3YdsULNgqTupWTf62i4qLAy3bglUJiQAsg1mPwwPCZBWHxQQmIRC1AReS80udlywMnWydX5CAtwo8lSzIGplXNjFkfWwhpbMowdVth/7Kan0ALos0D2+k/rofOKhetqDS6lKtLOr7w56k/sJqTFCgQR1tQvpHXoGKXVaai9gcdu1DiEh7ULQehEjFkLJlyyWtMpDUV/2KDvHfwNAjCoWiBVUUc+YHEBH5zTH6c0eoSpW79SRMDJZZKHoZDlMSURY+58NeXDWJIdlii29pFtRWJYftGtTAChV8TPqdJ8vC/ZbEk925ooiTLolZ3Uam0yOTk1ehI5ZJEnQH51nRF2JAcNakIislY0RcftCsdrcl21z08VDI64TLkYDaEmdSauehJaRCN2q+yOhEBPOwsXQhBMBV4x4fmOqueBw/LmKf7FTwgMWqsAoFun/+e0ILUDba97m9DPnmYp5JnoPO5/z40MkirOkxKzN2qy9cKbmJDXVZqZwdrCX9oVX0bZgI1rBpnj9QIwjjWSBbkrOcCWaHIkXN5tBTbljuC/y1yIqnPtIeqJ+S8ezVBpiUUimzKxn+//JpAuATSaRpWPzVOPiuQBwpeCbXayyQkSw/b+Syk57Lj0RsZqqLO64HolBS8NqIuFaSJtjqRTCAd7sz22tG9g7YGand+35JV38EoCaxsWkJsy12tDxbTS3rSNcXc/jP/TP+9fcJEk0LyReP5dgrIbu7Xcw2ddFdccK6haunyUjniO767gpv3tD3XtZpm0gFomyb/JxRF5naeTi8gNmAASXgcDe34TnHEp6ChDYanMuIDC4v3lzGw4xqYcVBwSW0uDoU99ndOAg0tDpP/o4VQcXEqlqomHuOmLtC+necQe9ex9AC0UJRmuJ1rRh6EXyqVHijfOZf/mbCFWbagKqXatRFagFSalKbCkIbLef7O/i0N1fQRpFgvE6mpdvJNG6mFTfcYr5NKPduxk6to2a9uV+n+d9J1Nt95Cy3m3gqf/gkBAlBwuBYstzOQEvZ/BRqTTOg5eSGxX8npxM+v/3EhLn2yY95y4hG5z/bUwoXiL7ZB9mBybZc22rvR7zRMsJi1DzSTr56/V4vw9b9cM273dpExHe7fY2Id0MCkPD+f6UokVG2HJilkyyLfvt9lP3s5QG3U//Cj2XZsHVb0MLRHzdQUFhcvCY8zkz1leW+TNrLw6bzZR44WyWlPgdtUCtqe9SGBlG1JjSPfZgV4yocN06gvftMLdrAYtIAGFrrluFX4unetHmWIW4LODJrkVhhDSUXBElU0DvbHWurXaddm/EMMxBRVVNYiKbcyNfVRURjboFXu3tubxZJBvMQrfBylqDM34X4zPz7LbUh0062LqZhjVAFe2xteS4ojVWBpNmNLo50qjMv+AVThsbY3YibS3Zp1zMQBkvUrtgHbm5h5joPugDP8eO7iRY3YienmS8/zCxnz3Iqb2/Lbv3Hb91tQc33fDvLF/iFvR+8PuztSSeDxNC0Lr+BvLJUfp23UfTBVdN216dRu5Yj7h1JooJe6Jt/h/rVsgO9TH62INM9hxAagrz3/EBgvGSSHRr0qToZrEvNSd9epfOfesuUWaTG1KljJBAQGAoRTEAu47+mMl0HxtW/imqIegb2cPxvscYTh+nV9nHNYH3kswPkQg1sqD+cvRogES0mVRmiFR6gIWtVxEJ1WBYhZGFRXAaMb8es4yYALPIWBH1moaUksOTT9FfOEFaTtCkzGGpsYZIyAQLCrkMGioSgz66EcKsxSAswFzYUSuFGRTOLCUkngVB4T3eLo5dKvc0rc1rQ5y25OnsWhjWIsRLfngJZq/po+PmH9a9C830q4pdcyKfB01DDgyixKLO+QW4Pnoa0gFAjtnXsKKI4jHTl9t1ISLlC2BRSkBZxxoR876MoEbR0kZWPIXUs3Ua2TqNyKDr31Nt7lhhaMKZwTgSTBIQJuFsaIK8Zw3vLfwuVYj1S9KNrjwTuISdndpfTKfo+cn/kj19krbX/jFqKMz+T5qE8eoPmUBEbP5Skl37WHrjX9C/9yHi7a5vnrVZm7VZe6FMC8VQtBDZ5BBgR1jLigCcWU/CJSbAEx2cKboa22BlPOAD4ZS0Xc3W1r/wtHfkSYQLrNljnA10lf4/Puk5XCknJp4rmywB9aYD37zAm6edmsw64O6CmovM7UX3lTjArwVqSmlgSIOG8DyaWtYy2L8bKd0xf2zwMMFQFZF4I+nJfo7vu4uBk9vKbn3Xz93s7UvefhuLNr7d+fzUt2YJiefL5oSWkzVSdOV2sTi8HkXMoEZiKQkG5SDwZNLXDzP6JMfTuxjIHidvZLh07ttJRJqc/TA1COwNFikFge01hB7RykBgNWsSEsWQ5MjOnzLSt4/ll7yTaKKFge7tdB+8l4nBo/QffYKLX/cZsqP9BKM1zFn3CqRhEKtrp2fXXRQyE3Rc+Aoi1c2OXKY9j7NBX9sqgcAAffsfZujIFrJj/cQb5tF55VsJxmpQdTCkQVCNoBdyTA4cNdfkJX5PKciyrFglZ2CElJJ6EhYJUVKs2n1/pn9TMoWpsyS8WWWTKX+bM2RWeE0fn3Dm+GXrgAo+Uq2uRh8fP+N5y8wjjysc32YFftZaKf5TERJCmORK2X5T6qmSRJlqjR9OllnM7Z9SsYg0u39ap9PDqulvS+qiGJ5MHsXTl+zaJmUF2aX0ZOd4AvmsYuzS6Xfu/Xg/F408XY98j7HuPcy7+HWE4nVOBsSlb/s8ALH6uUwOHmPlDX/FwOEnqO24oOwdzNqLw3RmngHx/Igt/+HYLCnxO2aLPncbJEDTA4BATOacqE/bjJBC5L49YBWlRjdQq6vMwQycFGq78Gux+7RDTEjVLbCVb4iih1VCmQJKOu+bxMhM1pVkKg1nOJNZIJkDZGkaSjQCxSJK9zCFOfUYlrSHPcjYGROFJhvIch2GFCaCFHvoIGABZUB2hflM4UOm7FFg0IzktQG58asXOefJx/zZE5pd2EsItBwEUh5WPuB3VoWoQMtIR79QD8GJO77JxFFLLssz0Zj/tg+QG+wjdfII+aF+skOnyY8PomhBmtZdx/4Hf3bG1/fg3R87Y5tZO7927+P/AMCyWzYj62OoQxH0sKtHWrDmWIGURTZ4yIHSour277X2kNkvBteXX6/7J1/HKOYpZsyF+ZH//BQ1C9Yw/+q3omgB9KAZGW4XvS5E3aJsdpS4TTzoQUG+pC53cNKUKqs6nkcPKqh5g8BQipHUSQ4PPcLYxHHWXvBOqhNzUAo6ufwkx3kMgOpIG0JTaYzMp2t8C7tO/8J37otXvpdIVSsGLlGa7TDR4VC/Sd8ZVh0DB8iwyVIp2Td8P936IdrVhcwVS2jR56Aq5v6MTPIYv8bwTAUSSp15bEntCCWgmcSEnRHhMafuxAwm9c/W7BoWzn2FrGyBhXMdnypSuYrHVrJKhMQZj/HUsJi23ZDpI6W3cDmAlIigv6iiqBQJVSiJHFMURFFHhk0frVe5she2dJcRsvqCRUgEkkWSc8IICeEhl5DIV2tOfzcCAin8cnvuQkGSr7L8uZ255M06NyDRY2UhjZr/pyL2c7rNcqODdP/4a+j5NHP/+P0c/+YXyx5Xz2eZ7NqL1HWS+UGGj24vfyezNmuzNmvPsykFiREQqFoImc/5wBkwwbcys8A1W87FC9hJxZ3DKFlXpmm6yF+RSnskmGYOvAGe9crMAbhzspLaVFMCcJUsmSoH3uz/EyXjo2LVU3KANcH+nrvoGTbJBS/psnrF2yjqOYZHj5DMDJBO9pPPTSDyKm1zL2PHlp+f8bGe+s4sCfF8290jXwXgeuWNqFKioiInkjMDrs6hHz4z/Bsm5RgSA10WeOzEN2gMz2dV3fUE1agLAsfKQWAl42bsmBvAiPjneLYfKAWBJ8d7ONF1P8P9e1m6+k3Ut5oAa0PbBXQfvBeASKIZRdWobV3O6Ol9HH3su75zL736T6mu74SidIDgUq3+qUBgqUDfzvvo3nUndfPW0rjgIhrnr0cLRkEHvZBj5y//lWLOlcKqb19tXaOyLJNNRoDrGx1ZqwokhJIpIgzDk8Vgn8/KJrPrbmbyrpLEVL5PCKTl75y5t0e6TqmuwhifOKe5/7MlJCqZYfvm0vZWn7XXV6K6qvLpk1YYpx2oWiqLp4CSyfv2SUXB8JBk4MoNFksyJZyxTfilxioRFP6C7G7QaiXZJjAxMlsZQSqQz0xw+P5vkJnoZ/E17+bQfV8re15pGAwf3wlAsvcYA0eeqvheZu3FYbOZEi+czZISv2N25KMfYtHnbiNTHAUkRmctxSjETpsOMzJiDmiZ6y4gct8elIgLAqnVVRhpc5CW+QJIA6EIhBbA6B9Cv3i571rBh56hcMUq8g0xQl0DqBMpjMFhE2xUFGQ6YxIT9gAMrgyLTTwE/F1MKgoi//znrBklhASxGNVbexnfYGaA2LdtF0plKoxQmlFmekhBGCYophTNSZSUktRkLyO7HmXiyDNlh8Y6l5Hs2s/Y7qcpJicQWoDYgqXEOpdSvfJCDv3HP57PR561Gdi8r38WYbiznOPv/egZjykmJ9CiiTO2m87ipyT51BjJgRPUphagxhOASW6BgZHN0NSymsRFl3HwZ5sJxGoY69rFYONcmldf45wnX22nWkO2VnEID5tUswmRyLA78QqN6aRa/L9LbTJPQdPZ0vUdADraLqO+drEZeJ7WaYx2smbu69h18mcMpo6yVf6cofQxhFCIhusJBKKMTZwAYPfhH9PcuJYFHVczudSclNp+aXKRuVBPdJmRQjJk1Zgo5pABlWRxmG79EMu1i2nX3eLtUkq264+QNEYx0FkXvpawEiOtT1Kfq0MK3SUaLHk5qetuVsEUGRB2oerpzCEVziT35NleVhC7hJiwZZtssteIhXz1FmZiQgsgi+ffl1YiJCqaTUYriinXZxhm5pudLWFHTRkGIp1DRkOoExYpZZExNiHh1Wm1/6865EYJpubFEIa/cJ0wpCNhlo+7E0M9JFBzJjnsJeO85P1kh0nchUcqP1v+4FGO/eZ/0cJxlr76rwgFGnz71/z1ZgSQPLofWSxQtXAV3fd8l8b1p2i8cBP7vvqPPPbYYzQ1NbF48ayU06zN2qw9/yazeQrZCULRuor1ImzTHPDNv13JueH9okRSRMnmMcJBs75UKeHgHevs7AgLpJOTSaddJQDuRWHWWC4U4QfgzgS+eSOCvZHCHvBNxsKkciN0D2+je2hL2aWrq+aSTPXR27+DTHYEIVSqq+dSV7uI5qY1PP7k587vs87aGe2lwbeaf1j98zeFH5zxmDxZglQu+ns2lpdZRhmkeixNRFhEl9UPizJPrdLIsvAlPJL6KRG1isHscQ6PP8nKumudc4h0ZRBYWvUolKw5D1UyHtLMAoG9pubMGiY7n/ovDKNIQ8sqmtvXQ87U/I+Hm1l+2bvZ/8Q3yEz2c/ixbzPcuxeEQjhWRzBSxcRgFwBdT/+Eurmr6Vj1MgIB8z4Mh5xwHVEpCKwUJbnsBN277qRl+Sbmr32l2xboevwHTA4dp5hL03nh60jUzyc/MUR142LfedWcgR5SfH5RyRmoOaNiIWo1WwQpTQWJTNG3Dykdf6iksshoCJHyrAFsJYlUxvV5DplxZp9n+yDfeuZF5itLfSJCICcm/dkT3v3VCd92RxYPnMxtO7NeKjZZ5H/vetgsYq455JlHjixsy3l7AkqnIig8tUykp8sruvRId5tEhSi6EmLZodMceOjrSGmw4iV/Qayug0vf9nme/O6HPdeBiaETFLLj1LWv4sSuX9I8/2LmLH0JW+/5NDt27EBRFNasWVPp7c7aC2C6VNBnSDbMtN2szcxmSYnfMev80uchDLlJMx07aoElqTZB7LQkU6cS7S8SefIwlES22oVRbVkPx6xFg3h0F0pgBl1CN5C6gVJXY514BjIp4BQ2leGAyUYHNHdxoilAAJHXMQLmoKVHXfZbqoKCVXjLBqa0jEHi4Kj5TKOTEIsyfsU8wNXUrzmcwegzi2oZ65dhAJPzTaImNFL5voOTVrZE2nCuVwwLK0pMONkUxbCpqTnZ38V47wHGTu4lOz6AGktQ97KXE2xto++bX6Px2lcgpGDw0d+QOXWMqtXrSaxYQ7Sl0ylKu+9fb57RO5y182/FoRH0ZIpAU8MZ2xYikvzoIMHaRrL1ELOUzDRbNlTDTZO251rWnCg0Yv6fCqboO7id7q2/RBo6QqgkOhbTfsFLqYmbQHws3sLQwF5Ck0tZ8v/9E2o0xv7PfoRTT/2K4CWrCdbVoyX917ZNzUuk4snQ0KUTDRQaM2dYiW4rSkp1U1/Hkj0ArF/5p9RWzefeh/8egBvWfhIhFJobV7GcLEdPP0RBz7By4etoqb8AxcpiKMg8+w78mMGJIxw/9SDdfU+wMPEuqtuWMLzMbJM4ZV5rstONIqw6kkQG/JEuI8Ve2phjyk0IBaRkqNgNQERJ0BCejygUSWi1oIGRTiMN6USXOUWdVRWheqSc7DoTMwFBvOnLquonN86jqX2j7vWqqpDDIyi2drAF8MuRsZKDLAImn3f8r1GSDWETFnrSQ1xYbQxbPs/z/N7sEVvyaSpzsuQ8xINjmawpyWcvvjTXz4NJRAldkq/zL0S1jO4QEuGhAvk68x6yDQHUnEQP4o4XqgCEeR4PISFVN7rXS0hIxY22U4qmtB64NVfULOhhM9Np9NB2uu/7PrGWTjpf+i4C2tSSVtkTxwlVNbB44zvprfotfbvvZ2jHw4iv3QJAdMky2t/5Zxz6u1n/PmuzNmvPj139qs+hAtlJc84fDdaWtVELxpRFqdWcXk4+5ArIUMCMsC4tVG2bXSMinSmXHjyLAq6OvRBZEh5CYqY2JfgWN8cOKSXjuT4G08cY7D7CRG4ATQmxoP4ymuKLefLEt5nXfBnRcD1Heu5jcvI0zfUrWTbv5VQ1LUJVzbXcfQ/87bN94lk7R8vJDBk5SZSZBSSlST4rUqIoCwzKUxwwtlO0KhbWimbmq8tp1DoAiCs1DOo9jBR72RT/IwIixH2T/0d3ajdtSic1WpMLAiuirFCxSOcc+U47i8eIBqcFgdPpIQyjyPLlb6S1ZR1kde67/2+5+hWfRQhBY+1SWPc2uvbfQWZygAWrX0PT3PWomjmfu+/7H2DOso0Md++k/+AjDBx+goWXvJmG+ev8sjoVQGB77e284+EejFwBJRRwsiwmh46TTQ4hhEJT6xozeyLukZ8uISYA1Lxfcs7OdlBydsaYe4z9TpSMOYm0I+vB9JX2ewXMTKpY1CfD5QY52ZJ2ijl/tj+fhU0l5fqis1JCwpYiA9dv2v9XxZ1jlHQeqZrZPk42RTTo/G1/P2Z7syaivf5W84YrBRUQZp08z3fvVbyw+5VUhSMl5ltrSE8Wj2YGOI2fPsihx75FKF7P0qvfTShagwQfIWHb5PBxFDXIsov+mP7Gpzix924GTmxFiM8AEE20sOHqD/HQr84cFDlrz71JBMYM5ZvkbKHr82qzpMTvmB37wIfp/NLnyXX3IAIaxcVV1OyR5BOCXI2g9qA/clYfG3P+tgdDbySxk0nhAfOEqoJQUOa0EeoeJbOwnsyyFsJPHUYEg8hMBZ10ISBgkR3WRHy64kzTWahnjFxHjechrHQ66zy2ZI6al3BqANqbzur8XgskdUKjOdRxM5LEHsRSiz3Xr+B0lKLEUOD4oz9k+MhWtGiC2MJlNC5/NYHVSxCahthrItZDD92N1A1q119B/UtuRA1HOHDLLEj1Qtqqj2wmPzbM8P67ST2x3V1kf/RfzQYCtNo6AvUNkC8ipY5QFIx8ntypHpoufilqxi1erVmBSGbGjEFuqI9MzwkyA90ooTDB6gYisQayI330brkLI5+jYfElzF18HSOn99Lb9Rgnt/0S7a0fBGDODW/j5CM/4ti936Kx62IGjjzF4pFhjv/gy5z86heoWncRdYs3EG40Jcoynp9AcNzsr4Gk/bsxtysFSSGmOKBtcFx3CInJWIFDBx8gGEoQb1vEvb/5uHM+u9g3wMs23MKcxou4Z+stU7zZT7Hpxs/Sc/ghurru5tBvv0LH+lfSIq8i06wxuM79LWlpQbxbMrzGXOQ1bBkltmAlq2vgma4f00QbzcwxM7qEwsbQa9mVfwiEgkCYYLymIfMFh2gtrSMhjaKfaD2XYtaGRAloCNUFWCpGK9lZFJ7tWke7tc+Vg3PA+onUWd9LqQlFQdrAyrOth+ExI5tzQBn73Uqr5pASiZjPoKpTHu+YnYKmqohcEVTFzIqxao0YHv1WI2CRzhE3hT7bYI0pUjpEQjFqRVGpgCpQ89LNcANyNeb/StHVKBaGRVbYgbwhoGeE9EA38RWrECjI4SSntz/M4NO/pXbpBjqueROa1Nj23+W+evLwXpLdhxnr3k28dQFCCJoueyl1F25k7OgOcuPDTBzbQ+5UD/JcwLhZm7VZm7VztId+9VGuftXnSI6bgQaReKMJvNjDUIlPUnJ6WZaEFyRzwLZcwb8vk/XUkLD+L63J4DWP3Mn5ypJQa2rQx8ZQq6eRWRLCtxY6J/NEBIuSiHMHUCu1ZBoUweHk03Slt6OJEA2hOSxouYzGqkWoSoCCYa6nTg48jZQ6rdUrWbzw5YQCcX7z5Cef3T3P2rOyG5vfT05Pc0TfxinjCIaFWqtCw4JKCSkxYmo1UkoMiggUUCXDxdMsj1yGGqrQL4VASsnkWA/jDDPBKEIqREWcCHHyZDlsPEOBHI2ig2WBCxk2+ujWD7O/+DQNajtCCJYFL8LIG+zNPU598TiDhR6urSmwNXknWyfvpC20hLbwYmoDLeZ1J5PTgsBg/sanAoGNdJrDh36FIjSaE0u5736XJHvo13/j/H31Kz5LY+tq3zavDRx7mo2vvZW+Uzs4uu1HHHniuyQHTjB/9SsQgYAPBBbSDCixwX+pQlirYuWmv2DfQ//NwOHHaFtytfMMq6/8Cw5t/wGZyQEU1Q3MLK1T4fWHDglRsEgIvXzOZstdVcxssDNRdKO8TSpd3n4aK8uqPg/2nPvGqWwqv1i63/t/Mu3WuBMC4hH/IVm3SLsAjEjAgWjs7w8sggKwa8yBxAi696NWyJQQHtLLDuorpCYZHzhM3dw1qEJFT2fp73qSk3vvorppEUsueztKOMwT3ysnI1Zv/AuGe/cw2n+QeE0HCgrtHZfS0nohQ727SU8OMDp4kOREL7o+M4ndWXvubTZT4oWzWVLid8w6v/R5pGGQfOIpouvW0LDHdbxIiO44gTE2Uba+AHyRvvagZ2QyDsikBDSXtNAUjO7TKHYRbECmPYOrpmGMTzg64yLkz8rwXTfkdjNpR+NazQ1La9wImdttYApcXUB7wJjSTg1AvT8SzNakTM4JEw2uACBXaxV+tQajcK8JCmY74hTbI1TtG6l4ei1jOPclDOloGvbve5jhI1vpuP4tBK9dj1AUjvyNC2BJKZmbHiY/Nky0vZNj3/rC9M8xa8+b5UYGOPy//wZA8/U3EenoJJMeRE9OghRgGOTHhimMDKMGAhCIIA0dRdVoet2bSSyqXKQqVwdDt9/O8DOPgVCIJpooygL55Kiz6G5YfjkNF19LIFFD/yO/ZeTkLuov3MjpB2+nePgE2uJ5BOO1LLrxfYzseITjW29n2TXvJXTRCha+88MMPnw34zu2Mvr4Q9SuvoTaC68kWGv+ToOWfKiWMSM87N+BoYE6YtaX0DwF3PSwghFUOLL1TnK5cVZf+Cc86CEkvHa98kYA7jV+POV73XTjZ813uvYaapdt4MjWH9Cz7Q5O7b6X2mtfQs3V16CgOABzco5JTGQaBN031tFx3wS1VjaFruFWkZIGESXO4sCFbMv9lgfHv0ejaGOxXEOA6aP6S4kKR3LB+t+bYeAA8MWCX6rJc2yZLJQ00ObNse6zxPNOQ8hOXmh+ZzYxFDllgjmyPoEeNO+t+3ozoyQ8ZJ4/1mdluhyxJCW6uqd7dMAsul2aRVEJACpdCEndE9lUyXS9PEsuGHQXZDYhYS84rIWGTUiE+lPk600CW4+qGKpwshkydSpgAz9mJoNi3V5w0mCy3dwXSJmEvHNLIRBFM5rJ8CQEOkVaBRhjKYae/C0jOx5FGjrxPYvRognGj5qSe42XXE/r+pex6/+VLzLW/PVmMoOnOHb3/xKM16AGQoSqGigGJcIQGIUcg/seIzfQa76CeBVqepaUmLVZm7Xnz6552b+jAL3Hn6SmdgERxQQelbyOEVRR7Mhg73glrChgR1O73G85WuDefXakr9fOIUtCqan2t/WMnWVFrkvGVbWm5ozXUGtqKlzUv7YQ3vG+QoFrY6xES73UvBHB1vF92aN0pbezOH4JnYn1KELhrlNf8h22obOfZHaQRLiRLce+N/01Zu15s7yR5YHh7wCSRdENNAbnki6OkzVSCAQSSUafJK1PoAgFjQgSs2j5kvBFzAkun/Lcx3LPcBhTvium1CAx6DGOIi3ioyW4gEXRDcTUGrpz+zmZOUxnYi27Jx5gKDJMY7aBgAixJnQVg/IUOzL3s6r+JXQonVySeDVHszvoy3fRndtHS3Ah82KrqNGaTfx2GhDYzJxQkVFzXu0FgU+cfoCxyZOsXf52HnjqUxWf67pNn0YD7nvw7874flva19HQvJzD235E39FH6T/2JK0Lr2DuyhtQhebUmhBWjT5huHO5REMnCEGxYJJ65vxQEgwnWHDBq9n+wG1sueufqW1cSueyG1CjZu05x/eBg5uouZK5rypQ0xYJUUpQWP7OVyvCNlUxiQnbJ5b9L2YcpKnUVGGMTUzrF83NnueZ6txn6xun84v2/rPxizOxknWC40uTGTcAyi7SHnMzkJR80ddej2ggBGpO9xS+Vq22/oLYMqCYKgIO4eU+t8zlOXXkIXqOPIRRzBE/8ijRRBPDp3dj6AWaOi9h/oU38eSPy4m3ja+9lVxmjH1PfgNVCxMIRonGGqBQRCoq0tDpO/EU46PHzUfWQpWDfWftBTFDCgx5BtzR03bWzp/NkhK/gyZ1neL4BPHGRgCnqKfDFtdUIbM5jKQFck01UAnFjCKuwMpLXUetrgLDIHJ4EKPndOV7yecRigLRCFjEhC3TVDaYz9BsEsKZkFjstZNi5xTYo6yAlPEsevTEijpHh9AmLsQ0wVuTpw4Trm6mKtDM3o+XA1hCCLp/8o1zv6FZe84skKghkKhBVMWpu+gqALSECfzaGpKKk8YJuUazI4iC2SczipW1k7H7qtVfdEGm+xh189bQedmb2fp9M5Lowj+9lXTRlOmJhRoohmFg2/307bobgIZInEjzXA7e81/MG38DNSs3ANC0+DJGevZy6KFv0Ja8gaaVV9G+6bW0b3otA7sfZfjp+xl95kmi7Z203fBm5BwzZSLQXT7JytYpBJKSYsjUaM3WaYRHikgpGTy1i/ZFV7H1ifJivuASEqxdypUXfAApDTItEX79fx+mtdVNjX7wLnOCdsUbbiUYTnDBpe9hYuQEQ6d2cfruXxOoqiaxbgN6yJTQKUYlY0vNl6wlBSdeXoW88XLq//VxDha3ESdGlTAXE0YmQy01XBx6Gf16NyeK+9D0AE3aPGJKNYGi6nEOJZNoz8TdV3NCVX01I5xtdr0Gi5gwCmbGhQiFnLwpYddOCIfw1dWxLLOsBS1tpXpbmqdqMkt6fk3FdzydtTxsynAYYYsEHjbZJz2TOWNUVRkhcRYmdd0ZPxTreY1MxtmvVCigiKKYiwjNIqAtaS5R9DtTLyEBEBw2maqJhVE3y8F6pZl6lxzRQ6ZfVopW/Yi8WWjeIeAswlvopiST+ywG41seZ+DOn6EEgjRddD2humYGt96HnsvQfNFLqVl3Gfu//A9lj7Tmrzc7fw9uvZ9goo6Vr/0oJx/7CX3bfsPIsZ3UrbuC0V1PoucztN70NsLN7QTrG83xcdZmbdZm7XmyB+75GNe87N/JZcaoa1wGuICMknfHCyWvu1HB1hxa5IvIoGZmRVSK/C01776p2gmBiMfMa9jXKdVUP4uMMmHrkZ9rFppnrJbTZXaUmFJTZY5vUxS3lsny7MfhwmmCSoTaYCv3nP5/Fc+7dZaIeFFaQISo1ppI6aMsiq4HoEqt97URtiTSWfbFsewQtaF2Lmx6Fb89+V8AvKz+PWSNFLoskgiY1+nJHmBf8hEACkaBxuBcdo7dw9LE5cyLr0UIQbOooX20l72j95NKXMiiqktYLC5iSeRiThePciS9lb7RoyS0elZWbaIm3DrlfTnPlc45ILBNUPSO7qE5voRteyuva6/b9GkADGlw2SUfQUodicGPf/Jh5s6d62v7yO0fAUwAd/kl7yA5fprh07vpOfQAgUCUjqXXmtKzqkAY0iEkDM2U7VSBxjkXcurg/VTVzqOu2fRzQpfEYk2s2/hBhnp30334PkDSMfdKQqEqwqHqMlLWKXZtkbZqpuhmg6kCdOlmiekeH2fXijgH6SXzZj1+0XM/QkowDNPfPJ9+0bonOEe/6DkeIab1izO2EkICVUHJ5h2JMQBp1aiTqnDHNyHQS8gIBOiebAlRMEV67AwKoUswJAOndnBkz+0YepHWhVdQ07SY7v33kho/TeuCK2hedDlbf12ZlNv42lsBON31GEIorN/0IU51PcLJQ79ldOAgbXMvZ3ToIKnJfpasfD2JqnZisSZHBnnWXnjTUdCZ2bptpu1mbWY2+yv4HTQlECC2djWpHbtQr7ueyJBEzUqSHQr6vGaUgyfLjvHqo5aSFHYksS3bVMkc2RLrf0c2Pzh1hgQ2IGpPbFTh/J2rt9Aia9AqjVQ4XxZIGeYEA0jsN1PZZaOZVZGZZ0YgFMMKhuYvfFRqtnSU0E0FOcMoIqIhsqf62XfnF2j78yyRxYs5+uEPPSfPMWvn1/b+x8d4x+hefvzwo44Ek3IeumBhdIRCdpJ443zUgBvBv/3rH3H+vl55I6k3Xkrh5Em0SJxiJonIFBg+doC5K67k2KPfo+HEflo23URQxFi66U/peeYeTm29i1Nb7wTggld/lLlzr6L7Nz9m+cveS8/2O+n6zmba3/ZeovMWONeySfxC1JU9UzzB7dk6jWDSoLF9Nf0nnmb9624hEEk4tSe0jI5h6PTJLvrjw4zvvB1DWi9qH7S13UZi7lIaVl7OoV9+Bc2Kjo/2mlEf9z72D1zxxs8TnreA8bET5J/cA+s2ELACa2IjglSH+dsqxiWN2yWhMZ2ma9/Pri1fY8f4o6yXVxMXbvpxVaGakAxxgn2c0A9wQj9Ao2hjrbqx/AupkBHgSi8oji90akaAj5gQqooIBsrO4TNDQsxMMc61mfdpBMSUzbMNtnSR+Tlq6eiOrzCPjZ/IOAWhO39oFQQPTJOx8FyZra09TTq5tMcOO1POroERCSLy/iyKYo1JQuRrzLa5Oo1or9kpvYSEbXrQinyyhgo1a8ku4fZlgLytPqCDbmV6Fz1ciU1UD/7gh0zs3EKgtp45r3gHR79zG2s+uJmaRWsA2PXFqSX1dn3hZtb89WaUPKhaGKRk6MQOho9so3H55eSMFH33/wIlGKLzrR8g0GHKJez/51mZvlmbtVl7fu26az+DArQ0r+XU6adZvug1gAnOGEHFBG48mtnCBt1s7Mb23XbkL5QFAPnAOdtsgNau6TQTCddSUNcLqNnj83NY1FV4dfaFUhYlXJGAmEKSRXilcFQVKQ20fIx8JsPTIz9nZdNLmVuzjrsO/ft5fopZey7s7oH/5u//vp7bPvslszCvIc9LX8zrGTLFcSJaNQHFjZy4Z/hrzt83rPkEd+/6FJ01G1BFEEMWKQYkp0ePsrjxMg6MPcaQfpoV8Y1EA9VcUPsS4oF6Do0/zvHJ7QBc3PwGOqrXsmv8Pi7ueBOHRx7lqZHbWVP7MloiC6e/SQ8ILHIFUBRaqpZzYvhpNi75c2KhejdyPRpESoP+if309m1jfPwkuuFO0ubN+yLVNZ20t13M9u3fIhQyJ3KbbvwsKmYw08bX3kq8qpXUeC/Dp/eYpIS0ghKldAKslKJ0FAsWrX4dxVySA09/m1UXv4fq+k7AXPdURVtJLGim+/B9DJ7exeDpXSTibWzY8JfY0S62P/TiDzaoLSzJurK6O6XZEDMlJjy+8Vn7Rc+xz5VvLPOL4PeNlfziFOSDKJEI8xVcPxvCws629gb6KNZ3pSgeOSf3+7XNCJvXLKs1IYQP++k6cg/dR+4nGK5m6YbXs/eJr3Pl626l1iK9Hv2Zu5afypSiRFPMPj7af4BTXY/S2L4WFZXjR+4FKVl90XuoqTX764N3f2zm72DWnnObzZR44WyWlPgds2Mf+DDz/+tWtOZ6soeOMDFfUHvAdLzxHkvuaOlcxJ6jvuO8RWDtYm6yWDCjaEslSiwQrjgyCiOj7jElprQ2uwVYpcSoMhEhUZg5uuuk19l64mHF2WYz2jYhUAb0CSiuXQRAqt1KNbXWUnaUe65aRc0FCUycOVrYCAg3rc8eg63BKjvSy5F9v2R88EjFY7VKqeGz9qK25uZm8oMDGPkcSjCEoZryR07Rak/kdaTP7BAFqz5zeND6f1SSGesnc+QA6cl+Bk/tRFPCzI+spaorw1QmpUFV00KGe0zJmOr5FxCJRFh02VupaV3G8a23M/r9TxNvW0hN9QLmL7+RhrZVnDrwACM9z7Dnl59j3sWv49J3ZKmdt5pgUyv7f/hv5HtOEW9Z4DxDcNIgU+/+vrNVBvQMoUUSRDJBhDCLtceqOxjs2cn22//JfDft61FiMUJ5jf7+XWQYoS62jLkLX0E83opQVLKNGtmRPob2PsGxu75BtPonJNqX0sY8AlqUTG6UzrWvQVGDDJ7YSmqkm8i6NagZiA5I0k3mjy3WI0j06A4InatRqdkywUWJl7Ml/RO2649xkXE1EeEWxw7ikqELxQUclXs4oG9nafAiFKH4sgMUmzi1CBOZs7SjSmpAzLTIpUPERi3ku1iEVMYhJgACE6YDmlxgtsnWCuv7iE+bfWWbXhWBJ3YxVZ2IYoVjzsrOsv6EUFWnOLZQBCI0vWQWQLHeXIiIogtQyZJsksl55rs0NH9ByELUT0ggTUKimE0TTAPRqEtQFED38EbFCJTqFxYnJ5nYuYXGG29i4M7bne3TERGltusLZts51z3J8L4n6H7gB2aaeFszc9ZtpDA5ijQMDv3Pv8z4nLM2a7M2a+fb7rv/b3nJVf9KNFRHsZhB5IuOBIcbNSoQ2SLCm92g4AfhdGPq7Ae7dpzuiTquAMrJWNQF4aQsB+JmENUrq2JnbjvdPnEG4MCWCpmces7mMztDsETiKV2c4EDPXQxkuioelgg1zuz8s/aisebmZnLFFNniJGElbq6dE5Gz7ouZ/DiDk0dI5obonziAlAbLWm5AxmMVTmDay1b/AzXhdo6PbwOgNb4UTdNY1ngt9dFO9gzcxaOD36U+Oo+qcAsLW66gsX453WM7OTGyhaf7f8KSmit5ycoP0xjtpCbczn3Hvsg4w7TEVvmlctJu35dSks6PEFAjBJSotU6QVIVbkBg8evgrALTVrkLTomihKIOjB5hM9VJb1UnnnE3Ea9pRlAAoCtnMKKdPb2Hfvh8ST/ySurrF1DQuIRyuIZsZYeHKV6FpEQZ7n2F08CCtnZej6GbNB0cxQZc+GU4hQZMqy9f9MXuf/l92P/111l7+fhKxNjeb2YNtLFh4A11H72bvvh+wcsFrneLxXuBa5HTXHzqSS4BhAuFiuowx21TFDM7x+kXv/16brv7mDLMdZFXszG3P1Td69s3IN3r7skfiyZ73i3SFc8RjFolbuS9Oa/bXq7hkhcjpFPU8hqIT1KIYQQ0UgZI3HFxHBlRQMPsYtsqGgpSSnqMP0TH/KhZc8Eqn8PRMiAjb7Ayg1RsOcKKQ4cCO7wOCkJZg4fJX0rn4RoqFNE8/+vkZn3PWnl8zUDBmmAEx03azNjObJSV+x2z+f5mpYfpEEhG2mNhl5o8i2gu5VQkavr/Td4ziyWaQRX8hbG9RVjsAWuCPDFbCIaQF8tnnUlqbp7xHW6bDmUxkzGMLbdUUI1Y6na3hN93DnkcrVAXJXjQfgHSjJRcyaZMdIK3FhZqXDjhq26nDD3F8zx3+EwqFOe/4C5RgEGVRy/Ta67P2orTXve513HrrrRg9AwTb5qDkzv4ceiHH4Xv/h3xqjGhVK81tF7K49VoCWmTa44a7tnFsuwuOJrc/DeAUy1r31k/Rt+cB0iOnObH7DoZ7dtG69CqWXPZ2RgcPcWrPvZx4+md0b7+D1qteQ6SxA4BI29yyaxlHe1CiGse23E66/wRG0QXsF61/E6eOPExmvM93TDo7THGim0IxTbRxDsvmv514dRtFS94sW6sQB2It82lcdCnpoR7G929lvO8we8ZNnVyEgqKoGHqBcOcCWl7xJ0SXrwRrvhkdkESGdCbmmcOQmpckdg86IEgwFOei5tfzeM932M2TzGc5jbIVgZly28ECeuhiQPagotEtD9MiO6kVTSiRsAmie6SX7MLYNqAuc7kyfyg0d4IhDYkS84DvpQuSyaQZPWeDMZMpQgfNqJ/i3CYqWXjULS4ePm4Svv8/e+cdJkdx5v9Pdffkmc05aVda5RwQQuQMBkww4HQc9tk43jnbd07nc8J3Thxn++dzOtvYOGEM2GSZJAkkIYRyllar1eYcJ3fX74/unrSzq5WQAMF8n2eememurq7uqamuer/v+30ZNKWY3ENm+IgRi0+ZLDidSBAzVlsS9zQbPGZ/t/MH6T4XkWInrr50MlhISTTfHCtjXoEjKNFTgu1siT7VjpR3W0TVUC9dm55g6NB2HJ4A9W//CE6nJaNgPUSihfY5MmT8xiL0P/xXAByFRcz++l3s//LJRTAs+Ze7cPrNEwWmzSEWGqN/6/MUnHUealEhe+7MRUbkkEMOry0uu+CbAERjownjG1iJQBORDllm3zZfkUZUmMY5aSUczZR7siF97hTjmi37NHEbDb8ra5m0XBavRIbkJCADnnFGukwiHQXTu3Yk/VnYObyPbW0PkIkVM25DU5wEjHzUnETHGYcbb7yRj3/84wyJAVyBkyOVDKmzreV+hsOd+FwllARmMLP8ItyOwKTH9Y81s63rr4nvx8J7ARKRNpcu+Twt3RsZGm6lqW8jXSMHqC1cxtzyyyjPm8OR3g0cGFzPgcH1zKy4hKqiRQDk5U8bd65RNYjQVPZ1/J2BsRbiRnJBNKfsUnrGmugbO5J2TDAySCzUSWwgiM9dwlmz30t+0fQEWWcbgY38aZRXLSE41kNnx1b6+w/Svet+zMmbQFE1DD2GP6+K2UveTmnVYkRcJqO4ZNJJDKzoCXvNrjqYv/I9bH/+x+zdci/TZlxKWdUSVMueMWvODRzY9yCdHVtwOHx0d++krGAOFaWLUWI6hkNNc6RMIx+y5cvJgPS6krJLehZiVoi0MhhGcpydYHwz/K7Jx0V4zcfGrOMiZB0bE8fYSaszpJ5EMGPx7fUkpYftMuEM21UWRGKjHO5cS8fADhShsnz2P5InTKky3ZMcexXLRpWa+FrG4jQdfAwpddzeorSk1yeKi67+Nk53HiDIL5gGQqGz7SWmT78ct+bj6WeySz/l8PqALgX6FCMgplouh6khN0M6w9D84c9Q/+PvEm1tQ/V5UUcM9IA5sAYrTWICAClNj94JEx+NT+IKJDTWAdSFs5EHm7MePnRWNQCBw+akSnc70AayhzSnQolLDE0k80ZY77rDnsQk/+AJ4iLDa9k+VncJogHTldb2oFD19NwSWgSG69IlpsRxEk2p0aRHhqGJBCHh0LyU1C7BU9VAYfU8RqdZD9gx2PfVnDHqTMOmTZsQqopWUoJUkpr0CSOp1U3cfdjRvng7zY3ufgNDj7Pr2f+HHg6x/Ox/5qWN6ckLJ4O/2FwUNC67haGeQ3QcXp+2X3P7qFlxLc4Rydi+HRxrfZ6Dm37P2HAnVQsuIR41jd9GPErb0/dRvPBcAIZ3vYyntJbRKstzpHeEPX/6flrdNRffgqI5aVlzL4e2/Glc22YsvwX3JecA4LRkltSoJAS4BpMzZUco+T+qGiqhYOlbAYgFRzD0GFp+Ae4hiWHEUFUno06NaLdZPnVCm3c0ju/wICJi+f87rD+vIXF6C2goO5e93WvYIV9gASupoM6UVtI1MCBKhBIqqRDTyNcLkEYMobrSjOg2MSGjMYRVv9Ac42SJFIvoNcLpk2QR8IMt4xS1Jsepsk5W6HZ8mklGDM20PaCseqcY2pCI8MiMZDjByIbjwR7jFbfVTk1DRiJp+SKyQfG4zRwJ1rULtxXKoKkQHx8hFylOIcSzRJ9E/ea2cIEt8Wcmr06cL6TTte0pOl/+Ow63n0BFI8Nt++jbuo6qC28gNjpMuLcNZ1U12lgecZ+lD6xDfGSY4WefY/jQDuKjI5RcfT2+mXNPmpAA2PaDT1K64mI0Xx7TbryD4NFDND3wY8JHmvBMP44cQg455JDDq4C/r/0il13wTUZGO3A6/MhY1PRahqTMiCqSxrgMw1sid5GlbQ6kGcEMrzPFyEaybAYMX3pEnUiNppiCUU33Z0TknS47XOqjyZaUHZ3cS8UIuNM8gbftTRIS1SXLKHRXU5rXiNORlEF5bNvXTl2bc3hVsGnTJgA8RdXo7pT+OMW+KKVk+/57GYn0sGTOP7J176+ndJzud+F310MTNJSdC0iaezYhpURY/U5TnUyvvACqBAOjxzjatYG9XU8yYvQzq/ZKYn1rE/Ud7HyaUHQAEHQN7qGkrhFVM8cEQxqs3/vTtPPPrLgYr6uIHS0PsK/7qXHtayy/kOmVF5pfUg3IMT1hUJZO1TRSW0Zgn7OY6Y1XMJ0riMZDxGJBXL5CFEVD180xSgiRuLUJw7AqTHldXSZsBhjJdbqGg4ZZV7HzpV+wb+cfiYaHmTbNzBWoR801QCwWpCC/nvKSBZTnzU5E8Cqpyg5W/oiJoiLSxkXISlgYVn6DEx4XYcpjo+53pZd5NcZFMCODjzMuQnJszEZcKGPjjzd87jRSA0jm8LAgva5kfapAhJL7pZQc69vCwc5nEEKlOG863YP7aOpYy5IZbydiBBnp7sDrKcHjNp2KdJeKiBnE4iGOtb5AT98egmPd1E+/jIrypYn8iCeDZx/7HDPnXAdCsHj5+wmHBnjxhe/R27mL8uqlJ11vDq8OcvJNrx1ypMQZiOYPf4a6x3Zz7OF76N+2nuJlF6Do4O22kvEqStLYpggzIautlz6SHMiFIhCaI+nVEMtiOUvRXAcQM+onbFe80Is2EExMSPS8dG9xmwxQ4nJSzfXTDc1+JtpzG00kPHTjlmeuEY3Qu/t5CmsW4vaX4FMLWDbnNgCeXP/vr3aTczjFWPbOb7LviR/hqWlAdU8e1TARuo9tYWS4jWUrP0Igz4xUOO+m76KFkhPViSY2Lm8BAM5RAxGK4RTpbdj8f+m5SS45/+vs7V5D+56nGOlpIjzcg6+wGl9hLd1NG3GVV1Hmv5LuDU8g3C4qVr8FAMWRTsg5XH7KXDPRG0uItLXStec58kqmM2P5Leh5ThTNiTfqZsgqbxM0+UdijFYnjfD5zabx3NAEWijdGO10m0RlXBOEi8HbDSMV5qMm0Gbem0ieHW6bHAeiNdY96RhOqy/UcwwHTqpooADTU03GY7iFF4HAjYfF3ovM7ZZRX0YiCJdJTNhyTZm5dMZpR6fusuQZhKYl8iRkIlprJuBWLD1aJTox81CydQQAtXvYjLCAcQTAK0lIfaqgeDxJPXAroiQzb1BC/ioTmoq0JLJieQ6EJX0nM8Z6e4yVwsx14sjgsmM+gToSJR4N07zzIQaP7KBs8UWULDyPPb/9BqrHB0Jh78++SnzU7KnC4cRX10j55TfgLCwh7pYc+/F/I2NR/DPmUnz2pagNFRz40isjjxd96i6c+cXEQ6OgG3jrZqA4XIQ6jsK11a+o7hxyyCGHU4W/r/0iZ81v4uX+33C49Rlm1V1h7sgWKaEoSKc24T7DrWWPorBgeB0gsxjXsnHoQqB7Uwj9DANcmrzhq+wNnAqbEJGZvlsphjYDg7amdZQUzKLAP41YfIzVC/8FgCdfzK0TznRccMU32bnll3jcxXg9xSfVH/sGD9E7sJ9Fs99JSeFMAC6+Ij2nyDNPZteU1zQ3Ds2L4vESiwVxaN4EIQHwxJavppW/YsV/0NS5liPt6xgN9zA4chSvu5iSgpm0dG7E4clj7vS3srfpIXBoLKo1c80IIRBCQVpOL0IoFJfMJl8tJaqH2Nv6KB5nAUsa34lDc6MIDZd0HdcWrsQs1QRFJCSabaLB4fDicHhNg7ou0YQjKfNj86A212EdI4X5WaSc2LYrhEZ6EEKlpu5cSkrnJY5xOQMoigNFqCxpfHvyQJmMxJgsH4R0O7OPi2QhIAxjXD26N4PIkHLCCDLdlzLXnmxcfA0xlXERQA1mj2wwfK5xsk4IUDIiIQyPRdzYUtrh9PWV9DgwpE5MD3OkbS0tvS9SU7yMxppLWb/rBwih4HOVsG7n3YQilgy5UCnMm0bjtCvJU6pACLbvvIex0U6KimcxZ+b1BEoaJvw/ThUXX/FfuD3FIA3iwRH87mK83lKGh48lopVyeP1CSgVjXAefuGwOpw45UuIMRctff4m74VmG+49Qql+Qti904Ty8G82cEjLFs9ZO3gokkrmmQs03M/4mjHhZoiSk9YCNWJ6t8QX5ABS/0Jn0cJ4AhlNJhH7b9kA9RS8SQNENDJedS8IsEw3YWrjWQ9pazygxmYiacIxa4XjWdy1slo15lUTERWKic5wx5PDa36BqLnoObeLozkcAqHj/P/Lkz3KLjDcK+pq2EB7qZsaVH0OzjKIO01ac6B+J6JuoTHiiyJS/zGDXflzeQl584W7UE5DvWmPcx9nv+i5CUdlz4H4AiqoWTFj+guu/A0Vuppe/FT0cpKdlC0LRGBtoo+HsW6hpvJDI/DKEEIQGOxnYvI68uUtxl1XidLjJn7GYocPbmXX2bZTUmBOi53/wSUob/wBAedVSPIFSoj7La90v8HWYF6w7TSMxgL8thqGmLMjtaCc1fTLqHDaN2oHDQSKlpnG/aI8Z2TFWY5Iv+c3mGBMNWHI/eR6UiI7hUhmbZRr7ffv6CEYH6ZBHKRaVzGRh2nmmyUZa2E+QUY4F91DrnZc0oOv6OON5ImG1rfWaQkokxkXL4JI2NobCpvarNYGO15SQCWXrfvP4lXMBKNg3Oq7MZBhn6J9qhESK/F6COM7si5pmkg0AVkJq3bqGqLUIGq53JiJfvO0RtI27J2yrcLmSRI0dWeLLTtwAeNrM3354piVVIEjz7Ip5wd1vRSANxGiKbKXl+fuRhg5CYda5t1FUs5Deg1vBMNBDY/S9vJbCJavw1c/CVVzOwNYX6N+yDn/jXNSqEmJ9vcRHBlF8PopvfhuH/+PzE7bvRBEbHUIoKlLqxIdHMGIRZKN5Pxt++y0AjvzDqTtfDjnkkMPJYPPuX1BR8iKDI0eTsksWpFtDpsqOpMDwWJFwWfJE2IRCwkiWxZiXIB0yd8l0g2I2xPxWJGO2cq+WRzBJg6gWzO5scLDpMaKxMTq7tnKg9UkAFi96b46MeAOhv3c/g/2HWbj0PcR9GevbKfbF3rbDqKqTF7b8DJ9v4vwRmVjz/JcA8Hi+z+GjawASzk/ZcOFbvg1lXqYFLsdwKBxpfgpNcxMM95FfcjXnVqzC4yoARWUs1MOxzo30la+gML8BqUB97UUcaXmambVXUF9lRl4/vvHfmV57MQAVZUsIeMoS82BDTc8ZMJlTDlgEhRAJh0Q7ekIKkZR6tp0nlfTvCe/5lO+pigfRyCgdbS+Sl1/HzOlXJc8ZNagqXkybbyOjY10c6VhPQ+V5yTqzERGqQDrUrGNj2rgIWcfGceNixil0i8BNg32uSfqUVCDu1V7zcRGOPzYCxH3JhNOZ9amh8ccZHnMtIlMiJpSUcobHkUZi9HXvYUfT/YmE6nPqr6G2fCUDY63EdTM65kjnOipLFtNYeykBXyXd/Xs4dOwpuvt2kxeoRtejDA+3ADB7xnWs23DnhNdzIhC6JBoaAgQSSTQ6SjDYQ22VqUBw+XmmvOKa9V88JefL4dRCR6BP1PmzlM3h1CFH8ZzB8M2bz9iO7fQf2IKhmh6otheqDSEU85XFaCqcDoTTgeL1othJW1P3axrC7TJfTuc4j9lU6MV+80HuMMM1sSYaUhUYLhXD9frLuRD1C6J+855JxXyNhXrob95Gz6FNOAJmmF/d7f+Mu3LiyWAOZx7ikSBC0UyP56kg47kjpUTV3ESC/bz44osnfH4hBPUrbsJXUM30pW+jfuE14+ofGRlJTIz1eITgcHeCZJRGHE9+OZ78Chwlpez6/qfY+b1PUnnVrTgKimn948+Ij5re+fkNJuHRdfgF/vyDd/P8n81EXNULLwMhCI32ooUN1Jip5R8uTG+rY0wSydeI5CcXZTGfihKXiQgjMMkI57CeRvq5eoK4W4cS3/1Hx/AfHUt893RH8HSbBnlhSNRQHHd32L4JHO57nihhGuScrPdxGefjwkM7RzBCITNSwvL0VwIBlEAA4XJlTcwsY3FTBkpLz6EjHI7EGIbfm0xGZ0E73IZ2uA3H9iYc25tQxyKIWfVZ22c4VQyniogbZq4dlwMjFLLaGjNfE0UevIaIr5oPdZXmy74HLqf58riRRXnZjytwEy9wY7gU4l7zFS4b/2yxExV6+iWe/mQf0vUoR9fdR56vikXz3s2qZf9MUY1JRoWGuwAoXH4eDf/0KSqvvJm82YugsZxI1Iyu8VTXA6CWl1By3Y3IeJzWn/yAGV/9L2Z+666Tvh+zv34Xc798FyExSt+2dRSedR5RJUzTA/+Ls6gUz8xGRN/xk3/nkEMOObyaKC2YzdBoK009GzBcGobTfKVC92joHs3c78rY59bQ3RqGx3xlQvdq5sunEfc6iHsd48rYiHu1475eb8jWxjElSEvrejq7tlJUas5N5sy+ieKima9xa3M4lYjHzGjWeDyS5uB3IlA1N7oe5ZFHHjmp4xvnXIsvUMmMOdcxa8Hbxu0fHR3FsJxpdD3GiDGArsesdodxOgPk59fhKixjzcavsOaFL9Ew92oKChvYvu9exoI9ABRYeSZae7Ywagzx5EaTXKurXI2qugiG+zBcWtpYkQrDmX38SCCFWBCGTDP2C12mafjbZbJ9F0a6BLOIS9qOPs/YaCczZlyVVHfQZYLsWDj77eQFqjnWsXG8HLTVZntclA41bd/xxsWJxsbUcfF4Y+NUxsUzZWxMe3my233se2HfG32C6zM8Wtp9tiGlZFfzQzhdARbNezcrl36E2vKVAIyMmRrmlaVLWLHwAyyYcRMVxQvxeUoT6+k8vxnVrDhdzJ/zdhwOH5u3/j/OX/0FLr3o5ImJSy7/Ty65/D/R9RhHm5+hrGwhDsXN9h2/xuHwUVI0e5wTXw6vPxgyKeF0/NeJ17927Vquu+46qqqqEELw4IMPpu3/y1/+wpVXXklJSQlCCLZt2zaujosuusiKcEu+3vGOd6SVGRgY4LbbbiM/P5/8/Hxuu+02BgcH08q0tLRw3XXX4fP5KCkp4WMf+xjR11C14fU3yuUwZZSsuIR4ezetj/8eIxahqvYcDE0wWqnhDpru32lkg6ai5Jn6plLXwZZrsh7SxrBpoBU+y6s2Q85JGgaREivZnfVP1F3HH2CVqBXF4FCSDylbc9J6j/lNS6YakQlvbGGkeyoYzqTsB1iyINaAEPdYxyQ82u3vMqHnbnswxLx2Tgq7fcm2Hnj4R4nPsZEBXGWVeKsbXjehkzmcGlRXnEX3nrU0P/Qz5gf+Hae/ANeQ+SPbxJ7db+Jugbfb/KJYkjSh5gN0t2xmevWFnH322Yl61//lMyz7kGn8zDsa46Krv51VwmnjvZ+etH0zlt3EkW0PIoSS0FtNRWn5QuYvfjfP/CE9zFR1e6i99f00/fTbDG16nprAxXiCVbQAQ72H+fjHP86f/mTmkehv2QlS4nLnj2+AnUOjR08khk/dbkdJmJ9tb35zv2r930NVpleY98hgWr4ZPc+dGAdUS/pJxOywFEE034kSMb87VA8OnHjIYtgGfCIPTWq4U/ZPRJ7axKzUjfHbVSs6y5GxaIjGwG95t03yoBbDY4iKUpT2QQCMfKs9zonJ2MzIjTR5KXsBnBExoVjRaErAijpQlWT7xsx7LMfS9ZBkLJ4ks8otPVXb48s6d9wjGKsyf9O+eeYYr3vdzPxl34Ttl0V5CeOW7jfrCxc5cPeND9sOl3kJF5nXYCcs1FJy4UXyzX0xn5/yBRfStes5mo89R23VavJjtfT5BolrMPMtH0Zd1JjQHd5z5yeZ/s1vM7Z7JwA9ax+jYOQcArPmU7D6fDwNM2j98d30PvIgZTfeysxv3cXBz09dwmn215NERrDnGF33/Q4QlCy/mJ61j2NEI9S/5xMYHg9NH//UxBXlkEMOObwGKK9aymi0j0NHn0A3osyoucR0EkqNWrCMNVIVZuLXVC9f67P9zE4eg/V9/Ko84VVuyLSykyHuzeI4dSIL/smkdTI9dierZoKiWjApU3lg9/2Jz/09+3C6ApRMW0b8BCJmc3j9o6B+MZ7m59i78/c4iorJK5w2tQOtvhgO9nO06SnKp63khhtuSOy25WFWvft7ifeJ1gQ7t94z4WnmrrqdfZvuAQSq6kTX0x1c8grqWHzOh1n76L+lbVcUjQWL/oEXN97Nka7nmVN6M16tFofTRyjcx859fwDMtvUGm9D1CE5vIXGXihpPzp9129lQiISMKZjOOInt0fG5xsD6nxky8deUSnr0g/k95QCRLmGUKKuAw+FDERpeV5HVAGlKPUlzTHO7CnA6AmnEkuG0xsCMtb19TaljT9ZxMQVpY+Mk46Juj3FTGRdTIjle12OjAG0s+28M1r2xj8sghNRw+nFxr5Yoa58rtYzhttZwQlDfcAkHDz7MkaNPU1mxHO/0OqLRESJGkIUL/oGyvFmmJBlmRMJlF95Ja9dmAFo6NqAbUcorllJRtoj8gmls3vIj9u6/n0ULbuPSi+7kqWe/MOX7AiYhARAc62Hv7vuIRkdoqL+U1vaNjI11s3zpB3C7C4BchMTrHcYJyDdNtVwqxsbGWLx4Me9973t529vGE81jY2Oce+653HLLLdxxxx0T1nPHHXfwta8l81R5POky4O9617tobW3l8ccfB+ADH/gAt912G3/7298A0HWda665htLSUtavX09fXx+33347Ukp+8IOp50g9lciREmcwhBBUXHcrdAzS+cxDVL5jBarhQHcKet+9lNKNfch2M7NsprFN+H1gew8PDmVWbQ7mDg1RZspSGC1t2dtgSIr/sB2lqBDDMnjZCYpO2pBvSzu5zT+7Y8wiNVTrweq2jaAS3SIqYj7LaBeXCemmqSLuS5Ir0973cQ7/8BuJfRXvvJ2938wZm95ocHnyWXDuB9n27H8TGx1EqBpyNITLVwgkJ4COMQP3gMQ5YOVQiIbZeejP9Azsx+0sYHrNxSjK5A+lxR83DZviUCex8AiGQ5AXqEUoCmOH99HbtQtN81BetRTF78flLWC4txkw5dfy8mspK1tE85GniERGqKpZSX3j5VnPtedO0+Ba8PhDDB/aiVxyES1Hn0vsd6YY7Pev/yPTFl3M4T1/xe0rolCdZ15zUEMqyf+vt0cnXGTeE8Oh4ho0J4k2MWE4BGokOclOkBQWwtWmV72nxRxn1OEwvuEw6AZSs+61YmmNSolzMEK0wEVwZjEllefTvHYz63iEQlnKTBbhEekh8CoacU2i+vORsZScOV6LQLUM+dJKXi0mkZlLEAVa9jJGQQDFuofCNv5H46aMUUpybGUoiPQ4EW6zvoTkRSSWIE3kCXojqH6fmXAbEmMtBgmNb6PIJCqUkNWOFtNjSPg8yeTcJ4iD7y3Gd8z8nUu3mSyCGooRt2SftJHx1xAudmA4BboVpj9SZxFQGQEhSkwmFh6KniSja5a9Bb9SSNPOv7LnwJ+pNLroOPICSEnX9r+jPePHVVjOjOs/ZB7rcFDy1hvpffB+Rg/tYfTQHmpueR+BWfOJN1ZQdPMN9P3+Pvwz5+OfM3/K197R0cFtYoxfjkoGN62nf+3fcZdUMePtH8Ol+TFiUVxFZRz60denXGcOOeSQw6uN6dMuJRQd5MixZ6iqWYUL81khhWmcSyZuTT9Od6uTGrR0j5JmWJvQUCYg7lEmL3OCHoe2c1HaSU4AjuCJrhOS88LGle/g5TXfJh415wCzVt3GuidyhqY3GjSHm4UXfJQXH/0PIsFB4r4yYtFR3L5ihEjOczP7ojQMjrz4Z3qbX0Z1uKk567q0uTckCYnM75GxASJjA4DEW1SDqjkZ6T5C39FtKIpK0bQlOL35uHyFDPcftc+IN7+Cktol9LS8zOjAMcqqlzFt5uVp7bTx9BqTpKiZ8TTdbVsxjDidbVuIRc0oZlVLtnXbtt/Q2NjJ0aPP4nEXUF1nStBIIUAkc6oZLjXFoCwSCaQNp2rO84RI5JjIBiEl6IyTckqcS5plZIZ0k9AlFWWLaTr8BBs2fZf8/Gk0NlyJ31+RVr+qOojFQxgOJW0MMpwpTlWQGO+S5MT4HBC6ZRyfaGzMHBfNerJddHJcnLDMSXhiv5Zjo41UAiM1z2LacamRFAkSIr1s4l4LgRSgWSRFdc1qNKeHQwce4cDhhwnro7S3bsIwYhhGHE3z4HEXsmTJ+xJ1zZ75VnbsuZfB4WYGh5uJyxg1VWfjduUzb87NbN/5a9o6NlNTvWrK1z48PMzdd99NOBykt2sXhw8/gcuVx7Kld+DzldLZGcXp9PPiSz+ccp05vLYwEBhT/M9MtVwqrr76aq6++uoJ9992m5m/trm5edJ6vF4vFRUVWfft3buXxx9/nI0bNyYcZ3/2s59xzjnnsH//fmbPns2TTz7Jnj17OHbsGFVVVQB873vf4z3veQ/f/OY3ycvLrohwOpEjJc5g7PsP0wC55OVedjz2XY4deJraRVciDEnJi/3phS0tceJZGO08y5hlG+KyGLCUWrPD2lIsniZrwtHWMWH77MRF8TyT/IjmOxKGTHtSYT+ApNdmwCesbsqIu5NGUjWSlLQyrFtgE5t2Et+4ZeN0DoKjoIj8xSsZ2v4igUXLcJaUvfIG5fC6w7oHPsN9993Hrc/+Nwce/B+E5kDGY6hODzMvvwN/6TQYGKXj2DaIxa1JlaS3bx9Do63MabiWssI5BGt8rH7bdwgNdTE6eIxoeJigHCYeHkMMh9DjUeReN3o0QrDjSOL8qtNj6uPHI3h8JYTGemltXgvA8ss+R8OS6/HlV9B7ZAsD/YcZHGhGSh2/v5LZs27g6af+LfuFWSheuJqmB35M89FnGBhoQlEdLFh6O7/4RXJi5PF46DqwgaKKORza/RDVY32gKnhKluPEx9hgG90th1AUDa/aiCe/HIBIgcpwsJ2+QxvJd1WCphIorMNdaO63SUTnYBQ1GCNS4kFICNeaERlK1MDZbo4jIhZH2t7/YxEMn4tweZLt9/rLWbL6owz07KfryItsjK+hQJbgwYtAYUyM0k8XfsM00it+H9gErL1gcDiQhQHEmJUrpzfp/S/cdjLn7GHVsigvGalVEMheRlHMhYvHjdSm4DVRa04ilGFLxmrUNGyIiHkfjFAIaVgGHMvzUpkg2faJQuk0nwsO3bxfoWorck4Fzcq77Row30cazPdQOXi6stcXKzDvX9xrRzrYCczHk9L2d9eYHQEHRsoMJJH7R1EpWXgevvxKmvc9Qceh9RQvPpe8ecvofPZBgu3NxEOjhHpaATj0uU8Cn6TxC3fi3tnP3sd/QPtD9zLvfV+Bcgf+VSsZe/4lBjeuOyFSYtYlVzK6bydYpGPRBZdRfOHluIdURhsMIuF+hD83hcohhxxev/j7WtNYfv55Yfr69tPU/CSzF95i7szUO3elP7+EJOGxazsJTeahG3dnPP+mkBg41Sh3XJzCxNdphrsT8BbWQgYOl4+aWRfTvOsRvHkV5JU0nLJ25fD6wfq/fIaNGzdyzqP/wf7Nv0V1uNFjYRTVQeO5/0BhzXz0eIS+Q1vR41GTAJCS4Z4mBlp3U7v4aoqnLYZ8Lyve/30iw72MdjUTCw4RHx4iFh5Fj0Uw4hGEooEQDHceSJxfdbhBCPRoCJeviMhYP5371wEw97KPULnkclyefLpbtjDSf5SR/hbAlJZtXPXOhFTrRKioX0Vb03oOHn6UsaF2s96V/0hB6axEGU3TaG5+hsralTQ1rSGuGig6lJQvwO0pYFQfoK9nL4riIN9XTV7AlMYxHCqhcD/HWtbhc5eiaW58vjICeeb+iXRP7Pm2FCIhMG6TEfZnjPRIBKfTx4rlH6a3bx9dndt46eUfU1BQj9tVgKa6GAv10te/H01zW3WDdCjp9QgSybjNQsmPWcfFFJzw2Pg6HhchZWw8wSgKR3Ai8sH+IcfXp0YySQglUV+iTApREXcniYzSaSsIBKo5fOhxjh1dR1nFImqmnUfzoTX09e5jZDTEwICZX/Xvz5mRDxeeN4NYbIwtW3/CgcOPUFQ6G4+zgOKiWZSVLaK1bcMJkRLz519Na+sLiUTxNdWrmDHjKlTVCRLC4UEUJbdOOJOgS4E+RWOkXW54eDhtu8vlwpVFNvpU4t577+W3v/0t5eXlXH311XzlK18hYKkobNiwgfz8/DQlj1WrVpGfn88LL7zA7Nmz2bBhAwsWLEgQEgBXXnklkUiELVu2cPHFF5/W9mdD7p/yBkB0UTlFAxfTs+lpCmcvw+8qZWiBaXQq6B8eV16OBREFeQnt9XEPilIzBFIMDJlJXiGR0DQNuo5SaRoi5cAgImxa94WdwMo5te5lOJWEzqOiS2IWiWCTB6FiW9qJRBkb9iTAltWxEbONZH7w9MpxuTayIVoAagjKVl7B0K4tqAX5yNw/5A2Lc845h8qFlyGdCghBIL+W1pcepnX9/VQ1XkDT9gfR9QiKMJOeCSHQVBePPf4w3/jvrUgp6WnZwrE9fyc81guA5vTi9OTjcPnRFCdOj59IaAQVjWlL342rqpaoCDPUtBPF4aLE14g/r4rm/Y9z7MizCKHidOehai6O7nqMi674T6JdrXQP7KOlYwMVZUsSCeImQ7loINR4HkcPP5UIWc4vbODaS74DJJPoCSFoWHQ9u5//Gc37n0AaOsreJyiuX0Jfy3aMeNS89m2CqobVSL+beHCU3uYtKJqT7vALAFROP5eGwhsAcAyZ3vPSIiBdvSFEKEakJi8h5RaaXoSnyTSQi1gc6XGClCjBKN4jUYIN+Yk6/GX1+MvqaTTm09S3kdFoL4Phfgx0fDJAgzKfqtIlCIcPYjHz5XCAFSkhM7Rghc+SVgpnuO47nYkEzpnHAIQtOSpPm52ULt2TK/W7CJn3QBsw83rIQssz1e1EHCchIIBQBNKQKLMtY4c1Ruv7mszvXd12QZQqcwwWvRYRPc3MfyNn1pnbo/HEmJxMvndii5hQOYzUmc8AT49KqNSKPrHWB+7+8WS3Yj9erHdDTW6zoVnkcTyLDKCnbgZz6z6ClJKx4Xb2/eUnAORVz8FfWoffXZ5W/tCdX6Dqohsx4lGKF52HUDScg+ZzwDt9JkNbNqaVn37X9xOfmz6ZjIab/bW7GDt8gNF9Oym5/FriAwMULF6Jc1otWhB0N0Q7OgkfbqLuqtsmvGc55JBDDq8XqP4ADTOv5ODeBymvOYuCwvpE0tmki3OyvGEb4qRM7k9B/DiGukS54xjXpipDEvOIce3IJpEyFcgsxjFHaGp12WuLwjkraTu0FndhxYkZEHM4ozBnzhyqFlxmyqjGI+RVzKRtz99p3voQMYdB64YHiYVGUFQNKQ1TclVz8Nvf3MNdz5jeHEPH9tL20iOE+k0nPtXpweHNx+HxozjdOHx+4pEgRizMtAveia98GupYnP5jOxCKSqBsOoHSBroOrOfoSw8C4M4rRXN6aNr+EGff9n3Cwz0Mtu+lc8+zFNYtnlKfdBaXU7fwao7tfhJpmPNSf4EZnbH67d/jhT8mJaXqZ13F0EAzzQeeREqdpkOPU1q9lIGeA8Qio4BESkll7UqcTvN6uru2AxCLmY43hcWzWLroPQBIWzI1CzmR+H8apBETqd/TSArA76/A76+gtvpcWo6tY2Ssg5HRduJ6GK+nlLraCyipmG+SESnQndkJhbSxMdu4CFnn0VMdF2HysfFE5JnsMSl57MmTFKdibJwI2VQsdJcyzhlVy0ZUpLRLSdnvLqpk/sr3IqUkHBlk54afEouNUVDcSCCvmkDZ9LS6nlv/Ve6//35uvvl7Zs4HzZvoi0UFM+ju3pEm83XJpf+Z+JzqDHjJpf/J2GgXbW0bqZt2IYYRp7h4DsWFM5L3Ixaku2cH02ckk6/n8PrHycg31dbWpm3/yle+wn/8x3+c6qYl8O53v5uGhgYqKirYtWsXn//859m+fTtr1qwBoLOzk7Ky8U7VZWVldHZ2JsqUl6evowsLC3E6nYkyrzZyJtc3CErOuZSRPds58tefsmLeHRgNpQAMXjCNgpe6ExEScmwkeZCug6rCqOWxm+1BFo4gSwrMcqRMBEKTSI/E7XBOs3upIXOyIwscCb15++EljNM/mR+ttkiOjN5u2M7RMkmAhOsMfC1FeKc3EuvtOe1ty+G1Q01NDe071iS+n/Ou7+E8y8Xuv/+IA1t+D8DKsz6OOyxwOHyoigMpDT724R/R3r+d4Gg38ViQouqFTF98PXmlM1AczsQEyzVo9vtYwJKvCRsgTW3iymKTgVZDcegNM9t3Nq1iLSUlc/CMKYAlgSYEfm85fm859Q2XTPnahBA0LL6euuKVDAwcRhEqTTsepLp8OZqucsGiT+JyBFiz5Wu8vObbwLcB6OnpYdHqmxjs2kd+WSMNZ93E+t/9GzOWXUPXoQ0ITUN1uFGcbqbPvBKtsoo9j9+NZmh4etLHBMexvkTUlSzIw9WaJEj1unxC04twDkZQ+0btRpvvUuI9MpQgNYO1fhzDcfQZlcwWFyTqiJfloQ6b7v1icDRxrNR1iMcRFsGQGKtc1h8+ZB3j9SSJ2Qx5O8NjRQDkO1GD2UkE6U4eI0Yt8tY3uWeEsWUXWp1FGuSbUQpY72LYXLiphm4SJJxU5PYJwTFqXpsWdBCsNLdFrYjNeIG5z9UxceJSG7a8l933DYcgWAGBY+lXYKgw3GAW8rdIRCQ9FD8aMPfFLd7I0xSkefMD9DW/jCevjAUXfRSH05sol4mC2cvoXP83qC4kVK0m8sIoUiAkKDGY/js7kZ0bfWyMyNGjFN9wPdGBLuIDQ2hlxYR37cdT10DhuRejxgXRfEkciRY0z+s9ahFT6vHvTQ455JDD6wGVtSvp6tzKrm33sPicD+HzJxekukuZQGJEJGRSgQkfSnZetzQcx9twKs5CrxZi2do/CRz4KaiZx1h/dmnbHN4YKCgooG1ncp2w/I67qCsuZs993+LIU78GYNa1/4LLX4jqdKM6XEgp+cJvn2Rg+wuEBruIh0YIVM1k+qW3k1c1C9WZjHzNZgQGIB/KUzxY40Dxkgto2/0UTn8BFOYRSznWnVdKRV4pFXMuGF/XJKiecwkldcsY6NiDUFSOHnqG0mlLcLgCLLvmCzg9+Wz887+y4amvAaZ++cjICAuW3UhPx3Z8gQoaz7meDWvuZObC6zl26BmEUNA0N0LRqKpbTUXZQjY+/x0cDm9C3jUREWHnGVBIS36dQKYP1nF8shSHk/rplya+pyYWto31yTx4yfMlZJwSG2wZpwnGRZjS2Himj4tw4mPjRBLaWe8FoGaUj7uUcTy4Gk35rVzp0RQiGKVp3yN0tGzC4fKz/IJP4fYWJnMVZuCaa67B4fDhcAVQ3B4z/0hcJqKi7T5p54mIxyMMDR1l1qy3Egz2EA4P4HIXMDLchttdSEODSVpmkkFSMSWYc5ESZxYMzCTWUy0LcOzYsTS5o9MdJZGaa2LBggXMnDmTFStW8PLLL7Ns2TLAtANlwnawtTGVMq8mcv+UNwBsHfm5fUEO3/9Dtuz5PxbUfxLV4aJo4wS6G0IZl3QIIZBFBWA/sMuKwJhgBmAP3l5L/iTiBdv4dwKdOWoluLYfVlJVElrkiVPZ8im2KoudmFsD1Tpl3J/cBhC28105TUOUfbwtUTIZhgL9RLrbcc2sJ1Z+clrsOZx5iPoVho6aIczeQAWh0R5e3Hw3YOZY8fsq0ONRguFeCivmUVVxHr7qGeSVN6I7zUWDFpYo1uTJTvDm7tXTvqNLhGEk8gwAqIqDsrxZDA63prXpmSfSE1lPFZlh2w31l9DWtZk2K9GXjd273878+UlJm9LSUhqW3QCQ5iXlL65jrP8YQ10HiYVMYrO/ex8zrDBvj7coUVZrNaNG5OBQIgcCx8z7iiUD5zlsSijpxX70Yn/iWLV/LC1KQURiOIaTpIBd1vZs0fM8qPtbEsmrhdOBUFWM4dHEokIUFZgHx+Jm5JeaRQ82YEZBZIvu0r0aakjH3WWSBvF8c0GZmrxb+t2I0XDieD1gRmlovRYJbPWrqSDe0nr8QsnWjS+/1wz/16pMlsGoKCJWYo7T4SKrz1ljtD3vinvA20GCmMiGSL5ZOOZ3ELfmW7bRX3eBp2/8QmSkViTG3Jh/3G6zDYpI1COMJEEspeTwS39iuP0AjfNvoKJ2BYbTPPHm/8ue58cT86I5fehjJtEe7x8k2HyI4e1bcBSXpl9PayudP/0ZxugowuFAKy9BLcwnvGs/+uAwdW+/nVixJIZECQvihXGKnpMM9zdztPlJFK8PdW5ttmbkkEMOObyu8Ozj5lxi9ZVRdmz8CTs2/ZQll3wSp3u8bnCaoS0TIpmD7Xh4pca1uOd4JU7Pwnkq64SwCDPS24zqdL/ujIg5nD7EPTDWbnqROgtKiY0OcuBhKymoELiLTHnOcF8H/pqZFC04B295HYH6uQghMDiuXX0cUvtj4fQl9Ox5HqQBwpzLbvrNyeU9fOFP6cm1Z6y4he6mDXQ3bUjb/re/zeO6665LfA8EAtQuvIrahVex/i/JtUagoBZ/XhWDfYeIRU1HoY5jm6ibfiFCqLh9yXWCHUkNlkGYFALhBG9QKvGAkVJ3RrJqmTFeGM7shINpgxj/n550XAT0KY4Dp2K8mHxsPH3j0VTGxsmuz46OTkW2+6ZmlMu896kkRdOhx+lo2UTd3CuonHEeTmmuc+xnXibcbjdubyGxuLmGi0bHGOw/TFv7JjyeIkBw8ZX/hQBCoX62bf0F4XA/Qqh4vSW43QUMDTYTCvWxYOFtaaSDVAVSSkZG2jja9AyKolFQMiNrO3J4fUKeQE4Je0zJy8t7TXIw2Fi2bBkOh4ODBw+ybNkyKioq6Ooab//t6elJREdUVFSwadOmtP0DAwPEYrFxERSvFnKkxBsIe3/5NbZ9/CaWLl1K2/YnyK+ajXNaLarmxHMwi9e/RSwY1aaxRoTGG+Cl20rqaievniwsMBoDt4tYpSm9YrPUiuVFrOju0+/6exykPsjj3qSWpB6IE953mLFH1hHccRjV76Ho3de/No3M4TVBdGyIjpceo6L2LGYtvoV4ewfDo604hItgfIjh0TakYTB/1s04G81JxisJ21eDMZQhc1I0EupmeKwDv7sYR1/wOEeeOKp8c9GLRzjW91La9t/+9rd861vfStv2wh8/zeq3pyfhG2new1DXwcR3T3E1c8+6LZkYT3UlZdtGxxB+y8gfSZdI0vcdAkCbUW8e12Xmlog0lOBqHQRAROJIl5YYc5zdI8SKfTh7ghheczxS9x41K0whVmU0ijEWTORhSJx70Mpfkeq5EImCpibkmtKQQsQ6u8fQA+PLSEUk2zJkW90nJjBFhRVGOTJygqTDq4dIgSlfpxeY3x195sQ+WmSSaY4R8746R7MfHyoWxKy0G0qcCcd6Oz+FoQnCVkSEazBF+sqAwDGDWGiEwSM7cQYKcbnzUBSNdfd9OkuNSRixCLHQMMbYGN1/+RPDWzeDruMqqaD6sluIzAlhHIOhl55h6G/rcJSXUf7u9xMO9hJtbkPGonhqSih/7w2ousLIc3vp3fs8uh5BRqO0DQyjDwzhKCyi6pbb0PLyJ21PDjnkkMPrCS888RW6uj5ERUUlzbsepbRmCb7yejRndivXVAiIbPJ7k0FPeaSeijxypxqTGfxC3a30vPwMIy37Acn0y977qrUrh9ceejRM+9oH8NfNZvr1HyQ2OsRo+2GTnBobJth9DCMapvK8txKom31Kzmn3x+jIACNdTbgKS9GzJBd+pQhMm0NF6CI69zybtv3nP/95GikBZr6N8276btq2waFmBvsOJb6rmptQsI8LrzMjsVXVlR65YDkOyYxck7ZE03HJCYU0okEqyTwUkEFW2Ns0kTbmZDpBpsKYZB8cf2x8o42LMPHYmEnuqOEJjp/gnmSSFdnubSpRYZMU0tDpPLoJ1eHG6c5DUR0898BnJ2h9EsGxHlzuAg4dfIT2Yxsx9BhuTxFzF74dHAqGEaejZRPNR55G09wsW/EhIuFhRobb0I0oTmeA5Ss+gqo6GRpqoaXlOeLxCIYRIxodJRzqx+kMMGfBLWkRiTnkcDqwe/duYrEYlZWmZ+E555zD0NAQL774IitXrgRg06ZNDA0NsXr16kSZb37zm3R0dCSOe/LJJ3G5XCxfvvw1uY4cKfEGwyc++zil5Yvo3PscnXuf46inkMKS2UyffTX+zgiirMQsODScSHBtQ4xYMk6WUc6oLB5Xvx1eqReZRkfV9hZWlXESKNlgJ7o2EwdDuFC1tpv7o36Bbj30VMvWp0XMY+wQv1iepa/uSiZPFZanbdSyEdnREbobYnl2pIXtwZ7+sIt2djL67DaGHn4KV105RTeeT+CiJRz5wNePez05vDFw4MABmv9+D0JxUH32W4m4VPLbA/j9cwlV+ykI6VSRDPuNWBMizUrsZUdDOEbjaP3W/2jANIbLMfM/Ytg5DKSRlEOzZHp2RZ4gZoSZVTl1iaYTwfO7f8RVi7/M3KoriQ33oyoOVOEYR0jYSI2SAKifdSVCUQkTpGTaMgqr5kAIWg+aeTACnnK0pg7i080HmxwdQ+o6IgpkSSIte1KSTRcWABCpMd+dPabV2446iAcsMkGXKIfSDfoyNH7mK+MWgWrd28R2i6QQImXVEo5AXiBFw3b8KkgdtRJk29EFmRFmNgI+lH4zMiK4xIwIUQrMNngP92c/5jTC6LMyVg8O4awyvfei+SYBrYbN/hoNJMdfOcU1btQPukUmRK2x1TE63jPNxli1udHTaS089fHnCpZaOYVSlLIcngDzLv8orTseY/eWXzPvyo8dt21GkQdXYTnDWzahBvIovuwq8s5aher1cfDzn6TuR//GsX/7L7OwoiDcLo799O5k1IyV1LV41cV0H3yJ/jWP46qtRS0rQjgdeKum45u7EPe0eg59cXKCJIcccsjh9Yjy8nIqZ55Hx6H19BzbgsMdoKBiNnULr0YtKJj02Kka2vQsfP9Uob8S5YPM5r1CRyg7l110uJ+hQzvo2vQ4Dn8BxQvPpWj2cnb/NvscKoc3Htra2mj5+73Ew0Hqr7gZ3QWKK5+84mWJMvkkk+Tqp7gvtj/yIJGBLuqvfd8rq2gCbLv/65z9j9+nbvl1xMKjCEVFdbh46DfZE2anRkkAVM04Hz0WJjTaQ2n1YoorFyCEoL15A1Lq+ItqkZpIRkYo6QRFqpSVkHJiciKVeLCPSVVRypijp0ZlJLZlISxgYiLiVBEQb7RxcSIc7zozSYts9+94RIUakQhFZcEl/0Lr7ic4+PIfEa70dd9EyCucRm/XLjSHl+pp51FdtxqXO49nH/sc51/6VTau/U/icbORgUAVW7f8NC3XBEBl1QrGgl0c2PdXvL5SfL5yFFUjkF9DUclsCosaeW7NF6bUnhxePzDkCcg3nQR7ODo6yqFDSfL2yJEjbNu2jaKiIurq6ujv76elpYX2dlNhYf/+/YAZ2VBRUcHhw4e59957ectb3kJJSQl79uzh05/+NEuXLuXcc88FYO7cuVx11VXccccd/OQnZj7GD3zgA1x77bXMnm2S5VdccQXz5s3jtttu4zvf+Q79/f185jOf4Y477njNoj5ypMQbDM+u+TcuvkIggjcxGuzm2MGn6Di2ke7WLSyqvZ5yt+nhbYyMIuKmBUjRxluj9KoS1CPt6I3V5gYrIYOIZ88loZcXoDabIa2qz3wa6XmWtNOYbYw9Ndd4qiA1yehLL9N77x8B8J97NkW3Xs/Rj56cZE4OZx7OXvExWo4+R1fvLhy+fGZc8A9oLu+4cq5D3UQaxycNOlUoVMoYMjrZ3nQfq4tuRlOmNrE6ETy+/eRJthdS9GTPeZcZRRHv7aWtaR0zyi/E7ysHWtGaOjCiGWNENIaMxRGOlBDXUAjhsRJRDwzicmgJUiJcbT4MXd0muWO4kuOTfYzRP5B+DpswiMcSkRJCs8Ysi4SwJ5TSGveE0wFWREeiGivaQx1M5tmRvvTZtb3AkZpNLFnniY1P9jxcbxIy3h1Wvoi5sxDdJiET7+sbV/51BZGMJINk2LbUIFQgcQ6On4w5LLWqaCFES618FYPjny9CNxctcevW6h5wJFOOEPOZv5mzYDoNjR9m7z130n3wheM2efvdn2ShHgcJO3+U9Jaques/KLjhSoJrtyQLGwaRpubEV8Xtxgibi5CmX30PYyxI4eVXUHjp5egW2d38oeyL8xxyyCGHMwn1S6+n+qzriIz00bn3OXoObaTn6Ms0nH0zpTPPBkBPmYZMpH2fZig7zvo8tezr1RM4E7oLRo8e4NiDv8SIx8ibtYjqq97Bnv/OrRPeLJjx0S/Sv/EZhnZsRnG4qHnLO3EWjHfaOxHonqTj3VThrZ/BcNNOWp78LTPe81kcvlNvONp0z8lJQQFs+OsXANMIe/6NZhTF6OgozQeepKL+bApLGgFrDm3Lq1p2Xims4UPa30V2ZYaMRNc2EuNJwnmIcRLVRhZyIts2yJALEpn70r9nGxvHEQiTjHeZZc+EsXEigmRcxMQE5IXuZpxNKLNs3JXRBySoKQHp9m/kLquisey97H38B3Qd3nj8xgMLznovhjRY/2iSNDjvim8wY+61dLW+lCAkAAYGjyCtdgihIqWOEAo7d9xDLBakqmYVjbOvTcg4PfNk7tlwJuNkEl2fCF566SUuvvjixPdPfcocc2+//XZ+9atf8de//pX3vjcZgfmOd7wDSCbPdjqdPPXUU9x9992Mjo5SW1vLNddcw1e+8hVUNbnevvfee/nYxz7GFVdcAcBb3/pWfvjDHyb2q6rKI488wkc+8hHOPfdcPB4P73rXu/jud9Mj4F5NCCkn0+MxMTw8TH5+PkNDQ6+pZlYOU8dlF3wTAEf7ICORHg4OvED32CFWVN1Mibceo70zmQjW+k1lnmmMNSwjWxopAUTznUiH+QfUrASpjl7Tq9nwuRKkhFFpeuPapISjfRCA4MwSXL3mQB8tNs9tJ0i1jVBxTzI8MG7ZC21Dl6fX7Koj05JeuXZZh2VDjBSaZWyDWbQ4hdk2rLwTbgOp64xsfJ7BPz2Oe8FMSt9zW8JomjM8vTnw2GOPcc011+FyBqirWk2dfzGqoiVyBiQTshk4j5p5EhL5COwEyZnfgyFkzErsbnnx2577NqSumzldUqEJ+mUX22LrAEGxs5p8RylSEeT5ayj21KGlaGg+duzurNd0xcqvoetR+oYPMxbuxTum8PMnvsGSJUtwTCGS6URQW3IWHYM7uXDeJ9BUF+Jwi3l9KdEGMhJB8XgS98QmLBTrvyYNieLzIspKEomjw1VmBJf9rFcsrypnfxilMyXiIBxJRD/Y5zSCSekrNZCMBJO6jlJgWpbtyBXh9SQjIwqs55q9uIhbv+fQMHgt8iTPHJCiZVaUWMgso7X0JBc/VlnDSqrdfU4BABV/PWLWkR9IkBIAFBUkE2Zbj2J9137UhXPM5kTtZAtW/Vbi8ES/UxXoHzQ/W3k19EHzuzLfzPcxPCufuNeKLrMm8XYiacNe4GnJ8daWtTM0M3Ih7jfrzd+rJsqOTkufNmhj6TkqhBxPSri7rWgI69YKPZ2UgOQCVRsD50gyj1D31mdp3/gwL21+8aTCSgtuuJKhh57EO2c++W+9gtFNLzHy3Dpzp6IgXA5kLI6nehoF17+Fc9s72THfQPeZXieHPnvyC/U3I3Jzxjcfcr/5mYezb/t+4nN4pJe2PU/Rd/BF6s9/J8UzV6QZ0jK9VCcynE2VpMg8Pqtn7WthnEu1gUnJ8K6X6XryAVyFZUy7+QOJJMW7vvPJ16BxObza2Lx5M6vOOx/hcFJ41nkUnnUeqvu4yU5OHVL7o2EQ7jhG6+9/ihGN4qmbjrd2OtLQcZdX4Z3WiOZJJu/a883sfXThp+5C6jqjR/cT6etE8/j501c/xpIlS/B4Tu21fetb3+ILX/wSKy77VzP5sO3rErfZB+u7IZMGbXubbZ5KdVDPJCVsc4D9rmRsT5Vrso4x1OT31HHIcCTLpEk8ZfqIZY5dKWPjZIRCYmw8zrgmhTke2tEEr8exMRWpUQ8TJgXPcnw2wmLc8TIlf4QcX1ZJWV73N2/j0Prf8PDDD3PNNddM0pDsmL3oVg7svI/8wgYaZl7FUH8TRw49kdivKBpCKLjdhcyefRNz5gzx8tYIFTVnATky4kTxepsz2u25/sl/wuGbmmNobCzKQ1f83+vmGs505CIl3qD4+9ovpn2/auZneaHlHo4NbaNEqTQfvEb2p4ewDawed8JzOFKcPRYvXpj0KpczTMkSrcdkEZQ+U76GKYbT2dBCJtmQ+XC3E63aRIThNhLxsbETICvj/YP0/OTXRI+14b9gBYVvv5qjH/63E2pjDmc2Llr8GdbtvJviolksmvl2FEVFHcseBQQgR0zyzfa+l5Zx2CYebGO7SA1H1qZOAihCpURUsVq7hi6jhV7ZRXNwB4pQiY5sNve7plEfWEqRq3rc8VfXm4uPAc8wu488QCgygKq40I0IK1c+SR6FzFZXUKCY8m1PRn835bZlw+VLv0j7wHbqS8/BORIFosn5Ytw2pFs5a0IhZMZYI+0xRigYY0GUDivRgKbhcpgrhnC5FzVsIPSUFYkd1TWaJB/0sSCKO91tR3G5E78RanJwsH9HsHJfeFMWYP2DEJggGzMghsfA7cLVMmgenxphZsg0ryzFyodRst1kSzuvbwCg4m9HkwSIcnL5SPSSALrb7IdKzICC9Mge3VdvvjtsolegBWWCmDgRGBpoVi4JO19EqNJAqpYUXkSZcHEkworVRkt+L5q+uIu7kySE04qSSE2GHQ2At9s8T/Gy8xk4uIVzr7iWxls/xq4ff/6ErsN/8QqGn3iOWG8PUh3Cu7KBkefW4Z5TR3hfC7M/fjHR+rmo+T4Up4P7bvrBCdWfQw455HCmITNB7vJ/+h6x0Ajde9dTON80tExkZDOssTztyX48oiLL/lfqFXwycigT6Z2n1Rsao+0vvyF45ACBuYspu+IG9v73iT13cjiz0fiVb9P83a/hKquk9l0fRHFNrp9zuvqiDaEoeKqn0fDhzzOyZyujB/fS/+JzCM2BPjYCQsFXP5PCFecRmDk/ax3zP38X0d4OWh+/l3BPO4rDhRGLsHrNH3AWlFJ9ydvw18xECMH2/35lxNs5t36XrY9+h7Jpy3H5i5AkJaBt+SQhAV2aBIE1mkxq2DZIk28CawzJjJxQBZmSTuOcmqXEyJK82tBSIy8y9jknJyCENMe7cZcw2dg40b5XIvV0mvti5rmy/mYp27IREKnrgcQtkOZaIb2cSKtfSXHQMxzJ8xRMX0x+02ZuvOVdzL/2k2z9039M/SKA0urFNB98knCon0hkiKKyuRw59AT5BfUMD7VQ33ApFRXLUVUnmubi3ntzdqM3IowTSHQ91XI5TA05UuJNgscPfocf/3g6H/nIRwkGhnADY+E+2kL7KY/PxKcWoOXVjTtO6RrAKC/EOZg9Bs9wTixELgOm661hacKrMQNUW4vfNFzqFZaR15Z0d5ge0sLgpGA4zadTtNBqf0jB8Fhe1A6JPjxM5/d+CEJQ8eWP0PHVH05UVQ5vYPQMHcCQcebMvhGhOZCA4TFJBK3XCruxJrCif/iklMcSMkYyS2e2ttlSQ4YVSeBRPNQrs5lRaOrSSk0j5IzSNXqQtsEdbO19mAsq38OV/tt5YvTXaVVG9CDbDv4On6eUJTPfjd9Timxrpy/Syva+x9msr0HTnXjxs0hdjUcEEELg0wMoQmGN/sdEXVdV/wtxGSEy2MOa/t/jdqfPcHuGD2EYMSqMquQl2REiup64rmREyHhpI7ssmPk2FEtKSTS1IZwO1PzkeGS4VIy4TK5FLAJAH0uSE0LTUJzOcVEoiWiKFEICwAiFEdY+JUsuCcaC4HQm8w1kSYot+geR4eTYKCLWb144SQLkSNQcGxN6uXZiHMt4v2huIkLCTqZtk8NG3smtUkIl5snCtuJAhncZSnKBYOf3cfeYO32dkoE5k7m8JqNaEu8TFFWjySgNpEl02JFwqUjNLQHm/6T2yndz6L7/4eijv0bXP5cWpno8aAV5lP/bB+j6z58QfGovcTmMc1o5NV97H+WuLhx+874+c0kuj1AOOeTw5sSW//s0Dz88m+uuu47RziP4KxqIB0fp3rMWf8Nc3EUVk3qJn4hkiY0EuZFZdipr/ZO0BxxPm92IRDj22/9HfGSYqts/SNuv/vfkTpTDGY1Q8yH04Bil7/0QMs81wSzWwmnqi8C4CZXi9JN/7vnkn3t+wtgbGxlm9MAuhnZupvX+XzHjQ//G7K/dBcD+fzfJhfmfvwsjFuXoQ79AcTiZ8c6P4ymvQ8ZiBLtaaHn4Vxz5y/+iOF0484qp2bkRT0kVIPAUlaNoTrb9IElUrHj/99GjYWKhURyeAFvvSSftxgZaiYwNULhkQfJSbOcdKZPrfFUg9ZRICfteZkZMkEpmSJNoSCUeBAkbQ+q50sooSbIiNbdZQsYpMwrCkUJuZOxLEBCp27P0A2MKZTKRte4pHnvSfTGLpFJWpJQRxyEeEnW7xtctJCjHIyvk+LoTeT/sfVFbWklQv/pW9jzy3xx46hcEg5/D6x0vxzwRVM3JolUfYMfGn9LV/jIeTzEOp5/FK96PYcTRhAMhFJ5ekyMj3sg43TklcpgYOfmmNxGCwSAF/mJKXdNYVHApOzsfp40mABzCzVzvOVROX02sxDQOOo8NJDyT9fzxCxElGMVwW08PJcVw5rLknwZNwUyblIgHnGijpgexTWYMTTeNQdG8ZBSELSOSmcQ6kbDaZb0XxJFxa4KiWJ67g6ZhWYkkB4oEKaFCz89+TeRoMxVf+We0wnyab8+F273ZIKUkz1eJ25nPoqXvQRh2AnRzyWHLkCUSVGfx9E9WdpLsmQXbeG/Xb0dapEZZ2Ib7iDHGev0R/EoBJWoVxUoV+UoJilBQSosZCLezqetPnF16M4He9PMYimSAXkbkAO1GE0GSBnoVjSLKKaGCEioJe3X2x7YwHOu2W4kDJ/XqXAr1In62/S4WL16MU/FwccX7YNTK/RAMmgRPilyV0Bxm++18DrZ0VQopIw2ZzAPhdCTICTtqITzdtKRrY3GE/Rsd7TDrsxNd2yHXkQjC8mYz7H32b2SRFfY9loZMfLZJIdUiE4QtdWVFxhCNgs9qVyhdCDiVlABA1xPSeLKsyKzfY7ap9YoAdQ9YP06m15bt6aUoSVLCkoGSVl4Ne9xMjZRQIuY9ieWbY/GYRfTak3ndKYhaUQ42aRD3meNrNlJCd5sHppISACO11n1TwTlolrU9msZq0usHK5ItBZ42W4/L2iBTZKSs2+3ugbgfnFaQnafPPLe3I0q4xEHbyA5aHruHHTt2sHDhQk4EPT09lJWV4V44k/CewxS+8xpKrje9gQ/c/OUTqiuHyZGbM775kPvN3xgwDANvSRUOXx4NN36I7pf+TteGxwBQHC7KV19N0coLxnsSi+yew2keuycg55StrP1sOmXOibZRK5xeYc8jDzC05UVqP/BxXOUVHPhSTqrpzQjf7HnEh4eo++inERme+KerL8L4/pjNmDsRjEiEI3ffierx4ps1D9/0WXimzUDRNNQwxIYGOPjjr1N93W3kz12aXl8oRrDzKKGOFoYObiPU3Zo8p6rhr24kb9pc8uvnEw+N0fHCw4y0H0yUUTQnFQsvIb9iJvd/78MsXLIcPRpi1dv+C0VYc3zDIiNsjf7EOj9JSohEvgnrXc+ItFZFknDIJB5Uk6iQCkm5Ji2jjPWuO1MIihTHyHH1JsqnH5/t2GzjYtq5LZwJ4yJk6YsZ+09IrikjEiNNrkumb7NlmSYqo8TGHyMMCRKCHUfZ+9j/8Oijj3L11VdP0sDxMAwDh8NFIL+W0eF2KutW0TjTrOOZJ3L2olOJ19uc0W7P1Y/fcULyTY9d9bPXzTWc6chFSryJ4PV6melfyZ6RtUyLLcDlK0CMKSzzXc7+0Gb2hjdRIc9JOybYUJj23dNmubUen8tKeCzE8k2DnKt9mFiJaWgcbjC36VlCJ6cKaRhIQyAsGRQjGkNILW3yKFWJUWA+3TRXlNCBAxTdeAGtn7jzpM+bw5mNWCzGaKibWudsHN2jCMsgzbDVtydI6Hg6kJAxSnxP3664kjNXl/CwUDmHdtHMsdgBmtiJhpNytY66lkbimDO+sfgAAdL/t4ohKKaUYkqpZQZjDKNoDnQZp9/opE92shcrCXAQ/FoxiwqvwBGStMcP0xFv4qC+DSBBSCxRz0f29Zv5GixvlMz8GUYkOQtNRE9kEDlCEch4LFmHFW0gLEO6+4iZR0K6tKS2rB21kCAerMWLMzmRUDxuZDyOzEy8jUUCSQMjmpSRsqEPDKH6LGu505Fsd2YdwZB1zfFETpHU82dD3UO9tF9pSmiVv2jltrCJFiu5tnRpifwQpxNSSZIIWii5+FEsoteOVgiVWFEp7onDu9095rtNMkQLZEK3V8lwL9TGktsjJmeDSCmjjULE6r7hEkHhfiv6LTTM0MsbAHAe5z5nQ1FREb7VSxl7YSu+C1YQuPCsHBmRQw455JACRVGoPPc6mh/+OcNNO1EtMr72+vfQ//J6Op57kIKlq9KedYYz3Xg3kSEuFUlJJzlx2VMwFZOGYXplJ6JSYwgtfZ2QMOoBSBg7vJ/A8uUc/cF/vfIG5HDGItLZhn/5cgw3gDx1Rt/jILM/ZiJpqE02yPYkV5wuKm+9ncGN6xjZ+TIDzz+DcLrwz5pH0aqLTIcbRSUy1D2+YrcDb30jvmmNFJ91IeHeTpQ4SD1OsP0Iwy37aH/+r7StewAAp7+IaeffitNXyHDbAbp2PkP71sdp53HmPfYDFM3FrAv/CZwqUk8SEKYaQmY4RJZrzSbVpE7wI2QZczLlmqQ2vgwyg0xIPb1m1pstl629b1x9GchGZBzPudqUdJpkXEyt7zTjlfTFTBj2mD8ud8j4iAk7YjuVlEjNH2E4UvqTTK5X9FiYzr3PASe3TlAUher68zjW9CzFZfOpm35Rjox4kyEXKfHaIUdKvMlQW3YWLZE97B1aT4NvKRIDn1rALM8KXh57ksHhowSK5gEQrSnMWkeoJoCrP/0JonuSXcn23J0MeUciDE13jZP90N0pn60HWKaU08iOl+n/00MYo0EQArUggAxHMIJhnHVllP7D5bgXTGd0w25wuAhMm41QFML9TnPe8yoY/HJ4/cLpdOLXChmNWcZuhwatHaZxGRK5VlIN6lNGShTAqYCRYVAvpYpSWYUUkmHZRy/ttOvNtHEIgAKKKRnwTzphVYVKHoUJRaV8CmgQc4jKCH104vEWkR/KQwwJkAb5cgl1jkZ85DES60cnRoFSYSagtiV/gsEEkZKI/hhHuIwfF9KknlJDtKVksGc/PdEWeo0OKvyzMTTB9KLVCWOCXlGIav2X5ZCVlEDTEE7T1clIlWsSSlqERGKzqqZFcugDQ+PbaEVC2F5bthxUGnmlqqDrSQLEaoMYMYmHeJnJsDhDk8Q32+dzO0GYs29l1CQ+4tuPmPWtXmJ+91kGFk1LrAXUmNm+cLG5wc7H4AhKSjeafV1YeX6MSjP6pG+J6dkRKp3axEp3g7cruThQrMu1FwTxLJHS2qg5oDttzk+CnpFuxV74hMrNdmgpwSgDswWOUZXISD9DXQcprlnErFmzptTeVKiqysj6LdTe/SVaP/HNEz4+hxxyyOHNAF/jXPzTZtOx/m/UvOXdAGjeABWX3MDhX3+XoSM7yVu43Cw8waMjm9dwGnExFUgrMnqCYyazB4T2HqDvd39CHxoGKVHz85CxGMZYEK2kmIK3XIFv2RKCO3cjY3F8Sxch1OQ6ZgoiAjm8weGsrCLW2Zn4bjhPri9Ohgk9zW2P8cgU52bOZH3umdOpaJyOlJJYZwdje3czvHUzR39+FwgFZ3EpBcvOSUinpRl+rTmdUFQ8ZdWJdniqp1F81kUwGma4ZR+K6iC/Zq7pFCjBVzuLwmkL8RRUEhnsRo8G8RXUoLm8YCW1Ntf2VjS4PQ8/3uUZyXuBIOmYpJj/0eHBVoYGmuhqf5nSysXoMkbdrMsQqhVlnCWXhJBm9ESqYw5YERX2WJWyXRjm/Z0ozwRYMnRi8jKJso70MlM5Zvz5Jr5/r8ROOlluiCn3RUuqaXzicqueLOkbJ+uLiTIZREVq7glDM4muWDDEQPN2/BXTOf/886fU3ky0HH6GVZd+CacrwNpHc4TEmw05UuK1Q46UeJNBCIW5JZewuf1PDIRa0XCwM/gcy/xXEHCVsbdrDSvqZqEoGmo4jmPAtA5FS01rU6gmMHHlGSGXtrSTu3kAgFhFXmLfYON4bXQpJSN7djC8fweR1haMWAxPYyPEDVAVit9yDVpBAeEDhzFGxii6/UakDnr/II4iDTXgZXT9Ttq+9TsUrwtjzDQqhy5bTtkH34pQFFxzGhndtP8U3MkczlR0dHQQN6JEYiOIoZFxuQbOBAghyKeIfIpokHPppBWQVFCHIrK49UwBTuGikmkQAnMWaXnMC4Xu2DGOcYjzuRZVqAih0SOPkRcpwCnS/8upSaynQtAk8krYskjhCKNyiE3yCQACajEH+9YhkfjVQiry5qBXJAlTmec38z/Y36MxhNORlFCKZSQoSJWSGtcYI+2YzJB9MPNfQAr5kipXNUFUhavDJE1G5hQlogKiheb42LPQfAwX7TPHWN+xsax1nE64+kGvND87LH5nZLbZUDuptTZkXlvcLXDGxlUBgG6p/AkDsI4z1PHREqp1vC0DpcQEwarkaihcbd3/cLIv+4unUVS9kL7WHfzoRz/in//5n0/wKs3fM0dI5JBDDjlMDCEEFRdez6HffJeB/VvQfAHanrqP2ts+jG/GXLqfeQRf41xUjzcpd5IlUiIbbPnVTOvXiaztQ3v3M/byNsJHmjGCIdyN0xGahozFKLj2ahwVZUSOtqAPDFJw/TUoHg/64CDC4UDNCxDatZfee35P/58fwgiac4exl7dR9r7bEaqKe84sgtt3EI/H0bTcMvnNiOHhYTN5tCKSffY1QLZzJ/861gcpEh9T5XaEELgqqnBVVFF4waWM7t6JHhwlf/FZKE6nGYiQafh1WvO3hCQOCQllAOF1kz9nCZjBxol9QgiCgx3se+SHLHrHv+Nz1iAMGOlqwuUpwO0tTNRnN9ncYF2PIhI2hAkhSeSSAND1CFs3mnkhfXmVNB94EgCH00vlrAuT+SsAqZIi+ZRyver4bZA0gGeLlBhHKmSLpEgdF1PKnujY+HqyeU65L1pfs0o/kXL/jkNWJPqiVTazLyZ+o5S+6gwUUbrgfHp2rePLX/4y//VfJxfttvGpb5zUcTmc+ZBMPYF1znXh1CI323qT4bGD3wagzruL5tAuAAbinbw08hhzKy9jc+sfaW15nvqq87IeHywzu4zuNp/Crj7zKaJEjWSiqEkQLjENcXaiIlumQxmJ0f7UnxnYsxl3WQ159QswvArBpoM4pIvIUA/H9n4HV3E5ofajAPg89bT8+Ptp9cfjcb72ta8xMjLCRz7yEVZ96wv0//LPCF8hBZdfhf+ss+j56a948cUXWbly5ZTvWw5vDKx0X8Xu6AYkBo1yIUbfwMlFREyEUxglMdW6FaFSxbTTer44MeLEOMJeGllAX6yNbaxnGrOYySKA9PwYr+Q+SAOfNGXeqpVG5ilnoesRdrq2sL/nWcoCMxFWNJbM8ycOE3l+GAuBy3K5sSJfskVITLkpkUhC2ikRIZENdhn7HJasVCI3hXfi5KAAdQ/3Ia38EU035VG61bx/nh5rfC0zIxoSOSHcljSeVxD3mJ/tkGlPj9mGMSvqoHRHlGipeZ+ijQUABHaaoftFu83frHu5n/zD5nHBKURN2F55cYuPihZY3z0SLZSFyFFJ5LWIWz9ZuDKOryk5BfG2C0ZmW79Zxk/VtUIjlm/gX/kO+j+3C5+d3yOHHHLIIYdTip3f/yQAZUd20rPucUxNoxFafvkDKm96N62/+Qk9zz9B2VtuzHq8njCumW8n6gksXbbQfPp2QxoMPfA4w48/i6OyHPf8WSgeF+G9hxCqgj44Qse378JRW0n0cAsAWlUhPf/vN+n1S8ldd93FgQMH+NCHPsSVv/wh3T/6FX3330/xbTfjO38ZI2vX89BDD/G2t71tao3O4Q2Dqi9/ir7f/plYXx/lH39/1v44sazOFOeZVgWZpccdnqrfHzm+w5H938v0UkcKAgsXp3uwM97wC+Pld6RGIkJBinQnE9ND3fqimo5IzWt/z8wrP0BksIu9T/6Igup5zLngnxLHA2YeypQ6025nwlgtkUKkR1GrVm64uERT3QihUlA8g4XL/wmpSg7ueZCWA09RUn8WqtdnHZNSdUp0hJG6XU3uz8Rk+yCdpJioDFi/TQp5e9LjYsYxr7gvplSSesTp64ugZom6yNYXhZEu25TZFyEZqQ3mb1V13g30H3o5t07I4aSQi5R47ZAjJd6kmOc6h0p1OlvH/k5MhhnR+9nZ+SjF3nqOtD5HqazAVzUjIffhtCcFNeM1+uI+DTVsEM03u1Pcaz6sAk2mB9LoPFND3dBEMmTTghGNMLB1AwOb1xMfG6b85ndRWrsCgKhFWPhaIR4eo33/M8RHh3HPmIHq8+OqqBrXFk3T+NrXvpb47j/vLOLdfQw98gyBVefimT8XR1UF59/yNir+9WMc/chnT/YW5nAGQUrJ9773PTZHniAgiliiXoBPTBL183rC6SQ6pojpzOMYh2hmHw1yDocxCc0iyhJl0qSYXqGMlRCCIsoZlQNmvgmhMMt9Fi8M3U9Tx1qmT7/SLGePSynkBJGomQvCJgrsOhWRHh2RrY32MVb0Q1rkg1DM7XYZfXw+inGw2xc16/N2hDA0K+qsyKy77uG+Se/Fqw2bYJCaeW8cvZYcVq0ZyRKJexAGeLJIEoNJTChxEFZuCiORhE+QuQK35Z5sQmRkdvp+ezETrY3i6HAy3HQIpOTss88+uYvLIYcccshhSii54HL88xbS+sefExvsJz48ROtvfoJv1jyGXtqAd958PLaUngCpTGwEkw5p7s9cw4/zJB5fh4zrjG54iZGn1hPr6KbglmsJXH6+GckoJNxozgeMSJSRJ9cS7+nH1ViP4vXgnj9e6k8Iwac+9anEd8+C2RS946303/sAgUvOw1VXg3vBTN7+wfdT1b+Xlju+NNVblsMZjt/+9rd0fOt/0IoLKf/EHbjqa1/rJiUgLckemWnkRaYYcQUiNkUPdWv6q2Z6qGfo9UM6UWGo1t80NdpBh6KZK2h57o8Mt+0nGh6h+9AmAPKr5yQMyEIkzy8VEAmjXvaxQ0gzAXbieKtBhmbOu8sqlzDY34RUJUJRqZ95BT2t22je/QgzzrrVrHmCiAapiDTCwr4nhiNZNtXmOJUIiYTUk5JZduKx0XBmIWGnMC6+lpi0L1pvdt4QER3fH3WXTOYVkcn+lkhinQK7P8qUfptGVNi/oUX4hDrb0MNjrFq16mQvL4c3MXKkxGuHHCnxJoZTuChx19IROsicgvPZM/gsdb4FxPQgm1r/QJ2+igY5G6fqQYTNJ4Atu2Eb1NTw8btQYkIgwHfMJCpGagPEgyM0/+5nRLo6CCxYwgu//RULFiyYsJ7Lle2AmRl1jXHflK5x1vs3s+ttVQzHddRRiaZq5F95Cb2//B3G6Ksvk5LDq4uzxaUcYAdBRogSoV7MpVFZCLqBJGYalm2j8uvA+P96hUM4KZXV9NDGc/wNw0pI0cYRimR5QuYolZiQqfZ/O3dDYsPxSYs6ZTbb9LUM0kuBKMGvFTLds5TDwy/ibfJR5mxAKS1LP0hVzPwOAE6HKc2VQTSAGdEgVBUZn7wN0pAIZWK5J6Gq6ddhnWsiGadUaCGJY0yn52wzv0Nei7kynP6nQXrPKgCgb6EZiuDpMo/JP2Jeg3PUPKcWFileX+ZvMFptbohbTkJdK5w4zjFzSowFzUQ97beY9Rv95vdAE4SLzOPjXnPm7zvsYGzGBDpNQKgsmQvClqSyPZYmS84XLTCsYwRqNCURIKAGrYspNVfAzuI40VbzQnof/SuD657FWV7B3LlzJ2xXDjnkkEMOpwaqw4Vv9jwGN62n5Krr6Hn4L2gF+XimN9L+65+Rf8555K8+H0dxEdKWLMk0wE1l3e6ySf70Y4xwhJ4f/YbwnsN4ls7luT8/wDnnnDNhNfWB/0x8br7t36Z2kS4dx7RSs+2EwW2Q/9ZL6brzf4m1d02tjhzOWFR963MM/O4hYq2d6IPD+M5bTvHtNyIcllt2Fjf+xKZTZZMaZ3MW4/elRD0wiae6dEgyU6IIQyTypGTmBkgY21MMw5mGX7uMPdfDSPFqxzQMC1QqzrqSzs1PsPN3/5HY17V/PaUzVqIKOynAhE3PuJCU9stxmwCorj+XrvYt9HbuorRqMZovj4YF13Fo25/xFlRQWr8CxWF6v2SLkBC6RUJMEA0hNcYRFzbGSTQp2ee+qblI0sbGye6DyzB/Ywm49Unkn+Sr2xft/VPsiwCGI71Cm4yQUqJkISwMB2l9EcZH7xiOjL5ofe7Z+iztL/wN1e3joosumrRdOeSQDTlS4rVDjpR4k+LxgZ+T5yhhJN5HjW8+df5FdIWaaBrZwsrSt9FwueD3v/sT0bwhFtRcg4hmT14dzTOf1g5NoFuSItGApUUfmzzhdcf6h4kPDlD3wU/gqqyelJCAqRMRmdCDQdNQaYV9OhtMqZvQrr0nVV8OZwZ2797NSzyLjzxqmEEeRZSq1cBEPjmvQ7yOiJL5nMWztCUIiTKq6aaNZvbTwJzjHp9qqJeGPC4xUWyU4yOP7bzAfM6mZEBhesFSBuPd7Bh+GgWVmdFV1PuXWotHMAaHEC4XESOEhpZYBEldPyn5JrutIkWbNvF5sggJp72Cs8pGTMJB7R3B6zCPiwUc2Y48IRy7Qae6yiQcRsMmwaAbVru25r/i+n2HHQRnW23vNAmSuN8Av8k+KAOOCf9MIuOnDZdkL6hGoW+J+VmrshKDx5J9xVkzxsDTxxhc9yyf//zn+b1wZc31kUMOOeSQw6nDnm98Ev+seYwd3Iunfjr5K88l0t7K4IZ1VH3ww/zTFZfx/37xC6LdHVR8+IMT1mPLjph5J9KlnY43lA8/8hyRg0cp/9f34Z47Y1JCAk6AiMiAMWo+e4TTZMmdtRUIp4PQ9n0nVV8OZwY6Ozvp+uaPUPxe/OefhaO2Au+KBa94juFwxyfcFwtraK448cgrMMG4jHQv9YT3n7XREFk91MEkLVKL2nO1rGSFvc/mDFOW9Wke6ta+8mWX0fXyU0jdvP682nmMtB2gZctfqV/5tkSOMpFhHkiVcBIZjIrQU+SbFNu+YCA1QSCvmoLiRvZvvw/diFFeu4LyaSsZ6j9C87a/0rz9YSrnXUjN4qsBNa2OWGwMNBWVZF68bOSE0M3tiRwGE8o4ySwREtnLQsa4aF544lgBJjFxCiIkjtcXXzEy+yKYFzWFvmg45bgoCDi5vhjqaaN9w8O8/33vY320HKdzvLJHDjkcDzlS4rWDkDKTTx+P4eFh8vPzGRoaIi8v79VoVw6vAs4uuYkX+x7AIVz4HcXMLbyQl3v/hiI0lpW9lTZHK83HnqNx0U3UK3MRQhCxEl73zTcNav42S+IjaBDzmU/fSL6Vb2LQ3Bc4YkYkDM3yk3fYnPh3nOvj4M/uJDBjPr0vPXtar7Pmv/+Dji9+G8+SeRT/0604ux20//In6OEQ4ZajfPGLX2TLli3s27ePW265hTvvvBOH45UbDHN4bXC5cgtSSrbwLFEinM3lqOL4nus5HB+tsol9vMwyLqBIlHFI7uIo+1nGBRSK0uMen5Z3wvwwafmwDLGTjYwyzByxlCpthrndZ9AS3s3R8C5K1Rqq1Uby1RI6oodpNQ4SlKNoOFjiuIBCS2LKjnRIkCPSyN4OoaSVSUZ+ZBxvJ8BMeYQKe5tFkiRyStjb3S5QzPHR8Lqsd7NMtMCcQAfLNWJec6ITtm6p7rJOYMsZlVnyUppMkBIjGaREXDffqwqGaN5tSt3JPHNxsnB6a9p9PjZcQPglMwrNNWBuC1lBKJHyGEKTqH0Oqy0ynZRIgWEtskRcIDXLKy9qRY9YXne6J2WB6TbvqTpq3h+t2nxWCMubTFMN9FCEQx/+MY6KMoJ79ucIiTMAuTnjmw+53/yNiWkf/1dafvAdhMOBo7SM0ptupuf++9BHRii/4z1EWzvpve8+Ct/6FgKXnm8+HzMMc1jjeTZSQrEiJETGdnMbtH/9F6gBL6Mbd57W64xEIvjrqtBKC6n4wnsRQtDzswcIbT9ItKefu+66i2eeeYaDBw+ydOlSfvnLX+LxTJ4rKofXL+rv+S+klPT++PeE9xym8hufxlFsGqez9UVzO+OMxCKL0fh4U5RsVheZadyyNf5Ty8qMshKMqJpGSiSakyKNY34nTS5HiSXlNBMOJNZ+RSdpALbmbUqKVzqYBmFFN48VKdsARpr20PToz6k771ZK5qyid/fztGy4nxnn/wOlNUvS643bJIVEiVlzRiuCWcQMq6yRdlMNTSAt5x5DU4hFx9i3+88M9Oynfs5VVM28EOlQCMUG6Wl6idZdT+IvqaNs/gUEyhsYaNtD9+71hAc6EKpG7aXvpGDuUvPWWGOXbkdBqCTGs9QIC8ORZbsynpQwbJkjO0JCIfu4CGlj42Tjork94xiy98W0sllwWvqidcxkfREy+qNFWmTti9YxQoKIZ++L0tA58uu7QEqG2ppzhMQZgNfbnNFuz7kP/TOaz3X8A4D4WITnr//h6+YaznTkIiXexChyVXNB2W00jW6hNbiHjd33UetfQE+omZ29T7Jk9UcJyhEObruP/rwZLJ/5D4lj85vMp8Jgo/k0Ltpv4LAkRaaS8Bown5Svgn1J9fsoeNvV9P/mL/jOW4GzYDbu+ukMPr+WBx54gDvvvDNR9rvf/S6NjY188IMTe33l8PrGmBxhNy8yzADLuCBHSJxCVDGNI+ylnWaKKGM68xikl91sZrW8EuU493qchNNx4BYelijns9vYxG75IoWynKgMUyBrmeM+myJRzr7wi2zTnwQLiMMAAQAASURBVDWrRFCsVBKUo8SJ0azvpUAWZtSapY1TaMs4MiJbGbc1kbFXAYY1a7aSbhPmuEmvM1GxMUbMb547kmfWG7EIAi0IvRUV5rZy695auRy0oPneXOXAUWmSwRfVHwKgI3RikycZF7h6rUi4ApFIVi1suSYHxw0/sqU9CFgHjSTvo2pFSCgpoe32p57fP4sRClL36atzhEQOOeSQw6sIV3kFDZ/7CgMbn2PwuWdo+8F/E1h9DpGWFrr+7x5qvvJ5Yv29DDz0CKObXqLyS59G2BN7WyvdGtfN4dv6PInGeipSoxRPJ1wuFyXvvZbO/7qHsQ078a9ehHt2PaPPvMSzzz7LZz7zmUTZAwcO0NjYyDe+8Y1XpW05nHrEB4fp+8mfCO85RMmHbsFR5D7+QRlwOuOnnJSIRk/MLKM4daRhielDiuHXMiQbIGKWhKmS1PE3HDIpiaTbBmGZyAWWaJeWVh1Cz/BQT506W7JPgbq5eEpq6D+8heJ5qyiZcw6jHYdp3vhn8q+bicPtMyMjMu+DlGk3LzWXhH3TDMf4ubrD6WPOsndxeNeDHNnzCHkl09EVibeyjuqFlxGoaqR5059pevYeu2YCtbMJD3Qg9TjdLz9F/vx0UiIVdoREIooiy+8rNYuQUOWEZRLIOi7CiY6NaVVO0BfT6x+P09MXAcSkfXHcOe3onZS+CIA+vj9m64v9W9YR7u1gxrs/kSMkcnhFMBAYUzROTrVcDlNDjpR4E+Oxth8AcHX9J2mMr+bw8IscHdlGgauSwUgH8e4Oqq56J6HHg4z2dTA83UfBdjMp68j8kgnrtb0dwkXmw0eNmNEVhTsG6TrXNBDqbnAUFjF67NBpuz4bjgGVgvnnMNrwEv2/uA/vre9DjgRR3V5Wr17N17/+dWpqalizZg2/+93vmD59+mlvUw6nB1JK9rCZGFGWc+GUvPdzmDoUoVIvZ7OfbdTI6RSIEubK5WzgCQ6zm0a5cOqGY2kwlXweTuGiSjTQKzt4Mb6GKGHmRFcxzTWfUqOcEse1BI0RhmQvPpHPjvh68zjc9BkdHGYXbnwEKMBPPkpKbok0MiK1DdakXNd1tIz8EDY5Ycs8YBtNFCVJQmS73FgMYRigmccrlpycsI6xHKpwDsUSxK7uOT2P6GrvIAAjcXMhXuAO0Vxn3hclZrIHeVby6bAVDTFWZ+DpmIS8ESQWtFKTYEVKGIqBEs5yXCCWICGyLuyB/u199P9tEwW3XkV+jY+Vj38BgBevunNc+RxyyCGHHE4tDnzhkwDM+N73yb/kIgbXrWPo6adxTatDHxwk1NTE4JqnCFy0mrEXNiM1HawktNlnAgKQqE7bE9jaOk7WydRKd5blMfrSfqSUp52Uzl85g9FV8+i/52Fc5X4IjSKcGitXruQb3/gG5eXlNDU18a1vfSu3TjjDMfDbvxFt7aT047eRt3oWoE/aF+2vExl+TxWcTtNpwzYMy5TPmd7ptkFZGgp6NNUFPx3SYZie6wZIZNJIrIuk17ldVpMYCgjbGJwRBQFJ47w921VTp84KCFVQftYVND/2fww0baO4bjF1K29kx1/u5OiWB5lxzjsBxVT4se9xogKZrBjLOz5FejUtt4SRvAmqw0nFtFV0HXuJ3Rv/j3h0jMq5F1G39Fr85Q0seOtnCYcHGO06grOojLZNfzOPc3sJ97bT8dxDOAtKcZdW4ayqSszvs+WTkAmSwprjSh2R4exkG9kT0RCJCAo5qRlTdRoIxZhSX0zbfxqQrS8mvh+3L2aH3RcBsH9XQ2Tti5DMRyF0MWFfjA31073+cQqXnYunvJaFn7kLgJ3f/eQJXG0OOZjIyTe9dsiREjnwWLM5gF+59CsED48h0XEZAfYde5xa+VECVTMYbtnN9ie/z7wZN5CfX4f/oKnx0bfAJCeCpSruganr37t6JfHIGErAd+ovKAOHPvspAGqH++n8+c9pv+/XxMdG8c+aT3l5Ob8f9DB88EWig2HKr72FSy655LS3KYfTg2PHjjFEPwtZlSMkThNqmEEHLezlZc6Wl/GCfJxGsYDD7KaQMkqoOKXnk7qOX5qe/VHCAPSFW9gb3MCV7ncjhGB97G+cp1zDVrmOEKYE0EyxmHZ5hHaOEiEEgEDBK/34ycNLHgoKERkmShiJgURioBONR4gQIkaU6ngj85xnIyabfHgyvOxC4fRriE2cMDoTsYAjMWdPhLYb9ru5w9dpfted4O63oieKrYOsSASj0Jy5V5QME7KIBs2a9W/uqgOgyBuccrsAQpUGFEZhxJJy8tjtMvdLh0TExt8nw22YixFAdSRXFEZMSfMKsxdYuqGgj4bou/v3OOsqKVp8CfHhVpr/53F8c6owrjBQlONHt+SQQw455PDKcfjT5jy64QffQx8bIXK0BUdNFQN/+St18+pxz5rO6HMbaP/Sdyi67Tq8S+Ykx3bboKbI43qRp0ICcmwMLe/VkUnad9O/M29sgKav3UfHXX9CaCruWbX4/X7unR8jdHgzY61NlH/wGt75zne+Km3K4dQjHo8TfGkXRe++msCqOaRZwSeByxlL9F9lCjJOSkb4aDav2kypHCPDyBuOTk1KWLHmV3KcVI79XSBjyrhcX4aa0vaUyAk1k6zIkj8isc+eisnkvryG+eTXL6T1hQfIq53D9j/+O9PP28uR5/9AXnkjFdPOTqs/q209ixu/EtXNaImEvJTEcJhSQV6vaY+IR801wHDHQTbu+TQrb/8+ADv++HUW3fZ1mtb8H2NdzQCUrbqS0aP7GTq0g9jIkOmcpCg4C0twFZfjKC9HcbmIjw4THxtBxuNIaYCuEx8bIT48jDE2hnf+PEre+w8IdeLfSzhMDaJs4yIcP8ImFS5nLHHMqeqLkN4fT7Yvqk4zx8Tx+mImJuqLSkZKjNS+aMTjtD74a1SPj9ILrsaIRWl/6n40Xx7R6EdzURM5nDCkFOMlzCYpm8OpQ25Vn0MaFKESjo7QUH4ufSNNOB59kbq6C6j7x39G+hzs2HkPoVD/uOOCZYKBRpWBRpVgmUKwTCFUZuqSj9SqjNSq6H4XoVIIlUK/s4tIWysF55z/ql2bo7SE0ne8HRBoPj9F55nkw1jLIVrv+THdj/4F38y5qGpO7udMxOXKLVw57QYA/OS/to15A0MIwRyWMMYwh9nF5cotHDR24sRNF8dOrDJpTBolYcMr/FST9Ex0Y0ZfGdEoRjTKKuVKXpRPIZGsElcgUBiTwyxXLuJ8cQ2hUIizuJiZLKKQUqJEaKOJFnmAQXqIE0ViAAINJwWUUidmMV1ZQJt+mD3RTaAq5kuxX8J8eT0TryYMCYZEeDwIj8eUflJVUFWkU0M6NXSfC93nIu53EPe/Nrls2gfyEz+FNma+QmWCUJkguCxEcFkImR9D5scwwloiQV82SIdEugykIk0dXW8cvHEc/ui4soGCEP68MAGf+bIneEYsTuf/3I8eClJ183vRQ0F2ffKPDDy/n9ZfPMOWLVtO273IIYcccshhYghVRR8ZIe+y84i1dzK2aSvelYup/OrHcJQX0/uj3xE50jbuOM2poznjaM44DoduveLWy/zudsYSLy0yzPDmgxRfe9arJt3nKPQz7VPX4Sj0IYDKf7gQgEhrL82f+Sk9v/k77hlVuXwSZyhm3vcN6r70XpASz4yyKfdFt3PqjiWnEqnnn6id5n9KR3NmcTVPgVAlOKQpNaRJcBjgMBL5v1JhaNJ8qaaxODNiQKopLyVd9siUMRJUn3c9RjTCsbV/Ztkd36dp/e/xFdfRd3Rr1qCORFCAlObLnmZKmXjZ8k12GcNhyf3EDBxOLzOXvT1Rn9NbmGiPVGDBO7/Mgb/eTWS4l5k3fRzNl0eoq5X669/P7Du+TCQcov69n6LiipvwTZ+FHoswvG0z/c8/TbDpIHpwDGnopuXM5cRVP428886j6K3XENp/gJ5f/NqMFLPuqXmPzZdwTDxntn+79LHxTO6Lx++PwmEk7s3x+yJZ+6I0DLofvZ9IVzvVN78HoSg0/+WnDO7eTO+LT/Hwww+frluRwxsYdqTEVF85nDrkIiVySMDwOqisXM7+pr9xoP0pADa3/ZFZx5zUVi6iYun72LrhB2za8WPmLXwnRaWzKDhoPmiHGqbGb9kJW0Oj+0FVcF1ac1quJRuaPmF6enG3KVs156tmhIjUkzT8yK6tr1p7cji1MJMwb6WUanwi8Fo35w2NPFHETLmIg+wgIAsQQlDFNI5yEEWqzGQhmji1BvbZLMGn5HHA2MYxeYgiUYaBgYrKCIO48bGU83DiYhqzOMo+3HgpV2p4a+A95Iti8ilmjXHfuLovV24xP1hyTmv0Pyb2zXWuZF9sMzX6LPLVdNk6qeuIWHL8kGEzQiKR4NqYfJFoQzvWgz6rEgD3gU4GV5vjYrjAbE/MCihTI1a1lvOPuy8Z6l600yw7Vm3ujBaYOwbcXmaXdQOwqWsaAL0dJmnX7zWTQ+gjDgIHTmw6IF0GQrP1c62FRNxOai0Soe2pcPijqJrZLr8nQiw+ngAOHWyn47sPEe3rpfqd/8SR736DwOKl6MMjeJcvIbR7HwsWLDihtuaQQw455PDKITWJd+ViQgf203fPn0FK+n/1J2Q4Qv61Z1P26X+g8xs/petbP6H0jhvwn7c4LVfQVOB2xFGEZPDQUTAkZaumnaarGY/t137d/PDhHwOw6G//DoARiZpOCIZk+Lkd8NlXrUk5nEKMvbSXju/+AVdjNZ759cctb/dFML24j+eVnrl/ImQasyaOmEgavsYix/f6tg3BRkLHP/lu6/Wjj593SU0mygqRzO2QTbYJANUiEcarniZ8dJyBImovfgdH19yDt6Qa+BQl01dwdPMDHNx4L9MWX4dbS1+rCQmpTv3CAKHLtO+kFLFvt+E0556ldcvR9ShH9z7OQPsuAmUNSAGK6iA81IVQNWbe9HFcecWUr7yCtmf+jLO4lPzFZ7Hk33+Ip6IGT0UNe+4cL/3T+F+WzcCa2x7+zKcS+x588EFuvPFGQtt241kynzTWRTVMQggrWswaDycbF93OOOGMnA6ZfRHS+9vJ9kVI74+T9UX7ezimoRvHt/toTj1rXwQrf4Q+vo5xfdH8kNYXIwPddP35D4Rbj1J+/a00/+L7FJ99MaHOYxQsOpvBnZs5++yzx9WdQw7HQy5S4rVDjpTIIYE1z38JgIvP/jIHjz5BW9dmAA5u+h2u8/PIK66n9sOfoPNP97Jr0y+Ys/QdVOUvBGC02k2kwKxnbJr55FAsXcFQrWm004LexLn0wRHUPB+K6/SG1i396F2JdtlzBJsYMVww8z/vorhkHqMXXE7/2jUY8fHevDm8vnG5cgtDsp99vEwNM5jNkte6SW8K1DGTg+yglSYAGpiHgkoLBxmmn7PkJShTSCA9VShCoU42IoDD7EbDgYYDnTilVDGTRTiEOZ5MZy5REWGfsYV9bMFHgOnKAsqp5XL17WmkA5CVqLBR45rN0fheNoUfpVipZIF2EW7Fl560OwMyFjMjI2yJISv+WRbkIazPon8YAK3v9GoUnyjilgNoeKEpeaUHzWmCaiWmNnw6joA5TkoJ8XB28slfYkpDBdwmk6Jbi4ye7nxcgUha2VhcxQhH6fvDE/Q+uAF3QwX1N38KV3kl69atY3THNir/5Qb67l9H4OxZOS/VHHLIIYfXAM0fNhM+182uYejhpxn+m+nANPCHh9AqAvhWzKPyy++n9xcP0f3D+4gPjlB20yrANMKpipH4DIwzsqkphrTYwCgArrK803pNlz9rGiBTPR9tY0OeR+G8v3+Owrll6B+5imM/fAwi4QnryuH1idl/+Rqx7gE6774P/8rZ1H76bQiHRFX0KfXF1wNsD/lU4zCYBIRtILYNwIYUxGPZo/5tr/0ESWFNU4UOjEt0beVNsBbQCulEBUqSrBAG6UpYAgpnLuHYM3+gZ8/zAJTNPAdp6HTsfppdT/2AJZd8Cs0xQZJxY/z9VyJxDIcKE/w0Qggqp6/GGShk/wv3oDo9aB4/RjyKv6qRqpXX4Mg3IyiKFqwiMtpP9/OP0b3+URx5hRSvuoT8Vecy5yt3se+r6cTEoX+dOEfB9ddfj7Ohlp7/vQdnQy0lH7gVR2XpBLpU1uUZAqcznuh/mWOjOyV59eutLzo0HQd61r4IpgTrVPoiqoFQxJT7oozHGVi3loG/P4GWX0DtP/0znmkNHDx4kP6X1lJ63lWMHT2It6aB6urqU3vRObwpIE8gAiJHSpxa5EiJHMZBU13Mnf5WvAWVHNz/V6Sh03nweXY8+0MA9K9+nsZr53Dg73/EM99LYeGMSesTlnZgNB98i0zpp+HNo2h+JwX5Y6ftOnRdZ7BpBwNtuwi1t2BEwibb7nSi+vz4Fy8hsHQFIw0eaqIXo+UX4J+78LS1J4fThyPsxUeA2Sx51cL83+wQQuCRPhw4uUzcjCpUDhu7WSkuYTPP0EkLVdSf8vPWikZqaZy0jCJU5qsraZDzGJb9tMtmdhmbcAsv+aL4hM6nCo1zfTfQFWnmQGwLLwz/hYV5l1DmsLw3dd2UZAJEgSUbFjk+uRmeY0ZGaGPmQtPVOmju8Lgp2NJjfrYIjMHlZWb91oLPjqDQXSIl8Z8k2HWUYCSGs6QMWWOSwOFhF81OcxE21G+GXNhSSpoVtaBLR6Lu4JyIdd1ZJX3HQXPHEsSE4rLyWagqkYg5vbBJiVRERly4HHF8DBPtG6Xjb2F61/6N+HCQsndeROlNq9l10zcA+OlPfwpAQa2HjvY+yj9wzfEblUMOOeSQw2mD0DQKbrgCV30VPT/4DQDDj6+n+y7zs7z9KxS/7QL6f/s47lIfeedPPrf2OMznoGY9iISQKOEQqtuBzx2f7NBXBCklfS8dpevZgwzv6yI6aJLpqtuB5ndTdN4syq6Yj7fIT/Hli5GKQmBJLsn1mYj+h55HcTmo+tiNCMfEMr3Z+iKYpIWSxUM92/epItP4ZWQaeVO8duOWRpKUIpEnbDJoDj3hcW4YAsNykrENwDJLxASaRKb526R7qENKouuUXM4JqSUlJemxYm73ltYi43GW3f5fKG4HR196kGXXfIFtj3+HjsPrqJ1zeToBYTvuSIkU6RNRw6mllUmDIbG9Dwur5rHq5v9EdwoM61bpjpTk4QqgKlRccC1FS84l2HuM4f076HzyfpSCPAJzTswWIISg/HMfJrRnP4P3PUrHV/6HotuuJ+/SpeZtUZOEg1Cy96H0SxEoQk7aF+33E+2Lwwe6iY1E8FTl4a1MlzpO7Y/Z+iKY/e+V9kUgrT9O1hdlLIbeP0ysrYuBRx4l1tND/urzKbriapq+/K8APPbYY2AYeGqm0bP2UaquyeX8yeHkIJna2tcum8OpwxlLSpxz+b9jyDjhBWYy2+3/PTGDncOJYc0LZsTEpRd8k87OrYRDA9Q0XJDYr6oqtR+/lqGeB9h96F4u+8bbKf/OLPoWmN6rsXrzIWo/eAiN72bRnmEcBacvyfWS27/FgYd/QKi/Y9y+glXnExvop/eRhxh8fi2uqmpEXFJyydU4LDmTHM4cGNJgiD7KqMkREq8ypjGLfWzlZdayUJqhsi/Kp3nb297G43958rSQElOF1HU8ePBQTamsZAvPsUU+wzxWnlA9jw//EoCrSz9EqTGdrSNreHnoMc4tuoWAZhEcNjERt4wnhrVCc6SPfdLrhOjpMbDEw6McePB/AFBcLiq++nEcZSdGwGRCCHDlm6SCYUVH+D1RHJq5SrUXyxFXnLGh7NELUWuxMTBgjvelD0VpeunPdLt6CB/tRsbMunyz5lHzrhtpuvsbaccvWbIEgCP//TjO8jyqzj61idRzyCGHNybqf/FFjJEgWpm5Tmh61xde4xa9cXD0nz4HQMNvv8XYivmEdh2k8MaLE/uFEFTdfjFyYJiOHz6If2YpnmnFqJZxTc3wDs6GSO8IziLvhPtfKa5/7sNs+PTD9GxpHbev+oalRAfGOPabF2i//yXyl9QhwxFq37WK/Lpc8tQzDQ41TmRfC97Z1bgDCqqVPVcVxpT64qmGX4syGj/5fuRxxBLREboh0GXyM4CRsi9uyWQqqoGRIpcjLKcUOwGxtNzUhZ7hoa6SjPa1jdZGelqItLwSRjJAQCpQuvB8mp/6Lfse+QEzLr4dgJcfuZNPfCLID3/0E6pnXYyKkkyULVOkoKSEVPmmTGthIomy9RtGDHSXde1OK7ojBrqTRIMz8184CgoJlBbin7MQQ8Zpv+9XlF7+VuDE7EotH/o89ff8J56F0+n/5V/o+8WfcZQF8CxMd6KShsDljKMoGWNhyth4uvqiNCQv3PEHAISqcPYPb6Zg3iubU2f2RQBdKpP2xUxk9kU9Emfg9w8SO9ZJrKsHGTHXIa6GBqo//Ulav/3dtOMXLlwICDoeuw/F6SIwd9EruqYc3rwwEIgJEsFnK5vDqcMZSUoYhsGmp76JlAbzZnyd/MMxzrvym6iqg+ce/dxr3bw3DJ5a+0Xi8X9FSonDkc6EKw6VOZ9/C5tv/wVNf9lFNbMS+wo2uBmYr6OVmCHOgU2mXpLhgHDErEdoKvGRcMJ2NxVceM23AXAOmaRHsMJFNJCcXWz+panv2NzczPZ7kotPxeWmcPlq+l54GoDBjetw5hVTvOwCRpr2EO/tw4hGOfrT71N21Y1I+YmccfsMgZSS3bxIjChVvHq6wzmYqBEz8MoAu9jEy6zDMAwURWH58uX87S+vnyRjilCYy3I2yicJMnLS9TgVD6rqhBjokRAyHkkQD0Kd2PPOhojEEEFzcu0+apG3ASt0XU2RelKsybzP3Bc4bEaUtV1i6u+KsE5ksBdxrI/WvU8SGx4kPmbKQZXceDODzz3D4G8epvyO92Hkx3CqpuG/8efm+5GPmOcKj5ltr3lCoCeSV5vjdeQcUzpDtxaxmXq1mfDlhxhtHSPW1Y9vdgVCMdvu0szFf7S9m7Hnt9H+5FaioSHzui4/n7998evU1tYyfXp279OVK1fiXbSA4I5d/PSnP+WOq+6YtB055JBDDgBtX/gx8e4Bar73KRSfm7qffx3F6aD5H//ttW7aGwZH/uHzGO/6V2KxGC6XK22fEIKqj1zD2O5meh7YgO8T1yb26YbA54wmjG+aLV1iewAjcTlBD0XxitCU2/Peze+ddP8vzzKdDAYGBvjrRf+b2K44VWa8YwkH79kCQNuDW3GV+qi9cRG9m44SOtoDQrDtE3+g/h9Xo1+ko07hmZ/D6wOdv1pDuLmL8nedP27fVPqivX0ir3Qli89sZtnMqAi/Fk0YtSaKmIgbyrgy8YSR18ojFp2c3NA0Hd1QkIZAUXT0jIgJI5rRj1Uz8jYNcnzEhC21k80uJ0WSWCiYvog5no9x+Olfs//RHzE29gV8Ph/Lly9Hj4fTIiNsiAnclUU4jnSpaapI5nGWMduVwjjYks2p5ouUdqXeciUGhlNQfs3bGN27g2hv1/iLmiIUlxPVb46FIhZCc+iJ6AhVSZJgE8GtxabUF1O3ZysjdYPR9mHG2oY5dN9Ohpr6CfeakWDz3reCjg0t7Pv+U1z6y5sTNg+D8dI1mf0utczJ9MXIQJBIcxeu+irUgBddURJ9Mdo+xNjG7Yyu20K8uxcA36rl+FatYO2HPsmsWbOy2mdqamooWHkugy+u58tf/jJf+1ruGZ/DySGXU+K1wxlJSiiKwvR51zLU10R0uJ8NT5nJh2oaLqC3958oKSk5Tg05TBWalr2LPHupyVKX/GwDB/6wk4Lz3kLJNvMhefDdE+hDpqDossUc/tLvGFy3F05AjUOPR2jv2kb/0GEGt7Whyygg0GNh/nR1DbfeeiuRSFIupPTsyyhYdT6aP0DZ4ksJdR/D6Blg6Ogu+rY8l5j0lF97C+GOVroevg/fkl3kz1yGb+Y8Dn0r51n3ekZHRwddtDKLxScsy5PDqUGRKGOBPJuXWcumTZs455xzKCwsJE4MQ+oo4rVfuMdljANsx4mbOjm59NNEeKzHNGAsK3srfeFjHI5sY7HnYlQ0YnkuWod3oKku6vKXIPPMqAAxaBr2mWAcnSr6lphkhFRhaOdLdDzyR2RKEm2tNB/VlY9n8Uz8F56NocTp/8tDKAM6hkNlcNT0Ni3QJVI9uUmU02mSC8W+scRELBgzFyB5aheHfrKetod3Jco7Kospfd81dD74NKGWPuLDIVSfi4IL5rLpR3+muLiYgoKCKZ275Ja3MdpQz3ve856TansOOeTw5kPR2y9jZO02JJKWD90JQN5bLuDwubcwY8bksqM5TB2KoowjJAB2vvWrAFT/dR0dv38B/ebleKeb8zRNHN8jqebKWRz+w1aa7tsBF029PXpUp+W5Fto2ttGzq4foSBRFU4gMRVjyrSV8/OMfN0mUQjeRgTDTb15I4zuW4C7PY/q7z2JwbxfBrlF6X2qh5f5tyLjZ1ob3noO+agbNv36ekpenUX7lfIpXNvD8zf97nBbl8FrCMAz6/vYiZW9bRdn5MwE9YfRVFWNKfXEi+DVzvamcZB2G5bZvSMFofPx/aCpwOeIpnurWuzTbE7ecSlRDEo2rCQmdNFhGcttbXaKYnsJZZJukTSAYApkq20QyAiFhMxYkIhm8xdXMvOIOdt//nzz66KPccsstFBaasqKx8CgONUVGyD6HNV8VKd6LhseRXiaVuJCTpnAYT56IZJulBlKP0/3EQwiHk6KLLp+koolhE97VRw4zsn47Aw+txzOvHi3fgxoNMvTcdgiFqXj76kSeiNS++EpgSEGeI4wiDNo3tfP0Z58mHk5GZrvyXXhKPJTOL2XF++ZxbFaAZ/71GejtxV8VsOpQXnFfBLMfZvbFaFCn6w/r6HlgI+jWNRf4Kf3gjQw9tpHo0Q70oVGE04F3+Xw2P7GG+vr6Ka8TSi99C1pePp/97GdPqu055ADm/0hMkWyYau6JHKaGM5KUADi06yEA5n/i27i9xRhGjNYjayktLaW4dB693btf4xa+OeBtLKfviW3EIqOEyqsA0EZNI6RumHIeath88EbyBXPLTe8DZ2WAoUUVxDZu5UNbbgPgf5f/ZtJzxaJBtqy7i2hkhDx/NYUVcxABL9Iw6Njxd+6//35uvfVWZs+ezdIPfh+AkWnmnGjP58eHYQ4MDLBu3Tre/cFP0v/sGooWrYZrLmNk7UY6d+wFoP6xDZRMW47THeCFP3467fjp//M9AJo+9ulxdefw6mBwcBCAGON163N49RCgAIA1a9ZwzjnncOGFFwLQzH6mM+81bBkYUmcvLzNEH4tYhSaOr386GcoL57Hc6WFr+1/YEHoYbzSf3r4WJAaa4qI2b/G4Y6TfImqVpBfXyHyTPPfvHwAgXmQSGVrPCB1XlANQsW5gXF3RwT6EqtFw/QeJLCvCUx1GK/ATsRNO9whcdbUgJcGD+3CWzU07XuiSaT8zx+j2j5qSTG03SYyIuU31WDklrMmWHjTr1R3mCtXviDISTS5YBjcfZvvdj6CHYkz/6CUULK5l393PEtx9lP4Hnid6bICvfvYLLFq0iCuuuOL/s3fWUXIUax9+unt83V2ycXeFQIJEIAS34HqxC1wIrh9ycb+4u3sIkBAIcXeX9ay7jXd/f1TP7G6ySTbJJoHQzzl7Zqa7urq6t2a6ql75Mer3R/Z5QTDv3gf3qbyBgYFB6YtfAJD16cPY+3bGnVNM3fQ5dJneBVNcFN6yqsPcwn8GoT1T0fwq7rI64rsJ0eqAp29gQXjnz7KkEd41jLSxnSj5Y0u75wl+j58fL/6RmuwaorpEkTgwEXuMHdWrsvHLjXzxxRfcdNNNxMfHc/bPFwAtUzC4+X7cmzCuub6GhgbmzJnDFY//m8IvV5Bx9gA6Xz6KHT+tY/NTMwBIO28lSSf3w5YUyZzjn2rVnn4/3g/AmlMe2p9bZ9ABNDQ0gF/FV9uIpmmtPK3tJm+7+qJ4VfcYGXGghJrcu0RFBBaJoVlTIuCd3vKzT5Vx+fY8tpUlDRStOYJAD3WQdXXqNiMmAimVFN37XpV2MUTsYoxoSQsDhTVcGCRnzJjB2WefzbBhw5AVCwWbf6N7rzODItlSC+cZya/RMqWC5N/pvgd27cu/Q9r1var5KZ89nfoNq0k89VzMkVH7UOGuhPRJJ/XByyh69APy73gVR5ckGlZuR3WJCOnYkwehhLVe+LebdP2IFoayPfXFwOdAX2wZNdFQ0oDP5eOE504gMisS2Sxjj7G36vuxvWJBgsJ5hfQ8p/U8YXd9MfB5T30x8NrYYp7QuGkHOU/9gLe8jvhzRhM+sifl3y+mdtZKaqfPx7WlgPvvvJvevXszceJE+nzzv2Dq1vay5b937VN5A4O20LR90JQwRCU6lL+tUSKAbDIz9IQ70FQ/VXlr2LD2UyrLN/DEE09w7bXXEh4efribeERT8PKvAJgTkmEfUqV7VIXuYxJY+PIaChZmkTYyea/HlHty8LjrGDLyRkLDkvFbZeoyTJQu+w2As846K1h2xWt7zwUZFRXF5MmTyfxsGTnzPqN0wXQA4m++Cm1jGZV/ziBv9TTyVk+j+1GX4vP5kCQJRVHw+/1ofj+SopD14jOGYeIw0bNnT1LIIodNRGnxREvxh7tJ7UOSQTt0+WsPNh5EqraePcXAtlevXmTSgxw2omp+Oit9kSUFzb9z/PfBpUGrZSl/4MdHTwaxQpvbIfXGhnRiWMzp5Ho24NQa6BJ/Ag89eRnnn38+zsYybKF6KrHIfdeo0SwKYYXiPm28QXgvhW0W+6TV+dQuX4QjMont37y8+zo0jZBfZlD6/eekJd2EVxYTrK1Xi3rt4eL/ZdbF99zsm6GmrF5cV9WCYkqf/Rpbz85s/3kWqampAGRUXkn+XW/jWr8dx4h+3HvvvcFjV5z0SJt1GhgYGBwMJFkm6Z7LUH3QtGo7ZU+/i6+8mjvvvJNbbrmF+Pi/ybjhb8q2h78GIH5Q0j4dp2oyWcemMPu+bDZP2073SXs3Zru2FlOTXcMpLxxDp9HN84qN03JY0+jl7LPPDm77cPhbe60vNDSUk046iX7at6x+4ne2vbsYgN53T0CVZLa+OIvCz5ZQ+NkSutx8Iv4xfjRNw2Qyoaoqms+PZFLo9+P9hmHiMBEeHk7qJaMpfH8usYNTSTixdzB//74QYvJg0nMY7ZyaSaH1YvHeCCzw+ndy3282QAgDQb1375kHAthM3qC2hFfX8gp44/tULZiC0++R266gRcREUF9CJZjnP4Amg6pAwLE/IGgdRNrpNXBtPuEE06NHDwDi4+PJ6juZbau+QtZkumaMw2QS1yv5W6wMqgRTRUkuD5rV3GycMLehM7EzbURItHz11teQ88Hz+OrriDlmHMVff7zn+tqJrXMy6Y9eTs13c/GUVBF/5ghCeqax/d5P8OYWEzEoBWC/+qKqyYSZXZgk/y59sS6vlk2fric8JZRf/v3LHtPM9TmtM8v/t4z0fpEk9I5p1R8PpC8C2HSR7tptVWy791Ps6TGs/n1B8P/fI+Qman9fiXNtNraeGTzwwANBo4mRYtHgcGGkbzp8/O2NEmufbl58PvHoRwkfeCOLVr7InXfeyf899DSlJdmEhYUdxhYe2YQN6kz9iu3UnlZKyG9iwhG7WjxgyweLL2vFCDGIi12ssKlMTP7GZW4i9cLuFCwvZ+Ydczj9m7O5ZMkVALw/7O02z+Wqr0RWzISENk9sVJ+HshW/E9VzWKvJxr6gpUaROuYsNn/4GABlz7+5S5kGtSqoq2GJDsFTJXK8mxPisffqSfc8F4rdwYZHDMH1Q4kkSfRgIOXsoJISovkbLS4cQYYJG8LLPxC5AtCJnvjxkc9WGtQ6+stHIUmBWOlDc92FZCMh0ZuhJJLeIXX+vPlxACb0vod+dEUNEd5AAU0Ev6prRTjMmKrFe5r0nNgWC1qoiCCzlwrDAGZ98ljv2u05Gwu2U774NxpzN2OLSKDzsZfssY2SJBF78RSKn/sf+S8+TejRw4g+59Tdltf8Mj06F7XatnmzmDBhE7/fmTHCqzjJXkdThBlXaR2b/vcxth5ZxN94CampqXT98hFqZy2j4oOfg/U0LVrD4sWLGT58+B7bbGBgYHAw2H7uPcH3WdJ/SX/1bvKv/S9PPPEET736MgUbN5OcvHfHGIP9I+HEXhT/uBqlvhZHuJiP7eqd7m/1WZZUFEkjdHwnSpYXM+fhRWT1C+N2kxjnP9n/yzbPVVckUiYm9m1O56lpGkveWE/a8ARuuumm/bqGyGiFkfcdw3fjsgFY/99fdinjLq8Pprw1x4bhrRD6Vea4CMKHd6NHeS2WuAjDOHEYSJ0yiur5W6hekkP6hO5YAv1NVtvVFw8XDpM7aMBo9kZXdvosBz3UPfq+gFGiLYJpgvQVoL1GTMhac9qngHFAbtZxgNYREzuv0wU+KxYbJnsYtbW1wX0JGcPwuhso3DqbxupCBgy4HIumO8n4NQikGw0YQILpm/R27KxDsQfaapcmQ82G5fgaG0mYdDbh/YfsuZJ2suXM+wARKRV602RMugOQt0r8JqguL16/QqjF3aovBl731heVNi62YnMVy99eR/bvBYTE2Tnt1eP3qntz7G2DqNxey9eXz6Tz8Wkc/8hRSHLbC60OPVWZqsl77IuBV4+q4Gtws+neL7AmRdLzsXPp0aMHI369i+qFW9n+/M/B/6NrYx7ffvstZ5xxxh7ba2BwsDGMEoePv71RYmeCi16As6mCJUuWcPzxxx/GFh3Z9Lp1DMuv3UH23e+T3u00wlO677Zs3YRGzLonxg/r+wFw/uO1PHP8TNZ9uJYhNw5r8zhN01i4cCFlWxYQntoDe3YlADsmJ1PdpQbV48Kf5Tig6zCHRpI0+lQItWJyhILHj9/lxCqHYI9Jxu9pXjAM65FI7KgulJeH4ly3hbo//qTujz9xZHSh4c6rCA0NZcxEIcpd3a3ZA3n1C4bB4mAgmy3glZDZjffPwUT/vQmIHGs+794PMZmRdHFk1aWnnfqbGycUSSFMi+K+qx/my+tmATBL+5oT5bOJ0RJYpc1nh5RLuk2kclKbhNgaB9FI4dU8VFGKjRDWaUs6vP5f1j/a6vOSJeIcaogd1dH+yAN/iAW5yRuc3mkWEyHZYtImmUJpWLCSys+/wBaTRPLpFxHWsx9uee86Hfl33k/hhZeTlpZG/ez5RF8yHsUmzuKsF4aUsEhhLAmJcOL26YLdkhYUxt4TJbM2gd9P3PUXIFlEe9y5xZS//j3hY/sTetwI6n5dRMO81W0K0+0LmW+KlBi5Vxm5Yg0MDA4QpXmsoNY1MHPmTC65ZM+GXoP9p9uVI6lZlsPim7+j179GkHxcF3Y3XAvRF74UtOCC3IR7+pM/t5AFb2xk0mPDdvs8WbduHSve3UBS7yjiYgA9rafq16gtbCC1X9QBPYvMIRYG3nEsPo+GLS4Ev1/CW+eCEDuhmTHINhMFHy8CwBIbRuoFR+Pzi9QlldOWUjltKbaMeCpG3hjUPuz8+aOo3uabkXOhkYLkYGAzeZFkMFna//9v2RdBLBArwfRNuwoNi7LtG8v6d/oCBFPkEMjDHxASVoLe6z5VodG/ZyHhADY9FZBXXzSW2zBS7DFiIiDGrB+2c9omUU5/bUNDAloYASTQJAlJ0wiNz+C51z7gt81CQ2LBd7cx+nSJmMhurF7yOrm5s+meckKLRmqtNCW0ndM3BY0TLbe1NpgEaUPgWvW4ady+CcVqo/iHzw94rLozOxsgi4uLSeZFLIqPUMvu0w47TG6aWug6+DSZCLOzVV8EYZyQUcldVMo3/55PeJKd8fcOpM8pGZise58nvDzySx7+o4q0rsls/TWPk+7th0VPK9VWXwQR3dPevli+IBtPRQMDnz8Xe7gexVPdyJaHvyF8SBfiTx9O7bJsyr9eEHT83F+6Pib0Zbe2ka7bwKC9GJoSh48jyyixYBV2TcUWEoPf66JTv1M57rjjDnerjmgWTXmLlT2vZ8zFp7B15ptE9BxIt4FTkGSZuOV62KhNPMjqJu56vCPSwpjruvPb8+so+DOPpOEppA9+EHd+IVpTAa7cEpwb8vBV1OKISSV18CRYLQZbvqZ6yp5+BwD7gB77fQ2JT81n9eU2vOFNmKKtzLn/Lrp0EWK4/S97jJxZH2Ay2YjuPJiq7ctRvX4SJ/ShfpUVc3ICDms8lQtm0ZS3jej0TNKu+Q+mghU4ndX4GsMJSc7CkZC23+0z2DOa308UcThpPNxN+UcTJyWTp22mUasnRApjnPk8ZqrCmzFOTmGHbztplp6tB/2a2myY6EAqtVLWsRgvHqKI6/D62yItTXzHK5I8WEPE4FrR9XUkh4iO8MaFBsPO/fqEwVzl3G2dTcvXUfn2l0T3GEramHNwx+7bvUpNTSXxjn9T8uT/qP3xT6LPHtOu4zx+Bez6pMfib94GbK2LpbQujLoGE6gaWk4jSqLwfvU3iGuJGDMAd1kVDQvXEn3RRIYNa9vg3F789Y04l84jbu5vmDOSkW0WbF3T2HbOvXs/2MDAwEBHUjRM4Tas3TLw5BUTPWUiF1xwweFu1hHN7Mmvsq3XrYy+5ASW/98MCqat47hnTsRkMwUX18x78EZXzApjbunP9HsWs2NlBenD4tFuPJ7K/EZKN9dSuq2B3GVVVOY3EZ0ewimPDA4e62nyMe2BFQB0OSZxv6/BYXJTMK8AX0UdjjgHb5z8OP36CeeqyX9ex7IHZqBqkH56P/K/XYPq8hI3vh/OWg/WlBisGQkUvz0TV14Z8anJdHv5Gh4KO5qqT2cgOUKwdkrB1jNrv9tnsGdsJh/RfRJozKnE0UJHwiL7dvFK31NfPNyEKB688k5e6rKMRxXLOSZ9Ad8TNEZouP1in0XxB8dxsPuICUkV2hOaf9e0TS21Jdpcj5No0x4AwjARldKbnAVfUF+ZR1hMBqPOfYYF304FIDVlEaVlq+maNAZZNjVHQfjVoCFZalPgukWqpzZSOWk7GRoUD/gt4CwrJP+7d/DV1WCJPjTzhJiYGGSLgreoEodJRCO37IvQHBXhMLmDfTHQN9uicGUF3928gIzhcZzx/CgU877NE6Kjo7nowzG8c9Zv/PnCOk68d/DeD2L3fRHAo5owqSom1SOMUlU12NJERL3f6QFVI2p0T1SPl8pflhN76ghOOeWUfWr3zqgeD3Xz5xL3+2/YEzJAgpDMrmx82DBSGLQfQ1Pi8HFkGSUAWZIZeMJUNFVFMVk63OptsCsDBw6kz7Pnk/dCMTumf8qq3O1EpvTEkphMdM9hoKc3Cf8lBFuVeMBG61/kkl7hdLlwIGWxXalals/2nzfg//r/AJBsFqypcYSO6EVI/870+j4NeauMP38HAGVNKp6cQgCsSZ32u/15pydR8c7/gp+7fvgFd9xxB48//jiu6hLqCza1Kl+9NJelV/5AU+7WXeryNzXiraoge/03YkM2SLJCzyse3O/2GewdBRMN1Ox2v2QSi8TtiWTYF2Q94gE9ZF/z+/fq9S+HhoAeHit5fXq7/rqToPaSau1OsSuPRf5f6SEPIkVunmBnSN1Yrs2myFpEWmgfNI+3+X/RgVESPs1LBcXksBErDoZyHDYOLIqqvSQlJWENjaG+PBdCeu+2nGrRvYXC9T5jEu2zljYb1bZcFkX94sVUvvI10en9yBp6Nktf3T/dmhGn+Pl9wxhqvvudkCFDMUVHgVXc8/odwpiQ3q0Unhapz2x3id/XzqllAOSWxbRRK8ScdhS1f2yi7KOPSNZTYkgRCchhIRQ88D4A9kG9CDl6xH61uyX1v8+j9pc/kBQFzeNFiQwl8/U7DrheAwODfyaJd1+J5vEh263BlDsGB48uXbow6qmTqFqWy9w7ZvLN5M9IGZVKYo8Iuk/qhD1ajNHMwVQ6/qDXuVn2M3RyAnEJI9k6r4w10wp5+sc8sc8mE5sRQpdRsYy/JYbux8Rhtiqg61zl51SzaYZ4pg04LnK/2+8trWbWLbOCn/s/3p/TTz+db775BldFI8V/bm9V3plbzpZ7P6N2bSGat/WCoub24nd6OffKc1ttT358/1JLGbQPS4Sd0rzdi9vbFTEmNeu6ES37IogoCLO+OBwQF95ZD2BfNSUCBLQgAuLCgQgHvywHc/p79XaYAjn+1b17wgNYFTHP8PmVtqNgfeBXd13IlpTmtE2thK53DlbYKW2TJu0+lVJ0Wj9Ko+ez7veXSe8zgZSezY6jKckjKCpeRs6OOXROHdtK4Br/Tvd1D0aIveGVvdRtWU/l6rkgSXS6+jbM0XGHZL3IYrEQ0SuR6rVFcF6/3ZZrT18EyJm7g69vX05K30imPDeYhwd/s1/tSsswMXFqT354eB3DzkwlpU9km30RhMZEe/ti+sQe5P+6hTUP/8qod6aIa4u1YU0IJ++ZHwAI7ZtO4tkHnt61ftVyKn6bjmS2oHlEFEr3e54+4HoN/lkIo0R70zfte/1z5szhqaeeYvny5RQXF/Ptt99y2mmnBfd/8803vP766yxfvpzKykpWrly5i+i72+1m6tSpfPrppzidTo4//nheeeWVoK4jQHV1NTfeeCM//CC+Z5MnT+all14iMjIyWCY/P5/rr7+e33//HbvdzpQpU3j66aexWNoXkdfRHFEj8YBXrsGhZ/6JT9Fp8zMk9YpDyZ1L1dJtlM9bTNWmJSQddwYhybs3GkiSROyozsSO6kz0hEEUzqzE1qMboQNDkCQpGA0q/+BpdZwSJsRWY6+8EEnef29rR1wqkb2HUbO+OcXL4sVCzC48PJ2so6dQXrkBW3wySp0XV1MlNZtXgCSRNHgCSvc0rIkpOIvysMQnYAoNJyQ0Eb/fg2qRCM3ogew4NAuj/0RMSQlQZUH22zDFJaHW6PlKWwxiD7XA8j8JSREC1jY5hFH2U1jvWsAmdQWxUnOO7igtliQy2FD9B5rqJ4UkJJO5Q41EmqaxhFk00YCMTF9G4JD2XWj6QIiREmjI24q3txigm3SDrNIgFkhkjx+/fc+PXa/fRflnv9CweAlx3UaQPvyMA/p9AwifOJq6H//AtSWb0BHt84IKEB0ujCUun1g0irU34ogWE/uGSy6k6NkXqJr+E9xxB4W3PEZGeCieLcXI0VbMyR2j8dK0YiUp43vS/frR/HHaWyBJaIaLioGBwT7SUl/C4NDy9ahXuMx8GZHvTyLv1+3kz99B7sxs1n+1hTG3DyLjqD0LYWcNjyVreCwjzktn4+8ldBoSQ0qv0D0uJlpDxPP2+Ou7BN/vD6EJDgZc3JPVH28KppBZuXIlAFHJdkY/PZHtP20honMMbreGp8FL4berAEiZMgpLVjIh3VNoyC7HFBGCLT2Wo446isVbNyApCpb0RCxJ0fvdPoM9Y1N8SF4PilnBpviCnucW2XdYIiNkSd3FMLGvBBauvZocTCPlk/QIid1YBXy70ZpQZLVVqiZN1SMS2oqYkECSmo0RbaG1iJhoub6nWGz0mngjO5b+RP7an4lK6hncF+ZIICPtWLLz/wANusYcJXa0NE60et+28UPSaJVGqlWbgNzv3qCxcDvIMokTzsQav+ffnY4mrm8CeT9txCp7kSSpVV+E9kXqeF1+5r66kUXvb6XH2ETOfGwgZlv7jFS7Y8hZ6fz67Ca2LywnpU/kPh3bsi+C6H8+SQEFht1/PL9f8jkbn/4N7WSNhac8z1Hvm6hZV4IpwoGc1DEGofo1K3FkdSN5ymXkv/wMnqpyUI15gsG+cbA1JRobG+nfvz+XXXYZZ555Zpv7jzrqKM4++2yuuuqqNuu4+eab+fHHH/nss8+IiYnh1ltvZdKkSSxfvjyoIzNlyhQKCwv55Rehf3X11Vdz0UUX8eOPPwLg9/s5+eSTiYuLY968eVRWVnLJJZegaRovvfTSPl9XR3BEGSUMDi85N7T25O3/8iVsf+FXsr94iZRBcZgjxhEV0xWzPQzZJx4Uv+UIDYrIEJH2oy4kjpjzM0UFkoYGJEQIYahN1yQAEJ8l9qvfbQFg/aPPEB+//4tfq1+/A7iD/Px8Nm/ezKhRo3DoRgRJkojJGoz1GCF+ZS8HnwPCs3pjDoti2+cvtF3pI3cC0O8/z+13uwzah6ap1HrLiDAn7Lqzd2cA1BBh9ZXdYtAn6ZEJcqMbTRca1rILRFld70C2i5Q7qsu9W29+OSpSf6OHFpvNaE49HY/+YJDjdE/zgDem2YRWWiHO2cGRG7vQwZoNgYgTSZZQPc1GQklRkBQFEwo9zUOp8BSRq25sdVwvbQR+k8y2+sUkJl+ERXGglpS1qqe91xDQ8HD7mqihggK24cNLEw30ZiirvAsOi/drhDWJ4vpNqH4vstI6P6ov0o5mklH10Gpzg+iL7khRruC4KPxNTRS8+CKq08Wbb77JFVdcccCD9W+PepnuM55FtjvwlVSBV0ZTNPz1jdTPmEvomJHUNNmJbxR9sfSTTABs1eJ+N3XS88rq6W1jT8gO1m1JTibqlJOp+vZ7Ev5zOV1OiiM1A8gIYf6JTxxQuwOoqoq3pIqIngMwhViJu/E8yp75CFd2aYfUb2BgYGBwaHh36LswFDhHfL7qhwnMeHQFP9w4h8SekQw5J4Ouo+Oxx1uDXt2BPOoBL/SwdBOpl6YKMWx2n5cdoKhSzB/+7/z3OKrXUfvd7teGfgLvQ+mTpaxatYoRI0YQFhYW3J80Kp2YEcL5yuU34fErxAzLBFlm1e1ft13pZPGS9el/97tdBu2nZmM5oanhu2y3K2IMag0uCge801tHRZhl3y59cdfP+6YpETBMBHQjgp/lgJe6qdljXTc4eHXvdLekp2zSPwdSOO0JUxuREoGFNVWTmgWtWyApWlBoGn08qsn625ZrvlLr190oOyDLCul9J1JVuIbCDTNbNoSs9LF4nfXkFM8lJaQnDmsUBJzKFKXZNVltPgaajRNtGSl87iaaygso3TgXv6uRptI8Eo46idjBY1n3wtQ2WnhwieqdwJYPV9BU2kBIYlirfXbFi1ny77Ev+rwqb140h/KcBsbf1I3pz2xEPkDHpXt6TwPg1dQw6grqcChCYN3T5GPuO7n0nZBIdFYUIKJ59qUv2uNDGXjnGJbc8yuD7jqOxJP6EW6H8KEx/HzMbtZQ9gNfZQXhA4Yimy0kn3ERuW89S8P2jXs/0MCgBbuxae627L4yceJEJk5sI5+9zkUXXQRAbm5um/tra2t5++23+fDDDznhBKG/89FHH5GWlsZvv/3G+PHj2bhxI7/88guLFi1i+HARhfTmm28ycuRINm/eTPfu3ZkxYwYbNmygoKCA5GThRPrMM89w6aWX8uijjxIevuuz8mBjGCUMDhqh3RLp99LFRK2Zz5ovtpH7x8fkAo7oFFJ7nUBkSq9W5d0lNTRtKMaSmsAxwyuJMIvF3aWl6QA4khsAkdtcUzVcG7ORrGaioqI6pL3p6emkp6e32rbk/VsOqM41zxm5DA82NbYGGn3V9MiahBoeg5opjBOSx99KIG2/GdEXv0PPyVomvMY1kxgAah4xcAwO1BOjkfRtTZ0isc9ae+Dn3wc6KvogKNytTwZkPZRPa+F1Iltt4jVcRCOoaQlIW/IwSxZSla4U+rdxovV8Zro/FeUkme6mQSx0/Uh24yp6xI0N1r1Hw4SmimiMFuHlHs3FOnUxlZQAEEE0DsJIIYtE0g9bOg7/sX3Rvp5FraeE0LgMzGF62jDT3g0LnvIyambPwl9TS9KtN3LllVd2WLt8xaWoziasnTIBcK7fQtX7X+GvqsVXWU3Mve3P5WqSVRq8oj9Y0+uJu3AATds2Uf7KR4S4jyHx1EFIcseEwZ8850ayP18hRn4OB26fCV+5LpJuieiQcxgYGBgYHB6iMsI45/VjKFhYzPLPspn20GrQICYzhDFXZtHvpCQUa/Ozv7bURdnWemLTHXRuEYC9cxqdALlLhANI165dO6S9CQkJjB8/vtW2z0e+1nbhse2rM/v8uw+wVQZ7w1deS/nyQkbeOxqL7AumNAp4px8oYbIr+H53fTGAv0WIgYpEvd9+wOdXJA274sXdzmWy3UVMSLKGrKhB40QgIlWT2xC6Bl3EWrxty2l4d62RZRPJ3ceQs/I7Rk74Pxb+8gC/zbmHE455lK7JY6ms3crW0tkMSDmt+SC/H6nBCXZbi7mduA7F6cNvaz3u93vd5Cz8nOqCdWiqH1tMErboJMK69SVm4DHBec6hJr63ELmv21RCVLJ9n/pibYmTRR9lU7KlninPD6TPiYkHbJAIUF1dTcnWBo66QKyDFKyp4Yt711G2vYHsJZVc+u5R7XaS2rkvZo7NpPSUXqx++k/qS5rofNFQZHPH3P+sF56lcfUafLU1yHY7mgTeRmGMVsIO/cKqwd+b/YmUqKura7XdarVitVrbOuSAWb58OV6vl3HjxgW3JScn06dPHxYsWMD48eNZuHAhERERQYMEwIgRI4iIiGDBggV0796dhQsX0qdPn6BBAmD8+PG43W6WL1/O2LHtHMB0IIZRwuCgEfSUHQ/cJqx+13x2Ieu/2caWee9jspuJmNOdiLgu5DlWUrYoL3jsrCHJjLljENFZbS881fy5joY5InQ6ZnBn0ruYkWSJLbNLMYXb8DZ6Ce2TTuZFI7CnRHWY167BXw9V03NbylbkmkbcXcSAT5PNeEP1NDouXfwtTCyk28v0hftoOw0puihxX2HcsjToURQe3Tuqbi+e/HvAeXzfYIhzQKfMVtKEuqVu9wcdIJLJjGxr/TBUnc59S2GlRyfIVjOqu3myJYcKoTI0LSjejK95IK11y0AuqyHR3Zfcsg2UqvkAzPB8EiwzadIkFv6+TtSXJoTe1O05u1zDztEdkiwFryFX3UgNFfRkMJHE4iCU37Sv2n99BwlbTDKSYqK2eDOhcRk440TfslY3D3DsBeJ/7w8VfbGqdj35m2bSVF+KYnGQMvgkEqrSd638AGgqFPe3YfkyGpYsomnZWqw9swg7ZiA13/9Jfck41BGi/zsTRb8PnynudWOmnjs5UnwPVm7IRNYFvK2Z9UiSRNx1F1Lz1c/kvDoLV0kNna49vsPavumV+QDUm+PwfL+Kqg9/x9avB6YowyhhYGBg8Hfmyf562t0BwLVQVFTEkiVLuO9/V/P1vWv54eH1dBkaQZ9jY8hZWcvyX8qDQ4PMPqFMuS+LzgPC2qx74+Japr0m9CSOO60LMYkWHKEKS2fVYA9RaGrw07l/KCf/K4XM3qFc0nXBwb9gg8OCqut6mB1m7Io36IluVXzBPP02eac8/ju9ypIafB+IiNibAaI9hCnOoKEiEEER8EBXJV/w/c7e6YEUTWZNbY7Y0F/3FjVhUvyo+oJaICpDkQNREBKqrO0SNaHJgKxHJkgSmhwIT5DajpjYC9EpfchZ+S0l+Us4ZvJTzPnhNn6bI9LrXXNNHR++q/82tEzVqc875CYPqt0cNJT4dMcxxanit4l7WL59CVX5a0kdPpmw5C7YohJZ8db+abN1JPYYB46EUIoX7yDjuE7Y9X4XME6YJP8ufbFgWTk/Pr6R4i31WGwKYy9PZ8gJUcjy/s9Pd2bx4sVoKmz5o4SiVZUs/LaU1J6hnHp7F75/cht1W8pJ7RWOV1P22BdBRBDt3Bf73zoae1wIm99fRkNuJQP+76QOa3vl10JLQwkJoWHDGoo//wBrQjK25LQOO4fBP4T9CJVIS2vdzx544AEefPDBjmxVkJKSEiwWyy4O2QkJCZSUlATLtJVBJj4+vlWZhITWGUaioqKwWCzBMocawyhhcMjIzMyk67gMuo7LoGxjFUt/b2DHb9lUrv0eW3wyySefjyMtC1PkcvI+XsxXF/9Kr0fOwNtJLLAelSYW1hYUZiLFxiCHWFEb3Wg+lZK1lWiqRuTAdCSzglczUb98O6uv20TK2cPRTtAM0fMjEL/fz5ba+dgcMUR6I9o9GG5J6A4vsk+lIUX0M2eMPhlQ9MokMyaXePI0pFj0fWKXSc8coOhGD3OjijdEn1zoA2NJbfY0AnCHhxLp7Y5/7eZ9b+xuMCWLnKhatPAK8evGF2Xt9t0eo4SKCAd/g4hACkRD7By1IFttwWgIIsVCsGYzQ0WN2BYuFgRqeolzm9NDiViqES+nsda3kK6WgWSoXZElmRnez5g+fTrR9nSQJfxRol6lIgJ/rdACCaSIUlLENanllaKdPg9VvhKKyaeEfBJII0Xq9JfSEvJHmIgaMJLilb+TZuuD1iV5j+U1TSVn3TQstgiyjr6AqIy+LPuo4wWcj77FxsaEAWyZWYzqdhN92TlUvP0ZqQ/eQc13s/HsqCCqLhHPPjoVndF5NQDVGQ4Y1onPX4im+INp+DN7wYkd0/awrBhcLhl7rwzy755J5NAsuj0wGUmp7pgTGBgYGBj8JUhOTua0004jp/srlGY3kjO/mFUzKvjy0W0kdbJx0b0Z9Dsmksya+7jjoYt54sK1/PuZTow6KXKXuhLjITbZQkWRB3eTSt7GJrwejS4DQnGEKUiyxMZFdTx8zjqOm5KA7/YRXNFr0aG/aIODzoa3lmAJt9JpVBtpXttJiOxuNlAEjRK600aLtE17E7tuqSURMEL4AymUdjJK7G8UhU3ZfcR0szEi0I7dR01oO+dF2l0UbFsaEjund2pZXAOLPYLkTkeRu3E6Hlcdxw1vQFHMzFxwL9OnT9cr01qLXOsGCtVhafVZ0l89Vqir2E5Z6RpKsxcSGpdJctfRLP7gwLIedCQ2xUvPc3qy/H9L6XVKJyIH7l1L5ufnt+D3aZz9YE8GTEzkriG/d3i7xowZwzm3prLk12oKNtRz/p3pvP/Qdl5bewzfP7mNkm0NpPba98iDYF+0mOl35SDCO8ew5J5fKP5hNRzbMW23pKXh3p5NWN+BlHz5MdaEZNIvu6HDorYN/kHsQ6RE4MeuoKCgVbqjgxUlscemaK3XOdta89yfMocSwyhhcEh5adDHAIypnkr6FFBHT0Lz+Qjd3iwEHX9iL+KO7sra+39g/V1fk3zbOYQO7taqHkePNHp/ejsOi3jYDY/PBWBllVCer3PZ8De52fHsNxR8MI/5V83n6KOPPgRXaHCoaGxsZPTo0dRW5TA07XwkRfycWfX0LrXdw/Bb9cG3RY+YcOrGgzphTdAUGdV6eEJ4lb7dg6Jtku7F5d8mDG8toxoC2haBFFGSWdd1iIrEl9scXdQW/n5dxLlqm5B0ccbgAF/T0ErKdjmmlRFCN1Rgs0JdfatyarwYSPsihQGkpUGmYWgaA2aOZatrBdu8qymngD7KcMaZzyMlJYXCwjzcyRH4QhRsZboGhx6doURHtjpPjbOEbG09VZSi4sdOCF3pRwp/LYMEgOKB5OEnUZ+9gdXF39Jl2HVIkoy5UVybpdqDK0UfuGgablcdbmcNGQNPJSa5Lws+OjheXJYwK/2vGUL90c0pLCRJwhQbDZKEa1sNhIKlDhoyRD/JPUMflFh9geaKawz34PeJAVeuU+il9AnbQYErmrATR9K4cA31s5d2SLvDLS7i+saR/f0mCh75EndBBebUISw+6QlG/HpXh5zDwMDAwOCvxX96zuAtZTRduqZw0mWJ+DxqcDgCcObxZ+Lq9V9evSOXF27OxuPMYMyZMa3qSOls45U5fXYRFG65EOzzqHz+TCG/vltM5/5hXNE6q6zB3xyfz8d5551H7oxsxj58NGFhEtCcvskqNUdNmPVXmxTI5986r//hwCG7myMlNDHHcemvAU90t2ranV0BVZOCnuo2xYfLv+uyj0kRcwJVDehZaEiBiIg2IiYANLnFwtWejBAtjBU7I2mQ1XsyNkcMuRunU1uymd5dzuLEUY+QlZVFQcGfaD49DW/AgBKYv+xk93E2VZK9fQaVlVvw+1xYbOGk9BtHfLdRfymDBAjtkgEXdKfwj2zmPDyfS74Yh8mqYJW8wf0t+6KqahSsqeGMO7ow+uxEbujR8QYJAJvNxqnXJDPpXynBbSaTCVuIQkScmZq8+mB/3GNfhDb7Y6AvJh+bRcrxXcj7cQM8c+Dt1mQNa0YazvUbKHz3VXx1tViTU9jy6B30eNDQ9TTYNzStdXDW3soChIeHHzINhsTERDweD9XV1a2iJcrKyhg1alSwTGnprrqL5eXlweiIxMREFi9e3Gp/dXU1Xq93lwiKQ4VhlDA4LMw+/um9lhnss5H9+HcU/vdTIk4ZQ87psdgTQhmYJMKxS5rC6BpeDkCarQqAX2t7AhAV2gQRMlmTe7B80Xbs9gPP2Wnw18Lv97NypUjhFWKN2UvpZsLnbqdpiEhG7NhaSe1AEeKmuANPIX3xX49wUE3N+xoTdS0JfXws1YjtlvrmJ5jPoUdI6EaAQMSFX59Qm1xQOTBSPwf68eKNY1vrNEZ7w5SZgTctmqZQk35ufSTYIg8sQHhtU5vHS4nxKBXiWMkujAuEOFAjhJFQLqlqLhwehhouvkd+u6nZyNECc6OKvVSke5IT4ula2I84JYW17vks8f/GEMuJRJamU0ghHk8DckgErng7IdWxQaOH5vbg07xU12yhSatji7YCOyFk0YtYElmg/vqXjnqSzVYSJpxB4adv4iwtwJGYsduyZnsYsmLG6anGZzt41/Tx8DfFm+Gtt3fqVUFV5zi8+dsJdwwDoHKY3v/9+9aeNFsVAzvtYNOxiWz/bDV+vx/lAHP2fjriDYpfLSb5+2Scq9YD0LBgGeakBJSwUOLHFmPv24u8G24/oPMYGBgYGPy1uLLb3D3uv6DnckKe6curDo1X7sgjf109J5wVSUyiiWg9dSK0zuEPzd7ofk0CG4w7O5Jf3y0m1H74Fp8NDh7Lly8HILpL+/UHrbIXy05GCbPkDxoqlJ0iJeQWq+T7pinROlKiOX2TSX9VUPSUOLI+rm/LsLAnAloFLr8Ji+zHpy/wm3XRa79ujJBlNWiYaIkkaxDY3HJY2NYQcR+HsTISqZ2OJiasExvXfM6y9W8xOPM8NEQ6lDp3KRGEBx24gqfRNFTNT2V1Hm5PHVvyfsZkspOaNZro+B6ERqQwZ1rHRx13FLIic9x9w/n03Olkzymi24mt0794VVPQMCHLEnFpNmqLm4JpnQ4WU7os3mWbQ/bQuV8I25fXYJO9KJp6wH0xeUQqS3/ftsvC6v6Q8+9bqb/0asLDw3HliTm0v74Oa0ISsslCysplhPccwMbHbzug8xj8M9gfTYlDyeDBgzGbzcycOZNzzjkHgOLiYtatW8eTTz4JwMiRI6mtrWXJkiUMGybm9osXL6a2tjZouBg5ciSPPvooxcXFJCWJzBQzZszAarUyePDgQ35dYBglDP7CyBYTne85g21vLaV2+hx+/8EHskTamEzSxmZiGtQLv91PY5kTdqNhV7E0H0u0g27durVdwOBvS3h4OBUVFSQmpJJdtYhesSKPvStJ6B5YGlRUp3hghC0rFAe53Yelre2l8bShAJia9By3ZU4a08X1+C3iWmSvPgnS58+yR0UzSUi+3Zv2K4bFYGkQ++3lnuBxAFK0qF8pKN/lOG+WsJYHjBueSF0jobL5PrpihbUlYIwwVTS0qiOSGEbYT2KZ6zeWe2bR33IMkiRTUr6K6KzjxHXaLXhj7XjUJuoat5DjXkOTKtI5JZNJdwai6DlM/8oGidXPC2H7zo8/hfSNlaacbYSHZ+AJFTM6+w4fliJxXU1dYpCQsIXH4arb9d4fKqIGZ1D0ywbUYT5k2YS/th5vUSnWWge21HQ8YqxC/Azxfx5ze3Pe7RqvMFLNqxAROV3CylGGh7LpLTdr1qxh4MCBB9y+pKQk7IP74Vy+BlNYBL76WnwlLnwlZZRvzcbWoysYRgkDAwODfxyKInH9oyl06m7lg2fLmPahcKQYNDqEMadGMnRsKPZwMyX5HpIyLG2OH5b/UYvFJtGlr2OXfQZ/b0wmExs3biShSxwrX19J5vNiQcau5+K3yd6g0cG6Ux7/vyoOve0BIWFFUpHVtsf/KlLw1aTJ+NowOrREllVkSUbWIyWCQRLy7ucXuwhd708aXUciw/pcxarNn7Ai9zMGdzofs2yjqG49EfZmbxqXtx63r5EGdx155YupcxYDEBPbk549z0aOEFHef/74112AfmPI+wBMNZ9LVEYYRctK6D8+oZWOxM59MSnLQWmO8/A0GOh7VAQf/Tefhhov1giFpjovhRsa0Ez1ZA6IQJGb+yLQZn9s2ReTBieABnPnzmXy5MkH3L6wsDAixoyhdvZslPAI/HW1eMpEXvyiHz6hYt5vYBglDNqDJrX4MWtH2X2koaGBbdu2BT/n5OSwatUqoqOjSU9Pp6qqivz8fIqKigDYvFmk+k5MTCQxMZGIiAiuuOIKbr31VmJiYoiOjmbq1Kn07duXE044AYCePXsyYcIErrrqKl5//XUArr76aiZNmkT37t0BGDduHL169eKiiy7iqaeeoqqqiqlTp3LVVVcdsqiPnTGMEgZ/WZZO/K94MwkqKysZ9/m/qd9USvbHSyn4PQfJNp+5Li8aGgvSjqFz1nhc54qFsxrde6VySzWh/TIJC2tbCM/g701MTAwRtiSaPG3nl5f9GiErCpvFmPWBkn3hVvHZbCJ8nfgZrOst0hEFok9DisWg0FZQR1OXSHFcpXgA6dlr8Ove7Q2J4iBLoxaMiFAVOdgGAHuFGFxKGjTFKcH3AOYGsc8dtf8/yZpJQtWdA+2lumBavZi8NKU6sFaJ984Ea9Aw0RJnX5H6TLXIQYOFJ1y0Z+fy7mgLjgJhfAhfpYt2u9x4OzULKzX2jifELY4zV1Qx2HIcSz0zWeuZj4aKt66a8FwXXm8Tq9d+QJlaEDw2ijh6MYbpZV8QFxfXrusfb7sAgF9dH7er/MFEUhSsKak0lRe02u6LsOAPFf8kV4zeZyxh+BsbMDe1V1mr45h9/NOsS1hHv68HsM4+nbhLxlN5/+e41ovvx4A3LmV4P9FXt/7ZvrwW8b3E9+iCz+9kw8BfO6Sdro2bAPA11GHv3w3n6i3N+zZtZcS3N2LSdVTmnfBkh5zTwMDAwOCvzSlZawCY/H/w1NR6Pvm9N7nbPHzwUhXPTt2BxSphtkg01qscNS6Eh15PCXqqq7qBonBTI137OUhO+us6PBjsPzabjZTB8ZRtqGpzv1dTiFCaggvAuwpei/G0RfIHIyICURQyrRdjgaDo9O7wtzCM7dwXPXqEhEU/t6dFqhyzJra59IG+Iotz1vrbb0wzySoW3aMpYKAI1KPIgYgJbbdpm2ghbr1XI0Rb27W2t0uahiKZGND1PFZseJ8VuV+gal7cvgZQVfyal031CylwbQgeE25PZlCPiwl1JDB72RPtclga8G+RzmfVS//Za9lDQWKfaEo21LTa5mihXRLoi1FxCgWbmoIGqUPJlC6LGfOvIr56Pp1PHtrO9c915YMnc5j7lXCm+vebfeh2tJintbcvhiSFYgm3cu/0hzvEKAHQuHEjAP66Wuxdu+Pc2qzb6Kkqo/vV92O3iqiMv8r/3+Cvx/6kb9oXli1bxtixY4Ofb7lFpJe75JJLeO+99/jhhx+47LLLgvvPO+88oLV49nPPPYfJZOKcc87B6XRy/PHH895777XKTvDxxx9z4403Mm7cOAAmT57M//73v+B+RVH46aefuO666zjqqKOw2+1MmTKFp5/eeyabg4VhlDD4WxATE0N4jyTCeyTBsWPwltfQMHc16o/ZVNXnkFcwh8yM4wDLLsf6nR37EN+xYwdff/01EydOpGvX3YRoGBwyZL+Ghg8aRYoix7IW2gemjvmJs1Z6cMfs2rcONqpZIXRrDQB1PcRgStYjIlxR4uHjtymY9AXtvUSNB3HGWTA3icI+2075lq0StorWFdVmCStMIE2VuUHFEysGn7a6Zu8dc04ZOIT3vK3YiS89DlO+GLhaJBsDGc0KZgOQX7yA8upNOF1VSMh0Vwbx2bK3SUtLIyamfem4xlmmiOv+i4mZbbvtFqaWFvH8629Ql+jFUSsmkSElrctpqp+m+lIiE7ofhlYK+vTpg2NQV9x5Iv+kv6YeOcSO2uhkwz1fUz8iib6XDeCkO2cDYvKd44wF4IyYZQBsdghB742NSTgbRd8xhXSc0FfilLEUv/UraBohw3rz/j2PcMmj9+NcLYwVG+75GntaNBlXHtNh5zQwMDAw+PsQFhZGj/42evS3MeHMcKorfMz8rp7N69zM+r6e+TMaaajzYw/b1Vu8qaFjveOrqqr45JNPOProoxkwYECH1m2w71isEqhqMG9/YLHXKnuxSQc3Jc7BxtoipU9AxDqQ09+vWwD8mhTcF0jfZJLVPUZOSC20JXaJhpA1MIPk3Y+xt0bzal7Aoz6gWaZYGJRxDstyP6XOWUxJ42bmukpp9NcA0NkxmC/mvkFycjKJiYntOt3gq4Qhwm/b96YeTJ7u/zlpJ77A1NtvwV/biDVm9/eycEsTIRGHb8kuOTmZ0adFs3a+cEKrKfUSEqHQWOvng7u3kDW4lAnXZhLdtTlt3p76oqZp+Fw+zCFmzl90NZ+OeOOA2xg9cSJl770HgD09k+/+9yJn3XwH9RtXAZD/3dvYIhNIHD6BAf9+zjBMGLSNxq7aOHsqu4+MGTMGbQ/WjEsvvZRLL710j3XYbDZeeuklXnrppd2WiY6O5qOPPtpjPenp6UybNm2PZQ4lhlHC4G/DH8ftpIh0DRz/xy2U/r6ZDU/OYFn123RZfSOSrFAXbUJTVRq3lxJ+dN8Oa8PgEf9mw+qPcbmqmXrrXfTsdjpbtk2jT+cziQrPYMai+zvsXAbtI9KazLbaRdR4Soi0JKLpQsmSs0WqJpM+KgqIRHv1QXyTE6mqBoCIJbrugq6toJkDx4hXa6UHTRYLrdYq3bPIradA0h8wSpMXv12cwxumC29XiHaYKoSxRI1w4IwWkTsmp77IXyPK2HIqAXCnC2/zphQ7pkZhDDE3+PGGti9HvytWtEHWB7GOYif1nRx6m8U5dzZGtCSQIsobqofbmsSryd3GxD2gXxEQx94JX3ocUqkwTISExjJIHce8xm8AiPFEE2rKIkZKZJ7nx1bHnaicy0z/5/opNIYoY8nTNjP1sZu4884793T5fwmuuuoqnnnuOarWzEUbJdJURW2VcetRMqoJqvM24GmqIWrw0Thj9xxWfzDx1XoxRdnwOf0oNeWMPC2RGlMUfq/K5ul5ZP+ajeu9MwjPjCLK0sigsDxW1LetleGqEWm8zBEdp+NT+Pp0HH92wr01H19NI0cffTRNqzby+++/c/JFZ1K/sYj6jUUiWuLsDjutgYGBgcHfiGMzm6PoyITThsDivE6cdo6Du64p58Yz8nn9+1QcIXIwn//2tU0kZ5gJkTsmvefF357M9DsXUrmlGsWqMPrR41j67GJ6XzuC1OM68/WoVzrkPAbtJ7l/DKu/3M62OSV0OSax2RNd8u4SGREwUuwsdG2RfMH3gWgIOagtobbavjeCC7R6Hwz0xUD9AXFrGVOzfkVgyUYfKga0JlBBlcRGq+xrFhveCZvixeU3t9pmktXmSInANcgqPr2+PQUfSD4JpDbSNu2vj5B+OWbJxqC0c5i95QUAosxJpNt6E2lOYEH1160Omdjrbn7eILIqaJrG4KNvJm/bTOyOWApz5uxnQw4dU6ZM4Y57pzLn9S2cd08W0DqlmE3ysn1tI9tWNXLXG52wSYc+UiKAu85LSJiMFTeluU4GHhtBVKodn0dj6S+VPH76Uv797gC6DotCleSggLx7pz4H4HP6UD1+rBEdZykqffddwtesp37FUlTVT5cuXajbsJLly5dz1IRJuMqLcJUXoakqmRMv6bDzGhxZ/NU1JY5kDKOEwd+aWWOf5XhuwRUaw/a7PyKn/h0yxl0MgK+iBs3lxdE7c5/r7fyZGORIW800bd+CVlmHu7SI6qXzCZhGJUlm7cbP0DQ/67Z/TURYGtu2TaFLly57rX9iNyHAVddPhDzO/2rqPrfRQBBxwkmYf97AssrvyYwcSqfw0chSxy7wKg1u/KFWbOVuTCU1+BIjATBt1bUqdG8ff+dkFGezYaKjMTf48evGBG+IeBhGbvMEjQjWfBGerlWI17pxPfdaZ+CZ6rOLN5oCzgTRflWRgumnWuINVYhYJnK5+pIiAWhMtRO+rjk8Xqltor638KgP6Sc0XaSCUrZVzQYg2dyZ3vbR/FL7Tqu6T1TOxa05qaGCa6+9lm/e+IlqtQwvYsHgo48+CholZng+2ev1HS66d+9O2KiRVP8yg5CufbDExe9Sxt1QhWy24ohNOQwtbMaankL93EXUz1mFq9HPMRekUhzXQ+w87RS2XP8aG95bwYgHjw8eMygsj5m1fQBoDOYz87HpGxEy/eWkxw64XatXr2br1q2cddZZ1K3byuzZsxk/fjzJXyaDycRvv/yCqXM6FNUAUPLLelRVRZYPn4HHwMDAwOCvw/CMHKATr3+bxJWTi/jPBUU88XYS4TEyLqfKjlwvE8+N2GeP+Rc2ifzN9W4TeauqKd7uoq7Eyfx3t6P6xAqrpmosenQurmoXK5/8k8JZ21j+9PJ2CUl2+kg8Q1WPWKDOu9zQTtpfek9IYcVHkXxz62KGnJPBpP90wWxrn5PP/mCTfMhS67FzwHPcpZlQ0IKGiY7GKvuC4tVmfS7kkxScfjMmScWkGyGCr7oxYs8muUDapub0Ta2MEPubfbSN4yRNI7diEQARlgT6xI3j5/znW5WZ2OtuPL4mapxF3HDDDXz5xVxqa3Nxe4Qnvyw3z8GWv/nX9YiPi4vjuKuy+PXFrQw7KYasgRG7lCkvFP+ZnkPbdvw6VHTuY+fPH2r487tqygrcXPVwBl1Hiaj2yTdl8vj5a/jpxRxu/qi1cLUpmAZNn7sis/4rkWrpsWMf4NgRxx5Qu3Jzc5k1axZXXHEF1UsWsmLFCoYNG0bnzp1Blvn0448JzeyBu0KEqtdmr8HvPnz6HAZ/Aw59NmUDDKOEwRHArLHPcrb1WpKemsi8W6ez7buXiT/qBtz5QlDW27h/4nX1c1ZS8dYPaF7hmSCZLcRMmkzo6mryCubg8eo59UNSsFsjqW0opHvvvvQbeBl2RyweTz0mD4Q4hOHhnfcvYNOmTTQ0NFBUt57KiCbM28JpqMpj2rQeTJo0qQPuxj+PpV/dw9at5zB4yoVsW76Awrh8Uu48n6zXWgj16B44cqMY3Eke3dvEYglGUbi6CVFn21bh1S85Xc3HywqmuibYS5ogpaQaVA0FsISKfheIuFBDhEeIJ8pG1EbRd5RcMUhyDhBe5/ZaEa3hjtYjHXxacOBvnysGcTuu6gdA4qJGygeG7O32iGuLs+EoEddsKawR7UgWg19zZWOwXNWgXdMmqYqEV5dkkYTuEhFrK9DaSM9T1yea0DxRn99moiFZXHtIfnOZHhFH463xUOTNJtPSB5/Px7Jly7hywt24/A1UqNnUIiJGct7YiEWzkqp0JlKKp0DdQnp6eruu+a9A8shJbF+zgeo/fiPh3ClU9jJj0ruV5ANVAZBY8erhnTSZYqLRPD5qZ63E0jmNhycuat45BF6tyOC6G65HGjaY3sdFE2MWk45NdeI7U9oQRtPWImre+Zmy9RWMvHkQWVlZB9QmVVWDaS+OnnErc098mtGjRzcX8PmCol7BYxqd5OTkiMmIgYGBgYEBwjBhltJ584t4LpxUytlH5/HnpgxKde0wy36KG2+YU8GHt2/AWSvqkU0Swy7tjiXSzpynV6J6VVzVLsIyo4jsFkvNlgqGjRpOn/tPJrxXEg2VXlxuGXsn8SydPugG1q5dS319PQ3zV+EtrUCyOvDk7uB9JYFLLjE8fPeHpwZ/wy2/F3PG1JEs+zKP3IVlXPlqfyLSTbtESDRHTuiREgQiJfzBbcFICX2RvjmaYe+rWTbJhx8JM+DXF2oDBouAoaI5EkNrjmAIpjxqXZ9fkoMpnALH2wKiwnq9Tr8Fu+LF2YbXeoCAWLEsa8HrknTDRSBFqrY7A8SB2lc0DUnT0PTQjM6xI3G7qilu2kKFKw9VVVm9ejUrV67ksf+8QbW/lMrGPEBj01vRWGwRxMf1ISyhC1VlG6mvLdjz+f5CnHB5CutmFDP9he385/3+mCV/q75o0vvfqVnzDpsALUBauoyqwm+flRObZOL/LtzQKod9yn9/ZPLkySz6spCBp6ZiNu3aF6ty65nx9DoK5u2g38W9W4/p95Osnj3RXC7+r6aI/FvvY+jQoc07VZXzzz+/9QGahrNixwGf1+DIxIiUOHwYRgmDI4IvR72Kd6gXy60WNGsj3rJqrN27YM1Kpn72H7hcLmy29ocJeorKKX/1K8IGDCakd1/CkrsiKQr+KAtN6dvhFREW2vmWB4kvEN4L9WFO1r/3IKsWv9qqrrSUUUTb0+nUqTOa1mLiU9r89oMPPjCMEgdA165diT/7PMKGDKP4vTeo+m4+WYxr38E+P4Q6sFQIg4AaIRb6ZZduuHB7IWDE0IWbTfXCqIBF15mw6q9mE3h1Ue1qYRQjTizgSrrYtqXKiVzvwh+1f8aylsStbETZmIdk1n/Kw0RflHRdB0utOKd9ZS6aX/Q9DZCio3apCyB6RSUVw2KI+EXk6m8YK7QObLqOuD23BmdmZKtjVKsYlAbEuv020RZ3dLMGRzAVVnQkNiIZZJnMwvIvWdz4EzaLA7/mBSSssoNwcwx9rf2IIJoQORzNLQxJmqay2becqKi22/5XRLZYiRo4gooFs1BPPQNo/g1y15ZTs33VHsPjDxXOTVsxx8XhydlB9IWn7LL/qquu4rbXnyLvkc8peFKh6ZrujLxMRL9ofpWCl3+mYvoK7BmxdH9sCr6+B244evfdd4Pvvbqxzu/f88JRwkXH0alTpwM+t4GBgYHBkcWg9HwGpmlciIymaVQUuOjWWeGYE2x8/0kd50zZtzFZU62Xt29YQ5eRsQw+PZXkQfFY7Apei4OifC88vRKAM787EyVeRI3WN8AfF3zMmnt/aFVX9PH9cAztSer5nfHXNbV5vtd4zTBKHABJSUlMvqcXw85O4/1/LWX6C9u5+pn263nZJO+u6ZuCRonWr2Jf6+Nb2hKa0zep+r62jRIerWOiOUyyX0RKyH5MausIiWahazV4TZKk7X7BLRghoe20of1ILQIvWp5G0lVmzbKNflHjcfubWF7+A1bFjg/dsUp2EGaLo3fieCJisgixxeEPFfMNn8NEUe58TKaOSx96sFFMMqMvTOOTuzZQUegkNd2ETfbiUs1Ul3v57UvhpNUeIe+DyYr5TcQmmsjf6uakKdGtDBIAkyZNYvip8Xx8/1Y+fWgbI6dkMOGW7qCI1FrzX13Porc3ERLvYMIzx9BpTNoBRzX/+uuvaC7h6eWtqGzXMTF9j8KR8PdxbjM4xBxkTQmD3WMYJQyOGMxmMyHdEmncUkLRHU8QcdqJxF02kR0PvU/U0H70e/RkTHYL0TYx4F+z1o5rawERXaOxpMSw7tSHgnVJeVtAluj90NEodgu1TWJh1O31UPVm82TC362emtEakZ+EYbKF0O2smzFtKQVJxmINpbZ0G7l5v1OgLsBujaZX+iTCHYms2vwJ1a7CYD0pKYc3fcuRwLbbhbd54o75lP4wn7Vn+nEMPQtJkoheJ8pY68Sk01ItDA/maieSx3dY2qtUNwWFuC21YrBdPURE1UTN0UMLvF5KTxdi6g6riExI/V4PVwhEcthtoA/stBAbUmOLCI/doFVVYy7XB3CBga4+g4pZY0HtkrbbY+25NeD14YuLBMClR3UEoiJi1zTfT7duP2hMFfe9aZAwmiR+38iwuDMoqFuNhESUkkBESAqypIt3p8ejVImICy1UXHft6kU0Uc+VV1651+v7q9B5fDbJA+KZ9aeHuqLV2KKHY6vS0DSNvNmf4m2swRaVSPqEC4nqMZjVzx+eiAk5LATvqvUgSYR2G7LLfpPJxPgXTqByXSk5fxYy+8UVbK8MJ+bcnuS/MI2qP9bx0ksvcc0112A6AHH57t+I3+DXo48J/p8jTz+eUpfoj6GhocReMYnKj2eg6UbDqP7JuKua8Na5CNs18t3AwMDAwAAQC3vHT7Ax6xcXk0aXcOLJdm68K5LLzyjj2gvKePa9NKJiTMHF4IoqWLWoibhMB5ndrUzqvD5Y1461Nfi9Gmfc2ZW4zBCa9Fz+TX4/i19aESznr3ViTfTjUxUUm5kRz59K5XaRZkYLC6N2ezU73vmdqllrMMWEk3jLudh7Z1H2zs80zl8VrCcpKekQ3KEjm7t6TYdekDc3i++fzeFDi8p1/01HMUm7REgEtSXoWBH0fcEmeYNRGEEC67hq8+dAuiab3vaAxoQ5mDrHj08fX5tk0Rf3hiRpzU4zUmBb6897or1OxJKmGyl2Er+WJInBMaeQX7kMP36ilHgio7JQJH2M6bCj6s6GASOHx1lHTdV2evQ9t30n/wtglvwMGR/DVw/JrPq5lC7XiFSvNtnLK48Usm2Nk56D7Nz7dCfOvDSCYzptPyztjI6CihLRv8aftmuUviRJ/OuJLE44P57VCxr4+ZU8PHUeJj88gJkvbmbBW9t54IEHuPPOO/fJSXRnsj4R6bW/73sKEyZMACD06OFY0pKDZZLOuYiyX37EX1cDgDkiGktEDM7ifBSbg+Uv3rLf5zc40pFov6H1L+BVeARhGCUMjijSb5lM3nPTaNpcRO13M/HmdCbmX+dQP2sRq695l+73nYYjUSbnq9UU/rARtcFJGWCKDiP5grW8enMOK+fWU/BiNpaECBS7ZZdzSJYW4a9+MSqsmVKPb30EJKfQMDaRiI0KfiDS2YX+6olIO6qw2iPAZMIFDNCmUFS0lDKpiOryLbw9bRa/yc+x9pm/bu7LvwuZ156AJS6cgnf+JMYVT+Qxx1J1sh4F4ddDpfUcvWnfhmOtFhMPU7Uo44sUHjayW88vbDaBqk9K/DsN5FW1uQygWc1BA4GkR1VIem5hf6gYhMkeH5pV/+k1ibxISo7QZ4iqOvDQXC3EFoycsK/WjRsmE5J5p7BtvX3OIVnYFm9ts67AvTGXi8gQzSLq9caF4oloOwzcFyLKmJwqllpxvxpSxD3R53zUDxdeKunlIm2V5NdQJQkVkPzNEzDNbkHTvXGqzVUofjNHH330Xu7AXwt7QhiWzmk0LV0L44fjjJWo3byaxtJcQnr3oXH9Ohp/zcVTUwEcnu+/J0/vJ5pG4/zvqKm5gcjIyFZlZLNC3MBktORECr5ZBRpsf+Az6lfnkjn1VG644YYOaUv9/HWMffYBACJOO47IM45vtT9lWBwVb+sec2EWBjxyCr4mD3PPfZdt//ud2PmZDHr6DH477vkOaY+BgYGBwZHD/f8XjselMXe2m5k/OSku9PHIs5F88FYjF00s5qEX48joaeOb92r54bN6yovFQlxYpMIZ16Rw4uUp5K5v4uWr1iMrEJO+a4SFydo8VvS5xPjRJPsxyQqRGRFYUkTkRKPXgqV7JrETBtBQ7ESJDMGPcMSIvfI0rF3Tca7JxrlmI9NWLCXz9afJ/ZehQXegnHhVOqExFj57YAuhESYuuydlt8YIS4uFfbMeXWAhEFUg6mtOt7QHWqxfqXr5QGREYNTraauG3QQkuNh/7bpAXxTv9RRNgZRNLYwRLbftPnKidQN3LtbuDCeatstnRTKRaendfCrhdg8hbUc11VRtAyAqrls7T/rXwOpQ6HdsJMt+reSsa+IxSz62rnUyZ1odfYbY2LLWxcYVTrI3ezjms8PTxi1rmh3ePnulkgl9duziUCnLEl0HhZHQO5pZ7xViskh8cfsq1v5cxMTbe/Lggw92SFuc67bT7wKRytgxZADRU85sFUliz+iM6tJ1IySJzLOvRTKbyfnkf5QtnUlEYgbdJ9/Eynfv6JD2GBxBGJEShw3DKGFwRGFPj6X7M5dQUezAtWYz5S99hJKYSOjRg6h88yvWXPc+SGAOtSKHhqI2OJHMCua4SIpf+o7/bgxnxZ/1JI1Ipf81Q8jX9Sgai3WBKYePmHPGUPR4IY6+nVFio4OZfbyJYiDriHZSSwgRG8WAT5IVbCHRQPPvl9lko1PscDoBK7uvpWzRDMqXzKK29nIiIgx33wNh0cQnYSJ0bRpA9lfTmHSzlXmV/Q53s/YNRZ+Y+CQSvhLCwQSMYa6d5OgUBS2itddKUMciLQGloJS94RreFXu2EKmWqhugQUQpyDF6qMMeZlqaIgaC/S4QHoQrSlIBiH43hOSZZRSd2CzwHFokJncNSaJ9miQm3+YGP/pcD1Oj+B5pLQyCmqZSpGYTG5qFeWfjyl+YH0e/BEB0/1yqf/iZhj7bUCtr2fHTxwBIVhtIErEDjqF08QxSrv83tk6d2D710HnxlJSU4M0vIeHCY3FuK6Fq1moyLz6HyFNOJPeq24Llvhwl0tJVVVURa3qPgs+WoISEkHjN1UgpXTukLY0rt1H87JcAxJw2iviLj2bD6Xe1KrPq6nf4wDaGS6+4jOju0bhK61l83ecAyFYT1SsLcJXWdUh7DAwMDAyOLJKSFd76IAqnC1Yt93Dp+VVM+8bJFTeEc+0F5Vx3ntD6sjkkEpJ1fS8F0rpYeP/xItYtbWL9ojo69QvlrNs7YVUCi9Z6KkvZz4jLe5A7p4jITuGkDIjGSeuUObKkBfP9g8jZb44TY3+/7rwhW8xEnDicsGNH0TBnNZXvfkrNj79ScuqFJCYmHvwbdQRzfY/ZXH83SI0ZfPTffCacE05Yj7/XkkjAiOJHxhKMkJD0fc19EcCsqXj19ME7p2/aWZB7d0iShhbMu9RsbNj5dY917HyqnQ0RbezTWqTtlNowXLSkZMdywiLSsZjbp7f3V+C67n8AsPmkrrx44zaW/lxBbCzcfUEuACkZFtYtc3H+1ZF8+kYNTx0bw7iTHfRPP3S6GT6fjyXznEy5KpziIj+LZjfxr1t6cscT8YzO3BYsd0nXBcHy99lCWPx1EWabzJSn+9N/YsdEenkKSil57B0AHMP6EXvlmeS1mKsAbH/yAWacMJLxJ52ELT4Z1esh95MX8Dc1IJnMOKuKaSz/++iOGBxCDKPEYePv9QQ2MNgLyyc+Gnzv8/lwfDOT+l/nAxCSEkFIWgSxA1PJ/mo1rpJKOl1xNEU/rMK5uYCMK4+hPCeXHmclc9ptXVDMKrlbJWS59a+OvVcnOn9w3x7HUkhQ28uPSfcU9xaL16htYuDoSgjB5BKe88lSD2qtiylfMIO4uBQ6Z01g46avOuqW/GP58YHP6PlZT9TsQu48VkQirGgQnvmzcoUXTdnFEPOZGLwG/G5kjxgAq1YxGVVDLJjydQ+RgHZEwJtfXyD3R+j5S1VwpwgDlqVGbDMVicV+JZBuSdNAT8UU7EQBbYqAHkVg4d1iQdOjHqTKalD2Pb+sPy0BSdOQmvTIDY8+49UFvu1r9IFZRFhzmySpzclCIGrBZ1MoGi0sFf2Gi1DiDW/p3kyTalsdkzyzDF+0uMeeaHHd9oqdwtEBTRZprCSvX2+nLijo8VHekE2jp4re8RP27eL/IhR++DmTJ09m1gevAGDv3ZO4qRdQ8doX2FLSiT7lFOrKt1P183SSr7v+kLZt2zYxoSj96E+SH7sTzTaH+tkLiTj5+DbLR0dH89qLL3HzGy8Re9oZmDpQeK/685kAZN19Otsf/abNMkd/djmbX/8TzadSsqyEkis/wRxhZ8Bzp+GyRrHhylco3tTQYW0yMDAwMDhy6JpaFHzfvyu88bKVGT85mfGTk8RkmbRMEyPGhPDj5/XkbvNw7pURbF7vZdXCJs79dxyVZSojJkRy3r1dsIUouFQ/3p1y/8dkhXP9nNNoCggLt5ElVJY0TJKKEtAl0D3WvfqCcnPufrD37II5KZ663+aSnJlJ5IQTqPz2x8OeZ/7vzit3ruOj/4aTs7aB3j3EGHjnCIlASiSzpAYjIsxS68gIJRgx0fz/2NmXp7WmhH68Ps5WA4dpur7DTloVYl/gWFFzQCTbjy9ohPBL8i59MYBD8Tb3xzYIakxI2h77onjV2CV0Y1/Y+XBNa75BwTROu84T1Jpa5PCwFmWaj2loLKWmchs9+p63/+06jDx73SYqFl3MMzd+AkDXPjZe/SqZN5+uJC5R4ca7IijOcfHSE7UcP+HQamYUFhbi9cAnb9bxwU9JdOtj5d3nqrn+npg2y5tMJt5/4wvueuZyJt3Vm9iMjjMS1f40F4DoCyZS8eFPbf4Gdr7rYcp++hZUDVdxAdvffwrJZKHTqdfgSEhj/Zv34aou6bA2GRxBaFL7LKyBsv9QVq9ezY8//kh0dDTnnHMOsbGxwX11dXXcfPPNvPPOO/tUp2GUMDhiMZlMJD54Hc4586hfuAFHtELZonzKFolUJeZIBxlThmEJMbH5xdlEj+jMsGtEWhnF3Oxpq6oSmV3FwyvG3kSCTezbXCs8wLN3CB0AW5RYdNY0CUuMCBv0qGLg0KQpOHZ6/vlsCiaXn5DwRIaceAdqSQXbs39l0+av6dz7FLSrx4r6bzJyH+4PXbt2JTLFwR8vb2L40B5YHR0jGHdY8fubk7qGikGeGmrHFyUMXH5r29eoySD7RBnF6cNcXNtmuVZIEpgCERt6eLc+EfCGKgwaIVI++bTWUy/H92KR2hkDIXoqK9UsXi3VwjDitYu2mJy6x1aTD9nbegLiD9fTXbl85FQvJsyeRERc5723+y+Iw+EQD+8Rg1Gr64k583QkRQG/H9lqQ5Jloo4/gdL338NdVLT3CjuQfv2ao4hKn3mDyEknUD97Ab6yit0ec/XVV3P11Vd3eFu6PHA2sknGFL57wdEtL8+hYkE25vgovGVCgX342xcRn6RQWiEj2y24CtoneGdgYGBg8M/mtfei+e4rJx+910hWNzO//OBk6QJPcP81d8Yw/08PqxY20bWvgzOPEwtxTS3y8ovUPmIRW0bDFBREFtNseSevdJnmtDhyO1LkKBFhJD84FbXKSc3PM6n+/ieijh1D3LhTkSSJLfcYqV/3h7CwMHoOdvD16xUcNdZOVOzff1lk574IYJL8NPqsKGh77IuB7VI7oycOiN2dYmeHKLWFeHjk7p1g8grnYrGGE5fYpwMad+hRFIUPPviAMu/PbFrWyC1PJGKxSvh8EBomI0kSV98UzpRJZcyf7WJQp0PXtrS0Zp3Bf19Yyq2PxuHxaGxa42bibhIRnHrqqZx6asePxaMvPImo88djigzbrVG28o8ZNKxdiSk8Cl+dmCd0vvgWHCHx+D0ubBFxuGr2nkXA4J+Hpu05gGvnsv9EZsyYwSmnnELXrl2pr6/ngQce4IsvvmDsWLFu6XQ6ef/99w2jhIFBS/KvvB90XdybV5zL8g8imffCGgBSeofz+9inOUe7lB1fhlD96Swie/TEEWEh1lwPQGaM8HIPhFnfmPwbt2w8G4BIm3Of2tKUCJ5I8ZWzVkPsamHEsH2/GICyG0YRP+QiTD+Fkr1hGsk7umNNSSbrhWcNw8R+oCgKb71i45Ip1dx/2hqOubYnF562FpNZwtFZRAtMz+lJ0yU1ADTMEim2rDXiKePQBb1Kh5uJ3CIGZOFbRVojpVp4YvvixABZ0xfdZaePvHPE8THxon9UFOth9rorlCPPRPwqUbc9TzcOOEQEgT9EREyolmbvpEB6JCUQjaGPwbzhoqzk17CUNwUNE+3BmxSBqUbvv359QtKo627ERqDFhLbaR+DU/l2fwL3CRBRKcVMWAGG5ol5ngq3ZfWwn7BViwu+OFF5bJqeMT085ZWrSC+lP+ypvEVUNuQxIOYMZKx7apa6/C3a7naZV64OD6C5fPII5IYLGgi04U3xEdE+h9H3AUnhI2xUeHs769es5f8HzbLzrM3zrlqE4rNR/+QWLTjyTYcOGIct7zJR8wGS8/STeolJca9YROqI3lrS2jRJVVVWUzxOROd7KZsNa9ZpCvJv9LL7nVwCk2pqD2l4DAwMDgyODvp2L6XsH3HcHbChIYcxxVu68uQaAHn3MDE9eh/+YfnTpaWHmZ5WkdXeQkGrBqy/8BrzJA4u9ZtmHou7f9Fpqa0G4xTBKCQkh5qzTMIdHUTXtRxxpWYT26ke3R58zDBP7yS1PJHL7eXlcf0oOl9wYwyln2LDZ5RYi0fr/VdIw6yvpO0dGNEdMSMh7iSBQ0QgE4AfqCUZO6K/eFqX9Owltq/rZ1KAehbzHvgigqCZCTG4afda93Y5W7Kkv7lp4n6pufagqnJ60lovMgRU/TW1jW+t2uStKKS1bQ9dOE5kz4579b8hhRlEUZn5RhaZpSJLE4rxOpKbK/FTow4SP/v3E70pA5+ZQtisQVT3+pB58+VYNiSkKLz9SweD0OYwcOfKgp9bt8c1DeMtrqJ+1BnvfLpijwnZbtnbxPAB8Dc3zhPrtG9BiG9n+tUira4tMOKjtNfibYqRv2isPPvggU6dO5dFHH0XTNJ5++mkmT57Ml19+GRSf3x8Mo4TBPwZJlhhyaU/SBsXi86ikDY5DkiQsoRbGvzSOHy//idmvKJx0V/u8LHKKRaiSpi82+zzi6+T3yuASA8PwLeLVUSYGVfXpusd4nYYnQpRvuZQsSRLxqYPYkTOPomeeI+GqK4iK68no054CwF7aLDQ1Y+F9+3Mb/lEMHGThq++juf5+he/uXEbBL2Hc/nLmPtcz4JZVrHp2wB7L+P0eGpvKcK5xoakaSkQjlpgwCDn4GiGuJBE14Q1tHWptbhATFb9NDkZC+/SIEU0JiE/rXlN2M3LFniMo/A4x6LSXe1i6LROApYjXVJd4OvtCdx2YqnoEh6ynjgqIf0u6B5TfqgS1JAJpm5AkNE1jW+5MQq2xJIT9vYTr2mJnrx5zUgy+iip8FVU05Yk0WkrooQ3LBujVqxf2ghiSzhxG/huziJ80mMrf1zFy5EhSju/CoHuOR7EofHvUywfl/KrLTdnz7+CvqqH254Wk/N+VbZaLiIggc1QCkSkhjL+tN2u+z+fnR1cz8Tg/71wyL1hu4FBjaGNgYGBgsO+ccoaDjO5WKsr9DB1pw263YzJJPPFeMteduYN3HtnBXa+1z03ZpOf0V9SAF7oeHSo3e6vvvPAbzJCzh0Xe0AEDqZr+E8WfvEfCmecT1WsofW57TpyrhezY6hcNQ8XeSMuy8vy3nXjv8RKeuaeMn7+w8PwHCcREdvy53G6N7bleiotUvH4VnwaRETKDhh58rTS3asIk+/fYF6G1IaI9fbEjkVq6KbflhrzTvkD09raKOZjNdlISBh+KZh50Ws4V0jqZcTk11q3yEOEQ1xsaeujTxnTuLCLV//WfCG6/tpJTzg1l0Wwnxx57LANH2fm/15IJCVM4LnPzQTm/5vez48nPcGcXU/PdnyTeeeluy4YNGILm95M07kychTkUfv42IeldKPnjh2AZR1z6QWmngcGRzvr16/nwww8B8Vt12223kZqayllnncWnn37KsGHD9qteY+Zu8I/huQGfiTcDWm//ePib3G47m85HJVC0ppIwxcUAWx4Af5h6ANAjTOReqlEdVG3XPeorxKJu7NHCU9ztFV+n6noHPlf7UwXVXjwSAEV3jWk6LpPOwx+i5MfPKX3zbZq69aGyQcHVVIXa1EiII4HQtK4MmXAPNkcU876Zum834h9EVmoxWalwYuRF5M/fwYzb53Dt6Tu47jGFjD6hHNd/PfV+sQhs6yn+AU9ljwNA1ieTd6UtZGFdZwbcsorfc8TCuLdE97Aob6Jh1Ur8uYupWV+C5ldhvb5Lb8Mpd/di5AUZzKvoAkB4HxdpZ4lw0nKPiEhw6Xlet72u97drNgCw9qPewcgNS4PoX4prpzRHNpmmuIChQTeQ6Y7mmiQTtcVLe1FjI5Ab3cFwaU2P2FDtVr2+wDkVur+kR1poGptv3HUhXZMJzmRM9aIN3gg9EsS864DaF2LGWt4UzBEr+X2U1myguimfwZ3OB8sR9rjKDSEsfRQ1EbMpfuBpNI+PuF7RjBu7bxFY+0K3rx4GICW6BoDO4SK0+q0h79Evpoi+lyfz9YYeVM/bRN+Pb6Jm/ibynp1GfW4VRz1/aoe3p9+P96O6vVS88T1qQyOpT1xH0SPvUfq/r+ltd+LoFM/Sif8NllcUhZz5zXnwilKKyHgyhe9umE1MpEKV+Nmmy9iUDm+rgYGBgcGRTa+0Hfpr6+3HZm6BTPji5Gh+/boeGTUoNBwUFQ6mbNKCAsOK1pw+B1qkzNlJ6Hqv7FTUFBlB5kMPU/XtD5R+/SkNa1ZjMjvw1lbib2rEEhlHeHxnep9dhi0ynuVvGsaJ3TG+0wboBF1ezmLDVeFMvayEy04p4sEnohh+lLVZRwItGNlg1v8hihSIlNA/s2ukRF29yvc/NfH1900sXOLB5dp1sf2G60O4+86w5v9zQGuC5kiNAH69UODVo+25L4IQvO6wvgit++POh+5Lt96Tp7G66061tg45rLWHfHVjASXlq+nZ5TQUxdL+k/8NMEt+Ro+x0K2niavPLcPjhoxMhaNHH7zrLC8S42d/IF1vC3fwtJRiJpxsY/UVoXz1USPfLU5j/Uo3915fxpUT8njm01R0P7UOpf8P91D6xi+4c0pIfuAqyt/8jvLXviYJM5bOaeRdcler8nUrlwbfNzU1Ef79JxRO+xBLSGRwe3SXQR3fUIO/P4amxF6xWq3U1NS02nb++ecjyzLnnXcezzzzzH7Ve4St8hgY7B8p1mqq8xtoY610v1DCRXqaum6BRWJdhEwPi6hPl2iKF1+/xk5igOgoaE5fY5JCST73UqrmzsKZvZWa8lKs9kiiIztT31hMzpofyV79HaFRaXQ9rwhHQhqrXzAmHXsi/agUJr01kbkPzee/56zivHs6c84loXS1iLySAXG417t9RHmpyofrOuGs9fBbjp0Ljl6ExSpzTswSAOZvDOW7F/JYOasaNIgc0omXXniRwYMHk5KSgqIoKIrCk08+ybP/fZaYzFDGHi3+z4urs3Aoon/8O2EWL5W2LSjcUVR3M+NzwLtXvwjAVc/fCIDJqQtdV4oJj11Pr+kLtTRHLeji2LLLg2rb/SC4+4tOVJswrEi6ULi12INUJ9JdmRpFhI+kheOJbA4fl736pMijYq51tawSLz42l8wiLrw7y7I/2Z9L/8sjW60k/+dMGpZv4cOr7uHEE088qCHQTWuzKXnpa0riHVjjw6hIs5A4KIEruZS3hrzP1csuwdEpnrpVucgWE9Fj+5DZw8rCqdNYdPtPnBn+L2STzJejXt3vNuQWJgEw5vebsTZWUPD8D3jyS+nz4CnEDLEReu1otr05jw3Xv409K4HSBTeRkNB2mHVycjJPfJjOe8+Ws3ZJEwNHh7Fsds1BTzdlYGBgYPDPoyhPjI20DkgmLet6Es0e6uivet3BFdsW52oxR5FtNuJPOwdrYhKNGzfQWLwFxWInNL077soSipZNZ8fiH7BFJdIzexMRSd1Z9JGRCnZP9Bpg5f3v4nno9mquOr+Cf90UxtRbHMiyhCI1GyNkoKJSJS9bpaJCJTREZsRQC+EhzWOPgkIfjzxdyzc/NOFyaxxzlJVHH32aoUOHkpGRgclkQpZlPv74Y6ZOnUrXzmbOOSeQK7XZEIKm4tlFNnvfCVVcNPjbTvPash+K6B29Ge3si/vKLsaIlhESqgZyc+VaC+OEEtFaU0JVfWws/IVwexLrNn99RI79TCaJ/z4fzfdfNjJwqJV/XViAw7F73bUDZcNGLxdfXkWIQyI9QyE5RaFfPzNnnNncd7r2suB2N2C2SIwc6+DN6RnceekObr9wB6HTe2APkYWxbz8Z/+fNADR4rLjL68l5dgb1K7NJuuFUbD0ziLlwAuXvTKPk4VcxxUWzecQZdO/evc26HA4HmedcR+m8n2nI3oAtJomu597CmpcNh06DXZG0vRhLdyr7T2TAgAH88ccfDB7cOjLt3HPPRVVVLrnkkv2q1zBKGBjoxCWaqK+VqffbKPeLgU+yvQaAE8KE+/sbpcdiLReDHleWWLBtcOt6AH6xXdMkbDYxcXGJoApckWKAJRXbMDXqXi42UFqvw7ZCRiF29DjMg8Zhq9I912WIB9yKm7rcjZSv+oPtX71EynFnd8AdOHJ5bbAIMzvbfS1j3jqLgjd+55OHtlO8Noqb/mMjLcNEUYGX6V838sOndZSVqkCzCNZHQFiEzLAxIdRU+lm5sImYFBsZV40hbmwvzJEOrj/x+l3O+/TTT/PZL2/z+ytb6TFiMIpJRlM1yrbWsemPEnqd4uHf3WfxXLGIzjCdXwZAXkMUAAMvXhOMoih4Uo/S0FM0NSaI/vbUrW9Q5BPlj3PkAHDsF7cB4A8TBoJj+m7m7fJjALjtus8BuPfPM4lZ1v5HgOzy4HeI8vZNJVSMSQXAWiuMGmFry1of4FdRY8KRK+tabbbUuPGGCQNHILJD9qlouqi2pPnRNI0NBdPw+l10TxnX7jb+ndh2+6E3IvpqGvBX16PFOfA3ecn7s4R1n2xg9H2j6Lz9Ubaf+z4JtlPxN7hJKllNXJ848m2p9HnkVJbf8Bk5P2yg8xkdIyLYMGcp+R98hyUunCveGcHWBJEOI3F8b7zmELY/+g3O7FKqq6t3a5QAuOXcPG45F5YtW0bnzp2PyEmpgYGBgcHhJy5Bwe6QsMp+fHpOTFkP71QIpMFRg9oAMq1T48g7JaGWW6xqyPuxwiFJEpEjjyFm0DEoepBlIH2TXO+hbscWKtbMYdMfb5I24GQ07T+7FYf9pzMqIxuA1VIab30Wy0ev1fHck/VsW+/hlttD6dvLTFmZn6+/cfLhR03k5Pp3qSM0ROKEsTZ8Xpg520lUpMId/wnnvDNCSE0xEZK0q1Ho1ltvZdZv9/LCS/VMmmTF4ZBRVY38fD/TprsYMNjKoKGWoIZEIPoh8GqRfEGnqrb6otiu0eC3IqMetL7YobSMktDU3e7fWjKbBlcpw7pcekSO/Qal5+uvcOYhmgrV1ank5/tJTJBJSlKYO8fNu+80UVjo54abkgiTICZa9MXlc5s4dnwIaRlmnno/hcvG5/HpyxVcfnt8h7SlatE2tj4+DclmIfWeCwgd2AWPBxyDuhNnDaXk4VfxlVdRUFCwW6MEwLb3nwaeZv369URFRZGcnNwh7TM4AjE0JfbKtddey5w5c9rcd/755wPwxhtv7HO9hlHCwABQNZnQGAt56ypRJJWtbrEIZpV9uPdTsG53+EI0HIUSTcka3lCIXyAGUrZqEX5b2VOcT4/+RpMhcrNQ/5X8YnDmt5lQ+g4kvEsfdvzxFYUzPyX25EbKp31nTDj2QNDD+xh4e+zb3HjbdZz+fQ0hCSE0FDdgc0gMOSWR046JIaGTnZuH/0JBQQH/+vwGGksamPdzOYrNQdz4/uR+/SE2257FpSVJwnbhKWTf9wkvX7IS2SSRt2xG8EG25AsH5313BjckzQLgXdPRAPyyrD8AjekWekSLxf5+965izSMDOvR+VA7x4cgT/S3MITy0muIl7JXiuiI3iX6n1IrZrrlSRD7UDktp7pO+NiYMLVBjwtH01Et+u3gNGFZkX/MT3aeLfJvqPRSULqakZj19u5yNPTz2AK/SIEDosB7UdE7GXVZN77sn0LuXxoInFjH30UXE35gO54Jj9FCUr/9k5U+ldErrxYi4PDgKNvZMZ/vSWtyjD1wc7pefXVS+8w1x4/uRee0JpGZtIZWt5DhjaChpYP7rvwGQePmJ9OjRo111Dhky5IDbZWBgYGBgsDuiYxWK871ImooiBUSPNfwHOY1DoPp9OYtsshCZ0YfY2J4UrvmFgpXTSO16LJ36TGLed7cflHYeCfRPF/peAx+HY0Z+z3XXn8HJ4ypJTVUoLvajKHDqJAcP3m2jc5aZHgPWU15ezoIFC8jbfCs/z3SiKPB/d0Rz7a05hIeH7+WMcN/tEYw7pYzTz6wiLk7mj9nuoA6cxdrAopUJmEJ1HbiAwUtrNji0py+GKm4a/PsmdL07NOmAAiX2Urm4Li3w2sJAEdgmaSqljdvILV9I96QTiHQYKTs7ilFDbJxwnI0FC93cclMYA4eYeeHFep58soHQcIlLLwvhmOOs9B1oZuaPjYyd4EDWVFLTFUadGMaG5U27GLz2h5p1RWx59AciBmSQestpeM3Nabv89U1Uf/krAKFjhzF27Nh21dm7d+8DbpfBEY6RvmmvnH766Zx++um73X/++ecHjRP7gmGUMDDQ2b60mrpSFzXFThJSmr8aVtnHG6XHAjB/RXfkGN0TxSqsBvX1YjHXr+tIRMQ2EO0QC7ZyuHgwlzcI7YB6s56b3yQRlid+zNzCyR23LnyteMHfjgwuMWudVAywk3rCuTgby6mc/gMzZ85k3Lgj07O8o7niiivY2u97/vy2itrcGiYPrmT0hFDyTKnBMtHR0URHR9PVJTwwvGnNA5q9GSQChPbNJH3qaSh/zgWgz7+GM6SvF0mWePfa5Uy/YSbnvGUhImrvOiT97l3FpKhVABR5Rcf5snIY18T/Ibb5RJuumyAGa6qm656Y6ulsEcaNSFkYGJad9DwALn2Qn6KIAV/Wt1ejmkVbIrdIbeZ1bQs1XA87DwhqR9rQTLpnl1O3sOl12SqEK5/S5MWZLES6Awa38obtbM7/hbSkkazZ+kW7zm3QPmSbhZR7L6b0/95k5S1fEvv4MYy8bTgFxTbKXvic6Ip6IiaMxNopmeol2aRdfFTwWNXr3y+xw25fP8yWM+8Lfj5t2jjW3foZ0Ud149anE5Gk9VR4xe+j02vij7vngKqSecM44k8eeMDXbGBgYGBg0BFsXS/GLlvXukjt2zwGVCQNRQp4qTe/39njvGWKnAC7CF3vLDjc1nNXot1empIkkdZ/Ip6aCoq2z8URlti+Aw049dRT6dUvjunTXKxf66NrlonTJtuJi2yeI0bGxBATE0OPHj1wFj/M3TdHBfdZ22GQAOjZ3cxHb8fwwmv1eNwat/wnlK5dTcQlyZx7VhUXnlPJ06/FkJq+92Wbnfui2KZS77e1GQ2xcx+V2uibHdUXdxGvbpkVah9SotW6S1lT8TMJji5s3DHDcMbrQBRF4oM3YjjronLOv6iS55+L5MZ/h1JVo/J/99dTUqJyzW0R9O1v4ZefnFSU+QmN1R3OvNp+i6JftvQy3h36LgDOkjpWPzCd0K4J9HjgVFyaDZ+nuS9WvPU9nvwiIs8eT/jE0ShK+3U8DQz2iBEpcdgwjBIGBoDV70TSNCISbURGK2TpC7gVXrFQu6a0OdRPjRARDYFHoOrTUzOZVTRvx4SPKl7w6in8HWVa8IdP8ut5RmtE3qeIbGG9SL/k3+S98TTvvPOOYZTYBx4f+gMM3Xu5D4e/Jd4M3/dzrJ70MExqe1+9azg/3r+Cx56M5aIH0+kTIkQWZ9aLxdjKwkjW6ALqASH1GLOIVtjWGAdAk8/Crw0ipY5NF7tbWZfOwPD8fW9sW8gSnmTxPbDmVgFQmykTsViIJGsNoj1SmFhYxqZ7YmlW/Lpxw9Sgi22bdh042osacSWFYKr30tBQwtotnxMT1YWumeM7pv0GQQLGgRMiylj5f78w/ZpfOe35o8i64xTyXo+g+qOf8GTvYN4bHzN41EjWPjaXqCdE9I7JDIrmJdy+h5xzu6HLp/fj3Z6PO6+Uqm/mYkuJIuuWk5Ckja3K5f66jcp1ZfR44nwi+mcc+AUbGBgYGBh0AJqm0djgx2yRSEpVdk2VE/Bgl3aNHlVa7As4ixww+7j412Pohaz3uSnNX9Ix5/+H0LVTCTf9u31l7Uk5+3WOyOQCTj0XTj13133vfBjNbf+p5YkHanjl3Zhgf2s2PKjBqIm/S188EJz+BlaU/UCoOYZ+sRMMg0QHE5lcQCTw8XvJ3HBzNVdcWc1TT0Rw331hJCUqPPJwPRvWeXn7rXXM/Lkn9/27nBc/E2skJhP4fc1GsfZy2dLLUH0qY18/ndptlWz+fC2yRaH7fZORzQp4mss612XTuHg9Mf86m9CjDLFqgw7GMEq0my+++IJzzjmnw+o78hLwGRjsIxNem8AT566ivMDJxS8OxGzbf4u7ZFbxeE1UNTmoanJQ7RR/IVYPIVYPql1FtauYnKAp4s8dIf78VvFncoo/R6n4Mzk1VIuMapGDYmCS24vk9mKp1QWJJQn76N588f23ZLz7UEfdGoODTI/jk+lxfDLbltftvfA+srIunS1NCWxpSmBZQyYLmrqwoKkLLs2ESzNhRsaMTJISQpISwpu1SbxZm8TQ/ttxxWu44luETEuS+LNb0OwWHOUaakw4akw4+FXx1+Tca5s8URY8URbMOWWYc8qEsqMkYWr0UVOby8o172C3x5CTv5xZCx7o8HvyT2fMrKmMmTUVa0wIw549nYyRCfz22ApUp5voKROJvf5cGhet4djbriVs/LE4V6ylfFEuAI7MOOrXFeAqruHE2e3Xw/AUVZB77bPk3/c+Ze/NxJYaQ5f/O5fjO+fTyVpGJ2sZSZZakiy1qLGxIEu412zllZ4fs2j8YwfpThgYGBgYGLSPL35JYOhIG8vmuXjw1SQiY/bfpy+gOSGj7RIxsXPUxM7skllCYrcLwpKmIe3kfR6b0p/6qjxGHXvPfrbe4FAz6igrZ59rZ+VSz94L7yM790W5RWTEwe6Le0XVxJ+mBv/qvZUsrZuGpElszl/NjLyX9q1Og73SWJxBY3EGYaEy770Zzfnn2nnokTpKilWuujqE9z+JYtlSL9fe0Jdrp4azfJGbX79rQNM0srpbyN7kZut6Fz9m92v3OV3VLr49+1tmX/Mdq56bj8lhYcjTp2GJFs5uLfuiEh2GZDXj3rAFTdPIvejODr8HBv9gtH38+4fy2muvcfPNN3donUakhME/nnkPzSMiXOKSZ/ty/OAmoIljbcIL/MltEwCorxQpZpRoN6oeDSHJumeKHtGQEFUPQE2THY/u1S7L4hfLp4tgW8v03PoWYZAQhQimvNkfLLVeTE0mHEP7UPPVbzQuWE2G/DiSJJF78R37X7HBQcehuKncXkufHhqDbXlk6L/IbxaIkX2DpFAniUFZv+4i8qHG6xD7vCIiwWHysqFeeKlYFREpEWYS3uxWWXyu89kocUcA8CciR39axGoAwnXb9KXhIo/ub5W99v+CmpzBEGylyY43QkTyeCLEl0TV+3zN0ekA+C0SmqZSuWouOeunEZKYSeb4SwkNDd3/NhjslWhrE1gh+urJFFz7Htm3vEHm1FOJm5SF5jqVyre/xZyRgmQ2s/yOH0g6qQ9RJx9F9dJsit/7ndgHTt5j/Vu2bOHzzz/n4osvxrdgMXi9DH79QkIyY+gZUwlU0c9RQLieSqyLtQSAzkMzabpkAOvfXUblf5JZQXpQ6G9fOHvBtZQsyqekSCV2TA8Um5l5Jzy5z/UYGBgYGBg8dl8NFWV+7no8hhHH7Xl8oqAGPdR3Fhxui3aJCktah+Svjk7sBZJMceESThj5EJIkM3PBvQdcr8HBQwa2bvHRtbtJpAbbSeh6T7Tsf+3pi2J/+1baNKuK5D4Ivq1tGC80TaOEAjbVrcCuhDMw5EQSEg5c38xg9ygIp7EH74vgjz/dnHxSJc88E8Exx1l5/tVIrruimoICPzFxMg/dXM7s6Q1cfnsCf0yr5/n7K3jyy4g91l9cXMwbb7zBeeedR87MHOp31HPsy6cS3SsepyzSATd6d+0LluQ4Yi85ifI3vif0xNFkfvj4fhkmRlzwDI1VhTQWZpOQPhiTxcHcb6fucz0GRxiGpsReeeSRR3j++eeZNWtWh9ZrGCUM/rEU7UjmjTcbaCxu5OjTO9F/XDxQcXgaI0Njui7glScGeeYGsctvlajsIx7QiXOEVgVuESEhO/VUUm4wh6Zg7dyJyre+QXP7CTth5CG8AIP9ob7CzY51tVx1SdTeCx8iPs+axTFNIl3TjvIkACy1Yl9Srp6GSYO67iJXbmS9ns7HF1Bm1yfjtU1YAsLW4cI4oegDTE0RD3JfaRnbl39JXUU2UcNGUzpvFmZzOwRVDDoEW1Ik/V+5hO1P/sjmuz+j//vXETZW5DNzrs1GMpvxbMulZMYGqteXYu+cSOnsLXS/sWm3dRYVFdFr1DD8lbXcf//9AMQe15OwLvHtapM1SvzWzfnNyenni8WfqavPZc5SC7a4MEZ3EgaMgGDjjrpQVv9vIbXbqsidvw2Hw4Gmacy7dToAJT+tptudezaiGBgYGBgY7MzmgmRmzXCxapmHCZPtnHpeGI2HyzuynYvFe8JscRCf0Jfc7N/QXG66ZhjpXv/qeDwa8+Z4uPxfIQdUT6jJRYOvfVp4e0XSkFyHJo+/W3OxiRWUU0QiaWyr3UhIyIHdC4P2ExUlM/PnOG66pYbLLqtmxu+xHHucjedeiWT6T25i41UW/Olm0Z9ONq0rZMhoB9M/ryNnoxOy2q6zrq6OAWN6ULaljgcffBCAhIEJxA0Qc058e26TEi6c85wrNmLJEE55mS8/gz+/DNlux2oRBhFFn57KTSoVi3+ndvNK8tauDBq0ts3/GFd9OaX5S+g6sOPS0Bj8fZG09j9qO+CR/Lfj5ptv5t1332XGjBn079+/Q+s2jBIGf3kG3PBc8P2q/7U/bcjuUEu6UVXt54nX6nnxRbHyf+0VEpG2fFya+Er8u0Dks693iYUv2dr8hDTpAtcBUqJrACipFYu0NqsXsyzKZEWKHPxbq2MB8CQHwm8t+Oy6t4tbLNBaaoQxIuBN7rcEXiVsNaKsf91mcUzPbqJdLlGfyQmSKpFw7ZUUPvAovqqOTwdk0PHULs9H06Bflkyc4qdGF4Ju1CVMThq7nE11YjHXYRIGgSKXGGwl2EVkjl320qB3lkafHpGg54kNeERFmJ049TK1PrHoGyq1/vk36593+OupnikGhk29Rf9Sc8SxhacIgUTZD7G/lgOgWcVxUqO+UB2uexGqGpJ39x5Z5bnLyF7+NWZrGGkXXktIZlfDIHGQmX38060+Z33yXzBH0PeRU1l4/ltos/6ky/lj4MIMnL4uaJpGxRfz2PLWIrx1Tlx55UiytMew/jfeeAPN6abbK9fg3FZMRIqD0B7JRFpFVERANyVMduLXo3SyPaKPh5g8dB2bzMYPQ3jkzmq+3pTFurdV/nx2Ncs+2IxkVsjrH0VEkh1sViRZIn9FFTVbRWRbZWUlDoeD6nzxux45II2aVQXULtoKl3TorTQwMDAw+IuglnQLvpcTtxxwfbmFSTidGm+93cSzT4ix1uXXCWeNluLB0DzO2tc86rsjkCK/w1Pl6x7oPfucS0PNDtweY57wd2D9Oi8NDRoxsW0bAVoLq+++L+6PQeJg98WW+ENtKA2tNcvKvQWs5Q8kJPoyggQp1TBIHGRCkvJafa4sSiUp3sSbb0YxclQZb73RyIOPRzJuop1jJoj53lefO3nk9ko0DaZ/Ln5X9hRx8+WXX1K+rY7LPxtLUa4bNTSU+H7x7EmxrmVftPfuhDklgdrvZuGrrEG76E7qZv1J9XfTALClZ2KOjEIx2ZBkGXfRDpp2CL2XgoICEhIS8HvduBoqCI1MpaGmkPLClft5xwyOKAxNiT3y4osv8sYbbzB8+H6IrO4Fwyhh8I/k7U9qefHFBk68OJHTrksmMlpMOl4sOAGAjTvE4qtiUrFY9mKy309MTilomOgINFWl4oNPUd1uHAN7g/+fGVb2d0INEd4eXotEjSoRqUdC9x+9FRAGiMHRIq3S9oa4dodV/9UwNYjvkDvKjKZpZK//kdL1fxI6dCixp56ObLWyceqBGxwN9o3sKXcH3yeMmc+mabmMv8iNJEnUOIXxKuqsY4jeUkPtsu10vmQY396SS0zMtN3XmZ2NOSUeW1ostrRYQq27z4Ps1+RWk2dN0/j9ztm4qpqwx4fgqmxk2MXdWf7xNrHf6yd/WdvRbMPuHUNaWhoAslk3yln0SbzxU2hgYGBgsA/M/NXFs0/Uc9IpNm6+J4LEZBNNHWN3OKxs2zyNJlcFXTMnHO6mGLSDyCgxnomNlZGlZhHrfV0Q69BIiYOAUt9aly7XuYbNriXEkkQvhmCRrMxUvzxMrfvnEpNcKF6Ba655gOeef5h7H9KwWKVgX5x0Thjbt3j58v06zroskklXxBOXvHsns+zsbMLi7ST2jCS0m5W6QL/0tq9NZa99h7eoDCUyDLW+kegpp1Lz7Y/B/a68HFx5u4rOxx89kSFDhgAgSTKSJCMrhjOcgUF7OfPMM3nggQc47rjjyMraTSjUfmIYJQz+VnR97Dn8tuaRWPZ/btnnOjRNY+acJpKy7FxwbyfkvQg6eDwm7CGeVp+hWXhJ0bUlVD23nNtjAj3KYUO5CBEMaFLI9WKRzBPjR3aKgabfKurxJoiFW61IPCA1/TmpyRC9ufWT2r+xtSeYMmgkUnEDTWvWAVA343dMEaHE/rmSDPOwYLnlbxoLv38lti6uJjTaTM8+7RsUqZqETRF9IdIsBvBuv4kajzBuBIwWgb5o0l1Lqj0hOExuUV7vWKFy25MTlyYx4IwNAKz5UuhL1PcR/T98tji2bKRK1GaRcspWqOd2ChV9XJN1y4pFRlLFd0Mzie+Mzy6Rv/InSjf+Sczk04gYNZrtd+z7d9ig44k7oTdlv65jw+uL6PWvEcHtkiSRdfMECl+cxvb3l7BwZCSTJtl3W4+iKEj4iA8V0QqBvuhTRb+oV0W/y/PEUuptnXPWlVNG+foKhj1+EolHdaKTXMgLR30PQHhGJLYYO5rZgmxWCK0rIX+Tk6gUOyPPSWHsBc1ehCGJoSh2E1VLcgEY0E98L6auPhcAk+TH74eyzTV07axhCxX9c2rPX/fv5hkYGBgY/CVoGTUB+x85MXeOh8goiSeejUSzdmyqmrYcTOQDdbtsh/Fd9fso3rEUgKLS5VRUb6Zn8lwyLc1aYj/nPre7ww0OA3/OdmM2w4hRlgOqZ3cGiYPSF+GAnEHy6lax2bWETtZ+dLUN4deatw+8PQYHzJQpU3jkkYe4785aHn0qAlr8LF57WxROl8RX79YQmWzl9Ctid1uPoij4fbuuvezO8a5lf/Q3NNG4eAPRl5xK2PEjUF1QcPVdAJiiozFFRSHLZiSTCbWhEVfJDkz2ECJ6DiJ2xAnNdZrMOKKSqasUxouQcJGi4MRRj4g21juhrpF6bwXWRrDoc+Zfqt9qz60y+JsisQ/pmw5qS/6afPHFF1xzzTUcf/zxzJs3j5SUlA6r2zBKGPzl8YqIaTzhHVPf0lVuZs1xcsULvan32+huLebjCqG/sH5tBgBKjFjAjQoTKWkCC2pur6lF1Kn4OQosukWGiEXiytoQPG6xeOt36gaMBv3JrYqysksK/pqpZlGhZBEpnzy6V4xqEa/2EglV2c1PnyTKmJwasSURmI6/nJKq1firG2jcugV//XLcsUtQrA7CU3tQXHweSUlJ+3rLDA4CdXV1LPqhnC7HpbHILQZDQ225AHj8or+szU1h+GAxYNqhRLY63i4LQ8HG2gQsir/Vcb5A+iZ9IGeSmwd/Zt0z/c5SkQvw8YTVreo9c+WVaHqfbhoq+n/PG4WnjL+qWpwndDiSX5zTFyUMIqZK/bsSq4vCN7hRrQFjhGhXdtVcyjfOJm7CaZR9/217bpPBIaIhfiBR5zew9aOfKKuL4OS7uwCQVx+FEmZGTU4BaRuzU49nWXEIb+xmHNK7d288n36Es9qNOcJOtE38LsZYGgFwq+K3MacpDlX/EfTqOetG2n/nE+CC7hu48eifeOV/zVora6eF4bX/wWc/DmX1cg+/T3cx9aZQbr05nJjk1otOifZ60oYlkvtnIRdccAEfXfOROI/LR/78Isq31pI9r4TiddXIikRq73B6HxfHLc+oyPJBEG40MDAwMPjbUFzs5+uvnNz9QDhWm4Tr7xmkuguyYqLfoCsozVuMx9tAdfU2dniqKbNuQJYUYu2Z5OTk0KlTp8PdVAPA5/Px6UdOjh5tJSz8nzE2KW7cwsbq2WSGDyK7dvnhbo5BC7p3785zL0Rwy821aMBDz0YH91msEt372+CjWnoNceyxnt69e9NY4aYytx5rmnWf2qD5xRzWEucg96I7Sbjj2uC++BuuYsnV/2bIrXfh2lFAfV4OEf2HkjjxTDY+tKtTZmRSdxorC+jXrx+rV3wm6tdUKmq20lhVQFVdNlUuka0gTIkm1pSGy+XCZvvrRhwZHCCG0PUekSSJ119/nbvuuovjjjuOzZs3d1jdhlHC4B+FqqqcfMEOTCbofWzM4W5OhxOZ1httXB8AqlfPp+qTr/E669E0jYIF35Cc8jURCd2IyxzMmt/fwm7fvcezwcFl4cKFNFa46D0pnb2qeh0BOBsrKP/jB6JGjSFq5DGHuzkGLej8zLMQB+ETRqN53NR8+zt1F8YRnt4cyWCODAVJ4uvzfmD0q6dzpuc6vsz6Lbg/4I168cUXc8f997Dt1T/pfssJ0M6xe8XGCh57YAc2h0RMghia/DjNSWSEhMUiccxJxRQUdUFtIemzcLEwzJ0+/3oAvj3q5eC+0XcNJ/fPQuYX/sl1Ky7klUEfsfqL7fz5rDDCpQyM4bRnR6LU1bJhdhk/P7+NkzqNx92nHwCRVtcudRoYGBgYHPlcdnE1mgYnnXLkLT5FRmUSaxZeBVVFa1mR9wWNvhpCzdFsrp5HVlYWkcSQRAaLav8gPLyDPMIM9pktW7awZYuPf9904DoKf/X0TQBev5N1lTNJcnSne+Tow90cgxYU7RDOc5NPs9Pkhrum1nLquW4GD282KoSFy1isErecnsN/v+5OozqYJrV5/yVdF4g6Jk8mPNHOzCfWMO6J0WBtX790F1VS/PQ3oMiY44XTUtOyNaDImKKjKX3+VdIefw7N05zdomHTWph4Jn1uExFg655qNk4k9RrLjnW/sT2vkqNPfZJ5399OaeV61m39AoBwSzz9YiegNjVR6d1Bjns1g+xHkSKJtDVKhJgjGdETRxCGpkS7eOyxx4KC8R2FYZQw+Mvjim3+1m+/9cBSvciyjGyCs861MyRCCK5+WjWC2XnCK9jUKDxRHOliQSqQmsnl1T2+/c2eKqoe9bCjKrLVZ80voXr1yAiPXl43pmqKuBbNpCEFNB/0bYF0UJKvteVVcYMzXpzfkZHWap+7ixCINdf7UfRzRWwT57Zo3ZD7/D975xkdR3U24GdmtmpXvcuSbLn3DraxwVSb3lvoJKF+QAKE0ANJgCT0AIGQkNBC793YFBdwwRj3LlfZ6r1sn5nvx51t0kqWZBsMzHPOntXO3Lkzs3r3zr1vnUrJwJlYbEk0pfpo2rKK5lVLKV38MtkF8xl16FUsev82TL5/DjroICzJDr54tZYZh4hwoHCh9S11wmAm19sI6uL/WewURdMnuETkxBs1BwFQ3eYmI0lEKYRDX8MRE+EIipAmEzI8wP2aOIddTmwIOapoEx99LAoYqfkiVVSoRuTxtwwUEzF3eVQzrLSIyZ+/j1i4Sqoh4ykOAqniXFWUUbbiDZQUN+6Lj8Jv67zOgMkPg1JjZcuNNzApo4YV85ew7MnvOOjPx2JXhJwMO2sQRQddwOJLX6T01VVMuO2IhP3k5OQw5toprHhwPpKkc9iDQwDwaiL1wMqmwkhbixG1k+1o4b27vsRid7NqxRIGDRqErut8+ZXKob8cxJTjUnnmyhW4UxSQoLVR5f+ucXH2OU5+ve2UDtfQFrJDmp3LF5+LbImO2e/c8SUFL/XFV9VC1fpGlHQ342ZkMO7MEu497HOqVlWTJmy66JpO+bytpF6WT6jFhzXZQeHMIfSZORRLko2PDnts7790ExMTE5N9yr4odG23weFH2MjMVtD0aET0viJRf9reJoPohYIkxZlPYfo4BiZNwGFxE2yspzq4k3LPetbzHXmpBRzEkczT39+7azPpFQMGDKBvX4XXX/Ny9IlOJEnqtSx2ZpDYL7IIPZbHFl8168pnATpDMw5D2ufVtU32BTZJ4pQznfzveQ+P3NfM8+9kR/ZNm+Hm+c/68otDt/PKw+Xc+fyghH04nU5m3DqGd3//DR9ev4Cjnzwe6HycDctjxVMfobV6+HbJN0yYMAEA/4ZS3NMOIvWYGdT84xn0YBDZnYza2kLaxKmkT5iK4k3YLYrFziEn/QVJkiLytnTV80ybtoVly5bREqhFkSzk2wbRxzaI1sZ6GqmnD2ItrOs6daFyMhyF+HUvimwlN2cMBTkTsFmTmLPwjp5/wSY/LKZRotv89re/3af9mUYJk58VgUCAlmaNV1/ysm7jbv7yTN73fxESyAE5YqCIGCFqxITR2mzUAxB6Zry5EHQZ6XTOEkaJtFKhFLZ4NaNtiJDxc3bvEttS/Snk5ZyIGlIgpOFyOnEVTaJvxsG01O9k9RePsearf5I1/lOSbBmk9hmCy5qFJEk4q4PIwaji+bP5t++vb+NnS0ZGBiWXTmXzY5+z5uthjJyatl/Pp+lSh3yd45K2R/7+TbkwcnywdByKUbclf7YwbigjRI5mf44wnri3NKEbyl5/nlFLwhDjpLUi1ZNnTBH+ZImazUvY/s1b2Ir7kH3Jr9l5uTlJO5CRbRaKLj6MLQ9+RM23ZTjHDIjsc/fLJP/C6ex8ZQGSIjH/Ei+HTRHRVmM/upNT+64CoOSU4dRsaqJh+U5gSKfnCukyFkmjxpeMvzFA//MHM2iQWMQsXboUf1uIYEl/0vupnP/KDF65aiEV6xqZN28B06ZNA+C1787v0G9pk8hle2huU2TbSQuupSVg5+7Zk6gsbeWVP2zmrUvn8FbMcU1bGzgqcxeeBj+vXrGIhvXVpE8oJmNMH9rKGlj3+Hw2/WcxhccN4+gF03jh0tcpKCjo1fccZvv27WzatIljjjnGXISbmJiYHADU1WusWhXinFNreeixNLKK9m1NiT2h68Skit1HJHi+2K1uRhQej9Qs0itaZBsF9oHkerPw6C0sYjZL+YISx2jszjQyncW4M/siSRKqW6xZQm6RkvHL2Tfv4ws2sdvt3HFXMpf9spF33/Ry2lldp8Xpit5ESjhsQbx+636Xxer6dazZ8jpOWxrjS37BF1v+tY9PaLIvkWWJm25L5pJf1PPBWx5mnBGNqs4vtHL9A3145KbdPHHTdsbNzGbckSLN0xMbjozUlRt8eD6HXjWMr5/pnhHZYQuitXpxjx8YMUiUlZURrKwl+ehpWNJSKbjmGqpffRXP6tW8+eabnHHGGQCRKImE96JEVaFHzPgbltYgadaTmTpoApt2zWF5zYdx7cOSq+oqK9pmUxvaRaotj5yUwfiCzWwt+4Jtu+aSnz2WYSNXkZpewuIFf+vWPXZGVVUVS5Ys4fjjj8diMVW3+xNJ70FNiV6Mi/Pnz+eBBx5g2bJlVFRU8M4773DqqadG9uu6zh//+Ef+9a9/0dDQwKRJk/jHP/7BiBEjIm0OP/xw5s2bF9fvOeecw6uvvhr53NDQwHXXXcf77wuHgpNPPpnHH3+ctLS0SJudO3fyf//3f3zxxRc4nU7OO+88HnzwQWy2vatf1FtMyTY54Nnb6IhYrFYrM0918/5rraz61sd7n9uYecpaPq4aC0R/EEk2w0PciIzwBaKFiMNzqfAkTQ2JxYqmhiMl5EjtiLDhAUO/L2n7T+mk+IUxQk0S16M6xLUHko3aFDXC47ktz4IlSSjSWhvK8Kut1Lc2U7bkXWxJabgyCpF9KroaIjW5kOLCafvtmn/u+McdiWNUGf/4bSlXvjIVeaAIheubIWo3bNyWQrpFLBZzrULBuspbDMDBqdsBWFuTF/Euae9lEo6YkCUdm6Ki6RKekHjYxBok9gdtBRbK2UTFkjdx9CuhtXQzivL9LuxNukfsGLtoxl/RjtbI+rwvy//6JVOfysKe6aLG4wbguCsLmVU/nKpvyzhqjpdBj/wKR2F8KrxRKbtZmZOMt7KZWf/aCRoMmZxK3ogMdq9rwpmXSmFOgHq/WGCnaw34WwPYU6Jh3nfeeSep/dPJGZ/Py7fO4tv3KphwTglVG5u478mTuaZPAceXrIk77/WLTqF+WwstVQUkDc7j0z8to3JtA21ecBem4RiYz9vHjGDJBf/mhfv6AnVxx1cur2LTgmpW/G8Dnopmzn7mcIom5qAav6umihF89+JGSj/fxLbXPfS5ow+ZE4ooPmkEudP688lRPUv1pOs6Bx10ELW1tVgsFpYuXcrYsWN71IeJiYnJz519ER0Ry+lnOHn8722s/C7IrI98XHBl9NmkGmop1ajdpRnv4c97yz5XAPeSJCkZXdfx0kZlYCuBgJ+NjQuw1bhIdRagWxQ0WSPJlUNxSeLISZO956ij7Zx9jpO7bmui/0ALQ8bGp91Vkboli71J3eT1W/fcaC9pa61m1cZXcNhSqa7fSVJS7w0vJvuPgj7lcZ+HnAtvvuHigT82MnRcEsX9rZGx8fDT0tm8IcSK+U189f5Gfv/CKPqMjy987bb4uHzSHXz56C9Y+Z+VyBYZ54A8cg8upGVrHfYMJ7iiylGPz0KwvgV3clQ+7r77buRkF0kTR9Pwzgc0fz4P98SJyElJXHT7H7hlww423x6vQ/L5fIw751Ykjx93RjE71n1GfdUG9FAQuyONVEceeVmjcWcV4ahwd/geWmmiSi+jlkrqQxWMyz6RHOcASBVtvXaVnRWLqKxfza6qbwBIyXiV7MGTyeg7hqWv9Tw7xamnnsrixYsBmDdvHocdZqZA3m/s50iJtrY2xowZw6WXXhoxmsVy//338/DDD/Pcc88xePBg7rnnHo455hg2btxIcnJypN1ll13Gn/70p8jn9unYzzvvPHbt2sWsWbMAuPzyy7nwwgv54IMPAFBVlRNOOIHs7Gy++uor6urquPjii9F1nccff7zb97N7926+/vprqqur0bT44vXXXXddt/sB0yhh8jNDkiSuvS2NT95pxe6yMGJaGhDg4ZkvccOnHT1uFVmnxWcn6DMKVss6etiwYAxGkqzHfUYD/GJC2N4EIQfEFhEdYSxsnOJHLBmGi/Bc0pcpOkzeLpFUI9oEk8Qx9kZhNPFmiwe2VQbFFz8YdIZql8BuY+CZ12G3pSLnpmOp8dFSuZXWnRvxNlcjIyNLCjvKFrC7/BtGFC6jMH0sn66+t1vnMOkekiyTddW5+B54iP9cupjbXxhMfkniOh8B3cJTT5/M1PO/A6AwWaRzumjgEt7ZNRYAqyyEyGqkbQpHRjiUEJ6QWFykWEUR97KgUCTXadVGW6N4WJaXfv8Rx8k+kWapbUAaAK4tjeK6G1qQUsQELCyvzt2t4jqHRD3H29asQrLbKbjyGtMg8SNClmVG3nIM3/zf63xz03tM/vsZoIj/t2JTOOHu8ayvPILFZ/yDfus/I3usmCAX2uojfZQckkf9vHRWP7caNaSx/L8SisNKoNGLNT2JrAlFpBw6krRJA1j36jZ0Vcc/cGjk+IyMDJp3NLLp7Y2sfK8CgGBeATPObOTjlxo495psKIHHx78UOWbwkX3Y/KVYOJ100kl88MG2yL62nY2wcDs7/rcY9Rf/JPOgvtQv20neIX3pe/wQBjirWPTKTj64di6SDEc9dhxFE6MTQIDkPBfTbxrP5BsPxlvvY828era9v57ld8/CmuJgwLTZ5E7tT+6kIixOK28c8lSX37MkSTz88MNcdNFFhEIhxo0bx3PPPcfFF1/ci/+aiYmJicm+4Kr/c/PO2z52lakce2LXytwk2R+XN11FjiqHiVcWJ6Jb6Xh+oIKakzgaW0oGTjkZPcVJo6+CWr2cZm8VEjKKrlBRvpSK8m8pGfkdBQOm8fV7t/wg1/pTRZIk/nRPCptLQ/z6wnqefDGbUWPjPVldsp82zZ5QFkHIX3dkUez/fuWxpno1AJPHXGMaJH5k/P7uNNatDnDdhZX86818XHlCLiVJ4vLbcmj5XSHXHrmaxR/WcOp4kW46Vv4OOeQQ8sZkse6VdahBFTXwHY7MJLzVbVhcNtIO6k/6wSW4p4+l5eu1qE1tOIcXR47PyMhAa2qhdcFSWhaIehWy00nGYUdSO+tDfGU7gPg6Etdddx0b3hdK12nTplG26avIPk9bNQ1sYvvu+Rx+8B2k2fPZ1boOl5LKEOfB+FsbqGQnq1kCwKikw8kJ5SFJUkQFZLO6GFh8NP2GH0co5KOmZTNVO5eydckbbF/2Hun9Xyd50EiS+w7D4khi5WMdC3C35/bbb+ekk04CYPr06fz5z3/mjjvMrAP7hf1slDjuuOM47rjjEnen6zz66KPcfvvtnH766QA8//zz5Obm8vLLL3PFFVdE2iYlJZGXlzjby/r165k1axaLFy9m0iSRjvvf//43U6ZMYePGjQwZMoTZs2ezbt06ysrKIhH/Dz30EJdccgn33ntvt2pJPfvss1x55ZXYbDYyMzPjov0lSTKNEiYmXbFjxw5OOrYF3e7g2qcG4U6zUhlK4okXTyYJCDuSqIbhwRP4/kOYLEbuw6QKcQ3WNp2QwzBg2MV7cz8x6QwbKWwOCUOnjNUTTukkRktbk1BQhyMnwrjy+iEHgDawYicjbxgpJcMBSCv1YWnw4c1rpHT356zb/TF1rds46mCZz7/58364658n2y8Si7dBG2V2vvQUd/xiKyMeOR9/iijglbxd4q3ycQBUf1DUaT/7i1CaMJDYmkWUjeQVRor6I/qRWioiOJJK69sdJY5pCdXSvGQRfX59FGmj6zD5cbHTO4SM6y+n+i9P8e1f55N7w9lIksSSymLSnV5Cba2EAho5/d0J52Vpg7I46r9n0NdVT8AT5M071+LITcY5qoS6rzbRsn43VQvew5adgm+XkCFncUbk+DvuuINXX32VDS98F9m2460VpM7IBRr49NtkLjok/pwZhw4GwyiRmprKyDMG4G8OIKe4CLQF2TZrC2g6n3/+OXlnTsJT62H3m8uoXLiDJcBBZxQy5IQSnKk2Zh7dRrZFGEN8ungONKpiwdykOqEPuE7Pp//xg2neVk/FZxsom7+TrR+XItsURvx6ItpkDVnuWgFw4YUX8p/k+ay5dzZ13+7kkksuwWKxcP75HY3kJiYmJib7l4aGBs46vY7aGpUn/pNBfpEVn6GEVRPk2o9VAn/vdKEU0SMKgm5oTjpJHZgspaEoQjkhy1Yyk4rJSBbOA+H0TR6bn207P2f7uk9oqNrAxLNCWGxOFr90Y7dvw6Rz+hWKecg/X8jnyovrufL8Gp5+NYeSkdEohjZDBr9PWZT0draJXshiKOhjx9YvKMqfgsVyYBfhNumIK1XhH//L5pLTqrn9mhoefKUYi9XQn2h2dE2juS5IwYDEznbFxcWc+d8ZtKo2tJDGgr8uRbErpB7Un9qlO6lbVcnmBz7B8fq3+LbXAJA0NLoWvv7663nosb/T+MZHyG4XeiBI2/LlWCeJIulho0Qs4TQ2AA6Hg4IBh+L3NmKXk1DVIFUVywGdqtrV9E0eQVDzs6FhHstahcd5Nn0YzkQACuwDkVKTO5wjjMXiILtwLNmFY2nVGqjavZymHWsom/0SyDLZY6cTDF6D1dp1RNKJJ55I4b/upv4/b+NZsoo777wTu93OTTfd1OVxJj2nN+mbmpub47bb7Xbs9p6Pxdu2baOyspIZM2bE9TV9+nQWLlwYZ5R46aWX+N///kdubi7HHXccd911VySSYtGiRaSmpkYMEgCTJ08mNTWVhQsXMmTIEBYtWsTIkSPjUhDPnDkTv9/PsmXLOOKIPUc//uEPf+APf/gDt9566x7Xut3BNEqY/Ky47777CDVpDDzzRj5ckglLIPm4SpxVYr9qjCG1deKHbbELhb4eFD+2uHHKKCytWYzaEOGi1mrUQBApZm0cqPiMNDtWPZLiydpsRFV0L9AhDnuz6NjeqEbSNLXmC4/0ZFHHO2K4CPevGc8+SQNbmzjenyLauCoNT/uqViSPFxcKI4edQ079elaXvsl361/g8Al+5i67v+cXa9Ipmx+9i6pbr6RoyAg23PQRw467BtliJeSA6o/EBGzomSI9webfCcPRlH9tAWCQvYrjC9YCUOoRBcc8ISHIG+rE58EZtUzO2ArADq+IkNjoERb2yR+LAmNpG4woHDe0DBTC4trl69mNKDJBtwVdUyn/5iMki4WNj76Hy+XqWT8mPzjbLxb5obMrqqh94mXU5mcZeP0M6uRBFPRrpnWnWCj/8aS3KCkp6XD8rwfHf37ss/jPl319Lm9e/RX2nGRyJxaQMiCLDEdU3kaMGMGA35/Elvs/AAnGnj2QFa+Vsuil7QC8/Jtl/PH4UgYOHBg5puS4QeRPKkQNqjx/0vMdJkkej4d3332Xgw8+mPlpM9g1ZBfDvxtLysAs8sZkseKppVjmVFIw2A1rFa67VKK4rwWf4dnlMAbRpT5RrDuoWXArfhgJE0cNYNdVE6ne7mXL22tZ/eQS0leMoOiG01hzxn1dftc1X22l7tud0e/qscdMo4SJiYnJD8ATTzzBltIQr72XRckwOypRj3NVl6OpcmgXDUE4jWbHxbnabl+0bVSrq3fD+7w3OayDSXLEWWmPyMY1SHLHbQkIua3YsDJgzOlkFY5j/ZLnWDfnCQZP/2XPL9SkSw4eXsH8L1s5eGomN11Zy78/KCIlTUHV5R9EFqHn8hgri7qus33Lp+i6Sp8BhzFngen5/WNjfPFOKIY//L0P151bztWn7uT6v+RTONKJiszuHT5CAZ0rZzzPoUMPTdhHbLQz78Xvm/rp79jwp/dQNZmkUQOQ3Q5kR9RZtKCggOzrfkn1g0+jtXlwjxtH68qV1H3+CQC1H7/H4sWLmTx5cuSYo48+mtEX3oMa8PHRC3d2yJ8fDAZ5//33mTx5Mn369KG5uZnizEHYJAfZoTxK9VXUUUky6bR42ih2TiTZFp+aKhF2dwb5444hf9wxeNRGGtZ9Q9XS2aT1H0bxqb9k/eNdp3UKbNyOZ8mqyOfbbrvNNErsD3Sp+5FgRruionin0bvuuou77767x6eurKwEIDc3N257bm4uO3ZEDWznn38+JSUl5OXlsWbNGm699VZWrlzJnDlzIv3k5OR06D8nJydyjsrKyg7nSU9Px2azRdrsCY/Hw7nnnrtPDBJgGiVMfmZ88803OHOKsKVm9ibqqtdY2uINAzISFpHtJpK2KbxPEc7oqMZzMuSMGjkc9eKqLT7xrlk7Hzibi8K1JcRne6OxwzgkkAqBZPFBERl9SF4jPBF0a/zQkJMxjInDLmH5xpdZsPwRcuyvY1Oc5DsHs7Su3SzCpFfk5uZSfOIlbH317+xe+hFFU07dp/0vru/P5IytHJW2DoCakPB+06YLGfBOEwK3847B2BrijRGSkcbJM0QYOTIWVUBIRE+gGb8kdzTsuq5yHa3rV5F/5kWmQeJHjuugUci//xXNL77J8sufI+Oi06BfAapXpJBLT0/vVb9Wp4WGlbu6bFOzrhXZnQTo5OXCsMOzWD+3NrL/jTfe4NZbb418fmVy18URk5KSOO+88yKfCwsLad4i+jtu/m+YOnko5e+vwLO7mY/e2Mk7//VTMr2QqReVUDwhi3RrG6cnr+qsewodDZSmDyL7V0UEBgxl54NvU/XSXH7R5/LItfn9fmw2G2VlZZxzzjlcc801lL29ItKHbJE45ZRT0DSNq6++mkMPPdQ0UJiYmJh8TyxdupSSARaGDrPg/wHOH1YIRxTDiRYrPVjAdGWQUN0OlLYe3mVMVIWlNRgpdJ2aWcLwGdew8ctnWPnB30gpfAtLcgrJ/YaTNmhst9KUmHSN2+3mr09lc+EJFdx/aw33PJU4fUcikhUfLWrPohH2pyy2NpSxu2wRAwYdj8PZu3mkyYHBqIlOnnyrD3+7tZbrTtvO+TfmcezlxfjaxP87trhuT5AUmbqvN3fZJlhRDbKMJT0Nye4gedIkWhYtiux/4YUX4owSACtfuL3T/qxWa1yu/5SUFBqDwnN1hvVcsrUCdumltOktVAd2UFa+nkxHEcUcQnbyQKFj2cNvwuZOI/fgGThLBlL27n8on/MGw/4goknW/+n6yDqhqamJ0047jfPPP5+m97+Mfi82K7+6VBh+77jjDrKysvjtb3/b9UlNukcv0jeVlZXFpTvqTZRELFK7yEVd1+O2XXbZZZG/R44cyaBBg5g4cSLfffcd48ePT9hHon6606YrfvWrX/HGG29wyy37JmWjaZQw+VlxxRVXcNVVV2NbWU5gnAhZynB4WG8426ZvMCIPtoiJm7dQKN7CURBSSIoWqw5HQ4TnWOEaEzqRKIjeRD+EUcM6Xh2shgHDKBlA0GVMFI2BQ0pRIrn9E0SXR/Clg25ESmiWaL8dzp2eRLgCgK6IjjO0LKaV/IryiqXUBXbRFKxmt3cja9euZcSIET2/QZMOlGxNQ8ufxs5NixjQ/1jcIQuKT/zT678Vlvicv4o8+S9cdiIAtzz7Ip//VhQjV24XE6ftNSIaItAiDA0rvHaG51eyuL4/A/OrenxdUkgIsnO7KLaNokA7y7huE4+TxgEWdq1ZhjO3mPI3nu/xuUwOLMIpxgaMKqD22Y+p+8+bLG6aidoi0netXLmSrKwsBgwYgMPR/QXvk+P/t8c2gW27QNfR/AHUkMYFD43h7T+tY5lRY6KzfJq9Ydcn69j0z6+Z9MSZzD//BTweD8ffdySrXtnA/365gNMfOpgpx6Xxdstosi0tABydvCaSNsElC8VO2FNx98lpLF43gO2ffssyuYkZx5+GlJLE7LNeBsCekYS/3hMpXgfgznbwq3eO4bapt6GqKk8//TRPP/00j9a9S8aYPnw6/dF9dr8mJiYmJh254oorOPHED1i8KMCYyWIiHvYi15AjnuWq3v497K0eW3g4fkIe6acXXum9pn3qnGhJO5TWjgYJSZKRZCnuc+J+270DztRcRh5/A9W7l9NUtg5vXQUNG75FsSdO32LSc3L7WPm/W9L56611VFaopOTZupTF8OdWNV5RlkgWoffyqDr0SDaATomRxaqdS7E5Utm4/n2z5tyPnEP7lXJoP+gzbBj/e6yGFx+opLZewp0q/q/r1q1DkiT69euH292xeHRnfHX0nrMyBLaXIVkU1LY2dFSyTz0T2e6gaa5Q4u/LdUKtVsFqbTHjlGmUhlYTDAaZmDGTHYF1LN/+GkMLZlCYfGjcGBshgaLXVdifzAmHU7N4NhXvv0LK6IPo9+d72PmnP6KHQihpqaiNTcydOzfajd1G4UPX8c//ewCAe+8VtT6fqptL1mFD+PqYv+2z+/050pv0TSkpKd2qwbAnwrJaWVlJfn5+ZHt1dXWHqIZYxo8fj9VqZfPmzYwfP568vDyqqjrqempqaiL95OXlsWTJkrj9DQ0NBIPBLs8Vy1/+8hdOPPFEZs2axahRozqkIXv44Ye71U8Y0yhh8rMiEAgAOl5PLQoFe2zfHawt4kEjhxLsNAYszRb/2dIUEzVhHNfeuLEnNKuEZBzrS5Mi/YSMub9iOLsHjed/V/PMsLEj/NDUbDKKRUxqLbuEJ7He3IoN6KsNpCR9LJoMn1c+w4cffmgaJfYh+Vlj2bZrLnUVq8nPHtejYw/OEOF9nqBRAD1D/GP7uJvY+O9hAPxVGgBA6naxGA26xKQxXCi9aaCN7G/FvnCh6z1iUWgdIB7I6ev8rNm+kZJBMxh14yOsfsj0jvspINttZF9xCna3RM2bn0a2H3744WK/203uqePJOmEc1lQXy467l1AoxNatWxk4cGCvwjv7/nYGVS/NQ7WlsHbAVGaPv5/y285Bzl5DSoGbiy66aJ/cm6qqrP/7PFRvkJrF2+F8EVVxwUVW9AtHcuelu/jkgfX0O+wYFKtMbVCk91vtKSLHKnKJjnNu79DvuKsmYk12sP2TzWx+ax0Zo6OLI3+9J67tpAv6c+g5eeRmiN+eoijMnDmTTz/9lOW3vs/BT5wF0/fJ7ZqYmJiYdILfL8bgDWtDjJm8h8adkKT48cQogaNGjcRGivZ/t6c3aZt6hGF46NQAEdNmT1hsTrKHTyV7+FSCDp2NL95H89Y1++IqTQyOOt7FX26pY/bbLZx5dfcMPm7FT6tq32tZhMTyuEeDRDsaqjeRWTCSo49/EIAvP725R8ebHHhYrBKX3JiD4rTx0oMVke3nnnsuAHa3hYln92PiOf1IK0ji7pHvoes6mzZtYsCAAVgsPVdLpp92HJIsgyaTMu0Qtv7+JgYFFKx2FygKN9+87+Rqs7aSEAGqNBHlbbVaKcgeT74+jrXNcymtnEdOnwnYrN0v2J45cTqaRaNp1bc0rVyKNTcXXRPrcbWxKa6te/pBpM6YiDUrLbLt6quv5sknn2TTPe9he+gXcMze3+fPmv1c6LorwimZ5syZw7hxQv8TCASYN28ef/tb58amtWvXEgwGI4aMKVOm0NTUxDfffMPBBx8MwJIlS2hqauKQQw6JtLn33nupqKiIHDd79mzsdjsTJkzo1vXed999fPrppwwZMgRgj1EYe0LSdX2PX2lzczOpqak0NTXtE0uQickPxYIFCzjq8BmoWpD8k39B6vDx+MZ6eHnyMwCc8+E1AKRuMuoz9I3/ech+CTlofAinXjUU+j0xSihGMWtbTKSCkeIfW6NxjGFwdNSLqAaIFuK2GseHjRKqXRgjbC1Ro4TFMEq0FoX7EycPR1TYmiTcZUY9DOO6MpeI9E1qshPZKxZmUotQnunN4mJ1Y8EmOR0sa57FmMMG89ln7RLGm/Qan89HSnImTlsqk4ZdRihd/EPLp4oF7rBjSgGo/2s/ACwtwcj/b9Lj3wIwt2oQAFa5o1EiHF3T3igRNkgl7Wpj57FinC/6VHiEKy1C4NRUcS1Kgwe8hoAZaZtahokixZY2lSXz70e16hQdfyFbXvn73n8pJgcUhQ/fTtX9/yJU00CfGWejDkqnbdlyWhYuQklxkj51CAF/KsGaWryr12JLc2AfNoCk0f05/IIsFKvC+TkivPr4kh9GWTHivbtZe8rdgDBKhBdDff50GbvujE8DNeTRX7Lp+meZ8thpZI7tg0XWGJJcRUhXOhglwgv9IotYTHzRNoT5L+3ijXtECPqXX37JNW/ewe4vNuOpaiVtWC79zxnHwmve5KENxwLwu2HC6LNp06bIZE+2W0hzpfDcc89x0kkn7advZd9gzhl/fpj/c5OfCmvWrOGYmWOprlS5/o40fvFLN37EhNynWyPRcT4j7DhcXDi8vVV14DEm/a1GupzWkPjcYkziPcbn1qAt4kTSFhDv/oB4FgWMd9VvAb9hNPCJdzlgpF71RVOwhtcV4XSsFuOz1SsmiFYjlYrFo2JpE4uHcKSE1Go0bhJzPrUpWrhTSTV+z0ZBV90t5oGq207IJa4xlCTmkUGXuL6gU1xXyAm7vnyD1l2l+Buq23/VJntB30F2fB6Nf8wegu6IL3QdK4tiu61bsgjCqalLWQTwy13KIsTLYyJZXLXgKbzNVQwdeRaZ2UNNo8RPjH8sPYi/X7WBzctaOfO2gWQPz2Td59XMe1ZE+48+qRBLmovmuiClH2/F6rKSMbYP2RMKyZgxBktSdGwEWDTjr9/7PRw79g/MWvGnyOewonW0MpWVoa/i2h4x4nrmrnuUEYPOJD9nbMKxMXZchGgdU9UJzetWUv6WyC7w2muvcfXbr9P67XKCNdXYCvJIPvpQKv/+DLIsM+C1e9lyjkhBVVNTQ15xHzSfUE5lZ2fzxz/+kauuumo/fCP7jgNtzhi+nv533ofSzah/1edj659v69E9tLa2Uloq9Djjxo3j4Ycf5ogjjiAjI4Pi4mL+9re/8Ze//IVnn32WQYMGcd999zF37lw2btxIcnIyW7Zs4aWXXuL4448nKyuLdevWceONN+J0Olm6dGkk6uy4446jvLycp59+GoDLL7+cvn378sEHH4hrV1XGjh1Lbm4uDzzwAPX19VxyySWceuqpkULweyI9PZ1HHnmESy65pFvt94QZKWHys+LQQw/l8LxLWdv4Jbvf/x/oOvaxw7o8xlEtEUgVf0sa2Iy5etiRJBxlEDZOQFTxH45+CNeHiBTA1qMTt64IGxnCBopw9EPEOGEYNfwZYgIYSO5oHMlaIU7qS5cjbQFsTeDLFDfh3i3ahDLdWOra5XQKGh22s1/qPj+ZUh5fffUVHo+HpKTuewaYdI7D4WB0/zNYtulFaptKSUsfFdlnbYXvNvQF4Bf3irC7eX+dgqNW/I8W3jQJgBMfmQfAmpY+AFT9voRUSQiPN0fMgnQjPD/83h1PPCloCLmmgU0IpWYX77ZGcQ3+dAvDDv01Kz5/mLrl83t6+yY/ApSQE0mxIikS5XPfIbPwWFJOOZi0qdOpef1VmlfXoAV2o/t89JleQnK/dLYvrqHq3x+yomkEY66cGOmr39PCS277Fb/bJ9c29I+PALDhrsQROiPeu7vj/SgKuVefRqixhaRhRR325+VpbJIl6ldVkDlW/KY2tuTS6HcwLE2EyIaVUDI6oYDKePdOFIvE1Wm7WLOzGkmRGPqrgzn44IMZYBnLgHPHEtKinqeSJEWMEWEGDx7MsPvOovTBj0kZWUjd/I2cfPLJPPDAA5SWlnLiiSdywgkn9MojxcTExMSkIyNHjuSjBbk8dn8zD/2pkWBQ55wrMro8JqgrBHWjjhsSQc3421gohIx97VPmaLoU+Ts8xY7m7+/BuN6N+Vu3ugvPB2OLW3dR6NrSFiLksnTZd3LRYOrXLGLnzp0UFxd34yJMusMfnsjn8hN28OW7jRx+rki3EZbBWFkECGpKt2Qx/P59yOLgg85j1Rd/Z8e2L8nMHtr9/k1+FNhS7Oi6hC1J4a2/lnLCLVZGnZDPmAuH8u7vl1JZ2kbQ24S/NUTuxAJyJhRQsbSCdU8tJGt1NUN/dwxYokaJMR/eycoT/7xPrm3CZWKdsOzfnUfyHzv2Dx22jbUcRqNeQ56lb4IjZGyWJBqbd5CfMzaytbOfjqaG0FSQFQvoEKgTRtv0aUdw9NFHk1xVRvLUKeiOaB7wcMR52CABwggx/IFfsPm+93EUpFOzbBtXX301W7ZsQdd1Ro0axUUXXbTPihH/5NnPkRLffvstRxxxROTzDTfcAMDFF1/Mc889x+9//3u8Xi9XX301DQ0NTJo0idmzZ5OcLJwCbDYbn3/+OX//+99pbW2lqKiIE044gbvuuisuDd5LL73Eddddx4wZMwA4+eSTeeKJJyL7FUXho48+4uqrr2bq1Kk4nU7OO+88HnzwwW7fi91uZ+rUqT3/EjrBNEqY/OyYvftJdF0nrf8oar/6jOJxYznHfwUAI0aJ9Dc7t5QAwiCxt8jBqAEibFyQg0QGM934FSYZkY7hqApLfK3hDn3qMoQMO4DiixbIDhsufFni3VEXPS6QGl9HInmneNjpMek8Q5lulFZ/NELC8IjXfcZNxCxQLFgJBAIEg0FM9h1ZLSkkKanUVK4ivY9IjdVZ/Y/u4ssSgqXZ4o0RcsiIljHeNZsSiZCQ/eL/qiXZ6Ay5xUP9lHxa+4j+0jepKLIVXQ3hLhq0dxdtckAiO530ueVGgi3N1Pz7eWr/8x7oOpLNjh7wI9ms2Pv1wzVuNKPPdpCU60Y/uYDa179k46tz2fjqGmZnKgSKh5FybBn2vlFDgN/vZ9euXQwYINKMDXjtXlyLxUC36pHrGXzvI2h+P7aScmw5qXiWR5VFskqvqfzH2x22HfHFjQSbvHxz+atY3Xa81mR2btXwJ2cjSRIDs2rZ0mIMtMlQtaaWjS+tYtP8KhwOickzUki/wMUvf5HCM6+1Uv7ZJsY9fyOOoqxuL67W3fo63ApT59zM3RzNjBkzeOzrFyh7dzVPP/00ruJ0Jv/9dD479Zne37yJiYmJSYTx/Xfz3D+hpS2FF55u4djzs0hyyQR1Bc2oGxQ0Ju9Bfe/y4bfP4a9HtifY2NnnBIScUQ/1uEP3tKxpb+Teg9F7T/3JNuFF1dbWtocTm/SEwsFJjJiYxOI5zUw9p88e2yfJgYjzRHdJKIuxO9r/3QmJZNFqcxEKeUnPHNgjm4fJjwNJkrj5lTHUtyj897rVfHL/BtSQjtWhEPSrKFaZnGHpDD5tCJmTS0guTKXkgkns/GgdK/76JdVfbsKS4sQ1KI/M0w7BNbpfpG9VVSktLY1EEvf71wNIRjTZtmtvZPA9j6CFQug1jdgysiJ6EYA1D/Q+pfDy4LwO244b9Hs0PcSSsmdRtSAOeyoebx0WV3bCdHjehioqv/qCpq2rQddJHjCc5HEHkTJyAvVL5tKyejmj/nA3jn792PK7G7p1XauveR6ugSmzb+HxjDM56KCDeG3dx+z6ZD0Al19zOSc9fxJvnfFWr+/9Z8N+NkocfvjhdJWkSJIk7r77bu6+++6E+4uKipg3r6McticjI4P//a/r2o3FxcV8+OGHe+yrM37zm9/w+OOP89hjj/W6j1hMo4TJzxJJksidcDSb33mcptffI+mO4wGwyEJJH0gX7RyinEIk8kGzR5X+4W1hg4OsGkpdRYpERGjxNV/aXQRxA5pP1CbGaUQ4h9c5vkywNxj9hSMuEqSKCkdIhCMhrMb8v2acuNBwH4lIXVNvdGx4SdU1obeKDnRVRbIlmMjqOg1qFaNHjyY1NbXzzk16zKzyJ/jd7xw8/vCTjNhRhyRJFLSK4iA534r/xdKXRM4/ORM8eULQBv6fmIB8eoNIPj/zYfHgKr8rBZ7Mp7sEMkQ0RTiVmOQX2t5QmlhcWgOhSPHr+onZCToQFjJbSma3z2ny42HbtTdGP9z2R2bOupLGDVVs/jyA4naht3jx7FxP3Rvv8MlrGrLLgZKSiuyMhsT6bS586zfjWb4G1+QJlLj9NH28mLZFK0SBa0XBfegYnEP7Uv7WNwRbGzl5y5dUllXQskKkKRvz4R2AGKNaN6whUFZGoLaa1o1ruHT7Kv773/92iCJoq3L16F53vf0dwRY/1qJ8dj41h51PzUFOdZP1y9PYPG0gfTPF2Ll9/i4+uX4eeQOSOP7qvqytyeDrL0o57K3dXPnGdM7532jeumEJ2//8GoOfuKLH33m4eN3oD+6gIKWZnCklLLv5fdp2NvD5af/hyCO24vF4WLhwoekRZWJiYrIPOP/yFGa908o9N1Rx9z8LCegWAu290SNFrQ1jhWZBNQwXoXYRE+E24Si5PeXu3yNdKEUSGSQihxmPiHA6z8hzsisDhLEvfIxwjNqzGqGtfCuKw8XQoaY3/L5kZsk6Nvzi7/zuputpbtFxui0JZRFARaYtJOb1e5LFXhde77Es6mhaCIczvXfnMzmg+fXgBZG/f/813PntCZSva2TryhbsSRY8XomypVUsfeI7tEe+xZJkxZHtxprsQFJkdFVDsllo21xJ0x0v4R7Tj0E+K41frqF13jJ860QaKMewQbgPn0Lzx3MJVdcw44NPqWpoofnbxQAMvuVvKFjRdZ3WbevJPXgG/uoKmnas4cgtH/DJJ59gt9s7XL/egwjk3c1r8QYacTmy2Vr2BVt2fobF4qD/kBPIHhwtTOSp3cWG9x7B6k4ja+xhYFVo2riCplf+RdF5V1B89e+oePMFKp/9D0W/v6XH33k4xdXx864FYMhpQ/j88ncJtgV5+8y3OfOMM1m7di3ffvstLlfP1kI/F3pT6PrnyjfffMMXX3wRqS3bvtD12293dPbrCtMoYfKzZdObj/LQQ0X87qab6FM9GWtO1+HZe0JTJOSQLlIzBcVIFUmlFI6AVQzv9KCOP92YGO7JyUqKiWQwBkBXjVAIe7I7Vz6FjRyqIzxqivOFcxi6yzVSNghLheQ3LjRcJ0CNdznWAzEFjzWjP6uFBq2KMw47fg83YNIbmpubCekBNF1FkXo2VPf5Yyljkncx5/JpAPj7OLB6xP/U2ireI0Y0qxCu5n7iYZJW2vlTVjaME1JII5gjQglDDiFXthYi/SoWB5Ks4KnY0aPrNvlxYkmykTW+iBpZhDTLfonU4smozW34S3dxbepQHnp7FqrPi31iHoG6Wrzbtoi2KS6shWl4V26i4eUYjw1VpXXudwR2VhKoKQeI5MIEsOXm0bYinZa6TTR+NAf/5i1x11ReXp4wrdH2y2/q9n3lONvwD02mZuJQJItC0si+pI4rouaT1VT//SXU8uk0ZGdizUkns0JElh30wMm8e9orgChQllxSwPO3b+Gi/xxC31vPZPN1/6Ls7+8zfP0mBk2PGgrfm/ZEwmtoT15yC5ou8e3v3+MXEy5g/l+X0rC2ki+//DLyHZ1yyindvkcTExMTk8Scfugugv95jXPPPZe1yzwMGL93DjhJFj+tQUek9pAel76pE6Xw96H4aG+UiPXw7cJgYfGE9miYaN1ViqugxEwzuB9oampCVXU8LSpOd9f/B5fFHzFMQGJZhHD6pu9DFiUsFifNjTvJ6zNxz81NftRYHQp9x2eSPVbMe9tCdsacN5T6JqhZU8PR3qN58ttXCLb4sRdm4q9rpWHZDtB04diUn4N/eyW1T70Z169v/WaQILBjJwBz5syJ7JMUBdlixburjJoln9GyeXXcsZs2beq0uPany//YvRuTJJJs6WSnDEaWFNJdxaTnDKG6aQOb1r5Fq78GV2oBSlo63lAj6Dol0y9g4wfCu1zXdVx9B1I1620Kr/wtuRdfyq77/0r1qy+TvW0jriljI6fqbprb8G/aOqSY8+ZdxIqnv2Xbp9uYteBj2qq9PPvss1xzzTXduz8Tk05IS0vj9NNPT7ivN8970yhh8rPmqquu4rab/0DTe1+Ref7pNAeMfPvDRa4c6UvhnR5OjaQrEBS62IjnR1i525PJmsWnEwwaP1gt3I94V40CSMEuSjSEjR2uKnGwP1WOpHIKF1CKJbaGRfi6kyoDSEZhJN0pvO8lbzTGUTIKp2GkbdJD4qSS4VFQ6luOV2/l7LPP7vJeTXrH3LlzyZH7oNjE9y15xf+qfpJYFCs+IXAlv9pM9T0i3djuu0W6pOMf+rLb5wkbypoHGgXoPFaUgPjb1hTOCdb5wyVsgMtaLoqtaA4rduwU5h5MxdK5Zr2RnwEfHWaEbh7WeZuXG8XA5Dec4vSMnbSVe7EPLEJWJDzfbUBSFBy5fbCOyEV2OWn9bAnBXVXY03JwFBQjKTK2nHzRZlAx9Z/Non7unLjzOEYMIvmoKXzyyLN7fV+vTfknTIGBg+6JbCs9+w6OPOK3bHrCzu7Xv4yM+7sBW78+rKgcEmlrs9noc+1JbL/rf3zw23mMvOsklMsms/6phTTNX4flhun0O3k4ktK7yAZbsh2nXae8ohlHlgtfbRunnnoqPp8voeeXiYmJiUnPOOuss/j9nRfzylP13PyvjA5pm9q/a0iRvP3hnP5hr/RwUeFuoce874v8Nt1J2xSOsourKSFH9/ew77q1i/FUbKP42Iu6fZkm3WfevHkMHOsmJS+JoJ5YFkHUkfCoRh24vZVF2Ht5lEC2WCjufwTbNs+i74Cj964/kwOeP4x8v/OdRor9L+fvBsAbFLLaVB3EW1aHZWBfAroD36YyJIcda24G1uI+KOkptM1fhm/jFiwZGTj69gNFwZ6Riz2/D67sYhq/W0Tlx2/Enc6V04/s4VPZNPvZuDz8veGTTSKKeea4uyLbPl3+R6bP/CsOZwY7t3yBrkfrQthTs7G6osZtSZLIO+Esdjz/OLuffZLcX/2KzFNPp+bVl/Fu2ECouYGUI6chWbtKvdE5FocFi8OGt86L08iCcO2113LuueeSlZXVqz5/0uzn9E0/JY466iguuOCChPtuuqn7DoBhTKOEyc+apKQk+qZOYPPXi0g9oXuTItnQ06rh50OSmJyFlf1BF4Rn6JIWb7CQu1F6IWyMsDeJd78cjaboMlQsfCpj/RBKEQ9BKRSdPLrLtYhnu+INoTttSN4AHXDY0esbRX+a1mH3dv8atgRW0L/kGKZNm7bnmzLpMWeddRZ/u+9+Qpofi9y5grH8kYHIdvHPd9QIA9Ks34j0TRYjwkUO6fjThRDlXiVCXpv/1LGgb3tai4Uw2pqFxcxeKVJ6qclOtl0l2mTOij9G9gXxZzkp7DuVsorF9JtxBjlTZuxVHk+THz9r7t/D//88GGEdB0BgfBttKzbT+K4olO4PVBMINOOtb4wo2wf96hbq585BUizoqkpenwkoNxyDJUNM9vdlCqPSs++I+/zF0Y/C0cLDyev1MuAvN4EEtgFFHbxDtt7yLPOmXMJRJ86k6crXKTl5GANOH86Wt9ex+uF5tGyrY+hlk7p9LZ9OfzTy95bmTNok8Rv11bZhzcsgWFmPqu5FcQ0TExMTkwiyLHPWlVk8dONutq/3kjd0z8rcoBafvikUTpWjx6fKCelyJJ2OqoVzKu35msJrgV6lj5CkqIFBjtkWs1+KVdRJUnxRgfbHdGKsqN+ynN1z3yRj5CGkDRrbiws12RNnnXUWV//fF9Tt9pHZx9Fpu6Amd0sWQaR32t+yGHLKWLwa+UUHs33LZ+zY+gVHHXYPn8+/Y88Hm/xk+eSwv++xTf++/QDQAgr+7btpfv8LAEL19bTW11NZWUlurij8PujGP0cMEpKi4C4eSsG0k3HZRdrh9ulm9ob2kRXzPr0FuAVd1/H7/Rx0+m34JT/u/P4dak1sfeqvrLrqPCYcehi7//4oqVOnkXr0kTR99gWN73yMb2MpmRd13wE09ns8f8llSHah7vXW+0kpSqa5rMWsBdoJZvqm7nPNNdeQlpbGiSeeGLf9hhtu4JVXXuGBBx7oUX+mUcLkZ0+fhky2WC14X5vPtlyRiuiS8QsBeGG3cP11VogHiK1pD3Ui2qHawpN28RY+VrPI2JvEaKZa4yf03gQp+pVg+DjxHjYsJBoQnTXgyQM0w/jgE+/u8hjjQswpdacNqbZRfAgr8rw+sFggFFO8wlikbEkrp3TnUvr1OYySvEM7XoDJPuGqq67iL/f9hdKGRQzNPQotWShj3eVC4Wgx0jEFUro3jGdfuR2AmsdFVIWUIoTH4hfvuYvD6ZzA1ij6DiYn8CBRJAIZdgpfkIw24rhgulgQaUZUhdOZQWHhFHZ9PYukvOJu3rXJz5m1f4kxXJwFg1v7U/v1HBpXLUGyWtBiDKQhj8gXpqsh0kYdTPqxZ7Puhhvbd5mQ85dchlOJTsifmfhcr65XkiRGvv8woZoKbEW57Lg4cQ7Y6dOnM/Kxi9j9+Ies/+8yQt7oube/swa/IwWO69Ul0P+ao7EePJZgVSMtS9YTrKzH5XIx5bmLWHjx873r1MTExMQkwpQTMsl5pIbX/1HNVY+JVK+BSMREu8iJPeZkjSeaKqf953DeVymiHO6OEqR9m0RO7aEkCxZPqPtFrdsZLWL7SXSu+tJlbJ/3MumDJ1B42Ok/e+XN/uKCCy7gd7dcw+sP7OBXj4zYa1kEIXddyiLAHhR3sfti/w4fbvWIuZzF6qTfwKPZuvET0hzdr3tn8vNl63m3xX0uTsmmac48WuctRA8F45xyNF+0mIm731AKT7yQdY/e3K3zzDzoj8it0ewRn6z/S6+uV5IkHA4HvrYGFIuN755JvE4ZPXo0xVdcT+UHr9E49ws0X/TcvnWbaHz3E7j5z726huEXjaHvxGyadjZTt7GONa9uoKCggF88eziF47K4f8wbe+7k54T5vOoWr776Kueeey7vv/8+hx0m9KXXXnstb731ViSlcE8wjRImP3ssko3Mgw6ndvEcnHWHYMlMi9s/avw2Vm4rBMC+3Y6jxtgRLn4dNhREIhz0SEREILnzENdgkoTVo0ciG8L9hdNDhftLVCDMYqTu8aeI/gMp0VoRQXe0nRSKFuaOGFPCdhJfKLoKchsFj1rbooYJEIYJv/C+lwvy2NW8htKdn1I45GgGZBxm5ojdjxQWFtLPOpIdDd8xJOfIyHZPllhkpOwUEy9HXSBSdDpc70PxGKm29Gjx9e5g8WtYq4ME0oUnYDiNUyTiJ0E/1hZxHUqbOKfNI6IzgmkOUs45A8tTq/Hs3tat85uYxLLp73cBdxEMBpFlOS7MOiV3IEMuvg0pMwXZ2r00BAfPuo1B6TWoAZWvHllE9eoahp4+mP8LnY3FrvD3ca/06PpKHn+Itk0rqX36HSSnndDNj3ean/asg8tZ99QJ6LrO4jUZ+LdV0DLnG2S7leQje5dP+auj7xd/zDSu56kbaPt2EwCVn2/kmL7XM+fwR3rVt4mJiYmJwGKVOOfaXB6/uYxjV7dSMsodt9+nW+JS50T/bhcxEYmgEO/dLircXknS7rieKv0tnhiHI0mKpmtKFP0QiaqI2WfMLRPVlGiq2Mj2uS+TOfgg+hx1NtI+jFo0icftdnPG9cW8cPc2zvlDAGuqWOglSi22r2RRb2+Q2EtZLCqZTs3ulTQ2mzXoTHrOzhvuhBvuJGQ4UcbOwe3p2Qy85g4sUhKKvfNIoliOOvw+ABRdZ3PNfMqb11GcNo6jC6/CKtv5ZOejPbq+qWc+SFPNFkrnPwdAQ8NfSU9PXNzdkpxC/qWXoes6IbWFQGUVzV99ha7ppBzZRX7cLnhp0r/FH0a97V/NO5s1r24AYPW72ykcZ6ZwisNM39Rtjj32WP75z39y6qmnMnv2bP773//y3nvvMXfuXAYPHtzj/kyjhMnPnjnqaxw98mYWSAto+8/nFM78BS9YRTqNUeN7rkwNOSUwnn221nDBa/GuG5N6b5aEZoFQkoS1pWMfchAkw9gvB4gMfLbmxOdU7SKKA6LGDCkU38abKSaeYU/7moPTyF4mDpJ8wejCQ9NAliPh27qxPeCS2bRtHlmF4ygeNgOfJPHV290rumTSO+yqHV1XoaUVz7DMHh8fMKIX0q/ZEQnNbukj3pN3CUNGOOrG4u+YpgvA2hxCNoweulEUuy3finu3sLxplvgFSVheNJtC5mYVQhqupt7n7Bzy2h+QrOJRteH0P/S6H5MfL4lCrFc+2vt0YMHWABvfEcr7RfcvofT9TUy8dBhjfnMNjRdnoza3Yfm8hg//eiMjR47ssq+2haUA6F4/ixYt4tBDE0eP3T4iWsR78O4/Y0lPJmNS/17fQyKsOekMePlO+iRVY03p3gLMxMTExKRrTum/ghNvVHnr38m89mAZv312dETh69N7vpQOp8dRNTlBoWujUcRbfc/lIGDPyuC4wItwh51FSsQaEqSOxggkKWF/mqayY+m7uPP7U3zo2UgBmWX/NlN37k+S88Siz+uTULuInHYqQbxqx7lUrCxC+0LXRqMYWewuXcljx8ALDVnpvUrqiOl/RpbF8Z9/eWuv+zH58ZLIIWjdPb0fe3RdZUudyJqxseZLdirfMTB1EpNTTsYlp6ESosXm4R/v38LkyZO77KuhYl3k7w8//JALL7wwYbuNd0avt/9jD+Ec6MY+bN+uE+zJNi5ffC42Xxv25B7UlfmZYKZv6hnnnnsuDQ0NTJs2jezsbFHnaODAXvVlGiVMTIDP1vyNYX1WsmHtbIZYDqatSDwEVrT1BeBfR4miqe8Mn8CczcMASP5KFG51NYpRKWREKqiOzpcPkqbTmmdMAA2dUXhSZhO1tRPWndAs4M+EjHXxM0M9QYHU9hERlrb4/Z5ssZCyeNvHeOvCIAEiQqLd7HNz+ReEtADD06Yz752eF7Ax6Rm6rtNgqcOppyElJUWiFcLvYQOXKFQt5EBpE2ExcpMHgFD/zj0gWgplAtNayHxNRMnIRlSE6rTg3G0c38mEJWWbjy3nin15C8LyLj47YlLT1A21wJdWWlND7bvoFsuXL2fzJX8j65wjyDj5kF71YWISZlByJWtf3sjOz0pJH9OHhpW76XdoAZ5aL5/cvBBYiLzMgeYRv6NRHz3H2rVrGT58eML+1JYWvKvXkHrMkTTPW8Bx115L7oUXseXGG7q8jk1n3Lmvb22/9mtiYmLyc0dRFM68oZjHrt7IqgWN9D2kAICgES7tMybffs0S442eOI9/V1itKgG/FV2LpsqJ0IU3u+qIRkbvEcPQoHdWFyL2syxFonCFMSJ6TMgZ73BSuX4evuYaRkw7v9M0JSb7lrVfN2F1Ktiz3AQSyCIIOQwbJL4PWewpsmxBVXuX437Hjh18vehv5OWOZdDAE/bZNZn8PNGByqrllJctJtPVj7q27aTbC5CQWV0/GwAFKxohdHSmTHmPefPmRdLXtEdTg9Ts/I7sQVNo3L2Oq373Bx6dX7tHY+3W6/bP+Pnk+P/tl35/MpiREl1yww2J17c5OTmMGzeOJ598MrLt4Ycf7lHfplHCxMRg5bb3yUgrZP2W98jQftPtkOPmfmJilrZZKPSDGnjyxDZ/unh31Bv5953R4xQPqEkxn43c/slGBGvYAuvJlQikxp9TtRvRC0aqJ3Q6uFJJqlG8zDiHkqCedQSLsbAIp3Hy+aP70txsbVlGWc1ShhYfj92ZOOzQZN8xw3ou27UNVGnbGJN3UrePC2SJf3bYMKD4RVRM88NF6NeIvGPKUfUAeP2dF0dpHiTkwFUhhMZSb1i2jOgZ1R5diFYeKtz4St42jCVGNEU4dZQtLRNvoLbb9xDLQw89hO4LUPPCbJJG9+cY+SzmaGbuS5Pe8e3Di9j87kYKDimivi6JtGOOpm/pIJzWFGqPkfC21tC6cxMtZ2dg26xS+fWHrFixolOjhK9mG3owhLNvf+QjbDR8NodARcX3fFcmJiYmJt8Hj165nk+ez+D1P23iN2/nYEvq3jK6faqcSFFhTUIzFL6RgsOBLvps57keS7cNEom6NQwNktyJolmOMUbEYPGqhJwKuq5RtXUxu1Z8TP6Iw3FlFPb+Yky6xRMbjuTbj6qY++Iujr9xCLIsQeKAZyAaKdGVLAJomrTXstiePRnMnI5MvL76PXeUgKeeeopgsI2yXV+TkT6I6SeItJbzPvp9r/oz+XmzY+c8tm6bTWbKQCRVo1/mZArtg3FbM/A1VtOi1tOoVmPBii0pldV1s1m8eHGnRgm/p5GgvxVXRh+S8vuyY/6rNO/e9D3flUl3MSMlumb58uUJtw8YMIDm5ubI/t6kdzeNEiYmBjabjRHqeL7xfkraywvIGzad2rFCwXr1278GQHVr3HeUUIr+0SY8MpTvkhN3CIQMI0TTIDFyOaqMVDk+8BnZeJQENSMAvJlRzxTZMCiEI28t0TpOaDYIpEI4gtzeIN797WwHRqQ5ASNCI7ksBGonMbkWBezC831LcAVbmpdQlD+FotxJnd6ryb6jQa9hs7aS/q7x5LuHgq4TdImFg9WIcLE2Ra1MqnPPQ7nv1TwAJMOg5R8phKjyFGGAKvm32O7L6hgdEcx2Y63zQFAc0zjIiWwY0TRHu1WQYctT2kJ4+1gh1Y4e6Moi1hFd1+n/+7vY/fEskkaNIlBeTuDGj0E6qEf9mJgATD/+fpobd7Jp0Qby+hzEEQ+OpvaCDNgGusuKDmRt8gDJhPrNZNeCpWzY+jHO9HzOOuusTvvVaqtBlnFkF+IcOIjGuV/iWb/+e7svExMTE5PvD0mSOP3ukTx06kJmPbGF424aHvVGT5S/vxve6Gq7nP7R6XjHQtcd6IFiOHoTCbaFLzNsnIip3xRN6dR5fzU7l7N1xTtk9hlN4djje3AxJr2lepuHl25dz4RT8plyyQCCupRQFsW7jC9B6qZEqJrctSxCQnlTbaD4E+/r1CARjui32FE9PY+UOHzC71mx8RVSUoqRgB3lCxhdNKzH/ZiYTD/pAQL+FrZum01G+iDGD7wA2SvWx1KrUNQ4rMk4rMlk05cq/zZW1n+BXXFz+eWXd9pvW+NuANxZfbHmFVC54nOadqzZ/zdk0jvMSIku6U0B6+5iGiVMTGJIk7NJkpJpKFtD3rDpCdv85clzARh+hsgl7jhxFwArPhITIVe5Hik63RUOw3k8HAXR5jSUxWlilHNWRdtaPKJuRIsRlWFtCafuibYJ16AI16gIGzLCkRLNA4Ty2F4rVhaWtlDEqx1jwqg7hUJaCiqE0oW3fOWKVWRnDGNIyfHM/vqOPd+YyV6zTVtPMmkMcndtBJJCGrpVxtJi/LONQtSaXSw+whEOmi0Zb1bXdR00m5ALe310YWBpNiZkQTWubc6X5aRuF1a1rWcrccfHXpulWUbWLGgBP91l0Bv30PLVSqoeexNJUSiechlNa5ZRteprbI+ZRgmTxOi6zvScC9jt3UidWk6yI5fB2dP5fNOjaFqIjateR7ba6OccRc3l+UgYsu0LotuskfQUlpoW6ivXga4xeuwvE9azCBOsqsOWk4slJQU0kO12VF8rmzZtYtCgQb3yFDExMTExOXDJ6ptE37GprPu8kuNuShxFF06jE4ikz4n3To/k8d+T0cLw2pTapc9J5KGp2g2l8J6Qpahhot3pdbcTyRuIFrWGSIRs9HjjXYKQS9xf3Y7vcKcXMXjSBSz8n1lr7vvgi+fKcGfYOOOu4Wh7mGsENMveyyJRuZM0qYMsyj3zPTIOEtctyxZ0rftpXo8dcycNbTv5ZssLAEwYfwWtrZVs3PQ+qh5EUcxc+SaJGX7pXTSuXkrLzvXYXOkUjz+R5W/9CV3XWb/sJUCiqGhq3NiYaFysC5Wj6SEOLjiHtLS0Ts/na6tDsTpJSi8gJEkodifBYCulpaX069cvYS0Mkx8Q0yjxg2H+EkxMYtD8PtL1LKrrKkhZvIvacSIE2V5reA9Vd69gb3hyFq7voPjCymLx2VqrE3R1nET603TUHKEU9sriYGelFIm4CBM2ZGi22BExvj9vrnHuThYptWOd5C6Mr7IteURj3RUtkhpSfVz5f2fypz+ZBonvg5qaGur1SoZaDkKyWsEo8pyyRRgYgilCiKRQF3Hascgysl/FVW5M+MOeSV7Rr60lbEHruCCQPeEQHeNcCarcFX0sxbVRk4TcKq1B+r3fQqXdjrK9unvXahCsFGHc+ef9Eqc7B19WLlqrB83TSViRyc8aVVXpn3UwOxu/AyAveSiVzeupbd3CiPOTCZStweupY8DFN5D6jQ1CWqSQp26krtOTXUiNzTT7Kqlp20LxwKOxO1K6PK8l3YVW10T+whA7Z8o4hgykad5XDBkyhNRjjqLh0zkHpGHis88+Y8KECaSnm6n4TExMTHqCX7PS76Bstn9XSnVFCGu2cODxq/GGiD2hanJc+ia93XtnCg+pE6VJpwaJDkWtYw5uV9haMuqSdSh0revRbTH1KCxtIUIuC2rIz1mnHs1//2vWm/s+CAQCfDermsnnFqPZHNEaErrx3ktZBJG+qTuyKOlG4ERvonTayaKi2AgE21BVFaW9EawTPH6RFmBI3+NJSeuHrmuAjs/TgCs5twcXZfJzQNd1+kw7mYqFHwKQXjSKlspSVn/4IGOPaSXU1EBT/VbGjrmU9MzB4Al2HBeT3dDmwau2UO7bTJ/kkbhsXc+jrY5k1KAXNeQHHCQXDKRq9VwGDRpE+tCDqF27GLmb6cK/T77++mtKSkooKCj4oS/le8VM3/TDYRolTEza0Y+hVGq7+KbsZVLrf401I4PCz4TyXrfINA4RoQcbPxHV5T1Fwov8N+d9AsDjs47FUZO4b3eZGMGSalV86UZYrduIkMjoOLpZmySCySIsFkBXjAmcP6rosrRJaNb4qIlY/MWGYrmtYwPdYijmwhETsozkF+3DKYFkiw2v11QGf198++236OhkyvkJ99urREX0SO0GT0wUgxHkEK7nQBcTHVeFMELYGsVKVrMa3lNJFuRgR1kM5iYj+8S5lIZWbJXiNxEcGD8hs9YLWZECIdQUBzk1yWz1Vu9xsXHoqQ+gaSGqmmbRMv9rUo6cjmvwMGgAR3KOuOfyjZ0eb/LzZUjOoexs/A6LZGNc2nFk5g7DF2xmYc1rrHvl3ogxrd/8AJIio1stoAkjmtRmaHKC4vews3E5Ohp9+kxCVruecaasctKoBVElDZBJPfZo1KYWLBnpNM35nJwZJ1Ez58P9dt+9ob6+nmOOOQaAuro6MjIyfuArMjExMflxMfm8fix+eQcv/vIrTnp4KtmD0iKpc/xqbKFrMa8KGJ9VPd47PSHhx05YIZzAKz2WiJGiBwqSDvUhOit4Hbs/xhgRnmOG+5EVq7lO+B7ZuHEj3uYQgyZnJtwfK4sgCl33RhYtNpWQX4mXRehSHnuTUsyRlEkw2EZVVVWXStDjBt+Mrutsaf2G0sr55GaOojh/MiHA6coGoKl+q2mUMOlA4YxzqFj4IbLFRt/DziW7zxhCfg8b5zzNys8eJSywNkda9KD242KrcA7c7d1ISPfTL21i52OmgawIQ6GmBpFwkDNiOm31u7CnZVO3eiHZ4w+jbsVX+/BO9w3Tpk0DYPPmzQwcOPAHvprvETNS4gfDNEqYmLTDKbmYqE9npX8h5X95gJJ+R6GlH4Qsd+298cQqke7p/KMX8NIXhwLRGhKJcrg6GoRhIhz1oBtRD5YqI/VOa8eD+r8rJv1hBfLu6dGIBluTeA9HVVhbjc/G3Cyp3FBiGw7xqg00h9gmB61IfqHR1u02tCQbzf0MS8gKGx6Pp8t7N9l3vP766zilZJLs6XEFxxUjEkF37DkvrFQjPIhaJvcFIPnrrVgyhfFATRMCEkxJHN5sr/FE0j+pbiFfYTmJO0c4x2aV6E9qF0WhW2Q0XaO8dgU56cO6NEgcfOGD+Gq3sHvLV7RWbSDj7NNJnjqFoKThTw9R9cG7ADQu3LLHezf5eTEs+yi21C9iUNpUBrjGi42tHhxYGHzyNTRuX4NzdTmarqIENHCCFIyJCgoZRj1VvBc4B1PZupHvvn6M/pmTaWm5muTkxHWDQiEfkiymUcMeqQSgedwVACwrKMdfuZshf3qEjX+4fj/cee+ITUc1f/58Tj311B/uYkxMTEx+ZHhUG7hsnPvCUbx/w9f87xefMf7iYYy6ZAwWR9fL6qAaVgiHvdLlSFHhcMREl7RTBscqhbubvkmXiKQm6dQ40T5SggTGCBlCTmMNoVjNdcL3yOuvv47dbSF7ZBYe1dYhQiIRDiWEL2Z/IlkEUXA9Unw9uGfjWSJZ7C66JDzYKyq+JSW1uEuDxLGF19EkNbCreSW7mlczIPcw+pUcFZHFzZs/AKCuah35/ab0/GJMfrIUn3gx5Z+9ScaIyRQdcbaoceLXsdiTGHHo5dTuWoXmbSMU9GFzJIPcbmxsNy7mOgdQ5lnLN7tfpST9YGpra8nKykp47lDQC1L0d2RNSmbAKVcCEPA04aspZ9SNj7D6oQNnnRDLBx98wPXXH5jXtl8wjRI/GD0ySmhaN9OFmJj8yFmsz6GpqYlRaRMp3foJlbalDM85BufIsaRtFspYX7qImEhbIyZ2LdMS96VZIW1L/MglBTW82daEA5pm19GSVVRDESypEporPqd/eF84PZQU89NUAuDLgnDUrmN7VPnsKVAhrBtWIX+hFqkFoNutkdQ7bQV2PLkSSVU6WtCP3d6NIhkme80xlnOYq75LsW1YNO1LuEi0YaCQFCOcNJyH0mYD3RAAtfMxWmpqQU9NxtIgFo5KiwhHlVrEZzlZyHMkagZhWLCU16EYBjktVaQp0J02pJb4dFDhnPyasSiXPQF27piP19fA6MHnJrymgadfS2Ppclq3b8TfUossWRgx7kIym4dR0SjO6Q214t+8VdxqSWGn92fy82LaEXdRVbGc0tovyHMPYUD6ZAgKw2rLwUUAZFeGyHZMxJ5SGT2wRVhrQyUiEsmy0wjLNoxmGeQxNftcNjZ+xYaqz8hOz6ff4eeTWjAEgCUv3BDpqrpyJdl9xiBLMm3Dc+Kuz5aRRbCxYd/f+F6SnJzMyy+/zHnnncddd93FSSed1O10CXsiFAqxePFiFixYsE/6M/nx0dzcTEpK12nPTEx+Cjxzwkf4jvIx9bpJfPfcGjZ8vIODbphM1iH9IwWGA+0iJrqifcqc8LQucf0IXaSFjdnXrXoSBiGngsWrxtQvNlLUAihyvFFCkSNzS12S4pysLF6VkFNBDZnrhO+Lu9ecwr9e+5LhR+djc1rwa1FjRCRCol1Nk4CmRAwS34cs9oSa3ctpatzO6LGXJNy/evVqTpp6EfW+XbQEa5GQGVF0En0yx6EZcqppKtVVqwFwp/y80s2YdM7Q6++ldesGdn/0P5x5xRQefmaHNhZbEnn9J6P4Y9bPxtgYNy5CZFxMtmczNe98NrUtobT+a/Lzihg64GTyskcDMOer2yNd1ZWtJD13CFaHu0OSZFtaFk1Vu9ATpEb+oZk9ezYzZszgb3/7G1deeSVOp3PPB3UDTdNYvnw5b7/99j7pb19jpm/64eiRUeJAzI1sYrIvmaO9Efk7NTWVIdJY8vW+bJTW8c2uV0j3LWNgwZGkJheS940HKaBSdqzwolW2CKXuu87RTJ28DoClH4/o9FyeXPF7CuWH8/Yn/n0VzNdIKheGkNLzhFK4+JOokSKQpmGvlwm6jG5inhuqS0N1hOtZxDxwZZ3kTYbyOKChhVMBtUtX0poewN9Sz+jRozu9D5N9RwAfIQIkqyloXh+y1YJENxSGkgxtbeA0ImcM8XBvMJSiqgYWYZggxd3xeIsFyS+mS1JzWzQqSIs3hskVNZH2nnFC8Wurj18JB9IdBPwtVJZ+wba6RfQrOJRkV+JUVJWLP8bXUEWuYwBFfY8lxZFH6UX5tAFSyEhVJqUhWSxYs7NJHTp5z9+FyU+a6cffT0XZEjaviU5os61FEYNELOEUY9gNw2xjs3i3KCgtRqqJZGPgbG4V0RLJbpweGJs2A6/Fz5q6z9j4xb/JHTKN7IHRwvPr1q0j0FpPvjMb98oK2kYJGbc1id9RVtJAtq15C+fSqn149/uGs88+m/POO49Vq1bx0ksvcdFFF+11n6tXrzafEyYHZG5kE5N9yb2jo88eh8PBhMvHMvDY/iy4fylf3vQZmSNzGfKrg8meWIhDCdEcsBMMp8wJFxlWw6lzovn7E6JLoHUsdB2bwhXa1ZnoRFGitzMmRA+WokVdlXbGiNi/5Zj2sf3qOm3NlYwaNarz+zDZZ2iqTt32Nkaf3h+PZiPUWe7ednRHFoHO5dGQRYgvdJ1QFqFLedQlCAW8lJcuYvuGWeTmjSUjc3DC086cfBY13m1kOfsyOPdI0pMKkd3GOiacPkxWSHLlEAi0UjT46C6+BZOfA0PveoTWTevY/eozkW3J/UcgIXeQR72duMeNjV2MizYcjMw/joHFR7Nh1yzWbHqdusbN9Mk9KNK0pqaGlvod9B19YruTijd30UDqls3Fs+vAywIQTvNaVVXFww8/zO23376HI/bM7t27GTlyJI2NjXvd137DjJT4wTCNEiYmXRA2Umiaxptvvskvz72MpbX/JCttMMOKT8RhT0143IqqPmgL0xhx8mYA1s0aBICjVuxvzbd1sLCmLRNRCuH5ZdZq4cHrT4um29CcYka4/cTwJDRqaFCd4M9RkT3Gw1OJnkC36NhyhBIu0BBN+aRZxG+6cpIwqBR8bXjNB3UC6Tq+HRWAbiqbvmd0TUPXVQgEwW54AhWKPFwRw4CRbgavN5Ifv0vCSttW8T+WwopaS4LHgGwsTpLFxF9qbuvQxLl07l1VAAEAAElEQVRD5AvbeJlICzXgTT9NzWXsXLmEmspVYJHJOHImWz/7pMOz47DPb6JtWw1tVdvpM+00RjYMFUXWQ6A5xL0oreK+25Z/hx4KkXbcTLb+3iyi+HOnpbGM0rXvRj4XJg2nT9IwSHLiGSDqIzhqA3HHBPqkGY3TCaYIeU/a2iiGTyNtXeT3BJDkREtNwrmrmokpx7Eqp5SqDQuo2rCAvuM2kDtkGqPdm7FZ3GQnlQDgKhUGwGC2+M1YJo9CWf4R25a+Tf/Hstl63Y379HvYGxRFYc2aNXz00Uecfvrpe9XXRYt/ya6vytgwL1rM/pRTTuG9997b28s0+RHidicwepuY/IT518TnYSLop+l8+umnnHfDxSy8/gPSRxUw6LdH4S7pPIJA1eQOha4jWrL22jI6Gid6pRSJ8QCmfYqS8OdYJVwn9SbCfQT8zYSCHsaMGdOLizHpLUFdwataCepKJCKifYHrcKSOT7UQULs2XoSNFLGFrveHLHoaK6lZu4CaHcvQNZX8fpMZMPJkvnz/5rh2x466HV+whRrvNoqSRzMkfRokCa87rZ0s1jdsxdNWzcAhJ/H1R7d170JMfrIEGuqoePvFyGd33yHkTDoGAl0c1C5qLG7cSzQuKjJIEjabm1ElZ5CcWsy2si+pqF5Ocb8NFI2cyTETA4BEVvH4hKd0FQ3EmpLO7s/eZPjNA5AkibV/PXBSJe3cuZMXX3yRyy67bK/6eWLDkWz4up5NSxoiBonDDz+cuXPn7v1F7mPMSIkfDrOmhIlJN5BlmbPPPptnLnyHisBW1jUuY23gLcYXnkHxR0KZte2MNAA8XhuO5UkJ+2kVzuWkbtFpK+jayKcZRagrJymUfJBgMmnVkFzCKzeQCnqbUUwpKZzKR7yFn6XBiiSsBZ5IsWxvnk75YWKCJxvO7nUjxXWHnIAGgcoKkCSGDRvW5bWa7BusqhUZGR8djQAJSXYLg4Qvvlhv+J8u1XUjfYyRzoYkI32TKylS7DyCkQ9TKzIMI1Xt+s3wsmn9+5TVLMWSmUHa6ceRPnQyijOpU2N2zdyNKFY7WYMnoa/woCY74vanDa8DoO7zrVhy00k5dsCe78XkJ0/ryiVYsDIudQY7vGsokgejt3mQXEkkbanHX5yGFBRjYCBHRLFJRuoJW1ULkmYoTY1hUnfaCWa7kDRhXJMDYuDU7BZkQJJkxjQMR8sZwjLLQnau+JCyVbNYqoXoN+xYcKahIQq7x2JxJ5N99IlUznqTtDYP/R976IAyTIwYMYIRIzqP5OsuK55exurnVkU+T3zmYl446zFSUxMb7E1MTEx+ikiSxLHHHsth7jPYtqCc9ffPZs2fP2Hkg+cguYVhIhRR/HYRUWQoe6UEXukdztlL44TqlFF8Gnq76ActyYbkD8bN23SlnTEicgyoDpm2apEecV88T0z2jA87yXlJtFR0r4ZH2CARKXqtxqcU67EsQkJ5644slq/+jF0rPsHqSKZg6BH06TMJmyOZ+e8ldjiqaSklpAfon3oQSFKnstjSshtJttCn2KwlYQLeHVvQAn76Xfgb6hZ/TtbYw7p/cFjExQIASDwughgbdVlG0jSKi6ZSVDiFTTs/pWzHfHaVLWThRyFyB0zBaneh0hHZYqPgyDPZ8e6/8ddW4cjO690N7yeKioq47ba9N/IteGU3r/9pU+Tz/z0zhvvOeu/AXCeYkRI/GKZRwsSkB8z2v8Ix8llousYG7woWbHmasQPPJdXVBwB7HXhsTloHC+/blQtEhISeKkYuORB9oLnKhWFCbhDGhHCB6rYxIkIiY310oqg0icmnLd1QttVHFbhOlx+LotFmEedQmwwPeAV0iwYhI9QwS0RKWBqNtE0xIbey8bQMp4CSNNBVlYYvPsfRt2Sf5RI06RpJkrDrTur0Cor0AeiBAFK+MASEUsWi1qoKb3DJ1zFdTRxJzqhXhz8YqU0RKhTFuCw1zR2P8fuRLEqkPoTUYKS/iYmm8Gc6sCTF5M9P91D79Du01ixnaNFxrNn2Qbdy1FvcdnRVw9loeAlaZKSQRvFH4ty5t9QDsH5XDba8zD32Z/LTZsaUP6NpIWoDu7DLSWRYC0geMxldlggCmk1G0uJniLZaYdzTY1LKWGtaCWW40Fzi96QmWYw2EpbWAJotphDkYDGuWzfuQgYGHnY+BcOPpKF8HcnZJRS25iHvEuFverqRxs8jfpeeYhtqnRN0HT0UPKAMEvuSlt1ijJBtFnRdx5F7AC4yTExMTL4n3p32JEcFb2D4zTNZc88nLLv4GQbecjJpBwnHipAqR1Lm6JqEFv67kxSuEFM3rouiwj3JZaD4RIeq04LiUyPPSNlrOLjEzuEkSTzHws/RGMWc4tPYufEzHEkZ9OvXrwdXYNJbWlU7STkudnxTzRiPgm6zRiIjQlp8LZPYwtZ2JdShEHZ7WQTQVLlLWUQ35LGrAtd6vDzquk75tx9RtfILCkYdw7ZvP8RmsyU4MB6rYkQZKYp4dSKLntYqnM5MJKkLA4vJT54hf34EXdNoK92AbHeQVNCXpNN/idJVhERnSFKHcVF3O5G8HTvTZRE1IUkKA4eeREHRZKrr15GUnEtKcefGWgmwOIXiRQv2oCjQj4y6XUL/5Ey24G0JkdMvsePuAYFplPjBMI0SJiY9JJzSaZp0PN+qc9kZ2MCAYUOx13V+jHuHmDg1TxIGB3mDHSWok1aqU5UZnbplbArRZkRAlx0jjBV9P/FF9vf/o4/SO51g1IdwuqIPsex0oRyqlcUDLtgiJny6RaNwlsLu48XkLlZdHF7oBIy6lDaRkYe2PjrBqnpCDfVkn37WHr8Tk33HEMaygq8pZQ1DmNBhf+Mo4dGdPm+H2GBRIiHNhItldZFqT9lgHGekb2qdLNLPuJfu7NBWN/Lte/uniW6D8WmifHUVVF73Jr7GavoeeQHrP3+xfRcJsR+znVRdRcOPp7mSFIRCV7fIVE8Qj6VcwN/gxbt2K7mXHY/FksjPxOTnxPptH9CkVjO6+DSCfYvj9ik+NSKfSlv85F4yUjOpKQ50ixgBdZuCpb4NKWikx2vngRd0W7A1iMVH6yEDcC/cQsglY3P1IT9XGCvY0Bo9R6uYdKup0cm2JVsY0zxff8fwmx9CkmXW/uXACc3eF1jOPJnszBU4aSP70IHYXPumaLaJiYnJj5XPj3gYjoAJJb9hw+2vUvnRSpLGD44ogBNipMgJK4S78kqPHkOHNpqt66LXuhTNxhPOn645Lcj+UOdzx9i6EzH9qGqAloYdDBp7VrecUUz2DVN+O453fz2HBfcsZOofO3qBh40R4ZRNftUSiZAIb/s+ZBEg1NbC9k+eo61qG30mncKuxe920UkMkoTbIRygGn3lZLv6R7bHyqKmhaitXkdB8eREWaZMfmbUffkpLetWknvcGR1ksat0O4kylbUfFyWPMbDKsshSECOLuiT61yVwurMpzDoCADXBmBp7HdbkNCRFoXndd9gL+jD8jkdYd89Pa50w6ZJBKClO2uoDDJmejTU/7Ye+pE6R6L6B3xxu9i2mUcLEpJc4JRcpejr+baW4Q7vQLCI3k6sSKqcZBcRyDYv67niPkNgHUuZKo7+6+PQfAKGcINY6T8RrqfS2aD+D/xlAl8VPuOxGjSSb8NDNSm2jrtkVzrhDn4/FsYpT9B9W7UqqhRDxobltfY00J4VttJUKD2BrZnb3vhCTfUKWlM8AfQRbWEtRYBDuVuHtbTUiaujTeX5iJEnUjjDSOan9RCiosrUcOvFKci/ZLv4Iex5pGrqz4zmcZS0E00SETuk5Ngqe2MJ3pS9DkoPBp1zLxnce7fY9ztHewOfzkZ6fhpr2IdT/gqBLyPKAI7ax5csSHEqQnfM3I0kw9ZQ0HBm7ut2/yU+DY8fcCYCmqezyrKO8ZgVDC2aQ6xoMRhRE2JgQSo8aA7QkIetyO+MEkhRJ5aQ0CSOC7A+ipjqRQmK7bKRhstdpKM0+Qmmi39ZDBpC5QkQXNYwUVlylrCbStZ7iijtVwRcS0IfWQ6ZQ9+lHtHzzDTmHn9D7L+MAxZabRva5h5OXkiDyysTExORnjDUtieQRRTSt2E5IlQmG4osMq114pesWHckvxxWxlrSO7SI5sMOFhzvzCo45jeow0jeFU6X7jPVHeB4YW7A+1itd1+OUdh5VeDI53FmdnNRkX+NVrSQPyWPSLVNZ+Mf5lJw5muRhBUA0JVMiLIpKSFWwKSqegDWhLELiiJ04WYRotEQ74vKx6xBoqmPH+/9B9XkYeOwVbP7kn92+z1mr7kHXdZIdb1HWsors5IEJZbGusZRQyEt2nln78OfIwAceBkDy67StW0PDwnlkTDmcjPGHIIXHwq6MaV3UdQ+Pi1qSDdkX6jguGhESYYfAhEaxrjTXOliTUsiafAw1X39K86ZVZB06E13Xf1J1fN2Zdg6/7EeSgtmMlPjBMI0SJiZ7QRJuqpWqDtvzvpKonKZj3ymUYxYj2GHawC0AbPp0eFx7OQSWVsNc0CCOCeXEpOfRdfx5boLN4oE45D++uOOTnT5cNqGA21kr0vtY3QHUkEzlmUY/kdWHGEVDyRoWZGS/RMBIC6WniAewrmk0z1+A7HYj56Z0/wsx2ScUMZBtrKeC7QyiH1pjE3KqiCZI3u6Nb6zGrAyCXaR0MgwVUq6xeAwX+PV6OzTVbeEUX6KNs6wlbn/xU7tYsOnfWHOzyLnh12y88Z7u3loEh8OBK9iHmk90CvsGQEkCVcjmgCO2EdAsbJ21lbyD+uDIMNOH/ZQ5rvA68UfIGH90nVteO4fvtr1GSAvQ7K1A1QL0yRhHUerYuGPDnktWfwjNyNsdlt/OvD6VRk9kn5pqyJZRLF63xnt7Who9JIV/K1I7I+7EYpIWbEJyRtPpyW1iFaRZxLass88kefIkmt/7lF3vPEf6oJUUHnoaq/97Z7e+m71l/vz5LF26lLPPPpuioqJ93v/aU+7usK252TRQmJiYmARUBUt+Jv6PV6DriTUY4bQ5Ua90Y0cwqgDTrTqyX4oofCM5/mMjJKwg7yGrZ5hI+iaHguLXOj4rYwq66pKEFBuFG9O2fNM8ZNlCkjsHk++XfjMG8N0TS9n20SYmjsihOeCIpG0KGyeC4c+q0q0ICV0VRa67ksUwXckigBrwsfnlh1EsdgacchXrX/5rj+9RkiTSnX1o9lWBIieUxcrqlbjcubjcB1Y+fpN9S7+nHgRAChnjpa7z9rQjqXzxeVSPh0B5OZrXg3vICLKnzdj7E8aMdbLXGFiVTn47seNijJGiu+QcMoPUIWOo/mYOlR+/jnvgCvJOOpstj/65t1ffI1asWMHs2bM5+eSTGTp06D7v/9bhH3fYdqCuE8xC1z8cplHCxGQvsGAjpHpRKyqxtuQDkNQSpOpgFymbwJ8e335ltfBmSW3RUG3Gw65dgETJu0E0m4ylTezwFiYjh6Ijn2TV0I0Ho57g+ZjmFvUn6hpFQVdFiXdnUQMKij2E6hETVM2uQ7rhTmBMVuvfmot3w0ZyrvsVurvbX4fJXhJODQZw2WWX8eIzL1HSMAZ5D3lSW0eIaBbXAqOQlJFbXw6nasrKgMZ2EwC7laZRWaQu3Q2Anir+0W0lKSRtF0YIzW5FCoRQXYahzIhmaN1dDapK9rUXs6sXBol+z/2NwK5K6tu2MzhnetT7RJHITxLXuaFUpnZVJZPuOpKXJv27x+cw+XHRFKim1ruNoOan0lfKp0f8E6ctnVRnPv1zDiHLPYBkaw5yq1Hc0Wbt0IfcGs6HLRYQYQND+F0KqtHoiZBhBG63eJA9gYhXlJoiDAuyN4hukSP5ZRV//DG61xepv+IdWRC3b+CrbUAGWs4vKC3ZyI7PXqKlbCPaM7cjy13/rvcFJ19wJU1l6/ndTTfRd+qZyFePjezb+ou9L2BnYmJiYpKYkCojJTnRQyoBr45uMbzSQ13UkWivEFalDusEzQpygLiUOe3bSJ0pxmIUaIpPPAd143P4XSK+FpMuSZF9YSp2L6Vy97cMGnc2Voe5UPi+ePagZyN///Havvz5r/fQ75fTsO3Bf6zTCIkuZDESIREjixAfJZFIFgECTfVofi/9j720VwaJmRPvxh9sobJlIwVpoyLyGCuLIdVPbe16SvodybxPb+nxOUx+XASrqvEuX4fm8dK2ajUTqm9CSU7BUVJC2uSpJA0aSlJeP+SQ1LnHu97J2BhrVAg3TTAuApHi1nHjohRzvnbG28gpwudtH1Khgz0jlz4nX0DKmInseulfbH38PhruuoH09PQO/exrjr/7UireW8HNN99Mya+m0f+8CUiyuMY5hz+y389/QGFGSvxgmEYJE5O9QMGCSnyue82ukFwmtoWM/NoBY74e+xhSAjr2+gCePOHdG0w20iy1U3iVHWMheWCDOL4ufuLvzxDK4qEZ2yj3iBlpisNHw+tFyEe0xbV12IWiLhyia8nwoboNZZ2iiwmpXyZYWU3ta/NJPeEYnMMH9+DbMNmX/OY3v+GZZ56hPLiZQmUgGMpYxVjUtkwSOfVjDVYdkCSQJfS6BiSj7oS/UBSi9aXHK3Wlplb0FBeurU2RQl66Nf4RYa83in1Zs5ElhQsaendvejBI7dOvYrcm0zd9IgCaRfw6trVkUJJcT/W8UmSbgnPSvvfaMDkwODb91wQtKqtb51Lj244iWdB0jXzHQPLTR5HhLEKRrWBR4hQkQNSQZRRwJxQCuxEpoSRQ9ABSSItEUYRlXAqKsVoy0jYhScieAMhyZOERObZdzmzNItF2mBgjdVki+dtoirHUjUYBaMMIome4SB88gUBLAxVLPibv/AtJnjCBLb+7oUffWU/JH3MMTWXrQdfZ8dUbJNu3k3nxiUgWc/pnYmJisr+RHUZ9N38QLMYzylDuaiEZwvn6tU6eW1rMPkMZ3NEAEZ82Z0+oDhnZr3VMLWI8O+Oet0o7pZsEwaCHzeveI6/wIHL7HrTnE5rsF6688kr+eO+f2fzaKkounYpqeKoF1XjDQ0iTO42QUCwaIb8iZBGErBnyJgXjBUS36MgBY38XsghgT05HcbqoXb+oV/em6xqrt72Ljs6A7EONi42Xxbq6jWhakJwcM3XTT5W+zzyA7g1S/9LbtH3zHZLFgh4KkTRqBJnHn4Cz7yAUpxM52Lks9mRsjNgL4hQ2HcdFXZbF9jhjRCcpnDqhw/UBroFDyT/9fCrefolBZ11A5vSj2Xjn/q0x0ee0CVTPXovqDbLtP1/RuqmSEbfOwOLcczH6nySmseEHwVyVmpjsBTIyGiqaqqHZDS/aQMdEm1YjQ05Dk1AMZ3rUiIdSGNUuI4d0KieLn2XxR/EpmiC6kCm9Upyr8E2xPaBZSDHSN+3430AAUr50gQ7NR0aNE6omk53WGvNZorZOpAWSFJ2DR21h+65NlOs6KUceyvbLb+rBt2GyLxk5ciT59GVTaDlZcgFJCdpYW1WCbiXitaT3FdE6cp2INtBb2zocY6sW23RJGLh8g3IBsFdF5UJ32pDafEheIVNhVaxmeI477WlkHXQUf//731n2MXy2+m89urfG978guLuKfsmTkFt9+IozcW1rpq1EGNa2tWSw+8vPcI8fSL2a0aO+TQ582traODh7JkE5wM7mdWiojE6bQX7KUEBCal//JBhCChsEXEa6pdi0ZTabME60D63Wwj+MmO1hz6c9TLb1mEWI6hKKJEnTQANri2F0TpJx1gbwZYm+WiYW4i5tFG1bjIgOhzhWaQuQvMuOO2c6LeOrqHvvHVyj9/9C2pXTl0EzL2fL58+hhQK0fL6UwI5Kcq4/b7+f28TExOTnTDCkoEnCASTk05DsnUfHSWq8cSJRagjNKmpGRFLmxHqsW4RSrjspJWS/ODAUSd/UvkHshcWkI5GE13BLWxW6FqKw5FAWvPO7PZ/QZL+Qm5tL33MmsOO1b8k+fAjOfh3TaPlDClqMUaI7ERKSRQO/0kEWY40UXckigGJ3kjflBHZ/8Tojzr+DtS/1LKp6V+131LdspShjPDarMe+L9T6XoLpmDcnJfXAkmeuEnxqhUIjcX/0Czeujde5i1KZmMs4+jZSDDwZZRjYMb+F0TpLeuSwCRoREx82qXergDApGdERX4yLERFfQIZKsKzozkkiaeKWOmICvuoK6L2eROv7gbvfbW5yF6Yx66BzW3PImoWYfNQtK+WZHHWP+fNJ+P7eJSZj9nzvAxOQnjA8PdpKQJAl7rR97rR908KUr+NIV/Gk6/rSODztrcwDNIqNZZKwtKtYWtYPHe/n0ZMqnJ2Npk2jakUbTjrTIvozMVjIyW1GurUK5VtS0sMkqq78eiOWUGiyn1EQedjZbCJstFJmIAuS6WshOEkrorMwWbPYQNnuIXV9uZc2/l+IqTGXcQZX7+Nsy6SmDGI2Che8Cc9H9fggE0BUFXVGwtqqdHqenuEThXVWLKG91jxfd07F+BICjrJFgRhLBjCRUtx2pLd4gJgVDSMEQmlVGs8pUHpZG2uBx+P1+NlV80eP7CqzcRvLIsQxIPgg9MzWiAHZtaybN7sPWWItn425SDzGjJH6KlKQOZZ33aza3LSXLVsSUrLMpSBqMFNKQ7PZo6LM/IF6x+IPipeviFWvAaPVAqwcpoCIFor8PyRdC8oUS5nmN7APh+adG28j+YOQV3QhKUEMJRlc9jtoAziofziofjaPbLY6N32DjyDTsdQEkSSLtyKPQvF6233YLuaeexcC7e2bU6wnf/ucGNs16mgFnXostVdST8ZeWsfuGx2htbd3D0SYmJiYme0OwtgkUGSXNJXL2qxJaSI5ESeghGT3UcTmuKYAqIWkgq+LVoYi1Hn3JQeKVXN1IQ6EYxgldkcQ8LDbtSLiQK4AkRdo0NG5h06b3UBQ7jiSzwPUPTd65h+AszGDVLe/Q1gK+oJWAUUPCH4pGd1rapfJNJIthecTfLio0RhbD8tiVLIZfaYPHAbBz7ms9vq/6lu2kuYsYXnBsvCwi5DVEkLq6jWRnj+xx3yYHPpmnHUv9C2/S+MaH2Ir7kHfjNSQfegi63YKkK3GyKLdbDmtWOspjLDGfwwaJcErtuGZ7Ghdj23RHo9pFSqnwK2xQyZh2BGgaWx+4m+zjTmHA7fd24wS9Y/5RD7D8qhcZ+fjFuAYKR0XPzgYWXfwCu3bt2sPRPy3CUYfdfZnsO0yjhInJXuCllSRcoCcyy4MckpBDEo1DdBqH6KQtcpC2yBHXRvFrWLwqtsYQtsYQiheUdrpjxSeh+CTcmR7cmZ7Idl/Iii9kZcmKgSxbMASA+lXZ2CwhfMc24Tu2KdI2L6WZvJRmcl3RosUuWwClsZampaU0f72GhXfMwV6UzeA/ncl7057Y26/HZC+xSXaGShNopRGPKqIf5IoaZF8Aa4Mfa4MfJaAjacYrEIqmoUmEHm1jr2zBXtmCo6wxrok3z4Fut6HbbUKu28m2bpHJWdpGv1VWo8vEst8VzkZI2uVHz0yNbGsrSaGtJAVNl6j4ajuSIjP4qDwKUg7MYlgmvWOm+2JqVDHJ7Zs0mlGpR5Aku0VUg6tdPJDTIV5eHzQ1i1cs/oCoDRFSwRqTjswrjGqSP4Tkj/4eJF8Qgqp4tSdWjMOGiZiFh+wPolsUdEt0se6oDxJItxFIt8WljGocnUGwKJNgUWa0doWBvS5A8bZsMvJHAFD93ps0Lpqf8Lvalziz+zD4vN+RM0kUAHRk5mG1dqzLYWJiYmKyb1BVGX9FA5bsdDQ98XgrqZKIklABNeotKwdivdJ10KL7wq84epALW7PLwgtYJk4TEFWwxSvdfFobdQ2l1NZtYPXKF7BYHIyd8GsWzLq1eyc02W8odisDbjqBQG0LbRvLxTZJJxC0EAwpBEMKgZCCP2BBVWXUkByJkkjEnmQR6LYsKlYjyrQX9bNkxYKOnlgBLEnUN25B04Jk544wtVk/Mfo+8wBti74DwDFiCNm/vAB7fkFCWUw0NsqxBrNODBNqu+FYCUSjwSJjY7iLBOMishw1WES2xRzfHTq5NkkDi8NF6sRDAKid9T61sz/sZqe9x5GXxsjHLqLkqiORrAr2vFScTud+P+8BRQLjapevHjJ//nxOOukkCgoKkCSJd999N/70us7dd99NQUEBTqeTww8/nLVr18a18fv9XHvttWRlZeFyuTj55JM7GI8aGhq48MILSU1NJTU1lQsvvJDGxsa4Njt37uSkk07C5XKRlZXFddddRyDQ3tr8/WGmbzIx2Qs8tJKMKEJkaRDGglCGC1treIYWP1NqGqRT8r4f2ROI/PhUR/zP0FkjRrmsZY0AbPxVauQhHFxrKHFHCGOD1SHS60jJQbIH1AKgyOLcGW4PyTY/tW2uSN9+1YLbGqB1ZyPrX1xB7aIKgk31kf2yKwnXxZdSp9l783WY7GPmaG8wRRJKxIC3kSTFhtQnr9P2mlsYvCJ58otFOiepvrlDKicpqIqii4bSVAl7ixMzUzNSz4TbhIs0AqhJNhzWVJHzv4ekuQopq1mK6mnDItvYdiZIhiI4C6j6poyMUXl8dvw/e9y3yYGPXXKSImcy1C0m3Oi6MCr4jCLU4SLWsTUcFAUCQQgaUQuhdrP+YFAYMGKRJFBVpIBxjCwjhVR0mxJN7RQmLNrGokNSdZH1SZY7hGUrbeK3InuDaJakSOq+WMOE4gmiJhn3EVKRVB3J+B21FioMPeQSqkaE2PKnW/FXlNP3mQfY8ev9ly5v5WPhnLQ377dzmJiYmJjEE6ysx5qTiRaU0dvVj9BDcgf9la7oyAEZybBnS6qE1N7XJKw/0+I/d/g7AboUjZBQbTJyUG+XFkdCl2V8gWa2VX9NXes2PL7a6G7ZwvDR5+FwpHV9IpPvha+Ovp/R9SKFlrfBh91I19QeSdbRNQktaMxXEsgixOtTE8lie8KFrhPKIuDKK0GxOjoctydS3YVU1q7GE2rBaTPWvjFyWtdQitORweKFD/W4b5MDHyUlGcWVRM7VlwKdy2Ls2LgnWYyLkDCWBeH0TR1qTycoVt2htl1Mcez264Qua0vE1JKItDOiJCIB3RrknXgm2SecyrYH/0SgqoLB9z3Cptv2X32JRTOMgvTHAU/ut9Mc0PQkAqI3kRJtbW2MGTOGSy+9lDPOOKPD/vvvv5+HH36Y5557jsGDB3PPPfdwzDHHsHHjRpKTRbr13/72t3zwwQe8+uqrZGZmcuONN3LiiSeybNkyFGPdfN5557Fr1y5mzZoFwOWXX86FF17IBx98AICqqpxwwglkZ2fz1VdfUVdXx8UXX4yu6zz++OM9v7F9gGmUMDHpJbqu46GVXAo77LM1i6emtcUoOpYpPg94Jfr0lD3x1khfdsdJW924NAo/Vyk/LD6U1moR/dU1Rw0OrT6hQE53CeOIyyr6H5pRDcDmiiTqF25gx6qt7P6ilOKCQtyDR5BUPIBMvQ+SrFB3uAXZYRokDiQkQ1uqqSF0VCRDcavmioeT7NdQnV27CTUeWhyZuNmbxB/28nivc6W2hUBhOuigGTn0lZZoyI5us2JpETIVctugtgFfsAlPoOfVrjPHHsa2WV9R01pKvrU/7s1W2vqL62psVahZtpu+5+3/PJom3z8NWhV+3UuBYzAEQ6JuZvsIiVjjA4hZutreFc8gZAi2LEGbJ9oeokaK8LGyLAwSYSQp8lkKhaIh2sbx4agjCdDsVmRvYg8S2a8RdHc0zimeIFqqGKPTVtSipkY9jloLFfouCBIqns6OtQuwLRhAv+CDAGy/yszRbWJiYvJjJxRUCFTU4xjaP+H+iFc6MUq2dopfSYtRfiR4DIb3t1eQdKe4qxwUO8OKMVULUtOwkfr6Uqoa15GRlUpGSgkDCo/AnVGMLFuQHE4svVAym+w/JMNhKOiHQNCCZvxDw4YHTZPQOil0HekjLHdq57KoWXSUgCRkK0Gh61hZDb+3VW7DmdWnx/eUnz2WTTtnU9m4lpL8qfHXgU5dw2YyMwb2uF+TA5/QrmoCO3aRftoJSCjRaLIY4mQRQOtGoevY7ca2SIREAlS7ghxQ440TYecjNX7sjCt4nYhOlN1xY3f78V0D2WIh84iZVH/4FvVfzmGArCNJEqU379/i1z9behIBYbRrbo7Xp9jtduz2xLq04447juOOOy5xd7rOo48+yu23387pp58OwPPPP09ubi4vv/wyV1xxBU1NTfznP//hxRdf5Oijjwbgf//7H0VFRXz22WfMnDmT9evXM2vWLBYvXsykSZMA+Pe//82UKVPYuHEjQ4YMYfbs2axbt46ysjIKCgoAeOihh7jkkku49957SUlJ6eaXsO8wjRImJr0kgB+VEC45FUlW0OxCKSX7Q8R5mwNJ2y3403Ws9SJ1km5VIt7sYRw1PjSbgrNCKNbqxqVF9hXMVymfpmAZ3kR71N1J6BlRBV5DWxIn91tNjk0Mkt829WP3wjK+/dMi1KZW7CW5ZJ55KOv/83FcWN7BFz9M/jfwzfM39P5LMdnn2CUn6ODVW0knN2Ebi8covGsoRhWvWHzIascnqz/VQvKWZnRDXnWHzTg2mpvfU5iErSlEKFVss5W3xPUh766hrGUVAOlJHY1ye8JpS0NWrPh8jZGfir1SPI7WfNOA6g2Sfai52PgpUh0qw4KNXGuJ2CBL6F5h/JKSDONErEEChJFA7sTtyG9EV7hcRLQ7YYw0ToQnh8FQxAtQtwt5k8JGjXaeolJA1KDQbaKdHK5jgRi/ASRNQ7PEX5e1rfN0ZnWjhCHR2hr9XZaUHE1diZ/6F94iVF5L2mkndHq8iYmJicmPB9UPwco63IdPRlflaFHhcAHhmLbd8UrXLaD4o57A7QtdKwG6pVBR7TJKMF5L1tS0g/Ub3sLjq8PlyKYwewLfrf+Q9PT0SJujDr8PdPh8thlxdyARlJ3ISXaC1Y2dtglHSIS1qL2Rxdjc/V3JIoAeCNCwSaTgceclNsp1hWJx4LClEghFa1+FvdGbW8rw+erJzhzR435NDny8azeCpuGeNgUIp7gj8jd0rCMhq53LYqeREwmIHRtlv5ElwJA7SYk3TujtHJlE2qdu5G5qH+mW4FrD96dJkHrQIYS8rdR99gn+uhpyzjxnz+cw6RW9iZQoKiqK237XXXdx99139/jc27Zto7KykhkzZkS22e12pk+fzsKFC7niiitYtmwZwWAwrk1BQQEjR45k4cKFzJw5k0WLFpGamhoxSABMnjyZ1NRUFi5cyJAhQ1i0aBEjR46MGCQAZs6cid/vZ9myZRxxxBE9vv69xTRKmJj0kjaE0t8ltbMm6jqBVKG08vQVCi+lOT7SQQppHf6OpPowUB3iweZeV8umy4Uy2l+agpobILRDKNlUd3TkLExrBGB8WhkA1YEUrs1czD/uqWfzS8txjh7Mxg8/6zB4hjGNEQcmX2rvMHz4cBo3VpOv942kuLE2CoWrblUIpiW2yGuGTKWsb6ZpuJDT1A3t8vLrOqEUOyGXeBwEkmXcu+I9wqWgkGNPSxM7ar9hd/0KND3E1VdfzSOPPNKr+3KnFFAeLCU9dwK6Aj6Xj8CitTQt/Az7gBIqPWbxup8iydYsQsF1NKt1pNqy4/bpHg+S1doxtVIi2rdpa4uvKxHGFrNNFumcACSvUeDTYTU+J4iCsChxNVrCxoiwASOQE41Uk0NiLA6ktgvhtotjNIuDzDVicV0/QhxnaRK/4f5TzqJWzaX8s/eQHSH0q36HJHVjYWNiYmJicsASqmmAkIo1L/5ZJwWjCuGIIq2dEUK36Ch+oYwLK+TaewITo4QL79MtCYpet0MxIiQ0m4wc0CjbvZDNpR+T4u7D2rVrGT58eMLjPp97W1e3a/IDse7UPzJz2mK+2rCDUEhBC6dkaveeiFhZBCPaoQtZBCGPncliqKWZulVfUbdqIarfQ9rAsWxd9HGv7ivZlUdV43ryM0eT4ipAQ6O2YSM7yr/C4UgnPWNAr/o1ObCx5onUw/61m0gaHb8WTCSLHejMUNaDsVF00O530/5z2ADR3fl6u8iN8JnC16lL0fvRY9RGsiaRNX0mtvRsKt9+GVQV9ebrI6l6TPYhvYiUKCsri4ss6CxKYk9UVlYCkJsb74Cam5vLjh07Im1sNlucs0C4Tfj4yspKcnJyOvSfk5MT16b9edLT07HZbJE23zemUcLEpJd4aEVCwpWajywp0Xz7enQ0y58rUzkF0jZJcft0myWaGiQQQnXb0Yzjra2Gdy9igNt4VS7WVnG8v58/0rccBM0hnmTOZF9k+4ik3QAc6SzjP/9tY/NLy+l/xXQKz5zQqUHC5MBm8uTJvLH+HWg3/5CaWpEcdqyGgjaULB6EoSQxtFvaoh7nqeuaaR6WQv1okZvVWR9OMRa/srB6dOqHi35St0SPL637mtL6hVhlB30zD6YofTz/+Mdjvbofb6ZCwSEns3XOsyz+9lEyN/SnQapGa2nFVtiHz59/kalTp+65I5MfHakWMVHa5P2Gg5wnC+V7eMxsl69VD0ZTM0l7KrbWLtIBAGu7KY6qRutUhFM0xRTCjqSCshjHhYtUy7KI6DCOlQKhSASFvV6Mvd78+BRUDSPF+B1IFteSuzhqDMwwjBOq2ygCKUlkj51OYLBK7X8/5L333uPUU0/t+n5NTExMTA5oQuV1AFiyctCDckLPWF0WxVu79EpXjOKtEQNG+06IKEg6S2GSCDmgUVO1ms2lH1FUOJUBA47t1CBhcmAzadIkPnv0K3RNI3axoAVloe0MGyjUqPEhEVJoz17pkkpCWaxftZCKL99BUixkDD2Y7JHTsKdl43a7e35DskT/vkezYu3zLF7/L9KS++ILNOHzN+JyZvPaa89x8skn97xfkwMeW4EwStR/8BFJQ4ZHUjhBR1mMHRsTjosx73GpxrqjeA4vK2KiH8K148J1EMNtdKnrPhN64HeVYq/d70tXIGX0eLAqVL76Ak8++STXXnttN27CpEf0wiiRkpKyT9MdtXdK03V9j45q7dskat+bNt8nplHCxKSXeGnFQRKyJCZ/+or1ACj9imnNE4rf1pIEs76QBjaQfELhG8qKn6zVTBUeVZ6ORk7winPJMdlNnLltFGc0YGk3w7x+8QReu/sjYYw4ayJzj3qwx/docmAwc+ZMnn32WdpCTSQHhbxITa2dto81RgB4i9wE3R3zyfpTFXRjsqVajYlWzMO4fqjhZb7dR2n916TYc5lUdD6yzcGstff2+n6W/ldE5Yy8tojGjd/RtvBrUgaOJHPykdjSs0yDxE+YdZ6vAKgPldMUrCLNFlO4PWy0VTu6PkVSPDkS5LK2WIQhwmIsxEOJXKcMwn0r8VEPcSmjQqFon2GDiabHpXqSAiGs9V40ZzTtGUQXEKmbPTQNijdUhFP21Y9KIX199PebVCXG7tx+R9Kat5IXXnjBNEqYmJiY/MgJVtWBxYKSbhTqNVLoRKIjdCBBmiY5JjpC0uhQ6DrueAPNIpRukqZ32AckVLQEgh7Wr36dnJxRDBx4HF98eXsP7s7kQOLYY4/lz3/+M22ryyI1TOIiJGQ9YpgAEstiAtrLYnsiXt6hEOVfvo3F4WLIBbdgVZwsf7L3ee/nfCVk8ZhJqVTXr2dX9bekphQzuvB8kt35pkHiJ0zzp18AEKqqoW3FCpLHTojsay+LcYWujRR2CWs3aJ2MjZ3IfWyhas0mI4W0iEEChHFCl0VqJym8dkmky40YHnTCFozIdWiij8g1xtRqkdT4aInw/aYMG0PL0BG8+OKLplFiP7C/C113RV6eWA9XVlaSn58f2V5dXR2JasjLyyMQCNDQ0BAXLVFdXc0hhxwSaVNVVdWh/5qamrh+lixZEre/oaGBYDDYIYLi+6LrqkcmJiad4sePHSeSw9FBUVb4QQXBZPHAkTQJZ62Ks1YVBgkDLUV4/npzHXhzHbQW2WgtildwWVsBRUeX4h92gXSdQLqOM7etw3V9UDuGD2rHULGiBh0Yf9U40yDxI+eEE05AQqIeEVKnt7ZBq0e8/EEkXwjJF8La4MXa4E3YR8ghEXJIuCpDuCpD+FM7hn3602RqxsqoNlBjRNFuFYYQRVeYvfmhvTJIxLLm8ZvYNfsVGlp30rB8Ebb0rH3Sr8mBS2OoOvK3HlLRA8GE7SRFEZN4XQet3cwv1oBgifGt0Iy2shwfdaHI4iUZL0jQRhEvi0W8IjliE6wywtcVgxzQxCumjkvqZg+5i5rIXdTUoYZQwzA3sj+E7A+hBPVIyLircABr165N+J2YmJiYmPx4UBtaUFKTkTUFKZTY+1AOhV+SeCWwqYdTOMWmcors08RLCbRTGoc9PhM8r8K0NO9C04L0GzzTNEj8yJk8eTJyigvv6lIA9KCCHpQjL/wyBCURCdGJLEpBac+yGEosi7JiQbbYkCxW1jx9214ZJGKZs+RuVm5+jbqmLVRWryTZnb/ng0x+1ARraiN/y5IlIosdInbayaISk4U1PC6GX3HsYVyMNJNE3YhIyu1wDYnYF9GaE3tEj3l14zrjxv1Q1ACT1HcAa9as6d45TXqG3sPXPqSkpIS8vDzmzJkT2RYIBJg3b17E4DBhwgSsVmtcm4qKCtasWRNpM2XKFJqamvjmm28ibZYsWUJTU1NcmzVr1lBRURFpM3v2bOx2OxMmRI2A3ydmpISJSS8J4MOGI6LYklONdB2F6ew+LIE3L0RSfqhOi0j3lBzV/NqaNTzZCqqRpcQa4wivGFmbnLvE8f4MMRJ6a4UnbiitCZvxtD44dTsAL+ES9QK8iZV+Jj8e3G43yaTRQC3FrR0NUWHCik/ZI/7nmtOIdEikVzX0sW3/z955x8dRnfv7mZntu9Kqd1nuHTeKMR1sbOBHJwEC6YQkN/cmEAKk3STkEkgPySXlJoQkBEIJIQmhOnQwBhts3HuRLcnqZXudOb8/Zne1K61s2diWjM/jz36snTlz5pzdszNz3u9537cynbS3f1+sBBBQvdysR+0O4NK8eKwl768jB2DT3YdnEiMZvZxSfhUrOh+nwj6WYletKUqkhYWUQKHsL07qwCTY2Z4OA+N4DpxwGHp/+UxopgE/jrSXRPbx6SR36bwTmoawpbzWUh5vSoE185tSdUGk0rwH2HviWILmcY2Xmqtl617tD7eX09zTfYhNYSxh+WgmkUgkxzq6P4BWWJCJ259ZWbmfEDoDY6VnG36Flis+DBIhsv/fD+lFTkrK0zupx/ZTWnIsoKoq9okNRDfvRiQGP0MJNWX4PIJj0Vlei2rNXVx3uHnxdSmefdApu+wKmjZtxlJaivuEWTmhmYbKJbG/RNf5ro2GRcnkgsspmr42Qv/S7YHhdFQl4+0wcHl35ngx2HMiZ1uWUVsx+ufkmUTX6XYywGNCx8xTlC+HnuR9owiR8XwZTtmDJRgMsmPHjsz73bt3s2bNGkpKShgzZgw333wzd999N5MmTWLSpEncfffduFwurrvuOgC8Xi833HADX/nKVygtLaWkpIRbb72VE044gUWLFgEwbdo0LrjgAm688UZ++9vfAvDZz36Wiy++mClTpgCwePFipk+fzsc+9jF+/OMf09PTw6233sqNN954WENRHQzSU0IiOUSiSgS76sq7T1jMV+ka86VFDbRo7l0yVGMnVGMnWqwSLVYJl/ffdex9At0BugNsvVk/U2Fus4QVLOH+u93O5gpsmo5N679La0VuEBAJDCNprGTUU6mOoUM0EYj3YCSSGJEIRiQCgSBKLI4Sy5OoF0AxH74MzXzFijVixbkTFsMC0WLzlSg0Bk1qe2tUwrqPkgknHaHeSY4XigsbGFd0Cl2xJvPB3jlAwNXUvCuRMqS9IQZitZrCRLZoYQiIxftfMHh1lCEGnyMdpimVVL7f0yIrFmdcT80W+utSjPzX+qTHhuGw0PB0gIanA/07Uv0LVWmEqjSiERuq08bmnTsZc/d3B/dRIpFIJMcMercPzVOQd5+aBCWpoCbMV/ZK2JwyQ6wEhvwrbA2LkglBkR1eIt82m930gtWTUpT4IOA+dQ6x7XuIrt8NcRUlkXrFFdSoihLPb/ZJj8X0eDyUsaiHw4RaduEdf8IR6p3keMHmLaPssitJdncj+kKDxiIMz3ts4LUx+xqYFiQMa/5rY/bzvmFTzYgVqpIJeSxUJVd0yDNfGe51eH9tHthXNQmq3YE/EGTcf34t38cneT8cYU+Jd999l7lz5zJ37lwAbrnlFubOncu3v/1tAG6//XZuvvlmvvCFL3DSSSfR0tLCv//9bwoK+p8j7rnnHi6//HKuvvpqTj/9dFwuF0899VRO4vO//OUvnHDCCSxevJjFixcza9YsHnzwwcx+TdN45plncDgcnH766Vx99dVcfvnl/OQnIxdZRS7Hk0gOkgvLP09voo2w8DPFfhLYU6tCCtwAxIsGq9e2vtynt3hR/0oSSwxClQp6yjbnacm9ysVKDITN3Gbr7r/gJAoMyHLBDSbMOn0pVwvf1g40pxVPTf4JkeTYos4YTws7WSPe4ETOwUWWMdcXMMdhypiqpONeKoPHYmYVR+qhxxhwF7B3q8RKzZ3BOvP42B4zNqHzO/lFOInkYCh1NrC7byUdwR1U2schhDneFEvuYFRsVkQyaeZzUAZMptPigy11LRXCDL+UTEIsZWBJh2eKp66/6ZVFmtq/LS2KDBT10g930ZiZq0LJLC01j89GCGy9pvdDrNSsT4ulks+7zT5p0f5ZlRYx/953pmkQsmXpFM5558PT7+J/7Q34BhKJRCI5xhj/i5+R6Oomun0npZdfhppIZ0M1/8u3Kj0TmsQY8J4DeEiQa8hKhxA0LGb+uf3FvQ74WwBwF8qQOB8EXLNmYZ+wnM7f/ZnKWz6fSRgMIFSBGs9Ktn6IYxHM8agkco+P9XYAAldp/eHoiuQ4xzlhEgDB9WsoOenM/Y7F9LUx33Ux+//+g/qvi+owgkkoiazwTYeIkidaVKZd6dtDnhwS6dmGnrWvaObJdC97iZ5lLx1yeyT5OdI5Jc455xzEfjwsFEXhjjvu4I477hiyjMPh4N577+Xee+8dskxJSQkPPfTQftsyZswYnn766QO2+WghRQmJ5BDYFX4Pj1pEuSX34StWW0jMq1K0zbzgFOzJH99fixmIlNt0uCL3Jtc3OR2jcMAxRTHiuhmeRMlKjKd641js/Xfpt7rHYezZR+Pf11F12liUgeFJJMckmmplnjibd8UrrBVvckr4fJTUA5Ja5M17TDoplzWoEyvMv0IqnjpUS0WUyX7eq/robmI9YVa89gqusaVYUnlQJJJD5bkdPyaRSFDlXs664CsstI1BST2Ri4yoZl4bsxNeC10HVckf2imRMEWE7ATZqgrGgIlEWmBI0i86hCP95cEUHHTDPCbtKeFxmbOJQaugBKQmK8Kaqm9A4vi0OGHYNJrON0W9hEcw8a/9Ydgq3uoFILJYo3xelLZiL8ZQnk8SiUQiGfX4Xn4F1eXCM39+znY1rvQbM4yhDRvZYUryrZzN/h9ShuLsECb6gPJZhhChKcT93TTteoXC4rFYrXLByQcBNWGh4sZP037v/9Fx7/3U/vdXUW02FEMZclVvRjDbT8LrQaFzjNx9ejxK+8qlWJweHEXlh6czkuOWHV/9MkIIvC++QOcz/6Rw6hwsLnOB5f7GolBTQmy+XCiGyH8dHWAgzns9zjz7mzuFpqDo5pxgYD6J9PGZalL1K7oCWm6bFaW/vuw+pSvIFinU1LomoYGqWbGXVmDEpYfbYedgPCAOc06J4x0ZvkkiOVhsVgJGL+WOcahul2nUCkeI1Q6OwWbpDWPpDaOF42jhXCOTq8OU52te7qPm5T5TKR8YRaTAQHiTaEW5Nx7hMBAOA9XbX6chFPPV2MIrn/sHjmInb/3xJZ4845eHpduSkcehuJnJKQToo5U95sZkEhEKm69gCBEMoYRiKKHcMWP3Gdh9Bgm3SsKt5r3xWqKpSW1pDKU0Rt/mNpbd8AixjgB1X7yEUDx/rhSJ5GCwWq1Mq1qELhLsTWxBcThQHLljS+g6itVqvuy2nNwPQtf7wzhlh2tKJ6vOTmBttZoig56aBSR1RDSWG8bJGDBTGRCqiUQSEkmEPSvXhBAYjv51HckCG8kCG2ost65IuYVIuYXumblGnx1XuwnOjBGcGWP3VcWZ7Xo0jt7bQ9HE/eTVkEgkEsmoRUlAvKUV18TJWLChJBQziXB88CIhNTHglew3QGXqO1CoEh3UhOiPc07aCCfyGugSgV7eW3YvupFk+RtP8+pztx+ObktGAZrbRfkNn0APBPG/8jpgjkc1bo6/7LF4wPGYbywOCOMU6+tk22M/I9TWyJhzrkVTj2xOCcnxgaIoVJ53KYrFSu8bLw9rLGZ7PaSvi6ZQmxtmdajr4kBEtuigmOJBWkAQmgIKqIk8rkZD9Sl9TR4qPNMBEl1n0A1iXR1YPfkXJEoOnezwWsN5SQ4f0lNCIjkE7KqLuJHrBeHY1QWAYa/A3p7fQ0KkjFhqwiDp1HD09N9l6p/po2VREcKM6EHS0393SqvpuFN30VRc0OJic7WtllbbdYM371qOpbyY6rtupL5eutF+UHhBfwyACyv/g0rfXnbGN1Btn5BZ3ZRDylBrbfMDIOqKyCzRSJF0mvEw0+HCEu7+yYl9s5NAYQ+rv/8UBbUFVH31OqwlnsPeJ8nxS4G9gjL7GLpiTYz1zAFVzQgTIjogEXRSz4RvyvaeAPrFBt0AWyo8U1psyE4EpypgiIw3Roa0IJFM9ntPpHGnPIOsFlOYgIwwoSTN4+KV5u/C0JRM2Aw1ZmD1m+2MFzgyYrMl5RwRqxscIHf3VcXMqdrKxqUtGNEENeeMH1RGIpFIJMcGWkEBeiiYsy1tVBsYQienzICwOORbCZwnLImaZ+XwUOfYseFJFEVl3plfYsaMGQfqiuQYYfd/fQWACT/7GYWnn47vxVcoPOlUVE8BQhWmx0SK4YxFFFDjQ49FEYqx+6nfoygqU6+6BbtXeklIDh+WgkIKZ8wltGsrLBp6LMIAL7EB+/JeG/ON96HC6mTCKymDctoZ1iHWdw/0rk4ZsbNDKPcnsxaZXBUZsSTtcZFVvZI0jwu1NZH09+KdOCv/uSWHjvSUGDGkKCGRHCweN3qXYd6cnI68N7FYpRPX1q7Me+EavOrVEtFJui10nlIEQHyAo4VQ0wE/++u3OBOomkBTc++4gYiduK7R+a+VRLfvY+wPPs3mq+86xA5KRjtT3PNZFvsrjdp2JrrmQjw1ix0Y6z6FtTNI0mmuqLD3mQ8+0eLcskbKfqvPDhLvddD3x+cQhuCcH5/P4xf8/Ij0Q3L88tz2H1HtfZpIwpfr2QD9QoNl8LU1E9opMSDUUzwOA3NTpOvN8rJQHPb8DRooSCQHiB9WS0aIEBYVYVEx7BaEophhnDCFCd1p1qPFsuNqmL+vUL2Buymrr7r5d6yh3+Ote2UjroZSnDVF+dspkUgkklGNFlMgnoSkYRrShgydcwCjMCmD2hDx//tDmGSFZlJTSYmHiF/e1bKe7vaNTJv3UZYvvWO4XZIcYxSffz7Bd96l96lnqLryI/1jaD9jEVLjZIjxpmYZTBUDWle/RDzQw9Rrbmfjw3cf7i5IjnM2/8+XuS2yj5//ditKLNfIrw4w3meT77povk/9LwZvG1KQgIy3hKIbg7cr+duQrjMtBKbFBUUwSNzrb6sySIzI9CUtjAgI7tqM5nDiqh03ZJslh8aRzikhGRoZvkkiOUhC8R6C8U4qXRPNDS6n+YrGIBrDtbM3R5AAUMIxhEVFd1rQnRZsTb2ZBKiZMqkLYdptNrPdZ0WPa+hxDVUzr4C6oWKzJtENFd0wf8Yd74RpfeBVPGefyu6v3n/kPgDJiPJc+294rfthxnnmsiu4mkCyu39nOqRNPJ77ysIa0omWqsSKIFZkekwknbku3PYtLxB6axVjP3s2j1/wlyPfKclxSVnxFHyRffhjHeaTtq7n5oUAM2arMDKvDKkQSkLX+70nEkkURUXEE4h41kXUZjNfqtLvGWEYuWGbFCX3lSVkGC4bhqs/JIGiCzOebLopioJQlcxKJ3Ob+Sp9p4vSd/rvB6F6w/R0i6tgyZ3g1Lt6KUj0cdqkubxy3k+H+zFKJBKJZBShR6OEd2zFM20mkBUOJ556DXjOB1KhQFKrYbPCkmSTDmEycJ+qp8OSZMUeVxWzXJaRJRbuY9f6f1JSOZWN7/75yHReMuLsvOUWGv/7vylbfBGB1e8Q3rGtf7W3cnjGYmDnJjpWvUTlvEVskoKE5Ahx8cUXkwz0Edqx+ZCui9nXxjQDr4swhDF6YFjtgfOE7HIDD81X/xDh99LtzNengSGrAIxolIkNY9j4k1sH75S8P8RBviSHDekpIZEcJHqhGWJE8xQiPK7M6tkcUuFzRIEZR1zYcn9qsbElGRVcS6TC55BOjDrEiRVQU3c4uy1VvwDDUIlsbqT9x49hKS+l+IoLD7lvkmOHsZOX0L55L+uib7DAdhGqMrTGrIRi2HpNcaJ7tjtnn5oaf7Eic/x1/2s1PQ+9QM2ls6m+YOYRar1EAlUlM9jV9jrbA29zYukl/Qnh0mGYlDxP+nlQ0rkkst/brAjDIJjspiu6F1+8naSSJJmMYgidavcUxpSelOvRMNDTyJYbG1nYzXYJi4oajqPG9Ux8WcOipf5Px5vNrcvRI/CnbxVxBWFLPc1aDKoqfAB0xZy0bfGx6JJJw+q3RCKRSEYfmm4K4JrVOdjgm0KNkwnpAQwycOSE18ljLFMTIsfoJdS08S2dWLV/u5oUhH1tbFz+exRVY+KsK1GGeX+VHLsUzT6V4Lq1tD/xCGP/43Y0hzPv6t70WITUeNzfWAT6dq5jzwsP4m2YTtW8849U8yUSzjrrLFy142l/8zk8Y6ehJVNeC/k8zPJcFzO79MHXSzVpLuSLhrroa9+Gv2cPejxizhP0BKXl06gbczo2xZFzjkHnzSbtnZHyosic08gK0ZQuk/GKMLeruiCz9krpn0+oyf7zChWi7S1MPnH6EA2QvF+kB8TIIEUJieQgcdqLURSNoOijxG5FLzCNUZb0ytxwZJAxTXeZxqy0d4QW1bGEdZIuDWe3TrAq/0/R3q0hVEgU592NYah0PPY6HY++hn3KONrfWo3XKxMfHQ9oqpUpdUtYtf1BwtUaBdYyRE+vuXM/k027z3zi0e25RlMhBJ3LltLz5r/xnnYmzvmX0bxShfOOWBckxzl6sYfahtPZsf0Z4lVebM3decspTici0p+nR+h6RkDI5JoQgl46CSX70EWSYLiHzlgjMT2EqljwOqqwKS7sdjdJzWBb3zK2+97CprmoKprOWPsJOMgS7KwWhFVDiSYyXhGG04oaMa/zhsvWnwCP/odYe1+CWFF/Lot0mXB5ro+3Elewlpp1xXUNm6bT+k4rgeYAV1xxxaF8nBKJRCIZBag2OxZvMfGudrQsg+/+QuhkVsQOFds/MdiYlTlO7CdUiSFo272C3Wv/idNTzowFN7Di+TsPrWOSYwpFVam46Eoaf/VDIs2NeMdMe99jsWvDcprfeILisbMZe/ZHUHUpbkmOHIqiUD7nbPY880f03l4sBSU5+/sFMzFovOYL4xTq2EvY14YRjxIN9dDbtploqBtFUfEU1WOzeXC4SkAImna/yt7dr2K1uigrm0ZD/Zk4nanzK+SPN5OKwpT5Oyu3RLaQIrLMPv3tBD07FV6yX8gQinlMtKeN0L5dXH7nNw700UkOhZQX/rDLSg4bUpSQSA4SvciF1eYmFvUN2mcUuVHbejIrbNMra7NJuFTiBSq6zbzRJO39D3TxQhCpBb/27v6Vv5rVvGPZrLl+fH1PdtPx8KsUXnIORVcskoLEccTSd77DF77wBVZtB1Xk95IwyosASBTmj6PvaTEI1KvosQgtTz2Bf9Nqiq66gNITz0dRFLZ/7ctHqvkSCQBWqxshDAwjAel8D6l8EdnhlRS7uU/Ecl3JIlqUzmgjLeEt+BLtAKiKBYe1kKqi6ZQVTKREq0bs2gunzUGNmB5DfkuQrq7NxH2dNPe8R6PxNjPqLqa2Yp5ZR9gsp9tVgnovhZqpDBtOq+kdl/bqSHnKKVY1M3mw9yWw7zPvD8JmgVQZe5f5O016Bj/I+nb3sP7HqyiYXMmiRYsO6bOUSCQSycijxsHiLkDv68u/PztEax67hpYgx3is5BEhBh4rVAUtPtgwF/V3svO9J6gccxLjT7gMzZLrASj54LLlO1/mnnvu4RZAMwbnNoTBoZvyihQJMJJxWlY8Q+eGNyiffgb18y9DUVXe/f0th7/hEkkWFqe5YEiPR/vH637EtIFjWA8G6G3dTNfeNfjat5llNStWm5viyqkUz7yEopLxWDUHpBYhKQLiky6ks20dsaiftn2r2NeygnHjFjFubO5qPSEMQv4O3IXVmbal2yDMAmZuCSEy3tVKMitPhCYwtCyvCMgIG3rW5TrR10vzS3/F6vZy/fXXD+ejkxwkMqfEyCFFCYnkIOkqDhCP+eGECXSOL8S7yzReqUXuQWUTRaYhTXeYD4MJV7/xWIsLwmVqRmkfmOg6WmPeeRVDyfxQwxEbNluScMCBEU/Q/eKz2CqrmeL9f6z8lIwteLzhdptjTq2tJmFxYE0n5zX0QWXjXnMURYvMAedpMYhHfHS+8x5dq1/DSMQYs/hjFFfNZc3XpRghOfL4Jtjp7u5A0+wopUXQY4oKWC39LtAATgeEwoDpNQGA3UZCj/LmngfQRZLiggbm1X2EMs/4TOLp59ffBcD56oczVS1d9V0AFp5zN2Pqz8CYqFEXW8Ly1+5iY/PTFJdPxqV40AucCD3JWxt/SyjWxbnzvoGmmLMDBUBRUBM6hqL1TzIMQTKV6DpHBrSoJN0QLxbYevtFaL3R/P12W7tpuu0POKoKmHzrEhlWQyKRSI5hlGCMWHsLRZPmoWbp6Pmu7Goq7ddQBg4tIYZc1a5kGdAyscqVVKgSA4Sh07jpOax2DxNPuJxlT8vVtccbWiq0pcNVesCxCAxKzJ6Mhujc/h4d614lEfJRP/9yKqefyTt/kGKE5OgQa9sH0O+lAKCQI8LmCLSK6WWgCPMauO7FXxAP+/CU1DN5/kcpqz4BNWV8eeMfpu3k7Et+nDn+tWdvB+DcJT+kruEMFEMwbvxCXn/lO+ze/SJlZdMp8FSZ5zIEG9Y+RHfnJk458zac7jJze7qZqbVV6QWnii4ydp/03AFSoZtSebPTYZugP8RyIhZky99/imqx0nDe9djt+RcbSt4nB5MrQooShxUpSkgkB8G0b91DuHkLKCoFtZNz9glL6i6jqqZRLQ/pCUTSqRIrHBDiyZlKYq0ahDduxF46CcVqQfNrJHUznqGrKgiAwxag8Tt/IdHSyuTzbsiEMJEcX1x77bX85Cc/wR9ooaR4QmZ7fFwFQhj09e2mr6+RZFeSuIjgKqwi2pIk1L6HcPtektEgiqZR0jCHijMvwuYpGrnOSI47Wlf/m/a1L1NYOo54gQV7OodDtH/mHEh04ff7icZ9xPUwHrUYTbUQUaAvsBedJGfOugmHzfQSW/rOdwad5wXj8UHbXnrVNM6cu+SH2OwFzD/5Ztauf4D3tjzEKTM+Q5ww23b+i1DMTFIdsUTxYAoiGREibRBKTSZySIkqzYtzXc3jxQLDbs5SbBUR9N1uev/5OqrHScWXbqMnIlexSiQSybHKnC/eQ6h5J0LXKRg7NWffgQQIs8zQO/vD6gh6WzZRUDEei9Vhrh4eEErCUAy2rniQnvbNTJ13Lao22HNb8sHn2muv5aabbiK4dzslJ5RmtqtxM+xltL0Jf9MWhK6TCPlwFFWAohJu30OwdRfJaAiAojEzqDv/szi85SPVFclxyB/+8Aeal/0dW2EpFsOKkugXYtNE/V2EWxtJRHzEw34cheVYbS6SQT8hXyvxcB+zzvsSnuJ6AN782+BFnK89ddugba8s/SoA553/AzTNxoLTvsb6dX9m7do/cdLJX0DRNHbueJ7uzk0AxCO+jCiR9rjAkpVHIpMXYsAcwjDfp70i1GR/yCehgGGBjk3LEHqSaVfchtU1YBWr5LAxMCn6gcpKDh9SlJBIDpKu3avx1E7AYnWCAb5x5l2kbG3WEpRIFNxOlKR5wxlksKL/hhr35G6P7txJxx//hPXZStzz5uJsGId11jgURcFm1dHDMfb+/GViTS1MP/8LbHzuF0eim5JjgNraWgDeW/8Hpp7ycSonTKOjbS09m17C599DNNqLxeJAtdixOD10NK9GQcFqL0DVLIw741qKa2ZgsTlZ8Se56klydAkH21FUjdLaWQjR/3QnigsIxbpp7lnDns4VCAysqgOLs4A9/jWAQOuzoWl2Zo69nNfW/uyQ25CedCw89/vMOOWTrHr9Hlq71rGz+WVTYE63NdyJva4SAFtvFADDbiFWal7/1ZjZ/qTDPKb93EoqX2nPHG8JQ7RisLEpHttM4NX3qLjwShxBB/GS0fOUK4Tgqaee4tb1j+CdN453Lrx7pJskkUgkox7fxlXYi8pxustR4kOXM1elDy1C5IRxyiLi72Tba39A1azUTluIu7CG4uqpKCioOhh6gr2b/01P2yamn/IJNq744/vvlOSYpKioCIB9L/4VzVApnnoSgT2b6du5jnD7HmK9Hag2B6rFis3lpW/nWoSexOYpBmEwZsGVFDXMxOos4N375TxBcnTZvHkzoFA6fh5CGCgpNwM1AfFQH507V9C66VWMZBzN6sDqLKRj+1sIoaNqNjSLjbGzLmHtS4duK3n5ha8BcN7CHzBr9id4+60f09q6mra2VcTjwUy5SKQHrxgPgIJiej6kxQlVyXhLqFnBDLKjqmWHUjOy1ifFe7toW/8KVdPOxGEpZHAshJHllVde4RO/+DMFE09AURQ2/PgYjrYgPSVGDClKSCQHQbS1iXDrbhou/GRmmyJMFTvpNu8gmsUCA3JJWANJhEVBaKmfXNaFzOaDWBEZ5cKhmAp4or2dvueepw+w1ZQikjq94yoIbdyLHk1Qcv3lBM+qPTIdlRwTVFVVMfaMj9DyztNsWflndjm9xCM+3GVjKGyYzpSSWRSWjEURECu2IAwDIQxWPnL7SDddIqH0lHMw9AS71z1JW+d71BbORlE1Evva2NO1EoFB+YT5TDjhMmwx88ld6w4iEBilBYe1LUmPBadehtXiYkvj0yiqhTGzL2bPqn8CsG7Dg8yf/iMcfkE8FZYve5WMkUocb/MniRea1/n2cyv748I6+8sqSXOjoSv0LX0HW1kFRSefBsCuL33lsPbr/dDe3s5ll10GQM3Hz2JG361s/MhPRrhVEolEMnpJBPvo27mWmtMvzQnFp8X2c1C6zH4EDC3Lg8KmmN7Thp6gacPzANhTyVldhVWEfC3EowEapiymrGL6oXVE8oHAZrMx/tLP0fTKX2l6+VHaVj5PItiHs6QGT8U46k65jMLaKSjpRRiGjtB1Vv/pqyPbcIkEuPHGG/njEy/TuvYlenetpWLyAhTVQjIaoHXjqxh6nJLamUw45Voslv7roqEnsaeuk4cTu70Qh7OE3bv+DcDkqZezbcs/Adi68W+UV85Es5rnVVIG7nTax34xQmRCNJnb+hewZrYn+q/33VtXoFps1J6wBGBUiYOGYXDeeWaOjZITz6Jy9nkHOGJ0I3NKjBxSlJBIDoLO9a9jLSzGNXMG1n3m1WhgGCYAYU0Z0CKm7J0syA3Joer9E5RwZe6xtqoqGv7zNlqfeph40z68ly9E7+5DddlJ7m2m8OxZOM9ZiKWkiD2flsbl453dbzzM7JvuoW/be4T27cY74QRKCycC4OzW87qkSiSjAWdVPWOu+DSh5l20vfxPdu54DmHoKIpG9ZzzqZ18DqrFihoTvPZsrrv12Rf9COiP/fp+Sf9OZn1K0LHuNeyGPSNIpPF37oSKiSiqgr3HjKORTk6nOxSsoVRYJn8S77udADR9qF84VhOpsk4DJakQb+4gtGITxZefxdbvjh4xIk1VVRXXXHMNjz32GPv+/Dqtjy5ncpefbV/83Ug3TSKRSEYlPWuWo2pWysedsl8hwhLbv0VD289+u8XDiUu+wY7Vf8XXuYPaiWejJ6Noqo2Qr5Xi8snUTzgXl6dcPgNK2Pnk/3HijVPwN2/Bt3cTBTWT8DbMzIhmq+47hlc2Sz7QTJ48mQlnXE/1jPPY884/aFr9TMqzWlA18QzqZyzGYutf9bP8sf5n6TOvMBfRpPNGvF9efsn0mDj7nDjNzW8hMDKCRJrOtvVU1Z6Ioqj9YZoMMiFdRVp0SPaHfc3JLZHsv+4bVoV4xE/H7pWU1c3inUdGn1Coqiq33norP/nJT+hZ9To9q99gfHcru/75fyPdtENDiEGhEPdbVnLYUIQ48Cfq9/vxer34fD4KC2UcM8nxSW9vLyUVFVScvoSyUxdS0Cyw9ySJlZjanrPDFCAczb5MfgnDZYoRaS8K3WWKFTFvOvG1QswMhU5iwE8r0rSHpvt+QcUXP41r/sTM9t3Xf/3IdFByzDL7pnsAWPsLObGQHHtM/4Y5fq1BM2SQza+jqBrv/HFkVgPN+7zZnjsumsDXfvlvOrYtp3vPewCUNcxj/KnXoKoaNp9OtNSCNWigO8xJRazAvPZXvtACwN5rTFEiNFZHC5n7dKcpXrT/8n6S3d1U334ze28ZnQlIu7q6qJs9mURvCCMap+zyU6n59CIA1l58Z95j5DPj8Yf8ziUSSCaTOAtLKB43i/rTrspsP5AAAfsXIbJXzWYTi/h49/nvMemEK6kae2pm++v/kkKEZDAn3niPFCAkxySnXfPTzN9CCBAGiqrliBBHk/MW/gCAb3z9JG796qP0dG2jae8bABSXTGLGnI9isfQno04LFNkY1txt6ZX3etb2He/9jZ7Wjcw578usfPZ/Dnc3DgvhcJjyCdMJdzShKCqF42cy4eyPA0MLnqPtmTHdnvmX3InFOjwPm2QiyoqnvjVq+nCsIz0lJJJh8uijj4JhUDDvZHQ7mZWygxACJWwuj1LsgxPLCcWcYCTcSkoR77/5GFbQHeZdyZjgwVJWQud9f6Htv/dSUVFx2Psk+WAgxQjJB4G1/zs6xvHq/+tvx6WXXophGOzbt48zrvsKe954HOuUCRTPWUCZz/TFTnhU4p504jrzuH2XmGJEcEISz07zUUsvSO106BihCNEt2yj50GWo9v6Jy2ijrKyM2T+4ktU3PYYRidP1j7eJtXRT9dFzRrppEolEMqp4/vnnSUYCVIw7Zb9ChBZN7cuTbw5yQzUNzEmnZQkUNmy4C6vZseFJ/vHI/zBjxoxDbrvkg48UJCTHOiMlQgwk7TUBsGbVIoQQtLW1sfiC29i04a807XqV8eMXZzwjMrkl6PeMyIjNQmDY+nPYpa/xQhh071tP5dj52Byj1+jtcrmYuOgGtj71S2K+Dnzb17At4KfmpItGumkHj8wpMWJIUUIiGQa13/okrT9+BOf0KVgKzBuD7jRvIJaIuerV0dhjFtb6byxqbxDh6XcrzJ5cWEOCUKWaSXxkDNAvLAVFeC9aTPefH6Wvr0+KEhKJ5APJprtH90RZVVXq6urQLpuPd9d6fJtXUzxnAV0nWDPJ6Bxd5v+RVDi+yIQ43tXmzuCEJGpUBRSE3bxfxPbsA8OgsHIyth6V0YyzpogxX7+aXbf/AYDAyu0EVm7npPGlBGPm/S0a6g9RuO6yL4xIOyUSiWSkmHXeTWx564+4imtwl9QBYIn0xwrfH1rMACV/IS2WlbxowGpbq7AxYfLFrHv3Ptra2qQoIZFIPpCMFjFiKBRFobq6morSGfRUzaWjfS3jxy9GSYVjUoTASEXRUJP91/TMtriRKkdGoIiGuknGw5R4x+feB0YhFoeHSRd9ng2PmN4cwbZdbHv6l5z0oQosdteg8v/+zY1Hu4nDQuaUGDmkKCGRDAPf8ysQsTiFS85FDPGrCZxQjqMzhqUvgqKbNw/hyl0Bm745GRaIlOYaojJJU1NzjmR3L71/exLnCdOZNGnSYeuLRCKRSIbPhJ/+LPO35aQp+J5+il7fVmyzJ+JsNVXleNYiJqHrJHv9+OYVZj20quiBAJEVW9FFlNDyd82tzsEP66ONVxf+hBNC36HovNn0vbw2s73lz69hP3k2kU2N+N/ZiXvBbDxnnjiCLZVIJJKRoXPPuySiAcbPvTIjRuTDkmVcyidWqAONT1ll0oarNPFkmG0b/0ZhQR1nnnnmIbVbIpFIJO+Phed9P/N3ackk9u1bSXvrGqoqZiFSi1XVROr6LQSGBWIxP3a7FyV1IzCsCslElO7WLSSTUXo6twBgsY7+eULaC6t23XL2bXwxs33vmmeomDCfiL+DrsbVFFVPoXra2SPVzAMjc0qMGFKUkEiGgep24pgyBsfEccTQsfZp9EwxjVFlG8wwTra++KDjlLi5z+qLAqBX9N9Y0uJGcsC9RiSThLZtou+Zf6M4HJR+7JpMMjKJRCKRHF12fuWWjDBRcOqphLdtpvW++3BOmYRz0mQs9eWU2Cah2uwEN2+g+W+mR0H9b/8H1WbDiMXpe/LvBF9djUgmQdPQCtyUfOIqdv7w2yPZtYPCOamGvlfXcerTt7DrN6/S8a93Mf76Vma/SCSkKCGRSI5LLDYnNlcRpbUnmO+jxmDRIc+jvBZNGapSz/mDwjXFDUR6DpBOjCoMfO07aNzzMslEhLmzP4PNZkMikUgkR5+XXv56RpgoK5tGVeU8Nm3+K/v2raSkZBIeZzne4vFYrU76fI2sXnMfAKeedDPOwkoMQ6dxy4s0Ny9H1+MoiopmcTB+0gW8+8bPUdXR7VGdxlNaD8Dcy79Fx463adu2jM6dKzL7o/6OUS1KSE+JkUOKEhLJMHDVFtD17mYUdwRLi2fQfmdTEL3Q9IpQYkmSFeayWUtPqL+QokAqjqARjtCx8m1UixWj2IHRFyCW9JH0+Yju2okRCmOtq6HqE5/Epg0+n0QikUiOHju/YibdHnfvT6n4zKcILHub8IaN9D73PCKRoMOi4ahvINq4O3NM69fuwXvxAgKvv0eitZuiJYspOG0BaoFzqNOMWiod3XRu24GtsoiI4aT28xdQ9fFzSbR0ArD1m49RMHsMroLoCLdUIpFIjj5OaxHxsA/hD2K15V/ZqkXSAoT53yABIqpn9ulCp7n5LVDAYnOhh4PE4n5icT99vr3E436czlJmzvgIbs17hHolkUgkkuHw0stfB2Dhud9n2tQrKSoaS2fnRvbsfQ1dj6Gg4i2sxxdozhzz7nv/R0P9WXT3bsfn38OY+jOpq12A3VaQKXOsCBLJZJJA83ZUzYbLcDNu4mIaxp1LONCOEIKt7/6FwtJxWEOjOBSVzCkxYkhRQiIZBp4542h/+HWiO1oosE4BwO4z9zmbgoPKWzoDGAUO4lXmTcUSyPWiSHZ10v7mM5n3qsOJVuTFUlhI6ZRTKZ56IskTq45QbyQSiURyKOz+ohnXdrz6M7xnnYlu00l2dhHZsIXouq2ULL4A77nnEm7bTeCN5XQ/+CzWmnLqPvdF7NW1bP+66eI87t6fjmQ3Doqrl3+Otz/3BKHGbqo/vSizXegGe3/zbyJ7uzESSbwL545gKyUSiWTkKC6bDAj6OrdRVWx6SzDAliQGeD1bInq/MDFgXzIeZueOZzPvNc2O3V6I3VZIZcl0qspmU1hYJz2pJRKJZBTx0ispceKcu6mpOhEMQSzmo6tnG93dWxhTvYAJYxYSDLbS0rGKXY0vYrN5mDfjUxR7x/HCsm9mjj9WOHfJD1m3+o/0dG2lZsKZKKqW2de46TkCPXvQkzGmzPvICLbywEhPiZFDihISyTAILN+EYrNgKSmEQO4+/zTTK8K71kx0bRQ4Bh0fqTZXTaVzSmiVZtLqMWdeTcnEk3jvD7cx9Y57ALCn8mUHEey85ZbD3heJRCKRvD923dx/bZ74o3twnlwFJ5/DjttN0WHsr3+CY9J4klddguZ2oVit0Nd/fFrcGM1cMOu/ASj4lSDS7gcgvmsfWsiP8BTgf2cHoa2t3HLLLVx00UUsXLgQAL/fP2JtlkgkkpGgZ+9aQMGtFg3ap4XNUK6ZEE1psSJLUNCiZpm0cOHAgUVzUF97GmPrz+LlZd9h8YI7c8qgKBkDlkQikUhGDy+9+o3M3+efcRf1lSdTX3ly5pq9eMGdeD11TKg7D4tqQ9NsOYvvs48frZx/+vfMPzxWIuFuAGK+LhJdnTidJfT1NtLXsY1rr72Wa665hssvvxwYxfMEQ5iv4ZaVHDakKCGRHADDMOhaupaSS09Ds1egpK6j4ZQjg6M3t7wSSZAs3X9SomBgHwD/+PlXmTdvXmb7lju+fNjaLZFIJJIjT1qISBOLxTCUEHv/4zsAjH3gh4BOwqUz+a572PbNY+M6L4TBvr4NlNw4hkUPX8/WZ3bT/OjbKL/XqLvpEnpf24hW4OTOO+/E5Rr9ifgkEonkSLGv9R2qS2dTbKmEcAJgUC6INIoBajSBUNV+b4oBHg+xQDdJPYrXWs7Ly76T2f7vt751pLogkUgkkiPAQPE4mUwSI8Zrb5lG/SUnfxd0gaInWXLSHSx9944RaOXBI4Sgo2cT7lApTXu3sOCMG9iz+xW2bfo7s0/8DO2ta1BUCz/5yU+ora0d6eYeGBm+acSQooREcgB2796NEYnjnNowaJ+zHTx7zRjaijCvTron11MiriTYtOJB4lE/ZWPmolkd9PWZcce3b9+eESWkICGRSCTHPkUnzyK6fhvWO+7FPX82Fluc4Nq9GOEoVncJkwwDd7tpiVrzy9F33T/35a+gRxKs2/l3fJEW3PZSKh+upWRKOa0uB7GuIB3/WoX/3Z2M/fY1UpCQSCTHNeFwmHC4i4aKBTnbFSFQI4l+cWIIAUIJRdnQ8jT+SBtVRTOwWwvxR1vNumM9mXJSkJBIJJJjn4b6BexrexeH/V4qy0/Aotrp7dtFPBHCqjlYODeGBRsAS9/77gi3djAXzPk2QhisbfobXb1bsVicnDztPWzuYuwWD/GIj549a2ltWcnU8ZceG4IE5vqBYYdvOqItOf6QooREcgDWrl0LgGtCBcnu/gCxzvb85RVdR03l+kwUW+jr2ElPx2aKSiexZ+NzCGFg8xRTd+LFXHnllUe6+RKJRCI5Coz7y/cBEJEIAPbJYwm89CaKzYJrxliSARvhdVuw74mAwz2STT0grUs34Iu0UH3VSbQ+8S67Hu82DWlCEO/wEVi3h9KLT6bw5Ekj3VSJRCIZUTZs2AAIvEoJaigG6cSkQ+R7UMNmnjmhKaAo+KMd7OtdT7G7gd0db6IbCeyWAsaVnsYYz5yj0wmJRCKRHFHOW/gDAJKGeQ8oLZlEa8cahDAoLhyL1eqio2cT4XAPha7RnVu007+drt6tNJSdwp6ulezuXA6d/fs3bv8b5cXTqK04aeQaebAIYb6GW1Zy2JCihESyHyY8ejc9f30BFOh76T1sNRoWj3mTsIbMi1E6NuzABHYAWiSJS/EAUFw1BZu3hNIxc/BWTUK3K1it1qPTEYlEIpEccWzOBEVXL6H97t/jmVFF3c3/j2jYjqIoRNdvIbJuB8HCCEVxN33TjJFubl561zSx495XKDtnKmM/ey62GRPpe6cR33Nv4zl9FuE126m8aj4VV56KqsqHcolEcvxy4Zib2RtcD0BHYDuKqlLorgFMDwigPxm1NlisUMIxnLodgGJbNYW2CrzOamoKpyNUlec33nWUeiKRSCSSo8GYSQvp7NyI1V7AGad/HQQoikq4p4WOnk0ktFQIQLt2gJpGhmC0kzV7/kaxewyTqxdRXjiZ3tBedra/Tk3RCbT7tzCm9CTGl5+OJRQb6eYOG5noeuSQooREcgBiO5pBQMdDL4PyCg033Y6tvHJQOd3rzPytxpMYDiuGVcPpraa4Yiq7Nz4NgK99G3Mv+SZaTF7NJBKJ5IOCzWlOIrwn1hOcNwnfG1twnnG66WBgGPQ+8SpaWTF2WyF9E0aPIDH+np8BYLh1kn0+2u95BfvEBkr+8xp6giqRPvA9v4KiK8+l5MOL2HHN1/uNbBKJRHKc44u3AbCr6012db3JyTVXU+ocM9hTIhg2/0+JE4qigKZhVZ3UFsxkV+/b5v5eqPRMQkMuXJJIJJIPCobVvCe4rZVU1Z5IR+dGJoxbDIqZn2HnvtewWlw4vZUIMboEiQurvgBCkDBibAg8j9NSyMnlV6AGY6iRGLva36TWM52Z3oU096w9NucJRzinRCAQ4Fvf+hb/+Mc/6OjoYO7cufziF7/g5JNPBuCTn/wkDzzwQM4x8+fP5+233868j8Vi3HrrrTzyyCNEIhEWLlzIr3/9a+rq6jJlent7+dKXvsS//vUvAC699FLuvfdeioqKDr7RRwn1wEUkkuMXYRhEdzTlbHNQiDUAtoCBLWBg7QyiheJYuoNYuoMohoHhMCcSWkxHUTSKC8Zmji+unQnAW4985aj1QyKRSCRHD/dJU4hu3kV4wy70YJy2O+8jtnMvpXPORLXacLapNP7n6LkHCCEIr9lA2/fvRcQTlN7wIRRVxffqGjp+/Tie02ZRfNV5AMfmREMikUiOEH2xtpz39qgCgSAEQ+YrFDZf+dB1FEWh2NEfc7umcCYKCs9t/v6RbLZEIpFIRojSiulEwp3s61pL0mKwbtNf6OzaQGXFCdhtBRh2C/9++9sj3cwceuL7eKv374QTvcyquAhVsdAZ3sXq9icpcdQwo3QRiqIcs/MERYiDeh0sn/nMZ3jhhRd48MEHWb9+PYsXL2bRokW0tLRkylxwwQW0trZmXs8++2xOHTfffDP/+Mc/ePTRR1m2bBnBYJCLL74YXdczZa677jrWrFnD888/z/PPP8+aNWv42Mc+dugfzFFAekpIJPtB1QzsYyqJbmsCIbDV1eFIOiEIhW+ayaqNmrJBxwlNQdEFim7Q3riCXbufp37yQsrnL0bVLCSBkz/1M9754y1HuUcSiUQiORJsvdKcPIz98w9wLFiAY9lmOn7yB9BNrwhbbQ3WU6ay+c7Rk9y64f4fkNjdQu/zzxPdvgPnzKmUXvNhNFchgdUbaLv3H6iFHkquvZZd131tpJsrkUgkowoRCOJWCgnTi0BgV1y4Fe+BD3Q5IRJFeJx0BnawoXMpdcVzmFK7BItmJji9YM63eX7N/xzhHkgkEonkaPDq818F4NwlP6SsbCqV1XPZsvFxtmx4DACXu5yymjkAvPjaN0aqmTksdnyUgOhlt7KF9tguiiyVzCu4AHfUQ29wB6t8TwIwx3keSjDCc12/G+EWvw+M1Gu4ZQ+CSCTCE088wZNPPslZZ50FwB133ME///lPfvOb3/C9730PALvdTlVV/nwiPp+P+++/nwcffJBFixYB8NBDD1FfX8+LL77IkiVL2Lx5M88//zxvv/028+fPB+C+++5jwYIFbN26lSlTphxcw48SUpSQSPZDvEUh2RvGMW0c8aY2nBMn4J8gKNyp0PqhiVT/bQeqP5JJdqOXF2aONYUJ8AVb8BTV0TD9AghAtAgpRkgkEskHlMaPm8b7nks/z8SbPokRDOOZPBtbbQ27vjR6vCPeeOMNWr76Q/TuPqzlFVR98tO4pk0Hzx6av/8b4s1dAFhKS1As8nFRIpFIBiKEQdQI4NXKiYowRZbK/lWihmEmvXY5+0M5aVlBCpwOAHzhfdgsHmbU/b+cuqUgIZFIJB88XllqihPh8BeZe9JHicX8lJROwls0llf+/dURbl0/69evZ3n8aULChwMXMy0LqFbHEg9GeVt/Ap/oBsCmONGUYz/c4MF4QKTL+f3+nO12ux273T6ofDKZRNd1HA5Hznan08myZcsy71999VUqKiooKiri7LPP5q677qKiogKAVatWkUgkWLx4caZ8TU0NM2fOZPny5SxZsoS33noLr9ebESQATj31VLxeL8uXL5eihERyLBJr3Euyowu1wIERiuKaMQNL2JxYeBuT4HHnlNc6/cQaSgHwq73Ekr30RpvwFI/BsJjHSUFCIpFIPviUlJTQ8+C/RroZgxhz/w8JvLiMvr8+i33SWMqv/whFzgkoqkrYbdD10Ar0YJzKr30ee/14FEWh8fO3jnSzJRKJZNQRMnz49W4KtTJiRpgK+1jwuCAcgQJPvxghhPm3bmAUmEaJSMJPONpNd6QJt7Mcw2F6SPx75egK2SGRSCSSw4/L5WLrpr+PdDMGscT9cVqTu9kYfwuXUsg863mUKOWoipnnoklsJyh8zNHOpgxTiF/afd8It/owcAg5Jerr63M2f+c73+GOO+4YVLygoIAFCxZw5513Mm3aNCorK3nkkUdYsWIFkyZNAuDCCy/kwx/+MA0NDezevZtvfetbnHfeeaxatQq73U5bWxs2m43i4uKcuisrK2lrM8NItrW1ZUSMbCoqKjJlRiNSlJBIhmDsn39ArGUPqtNJ9U03gSFQVBUCEK4GbyMYRW7UvhCRSeXY20IAGIbOrl1Ladq7jPQVa/y8D41cRyQSiURy3NNw/48ACCx9nb7Hn6XwnLMpvvwiFE1D2Weu3k10dBJauYqiKxfjmDyOxk/dNpJNlkgkklHLhfU34bcEADil6kNomg1FSXlCuJwACJcdJRxDuB0o4RiG24HQBY2dy9nZ+iqGMONAnzBezhMkEolEMnJcWPclANrtHawPL6PGOYVpxlw0xQLCjFcUF1H26lupUcdRrtbw7/jDI9nkw4sQmegnwyoLNDU1UVjYHykln5dEmgcffJBPf/rT1NbWomka8+bN47rrrmP16tUAXHPNNZmyM2fO5KSTTqKhoYFnnnmGK6+8cj9NETl5PPLl9BhYZrQhRQmJZAiMSIzIqo3YxtTh3aHhn2jg3qsSLwZ3M/jrLTjaTGECIFblxrm5ldZoI017lzF+whIqKk7A8DpZ8dx3R7g3EolEIjleSQsSya4e+h5/Fve8uZRccjGKUCEJkWoD3R+g+y+PoxUWUHTxfHZ//PYRbrVEIpGMXgyh0xreittSjKWwGMIRhNtl7syK0iRc9sz/htNKZ+9Wtu97iYaKU6kvPxlVtfLq2p+MaoOBRCKRSD64pAWJpBFnQ9/LFFmrmFl0Hqro9/ZLGDG2+N9GKDCxaAEEEiPY4sOPIszXcMsCFBYW5ogS+2PChAm89tprhEIh/H4/1dXVXHPNNYwbNy5v+erqahoaGti+fTsAVVVVxONxent7c7wlOjo6OO200zJl2tvbB9XV2dlJZWXl8Do3AkhRQiLJQ/1P/4eOe+8nsa+Tuo9fBUDhDhXdBrZes0zlG10Ihw1ldwuO3aCkQjl1tK/D4Siipu4UrFYnLz8nk4NKJBKJZORRbICiEFr9HqH31uCZNQfHlEkkA334XnkNRVOp+OI1qLZjPzasRCKRHCkWT7qV93qfoyvWxNzaK8yNKe+INIbbjhpJYLjMsEwiJTq0d69H0+yMGXMmdlshL7z530e17RKJRCKR5MXtQlFU+hJt/Lv1N5S7xlPpmUQi7Gd36D10kWS650zsqpPn4g+MdGsPL4fgKXEouN1u3G43vb29LF26lB/96Ed5y3V3d9PU1ER1dTUAJ554IlarlRdeeIGrr74agNbWVjZs2JCpY8GCBfh8PlauXMkpp5wCwIoVK/D5fBnhYjQiRQmJJA/xvc3E9zQBsO+h+9HnL6Z23JkAaLH+i5ASjecemEgyXpnOuvgLrFr+C+q8s1gwdjNvNX7ALtoSiUQiOWbYc8PtjH3wB1jKiqj5wZdJNLdj7AzgW/4GwbXvgapScM4CvJecj61KChISiUSyP8KJXrrDuwHButanGaN3MLH+/EHlDGfu9VR3W6hpWECPfzdvr/01NXXzmXviHt5b9QGIxy2RSCSSY5Lnmv8XgAunfI3TGz6FP9pONBlgr+89NnQsBaDGM53JpWfiCI1kS48cimG+hlv2YFm6dClCCKZMmcKOHTu47bbbmDJlCp/61KcIBoPccccdXHXVVVRXV9PY2Mg3vvENysrKuOIKc+GD1+vlhhtu4Ctf+QqlpaWUlJRw6623csIJJ7Bo0SIApk2bxgUXXMCNN97Ib3/7WwA++9nPcvHFF4/aJNcgRQmJJC/tv/gd1XGF9vv/iNCTOJylOfsLt/kRNguJIidUFGBf1wihCNisVDjGctrYT7Gl82V29axgR9cylkyvYemm749MZyQSiUQiSWGtLscp6qAWvAvPRhgGCIFRZO7fea3MIyGRSCT7Y1nj/SyYbmHVtgdJGjGc9pKc/bo7JUakI19khWbyFjVw8vwvsmPbM7Q0v8We3S8z//wKVrxw19FqvkQikUgkOVw4xYzu4bR6cVrMkEQNRfMQhoHAQE3FJXyu88cj1sYjyhH2lPD5fHz961+nubmZkpISrrrqKu666y6sVivJZJL169fz5z//mb6+Pqqrqzn33HN57LHHKCgoyNRxzz33YLFYuPrqq4lEIixcuJA//elPaJqWKfOXv/yFL33pSyxevBiASy+9lF/+8pcH3d6jiSLEgT9Rv9+P1+vF5/MNO2aWRHKs4xg3FnwRxp//abxqGQBq0tzn2eUHMEUJQBEC67rdAIgG08Uq7O9gTdMTOCwFnNhwLQDPb5QTDonkWGb6N+9h011fHulmSCSjFvnMePwhv3PJ8UhVyQx6Q03MnvFRCgrrzI0D80JkvU26zbWA6RDdsaiPrasfIREPMe/sW1AUhdf/JUVhieRY5uxLTIPta0/J37JEko/R9syYbs85J38Ti8UxrGOSySivvnPXqOnDsY70lJBI8tDwmZuJNe6h4dIbsNRWQGu/j1bCpdA700vpG/uw94aIj831ohCNLWzkXfb1rMOmuZhefcHRbr5EIjkCTLnlewR3baXuyk/iaphAbLIDRVFo/PytI900iUQikUgkR4kz5t9Oe+9mpky8mMKCOrJX+CWdqRWLaUFCHSBUGIJdW55h3+43UVUrU+ZeI5NcSyQfAM648Hv0du0gmYiw4PxvY7W6URSF1565faSbJpFIDoAiBMowPSCGW04yPKQoIZEMYPzPf0aipwsAd/1EKleYgfMMmznJSIyx55S3NXYj+nwA6FMbaGpbwb7d65g89iLWbHocpzM38Z1EIjn2OP+079FjWUbXG0sz2yzlZdR8RwoSEolEIpEcL5xzwQ+JRHsBQXHReJKuXA+IQRiCpMucQ1iiBp29W2jZ+Tp1085n49t/k6ssJZIPAKd/+Kd0ta5j29rHM9usNg8nnXXLCLZKIpFIRj/qSDdAIhlNjP/5zwAwKlwAROzhzD41YRCpsGGJCpJOhfbFtQi/H+H3Z8pENq5hV9PLVJfPYUz1qVy68KdHtwMSieSwc/5p3wPAuqUdAIvbNCAY0Si7pJeERCKRSCTHFWoqxnNUi+dsT7rU/pez/5WOPx3U+9iz/mm8FZOon76YC2+QCa4lkmOd0z9szvfDsR4A7G4zikIiHuLZx2XIV4nkmCCdU2K4L8lhQ3pKSCRZ7Lr5FibffQ821WNu6Ayy74x6at4M5y3f8aFpVD7TiCGSrOl4lo5EIw7NwxRtDi8s/++j2HKJRHKkqSidSSIZIVHuRLXaeP4P9+YklpJIJBKJRPLBJunWULSUKKGEcbv2v8Yv6VQRwmDvW3+jffcKNKuTCWd/At2lsuLPchW1RPJBobh6GiFfG6pmwVs2ngd/9z2KiopGulkSiWQ4CMA4YKn+spLDhhQlJJI8WMvKUF1uOt9cSv1VNwCwd7GL0o0GnXPNyYertb/8rsAqOhN7mVm8iBrXFFRF48L6m3iu6RcHdd7b136YeCRJuCfG7y569rD1RyKRHDpSYJRIJBKJRJLGanfjcJfSvOUliqumoqoWEvsRJ7p2vkP7rrcZc+KllE86Fc1qH7Ls/pj15Xsw9CQJfw9b/ni3zEUhkYwC3nz8KyPdBIlE8j6ROSVGDilKSCQD2PaNLzP1u/dQfPLpdL/2Amo4QfvJZjin7hn9E45wNUx4tBdR6kULWFAUlcqauSiqjefWfW/Y5/vCq5ez6sGtrP/HLorHFBDqjODbF+bls2t495+b5AoLiUQikUgkEolkFLDsiVs59aM/o3rmeexe8Tgh4cfhKstbNukwRQPVYgOgcNJshMdBElh13/DCusz4r+/TveZNute8gcVVgNCTxHra8bz4V7a+/Rp1dXWHpV8SiUQikRy3CIYflklqEocVmVNCIhmCeFcH1pIydJcFPbWgKVEo0B0Cw2q+0njLJ2GIJOvGvED3D3ROef4bwz7Pb89/ipV/2EKkN86+td349pmhona+1sq1j11/WPskkUgkEolEIpFI3h8Rfwea1YFaUpwRH5IOJeeVxlHbAMCet/5G0qqjO4Z/nt1/+w3tbz5DMuQn2tlCrMfMbxVu2cWpn//a4euQRCKRSCTHKzKnxIghRQmJJA9bvvNlqmpPwW71sPvPP8e/dR1asD/InNDAO6WT7Vds5dXQH1i5408AdD63hq6lawGGJUwIIZg8cTIAZdNK0ewaVpeV6lNqWPCN06mcW8UnVt5w+DsokUgkEolEIpFIDpq3H7qF4mkn4yyrY9Pff0z3tneIW/WcMkm7wNezi23P/h8bH7sLgMCezbS/+wIAc754z7DOteiUOQDYSytRHU4UixVX3Xgqz74Y77R5zLx9ePVIJBKJRCIZAuMgX5LDhgzfJJEMgbdmCroeZddLf6b5n3/CWljCmCUfI3l2PQB7fvEsPS+uA0ArcoMAEY3iaMjvwp0PRVFYs2YN69at4//4JXpMR7Wq6IoVgAdOuf/wd0wikUgkEolEIpEcMpue+DETPhRl1xO/ZM/rj9Dy7tPULbwWb8M0ANpXPE/7O6YAodldqBYriXAAR2l1po45X7yHNffuP4zTP/7xD959910+9bdlCMNAURQUTUMRsOFHwwsBJZFIJBKJZGhkTomRQ4oSEskQvPPHW5h5db+3Q8Lfw87Hf4Hl9XK8E+fQ86YpSHg/tATvxecwu2YHr9zwN9rvX8qUX13OP8/5LRNSK6N2XvPNIc9jt9s5+eSTOZkHjmyHJBKJRCKRSCQSyWHBUVKZ+TsZDtD41H3YCkoomDSTnvVvg6JSMnsB1edeDgJ2//XX7HvraVwTJ7Pp3m8w/Zv3MP2b97DprqHFBU3TmD9/Ppvmzz8KPZJIJBKJ5DjkYMIySVHisCLDN0kk+2HDX+9m5ue+j3fC7My2ZHsn3W+aK59sJeV4l5yBoihY3Tbc111P75Yunr78EUqvv4Bktw8hREackEgkEolEIpFIJMc+G3/330z/8o8pmXtGZls80EP36tcRiTia00XFgiUoqobh1qi+9Fr0SJCtv/8eZWcsJt7bjRCC6d+UIZgkEolEIhkxZE6JEUN6SkgkB0Cz2mm44OP0bnmHtpVLSQR6Uaw2iksnMWXO1eyzWXFvsrFl0yQcE5LUfOcWuv/8OD0PL6Xn4aUAOGdOpaFbYc8Xhp8AWyKRSCQSiUQikYxeFE2jeuGVuMdMouONZ4n1tKNoGs768dRceh1KgYd0tglbSTnjb7yd9hefpPvNFzKLnOzVtUxMBtnxw2+NXEckEolEIjlekZ4SI4b0lJBIDsCae7+MoiiUTDuFqR/9OtXnfxhrQRE9bRt5e+l36fjCT+h44zn8/kbY7iO+pYlEa0dOHdGtO0DTGHvfj0emExKJRCKRSCQSieSwsuHHZuilwkknMOGTt1Fz+UexV9QQbtzOjnv/hx2/+h5trzxJsG0X0Ug3kZY9RNqbcuqItbaApjHlf6THhEQikUgkRx2Z6HrEkJ4SEskwyE5CN/O2eyieNZ9w826ivW1E21voefd1jOXmaicUBeeUyTgmjCfR1Y3qdVKw8AwUVaXxxttGqAcSiUQikUgkEonkcJMWJgCm//c9FE6fS7S1iXB3C/H2Vnxr3qV3+WuZMo76sRSdfDrxznZUh5Oik09DczjZ+m2ZuFoikUgkkqONTHQ9ckhRQiI5SLInHgAzvn4PVYsuJ97TSYQAtopKrEXFbP+anFhIJBKJRCKRSCTHC5u+l/v8P+XOeyhbcimJ7k6SAT/W4hJspeVs/ZacJ0gkEolEMiqQ4ZtGDClKSCTvk43fl5MKiUQikUgkEolEkosUHyQSiUQiGeUYApRhig2GFCUOJ1KUkEgkEolEIpFIJBKJRCKRSCQSyfGF9JQYMaQoIZFIJBKJRCKRSCQSiUQikUgkkuOMgxAlkKLE4USKEhKJRCKRSCQSiUQikUgkEolEIjm+kJ4SI4YUJSQSiUQikUgkEolEIpFIJBKJRHJ8YQiG7QEhc0ocVqQoIZFIJBKJRCKRSCQSiUQikUgkkuMLYZiv4ZaVHDakKCGRSCQSiUQikUgkEolEIpFIJJLjCxm+acSQooREIpFIJBKJRCKRSCQSiUQikUiOL2T4phFDihISySjkfPXDg7a9YDw+Ai2RSCQSiUQikUgko4Upf/+fQdu2XvntEWiJRCKRSCQfAKSnxIghRQmJZBSQT4TIV0YKExKJRCKRSCQSyfHDjCfvwDCUrC3KoDJT/v4/UpiQSCQSieRQEByEKHFEW3LcIUUJiWQEGY4YAbleEuljpEAhkUgkEolEIpF8MJnx5B2Zv1VVZIQJhy2RU27txXdm/j7xuW8CsOrCu458AyUSiUQi+SAgPSVGDHWkGyCRHM8MJSwkRYKQ8CNSF7zz1Q9nXmmGK2hIJBKJRCKRSCSSY4uNl90BgN2axG5N4rQnsFmTGNEE0aYuRFIH4JTnv8GJz30zI0gAg95LJBKJRCIZAsM4uNdBEggEuPnmm2loaMDpdHLaaafxzjvvZPYLIbjjjjuoqanB6XRyzjnnsHHjxpw6YrEYX/ziFykrK8PtdnPppZfS3NycU6a3t5ePfexjeL1evF4vH/vYx+jr6zukj+RoIT0lJJKjzFBighCCPrpoZAvdtAOgorJALMGpuIesS3pMSCQSiUQikUgkxz6nLv06AHrKK8JlA12oCCGI7Gij/Ym36Fu2ORM+Yvq9n8I+sWqkmiuRSCQSybHPEfaU+MxnPsOGDRt48MEHqamp4aGHHmLRokVs2rSJ2tpafvSjH/Gzn/2MP/3pT0yePJnvfe97nH/++WzdupWCggIAbr75Zp566ikeffRRSktL+cpXvsLFF1/MqlWr0DQNgOuuu47m5maef/55AD772c/ysY99jKeeeuqg23y0kKKERHIEOZA3g1/00sJuWtiVd7+BgZrHoUkKERKJRCKRSCQSybHL6S98NfO3bgx+3o82d9O5dC3tT6wYsg7FYhoiNMU0kuhCkaGbJBKJRCI5GI6gKBGJRHjiiSd48sknOeusswC44447+Oc//8lvfvMb7rzzTn7+85/zzW9+kyuvvBKABx54gMrKSh5++GE+97nP4fP5uP/++3nwwQdZtGgRAA899BD19fW8+OKLLFmyhM2bN/P888/z9ttvM3/+fADuu+8+FixYwNatW5kyZcpBtftoIUUJieQoEhMRWthNH1300DFkuRIqKKeGCuqwKw5AChESieTokE9MldcfiUQikUiOHJpqEPPF6X3xPXrfbaR31Z4hy3qm11Jy+mRKz5yCvdKLbsDKC+4+iq2VSCTHK2e8eDtCKDnb3jz/hyPUGonkMGEIhp3B2jDL+f3+nM12ux273T6oeDKZRNd1HA5Hznan08myZcvYvXs3bW1tLF68OKeus88+m+XLl/O5z32OVatWkUgkcsrU1NQwc+ZMli9fzpIlS3jrrbfwer0ZQQLg1FNPxev1snz5cilKSCTHGwMNe3vENnayAQUFHT2zfQIzqaIeBy4MDJLEsStOaQSUSIYgX9iygb83+fvJ5f3koBFCsEj5EC+Kvx32doym7ykYDPLQQw9x6aWXUlNTM9LNkUgkEskHmCWv3YzHBsG4HYclQeu/N7Ht3lcw4joi0T9PqP/IKZQtnImzvgShGyR6Q9grClm26Ecj2HqJZPRy2bL/4skzfpmz7f+9/qWc98+c9b9Hs0mjnrNeum3QNmOA8JCNooiMMCGE4LSlt7N8yeG5Ji157ebM30vP/vlhqfNwkEwmuf/++1m0aBETJkwY6eZIDjNCGAgxvFwR6XL19fU527/zne9wxx13DCpfUFDAggULuPPOO5k2bRqVlZU88sgjrFixgkmTJtHW1gZAZWVlznGVlZXs2WMuUGhra8Nms1FcXDyoTPr4trY2KioqBp2/oqIiU2Y0IkUJieQIkDa8GcKgk33sYzfdtDOGSYxjGu/wCk7czOF0FKX/hq+hoSEFCYkkH9kG7bOUSwjiI0yAGFF0kliwYsOOHRfnKJdhVWyZ8vI3dfAIIehkH9tYS5IEFUotVYyhgtrMdWuozzX7uxJCYGBgoBPCj58+CimikJKMwDQcsWI4Hhz7y7MzlDCTPv8+0cgm3uUL//EF5nM+b4mlB+U1ki4rx5pEIpFI9kfa6CaEIPLeVrY/vZHON3dSed4UZv3Xabz3vReI9UU47XfXomjpsE5x8z+3nefOkoKERDKQy5b9V+bvC5/5DP5d3QT39BLuDJMMxdFcVmxFThzlHhb1fAZ3Wf+q5YEihmR4+N7bw+7fvES03UfZzL9SuXAKVedORrWZZsYXzrkn73HZIpGBgpHQ0aNJwvt89G5ow91QTNHMmsy10qbqOcc/dea9eevNHgMw+Hu9avkXeOK0X+c99oo3/zPv9n+c/iuuePM/6VzVzJs3/QuA0//3MpZ98Z/7PWYgVy3/AsCQ55eMMEJkPCCGVRZoamqisLAwszmfl0SaBx98kE9/+tPU1taiaRrz5s3juuuuY/Xq1Zky2XZB8zRi0LbBTcktk6/8cOoZSRQhDhwQy+/34/V68fl8OR+6RCLJjxCC2epp7GA9EUJ4KaWWcbgpIICPLZgXn7mcSalSmbcOadiSHE8MZZTO3h4UPlrYTRdtRAgCoKBgx4mGhSQJ4kQRCBQUxjGN8cr0QXUeC+zPs0EIkREKpjAHi2I9rOcWQtBNG3vZTg8dlFFNIcV00YqfXtwUMo5pVFK33wecmIjSQTPN7CKEf9B+N4VMZCZlVGfy5xzogUkXSXz0ECeGBQsuCrDjREUlQog4UQCs2Hkh+ASXF3wSQxiECRAiQIQgSZIYKW81gSBGlDgRQgSw4SBBnAK8zOZ0VGVwjO+D5Vgad4cD+cx4/CG/c4nk4Dnpp1ey/Tev49/ZjXdSGRVLZlI9r4q+LR2s+8krYAhmfm0RdRdOx2VJDDpeGrYkxxPXvPX5QdseW/B/me1R3UJon4+9T22i7c1GArt7AFA0BXuJC4vbTjIcJ94XwYjroCqMvXQGs75ydqa+Y0mYuPD1m/a7f9df3sW3uZ3pXzkXe7HrgPWFErZB29zWOIF4v5G1wBbDEApCCHrXtrD3iTV0vLGTopnVlC0YR/fKPfSubcFRWcC4j55C9eJpFLqNQR4XyVT+nEQgRtsbO9n7rw34Nrf3F1AVMASOygIm3XgaledMwqnE0RULqiX3udym5YoVRlKnc30nsZ4wqlXDXV+Es9yN3a0RaQ8S6TDnj9YCO09c8jtu3Hg7hm4QbPIR2NNHoMVPNJDAiCXNFAOGINYTJt4Twr/XZ56z0IFq1Tjzl5fj8pjtiRtabruyRJSkGHouYVOTPHLq74bc/0FktD0zptuz0PsxLMrg30E+kiLOS74HD6kPoVAIv99PdXU111xzDcFgkHvvvZcJEyawevVq5s6dmyl72WWXUVRUxAMPPMDLL7/MwoUL6enpyfGWmD17Npdffjnf/e53+cMf/sAtt9xCX19fzjmLioq45557+NSnPnVQbT1aSFFCInkf5DMcRkSIDazARw9lVDGeGViwspMNtNMMgA07BRQzg5OxKUMrqsebMUtyfHGgkEJJkcBPD6AQxMcO1qNhoYI6SiingGKcuHMM2UIIooTZyUbaaaaGBmoZzwrx4rDOub/f3JHKtTCwXl3oGQO9IQxiRIgSRkFBQaWNvTSxAwAvJTQwFQ+F2LCTJEGMCBpWrFhRUEmSIEEMKzaceAZ9XjEixIjiwEWMCNtZRy+deChiAtMpV/pDGflEDzvZQA8duPBQRjUqKqAgMIgRJUqYCCFiRFBQKKOacmrQsODARQFF+OlhB+vpoztTtxU7ldRRRCkFFGPHgYYFgfmdtrKHZnaSSK8WzUJBQeSJA2rBioGOgelmq6X8aVS0zHGmd40TOw7qmECYAGt4EyceiilHRUUniYGBQKCTJEkicz6BQGCkvh3T382CDSduahmHU3Fn2nM8XNPlM+Pxh/zOJZL8DDSkGkIh1hvhnbteoe2tvZScUMX0z52Ku87L1j+8Q+NTm0CAvchB4dhiTv7mOThqioasXwoTkg86n1h5A1E9/+KbZCxJz0YzR2Owxc+6X72NkTSoPnsCZfPqKJ1ehqeuENXSbzC2Kgl6O5LseOQ9dv11LbWLJjP2shm88YUnUBQlr/gBYEkZmf8y/74h2zqUcPJ++fDy/8h5r8d1wooDRVEQukG0O0S0PYAwBJrdQueKPez4w9sAuMcUM/FT8ymcXIGtyIkeTRDtDKLZLFgLHag2DT2SINYdwuKx46rxolr7Py8hTKN8rCOIvdRFIqKz/b436XhjJ676IqZ/ch7F583MzC305nbW37eKjte34yhzU3P2eFS7FUVNtbUnTLQjSKg1QLTDbHPpvHrGnT+OpMONvdRN7QnF+Hb3suG+d2hf3p9bx+K2UX32BEpm11A0tQJHuYdCr0JSV4h0h2l+YTs7n9hApD046DNUNAWh55knuKwIQ6BHk+Z7p8UUHWwWUE19xF7sxFnmxl7iZNxFU7AqCZZ+/lnsXgcVJ9VicVlJhhOQSGDogmTMIB6MY6TD8BkCoRugKigWDc1hxVZgx1nhZuIlk/CO6zcwHw8CxWh7ZsyIEgXXH5woEfjL++pDb28v48aN40c/+hE33ngjNTU1fPnLX+b2228HIB6PU1FRwQ9/+MNMouvy8nIeeughrr76agBaW1upq6vj2WefzSS6nj59OitWrOCUU04BYMWKFZx66qls2bJl1OaUkKKERPI+GGhMFEKwjGcBwXROplSpZK/Yzg7WY8XOBGZSzZhhuU8dD8YryfFJPuN+UiToo9s0xqPQxl7a2JvJv6KgUEIFM5mfE5ZpKJIiyR62sI89xIjgwIUdJx681DKOAooyv0MhBL10sI89OHFRSAlO3DhwHdAL4XCJEkHho5ld9NBOmCAqKhpWEsQGldew0MAUSqlkAyuIEBr2uSxYceAmQhADPa8h34WHKcyhhMohr1U+0cMethLElzLKCxRU7Dhw4MSBGxcFlFG1X+HVJ7oJ4kdFI0AvnezL6U+22KBhoZoG6hiPAxcJ4kQIEiNKkiQuPNhxAiLlMxMmRgQVjUKKcVGAFduwrr8+0U0TOwnQl/rcLCioqfGpZgSfdBsV1JQ0oWdEi146ATidC3Eq7uPmmi6fGY8/5HcukeQnnyjx8o1/J9DYy2n/fQZjzhtL47938fYPl6NoKjNvmMukK6chtNznHJclhj/hzNkmBQnJB5VPrLxh0LZgWKF7fRtCF1jdNppe3kXjs1uJ+1PPyQqUzapi/rfPw1ub6xkQ1a3Y1GTONiNpsOXhdex+eiuBJj+uCjeucheehmLG/b8plM2uRlH7nxf7Nrey459bsBfaKZtZgbfOg7vKg73QnjlHPg6XKBFq9bPjiY20v70Xf2MviqZiLbCT8EcHGdtVm0bdxTNpuHIW7337WYK7uoeoeTCa04q7rohwqw89kjCj1AwIaeMoczPri6dRu3BCagHV4OfqQGMP2x9eQ8+GNoykYYa7UUyvFU+lC3e1B09dEdULxuAs71+8M7Cu7h299G5qx+kQBJr8NL2yG19jXyYfsaKpCMMAYfa7YeE4pnx4OgV1heixJL17A0Q6wyQCMdw1BRTXmGJOsC9JuCNEpNOccxRPKaNygodkYRH2Ad4XTi2BL+HEofV7rPXt6mXToxvp2dRJMgk2lwXVpqFqCqpVw1Zgw2pT0IUKioJqUc1wtgkDIxon7o/TuqoVBCz8v0son111XAgSMPqeGTOihOe6gxMlgg8fVB+WLl2KEIIpU6awY8cObrvtNux2O8uWLcNqtfLDH/6Q73//+/zxj39k0qRJ3H333bz66qts3bqVgoICAP7jP/6Dp59+mj/96U+UlJRw66230t3dzapVq9A0U0y88MIL2bdvH7/97W8B+OxnP0tDQwNPPfXUIXw6RwcpSkgkh8BQq60NYfA6T1FFPVOVeQREHyt4kWrGMpU5aMrw07gcLwYsyehnf7H4D/V4QxgE8dFDO1204aM7x0Bux0kNY6miPrWa3XFIYYrSeV389BIjQi+dxIjgwoMHLyoqPnqJEMRFAQniOUKAFRs2HKYxOxUqaipzc9pyML/V7HwzAXrpoZM+uuihHRsOyqmhgKKUYTuZZeQ3J1g6SdwU5lxLoiJMiAAJ4liwYseBngpmJRBoaKmwRDF66SJOFBceNMw+OHBiw0GUCABlVB2WsEWHSlzECOIjTowEMVQ0bNgppvywh6o6kjSJnWzlPZy4KaWSQkopopRlxrM5wsj7/X2NNuQz4/GH/M4lksF85t1PAqAPMLI98eF/4q0v4Lyfnk+kO8LfLn6UinnVnHn3QoqL+8v6Ek5clsELE9L88eQ/HpF2SyQHy2ff/UTe7b876YFhHf/F1dcTM3LnyJGEin+Pj9aV+2h5u5n21W3osX5jsd1rZ/xFkxh/0SQsDgsFxRp2r53IAHFgoBgBpoBgUUwPWmEI9r3dTMfadmLdITrWduBv8uOscFMyvQKL3ULf9i58u3rx1Bagx3UineFMXVaPDVeZC6vXgaqpWAvtzLvldJxlbgqsZkjR35/0p2F9DtAvyAhD0Lujh7ZVrexb3Un7iiYsTgvVZ4ylZHoFRtIg7o/hKHHiLHfjqipA1VQS4TieOi+2AjuqYs6rIt1hAo29xPqiaA4LznI3eixJ3B9DTwhUq4qz3E0iGKd7QzvBZl+mDgBHqRNnhYdodxg9mqTy9LFo9v7vy2OJ4U84Mn+DmSdiIPnEC2NAaCOXJTZoG+SGQIoH40R3ttPdqSP8QVSLir3ITuWcShxFDpIDQik5tQSJPHXGU2POqQ0OjxfT+/s3cH96rNrzjK30+LNrufvS4zB7fDYvb+bFm1/E6rYyflEDFTPLqZxVzmMf+geqmtvefL+x4f6+Rhuj7Zkx3Z7zXNcelCjxcvjRg+rDX//6V77+9a/T3NxMSUkJV111FXfddRderxcwF0l+97vf5be//S29vb3Mnz+fX/3qV8ycOTNTRzQa5bbbbuPhhx8mEomwcOFCfv3rX+ck3O7p6eFLX/oS//qXmf/k0ksv5Ze//CVFRUXD/ESOPlKUkEgOwIFiuw8MhbKK1wA4STmHqAiznKV4KGQCMymmDFXRhqgtl2PVICU5PIyUoXJ/4z0mojSyhSQJ3BRQzVjsiuOASYmFEPTRRTdthAgQJkiYAAKBikYJ5ZRSTQkVKCgkiFNI8RFJyGQIgx466KSFCGF0khRQRDnVlGDmd0mHSzLDEIWJE80Y+LtopZRKTuDUQ25fq9jLDtanwixZ8FJKGVXUMWFExQDJ4cX0wOmklb346SZEADCFLhcenHhw4MKBCycuXBRgw4GCQif7CNBHKZUUUTZorI3m+4N8Zjz+kN+55Hjm86s+lvM+KXJDnwAY9N/bX//263Stb+fyv1+DNRrk4Sv/hc1lZcFNc6meX4fFkWuczWdMAylKSOALqz86aNuv5z10RM9503sfISFy57JpI3A8GGftAxsItoXwNniZeME4Khvs/GLuI4Pq+eLq6zN/CyFo3uCjaVkzvY0+/Hv99O3xo8d0VKtK1ZwK6k+vo25+NVaXlUhPhNLJJWg2La/xG/IbgQGsKTFiIOnfmTAE7Wva2fPyHgJNPhKhBEXjvNSfXkfZ6eOxaoJoT4Rga5Bga5BQW5Bod5hYXwxDN2h9t5XC+kIu+s1iNGvu52RRclfgp0WDNKGkKQI0v9nEqv9dia/Rh2bXKJ9ZTvXJ1Uy/djpW14EX5wRTAsHA+vNhCAVPSjw5GAYKB3kFhwHfjSEU3JbBIVgHCrf56ndbYoPEhjQDr5FOLZG3bLpcPhEiniWKOdX8IkSabDEie99AkSJimN9VPmHMmhoLe9f72fqvHbSv66R3Zx/CENg8VrxjCvDWFVBQ7aawyomjyou3oRB3uQvVorJvVRtt7+yj9uQqak6qyIw1LbXA7955fxl0ztHCaHtmzIgSzmsOTpSIPDZq+nCsI0UJieQA5DPSdot2drGRIH6ceJjJKbjwsI01NLOLmcynSjEVyz7RxWZWE8KfCj8yhrFMxaHkTzo1mo1NxzMHykWQzZHIMzBU/cMtdzD15yMofKzmdQQCJx5C+LBgo5oxOHCnhISinJA/7aKZFnYToJcEcWw48ODFhQc3hXgoxEvJsIW60UCHaGEdbzGdk6hRxh708U1iB1tZQwW1jGEShZRIIeI4ISHi+OjGTy8RQoQJEk2JXkPlw0iSwIGLahooowoXBViwDimIjYb7h3xmPP6Q37nkeGagKAHQtqmPVf+7ks6tvTiK7Cy5cz7lMyt4574NrPztek67aS7zPj4NHYWenX28+r0VtK/rwmLXGLuwgVM/PYWS8d6858tn4JWMPDe995Fhlz0c32E+QSJNtjBx69pr8hp9Ae6Z8+iQddy69hoAEsbgZ9SBogRAX2uUZ/7j34S7IpRMLMbX2IeiKky9eBwlYwuI+uOUNniYdF4tiqoQ0y00r2zjvb9soXNzD+HuKHavjfLJxXjqCikfX0DJxCKqTijD6uw3/MYMS94V6mn0IUSKtBE4oucaHS2qnrfswHJDlU0bgYOp8h3rOnj2xmeZ97k5zL1hdv+xyuBj84kSe19t5LWvv0LlvCpO+ORsKmZVYHWMvnlCPtEgf7nB30dywPgpsETpS4Wn82i5osXA79OlJTJeGQDOrPIDx6VHi9GXcOWUGaqsK0uoyPaSgFyvh4H7YoaFwpSos7/jAMIpgcyaZyzY1STxUILWDT3sWefH1xzE3xwg0BYm1B7CSA6eJ9gKbMQDcZylDqZcPJ6xp1VTNqkIe4EtE3os35jd3+/+aDDanhkzooT96oMTJWJ/HTV9ONYZfiwZieQ44UDGWp/oYQ3L8FLKOKbSyh7W8iZ1TKCZXUxjXkaQAChSyjhVnE8QHx2YRtpOWjlZnJtXmEiffzQYlySHHyEELS0t1NbW5jUsZo8/Q5irebKN1kIIzlYuJUEMHR2BASiZED3ZMfMPVnhIkxQJAvQRxEeUCCH8dNOGm0LmcRY2xU5UhNnBBlpoJEEsY0AtoIgyUU2YIB0046WUeiamwteUHBHvh6NFQsQzxuMkg1fZQL9XSJgASZLo6CnPC9MIHSFEPROZzOxj+rOQHDxWxUYZ1ZRRnbPdEAZRwoRTIbgEAhcFeCnBRzct7GYv29nNZiCVnFs4sOOgmHImMFMKWxKJRHKUuH1t7rNVoSXXE8K/L8Qzn32e4oYCTvzEVHa/vo8nv/QGZ90ym5W/Xc/pn5/G6Z8ah6KkjHgTirj+gXPp3RNg+8strHt8J49/qomrfr+QsklFgGlcS/PNdVcCcNesvx/ZjkpGjJaWFqqqqjIxwrP52roPAea464vaEELkrMh3qnH+640rCHVHScZ09LiBUBU0q4a7zIGzyJ4xWH55zbWDDPwDDcZW1RgkTCixGJ1b+2jf5iPQFsa3N0DTmy04i+1c/9gFeOs8RP1xlt+7lh0v7iXYEcHusRILJChuKGDyojqCHRG2vtBEybhCpl02gfr5VYw7sRjVknuutKE3beDNZyAeaPzNZmDb0wbq7H4H9f7cZ2mDcbYh26r2e1eEszwvtKwFJR4tTiKSxBoO4Ci0oYQjFFhMY7WmCIJJ09gphKBjYzd9u/qIhxIko0nCXREC+0L07fHj2xtgwqIxLLr7dFRNRWNw39QhvD2OJPlCKg0lAGVTaIniT6ZDO/V/pgOFsiJrJK93Q/r4bNEgLQLkE8wg93pZZDVDbQ30dii09HuHDBzzdi2JXTHPFxPWQfucqtmPiGHLGXvZx+U7NvuckBXqKTUWbW4rDfMraZhfmSNcGLqgvVWnd0+AcHcUxdApqHQxZn4FnVv7WP/P3Wx9cgdrHtgEmEm9nUV2PBVOKqeXcOaXZ2Nzm+caaUFiVGMmUDmIspLDhfSUkEgGcCBDbqvYy0ZWcg6XY1EshEWQd3gZNZXo9Az+334NRDERYQUvUkgJszltv4ZJKUwcXg7VSP9+EUIQJUwf3exjN7104sCFhoUYESqpZxInZOLlt4q9tNJIH10YGCioeCnGiYd2mjEYvOohjYKCBStO3ExmNkVKGUII9JSBPPvYdGLeCCEihIgRIUAfvXRmEhc7cGLHSQW11DB2UEz/7FtID+00s4teOnFTQAmVjGPaMW8w1YXODtbTwm4MdNwUMpczBomKhjDYyEraaQZAQ0PFgh1nKjyPhyLKKFdqRqIbkmMYMwdJX8qzIkacKFHCtNGEBQuFFFNKVc5vdKTuH/KZ8fhDfueS442BwgSYwoRHi9L4ThcPfHo5//nkuVjHVIAvwB+ve5VEJEnEn+CmNy7B7h4cgiUpNDxalFgwwe+vfwOby8KnHjgdYdn/yk0pThw+0gb/bLRhGqmyDdsHIttoCmbIoEBHhJb1vWx8toltL7fiLrXjLnPgbw0zdkEli746G3epadzd+UYr7z22i73vdpKI6KgWhdLxhdTOKWPzs3uJBfMvnAFQLQo2jxV3mZPTvziLqWeXoygK8XCSRCSJHjdIGipCgKEb6HGDQHsYX3OIvrYI/l297F7RSTJqntdT7sRT4WTCmVWccMW4TBvTXgBCCBCgqAota7tZ/ehOdr3ZTmG1i3GnlHHmf0zD5sryhMgy5KaNv2kiRu5vIdsAnH1sPq+ENPlW7sPg1evp7zNbkEgzsH5DFyz/3WbeeWgH8WCCwho3l/7iDMomFqFleUMIIXj1x2tY/fB2s26HhsVhikXeahfFDR6qZxQz7YJ6AobpOaAN8KQdCUEChhYlBhrazbL5QjnlOX5AOVfq+9bzlB0oHIApSgz8LWX2DfKE6B9LUWPw9delxgcJF2nS42rgeARwpEI9hfN41kCu+BUeMH4d6uDfaVi35fWkALAO8HpQEfh1JxZFRxiCjq0++lpChHtiRHoiBDqibHq+GUWBqunFjJ9fykkfbsBVbI7tO2Y+mfc8R5rR9syYbs+5lg8NO3dhUiR4Jfm3UdOHYx0pSkgkHJyxulnsZAvvcR5XZMLO+EQP7/AKIBjDJCYrs/dbR6fYx1qWU0IlszkNbYjwNVKUODQORXyIiBARgthw4KbwkFax6yKZyUMQJUSAPvrozuRPACigiDomEKAPAA0LzezEgoUyagjiw0c3JVRQShVWbCRJ0MhWFBRqGYebQuw4UNEyYlh6RX6cKEmSdNKCn17cFBIjMuTK/jQqKnacuPBQRjXFlOOi4JgXFA4H5u/7ZcBMwD2Ps3ArBTlloiLMdtbTQTMzOIUKauVnJzniBEQfHanfeg/tKKi4KcgkRjcTnVuwYEGk/mlYsGLFnkqg7sGbEdgOxz1HPjMef8jvXPJB566NF+e89yWdeY1hBgpbX23j0S+u5EvPLaS4zk3C0OjZG+SP175CIqYzY1El1/5kDkkx2PiRjsHevK6XP33yTSomFfDR3y7AWujM3y4pSBwSA79PgIDuGLQtW5AIdkfp3ObHVWKndJwHi+3gQ48mYzr+tgi+fWF8rWHat/poWdtD1y4/yZh5rpKxHk6+fgI9TWES4STOYjtr/rYLoQumLq6jtynInpWd1MwqYdLZNbjLHcRCSVY/vINoIM6sK8ZRMaUIV5mLQreOxaYiDEEiZtDXESfYFSUWSNC4spPGtzspafAQDSQI9wydVB1MMaOw0om3xsWEMyoZO7+CsgkFmc9hoME0m2wjsCvLsJvPCHwg4/H+jMADvT6yjcD5DMAAiSHyFAzVn3xtCnZG+NWiZwGwuS185P9Op3ZWSU4d4d4YL/x6J2se3cHCr81h1hXjsNj7zz2c/A8wfJHsSJBPLMhHPlHCo8Xy5v8Y6vMfeK70uBkqh0h2Pa79hHQCsKfGQmIoESK13ZUn7FP6eF/SlXdMpQWFfOMEzDHptaS9NwbmO8kfSix93EDUPKFfrdkeQEkHvU1BNi1toX1jDzuWdyJ0QelYN8W1bhQNhC6wOrWMMGgkBXaniqPQiqfURnGti/LxHkrqXSiKwjdnPJ23XwfDaHtmzIgS2pUHJ0rofx81fTjWkaKE5KgzUgl898dQbYqLKG0000sHAfoQCJIkKKKUucqZOWV3io2Z8BpTmUudMmG/5+wW7azlTcYylfHK9Jx9Uow4dIb6LoUQ9NBOG03oJNGwUkYVFdTSTRvreDvjRVBMOZXUo6ISJUKEYMrgH0sda8GDlzrG000bPnoI4idO/2oRBQUXBRRRigcvTjwUUoRNGTzpiYow21hLiAAeCimjmmqlIaeMLpIoqMM2dBvCoJMWumnHiRsnntTK/awHYNSUN4QLOw4ZTmgIhBBsZQ3N7ATgFM6jUCnJ7GtkC7vZjIrGZGYfUq4JieT9EhVh2mnK5Kowr0JKyksqmXoPOjoJ4jm5LOw4KaSYAoqopH6Q6JZmOPcm+cx4/CG/c8nh5PubLsq7/evTnz3KLeknnxFbFyoRf4JNL7ay661OWtb3IHSIhZN4Kx3c9PfTUVNhcnQU3n2iib9/ewMA53x2AotvmpxjFCvQ+p8hfbqTns2d3P/Zd5mxsJIP/c/MQee/ffpzh7ubxwX5vss0e9/rYfW/WvD36thcFsbMLWH25Q20burjsS+8ScRnGiErp3qZe9U4rE6NQEeEvuYQ/vYooS7T08XqslBc52b+xyeyd3U3ze9107nDj78t0n8yBUrq3dTNKaViipeSMR4qpngprOwXoNKG2XBvjDd/sYa9a3qpGO9h/PwyTrm2oX98CZVETEdRyBFL9mcEFkKw760mNr7YTmGlg+L6AuweC5pNzcwHVIuCYlEprHRSWOlE1ZSMcTifsXfgdvsAo20+I3DasDtUfel6Bhpw0+zPCGwdIFJk1zHkavQhjMD5DMDZ53jp19t56Vc7ALjqnvnMXFSZKbP6iT38+ycbMXTBOf8xmTM+NTGnDm0/3g8DxbLDLUp4LFGCycFz03ykx2P2tWrIsnk8K2DoMenJ43Fh7hs8Zgq0KD7d/J24Bngv5BtH6TJRkV+EcKlxfElzcU4+oWF/Yxr6x9VQY8quJvKKCgAOZWghbaj6woYNr2ZeS7LHx8DxnibtbRPqjbPm2VY6dgbp22ceb6gaiahOPJQEBVQVElGDiD9BsCuGnjDHm6fUTu1ML9VTC5m+sIqa6d68XjvDuU+PtmfGdHvOUa44KFHiVfGPUdOHYx2ZU0LyvslnBA4JPyt5OWXsdGLHgQUrGhZsOHDiQiCIE6WYctzK0fsxD3cVfUD0sYIXASiijCrqEQgihJnA9EHl7Zg3hWrGspU1lIoqnIp7yPpLlUqKRQV+evfbRilQDJ+hvltD6GxjHc3sxE0BdpyECdFKIwoqAgM3hcxiAX562MY6elkNgBUbTtw4cOGiAA0LOkla2UMbe7FgpZhyahmLK7VCOT3uhysgOBQXs1iw3zKacnCXa1VRqaSeSuoPXFiyXxRFISJCAExgJoVKCUIIYkRoZCvN7KSByYxj2rAfZiSSw41DcdHAlGGXT4eVC9CHj24C9LGX7exiE1PEHOqViQeuRCKRSA7APZsXD9oW6Irxo8vewl1spajCTmG5HUeBBadHxVNso7TWQUy14e+IUTu9kLoTio5qm3+xZVHOe482OHyJryPKTy94k0TUoP6EQmYtqUJVobspwukfG5sxGINpFPKUmiEzzry+jld/t5PZ5xQzbq4XX9I1yMjn1SK4ZniZeX4lzet9uNTBq9h/ueU8AP5r6suHpc/HA+ZYHGwcNHTBa7/fwUv3bqOo1kn5WA++jiDP/msPS+9ag54UuEtt3PyvM+neG+Jf39vE0u+vQRjgKLRQWu/CW+WkfI4Xu8dCPKKz8d9tPPipN7C5NMadVMLci6spG+umqNpJUY0Db5UTiy3fPKF/LKTHXEEZXHnn0F74mmKAfWC4mlhOHRlSb3UUppxVwZSzKnJ2p43AA8dkQuQaY9MG07TBdqBxGAYbga1qMlNuf6vE8xk7s43B+UIJZRuThzIC29XEkEbggQbg7P5k7xvKCBzqNc8//9oxnLSoCEWJEeyKs+LxJl741Q5OvqKGi74yGU+JjXDWqfYnSEDu93CkQjcNJQjkI99nfyBcA7zK9jcmB+K1hPOe06tF8goQXs30QkjkESAcSnLQmEx/z0N5Lwy89kYHeLg5lAQOLfe3ETb6Q7mlx+3A8eTTnYPGYrqcddAYzc15khYkoH985BsbYcOWE/7LXWzj9Osbhiw/MFSYYQiCXRH2bQmy+z0fTZsCvPPXPbz62x2c/9kxnHvTjEF1HMskRQzE8H5jB4pAITk4pCgheV9kG4GFEITwY8dJH13oJAnhJ4T/gPWcLM4dtlgghKCXDgopyTEAHm7jffaKcgOdfTQSx7wxddDMeDGDMAGC+IkSIkmCKsZQRR2tNBLCj5OhRQmAQorZwzbCIoBriJWp56sflsJEFgczTkL46WAfLewiRoSpzKWW8ZkVQN2inTABdHRKqcStFOCmgGoaEMLMuKAOEVqrQUwmRoRCSmSYng84QgjU1BPzTjbQKLZAKmSWijoszyiJZLShKErKi8pNBbUIIdjGWprYkXP/SyPvQxKJ5GD5/bYzgf6V3x27QzgLrXTvDRHqTRDqTdCxK3zAem74xUx+qZ437PPuXNVHxTgXBSW5hsnDacC32DQSUdOAYVEFa57ah6/TNDytW9rOJTePo3NPhNYdIbpbogR7Ekw6pYgFV9fwxl+a2bc1wLi53owxzBDqIAPYpBOcvPNEM7tW9zF+XlHedvxyy3lSmMjit1vPzrs9bdhLGweFEHTtCbPp1Q7eenwfHbvDLPnCOJb85zhUVUHDyBjigjGNuhO8VEzwUDHBw7RzK818bQljyDBO5352Ap27g4yZU3RIoZ4KVNPYmC9kzlCG4XxGXVUx8pbXEHlXfaPG85a3KnqWADFYJBvKCGxXE/sNoRMzrHnrS5M2Ajuy80cM6GbYsA/qy0Aj8FCeFmkj9kDChj3vSvUCLZrfoGuYhuQVj+5l9ZMtqCrEQjqKCud/YTzn/+eEzPwzbaQfaAROM5T4oGEQMIbn1XC42d94hPc/Jj0p43q+saIqBm41RkDPDWNnVXRcaizvMWnDfva4tKsJ7AOMyQOPzR4P+ep1KIkcASyfh87AMZUtZKTHVLawAGBTkkOGfHKpsbxjUVMMQsbQuWwGngPye9oEDEfesaiqCkWVDooqHUw/28xR+dLv9/D0z3ZisaqZMZHmWL0P2Ww2qqqqWNZ2cN6YVVVV2Gz7z/kkGR4yfNMoZaDh1QzdoqAq2gENA0drlf3ANmZ7FiioKCgIjEx4CDOQhJoJJ5GOcx0jygRmME6ZlqlLF0liRIkTNVeep+JdG8JgK+/Rwm5s2KllPB68WLGRIM7XH/4Sl1xyCR6PZ7/G65AIoKENSlQ7EL/opZU96CRx4MJHD920AWDBih0HtlRsf4FBnDhB+iikmJM494DGal0keZ2nqWEsU5Q5g/Yfj0ag/YX32t93qgudbtoI0IufPvz0kCCOhoVyahjH1KPqkSP54BESfvz0ZsRJFx4KKcau5I/1LJEcKwgh2MS7tLKHScxiDJMGhXMb7v1IPjMef8jv/OjzwPbTct4n4gbCENgcGp+YtPygjj1Q+UPFFCT6CfUluHn+CgA0q4KmKRi6IJk0E+GqGlisKppVIR42k+h6y210Ncc477pKPn7H+Mwq5URMx98Vx98Zx1Nio6zeDEEphODZXzby/K8bcXg0zrimltppHrzlNkJ9Sc4p+SoXXXQRJSUlmc8hX5iRPU0Chx6lcmzu/X1g6JG2XWGWPdGOrzNBaa2DrpYoK57sAMBZoFFQZsNbbsfqUFF1nXAgSePGECW1Tr71xGxchYMNudntMXTBty94h7EzXHz8Z7MGXZePVSPQ+2Hg+E3ziUnLhxQkNMVATwpWvRGmaaOf5o1+9qzzEeiKY7GpTD+rlEWfG8uYmeb1ayTj9g/kYI3AQxn4h6pnqLBJbjU2ZAieoY5xqAniQ4TIyT7WoeRfZTyw3nyhdKLDCMGUNgIPtR9MI/DA+g5Ub3bd+Y7pbo6w8z0/wZ44ekJQ3uCkYZqLsrrB84TwEMbk/QkSo4WDGZMFWmTIcTRUPW41Rp/uynmfc9wwxmW+sZNvbKbrHkoQyK5nqHEfNawZj4Xh1DNQSLDl8ZiAA+enyOdlM3DsZp9rqDE0lLdOdsgyIQT/+Plenvm/ZhbdMIaLvjQO6wBPr+Hej0bjM2M0GiUez59DZChsNhsOx8iIhB80pChxlBiOUDCUwXWjeIdW9gCgoVFBHRXUUkIlmqLRJ7p4l1dxU4iLApy4cODGIMketjGBmdQp4wfV+4LxOEIINm7cSH19PV6v95D6k8YQBi9jJlybwhx0kpmkmgoqMcKECNBLZ8qroN5MpItGkjhRIkQJEyaYE5sf0qGRFJIkMNCZxCwC9NFFKwlyLyBWbBRTjoqGhoYNB/ZURH8HLvbRyC42AVBCBRoWEsRR0SikmHJq8KbixRvCIEwAH9300oWfHqKEMQZc1DU0HLgopIQSKqmkbtir57eKNTSzi/O44pCNQMcShyo67I8u0com3iVODBt2CiiikBKKKDXHwhDeDhKJRHK8YgiDKCEihGlhNx0089BDD3H99de/r3rlM+Pxh/zO3z+P7Tg58/c1E985YBnoN449+/sW/vqjvQAoCpy8pJj5F5Yw5+wiHG6Nfbsi3LZkPZUNDmomOimrs1NWa06kn72vhYUfreKqL1TnPedHJrzN9u3bKS4upry8fNj9GShIpPnGonfpbIpy3bfGE4/oJBMCu0vFalPp64jT3hhhywo/gZ4Es88tpmGmB4dTIRLQ6W2P070vRvueKD2tuc/+haVWrA6VsD9JJKBzxZfqCPQmWflsN/7uXOOU3aUy4zQvNqeGzaFSUGqjqMJG9XgnleOcrP53N3/7yR4SMYOJ8woyggYKjJ3hYfqZxUw91YuiKDiI0dYYZefaEOtWhGhc46O7NU4snDtPsNoVSqrtjJ3hZtp8L6ddUY7NruYYuYaKjf78H/bx6A/28IvlJ+Ity12VeaQEpZHk4R3z826/buKKIQUJNTUvy2fo1RSDnWv83HfLVrpbYriLLNRPdTN+dgETZnuYeqr5OxkO2ca7fImxD5W0QXMoY+tQDJX0dzhG4IGG3v3ldBhY33DyQEC/EXjguWD/Saz316aBRteB9QyV0DptnB3KAJxdd762DWW4PVJG4OGQrudIjEU4+PEIBz8mXWoM4yAFs+y6hkxgvp/cEvsbtw4lQZ+eP4l1dpmA4diveJUW3vYnYg1kOPkkBm4fGKZsqOPUIcdi/5jLrktFYBiC7pYY3ftivPNsF68+2saHbx/LX3+4O29dw0U+M0oGIkWJI8RA42pcxIgTxYoNGw4EggQxEsSx4cCKLccgbQidGFEUFPaynb1sz3ues7kUnSTLGNrdqIgyPHhJEMOFBxcFJIgTIkA3bUQJY8HKRGYOCkEyXKN4ur9tYi8bWEkZ1RRSjAUb5VTn5FYwhEELu2hiB8lUAk4rNuw4U3H7PTjx4MCJDTthgvjpRcH0TiiiPCMapD/bJHGs2EmSYC/bMyF5dJLEieUk9FRRqWciLgrooBlQsGIjSQI/PcSJ4cSDTpIEcUTqIl5IMV5KceLO5MmwYseGHQvWg04SLISgk1Y2swoXHk5Wzh1U5oMkShyq4HAgDKHzMv8AoIJaZjJfhlOSSCSSPOgiSRA/QXzsYSthgoAprM/gFNaK92/gks+Mxx/yOz94ntw1B+g3foX8SXraErgKNLxlFlRVIe6L4OtOYi9y4i2z5DxnJhMGfV1JNCPB6tf93Pftlrzn+fkL0ympsPLx2WuHbEvVWDuzzizC152gos5O7UQnkZBO++4w69/007IzhtWucPnnqvjQF6tQFCVjbLtywnvD6u/vt51JgRpl88oA371+KzNOLWDaKQW4PBqzziikblL/SmLDELz1TA//+HUroYBOLGzgdKuUVFoprbFRPdZO5Rg7ZdU2vGWW/8/eecfHUdz9/717vah3ySq23DvGBmOaKabGdEJMHmoe4AkBQgjPjwBPQgmEEAJJSCBACgkQCKEGEjo2GGJsY4y7LTfJTb2X67fz++Pu1jrp7nSSJUu25+3X+XR7uzOzM3Ozu9/PzPdLU62fbWu6EBrYUwyMnmJj2rz9/bCrPUBbU4CUdCPBoOC95xvYsc5FwKfhcWm0NQVoafAT9IdXdqtwyiXZjJ2byaq36wj4Bc50IwGfxvZ1XTTX+skZZSbgF3S2BvB7Q8eVTLQxblYKuSVWMvPNpGWbSMk0kZplJC8zSKewx53FHsv1DcCGlV388Y7taJrgkcWzouJURDhchIl4YgSEXLHEnVmeYAZ5xOD23WNX094coHyGgzv/MhFht/XbABxKb2hnqx+oEbi7sBUU8Z9LkzECJxNAuOf3seJKxDu2+2qJeIbb7vsls0+8/RIFDE70fazvkjEcJ9Mne6Y3Evsj9L9POlQvHZo1Zl8YaJ+M168i38ciMtbGG1sBrIqPDs0W/ju2CNG9P8Xbx6r69ZUd8faB/S6lPCK+y5+e8SRgv9iauJ/GC3Id38VTz74I4PNqVG93s2+bi3f/UkflxpArKoNJ4er/K+aPP9kVtwzJIu8ZJT2RokQcehpQk3WZpAkNN1100kYHrXTQQgdtUTP/Q26Noqs95MrIhCDkx77n7H8VFQMmDGE/z5HgKibMKChoaAQJoOnukiL/axgwYsOBEZO+CkFFxYaTdLLJoYB6qqmmkhwKAWilEQep5FBICumYsWLFFjeIa6QbKYpCrdhNFRX4wqKLisoYJlNM+bDNWI+seOiig3Sy4rpbEUJQzz5aacSEGRNmnKSRQgbGfgYajoVXeNjOerpox4MbHx6yyGcKszEroVkOh5MQ0Z2hEiW8wsM6ltFGMwDzuWBQ2koikUgOJ+rFPjaykiChh5oMcihjgj4J4GPx+qDkcyTeMx7pHIlt/vbO6VGfF45Zl3D/iAihaYL6vT52b/VQudnNjg1udm5001iz35ChKKGX1s3eZLYqpKQb0TRB0C/oaA3S/QnOaFKwO1UsNhVVBVenRjAoSEk3YDAoBILg7tQI+DW0oNDT9nsFZqtCXrGZtEwjdXt8NFT7MZoU8kvMlM9wcMyCdLat6eLNp+uYdpyT1CwjG5d3kl1o5pjT0xg3005alpGcfCMp6bHvv0QwiKqGnhO++NTDy4/to6XeT2dbAAScd0M+37g2H5sz+jlhqAK79iQQUKip8rBvu4fSSXbySmIbcYQQrPu8nQ1Lm7GnGElJN1A8zkr5VBvOtP3nHs/4Fs9dCYSNZ10unn+khspNbppq/TTW+JlwlJ3bflVCXnGoTOePWTPwEx3BxBMlEhnbutPT8BYxuHW1BXjmzkpWfdgCwK+XzCB/VHwDdzwOVl8cSCDheP0qXj90qN6++2IC4rVJvGOtii/h91H7qv647mr6s0/3MsYyAic6B0hczkTH9tcIHDmmv4zk/gjJ98lerpn62S+7H+/rYwXEfgEinngWnX5f7sOS3S9Rf/EIMymqO6HoZk4gfiU6LlG/itUXN6zo5JGbqmhrDuVXPt3Ohd8toHCMjexCM1dM/Spuev3hSLxnlCTmiBYlEhlJNaHRQgMuOvHiJo9RWLHjpis8c7+ZdlrQCIZlhCB+fOGZ9aEqNWMllXRSSMdJOhas+PHhxY2CihkLJszhLZ0E8IdjLqhYsIZdFqGn68cXdl+kYcCAEp4ZIXr8C0VuUDFiJpNcUsmInl0l/CGXSt22CSGoJSQmmMKrETpppZn6KFdFDlJJJSN8xkG8uHGFyw7o+VrCLpNMmHXXU+OZSYkydpBa79AhEnC5kRp2sRUFlWwKsGAlnSwyyYu7ykIKFL0JiiDtNNNGMy000EwdABnkUsYEMpXcwSqmRCKRHNIIIWimnl1U0Ew9ORQxmgk4SMXQTbwdzGvN4XrPKInP4drm71dO7rUt4o5ECMHGL13s3eGlsdrHUSelMHqSlbq9Pup2edm61s229W7cnRpBTeD3hoSEjtaQyyKAlHQDY6daKZ9iY/REC7mjzHS1B2mq8yM0SM8x4ki34GrzUrvbT0drAINBwWBUSM82kpVnxGBQaA+n29Gm0dkWxO8TmMwKRrOCEKG4BFpQgKYRDIRiN5jMCnaHysRj05hwlAOjSdFn97q7gpgtKgZj9L3p14tbeOHxRgCOOt5B9S4fqz7txOPa/yhZWGZm3IzQjFGPK7Sao3aXl7bmIIqyXzzJzDORlWciPcfIR6+EjMUXXZ/N1XfsdyN1MGYBRxjIDHWIP7u3u+Etluua7r7NhRDUVPlY/VkHrz/TiKszyNwz0sjKMzF6io25Z6ShqkpMQ9qZozcNqNwjnZ6iX0/DW6rqjmv41fxBKjd72LK6i01fdvHVknYCfsGk2Q7OuyaLeWfud1ccb/VFLEaqETgyIzxeX4TEM9TjGYGtij9hmhDbCNx9pnhfqysgvqE+QsS4m8idToRE5xlBd9EUx5gbzwAM+1dAxDq2L2Eh0XmqaP3qi3Dw+iMkjl/Ss9zdV4MNVp/sufogUbpWxUd7H6sfIM7qnV7uw2ILU91FhmT26U4yMVEg2s1YLFEt0WocjzCRqkYHuY5yK9ajL1Z83cUbf2hg+fttTD3WwZW351E8zoojZX8duTRLXNeS/eVwvWeUDJwjTpRI1hgaieOgoGDAqBvdI9hwhGbPY9JFgJArHzN2UnCSqs98P5QJBZx248OLi05aaaSLdlQMqBiwYMWGQ3dJpYWdHnlx6zEi3HSRQTZTORaTcvhGqI+skuminU7a8eDCQxcdtOLHh4JCAaWUMxXLEPSNQ0HA6K8Y4RchN2OdtNJBK+200ElbOFaJgVQyyWUU+RQf1n1LIpFI+kv34NVO0hjDZHIojCmCS1FCciAcbm0eS4zoyXO/auDF3zaiquBMM9DeEm1cyMozMnGGFWdGyBWTyaKQkaGQmqZSVGambIKZ7Lz9E4R6GrmScSVhIr5BozvxfHzr6SQwjHRploQ+2H1ejZY6P61NQWp2+9j4lZsdm70YjWCxqqRnGSgsNZGdZwwFtfYLOts1muoD1NZo1O31U7/XR/E4C3c+WUpW3v7zO5iiBPQtTMQSF/o6rnvda5qgbq+fXdu87NrqpWZvkIZqH5WbPTTXB1BVOOFMJ9ffmUNBsYkOzRZ3Rm9PknH9smD05qTSGk4WV02IKzZA73gArs4ge3b4qKrwsn2jh4r1XnZuchMIC3Njp9k45vQ0Tr4gg8xcU0JDXiJGWl+MRzJG4L5EsmTS7dkv+zoewgGu+xAWuht4k12N0deKB49mSjjGQe9+1dMI3Fe/iTVGRvpxX2LEQDhU+iPE75N2JSKmxb8+JepXITdRiVc+JEojSjwj8QoLSOw+rGd6ifaNdd3uvn+i6y3Evl53HzMTHR/rOvGXxxp48XdNFJaa+Pb3MllwUSoGw/42iaTd12rQ/nC43TNKDpxDWpRIxsDZ36DSQRGKQbCSj/HjYz7no2KgnpCvVhuOkBFe6Z+afSQjhOh3vIVDBbfooooKWmnERacef8KEGRsOrNhxhMNnp5EZNTN1qBlJIkXk9yaEwIcXDy68uPWXDy+a7oQstJ7Ii1t3Y6ag4CCVFNJJI5NUMnGSJmNHSCQSSRz2iO1UsIbJzKaA0oO2Im+k3jNKho6R2uafVo1Par+Ty7b22hYRJlJUT5QBzOvVaG0M8uP/qWHrBi8vLS0jr8jI0o/ceFwa+cVm8otNFObGfryKZfyIZaSIZySJJ0REGzX6FitMSqBPI4uhD0N3d4NazJnDSRrOYj0n9JX3UBDsQ7xJeGwco11Xo5sXnung6/90sXenD184/oQjRaWwxERekZFRY8xMP9bO1KOjZ6ZGiMzotSYSh/pwWxKLE8u2xz3mYLO4agIQ6gvtrSGxqrE2QFN9gIaaAC0NAfw+gccH7i6NloYAzQ0BWhpCfV1RYNQYM2OnWJk408rEGTbGTrFiMofaNJm+mEgMGYlG4IGIZJCcEThe2smsfPAJY8IZ6tB7fEtGhE20b8/9khFsPcI0IAMwJBc0GxKLhfH6VKJ+2NexB4JD8dGVINZBon4Vr78kcywk7pNWJZDU2Byvb3YfN5MZJxMJFBEi/auvfSP9MkXx9Hm9jXfd9oR/k30Ja4mumfFW+Cz7sIN7b9jHNbfnsOh/0qPEiO6cWlaRMO/+MlLvGSXDxyEtSgCcpHyDOvbqQYijg0VrussjO86YD+RBEaSDFlppoolaWmmMivdwIufGjT8gObzoFG2s4hMUFMxYAaEH4tbQ9BUxCiqimwndjIVcinCQioMUHKRhxjKihJhkjE7dhbpE+8cT9Hoe0z3OSjN17GE7LTSidbtRVFCwhAOah1bfqBgxYcaKGQt2nDhIxU4KhmGKRyKRSCSHIqvEEkxYmKHMS2r/wRInRvI9o2RoGMlt/q915Xz4egel48zMONaGsZtLIpPmo71Vo71Vo6jUiGLsbTjx+wTbt/jY8JWH5Z+6Wf2FRzcsA/zl7QImTos2IiUyfMB+40Nf+3Xft6/94xs0ehjr+jCiQbRxI5Yhpa/ZvckYzGIZUCIGseEQJCL0NH45us3A3VOv8oNv7qZ2X4Di0SaEAI9L4OrS8HoERpOC0QgGo0IwKAj4QwZ0u0Pl5LMdlI23UDLWzOjxZnLyjb2eEyJ5J3Y5kihoa+i4ds3ap1E4Qvd+c2xpZcJ9V+wandS+3ffrTs9jlu0aA0AgIPjqywBv/LWVrz534erc339UA2TlGsnKMWCxqhhNYHeqZGQbycg2MKrESOlYEyXlZuyO0O/3QASyWAxXfxwKkSzSL/pyy5RM3snUS1/unSCxYbenuNCffSF2X+hLtB2Mc0/k5gkOzf4IieumL1HDqvijBJdYY9RA+2W0y7A+Ypb0Y5w0K8Goc0okdnXvm32JYt37YF9iReL4JaLPNBJdr+//fh17q3z88Z+xV1F7hCnqGtjXNSJZRvI9o2R46JcoMZ/z4wY6hoMzM7unQbRa7GITIf9mEeNmAD8B/FHBolNIJ58SggQI4MeDiy7aw7PbBSoGMsghm3zspGDChAWbFCSOILzCzWf8u9d2B6nkUYwBQziQuKaLEybM5DHqoK6AGOkEhJ92WmihgVYaaaMZjSApZJDPqHBQVTtW7KFA7SNIvJFIJJLDha/Ep3TQylGcSJqSOahpJ7rfkw8bRx6RNv94fQmOlPhGhcF6oE3El7vLoj6vWubhxkWh2FOZ2Sq5BUY62zU6O0JiRCTgc/FoI+ddlkIgIGhvF9RXB9i13c/uSh8+LxhNMHO2hRNOtVI+wURqmkpatpn8okTBUMOzKZMQHwaCSQkmlXa8GZaebsabZAxdap++3419GtuG06B2oLhdGqdM3t1re2GxkQUXOElJVfH5QkZ2o1HBZhbYnQqnnWsnNS26nbSE/tQTzxoG6EhSeOhuFE5mBc1QY1KCuF0a6zdqrFnhYe1KD+u+8uDqFJSWmzjzIiclo00UjTKQW2AkPVPVZ+/2VyAbqDgGRBkiR4oR2BHDRU1fBvS+Z6gnFi+Sm6Het3scSF6ETWa/yL7JpBur38fqS/0RbOMZgZNxx9TfMbKnoX8k98ee+8T8vp99Mt4411c+ViVAh2ZNmEaEWH0o3njZn30hNOZ1aeak9o3s3x1PnN9Xn8JYnOu1R9uf3kO31/HR2508/Ic8jj3Z3u88+iLePZ98TpD0ZMhFiQMJaAshd0oKalw3LW7RxX94l0LKMGBEQ8OIKTzb2oKZkCK7i62004wRM0ZMWLHpsR+kKxhJhA7Ryj4qdddBnbTp8USO5mQylJxhLmHyeIWbVppw04kr/DJixIYTBylkU4BV6X0BSpagCNJCPZ200UUHLjpw0amLgSbMpJFFBjlkkEMK6VKAkEgkkoOEW3SxjuX48DCD47DhDMXBGoRxWIoSku4ciCixdndxv/LqaYjwegSKAmaL0m2f/WVwuzROm76H40+1UTrGREebhjNVxZGikp0JmVkGLBaFl5/rZMXnHhwpKimpKtk5KmPGmSgba2LKDDPjJ5uxWAfnHiYZdzzdSdZ9w0Doy+jgEcY+xYhQOgM3ACfK+2CSTHvs3R3ghb+6qN/rp71No3K7n6aG0Lk/8nQWp54Vuq+OFzy4O92FiXh599dtSaI+0lPAamoIsmW9l6rtfqqrfOypCmA0QUmZkZLRRo4+0Ulpeezn/lj59Ew/EBB89YWHqgovO7f52bXTz56qgF5fDqfCjKMtHHWMhWlz7RwzS0VVlT7bPZn+eLgLZN1J1ghsVeP370QiWbx8YvXZoRJgfcIwJKJarH7cs/8l20/6MgIfiEh2KGFVAnQlmLkfFCoO1dfvMTJRXsmM3fH6ZjJjWax8u5NozEp2TE7m+u4RRhwx3ZdF59/XGBm5Xrc0Bbn7+01sXOvj0WeyGTvRREqqirkfP+N4555oEop8TpD0ZFBFicFmu1hPFSEfZhGRwUEqORSRS6FellXiE1ppJI1MMsglgxwyyZUGUEnS1IrdbGM9Xtxx9zmKE8lS8g5iqQZGUATZzVYq2ayLdHac2HASJICLTtzhFULpZDGemaQqGf3Kwy98rOAjPLgwYAy7WHLqLydpOEiVv0GJRCIZRtyii6/5DBed+jYDRqYxl2wlf8DpSlFC0p1Imy/bWIAzgSiRjOErGSLGsdf+1snP7moBwJGikJWlUjbGyCmnW1lwjpXUzNDD8p3fb+bfb7gZP8nIcSdZOfoYM8efHPI3n0yZrJEZuUkYUQD8oudMz8TGhp77A5iSMGB5ogwaybsDMaNFHRuPZIy/0NuQFivtwTK2JVumRAykHy7/3MNPf9TCvj3x2/LBxzM563wHEGrziGGuL4NZfw3Cido6Vl/qjlUJEgwKXnnRxa8fbqejXWB3KBSXhoSIQECwuzLAnl0BfF6YNNXE7XelMvcECx3h2b59Gc9MiobfL7h8YQMVm/xYbQpl5UZKx5goGW2kuMzImHEmxk0yYUlSd1IVgUszJW1sS7zPwPrQwRTJkhUsIyQjXvXHCJwo/wNxKxWPnkbgZM7fExXs+uAKtpG8kx8jB1cgG8l9McJg9MlI3smO2Yny7Dlu9jVWhvYxkKL6kt6/Zx59XWeTHcsHYyVjtFvG/eVqbQlyy1WNbFwbjuOpgNkMdz2YwfmXOvrMNx4zSvbE/U4+J0h6MqJFic/FO3hwYcVOASUECdJGE200Y8DIaCZRpkxAExoNVFPLHlppxI+XFNLJIg8DRoyYMGDCjBlT+BXyXx/yYW+gt19PyZHFWrGMBqqZwhycpKGghN2ABUKGdsU53EVMCpfoYC1f4KKDYsZSzpSYrqUCwk8D1VRRQZAAc1nQr992o6hhDf9hNvPjxnIJ4kdDIMLxOKRIIZFIJENLs6jDRRciPPpGVvw1UB21nw0HxytnDyiPvlx1yoeNI4+eooQ1wYO2NogTQW/5nxY+eMeDw6mw6EoHwaBg43o/X63wYTTCoqsc/PCuVDRFYdlSL2+/5mLVci/1tRqlow2ccbYVp0PB4VRxpiikpqlkZKqkpavY7Qpmc2gFhtWqRMWigN4ChbkPo1NiY0nvSvH3YYRJZKSIJZ70Vb4Iao9sPQkMMcka0gZz9m/P8nUnVlnj9cX+9sMH72nj+WddPPCLNCZNMWGxQEeHoK1DkF9gYOz4+M+SyRjnrIqGS4usoElsYO1LHOvZ1t3zb6gLcuv/NLPmKz8XXWbnh3elkp6xP72IIczjEXyxxMVf/9DJzm0B3vwol7z82Aa2WOLY1s1+Ljmznl8+mcnp51hRuzWcGgjS1qrR2Snw+wRd/lCeYyeYegVaHagwFqtsAA4lkJQglwyDIZDB4Iu1Penen5IVFJItU3/qIJZRN1Ffj2cETmTIjdW2/RFsB/u84xmC4+1zIAxWf+w+Fh14WkG6eggosdo82X6ZqGw90+3vJIK+xt3uRK7ZfV2nu9Oznfs7jvek+7Uw0XW6Z/5rV/vYusVPIBCKmdXVJdi5PcA7/+w9MXfzrvwB2W48wiBFCUm/GNGihF/4qGILu9kGQBpZpJBOF+00Uw/AHE6N8pUshKCVRnayCQ8u3bAsEvywFVRSSCOFjHDA7ExpQD3CWC+WU8deTJgpZTxlysSDlrdPeKhhNxnk9HvFwv40vFRTRSWbsGBjOsfhVNL6PM4lOlnGe0xhDgVKadL5tYgGvuJTbDhQwjcSAoEPL0Fiz6iYyfFkKwVJ5yGRSCSS5AgIP5v4inr2AqH7GhUFAybsOPRYPiG3llZSSB+w2C5FCUlPIm2+elNewpUSMLiihMul8dyzLp5+vBOvVzBjpolpM0zs2xPk44+8ADz5TDpnnh3yKx1EQQjB5o0BfvNoB9u3BujqEnR1ani98fMxGGD8BCNTp5mYNt3EjKNMTJhoxGTa/5yQjHHC0s1o5O/HbGNTN2OGN0kjSCyhozs9y5vI2N+TZIxoHqEOuiuS/pSxL/rbD3/xYDt/froLh1Phkm/Z+dGPU/TnxO4GtUSCXJcwJPw+Xtk6OzRef8XN5Ckmjj7GhLnbT6wrbOjsy4DV2aHxrzfd/PqXnRiN8KunMpg1x9JnP2lr1Th5bj3Xfc/J9Tel6Nv7atuqygDnntpAbr5Bd62mBQRtrRrt7bGPve+hNC77tj1uO8czvCXTz4ajL3Yv78ESaiHZGep9ucXZX97+lK8/gmgy5ezZP5MZZ+O1dTwjcLKCLexv976MwCNdsO1rHBqOPhkpU1evVTMHJixH+lCXMPSrrS2KwNWt3voaK/X92H9csu07kIkJyYxB3fP3egUP3tfO354PiQ8mExhNCjabQnGpgdJSI4WjDGRlq2RlqYybYGTchIHZfScUVyf8Xj4nSHoyokWJCG7RRQM1NFOHi05MmMKxIYyMY3pSfvGDIogfH368+PGhEUQL//PhoYNW2mmhi3YATFg4ltMOyOe+5NBBExrtNFNNFdVUkUoGWeTjIFVfXWPGggVbv8Sq3WI7hvCKnJCRSMWAAQNGDBh1AS0ShyGdLI5mfsI8hBDsYycdtOGmCw9duOkCoJDRjGNawt9pUARx00kHbbTTzB62M5pJlCtTkj4vgBqxi07a9M8KCsZwPZkwY8CIiopAsJqlAJQxkTFMloKfRCKRDCIVYg3VVDGJo8lj1JCNsX0JEiAfNo5EIm2+blMuKX2IEkNBQ32QDz/y8p/PfFRs8ZOSopKWrmCxKNz2vymMGx89UzNiIOlu7Pf5BK0tGi0tGi0tAq9H4PUKfD5Bc4tg40Y/G9f7qdgSIBAAqxVefyuLCZOi77ciOkVwAEYdP0pUmfpDZIK5P8nD+9NKfpR+Gc8Oxwh9mibYuCHA22+5+cPTLiZMMHLKaRYmTTKSnqGSkaGSlqGQl2+IEqti0d1A9/orLnw+cFjBaACTWcFuU7A7FBwOhYqKAI883EFNdciYNn6CkZdfyyQ1LXYt+0VIeHv7DTdrVvup3hNgz54ge3YHCQTgnHOt3PvTVLKyuq2O6GEw9PsFu3cF2bHFz/p1fp7+fRffvMzGw7+MnuwUTyCLGNg++sDDlyv3B8NVVYX0dIWMTJX0dJWUVAWTSUExKtxwdQstzRqXX2nnrp+kRsWI6clA+mKyYl7S6Q7yJXaojMDJiGD9cccUq5zxjLX9mUUeEWz7I9bC/jG8P+2byLgcq8xHmmALoXpNpk4tSvL7Af2QBPqzqmf/38kKBxC/f1r6EvQTrXpMol2711d/ypvouhqrTD372B+f7uKRn3fwf/ek8O0r7frqtcG+XnuFIkUJSb85JESJwUIIgUDEDGitiSDttNJELZVsBmAsUw/qjHnJ8COEoI49NFBNE3V6kOsIKio2nNhJIYU00sgijcyYvwtNaCzm9T7zTCWDiRzFBlaioDCXMxIalOrEXtazHAA7KaSSgZM08hiFBRtBAvjw4MWDDw8eXLhx4aErHE+iS0/LhoNUMihjIilKepK1tJ+ACODFhRcPAfz48YXfvfjCIqAPL2006cfMZj7pSna/85JIJBJJNJrQ2M56drONMUxmjDJ5SPOTooQkFsMlSphj3CsF+2ns6Ske+P0iplHZ7xfs2BLk88+9/P6pTpqbBVddZeenDybXx7vnYxiAAelAjwcwhA0Xvr4f/QaUjyGOsSbZ/A4FhBB8/JGX997x8MknPpoao81sRiOUlBooLzcyaZKRo2aZOOooM5mZvX8XQghKi+v6zLO01MDPH0njV492sGNHkE/+k43drhJP+/jqKx8Xnt8MQGGRyqxZZsaNN3LuQislJQY8HkFDg0ZDvUZDQ5Daao29e4Ls2RtkV1WAXbtCAgZAYaHKtOkmrr7WwdzjzL3yitdHIuKYxy2oqQnSUK/R1hZ6tbftFwCbmzSamzU2bQzQ2Rk66PHfpbHwfFvvNMP9K+nAw0ntdXgzUCNwMsbV/qQNA28PfwwRuT8YlOTFWki+nP3tj/1J+3DGrCh4krgm7BfWRL9F/r76ZryxM9l84o17fR2fzDXVQHT99KfPxEpf0wRPPtnFY7/s5JJLbPzil2kxr9WDdZ0uG1XT5z7yOUHSk8NKlNgjtlPBGv2zDQdmLGEjachgKtCw4SSdLKzYcdFBJ+246AgJFhhII5NCysijOKaAITkyEEIQJKCvsPHhxUUXLjroop0OWnXRwoodJ6k4SMOCFSNmTJjopJ1GammjMak8Z3ESmUpuwn3aRQub+YpO2hBJ3AgZMWHDgRU7Nhw4SMVBSmgViBL9gKGJIB200UkbGhroOQgC+PHixoM7/O7qJdpAKIiqSV8xEVo1EcnXSWpSbqUkEolE0jf7xE42sxqAIsYwmolDtsIzGUEC5MPGkUikzbduzktalOivQau/xBIn/v0vD9/9n1b9c26uSkmxgY7OkFuZ1lYNjzdkiJ0zx0z5GCNVVQG2bguwfVsAjzcUAHL6dBMXX2zjkott2O1qzLxMSc7y9Ce4j0s2jVjpxBMI+iJW6yUq44HklSxD+SR2IP1QCIHLJfTVNc3NGlW7AuzYEWDH9iAbNvppDIsW+fkqEyYYGT/BSEGhgbQ0lbRUhb37gnz0gYevvvLj7u3Suxe/+XUal1wSGuPjCXC7dgW49fttrF/nx+eLuUsUDodCcbGBUcUGiosNjB1nZGy5gXHjjWRnd4sXgUIgINhSEWDjRj9dHoGmCTQNNA1cLkFtbZCaGo3amiD79gVpaeldRrtdISNDJSNTITMzFMelqNDAuAlGxo41MmXq/vgcgyWMRTicBLJ4DIVY2xcDFUp75tPfdA70eP04lH71jcHol0dqX+xOf/ulib4FjXh59ievntfevq6BvfISYFUGlkay19Pu18VEaS9Z7OWqK1sAuPAiK9+7ycmk8UNjzy0sSrxCIoJ8TpD05LASJVpFE6tYEvO7NDLJIh8LNjpopY0mvLixkxI2JqeSRhZO0qQQIUkKIQQuOmmnmU7a6KSdLtrx4UWjd7AkAwbMWLFgxYYTB6lYsWHCgkDDhCUqPkpfBESAdprDqyH2CwWhINNBVBQU/ZIlwi6jTBjDwd9NmLFix4odIyZ2splGavT4K6FYEZGIEQpGjFiwYcGGFRtW7FiwY8WmCzFGTPL3I5FIJAeJoAjSwD5aaKSBagSCMiZQSFkv0flAkaKEJB4DESVgYAZh0wBckwXDjzoVW/3MPzX2JJGpU43MP8nC6NFGtm0P8OWXPqp2BRk92sD4cUbGTzAxc6aJWdPMWK1J+Gzvl4ErjhFlENLoiT9GmgO5a0s2v2TyT8TBuKMcqDDRV18UQrB7T5AVq71sqwiypSLk/quuXsPt7l0PVivk5BjIzVUpKzUwdqyRUcUGsrNUgkGwWhXmzjXrBvtY+XuEphvUPB7B2nV+6uqC1ITFgurqII2NGi6XhsGoYDSAqoZcoFisCk6nQmpKKPB7ZnpILCgqMpCTrfL0M1288U83Hk8oL6MxdKyqgKIqWK1QUGAgv8BAfr5KUZGBokIDhQUG8vINpKcppKaqmM3x662v9o5nfLMqar/71kAY6v44HGJtT3oaZAdapnh5JSO29mXAPVDRdyBCas+2T8bIfCgLthGGuk9GxjGPiJ1Torbub9l6jpn9ucZ2x9CjzP2ZQNAzjZ4kO44l2/bBoODf73v4aoWf9z700NSk8b3vOrni23bycnsHDT+QcVSKEpKBcliJEt3xCS972UkD1XTRjkYQMxbmcTZGxdh3AhLJAaCJIH78uiujkGjgwhMWDrrowEWHvr8NB07SSCeLIsb0+p0JIfDipoPWsADSRhcdvVYrGDHhICUU+wJVFxQAtPC6j0jw90h8lQhmrJQxIRxQPg1V6X2hkkgkEsnIxCe8bGUtdewBQpMxMslL6GYwWZIVJEA+bByJRNq8ckvBQXPfpA3QlUfECNHRofHKPzy8+ZabLVv9dHQILBZY9Z98Cgpi3/8MJE9TD9OB/wBNPN3TG0ha6gCMJ/5uxqKBihEDyfdg4RUaln5OqDnQ/ufzCdo7Qq6Mmls0GmoF+6qD7KsOsG9fkO07A2zbHtDdKBUUqEyZZGLWLDNX/ped3JzoPiqEoL5eY+NmP5s2B9i0yc+27aF4Es0t+9vP6VBCYkdRKPaFEhEVlJCI0dEp6OjQ6OgIrfxobNp/bEqKwvdudDL3WDPTphqx29VBE6cOpjAW6YveOEbQ+McdHA62WNtf4pUvmTL0N89YbTwYafQkniF2oG3e3745UEPwweiTJkXt128lMpYe6BjZH0zdxm+v0Ab0e+gr7/62aeRa7RH7J6oO5fXTH6eNuufZ2aXx4EMdvPR3F26PYMZ0EyefaOGYOWaOnrXfzeBArtdZhXuT3lc+J0h6ctiKEt0RQvAli2mnheM4E4eSMtxFkkgIiiBdtNNJO51hsaGFRlRUxjCZVDJopIa28EqMiPhgxISTNBykYsOONeyayY4DE5Z+BTgNigCecEyIFNIHfWatRCKRSA4uXuGmgRqaqKOFev3a4SCVVDJJJQMHTmw4sWLv85rRH0EC5MPGkchQiBI9jfnxGKjhA/bP5BVC8L3vt/CP19y88Y9sTjzeknT5DiT/nkREhmTPPRkixoWBiiEHOtM3KWPKkM/FPXDitYk3vDK6v23mEcEoQ1osfD7Bjp0BNm3xs2lz6LVsuY9gUHDDfzs58wwrHy/x8OVKPxs3+2lqDtWjw64weaKJiROMlBQbKR5loHiUkbISIwX5KoqiJF3nQY9CdU1ILBk/zhRzZi0k14YHKkx174sHS5A7lDigsbCbOaivfjlY+UZ+M4P1+z/Q9PrbP3oagQ9HwXYwOFAxv78ungaafzJjeLJ9q7/XAxVFv5Z03zYQ/ELD2sfE0tZWjXfed7PkMw+ffualIexmsHy0kaOPMjNrhplxY42MLjVSMsqIyZT4mtEfQQLkc4KkN0eEKBGJNTGRWRQxul9GW4nkYOIVbirZwl52AGDGQgY5OEknhTScpIVWQcg+LJFIJJI+CLkZ7KCVJtpppp2WqHhECgo2nJQzhTxlVK/j+ytIgHzYOBKJtPmeLUWkHsRA193pr+Gju+Ht3++7uOyaRn54cwo/viNtUO6x4pXnQA1QsdIdTKNWLMNavBmY8ThUjWx+tAELQgdiEDYpatRs2kRlaG4J8vs/dvLY79oJBCA9XeWE4yxMn2Ji8iQTkyeaKC0xoKp9t0G8dhqo0NJXuhH6YzQ+GKJYdw5lgaw7gyHWDhQT6pCItZG0BwuV5MW5WBxpgq0JtVd5+tseB9oveo6Vfe7fR/kGWp5EbTeQNAdyzex5re7vdTqCEILduzVWfOnlqzU+Vq/xsX6TD683nI8BikcZuPmGVP77Kmev41MLd/c7T/mcIOlJv0SJGczDhBknaRgVE5oI0kwDXtykk4WdFBRFwSNcNFCDh65u7mJCLwWVdLLIIIc0sg6KyLFG/IdGQpHgVVRMWDBjIZt8iijHglUaeSUjinYRCkiUQrrsmxKJRCIZNDSh4aELF1246aSJOhqpwYYDE2ZMmDnr26eTnZ3N8ccfz/nnn4/ZbKarq4va2lrq6upobm4mPz+f8vJyMjIyotKXDxtHHpE2f/sf2SiKwpSJJjIzDQQCgi9Wetm+M8DRM81Mm2LCqKrUNwZ59wM3OyoDtHVotLVptIffAeYcbeHE4yzMnWMhK3PoXUl+/0fN/Om5TiAUyDor00BWpspJ86xcf62T0uL4Rt6Bzo4dChck/c1noGkOFwN1N5OIkVoHfZ1rxTY/La0as48yYzRGgkLH81Ee+l0NllgUyae7EeyAV0EkHRMlecPboSqODSYDmqXeY6XEYP7uDqZYOxjpdmcwjMCyT/avTya7audA++hguAnrT9oHmtdQX7cCAcHe6iCVVQF27vKzbIWXl193UVpsIDPDQEaGSmaGSv6oa5k9ezaXXHIJDocDt9tNXV0ddXV1NDQ0kJOTQ3l5OVlZWVH2LPmcIOlJv0SJ7liwEQgH1I0QeaBtpwUFBSsOjHpg3VAQ3CABWmnAR0h+CwWYzsSKHTNWzFj0YMAWbIMSNNcnvHTQih8vPnxhH/8u6tlLkCAKCsbwg3jkZcRIaA6h0i3grwIInKRTrJQfcLkkEolEIpFIhhMhBNVU4aIDPz6OuWAmTU1N1NXVsXXrVlJTU9E0jc7OzpjHZ2ZmUl5eTnl5OWPHjqW0tJTrrrtOPmwcQcR6TsjLVfH5oKV1v+GmIN9A6SgDK1eH4lmVjDKQlqqSlqaSmqKSlqri94eEjD37Qs8X48YYmXO0hZJRBnJzwq9slbxcA0UFxqSCTsdC7TaDsqNT46s1XpqaNRqagjQ1a9TUBXjz3y6aWzRUFTLS1PCDuIGMdJW0FBXVIDAYFFQlNJtQURWEEJSMMvK/t6QmNalETTCTUxukWbKJ8kiWwSqLpDfJto8/PEN4MA1SB1O0CgqBqYdbkUO5Xw2msX6kimPx6OvcD5ZYO9C8hqr8w8WR3Be703MsHYoxs2c+/kGIGRGLSJv2HDPjMZRjqRCCV//pCrkJbNFoc51BU1MTDQ0NbN68GbvdjsFgoL29PebxqampUc8JhYWF3HLLLfI5QaLTL1FiCnNwkhb2gd+GERM5FGDDQQsNNFKLHy85FJJNQdxVEN3dCbTRTActeHHrQkV3bDjCLydmLBgxhUUDU9QrgB8fHrx48OHBhxcNDQMGDBgxhKURQ9TLgIsutPDR+19e3Ljw4CJIoFeZzFg4SVk4gOqWSCQSiUQiGXnEctW0ceNG3njjDex2O3l5eeTn55OXl0dmZibV1dXs2LGDHTt2sH37dv09NTWVLVu2yIeNI4jIc8KvHszklBNsbNjsY8MWP6oC5yywM3WiiWVfevlgsYvK3QHOPNXOwrPs5GTFf9iu3O3niy+9rPzKw6o1Xqprg9Q3BvXAvxAKzltUYKB8tIkxpUbyc42khwWO7u9pKSpuj6C2PkBtfZC6+iA19QHcHoHDruKwKzgdKg5H+N2u4HCopDoVdlSF9mtuCdLcrNHcqtHcEmT33gB79gVpbYttCOjYU4rBcHCMO91n3w6m25RY6R9pBAhiZPBW6wxF+yQyRg2GINVXHkOVZzwOZSFjpDOSBMx4ZRnM9j/Q85V9cXDpOdYOxXgZQUUhQHKuoA7GODoU4+ZgXrsDBHEU7Oq1vbKykn/84x+oqqo/I+Tn55OdnU19fX3M54S2tjb9JZ8TJDDCYkoIIcKrGbx48eAOuxaIuBjw4+u1OiMWJsyYsaKiEiRIkID+EjEGNzNWbNhRMeDBjRdXr0EjtILDhgUrpYwnU8kd1HOXSCQSiUQiOdgMJG5EIpqamsjOzpYPG0cQkeeE+orSIY0poWmCllaN+sYgtfVBdu0JuRbYWRlgR5WfhqYgbe0aHZ2JH20y0lXycwzYbCoul0anS6OzS9DZpUWJHhGyM1XKSow4nWoo6G9NgC6X6LVPfp6B/Fwj11yewsULHcmf10FwPZIshjgr1IMD9Fct6Zue7T/Y7T4Yhr2BlGm48pUMnKEyAkfacSiNzInyHaq8Zf88uBgUNWplwkAYaJsdaP8Z7L4S61o9VNdpS8HOQU1PPidIemIc7gJ0R1GUsAsnK07S4u6nCa1XrIqQg6jQsfFcPgkhEGgEwgKFB1dY+Ai9BBqpZGDBhhV72IWUHTOWQXEjJZFIJBKJRDLcDLYQ0R2TaehjhUlGJgZFjWvUHpT0DZCbZSA3y8TUCfH3CwYF7R0are0areF4FVarQn5OSDSwWOIbB3y+kDjR0amxrzZI1W4/lbv8VO4J0NWlMX2ymaICI0UFBkYVGinIN1CQa8Rs7p1msnVxoPPw+2OIGGj7DGW7HmoEhTao9RGr/QfTuKSiJF3e7ga/AzWi9XX8QOtQCmRDRzxXMYNV5/3pU4Mt1h543BMp2CZLpK4OpG7i1Xdf7oyGqj2695/+jl2DXaZ4+Q/WdSkotEEXIrojnxMkPRlRokSyqIoaXrlg6ddxiqKgYMCMgVBUDAcZ5AxNISUSiUQikUhGAEMpQkgkIw2DQSEj3UBGev/N/WazQqY5FMyxtNjEvDnWISjh4CIFg4PLwajv4WrTZP2XxyOR8W2wzkn294NPX3U+FMLooSDWHuixhzvDUTc98+yrHxzO43l/MeZvD70PczkkRx6yz0kkEolEIpEcRkgRQjIcqChD7k9+oIxE39/J1tVIK/tIbeORxEhrs4PFoWJ8kwwuI7HdR2KZJAefoegHPa+Bh+J4HxEgJJKRgBQlJBKJRCKRSA4hpOggkfSPQ9mQfiiX/UglUZv1ZcAaye19sI1vI7kuDgdGojH1UBVrQfbXg8XBavtk23M42r2vOpCig+RQQooSEolEIpFIJCMAKTZIJBLJ4c2hbLg8lMsu6c2h3J6HctklB8aR3PZq/tbQ+zCXQyIZTKQoIZFIJBKJRJIkUjiQSCQSiUQikUgkPYkIBxKJJDkOmighH+IlERaolw53ESQSiUTSA3mdlkgkw4l8kJcAaLXjh7sIEolEIumBvEZLJJKhoF+ixPN7fkdqauqAMmpvbx/QcZLDj9da/zTcRTjiOD/tyuEugkTSL/7Z9txwF+GIQ16nJYOB7EdHLp22T1HtA3tOAED2HQmAfdVwl+CIQ6s7ariLIJH0CzXv6+EuwpGHvEZLBgH5nCDpSVKihNlsJj8/n+Li4qEuj0QikUgkpKWlDXcRJBLJAMnPz8dsNg93MSQHCfmcIJFIJJKDi3xOkEgOVeRzgqQ7ihBCJLOjx+PB5/MNdXkkEolEIpFIJIcwZrMZq9U63MWQHETkc4JEIpFIJBKJpC/kc4KkO0mLEhKJRCKRSCQSiUQikUgkEolEIpFIJAeCOtwFkEgkEolEIpFIJBKJRCKRSCQSiURyZCBFCYlEIpFIJBKJRCKRSCQSiUQikUgkBwUpSkgkEolEIpFIJBKJRCKRSCQSiUQiOShIUUIikUgkEolEIpFIJBKJRCKRSCQSyUFBihISiUQikUgkEolEIpFIJBKJRCKRSA4KUpSQSCQSiUQikUgkEolEIpFIJBKJRHJQkKKERCI5ZFAUhXvvvXe4i3HYcfXVV1NWVjZk6S9btox7772X1tbWXt/Nnz+f+fPnD1neEolEIpFIJBKJRCKRSCSSkYVxuAsgkUgkyfLFF18watSo4S6GpJ8sW7aM++67j6uvvpr09PSo75588snhKZREIpFIJBKJRCKRSCQSiWRYkKKERHKYIoTA4/Fgs9mGuygHRPfzmDt37nAXJwq32z2s9ev3+1EUBaPx0B3KJ0+ePNxFkEgkEolEIpFIJBKJRCKRHESk+yaJZITzz3/+k+nTp2OxWBgzZgy/+c1vuPfee1EUJWo/RVG46aabeOqpp5g0aRIWi4W//vWvAHz++eecdtpppKSkYLfbmTdvHv/+97+jjne5XNx+++2MHj0aq9VKZmYms2fP5qWXXtL32blzJ9/61rcoLCzEYrGQl5fHaaedxpo1axKew9VXX43T6WTjxo2cdtppOBwOcnJyuOmmm3C5XEmfR0/3TX/5y19QFIXFixdz3XXXkZWVRWpqKldeeSVdXV3U1tbyzW9+k/T0dAoKCrj99tvx+/1R+d13330ce+yxZGZmkpqayqxZs/jTn/6EECJqv7KyMr7xjW/w+uuvc9RRR2G1Wrnvvvs47bTTmDhxYq/9hRCMHTuWc889N2HdRNJ94403mD59OlarlTFjxvD4449H7ffJJ5+gKArPP/88P/zhDykqKsJisbB9+3YA/vznPzNjxgy97S688EI2b97cK7+//OUvTJgwAYvFwqRJk3juued67RPJ65NPPonaXlVVhaIo/OUvf4navmLFChYuXEhWVhZWq5Xy8nJuvfVWAO69917+93//F4DRo0ejKEpU2rHcNzU3N3PjjTdSVFSE2WxmzJgx3H333Xi93qj9In3l+eefZ9KkSdjtdmbMmMG//vWvRFUukUgkEolEIpFIJBKJRCIZRg7d6bUSyRHAe++9x0UXXcRJJ53Eyy+/TCAQ4Je//CV1dXUx93/zzTf57LPP+MlPfkJ+fj65ubl8+umnLFiwgOnTp/OnP/0Ji8XCk08+ycKFC3nppZe47LLLALjtttt4/vnneeCBBzjqqKPo6upiw4YNNDU16emfc845BINBfvGLX1BSUkJjYyPLli2LGSugJ36/n3POOYcbbriBH/3oRyxbtowHHniAXbt28fbbb/d5Hon47//+by666CL+/ve/8/XXX3PXXXcRCASoqKjgoosu4vrrr+ejjz7i4YcfprCwkNtuu00/tqqqihtuuIGSkhIAli9fzs0338y+ffv4yU9+EpXP6tWr2bx5M//3f//H6NGjcTgczJs3j/PPP5+PP/6Y008/Xd/33XffZceOHb3EhVisWbOGW2+9lXvvvZf8/Hz+9re/8f3vfx+fz8ftt98ete+dd97Jcccdx1NPPYWqquTm5vLQQw9x1113sWjRIh566CGampq49957Oe644/jyyy8ZN24cEBIkrrnmGs4//3weffRR2trauPfee/F6vajqwDTq999/n4ULFzJp0iQee+wxSkpKqKqq4oMPPtDbprm5md/+9re8/vrrFBQUAPFXSHg8Hk455RR27NjBfffdx/Tp0/nss8946KGHWLNmTS8x7d///jdffvkl999/P06nk1/84hdceOGFVFRUMGbMmAGdk0QikUgkEolEIpFIJBKJZAgREolkxDJnzhxRXFwsvF6vvq2jo0NkZWWJnj9fQKSlpYnm5uao7XPnzhW5ubmio6ND3xYIBMTUqVPFqFGjhKZpQgghpk6dKi644IK4ZWlsbBSA+PWvf93v87jqqqsEIH7zm99EbX/wwQcFID7//PM+zyPy3T333KN/fvbZZwUgbr755qj9LrjgAgGIxx57LGr7zJkzxaxZs+KWMxgMCr/fL+6//36RlZWl140QQpSWlgqDwSAqKip6HTNmzBhx/vnnR20/++yzRXl5eVQasSgtLRWKoog1a9ZEbV+wYIFITU0VXV1dQgghlixZIgBx0kknRe3X0tIibDabOOecc6K27969W1gsFnH55Zfr5SwsLBSzZs2KKlNVVZUwmUyitLRU3xbJa8mSJVFpVlZWCkA8++yz+rby8nJRXl4u3G533HN85JFHBCAqKyt7fXfyySeLk08+Wf/81FNPCUD84x//iNrv4YcfFoD44IMP9G2AyMvLE+3t7fq22tpaoaqqeOihh+KWRyKRSCQSiUQikUgkEolEMnxI900SyQilq6uLVatWccEFF2A2m/XtTqeThQsXxjzm1FNPJSMjIyqNFStWcMkll+B0OvXtBoOBK664gr1791JRUQHAMcccw7vvvsuPfvQjPvnkE9xud1TamZmZlJeX88gjj/DYY4/x9ddfo2lav87p29/+dtTnyy+/HIAlS5YkPI+++MY3vhH1edKkSQC9XCdNmjSJXbt2RW1bvHgxp59+OmlpaRgMBkwmEz/5yU9oamqivr4+at/p06czfvz4qG2qqnLTTTfxr3/9i927dwOwY8cO3nvvPW688cZebrZiMWXKFGbMmBG17fLLL6e9vZ3Vq1dHbb/44oujPn/xxRe43W6uvvrqqO3FxcWceuqpfPzxxwBUVFRQXV3N5ZdfHlWm0tJS5s2b12cZY7F161Z27NjBd77zHaxW64DS6MnixYtxOBxccsklUdsj5xc5nwinnHIKKSkp+ue8vDxyc3N7tbNEIpFIJBKJRCKRSCQSiWRkIEUJiWSE0tLSghCCvLy8Xt/F2gbornF6ptFzO0BhYSGA7p7p8ccf54477uDNN9/klFNOITMzkwsuuIBt27YBIf/9H3/8MWeeeSa/+MUvmDVrFjk5Odxyyy10dHT0eT5Go5GsrKyobfn5+VFliHcefZGZmRn1OSLixNru8Xj0zytXruSMM84A4A9/+AP/+c9/+PLLL7n77rsBegkz8cp17bXXYrPZeOqppwB44oknsNlsXHvttUmVP1IPsbb1VTeR7+O1ceT7yHuivPpLQ0MDAKNGjRrQ8bFoamoiPz+/l5iTm5uL0WjsVR89+xSAxWLp1XYSiUQikUgkEolEIpFIJJKRgRQlJJIRSkZGBoqixIwfUVtbG/OYnobcjIwMVFWlpqam177V1dUAZGdnA+BwOLjvvvvYsmULtbW1/P73v2f58uVRqzJKS0v505/+RG1tLRUVFfzgBz/gySef1AMZJyIQCPQyKEfOo6dhOZnVBYPB3//+d0wmE//617/45je/ybx585g9e3bc/eOVKy0tjauuuoo//vGPNDc38+yzz3L55ZeTnp6eVDlitWeydRP5Pl4bR9o3sl+ivCJEVj30DCzd2NgY9TknJweAvXv39kpzoGRlZVFXV9crcHh9fT2BQEA/H4lEIpFIJBKJRCKRSCQSyaGJFCUkkhGKw+Fg9uzZvPnmm/h8Pn17Z2cn//rXv5JO49hjj+X111+PmjmuaRovvPACo0aN6uWOCEIrMa6++moWLVpERUUFLper1z7jx4/n//7v/5g2bVovF0Px+Nvf/hb1+cUXXwRg/vz5SR0/2CiKgtFoxGAw6NvcbjfPP/98v9O65ZZbaGxs5JJLLqG1tZWbbrop6WM3btzI2rVro7a9+OKLpKSkMGvWrITHHnfccdhsNl544YWo7Xv37mXx4sWcdtppAEyYMIGCggJeeumlKIP/rl27WLZsWdSxZWVlAKxbty5q+1tvvRX1efz48ZSXl/PnP/+5l4DRHYvFAvReeRKL0047jc7OTt58882o7c8995z+vUQikUgkEolEIpFIJBKJ5NDFONwFkEgk8bn//vs599xzOfPMM/n+979PMBjkkUcewel00tzcnFQaDz30EAsWLOCUU07h9ttvx2w28+STT7JhwwZeeuklfeb9scceyze+8Q2mT59ORkYGmzdv5vnnn+e4447Dbrezbt06brrpJi699FLGjRuH2Wxm8eLFrFu3jh/96Ed9lsNsNvPoo4/S2dnJnDlzWLZsGQ888ABnn302J5xwwgHV00A599xzeeyxx7j88su5/vrraWpq4pe//KVuRO8P48eP56yzzuLdd9/lhBNO6BUjIhGFhYWcd9553HvvvRQUFPDCCy/w4Ycf8vDDD2O32xMem56ezo9//GPuuusurrzyShYtWkRTUxP33XcfVquVe+65BwjFvvjpT3/Kf//3f3PhhRdy3XXX0drayr333tvLfVN+fj6nn346Dz30EBkZGZSWlvLxxx/z+uuv98r/iSeeYOHChcydO5cf/OAHlJSUsHv3bt5//31dhJo2bRoAv/nNb7jqqqswmUxMmDAhKhZEhCuvvJInnniCq666iqqqKqZNm8bnn3/Oz372M8455xxOP/30pOtVIpFIJBKJRCKRSCQSiUQy8pCihEQygjnrrLN47bXX+MlPfsJll11Gfn4+N954I9XV1UnP5j/55JNZvHgx99xzD1dffTWapjFjxgzeeuutqADRp556Km+99Ra/+tWvcLlcFBUVceWVV+rxFfLz8ykvL+fJJ59kz549KIrCmDFjePTRR7n55pv7LEfETdItt9zCAw88gM1m47rrruORRx4ZWOUMAqeeeip//vOfefjhh1m4cCFFRUVcd9115Obm8p3vfKff6V122WW8++67/VolATBz5kyuueYa7rnnHrZt20ZhYSGPPfYYP/jBD5I6/s477yQ3N5fHH3+cl19+GZvNxvz58/nZz37GuHHj9P0i5/Twww9z0UUXUVZWxl133cWnn37KJ598EpXm888/z80338wdd9xBMBhk4cKFvPTSS73cW5155pksXbqU+++/n1tuuQWPx8OoUaM477zz9H3mz5/PnXfeyV//+lf+8Ic/oGkaS5YsiblCxmq1smTJEu6++24eeeQRGhoaKCoq4vbbb9cFFolEIpFIJBKJRCKRSCQSyaGLIno67pZIJCMav9/PzJkzKSoq4oMPPhju4iTF1VdfzauvvkpnZ+dwF2VIufjii1m+fDlVVVWYTKakjikrK2Pq1KlJu+SSSCQSiUQikUgkEolEIpFIDmXkSgmJZITzne98hwULFlBQUEBtbS1PPfUUmzdv5je/+c1wF01CKBj06tWrWblyJW+88QaPPfZY0oKERCKRSCQSiUQikUgkEolEcqQhRQmJZITT0dHB7bffTkNDAyaTiVmzZvHOO+9I3/ojhJqaGubNm0dqaio33HBDUq6sJBKJRCKRSCQSiUQikUgkkiMV6b5JIpFIJBKJRCKRSCQSiUQikUgkEslBQR3uAkgkEolEIpFIJBKJRCKRSCQSiUQiOTKQooREIpFIJBKJRCKRSCQSiUQikUgkkoOCFCUkEolEIpFIJBKJRCKRSCQSiUQikRwUkg507fF48Pl8Q1kWiUQikUgkEskhjtlsxmq1DncxDmvkfblEIpFIJBKJpC/kfblkJJOUKOHxeBg9ejS1tbVDXR6JRCKRSCQSySFMfn4+lZWV8gFoiJD35RKJRCKRSCSSZJD35ZKRTFKihM/no7a2lj179pCamjrUZZJIJBKJRCKRHIK0t7dTXFyMz+eTDz9DhLwvl0gkEolEIpH0hbwvl4x0knbfBJCamioffiQSiUQikUgkkmFG3pdLJBKJRCKRSCSSQxUZ6FoikUgkEolEIpFIJBKJRCKRSCQSyUFBihISiUQikUgkEolEIpFIJBKJRCKRSA4KUpSQSCQSiUQikUgkEolEIpFIJBKJRHJQkKKERCKRSCQSiUQikUgkEolEIpFIJJKDghQlJBKJRCKRSCQSiUQikUgkEolEIpEcFKQoIZFIJBKJRCKRSCQSiUQikUgkEonkoCBFCYnkCGSBeikL1EuHuxgSiUQikUgkEolEIpFIJBKJ5AjDONwFkEgONgM1xn+ovTLIJRka+nN+yez79PaH+eKLL3C5XHi9Xh6/+Q9oBNHC/xRAQUFBDb8n/vvHf78No9GIw+GgtLSUsrIybDbbAZyxRCKRSCQSiURyeBMMBlm5ciUVFRV4vd5eL7/fj8FgwGg09vuVmZlJWVkZRUVFGI3SRCCRSCQSiWTokXcckiMCj8dDRUUFV828EQ9uAvgI4CdAAA0NEAg0RPifARNWrAQIhPfzk6nkEiSIqv8zxHmP3mbAiBETxvC7BRsWbCiKAgxM7DiQVQ4BEaCLNjppo5N2OmkLiws9/6m46KS8/FX9WKXbGUbOkXDtda8/rdvfAi0q/29961u9ymTGghUHNhzYsIf/tmPDgRU7qmJIeE6HimAkkUgkEolEcqTT1NTE1q1b2bVrF3V1dbS2ttLW1kZHRweBQIBgMKi/B4NBRo0ahc1mo62tLeoVCASwWCxYrVasVisWi0X/3PM98nI6naSlpZGenk56ejplZWVkZGQMSz0IIairq2P9+vWsW7eO9evXs337dhRF0cUFg8GAwWBACMHKlStpbm4GQFEU/XwjL5PJhKZpBAKBhK9EGI1GiouLKSsrY/To0b3eCwoKUFXpbEEikUgkEsmBowghRF87tbe3k5aWRltbG6mpqQejXBJJXHoa5IUQBAnQSiMtNNBJGwoqRkykkoEFG1tZixc3EJrVb8SMCRMGTOF5/GqUOd6HFx/esJiw/2XAoK8Q2L9aIPa7QCNIEI1gr3NQw1JFAWWMU6YNSr0EhJ92WtAI4iAVK3Zd+NCERg27qGILbrr0Y+yk4CQVA8ZuIkLoHwjMWMkij0xyMWDU0+svQohudROqHz8+3HTiohM3Xfp7pJ16Mo+zsCvOAeWfDFLYkEgkkgNH3jMOPbKOJSMZTdPYu3cvn376KUuWLKG6uhq73U5OTg4nnngi+/bt48c//jF+vx8Am81GRkYGaWlppKSk6DP3I0Z5RVGorKwkEAiQlpYW9TIajfoqAY/H0+d75O+eZGZmkpWVxSOPPML5559/wHUghGDfvn2sWbOGtLQ0Jk6cSHZ2tn4f3drayl133cWrr75KQ0MDAHa7nalTpzJ+/HhUVe0lzGiaxrRp0zjnnHM4+uijMZlMA7ovF0KgaRperxe3243H48HtdlNTU8P27dvZvn07O3bs0N9bW1t7pVFSUsKuXbsOqI4kEolEMvTIe0bJSEeulJAcErz99tssX76cqqoqVovPwub+AD68+PGGVzuABSupZCLQcNNFPXvR0Egnm2kciw0nZiwDNq73B7/whcUNT9jo3kEbzbTQgEYQH0GqqcQsLHhx48NLMLwyIxheoxEkoAsE6P+DEROZ5GLHSQettNOCi46o/FVU7CIFG066aI/6voRxjGYSJsU86OetiSCLeWNQ00wlAzMW/XNEiAq1vw9/WERSw2JURHQKvZtRlb5ndC1QL5XChEQikUgkEkkCAoEATzzxBFVVVezatYv29na8Xi8tLS00NDTQ1NREMBiakDN9+nTGjh2Ly+XiP//5D8888wyKovDDH/6QK664gtLSUtLS0oa8zJqmUV9fT319PdXV1Wzfvp1NmzaxdOlSNm7cSHNzM83NzTz99NNs3LiRvXv30tLSQkdHh/5qb2/H5XKhaaFnDiEEkbl9o0eP5qyzzsJoNPLll1/y5ZdfUltbG1WGzMxMJk6cSElJCX//+9/17ampqfz617/myiuvxGBIvDJ4ICxdupSTTz55UNO88soroz5rmqa3f2NjIw0NDbS2tuJ0OklPTycjI0N/z8zMPCjPYRKJRCKRSEY+cqWEZFjpuerBL3z48RGZVy8QmLDwH97R98kiDxNmDGFnSObwK4UM7DijbnSDIoiLDpykHbQb4PViBXXs6bVdQcEadknUTL2+XcWAFRtmrOH1E0YMYXdPBowoKN1SCOHFQxO1eHCTQhqpZJJKBqlkYMCIiw66wq/I6oMu2nuV6RhOI1UZ3CXrQgg2sYoaYs+gUjHEXD0Sj9FMwoNLF24iIkREiEqG6RxHrlKU1L5SmDi06a9rs8OlvZM5byEEPjwECPQaK5PlcKkvydAh7xmHHlnHkoNFdXU1LpcLn8+H3+9HVVWam5uZP38+EJrdf84552C1WklPTyc3N5ecnBwKCwuZN28e2dnZUenV19fT3t7O2LFjD0r5m5ubycrKivmdzWZj3LhxFBQU8P777+vbs7KyKCoqIisri5SUlKiXw+FAVVX9+hl5X7duHR988AGKojB79mzmzJnDnDlzmDVrFh0dHWzZsoUtW7awefNm9u3bx7Jly/D5fL3KpGnaoD+vNDY2MmnSJBobG3t9pygKVqsVtzv2KuVY3HXXXWzbto26ujpdhGhqatLFmr7IzMzk66+/pqSkJOk8JZLDEbfbTXV1NRaLhVGjRg13cSSHKfKeUTLSkSslJMPKh9orLFAvpVO0UU0Vu9nWax8VAymk48OLFzdttDCKMWSQTQoZmBVLjJRDGJTQsUONX/j0GA2xBIlMcnHTpb8izOEUUhn4jCEhRMxjbTjIIj/m/m66qGMvHrqwM/jukBRFYQpzmMKcpPbXhIYXN3582HHixcMX7H843MN27KRgxY6dFEyYMWMJC1JmTOG/BRodtNFKA6000k6LnkYFa8glOVHiUCVilO7ZJ4Ii5DLLSOJl/kNtbI5nNBdCEMCPFw8+PPjxQXh9kJM07vzn91i7di1tbW38+9HFWLGTSV5Sq18OpFzJMlKN9AERoJUGmqmng1ZcdODFo39vxESGyCWTHHIoxKrYh7G0EolEIhkpBINB/vWvf3HHHXdQUVHR6/uysjKmTZumr5KoqKjghhtuYPbs2UybNg27Pf71JDc3l9zc3KEsPkIIdu/ezYYNG1i8eHHMfU477TTWrl3LunXrWLduHRCKpdDW1paw/ImICAqx7rWmTJkS8xiv18vq1av561//yqRJk4ZkAlV2drbuIioZOjo62LNnD4qiUF5ezhNPPMFtt92mf//8888zbtw4SkpKmDVrFjk5OWRnZ0e9Z2Rk0NTUxIoVK1i6dClLly5l586dQEgo+tWvfsWvfvWrQT/XkUjP+/KWlhbMZjMOh2MYSxWfQCBAQ0MDtbW11NbW0tnZiaZpqKrKzJkz+eKLL9i4cSMWi4Vx48YxYcIEjjnmmOEu9ohn3759fPzxx3z00UdUVFSwfft2PT4MwNixYzn11FM57bTTOPfcc0ds/5BIJJLBRq6UkAwJyRr6fMLLVtZSxx5MmPHhRUFlFieGgygrNFBNNZX4iPiAVdjvyAiMGAmQOGhbhMnMoVAp7d/JJKBdtFDFFurZp28zY0EgwsbV/aJKZCWDDed+w/oQuE861InEv7DjxEGqLjoFRYBdbCWAX49PYQjrqo3U6GKPigEnqThIw0kqTtJIJSPpuh4JRua+fj9CCJqpZzvrseHAz35XYQH8WLHjIBWBoIV6NDRUVMxYsWDFgg0HKThJx0laUrPmD6ReEp3PdrGBKrb0K71xTKdUGT/g8gwFw91vInW8W2xjK2v17RZspJKJk1Qs2LBgRcUQjsFTTxvNCAQ5FDKKcjLJjdkXhvv8JIcO8p5x6JF1LBkqVq1axS233MIXX3zBuHHj2LZtG5dddhm33HILJpOJtrY2nn32WV555RU9JoTJZNL/VhSFnJwc6uvrE2Wjs2XLFiZMmDAoZQ8Gg7z66qv87Gc/04UGp9NJSkoKHR0ddHZ2ApCXl8fs2bOZPXs2s2bN0ldF5OfnY7VaB6UsyDM7CgABAABJREFUhxM1NTW8+eabnHDCCZSXl+uizYYNG3jxxRf1uBQej4e8vDzq6up47bXX6OgIuY3Nyclh2rRpTJ06lWnTpjFt2jSOOuoozObD5xlI0zQefPBB3nnnHQoKCqirq6O2tpa6ujqCwSATJ05k4sSJbN26ldWrVwMht10FBQUUFBRQUlKi18306dMpKCgYtnMZiDC2fft2ysvLh6A0hzZut5szzjiDzz//XN921FFHMWPGDMaPH09RURFFRUW0trayePFiFi9ezJYtW0hLS+Paa6/lxhtvPGiryiSHL/KeUTLSkaKEZMhIRpiIGCQzyGEac+OuetBEkE7a8eDSVxtEXBTFC4wci5kcT7bS/xs9TWi004wHtx6/oI1mmqnDhoMSxpNBNrXspor9s8psOEgnm2LGDrqbpCONnWITO9nUa7sdJ2lkkUMhTlKxJTCwD5dhNd5vIVIeIQT//ve/uW3hXbhx4Q4H/QYoYTwmzHTQQg278OFFIFBQwusJohlFOQKBhy4EgizysWLHhwcvbrx48OCihf2z5o7mZDKUnIRlHEy610eHaGUb6zBhibnKCEIrjcxYMWHGgpVixmFQBt/vcn8ZSYb6SJ2uFV/Q0E0kncE8cpTCuMcFhJ9adrOHHXTRjp0UxjI1yt3ZSDpPychH3jMOPbKOJUPF1KlT2bhxI/feey933303RmPsRfVNTU1s2rSJXbt2sWvXLnbs2MGmTZvYunUrbW1tSbvy2bNnz4DclrS0tLBy5Urq6+tpaGigvr6e1157je3bt3PGGWfw3e9+l1mzZnHCCSewZ8/+e4vjjz+eY445hh//+MdkZMj78gMh3r329OnTOf/88znppJOYNm0aeXl5B7lkB05raytvv/02lZWV7Ny5U3+fOHEiN9xwA4qi8PLLL/Puu+/idrv1GCo9yczM5Prrr6e6uprKykqKioo4++yzMRgM1NTUUF1dTU1NDVu2bGHNmjX6cUmYZ4aMJ598knfeeYeOjg6WLl3a6/tRo0YxY8YMCgoKcDqdnHDCCVx88cXDUNKRT0NDQ9TKsOzsbFavXk1xcXHcY3bu3MnTTz/NH//4R5qbmznrrLN4/PHHGTdu3MEosuQwRN4zSkY6UpSQJCQZYaFCrAHAhBkj5rCbHQc2HBiUxB7C/MLHFlZTx14UFJyk68ZTgPnGi/uc4b5P28mm4IqobaPVKRSr4/AEOxEIUkhHjRgxRfwHpRqxm42s1D87SA0HpQ4FoYZQZIeQadRBMeXkMgoFBT8+OmhlD9tpo0lfKQEwhsmMUSYnPA9JYiKrA6rYQgsNOEljEkeTpmT2K53hMLD29TtqFy2s5GMg5LLIFv79dNFBE/sDJRZQSiqZqKj48FBPNR26m6roFURAOOi3CRWVIAGC4QDx3cUMCzaO5mTsyn5XXsNlhD5NuZhO2uigBQMm7DhIIaPPmfuHqwum/tC9DoQQePFQwRoaqSaTPNLJIo0s7DgxY+3l/koIQSuNbGAlTlIpYRz17MODC1N4bU0amaSR1WtMPhzqTzJ4yHvGoUfWsSQee/bs4c4776SgoIDMzEyys7MZPXo0Y8aMoaSkJK7IEOHrr7/m8ssvZ8uWLWRlZTF69GhWrVoFwI033sgTTzyR8Hiv18uiRYt44403ora/8847TJ06laqqKnJzcxk/fnxSM7KPO+44li9frn+eNGkSbrebvXv3EgiE7sudTifZ2dnMnj2bO+64g9mzZxMMBtm7dy8ffvghf/zjH1mxIvo54auvvmLWrFl95i+JT0NDA4sXL+aWW26hvr6eb3/72/zqV78iJyf2JJdDiXvuuYf7778fp9PJ1KlTGT16NKWlpbzyyivs2LEDgOLiYi6++GImTJiAyWRi3bp1vPHGG7oI1n0FUeRzWloaaWlpCCHo6uqiq6srKng6wOmnn87777+Pqg6Om9IDob29nS+//JKtW7dSXFzMpEmT5IqIAeD3+1m3bh0XX3wxLpeLM888UxdIS0pKyMrK6jUeut1unn32Wb73ve/x29/+lmAwyMqVK2lqaqK0tJSJEydy3HHHcdRRR2GxxHdlLZHIe0bJSEeKEkcg8Qx4Ebc5DVTjogMjZgSCTHIpZ0pMH+49XYX0nL0dkiiclDKeHKWQoAiwik/w4tZnPqeRiZ1U/HhxqV3s03box59q/GbcGdEe0cXe4A72iG0EiA4WN1qdQjmx/bf2optIUSN2sZEv9c8FlIbLaSKNLEDBjwc3Ln3VRuQ92M2FlBGTblhOI4sSxh20QNuHM+vFcurYyxgmU8bEmH1ypBlIkw1AvIMNVFFBPiWUME5fWeMXob6toGBUTL2ODYoAdexlJ5vw4NK3K6iUMh6NAKCExQlD+J8RI2YyycUYFg5HWr0dCJE6P5zOqS9i9TNNaOxhO83U0UpT1Bi135WXFUEorkcAPy46SSGDdppxkIodJz68uOjEH3ahZ8FGDgWMYwaLxesH7RwlhwbynnHokXV8ZFBTU8PTTz/Ne++9h9vtxmw2I4Tg3nvv5Rvf+EbMY4qKiqiurtY/q6qqGzwNBgOlpaUcffTRPPjgg4wbN45PPvmEyy67jIyMDGw2G2PHjmXmzJmUlpayZcsWGhoaeOaZZwC45ZZb+M1vfhMzXyEEy5cv5/HHH+eVV17pNXP8iy++YO7cuf2ugzlz5uiiCMAPfvADbDYbxcXFzJo1i66uLmpqaqisrKSqqkp/3717d5RBuKioSBdnFi1axFlnndXvskiiqaur45hjjsHj8fD8889zxhlnDHeRBo22tjbOPPNMNm/ezA9/+ENuuOEG8vLyCAaDtLS0YDAYsFqt2Gy2XsfW1dXx0EMP8Yc//AGXa/99+cSJE1m0aBFNTU04HA7sdrv+cjgclJWVcfzxx48IMUIyNOzbt49f/vKXfP7553z99df6OGk2myksLKSwsJDs7Gw6Oztpa2ujsbGRXbt2MX36dDZu3Mi8efPIysqisrKSiooKPB4PFouF8ePHc9NNN3H99dcP8xlKRiLynlEy0pGixBFILOOVEIIqKtjBhpjHHM/Z2JTeAZd8wstS3tY/dxclQoZPk77qIYt8pjGXT3gTgHSyCeCnkzYAciliunIctexhi/iaAD5duIjM+AYIEiBAgE5a6Tk73EEq5Uwlh4J+iQBCCDpopZM22mhiH5XAfndPmtD4lLd0o56KARt2rGHhwYpdFyFsOGSsiCFACMHHvEY5UxitTIq736FoiF6gXooQgr3sZBcVeHCRThZFlJNOFlbscfuzR7hYwUcE8OuBwFtpjNonlQzKmIiDFGw4dTHnUKwrycAIBoOcYDwbDy68uiuvkDsvBRUjJgQaTdThx0s6WeRRjB8/AXz48dFOC12062m2tLSQnp4+fCclGZHIe8ahR9bx4Y/L5WLhwoUxAzXn5eVRW1sb4yj4y1/+wjXXXKN/ttlsuN2h+/D09HScTid79+4F4I9//CNZWVlceOGFAJxzzjl89dVX1NXVAfDcc89xxRVXcN111/Hss8+iqiqFhYWkp6fraXk8HlwuF/X19foM8u58+9vf5n//93+ZMWNGv86/s7OTVatWsXbtWl5//XWWLl2KzWajtbUVs9nM8uXLOe644/T9s7KyKCsrY/To0ZSVlVFWVsaYMWMYM2YMpaWlMlbEEPD2229z3nnnsX79eqZOnTrcxRl02trauPPOO/nrX/9KIBBg0aJF/Nd//RezZs0iMzP+Ku2XXnqJyy+/nNTUVCZOnIjP52PNmjUYjUZ9dc8NN9ygr7IoLi6WE9eOQLq6utiwYQPV1dXs27dPf29qasLpdJKamqoHx/Z6vXz3u99l/PjxNDc309LSQl1dHUuWLKGxMfTMd+655/Kvf/1rmM9KMhKR94ySkY4UJQ5jNm/ezGeffYamaaiqitfr5dFbnsCPl9FM0kWGgAjoQkEsHKRxnLIg7vf1Yh9N1OqBdTWCdNFBB61RBiyAWZxIgAAb+TJq1m5PMsmjkNF00a7P4A3gR0HBgAEVAybMcQPkjqKcicpRCWonREAEaKeZSjbrPvZtOMggh3xKyCAHRVHwCg+f829dcLHjxEkaZiwYMWNUTCgiNDtdDZcvnUzsSkqfZZAkz2LxOqMoZxzT+Ui8OtzFGRR6ioSa0Gigmj1sjxIXegZ3dolOtrGOVhoxYOQYTsOsWKgQa9jDdgBSSMeEmWb2B5wczUTKleiHRylOHBn0tWrnC/FB1JitoGDEjAGDLjhraIybUs7pp5/OmWeeyVlnnSUfpiVRyHvGoUfW8aFHIBDgs88+Y8uWLaiqiqqqtLa2snfvXkwmE4888og+li5dupSTTz45blr33XcfP/nJT2J+5/F4+NnPfoamaWRnZxMIBGhra2Pt2rWsXr2affv2Re3v9Xq5/fbb+d3vfpfQj/0jjzyCw+Fg7969tLa20tbWRkdHBzabDbvdjtPppKWlhRdeeCHm8Z999hknnHBCX9VEdXU1S5cu5dZbb6Wurg6z2cyUKVNYuHAhV1xxhR70NWL4jTB79mwmTpxIZmZmlIsci8WCzWbDZrNx4YUX6kGaJQfO+++/z1lnncWnn37KSSedNNzFGTKam5v505/+xO9+9zt2796tb1+1ahVHH320/vmNN97gscceY8WKFVx66aW88MILKIoSdY90+umns2HDhihRMRAIYDAMf5w0ychix44dvYJc2+120tLSsFqtqKqK3+9H0zQKCwv51re+xWmnncb06dOHqcSSkYq8Z5SMdKQocRixQL2UdtFCPXupD7tggv2rFxRUTJjx4WE6x+mBTDWhsYGV1LNXT0tFxU4KNhyUMREnaf0KLBsxcno8HhobG2lubqarq4v/m/dLVEVFE0FaaKSaKhqp6SVQWLEzm1NQCc3oNmDQ41O0ixaaqMVFJzXswoCBKRxDF+26j30zVk7k3PjGMkVlg7aCWnbpm4oYwzhlRshFToy4E0ERpIs2OmhjD9v1FR6JOF25JKn6kiTGKzx00MIa/qNvm8sCnEraYW1Qn6kcz1qWASGXOROYSRqZCASbWEUXHRRSSgFlekyIerGPdXwRlY4VOxasKKiMZ0bcoOuHc132F03TqKqqorGxkZaWFpqbm/n15X9KGLD+UK6/BeqleIQLPz5MmHHRwW6200iNvo8dJ6Do15bItjFMJo/EM/0O5bqJRXeB53A7twNF3jMOPbKODw38fj/vvvsur7/+Om+//TbNzc268TEYDJKamorBYKCtrQ2Xy6X7Bd++fTunnHKKvqIBICMjg0mTJjF9+nTuuusuCgsLB2TIbGtro6mpiebmZmw2G1OmhFydNjU18d577/HEE0/wxRdf9Druvvvu47vf/W5UeSLxKV599VXWrFnDp59+yueff84ll1zCN77xDTZt2sRjjz1GIBDggQce4O67745brsbGRqZMmUJ9/f5JFK+++irnnXceJlNv15WRY9atW8fatWu57bbb+jz3a6+9lj/96U997idJjKZpbNu2jcWLF3PjjTcCMGbMGDZs2BDTndHhQjAYZNGiRbzySuiaf+WVV3L99dczbtw46uvrmTdvHjNmzOCSSy7huuuu0wWw//mf/+Hpp5/GbDbj8/kwmUyMHz+etLQ0srKyeO211+L2ccl+3G43lZWV+j15R0cHp5122iEZSD0ZhBCsX78eo9FIWloa7777Lr/97W9Zt24dEFoFN3nyZL766quo426//XYuueQSjj322OEotmQEIu8ZJSMdKUocgsSbWb2brbTRjAkz2RSSSyE2HLTTSietBPDTRB0+vJQzhSABrNjDrofsWLADAh9erNhx0cF2NtBIDQKBBRvTmEu6kpWwfJGAqZFVE20000YzXtwYMNBOC7mMIpdCNnQLKp0IBYVsChjLNLayNir4r50URjMRExaMGAkQIIg/7OTJj0YQE2Ys2LBgw4oNRTGyWnxCB616Og5SOU4N+Zj9MPhywrrfLtZTRYW+PbKywqCYCBJAEwHSyEpowJT0TZ3YSwVr8OHp9d0EZlKshGaQHI5GwYhLp0ZqaKaeJuqijMEAM5jHGvGfuMdrQkMjGDMWRXcOx/pLRCAQYPfu3bS2ttLe3s6tp9ytr8by4qGdZtppIYC/17HFjGWCMjNu2sNVlwMN9h1xXddGk74aLUiQSjZjJ4ViykkjCwepGBQDbtHFf3hXP96MBR9eUsmgk3YEEUFXQQm/W7GHg2RnkkomKaT3Gbx8JNHfuh2p53GwkPeMQ4+s45FNc3MzzzzzDL/73e/Yt28fkyZN4sILL2ThwoWoqsqyZcvYuXMndXV1vPXWW4wbN47/+q//QtM0SktLKS0tpaSkhIKCAhobG1FVlezsbF577TUeeOAB1q5di8Fg4Nhjj+W9994jJSXxqty2tjZWrlyJxWKhpqaGZcuWsXz5ctxuNz6fj4qKCn76059SXV3N73//+6TOMTMzk2uuuYYf//jHvdz4ffvb3+a8884jJycHVVXp6Oigvb1dfw8EAhQUFDBq1CiKior0OBiTJkW75rz77rt54IEH+iyLEIJp06axceNGAKxWK4sWLeKMM84gGAzidrtxuVxcddVVpKWlJXV+kth873vf469//StdXV29vtu4cSOTJ08ehlIdPDo7O3nxxRf59NNPef/992lqatK/y8rKYuvWrQldO3V0dGCxWDCbpZvf7nR2drJ3717a29tpa2ujvb1d/3vHjh0sX76cNWvW6O6vuvPWW2+xcOHCYSj10NDZ2cmKFStYvXo1gUAAVVX5+uuvefnllzn33HO56qqrmDlzJmPGjMFgMPDGG29w0UUX6cenp6cTCAQoLy/Xx8TIih1VVTGZTEydOpW5c+dy7LHHMnfuXEpLS4frdCUHAXnPKBnpSFHiECOWcWSV+ER382InhVTS8eGlkzZ84cCkNhzhwNWaPsM/Ykzqjg0HORSSxyhaaGA7G7Bgo5Tx1LKbDtrIYxRBgqgoWLAxlmlRAYfbRBNfskT/bMREOtnYcKARRMVANVXYcFBAKS3U00YzAfxRQbIBxjCFFNJoo0kXAQoooZkGhC57BNDovbIBCLtSUmMaF4FQoG0lm3QlixylEKeSzgf+vydV9y7RSS27qWEXbrpQUXGQiqb/C6KhIdDCZRW6wU4JhxyOuKFKIUM32jlIjRnA+UikTTSzk4200ICGhoNUZjM/ZsyOw90QuEC9FLfoooM2VFQsWFkuPhzuYo14vF4vJ1nPpYNWOmjRRdp4Y0aESEycYFjcjFBIGZOV2XGPG65+eLpySXg0DOhl9uFhD9vx4yNIEI0gQYIYMJBONj48egDsiKsmwiNVOllMZ15SY9EW8TVuusggOxybAiKxfoQCLtFBG8100opAYMXOaCZSpIzR0xgpv9+e4/wesZ1m6nHRqV9rlLCjPgUFE2bspGDH2e3dqa/si3VePfMYKec+WMh7xqFH1vHIprvoesopp5CTk8O+ffv4+uuvcblcWK1Wxo4di9Vqpbm5mZ07d2K32zGZTLS17V+FazKZOProo7n00ku55JJLWLRoEcuWLePUU0/lwgsv5Ec/+hE2m41vfvObVFdXY7fbWbBgAVdffXVUee68805+/vOf65/Ly8s57rjjSE9Px+Vy4fP5ePHFF7n55pux2WwsXryYzZs309ERPRGisLBQd+P03//93zQ2NnLhhRfS1NREZWUlPp8Pj8dDV1dXTOOhqqrY7aEYWT3TjjB27FjmzZvHcccdxze/+c2EBt7uaJrGZ599xvPPP88rr7xCe3s7ubm5FBUV4fV68Xg8eDwefD4fgUAg6gXoLp6sVivFxcW6sW7u3LmMGjVKuikM88wzz/DUU0/x9ddfoygKN9xwQ9JC1uFGMBjUY7BYrVamTp1KQUHBcBdrxNPS0sLXX3/N6tWr9feKioqE7uMgJPrYbDZaWlqiRLGXXnqJb33rW0Nd7H6jaRqdnZ10dHTor5UrV/L3v/+drq4uXSx1u90UFxcza9Ys3c1eMBjE6XRitVrRNA0hBPfccw/f//73+8y3qamJiy66iLKyMubMmYPBYEAIoafjdrtZs2YNy5cvp7IyFENz/vz5/PznPx/xqyva2tq47777WL9+vR5/w2g06i+z2UxxcTHjxo1j/Pjx+ntZWZm+su9IRN4zSkY6UpQ4ROlu1KgTe9nBRlRUggQwY8WCFTtO0skmjSz8+NjACjpoZTSTGcUYTJgJEsRNJ67wq5VGfRWCGas+Q92CjenMZS87aaSWFNLw4aOTVj0YdIQO0coKPtI/q6jM4yysyn4/rhvFKpqp4wTOYR87aaKOdlrw4SGLAlLJoIYqLNiYrcwnKAJsYz0tNOCiA4HAgDHk1gkjKkYMqPjw4sXdS9zoiQ0no5RyStUJUQ8a8QSJRJyuXEIXHbpLKVX/ZwgbrkLGKyVsylIgLFmEjIQ+vLTTTCdtCAQqBgopSyomxpGCT3jZw3Yq2cwUjqFAKYm53+Fm3JP0jwXqpfiElzaaaKWRVhppp0UfDxykkkI6KaQD4KKjW9BnT9SKHANG3cBsC7+/uum5XjM5h+Ic+iIg9gsPbTTRTD0tNODF3WtfB6mkkxWWQUNCqB8frTRixko62aSTRSqZvVz0KcbEK2wUkxHN3TvP0Je9xYygCNBIDRViNX78nML5qD3yPNi/4UT1vU9UspmvyCQXOykYMaGi6gKzQODFE75+dkSJVzYcHM3JVLEFN12YsWLCrF+fIyv3LNgwJhAwDkXkPePQI+t4ZPOd73yH9evX09LSgtlspqCggPz8fGbOnMkJJ5zArFmzePfdd7n22muxWCw88cQTnHPOOZjNZhobG9m2bRtbt26loqKCf/7zn2zevBmAgoICampCLvUWLlzITTfdxE9/+lMaGxspLS1l/fr1tLW10djYGBXY+f777+eee+7RPx9//PF8/vnn+me3283YsWO58MILuf/++/n5z3/Ol19+yddff43ZbOaiiy4iMzOTRx99lIceeojbbruNdevWcffdd7Np0yZ27tyJyWTSjWhOpxOHw4GqqlRXV8cNyh3BZDJxzDHH8MADDzB//vwDrn+v18sXX3zBhx9+SEtLC1arFYvFgtVqxWw2YzKZMBgMuiErYqiLBO2OzMzetSvk4jU/P5/f/e53XHzxxQdctsOFtWvXctddd/Hee+/R1NTUa7WMRAKhVUzbt2/n888/5/PPP+ezzz5j27ZtADgcDmbMmMGsWbOYMmUKtbW1VFZWUl1dTU1NDfv27aO1tVVPq6CggLFjx0a9Tj/99KSFy6FCCEFzczNer5d9+/bxySefsGTJEj777DM6Ozt77X/OOedQUlKC3W7XhdAtW7awdu1a/Rpx4oknMnHiRFR1aCcp1tXV8dvf/paHHnqIb3zjG/zzn/8c0vwOBCEEF1xwAUuWLGHBggWMGjWKvLw8/H4/gUAAv9+P1+tl165dbN26le3bt+P1hibfGo1GzjvvPH77299y9dVXY7fbycnJIS8vTxevCwsLKSoqIj8//7BbySTvGSUjHSlKHCIM1DVHhI3iS2rC8RNUDBAOWBqPIsbQQSvtNOvbUsnQZw4HCeLBhYLC0ZyMU9m/HFoIwW62IRD48bGLivAMUgdBggTw00Er45mBBxe7Cd2cpJGJBbse22ISR7OZryhjgh7fwoodA0YaqcWPN2zYD4RdrwQwYcamhIyIJszhmBSh2awaQQLCRysNbGM9AMdxBg4l1KcHYhBKpl36nCkbNt4FRYB2WtgkvsRNJ3kUk6MUkSeKjvgZWhvESmoJBZcbyzTKlAkJ9z9cjHuS+MT67bWKRlbxCRASUvcb3DNwkEo7zTRQQwPV+vhlw4GdFByk4CBVn/Fuwqz/7g5mf0o0pniFhx1soJqqqO0ppJNBDimkY8Skr/IwYMSGY8ArrxKJEoqp7xlHmgjSobXSpjXSrjXSGmzQXZCVMZGxPQKud+dg1Hlf4/dq8RnN1OEkjVyKyCQXH15cdOLBBXR3UqXgx4+LDtpoIp0sxjODlSzusxzdYzzBoT9+yXvGoUfW8aGNEILs7Gyam0P32A6HA5/Ph98fe1UvwL333svzzz/Pjh079G0LFy6ks7OTrq4uOjs72bp1K3PnzuXjjz+OMqrs3r2b5557Tl8F8f7773PMMceQmZlJW1sb1dXV7Nmzh6+//pqpU0PjsqIonHvuubhcLhYvXsz555+PwWBgxYoV3HrrrbqbqdLSUlpbW/nwww/1Wb+dnZ20tbXpM4DLy8spLS0lJSVFXy1ht9vp6uqitbWV559/nmeeeYbx48dTUVHR69yHi9raWlasWMEFF1wAwC233MJ//dd/MWfOnOEt2DCjaVpUPJMjwW2TZGBEVmkpisL06dM58cQTmTt3LkcffTTZ2dm8//77/POf/+S9996jo6MDu93OxIkTo14TJkygvLwch8Mx3KfTi+XLl/ODH/yA5cuX69tsNhsnnngi8+fPp7y8nJSUFP2VmZlJcXHxsJW3paWFVatWsXLlSlauXMmKFSuoq6vDZrPxzjvvDIooPFQ0NzdTVFREIBDgtNNO45JLLmHy5Mns3LmTbdu26a4OIy+Affv2sXr1anbs2MFPf/pTVFVNGNsoQmtr62Hl6k/eM0pGOlKUOMRYoF5KndhLJZtxkBJ2xhHQXyYsWLCF3TUZw04mwkZvgpixhGdzKvp8/k2sipufiqob+EMrE4xhg1fI6FXE6KgVED3RhMY+KumiDQ9u3Vhmx0kxY9lHJRV83es4IyamMVePk9HT/ZIJsx5DQkGFbnNXg/j1WcRaN3dJoXMPuTEBcJLGTI5PWP6BGocWqJcO6NgzHVficbexlx00imraaSGPYqYwu9eM4iMBn/CyjXX48ekBd0sZzzhlesLjDnWjnqQ3iQzIAeGnjr3sZitddFDGRMqZgqIouEQHO9lMIzUE8GPBRg6F5FBABjlJ/66GW5hwiy6W8yECQTmTsZOCAQMpZMR0Z5YMhkQzG+PcGigxlj9rLlfU56ZgDV9596+WU1BJUdJJU7JIV3PIVPOwKLGDYb7v+VvfBR8CYtV5UARpopZ69tJADUFCbj4MGLFiR0HptipP6G6rUshgMkdjUIy0itCKnTZaaKcZH56olXwZ5DCDeTHjvhyq45i8Zxx6ZB2PHDRN4/bbb2f58uUUFRXpAkFkhmxKSgrjxo2jtLQUq9WKyWTCbDbj9XoxGo04HA5aW1uxWCxYLBYMBgPXXntt3PwyMjIYM2YMqampOJ1O/eVwOCgrK+O73/1uwlmee/fu5dlnn2Xbtm20traSnp5Oeno6Z555JqeffjpXXXUVL7/cO67aFVdcwbnnnsv9999PVVUVrm7jvtlsJjs7W3evYjQa0TSNYDCIx+PpFU8iUi/p6elUV1cTDIbuy6+55hr+/Oc/D6gdhpJVq1bx7LPP8tZbb1FTU8PTTz/Nd77zneEu1rDw1Vdfcc8997B582Z27twJwDvvvMPZZ589zCWTjCR27NjB888/z3333QdARUUF48ePB0IxIH7961+zdOlSgsEgs2fP5rzzzuO8885j2rRpQ746YLB49tlnufbaa5kwYQI//vGPycjIIDMzk1mzZo2omfZCCO68804efvhhfVtaWhrHHHMMxxxzDPPnz+f4448/JILUV1dX88Ybb/Dqq6+ydOlSNC1k58nPzycvL093U9X9JYTgxhtv5NZbb8XtdvPee++xYsUKVq5cydq1a2lpaYlyHfbjH/+Y++6777CaECrvGSUjHSlKHAL0NJZUiDXsYTsQMmiYserG+SAB3HThpisqpsF+47xCJnkUUkoORaiKSqtoZB+VuoMhM1acpOEkLe4sW69w64FgBZBOJnald6A9v/BRwy6aqA3PSE5FoOHHRwA/+ZSQrmSxR4Rc8/SMcdEdMxYcpJJPse6myYOLAP6wI6QAPjxkU4CdFFRUNIL48ekunzLI1evIhBljN6ElhXTSyY66CB0so9CZjitjbq8L7GK973PS1BxmWk7G4EnsB/9wo1nUs5ql+mc7KaSQzjQl2ufloWq8k/SPvmLqZJJLAaXkUYyCwm62soONmLFSQCk5FA4oyHKyK9UG0g99Ph9/+ctf+NkNj+LBHXbBJMKu3kIO4DQ0vHjooh2AScrsqHgMAMbMjNgZ2KyxtwOYow3hork1/Ef824JYogQA6v46/bLlbZr8+/Zno9pIMWbhCXYRDPqYYjoWn3DjFR68uNCEwKgYMWDS302YyEkbr8dmAHi34Sn976PUk2gVDZgUC2asmLGEBeoQqaSzRHsj/rn3Qc82D4ogXbRjwYYfHzVU4aITPz5MmMkkl0zycMS4DvYkKILhSQTmQyrgd7LIe8ahR9bxyMHr9Ua5Srrwwgt1oSAYDNLe3s62bdvYs2ePvhqi+6qIjIwMLrvsMq6++mrdn/cTTzzBV199hcFgwGw2M3bsWKZOncrUqVPJz8/vNW4IIdi0aRMbNmzA4/HgdDo55ZRTYro12bx5M08//TQ7duxgypQplJaW0tbWRnNzM0II7rjjDhwOB9dffz2vvfYa7jgu+sxmM/n5+SxcuJCJEyfS2NioB+/u7OzE7XZTW1uLzWbjkksuITMzE4PBQHt7O9XV1ezYsYPs7Gzmz5/P2rVr8Xq9ZGZm6nWXnp7Oqaeeyrhx4warqQ6YQCDALbfcwu9///vD0nCVDP/v//0/HnnkEf3z1KlTuemmm7jhhhuGsVSSkUIwGIzy3X/ttddy7bXXcvzxx9PQ0MDNN9/Myy+/zMknn8y3vvUtFi5cSFFRUYIUDz67d+/m5ZdfZvfu3ezZs4fGxkYMBgMmk0l3/dbV1cWnn36qG7OrqqpGbLDohoYGcnNzo7ZNnDiRkpIS1q9fz/Tp03Whsbq6mrq6OoxGY9QKj5SUFIqLiznxxBNjjnlCCB599FE6OzvJyckhNzeXzMxMXWCy2+0cffTRgxrXob6+npqaGkaPHs3y5ct55ZVXqK2tpaWlhYkTJ7JgwQIWLFjQp3svIQRdXV1omnbY3k/Je0bJSEeKEocAPY0jXuFhFUvw4GIOp5KqxDFGdcMvfOyjku1ht0UQcm+SSga5FFGglBIUQfx4sWDTLzhBEUSgYVRMtItmGqimiw7q2dcrjwkcRbFSrn9uFy2sYgkaGpnkhn1vd6Bi0GecWrEzkaNYw3/Ip4QCSrDh1GegBglQx16q2AKEZsmPopydbKKOvWjhVQ8hASJksJ+gHMU+sZNO2okEWzVjwY8fKzYC+HVDUvdAthoaJizkUEgp43Co6b3O8cNg79ljg01PgaIlWM8a7xLMWDnKeDI2xRn1vQjEX+5/KLJWLKOBapykIRC6ITaFDI5VTot5zKFuxJP0Tc9xUAhBIzWsZRkQci93TLh/dJpcbPJ9QTstlDCOcqZgUIz96ieJhAi36MJFhx4fwIRlwIaJiMspK3ZsOLAQmqkUWfuloaFiwIgJI0aCaJQqE7D3GAf6LUqY47hm6ujt/3Z/JnEeJiLnHjayCSHwai48woUr2EZnoJnOQAsW1U6Lv5rOQAsABsWERbWjKgaCmp+A8BMQPkR4LM80FZJvHoOqGDEo4fhBNgcGxcim5sW4Aq2AQlD0HgMVVLKUfPLUYvKVMlRF5QPfi/HPLQHd+4Jf+PiUt+LuO4N5rBH/iXlsdw7nMUveMw49so5HFu+99x7nnnsuZWVlbNu2LamZvtu3b+e+++7jhRde0LfNmjWL6dOn873vfY/Zs2fT0tKCpmlkZWXp+7S0tOBwODCZTPzjH//giy++4KuvvoqKEdE9j/Ly/fflDz30EHfddReZmZnMmTOHTZs2sW/fPlJTU3Xf7bfccgsej4fnn3+eu+66iwULFlBYWKj77K6rq+NnP/sZ7733HhkZGTz33HNYLBYefPBBPv30UyDk+qn74+UjjzzCY489psfDUBSFgoICqqurOf744/nPf0JjZnl5OX6/X19VEQwGmTJlChdffDF33HEHdnv8lc0HCyEEDz/8MHfeeSdXXnklf/jDH0bUrOjBprKykjFjQpMgjj76aFpaWvQVEr/4xS/43//93+EsnmQE0dbWxrPPPssPfvADAJ566iluuOEGhBA899xz3H777QghePzxx1m0aNGgCXrBYJDVq1fT2dlJQUEBhYWFpKSkDDj9O+64g1/+8pdMnjyZ4uJicnJyCAaDeuyCQCCA0+kkLS0Nk8lERkYGP/rRj6LE6ZGG1+tl79697N69m4qKCjZs2MCePXsoLy/nySef1GMvROIsBIPBqADdkRUJt956K5MmTcJms0W9fD4fZ599Nunp6XR2duor4rqTnZ3NBRdcwJVXXsmJJ544aOd23333ce+998b9vrm5mYyMvm1lhzPynlEy0pGixCHCAsNlQGiFwiqxhCABpnEsGUpO3GO8wk0Nu6hjLx20Rn1nwkwqGTRRB4QEikiQVDspFFBCkCD72EkAP1nk00kbHlw4ScNNp+4GKcI8zsKuOAmKAMv5EDdd+neFlDFZmY0QIVPbJ/wTjSA2HKSTQw1VHM/Z2JSQv8g6sZedbNJXOKSSyUSOwoqdVYTOfxRjyaUQK3YC+FnG+5gw48OLkzSKlNFhH/GpmBULXaKdCvE1zdShoCLQcJKGBzcBfFHnkkYWc9TeBvChFiXOtF0Rc3uX1sZq3xL8eJlomE2BWnbYiREu0UGjWsc2bZ1ulEwhg3y1GAt2srW8w8rFiaR/9DQMf8liXHSSRibFjCXfUk6QIDsCa9kd3IpTSWOy6VjS1egx8n338wPKE0Lu6NayjCaig3ZGVpiNYgyjlVAg7PViBXXsYRzTKVXGx82jS7TzBR9wtOE0MtX9M5kUNfbDlJqRHjuhjNi+TzVLbPFB7fLE3C6sof2VuqboL/oSJHpitcTc7G6rpdazkyLbBMxqjwe4YOh3r4kgdb5KNnZ+RkD4gdi3KeVpxzIu/TiCBvAFXWhCQ1FCxzfsXUud2EOraKDUMJEJxlm9jk/WVdQZpm8B4BEuqrUqKsUmBFp4Ncv+mBICjRylmDQlE6MScjFoCqoYMYddDpqHZSXewUbeMw49so5HDu+99x7nnXceJ554Ii+++CJ5eXlx912xYgUvvfQSr7zyCtXV1fp2g8FAWVkZwWCQqqoqILSCoqWlBUVRdP/Zn3zyCa+88gppaWlccMEF/PnPf8ZutzN27FjWrVsXldfxxx/PkiVLMJlMfPTRR5xxxhlRQkFlZSVlZWUIIXj33Xc599xzATjzzDPp6uqiq6uLL7/8EoPBgMfj4Z577uGFF16guroaRVG47rrrePDBB1m/fj1nnnkms2fP5qabbuKkk04iLy+Pl19+mSuuuILJkyezadMmrrnmGs444wwmTZrE+PHjsVqt/POf/+Tmm2+muroaIQRms5kxY8ZQWVmJxxN9jXr00Ue57bbbDrS5Bo0XX3yRa665hgkTJvDyyy8zadKk4S7SoCKE4IMPPuCLL77QXfAAXH/99UydOpXx48dzxhlnHHErRSSx+eCDD7jooovwer1ceuml3HzzzcydO5dNmzZx4403snTpUhYtWsSvf/3rXrP2D4QdO3Zw0kknRY2nEIrTM2rUKJ555hlOOukkmpubmTFjBvX19Xz22Wccc8wxcdN8+OGH+fnPf05zc/MR0b/ff/99WlpauOiii2IKrEII3G43t956Ky+88ELc1XMQcu921FFH0dbWRlNTE0IIFEWhoaGBN998k1dffZWdO3fy8ccfc8oppxxw2VeuXMmjjz7KG2+8gaIomEwmVFXFYDDgcrnIy8vjiiuuoKioiKysLDIzM6PenU7nEdHG8p5RMtKRosQIJyJGAPiEh5XiIwSCo5VT9s+UFdEufYIiwC62UkVFOMqCwISZPIrJJp9UMjGrNvyah1V8goJCNgXhOBQmGqimnn0oQCGjseFkD9txE5pBGwlQ2ina2MlG6qlmAjMpVsYCsWeSTuJoipTR+ucu0UED1dSwS59xbMBIBtl48dJINdkUkE0BTlJJIwtFUVgvltNMPXM4tddM4S7RznplBQ4ljanGubrbD82/X60XQrBOLKOBfdjVVDxayM2VgoodJx5c+ioOJ2nkKqPIowSHkoLSLajbQGfc9kU8UQKgOriTDf5l5FhKODrjGwAE6uqHpBwHG49w8Tnv9NqeSxHTleN6bT9cjXmSxCxQL6Ve7KOWPdSzl8nMplAp079fK76giVrK1WmUqBMw9AjU3JcgkWh1hBCCnWyiks1MZjbpZOPHhxc3PjzUsoc2mjmZ8xBorOITfZVPMWNRUGilSXetF1kFYcWuB00+0Xh+VIybWMLEYIgSfQkSPVFccdzqxZgJRSAYV5AQttizSRVPN4G1tT36GKcDgUZQBNC0QOhdhN6dpiwMpjgzVAMBNBFkRc0/aPPVcor5Ej32hhKebRsUgSj3UO81/wGAM51XxUzyi6636KCVHKWINDU7tOpOePHjC70LH35Cn7Ueon0EIyZMmLFgZTSTyVLyeo1nkev+wViZNxTIe8ahR9bxyODDDz/kjDPOYOHChbz22muYTLHH0J07d3LHHXfw6quvYrPZcLvdTJkyhUWLFnHqqacya9YsLBYLH3zwAQsXLuSiiy5i2rRpjBkzho6ODl544QWWLl3KmDFjuPnmm6mrq+M3v/kNbrcbRVFYtmwZc+bM4Z133uGOO+5gx44dbNmyhdGjQ/fdL730EpdffnlUmbrPHhVCsGTJEt59912eeeYZZs6cydKlSzn99NOZNGkSH3/8Mdu3b9dXcMyZM4dx48bhcrkoKipi9uzZvPPOO73O/29/+xu33XYbP/nJT/je974Xs25cLpcewDY/P5+mpib8fj9ZWVlkZGSwa9cu/H4/ZrOZk046iW9961tcdNFFwz7zNRgMcvnll/OPf/yDp59+muuvv35YyzPYPPPMMzFdMv3tb3/r1ZckRy4ej4ff/va3vPTSS2zcuJHKykoKCwuB0Oz8jIwMioqK+P3vf8/pp58+qHm73W7mz59PY2Mjzz33HLm5udTU1FBdXU11dTUPPfQQxxxzDP/+979Zu3YtM2fO1I99+umnWb58OcuWLaOxsRGv14vP50MIobvWO/3003nvvfeigrpLwquhvV7cbjculwu3243b7cZgMDBp0qSERv6tW7cyffp05s2bx+LFi6O+0zQNv9+PxRL7GaInu3btoqysjPT0dBYtWkRRURHNzc00NTVFvUdesVZvmEwmMjMzyczMZMqUKTz22GPDGoh8qJD3jJKRTr9EiXxKsJNCKukhw7ZiGRHGwYghSRNBHlrxI/Lz8xk1atQhEyipLyIGih3aBirZBBCOxZBNpsiNMs4HhJ81/IdWGskgmxYaseHUVxmgKPjx6Ub+noJGhKAIB/QMG2w8wsVKPsaHl3xKmKrsn2GwUXxJA9XM4yzMSuhC4hVuGqihgWpaqEf7/+ydd7wU5dn+vzOzfU/vvdF7V1RARAVBiIq9mxiNsSUaX40lr4UkaIzYjVGT127sqFEpgo0iIL2XA6f3tmd7m/n9sWd3Z3aXKij55Vx8zofdqc/MzjzzzHXd93Ujk0IG5QzEQjJ+vHTRTiPVgIIZK22q6GM9BkroTxEVmiKuG5UV+PAwlpC6rn7wiQZDRJFXQy1KANQou6hTKkk15mKVUkmRssjQF6ATDfjbO3DjxEY77UoTrdQTJECeUEq6mItHCRGKxWJ/zIJVI1SEcTiR2AfC9KJbI59bXftY2/kpesFAiWUoQSVAtrGUDEMhwZbWo7K/nwoexYULBw66cdBFK434e2qL5FLEMGF8wvWOh77neMaY6x/XfF/7wm0HXeeUCx/TfF/+7u+OapuOFGqxYJnyGR5cWElhGONJNmRGAul3BL+nRa5nrG6KpsbNoYqIiUQJBYF2GtmrbKWbTirEofQRh0TnB4M0KFVsZy1GzCSTTjuNqrLHof+NmEkjiyQxDbHnn4BIt9JBg7IPAJ1g4IzMn0e2Heyx04iFVJ7At9bni5+2HwQKMhNOlxzxYkUw2YSu2ZZgIwkEiQNB1S8rSdFiehpBQgU5RVtwT+x0JlxOA11Pf9zzQunwtbOs4VUMooUxFZeQYs4P7V9R2Lbrfep8O0mRMsnUF2G15uDyd+H0d+CTPViCZqxiGhYhiY5gMy7JhTPQiTvYzZDU0yj05CdugyQhWiwElQB+2Ytf8eDr+d+vePE6OvDjwyZ20SW3kCeVk6srIVPKR9xPzSC1ODHNdHnk809VFPxA2LNnD+vWrePiiy/uffk5hgiPy3/xi18watQoxowZEyG2jye0trZSVVVFRUUFGRkZ/99FJI4YMYJNmzYxZMgQpkyZwimnnMK0adNIS0sDQn1NXV0dJSUlpKSkUFhYyPbt27nooov4/e9/j9Vqxev1IooiQ4YMOeC+Ojo6SE1NjRBk77zzDhdffHHk84UXhp5fdrudIUOGMGLECD755JNIO9avX88nn3zCxx9/zLp165AkiSuuuIJf/epXZGdns337dpYtW8Zzzz3HxRdfzMKFC6mrq4vsf+TIkdx7772cd955kTa4XC6ysrK4//77ufPOOwES1rs42O9+zjnnUFtby7hx4+jfvz8nn3wyJ5xwApIk4ff72bhxI8uXL+fjjz/myy+/RFEU5s2bh06no6qqivz8fG6++eYf1T7llltu4ZlnnmHMmDFMnz4dSZK4/PLLj6saGEeK1atXEwgEmD9/PtXV1bzzzjuReR9++CHnnnvuT9e4XhxX2LBhA6NGjQLg8ssv59lnnyU1NRQkoygKpaWlnHTSSbz44otHbTzgdDr5+9//zqOPPkpHR0dc5kMgEODqq6/mzTffZNKkSfj9flauXElaWlrEpg5C/feECRMoKirCaDRiMBjw+XwsWrSIBQsWAPDnP/+Zu++++6i0uxchy7e77rqLqVOn8uabb0asCVtbW5k8eTJ79+5l8uTJTJs2Db1ez44dO9ixYwc6nY5BgwYxcOBAUlNTmT9/fqRotcFgYN26dfTt23e/+1UUBbvdvl/Ror29nXfffReHw8GNN97I2Wefzfjx4//jBalgMMiKFSGb40mTJvWOy3tx3OKwRAk1RERO4zy+UN47Zo1TY6ohFJURJpfa2tpYvnw595z7R0QkOmimhXoChMgIAZEU0ilnIF48iIg88O6dlJSUJEzZSxQZudDxyoHbpL+ERf5//dBD2y+m5/6az5v/FvnudDo5KekMumjDRnvEkqmQCry4cWCLWCYVCOWYBSv18j48xJM5/YVRlAiqgfN+xAk17EoX7TRTQj9N8Wuf4mUZn5JDEWUMwEqK5gUkqARop5kqdtBNZ2S6hEQKGdixAQp9GUYyaXhw0UYjTdRiwMhITiFZSAOgQaliG99HthHO2gAgQUFuIKFwIOjjrUhkT3w0cFAJsIVVtCqhGhpGzMgECRKkTBpMmphNkpiKEUvkmI+GKKEWJAAc/g62276hw1sfsTYKo5i+FNMnYaHx/wTsUbZQxQ7MWOnDUHIpwoGNfWynhXpO5IzI7x+L/3ZhYsStUeFh41NR0SFWkAAI+ty0bPoaj60VUZIQRB2KHMTvsuG32wh4XVhS80nJKiMlq5ykjBIEczzBtfLNn0aoCAsGu5VN1LA7QvZbhGRGSBPQYcCp2NgYXEaQAFnkUyj0IYv8yL15qJHnYSHYo7jYqCzHTiepZFEhDiZT0BYZFSSJ5d5/46QbC0m4cGDAxBhhMvuUbTRRA0A/hlEqDEjYHymKTKfVgSToyNAXRKb/mKJEIkECQqJE/LKJMyeElo7QB6Mqe2E/ZJRamNBMN+zHJirBI0q09TzbdPt/aWg3dLK98iMcnlbSLEVkJpXiC7io7VhHefbJePzdtNn34g+6MEnJWPXp6EUTrkAnDn8nshLAIFlI0+fikz34gi5yTBUMTD0FegIf5I7O/e5ftFggLf4FINjQRG1gJ7X+nTgVGwIi6WIOmUouJmMqQcUfqnek+AkqAQJBL8Ge8Y1BMKLHhEEwsajqfU2RyJ8qy8LlcjF58mTWrFkTmdb78nPskGhcfvnll2vqE/yYUBSFPXv2sGrVKgRBwO128+6777JkyRKCwVDWUFpaGueddx6XXHIJNTU1ES/qsWPHUlJS8pO0+4eipqaGBQsWsHz5clasWMGePXsoKSnh/PPPZ9OmTWzcuJG2tjYA3nvvPV588UW+/PJLfAn66yMplPraa6+RlpbGrFmzNNNff/11rrzySp577jlmz54dZylVX1/PO++8w9y5c2ltjQa2FBQUMGDAAL766iuGDx/OX//6V3Q6HXv27OG1117jm2++4eyzz+bNN9+M3NuzZ8/mww8/jGxj2bJlnHLKKYd1HIeD+vp6hg4dSldXFwaDgZKSkkjE7B133MGwYcMYNGhQRBg6Vnj99dd59NFH42yzcnJy+MMf/sAVV1xxzNtwrGC1WnG5XFx44YX8/ve/Z+TIkXz00Ufcd999+Hw+duzY8R9P1h0P2L59O0888QROpxODwYDRaKS7u5va2lrq6uoIBoOcdNJJTJgwgQkTJjBs2LDj7rwHAgHGjBmjuQ9+8YtfcO+992KxWPjb3/7GQw89RHJyMldffTU33HDDQQXYA+GTTz7h2muvpbOzkyuvvJJ77rknjozevXs3AwYMIDMzE7/fj81mY/r06bz//vvk5uZit9sB2LFjBwMGDEi4H7vdzkcffcQpp5wSyTjrxQ+HLMu89NJL3HnnnSiKwpQpU5gyZQqvvPIKdXV1/OY3v2Hp0qV88803yLJMv379GDhwIMFgkO3bt1NZWYksy4wYMYLCwkJaWlro6OjgueeeY9q0aT+obZ2dndxzzz289957tLW1kZGRwVlnncUZZ5yBTqfD4XBgt9txOByaP4vFQnZ2NtnZ2RQXFzNr1qzjor7IihUrIs/iCRMmsGzZst5xeS+OWxy2KCEhRbyzS4UBPwopeKb+EtqURuxKJ27FgU1pj9hihGEWksgXy8iSCvH5HLhw0EA1jphaCgBpuhzMYgqCIOKTXYiyiFVMwSKkYhWT0QsmdOiQBD26ivIIAfXJ2vsBONuyf4udA4kUZ434Aws2ztnv/OkVd+C3dyAKIpKgp9m7j1ZvNSm6bArN/VnU8hJnpf4CCL0ABpUAu71rafLvw0oyyaSRRCrJpGElBUmnR1EUvgi+E7cvPcZINDqAAROgkEkegxiNKBzeoKdK2ck+thEkiAkLmeSSQS7pZEeyJxRFwYUDX49IlEw6HlysYAEjmUCWkKfZpkdxsZEVOLEzlBPIEQqRFZnvWISrx0qqgLLQPjBhFpIwYdUIJokIQIiKEuEaF6IgIu/HIzGoBPDiwYQFURAJKH4q2Uo9+yIWHRJ6koRUcimigPJI7YOjQQypBQqHs4WVtg8SFnZNIpXxwpk/eH8/JtqFFrbKq/ERJURFxJ5smpA1TjF9GSCMjFu3V5CIFx4ATG1BnHIXPmcnoqRHkPQ4G/bQsH4RcsCPNbsERQmiBIOIioDBkorRmIakN+HsqsPeVkXAH70XysacR17/eILhxxInpve/i893PaKZdqbxEtyKE4diY0tgZcRyLRGGCSeRK4RScXV5OSgHKOS8oPv/ovuQLqZdaWa98jV9pGFUSEP3G+3pU7xs8i3DhYMSoR+VyhYMGDmRMyICco61L8lSyG5CSE0wIHR7IDsjfrrNHjcpWBLvxyt4EpwDXQKhdj+PfH/qwQfQkidwcEFCvavcxBkZBOOtjTyFiQfJsjF0DOaa+N9NSHAsgstLMFNr7SfLQRrbNtDWtZtO2z78QTcD8s+kLCsUoKAoCrISQEgOrSf2CDSKouAN2DHorIiChJxkQqprS3xMhMQJMScr8cwENTnkVAuiy4fL10Wro5JWxx46XNXISvS5ohN0SOiRBB06QY8CoeyLnswLAZFS+tNXHB63/f09f87KircZSfisTJBt+nnjswm36fP5yM7Opru7m7y8PJqamnpffo4h1OPyrKws8vLyeOGFFzjppHi7w2OBrq4uPvjgAyorKyMR9mpyWxCEiNXO2LFjqaqqYuvWrTz55JN0dsaLeNOmTaOwsBC3201bWxsFBQX079+f/v3706dPH9LS0khKSiI5OVnzsu92uzGZTMcsA0OWZVpaWsjJyUEQBP7whz/gcDiYOnUq06dP1+xXURT27dvH1VdfTUNDAyNGjIj8jRw5krKyMgDWrFmTMDgqXEMCIDk5GavVSiAQ4K9//StXX53YUm5/8Pl8nHvuuSxYsABFURg3bhxTp07l9NNP5+STT45k1LhcLnbv3k1LSwvl5eX06dOHJ554gvvuuw+bzYYupt/6/PPPufTSSykqKuLjjz+moqKC2tpajaj08MMPU15eTkFBAX369CEvL++wfp9wQdUDZbs3NzcjyzK5ubmIosi2bdv4zW9+w5IlSyJ1M/Lz8xk1ahQ33ngjM2bMOGbXyPPPP8+vf/3rhPNef/11Lr/88oTzjkfIssyf/vQn/vd//1czvaKiAqPRSGNjI11dXXz55ZdMnjz5p2nkfyB8Ph/btm3DbrdjNpsRRZG///3vvPTSSxQWFlJRUYHP58Pr9ZKcnExxcTFFRUUEAgFWrFjBmjVrIpZCEOpDxo4d+xMeUTy6u7vZvXs3n376Kffff/8Bl/0hY4Obb76ZZ599lm3bth2wjsvGjRuZMmUKM2bMwGAw8M9//pPbbruN3/72t6xYsYLq6mpuvvnmiHVcL35cNDU18fe//52lS5eycuVKLBYLX331VcRiy+PxIElSnCWg1+ulra1NE4xztBEMBlmzZg2ffvopn332GevWrQNAp9ORnJxMUlJS5C8s4La2ttLS0oLT6aSgoIAXXnghUqfpp4JalLjpppt49tlne8flvThucViixCRmRQjmMI41MTgmbQY7HCtwBW3oBRNmKZkUOZU0IZt0XR5GTATwo8cYGXCKWSFiR1ZkunyNpOhzCPTNJ7BpM7We7XhlNx7ZgYKCUTDjS9bjdrXi9cRbVIiCDoshnYDsweO3IwgSyVIGqfpsrFIaRpeIWbCG6jEIeuSThmnW19m00ae+gDskOogGsDvp9NTR6tpHl7cRp78Tv+xGL5ooMPajwbMLUZDwyR4MoomK4inkpA2kdvtiqn3bGGAaR7FhAM3+KuzBTgRfSBDIIBuDYApFaAJej4198nZqlF2HdM4nCDM1vubAIWVSBJUgXbTSRhPtNOMiRKZlkscoYQIALsXBHjbTSiOppJNEKnXsDUU1U66JagawKR2sIeQ5OJlz0Qk6AoqfWvbQTB1unHGEpA49OvRI6CPu3QbMWEhCLxhBkUMe4PhopwkHNvKEUpKFNCwkkyFnH9LLi6IouHHipBun4KBb6aCVegyYGC2cilVISXjeDueeUdcUAdgjb6aOPZycfgEiEs6uRhzY2K58jwkL5cJgCoWKngYe/Df7KaEoCkt4/4DLmLAwmkkai7L/djECYPSvHyeoGqe5mmux7dmIt74WZ2cdQV+MwCYIZPU7gfzR0zBYQ0SW3hXf9SuigKLIrPvgQQKeEAlsTS8kJbcv5tQ8MouHsfrde4/ZcYUxvf9d+52nFiimmS7H7bPjwkGQAEGCyJH/g+hS0ii0DNTUDbB1VdMaqMMgmDGJZoyCBZMpHYNgiss2kBWZVc5/EyDAKfoZCDHZWIqKXG+Uq9gir2K0MJkNyrfkUMRQ8USkpMQvPAmFiSRL/DSVKCEXhAhvJUH/JO6pjV9X1T6lf08EboJH/qEIEgCiP3GdBCEQv03JFR8JHExKbC0TsEZ/H0V1aGFBIhZ6e6jP13dor3NPflLcsoYuL2J39DmsKAr+oBuDLnqu5ZQji2iS6trAkjjjI/Za8peEfjvJmTijRew5X0FR7hHKdQiCgNAdn+mo9FwTAcXHJudXdAVbOdV8AaIghoQUJVQbSUGBlCR0ogGjaEUSe8R4V6iGidpWRZAk2n11bOpeGircLpoxiBYMohmjZEYnGFGQufCWM/B4PHz8wjdYpXSSdRl8Uf8KJpMJu90eKYI7YMCA3pefY4jwuFxdF+DHgKIo3H///ZHo3qKiIvr06cPJJ5/MhAkTOOmkk9DpdAQCgbhMDghZNOzdu5dx48bh9XpZvHgxixYtor6+nvr6eiwWC5mZmdTX17Nz506N1UYYWVlZFBQUUFdXR0dHBxkZGYwePZpRo0bRt29fysvLKS8vp6SkJGHRTjVkWaa1tZW0tDSMRiMdHR0sWLCABQsWsGnTJnbv3o3L5WLs2LEMHz6cf/7znxQXF1NbW8vJJ5/Mww8/THp6Og8++CD//ve/2bFjBzk5OTz33HO4XC6SkpIYNmwYEyZM0IgpK1as4J577uHrr78+6DkvKytj3759B/9xEqC1tZXPP/+cTz/9lCVLltDe3g7AE088wW9+85tQ4NIXX/Db3/6WhoYGpkyZgs/nY8GCBdx+++1cccUVDBumfa+54447eOyxx5g0aVKk/bt37+aRRx7hiy++oKmpCa83Kl6bTCaSkpJIS0sjJSWFjIwMcnJyKC0tpaysjJSUFJxOJx0dHbS0tPDqq6+i1+u5+uqrKS4uZuLEiYccWe12u9m1axfbtm1j27ZtLF68mFWrVnHWWWfxwQcfYDbvp7/+ARg2bBh9+vTh+eefx+VyUVVVxVdffcWcOXOYPHkyf/nLXxg3btxR3++xQLhGyoFw++23M2fOHCyWBOOVXgCh7IEPP/yQJUuWsHbtWjZt2hSXHZWRkcEf/vAHfv3rXx/Udq++vp6ioqLI98suu4y8vDzOPvtsJk+efNzZVW/dujVC0LpcLs3fkCFDmD59emRZRVF45513qKqqoqCggIKCAgoLCykoKCA5OTnufXzHjh2MGjWKm2++mUcfffSA7bjoootobGxk9uzZ3H777bz77rtccMEFx+SYe3HkcLlcKIpy3ApETqcTvV5/0PEEhGpmTJgwgRkzZvB///d/CIKA1+ulrq4On89HMBhElmWysrLIycmJE/7V43JFUXjggQd4+umnSU9PJzc3l5ycnMj/ZrMZr9eLx+PB5/ORn5/P4MGDGTJkCKWlpYiiSH19PR6PJ5JV2Dsu78XxiuOm0HWs5YDH4+Gk3HPYYv+KFF0W/ZNOJE0fTT9W3AmsJgwhlk6IGXT6+ubFLerOjnYsxq4QwREM+nC72vFIHuSAl2DAi89rx+1ox+IUMXt0BAnQ7W+lO9CGK2DTFLPU6yxYrblkZwwkK3MgFnMmrnwTLlsjzZXfYa/dgdMbeiEIZSIIyEoAoz6ZDEMhVn0GVn06ra69tLmrSM0fQMWQWegbbFQ2fEljx+bQuqIuJGoEQwWafYobo2gNWTwooReBZDGDNDEbq5iCVUzF7DOxQV4WyRzJlUpCxZ1lK1ZSMWHGTBJ6DEgWM3LM+RVEAUUOXSo+xYMbJwECoMhYSMKksi9qVKrZStTCwYyVcUxhGZ/1FJUWKGMgNtqx0UGQADr0BPCTTBoDGEmaECJw1inf0EGomLOISCb5DOUE2mgglUxMgoWgEsSLG7fgplHZRxM1iEiRIt+JICKhx4CFJNLIoolaPLhQkEkmjaHSiSSJ8VHLSiCB/7mKqHQrTjYqy/DhYTSnkiRo75cjIdTVwkSNsotdygZSdbmk6XPwyk66/C145BCBnEY24/TxhcQStvs4gFtx4sZBO800Uxcp+AuhzI9RTMAoaO/n/yZRYuy18yKfv//H7UBIkICQ5U93zQ5aNnyJo7ESnSWZ5IwSrOlFWDOLMCZlEpBklKAfnTEJY3LoetZ599/lKz2FlV1djVR9/yH25koA9MYk/F4HoqQno2gYlvR8JGsyenMybz1yA7m5uRQUFPygSMSzhoXEDsGbIOJfShCxvX2u5nusgAeh58n0wlsi3zt9jaxqSyyECYik6LJCtXqkPDJ1BejSMvi+dT5t3hpyDGUUmgeQa4ymcQdVtj2V8lZq5d2kkUU3HYwXpqEXDAiShGg2IcQOZlPj7dYCOfEkXiIh4EhEiejK8b9/YGS8D6uSIMtCCMQLnYkECRJcBr407fEbbH6NGKFZNjk+al/yKxExIq6tPedDNmjbbGyJJ/TDGSWKOXFBWkUv7TebBEHQCByRyQHteQ6mqgQPc+JjlJw+hNjfdj/7DQsTcnr0eSL2ZKbssC2jyrkBSdBhllLixiVq6CQTBslMUA4QUHwEgz5S00oprziT9IwKvlv+VzyeLvILx4Ki4PM5CDi68QacBGQPoiAhCjpEOSSIeOVQfy2KIn379mXEiBHMnDmTSZMmUV5e3vvycwzxUxQtbGpqilhx3H777dxxxx3k5++ntspRgKIotLe3s3fvXrq7uyPWCfv27aOpqYmioiIKCwuprq5m3bp1bNiwgdraWk2kfVFREePHj+ecc85h+vTppKenI8syH3/8MW+99RZffvllJMMjOTkZp9OJLMuMHDmSE088kQEDBpCTk8OTTz5Je3s7V155Jffffz+LFi3i7rvvZv369QCUlJRQU1NDaWkp7e3t+Hw+MjIy6O7uxuVyYTKZmDRpEqNGjWLgwIEMHDgQo9HI6NGjASL3T1paGkOHDmXgwIEUFRVRXl5+UKJGluXIObHb7aSkpDBw4EAyMqJj2KuuuorXXotai95xxx1Mnz6d008/HYBx48Zx+umns3jxYtauXYvFEhrTO51OrrrqKubOnUtBQQFdXV0aESw9PZ2HH36Ys846i1WrVjFr1iyMRiM2m426ujoqKyu599572blzJzqdDp/PF/l9YpGWlkZGRgaTJk1Cr9fz4Ycf0tER6ueuuOIKnnrqqYRC18Guoc8++4yLLrqIk08+mY8//vioCxOnnXYaa9asYcqUKVRUVLBjxw6WL1+OwxEalz/22GPcfvvtR3WfxwqKorBx40b27NnDRx99xDvvvKMh03/5y1/y/PPPH3cWQscLHA4H//jHP3j88ceprq5myJAhjB07ljFjxjBmzBgyMzNxu914PB4GDx58WH3322+/zR133BGp85Kbm0tzczPFxcVccMEFlJWVkZOTEyEtCwsL/yPsw+69917+/Oc/J5yXnp7OiSeeyMknn8zUqVMZN24cDocj0g9cddVV/O///i99+vRJuP6YMWMYPnw4b7zxBpdeein//Oc/e6/dXhxz9O3bl8rKSvLy8rBarezbty/hc08URfLy8jCZTJHxTTAY5KqrropkZQ4ZMoSioiIuueSSSDZGS0sLzc3NeDweTCYTRqMRvV5PXV1d5LljsVgYNGgQJ554Iueeey6jRo0iOzu7d1zei+MWhyVKpJNNiTiALPIRRVETJRrGkRCGZ4gXsY/ttCuNyD1EsgcnAfykWgoZWX4xRn2PrUJXKEJQaY9J/zbEEwyC2UygVGtzIetFjSARhrVBSzR4sqLLWJdui992Zjqe8mx8PjseTydudwcedyfd3TV0dFaiyAF0Bgs6oxWPvRWDOZX0/EGkZFaEoh+bOpCVIBnJFSRbQqnNtoGhYzR2xZ/XoFFE2baHDvs+8jKG0eWooaVrJxZjOmneFLLNZaF2B520e2po667ETifOoC1Sg0BAwoAeH944sj6TfPqbxhAkSEDxE8CH3+8igD/y3aHYsNMVqduhhoiEhaRQ5onixd5TO2IQY0glAyNmVrAAP76etogoyBgx4yUU7ZpHSaTY8cmchUVIIqD4cdCNFzeNVNNBM0bMuHEiIlJMX8oZFLJLEkSqlZ1UKluYIp4f+r2VID68uLDTpNTQTC1pZEUyN2KxWfmOZkIDvsHSCSE7LCEjFIF6EGK/XtlHC/V00UaQAOXCYPowODL/SMn06dk3RD4HFD+Nvj20++rpDrRiEpPQi0bkZDNtbTsoLz+DstLJSMs3R9Y53gSJkI2XnTaaaKORLtpQULCSQg6F5FDISnnR/3cFMY8EalEijIAUpHP3Olo2fomnsxlLTgklpaeSWTBUG8kf07V70iX0LgUlZjxuaUhsx+MoNGJv3I2kN2LNKMbn6qSldj0dVRvwOToJ+rV9pjEpg7TCIbz29B849dRTDxhREggE2LNnDz//3TtIOhNJe+Oz1IKpFnQt3QkFCUVRsBns2Oq30+VtoNW1j77pJ1OWMkqzjCdJosO+lzZ7JZKkpzh7LJur5uNwN5ObPoRBjMIrO/EYZdyBbmzeJrq89bgD3YiCjixjCQHFh6wEsfmaUZApMQ+ln3UcOiVENgs9qcWbupbQ6q0iWZ9Jh68BgFQhkxN0oahDKVFmxH6ECUUfk5ERcysETfEvVfru+Ps8UbZC7HURSJAlcciCRDB++ODNjEb8GdtD11asIAEQMB96ZF9YLIuFqf3AfZu+K7ElXwTq2keW+DGE6As9i8VYa6wYMcGfE83QkJyJ2yQkEohIfF4TQdlfJGRzKzZ/Cx2mbty+LizGDIzpeeh0IUsbQRAJBLwE21vx+u34A24kUY9OCj03GhvX4rA3kJbeBznoo7u7lvSMvowcfS0AhgY71DVqdhkOWvArPpyKDQc2pt1yCitXrmTVqlVkZ2fT2tra+/JzDBEel1922WXcd999B7SxOBJ0dHRw4403UlVVhd/vj9iPSJLEL3/5S5599tnj8hnt9/upqalh37597Nu3jz179kSilUVRJD8/lI1bV1fH2LFjmTZtGqNHj8Zut0cyJqZPn35I1hCyLDN//nwcDgeXXHIJ//u//0t3dzcVFRWcffbZDBo0CEVR2LJlC4sWLWLp0qVs3bqV6urqyDbS09PR6/W0tPQE34gisiwjSRIPPvggM2fOpLu7G7vdjs1mo6urC5vNhs1mo7W1ldWrV7Nr1y5NZkIY2dnZlJeXk5ubGyl4bTKZIrYSmzZt4rTTTgPAaDTi8/mQJImcnBwaGkLPsN///vc8//zzlJSUsHHjRgBqa2uprKykrq6Oe++9F0mSaGpqwu12U1xczJ/+9CeuvDJqc3vqqadSWFjIm2+GagI6HA4aGxv5/vvveeWVV1i4cCEvvPAC1113Xdwx+Hy+SBR5dnY2zz77LCNGjKBfv34Hvf5sNhsPP/xw5PeXZZnVq1cf9ayFyspK3n77bRYvXkxDQwN9+/bFbDbT2NjIihUr2Lx5M0OHDj2q+zza8Pv9LF++nM8++4xPP/2Ubdu2odPpOO200zj//PM599xz4+qS9CKKpqYmnn76af72t7/R3d3NJZdcwh133BGxojlacLlcLFiwgHHjxlFUVMR3333HK6+8woIFC+IylARBYPz48cycOZNZs2YxdOj+LUghZMnX1tZGUVHREfnhu1wuVq1axTfffMOKFSvYtm0bb731FhMmRN+3FUVh+/btLFy4kG+++YaTTz6ZsWPHRsTRl156iVNPPZWGhgYaGhrYtWsXK1euZMWKFdhsNgoKCjjrrLNYt24dmZmZLFmyhLS0NB5++GGuv/76uONLS0tjyJAh7N27l6amJgRBYM6cOdx777HP+O7Ffy+6urpYtmwZy5cvx+/3M2DAACoqKjCZTEiShCAItLa2RjJEw7ZtycnJ2Gw2nn76aWw2G1deeSUffPABXV1dPPPMM9x0000H3K+iKNTV1bF161a2bdvG1q1bWbJkCdXV1Vx99dW88sorvePyXhy3OKJC1wICmeTRl6EkCdqolSMhXgeYT2CXJxRZbxFTydTlo/dL5A84FatJ688cFiU0iPGbUzo6CQ5MXCzOl6JdVvLLSO79RBW2ROtWKE0tkc9CpjZV3jksFCnmzgwRRUG/l+7G3Xi6mgjaHVjTC8guHIkoxkdM6rwKnvTEqn1YnAjGWFgkVcV4a4dJjV0J0rsLcnG31+EMduEK2nDrvLj9NkRZwB20Y/M3AyGbKlmJj0KV0KFDj6DT4QlEz72IDqNoxiu7kAmSRComrPjxRkSLPgwhR9C+2PkUD2tYijsSES8gIZFMOoWU00wtDmyczFnR2hA9/1crO9itbCKTPPowmGbqqGYXAxhJiW4AHsXFquBirEIKY6XTtKKZINKs1LJNWUM62YwUEhfhCxfSFhAiwo0OPdlCITliMdlCYTStLrz9HpuklcqiSK0TI2ZKxQGkCVl81vwvMjIyjvgFXi1KqNHuq2djcAU+ZyiSLCtrMEMHX4Io6hC/XndE+zoakJUg7TTjwwso+PDiwdXz58ZDyFpERCKDbDLJJ4s8zEI0GvC/KRtif4gVJAJeFx2bVtC0exl+j530gsHkD5xMenJZ/LWVoFuP7UcA9PYgOlfMfb+f61TWizgLov2nHPQTcDoIeBz4XF3YGnfRVbcNn6sLSWckNa8/6QWDWfnvp8nOzo6sN/G8v9JSs5Zd60L1dySdEaM5DYM5lQwli7K+U+P6SrHNhs3TRLvcRJe9mi57DYFgfMR6SlIhDmcziiJrCsInm3LxBhz4gx4kUY+CwoDysynIDokYuqYuzXac/g6au3fS7NmLzdeEgECKKQ+XvytUj8AynjJz1NJC0OtxBDrY1v0NHb4GzFIK7mA3+alDGF5ybvScmbTkfCKiOpHF0VETJRJlSSQQJfxJMc9UXfw1ERYc1FALEpG2JrjuFAEEWduWRMKDoroMBNVlqvMkJvJ1zv0Q/8HQ8jq7ts2CT3vtB9KjGQ6KSgzTd2rFDVlVjDtoTZxxoUuQURELf1ooYjfWhirSPlVklT89tKwvLX5/5ob49QPJ2mttf9ZbiqLQ1r6dfbVfEQz6yDQXU5A2nDSL6tldk1iUUGORL0Q4NjY2snbtWmbNmtX78nMMETsuT0lJ4eabb+a3v/2tpr89UowePTqSBTB58mSGDh3KsGHDuOCCCzQR+P8pqK+vZ8GCBdTU1NDd3c0FF1xwTIsxHwhOp5Pdu3ezfft29u3bR1VVFQ0NDWRkZLB48WKampowmUx4PPH3mSRJpKSkkJaWhsPhiGR5iKJISkoKmZmZVFZWYjAYGD9+PElJSREblYyMDN58801N/QdFUfj444+57LLLcPXYuplMJkwmExdffDFTp07lhhtu4KKLLuKZZ56Ja8/EiRNZtWoVt912GxdddBG/+93v+Prrr6mtraWoqIj333+fCy64IGIXpYYsy9xyyy0899xz/OMf/+AXv/hFwvN19dVXRyydwr76ffv25bzzzuPKK6+Ms5cKY8OGDZxyyimR45o4cSI33HADw4cPp6Ki4pjYD82ZM4e//vWvdHd3YzKZ+Mtf/sItt9xy8BWPMVpaWli0aBEejwe/3099fT01NTVUV1dTU1NDXV0dgUCAvLw8ZsyYwYwZMzjjjDMOOzPlvw1bt25l3rx5vP766xgMBq677jp++9vfau6xHwuKomC32yOR1Dt27ODTTz9l0aJFOBwOSktLIwLF5MmT4yyjzj//fD744AMgVKy9uLiYkpISLrroIi655JK4/XV2drJ8+XK++eYbvv32W9auXaupewGh50hTUxNtbW0EAoFItLjRaGTMmDGsXr2atLQ02tvbGTRoEO+++y6DBw+O21cgEGD58uV8+OGHzJ8/n+rqatLS0hg4cCDr1q3D5/NRWVlJRUWFZr13332X3/3ud9TW1jJkyBC2bt3K22+/zUUXXfSDznUvenEs4XA4eOaZZ3juuecoKSlhypQp3HzzzeTkxNcTPBgURWHTpk14vV5OPPHE3nF5L45bHJYocTJn00QVTdTgxU2QAMmkUyCUkUcJehK/nIeRiGg8K/2XdPgb2eH5DrfsIKD4sIgplJZMpjBrlCby15+ufYCadjXHCRIAwTRtqrPaPsGvsouQ/PHEhuQO4s4xkrylNW6epyz6Imba3Rz5HBYlwgiLE4ksLEQ/6NxyQguVsDghJ9AoDI7o8klVDhRBiLd+AILJBqS1O0P7KlS1KyZtrMvTyHf1b0S+W635GAxJEAwgK0EUJYg/4MHt6UAvmUg3F9Hi2A1Av6QT6JMUKrAlK0EaPbvZ7ViDJ6gWjARSSCeFDAL48eImgA8BgW46yaaAYvpiF7qoV/ZGClcDDGAkxYLKTqTnGggoPpzYSSEDAYUmpZYtrGIoJ2KRktkc/A4FmROkMzEKprhMnu+Vr+iijeGcFCeWhLbvZxVf4MeHlWRsdGDETIFYQatchwMbRWI/BkljE2YJKYqCAxvtNNGuNPVkAPSQYejJp4w+DI4WwT5M4v20aSEvfdO6fdSflMq2BU9hSS8gb9AkknIq0ButmFv96Bd9f1jbPVqQFZl9bKeOykhGDIAeAyYsmj8rKaSTjZSgoHqvIAHDb4sWsVYUhba1X9KyYiEKCtllY8gfMAlzai46z0G77wihLeu1HZLerr2GxZiod9En96wXTyqHvf49adrfT/TKuGyNdDZso7NhG46OWhAE8gZNorziTCRdiCiVgwFWL5xDwOciv/xkXL5ObPXbAUjKLmPQ9FsQNlbS5NqFrWMv9s5aZNmPKBlISyomPbmUpNw+GAzJrFkZFW/SUsrIyRyCKEgIgohgMZMt56NPyyAQ9FLb+B1+v4vS/AkYDdHodtkYOo5ERLKvs5UWxx6anbvpdNdRmDyEgboxSBnaIs5ykpnGjs1srvmQAYXTqGpeDsAp/X+FXgoR/7GiBESFCUd5KGvC3OojaNSeV0VKQNjH6lAJhINYu6NYe6PY7ehcgThBItG2E9ko+VPiRffgQfYXmaY6XCGs9SZ2PYq2wRF9piUSPgBMrfHCSfi6BpDsMTUpiqIEjOTR3h9SOFsiQXYIxI9PwjC0hQgxX2aUAEuUYQIhccJdrK2LkUhsihUmJK+C3p4gg9GjnZYoGyQWuk4XgiNG5IjJepJr6uPWW+iOWsP8FNZC/20In+PvvvuO559/ns8//zxidTNz5kx+/vOfM3369Di/4kPFvHnzeOKJJ2hqasLv9zN16lQeeOCBH62Q9n8j/vCHP/DHP/4x8v2ss84iGAxGMlW8Xi8NDQ00NjYyduxYJEli1apVAKxbt45Ro0Iie0tLC/PmzePJJ5/UCBtJSUlMmjSJiooKmpqaaGhowOPx4HA42LVrF/PmzaNv376sXLmSuXOj9ogGg4GtW7fSt2+8zd/u3buRJClCBl522WV8+umn7Ny5kw8//JDbb7+dc845h7feeisueKKpqYnS0lLS0tLYsGFDQiuwr7/+milTplBcXExWVhZr167l3HPPJSsri48++oiuri7ef/99Zs2alfCcejwevv32WxYuXMjChQvZsmVLZF5ZWRkPPPAAV1111VHJ+nnhhRf41a9+xS233MJFF13EuHHjDlor4Fijvr6eW2+9lY8//phAIPQME0WRwsJCSkpKKCkpobS0lOLiYsaPH8/IkSOPu/oExyO6urq47rrreO+99ygsLOTWW2/l+uuvPy7tkrxeL19//TWffPIJn3zyCdXV1eTm5vL4449z6aWXRpbbvn17RBB48MEHeeWVV9i7dy8AL7/8MldddRUffvghS5cu5ZtvvmHLli0oikJBQQGTJk1i4sSJTJw4kY0bN0YypXQ6Hddccw0jR45Ep9Oh0+koLCxk0qRJWCwWKisreeKJJxgwYAC/+tWv4ooaJ4KiKGzYsEEjUDz33HMJC8r7fD5+8Ytf8OGHH/Lss8/y85//nMsuu4w33ngjwZZ70Yv/f9E7Lu/F8Y7DEiUmC+dFCFVZCdJGEw3KPtppBASSSSWPElWh4VCUfTKpPTUU4gnHs9J/GfmsKApdwRaqdXtp7tpGRkoFJbknkZFSjpwZX8AyNrJSTZwYm6Mv1bGeznFkTg/p5kuOf3nThyMvD3KWgiaVeGLVDugC5p4C3DGcgawHS2to+7FCRGz2hLE7RKRYal2a6cEkPbpOD8HkeLJL39St+e7PS0HXHSJpAkEflc1f4w968Ut+vN5uBEFCkgxIQqhmhU5nJMmSh61zHw0dmwCFzIwB9O1zFlZrLobq9uixKAGc7bXoBANBJUBHoJEOXz32YEdPqWkzOgzQY89VQDlpQojUC9eNGMkpJJOOQVW0/EDwKh42sRIb7QgIoVoQnKgpiqxGt9LJWr7eb6ZEp9LKWr4mi3z0GGikmgxyGKMPpZXuDm6kSt7GOOkM0kRtJGIikSKoBHBix40Du9JFDbvQY6A/I7CSjIiEEZOmCO/+CPmwIAEgy0FWL5+HLPs54eTbkQz7T7P9sQQKj+JiM6vopoNi+lJAGVZSDvg7JhQph8Wn1C7Y/KdDasPpk7WepEu+uueQ1jseERYlZL+XukVvY9u9geLCUygtmRQSD0kcLQ8QNMcQ2jE/geSP6cx6CNJYUULfqSV0/Wmhl+tExYd9yaFpQsxt4FYctO7+joZNX5A7aCJ9+80AIKCHtZ/MQRAERk7/PXvXvktbdSi7J71oKKXjzmPjR39G0htJTSsnNbOc1IxyLKkFiGLo+CRVtLyiKMhyAJ2oQ3IHCVi0fbk6G0RWE+wJrk+1MBGOZDfWdiKnWjQFyMSuaL2CoOxne9tS6ro3kZc+FIOsp8a2njRLEWNzZ6MTo/2zp482+y9R/QRDt/ZEHokokUg4iBUlEgkEscvEEuixtkumdv8hCRJigiCAQ7Zw2k83IvpUbev5XSyN+8lQkBM/xMOCVKL7yZ8kYa1zxU0H9lv/wZ8auk9iRY1YoSm070MTbfTdfty5WnIr9hoB4oQJ0eOPywYJJmufF7rWBNmnMdGOsaIExAsTvaLEj4tE57itrY0333yT//u//2PDhg3k5ORwyimncMYZZ5CSkkJqaiopKSnk5OQwcODAQxpnud1uPvjgAx599FE2b97MrbfeyhVXXMHo0aOPS/um/2Ts2rWLBx54gOTkZBoaGmhra8NisWC1WiN/OTk59OvXj+eee47vv/8ei8XCL3/5S+bOnRsX+d/W1kZ7ezvp6ens27ePpUuX8uWXX1JfXx8pKGu1WgkEAhgMBh566KFIFkz4t927dy/p6emHTLYuXbqUSy+9lK6uLnw+HzfccAOPP/54QjsYRVF44oknuP322/ebKfG73/2Op556iuuuu46amho+/fRT/vSnP3HPPffg8/k44YQTIgLLoZDpLS0t7Nq1i8rKSj7//HPefvttzjjjDO6//34yMjKwWq0UFxcfNjH//fffc9JJJ3HxxRfz+uuvH9a6xwqLFy/msssuw2g08vvf/55LLrmEzMzM3vv2B2L79u2cc845tLa28sQTT3DppZceUgHc4wFhO7kHH3yQ999/n5UrVzJ+/HgAVq9ezYknnsgvfvEL/vGPf5CSkhLJrHnyySdJSkri2muvpV+/fkycODEiRJSXlye8pmRZxufzHZEV1OEeU6L97969m0svvZRNmzbxxBNP8Mwzz7Bz507uvvtujfjbi178N6B3XN6L4x2HJUpMMV6ETog+eGVv6OXfq3jYwio6ic8ugJCVTYnQn2LDIHSCTvPyqsYZI+6h29VAl6ue+rZ1uHyhqC9JMlBSOpnS0lND/shJ0Zd7NSkRS8roYl7QfWl6DF3x0YTezJjBRM8m9QmsIMKElhhD7AVV5Irfov6sbZOkctOQVQEBpo4Yj+qeY9S5tUROeP/m1niv8Fhvan1tO/7izLjlwsJEZF/pZgz1XXHLydboQMLpaSOQbMBqjaaOKaKAcV+bdp0W7TUgu/ZD6KjgUGx4cJMlxBckPxgURaGG3SGvd/rTSgN+fGSRh4CIFxfddNJIDTbaEZEYygnkCIUaUvxM8UIURWEz3+HEjoREOtmUMRAdeurFanbK60gildG6yRiE6LlR12xQFIUgAXy6ADIySaRGslTcsp0drKOdaJZNEqmMF87UHNOBMgVOm/YIshxg09p/0tW5lyFDLiUnd3hkvqwX0C8+gHWTcmj+5YcCRVGw00UL9dSzFxGJYYyPiE1qHEr2Q1iQkJUgXr8Tb8CBIIRscxZu+TOTzwoJM2IP2RcehAYCHjo6duFytSNJekTJQG72cL5e9uDROtQfFeMvfwwAj6Od3d+8jMfRzvDUM8iz9APAVxG6B/cnSoQRK05AiPCMFSXUkeNh6G1eiJkcNAps3Po67Z27sJizSLLmY87Ix5iTjzk1D1NSJkLPi3zA2NPvBWQ6azZRvfpDkrJLyew3DjngQ29OxtfcSPXGf5OWPwhTajaN27/ClJxFMODD7+5GlAyMPO8+ku2h/lnRi3GEreiTEWQQEjzGFEGII9TDNj7aiQJBk5TwPGjOiarfFLyhe17otGP3tbGh43OcgU4MOisWXRpdnnr6Z55KefoJcW1TixLhfl6OER3EBMWjY0UjIaa5kXPeg0TZeHLMMzLWQimoyqaRfErCiP5DERLUAQOCkliQSJSB47cISD7tPpUEuxOUGEECbWAAQHJVKDAhtgh1ZPn9FLpW15OKRcrGloTTgxlWgiatMCPEnLqwUJbonKrFiXCAQuzvC/Hn3tAdb78mObVjg1hRAvYjTKiu00B2/AuLrkVb9yWwr0bzfXHw7cjn3pefY4+DneMNGzZEIucT4eSTT+aee+5hxowZByQpm5ub+e6771i5ciWPPBINjigrK+Oll16KeIH34seFLMssX76cwYMHk5kZP+b6oZg/fz7Dhg3bbwHZA6G1tZU5c+Ywffp0zjjjDB5//HEGDBjApEmTsNls1NTUsGjRIt544w2qqqqoqKhg2bJlCTMlqqqqOPfcc1EUhfT0dC6//HKuu+46HA4HN9xwA2+88QY333wzTz311H6vY1mWaW1tpbGxkaysLIqKiiLzFixYwA033KCp83HfffcxZ86cwzrmjRs3MmPGDDo6OmhsbPzJIua9Xi9Llizh7bff5rXXXmPq1Km89tprP9jSzel00tDQQFNTUyS7Qg1ZljVCTm1tLZ988gnd3d1YrVYKCwuZPXv2D2rD8YCPPvqIK6+8kpKSEubPn58we+jHxO7duxk2bBher5fx48czdOhQhg4dypAhQxg6dCi5ublx90VnZydPPvkkDz74IPPmzSMzMxOTyURxcTHz5s3jvffe46WXXuKRRx5h7969DB48mOrqarq7u5k2bRoLFiz4iY720KAoCq+++io33XQTTqeTMWPGYLPZqK2t5bvvvjvqdT560Yv/BPSOy3txvOOwRIksoRC9YGCo/iQEQYyIEgD1yl62sw4deiYxiyABAkIQHx7qlEqaqEaHgQrdUEp1oYJ8siJj03XRGqihI9CIPdiBgoIo6pHlALHpCRmZ/Rkx4ucaUQLiIwtFv4LOGf8iHmt5ECZFYomZWEJI8shxZE54P4okIBvi53lTeqIvY/WOHrImlmAydQRx5ejQu+J/Dr9ZiGRKqBE0CCTVh4gytSe1YNPWnFCSzBGvbFkfalfsMQNxwkQww4q4U0s8+EZrB2CxokSguhbRrCU8DkWYOBroVjpZw9K4It4CAhnkkkcJ2RSg68lMiBUl9odqZSe72UwRfejP8EjWTyLsUbZQxY7I9yyhgP7K8Ej2RrjIcyet7GIjeZQwWBgb155EUGcR1LSvZXvjQsaOu4Xk5AIAjDviLTUCTS1HRYhQFAUvbux04cKBFzetNODGiQ49ORTRl6EYBOMhHcv+MLr0QjbVfURQjgo91qQ8CktPwWzJpKVxI63NmxEQSE0pAUGgo2MXshxAr7MQlP3Isp+ykslUlJ/5H5ktMf7yx7A17WbPsteQDGbGWs8i2RAlsr0D4sW7QIwA4beK6DwKwaAft70Fl72FQGMDVlMWWWn90UlGnCXRqEqDyspJb9OKlt6M0P0s2T2sWvs0Lnf0ntfpLQT8oftbkHSYk3MwZeQjiCKermbctmZkf+JC2jq9mYDfTeng6eSOnIKtcRedtZvRm5Ox6jJISS/Fqo/3Lpe8Mv5kXZyIEO5T5ZgizYnEBiEoE4zJoItdLmCV4ohlc3V8Qe6vtj6BVw5lTUiCnixrBZlSPsWWwVH7wRj7PPvJ5ZrvsaIExD+HfqgocTBBArSiBGivC0iQndHTbjVZHpvBKCfg/sNtCT/vYsV70JL6YSI/9veA6HFLMfEGxo5AzHdPJIshFp6MxBY3YgCMCQIZjNWdoX1naQuVq7NMpB6xwJcZHyUYPp5EYoRmuZ7fWFBdC5I35rpPUCg7IkyEh3fb9mrbOWpA3Dq6Vm1mZaww0StKHF8In+OJEydy4YUXJvStv/DCC3nvvfe4/fbb+eMf/0h3dzfd3d1s27aNv/zlL6xYsYIRI0bw9NNPM3HiRCBEWC1cuJBPP/2UZcuWUVVVBUBeXh5NTU0AmnoHb775psYCpBe9UOOhhx7i/vvvj5uelpbGhRdeyOWXX87EiRMPKzMhGAxy+umns3btWl544YUDXn+KojB8+PCIbZNer+fOO+/knnvuiWSWeDweduzYwZNPPsnLL7/MRx99xM9+9rPDPNKQ3dbOnTuprKz8USyQ/H4/O3fuZOPGjdTX17Np06aIENC/f3+uv/56brvtth/UFlmWue2223jqqaci00RR5JxzzuHmm2+mubmZN954g0WLFlFRUcEJJ5zArl27WLVqFXq9nqSkJDo7Q8/LNWvWMHbs2B983D8FZFnmoYce4sEHH2T27Nm8/PLLJCcnH3zFBGhvb2fbtm1s27aNxsZGTj/9dE455ZQj+p127NjBoEGDNNPU/XNGRgZDhw5l4MCBkf3u3r07YuUVi8zMTJxOJ8uWLWPAgAG8+uqrbNq0iYqKCvr27RvJujuesWbNGk444YTI97KyMqZNm8Yll1zC5MmTf7qG9aIXPyF6x+W9ON5xRIWuyxmEFzeCIGIVUsgXSjEIJvxBH0ECGAUziiJTLezCo7gI4KNb6cCFg2QhnZMM0wkofpb5/41PcaMTDOToSkjNG0CatRCrOQd/wMX22s/wG0CU9DhtDeSXjSdvyGmatkkJCKfYLAZ1BkXUXz1B0VdHj5WSSmSItdYwdoYe5ImiGN1ZB/buDZhiomGDCga7gidd2xZze6gd7ox4liIsTgRVbUzf3KVZJixKKElmzXRfjnYA5cnUY271ac6Pzh6fgaEWJpS+xfhTQsSOsbaHmKms0q5wFKPxDxXtShObWImMjAIkk0omeWSTj4Vk9IJWHYoVJAKKnzs/+xWBQID7fvYwCjJBAvjxsZtNAJwhXHDQdqxWluDETl+GosfIbjbjx0MpAyigDCMm9rKdanZiJZWRnIxJsBwyiR8WJtrse9lQ+wF6ycSgwEgye7JMdHnRTJZAY9MhbXN/sCkd1LMXJ904sUcKmItIGDCSSS45FJJODkuU9494P6dNDUVfdttqWb/mbyiKjMmYSkpSEUmWXLod9bR1huqkGE1p5OSPRJIFbLZqZDlIVtYgCuVSdGWhyK1vls1Br7cweOCFpKaWsOTLu3/QefgxMfq6x2hav4TGdQtILujPsAGXoDeovOhVRHL4cyJBQlEU2qq+p2rtfIKBHuFSZ8UfcCKKegqzRlE04QJNBFWsHYy+2xsRJMKQDQJOWyN1e76mtW4dw068jqxGieZyBZetCVd3Ey5bEygyhrQsOvaGCqVKkoHcorHkl52EyZiOM9BOa+06BFFHyaBpCIIQIZxjyXK9zU/QJMWRsRCqJRA7XZ1BonNGCeWwIBs9lmi/G96nEFAIWLXLJRImPAXRvtRhb8Rur8frsZGVNwxrci6WDbXalWJECdeo0ngxOyaaLVGGgBqxz7nYmiGxiLM7jNm+vJ/Hl7kt9MxLXAtCO9GXeuCAgdB+Yp+DidoaPy1R9kisEANErJ4sTdGXbiXm3IStvxJZZ8l6AWNXfKPC5L/ojc4TYtoUvqak2OLxhMQJQ1eM4JcVL1jEihOxGSEQFSaknrYkygaJqzm1H2FCsvUENMT8lrJF+8yUKhs03wPt7Zrv6mdY78vPsUfsuPyuu+6ivr6e7OxsRo0axWWXXYYkSdTX15OWlobVaqWmpoa//e1vtLe309nZyYIFC3A4HDzwwAPcf//9LFq0iLPPPptAIMDAgQOZPn0648ePZ/z48RQXF7No0SLmzZuHxWJBEAS2bdvG888/30v09CIOsixzzz33RLJrkpKSOO2005g6dSqnn346FRUVB623sHfvXrZv304wGIxYwXR1dbFgwQI+/PBDbr31Vp588skDbqOpqYn8/HwGDx7MvHnzWLFiBQ8//DAFBQURgrmzs5PrrruOhQsXcu211/LCCy8cEUF855138uijjzJ16lRefPHFo17sWFEUXnnlFT777DO2b9/Orl278PlC72xpaWmUlpZy7rnncsEFFzBkyJCjYtP04IMP8sADDyCKIkOHDmXcuHGUlJTwr3/9i+3bQ3XATjrpJM4991xqampYtWoVRUVFXHDBBcycOZPU1FSWL1/OhAkTmD17Ns8++yx5eYefFf9Toq2tjSuvvJKFCxcyZ84c7rnnniM6ty6Xi9/97nc8//zzQLRofWdnJwUFBTz++ONHVIA5GAzyySefMGfOHHbt2kVHRwdVVVVs3bqVLVu2sHXrVrZv305WVhaCIPDFF18AUFFRwY033sg111yDTqdj5cqVvPXWW5x//vlHJModLwgGgyxZsoRdu3bhcrm48cYbSUpKbOvci178t6B3XN6L4x2HJUpkkIOMjAsHJiwoyDixYyWZMmEQqWRgEkJFpl2CnRXBz7GQhBEzBtFEnlhGjliIIIRIsypxN1XeLfgVLyXlkyktn4IkhcIqfalahiTY3U23uxGPs53MohHojdY4GxJ9d4x3sklMWPxT51C9rIvgTdNHBIkwJBXx4CyIDpxjI0dFr4w7O0FhUCneXx1A75R75sdEpHYH6C41RASJyPb9Cs7c0LlQkzJiDOeRvrkrsce1igxzF6dG7ELUMHVqI0HDwoTajkJN7gGINm32w08pTNiUDr7nS6yk4MBGLsU0EyIF9RjIpYhsCkhTFVYOEyhhQWItX2Ona7/7yCKPkcKEg7alXWliBxtw4yCTPLKEAhxKF41UIxNEj5EAPsoZRBkDD5vMnz44Gvnv8nWxufJ9OmlhrDCFNCEL0RBvr3YkqFZ2sYfNmLCSSgZWkkkilWTSMGLmC+W9I952Ipw29RG8nm42b3gZhz1KflnM2Zw8+jd004VYWUuqIS/6MpDghdZXkEp3dx0bN7+C3+9k5IhrWb/hpaPa1mOFtrY2+oyaSHfdTvJGn0n+qKmk1Gv7g1jCPlYIDdetqdr8CY07viarbCzlSaOxmrORJCMNrevYXjkfgJNPuRujMQV/ig5djFXd/moYhIl0RZFZ/vHdDMk8g+KU4bS69rHNvQwUSEvvQ1pmH1LSS1m//GmCQR9jT70doyE1bpumRifO8uQ44t+614arLAW9LSZKPVzPwadtr2wI3ddq4l2MJWUJCROxRZFjMxDC89Vihz9GqNC5EhS6lwSN0GFq0d5/vtSYYsFHQZTYX8FkiLczOlJR4lAR+xsmFDFi2hC3zn6OOVaQOJAYod1g6D9zjD1ibEYIxAcaqK0T1e1KVFA69rgiy3a646apyX5nkSVhYEXsuTN0x4scsZk9scKE6IlfR+jWPrcVc0wfeoTChKIofKG8RyAQ4KuvvmLjxo3ccccdvS8/xxDhcfn111/PokWLEASBgoICmpub2bNnD9dccw2XX345J5xwQuQ3eOSRR7jnnnsYPXo0aWlp9OnTh1//+teMGDECCPnt33HHHbz11lskJyfz2muvMX369IQErSzLVFZWsmHDBoLBIBdeeCGSdGBLwV789+CBBx7goYceikRx6/V6Nm7cCMCgQYO49NJLmTVrFsOHD094fa1Zs4bJkyfjism0Do//FEXh8ccf57e//e0B2yHLMnPnzmXu3LnodDouvPBCRo8ezfz581m0aBFmsxlJkkhNTeXFF19k+vTpP+i4FyxYwHXXXYff76euru6IC83HwuVycemll/Lxxx8zYcIEhg0bxqBBgxgxYgTDhw8/ZnZRS5cujbNou+eee/jjH//IypUryc3NPajFl6IoPP300/zmN78hOzubmpqaY15n4Gjhu+++46KLLsLlcvHmm28yderUI9qO1+tl7NixVFZW8qc//YmpU6fSt29fZFnm17/+Na+88gpjx45lzZo1R9zW+fPnc95559Hc3ExmZiZz587lmWeeoX///kyZMoUpU6bg8/kiwuDChQt7i5r3ohf/HyJM7QqCgM1mY/78+aSnp3POOef0jst7cdzisESJjo4O0tPTAZiqvwQIFQfeGlyFm5B9RRpZ5FBEMM1EZdd3nFRwOanGPOSGRs02F3reAEIDrSHDz6WqcjEgYDZnYDCm4Fc8+L1OTJZ0An4Xbnu0VkHZmPMoLjgp8j1MoMWKEroYb2VPrlkrSAAk8qtOQPSoSbqAJfTiJcZF6Ir4kiWUmPcyIRgVIzS7DioEDWIc4SAbRIIGIS4S1p0Z3XCwJ+tC5473BM9eHarFYe+fFlrGGUvgCZoipIICpraYDImYyyJg1WFqcau+69E5Yryrd2vtHIL2aAFNXUkRgZo6jhZkRSaAj1r2UM0ukkjFgIkAfkYzCQc2BASaqKGRanx4ERHJJI9hjEcUose/Q1lPHZXkU4qFZIIECBL6TWrZA0ARFeRQRDrZB42QkRWZRqmWRrmKLqUVHXoGMBIAGx0UUk6ykHZEFkdqUQJ6yKCdj1FRNJny1tz4thyBMCErQZbyIQWUMZDRkXN1pJZMh4oTr5xH49YvqV3/b830EaN/SXpmyDbMtCs++yNQ24CiKLhxUDchhY7d3+NoqiS1dCilEy9GZ7Ky9sXbjmnbjwTDbg8Vs1YUGdvO9TR/8ylK0E/Z5CtIKRoQJ1AGzELc99j7X/SDLAfY+uXfEPwBxo25CUWRaWvfQXX113Tba7Fac8nNHUlxyUSCaVpSUt2nhQnjRBlgBofMdx/fR7qxkJKUkWxq/Ry/7CbDVIwnYMcV6AIERFGHLPsZVXoROSmhmhjuohRMX2+B/loLI1dZKPvAuldrE+NPD2V86ezRKHPZFBWCA9bo50R9t+gPokjR+z02swRCfXFs1HysAO23ShpRSPLIGjI6UdHiWGHCn6IleWOFAzXRHDSJSO4DiLsHCdSLFZZiBQA1MR+bZRGb1adIICWoUbG/bQsJnAGCMUJC7DPRn3Twl2N1No8nPfR7WZrjd+bKjb9mw6JD7H7VwQ1qGy11Roe6vlRYRFBnTISh6OKPQd8eJdV8OaGgDW9afCBDeLvh7ItE2ZhSzD5j60jFIrZ+lEaUMBnw5SUfcPnY44nNvlA27aRe3ss2OUSkpKSk0N3dzaBBg9i+fXvvy88xxIGi3v785z/z6KOP0tXVhV6v54orruDEE0/ks88+Y82aNTQ0NOxnqyHU1NTwq1/9igULFmA2mxk4cCAWi4XW1lYcDgcDBw5k48aNtKuyZaqrq496ZHgv/nOgKAput5uqqiruvvtuPv74Y+677z7+8pe/MHfuXK688kra29vZt28fL7/8Mh9++CF+v5+cnBzuuusubrvtNo3gUFJSQlNTEw888ACyLONwOHC73axbt47ly5dTXl7Otddey0UXXUS/fv0O2r6mpiaeeuop3n77bfbu3cuwYcN46qmnWLVqFd3d3dx5552azKMfgi+++IIzzzyTXbt2HVLbDgXvv/8+F1xwAe+///6PXpshPT2drq4uzbSmpiZyc+PfOdTw+XysW7eOb775hqeeeoq2tjb+8Ic/cO+99x5wveMBXV1d/PWvf+WRRx5h3LhxvP322xQXFx/x9mpqaigtLWXOnDncd9992O12/v73vzNv3jyampqYNm0aN910EzNnzjzifXz99ddMnjyZ+++/n+LiYn75y19iMBiYNm0ay5Yto7OzE5PJhNfrxWw209bWhtlsPviGe9GLXvxH4Wc/+xmffPIJAAaDAb/fH8ks7B2X9+J4xWGJEvu7kM8UL8SreOiklVr20E2oNkSWuYzRuefQ4trLvH/dhtfr5dRTT417CJ429REc9gbs3fW4HM14vXb0egt6vRmnoxmv5CWtaCg1388HYOCYK8guGK7ZhjqqNUwsGDuihJAvXRuVYeiMzgskJy5sKQQVJIefQEyEqy9FnUEQekmPJZe8aSHCxGDXkgbGdh/eDENcdG7YTkIdaQvaiMlwBK87S7tMUA/GbkVDMpm6tPtVhJA9lTo6N9bCSiNMKAoBq5bYia3TcSBRIjCiD/qamHoTP1CU8Coe9rK1J+ughxhCpIT+GDCwi02kkckYJiMIAj7FSzU7qWUPZpIwY6WNkDgmIDCKCWQIuXQrnVSylXZChLeEhIQeHXoC+LCQjAcXHlwYMJFDASX0j9SJCKNVaSBIkDxdeeTlyqO42BFYQwctjOdMzD2ZRGocKdk/ffA9BFNMrN3+Cm5vJycO/RV6XejeUlZvPqJtQkhoXMvXDOckcoTCH9zOw8W4y/5C3YbPadr+FQB6vZWi8kkYzakYTWkkr63HgAmHYsOmtNEpt9BFGz5C97Qlu5iCMdNJKRoIcFwKEgBDb5uHfe9Wmld8jretkZTSIRRPPB9DUhp6R6h/UBOoalEiVqAwdcjIcoCWmrXU7VyC19VFcdEppKdVULl3AU5XC2lJJVTkTyQzpS+CIGj6PV9qiCRVixI6j5aAdBQaSdtii4gH+7b8m5aa7/H7nJFlhmSeQXHyMLpKjHR1VOLzOshV8kk25cG+uvhsrh5hQmzS9hVKTqiWhKK2XFIX4k2J9uex/ZgQVJDcMUKvMbqd2NpCkWVUuwrb9MWS9fEigorQNgggCNpslpjDjRWaDyRKJFpfr+qDxdhjjCl87kvTPrfUIkVsJP6hiBJqqLMA1YKEGFDiBInYdUGbeaBzK3GCRCJrqlh7MZ1Le65knYBnPxaKibI2ggYBa4u2sX5LT52pGL1B1/N81rnjhQh9Z7zwG+ixONSp5vmz4l/+Y7MsDbYENkyyVtAx2LRtTlS8XZ1JFLBqrwNjo7Z2xIGEiVhRQtwVY0sWDOKVXXzliNaTWL16Nf379yctLa335ecY4mDjclmW2bVrFx9//DHPPvsstbW1GAwG5syZw1VXXcWqVauQJImcnBzGjh0bF2zh9/v56quv2Lp1K9u2bcPr9ZKdnY3BYGD58uWUlpZSVFTE3LlzgVAtip+quG8vfjqsXLmSu+66i2XLlkWiM4uLi5kzZw6LFi3izTff5IUXXuC6664DQgWh7777bj7//HNmzZrFjh072L17NwAjR47k448/pri4mJdffpm//OUvbN++HUEQSElJITU1laSkJPbu3cuMGTNYtGgRDoeD0aNHc/7553P77bdrIvDdbjfPPPMMs2bNYuDA0HhQURRWrlzJZZddRmlpKV9++eVRjxZva2ujuLiYyy+/nBdffPGo2CjdcccdPPXUUzgcDgyGxO+sxxLt7e0MGjSI1tZQgOBFF13EKaecQnFxceRPr9fz/fffs3z5cr799lu+++473G43FouFmTNn8vDDD1NeXn6QPf20cDqdPPPMMzzyyCN4PB5uv/127r//fvT6xOPGg6G5uZlHH32U5557DoPBwMsvv8yWLVuYN28eDoeDq666ijvvvJP+/fv/4LZ3dHRw0UUXsXz58khNiXAbsrKy2LhxI1999RVJSUnMmDGDwsLCA2ytF73oxX8qPvnkk4gF24UXXsi8efMiz9DecXkvjlccFVEiFtMr7kBRFARBYNW+V+mkNW6ZAqGcgeJolgSiNjBTznwYALerg472nQSCPkymNKobl+Nsr+2xfZLpP/JicovHaLaXSJQIQ02uBY2SRpCIQDVoDCTp0dniaysgCbgKtMSC3xodzKpJE42dQ9htpl27TX8PEZgoIjKyqj80058cJVtkPXhTRYIxYySdyinC18MzJNfFRIWqSC+/VUTyaaOL44p+x5BDOmeAQHJ0x7oYK4s4P3iVMHEgUUKXnUWgtW2/8wHWK9/STSfF9MWEFQmJVDLoppNNrIwsl0sRCtBGAwIieZTQRDVBtIRPFvmMFE6JfA8qQQQETRZFmIg/Q7iAbjqoYU/EGmoSsyKFnRVFYQlRK6YCoYI8sZS0YDoyQVayiDQyGSaMjzuuH0r2jzvj92z45ikMAT3DdSeTImqLA8u+BNdyAgSVAHXspYodWElmNKcmPBc/BgZeehfVi15FNJiQfR783V0EA/H3rSBKWLNKSE8qIzWjjJS0UnT60D369Wd3/mjtPRQMv+1xFEXB09aAc8tmOuo24W1vwlrcl8KxM7DmlkWWDYsSYahJ3FiLG9O+Lmpbv6dx73J8nm4yC0dQXjiJ+rqVNDZ8T3p6X8rLTictLVRzQ2f3xQuxcfe9rCHyQUuwQiizwVzdjcvbTpttD53OWirGnI/BmKyx2zEs36ZqvMqCLjda/wR3tPPyDYi+KIWFTzU5GjRrOz6dw4cv3YTOEW+rA9pocnehJW6+GFDwJUe3b27WbkdN2HsydeidsibTLNZ+J64YswK+FFWdi5jsB3WmXDBGlD5aokRs1kTsNaQWIYKGAy8bax14IAumWPEh0fZiBREhqLVrij1fEC9IxG7TnaNPWBfCmSCDAsDglOPOtdQjOMU+AwGM7fHF20VvIM6CiwSZDK5SrZgdsGgbr3fImsLhEF/c2mALILmj16kQk0GhxNy7scKE+pwbW7X2KN5s7T1ianREv9TGZKoFo/vd693Ebu9a3nrrLaZPn94rShxjHO64XFEUFEWhu7s7kvGshtVq5eGHH+bmm29OuP5XX33F+vXr0el0SJLEAw88QFtbG4qikJSUxNatW3szJf7LYLPZyMvLY8CAAVx33XWkpaWRmprKlClTuOGGG3jttdciy9599918+eWXfPfdd/Tt25cTTzyRN954I26bL730Etdeey0QumZdLlekhkks3G43n332GRdcEKr3ds011/DCCy9ECOSdO3dGxAgIFd2ePXs2gwcP5quvvmLKlCm89dZbXHLJJUf1vAC88sorXHPNNVx00UU8//zzCe+5Q8G+ffuYO3cuL774InPnzuX3v//9UW7poePtt9/m1ltvZcCAATQ0NFBXV4fXG/8szMzMZMKECUyYMIGJEycyevToIyb1fwz4fD6WLl3Khx9+yAcffIDNZuP666/n3nvvJT8//4i2uXXrVh5//HFef/11jEYjv/3tb5k1axbXX389mzdv5qabbuKOO+6gqKjoKB9NyCrq+++/Z/78+QSDQebNm3fU99GLXvTi+IbX62Xq1Kns3buXpUuXkpub2ytK9OK4xjERJdQYJp5ErbKbIEEcMZ79p0mzWRqIErlnTvgTXp+dVRueCxVkFXQEZR/WlHwKyk/GZ5DJSRmIyZJ4cBdn3aHER/satkeJ8WBxT+ppHGET/S7ICgSVuGWCPS/9jpJoVI7kUdd80Np8hKFTFcA8mCgRFiQAjO0euvvFF2pyqbImwtsJxvCNamHCbxUiZEukTTEWMIKsoFdZl8Rlb6hsLQJGQZNhIRsl9LboIFWq1xbD5AAEeSJRwqHY2M0mHHTjxU0ZA+krDNUsE1QCtNGEETNtNFDFTpJIJY8iAgRooAofPkAhhyKsJJNOdpwVk0tx4McbKYwtqPyRg0oQUQ7taxPf0U4TIiJpQjaZQh6ZQi7GoIn1wnK6legxS+hIIR0H3WSTz2BhbGTe0SD5J53zaKjt9hZ2rH0Tl72ZskFn0XdPCoo/MUmbCHXKXirZQgA/+ZTSl2EYBOOPKkTEYuTNIXujDc+EMh1OmvlHfG4bXncXPq8dfU4ulowCxJ46NKY2LVv6U4sS4aLkAC5vJ9uTt9NduRmfrR1JbyK1eDBZfceRUtAfX7KqFkIMl2roVvZL9NavX0Dz5q8Ahdy8URT0mYg1OZedm96lpWED/Qf8jILcMZHrPNZyJkxWa2sxxESg92Qi6FT3tRJTNFoIBvHkabOAzCt2hZZVX4f7ESUCeWnR/an7m552SS7ttSxVNuAbWhqXrSXrJXTtDs20YKqWZPWnGeOsltSiBISECbXA6izQdqpizK0l+bRWTrEigDrS/UCiBGitfXTOoCY6X9elFYZEj6rvtWqtuGRDlID3p2gJAW+6lpxXX1MHEiUOJKBDKCtCLVrEigU61TMyktmn1u9jrv3wsypMynsy4tMuFAGS6qM/SGz2yYHanMgyan82VUl7bHHTgklGzXMaQFBd4/6ejInYOibhjEV1lk+s8BAWJixNofsu1qopNkMiLEz4ekQFT6YOn7sbn7sbOegnU1+E0CMyxwYP7E+YiC3MDaCooopFXwCPz44/4MRoSCGr3z7ee+89/vGPf3Dttdf2vvwcQxzpuDwYDHLXXXexcOFCJEmK+PwDXH755bz++utx63z88cecc845WCwWAoEAPp+PK664glNPPRWj0cjs2bOxWuOzQHvx/x8UReHtt9/m0Ucfpaqqio6ODlatWsUJJ5ygWa6mpoY1a9ZQWlrKLbfcwpo1azjrrLOYMWMGX375JYsXL8Zms2EwGLjlllvIysri/PPP19gdBYNB1q5di8VioV+/fprC2LIs4/f7MRqNbNiwgRkzZtDY2Eh2djZTp07lzDPP5Mwzz6S+vj6ubYWFhQwbNowFCxbw0UcfHbOivu+88w7XX389KSkpvPHGG0ycOPGQ1/V4PNx000288sorZGRkRCyujqcaAIqi0NraSm1tLbW1tbjdbkaPHk2/fv2Oq3buD4sXL+bll1/m008/xWazUVFRwezZs7nxxhuPOKOjs7OTyy+/nM8//5yCggJuueUWfvWrXwEwbtw4BEHgX//6F2PGjDnIlnrRi178/wZFUdi9ezft7e2kpKQwZMiQo74PWZbZsWNHpJ7RtGnTaGlpYdOmTfTt27d3XN6L4xbHXJQ4U7o48llRZLrFTgQEUkhHEEQW+f8VWu6UP9LWsZOtez5AEEROHHEjSn4mXncXRnMqgiBqrEXi/LuVeFFCHcFqrO6MzrCHSKuIKBFeviYUBRjoUxCZpn55V1ZtQjhxeESQCCNcBNpeHhUN1CSUqT3K0oSJh0BMwemwd7j6uCRPEH0CUiAsTqhtMlw5KqIgAP6YgGBTZ+y5CX1P3heKUPZmawmt2NobYaIwUig75rJR+6+rRQmIESZUokSgtQ1d34rI92BV1BpCURT2BbeyV9mKGSu5FGLEQg6FByTLFUWJeHdOEGawnM8184dyAnlCCU1KLdtZixEzY5jEDjbQSn30eDCFirQLZlyKAzudpJJBPmXkU0oQP01iHe1KE51Ka08RawNJpBIkSDcdkW1lU4gbB8MZj0UIpbAcbbJ/0jmPIgcDVO1YQH3lNxRKfRmiD2VlHEpdidXKEjy4GcdpEYupn1KQ2B8mnvfXyOdvP7zjJ2zJwREWJWo71rOjZQmizkB6yVDSS4ZRVpdOx/ho/3MwUSIMdTFiR8s+dnz2DIVlEygrORWDIYmgQUSWA6xYdD+5OSMZNDDqPRwmMdX9pJo8T1SPIdYaKSISqLISvFlaazwxqGBcvVszLTioLDRv467otLHRCEY1sRuO8I8TlLfVEizLiyu2K5flIzbECJpJUYLMl5+C5Argj6mfEe5rLXtC96qzvzbDKLZGkbPAgLUx2n/FPgfU0e0aUSJccEzFIceS9epsg9iiyWrR91iIErFWYBoBLLb4ds9qagE+Mi9GL4grah1U0PcI4LGFpmPPh94Vv31viuoZF1QSWjKZOnuu8Z7ntjogAELPsYApnixRdMRlSoBWRAnDuteG0NalmRYszI58FuSe7MZU7X0RNIoosXZgMYK/KSabMvaeDAsT4YxNv0W7PWtj9L5sbd7M1s1vRq6/oWOvJSNvQGS+oSP6nNbt1db8CrapntljBmvm+RU/nd1VdHTtoaOrEqcnmglrtVpxOp3cfffdzJ07t/fl5xjih4zL1bDb7axcuZK+fftSUVGhmSfLMvfddx+PPPIIZ599Nh999BE+n4+2trZe64//QrS0tPCrX/2K+fPnM3PmTE466ST69OnDhRdeeEAS2m634/P5yMzM5OGHH+buu+/WzK+uriY/P5+bb76ZF154gWuuuYY//elPnHjiidTVhQLJJEmioqKC0tJS0tPTWb58Oe3t7fzsZz/jV7/6FVOmTGHTpk3861//YvHixaxbtw5FUejbty8DBgzg+++/p7m5GQjZS/Xp04ekpCQ++uijY0qgV1dXc8UVV7BixQo++OADzjnnnENar66ujtLSUs455xxef/11LJb4LM9eHBkcDge33nor//d//8ewYcM4//zzOe+88xg2bNgPttq66667ePbZZ3n++ee56KKLIlZb//73v5k1axYff/wxs2bNOhqH0Yte9OI/DD//+c95+eWXATCZTLhVLgE/BHV1dSxevJjFixfzxRdfRGz21Fi2bBkTJkzoHZf34rjFMRclDgVnnvJHnK5WVm18jvTUCob0PQ8pxptWE4UqJC4qGoYQUCLR/DpXiNjSiBIxg45gqiUiSESmtUdJZcaGlExl1abIJHnSqIgYodn3vno6pw/UTDP22DrFEv3BBAWzw8clxRByYXHCWRwl29SFOF05Yrythgw+VXKFzgsZ22NJreh+wsJEhMiJuTJ8qTHWF6pLx2APaiKc9d0qa4llGzWroagyR1SiRKCyCkGSUBSF7cE11Ct7KWUAFcIQpJiqrodCmE8QZrCV1QQJkk42JfTHJJhRFIVv+TRSg+AEprCD9Ujo6MdwXNhxYseNE5/gRY+BVCWTDppoowkDRkroTyn9EQSBoBLERjudtOLCjgsHTuzIPXZRZxguRhSijF24yPvRwuhfP6757n3pbbYFVjFSfypZgez9rKVFrbKHnWxgImdjFEKE1/EoSvwn4axh9+LydfLtrr+RWTGG0vHnI+lD91jm6iiJ3jxJ9RvFJnupbjlDt6IRJfZ88hx+n4vRE25FEER8qdFrrG71v2moWsEp4+9Crzcj60UkT7SDEALaHSk6QUuAxpLRkhAX/a9vjmYkuEtTEZQEEdird0cEiei2QdywSyNKuLN7hIhYWx6dgN4RwLAt1stexnWClkCzbAgt4xsQFZVjbalkgxQVVoHk7dpMrrAwESbNTe1+jXWe3qHtZINGKRKZrwhoagXFEu8HEiV0quj8gEkkZU00o89fkhX5LDljSGt14eHY30xNtKjsrzzZWgtCdVHoOGFBtU0l1vlIdWpjs+/UzyZILHhF5h0k+yKcuXGg82dpTVB0uud61dtDv1nAqj04WRLijwlCxxXDS+jcSty1bf0+WkPJ3ycPiM/oCSRrhSIAv6omleiNP/g4OzDVueu219EhteN1dOBxdeB1tCMYjfQ99Wokg4mARUCRZWzVW6n58l+k5PbF3d2CIgcZNvN/sNhVtSk6tMEDamFCLUooikxbto9G+3Zc/i4cvjYUZEz6VDKTK8hMrcBkSMPjt3HVjePx+Xxcc801FBQU9L78HEMc63E5wFNPPcVvfvMb/vSnP3HnnXdGIu968d+H1tZWJk+eTGtrK88991zEMulw8cEHH/Dggw9isVi4+uqrueaaazCZTKxatYrx40OBNCUlJSxfvpzi4mL+/Oc/M2HCBLZv386OHTuoq6ujpaWFUaNGkZeXx+uvv86WLVsYO3Ysf/7znznzzDOBUF2HJUuW8N1337F792527doVqV0xbdo0FixYcHROzCEgGAwye/ZsVq5cyZYtW8jJyTn4SsDUqVPp6upi9erVx7iF/114/PHH+Z//+R9eeOEFfv7znx+Vmh8QKv5dUVHB7bffzh//+EfNvEAgwIgRIygvL+ff//73UdlfL3rRi58WXq+XL7/8ksrKSvbu3cvevXvZt28fs2bNYs6cOZHlurq6ePzxx3nooYe46667+Otf/8rNN9/ME088cUT7tdlsvPDCCyxdupTdu3dTWVmJIAiMGTOGM888k9NPPx1JkqipqaGmpoaKigpmzpzZa9/Ui+Max8UbhqIT6XLVIisBZCWAYNJGGMZGXMoGMUKIqMmPMCGkthcybtGSWUpaCm32SrY0fYY36GTM1N9jslqgKERwKS4XgS++JYlUJCF0eoQNoehewWiKRJ1LyzdFOBklGETKiFpKpX++IzTd6cY9NVqQO5AkYWrsyUzIjRJDYUsnX3rUIiRokjA1OvH3FOiOjfIF0PUQGu5MKRJZKusEDWFjcIRqUITRMcikESZ0nU7whogUXY8u4+nXQ5IKaIgnnUfWRJmqSSK/VUJK4L0N4DtrDIYFa0Ofp43BsidKeAQqqzTLiqVF7GhbSn1XJUPEEygQQym04Yyaw8Ey5bOE088UL2SYciLV7CKDHFKEDFKUDDpoJkVIJ4UE9mAClNAXl+Kgmp3sYTNtNGBUzD0WTRn0EYYg6EInW1EUvLgJBv0QUJAJIOp1oNMxLelqABY6XjnsY0qEdX+7TSNMGK69iKz3u9nYvowSpQ85FBJm2SQkrKRoBuGKotBIDcmkYyB0vfUKEj8cgjeALhC6X7IzB2Nx6oAgemcQb+HhDwjU97Fc10JXeyVF/acgm+K78aSUAuSgD79FQCLUhmB4OSGmFowohO7lnmsilFGhoEg9ZLsUnh66vwMWHVKMDVQ40l8Ro4WeFVHAMz5avE9v80XIXnlkf4SAjLPQjKU5So6G/fV1LjnSj/uTdPhPKMe6eh+O8dqU+rDff8Ai0X1yGRATbS4KICsYdkcJV/+JpZHP9kGZJG9vp3NMVBhSR9d7MvURwl2RBHyp+vgsB1l7DiLb8Wuj+RVR0PaRapJb9YzTeQ7C0h8ClEOM/HTF1FhQZ/jFigXqQuDh31H0xwsSsWKMen7suZNidP1w5H/YQkltJaWIQHj98Dnv+d+dGW2cqUvbcFde9MYx2OXIepKsQM/+A2YhzrYpfC6EYLgdgua3cY0O+efrVfWnghY9/qR47+ywBVfALCH44wWOMCI2SjHn3mMOsnPPv2luDQn8BnMqJmsGpuQs2uu3ULPuE4rGzqRt7WpadizDZ+/AlJGPLjUVT+1m+k3+BfqghN8SLeIesOo1wR2iV5XtUZhNYMMWGpUqquWduJocpBrzSTXlUZQ9hszkciyGDARBYMGGh+KOo7u7O25aL/7zsGTJEkRRRJblYypIOJ1OXnjhBW6//XbGjh3L6tWrI2MURVGora2lra2NkSNH/kfYwvz/hs7OTs4880w6OjpYtmzZDyrKO3v2bGbPnh03/YQTTuCJJ57gs88+46GHHqKoqIji4mI6OzuZOHHifq2P7rzzThYvXsxDDz3E2WefzYwZM7BarVitVn7xi19w8cXRbH2/38++ffvIyspKuK1jBUmSePHFFxk6dCijR4/moYceYujQkA2tIAjk5eVRXFysWae6upqvv/6ae++9N9Eme/EDkJSUhKIoXHHFFUdNkAB44403cLvdCe3AdDodw4cPp7q6+qjtrxe96MVPh7Vr13LNNdewZcsW9Ho9ZWVlVFRUUFFRwR//+EfGjx9P3759efrpp3n55Zfx+XzMmjWL9evXk5qayv/+7/8e9j5ramp4+umn+fvf/47H42Hq1Kn87Gc/46STTmLKlClkZmbud93ecXkvjnf85JkSUyY+hNPVitdrx9ZdRVXt1/StmE5R0UmR6HJ1wVV3VujFKEwuqEWJoEk7uBCCkPrN3sj3QIqJdXXv0eGKRjgOnnIj6anlKIrMpi+fwmELWfiIkoG08mEUVptJF7Mx9VjaCHpVwWm3GyUYQ87p9JpaBADuqcMxL9yAMnyAdtlgENms9Sr3J+tRdAKmRmd0WnpUpNF3hEQNd5HKKsog4ksW4qJTI/ONIRLGYI/+1BlrVKldXi0zZBurLeylV3mgS56gxvM8TFSKASXeKkNNTqmuMrUoAVphoiM3wLrGDxicfSaFnVE7lSMRJfaHM8UL46Y1KtVsZQ0TmIFJOHiadINSRQv1yARxYkdBYZIwMzJf0Ok110ZQCeIzBbGKofvnaAkSiXD6lLkEg35qar+luvprZFn7+6aSyQBpFKlCJkowSItSzyZWMkZ/OplS9Ldf6H4tdtO9OERM738XECJUvqh8guJBZ1LUbzIAemf0urCVR8VGMTZ7QcW96J095HuP1Y6hM8Ce9e/TUr2G4oFnUNj/NASTgRVv/47xlz9Gzfp/07jjG4r6TaY490SMptTQhoQewczTRbetFpfcTTDoQw74kAQdJZZhmE0hUU7culfTnsCofgQsWmIqnHWg78kCi42IDwsasT7/QYMQlxUiyEpctH/Y7s5gU9lFpet7zokqy0vVJwVMAkn1XgLmaD8czqIA6JxcFmqbunaQWh8IFzhWHUssQR9bZ0H9XVL1l3JMfQaNNZes4FdF76sj5NUEeew21P2saa+qL1XX7jDGWDklqb6rzrE6kj+QpP1t7UWqZ10CQSIMUaUBqW2X/BZt/aJYsUD9vAqYhTgrotj9xEGd2BOfKBGBWghSi0Th9qiPTS2uRdZR/9Y914QuRsDwpohxVk+SW9ZkLwEYbInFvDCMLU7Nd2dZMu0NW6lc/z6yHKB85DlkFY1AlPQsf/d3AJSefAE1K99H1BlQ5CCWrGIIBnF3NaEoCrn9T6Fs2MwI+RIWJQC8gpuOlp10te8hJa2UzD5j8XsdNO75lpbKVQRkL7mWfpRnnECaKZqBpFijY5L9iRK9EVnHFsfyHHd1dbF582ZsNht/+9vf+OKLL1i9ejUjRow4qvsBWLduncZfPS8vjz179mC1Wlm7di1nnXUWbW2hzMKSkhIuueQSTj/9dMaPH997bf1I+OUvf8kHH3zAt99+e0w8sPeHCy+8kH379rFmzZqDksc+n4+77rqLXbt24XK5WL16NVdeeSXPP//8ftdpbm5GEIRDzlz4oaiqquKuu+7inXfe0UwXRZHrrruOBx54gLy8UNbdNddcw4IFC9izZw9JSfH1BHtx5Fi6dCmnn346O3fu/EECWyyam5s57bTT6Ozs5G9/+xvnnHOO5rodMGAAPp+P//mf/+G6667TFP/2+/1s3bqVdevW0dbWhtPpxOl00qdPH6666qremj296MVxAp/Px5w5c5g7dy7Dhg3jxRdfZNSoUUg93J+iKJx99tl8/fXXuFwusrOz6devHw6Hg02bNpGfn89zzz3Hueeem3D7O3fu5JNPPmHbtm1cffXVTJo0ieXLlzNv3jw++ugjkpKS+PWvf82tt95KQUFBwm0kQu+4vBfHO35yUcKSnIvb0RL5LulMBAMezEnZlOSfjA8vXncnGdkDsQwcqnnAxxZo9ieJEWIvlqRw1O1m39Z/R0SHPideTGbJKBQ5gLOzHl9jPXu2f0x6Vn9KB5xJs3cvnZXr8XSG0gf0KemYsgowVHfgV/wYBTOpxlxSddmk6LKROl2RKPkwBEnSWBUBiPm5yBnJmmmBVBOiT8afHF1fXXhSNoWmi+4o++PNtmhsRSBUxDocWRopdq0axxttWlGia5Q2WsjQFT1paosTU7s/GqFKKHJZc5wq8k5NmMmxEbOqeZpslrqoertq+4sAjJVOZ7H/LY41wgJFQPGzjM/Ip5QBwsjD2kalspV69mlECTVcRi+bvN/iUGyMNE4m1xCN1F7Q/X9H3PZDweRx9+D1daMAtr4mfI5OWha9jwMbqWSgAG7BSbKQzljDGZH1egWJH4bpFdF6F990vUVSZinlJ4bsDgKqRDD1PSkEFbxpqroECUSJ0HI98xWZ2q2LaNj5JQZzKsPPvA3REsrA8nS3Ulv5Fd17NiFKBvIrTsbr6sDj7MBpa8DvC5Gfks6IKBmQJAN+n5Ng0EdB+cn06z8L0/LtkX26JwzSHJ8nSxfX/4ajyMOWNEGzVohQRCGuiHIk4001PUzIqwtAh+3sZEPiKFl3th7RHxIk1DB1BDCqbGq6K7SCY6hN0e9q4VYtSoSsmdBY1sXaWakhS4kFD51Hxqcqrqx+Tu1PlICY83OYooRGkIBDEiXUtkKxgpKoamd3afTkxdaBUJ+/lO3RPt5VlhwnoDtz46/7cBZFXO0IIeb5HiduEYdIW1TLGrvluO2r77/wvam+ptRFymW9EJf5EWp/jBClEht9SWJE0AgNvRQsbdFturN0keUDPjdV6+bTVrWW9LxB9Bl1PgZrmmbby9/9HYqikDfsVARBJOBz07FnLZLBTG6/k0nOLsfn6sJgTkWWAzTvWo4c9JNWMJCu+h3Y2/aBomBKycHT3YrBnIKiKChBP8WWIRQnj8SiDwman+/9K4eK3pefY49jdY737NmjKTYMochih8PBOeecwznnnENlZSV2u52bbrrpiEk9n8/Hyy+/zF133UVXVxcAW7ZsYfDgwTQ0NLB+/Xr+8Y9/MH/+fObMmcMpp5zCO++8w3vvvUdbWxuiKDJixAiKi4ux2Wy4XC4GDhzI2LFjGTt2LCNHjuz14T8KaGpqori4mEceeYTbb7/9R933p59+ysyZM/nyyy+ZPHnyYa07YsQITj75ZP72t78lnP/mm29yww03kJaWxnfffXdY5M4PRVVVFd3d3YRfv5csWcIf//hHfD4fY8aMwel0sn79ep588kluvvnmH61d/y2orq6mrKyMzz77jOnTpx/VbTc3N0cEpZ///Of885//jMz797//zXPPPceiRYs444wzOPHEE9m3bx+7d+9m48aNuN1uRFEkNTUVq9WKxWJhz549pKWl8c9//vOQ65H0ohe9ODLIsowgCPsVwTds2MDVV1/Ntm3b+MMf/sDdd9+tERfDqK+v57bbbmPQoEGsWLGCL774glGjRnH77bdjNpsJBAIUFBSwZcuWiKiRlpbGJ598wu7duzGZTBQUFLB3717Gjh3L2rVrGTx4MDfddBNXXHEFycnJCVp3YPSOy3txvOMntW+aMPuvlA2byc5VryLLIQIqI38w+X0mUL31M3bu/ghJZ8JgsNJQt4oi63lkD52IrIOkeq3q4O8heuQeb/SwV3S33E794n/R3b4Pa0o+SamFeHzdBEwCe9a/S2fVRpRAAEGQMJrSMY0biW9EH9LpQ/6oM/G77Ni69+Gq34enoxmdYMSsS8UtO6h2b8avhAgvo5REgXUQSWfPIu+d7QiiEBEkhH5lKLurEPNDhW3FDnuorRnJBHqKYcoGEckbjBRPdZSFImMsTVFCTTYbQtG1PUVLw17ZanFC8in4khJ3pmFyRZGgeXIoMshoU9lR5OlIqvf3TA9ofedlIsKE3hGICBOSR9YSdaLWuzs2e+JgcCndFIuhWg3TRt3PwvUPHtb6h4MzpYtBCB2UCxeCIuIQuhF7CpPJPt+BVo8gNacv+1q24y9Kx6xL4fO9f42IHV6jzPeeL9ALBjLFfDZ7v8UomUmTfpzIrK/W/BmAMdc/jgWwZBaSeu1g/O9/Rru7Bgkd6YKeUvMwRMnK5637jyrrxZHBmJSF2xYqsBgwxc9XFJmWqjW4bS2UDj4LUdJpig+ra8VIXjlSHFcQRAoGnEp77QYEQcSfbkTssVwS0nIpKbkY/wnTqfroJaq3aQu+h2Gx5qBPSgNFxt5WTTDoQ5RD2/CcEhIinPmhe93SFGqIpydbLdxGnVvR2NqoBc0wGRwI28So/PpjI+MlPxi6VdlFRhHJK6OIQiRDQwxE9+MoDN2n4Wh8WR/anyxFI/T9SRJGVXmglL0u3Hlm3BmJxQ1fsoDBriDrQ6SzzhO1YJIl4ur2qAUGNfksqvQBRYgKE2H7uzBxrrZLChqlSLuDsTqCiuD3W9VFqqOWO8bO6E719dEaSqItKnCj1z7yDd3RImu6hmhdJbEgL/LZOTAqXqsFCXeOPlK4GsDcGt2/qSH0jLMNjbfCU58zAG9aNGtGTfIH9TGZJaprJ1z7ImQ7RsTuaH8WghEIod9Q74weh6BE7Z/Utkrh61MtcoTtxcK2YeF5fquAHAwQcNvxO+wEu+343Xa8Rh+S3ohoNGOQTUguI4Kkp7t2O+07V+F1dKI3JaE3p1A04izSGISsExADCs17VtBWtZbUkiEMGnN16CVJVlBEIZIlASH7j9TsvlSvmU/Abaek9FRKy05FECRWrp6HzxG9ASzpBcgBH/WbF5OS35/yEy4grWAQBnMKblszDduW4mqvZ9CEX2I0p2JZp6211Yv//1FRUcFvf/tbjdfx888/jyAI3HPPPXz00UcUFhZSX1/PU089xZ49e+jTp89h7eP999/ntttuo66ujosvvpj58+czbdo0vvjiC2688Ua++eYbAFJSUhg2bBizZ89m8ODBnHbaaTz33HPs3LmTZcuW8e2339La2kpBQQFGo5Ft27bx9ttv4/P5EEWRYcOGceutt3LllVcmJA56cXBUVVURCAQitRp+TIStbjZs2HBEosSqVasSznv33Xe5/PLLufjii1m2bBkzZ85k6dKlpMXUMjxWKCsr03wfMWIE11xzDY899hjV1dVYrVZmz57N9ddf/6O0578NRUVFkf5if6JER0cHjzzyCEOHDuXKK6885G3n5uZy7733snjxYlJTUzXzZs6cycyZM1m4cCGXXXYZCxcujFs/NTWVUaNGkZGRgd1uZ+/evQiCEInC7kUvenFoUBQFu91OU1MTzc3NkT9FUUhJSYn8paam4vF4eO2113jzzTfx+/3k5+dTXl7OG2+8EcleA7jhhhvYtGkTr7766gH7haysLAYNGsQjjzxCTk4O7733HrNnz2bdunWMHTs2spwoikybNo0333yT9PR0Zs6cybx585gyZQpms5lPP/2Uhx9+mEsuuYTXX3+9176yF/9f4yfNlJgwOxp5F/C5UBQZvTFExiuKguBwI0lGfF4b3301l9xRUwj6vHTt24SoN5F34lmkuJOwJ7vxdrXirNpFn3EXY1RFEzbWf0/N1//CmJbDsJn/Q8vO5dSsmQ+AMTOX1CFjSeozGGNGDoJe+9DfOvc2ht8e9erfNO+2yOfp2TegpCbjDtjo9jbT6a6nrnszigTZg08hZ9hp5L8Xqi0h9CuLrCc4QiSQnBUdrASSQ+RaUBUFrCb2dF4FQ7u2KGVYmPBkhkgmdVZCWJRQ20moozeNXTKeTJGAOfxdewmEhQkIFcSV3FEmTp3hELCqXvJUl1FsQdEwYgUKdQRu2PJk2aL7sBoyyUgqJcVcQG7+yIhivWjlHxJu90gxzRx6oHTKLazzLcUqpDBKPxmj0CMUHaIoIRfnsLTmOTJMJaQXDaWwcDySpMfpaWfLxteQgz5Gn3AjlnXVfO9ehD3YyRjzGaTJ6Ue96PWhYHrhLZrvn9c//aO34XiHoijU1NRw5WUvoigK/oCLL7/+M2az+eArx6DvyPOp3PghJ571B5yD0yLTdR5wNu6jbtmHuFvrEASRlOw+jBp4Je6iaIRnrCgB4LK30FG3mbamzXhcnYw65WbM1iwcBXqSmgJ0l0TJ5+zvuvh2y5N4fDYsSTlYk/MwmtPRiQbcrg48ATuiKGFMyiR72CRMySFPSktLICJIhE5K9GOYLNaSyKH71Nyuyriyij3tVvVFqk0Gwr79qm2bOoJ4MiSMqsyt8PqxNRAi832KJjshPA1Ab+/JslD554dFiXC/KMiKpg8N2wOG9x0moyFB5L4KYkCJq8ER+qISmWKIc3X2SGx9hsjqQSXSX1obos8Cn6pospo8VwvKppaoKCE6Vc+RoCrqfz+CRGzb1bUvbMOjYoXBFr1Iw4JEdD/RtnSMy+w5ntB3b5rKJinmsSHG1JvQ2DXFnibVsYeFidjrIdZyCXquP7XLYM/nWCumRPsM6iHo89CwfiHtu9cQ9Llj1wjZ+AXinyOCpCOjbCRJWSX4PXaatnyFOaMAa1YJAa8Tv9OG29ZEwBPKaBp83h1s/eBRAMb9fF60DX4PNavm075nDamFgygddy6ZjhQCAS/bt75DW9t2Bs66FZ3JiuDwYU7NBRQURUGUeq4dReG7N34X28QfhN6IrGOPH+Mc19bWkpWVFXnuBQIBvF4vVquVxx57jDvuuINXX32Vd955h6VLlzJx4kQeeeQRdu3ahcFg4F//+hf5+fk89thjmsjDc889l48++og77riDRx99lDPOOIMlS5ZgNBqZOHEi11xzDZMmTaKoqOiwPd99Ph9btmxh3bp1fPbZZ3z44YdUVFRw3333ccUVV/SKE4eJL774gjPPPJPZs2czcOBAzj33XMaNG3fM9/vQQw9x//3385vf/IZ58+YdNhnzyiuvcM0113DdddcxY8YMzj33XGRZ5pNPPuHiiy9m9uzZkSLZkydPpk+fPixcuJCMjIyDb7wXPwm8Xi8NDQ1kZGTgcDhwuVz07dv3iOpCzJgxA4fDERFAwwgGg7z00kvce++92O12fD4fjz322CFlCS1cuJDFixfzyiuvMHjwYL744ov99jcbN25k5MiRGI1GRo8ezcCBAykuLiYQCLBz5066u7sxmUxMnjyZ66+/vtfCqxe9OERs27aN2267jW+++QaPx6OZp9frkSQpbjpAYWEh11xzDdnZ2axbt45XX301kpXQ0tJCbW0tq1evBiAzMzNiKxmLrVu3cvnll7Nt2zb+53/+h3vuuQer1crmzZs599xz0el0rFy5kubmZlJSUigsLMTr9aLX64+p6NA7Lu/F8Y6f3L7pYBhy9+MowSA7n/oDsteDlJSMZLbia00cwTf0onsxJmWEfL4Vmc7qzexb9hYGcypDf3YHIODubMSQkY1kCJHP7iyBrY/cFtkfhASJQ8X0fnfSMjmfgMdJy5avadn6LYosk55SRlpqKXq9FZ3TjyBI+MozsaTmkdMcDZkW60L2Ve4RJdFpPcRK0HLg6Ahvitr2QtBE2IYjLkMztdYkAI4ilVVFjzARtokJE3kAhq4oqaIWJexlWoJWTeSpI07VVh1qYSKRKFG1ezFd9mp8rk489jZGD7yKzLS+wLETJfYFtrI7sJ5MYzFDUk/DoksBg2og6QqRTYHW+AeQNChkXbC3bSUt3n10d9eSlJSHKOmxdVWhNyQxcsz1pH0fKrQbUPxsCH5Dt9LBKP1kMsQcGBa1P1i45v6jeoy9ODycPmUuiqKwc9d8GhrWaOb95je/0USPHipOnH4/axb+CaMlnZSR47Dkl+HtbMFdtYeuyo2Ys4voM+xc5GCAbV//nf79ZlJUeBKgvY/spdE+Y9vH83A7WklJL6Wk7+mkZpTjKAxds0mNUYLY2By6dldvexG3t4uUzDLKBkzDkpSjIbE9GZLmPo214gkaBYLqdyvVO2Ak6l9F6kcI4PB/qm4sktmg2l8iG5ywKBEWNkArvgYNoYwItUggBrT7MrdoUxtko4grK3GfqkhaMlqdReZLjrGiEqJt1h6bdpuxwoSpLcS0G7pUllJ9ol7B6nOitsdS2zf9EFFCUQnvgj/axys61XNEF11GbVGlb4mKDWpBwtyiPWhDc3Q5Z790LHu6gKggEYY3Rf3DaWZp7JnCv29YnEtkz6QWLNSil+iLFztitw+Jr7/kWj/u7HgRTPKHSP326vVUr/+EYMBLzuAJmFJz0ZmT0FuSWfLcHUyb+waCKKHIMrLfS9DrQbB5eOl35zJ48GCm/vafEbFt29K/4ba3ojOYkYxWDNZUDNY09MlpGJIySC0eyNp/RC3hxl79Vxwt+6ha/jZ+t4Oy0edSLg5BEAS8vm7WVL6Kz9lF2eTLqVz0jwQn7Nii9+Xn2OOnPsdhshpgzJgxrF27NuFyOp0Ov8pazul0ct999/HEE09w88038/TTT9PS0kJTUxODBg066qLBpk2beOihh3j//ffJz8/ntNNO44QTTsBisSBJEiaTibS0NCZMmNB7rSZAa2srv/vd76isrGT37t3IskxVVdUxJ0knTJjAihUruOeee7j33nsPOyCkq6uL2267je+//54tW7Zw3nnnsX79eqqqqjj99NP59NNPMfbYHG7YsIEzzjiD4uJiFi9e/KMXwu7FwdHa2srkyZPZtm2bZvrSpUs57bTTDnt7r776KldffTWnn346V111FVlZWWzevJm3336b9evXc8011zB37lweffRRnn76abZv337AjLC6ujqKi4spKiritNNO47HHHiM7O3u/yzc2NlJUVMTgwYMjNmO9UdC96MWRw+FwMGfOHObNm0dZWRk33ngjBQUF5ObmRv7S09ND42SvF7vdjs1mo7u7G7/fz+jRo9HpQmP+yspKTj31VHQ6Henp6WRlZVFSUkJJSQn5+fmMHz+e4cOHa/bv8Xh48cUXufPOO6moqOCNN95g5MiRAHz22WdceOGF9OvXj/nz58dly/0Y+KnHjL3oxcFwXIsSYYEAIOB2EnS7kHIzUGQZX3srcmVDiOhRrOxe/AJlp1xMZt9xuGyN2Kq20LZnDT5HBzprMoKkQ1EU0kaPJ2viVKwNocP+/h9H1yN1zHWPY93WTkPTWjo7K+nuriUgezWZBIIoMXbi7ZitoYGvZV0oRVkuCH33p0UH3/5kSWthEQNFAG9MMc2wMBEmuNSRuWphQm0dAtoo3bAoERYO1P7grmx1cdbo+mpRQu1J7s1QeZWr9qG2O/GrbVB6SJ8ti59C7xcYO/haBEHAWRg9L8m7uiKfF2z6Iz8EZ57yR1o6trNz76fIfg/jsy/EalENJl2qCNjU6PUfyIp6+gXNoWPs7q5jx/b3MBiTyC8YS1b2EAweVZT0uu0ElAAb/F9jU9oZO+jnpFoLI/N7RYmfFqdPmcvevYupqv6SvhXTEUUdu/Z8AkBB6ckYLWlk5w9n1ZK5h7zNKWc+jM1WQ33td7S0bQ1FTosixoxcMkdNJKf8BNztDdgb9uCuq8LeupeRP7ublBYhIkp09jdHiP6g38vat++jbPz5ZPcfH1enISxKBIM+bDs34A+4MA8eRuX372Jv20v/k64io2w4xs5ox+LJUFku9fBHghKypVFnakSEiRiiOAxFjCHHez7L6oSL8Lqqfi3cF6iPJbJtJUbgFIg7Zp1H0exD3QZzSyBiOQXR7IxE7Y21/1ELE6AtiqwWKsLEt94ZyrgIH4+lKdpBqjPhDlWUCPfR6mNTC0Zq0UN9PtXWWAZH9Bj0qjodht2NyHmhqNBDESV0bdEizIJ62BAI7dhXmBYnSESOsURL7quFpP/H3nmHSVGlXfxX1bl7coZhYMg5B0ERAQVzlhUxrmJOa9p1PxMrxkVFxbQqukaUNYERERQkB8mZgWECk/P0dKyq748KXT0zYAJB7fM880yHqlu3qqtuV59z33PMFQi2RvN3gnDQqpTmApAhLGjrCM3OzVaDs1u5+4kvbF6iEZ2P0lRfSt76T6ivzCMlpy8dBp6FmJbyi+4lRlz0ZKuv65/7qv9Gt5k54ETq920h0FCFIoWJS+1Al+EX4YxPI26f+j1VWLqSHXs/I6FzX1L7Hkd8+25seOanT7I4FIj9+Dn8OBqOcUFBAaAGUBcXF9PU1MR7773HmDFjeP/993nhhRfYv38/SUlJLFq0iA8++IBZs2bR1NREdnY2oijicDh45ZVXGDVq1GHt64YNG3j77bdZtGgRGzZsINisEnbIkCGsXLkyRgweBAUFBXTu3JlHHnmEu+6667Buy+/38+ijj/LYY49x7LHH8vXXX/8iwUpRFF544QWmTZvGiSeeyJVXXsmxxx7bYnb9pk2bOPHEE+nQoQMLFy78RZ7dMRwehEIhhg8fTlFRES+++CJvvvkmc+bMAeDhhx8mKSmJK6+8EqezFX/UA0CWZd566y3++9//8t133wEQHx/PMcccw9SpUxk0aBDz5s1j//79PPjgg5xwwgm8++67B2zv/fffZ+LEiZSWlpKZmXnA5YqKivjggw/o1asXkiRx2mmnAdDU1PSLKrFjiOHPDkVR+OCDD7jtttuoqqrinnvu4c477/xZ48EvRU1NDZdccgmbN2+msLAQRVG4+eabefzxx6Ou5/HjxzN//nymTJnCpEmTWuR2/RY4Gu4ZY4jhYDiqRQkdujghmcYXZ6U6EDVuXkfRms8J+Rvoe/49FK76hJr8DYg2B1anh2BDNY6sdsheL6EG1We7y23/wuqJZ9vUw/dD/cTRj1DTMzIgKYqMIsuEQl52ffAMca5Meg+6FNFiw71VrfqICsCWoalD9EwkUWpG2pkItPr2VlzV0QSaXkXhrpBa+HgbRJxA9CxT02JmkSGQJBq2LLJFiKp4CCaZMyRaD73WhQmLXzYsU3TiLhQnRm1XJ+Dqi3awa97LpPc4FoBwbQ2uhAwSUnNpU5uC3apa3BwKUQIgFPaxeuN/ECxWhg65EVG0IgZMHvdOK45C9RwyCxLhuOgfSrrvveiPVpPEdTsi6ygh1grf0xSuZVj3v+JxRGYRz1t7+HI0Ymgd40Y+DEB1roX1708ho8exdOpxOns3zKVkl1rebbW5CId85PY4lb3bvvhF22loaGDI9Q9hTU/DX16MtzCPpvxdNBSq50bHYyaQv/pjMrsfR27/M431zNdvw/5d7PriRXqe/3fi4jJbEPRrX76NfqfdwdYFL2qWMgJpWX1wp7enYNPnDDzrXsPizhziawkoUZY54WaZD2KYqGoJfQzRSeXms80FOZrwl1rhE3ThQRc9dcud5lY5spUWBLLkEKIqG/RxI+RR27A3RAsVlmD0mGmuMtP7qffDfBzMpL4uSigWgZBbiBojzVUcZgJcFya8bexRQrDZXihuf2SD5tn55hn9+r4cSlECIJwb+QGtZxrp+2i0rY1ptrLGVgUJAG/PyOzS5iKEGQcSGppX8plFcl9qs++v5uHWzYR747zTl2u+zVbuelrLo3DUmir7wgEKts+nZPf32ONS6DDsXJLa9mDlm79+YoMuTiyf1dJGaeAN6v1PU3kBuz6egS0uiYw+o3AkZRDftgsZayJCUG3fRPz1FRSsmUtD1T4kv5c+N/ybTc8fXgKxOY70PeOfAUfrMfb7/TzwwAPMmDGDY445hvfff59BgwZRXFxMhw4dKC0tJRAIMHbsWBYuXAios+K///7737yvsizj8/lYsmQJp5xyCk8//TS33HLLL7KD+bPgxhtv5K233uKOO+5gz549NDQ0MGzYMEaOHMmQIUMOORG0aNEiTjrpJP72t78xbdq0Q9p2c6xbt47Ro0czZMgQvvjiC6OSIoYjCz3wfNmyZYwYMYLU1FSqq6txOp2IokhTUxNbt26lZ8+ev6j9oqIiJEkiJyeH999/n7y8PGbOnEl+fj4AL7/8Mtdccw2LFi06oHh666238vnnn7N79+4DbmfGjBnceuutCIKAoihMmzaNRYsWUVRUxA8//PCL+h5DDH9m7Ny5k5tuuon58+dz1lln8cwzz/xmVQiKovDQQw9x//33c/nllzNq1CgGDRpkVEeYMXv2bJ599lnWrFnD2LFj+eKLX8Yh/BocrfeMMcSg43chShxzmeqhvPLN2xlw83RkKUztjh+o2LgYf+V+7HHJOJLS8dWXE66vpd3x55PS8xj2b1tA5ffzsLg8SD4vjs4dSTnrDBI9HQ+rIKFDF1MctRBIUl+zNULdns3s++oN7J5k+rlPINWl2jYFuqjhx7bKyMz85sIERMgi3YZENpF9ujChk41RFiQmYlMRWwkRNb0X2VbksZmgOZgoYW2StHZM+RNmT3bT65KJFNW3ayYS9y6aRW3+RhzxqTjsCTTVlxL01QGQ4GpDdnJ/nGNGYbE5WP36ryOHjv3Lk9RX7mXLt88zeNB1JCa2byFK6AjFt/QEsTbJUUG8ZujkoWXVNgDEnLYEJR+L8/9DcnwuAztPNJaNiRK/PXRRoqJ6Oxu2vU2v0/9GkqsdshQiFPDiFuIo2beS3Zs/ZuDxt/DD4md+1fa6/OVW9nz4PILFit2TRNjvJexvpPsZN9FYlk/x6s/odtLVJGb3UEUH0/WZv2gW9YXbGHrafQhCNFm79IM7GXn246z99klEi42uoy4nXFLC1rVvo8hhnImZ9Dnv74BaXWAWJcx2QYoYTbJHjQliNGlvHn+aV05ASxJar/ho7vnfHIKsgCA0ExZaWbdZM4HE6H2KsqJqhcw2qhGaiSZiCBL2qmOxYCLfGzt4TOubRBFbpKpEtkWOkWSPtPljooQvzRpduWEi5qOCwfXsA9NnZs7tiArd1sKpzYJMazlBgvzjogSArVo9JoqJuGvKjdfaUFoIEmbBIEqkMh0Xe2P0B6Pvq7NGJpDU0jpLbYwWn6dsB2sTB0YrdzvmKkBoJi6h/vBo2rSR/HWfEA42kd3zRDL7jYlkMsAhESYOho6n/JV9X7+JO7kt3Uddhd0Zj6PGbNMW2enavokE4wUqNixm/8rP6fm3xxAEgc3//u2qJY70PeOfAUfbMS4pKeGFF17gP//5D9XV1fTq1Ys2bdqwdOlS7HY733zzDQMHDmTAgAFs3LgRu92OLMtMnjyZKVOmHHR28W+B66+/npdeeomzzjqL5557jpycnCPan6MVtbW1DBgwgKamJrp27YrD4WD16tU0NjZit9s588wzmTx5MieffPIhE3fuvPNO3nrrLcrKyg5JewfDhx9+yAUXXMDMmTO58sorD/v2YvhxTJ48ma+++orCwkIEQaCqqgpBEIiPj+fcc89l48aN7Nu371efbw888AAPPvggGRkZ9OvXj2+++QZQz/mzzjqLvLw8NmzYQGpqtBVlY2MjPXr04OSTT2bmzNbtEjdu3MigQYO47rrreOihh7jvvvt47rnnALj77rt59NGfXn0dQwx/dvh8Ph599FEef/xxsrOzefbZZznjjDN+0z5MnjyZmTNnctNNN/Hss8/+pPFnzJgxZGVlMWvWrN+gh9E42u4ZY4ihOQ48nfEogS5IhPyN9Bh3HWFvAyXbF9FUU0x8h17Et+tGxYbFyFKYuF59Seg9CHf7ToRkSDv2JKzuOHzhKjyDB+HIbgvAtlt+O0ECIoIEQDABXAP60MtxB/uWfcDqsg/pdur1ZIfat2ijoWtk0LBoxJJu1WQmE3XYmpQWr4fcIrYmmbBLVCstoghExbALUSzR5KFZjNCJpECSiKNWVsN2hQiZZfPKCK3MMhVkJUqAiOpXnF4tEXnNTD7q5F37cZPIUS5CEAQsAdXWKeitwVuyh+r8DWwr+hr7nFVkDzqV/fv307Zt21a3Z8apObdG96WT9mM400FT7X51X5PtBOOs6JeIvTaEoAXDBpNaLyEXlEjIrU4EKhYhiriUhvXEVqKKKt5gNWE5iCQHafCVIw/s8qN9j+HwIBSnfs5OSzbWvXEUrv8C++nXYm+yY/HYKd69ij2bPyE+oxO2Q0BWNGxci80ZT/cr7sEeEMlf/B5Vu1ZTsPRDsgaOx5mYyZ7v36X/hPsAOxXbllGbvxGrxUlNwUZyj7kAyWNl5Zu3c9wFTwCqIAEghYP4GyroPngSzvg0iE9jYPv7CCo+bG51TBEkNQNCkCKCQ9ipVh7oz8VQ9HgiKCbh0EarBG/Ua0JLQUK2CqCR56KkEHYIrVpARbJw1OoNS0CJylUwltXGKTPZba9XCCaoGRiSTSCQIBBXGiHmZW2/m0MMqfuVtrjEeC2claRux2oxhAlPoQ/FFiHK/akqu24JmK5/c6VFg4xrf8T6yGxHVd0v0XjsSzuyX8eKGLFlUiyC8TjssiChB5bLBDI9OMq8B2hDiLJg0kWVQKLYQmzR7Zdki2AINFKzialNmSZbv2Z2TebvCzGkChIAYXfkNLQ1tVze+GwE/fVm55WpuiJQW0XRso+pL9hKQvtedO5zNk5PKoRAshx+MWLQtep9RMX67/C06USX067F3qj2N5BsJT5f3UHFaUXYpM7Q9OwMsKdzMY3Fu7G5440fSn3+Pv03FSZi+ONj586d7N69m7y8PO69915kWWbSpEmUl5fzySefIIoi//znP7n44ouN2Yvz5s1jxowZpKSkcOmll5KRkXFkd0LDCy+8wEknncTNN9/MkCFD2Ldv329i//B7Q1JSEnv37o0iYMLhMBs3bmThwoW89dZbnHrqqZx22mnceeedDB069FflT0iSxObNm38zWy09yHTXrl1UVVW1IKBj+O1x4oknMnPmTJ5//nluuukmUlNTkSSJiRMn8vnnn/PEE08cEgHstdde47rrruPFF19ElmUsFvUG89577+WMM87goYce4qabbmLWrFkEAgFuuOEGSktLqauro6qqinvvvfeAbW/YsAFJkpg2bRoul4sZM2Zw++23I8vyEfGXjyGG3yvmzZvHjTfeSEFBAf/4xz/4v//7v9/c+qykpITXXnuNadOmceedd/7o8qtWreL5559n/fr1XHHFFYe/gzHE8DvEUV0pMej66YSaGijfuIjKzUuQwxFWwu5JRrBZCdRW4M7KJfNvNyBoNxB5d0YTBZ2ejfg277mlpT3C4YQuTjS3NslcE0RRZFasfApXchs6jLwQIcFNUl408xJIVJkUncQ3k2khjxDVrnlGsGQXjNBqiLa7kGymIFqiLaF0EtEaUKIDqk3L2xq1SgjT+0JIwepTXxeDkU76Mk2B3qbZuz6tyiPKr761GcWmfpv7oO+Pv66Sfcv+R0OpSsg44lNJ7TKExE4DsDpcuOtFRKsdUbQY/QZwbt1vPA51yiQsBdi7byEFxctI73ks3budbZCH9toIwxj2RJgwJSqoV8DWGNb238S+Nbu8wm4rrj3VANT2SaZ4x7eU7llByF9PSvv+dBh8NnZXgkHGbXwqRiIdTpzaVa0a8HWO/PDcWb2IktVfYnXF0WPstbiT27Lly6fxVhUCkNXzBEq2fveLt3nMZU+xb/Un1Jfsou+Zd1FTuIldi99US7rlaLY8p/fJ2Bxx7PnhI+KyOiIoIs74NHKPOZ9Vb6s3QgNums7659TzZNRZ05DCQZZ9eR8dh51PRlc1MPtAs/WtTYpJaBBazLbXRYnW7HLMpLBTq6LSq7HkZvy6IDcLvA8qLcYuyR49njnqZULu6D7JdiHKIi6oWTAZFQrNCphkW2S7rsroY6uIAjafJh6afs96tpYbj8NZScgmAcJcOWUWJmRTXoS5AkJ//cdEidS11dT1jmQw2Jo0ESUYve9Gvxxqu2aLLfN4b/Wq/fSnRj6IoClY2lnTsn0zHHWRgTnsUg+qxZQT5MyvMR43dUkxHguSgreNKtqaqzyaMiLHx5wFYRYaghF9BlA/O4sWvWH+fPSKFuO95kVrzYrVLPrwrXWnRTVPK9ZOIVuYyh++o2zVfKwOD+2OPYfUrD4G8bHqjcMrRpjRe9J9bJ31EB1PuJiUzoNIfX9DdHf7RsRsYdNuNuTspWL3Stxtcklo35PkY08w3v+tRInYjKzDjyN1jBVF4YcffmDq1KmGr7uO0aNHs379empra3nooYe45557frN+HSps2bKFPn36MGPGDK677joj+DKGnwZFUfjss8+4/vrrKS4uRhRFjj32WCZPnszo0aNxuVy4XC48Hs+PCg27du3i+uuv59tvv+XLL79k/Pjxh73/e/fu5V//+hfvvfceoijywAMPcPvttx/yAPYYfh46duxIfn4+Y8eO5bPPPqOsrIzu3bsTDAYRRZFvvvnmFwVem5Gbm8vFF1/Mww8/zDXXXMMrr7xCfHw8DQ0NhuWS1Wrlk08+4aOPPuLtt9/mlFNOobq6mquvvprLLrvsgG3/1MyJGGKIoXXs37+f2267jdmzZzNmzBheeOEFevTocUT68swzz3DXXXdRVlZGcnLyQZcNh8P07NmTUChEr169uOeeezjuuON+o55GELsvj+Fox1EnSgy8cTpyOMgtw9K49d6H8ZbubbGMu31nRMWKzZNAcrfBKMd1RtBubpsLEkcLet0TqZzIXBNhYooLlrNrx1wE0UJG/9FkDTmZcKKF9A1BGrNb3gTrhGJUVYN2X68Th2bhQieqfGlClGd3MF7AU6YRiR4xyk/bTCbphJ6ZGFS3oT53VppYJdNMFV2YkO0WAsnqfohhBUelyiQ1tW1lBpppfd0X3jxTO6p6Q4r+H/TW4ivdR13RNqr3ro8SsEDNA0hJ7U6vfqpN0rfz/sHJ7W6iIqWJyuodlFdsIij5aDNgHFn9xuCuMVuXmI6NZk0VjjPZnJiqQfRgYgCLRnha/CoLFnZHftzKDtNMa5dM1b51FKz7DEkK4kzNwpGSiSszh4SBQ7E41GO15dGYQHGocWrXv1PjK2ZX9fc0KY3YbB4SsrpQvOs7ADp0PpEOXcaBIuO3BSjLX8W+LV8yZ84czjrrrF+0zSFXPUXF9uUULPuQbqdeR8X2ZdQX7SD3xCvI++ol7M5E7I44vPWlKIp6viVmdqfn8Vex/H8Rb/iioiJGXf8gjsQ07AmpJBRKVO7fQG3lbsqK1pLacTCdRlwYLRAIkTHEahYxHc2uc7NTULOwavP4IoaVqFwHs+ARcgktZqELcvT4YmtSCMYJUYKq1SdHWQdBS7FBkKOFkpBHjFrWbMVk7oOrUopaz9wXRYi06d5Wjr+TmpEghiIstxiSo4RJSbuOdUFW3X60KOHZrRH4oQgbHmivEvn2ikbjtdZECYgIB62JEhARJg6lKKGL1qJJiDCfE7b6IJZqVWjRRQlzRVggObJdf4raV8keLUiETROb9AoJS6CljZbSyrnYvE9iqOV7YvO86maihFmo04ULMajQUJJHwfIP8ddVkN1pJO17jMNidRhVivp2Vr51eO81Btys3jPU7FxHwddv0W/iA0alU+r7G/Cf0BsAR3UkNL22s5vV79xJfEZnOk240XhdFy1/K8R+/Bx+/NbHuKioiJdeeon33nuPvLy8qPfi4uIYM2YMXq+XESNGcMkllxwxsuBQ4LTTTuPLL7+kbdu2vPTSS5x55pk/vlIMUZAkie3bt7Ns2TL+97//MX/+/Kj3LRYL6enpPProo1EzR6uqqvjqq6/4/PPP+fDDD8nOzuaFF17glFNO+U37X1FRwaOPPsozzzxDamoqffr0oVevXowbN44zzzwzFoh+GCHLMi+//DIvvPACtbW1HHvssZSWlrJo0SJADSXv06cPfr+f6upqLr30UrZu3cr69et/FeF/+umns3nzZtauXUtubi5nnnkm2dnZPPnkk5x99tnMmzePYDCILMsIgsAzzzzDzTffHNXvjRs3Ul1dTe/evcnIyKCuro7XX3+dr776iq+//vpX/XaIIYY/I8LhMC+88AL33nsvLpeLp556ikmTJh3R7KeLLrqIvLw8o7LuYFi4cCEnnngir7zyCpMnT/4Netc6YvflMRztOOpEiR4T72LH+0+0eD2hfU/i+g0kvktvtk//v6j3Oj+hWjwdrYJEc4w5+XEURaa2sx1BFAl566ncspSyNfPJPv1iknoNBtT8CZ3ws/qUKG9tRWgZ7qloPFDY2Wxms+mxvUEhGG+aXatxYmZRQrILUfkRBszkkEZAWQMK1oYQwWSV4bHXhVpsU7c9AhA0gv+nihLq/kQspiJtRv+HiDd4SArQVFmIHA5hrfUjhQOU5C1DkBWGjLiFb+f9A0VRcCe3wV9Xhs2dQGK7XuR0HoMzLjXKY9xMWuqCRHOYBQozdFECoqtHQokR1i1kytrwy16q8tbQ6C/DX1WKr7wYi9NFpytuZ+fzsZyJQ4GTh0wBQAiECIQa2bV/IcUNm0lwZJKc1ZPa2nzq6vJJyuhObbkaPm2xOMjucBzt+qs/ireveIPa8l2kZvSgU4/TWbHwkR/d7jhxgvG45q8jUBSZrR9Nw5OZS3KHvuyeP5OEtt3wpOdSW7AZX20JSZ36k9x5IJ6sXGw2D4os01i6h/rCrdQVbSdQG5nRb7G7SGzTnep963ElZRGX0ZGMLsPxpLQzxITmgdigji+yNZIfYGmFpG4RGkwziyUwrl1dlAubxAl9u2bxAqIru9RGlWiRwCJEiXyS5vVvr9eEQU/kutPJczMJLzkgda1qlVZxTBKeUlOOgkXAURPS1o1cm8GUiH+QvSaIpFUJCGHFECeaixL22ma+QkQLlfZybZBtTZQob0BKUNn5xvYunNXqMv6UyDbcZWr7vrQIi65XzkHkuJjHR3e5uk/m74HGtlrFgz/ymnnc10UNr8kyKXmntm/NBAkd9Z3cxmNXhdb31JaCBETbGOrnkiUYbdnUvOpBaCWjBFqp3DEtJ0rRgoReUaGLEOZ1dbHLWaPZTHlr2PDxw4CCIFrwpObQe/Dl2BweKjtJBCpLiat1YPckYbE6CMUJrH3hb8yfPx+Px3NIZz/pokSgppzt7zxGp1OuptueSFWKuULFUl7HvpJlVNTupMG7H0G0MHjio4Q0cSgmSvzx8Fse4+eeey6KfAPweDxcfPHFXHjhhYwaNeoPUVEQCoWw2WxGNci9997LN998Q0VFBUlJSUe6e79r5Ofns2vXLnw+H01NTdTU1HDLLbdw77338sADDwCwefNmBg4cSDgcZtCgQZx//vn87W9/w+12/0jrhw/r1q3jk08+YevWrWzatIkdO3Zw2mmn8dlnn8UC0Q8Dli9fzq233srq1av5y1/+QseOHXnrrbeorKxk3LhxfP755wDk5OTw6quvMn78eEpLSxkwYAAOh4NJkybx8MMP/yLRaMeOHfTo0YO5c+cyd+5cXn31VW666Sbi4uL4z3/+g8Vi4YorruDCCy+ka9euJCYmGiLaZ599xjfffENlZaXR3pAhQwA1T2L48OGMGjWKO+64IzaWxBDDz8ALL7zAjTeqk2wSEhK4/PLLeeaZZxAEgcLCQsrKykhKSqJTp07Gdd/Q0MBnn33G8ccfT7t27Q55n6ZNm8aUKVOoqanBbre3usymTZt4/vnn+eSTTygrK2PSpEm88847h7wvPxWx+/IYjnYcMVGiy+PTo57bNHcLMb+GHbOfQLQ7ScjtjTM1i4TcXmx9/Y9Fyp588sl8/fXXWB1xKIJCz4v+wc4Pn0EOB8kccxaJPQdh90bCPnUEEsQoEkcnXMLaPbvZ/kQnXyRb5PgCBJPAqj23Nba+TquiBNGEjtUUdq3PRjZECTCIJ0GSCSWqg3bYabJC0UhNM/GoE6DR+RbqE3NQd2uZGroHunnGrN6vXV+9DCh0Of1afnjxNoZMfoqyzYspWvUpGd1H0LnvuZF+mYNP9X0w86/yAS6ZA7xsq48cE128geh9DMZH9s3I8PDWsPnzJ0lq14u2/cZhT01nzau/D+HtaIQuSAAUl6xme+k3iIKFzjljaZcxBEG00OSvYun6Z8nJOY522SNoaCqhrm4fhfu+p33Xk8jtPp5woImivYspKVhJUmpn+vZQq28WLPznAbetixK+M4fQUFNIONTEjh/eQxCt9D3vbkrXfk3JjkXa0ppA4HAiBXy40trhTs2mZs965FAAmyeJhJwexOV2w5WWTUPBdmo2rUSRJZLb9SF7yGkttq8LA80zHszCgmwXooKTowKKlZbrGu9pgdRAlEWaP1llfM0z+MMuoYU4IchEWRpZgoox0x8iop+9RiXD9cB5e5Xqp+/PjARPg0qK69dr4pa6yOttPDjLIyED4YTIQCoGJMQm9TqVPZFrVBclACw+KVJ1YSIjzKKrGdY6lf0XQq2Lmfq4posS6r6qgmVrogREhAnJNP6FXFpVmYm3sZqEB12gOJgoYf6MdFHCPOaZq+zcpSGtD+pywXjRECTU9SLLVvR3RPVNkIgWt0wihNJKJY6xP9r3leSI7r+jTm3Mn6IeA0dtsxWbnbNhV7R9k/7dqle3hJzQWLKbYGMNcn0jpVu+xe5KJK1tP/aXrCZUW6X2xxFHh3GXkNCuGw3Fu9j96YsANDU1HVJv2wE3T0cIKGx+51+kdB1M9jFnkvmdGvba1CXFyCEpXPspZduXkNClL/Ede7LurWdIS0s7ZP34uYj9+Dn8+C2P8UcffcT555/P2LFjGT58OP379+eMM844omTxoUZlZSXt27fH5/ORmJjIyJEjefTRR+nXrx/HHXcczz//PP379z/S3fzDwO/343a7ef7557n++usBNbz0oosuYs6cOcyfP5+TTjrpCPeyJd5++20uvfRSXnnlFc4++2zS09OPdJf+EAiFQkyePJk333yTQYMG8cwzzzBy5EgAnn76aW6//XYWLFhAfHw8O3bs4M033+Tbb7/l+++/55hjjmHjxo08++yzzJw5k3feeYdJkyb95G3X1tbyww8/4Pf7Of3007nqqqu49dZbmTZtGm+99ZaxXHx8PH6/38izqKioYMGCBciyzKBBgzj11FM56aSTyMrK4umnn2bp0qUIgsC///3v37zSJ4YY/ihoaGhg/vz5VFZWsmPHDp566ikmTJhA9+7dmTZtGoGASoQdd9xxvP/++2RnZ3Prrbfy7LPPMn78eObNm3fI+7R69WqGDRvG0qVLOfbYY1u8rygK3bt3x+fzcf7553P66aczatQoHA5HK639Nojdl8dwtOOIiBI9pkQEibArmjDf9qA6o0+fJQiwfsYfy7bmmEufYtOn0/DVleJKaoO/vpxBf3kIn62J4uVzqdu9gYyh42g75FQAMlbWAlAxJMloQ3JE21/othiuSoWmDAGrT30ejI8sox/noNaMXiURdoFDjTkwiChLQImaRWueiaovo4sSslWIEgx00j4qfLZRm2X8M0QJnbTTyVAz4anPWpacEVarMdvaYrs6iVi6cQEla7+m3+VTwWU3yNfi1Z9TsWMF/S+agiBasEacMKJg88ot+mq2NjF7ypthzpcwe9Drs5sBwqZqCZRIOLgiQumW7yhc+ykAWf1PIls7J7xtBeNaieGnQxcm1u18hxpvIcd3ux5romabIwiUV29jw85ZnDBqCmXlGyksWILF5qDJW0FKSld695mEL1MljsvzVrFn1WwGD7qexMScFqLEyUOmEJaCVNbvpnzPSuqoImiVkMIRVjWl0yC6Dp2IIIj4G6soz1uBMz6d+KzO2D3J1JfspHDDl4QCjaR3Poakjn1xZLRFMeUvmElaodlwHrGqaTmbXr+udMsm3R4oSpiQm11PzYKlzYKmqzKMbDqv9XHCbDUUeRNsDdHsc9gt4ikwiQbxdiw+U3WDdi3bSuvVvsRHqq0Ui4XGjhFxQu+H1Sfj2dOAv03kPV2YkO3aeKGLmf7ItmSPHdGrDaomO6ZwnGlGjCBgL2vQlldvNCWXFVulOtAqtsjBbiFM1DWAOzKAKy613VBapJ9hbWwLmSqxjGowk13Vj4kSRh+0Luj2SFHB0369XbNtndY3S0SU0AUJiIgS7rxa47VAu8j9QWXfyLHS+2Y1BU/rlQuKJSJIAFh80f02Vz14ykwCl+nePuq8k1oGZuvb0aFXRujfQboQo39H6uN9Q0U+xeu+oqGmAHdcOp36nE3IBfu3fENdyS7Sho4lUF1GQ95mAGbNmsXEiRNbbvxXYNC109mz+G1CVRV0P1cd8+OLNAFNlqh11LJr4WvEZ3Yi6yx125uePLLfDbEfP4cfsWN8aFFUVEROTg4ejwePx8OwYcP49NNP+e6777jxxhvZvn07S5cuZfjw4Ue6q38YHHvssWRkZPDJJ58YrymKQp8+fRg8eDBvvvnmkevcAaAoCqNHj2bx4sW43W4+//xzRo8efaS79btHQ0MDmZmZjBs3jo8++sgImQa46qqr+OCDD6irq+OSSy5h48aNeDweVqxYwbvvvstFF11kLHv22WezceNGtm3bdsCg+qKiIj755BPmzp3Lzp07KS4uJhyO3P+98cYbRj7EF198wYoVK+jfvz8nnXQSsizz9ttv869//YsuXbpw1VVXccYZZ9CmTZvDdGRiiCEGM5577jlmzpzJ5s2bufLKK7n22mvJz8/n1ltvxe/3869//Yu///3veL3qDX1VVRUpKSk/0urPQzgcJjU1lb///e8tsrMaGxtZvHgxp59+OnPnzj1q7B9j94wxHO044qIERMiRPxPJ2v3Ea9i99C3kgB+rw03vS6YgWlRmJv/7WXj376XDuVfjSE6n7aJaAMIJTioGRt9kSRrBJIbBXR6dGaHDUybRlBG5wfNrmb4Wv7pe2AX2yITiqFmzujBhb5ANEt6xepfxvne06hvcmighWwVDjDATYHFb1fLWYNtIsqk326H1SfM6N3F4P1WU0Ik6PfzW7G/va6xk+7uPkTlkHFnDTgZUsavbpDvYNespOp5zLSkp3VoVJcwzxHUSSydyrU1SlCAhmrM5TLYwUZYvJgJNtgoRr3jTpagTgmGnQFBqpGTDQso3L2bgFY/hy4nYP/2ZrplDgRPHPgpAbW0+P6x7mX5dLyQrvrvx/q6yRewtXsTwk+5j8+rXkaQgCUntkcIBctqOICmpIwC+TBuKLLPl8+kEgw0kJXXC2rE9Gf1OQBAt/PDSbYwffD8rt8+kvmk/cc4MUuM6Esh0EZeei80VT8jXSFJOb2SN3DWfZ3bTNai/bs6G0HMExGbOQc1FCTnqXFP/i2FVeAi5W4oQomTKqDHHCei5EtrlZraCclVJUSHIurWbnpsimKoxQh4LzioTsa0t46g2segyiAHTMh4HlroIUy3oNkhhCTnZg2L68drY0YNdC2n2p9mwmizULD4Z135ViZXcEcJcUBQUrfJB9IWMbcsOU7iBRUD0aoODuVLKogV7e0xVF95A5FrW98McYK73/2eIEvrnrX9mkulrwBCGTN0yhP5WKr1kKyD8PFGi+XJxxSHTaxK2Cm+UIFGXaxIkTIUs7nIFb5YQlefgqog81r+bAJzVpn3U+qCLI+b1BfnHs4d0SI6IIAGR70m9PVeVJlCZquXsDTKKIiMIora/6vP8/G/Zt1v1Sc86fQK1P6zA4vGQc9E1h2xc7nuHeq9UvWkF+7/5H30vm4rV4UaQoWDZB1RtVyukEEXaX3wd+958/pBs99ci9uPn8CN2jA897r77bh5//HEAbrjhBp5/Xr2eQqEQbdu25YwzzmD69Okx+5VDhBkzZvC3v/2NlStXGlY3AFOmTGH69OmUl5cf0ZmlB4Isy+Tn5zNhwgSysrIMS6EYfh3uuusuXnrpJQoLC41rLBgMctxxx2GxWPjoo4/Izs7m1FNPJS0tDVmWef7550lMjPyW3L59O/3796dnz54MHTqUs846K4oU3LlzJwMGDCAcDjN69GgGDx6MKIqcc845FBQU0K1bN/r27ftb73oMMcTwMyFJUpR4WVFRwSWXXML8+fNp164dTz75JBMnTuSFF17g2muvPeTbP/PMM2lsbOTbb78FVGF1xIgRbNmyBVAt5rZv337UVJTG7hljONpxxE1gt0/585GqPe+fjnhcT3J7/I09LzxGONDEpjfupe/lDyElWEnsPYTaXRvY9d9HcWa0I3TOZLJ3qqxJ+jo/oXgrtV2sxuxTfWZpU4aAu1xBkBXD1kK3Skn/7w9UXDGIjHc3AVB8tXrTFUhSLaCCiRFhIhQnEFccmTUiNiN2AkO7GsKEZ3cNit2KGwimRgZeb5votFJFbCWktDkUxQhYBdWqClRSCKIJVp2I1In/pswIS2VrjOx7IFEjPRPTyBg4lvI135CQ2xt3RjsGXTcdtycLwWrDu38v8R26mwhZs52MdhzC0YQvQDAxcgkJcmSGrrMqwhabBQlFjMx21meQi0EFm8muxjwzWpDBIcSRkJJLOYtoSPZjRT22MUHi52PBwn9y4thHqandAwjYLC4UmwV/YxX7qzewt2QRHduOwhYWQZYJNFWT0+svxCdkE/JY0KlYQQIBkY4n/5XSTd9SX7EH/8qNpHQdjM2j/kAqqN9AfdN++g+9hqTUzjj3N1A9IPmAfdNh9SsG+a/PajeLAGIrPvtRVU2m67V5aDBERAg900EXPfTrXJAj5LPUzCZNvwbEsELILeKqUleSHCK2RinqGrXXqkcrFKee/5agjCUogwjIYG0KRc2cBxD1agVBUIl9WcbS4DPWASAsgVU9QGKNyr5LaQlY6ppIXN+Er6N6jJ2VIVz7alHspq85TXyweANIHgeiT+2j4lIPlOyyqaKEJCM2BaKqMSKdFEBWkDXbJcWqkdVlJmXX0ezAixZVmNDGFaWhERoaoWO7qDasdX5CSWq77r01xupVx/x0iwhz5eEBoUTOA1+KYFRbyNowKoZBP430c9FV2XL8s/jVpULpHsIudR/CLhFHvfphedtEBFtdNE/eZfpuCSo0tFOPlb1Rxq5V75nPd12QAWjIiT4fPSWRsT6o5WzoAoxsAfSh1LSaP1locQ01P2a66KxnnAiCSChOxFkZNp537HgihfsWIYfDtGk3AkrrqNi+HFC/4w/V+CxbwdOlB8xXqK7eQWbmQKRQgKrtK0nuOpiUbkOgSxZWTxw975vOtqmx74UYYvgleOyxx+jcuTPXXHMNL7zwAikpKUydOhWbzcbVV1/NY489xjvvvMPll1/OK6+8cqS7+7vHddddx2uvvcZVV13F0qVLiYuLA2Do0KHU19ezZcsWBg0adIR72RKiKNKpUyf69OnDjh07jnR3/hAIBoMsWbKEpKQkLBYLsiyzYsUKHn/8cTZu3MjChQuprKxEEAT27t3L3LlzW82x6dGjBx9//DHvvPMOH330EevXrzdECUVRuOWWW8jKymLt2rUkJ0ffjw8dOvQ32dcYYojh18MsSACkp6fzwAMP8PXXX9OrVy8mTJjAI488wg8//HBYtn/qqady6623UldXR2JiIl9//TVbtmzhpZdeYsiQIfTs2fOoESRiiOH3gCMiSvwZhQgztj14Gz3vn449NYNON9zNnhceQw4H+fxfkzj56dl4crvS48YHqVy1kIrlXyP5fZQPTMASgoR9KimStDtMZb/IxyfbAAEa2wmAQHyBSgp5vtpoEGHp//0B7CoBlLXcS+mIaC/2YCLYVWcUGrOthjDhKPMZM7D1GcVy1/aIvuiyAuemAvx92wMQXxh5L6z5stsaVAIw0C7JeM/apAdjtx4U9GvhqJMNgrVz9lga87ay+4NnyBo8noz+Y6jcshQlHCYzrR/2esXwFtdhMc1E12fjyjYBNFssMaxg8yotBBd/qro/ZnsbcwaHZBNatbmSnKJB/AYSRaSGRsq2f0/J9kUIFitKRQPbnrr/Fx+PGCCweyd7C7/BZnVTWrWRXYXzqfcWI4pWcrKOoXPOWNZvmEVjw34AGhtLcbnTgJY3F474VDJ6jaT6y/XY41OwutXZBwPOuYe8/Pm0yRxEUmpnAPxt43HUqSRuMEELUJZBbNJFqh/vu+RQCWMxZLJdskaIY7OAqIchmyufAokCwXghKiNAUNSsB31VMahELKG0xRQBkrbWUddD3T8xDI56GdkmRFUHiaFIILQOW6PJFskuYm0M0RxCVI5LS/JbqNNYY/1HaFiCQAAcDpAlLOU16mPAtUX93IhTPy8hGEaxWxEaVPVWiVdJf4s3gKKFolkrGwinxWMt14QF7WZXbPAjxzsRa9Xty/G6D1FLSyopMxFLoTbt32GDGrUtJaAOIkJ8XFTbUfsXlg1hAkAMq8dw//gMdbuaxhHShmx7A4S05gw7Ju0DNFsX6RZ98cW6eBQZ3xqzovdBbmUIllt2lbj9YUPc8WVoFW7BloqzqzKES8t8dGwqMF73HqNWG4ka4a9bEeloyjBVldkFwzrQbEWoixE6wi5TRZBZD5KbWUM1q4TTrzm71gXdtkkX6iS7AIJgtOnXMhxsXpmygjXIoSCCaEFoDKjnvjbgHypBYtOTt9H7H9OxxSfhyGhLY94WEtt2Z//3H6HIEunDT8TtTIcm+OGpP/d9VQwxHApcffXVJCUl8Ze//IWNGzcarz/yyCPceOONXHLJJSxevPgI9vCPA5vNxmuvvcbIkSPp3bs3L774IuPHj+fpp5+mZ8+eR22Gx8aNG5kyZQoff/wxffv2JRAIHJUVHb8nPPnkk6xYsYIBAwZw6623Mn/+fIqKimjTpg1vv/02gwYNMgi+kpISNmzYwMCBA1sNtD7ttNPIz89n1qxZRi4FqHkg8+bNY86cOS0EiRhiiOH3DUVRmDZtGhaLxRgXZFluVbw8FDj99NO58cYb+frrr+natSsPPPAAvXv3PixVGTHE8GfAEa+U+LMiirR4/tEW74s2O/Fd+lCx/Gvqq3bjScgEoL6D1RAmslaqDEvZYPVm2NYAoXg17DOYIJL+5jqtMcEQJuSmJpRhfdT1l3spHOdRw0M1ssZVKRO398BTbS11TUiJGjFXohJwAiDYtNmuFSZP+OTW/Twd+6oIdEjFVh8wiDh95mrILRrkvWEZo82+Fsz3nro4os2o1We06m2o66nPI7NuHfQZezNFW+ezf808yjcuQgo0kd75GNxJWUhoVQwmvkuvahBN7ftTNMIyHLE80QlindSSmvnoy9aIxZVsE7A1ylFihDdLvRQVRaF23ybqC7fRWFGAv7Y0qp26/I30umc6Wx+OEVC/FA6rh/aJg/CF6qj3luByJNGhzQiWrXudc09+GoDszMFU1qgz4LZv/YA9efMYdO4DRhu2Jv0cFfHX+pACPuJTcilf+iUN5XtorNqHzRFH9jFnEtKyRCwhJcpGx4zWBAmdaDVnx4BKTNvrW29Inx1urnAIxgnYG6OX14OBQRU49OtPP8914cISUJAcAklbVYI9cXs9gXT1+terhCymbBlzNZFFExwlt3ohWrxBLNrQouctWKo1sj/BhVjvQ3FGVxgI5ZqHj/6DPxwGyaS8BAJgs6qWSM0DpyUZLGJ0pQQgNPhQ4l0IvmBUDrK1Us2HUKpr1eXSU6HRi9joBZc6lokNTcjxbsTSauSslIilU2Ozko+GlmOoUlePoLUjpGo/iOu9hp2ToNk5iXHqvoYy4lu0oSMYzwHPpZ8LpdldgLkior6jNvZK0KBZO8Xt1/ugCWsKyNo5bmuUjOo1XeB1rd8XaVyS8SzLI9w9J2qbofjI5+4uV4+HL92KNaAQdgiGICEGwOaLFiF0iBKEtGtFlDVB2DQMi8GI2OCs1YTADF24iz539DwjfYwWQ+o1oa/fEKph16aPSO7Qn9rCzZRuWogjIZ1QUx2WbeUMmfwUa169vUUffwm2PK4KE8mdB1K28iu8+buQwyHanTQRR1I6Pzwd+y6IIYZDiQkTJtCas212djYnnHACjz/+OHl5eXTu3PkI9O6PhYEDB7J582auu+46Tj/9dFJSUqiurmbOnDktZsIeKTQ2NvLyyy+zZMkSVq5cyf79+xG03yCbNm06ais6fk8YNWoUV1xxBcXFxaxfv55zzjmHCRMmGNZNAFdeeSWvvfYadXV1DBkyhKlTp3Lvvfe22l5BQQGKomCz2bjhhhtYtGgRW7duZcKECUeNx3sMMcRw6PDiiy/yySefcM011/DKK6+wevVqunXrxqJFi1AUxRizDxU6dOjA8OHD+dvf/kZZWRm9evU6KnOQYojh94IjkikRw4+j162PsWf2c4Qb6pCavNhS0ohLzyW+Q3cSuvRDtFhJ3RqZ9lnd3eRprnF2YRd4SiNkS/z/VgMYogSotiEF41QmJ21TZFldmBC374XcbACEgCl0trRcfWDTwmI1UYLkiLenQex4TdNTtRBnOTnO2D5AY/vILHRdlNDFBcNCwzybWtBJo0h+hXkdaBnoara1qW/aT+X2FSRldiWpXS9EIj9+rE0ywXjRsJIyCxK6CGL2MBekiEDRXJRQFAVfgoQsS9j8ar9Fqx2LyT4kkChiCSgEG2vIX/EBDQXbcaa1xZKVinfbVmwJKYRqKrCnZZJ7+a1YHM6YKPErcWr3u9UHYuRz/HKbKg6edOxUSirWsy1vDooikZzWDQEBMS4OmzMef305vtoywiEfCAJS2I8o2pDCfqyOOOIzOpKQ2YXMnCFYbA7jvNUtlnwpkXNNP291KzbzOapXOASS1GUcdQqBRPWxLkrIJpsbfVa71adERAm90sH0217PFIDoEGHdaz/sIKqSwlMcyXOweIP4szzaupFlJIeIvT7SmCDJCNpsf9F0/ctuO0IwcvKbxxTAECWE/VrFgf75tDbTRVQttqKeO7Vx0B8whAQ9r0HwaWVPzdep18QIraIB042r4HKi+NSyEcFhb9mXeK10obEJfM3SpS2iUfWh+ANGewb0x0ZGRtho29dHHXNLjtX6rh1qq0nr0Ku4AtqQqwvLDpOLVOomVSzRLeR0IaGhfeSE8LZVG3fUqlUJuiihCxIQOS8dtdpuF0ROVIeW4SGbq0eU6FwRgKb0yDaTt6vnVFQejz/SZn2XyPeBuVpDkCN2TuYqtChRz/S7Q4jWmAHwmLKXmlfl+FLVRj1lkXPEnLMB6vVVuW8du5e/w5DzplK0+Wsq89cy+Mz7WPvpVFK6DCZnxDkAh0yYAOh7/WPsnPUkztQssk84D1tCEgAbjkJRInbPePgRO8a/PRYvXsyll15KRUUFiqLQv39/Ro4cyXnnncexxx57pLv3u4aiKMyaNYu1a9dy6aWXMmDAgMO2LVmWaWxsNIgqh8NxwEqH+fPnc80111BSUmJ8xt9++y39+vVj48aN3HTTTcyYMeOw9TUGFU1NTdxxxx289NJLJCUlMWLECERRpGvXrgSDQbZu3crOnTsJBAIIgkBlZSWpqalUVVXRvXt3Ro0axZlnnskZZ5xxyMnJGGKI4chj4sSJlJSUsGDBAnr27Mnxxx/PpEmTGDduHAsWLGDs2LGHfJuLFy/m7LPP5vbbb+cf//gHdvvhcf04FIjdM8ZwtCNWKXGUwpsVJFBabDwPVVVQU1VBzfbV2JYl027MBQhdepCyW2WmUnYEDGFCkCLWHt4s0RAmxPh4dYZuuerRFGqbBECHL7zsO82DP0kkeadKrEkeG7a1O6P6JBftR2zXFsVhRdFnK0sSYpZqMaJbQzWH4nFECRNykgc0wlIIy8geO55iP43tVZJOD4LWKyQUi5kc04SCkO71HT2j1UxI6TN1BVEjnjRyS7EIuF3ZtD/u/EiFhba+VZsBb2+Qo6xOIBKkbYZO1slWQZ2pG2dBtoIU8rN3yXvUFm1Vg0jNsFiwehJw2hMRPR6kgJeQt56gtw6rO46cCyZjG9yNomenY8/IJFiiTk22JSTjLgphczoYdsVTrPrvoSO8/qzQhQgzdjQupWj3PON5TeVOBNGCI5iKJAVxJmaS1L43NmccISFMsKEab8U+XK629Bh/A4IgIFtUT34JULQwZCN02JRXIsgKitjyB5IuSChidFWEo05BsgvINiE6O8JE3AYTor31FTFafND7Ym7X7NuvCxJxhU3a+gKCJBt5D64ClfUOtFFvaiy+sJFrg7YsaIKjFE36ik1B4z2htjHyhl5BoIsRejeDascFjaw3BAKPRlrrwkTzGZVOBzT5wONG8EfvvFJRZYip5rYj2wwi2O0gSSiNXqNtJRBEcNhRGr0IcR7kymqorEbQhJDm7SDJhqgiOB1qtZokowS0sVDftwOMm60h7IkWJg4GXZA4GMyCBKhVE43Z6uP0deoJZq5CM8Zk7XTRBQl1XW3ctkbOpfoczbqvKdKGu1wikGLHasrRsfgi7TRlu4y8C9mqnrthp2CM8dYm9RoQUC2nxFDEfkkPrJYcJjFaa1e/HnxpWnVEo4JVO2/NfQbwZopqILzffO3JxrUq+ZsQBAvuRisuxQMKiBYbbboeT9G2b2jTZSTW9DQOJTa9eDfKC/+IESoxxHCEUFRUREFBxIpu5cqVrFy5kieffNIIwe7SpcsR7OHvF4IgMGnSJCZNmnTYtrFhwwYmTpzIzp07keXo6riEhATatm1L27ZtcTqdlJWVUVJSwv79+xkzZgwLFizA5/MxcOBA/vKXvzB79mwAOnbseFhm4cYQgaIoDB48mO3btwNQW1vLl19+Sdu2bVm7di0pKSn06tWLkSNH4vF4qK6upqysjPfee49p06Zx5513HuE9iCGGGA43ampqyMjIwGq1kpaWhiAIjB07liFDhvD3v/+dVatWtWr39mswatQoqqurY+N/DDEcAsREiaMUFo+HtIkTqPrkUxS/H8EqkjZwDA1Fu/CXFLB37iu4MzvQZtippDs6IwgC7nL1JjuQJGJrVIUJQYamDJE2b24FQKmqMaxDqvq4SFunMlxxhep2a7o5DWECUMWHvMiPMMWhVUZ0ykHZUxjVZ7kgIqKIOW0Rwoox61hxObT/GgFnEVoQlocSYceBvyDMs8bDLkGthNCDhbVwbUFWhQ9LoGUfzevr1lCSQ7UEkcJBaoq2sn/jNwS8NWQcdwqi1Y7sECn76kNtJYlwfQ2BFAtWRGxZaViyckkJJ5PYZwjB9k5qvvmGYFkZOeMnUVjyNgDePdvZWfsyruQ2OBLS6HNuGa6kTBx1Mks+it10/xx8ueOxA77nSWmHYLGSkNWVtC5Dkb2NxKd1xJ3Uhu3L38BbsY+ElPZ4q4uoKd6GIoVwp+XQdugvn4HVPPDZEAl0Pa2V8xBQ/fYFsOjVUU5VKFOacfSyLXrGuLtSQdIuRXujgr1RwVUeCVDxpUdme+gig+y0RoKoAVttpIJCdtiwmCuiBAFZs02S4pxYGk1VBGEJobndkWaZpMMg7nVBoEETMHRxwtukChMWUf0DkBWUGrUdwalVIXibwONGKSkz+gWo1QmaMCFVVSPooobefjCIYLEg6yKI/r5e+dDYTBmQZXUdVyuWdT9ejGiILTpcu9UwhmwpFYD9Ix2RoG9d3NI+c5em47gq1QV0ayPRJMY4GtXjKdtVHyRR+6gd1eqynlIt2Fwbz5oyW/ZRFyTMYkLYrR4XZ7kfa2MIX1bEa0wXJPTMEoDEfPX8sTSZBImAFBFvJBlPkXpuNOTq5UMYVWtBszAsRIttkmmCkmJR/8RQ5FrQPwVHrUmMcwkEEgRcVZo4U6cQSBKMdsNOAUFRhRRQRcS6XAu1O0qwJaVS3ceBtDuIYLdRH+/D0aMH1j3LKVj3Gd1GXdHyIP5KxH74xBDDkcPEiRP59NNP+fDDDwmFQnTv3p3LLruMf//733z11Vd88cUXXHHFFdx3333k5uYe6e7GoGH//v3MmjWLKVOm0LVrV55++mlkWcbhcHD99dcD6izSQCCA1WqlXbt2DB48mKysLPr27cv555+PLMscd9xxdO7cmR49ehht33HHHZSXl1NYWMjo0aM577zzSE1NPVK7+ofFhAkTmDp1KnfccQfHHHMM1dXVXHjhhbjdbhITE0lISKBfv37MnTuX5cuXY7fbOfPMM5k8efKR7noMMcRwmCHLMhs3buSyyy4DwOv14nQ62bNnD7fffjuTJk3irbfe4vLLLz/k247dl8cQw6FBzL7pKEanZ59EURQ88nr2Pjefpj3luNp0QA6HCFTsV0MWFBl3enu6DZqIKyHDIDNT5qgiRNPx3anrZCVxT9iUrQBNmSpT46qQ8RSp5KLkimhU9tWqn74iNZvlLyuIiZrBt4mAU6pq1P/a7CMxp636hi5KlFcauRbkZKlNuVUWSbZbtP9a5oJW4RCKj/RHt+rQiTGd6HNWq/3zaQGksjV6efMsdN2bX58x29xH3+zRHvES18g6TeQwH8PmwbIV6xdRuuor5FCzNFUN7tyuSP6mqAoYBIGc/zxmfKntm3wXnUdezN4V75M28ATaHHcGwYYaaAiw9+vXCdRX4ohLIeRrRA4HGHLKvThcqn9LTJg4tAiHw6xdu5YtW7ZQWFhI+/btuf2BJ6kt3IIgWnEnZZHUsT8puf1xxqk/QpsHAxszsM33LIZ1kjYbvJl/PZhCh/VzVSNJdQsos3WNYQFl4sONc1n7Lzkij92mzABbo7pRm1dC1MKKLSbhAUmJ+PKb+ieEJOP1FiHVphs0RRAQAybmOKxdNP5m14hGystNKiGtiwBKUAuJ1kpiJW8TlsQE5IYGY1VLdhtjbFGaImKHYLVGyH7z15wgGNsxQ7BYkINBRLc7IoqYgmwEUzWGEtaqHDTLB/295qKEEgxFKiEkOVJNFtQ/UM3mrZkoIaSr51OgY4Tc2H+sui1dwLJqqwiSOovfrn2W/iS1L8lb1Io43UYLwJejjt11HTQ7J+3rvLko4SlVzwFHdUSostZolTOa2ORrp5bjOcsjfa8coL5mtv9yl6ltSM7I8XNUamKPycpLb1dyRsZ9Pbck7BajhGbje4DoYGsjFFuztDJfU0RPjG0JIfKdAOo1ZjV9LHrIuKIo7HzlIRK69KHN2HPZ+78XEUQRQRZoKNhuLN9r3E1s+frPaesRu2c8/Igd4yOHYDDIq6++ypQpU6ioqOCCCy5g0aJFVFRUGKGaF154If/9738PW8hmDD8Or9fLFVdcwYcffmhkhFgsFiTtd01cXBwnnXQSX331FX5/ZLC/7LLLeOONN4znPp+PW2+9lVdffZUlS5YwcOBAvF4vX375JTfeeCMNDQ306dOHLVu2MHjwYJYvXx773A8TampqWLNmDVu3bsXr9dK1a1duvPFG6urUCt5TTjnFyI1ITEz8kdZiiCGGPwLWr1/PwIEDWbhwIQMGDCA9PZ0HH3yQhx9+mCbt916bNm3Iz88/qi2WDidi94wxHO2IiRJHOUZ8rXrfK4pC3Q/57HxgTiukt0ByzyHknHQRDs2SxVURjrI90qGTTs0tY9ylGimoBdDaV+8wBAaD0DPZzjQXJpTaem2ZCPOjCxq6vcnPFSUCKVY1hDckIzlExLBC2KUFY2vkrL3+p4kSzQUJiBBQuhWJTgTrVjSCHAk0bi5KRPnpW2D/yk8p3/hdpG27g8Seg3GnZ2Nxuqnd/gP1uzeROOAY0k46HV/BXgIlRTjiUknqOwyAUCL4P1xI4Q+fkZjdk64nXE4oxW4Q0o56GSkcRLRY2f7dq9SV7sSdkMXAE++ICRKHAffeey8PP/wwAFZnHGG/F53ZH3ju/djdicZ5EHKrM6p/VJQwXXbNRQmdXNUzYQwhztSmfn0b7zXLpIDILHjFQrQoQeQ5QGJ+RHC0abPfLZqvvxiUoiqZBL1CQBBUQUJ/PaxdRK0EUirmbAZtOSNDQh8ndHJeEwHkRi+CxYLUqFZGiNrNoxwKY/G4kbwm0UEUDDFAzEhXt6mLGs3snhRJQhBFZF+kusN43WJpIb4aooisGH2IWs8sSjQ/BrqlnGk9Q5jQlwmGkBsaULQxUXQ5UQIBBIejhSAieNTBS+6qhkOH49S2ggkaYa/lh+iihK1B7Y89v0ptR7eP0/rj65Ri9MuXrmV4aP3QMxX08zR9nXo8mwsSALKW/xFKUNutz1WftyZI2GoihI/5/NEzhdBKqs0ihbdj5F7DXCnUkHMAm0DTtSWZwuGbX5PNIUrNllGivyccddHBFI3l+9j+xbO0v+Bq4jv2ZMcLU/C07UTdrvVkDhnH7RNOYt26ddx5550MHjz44Bv/gyJ2z3j4ETvGRx7BYJCpU6fy0EMPRb3etWtXdu3axccff8w555xzZDr3J0dVVRWnnHIKa9asMV7r0qULl1xyCbm5ucTFxXH77bdTUFDAnDlz6NmzJ4sXL2bPnj2cccYZjBgxwlhv6NChrFmzhpdffpmrr766xbYaGxtxOBwG2XXvvfcyderUw7+Tf0L07duXzZs343Q6cbvdVFdXA+pntHLlytis5Rhi+BPin//8JzNmzKC6upoNGzYwbNgwLrzwQj7++GPeeOMN1q9fz/79+3n55ZdxOlupaP8TIHbPGMPRjthUjqMcy8dHbGa6r5pOp38MombZIqoWfmlaSqF25zrajfkLYljEUaMRgJJiCBOuBZuQ+3cDwNvOxNho8Kc5cBc1IfolNdy6NSiyMTNYadLIvSafIV4INlvL8FmIeKdnqsQh1aqAYakGJSFOnXBdogZn++la+cUAAQAASURBVI/pCkAgWSMbQ1rlRbh17cyVr1ZouNZpPvd92wMRsk239NCPg2HlIahElD6TVj6AcB5yi0ja91fUTHaNtVMkiYJFs6neqYaIuzJyyOxyLCkd+qMkOgm7oLFoN/W7N5GU3Yuu7U7BttcF9GLp4tfo/Y/pbHn8NnreNx2A4q3fqMemRwcaLfVQJyCHAijIhFKyiKux46soxh2fhd2RQMW+NTQ1lDLy/CdY8mFMmDiUcLlcCIJITspgnAMH4EnNwResQwr6sblafqErgul8skXnOuhVDEYGiQ1wCtHP0YSyZsVJZgQSBCNvQm1Pf6yJZZogYSaGJYc649uXGrGlcdYqBJJE3GV6SLEQdY0pogCiELEA0knjkG5jI6OYvTnNpL5eNaAoUcKE2nCz61ifTRgIgNuF0KxiQA7q4dOiKkgoskHWK7KCYFGvQaVOE0U1SyYlHFYrJUz9UmR1/GpRjdG8Gkx/TduOHAxGCRNyQC9REFF8fkRbs69RrVpEqq1t0a7epr6OIAoosoLs86uPA61XWQGIO1QbPZu2jMOtKVGa6KskqFUKilZpoHi0Ko4ararEr1eXqKLEjwkSADU91G0k5Ktt2qvVcV/whbD4w/jbqzMRdUECwOLXc3kkFFHA4gsjuW1YmkKR80c7rwRAsZoUAU2kkOKdOCvVz14X3iSXFUFWSNgXpKFdZHtiK9eL5NJF5Mhr5ioIdb9N70maoK3r8IJ67TrqdK8s9frxlRWx79uZODOy8eSo3vFWTzx1u9ZjcXpIHzaOd4qtbJg1q2WnYoghhj8U7HY7U6dO5YYbbuCSSy5h4cKFAOzatQuAt99+OyZKHAEUFBQwfPhwSkpKANV26+qrr2b06NGGp/gdd9xBcXExDz30EKeffjoWi4WuXbu2aCs/P98QNvr378+ePXuQJIn6+noSEhLo0qULHo+HL7/8kmuuuYZNmzYxe/ZspkyZgqWVyRox/Dq4XC7atWvHzTffzIknnkj79u3ZuXMnqampMUEihhj+hHj22Wd57LHHuPvuu7Hb7WRlqRNf33//fS655BImTpzIxIkTj3AvY4ghhh9DTJT4nUG020keOYb69auwpaST3GUQxV+9iyKFCVWUgb0NgWQrjpowriWqlYQSjmZjPEU+JI/JIiM++jSQe3U0LDSsq7dHvafP5kUQDIJRjDN8LdT/No3sgkglRVkFSlmFKkw4HS3tW/T90yxkrE3NKjq0ppNXq+KFkV+hbTtcpc4KtizUZgdfOKzV9g8Ei86FmjheRRMtLFpXdeJYJ5JDvgb2fPkqTRVqtkbm4PHk9BqHIIiGjZbVB06rStyl9B5OuG0itioJX6qFQddOx26FnvdNR5HCWHxWrEnJBEtLqF7wFdV8ddA+9xt9M9XFmynbt4bind/9rP2N4ccxadIknntiFqV1Wwl+sxqbJ5H2J0wkoV13FL+CAgQSoolcnQQ1MiKEaPLzp0CyQ0grRDJmf+uWT0GwNYszEGSw1ykGeWsJKia7s+hlZRsgQlOmQFxxRCCwesNa+yYS31RNJZgtmBQFRBFBlg1RRLEIKIpCU6iWQKiBhkAFshKmQ8ax6g/F5j8WdSJfb9cdLZRa4tUDIGk2TaLTgewPICsyIcWH06oR8M0EBcXnN1k/qW03J/r1yojWxIjoxmTDIs8QIppBEIWf1pa5TUxiCyZbKIue0vwT2/qFcBaqAo69VhUt9LHeVamFUtdrYoAtIjpJTqshSJjhqFRfSw6ofTbE31bC21EUFKuohp2L+nLNQufCMordiuhV+xBO1AQXi2h8N9TnRpQGV3Xk4gokmqy2tK88a1itIhLkSHWRtdluyFbTdSISFQwfSFSFQ8UKvsJ88j95GUdyBh0uuAbRon3PWTUB3N9EXd5GkrsPov+t09nwzG0tj0EMMcTwh0ObNm2YNm0agwcP5rHHHiMvL49XXnmFuXPnHumu/emwaNEiRo8ebTz/+uuvGTduXIvl2rRpg91u5/bbbz+geBAMBgmavquPOeaYVpdzOBwEAgGys7N5/fXXGT9+PMuXL2fkyJG/bmdiaIH77ruPZ599lilTpvCPf/yDsWPH8vrrr9O+ffsj3bWjEj6fj127dlFYWMiaNWsYPnw4J5988iHdRm1tLaIoxmZfx/Cb47HHHuOf//wnd955J4888gigCpc6Fi5cyJ49e+jUqdOR6mIMMcTwExETJX5H2HGfSnJ0nzqdlF7DKV8+jw6nXI631xAa92zD7kwm5BBI3tnMoiQYVG1CVm5SXxjRD4tPQnKpN+Lxa4rAoXm2p6pkn6CohKjStwvCpt2I8XEGyWf2VkcUIj7yulARChnChBE8q5OOIY3t0cQKoV61aZE7tj1ER0lF0qJ8ABqO6aD2Q59d3cz2Rp8dLoYjNiitQSebjQDUgI/Nbz5gvJ87/nLSsvsBEHJF+507ktKxJ6RRtOxjCr7/Hx3GXIwn1AFFlBEtTqRtBez68Bmy/3IVHS69maaGUpBkFFkCFESHg/LX3yDoq1X7YHUghwNUlGxACvuJy+rEiElPsvzdO37x8YqhJTp27Ej/DuehKAoF3QIUL59D3hcv0370RDLbD/nJ7ShiZJa2Tn7q56Hufa9X8Og2S/b6A7fnSxdwl2vnrR5NEFAIJEafv4qoCmhNmZHXxSDIjsgy/lQrjjqJUKINW31EvBQb/YQkP6X1O/H5qslM6UW8K9Nk5SYj+EM0KQ2UN+4iFPZR3ribhkB5VB/apQ7CZjFlz9j12fkyisOGoGdM6LkHus1RSO2LNSOdQFkJtVIZFWIh++U9hAjgDsdjx4GCTG/XSOIkRySEWrNkam7VpL/3s6AcRFFSZOAgMyH1PIqDtfEjEOM8Rq6GPv7q7elCrL4di089mURrpFrE/L5hp+dTRRpLWEJKNvl+HQCyzYIgKYhV9VHtEQwi1EGwWxu1fZNdoKCNq9Ym7TsjJEUJ2WCybjJndZjEq2C62jdbQxCQCLtthOMsuCvV/Qi5RcJOAatfQbILWH2alZrHlGliiYjKzSslwo5IlYUYUi3+dAHRsG/SnksNjaogkdmGthdfjex0Er9Hy+GoqyO+cx8a8jZTOO9tnHGpuLI7HOyQxhBDDH8wDBo0iBEjRrBkyRLeffddPvvsM44//vgj3a0/FebNm8cpp5wCQHp6OsuWLaNLly6tLnvGGWdw11130bZtW4YNG8ZLL71EZmYmsiwTFxfHbbfdxtNPP01jYyP5+fkUFxcTDocJh8OIoojVajU+34A28cFisfDSSy+RkJBA3759f5ud/pPhzDPP5MwzzyQYDDJv3jxuvPFGhg0bxqJFi+jevfuR7t5hx/bt21m4cCGVlZXccccdeDyeqPcVRWHRokWsXLmSsrIyXn31VRpMGWwjR448JKJEWVkZS5cuZdasWcyZMwdFURg0aBCiKJKZmclHH31kVCXFEMPhwIcffsg///lP7r//fqZMmWJUShUVFQFwySWX8PbbbzNu3Di2bdv2p82SiCGG3wtiosTvEGIInN27oiz5nGBtBdknT0SRZazeyMcpLtsYleup24QAiOt3IogiFkBI0lhRTUhQrBaDXNIDb5W+XSC/FMFuQwmGDNIPq8WwdTFm9+pBr+GfQf7JMuzIV/s2SLWYctRoxJtbq9jwquSWTqKF2/fW3tdm99a1R9FCYy0BiTBqRoWjNoQiCAQS7QcVJCBCROmzv62mCdaGzY62rlUSSek4EJsrgYxuIxCzM9Dnkuvt6AS0LwPihwyjauEXAOR98ZLRbkqv4dTvVsUi35KVOHp1xZWcy65/Rs+y7bspQEXRetpLHbGINraVfkPprqUktelBcnbPmCBxmPDV+gcBGHfsQ2TnXMyG+C8p+O49xNEiKV0GGyKCcQ5pF51e6WDxq7OsIRIq3FxwaC5IyE4ZvxOQ1XPNWSmoPvcSIICtgVbhqJONtkLulgKbbu2kzyL3Zgq4K9STVc8hkJxWrI1BZIeV9ds/pNq7D4C86mW0TeiNx5FGm+Q+uGU32yoWsq9uLaJgxW5x4fFkgiZKpMZ3omvWGEOQUHRLJymM7HEgBpsxxAcIhawKFLGWL5EDYWw4yKI9iUIqtVQgKWEq2E+JbxddPUONHAnZ50cJhY0qhwMKEdr7v0Y8+NkihwZRt16SNOs7TYxRwmGwWCLVZ6Ycn8MBS00TosMayXnQK1dEQZVbAtpJo4vJ7pYihr2oVn0gRwtLUqIqRJszJBBF5Dgngl9r1yRIhBPVcyUUFzkXHNXRVS7WRrWthg52rD4FQQLJpl4fobjIOW+JTG4l7FKvMcmkHxmagwUQWoqFOkIJqu1Xyfefocgy2Rf8FbGZH60cDtCQt9l47qvcjyczJkrEEMOfDWPHjuWNN94gPj6evLy8P6139ZFCRkYGY8aM4cILL2TSpEnEaxWXraFHjx707duXTZs28fXXX0fNpP2///s/nn76aQBmz57NFVdcQYcO0WO6oijMmDGDvXv3cssttzB37lymT5/OF198weOPPx4LWT7MsNvtnHnmmQwfPpwxY8YwZswYFi9efEAR6o+AwsJCjjnmGOrr1R8RL730Eueccw79+/fn8ssvJxAIMGbMGNatW0diYiLJyckcd9xxfPWVWnX/xBNPcNFFF/3qftx99908/vjjgJrx8fjjj+NyuVi6dCler5ePP/6YH374gSFDfvrkrRhi+DkoLy/nnnvuYdy4cfzrX/+Kek8f999++20A9uzZQ319PWlpab95P2OIIYafjpgo8TuFPSkVAJ+vEpfYDkEUjTDasMsCJw7EvmAdoNpLqEKCifySZQRRJFxcgjVHq1LQiCc9i0J2WBEDYURfCKljG2Pblj37Ix2RZVWYsFhUYcIfUO2ZFAUsFgS3GyzNZsQGguDzRyyc7M08Zn4mbHWhH10mviBISAuG1UWHsFPzjNfCq8PNMol1hPXZ640KoIee2uh2zMXGMvqcbPNMW0sAgvGqlU/y0OPwb92GtzQ6r6N66woc7hRkKUj1/s04Z8+neMs3Lfq/afGLxuPRpzzOgO69jOffzbrrR/c/hl8PQRDJGXkBYb+X4lWfktLl4CG2ltYdfwipxUhGzkQ4Xg+vVv97CkVCjXXULV9Cbc1uLFjJPucybK7ID+yQW82WkK3qbG/JKUSFAevwp6j2M4KMZuAfea+5IKG/LysSW/PnUu0tYGDPy7HIAiVVGyiuVMeTgqrVjG47meqmfcQ50umePgYl3kWCpy2bdn9ATd1eumafSIK7DbIWjCxoAqfsMZVpAIpLnbki+FQWWbBaURSFfd6NlAfyqVOqSCKFrvQjjkQsDgdSIEASqSjI1FKJJEiqrZxGmOuh0XKomfDRGpoLEr+2ukHPjNADug9g+3TA1TVRV27UPLrkSPVHZBMRgdkMqUbN1dH7rtsKiXrmRDAIVitKeQWix220L4A6Rif/OImi1OrbULcvxHnUsdxqUcd301huqVNHRaMiwmgk0nf9/AjHa5V6zsiy/hQr/hTNWqpCHeO9bSPty1bBuIORrURZ74lh1c4sGGfabLOiFk+ZQlO6ZiOltaMLdpK2GTkYoHjOOzTu2kLW6ROweuLYdr8qGPe7Xc0BcmV3omHPZrqcNJnSTQvxZOU2P2wxxBDDnwCdOnWiuLgYv98fZSERw2+DgQMHGrkePwUvvvgiEyZMMLInAARB4JFHHuHEE09kwYIFXHnllfTu3Zthw6ItYQVB4KabbjKe33zzzdx8882/fidi+FlIT09nwYIFDBgwgCeffJIXX3zxx1f6hVixYgXPPfccq1at4vzzz+eRRx75zXIsiouLGT9+PAkJCeTn5/Puu+8yZ84cY3+3b9/Orbfeyrp167jyyiu56KKLSEtLw2q1sn79elJSUrjllluw2X7Z7+36+nruueceVq1axapVq7j//vuZPHkyOTk5AITDYcaOHUtZWRkff/wxXq/3R1qMIYZfhq1bt3L66afj9/uZPn16i/c7duyI3W6nZ8+eXHPNNcybN4+kpKTfvqMxxBDDz0JMlPidocu0pyAerLITEBBqfcYsfh2yQ8S1YDM4HMZMXEtiAlJdfcRqCYyA6nDhfkOYEH2RKabBNDeS04LDF0JsCiK7I6Vvis8fsWRqHmz9U8hAp0MlsgCsVkS3C8JhxMIqQjmpyBqRpXvq6xUToQyVYNOFBHUZ9SbLs2gHoBFlgL+Xuk/OnWUA2CpUuxPf2D4tuhP0RFdPWP162YRgVExYgppdhy36JjTkVq1DJIcWruqAkm8+or5gG7IUJOyNTG1vf8HVNJUU4C8rJlRdSaC6lIBPDetO7jaYtQve/rEjx3df/eNHl4nh0GL+snsB6DFlOkKbVISaUiRnZEZ2SON4bV5NbDB52MvaaW4IVtr1mrxToaZb6z9o9r37IqGmOuSQevLteuYB0nqPJGf42QiiJSrA1wxBBskuYAmqJKy7IkK8GstIYGtS7coS8iPXu63SS6O/gl01yyiv2kzv7hNITeqCGJKQ5ZAhSiS62iJYLaS5ctlbv4a1RbOj2h/U/VLiE9shm4RSfzuVHXaUqUS1rOUYiE3a9k1h0burl5EX3kiamE2u2JN2cmdsgh3RZsWvNLGSeQSIWDPFC0lAy+yIyA6LLUQGwWJpldj/LSA6NOu6zu2NMVXwan3fX36g1Qz8kn4rJl/sA6KmDqVJExJ0EUT/wa2LEHZ7y3wQHZIEoejlEUUjvBpASogQdUKzajoxLCM2qp9TY44TQQFnZURwDiZajZB32SZEvhtMtnuiFDk2YTeIMsgiSKYCj/iCyDLuClXY8+qWe6ZDG2qsp+iDmfhry2g34UoK33+1xS7L4RDeot0IVjtSnIWG0rzWj00MMcTwh0dycjKKolBXVxerkjjKUFxczGWXXUZBQQE1NTVUafaH7du3Z9GiRcyePZudO3eya9cu8vPzWbRoEampqdx+++0MHnzwCSgxHFlkZmYSFxdHXFzcjy/8C7F9+3ZGjBhB165d2bVrF4899hjffvst1157LX/9618P23ZlWWbJkiVcdNFFhMNhlixZQnJyMjfeeCObN29m/vz5AAwePJh27dqRmZnJa6+9xmuvvWa00a1bNxYsWPCLBQmv18sZZ5zBhg0bOPfcc7nmmmu48sorDUHmvffe48orr8Rnskzt16/fr9jrGGJoHQsWLOD88883xu3WsmS++eYbgsEgiqJwzjnncMMNNxyBnsYQQww/FzFR4neG3XfdTpdpT+GTagAFOTeJsFudjS9I4KpWiR7fiX1UYcIiImoztiyJCchNTVHChCAKCFYbclkl0rCe6nKNKkFmX7SR0HF9CaZ5cOwpx1LvRa6oQgYEUURp8qnChKk9w4ZFm51rJhtBDTb9rWaWtAbR48azcg9oPpx1Q9ogBhWj22GdnPJHE382r0ZqKgqWoILkEBFklRATwxEf85C3noofllG5eUmLbTszsglUl9O4azP+cjWo25GZjadjNzJyh7Ft1mOHYY9jOBg6zPw3ghw5H/Ov/vGqk3BjPTbPgW0BfgriihWkoB/romISU3MQHHZA98WXkX1estoMwt1/ILs/fQHBYqVyyxLcKW1J6zEcUM85fYa3xa+KY4JkEtRQBRGHNrldF9UctRLerMh1KdlFHFV+wlaFpbteBiAzvS9ZGf1RAKFJItXZnh5tx7N9/9eUe3ezUfyaksbtRhuCYEFR1LFnd9ECfOFGsjMGUdtNvc70camhi/o8fo86i0pxaBkT4QCKzUJjqJK88Ea6WPuTK3VVSWJBRFEUtihr8Eq1BPDR23EsDtGNT2ogI9gGRZEiAdeavZyghynLSuvChPl9Ha1USOjB2D9q92R63VwhYe5X5KCr6+pir+xxIHoPIKocAILVhhL+8Sqxn4uDChLm525XpFIuLKmPrdZoQQIQmiL7pRcr6GKM7NAqaWSlRTh2ws5G47G3g8cIq5Y1UVjQPjdbk0IwTt2WJApgKswImi5TXQxsaKcHwoOzunWBR8rfz96vXgVZptsZN+FOaNdiGUGGxj3bkIN+PG07sXfuK7Q9fj87v3yXuLg4du7cSXx8PG3atGllCzHEEMMfDfv27cPpdJKRkXGkuxKDBkVRWLNmDTfddBOrVq1q8f4555zDp59+yocffkhpaSlOp5Nx48ZxyimnMHny5Fh47+8EJSUlh+S7dt++fZSVlTF06NCo36o1NerksVdeeYVPPvmEp59+mrVr13LVVVcxduzYFvZehwpz587l3HPPBeDNN9+ka9euxnv/+Mc/iIuL44knnuCaa67h5ZdfpqxMnYTndrtpamoCoKKiguuuu4577rmHoUOH/uw+PProo3z//fcsX76c4cOHG6/n5eVxyy23sGvXLlJSUvjvf/9LdXU1oiiSnJz8a3Y7hhhaYObMmVx33XWceOKJzJ49+4Bj8zvvvENubi7V1dWMGDGC//znP0aOyvLlyxk2bBjWA1gGxxBDDEcOsavyd4aOM54EJwQa1Fk+bpvqkRd2g6MWfCkW3GVhXCt2gd0eHUoNyD6fYethkGqioNp4LNmAaPsJp4QkIyRqXwbhn1AVoUERRRBBcdpUCyVbhMBSLT5sCEEJ2ab2WXKbAlAtAiGXRjxpFQlWn0z8DvVGUahpAI+buuPUG0PdUz9plw+5tELd98E9kIGGXFWkSV5msqFqDkHA2iQDagVE2CloM91bCiq+2jJqt2+ntmALjaV7EGw2Eo89nriMjhR/8iYpx47FnpBCxeKvKPv2U+K696bNyDHE5XTFqpHbWx++rUW7Mfw2kJt8yP4AlqQf//EZdkOovhpbchL+VPBop5BV46BlKxFSVLcD0y4zR7X63xcXpqpgM/nLZiOF/FhsTpLb9yWr92jiHZkAOJ3JVFfswCMMpvPkf2BLSGb7U3dT8P1sbMf0xhoXj7Uxets6DF98U0aKHujrqFUfxBeqZLZiEbD41Q7WeVWhrE/XCWSm9uWbxfcAcMqA+xFFK+3bjCBMiN37v6XaV0iXnLG0TR+M3aZOQ/dLXjZtfZdabyH1eR+TV7iArmnX4E5uQ1UPdVyJL1a31dBRFScSdqs7odiix6lA2IuCYvpRqFAc3AmAXXDSxtUNMSSDCHJI/eGlyEpEaNBDnS0WBAuqlZNJNDCEiIPZNAkRdtuorBDEAy//K2AprVHbTkhAqapGjNdm/Gl2Tkp1bbMVNKEjGDTGYLlZNYQuWEiNJuFCW0b2aSeNaf/17wrhJ4TBGVVyeqaQXi2nVVpgt0VyhjShQnFrNlIOdfwPpmhWVRYBq09dVhcmnJUhginq8qF49dwxqoMU1V5QFxl0QQLU6iA908csSChi5LoQw5Hwa39K9Hhu80JD4Q7yv/wvjoQ0Op16FQ5nUov97/83tWTcW5KPPS6FHuOuo3DVHEqWfkZiahogIIcCeHr0pu0lV7Lz/2Ljewwx/NGxZ88eOnbseEQn3sQAoVCIZcuW8eWXX/Lhhx+ye/ducnNzeeaZZ8jPz+fVV1/lueeeY/369TzzzDMkJiZy2WWXccYZZzBy5MhYlctRgMLCQuLi4n4SuV1ZWYnX6yUrK+sXb6+qqop///vf/Pvf/wbU6oLzzz+fe++9F7fbTVZWFlarlWeffZann36ayZMn43a76dSpE7m5uUiSdFiCnb/77jtArfRp27Zt1Hu5ublMnTqVjRs38vXXXyMIAv/73/84++yzjaqIxYsXM3HiRObMmcOcOXM45ZRT+Pjjj3/WOa63VV1dHfV6QUEBX3yhZiXecccdnHTSSb90N2OI4YBQFIV7772XRx55hOuuu44ZM2YcVFRYtmwZZ599NnfeeScTJkzg1FNPJTc3l/z8fABef/11rrjiit+m8zHEEMNPRkyU+J0iWLwfRJFwt0TslWqlRCBJIHlH9MxZqba2xbr6TGJFkowqCkxknmCxgCAi5rTFUViDr3Mqvh5ZOFfuQrDbUXx+5OpaxJQklXDShQmdzIrTvDL0GbM6AXiUnW1NPTKwNUo4agIR/3Ptx6S3a5L6XGz541K3eAokihSu/pSyzd8hWKy4O3Shzel/wTG4Lxa3GzarJG/9+tWEmxqI79Gf9FPPxpaQxPYpMZLqSKLvndMJ+7zU7llAw8KlKMEQgs2G7f+mqaSmANbkFGypqRCSkGX1upCDAfz78kk65+BhceGmBnwF+/BVFCE6nDiS0nC6UvHXlFG8/BPCjfUk5fSmXdexVO/fQkXBGvxN1XS88EYA2o2/mPxv32bX3Odo02ss+7csoEt5OXvefYaCV58hadhIkjsOwBafBKhBvQHtt5u9TsBRq9rSgCqKKIJaKRHyiAZpa6+TDEHCG6+wO+97rDY3qbkD+ebrfxr7ood9A5w8ZAq5mccxb82/DvAD7DFGjXuIPds+p7h4BVs+fYKOIy/CnaHOzqoYqF5P6T8o1PQQCWmiXNpqVVz0dOpNz7gmthV8TjIZZKD+CBMEkeGO09kU+B6HxYNFsIJdJeUNkRVVmDBXPgjNcgR+UZi1rCDarAiWiNjRavWFXkXR7HVLm6zIWCgIEbK+Xq0WsdQfXd67spb1ows8+vFVtMwh8ed4pes/HCwWhEAYLCJCOIA/Jzq/IuyyGOOq5BIRA+rx86ep27b4ZUNICLs1cdquVzwokQo3IJCk/hfDRF0D5v+SA8RyL/7qMlwdO2HxgRwKUr5lBaWLPyUupxsdxl+GTXSw9qWWY7V/Xz4NJXk05G3BndkeQbTQdsz5pA0ZQ9WO1YR9jTQU7CRQXPjTj1UMMcTwu8aGDRuiZjLH8Nujvr6esWPHsnbtWjIyMjjjjDOYMWMGJ510ElarlX/96180NTVx++2309jYyMMPP8ytt94aywA5SrBhwwYeeOAB5syZA0BqaiqJiYkoioLT6aRbt260bduWhoYGFEXBbrezadMmEhISOO644w7YrqIo7Ny5k+XLl7Nr1y5ycnLo3Lkzubm5vPbaazzxxBPIssxjjz3GkCFDeOONN5g2bRqZmZnceuutdOzYkTfeeINbbrmF7t2789lnnzF27Fieeuopbr/9dsaPH89VV13FOeecc8jOpdWrV/Puu+9y+eWXtxAkdDidTubNm4ff729VaBg1ahT79++noKCACRMm8NVXX9GmTRvWrl0bFe5+MPzf//0fa9eu5YILLqCiogKP5jQwevRo3nnnHS677DIjWyKGGH4Ntm3bhtVqNb5Hi4qKuPvuu3nnnXd44oknuP3221sV/WVZZtasWeTl5bF7926GDRtGu3btWLZsGUuWLGHWrFnIsszs2bNZvXp1TJSIIYajEEcZTRzDT4GiKDQuX4m7Xx/SttgAhWCCYMyMdn67idZMKcwzfXVyTfb5DJLJPMtYsIrIhfsRc6JvhBStHBSrFbmu3phVq9rPHACiYMyEVvQZvtrislMlnWSH+rpsixCdOjElW6PtOnQff0tQgWLNgz01ejaNHmramOPEbVdDoQPJWvBrSG3HWaJZyDgPfBkIsoLVpxj9EmQFRYBggkjlzpWUbf6OrGNPx3Xq8Yh2O7v/HiGwJEmiXcU+QnVVuNp1ovB/LT3JYzgyCNZWsXPmwwCkHnsSruwO+JsqCTc2IChq3kqopgp/YSGi1YZgs6BIMooUJvXk00npNhR8ENSKK6zaBHF/OtR8/gXla9SwcpsjDkkKIocjs9gTc/uSfupYnBnZNK5dTWNdEWlDxlDy/VwCNeU4kjNwJWfS49zbKF/5NcWb5tPn5Ftw9u9Il8n/pGzBJ1Qu+IJK4QtSh4wheeAILGlJANg1qya9mki/DmQrWKoVJLuA1RSILTlFZLtI3vp5NDQU06f/pXxnEiTMGCdOAGC+/L8DHtfRp/4b0WqnS99zSe81kp1r3mXvkllYt84jeex44tOGIioCNT3U/jXmCMQVKhSemgJAuwX1ZJS52AZINgXCGAR/gphCV9tA1gcXsbT+I9JpQ0dLLyymr7EoiyRoNezaqAjQ/psrDAwCPhyKtmpq3oYeNq0JENYO2g8ypdnIe7D8h2CIhuEdDGHIVaxVjaTGI9nVvhWOU3/8OSvV9j2lWqXL7nq1H3sKUfQ+HsBWSrTbW1RRtCbOND92EbOlVqAv27xSzm6PVE3ogoQuXlm07x67FUeZOvYGU91YwopaFRdWkLRqONkh4kvRw1giofGiBPYGmYZs9T2bVyEYH/mBIply1GWTfbIuRiAA3hDVP3xP5coFSAEfSd0GYXXHU7NjDZKvieS+x5Bz3PlsePHOFrvd/2/TCdRUsEuzVLNY7bjT2iE51Eo60eagsTKfpoI9KOEQosOJ6P35QlgMMcTw+8KOHTtYvHgxb7311pHuyp8al156Kbt37+bbb79l1KhRLSZPXH311TgcDmpra7nyyivp1q3bEeppDM3x6quvcvXVV5OTk8PMmTMNG0Q9NNnr9bJjxw6WLVtGQkICgiAQCoVwOBzMmTPngBZKiqLQr18/Nm/ejCAItG3bltLSUiTtPsbhcHDfffdx2WWXkZiYyJQpU0hPT2f8+PG89dZbXHvttTidTiZNmsTpp5/OWWedxbXXXsv69eu57bbb6Nq1Kw8++CCTJk0iNzeXf/3rX0yYMOFXiROBQIALLriADh068Oijj/7o8j9W+dC+fXtWrlzJzJkzuf/+++nWrRsjRozgmWeeYdCgQQdd12azceaZZ/Lpp58SDAYNUUIQBCZNmsT8+fO56667+OKLL7j44ou57LLLfvqOxhADatXN/fffz5tvvonT6eRvf/sbe/fu5YMPPsDtdvP2229z8cUXH3D9l156iRtvvJGMjAwyMzPp27cvoJ6jiqLw3XffsX37diPzKYYYYjj6IChKcxalJerr60lMTKSuri7mr3mE0XHGk8jBEAV/v4fk00+hU8aJAKooAWTP2g2A4g8gN2ok10GIseZ2TRE/cRFLYgIkqjOZ5aJmVkca4STY7RAOIyTER6xGXJrioIeOWkyh1LqdlO76cQBRQrYKKNp6gjaDVg+31qsXLCEF1+Jt6jLpqQDUHJOFGMYgqmxeBXeZSsjpooQucsTvVIk9f7s4wnpItVPdvi5cCDKIIbmFKAGwZeXrhJrq6HLC5Wz46GFi+P2g182PsuPlB7GmJNP5SjVHIqTZvei2MPosa2sTBNJVYlHQg3x1ntWnk//a+SIJ7J/2FHZXAh2OOQ83CfiTLYR9DTQFq0AQSEzKJeyEqs3LKf5WJfhzTrmUshVfIfm8dB51CZ5OPQCw1YXY8vUMfPXl5Iw4F88xw7CGBKSAn9K186letxRFCpHQtS9ZY89ByEoCIK5Q9eg3ixIAtka1n2IYnNUqoSzZBJbN/SdtO4+kaNd3rR4vXZAQBvZCkoMoioyiyHyx4sFWf3gdd8ET2vGSqC7dSkXxBiqLN5B18RXE9VED8CwBCLsjY5O1Uc94kCl9+FF8SiNDGI1HiPjwKIpClb2SMqmQEmkPnSx9aGvrjENwI4YjlkUtxIRWbIr0x4okRTIjTO83b0sfKwWHynwL2nhn5OcIQgtRItRetdcT/epJZWn005SbBGAQ8C1ECZsFuYUoobaXsapBXadEte+TSstaERMOMfT9d7X80St63NEv6NVyDruRJ6TYIlUSoIoSoAoSELHps1eppRD1ndXXZSuGBZpki3yHmMUG0aSJ6HZNskkfl0xdVmSFxq0bKfvkfeRQkNQ+I3CkZBoCYmLnfqQMPp6drz3SYj91uyaAwq9n0Vi4i97n/Z39a76kfOv3uNt1ImXQSKrXfk+gppzU407CkdkWZ1Y7LE4X26b+uSrjYveMhx+xY3x04cMPP+SCCy5g27Zt9OjR40h3508JSZKwWq3ccsstPPjggyQmJv74SjEcNViyZAnHH388TzzxBHfccccha7eoqIicnByeeOIJJk+eTGJiIqFQiIKCAvLy8ujWrRu5ubkoisLEiROZPXs2TqeTuXPnctZZZzFw4EDef/99oxpg27ZtDBkyhA4dOjBr1iz69+8PqMLk7bffzhdffEFSUhI33XQTU6ZMwWI5yASPA+CLL77g9NNPZ8mSJQetAAEIh8N4vV4kSUKSJFJSUg66zdraWmbPns3zzz9PXl4eRUVFJCUlHXQb27dvZ9iwYQwfPpxPP/0UhyMyA6SxsZGZM2fy5ptv8sMPP7BixQoSEhLo2bPnz9rnGP588Hq9TJ06lccff5z09HTuv/9+Nm7cyMcff0xGRoYRqh4ff+AcR0VRSElJ4bzzzuOll16iZ8+eFBYWctFFF3HmmWdy1VVX0adPH6688kr69+9P3759sf8Em9o/GmL3jDEc7YiJEr8zdJzxJADlM98gXFXNgDG3A2DxKzS2E8la1oC4owAgSpRoNdSVCNEmh8It8ifMogSAtK/QIMBEvUJC/9+aKGFsRCOjLILxOJCqsUVaGZ4loFVu2ERDNPilogREAqvd5RLOCnWarSW/VF0/Xa2q8HVQf7CEnSKyVRUiWhMl1P866axlYCgK23Z/RPXWlQC0velmnLm55N1xOzH8PnD55Zcze9H3ZF9/M4CRu6CXGYmhyPOfKkrI9U0UPfUEye16kXvMBax8s/Xz4dgLn2TH0v/SUFtIyFtHzgl/Yf1HL9Kp9wjqSneS3vcE2gw9BZffhhQKsG/tJ1TsWY1gsSEIAn3OvBNHfCrzn72Kfqdcxf6N80EUyL54Ms422cQValY42jUTjFcrjBy1ShSRC2BvlNmy/DW8dfvpf9bdiFabkT1h9UmqEPDd55Qn11HTuI9AKBJALFhtJHcZSGrvEez433SjrHbccQ8xf+m9ABx/zjSC8RY2fzEdZ3waKdddhk3VA7F5wdsuMial/6DgqJUIBb2sX/kSsreRwZyAS/BEOiyIhB0K3/kiFRtZQgf6WoZHE/SthFuDSZRoVlkQbfsUqaYQ7DZagyFK2O3gUYWZQFt1TNHDmK1N6sE2ixLVQ1ShQta64a5U3wvGq/2J2+fDUq+W3ghhrW9apZnsVMfW30SUaCbstCZKtKiU07MwZDlKlACQ4tT1g0naPmiVcJLb0kKQgEgukC4sWPyRSghzjkowLvJYMuljYZNeIluheu5capZ9h2C30/6sv5L/v5fof0tEbNjw7MGFg/5/m44YhILv3sdbmk/2iDPZO++/JHXoQyBYT1PRHgSrjdwLb8DRSZ2xue3BP5cYoSN2z3j4ETvGRxe8Xi9t27bljjvu4P777z/S3flTIhQKkZWVZXjfB4NBww8/ht8HkpKSuOeee7jrrrsOWZvz589n/PjxfPnll5xyyikHXC4UChEXF0dGRgZFRUWUlZWxd+9eLrjgArxeL8899xwXXXQRgiCwbds2LrroIjZv3owkSZxxxhnMnTsXQRDYvXs3L730Ek899RQnnXQSn3zyCW63+4DbbQ2VlZV07dqV8847j1dffbWFZY3X6+U///kPX375JcuWLTNCrQHatWvH1VdfzVVXXUV2dvYBt1FYWEj79u159913ueiig1vSgppvccopp3DGGWfw3nvvtfD1nzlzJpMnTzaez549mwkTJvzUXY7hT4b6+nrGjBnDDz/8QI8ePVi6dCkpKSm/qK309HTOPfdccnJyuP/++7nrrrt47733KCwspF+/fnz//fd/+vuk2D1jDEc7YvZNv0MoVgVbdhaB/H3U5wokb1fJnbgize6oe3tDmDDW0YQJXZxAEFHCIdXWoxn5pJNw4eoaqNaCpFvJVlDf0F5XFOQEzQYq9PNJMr0SQXKKRiWCZI9UJ6jLNOuDAOEBXQDwZqtslU646oRyINGCs+Kn9kEwtm2EomrihNRYT8He7yjft4ZwyIfN7iEUjHjBi6ZZIzH8PpCUlESouhIlHEYw3Vw7Vb7XII1lO7hK1RMipHHj+jnlrFEINtUR2JNHU0MZZfmrUKQQ7R29Sdjja3W748QJMGE4SW16Ul28We1Lbh9SUlLoMXoyJdsXU7jxK+p2rSOhQy+SEjrSddCFpGb3o3jbAhoq89k05990Ov5iTrzpZTJ6HIurXS47PngS365duFOyDdJWaqYPBpIELOVNWOwOHA0Q1mbrp7bpTU3ZNlbP/idWm4s2OccgxHlw+i2Ulq6nngLilBxSOw8jPi4LQbDgT7Xiry6latsKqrevwp06m8ScnmRLHbBZXfTvMQlfoojFaqd8zRqaaopx9e6p+vfbIteop0ggvkgyBJRAkgVHrYdhSWeyMvA/fmApQ8KjcAgRUlz0RwSEHLpQqOwmTk6go70fgiBE2RXpAqpe3aUEtHCCZhkQgihEqiUONN5hCoLWf2SGw+D1GcIEgK1e3bmGTloIeLLanr0hLmIldBBICS4s9T7CO/dE+mpCS1Oqn4kDCDatLqrbXGnh2IIoGNUiB4LicSLFq5+XEG79+6Cpjd04P2WrE2dZRGloLkigqIKEIknYGmVwqN9RkgMsIZBMvFPYFVkH1HNNamykZtl3pI45mdTRJ7PjflUs+DEhwowNT6vLZo/6nuptK9nzxasgiLi69qD6q1l0vlyd2Zn3xpM/uc0YYojhjwGPx0OnTp0oKys70l3502DVqlVMnTqVzz77DIC4uDgaGyOTJn7JDPUYjiySkpLYunXrr25n/fr1rF27ljVr1vDqq68yePBgRowYcdB1BEHgtNNO45NPPmHw4MFkZGSQkZHBhg0buP7667n44ot59tlnGTp0KH/9619ZsWIFb775Jtdeey2fffYZl112GbfddhuDBg3iiSeeoK6ujldffZX9+/fTpUuXA25XlmXq6+ujqhXi4+MZNGgQr732Gq+99honn3wyw4YNIyUlhUAgwNNPP011dTXjx49nypQp5ObmGuf7V199xb///W8efPBBTjrpJMaPH8+YMWPw+Xzk5+fjcrmora1lxowZAAftmxmjR49m9uzZnH/++Vx++eW8/fbbUWKJuTLihBNO4IYbbiAzM5NRo0b9pPZj+H2iqakJl8vVatbDwTB79mx++OEH1q1bx4ABA35VH/r06cMrr7wCqGPILbfcwiOPPML8+fMZMmRIjISPIYbfAWKixO8MilUj6Jt8CNpM1JoeKpHmLoFA33jSZq1vkSmhE3OGJUlUo9psXN25iQPPLNLbEdtkqutU17ZszmZB9IUilQ4+lSAMtU0k7FJvmkSt4kDW7dAPuMVfj1CC2mf/0FwAmtI1u5AGXexoPdBaR2XxBnaseju6zaCXthdchmBzYO2Rg8XjOcDaMRytmDBhAs8++yxSQSnOtu0QAz+/DVkKs+OrFwjUV2JzxJGU3JHu7U7F6Tj4DVDV3nXsWROZ6e/fvAWAFbPuAu6i34R72b/+a7wVBVTuWEFV0Xqyuo6k9+jrKS/6gZLti8lb9Ab2uBTajjkXmycJAHe73KjtuKpkAk212FwW9q2fi7ckn1BjDYLFis3mpvPgCZTuW0lN0WZjnXDIR3nZJsKFTUghP660bPoMv5rk9K6EtUoif7KIC1A69aVNnxOpL95B7fY1VO9YRVlgYYv9taWlk3b2eSQMPQYCEFesXnuuSon6Duo4ZgkqxG+qiGQSOJMZlnkBy4rfYTOr6Kz0IklIA0VGBDLJoYxCmmjEgpXd8iaSlCxShExEl1Ml0QURORRWK8LCYbBaERwOQ5hoPh4K1ohAq8gKosccUtAKiS9qlk2KAg1eHDtUoTLcPqPlsoCzJhIu7sxXBV9qVX9TZ51aPiKHwqDISHDATItDgh8RJgxh5qeIF5qFl+JQP0vJ01K0ELSizGCiOv6G3IIRbg3gz3Qaz1WhITImh32NlK9dSO3WVdjciXS48Dqsbq2Kz/RlJzlBUCJ2ZQCCX6J24QIAHFnZv+rLZsDN03FltAPAmdYWWQpRtf57ev7zKRzZ7dj6yJ+zMiKGGGKAmpqaKFuTGA4PFEXh1FNPZd68eVGvn3jiiVx++eVkZGQwZMiQFnkSMRz9uOCCC3j//fd/VRvr169n4MCBgEq4/9///R/33nvvj1bNXHrppXzyyScA5OXlkZeXR+fOnUlJSeH9999n8uTJTJ8+nblz5/Laa69x2WWXcffdd1NWVsaLL77I1KlTefvttzn55JOZMWMGOTk5ZGRktCD9FUVh9+7dlJWVMWXKFFavXk19fT1ut5vevXvz/PPPc9ppp1FZWWmsM2/ePLZs2UJNTQ0+n49JkyYxdepUcnNzW+zHeeedxxNPPME777zDxx9/zD333IPf72+x3CmnnMKCBQsYOnToTz62Z511Fm+//TYTJ04kOzubG2+80cjyOPbYY43lHA4HlZWVnHPOOVRWVsauxT8gVq9ezeOPP86cOXOYPHkyzz///E/+nAsKCnjjjTcQBIF+/fr96r4MGTKEJUuWMGbMGJYuXcqrr77KlClTOPXUU3912zHEEMNvg5go8TtFcF8hluRkLI0KUpzKsjS1UYUJABRFndErK61zMOYQ12akkz4z1tK3O8qufHWRZkGpckkZDWcNIj5PJYYkpw1rTRM/FbJFAAEUzapJJ6DM4oAuXDQXDHR7J8khENRn42q7YNHFDj0PIAD17SPTxT1lB59jbAlG2zbJViFKkEhM60J8u26kdRqKr5fmVyvB9jtiZNTvDZs2bQJBxOFIQhEjodBGdYEeHF+FQWS6S7WQ9GoZRZbYtmQmwYYa+g64go3rXv/J23YlqqJex/5nU1eRR+H2b6Led8Sn0PH4idgbFGo2Lqdo/zK2L3md9gNOJ6PbsZTtXApAsLGa/E9nkjbgBAC8eTtwZXagsa3W4WovW2Y/hGi1G2HbbY49A0EQ2b90LtuWzmzRtw59zyDulLEA2OpkBEHEElTwAY7ayFhh8+lssEBiTk/Sk7ujKDK+mlJkKYQtORVXo0go2ITTlcT+EXZcpdqhNc2oSdgXxpNXq+YOgGrxZhFBVnB50umcfhzbKxayhnL6KSPIELIRrDackgdkaKCGBJLJEjqQJCWhyCEEiyMiTIAhTCjBEILNaoyNza2PRC0fQva3VKh0iziCmpBhHpdMeRLhDhnUddWqKHQrsJ9T2tDa2HyAsfqXQh/jRaeW62CaXXog6PZNgiiCVk0nHCRcMZAaXaajiAKu0ujqIb06xp+k7p/VVAFjCSkogkLVtpXsX/kZKOBObUdDyS4qVi2gzehzUEIhAtVlWDPSEe3qZ6cIai6M5PfjXbaC2p3rCJQUk3z8WNydu7Ljvl8+Vq+fcRvpQ8ZgdcfT5eLbady7nfy5rxIsKsKh+U3HEEMMfz5UVFSwb98+w3c+hsOHvLy8KEHikksu4YQTTuDyyy+P2TX9zrF582Y6d+78i9fftWsXp556Kjk5Oaxbt47U1NSfvG737t0B2LJlC6NGjeKFF17gyScjlY/jxo1j3LhxNDU18cADD/DWW2+xaNEiXnjhBSZOnMjDDz+MJEnMmzePbt26cd1119HY2MiSJUsYOXKk0c6sWbO4+OKLadOmDSUlJVitVt555x0+/PBDPvroI4YNG9aib5s2baJPnz6AWlnxY+RvQkIC119/Pddffz1+v5+1a9eSkJBAbm4ufr+fcDhMmzZtfvKxMePCCy/k1ltvZdq0aUybNo3KykrjOHft2tUQdCZNmsS1114bEyT+YKitreX//u//eOmll+jevTvdunXjpZde4sILL2T06NFUVVVRUFDAgAEDWlRPbN++nf/+97+8/vrrOBwO3nrrrUNyfnzyySdcfvnlvPrqq1xzzTW89tpr3HfffbFquRhi+B0hJkr8zpB//Z0AZH+8mv3zZ1OzeSUpfYcT9kDSbpnEzzaDKEbINlFQvc81CySlITIzWBAFBKvNINeUUEvmTOiai7Jjb8RjvXMuAPW9D+z7p1dISAnRAbiCrBgzYVtYMf1G8GZaI2Sq1gXZGpmxG3ZqeRUNISoL15Gc3QeHJxWXGMfQXlcC8PWKmF/w7x0+n4+77n8cV3Z7SI/78RVaQWXxRmqqdtFv4JWkpHUDYOR5T2D1RYjj7778e6vruuLUXAGX30ZAdhASomdXrn4tkkVx0gmPkJnel02Fc9j3wxzqynbjrS7Ck5yNw5NCddEmrElJpPQ/loql8xCsNtKHqaKCbq+mCxIAWXG9kLtlIdXUUbZ1EQ53Ml2HXoQUb8dic5IgplKnLSs71JvFxL0hGrMjP/YT89X2mjJtxBUFtMd2BEHEk9QWUK+lkBvc5Q4a2thI3AWOevXYBBK0nBlRMOzZFIeVUHoc9pL6qGMRqCzFgpVUIYs4Ra1AUcIhREEdk5y4GepWfYJ18VQJBBAcqjBhVEU0y9PhINVReoCzYLUaWTnNEcxRx0AxICEGw9rxOvBXatq6Bizl9dCgCgCyL5qgl5sJv78lLElJEVsr7bvDCPQ2BcI177MBqxYOrllkhRJsCCEFpdk478tyGWOsIkDIDTaTlh3yqO/ZmhQURSZ/1RwqtywlpftQMgefxI7/PYXodGFxuNj99lP4K/eDLGPxxBPXpRfpo07FFpcAkkLBzGcI1lXhbteJrIk3YO/ZiZ33/jrxuN/t07ElJCMFmkBRiMvtgWiz4y3YhSsrRkbGEMOfFWlpaZx99tn885//5IILLoiJE4cBeXl5bNmyxbCJmTFjBjfddNMR7lUMhwrbtm1j8eLFTJky5Re3ce+99+JwOFi5cuXPEiQgYj+Uk5ODKIoHDH92u91MmzaNSy+9lEsvvZQzzzyToUOHEgqFuOSSS/j444/xer1ccsklLFq0iOOPP57du3e3EFtKStRZhOPGjWPixIlMmjTJIHFvueUWLrroIhwOB23atCErK8tY7+eSuE6nMyos+2ChwT8VGRkZ2Gw2Lrrooqj2XC4Xsizz17/+lXvuuedXbyeGowtVVVWMGTOG/Px8pk+fTnZ2NhMmTOCCCy7gww8/5Morr2Tv3r0ADBgwgPPOO4977rkHURTZvHkzgwYNIjk5mVNPPZXHH3+czMzMQ9KvDh06UFOjVp9fcMEFvPLKK0aIfQwxxPD7QEyU+J2i+Ov3cXZYQX1VHmnScOwaj1d3Rh/sDTLuFXkAKM2rIKwqsahIUotga8FmRXS7IyTernxDzDBDcdsJaDNbw33UaoHUZaVGsOnBoAdF63ygpFs86a9LskGE6tUKegCsqFUx6O5SYkgxqiZsjVqehvZcn3EbcotGxYXeniJyUF/3onVfokghSrcugjVqGXHmZRfy9RsxMeKPgp5jL8NbVUinc6/FqpGiNm2yuJ4nYlTfBBVjxrtiumSq9m/C6Ulh/dqWIXQHw3z5fxwz6QkQBLbu+ACAtJQeB1w+mGQDbHTPmsQOSaKqeCMWqxNvTTGdBl9AdufjkQd0QhBFAg1VVK3+jvjeA7AnpWB3eEjI7U19/ha6DJlIevtBCILA0hm3kZr7JgAdu59KQnonglrFld8m4ClRd1jPQgCIKw6pFU4aZKuAsypM2GXBEoxcUPZ6ldSOz2sikK6S+/FFIWz1QbztVKEyMV8dY4LxVhRRQEpwITvUg+vtppL9nu1VBMJeypQCUoUs+jE8ynqns9KT/eQRwE9p026y3F0iBLokRUh2HYqsEu2S1leTKGGMi5pFU9TY6PNDnNsQeMLt0lp8RrLdihgMo2j2T0nbf7zy4KD4qRUSJgsmczh3FKxWRM1eCS2QWtL2IehRn9fn2g2xNuGjHw7YLaMdXajRK0s8rQs3QkjBWa5eYPVdW/8hHHKDs1qrQKoJUSDsouD7/xHyNwIKHYdeQGbn4dQUbUUOBSAE5cvnEd+tL0kDjsGRmkntxlXUbViJM6MticcfT7C6mkBVGdaUVLKumszuew9daKYc8IOiWrfJwQByKIjcPgFvfz8d334UgL2X/POQbS+GGGI4+iEIAv/5z3/Iyspi5cqVMVHiEMLn83Heeefhcrn4+OOPAejRowcXX3zxEe5ZDIcSd955Jzk5Ofz1r3/9ResrisJHH33EzTff/IvITj2MOiMjA7/fT7t27Q66fL9+/Vi0aBHt27dn+/btACxcuJD9+/eTl5fHwIEDWb58OZmZmdx00018+umnWK1WzjvvPKONkpISQ3Dw+/0kJSVhtVq54447aN++/c/eh98CCxcuZPPmzbzxxhtceumlUe/NnDmToUOH8s033/CXv/yFrl27HqFexnCoIMsyf//733nxxRdpamoiLS2NFStW0KtXL0PI++CDD4iLi+PKK69k+PDheDwerr76au6//36uuOIKcnJy+OKLLwiFQjzyyCNcddVVh6x/iqJQX19vVMmtXbsWi8WCJ2arHUMMvyvEaup+x3B17Ubj+nXU529Dtqgzk/VZqDoEQVT/LJaWIoTdhmC3Ibrdxl/U+1YrgtOh/tntCHY7irtZcq4Jis2CYrOo5J0goFjUP9lhUf/sR8/ppogQjBMIxqnHTBHVP7/cSMmmb1RBQpuNkv2XK3F3+GlBYDH8PhBqqsditSPaD2w/E4VWNAebIw6/t5oVK1b87O0LgkBOv1OxuxLJ6TWetgNPOejyiqIQDvqwOtSbLCnsx+rw4EjJxJ3dic3T72DTk7fR9oxJiHYHhe+/jORXZ7XHd1BvGquLN/Hla9ew9AO12ipn0OkgCNRX52P1y1hCqpe/P9m0j14Fm1chkGglkBgRHUMeC2JYrXzSBQl7vYS9XjJEHQBHRRPOojps9WoVQNw+L3H7IgHxrvIArnJVPLD4wlh8pmotRWFX5WKaaKSj0rpo05cRWLCSz3Zkn0+tlDBZMonx8QgOh/EXdUxDYQSrzRAkdAg2mzGGEedW/0yw5hVjzSvGtmEPtg17sHgDWLwB2JLXah9luwUhLCOE1YBm2efT+hpS/wKBlgLKEUR4eG/Cw3tD+zbqn34MHHb17wCVIwDhJCfhJCeyQyTsVv9aQFD/BAVc1Qqu6ojwLUlB9nzzX5zWeHp0OYtB/a4is/NwAOpKdwIQ17U37SddT855fyVl0HFY+3dB1rJOXNm5AFjSkkg6YSzh2hr+n73zDI+i7MLwPbN90ysJISH0FmpAuoIIIoIFRBEBOzZAFLBi+VRsKIgVVBRBUVAsKEUUKQLSe03oJCG9Z7N15vsxsxtCLwmhzH1deyWZnZn3zOxmdvY87zlP6tTJ1H19PPXemnje56TB6xNp9NJE7Ho7WZuWEdSiLW6TxIHfPkfvH4i1SWOEHK2XvIbG1UxkZCRNmzblueeeIz09varDuWKYMmUKCxcuRJbLPiv++usvQkJCTrOVxuVGWloaNWvWxHmeVaM2m43atWvz7bfflnuvnC3dunXjpptuolmzZkyYMIHbb7/9tOtLkkRpaSn+/v6+qocbbriBwMBAn6dFUFAQv/76K3///TcjRowAylcuzJs3zxer2WzmjTfeIDs7m6SkpHOO/2Jx9913U6dOHfr373/Cc61ateLLL7/k33//5ccffzzJ1hqXG3PmzOH9999nwIABTJ06lbVr19K4cWMkSeLgwYMAPP300+zcuZNJkyZx991307t3bwoKCoiMjPQJ9AMGDKBHjx489NBDvPPOOxUW38KFC1m3bh0jR47kv//+44033uCuu+4iJiamwsbQ0NCofLRKicuYyA434k45yqF506jR827MEc0BKI7WY7Yps1PLCQ16HWKg0qpG9njguHZNUrGSLBT81NmwJ2nn5AhXnvO2XPGY1FZNYf6IpScx0VYRnRKSQfQZXaPOuPa2enL5K0klnUP2zcb2juGtopCMZW0/AKU1iHrf6bao2/hmtHv/ln393L0z311WrycF6G3lb1x3/3JM4kqSMISEEVC3yWkrKzQuP6IjW5K27W/2/jCRhCH/w2ANwFSgvMheYc/7vnGbBayZyh+iSzXrPXyQ9AP/USOyTTmTuBU/jz6r8Vd/NwoYdcrn67UZwP5NP2PQWxD0Bpz2IiRP2Re14NA6NE98kKWzys/I1vsFEHvnwxz4agIFq1cSY+2Mn1SPVARyj+5g+PDhTJ+uVEjkHtqqtKAJPslsMK+HRpbHZwx/7HJvRZLyu3c2v/K8V6Qora4IKNYD+T6/GU+gktD2Xgd0pWqrIJe3LEVAdJT9s4mCHhMW/Di5cXiwEIZJNmOkLCHsrZYQ9OU/3ryirOyRTlyuU6uzTtaP2lt9cZovykJhCUJUBGJaPgBSkOrVYD1zf+uyKo1jrkXeyojjKiZEtRpN9JbL60TwV2cDlSjnWC4p7+0ju9y+ijm5mpLE8VhUTwj1XLgtAiWqD0lOY+UaX3tWCadCDlVeD8moGlv7K/uzhxow55T/HLBHWtXnlGOQdGAsLn/ddQQpz7n8/Amr25rcvRvJzt1DDVMQokvmt8n30fKWlTTrNRpXc6U9mAzsfPMpao97l+ItSnVH/ub/CJI8WGPjCe/ZG78GjUn98lNy/l5AeM8+1HtrIsnPn30Lpwavl30e2IuzyZz9PbLLSUTbG8hethBXQS41Bw/zGX1rFRIaGlcvgiAwd+5cOnbsSNeuXfn9999PMLnVODeys7N56inlmu01IX766afPOItd4/LjySef5P7776d///6sWrXqnLd///33OXz4MDNmzDin6mUvVquV+fPnn/L5/v378+effxIeHo7H4yEtLQ23u+x78oQJExg5cuQJ2/Xs2ZNJkybxxBNPMGzYMBo3bszo0aNZuXIlDz30EBEREdxyyy0AzJo1i6CgoEv6umE2m7nhhhswn8RTTBRF7rjjDh566CFq1apVBdFpVDTdu3enTp06LFy4EI/HQ/fu3QHYtGkTH3zwAXfccccJrdLmzZuHw+EgMzOTl156iccee4y4uDgWLlzI2LFjeeGFF2jfvj3XXnvtBcX2+++/89BDD9GpUyd69OhB7dq1admyJV9++eUF7VdDQ+Pio4kSlzGCqCO632DSJn9C2p+ziRyQgCgqibfse1oSsToHOS1TWfe4ZJvg7wfemcP5BRyPIIjIBj1CpNLmQzqceso4wmduRgwNQVITXoJDSUp5E/mC89wy+qJHESY86uxXQ4namknndR72JkFln1Gqy0/0rXcuuK0CkqFMXIkZcD8Hp5YloqIG3HteN7calzYW/3CaXzuMLcs+xFmYg85oxuN2o9OffLazOVv1KnC52H3wDzJytmPQ+9Egvhf645LfrR5V3j+Bh5T/g7z6yv+e4UgRbkcJHqOAnzEMBAHnkSPkZGxHrzcTUa0pYmAgOr2RvPTdSB4XDo+LEL+6xFRvy8H9f+PxOAmLaES9hrcgCCfOQt/5pvLlPfCv3ynctx05oRNHDq/Eq97Z7XbfulsXT6dW004kbZmN2RJCoE7pd2uwlT8ea5YHe6hyXTEck6f2ChOSQUDn8KqBikghusv+F+0xSgLbcrgAXaEyvl+hHTwSsupFIPmZlLo9WcaY78AZbMJWL4ywyE4cXrmR1fxFqBxJbRpjFE58jSS9iM4/CNl1jGeOVRVQ1US+rJpXC0aDz5T6eGSXS/GT8L6mTleZKOElWGlZJ3iT/0630sboZObY6mnwihOCw1XOo0F58tyvW1Kc2ppAAkFtOSWFKkKFWKrGcfjoOe/3WJLvV75k+B1RXueIzcprpyt14fYzYsyxnXQ7e5gBySjgUf0kiuJ0hOwuL1Q4/QWMRbJPYPZe8wHi2vbFKgZxeM9f5BYeIFbMJSr2VTz2ElIA8+ooTKFR1OwxCFDEp+Au15P39yLyN68mf+taat7zONa42rgT4gnr0YuchX/gX6cR1lpn/0U/Ly+PMdEBvHM4h8JN68j683cM1gBq3f4oZlMwHnsp5ojq7P9i/FnvU0ND48omPj6eJUuW0KRJE15++WVmzpxZ1SFd1oSHh/PRRx8xfPhw37LXX3+9CiPSqCzuu+8+9uzZw9SpUwEoKCjAz8/vhHvs4zlw4AD33nsvq1atYtCgQdxxxx1nNZ4syxw6dAi73Y6/vz81atTA6XSyYMECVq1aRf369RkwYAB6vR6j0cjvv/+Ow+HA7XYzYMAAEhMTGTZsGFFRUQwYMIARI0ac8vvifffdx9NPP82vv/5KzZo1y1VhFBUV+X73Jnk7d+7Mrl278Pc/P8+7yuS+++5j3LhxbNu2jf79+zN8+PATfC5EUcRmO/k9osblRXBwMAsWLGDChAlMnjyZvXv30rp1az766CMkSeKpp56iSZMmDBkyxHed7tixIx07dmTlypW88cYbzJ49m7Vr1xIUFMRrr73GihUrGDhwILt27Tonj5ONGzeSnp5Ox44dGTlyJNOmTaN37958+aXSRjk3N5dhw4Zh8baa1dDQuGwQ5LOocSwsLCQoKIiCggICA08+Y1Wj6mjWcxTbFk0kNrE3kc27ABC+Nld50itKeGfTutXWJnpdmSihJrWwqSamTiWBJMuST5RQF/h6pgtOZT9SqpL4Opko4Qm0INpduAOVcZxBBl8i01sFobOrxrfB6sxph+yrcvCaYZeJEkoYnpOIEt51vYbV3iSpLJa1tJLUXKC3vYxH/dutnhpjPjiDIO23mRRuW4+1XkNihgy9YHNUjUuTOXPmcMcdd6AzWREEAbe9BHNgBHW63oslJBpDnoPc9F0ITg8GmwdZlsjK3klm3m5qVe9MVHhzqKvM1nOVFlGSn4rDUUiJUIi7tARdfiketwNPqAXJ6aBg/3bfzHeTfxjI4CjJQW+w4napN++CSOvuz+ERJY7uXUHOoU24XCUYDH64XCX4+UVxTdsn+Wfxc6c9tlp9HubgH19Sv3FfjhxcTqktmwYJd7By6eRyM1okSSI4ojYel524ut1AL2JolYDZbsBRnEvpkYOIOj2W2HgMlkBfpUiJK5eizevwD4xBMBmx+EdgCAhGb5N81Ur6Ehc6mwtHuMW3DJSqKWNamRAq63W+RoKSnwl7tbKbScEtk5Oxk9ysPWSnbEaQIIwoLFgRELEJxRyVD+EnBtEpsJ8iKoQEqztWB3W5kCNDEUpUr5zsHOWnWgmmtKc7rqJB/RIshwaWVWqZlHVEm5r091YmBAUgqGN5r49ePIHKsXivOfo8G6Sq1+Qg9Ua8WN2P2sJJKi31VU14qztEtWWSEKB8QfVea8uJEt74jhclDHrfNd27vRyhbF8ao/ydX9eApJ4CnapbFdVSYvBLObkoAWUVad42TY4g9Trukn2ihD1M9flRP170qneFfOx3d+/v6kumc0Hxvp3s3/E7pUWZBNVrSVjra0lf9hu2tIMA1Ov/FEmzJ/h2Ueupsfjts7NrwUeIBiN1ho/FUUOPLEmkvzMJfWAwMfc8yJ6Xzu56Htz8Ggq2rkM0mZEcdoLadCCiRx8sJSaKa0mkf/Y5skeiNCn5rPZ3NaHdM1Y+2jm+tBk3bhyvvvoqW7ZsoXHjxlUdzmWPN9m7du3actWpGlcWAwcO5Pvvv6dly5Zs2bIFvV5Pt27d+O233zAYDBw5coR///0XnXpv5Ha7eeWVVwB45plnfMbLsiyza9cukpKSSE1NJS0tjdzcXIqLiykuLiYuLo4VK1awcWOZh1bLli05dOgQubm5+Pn5UVKizMJp164d//33H3/++SdTpkzhjz/+wOVykZCQwPbt23nppZd47bXXznhsQ4cOZe7cuXzwwQfcfffdNG7cmM8++4z27dv7+uEDHDx4kEaNGnHXXXfRo0cPoqOj6dKlC4IgsGLFCtLS0ggICKBbt24Yj5nksmjRIjZu3EjHjh2x2+107tz5pNUMF4rdbufzzz9n2bJl/PLLLyQmJtK2bVvi4uIoKChgx44d/Pbbbzz33HO89dZbFT6+RtXx6quv8tFHH1FaWsr//vc/6tevz+DBgykqKiIyMpKMjAzfum63m3379vHPP//w+OOPM3jwYF+l/oEDB6hTpw5ffPHFWftLlJSU0LBhQ1JSUggKCkKSJCZNmsR9992HIAjk5+dTrVo1xo8f72uVplGGds+ocamjVUpcAbhb1SAkuyOpWxbh37QlVjGIggQl6RScW3jC+nKJDSE4sKz3+vEzOyIUo1khr0AxeQWfoenxiNHKjF05Lx/BrmT3BXWWtGg/dTunkyGLAqJHxqWKCN5EXmmYt7WTOqanLMPpTXZ6k6VeXGqSzGt4fTY4g0FXChGJ11O4bT2mmBrI2n/IFUvz5s0Jr9MG2aRHQMA/OJajW//m0OpfiK9zPds3/IjdkV9uG1HQ8f333/Hp9EMAZGfs4ciuxRTlHMTbv8hg8sdg9kePEZ3ehCNNSYLHt7wFa0gMLuzkH9iGTm8iPKAuIeH12LvjV46mrAVZQq83YTZaOZr8L9d1f5Pi1CSycndxJGMtkWGNylUhnIpoY32Ka7QgaefPvmWR0S0ZcMtnAPy1cqxyPKJI7ea3s/3fz9i9SZnRadweRESda8jctxpXqTKDS7fOTGy965EDzLhLi0lPWoHkciBLyjUkOr49tRL74raKWNOUa4asCpCm7FKEUheOGoGI3tZOtUOx7M8FWUZwuZEtRpBlRJsT6wEntlpBvn2ExCYQEptAA10rkrOXU+zMIceZgSR78COAGKE2NcJaIpj8EI6plECtlJBN5WfhCH5qS7uTVDYQFKhuc+I/vuhwYasVjCVVFQyO0fNlQSj3t1CqVNbo85TzJ4coMchmI0KsYmpI4anbI5Ubt0Et3zXas3u/sjAjUx1IRKyuXIOFbFWIrqkIZXI9xSRRcLp91+RTVYicjlK1KKMoTvkMsGTpKI1QRRsd+KeceJ13mwR06mJB/ZiRdCCW2X0gusuu5W7TibML/es0pmntRridNmx+Tvb9/DHukiKsoTH4RdbEzxBabv0DE98g+tpbkNxOAuskYCgWkPNFQMSvfmMKN60tt37tiYqgsf+pp8stb/DaREpTDlGwdR0hHbrgzs0lqGU7rI0aoreBxwyuzCxKdydR44YBZz6BGhoaVx2jR49m2rRpDB8+nL/++uuEmcQa58b48eMZM2bMeXkFaFw+3HHHHQQGBlJUVET//v3R6/U888wzvPPOOwQEBPDcc8+Vq/iFsuqk+Ph4XC4X48ePZ/Lkyezfr9wvGQwGqlevTlhYGP7+/litVn799VcSEhKYM2cOkZGR7Nq1i//++48+ffpwxx13UKdOHZ9RbvXqSsvIG2+8kRtvvJGcnBz+/vtvPv/8cwB69+59Vsf24osvsmzZMu6++24AGjRocNL2NfHx8bzxxhuMHj2ab775BoDOnTvTrl07xo8vq8xs2rQpTz75JEVFRezZs4fJkydjNBp9nhyLFi3ytdqpSMxmMyNGjGDEiBH8888/TJo0ieXLl3Po0CH8/f1JSEhg1KhRvrZrGlcOr776Ks8//zxOp5NFixbRt29fAgMD6dq16wn/B3q9ngYNGvDQQw9htVpp376977latWqRkJDAxo0bz1qUeOutt8jKymL8+PFs2rSJN998k5o1a/qe91ZYnczrREND49JHS7leIURcexNFu7dyZPbntGzxEK644LInrRZfhYRcUnTixqqXxEkTVnYHcngwePuxq8kxb9LtBEHDi9uDpCb2vOa1crDB12/eKxoIkvJTFiunRVJpuIBH1VOOFxi8M4ORywQQHWAOj8JStz7O7MxKiUnj0qBu3bpk7S1LVLYf+D5mYyC7l37B9gzFtPia1iPwc5lBEBEEAVHQ8darv5OavxVbcQa24kwCw2tRN7E/QeF1MPgF+2a3m/KV970rQJ09rlYF6Us9xMUovVZ1pW7IcdIkuCtHU9YRVa0F1lIDqP4soqgjLKgOYUF1qFP3JkTx7C7ZgiBQv+09xEa2JS83Gb3ORMquv4ip1hqDR8cNiWPRiQb+XPcKm/+ZiN3+Fm63m659XuPA3kWk7/kXa1AUja9/jHlTRtCy8+0c3DUfQRDRmazoTBbqNemL209k77/TMYoWLFnlPRcMR3LA6UKKViozTCmKQOqKVGbnl9YOxZjvQJdT7A1a+SnLWA8UIKt+BbZYtXy9XhxNdTf59u+ODERXqEy/F/KLfdvKpeoyb3WB91qlVhKgPg8gmNRZZifxkpAsJtxBRnQ25XV0BhtPWEc2q22ZitUvyX5nNjsWCpRY5SD1uNSfQqFSMaGTPL6WUScTRyoE9VpvKFaOTW8zYItWnnKqE2jcwcpzpqOn98UorlH2vLf6QTII6Fwnfp5IOiispazkf1gGp1BOZHYGeCsvlL/9DrpI27GYjKSVGIz+tOr5PCZrsG+94wmu35L0FfPQ14/HXsPg84UREUGSEV1Qe+ab6tpmJJeLmKefwpWVhaMgA09uAfqIMGwbt2KKiiG8e290HhFnkIwbGb1NGddyQPk81VsuvdYKGhoaVY/JZOKTTz6hZ8+ejBgxgo8++khrBXoBPPbYY4wZM4Y9e/ZwzTXXVHU4GpVE37596du3b7ll69ev56WXXgKgXr16/Pfff8iyjNFoRKfTIcsyn332GYsXL2br1q1kZGRw33338cknn9CqVSvCw8PPKAp26tSJhx9+uNyyWbNmcddddzF06NByy8PCwrjrrru46667KCoqOuv2MzVr1mTHjh3MnDmTffv2ER4ezieffMJ9992H3W4nODjYVwEyatQoHnnkEURRZPny5Tz//PNMmzaNBx54gIkTJ7Jnzx4effRRX8I3MDCQxMREZsyYwSuvvMKPP/5IaGjoGSK6cK6//nquv/76Sh9H49Lh8OHDPPnkkyxYsIB+/foxa9Ys3/v2ZAwePJhVq1bRq1evcssNBgOSdOIku+zsbHbs2MGePXtISkqiqKiI+vXrM378eJ555hlGjz65d6PNZkMQBMLDw0/6vIaGxqWNJkpcAXj7yDfIKGDfz5+weevXNKg5AlGn980WPoGT9KMHkMNCwNuCJDK0rLXT8ag3eLJVScIJDiucSag4CU7V4NprVC3rRF/bD99Q3vYpau7LK2BIetCpQ7r9y5YB2NV7MckIojpjVyzzIzslJXESnpISXPnZGGpE4ap2btUeGpcvTn+RUrm43LJ1Gz5Blj0YDH4E+sfgdtspKDqMf0gsgZF1qd68B6E1WyB5Z3rbZQSn8n4V1RZn5mxPub/xyHj8DWWz1wGdaCAioC65efvKjb/kz2fP61hW/lR203Z9t7c5uP9vDqQs5UDK0nLrHT06lOjoaF+J97ol79LhLmVq/KpZo2g/8H1iYmIIj09EljxkH9qE214M9mLSD6+mYcu72YuAweDn26c+JRsAOb8AIcAf8WgOcpF6XmOrY8gsxqi2TvKE+eMJUxK7os2JYHeVS8QLDheGQlXU1Au+dWXdMdevo1k+82rBaEDQ6ZAKi8HbAik0uGzdwmKfwCpYLWXVYi4XhAb7hBCvgfOxmDMU0cAdpJwr/THXRtnfjFBsRyhxIIX44QlQrrv6bFUEPpSm7LeoCDHuzAad7r37z7iOggf34ZTyi3YlKWNXV1QGKSoUV7hynbaHqhdR9RotC2DNOEnFyElwBKn+Pf4G3Kr24r2mHm9cDVAUW75tk+sk+XtBVivk1P0IUplADLB/y6/kJq8ntlYXoppch96gnNd1Xz194s4APzkIgzUAd55SNSKX2ClNPUzxru3oA4PKrevKziZ9yue4c5RKJjHQH31IELaN25DtDmLvfwJXOLiQEO0C7hA3YcsFbMWZpBxaiGgwItStdtpzpqGhcfXSo0cPJk+ezCOPPEJISIjmhXABrFmzBkEQcLm0e/KrDe/Mf4Dk5GSqV6+O0+mkXr16tGjRgjVr1nD06FF69uzJkCFD6N+/P4mJiRc8bp8+fTAYDPz222/ceOONJ13nXPrhgzJ7fMiQIQDUr1+f5ORkhg0bVm4dj8eDKIo+P4mePXvSs2fPcuu0bt2aBx98kGrVqrFgwQJsNhvp6ens27ePHj16MGfOHEJCQs4pNg2NM1FYWMhNN92EJEn88MMP9O/f/4yCX+vWrZEkicOHD1OzZk1SUlJYtmwZO3bsOEGAnD17NoMHD8bpdCKKIrVq1cLPz4+vv/6amJgYnn/++RP27/F4WLp0KVOnTiUxMfGMHjQaGhqXJtp/7hXEnu/eYcWKPnTu3Jn0ncsIrtEYc+0wBEHEkpx14gbqB4kUEwGAUHrizb5sVmbs+syrz1Q6LYq4olUjWJfaxkmdRSx6zL6e4VWB+zh9xm1VgxHAE+DGeSSN0j9WUbJ+D5LLQ8iAsyvJ1bgycNtLSF37O+HRzWicOAj74QPkFR7EIJoodRdQWJSKTmegRaPBWBs2VXwoLOfXkkFfqCSCxQIl0V3qyKfUnou/MQTDKQyEz5d/Fj9H20Z7KQqoQ3ZRedHj1VdfZcqUKafc9r+ZowDI3bOO7LSy3ruiwURC+4dVLwwZo8nfJ7LIxSU+DxuvT4IXz+69AOjrxAOgy1C8JRy1wjHlKhVbgsOttNRyHGNa7ZEwZtmQrMr1SLfrkBpImYApO51IJTZfpYpveb4yhmA6ropBkkCtpvD9PA5jZgmegJM/54uloNTnCyFFBp90XQAhKhKKik4UEaoYWzUTbovSug7AE6z8NOQoAoYzVBFuDEU6n8BwPKWqb4RL/X4uujnltd6itpyV9AJ2K5jzyq8oSBBwRMJVWkTO7tWYgiIIjaiP2WVk2a+jTnssHqcdV0kBSDK5ixaS/99yJIcdndWfmv0extGwFDndQPGuVeTOWoxoMRP1+KNILjdyZj4eWwm6mhDSuhMGnQXbmkNkJa9Gku3IThe5BwooLkhFNFuo1vduDCFhp41HQ0Pj6mbo0KEkJyfz7rvv0qVLF+rWrVuu5YTG6fnxxx/54YcfWLBgAd27d2fw4MFVHZLGRWTevHn8+uuvfPvttwwcOJDZs2eTlZWF2Wxm69at7Nixg06dOvHqq69Sr169Ch17+fLlCIJAgwYNKnS/XkaPHs3bb7/NgQMHyi1fu3Yt7dq1O+P2TzzxRLm/hw0bRu/evfniiy+QJIno6OgKjVdDY9asWezbt48777yTa6+99qzaEu7YsQOAI0eOcPfdd/PDDz8A0KFDB55+WplglJmZydtvv80HH3zAwIEDGTp0KHl5eRw+fJijR4/y4osv0rt3bywWC19++SX//vsvpaWl2O12Nm3aREpKCo0bN2bmzJlaRaKGxmWKZnR9hdGl+1ts2fAl+XnKTFv/gOqEVWtCA6kJgtXqM6imoBAClQySpJqxipn5ynNe49TosoRLuQShW8ITqCTqdHlqAtXp9LVAOV6U0BUpmSxb7WAkXXmja3uIalamVkq4zeBRxQNvkkyv5jV1qj+E26r2VzcpCSwlJjUMdTKst4+5KwAkk7fSwjuDXUBnF3yihLuwgJJ928mb9Tu6QCt+bRoS1KMNh0Z+dNJzrHHlkZGRQYPW11OceYBmvZ/BaAkkaJeSzC6N8Udfqhq7q1VExxqzA+htauK22I1eTa6Tp2wvq4bIktfDQJZ8iXPBaESoFsHqI99S7MolsfZAgq0xACzcUrGzKns2fwlJlijJS0EnGDDoTCw+8MlZbduuywvs2/07DslGeHwrwmu2wOw0ciT5Hw7u+pPWrR8nPEXGXTvaJxjIDoevhZLXaNmjngudeu0RVFNqR62ycltjltreyKBeGwIUMcGQa4M0taWaev04XvSQXW6fmbigtkASjhMcBG+VmF7n88qRvRVl6vVJUsVY0eE6pqpAvUYFq9c+VcTVFZR6d+zz4CluUV3dXonFuk+Zue9OLi8KVSaiST1unYhYXfGxKG6iCNDeVmJOtbVYUQ0RyahcN53BymbeyjS3v/Le9jtUJvZ41PZKzkBvGyhv6y117GNECZe6jiVdUNdVvCgEj1LJBuAxHLMdYMlR4stN2U7KloWUFmaQ0Otptv3x3mmPudmICeye9gauojwEvZ7Ath0JatMOQ3gEe18cRc0vXiJl5AQkmw1EEWvTJth27Aa31wBDAFmm7vCXKUjdTdZvc9AHB6MLC0Y0GtDprfg3aop/3cYkv/bMaWO5mtHuGSsf7RxfPiQlJdGxY0eys5Uqwttvv50BAwZw5513VnFkly6bN2/myy+/5JNPPqFdu3b07t2bESNGnPPMdI3Ll7Vr19KvXz8aN27MwoULL2qyMT09nZiYGNq0acOiRYsq9Rqbn5/PoUOHCAoKIiws7Kzf4/Pnz+fdd98lIiKChx9+mBtuuAFJkrj22mtJT08nKSlJmzWuUaGUlpbywQcfMH78eMLDw9m9e/cZhYnNmzfTsmVLAGJjY3nxxRe57bbbqFZNqTRetmwZXbp0AaBRo0aEh4ezYsUKn3+QKIq0aNGCFStWMHToUL799luuueYaAgMDsVgsxMfHc88993DNNddogsRp0O4ZNS51NFHiCqRL97dxF+RQbMvkyL4l5NqPYNL70zz2dkINSrJMSkkr67keqSYE1dm+vpZNDieeukqCVHCpLWhsShntSUUJNSEnRUeo66jJxCNKQq4koRqS/tIQJQAko4xtxy6yvvkW2e7A2rIpYffdzeERJ5YHalyZdGz3DCmHV5KasR70Omp1uIuwmKYAF02UANjpXMsRx06C9JG0Db0NUdCxIP3TSjvu86X9wPd9v+uO5PHfqneIC7+G2k16Y9ylVABIRcUIRqMiSni9aFxuBIPeJ0qIBj2Cpax0SYgMx1EjWNneqJxjU6ZyHp3hSgbclFIIGUrFl1xa3ujQKxxItvKVEqLV6jvHsipW4G31ZLWAt6JDX7aNIMs+Dx5kGdlPudZ5RQlXuBK3Tn1P6IqUWASX56SiRGG8gai5ykw4OSgAIVNpF+RtG1RZnI8oAWXVDpJRvd76K+sG7VJfS33ZdfZ4UcJQqC4PAWeE6leRr2x3rCgBimG0Ww3RY1G29YoSevXllQwgSx52fvM6ITWakJG06ozH3WToG0huJ1smj8WovvaxH7+Bbe0mSv5agyM99ZiTJPo+70STCUkVuQwREbiysghs157wW27DE6K8Jw8+evJethrl0e4ZKx/tHF9eOBwODh06xJ9//smbb75Jeno6vXr14ptvvtF6YB/HmDFjeO+999Dr9UyYMIHhw4dXdUgaF5F///2X8ePH8/vvv9O0aVP++OMP4uLiLmoMkiQRHx/PkSNHePXVV3nllVcu6vjny7fffsvgwYNZsWIFHTt2rOpwNK5Q/vvvPzp06MCCBQtOaC12Mg4fPozFYiEsLMwnYuzfv5/p06czadIk8vPzfeuKoniC14QoisTHx3P06FGmTp3qM4vXOHu0e0aNSx1NlLhCueHacQAY0vLJKT3M3txVFDiO0qb6XYRYYpDS0svNIBYCA5EDleSft5+67kDaCaKEPVpJ4ulVg1RDtpJhkvxM6A6mK7+fTJTQidjqhWPKVrJNzjBlbHuokrBy+Xm9JcraLLnVNvUGtS27JVt5qxbVLJuV613XoOaBHSHKOsZ8QR3nmA82yTsLWkKWZWw7NpP71S8Y4qOJuG+Qb/a2lni6Ovjvv//o3LkLAiI1oq6hVvA1GPUWn2eAV4AQPBLGQ8oMR68fgc+L4Pi/baXKbH3KEueyu3xbNNnjOcHTRdLLZBoy2V6yHJNoIcIYR5AhElkUCQysQaApCtGuCIILjkw65TH1uOY1JNlDYXEqNkcOJkMgv/79BjVq1KjwGSS1qnXkcPY6rms8EoPegrDvsHJ8x3otOByIFovvnEhqb2DRoFfXlRH9rAiR4T7TaHt15f/Q6y0gutX/6Vw7YroicEq5eYhWq69SwjumZCtrfaU7ZraZ7PEgBiuZdK9IJHirIyQJgtXPNe858ooSBYU+Xx45ULkgOSOVn8eKEl7zau+6kmqqndk+GOC0ooSuaUM1SOU4Pdv3+JYJTq/ZghqXWnHie9/pRMjNV35XxRaPenMvNqkPQGH9oDIh11jeSFpSz7GsL7veuq0yolM4rShRXLP8bYO+pMyjwpR7clHCnKmsI6qnVvCUFyWgTGTWl4CxqKxaI33tn2RsWszO7dto2LAh50rwbTdS8NsiLLG1COx9AwVLlmHfnaQOplOqOjwejNWiCbqpOw33HSCllRUxpgcAe8ec3MNC4+Ro94yVj3aOL1/cbjdfffUVY8eOJTQ0lI0bN2K1Wqs6rCqnpKSE119/nXfeeYfXXnuN0aNHY7FYzryhxhXDuHHjGDt2LI0bN+aZZ55h0KBBpzXRrUz279/Pe++9x2effUbz5s25+eabqVGjBoGBgbRt25a6deue9b7y8/NZtWoVOTk51KtXjwYNGlS454PH46Fp06bExsby559/Vui+NTSORZZlEhMTEUWR1atXn1dFTuvWrdmyZQsDBw5k0KBBDB48mIwMpb+rv78/LpcLh8PBE088QWxsLH/88QcfffQRLVq0qOCjuTrQ7hk1LnW0ur4rlL+Xv1ju7xvrjmLl4WkcLthEiBCuJLm8RrDB5Q1ARacbWSeAxezrE+8IP/UXA3eI8mVKrqPMDtZnKSqCmKPMFMdkvPADOnY8C6fsbX42eEpsZH/1HfadSVhaNiL0vts4MuJ/FRegxiVP15bPsmLbJPz9q9OywT3o9WZ0Jc5Tru+sGV4mTICSFPZ4kFLTEWOiLjgevWCgujsGf/2NpEkHyHGlk2LfjYCIXCBh0FmIMtchzr85N8U+eYIwcVO8YnZf7O9k+4FfKLId9T0XFzedMCGKhro2WAXFOG+Rc+YFxdu91UukZG8gNiwRU7EbKCqzEHB7p7urptGlpchS+SS27BVxBBGpxIZ4NANqKQbQpixFNLBXs6KzSwieY4RFtaJBPCaB4ymxIZqP84sAZF8C/7jSYukY7wvrcdc156lNNIXCEjCbMB3OV7ZXYxGKVEVULC/6iA4X4VuU59JvrQVA1O+HfAKIXjXgvmCbndBgyM3HXa8G+uSK8auQjDKSenegL1KFY1XjKY2WkHXeqrMTy7YdoYqBtWBXnhNdJxfD3OYyEcKoVlgca4btDABrpjJOeJuu5CVvJLHLjdTuN4xtn4w5p+Px69SCgnn/ICGhi9YTfMe1pL+RhKF6OK60bOoNvx5nXH0M1YLR+VlY3vcb2i96jv96aGKEhoZGxaLX6xk6dCjt2rWjefPm/PHHH1d9K6fVq1dz1113kZGRwcsvv8yLL754Vv3KNa4cfv75Z8aOHcurr77KSy+9VOWvf+3atfn444/p3r07c+bMYfLkyRQWFuJW73ETEhK48847GTFiBEFBQafcz3fffceIESPIzc31LRNFkVdffZXhw4cTHBxcIfEuXbqUXbt28fnnn1fI/jQ0ToUgCEyePJn27dszbty486okevjhh3n00UfR6/W0bt2agQMH8tVXX2E2m8nNzWXnzp2kp6fToUMHRFHk2WefrYQj0dDQuFTQKiWuIt577z2eGfMs10Xfj7HQhVPvJsN5kEhjTUyCBaGmUhUhq33VxawCpGoh5ZYdj2Q8pu2JR21lo4oS2B3IAX5Iak94d4ARfbGr3HYFtZWpst4ZvK6AshnSTvWt5k1YiWq+0KZ6d0lmCTxqrGoe1OsT4U2EiQ4ByaLOotYpCdL0iR/hKSwm7KE7yZz49VmdO40ri6a1+7L9wC90bP8sZoPyRhNVvxWxUO0do74PhdxC34x8QU20exPe3moIbwWAcKzxsjcRL5cvQz0WX3sjr0AoCiCI6EKC8MhuBIORArGAzJJkjhbuRJIlro26F7GghD+Lv/Ht56b4p3BJdv5N/xaDzkLDmjcT5BeDK/UIOY4j7MxfCsj4EYhF8CdebIhZ8EdAwOgx8rc0u1xcN9UYgSzLeGQXi1I/O6HKIrHeIDbu/Y5r6j1AqEv5MialZ5U/XkH0iQ8+EcJ73Op58h23ToeotlICEIwGHE2Ucn3BIyGZdOhL3OhTj2l5ZCvFna18yfOJEiepQvFWqojHzUSVSu2+OMQg9WITcExWvMSmCCteUcNbWeb1s/C2fErLKIvbG0eIck68gm12C+XYon4/5BNpvZUhZRur51gUfRUSkkVZxysOe//2mJX3oeiSTlA1PH7Kcx6DEndphB6Xn7Jvu9cmyFts5n1ZRfB4/R3Myg7NWWq1WbCy3KhqzOVECYcyhs6uvp7HnHqPet01FCkLvQbX3ioNZOUhSGXVE15RwjuWOVdt8xcqYEs/xL45nxBYpyl5uzecU+VP/DfvULpzL1mTphPQtCUekx3n/hTiPhhOWOkhLDWCEQSBJde/f+adaZwR7Z6x8tHO8ZVB586dAaVlDSjmullZWXTr1q3CkpWXOv/++y/du3cnMTGRGTNmULt27aoOSaMKuOOOOzh48CDr1q27JHvDezwePB4PJSUlLF++nNmzZ/PLL7/Qr18/ZsyYcdJtFi1axI033siAAQN4/fXXiYqKIjk5mQ8++IDp06djtVpp1KgRLVu25IUXXkAURYKCgk75v+92u3E6nSetrHriiSf4+eefSUtLuyTPn8aVx2uvvcYrr7zCzJkzz7mlkiRJvPzyy4wbN445c+YwdOhQ7r//ft544w2OHj1KfHx85QR9laLdM2pc6miixFVEQUEB4SGRVDc3oHFQZ7anLyKFvQBYxUAa1exNuH8tXOFKAs14JM83M9kTdGKlhGhz+gxhEY9JnJnU9k/5SjnDuYgSjpCyNiLH+0V4DVN9HhHBbmS36lEhqkmy/PKJvuNFiezp31O6fQdRLz2BITqCg/dqyvvVSLB/LKKop2XiUJ+/yQmixJE04OQz/X2cRnA4G04qSgCCvux97E3ol0qFrPQsIFSsRoQ+ljAxGj9RFVQiwsi1p7A24yfaRtxBwDFFHfqY6pQcPUAOmRTLeaRLh3FS5slgxo8wqhFOFKFUw+kHSZ5NZNsPIyNhwIifEEQNXV1CxUhmH55C9eqxCDLcEP0IFCvVAJLNhqA3lG9X5RUI1PN0glCjPl/msWEoEydUgcBeW8mk60vcCOprpDtUVgkil9rLzKi94pHJhOT1nTj2NRLEcoKI93dJbS+lU8UEwaCe/2NFCVEVIUrLl2nJXq8QjhElvNUYkaHKnxZleUqPAOJ+UV+c4ycBnkaUAMX423vdPFaUEB3KOXEFKdfikijlOUE91R6jgFOtcpBFxcvhXEQJv3S1bV6set50YMxX1tU5obCufFJRQjKX/9+wpIro7eVFCV8bKfUwzVng9i8TJSw5ytjWo07s4QaO5K4n5e8f2LFjB40bN+ZciP3kFVKGvYa1dQK2LbsJvv0GIvp3ACDpjpfOaV8ap0e7Z6x8tHN8ZTB37lxuvfVW/v77b7p160ZoaCh5eXkA9OrVi88+++yi99O/mNhsNmrXrk3Dhg35888/MZlOrHrUuPJJSUmhVq1avPfeezz55JNVHc5Z8+mnnzJs2DAef/xxOnXqRI8ePQgNDfU9P2rUKKZPn05mZmY5oUCWZbZv3878+fPZuXMnM2bM8Bn7CoJA69atuemmm+jduzetWrVi/vz5jBkzhqSkJGRZJiYmhuuvv55BgwaRmJjI4cOHadWqFQMHDuS777676OdB4+pElmVuv/12duzYQXJy8jlvP23aNO6//37uuecevvvuO3bt2nVeLVo1zox2z6hxqaO1b7qKCAoKoo5fK5KK1xDn1wS91Q9skGC9ln32TWw/MpcujY67GXR7sNUrM+GzpKpVEKfRskSHWxEm1OoKV5DyJcOUVogrXEk0FtZSlnnFCE8Ffw8RHd4EmowUrCRJ9WYXpTt2Enxze1Kfe69iB9S4bHA6nRSUpNAo6FoMmcUIakKaQvW97U1wX4RYjq8gkD3ll/vMigGL4E9jsTUp7GePcz0yElYhkGq6OGocrgWq0FDiziOAsl617tQ0TJioTiwQSy0aUijmIwgiHtzketLJJp1U9iMiIpVImEQ/GgR1wGCHo+4DZHtSyXcrlRBRUb8hoKOF4VrknFyEY5IIJ/hnHPO3oNOdIOL4BAK3y1fJIDvUqhM1kW4+oFRDyCa9L7nvrVqQvX4K3i9zRqPv9RMtZmS3G1mtYjm2gkKWZJAlJKfnhOegzHcCo6HMONvPr/w6tlI1dneZp4j681i/nmOJ+y2btBuV62m1taq3hVdoyS/xHafXHwL1h2yquJ7KOnuZ8OsVEfSlZQKF6C5ffVYafvoZd4F7Bd/12ysyOINlJF1ZBYQXt1nxiwDlOUeoEs+x6IsVcRrAHi4Qskf1tnCWUrpn91kf5/Hse/hFgqb8gG39dizNGxBwfVtNjNDQ0KhS+vTpQ8eOHRk5ciSbNm0iPDyc2rVrc++99zJixAjefvttPv3006oOs9JYv349GRkZmiBxlbNmzRrcbjd9+/at6lDOiYceeohdu3axaNEiPvnkE3Q6HR07duTee+9l0KBBBAQEkJ2dTW5uLmFhYb7tBEGgadOmNG3aFIDnnnuOQ4cOodPpOHLkCIsWLeLDDz/ktddew2KxUFpaSteuXRk9ejQGg4H777+fGTNmlKvQqFevHhMnTrzo50Dj6mX9+vXs3bv3vCtz2rVrR0xMDLNnz+att97SBAkNjasYTZS4yqhZrT1HHLvZXbCSGtZGAITra6Az69li+4fColSsIfUAcNYIwW05eTJM8iv/5cFjKXsreWfung3epJj3p8d8zO/qEMJxk9FL9u4i/7c/8RQUIMsy+tBgZGcpnrxizHVjCB94Pbo6NbBt2w96E1ZrDVw2I8gystuNYNDe9lczRqMRqz6YEnd+ueVSkWpWrM7mlxzHZUvPBkG84OqJcjE5y/tcRBNPNPF4BDe5cjrZYiaH3bs5xE4A/AgkNM/qmwl/MgyCkTA50qe6RAhR1JdlbBSRzVHMlhAi7BGIRYqIEC6Hk6evQ5AYRr4zAzduwvTVMYtKBtprLi17PGUJfE4muJx4XSi3zXFCZ0nOEbKch8mR06kW0ABZL1BDalFuHUFtuyQXFJYtUwUB3+vpXX5cyyhQhBLZ4/G9Zp48ZYq+zq+sNF72eMDl9lXUeKsxOPYmXPUY8QkgRrXtUpFybtyRisJiLC2rqjgdslEHgoBYrAgf7i2KUbbQQTl+t59yziS93icm6Fxqq6MwZYHXj8Fgk4lYrQg7gurzI0UrX45zWgRSFHd2XyY8qs5izShrpSeqhyu6weV34jaSDowFygXd6NX8ZPAcU9DmMYNkUGItrabEcqxnUF4DAUOxjpL8Q+Qc2UxojWY0aNDgrGI+FqPRSOTI+3ClpJP60gdaewMNDY0qRxAEJk2aROvWrfnyyy9p3749e/bsYfjw4axdu5YFCxbgdrvPy0j0YiHLMm+88QbTp08nNzeXoKAgwsPDycjIoKioiL59+/L2229jMplYuHAh11xzDTVr1gTAblfus8zmkwv5GlcHTZo0AWDPnj3ExsZWcTRnj9Fo5KOPPgIgNTWVefPm8csvv/Dggw8yatQo8vPzGTp0aDlB4mQ0atSIRo0a+f5+4IEHcLvdrFixguXLl9O9e3fatWvnu2/p2LEjeXl5mM1mkpOTEQSB3r17YzAYTjXEBeNyudi9ezfvvfce/v7+NG/enIYNG3LttddW2pgalzYzZ85kx44dfPPNN2de+SQ0bNiQbdu2kZ+fT61atSo4Og0NjcsJrX3TVcZN9Z4hoziJTem/Uc/Uiv2OrYQZYmjm15VVJb9h0vvRsvUjCIKI6PQglirZJ2eEkqTzGJUEkym3fHLNJ0pIMjqvKKF6TOgKlMScK6rsvZNfV23bZCpfKZGfv5+ipK3YU44guZ1Y6tQDjwdBFAm+4QZ0VisZv82ieOVagm67AdkDnrx8DMEGdAFWilfvxJmShS4kAHemUgIf0u9awu++AUe+icwPvkJ2OLAnHajI06pxGVFQUED10Dj8dMEkRt6KrCavZa9B8yUkShw/g78c6jgu2UkqBwCZGtRBL1TQl5JjjuWwnEwqB2jLDYiCiKA3UODKxIp/xY13zLglciH/yQsBMAlWHLJyDUmscScR/rV97eR0qseEr7LBuwujwfd6SoXF6m5VUeIUPhfH4q1QEYxlxyYYlf5GHlUA8bXeOr4aBBDUFlTCMT4ZWC0UNQylKFZZJ3i/El9WU+XaGbpbicfvSAmCQ9mnUKpk/d371OuVKkrYI5QLpqQXThAl8uso+/eKEoIEwVtPLUoASDrB59VjUPWdogbqeVL9I/QFyn79jwgniBKyqisVq11GJIOMO0DybSd6wE/14BaOueOwqxURogts1WVEp3Iw7lDl3HjNsmsslnAbYceSzyjKPsBXX33F/fffj8aliXbPWPlo5/jK4r777uP333/n8ccf54033mDKlCm0bduWli1b8vbbb/PMM89USVxOp5PZs2ezcOFCdu7cSVBQEJ06deLo0aMkJibyyCOPIAgCYWFh5OXlMW7cOAoKCsjKyiI6WvlQmTJlCkajEZvNRkFBAWazmYULF3LddddRVFREeHg4b775JqNGjaqSY9SoelavXk379u2ZOnUqDzzwQFWHc8Hs3LmTr7/+mjZt2tC/f/9KmQTRs2dPGjZsyAcffAAofhP//fefz6emonn77bd5/vnn0el0BAYGkpeXR3h4OHv37j2t0bfGlUtSUhLt27fH4XCwc+fOK7rV4OWOds+ocamjiRJXIbIsE22pQ4ajLDEfpq9BrWodWJ86m4bxvYmNugbgBFGiqIaSmDMVKgknU46SlRLdMpJeuek6kyhhDzdii1CyWF7jVV2JRMaq+WSt+we9fzB+NWojm0Vs+5PRi2ZctgIEoxFLVBxFe7cDEPf4KA59Ur4NU2lpKSNHjqSgoIDhw4dz88Q3KJizkJCBtxDY4VpK1m8ie9p3bN++3TczR+PqoZPlVrY5V2KTi2njfxMBLv/zEx8uFseKEhUpdpwjO+X1pHGQejSlptCAAjmXdfxDPA2oKyjl5+X8MWTpggQaWZZZzBwihVhaBHWnND+T7caNuAQXHePvRxBEJLPR573A0cyyGLxG0uoMTFn1vDjez+JsRAnfcRy73THm3KCKEseJR95qLDFQ7UGlelWcTpSI/UtRA/b3DSRikzKWJUu9vjq9AoFyjS2JUeJzWQXcFu91VxlK51Tis0UqyyO2OhHcyjJnkDJWwDblfHnClfgyE/0xFcgU1BHOKEqYswTfWN6qNq8ZtstfRl8qnCBKAJgUXQS3ambtl1ZelFDGVMUI9aXyihKGAhFXkITkcHD4mbF8PmUKDz/8MBqXJto9Y+WjneMri/T0dBITE8nIyMCjfjZNnDiRtLQ0PvjgA5KSki668WdmZib9+vVjxYoVtGrVisTERFJTU1m/fj1RUVFs3bqVxMREgoODWbx4MeHh4Sf0zgfYvXs3Tz/9NAkJCTz44IM88cQTrF27lpUrV9K0aVMGDBjA5s2b2b59+yVdEaJR8ciyzK+//sp9991HQkICCxcuJCAgoKrDuizw/p8dOXKEGjVqMGTIEGbMmEFSUhL16tWr8PG+//57Bg4cyIIFC7j22ms5ePAgrVu3ZuTIkbz55psVPp7G5cGsWbMYMGAA6enpVKtWrarD0TgF2j2jxqWOdvd3FSIIAs3NXcnU1WabbZnSV96diit7GaGWOA4cWUKkHIUpKtY3s9bo1a5UUeJ4PCadL+HltiqJpID9ihhR3FjpoS7pBV8LFC+y5KFw52byVi+jNCuV8J63UK3hdQiCgFNNWPmlgLM4j9Rtf+IqLiCgZRt0ZguG8IgT4rBYLEyZMsX3d9CernhyC8ifsxC/5q2xNm+KPjyUxNtvpdrIRzj0+JjzPIsalxszZsxglf0PTIKFRF0X/O0WqLhW/ZVHFYoRXurQhDQOksw2YuV67EMRBgMpK0kv14rJK0icpzAhCAJBhOPCgVRQiEkw0zCwI/9l/8ihjNXExXdR1vNelwLVTHdJKTiciheEKhSUu+IcZ3p9QmzebdTqh2PbUSGI5QQIn6hxmmoWqbAIMcAfnMr+rEdLkfSKwFsaquw77g+12sNUeWX3Z0vQPpn8empFiV45N4ZsJS4pVump5HBbECSwZJ58H26LjOgGQfWmkMzeV6B8oion0Y0pXe8bF6DouK5MXnHCGetEKNTjOHgYZJk2bdqc9zFqaGhoXGpERUWRlJTEq6++ynvvvYcoijz11FMMHz4cvV7PsGHDmDNnzkXxXcjOzuazzz7j448/RhAEVq5cSYcOHU5Yb9GiRUyePJnS0lLuvfderrvuupPOCG/YsCHz58/3/f3LL7/Qpk0bnn32WebPn8+oUaNo27YtH3/8MSNHjqzMQ9O4hHA6nQwdOpRvvvmGm266iVmzZmmCxDkwceJEnnrqKe6//37+/PNPn7+EtzVaRXPttdei1+tJSkqiZ8+eNG7cmFGjRjF+/HgGDx5crv2UxtXDihUriIuL0wQJDQ2NC0KrlLhK6RnyEA6plGT3JlJtu6gb2Ja9hWtoENSJFNtOXJKdWjW6EOuKQy+qQoTVQl6bSABc6uxc/zQl2aazS6cUJezVzMiCIkr4H1RmLWd0CMDjsLN/0deU7k/GWqc+C7764rS9KbuL/X2//yX9eFbH2V3sz47+Vo7Onk7c8y9iCAklf/tacqbPosa7r3JkzCtne8o0LkM6Cjexl+3YKKKYAmJ0dWhkbAv2E82PL4Xk/wlUdDuoC2CdvIQCcvAjkBKU6fQx1KIhrcolInwVBMdUIvi8G3wLznxcGWIa2zyraMsNBAjB6EJD2O1Yx5HibbQK7kmYIQYhXBVFVNNp7A7F30FFLipGVo3Mjzfh9okMxy0r+1UAQTyh7dMJVRGicOwfyg+1UkKwKm2mUNs4eSICKY5VRAlvhYPHqPwMPKy8J42ZNrLbBANQrLZWtmQoP4MOePsmqQl/veCrVpDUKoriGGWBU62mF11gaK+UKZTY1LZPHmUdKVf5O2C/6DO2Lo5VjaVDlAXHixLiEYvP58ejCg6C99QcczfhsXifU+KyHFV+2mLUihOjjCVVh8dYJkrktPQanailGFlqvEFuin/4l9x//kLn548zJ1vzhLiE0e4ZKx/tHF+Z7Nixg379+hEdHU1mZiY7d+7ku+++44EHHqB9+/aMGDGC2267rdKufxs3bqRXr14UFhYyZMgQXnrpJWJiYip8nEGDBrF9+3Y2b94MQN++fcnMzGTFihUVPpbGpcWvv/7Kp59+yu7du8nIyGDq1KkMGjSoqsO67CgtLcVqVe4n+/Xrx5w5cwCYN28evXr1qpQx7777btauXUtSUhI6nQ6bzUZiYiIWi4WffvqJ2rVrV8q4GpceDoeD2267jb/++othw4b52ohpXJpo94walzqnaViucSWzMO9LNtgWkWrbRZSlHnUD2xJsjOZg8WZahN7EtV07kHR4IXvs65CD/cGbXDsOZ6AOZ6AOt78Oj1nAYxZwBigP0eVBdHl8Pc+PJ33VPByph4m5/zFi7nu00syy3AX5oNMhmpVjMMUrPQ/tu5MrZTyNS4MDBw6wlsUUkUcwYTSmNY1IRHCdvRF7lXOJCBIALegI4BMkAggmlQOqn8WZEXQ630NZcPqPnwipOmasbGEV+XI2nrwC6hlb4qcLZn3+PJZkTyctfT0Ulje0lotL8BQVIRUWlV8uyeUep41VPHXCRxAF5XHssRyH7HIrZteCoDwcTnA40WUXYU23Y023Y8l2Y8l2nzaOqsRvnwG/fQbcUU7cUU6EdDNCuhm3v4SruhNXdecpDdVlQfGyEI55+9rDZezhJ553nRNyWigPffXy3iDGGiUYa5Rg33aEnD/n8+CQIVS/f6gmSGhoaFxxHDx4kISEBPbs2cOjjz7KX3/9hV6v5+eff2bRokUcOXKEvn378vfff1fK+C6Xi379+lGjRg3279/P5MmTK0WQAKXlzLEza9u2bcuGDRvIzc2tlPE0Lg2mTZvG7bffjtPppH///ixfvlwTJM4Ti8XC3LlzAXyCRIsWLbjrrrtISkqqlDFHjx7N/v37uemmm8jLy8NqtfLdd9+RnJxMnTp1aN26NTt27Djptk6ns1Ji0qga/ve//7F48WImTJigte/S0NC4YLRKiauYVqE3sylvPhZdAKHGGGoGtmJd1i9Y9YG0jOjDAWEPKWlraNjmHmLcSiLfoXpL5DRRZs/6p6otPmwSLj8lyegIUs2w85XnAg4o1REF9f0J3KcknY529CP5y7fwr9WAnA3/Vupxxrw3lqNjx+PXqQ2hd9+CMdNAyudKWbpt/14mTJhAcnIyO3fu5K677uKxxx7Tkl6XMd3F/siyzGZWUkwB7eiOQTh52zGNc+OQnEQyW2lBJ8KFKHbJGznKQdpwPQFC8Bm3L+c7ofxy2vVL5EK2sQYnDhoLbYjQ10CWJQqtpRy27yDduY8YQz1qiHUJEENIdx0gxbOXAjkHE2aaGzoTSKgylFrp4BMSZOnEOLyVDsesc3zlh+85b+/rYz5CBe8yb6WEwVB+XbMJRLVKwapWAViVdZzBynvUVk2Py6pcf+xqhzqPt2OHt51RpNpeSi8TU11J4hTZlZU8krJ/t1oNUT24gIM7qiubByoiSNPaKeXO85HCYOzrlfNkylOWlUaqY8UoXyR1OQY1Fhn8lf2IeeVbTkkm5TwKbgFZLyO6BLyqtKAWeXgrKABks3JOdcXK+dHHKJ8Vgqj6WOgkJKebvcM+R/SzYEvej+4UQpDGpYN2z1j5aOf4ykOWZYYMGcK3335L69atGTBgADExMdx9992MGDGC9957j6ZNm2I2m5k7d26Fm4ru2rWLxo0b8/fff9OtW7cK3ffxfPvttwwePJjFixdz/fXXk5GRQWxsLO+++y533303EyZMICcnhzVr1jBz5kyaNm1aqfFoVD6ZmZk0aNCAPn368M0332jfsyqIa6+9ln///Ze8vDx0Oh2tW7fGYrHw33//YbGcfELhhfDzzz8zcOBA2rZty7Rp06hVqxZFRUUsWrSIV199lf379/PGG29w++23ExAQwIcffsisWbPYs2cP119/PXPnzsXPz6/C49K4eKxfv562bdvy+uuv88ILL1R1OBpngXbPqHGpo1VKXMVUs9SmffidBBjCSS3dzbqsX6jh3wS7p4StOX8SV7sbQRF12LHma7Ye+LnctkH7PQTt91AUK1IUq5qRFkvKo0TGUHJGrQtkGUFX+bYm+uAggvp0p/ifVTgPpQJgrdsAR0Y6CxYsYNSoUUyePJnly5fzxBNP8PXXX1d6TBqVh122sYWV5JBOA1pqgkQFUoPaGDCSTRoA9WmOH4FsZw3SWVR1yB6Pktw/ywoQPyGQlrprseDHFnkFTtmOHRshYgTNLNfRxNSBDNdB1jgWsLj0e7a7/1PGQcKOjYOenchul9KmSZZOGNdXESGIZ6zc8FVG6PVlIsPxx+d2I5hNCHq9IlBIkvJwu5WH3XFWx30qgvbKBO2VCdxlIHCXgZA1RrL/iyL7vygK0wIpTAukJCWAkpQAPPv88ezz5+DRcAzRtjPv/BTIbgHZLWDKVh76kmNaXLmVx6mQDMcIEAblQcCJG+iq29BVtyGKMqIolyvAyJ6zAk9uDnGjbtYECQ0NjSsWQRCYPn063333HXl5eYwePZqPPvqIYcOG8cknn/DZZ58xa9YscnNzqVevHtOnT6/Q8b1z1C6Gb8U999xD586defzxx3E4HFSrVo3mzZuzfft2/ve///Huu+8ydepUtm/fTrNmzUhPT6/0mDQqj7///puOHTui0+mYMGGCJkhUIC+99BIAa9asISAggB9//JE9e/bw8ssvV8p4ffv25ffff2fbtm088MADFBYWYrfb6devH2vWrGHAgAGMHj2aWrVqERUVxfjx433iyD///MMvv/xSKXFpXBw8Hg+PPPIIzZo145lnnqnqcDQ0NK4QNFHiKmZB6kesyppFy8hbaBt1J6HmGA4UrseqDyLXfgRy84i75UECajQg33mUojoBWPbnYtl/+vJq0SUjumTsoSL2UBFbdSu26lZCtuaT3cKP7BZ+eMygDw6hJHV/pR+nIU9HaOJ1GKKrkTN1NlJGLrLNjs5kpnHjxgwbNoy3336bPn36AIrhoMbliSzL7GQDheTTlHZECtWrOqQrCp2gpyb1SeUARXI+OkFHIxIpoYjDnGO5uNcI+wyYBSs1xYbIyKx3L2aF+3fSnMkIgkAM8XQx9qO17gbqis1prbsBGUV40KEnS0rliLyXLDkNu2xDlmWfSCF7PCe2cfIKF+rjZG2evOKEaLEoD38/5REYgOh/htlfTqfvITpciA4XumIHumIHxjwnxjwnwUmlhG1XHlGrXUStdhG5QSJyw4W18jJE2+jRZCc9muwkxppPjDWfQKOdQKOdYHMp9jgX9jgXLn9w+UPgPpnAfTIBuw0E7D6DCbegPAS34KuSQH1I5pPEHeCGABeiyYNo8iAIJznPQP7uIrLnrCDgpuswx0ZwzcIXuGahNitLQ0PjykQQBAYOHMiWLVv46aefyM7O5ssvv6RFixZ88803NGvWjC1btiDLMtu2bavQsWNjFROj5cuXV+h+T4YgCHz22Wfs27ePxx9/HKfTSWFhIYGBgdx88808+eSTfPzxx771Q0NDKz0mjcohIyODfv36Ub16dZYtW0Z4eHhVh3RFccMNN9CuXTvGjBmDw+GgWbNmPP/883z00Uc+z5aKpnv37vTp04etW7dSq1YtGjZsyIEDB7BarUydOpWcnBx+/vlnxo8fz9y5c31xBAUF8cEHH/DVV1+xdOlSCgsLKyU+jcrjk08+YdOmTUyePBn9KSZoaWhoaJwr2tVEg4WHPgDgxpavsG6vMvPK4LaQlPIX1YWH8IusSXrKHnYunUJ8y1sJc4bin6z0+MhJUG4ubRE6zHnnljST3a5T9mSvSPaOeZq64ycQfu8AMj/7mtTZ0/AUF2GJq0XNmjX5xxxPyYGjOHT+hHXpWell6xqVR2pqKrlk0IQ2VBNqVHU4VyRx1OMoh9nFRvI9iuFwnFCPvWwnWA4nWDjHL5xnML2WPR6sstI2zutnkV66l60ly7jRfA+iILLO/RdZWVnUi2xIAYpoWl9owWE5iSS2IKt9j4yY8ZcD8SMQPyEQQRZxUIpLdiAhISMj4cHpceCQS3HiINZTnzqG5pwkb14e0zEVOaX28sfgUtstneX1TnTLOAMNiG7VLFry/lRmF/qlK397jGDOVZY5wtSZh2olghSitEaKCi+k1KWICnpRWbYuQ2n7UT8066ziASiNVl+jECcUqa2cvGbWZ7j0S2YJ2aCKRYYyTxfZc4xBuiD7xAmPJCI5nGR9MhN9WDBhbW/EKGVx6JMl+DWsjnyjrM201NDQuGLx8/OjX79+3HDDDYSEhFCnTh1mz57NzJkzGThwIE2aNGHSpEmUlJQwfvz4CmmHYrPZEEURo/HiVJc2adKETz75hMcff5ysrCySkpJ45ZVXuPnmm7nxxhv59ddfmTFjBrIsX7SYNCqen376CZvNxi+//KKJS5WAIAhMnjyZ1q1b8/777/PCCy/w1FNPMWfOHHr37k1ycnKltHFq1KhRuWqtpUuXUqtWLQCCg4O5/fbbWb58Obfddptvnc8//5wnn3ySBx980Bd7/fr1adSoEY0aNaJ+/fqUlJRw9OhRcnNz8Xg8eDweiouLSUtLIy0tDafTydSpU+nevXuFH5PG6dm4cSPPPPMMTzzxBG3btmX79u28++67jBo1iubNm1d1eBoaGpcxmiihUQ69aKTUWUDt6GvZk/In8fPXk3poAbF3PkD20gXsXvoFbVo/wcnmzebVVRJuejUf51DvPSW9stySaaJU7ZFeWpxFacpBqg0YUslHpLB3zNPU/mAC4XfdSdb07xAQCO3YFQBb6kEOfa/MyKoz+rWLUrquUfF0F/uTLh8BFBNmjcpBFHQ0kFuwkeXUF5sTLzTgoGcPZp2VNA4RzDmIEmfZxslfCCJSrkEmiheCETMAkmqc10m8mY3yMjy4SRS6skFeigsH7cWeyJIHB6UUkk8huZRQRA4ZpMj7kJExYsKACREdAgICIibZjB8ByCLsd29DRqKesZViWq16QuBt/WRVv+ydxp5J8H4hlCTwelQYlY9fj1VJtrj9lauqrBO8NgyVTrZdSWSl5QX5Xgq9YutAaaQSRGmzUiUul3Lcsl1/Kn9rZLVdk2yUfP4XguobgevEqhj/QOXDwmhQhJSSUhOCICNLEplTfsednkvsoyPAI7Fj9M849h2APzayccBGEhMTz/u4NTQ0NC4HAgMDkWWZyMhI+vXrx6hRo7jrrrtYunQpn3zyCePGjSMvL4/vvvsOUbyw4vdvv/0Wk8nkSxheDIYOHcrevXuZNGkSbdu2pV+/fgA899xzvP/++3Tt2pV//vnnosWjUbHIssyKFSuIi4vTBIlKpHnz5gwfPpw33niDm266iZYtW/Lpp5/SqVMnFi9eTO/evSt8zNGjR/P888/7/j7WuB4UMeqee+6hU6dODBgwgKFDh5KQkMDRo0dxOp0kJyezbt06Nm7cyK5du5g+fTqpqakYDAaio6MJDQ1Fr9ej0+mwWq3ExcXRrl07NmzYQJ8+fViwYAFdu3at8OPSODlZWVn069ePpk2bMn78eDZs2ECPHj3Izc3ln3/+ISUl5cw70dDQ0DgFmiih4UOyGoiIbMKe/fPYf1Qp316TMpOE6/2pFZZA9TY12PTvJFbv+IymCYMICI4lOFnJZBXUEhE8p9u7gtew1XZ0NwgClu41K+twTmD/yKcBaFCtAQCC+gXOXVLkW6do28aLFo9GxZIhp7CdNYQQgb8QVNXhXNGECpHEyw3Zyzb85SBEUaQaNTjKQUyymVo0RBQqtgqqCa2xCv4clHeTKu8nWohDQkJERx5ZiOhow/VY8KMGddgv72T8z6/x8R0zsQgBmD1WIlHaef0l/YhLrV4wGAx0F/srg6jtpP7yzPKNW9fYgn2urcQY6mMVAk4MzFXmkSDblSS7z+DafRYXRRXBo2TxzUnp5HdQqnzswUo8LnUSrE61pJDUSaPmHBm1WxWh25R1S2KUJ53ByhN5ZisNIjMBWJOhXG+zjyr/H7lWfwA8RQYCkvQUNXSdVayy19Bar4oQ3jISt5oUO4k+Y/BXDbP1yrb+Fgcutw75OAXGkZZL+ru/U3r4ANF97+HQh+MJbNseZ2oaluYJ2HftoUGDBmcVp4aGhsblzqBBg8q1MmrdujWLFi3ihRdeoG7dugwYMICioiJmzJhBSEjIeY+zbNkyOnbseEH7OB/effdd3nrrLURR9FXAeT0klixZwoEDB3wzsDUuH2RZ5oEHHuCHH35g0qRJVR3OFc+4ceNYvnw5t956K+vXr6d169bUrl2b0aNHY7fbueOOOyp0PL1ez9atW3n22WdZsGABt912G3369EGv16PX65k1axZ33nkn06ZNw+PxMH78eAYOHMh3331H48aNadKkCU2aNOG+++7z7bO0tBSTyXRagdXhcHD99dczZswY/vvvPwyGM7QX1bhg5s6dy9ChQ5EkiaVLlyJJEn379qVOnTpERkZSv379qg5RQ0PjMkfzlNDw8dfKsexI/pkOLZ8iOCjet3zPym+wFaZjsgYT+9hIdH7+bF71KbmZewCwpjvROcEVoDwKGngoaODBGSTjDJLJb+4iv7mL3EZW3z49eYXogvwQreZKPaaWT0yk8YvqY6zyQC+CXsRjgnpvTyQiqjnBbTsB4HacvyGsRtXQXexPe6EHO1hLNWrQgk5VHdJVQR2aAHCQXQDUJYFo4jnEHjaxwmeaWVHoBD11SaAWDQEopQQPbuzYCCCYRK7DIvj5YgkVIrn99tv5xzOH9e5/yBWyyhlaGwwG35eZv6QflYdnVjlBAiDelIBRMLGy9Fe2la7AJTtBEMpMu0+FXg9Gg/KQZZBl5OBA3zIhtxAhtxD9kSz0R86+jVJlErDbgNsCbotSIVHarBSPTY/HpkfMNSLmGhFkMAY4MQY4T7kfwS3gH27DP9xGVGQBUZEFhATYCAk48foqCDIutw6nQ6Bg3koOPv0p7qJCYu97nMBmiWzYsIGidWuIHNwNqSAL/8R6+Pv7V+Zp0NDQ0LgkEASBGTNmsHLlSp/nw5YtW7j11lux2+3ceeed/PHHH6xatYq2bduSkZFx3mOlpqZSp06digr9nNDpdOVa8n355Ze+lk35+flVEpPGhTFx4kSmTZvG1KlTGT58eFWHc8VjsViYPHkyR44cYfr06ZhMJn766Sfi4uLo379/pQhDTZs2Zd68ecTHx+Pn50dhYSG5ubkcPHiQESNGMGPGDIxGIxaLhVmzZlFYWEhCQgLh4eEMHDiQtLS0E47hTBVfJpOJl19+mQ0bNhAdHc2kSZMq/PuGhkJGRgaDBg3i1ltvpU2bNmzevJmaNWvy7rvvkp6ezrhx49i9ezf9+/ev6lA1NDQuc7RKCY0TMBn9aVb/bvZlLOXggX+Q3A5Sdi4mM3UTAI43xlL7+nrs3vQNLT2PQEDMGfcpuEScQeDXTOn3XrihGL2fkeCgkko7DlmWKUk/SO7GbThyMvGUliC73QhGAzr/APxbtMCvUQKgJ6zLjeis/gS2aFNp8WhUHgfYhREzTWhT4TP0NU6OIAiYZSsmLNwg3MES+VcAWgmd2cQKMkmlGhXv61FHSKAOCaddRy/oaSF2poAcCuVc0qXDbJFW0kbods5VNHrBQAfrrRx17GWfeyt5Rb/Q3K8rIRb1uufx+FoyCcHqvh2nTtgfi71hNPoSpTrBlJKvLLSYCd6gihTqF638xEhl/2pVhLeCwmMSyrwuBHAU5uDIdGEICkb2V2KyF5o4aFRmvhbkKqKNt2pBr1YteGSDb9+2hko5xtnMWNCbldjddkXcEU2qn4VOh8Ohx2Ryn7CNo0gplzMZ3ASYS/HYnKTOcZK9/GfsR7IIvakN1QZfz8673gJg8uTJIMuYa0fjOJhBxMDrzyIyDQ0NjSuHDh06sHXrVm699VaWL1/O6tWrmTt3LnfeeSe9evVi3bp1dOrUid69e7NkyZLzEm69RtOVicPh4JdffuHff/8lMzOTzZs3ExYWhtFopGnTpgwePJi2bdtiNptZunQpq1evJiHh9J/3GpceJSUljBs3jscee4wHHnigqsO5avAKeTVqKPfeLVu25M8//+SJJ57gpZdeYtCgQYSFhVXomIIgcODAgTOu17JlS7Zv387ixYtZv349n3/+OX379mXZsmXn3Db5xhtvZPPmzUyePJmRI0eyaNEipk2bRkRExPkeRqXg8XjYsWMHZrOZunXrXnCLvYuBJElkZWXx008/8eKLL6LT6Zg2bRpDhgzxCcdr1qzh+uuvZ9WqVfj7+3P77bdXcdQaGhqXO5etKNHppjeQJDcljYLY8sFTVR3OFcVfq8YC0O1agcys7ZTacomObet73mQyUfv52ykaM5vtR6Zxw4y7qDauDjkJSt90V7ySqJJUU1ah9MS3mSu7CH2Q9YTlFUXL+99l36IvKUpLPuG5wBZtcGZlkD5zOsboGCw14xHcEHptN/a9/79Ki0mjcpBlmTyyiSBaEyQuMjHUYh87AIGuwu0skX9ho/wvN954I6sWrakUUeKskSSCCCGIEKpTk3UsYYO8hCZcc067WVj4NQA3RTxKlKcBm4r+Yk3R73Q23I2fXhUhvMKE3QF6neIdAWAof+2TrUZwKol6R8PoCzu+43CXFrNz5jgAdP4BRL02An3w+SeYvJNWTUGKSCGplRH+FicGvVIh4m29lGs/efm8w6HHpPpF5OUpgkjkHxKHt/xBbkgWpbtTcBcqnhXmmDhqPvQUB6e8X24fTZooFTlZX/6OIcSP6h3PLIJraGhcfNLT0wkNDdVMiSuJ4OBgPv30U5o1a0bDhg3p1q2b77k6deqwYMECOnfuzGOPPcaMGTPOad+SJHH06NFKTept2bKFXr16nTA7uqCggB49ejB37lw+/fRT+vfvj7+/P/Xr1+fpp5/W2rNchmzfvp3c3NxK8TLQODUNGzakQ4cODBkyhNzcXB577DEEQeB///sf06dP54MPPuD111+vsvisVit9+vShT58+9O7dm86dO9OuXTvmz59PdPS53RM3b96czz77jFtuuYVevXrRu3dvVq9eXa7iqqqZNm0aDz30EAC33HILv/766yUVn5ddu3YxduxYCgsLWbZsma+97cMPP8xbb711gpDVpEkTvvnmG7Zt28add96Jn59fVYStoaFxBXFZihKSJLH6byX50qDWWDrfOA5B1CEIIsvmP1PF0V05LF4+loKC4UiSdEKPWZ3FQOOX+rD+ga/Z/8sOojix5FtvVpJRAWuUGRCSAewO1czVLSmPc3B0ve7mdwEwFigflrYoE84AZdbBuq+f9q2Xnp7O5mnPlm0o6ghs3ILC7RsAKNm1A3NwNcLb3kDhnk2U7t+Hp6SYwh2bqJGWQsr3U886Jo2qZw+bcWInsioT4FcptYRGWGV/drKBzfyLLMsIgkCXLl1YsmhpVYfnQyfoaUJb1siLKJBzzns/Fl0AJoM/uLNw2Auw6s0+4UHQ6RRB4gwIJYrvhPmQKt4GqC3sdF4/Btlnoi35Kc8F7FMqylKvVzwtRBe4S0sQD+eSkvwPzvxsnAXKcQV36UbRhnXkz5hH5L2DkYJcGHWKiFD3S+XngceVsewlSuw1/hTwmLym48r12tG+GACPR0SnO70huV+QIizYcj248wqxxIaAKhCa9G4cbj2ewmJKVm8j46+1lBYoLUasbVvy7VPPEhsbS7t27U46i6xTp06Y69XFlryXCRMmMFt//u1JNDQ0Koe1a9fStm1bnn/+ecaNG4fdbsdsNl+SCZjLmSZNmnD48GEiIyNPSNa3aNGCSZMm8eCDD/LCCy/QqFGjs96vx+NBlmVfMqqi+euvv+jRo4fv7/j4eMxmM7t37yYrK4tly5bRqVMnTCYTS5YsISIighkzZvDzzz/zww8/ULt27UqJS6Piyc7O5rHHHiM6OpqOHTtWdThXFUajkSVLljB69GieeOIJbDYbo0ePJiIigoSEBFJTU6s6RB9t2rTh4Ycf5uOPPyY1NfWcRQkvnTopLXtTU1NxOp3nXHVRUciyzOHDh0lOTub555/HZrOxc+dOAD799FMef/xxZs2axYABAy5qXEeOHEEQBF/1zLFs376db7/9lilTppCfn4/BYODll1+madOmNGrU6JReEU899RSff/45eXl5PPvssyddR0NDQ+NcuCxFCUEQqB7fgfysZJyFuaxYNAGD0Y9aDW6moKCAoCDN5LaiONW5XNrtPQBCP1/JnplbCWx3E+GbVWPVJmqSLfzU/dZDuiZw4I2fKFibDL3OPh5Z8pCdl0Ru/j7ydqfhUfu7mwPf4tfZM+jZsyeZmZll4yS0JaRTV0xhkUS17YUtdT+enDwKDm4ne83f6nRggahb7qR4z3ZSf/iKgJTt/Pa/t+jcubM2Q+sSJyMjgxT2UZvGhAnVqjqcq5JqQiyirGMLq9i8eTMtW7bE398fN24kWUIUqr5cWZI9HGAnegzEnkRAPRsWZE0GoGl4D7JKD5Di2kOQLgIRkIL9SS/eg85jICqgAXKgMmtIyFcS++hV4cJx4QmfwqStpP85B7etyLdMMOqRPRKWlg0Ivq0nYpCF3D8WoMuXkCrg49DjETGZlNjD/Ep8YrLNpcyIDrHkcOC7dRz6fgOyy41gNmKuV4Pwu28gacEySg/nUHokBwSBwMQ6rPhsvm8m7JkQBIHwu++k8N+VPPbYYzxlrlwfIg0NjXOnVq1adOnSBZPJxDvvvMPzzz/PI488wo033qi1dqhgYmJOXS1211138eyzzzJ27FjmzJlz1vs0GAzceeedTJgwgccee+yczK7z8/P55ZdfWLFiBVu2bEEQBOx2O/7+/vz6669Uq1aNPXsUDzqz2cz//vc/Hn30UQIDA1mzZg1bt25l//79fP3112RkZKDX6yktLWXevHk8/vjjtGjRgldeeYUePXqQkJCgCV2XOD///DNbtmxh/fr12vfxKsBoNPLhhx9is9n48MMPGTVqFIIg4O/vT0FBQVWH5+PQoUP89ttv9OrVi8TExPPej7d90O+//86cOXMYOHAgoIgUM2fO5Kabbqr0FnDDhw9n2rRpFBcX+5bFxcVhMpkYP348jz32GDNnzuSHH364aKLE4cOHGTZsGL///jsAYWFhDB48mB49ejBhwgSSkpI4fPgwoaGh3HPPPTz//PPA6T9fvMTExPDdd9+RmpqqmVxraGhUCJetKHE4eTEAjUcofaclj4ukbbMJDp5N9RptST2yuipDvGoITKxN3rKdOErzMITG4DEI6IuVGbIeSWnnpLMrTc8dQQKNqimzXA03hZL/YziulRt4dMNgACYnnr7c3O12sHnVx9iKMzGbgvCLiEf081OEiuQ1TJs2jZ49e9KsWTNaPjIBgKKayrY7nz+xxVdycjJLly7lyRdeI3f5YiISuyLGR1C0+F9fWXzdtncTGpOATm9i1axR5bav/eH77B8x6oT9alw8srOzAdBdnpeyK4YQlJYP8+bNo2XLlnTs2BEZiRT2EUe9Ko4OkthCFmk0oQ1G4cKS2jXCWiEazGxLn4eNEvw9oWTk7sMlOzCIZqr5n/wGXfY3wzGVAEVNwgHw35MHgDtUETL0WUUc7aEIbFH/Ks9lX6N8sZd1YM8+iuRyEHfjYJzNQjFHOzDVrIbTobZMyRIwxsWCx0PpwX3oI+qQX6y0ygv2KNfiml8o1+i0J5SWTKl9ZSSHskxnUdo16VThwWNThFmP4eQic/HuVHZM/J3StAJq3NmGoOaxJH/2L6Xb9pPFEpz7jvDY/Q/SrFkzPg7YjT7ISqtWrc7ybCsc+d+4c1pfQ0Pj4hIREcGSJUsAWLFiBQCzZ89mypQpACxYsICePXtWWXxXC35+fnTq1Ik1a9ac87avvfYa06ZN488//zzrxNm///5Lz549sdvtNGvWjMTERHQ6HQUFBcyaNYt//vmHu+++m2HDhjFs2LATtm/bti1t2yrtYV9//XVWr17Nxo0bGTNmDF9++SXPP/88CxcuZPTo0QCEhoby/fff0717d02cuETJzs5GkiSCg4OrOpSrmiZNmjB16lS2b99O06ZN6dy5M2+//Ta7du06pyqqysBut9O1a1dEUeSjjz66oP9lQRCYPXs2Dz/8MIMGDWL+/PnYbDbmzp2Lx+Nh165dfPXVVxUY/YmsXLmSZs2a8eKLLxIVFUVoaCjx8fHl1mnTpg3fffcdxcXF5+X5c7bIssxnn33Gs88+S2BgIN988w3+/v7069ePH374gblz5+Ln58fdd99Nhw4d6Nmz53m1XOzTp08lRK+hoXG1ctln8nRGM51veReP20na7qUc3P83aSlKgnrgwIFab9tK5tCEPwAwRsXgcZ/9TYUgCER3rMme77aQsb0e1RLCz7hNpmMftuJMmiU+SEhoXSSzjsKaerK3r4LkNdxwww2+dTdOLhMh6r018aT7q1evHvXq1WPion3sX/INqX/PBiDqxRE4V+4md+ki9q75HgSRxtc+fNJ91P5Q6X+uiRNVQ8OGDYkghmS2EiyHEySEVnVIVyV2bAC+FgutWrUilrrsZRvIEKerD5J8ul1UCja5mI0sx46NejRjm1wxYnX1wMYYnQL7izeSK2VQvVoiY8YOZNiwYZSWZGP2j1VWDD6/Lx7RizI42qMau4Yp7ZoClEmmGHbnULxlI2b/cA4tnH7K7WVZxvL7fNJ/+4HYqJG4REXwSB6qCAuWQLu64rl/EfQ3ONmXo/SXzducR8bbP2CoHsnWTct9s9Hi3fdz6MVp2Lcl49e+OR9//DEAQ895NA0NjcuNTp06Icsy+/fvZ8yYMfz888+MHTuWgIAArZ1LJbN7925+/fXX8zrPsbGxNG/enLfffptevXqdlen1l19+SXR0NMuXL6d69eqA8vlz88034+/v7xMczga9Xk+nTp3o1KkTISEhjBw5kh9//JHExESysrK4/fbbWbFiBTfeeCOJiYksXLiQ8PAzf3fQuLgMGDCAqVOncsMNN7Bz584qa6dztVNaqrTVbNCgAQBjxozhhx9+oF+/fnz00UflPGkuJt9++y2DByuTEXft2lUhrdn0ej1Tp06lbt26/Pbbb0iSxIcffsjKlSvZsGHDBe//VMiyzO+//8727dt54YUX6NXr1K0fRowYweTJk3nwwQf5/vvvK830esKECYwePZpHHnmEd955x1et9NRTTzFxopIP+emnn+jXr1+ljK+hoaFxPlR9X40LZNt7T7H8tzGsnPcidaO70LaFMhPn/vvvJzyyLna7vYojvLLxa6Ik34r65+AIFnEEi4RvkQjfIiE6BUSnQHY7D9ntPFgzZXZnRrI7M5IocwFdHqpFRMMQFo5cQkEB3Lv2Qe5d++Apx3IU5yGIOkJC6/pmVUgeN+mrFxBcr6XPTOp4kk9SJXEsYq1q1Opdtm36uA/JW74YnUU1bpIlinIPIwgCgiAQUDcSQRA49PzLHP3oM/IXL6HhM2+fy2nTqCB0Oh3NaIcBE5mkVHU4Z48gKo8rBAvK/4rD4fAtq0tTIqlBElvYIa1TfBIu8nGnsA8XDurRjFjqVsg+F+x5mwV73iYsKoE2dYfQsekI6sfeSJs2bQDwSGXnQHBLyqOwRHnYHMj+FmR/C5YMO5YMOxh0YNChK7KjK7IjG3UUNw4nIKWsMsGenU7K/Jls++UtPC4Hdbrce9oYBUEg4v7BIMkc+XQi+fP/Pul6Br0Hg96D7BFpWCeNhnXSqFc9k3rVM3HlmXDlmUAngU4iPiyX+LBcoi2FRAcV4s4vJuuDrzFUj6TaM4+QkJBAvR/fIPqZe0id9KtvjJL/trB169YLOOMaGhqXI7Vr1+ann37iqaeeYsOGDXTq1IlXX321qsO6ovG2XYqKijqv7b/99lsOHjzIgw+e+l78WA4ePEirVq18ggTAsmXLWLBgAd999915JxwHDx7Mu+8qPnIbNmwgIiKCLVu2+Gbfb9iwgZ9//tnXliYoKAhBEIiKimLIkCHMmjXrvMbVuHBq167N9OnT2b9/P+vWravqcK5a6tRRWpV6WwpZrVZmz56Nn58fPXr04IcffqiSuF555RVatWrFzz//TMOGDStsv6Io8uKLL7J27VrWr1/P448/Tnx8PIWFhRU2hhdZlpk7dy4dO3bk1ltvpXv37rz44oun3SY+Pp5vv/2WH3/8kfbt2/Pnn39WeFy//fYbo0eP5oUXXmDy5MkEBQXh8Xh45pln+PLLL33rvfjii3g8p26xraGhoXGxuXKyYirHlgAWFRxh+fLlVRjNlU/jp69HNBs48Or3lGSfOSksijKiKDN3RzPm72vFPRNa4Cx2snv2ztNul5ycTFbyfwRE1cWyPwfzvmzy6+rJSyjCYy9BqnNhpZA6sx/hLa4jvGMPonv2J6rLrYS1upbYa++g/m0jMNcpa0Gj8zcT/0AnAnp0QhYk8ubOY8/45wlu0dZnEtjlpnfpctO7NH9yIs2fPHmlhkbFIBqUaiiRM5sMVzhqkl3QGxD0Z+c/IugNiGYTotl0xQgTOkGPP0G88MD/6GEYQA/DAP6RfyZBuIYE2nJUPkiacBjRclzrpEoUKTyyhzyy8COQJHkLi+Wz7699NizcMY6FO8axaO3LLFr7sm+55GdBshqQrOfoRyMIIAjIRj1++wvw21+AoJew79zF/unvYzu0l4gb+lBr+PO4mkSccXdHXn6d7atX4yksoGD+X2B1oDO70ZndlBaZKC0qm73oF1SKw31uhZPy2vV4SkqJHHkvokU5VmdKJunvfY8pNoJqowbid00TAHJzc89p38cT/8X4C9peQ0OjahAEgdDQsgrGd955B1m++FVzVwvVqlXjww8/ZM6cOYwcOZKsrKxz2j4hIYH33nuPOXPmsGXLllOuJ8syv/32GytWrOD6668v99zatWsBLngG9DXXXMP999/PxIkTmTp1Ki+//DLPPfccM2bMYN++faSnpwNQUlJCly5dmDJlCg888ABz585lwIAB+Pv78/PPP19QDBrnh/e7uNVqreJIrl68E2W8bfUAmjZtyurVqxk0aBCDBw8mLS3tosaUmZnJ/v37uf322y9bryFZlhk5ciS33norOp2OP/74gz/++OOsPCj79u3Ljz/+yNq1a5k6dWqFxzZx4kS6dOnCG2+84Vs2YcIE3n//fR5//HH+/vtvjEYjRUVFOJ3OCh9fQ0ND43y5MjJiXlZtxropFb3BgiDqqNOwd5WVJ14trH1gGn/P/xO5qJhdv09k/9bfkASQRYGIDTIRG2TCV+sIX62jsGfJCdsHRprpMKQOmz/fyIKH/2DLl5uoOfFtqj/7FNEj+hF6a0fMdWOo36ABsixRo3Vv37YeRyl5388DwNyswXkfQ/R7q8i2HERqGIrYogZbZ3xK2uI5ZKyYT2jd1mTvWk1B0ibCG7QHwBhsoebAtgTc0JHQ++8gvHMPAAq2rCUgvg42m43szJ2kHFxJ3p6NOApyNGGikgmjGg4u06qoK0SYCKc6ORzFISsl4z0MA/hL+pFt8mpChWqkufchy3J5YUKWKiWWAjmX1SyiiPxK2f/J8M5MzYnx4PY34PY3IBt0yAYdWC1gteCKDsLjb1IeZj0esx5ZEJBP0U/XvnsfWR/PICCuIY3ueYHQttchGs++FULDhg2JHPkIeCSKFp+5x7jDrcfp0eH06MDiAYsHnUl5eJcnF4ZztCCQvAw3gk6HkFm2vTu/GGSZiLuvR7SYsG3aQ0j/bnTp0uWsYz4Zkt1OtcduI2p4P+I+eJK4D56k7uw3zryhhoZGldOpUycAGjduzLx58zQvgEpm2LBhvPPOO3z11VfUqVPHZ3R6tgwaNIjmzZvTuXNnbr31Vn788UdKS0tZvHgxkydP5v7776dWrVrcdttt9OrViyFDhvi23blzJx9++CFBQUEXZIDqcDjYunUrnTp1olWrVgwaNIjRo0fz7LPP0rhxY1566SWcTie1atUClJZBQ4cO5ZFHHmHbtm20a9eOkpIS+vXrx8svv0xJSQlffPEFn3/+OT/++CNFRUXnHZvGmWnatCkJCQns3bu3qkO5aqlduzYJCQl88803vglzoFSYT5o0CUEQmDlz5kWL5+OPP/b5LFysz4Bq1aqRlpZWoV0zxo4dy4cffsinn37Kv//+y80333xOx9OvXz+efPJJfv/9d/bs2VNhcYEi+kiShCSVfbdKSUmhdu3ajB07lqVLl+J0Opk/fz4Wi+WCxtq9ezeTJ09m4cKFrF+//pIyUdfQ0Lj8uOw9JY5HFEQSezyPJLkwmgPR6apg9vRVRteuXWn5xf3sezuZjKVzKd2XTEiNJliDowmJaYIzUJnJHrjQD3Ou8kEZqk6US28cSJNH2pAVHE/u+kNsnbYVhB3IqoKvDw/C0jCO4J7X0HRpfXQHDHgO7wcgo+gIJSs2AmCOPf/WLAVyLhkf/OT7O+KTrxg/fjyjR4/Glp1C7p615dbPWpbE5vx/Kdq5BcnlKPecIz2Vhk+9wJGN3ygLdisz+Rve/zIalYPs8SCio/giJqC9iAb1EqrX+2I5U6Jd9PdTWhkBgsutbOeunOT8xaSGuT6p9v2s8iykiXgNkWKM77lYoR5b5BVkWXKIstZDdrqQ3eqXpAoUJiTZQz45JLMVAZHWdMGf4Arb/+mIi4vDaA2mKOsAxJ25JF3n8GCPMCHrlZmEpowy0Tbp/hBs23eQ9f63BETUol6nwayfMua84upwh47F29qT98NCrAkt0AUFgEk550WpimdFXP0MeC8SAPPzqQDUqZHJvpTIU+437PaOFCzZSeZ331H98ceVhX5hCEYDB0cr5ramunH4db3wHvJF/6wi/9eFvr8N0WHEfTDygveroaFR+XTp0oX9+/dTvXp1rb/8RUAQBJ555hkeeOABHnroIfr27Uu3bt3o0aMH11xzjU8kOhVms5kFCxYwZcoU/vrrL+68806sVis2mw2dTkdCQgK33norvXv35oYbbiiXkBs6dCipqan07t37gjz9XnvtNd58881yyzZv3kzz5s35/vvvT0imDhw4kPnz5/Ptt9+esK+NGzcyZcoURo0q837r1asX8+bNO+/4NE5PQEAAR48e1USJKmbUqFE8+OCDtG/fnp9++sknCgQHBzNo0CDefPNNBg8eTLVq1SothvT0dNasWcOIESO45557ePbZZ2nSpEmljXcsnTp1wul0smHDhgv2M/J4PDz77LO8//77vPfeezz22GPnva8333yT+fPn89hjj/HPP/9cUFzH8tFHH9G9e3fGjx/Pc889ByiTkz788EMCAgIQBIHRo0fTvHnzCx5ryJAh5dqzTZgwgaeeOn27bA0NDY1TcUWJEn9JP1Z1CFctK298j1rJ7xPZKBKSVpC5bgXu7Xb8Y+oS3a0f5tBT3/CIepGY3k2J6d2U9I0ZpP6ZjrlhfQLbhSGajXgL/XXLy5ca6oKUhFroXbcjXID4ZH+wG/5/p1J8qGzGwqxZsxg9ejRBQTWJTexDTuYOTNWqQ14JLmcxBVsUoSK0/jUYGsRjrh5LadohzDXiMASHYTD64XbZkWUP/jUbIprNpxpe4wLRR1eDPBOCy4g+MhopX52t4SlLdstq70xfIlyjwrGKgXS03MJ2+wp2SGsIEcqqmiLkKCKozrbcRSBJRBCCoDdU6OshyzLrWUoheQA0oQ3BwsU1wQwVoyg9mIyrkXLsej8lAacrVmZpiU4PHovysesMOnmptyS5yZ03n4LF/xAcm0DtTncj6s6xFdRxBN3WjaLF/2FP2odfmxZnvV2dGpkU2pVrl92txBBuKcEamguhUDT4Ho5+9Al5/yyGMWMwVAsnZsLzOLYfRgwxYmpQq0JmxJVu2ED0DQ2oN7Qjy+/8Ck/JZVoVpaFxleKd0a5x8QgPD2fWrFl88cUX/PLLLzz77LO43W7GjBnD2LFjT2tkHRUVxSuvvMLLL7/MlClTyMvLo0+fPjRo0OC0bUpq1qzJypUrL7g1yW233caMGTM4cuSIb9kff/xB8+bNGTNmDHl5eWRkZFC9enU8Hg8LFizg22+/JS4ujgEDBtChQweqV6/O8uXLefDBB1m+fDmiKBIQEEBJSQl9+vS5oPg0zozH49GqoqqY++67jyZNmtC3b1+efPJJfvvtN99z7777Ln/88QfXXXcd8+bN83lQVCS7d++mTZs2FBcXExYWxuuvv+4TRi4GzZo1w9/fn5UrV16QKHH48GEeeughFi9ezIcffsjw4cMvKC6r1cqYMWN49NFHKS4uxt//wlpQe+nWrRvPPvssL730Et26daNNmzY89thjdOnShUOHDlG9enWaNWt2wePs3buXdevWMXv2bKpXr06nTp04evRoBRyBhobG1Yogn0Vz18LCQoKCgigoKDjtTazG1U2tj9/3/X5g2CiavHUn+yYtwpldSN3ra4ChN0HB8Yg6PaJbedvl9LMBEOyntHzJyg7AYFFmjwuCsk61IKXM+vAeRdiIrK30Jz/wWzLZk38iPT39gmd5yLLM+vXr2bNnD+3btyc6Ohqr1co1904AoLiGcmNtyQKXRSZny78YgyM48Ovnp9xnl57vkNuobKbY1onaDILKoGfMcFZl/YC/PpTmoTeeKEo0qYPHT/WdcKjvLbUyQSxxKO11AHm/8uVXsinvSVEtbZXsjlPO5tdXU2eSi0oLJtlWilyqvJdRhTIxIkxdWdWADXrkjGwlxPz88z3ss8PbGqqCqhG8vhmCKCCp1UxeQdB7vuyOAv51ziVeaMg+aTsAPYwDccsutoj/UeLOp3PMEPSiCSk907efczkG75get5Mi8jnMXty4yCGdujRlVeZiIiLO7LtQ0TSKuJ6knH9pe8sbiKIOS7qSPPeKEq5wPySDcjyCpFzfHMHKOc1oLSI5HKRM/gBXZjavv/oqL7zwAqJ44e29Gr46kb3vvoR/lw4E33wjstmD5HBSvHwtfu1aEVpHInK8IqDkNlYqN8x5yvkuqKWMH3h9BqCIEpKsXA93bYonb8Gf5C/6i2rPP0qdLgG+MVd2f+eC4wbl2izqdTR6sguxtzZj05x0sj6aRcy7I0gZM6lCxtCoWLR7xspHO8ca54okSbz55pu8+eabWK1WHnjgAR588EHq169fYcnjO+64g+Tk5NP6UZwtdrudv//+G0EQaNq0KTVq1Djl52F2dravb3psbOwFj61xYRw6dIj4+HhmzZrFnXfeWdXhXPXMmDGDIUOGsH79ehITE33Ld+/eTdu2bbn11luZPn16hYxVUFDAvHnzmDlzJrt27WL//v1s376d+Ph4/Pz8KmSMc6Fr166EhoYyZ875+cr9+++/9OrVi6CgIL7++mu6d+9eIXGtWLGCzp07s2HDBlq1agXAnj17WLZsGQ8//PB5X5NdLhcdO3YkLy+PTZs2VZjgcSx//PEHffr0IS0tjejoaAYOHMi6detITk6u8LE0KgbtnlHjUueKqpTQqFoODBtV7u/g1rVoOfVBzMuXsOXHveQd+AxB1BEYVY8ajbsREFF+5py72I7jYBFSVBimkNNXPsiyjHN/CoJBT0hIyAXHLggCbdq08RmDeVn7zdOn2OJUy8tYuvDZC45L48wUWEoocmVTt2Z3pOAwpHhFoBKcHgSpYpLxnm6J6BZvqJB9XQ54k/7eChNRbcMgS2UatmhSZtCLgcoNrxRbDSHpECbBQg1dHVI8++hhGsgih9JmQS8YaGhozRrnPA6UbKZe+LW+fZ9JmBBEAVkqS0a4ZCdJ0ibSOYKEByv+mLBQm8bEUa9KBAkAT+cEpF+WUOhKxy8sFkOAIjjI+jN/ufAUF5O3dDGuoxlUe2IoY8eOrbC4nLlZeEpLMMbWUP4+lErO1Fm40jJwH80kdHSPM+4jb6XyfxXVYy/FLuX9YIorotpDbSndt4esSd8QJNxA+HVnbl11tty8fAQpC3eBJIPVisOtR3Kooo7xwqpHNDQ0NK4mRFFk7Nix3HvvvUyYMIEvvviC8ePHExwczJAhQ3jmmWeIiYkpt82RI0fIy8sjISHhjAK5zWZj27ZtNG7cuELiNZvN9O7d+8wrolSFvPXWWxUyrsaF88UXXxAUFETPnj2rOhQN4O677+aVV15h8uTJfPHFF77lDRs25LXXXmPkyJGMGDGC1q1bn/cY69evZ/To0SxbtgxQWifVrFmTDz744KK1azoZ11xzDd999915bbt161ZeeOEFAgIC2LFjB0FBQRUW15o1azCbzTRq1AhZlpk2bRrDhw+npKSE2NhYbrrppvPar8FgYObMmbRs2ZKuXbsyffp0GjVqVGFxu91uXn/9dQBf/kWWZc3UXkND44LQRAmNSsM3U/ZmkN+WWbt2LWN+eoIdv+xlx9+fYI0KIHB1AsHhdUmPWE/Koj3IbgmdSUeN6+K5dmQz/KtZWZcRB4C1ejEATo+O/FW7KVy0GoDoHi2oW1/5srRzaTb6ADPOYhd+CTWpeVcr1t358cU/eI2LhiQriXODXpmB4/ImgkUDLn8lua63K+KEM0BJpFsy1bZBoRaKY5T1dU2VmytjsVpF4VQS8IZCJWHu6ZaIMVPp+y/r1coIp1J5gTqjRY4KRVCX2WoFq3Eoq4hKmJjTbUhJhRd83CfDW8kgmsv37ZZKS30Cw9ntyJt8KL+N6K/OcpJlBKtqkuZ2+56X69dEzMwnytGMw5lJZEtpACxylvV/vvnmm1mzdIeyv1glASLtO3DicZysukNddljaQzpHiKchIYQTRBiL5fObBVWRWMJjQBQpTN+LX1gspRHK62HKKxMlLEeU197jr7wXC0v2cyT5Hwp/PghAZOPOxNjO3yD0ZNj37VN+7k+idO8eipf8h6FGNQK6t6Vo8TqKh3RFaqe8/0ujlPd94F/Ka18Sr/ytC1b+DzbtjEcs1lGnpVJZJOh0RIy4l9zpv5A0bi6lKbnE3tOhwmLf+tbfABgCLWQs3kXOV4sw1YtHDDi134WGhoaGxsmJjY1l4sSJjBs3jqVLl7JixQomT57Mxx9/TMuWLenXrx+xsbFMmTKFFStWAIph7LBhw3jmmWdO6RXx4IMPkpSURHFxMffccw/NmjXjwIEDrFmzhpCQEHQ6HbfddhuPPPIIer329fNKxuFwYDabtRm5lwh6vZ6+ffsyY8YM3n77bcLCwnzPPf7444wcOZLVq1dfkCjx6KOPUlJSwpdffkm7du2qVIg4lrZt2/Luu++SlJRE/fpnd2/95ptvMnv2bLZs2UJ0dDSTJk2qUEECYNmyZVitVj755BPmz5/PkiVLGDJkCMnJybzzzjvnLUoA1K1bl3/++YfBgwfTqlUrli1bxjXXXFMhce/du5e1a5UW1mazmXvvvZcffviB8ePHV8j+NTQ0rk60u0KNi4IgCLRt25bmhgY0u6s+m5YVkLHmCEf+2En6gf/Q+wcS0bkX1hq1Ea2bSflxAz8MTCPh7f6URioJ1o6xSuJyVUo8kqHMo6FkTxrbttqRJRlz3WhEgw59qIncPzeR/88W6v63l70TF540Lo3LG1mW2Vu8DqM5iGBXIGJ+CYRbLmifpWGKkCHp1ESyYEBvVxKzxTFG9TnlKb3qc65TRQ9DiYTLT0noe8zl2/TIooCp4ByEgXNAXz1aGSNU+QLoCTCj27bvtNvo1JJeT7Ei9p2sYuH4agiClZtyOTO7bKVApWVPfmNlbEOcPyHrJEKESLa4V9DE1J4YXV0W2WYAyo24RYgEUcATouxXlx2Ep0Bpu+UVVhBEdNWrIWXlKH+73RQ6cznKIQ6TTATVqS00uqS8hDzBRoIbt+bo1r+JMzfBXev0iXNZltm3/VcEQaRGq5sJq53oe10qknaP69mqb8CBJVuQnU6C+/YksFdHPNmZFP21BmdaNlbOLcm/b1Msd3dTElZ5Na3IHZry/RvhHJm+FGdMA6iYCnf84oIpzXNir9WEI69MI6BxdRr8ry86S17FDKChoaFxFWK1WunVqxe9evXiueee46effuKvv/7i9ddfp7S0lHbt2vHDDz8QGRnJnDlz+N///sc///zDb7/9RkBAwAn7q1mzJgBHjx5lw4YN/PHHH4SEhNC8eXM8Hg8Oh4MRI0Ywffp0Pv744xMqkzWuDDIyMvj666/p27dvVYeicQxDhw7lm2++oUOHDnz//fe+lkGZmZkAp/WKORV2u50lS5bwxRdfsGHDBr766ivuv//+Co37QunRowexsbE88cQTLFq06IxtkXbt2sWLL75Inz59ePnll+nTp895nZszMWrUKBwOBy+//DIxMTEsWrSI7t27M27cOCZMmHDB+2/Tpg2bNm2ia9eu3HnnnWzZsqVChBWz6pH53HPPkZuby/Tp0xk3bhyjRo06w5YaGhoap0YTJTQuKh+1UkoouxSMpkaLRrh6huEpKCIwI9x3oxDZXU/UjU3Y+tzPbBs9i5gXB2FpUL5HrH+LOiT8OharyaUIHpEHAdiUq7QnKbSbceUVk/LOT+z74E9W37Wadu3aXbwD1ah0nE4nffv2JTdzFy1j+vrMgE1ZiidEQYMAPCblPeUxqhUTpap4UKioCbJOJPCQsqw4pnx1QWXgCNLhCPQn2NVAWaC2lxJciljh2asIb8dWNXi9GrzVGIJ6c+xN4p8KT9M6vm10BTYEj9p6SfXakI9mnLCNaDSCIJaJEN4ZkWYTFBaVrRgXjaS2cnAHn2jiXtwmjsT8HuwqXc1O52oyhcNcp78Nk2BGZ9WRXXgAR/Ug9CVlIoguKAhPYRG60OCyMQF7sJ59acvI5igOStFjoCb1iaPeaY+/qqje8RaSDu5mc9bv1E58EEEQMJQo58qY58Qeo84clGUc9kJKi7Oo334wYbHNWTWrcm7qLeFW2r7QGdct9ZAlCUEUOfTAM8RNUtpd2PcWYFTfZsU1lffJwb7qFzeT2xsuALpAJx638tocLFVm2wUZShEEgeC+3SjdtIeiv1bDuAuPO9BoJ6JxOAf/3Ef6F0twpGSjb9sKneXkM3U1NDQ0NM6dwMBAHnjgAR544AGKi4txOBzlZlN37dqVu+66i5tvvpkePXowf/78E1qnvv3227z55psIgnDKxJ+3j3qfPn04evSoZoR8hbFr1y7atm2L0WjkjTfeqOpwNI6hfv36rFq1irvuuou2bdvyyiuv8Nxzz5GTo0z8WbNmDY888shZ7WvBggV89tlnLF68GJvNRuPGjfnkk08YPHhwZR7CeeHv788XX3xBz549+fLLL3n44YdPu/7SpUsRBIHZs2f7EvCVwXXXXcd1112HJEnlrpn16tUjNzeXnJycctfg88FisfDDDz9Qq1Yt5s6dWyGvT0xMDGFhYXzxxRd4bWk7deqkXcs1NDQuCE2U0KgSlnZ774zrtPSY2fvqjxx++RuCB9xE2h0hmILMtIxOBSDdFkC9wCwAYs2K+fWfBUrfxBB/G5ZIE/XuacGG51MqZZaDRtVSVFT0f/bOOzyKqovD72zNpvcekkAoofdepEvvooCIgCCColIsoH4qKCrFggIqICAqKAoiKCJI771DKAklvfet8/1xN4sxgJRgAOd9nn223blzZnZ2d+b8TmHNmjUAeDnfemNDo48TzjFpZNUREeJqY1G/BLvz357hYNNcfS8v0F62yV7dSMoUr+tyrvZasDjbMyTsIkBRxoXV7kfVFEJaHU/7OsRrPntSbtl+TYSISjSHeZPvqrGv257CIV/NzgBwz8ovsbwUaN/uVLGsZLCffLs4Y/NwRnUxsfgC7m7Y3IXn2mrQXBU57GjzxMYYkkRTZ01AINWTm+NnDOW4aSd7rOtpoOtASH4VstmL2VyAxV+IHy4ZvliKBBmjCZtsIyfrEvlyNieMu1CjJoBQfAlkp/GP65aPKGvUJsDJGf+OPYlfsZjC+vEY/EKuO16nd0VSqSm05GBxunsn9Esb2WsINyr+evnqaaRF+GC+fA53rWh+mF7j1k8Lin5/65SPR/9QELGrjiPL8h1fpHzb+HPOzT5HVFQU2eu3AJC3+yCHnr2C2t2NoPU5JExXyvMpKCgolBaurq7XbI7aokULNm7cSMeOHWnYsCHz5s2jRo0a+PpeDSr6p74TzZs3Z+jQoaxbt05xYj2AnDlzhpycHCpUqIC/v1Ji8V6jYsWK7Nq1izfffJM33niDAwcOsGzZMjp16sSFCxduuGxGRgYXLlzghx9+4N1333UIG507d6ZatWr39Pe5Y8eODBw4kClTpjB8+PAb2hoeHo4syyQnJ1OuXLm7btvffzOLGpHv2LGDbt263fH8ERER1KhRg82bN5eKKKHVapkxYwZDhgzhvfdEme6xY8ei0+lo06YNY8aMKdGbSEFBQeGfUEQJhXsWjYsTlaY8ypmPNpOxZDW/LgGNQUv5LhUJax2BrVJFZJuMucAC1+mvlH7oClo3PZGRkdceoHDf4uPjQ1xcHOUjo7iQsYfK3qJxcmGQ6Hugy7VhKxAnnm77LouFjCJDIr/+vXU85ESLaBi5ui8AmnyRKeGUXEBeObE9Vp39ot8sxICiHhUq0z83805t6IMuVyxnSDEVW07ydkF15lKJZWzlArE6F/XnEOs2eWpxvpxXbFyhrxAIHGJEai4WX+HQkE0m/KVg3J26stf4O/vMf1BT2xyApNQjeEa2EMs665ECvDHbCknPvcS5woNkWYVQ40sg1WiIVhLruVcFCYDDH74AQIV330f6WUv+uRjcXEIwuYqLDsMVC7p4keGSH+UDqHFy96MwO7msTMarXgRJm2KQ69mQJBVWVQGW1HQMGS5ovbwxBopx/r+L/f7QxB2OZTPNQqTalhoFQJRbCsm1gzmzaD8nTpwolZrCFSpUwFC3OgUHjqH19MGcmYYxR5Qcy99/GJc/t5G3/9Adr0dBQUFB4cbUr1+f3bt38+ijj9K2bVtAOL3Gjh1Lu3btqF69OoWFhUiShF5/7ezTLVu23FHteoV7lx49erBgwQKGDh3Kzp07adKkSVmbpPA3dDodU6dOpUmTJvTu3ZvBgwfTtWtXnnvuOeLi4hxl2AAyMzNJTU1lw4YNTJo0ibS0NFQqFdOmTWPixIn3tBDxdwYMGMDSpUs5d04EulyPKlWqAHDq1Kl/RZT4OxUqVKB8+fKsXbvWIUokJiaSlpZGYGDgbWVPtGrVil9//bXUbHz88ccZMmSI4/mhQ4fQaDTs2bOH6dOn8+WXX/LEE0+U2voUFBQefBRRQuGeZW+nd8SDnqKxUq/vxpNzOpGY5Qc488MJND7u7My2YTTnUqH8w4SHtaCwv3CcZUrCAZtyPBXXOuXx9vYuo61QuJuUK1cOT+dQsgtLliIqhtne2Nqe/WDYGSOeazW4HxM/g9nVxDFis/8quiSIZZwuZZMf5SmWSxMn4PbqNVjt0e25gWIhXZ7syIiwqYUjWmXPKDCkChVBkiHfT+14DKDNFe8ZvW7vJ1nWCDts9oQgQ5IouaPJEQJEfqgz+nR7qSRVyYsIW6UwTJ5io2w6lUOwMLkLe4qEDDGXC8gyzpeEY9j9kGjcbA66WqtUk5pLXjV/XIxiOafUdOrr27On8DeOmXeiktSYMlNwjy3EajVx8si3XLLFOJZ3wZ0aNMYFN3bYbi6isqPTQADWFS79x7F3G0mjQR8cQn5qSbHHFOoJQKGP/ZjRuWPNzUWbL5cYe7fZ1HY6e9z20Oinxhz3Xo9Pv4dIe+s7Cg6fBKDOl0Mx2qrc0pw16+vYAfT7ehwn3i2dXj6FJ04DYM5ORxcZjulCnOO9/ENHabL6edQGHdvavV8q61NQUFBQuDZRUVHs3buXXbt2ER8fz3fffccLLwhBvm7duhw4cACA06dPl2gsm5mZydmzZ3nrrbf+dbsV/h0eeeQRhg0bxqFDhxRR4h6ma9eufPvttzzyyCNcuHABq9XKpUuXCA8P59y5cwwaNIhdu3YBoi9k7969GTVqFJUrVyY0NLSMrb91iho979+//4aiRFCQ6NFX1GujLBg0aBDvvPMOw4cPJzo6moiICIxGI5UqVeL06dO3PF+jRo2YPXs2WVlZpdJXYvPmzY7HHh4eBAcHc/KkuG6wWCwsW7ZMESUUFBRuCUWUULgviIqKwrdpBXybVkDTpSOmuCRythzCvPEcRnMu587/RrnQZtdcVjaXbnPhjIwM1q9fT6tWrQgICCjVuRVuHcliQ0KCPFGiyHnfX3ofaO7vnzibVo1rTCYA2VVE/WaVRTivC72EsGF1UqOxO7Ql21UR5HoU+AnVRJsvhAeLU/HUYbWxZOZFVnkhWBSVqdLm2jD5OqNLvVoWSnvBfgLvLKLnnRIKsJTzQ3NRZDwYcKau1JL98iZsWIhL2E5m3mWysoWDOVJdlc9+mUFERASVK1e+KSGig26A2O5rCC1lydkJLzL2chyfLVpMTrAVQ4b4rFw8dMXKXsmyDWN+Ojrv8OtNdddp2LAhLnUrUXBCfA6WtEwkgx65wMiZab8Q0Ww/VQdUp/rLQnxSSzYuFIiMnt4++wA47RwMwMm8IArtTd/VTqVXMs+vV1OSv90MNhnX1rV488XxvDD1TSyJqWCzcWrKz7iU96dx3lh29fio1NaroKCgoFASSZIcDuc+ffqQnZ3N+vXr+fnnnx2ixNSpU1m0aFGx5YqyJ4z2rNXS4uTJk5w+fZouXboo5VrvASRJQnOfn3//F+jTpw9ffPEFw4YNA2Dw4MEYDAZOnDiBl5cXX375JeHh4dSqVQs/P78ytvbO8PX1JTw8nM2bN9O/f//rjisqY2Uo6udXBkyePJmpU6eyc+dOfHx8MBqNuLu7c/HiRR566CGGDh3KwIEDUavVNzWfySQCxJydr1NW4hZp0aIFDRs2ZM+ePWRlZbF7924++eQTlixZQnZ2Nr/++isjR46kbt26N92nREFB4b/NjYt/KijcQ/zZZgZ/tpnB2Uff5OJLc8lYs4tGax8naqQoAbPftATPIyq8jqoxmTQYC1Xkn0vCpiu9RlWNW0ykXFhV+vfvT3h4ZerVegoP11Aa1xhFh8ZK5FdZ4KELJM14iVxzuuM12dsTDAbQasXNSS9uXh7g5YHk4Ybk4QaAlJ6JlJ6Jx57LeOy5jO+uFHx3peAUn4NTfA5o1ejTTOjTTGjzbGjzbLgkWHBJsOB5xojnGSNeMYV4xRTifjYXj3NGPM4ZcU2w4JpgwetEPl4n8nE9kYrriVQM8flIVpCsoCmQ0RTIaDONaDONeBxIwuNAEupCG+pCG/khBgpC3SkIdb/p/WFTSxT6ain01ZIf6kx+qDPOCQXkB+vJD9ajssioLHIJMaIIk7salVlGZZYxu0qYXSVsGnHT/E2wMPk6i/4Vsozs7ipumuInyZZyfshWK7LVirtrII1cujje0+daKa+uRkNtB85bjvPwww9TpUqVawoSjVUdCZYi+eKLL256X5QlTzzxBJasTNJP7iYvBPJCwKZRkR+oIz9Qh00DmUmnKcxNxbNuUwp8y+7v2JprReVswGqU0eak0KCjFxW7ViCgggsnvjvBit4r2H3aleM5wVwq9LrhXIWZwtmk9Si9C7rLi9ajCRJCCLLEE088gSk+Gd+nH0Pr5Uzmngtc+W43V77fW2rrVFBQUFC4Odzd3enTpw+LFi0iPz+fDh06sHjxYubPn19s3KFDhxzjS4uff/6ZevXq0atXL0aPHs3HH39M+/btS134ULg5XFxcqFmzJnPnznU4QxXuXYYOHcrnn38OQFxcHPXq1WPq1KmcPHmSYcOG0a5du2sKErIs88033zBw4ED279//b5t9Wzz55JPMnz+f2NjY6475+OOPCQoKKpV+DreL0WjEarXi5eXlEEnGjRtHv379cHJy4oknnqBdu3aORtP/RGpqKp6enqUm2Go0GpYtWwYI8SYuLo5PPvmE+Ph4xo4di16v5/PPP+fpp59m586dpbJOBQWFBxsljEHhvqdc//pYfAOJnfo9F9O/pdxDIgLCmp6NrcCES60Ktzxnhe9E6SjVBQPGhHhsyRkYk+JJ27Ee2SZK4yDLHD3xDWZLPsfOrsDHswKJiSMIDAz8x/k7VXoJgOyafmz/Yfwt26dwFc82D6Nae5S9aauo4N2EUN/6lHbcvDrXiNX12vWR/y2KSjxZ7WKC2UVspedZk6PPhP6iEGbkVHGf3SHa8d61sDipkO07y2IQD2Q1FASIE1ebWiqReaEx2jC7qvHYlyCWC/IEIC/UgPsx+/o1atRZ+eRUE45kl5r2Eg5n4ogxiijKEG1Fqhua81vWgmLzt1f3xyZbySKdrq+3JCUlhUVzlpIni14MH374IU899RQAv5u++Ye9VnbUrVsX1/r1yFizFteoqmg8PEuMKchKRqXV4xIQ8a/b91c0Ab7k7z9M7q7j5GdZaD04lNQw0Q9Cd8Kbs899zqnFB6n/cisA6rqJrIr1WdUByLPXM5Owcn69uID6ttPbd2zX+fPniY2NpU2bNqSfPk/5l4aTOmc57gvd0fj5svXn1XS6eIHMtaLEQPzqo6XSYFtBQUFB4fYwGAz8+uuvjBgxglGjRqHT6RwNVrds2QJAhw4dbnt+WZb57bffkCSJL774gh9//NHxXnZ2NmPHjgWgZ8+etGnThhdffPGmI4oVSoc333yTHj160Lp1a2bMmEHjxo3L2iSF62AymRgxYgQAW7dupWnTptccl5WVxS+//MLx48e5ePEiGzduJCFBXAdERkY6GjTfy4wfP5558+bx9NNPs3bt2hJNpkFkXbVp06ZM+9c5OTkRFhbGqlWr8PDwIDw8nMmTJzvsXbVqFT179mTt2rV06dLlhnNlZ2ezdu3aUqvssGHDBsqXL09kZCQxMTHMnj2bjh074u3tTXR0NKtWreKrr75yiMILFixQyrgpKCj8I4oooXBfs6H1TAD66Ufhr27Dnrc2Yi3IxavJEAovCAepxeh2W3PnHzpD6txVWLIyxQuSirDwFtiM+VxJ2IvRJMqZaDUGtFpnElKPUK5iVerWHYne4IHZlI+60IpO58KGTa+SmZlJXFwcubm5pOXHkREEqktXCK7Yku/mT6Fly5Z3vD/+i+z76X8cONCdFgMGcuL0ei5GXCTwud5Ezv5LJJ49wF+VJ06SpKLoLZ0O7JH9hZXECZtTjCg3JBUUXl1epUaTnY9ror2nRKAnAJoYewNte68KXAyo7Y91riJNVtaK+W0uImPH5OWE10nRj0EdmwhAQW1RvseQJcohGb2FKKCyyBQpLIatol7nladqimVvMgjQppUo9HPCOVFss+5yprAjWNQV1aaJxtXpda/dPM2mljDbv0JSvLj3OJqK7KJHyituRHZ1b1zjxHxWJw25wfayRRftyxuciNI2JCczg3jzOcrrawEQGxvL0aNHefnxGaTYzpJGAjZsHH1rJ1r0eEg+RKijSbTGERYWdnMbfg8Q1KIn50+eIWPjevx69yOtqhaN/bCSLGBTA0gcnPtiWZqJLiyE3C27yfxtL9qwQKb1+kvGQX34ICmIl159GallU6IbeuKjFZ/xqWzxnQlzziT7cg67P9xL7ObL1BpctUQt8VtFlmUqVBCCcvP149jabjqXZy3Gac5yACwpqSUudGzZuVy4cIHy5cvf0boVFBQUFG4flUrFnDlzOHfuHIMHD8bX15dOnTpx8aI4Gbid0j5Wq5XXX3+dadOmYbOJkzp/f3++++47Ro0aRUZGhiN6t1KlSmRmZvLyyy+zc+dOVqxYgdlsJjExET8/P0dplkuXLpGcnExubi4mk4mEhASys7OJjY1lwoQJSonW26R79+58+eWXfPjhh7Rs2ZIpU6YwceLEsjZL4RrodDqWLl3K008/zbhx49i6dSuSJHHo0CHOnTvHuXPnWLlyJXv27AEgPDwcPz8/Bg8eTJs2bejUqdN902PCxcWFL7/8ki5duvD777/z8MMPlxgjy/I1xYp/E41GQ82aNTlz5gwXLlxg7NixxWzq3r07zZo146WXXqJFixbXzTxbt24dzz77LElJSY7fxjvh4sWLtGvXjkaNGrFr1y6ioqKoWrUqAOnp6Wzfvh1fX99iyxT1JVFQUFC4EYooofBA8H3TORjrGXF6y4mC3Eu455nQV6yANtCfnE07sFqttxQpZU5OJ/GDJThHVcKrVVtcg8qjNrggB7lTcDkWPhFOu4iR4wlMC0CSJLIM2ZxY/Ba7t0xDeJJlJElF+Yj2NIw+z4EzS7Da/pLKfOXqw9mzZyuixB1Qt25dgoaOIPfYEZKXfU3GL7uI5KHbmsvm4QKAqtD+WRnNUCRi2Bs3a3KEqEBRJI3efq/VgNmeSZMhIvvxu3G5m9vF76BwDKtPxiFp7T/lbq4ASPa+DrosYYvhYCyy1d5bxfva9ngfSAMgtaEPHr+dAiC3dWUAnDKubYPsosemF9+rq5kcJf9WioQZvD1xxZMm+v5sS/6G3Xm/4Kx2p8Am+oBIqHBTe1NR3wAPfPBU+zv2vSzLxFlPlUqTtn8LjbMLnrUakbF/Gz5dewBXI6/MeVlkXzrJvRDUX3j8NNogP4znL+HVt2OJ95999lne+HwW58Yv4LKvC/KYStTqFQGIz2X1hxdIWrYDjYczFSb3Rtfs5nqC3Ii/Rr+aM+1i3T+U4/Dt2YRy5crd0XoVFBQUFO4crVbL5MmT2bRpE0eOHKFNmzaMHDmSOXPmMGfOHEdz7Jtl7ty5vPvuu7z44ovUqFGD5s2bExAQgKurK7t372bWrFmMHDmSN9980yEmFEVF/9WhFxoaykcffURycjKjRo267vrq1KnDwIEDb2/jFRg2bBiPP/44EyZM4KWXXqJjx47UqlWrrM1SuAYDBgwgMDCQDh06ULVqVVJTU8nIECf+Li4utGvXjkWLFtG4ceNiAScXLlzAZrOVajm2u02nTp2oVq0aCxYsKCFKbN68mXPnzhEZGVlG1glsNhvr1q2jVq1aZGdnM3jw4GLvS5LE3LlzadSoEV5eXtSpU4f58+c7vl/p6ekMGjSIX3/9lRYtWvDLL7/ccaAQiEwTgNzcXMdrTk4lS2SrVCqHcDxt2rQ7Xq+CgsKDjyJKKDww6PV6nMv7k38+mctjXsd7SF/8hnYkftpS3JvXo+Zr7VBp1Xg7CQfX0RgPllTsSM2aNUs4OqW4M2CzUeO99mhcncjKNwA2jOZc0hf/IgapJNQurkjpwvmmc/WkQvdRqGISQJLQ6d3ISj7LuQvrOAdoNc5UDuuIp0sY+04vwmTNc6zvfm8gdi9wdqK4wPWL30vaj1s4OUSFvmJnALyPiTH6bJG9oMsQwoM2owDJJBz3f23afDeQLPb1pBegyrGHy9ujBXVZwvGeUV8cB15b7KkFZjNJvSoC4GxvEBm6yp6uUJTJYXACleqqcPIPyOniQkObkmY3zO48tjeL9jmiwxYVhurspRLLGmIz7XZZsPh5AlBoz+rIDVbjec7sGGv01mG06x95oWK/59d1JXBjMhqVjka+fYjN3gdIeGkC8XQOQa9ycWyH5OMNgM1eNivnyB5y5UyeeOKJm9rOe4EKHc8TUDWATQMLyUk6ipNbPZzSZWRZ5vzmZRSkXMbJM5DyvZ7GLbwyhz+8NSdNaSG5GDDHJ4Mk4RrdoMT7Tk5OdPisE4m7LhK35TJr/neQ41fc8OwRTfz8DST/tJtJkybxyiuv4OLicsf2HDp0iL59+wLg1qYhiQUiCs/d3R2v/m3JWrsTW474vrpV8MWYkY8pI58P+45WmmsqKCgo3CMUZbu9/PLLvPzyy8TGxjJ69GjGjx+Pl5cXQ4YMKTb+7NmzZGRkUK9evRLRyhs3bqRVq1ZMnz692OuJiYnMmzcPEE7Sv2Y3DB06FIPBQF5eHk5OTvj6+jJt2jT69OkDQHR0NAsWLCAvL4927doVm9ff379U9sF/GZ1Ox3vvvce3335Lly5dWLFiBY0aNSprsxSuQZs2bfjtt9/4/vvvCQoKol27dlSvXh0PD4/rBpksXrwYDw8Punfv/i9be/tIkuhL9tprr5GTk4Obm0gFT0pKokePHnh6epKens6lS5fKLDNbpVLh6enJ/v37adKkCVFRUSXGVK9encOHD7Np0yY+/fRTGjduzI4dO4iMjKRDhw7Exsby448/0rNnz1IpaTp9+nS+//57AN5++2p51s6dO/P444+zZMkSx2tPPfUU8+bNIzo6mujo6Dtet4KCwoOPcvWu8EARNqYT59/5EXNqDulf/YBbq1r4DOtNzsY9nJj0PRXHd8bsY+PSmhNc/u4oLVOnAqCPDMRvQBtmDz1OzJF8Ls6MQevrhsa1ZASAbHdiY5OxRKST2UKU67Ec90AVXBFTp/J4nBSR4f4FtfEu7IR8ORln9wBUOidkoGnBYC6k7yPNdoXcnHi+2bSHLeNmcXRG2TglHyTKj+2Ixs2Jy19swO8RX9zrNywx5tyT4vMJ+8kdfYZwpGsyhJPT4imyDFRGu4NdqwGbPcvA+rdsG3skCPZMBVmvFQIBINmzKiSLGGO1H0sqkwVZb//p1YiTYfWFBKyRQbe9zQDodMj2ElFFmROGw3ZxQ6NB+nuDM7t9jgyKv2GLCnPsG22KiIqRdWJes58rJg8t+rTikeuZFbR4nrOvssCGLkvsr9wQFa5XxH5IbOOPS6JYZ1SKONGWrDJIElZAsopx6nQh2sn2DKcMTToqi5q2bdve7B65J3AN80JbLoj8vcegjai5m5N4juzLp/CMqElm7BEurPyc4Id6A2Xz/Tfb6wKDjOn0n+TnT8TZ2bnYGK2LjrC2UTjViiJpcwzWAhNx01eRsek4oU93YMqUKXdsR+Uf3yLv8DmuvLUYANeH6uM9pEexC6qwFiFkLBPfVY2Thjrv9QBgS/8FDBo0iHHz36L6a534o/WHd2yPgoKCgsLtExERwdy5c3n66acBIQJMmzaNYcOGsXDhQmJiYnjppZdISEhg3rx5zJ49G7NZnHd0796djz/+mPDwcGbPns2PP/7I6NGjS6zDZrM5GioXlYcqQqvVlogy7tq1K3FxcaSmplKvXj3H/8vmzZv58ssv2bRpE5cvXy4WDaxw+zg5ObFr1y4GDRrEww8/zP79+5USi/co7dq1KyHO3YgNGzbQpk0bXF1d76JVpU+/fv2YOHEia9as4dFHH8VmszF27FiysrIYM2YMU6dOZc+ePfz+++9lkt0THx9PamoqACkpKSxduvSaWVtRUVFERUXh7OzMwIEDOX/+PIMGDSIhIYGNGzdSu3btO7ZFlmVefvll3n//fQD++OOPYtdhvr6+xTJLWrduzWeffcaAAQNo1aoVFSpUYMGCBTz55JN3bIuCgsKDiyTL8vW7oNrJzs7Gw8ODrKys+ypFT+G/R71fJ2EzmkmJ1VBw8CTpi1fi0astKmcDGUtFhoPGWYvNbEXl7YklKR2VQYc20BtjXBJtenmy47csnMN9qDWyHknhIqInL8F+wuVswXTyOAnTvsapUjlC3n7KsW5zjijNIplVDlFCUyDec0oXTljZHo3udi4bVb64iNrvsY+0A1sJatOb8z9/VabNtR4UZFkmsntVrvwRw6Df+rA1qQYANqsQDGymIlFCdV1RQptqz2Sx2qCobIzxb9kIRZF87uL4kPVaMIvPWsq2X9C6icjxv4oSDjHD3kRaSrPXR/Kw/77+dX0Wu2igs4sKRQ7aop9utRrZXnLKYY/9PSkl4+rrf4+UsW9LQX1xcWg4n263yQq5dkHAx57qUDStXZSweDhh8hD2WHVi3govip4XBxJFVLv3QhfURpmMilrH8u5xYltyg8T+d04Wz7W5ViT7LtHkic9DnSfss+k0yLLM7oOf4OTkSXLuWe43vLp3ImvdBsoNeQ45JZOLPy0AZFxr1SH38EG8ouuTcfoAIWNfQB8czLnx/16PidTUVPz8/PDr15S8oxfJj4nHs+fDeHR8iNinJpQYn5KSgn9wEJJKBZIK30f74lq3DuefG3fHtoRPf5qLE0TEq3uL6oSM7cmJPiUbZs+cOZNx48YR0iSECuMeZscTS7DkXf1uNl82jK2PfHnH9ijcHso5491H2ccK9xPJycnk5eXxwgsvsGrVKk6dOsXo0aPZsGEDOp0Om82Gp6cnkiSRkpJCuXLlkGUZo9FIixYtWLFiBU8++SSvvfbaNUurjBgxgi+++IJp06bx0ksv3ZGtZrOZRo0aodfrmTp1Km3atLmj+RQEWVlZ1K1blypVqrBmzZqyNkfhDomNjaVChQrMmzeP4cOHl7U5t0zDhg2RJIkNGzY4GmCDyBhJSxOZ5BaLhf3796O3Z6r/WyxcuJBhw4Yxffp0Pv/8c06fPs3JkyepUqXKNccvWbKEwYMHYzAYqFChAsuXLy+1DIWxY8fy8ccfA7B8+XL69etXYozJZKJz585s376d119/naioKB555BHH+3Xq1OHAgQOlYo/C7aGcMyrc6yiZEgoPFPs7TXU8NpvNGNb4k/XTBgDcK/qiddHhXSOQxK0XyIlNJ6RXbVI2ncF4IZGQ/o04ERNLSNMwHplSjTg5mKTEkutwqVuZ8otfu+ok/huGgDyyJOEk1tgjxc0J4t7rrMiyKAxwQVMonNTBtqqkSVu5su47PD1/p2KFLhw+uqh0dsh/FEmS+OXd76nxSw24cIWXm4qSRwdyRUPpDbGitmbyYPD5TnxWRXHhKpNwlNv04vO1uejQXLSXSirqHWEtypCwO+Y9hJCBDYwhQqDQZYrXNPHC2a8uKrcky1B0glskLBQJUUX9KIqyGnQ6ZK0GKTnttvaDNUyUMZBkGckugkkmewaIvcG34Yi9TJOHvZv1dTIn4GrWgsVJTXwLoTTUbCRSI058WU0M6prlGG+IzcAQCxZvsY9N3mK7Dak2Cnyv3UhOZbTY7RT3apOFjPxL5FjTqOR5fzoHLiz+lnbt2rF//ocAOEWVx2/CINIXrUIfFIpfn0fI/fwS6Wt+IeipEf+qbadOif4hKd/vIGTG60gr1pKzcQfuHVpdc7yfnx8e3dtTeOQUfv37o/UvvdJzKbNFH4mwEe2Im/v7NVPOW/00krMbdyBpVFzZeYUrjyxApdNQ/e0emD39OP3sl8SfUiJcFRQUFO4Vikohvfzyy6xatcrhXGvYsCGhoaFERkby6aefolarmTlzJi+++CJRUVEMHz6cpUuXMmvWLJ5//vnrzj937lw+/PDDEhl+t4NWq6Vv37689dZbtG3bli5duvDhhx9es4SKws3j4eHB0KFDmTFjBjabrcybCSvcGZ9++inu7u489thjZW3KbfHRRx/RsWNHQkJCyM7OZsqUKYwfP56AgABefPFFevbsSZ06dViwYMENe8/cDY4dO4Ysyxw7doxDhw4RERHBp59+yieffHLN8Y899hiLFi2iQoUKzJo1q1R+BwGsVqtDkNi3bx/16tW75rj9+/djNpspLCzk1VdfBaBZs2a8//777Ny5k9deew2LxaKUV1VQULguyq+DwgOLVqsl6M3R5K79g5xdJ5CAtEPxpB0SDmqNuxMVx7TByceZc1/uIODhGjSYIOr36/TZVCSZAzYR9R1RUagTPoZ8ApyyATidJS6yzl8RTjknL+F0lmUJnY9IkTDZ7M7qhOs32XbzCqNp5ymYrlwm5uwajhxbTJU6RkxDGnJ+7L8XMf2gUblyZVz99Gz7MoZG9aPQ6O7fCyDZ3+dqNkWRo9ZVOPptrgYsXkLgsuqvfZzJKlBZxBin8/8gcPw1q0Jj32f2ElSSXUQxu6qp2ziGA7sqlljceZWIwCjwARf7RadNK+51GSZMXkKAMaTa0BSIeTX5FlRmW7F5rO72zJJCC+ev7MZF74u3/7WjhO51PD09Wb9+PYH1a2HLzMWnby9UBidshSY0Lq5IGg2ebduS8u03GOPj/1Xbqlat6nicPPNz3B9+iLwd+7CkXae7OZC54te7YkuFSb2QNGr0gZ7XrYF7Zs4WEtefQhvghTkpA2wyjeY/jj7Qk8w8PSq9lsKLqXfFPgUFBQWF26dx48bs37+fiRMnkpyczPnz59mzZ4/j/XfeeYcXXniBmTNnEh8fz2uvvcbrr7/+j/OqVKpSc8QBvPrqq7zyyiusWLGCCRMm0Lx5c7Zu3UrFiiXPeRRuntatWzN58mQ+/fRTnn322bI2R+E2ycjIYN68eYwaNapU+oiVBU2aNGHdunV06tSJrl27Mm7cODQaDbm5ufj7+1OzZk369OnDjBkzGDly5L8qopUrVw4QGRPOzs706NGDzZs3X3e8RqPhjz/+KHU71Go127Zto1atWtct0VVQUECPHj1ISUkhKiqKs2fP0rdvXxYtWoSzszM5OTkUFBQQFxfn6DGkoKCg8HcUUULhgebS6CkwWtQ6H7vvEbbMOMSh72IA8A1zZmPr6fQ1Pc7l7/eT/cNGfKtWRueswVebA0CEj4hyt8nCQfZc8B8sSy/Zo+CfyA8U9yZP8ZXTZ4DvYRGR7rRqNwDZY5oS2uhpdCu/5fShZYSmR1H+o5kAijhxG2i1Wj6Z6czIYclMGWDmoeeq0rf1USRJwrmCyBZYeyGa/CcyAcjdIBor6zOF4905UUTqJzXS4nlGNDtzjxFljdQZIhLb4icc8LLd6a4qsBD3iFjex18IU6kJ9g/fJo4h5zgN/ofE3IY4e1aBs8ggsLoIh71NZxcXJJDVYjl1UTaG3VdrdtdhOHvrzldzkGjqrsm01xYrKiGVJ8pX2Xw9kH1ci72HAVQ5xftHANRtHEMl1yQAEvJFGSi3WDFvQYATqEs6lnUZJjR5Yn8ZPUVGiKZAhUVrL3lW1G/cLoBkFySSkh1DjeCu/H7grVve3nsFLy8v8s9cQJZlNBoNUcunoAvwIC/hHAUhFrwqR5LyLUjOCf88WSni7e3N1q1bGbl7LmfeXIH1xAEknYb8X34k9rGRRERE3HUbwue/jyU9E9OZRFzqVCK20zvXHJeZmUniepHZYU66Kppkn07EOy2Vwy/+gmyxIWVm3nWbFRQUFBRunbp16zocaBcvXqRKlSoUFIjzBpu9tOUnn3zCk08+yfvvv3/H5ZhuF0mS6Nu3Ly1btqRZs2Z07tyZEydOoP17fy6Fm6Zp06Y8//zzPPfccxw5coRXXnlF6S9xH1LU++WFF+7vPohNmjQhKSmpWHmmsLAw4uLiAGjRogWrV68mLy/P0RD732DMmDFUrFiRy5cvM3LkSB577DGOHj3Khx9+yBNPPIGXl9e/Yse2bds4f/489evXv+6Yn376iZSUFADOnj3reO2rr75i3LhxzJwp/BiXL19WRAkFBYXroogSCv8ZVBoVD71Ul4gmAZjyLVRsG4IkSTh5Gej4cTvWjlzH5gAV7V+4cR3G3UmiBFBGhogOke3OZotJfJ2sZhUUCger+5mi2vniQiunnD1iPFvG5KFBl2UpNrckqQgKb0zS5f1cefd9AkePwsM1ghY9PwDAkCSyMX7f+dqd7Yz/CC0f0rPkW2+em2Rl6VPbie/lxZhpYbc8T+0XD3FoZu0bjpFlGaM5B2NsKiCTl5mL1tMF8Lgt22+GgihfJKuMTSOOQbPrVTEDRK8GAKuTytHGwuIsxshqu5Biz1DQ5BWpAdfG5qbHZm/QbUgxsfdsBAB7EfehhfaG765aNLnm4svaMzhU9tJRRc2/JZtYxqpXO3pJFJVtKsrWOBv/JwatJ0Hu1W5o3/2AWl08k0Ub4I0lZS/WrByM6ULcKWpS/m/SvHlz3PLWENirAVe+2Y5fp9qk/HqYyMhIyvetQY3nmiOpJH5q9uldWb9stpA8az6WhGQyvNwIt9mIGzOjxDgXFxf8K3viHuxM51dqcHpjPOumHaVTGysLntiCbD+uatS4dpaFgoKCgsK9Q7ly5cjIyOCrr76iSpUqtGolygb27NmT8+fPM27cOFq0aEHTpk3LzEZ/f3/69OnDe++9R5s2bfj555//Nafgg8jMmTOpUKECb7zxBgsXLmTx4sUMGDDgrqzLYrEQFxdHVlYWsixjtVqJjo7+Vx3MDxqpqanMnDmTp556isDAwLI25475e7+IChUqsGPHDmRZJjExEY1G86838lar1XTu3BmAL774gt27d9OvXz9eeOEFXnnlFb7//nu6du16V204ePAgLVq0AGDZsmWsXr36mtki0dHR+Pj4MGHCBJ555hl69+5NXl4ely5dcggSwHX7YSgoKCiAIkoo/IeYVfs78aB28deXNvqCiU79OPNQEJcPpOCmjqS2k4iS+FMj/kSruInyTZk2Z9LP2SPqU8Wfs29zEdmckOp5yzaZPDQYBzcBQG334+a3q0BErYkkrl5O4qdzKajVgOwMFcb8DGx5ubga/KnSKAZP/0potE5s+3H8La/3v0L50ATKh8KGsEGcWXOeTVN2cfqyE2Pe1eEX5kSbWsfJsYoMBKdo8QF8cL4DACqVcOi/EraTndkVqP3iITZeEL0ozIn2Xg1ZVvJPHke6soO0g5cxZxXCIbHuRECtkeg3rRY1OwWxLVXUI3avXkhYXxHlnWISJ7qFVhF5d3ae/Xh7+gQAR7+u5sjc0OWKn2t14d/KHDmpyPcrEhrsApkzuCQUH/dP2HyFeKLKM4JdLJDtGRs2gzhptycMYXVSU/mTAk4/63TNuSyuWmQVDmFBkyP2rdnDngmildBlmq65LHazJauFlJyzpOSepVa5PkjX6eFy3xLrgmt4YzIMG0l8eybW7DzcQ13p0LqwTMyp6RNP9VHhfH/8Mpl7zlF98RjSNx7j/JcbyDqbRpP3u5T+Ole/jmy1kb7kNyzJaQRNHkLSzO9InvMjtbzM6Lxd2fuXrAmtVkviyXRHaacLUReo8F55Nk7eSoCfRLr42aZy+5BSt1VBQUFBofTR6/WMHDmyxOvPP/88r732Glu3bi1TUQJgypQpNG/enCeeeILGjRvTt29fkpOTiY+Px2w206RJE9q2bUuzZs1KBB8oFEeSJMaMGcOQIUMYPXo0gwYN4siRI7zxxhsYDIY7nj8pKYmlS5eyevVqduzYgclU/FwzIiKCP/74Q4navk1ee+01ZFlm8uTJZW3KXWHs2LF0796d0NBQ4uPjGT58+HXLif4bfP/999SvX5/g4GBOnTrFyy+/TLdu3XjzzTdvqrTd7XD58mUGDBhAzZo1mThxIoMGDWLq1KlMmDABJ6fi13116tQhJSXFsY+6devGiy++yNy5c3F3dyc7O5tatWoREBBwV2xVUFB4MFBECQUFO9nxeWC8fpPff8LbQ5T0ychxRtaJebIrFTmJxUWK1f5fnlNOIt9ffP3yIsVY50t/KV/jF0joE0+T8vtq8s+fJTMtBb2TO56GUNKyznFpzx4klRpP/8pUeSIdvacfhz+6v9No7yaSSqJytwo4+bmydcoO/tctiaHTKhHc7doXjzazlVqW/eRlmtiZbaBfrd1IksQjPqL28YFLHqydd5mtP2dgySnEpVIgLz07nnr16hEaGoparUalUjF9+nSWTvgaj0AnuPUEjTsiL0iFLAnhzOIMC0eIZmVPffgcAJoCe6PrNKECGESgPhZX3dWshXwT3KCMauVPCh1llmxOQjSQ7I3C9QkmpGxR7kqTJxztZo+rTZFNnjpUZrGsymRDnf+37AqbhVMJf+DlGsHB2O/L9KLgbqF2diFwdA9ydp6gbitnotqXQ+t898SXsHdGkLroN1y8tej93QiJ0BBQ05+AWv6oENlk7jXDyTsVj8bDmYDejQiv5syeSb+xe9Kv9HV+GkmS+L7pnNu2IfZyEAAPbXweg5zD5U9+Ie/gOapM7Ehga2+cUxpy4audHHn8E9zrlSe90Xi8vb0dy//1OIiMjOS1z0JYOD2FS+dMVK7jzM4Nl5UoVgUFBYX7nPT0dPLz88nPv3EW57+BRqOha9eu7Nixg3HjxrF48WIuX75M06ZN8fHxYfbs2bz11lv4+fk5HHil4WB/kHF1dWXhwoVUqVKFN998k59//pmff/75ug3Fs7KyOH/+PHl5eVSsWLGEk3Pbtm289957/Prrr6jVajp27Mh7771H9erV8fb2RpIkCgsLGTJkCG3atOHMmTMlouQVbszBgweZN28es2bNcjSvf9Do1q0br776Knl5eTz88MN07Njxrq5v5syZ/PDDD4SEhBAREUFERAQ9evQgNNTe0zIigooVK5KRkUHlypVZvnw5U6ZM4Y033sDHx4fRo0eXqj1bt25l4MCBAKxcuZKIiAiWLVvG66+/zvTp0xkzZgxTp04ttsxfz8uffvpp0tLS+Oijj8jOzubNN99kwoQJpWqjgoLCg4cky3aP0g3Izs7Gw8ODrKws3N3d/w27FBT+VT461Y7PRx6i0CjxxJdNqOV8EYCNWaKUU2+v/QB8ntSK/WtFY9jC8iL6xtNXiBFWq/De5hfocHISDtbCQuFglG0STscMDlFCsmsf6sKSooTKHtRjsV/PaPNAl2oRf/r2kjv55gyyzh8l9eg2LAV5lHt4EBdWfVG6O+UBpN+OUVjyzZye/hsn112h51N+jHlGi5e3mvRMWL86j9Xf5XD6hNlR7gjAzVOFl6+GRg+5kJlmYcu6fLR6CY8O9fBrXx3ncj5sb/9eifXZbDaCKnngHuDEiC/qIEkSuzPKE246z5ktSTzVJpmQchpmJYjsjLNZvgBo1eKYqOCe6siiuPS+yNIoyobICxDHwgfjPifeIpywbZwvANBquTgBtLqJeVrWOI3BnorTwuM0H3zWH429pcRVUcLeqF0lFRclwNEbwuwtGknq4lJJfUicMOuzxPJuR5OLbbtsEFkRUnYeaOylzew9OMxuumLbosm3oDKKsk2SWdh88uJaLqcdpHGlp9hx6vad4ApXCXy2D0mzf8S5nDeSWoUpKRNLoZU27z3EhbC2nOs/Cb8nO5O6ZB09vu6GVwUvLuZ6kbY3jsMv/UiDya0J71S5VESJhjM6kP7lMiS1huiXO+DTMNIx5tLGWM5N/RGAI0eOUKNGjRvOabVa+e2336hVq5bjQk6h7FDOGe8+yj5WeNDJy8vDy8uLGTNm3JNNkY1Go8OpbbPZ2Lt3Lz/88AOzZ8+matWq/PTTT46GtQo35uTJk/Ts2ZPU1FQ++ugjHn30UTQaDTExMXz55ZcsXbqUK1euFFsmMDCQqKgoWrduzY4dO9iwYQO1a9dmxIgR9O/fv1gww185deoU0dHRzJ492+HQlWWZw4cPs2vXLoYPH45Go8Rs/p2cnBwaNGiAXq9n3759Sm+VUqJXr16sXLmSFi1aEB8fz8WLFwkMDGTHjh2O89nWrVuTlpbG/v37Hft99OjRfPXVV5w5c4aQkDvPDrbZbEycOJEZM2bQpEkTli9fXux8un///ixfvpzIyEjOnz//j/NlZmayfv16evbsqRwr9wDKOaPCvY7yr6ugANhkFV6hzhz789YbB98shdULkBKEKuF8WSI/WMbsCv47hHPZKUM4ZdOixdfSXj0IWQXeMaLJsGQVDmBLA2/8arfCq1pDLq5bSuzPXxLYv4DEZV/fNfsfBIqcqXJbmXfeeYf/TXmD1YvBK8qbrJhUrBaZGm186d/Pm4BIZ0bU/4ZLly4xccUr5CXm8uN3CagNLrjVb0LMyu/+MSJbpVLhPKAzZ99ezvznjqHWqji3ZyumzAJkG2z9yoO+33VnTOAGABZqmgPw275aAFSoe3eOxwnPLGPy5j6AaLwN4OYsVLB8fwlDmjhOPU+JCEV1llAwtGki8yGrYQiep8V7BYHXLuEk5RZi83JB9nFH1tlFCYO4L+p9obJc1cQt9ibfmhwTCWlHuZS6j+iIrrh6BpXGJisALvUrow32xWY0UfejR6gcYeTPSVvY+OpWAl+KgP7g+lBjMlZuZd9PCUQ8VYnGfnHQUcOlxQEk7b1MXv2Wd2zHju1GUj79Bq8GkUQ+35ke0eeBGC4U+FCYWcjOJVsB8OvTlOrVq//jfGq1mi5dSr+8lIKCgoJC2eDs7Iy/v7+jeeq9xl+j7FUqFY0aNaJRo0YMGDCAXr16Ua9ePfbs2UNkZOQNZlEAUZd+165dPPnkkzz++OO8/PLL+Pj4cOTIETw8PBg8eDBNmjQhKioKFxcXDhw4wNmzZ9m/fz8fffQRjRo1YtGiRQwaNOiade//SpUqVRg+fDgvvvgip0+f5uDBg5w4cYL09HQA4uPjeeutt/6Nzb5vkGWZp556ivj4eEWQKGWef/551q5dS2BgIBs3biQpKYmmTZvy8MMPs3HjRvz9/Xnrrbdo2bIle/fudZSye+ONN/jss8/YuXMnffv2vWM7Xn/9dWbMmMH06dN5/vnni5Wh279/P8uXLwdg4cKFNzWfp6cn/fr1u2O7FBQU/hsoooSCgp2zu9PJSiggPzWfGHtasF4lhILPk0Tzve0HKqPyEcKAWi9Ug5wc4cy12ptbe/jm4u0sHLYqd+F0TckVvQNytPba/BoJtzgRJW60+7WNHho8Yos3vr4ePkeFkzi1toHwrkM4/e0HJC1fyo6xz5R57d37AUmSmDRpEukttrPxmySyYjPp3U2mbU93Uj2vRrZFV44mOjqaJR7iZExd+2qz5ZstEePesBIhozqRvn47AGFto6hV3YZsgx/fPM7GSVsY8JGMs0vJC6kjqcFU8RYZCDUnHwKgq5e4jzeL9X+f1pCn/f8Ur1mEQPDMw+sAIbYB+GpyqKAT83iqxLGzr/OHABTK4ngOUYvGf+V/GoFNq8Yl8R+T6ABwviyOdZu7PbWnqKG2pxOyvQG3usCusNl7VTilCpHN5KlzzKOy2JAlyCzk4I8RAAEAAElEQVS8wonYlQT61eL4+Z8fyLJNZYXa1UDI60+Q+MYXHBz3AwHTW/LQWy1YNmoXCdMW45eeh1uzWugiQsjcH4vtiWaOZQusOiz5eu603V+fjV05OvYb3KuFMOGzSNTa06SaxawFFg2bX9uKJS2bkIHNCBnQTPn8FRQUFP6D5ObmcuXKFX799Vc++uijsjbnpqlTpw4//PADDRo0oEWLFpw7d04pE3QTeHl5sXLlSg4fPswXX3xBTk4Or7zyCj169ChRCqtq1ap3tK7Zs2dTWFjIhg0b8PHx4emnn6Z58+YsWrSIGTNm4OnpyYsvvnhH63iQePvtt1m2bBnff/89lSpVKmtzHihatWrFsmXL6Nu3L4899hjz589n3bp1PPTQQzRp0oS1a9fSoEEDNBoNa9ascVzjF4lvVuvtl50uYsmSJUydOpXp06czbty4Yu8lJCTQtm1boqOjeffdd2nVqtUdr09BQUHh7yiihIIC4EQhkmzDyU2Di4tEebsDN9UsHLVHkoIdY20eQji4G63ssiI0jobXZru/1jlZBrt/WLKKB9pMUWrH47yIVokc9RIXPn2XefPmKaLELTCj5Vq4icDvJY2+FA8a3fo6Dnd9G7qWfF2WZbpY67B++jHenxVIvwlhVHcR6enrc+oAkHbZkyNm8TNttN/7aEW2wtk80Z8h36JjXa6IJm/jcvLWDbwOeYESnmeEQ9gULL4H+lgRSZYVocJjd5rYjlxhj+Rmd1c72S++ZT1Wrb1PSq4ZWV1SdDHEi2ULg1zQ5JgpKEjn0MmluLuEEF2hh+KQLmXO9HkNgNYeKex7dQ2rh6yhz2ctqfC/flyY+Rupny3HdCGe9bPn0/yhVhz9YBcebzYAQCVb0KqtuBturRF3pRVvI9ts2JJSMMYlkfbNH6hd9US90gO19kyxsZc3x5K4+wqV3uyLV6Nr15VWUFBQUHjwSUsT5xj34zlt/fr1OXToELVr12bNmjX07t27rE26b6hVqxazZ8++q+vQ6/UsWbKkxOtNmzbF2dmZcePG0ahRI5o1a3aNpf9bfP3117zxxhtMmTKlVCLyFUrSs2dPli9fzpAhQ2jYsCF79uxh165ddO7cmQYNGvDNN9/w6quvOjImOnbsiMViL3l7m9dJBQUFHD16lO3btzNx4kSefPLJawpxL7/8Mlqtlm3btl23JJqCgoLCnXLjHEcFhf8A3b/uzuwRx0g8X8ATn9RF73JrWp3NImGzSEhaG5LWhsmsIT3fmfR8ZzIKxM1Fb8JFb8JmsGEz2NAUgKwWN6OHuFn14qYpEDfnJHHTFMjYdCpsOpVoKizLSMbiTYEllQrnljX5esX3RCyaUpq7R+EuIUkS9R6JpGqHYI5uySiVOXfkV2RHfkUOZpfjYHY5zuQHcCY/gH25EezIj2JHfhSFsoZCWYMWFVpUBKldCFK78EVWEF9kBdGg1jkK/WUK/a9mSsiSJG4GHbJBh3OKjM3HHZuPO1htN7DoL9trtWHy0mHy0qG9kIz2QjJIEkgSmjwLuXlJHDyyAI3WiZjz+9i4881S2ScKV3low3ge2jAe52APms17BP8qnvz+9j5AxndkX7wHdSH71210mfE67h1akbf7IFmnRAd05whfck5cwZSeS/tNL9z0Os2pWcQ9P5vzz37Klek/gFpNxbcfpX2VK0Tqk4nUJxOkyyJIl0WBykUslJjEro7vsqvju3dhLygoKCgo3MssXLiQTp06Ua5cOT7++OOyNue2qFWrFjVq1OCnn34qa1MUbhIPDw++/PJLvLy8+PXXX8vanDJn0aJFDB06lCFDhvDqq6+WtTkPNL1792bPnj1cunSJN954g4iICHbv3k2bNm3o168f7du3p3r16kyZMoW0tDQCAwPx8fHhxx9/xGa7ueuwIlasWEFgYCCNGjVi/Pjx9O3bl88///yaAoeLiwt5eXlcvny5tDZVQUFBoQRKpoTCf55tb25DbSqk3xuV6dTCCCTQyklEaL1/9mEActKEs0ztbcRmFlqepLKXcbJnNAR45QCQmW/AZI9qV6mEY9dib4KtT776lZOsQpS4XSSjGV2WECc0+RqcG1Qja9WfFBw+Q8Ri0XQ5dvBLt78ChbuOs9pI1uVcoqNk6jnFEW4/PL64JE4McyU12ZLIQKhZWTRfzzSLZtO5ZpGR4KwxcyJHZPLo1SJyxk0jotmLyo9lW5xINHoAsJkqAIR5HAbAHRU2bu2EtgRWG+TbO2fL4phX5xswe4hMHpOH+JLY7Md7ZnNRIsuqE9uZfeIAMYe+R+fuQ0TnYfj6+t6ZPQo3xFufD3rwe6Y7R8YsxvryfMqN64n/wJrYTBYyl6/DqVolJJWKnaOWE/5YA7y6NCJj1zkSFv2J90sdbjh/fHw8v/zyC/3790feuxdrWiY1p/XGtaI/NcJzgRxqOl/C3V5KLEqfCECllo1J61eHmHnb2DAiBC9vNXXLXbzl7eu3YxQZp1JIytLhViUIlVbNtnbv3/I8CgoKCgr/LufPn2fo0KG0atWKDz744L5uytm7d28+/PBDsrKy8PDwKGtzFG6CjIwMMjIyqFKlSlmbUmYUFhYyceJEPvnkE4YOHcqcOXOUzOV/gSpVqvDmm28yYcIEcnNzmTVrFsuWLaNjx450796dWrVqsXPnTqKjo5k/fz7vvvsuI0aM4LHHHqNHjx43nHvr1q2kp6fTpUsXZsyYQY0aNfjwww+pVq1aifJof2XGjBls2bKFZ599ls2bN9/R9q1YsYLatWtToUKFO5pHQUHhwUMRJRT+s8RfCebHHwvIOJtJh1ERNHs0FLh7ja7/ilX3F0HCnq+UV044hqU48YI21z5WL5FWXZwwBG4R9fuxZ0qoCuylpIyg9SyHNiSI5FlL8BneF9cW9e/+hijcEQVZZi4dzuTxvmV7sapCxRD3SwA85ZFAy3xRrulKimgyrcsS44Ji7Rk6MmRXFo4Czxx7OR9LUWd2u1iXlY+uqLG1uxAn1GYhWMhqcXEjp2Vz4dBPpF05glvVOiTs2YqLi8td2kqFv+MS6UeNWQM59/5qTk34mpoLRuHRrSXINgqOnkdyc4H8fOK+3YvL4UTc6lUg4bejVBp1/Zpn6enpRDSojTk+hadHP4NsseLVuALeDSLsI3JvaJNPqBNxNpmDe4y0eVgIcOMP92dXjAdaNyeaBolorVyrEOUS8t05tfQwmWdSiFlzAr1ejyzLbBi2AgCvxhWo8Fz7O9tRCgoKCgr/Ck888QQAM2fOpG7dumVszZ3Rv39/pk2bRnBwMKdPnyY0NLSsTVL4B3777TcA2rRpU8aWlA07d+5k6NChnD9/ntmzZ/PMM88ogsS/yLhx4/D09OT5558nKyuL5cuX89NPPzFmzBji4+NxcXEhOzub7t278/LLLxMYGMgnn3xyQ1Fiy5YtdOjQAaPRiE6nw2Qy8eWXX1K//j/7CQwGA/7+/pw5c4a4uDjCw8MB0cviypUrhIWFlTg+0tPTee6556hXrx4vvCAyq48fP+4o/zVhwgTee+895bhSUFBwoIgSCv9J8vPzWbgwj8mvZQMwdAAEOl2kUBZfiWcvdQQgp1A4vlT6qw2oNfriTaVCvDMBSMwSTlonvRmtSowp7ylq8MdkiMhvU7DJvpQOi8EeUW4Uf8q6TCFGFEWTW3VF9xJOmWKs9dhpsUy0aDSmKhTzaQpAJasIfH4UV/43DXPivyOuKNwZGftisVll6ker8VNbybQ3gs6ztzDp3Ho/p7L9AZERARBfKASMAIPIzDGozOTaD5Y8iz0jwd7gWiUJgcBDW0CBfUyWRQhcrlLxn3+t/fkVaw4Z64UYkV9NHF+2C2LZy90CxbxW8F2XAoCsF8tJeXbBzN0VCkUja21iNubAa0c5ZiSc5OzubwGJ4N6DcYuupQgSd5lNbacXe17+m3fAy4NaH+jYNXABqi1bqNirOTxTjQJLbWSrjfgv/iB2xWEKLqSQd0xkLchm87WmB2DOnDlY0rIo/87jFJxNwC3YGa/6kXjqhXhV1DfFTVWA1a7InjeJY9xFY6Jyh1BOfu3ChKfTqDW2CgdnyuxbfJrtMw+jcXciuakv7oEGcHZCAs7tSSd5n5gzPj6eyMhIMq+IY9Ep2IOMXedIqxsOj5XeflRQUFBQKF1iY2P56KOP2LZtG3q9nlq1apW1SXdMdHQ0P/zwA926dePKlSuKKHEfUCRKBAcH/8PIBwur1cobb7zBu+++S/369Tl48OAdNxRXuHUkSWL48OEAjBgxgtOnT1O5cmWWLl0KiMbT3bt35/Tp07z//vvYbDbCwsJuOOf48eOpV68e06ZNY+fOnTRo0ICHHnropm0aO3YsvXv3pkGDBvz2229UqlSJ/v37s3btWqpWrUqTJk0IDQ1Fo9Fgs9n4+OOPSUtLY8+ePQ5RYv369YAoa/fBBx8wevRoh8ChoKCgoIgSCvc8tcfMcjw+NPvma5lfD1tiJT6dk8Hkt7Lp1s2J0KdbEhh64Y7nvVU0BZJDmCgNZFkm46c12AoKMURXAqsSgXCvo3cSCpT0oHX3cdKDTcbi44pktqHJFaKe0UtkTFw6v4nL+9bgHF0Fv0f6o3Z149T4kg3WFP4dnPzc8G5eibNrzlK/V3PH65JaRfSzLci9lEH6yVS8H2lNdNcwnHxdrzvX2bNn0YUF4FojXNz0RULs9YWMv7L59W0UpOQhaVSk7L9Cq+dqsHX2cQAs2YWc+O3adW1rPduEyMhI8cReQsyzVhiJ8VmorJZrLqOgoKCgcG/w+OOPs23bNv73v/8xYcIE1Oo7qG96j5CWlsaECRMIDw8nOjq6rM1RuAlkWcbPz6+szfhXycnJ4bHHHuPXX3/l7bffZuLEiWg0iouoLHn88ceZMGECX3/9NW+//bbj9aCgIFatWkX16tWpU6cOY8eO5eGHH77hXGfPnmXixIm0aNGCFi1a3JIdSUlJDBw4EJvNRn5+Prt27eKxxx7jzJkzeHp6cuLECU6cOHHNZX/44QfHY6vVilqtJiwsjMOHD2O+QXCTgoLCfw/lH0fhvqLiu7OwOl115J9/4fYcmTv2FuAdpKPPjDqoyHK8/vGldgCcvCIiwtUaEWlucDE5xphM9shwyZ7pYO8tYZOFCGA0acCe5XAiJQC42pNClSMuskw+VlQFwhNt1Yt5zAHCcSbHC8etLO6QVeB9uvift/XkmWLP1XWbIMXnkLtjNwAFhw9jij1LwP4zhBqrOcbt/+LORR2F0uP4wUIM7hoiaujItEl42sWJWi1iAJEVUc9blFU6lysukpzU4ljw1Ip6/EarhkyTKHOjsh+TRceixp4am2FywVkjsheM9gPLVeV0TZsKZYnavcUJ5pHvRZRUTnVx/LtvEssmN7HhddpL2HPZ/v1xFce4rLJvhE6FZG++JtsvbiwGiYSTm7h88Bc8W7fFu0Mnzr087uZ3mEKpcn7A1caFVXfEcXLyKRJ/2kvUI7XILBAZNRk2F8q92B35g1WkLf+T4Q970SHKCfjwmnNarVZUahl/V1GmqehYtNjEcZFjE8ddnMmXJHPxsmXGuGTi9yZQ97V2hLSrRAV9Ah82Fk1CtW46DD7OoNOi0qrRZKSTGm/C2UND4z7BdBt1tSaua4gbaoOGxF+PAVC9ishcG3+4PwAayYpNlshJKiAy2ITKXk5sfPS629uRCgoKCgq3TXp6OidPnmTMmDG88cYbZW1OqfHdd99x6tQpGjRowP/+9z8CAgLo1asXlSpVKmvTFK7D0aNH6dDhxn2zHiSMRiM9e/Zk3759rFmz5h8d3Ar/Dnq9nr59+/Lpp5/Ss2dP6tWr53gvODiYFStW8MQTTzBq1CiSkpJuOJfVar3h+zdi4cKFyLJMfHw8QUFBrF27ljNnhA/CxcWF0NBQnJycUKlUnDp1iuzsbCpUqMCsWbOoWbOmY56mTZtitVr55Zdf0Gg0BAQElFiXyWQiPT2dwMDA27ZXQUHh/kQRJRTuecyivD2mUup1dyrGxMpf8xj0bjQ5Vicq6xNYmtoEgONHRSqh2kc4cL3cRBmQIoea0awpCsIFhCOryOnm6SKcxGlZLpiMwnlrLbALGLn2iC+bGKsqlIoWx6YVE0o6cdJg8rKXcdKJe0OihE19nawHe4i9pkDGN9EDmj1CUvIhCo9ewpKZgWzdiimkGhq9AfewaPLy8pQSOfcIBQUF7FyVQvlWIewxh4EZGjjFAmCyiuPlaGwIjeqJLJ4ras9iyxtUQig4mRWATm0ttpylqHwT4tjSqK42stbaSzq9nCRKI0wLOFxs3j4HhyPbj+n8BuL4j35ORKdb0zPEelwbIdlPci1eQhDRpNm/K772pvC5Rmz6IjFC2BVXeIDEg7/g3bIdaRvX3+SeUvg3yAttgHvnNI59vJkrqR50ek6ULojL8cLgY0BbszIcuMQ639bsSHDl85BrzxMdHY3xh2UU5lrQOOvwdhK/iz66PACMNvHbeCHfD5v9R9Bsr1nXWP8nXwND6p3l2Zbrmf+Fl2Pey/sD0fgcZPmvlTl5NJ9juyWaDnbn2Wdc8Q+LK2ZDoCGHgOq+xO9NZOTIkcx9fi4ANouN5GMppMRkcW5rEue2JGBw11C+vhfV2vgjvyorNW4VFBQU/mU+//xz8vLyePXVV/958H3EsGHDOHPmDIcOHeLXX3/l/PnzfPPNN4SGhlK/fn06depEw4YNUaketHTZ+5Ndu3Zx5MgR/ve//5W1Kf8KVquVxx9/nO3bt/P777/TsuX1+4Up/Pu8//77HD16lDZt2rBp0ybq1KnjeK9169aEh4fj5+eHs7PzDeeJjo5m165dt2VDYWEhXl5eBAWJsr7Lli0DoEePHqxcuZLz589z4MABtm7dire3Ny+88MI1Rb2/iip//PEHbm7CuZORkeH43i1YsIAzZ84QGRlJmzZtGD58OI0bN74tuxUUFO4vlLMghf8UNpuNjo9eQaWC2h0evPRc34qNCB7+NGHPj8ezZydkk5m8pPPkxJ/l/PoFuHt54xdZn6qtn76jyAmFO2fr1q1kxedTs1dEWZvyr2AsyCRx1TLc6zTEp02nsjZH4S9UmDETSZLwfORh3Ds2I+P738lL+ltDapsMMqyfsImLsVb67HgGW2Ilx62IgQMHIlttxH61A9l28+Xpsi9m8fGkBNQacPcWIsUva0QfCnc3iXY9EwgO9WXUoFQ+fi+bjZuMbNxciFot0Wv7aHptH11svodeExcyq3b/yDMHBgFw8LuzLB2ymd+nHiIrIZ/2k+rQYnA42SlGlk8+TtfPO9F64zhabxx3zTkVFBQUFEqXPXv28Morr9C+fXuH4+tBwcnJiY8++ojNmzdz8uRJ2rZty5EjR7h06RKffPIJTZo0oXz58kyePJnTp0+Xtbn/eZYsWYKfnx/dunUra1P+FRYsWMAPP/zAt99+qwgS9yBeXl6sX7+e8PBwxowZgywXP6eWZZkDBw4wZswY8vPzrzvP8OHDWbVqFRs2bLil9f/000988sknjt9lo9HIqlWrcHd3Z9WqVTRv3pwKFSrQr18/Pv74Y3777TdiY2OvOZdOp2PevHkAHDx40PF679696dy5My+//DLly5fn66+/pmvXrqxevZquXbtiMpmuOZ+CgsKDhZIpoXDPU+h79U/43Lg7qzsvSRJ5BVZ69HaiobdojvptemM2xUUBoMkTOp1zOeEMKyrNVGi2R3xbr+p4NnvWw5V0z2LPZauEzWzPjDDZx9uDb2W12BZZIyMV9Xywv1ZUDkqyFI/UVRuhwF+s3zm8eDMrY5RoEKvNsaK2r8vjrFi3xloea/laRFXrjs7gQbo+jcyYQ2Qd30tq7H58gjZStekwdqx86WZ2nUIpU7NmTVROWrb8kkPH5qKhelGj9XNpPgCo0nWYZfF5ljOIpun1XETmxPcpDQBIznPF21mcjBaVbyrKmCjKoLDYVFjskXhGm1iHXnXtOvttw86wZm0jAKxBolSUJUU0TtdElQfANf6qoKXOESeMxhCRyiRZ7ce4uxMmD7GuNH0aF/cuR9Jp8XiqCyaDUkv0XkOdouXcuBdp6JHEwV0HOTD3EHVebYteLY6T6kNqEFLHi/3P/8CZbw5RZ/y1L2DLlStH1aH1OD53N7LFSou3RZ+HApuoaXc462qjT409a8fPKYdfXv4DS6GGHdt307BhQ2RZZt2fVlqPqkj91m7MGX4IjUZC56kiJ9NK335OPPWUC8Mv9ChhQ55Fj8pfz5A/+qBz1TleX/rCGkKmixSP/AwTPjWCqF49mBYjKzOl+QYSDyThXvFqubvUw/H4vRSFJacArZsTYQ9Xxr9peVQaFWtafnwnu1tBQUFBAbBYxH/M+PHjy9iSu0+PHj2oWbMmU6ZMAWDHjh0sXbqU2bNnM3XqVGbOnOloDKvw79O0aVM+++wztm7dSuvWrcvanLuGLMusXLmSSZMm0bNnT3r16lXWJilcBzc3N6ZPn07Hjh1ZtWoVPXv2dLy3adMmJk2axPvvv0/37t3p2LHjNed48skn+eqrr2jfvj2//vrrdcf9lXPnztG7d2969OjB/PnzASEgZ2VlceDAAf744w9effVVgoKCSE5OxsnJiQkTJvDoo49ed84RI0bQvXv3YuWZnn/+eTZt2gQI0aNfv34MHDiQ/v3707x5c06ePEmtWiKz32w2s2DBApYtW4bFYiE6OpqRI0dSt27df9weBQWFextFlFD4T2GxWDCZYOWKQtJzE3llun+Z2SKrhTAhWSRkjQwpota6NtveD8Ae9FAQAGYXezmdfkKU8DwrnMKaApt9rAWL/evselm85mH0ITjiUayyGvJtuBt8ca/cDk1IGzISTnJqxwLO7P2GwOZbcdH64B5cESebqMtuSDazccPL/8Je+O8SGBhI+KDGXFiwjXOPVaNCLbeyNslBUd+WoN+FuKGuJiLhjf7CRtdzWcgau8gRaO8lYdfSnI+LUk/5tcIwuqnIvHycmG2LUXt64DdmCBdHvf6vbYfCraN21hM6qBmxn60nomd1tBWvCqFetULx79uEi6v3ovdw4sjjRmpWFYJa7TWv0TP8CACVH69LxqU8Mo9eASKvuy6LrHIIE/mphdQaVIWGDRsCcPz4cQqyzVgiIwmqLjNmYxcWPbGVpNNZjggqgNUHBpaY92yWLwAtArL4a4Pt4OBg3t7ThtiDmfz03jmWP/4b35mvljbLOp9Oa5/LmPLMLJ9wgKQdcbiW98Wtoh/5FzM48NqvGILcCe9Rg42WjTRs2BBX1+s3/b4ZUlNTuXLliuOiS0FBQeG/RFGE76uvvkq7du0e6NI5I0eOLPa8ZcuWtGzZko8++oiXX36ZF198EZvNhslkomnTpjRp0gSdTned2RRKmwEDBvDpp5/yzDPPsGfPHkeJmQcJo9HIK6+8wqxZs3j44Ycd0esK9y4dOnSgffv2TJgwgQ4dOjjKNWk0GqZNm8bq1auZMGECR48eZfjw4Xh6ehZbXq1Ws2nTJsLDw9m2bdtNiRKJiYkAvPPOO/j4iEC5LVu2oNPpHE22i/rjVK1alZUrVxIVFfWP8/69X0SPHj2Ii4tjw4YNjBgxAicnp2IZIceOHaNWrVrs37+fRx99lLNnz9K5c2e8vb1Zs2YNn3/+OW3btmXgwIHUrl2bmjVrolar/9GOG3H8+HF8fHyU3hYKCv8iiiihcM9zp9kRf0WlUlGnsRPbNhSw+bc8qnTU0qHbcdYm1QaufiGcdfYIcXtmRKFJ65ijqOR40X+m1SL+/GzWokwJlaN3RFFmBPbAcqmop4RJdfU9SmZH3DFqCauTsN3kZu9NkSKi0fICNRhcKsEOSIs/gpR8CtliAiRcvENx8Q5FnWchKGAZHu7lCA6ox8ZtiiP5bmBt0gHdn7F8ODqGUd81RxUqGn+Fe4veDacvuOOlEbX4A7SiofSRgnIANPSIBeB4SqCjr0nRfRFFGRMqSUYni4Mw3yIucOs4xxYbOzZeZF6s3luHOzudu4rxTAwxexai9Q8gOy4WJ6drN9dWKFv++hu7s8M0LG0s+PwRwoGpG2g6px9aVz0p+cL53vnZCH6JT+Lcj8ep/6NEpY+Go/Mr3rC6hvsVDgd7krTxNFtWpCDbZCrWdcUn0p2UBDNadwPBHvmkG8WFlT5PjSnPDC5X6+JOmjQJlxA3AuoHs3r6n/y5II7avcNJPJXF4jVPoqoWQOfIY8XWO2F/b/JSCymMD0Mf7Mm2T4+RcDwDq9HKspDq6COD8GtZme0jPmPVogrYzmcVWz7xUBKXjmWzf+Fx0g4l0uW9xlRuH4bN3rsn8WQm+xeeIGbBTtrObYvaoCGgeQXKdauGV81g1rb65Jb2uyzLNGjQgNjYWKpXr86aNWsoV67cLc2hoKCgcD8TERGBj48P27dvZ/v27UycOPEfa6Q/aDg5OdGsWTM++ugjxo8fj4uLi6MHXKtWrQgPD8doFL3uBg8eTKtWrcrY4gcTSZKYP38+DRs2ZMiQIXz//fcPXL+PIkHipZdeYtq0aWVtjsJN8sknn1C7dm3Gjx/Pp59+6uh/JkkSX331Fc888wyTJ09mw4YNrFmzpsRxq9FoCA8PZ+PGjURHR2M2m+nVqxcuLi7Ex8cTGhparKdacnIygEPgyM7OZtq0aQwdOpSkpCT69u3L7t27GTp0KF999RWJiYnXFCVycnJISUnBYDCg0+l45plnSE9Px8XFheDgYNq1a0ePHj3o2bMnQ4cOLbH80qVLqVOnDj169CAgIIBDhw45gngsFgs//fQTH3zwAcOGDQOE6DF06FCGDRtGZOT1g6Kux5EjRxzzT5gwgTfffBODwXDL8ygoKNwakvz3AnXXIDs7Gw8PD7KysnB3L6VuwwoKZcSWU+VoFX0JtUbivY31iAy28OI6EW2rsTek9q0l/oytdhEhK7/4H5Jsk7AYxVhJJTteA5AtKij8m1vXHoyrLhQnCX8VIawG8abKLF5TF4h7q17M6xYr4ZwixpidxXvuceLipMBPOJi1uVbUhWKM1bmoqba9lI+HvZRPlnBK5wUK6SUj/jgqbw+c/EJQJWSRHX+GnIunKchORm1VIQHZOVdw0XtTKbANfm4VWXd06o12rcItErF4GpaMbHLenYXOWc1riyvhFaDjmwRRPun0/nDGd14NgE4SotJlkzcAHmrRQHjh2ca4OYnjQasSn7HWXrapqJyTk9pCoVV87u5aMba5dwwAA9xPAjAlSZTj+fV8VSLeE8upCkVpprzywunsci4TACkjB9yFkzo/0hMAwxXRg8DsLb4rWeX1nD2zmqxtm4l8exrnJ028s52l8K/SbPFg9oxejlt5Hxp+0J10m2g6Xdv3ChdyvTFlFbC135cEPNaCgEeaA9Az/AihOlFm7JtNvux6bT0FyUJU07o7ofdxJvdCOk4hXgQ2i8ClcVXcqoWStuEIMe//Su15T3BwxFcA9OrVi1/WraHOuObsnfInADWfa0pA/AnW/5DJoh2VGNykeA3u6IfDOLVOZOo8/vjjLFmypMR26f3dKEjMInJAA+K+209Q8wjK96lOkJTCpo9PkHo+B4CW09rS4GERHWb9m+hXYFKRcSGLE5vTiF19kvwrWTiHeBDZphx+zSrgU9UfSa3i+6Zz/nE/f/DBB0ycePW7sXbtWjp1ur97rijnjHcfZR8rPEjs2bOHRo0a0alTJ9asWVPMOfZfITMzk/Xr19OwYUPCwsI4fPgwv//+O3/88Qepqano9XoyMzM5ffo0PXv25L333qNSpUr/PLHCLbNy5Ur69OnD448/zvz58+848vpewWQyUbt2bcLDw1m7du1/8nt2P/P5558zcuRI3n77bSZPnlzi/W+++YaBAwdy7NgxqlWrVuL9d955h/fee4/s7GwAqlSpQlpaGikpKXTo0IGGDRsyevRo/Pz86NOnD4cPH+bCBVEyOCcnh+DgYKpUqUL79u159913AYiJiaFZs2aEhoayf//+YuuzWCwYDAZHib5hw4Y5SkH9lUmTJjFx4kTatm3Lvn37mDt3Lq6uruTk5PDSSy+RnZ1NQEAABw4cIDg4+Jr7Ji8vjz179rBixQqWLFlCTk4OLVq0oGfPnvTo0YPy5cvf1D7Ozs6mW7dubNmyxfFafHz8fd/vSDlnVLjXUUQJhf8UycnJVGhWg/xL6Tw3uxI1WnpRKGuZvaQ7ABZ7ILdHvRQA8k3C6Z+fK0qUSCrZIT5g/+bcLVHCOUG8r82TsVc4wWKwjzGJdRaJFLqcq2O0+UUlncS9bA+WKMqcyAsQtslqUJmKlpGLze95thBNRiHZ+YmcufI76XmxhHnX40Ly7gfm5PxeosLoV7m4ZA4aN4mqMwdSoBfOUO2fHvj2vARA8mpRRqfZwAMA1HeLBSDT6sxPl2uL8XdJlDD7ihJNuovC4ZzeJAiPs8LZrE7PK7YtphAhYFyJLOD0wrcJfKw5wYNasr+TImjdT0Qseg/j2TiSP/gC79bV8BvZEwCtxoqXoQBTRj47+81hwIxaqJrVB6CV11WRYF1qdQCC1cmYcs0sn3AQpwA3XGpGkLY1hvyziZjzzThH+JFjL/nVdN14tnf4AIC9e/fSsGFDnHycKUwT5T08KvoS0DiMM0sO8uT8RiwYuquYzfXGNeXAzJ0AdOnShePZBzHlmNB4umDKM5G4V/yo/vnnn7xuXUPMzN9JXCtKTqk1Es0HR6DyckXnoqXXAFf8NOLCrVAW/wOZVhG9m2UVwtulQm+SC1xJORBP/PpTXN52icKMQvTeBmo+05g9b2+8qX390MoRHJq8mqzjIl3+r+Wp7keUc8a7j7KPFR4UNmzYQO/evQkKCmLz5s0EBASUtUn3LDabje+++45XXnmF5ORkli5dSu/evcvarAeSb7/9lkGDBjFo0CC++uqrB8KB/9lnn/Hcc8+xfft2GjVqVNbmKNwGb7/9Nq+//vo1zxO/+OILnn76abKzs3Fxcbnm8rIsk5uby+7du5k0aRKtW7cmMjKSRYsWcezYMSIiIkhNTSUhIYF69eqxb98+x7JFQTQhISFcuSL6co4cOZKYmBh27NhBfHw8Xl5exdZXu3ZtDh8+DMC4cePYvXs3er0eDw8PLl++zJ49ewCwWq3YbDbKlStHQoI4Vw8ODmbSpElcvHiRPn360KBBg5vaR3l5eXz//fd8//33bNiwAaPRSIMGDViwYAHVq1e/qTk2btxI+/btsdmELyUhIeG+LueknDMq3OsoooTCf4oXXniBT+bMo3yvZ3AKEg1P3TolUrhc/NFYhfZAVmPR6FqjF85dc5625GT2xtKyxt6guqiptVVyCASOZtb2b5nGLjjYtLKjxFNRv+GiZdTCZ4wuU9zfjCjhftHiKNNU6CXu3a5Yi40pmiPfX+V47pQh5jG6izEuiWIZ19MZSPkiEt8S4MmV5P2cuvALPp4VqRnVlw17p5TcHwp3xPnz56lcozZ6b38qtx+JpFJjcZKw2oWyKr3PAJA+SZR3Gfy5yKDwVOdzrEA0Dz6b7wdAvkUcyKfSxPNK3qnU9YwDIK7A3kTbLlis2yQahHmeEseAyRVcE8XB4nJZfA+K+kfcjCiRV9kHWZY5Gv8jWYf2kpmejodH8fI+CvcPPkN7k77wJ3xaVab8M21ILgwnOiKe1L0X2Td+JTExMTdVR/bvDNvUj+8Gb0Dv54pakvGpE0rFwfVZ3eJqCaQKE7pxfvovoJKo2rkcJ36JwzPYQGa8+G26fPkyISEhjvGP7RpB5jlxjK7suxS9Xl9snSkpKXz11VcMHjyYgIAAYmJiqN6wFu5RvgTU9OPkkkN4+OoIr+VO3doSowfIeHqpKLQru072H9G9heL7drowiFyrngt5vjhrTNisNi4fyeTcimNcWn8W7071CB7xMEd73vj3stqEdpyYvsHxvHnz5mzduvWW9+m9gnLOePdR9rHCg4DVaqVy5cqEhISwevVq5Vi+SQoKCnjyySdZvnw5s2bN4rnnnnsgnOb3Gt9++y0DBgxg+vTpjBs3rqzNuSOSkpJo06YNwcHBrF+/vqzNUbhNZFmmW7dubNiwgf/973+8+OKLaLXCRzF69Gg2bdrE8ePHb2vu9evXM3DgQLp06cKBAwf4+OOPS5SK69OnD6tWrcJqtTJkyBC++uorqlevzrFjx6hUqRInT54sVjrKZDKxfft2qlatek3Bee/evezZs4dnnnkGSZL48ssvGTduHCNGjODMmTP8/PPPNGzYkCpVqtCtWzd69uyJRnPz1edzc3NZt24db775JjExMXz99df06dPnH5fr2rUra9ascTz/5JNPGDNmzE2v915DOWdUuNdRekoo/KfYsGEDLiEVMPiF8I9q3F3AXoEHFRKaXPtrjn4T4l5tz16w2nvbWQxXRQ6ndGG1ptAeyW7553XmhoiTA31mkRHizuQBJje7yGEXQtyOpZBT3a+4zZJEaEB9nHTuHIlZztZDswgzrECrcSbQKYodKcv+2QiFf6R8+fKEdRnMhR/mkHBwPcH1Hr6r67PJEjVdL2NrZS9J01wccBcnV0KXUVhsrGTPmMivLI4N750JYE/HLSoThuvVGtAZyafIOrAb/y59FEHiPse1VQNUeh1Z363mwLAFeA/vDxGeWPLFMVHUAO9W0bvreWJlZ05n+QOwofXMEmPSzhYiGfRIKolyFbQYG3pxbk+G4/2lS5cWK330bePPofH11+nn58eECRMczytWrIgxQ2RhdNoyFu821bi4bB+Xr2RzZGYii2dBpa7laT6oHGPrnbzuvJEuqWjtP+Tny1cibEIlbJWOc2XOWjSeLjwWOELY9heSkpJ4+umnefrpp0n4rfgFZIMGDZBlmf/97380bdr0ppoSKigoKNxvXLx4kXPnzjF58mTFUXILGAwGvvnmG8qVK8fzzz/P/Pnzad26NX5+fjzzzDN4e3uXtYkPBI899hiHDh3ipZdeolmzZjRufIMTjHuc119/neTkZL755puyNkXhDpAkieXLl/P666/z6quv8t1337Fq1SrKlStHTk7ObZ+TA7Rv397RS+J6XLhwgbCwMGJjYxk0aBBLly7l2DHR3+3MmTPExMRQuXJlx3idTkfr1q2vO1+DBg2KZUAMHz6c4cOHO57//PPPfP311xw9epTFixdTrlw5xowZw/Dhw0tkZVwLV1dX+vTpQ+fOnRk6dCj9+vVj79691KtXr8TYP/74g7lz5zJixAhHBkcRtWvXJjExkTfeeIM333zzvs6aUFC4F1EyJRT+U0yfPp2JE1+iQasJFNYSin25Puc5uUPUGvQ6Jb4OORF2R22oaHhdlAUhWSRHs+qikkxFgoGjnJOMIwviasZE8bGyhn8UJWz2KklWA2jtY4syG4oEC9keGaUtkB1lmowe9jJSdjOLIu2LRIkCf/v8mqvlm4pEidDVonyIxd8dtd1ZZ/USzmZNeh55pnQuJewizXQZo60Ai83I6ZhTtxUprVCS9k2ncCb2N+JTD9Cw0+toTSrUhfYDxP5T7T8tFoDklyMAeHnhEt4d8QQA6klJAMSmiJNSU444UHRuJqoGic92UJAob5NiEb/lR3JF1HeB9Z9FCccxb7Fe7fRuR3YWUenxrb2IW7MIU0Yy+clXlOi9B4TyC14lee5K8g6cxueJXlgyssn6aT0nT57Ez88Pb2/vUv+sDdUqYrqciFxYSNth5Wj+eDm+eeEQZ3ZnAqIUwahRo0plXXWndiVm/k7qvd+DTX0X0GXNEFJ+Ocjx78+Qn17IY3OaUbelSIf304i+ExV1ieTZxHHvohI/oj9nicyjKwWe7HhrM5e3X6LSI9WJ7FQRi0rH7/2/QeOqQ+OiI+9iZjEbnDx0PPFNG+Z0WovVanVEvzX+4jHcK/qzrtWHpbKtdxvlnPHuo+xjhQcBWZZp2bIlhYWF7N27t6zNuS/5/fffmT9/PseOHSMuLo7o6GhlX5YiFouF6tWrU69ePZYuXVrW5twW+fn5BAUFMXbsWN56662yNkehlNi/fz99+/ZFkiQWLFjAlClTMJlMfPvtt7i7u+Pm5laq68vNzcXNzY3w8HDi4uLYv38/er2eBg0aUFBQgCRJXLx4kdDQ0FJZ3zPPPENqairLli1DkiQOHjzIRx99xLfffouvry8nTpy4pcA3q9WKn58fkZGRPPfcc46sj0GDBlG3bl0OHDhQYpmePXsyf/58vL29+eWXX+jWrRsgSkQ5OzuXGH+vopwzKtzrqP55iILCg4OnpyeybKMgP730J5dAnymhy5LQ5YAuR4gJ2lxQWcVNsombNgtUZnFTm4rfkMXN6ixuN1yl3TFc6ClhdhY3iwEsf+nLbXYVt0IvcfsrResssg9JAknCplOBRtw0l1PRXE5FTkzBOd1KFbemNPN5hJb+jwOi/rlC6RHsXweLuYD0hBO3PUeEXxr+njlEhicTGZ5Mw3JxXPmqPFe+Ks+0aYOYNm0QP4zpyA9jOnL87Zocf7smca9XIu71SmRG6ZAlCVmSkIxmcbPYkCy2G65TyjeSW8EdrxNGcs4dJ8irpiJIPECo3ZwJfLE/Xs0qk7ZgBVk/ifT/6OhofH190QcEEP5cZ2p9P456v04ChMMpKyvrttcZNvIhnMv7YagdzfGwbrzR5E/azmxHtV7laTK6BkOHDi2VbbPZbByfsZHcC+kkbTkHwJouXzHiBXemb6qLT81gVr97gsR8V5JN7pwsCOZkQTA/ZjbgYEEEBwsiHOLEX6k1sh7Bzcpx6uvDrO79HQc/2IzVaMGYll9CkKjeKYRhc2oTFWlDkiQ0Go2j5vPBV1dTkJRdKtuqoKCgcK8gSRKenp7s27fP0QxV4dbo0KEDy5Yt4/jx4yxZsoR9+/Zx/vz5sjbrgUGj0fDII4/www8/kJubW9bm3BZbt24lOzubRx99tKxNUShF6tWrx+bNmwFo3bo1GzZsYOvWrYSGhuLu7k7nzp1Zu3ZtsWWMRiMFBQW3tT5XV1cWLFhAWFgYzz33HNHR0VSrVo09e/bQq1cvfv7551ITJA4cOMCcOXP4/vvvuXjxIgB16tThq6++4uTJk2RmZjJ16q31KlSr1SxfvhwPDw+GDBlCYGAgv/zyi2N9f2fUqFHMmzfPkXn211JWw4cPx2g03u7mKSgo/A0lU0LhP8XatWvp0qULWklP0CNDcI2sTGHtfL5p/CUA/X8R9QI9zgi9Lje8+NdDZZRQme1P7P7WokyHa5ZSsi9u0xV/rrafD0g20IqEBPLtmYBFvSRs9jYWTukiqwGuNuLWFi1vX6dVX3z9FgNo7MHuuWFF89kbctulSF2WhOslez8Mu10+u0WDb6ubAVWBEVQqpCxxEi5n2+/tf8KSwYl92Wtp2K5miZMehdunoKAAN1cP3JyDaFD5SSxe4kOPbyacntHtzwKQPi0CAE2O2fH5NfpENCTblFQRuNr4OsQ1i9NfRANXs2s8YsXnaHYRKTnqQhtWgxrny3lcfFj8zoetExHh6hxxwFk9hNqlzsiHAvsBZi/blBMtTto0eVZ2bnoHyc2FsM6DiFn0funsGIV7ApvNRsjbL5L6xTIsCSkEt+2NJcRA7v4D5B89hj7EG6+W0RjzvTAnp5C7czfuEV6ooiviUqsCLbs7I6kkBvqLjJ3OkcfKeItEJGRRVkLQpCHET1lY7P1K7w8m5qUlNJvTF69qgVTzEE34LLIaf60QC+oYYgGw2f8YwjRCjNmYV5mdP8TzzWuiCfhvv/3GmMWvcOWPGAqSc/GIDqD8I3Xo1luLm70J/fjodQAcPHiQunVF5oXGVU/1qGjmzp17zzeoVM4Z7z7KPlZ4UJgwYQLTp0+nQYMGrFy5kuDg4LI26b4lKysLHx8fPv30U0aOHFnW5jwwrFmzhq5du/LFF18UKy1zv7Bv3z4aNGjAgAED+PLLLzEYDP+8kMJ9Q15eHhs2bKB///5ERkYydepUUlJS+Oijjzhx4gTdunWjQYMGuLm58e2337J//36aNWtG27Zt6d69O7Vr1y7rTSjBypUr6dWrFyAyNP7euHv8+PEsWbKExMTE2wqA69u3LytWrMDPz48ffviBefPmsWrVKoxGI4888gjjx4+nTp06JZZ75513mDRJBF7Vq1ePkJAQ5s+fj6+v721s5b+Hcs6ocK+j9JRQ+E/RuXNn2gQN50j6ei4u/4KwPk+irR1508tLNtDZA1aLyiOpisovWa+OK3L8F5VkKiq35CjnJF8tmXQzWOwZE2q7H9ghTtiDdozeV4WOv4sjrpfAKc3maIBttJea1WVBoY/YCNcr14mCt9nAbJ/w7+V6Co14E8DmzZsxGo0lmsoq3B4Gg4Hqkb04fG456TkXcPeKvua4JlN3A7B5WhOcUsVntGOCcFZ2nSUiZ47liCbASRMj8ZDEwVPgLz4nWSUVu7ca1Ddln2S2iuNCJ5y4Nr2412UKG4xeGio3fYJjmz8jZfcfN7vZCvcJKpUKjY8ntpxcsFlJ2vYrvs/0wnd0DyyHW5Hy4wpS1h7DZjQiG414VfHDs6IPl/fEkPnrHk5k1qfakNqO+SLmTQcgduT4UrOxypuzOPXGC9d8r9qq/zkeH+8hHms0Grz7tMKSnYdr7fIlltGH+oBKIu1wPF7VAjmdI0r/ZRqdiPYUJdPy7cqzyq48m5xjAXjG8zJLD+aCSqJCv5o0atSIqi5NqTqqKRbb1WTVN2t+XGK9derUoeIrXYl59xecy/tz6NAhGjduzPz580lISKBjx47Ur1//1naOgoKCwj3EBx98QN++fenTpw8NGzbk4MGD+Pn5/fOCCiXw8PCgUaNGrF+/XhElSpHOnTszaNAgJkyYwBNPPOEIYrhfqF+/PtOnT2f8+PF069ZNyZh4wHBxcUGSJMxmMydPnmTevHm8/vrr7N+/n5kzZ7Jw4UL27NlDTk4OBQUFPProoxQUFDBr1izeeust9u/fT61atcp6M4rRuHFjunTpwvDhw0sIEgDVq1cnOTmZM2fOFOthcTPIssymTZsoV64cr7zyCi1btqRly5Y3texLL73EuXPnWLBgATqdjp9//hk/Pz/Wrl3LoUOHGDZsGP7+/rdkj4KCgiJKKPwH2RD/BRaLBa/wKqRuXkdo9RfobxQn79VqxAFw8ZwQKpyShcPWdIe9etUmIUIUZT+ozDiyJmT7t9BZBN86siqKMh0sNwho+atYUdSLoki4KLSL9p4xxQUH7V+yj90u2sgpd9UxZvFxFXPkGpFyRAqHbI+IlwvtKorqakSCXjKQn59Pfn6+IkqUIoH5fpxWuZKScASPIHGyVfS5HTgVDkDlBkm3Nbch2UheqJNDjFBZ7Nky9nubTu3IkFAZRVqQzVkclJLZ+vfpHCQ1EJ+/1xkrTk6iTJpzUMRt2ahwb6OR3Qh7+w3MqSkkffYFSTOWiNd9fLDm5KJ2dca5elWca9Wg2WMaNAYtusQgkhf+yuG5uzjx9RF2hkpE13PGHJ2O1vdqU06bzUZWVlaxBnY1X5gFwJFZL1Bp6ixkqxWnqimoDTryD15dVnX9w/MfSfthU4nXWm8chyXfRMzzC1FpVBRo3IhPcyJfFr+TUb6pnMux/9C6gSYpkd1LznFyQyLuLjaadfIg6jFn3h2kps1KyDqVSJOVb6Dz9eJw17dvyi6/1lXxbVkFSa1iVFINHn/8cSZ/+z4Jf5xm8uTJ+DUOp/bkDvze5fN/nkxBQUHhHqRRo0bs2rWLSpUqMWfOHF5//fWyNum+JSgoiJSUlLI244FCkiSef/55vv76a7Zs2ULbtm3L2qRbpqj2fpMmTcrYEoW7Qbdu3TCZTHz99deMGjWKZs2aodPpKFeuHAkJCZQvX57BgwfTp08f6tevj1qtxmQyUaNGDWrXrk1gYCARERH069ePkSNHFhMCcnNz0Wq1N7zOz8vLQ6fTlZpg99fSSn9nw4YNDB06lODgYLKzs7FarajVJQPrZFnm999/Z968efzxxx/UrVuXRx55hAEDBjB06FA++OADzp49i9lsvmm71Wo18+fP5/PPP8dmszFo0CCWL1/O4sWL+e6773j11Vd5//33GT9+vFLCWEHhFlBECYX/JBqNhoD6HTj38xzS/lyHe9RDyFYJjUo48E12f5hTqrgvynyw6a86/YteK8p4UFntTl215MiIKBIhpGslIkg4hImi54XeYEi2z2//fy30AX2Gfb6ijAvLX+awU5QhUZQJoc0T9yl1hKFFc2j+VkrS7aIN95P2Hhv2P1ApLQs5V0wgW61IOh0lkGUybclUrVq1mANR4c6RJAl/p0iSc2OIjktDkiSCc4Uj1H+f+Cz2Lq0HgMoH8gPFgRY1+iQA614UdS87zhQZE/FvuGP6LAgAq9M/txKStSrMblpHKTHJKLy9Fk+RoqM1WRw9JjKrl1TsrBYTyDJ6LyVa5EHkwrPjHI/lN6fRZvkQMo4lcmFrAWpXF2w5BeSfP0nevgOsXAD6EF8kF0/H74g510RitgexK/KRTe/h3qY55d1M5Gw9Ru72/RQePYPG1xvXVrXQRwaT99M+zLlZPGOMIfX4aTK2bESl11JjxUvCBlmm8GIsxksXMaUmkXP0IK8UJvPOO++UuCjISyoZcXUjrvx0EGNKHvqocC7O/YO4z35HGxKAzxPdocPV38XLexJZM2Yjrt5a6nf252yKGz8tOc+P89N45qfW9Pq8Cqtf3k3u28uoOHPYTa9/e/v3ij3/wPM0we7Z+NQL49h7f5CyK471Xb9gwGO52Gw2vv32W+VCSEFB4b4jNDSUESNGMHXqVNq3b684T28DWZbZvn07Tz75ZFmb8sBRt25dQkNDWbVq1X0pSmRlZWEwGAgPDy9rUxTuEiqVisGDBzNgwACOHDnCjh07OHXqFOXKleP06dMsXLiQDz74AIPBQNWqVfH398fX15czZ86QmJiIj48P48aN491332X+/Pm0bduWTz/9lLlz53LhwgXq1avH+++/z5YtW1izZg3u7u7UrVuXlJQUFi1axKhRo/jss88AIWSsX7+eo0ePcvbsWX766SeWLl1K9+7d73g7X331VdRqNZGRkTRs2BBnZ2fatm3LwoUL8fHxcYybMGECM2bMoG7durzwwgvs2bOHsWPHsnjxYrZv305QUBATJ07EycmJKVOm3JINarUatVrNsmXLWLZsGUajEbPZzIoVK5g4cSKbN28mIyODoUOHMmzYzZ/zKyj8V1FECYX/LGdXfcZrr/kw9Z13ce5bF41X6dTYk2RQm4XaoPqbeCCr7dHpZhmjl3hss4sPtmv4/YsoEiiKRAyXFOEQzve7voPZYhCZFFanIuXDXqbHHujgGm/D/ZRQKiSj3dCiPgF/X7/JdPWJzT6fVkOGLZkuLZQ04NLm1yuf8Pzzz/PxR8ewyRbU0u1Fnmwc0QwAY4gT2nwhLGhzxb1DRNOKgys7QqzD86zsENyuh2SxYfZ3A8DiJI4rnUiuQGWV0aAGScKYfnvZHAr3D5Ik4RzkgXOQB9l+4mJXZZSQy7XHFJ+CfOE8BeeTsGblYb1swblyVcxpqRTEC/VV0mpAZaLg5AVS537rmNeSmk7mij/RRQZjiosHYM6cOY73VS7ihyzPnEDmL+vIP3CkmF3r16/nnXfeKWFv7IgJN71t/oY8cv3VxEeFImnAvXFlXKqHk7bhOEnvLWBvSidUfj5o/b3wu1iIzSrTcm4vVvf+DhAXZd6RIaydepQOs9oQ/mo/zo5bQPwXv1MzLpbIulfF3FXNZ9+UTYFuOdhkidDOVfGrH8aht34j82QS334r9t3w4cNp167dTW+jgoKCwr3C+++/z7Zt25g4cSJbt24ta3PuO2JiYkhMTKRFixZlbcoDh9lsxmAw3LdNxF1cXDCZTMTExFCxYsWyNkfhLqLRaKhbt66jJ1kRFouFnTt3snfvXk6ePElaWhpWq5XOnTuzY8cOjh8/7ljeZDLx0ksv8emnnzqW379/P//73/+K/TZv3LjR8Tg4OBibzcb69esZO3Ysp0+fLrb+c+fOlcr2Va5cGZVKhVqt5oUXXiAoKIgPPviAFi1a8N577+Hu7k716tU5ceIENWvWZN++fY5gna1bt9KyZUvmzZvHCy+8QGZmJu+++y4hISF0796dkJCQ27JJr9fzww8/sGXLFtq3b09OTg47duxgx44dPPbYYzg7O5fKtisoPKgoja4V/tNkZWXh6x2Ac9tGePXrSmSFRACuZHgC4PyniE632ns4WAxXhYaijANtblEdJvudWkJtsjeVLgpYlYqWFw/UhTJm1+KiBHZHcNH8Zvv/l9Ug+j/8dR2u8TZUlqvZGkYPlaOUU2FRNRP7Os2uYiG3WKmY3Z5nC9FdzhTTGnRIBaarooTZ7OghUVS2ydHgWq9HNpm5SAynCnfz22+/0bFjRxRKl6ioKHIvmKlTQYg+slZoyEkPiXIx6kLx+UQOiyF5iig3VtTwuvOMPwFYP6I5AHkhTmhzhBgh2UWlIlHCYlAjqyXiW4iDyecIjuPX7YIo4VVUtsmmEzZoMvIcokRGJQNqs4zXMdFsxeYkxI0TMT+SmnGGnNw0dNfKtFH4T1F9oijBZPQS0ZwWzSny4/MwVK+I2llH7s4jpMxehtbdC13lQNTe7lhOxmAttIDZgNbbV2Tf+AfiFBCCrmoUOUcOkrpmZbH16P2CcOnShPi535RaSbmo5VcjqM4+MpmH1j3Hiam/krL1bLFxal8vui/pyo8PL3a8FvH6AOKmfkeFtmFUmtiZMwv3cO6bAwA0fLczAc0ikCTppkWJjpufB2Bdqw95Ys8wdr2/gzMrTuFazpPci5kAFBYWlmk5PeWc8e6j7GOFB5XVq1fTvXt3tmzZojjXbwGr1UqnTp04ePAg58+fx83NraxNeqA4duwYNWrU4JtvvuGxxx4ra3NumYKCAipVqkS7du1YuHBhWZujcI9hNBr5/fff8fDwoFmzZqjVaoYOHcrChQupVasWtWrVQqVSsX79emw2GxEREXh7e+Ps7EydOnWoU6cOrVq1onv37vzxx9V+giqViu7du/Pcc8/RunXru2b/mTNn6NixI7GxscVeHzhwIF9//XWx10aPHs3cuXOZN28egwYNokmTJhw6dAgfHx+2bNlC1apVb9sOWZYJCwvjypUruLi4kJeXR+/evVmxYsVtz1kaKOeMCvc6SqaEwn8aDw8PynnU4cKWXbh3bnNLy1oM9jJKzsWd/WYXKFIEihzARWKCSpToR/MXUeLv2DSiMbbeLkQYVVeFiyKn89+bWf91HUVChcVdZFNIluLr0RSIgeoCy1UxgiJhwi5KOOmR0zPF67aStacSiONU4R7CQpspgsRdolu3bnz64RysNjNq1Y0zJfwnXyDxgwo4pQjh6LexonyTxp7horLIGL3EQRQw6gIA2W+FAVezd65FTqQzkhV02UKU0CeKkl5WNwMXRokxPr+V1LXNrhpCI1oQn3yAiM4D8K7TjGMfXLvxsMJ/g2Pv/8PnPwCquYpG7aa6eeTuOk7iut32N7OxmQrJz0xFoxGnLZVGTCZ1zUpUWj02swkf/2i0o9qiCw9GkqRSdcqffWRyseebOn6M3EEmOTmZuotnYL6UCBIYalfhQHLxuraxb33DT3X60efRR0i/8iNRfaqT37MuCSsPsOeVtVR6sgEVBxaPZrsR61p96Hh8LtuHjCzxg597MRO1uzPW7HxuItZEQUFB4Z6kS5cuVK9enXfffVcRJW4Si8XC4MGD2bhxI+vWrVMEibtA1apVKV++PL/88st9KUoYDAaeeeYZ3nzzTSZNmkRUVFRZm6RwD6HX6+nWrVux1xYsWMCCBQscz4cOHcqVK1cASEhIYOzYsXz44YeO9z/77DP++OMPIiIiiI2NZcqUKTz55JMEBwffdfsrVarE6dOnSU1NJSsriz179lC9enXq1atXYuwnn3wCwFNPPcXu3buZPHkyM2fOZMeOHVSrVo3169ffdsaxxWJx7KO8PHHNHB8ff5tbpaDw30ERJRT+84Rm+nNBLWNcvp0L3qJO6JC6OwBYfKUlAIYE4fjRZV3tE/FPJW7+itVe4qZoWZtGhT5LOI6s2uJO4QK/ksvLWtDkC8ECrpbMka7je5LVgK0oK0Pcu8bbii3rGGvQIaVmiicq+0Zdq4yTvYnUJb9MTpzbRrB/XSqFdbi2AQp3zOjRo/nwww+5kLWPKL/m2NyEk9U1XggEGns5pvhZUY5m1TdDyif2rAp3sYzGKO4DdhWVcwJdppjb7FaycRiAyVtP6GLJPkYsZ/YS6UQ2u8jh6hJAQEAtEjasQO8XdNP2Kfx3Of7uX4SLflAhN5yULb+Rc+owFmsBhYWFuLqK7DVTpmj4YzMbcS0fjV+vIZz8382XZhq+b4jj8Zf1v7plWyVJIiAgAKdyHlhTEtAG+hD35KvXHNurVy+qzRhA3Ac/s/ftjcXeO7NwL7lGHdxmieoKz7VHW7MqpoQ0CmKukLfvDD4Vg6g7vTdb+8+/vUkVFBQUygiVSsUrr7zCwIED2bdvH/Xr1y9rk+5pLBYLgwYNYsWKFXz33Xf3Zb+D+wGVSsWzzz7LhAkTeOGFF+7L4/Kpp55i7ty5tGjRgri4OCWLWeGWmD9/Pj179mTSpEkcO3aMuLi4Yu+fOHECgMuXLzNjxgxefPHFf9U+nU5HcHAwPj4+7Ny5kypVqlxznEqlYvbs2VStWpXJkyfz5ZdfFnu/ffv27N+/v0T5q5tBq9Vy4cIF1q9fj9lsZvTo0ezatYsRI0YwZ86cazbkVlBQUMo3KSjQXt2fg/VSyDi0neAZE1B7uF0VJTZeFSXyqhrRx+pxSrEvWNT8uqjskvDjosuRHRkRJje7AGC/KxIlVPYWDdp8GYteKjZfTjn7Ivb5NAVXszCKRAmXBBlNoYzRXSxr9JIcvSLMwmeH1SC+2vp0McbzrM0+h/350Swkq72kT1FPidw8IUyYTMhm8VpR2SZVcCBJuTEcTFxFQERDqgd1RpJUrN9ePIpYofQI11blivUs7SqPw+ZhAKAgyJl8XzXuF+1ZEGabo+m0VCROFB1SJvH55kS64vNsLABpsyPEEGtxUcJsEAegIdmIyav4hUqRAKJLEwei0deArCoSJdRoc6zoMoU96nxxb/Z0IrG+E6c/ewPv2k1J3rGuFPaIwn+RrKwsZFnG09PT8VrNsTPJT4hF5eeF1k28fnzajbMxGv72KhW9UrBZbZxZcoD0mAwqdIgkuo0/KrWKj+p8e8Pl/07kJzMouHiQpOlLUXu4YkrPQqW6tlo99XhXTuQGYc4zsWu/C8YLCeT8sQdJrSJ4dDdixnx2S+u+FuEzRnNxvJgnYkB9op5qzvqHZt3xvLeKcs5491H2scKDjMVioWbNmoSEhLB+/fqyNueeZtiwYSxevJjly5fTq1evsjbngaawsJDatWtTv379EiVh7hd27NhBs2bNbtvpqqBgs9lISUnBy8urmLCVk5PDwYMHqVu3riOA6GZJTExk3Lhx+Pj48OSTT1KnTp3btq+o7NTEiRN57733bjhWlkXWc0xMDOvWrePnn38mOjqaRYsWlUrG9RtvvMFbb70FwM6dO2ncuPEdz3k7KOeMCvc6SqaEwn+e9dZltKk2nq22neQv2Exwm94s1ooyIjXqilI3hy+E3tKcRWKELreo4bW9P4PdkVvgK2HTgMVZQptz7TmKhA2VCUdpJp0o24+msLiWaNVf7TtR1FtC+luJpwIf4SwrirRPaeiJ336xkEOUALDZQKVCsqv5sr05lNVm5mTqBrwCqlChdm8KJRXbfhz/D3tC4U5wkV2xymbknFzyo30AKPC5tSgLk5cTXmPisNhTe3JCxL3b5eKZMxpjyTJdRagLxTEj25ti5wVpcb0iDtCiXhVFWJ11qArM2HRqfGKsqKwyzhm3kFb0NyqveNPRoOxU79dvex6F+xcPD48Srx356PYjsIwZhRyYewiA2A1xnGkYQMOnqtHgpVdIGeSKXGjip/o98PPzIyws7P/s3Xd4FOX2wPHvzPZseiX03qsoFgRFLIBiw4oFKyr2rlev93q9PzsqlqvYsKFiQ1RARRELWFCadEIvKaQn23dmfn/MZpOQ0BM2wPk8zzyQ3SnvbHY3u++Zc84u91X500oAtLJKFixYsNOrJx/o8RUAl/x+Lc722TjbZ5M5rPc+n0N9HG2b0e6Ne8lStuJqkdyg+xZCiAPFarXy6KOPcs455/Ddd9/tcymNQ928efN48803efXVVyUgcQA4nU46dOhAeXl5rIeyz6o+T+/PhKthGNH9iMOPqqpkZWXVuT0hIYHBgwfv0z5nzZrF+++/D5jlle6++26uuOIKkpKSaNGiBfn5+axcuZKjjz4ap9O50/2EQiGmTZsGwNtvv81jjz2204uFoDrrOSsri+OPP55HHnlkn8a/Mw8//DBjxoxB0zQpmSbELkhQQgjAbnXRLuNYcpb8RFq/QZBvNhNe5GkDwKtDzaZgU7v3Z9aabgAk/GJeue4ujTQMjny+C7uUaBBhZ3S1unl2VTNse6X5b1Uwotb6VgikQeryqsYRkSCHpe4f2qpsjKqr5a2e2vd7M8yJ5areEjX3R1X/CKvVvE2rnqhe6/2LgOahf9pJ/DL1nl2foGgQpfp2XNYk1Li4aH+Sqn+rAlxmTwjzeWDxmGW31DKzQbW/ffpuj1FVhkyNNLfWXFZcW83twwn1p3Ynrvez9iLzvmY/V30xMX925lY/4Sw+HcNuwZO684DHrqxZs4Z11z9L+kUnkTSk7z7tQ4gqnZPzyflmE5tm5ZB+dBsKf99IVs80SjaW8+m1s4HZWBemEC6roH/oP6h2B2tXraRt27b17k/z+vAuXkrCoOOo+OVXhlx/PZkXj2btnTsPmEw++jU4unHOb/WofzbOjoUQ4gA766yzOOaYY7j33nv5448/pOzFDgKBALfeeitHHHEEV199dayHc1jweDwsXLiQCy64INZD2WdVfbkCkSz4vfXmm2/yyCOP8O2339KpU6eGHJo4DFVWVvLkk0+ycuVKunbtysqVKznzzDN54YUXeOqppwCitwMMHz6cL7/8cqd/D7788kuKi4t58MEH+e9//8vnn3/Oueeee8DOpz7t27eP6fGFOBjs++WrQhxCvl78CIvWfoXDlkDhZ1P2ulFoeVsFe6WBvdLA6jUIJkEwCSpaKVS0UggkqQSSVDyZCp7M+q8usQQMLAGDhI2RZbO5GJGARE3hOBXNoRBMgGACZhBEIRqIAFA0BUVTCMdVZ0/slNViLvFuc4kOSkVJTmKLbTPr8n6mffMTiHNn7tVjI/beqbaL6Gk5mlxjA+1SBuzVtsH0OLDbwG7DEtCwBDTKn2lFRdBBRdCBZWgxlqHFFF3koegiT737KO/kpryTG8UwUAwDa7EHa7EH1RdC9dWOmuUNMsgbbKBq5mLYLBg2C4phUNDPji05jVCk/v/eevTRRwkXlpH/yhcEtxVxinr+Pu1HCIDFE//i9399R7DYQ/mWMPHHHE2nynMYmHgzvQfdSKd+F+Lo2pakMwaTfsSJ6MEAc+bM2en+AgU5GIEA7q49SDrhRDxL/iZUuG/PdSGEENUUReHpp59mwYIFvPTSS7EeTpNSUVHBpZdeyt9//83LL7+8yyuBRcPQNI0xY8ZQVlbGuHHjYj2cfVY1Qbp27dp92v6mm25iw4YNXHnllWiatvsNhNgJv9/PiSeeyFNPPcW2bdvIyMjggQce4MMPP6SwsJDp06fzwgsv0LNnT1555RWOPfZYvv32W4qLi3e6z08//RS73c5//vMfunTpwpNPPomu79uFcUKIA0cyJYSIiIuLo7t+BAvKZpP80R9kdDyawr5mJH7cZ9cAoMXrPDr0YwAetp8OQHBBwm73XdbJDHI48yOlcvwQjFyEbvHtfDtfmpl1UdWDQotkQexYvimYBEbk1ewoMf8NpNTelxG5qCAYydBI2BwGrXbmRZTVAg5zgOv15aze+gPN0nvTLvuEXZ+oaBDlRgnL9fm0dHWnVWIfMAxCbvNLpy2S4WIrC0bX11zmLz+YvrvoEygzUgEI9DS/TOSdZV4t1e4187npT99J4ztVhZC5TWknF2qkF4Xu3OHDXuS7scUTxtfChpLsIsTeX5HV8V9PsHnGTFxduxLM3Ubw5q9Akfq3Yt8cOehOlv6ymLanduD4/5zI3F+70+WlPIx48021+SYbkE2buF7kL/+bFRu+wh6fyoUXXrjTfWqFBQDYMjNxtm1H+dy5eJYuPRCnI4QQh7yBAwdyww038I9//IOzzjqLNm3axHpITcJZZ53FDz/8wPvvv8+AAXt34YrYN0888QRTp05l6tSpdO7cOdbD2WdVvbkqKnZSO3gnDMPg77//xufzcc011/D666/z7bffMnz48EYYpTgc3Hnnnfz111/8/PPPHH/88XXuHzFiBGAGwm699VZ+/fVXrrvuOjIyMna6zy1bttCrVy/AfM2effbZrFu3TkonCdHEyaUVQtSQbmmOS4mncN1fu123e1Y+3bPy6XPGCvqcsYKSziolnVUM1ezxoDkg7DKX+jiLwFlINJPB01zB01yhpBuUdIsEJHZQ0Vahoq1CZQuVyhYquh30HeaQbRXm4so3l5rKO+jR41k94ehV7VUMlx3DZQeng3BmEuHMJHILFpKc2JYenUYxa/6/+PYPqevf2Nbry3ERT/fEQXtUt9VaEcRaEcRWbi66w4busEUzHGweDf+HzfB/2Gyn+9DtKrpdxVEcIi7PXKzlAazlATMgsYO2XwVp+1UQVANUI7p9rXGVq6i6FfzhOtvvTKeP/0v2XRez9j/3EdxeQLNjhpPctT95Sdt3v7E4rJWXl9M9cRCZCZ3omH48p3Yxe94MHv44q5ZMASAj5zi2j82my0t51RvqgG6AbmDdXkHB1oWEAx46n3YdLtdO3sCBUG4R9qxmOOLTsCpOVJcTvdxDSUlJY56mEEIcNv75z3/i8Xj47LPPYj2UJmHjxo388MMPPP3001x88cWxHs5hwev18thjj3Hbbbdx5plnxno4+8VisWCxWPa6fNPVV19Nnz596N27N8899xxdunSJ1u4XYmdWrVrFAw88wPDhw/nss8+ilShWr17N//73P7p160afPn12uQ9d13n++ecBov/uTE5ODsOGDUNRFFq0aAFAfn4+ZWVlDXA2QojGIpkSQtSgB/wkGamUFOWT/Ns2Cvs1B8BRaE4MKwUWHlt1EQAdR+XsdD/xmw28WUq0v4PFb26vR/pO2AoNQu76J5u1TLM8jk81N3blKSiRDFmjxis2mAS6vTrDQdFq788X6UFliXzuLO9Q+4r2wr4usubVvlJG8ZorG+7qJlLBkId777yWhx+WYMSBUFpaynZjG52t/VBtDrCZv/TEtWappVCi+SRSwubv07DtPrasBjTc2yKBgapeIz5zv/aKqmZ3dQMHqrcqRSfy3Il8mMz8YRuBdtU1xVrNUKLraHHm89ZSaT6PFZsN68ai3Y6xptD2UgCyzr0Yd2orAhn5aL9XsOp/DdsYWBwaDMOgS+aJrCn8CYAUV0vWFf9GfsUqeo1JJLh1KZXlW2k3+hZSF8VDWK8OtNV8W9Q0PIEiCj3radH2eFK9ybs8rjXZhV5SQfa8MJtOU7G3a03Z73NJTU0l9ZwzKfqsaX5hX7x4MV26dNlls0AhhGgKUlJSSE9PZ6lkoQFQGCkROGTIkBiP5PDxxRdfUFlZeVCXbaopLi5ulyVwdqTrOkuWLAHMmv1ut5tevXqRk7Pz78Hi8FZRUcGoUaOYNWsWAAMGDGDUqFGMHTuWV155hXvvvZe2bdvy559/Ehe36yz/V199FYA5c+Zgt+8kmz8iPT2dvDzzoqMuXbqQlJTE6aefjqZpzJ07l969m973yEAgwMqVK3cbnBHiUCaZEkLsoB1dCWpe/tr2CVplZfT2lt9V0PxnD84SA2eJwaqZHVk1syO/Lu7Mr4s7M3b0TMaOnklxT/Bm7fzq9vjNBu4CDWepgbPUQNFA0SCQbBBIrtvLIpRQnU0RdhmEXWbPiprUoIJhqS7RVFOgdZBA6yCGxcCw1N6/YVXNJZIxYTiq/9hrLiuay4pqseHz7aLGlGhQf/75JwY66Wrzna7jyK9E0XUUXUf1hlBCmrn4w+YS6QWBqtab5VDFnRvGvcWLe4sXiy+MxRdGt+38uaslu9GS3aAo2PMqsOdVmAGJGmzFPmzFPiyVftp+VUFWUTIVntzd1p4ddPZTHH/WExS+M5eid78h/pgBJPY9EgBnQiRVd7t8ARJ1dc88ORqQ6Jt8Gke3uZTj2l6B3xJgxYePs/pvs+Reh98UlFAk+KbroOsoHi+KxwuR5+eGkvloRog2bU9E1XbdWyhhiRNdC2EYZmQjedgpWFOScfXoRvHUL5g4cWIjnfG+Ky0tpW/fvrhcLsrLy2M9HCGE2CWn08l9993Hm2++yb///e/Dvj541QSefC4/cObOnUvnzp3p0KFDrIfSILp168b8+fP3aN2ioiJGjhzJX3/9xdSpU2ndujUAHTt2ZMmSJfI8FHWEw2HOPfdcZs2aRWpqKkuXLuW3337j9ddf59VXX6Vly5Z8/vnnZGdn7zYgAfDwww9z5JFHcsIJuy8h7XA48HjMi/gSEhJ46KGH6N27N+3ateOEE05gxYoV+31+De3jjz+mb9++3HjjjbEeihAxI5kSQuzArSTSzziev72/Uf7fJ+nUfgTNE3rAbsrovLjE/GN5yck/M3n2IKC6h0TV1enubdWTXM4SDX+KhYQtBkU9FIxI1oM137zS3FppblQzO6L95+aHPz1ydfzWE5yRn8EeyUysKhdli8RTwpGMibhtZsRCiczJaXbQneZtasiGEjCvbDccdvQ4O+VtIwGKhXa8Xu8uz100nM8++wyHEofbkQr+6vRqSyQTYcdG0/VRtpvlYyqOMesvJ8xdhzXNbDKiJZtPEGUn3+sd273oDvM5qMVHnl9VzxN/dWBBqTSfi878yP6MegJeGOQVLyUtuSMWSz0Rs4ijL3+GcEUBW3N+pHTTnyQNO5nkYacQUnUCqRqFc34AoOSHVSAJO6KG3s1OZ2XhbNok9qNr/ECz3FmllwTcdDrzRkrWLMC2ahsGoAbD4HJUByYAwpHndCQokeFow1aWsmTeK3TMOJ5QKITNZqv32EYkzUJXDLo9mwdYKD/+bgzDYEHRs9z1wis8k+9l1UO3N+IjsHdqloP7+eefOf3002M4GiGE2L3bb78dn8/HQw89xDfffMPLL79M3759Yz2smKgqKSifyw8MTdOYOnUqI0eOjPVQGsSaNWuYP39+9OrznQmFQsyfP59rr72W/Px8Zs6cybBhwwBYt24dL730EhUVFcyZM0f6SogowzC4+OKL+eGHH/jmm2849dRTo/ddffXVZGVl8dtvv7Fx48Y97odz3nnn8eKLL3Leeedx3333ceSRR+503XA4TDhc/Rn/jjvu4I477mDDhg20a9eOhQsX0q1bt30/wUZQFWj/3//+x3PPPbfT7xxCHMr2Kihh7NgMV4hDVKqSyYYt6zmixdEsX/Uxua7f6JFxCpbuXUheY07G+lPM6H7yUnOytaJuj6aoxI21XztKSMeXYQMDinrWDXaE08NokYlgRVPQ3XWvMteclmh5qPommKuCE84NtVMdPe2qJuEge54e7QNgOGzR0jue5o7o+roe3uWEsmg4p9ou4sfw5zS3d0JRdshwKC4FQLGYtyvWyNu33Q6RK7WjZZZ2wVpifpG1VPjN/VSYP6sJ5vO5Zo8RAEtBCRbVvE1PcpvruOwoFTUmdhXMmvyA7jTHpXqDbNv8O5XefLq2r78G799//82p195L5boVVG7fACh06XU+zehPbpm5H2+oBO8CM23c1iJzt+cnDg+hUIg+R1zOivwZZMS1p2vqEJSQGbCrGNAKgGZFYZqlDsGRWqN/RIUZrQ23ywbAusl8HRB5j8u0tObYjAtY7vmFRVs/J8XdjLanXI47rRW/v3NHrTEU5C0mvXkvVNWCp3v1c1NRFGwpaWiVTS8TISkpifHjx3PnnXfy7LPPMmLEiD3qW7MnDMMgJyeHH374oUH2J4QQAKqq8uCDDzJ48GBuuOEG+vfvz80338zDDz9MUlLS7ndwCKnqBWC1ynWFB8Iff/zB1q1bufTSS2M9lP2maRq33347LVu25JJLLql3nalTpzJv3jymTJnC5s2byc7OZu7cuXTp0iW6zpdffhltlN3UJnhF7Pj9fm666SY++eQTJk6cWCsgUeWMM87gjDPO2Kv9vvDCCxx33HHcd999HHXUUVxwwQW88sorpKSk1Fpv1apVLFy4kH/+85919pGdnY3T6YyWdmpKhg4dSp8+fVi8eDHTp0/n7LPPbrB9h8Nh5syZc9hnGIqmb6/KN0lQQhzqZukfR5fmzZvTSzmGfhxPIFzJL5smsXLJR3h9tevjB1LMxbI2DsvaOD5f35uBxyxn4DHL0W1EAwc78mYpeLMUwtlBwtlB9AQNPUEjnF63tn/nN3x0fsPH2gucrL3AGQ1Y1BRyR5ZEc6kSTDQIJhp4m2t4m0cCEmr1a1kN6ug2C7rNglKjXIk3S6EyNUSgvJCePXvuxaMo9lXQCBAkQKKWhO7zm2VhgkFz2ROqYi4R8StLiF9ZApqOUlaBUlax002VQBglEEYtKseaV4o1rxRLQd2GvWrudpTicrw9s/H2zI5mAUXPIcWJL1FlQ8HvLN/2NS0yjyQ5oXW9xzxuxCgK/voeh0+lb4tzOLHjjQSvPppNw6yE3ZHMoZQUUFUsCQkk9Ry4Z4+DOGSdMOJJehxxOXa7nRVLPwQgw94aJRw2s9lqTLBXlRjDYTcXnz+aGWGp8GGp8EGC21yqxLlIsKVxdMIZHNtsNBbFyvKvX2Tb39/R77x/RVdbt24d/rICsqua91QdsyyMvSxMWlwHfJs24F7Y9Jpe33zzzQB8//33fPjhhw2yzzVr1tC2bVs6d+7Mdddd1yD7FEKImgYPHsyiRYt4/PHHee2112jfvj2PP/44lTVKrR7q/v77bwD5XH6ALF++HFVV6d+/f6yHsl82bdrEJZdcwsyZM3nxxRejGTc1lZeXM2rUKN555x1OO+00fvnlF1atWlUrIAFEa9//85//pG3btgdi+KIJMwyDa6+9FpfLxRtvvAHAaaed1qDHuPjii1m3bh3vvvsus2bNYsCAAUyePBm/3x9dZ+bMmVgsFoYOHVpne4fDwXHHHcenn37a5CboW7RowXPPPQfAOeecs1f9Xnblgw8+wGazccoppzBq1KgG2acQjWWvghLqLmqTC3EomqV/zALjZ4orcnn++QmUbFvGrwsmsHz1Z6T9kEf2L/VP8i7KbwFAj9PW0OO0NZS1VyhrrxBINJfCXnUbNSX/ZSP5LxtJi8yl/dQg7acGaf5T9R/Pju970F06G86wsOEMC8FknWBypMGwC7xtNELxBqF4A82to7kjzZCtBvZMH/ZMXzQgkbDWgm5V0K0K2wZVT8opmoEaMgimGHiCeWAY0nzpANExJ0xVLBiaBsGQmYGgG+gts9Bb1pgA1TRz8fnAG1l2JRQyl0ovVHpRfEEUXxCsVnOpKRLcMJLiMZLizUwMQ0fN3R5dJW7hZlwby8i5yEXORS50hxWPXs7alV/x2w+Psqrge5IGHMvGbb8xa96DdYZz1LvX4sldT9aAYRzZ7mKaOTvgNJzoTh3daT5vw24D7/JloOuknjWS9ffdu28PrDhkeCryWbmkeiK9uasrreJ6QJwLb68WeHu1wFkYxFlYHcgznDaCLZIJ9myD57gOeAa0rd5hIGQuVa8ngDgXestMkowkjk4+i7R2/diyaCaLp/4fHY8djWEYvPTSS9gsLjLj2hO/OBd3TgnunBIsAQ1LQCOlZU8UVWX9/E9p//z4A/To7Bmbzca8efO46aabOOWUU/ZrX5f/fhUj3hzJyf+5nE2bNgEc9JM3Qoimy2azcffdd7N69WouuugiHnroIdq1a8f48eMPi4vnlixZQrNmzcjIyIj1UA4LgUAAi8VyUGamGIbBDz/8wDnnnEO7du2YMWMGH374IWeeWX/28uTJkzEMg59//pnXXnuNgQMHkpCQUGe9t956C7vdzi233NLYpyAOAi+88AKvv/569OePP/6YNm3aNPhxLBYLl156KfPnz8ftdnPppZfStWtXVq9eTSgU4pVXXuG8884jMTGx3u3HjBnDvHnzmDRpUoOPbX+deOKJTJgwgWeffbZOBsje8nq9zJ49m7fffjt622233bafIxSicR18f2GFiAGHw8HNN9/MtLt+YYuWw+rtCwn7Kujb8hxaTzcnstaPSgbA67PjXBjHApLpeuaaWvvxp5tllZLWGnia77pkhm41g4B5R1to96WZGbFmTI1ghk1HcZtZFcEkMDxmSoYeV1XKx/ynVmUOhWiza18zg22DzStl1ABsG+TGUasvhUEgkubYo0eP3T5GYv/ZNTsKKj69ApRme7aRO66690RVrfzIL10p2sVV2oGgefV4pJwNkWZjhjsOJbBDZkaklJTeygyKqPklGMnx0bsNw2Djmlnk5M5BjXMRP2QAqb2Ox5aaVm/pr8Hf303BrGWoFisZXY/FWBJAS3DWWie5u5mRVDR7Jda0RBLP6FJnP+LwU77gZ1RdoU/CqazzLaKF2h68foivfj4qIfM9MJhpfplWqsqaGQb20khPlhoXSgVbp6Lo5pcANWi+ceoOKypgUawc6T+GUHY/5us/sPa3D3C4pxPyldOy44koianogBKsneEW6JFKhud0Cn74iiSfj/bPj2fdLXc2/AOyj4499liOPfbY/d7PsveWsuBFs2GmYlHpO+EiZl/28mFXUkUIcWC1aNGCl156iXvvvZcHHniAu+66i4SEBMaOHRvroTWqpUuXSpbEAdSuXTtCoRC5ubm0atUq1sPZYxUVFZx77rl89913dO/enZdeeolLL72U+BqflXY0ceJERo0aRefOnXe5759++olrrrmG9PT0hh62OAhNnjyZ8847j44dO7JixQoGDRrUqMfr0KEDCxcuZMmSJQwdOpSuXbuSmZlJQUEBr7322k63u/zyy3nzzTf56KOPuPrqqxt1jPuiIYJ8hmFw6qmnMnfuXMDMavrll1/QdZ3//ve/+71/IRqLBCWE2AvfBaZwino+BhqrKxczd90b9OlwAfGuGlcsbXZR2dmc+Fr8cycAjCQzEKAGqyME7m1mYEItMYMJVT0gPH3MVMTUFdWZSZYys+6/PSUy2VZcewI3IcmHx2oeQyurDlwYDh3Ckf3UCE5YS62ogeob1EgAIxRJmFB0MMIGZT/Owd68BW53jfImotEoioLDcFJibKel0R4jGETJNgMB4SSzz4dNSzXX9VdNru4iDTUlMjEYCEVLQIVbml8irNvrqXcfCKBYLdH+EEpJJBNohyvEQu1q9HZI81P6/teU5f5C+2aD+Hvt18RFAhy7YnHaMAB3hQ2obujderp57Kz7zPTVlXlF2LLTUSRT77B26rGPYBg6paF8HGocWY52ZDnaEezZhhCg21UsodqvBXuhBwAj8txRA+ZrJpQRj+42X09aRvV7m8UbQrdXP9dDnc2MN9uqLdhQ6TbkGsrycyjZtpyEzPa0DbZH3VqMnpVSax8A3tZ2jOJk+E5DDwTZcG/dbKFDQeEyM3tKsaoYukFcy/27wksIIfZG69atefvtt8nNzeW6665j1qxZTJ48Gbu9bkbywW7p0qVMnz6df/zjH7EeymEjO9vsP/Xjjz8eNH0liouLGT58OCtXruTLL7/k9NNP36PeUfHx8bv9/F5ZWcm2bdvo2rVrQw1XHMQKCgpYtWoVJ554Io899tgBO66iKPTp04ecnBw+/fRTFi1axLXXXkvv3r13uV379u1ZsmTJARrlgadpGn/99Vf054yMDOLj4ykvb3o97oSoSYISQuylWfrHAByjnMLC4M+sD/xNhy5n4Yi0mvBm190mfqP5YbD8aDPgoK50YAkZJOcY5KfV/0Fx8ylmsKLNTH+t23VdAYc5+eZyV0/mZqSYE8iFqjnJFqqo/kLW4juFrSPMSThrafXLvqpBdjCS6WiPZEp4WhiEC0oI5ufR7IprdvJIiMbQgZ4s4w82kkJ7etW7TmmvFFJ+3Gj+YLVAXCSiVVW6YBdfPqybCjC8PjNLAqg8ph0A8fM31VnXiNTa97VPNncbmfS1+swoVri0iMK7v6ByWw4tjjubtXOn7tE5Ok7ZQKIRRsePr2I7CbgwIplBBf3N52cWEKwI4FuylozLTsZqrdvsXRxeVm/8hu2hzfRoeTqh9nX7lFg84ci/gVq3K5GyTFqiE8Na3TvHUulHCUWa/lhqv2ZC8VbsJbUzhsLxVtzxXUloY34ZV1aaWUZqfgnYzOetllT9hd6SZL6xBhavovt9z7D88dqNsg8F1rOHk+L4A4fuJfPELjgSD72JQCFE06aqKrNmzeL1119n7Nix3HDDDZx00kmxHlaDmzVrFhaLhfvuuy/WQzls9OnThwsuuIDrrruOHj160K9fv1gPaZdmzZrFNddcg8fj4YcffuCII47Y4227dOnCb7/9tst1pk+fTiAQ2OtmxeLQEwwGGTRoEC6XiyuuuCImY0hOTt6rrIfs7Gw++eQT1q1bR/v27RtxZLFhtVp55513+Pzzz0lPT5cSa+KgIZeeCrGPEpRkEknF7ykk/q8tJG7SSdykk7HQQAmoKAGVcFaQcNaumxSnLTaX1NVhUlfXLgESzgxhK/KCxQIWixmQqKHFU1ZaPGUlGKoONKQnecx+r6q5tPjO3KbFDAsWVxgtxVx0h0HYCeEaSReeNjqeNjq29pUEKwsBsGdkIg6cbKU1bejMWpbiD1ZCpQcqPdhKfNhKfJT22oMrkSsqoaISLTkOLTkOPJ5oE2Cjnt4T8b9vqP5B1zFcDgyXo9Y6rs0VWPwaFr9GzoV2giXb+XP1OwTKttN+2DVs2cOABJiBvbmV32J32zAyvwQg5LYSclc/j52WENt/ycHQNI47J5Ujmm/Z4/2LQ8ewPv/ktN4Psr1kJZvz/6BTsxNomdoXa6EHa6EHW5G5WPzVQSs9zo4eZzeDdDVrjCsKiqajaDqWykiAOBDCcFqjrw81GEYNhnEU+bGWmhlqlcd1oPK4DqQtKidtUfXVRpbN26PHMBJrZ5M1n63Qbn0b4nr3ouCzj9jw3gu0vfTmRnykYsPZJpPs68+g+33DSI8EOIUQ4kBTFIUxY8ZgsVhYs2bN7jc4CFVNpDkcjt2vLBqEoihMmjSJTp06Nfm67F999RUjR46kc+fO/Pbbb3sVkAA499xzWb58OfPmzdvpOh9++CFHHXUU7drJ3/vDWSgU4u6772bNmjV8++23dOvWLdZD2iM333wzCQkJdOnShSuvvJLc3NxYD6nBnX/++UyePJkJEybQoUOHWA9HiD0imRJC7Ic44iksyoV6siMAHJvMq0atkWSH4zuuBWD1N93rrGutjEyqlZjbhDND1XcaBoFm8YTKzThilzfMHRqqGXBIcPlx282rgzcVmuV9bPFBtLBK3nmR/RiRgEakp0Q4QceKihpQCEbKQhmJ4cjhDCp++x3F6URtlrxHj4VoOG3owibWkMcm2mNeEa6EzOdHwoYdggpajZI14dpBrVoifSeUrEgN2Egpm1oBiQgjUsKmqtyNa3Pthu5tJ+by0+r/oca5yLxrLGv/8eQenVdNbrebRFqx7bMgzdoGwRIHmkGHIesBCOpW1n69jsx+2cRlSvmwQ93wlrfUev4+O+cWTh54MZoWpNS7FX+ojIzEzrRJPgrCNZ7zmoESCGILhNHjzYmaqufvzjKGLKXe6H1aUiTLKFIGzbDV7oFiLfUSF3kdRHu1RA7vObI1cT+vRnGZkV0j0Y3qMYPQutW8LfPKMfhWrKTsy2/YOPklMv5ezIZ5Mw9YSbwlS5bw999/c/rpp5OcnNzg+1921r/r3CZp4kKIWLDb7bRt25acnJxYD6XBFRYWMm3aNAYOHBjroRx24uLiuOOOOxgzZgxr165tkhN9kydP5tJLL2XkyJF8/PHH+xS4OvnkkwFYvnw5xx13XJ37i4uLmT59Ok899dR+j1ccfKZOnconn3xCeXk5P/74Ix6Ph2effZZeverP6m+KmjVrxurVq3nttdd47LHHmDZtGs8//zyXXHLJHpU421+GYTB9+nQURWH48OGoUppYCECCEkLsFxt2QmE/Wm4etgozMhFXEcIbmUQN1HNR++KC5iRV6Gh284+fWs88cpsZGtZIKRJfywTUsFHrfsNi/hEz6vlblhxvXt1bVGo2M7NYatdZ14IWLI4wmtecfNMdBqREsjk0c4dlX/+GZ+Ei0q+9BGPnPdFEA6sqDQZwySWXMPX9L2hT0gNFUVGTEna+oc9P5ZGtcP+82vw50hNCXRkp8ZSeCqV1JwrLjswmaf5WAIwk8xftaZdI3IbqIIShKGjuSKAskslQsTUPIxAk86Fb2bYPAYm2bz1BaHsxxd5NtEuv0WzXopAdZ46zYJtGwV9bOfLewUw+eueNy8TBb3jLW/CFyynybSSkB8j159Ct28vYrW7cjjQyEzuTltSR9ISOWIrLgSDYbXX2o1ZGyjZZzCBCVYCh6l8lpKFWlXYKR4LARu33VtUbRI+zo/rDaInO6HZQ3ZvCEtjh/djnj/Zf8fVsjjPXE72v0xQv0Bq97TWsaPcX2+Z9QWrzNvhKCg7Il5FBIy6kfOtKLI442g6+CP1KczJl3cVSk1wIcehJS0ujtLQ01sNoUJqmMXr0aHw+H08+ufefucT+O//887njjjt48cUXefbZZ2M9nDp+/vlnunfvzueff77Pny3eeecdAPr371/v/Z988gmapnHhhRfu8zjFwcEwDH799VcWL17M5s2befvtt9m2bRvdunWjZcuW3HvvvZx11ln07Nkz1kPda263m9tuu43LLruMm2++mcsuu4yFCxcyfvz4Rj92MBhk5MiRABx77LFMnjxZso6EQIISQuwXC1Y06kYVEjZHau67zcmwYGRif3FB8+ptgwaaXYlOcIUSzHXbzKhdO3/zKVYSOpYAoBTVjhAEUs3J4q6p69nmNeuXJzr9lHzUCnWIp9a6Toc5UadFAg/WVD9afO2rggmohAqLyX/zWxJOGoT7yD67ewhEI7ntttt4//33yQutJ9vSFirNYJMl0nuh4mgzg0ING9GMmXpZVIyiEpRI34lAS7P5tT+l7qQuhoF7XRmKzwxSGbbafyIcxeaErmZNRkHhJpL36dwMTaPojY+xqQ7apQ4AVUW3muewviKVdgnFrPpuC4pFxX1c3awiceg4JfMaVnp+Zat3BQbme2G6vRU9M4eR6e6A3RIHVosZEAjVeG8MhsDpiDZwJxyGqisDNR3DvsN7W0RVFkXVc9xS7EFPcKIEI+/jioLqDYKqYqgqiq6jRDIzDEvtfepWBc/gzuZ9qkLCn2aJMX+2m6RVZpCiKghipLrJ7HsiocpSti/5iRbXjiX3jdf39WHbY1k9B1O+dSVawMvaWW+SnHgSyecMof0Hj0pgQghxyHG73Xg8nt2veBCZOHEi33//Pd9++y2tWrWK9XAOSy6Xi+uvv54JEyZw77330qxZs1gPqZbOnTvz+uuvs2TJEvr27bvX2xcXFzN27FguueSSnfbN+OijjzjppJOa3LmLhrV8+XKuueYafv31V8B87l955ZWceuqpnHHGGVgs9X++PtikpaXx/vvv89tvvzFhwgTuuuuuaGP7xuJwOLjtttt47rnn+PXXX+nfvz+ffPLJIdkDSYi9ITlDQuwHFQs6GrqmozvUyFL3j7UWBzYfVJS5qChzYfVqOIqDxOXVbshqWBTyjrGRd4wN1a+h+msHKAxNwdAUcq5Xybm++uUb1K0k2gMk2gOUfGR+YUn8wU3ibDe6rtTqRZGRXElGciXpSR7S08yJM8VioFgMju61ltah+aDrJI04mQ1j72bD2Lsb7PESe+6oo44ig+asCi8gZAR2ul7VZD6A0SYbo002SmI8SmI8WOq+xTtWbMNe4MFRGsZRGsbfKQt/p6w6V4wDKL4Aii+ApdSHpbS6bJTbmU5a38E89thjnNL7/r0+t/KZPxFYtZ5sV2eslUECWfG411dncqyvSGXrD+uI792OEiV9r/cvmrZQKET/+NPolXgivxV/Rq5vDV0SB3Jyq3Gc1HIsR7a+iJaJvcyARIQS1lDCGrhd5uKsUZrAHmmubFHNIFxVQELXzSXS90EJ69W9VVx2DJcdPaFGU516GKqK5naguauPZ6vQsFVoGAo4C6t7BlUc2RLXlnJcW8pRi2pnJlk8QRK2hOnSejhx3bqz/aMptH+i8UsgJLboQrsTLzUbDAGln84mf/x7aJ66vWWEEOJg53Q68fkOrfe3n376ieOPP56hQ4fGeiiHtdtvvx2n08mtt96KUc9n5li66aab6NixI4888sg+bT9ixAgURdlpw+LCwkLmzJnDeeedtx+jFE3V1q1b+eabb3jwwQc57rjjKCsrY/r06VRWVpKfn89LL73EWWeddcgEJGqaM2cO6enpPPDAAwfkeOPHj2fMmDEAlJSUMHToUB5//PEm954ixIEkQQkh9kMAHw5c0TqEjsIAGOBPseBPsRBINggkGziL6m6rW1V0q1o9wWWpfbX7thMS2HZCAlaPQtnGZMo2JkfvS02rJDWtEsvN+VhuzgfArmr8Pbcj1rO2Yz1rO5GLjrHbw9jtYTRdRdPNl3yWu7o8T3paBXZHGLsjTMHCbax4ZyGuzHiOOLqgAR8psS+60BcDnYXBnzACAQgGMSwWDIsFW6WGrVLb6bZGotvsNxHpOWF4feaSllRnXefmUkKpcYRS49DiHdWTuRGKL4ASCqPbVHSbSt7gZFK6H0VlZSU5eT/u9XkF/lxDfPdedE06HiMtKfrcd68vJ9nhx+kpxrNsE0kDu+71vkXTN3bsWBZ4vmVpxY+4LAkcnX4ubeP7YlXt2F3J0cABgaC5hGpko+mG2Q+lqol1VUACzGyiSi9KUEMJVr82lGAYxR+uP/Dmj9xXRTPXMSwKaiAUXQDzE5MKlpCOJVT9+nAWBnHl+3Hl+yntnRq9XS0qj74GS3sm4ygKoqgWUk47Da2yko3/eZiWV91AKFSjf1AD+/ONO1j3w7u0P/s6rC4z0863cBW5d7xEILDzYKcQQhyMtm7d2uhXux4ouq7z/PPPM3PmTPr0kczlWEtLS+P555/no48+4rnnnov1cGqx2+2MHj2azz77jI0bN+7VtsXFxfz++++89dZb0b4SO5o2bRq6rnP22Wc3wGhFU6LrOi1btmTYsGE8//zzXHbZZcybN48RI0bgdrtJSNhF+eBDQOvWrbn++uuZNGkSl19+OWvWrGnU46mqyqRJk2oFEO+//37uueeeRj2uEE2ZBCWE2A8+KnHhBkM3AxI7SF6loIYVSrsYlHYxSP7VSfKvTmzlwTrr2kvD2EvDWHxg2eEiL4tfweJXiE/zEp/mjd5eEXTgD9v4fVFH/vq5CwDFSzKwW8P4h5XhH1YWXbdZYjnNEsujAYmMuErc9iBOzYNnTR7eZRv48dbpaHYHnf55NtOOf7EhHiKxH5xKHF2V/pSyHb9eWes+W0kAW0kAS9BA0SNLMIwSDJsBifoY1es48ipw5FXg3FxadzWHHcNhB0M3F2v1lTGGVSVzvod2S80rx8Pa3k9sOos04vOMWgEST7tEPO0S0Q2F3F82gKLQ+eTmNE+UprmHktPix/DWW28B0NzZmf4pp5NoSTODYDUDDFVcTvD5oazcXEI7lMsLa+Ziq1GOzOcHQAmEUQJhqIofhHWzBFTNMlCRcmjoVK8XCUxQoy6zGghhWC0YNV4LzuIQwRQ7wZTa4y7tnUqoVRqhVmnVvSsiHEVBWm/KJj61NbrXw9ZJr9D8nAt29nA1mPiWneh86b2k9jKbVypWK+FwPQ2NhBDiIGUYRpNtRLw3cnNzWbBgAU899RS33nor5513Hg899FCshyWAiy++mEsuuYS333471kOpo6oJ+vLly/dqu6oeFLtqjv35559z/PHHk5WVte8DFE3Szz//HP3/Dz/8wAsvvEBSUt0L2A5ll19+OXa7nXfffZfOnTuzdu3aRj2eoig8+OCDLFiwgMGDBwNm7yAhDlfSU0KI/eClEjfmH25riRksCKe6sVeas1uFferG/VJX+FG9weiLT9HN/1X1BciaH6C8rZ30v0oBWHV1EmrQvM+fk4gloEAPM9iQ4KyeEM7oa2ZMWFTz2KnxXhLsAQo9dSeo/UUeVn20jIIfC/DnbcaIXE2vOOwkj7uOUpdr3x4Q0aBm6R9zrHIqAH5vMU6LFdVvBrQ0W93fkbd9Ms4Cf7Qxr9LavFpQKS7HqKynxrJhRCdNLZGrxb3NXcRHSjUZcS4UXY+uY1irn8+624nLnoJFrac3xW4kxGWTW7wE3evDolpZfx4omkGrmebzPP+PLaR0y+T7M1/d632Lps+huHAqbnomnlj7Dn/k/ayqibWrRmkli8XsI1GVVRCOZJZZI++koVDt9avoOkqwKtPBfP4adkt1JlBVIKLqqb1jg0hVxVBqZ7FZPOZrRfWFCLvN7IMdM91qCWsommGWn8L8MtLrxJvI7+pn3aMPEdiyiTavP8XGaxqvVN7i52+P/O9BKioqcLlcWK3yEVAIcejIz8/H4/HQsWPHWA9lr/3666+88cYb/PTTT7Wu1B0xYgRvvPFGDEcmdtS1a1dmzZoV62HUUdXrwbWX3+GSk5Np164d06dPr7eJdTAY5IcffuDBBx9skHGKpsXtNucJnn322Z02OT/UtW/fHr/fz9dff82IESNYtGjRAQlu9+vXjx9//JHS0lKSk5Mb/XhCNFXyjVSI/eDDQwbN69wev9lPMMmGrcKc4AqlmZNRqSuqr0xVvUH0OHt0MtifYU6oeTNq12ts+b3OtsHmbRZ/9cSXzapRVG5+kFASqst/qIp5la/bZk5ep7s9pDs8rC1KpGzxZgJLclj/5UqS7C5szdqQ1PNIUiwtURSV0hOcqHESkGhKFMzfuWEYGJqGEpm41bLMdFo1oKO5zOeZs8Bf7z5KB7VGiTz1HGXmfxzb6mYgaE4rGKBH6udbKmqn7FgrzOdUON4OhSX4giX4gqV7fU7pfQazadZvbPespZm1DfFrbHjah9k83MDqs1Hw5xZanlN/oz1xcCsziggYPjq7BqCEdAx0FHdc3RU91RlhGEa0DFkdVVf7q0r1NlVlmmoGKTTdDDDUbICtKNGflXC4umyUYaBoRnTfhsMMkqi+6gw3veq2gDmuUHzt4JzFa74n60nme3TyokK0JPO9tbKlecy2v1oJtjyOrSvm41jUi7YvPw3Ahhvuqv9cG8ihnoovhDg85eTkABw0mRIFBQV8++23TJ8+nQ8//JBOnTpx6qmn8n//93/Rc+jUqVOMRyl2ZLPZmmSm4fz58wGzHM/euuGGG3jggQd45ZVXiIur/Zls3rx5eDweTjvttAYZp2hapk2bhsVi4fLLL4/1UGJKURSGDRtG27Zteeihh+jfvz9t27Y9IMeWgIQ43ElQQoh9FDQChAjiVpNQVEuNSaow/sy6E/uWMgu2YrN0kmGzoIS0aGACwLndj2634Mo1J9aK+iWbt5doNP9JY9vxFqzdzQwJm7U6xU/bGoeRGqLSb04kp7i9DMpYS6bdnHT+s6wthcu28+c/vyC0bTvWlHiSBvVkzXtfk5aWBsCAMc8A4F4Kf7x9R4M+TmL/2BQXGODTKki21t/02eLTUQyDcGRi1OIzgxSqtvOmWVUTrYbTfP5pzuo/B96WcdjLwoSTzPvs2ypqbWvNLSHXswqABGfmXp+T25WOqlrx+4ohoQ0Ajjzz+MsWlhOuCJBx/MExqSD2Tn5oA1bsNLNX/36NSFNSpeqLcM2ABJhBBnUXmQiBALjdwA6pz5EyTtQoSVDVa8JwmM83RdPM/dfMhlAUlKDZg8KwW6t7SkSCHYbNghoIoeh6rUbzADbPzicDinqZwQBbZfXrskP7UynKLKfwf++gnXs6iUNP2Pl5CiGE2KlVq1ahKEqTz5QwDIOJEydy11134fF46N27Ny+88AI33HDDIdlI9lCTmZlJSUkJ5eXlJCYmxno4ABQVFfHbb78BkJqaupu16+rTpw+hUIjt27fTpk2bWve99957tGnTRvqaHKKmTJnCRRddtE/Pm0ONoijMnDmTESNGcPTRRzNt2jSOOeaYWA9LiEOeBCWE2EdezIlat7LDVaeGQTDJ/FLhbWNeSWMp2/mXDCVsTmJpcbWvtNWc5mRX/PJCVo+tXcPTu9D84KDFV09utUwuBeCI5M3R2y5MWM7rL/lY+r9fsbdpTvYjN7L1gReijbmrSCCi6fpR/5xOnTpRuq6AZkaraIkbW6k54WrYLISS668Dq0eeU4kryinrbn5xshdGJnxrPAfCCXbCbvPPQTBBJX5L7Z4nSqSOf9DjZ0vxAjYV/UkgXElWYlcWr5u5T+flSsgkV99IeouBGBYIJIXRFq6n7MfvsbdqQUG47z7tVzRtTmsi4VAQr15GvG0nX4D25Cq/qnX2pkl0Vb1WiwUlkvVgOM3XiOLboc+PLRK0CFZfDWnYIu/jkddOMLO6NJ4aNt+Lg0m131sNh7mNbnWStrSSop7x0fusZX6sQKdjryCPGRR8+hWGbkAjZ0oIIcShaOXKlbRr1w6ns55Sfk2Ez+fjvPPOY8aMGVx77bU88sgjUqf/IHP00UdjGAZ//vknJ510UkzHsmzZMp555hkmT56MYRhMmDCBvn377vV+OnfujKIovPbaazz00EPY7XbKysqYMWMGH374Iffcc0+094Q4tLRu3Zo//vgDwzDqzA8cjrp27crvv//OOeecw6mnnsr333/PUUcdFethCXFIk6CEEPvIUxWUSGqOqlir6+0bda9OT16t1L5vhz/6ut2CHtneVllVgqf66hurz1zfW2F+0apqq6o7zYk5V0J12Z4ecVsBOMm1mU8/87H0xXm0PP9I2l19PD+d9uzen6iIuWOOOYYv1s6o9z610o8tMkEbTog0n44z39qtnroTtsW9zR4ormJzgtZWUTcFvbi7uZ+ktdXbbypdyKrCORjoNE/qRevUI5m79rV9Oh9fmoXmR5/B2u8mMXf+UzRb1Y3ttjzCBduxJCby5YcfMnz48H3at2jaMm2tWen7lTW+vzjCFfkdV70v1hNgMEJhUBWU3dVI9nqr+0tUvb/adviIo2lmb4oazeSUQI3nf1U5Bqu1dkPtSHNrI3IFqxIMY9jNfTuKzfdeX3YcVk/1fkt6mu/fwQSFzPnVmUZpSyuj56vFOyLDVck+7gxC7XRKPp3OrFmzOOWUU3Z9vkIIIWpZuXIlXbt2jfUwdkrXda688kpmz57N9OnTGTFiRKyHJPZB165dSUxMZN68eTELSni9XsaOHcvkyZNp0aIF//73v7n66qvJyMjYp/21bduWu+66i//7v/9j0qRJDBs2jE8++YTy8nIGDBjA2LFjG/gMRFNxxhlncPvtt/Puu+8e9iWcqmRkZPD1119z6qmnMnz4cDZt2lSnrJkQouFIyFuIfeSlEidxWJRIo+pFKzAWrUAt81LZTKWymYoSMJf6KP4Qij+Ebq+dRbF9YAbbB2bgzQRvJqy6ocYVVD4L+CyoIVBrzN+1Ti3BquhYleorjO9aMIBb7iwn69QetB87WAISB7GTTz6ZcqMYX7gCIxTCCIVQyipRyirrXV8NarUCEr5W8SgGKPVUcwom2Qgm2Qi5VEIuFZu3eqWyDjaKu9rw2QIs3z4Lly2JE9rdQI/mI/Y5IAEw/807WP3NRLqO/ReZx5xGmWcrzqRM2lx2M53G/UsCEoew5b55ABSENlAe2l77TsMwSyZpmrnUCAwYPp9Z5imyTi1Wa2SxRAMIO6VptYIS6LoZxAjXE5yoCm7oBuiG2XciQgmGsRX7MGocL+y2oGigaJC0proEVcFRZjadEtJQQhol3aqzJQDi8nXi8nWy243Ekd6MSZMm7fochBBC1JGTk9OkezBMnDiRKVOm8N5770lA4iCmqipDhw5l2rRpMRvD22+/zeTJk3n22WdZt24d99133z4HJKo8+eSTLFu2jOHDh/Ptt98yduxYNm3axO+//x5toi0OPbfffjsAY8aMifFImpb4+HjeeecdioqK+PLLL2M9HCEOaZIpIcQ+CuLHQRxKVZp4Wd3GwYpuTmq5CiOTYJFSTdhBT3ShlvvwZZnbBxPrBi9slRBMMzB2yKwIppiTcq4sT51tviw0a37mL1iKHtIZcNcxfHHy+L0/QdFknHXWWYBCEXm4yTZvrKwqw6SiRFKqbVWlwOLrlnMKR8qBuXPNiVVfhvn2b6+oDmQFklUq2oCjOHJDZO7XZjGvDrFhZ/baFxrqtFj28gO1fu7+DwmcHeoKQ9Xl5cJBP4YRQtkxowFQLBYMLRJY09l5TwlrjW31yBN2xxIDlsjPVbEIQ69ep+q91VK7NFP1QGr/rNTT3NKwWlCD5uvIUFV0i7lN0hovaiQTQwnr1dl0QEm3eFJWmEFFS8iOZlNQFAV3m84sWLCg/nMVQgixU7m5ubRo0SLWw9ipWbNmcdJJJzFq1KhYD0Xsp3PPPZfLLruM7du373cwYF8cccQRAGiaht1u383ae6579+68/vrrDbY/0bQZ9VR3ENU6duxIu3btWLBgARdeeGGshyPEIUsyJYTYRwH8OHASzs0HVUVNSkRNSiTYMoVQAoQS6m5j2K0Ydiuay0o4wU6wRVL0Pnu5TtihEIo3F1uNi+DDiTqWALi2WHFtqZ6E8xXG4SuMI6xXv5QrQw4GJG2gzO8AVcHQ9qA+u2jSkpOTiSeJUgoxKj0YlXWDUQCE9UgD9RCqN2QGFQygnvlcQzUXT5YFT5aFQHL1cyiQCoEUSF0ZInVlCGuJB7c1hThrcmOcXtTyR29n+aO3N+oxRGz1TzsTgDR7S5KtkSywqkwHTQdNR9lVo89QqHaZJ0Uxl/p6S+yYVaFrZkCiSlirmzlRFXSo2rbG9oovaC7B6vVVfwjVH6JGkhqqZuDLckYDzlU2nJnEhjOTSNwYIHFjoNZ9lpCBMbAMsgNS01cIIfaSz+ejrKysSV/RHQ6H0fekZ5Jo8gYNGgTAL7/8EpPjp6WlATT5pu6iaVMUhRNPPBGAL774IraDaaIMw5B+KkI0MnmFCbGPgoofh+rC2iK7zn2G1VzSFpmLxa9j8df+IuJp7sDT3IE/RcWfouLNqD0RpznNxV6i4the1a/CvM3qVbB6qyeu1m7JxG7RsFs0TkpfBYAtMwl0g8riHRq4ioNSptqSfGMT3mA5eiiM7vOh+3xQUYkSCJrLTq540a0KusVcAikWAil1J339KeYSStSjGRJVSptb8YRLSG3fvzFOTRxGMpI70zqxL6WhfBSXE8VVT0PSqkBD1VJTpJRSHTZb3YCFbkAgWL1AdaAhrFWvs+MxdsyGsKjmUmM9JaiZGRw1gxZ63ff6cLydcLwd3WmlzVcV1BI5P08zC55mFvw+O1hUVm/eRJsn/1v3HIUQQtQrNzcXoEkHJdq0aUNeXl6shyEaQOvWrTniiCMYP358TK42nzp1KnFxcdJ/Suy3GTNm0LFjRz788MNYD6VJslqtrFmzJtbDEOKQJkEJIfbS8IzrGZhyHpVGGSn2bHDYzSUrA7IyCCbb6mzjzbJiL60ODgST66ba+tPNxVFq4Cit/oAbSNXxtdTwtdTQavR6DSXoEFbMBagM2akM2SnTXJRpLsrXbEd1WElokbjjocRBqLXeASt2Fhk/EzRqX2VNWQX4A+D1gdeHEg6bZWYU6mRJBN0qhmJOoCo66FZzqSmUpBNK0qlsaaOypQ2PJx+ApMSWjXeC4rCREdcezQhR7NsEwRBGIIARCFRP/tcUKdukKCqKUuO+qgBEfYGLQMBcqgIUwaC51Mwaq7qt6nhVgYuwVh2w8AfMpeaEg6LUHadhYC/xYy/xR2+yBHQsAZ2w20rYXf0Ca/NVBRZfGIsvzLZBtXtLAMT1PxkjFKL8p7m7fhCFEEJEvfvuu7hcLvr16xfroezUokWL6N27d6yHIRqAoig8+eSTzJ07l5tvvvmAByaWLVtGr169pPmu2G8ul4uhQ4cyd+5cSkpKYj2cJufBBx/k008/ZcmSJbEeihCHLAlKCLEP1nkX4lISyLK2rXNfIEklebVB8mqDpLU+ktb6SF7lrbWOJaBjKGAoEEhWCCRXT6pVtlAo7awQiofQDnNWwWSNYLJmBiQi1KQg9rjqq4N/LWrHH6sT2DhtKZlHtUTZcZJPHJSsqoMjlBMI4GeJMRfN60P3+c1sCUf99WQNi4JhUbBVaqhhAzVsYPPWztgJJpmLGjYXR1H186W4l076uavYZPsJZ7MkeFiybsT+mZnzFL+sn0yiNYNFZbNqfZE3wmGMcLg6m6FGHwlD0zAM3bxtx/4SoVC95ZbQdXOpuV7NrAmIBvKiLDV6TVQFJcDc7w4BEMUwos2royLj0xy133d1u4WNIxPYODKBnAvc0du3DYon89cSMn8twe4I0WJACGtaGlpl/U3shRBC1FZZWcmECRO49tprSU9Pj/Vw6vXll18yd+5chg0bFuuhiAYydOhQXn31VV566SWee+65A3bcZcuWMW3aNI499tgDdkxxaBs3bhyFhYXccccdsR5Kk1NVqq2wsDDGIxHi0CWzlULsLbuNUm07zVwdsLjd0UmtQItEAjtkJVhLvFhLvFi8QSze2hO6cQVmIKH57FKazy6NXtUerp6vIpygYySFsSQHsCRXXx1vOHUMp46aVL1P3VDQDQU1v4Dvr/oUDIM5r3/NtONfbPCHQMRGvJJET46ilEK2s9W8MRzG8HjNJdJvQvEEUDy1sykcZTqOMp2QWyXkVqv7TexA0UBJC6CkBWidvJC5Y6dQuSqPFjeNwBOsp9SOEHvJ6XTSvdmphAw/W8JrUJxOFGfd55Zis5mLw143EFFVxqlmuSaLxVxUtXaz60ivCjQdwhpGVfZDVQBjxxrfO5RqIhQ2lyqRbXVndQZEOMFOOMGOGqjel+ZQ8WVY8WVYKepZ+2rGnAvcVPYMUNkzwPpRKdWnFQyjl5WQ1E4+ngkhxJ7IycmhpKSkyTYifeuttzjzzDMZOXIkl1xySayHIxrQtddey7hx4/jPf/5DUVFRox9v8uTJHHXUUbRo0YJ//OMfjX48cXjo3bs3t9xyC1OmTGHjxo2xHk6TUlW6KSsrK8YjEeLQJd96hdgHdtVFaIcSOs51hTjXFeIq0khaVUnSqrpXuiqGgeG0ooZ0dKuCs7h27XI1UN2AOFwjG0ILWFEUA9yauUSkpHhISfGQ7Dav9DUMg5/++xuG00nLJ66nS5cuDXnaIoZmaVOYpU0hK7Mn6fZW5PA3OKz1rxwpbWPLK8eWV44aqttYMexSCMUpxG81iN9qYPWD1V9jFwUh/rp3GlYLdJ5wNYn92jfSmYnDUbKzOan2luT710WzEKqCE4amYdRsPk11+aY691UFG4I1ghOqau7TZjMXiAY1jB37RVQFJKoyNGpyu8zFZr7ODIfVXKzVH52CWfEEs+LRLdVBDDWg4ywK4iyqHYi2esxFTw6jJ9cex/pRKfRulotvSQ6aN0D2oLa7eviEEEJEZGZmAlBcXBzjkdS1detWbrnlFsaMGcPUqVOx2+vPbBUHr3/9619omsYjjzzSqMf5/vvvufzyyznvvPP4448/yMjIaNTjicPL/fffj8/n45tvvon1UJqUjz/+mI4dO9K9e/dYD0WIQ9ZOZrSEEDsV74YiBU01wOWsO5FVgxIwJ56MOLOxsO6q7jdh9WmE3Va2D0gGzIBETYYa2a9iYHWY+7G6QqgWA4tae5K5wucgqFko/n4J3r/X0/pfl7Dqsif35yxFE9Yl/ljmFX/MZtsG2tp6VE/I7qJUlyVyBbej1Jw89afsUF4m8tTU+lSilzgp+3IGgbIAp0wewdSzX274kxCHtZlrnqRZ4hcEw97aWQ1Q3fvBatT+GVAs5nupEclciP4cDIJhrqdYIx9twmGw186yUJyO+gdk2aH5e7h2UASbFSWsRwMShlVFd1gxFCXaYF63KGgucz+WQGT7qmQMG3ha6bg318zgMP8faFMdvCj+fR2uFsnEtUmrf5xCCCFq0SPBZa/Xu5s1D7xbbrmFuLg4nn32WdQd/9aJQ0JmZiYPPPAADzzwANdeey09evRo8GP4fD7GjRvH4MGDmTRpEpYdP7MIsZ/i4uJwOBxUSvnQWmbMmMHo0aNRduxfJ4RoMPLpSIi95A2VUR7IJ8PVzrxBUSDOFa0/Hre2BEupB0upp9Z2hlVFc1nRXFbsm0tqNT8FUAxzUUPmEr29zIYWtKAFLaiW6gCI3RZG01U03XwZF/6tsfXV74gb0JeN/36vcU5exNzM/Jf5pWgKrd29yKmYj1crr74zGDJL2lQ18Y0stu11P2AGks0l7FIIu2p/0Irf9jMVs+fS5vLjmHr2lMY9IXHYSkvpRIlvC55gsRnc1TRzqUlRMAw9ukRFSijVypwIhc1simAIIxgyAxJg/lsVnKjKjNix30RVv4iqpUYgQ4+zo8eZ+1LCOopmoGg1emEoCoZqLtW3mUva/ELS5lfXofW00iGomou1dnC5VVwJ8b5iBnY7kjlDn9nbh1MIIQ5Ln332GXa7nVNOOSXWQ6nlgw8+4LPPPuP5558nJSVl9xuIg9Ztt91G+/btue6669B2/ByznwzDYNy4cWzatIkXXnhBAhKiUVgsFk4++WTeeuutaKD3cGcYBoWFhbRr1y7WQxHikCaZEkLspVCC+bJxJKRhxMehhOv5wx2pc24kmHXEa5b7qGJEbrKEzMmtEOaElr0MtJ2U7lcVc127rbr0h6apBDflkffE+6guJ6kXnLn3JyUOOh06n07Bsk38HfiFAdaTURS17tXeEYongL3EvBq7orW7zv1qyIg2Wy/5YRVFr80g44TOtDzviMY7AXHYy07tzdrcn1hT8Tt9UyPNPw0DxR5J29nDq5KUql4SNW+LZLEFNC9F/k2UhfIJKRpa2IduaGQ7OpKd0RfFX6PE0o6ZRjuU2TAc5riUoPn+qwY1jEjZJt0ayYazRspEWVSUGhkezmKD8siPtXLrrDrNMssAKArGUbiunONPbL1H5y2EEMLMkHC5XCQnJ8d6KFGvv/461113HaNHj+b888+P9XBEI3M4HLzxxhuccMIJPPnkk9x///0Nsl9N07jhhht46623eOedd+jZs2eD7FeI+vzjH/9g4MCBfPTRR1x00UUNvn/DMFi+fDnffvstq1evpqKigvLychISErjjjjvo379/gx9zf+Tk5BAKhWjVqlWshyLEIU2CEkLspThHCgoqnmARKY6OaAnmZJS1qoSO11dnMk2LMyezqrIjjLap0ftcRRqVzapfijUDEo4iC4YKoZ1cYKVpKsXf/EXuG99izUpn0+8LaNas2f6eojgIWC0OurQexqKcD/G4y4m3JFdf3b2LyVxHmTkzqjnMCVg1VD1FWrxgLoWzPiO+dz8ST76IrfOtMLTRTkEc5vTUBFq2OZ51a78h1CwZ25bCetdTXC4Mn6/2jZEAgqJUBxIqlQo84VJ0wlSWl7A9sIHy0HYA3LZUbBYXVtWOZtFZUvYdqyp/w2mNp1lKD1rZumClRhDCZo2WjarKitBdNlRfKJo1YdR4nUXixThKQwSSzfd7w6JG1/FmKFSFI5SgeZstrUZKHFCwpIDideWc9exZu3/whBBCANClSxfKysooKCiIeTNSr9fLuHHjePvttxk3bhzPP/+8lP04TAwaNIgrr7ySN998s0GCEj6fj0svvZRp06YxadIkLrvssgYYpRA7d9xxxzFo0CCmTJmy30EJXddZvHgxCxYswOl08tNPPzFjxgy2bNmC0+mka9euJCYmkpiYyPz58znyyCPp2rUrrVu35qabbuL000+Pecm7N998k/j4eIYMGRLTcQhxqJOghBB7SUt2Y3PE1y6bU1NYi15hW3Vl7Y58GTY0u/klJeyo/WUl7DL/dRRVX/lr2+BE7+SplSEBUD6zgm2vTCf+hKNIufQMCUgcRr6Z/y/uvfdeFj0JpKWgONIxiktqraNnJAMQStxJHX0gmKigh8PkfT+d4vk/knDyQDKHnIOiqqy57/ZGPAMhwOlIwjA0wloAW1W/h0i/iJrllRSHeZ8RqN18J2TVKQ5sYatvFQX+ddHbraqT9IT2tIk/hnR7KywbCmBAX1SfmRlRbBRQsH0ZwYpCVuf9wCq+p2/b88lM7QaA6g1iOG0YhkFA8eM0zGix7rKZ2XGRPhJVmXKKTY2Wb3KUhnBsM7MfjBpfqByF5v/D8QaaszoYGNQsBAvLWf70AuJap3LGGWfs68MphBCHndatzeyy9evXxzwo8fjjjzNlyhQmTZrEmDFjJCBxGNE0jZ9++gmPx7P7lXdjy5YtnHfeeSxZsoSpU6cycuTIBhihELvXqlUrNm7cuM/bb9iwga+//poXX3yRZcuWRW/v2LEjo0aNYvjw4QwePBiXyxW9LxwO89FHHzF//nz++OMPzjzzTFq2bMkff/xBdnZ2rf17vV40TSMhIWGfx7gn5syZw4svvsiNN97Y6McS4nAnQQkh9lLAX04wUI7RvS3bOyWStM6c5FKTzbI4al71pFko2ZxI05xmgCEUVz1BZQkaaHYFLfI3OZhY+zj+5uZVtIquYE0y9+n12bHbw3grnBiaRuF3n2BLTadbywv445q7Gv5kRZNW9cXH1qoVIYsdW1VzXr1uPdtgkvl27082n4PxW3W0cICtvqUU/PEdwdIimg86h4wug1j0DwlGiMZX1sFBcVkpFosDNT0FSvKr76xZjsnlBI/ZwFRxOMzG2A47YT3ILxtfJ6B7cTsz6NlyJNnJPdG1IKpq49uljwFwilpdOuObvx4GYOiJj5KY2ArdYaG1p5A/5j7Nog0fc2LCndhtbrQEF+gaC1a9S1Hlek7q/yBqjabWKApqSENXLNESTopuEI40uo6GASOl+8JuCKYY2EvMdS1+BW2D+Tej2F3Olntew+Kw0P3BM2J+ZZgQQhxM5s+fj8VioVu3bjEdx9atW3nhhRe44YYbuOKKK2I6FnHgKYpCIBDA7a5bJnVPbdy4kUmTJvH000+TlJTETz/9xJFHHtmAoxRi11atWrXP76WzZs3itNNOQ1VVTjvtNF599VUGDBiAx+MhKSlpp9tZrVZGjx7N6NGjAbjnnnt46qmnuOOOO3j//fejwd2qbLghQ4Ywe/bsfRrjnnjvvfe47LLLGDx4MPfcc0+jHUcIYZKghBB7aRs5gEJiyy61bo/2jVBVs/RHParKgIRdKoHEHUo8ucz7NItBYONGrJnNUSKTU+Fi8yrduGZmw2IjrLH9mcn41q6m0wljouuJw8vll1/OSy+9RKUnj6TE6jr0wXaZAHgq8ykt20C4XCOw1UdcYjN8JSG8BZvx5G8gWFaEHg6SlN2FdhdeiTNNMm3EgVOw9Cdy/5qJK60FwQQrjqoeDnp1FoFfq6TCm08gWEZA85KgJmNRbASCAQr1PAK6l2O6X0diXHa018O3fz9d6ziz9I/rHPv7Of8AYMhpTxDnTqd/v+tYsvQ9Fq6fQv/uVxJWg6xdP4OiyvUAeC1e4nGY5ZiqghCR93NFMzB2vBg2cg5bTk2l5bfF0ZuDKQa6w8yusHjM9+3SL37GQKHZnfdQpu77ZIYQQhyOZs6cyXHHHbfLSa/9UVJSQm5uLt27d9/pOmvWrOGkk04iPj6eu+++u1HGIZo2VVW57LLLGD9+fL33a5rG999/z6ZNm9i2bRt2u50ePXqwbNky5s+fz/Lly1m5ciVut5trrrmGhx9+uNGe00LUZ9iwYfz111+7zNhdtGgRmzZtYv369ei6Tt++famoqKC0tJTnnnuOPn36MGfOnFrP3b19Hj/++ONkZ2dzxx130KVLF/7973+zdOlSLrnkEgDmzZu3bye4B0KhEA899BBnn302n376qVwoJMQBIEEJIfZCt38+S9GGxcQ1a4PNEQ86lLUzJ9LSFwfqrK+EzYmpOhNWgKPcIJigEIyvfXtg/XpyX3wJZ6dOxPfri7N1WywdzElmu03DCGuUTv4B3/JVdB5yNau+f7VhT1IcNJo3bw7An4sm0mvwONI6tqakKIfinN8pK9tIecVmABTVitURR8hXDiioFiuKaqF5n1NJa9UHR3wqv797RwzPRByOKoo3oKgWWrQZWOt2IyWBQKiS3NKV5BT8iGaYWWNW1UFYr36fVRSVLq2GkRiXzTfz/7VPY/jhm3sBGDrkMXoMuIJFc18iv2gpOVtmEwp5q45EMFhBqJlZFsRe4gdAd1gJpJnv/2rADDSEneaXl/whWWT9YGZ+bDk1FasX/Jm1WlxjaechsD6Xsm/mkz5kGJb9uLqysfz+++9cNX8icR2aMX/4o7EejhBC1FJcXMysWbP497//3WjHuP/++5k4cSIPP/wwbdq04cwzzyQlpbrZ2/bt2xk9ejQul4s5c+bUKTciDh/JyckEAgHGjBnDf/7zH7Kzs3nnnXf47bff+Pbbb9m82fxcnpqaSjgcpry8nLi4OLxeL0ceeSRvv/025557LvHx8bs5khAN78cff6RVq1ZceOGFde5bvHgxEyZMYNKkSQA4neYFk36/P7pOZmYm33zzzX4H01RV5fbbbyc/P59HHnmEY489lhEjRqBHyrp26NCBwsJC0tPT9+s49XnqqafYtGkTn3/+eZMLSASDQWbNmkX//v2lZLc4pEhQQoi9ECjMp3LzKlqfMrrW7YYFwm5zcspitVY3HK7B6tMwLJGXnGHW8q+9E/Nne9As/OFfswb/mjUAuLq3xghpVHTIpHLhOoL5ZSSPGo5/RMeGPD1xkGnZsiXZfU4ld/G3/P3T/4hPaEFlxVbs8am401rSrdMJpGZ1QzUUgmkOwgEvii+MzRHHD+/fisOx814TQjS25D7HEiwvIWfBR+SVLaW1uy+KaiGcn0tO/k9oepDkFj1o3+tM4nQ3imrFKNiOrmsomWmoqhVFUflmxv6nVofjrbi15qiqjRXrvkRHp3O3s1m9/DPAYMGi1xh82uMoikIwUpZPqW55gR5pHG8vDxNMNN/n84dkQT0BaSVs3qhrCqVf/4EtKZnU44agFKus/HfTKZ2Wm5vLMcccA0CbW4YTHBrEbrfvZishhDhwXnvtNXRd58orr2y0Y2RmmhcG/etfZvA7Pj6eo48+Gk3TaN++PR9++CEWi4XZs2dHLxYRh6dbbrmFDz/8kHfeeYcvvviC1NRUNmzYQJ8+fRg5ciRjxoyhX79+WK3m54QtW7aQlpaGqqrY7fYmNwkqDi//+c9/eP755+nbty933HEH/fv3x+l08sknn/D2228DMH78eEaPHk1mZia6rrNmzRqSkpJIT0/HZrM1aB+d448/nieeeIKzzjqLfv36MWDAAF5++WWWL1/OzTffzAcffNBgxwIzm+n555/nuuuuo3fv3g2674YwadIkrr/+epxOJz///DP9+/eXvkXikKAYhmHsbqXy8nKSkpIoKysjMTFxd6sLcchKHHQc3oVL6XT9P0nKM2uHV5VhSlllXsHrWF+IER9pihpnTuCEE8x/Q/Hmh9CQWyUUZ27njfTkC0V6KFkC4N2wltzPJ6OVlpNw8rGE8wtR3U5CG7fgaNsM96mnYG+ZzcarpM6hgN43j6doyS94tm0gqUMvMrP6oCgKriKzt8SPX0opAdH09LznWQzDoGLN3+TN/pxQRWn0vowux9G8ywk43KlYzbY9zP2kum/OCSOejP7/xwYISlTpcck/yV8wC4fiZtuK2vVqew27A3dyc1DAURxG0SEUb/4d0JwKNo8ezZhwrd4OwObzWgCg2yGQGinR59JRwgq6JZctd71I4rCjKfnsxwY7h4Y0ZMgQ5syZA4AlMY6OT45h5XX/2+U28pmx8cljLITZHLV9+/YMHTo0evVuY9B1nQkTJnD33XeTkpLC2LFjWbp0KYqisHTpUkaPHs1tt91Gampqo41BHFyKiop46KGH8Pl83H777fTq1SvWQxJij/h8Ph5//HGeeOIJAgFzbiMpKYknnniCCy64oFaW2IEwe/Zsxo8fT+/evXn88cejt7tcLoqKimo1zN5f7777Lpdffjm///47AwYMaLD9NpTt27dHg+QAgwcPZs6cObsNTMhnRtHUSVBCiD1UWVlJYno6af1PIHPQMBK21H7puArMEiPOLWXR/hLRoEQki0KLiwQykizRoIT5M4R2eGmVe9eR9/iLZN52LXFHtjOP4Q6w/Ox/N/i5iYNbn1ufBWDxhKZzlbUQe6r7P57F0HUsJQEMXcNWaWBzxjN/0oEvKXbE9eZryTAMbugfz5Nv/0jh+j8py10NQHaXwbTudwaKomIv0/CnWbFV6mhO8/08kGC+92fN2grApgvNoISnrRbtIaG5zMDF9lffIbBxM9n33s7mex86cCe5FzZv3kyHft0Jl5mlrDLOPZZmlw1h8RmP7HQb+czY+OQxFgK+/PJLzjzzTP766y+OOOKIRj/eP/7xD1588UVKSkqwWCyNfjwhhIgVv98fXeLj42NeUiw3N5e33nqLY489liFDhgCQmJjIe++9x8iRI/d7/16vl+zsbM444wzee++9JpuB8Omnn3LeeedFPwP+8ccfHHXUUbvcRj4ziqZOyjcJsYc++eQTjECAxCMHoDnMK2UBAqk7vIwMA8VrXlmgOGz17ksNGajm5vjSqv/o6TbQnGawQ1XdqPFuCt/8gMKHNh3wKxPEwUOCEeJgp6gqSyf+I9bDYMErtV9LY8eOxefzcdS5/6Bk+yq2/TUTtWMrknr0J73MzEQKxasE4xWcpdX1nLaNNIMRlR3CxK81/0ZoCeb6ODV0fwDv0hWkjByOJb7p9ZKo0qpVK3o/di4Lb5uC7g1Q8OmvaN4g3QpKWXHVC7EenhDiMPbmm2/St2/fAxKQAOjatSuVlZWMHj2aKVOmHJBjCiFELDidzmjfiKYgOzub+++/H4CCggJWrFjB+PHjueCCC9i4cWOtDIJ9MXPmTMrLy3n44YebbEACYNSoUUyYMIFbb70VgAsvvJDbbruNsWPHNqnflxB7Q4ISQuyBVo9dT+7j7+Hs0hFbspmenX+UjfSlGlafORHl3FBsrmyprgeqllRixFenFdZseG3zGITcCkbkYit9h/iFLSWd1PPPonDS++Tm5kpQQghxSFr+aNMOqrlcLpbOfJYBY56hYusaSpf9SVKP/hT2sqHbIXGDGUj2J6v4Iz337GXV21d2CKP6VUDBcJh/L4IbtkE4TGLzLjiKm3YN6fj2GbS6exQbH34fNJ2ir+ZTNPMvjmwWT6Xf/Pvm95jZgBsuuy+WQxVCHCYmTpzI559/zvPPP3/Ajnn55ZczY8YM/vrrrwN2TCGEELVlZGSQkZFBz549ycrK4pNPPmHcuHH7tc958+bRrl07OnZs+v06b7nlFpYvX87EiRNZv349t956K6tWreKll16K9dCE2CdN+5uwEE1EyWc/opV7SDz5BAwrGFZIX6rVWS/ULBHDZgFVBVWtFZAAsHo0lLCBbgVPlnl1bRVFjzROVcxFq6ik5LOvcHRqT9euXRv5DIUQQtSnw/hn6DD+GYp6g61/F7xb11EW3BS9v7ytQjARgpGMaMMwKO3lpeyIIIpVR7GagQg9GMS/aA2e35ZT9vkPAFjiYpsOvyfmDH2ahCM6knhst+obNZ2CafMJl1RQ/svfFL76Md6FK2j77uM735EQQjQAXde5/vrrAbjkkksO2HGnT5/OlClTuOGGGw7YMYUQQtQvNTWVAQMG8Oabb1JeXr7T9UKhEJpWd95m8+bNfPXVV3z88cdMmjSJjIyMxhxug3rsscdIT0+P/vz555/z9ddfk5+fz7/+9S/GjRtHTk5ODEcoxJ6TTAkh9oAa58DZpTWunl0JoGErtVDcxUxxSF9q1mEKNatbo08JmvfZyvwA+DPjove5inS8WSrhuNrbGIaBf+tGSj6fjqHrpF95Caoq8UMhhIi1xGOOpXLp32x7+WVK+/QirlNnLG0ySDFaoSgqvo3r2PjOiwC0evURVJsNI6xR/uO3lM34Dd1r9mZQbFaSzj6VnCceatJp4jW5e7el/PeVHD3tNlY/MZPNr8+GV7+P3h/OLyKuX7dd7EEIIfafqqokJiby4IMPHpDm0n6/n6+++orrrruOkSNHcvvtTTu7TwghDhfPPPMMp512Gn379uX888/n2GOPpV+/frRp0wbDMHjmmWe46667OOmkk/j+e/Mz65YtW7jrrrv45JNPosGKNm3a8MgjO++X1tSkpKRwxBFH4Ha7efjhh7nkkksYPnw4AFarlXA4TNu2bbnnnntiPFIhdk+CEkLsAVezeLyL16DE+7Fu2Un978jEkhIIE840AxTWYk/tdSzmOoY/yLbKJSildvRUB+HKCoKBMrSyMrw5qwkXFGJJSiTjqktxOJIb67SEEELsxto7qxtut3thPM1uHEvZdz/gXbIMzx9/AlAQ78bVviOeZUuj6+b/ZyLJ5wyk/Pv5+FdtIHHgQBKOOxY1KR7VbkexWQ+agER2QiklmzdhS0/Er7hpe/8omheWE1iXi2qzsPbJL4nv1ZK4BH+shyqEOAy0atWKlStXNtj+1q1bx/fff09mZiaKorBt2za2bt3KunXrmD59OmVlZQwcOJC33nrroHnfFkKIQ93RRx/NL7/8wvjx45k0aRJPPvkkAD169KBFixZ8++23AMyePZuLLrqIs846izvvvBNVVZkwYQLnnHMObreb+Ph4LBZLLE9lr5SXl7N69WrOPPNMevXqxeLFi1m8eDGrV6+msrKSq6++msGDB8d6mELsEQlKCLEH4vu1p+CjuQTXb8OmdALAEakZ7tpcCYCW6Iiub91egZ7gJNgswfy5Ilhrf96yPLZ8/2Gt21S3G2tiIgmp7Ug+9jw4vgOKZEgIIUSTsf7mOwFob3OROnwEYd1LcOs2fEtX4v97FUlHH0vK8OFUrl9Bxc/zKHhhCpbkBJpfeT1x7Tuy5n7zCtt2L4yP5WnslQvmXcf8W7+i9O9tZJ5/XPR2i9tJ4TeL8a4rQKv0kXRinxiOUghxODnttNP44IMPMAyjQYIEb7zxBo8++mj0Z4vFQnZ2Ns2bN+emm27i0ksvlVKqQgjRBPXs2ZNJkyZhGAZ5eXnMmzePL7/8kvnz5/PBBx8waNAgPvroI5599lmmTJnCkCFDeP/992nWrFmsh75P1q5dS58+fQgGg4waNQoARVHQNI0nnniCjRs30r17d4466qgYj1SIPSNBCSH2gO/v9SgWFcXlgh0uBC04LhlniU7SYrPRtZ7grLN9OMFOKN6KEjYborqSMwFoMeBMUtr34c+3HqDPY/8DwBHpl12pGqy94446+xJCCBFb626rfm/u+OSzxGd1gqEjybnHDDq0/d/TxB3Rm9DWbVjSUrDExUFp9fZVwY2mbFjvBwFIeEmnbEUeAGo4hC3oQXPEUT4/h9Lf1nD55ZczYsQILrzwQoBd1vUVQoj9FQ6H+emnn0hPT2+wrIXu3bsD8Pfff5OWlkZmZuZBddWsEEIc7hRFITs7m1GjRkUn66vcfvvt3HDDDSxevJijjjrqoC6NvXz5cjweD/Hx8axevTqaETF+/HgWLlzIbbfdxlVXXSV/w8RBQ4ISQuyGYRgUfPEnmWceiTU+G8Vn3u6NBNdTV+h1ttHibLV+DsXXfqlVVGwDYNr/HqJ///617lv8vNSqFUKIg0VVIKKKYRisv+HO6GRZ27efADRCcXWb7DVlhmFQVLkeR7mNE968gFXTcsj/ahGGptH8uuGU/roK1WnjxRdfJCEhIdbDFUIcJubNm8eff/7Jjz/+2GD7XLBgAS1atKBnz54Ntk8hhBCxV5VR53Q6Ofroo2M9nH3m8Xj47rvvOP300/nyyy95/fXXufbaa2nbti39+/dnzpw5nH766TzzzDOxHqoQe0WCEkLsxqZNm9Aq/Vi7dar3/vhNZuqEYphZEPoOkXdNC7Fm0ecE/GWktzkCq9VJSWkOAGvWrIkGJVb+W4IRQghxsIs/ug/e+X/j6NSGuAF9sDsClC/eguELkDjhU7LOvQh3nhmwWPRi03vfHzL7TvRgmBUbZ7K9Yg3rLmxDs0uzaX10FsW/JVC5djuF3y+l9KfltLrzLAlICCEOqEWLFuFwODjuuON2v3I9Vq5cya233krLli0577zzKC8v588//2Tbtm14PB7c7p30jhNCCHFQqayspHXr1ni9Xs4880xGjhzJmjVrWL58OZs3b+aaa67h2muvjfUwd2vZsmUMHz6czZs3c//996NpGuPGjWPatGksXryYiRMn4vP5+N///hfroQqx1yQoIcRuLF68GIC49plopdUBB1d+/esrmoYaKfEUSrFSXLqevM1/EJ/YnDV/fgCAarGR1f0EzjzzzEYduxBCiAOj3eTHAAgXmjX4VJeTkg++RFFVXJ1bovlCVCzPofURZ4KzaU96Ffy4mu0Va0g9rhPF89ZQMnEjWC0Q1ggVVrAlZwbJJ/Yk5cResR6qEOIws3jxYnr06IHVum9fY5955hnmz5/P6tWrefPNNwGzcfa7774rAQkhhDiEVFZWUlJSQkpKCqtWreLjjz8mLS2Nvn37sn37dt55550mH5TQdZ2HH34YRVHo168fjz1mft94++23AXjvvfdYtGgRH330Ea1atYrlUIXYJxKUEGIXOnz4KCWfzgaLimfxWmypSVgtiQD4siBxnYERiVMY9dS1tfjCOA0XAC3aHk+pdwvJzbuSnN0V3WkhLi7ugJ2LEEKIxpd8zkkUPPMuyUN60PLucwgEXVjjrHgXryHv8bfwJPlJCrgp7Va39F9TUL4qj5VPfkNSvzZ0eehsNk1fSeWa7ZR9/Ruunu3wrdhIxogjyB4zBItqxHq4QojDzKJFi1BVlalTp3L66adjt9v3avusrCysVitvvvkmEydO5KmnnpKJHCGEOAQ1a9aMq666io8//piZM2ditVpJT09HVVXGjRvHL7/8Eush7tZ///tfPv74Y55//nkuuOACvvjiC15//XU8Hg8Oh4P8/HzeeOMNzj///FgPVYh9IkEJIXbDn7MZNJ1tL3wB1hm0ueUe7GnpJK2pOxmjJZkBCDUYRnfa0G0WXEnZxCe1YNWSjwAoL8ghpXl3LAGZzBFCiEOF3RUy/x3YkYpZ7Sj5YSmOI49EtYMehtIv56ImuLFZmlZAov2z1bVnF1x5FUufmIOtRRZZ942h2GNBi0+nbNZ0Ek85mrQrzmDh6TeTlJQUwxELIQ5XXq+XJUuWEA6HOffcc+nfvz9//vnnXu3jrLPO4sUXX+Skk04CoHPnzvznP/9pjOEKIYSIsaeffpq3336bL7/8kuuuuw4gmiVxxhlnxHh0uzZ//nweffRR7r//fm6++WbALEE4f/58pk+fzgknnIDVat3r4LwQTcnB23ZeiAPAMAwCOZurbwiHcYSd2CrAXqFjr9Cxba/E4gmihDWsRZUouo7uNBtdWwIaFouNltnHRHcRl9z8QJ+GEEKIA8h9RCf8y3Lwr92K7tfIf/Y9/MvWkHbUECwOJ648lQ033hnrYdbizVtLRtfOhAtLSLv6PBSrhcq/VpP/3Pu4enUk7fLTUVRVAhJCiJj566+/CIfD0Z9dLtde76NHjx6ceuqp0Z9btmzZIGMTQgjR9KSkpHDccccxYcIEvF4vq1atIjMzE4/H02QD0pqm8fLLL3PCCSfQr18/HnjgATRN47777uOZZ57hhRdeYPjw4cTFxUlAQhz0JFNCiF1QVQ3V7USv9AFga56NS4+HSkicux4AvXl6ne0Mi4KiGSiaTl7eElau/JSsNgPIPvYMrE434TpbCCGEOJitOvchANq+8zhxgwdh/2kZ+U++AbqO4Q+ixrux9e8EwIpHmkaD67aTnkTbXkrJ11/jWbgQe9tWZF1zJbbUTLzr1rP10cmoCfGkj7mcdZc+EOvhCiEOc1arFZfLhc9nfi4fMmTIXu9jzJgxfPnll7z66qtcccUV2Gy2hh6mEEKIJuSVV17hyCOPpEuXLmzZsgWAwYMH065duxiPrDZd1/nuu++45557WLx4Mddccw3PP/88drudf/7znzzxxBPceOON3HjjjbEeqhANRoISQuxCMNeCJT4Za0YawU25uDp2pLyDQeJahdzzOpL9SQ5quQ8MsxSTlpEY3dYMTEB54VriErPp1O988IPfad4/f9IdsTglIYQQjWjD5fcBsOXUK+gx7nL0Si/xPY/A1bED625pOtkRS5cuJfc/LxDcsAVLQgIZo84n4agBBIPl5D3/Mv6ctQCo7jhUpyPGoxVCCAgGg3Tt2pXmzZszffr0fQpK/Pjjj9x9991NvrmpEEKIhtG9e3emT5/O9OnTCQaDPPDAA2RlZcV6WLW888473HvvveTl5XHMMcfw66+/cswxxzBjxgxuvPFGNmzYAJiZH0IcSiQoIcQuBDZsIrB2PdaMFPRyD65uXbF6zYbWSRvCEO+utb5lezlaRiK6VcXrCBC0VlASyCUuKQvdam4nwQghhDj0tWzZkrIvZsd6GHW0efNJPL8vovitT7BmppNx5aWkpvZAtTvwxuuUfTSbYF4u6TdcgrNtR1Snkw3X3xXrYQshBJ9++ik5OTls2LCBpKQkjjnmmN1vFLFu3Tq2bNlCQUEB3bt3b8RRCiGEaGqGDBmyT4HsxhYMBrn99tv53//+x+jRo7nuuusYNGgQiqKgaRrjxo2jVatWTJkyhfbt25OamhrrIQvRoCQoIcROtH3ncYK5m1AcDlo8eD96pQdLQgJUgDcbkjaAnuxGLfXg65SBI88DQMhlYfOmn1m/7lt03SzU1Kbn8BieiRBCiMNdmzeeBKDyl/kUv/UJccf0I/3881HtdtRtZouxcEkplb/+QeKwwbiP6g1+aT0mhGg6/vzzT0aOHMlbb71FZWXlHvWUKCoq4qabbuLDDz8EzKtMm3pzUyGEEIc+wzC44IILmDlzJq+++mqdDL53332XjRs38umnn9K/f/8YjVKIxiVBCSF2wgiF8S1cgb1VC5LWWinvmIB7k0owBdxboLyVFWeeGZgACDRz48jzkF+wiLU5M2jZaiCp7fphsdhYMPuZGJ+NEEKIw1VVQCJcUkbJ5M+JP7I/6RdcjKIoEAZfto4eCFD8wWcoDjspZx/H+ivvifGohRCi2rp161i4cCHnn38+Npttj0tYXHfddcyePZvXX3+dnj170rx5c+Lj4xt5tEIIIcSuvfPOO0ybNo1p06Zx5pln1rpvzZo1PPDAA1x44YUSkBCHNAlKCFGP1hMeZfvEdwmu20Lzi68CIDFHRbODvcRcJ+vnQgynHWX9VpzrQYmUcsqrWIjTlUr7jqdhsdiYPeu+WJ2GEEIIUUMQIxSm8s+/8K1cTXyfvjh6dkIrLaP0m2/RPD4ybxiFGueM9UCFECJq6dKlnHLKKbRq1YqLL754j7crLy9n2rRpXHvttVx99dWNOEIhhBBi7xQXFwNw0UUX0bp1a2688UY6duzI999/z/PPP092djZPPPFEjEcpROOSoIQQ9fCvzsG/YjUoCkVffYF6VCXNmh8JgCVgRNdT/MHaG4bCtNTbssy/noXzXqR1yhEM7rCen9ZOPJDDF0IIIaI2Xn0Pbd99HFtWGln/vJ7Qxm1oG8qp+OM3yub+DEDckb1JOXcEjnYJMR6tEELUNmHCBPLy8igvL2fUqFG8+eabdOnSZbfbud1uRo8ezcsvv0xpaSnnnnsuQ4cOlUahQgghYu6WW26hRYsW5Obm8uuvv3LrrbdiGAZut5uHHnqIO++8c4/KFApxMFMMwzB2t1J5eTlJSUmUlZWRmJh4IMYlREwZhkGza65i+7uTMcIabU64iMw2ZtqcJWCQuLocJRgmmGlO3jiWbDA3tNsAKLd7WJb3DWX+XBQUTul2D98sfywWpyKEEELQ9t3Ho/+3bnMAoIdCaCEPqCpK8zgANlx7934dRz4zNj55jMXhxuv18u9//5unnnqK5s2b8+OPP9KxY8c92tYwDCZNmsTDDz/Mpk2bOOecc/jss88aecRCCCHE3iktLcXj8ZCYmEhCQsNcJCSfGUVTJ5kSQtRDURTKf56L1eGm3YjLSXW1hoCBGq5ex7DXfvkYhg6BAEabbOJJ5Qj7BSzY/BGqYkVRpFmoEIeC7g88y/L/uz3WwxBir224bOelBNu+9pS5zn4GJIQQojF4PB5eeOEFhg0bxrvvvkt6evoeb6soCldddRV9+/blmGOOYdCgQY04UiGEEGLfJCcnk5ycHOthCHFASVBCiHq0u/5u/GvW0GrEZTjat4VcPXpfKE6hpGcSaT9vw1HiIdg2jWCvNtiWrDdX2LCN1bblbNo+H8WAvq1GATCsxwN8vez/YnA2QoiG0PXux/Hlbqbt5TfjatEWXxsz0XDD9XfFeGRC7B8JRgghmrKJEyeiKArvvfceaWlpe7Xt1q1bue6665g+fTqdOnXi8ssvb6RRCiEOpNLSUmbMmMHAgQNp3bo1iqLEekhCCCH2kgQlhKhHoCAXgIR23cj63QOAbrcAEGrtqLWufUMRRmkZAFrXNmzbvpANOfNo22Iw8xd9uldXcwkhmqZTjvsvxc7f2P7DdPMGVcXRrjVZd9wQ24EJIYQQh7glS5ZwzDHH7HVAAsya3fPnz+fdd9/loosuwmqVr79CHApOPPFEFi9eDJj9Y+666y7+/e9/x3ZQQggh9orUlBGihvbPPUP7555BzzAbCvmc/lr3+zLtWP0GYZdC/qktMMrLMcrLo/eHl69g7abvyEztTsfWp3Dxma8c0PELIRreKcf9FwDL31vMfxMTQNcJbs1j7dg7Yjk0IYQQ4pCXmppKWVnZXm83Y8YMPvvsM55++mkuvfRSCUgIcQhZuXIlABaLBY/Hw4YNG2I7ICGEEHtNPpkJUcO62+6g86PPYrfEmzcUVrLt+JY0n+tFDel11i84rxtZ0zdgGDrLC79nS2AVFsVKx9anMmvegwd49EKIxpSe3AmvrxAt0Yma1opPJz4nExxCCCFEI0tLS2P79u17vP7mzZsZPXo0v/zyC8cffzyXXHJJI45OCBELY8aMYfHixcTHx5OZmcn//Z+USRZCiIONzKYIUQ9bahqK3U7x/B9pfvpoADadGkfaMp3t/cwEo7jc6vU3VC5kS2AlnRKPpVV8L2yFOsNb3crMzRP2+th3/TWKkF9jwsDPG+JUhBD7SQKMQgghROz07duXRx99lI8//pjzzz9/t+tffPHFbNmyhalTpzJy5EhUdd+LA3i9XlRVxel07vM+hBANb+LEibEeghBCiP0k5ZuE2MHqf9yOzeYm9ZgTKFv+F6o3SP5RcQAU9ah+yXizIfvHEoy0JHRDQ1VttGk1CJvqYObmCXsckLj191GcdE8/Mjom0XloC969dDYvnPAF/S7ogNfrbZRzFEIIIYQQ4mBw3nnn0atXL1599dU9Wj8QCDBgwADOPvtsLBbLXh1r8+bNjBs3ju7du3PllVfSokULWrVqxVtvvbUPIxdCCCGEEDsjQQkhdiJYWIA9PRPV5kCL9LYOJRpoTgPdZi5V0pv1QtODbCj8g6LX3Az4+h97fJzXR0znh6cWUbi2nDWzt1GwshRDM1j08TrOevPchj4tIYQQQgghDhqKorBq1SqOOOKIPVp/5MiRfPXVV8yfP3+vjuPxeGjdujUvv/wyK1as4K233qK0tJTCwkJuvvlmwuHwvgxfCCGEEELUQ4ISQtRj5b9uJzOrL1bDwbovX8O7ZT3WHZIWkrsXsfGarfzi+Jhf17wGwJr8HyicvRRgjwIThmHgUsz+FfHZbhSLAgokd0yh7/VHkH1Uc8b8cXXDnpwQQgghhBAHkeuvv56ZM2dy1113sWXLljr3h0IhPv30U7p168a//vUvfD4fAwYMIC8vb4+PUVxcHP1/hw4dAHC5XAwePJhPP/1U+kgJIYQQQjQg+WQlxE6ktOmNFgqy4ZcP8KxdgSuzNa1Ou5TA0alggy2vfkfB538AoDhsYBioKjiaJe/xMRRFYd26dfz00098lv4RvhI/NpcVJc4FwNsD3miMUxNCCCGEEOKg8cwzzzBs2DDGjx/Ps88+y/XXX89TTz1FXFwcgUCA3r17s3r1agBSU1MpLS2lc+fOpKSk7PExWrVqxYoVKygvL+fII49kw4YNtGrVCpvN1linJYQQQghx2FIMwzB2t1J5eTlJSUmUlZWRmJh4IMYlRJPQ49y7WT716Vq3OTq2J6XLAPKmTwEFEk4dSMr5w+jVLIfZV31MQpsUBj5zBp8d/zIdpvwfAGsvfCAWwxdCCCEOKPnM2PjkMRaHq3/+85/897//jf4cFxfHWWedRZ8+fbjvvvtQFIVvvvmGk08+mW+++Ybhw4fzwgsvcNNNN8Vw1EIIIURsyGdG0dRJ+SYhdsGVmk2Pq/+Du3mH6G2BnHXkTf8QMLC6E0g+5xQUmxVHiouEiy+iYP4WvrpwKpnjRqEHQwDR4IQQQgghhBBi7z3yyCP88ssvJCQkAOD1evnggw+47777ALjqqqs45ZRTUBSFYcOGMW7cOG6++WbOPvtsfvnlF3Rdj+XwhRBCCCFEDZIpIcRu9L35WQxNo2DRHLYvmI0W8KFYbSSntKNzv4vIuyQO93I7AJ4OYfw5Gyj5cBrBTVtBVVEcdtz9e5E6+hw23nB/jM9GCCGEaDzymbHxyWMsDndbt27l/vvv59133wUgPT2da665hv/7v/9DVauvuQuFQrz77rtcfbXZn83tdpOcnMxDDz3E2LFjYzJ2IYQQ4kCRz4yiqZNMCSF2Y9ELt6NYLGT1H0qXMQ+QMXAYFruTku2rWfDjs5TcPpHiBb/gMYqx5OlQGkQrqzA31nUMn5/KX+aDotD2tadiezJCCCGEEEIcxFq0aME777zD0qVLueKKKygrK+Ppp5+mc+fOjBo1iq+++oqCggIqKiooKyuLbufxeNi6dSuLFy+O4eiFEEIIIQRIpoQQe63n3c+ih8NUrF2KvzgPf/5WKteuAKM6JdzevDnOjh0IFRaiJrpIGnEStmaZbLj27hiOXAghhGhc8pmx8cljLERtubm5TJs2jZycHL7//nsWLVoUvU9VVS6++GKCwSDBYJCOHTvyf//3fzgcjtgNWAghhDgA5DOjaOqssR6AEAebpU/dXuvnHvc/S7iyHH/BNvxGBfasbBzNW6AoCmvuu30nexFCCCGEEELsr+zsbK6//noADMNgxYoVrFq1Co/Hw9ChQ8nOzo7xCIUQQgghxI4kKCHEflr2mAQehBBCCCGEiDVFUejevTvdu3eP9VCEEEIIIcQuSE8JIYQQQgghhBBCCCGEEEIcEBKUEEIIIYQQQgghhBBCCCHEASFBCSGEEEIIIYQQQgghhBBCHBASlBBCCCGEEEIIIYQQQgghxAEhQQkhhBBCCCGEEEIIIYQQQhwQEpQQQgghhBBCCCGEEEIIIcQBIUEJIYQQQgghhBBCCCGEEEIcENZYD0AIUdcp6vl1bpulfxyDkQghhBBCCCGEEEIIIUTDkaCEEE1AfUGI+taRwIQQQgghhBBCCCGEEOJgJkEJIWJoT4IRVSQgIYQQQgghhBBCCCGEONhJUEKIJsgwDMKEsCn26G1S0kkIIYQQQogDKxQK4ff7SUhIiPVQhBBCCCEOGdLoWogD7BT1/OiyI49RwTJjPnP4nB/5grnGTAKGf5f7EkIIIYQQQjQcTdP45ptvGDhwIC6Xi8TERG688UYMw4j10IQQQgghDgmSKSFEI9pd0MBneMhnC5tYQ5C6wQcfHnS0ereVLAkhhBBCCCH2n2EYzJs3j/fee49XXnml3nUWLVp0YAclhBBCCHEIk6CEEAdQ2AiRxyZKKaKYgnoDEQDxJJFBNtm0waW4AQlCCCEOnB0DqvL+I4QQ4lCzfv163njjDVatWsUnn3xS7zqqqnLqqady+umnc8UVV6AoygEepRBCCCHEoUmCEkIcINuMjaxhMSGCtW5vQXuyaUM8iYQJESRAAsl8Z9T/5UgIUVfNSXSZQK9rf0u9naKe32CPa1P9XQUCAWbMmMEpp5xCfHx8rIcjhBCikYRCIW666SZef/11EhISKCsri9739NNPM3LkSFq1asXatWtJTEykdevWMRytEEIcftavX8/69es58cQTUVWpOi/EoUqCEkI0gqpJN8MwKKWQbWwgl400oxUd6cVCfsGBi74MRFWq/8hasfGzPj1WwxaiSas5ma0ZGj4q8VBBED9hwlixYcfBAOUkEkiJvraa0sT3wabUKGQNSwgRoqXSgWxak0Ra9ErRnT22OwuCeI1KKiglgWRcuKPBjj3NzNjdersKntQ3pqp1T1HPJ8/YzFJ+x4KVozmZucbMXW5T3/7luSaEEE1XIBDgo48+4pVXXmH+/PmMHz+eoUOH0rt3byZMmMAtt9xSa/2ePXvGaKRCHFxKSkpYsWIFa9eupaCgAE3TSE1NpVmzZnTs2JEuXbpIltF+0jSNiRMn8tRTT9GsWTNOP/10LrvsMtq0abNP+wuHw/z+++8UFxczcOBAUlNTG3jE++fOO+9k6tSpDBkyhO+//16eP0IcohRjD7p1lZeXk5SURFlZGYmJiQdiXEIc9I5UTmQNf1NOMS7ctKA9mbTAQzmLmWeuw4kkK+n1bi+TW+JwsrPJ5pq3+w0veWyikFzKKMFAB0BBxYqVMCEMzD9pNuy0pwetlA519nkw2F1mw3pjJWFCdKA7qmJp8OOXGyVsZDX5bCaRFBJJpZBc/HhJIYP2dCeZ9F1+QdAMjUJy2co6yilBQ4v+zgCSSacTvUlS9vxLkGEY0UCUFRtxxGNVbIBZHi9IAAA7DmbrUznVcgEAQcOPhwp8eAgTjvbqMdAJEiCAjzKK0QijoJBKJj05erdfgOoLqOx4/+FGPjM2PnmMhdg74XCYV199lUceeYS8vDxOPPFE7rvvPpKSklixYgVXXXUVAD6fD6fTGePRCnFwmDdvHlOmTOHbb79l5cqV0dsTEhKwWCyUlZVFG8N37dqV999/n379+sVquI2msrKS6667jrPOOosLLrigwfcfCoX44osv+O9//8uiRYsYPXo04XCY6dOnEwgEuPbaa7n33nt3G5zIzc3lgw8+4LXXXmPLli34fD40zfw8bLFYGDduHPfffz/Z2dl7PLaKigpycnIoKSmhRYsWtG/fHpvNhmEY5Ofn4/F4sFgsNGvWLPrequs669evZ/Xq1WzZsgWPx0MoFALA4/GwdetW8vPzmTVrFi1btiQnJ4fJkyczevTofXwED2/ymVE0dRKUEGI/1DcZFTT8rGAB29lGIim0pzuJpLCelWwmJ7peHAn04/hoz4j6HI4TWuLwsqsJXd3Q8VKBgkIlZaxgAToaaTQjhQwSSSGOBGzYURQFwzAIE8JLJetZQQkFtKYzLWjHz8b03R5vd6+3vblqfm/sLgChGWH8+FBQUFHJZRNrWQpAGs1oTzfiScKiWNEMLTphb8WGoiiEjTAhAtiwRyfwa+9fI0QAO04C+Mjhb/LZggMX7elOc9pGH99CclnLMiopI4k0MmiOigooGOgE8OHHhx8PHsrR0EgilQyaY8GKkzgSSaGUItayDC8V2LCjo+PERRatSCaNRFJrjbWqH88m1uClstb4LVixYK3To8eCFQcuzLOrvk9FRcUM5Cgo2HHiwIkdJ23ojIcKlvI7yaSRShYKKhohdHQMDHQ0woTQqfr4ZKCjR38/lkjOjgs3zWiNTbFHj304vKfLZ8bGJ4+xEHvu559/ZuzYsaxatYrLL7+c+++/H4/Hwx133MGPP/4YXe/aa6/l5ZdfxmJp+EC/EP/f3n2Hx1Hd+x9/z1Zp1YtVLFmy3Avu4Iax6T04EEgguYR0ICGQkPsjjQfIJQlObjAJIQRCCZeEAKGaHoox2LiAsY0bLqqWZcmyetdqd8/vD0lrrSTbclH158WjR+zsmTlnZiTr7PnOOd+hoLKykqKiIowx/Pvf/+bXv/41w4cP5wtf+AILFixgypQpjBkzhoiI1s+2fr+f/fv3s3HjRm688UYiIiL4yU9+wle/+lU8Hk8/n82xMcZQWVlJSUkJHo+H+vp6fv7zn/Pqq68CcNddd3HNNdeQlZWF0+mkqqqK6upqEhISgtflwIEDtLS0kJCQ0G0QtKKiAq/XS3JyMitWrOCmm25i+/btnHHGGfzhD39g9uzZQGsw5K9//Su/+93vqK6u5qtf/SpTp07F6Wzt/9fW1rJ371727NlDXl4en3/+OQ6Hg6uuuopZs2YRHh7OjBkzSElJ4dlnn+XXv/41zc3NxMTE0NTUxNy5c7niiiuYM2cOp5xyCi7Xwf5sdnY2Dz/8MA8//DC1tbXB7ZZlkZiYSEtLC1VVVSHnlZiYSHJyMgUFBdTV1QXLezyeYJvDwsIYPnw4qampjBkzhv/5n//hxhtv5Omnn+bqq69m2rRpNDc3U1dXR0tLCz6fj7q6OmpqajDGYIzB7/fj8/lwOp2EhYURFRVFfHw8c+bMYfHixSfdv/HqM8pAp6CEyHHoPJhojGEt7+CliXFMI4UM9rOXHWzAYMhiIqlk4sQVsmxTd06GwSs5OXU3CG+MoZYqbNiwsFHCHorICxlojiSW6cwnzDryBxmvaSaHrZRQSAA/UcThJpxIokkjq8sx6kw1xRS0DZrHE05EMNhxuKfhT1RQosk0sI98KthPHTXBoEIzjV3y0FhYpDOaRFLYzFr8+IDWwfZAh5kI7WUNB//Me4gknAgaqCOAH4MJzi6waJ0V4MDFOKaSQka3MwWMMZRTQj47qKMmWKeFhZswwvAQhgcPUQxjOBFWVLfnbYzhAMXUUY0dO7VUcYB9Hc7H3haw8NOCFwuLRIaTzijC8OCjhUbqaKYJHy14iMRNOEBw9kMzjdiwEUUcEUQRTiT2HswsKTPF7GE3tVQBrQEOG/Zg4MGBsy0Y03rmNmzBgIUfPz681NP6IW0BFxNmeU6af9PVZ+x9usYiPbN582ZmzJjBvHnzuP/++5k8eTK33XYb999/PxMmTODee+9l/vz5xMTEaGkQkQ7q6urYsmULycnJ7Nu3j0cffZRnnnmG5ubWPqPD4eBrX/sajz/+eI/W+1+7di133XUXb7/9NnFxcUydOpXhw4dz9tlnc/XVVwcH7KH1SfqXX36Zjz76iFmzZjF9+nQyMzNDyvS21atX889//pMPP/yQvXv3kpKSAhB8sr+j2NhYHn/8cdatW8fvf//74OyQ8PBwGhsbg+Usy8LhcARnBdjtdubMmYPNZiM/P59AIEBjYyOVlZUAuN1umpubmTNnDg8++CAzZ87stq11dXU88sgj/OUvfwkGPAA8Hg/p6emMGDGCrKwsZsyYweLFiw+5TFN1dTVPPfUU1dXV2Gw23njjDVavXo3P5wueZ1RUFFVVVdTW1hIbG8v111/PFVdcQVxcHIWFheTl5VFSUoJlWUyaNInY2Fi8Xi/79u1j7969lJSUkJGRwbRp05gwYQLp6elHDBL4fD5+97vfsWzZMnbu3El4eDiRkZE4nU7sdjtRUVFER0cHfw4dDgd2u52Wlhaampqora3lwIED5OfnM3fuXNasWXPY+oYa9RlloFNQQuQYdTdIGTABPmAZqYxkgjWDelPDGt5mGMOZyCxclrvHxz9ZBrBk4DsRA/LdHaPZNFLOfsopoYLSkMF3Ow5SyCCZdCwswvAcdlbRofiMj2LyqaGSZpqophw/PmJIIIpYbNiopoJqynHiClkCyoadcDy4CMOJOzjoPoZTQpZMOtbr0GjqqaCUKsoppRCwSCCZKGLbBrZbcBOGGw9hbYPtfnxEE4fban0dMAFqqaKBWlrw4sCJmzB8+NrOJYAdBy7cePFSxQG8NBNOBA5aZyK4CcdNGE20fnBKJQO71T8pp4wxNFBLLVV4aaYFLzbsuHCTQAphbec9GOSaz8llG9HEkUgqMcSzovr1bvtRvTULpz+oz9j7dI1FeubNN9/k4osvZt26dcyePZvf//73/PSnP+W+++7jpptuwuFQekURaA0EbN26lf/85z+8+eabrFq1Kji4DZCVlcX3vvc9Fi5cSCAQYOrUqcf09ycvL4/HHnuMnJwcCgoKWLt2LeHh4Vx44YVkZGTQ0NDAe++9R05ODsOHD2ffvn3BfRMTE8nIyCApKYnY2Fgsy+KCCy7guuuuO+7z9/v9bNiwgRUrVrB8+XLeeustRo4cyXnnncfo0aMpLS3FGEN6ejoZGRkkJyfT1NSEMYaFCxcGZzxUVVXx8ccfs3fvXmpqakhNTSU2NpaKigpqa2vx+XykpqbidrvJz8/n/fffx+VyBWdWOJ1ORo8ejdvtJi8vj3HjxnHxxRf3W9C0sbGRjRs3smPHDsrLy6mpqSE2NpaMjAwuvfRSwsMHT7987NixZGdnc8011zB//nzmzp3LtGnTcDq7ziIfStRnlIFOPTGRIzjS0iod2SwbMSYh+HSt1fYkrR8fzTTiNC49iSVHpacJgHurvo58poVCsvHRQgTRnGV9EYfl7LZNnY9Tb2opp4R6ammglnpqgk/oRxNHOqOJJwkLixa8xJGE4wQMjDssByMYE3IOpRRRShFVlOHHTxQxTOY0khmBwVBPDU000Eg9TTTgpYkWvBgMByjCj4+JzDrkuR5JudlPNluC/05EEsMIxjCSCd0ur3Q4NstGDPHE0LO8DKlkHNXx+5plWUQQTQSDv9M8kvF4iKSYAvawGx8txMTEEEF0cMZKGBGtATc8eIgMBoOqTBnjrRkkkNxlpslgDVaIiPS1+fPnY7fb+fDDD5k9e3ZwyZiqqirKy8tJTk7u5xaKHLudO3fy0EMPER8fz4wZM7jkkkt69DnT5/OxcuVKVq5cSXZ2Njt27GD79u3U19cTHh7O2WefzdKlS5k/fz7l5eW43W4WLFjQoxkRR5KVlcWvf/3r4Ou8vDyeeeYZ3nzzTT7//HPsdjvnnnsu//jHP5g3bx4HDhxgx44dFBQUBL/KysooLS2ltraWp59+mvj4eL7whS8cU3taWlq4//77WbJkCWVlZXg8HubOncvf//53vv71rx/1OcfGxnL++ef3uPz3v//9o21ynwoPD2f+/PnMnz+/v5ty3NatW8eDDz7Ia6+9xvPPP09LSwsej4epU6cyevRoRo0aRUZGBhkZGYwePZqRI0cGZ1w8++yzAFx88cUDLiG4yGCnmRIiR9DdgGONqSSPz6mjGg+RTGQWbsLJ43Ny2c4EZpDelmC3zBTzOZ/STBNheBjOSEYwJmSd8Y404DQwHc3Ac2/nGeh8/GOdyXA059Ro6tnAhzTTiIswmmgggijS2pbSacFLNHFEWbHBfSpMKcUUUE0FDdRiw4aHKDxEEkE0kcQQx7CjmkHU34pMHp/zKVOYS7KVftT77zd72cJaYkkgg3HEMeyQ/xbI0NE+A6SKcmqppIH6YNCrY/Lv1mWibCGzhqKJYzgjW2eK4DnsgMNA+PuhPmPv0zUWCfX444/zj3/8g5ycHK6++mp+/etfU1dXx1VXXcW6devYuHEjY8eOJRAIcMcdd/D73/+elpYW5s+fzw033MDXvva1EzLgKtJXXnzxRa6++mri4uLw+/2Ul5dz2WWXceWVV+J2u6mvr+fSSy9l2LBhQGs/5IEHHuDdd99l9erVlJWVER8fz/jx4xk/fjyTJ09m5syZnH766bjdg6NfHggEuPzyy1mxYgXZ2dnBc+0pn8/Hd77zHf75z3/y7W9/m2uvvZbZs2eH5E6QoampqYmNGzfy0UcfsWXLFnJzc8nNzaW4uDi4/JbT6SQiIgK/3x/Mm+FwOLj88sv56le/yllnnUVMTEx/nkaPqM8oA52CEiKdHGmgts5U8zHLCSeCeJIopQgHTkYwhh1sYBSTyWJCyMCR3/ip4gClFFHMHsLwcCpnHnYwdiAMLslBJzIo4fV6j9jhPVx97Qmd/fgxwQS79mAOhOPVPoBa1zZjoIFa9rMXJy5mcAYeK5I6U8MuNlFFWUgegwSSSWQ4DdRSRC7hRBJLIgmkkEByj9bzH6gCJkANFaxnBWOZSqY1rtty9aZ1NogfH378NNEQvI7VVJDMCE5htmZNCca05vRopI4G6mihGYPBQxQJJFPOforIo5wSoDVviBN3MDl3HMPIYGzwZ2kg/N1Qn7H36RqLHLR06VJ+8pOfcPHFF5ORkcGjjz7KzTffTF5eHu+99x6vvPIKixYtCtmntLSUt956i3/+85+88847fOc73+GRRx7ppzOQ/mSMoaWl5bgGotuT+jY1NQUT7Lavc38i+noNDQ1s2bKFHTt2UFxczKpVq3jzzTe58soreeKJJwgPD+df//oXv/vd79i8eXNwv4iICP7rv/6LqVOn8s477/Dyyy9z3nnnMXv2bC677DJOO+20Qd0Xraqq4s9//jN33HEHu3fvZsyYMV3KeL1eNm3axN69e2loaKC6upo9e/aQk5PDpk2byMvL44knnuDaa6/thzOQgcbr9VJUVER2dja7du2ioaEBv9/PxRdfTGJiIs899xx/+9vf2L59OwDR0dEkJiaSmppKWloa119/PWeffXY/n0Uo9RlloFNQQqSTIw0+F5sCtvEJi7gMp+Wi1lSxnvdxEkYAP2dw+KmzDaaWj1nOMIYz2TrtsHUNhAGmoeRol9k5kXzGRzXl7COf/RQSTRwOnDTRSDLpZDExmPy83OynmAIqOUAAP3YcRBNHOBGUUtT2dHXXf7otLFyE4cBJOBGMZWrI0i/GmJAAQuurQNsT2/U00dj2LHdJ8EltG3bC8JDEcEYwJpjLoJ3ftGY/cOCghL0UkUs15YThIYEUxjFtUAcioDUYUcAu9rCbFppx4eZUzsJjRYaUM8awi88oJDtku6st+bOnLUCTRtag/hAofa/FeKmijEYaaKEZL0000UA5+/EQSQwJJJBCEmnYLFu//u1Qn7H36RqLHHTVVVdx4MABVqxYAcB9993HrbfeSnJyMosXL+bhhx8+7P6PPfYY3/nOd3jhhRe44oor+qDF0t+MMRQXF7NixQp+97vfsXPnTs4880xqampobGzk7rvv5tJLLwVan6b/61//ymuvvcYnn3yC0+kkMjKSL3/5y2RnZ7Nq1Sr2799Pd0MqERERJCcnEx0dzaJFi/jNb34TkqzZ7/cH8zYEAgFaWlqoqakhNzeX/Px8CgsL+fDDD3n//feDyYbj4uKYNGkSX/va1/jud7/bJS9KRUVFcMmZ+++/nyeffJK9e/cybdo0vve973H99df31mXtM3v37uX222/nqaeewufzcc455/DOO+906VuXlpZy4YUXsnHjxuA2h8MRTPw8fvx4rrnmGs4444y+PgUZ5PLy8vjoo48oKSnhwIEDlJSUsHnzZjZv3sy8efOYPXs2V199NbNnz+7vpqrPKAOeghIiHN1gdfvyLWdxeXCwtdyUsJFVAIxmMlnWxMMeY58pYDufkEIGkzg1OBjdmYISx+ZYgg8txhtcmuhYZxy0z2Boz0dQSxXVlFNPLc1tSYTdhJPOKGqpBgx2HJSwBw9RJJNOHdWUUtQ2zJgcTL5cSA4AqWQSQRQuwrBjb8tbYvDjp5lGvDThw0cZJTRRTyyJeGmikfqQgER37NgJJ4pEUohnGJHEHtO18Bv/oA9EdFRtyvmE9wEIw8MsFnVJuu0zLeSwjUKyGcc0kknHjrP1HikAIb2kwpSyn73UUEEtVbgII4pYwvC0lWj9N8aOA9P2nx0HTpy4CScMDxFEsdy8dMLapD5j79M1FjnoC1/4Aj6fjzfffBNo7YvdcsstPPDAAzidTj766CNOPfXUQ+5vjOFLX/oSb7zxBn/961/55je/2VdNl8PIy8vD7/eTkpJCZGTkkXfoRiAQoLi4mIKCAnJycli3bh0ff/wxu3fvpqqqCoDTTz+dSy65hJUrVzJs2DD27dvHu+++y5VXXsmoUaN4//332bBhA+eeey4LFizAsiyys7N54oknGDduHFdffTUZGRkkJCQQHh4eDAhUV1dTVFTEgQMHqKio4J///Ccej4cZM2awY8cOSkpKgoGGQ0lMTGT69OlcdtllzJs3j0mTJgXzovSUMYbm5uZgIuah4Oc//zlLliwB4PLLL+fFF1/sUmbnzp1ce+217Nmzh6effpqpU6fi8Xhwu91aqk16hd/v59FHH+X999/no48+Yu/evZxyyilMmDCBpKQk/H4/0Dq7Ijw8PBiQjImJISEhIRgsGzNmzAn9GVWfUQY6BSWkzx3r+ve96VBt8hs/ZeyjggPUUglAEw2EE8lp1lkhZXeZz9hDNmCYwhySrRGHrbPY7GE7nzCGU8i0xoe8p2DEsTtcQKLWVFFCYfDJ/gRSiLOGUWXK+IzVwdkByaSTzAhs2GmmgQbqgwP+/raZC1HEkEYW5eynmgrqqKGROvwc/IDhxEUMCUQRQziRRBNHBF2ncteaKnawkQZqiSCaYaSSwbiQcs2mCTv2HidC9hsfReRRwX7CiGhNotu2Xn07Cxs2bG2JdiNw4NQAejcCJsA2PmY/ewE4lTOJtRKD7xeZPLLZgg9f2+9z98s6ifSm1n/f9lBPLU00YtE6e8qPDx8+rLb//PiCidtpKxNFLFHEEU0swxiOy+p+8KInf5vUZ+x9usZystq3bx/Lli3j7bffpqCgAJfLxaeffso999zDf//3fwfLeb1epk6dSmlpKW63m7Vr15KZmXnI4zY1NfGDH/yAJ554gq1btzJx4uEfLpLj1x5Ieuutt3A6ncTHx/Otb32L9PR0lixZwi9+8QuMMTgcDn71q18xdepUAoEAubm55OXlUVxcTElJ69KGUVFRXHPNNYwbN4433niDjRs3sn37dgoKCoIDfwDjxo1j7ty5TJw4kXHjxjF//nxSUlJC2mWM4V//+hc//elPcTgcnHLKKfz4xz/mnHPOCSmXk5NDVlZWjwcP8/Pz+eMf/0hBQQETJ04kPT2d8PBwHA4HlmVhWVZwDftRo0YxcuRIwsPDj3zgk9DWrVv55je/yfr164HW4FP755fGxkZ+9KMf8cgjj5CSksJLL73EnDlz+rO5chLy+/0sW7aM//znP+Tk5HDgwAGcTifGGGpra2lsbAy+rqqqorq6OjjbKjo6mjlz5jBz5kzmzp3LxRdffFzLy6nPKAOdghJy3LobBG4wdWxlHXYcuAnH3bakjANncCkTMDTTRDTxhFnhfToQ35Mn6etNDR/zHn78bctjJGLDooUWRjGJSCv0d2GfyWc760kklQpKOZ0Luyx109kGsxI7dqZZ87t9X8GJo3Oo+2qMIY8d5LINV9t67C1tK7mH4WkLNEUwiVOpoZJstoQsjxSGhzDC22YnONpmIhQH8zlEE0dkW+AhHE9b+QhcuDXIP0RsM59QTAGZjGcMp2BZFgHjJ59d5LKNVDIZwylH/J0XGQiMMbTQHJzR1ZqAu4oGajEYJnMaqVbXATwFJQYGXWM5Wv/3f//HAw88QFJSEmlpaSQlJREdHU1MTAzp6emkpaUFB0YuuOCCAflU9V/+8hduuukmXC4Xs2bNYurUqXi9XpxOJ3/605+6tPmKK65g165d1NfXk5GRwQcffHDY4zc0NBAREcHf//53vvGNb/TimUhNTQ1f/OIXef/99xk3bhwOh4OioiK8Xi/Jycnk5+dz3XXXcd111/Hoo4/yr3/9K7iv2+0mKyuL9PR0kpOTsSyLwsLC4P2Ni4tj9uzZTJ48mVGjRpGRkcHIkSPJzMzUv5dDRFlZGcnJyQQCAV5//XUuvvhiAIqLi/nGN77BypUrWbJkCddff/2gSdotJzefz0dRURG7d+9m3bp1rF27NpgLJTk5mTVr1pCVlXVMx1afUQY6x5GLiBxa50Fgr2nGiYtKSqlpm1nQE3PNeUe15E6dqcZDVMiyRz0dwO9pPQEC+GmdZuchiloqqaMagFL2MtHMop4a6oPJgOtJJJWRTKCMYmqoZBiHH6CMIoYi8mgyDYRZXafjtrdVwYmDjubnpNk0UUYxhWRTRzVZTAzmbjDGUMKetoTEfoYxnDhrGHEMI92Mxo+PAH5chHW7vFatqaKBOhJI7vHsBRmc2hN/A+wlh1KKwBgaqQcgi4mMYpICUDJoWFZr/hkXYcSQQDqjMcaQw1by2UkLLV320d8hkcElEAhQVlbGsGHDuOGGG2hqaurRfm63m8rKyh4/pd3c3Ex2djaTJ08+nuYeUWVl6+eK6dOn4/F4eO+998jObs3hdODAAc466yy2bNnCzp07KSgooKCggMcee4xdu3bxhz/8Ab/fj91+6KUlPR4PY8eO5R//+AfXXXed/qafYMYYtm7dygsvvMADDzyA1+vl3XffDc5AqKys5NFHH6WyshK/3x/MC3LmmWfy0EMPUVdXB0BycnKX2QnGGF555RXi4uKYP39+lzwLMrSUlZURCLQuSfuNb3yDYcOGUVZWRmlpKYmJibzyyiuce+65/dxKkZ5zOBxkZmaSmZkZ/Nmtqqpizpw57Nq1q59bJ9K7NFNigDqeJY467tubgwid21hnqlnLO0DruvmtQ/q+kHXsLaxuE/SOZDxjrCkh23zGh5cm3IRht1o7l62DJtvIZwceIslgLBFE48SNDy+/X34HZ5xxRpfOaHfBExu2Iw4ml5sSisjHj49wPFRwIDg42X6ebsJbl71pO7dKSgkjgrmcG2z3obQYLyt5nUzGMto6pdsyJ9tAUHc/++3X4HABCWMM1VRQSyU1VFFDBfXUABBPMllMIM4a1juNliHPGEMVZdRQgZdmoDVYGUM8kVZMP7dO5PgYY8hmCwXsIpNxjOaULsHYnv4tUp+x9+kaS0/89re/5Ze//CUxMTFERUVRW1tLQ0NDcDmb9mVjOi5v0+6jjz5i/vyDs3iNMVRUVFBdXU1mZmZwcL+iooIvfvGLrFy5ki984Qt89atfZdy4cdjtdsrLy0lMTGTq1KmHbacxhj179pCenn7YoEFTUxOPP/44L7/8MjExMWRmZnLvvfcG33c6nWRlZZGamorH48GyLEpLS1m/fj033ngjDz744BGv2bPPPsvVV1/NJ598ctg8FHJktbW1rFy5kk2bNvHJJ5+wbt06iouLiYqK4tprr+VnP/sZI0YcfqlbkUNpaGhg2bJl5ObmUlpaSlxcHBMmTOCcc85h2DB93pPBraqqigsuuIBdu3bx6KOP8qUvfemYj6U+owx0Ckr0kZ4ECg414Nqaq2A3ADEkkEQaiaTgIQrLsqg1VeQlbcZXCh4iCSOCcDwECLCPfNIZTbKV3uW47e0oKysjJiYGp7PnT3t319aA8bOc1mSZWUzA17a2vg07FhbNNNFALTVUYDBkMLb1HLDaVrhuTcbbQH3I2vwWFpHEYGHhbTvKSMZTSxXl7O/SjnAiSCAFGzbsOHARhpswIonGjYdi8tnFZ4BFEmlty/F4sWEnmjgSSMFjHUyo5jVNVFNBJQeooZImGmimsUtwxYmLaOKIJ5l0Rh0xINHuc7OBYvI5i8u7PJU1FAMSxxp0OJwqU8bnfEo9tcGfl2jiiSGBRFJwWZq6KyLSmc+00EQDe8llLzmMYxo7zaaQMufZrjqqv0XqM/Y+XeP+5Xa78Xpbc1BdeeWVXH755Zx77rkkJSUBsHTpUu69915mz57NmDFjGDlyJGlpaeTm5vLmm29y//33HzJngTGG/fv3d1nn/lisXr2a008/nZkzZ3L++edTX1+P3W4nIiICn89Hfn4+mzZtYufOnQwbNozbbruN2NhYLMviwIEDFBUVkZOTw+7du0PW5o+Ojmby5Mk0NDSwd29rrqWf//znPPzww+zevbtLO84++2wmT56M2+0mJiaG1NRUMjIygsGKX/7ylzz22GOkp6dz2WWX0dTURGVlJSNGjGDOnDl84QtfICoqCmid/bF7925Wr17NBx98wNatWyksLKS0tDSkTsuyGDlyJHPnzuUrX/kKl112WY9mPjQ1NTFp0iROO+00nn322eO6/iez++67j1/96ldUV1cTExPDrFmzmDNnDosWLeLMM8/UkjoiIp0YYygtLSU3N5ebbrqJvLw83n33XWbOnHlcx1WfUQY6BSV6SefB1YAJ4KMFB87g04ft25y4uu0o+40fC4udbKSIvG7rWcRleGlmDf85ZFtiSCCBZFrw4iESD1G04KWeGsopoYZK3IQzjmkhwYtjWQ5pr8lhBxtJI4so4nDiIp4knNbB5Dw+00IBO9lDdjDwYMOGm3DC8OAhinAiCCMcJ24aqaOGSiwsHDiJYxiJVmrbNfTTQB0teHHhxkcLe8imntrgTA0vTV0CCKlk4iGS/RRh0RpQ8NFCLdUYAsSQgB8/LTTRTOt0dzfhxJJAOBG42/ILtOcnCCO8x0GIjqpNOVv5GDtO5lpdp5kOpaDEsQYcjiRgAiznRQCSSGMys7Fbh37STkTkZGWMoZlGaqkin51UUw60Bv/HM4PPzafHXYf6jL1P1/j41dXV4fP5iImJCUmQ2tjYSFxcXJd+uTGG+vr6YGLa7px++umsWrWKn/zkJyxduvSQdd98882Eh4cTCAQ45ZRTSEtLIz8/n88++4yXX36ZwsJCFi5cyKOPPsrYsWOP6zwvuugi1q5dy09+8hPS0tJISUnh/PPPD5mRkJOTw0033cQHH3xAY2Mj0Louf1paGllZWYwdO5asrCyGDx+Ox+Ph008/ZefOnURFRREXF8c3vvENxowZA7Q+3blr1y6MMSQmJvLpp5/y0EMPUVZWFgw2lJWVBeu2LIvIyEh+/vOfk5+fz4cffkhMTAwxMTHk5eWxe/du4uPjmTx5MuXl5ezdu5eamhosy2LatGnMmjWLjIwMhg8fTnJyMsOGDWP48OGkpqYe1cNW0JqY9KGHHuLWW2/l5z//OXfddddxXfuT1fLly4NLMj344IPccMMNWgpLRKQbXq+X3bt3s3LlSn71q19RUlICQFpaGq+//jrTpk077jrUZ5SBTkGJQ+g8gHqkweGO5VtM64B/DVXUUkktVdRTi2lbxsiFGwO0tC0BYmERRgROnBgMAfw004SvbU1nOw4cOLFjx8KGweClCQsbHiKgbaZBC8348WPajmJhI9CWE8GFGwcuGqkLDtA7cRFLIomkUkYxB9hHGqMAqKKMSKIZxnCiiMXVlqj6SJ1KYwx72N22JnVzW91hjGMqyYzo9kNegAA2bL3WYTWm9XrVUUMDtcSR1CVJdTu/8bGPfKoow4ELF67gU/dheI67jT7TQh6fU08tTTRSRxXRxHEKc4KzM4ZSIKKj3gpK+IyPjXxINRUAnMli5XgQEemk0hxgC+vwtgXaI4gmk/F4iMBDJB+YV09IPSdjn7Gv6Rr3nDGGwsJCtmzZwoYNG9iwYQOfffYZeXmtD/s4nU6Sk5OpqamhpqZ1yceoqChGjhyJy+XC7/dTW1vLvn37aGxsxLIsYmNjiYuLw+1243Q6qa2tZf/+/cEE0u25HMrLy2lpacHr9WKMwbIsmpubsdvtjBgxAmMMBQUFwMEn+y+++GJmzpzJkiVLqKys5IYbbmDbtm3s2rWLc889l0svvZRRo0aRnJxMRETEEc+/oqKCH/3oR7z44ovU17fmQVq4cCF//OMfmTFjRpfygUCAlpaWXn2S3ev1kp+fz5YtWygvL+fLX/4ysbGx3Zbds2cP999/P/v37yc+Pp7U1FRmzpzJaaedRlxc3HG35bPPPuNPf/oThYWFwRkhN954I0uXLh2Qyb4Hg40bNwaf7L3gggt46623+rlFIiIDSyAQ4Pe//z133nlncOblV77yFa655hoyMjIYP348Hk/XfKPHQn1GGehO+qDEoQZKjTHUUU0DdXhpYhjDcROOlybq25YgqqUqGAQI4KcFL16agx/4LWxEEkMUsUQSQxjhtOClmUbAwk0YTlw0tw1P+/FhYcNqe89FOGBowUsLXny04MPbNojfGqCgLQTRGmgwBDDYsNoWLnISTxJxDAsO0gZMgCbqceIOmb3QGkzYRT47ceAijkRqqaa2Q7JqO3ZiSCCKWAwGP36aaaSROrw0Y2FrzdOAC3fbkkkWVnCWx3hmMMIa3Ru3ccDzmibKKCGPz/HSTBzDcBNGDImkktFtsGOoBifg+AIUxpi2cE45lRyglCL8+IgkhlFMIslKO4EtFREZ3OpMNfnspIQ9xJLISMYTQXRIoP1E/r0Zyn3GgeJkvMaNjY1s3LiRnJwcWlpa+OpXv4rNZmPPnj1s3bqVtWvXsnPnTnw+Hz6fj5qaGioqKti3b18w2BAbG8usWbOYPn06U6ZMITw8nNLSUkpKSoiNjSU5ORm32x1Mkuzz+XA4HHg8nmDAoa6ujvLyciorK6msrKSqqgqbzYbb7cbhcOD3+/H5fPj9/uCXy+UiLCyMzMxMLrroImbOnBl8ir+2tpbi4mIyMjJCBsFLS0v56U9/yjPPPMOsWbMYN24cb7/9NkVFRcEyw4cP54wzzmDUqFHU19dTW1tLQUEB2dnZNDQ04Ha7CQsLC84eSE5OprCwkNdeew1oHfA/Gdf0N8awc+dOnnrqKf7whz8wfPhwZs6cSVpaGldffTVz587t7yYOKl6vl40bN7J69Wreeust3nnnHRwOB+eccw4PPPAAo0efnJ/9REQ68/v9vPbaa9x99918+umn3HrrrSxevJhJkyaRmJjYK3WejH1GGVxOuqBETwdDO+ZxANqCBQSTNttxEEVsMMGxDTtOXDhxEUEUkcTgIapLosiBrv1JrnbNppFG6oOBkyrKqaMaG3bs2HERhodIXITROuchEAy8NNNIEw1ty0ZFMYtFuK2h/dSRz7RQRzX11NBIQ1sWjUrq25JjJ5LKOKaF5Kw4UQZDEONogxHGmLZrWEUtVdRQSQ0VtND6REEE0SSR1rocVy9cUxGRwcoYQw5byWcnbsLJYgLDyeq2X6KgxOBysl3jhoYGZs2axY4dO4DWWQUej4eGhgbaP8YMHz6cKVOm4Ha7sdvtREdHEx8fT3JyMpMnT+aUU04hMzNz0C0j07Ffboxhx44d7Nu3j5KSEjZv3szKlSspLi4mIiKCyMhIMjIyGD16NFFRUXi9XhobGyktLWXfvn0UFhaSn59PY2Mj3/nOd3j44Yex2QbX55SjYYyhqKiIrVu3smPHDvbs2UNubi5r1qyhtLSUsLAwfvSjH3HHHXcQHh7e380dFJqamti5cyebNm3i008/5ZNPPmHjxo00NzcTFhbG3Llz+a//+i+uvPJKYmJi+ru5IiIDRlVVVXBJxdNPP5177rmHM844o9frPdn6jDL4DOqgRE8GOI82qTS05nJYw39oooEFXIwDJ/vIB1qTKIcTQQTRg+6DTX/xmRbsOIbk9fKaZgrJpppy6qkJ5p8AgjkyIokmjmHEMowwq28+9Ay0AEXH37eACQSDVs000UwjXpoJ4CdAIJj0vD0Q1h4IdOImmthgAusY4kNm+4iIyEH7TAHb+YQxnEIG4w75kMSJ/nsxUPuMQ8nJdI2NMWzfvp1TTjmFsWPHsmHDBvbt28dzzz1HSkoKI0eOZPz48aSnpx/5YBLMjREZOTQf5Ni8eTN//vOf2bx5Mzt27AjOkmmfqZKRkcFpp53GokWLmD9//pC9Dkejvr6ewsJC9u3bFwxeVVdX4/V6aW5upqysjJKSkmBQq33oYOzYsZx66qnMmTOHefPmMX36dFwu9ctFRLrzpS99ieXLl7Ns2TIWLlzYZ/WeTH1GGZyOPjPvANNivJSzn2jiun1S+lzrSvz4DrnGfOtSMPVUUU45JVSwP/gUdisLh+Ukg+NLNHcyGyzr+zeYOrawFlvb4letS1T58OMjQACrbU5Ma16PAIYATTRiAfGkkMpIIogmkmgiiMLWj8mWjzYnSsf9elK2J8dvL2OMoZYqCsmmkgM00xiSeNyGDRdh2LAHr72bMDxEkUYWEUQRQUzrcmBDMLAlItIbiskngWRGWhP6uylyEtm6dSvZ2dksWrSo2zX/m5qa8Pv9h8yH4PV6+eyzz/jwww954403WLVqVXC95ejoaCIjIxk3bhy//OUve/U8hqr2xNKDwbPPPsvPfvazYBJtr9dLXV0dtbW1wWWxXC4XlmUFB9Bzc3MZOXIkixYt4oorrmDixIlMmTKFzMzMIT0r5Gi0tLSwbNkyHn74YTZv3kxpaWnI+3FxccTHx+NyuXC73SQkJDBixAjmzJnD+PHjmTBhAlOmTNHglohID1VXV/Piiy/y0EMP9WlAQmQwOKqgxOKYrx92gLmvns7uOCB6gH1sZz0AUSYWF+623As+vDQHky0nmGRSyMSPDx8tNNFAPTXUUR0MQkQRSzqj8BCFAydhePrsyXbpfxYWtVR12d6+RBC0Lt9lMG3hCRtOXAwnC5fVewkBT4TuggiHmi10LPkeOu5jjKGeWqo4QCVlVHGAZpoIw0MSaXiIJIwIwgjHTXiPEqiLiMjRMQSoo5Z6U0OEdejBo2P5N3+gzcaTgeO2227jzTffxOl0smjRIqB1yYKqqipKS0upqanB7XZz4403cuqpp1JVVUVFRQW7d+9m+/btbN26NbgUzFlnncWSJUsYPnw4cXFxnHLKKf18dtKX6uvryc/PJz8/P2T7+eefz8yZM4NJxAOBAG63G5fLxcSJE7nmmmuCOTukNRD48ccf8+GHH/Lhhx+yevVq6uvrOeOMM/j+979PVlYWmZmZpKWlkZqa2qME6iIi0nNerxfLsnj11Ve59tprT1gSa5Gh4KiWbzqTxccVlDie5LaHUm9qWcN/SGEEBgjgx4ETB06cuHHTOlhcwG4a2tb1d+DETXjbE9jRxBBPNPEDfmBZel+tqaKIPJpppAUvdVTjowWAOZxLlBXbvw08Cj7jo4YKmmiggVoaqceOAw+ReIginqTjmsXSOgOikjpqqKeGBupooI5G6gngx8IiiljiGEYcw4gnedDlWBERGazqTDWbWQNYzOQM3ISfsADw4fp7mibe+wbyNf7d737Hz372M+6++24+/vhjwsLCiImJITY2lqSkJJKSksjLy+O+++6jpqYGp9NJbGwso0ePZuLEiUydOpW5c+cyY8YM3G71y09mxhief/55XnvtNcrLyykuLmbDhg0ATJgwgfXr1w+qAfTS0lJWrVpFUVERu3fvpqioiLS0NMaOHcvUqVNZsGABdvuxz7Kura3lk08+Yfv27Xz++efs3r2b7Oxs9uzZg9/vJzo6mgULFrBo0SIuvPBCpk6degLPTkREDufJJ5/k+uuv56tf/Sp/+ctfCAvrm1yrA7nPKAInOChxou0xu8lmK3bsOHHjwk0k0QxjOHEkYbNsGGNYx7vUU0MiqcSTRBzDiLRCk2sZ07oUz1DNbSDH54DZRx6fU0cNAfzdlpnKPJKstD5u2dEzxrCPfLLZEpwF5CYcD5H48dFAHT5asGEjkVRGcwoRVtRR1eEzPtazgrq2mSVhePAQhYdIwokgkhhiScBuDfoV4kREBq06U80GVuKlCattdp+bcCYwgxgr/piPq6BE/+qPa+z1erniiitYvnx5SIBhwYIFXH755UyZMgWAnTt3MnXqVCIjI7nqqqtYtGgRZ511FikpKSHHa25uJhAIEBampRmlq1/84he88MIL7N69m0N9VC0uLu7yczUQVVZWcscdd/DAAw8A4HK5GDVqFOnp6ezdu5fc3Fy8Xi8pKSl87Wtf49e//vVRD1Z99NFHXHrppVRVVeFyuRg3bhzjxo1j9OjRjBkzhtmzZzNlypTjCnqIiMjxefTRR7nhhhvw+/1ERkYSHx/PjBkz+Mc//kFU1NGNx/SU+uUy0A3ooMSH5jW8bcu+DGM4LTRTRTlNNOAmnNFMZrg1Er/xsY98SiikhgoMhgRSSCAZO462mROt8yOcuHDial2/Xk9tS5vNZg2lFDGOaa1JzAFf21Jframq4wfFz0uzaWILa6iinBQyyGIiYXiwd8hvYYyhiQb2s5e95GDHzmzODSlzJOWmhI2sYirzWn/POgUf2oOABhPMx6GZSCIivavOVNNAfTDvkY8WqqmgmIKQcuFEcLp10THVcaRZsfrw0/v64xobY4Jr8l944YWMGjWKoqIili9fTm1tLQsXLuSPf/wjM2bMID8/nz//+c+88cYb7NixA5fLxfXXX8/48eOJiooiKiqK2NhYEhMTSUxMJDY2FrfbrTX/BYBAIIDD4SA9PZ277rqL0aNH09jYSE1NDU1NTcybN48xY8YMimDWihUr+PKXv0xjYyN33nkn1157LYmJiSHBAb/fz/r163n66af561//yg9+8AOWLl16VPX84Ac/4I033uD1119n3LhxOByh/XKv10tjYyMtLS20tLQQFRU1aHKLiIgMRn6/nw8++ICamhq8Xi8tLS2UlJTw0ksv8dFHH4WUvf3227n77rt7pR3ql8tAN6CDEo2mnly2U0wBTlzEk0QksVRSSgWtSbk6L6njN37KKCaX7cFlZA7Hhh0nLqKIJYpYookjhgQNoJ5kNpmPKKOYCKLIYBxpVlaf1e0zPsrYRyyJhFnHtr6g3/jZz16y2QxYTGEOcdawI+5XZ6pZyzucwhxSrBE9rq89KBFDPBatgwiGAC14g1+dzWJRj9okIiJHx2/8ZLOFQrJDtltYhBGBhwjC8OAiDCcuYkkg+hhnSigo0f/6Kyjx/vvv89///d9s3LiRCRMmcN555xEXF8eTTz5Jfn4+TqczmJS63f79+3n44Yd58MEHqaiooKWl5ZB1OBwOwsLCSE9PZ9asWZx66qmcdtppzJw5k/Bw5Xg7WTQ1NRETE4PX62XRokX86U9/Ytq0aX1W/+7du/nss8+46KKLjnl5qJKSEu677z7+8Ic/cOaZZ/LPf/6T1NTUI+73m9/8hrvuuovy8vKj+t3+/ve/z1NPPcX06dOD2xoaGigrK6OsrIy6urqQ8vHx8ZSVlQ2KwI6IyGCTk5PD17/+dVavXh2yPSIigjFjxjBmzBjS0tJISkoiISGByy+/nOTk5F5pi/rlMtAN6KBEsH5TSSlFVLCfBupw4sKBExs2JjMbj3XoJz0CJhBMbt1xwDSAv+0rgJcmaqmihsqQpNczOEPBiZOEz/gop4RiCiinhARSSCQFD1G4Os6wOYrZBNC6LJTVlha7PTm2HUfwq4oydrOZJhoASCKNKcw97IcEYwwH2EctVTTRQCP1wdwXwxjOBGbitg497dsYQwteaqmilkqy2UoWExltTe7xeRlj2MMuaqkObmtdGsQZvF72tt/RAAG2so4wPIxiMqlk6EOQiMgJlGO2UsAuxjCFZEZgC/5nP6H/3vYkwbU+/PS+/rzGfr+fZcuW8dZbb/Huu+9SV1dHfHw8fr+fWKq5RQAAKh5JREFUhQsX8uijjx72Z665uZna2lqqqqooKyujvLycyspKmpubaW5upqmpidzcXD799FM2bdpEU1MTDoeD733vezzwwAPqP5wk9uzZw+uvv86f/vQnysrK+OIXv8h5553HiBEjSEhIICEhgbi4uKNajqipqYnnn3+exMREnE5nMAgWGRlJREQELpeLRx55hHvuuYfm5maio6P57W9/yw9+8IPDHre2tpannnqK3Nxc8vLyyMvLY9OmTTidTm6//XZ++tOfdpm50JHf76egoIANGzbwyCOP8Pbbb7NhwwZmzJjR43MrLy/nrrvuorr6YL88LCwsOBspISEBj8eD0+nk/fff5/777+e8885jyZIlzJw5s8f1iIjI4QUCAWbMmEFtbS2PPvooU6dOxel04nQ6CQ8/cfndekr9chnoBkVQoi8YY2iknhIKyWUbAKOZTJY1sZ9bJn0pYAIUks0B9lFNOYbQX4/2BOkeoogihhgSWpd76uaPS8AEWM6LR6wzmjgmMJOtrCNAgNO56LB/rA6YfXxGa9S9dWmpODxEkcwIIqwojDH4aMFLE800BQMXrQmv62igNhh8s+MgiljGcAqxVuLRXCqAkLpa8LYF/1pooZkWmvHixUsz5RQTIADAqZx5THWJiEgoYwyFZLObzaQzmvHW9F6tT0GJgeFkuMYtLS2sX7+ev/3tbzzxxBMAbN26lcmTe/4AhQx+e/bs4f777+f1119nx44dIe85HA7GjBnD+PHjmTBhAqeeeipz584lPT2922O9/fbbXHDBBUes84YbbuArX/kKZ511FjfffDN/+tOfDlv+O9/5Do899hgACxYsCLblK1/5CrGxsfj9fg4cOEBJSQlFRUUUFBSQn59Pfn4+O3fuZNeuXTQ1NQGQlpbG/PnzeeSRR4iJiTlctd3y+/3s37+fsrIyKisrg19lZWUcOHCAsrIySkpKePPNN4P7BAIBBftERE6Aqqoqvvvd7/L888/z3nvvcfbZZ/d3k06KPqMMbkMqKFFsCtjGJ8HX8SRhxxEcKPXhxY+PCKKIIZFwPNRTSz011FGNl2YAIogmlUzSGTWgz1d6l8/4aKaxbXZNMy14g4P69dTSQC0Ggx07EcQQSTSRxOAmDAdO7DgppYgSCoI/W0cylfkkWcMPW6bSHGAza0KWSLI6PBfrw4dpCwC0cxFGOB7CicRDFBFEEUk0HqJCPogYY2imkTqqCRAIBmUMrcGHZhppppEmGmiikWYa8HezRJoNWzA5vRMX4UQQ0VZfAsn68CMicgLsM/lsZz0AWUwkg7E4LVev1NWTgATow09fGCzXeOHChaxcuRKApKQk5s+fj9/vp7KykoqKCiorKzHGMHv2bE4//XTsdjvbt29n27ZtbNmyhYaGBlwuF2eccQY33ngjV1xxhfoPJ7HS0lJKS0spLy+nvLyc4uJidu3axc6dO9m+fTuFhYUAJCcnM2XKFKZMmcLEiRODeUvsdjv/+7//y5tvvonff/jlfQESExPZvn07w4YdfunR3/72t9x+++3BhNw2mw2Xy4Xb7cZut1NVVUUgcLBf7nA4yMjIYOTIkYwbN44JEyYwfvx4pk2b1mWJJ5/Px7Zt28jLyyMQCAS/2gMde/fuZe/evRQWFlJYWEhRURE+n69LG2NiYkhMTGTYsGEMGzaM8ePHM2bMGM444wwmTZp0xGshIiJH9sUvfpFly5YB8Pjjj3Pdddf1e76swdJnlJPXkApKlJkSNrGq2/diiCeWRBw4qaWaasrw0kw4kcEB2hgSiCZeSzZJj/iNjxoqqaYiGNiqpyY4I6Cj9twlrYsbhbWt8R2JCzc27PhowYWbYUcISHTUaOqppgJf25JkzTTRTGMwKNFx+Q4gmPS9/bsTF2F4CMODAyd5bKeUosMGUNyEB7/CCA/u3x58cODCibNL4msRETnxWoyXInKppoIKSnHhZjSTSSIdm3ViPwQpKDFwDJZr/OUvf5nnnuv6cxMTE8OCBQs49dRT8fl8rFmzhnXr1gEwceJEJk2axNSpU5k/fz4zZ87E7Va/XI6suLiYtWvX8umnn7Jt2za2bt1KTk4O3X3UjYmJIS4ujuTkZFJTUxk7diyjR48mMTExGDhbsGBBj2fm+P1+Nm3aFAymlZaWUlRURElJCXV1dRhjcLvdwS+bzUZUVBTR0dHExMQQHR1NSkoKI0aMICMjg4qKCm677TZWrVpFY2Njt3W2519JT08nLS0tuG96ejpJSUnExcURFxdHbGwsTufA/fwuIjJUbNu2jSeeeIK1a9eyatUqLrroIu644w7mzp3bb20aLH1GOXkNqaBEO2MMDdRSSA4H2EczrZ25cCKZx3nYLDvGGAzmhH9ol5ObMSYkh4mvLVzQPrug/Xs9tfhoTfZox9E2yyKWWBJa1wPv5ufSb/zUU00t1W0BkNq2GQv1IYGQcCJwE96Wy6L9iUKLAL62/1qCXx3ZcTCC0cSQQBSx2HG07WkRnIuh3xcRkQGp0dTzOZ9SQSkOnMSTRDxJxJJ4yGUGe6qnAQnQh5++MNiucXNzMytXruSPf/wjq1atCq5733FpHL/fj2VZ/f5EoQwtPp+P6upqqqqqqKqqorKykv379wdnFhQWFpKXl8fOnTuDSdhTU1OZOnUqU6dOZfHixZx++undHrusrIzPPvuMzZs3s3nzZrKzsykoKKCoqCg4MyIsLIyxY8eSkJCAzWYLfgUCAWpra6mpqaG6uprq6mrq6+tDjj9p0iS+9a1vMWfOHMaPH4/D4Qg5hsfj0cwhEZEB6tVXX+XHP/4xOTk5jBo1ivPPP5+zzz6b+fPnk5aW1mftGGx9Rjn5DMmgRGc+08KnfEgtlczlPCKto1+jU+REOrhMUusMi45fbsIZwxSiiaWMEqopp45qGqgL7u8hkgiiCcNDOBGE4cFDJOFEYu9hMu6ACYQES2JJJMzy9NYpi4hIH6gz1ZRSRDn7qaGibZlBBzHEE00c0cQf1d+LowlIgD789IXBfI2NMezatYsJEyYwevRosrOz+7tJIrS0tJCdnc2WLVvYsmULmzdv5tNPP6WoqIiFCxfyxz/+kZqaGt566y02bNjA5s2bKSkpAVoDD5MnT2bChAlkZmYGv8aNG0dGRkaPk3HX1NRQWFjInj17qK2tZfHixZolJCIyiAUCAd5++21ee+01/vOf/wT7PBkZGcyePZvTTjuNmTNnMmbMGEaMGNHjvxdHYzD3GeXkcFIEJdpzTYxlKpnWuP5ujsgh1ZlqctuWUYLW3AzRxBNFLJHEtH1Fa3kkERE5Ir/xUU0F1ZRTQyU1VNBMU/B9N2GEE8koJhFvJXXZ/2gDEqAPP31hsF/jxYsX8+6777Jy5UpmzpzZ380R6VYgEODVV1/ll7/8Jdu2bQNac6PMnTuXqVOnMmXKFKZNm8aYMWN6ZSBJRESGluLiYtasWcOaNWv45JNPWL9+fXCWnNPpJDMzk+nTp/PAAw+QnJx8Quoc7H1GGfqOKihxGmcHk9ZaloUxhjqqaaKBGBKCuRh8poUKSmmkPmSpGB8tWNiIJYE4hhFJTJ9MO91kVlFGCTbsbWvftybgTSSF4YzUAK8MOGWmBEOgNVm7fj5FROQEaTZNNFJHA3U0UkcFpdRQRTSxONvyAzlxceM93+L0009nwYIFwb5afX09+/fvp7y8nJSUFNLS0rost6MPP72v/RovX76cyZMnk5TUGlBqbm5m1apVOBwO5s2bh8vVmvS8oKCA5cuXU1paGlwqpqqqiurqaoYPH87ChQs588wzSU9P7/W2e73e4NPfsbGxDBs2jMTERNLT0/nWt77FBRdcoCVpZEBpbGzkueeeY9KkScycOVNLjImIyAnh9/vJy8sjJycn+PX000/j9/uZOHEiCQkJJCYmkpCQQHJyMosXL2bkyJFA68zT9iUJGxsbGTlyJPHx8V3qUL9cBrqjCkq0s2EnkuhgYt12McTjxE0F+wkQCCbU7fjlx0cNFcH3W5cTiG9LlhuGqy1g4CbshA3GNpp6qiinhWa8NNNCM000UM5+LKyQD+HOYMJeR3At/YMr87f+XwTRJFu9/8FNREREpDcFjJ8CdtFAHS14GTtvJOXl5ezfv5/q6mpGjhyJw+EIJmztyO12M2rUKEaPHs2YMWMYM2YM6enpfPGLX9SHn17UuV+elJTEmDFj+Oyzz4JP3EVGRnL22WdTXFzMJ598gmVZxMbGEhMTE/weHR1Nbm5u8CnwESNGMG/ePGbMmEFqairJyckkJSUFv5+oZLkfffQRO3fupKysjAMHDnDgwAE+++wzNm3aRGRkJAkJCcGv+Ph4EhISCA8Px2azYbfbQ77bbDYWL17MtGnTTkjbRERERPpLbm4uf/7znyktLaWsrIzy8nLKy8spLi7G6/UyefJkqqqq2L9/fzAXUrvY2FjGjBkT0i+fNGkSc+bMUb9cBqyjCkqMZSqRRAfXwXfgJJFUPERSQSlllNBCM8MYThJphFsR3R7Pb/xUUx6ypIC3w3IC7Zy48RBBOJFtyXvDugQ5HG0BBD8+mmnCS1Pwe4AADhzYu/ly4CBAIBisaE1K7KWl7cvXFrrw4+umXS4WWZcdw+UWERERGXg6L9UUCARYsWIFL774Ih6Ph+TkZFJSUkhOTiY+Pp59+/aFPNmVk5NDbm4umZmZZGdn68NPL2rvlz///PMYY9i6dSu7du1iypQpXHLJJfj9ft58803efvttEhISuOqqq7j44osPeT8OHDjAypUrWbNmDWvXrmXLli3BZNTtbDYbI0aMCH7IzcrKIj4+ntjY2JBgR2xsLOHh4ZSVlVFcXExJSQnFxcWUlpbidDqJiIggMjIy+NX+OiYmhry8PLZt20Z5eTkVFRUh39vX2/f5uvbLb731Vu69995eudYiIiIi/a2+vp5///vfrFu3jmHDhgX75CkpKbhcLvLy8sjNzSUnJ4fs7GxycnLYu3cvt9xyC3/605/UL5cBa8DklDDG4KUZL03B743U00h92xID9bTQjOGIzQVaAxo2bPjx4cd3yP3sONqCHh5s2GmmgSYaaaaxyz4uwnATRhYTSbLSjvucRURERPrTseSNOBS/309BQQGjR4/Wh59e1BdT8ZuamigtLWX//v3s37+fffv2kZubG/ygm5eX1yVwcSgOh4OkpCQCgQB1dXVdZtx0lJqaSlZWFiNHjqS+vp69e/dSWFhIaWlpSDm3201qaiqjRo3i0UcfJSsr67jOV0RERGQoaWxs5MCBA2RmZqpfLgPWgFms3rIs3G2D/odijCGAn5ZgjgpvMFeFHQduwnARjgs3NssWsp8hgK8tQOHHhw8fzTS0BT4agvkvwogglkTC8OAmvO0rrDXIYWkNURERERncTmQgoiO73U5iYmKvHFv6VlhYGBkZGWRkZByyjN/vp7a2Npijoj1PRX19PYmJiaSmppKSkkJ8fHzIOvyBQIDGxsZggKKuro7Kykry8/PJy8sjLy+PgoICIiIimDVrFosXLyY9PZ309HSGDx9OamoqcXFxyj0hIiIicgjh4eHExsb2dzNEDmvABCV6wrKs4PJLEH5U+1nYcWEH3B3eSTjRTRQREREZcHorECEnL7vdHlyyKTMzs8f72Ww2IiIiiIiIIDk5uRdbKCIiIiIiA9WgCkqIiIiIyOEpACEiIiIiIiIDmYISIiIiIoOMAg8iIiIiIiIyWCkoISIiIjKAKOAgIiIiIiIiQ5mCEiIiIiJHSYEDERERERERkWMz4IIS+pA/eJ1nu6q/myAiIr1Mf6dFRERERERE5HgcVVDiH4UPEB0d3VttAaCmpqZXjy+954Wqx/q7CSetxTFf7+8miPSpZdVP9ncTTlr6Oy2Ho5+PvqNrLSIiIiKHor6iDHQ9Ckq4XC5SUlIYMWJEb7dHRETkiGJiYvq7CSJyCCkpKbhcrv5uxpClfrmIiIiI9IT65TKQWcYY05OCTU1NeL3e3m6PiIiIiAxiLpeLsLCw/m7GkKZ+uYiIiIgcifrlMpD1OCghIiIiIiIiIiIiIiJyPGz93QARERERERERERERETk5KCghIiIiIiIiIiIiIiJ9QkEJERERERERERERERHpEwpKiIiIiIiIiIiIiIhIn1BQQkRERERERERERERE+oSCEiIiIiIiIiIiIiIi0icUlBARERERERERERERkT6hoISIiIiIiIiIiIiIiPQJBSVERERERERERERERKRPKCghIiIiIiIiIiIiIiJ9QkEJERERERERERERERHpEwpKiIiIiIiIiIiIiIhIn1BQQkRERERERERERERE+oSCEiIiIiIiIiIiIiIi0icc/d2AY9XU1ITX6+3vZoiIiIj0K5fLRVhYWH83Q0RERERERKRHBmVQoqmpiZjwOLw09XdTRERERPpVSkoKeXl5CkyIiIiIiIjIoDAogxJerxcvTSzgYhyWO7jdslnt/9PptXVw507bLFuHFazay7Vvs7rub7Udu/NxQuvovH+Hxgfr6Lx/h3Z0afeRz8MEj9tNXd20sUv5btpqOm/rXFd373U+HmA6lem2Dtsh6uxmf9O5bgheD9PpkpmOZazuy3RbR3dlbKHbupxXR13KdFdXd21s32Ydscwx19GTNh6prsPtf5h29KiN3bT1qN7rruzh6rDMUbf14HdzsEznhnV7zcwR29i5zOH2t7ppR9djd33PskJba3Wzf+djdyzTpd5ujnvw18OE7tPh/22djt1dHZ3L2DhcHSZkn+62hezf+b1u9g/W3+l1d2U61xFaJtDpeB3eC5ZvLWPvpq0H9299baf9nANd2nFw/27eI9Cp7MEy7W2yB+tqaw8HHdwW2ubD1dWxDlvnOtrb06GOg20MhLy2d7yenY598DgHy9g7t/Uw71md2hx6jibktT3kvoSeV/t52Dv8vNvbfnoOvnfwTVvwvdDvoWVsnd4LfV1TGyBzVj5er1dBCRERERERERkUBmVQop0DJw7LGXxtdRrg7/y6bWPId6vb9zoFFWxWhyLHEpTodjSu+zoPd+w+CUocuUy/ByW6G9AdIEGJngy093tQoif7H6ns4fbvyWD+4drYkzo6OFQdPWornLigROe2dduOARaU6Pz6MMfuLmBwuOMc/PXoecDhqIMShyrTC0GJzoGG4w1KhAYcjiYoETowbjuBQYkuAYNOA/fdbescOOiurp4EJToGHIKD+G03uP11aFCifVtomdDAQ/t7Xa9He9Cga+DhoKMJStiPMyhxsIzVTZlDBSWUFkxEREREREQGJ32iFRERERERERERERGRPqGghIiIiIiIiIiIiIiI9AkFJUREREREREREREREpE8oKCEiIiIiIiIiIiIiIn1CQQkREREREREREREREekTCkqIiIiIiIiIiIiIiEifUFBCRERERERERERERET6hIISIiIiIiIiIiIiIiLSJxSUEBERERERERERERGRPqGghIiIiIiIiIiIiIiI9AkFJUREREREREREREREpE8oKCEiIiIiIiIiIiIiIn1CQQkREREREREREREREekTCkqIiIiIiIiIiIiIiEifUFBCRERERERERERERET6hIISIiIiIiIiIiIiIiLSJxSUEBERERERERERERGRPqGghIiIiIiIiIiIiIiI9AkFJUREREREREREREREpE8oKCEiIiIiIiIiIiIiIn1CQQkREREREREREREREekTCkqIiIiIiIiIiIiIiEifUFBCRERERERERERERET6hIISIiIiIiIiIiIiIiLSJxSUEBERERERERERERGRPuHo7wYcDx8tYA7GVSxjtf2frdNr6+BOnbZZpmNcpu294La214GD+1tWp/esTt871H/wvY5VdGpTsEw37ThU2Y7n0bbNtL9nuqmrmzZ2Kd9NW4NlAqFlTMd2WJ3es4W+7tjUw9Zh6/S621tmhTQ55LrarE5lO+0b0v6u+3epo7synW59l/PqqEuZ7urqro3t26wjljnmOnrSxiPVdbj9D9OOHrWxm7Ye1XvdlT1cHZY56rYe/H7wF67jr163dXYsf5g2di5zuP2tbtrR9dhd37Os0NZa3ezf+dgdy3Spt5vjHvz1MKH7dPh/0+nY3dXRuYyhax2BTmVsIccJ3WbjMO91s3/7/1udXndXpnMdoWUCnY7X4b1g+dYy9m7aenD/1td22s850KGM6bR/N+8R6FT2YJn2NtmDdbW1h4MObgtt8+Hq6liHrXMd7e3pUMfBNgZCXts7Xs9Oxz54nINl7J3bepj3rE5tDj1HE/LaHnJfQs+r/TzsHX7e7W0/PQffO/imLfhe6PfQMnR6L7TOmtqDbRYREREREREZDAZlUMIYQ2RkJKvq3ggdCfT3W5NERERE+kVkZCTGdAmNioiIiIiIiAxIgzIoYVkWdXV1FBYWEh0d3d/NkeNUU1PDiBEjdD+HCN3PoUX3c+jRPR1a2u+n1d2sPREREREREZEBaFAGJdpFR0drQGUI0f0cWnQ/hxbdz6FH91RERERERERE+oMSXYuIiIiIiIiIiIiISJ9QUEJERERERERERERERPrEoAxKuN1u7rzzTtxud383RU4A3c+hRfdzaNH9HHp0T4cW3U8REREREREZbCxjjOnvRoiIiIiIiIiIiIiIyNA3KGdKiIiIiIiIiIiIiIjI4KOghIiIiIiIiIiIiIiI9AkFJUREREREREREREREpE8oKCEiIiIiIiIiIiIiIn3ihAclHnzwQbKysggLC2PWrFmsXLnysOU/+OADZs2aRVhYGKNGjeKhhx7qUuaFF15g0qRJuN1uJk2axEsvvXTU9RpjuOuuuxg+fDjh4eGceeaZbNu2LaRMc3MzP/zhD0lMTCQiIoLLLruMvXv3HsNVGDoG6/2sqKjghz/8IePHj8fj8ZCRkcHNN99MdXX1MV6JoWGw3s/OZS+66CIsy+Lll1/u+ckPUYP9nq5Zs4azzz6biIgIYmNjOfPMM2lsbDzKqzB0DOb7WVJSwrXXXktKSgoRERHMnDmT559//hiuwtAxUO/niy++yAUXXEBiYiKWZbFp06Yux1CfSERERERERHqNOYGeeeYZ43Q6zSOPPGK2b99ubrnlFhMREWEKCgq6LZ+bm2s8Ho+55ZZbzPbt280jjzxinE6nef7554NlVq9ebex2u/ntb39rPv/8c/Pb3/7WOBwOs3bt2qOqd8mSJSYqKsq88MILZsuWLeYrX/mKSU1NNTU1NcEyN9xwg0lLSzPvvPOO2bBhgznrrLPMtGnTjM/nO5GXadAYzPdzy5Yt5oorrjCvvPKKyc7ONu+9954ZO3as+dKXvtRLV2vgG8z3s6OlS5eaiy66yADmpZdeOnEXaBAa7Pd09erVJjo62txzzz1m69atZteuXea5554zTU1NvXC1Br7Bfj/PPfdcc9ppp5l169aZnJwcc/fddxubzWY2bNjQC1dr4BvI9/PJJ580v/rVr8wjjzxiALNx48Yu7VGfSERERERERHrLCQ1KzJ4929xwww0h2yZMmGB+9rOfdVv+tttuMxMmTAjZdv3115u5c+cGX3/5y182F154YUiZCy64wFx99dU9rjcQCJiUlBSzZMmS4PtNTU0mJibGPPTQQ8YYY6qqqozT6TTPPPNMsExRUZGx2WzmrbfeOuK5D0WD+X5259///rdxuVympaXlkGWGsqFwPzdt2mTS09NNcXGxghJm8N/TOXPmmNtvv70np3pSGOz3MyIiwjz55JMhx4mPjzePPvroIc95KBuo97OjvLy8boMS6hOJiIiIiIhIbzphyzd5vV4+/fRTzj///JDt559/PqtXr+52nzVr1nQpf8EFF7B+/XpaWloOW6b9mD2pNy8vj5KSkpAybrebRYsWBct8+umntLS0hJQZPnw4p5xyyiHbP5QN9vvZnerqaqKjo3E4HIc79SFpKNzPhoYGrrnmGh544AFSUlKO5vSHpMF+T0tLS1m3bh1JSUnMnz+f5ORkFi1axKpVq472UgwJg/1+AixYsIBnn32WiooKAoEAzzzzDM3NzZx55plHcSWGhoF8P3tCfSIRERERERHpTScsKFFWVobf7yc5OTlke3JyMiUlJd3uU1JS0m15n89HWVnZYcu0H7Mn9bZ/P1IZl8tFXFxcj9s/lA32+9lZeXk5d999N9dff/0hz3koGwr388c//jHz589n8eLFPTrnoW6w39Pc3FwA7rrrLr773e/y1ltvMXPmTM455xx2797ds4swhAz2+wnw7LPP4vP5SEhIwO12c/311/PSSy8xevToHl2DoWQg38+eUJ9IREREREREetMJf2TcsqyQ18aYLtuOVL7z9p4c80SV6awnZYayoXA/a2pquOSSS5g0aRJ33nnnIdt+Mhis9/OVV15h+fLlbNy48ZBtPVkN1nsaCAQAuP766/nmN78JwIwZM3jvvfd4/PHHueeeew55DkPZYL2fALfffjuVlZW8++67JCYm8vLLL3PVVVexcuVKpkyZcshzGMoG8v08Fid7n0hEREREREROjBM2UyIxMRG73d7lCbrS0tIuT+y1S0lJ6ba8w+EgISHhsGXaj9mTetuXejlSGa/XS2VlZY/bP5QN9vvZrra2lgsvvJDIyEheeuklnE7nEc99KBrs93P58uXk5OQQGxuLw+EILsH1pS996aRcGgYG/z1NTU0FYNKkSSFlJk6cyJ49ew5z5kPTYL+fOTk5PPDAAzz++OOcc845TJs2jTvvvJNTTz2Vv/zlLz2+DkPFQL6fPaE+kYiIiIiIiPSmExaUcLlczJo1i3feeSdk+zvvvMP8+fO73WfevHldyr/99tuceuqpwcHjQ5VpP2ZP6s3KyiIlJSWkjNfr5YMPPgiWmTVrFk6nM6RMcXExW7duPWT7h7LBfj+hdYbE+eefj8vl4pVXXiEsLOxoLsGQMtjv589+9jM2b97Mpk2bgl8A9913H3//+9+P5lIMGYP9no4cOZLhw4ezc+fOkOPs2rWLzMzMHl2DoWSw38+GhgYAbLbQboXdbg/OijmZDOT72RPqE4mIiIiIiEivOpFZs5955hnjdDrNY489ZrZv325+9KMfmYiICJOfn2+MMeZnP/uZufbaa4Plc3NzjcfjMT/+8Y/N9u3bzWOPPWacTqd5/vnng2U++ugjY7fbzZIlS8znn39ulixZYhwOh1m7dm2P6zXGmCVLlpiYmBjz4osvmi1btphrrrnGpKammpqammCZG264waSnp5t3333XbNiwwZx99tlm2rRpxufzncjLNGgM5vtZU1Nj5syZY6ZMmWKys7NNcXFx8Ev3c/Ddz+4A5qWXXjqBV2jwGez39L777jPR0dHmueeeM7t37za33367CQsLM9nZ2b152QaswXw/vV6vGTNmjDnjjDPMunXrTHZ2tvnDH/5gLMsyr7/+em9fugFpIN/P8vJys3HjRvP6668bwDzzzDNm48aNpri4OFhGfSIRERERERHpLSc0KGGMMX/5y19MZmamcblcZubMmeaDDz4IvnfdddeZRYsWhZRfsWKFmTFjhnG5XGbkyJHmr3/9a5djPvfcc2b8+PHG6XSaCRMmmBdeeOGo6jXGmEAgYO68806TkpJi3G63WbhwodmyZUtImcbGRnPTTTeZ+Ph4Ex4ebi699FKzZ8+e47gag99gvZ/vv/++Abr9ysvLO76LMogN1vvZHQUlWg32e3rPPfeY9PR04/F4zLx588zKlSuP8UoMDYP5fu7atctcccUVJikpyXg8HjN16lTz5JNPHsfVGPwG6v38+9//3u3fxzvvvDNYRn0iERERERER6S2WMW1ZFEVERERERERERERERHrRCcspISIiIiIiIiIiIiIicjgKSoiIiIiIiIiIiIiISJ9QUEJERERERERERERERPqEghIiIiIiIiIiIiIiItInFJQQEREREREREREREZE+oaCEiIiIiIiIiIiIiIj0CQUlRERERERERERERESkTygoISIiIiIiIiIiIiIifUJBCRGRXnDrrbdiWRZXXHEFfr+/v5sjIiIiIiIiIiIyICgoISJDWnZ2Nt/85jdJT0/H7XaTlZXFNddcw/r160PKNTY24vF42LFjx3HX+Zvf/IZHHnmEhx9+mDVr1nD99dd3KbNixQoWL15MamoqERERTJ8+naeeeqrb4z3xxBPMnTv3uNslIiIiIiIiIiLS3xSUEJEha/369cyaNYtdu3bx8MMPs337dl566SUmTJjAT37yk5Cy77zzDiNGjGDChAnHVeff/vY37r33Xt555x2+973v8eGHH/LOO+/w05/+NKTc6tWrmTp1Ki+88AKbN2/mW9/6Fl//+td59dVXuxzzlVdeYfHixcfVLhERERERERERkYHAMsaY/m6EiMixqK2t5YYbbuDll18mOjqa2267jWXLljF9+nTuu+8+pkyZQlhYGB9//DE2W2gMtqqqitjY2ODrb3/728THx/O///u/3HXXXbz88svcfPPN3HXXXVRUVHDttdfywAMPcO+997J06VICgQC33HILv/zlL4PHeP755/nhD3/Im2++yfTp04Pb9+zZwznnnMN3v/tdbrvttkOezyWXXEJycjKPP/54cFtTUxOJiYmsW7eOyZMn8+CDD3LfffdRWFhITEwMZ5xxBs8///zxX0wREREREREREZE+4OjvBoiIHKtbb72Vjz76iFdeeYXk5GTuuOMONmzYwPTp09m0aRPbtm3jX//6V5eABBASkAgEArz22mu88MILwW05OTm8+eabvPXWW+Tk5HDllVeSl5fHuHHj+OCDD1i9ejXf+ta3OOecc4JLK1155ZVceeWVXerKyMhg9+7dRzyf6upqJk6cGLLtvffeIyUlhcmTJ7N+/Xpuvvlm/vGPfzB//nwqKipYuXJlTy+XiIiIiIiIiIhIv1NQQkQGpdraWv7v//6Pf/3rX5xzzjkA/P3vf2f48OEAwSBAT5ZjWrt2LYFAgPnz5we3BQIBHn/8caKiopg0aRJnnXUWO3fu5I033sBmszF+/Hh+97vfsWLFihOS7+H555/nk08+4eGHHw7ZvmzZsuDSTXv27CEiIoJLL72UqKgoMjMzmTFjxnHXLSIiIiIiIiIi0leUU0JEBqXc3FxaWlqYPXt2cFtMTAzjx48HoH1lOsuyjnisZcuWcemll4bMqBg5ciRRUVHB18nJyUyaNCmkTHJyMqWlpcd9LitWrOAb3/gGjzzyCJMnTw5uN8bw6quvctlllwFw3nnnkZmZyahRo7j22mt56qmnaGhoOO76RURERERERERE+oqCEiIyKB0q6NC+fdy4cQB8/vnnRzxWd4mknU5nyGvLsrrdFggEjq7hnXzwwQd84QtfYOnSpXz9618Pee/jjz/G6/WyYMECAKKiotiwYQNPP/00qamp3HHHHUybNo2qqqrjaoOIiIiIiIiIiEhfUVBCRAal0aNH43Q6+fjjj4Pbampqgss2TZ8+nUmTJnHvvfd2GzhoH8jfvXs3+fn5nH/++X3S7o5WrFjBJZdcwpIlS/je977X5f1ly5ZxySWXYLfbg9scDgfnnnsuv//979m8eTP5+fksX768L5stIiIiIiIiIiJyzJRTQkQGpaioKK677jr+3//7f8THx5OUlMSdd96JzWbDsiwsy+Lvf/875557LgsXLuQXv/gFEyZMoK6ujldffZW3336bDz74gGXLlnHuuefi8Xj6tP3tAYlbbrmFL33pS5SUlADgcrmIj48HWmdw/OpXvwru89prr5Gbm8vChQuJi4vjjTfeIBAIBJesEhERERERERERGeg0U0JEBq2lS5cyb948Lr30Us4991xOP/10Jk6cSFhYGACzZ89m/fr1jB49mu9+97tMnDiRyy67jG3btvHHP/4RCE0k3ZeeeOIJGhoauOeee0hNTQ1+XXHFFQDk5OSQnZ3NBRdcENwnNjaWF198kbPPPpuJEyfy0EMP8fTTT4fkoRARERERERERERnILNO+ALuIyCBXX19PWloa9957L9/+9rePWL6srIzU1FQKCwtJSUnpgxb23NKlS3n33Xd54403+rspIiIiIiIiIiIiJ4yWbxKRQWvjxo3s2LGD2bNnU11dzf/8z/8A9HjmQ0VFBUuXLh1wAQmA9PR0fv7zn/d3M0RERERERERERE4ozZQQkUFr48aNfOc732Hnzp24XC5mzZrF0qVLmTJlSn83TURERERERERERLqhoISIiIiIiIiIiIiIiPQJJboWEREREREREREREZE+oaCEiIiIiIiIiIiIiIj0CQUlRERERERERERERESkTygoISIiIiIiIiIiIiIifUJBCRERERERERERERER6RMKSoiIiIiIiIiIiIiISJ9QUEJERERERERERERERPqEghIiIiIiIiIiIiIiItIn/j8j8bc0f1DJpAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "## Sample subplots with uxarray!\n", + "dc0 = ds0[\"GPP\"].mean('time').to_polycollection(projection=projection, override=True)\n", + "dc0.set_antialiased(False)\n", + "dc0.set_transform(transform)\n", + "dc0.set_clim(vmin=0, vmax=1e-4)\n", + "dc2 = ds0[\"GPP\"].mean('time').to_polycollection(projection=projection, override=True)\n", + "dc2.set_antialiased(False)\n", + "dc2.set_transform(transform)\n", + "dc2.set_clim(vmin=0, vmax=1e-4)\n", + "\n", + "dc1 = ds0[\"area\"].to_polycollection(projection=projection, override=True)\n", + "dc1.set_antialiased(False)\n", + "dc0.set_transform(transform)\n", + "\n", + "fig, axs = plt.subplots(\n", + " 2,\n", + " 2,\n", + " figsize=(16, 8),\n", + " facecolor=\"w\",\n", + " constrained_layout=True,\n", + " subplot_kw=dict(projection=projection),\n", + ")\n", + "axs=axs.flatten()\n", + "\n", + "axs[0].add_collection(dc0)\n", + "axs[0].set_title(ds0.GPP.attrs['long_name']) ;\n", + "\n", + "axs[1].add_collection(dc1)\n", + "axs[1].set_title(ds0.area.attrs['long_name']) ;\n", + "\n", + "axs[2].add_collection(dc2)\n", + "axs[2].set_title(ds0.GPP.attrs['long_name']) ;\n", + "\n", + "cbar1 = plt.colorbar(dc1, ax=axs[1], orientation='vertical', pad=0.05, shrink=0.8)\n", + "cbar1.set_label(ds0.area.attrs['units'])\n", + "cbar2 = plt.colorbar(dc2, ax=axs[2], orientation='horizontal', pad=0.05, shrink=0.8)\n", + "cbar2.set_label(ds0.GPP.attrs['units'])\n", + "\n", + "for a in axs:\n", + " a.set_global()\n", + " a.add_feature(cfeature.COASTLINE)" + ] + }, + { + "cell_type": "raw", + "id": "55cf7674-4113-4da9-b288-beb5f5569dc1", + "metadata": {}, + "source": [ + "# Can't seem to use uxarray for lat-lon data?\n", + "dc = ux_fv[\"GPP\"].mean('time').to_polycollection(projection=projection, override=True)\n", + "dc.set_antialiased(False)\n", + "dc.set_transform(transform)\n", + "dc.set_antialiased(False)\n", + "dc.set_clim(vmin=0, vmax=1e-4)\n", + "\n", + "fig, ax = plt.subplots(\n", + " 1,\n", + " 1,\n", + " figsize=(5, 5),\n", + " facecolor=\"w\",\n", + " constrained_layout=True,\n", + " subplot_kw=dict(projection=projection),\n", + ")\n", + "\n", + "# add geographic features\n", + "ax.add_feature(cfeature.COASTLINE)\n", + "\n", + "ax.add_collection(dc)\n", + "ax.set_global()\n", + "cbar = plt.colorbar(dc, ax=ax, orientation='horizontal', pad=0.05, shrink=0.8)\n", + "cbar.set_label('Data Values')\n", + "\n", + "plt.title(\"ne30 w/ uxarray\") ;" + ] + }, + { + "cell_type": "markdown", + "id": "232aefe3-d7dc-4643-8155-7010009896db", + "metadata": {}, + "source": [ + "---------\n", + "### Subsetting data for Regional plots\n", + "Example at https://uxarray.readthedocs.io/en/latest/user-guide/subset.html\n", + "1. Look at test data, so see how coastlines are handled\n", + "2. Look at regional fluxes and compare raw and regridded data\n", + "3. Since climatologies weren't identical, tried weighting fluxes by source landfrac too, but these results don't look great." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "a6287eac-a56f-4695-8f40-350b8ea779c3", + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " var force = true;\n", + " var py_version = '3.4.2'.replace('rc', '-rc.').replace('.dev', '-dev.');\n", + " var reloading = false;\n", + " var Bokeh = root.Bokeh;\n", + "\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks;\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + " if (js_modules == null) js_modules = [];\n", + " if (js_exports == null) js_exports = {};\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + "\n", + " if (root._bokeh_is_loading > 0) {\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " }\n", + " if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + " if (!reloading) {\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " }\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + " window._bokeh_on_load = on_load\n", + "\n", + " function on_error() {\n", + " console.error(\"failed to load \" + url);\n", + " }\n", + "\n", + " var skip = [];\n", + " if (window.requirejs) {\n", + " window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n", + " root._bokeh_is_loading = css_urls.length + 0;\n", + " } else {\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n", + " }\n", + "\n", + " var existing_stylesheets = []\n", + " var links = document.getElementsByTagName('link')\n", + " for (var i = 0; i < links.length; i++) {\n", + " var link = links[i]\n", + " if (link.href != null) {\n", + "\texisting_stylesheets.push(link.href)\n", + " }\n", + " }\n", + " for (var i = 0; i < css_urls.length; i++) {\n", + " var url = css_urls[i];\n", + " if (existing_stylesheets.indexOf(url) !== -1) {\n", + "\ton_load()\n", + "\tcontinue;\n", + " }\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " } var existing_scripts = []\n", + " var scripts = document.getElementsByTagName('script')\n", + " for (var i = 0; i < scripts.length; i++) {\n", + " var script = scripts[i]\n", + " if (script.src != null) {\n", + "\texisting_scripts.push(script.src)\n", + " }\n", + " }\n", + " for (var i = 0; i < js_urls.length; i++) {\n", + " var url = js_urls[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (var i = 0; i < js_modules.length; i++) {\n", + " var url = js_modules[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (const name in js_exports) {\n", + " var url = js_exports[name];\n", + " if (skip.indexOf(url) >= 0 || root[name] != null) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " element.textContent = `\n", + " import ${name} from \"${url}\"\n", + " window.${name} = ${name}\n", + " window._bokeh_on_load()\n", + " `\n", + " document.head.appendChild(element);\n", + " }\n", + " if (!js_urls.length && !js_modules.length) {\n", + " on_load()\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.4.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.4.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.4.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.4.2.min.js\", \"https://cdn.holoviz.org/panel/1.4.4/dist/panel.min.js\", \"https://cdn.jsdelivr.net/npm/@holoviz/geoviews@1.12.0/dist/geoviews.min.js\"];\n", + " var js_modules = [];\n", + " var js_exports = {};\n", + " var css_urls = [];\n", + " var inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {} // ensure no trailing comma for IE\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if ((root.Bokeh !== undefined) || (force === true)) {\n", + " for (var i = 0; i < inline_js.length; i++) {\n", + "\ttry {\n", + " inline_js[i].call(root, root.Bokeh);\n", + "\t} catch(e) {\n", + "\t if (!reloading) {\n", + "\t throw e;\n", + "\t }\n", + "\t}\n", + " }\n", + " // Cache old bokeh versions\n", + " if (Bokeh != undefined && !reloading) {\n", + "\tvar NewBokeh = root.Bokeh;\n", + "\tif (Bokeh.versions === undefined) {\n", + "\t Bokeh.versions = new Map();\n", + "\t}\n", + "\tif (NewBokeh.version !== Bokeh.version) {\n", + "\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n", + "\t}\n", + "\troot.Bokeh = Bokeh;\n", + " }} else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " }\n", + " root._bokeh_is_initializing = false\n", + " }\n", + "\n", + " function load_or_wait() {\n", + " // Implement a backoff loop that tries to ensure we do not load multiple\n", + " // versions of Bokeh and its dependencies at the same time.\n", + " // In recent versions we use the root._bokeh_is_initializing flag\n", + " // to determine whether there is an ongoing attempt to initialize\n", + " // bokeh, however for backward compatibility we also try to ensure\n", + " // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n", + " // before older versions are fully initialized.\n", + " if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n", + " root._bokeh_is_initializing = false;\n", + " root._bokeh_onload_callbacks = undefined;\n", + " console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n", + " load_or_wait();\n", + " } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n", + " setTimeout(load_or_wait, 100);\n", + " } else {\n", + " root._bokeh_is_initializing = true\n", + " root._bokeh_onload_callbacks = []\n", + " var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n", + " if (!reloading && !bokeh_loaded) {\n", + "\troot.Bokeh = undefined;\n", + " }\n", + " load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n", + "\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + "\trun_inline_js();\n", + " });\n", + " }\n", + " }\n", + " // Give older versions of the autoload script a head-start to ensure\n", + " // they initialize before we start loading newer version.\n", + " setTimeout(load_or_wait, 100)\n", + "}(window));" + ], + "application/vnd.holoviews_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n var py_version = '3.4.2'.replace('rc', '-rc.').replace('.dev', '-dev.');\n var reloading = false;\n var Bokeh = root.Bokeh;\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n run_callbacks();\n return null;\n }\n if (!reloading) {\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n var skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n root._bokeh_is_loading = css_urls.length + 0;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n var existing_stylesheets = []\n var links = document.getElementsByTagName('link')\n for (var i = 0; i < links.length; i++) {\n var link = links[i]\n if (link.href != null) {\n\texisting_stylesheets.push(link.href)\n }\n }\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n if (existing_stylesheets.indexOf(url) !== -1) {\n\ton_load()\n\tcontinue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } var existing_scripts = []\n var scripts = document.getElementsByTagName('script')\n for (var i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n\texisting_scripts.push(script.src)\n }\n }\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (var i = 0; i < js_modules.length; i++) {\n var url = js_modules[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n var url = js_exports[name];\n if (skip.indexOf(url) >= 0 || root[name] != null) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.4.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.4.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.4.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.4.2.min.js\", \"https://cdn.holoviz.org/panel/1.4.4/dist/panel.min.js\", \"https://cdn.jsdelivr.net/npm/@holoviz/geoviews@1.12.0/dist/geoviews.min.js\"];\n var js_modules = [];\n var js_exports = {};\n var css_urls = [];\n var inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (var i = 0; i < inline_js.length; i++) {\n\ttry {\n inline_js[i].call(root, root.Bokeh);\n\t} catch(e) {\n\t if (!reloading) {\n\t throw e;\n\t }\n\t}\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n\tvar NewBokeh = root.Bokeh;\n\tif (Bokeh.versions === undefined) {\n\t Bokeh.versions = new Map();\n\t}\n\tif (NewBokeh.version !== Bokeh.version) {\n\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n\t}\n\troot.Bokeh = Bokeh;\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n if (!reloading && !bokeh_loaded) {\n\troot.Bokeh = undefined;\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n\trun_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "\n", + "if ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n", + " window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n", + "}\n", + "\n", + "\n", + " function JupyterCommManager() {\n", + " }\n", + "\n", + " JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n", + " if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " comm_manager.register_target(comm_id, function(comm) {\n", + " comm.on_msg(msg_handler);\n", + " });\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n", + " comm.onMsg = msg_handler;\n", + " });\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " console.log(message)\n", + " var content = {data: message.data, comm_id};\n", + " var buffers = []\n", + " for (var buffer of message.buffers || []) {\n", + " buffers.push(new DataView(buffer))\n", + " }\n", + " var metadata = message.metadata || {};\n", + " var msg = {content, buffers, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " })\n", + " }\n", + " }\n", + "\n", + " JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n", + " if (comm_id in window.PyViz.comms) {\n", + " return window.PyViz.comms[comm_id];\n", + " } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n", + " if (msg_handler) {\n", + " comm.on_msg(msg_handler);\n", + " }\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n", + " comm.open();\n", + " if (msg_handler) {\n", + " comm.onMsg = msg_handler;\n", + " }\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " var comm_promise = google.colab.kernel.comms.open(comm_id)\n", + " comm_promise.then((comm) => {\n", + " window.PyViz.comms[comm_id] = comm;\n", + " if (msg_handler) {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " var content = {data: message.data};\n", + " var metadata = message.metadata || {comm_id};\n", + " var msg = {content, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " }) \n", + " var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n", + " return comm_promise.then((comm) => {\n", + " comm.send(data, metadata, buffers, disposeOnDone);\n", + " });\n", + " };\n", + " var comm = {\n", + " send: sendClosure\n", + " };\n", + " }\n", + " window.PyViz.comms[comm_id] = comm;\n", + " return comm;\n", + " }\n", + " window.PyViz.comm_manager = new JupyterCommManager();\n", + " \n", + "\n", + "\n", + "var JS_MIME_TYPE = 'application/javascript';\n", + "var HTML_MIME_TYPE = 'text/html';\n", + "var EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\n", + "var CLASS_NAME = 'output';\n", + "\n", + "/**\n", + " * Render data to the DOM node\n", + " */\n", + "function render(props, node) {\n", + " var div = document.createElement(\"div\");\n", + " var script = document.createElement(\"script\");\n", + " node.appendChild(div);\n", + " node.appendChild(script);\n", + "}\n", + "\n", + "/**\n", + " * Handle when a new output is added\n", + " */\n", + "function handle_add_output(event, handle) {\n", + " var output_area = handle.output_area;\n", + " var output = handle.output;\n", + " if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + " var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + " if (id !== undefined) {\n", + " var nchildren = toinsert.length;\n", + " var html_node = toinsert[nchildren-1].children[0];\n", + " html_node.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var scripts = [];\n", + " var nodelist = html_node.querySelectorAll(\"script\");\n", + " for (var i in nodelist) {\n", + " if (nodelist.hasOwnProperty(i)) {\n", + " scripts.push(nodelist[i])\n", + " }\n", + " }\n", + "\n", + " scripts.forEach( function (oldScript) {\n", + " var newScript = document.createElement(\"script\");\n", + " var attrs = [];\n", + " var nodemap = oldScript.attributes;\n", + " for (var j in nodemap) {\n", + " if (nodemap.hasOwnProperty(j)) {\n", + " attrs.push(nodemap[j])\n", + " }\n", + " }\n", + " attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n", + " newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n", + " oldScript.parentNode.replaceChild(newScript, oldScript);\n", + " });\n", + " if (JS_MIME_TYPE in output.data) {\n", + " toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n", + " }\n", + " output_area._hv_plot_id = id;\n", + " if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n", + " window.PyViz.plot_index[id] = Bokeh.index[id];\n", + " } else {\n", + " window.PyViz.plot_index[id] = null;\n", + " }\n", + " } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " var bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var script_attrs = bk_div.children[0].attributes;\n", + " for (var i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + "function handle_clear_output(event, handle) {\n", + " var id = handle.cell.output_area._hv_plot_id;\n", + " var server_id = handle.cell.output_area._bokeh_server_id;\n", + " if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n", + " var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n", + " if (server_id !== null) {\n", + " comm.send({event_type: 'server_delete', 'id': server_id});\n", + " return;\n", + " } else if (comm !== null) {\n", + " comm.send({event_type: 'delete', 'id': id});\n", + " }\n", + " delete PyViz.plot_index[id];\n", + " if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n", + " var doc = window.Bokeh.index[id].model.document\n", + " doc.clear();\n", + " const i = window.Bokeh.documents.indexOf(doc);\n", + " if (i > -1) {\n", + " window.Bokeh.documents.splice(i, 1);\n", + " }\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle kernel restart event\n", + " */\n", + "function handle_kernel_cleanup(event, handle) {\n", + " delete PyViz.comms[\"hv-extension-comm\"];\n", + " window.PyViz.plot_index = {}\n", + "}\n", + "\n", + "/**\n", + " * Handle update_display_data messages\n", + " */\n", + "function handle_update_output(event, handle) {\n", + " handle_clear_output(event, {cell: {output_area: handle.output_area}})\n", + " handle_add_output(event, handle)\n", + "}\n", + "\n", + "function register_renderer(events, OutputArea) {\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " var toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[0]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " events.on('output_added.OutputArea', handle_add_output);\n", + " events.on('output_updated.OutputArea', handle_update_output);\n", + " events.on('clear_output.CodeCell', handle_clear_output);\n", + " events.on('delete.Cell', handle_clear_output);\n", + " events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n", + "\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " safe: true,\n", + " index: 0\n", + " });\n", + "}\n", + "\n", + "if (window.Jupyter !== undefined) {\n", + " try {\n", + " var events = require('base/js/events');\n", + " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " } catch(err) {\n", + " }\n", + "}\n" + ], + "application/vnd.holoviews_load.v0+json": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.holoviews_exec.v0+json": "", + "text/html": [ + "
\n", + "
\n", + "
\n", + "" + ] + }, + "metadata": { + "application/vnd.holoviews_exec.v0+json": { + "id": "p1009" + } + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + "\n", + "\n", + "\n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import holoviews as hv\n", + "plot_opts = {\"width\": 700, \"height\": 350}\n", + "hv.extension(\"bokeh\")\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "bccb5c83-1bbe-4e57-9a71-a9a9e0c735ad", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(0.0, 0.0001671932)\n" + ] + } + ], + "source": [ + "plot_opts = {\"width\": 700, \"height\": 400}\n", + "clim = (np.nanmin(ds0[\"GPP\"].values), np.nanmax(ds0[\"GPP\"].values))\n", + "print(clim)\n", + "features = gf.coastline(\n", + " projection=ccrs.PlateCarree(), line_width=1, scale=\"110m\"\n", + ") #* gf.states(projection=ccrs.PlateCarree(), line_width=1, scale=\"110m\")" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "1563ce17-1d11-47bf-9ee1-56f3612b6dfd", + "metadata": {}, + "outputs": [], + "source": [ + "# This takes a long time to plot, we'll skip it for now\n", + "#ds0[\"test\"][0].plot.polygons(\n", + "# title=\"Global Grid\", **plot_opts\n", + "#) * features" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "c1a7ce6e-cdd0-4e3d-b0e9-41777d834241", + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " var force = true;\n", + " var py_version = '3.4.2'.replace('rc', '-rc.').replace('.dev', '-dev.');\n", + " var reloading = false;\n", + " var Bokeh = root.Bokeh;\n", + "\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks;\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + " if (js_modules == null) js_modules = [];\n", + " if (js_exports == null) js_exports = {};\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + "\n", + " if (root._bokeh_is_loading > 0) {\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " }\n", + " if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + " if (!reloading) {\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " }\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + " window._bokeh_on_load = on_load\n", + "\n", + " function on_error() {\n", + " console.error(\"failed to load \" + url);\n", + " }\n", + "\n", + " var skip = [];\n", + " if (window.requirejs) {\n", + " window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n", + " root._bokeh_is_loading = css_urls.length + 0;\n", + " } else {\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n", + " }\n", + "\n", + " var existing_stylesheets = []\n", + " var links = document.getElementsByTagName('link')\n", + " for (var i = 0; i < links.length; i++) {\n", + " var link = links[i]\n", + " if (link.href != null) {\n", + "\texisting_stylesheets.push(link.href)\n", + " }\n", + " }\n", + " for (var i = 0; i < css_urls.length; i++) {\n", + " var url = css_urls[i];\n", + " if (existing_stylesheets.indexOf(url) !== -1) {\n", + "\ton_load()\n", + "\tcontinue;\n", + " }\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " } var existing_scripts = []\n", + " var scripts = document.getElementsByTagName('script')\n", + " for (var i = 0; i < scripts.length; i++) {\n", + " var script = scripts[i]\n", + " if (script.src != null) {\n", + "\texisting_scripts.push(script.src)\n", + " }\n", + " }\n", + " for (var i = 0; i < js_urls.length; i++) {\n", + " var url = js_urls[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (var i = 0; i < js_modules.length; i++) {\n", + " var url = js_modules[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (const name in js_exports) {\n", + " var url = js_exports[name];\n", + " if (skip.indexOf(url) >= 0 || root[name] != null) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " element.textContent = `\n", + " import ${name} from \"${url}\"\n", + " window.${name} = ${name}\n", + " window._bokeh_on_load()\n", + " `\n", + " document.head.appendChild(element);\n", + " }\n", + " if (!js_urls.length && !js_modules.length) {\n", + " on_load()\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.4.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.4.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.4.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.4.2.min.js\", \"https://cdn.holoviz.org/panel/1.4.4/dist/panel.min.js\", \"https://cdn.jsdelivr.net/npm/@holoviz/geoviews@1.12.0/dist/geoviews.min.js\"];\n", + " var js_modules = [];\n", + " var js_exports = {};\n", + " var css_urls = [];\n", + " var inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {} // ensure no trailing comma for IE\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if ((root.Bokeh !== undefined) || (force === true)) {\n", + " for (var i = 0; i < inline_js.length; i++) {\n", + "\ttry {\n", + " inline_js[i].call(root, root.Bokeh);\n", + "\t} catch(e) {\n", + "\t if (!reloading) {\n", + "\t throw e;\n", + "\t }\n", + "\t}\n", + " }\n", + " // Cache old bokeh versions\n", + " if (Bokeh != undefined && !reloading) {\n", + "\tvar NewBokeh = root.Bokeh;\n", + "\tif (Bokeh.versions === undefined) {\n", + "\t Bokeh.versions = new Map();\n", + "\t}\n", + "\tif (NewBokeh.version !== Bokeh.version) {\n", + "\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n", + "\t}\n", + "\troot.Bokeh = Bokeh;\n", + " }} else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " }\n", + " root._bokeh_is_initializing = false\n", + " }\n", + "\n", + " function load_or_wait() {\n", + " // Implement a backoff loop that tries to ensure we do not load multiple\n", + " // versions of Bokeh and its dependencies at the same time.\n", + " // In recent versions we use the root._bokeh_is_initializing flag\n", + " // to determine whether there is an ongoing attempt to initialize\n", + " // bokeh, however for backward compatibility we also try to ensure\n", + " // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n", + " // before older versions are fully initialized.\n", + " if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n", + " root._bokeh_is_initializing = false;\n", + " root._bokeh_onload_callbacks = undefined;\n", + " console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n", + " load_or_wait();\n", + " } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n", + " setTimeout(load_or_wait, 100);\n", + " } else {\n", + " root._bokeh_is_initializing = true\n", + " root._bokeh_onload_callbacks = []\n", + " var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n", + " if (!reloading && !bokeh_loaded) {\n", + "\troot.Bokeh = undefined;\n", + " }\n", + " load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n", + "\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + "\trun_inline_js();\n", + " });\n", + " }\n", + " }\n", + " // Give older versions of the autoload script a head-start to ensure\n", + " // they initialize before we start loading newer version.\n", + " setTimeout(load_or_wait, 100)\n", + "}(window));" + ], + "application/vnd.holoviews_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n var py_version = '3.4.2'.replace('rc', '-rc.').replace('.dev', '-dev.');\n var reloading = false;\n var Bokeh = root.Bokeh;\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n run_callbacks();\n return null;\n }\n if (!reloading) {\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n var skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n root._bokeh_is_loading = css_urls.length + 0;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n var existing_stylesheets = []\n var links = document.getElementsByTagName('link')\n for (var i = 0; i < links.length; i++) {\n var link = links[i]\n if (link.href != null) {\n\texisting_stylesheets.push(link.href)\n }\n }\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n if (existing_stylesheets.indexOf(url) !== -1) {\n\ton_load()\n\tcontinue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } var existing_scripts = []\n var scripts = document.getElementsByTagName('script')\n for (var i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n\texisting_scripts.push(script.src)\n }\n }\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (var i = 0; i < js_modules.length; i++) {\n var url = js_modules[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n var url = js_exports[name];\n if (skip.indexOf(url) >= 0 || root[name] != null) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.4.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.4.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.4.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.4.2.min.js\", \"https://cdn.holoviz.org/panel/1.4.4/dist/panel.min.js\", \"https://cdn.jsdelivr.net/npm/@holoviz/geoviews@1.12.0/dist/geoviews.min.js\"];\n var js_modules = [];\n var js_exports = {};\n var css_urls = [];\n var inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (var i = 0; i < inline_js.length; i++) {\n\ttry {\n inline_js[i].call(root, root.Bokeh);\n\t} catch(e) {\n\t if (!reloading) {\n\t throw e;\n\t }\n\t}\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n\tvar NewBokeh = root.Bokeh;\n\tif (Bokeh.versions === undefined) {\n\t Bokeh.versions = new Map();\n\t}\n\tif (NewBokeh.version !== Bokeh.version) {\n\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n\t}\n\troot.Bokeh = Bokeh;\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n if (!reloading && !bokeh_loaded) {\n\troot.Bokeh = undefined;\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n\trun_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "\n", + "if ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n", + " window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n", + "}\n", + "\n", + "\n", + " function JupyterCommManager() {\n", + " }\n", + "\n", + " JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n", + " if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " comm_manager.register_target(comm_id, function(comm) {\n", + " comm.on_msg(msg_handler);\n", + " });\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n", + " comm.onMsg = msg_handler;\n", + " });\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " console.log(message)\n", + " var content = {data: message.data, comm_id};\n", + " var buffers = []\n", + " for (var buffer of message.buffers || []) {\n", + " buffers.push(new DataView(buffer))\n", + " }\n", + " var metadata = message.metadata || {};\n", + " var msg = {content, buffers, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " })\n", + " }\n", + " }\n", + "\n", + " JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n", + " if (comm_id in window.PyViz.comms) {\n", + " return window.PyViz.comms[comm_id];\n", + " } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n", + " if (msg_handler) {\n", + " comm.on_msg(msg_handler);\n", + " }\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n", + " comm.open();\n", + " if (msg_handler) {\n", + " comm.onMsg = msg_handler;\n", + " }\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " var comm_promise = google.colab.kernel.comms.open(comm_id)\n", + " comm_promise.then((comm) => {\n", + " window.PyViz.comms[comm_id] = comm;\n", + " if (msg_handler) {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " var content = {data: message.data};\n", + " var metadata = message.metadata || {comm_id};\n", + " var msg = {content, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " }) \n", + " var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n", + " return comm_promise.then((comm) => {\n", + " comm.send(data, metadata, buffers, disposeOnDone);\n", + " });\n", + " };\n", + " var comm = {\n", + " send: sendClosure\n", + " };\n", + " }\n", + " window.PyViz.comms[comm_id] = comm;\n", + " return comm;\n", + " }\n", + " window.PyViz.comm_manager = new JupyterCommManager();\n", + " \n", + "\n", + "\n", + "var JS_MIME_TYPE = 'application/javascript';\n", + "var HTML_MIME_TYPE = 'text/html';\n", + "var EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\n", + "var CLASS_NAME = 'output';\n", + "\n", + "/**\n", + " * Render data to the DOM node\n", + " */\n", + "function render(props, node) {\n", + " var div = document.createElement(\"div\");\n", + " var script = document.createElement(\"script\");\n", + " node.appendChild(div);\n", + " node.appendChild(script);\n", + "}\n", + "\n", + "/**\n", + " * Handle when a new output is added\n", + " */\n", + "function handle_add_output(event, handle) {\n", + " var output_area = handle.output_area;\n", + " var output = handle.output;\n", + " if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + " var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + " if (id !== undefined) {\n", + " var nchildren = toinsert.length;\n", + " var html_node = toinsert[nchildren-1].children[0];\n", + " html_node.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var scripts = [];\n", + " var nodelist = html_node.querySelectorAll(\"script\");\n", + " for (var i in nodelist) {\n", + " if (nodelist.hasOwnProperty(i)) {\n", + " scripts.push(nodelist[i])\n", + " }\n", + " }\n", + "\n", + " scripts.forEach( function (oldScript) {\n", + " var newScript = document.createElement(\"script\");\n", + " var attrs = [];\n", + " var nodemap = oldScript.attributes;\n", + " for (var j in nodemap) {\n", + " if (nodemap.hasOwnProperty(j)) {\n", + " attrs.push(nodemap[j])\n", + " }\n", + " }\n", + " attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n", + " newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n", + " oldScript.parentNode.replaceChild(newScript, oldScript);\n", + " });\n", + " if (JS_MIME_TYPE in output.data) {\n", + " toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n", + " }\n", + " output_area._hv_plot_id = id;\n", + " if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n", + " window.PyViz.plot_index[id] = Bokeh.index[id];\n", + " } else {\n", + " window.PyViz.plot_index[id] = null;\n", + " }\n", + " } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " var bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var script_attrs = bk_div.children[0].attributes;\n", + " for (var i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + "function handle_clear_output(event, handle) {\n", + " var id = handle.cell.output_area._hv_plot_id;\n", + " var server_id = handle.cell.output_area._bokeh_server_id;\n", + " if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n", + " var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n", + " if (server_id !== null) {\n", + " comm.send({event_type: 'server_delete', 'id': server_id});\n", + " return;\n", + " } else if (comm !== null) {\n", + " comm.send({event_type: 'delete', 'id': id});\n", + " }\n", + " delete PyViz.plot_index[id];\n", + " if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n", + " var doc = window.Bokeh.index[id].model.document\n", + " doc.clear();\n", + " const i = window.Bokeh.documents.indexOf(doc);\n", + " if (i > -1) {\n", + " window.Bokeh.documents.splice(i, 1);\n", + " }\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle kernel restart event\n", + " */\n", + "function handle_kernel_cleanup(event, handle) {\n", + " delete PyViz.comms[\"hv-extension-comm\"];\n", + " window.PyViz.plot_index = {}\n", + "}\n", + "\n", + "/**\n", + " * Handle update_display_data messages\n", + " */\n", + "function handle_update_output(event, handle) {\n", + " handle_clear_output(event, {cell: {output_area: handle.output_area}})\n", + " handle_add_output(event, handle)\n", + "}\n", + "\n", + "function register_renderer(events, OutputArea) {\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " var toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[0]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " events.on('output_added.OutputArea', handle_add_output);\n", + " events.on('output_updated.OutputArea', handle_update_output);\n", + " events.on('clear_output.CodeCell', handle_clear_output);\n", + " events.on('delete.Cell', handle_clear_output);\n", + " events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n", + "\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " safe: true,\n", + " index: 0\n", + " });\n", + "}\n", + "\n", + "if (window.Jupyter !== undefined) {\n", + " try {\n", + " var events = require('base/js/events');\n", + " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " } catch(err) {\n", + " }\n", + "}\n" + ], + "application/vnd.holoviews_load.v0+json": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.holoviews_exec.v0+json": "", + "text/html": [ + "
\n", + "
\n", + "
\n", + "" + ] + }, + "metadata": { + "application/vnd.holoviews_exec.v0+json": { + "id": "p1011" + } + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + "\n", + "\n", + "\n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": {}, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.holoviews_exec.v0+json": "", + "text/html": [ + "
\n", + "
\n", + "
\n", + "" + ], + "text/plain": [ + ":Overlay\n", + " .Polygons.I :Polygons [x,y] (test)\n", + " .Coastline.I :Feature [Longitude,Latitude]" + ] + }, + "execution_count": 21, + "metadata": { + "application/vnd.holoviews_exec.v0+json": { + "id": "p1013" + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "# set the bounding box\n", + "lon_bounds = (105, 145)\n", + "lat_bounds = (25, 58)\n", + "# elements include nodes, edge centers, or face centers) \n", + "element = 'face centers'\n", + "\n", + "bbox_subset_nodes = ds0[\"test\"][5].subset.bounding_box(\n", + " lon_bounds, lat_bounds, element=element\n", + ")\n", + "bbox_subset_nodes.plot.polygons(\n", + " cmap='viridis',\n", + " title=\"Bounding Box Subset (\"+element+\")\",\n", + " **plot_opts,\n", + ") * features" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "87fb2283-e414-4c5b-99a0-d337f2f40b99", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8wAAAKUCAYAAADRgrFAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACmXElEQVR4nOzdeVxUVf8H8M+wDJswCsSmiLhvSIgpYC6kYppL7lu4pKhZj5maiSta6E9Lw93qMck0NFMzUzMsl0zMFdvcQzEDzQ1cQnDm/P4g5vE6A8wdGYYLn3ev+3o1Z7733nOHwcP3nnPPUQkhBIiIiIiIiIhIwsbaFSAiIiIiIiIqi5gwExERERERERnBhJmIiIiIiIjICCbMREREREREREYwYSYiIiIiIiIyggkzERERERERkRFMmImIiIiIiIiMYMJMREREREREZAQTZiIiIiIiIiIjmDCT2T777DMkJCQYfU+lUiEuLq5U6wMAc+bMwZdffmnRc/z++++Ii4vDxYsXLXqe8kilUuG1116zdjWIiCqkuLg4qFQqXL9+vdjYtm3bom3btpKyx9v2vXv3QqVSYe/evSVb0VJy8OBBxMXF4fbt2xY9z/Lly5GYmGjRcxCR5TBhJrMVlTCnpKRgxIgRpVshlF7CPGvWLCbM5dj+/fvRtWtX+Pn5QaVSWfw79fDhQ0ybNg2BgYFwcnJCzZo1MXv2bOh0OrOPGR8fj4iICDg7O6Ny5colV1kiqhCWL1+O5cuXFxnTtGlTpKSkoGnTpqVUq5J18OBBzJo1iwlzBcb2nkzBhLkCuH//fqmfMywsDNWqVSv18xKVhHv37iE4OBhLly4tlfPNmzcPK1euxNKlS3Hq1CnMnz8f7777LpYsWVLoPjVq1CiyVyc3Nxd9+vTBK6+8YoEaE1F517BhQzRs2LDIGDc3N4SFhcHNza2UaiWfNf4GIuVge08mESRx6tQp0b9/f+Hl5SXUarXw9/cX0dHRIicnRx/zyy+/iG7duonKlSsLBwcHERwcLBITEyXH2bNnjwAgPvvsMzFlyhTh6+srXF1dRbt27cTp06clscePHxcvvPCCeOqpp4RarRa+vr6ic+fO4vLly/oYnU4nli1bJoKDg4Wjo6OoXLmy6NWrl7hw4YLkWG3atBGNGjUS+/btE+Hh4cLJyUn069dPdO/eXVSvXl1otVqDa27evLkICQnRv166dKlo1aqVeOqpp4Szs7No3LixmDdvnsjNzZWcB4DBVgCAmDlzphBCiNTUVAFA/Pe//zU4944dOwQAsXXrVn3Z2bNnxYABA/SfR/369cXSpUuN/rweZaw+bdq00b+fkZEhRo4cKapWrSrs7e1FjRo1RFxcnMjLy5McZ/ny5aJJkybCxcVFVKpUSdSrV0/ExsYKIYRYvXq10fOsXr262Po9Ki0tTQAQ7777rliwYIGoUaOGcHFxEWFhYSIlJcUgfuvWrSIsLEw4OTmJSpUqifbt24uDBw8We56C7+G6devEpEmThI+Pj3BxcRFdunQRmZmZIjs7W8TExAgPDw/h4eEhhg4dKu7cuSM5hinfByFM+x4DEK+++qr+tU6nE7GxscLOzk58+OGHsj7D0gJAbNmyRVL24MED8eabbwo/Pz/h7OwsmjdvLvbs2WP2OV544QXx8ssvS8p69uwpXnrppUL3CQgIMOmcq1evFhqNxuy6EVH5MXPmTAFAHD9+XPTo0UO4uroKNzc3MWjQIHHt2jVJbJs2bSRtqBDStl2I/7Uxj/5bNGTIEOHi4iLOnTsnOnXqJFxcXES1atXE+PHjJX9LCZH/b+nbb78t6tWrJ9RqtfD09BRDhw41qMv69etFhw4dhI+Pj3B0dBT169cXb731lrh7964kruDcP//8s+jQoYOoVKmSCAsLK/KzeHx79FrWr18vwsLChLOzs3BxcRFRUVHi+PHjkuNcuHBB9OvXT/j6+gq1Wi28vLzEc889J06cOCGEyP+3+vFzBAQEGK0TWRfbeyqMnWXTcWU5efIknn32WXh6emL27NmoU6cOMjIy8NVXXyE3NxcODg44c+YMIiIi4OXlhcWLF8PDwwNr167F0KFDcfXqVUyaNElyzClTpqBly5b473//i+zsbLz11lvo2rUrTp06BVtbW9y7dw8dOnRAYGAgli1bBm9vb2RmZmLPnj24c+eO/jijRo1CYmIixo4di3nz5uHmzZuYPXs2IiIicPLkSXh7e+tjMzIy8NJLL2HSpEmYM2cObGxscPv2bXTv3h3ff/892rdvr489ffo0Dh8+jMWLF+vLLly4gIEDByIwMBBqtRonT55EfHw8Tp8+jY8//hhA/vCikSNH4sKFC9iyZUuRn2twcDBCQkKwevVqDB8+XPJeYmIivLy80LlzZwD5w50jIiJQvXp1LFiwAD4+Pti1axfGjh2L69evY+bMmYWeJyUlBc899xwiIyMxffp0ANDf9c7MzETz5s1hY2ODGTNmoFatWkhJScE777yDixcvYvXq1QCA9evXY8yYMfjPf/6D9957DzY2Njh//jx+//13AMALL7yAOXPmYMqUKVi2bJl+GFqtWrWK/AwKs2zZMtSvX18/tH369Ono3Lkz0tLSoNFoAOQPfR80aBCioqKQlJSEBw8eYP78+Wjbti2+++47PPvss8WeZ8qUKYiMjERiYiIuXryIiRMnYsCAAbCzs0NwcDCSkpJw4sQJTJkyBa6urrK/D6Z+jx/14MEDDB06FNu3b8e2bdvw/PPPm/UZWsOwYcNw8eJFrF+/Hn5+ftiyZQuef/55/PLLL6hTp47s4z377LNYuXIlzp49i7p16+LkyZM4cOBAoY88EBE9iR49eqBv374YPXo0fvvtN0yfPh2///47fvrpJ9jb2z/x8fPy8tCtWzcMHz4cEyZMwP79+/H2229Do9FgxowZAACdTofu3bvjhx9+wKRJkxAREYFLly5h5syZaNu2LY4ePQonJycAwLlz59C5c2eMGzcOLi4uOH36NObNm4fDhw/j+++/l5w7NzcX3bp1w6hRozB58mQ8fPjQaB1HjBiBmzdvYsmSJdi8eTN8fX0BQN+rPmfOHEybNg3Dhg3DtGnTkJubi3fffRetWrXC4cOH9XGdO3eGVqvF/PnzUb16dVy/fh0HDx7UD/PesmULevfuDY1Gox/i7uDg8MSfMZUOtvcEgD3Mj3ruuedE5cqVDe5sPqp///7CwcFBpKenS8o7deoknJ2dxe3bt4UQ/7vr2rlzZ0nc559/LgDoexGPHj0qAIgvv/yy0HOmpKQIAGLBggWS8suXLwsnJycxadIkfVlBz+93330nic3LyxPe3t5i4MCBkvJJkyYJtVotrl+/bvTcWq1W5OXliTVr1ghbW1tx8+ZN/XsvvPBCoXdJ8dhd6MWLFwsA4syZM/qymzdvCgcHBzFhwgR9WceOHUW1atVEVlaW5HivvfaacHR0lJzfGBcXFzFkyBCD8lGjRolKlSqJS5cuScrfe+89AUD89ttv+vNUrly5yHNs3LjR4C60XAU9zEFBQeLhw4f68sOHDwsAIikpSQiR//n7+fmJoKAgyeiAO3fuCC8vLxEREVHkeQq+h127dpWUjxs3TgAQY8eOlZS/+OKLwt3dvdDjFfZ9MOV7LMT/ephv3Lghnn32WVG1alWRmppa5D7WhsfuOJ8/f16oVCpx5coVSVy7du30IxHk0ul0YvLkyUKlUgk7OzuhUqnEnDlzityHd5yJSK6CXtU33nhDUr5u3ToBQKxdu1Zf9iQ9zADE559/Ltm3c+fOol69evrXSUlJAoDYtGmTJO7IkSMCgFi+fLnRa9DpdCIvL0/s27dPABAnT540OPfHH39c5OdQ4N133xUARFpamqQ8PT1d2NnZif/85z+S8jt37ggfHx/Rt29fIYQQ169fFwBEQkJCkedp1KiRwWdJZQ/beyoMn2H+1/3797Fv3z707dsXTz31VKFx33//Pdq1awd/f39J+dChQ3H//n2kpKRIyrt16yZ53aRJEwDApUuXAAC1a9dGlSpV8NZbb2HlypX6nsxHff3111CpVHjppZfw8OFD/ebj44Pg4GCD5xqqVKmC5557TlJmZ2eHl156CZs3b0ZWVhYAQKvV4tNPP0X37t3h4eGhjz1x4gS6desGDw8P2Nrawt7eHoMHD4ZWq8XZs2cL/WyKMmjQIDg4OEgmvSjoLR02bBgAICcnB9999x169OgBZ2dnybV27twZOTk5OHTokFnn//rrrxEZGQk/Pz/JcTt16gQA2LdvHwCgefPmuH37NgYMGICtW7eaNJPok3jhhRdga2urf/349+PMmTP466+/EB0dDRub//26VqpUCb169cKhQ4dMej6rS5cuktcNGjTQn//x8ps3b+Lu3bv6MlO+D6Z8jwukpaUhPDwc2dnZOHToEIKDg4utf1ly/PhxCCFQt25dVKpUSb/t27cPFy5cAABcvHgRKpWqyO3R2cI3bNiAtWvX4rPPPsPx48fxySef4L333sMnn3yijxk9erTkfOnp6ejUqZNBGRFRcQYNGiR53bdvX9jZ2WHPnj0lcnyVSoWuXbtKypo0aaJv24D8drly5cro2rWrpF1++umn4ePjI/nb5o8//sDAgQPh4+Ojb4fatGkDADh16pTB+Xv16vVE9d+1axcePnyIwYMHS+rm6OiINm3a6Ovm7u6OWrVq4d1338XChQtx4sSJJ5q8icoWtvdUgEOy/3Xr1i1otdpiJ6q6ceOGftjOo/z8/PTvP+rRRBT43zCcf/75BwCg0Wiwb98+xMfHY8qUKbh16xZ8fX0RExODadOmwd7eHlevXoUQQjLs+lE1a9aUvDZWPwB4+eWXsWDBAqxfvx6jRo3Crl27kJGRoU9YASA9PR2tWrVCvXr1sGjRItSoUQOOjo44fPgwXn31VX295XJ3d0e3bt2wZs0avP3227C1tUViYiKaN2+ORo0aAcj/7B4+fIglS5YUOvmBuQns1atXsW3btkKHmhUcNzo6Gg8fPsRHH32EXr16QafT4ZlnnsE777yDDh06mHXuohT3/Sj4PhX2ndPpdLh16xacnZ2LPI+7u7vktVqtLrI8JydH/w+yKd8HU77HBQ4fPozr168jPj5ekRPD6XQ62Nra4tixY5KbHUD+jQwAqFq1qtE/4h5VpUoV/f+/+eabmDx5Mvr37w8ACAoKwqVLlzB37lwMGTIEADB79mxMnDhRv0/btm0xb948tGjRQl9W8O8QEVFRfHx8JK/t7Ozg4eFh8DeMuZydneHo6Cgpc3BwQE5Ojv711atXcfv2bX2787iCdvnu3bto1aoVHB0d8c4776Bu3bpwdnbG5cuX0bNnT4O/S5ydnZ94ErKrV68CAJ555hmj7xfcwFapVPjuu+8we/ZszJ8/HxMmTIC7uzsGDRqE+Ph4uLq6PlE9yLrY3lMBJsz/cnd3h62tLf78888i4zw8PJCRkWFQ/tdffwEAPD09ZZ87KCgI69evhxACP//8MxITEzF79mw4OTlh8uTJ8PT0hEqlwg8//GD0uZfHy1QqldHzNGzYEM2bN8fq1asxatQorF69Gn5+foiKitLHfPnll7h37x42b96MgIAAfXlqaqrs63rcsGHDsHHjRiQnJ6N69eo4cuQIVqxYoX+/SpUqsLW1RXR0NF599VWjxwgMDDTr3J6enmjSpAni4+ONvv/oPzzDhg3DsGHDcO/ePezfvx8zZ85Ely5dcPbsWclnUhoKEurCvnM2NjaSf4hLmpzvQ3Hf4wL9+vWDj48Ppk6dCp1Oh2nTplms/pYQEhICrVaLa9euoVWrVkZj7O3tUb9+fZOPef/+fckIAgCwtbWV9FR4eXnBy8tL/9rOzg5Vq1ZF7dq1ZV4BEVV0mZmZqFq1qv71w4cPcePGDYObuJbk6ekJDw8PfPPNN0bfL0g2v//+e/z111/Yu3evvlcZQKFLQRX2N5DcugHAF198UWy7HxAQgFWrVgEAzp49i88//xxxcXHIzc3FypUrn7guZD1s76kAE+Z/OTk5oU2bNti4cSPi4+MLTXzbtWuHLVu24K+//pIkWWvWrIGzszPCwsLMroNKpUJwcDDef/99JCYm4vjx4wDyh9P+3//9H65cuYK+ffuafXwgPxl85ZVXcODAAWzbtg3jx4+X3DUraGgeTcKFEPjoo48MjuXg4CCrxzkqKgpVq1bF6tWrUb16dTg6OmLAgAH6952dnREZGYkTJ06gSZMmhd51LkphderSpQt27NiBWrVqmZxguri4oFOnTsjNzcWLL76I3377DQEBAQa9wJZUr149VK1aFZ999hkmTpyo//ncu3cPmzZtQnh4eLG9y09Czvfh0X2MfY8fNW3aNLi6uuKNN97AvXv3MHfu3JKv/BO4e/cuzp8/r3+dlpaG1NRUuLu7o27duhg0aBAGDx6MBQsWICQkBNevX8f333+PoKAg/QR2cnTt2hXx8fGoXr06GjVqhBMnTmDhwoV4+eWXzb6G9PR03Lx5E+np6dBqtfqbHLVr19bfGSeiimndunUIDQ3Vv/7888/x8OFDtG3bttTq0KVLF6xfvx5arVbSc/Y4Y+0QAHzwwQdPXIfC2vOOHTvCzs4OFy5ckDW8u27dupg2bRo2bdokafvk/r1EpYftPZmCCfMjFi5ciGeffRYtWrTA5MmTUbt2bVy9ehVfffUVPvjgA7i6umLmzJn652FnzJgBd3d3rFu3Dtu3b8f8+fP1Mxub6uuvv8by5cvx4osvombNmhBCYPPmzbh9+7Z+CHDLli0xcuRIDBs2DEePHkXr1q3h4uKCjIwMHDhwAEFBQSavvTZgwACMHz8eAwYM0M9S/KgOHTpArVZjwIABmDRpEnJycrBixQrcunXL4FhBQUHYvHkzVqxYgdDQUNjY2KBZs2aFntvW1haDBw/GwoUL4ebmhp49exp8XosWLcKzzz6LVq1a4ZVXXkGNGjVw584dnD9/Htu2bTOYDdNYnfbu3Ytt27bB19cXrq6uqFevHmbPno3k5GRERERg7NixqFevHnJycnDx4kXs2LEDK1euRLVq1RATEwMnJye0bNkSvr6+yMzMxNy5c6HRaPRDsxo3bgwA+PDDD+Hq6gpHR0cEBgbCw8MDe/fuRWRkJGbOnIm4uDgTfiJFs7Gxwfz58zFo0CB06dIFo0aNwoMHD/Duu+/i9u3b+L//+78nPkdRTP0+mPI9ftzrr7+OSpUqYeTIkbh79y4WL15cIj0DJeHo0aOIjIzUvx4/fjwAYMiQIUhMTMTq1avxzjvvYMKECbhy5Qo8PDwQHh5uVuMJAEuWLMH06dMxZswYXLt2DX5+fhg1apR+NllzzJgxQ/JMVEhICABgz549pfpHMRGVPZs3b4adnR06dOignyU7ODj4iW/Ky9G/f3+sW7cOnTt3xuuvv47mzZvD3t4ef/75J/bs2YPu3bujR48eiIiIQJUqVTB69GjMnDkT9vb2WLduHU6ePPnEdQgKCgKQ/7fHkCFDYG9vj3r16qFGjRqYPXs2pk6dij/++APPP/88qlSpgqtXr+Lw4cNwcXHBrFmz8PPPP+O1115Dnz59UKdOHajVanz//ff4+eefJSOrCkZgbdiwATVr1oSjo6P+3GRdbO/JJFabbqyM+v3330WfPn2Eh4eHUKvVonr16mLo0KEG6zB37dpVaDQaoVarRXBwsME6vAUzR27cuFFSXjA7ckH86dOnxYABA0StWrWEk5OT0Gg0onnz5gbrOgshxMcffyxatGghXFxchJOTk6hVq5YYPHiwOHr0qD6mYB3mogwcOFAAEC1btjT6/rZt2/TrPVetWlW8+eabYufOnQYzYd68eVP07t1bVK5cWahUqkLXYX7U2bNn9esQJicnGz1/WlqaePnll/XrJT/11FMiIiJCvPPOO0VelxD5az63bNlSODs7G6zD/Pfff4uxY8eKwMBAYW9vL9zd3UVoaKiYOnWqfi3HTz75RERGRgpvb2+hVquFn5+f6Nu3r/j5558l50lISBCBgYHC1tZW8vPctm2bACBWrlxZZD0fXYf5ccY+uy+//FK0aNFCODo6ChcXF9GuXTvx448/Fvt5FPY9LFhP+siRI5LyghlU//77b32ZKd8HU7/HeGwdZiHyZ0q1s7MTw4YNM7pOOJUN+/btE126dBG+vr5G16o0Zu/evaJp06bCwcFBBAYGihUrVhjEfPHFF6JBgwZCrVaLBg0aiM2bN1ug9kQkxP/+jT927Jjo2rWrqFSpknB1dRUDBgwQV69elcQ+6TrMhZ37UXl5eeK9997TtzGVKlUS9evXF6NGjRLnzp3Txx08eFCEh4cLZ2dn8dRTT4kRI0aI48ePS9rfos5dlNjYWOHn5ydsbGwMruXLL78UkZGRws3NTTg4OIiAgADRu3dvsXv3biGEEFevXhVDhw4V9evXFy4uLqJSpUqiSZMm4v3335esgHHx4kURFRUlXF1duQ4zkQKphBCitJJzovJu0qRJSEpKwrlz5wwmPCFSsp07d+LHH39E06ZN0atXL2zZsgUvvvhiofFpaWlo3LgxYmJiMGrUKPz4448YM2YMkpKS9EMcU1JS0KpVK7z99tvo0aMHtmzZghkzZuDAgQNFDtEkIiIiKi1MmIlK0DPPPIOYmBiMHDnS2lUhshiVSlVswvzWW2/hq6++ksweOnr0aJw8eVK//F6/fv2QnZ2NnTt36mMKhj4mJSVZrP5EREREpuI6zEQl6MiRI0yWiZDfe/zoDPxA/kQ6R48eRV5eXpExBw8eLLV6EhERERWFk34RESlYTk4OcnNzZe8nhDCYZM3BwcHo0nXmyMzMNFg73tvbGw8fPsT169f1k+oZi8nMzCyROhAREZVnmZmZ6NM9EPMTvkd4eLi1q1NuMWEmIlKonJwcBAZUQuY1rex9K1WqhLt370rKSmp29wKPJ+QFTwA9Wm4spqzMlk5ERFSWzXizHn45nYsJY5/Dj4fvs/20ECbMREQKlZubi8xrWqQdC4Cbq+lP2GTf0SEw9BIuX74MNzc3fXlJ9S4DgI+Pj0FP8bVr12BnZwcPD48iYx7vdSYiIiKpU6dO4dMv7uDAV9XQ5aW/sHnzZlnrhpPp+AwzEZHCuVSSvwGAm5ubZCvJhDk8PBzJycmSsm+//RbNmjWDvb19kTERERElVg8iIqLyaNK4ZzB8oBtCghwxc6IHJr85wKxHtKh4Jvcwm/ucHBER5VOr1RZZbkwHAR1MX/BATmyBu3fv4vz58/rXaWlpSE1Nhbu7O6pXr47Y2FhcuXIFa9asAZA/I/bSpUsxfvx4xMTEICUlBatWrZLMfv3666+jdevWmDdvHrp3746tW7di9+7dOHDggOz6UclgW09E9GQs1dY/at++fdif8g/OHgwAALw8wA2LP7qNle9Ww9ip1yx67grJlMWa//nnH6GGowDAjRs3btzM3Hx8fMQ///xjyj+7JsnKyhIAxF9nqom7f1U3efvrTDUBQGRlZZl8rj179hi9piFDhgghhBgyZIho06aNZJ+9e/eKkJAQoVarRY0aNcSKFSsMjrtx40ZRr149YW9vL+rXry82bdr0JB8JPYF//vlH2Lq5Wv33hBs3btyUvJV0W/84rVYrmgU7iPhYD6HNqKPftq7xFZ7utuL27dsWO3dFZdI6zNnZ2dBoNHgWnWEH++LCiYjKha1Za0rsWNnZ2fD390dWVpbkueEnPaZGo8Hl01VlP8PsX/9KidaFlK/g++Q/axpsLNw7QkT0qNQeH5sUF7z3JZOP+Uu/CeZWx2yWaOsfl5SUhEkTB+P0gQA4Of2v7RdCoH3vKwgLdcTcxTctcu6KStakX3awh52KCTMRVQxKSSZLY0g2VRw2jo5MmImoVLm52poUZ+Ns+r9NSmnD5Xjw4AGmvDUYsyZ5SJJlIH/ViXnTPdG2x58Y8+Zl+Pv7W6mW5Q8n/SIiUjgdBLQyNibMREREyrN0bjW4udogurer0febPe2I7p1cMG1io1KuWfnGhJmISOEKepjlbERERKQct27dQvyim5g33RO2toWvtxwf64nPv7qLkydPyj7H/v370bVrV/j5+UGlUuHLL78sdp99+/YhNDQUjo6OqFmzJlauXGkQs2nTJjRs2BAODg5o2LAhtmzZIrtu1sSEmYhI4bRCyN6IiIhIOd6ZUhPNgh0R1dalyLga/vYYM1SDN1+Xv0TjvXv3EBwcjKVLl5oUn5aWhs6dO6NVq1Y4ceIEpkyZgrFjx2LTpk36mJSUFPTr1w/R0dE4efIkoqOj0bdvX/z000+y62ctsp5hJiKiskf37yYnnoiIiJQhLS0NyxOzcPBr055LnvK6O+qEX8S3336LqKgok8/TqVMndOrUyeT4lStXonr16khISAAANGjQAEePHsV7772HXr16AQASEhLQoUMHxMbGAgBiY2Oxb98+JCQkSJaaLMvYw0xERERERFRGTZ0QjL7dKiG4kYNJ8VUq22LK6+6YNL4r7t+/j+zsbMn24MGDEqlXSkqKQULesWNHHD16FHl5eUXGHDx4sETqUBrYw0xEFUqybqO1q1DiCibzkhNPRERUVtT+fJRJcWljS3+pqLJgy867JvcuF3h1mAax8dfx1ltvGQyxnjlzJuLi4p64XpmZmfD29paUeXt74+HDh7h+/Tp8fX0LjcnMzHzi85cWJsxERAqnFfmbnHgiIiJSCgc4OgnoZDxUZe8A2NmpMHr0aMTHx0uP5mBaT7UpVCrpBGTi33lSHi03FvN4WVnGhJmISOH4DDMREVH5phMCWiG/BVer1RZbk9rHx8egp/jatWuws7ODh4dHkTGP9zqXZXyGmYhI4XRQQStj00E5d3WJiIiobC4hGR4ejuTkZEnZt99+i2bNmsHe3r7ImIgI+bN4Wwt7mImIFE4n8jc58URERKQcun//s6S7d+/i/Pnz+tdpaWlITU2Fu7s7qlevjtjYWFy5cgVr1qwBAIwePRpLly7F+PHjERMTg5SUFKxatUoy+/Xrr7+O1q1bY968eejevTu2bt2K3bt348CBAxa9lpLEHmYiIoWT07tcsBEREZFy5A/JlrfJdfToUYSEhCAkJAQAMH78eISEhGDGjBkAgIyMDKSnp+vjAwMDsWPHDuzduxdPP/003n77bSxevFi/pBQAREREYP369Vi9ejWaNGmCxMREbNiwAS1atHjCT6T0sIeZiEjh5CbBTJiJiIiUxbxh1vLi27Ztq5+0y5jExESDsjZt2uD48eNFHrd3797o3bu3rLqUJUyYiYgUTidU0AnTk2A5sURERGR9WnBZSGthwkxE5UJ5XF/ZVOxhJiIqYabeWFQxgSlKrXGHTIqryG24qUQpTeRFhpgwExEpnBY20MqYkkJrwboQERFRyTPruWTm1yWCCTMRkcIJmUOyBYdkExERKYru341KHxNmIiIiIiKiMkwHIfsZZnYwlwwmzERECsdnmImIiMo3LQAtM2CrYMJMRKRwWmEDrZDxDDMbXCIiIkXhkGzrYcJMRKRwOqigkzHpF2fZJCIiUhadzNFkVHKYMBNRudDBpo9JceVx6QoOySYiKmFcLqpElMc211p0In+j0seEmYhI4eQPyWaLS0REpCTsYbYeJsxERAqXPyTb9EZUTiwRERFZn9zRZFRyTO+SICKiMkkHG2hlbHKed37U8uXLERgYCEdHR4SGhuKHH34oNHbo0KFQqVQGW6NGjfQxiYmJRmNycnLMqh8REVF5lT8kWyVro5LBhJmISOEKhmTL2eTasGEDxo0bh6lTp+LEiRNo1aoVOnXqhPT0dKPxixYtQkZGhn67fPky3N3d0aeP9FlzNzc3SVxGRgYcHR3N+hyIiIjKq4Ih2XI2sEe6RHBINhGRwulk9hqbM0v2woULMXz4cIwYMQIAkJCQgF27dmHFihWYO3euQbxGo4FGo9G//vLLL3Hr1i0MGzZMEqdSqeDj4yO7PkRERBVJwSgxKn381ImIFE4rVLI3OXJzc3Hs2DFERUVJyqOionDw4EGTjrFq1Sq0b98eAQEBkvK7d+8iICAA1apVQ5cuXXDixAlZdSMiIqoI5A7H5pDsksMeZiKiCio7O1vy2sHBAQ4ODgZx169fh1arhbe3t6Tc29sbmZmZxZ4nIyMDO3fuxGeffSYpr1+/PhITExEUFITs7GwsWrQILVu2xMmTJ1GnTh0zroiIiKh8MmeWbK6JUTKYMBNRhWLqes2ActaPlDtMS/tvE+rv7y8pnzlzJuLi4grdT6WSNtRCCIMyYxITE1G5cmW8+OKLkvKwsDCEhYXpX7ds2RJNmzbFkiVLsHjx4mKPS0REZVvNxQtK9Hi1xh0yOVYpbbip8keIcXCwNTBhJiJSOJ2wgU5GI6r7dx3my5cvw83NTV9urHcZADw9PWFra2vQm3zt2jWDXufHCSHw8ccfIzo6Gmq1ushYGxsbPPPMMzh37pwpl0FERFRhiCdY5YKeDD91IiKFk7Ok1KO90W5ubpKtsIRZrVYjNDQUycnJkvLk5GREREQUWbd9+/bh/PnzGD58eLHXIYRAamoqfH19TbxyIiKiikHuDNlcs7nksIeZiEjhdICsibx0Zpxj/PjxiI6ORrNmzRAeHo4PP/wQ6enpGD16NAAgNjYWV65cwZo1ayT7rVq1Ci1atEDjxo0Njjlr1iyEhYWhTp06yM7OxuLFi5Gamoply5aZUUMiIqLyS2fmspD05JgwExEpnPxlpeQ3uP369cONGzcwe/ZsZGRkoHHjxtixY4d+1uuMjAyDNZmzsrKwadMmLFq0yOgxb9++jZEjRyIzMxMajQYhISHYv38/mjdvLrt+RERE5ZkOKujYa2wVvE1BRKRw2n/vOsvZzDFmzBhcvHgRDx48wLFjx9C6dWv9e4mJidi7d68kXqPR4P79+4iJiTF6vPfffx+XLl3CgwcPcO3aNezatQvh4eFm1Y2IiKg8yx9mLf/xK7mWL1+OwMBAODo6IjQ0FD/88EOhsUOHDoVKpTLYGjVqpI9JTEw0GpOTk2NW/ayBCTMRkcIV3HWWsxEREZFy6Erh5viGDRswbtw4TJ06FSdOnECrVq3QqVMngxFkBRYtWoSMjAz9dvnyZbi7u6NPH+mKJG5ubpK4jIwMODo6mvU5WAOHZBMRKZzchpHPQBERESmL3MevzLFw4UIMHz4cI0aMAAAkJCRg165dWLFiBebOnWsQr9FooNFo9K+//PJL3Lp1C8OGDZPEqVQq+Pj4WLTulsSEmYioEKau2WzttR7lr8PMhJmIiJTnQkKYybG6zLomxdn4nDW3OqVKC5WsCT4L5ObmIjs7W1Lm4OBgsDJGbm4ujh07hsmTJ0vKo6KicPDgQZPOtWrVKrRv314/v0mBu3fvIiAgAFqtFk8//TTefvtthISEyL4Wa+FfTURECqcTKtkbERERKYfOjGeYBYCVK1fqe4ILNmO9xdevX4dWq4W3t7ek3NvbG5mZmcXWLyMjAzt37tT3TheoX78+EhMT8dVXXyEpKQmOjo5o2bIlzp0790SfR2liDzMRkcLpZPYwW3pIFxEREZUsnbCBzoxHqkaPHo34+HhJ2eO9y49SqaQ31YUQBmXGJCYmonLlynjxxRcl5WFhYQgL+9/IgJYtW6Jp06ZYsmQJFi9ebMIVWB8TZiIiIiIiojJM7s3xAmq1Gm5ubsXGeXp6wtbW1qA3+dq1awa9zo8TQuDjjz9GdHQ01Gp1kbE2NjZ45plnFNXDzG4GIiKFK7jrLGcjIiIi5dAKlexNDrVajdDQUCQnJ0vKk5OTERERUeS++/btw/nz5zF8+PBizyOEQGpqKnx9fWXVz5rYw0xEpHD5azOa3jDKiSUiIiLry18W0rI3vMePH4/o6Gg0a9YM4eHh+PDDD5Geno7Ro0cDAGJjY3HlyhWsWbNGst+qVavQokULNG7c2OCYs2bNQlhYGOrUqYPs7GwsXrwYqampWLZsmUWvpSQxYSYiUji5vcbsYSYiIlIWnVlrK8u7Qd6vXz/cuHEDs2fPRkZGBho3bowdO3boZ73OyMgwWJM5KysLmzZtwqJFi4we8/bt2xg5ciQyMzOh0WgQEhKC/fv3o3nz5jKvxXqYMBMRKZwW8nqNtZarChEREVlAfg+z5UeIjRkzBmPGjDH6XmJiokGZRqPB/fv3Cz3e+++/j/fff7+kqmcVTJiJiJ6QKes1PxR5Fjs/e5iJiIikAr+OMSkurYsy1mvWmtXDTCWBCTMRkcLJbUTZ4BIRESlLwTrMVPqYMBMRKZyQOUxLcNIvIiIiRdEJFXQyZ76mksGEmYhI4djDTEREVL6Zuw4zPTkmzERECif3rjPvUBMRESlLflsvL2EWFqpLRcOEmYhI4bQy7zrzDjUREZGyaKGStSIGlRwmzERECsceZiIiovJNQN6KGFRymDATEREREVG5Ynu/fCWX7GG2HibMREQKp4MNdDKGWcuJJSIiIuvTCfYwWwsTZiIihdMKFbQyhlnLiSUiIiLr0wkVV7mwEibMREQKx2eYiYiIyjcdVNBxSLZVMGEmIlI4IXOYluAdaiIiIkXRCRv2MFsJE2YiIoWTOxEIJw0hIiJSFrmjyajkMGEmIlI4nZA3zFonLFgZIiIiKnH5N8fZw2wN/NSJiBSuYOZMOZs5li9fjsDAQDg6OiI0NBQ//PBDobF79+6FSqUy2E6fPi2J27RpExo2bAgHBwc0bNgQW7ZsMatuRERE5Zn4t4dZzkYlgwkzEZHCFUwEImeTa8OGDRg3bhymTp2KEydOoFWrVujUqRPS09OL3O/MmTPIyMjQb3Xq1NG/l5KSgn79+iE6OhonT55EdHQ0+vbti59++kl2/YiIiMqzgiUk5WzgI1glggkzEZHCFSwrJWeTa+HChRg+fDhGjBiBBg0aICEhAf7+/lixYkWR+3l5ecHHx0e/2dra6t9LSEhAhw4dEBsbi/r16yM2Nhbt2rVDQkKC7PoRERGVZ+a09XwCq2QwYSYiUjhLD8nOzc3FsWPHEBUVJSmPiorCwYMHi9w3JCQEvr6+aNeuHfbs2SN5LyUlxeCYHTt2LPaYREREFY0Ah2RbCyf9IiKqoLKzsyWvHRwc4ODgYBB3/fp1aLVaeHt7S8q9vb2RmZlp9Ni+vr748MMPERoaigcPHuDTTz9Fu3btsHfvXrRu3RoAkJmZKeuYREREFVV+Esy+TmtgwkxEpHA6yLuTXPAMs7+/v6R85syZiIuLK3Q/lUp6DiGEQVmBevXqoV69evrX4eHhuHz5Mt577z19wiz3mERERBWV3CUkqeTwNgURkcIJmRN+iX8b3MuXLyMrK0u/xcbGGj2+p6cnbG1tDXp+r127ZtBDXJSwsDCcO3dO/9rHx+eJj0lERFQRlNYs2VwRwxATZiIihZPbgBY0om5ubpLN2HBsAFCr1QgNDUVycrKkPDk5GRERESbX88SJE/D19dW/Dg8PNzjmt99+K+uYREREFUFpLCHJFTGM45BsIiKFk9swmtOIjh8/HtHR0WjWrBnCw8Px4YcfIj09HaNHjwYAxMbG4sqVK1izZg2A/Bmwa9SogUaNGiE3Nxdr167Fpk2bsGnTJv0xX3/9dbRu3Rrz5s1D9+7dsXXrVuzevRsHDhyQXT8iIqLyzNxlIeV4dEUMIL8t37VrF1asWIG5c+cWup+XlxcqV65s9L1HV8QA8v9e2LdvHxISEpCUlFTi12AJTJiJiBRO7tArc4Zp9evXDzdu3MDs2bORkZGBxo0bY8eOHQgICAAAZGRkSO5A5+bmYuLEibhy5QqcnJzQqFEjbN++HZ07d9bHREREYP369Zg2bRqmT5+OWrVqYcOGDWjRooXs+hFRBSbn3zQVF9opVAX9HDv6BZsUt+uvusXG6O5on7Q6hR/bzGUhTVWwIsbkyZMl5aauiJGTk4OGDRti2rRpiIyM1L+XkpKCN954QxLfsWNHRS0hyYSZiEjh5N51NvcO9ZgxYzBmzBij7yUmJkpeT5o0CZMmTSr2mL1790bv3r3Nqg8REVFFYe4s2bm5uSatisEVMQrHhJmISOFKo4eZiIiIrMfcibxWrlyJpUuXSsqKWhWDK2IYYsJMRKRwTJiJiIjKN3OfYR49ejTi4+MlZcYm+SzJFTHWrl2rf10eVsTgLNlERApn7izZREREpAwCZrT1In+lC1NWxeCKGIVjDzMRkcKxh5mIiKh8M3epKDm4IoZxTJiJiBROQN5EXuVnblMiIqKKQSfk3/CW295zRQzjmDATERERERGVYaIU1mEGuCKGMUyYiYieULJuY7Ex2dnZ0Gg0Fjk/h2QTUYVmiTWBTf13shytR1yurgVArXGHSvR4Nj5ni49xzgZQNtp6KjlMmImIFI4JMxERUfnGhNl6mDATESkcE2YiIqLyjQmz9TBhJiJSOCbMRERE5VvBslJU+pgwExEpnBAqCBmNqJxYIiIisj5dKU36RYaYMBMRKZzcRpQNLhERkbKYs6wUlQwmzERECsch2UREROWb4DPMVsOEmYjoCXWw6VNszEORZ7Hzc0g2EVEJK2dLLJV1f4ydUOLHrIkFVju3JXDSL+thwkxEpHDsYSYiIirfmDBbDxNmIiKFYw8zERFR+Sa3rc/H9r4kMGEmIlI4uc81MWEmIiJSFsFZsq2GCTMREREREVEZxiHZ1sOEmYhI4QQAIWN+Gk5lQ0REpCz5bT0TZmtgwkxEpHA6qKDiOsxERETlljk9zLxBXjKYMBMRKRwn/SIiIirnzJr0i0oCE2YiIoXTCRVUXFaKyPJM/d3hGr5EFhG4xLS1lQHT54fWZdY1Kc7G56zJ57YEPsNsPUyYiYgUTgiZzzDzb3kiIiJFkdvWU8lhwkxEpHAckk1ERFS+6bislNXYWLsCRET0ZAoSZjmbOZYvX47AwEA4OjoiNDQUP/zwQ6GxmzdvRocOHfDUU0/Bzc0N4eHh2LVrlyQmMTERKpXKYMvJyTGrfkREROVVabX1ZIgJMxGRwhU81yRnk2vDhg0YN24cpk6dihMnTqBVq1bo1KkT0tPTjcbv378fHTp0wI4dO3Ds2DFERkaia9euOHHihCTOzc0NGRkZks3R0dGsz4GIiKi8EqXQ1pNxHJJNRKRwpfEM88KFCzF8+HCMGDECAJCQkIBdu3ZhxYoVmDt3rkF8QkKC5PWcOXOwdetWbNu2DSEhIfpylUoFHx8f+RUiIiKqQPLXYbZ2LSom9jATESlcfsIsZ5iWvOPn5ubi2LFjiIqKkpRHRUXh4MGDJh1Dp9Phzp07cHd3l5TfvXsXAQEBqFatGrp06WLQA01ERETmtPV8/KqkMGEmIqqgsrOzJduDBw+Mxl2/fh1arRbe3t6Scm9vb2RmZpp0rgULFuDevXvo27evvqx+/fpITEzEV199haSkJDg6OqJly5Y4d+6c+RdFRERUDpXGM8x8/Mo4DskmIlI4c2fJ9vf3l5TPnDkTcXFxhe6nUknPIYQwKDMmKSkJcXFx2Lp1K7y8vPTlYWFhCAsL079u2bIlmjZtiiVLlmDx4sWmXApR6eL6ykQAgFrjDpXsAceaFnahzwcmH7KjX7BJcTZjrbu+sqlK47lkPn5lHBNmIiKFE/9ucuIB4PLly3Bzc9OXOzg4GI339PSEra2tQW/ytWvXDHqdH7dhwwYMHz4cGzduRPv27YuMtbGxwTPPPMMeZiIiosdZeB3mgsevJk+eLCkvycevtFotnn76abz99tuShLqs45BsIiKFM3eYlpubm2QrLGFWq9UIDQ1FcnKypDw5ORkRERGF1ispKQlDhw7FZ599hhdeeMGE6xBITU2Fr6+vjKsnIiIq/8xt63Nzc016BIuPXxWOCTMRkdIJMzaZxo8fj//+97/4+OOPcerUKbzxxhtIT0/H6NGjAQCxsbEYPHiwPj4pKQmDBw/GggULEBYWhszMTGRmZiIrK0sfM2vWLOzatQt//PEHUlNTMXz4cKSmpuqPSURERPnMTZhXrlwJjUYj2YwNry7wpI9fbdiwweDxq5deegnBwcFo1aoVPv/8c9StWxdLliwx85MofRySTUSkdHIn9zDjGah+/frhxo0bmD17NjIyMtC4cWPs2LEDAQEBAICMjAzJpCAffPABHj58iFdffRWvvvqqvnzIkCFITEwEANy+fRsjR45EZmYmNBoNQkJCsH//fjRv3lx2/YiIiMozM+93Y/To0YiPj5eUGRtRxsevCseEmYhI4UpjHWYAGDNmDMaMGWP0vYIkuMDevXuLPd7777+P999/37zKEBERVSAC5s18rVarJfOVFBVX8PhVjx499OXJycno3r17ofslJSXh5ZdfRlJSkqzHr4KCgky7gDKACTMRkcKZO0s2ERERKYQ5Xcwy48ePH4/o6Gg0a9YM4eHh+PDDDw0ev7py5QrWrFkD4H+PXy1atEj/+BUAODk5QaPRAMh//CosLAx16tRBdnY2Fi9ejNTUVCxbtkzmxVgPE2YiIqUTKnnDrJkwExHRE9j110mT4mx8rLdk04WEsOKDAOgy65oUZ81rAeTfHDcHH78yjgkzEZHCldaQbCIiIrIOuW29ufj4lSEmzERESmfuQsxERESkDIKPVFkLE2YiIoXjM8xERETlnNzHr6jEMGEmIiIiIiIqw0prSDYZYsJMRFQesBElIiIq39jWWwUTZiIiheOQbCIiovKtNGbJJuOYMBMRKR0n/SIiIirfzFmHmUoEE2Yisopk3UaT4jrY9LFwTcoD1b+bnHgiqtBM7alS8S/0isIj1fS2wWZsya5JbOpayJZQ+/NRJsWd71t8HXV3tE9anUKxh9l6mDATESkde5iJiIjKN/YwWw0TZiIipWPCTEREVM7JHU1GJYUJMxGR0sldm5FDuoiIiJSFPcxWw4SZiEjh5K7NyHUciYiIFIYJs9UwYSYiUjoOySYiIirnZI4moxLDhJmISOk4JJuIiKhckzuajEoOE2YiIoVTCXkrv3CVGCIiIoXhkGyrYcJMRMWyxJrJXF+ZStv+/fsREREBOztp0/fw4UMcPHgQrVu3tlLNiKzAmnfOuAZ0iXDwv2tSXLVev5oUZ2pbbwmmroVsTabUUZeTA2CaZSogwBFiJrBEW29TUpUjIiIrEWZsFVBkZCRu3rxpUJ6VlYXIyEgr1IiIiMg0BaPJ5GwVkSXaevYwExEpHZ9hNokQAiqV4bXfuHEDLi4uVqgRERGRiSrwDW85LNHWM2EmIlI6zpJdpJ49ewIAVCoVhg4dCgcHB/17Wq0WP//8MyIiIqxVPSIiouLJvTlewViyrWfCTESkdEyYi6TRaADk33V2dXWFk5OT/j21Wo2wsDDExMRYq3pERESmqWDttxyWbOuZMBMRKR0T5iKtXr0aAFCjRg1MnDiRw6+JiEh5OCS7SJZs6znpFxGR0hUM05KzVUCTJk2SPNd06dIlJCQk4Ntvv7VirYiIiEzACT5NYom2ngkzEZHCldbMmcuXL0dgYCAcHR0RGhqKH374ocj4ffv2ITQ0FI6OjqhZsyZWrlxpELNp0yY0bNgQDg4OaNiwIbZs2WJe5UzQvXt3rFmzBgBw+/ZtNG/eHAsWLED37t2xYsUKi52XiIjoiZXSzXG29YY4JJuoAivpNRflHI/rMJegUhiSvWHDBowbNw7Lly9Hy5Yt8cEHH6BTp074/fffUb16dYP4tLQ0dO7cGTExMVi7di1+/PFHjBkzBk899RR69eoFAEhJSUG/fv3w9ttvo0ePHtiyZQv69u2LAwcOoEWLFvIrWYzjx4/j/fffBwB88cUX8PHxwYkTJ7Bp0ybMmDEDr7zySomfk4iMKEfr3Zzv+4FJcTY+Zy1ckyLorHdqU5n6OV7Tmrb2NAB42VYyKS5y+AiT4vZtn1RsTHZ2NjRvWWYd5tJYKoptvXHsYSYiomItXLgQw4cPx4gRI9CgQQMkJCTA39+/0Lu1K1euRPXq1ZGQkIAGDRpgxIgRePnll/Hee+/pYxISEtChQwfExsaifv36iI2NRbt27ZCQkGCRa7h//z5cXV0BAN9++y169uwJGxsbhIWF4dKlSxY5JxERUYkohSHZbOuNY8JMRKRwKsgcki3z+Lm5uTh27BiioqIk5VFRUTh48KDRfVJSUgziO3bsiKNHjyIvL6/ImMKO+aRq166NL7/8EpcvX8auXbv057527Rrc3Nwsck4iIiIlYFtfOCbMREQVVHZ2tmR78OCB0bjr169Dq9XC29tbUu7t7Y3MzEyj+2RmZhqNf/jwIa5fv15kTGHHfFIzZszAxIkTUaNGDTRv3hzh4eEA8u9Ah4SEWOScREREJcHc+Upyc3NNau/Z1heOCTMRkdKZORGIv78/NBqNfps7d26Rp3l01kkgf63Dx8uKi3+8XO4xn0Tv3r2Rnp6Oo0ePYteuXfrydu3a6Z93IiIiKpOECtDJ3JA/bPrRtr649p5tvSFO+kVEpHRmTvp1+fJlyfAkBwcHo+Genp6wtbU1uBt87do1g7vGBXx8fIzG29nZwcPDo8iYwo5ZEnx8fHD37l0kJyejdevWcHJywjPPPGOxhpuIiKhEmPNcsgBGjx6N+Ph4SbGx9p5tfeHYw0xEpHRmTgTi5uYm2QpLmNVqNUJDQ5GcnCwpT05ORkREhNF9wsPDDeK//fZbNGvWDPb29kXGFHbMJ3Xjxg20a9cOdevWRefOnZGRkQEAGDFiBCZMmGCRcxIREZUEc4dkq9Vqk9p7tvWFYw8zkUKU9BJQVLyS/Myzs7Oh0WhK7HiPkrvUhDnLUowfPx7R0dFo1qwZwsPD8eGHHyI9PR2jR48GAMTGxuLKlSv6tQ9Hjx6NpUuXYvz48YiJiUFKSgpWrVqFpKQk/TFff/11tG7dGvPmzUP37t2xdetW7N69GwcOHJBfQRO88cYbsLe3R3p6Oho0aKAv79evH9544w0sWLDAIuclovKr9ZiRJsUd2Gzhiihcq9dM+xwzWpveQ1jnrVST4vb9U/xyUWWCmTNfy8G23jgmzERESlcK6zD369cPN27cwOzZs5GRkYHGjRtjx44dCAgIAABkZGQgPT1dHx8YGIgdO3bgjTfewLJly+Dn54fFixfr12UEgIiICKxfvx7Tpk3D9OnTUatWLWzYsMEi6zIC+Xe0d+3ahWrVqknK69Spw2WliIiobCuFhJltvXFMmImIlK4UEmYAGDNmDMaMGWP0vcTERIOyNm3a4Pjx40Ues3fv3ujdu7d5FZLp3r17cHZ2Nii/fv16ocPRiYiIygSZo8nMxbbeEJ9hJiJSOHOfa6poWrdurR9GBuTP2qnT6fDuu+8iMjLSijUjIiIqjnkrYlQ0lmjr2cNMRKR0chvGCtqIvvvuu2jbti2OHj2K3NxcTJo0Cb/99htu3ryJH3/80drVIyIiKlwpDMkuDyzR1rOHmYhI6cycJbuiqVSpElJTU9G8eXN06NAB9+7dQ8+ePXHixAn9bJ5ERERlEUeTmcYSbT17mImIFK40ZskuDwIDA5GRkYFZs2ZJym/cuIFq1apBq9VaqWZERETFqMA3vOWwRFvPhJmISOlKadIvpRPC+IXfvXsXjo6OpVwbIiIi01XkXmM5LNHWM2EmsjKur0xkWePHjweQP/HHjBkzJLNnarVa/PTTT3j66aetVDsi6zjf9wOT4mp/PsrCNSmb6sSeNClu1701xQdRsW4MvG9a4J8uJh9zZ9pPZtamjGIPc5Es2dYzYSYiUjq5d50rWIN74sQJAPl3nX/55Reo1Wr9e2q1GsHBwZg4caK1qkdERGSaCtZ+y2HJtp4JMxGR0nFIdpH27NkDABg2bBgWLVoENzc3K9eIiIhIHg7JLpol23omzERESseE2SSrV6+2dhWIiIjIgizR1jNhJiJSOM6STUREVM7xGWarYcJMRERERERUhnFItvUwYSYiUjoOySYiIirf2MNsNUyYiYgUjkOyiYiIyjkmzFbDhJmIqBAdbPqYFFcm1tJmI0pEAGonmbaerc3YsybFtWg+0uRz/3S4nmlxvReadu4vxpt8blO998Jak+JWjKtd4uemwv0eYdrPRc664KbG/jHW5ENaFYdkWw8TZiIipeOQbCIiovKP7bdVMGEmIlI4DskmIiIq39jDbD1MmImIlI49zEREROUbn2G2GibMREREREREZRkTZqthwkxEpHAckk1ERFTOcUi21TBhJiJSOg7JJiIiKt/Yw2w1TJiJiJSOCTMREVH5xoTZapgwE1GJMXXdYqUoE+srm4BDsomowDdbPjUxcrpJUUlhH5p+8jBTAyeYGLfA9HObaOL2l0wLTCjxU1dINReb+jM0bc3k830/MPncNj6mrTWuFCqUrfb71q1bGDt2LL766isAQLdu3bBkyRJUrlzZaHxeXh6mTZuGHTt24I8//oBGo0H79u3xf//3f/Dz89PHtW3bFvv27ZPs269fP6xfv95i11IcG6udmYiISoYwYyMiIiLlKGNt/cCBA5GamopvvvkG33zzDVJTUxEdHV1o/P3793H8+HFMnz4dx48fx+bNm3H27Fl069bNIDYmJgYZGRn67YMPTL9RYgnsYSYiUjoOySYiIirXytI6zKdOncI333yDQ4cOoUWLFgCAjz76COHh4Thz5gzq1atnsI9Go0FycrKkbMmSJWjevDnS09NRvXp1fbmzszN8fHwsexEysIeZiEjhChpROZsl3bp1C9HR0dBoNNBoNIiOjsbt27cLjc/Ly8Nbb72FoKAguLi4wM/PD4MHD8Zff/0liWvbti1UKpVk69+/v2UvhoiIqCwwp4dZALm5ucjOzpZsDx48eKKqpKSkQKPR6JNlAAgLC4NGo8HBgwdNPk5WVhZUKpXBMO5169bB09MTjRo1wsSJE3Hnzp0nqu+TYsJMRKR0HKZFRERUvpnZ1q9cuVJ/A7tgmzt37hNVJTMzE15eXgblXl5eyMzMNOkYOTk5mDx5MgYOHAg3Nzd9+aBBg5CUlIS9e/di+vTp2LRpE3r27PlE9X1SHJJNRKRwZWnSr4o2TIuIiKg0qP7d5Bo9ejTi4+MlZQ4ODkZj4+LiMGvWrCKPd+TIkfz6qAxrI4QwWv64vLw89O/fHzqdDsuXL5e8FxMTo///xo0bo06dOmjWrBmOHz+Opk2bFntsS2DCTESkdGXoGebihmkZS5iNKWqY1tq1a+Ht7Y1OnTph5syZcHV1LclLICIiKnvMHCGmVqslPbhFee2114p91KlGjRr4+eefcfXqVYP3/v77b3h7exe5f15eHvr27Yu0tDR8//33xdatadOmsLe3x7lz55gwE1HZVZ6Wi1LKUlGlITs7W/LawcGh0LvOprL0MK3AwED4+Pjg119/RWxsLE6ePGnQO01UkdX+3LTleUxdssnmgel9WjoH0/6a/2OsactK1Vti+Ae5MQ8vpJkUBwAXEkxc+0qYdt26zLomxSlhiSM5bb1NaGPTAqMrmVkbelxpzEHi6ekJT0/PYuPCw8ORlZWFw4cPo3nz5gCAn376CVlZWYiIiCh0v4Jk+dy5c9izZw88PDyKPddvv/2GvLw8+Pr6mn4hJYzPMBMRKZ2ZzzX5+/ub/ExTXFycwYRbj29Hjx4FYNlhWu3bt0fjxo3Rv39/fPHFF9i9ezeOHz9e7HGJiIgUr4zMV9KgQQM8//zziImJwaFDh3Do0CHExMSgS5cukpFk9evXx5YtWwAADx8+RO/evXH06FGsW7cOWq0WmZmZyMzMRG5uLgDgwoULmD17No4ePYqLFy9ix44d6NOnD0JCQtCyZUvLXVAx2MNMRKRwcp9rKoi9fPmypAe3qN5lDtMiIiKyolKYtFOOdevWYezYsYiKigIAdOvWDUuXLpXEnDlzBllZWQCAP//8E1999RUA4Omnn5bE7dmzB23btoVarcZ3332HRYsW4e7du/D398cLL7yAmTNnwtbW1vIXVQgmzERESmfmM8xubm4mP9fEYVpERETWU5bWYQYAd3d3rF27tsgYIf5X4Ro1akheG+Pv7499+/aVSP1KEodkExEpXFlah7miDdMiIiIqFWVsCcmKhD3MRERKV4ZmyQYq1jAtIiKi0lDWepgrEibMRETlQRlqRCvSMC0iIqJSwV5jq2HCTESkcHLvOvMONRERkcKwh9lqmDBTmVLSa+QqYf1gJdSRyrgyNiSbiMoPU9dWBoBa4w6ZFjjWtLCd5+abFGfqWsgAUPtzE9dhroCZiclrVFvR00eKXq3hUT93tWBFrKXifS3LBCbMREQKxx5mIiKico5Dsq2GCTMRkdKxh5mIiKhc46Rf1sOEmYhI4djDTEREVM6xh9lqmDATERERERGVYSohoCpmRQmyDCbMRERKxyHZRERE5Rt7mK2GCTMRkdIxYSYiIirX+Ayz9TBhJiJSOD7DTEREVAGw/bYKJsxERErHHmYispA/xk4wPdjE9ZWV4PlnT5To8TrY9DE5VgnrIVvLq3X3WbsKVsMeZuthwkxEpHByJwLhpCFEREQKw2eYrYYJMxGR0rGHmYiIqFxjD7P1MGEmIlI4PsNMRERUzrGH2WqYMBMRKR17mImIiMo19jBbDxNmIiKFYw8zERFROSdE/kaljgkzEZHSsYeZiIio3OMNb+tgwkwWl6zbaO0qEJVr7GEmooqso1+wybHn//qgRI9poztrUtyFhAUmxVnT+b6mfTYAUPvzUSV6TBsf0z5HQMYyZ+UNn2G2GibMREREREREZZhKl79R6bOxdgWIiOgJCTM2IiIiUg5z2noLtve3bt1CdHQ0NBoNNBoNoqOjcfv27SL3GTp0KFQqlWQLCwuTxDx48AD/+c9/4OnpCRcXF3Tr1g1//vmn5S7EBEyYiYjKgYJh2aZsREREpCxy2nn9ZsH6DBw4EKmpqfjmm2/wzTffIDU1FdHR0cXu9/zzzyMjI0O/7dixQ/L+uHHjsGXLFqxfvx4HDhzA3bt30aVLF2i1WktdSrE4JJuISOnkzpzJWTaJiIiUpQzNkn3q1Cl88803OHToEFq0aAEA+OijjxAeHo4zZ86gXr16he7r4OAAHx8fo+9lZWVh1apV+PTTT9G+fXsAwNq1a+Hv74/du3ejY8eOJX8xJmAPMxGRwplz15mIiIiUQwXz2vrc3FxkZ2dLtgcPHjxRXVJSUqDRaPTJMgCEhYVBo9Hg4MGDRe67d+9eeHl5oW7duoiJicG1a9f07x07dgx5eXmIiorSl/n5+aFx48bFHteSmDATESldGXqmiYiIiCzAzLZ+5cqV+ueMC7a5c+c+UVUyMzPh5eVlUO7l5YXMzMxC9+vUqRPWrVuH77//HgsWLMCRI0fw3HPP6RP4zMxMqNVqVKlSRbKft7d3kce1NA7JJiJSOLkzZ3KWTSIiImUxd4TY6NGjER8fLylzcHAwGhsXF4dZs2YVebwjR47k10dl+IS0EMJoeYF+/frp/79x48Zo1qwZAgICsH37dvTs2bPQ/Yo7rqUxYSaiMo3reJtAbq+xhXuYb926hbFjx+Krr74CAHTr1g1LlixB5cqVC91n6NCh+OSTTyRlLVq0wKFDh/SvHzx4gIkTJyIpKQn//PMP2rVrh+XLl6NatWoWuQ4iAnSZdU2ONX0t3ZJliXYi2cQbix1s+pgWmBBWfIxMctZNLml/jDV1PeQKvG5ySTPzGWa1Wg03NzeTYl977TX079+/yJgaNWrg559/xtWrVw3e+/vvv+Ht7W1y3Xx9fREQEIBz584BAHx8fJCbm4tbt25JepmvXbuGiIgIk49b0pgwExEpnNy7zpZ+hnngwIH4888/8c033wAARo4ciejoaGzbtq3I/Z5//nmsXr1a/1qtVkveHzduHLZt24b169fDw8MDEyZMQJcuXXDs2DHY2tqW/IUQERGVEaUxB4mnpyc8PT2LjQsPD0dWVhYOHz6M5s2bAwB++uknZGVlyUpsb9y4gcuXL8PX1xcAEBoaCnt7eyQnJ6Nv374AgIyMDPz666+YP3++GVdUMpgwExEpXRmaJbuizZxJRERUKsrQHCQNGjTA888/j5iYGHzwQf5Ih5EjR6JLly6Sdr5+/fqYO3cuevTogbt37yIuLg69evWCr68vLl68iClTpsDT0xM9evQAAGg0GgwfPhwTJkyAh4cH3N3dMXHiRAQFBenbfmvgpF9ERApXlmbJrmgzZxIREZWGstTWA8C6desQFBSEqKgoREVFoUmTJvj0008lMWfOnEFWVhYAwNbWFr/88gu6d++OunXrYsiQIahbty5SUlLg6uqq3+f999/Hiy++iL59+6Jly5ZwdnbGtm3brDqSjD3MREQVVHZ2tuS1g4NDoROBmOpJZs7s06cPAgICkJaWhunTp+O5557DsWPH4ODgUGZnziQiIioVAoCujHQxA3B3d8fatWuLjBGPjGhzcnLCrl27ij2uo6MjlixZgiVLljxxHUsKe5iJiJTOzKUm/P39TV5mIi4uDiqVqsjt6NGjAMyfOfOFF15A48aN0bVrV+zcuRNnz57F9u3bi750K8+cSUREVCq4hKTVsIeZiEjhzJ306/Lly5KZM4vqXebMmURERFZUCsOsyTgmzERESmfmpF9ubm4mLzXBmTOJiIisyMxlpejJMWEmizN5jUKU/FqKllibUc71VDRcM9k6ytKyUhVt5kwygTBxyDy7TsqkBh+9YnLsmekWrEgZdeH9cBMjS/77ba11r8k6SmMiLzKOCTMRkdLJfVapFGbOHDt2rH5G627dumHp0qWSGGMzZ65Zswa3b9+Gr68vIiMjsWHDBoOZM+3s7NC3b1/8888/aNeuHRITE7kGMxERlX98LtlqmDATESlcWephBirWzJlERESlQQUBFYdkWwUTZiIipdMJeUtNlKFlKYiIiMgEun83KnVMmImIlK6MDckmIiKikqUS7GG2FibMREQKp4LMIdkWqwkRERFZBJ9hthomzERESmfmslJERESkEFxWymqYMBMRKVxZm/SLiIiISpbc0WRUcpgwE8lk6lrDSlivmesmE5HF8S88RcvTcJahopzvt9KkuI5+wSYfk20zGcUeZqthwkxEpHSc9IuIiKhcU+nyNyp9TJiJiBRO7syZnGWTiIhIYQTYw2wlTJiJiJRO7tqMvENNRESkLObMks38ukQwYSYiUjj2MBMREZVzXIfZapgwExEpHZ9hJiIiKuc46Ze1MGEmIlI6rsNMRERUvsl9/IpKDBNmonKIS1JULFyHmaxCqEyL4xeOyjEbn7MmxSUz0aEnJPfxKyo5TJiJiJSOPcxERETlG9dhthoba1eAiIieTMHajHI2IiIiUpCChFnOZkG3bt1CdHQ0NBoNNBoNoqOjcfv27SL3UalURrd3331XH9O2bVuD9/v372/RaykOe5iJiJSOPcxERETlm0CZeoZ54MCB+PPPP/HNN98AAEaOHIno6Ghs27at0H0yMjIkr3fu3Inhw4ejV69ekvKYmBjMnj1b/9rJyakEay4fE2YiIqXjLNlERETlWll6hvnUqVP45ptvcOjQIbRo0QIA8NFHHyE8PBxnzpxBvXr1jO7n4+Mjeb1161ZERkaiZs2aknJnZ2eDWGvikGwiIiIiIqKyTKDMDMlOSUmBRqPRJ8sAEBYWBo1Gg4MHD5p0jKtXr2L79u0YPny4wXvr1q2Dp6cnGjVqhIkTJ+LOnTslVndzsIeZiEjh5N51Lit3qImIiMhEZibBubm5yM7OlpQ5ODjAwcHB7KpkZmbCy8vLoNzLywuZmZkmHeOTTz6Bq6srevbsKSkfNGgQAgMD4ePjg19//RWxsbE4efIkkpOTza7vk2IPMxGR0pWxiUCIiIiohJnZ1q9cuVI/MVfBNnfuXKOniIuLK3RiroLt6NGjAPIn8DKsojBabszHH3+MQYMGwdHRUVIeExOD9u3bo3Hjxujfvz+++OIL7N69G8ePH5fzaZUo9jATWQjXQqZSI3ciEObLVBK4vjIRUenRwaxJv0aPHo34+HhJWWG9y6+99lqxM1LXqFEDP//8M65evWrw3t9//w1vb+9i6/TDDz/gzJkz2LBhQ7GxTZs2hb29Pc6dO4emTZsWG28JTJiJiBSOQ7KJiIjKNxXMm/RLrVbDzc3NpFhPT094enoWGxceHo6srCwcPnwYzZs3BwD89NNPyMrKQkRERLH7r1q1CqGhoQgODi429rfffkNeXh58fX2LvwAL4ZBsIiKlkz0RiLUrTERERLKUocevGjRogOeffx4xMTE4dOgQDh06hJiYGHTp0kUyQ3b9+vWxZcsWyb7Z2dnYuHEjRowYYXDcCxcuYPbs2Th69CguXryIHTt2oE+fPggJCUHLli0tdj3FYcJMRKR0ZagRJSIiIgvQCfmbBa1btw5BQUGIiopCVFQUmjRpgk8//VQSc+bMGWRlZUnK1q9fDyEEBgwYYHBMtVqN7777Dh07dkS9evUwduxYREVFYffu3bC1tbXo9RSFCTMRkdLpzNgs6NatW4iOjtZPLhIdHY3bt28XuU9hk4u8++67+pi2bdsavF/cs1ZERETlQhm7Oe7u7o61a9ciOzsb2dnZWLt2LSpXrvxYlQWGDh0qKRs5ciTu378PjUZjcEx/f3/s27cPN27cwIMHD3D+/HksWrQI7u7uFryS4vEZZiIihStrzzAPHDgQf/75J7755hsA+Y1jdHQ0tm3bVug+GRkZktc7d+7E8OHD0atXL0l5TEwMZs+erX/t5ORUgjUnIiIqowoev6JSx4SZiEjp5N5JtmCDe+rUKXzzzTc4dOgQWrRoAQD46KOPEB4ejjNnzkiebXqUj4+P5PXWrVsRGRmJmjVrSsqdnZ0NYomIiMo9PlJlNRySTUSkdGVomFZKSgo0Go0+WQaAsLAwaDQaHDx40KRjXL16Fdu3b8fw4cMN3lu3bh08PT3RqFEjTJw4EXfu3CmxuhMREZVZomw9w1yRsIeZiKiCys7Olrx2cHAodG1GU2VmZsLLy8ug3MvLC5mZmSYd45NPPoGrqyt69uwpKR80aBACAwPh4+ODX3/9FbGxsTh58iSSk5OfqM5ERERlntDlb/J2skhVKhr2MBMRKZ2ZPcz+/v76ibk0Gg3mzp1b6Cni4uIKnZirYDt69CiA/Am8DKsojJYb8/HHH2PQoEFwdHSUlMfExKB9+/Zo3Lgx+vfvjy+++AK7d+/G8ePHTf2kiIiIlKkMjSaraNjDTESkdDoApuWi/4sHcPnyZbi5uemLi+pdfu2114qdkbpGjRr4+eefcfXqVYP3/v77b3h7exdbtR9++AFnzpzBhg0bio1t2rQp7O3tce7cOTRt2rTYeCIiIsXiMGurYcJMRKRw5s6S7ebmJkmYi+Lp6QlPT89i48LDw5GVlYXDhw+jefPmAICffvoJWVlZiIiIKHb/VatWITQ0FMHBwcXG/vbbb8jLy4Ovr2/xF0BERKRk5sySzfy6RHBINhGR0pWhYVoNGjTA888/j5iYGBw6dAiHDh1CTEwMunTpIpkhu379+tiyZYtk3+zsbGzcuBEjRowwOO6FCxcwe/ZsHD16FBcvXsSOHTvQp08fhISEoGXLlha7HiIiorKh7LT1FQ0TZiIipZM7a6aFh3StW7cOQUFBiIqKQlRUFJo0aYJPP/1UEnPmzBlkZWVJytavXw8hBAYMGGBwTLVaje+++w4dO3ZEvXr1MHbsWERFRWH37t2wtbW16PUQERFZXRm6OV7RcEg2EZHSlaF1mAHA3d0da9euLaYKhnUYOXIkRo4caTTe398f+/btK5H6ERERKY5Ol79RqWPCTESkeHLvJPOuMxERkaKw19hqmDATESldGethJqLy43zfD2RET7BYPYgqPCbMVsOEmYhI6XQCsnqNuSwFERGRsgiw/bYSJsxEREondPmbnHgiIiJSDCF0EGy/rYIJMxGR0nFINhERUfmmE4CK7bc1MGEmIiIiIiIqy/gMs9UwYSYiUjo+w0xERFS+6XSAikOyrYEJMxGR0nFINhERUfnH9tsqmDCTxSXrNlq7CkTlm4DMhNliNSEihRjdfrdJcTY+Zy1cEyIyhdDpIMAeZmtgwkxEpHTsYSYiIirf+Ayz1TBhJiJSOp0OkHPXWcc71ERERIoid74SKjE21q4AERE9oYK7znI2IiIiUg6hk79ZUHx8PCIiIuDs7IzKlSubdglCIC4uDn5+fnByckLbtm3x22+/SWIePHiA//znP/D09ISLiwu6deuGP//80wJXYDomzERESseEmYiIqFwTAhA6IWuzpNzcXPTp0wevvPKKyfvMnz8fCxcuxNKlS3HkyBH4+PigQ4cOuHPnjj5m3Lhx2LJlC9avX48DBw7g7t276NKlC7RarSUuwyQckk1EpHRcVoqIiKh8EzIfv7KwWbNmAQASExNNihdCICEhAVOnTkXPnj0BAJ988gm8vb3x2WefYdSoUcjKysKqVavw6aefon379gCAtWvXwt/fH7t370bHjh0tci3FYQ8zEZHCCaGTvREREZGCyOxdtnQPs1xpaWnIzMxEVFSUvszBwQFt2rTBwYMHAQDHjh1DXl6eJMbPzw+NGzfWx1gDe5iJiJROCHm9xhySTUREpBi5ObnQIg9yeph1QgsBHXJzc5GdnS15z8HBAQ4ODiVcy6JlZmYCALy9vSXl3t7euHTpkj5GrVajSpUqBjEF+1sDE2ayuA42fUyO5ZrNRGYQModkM2EmqvCSG1cyKW4SB6QQWZ0XqiId59AIz5i8z2VcgAvcsGHDBrz99tuS92bOnIm4uDiDfeLi4vRDrQtz5MgRNGvWzOR6PE6lUkleCyEMyh5nSowlMWEmIiIiIiIqo1LS9qNWYC1UF3XgqqpcbHyeyEUaTmH7rq/Rpk0bTJw4UfJ+Yb3Lr732Gvr371/ksWvUqGFqtSV8fHwA5Pci+/r66suvXbum73X28fFBbm4ubt26JellvnbtGiIiIsw6b0lgwkxEpHQ6HaCS0Q3EZ5iJiIgUo0aNGqiGWjiHX9AUrYqNT8MpuMFd/yywqcOvPT094enp+UR1LUxgYCB8fHyQnJyMkJAQAPkzbe/btw/z5s0DAISGhsLe3h7Jycno27cvACAjIwO//vor5s+fb5F6mYKTfhERKR2XlSIiIirXUm/+hGzcxA1R9LO8/4h7+BMX8H3qLovWJz09HampqUhPT4dWq0VqaipSU1Nx9+5dfUz9+vWxZcsWAPlDsceNG4c5c+Zgy5Yt+PXXXzF06FA4Oztj4MCBAACNRoPhw4djwoQJ+O6773DixAm89NJLCAoK0s+abQ3sYSYiUjih00HI6GHmLNlERETKUqVKFQSiAc7hF7gL70Kf6T2PX+ENfwQHB1u0PjNmzMAnn3yif13Qa7xnzx60bdsWAHDmzBlkZWXpYyZNmoR//vkHY8aMwa1bt9CiRQt8++23cHV11ce8//77sLOzQ9++ffHPP/+gXbt2SExMhK2trUWvpyhMmImIlI6TfhEREZV7v+QcRmVHd2TgEvxQw+D9bHETf+MvXLp80eJ1SUxMLHYNZvHY3xsqlQpxcXFGJxwr4OjoiCVLlmDJkiUlUMuSwSHZRERKpxPyNyIiIlIUBwcHfPzZf3EBv0ErtJL3hBA4i59RHbVRrVo1K9WwfJLVw/wQebI6MYjkenydOKLywqLfbSEgZ21G9jBTUXQ5OdauApWChyLPpDi2y0SmK43fl379+mH0wFeRjnMIRH19+XVk4B6ycfH2eYvXoaIxKWFWq9Xw8fHBgcwdlq4PVXAajcbaVSCyGB8fH6jV6hI/rtAJCJXpSfDjQ6RKWnx8PLZv347U1FSo1Wrcvn3bpDrNmjULH374of65pmXLlqFRo0b6mAcPHmDixIlISkrSP9e0fPly3kkvIQVt/eWZ71i7KlQKLpkYx3aZSB5LtfUFbGxs8NXeLWjXtj2qikCoVQ7QCR3O4xcsWPwef2ctQCVM/MspJycHubm5lq4PEVG5pVar4ejoWGLHy87OhkajQaRtT9ip7E3e76HIwx7tZmRlZcHNza3E6lNg5syZqFy5Mv7880+sWrXKpIR53rx5iI+PR2JiIurWrYt33nkH+/fvx5kzZ/STgbzyyivYtm0bEhMT4eHhgQkTJuDmzZs4duyYVScDKU/Y1hMRPZmSbusL85TKD45wRn1VCP4Uf+ASzuL2gxsWTdYrKpMTZiIiKlsKEua2qh6yE+a9YovFEuYCiYmJGDduXLEJsxACfn5+GDduHN566y0A+b3J3t7emDdvHkaNGoWsrCw89dRT+PTTT9GvXz8AwF9//QV/f3/s2LEDHTt2tNh1EBERlTWnTp1C44aN0QyRSMUBfPbFOvTq1cva1SqXOOkXEZHSCZ38rQxJS0tDZmYmoqKi9GUODg5o06YNDh48CAA4duwY8vLyJDF+fn5o3LixPoaIiKiiaNCgAXwRgOPYDye4oGfPntauUrnFZaWIiBRO7oSMD5E/2c/jk5M4ODjAwcGhJKtmkszMTACAt7e3pNzb2xuXLl3Sx6jValSpUsUgpmB/IiKiiuRoxkE08G2MHQe3FbouMz05JsxERAr1JBMyVqpUCf7+/pKymTNnFro2YlxcHGbNmlXkMY8cOYJmzZrJrkuBxxt7IUSxfwCYEkNERFQe+fj44Ja4bu1qlHtMmImIFMrR0RFpaWlmTdJkLNEsqnf5tddeQ//+/Ys8Zo0aNWTXA8hv8IH8XmRfX199+bVr1/S9zj4+PsjNzcWtW7ckvczXrl1DRESEWeclIiIiKg4TZiIiBXN0dCyV2Tg9PT3h6elpkWMHBgbCx8cHycnJCAkJAQDk5uZi3759mDdvHgAgNDQU9vb2SE5ORt++fQEAGRkZ+PXXXzF//nyL1IuIiIiICTMREZWo9PR03Lx5E+np6dBqtUhNTQUA1K5dG5UqVQIA1K9fH3PnzkWPHj2gUqkwbtw4zJkzB3Xq1EGdOnUwZ84cODs7Y+DAgQDy14IdPnw4JkyYAA8PD7i7u2PixIkICgpC+/btrXWpREREVM4xYSYiohI1Y8YMfPLJJ/rXBb3Ge/bsQdu2bQEAZ86cQVZWlj5m0qRJ+OeffzBmzBjcunULLVq0wLfffqtfgxkA3n//fdjZ2aFv3774559/0K5dOyQmJnINZiIiIrIYrsNMREREREREZATXYSYiIiIiIiIyggkzERERERERkRFMmImIiIiIiIiMYMJMREREREREZAQTZiIiIiIiIiIjmDATERERERERGcGEmYiIiIiIiMgIJsxERERERERERjBhJiIiIiIiIjKCCTMRERERERGREUyYiYiIiIiIiIxgwkxERERERERkBBNmIiIiIiIiIiOYMBMREREREREZwYSZiIiIiIiIyAgmzERERERERERGMGEmIiIiIiIiMoIJMxEREREREZERTJiJiIiIiIiIjGDCTERERERERGQEE2YiIiIiIiIiI5gwExERERERERnBhJmIiIiIiIjICCbMREREREREREYwYSYiIiIiIiIyggkzERERERERkRFMmImIiIiIiIiMYMJMREREREREZAQTZiIiIiIiIiIjmDATERERERERGcGEmYiIiIiIiMgIJsxERERERERERjBhJiIiIiIiIjKCCTMRERERERGREUyYFeKzzz5DQkKC0fdUKhXi4uJKtT4AMGfOHHz55ZcWPcfvv/+OuLg4XLx4scSPffHiRahUKiQmJpb4sQFgx44dhf5catSogaFDh1rkvAUOHjyIuLg43L592+C9tm3bom3bthY9vxKoVCq89tpr1q4GEREREZVRTJgVoqiEOSUlBSNGjCjdCqH0EuZZs2ZZJGG2tB07dmDWrFlG39uyZQumT59u0fMfPHgQs2bNMpowL1++HMuXL7fo+ZVs//796Nq1K/z8/KBSqSz+PX/48CGmTZuGwMBAODk5oWbNmpg9ezZ0Op3Zx4yPj0dERAScnZ1RuXLlkqssERERUQXChLmE3b9/v9TPGRYWhmrVqpX6ecl8ISEhqFWrltXO37BhQzRs2NBq5y/r7t27h+DgYCxdurRUzjdv3jysXLkSS5cuxalTpzB//ny8++67WLJkSaH71KhRA3v37i30/dzcXPTp0wevvPKKBWpMREREVDFYNWE+ffo0BgwYAG9vbzg4OKB69eoYPHgwHjx4oI/59ddf0b17d1SpUgWOjo54+umn8cknn0iOs3fvXqhUKiQlJWHq1Knw8/ODm5sb2rdvjzNnzkhiT5w4gS5dusDLywsODg7w8/PDCy+8gD///FMfI4TA8uXL8fTTT8PJyQlVqlRB79698ccff0iO1bZtWzRu3Bj79+/X9+S8/PLLePHFFxEQEGC0d6hFixZo2rSp/vWyZcvQunVreHl5wcXFBUFBQZg/fz7y8vIk59m+fTsuXboElUql3wo8OiT75MmTUKlUWLVqlcG5d+7cCZVKha+++kpfdu7cOQwcOFD/eTRo0ADLli0z+vN6lEqlwr179/DJJ5/o6/PoEN/MzEyMGjUK1apVg1qtRmBgIGbNmoWHDx9KjrNixQoEBwejUqVKcHV1Rf369TFlyhQAQGJiIvr06QMAiIyM1J/HnCHUf/31F/r27QtXV1doNBr069cPmZmZRmOPHj2Kbt26wd3dHY6OjggJCcHnn38uibl//z4mTpyIwMBAODo6wt3dHc2aNUNSUhIAYOjQofrP8dGfWUFP+eNDsuV8h5OTk9G9e3dUq1YNjo6OqF27NkaNGoXr16/rY+Li4vDmm28CAAIDA/XnL0iwjA3JvnnzJsaMGYOqVatCrVajZs2amDp1quT3seB6XnvtNXz66ado0KABnJ2dERwcjK+//rrYn0PBdX722Wd466234Ovri0qVKqFr1664evUq7ty5g5EjR8LT0xOenp4YNmwY7t69KzmGKb8zgGm/648TQmDKlCno1q0bAgIC0LNnT6Nxubm5mDRpEqpWrQoXFxe0aNGiyOS1OCkpKejevTteeOEF1KhRA71790ZUVBSOHj1q9jFnzZqFN954A0FBQWYfg4iIiKiis7PWiU+ePIlnn30Wnp6emD17NurUqYOMjAx89dVXyM3NhYODA86cOYOIiAh4eXlh8eLF8PDwwNq1azF06FBcvXoVkyZNkhxzypQpaNmyJf773/8iOzsbb731Frp27YpTp07B1tYW9+7dQ4cOHRAYGIhly5bB29sbmZmZ2LNnD+7cuaM/zqhRo5CYmIixY8di3rx5uHnzJmbPno2IiAicPHkS3t7e+tiMjAy89NJLmDRpEubMmQMbGxvcvn0b3bt3x/fff4/27dvrY0+fPo3Dhw9j8eLF+rILFy5g4MCBCAwMhFqtxsmTJxEfH4/Tp0/j448/BpA/fHbkyJG4cOECtmzZUuTnGhwcjJCQEKxevRrDhw+XvJeYmAgvLy907twZQP5w54iICFSvXh0LFiyAj48Pdu3ahbFjx+L69euYOXNmoedJSUnBc889h8jISP3QYjc3NwD5yXLz5s1hY2ODGTNmoFatWkhJScE777yDixcvYvXq1QCA9evXY8yYMfjPf/6D9957DzY2Njh//jx+//13AMALL7yAOXPmYMqUKVi2bJn+RoPcntl//vkH7du3x19//YW5c+eibt262L59O/r162cQu2fPHjz//PNo0aIFVq5cCY1Gg/Xr16Nfv364f/++PskdP348Pv30U7zzzjsICQnBvXv38Ouvv+LGjRsAgOnTp+PevXv44osvkJKSoj++r69vkXUt7jsM5H9nwsPDMWLECGg0Gly8eBELFy7Es88+i19++QX29vYYMWIEbt68iSVLlmDz5s368xbWq5yTk4PIyEhcuHABs2bNQpMmTfDDDz9g7ty5SE1Nxfbt2yXx27dvx5EjRzB79mxUqlQJ8+fPR48ePXDmzBnUrFmz2J/JlClTEBkZicTERFy8eBETJ07EgAEDYGdnh+DgYCQlJeHEiROYMmUKXF1dZf/OmPq7/qgHDx5g6NCh2L59O7Zt24bnn3++0PoPGzYMFy9exPr16+Hn54ctW7bg+eefxy+//II6deoUe/2Pe/bZZ7Fy5UqcPXsWdevWxcmTJ3HgwIFCH8MgIiIiolIirOS5554TlStXFteuXSs0pn///sLBwUGkp6dLyjt16iScnZ3F7du3hRBC7NmzRwAQnTt3lsR9/vnnAoBISUkRQghx9OhRAUB8+eWXhZ4zJSVFABALFiyQlF++fFk4OTmJSZMm6cvatGkjAIjvvvtOEpuXlye8vb3FwIEDJeWTJk0SarVaXL9+3ei5tVqtyMvLE2vWrBG2trbi5s2b+vdeeOEFERAQYHQ/AGLmzJn614sXLxYAxJkzZ/RlN2/eFA4ODmLChAn6so4dO4pq1aqJrKwsyfFee+014ejoKDm/MS4uLmLIkCEG5aNGjRKVKlUSly5dkpS/9957AoD47bff9OepXLlykefYuHGjACD27NlTZFxRVqxYIQCIrVu3SspjYmIEALF69Wp9Wf369UVISIjIy8uTxHbp0kX4+voKrVYrhBCicePG4sUXXyzyvK+++qoo7FcsICBA8tmZ+h1+nE6nE3l5eeLSpUsG1/juu+8KACItLc1gvzZt2og2bdroX69cuVIAEJ9//rkkbt68eQKA+Pbbb/VlAIS3t7fIzs7Wl2VmZgobGxsxd+5co/V8/Dq7du0qKR83bpwAIMaOHSspf/HFF4W7u3uhxyvsd8aU3/WCa3n11VfFjRs3xLPPPiuqVq0qUlNTDWK2bNmif33+/HmhUqnElStXJHHt2rUTsbGxRZ6vMDqdTkyePFmoVCphZ2cnVCqVmDNnTpH7BAQEmPR7sXr1aqHRaMyqFxEREVFFZ5Uh2ffv38e+ffvQt29fPPXUU4XGff/992jXrh38/f0l5UOHDsX9+/clPXcA0K1bN8nrJk2aAAAuXboEAKhduzaqVKmCt956CytXrtT3ZD7q66+/hkqlwksvvYSHDx/qNx8fHwQHBxsMu6xSpQqee+45SZmdnR1eeuklbN68GVlZWQAArVaLTz/9FN27d4eHh4c+9sSJE+jWrRs8PDxga2sLe3t7DB48GFqtFmfPni30synKoEGD4ODgIBm6nJSUhAcPHmDYsGEA8nsUv/vuO/To0QPOzs6Sa+3cuTNycnJw6NAhs87/9ddfIzIyEn5+fpLjdurUCQCwb98+AEDz5s1x+/ZtDBgwAFu3bpUMKS5Je/bsgaurq8H3Y+DAgZLX58+fx+nTpzFo0CAAMPhMMjIy9MOjmzdvjp07d2Ly5MnYu3cv/vnnnxKpa3HfYQC4du0aRo8eDX9/f9jZ2cHe3h4BAQEAgFOnTpl13u+//x4uLi7o3bu3pLygR/27776TlEdGRsLV1VX/2tvbG15eXpJ6FqVLly6S1w0aNACQP6rg8fKbN29KhmWb8jtjyu96gbS0NISHhyM7OxuHDh1CcHBwkXU/fvw4hBCoW7cuKlWqpN/27duHCxcuAPjfDOxFbY/Ozr1hwwasXbsWn332GY4fP45PPvkE7733nuTxk9GjR0vOl56ejk6dOhmUEREREVHJscqQ7Fu3bkGr1RY7UdWNGzeMDmH18/PTv/+oRxNRAHBwcAAAfTKj0Wiwb98+xMfHY8qUKbh16xZ8fX0RExODadOmwd7eHlevXoUQQjLs+lGPDzctbIjtyy+/jAULFmD9+vUYNWoUdu3ahYyMDH3CCgDp6elo1aoV6tWrh0WLFqFGjRpwdHTE4cOH8eqrr5qdhLm7u6Nbt25Ys2YN3n77bdja2iIxMRHNmzdHo0aNAOR/dg8fPsSSJUsKnVjI3AT26tWr2LZtG+zt7Ys8bnR0NB4+fIiPPvoIvXr1gk6nwzPPPIN33nkHHTp0MOvcxty4ccPoz9PHx8eg3gAwceJETJw4sci6L168GNWqVcOGDRswb948ODo6omPHjnj33XfNGpJboLjvsE6nQ1RUFP766y9Mnz4dQUFBcHFxgU6nQ1hYmNnfmRs3bsDHx0fybDwAeHl5wc7OrtjftYK6mnp+d3d3yWu1Wl1keU5Ojj4hNOV3xpTf9QKHDx/G9evXER8fb9LkeTqdDra2tjh27Jh+mHyBSpUqAQCqVq1a7M2LKlWq6P//zTffxOTJk9G/f38AQFBQEC5duoS5c+diyJAhAIDZs2dLvpdt27bFvHnz0KJFC31Zwb+NRERERFQyrJIwu7u7w9bWtsjJd4D8P8ozMjIMyv/66y8AgKenp+xzBwUFYf369RBC4Oeff0ZiYiJmz54NJycnTJ48GZ6enlCpVPjhhx/0ycqjHi97PMEo0LBhQzRv3hyrV6/GqFGjsHr1avj5+SEqKkof8+WXX+LevXvYvHmzvocQAFJTU2Vf1+OGDRuGjRs3Ijk5GdWrV8eRI0ewYsUK/ftVqlSBra0toqOj8eqrrxo9RmBgoFnn9vT0RJMmTRAfH2/0/Uf/qB82bBiGDRuGe/fuYf/+/Zg5cya6dOmCs2fPSj6TJ+Hh4YHDhw8blD8+6VfB9yk2NrbQyZ7q1asHAHBxccGsWbMwa9YsXL16Vd/b3LVrV5w+fbpE6m3Mr7/+ipMnTyIxMVGfSAH5veNPwsPDAz/99BOEEJLv9LVr1/Dw4UOzftcsQc7vTHG/6wX69esHHx8fTJ06FTqdDtOmTSuyDiEhIdBqtbh27RpatWplNMbe3h7169c3+bru378PGxvpgB9bW1vJxIFeXl7w8vLSv7azs0PVqlVRu3Ztk89DRERERPJYJWF2cnJCmzZtsHHjRsTHxxf6x3i7du2wZcsW/PXXX5Ika82aNXB2dkZYWJjZdVCpVAgODsb777+PxMREHD9+HED+UNH/+7//w5UrV9C3b1+zjw/kJ4OvvPIKDhw4gG3btmH8+PGSHqmCxOTRJFwIgY8++sjgWHJ67wAgKioKVatWxerVq1G9enU4OjpiwIAB+vednZ0RGRmJEydOoEmTJvqePDkKq1OXLl2wY8cO1KpVS9KLVhQXFxd06tQJubm5ePHFF/Hbb78hICDAoIfVHJGRkfj888/x1VdfSYY8f/bZZ5K4evXqoU6dOjh58iTmzJlj8vG9vb0xdOhQnDx5EgkJCbh//z6cnZ0ldXdycjK7/o8y9p0BgA8++MAgVs5n165dO3z++ef48ssv0aNHD335mjVr9O+XBXJ+Zx7dx9jv+qOmTZsGV1dXvPHGG7h37x6mTp0quQmRlpaG1NRUuLu7o27duhg0aBAGDx6MBQsWICQkBNevX8f333+PoKAg/aR6cnTt2hXx8fGoXr06GjVqhBMnTmDhwoV4+eWXZR+rQHp6Om7evIn09HRotVr9TYXatWvre8KJiIiIqGhWmyW7YFbfFi1aYPLkyahduzauXr2Kr776Ch988AFcXV0xc+ZM/fOwM2bMgLu7O9atW4ft27dj/vz50Gg0ss759ddfY/ny5XjxxRdRs2ZNCCGwefNm3L59Wz8EuGXLlhg5ciSGDRuGo0ePonXr1nBxcUFGRgYOHDiAoKAgk9c1HTBgAMaPH48BAwboZ+B9VIcOHaBWqzFgwABMmjQJOTk5WLFiBW7dumVwrKCgIGzevBkrVqxAaGgobGxs0KxZs0LPbWtri8GDB2PhwoVwc3NDz549DT6vRYsW4dlnn0WrVq3wyiuvoEaNGrhz5w7Onz+Pbdu24fvvvy/y+oKCgrB3715s27YNvr6+cHV1Rb169TB79mwkJycjIiICY8eORb169ZCTk4OLFy9ix44dWLlyJapVq4aYmBg4OTmhZcuW8PX1RWZmJubOnQuNRoNnnnkGANC4cWMAwIcffghXV1c4OjoiMDAQHh4e2Lt3LyIjIzFz5kz9slrGDB48GO+//z4GDx6M+Ph41KlTBzt27MCuXbsMYj/44AN06tQJHTt2xNChQ1G1alXcvHkTp06dwvHjx7Fx40YA+cuDdenSBU2aNEGVKlVw6tQpfPrppwgPD4ezs7P+8wHy19jt1KkTbG1tzb45UaB+/fqoVasWJk+eDCEE3N3dsW3bNiQnJxv9+QD5P+chQ4bA3t4e9erVkzx7/OhntGzZMgwZMgQXL15EUFAQDhw4gDlz5qBz586S2d6tydTfGVN+1x/3+uuvo1KlShg5ciROnz6NL7/8Uv/e+PHjAQBDhgxBYmIiVq9ejXfeeQcTJkzAlStX4OHhgfDwcLOSZQBYsmQJpk+fjjFjxuDatWvw8/PDqFGjMGPGDLOOBwAzZsyQPAMdEhICIP+Z/seXFCMiIiKiQlhrtjEhhPj9999Fnz59hIeHh1Cr1aJ69epi6NChIicnRx/zyy+/iK5duwqNRiPUarUIDg6WzGosxP9m3t24caOkPC0tTTIL8unTp8WAAQNErVq1hJOTk9BoNKJ58+YiMTHRoG4ff/yxaNGihXBxcRFOTk6iVq1aYvDgweLo0aP6mDZt2ohGjRoVeY0DBw4UAETLli2Nvr9t2zYRHBwsHB0dRdWqVcWbb74pdu7caTAz9M2bN0Xv3r1F5cqVhUqlksy+jMdmyS5w9uxZAUAAEMnJyUbPn5aWJl5++WVRtWpVYW9vL5566ikREREh3nnnnSKvSwghUlNTRcuWLYWzs7MAIJl1+e+//xZjx44VgYGBwt7eXri7u4vQ0FAxdepUcffuXSGEEJ988omIjIwU3t7eQq1WCz8/P9G3b1/x888/S86TkJAgAgMDha2treTnuW3bNgFArFy5sti6/vnnn6JXr16iUqVKwtXVVfTq1UscPHjQYJZsIYQ4efKk6Nu3r/Dy8hL29vbCx8dHPPfcc5LzTJ48WTRr1kxUqVJFODg4iJo1a4o33nhDMgP6gwcPxIgRI8RTTz2l/5kVzFhd2CzZxX2Hhcj/venQoYNwdXUVVapUEX369BHp6elGvwexsbHCz89P2NjYSL5Tj8+SLYQQN27cEKNHjxa+vr7Czs5OBAQEiNjYWMnvoxD/m1n6cY9fkzGFXefq1asFAHHkyBFJ+cyZMwUA8ffff+vLTPmdMfV33di1JCUlCTs7OzFs2DD9rOgkxL59+/SzxeOxmcMLs3fvXtG0aVPh4OAgAgMDxYoVKwxivvjiC9GgQQOhVqtFgwYNxObNmy1QeyIiIiLzqIQQovTSc6KSM2nSJCQlJeHcuXNwdHS0dnWIyrWdO3fixx9/RNOmTdGrVy9s2bIFL774YqHxaWlpaNy4MWJiYjBq1Cj8+OOPGDNmDJKSktCrVy8A+eu5t2rVCm+//TZ69OiBLVu2YMaMGThw4IBkMjMiIiIia2HCTIr1zDPPICYmBiNHjrR2VYgqFJVKVWzC/NZbb+Grr76SzBY+evRonDx5Ur8kYL9+/ZCdnY2dO3fqY55//nlUqVIFSUlJFqs/ERERkamssg4zUUk4cuQIk2WiMiolJUWyKgAAdOzYEUePHkVeXl6RMQcPHiy1ehIREREVxWqTfhER0ZPLyclBbm6u7P3EY0uIAfmzjxtbTs8cmZmZBuufe3t74+HDh7h+/bp+oj9jMY8v+UZERERkLUyYiYgUKicnB4EBlZB5TSt730qVKuHu3buSsuJmnJfr8YS84AmgR8uNxRS2vj0RERFRaWPCTESkULm5uci8pkXasQC4uZr+hE32HR0CQy/h8uXLcHNz05eXVO8yAPj4+Bj0FF+7dg12dnbw8PAoMubxXmciIiIia+EzzERECudSSf4GAG5ubpKtJBPm8PBwg/XBv/32WzRr1gz29vZFxkRERJRYPYiIiIiehMk9zOY+J0dERPnUarVFlkDTQUAH0xc8kBNb4O7duzh//rz+dVpaGlJTU+Hu7o7q1asjNjYWV65cwZo1awDkz4i9dOlSjB8/HjExMUhJScGqVasks1+//vrraN26NebNm4fu3btj69at2L17Nw4cOCC7fkRERESWYFLCnJOTA41TFeQix9L1ISIqt3x8fJCWllbiSbMOOuhkxst19OhRREZG6l+PHz8eADBkyBAkJiYiIyMD6enp+vcDAwOxY8cOvPHGG1i2bBn8/PywePFi/RrMABAREYH169dj2rRpmD59OmrVqoUNGzZwDWYiIiIqM0xahzk7OxsajQbPojPsYF8a9SIisoitWWusct7s7Gz4+/sjKytL8tzwkx5To9Hg8umqsp9h9q9/pUTrQkRERFQeyZr0yw72sFMxYSYi5SqPCWJpDMkmIiIiqog4SzYRkcLpIKBlwkxERERU4pgwExEpHHuYiYiIiCyDCTMRkcJphYC2+OkoJPFEREREVDwmzERECqf7d5MTT0RERETFM31aVSIiIiIiIqIKhD3MRFQuJOs2WrsKVqOVOemXnFgiIiKiiowJMxGRwmlF/iYnnoiIiIiKx4SZiEjh+AwzERERkWUwYSYiUjgdVNBCJSueiIiIiIrHhJmISOF0In+TE09ERERExWPCTESkcFqZPcxyYomIiIgqMibMREQKx4SZiIiIyDKYMBMRKZxOqKATMp5hlhFLREREVJExYSaiMq0ir69sKvYwExEREVkGE2YiIoXTwgZa2MiIJyIiIiJTMGEmIlI4IXNItuCQbCIiIiKTmN4lQURERERERFSBsIeZiEjh+AwzERERkWUwYSYiUjitsIFWyHiGWViwMkRERETlCBNmIiKF00EFnYwnbHRgxkxERERkCibMRGQVXC6q5HBINhEREZFlMGEmIlI4+UOy2cNMREREZAomzERECpc/JNv0XmM5sUREREQVGZeVIiJSOB1soJWxyXne+VHLly9HYGAgHB0dERoaih9++KHQ2KFDh0KlUhlsjRo10sckJiYajcnJyTGrfkREREQljQkzEZHCFQzJlrPJtWHDBowbNw5Tp07FiRMn0KpVK3Tq1Anp6elG4xctWoSMjAz9dvnyZbi7u6NPnz6SODc3N0lcRkYGHB0dzfociIiIiEoaE2YiIoXT/dtrLGeTa+HChRg+fDhGjBiBBg0aICEhAf7+/lixYoXReI1GAx8fH/129OhR3Lp1C8OGDZPEqVQqSZyPj49ZnwERERGRJfAZZiIihdMKFbRCxizZMmIBIDc3F8eOHcPkyZMl5VFRUTh48KBJx1i1ahXat2+PgIAASfndu3cREBAArVaLp59+Gm+//TZCQkJk1Y9KTk5ODnJzc61dDSIiIj21Wm3V0WdMmImIKqjs7GzJawcHBzg4OBjEXb9+HVqtFt7e3pJyb29vZGZmFnuejIwM7Ny5E5999pmkvH79+khMTERQUBCys7OxaNEitGzZEidPnkSdOnXMuCJ6Ejk5OQgMDDTpZ0pERFRafHx8kJaWZrWkmQkzEVlFB5s+xQdZQHlc/7lgMi/T4/OXlfL395eUz5w5E3FxcYXup1JJe6aFEAZlxiQmJqJy5cp48cUXJeVhYWEICwvTv27ZsiWaNm2KJUuWYPHixcUel0pWbm4uMjMzcfnyZbi5uVm7OkRERMjOzoa/vz9yc3OZMBMRkXl0wgY6GRN56f5dh/nxxMhY7zIAeHp6wtbW1qDn8dq1awa9zo8TQuDjjz9GdHQ01Gp1kbE2NjZ45plncO7cOVMugyzEzc2NCTMREdG/OOkXEZHCyVlS6tHe6ILEqGArLGFWq9UIDQ1FcnKypDw5ORkRERFF1m3fvn04f/48hg8fXux1CCGQmpoKX19fE6+ciIiIyLLYw0xEpHA6yJvIS2fGOcaPH4/o6Gg0a9YM4eHh+PDDD5Geno7Ro0cDAGJjY3HlyhWsWbNGst+qVavQokULNG7c2OCYs2bNQlhYGOrUqYPs7GwsXrwYqampWLZsmRk1JCIiIip5TJiJiBRO7lJR5iwr1a9fP9y4cQOzZ89GRkYGGjdujB07duhnvc7IyDBYkzkrKwubNm3CokWLjB7z9u3bGDlyJDIzM6HRaBASEoL9+/ejefPmsutHREREZAkqIf59mK0I2dnZ0Gg0aIvusFPZl0a9iIgswlqTfhX8O5qVlVViz4cWHHPpsRZwqmT6/c9/7j7Ea6E/lWhdSPks8R0lIiJ6EmWhbWIPMxGRwumggg5yhmTLW4eZiIiIqKJiwkxEpHBaYQOtjFmy5cQSERERVWRMmImoQpGz/rNS1myWvw4zE2YiIiIiUzBhJiJSOJ1QQSdnlmwZsUREREQVGRNmIiKF08nsYTZnlmwiIiKiioh/NREREREREREZwR5mIiKF0wkb6GRM5CUnloiIiKgiY8JMRKRwWqiglbFUlJxYIiIiooqMCTMRkcKxh5mIiIjIMpgwExEpnBbyeo21lqsKERERUbnChJmIqBCmrtls7fWa2cNMREREZBlMmImIFE4rbKCVkQTLiSUiIiKqyJgwExEpnIAKOhlDsgUn/SIiIiIyCRNmIiKFYw8zERERkWUwYSYiUjidUEEnTO81lhNLREREVJExYSYiUjgtbKCFjB5mGbFEREREFRkTZiIihWMPMxEREZFlsJuBiIiIiIiIyAj2MBMRKZwONtDJuP8pJ5aIiIioImPCTESkcFqhglbGMGs5sUREREQVGRNmIiKF4zPMRERERJbBhJmISOGEsIFOxtrKguswExEREZmECTMRkcJpoYIWMoZky4glIiIiqsiYMBMRKZxOyBtmrRMWrAwRERFROcJxeURECqf7d0i2nM0cy5cvR2BgIBwdHREaGooffvih0Ni9e/dCpVIZbKdPn5bEbdq0CQ0bNoSDgwMaNmyILVu2mFU3IiIiIktgwkxEpHA6qGRvcm3YsAHjxo3D1KlTceLECbRq1QqdOnVCenp6kfudOXMGGRkZ+q1OnTr691JSUtCvXz9ER0fj5MmTiI6ORt++ffHTTz/Jrh8RERGRJTBhJiJSuIJlpeRsci1cuBDDhw/HiBEj0KBBAyQkJMDf3x8rVqwocj8vLy/4+PjoN1tbW/17CQkJ6NChA2JjY1G/fn3ExsaiXbt2SEhIkF0/IiIiIktgwkxEpHCWHpKdm5uLY8eOISoqSlIeFRWFgwcPFrlvSEgIfH190a5dO+zZs0fyXkpKisExO3bsWOwxiYiIiEoLJ/0iIqqgsrOzJa8dHBzg4OBgEHf9+nVotVp4e3tLyr29vZGZmWn02L6+vvjwww8RGhqKBw8e4NNPP0W7du2wd+9etG7dGgCQmZkp65hEREREpY0JMxGRwumgkjdL9r/PMPv7+0vKZ86cibi4uEL3U6mk5xBCGJQVqFevHurVq6d/HR4ejsuXL+O9997TJ8xyj0lERERU2pgwExEpnJA5kZf4N/by5ctwc3PTlxvrXQYAT09P2NraGvT8Xrt2zaCHuChhYWFYu3at/rWPj88TH5OIiIjIkvgMMxGRwumESvYGAG5ubpKtsIRZrVYjNDQUycnJkvLk5GRERESYXM8TJ07A19dX/zo8PNzgmN9++62sYxIRERFZEnuYiYgUTu5EXuaswzx+/HhER0ejWbNmCA8Px4cffoj09HSMHj0aABAbG4srV65gzZo1APJnwK5RowYaNWqE3NxcrF27Fps2bcKmTZv0x3z99dfRunVrzJs3D927d8fWrVuxe/duHDhwQHb9iIiIiCyBCTMR0RPqYNOn2JiHIs9i53+019jUeLn69euHGzduYPbs2cjIyEDjxo2xY8cOBAQEAAAyMjIkazLn5uZi4sSJuHLlCpycnNCoUSNs374dnTt31sdERERg/fr1mDZtGqZPn45atWphw4YNaNGihez6EREREVmCSgghigvKzs6GRqNBW3SHncq+NOpFRFSuPBR52IutyMrKkjw3/CQK/m3u+u1w2LuoTd4v714utkWtKtG6kPIVfJ/4vSAiorKiLLRN7GEmIlK40uhhJiIiIqqImDATESkcE2YiIiIiy2DCTESkcEyYiYiIiCyDCTMRkcIxYSYiIiKyDCbMREQKJwDoYHoSXOxMj0REREQEAJC/GCcRERERERFRBcAeZiKiJ5Ss21hsTMGyCJbAIdlERERElsGEmYhI4ZgwExEREVkGE2YiIoVjwkxERERkGUyYiYgUjgkzERERkWUwYSYiUjghVBAykmA5sUREREQVGRNmIiKF00Ela1kpObFEREREFRkTZiIiheOQbCIiIiLLYMJMRGWaKUs2ydHBpo/Vzm0pHJJNREREZBlMmImIFI49zERERESWwYSZiEjh2MNMREREZBlMmImIFE7I7GFmwkxERERkGhtrV4CIiIiIiIioLGIPMxGRwgkAQsiLJyIiIqLiMWEmIlI4HVRQcR1mIiIiohLHhJmISOE46RcRERGRZTBhJqJyQc76yiV9TGuv16wTKqi4rBQRERFRiWPCTESkcELIfIaZDzETERERmYQJMxGRwnFINhEREZFlcFkpIiKFK0iY5WzmWL58OQIDA+Ho6IjQ0FD88MMPhcZu3rwZHTp0wFNPPQU3NzeEh4dj165dkpjExESoVCqDLScnx6z6EREREZU0JsxERAqnEyrZm1wbNmzAuHHjMHXqVJw4cQKtWrVCp06dkJ6ebjR+//796NChA3bs2IFjx44hMjISXbt2xYkTJyRxbm5uyMjIkGyOjo5mfQ5EREREJY1DsomIFK40nmFeuHAhhg8fjhEjRgAAEhISsGvXLqxYsQJz5841iE9ISJC8njNnDrZu3Ypt27YhJCREX65SqeDj4yO/QkRERESlgD3MREQKl58wyxmSLe/4ubm5OHbsGKKioiTlUVFROHjwoEnH0Ol0uHPnDtzd3SXld+/eRUBAAKpVq4YuXboY9EATERERWRMTZiKiCio7O1uyPXjwwGjc9evXodVq4e3tLSn39vZGZmamSedasGAB7t27h759++rL6tev///t3X1wVNX9x/HPErIbULIKMdkwRIIVAQ0qBPPEDEIDAZXKgDwVJ9YW1lpkKEJGS6dioK0MWgVFqehQo0CBUUvVMQaC9QkhaMCIWCcy/tBEzRLFsBGlJCT7+yNl65pNshty2Zzk/Zo5M92z5949t6L20++556igoEAvvviitmzZopiYGI0ePVqHDx9u/0MBAAB0IJZkA0ALIn2+cqjau0t2UlJSQP+9996r/Pz8Fq+z2QJ/w+fzNesLZsuWLcrPz9cLL7yg+Ph4f39GRoYyMjL8n0ePHq2RI0dq7dq1euSRR0J5FAAAAEsRmAHAcL7/tnDGS1JlZaViY2P9/Q6HI+j4uLg4RUVFNasmV1dXN6s6/9i2bds0d+5cPfvssxo/fnyrY3v06KFrrrmGCjMAAOg0WJINAIZr77FSsbGxAa2lwGy325Wamqri4uKA/uLiYmVlZbU4ry1btujWW2/V3//+d91www0hPIdPZWVlSkxMDOPpAQAArEOFGQBM194ScxgWL16s3NxcjRo1SpmZmXriiSdUUVGh22+/XZK0dOlSffHFF3rmmWckNYXlW265RQ8//LAyMjL81elevXrJ6XRKkpYvX66MjAwNHjxYtbW1euSRR1RWVqbHHnss/AkCAABYgMAMAKYL8x1mteMc5lmzZunYsWNasWKFqqqqlJKSosLCQg0cOFCSVFVVFXAm8/r163X69GndcccduuOOO/z9v/jFL1RQUCBJOn78uG677TZ5PB45nU6NGDFCb775ptLS0sKeHwAAgBUIzABguHNxDrMkzZ8/X/Pnzw/63ZkQfMbrr7/e5v1Wr16t1atXt28yAAAA5wCBGQAM195dsgEAANA6AjOAiDDhyKYJPWaENC7iz+KzhbfMmsAMAAAQEgIzABjuXC3JBgAA6G4IzABgunOwSzYAAEB3RGAGAMPxDjMAAIA1ekR6AgAAAAAAdEZUmAGgK2CZNQAAQIcjMAOA4ViSDQAAYA0CMwCYjk2/AAAALEFgBtBhrDiPONSzkCMplDme9tVbOAPbf1s44wEAANAWAjMAmI4KMwAAgCUIzABgOgIzAACAJQjMAGA6n62phTMeAAAAbSIwA4DhfL6mFs54AAAAtI3ADACmY0k2AACAJQjMAGA6lmQDAABYgsAMAIaz+ZpaOOMBAADQNgIzgDZZcb4ycK69+eabysrKUs+egf/qO336tPbs2aMxY8ZEaGYAAKCz6hHpCQAAzpKvHa0bGjdunL755ptm/V6vV+PGjYvAjAAAQGdHhRkATMc7zCHx+Xyy2Zo/+7Fjx3TeeedFYEYAAKCzIzADgOnYJbtV06ZNkyTZbDbdeuutcjgc/u8aGhp08OBBZWVlRWp6AACgEyMwA4DpCMytcjqdkpoqzH369FGvXr3839ntdmVkZMjtdkdqegAAoBMjMAOA6QjMrXrqqackScnJycrLy2P5NQAACBmbfgGA6c68wxxO64buuuuugHeYP/vsM61Zs0Y7d+6M4KwAAEBnRmAGAMOdOYc5nNYe69at06BBgxQTE6PU1FS99dZbrY5/4403lJqaqpiYGF1yySV6/PHHm415/vnndfnll8vhcOjyyy/X9u3b2ze5EEyZMkXPPPOMJOn48eNKS0vTgw8+qClTpuivf/2rZb8LAADMxZJsIMI449h8ofw1rK2t9b9L2+HOwZLsbdu2adGiRVq3bp1Gjx6t9evX67rrrtO///1vXXzxxc3GHzlyRNdff73cbrc2bdqkt99+W/Pnz9dFF12km266SZK0d+9ezZo1S3/84x81depUbd++XTNnztTu3buVnp4e/iTbcODAAa1evVqS9Nxzz8nlcum9997T888/r2XLluk3v/lNh/8mAAAwGxVmAECbHnroIc2dO1fz5s3TsGHDtGbNGiUlJbVYmX388cd18cUXa82aNRo2bJjmzZunX/3qV/rLX/7iH7NmzRpNmDBBS5cu1dChQ7V06VJlZ2drzZo1ljzD999/rz59+kiSdu7cqWnTpqlHjx7KyMjQZ599ZslvAgAAsxGYAcBwNoW5JDvM+9fV1Wn//v3KyckJ6M/JydGePXuCXrN3795m4ydOnKjS0lLV19e3Oqale56tSy+9VP/85z9VWVmpHTt2+H+7urpasbGxlvwmAAAwG4EZALqp2tragHbq1Kmg477++ms1NDQoISEhoD8hIUEejyfoNR6PJ+j406dP6+uvv251TEv3PFvLli1TXl6ekpOTlZaWpszMTElN1eYRI0ZY8psAAMBsBGYAMF07d8lOSkqS0+n0t5UrV7b6Mz/cYVpqOtf4x31tjf9xf7j3PBvTp09XRUWFSktLtWPHDn9/dna2/91mAACAH2LTLwAwXTs3/aqsrAxYiuxwOIIOj4uLU1RUVLPKb3V1dbMK8Rkulyvo+J49e6pfv36tjmnpnh3B5XLpxIkTKi4u1pgxY9SrVy9dc801loV0AABgNirMAGA6XzuapNjY2IDWUmC22+1KTU1VcXFxQH9xcbGysrKCXpOZmdls/M6dOzVq1ChFR0e3Oqale56tY8eOKTs7W5dddpmuv/56VVVVSZLmzZunJUuWWPKbAADAbFSYAaAFphz5Fe7Zyu05h3nx4sXKzc3VqFGjlJmZqSeeeEIVFRW6/fbbJUlLly7VF1984T/n+Pbbb9ejjz6qxYsXy+12a+/evdqwYYO2bNniv+dvf/tbjRkzRqtWrdKUKVP0wgsvaNeuXdq9e3f4EwzBnXfeqejoaFVUVGjYsGH+/lmzZunOO+/Ugw8+aMnvAgAAcxGYAcB05+Ac5lmzZunYsWNasWKFqqqqlJKSosLCQg0cOFCSVFVVpYqKCv/4QYMGqbCwUHfeeacee+wx9e/fX4888oj/DGZJysrK0tatW/WHP/xB99xzj37yk59o27ZtlpzBLDVVr3fs2KEBAwYE9A8ePJhjpQAAQFAEZgAw3TkIzJI0f/58zZ8/P+h3BQUFzfquvfZaHThwoNV7Tp8+XdOnT2/fhML03XffqXfv3s36v/766xaXowMAgO6Nd5gBwHBhncEc5vLtrmTMmDH+JeNS0w7djY2NeuCBBzRu3LgIzgwAAHRWVJgBwHQ/OCoq5PHd0AMPPKCxY8eqtLRUdXV1uuuuu/Thhx/qm2++0dtvvx3p6QEAgE6ICjMAmK6du2R3N+eff77KysqUlpamCRMm6LvvvtO0adP03nvv+XfuBgAA+CEqzABguHOxS3ZXMGjQIFVVVWn58uUB/ceOHdOAAQPU0NAQoZkBAIDOisAMAKY7R5t+mc7nC/7gJ06cUExMzDmeDQAAMAGBGbCIKWf4Al3d4sWLJTVt8rVs2bKAnbIbGhq0b98+XX311RGaHQAA6MwIzABgunB3vu5mFeb33ntPUlOF+YMPPpDdbvd/Z7fbddVVVykvLy9S0wMAAJ0YgRkATMeS7Fa99tprkqRf/vKXevjhhxUbGxvhGQEAAFMQmAHAdATmkDz11FORngIAADAMgRkADMcu2QAAANbgHGYAAAAAAIKgwgwApmNJNgAAgCUIzABgOJZkAwAAWIPAjGZCPT94Qo8ZFs8EQMgIwQAAAB2OwAwApmNJNgAAgCUIzABgOJZkAwAAWIPADACmo8IMAABgCY6VAgAAAAAgCCrMAGA4lmQDAABYg8AMAKZjSTYAAIAlCMwAYDoCMwAAgCUIzGi3UM9rtgJnQJsvUn8NI/nn1iosyQYAALAGgRkATEeFGQAAwBIEZgAwHYEZAADAEhwrBQCGO7MkO5xmpZqaGuXm5srpdMrpdCo3N1fHjx9vcXx9fb3uvvtuDR8+XOedd5769++vW265RV9++WXAuLFjx8pmswW02bNnW/swAACgWyMwA4DpfO1oFpozZ47KyspUVFSkoqIilZWVKTc3t8Xx33//vQ4cOKB77rlHBw4c0D/+8Q99/PHHuvHGG5uNdbvdqqqq8rf169db+SgAAKCbY0k2ABiuM2369dFHH6moqEglJSVKT0+XJD355JPKzMxUeXm5hgwZ0uwap9Op4uLigL61a9cqLS1NFRUVuvjii/39vXv3lsvlsu4BAAAAfoAKMwCYrhNVmPfu3Sun0+kPy5KUkZEhp9OpPXv2hHwfr9crm82mCy64IKB/8+bNiouL0xVXXKG8vDx9++23HTV1AACAZqgwo5lIHtnUlY78CfW/RxOemWO8uqba2tqAzw6HQw6H46zu6fF4FB8f36w/Pj5eHo8npHv85z//0e9+9zvNmTNHsbGx/v6bb75ZgwYNksvl0qFDh7R06VK9//77zarTAAAAHYUKMwCYrp0V5qSkJP/GXE6nUytXrmzxJ/Lz85ttuPXjVlpaKkmy2WzNp+jzBe3/sfr6es2ePVuNjY1at25dwHdut1vjx49XSkqKZs+ereeee067du3SgQMH2rwvAABAe1BhBgDD2f7bwhkvSZWVlQEV3NaqywsWLGhzR+rk5GQdPHhQR48ebfbdV199pYSEhFavr6+v18yZM3XkyBH961//CphbMCNHjlR0dLQOHz6skSNHtjoWAACgPQjMAGC6dp7DHBsb22YoPSMuLk5xcXFtjsvMzJTX69U777yjtLQ0SdK+ffvk9XqVlZXV4nVnwvLhw4f12muvqV+/fm3+1ocffqj6+nolJiaG9AwAAADhYkk2ABiuM53DPGzYME2aNElut1slJSUqKSmR2+3W5MmTA3bIHjp0qLZv3y5JOn36tKZPn67S0lJt3rxZDQ0N8ng88ng8qqurkyR98sknWrFihUpLS/Xpp5+qsLBQM2bM0IgRIzR69GjrHggAAHRrBGYAMF0n2iVbatrJevjw4crJyVFOTo6uvPJKbdy4MWBMeXm5vF6vJOnzzz/Xiy++qM8//1xXX321EhMT/e3Mztp2u12vvvqqJk6cqCFDhmjhwoXKycnRrl27FBUVZe0DAQCAbosl2QDQFVgcgsPRt29fbdq0qdUxPt//JpycnBzwOZikpCS98cYbHTI/AACAUBGYAcBw4S6ztnJJNgAAQFdCYIaRQj27mPOD0S20c9MvAAAAtI7ADACGo8IMAABgDQIzAJiOCjMAAIAlCMwAYDgqzAAAANbgWCkAAAAAAIKgwgwApmNJNgAAgCUIzABgOgIzAACAJQjMAGA43mEGAACwBoEZ7RbqWchoHWdF46xRYQYAALAEgRkADGfz+WTzhZ6CwxkLAADQnRGYAcB0VJgBAAAsQWAGAMPxDjMAAIA1CMwAYDoqzAAAAJYgMAOA4agwAwAAWIPADACmo8IMAABgCQIzYJFQj93iWKnWcXxZ26gwAwAAWKNHpCcAAAAAAEBnRIUZAEzHkmwAAABLEJgBoAtgmTUAAEDHIzADgOl8vqYWzngAAAC0icAMAIZj0y8AAABrEJgBwHS8wwwAAGAJAjMAGM7W2NTCGQ8AAIC2EZjRbqGeHxzJc3Qj+dvd8XxlzkyOkE5WYa6pqdHChQv14osvSpJuvPFGrV27VhdccEGL19x66616+umnA/rS09NVUlLi/3zq1Cnl5eVpy5YtOnnypLKzs7Vu3ToNGDDAkucAAADgHGYAMNyZd5jDaVaaM2eOysrKVFRUpKKiIpWVlSk3N7fN6yZNmqSqqip/KywsDPh+0aJF2r59u7Zu3ardu3frxIkTmjx5shoaGqx6FAAA0M1RYQYA03WiXbI/+ugjFRUVqaSkROnp6ZKkJ598UpmZmSovL9eQIUNavNbhcMjlcgX9zuv1asOGDdq4caPGjx8vSdq0aZOSkpK0a9cuTZw4seMfBgAAdHtUmAHAcJ2pwrx37145nU5/WJakjIwMOZ1O7dmzp9VrX3/9dcXHx+uyyy6T2+1WdXW1/7v9+/ervr5eOTk5/r7+/fsrJSWlzfsCAAC0FxVmAOimamtrAz47HA45HI6zuqfH41F8fHyz/vj4eHk8nhavu+666zRjxgwNHDhQR44c0T333KOf/vSn2r9/vxwOhzwej+x2uy688MKA6xISElq9LwAAwNmgwgwApvO1o0lKSkqS0+n0t5UrV7b4E/n5+bLZbK220tJSSZLNZms+RZ8vaP8Zs2bN0g033KCUlBT97Gc/0yuvvKKPP/5YL7/8cuuP3sZ9AQAAzgYVZgAwXLjLrM+MraysVGxsrL+/teryggULNHv27Fbvm5ycrIMHD+ro0aPNvvvqq6+UkJAQ8hwTExM1cOBAHT58WJLkcrlUV1enmpqagCpzdXW1srKyQr4vAABAOAjMAGC6dm76FRsbGxCYWxMXF6e4uLg2x2VmZsrr9eqdd95RWlqaJGnfvn3yer1hBdtjx46psrJSiYmJkqTU1FRFR0eruLhYM2fOlCRVVVXp0KFDuv/++0O+LwAAQDgIzEAXxHnI3Ut7K8xWGDZsmCZNmiS3263169dLkm677TZNnjw5YIfsoUOHauXKlZo6dapOnDih/Px83XTTTUpMTNSnn36q3//+94qLi9PUqVMlSU6nU3PnztWSJUvUr18/9e3bV3l5eRo+fLh/12wAAICORmAGANP94L3kkMdbaPPmzVq4cKF/R+sbb7xRjz76aMCY8vJyeb1eSVJUVJQ++OADPfPMMzp+/LgSExM1btw4bdu2TX369PFfs3r1avXs2VMzZ87UyZMnlZ2drYKCAkVFRVn7QAAAoNsiMAOA4TpThVmS+vbtq02bNrU6xveDJeS9evXSjh072rxvTEyM1q5dq7Vr1571HAEAAEJBYAYA0zX6mlo44wEAANAmAjMAmK6TLckGAADoKgjMAGA4m8Jckm3ZTAAAALoWAjMAmK6dx0oBAACgdQRmADBcZ9v0CwAAoKsgMAOG4GxlAAAA4NwiMAOA6dj0CwAAwBIEZgAwnM3nky2M95LDGQsAANCdEZgBwHSN/23hjAcAAECbCMwAYDgqzAAAANYgMAOA6XiHGQAAwBIEZgAwHecwAwAAWILADFiEY6BwrnAOMwAAgDUIzABgOirMAAAAliAwA4DhbI1NLZzxAAAAaBuBGQBMR4UZAADAEgRmADAdu2QDAABYokekJwAAAAAAQGdEhRkADGfz+WQLY5l1OGMBAAC6MwIzAJiOd5gBAAAsQWAGANP5JIWz8zV5GQAAICQEZgAwHEuyAQAArEFgBgDT+RTmkmzLZgIAANClEJgBwHS8wwwAAGAJjpUCANM1tqNZqKamRrm5uXI6nXI6ncrNzdXx48dbvcZmswVtDzzwgH/M2LFjm30/e/Zsax8GAAB0a1SYAcBwne0d5jlz5ujzzz9XUVGRJOm2225Tbm6uXnrppRavqaqqCvj8yiuvaO7cubrpppsC+t1ut1asWOH/3KtXrw6cOQAAQCACMwCYrhMtyf7oo49UVFSkkpISpaenS5KefPJJZWZmqry8XEOGDAl6ncvlCvj8wgsvaNy4cbrkkksC+nv37t1sLAAAgFVYkg0ApjsTmMNpFtm7d6+cTqc/LEtSRkaGnE6n9uzZE9I9jh49qpdffllz585t9t3mzZsVFxenK664Qnl5efr22287bO4AAAA/RoUZALqp2tragM8Oh0MOh+Os7unxeBQfH9+sPz4+Xh6PJ6R7PP300+rTp4+mTZsW0H/zzTdr0KBBcrlcOnTokJYuXar3339fxcXFZzVnBPrxnwsAACKlM/w7icAMAKZr55LspKSkgO57771X+fn5QS/Jz8/X8uXLW73tu+++K6lpA6/mP+kL2h/M3/72N918882KiYkJ6He73f7/nJKSosGDB2vUqFE6cOCARo4cGdK90TK73S6Xy9XszwUAAJHkcrlkt9sj9vsEZgAwXaOk0LLo/8ZLqqysVGxsrL+7teryggUL2tyROjk5WQcPHtTRo0ebfffVV18pISGhzam99dZbKi8v17Zt29ocO3LkSEVHR+vw4cME5g4QExOjI0eOqK6uLtJTAQDAz263N/s/0c8lAjMAGK69u2THxsYGBObWxMXFKS4urs1xmZmZ8nq9euedd5SWliZJ2rdvn7xer7Kystq8fsOGDUpNTdVVV13V5tgPP/xQ9fX1SkxMbPsBEJKYmJiI/o8SAAA6Gzb9AgDTdaJNv4YNG6ZJkybJ7XarpKREJSUlcrvdmjx5csAO2UOHDtX27dsDrq2trdWzzz6refPmNbvvJ598ohUrVqi0tFSffvqpCgsLNWPGDI0YMUKjR4+27HkAAED3RmAGANM1+sJvFtq8ebOGDx+unJwc5eTk6Morr9TGjRsDxpSXl8vr9Qb0bd26VT6fTz//+c+b3dNut+vVV1/VxIkTNWTIEC1cuFA5OTnatWuXoqKiLH0eAADQfdl8vrZLDbW1tXI6nRqrKeppiz4X80IXUtz4bKSnAETcmX+Oer3ekJdBh3rP8Zf8Vj2jQt/d+nTDKe36v4c7dC4AAABdEe8wA4Dxwl1mbW2FGQAAoKsgMAOA6dp5rBQAAABaR2AGANM1+hRW1djid5gBAAC6CgIzAJjO19jUwhkPAACANhGYAcB0LMkGAACwBMdKAQAAAAAQBBVmADAd7zADAABYgsAMAKZjSTYAAIAlCMxot+LGZyM9BQBSU3E5rMBs2UwAAAC6FAIzAJiOCjMAAIAlCMwAYLrGRklhHBXVyLFSAAAAoSAwA4DpqDADAABYgsAMAKYjMAMAAFiCwAwApuNYKQAAAEsQmAHAcD5fo3y+0N9LDmcsAABAd0ZgBgDT+XzhVY1Zkg0AABASAjMAmM4X5pJsAjMAAEBIekR6AgAAAAAAdEZUmAHAdI2Nki2M95J5hxkAACAkBGYAMB1LsgEAACxBYAYAw/kaG+ULo8LMLtkAAAChITADgOmoMAMAAFiCwAwApmv0STYCMwAAQEcLKzCfVn1YRQx0bbW1tZGeAmAMS/9+8fkkhbPpF/8gBwAACEVIgdlut8vlcmm3p9Dq+cAgTqcz0lMAjOJyuWS32zv8vr5Gn3xhVJh9FgfmP//5z3r55ZdVVlYmu92u48ePhzSn5cuX64knnlBNTY3S09P12GOP6YorrvCPOXXqlPLy8rRlyxadPHlS2dnZWrdunQYMGGDh0wAAgO4spMAcExOjI0eOqK6uzur5AECXZbfbFRMT0/E39jUqvAqztZt+1dXVacaMGcrMzNSGDRtCuub+++/XQw89pIKCAl122WX605/+pAkTJqi8vFx9+vSRJC1atEgvvfSStm7dqn79+mnJkiWaPHmy9u/fr6ioKCsfCQAAdFM2n9WlBgCAJWpra+V0OjXWNlU9bdEhX3faV6/Xfdvl9XoVGxtr2fwKCgq0aNGiNivMPp9P/fv316JFi3T33XdLaqomJyQkaNWqVfr1r38tr9eriy66SBs3btSsWbMkSV9++aWSkpJUWFioiRMnWvYcAACg++oR6QkAAM6SrzH81okcOXJEHo9HOTk5/j6Hw6Frr71We/bskSTt379f9fX1AWP69++vlJQU/xgAAICOxi7ZAGC4cDdkPK16Sc03InM4HHI4HB05tZB4PB5JUkJCQkB/QkKCPvvsM/8Yu92uCy+8sNmYM9cDAAB0NAIzABjqbDZkPP/885WUlBTQd++99yo/Pz/o+Pz8fC1fvrzVe7777rsaNWpU2HM5w2azBXz2+XzN+n4slDEAAADtRWAGAEOdzYaMwYJma9XlBQsWaPbs2a3eMzk5Oex5SE27h0tNVeTExER/f3V1tb/q7HK5VFdXp5qamoAqc3V1tbKystr1uwAAAG0hMAOAwWJiYqzZeftH4uLiFBcXZ8m9Bw0aJJfLpeLiYo0YMUJS007bb7zxhlatWiVJSk1NVXR0tIqLizVz5kxJUlVVlQ4dOqT777/fknkBAAAQmAEAHaqiokLffPONKioq1NDQoLKyMknSpZdeqvPPP1+SNHToUK1cuVJTp06VzWbTokWLdN9992nw4MEaPHiw7rvvPvXu3Vtz5syR1HTu+9y5c7VkyRL169dPffv2VV5enoYPH67x48dH6lEBAEAXR2AGAHSoZcuW6emnn/Z/PlM1fu211zR27FhJUnl5ubxer3/MXXfdpZMnT2r+/PmqqalRenq6du7c6T+DWZJWr16tnj17aubMmTp58qSys7NVUFDAGcwAAMAynMMMAAAAAEAQnMMMAAAAAEAQBGYAAAAAAIIgMAMAAAAAEASBGQAAAACAIAjMAAAAAAAEQWAGAAAAACAIAjMAAAAAAEEQmAEAAAAACILADAAAAABAEARmAAAAAACCIDADAAAAABAEgRkAAAAAgCD+H0udqgo2aotxAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axs = plt.subplots(nrows=2,ncols=2,\n", + " subplot_kw=dict(projection=ccrs.PlateCarree()),\n", + " figsize=(12,8))\n", + "axs=axs.flatten()\n", + "# These differences around the coast seem pretty tiny, again within rounding error?\n", + "ds_out_con.test.isel(time=0)\\\n", + " .sel(lon=slice(lon_bounds[0],lon_bounds[1]),lat=slice(lat_bounds[0],lat_bounds[1]))\\\n", + " .plot(vmin=1-1e-8, vmax=1+1e-8, ax=axs[0])\n", + "\n", + "ds_out_bilin.test.isel(time=0)\\\n", + " .sel(lon=slice(lon_bounds[0],lon_bounds[1]),lat=slice(lat_bounds[0],lat_bounds[1]))\\\n", + " .plot(vmin=1-1e-8, vmax=1+1e-8, ax=axs[1]) ;\n", + "\n", + "ds_out_con.test.isel(time=0).where(fv_t232.landfrac>0)\\\n", + " .sel(lon=slice(lon_bounds[0],lon_bounds[1]),lat=slice(lat_bounds[0],lat_bounds[1]))\\\n", + " .plot(vmin=1-1e-8, vmax=1+1e-8, ax=axs[2])\n", + "\n", + "axs[0].set_title('conservative test, no mask')\n", + "axs[1].set_title('bilinear test') ;\n", + "axs[2].set_title('conservative test, destination mask') ;" + ] + }, + { + "cell_type": "markdown", + "id": "7dd34b5d-bd99-405a-a988-5b561bf3d0b0", + "metadata": {}, + "source": [ + "#### Now look at regional fluxes\n", + "- Not sure if bounding boxes are necessarily identical in unstructured and regular grid.\n", + "- Fluxes still don't look the same when focusing on a few islands, but overall not unreasonable\n", + "- What level of difference are we OK tolerating?" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "d94d7a9a-994a-4c0a-ab57-db7bebcc479f", + "metadata": {}, + "outputs": [], + "source": [ + "# elements include nodes, edge centers, or face centers) \n", + "element = 'face centers'\n", + "region = 'Hawaii'\n", + "month = 6\n", + "# set the bounding box\n", + "plot_opts = {\"width\": 700, \"height\": 400}\n", + "\n", + "if region == 'Global':\n", + " lat_bounds = (-90, 90)\n", + " lon_bounds = (-180, 180)\n", + " lon_bounds2 = (0, 360)\n", + "elif region == 'East Asia':\n", + " lat_bounds = (23, 58)\n", + " lon_bounds = (110, 150)\n", + " lon_bounds2 = (110, 150)\n", + "elif region == 'Polar':\n", + " lat_bounds = (60, 90)\n", + " lon_bounds = (-180, 180)\n", + " lon_bounds2 = (0, 360)\n", + "elif region == 'Hawaii':\n", + " lat_bounds = (17, 25)\n", + " lon_bounds = (-162, -153)\n", + " lon_bounds2 = ((360-162), (360-153)) \n", + "elif region == 'Amazon':\n", + " lat_bounds = (-10, 0)\n", + " lon_bounds = (-70, -50)\n", + " lon_bounds2 = ((290), (310)) \n", + "elif region == 'New Zeland':\n", + " lat_bounds = (-50, -33)\n", + " lon_bounds = (160, 179)\n", + " lon_bounds2 = (160, 180)\n", + "elif region == 'South America':\n", + " lat_bounds = (-57, 13)\n", + " lon_bounds = (-85, -30)\n", + " lon_bounds2 = ((360-85), (360-30))\n", + " plot_opts = {\"width\": 700, \"height\": 700} \n", + "\n", + "\n", + "bbox_subset_nodes = ds0[\"GPP\"][month].subset.bounding_box(\n", + " lon_bounds, lat_bounds, element=element\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "e3c6a535-a39a-4c84-8044-3184d5e94a2d", + "metadata": {}, + "outputs": [ + { + "data": {}, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.holoviews_exec.v0+json": "", + "text/html": [ + "
\n", + "
\n", + "
\n", + "" + ], + "text/plain": [ + ":Overlay\n", + " .Polygons.I :Polygons [x,y] (GPP)\n", + " .Coastline.I :Feature [Longitude,Latitude]" + ] + }, + "execution_count": 33, + "metadata": { + "application/vnd.holoviews_exec.v0+json": { + "id": "p6823" + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "#if region != \"New Zeland\" comment out features below \n", + "bbox_subset_nodes.plot.polygons(\n", + " clim=clim, \n", + " cmap='viridis',\n", + " title=region + \" Bounding Box Subset (\"+element+\" Query)\",\n", + " **plot_opts,\n", + ") * features" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "d7fbcc60-32a2-4fef-afad-06e520c47635", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6oAAAKYCAYAAAB6uQUMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXhU1fkH8O+dPdtkX1mSsBPZE40JBlAgrAqVlig1KipCtSpQWxC0oLYq1lqrLGpFEG2BKqBUgR+JCIJE1hBk3wKBLGTfl9nO7480U4ZMwkxMMpnM9/M899GcvPeec2/CvDnnnnuuJIQQICIiIiIiIuogZI5uABEREREREdGN2FElIiIiIiKiDoUdVSIiIiIiIupQ2FElIiIiIiKiDoUdVSIiIiIiIupQ2FElIiIiIiKiDoUdVSIiIiIiIupQ2FElIiIiIiKiDoUdVSIiIiIiIupQHNZRXbt2LSRJwuHDh61+f/LkyYiIiGjfRtlo1KhRGDVqlEWZJElYunSpQ9rTWe3evRuSJGH37t3msm3btvE6dwCXL1+GJEl46623HN0UIroBcyvdirPnVmvtb03/+te/8M4771j9Xnv8Pjb3s4iIiMCjjz7apvV3dPz7w7UoHN0AZ7Ry5cpGZWlpaejatasDWtN5DRs2DGlpaYiKijKXbdu2DStWrHCahEpERLZhbm0fzK3N+9e//oUTJ05g7ty5jb7XHr+Pzf0stmzZAq1W26b1E3Uk7Ki2wI0f7g3uvPNOB7SkY6ipqYFGo4EkSa16XK1W69LXlYjIlTC3WmJu7Xgcfd2GDh3q0PqJ2ptTPaO6YsUKjBgxAkFBQfDw8MDAgQPx5ptvQq/XW8TIZDLk5+eby/76179CkiQ8/fTT5jKTyQRfX1/87ne/M5e9/PLLiI2NhZ+fH7RaLYYNG4bVq1dDCGHRjp8zPamurg6vvPIK+vfvD41GA39/f9x9993Yv3+/Oaa2thYvvPACIiMjoVKp0KVLFzz99NMoLS21OFZERAQmT56MHTt2YNiwYXBzc0O/fv3w8ccfW8RVV1fj+eefR2RkJDQaDfz8/BATE4P169dbxB0+fBj33Xcf/Pz8oNFoMHToUPz73/+2iGmYVrZz50489thjCAwMhLu7OzZu3AhJkvDtt982OudVq1ZBkiQcP37cXM8DDzyAiIgIuLm5ISIiAg8++CCuXLlisd/N03seffRRrFixwny9G7bLly9j6NChSEhIaFS30WhEly5dcP/995vLdDod/vSnP6Ffv35Qq9UIDAzEzJkzUVBQYO1HdksN7Vy/fj0WL16MsLAwaLVajBkzBmfPnm0U//HHH2Pw4MHmn8UvfvELnD59+pb1NFz7Xbt2YdasWfD394dWq8XDDz+Mqqoq5OXlYfr06fDx8UFoaCief/55i38bgO2/47t27cKoUaPg7+8PNzc3dO/eHdOmTUN1dXWT7dPr9XjkkUfg6emJr7/+2sarR0SOxtxaanEs5taOkVsB4MyZMxg/fjzc3d0REBCAOXPmoKKiwmpsamoqRo8eDa1WC3d3dwwfPrzRdSsoKMCTTz6Jbt26mds4fPhwpKamAqj/Hfzmm29w5coVi2vR4Obfx4af23fffYff/OY3CAgIgL+/P+6//37k5ORY1L1x40YkJiYiNDQUbm5u6N+/PxYuXIiqqipzTHM/C8D61N+srCw89NBDCAoKglqtRv/+/fHXv/4VJpPJHHPjdNm3334bkZGR8PT0RFxcHH788cdb/hz49wc5isPvqBqNRhgMhkblN//iAsDFixcxY8YMc5LJyMjAn//8Z5w5c8acQMaMGQMhBL799ls8+OCDAOo/vNzc3JCSkmI+1uHDh1FaWooxY8aYyy5fvozZs2eje/fuAIAff/wRzzzzDLKzs/HHP/7xZ5+rwWDAhAkTsHfvXsydOxf33HMPDAYDfvzxR2RlZSE+Ph5CCEydOhXffvstXnjhBSQkJOD48eNYsmQJ0tLSkJaWBrVabT5mRkYGfve732HhwoUIDg7GRx99hMcffxy9evXCiBEjAADz58/Hp59+ij/96U8YOnQoqqqqcOLECRQVFZmP891332H8+PGIjY3F+++/D29vb2zYsAFJSUmorq5u9MH42GOPYdKkSfj0009RVVWFyZMnIygoCGvWrMHo0aMtYteuXYthw4Zh0KBB5uvct29fPPDAA/Dz80Nubi5WrVqF22+/HadOnUJAQIDV6/fSSy+hqqoKX3zxBdLS0szloaGhmDlzJp577jmcP38evXv3Nn9v586dyMnJwcyZMwHU/xE1ZcoU7N27F3/4wx8QHx+PK1euYMmSJRg1ahQOHz4MNze3Fvx0gUWLFmH48OH46KOPUF5ejgULFuDee+/F6dOnIZfLAQCvv/46Fi1ahAcffBCvv/46ioqKsHTpUsTFxeHQoUMWbW/KE088gfvvvx8bNmxAeno6Fi1aBIPBgLNnz+L+++/Hk08+idTUVCxbtgxhYWGYP3++eV9bfscvX76MSZMmISEhAR9//DF8fHyQnZ2NHTt2QKfTwd3dvVGbSktLcf/99+P06dPYs2cPoqOjW3QNiah1MLcytzp7br1+/TpGjhwJpVKJlStXIjg4GP/85z/x29/+tlHsZ599hocffhhTpkzBJ598AqVSiQ8++ADjxo3D//3f/5mvXXJyMo4ePYo///nP6NOnD0pLS3H06FHzz2zlypV48skncfHiRWzZssXmtj7xxBOYNGkS/vWvf+Hq1av4/e9/j4ceegi7du0yx5w/fx4TJ07E3Llz4eHhgTNnzmDZsmU4ePCgOa65n4U1BQUFiI+Ph06nw6uvvoqIiAh8/fXXeP7553Hx4sVG0+lXrFiBfv36mZ/BfemllzBx4kRkZmbC29vbpvPk3x/UroSDrFmzRgBodgsPD29yf6PRKPR6vVi3bp2Qy+WiuLjY/L2uXbuKxx57TAghRF1dnfDw8BALFiwQAMSVK1eEEEL8+c9/FkqlUlRWVjZ7/FdeeUX4+/sLk8lk/t7IkSPFyJEjLeIBiCVLljR7zuvWrRMAxD/+8Y8mY3bs2CEAiDfffNOifOPGjQKA+PDDD81l4eHhQqPRmM9JCCFqamqEn5+fmD17trlswIABYurUqc22rV+/fmLo0KFCr9dblE+ePFmEhoYKo9EohPjfz+3hhx9udIz58+cLNzc3UVpaai47deqUACDee++9Jus2GAyisrJSeHh4iL///e/m8u+++04AEN9995257OmnnxbWfm0LCwuFSqUSixYtsiifPn26CA4ONp/X+vXrBQCxadMmi7hDhw4JAGLlypVNtrMpDe2cOHGiRfm///1vAUCkpaUJIYQoKSkRbm5ujeKysrKEWq0WM2bMaLaehmv/zDPPWJRPnTpVABBvv/22RfmQIUPEsGHDmjxeU7/jX3zxhQAgjh071uS+mZmZAoD4y1/+IjIzM0VUVJSIiooSly9fbvYciKhtMbdax9zqfLl1wYIFQpKkRrlo7NixFu2vqqoSfn5+4t5777WIMxqNYvDgweKOO+4wl3l6eoq5c+c2W++kSZOa/Ddy8+9jw8/tqaeesoh78803BQCRm5tr9Tgmk0no9XqxZ88eAUBkZGSYv9fUz0KI+t/NRx55xPz1woULBQBx4MABi7jf/OY3QpIkcfbsWSHE/3L2wIEDhcFgMMcdPHhQABDr16+3Wt/N58m/P6i9OXzq77p163Do0KFG21133dUoNj09Hffddx/8/f0hl8uhVCrx8MMPw2g04ty5c+a40aNHm6dx7N+/H9XV1Zg/fz4CAgLMI7+pqamIi4uDh4eHeb9du3ZhzJgx8Pb2Nh//j3/8I4qKiiymO7XU9u3bodFo8NhjjzUZ0zCqdvMo669+9St4eHg0msYyZMgQ8+gUAGg0GvTp08diqs8dd9yB7du3Y+HChdi9ezdqamosjnHhwgWcOXMGv/71rwHUj043bBMnTkRubm6jKazTpk1r1PbHHnsMNTU12Lhxo7lszZo1UKvVmDFjhrmssrISCxYsQK9evaBQKKBQKODp6YmqqiqbpsBa4+/vj3vvvReffPKJebpLSUkJvvrqKzz88MNQKOonD3z99dfw8fHBvffea3GeQ4YMQUhIyM9aRfC+++6z+LphlLvhZ5GWloaamppGP9tu3brhnnvusTq1y5rJkydbfN2/f38AwKRJkxqV3zzly5bf8SFDhkClUuHJJ5/EJ598gkuXLjXZlqNHj+LOO+9EcHAwfvjhB4SHh9t0DkTUtphbLTG3Ol9u/e6773Dbbbdh8ODBFuU3njNQ/7tYXFyMRx55xKJuk8mE8ePH49ChQ+bptXfccQfWrl2LP/3pT/jxxx8bTU9tqVvlfwC4dOkSZsyYgZCQEPO/g5EjRwJAi38+u3btQlRUFO644w6L8kcffRRCCIs7ukD93wkNM7yaamdz+PcHtTeHd1T79++PmJiYRtvNUxCysrKQkJCA7Oxs/P3vf8fevXtx6NAh81z+GxPEmDFjkJWVhfPnzyM1NRVDhw5FUFAQ7rnnHqSmpqKmpgb79++3mJp08OBBJCYmAgD+8Y9/4IcffsChQ4ewePHiRsdvqYKCAoSFhUEma/qyFxUVQaFQIDAw0KJckiSEhIRYTCkC6pPIzdRqtUV73333XSxYsABffvkl7r77bvj5+WHq1Kk4f/48gPrpNQDw/PPPQ6lUWmxPPfUUAKCwsNCiDmvTUG677TbcfvvtWLNmDYD6qWefffYZpkyZAj8/P3PcjBkzsHz5cjzxxBP4v//7Pxw8eBCHDh1CYGDgz7rOjz32GLKzs81/MK1fvx51dXUWf5hcv34dpaWlUKlUjc41Ly+v0Xna4+afRcM0soZzavjZWbt2YWFhjX62TbnxWgKASqVqsry2ttb8ta2/4z179kRqaiqCgoLw9NNPo2fPnujZsyf+/ve/N2pLSkoKrl+/jieeeAI+Pj42tZ+I2h5zqyXmVufLrUVFRQgJCWlUfnNZw3X+5S9/2ajuZcuWQQiB4uJiAPXPiT7yyCP46KOPEBcXBz8/Pzz88MPIy8uzu303ulX+r6ysREJCAg4cOIA//elP2L17Nw4dOoTNmzdbxNmrqKioyb8pGr5vTztvhX9/UHtz+DOqtvryyy9RVVWFzZs3W4yaHDt2rFFsw7MIqampSElJwdixY83lL774Ir7//nvU1dVZJNMNGzZAqVTi66+/hkajsai3tQQGBmLfvn0wmUxNJlR/f38YDAYUFBRYJFQhBPLy8nD77bfbXa+HhwdefvllvPzyy7h+/bp5BPjee+/FmTNnzM+tvPDCCxYLI9yob9++Fl83tQrhzJkz8dRTT+H06dO4dOkScnNzzc+wAEBZWRm+/vprLFmyBAsXLjSX19XVmRNJS40bNw5hYWFYs2YNxo0bhzVr1iA2NtZiJcmGhQ527Nhh9RheXl4/qw3NaUgQubm5jb6Xk5PT5PNDrcWe3/GEhAQkJCTAaDTi8OHDeO+99zB37lwEBwfjgQceMMf9/ve/x8WLF/Hwww/DYDDg4YcfbtNzIKLWxdzK3Horjsqt/v7+VjuQN5c1XOf33nuvyVV5g4ODzbHvvPMO3nnnHWRlZWHr1q1YuHAh8vPzm2x7a9i1axdycnKwe/du811UAI0W8rKXv79/k39TAGjzvytsxb8/qKUcfkfVVg0f3jcudiCEwD/+8Y9GsaGhoYiKisKmTZtw5MgRczIdO3YsCgoK8Pbbb0Or1VokJkmSoFAoLKZE1NTU4NNPP221c5gwYQJqa2uxdu3aJmMa/hD47LPPLMo3bdqEqqqqRosp2Cs4OBiPPvooHnzwQZw9exbV1dXo27cvevfujYyMDKsj8DExMTYnmQcffBAajQZr167F2rVr0aVLF/MoGlB/nYUQFj9HAPjoo49gNBpvefzmRv/kcjmSk5Px5ZdfYu/evTh8+HCjqWCTJ09GUVERjEaj1fO8+Y+G1hQXFwc3N7dGP9tr165h165dP/tneyst+R2Xy+WIjY013105evSoxfdlMhk++OADPPfcc3j00UexatWqtmk8EbUJ5lbmVqBj5ta7774bJ0+eREZGhkX5v/71L4uvhw8fDh8fH5w6darJ69xw5+9G3bt3x29/+1uMHTvWIrfdfOe8NVj7dwYAH3zwQaNYe+5yjh49GqdOnWqUm9etWwdJknD33Xe3tMmtin9/UEs5zR3VsWPHQqVS4cEHH8Qf/vAH1NbWYtWqVSgpKbEaP3r0aLz33ntwc3PD8OHDAQCRkZGIjIzEzp07cd9995mfrQDq59e//fbbmDFjBp588kkUFRXhrbfeavSh8nM8+OCDWLNmDebMmYOzZ8/i7rvvhslkwoEDB9C/f3888MADGDt2LMaNG4cFCxagvLwcw4cPN69MOHToUCQnJ9tdb2xsLCZPnoxBgwbB19cXp0+fxqeffoq4uDjzCmoffPABJkyYgHHjxuHRRx9Fly5dUFxcjNOnT+Po0aP4/PPPbarLx8cHv/jFL7B27VqUlpbi+eeftxjh1mq1GDFiBP7yl78gICAAERER2LNnD1avXm3T1I2BAwcCAJYtW4YJEyZALpdj0KBB5iT02GOPYdmyZZgxYwbc3NyQlJRksf8DDzyAf/7zn5g4cSKee+453HHHHVAqlbh27Rq+++47TJkyBb/4xS8A1K+oOHPmTKxZs6bRc00t4ePjg5deegmLFi3Cww8/jAcffBBFRUV4+eWXodFosGTJkp9dR3Ns/R1///33sWvXLkyaNAndu3dHbW2txcqf1vz1r3+Fl5cXnnrqKVRWVuL3v/99m54LEbUO5lbmVqBj5ta5c+fi448/xqRJk/CnP/3JvOrvmTNnLOI8PT3x3nvv4ZFHHkFxcTF++ctfIigoCAUFBcjIyEBBQQFWrVqFsrIy3H333ZgxYwb69esHLy8vHDp0CDt27LC44z1w4EBs3rwZq1atQnR0NGQyGWJiYm55DZsTHx8PX19fzJkzB0uWLIFSqcQ///nPRp3whvqBpn8WN5o3bx7WrVuHSZMm4ZVXXkF4eDi++eYbrFy5Er/5zW/Qp0+fn9Xu1sK/P6jFHLWKU8MKYocOHbL6fWurrv3nP/8RgwcPFhqNRnTp0kX8/ve/F9u3b2+0ep0QQnz11VcCgBg7dqxF+axZswQA8e677zaq8+OPPxZ9+/YVarVa9OjRQ7z++uti9erVAoDIzMw0x7V0ZUIh6lcO/OMf/yh69+4tVCqV8Pf3F/fcc4/Yv3+/RcyCBQtEeHi4UCqVIjQ0VPzmN78RJSUlFscKDw8XkyZNalTHze1buHChiImJEb6+vuZzmzdvnigsLLTYLyMjQ0yfPl0EBQUJpVIpQkJCxD333CPef/99c8ytfm5CCLFz507z6pLnzp1r9P1r166JadOmCV9fX+Hl5SXGjx8vTpw40Wg1O2srE9bV1YknnnhCBAYGCkmSGv1shBAiPj5eABC//vWvrbZPr9eLt956y/y75OnpKfr16ydmz54tzp8/b4577733BACxY8eOJs/1xnZ+/vnnFuUNK9OtWbPGovyjjz4SgwYNEiqVSnh7e4spU6aIkydPNluHEE1f+yVLlggAoqCgwKL8kUceER4eHhZltvyOp6WliV/84hciPDxcqNVq4e/vL0aOHCm2bt3a6Nz+8pe/WBz/L3/5iwAg/vjHP97yfIio9TG3Mrd2ltwqRP3qxmPHjhUajUb4+fmJxx9/3Pw7ePPv5p49e8SkSZOEn5+fUCqVokuXLmLSpEnm3FxbWyvmzJkjBg0aJLRarXBzcxN9+/YVS5YsEVVVVebjFBcXi1/+8pfCx8fHfC0a3Pz72NTPzdo13r9/v4iLixPu7u4iMDBQPPHEE+Lo0aON/k5o7mdx889SCCGuXLkiZsyYIfz9/YVSqRR9+/YVf/nLX8wrSgvRdM62dk7W8O8PchRJCCsvVSMiTJ8+HZmZmTh06JCjm0JERNQpMLcSka2cZuovUXsSQmD37t2NnmciIiKilmFuJSJ78I4qERERERERdShOs+ovERERERERuQZ2VImIiIiIiKhDYUeViIiIiIiIOhR2VImIiIiIiKhDsXnV39raWuh0urZsCxFRk1QqFTQaTases6Wfa23RFqKOgLmeiByJuZ5uZFNHtba2FpGRkcjLy2vr9hARWRUSEoLMzMxWSxq1tbWIDPdEXr7R4W0h6giY64nI0Zjr6UY2dVR1Oh3y8vJw9epVaLXatm4TEZGF8vJydOvWDTqdrtUShk6nQ16+EZlHwqH1sv0piPIKEyKjr7RqW4g6AuZ6InIk5nq6mc1TfwFAq9UyeRFRp+LhWb/Zysg3T1Mnx1xPRJ0Nc71zsqujSkTU2ZggYILtGcmeWCIiInI85nrnxI4qEbk0E0ww2RlPREREzoO53jmxo0pELs0oBIzC9pFTe2KJiIjI8ZjrnRM7qkTk0jgdiIiIqHNjrndO7KgSkUszQcDI5EVERNRpMdc7J9vXaSYi6oQaRlnt2Vpi5cqViIyMhEajQXR0NPbu3dts/J49exAdHQ2NRoMePXrg/fffbxSzadMmREVFQa1WIyoqClu2bLG73s2bN2PcuHEICAiAJEk4duyY1fakpaXhnnvugYeHB3x8fDBq1CjU1NTYfgGIiIgchLneOXM9O6pE5NIanluxZ7PXxo0bMXfuXCxevBjp6elISEjAhAkTkJWVZTU+MzMTEydOREJCAtLT07Fo0SI8++yz2LRpkzkmLS0NSUlJSE5ORkZGBpKTkzF9+nQcOHDArnqrqqowfPhwvPHGG022Py0tDePHj0diYiIOHjyIQ4cO4be//S1kMqYQIiLq+JjrnTPXS0Lc+idRXl4Ob29vlJWV8d1qRNTu2uIzqOGYZ04Hw8uOl4BXVJjQr/91u9oSGxuLYcOGYdWqVeay/v37Y+rUqXj99dcbxS9YsABbt27F6dOnzWVz5sxBRkYG0tLSAABJSUkoLy/H9u3bzTHjx4+Hr68v1q9fb3e9ly9fRmRkJNLT0zFkyBCL7915550YO3YsXn31VZvOl5wTcz0RORJzPXP9zTgcTkTUAuXl5RZbXV2d1TidTocjR44gMTHRojwxMRH79++3uk9aWlqj+HHjxuHw4cPQ6/XNxjQcsyX1WpOfn48DBw4gKCgI8fHxCA4OxsiRI7Fv3z6bj0FEROSMmOsdm+vZUSUil2b87wIL9mwA0K1bN3h7e5s3a6OlAFBYWAij0Yjg4GCL8uDgYOTl5VndJy8vz2q8wWBAYWFhszENx2xJvdZcunQJALB06VLMmjULO3bswLBhwzB69GicP3/e5uMQERE5CnN98zpqrueqv0Tk0oyifrMnHgCuXr1qMR1IrVY3u58kSRZfCyEald0q/uZyW45pb703M5nqX3o+e/ZszJw5EwAwdOhQfPvtt/j444+bTNpEREQdBXN98zpqrmdHlYhcmum/mz3xAKDVam16biUgIAByubzRyGZ+fn6jEdAGISEhVuMVCgX8/f2bjWk4ZkvqtSY0NBQAEBUVZVHev3//JheIICIi6kiY65vXUXM9p/4SkUszQYLRjs0E20coAUClUiE6OhopKSkW5SkpKYiPj7e6T1xcXKP4nTt3IiYmBkqlstmYhmO2pF5rIiIiEBYWhrNnz1qUnzt3DuHh4TYfh4iIyFGY65vXUXM976gSkUszifrNnnh7zZ8/H8nJyYiJiUFcXBw+/PBDZGVlYc6cOQCAF154AdnZ2Vi3bh2A+lX/li9fjvnz52PWrFlIS0vD6tWrzSv8AcBzzz2HESNGYNmyZZgyZQq++uorpKamWix8cKt6AaC4uBhZWVnIyckBAHOSCgkJQUhICCRJwu9//3ssWbIEgwcPxpAhQ/DJJ5/gzJkz+OKLL+y/GERERO2Mud5Jc72wQVlZmQAgysrKbAknImpVbfEZ1HDMAydDxMmsMJu3AydDWtSWFStWiPDwcKFSqcSwYcPEnj17zN975JFHxMiRIy3id+/eLYYOHSpUKpWIiIgQq1atanTMzz//XPTt21colUrRr18/sWnTJrvqFUKINWvWCACNtiVLlljEvf7666Jr167C3d1dxMXFib1799p1/tTxMdcTkSMx1zPX34zvUSWiDq8t3622/2QoPO14t1plhQnxt+Xy85A6HeZ6InIk5nq6Gaf+EpFLMwkJJmHHynh2xBIREZHjMdc7J3ZUicilNSycYE88EREROQ/meufEjioRuTQjZDDasQC6sQ3bQkRERK2Pud45saNKRC5N2DkdSHA6EBERkVNhrndOfI8qERERERERdSi8o0pELo3PrRAREXVuzPXOiR1VInJpRiGDUdjx3EoLXgJOREREjsNc75zYUSUil2aCBJMdT0GYwOxFRETkTJjrnRM7qkTk0jgdiIiIqHNjrndO7KgSkUuzfzoQR1mJiIicCXO9c2JHlYhcWv10INtHTu2JJSIiIsdjrndO7KgSkUsz2fkScD63QkRE5FyY650TO6pE5NI4HYiIiKhzY653TuyoEpFLM0HGlQCJiIg6MeZ658SOKhG5NKOQYBR2rARoRywRERE5HnO9c7J9aIGIiIiIiIioHfCOKhG5NKOdCywYOR2IiIjIqTDXOyd2VInIpZmEDCY7FlgwcYEFIiIip8Jc75zYUSUil8ZRViIios6Nud45saNKRC7NBPsWTTC1XVOIiIioDTDXOyd2VInIpdm/ZD3XoCMiInImzPXOiR1VInJp9r8EnMmLiIjImTDXOyf+FIjIpZkg2b21xMqVKxEZGQmNRoPo6Gjs3bu32fg9e/YgOjoaGo0GPXr0wPvvv98oZtOmTYiKioJarUZUVBS2bNlid72bN2/GuHHjEBAQAEmScOzYsSbbJITAhAkTIEkSvvzyS5vOm4iIyNGY650z17OjSkQurWGU1Z7NXhs3bsTcuXOxePFipKenIyEhARMmTEBWVpbV+MzMTEycOBEJCQlIT0/HokWL8Oyzz2LTpk3mmLS0NCQlJSE5ORkZGRlITk7G9OnTceDAAbvqraqqwvDhw/HGG2/c8jzeeecdSBJfgk5ERM6Fud45c70kxK3XXy4vL4e3tzfKysqg1Wrbo11ERGZt8RnUcMy3Dt8FN0/bn4KoqTTg+Zh9drUlNjYWw4YNw6pVq8xl/fv3x9SpU/H66683il+wYAG2bt2K06dPm8vmzJmDjIwMpKWlAQCSkpJQXl6O7du3m2PGjx8PX19frF+/3u56L1++jMjISKSnp2PIkCGN2pSRkYHJkyfj0KFDCA0NxZYtWzB16lSbzp+cA3M9ETkScz1z/c14R5WIXJpJSHZvQH3yu3Grq6uzenydTocjR44gMTHRojwxMRH79++3uk9aWlqj+HHjxuHw4cPQ6/XNxjQcsyX1NqW6uhoPPvggli9fjpCQELv2JSIicjTm+lvriLmeHVUicmmm/75bzdatYSXAbt26wdvb27xZGy0FgMLCQhiNRgQHB1uUBwcHIy8vz+o+eXl5VuMNBgMKCwubjWk4Zkvqbcq8efMQHx+PKVOm2LUfERFRR8Bcf2sdMddz1V8ioha4evWqxXQgtVrdbPzNz3sIIZp9BsRa/M3lthzT3npvtnXrVuzatQvp6ek270NERNQZMNc7Fu+oEpFLMwmZ3RsAaLVai62p5BUQEAC5XN5oZDM/P7/RCGiDkJAQq/EKhQL+/v7NxjQcsyX1WrNr1y5cvHgRPj4+UCgUUCjqxzenTZuGUaNG2XwcIiIiR2Gub15HzfXsqBKRSzNCsnuzh0qlQnR0NFJSUizKU1JSEB8fb3WfuLi4RvE7d+5ETEwMlEplszENx2xJvdYsXLgQx48fx7Fjx8wbAPztb3/DmjVrbD4OERGRozDXN6+j5npO/SUil3bjyKmt8faaP38+kpOTERMTg7i4OHz44YfIysrCnDlzAAAvvPACsrOzsW7dOgD1q/4tX74c8+fPx6xZs5CWlobVq1ebV/gDgOeeew4jRozAsmXLMGXKFHz11VdITU3Fvn37bK4XAIqLi5GVlYWcnBwAwNmzZwHUj+LeuN2se/fuiIyMtPtaEBERtTfmeufM9eyoEpFLMwJ2jZwaW1BHUlISioqK8MorryA3NxcDBgzAtm3bEB4eDgDIzc21eN9ZZGQktm3bhnnz5mHFihUICwvDu+++i2nTpplj4uPjsWHDBrz44ot46aWX0LNnT2zcuBGxsbE21wvUP5cyc+ZM89cPPPAAAGDJkiVYunRpC86WiIioY2Gud85cz/eoElGH15bvVnvxx0RoPJU271dbqcef7tzJz0PqdJjriciRmOvpZryjSkQuzShkMNoxxceeWCIiInI85nrnxI4qEbk0AQkmO6YDCTsXWCAiIiLHYq53TuyoEpFL4ygrERFR58Zc75zYUSUil2YSEkzC9pFTe2KJiIjI8ZjrnRM7qkTk0oyQwWjHK6XtiSUiIiLHY653TuyoEpFL4ygrERFR58Zc75w4XEBEREREREQdCu+oEpFLM0EGkx1jdvbEEhERkeMx1zsndlSJyKUZhQSjHVN87IklIiIix2Oud07sqBKRS+NzK0RERJ0bc71z6lQd1Qk9nnd0EzqN7ZfecnQTiNqFEDKY7HhfmuC71YiIiJwKc71z6lQdVSIiexkhwQg7pgPZEUtERESOx1zvnNhRJSKXZhL2TfExiTZsDBEREbU65nrnxI4qEbk0k53TgeyJJSIiIsdjrndO7KgSkUszQYLJjik+9sQSERGR4zHXOyd2VInIpXHJeiIios6Nud45saNKRC6N04GIiIg6N+Z658SfAhEREREREXUovKNKRC7NBDtfAs7nVoiIiJwKc71zYkeViFyasHOBBcHkRURE5FSY650TO6pE5NJMws5RVi6wQERE5FSY650TO6pE5NK4wAIREVHnxlzvnNhRJSKXxlFWIiKizo253jlxuICIXFrDS8Dt2Vpi5cqViIyMhEajQXR0NPbu3dts/J49exAdHQ2NRoMePXrg/fffbxSzadMmREVFQa1WIyoqClu2bLG73s2bN2PcuHEICAiAJEk4duyYxfeLi4vxzDPPoG/fvnB3d0f37t3x7LPPoqyszP6LQERE5ADM9c6Z69lRJSKX1jDKas9mr40bN2Lu3LlYvHgx0tPTkZCQgAkTJiArK8tqfGZmJiZOnIiEhASkp6dj0aJFePbZZ7Fp0yZzTFpaGpKSkpCcnIyMjAwkJydj+vTpOHDggF31VlVVYfjw4XjjjTestiUnJwc5OTl466238NNPP2Ht2rXYsWMHHn/8cbuvAxERkSMw1ztnrpeEEOJWQeXl5fD29kZZWRm0Wm17tKtFJvR43tFN6DS2X3rL0U0gMmuLz6CGY07YMQtKD5XN++mrdNg+/h92tSU2NhbDhg3DqlWrzGX9+/fH1KlT8frrrzeKX7BgAbZu3YrTp0+by+bMmYOMjAykpaUBAJKSklBeXo7t27ebY8aPHw9fX1+sX7/e7novX76MyMhIpKenY8iQIc2ez+eff46HHnoIVVVVUCj4BEln4Sy5nog6J+Z65vqb8Y4qEbm0lo6ylpeXW2x1dXVWj6/T6XDkyBEkJiZalCcmJmL//v1W90lLS2sUP27cOBw+fBh6vb7ZmIZjtqReWzUkbnZSiYjIGTDX268j5Hp2VInIpbU0eXXr1g3e3t7mzdpoKQAUFhbCaDQiODjYojw4OBh5eXlW98nLy7MabzAYUFhY2GxMwzFbUq8tioqK8Oqrr2L27NktPgYREVF7Yq63T0fJ9RwOJyKXJgA7XwJe7+rVqxbTgdRqdbP7SZJlHUKIRmW3ir+53JZj2ltvc8rLyzFp0iRERUVhyZIlLToGERFRe2Out11HyvXsqBIRtYBWq7XpuZWAgADI5fJGI5v5+fmNRkAbhISEWI1XKBTw9/dvNqbhmC2ptzkVFRUYP348PD09sWXLFiiVSruPQURE5EyY6x2b6zn1l4hcWluvBKhSqRAdHY2UlBSL8pSUFMTHx1vdJy4urlH8zp07ERMTY04aTcU0HLMl9TalvLwciYmJUKlU2Lp1KzQajV37ExERORJz/a11xFzPO6pE5NLa4yXg8+fPR3JyMmJiYhAXF4cPP/wQWVlZmDNnDgDghRdeQHZ2NtatWwegftW/5cuXY/78+Zg1axbS0tKwevVq8wp/APDcc89hxIgRWLZsGaZMmYKvvvoKqamp2Ldvn831AvXvTsvKykJOTg4A4OzZswDqR3FDQkJQUVGBxMREVFdX47PPPjMvKAEAgYGBkMvldl8PIiKi9sRc75y5nh1VInJp7ZG8kpKSUFRUhFdeeQW5ubkYMGAAtm3bhvDwcABAbm6uxfvOIiMjsW3bNsybNw8rVqxAWFgY3n33XUybNs0cEx8fjw0bNuDFF1/ESy+9hJ49e2Ljxo2IjY21uV4A2Lp1K2bOnGn++oEHHgAALFmyBEuXLsWRI0fM72vr1auXxXllZmYiIiLC7utBRETUnpjrnTPX8z2qZBXfo0odSVu+W+2urU9D4dH84gg3MlTVYd99Kzr85yGRvZwl1xNR58RcTzfjHVUicmlCSBB2jJzaE0tERESOx1zvnNhRJSKXZoJk15L19sQSERGR4zHXOyd2VInIpbXHcytERETkOMz1zokdVSJyaZwORERE1Lkx1zsndlSJyKVxlJWIiKhzY653TuyoEpFL4ygrERFR58Zc75zYUSUilybsHGVl8iIiInIuzPXOiR1VBxBebo5uwi1N6LPA0U24pe3nljm6CURE5ADO8N50Z8j1Uo3O0U24JeZ6ItfFjioRuTQBQAj74omIiMh5MNc7J3ZUicilmSBB4rvViIiIOi3meufEjioRuTQusEBERNS5Mdc7J3ZUicilmYQEiUvWExERdVrM9c6JHVUicmlC2PncCh9cISIicirM9c6JHVUicmmcDkRERNS5Mdc7J3ZUicilMXkRERF1bsz1zokdVSJyaXxuhYiIqHNjrndO7KgSkUvjcytERESdG3O9c2JHlYhcWn3ysmc6UBs2hoiIiFodc71zkjm6AZ2VzlgNIQSEMMEkjACAan0pjCaDg1tGRERErcFg0sFoMkAIAZOoz+86YzV0xmoHt4yIyPnxjmorK6nNxsnCVFTqCyGXVDAKHQCY/18lc4NPSTj6d0mERql1cGuJiAssEJG9ag2VOFX0LfKrL0AhU8NgqgMAyKT//VnlXRSKXsGj4OcZ7qhmEtF/Mdc7J3ZUW4nBVIdzJT8gqzwdnsoARHjH4Gr5MQBAP7+7UWesgEkIAALZVadw7MomREc+CKVc49B2E7k68d/Nnngick1CmJBdeRKni3ZBkuSI9L4DpXU5KKm9hu5eQ6CWe6DOVAWZpEBhXRaOXfkCt/d4CF5uwY5uOpFLY653Tuyo/kxldXk4U7wHpbW5kCQJ/fxGIVw7FJIkQz+/kTAJI2SS3GKf4MABOHhxHa4UHkSv4BEOajkRARxlJaJb0xlrcKroWxTWXIbBVIcwz9vQ3/9uKGVqALCa62vdTNh/7kOcyt6O2F6POqDVRNSAud458RnVn0EIgaPXv0SNvgz9/EZgRNfHEOEdDUn632W9OXEBgK9HdwR49cS1ovT2bC4RWSNasLXAypUrERkZCY1Gg+joaOzdu7fZ+D179iA6OhoajQY9evTA+++/3yhm06ZNiIqKglqtRlRUFLZs2WJ3vZs3b8a4ceMQEBAASZJw7NixRseoq6vDM888g4CAAHh4eOC+++7DtWvX7LsARE7sTPFuXK86h3DtMMSFPYRBgePNnVTAeq5XKzzQMygBpdXXUFlb0J7NJaKbMdc7Za5nR/VnyKk8jTpjFaL870G49zBoFF4276tSeECSOFpD5HD/HWW1dUMLRlk3btyIuXPnYvHixUhPT0dCQgImTJiArKwsq/GZmZmYOHEiEhISkJ6ejkWLFuHZZ5/Fpk2bzDFpaWlISkpCcnIyMjIykJycjOnTp+PAgQN21VtVVYXhw4fjjTfeaLL9c+fOxZYtW7Bhwwbs27cPlZWVmDx5MoxGo93XgsjZVOqKcb3qArp5DUZv33h4q22fxtvweI/EP7eIHIu53ilzvSTErRdgLi8vh7e3N8rKyqDVdtwFgCb0eL7d6rpWcQInC3cizDMKAwLG2dXprNHo8f2ZFegZdBd6Bie0YStbTqrROboJt7T93DJHN4HaSVt8BjUcM3LNYsjcbX9W3FRdi8yZf7arLbGxsRg2bBhWrVplLuvfvz+mTp2K119/vVH8ggULsHXrVpw+fdpcNmfOHGRkZCAtLQ0AkJSUhPLycmzfvt0cM378ePj6+mL9+vV213v58mVERkYiPT0dQ4YMMZeXlZUhMDAQn376KZKSkgAAOTk56NatG7Zt24Zx48bZdA2o43OWXA+0X74vr8vHkeuboZRpEBv6gF3rSpg81fjxwhrIZQrc3uPhDjk4zVxPHQlzPXP9zTjE10K5lWcgl5S4LSDR7uRz6tp2AAJd/Ya2TeOIyGb2jLDe+IxLeXm5xVZXV2f1+DqdDkeOHEFiYqJFeWJiIvbv3291n7S0tEbx48aNw+HDh6HX65uNaThmS+q15siRI9Dr9RbHCQsLw4ABA+w6DpEzKqq9gjpjFWJCptm9+GFW0RGU1+QiIjCuQ3ZSiVwJc33zOmquZ0f1BiZhREb+NmTkf4MKXfPPkwiY/jvV12R3PbX6coT5DIRa6dnClhJRq2mY4mPPBqBbt27w9vY2b9ZGSwGgsLAQRqMRwcGW0wWDg4ORl5dndZ+8vDyr8QaDAYWFhc3GNByzJfU21RaVSgVfX9+fdRyijuRS6QEcvf4l8qrONRtnEiZIkGAU9r8DvVZfDo3SC0HaPi1tJhG1Fub6ZnXUXM9Vf2+QVX4MuVX1t9+rDaWIC/t1k7GR3rfjyPXNOJb/Nbp43oZA90iL96c1Ry5TQm+0PiJDRO1LiPrNnngAuHr1qsV0ILVa3cQe9W6+oyKEaPYui7X4m8ttOaa99dqqtY5D1N5KanNwrmQfAKCgOhN+3btCJXe3GtvVawAulx1G+vWt6K4dglCPvjbfWVXIVNAbalut3UTUcsz1LePoXM87qqh/L1pW+TFcKNkPD2X9SEKQW89m9wl0j0Rfv5Go0hcjPX8rUi6/h9NF30GI5u+wni/5AaXV1/j+VKKOooUrAWq1WoutqeQVEBAAuVzeaEQyPz+/0Qhog5CQEKvxCoUC/v7+zcY0HLMl9TbVFp1Oh5KSkp91HKKOoKgmCycLd0Ip00Ap08BX0wVKWdP5WC33wJCgyVDIlDhd9C2+zVqBg7n/hs5Y3Ww9pbW5uHB9D0zggmNEHQJzfbM6aq53+Y5qnbEaB/M+x6mibxHk0QtdPAcAALppB91y30jvGCR0fQzxYcnorh2CK+VHcbH0AKr1ZVbjS2qv4WLpjwCAnsF3td5JEFGLtfS5FVupVCpER0cjJSXFojwlJQXx8fFW94mLi2sUv3PnTsTExECpVDYb03DMltRrTXR0NJRKpcVxcnNzceLECbuOQ+RIQphwuug7HMr7HHKZCoMCJ0BvqkVXr4EWr5Szxt8tHHeGzcDIbrPQ3/8elNbl4HjBDlToCq0OTuuMNTia/yUAoE/IPW1xOkRkJ+b65nXUXO/SU39rDZU4lPc59KZaxIT8EnpjLS6Wptk8hbeBVh0ErToIMkmOC6X7caF0PzRyT3io/KGQVPBSBaLGUIa8qrPwVodicOQ0uKl82uakiKjDmT9/PpKTkxETE4O4uDh8+OGHyMrKwpw5cwAAL7zwArKzs7Fu3ToA9av+LV++HPPnz8esWbOQlpaG1atXm1f4A4DnnnsOI0aMwLJlyzBlyhR89dVXSE1Nxb59+2yuFwCKi4uRlZWFnJwcAMDZs2cB1I+uhoSEwNvbG48//jh+97vfwd/fH35+fnj++ecxcOBAjBkzps2vHdHPZRImHC/YhutV59DP7254q4Nxpbz+PeZyO/K9RuGFcO1QuCm0OHr9SxRmZ0KCDD6aMChkKrgrfKCUqZFVngETjLi9RzJ8Pbq31WkRUQfDXN/6XLqjerroOxhMdRgUOAFninajUl8IH3UYooPvb/J5leb09RsBP003FNRcglxSolpfAoNJh8yyQzAKPQLcIjAk6F7IVd5tcDZE1GItfLG3rZKSklBUVIRXXnkFubm5GDBgALZt24bw8HAA9aOWN77vLDIyEtu2bcO8efOwYsUKhIWF4d1338W0adPMMfHx8diwYQNefPFFvPTSS+jZsyc2btyI2NhYm+sFgK1bt2LmzJnmrx944AEAwJIlS7B06VIAwN/+9jcoFApMnz4dNTU1GD16NNauXQu5XN4m14uoNWVXnEBe1VkMCpyI/OqLOFP8HTRyL0T5j0aQey+7jxfk3hN3dXkUWRXHoJK5oVJfBKPJgOtV51FrrICbQovbg38FT89ubXA2RNRizPXmr50l17v0e1RTL7+HSO/bUa7LR1ldHoYFT4HWjhd528okDKjSl8BLFQgAEF5urV5Ha+O71agjact3q3X7YAlkbna8W62mFldnv9zhPw+J7OUsuR6wL9+nX/8PdMYqhHr2x6mibzEocAJCPfq1+gIhQghU6gvhofSFTFIw17cS5nrXwVxPN3PpO6puSm9kVRxDnbEKUf6j26STCgAySWHupBJRB3PDogk2xxOR03BTalFQcwnlxdcR5N4TYZ7926QeSZKY64k6KuZ6p+TSiyn18omDwaSHUuaGUI9+jm4OETmE1IKNiJxFd68h0Mi9YBQGdNcOcXRziMghmOudkUvfUQ326I273cIhIKCUNf9eJCLqpDjKStSpuSu9cVfXR6A31UHdgvUniKgTYK53Si7dUQXqX8hNTavRl+Fc0fcoq82Fv3sEogLHOvTFv0StjsmLqNOTSXJ2UpthMhlwvvgHFFRdhErujsEh90Kt8HB0s4haD3O9U3Lpqb/UvIq6AqRd/QwlNdfg59YdV8uOISPvP45uFlHrEpL9GxFRJ2Ew6XAweyOulB6GjyYUlboipF1dB6NJ7+imEbUe5nqn5PJ3VB2hZJCvo5twS76HC3Ci4P+glKtxR/hDUCs8oFJ64lLRfpTp74S3W6ijm2j3Ks+OsP3SW45uAt2CEPWbPfFE5FjO8Nkam/y2o5twS35HCpFZcAhltbm4I/zX8HXvitKaHPx4+RNcLj+CngHDHd1Ep8j1gHP8Troy5nrnxDuq1Iiuugzp1zajrCYHvQNHmaf/RPjdDgDILT/lyOYRtS7Rgo2IyMmZTEacz9+Di4U/oKvPYPi6dwUA+LiFwUPlh7zyszAJo4NbSdRKmOudEu+ouriizKMouHQIRl0NTAYdJLkS1cXXoJS7YUiXXyBE29ccq1K4I9zvdlwuPogAj0gEePZwYMuJWom9U3w4HYiInExV0TXknEiFvrYCRl0tJJkM1SU5AICeAcMb3TntGzQaR699gfP5e9A3+B5HNJmodTHXOyV2VF1c7qnvUF2SA7VXAHzC+sNkMsArqAfCa7rDz71bo/i+QXejuOoKDl/diMFdpiBUG+WAVhO1HknUb/bEExE5k+Irx1By9ScAQHDfuyCECV7BPRFQ6oluvkMaxQd59UK4bzQyiw/AYNIhKmQcF1Ikp8Zc75zYUXVxfUfPxoXvP0FVSTa6DZsMmbz+V8LvSKHVeJkkx5Cuv8DRq58jI/srhHj1Z/IioiYJIXDhwgXo9Xr06dMHCgXTDlF76zpkAoQwIe/0Hvh2HwRtcE8ATed6AOgTNAoGkw5XS9MR5j3APDWYiOhmbZXr+Yyqi1NqPBHSfwRM+joY9bU27eOh8oNcpgJfhkydAp9baTOXL1/GkCFD0K9fPwwcOBC9evXC0aNHHd0sIpcjyeToMng8AEBXXWrTPnKZEu4qHwD1g9RETo25vs20Za5nR5Wgcq9fhTj35HcQJpNN+7gptVDK1KjSFeN8wfc4nZeCgsqLbdlMorbBJevbzIIFC1BbW4tPP/0Un3/+OUJDQzFnzhxHN4vIJcnkCijUnig4/yP0dVU27aOUuwEA9MYaZJf9hFN5O3G5+GBbNpOobTDXt5m2zPWcg0Xw8O+KrkMm4tqx7VBqPBB6260XTujuG4OS6mzsu/ShuazWUIlAz55t2VSi1seXgLeZvXv3Yv369Rg5ciQA4I477kB4eDhqamrg5ubm4NYRuRZJkqHnXb/Ghb2f4uLeT9FvzK3/kAz26otrpRk4fHWjRXm47+187IecC3N9m2nLXM87qgQACBswGr7dbkPemb3QVZeZy4UQqDNUoqjqMipqC8zl/h7huCP815BLSnOZp9q/XdtM1Co4HajN5OXloV+/fuavu3btCjc3N1y/ft2BrSJyXd6hfdB1yASU551H+XXLWVBGkx6FVZkorcmGEPWzq9QKD9wZngwfty7mOF+3rhCwbfYVUYfBXN9m2jLX844qmYVEjcL53Wtxfs9aBAUkQSZT4HrFORzL3myOCfeNQf+QsQDqO6Z3934G1foSXCxMw8XCHxDk2QfebiGOOgUi+3GUtc1IkgSZzHI8VCaTQfBN6kQO4xc+GIUXDuL87o8R2O1heKj9oTNUY9f5v5tjvNTBuDMiGXKZEjKZArHhySityUZFXT5O5f0fLhcdRI+AOAeeBZGdmOvbTFvmet5RJTOvwEj0GfUYqoqykFdxFgCg1QRZxNToy1BYmWn+WiFXQ6sJQd+guyGTFMirOM0/Qsm58LmVNiOEQJ8+feDn52feKisrMXToUIsyImo/SrUH+o6ZDblSg0tFafVlcsvpeXpjDQoqL8Fo0gOo/0PU170ruvsOg1YTgrzy0+bvETkF5vo205a5nndUyYJnYDg8/LvhSslhyGVKVNYVwF3li2pdCQAgv/I88ivPIz5yJrSa/905dVf5oKvPIGQW/Yjiqiu4vfuDUMjVjjoNIpvx3WptZ82aNY5uAhFZoVC5IaBHDHJP7kawV19U60sR7NUH1yvOAQBqDeU4lr0ZfYPuRqT/nRb7RvrfieM5/8Gu8+/iju4z4O0W6ohTILILc33bactcz44qNRLUOw6ZP36O9GuboJBpoNUEw1sTitzyU+aYtMxPEOzVF/2CR6Og8gLKa6+jRl8KACirzYXeVMuOKjkHTgdqM4888oijm0BETfCPGIr8U3tx9NoXkCQ5vNSBCNPehpzyk+aYs/nfIa/iLKKCE1FnqERx9VVU6Yqglnug1lCOan0JO6rkHJjr20xb5np2VKmRwF6x6FbgB5mkgFrhaV7Zb3CXKQAAg7EO18qO43zB98i7cBoSJKgVXqg1lAMA7ox4GG5Kb4e1n4g6js8//xxffvkl9Ho9xowZgyeffNLRTSIiAG4+IRjRcw70xhq4qXzM70od1OU+AIAQJlyvOI/zBXuQdnktAECj9Eatvn7Bxf7BiQjVRjmk7UTUsbRVrmdHlaxyV/k2+T2FXI0Iv9vhrQlBQeUldPEeAA+1P4qrsuCm8oGbUmtXXVW6YpzI3QYZ5NAotejqMxhe6sBGd2TzK85DKdfA171bi86JyBoJdk4HarOWdD4ffvgh5syZg969e0Oj0WDTpk3IzMzE66+/7uimEREAlcIdKoW71e9Jkgwh2r7wcQtFVkk6fN27IdCzByrrimA06ey+kyqEwLHsLdAZq6GSuyNUext83btCJXe3eNVNRW0+KuryEaq9ja/AoVbDXN922jLXs6NKLebr3s2i0+jn0b1FxzGZjCipvgoAkElyZJcdBwCo5O5wV/nCXeULmaTAtdJjAIDY8IfM9RpMOpTW5UCCBDeFD9x5J5eow3jvvfewePFivPrqqwCAtWvX4plnnmFHlciJaJRa9Akaaf665a+iE7j+34UaNQov8//LZSq4K+tzvZtSiyvFhyFgQo2+DD384yEBMAkTyupyYTDpoFF4wUPpB5nE9UCJOoK2zPXsqJJD6Y01uFC4FwBwe/cZ8FIHolpfgmpdKap1JajWFaNKVwydoRpaTQiqdMU4cOUzKGQaCGGCUehuOqKEUd1mQaPwav+TIedk7+p+XAnQZpcuXcLMmTPNXycnJ+PJJ59EXl4eQkL4GisiVyGEwMXC/ZAgQ4R/LHoF3IUqXRFq9GWo1pWgSleMal0JKuquw13lC6Mw4HzB97hUmAZJksFo0kHc9NBgTPA0BLhHOOaEyPkw17eZtsz17KiSQ525vgtFVZcxIHQS/D3CAdRPRbrx5eI30htrUVx1BVW6YkhGAZXMDVp1MCRI+DHnXzAIHfSmOmjAjirZiAsstJmamhp4enqav5bL5VCr1aiurnZgq4ioveWVn8aFwr0I941B74C7IJMpoNUEQ6sJthpvEkaUVF9DeW0eYDBALqngpQqAWu6JzLJDuFqRgUp9EQIQ0b4nQs6Lub7NtGWu57wJcqhKXSHclN6QJAk5ZSeRWXQAZ/N342TuDhy79iWOZP0bmUU/oqquCEIIKOUaBGv7okdAHCK9Y9DF6za4K3yQX30BBqFDd6/B8FIFOPq0yJmIFmwtsHLlSkRGRkKj0SA6Ohp79+5tNn7Pnj2Ijo6GRqNBjx498P777zeK2bRpE6KioqBWqxEVFYUtW7bYXa8QAkuXLkVYWBjc3NwwatQonDx50iImLy8PycnJCAkJgYeHB4YNG4YvvvjCpvP+6KOP8O6775o3g8GAtWvXWpQRUedWqSusX1lYE4S8irO4UnwE5/P34HReCjKyt+Jw1kacuf4tSqqvwSRMkEly+HuEI9I/FpHet6O7djB81GGo1Bcir+ocPJUB6OY12NGnRc6Eud4pcz3vqJJD9QoYjuM5X+OnnK8B1D+ropK7Q/Hf/0qShPMFe3E2/zuoFZ7wde8GH00Y3FV+kPQGFNdeQ07lKeiM1Yj0jkEf3xEOPiNyNu3xbrWNGzdi7ty5WLlyJYYPH44PPvgAEyZMwKlTp9C9e+NnuzMzMzFx4kTMmjULn332GX744Qc89dRTCAwMxLRp0wAAaWlpSEpKwquvvopf/OIX2LJlC6ZPn459+/YhNjbW5nrffPNNvP3221i7di369OmDP/3pTxg7dizOnj0LL6/6mQnJyckoKyvD1q1bERAQgH/9619ISkrC4cOHMXTo0CbPu3v37vjHP/5hURYSEoJPP/30f9dTkvDss8/af1GJyGl09RmC6xXncCJ3GwBAggxqhScUchWUMjco5GrklJ3E5eKDkMtU8HXrCh+3LvBUB0BplKNcV4CcylOo0BXAX9Mdg4MmQy7jn7BkO+Z658z1khDilj+K8vJyeHt7o6ysDFqtfSu6tqcJPZ53dBNsUjw8zNFNuCW/I4XtVpcQJpiECUIYIZepGq3yZzDpUFJ9FcXVWSiuzkJFbT5MwgAAUMo0CPXoi3DvYfBQ+pn3qdQVobQuByZhRDevQZActOjC9ktvOaTezqYtPoMajhnxpz9DptHYvJ+pthaXX1xsV1tiY2MxbNgwrFq1ylzWv39/TJ061epiAwsWLMDWrVtx+vRpc9mcOXOQkZGBtLQ0AEBSUhLKy8uxfft2c8z48ePh6+uL9evX21SvEAJhYWGYO3cuFixYAACoq6tDcHAwli1bhtmzZwMAPD09sWrVKiQnJ5uP4+/vjzfffBOPP/64TdeAOj5nyfXOIjb5bUc34ZbaN9cLmIQBAgJySdEoLwthQlltLoqr6nN9WW0O9MZaAIAEOQLdI9BdOwT+mnDz3wk6YzWKarJQYyhHV68BUMmtr2DcHpjvfz7meub6m3E4ihxOkmSQSzI09euokKkQ6NkTgZ49AdSv/qczVMFUWws3hbZRx/Z61Xkcy/8aAiYAQGbZYfTzG4lgj95teh7kpFr43Ep5eblFsVqthlqtbhSu0+lw5MgRLFy40KI8MTER+/fvt1pFWloaEhMTLcrGjRuH1atXQ6/XQ6lUIi0tDfPmzWsU884779hcb2ZmJvLy8izqUqvVGDlyJPbv329OXnfddRc2btyISZMmwcfHB//+979RV1eHUaNGWW1/g9raWqSmpmLy5MkAgBdeeAF1dXXm7ysUCrzyyivQ2PHHAxE5J0mSIJeUzXxfBh+3LvBx64IeiIMQAnpjDfQ15XBTeJvf89qgUleEI9e3oMZQ/17Xi6VpiPCOQS+feL7WhhpjrnfKXM9nVMnpyCQZNEovuP/32dYb1RoqcSz/G3ipApHQdSZiQx+ASuaG9PytKKu77qAWU0fWMB3Ing0AunXrBm9vb/PW1DLshYWFMBqNCA62XDQkODgYeXl5VvfJy8uzGm8wGFBYWNhsTMMxbam34b+3atvGjRthMBjg7+8PtVqN2bNnY8uWLejZs6fV9jf45JNP8MEHH5i/Xr58Ofbv34/09HSkp6fj008/xcqVK5s9BhG5JkmSoFK4//dVNJadVCEEjhdsg8GkQ3Tw/Ujo+hhCPPrhYumPuFx22EEtpo6Mud45cz3vqJJTqJ8yZLzlMynXq88DAG4P/RWUMjU8lMAdodORcuVdnCv+HjEhvzR3bit1RThb8j0q6vIhl6ngofRDN69BCHSPbPPzoQ6khUvWX7161WI6kLUR1hvdPKgihGh21N9a/M3lthyzNWJefPFFlJSUIDU1FQEBAfjyyy/xq1/9Cnv37sXAgQObPId//vOfjUaC//Wvf6FHjx4AgM8++wwrVqzA/PnzmzwGEbmOhunBMknR7OdjtaEE5bp8DAueas7ZAwPHoUpfjEtlBxHmdRvU/50GrDfW4nzpDyiozgQg4KH0h79bd4RrhzbqAFMnxlzvlLmeHVXq0Mpr83AqbyfKanIhYIJa7gF3lS881AHo7XUn1AoPi/iy2lx4KH2glP3vg0QuU2JI0H04lr8Vh/I+hxAm6Ew1qNaXwk3pjS5eA1BnqEJ25UnkV1/A0KD7OE3YlbRwOpBWq7XpuZWAgADI5fJGI6r5+fmNRjcbhISEWI1XKBTw9/dvNqbhmLbU2/B+s7y8PISGhlqNuXjxIpYvX44TJ07gtttuAwAMHjwYe/fuxYoVK6yuUNjg3Llz6NOnj/lrjUYDmex/E3nuuOMOPP30003uT0SuQW+sxcm8HSiovAijSQeFTA13lS/clb4I9xwCX43l2h6ltbkAAF+15avsBgdOwv6cT3EwdyM0ci/UGatQa6yAEAJdvQZCJknIrTqHwppMVOtLEeU/mtOEXQVzvVPmek79pQ7tbP5uVNTmo1/waAwInYSuvkOgUXojv+Ic0nL+iUpdkUW8WuGJKn0xTMJkUR7s3gvB7r1QXHsNMkmBALcI9PUbieFhyejtOxwDAhORGDEXQe49kVHwDa6WH4e46RjUObV0OpCtVCoVoqOjkZKSYlGekpKC+Ph4q/vExcU1it+5cydiYmKgVCqbjWk4pi31RkZGIiQkxCJGp9Nhz5495piG96DdmHSA+vekmUzN/xspKyuDQvG/8dCCggJERESYvzaZTBbPsRCRa7pWmoG88tOI9IvFwLDJ6OEfB60mBJW6QhzM/TdyK89YxGsU9auUluksH+lxU2rR23c4qvTF0Jmq4afpgghtNO7q8gj6+49CX7+RGNVtFvr734OrFRk4UbgTRpO+3c6THIe53jlzPe+oUofmpQ5CUVUmsst+Qp/AUejqMwgAUKsvx+ErG3AgdyNiQ5PgqfrvyJNHH2SWHcb5kn3o6/e/V9VIkoQhQffBKPRQyFRW65IkCYMDJ+NkUSpOFqXgTPF3iO+SbLGaMHVC7fAS8Pnz5yM5ORkxMTGIi4vDhx9+iKysLMyZMwdA/cID2dnZWLduHYD6Vf+WL1+O+fPnY9asWUhLS8Pq1avNK/wBwHPPPYcRI0Zg2bJlmDJlCr766iukpqZi3759NtcrSRLmzp2L1157Db1790bv3r3x2muvwd3dHTNmzAAA9OvXD7169cLs2bPx1ltvwd/fH19++SVSUlLw9ddfN3veXbt2xYkTJ9C3b1+r3z9+/Di6du1q/wUlok7FSx0IALhWegzhfncg0v9OSJIEkzDixNX/IKPgGwiYEOYZBQDw1YRBLffEhZIf4KvuYvFYUHftEIR59odcavwWgQbh2qGQSwqcKNyJ7MoTGBQ4EWGe/dv+RMlxmOudMtezo0odWt+gUfB164LzhXuRkfMV7un9HCRJgkapRWzoAziQuwHH8r/G8C4PQ5IkeKtD0NdvBM4W74FMkqOnz53mZ1AkSYJCst5JbSCXKTAgIBFeKn+cLf4ee6+tgbc6FOHaoQhy7wGFrPlnE4isSUpKQlFREV555RXk5uZiwIAB2LZtG8LDwwEAubm5yMrKMsdHRkZi27ZtmDdvHlasWIGwsDC8++675veqAUB8fDw2bNiAF198ES+99BJ69uyJjRs3mt+rZku9APCHP/wBNTU1eOqpp1BSUoLY2Fjs3LnT/F41pVKJbdu2YeHChbj33ntRWVmJXr164ZNPPsHEiRObPe+JEyfij3/8IyZNmtRotb+amhq8/PLLmDRpUssvLBF1CgGePRAX8SguFf2Is/nfwt+jO7SaEMgkOQYGToAkyXCicCd81GFwV/pAJikwNPg+HMz9N45e34IhQfdCKf/fZ4wtubqr10CoZG44VvANjhdsw4WS/ejqNRChnv3gpuDrmch+zPWtn+v5HlUH4HtU7Xet9DhO5H6DxH4LIGt491qtDpfLjuJM8XcY3f1piyR1tngvMssOQiP3QqhnP3go/ZBXdRa+6i7o4XOHTe9VrdaXoaDmEvKrLqCoNgsSZIgJuR/+buG33LcB36vWOtry3Wo9XnoNcjuWTDfW1uLSq4s6/OdhR3D9+nUMGTIEKpUKv/3tb9GnTx9IkoQzZ85g+fLlMBgMSE9Pb/L5HWpfzpLrnQXfo2q/Wn0Fdl9Yjuhu082vpEOtDlX6Yuy9tgaDAycj1PN/d20Kqy/j8PXNkCAhzLM/At0jkVt5DgqZEn39RkIld7tlnQaTDnlV51BSew05lWcgYERPnzvtfs0N8/3Px1zvnNoy1/OOKjmFhsWRdIZqaJSeEEKgsPoSMssOItC9h0UnFQD6+N6FALfuyK44iazyDBiFDu4KHxTWXIZG4YUuXrfdsk53pTfClUMRrh2Kan0Zjl7/Ekevb8XIbk/YlPzISbTDdCBXFRwcjP379+M3v/kNFi5caLGa4dixY7Fy5Up2UonITCFvyPVV5rIKXQFOFe2CSu6OgJsGigPcI3BXl0eQXXkSeVVnkV15EkqZBgICQpgwKKj5O0FA/bvau3oNQFevAejnNwrnSvbiYumP8FGHItC9R+ueIDkOc32bactcz44qOQUf9y6QS0qkX9sElcIdZTW50Bmr4K0KwW3+YxvFS5IEf7dw+LuFo85YheKaawj26IXvr32Mct11dMGtO6o3cld6Y0jQZOzLXovyuusIcI9opTMjh2PyalORkZHYsWMHiouLceHCBQBAr1694OfHZ7+JyJJCpoK3WxjOF+xFfuUFVNYVokpXBLXcE4MCJzYalAYAT5U/+vqNQG/feORXZ8JHHYoLpftRUpttd/1KuQZR/mNQUJ2JoposdlQ7E+b6NtVWub5TdVSdZdpFzOMdfzpQR6NWeGJQl/twpfgQIAS6+AxEkGdv+GjCbjk1Rw0fhLr7AAD83LuhpC4HUCvtbkNFXTEAwM3DH1DZtv/4wS/ZXY8j7Mh41dFNcBh7V/ezdyVAqufn54c77rjD0c0gajcHPu347weeELXI0U1oZFDYvTiTlwqjSQdf927oHTgCQZ69bvnOUxmUCNHUL7bkZwjHtYqfoFMY7J4BVWeoRJ2pGm5ufnb9reAM+Z653r54sl9r5/pO1VGlzi3Yqw+Cvf73nibc+vHqRjxU/iioumT3fmfzd+Ny8UEEePSAu9LX7v2JiIjo1jxUfojuPv1/BS3M9QBQqy+zq6OaX3Eex3O/hkKmQpjWvplXRNT62FEllyKT5NAba2ASpv8tynQDIQRq9GWQyRQQwoiskqPIKT+JOkMlIv3uRI//LplPnQinAxERdSpyWf2d0LobnnW9WZ2hEiZhglxSIK/iLK6UHEa1rgT+HuHoHzzW6jRjcmLM9U6JHVXqtIQQqKjLh1rhAbXCEwCgN9W/cLiqrhBemiBzrNGkx7XSDFwpOYJqfYm5XC5Toav3IHhrQhGqjWIntRPidCAiIudWoy+D0aSHpzoAAKAzVgMASmuy/7d6MOr/LiiouojLxQdRXJ1lcYwQr37o7jMUXbwHmhd1os6Dud45saNKnY4QAtcrzuJ84feo0hVDkuQYGDoJYdoo9PCLxfWKM/gx6zMoZRoYTHXwVAegWlcKvbEawV790C94NCAEBEzwcw/nqKorYEIiInI65bXXca5gNwqrMgEA3XyGIio4EX7u3dHFeyAuFqUht/w06oxVcFd6wyRMqNIVwVsThoGhk6GSu8No0sFLEwQPFRd46/SY650OO6rUqRiMdTie+x/kV15AgEcP9A8eizPXv8W5/N0I00ZBIVcjNjwZV4oP1U/5kSlQWVcIL3UQIv3ugLuKz5+6HE4HIiJyKkIIXCrajwuF++Cu8sXA0Mkors7C1dJ0RPrFwl3lgwEhE6BVB6PWUAG5TIVafRkMJh2ighPh72H7+9Cpk2Cud0rsqFKn8lPuN8ivvIBIvzvhptSivDYPlTrLF5qr5G7oHTjCQS2kjobTgYiInMvV0mM4X7gXQZ69EOTZBzX6MuSUnQAAmIQRACBJMoT7xTiymdSBMNc7J3ZUqVPxUPsDlUBm8Y+QIDMvqNDNZ4hjG0YdF0dZiYicirvKBwCQX3kB+ZUXoJRpIGCCm9IHGqWXYxtHHRNzvVNiR5U6ld4BIxDk2RsySQ4Plb/5vWtcBImIiKhzCPCIREKPJ6E31sBD5Q+lXAPx39fYMN8TdR7sqFKnIkkSfNzCHN0MciKcDkRE5HxuXvyIHVRqDnO9c2JHlYhcG6cDERERdW7M9U6JHVUicm1MXkRERJ0bc71TYkeViFwapwMRERF1bsz1zokdVSJybRxlJSIi6tyY650SO6pELSSEQK2hAoCARqHlQg7OismLiIiaoTNUw2DSQaPwhEzGP52dEnO9U+K/NqIWOn09BVmlRwEACpka3m5h8NGEItzvdqjkbg5uHdmK04GIiKgpeeVnkJHzFQQEJEkOrToY3poQdPMZAi9NkKObRzZirndO7KgStUBZbR6ySo+ih38cfN26orz2OkprsnGp6EfoTXWICh7r6CaSrTjKSkREVphMBpzO/xb+HhGI9ItFpa4IpTU5yKs4g6LqK7gr8gnOpnIWzPVOiR1VohYorb4GCTL0CkiATJIh0LMnAOBcwR5kFh8EhEC43+1wVwU6uKV0KxxlJSIia6r1ZagzVGBQ6CT4e0TA3yMC4b7RKKq6jENXN+DotS8Q4Xc7/D0iHN1UugXmeuckc3QDiJyRJMnrpwHBciS1p/9wRPrdgbyKs9h36R/IKfkJQvDTrkMTLdiIiKjTk0lyq+X+HhEYGDoJtYZyHLq6AafydsJkMrRz68guzPVOiXdUiVpAo/AEIFCjL4W7ytdcLpcp0CdwJHr6x+On3G346epXuFp0FBqlFxRyNQK9eiHAqycXYyAiIurgVAp3SJBQpStudNe0i/dAhGkHIKv0KE5fT0F+1QX4enSHBAneHl0R4t0fKoW7YxpO1EnwjipRC/h5hEMmKZBd9pPV78tlSgwOuw9DI5JgEgbUGapQUnUV6Vc+x3en/objWV+ioOIi77Z2BO00yrpy5UpERkZCo9EgOjoae/fubTZ+z549iI6OhkajQY8ePfD+++83itm0aROioqKgVqsRFRWFLVu22F2vEAJLly5FWFgY3NzcMGrUKJw8ebLRcdLS0nDPPffAw8MDPj4+GDVqFGpqauy8CkREzkMhU8HPPRzZZSes5mtJkhDuG427Ip+AlyYI1boSVOmKcSZ7B3af+hsOX/onrhWlw8i7rY7HXO+UuZ4dVaIWUMhUCPeNwaWiH1Fee91qjCRJCNL2Rlzvx3FHz2Tc1XcOhveZjfDAWFTUXsfRzPX48cLHyC87xw6rA0kt2Oy1ceNGzJ07F4sXL0Z6ejoSEhIwYcIEZGVlWY3PzMzExIkTkZCQgPT0dCxatAjPPvssNm3aZI5JS0tDUlISkpOTkZGRgeTkZEyfPh0HDhywq94333wTb7/9NpYvX45Dhw4hJCQEY8eORUVFhUVd48ePR2JiIg4ePIhDhw7ht7/9LWQyphAi6tx6+N+JstocXCk53GSMpzoAwyIfwJ29ZuLOXjMxsv9z6NdlPAQETmZvw94zy3G54ACMJn07tpxuxFzvnLleEjb8hVxeXg5vb2+UlZVBq9W2R7s6tZjH33Z0E24pMK3Q0U24NQd37kwmA9KurIPOWIP4iEehVng0ihEq61N8hRAorryMi/l7UVKVBW+3MPTvMgHe7qFt3WyrdmS86pB6bdUWn0ENx4z6zWuQqzU272esq8WpVYvsaktsbCyGDRuGVatWmcv69++PqVOn4vXXX28Uv2DBAmzduhWnT582l82ZMwcZGRlIS0sDACQlJaG8vBzbt283x4wfPx6+vr5Yv369TfUKIRAWFoa5c+diwYIFAIC6ujoEBwdj2bJlmD17NgDgzjvvxNixY/Hqqx3794R+HuZ61zMhapGjm3BrHWAg9/T1VGSVHEV0t18hwCPSakxT+b6qrhiZ+T8gp+Q4lAoP9A0djVCfAQ5ZLZi5nrne2XI9h8OJWkgmU2Bol/tRZ6hAQeUFu/aVJAn+XpG4o+fDiOnxEIzCgB8vrMap7B3QG2vbqMVkTcNKgPZsQH3yu3Grq6uzenydTocjR44gMTHRojwxMRH79++3uk9aWlqj+HHjxuHw4cPQ6/XNxjQc05Z6MzMzkZeXZxGjVqsxcuRIc0x+fj4OHDiAoKAgxMfHIzg4GCNHjsS+ffuavKZERJ1J36C74ab0xrXS43bv66H2w4Bu9+Kufk/B16Mbfrr6FQ5d+gyVtU5wQ6ATYa53zlzPjipRCwkhcKXkEADAQx3Q4uP4e0YgrvcT6Bs6Fjklx7Hv7CpklxzndOD20sLnVrp16wZvb2/zZm20FAAKCwthNBoRHBxsUR4cHIy8vDyr++Tl5VmNNxgMKCwsbDam4Zi21Nvw3+ZiLl26BABYunQpZs2ahR07dmDYsGEYPXo0zp8/b7X9RESdSUn1VVTrS+Cp9m/xMdxVvhgSPg3RkQ+iTl+B/ec+xLncXTCYdK3YUmoSc71T5nouPUrUQldKDuNKyREEePSAtybkZx1LJskQERiLEJ8onM1JwYmrW5FdnIEh4fdDZWVKMbWyFowJXL161WI6kFqtbjb+5mleQohmp35Zi7+53JZj/twYk8kEAJg9ezZmzpwJABg6dCi+/fZbfPzxx00mbSKizqCsNg9Hrn0Od5UfQrz6/ezjBXj1xPA+TyKzIA2X8n9AbukJDO5+P3w8urZCa6lZzPVNxnTUXM87qkQtUK0rxfmC79HdNxox3aY3+a41e2mUXhgcfj+iI2egqq4QBy9+ijp9xa13pBZr6XQgrVZrsTWVvAICAiCXyxuNqObn5zca3WwQEhJiNV6hUMDf37/ZmIZj2lJvSEj9AEtzMaGh9c9NR0VFWcT079+/yQUiiIg6A5Mw4lTe/8FD5Ye7Ih6D58+YPXUjmUyBnsEJGN5nNjRKLQ5n/hNFlZdb5dhkHXO9c+Z6dlSJ7CSEwPHcr6GUu6F3QEKb1BHg1QN39HgYBlMdDl36JwxG689EUCto4yXrVSoVoqOjkZKSYlGekpKC+Ph4q/vExcU1it+5cydiYmKgVCqbjWk4pi31RkZGIiQkxCJGp9Nhz5495piIiAiEhYXh7NmzFsc5d+4cwsPDbboGRETO6FJRGsprryMqZHybvP/cXe2LmB6/ho97VxzN3ICy6txWr4P+i7neKXM9p/4S2eFq6TFcLj6IKl0xbu/2AJRy21eQs5eHxh+3Rz6EHy98jDM5KRjQbXKb1eXKbhw5tTXeXvPnz0dycjJiYmIQFxeHDz/8EFlZWZgzZw4A4IUXXkB2djbWrVsHoH7Vv+XLl2P+/PmYNWsW0tLSsHr1avMKfwDw3HPPYcSIEVi2bBmmTJmCr776CqmpqRYLH9yqXkmSMHfuXLz22mvo3bs3evfujddeew3u7u6YMWOGOeb3v/89lixZgsGDB2PIkCH45JNPcObMGXzxxRf2Xwwiog6upPoazhXsQUnNVUT63Qlfty5tVpdcpsTQiCQcvLgOGVe+QEK/pyFJvI/U2pjrnTPXs6NKZKPi6qs4mbcDQZ69ERU8Dv4ebT/C5KHxR7BPf1TU5Ld5XS7L3pHTFiSvpKQkFBUV4ZVXXkFubi4GDBiAbdu2mUcpc3NzLabWREZGYtu2bZg3bx5WrFiBsLAwvPvuu5g2bZo5Jj4+Hhs2bMCLL76Il156CT179sTGjRsRGxtrc70A8Ic//AE1NTV46qmnUFJSgtjYWOzcuRNeXl7mmLlz56K2thbz5s1DcXExBg8ejJSUFPTs2dP+i0FE1IEZjHU4mr0JaoUnBoRMRJj3gDavUy5TIDLwTmRkbYbBpGvTQXCXxVzvlLme71F1AL5HtZW046q4OWUncSJvOzxUfoiLeBQyG0c7m3qvmj1OXvsG5TXXEdf7sZ99rKa48rvVBj32GuQqO96tpqvF8Y/te7cakTNgrnc9fI+qpYrafBzN3gSdsQZx4Y/Ytcrvz833eaWnkZG1Cffc9nybdVSZ65nrnQ3vqDrA4dXzHd2EW5rQZ4Gjm3BLQt0+v76VtYU4nvsfhPkMQP/Q8ZDkipYMtLWYSRhabbEmIiKiBttPveboJtzS+IGL26UekzDhaPZmyOVqxEfMgLvat91zPQDme6IbsKNKdAvXSo5BJXfHbWET22QxhVuRJDlKq6/i0MVPUV57HX1C7kY3/+h2b0en1Q7TgYiIqGMrqsxEjb4Ud3Z7FO5q33avv6GDejxrC4oqLyPEJwr9w8ZD7oC/Ozol5nqnxKe1iW7BYKyFQq6B5KBRTm+3MMhlKpiEEYFePXEqeztKqq46pC2dUhuvBEhERB2fwVgLAFAp3B1Sv6cmECq5Oypq89HFdzBySn5CZv4PDmlLp8Rc75Q4TEN0C6E+tyG79DhKq6/B16Nbu9ffzX8YuvkPAwCYTEbklp5EVV2hQ9rSGbXHSoBERNSxBWp7Qy5TIbvkOHoFj2j3+j01gbj7tv89GlZRm4+quqJ2b0dnxVzvnHhHlegW/Dwi4KEOwInsb1CtK3VoWwRMkCCDzlDt0HZ0KhxlJSJyeQqZCl18ByGzMA0FFRcd3RxIAHSGKkc3o/NgrndK7KgS3YIkSRjW/VcQwogjlzfAaNI7rC1ymRJd/IYgM38/qmo50toaJCHs3oiIqPPpG3wP/DwikJ71Ocprrju0Ld0CYlBcdQU5Jccd2o7OgrneObGjSmQDd7UvhkUkoVpXgpzSEw5tS5/Qe6BWeuHAxbUoqcq69Q7UPI6yEhERAJlMgaHdp8Fd6YNLBY59PjRY2w9hvoPw09WtuFxwADa8TZKaw1zvlNhRJbKRpzoAfh7dcb38jEPboZRrcEfPR+CpCcTBi+twNHMjSquuObRNzqzhuRV7NiIi6pxkMgXCfAehsOIiDCadw9ohSRIGdL0X4QGxOJubgrTzHyG75Dg7rC3EXO+c2FElskOwth+KKjNRq69waDtUCjfc3iMZt3WdhBp9GQ5e/AQF5Rcc2ianxVFWIiK6Qah3FIxCj+tljh2YliQJ/cLG4vYeydAotThxdSvO5e1yaJucFnO9U2JHlcgOWrdgAEBFrWOfXQHqE1hXv6GI6/0EvN274HLhj45uklPiKCsREd1Io/SGXKZCeW2eo5sCAPDzDMewyCT0CLoLVwp+hMlkcHSTnA5zvXNiR5XIDt5uXeDr3h3n8r7rMNNv9IZq1OhKoVJ4OLopzomjrEREdANJkhAZEIesoiOo1Zc7ujkAACFMKK/Jg0Lu5rD3ujs15nqnxI4qkR0kSUJEQCwq6wpQWVfg6ObAYNTh6OWNAIA+Ifc4uDXOiaOsRER0s+7+0ZBJMuSVnXZ0UyCEwJmcFBRWXMSAbvdCkiRHN8npMNc7J4WjG0DkbAI8e0Apd0Nu6Ul4hQQ5pA0mkwEX8/ciu+Q4DMY63NHzYbipvB3SFiIios5GKdcgwKsXckpPICIg1mHtyCn5CVcKD6C8Jg/9w8YjSNvbYW0ham+8o0pkJ5lMjlDvKGSXZMBgrGv3+g3GOhy9vBGXC35EkLYPYns+Cq1bSLu3o9PgdCAiIrKii88gVNReR0nV1XavWwiBC3l78NPVr6BWeGFoRBK6B8S0ezs6DeZ6p8Q7qkQtEBFwJ7KKjyC/4jzCfAa0S50GYx2ul53BlcJDqNGVIDpyBvw8w9ul7s6OU3yIiOhmgV494aH2x7WSY/D16NYudQohUFhxETklx5FXdgp9Qu5BRGAcp/u2AuZ658OOKlELqBTuAACTMLZ5XUKYkFV0GBfy9sBgqoO3Wxhu75nMu6itRYj6zZ54IiLq9CRJBpXcvV1yPQAUVlzE2dxvUVmbD7XCCwO63osufoPbpe5Oj7neKbGjStQC1boSAICHyq/VjllnqEKtrgxuKh8o5GqUVeegsOIC8svPobK2AEHaPgjzHYxg776tVifZv2gCR2SJiFxHla4Yfh6tN3vJaNKjsrYAKoU7NEpvVNUVobDiIgorLqCoMhPebmHoHXI3IgPjeRe1FTHXOyd2VIlaoKquEADgofb/2cfSG2pwNu9bZBdnoOGhCLmkhFHooZS7wd+rB6K6TICvR/efXRdZYe+zKExeREQuQW+sgc5Q1Sq5XggTrhQewsXr38Ngql/fQi5TwmjSQ5Lk8PPojgFdJyPMdzA7qG2Bud4psaNK1AKVdUVQyd3NU4Bbqqw6F+mX/w2jSYe+oWPg59EdlXWFqNNXws8zHFq3EEgS1zxrS5KpfrMnnoiIOr+qumIAgIc64GcdR2eoRsaVTSiuuoJu/tEI8x0EnaEKlbX58HILhZ9Hd8hlytZoMjWBud45saNK1AJVdUU/a4S1vCYPp7N3oLT6GjzUAbiz10xoVFoAgNY9tLWaSbbgKCsREVnxv9lTLXvMR2eoxtncVOSU/ASZJEdMj1/D3zPS/P0gbZ9WaSfZgLneKbGjStQC5TV5CLgh2diqTl+JS/n7cLXoKDw0ARjU/RcI8OoJpVzTBq0kW/C5FSIisqasJg/uKj+773YaTQZcKz6Ki9f3ARDoGzoGQd594K7ybZuG0i0x1zsndlSJ7KQ31qJaVwyt23C79rtSeBBnc1Ihl6vQK2QUIgJiIZPJ26iVZDOuBEhERFaU1+TC282+WU4lVVdx7PLn0Blr0MV3EHqHjIJa6dVGLSSbMdc7JXZUieykkKkgkxTQG6tt3udS/g84n/cdugfcgV5BCVAq3NqwhWQPjrISEZE1KoU7dMYam+OLK6/gSOZ6eLuH4Y6uk1plESZqHcz1zomrtBDZSZJk8HYLQ1bxURiMdbeMF0Lg4vW96O5/O/qHJbKT6qJWrlyJyMhIaDQaREdHY+/evc3G79mzB9HR0dBoNOjRowfef//9RjGbNm1CVFQU1Go1oqKisGXLFrvrFUJg6dKlCAsLg5ubG0aNGoWTJ09abZMQAhMmTIAkSfjyyy9tP3kiIifk49YFRZWXUFGbb1P85YIf4aH2R3TkDHZSXRRzfetiR5WoBXoG3YUaXQnOX98No0nfbGytvhwmYYCnJrCdWkd2ES3Y7LRx40bMnTsXixcvRnp6OhISEjBhwgRkZWVZjc/MzMTEiRORkJCA9PR0LFq0CM8++yw2bdpkjklLS0NSUhKSk5ORkZGB5ORkTJ8+HQcOHLCr3jfffBNvv/02li9fjkOHDiEkJARjx45FRUVFo3a98847fG0CEbmMLn6DoVJ44MS1r6EzVDUbazIZUaMvg7vaF3IZJyx2OMz1TpnrJSFuPQm7vLwc3t7eKCsrg1arbY92kYNN6LPA0U24JaF2bCI4ce1rZJcehyTJEazti34hY6BWelrEVOlLcfjSZ5AkGWJ7Ptro+x3FjoxXHd2EZrXFZ1DDMe+c9CoUStsXszLoa/HjNy/Z1ZbY2FgMGzYMq1atMpf1798fU6dOxeuvv94ofsGCBdi6dStOnz5tLpszZw4yMjKQlpYGAEhKSkJ5eTm2b99ujhk/fjx8fX2xfv16m+oVQiAsLAxz587FggX1/+br6uoQHByMZcuWYfbs2eb9MjIyMHnyZBw6dAihoaHYsmULpk6datP5k3NgrqeOaPzAxQ6tP7f0JI5f+woA4O0Whn6hifBxD7OIMZr0OHZ1M4oqLyM64gH4e9m/2GJ7YK5nrne2XM87qkQtdFuXSYjv9QT6BN+NospM7D3/Pi4VpFncYT2dvQOSJMcdPR7usJ1Ul9ewwII9G+qT341bXZ31aeA6nQ5HjhxBYmKiRXliYiL2799vdZ+0tLRG8ePGjcPhw4eh1+ubjWk4pi31ZmZmIi8vzyJGrVZj5MiRFm2rrq7Ggw8+iOXLlyMkJMT6dSQi6oRCfW7DyL7PYGDX+yCECQcurcWJa1+jVl9ujrlafBRFlZkdupPq8pjrnTLXs6NK1EKSJMFLE4SIgDtwV+856OI7CBeu78b351Yir+w0iiovo6jyEnoGDTe/I5U6noYFFuzZAKBbt27w9vY2b9ZGSwGgsLAQRqMRwcHBFuXBwcHIy8uzuk9eXp7VeIPBgMLCwmZjGo5pS70N/71V2+bNm4f4+HhMmTLFanuJiDozjdILYT4DENvzUfQPHYf8ivP4/twqnL++GzW6clwpOoRgbT92Ujsw5nrnzPWcRE/UClQKN/QPTUS4/+04kf0NMq7WP+ju7xmJUJ8BDm4dNauFLwG/evWqxXQgtVrd7G43P+8hhGj2GRBr8TeX23LMnxuzdetW7Nq1C+np6U22lYjIFcgkGbr7RyPMZwAyC3/EpYIfcKlgP9QKT/QOGeXo5lFzmOudMtfzjipRK3JX+WJA2CTIZUp09R2KYZEPQMZFFTq0lo6yarVai62p5BUQEAC5XN5oRDU/P7/R6GaDkJAQq/EKhQL+/v7NxjQc05Z6G6b2NBeza9cuXLx4ET4+PlAoFFAo6n+fp02bhlGjRlltPxFRZ6aQq9EraAS8NEHQuoUirudjcFf7ObpZ1AzmeufM9eyoErUyd7UvRvf/HW7rMgEySe7o5tCtmIT9mx1UKhWio6ORkpJiUZ6SkoL4+Hir+8TFxTWK37lzJ2JiYqBUKpuNaTimLfVGRkYiJCTEIkan02HPnj3mmIULF+L48eM4duyYeQOAv/3tb1izZo09l4KIqNOQJAlxPR/HnT067kKJdAPmeqfM9bzVQ1YZLlxydBNuSZJ37E6gACCPDHd0M+hWWjgdyB7z589HcnIyYmJiEBcXhw8//BBZWVmYM2cOAOCFF15AdnY21q1bB6B+1b/ly5dj/vz5mDVrFtLS0rB69WrzCn8A8Nxzz2HEiBFYtmwZpkyZgq+++gqpqanYt2+fzfVKkoS5c+fitddeQ+/evdG7d2+89tprcHd3x4wZMwDUj8RaW1She/fuiIzk81hE1LZ2/PRnRzeBOgPmeqfM9eyoEpFLk/C/KT62xtsrKSkJRUVFeOWVV5Cbm4sBAwZg27ZtCA+vH8jIzc21eN9ZZGQktm3bhnnz5mHFihUICwvDu+++i2nTpplj4uPjsWHDBrz44ot46aWX0LNnT2zcuBGxsbE21wsAf/jDH1BTU4OnnnoKJSUliI2Nxc6dO+Hl5dWCMyUiIup4mOudM9fzPapk1VjZrxzdhFvq6HdUAee5o7r93DJHN6FZbfluteGjl0KhsOPdaoZa/PDtUn4eUqfDXE9EjsRcTzfjHVUicmk3LppgazwRERE5D+Z658TFlIiIiIiIiKhD4R1VInJt7bDAAhERETkQc71TYkeViFyaJASkWz+qbxFPREREzoO53jmxo0pErs30382eeCIiInIezPVOiR1VInJpHGUlIiLq3JjrnRM7qkTk2vjcChERUefGXO+U2FElItcmRP1mTzwRERE5D+Z6p8SOKhG5NL5bjYiIqHNjrndO7KgSkWvjKCsREVHnxlzvlNhRJSKXJpnqN3viiYiIyHkw1zsndlSJyLVxlJWIiKhzY653SuyoEpFr40qAREREnRtzvVOSOboBRERERERERDfiHVUicml8CTgREVHnxlzvnNhRJSLXxudWiIiIOjfmeqfEjioRuTYBwJ7V/Zi7iIiInAtzvVNiR5WIXBqnAxEREXVuzPXOiR1VInJtAnZOB2qzlhAREVFbYK53SuyoEpFr43MrREREnRtzvVNiR5WIXJsJgGRnPBERETkP5nqnxI4qEbk0PrdCRETUuTHXOyeZoxtARORQDdOB7NlaYOXKlYiMjIRGo0F0dDT27t3bbPyePXsQHR0NjUaDHj164P33328Us2nTJkRFRUGtViMqKgpbtmyxu14hBJYuXYqwsDC4ublh1KhROHnypPn7xcXFeOaZZ9C3b1+4u7uje/fuePbZZ1FWVtai60BERNTumOudMtezo0pErq0dktfGjRsxd+5cLF68GOnp6UhISMCECROQlZVlNT4zMxMTJ05EQkIC0tPTsWjRIjz77LPYtGmTOSYtLQ1JSUlITk5GRkYGkpOTMX36dBw4cMCuet988028/fbbWL58OQ4dOoSQkBCMHTsWFRUVAICcnBzk5OTgrbfewk8//YS1a9dix44dePzxx+2+DkRERA7BXO+UuV4S4tY/ifLycnh7e6OsrAxarbY92kUONlb2K0c34ZYkudzRTbgleWS4o5tgk+3nljm6Cc1qi8+ghmOOjnoeCrna5v0Mxjp8e+otu9oSGxuLYcOGYdWqVeay/v37Y+rUqXj99dcbxS9YsABbt27F6dOnzWVz5sxBRkYG0tLSAABJSUkoLy/H9u3bzTHjx4+Hr68v1q9fb1O9QgiEhYVh7ty5WLBgAQCgrq4OwcHBWLZsGWbPnm31fD7//HM89NBDqKqqgkLBJ0g6C+Z6InIk5nrm+pvxjioRubYWjrKWl5dbbHV1dVYPr9PpcOTIESQmJlqUJyYmYv/+/Vb3SUtLaxQ/btw4HD58GHq9vtmYhmPaUm9mZiby8vIsYtRqNUaOHNlk2wCYEzc7qURE5BSY650y17OjSkSuzdSCDUC3bt3g7e1t3qyNlgJAYWEhjEYjgoODLcqDg4ORl5dndZ+8vDyr8QaDAYWFhc3GNBzTlnob/mtP24qKivDqq682OQJLRETU4TDXO2Wu53A4Ebm0lq4EePXqVYvpQGp181OKJMlyXXwhRKOyW8XfXG7LMVsrBqgfWZ40aRKioqKwZMmSJttORETUkTDXO2euZ0eVrEoxfe7oJhC1jxa+BFyr1dr03EpAQADkcnmjUcv8/PxGo5sNQkJCrMYrFAr4+/s3G9NwTFvqDQkJAVA/2hoaGtps2yoqKjB+/Hh4enpiy5YtUCqVtzx3IiKiDoG53ilzPaf+EpFrMwn7NzuoVCpER0cjJSXFojwlJQXx8fFW94mLi2sUv3PnTsTExJiTRlMxDce0pd7IyEiEhIRYxOh0OuzZs8eibeXl5UhMTIRKpcLWrVuh0WjsuQRERESOxVzvlLmed1SJyLW1cJTVHvPnz0dycjJiYmIQFxeHDz/8EFlZWZgzZw4A4IUXXkB2djbWrVsHoH7Vv+XLl2P+/PmYNWsW0tLSsHr1avMKfwDw3HPPYcSIEVi2bBmmTJmCr776Cqmpqdi3b5/N9UqShLlz5+K1115D79690bt3b7z22mtwd3fHjBkzANSPriYmJqK6uhqfffaZeUEJAAgMDITcCVbfJiIiF8dc75S5nh1VInJx9r4vzf7klZSUhKKiIrzyyivIzc3FgAEDsG3bNoSH17++KDc31+J9Z5GRkdi2bRvmzZuHFStWICwsDO+++y6mTZtmjomPj8eGDRvw4osv4qWXXkLPnj2xceNGxMbG2lwvAPzhD39ATU0NnnrqKZSUlCA2NhY7d+6El5cXAODIkSPm97X16tXL4rwyMzMRERFh9/UgIiJqX8z1zpjr+R5VIurw2vLdamMin4FCZse71Ux1SM18j5+H1Okw1xORIzHX0814R5WIXJtJwK6RUzufWyEiIiIHY653SuyoEpFrE6b6zZ54IiIich7M9U6JHVUicm3tsMACERERORBzvVPi62mIiIiIiIioQ+EdVSJybXxuhYiIqHNjrndK7KgSkWvjdCAiIqLOjbneKbGjSkSuTcDO5NVmLSEiIqK2wFzvlNhRJSLXxlFWIiKizo253imxo0pErs1kAmDHMvQmLllPRETkVJjrnRI7qkTk2jjKSkRE1Lkx1zsldlSJyLUxeREREXVuzPVOiR1VInJtXLKeiIioc2Oud0rsqBKRSxPCBCFsfxbFnlgiIiJyPOZ658SOKhG5NiHsGznldCAiIiLnwlzvlNhRJSLXJuycDsTkRURE5FyY652SzNENICIiIiIiIroR76gSkWszmQDJjmdR+NwKERGRc2Gud0rsqBKRa+N0ICIios6Nud4psaNKRC5NmEwQdoyyciVAIiIi58Jc75zYUSUi18ZRViIios6Nud4psaNKRK7NJACJyYuIiKjTYq53SuyoEpFrEwKAPQssMHkRERE5FeZ6p8SOKhG5NGESEHaMsgomLyIiIqfCXO+c+B5VInJtwmT/1gIrV65EZGQkNBoNoqOjsXfv3mbj9+zZg+joaGg0GvTo0QPvv/9+o5hNmzYhKioKarUaUVFR2LJli931CiGwdOlShIWFwc3NDaNGjcLJkyctYurq6vDMM88gICAAHh4euO+++3Dt2rUWXAUiIiIHYK53ylzPjioRuTRhEnZv9tq4cSPmzp2LxYsXIz09HQkJCZgwYQKysrKsxmdmZmLixIlISEhAeno6Fi1ahGeffRabNm0yx6SlpSEpKQnJycnIyMhAcnIypk+fjgMHDthV75tvvom3334by5cvx6FDhxASEoKxY8eioqLCHDN37lxs2bIFGzZswL59+1BZWYnJkyfDaDTafS2IiIjaG3O9c+Z6Sdhwb7u8vBze3t4oKyuDVqttj3YREZm1xWdQwzFHYQoUktLm/QxCj934yq62xMbGYtiwYVi1apW5rH///pg6dSpef/31RvELFizA1q1bcfr0aXPZnDlzkJGRgbS0NABAUlISysvLsX37dnPM+PHj4evri/Xr19tUrxACYWFhmDt3LhYsWACgfkQ1ODgYy5Ytw+zZs1FWVobAwEB8+umnSEpKAgDk5OSgW7du2LZtG8aNG2frpaMOjrmeiByJuZ65/mZ2PaNaXl7eVu0gImpSW372GKC3a8V6A/QAGrdJrVZDrVY3itfpdDhy5AgWLlxoUZ6YmIj9+/dbrSMtLQ2JiYkWZePGjcPq1auh1+uhVCqRlpaGefPmNYp55513bK43MzMTeXl5FnWp1WqMHDkS+/fvx+zZs3HkyBHo9XqLmLCwMAwYMAD79+9nR7UTYq4nIkdgrmeuv5lNHVWVSoWQkBB069atrdtDRGRVSEgIVCpVqx2v4XNtX942u/f19PRs9Hm4ZMkSLF26tFFsYWEhjEYjgoODLcqDg4ORl5dn9fh5eXlW4w0GAwoLCxEaGtpkTMMxbam34b/WYq5cuWKOUalU8PX1tbn95JyY64nI0ZjrmetvZFNHVaPRIDMzEzqdrq3bQ0RklUqlgkajabXj/ZzPNSEEJEmyKLM2wnqjm+OtHeNW8TeX23LM1oq5mS0x5FyY64nI0ZjrmetvZPPUX41G06q/OEREjtYen2sBAQGQy+WNRiTz8/MbjW42CAkJsRqvUCjg7+/fbEzDMW2pNyQkBED9SGpoaGiTMTqdDiUlJRYjrfn5+YiPj7ftIpDTYK4nos6Gud55cz1X/SUiakMqlQrR0dFISUmxKE9JSWnywz8uLq5R/M6dOxETEwOlUtlsTMMxbak3MjISISEhFjE6nQ579uwxx0RHR0OpVFrE5Obm4sSJE+yoEhERgbm+zQgiImpTGzZsEEqlUqxevVqcOnVKzJ07V3h4eIjLly8LIYRYuHChSE5ONsdfunRJuLu7i3nz5olTp06J1atXC6VSKb744gtzzA8//CDkcrl44403xOnTp8Ubb7whFAqF+PHHH22uVwgh3njjDeHt7S02b94sfvrpJ/Hggw+K0NBQUV5ebo6ZM2eO6Nq1q0hNTRVHjx4V99xzjxg8eLAwGAxtedmIiIicBnN962NHlYioHaxYsUKEh4cLlUolhg0bJvbs2WP+3iOPPCJGjhxpEb97924xdOhQoVKpREREhFi1alWjY37++eeib9++QqlUin79+olNmzbZVa8QQphMJrFkyRIREhIi1Gq1GDFihPjpp58sYmpqasRvf/tb4efnJ9zc3MTkyZNFVlbWz7gaREREnQ9zfeuy6T2qRERERERERO2Fz6gSERERERFRh8KOKhEREREREXUo7KgSERERERFRh8KOKhEREREREXUo7KgSERERERFRh8KOKhEREREREXUo7KgSERERERFRh8KOKhEREREREXUo7KgSERERERFRh8KOKhEREREREXUo7KgSERERERFRh8KOKhEREREREXUo7KgSERERERFRh8KOKhEREREREXUo7KgSERERERFRh8KOKhEREREREXUo7KgSERERERFRh8KOKhEREREREXUo7KgSERERERFRh8KOKhEREREREXUo7KgSERERERFRh8KOKhEREREREXUo7KgSERERERFRh8KOKhEREREREXUo7KgSERERERFRh8KOKhEREREREXUo7KgSERERERFRh8KOKhEREREREXUo7KgSERERERFRh8KOqgOsXbsWkiTh8OHDVr8/efJkREREtG+jbDRq1CiMGjXKokySJCxdurTZ/S5fvgxJkvDWW2/dso6G63P58mVz2aOPPtromkRERODRRx+1reFEREREROQ0FI5uADmXlStXNipLS0tD165dW62OSZMmIS0tDaGhoc3GbdmyBVqtttXqJSIiIiKijoEdVbJLVFRUo7I777yzVesIDAxEYGDgLeOGDh3aqvW2Nr1eD0mSoFDwnxkRERERkT049ddJrFixAiNGjEBQUBA8PDwwcOBAvPnmm9Dr9RYxMpkM+fn55rK//vWvkCQJTz/9tLnMZDLB19cXv/vd78xlL7/8MmJjY+Hn5wetVothw4Zh9erVEEJYtKOlU39vrPvPf/4zunfvDo1Gg5iYGHz77bcWMdam/lpz89Tf3bt3Q5IkrF+/HosXL0ZYWBi0Wi3GjBmDs2fPNto/NTUVo0ePhlarhbu7O4YPH96oLRcuXMDMmTPRu3dvuLu7o0uXLrj33nvx008/WcQ11P3pp5/id7/7Hbp06QK1Wo0LFy7YdF2IiIiIiOh/2FF1IKPRCIPB0Gi7uXMIABcvXsSMGTPw6aef4uuvv8bjjz+Ov/zlL5g9e7Y5ZsyYMRBCWHS2UlNT4ebmhpSUFHPZ4cOHUVpaijFjxpjLLl++jNmzZ+Pf//43Nm/ejPvvvx/PPPMMXn311VY95+XLl2PHjh1455138Nlnn0Emk2HChAlIS0trtToWLVqEK1eu4KOPPsKHH36I8+fP495774XRaDTHfPbZZ0hMTIRWq8Unn3yCf//73/Dz88O4ceMsrl9OTg78/f3xxhtvYMeOHVixYgUUCgViY2Otdn5feOEFZGVl4f3338d//vMfBAUFtdp5ERERERG5Cs5JdKDmpsyGh4dbfP3222+b/99kMiEhIQH+/v6YOXMm/vrXv8LX1xd9+/ZF165dkZqaigcffBA6nQ579+7Fs88+i2XLliErKwvdu3dHamoqlEolRowYYT7mmjVrLI4/atQoCCHw97//HS+99BIkSWqVczYajUhJSYFGowEAjBs3DhEREfjjH/9o0Zn+OaKiovDZZ5+Zv5bL5Zg+fToOHTqEO++8E9XV1XjuuecwefJkbNmyxRw3ceJEDBs2DIsWLcKBAwcAACNGjLC4TkajEZMmTcJtt92GDz74wOLnAgA9e/bE559/3irnQURERETkqnhH1YHWrVuHQ4cONdruuuuuRrHp6em477774O/vD7lcDqVSiYcffhhGoxHnzp0zx40ePRqpqakAgP3796O6uhrz589HQECAuSOYmpqKuLg4eHh4mPfbtWsXxowZA29vb/Px//jHP6KoqMhiKvHPdf/995s7qQDg5eWFe++9F99//73FHc+f47777rP4etCgQQCAK1euAKi/LsXFxXjkkUcs7mSbTCaMHz8ehw4dQlVVFQDAYDDgtddeQ1RUFFQqFRQKBVQqFc6fP4/Tp083qnvatGmtcg5ERERERK6Md1QdqH///oiJiWlU7u3tjatXr5q/zsrKQkJCAvr27Yu///3viIiIgEajwcGDB/H000+jpqbGHDtmzBh88sknOH/+PFJTUzF06FAEBQXhnnvuQWpqKmbMmIH9+/dj8eLF5n0OHjyIxMREjBo1Cv/4xz/QtWtXqFQqfPnll/jzn/9scfyfKyQkxGqZTqdDZWUlvL29f3Yd/v7+Fl+r1WoAMJ/H9evXAQC//OUvmzxGcXExPDw8MH/+fKxYsQILFizAyJEj4evrC5lMhieeeMLqdbnVSsVERERERHRr7Kg6gS+//BJVVVXYvHmzxZTgY8eONYodPXo0gPq7pikpKRg7dqy5/MUXX8T333+Puro6i+dTN2zYAKVSia+//tribueXX37Z6ueSl5dntUylUsHT07PV67MmICAAAPDee+81Of06ODgYQP2zrA8//DBee+01i+8XFhbCx8en0X6tNUWaiIiIiMiVceqvE2jo/DTcGQQAIQT+8Y9/NIoNDQ1FVFQUNm3ahCNHjpg7qmPHjkVBQQHefvttaLVa3H777RbHVygUkMvl5rKamhp8+umnrX4umzdvRm1trfnriooK/Oc//0FCQoJF/W1p+PDh8PHxwalTpxATE2N1U6lUAOqvzY3XHQC++eYbZGdnt0tbiYiIiIhcEe+oOoGxY8dCpVLhwQcfxB/+8AfU1tZi1apVKCkpsRo/evRovPfee3Bzc8Pw4cMBAJGRkYiMjMTOnTtx3333Wbzbc9KkSXj77bcxY8YMPPnkkygqKsJbb73VqIPWGuRyOcaOHYv58+fDZDJh2bJlKC8vx8svv9zqdTXF09MT7733Hh555BEUFxfjl7/8JYKCglBQUICMjAwUFBRg1apVAIDJkydj7dq16NevHwYNGoQjR47gL3/5C7p27dpu7SUiIiIicjW8o+oE+vXrh02bNqGkpMT82pghQ4bg3XfftRrfMK33rrvuspjK21B+47RfALjnnnvw8ccf46effsK9996LxYsX45e//CUWLlzY6ufy29/+FmPHjsWzzz6LGTNmwGAw4JtvvjF3qNvLQw89hO+++w6VlZWYPXs2xowZg+eeew5Hjx41T58GgL///e946KGH8Prrr+Pee+/F1q1bsXnzZvTs2bNd20tERERE5EokYe2lnUREREREREQOwjuqRERERERE1KGwo0pEREREREQdCjuq/8/efYdFdXwNHP8uHUEU6ShgAxUbAvbesUXUWGOLFXuJsXdjN2rU2EvsvfeCqKhYQOzYEBULICK9s/f9gx/7ZgMqiyAo83mefSKX2blzN8vunp2ZcwRBEARBEARBEIQ8RQSqgiAIgiAIgiAIQp4iAlVBEARBEARBEAQhTxGBqiAIgiAIgiAIgpCnaGS2YXx8PImJiTk5FkEQhE/S0tJSqgucHbL6upYTYxEEQRAEQRD+X6YC1fj4eEqUKEFQUFBOj0cQBCFD5ubmBAQEZFuAGB8fTwkbfYJCUnJ9LIIgCIIgCIKyTAWqiYmJBAUFERgYiIGBQU6PSRAEQUlkZCRWVlYkJiZmW3CYmJhIUEgKAT42GBTM/C6IyCg5JZxeZutYBEEQBEEQBGWZXvoLYGBgIAJVQRB+KHr6qbfMSpFybiyCIAiCIAhCKpUCVUEQhB+NHAk5mY8+VWkrCIIgCIIgZI0IVAVByNfkyJGr2F4QBEEQBEHIWSJQFQQhX0uRJFKkzM+SqtJWEARBEARByBoRqAqCkK+Jpb+CIAiCIAh5jwhUBUHI1+RIpIhAVRAEQRAEIU/JfE0GQRCEH1DajKoqt6xYuXIlJUqUQEdHBycnJzw9PT/b/uLFizg5OaGjo0PJkiVZvXp1ujb79+/H3t4ebW1t7O3tOXjwoMrnPXDgAM2bN8fY2BiZTMbt27czHI+XlxeNGjVCT0+PwoUL06BBA+Li4jL/AAiCIAiCIKhABKqCIORraXtUVbmpavfu3YwcOZJJkybh6+tL3bp1adGiBa9evcqwfUBAAC1btqRu3br4+voyceJEhg8fzv79+xVtvLy86Ny5Mz169ODOnTv06NGDTp06cf36dZXOGxMTQ+3atZk3b94nx+/l5YWLiwvNmjXjxo0b3Lx5k6FDh6KmJt5CBEEQBEHIGTJJ+vKnrsjISAoVKkRERISooyoIwjeXE69BaX0+8jOjYMHMB1xRUXLKlgtWaSzVq1fH0dGRVatWKY6VK1cOV1dX5s6dm679uHHjOHLkCH5+fopjbm5u3LlzBy8vLwA6d+5MZGQkJ0+eVLRxcXHB0NCQnTt3qnzeFy9eUKJECXx9fXFwcFD6XY0aNWjatCmzZs3K1PUKgiAIgiB8LfF1uCAIQhZERkYq3RISEjJsl5iYiI+PD82aNVM63qxZM65evZrhfby8vNK1b968Od7e3iQlJX22TVqfWTlvRkJCQrh+/TqmpqbUqlULMzMz6tevz+XLlzPdhyAIgiAIgqpEoCoIQr6W8r9kSqrcAKysrChUqJDiltHMKEBoaCgpKSmYmZkpHTczMyMoKCjD+wQFBWXYPjk5mdDQ0M+2SeszK+fNyPPnzwGYPn06/fv359SpUzg6OtK4cWOePn2a6X4EQRAEQRBUIbL+CoKQr6VIqTdV2gMEBgYqLf3V1tb+7P1kMpnSz5IkpTv2pfb/PZ6ZPlU973/J5XIABg4cyK+//gpAlSpVcHd3Z+PGjZ8M0AVBEARBEL6GCFQFQcjX5P+7qdIewMDAIFN7VI2NjVFXV083ixkSEpJutjONubl5hu01NDQwMjL6bJu0PrNy3oxYWFgAYG9vr3S8XLlyn0wGJQiCIAiC8LXE0l9BEPI1OTJSVLjJyfxsJICWlhZOTk6cPXtW6fjZs2epVatWhvepWbNmuvZnzpzB2dkZTU3Nz7ZJ6zMr581I8eLFsbS05PHjx0rHnzx5go2NTab7EQRBEARBUIWYURUEIV+TS6k3VdqravTo0fTo0QNnZ2dq1qzJ2rVrefXqFW5ubgBMmDCBN2/esGXLFiA1w++KFSsYPXo0/fv3x8vLiw0bNiiy+QKMGDGCevXqMX/+fNq2bcvhw4c5d+6cUpKjL50XICwsjFevXvH27VsARUBqbm6Oubk5MpmM33//nWnTplG5cmUcHBzYvHkzjx49Yt++fao/GIIgCIIgCJkgAlVBEPK1tJlSVdqrqnPnznz48IGZM2fy7t07KlSowIkTJxQzku/evVNaRluiRAlOnDjBqFGj+Pvvv7G0tGTZsmV06NBB0aZWrVrs2rWLyZMnM2XKFEqVKsXu3bupXr16ps8LcOTIEcXeU4AuXboAMG3aNKZPnw7AyJEjiY+PZ9SoUYSFhVG5cmXOnj1LqVKlVH4sBEEQBEEQMkPUURUEIc/LyTqqVx9YoK9CHdXoKDm1yr8Tr4eCIAiCIAg5SMyoCoKQr8klGXJJhSy4KrQVBEEQBEEQskYEqoIg5GvfYumvIAiCIAiCoBoRqAqCkK+loEaKCgnQU3JwLIIgCIIgCEIqEagKgpCvSSou/ZXE0l9BEARBEIQcJ+qoCoIgCIIgCIIgCHmKmFEVBCFfE3tUBUEQBEEQ8h4RqAqCkK+lSGqkSCrsUf1iQS9BEARBEATha4lAVRCEfE2ODLkKuyDkiEhVEARBEAQhp4lAVRCEfE0s/RUEQRAEQch7RKAqCEK+pvrSXzGjKgiCIAiCkNNEoCoIQr6WuvQ387OkqrQVBEEQBEEQskYEqoIg5Gty1EgRe1QFQRAEQRDyFBGoCoKQr4mlv4IgCIIgCHmPCFQFQcjX5KiJrL+CIAiCIAh5jAhUBUHI11IkGSmSCll/VWgr5C/x8fEkJibm9jAEQRAEQUFLSwsdHZ3cHkaWiEBVEARBEL5SfHw8JUqUICgoKLeHIgiCIAgK5ubmBAQEfJfBqghUBUHI11JUTKaUIpb+ChlITEwkKCiIwMBADAwMcns4giAIgkBkZCRWVlYkJiaKQFUQBOF7I5fUkKuQTEkukikJn2FgYCACVUEQBEHIBiJQFQQhXxMzqoIgCIIgCHmPCFQFQcjX5KiWIEmec0MRBEEQBEEQ/kcEqoIg5Guql6fJfFtBEARBEAQha0SgKghCvpYiqZGiwh5VVdoKgiDkFrlczu3bt3nx4gUJCQmKm1wuR0ND47M3bW1tihUrho2NDdra2rl9KYIg5FMiUBUEIV+TI0OOKkt/s1ZHdeXKlSxcuJB3795Rvnx5li5dSt26dT/Z/uLFi4wePZoHDx5gaWnJ2LFjcXNzU2qzf/9+pkyZgr+/P6VKlWL27Nm0a9dOpfMeOHCANWvW4OPjw4cPH/D19cXBwSHDMUmSRMuWLTl16hQHDx7E1dU1S4+FIOQVkiTx6NEjPn78SJEiRbCwsGD16tU8fvyY4OBgwsPDiY6OJjk5mZSUFFJSUjAzMyMuLo6IiAgiIyMB0NHRQVtbW+m/af/W09OjUKFCGBoaUrJkScqWLUu9evVQU/u6L71u3brFlStXuHv3Lnfv3iUgIACZTIa6ujrq6urExsYSFhamdB+ZTIaamhopKSmZPo+lpSXFixenRIkSFCxYEG1tbWbMmEGhQoW+avyCIAhfIgJVQRDytW8xo7p7925GjhzJypUrqV27NmvWrKFFixY8fPgQa2vrdO0DAgJo2bIl/fv3Z9u2bVy5coXBgwdjYmJChw4dAPDy8qJz587MmjWLdu3acfDgQTp16sTly5epXr16ps8bExND7dq16dixI/379//sdSxduhSZLGuBuiDkpsDAQHbu3ElgYCCxsbF8/PiR9+/f8+TJE0JCQhTt1NXV0dLSomLFilhYWGBnZ4eenh6ampqoq6sjk8kICgpSBJ9pGZ4TEhKIj49X+u+bN2/w9fXl3bt36cYzYMAATExMFMFuVFQU8fHxSP/LKi6TyahYsSKGhobcvHmTmzdvEh4eTpkyZShbtiyPHz/m5s2biv46depEmzZtkMlkiqBaU1OTunXrUrFiRbS1tdHW1kZDQwOZTIYkScjlcubPn8+kSZM++9i9ffuWt2/fcvXqVcWxSpUq0blzZ96/f09oaKjipqmpiaGhIYULF8ba2hpzc/Ov+v8mCEL+JpOkL9daiIyMpFChQkRERIi0+4IgfHM58RqU1uci7zro6mf+O7u46GTGOF9WaSzVq1fH0dGRVatWKY6VK1cOV1dX5s6dm679uHHjOHLkCH5+fopjbm5u3LlzBy8vLwA6d+5MZGQkJ0+eVLRxcXHB0NCQnTt3qnzeFy9eUKJEiU/OqN65c4fWrVtz8+ZNLCwsxIzqf4j3ybwjJSWFdevWMW3aNNq3b09KSgr37t3j2rVrAOjq6lK3bl1MTU2xsbGhfv36WFpa8vbtW27fvk2HDh0oWbJkls+fmJhIpUqVePz4sdJxAwMDxQyspqYmFhYWFC5cmIIFC1KwYEF0dHSQyWSKYPPatWvExcXh5ORE1apVMTY25smTJ/j5+SkFjQB9+vRhw4YNKo915syZTJs2TeX76erqEhcX98V2u3btonPnzir3/6OSJInY2FjkcjkFChTg1atXxMfHU7Jkye9+ifWrV6/w8fHB39+fN2/eUKRIERo1akS1atXQ1NTM7eHlW9/7e5OYURUEIV+TSzLkqmT9/V/btA+cadJmLP4rMTERHx8fxo8fr3S8WbNm6T5spvHy8qJZs2ZKx5o3b86GDRtISkpCU1MTLy8vRo0ala7N0qVLs3zeT4mNjaVr166sWLFCzJAIedrZs2cZPHgwz549A2DTpk2UK1eO27dvK2ZE4+LiuHDhAoULFyYkJITZs2cr9TF27FimTp3KjBkzMn3elJQU9u7dy5IlS/Dx8clwaa2JiQkymYwOHTqwbt26Ly79lSQJSZI+2y4oKIhDhw5l+UujqVOnMnXq1Ax/J5fLef/+PcnJyZw7d47evXujo6ODm5sbz58/58iRI0BqAF6tWjV8fX358OGDUh9JSUlZGldWpaSkEBwcjJmZGerq6rx+/ZqwsDCOHj3Krl27sLOzIzg4mNjYWOzs7Pj48SOPHz/GzMwMCwsLbGxsKF++PNWrV6dy5crZNq7w8HAMDQ0/22bPnj107Ngx2875LURERFC7dm0ePHigOGZgYICFhQVBQUFMnToVQ0ND+vTpw6BBgyhVqlQujlb4HolAVRCEfE2uYh3VtKy/VlZWSsenTZvG9OnT07UPDQ1V7Gv7NzMzM4KCgjI8R1BQUIbtk5OTCQ0NVXwI+FyfWTnvp4waNYpatWrRtm1ble4nCNnl0aNHBAcHU6RIEaysrChcuHCG7caNG8ezZ8+oW7cudevWJTQ0lPHjxyOXyzl27BjPnz/H29ubgICADJfkpgkODk537M2bN4wdOxYNDQ0cHR0JDQ3lxo0bvH//ntevX/P+/XuaNWvG1KlT081S3rx5E2dnZ5WuOW129XPMzc3T7V3PLmpqaorXj169etGrVy/F7/T09BT/joyM5N69e/Tu3ZsqVapQsWJFypQp881mCJOSkujevTt79uxBU1OTpKQk7OzsiI2N5fXr10pt79+/r/i3r68vAFpaWrx8+VKpnUwmQy7PvmJk/368/qtgwYIUL16cOnXqZNv5vpXQ0FClIHXp0qW0b98eKysrUlJS8PX1Zffu3WzcuJHFixczb948KleuTHh4OHZ2dpQvXx4tLa1cvAIhrxOBqiAIQhYEBgYqLaP50oey/37glCTpsx9CM2r/3+OZ6VPV8/7XkSNHOH/+vOJDnSBkt8DAQHr06MHFixdRV1fH1dWVbdu2oaOjA6TukSxXrpzSffT19Slbtiyurq7069ePzp07ExYWRrFixahSpQoPHjzA09MTSJ31WbhwIb179yY5OZmwsDD++ecf5syZo9RndHQ0UVFRmJmZZfg3smLFCnbs2AHAli1bMDExoWTJkujo6FCiRAnKli3Lu3fvWLBgQbr7li5dOlseq7zixIkTNGjQABMTE7Zu3Urz5s1zbSwaGhqcPXsWgBIlSjBmzBiuXLlCcnIyP//8M5aWlgQHB7Np0yYOHjyodN+CBQuSnJyMqakpBQoUQE9PD0dHR6WgPDtoamoqXsNfv35NcHAwpUqV+uQXLt+LUqVKIUkSoaGhdOzYkZEjRzJy5Ej09fWxtLSkaNGi6OnpUbJkSby9vVmwYEG6WfeiRYuyfPnydIkABQFEoCoIQj4nl9SQq5AgKa2tgYFBpvZ7GBsbo66unm4WMyQkJN1sZxpzc/MM22toaGBkZPTZNml9ZuW8GTl//jz+/v7pPlB16NCBunXrcuHChUz3JeRPSUlJ3L9/n5SUFBISEggKClLsEb1x44Yi+RekLt3cv38/y5cvx8LCAkhdMvtf0dHReHt74+3tzb59+7h9+zYA9+7dA6BQoUKULl2aZ8+esXv3bnbv3v3ZMbZs2RI9Pb0MZ77Cw8P5888/OX36tOLY3r17kclk/Pzzz0pty5QpQ+vWralUqRIVKlSgfv36P2R23HPnzmFoaEhAQMBnZwu/BZlMxtOnTxk2bBh79+7lt99+w8bGhnr16tGiRQu0tbV5+vQplpaWQGpw5e/vD0BUVBQAcXFxLF++nKFDh+b4eIsVK0axYsVy/DzfkrGxMR4eHgQHB+Pl5YW/vz9v377lzZs3xMbGoqenh5qaGh8+fEBdXV1pafybN284c+YMrq6uIlmfkI4IVAVByNdSkJGiQskZVdpC6rIyJycnzp49q/SN8dmzZz+5lLZmzZocPXpU6diZM2dwdnZWJKWoWbMmZ8+eVdqneubMGWrVqpXl82Zk/Pjx9OvXT+lYxYoVWbJkCW3atMl0P0L+IkkSZ86cYfv27Rw7doyPHz8q/X769OlMmzaNU6dOpbuvk5MTd+/exdDQEB0dHTQ1NQkPD8ff3x91dXUiIiK4e/cu9+/fx93dnUqVKtGvXz/Onj3L6dOniY+PJyIigoiICGxtbenevTuxsbFYWVkRExODu7s7Z86cUTrniRMnePPmDUWLFlU6XrduXS5fvgxAhQoV+Ouvv2jVqhWlSpXi5cuX9OjRA29vb0Xis8ePH/P48WNFYLxo0SJ+++23bHtcc1tYWBinTp1i165dfPz4EX19fUJDQxVfoOUWIyMjduzYwcKFC5k2bRobNmzg/v37JCQk0KBBAyZMmEBUVBTTpk1j2rRpGe77DQgIyIWRZ48PHz5w48YN/P39+fjxI1paWgwYMOCL+2Kzm5mZWYb7pU+dOoWJiQkJCQn4+vqmW5K9evVqVq9ezYEDB9DV1VXszVZTU8PW1hYbGxsRxOZTIuuvIAh5Xk5m/Z1xvQk6KmT9jY9OZlr1cyqNZffu3fTo0YPVq1dTs2ZN1q5dy7p163jw4AE2NjZMmDCBN2/esGXLFiD1A1OFChUYOHAg/fv3x8vLCzc3N3bu3KkoT3P16lXq1avH7Nmzadu2LYcPH2by5MnpytN87ryQ+sHz1atXvH37llatWrFr1y7KlCmDubn5JxMnyWQykfX3P8T75P/78OEDxsbGSse0tLRITExU/FywYEE0NTWxsbGhaNGiGBkZ0bRpU/r06aNoZ2try5AhQ1BTU6NJkyaK5b9pWbEjIiKU9plmtMrgvypWrKiYdU07h7a2Nq9evUJTU5PY2FhFMphixYpx7NgxRdulS5cyYsSIdH2GhYV9MlDr2LEjBgYGJCcnk5ycjIaGBjo6OhQuXBgnJydq1KhBsWLFvpsP4c2bN08X5D9//pwSJUrk0ojSkySJ1atXc/r0aTw9PQkLC8PMzIyrV68qsjnL5XKCg4N5+fIlFhYWWFtb5+n/B9HR0dy+fRtfX19u3bqFv78/kZGRREREEBwcnGEG5tatW6f7wjO7JSYmKsorXbhwgadPnxIXF0d8fDzFixcnKioKT09Pbt++TUpKCjExMTg4ODB06FAcHBzQ1tamYsWKXzyPqakpderUYfTo0dSuXTtHrymNp6cnFy5c4OPHjyQkJKChoYGuri4lS5bE1tYWOzs7LC0t8/TzBr7/9yYRqAqCkOflZKA69XoTdPQznzo/PjqJmSoGqgArV65kwYIFvHv3jgoVKrBkyRLq1asHQO/evXnx4oXSMtqLFy8yatQoHjx4gKWlJePGjUuXNGXfvn1MnjyZ58+fU6pUKWbPnk379u0zfV6Af/75h19//TXdeD+VHApEoJoR8T75/1JSUtDQSP3yR11dHQsLC6pWrUqxYsVYvnw5kBogqqmp8eTJEzLxMYSaNWsqslXXqFGD69evA6lJav766y/Onj3L7t27GTZsGIcPHyYoKEgxMxMTE4O3tzfOzs6KJYdaWlpoamqiqalJXFwcCQkJ6c6prq5O2bJlGTt2LLVr16ZkyZKf/FAqSRJ3795l9+7dnDlzhvDwcHR0dNDW1kZTUxMNDQ3Fkse4uDjev39PYGAgkLps8vjx41SrVk3FR/rbe/v2LYMGDeLIkSNYWVnx6tWr3B7SZ8nlchITE9HW1s7zAcV/nTp1iiNHjnDlyhXu3bunmGX8XJInfX19bG1tKV68ONOnT6dSpUrZNp7k5GQOHTpEUFAQfn5+eHh4KJVQg9Qkg/r6+mhra/PkyRP09fWpU6cOVatWRVdXF21tbbp3746+vn66/j98+ICnpycODg6KPb1JSUlcuXKF5cuXc+PGDQwMDIiIiMi2a/qUK1euKJJbpSUGCwkJITo6mujoaKW2U6dOZebMmRQrVozatWtjaWlJQkICbdq0wcXFJcfH+iXf+3uTCFQFQcjzcjJQnXytmcqB6h81zojXQ0GJeJ+EHTt2cPPmTQoUKEB0dDRyuRwjIyNsbGzQ0dHh8uXLrFy5Mkt9z5s3j3HjxgFw7do1rl27lq48U7Vq1bhx44bSMVtbW168eEFSUhLW1tYUKFCAR48epetfJpMpso8aGxsrZokAHjx4gL29fZbG/Tnv3r1j//79DBs2DID27duzZcuWXN/z+Tn+/v5KiaESExNFjcxsFhcXx5EjR+jSpQsAffv2VSyZffHiBTExMVhaWuLs7EzZsmUpW7YsdnZ22NraKkogZbfXr19TunRpEhIS0NbWxsrKioYNG1KjRg0MDQ0pWLAgRYsWVUp6lpKSgpqaWpbGc/nyZfr378/bt28VpeBMTU2ZMGECI0eOzK7L+qTjx4/TunVrIDXZU1hY2CfrBvfr14/169dn+LvMfAmX07739yYRqAqCkOflZKA6wctF5UB1bs1T4vVQUJLf3yf/PYsKqfs5k5KS+PjxIyEhIena29ra8tdffzF//nwuXrxI8eLFqVGjBuXLl6ds2bIYGhoSGxvLjRs38PDwwNLSkvLlyzN58mTU1dUJDg5m3LhxeHh4YGJigp6eHn5+fvTq1QsfHx8uXLiQ4YdEe3t7dHV1ef36NXFxcURGRqKmpkbZsmWRJIm4uDgiIiIwMjIiKioKAwMDrKysMDAwoG7durRr1y7bl7mGh4dz8OBBhg8fTtmyZTl27JhKCc++hdu3b/Py5Uvc3NyUllfntWW/37u01xEAR0dHpk6dysGDB9m8eTMVKlSgffv2tG3blipVquRIQPrXX3+xf/9+AgMDiYuLU6wGePHihaLNtwi+7O3t083W6uvr4+LiQkhICImJiRQsWBADAwMKFy7MkCFDqFy5smLv8datW9m0aRMmJiYYGRmhpqaGrq4uLi4u1K9fX+m16lMSEhI4e/Ysly5d4sWLF+zdu1fxu8qVKzN48GA6d+5MoUKFCAsL48aNGzx//pzIyEhKlChBq1atMpw5/ta+9/cmEagKgpDn5WSgOt6rBdoqBKoJ0UnMq3lSvB4KSvL7++Tbt29p0KAB79+/x8PDAwcHB8XvgoODWbNmDRs3bkxXrxKgdu3aJCYm0q5dO54/f879+/d5/vx5hgHu06dPuXLlCr1791Yc69ChA/v371dq98svvzBkyBCWLVvGiRMnFLMyvXr1YvPmzZibm1O2bFml5fb6+vqUK1eOIkWKKGX4/a99+/Yp9opnJ19fX1q1akViYiJHjhxRJEbLTSkpKezYsYOePXsqHR88eDB///13Lo3qx7Ry5UomTZpEeHg4tWrVYsCAAYwZM4bExEQWL15Mnz59Mh2choWF0aNHD7y8vDA0NMTS0hI7Ozv+/PNPjh8/zpYtW/jzzz+pUKECUVFRxMXFkZiYSMuWLYmLi+Pnn39GT0+PpKQkkpOTKVCgAJIkUa9ePaWtIzklNjaWZ8+eERAQwIMHD0hMTGTRokVUqFCBUqVKoa2tTVRUlGJvbNrSfS0tLXR1dRXLgxs3bkxYWBhyuZzQ0FDevHmDjY0N169fz/SXQQ8fPqRGjRqKFRZpGjVqRO/evSlSpAhGRkYUKVKEIkWKYGhoiLq6evY+IF/he39vEoGqIAh5Xk4Gqr9fbaVyoLqw1nHxeigoSXs+eXt7U6VKlQyziv6oYmJiFDMHp0+fpmnTpooP1Hv37qV///6KD45ly5aladOmtG3bFhcXF5KTk+nevTsJCQkcPXoUQ0NDqlatypEjR4DUIDQmJoazZ8/SunVrDh06RPfu3dm+fbvi/Ldu3aJQoUK0adOGhw8fYmBgoFiSGhsbS/v27alduza1atWiWrVqTJs2jSlTpqCurs6uXbsYMmQI48aN4/fff1eMe/fu3Yqll5Baq1NNTY3ExERkMhmNGjXit99+o2LFikRGRlKuXLlsmeFatGgRv//+O/Xr1+fQoUO5Xmdz/fr19O/fX+lY2pJOIfsMGDCAdevWYWNjw4ULF3j9+jV169alQ4cOSqWaMiMgIIABAwbg4+PDb7/9RmRkJCdPnuTevXu0a9dOqZaspaUlb9++TdfHkSNH8lxW96SkpAyXmX/48IEzZ84QFxdHXFwcsbGxxMXF4eLiorTvW5IkFixYwPjx45k4cSKzZ88mMTGRNWvWYGFhQZ06dXj37h2BgYFYW1tTsmRJfH19adCgAQANGzYkKiqKjx8/EhkZSXR0dIbLgWUyGe3bt2fhwoV5YrVBcHAw5ubm3+1nFhGoCoKQ5+VkoPrbldYqB6p/1j4mXg8FJf9esgeppYKaNm2aLX0nJSUpsn2mpKRw8uRJLl68iIWFBc7OzlStWhUdHR0KFixIx44d0dbWRpKkb5Y85v3791SuXFmRgbdSpUrUqFGDO3fucP369Qyz8c6ePZsBAwago6OjCHLj4uLQ0NBAU1OTadOmsXjxYs6dO0f16tVZunQpo0ePZsuWLTRr1ow7d+5w9OhRDh06RGBgIIaGhooSOGpqahQoUACZTEZUVBS2trYcPHgQIyMjpdqsr1+/RktLK8PHKjExkblz51KoUCEqVKhAjRo10NPT49mzZ3h4ePDnn3/y5MkTRfvmzZvTo0cP7O3tKVOmDAUKFMjSY1mrVi28vLwUP5uamjJ9+nT69++fqeWK2cnDw4NGjRoBUL16dUUCq6CgoDy3NPlryOVydu/ezcWLF9HS0iI5OZk3b94QFRWFk5MTderUoVatWhnW880u/17qOnDgQBo3bkynTp0UPy9atOiLy0glSWLQoEGsX7+eIkWKsGXLFlxcXJAkieLFiysSX+nq6ioFWFu3bsXAwAB1dXUuXLjAokWLFOWjfjRpSZJ0dXXp2bMnb9++5dixY5lazvz48WPs7OyUjsXHxxMWFkZYWBgfPnxQZNH/448/CA0Nxd7enpYtW1KyZElFIqbo6GhiYmIwMDDAxMSEGjVqULdu3Wy/1uvXr1OjRg3MzMwIDg7+bj+ziEBVEIQ8LycD1ZFXflI5UF1a+4h4PRSU/DtQ1dPTw8fHhzJlymS5v5CQEP78809OnDiBv78/cXFxioyfNWvWpGXLloSFhbF79+50MyKGhoZERERgZWWFnZ0dRYsWpWDBghgZGVG4cGHevHlDsWLFcHR0pHTp0piZmX0xqE1JScHb2xsfHx+ePn1KxYoVWb9+PUFBQfTp04eRI0dy5MgRfHx8uHjxIhEREdjb21OrVi26dOnC2rVrmTNnzif7L1OmTLokR3K5XDFzFxcXR7Nmzbh8+TLq6upUr16dxo0bM3ToUM6fP8+BAwfQ1NQkNDSUBw8ecOvWLUxNTfH19cXV1ZVXr15x/fp1RowYwbVr14DUJcfW1taYmZmhp6eHpaUl1tbWWFtbU7hwYRITE3n//j1nz56lWrVqVKhQgWLFigHw8eNH9u/fj7m5OTExMUybNo3Hjx8DqbOvXbt2ZcmSJSrXF42JiaFt27a4u7srHW/WrBknTpz4ZksK3759m66mbJotW7bQo0ePbzKO7BYUFMSVK1fw8fHh8ePHaGho8PjxY+7cuUOFChWQyWSoqalRtGhRdHV1uXz5MsHBwUDq7P6cOXPSBSvZ4eXLl3h6enL69Gm2bduW7vdp9XjlcjkPHz6kcOHCmJmZKc0wJiQkULBgQUxNTXny5InSlyWHDh1Sqqc9atQo3r9/T+fOnRVJg/KLkJAQ5syZw6lTp3j16hXbtm3DycmJmzdvUqxYMaytrXn58iVPnz7F3t4ePT09YmNjcXR0zPSXf1FRUZw5c4bjx49z4sQJQkNDKViwIPr6+ujr66Orq0tUVBQhISFERkYqZngzIzIykvXr16OlpYWpqSlmZmYYGBiQkJCgSBpnbW3NyZMnadWqlaI02Pf6mUUEqoIg5Hk5GagOv9xW5UB1WZ3D4vVQUPK1z1FJknj//j2JiYk8evSIQYMG8fbtW3755RfKlStHrVq1qFKlCurq6krBSnx8vCKxiIeHB0+ePCE8PJxChQrx8uVLHj9+THBwMNHR0QQFBREZGYmlpSVv3rxR1CvV0dGhePHiODs789NPP1GpUiUuXrzIvn378PHxQV9fn5iYGD58+ICmpiZWVlY8f/4cmUxGvXr18PLyQiaTKfaJ/XsG1cDAgIYNG1KpUiUSEhJYsGBBhtc/cuRIlixZovg5ISEBPz8//Pz8CA8Px9DQkLJly6KmpkblypUV7caPH8+8efPS9aetrc24ceOYPHkylStXVsxWTZs2TZGMJT4+nlevXnHt2jWSkpIy9f+pQoUKeHh4pKsTCxAREYGfnx9Xrlxh+vTplCxZkosXL6q8fPfXX3/ln3/+oVOnTty4cUORyObOnTvZWm7kc168eJHhssX69evj7u6ep/bgZcadO3dYtGgRu3btIjk5WZGcSy6Xo6enpyhB9F+xsbHpsjA7OzvTuHFjzMzMMDU1pVSpUlStWjXbHpOXL18SHx+vWMYqk8lwdnYGUp8bacveZTIZZmZmlCtXjjp16tCqVSuGDRvGzZs3GTFiBAsXLlQEsrGxsejr6ytmDp89e0apUqWyZbzfs5SUlBx/Lqc95hkFuZIk4eDgwN27d3F2dub58+dERESQkpKCnp4eRYsWxcDAgKioKNTV1Rk0aBDXrl1T2vqQEX19fezt7alSpQrNmzenffv23+1nFhGoCoKQ54lAVcjr0p5PhoaGNGvWjKVLl2Jubp6p+8rlchwcHLh3757iWOnSpdm5c6fiA2p2SVvmmpSUxKNHj3j+/DkvXrzA39+fixcvcvfuXSD1Q1WzZs2oXbs28fHxqKur07x5c6pVq4ampiZPnjzBxMQEQ0NDXr58ycaNGylevDhnz57F3Nycpk2bKmakLly4wMOHDxVLg/+rSpUqFC5cmMjISCIiIggPD+fDhw9fXI43depUHB0dM6znW6pUKfz9/Tlz5gxFihTh2LFjLF26lPDwcAA0NTVZs2YN7du3p3Tp0rRp0wZXV1dFPeODBw/Srl07pk+fTunSpfH396dZs2aKAPynn36iTZs2tG3bVmlJaFpQnebo0aO0atVKpWXYfn5+LF++nI0bNyrVd42NjUVXVzfT/WTGx48fefHiBXFxcQQGBvLq1SueP3/O+fPnefLkCVpaWjRq1IgOHTqku9a8TpIkzp49y6JFizh79iw2NjaMGjWKTp06qbTnMykpiR07dlCgQAHU1dXZunUrd+7cISQkhJiYGACMjIxo2bIlbdq0oVmzZorVFf7+/rRt25Zy5crh6OhIyZIlcXV1RVtbWzHGZ8+e4enpiaenJwcPHlTs5x4zZgxxcXFER0dz6dIlXr9+rfhCpXjx4kyaNIk3b95w+/ZtPD09+fDhg9K4CxYsSEBAAEZGRrx+/Rpra2vF35S5ufkn/x6Fb+v+/fscOHCAFy9eULJkSYyNjVFXVycqKkqxBL1gwYK8e/eO3bt3K+roLlmyhF69ehESEkJUVBTa2tqoq6vz4sULHjx4wIMHD/Dw8KBSpUocO/b9blcSgaogCHleTgaqQy+3UzlQXVHnoHg9FJT8O1ANDw9HTU2Nli1b8uuvv9K6devP1pr8+PEjRYoUUfzcsmVL9u3bl+1BSWYEBgby/PlzihUrlu0zLhERETx79oyXL18yfPhw3rx5A6TOuuro6CBJErGxsSQkJJCcnAykBrGdOnXi5MmTXLp0SdFXiRIlqFKlCkFBQQQFBfH8+XMAihQpQlhYGAAWFhYEBAQogoL169dz9+5dhg8fjp2dHS1btuT9+/c8efKEGzduYGtrC6TOus6cOZO5c+cyfvx4IDWgqF27tmL/aNryan19fTw8PHB0dARSg5r+/fuzefNmxVgLFChA7dq1+euvv5TqTH5OQEAA1atXR0dHBxcXF4YOHZqts6kfP35k+PDh7N69W2k2uWDBgtjY2FCrVi1atmxJ48aN80SJDVU9evSIrl27cvv2bRwdHRkzZgwdO3bM9n2+MTEx3L17l2PHjnH06FHu3buHpqYmI0eOZN68ebx69SrdzHSdOnWYOHEimzZtwtPTk6CgIGQyGZUrV+b27duKdhYWFpiamqKlpUW1atUoUqQI69evp3r16ixfvlyxDB1SZwavXLnCwYMHOXjwIC9fvsTU1JSAgADFEuARI0awbNkyIHUVRUREhKJ2sPB9ePToEYcOHcLBwYHGjRt/sYaxJEmKLym+188sIlAVBCHPy8lAdZBne5UD1VV1D4jXQ0HJv5+jCQkJ7Nmzh02bNuHj4wOAmZkZJiYmGBsb07t3b7p166b0IUMulyuW7KUlrRk0aBDTp0/H1NQ0V64pJ125coUxY8ZgaWlJcnIyenp66OnpYWpqysuXL9m+fTuVK1fm1KlTipnp69evEx4eTmhoKB4eHrx69QoLCwv09fWRyWT8/vvvhISEUK1aNf744w9++eUXihcvnu7ckiQxevRoli5dSokSJRgwYABdunRBX1+f+/fvs3LlSvbu3auUUCYpKQkzMzNFwqaJEydSoUIFunXrRv/+/Vm7dq3SOZKSkrh37x7+/v4EBgayevVqXr58ibOzM7q6uqxdu5aSJUt+8vFJy2x86dKlbE20Ehsby4kTJ/j999+JiIhgypQp1KlTBx0dHaysrD65TDk5OZmQkBDkcrlSgJQ2Qx8cHMzNmzfR1tbG0dFR5b252enIkSN0794dKysrVqxYQYMGDbItsVhYWBi///47enp6ODs7U758ecqVK6cIBl+8eMGwYcM4duwYq1atwsHBgZo1awKpyzGjo6MVfVWqVImWLVtSt25datWqReHChZHL5Tx79oyIiAiqVKmSpcBakiT8/f2xsrJCW1ubuLg4hg8fzvr16xVt2rdvz+7du795gi7h2/veYzgRqAqCkOflZKA68FIHlQPVNfX2i9dDQUna88nW1pazZ8+iq6uLiYkJmpqapKSk0Lp1a6ytrfHy8sLX1xeAa9euYWRkxJIlS7h27Rp37twhJSUlXd9RUVHf5azW1/iarMUfPnzIVKB0//593N3dGTlypNJxGxsbunXrxoQJEyhYsKDiuLe3N/fv38fGxoaEhARatGhBkyZN2LZtm1IW3Hv37ilmPy0tLVm6dCmtW7dm0aJFTJ06FQAfHx/FLGxG1q1bx4ABA9i8eXO6GqaZFRERwcOHD7l//z53794lICAADw8PYmNjqVu3Llu3bsXGxuaL/ezfv5+ff/5Z8XOTJk2wt7dn7969pKSkYG1tjY+Pj2JZafXq1RUJq74luVzOrFmzmD59Oq6urmzZskXp/99/RUVFsWvXLu7fv09oaCguLi60b98+3Z7Uf7tw4QINGzZUOiaTyShVqhRFixblwYMHhIaGpruftrY2EydOZO/evWhoaFCpUiWWLl2qtEw8p4wcOZK//voLgMKFCzNo0KDPJjYTfizfewwnvkoRBCFfkyQ15FLmawJKKrQV8p+nT58qZvFsbGzYsWMH5ubm1K5dGzs7O8USVUiddUv78Aowffp02rVrx8uXLzl69Chv374lMjKS69ev06hRo29WbiYv+Jprzexs3pUrV5SCVBMTEzp27Iibm5siAyykzkJ27doVHx8f5HI5cXFxir2uu3btSne+tDIgkJo9t1OnTpQvX16RCGvy5MmfDVIhtdxN+fLl6devH9ra2nTu3DlT15RmyZIljBs3jqSkJNTU1LCzs8Pa2popU6bQoUMHxTLnzOjXr5/SzxEREezdu5eff/4ZAwMDAgICGDRoEI0bN2bixIns2LGDnj17snnz5m/2nA0NDaV79+6cOXOGmTNnMmnSpM/Wen306BGtWrXi5cuX2NraEhERwY4dOzh69Ch79uz55P0aNGiAv78/vXv35vLly3h4eNCjRw+ePXvGixcvFEvWq1atypQpU7CwsODkyZM4OzvTokULxRcV39KYMWOws7NDW1ubXr16iVnUfCAxMRE1NTVevnyp9Hr0PRLPVkEQ8rUUZKSQ+Q9TqrQV8p/9+/eTmJiIJEmMGzeOzp07o6urS7NmzXj+/DnDhw/n559/pnr16mhpaVGlShXq1KnDlClTmD59OitWrCAhIYGUlBTi4uKQJIkmTZrw5s0bLC0tc/vyvmtyuZwTJ07w4sULrl+/zrZt2yhRogTa2tq0bt2agIAAVq5cycqVK9HQ0FAkK1m8eDFHjhzJsM+///6bzp07K5UiatmyJadPn2bWrFlcvnxZcW4zMzOuX7+Ok5PTF8eaNkvZuHFj1q1bp1KgGhgYyOjRoxk4cCBubm6UKVPmq/Y7z549myFDhih+njx5Mm3atFEEoXFxcVy/fp0tW7YoPhSnJRnKaUlJSWzevJmpU6eSlJTE6dOnv1i/OCYmht69e/P8+XMOHTrEsWPHFHuKK1as+MVzlixZkj59+uDp6UmHDh0USYzSglRILf/Spk0bgGxPiKaqYsWKMXjw4Fwdg/DtyOVyxb58SN0T/T0TS38FQcjzcnLp768XOqGln/mEEonRiWxqsEe8HgpKMnqOyuVynjx5wu7du7l69SqGhoa8evVKkZCnUqVKTJgwgS5duvDmzRtF5k8PDw+SkpJ49uyZov+nT59SunTpXLm2H0FycjLNmzfn/PnzaGtrY2ZmRokSJbh48SIA3bp1w9PTk8DAQKX7pWXMnDFjBs+ePcPAwEAxi2htbc3BgwdJSEigbdu27N+/n/j4eMUy7fHjx9O4cWNGjx6Nurq6Ysm3KjZs2EC/fv2YMWMGkyZN+mIpjYCAAH777TeOHz/OkydPMrW0NzMCAwOxtrZW/KytrU3RokXR19fHz8+PpKQkChUqRO3atenXrx+urq45Opv6+PFjDh48yIYNG3j27BmdO3dm0aJFSvtn/+v9+/esWrWKFStW8PHjR5KTk1FTU8PExITRo0fj5uaW6df04OBgJk+ejLu7OwEBAcyePZtffvkFT09PLC0tadCgwWdndAUhJy1cuJCxY8cCqZmnS5Uq9d1+ZhEzqoIg5GtyFZf+qtJWyN/U1NQoW7asIiFPYmKiUgKdu3fvsm7dOrp06ULRokVxdnZm6tSpPH36FIAyZcrg5OREs2bNRM3DLIqNjWXKlCksX76cpKQkJk2axB9//AHAwYMHiYmJ4fHjxxw6dAhHR0dFoGpqaoqtrS1Vq1bl48ePNGnSBJlMho2NDWXKlMHQ0JDbt2/TtWtX2rZty+HDhzE1NaVx48aKc8+bN4958+ahqamZ5eRCffr0ITAwkBkzZuDu7s6ePXuU9sP+25o1axgyZAhGRkaZ3n+aWVZWVoSFhfH8+XMCAwMJDAzk9evXhIeHM2DAAOrWratY3pyTdu3axcyZM/Hz86NAgQK0bt2affv2KdXWzcjRo0fp2LEjampq/Prrr+jp6bFw4ULGjRvH1KlT0dHRUWkcZmZmrFu3DkhNoGRpaYmWlla2PuZC/nThwgU2bNiAmZkZ8+fPV+lv6v3795w7d47AwEBq1KjBtWvXmD59es4N9hsQgaogCPmaHBlyFZbzqtJWEP5NS0uL169fA6kJf969e4e9vT2Quq/R1taWEiVK4Ofnh6mpKQYGBirvJ5MkidDQ0O+q3mVOCQsLo3Hjxvj5+TFhwgSqV6+uFEi2a9eOdu3aERUVhYaGBh06dFD8btGiRfj4+LB06VJOnz6Nn58foFz+RlNTk6SkJCpVqsSvv/7Kx48fOXv2LGpqaopah5C6FNjNzS1L1yCTyZg+fTqNGjWiU6dOdO/enZMnT2b4vIiKiiIlJQVvb2+srKyydL7PMTQ0xMnJKVNLl3PCjh07+OWXX2jbti1z586lWbNmmVrSnJyczOjRo6lTpw579uyhSJEiLFy4EA0NDdzc3FQOUv8ro8zSgvAp0dHRHD58mGfPnhEQEICmpiZLly5FV1eX48eP07VrV8XS+blz5342UE1JSeHIkSMcOnSIu3fvKsob2draEhsbC/DZ7OLfAxGoCoKQr6VIMlIkFfaoqtBWED7FyMhIaZbN29sbSJ25Klu2bJb6PHjwIO3btwfg3LlzODg4sGLFCp4+fUq9evVwdXX9IUvdZCQpKYkWLVoQGBjIjRs3PluDNC0z7J49e3j27Blly5ZVlGvx8vJizJgxjBs3jrZt27J48WI+fvxIaGgoJUqUwNPTk1mzZjFq1CgKFiyIkZERvr6+qKur8+TJE96/f88vv/zy1TVx69Wrx5YtW2jRogWVKlVSXI+zszNDhgxBV1eXmzdvUqxYsR/2S4qwsDA0NTXZv3+/SrNMd+/e5dmzZ7Rr105RfqdevXokJyfj4+OjtKQ5JiaGly9fEhMTg76+fqbr3gpCZnh4eNCnTx9evHih2H5w+/ZtXr16RUBAgGI1DcCKFSuUSpjFxMRw48YNnJyckMlkbN68meXLl/PkyRMcHBxwcHBg9OjRNGnSBAsLCyB1+0l0dDQzZsz45teaXUSgKghCviaW/gq5zc7OTvEB5dKlS9SrV4+GDRvy4cMHBg4c+MUELxERESxZskTxYcTMzIwnT54wePBgnjx5QqlSpdi5cycDBw7Ezs6O8uXLEx0djampKc7OzopZsrRakD+C3bt3c+PGDby8vD4bpP6bvr4+Dg4Oip8bNGigqGl77tw59uzZw7x58yhSpAhFihQBoFGjRtSrV489e/bw8OFDZs+ezbt37xRZeyVJYsaMGSxevJjdu3fTokWLLF9Ts2bNuHHjBvPnzyc0NJTk5GQmTJjAX3/9RZkyZXB3d2fdunVfPUOYV5UqVYqkpCRev36dbont58oZValShfHjxzNv3jxu3rzJuXPn0NbWRl9fnw4dOtC3b19iYmK4fPlyuj3KpUuX5tatW58tcyMI/xYeHs7jx48xMzPDysoKdXV1kpOTGTVqFCtWrKBevXqcO3dOsZ1j+fLlDB8+XHF/HR0dxWqaX375hZiYGBITEzl//jwJCQkUKFCA2NhY1NXVadeuHZs3b6ZGjRoZjuVH2CctAlVBEARByEVdu3Zl5syZQGrNw0uXLrF27VqCgoLYvn078+fP5+XLl/Tr14+UlBQePXqEg4MDxYoVIyQkJN2exdjYWAYPHoy+vj5NmzZl3759xMXF4eHhweXLlxVJgfz9/RUJgIoUKcKYMWMYOnToD/Gh/P79+xgbGxMdHU1iYiJaWplPmPZf79+/5/bt20RERBAREZFuVlpDQ4Nu3bqRlJTEX3/9xYEDB3BwcMDU1JRZs2YxY8YMKlSoQMeOHTl16tRXZeF0cnJSKp/y9OlTFixYQEREBBMnTqR3795Z7js3pKSkoK6uTlJSktLsUUbSMivfvn1bEah+/PiRadOmsXnzZtasWUOXLl3S3S8xMZHGjRuzceNG4uLiUFNTw8HBgZCQEGbOnMm8efM+ec7o6OivuDrhR3P37l22bdvGu3fvCA4OJjg4mLi4OEWSNS0tLS5evEh8fDyQ+uXKvHnzOH/+PKtWrQLA3d1dsXRfkiR0dHTQ0NCgcOHCzJo1C3d3dw4cOICbmxtmZmakpKRQsWJF5s2bR+3atdm5cyfe3t5s3ryZEiVK5Npj8a2IrL+CIOR5OZn1t5N7D7T0VMj6G5PInsZbxeuhoCQ7nqP/nRUaPHiw4sPNf82aNYtJkyZx7tw5mjVrhqamJtu2bWPfvn04ODjQsWNHSpcu/cXMq0lJSTx48ID169ezbt069PT0aNKkCcWLF0dDQ4OCBQvSrVu37y5JzMqVKxUlVXr16sU///yT5b7SMmh26dKFrVu3fnbfcJ8+fdi0aRNFihTB1NSUR48eMXPmTEaPHk2bNm24ceMGx48fp379+lkez49i/fr1DBkyhMTERAB27tyZYaD5b+XLlycmJoaePXsSERHB9u3bSUhIwMnJiatXr/Lo0aN0e/IGDBjAunXrFEu1ixYtqvR7c3NzgoODcXV1ZfTo0QQHBxMdHU3JkiWpW7duvqpfLGQsIiKCqVOnsmLFCszMzChVqhRmZmaYm5ujq6tLVFQUkZGRREVFUbt2bZo2bUrr1q0JCgoCUmdJ4+PjcXV15cCBA7x9+xY/Pz/+/vtvDh06RJ8+fViwYAFdunTB3d2df/75h65du6KhofHVz7/vPYYTgaogCHleTgaqHd17oqlCoJoUk8jexlvE66GgJCeeo2FhYVy9epXy5ctz8eJFLl++zIYNGwCYNGkSW7duTVfM/eHDh1neV/f69WvWrFmDh4cH79+/JykpieDgYOzs7Lhx48YXZ7zymoSEBP766y8mTJjAmjVriIuLo1y5ctSoUUNRQiYz4uPjmTt3LnPmzGHo0KEsWbLks+2DgoIYO3YsKSkp9OnTh0aNGiGTyYiNjeWnn37ixo0beHh45FpSorzg/v37VKpUiXbt2nHgwAHF8ZkzZzJlypTP3m/evHkcPXoUExMT1NXVcXBwUMwyd+rUid27dyvdx9bWlkaNGrFq1SrFUsikpCTGjBnD3r17MTc3x9fX96u/0BB+PJIksX37dsaMGUN0dDTTp09n+PDhmVqhERMTQ3BwMIaGhhQuXFgRcJ49e5ZmzZoBYGJiwtq1a3F1deX9+/eK1RqrVq3KcgK2//ruYzgpEyIiIiRAioiIyExzQRCEbJUTr0FpfXY410vq4tU/07cO53qJ10MhnZx8n3z//r00dOhQSU9PTwIUt19++UUyNzdX/GxnZyeFhoZm67m9vLwkDQ0NqWLFipKvr2+29v0txMfHS/b29hIgaWhoSICkrq4uNWvWTDp79qxKfc2ZM0cCpPDw8CyPJyoqSgIkMzOzLPfxI5g1a5akqakpffjwQRo2bJjUqFEjCZCmTJmS6T4GDhyo9PdQsGBBCZC2b98uSZIkBQYGSmfPnpUAac+ePUr3nTNnjqShoSH16tVLkslkEiDt3LkzW69R+L49fPhQatCggQRInTp1kgIDA7+6z7t370p6enqSiYmJ9ODBAykpKUnp92fOnJGMjY2loUOHfvW50nzvMdz3v8tWEAThK6QlU1LlJgg5LSwsjOnTp1OkSBFMTExYsWKFomRBp06dOHbsGNu2bePChQtMnz4dT09PHj16lOV6nZ9So0YNbty4gVwup2fPnooxfC+0tbW5du0aQUFBJCQk8ODBA5YvX054eDhNmzalSpUqjBw5khs3bvD27VsiIiKQMlhoFhAQwJEjRzA1NUVbWzvL49HX16dy5coEBwfTtWvXdMl78osmTZqQlJREsWLFmDx5MufPnwdQaS/x6dOn+fXXXxk8eLDScTc3N1auXIm1tTVNmzalfPnyuLq6KrW5f/8+1atX559//uHhw4dcu3aNjh07fvV1Cd+/uLg4Jk+eTOXKlXn9+jWnT59m9+7dFCtW7Kv7Xrt2LYUKFcLf3x97e3ulbQQhISF0796d0NBQpUzU+Z1Y+isIQp6Xk0t/257po/LS38PNNorXQ0FJdj1Hz5w5Q48ePQgJCUn3u1q1ajFkyBC6dev2NUPNkrNnz9K8eXMMDAzYvn07rVq1+uZjyE6SJLFnzx7OnDnDiRMnFHvJAHR1dTl58iT169dn586dbNy4EU9PT0xNTdmzZ88nM2xmVlRUFFu2bGHOnDkEBwdTunRpqlevztSpUxWZQH9E8fHxLFy4kGXLliFJEh8+fACgdu3aNGzYkJs3b3L27Fl27dpFhw4dvpixtF69eoSHh+Pv76+oGflv7dq1o1+/fkiShI+PD7GxsdStW5czZ86we/duJEkiODg4R65V+D5dvXqV2rVrA6mJ7ebOnZutWbQdHByoXLkymzdvVjoeGxtL+/btOX36NBs3bqRr167Zdt7vPYYTUwOCIORrcmQq37Ji5cqVlChRAh0dHZycnPD09Pxs+4sXL+Lk5ISOjg4lS5Zk9erV6drs378fe3t7tLW1sbe35+DBgyqf98CBAzRv3hxjY2NkMpmiYHiasLAwhg0bRpkyZShQoADW1tYMHz6ciIgI1R8E4bPkcjnt2rVTBKl2dnasW7eO9+/fI0kSV65cyZUgdc6cOfz+++80bNgQCwsLunXrpqj7+r2SyWR07tyZDRs28OrVKzw9PTl27BhLliwhLi5OURKiW7dunDt3jkmTJvHw4cOvDlIhtW7rkCFDePjwIatWrcLFxQUPDw9cXV159uxZNlxd3nP+/HnKlSvHzJkz6datG+bm5gDY2Nhw7do1lixZwvTp02nUqBGdOnVizJgxn+wrOTmZhw8fYmpqyr179yhfvrzid2kzVGXLlkVbW5uePXvSunVrlixZwpIlS2jdujXLli2jadOm6YIFQTh16pTi3xcvXmTatGkUL14cBwcHDh48iK+vLzKZjHHjxmWp/8qVK3Pv3j2lY+Hh4ZQqVYrTp0+jrq5O7dq1f9gSU1mSmfXB3/v6ZkEQvm85uUe11el+kuvlwZm+tTrdT+Wx7Nq1S9LU1JTWrVsnPXz4UBoxYoSkp6cnvXz5MsP2z58/lwoUKCCNGDFCevjwobRu3TpJU1NT2rdvn6LN1atXJXV1dWnOnDmSn5+fYs/VtWvXVDrvli1bpBkzZkjr1q2TgHT7EO/duye1b99eOnLkiPTs2TPJ3d1dsrW1lTp06JDp688Psus5+ujRI+nGjRtSVFRUNo3s61WvXl2xD/DAgQNSpUqVJA0NDcnf3z+3h5btYmNjpQIFCkgzZsyQJEmSbt68KQFKf3s54erVq5K2trYkk8mko0eP5ui5ckPXrl0lTU1N6cGDB5IkSdJff/2VmiOgQwfFc2vhwoVScnKyNG3aNElDQ0Pas2eP9OHDB0UfW7dulWrWrKm0LxWQHjx4IC1cuFBq0aKFNHHiRGnu3LmSlZWVVKJECWnSpEnS1atXpeTkZCkuLk46d+6cdOfOndx6GITvgFwul65fvy6VK1dOUldXl3799VfJxcVFsbc87XmXkpKict8bN26UZDKZFBYWJiUlJUkbN26UOnXqJAHSzZs3Jblcnu3X873HcGLpryAIeV5OLv1tcaq/ykt/T7qsU2ks1atXx9HRUanUSLly5XB1dWXu3Lnp2o8bN44jR47g5+enOObm5sadO3fw8vICoHPnzkRGRnLy5ElFGxcXFwwNDdm5c6fK533x4gUlSpTA19cXBweHz17P3r176d69OzExMZ8t1ZGf/Mjvk7du3VJkqHVzc2P+/PmYm5tjYGDAmDFjPjv79T0aOnQomzdvxsfHBzs7O8qUKUPt2rXZuHFjjp7348ePlCtXjo4dO7J8+fIcPde3Nm/ePCZMmIC3tzcvXrxg0KBBODo6cvr0aSC1BFDv3r0xNjYmNjaWmjVrcvfuXYoVK0ZgYCC+vr44OzvTuHFjXF1dMTExwdzcHFtbW8Xs7H9J/yn3JAiqSk5ORkNDA0mSGDx4MKtXr6ZFixacPHmSW7duUaVKFZX6e/XqFTY2NuzZswdNTU3atWuHnZ0dnTp1YtasWTlyDd/7e5NY+isIQr4ml2Qq3yD1xf/ft4SEhAz7T0xMxMfHR5GOPk2zZs24evVqhvfx8vJK17558+Z4e3uTlJT02TZpfWblvJmV9oYngtT8wdHRkSdPngCp5W8MDAzw8vIiODiYv//+O5dHl/3mzJmDubk5VapUYcSIETx79izHSsnI5XKuX7/O0qVLcXZ2Jjg4+LtfVv1fKSkpzJw5E4C6devy888/U6pUKWrWrKloExoairGxMQAFChTgwoULQGrJpD179tC9e3fKlSvH8ePHGTx4MB07dqRu3bqfDFIBEaQKXy3tPS4hIUHxJbGVlRWQutdcVdbW1lSoUIH+/fszfPhwKlasyOPHj3MsSP0RiE8ZgiDka/8OPjPbHv7/zSrNtGnTmD59err2oaGhpKSkYGZmpnTczMxMKYHLvwUFBWXYPjk5mdDQUCwsLD7ZJq3PrJw3Mz58+MCsWbMYOHBglvsQvj+2trZK2XBLlixJpUqVuHv3rqI26cSJE7G1tc3FUWYPAwMDbt26xaRJk1izZg0///wz/fv3V7kfSZK4f/8+Hz58QC6Xo62tjZmZGRYWFiQkJPD06VN+++03rly5grq6OikpKQBYWlpm9yXlKnV1dY4fP46vry9yuZyffvoJOzs79u3bp2gzf/58Pn78SEhICC9evFB8IQepq0ccHBzYuHHjd1fLV/gxnD9/njt37tCkSRNF9u9du3ZRr149lfsaOHAgw4YNo2rVqqxduzYHRvtjEYGqIAj5mgQqJUhK+6geGBiotIzmSyUr/vvt/peWpWXU/r/HM9Onquf9nMjISFq1aoW9vT3Tpk3LUh/CjyEpKYm7d+8C8OjRIx49esSWLVsYNmwYkyZNwsTEJJdH+HUKFizIsmXL+Ouvv7L09xIcHMzQoUOVgrGMlC5dmkWLFiktn75y5QqHDh2iTp06ilnG713Dhg1p2LCh4ufo6GilcjBqamocPnwYPT09bG1tefHiBTo6OtSrV49//vkHCwuL3Bi2IADw9u1bABo1aoS3tzfDhw9nzpw5jBw5Ejs7O5X6Gjx4MLVq1aJKlSpi1j8TxNJfQRCELDAwMFC6fSpQNTY2Rl1dPd0sZkhISLrZzjTm5uYZttfQ0FDUyfxUm7Q+s3Lez4mKisLFxQV9fX0OHjwoZjbyuSJFinD+/HmlYEMul/PXX39hZWXFwoULc3F02UfVD5IxMTF07twZc3NzpSD1v/1MnDiRy5cvs2PHDpYvX06NGjUYMGAAkBrktmvXDhMTE65cufL1F5EHpb2OTJ8+ndGjR9OrVy8KFy7M8+fPFdlPx40bx7Zt20SQKuQ6T09PKleuzMuXLwkPD2fmzJkkJyczadIklftSU1PD0dFRBKmZJAJVQRDytazuUc0sLS0tnJycOHv2rNLxs2fPUqtWrQzvU7NmzXTtz5w5g7OzsyJA/FSbtD6zct5PiYyMpFmzZmhpaXHkyBGROl8AUmfJ9uzZw6NHj2jQoIHieEJCAmPHjiUsLCz3BpcLwsLCMDMzY8+ePQAUK1aMadOmYWpqiiRJjBgxguXLlzNkyBAGDRpEzZo1qVatGi9fvuTvv/9m5syZhISE4OPjQ+PGjQEYP358bl5SjnJ1deXKlSssXryYLVu2KGat7t+/z4MHD5g+ffp3PzMvfP98fX05dOgQLVq04OXLl0BqUsLRo0dnS7kq4fPE0l9BEPK1rO5RVcXo0aPp0aMHzs7O1KxZk7Vr1/Lq1Svc3NwAmDBhAm/evGHLli1AambVFStWMHr0aPr374+XlxcbNmxQZPMFGDFiBPXq1WP+/Pm0bduWw4cPc+7cOS5fvpzp80Lqh+tXr14pPiQ+fvwYSJ2xNTc3JyoqimbNmhEbG8u2bdsUyaMATExMUFdXV/nxEH4sZcqUwcPDg0GDBinV+/X29k6XzOtH5eXlpfQF0LVr16hWrRoymYzLly8TGhrKvHnzFF/yfPjwQalm46eSNV2+fJmQkBBMTU1z9gJySaNGjfDw8CA5ORlnZ2c2b96cbv9/XiGXy1FTU57fkSSJ58+fc+DAAXbv3o2Liwt//PGHSv0+ffoUT09PKlasiLa2NhUrVhSzbXnE9evXad68OWXKlGHs2LEMHjwYSE2yNGXKFAoXLpy7A8wPMlPD5nuvwSMIwvctJ+uo1js6WGp0flSmb/WODs7SWP7++2/JxsZG0tLSkhwdHaWLFy8qfterVy+pfv36Su0vXLggValSRdLS0pKKFy8urVq1Kl2fe/fulcqUKSNpampKZcuWlfbv36/SeSVJkjZt2pSuLiEgTZs2TZIkSfLw8Mjw94AUEBCg0mPwIxPvk5Lk7+8vAdLYsWOlOnXqSO/evcvtIX0zFSpUkACpevXqUkxMjNLvlixZovR3U6NGDcW/vby8pEOHDkn79u2TduzYke5vrHTp0lJycnIuXdW3ERUVJe3fv1+ysLCQypQpk+eeN15eXpKpqakESCNHjpTOnj0rhYaGSl26dJG0tbWV/n/Z2Nhkut/Vq1dLFStWTPf//NChQzl3MUKmRUdHS3Z2dlK1atUUr+v/ruM7duzYXB5h5nzv702ijqogCHleTtZRrXNkCBp6n0+E9G/JMQlc/ulv8XooKBHvk6mzSwULFmT69Ok/XG3VLwkJCSE5OVkpY+/Dhw958uQJz58/57fffsvwft27d2fr1q2Knz9+/IhMJuPt27ecP3+e5s2b/xCZlDPj2bNnODs7079//yzvcd6+fTuTJ0/mxYsXbN26lW7duqWbBVXFw4cPadiwISYmJrx//56QkBAgddXLv1cPABgZGRESEvLF8504cYKxY8fy4MED2rdvT8eOHZHL5ezevZsjR47w559/Mnr06CyPWfh67969o02bNjx+/JjLly9TuXJlAFq3bs3x48cxMjJi0aJF9O7dO3cHmgnf+3uTWPorCEK+JkkyJBWW86rSVhDyGw0NDUWZlfzk30tz4+PjWbZsGePGjVNq8+8SNAAtW7ZMV9LK0NAQgMKFC2Nvb59zA86DSpcujb6+Prq6uplqn5KSgre3N6VKlVJkRx47dqxiG0OPHj24desWixcvztJ4Nm/eTO/evTExMcHDw4PY2FiKFy8OwLFjx9K179q1K/Hx8RQoUOCTfT579oxWrVrRpEkTxo0bR8uWLRk6dCi7du0CUp8jtWvXztJ4hexx9+5dWrdujVwuVyRRgtSl38ePHwfgp59+onXr1jx//hx9ff0fdml+XiCSKQmCkK/Jkal8EwQhvY8fPxIREUHJkiVzeyi5wsPDg06dOmFqasq4ceMoXbq00u+1tbXp2rUr//zzD4GBgRw/fpxSpUrl0mi/vfj4eNasWcOMGTPYvHkz27Zt4+TJk/j6+nLt2jWuXLlCcHAw5ubm6e4rSRKBgYFERUUBcPr0aerVq0eNGjUoWrQoPXv2RJIkTE1NMTY2VuyNXrJkCe7u7mRi8WC686XNdHt4eGBiYoKNjQ1PnjwB4PXr1wwbNozDhw+zfft2ChcuzIoVKzA2Nmb//v1f7L9p06b06NGDZ8+eKYLUwMBAEhISqF69ukpjFb7Ov58b586do06dOhgZGXH9+nUcHBwUba5evQqkfgGyc+dOTExMKFWqFH379s2NYecbIlAVBCFfy+msv4KQX6QlB6pSpUouj+Tbu379Oi4uLjx58oQxY8bg5+eHn58fJUqUAGDQoEG8fv2aHTt20KtXL4oVK5bLI/62Hj58SIECBXBzc+Pvv/+md+/e9OjRg5YtW+Lo6EjNmjWpU6cOpqamtGvXTum+CxYswMzMDGtrawwMDDAyMsLFxYXIyEgmTpxI+fLl2bp1K56enuzatYvy5ctz4cIFPD09cXR0pEmTJlSsWJEDBw6QlJSUqfEuXboUd3d3Nm3aRPny5RXHbW1tSUpKIiEhgWXLlvHTTz/RrVs3Pn78yPr165Ekia5du9K9e3cCAwPT9Vu6dGk6duzI2rVrkSSJ6tWrK5Y5T506lYcPH37FoyyoIjo6munTp1OkSBEGDBhAmzZtaNq0KbVr18bT05OiRYsCqUFqt27dqFu3LgBz587l2rVrin7u37+fK+PPL8TSX0EQ8jWx9FcQsseDBw8oVKgQ1tbWuT2Ub+7gwYMkJibSv39/hgwZojju7+9PUlISWlpauTi63CeTyZAkid9++41FixaRkJCAJEkEBwcTEhKCjo4OSUlJlCxZMl0m1ZUrV2JkZMT69euJjo7G398fe3t7ihcvjrOzMwD29va0bt2aNWvWcPLkSRwdHWndujVDhgzhp59+4sKFC3To0AFra2t27979xbIiO3fuxMnJSWkPYlJSEh4eHnh5eREZGYmamhotWrSgYcOGyGQy+vbtS7du3Vi0aBGrVq2iR48eXLhwIV3frq6u7N27l/nz5zN+/HhGjRpFVFQUM2fOZNOmTYwaNYp58+bl++dMTjp+/DitW7dGU1OTdu3acfjwYYoVK8bGjRvp3r27Up1wf39/du3aRePGjXF3d6d8+fIULlyYokWL0q1bN1q2bJmLV/LjE4GqIAj52rcoTyMI+UGTJk2YM2cOz549yxf7Ky9cuECnTp14//694tjQoUOVAlWZTCYCDlLrTurq6iqSuWhrpyaws7GxwcbGJl37iIgIdu3ahaenJy9fvmTp0qX89NNPSm3c3d0V/z5y5AiTJ0+mW7duNGzYkLZt2/L8+XPmzJkDpAa7s2fPpmHDhnTt2pWAgAClvsLCwnjw4AHGxsbY2dlhaWnJ4cOHkclkjBkzhoIFC7Jt2zaePn2KsbExRkZGxMTEsGjRImxtbWnXrh1OTk4EBQVRuHBhNDQ08Pf3z/Cx6NatG0+ePGHChAkYGBgwePBgZsyYwbx580hMTGTJkiWEhISwZcuWr0oElR8FBwcTHR392SX1ERERtGnThsqVK7N06VKlGtAZSds37u7uTqFChejfvz8eHh5s2bIlX7zO5TbxFyAIQr6WNqOqyk0QhPTS6ut+LpnMj2LFihU0bNhQEaRqamoyYcIEsXTzM6pUqcKtW7e+2C4lJYV+/frh5uaGj48Py5cvZ/jw4ena/TtJ0sOHD9mxYwcHDx5ELpezYMECLl68yIIFCwAYPHgwtWvXpnDhwhQpUkSxL3Hv3r1YWlpiZGREvXr1sLe3R0NDg8OHDyv6PnToEMuXL8fOzg5vb29CQkJ49OgRr1694sKFC9SsWZPNmzfTuXNnxo4dy4gRIyhRooRS3ev/mjZtGsOGDWPIkCHUq1ePlJQUfv/9d8Xvt2/fni6YFj4tLCyMgQMHYm5uTunSpfH19UUul6db6n337l3at2+PJEksWrToi0EqpL6epSVMioiIoEGDBnh7e4sg9RsRgaogCPmapOL+VBGoCkLGChYsCKSW3/hRffz4kT///JMpU6YAqVlmvby8iI+PZ86cOZQrVy6XR5g3BQYGcvPmzUwlCvrnn3/Yt28f27Ztw8/Pj6FDhyKTpX/d/fdjff/+fWQyGa6urly4cAFfX1+KFSvG2LFjle4TEhLCrVu3FDOtS5Ys4d27d0Dqktx/z+42b96cP//8k6dPn/L+/XuOHTuGk5OTYiwymYz69euzefNm3r17R2hoKHFxcSQnJ3Px4kXq1KnzyWuUyWS0b98eAE9PT8LDw5WSSN25cydfJdrKquDgYE6cOEHlypUVSakAGjdujKGhIUZGRgwcOJDY2FiWLl1K5cqV8fX1VSzlzQy5XE50dDQLFiygXLlyHDx4MKcuR8jAD7X0t0XJ76NuW6J1kdwewhdpvQzN7SF80cmArKWcFwRBELJfo0aNaNKkCZs3b6Zfv34/3JLX169fY2Vlpfh59OjRzJ8/PxdH9P1Yt24dSUlJdO/e/Yttt27dSpEiRejYseNn2/17L7SdnZ3S7ypXroyXlxd6enokJycDsH79elq2bMmoUaOYM2cOzZs3x8XFBS8vLxo0aMDevXtZsGABkyZNYtOmTSrVyJTJZBgZGSn+/SWSJDFz5kyMjY159+4dGhoaDBo0iGHDhgH8cH87OeHp06fY29uTnJyMnZ0dBw8epGrVqgAULVqUrl27MmPGDNauXcu4ceO4dOkSAH///TedO3fO9HnSlnC/fv1a8cWJ8O2IGVVBEPI1CZAkFW65PWBByMMmTJiAr68vP//8s8olQfK6/yZNScvWKnxZ2uzn3LlzP9vO39+fy5cvY2Njg1wu/2zbgQMHsnLlSi5duqTIFDxz5kxkMhlWVlZoa2srgtTJkyfTt29fLCws2LhxI/b29vTr149u3boBqfuNX716hYWFBcAXz50drl27Rt26dUlISABSa6iePXsWgMTExBw///cuOTmZ5ORkNDU1+eOPP3jw4AEAv/32G56enkycOFHx/3PFihWsWLGCjh070qdPn0xn6r116xZdunShVKlSHDt2jNKlS/Pzzz/n2DUJ6f1QM6qCIAiqkiNDpkJtVFFHVRA+rVGjRixdupQhQ4Zw+PBhXF1dc3tI2WbDhg1Uq1YNSF2uKRLdZF7Xrl2ZMmUKq1atIjAwEEtLS2bOnImOjg63bt1CTU2Nx48fM3jwYAoUKMCuXbuIj4/H29ubN2/e8OHDB6Kjo5HJZHh4ePDx40fKlClDYGAggwcPBmDIkCGKPcOvX79WnHvJkiWMHDlS8XOBAgUYN24cHTt2VJrhVVdXx9XVlW3btvHbb79RtGhRypUrR9GiRfHy8kJXVxdHR0dkMhnPnj3j0aNHWFlZUa5cOZVnQGUyGf3792fZsmXY2NgwduxYihcvzunTpwEIDw/P4iOdf5QrV44zZ87g4uJCp06dFMf//PNPnjx5wpEjRxg7dixjxoxhyZIlhIWFsXnzZqpVq8bgwYMVM6z/lZycTMOGDZHL5dy4cYPy5cuzb98+Wrduzc8//4ypqem3ukQBkEmZ+MozMjKSQoUKERERocjYlheJpb/ZRyz9FfKSnHgNSuuz0t4xqBfQzvT9UmITuNtxUZ5/PRS+re/lffJbkCSJxo0bExgYiI+Pzw/1eBQsWJDo6Ogfbrb4Wxg2bBjbt2/H2tqa+/fvo6amli7ZjYuLC8OHD2fjxo0cOnRIMSOqoaGBnp4eERER1KtXDysrK7y9vbG2tkZNTU0R4CUkJODu7s6ePXv4559/qFmzJlevXk03luTkZKpWrcrt27eB1GWkpUuXBuD9+/dUqFCBkJAQNDU1sbKy4vnz5wCKWq+nT58mJiYGSF1KmhYsq0Iul/PgwQNmzZrFsWPHiIuLQ1dXF2dnZ/bs2aO0Z1X4tKCgIDZt2sSBAwfw9vYGUusWr1y5EgAfHx+cnZ2xsLDg7du3rFmzBjc3NxITE5XK0MTGxhIaGsrhw4cVybsmT57MlClTePbsmaJeb2aWr+cl3/t7k5hRFQQhX5NLMmSiPI0gZBuZTMbKlSupUaMGrVq14ty5c4pyJN+7qVOnMnbsWEVQIWTe8uXLWb58OQA//fQTR48eBcDc3BxjY2NKlizJhQsXOHXqFBYWFixZsoSGDRtSrFgxDAwMkMlkJCQkZPhcsra2xtLSEi0tLVq0aEGLFi1YtmzZJ79Q0NDQ4Pr16+zdu5ft27dja2ur+N3jx495+vQpISEh7Nu3j6tXrzJhwgQ0NTWZP38+ly9fBqBjx47s3bsXdXX1LD0eampqVKxYkT179iBJEh8/fqRQoUJZ7i+/0tPTY/PmzTx79ozp06czadIkNDT+P7xxcHDA1NSUrl27KjI2p9X1lcvlTJ06lS1bthAYGKi4T//+/Vm7di2Q+uXHnj17gPR7oYWcJwJVQRDytbS9p6q0FwTh88qWLcvhw4dp0KABrq6udOvWjXbt2qGvr5/bQ8uS27dvM2zYMK5evUrnzp1FkPoV3r17x+XLl2nRogVVqlThyZMnfPjwAV9fX7p3786gQYOws7PLcDltRkFq2mynsbGx0vG0LNSfoqWlxS+//MKbN284efKk4nj37t25ceMGBgYGjB8/XnF806ZN+Pn5KX7u0qULe/fupUyZMpm78M+QyWQUKZL3V9vlRYcOHeLx48dUq1aN8ePHKwWpkLqkOyIigsWLF7NixQoSExMZNmwYDx8+ZNSoUVy4cEGpvbOzMw0bNqRKlSqEh4cTGhpKdHQ0PXv2VCRrEr4dEagKgpCvqVobVZSnEYTMqVevHpMmTeLQoUP07NkTQ0NDNm/eTJs2bXJ7aJkWGxtLt27dOHz4MJUrV2bt2rXf3dK/vCI6OppVq1axaNEitLS02Lp1qyJT7tfw9PQkMDCQihUrkpKSovKM5NixY/n99995+vQp2traFC1aNMN23bp1IzQ0dVtUz549GThwIEWLFsXBweFrL0H4Cl26dOHjx4+MGDGCnTt3ZpiteeDAgdy5c4emTZvyyy+/cOrUKapUqZJhfwEBAfzyyy80bNiQli1bYmBgQOvWrSlfvnwOX4mQEbFHNReIParZQ+xRzT9yco9quZ3jVN6j6td1fp5/PRS+re/lfTK3eHh4MGvWLC5cuICXl1em6mnmtnv37tGvXz9u3brFkiVL+PXXX9HT08vtYX2XoqOjadiwIXfv3qVHjx5Mnz6dYsWKZUvfMTEx9O3bl927d2NkZIStrS3FixenZcuWtG3bNt3fY2xsLH/++SeXL1/G1NQUFxcXfvnlF5XOeffuXSpXrszGjRv59ddfs+U6hK/TqlUr/Pz8uHv37mdXbuzfv/+TmXttbW0pVKgQrVq1YurUqT9EwrTv/b3p+/8/IAiC8BXkkkzlmyAIqmnYsCFnz57F2tqav//+m6SkJP766y/c3d3TJdTJCzw9PalRowZRUVGcO3eOoUOHiiD1K+zYsQMfHx+8vLxYv359tgWpkLpHcdeuXdy8eRM3NzeKFy/O8+fP6dmzJ5UqVSI2NlbRVpIkXFxcmD17Njo6Oty9e5fu3btTunRpunXrxs6dO/Hw8FAkSgJ4+/YtV69e5e3bt4pj27Zto1ChQvTo0SPbrkP4OsuWLSMkJITu3bt/NtlZq1atKFSoEABmZmY4ODjQqlUr7t27x507d7h58ybTp0//IYLUH4FY+isIQr4m9qgKwrehrq7OyJEjGTNmDE5OToqSIRUrVuTGjRvo6Ojk7gD/pXfv3lStWpUTJ05QoECB3B7Od2/Tpk00a9YMR0fHHDuHs7Mzzs7Oip/v37+Po6MjpUqVonHjxvz000+4uLjg6enJtGnTmD59OpIkcfDgQU6ePMnBgwfZuXMnkLp/tUGDBhgZGbF7925FXVVNTU26d+/Opk2baNeuXbr9kELuKVWqFMOGDWPevHk8f/6cUqVKZdhOR0eHadOmMXr0aIKDg1m/fj2tW7f+xqMVMkt8XSAIQr6WGqjKVLjl9ogF4fs1aNAgihcvzt9//w1As2bNuHfvHh4eHtl+rpSUFAICAoiNjVUEGlevXsXR0RE7Oztq1KiBra0trq6ueHh48Oeff+Ln50d8fDzPnz+nW7duIkjNJomJiVhaWn7Tc1aoUIGLFy/Ss2dPHjx4QOfOnRUJiypXrgykJjFq374969atIzAwkJcvX3L//n0WLFhASkoKN2/eZPbs2dy5c4f27dtTpkwZxfLljRs3Znlsp0+fpkOHDgwYMIANGzZky/UKqV+IAF9MTNW7d2969erFypUradWq1bcYmpBFYo9qDklMiUVTTReQkJBQk6kTmxSOtro+KcXzfrFgsUdVyEtyco+q7bbxqBfI/ExOSmw8T7vPy/Ovh8K39b28T+YFBw8epH379kBqaZKkpCRMTEy4fft2tpSxkcvl/PHHHyxZsoTw8HC0tLRISUnh559/5vjx40RHR+Pm5kZ8fDyGhoYcOHCAly9fAlC4cGEuXbpE7969sba25uDBg189nvzu7t27NG3alIYNG7Jr165cG8fDhw/ZtGkTtWrVol27dirff8OGDfTr1w9PT08SEhL466+/OHToUJaWiMpkyltIbt++rQiehaybOHEic+fO5eDBg7i6uub2cPKE7/29SaxZyGYf49/wIPQc0UmhqMu0SJESART/1lLTpVBMSexKt0Jbu1Auj1YQBJH1VxC+LVdXVxYuXMjvv/9OUFAQAB8+fGDq1KnMmzcv3Yd4VZw+fZrp06dz/fp1Ro4cSbNmzXjy5AkxMTEsXbqU6OhozM3NmTFjBqamqV8ajx8/nitXrlCzZk2aNGnCwIEDGThwIG5ubnh7eystJxUy782bN+zbt4/ffvuNcuXKsWzZslwdj729PQsXLszy/Rs0aABA3bp1v3osNWvWRENDA3d3dypWrMiwYcPw8PAQNVS/UlrG5pIlS+bySITsIpb+ZpNkeQIPP5zn+rvUbwuLF3IGUpcalS3SEGuDStgYOGGhX46P4c+592AnycnxuThiQRAApCzcBEHIOplMRrVq1dIdX7BgARUrViQiIiJL/e7btw8XFxc0NDQ4e/YsixcvxsXFheHDhzNhwgSCg4ORy+W8e/dOEaQCmJqa0q5dO8zNzalevTpBQUH07dsXPT09Dh8+nOXrzM9mzZpFsWLFGDlypCLg//dj/j0qVapUuoRaWV3+O2jQIDw9PdmzZw+rV6/m8uXL1K9fP90MfmJiYpbHm9/s37+foUOHUqVKFSpWrJjbwxGyiQhUv1JEQhDX3+3G/eUqXkfdo2yRBtQu2oOyRerTtPgImhUfSfFCjpQpUp9yRg0oZ9SQSuW7ExkVSODrq7k9fEHI91Tbn6ra7KsgCBn7997PtOW+Dg4OPHjwADc3N96/f69ynxs3bqROnTpcunSJxo0bZ9jmS7O1Tk5OvHz5ktu3b9OhQwe2b9/O8uXL0dbWRl9fn6dPn6o8rvzmzJkzTJ06lfHjx/P06VNWrFiRLUu684Jnz54p/t22bVuGDRvG3bt3Ve6nS5cuNG/enB49evDo0SP27t2LlpYW7du3p2vXrixbtoxq1aqhra0tlrBmwocPHxg0aBCtWrXi2rVrX7UqQ8hbRKD6FSRJ4lbwIeKSIihbpB71ivWheCEnZLL/f1jVZOmXcRQuXJwihra8eXfjWw5XEISMfKMp1ZUrV1KiRAl0dHRwcnLC09Pzs+0vXryIk5MTOjo6lCxZktWrV6drs3//fuzt7dHW1sbe3j7D/XRfOu+BAwdo3rw5xsbGyGQybt++na6PhIQEhg0bhrGxMXp6evz000+8fv1atQdAEP7F2dmZu3fv0rhxYxISEoDUfXoLFy5k165d/Pbbbyr3qa6ujoaGxld9SO3fvz/ly5enf//+2Nra8vr1a4YPH05iYiIxMTFMnTo1y33nB3v37qV58+Y0aNCAP/74g9KlS+f2kLKVubk5I0aMoHDhwixbtozSpUszYMAAlWc+NTU1OXLkCI0aNWLQoEHMnz+f+fPns3r1au7cucOIESO4efMmAIcPH2bNmjXcuXOH5OTkT/Ypl8tJSUn5quv7Xo0fP57ExETWr1+PlpZWbg9HyEYiUP0Kb6P9SEiJwd6oETaFHNHRKJjp+2ppFVQKaAVByCWqzqZmYUZ19+7djBw5kkmTJuHr60vdunVp0aIFr169yrB9QEAALVu2pG7duvj6+jJx4kSGDx/O/v37FW28vLzo3LkzPXr04M6dO/To0YNOnTpx/fp1lc4bExND7dq1mTdv3ifHP3LkSA4ePMiuXbu4fPky0dHRtG7dOt9+KBKyR8WKFTl37hxnz55VHPPz86Nx48Zs3bqVP/74Q6X+4uLiiIyM/KoxaWpqsn79evz8/Jg8eTJlypTBz8+PiRMnUrt2bcaNG/dV/f/oli1bRqNGjTh37twPu99y4sSJqKurM2nSJJYvX463tzcLFixQuR8tLS26desGwM2bN9m4cSMDBw7kwYMHjBmjnBzUzc0NBwcH9PX1qVSpEq6urjRs2BAHBwcqVqyIjY0NOjo6WFlZZWmG93u2b98+1q9fzx9//MHo0aPp1KkTcXFxuT0sIZuIrL9Z9DrqPg9Cz2Cpb08F4+YqfYMbZabO1et/UtymASVsGuXgKLNOZP0V8pKczPpbYtMk1FTI+iuPjSfg19kqjaV69eo4OjqyatUqxbFy5crh6urK3Llz07UfN24cR44cwc/PT3HMzc2NO3fu4OXlBUDnzp2JjIzk5MmTijYuLi4YGhoqagGqct4XL15QokQJfH19cXBwUByPiIjAxMSErVu30rlzZwDevn2LlZUVJ06coHnz5pl6DH5038v7ZF4UFhaGqamp4ouPZcuWERgYyMKFC5k6dSpTp079YtATFxdHoUKFWLBggaI+69c4efIka9asYcSIEQQEBNC3b18gdSWVkLGtW7fSs2dPFi9ezKhRo3J7ODnqn3/+4ddff2XDhg0cPXqUK1eucOjQIWrVqqVSP3K5XOm5PXToUJ4+fcrp06cZOXIkq1at4pdffmH06NGEh4fj4+ODn58fAQEBGBoaUqRIETQ0NNDX18fS0pKNGzfy4cMH7t27R8GCmZ88+R5JksS6desYNWoUbdq0AVK/nAV4+fIl1tbWuTm8PON7f28SWX+z6F30I9RlmpQ3bqbyMqPHT48AUNQifTIJQRC+raxm/f3vzI22tnaG+7ASExPx8fFh/PjxSsebNWvG1asZ71P38vKiWbNmSseaN2/Ohg0bSEpKQlNTEy8vr3QfBps3b87SpUuzfN6M+Pj4kJSUpDQeS0tLKlSowNWrV0WgKny1IkWKcPPmTVq3bs3bt28ZPnw458+fp1ChQkyZMoVXr16xcePGz77XvnnzhqSkJCpVqpTlcUiSxMOHDwkODub9+/f07NmT8uXLU6VKFUWgKmTs4cOH9OnTh19++YXBgwfn9nByXO/evRk9ejR//PEHJ06coHPnztSvX59r167h5OSU6X7U1NRISEigadOmXLt2jYsXL5KUlMSGDRvo06cP5cuXZ/DgwWzcuJFatWpx4sQJChX6dMWIOnXqULVqVYoWLcrKlSvp3r17dlxunvP48WMGDx7M+fPn6du3Lz169FBkZXZ0dBRB6g9ErD39F7mUwp2QE9wJOU5U4ucTOUjI/7fUV67yeeLjwzE3c0BLSz+LIxUEIdukLedV5QZYWVlRqFAhxS2jmVGA0NBQUlJSMDMzUzpuZmamKM3xX0FBQRm2T05OJjQ09LNt0vrMynk/NRYtLS0MDQ2/qh/h6zx58oSwsLDcHkaOqVKlCs+fP6d69eoAPH/+nEmTJrFlyxb++eefL5YV+fDhA0C652lm+fv7K76Aady4Mb169aJDhw5YWlrSt29f+vfvz/nz57PUd36wfv16dHV12bhx4w+TOOlLunXrRkBAANevX8fb25vSpUszbdo0lfvR0tLi4sWLJCQkcPfuXfz8/OjTpw8A/fr148WLF+zatYv79+/TtGlTPn78+Mm+KleuzNOnT2nbti09evRg0aJFWb6+z0lMTCQ8PBxLS0tkMhlHjx7NkfOkkSSJxYsX4+zsTOnSpSlfvjwvX77k1KlTrF+/Hrn8/z+L9+jRI0fHInxbYkb1X15F3uZdTOpSu9jkcGpa/vLJtiUKVcUn+AC3Q45RVL88JgVKoCbL3MOprq4lStMIQh4hSak3VdoDBAYGKi2j+dKHs//OBkmS9NkZooza//d4ZvpU9byZlV39CF8mSRJNmzalYcOG1KpVC3Nzc1xcXH64pCHa2tqKD+StWrUCoHv37ty4cYM//viD/v37fzEQDQ4O/uzvY2NjuXLlCo8fP0Yul1OmTBlq1KjxyaQ/KSkpHDhwAEhdDrx27VqaNm2Khob4+JTm/v37rFy5kk6dOv1wz8nPWbhwIbGxsfTu3RsbGxtatGiRI+WMLC0t6dy5M8eOHWPbtm2EhIR89u/AxsaG5cuXs23bNn7//Xd+++035HI59+/fp1KlSll+3U5ISGD16tXcvn2bLVu2KIJDNTU1Bg4cSIsWLb7678Lb25uVK1diYmJC27ZtCQkJ4ebNm+zZs0eRcXnYsGFUrFiRHj16oKOTum2nTp06aGhokJycTO/evb9qDELeImZUAUmS8yryNs8+XkVPM/WP31S31GfvY1KgBGWK1CcmKQzfkCOcfbEcvw8eSNLnZ1iffrxCROQrNDQyvydOEIQclMWsvwYGBkq3TwWqxsbGqKurp5t9DAkJSTfbmcbc3DzD9hoaGhgZGX22TVqfWTnvp8aSmJiY7lt8VfsRsk4mk7Fx40YaN27MwIEDadu2LVZWVly4cCG3h5btihcvTuvWrZU+TP/6669ERUV9NgioWrUqjo6OLF++/JNt3N3dsbCwoFmzZowaNYoRI0bQsmVL1NXVmTx5Mm5ubvj7+5OcnMy9e/fYunUrrVu3BlJnvV6/fk3Lli3R1NRkwoQJREdHZ9+Ff8e8vb1JSEhg7NixuT2Ub0pXV5cNGzYgk8nYs2cPpUuXJjAwUCm3QHaQJIn169ezY8cO+vTpQ5kyZb54n8KFCzNz5kwAWrZsSenSpXFwcPiqmc9bt24xcuRITp48SYMGDWjVqhVz5szh1KlTvHv3jlu3bmW575SUFH7//XeqV6/OhQsXWLBgAbVr16Zdu3asW7eO2rVrc+nSJeLj41m2bBn9+/dXBKmQmgTt5cuX3Lt3j8KFC2d5HELek+8D1YSUWG4E7eXhB3dM9UpTVL8CAFYGX97nUqKQM3WL9aGWZQ+sDRx4GXkL//DrxCZlXKz8Y/xr/MOvAVDcpmH2XYQgCFmW03VUtbS0cHJyUspsCnD27NlPJt6oWbNmuvZnzpzB2dkZTU3Nz7ZJ6zMr582Ik5MTmpqaSv28e/eO+/fvq5w4RMi6xo0b06NHDwIDA5k0aRIhISE0b96cxYt//KRyu3btAlKX23+Kmpoaffv25eTJk4oZ0P/asmULxsbGPHjwgIiICCwsLKhWrRp6enrMmjWLVatWUbJkSdTV1alQoQLdu3fn6NGj3L17N135kXnz5tGwYUN69+7NwIED6dOnD0uWLMHf3z/7Lvw70bRpU6ysrLIlidX3RiaTYWJigiRJ9O7dm5IlS1KjRg1OnTqVbedYt24d/fv3x9nZmTVr1mT6flOmTGHTpk3ExMRQv359ihQpkqVgUpIkTp48ybBhwzAwMODevXu4u7tz7NgxJkyYQIMGDShfvjxdunTB3d1d5f4BRo0axeLFi5k7dy7e3t40bdoUACMjI54+fco///xD3bp1P7tyKW3pvvBjydeBanxyNDfe7SYmKQxn858x0S3J2+iHmV7Cm8ZA25RyRg0pUagqz8Kvcun1ei68WsPNoH34Bh/h2Ucv7r0/hXfQfgppW1Cz+hh0dbK2j0YQhO/P6NGjWb9+PRs3bsTPz49Ro0bx6tUr3NzcAJgwYQI9e/ZUtHdzc+Ply5eMHj0aPz8/Nm7cyIYNG5RKFowYMYIzZ84wf/58Hj16xPz58zl37pzSh8UvnRdSM67evn2bhw8fAqlJKm7fvq2YiS1UqBB9+/blt99+w93dHV9fX7p3707FihVp0qRJTj5sQgaKFSvGH3/8oajd+NtvvxEYGJjbw8pRAwYMQCaTMWPGDHx9fT/Zzs3NjVatWjF69GieP3+uWC4fHx/P6dOnOXv2LI0bN8be3p5r167x7t073NzcvrgUsmLFioq9fvb29pQrVw57e3uKFi3K5s2bWbt2LS9evGD06NGULl0aJycnIiIy/sL6R1S0aFFFIqz8qHz58gQGBlKgQAHc3d0VM4HZsYc/MjKS6dOnY2FhwZkzZ1ReWtu7d28uXbrEP//8g4GBAUlJSSrdXy6X06tXL1q2bImGhganT5/GxMREqY2mpiZHjx4lICCAJk2aqHyOJ0+esHz5chYvXszYsWPp27cvV65cAVL3nvv4+KjUn/BjydeBqt8HD5LlCVQyacGjDxe48/4YGmraOJm1R0u9gMr9lSlSDyez9lgbOGChXw4NmSbJ8kQCIm7yJvoBhjrFqGr+swhSBSGvUXHZr6o6d+7M0qVLmTlzJg4ODly6dIkTJ05gY2MDpM5Q/ru2aYkSJThx4gQXLlzAwcGBWbNmsWzZMjp06KBoU6tWLXbt2sWmTZuoVKkS//zzD7t371Yko8nMeQGOHDlClSpVFHsCu3TpQpUqVVi9erWizZIlS3B1daVTp07Url2bAgUKcPTo0R+2TuL3wNXVFTMzM/7880+KFSuW28PJUaVKlcLd3Z2QkBCqV6/OjBkz8PT0VEqgAqmzqn/++ScRERGUKlUKW1tb7O3tMTAwwMXFBXNzcyZOnEhSUhKNGzcGyFTWan9/f0VNV319fS5dukS5cuWUliJbW1srAt5bt27RrVs3ZDIZMpmMoUOHZtdDkWeVLVuWkJCQfFm+p3Xr1hw/fpxVq1ZRtGhRtm3bRkpKilJZsKx48eIFzs7OvHv3jlatWn02229mFCtWjKdPn2a6fXJyMv3792f79u1s27YNLy8vatSokWHbEiVK4O3tjbq6+mdrcmdETU0NdXV1QkJCAHj16hWxsbFoaGjQoUMHGjbM3ArEWbNmYWJigrGxMTt27FBpDELela/rqJ57sZwShaoSmRhCREIQjmZtMdDO/j1XcimZmKSPFNRK/RYq0bpItp8ju4k6qkJekpN1VK3WTENNV4U6qnHxBA6ckedfD4Vv63t5n/yeJSUlMWzYMLZv3050dDRNmzZl0aJF6UrShIeHc/DgQVavXo2DgwOVKlWiTp06VKxYETU1NSRJQk1NDZlMli7Yzci9e/eUzrFy5UpiYmL4/fff07X96aefCAsLo2PHjowYMQKAunXrcunSpa+8+rxt/fr1DBgwgISEBMX2hPwiLi6OkSNHsnbtWtzd3WnUqBGTJk1iwYIF/PPPP/zyy6cTc2YkLCyMjRs3Kp5fR44cUdQJ/Rrjx49n69atvHnz5ottnz17Rp8+ffDy8mLjxo2ZzqQ7aNAgTp06RUBAAJC69zQzX2jOmTOHyZMnc/78eZKTkzl69CgFChRg7NixmcrkLZfLMTMzo1ChQvj7+zNs2DCWLVuWqTH/6L7396Z8HaheebOFxJRYElJisDdqjLWBQ84M7D9EoJo9RKCaf+RooLo6C4GqmwhUBWXfy/vkjyAxMZHDhw8zduxYXrx4gaOjI82bN2fYsGFYWFgAqeVt1NXVlVYPpElLBLZu3Tr69euXqXO+f/+e8+fPU6JECZycnJQ+fIeGhrJz504GDBigtIfu/fvUMndGRkaoqf3YC9i6dOmCr68vjx8/zu2h5ApJkqhWrRqFChXi3LlzJCUl0bJlS3x9fQkICKBgwYJf7OP06dOsWLECd3d34uLiKF++PEeOHKFkyZLZMsaDBw/Svn17AgMDP7sK49WrVzg6OiKXyzl06BD16tXL9DlmzJjB4sWLeffuHePHj2fz5s14e3tja2v72fulpKTQuHFjnj59yqFDh6hatWqmzwmpqxicnJzYs2cPu3fvJiAgQCwZ/p/v/b3px37l/ILShWuSLE9CU00XC72yuT0cQRByhSwLN0EQcouWlhYdO3bkyZMn7N27l3LlyvH3339TtGhRqlevTq1atShVqhTFixenfv36itmdNL169QJSZ38aNGiAkZERJiYmtGnT5pOBlomJCZ07d6ZatWrpZoiMjY0ZNmxYukQvJiYmmJiY/PBBqiRJ3LlzR+Xg4kcik8no378/Fy5c4Pr162hqajJ79mw+fPiAt7f3F+9///59XFxcCAgIYOLEibi7u3Pz5s1sC1IBxbaQTyV6Sku6VLx4cZKTkzl48KBKQSrAtWvXiIyMxNbWluXLlxMZGZmpmU11dXW2b9+Oubk5tWrV4uLFiyqdd9y4cUBqZu8DBw7QrFkzle4v5F0/9qvnF5jp2dLQeiD1rPqiqS7KxQhCvpTF8jSCIOQuTU1Nfv75Z7Zt28aLFy/YuHEjFhYWGBoasnv3bnbt2sXr16+pU6eOUsmQtLqXnTp1wtjYmO7du/Prr7/i4+ND2bJlP5uwSUhvypQpPHr0iO7du+f2UHJVt27dqF69OnXr1mXOnDmKL0g+lewsNjaWOXPmUL16dSpWrIixsTEnT55k8uTJNGrUCF1d3Wwdn6WlQdE8AAAAfsZJREFUJZ06dWL8+PEZ1hs+ceIEly5d4s8//+T169fUr19f5XPMmzeP/v3706BBAx4/fkznzp25f/9+pu5btGhRrl27Rq1atRg4cKBK561SpQqQugTd0dGRWbNmqTx2IW/K9xWrNdTyT3HqrIhLjuTJxytEJLzDSNcG+yKNslwsWhDyJFWDTxGoCkKeY2hoSO/evendu7fS8Xr16tGsWTNq1qxJr169cHZ2plOnTnTu3DldHy4uLjRu3DhbsrXmFykpKYqSKVkJbH4k+vr6eHh4MGPGDKZMmaLYV/rfBEavX7/mzz//5PTp0wQEBNCmTRuGDBnCzz//TIECqifyVMXy5cspXbo0a9asYerUqUq/S6tL2rFjR/T19bPUf+XKlVm7dq3i50qVKjFv3jySkpIytXdZU1OTYcOG0bFjR16/fp3pRHF9+/Zl4cKFpKSk4OPjg6amJv369WP69OkULVo0S9ci5A35ekZV+LyoxFC83u7kY/wbiuhYERh1lzuhJ3N7WIKQvSSZ6jdBEL4LFhYWXL58mS5dunDixAl69uyJgYEBZcqUQSaT8eDBA0Xbe/fuoa2tTe3atXNxxN8XdXV1zpw5A6D4b36mpaXF7Nmz2bVrF0ePHgXg2LFjPHv2jB49elCsWDFsbGxYu3YtxYoV48aNG+zZs4eePXvmeJAKYGpqSv369RXlX/6tdOnSQGq24ezi4uJCVFQUW7ZsoXPnzshkMpYvX/7Z+6QtN7569Wqmz2NnZ5cuEF6/fj1jx45VfdBCnvJDzaiefL4ot4eQKdV65f0kQEVeq3P/wzk01XWoVrQL2hp6aH3Q5/nHa0QYVqOQjnluD1Hl5Fm54Xt5TuZnkpR6U6W9IAjfj0KFCinKLd29e5ejR4+ycOFCIDUjb0hICBoaGrx58wZ1dXWVEo5IksT8+fO5cuUKo0ePJikpKd/tj7OysgJQlBcRUmclY2Ji+PXXX7l9+za2trZoaGgwbNgwKlasiKurqyKbrZ+fH1FRUVSrVu2bjK1atWosXLiQjx8/KmXUffbsGQB6enrZdi5HR0eqVauGu7u7IvP18OHDOXz4MOvWraNEiRLp7qOlpfpKR5lMRqVKlfDx8aFBgwZcuHABgB07dnD58mXu3LlD4cKFv+ZShFwiZlSFdBJjI/ANOkREwjtsjeqirZH6olW8sDMA76L9Pnd3Qfi+iD2qgpBvVKpUiUmTJhEeHs769esJDw/Hzc2N5ORkbt++TdmyX06sKJfLOXr0KEuWLKF+/fpMmDCBY8eO0ahRI0X24dDQvJ85P7sYGxvj6OjImDFj2Lp1a76spZqRtNrUADt37uTFixcsXrwYFxcXjh49ytChQ2nQoAH29vZUr16dhISEbzKu/v37I5fLmTBhgtLx48ePU7ZsWRwcHLL1fAULFsTd3Z2goCBGjhzJ6tWrefTokaJ803+dP38eSH1eZYYkSfz999/s2LGDevXqceHCBQoWLMhPP/0EpGYx/nddcOH78kPNqAqq+xBwi9BnN0lJjCMlORE1dU1iw16jqaaLg/lPmOvbKdpqqetiU8iJF+HeGBcojnGB9N+ECcJ3R9XlvGLpryD8EPr27cvTp0+ZP38+tra2xMfHEx0djSRJn8zFIEkS7du35/DhwwCUKVMmXZtt27axYsUK+vbtS2xsLMOHD2f//v3cvn2bc+fOKdrt2rUrw72y36ODBw/i5uZGz549efToEbNnz87tIeU6Y2NjOnXqxJ49e7hw4QI7d+7kyZMnPH78GEmSKFu2LHZ2dhQvXpwXL15kaSYxK8zNzfnjjz8YPXo0EydOxNraGkmSuHr1KgYGBtmeh8TS0hJ3d3cKFy7M3Llz0dHRQV9fn+7du9O/f38GDx5MlSpVCAkJ4ffff2fLli20bNmSOnXqZKr/ffv2MXToUKZMmcKqVasoX748UVFRHDlyRNHmyZMn2XpNwrcjZlTzuaD7HkS+e0JyYhwGFnboGVthVq4eVSxcMddP/wZcxrg+BbVM8H67j3dRj3JhxIKQvWSS6jdBEH4MQ4YMAWD8+PG8fv2aJ0+eMG7cOORyOZIkcezYMf744w/FXtY7d+5w+PBhli1bRkREBH5+fhQqVAiAlStXIkkSe/fuxcnJiTt37nDjxg1q1qzJokWLeP78udK5//vz98za2poTJ04wYsQI5s+fz+bNm3N7SLlOJpOxa9cuhg4dyt69e4mKisLFxYX169fz7t07/Pz8OHz4MKVLl6ZOnTrfNFFl37590dXVZfv27UDqfs579+4REhKCv79/tp4rrZ5w+/btFQmbunXrxsSJEzl58iSOjo4cPnyY+vXrc+LECVatWsXRo0czFbg/evSITp06AVC1alWsrKwUS9H/rX379tl4RcK3JALVfM6u6UD0TUuSFB+FlVNritf4GeuqbSmim3GmNTWZOg7mbdHTLMKd4KNiiY8gCJ8lSRJPnz7l4cOHJCcn5/ZwBEGJlZWVYvYvrZzIvn37UFdXp2LFirRp04YpU6ZQoUIF+vTpQ8OGDVFXV+fnn39WzD6VKlUKgPj4eACaNGmCt7c3N2/e5P79+5w5c4br16/j7+/P9evXcXFxQUtLiwMHDhATE5M7F55D5s6dS/fu3enbty83btzI7eHkurTkQR8+fOD8+fMsWbKEPn36YG6emucjMjKSy5cvf/NAqmDBgrRq1YodO3bg5eXFgAEDgNREStWrV1cEl19LkiTu3bsHwMaNGxVJnGQyGbNnz2bLli0AuLq6EhkZydWrV3Fzc8tU7WFvb2/KlSsHwJw5c2jTpg0FCxZk0KBBAGhra+Pq6gpAmzZtlBKnCd8PEajmc5o6+pjb10OelEBKUnym7qOnZYi6mhYglkAKPwCxRzXHvHjxAgcHB8qWLUvFihUpXbo0t27dyu1hCYKSiRMnIkmSog5oQEAA2travH79Wqndu3fvKFq0KA8fPsTCwkJxfN26dcyePZs+ffqk61tHR4emTZsqEuVUq1aNkydP0rdvX7y9vSlbtiwnT/442fR1dXVZv3495ubm7Nq1K7eHk+dt2rSJ5ORkxazgtzRs2DAeP35MrVq1KFOmDM7Ozjg4OCCXy5k5c2a2nOP9+/e8efMGgAIFCiiSmKWpWrUqNjY2NGrUiFu3bmFra5vpvnv06MH/tXfnYVFW7QPHv8O+77uggCKKuIKiJi65a25ZrmH2qq9m5lamZpppWZapmbmVZWmpqblkamruihvu5C6IC4sg+z7w/P7gx7wRqIDCgNyf65pLeTjznHsGmGfuOefcB2DhwoUF1ts6Ojqiq6tLZmYmW7ZsoX79+gCcOHHiaR+O0AJJVAUGpnlV36Iu7UfJzS3WfYz1zNHXMSQ1O57rcUe4/OAvHqSGlWWYQpQN2Z6mzEyePJmMjAxWr17Nhg0bcHZ2ZtSoUdoOS4giLV++nDlz5uDn50dmZiaJiYma4wDjxo3jwoUL1K5du8D9mjRpwvvvv6+ZAlwcX3/9NWfOnMHHx4du3bpx8ODBZ/dAtExPT4++ffuyZMkSVqxYUW5FgiqbrKwsvvzyS/r376+VvT4DAwPZvHkz7dq1Y9OmTVhZWVGzZk369OnD77//Tm4x3w8+zj8LIqWlpbF//37OnTunOWZubs7169f566+/cHR0LPZ51Wo1EyZM4PTp0wWKMiUkJDBs2DBycnKAvA9O8qf3X7kiy9UqIymmJDC1dcW1cTfunt2JnpEpzr4vPvE+1S2bEJ9xjyMRKzXHMtQp2JtKgSVRyZR0lFRGVIvt8OHDrF27ljZt2gB5o0k1atQgPT0dY2NjLUcnREEmJiZMnTqVqVOnsm/fPr788kuGDh3Kyy+/zOnTp+nXrx8xMTGadXZPQ1dXl8aNG7N582asra1p27Ytu3btwsfHh1u3buHt7a2ZHloZff755yQmJjJy5EhWrlzJ77//joODQ4nOcfnyZQ4ePEh4eDhqtRpra2smTpz43Lx2rFixgrt37xaqvlueunfvrqlOXKtWLXbs2EGDBg1ITEx8JmtmdXR0UBSFn3/+mddee42kpCQaN27MmDFjmD9/Pvr6+oX2Py2OKVOm8OWXX1K9enVCQ0MxMzMD8ipyW1lZ4e/vz969ezExMdF8OPost90R5UdGVAUAzvXbY+VWj+jLh8lKS9QcVxSFTHUKcWm3Sc7835oFW5PqNKs2EF3V/15gzAxsyzVmIZ4JmfpbZqKiogps9+Hq6oqxsTHR0dFajEqIJ3vxxRf5448/ePXVV9HV1aVDhw4kJycTERHxTPsxMTHhypUrBAYG0qVLF6pXr07btm1xdnamYcOGLFiwQDM6VJkYGhqyatUqjh07RlhYGD4+Pvzxxx8F2jx8+JATJ05oti7Jzc0lOzubb775hkaNGuHj48Pbb7/Nhg0b2L59O7Nnz6ZPnz7PRW2M2NhYZsyYwbBhw6hXr562wwHypgJHRkby119/MWPGjFInqqGhofz3v/9l2rRpfPvttzx8+JBBgwYRGBhIs2bN+Oyzz1i6dClDhgwp8c8yOzubadOm8eWXX9K3b1/u3LmDi4sLX331FQA2NjbExMSwZ88elixZQlxcnOa+I0eOLNXjEdolI6pCw6leW24cWMWNA6twtOyLjkqP6NTrnIvaqmlTw7IJde3bA2BmYEM7jzdJy07g5sPj3IwPxsHUC0uj4k/fEELrZES1zKhUqkJFMfI/YReiMskf9SnN6M+TeHh48Ndff3H8+HFu3LhBw4YNuXr1Ktu2beOdd97hzz//ZMuWLc9kJLe8tWjRgkuXLjF8+HB69OjBf//7X/z9/dmwYQO7d+8u0Nbe3h6AuLg4evfuzaxZs+jQoQMmJiYAbN26ld69e7NixQqMjY05ceIE0dHR/Prrr8UqvlNR5ObmMnToUE1BoYrCx8eH8PBwbG1tMTQ0LPV5Dh8+zLfffgvkvd4vWbKEAwcO4OXlxc6dOxk3bhzu7u4MGDCAIUOG0LVr12KdNykpia5du3LixAk+++wz3nvvPb788ksmTZrE1KlTNVOA8/9G33zzTZo2bcovv/zClClTSjyiLyoGSVSFhrmDB17t/sPlnYuI0r2Oi3ldLAztC7RJVycRmxaOnYk7AHo6hlgYOuJt14YHabeISrmChaFDuZZZF+KpyD6qZUZRFGrXrl3g9SAlJYXGjRsXeGP58OFDbYQnRLHlr9cLDQ3Fw+PZL3HR19cnMDCQwMBAIG/d68CBAxk8eDA9evSgU6dOHDx4sFJeWx0cHNiyZQtffvklX3zxBcuXL6dly5Z8++23+Pv7Y2JiwoULFzh9+jQAr732Gr6+voXO07NnT1599dVC69yHDh3KqlWrKk2yOnPmTP744w927NhR4ZInFxeXpz7HoEGD+O6777hz5w5z5szh3XffpX379syYMUNT+bdfv34MHTqUK1euFCtRVavVDBgwgLNnzxIcHEzTpk2JjY3lgw8+APL2Li6Kv78//v7+T/2YhPZIoioKMLOvgamtG7cTQtBV6ZGSFYuJvjVp2fEAxKTeICb1Bi3dhmBh+L+RUxN9K1wt6hOWcJKH6RE0rdYPPZ3SfyInRHkp6d6oso9q8f3www/aDkGIp5aRkcHmzZsByn3d6EsvvcSiRYsYO3Ysly9fxsfHp1z7f1Z0dHSYNGkS48ePJzU1FSsrqwLfr127Nq+88spjz5G/L+m0adOwtbWlWrVqzJs3j/fee4+uXbsycODAMnwEz8a3337L7Nmz+eyzz4o9kljZWFhYsGvXLnr06MGbb77Jd999x/vvv8+IESPw9fXl9ddf5+bNm+jo6JCUlPTYc927d4958+Zx4MABLl26xI4dO2jatCkA8+fPJysri5s3b+Lp6VkeD01ogUopxhyspKQkLC0tSUxMxMLCojzieq41e32+tkN4rAfXTxAevAFQNCOmhrqmRKZc1rRRoYOjmRd17F7kQepNkjKjSVcnEpsWDkCbGiMx1i/j35Wcp69IV9Z23pqn7RCeC2XxGpR/zupzP0bHuPhT6nLTM4iY/IG8HooC5Dr5/OrVqxfbtm3jo48+YsaMGeXef0ZGBvb29rzyyiusXLmy0owclof09HQsLCxYtGiRZv/MiigjI4Np06Yxf/583nrrLb7++utKOTpeEllZWTRu3Jj09HQWLVrEpEmTePjwIQ8ePKB27dqo1WoePHhAREREoYrZhw8fJjQ0lG3btrF371769u1baJrwiRMnaN68OZ999hmTJ08uMobc3FwyMzMxNjbmzp07RERE0KhRoypVWKmyX5tkRFUUYu8VQPX7luiodDHUNdO8mDbkJQDUuZncTbrE9bjDRKVcRYUKQz0zMtTJADR3HVz2SaoQolLYsGEDW7ZsITs7mw4dOmg2lheiolMUhd9//51t27ZRq1YtrSSpkLcX65AhQ1iyZAl9+/blpZde0kocFdG+fftQq9WayuIV0enTpxkyZAg3b95k4cKFjB079rlPUgEMDAz4/fff6d+/PyNGjODAgQNMnTqVkJAQrl27pqlVsHXrVoYMGaK53/Xr1+ncuTPp6ekALFq0iLfffrvQ+QMCAjA3N2fKlCn06dOH69evs3HjRk0xMoABAwZgampKWFgY48eP57fffkNPT4/U1FQMDAzK4VkQT0sSVVEkE32rR35PT8cQdys/LA0deZAWRjXzepga2PAw/Q7GepYlTlJTs+K5FLMLHZUORnqWuFrUx9zQrtDU4ZjUG+jrGGFt7FqahyREkVSUcOpvmUXy/FmxYgWjRo3Cy8sLIyMjNm3aRFhYGJ9++qm2QxPiidauXcvgwYPx8vJi+/btWo0lf5/NkuzVWhWcPXsWAFvbirnrwLp16xg6dCi+vr6EhIQUufb2eebp6cmaNWuoU6cOZ8+e5bfffiMzM5POnTtz6tQpGjVqREBAQIH7HDx4kIyMDK5du4a+vj7u7u5FnvvOnTskJ+cNkAwfPpzDhw8DsGrVqgLtbGxs0NXV1UwzVqvVxMXFaZJZUbFJoipKzdrYtUDSaGPsVqrz5Cpq4jPuAqCj0uVe8kUADHRNMNG3wkTfGh2VLneTLgAQUG2gpl91bhYJmfdRocJYzwoTfbmIC1FRfP3110ybNo3Zs2cDeW8g3n77bUlURaWwfv16bGxsuHLlitan2+7cuRPI2zbHwcGBDz74gHbt2hXY/qkqun79Ot7e3jg6VrzdBn7//XcGDx6sKS70NJV0KzNvb2/atm3L22+/Td26dWnYsCFr166lefPmhIeH4+3tXaC9rq4uAM7Ozpr9UYuyfft2dHR0OHHihGbdauPGjblx44Ymge3ZsyerVq1CpVLh4+PD3r17AbCzsyM2NpaQkBDWrFmDiYkJHTp0oG/fvlr/WxcFyRpVLajoa1QBbI9FlUs/2TkZXIrZRXTqdZq69Mfc0J607HjSshP+/xZPalY8WTlp6OsakZoVT46ShZ6OIYqikKNk/euMKtq6jcBIz7xc4n8SWaP6bJTlGtUan32CTgm2fcjNyOD2lGnyelgMpqamXLx4UVPoIicnB2NjYyIiIsq9KE1Zk+vk82X37t107tyZr7/+mjFjxmg7HBISEti3bx+rV69my5YtmuMNGjTg9ddf56233qpyiVB2djbGxsZMmDCBL774QtvhFBAZGUmtWrXo0qULv/76qyb5qqoePnzIiy++iKIonD17Fh0dHfz9/QkJCeH06dP4+flp2oaFhVG7dm1Gjhz5yLW8ERER9OjRg8jISE6fPk2NGjUKtfH29ubKlSuar69cuULdunXp168fa9asKTD1t3bt2ly7do1vvvmG0aNHA3D79m0ePnyIj49Ppf7bquzXJvnYQGjVldj9xKVH4OvQBVuT6hjoGmNl5IKLuQ+1bFrSwLE7Ldxeo437f2npNoS27iNp7NQLT+sAalm3oL5dF16o9jqtqg1FT2UAKGTnZmr7YYnKRCnFTRRLenp6gU/EdXV1MTQ0JC0tTYtRCfFk0dHRAFy9ehW1Wq3laMDKyoqXX36ZOXPmMG3aNOLi4ti6dSve3t688847tG3blvXr13P37l1th1pu9PX1adWqFdu3b9esZ6wIdu/eTePGjTExMWHFihVVPkmFvOm3S5cu5cKFC/z0008Amn10Bw8ezP79+zVtPTw8mD59Ot988w0HDhwo8nzfffcd4eHh7N69W9NmxYoVmu+7uLgU2rKmTp063Lx5k5UrV6Kvr68pvmVgYEB2djYAR48eJTY2lgEDBuDu7k6TJk1wdXVlxowZBAcHF/u1QFEULl68WCFeOyo7SVSFVqVkxWGsZ4EKHe4nXyYs/iRXYw8RGrOHc1HbCLm/ibD4k6RmPURRFPR1jXA0q42ndQAelv5UM6+HiZ4VMWk3UCtZVDdviLmBnbYflqhMyilRXbJkCR4eHhgZGeHn56dZT/MoBw8exM/PDyMjIzw9PVm2bFmhNps2bdJ82uvj46PZQqMk/SqKwsyZM3FxccHY2Ji2bdsSGhpaoE1UVBRBQUE4OTlhampKkyZN2LhxY7Ee93fffceiRYs0N7VazapVqwocE6KiyV8TunjxYk6dOqXlaP6nbt26fPzxx9jY2NCzZ09+/fVXOnbsyPHjxxkwYABubm54e3vj5+dHmzZt2LFjB8WYOFdpLV68mNu3bzNs2DBycnK0HQ737t2jc+fOWFlZcebMmQq7dlYbWrRowaBBg5g4cSLXrl3DxsaGkJAQzWjrtm3bNG2nTp2KSqVi+vTpDB06lBUrVrB48WLNBzHR0dG4u7vTqFEjli1bhpeXFzNnztTc//3339fsn/rgwQPmzp3LwoULGTx4MObm5ujr66NWq9m4cSNZWVmEhYUBsGPHDrp3787evXtZvnw5R48eZdCgQXz55Ze0bNmSatWqMXHiRM6dO/fYv6tt27bRoEED9PX1n3itF48nU3+1QKb+/s+D1FtciN5Bdm7ep6G6Kn0MdE3Q0zHAQNcYlUqHh+l3yVXUGOqaYm3shpWRMyb61qhyFR5m3OV+yt9k5aThbulHbevWFaqankz9fTbKcuqv+ycln/obPq1kU3/Xr19PUFAQS5Ys4YUXXmD58uV89913/P3331SvXr1Q+7CwMHx9fRkxYgQjR47k6NGjjB49mrVr19K3b18AgoODCQwMZPbs2fTp04fNmzczY8YMjhw5oilOUZx+586dyyeffMKqVauoXbs2H3/8MYcOHeLq1auYm+dNoe/YsSOJiYksXrwYOzs7fvnlFz788ENOnz5N48aNH/m43d3dn/j3qFKpuHXrVrGex4pMrpPPl7Nnz9KkSRPMzc2Jjo7G2NhY2yE90u3bt7l79y41a9bk0KFDHD58GLVaTWhoKIcPH6Znz56sWbNG8/f8vNmwYQMDBgxg8ODBrFq1SqtrDN9//30+/fRTwsPDi5yOWtU9fPiQVq1akZaWxtmzZ7G2tkZRFBwcHBg+fHiB+gWzZs1i//79hUZV3d3dCQ8Pp3PnzuzatYtXXnmFTZs2FWjj5OTE/fv3UalU/Pbbb5rr5r9NmjSp0LRxXV1d9u3bR+vWrTXHMjIyCAkJYfPmzaxatYq4uDhq1KjBsGHDmDJlCvr6+gXOER8fT+vWrbl06RKQt15ZW9W6K/u1SRJVLZBEtSBFySVXyUUhF12VfqE3turcLOLT7/Iw/Q4P0++QnPWAXCVvOoW+jhHOpt7UsGyCqb6N5j4pWXEkZN4nV8nBzbwBKpV2LlySqD4bZZqoflyKRPWDkiWqAQEBNGnShKVLl2qO1a1bl969exdZWGjy5Mls27aNy5f/t3fxqFGjOH/+PMHBwQD079+fpKQkTZEVgC5dumBtbc3atWuL1a+iKLi4uDB+/HjNPnSZmZk4Ojoyd+5cRo4cCYCZmRlLly4lKChIcx5bW1s+//xzhg0bVqzn4Hkn18nnS0BAABkZGezcuRMXFxdth1MqiqKwefNm3njjDTw9Pfniiy+oXbt2kR+OVXbr1q1j4MCBzJkzh6lTp2olhqtXr+Lv78/rr7/O4sWLtRJDZXD79m0aNWqEtbU1K1aswN/fH2tra3755RcGDhxYZPucnBwMDAyYP38+P/74Iw8fPmT//v20bduW+Ph4bGxsCt0vf325Wq3mm2++oUaNGtSuXZuMjAzUajWLFi2iT58+ODk50aFDBzIyMoC8RLVbt26MHTuW9u3bF3pPmpWVxcGDB9m0aRPfffcdbdu2Zfv27Rj9433EsWPH2LZtG3PnzgXyphffvHkTMzMzrKysnuGz+WSV/dokVX+F1qlUOug+JpHU0zHA3tQTe9O8giy5Si5ZOankqtV504b/9SISnXqdczHbUcgFICzxNHVs2uBo6lV2D0JUXiWdzvv/bfNL3eczNDQssuBCVlYWISEhTJkypcDxTp06cezYsSK7CA4OplOnTgWOde7cmZUrV5KdnY2+vj7BwcFMmDChUJuFCxcWu9+wsDCioqIK9GVoaEibNm04duyYJlFt1aoV69evp3v37lhZWfHrr7+SmZlJ27Zti4w/X0ZGBnv37tV8kjx16lQyM/+3hlxPT49Zs2YVuMALURGkpaXh6upaaZNUyJut8PLLL1OrVi369etHx44dgbzlAPnr854XAwYM4MKFC8yYMYNhw4bh4OBQ7jEsXLgQMzMzZs2aVe59VyY1atTg5MmTjBw5kk6dOmk+JL1z5w5hYWF4eHgUap9v/vz5zJ9fcLAnISFB8//WrVtz6NAhAEJCQoC868y4ceMKxfHPNaxpaWns3buXBQsW4O/vz9atW+nYsSMtWrRg//79Ba7tBgYGdOzYkY4dO/LKK6/QsWNHBg0axOTJk3n33Xe5fv26Zo07gKOjI19//TVeXl5kZGSQmpqKiYlJSZ+2KkvWqIpKJ2+/VXNM9C0LJakZ6hTOxfyBuYE9ga5vEOA8AAMdY87GbCMxM/oRZxRVmUop+Q3Azc0NS0tLze1RW67ExsaSk5NTaPsER0dHoqKKnrkQFRVVZHu1Wk1sbOxj2+Sfszj95v/7pNjWr1+PWq3G1tYWQ0NDRo4cyebNm6lZs2aR8ef78ccfWb58uebrxYsXc+zYMc6ePcvZs2dZvXo1S5Yseew5hNAGBwcHdu3axdWrV7UdylNr0KABly9f5uLFi3Tq1KnA3+Tz5J133kGtVvPtt99qpf+9e/dqRgrF43l5ebF3716GDx/OZ599BuTNJPL09GTkyJEcPHiQAwcO8O677/Lrr7/y4MGDR57L2dmZoKAg2rRpw5IlS/jtt9/o0qUL7777brHjUalUdOrUiZ07d9K7d2/OnTvHjh07OHny5GN/nzp06MDs2bPZvHkzzZs358iRIwWS1I4dO7Jnzx5effVVzfUyMDCwwEwo8XgyoioqBUVRyFVy0NV5/K9sdNp1AJo6v4q+jiGm+tDMuR97bi/i2sND+Du9okluU7LiuBp/iOTMGHR1DDDVt8HNvAH2Jh6P60I8bxRV3q0k7cn79Pef02ieVL7+3x+qKIry2PWbRbX/9/HinPNZtPnggw+Ij49n79692NnZsWXLFl599VUOHz5M/fr1H/kYfv7550Kjvr/88otmu5o1a9bwzTffMHHixEeeQwhtmD17NhEREQQEBDzx97wyUKlU+Pr68tprrzFkyBBiYmK0MupYlmxsbOjSpQsLFy7kvffeK7RusKy1b9+e5cuXs3//fl588cVy7bsy0tHRYcWKFRgaGmqmSvfs2ZMVK1YUqOALeRWef/zxR9q2bYuTk1OB65ORkZGmkjBAvXr16NOnT4njadq0KadOnaJevXqoVCo6d+6Mqakpf/zxR5FbVCUnJ3P37l2mTZvGvn372L9/P9OmTcPOzo7Q0FA6duzIyy+/jJ5e3vvW3377DW9vb86cOUO3bt3o27cvtWvXZvz48c/d3+KzJImqqNCSMqP5+8FeEjOiUMjFUNcUE30rTA1s8bJsiaGeaYH2iRmRmOpboa/zv6RBV0efRg49ORezjVNRG1CUXLJy00nLTsBY35Jq5r5kqlO5lxJKTNoNGjv0lGnCVUkpp/5aWFgUa72HnZ0durq6hUZPY2JiHrlJvZOTU5Ht9fT0NFUkH9Um/5zF6Td/L9OoqCicnZ2LbHPz5k0WL17MpUuXqFevHgANGzbk8OHDfPPNN0VWI8537do1ateurfnayMioQKGTZs2a8dZbbz3y/kJoS8uWLTl9+jRNmjThvffe448//tBqkZ5nxc4uryp+YmLic/fmWKVSMXv2bJo2bcqRI0do165dufbfrVs3li9f/tw9r2Xt008/xcvLi3nz5hWo/Avw4osv0rhxY7788ksGDRoEgLW1NVu3bsXNzY358+eTnJzMiBEjuHTpEmq1Gnt7e/bt28fMmTNxdHTk1q1bXLt2jb///pvhw4c/8rp98uTJAh/SLl68mKSkJHbt2sWkSZN444038PHxIScnh3fffZdly5aRkZGBp6enpoDhjRs3mD17dpEfQteuXZv79+8TERFB8+bNuXnzJps2beLTTz/l888/p06dOvTo0eNZPrXPBUlURYV2NfYQyZkPqGPXDl0dA9KzE0jLTiAm9QaxqWH4O/XFzOB/5d8N9cxITb1CrpKLzj/WvTqa1MLRpBbRaTexNaqOnbE7xuaWuJnXR1cn71PXenYdORuzlfMP/qBuzou4mvtqrQiTKD//nM5b3PYlYWBggJ+fH3v27CnwKe+ePXvo1atXkfdp0aIFv//+e4Fju3fvxt/fXzNK0KJFC/bs2VNgxHL37t20bNmy2P16eHjg5OTEnj17NNV78wtF5BeByN/z9N9v0nV1dcnNzX3sY09MTNR8mgwUmr6Vm5tbYM2qEBWJpaUlCxcupGfPnqxfv77IQi+VzYEDB3BwcKBWrVraDqVM5E+vPHnyZLknqvmzXmTvzJIxMzNj7NixjB07ljt37mim2+/cuZN9+/YVWh4SHx/PtGnTCmz7smvXrkIfyrZv3561a9fy22+/aY5ZW1vzxhtvPDKWfyaY+dtSqVQqfvjhB1asWMGkSZPQ09Nj4cKFtG/fngkTJjBnzhwOHTrEV199xbhx41Cr1axYsaLIAk/Ozs44OzujKAqKovDxxx8zY8YMPvzwQ9LT07l8+TJ16tQpwbP3/JNEVVRo5ob2xKWHcy85lNq2gbha+AKQoU7m9L0NnIhcT4Bzf02y6mRam7DE01yPP4K3zf9Ki6tUKho59CRHyUZPx6DIvlQqFQ3tXyI0bi+hcXu48nA/LasFFagmLJ5DpRxRLYmJEycSFBSEv78/LVq0YMWKFURERDBq1Cggr8jQvXv3NNOXRo0axeLFi5k4cSIjRowgODiYlStXaqr5AowbN47WrVszd+5cevXqxdatW9m7dy9Hjhwpdr8qlYrx48czZ84cvLy88PLyYs6cOZiYmGg+va5Tpw61atVi5MiRzJs3D1tbW7Zs2cKePXvYvn37Yx+3q6srly5dwtvbu8jvX7hwAVdX15I/oUKUkx49etCpUyc+++wzBgwYUKG2Pyup/DfTI0eOrNSP43Hy99nUxtYwXbp0wc3NjXnz5hUo1COKz83NDTc3NyBv/We+7OxsUlNT+f3337Gzs8Pb25uXXnqJ7OxsbG1tOXHiBJC3HrtWrVp07dqVV199VXN/BwcHPv74Y15//fVix7Jq1Sq++eYbjI2NycjIICgoiAULFvDw4UNcXFyYN28ejRo1wtfXl+bNm7N48WI8PDzYtGkTmzZt4uzZszRq1OiR58/fJ/bbb7/lzp07AHzyySesXr26JE/Zc0+Gi0SF5m3bmsZOvchV1JyP2q75xNJIz5wA5wEY6prkVfj9/+OWhk5427QmLPEU1+OPkqv8bwNwlUr1yCQ1n66OHr52nfC2aU2Ooubw3R8Ivv8L91Muo86VkR9ROv3792fhwoXMmjWLRo0acejQIXbs2KF5MxUZGUlERISmvYeHBzt27ODAgQM0atSI2bNns2jRogJ7wbVs2ZJ169bxww8/0KBBA1atWsX69es1U5CK0y/Ae++9x/jx4xk9ejT+/v7cu3eP3bt3a/Zc1NfXZ8eOHdjb29OjRw8aNGjATz/9xI8//ki3bt0e+7i7devGjBkzNGX//yk9PZ2PPvqI7t27l+5JFaKcvP/++1y4cKHQLIfK5MCBA3Tt2pUXXnhBM1vieeTr60vjxo1ZuHDhE2d8PGuGhoZMmDCBn3/+mc2bN5dr3887fX19rKysCAoKomvXrnh6evL3339z/fr1AutZnZyc2LRpk2aJDMDWrVuJjo5mxIgRRU7fT0hIKPJ3RVdXFwsLC/T19TE3N2fLli1EREQwduxY9u3bp0lCa9SowZEjR9DX1ycsLExz/8aNG5OVlfXEx/bee+8BedWJ16xZw549e4r9vFQFso+qFsg+qiV3N+kil2J20anmO/+b0puTS3jiGa483E/76m+hr/u/LS6uPjxMWOJJjHTNcTarg6m+DVGpV7E2rIanVbNiTelNy07kQfotYlJvEJcRgQod/J1exta4+J/Uyj6qz0ZZ7qPqOX0OuiXYHiUnI4Nbs9+X18NiiI6OplGjRhgYGDBmzBhq166NSqXiypUrLF68GLVazdmzZx+5Vrcykevk80tRFNq3b09MTAznz59HV1dX2yGVSFxcHLVq1cLf359t27ZhbGys7ZDK1C+//MLgwYOJiIjQjM6VF0VRcHZ25j//+Q9z5sx5YltFUZ6Ltc/apigKt2/fxszMDDs7O80Slnr16j12i6klS5Zo6iRs2LCBgIAALC0tuXr1Kk2aNCn0tz537lymTJlCjx49Cq2nzc7O5urVq1y6dElzrvwktDhmz57NjBkzmDVrFtOnTy/Bo3+8yn5tkqm/olLIL46UlZOGkZ4ZiqIQm3aLsMST2Jt4FkhSAWpbt8LOuDr3kkOJSDpPjpKFiZ4VsenhGOmZU8283hP7NNG3pIZ+Y2pYNCYtO5Ez0Vs4E72NNm7DMdB9vi/0VUo5TP2tqhwdHTl27BhvvvkmU6ZMKVC5uGPHjixZsuS5SFLF802lUvHZZ58REBDAqlWrGDZsmLZDKjZFUXjnnXfIzc3l559/fu6TVMgraKOjo6OVbWJUKhXGxsbFGs0NCgoiLCyMvXv3VomfS1lSqVS4u7trvs7f6/RRFEXhyy+/LJAQ/nOqMMD48eNZsGBBgWP5y2927NhRqHK2vr4+vr6++Pr6MmDAgBI/hunTpz/TBPV5IR/jiErBysgFXZU+ZyO3EHL/N/aHLyEkejNGuubUsy38YqRSqbA1rkEDh260dvsPDe1fopXrUIz0LEjKKvl+qib6ljRyeIkcJYsk2Y/1+aKU4iaKzcPDg127dvHgwQOOHz/O8ePHefDgAbt27dJsUyNERdesWTNee+01Jk2aVGCfxIrujTfe4Mcff+Trr7+uEtVo//rrLz766CMmTpyImZmZVmJwdXXl3r17j21z69Ytfv75Z44dO1YoGRJl74svvmDSpEl06dKFd955hwsXLnDhwgWWL1+uSXD/XfwvPT2d8+fPM3ToUAwNDWUP8HIiU39FkbrWnqztEAqJTrnO7YTT6Kr0MTO0x8GiNlZGLiUqCnHh/u+kZMbS0uPRVd8eJTLpb87f30ag538xNShegSXFoHJMWth1fra2Q3isspz6W/P9kk/9vTlHpv6KguQ6+fy7f/8+1apV46uvvmLs2LHaDueJHj58iJ2dHaNHj9bsU/m8a968OQYGBuzfv19rU7Q7deqEpaUlGzZsKPL7sbGx2NvbA9CmTRtSUlI4ffp0eYZYpWzcuJGpU6eSlpbGW2+9xahRo7C1tcXNzY3w8PBCU69feOEFjh07RmRkpGYLN4DQ0FB8fX3Zt28fU6dOJSQkhA0bNtC7d+9yfkQlU9mvTTKiKioNRzMvmrkOxK/aK3jbtcHauFqJKxeaGtiSrk4qcd9XYw5w4f527Ew9MdEv/+lEQgghtMvJyYkGDRqwYsUKwsPDtR3OE2VlZaEoCl27dtV2KOUiOjqaEydOMGrUKK2uI7awsODWrVtFfi89PZ133nkHgJ9//pkOHTpw9epV2aarjKxevZpXX32VGzduEBAQwAcffKAptLRr165CSeqJEyc4duwYn376aYEkFdCM0CckJNC9e3fUajV9+vQpsP1NWZgwYQLVq1cnMTGxTPupqCRRFVWKjkqX7Jx0cpWi148oikJaVgIZ6hTSsxO5GrOf/TcWE/bwOO42zWjo0vO5LetfZcnUXyFEMejo6LBmzRpSU1Px9fVl3rx5ZGdnazusR8pf95i/F/Lzbtu2bejo6NC2bVutxZCRkcGpU6eoV69gHYzw8HCWLl1K06ZN2bBhA6tWrWLgwIFMnz6dlJQUzpw5o6WIn19r1qxhyJAhvPrqqyQlJfHbb7/xyy+/0LlzZ1566aUit0ZzcHDAxsaGefPm8dFHHxWoWJ+UlDfIYWBgwNSpUzl37hz29vasW7euTB/H/v37uXPnToHt6YpLURQePnxYBlGVH0lUxXNLURSSMqLJVKdojmX//xYzqZmxBdrm5GZz++FpDt9awaFbyzhwYzEHby4lIuEsTuZ1aODcg9r2bQoVbRKVn0op+U0IUTXVr1+fc+fOMXz4cCZPnoyvry9r164lJyfnyXcuZ/fv3wfAzs5Oy5GUj0OHDtG0adPHVnktS1evXuWVV14hKiqKDz74QHP80qVLeHh4MHr0aOzt7fnzzz95/fXX+efKu4YNG2oj5OdS/pT3oKAgIK8AUv52awMGDGDXrl38/vvvRU6D9fDwIDQ0lIEDBzJnzhwCAgLYunUriqKwbds2TExM6NixI3p6ejRs2JDevXsTHByMWq0us8eTv13Nm2++WaJ+Nm/ejI6ODh4eHmUVWrmoHAvohCgBRVGITr7K9dhDpGY9RKXSpb5zd1wsfPC0CSA6+QrHI9agr2OEOjcTM0M70rISyM5Jw9G8DnUc24OioJCLjUkNSU6rAkk+hRDFZGlpycKFCxk6dCgffPABgwYN4vPPP+fQoUOaN8QVwYULFwBo0KCBliMpH9nZ2VqpnhsaGso777zDn3/+iZ2dHZs3b6Z27dqa7y9fvhyAsLCwApVpz507B8CKFSswMTEpz5Cfa+PGjSMuLg6Ad999t8TTwJ2cnPj6668ZPnw4gwYNonfv3vTq1YujR4/St29fDAwMNG2DgoL49ttv+eGHHxgxYsQzfRz57O3tmTdvHunp6cV6LIqiMHnyZObNy9se0dXVlbt375ZJbOVBElXxXFHnZHIh8ndiUm5gZ+pJXceOXIn+i2sxB3Cx8EFP15CAGkHcfniKXCUXXR09UjJjMTd0wMOmGSYGsv60ypHtaYQQpdCoUSO2b9/O9u3b6d27N02aNGHv3r3UqFH8vbbL0q+//kr16tU1a/Ked66urhw4cICkpKRyKxpz7NgxXnrpJRwdHfnpp5/o168fhoaGBdrcuHGDXr16FUhSAS5evAhAv379yiXWqiAxMZG//vqLnj170rdv31JtE5OvYcOGhIaGsnjxYr766itq1qzJjBkzCrQJDAykTp06nDhxoswSVUCzrrk4wsPD+eKLLwBo3LgxBw4cwNLSsqxCK3My9Vc8Vy5G/kFMyg08bJrjYFaLpIwoUrJiyfhHASUDXWO87Fvj7dCWWnataFStN/WcOkuSWkXJ1F8hxNN46aWXCAkJ4d69e2zatEnb4QB5oyp79uxh+PDh2g6l3IwYMYKMjIwyTRj+acWKFbRq1Yq6dety/PhxgoKCCiWpAD4+Ppw4cYKsrKwCxzdv3kyzZs0qdRJRkeTm5jJixAhSU1OZPn06Q4YMKTD6WVpjxozh+vXrHD9+nFq1ahX6ft26ddm+fTsrV66sEEsA3N3d+fjjj/nPf/7Dt99+q+1wnpokquK5YmqY98lx2MPjXI7ey6244wC4WTXSYlSiQpNiSkKIp9SwYUO8vLy4fv26tkMB8vYTTU5OrlJrH729vfn000/ZuHFjmU91/O677xg5ciSjRo1i//79j002O3bsSFRUFFevXtUci4+PZ+fOnU814ify9jqdO3cubdu2pVq1amzcuJHFixfj7+9fbjF89dVXtGrViuHDh9OmTRuuXbv21Ofcvn07kydPJjIyssT3ValUTJs2jZUrV+Ln5/fUsWibJKriueJl15rmNYbQ0v0NOtSeSHuv8XT2nkw9py7aDk0IIcRzzM7OjoSEBG2HQUxMDAMHDqRjx450795d2+GUq9deew0zMzMWLVpUpv2cOXMGc3NzFi5c+NhRO0VRmD9/Po6OjtSsWVNz/LfffkOtVjNw4MAyjfN5lJKSwrvvvoujoyMODg5MmTIFHR0dhgwZohnZLk9ubm5s3LiRQ4cOcfToUQIDA596ZHX9+vV8/vnnuLi4sHfv3mcUaeUkiap4rqhUKqyMXbAwckRXRw+VSiXbyYjHkqm/QohnwdDQkPT0dG2HwR9//EFsbCw//vijVvcT1QZzc3PefvttvvrqK00xqbIwfPhwkpOTWbx48WPbrV+/nj179jBu3LgCBZM2btxI69atC+3VKR4tPDwcHx8fGjZsyLJlyxgwYAALFy4kOjqaffv2MXfuXJo1a6a1+AIDA9m2bRsxMTF88sknBao6l9S8efM0a8s7duzIl19++VTnq8wkURVCVG0y9VcI8Qzcu3dPa1uj5OTkcPHiRWbPns2IESMICAjA2dlZK7Fo27Rp0/Dy8mL06NFl1keTJk0AWLJkyWPbnThxAldXV6ZMmaI5lpCQwN69e+nbt2+Zxfc8atiwIZcvX8bW1pYTJ07w1VdfMW7cOBwcHLQdmkaPHj1o1qwZH374IfXq1SM3N7dU53F0dOTq1at07doVyKtefPv27WcZaqUhiaoQomqTRFUI8ZQUReHGjRtFFlspyz6vX7/O66+/jq2tLQ0aNGDGjBm88MILHDhwoNziqGiMjY3p378/N27cKNN+WrVqVWTxpH+qXbs2UVFRmj1tIW/9sFqtpkePHmUa3/PG0dERgAMHDlCvXj0tR/NoP//8M9WqVePy5ctcvny51OextbXljz/+YPfu3WzZsqVQ1eiqQhJVIUSVJlN/hRBP6/79+6SlpZVbonrs2DEaNGhA7dq12blzJxMnTuTAgQOEhobyxx9/YGRUtff/NjExISUlpdQjWk8SHh7OkSNHMDU1fWy7fv36oVarOXz4sObYli1bqFOnToXZxqgyuHPnDtevX2fBggUVfs/ZWrVqcenSJWrUqEHHjh05c+ZMqc+lUqno2LEjvXr1eoYRVi6SqAohqjYZURVCPKX8iq516tQp875++uknWrVqhampKVu2bOHmzZvMmDGDNm3a4OPjg5mZWZnHUNE1bNiQ1NTUZ1KB9Z8uXbpE37598fT0xNramrlz5z62vY2NDS4uLnzxxResXr2akSNH8uuvv/L6668/07ied/r6+kBeteTKwMrKiuPHj+Pm5kb79u25dOmStkOqtCRRFaKUFEUhPTuJ9OzEKrvI/bkgiaoQ4ildvXoVPT09PDw8yrSfixcvMnz4cIYOHcrRo0fp1asX5ubmZdpnZdSsWTP09PSeacXUtLQ0mjdvzm+//cayZcu4c+cO7dq1e+x9VCoVa9asQa1WM2TIEP744w8mTJjA22+//cziqgpSUlIAmDVrFomJiVqOpnicnJzYvXs3dnZ2fPLJJ9oOp9LS03YAQlRWl6P3EJGQN6VDT8cQS2MXrIycqWHTFANdYy1HJ4qrpNN5ZeqvEOLf7t+/j5OTk2bkp6zs2bMHgGXLllW5ir4lYWFhQdu2bdm1axdjxox5JufU19cnNTWVIUOG8N///rfY92vXrh3nzp3j77//platWk9c1yoK++e2T9nZ2doLpIQsLS3p3r07u3bt0nYolZaMqApRCokZUUQknMHTtgV+rq/iYROADjrcijvOjdgj2g5PlISMqAohntK9e/fKZasRCwsLsrOzK9WbdW3p0KED+/btIyIi4pmcLykpCR0dHVq1alXi+6pUKurVqydJain5+flpZivY2dlpOZqSS0pKIisrS9thVEqSqApRCglpd1GhQy27QOzNalLTriV+bq/iYRvAnYRz/B21m9SsyrGWoqqTYkpCiKeRnJzM5s2bS5XAlISiKBw/fpxq1ao9sYiPgFGjRmFnZ0fnzp0LjMiV1sGDB8nNzeWFF154+uBEiahUKr766isAfv31Vy1HUzJBQUFERkY+02noVYkkqkKUgkqli4KCClWB4zVtX8DDphlRyVc5cutb7sdflPWrFZ2MqAohnsKhQ4dISEhg1KhRZdrPRx99xMqVKxk/fnyZ9vO8sLS05K+//uLOnTtPvUZw/fr1DB48mMDAwHIpmCUK6969Oy+88AIffvhhmVVzLgv5ywGqeiXu0pJEVYhSMNIzAxTSsxMKHNfV0aO2fRva1ByFo7k3F+9s5eTNnzh/+zdC7/5BTOJVcnPVWolZCCHEs5dfzEitLrvX9nPnzvHxxx8zY8YM3n333TLr53nj5eXFe++9x6JFi0q9r+q1a9cYMmQIffr04c8//0RHR946a4OOjg4jR47kypUrxMXFaTucYtu2bRtmZma0bNlS26FUSvLXJkQp2JjWQEelx73Ei0V+X1dHn4YuPWns3p9cRU2mOpX41Ducvb2B/X8v4ELEFh4k35TR1oqgnEZUlyxZgoeHB0ZGRvj5+RXYV68oBw8exM/PDyMjIzw9PVm2bFmhNps2bcLHxwdDQ0N8fHzYvHlziftVFIWZM2fi4uKCsbExbdu2JTQ0tNB5goODefHFFzE1NcXKyoq2bduSnp5ewmdBiOfPqVOnMDIyonr16mVy/ocPH/LGG29Qt25dpk2bViZ9PM/effddnJycePPNN0s8EpeYmMiAAQNwdXXl+++/x9hYCiVqU9OmTQGeqjiRoihERkZy+fJlLl4s+1lvV65coUGDBjKiWkqSqApRCno6BtSw9udW3HGSMqKLbKNSqXCw8KKF1zCa1QyilfcoXqg9khr2ASRnRHMmbC3Hb3xPTOI1SVi1SFWKW0mtX7+e8ePHM23aNM6ePUtgYCBdu3Z9ZJGPsLAwunXrRmBgIGfPnuX9999n7NixbNq0SdMmODiY/v37ExQUxPnz5wkKCqJfv36cOHGiRP1+/vnnzJ8/n8WLF3Pq1CmcnJzo2LEjycnJBfrq0qULnTp14uTJk5w6dYoxY8bIyIIQ5I30qFSqMlk3euHCBV544QXu3LnD6tWrMTAweOZ9PO9MTEz47rvv2Lt3L1u2bCn2/aKiomjTpg1hYWH89ttvkmhUAHXq1KFHjx588cUXxb5PYmIihw4dYt26dYwaNQoPDw9cXFzw8fGhQYMG+Pn5MWbMGEJCQp55vDk5OQQHB1O3bt1nfu6qQt5lCFFKXnatMDO0I+TuRjLVqcW6j5mRPbUcW9PS67/4ewxGV0efs7d/5cSNH0hMiyzjiEWRymFEdf78+QwbNozhw4dTt25dFi5ciJubG0uXLi2y/bJly6hevToLFy6kbt26DB8+nP/85z/MmzdP02bhwoV07NiRqVOnUqdOHaZOnUr79u1ZuHBhsftVFIWFCxcybdo0Xn75ZXx9ffnxxx9JS0vjl19+0ZxnwoQJjB07lilTplCvXj28vLx45ZVXpIKlEEC1atVIT09/5tMRs7Oz6dWrF3p6ehw9epRGjRo90/NXJfkVme/evfvEtoqisHfvXpo1a8aDBw84fPgwDRs2LOsQRTG1bNmS8PDwJ7a7ffs2I0aMwN3dnTZt2jBw4ED++usvevbsyaZNmzh8+DDbt2/Hzc2N33//HX9/f/7zn/9o7n/8+HE2btxY6jizs7MZM2YMt27dKvP1688z2UdViFLS0dGjcbWXOXRrGQ9SbuBqVfwLmUqlwtbcA1tzD+JSwrlyfzfHb6zEzdYfL6e26OvKJ7flpbT7qCYlJRU4bmhoWGTilpWVRUhICFOmTClwvFOnThw7dqzIPoKDg+nUqVOBY507d2blypVkZ2ejr69PcHAwEyZMKNQmP1EtTr9hYWFERUUV6MvQ0JA2bdpw7NgxRo4cSUxMDCdOnGDw4MG0bNmSmzdvUqdOHT755JMyr3IqRGVw7Ngx3NzcSr1tRkhICLVq1cLS0lJzLDc3lzfeeIPbt29z9uxZvL29n1W4VZKtrS0Aqan/+1A5PT2d7du3c+/ePSCv6M2uXbu4efMmly9fJjAwkLVr11KtWjWtxCwKu3fvHosWLcLV1bXA8QcPHnDw4EHu3LmDo6Mjubm5LFiwgNDQUMaNG8eoUaOwsLDQ/B78U/fu3cnJyaFx48b88MMP9OnTB4CePXsClHrG23fffceKFSv4+uuv8ff3L9U5hCSqQpSaoijcjj8FgKlh6ff1sjVzp4XXcCJiT3Ej+iDRiZep7dweF6v6qFSlmWgqSqSko6T/39bNza3A4Q8//JCZM2cWah4bG0tOTg6Ojo4Fjjs6OhIVFVVkF1FRUUW2V6vVxMbG4uzs/Mg2+ecsTr/5/xbV5vbt2wDcunULgJkzZzJv3jwaNWrETz/9RPv27bl06RJeXl5FPgYhqoLs7Gw2btxIz549S/V6nZWVpXkT+8orr9C9e3ccHBz49ddf+fnnn1m7dq2M5j0DLi4uALz//vukpqZy9OhRTp48SVpaGgYGBujo6JCRkQHkJSjz58+nc+fOcg2uYM6fP09kZCSZmZmEhYVhZmbG4sWLWbBgAcnJyRgZGWl+jubm5mzdupXOnTs/8by6urqcO3eOF154QZOg5rtx4wa1atUqUZypqalMnz6dQYMGMWbMmBLdtyR27NjBsmXL+Prrr6lRo0aZ9aNNMvVXiFK6HX+a2/Eh2Jl6Ymn0dBu966h0cLcPoJX3m9iY1uDSnW2curWGrGJOKRZPqRTTfu/cuUNiYqLmNnXq1Md28e83PIqiPPZNUFHt/328OOd82jb5xUdGjhzJG2+8QePGjVmwYAHe3t58//33j4xfiKpg06ZN3Lt3jzfffLNU9zcwMNAkqhs3buSNN96ge/fu/P777yxdupQBAwY8y3CrtGPHjhEYGMgnn3xCamoqs2bN4saNG2RkZJCSkkJycjJqtZqtW7fSpUsXSVIroA4dOrBgwQJ0dHTw9PTEwcGBuXPn0r17d27dukVaWhpxcXGkpqaSlJRUrCQ1n46ODlOnTsXKyqrA8WHDhpGTk1OiOFevXk1cXBwfffRRie5XUhcuXOD333/H3d29wLKf54mMqApRCmlZCVx/cIjq1n74OHZ8Zuc10jenYY2XqZbc6P+3tllNU8/BGOqbP7M+REGlnfprYWGBhYXFE9vb2dmhq6tbaPQ0Jiam0EhmPicnpyLb6+npaaYuPapN/jmL02/+uq2oqCicnZ2LbJN/3MfHp8B56tat+8hiUEJUFcuXL6d169bUr1+/1Oc4efIk9evX5/r161y5coXMzExcXV0xMzN7hpGKFi1acOjQIVJSUjA1NS2QiOrq6srzXQkYGBgwfvx4Xn/9dQ4cOEBGRgYBAQF4enpq2tjY2JT6/D179uTevXv8+eef/Pjjj2zdupVDhw7Rv3//Yq9Xzc7O5oMPPuC1114rEFdZGDt2LF9//TX3799nwoQJtG7dmiZNmpRpn+VNRlSFKCFFUbgQuR19XWO87ALLpA87c0+aeQ5BnZvJqVs/o87JLJN+BGVeTMnAwAA/Pz/27NlT4PiePXseua9aixYtCrXfvXs3/v7+ms3DH9Um/5zF6dfDwwMnJ6cCbbKysjh48KCmjbu7Oy4uLly9erXAea5du/bcTjUSojh++OEHDhw4wLBhw57qPCqVivfff5+srCxOnz5NnTp1JGkqQ2ZmZjJaWslZW1vTp08fBg4c+MyTQRMTE/r06cOWLVvIyMjgu+++Y9OmTVy8WPR2hP92+vRp4uLiynTKbz4TExNOnz6t+drPz49ff/0VKNt9ncuTJKpClMCdhHMcCfuWhPS71HfuVqZFj0yNbGnq8RqZ2clcub/nyXcQpZI/olqSW0lNnDiR7777ju+//57Lly8zYcIEIiIiNJUAp06dypAhQzTtR40axe3bt5k4cSKXL1/m+++/Z+XKlbz77ruaNuPGjWP37t3MnTuXK1euMHfuXPbu3cv48eOL3a9KpWL8+PHMmTOHzZs3c+nSJYYOHYqJiQmDBg3StJk0aRKLFi1i48aN3Lhxg+nTp3PlypWnfoMuRGWWP/W9b9++T3Wehw8f8v333+Po6Ejbtm2fQWRCiGfB0NCQwYMHY2FhwZgxY/jzzz958OABAH/++SfDhw8nJiaGzMxMFixYQPPmzWnbti06Ojp4eHiUS4zOzs6sW7dO8/WYMWNo164d+vr6LFiwoFxiKEsy9VeIYnqYdofQqF04mHnh49gZW9OyH00yNbLF0aouyekxZd5XlVXKYkol0b9/f+Li4pg1axaRkZH4+vqyY8cOzYhkZGRkgWm0Hh4e7NixgwkTJvDNN9/g4uLCokWLCrwhbtmyJevWreODDz5g+vTp1KxZk/Xr1xMQEFDsfgHee+890tPTGT16NPHx8QQEBLB7927Mzf833Xz8+PFkZGQwYcIEHj58SMOGDdmzZw81a9Ys+ZMhxHPCwcGBNm3alGj/1DNnzvDDDz9gaWlJdHQ0t2/f5uDBgwDs3LkTe3v7sgpXCFEKRkZGbN++nSFDhtClSxcAfH19uXTpEgBbtmyhVq1ahISE0Lt3b1544QVefvllHBwcyi3G/CU+e/fuZevWrXz77bfA8zGqqlKKUXc5KSkJS0tLEhMTi7UmS1R+XWtP1nYIT6ZbfhMC7ieGcilqJ6YGNrRwH4qOqnh9KwZP/1lQ6N0/SEqPpoXXf57cuJR2nZ9dZud+FsriNSj/nA3+Mwddg+KPjOdkZXDh+/fl9VAUINfJqufdd99l2bJlJCcnF3sq6eeff87kyZNxcXHB2dmZatWq0a5dOwYOHPjINetCCO1TFIWrV68SEhLCjh078PX1xd3dnUWLFpGUlMQPP/xAs2bNyj2us2fPatalpqWlsXz5ciZMmIC5uTmXL1/G3Ny8Ul+bZERVFGnntbnaDuGJurqOLZd+UrIfciHmd1yMvfGxaotOSnrx72z59EWQcnPU6KAD6tynPpcQQoinpygKq1at4rXXXntikpqens61a9eoX78+4eHhmJubc/fuXVknKUQlolKpqFOnDnXq1GHw4MEkJiayY8cOvv32W7y8vLhx4wZXr14t1z2Pt23bxvnz5+nTpw+bN2/mvffe4+DBg1SrVo1z585hZ2dXaM/3ykYSVSGe4E5qKAY6xvhat0dHpVvu/atUuiSk3+VU+M8kZURT27EtbtbPV1U3rSqHqb9CiOfLnTt3iIuLo3v37k9sO2jQILZs2YKVlRUJCQm4ublJkipEJffLL78wevRoIC+JzZ+geu/ePc2+vWVp27Zt9OrVq8CxxYsXo6ury9GjR7GzsyvzGMqDFFMS4gnUSiZ6OoaotPTnYmnsjK6OAblKDvZmNfk7chfxaXe0EstzqYyr/gohnj/nzp0DYNGiRYUqYv9bQkKC5t+PP/6YCxculHF0Qoiy1qZNGwACAgL46quvmDJlCgDR0dFl3ndsbKxmX/OgoCAgb8s8lUrFsmXLCtSqqOwkURXiCZyNa5OmTiAhK1Ir/btZN6ZDnXcJ8BiCb7WXAEjNjNNKLM+j8qj6K4R4vpw4cQLIK16SX7jkUfr166f5v7OzM1ZWVmUZmhCiHPj4+DBgwAAePnxI+/bt+eyzzwCoU6dOmfYbGhpKp06dUBSF1atXc+3aNezt7Tl58iTJyckMHz68TPsvb5KoCvEEtoZumOnZcDH+L9LUiVqNRVFyUaFDVk6aVuN4rsiIqhCihG7fvq35f/PmzR/b9vPPP8fb25vNmzcX2IZKCFG5TZ06lYiICOrVqwfAzJkzMTY2LpO+Tp06xbBhw6hfvz6pqanMmTMHX19fTpw4wdq1a/H29i5RBfLKQtaoCvEEKpWKJrYvcSp2C6fjtvGC/QB0dfS1Eouujj7VrBsSFhuMo7k3poa2WonjeaJSFFRPLn5eoL0Qomq7d++e5v+tW7cuss3Dhw/57bffCA8PZ926dfTu3bucohNClIcGDRpw6tQpzp8/T/v27XF2dn7mfSiKwsKFC5k0aRLVqlVj3rx5dO7cmYYNG+Lo6EirVq3w9/d/5v1WFJKoClEMJnqW+Nn24EjML9xPv4qbqa/WYqnt0I741AhOhP9EY7dXsDZx01oszwUppiSEKAG1Ws3p06cZPXo0ffv2LXK/xPPnz9OpUydiYmKwtLSkQ4cOWohUCFHW6tevT/369cvs/EuXLmXixIlMmjSJOXPmoKury5AhQ7C1tSUsLKzMRnArCpn6K0QxmenbYGNQjaj0m1qNQ1/XiGYeQzAztONk+GrORGwgIe2uVmOqzGSNqhCiuHJzc2nRogUpKSkMGDCAF198sch2CxYsIC0tjYsXL3L//n1sbWX2ixCi5H799VcAjh49ypdffkmHDh1Ys2YNn3zyyXOfpIIkqkKUiJNxLeIyI8jISdFqHAa6xjSt8Rr1nLuRnp3AyfDVPEi+odWYKi1ZoyqEKKaEhAROnz4NwLBhwx7Zrlu3bqjVatq3b8/MmTPLKTohxPNmyZIlzJw5ExMTEz7++GOio6P5/fffH/v68zyRqb9ClIC5ft6+VEnZDzDSNdNqLCqVClfrRrhYNeBU+BrC405gb15LqzFVRiUdJZURVSGqLhsbGzp27MiePXv45JNPHtmuX79+mJiY8Oqrr3Ls2LFyjFCIPIqiyH69zwEfHx8+/PBDbYehNTKiKkQJWBk4YW1QjWuJwZrNnbUtOyeN9OwEDPSev2pv5UJGVIUQxXT//n327NnDqlWrePXVVx/Z7tChQ/Tp0wdzc3MZURXlbseOHZiYmPDyyy+zZs0abYcjRKlJoipECahUKjzMGpOijiNFrf29TNW5WZyJyFu/UNux6LVS4vFkjaoQorjyP6C0t7d/ZJvz58/z1ltv0aRJE8LDw6WQkih333//PRkZGWzevJmlS5dqOxwhSk2m/gpRQnZG1dFXGXE/7SrelnZaiSE3V83N2CPcS7iIOjeTZjVew1jfQiuxCCFEVWFra4uOjg4hISF069at0Pf37dtHhw4dcHNz48cff8TExOSJ54yNjcXW1lamaYpnZtiwYZiZmWFmZsaoUaO0HY4QpSYjqkKUkI5KF2eT2txLu4w6N6vc+1fnZHLmzq+Ex53AwdyLAPchWBg7lXsczw2Z+iuEKCYjIyOaN2/OqlWrivz+2bNnURSFS5cu0aRJk0eeZ8WKFahUKlQqFfb29rRu3ZrU1NQyilpUNV27dmXVqlUsXrwYX1/tbacnxNOSRFWIUvAwa0xWbjoxGWHl1qc6J5N7CRc4eXsNiemR+FUfgI9zF8yNCu/hJ0pGpv0KIYqrbt26GBkZsWbNGtRqNQA5OTls2rSJefPmAdCgQYNH3l9RFEaOHFng2JkzZypM3QMhhKgoZOqvEKVgoJs3nStXySnzvhQll4iHIdx4cAh1biaWRi40rTFYRlGfFUXJu5WkvRCiylq0aBG1a9cmKCiI8ePHs3DhQq5cuVKgCrCiKOTk5KCrq1vo/iqVil9//ZWbN29iZGRErVq1CAwMxMxMu5XkhRCiopFEVYhSSFMnAGCqZ/XMzpmpTiUjOxFjfSv0dA1JTL9PbMpNYpKvk5L5AAfz2rhY1sfRwvuZ9SlkexohRMmYmJgwZswYpk6dSlxcHEFBQZrvnTx5krS0NNq1a0ePHj2YOHEiTZs2xdLSssA5HlcxWAghRB5JVIUohZTseABM9ayf+lzZOelcjd7PvYTz5C+A1FXpk6Nko69rjK2pBz7OXbA2cXvqvkQRSrruVBJVIaq8KVOm0LVrV1577TUuXboEQMOGDYmLi6Njx44sXbqUUaNGsXPnTgC++eYbRo8erc2QhRCi0pFEVYhSSFXHY6BjjIGu8VOdJzE9krN3NpCTm423Y3tsTKqTkhlLpjoFG9PqWBg5oVLJUvKypMrNu5WkvRBCNGzYkAsXLrBnzx4WLVpEcHAwXbt2xcjIiJycgstCmjVrpqUohRCi8pJEVYhSSFE/fKrR1KT0KC5H7SYh/S6mBrY09xiK0f9vLyNrT8uZjKgKIUpJpVLRqVMnOnXqBMDp06c5evQoKpWKvn37YmlpibGxcZFrVYUQQjyeJKpClEJS1gPsjKqX+H6Z6hRuPTjKnfizmBra0qBaL+zMaqKva1QGUYrikDWqQohnxd/fH39/f22HIYQQzwVJVIUooezcTNJyErA0KNmbkdtxJ7kavQ9dHQNqObTB3bYZOir5lF3rpOqvEEIIIUSFI4mqECWkp9JHR6VHVk5Gse9zK/YY12MOUN2mKbXsW6H/lGtbxbMjI6pCCCGEEBWPVGkRooRUKh0s9R25k3oRdW7WE9srisLNB0eobuNPXaeOkqRWUUuWLMHDwwMjIyP8/Pw4fPjwY9sfPHgQPz8/jIyM8PT0ZNmyZYXabNq0CR8fHwwNDfHx8WHz5s0l7ldRFGbOnImLiwvGxsa0bduW0NDQImNSFIWuXbuiUqnYsmVL8R+8EEIIIUQJSaIqRCnUsmhGWk4i15KCycnNfmzbDHUSuYoaM0P7copOlIhSilsJrV+/nvHjxzNt2jTOnj1LYGAgXbt2JSIiosj2YWFhdOvWjcDAQM6ePcv777/P2LFj2bRpk6ZNcHAw/fv3JygoiPPnzxMUFES/fv04ceJEifr9/PPPmT9/PosXL+bUqVM4OTnRsWNHkpOTC8W1cOFCVCpVyZ8AIYQQQogSUinKkxdcJSUlYWlpSWJiIhYWFuURlxBP1NV1rFb7vxi/l3tpl1Ghg5NxLepYtsJQ17RAmxSjbE5H/IIKHQI8hmCoZ6alaB9vV+gn2g7hscriNSj/nM27z0ZPv/jFrNTZGRz/Y3qJYgkICKBJkyYsXbpUc6xu3br07t2bTz/9tFD7yZMns23bNi5fvqw5NmrUKM6fP09wcDAA/fv3JykpSbNPI0CXLl2wtrZm7dq1xepXURRcXFwYP348kydPBiAzMxNHR0fmzp3LyJEjNfc7f/48L730EqdOncLZ2ZnNmzfTu3fvYj3+qkCuk0IIISqayn5tkhFVIUrJ16o9LzgMwtuyJbGZERyKXs2t5JACI6yXo/5EhS7N3F+rsElqlZdfTKkkN/Je/P95y8zMLPL0WVlZhISEaLavyNepUyeOHTtW5H2Cg4MLte/cuTOnT58mOzv7sW3yz1mcfsPCwoiKiirQxtDQkDZt2hSILS0tjYEDB7J48WKcnGT7JCGEEEKUPUlUhSgllUqFub4t7maNCXQMwtXEh+tJwRyM/omo9BvEZd4hLjWMmvYtNXukioonv5hSSW4Abm5uWFpaam5FjYwCxMbGkpOTg6OjY4Hjjo6OREVFFXmfqKioItur1WpiY2Mf2yb/nMXpN//fJ8U2YcIEWrZsSa9evYqMVwhRcqmpqaxfv542bdqgp6fH6tWrtR2SEEJUKFL1V4hnwEDHiLpWralh1pBL8X9x7mHedExbU3ecLeppOTrxWCVdd/r/be/cuVNgGo2hoeFj7/bvtZ2Kojx2vWdR7f99vDjnfNo227ZtY9++fZw9e/aRsQohniwpKYlDhw6xYcMGfvrpp0LfP336NEFBQVqITAghKiZJVIV4hkz0LPG1bs/RmLW4GHtTp3p32Su1givt9jQWFhbFWu9hZ2eHrq5uodHTmJiYQiOZ+ZycnIpsr6enh62t7WPb5J+zOP3mT+ONiorC2dm5yDb79u3j5s2bWFlZFThP3759CQwM5MCBA096CoSo0hRFYcGCBXz44YekpKQU+J63tzft2rXj1VdfpW3bttoJUIhylpycTFxcHDVq1KhQBfoOHz5MfHw8PXr0qFBxVWUy9VeIZ8xEz5IOzv+lnnU7SVIrg1yl5LcSMDAwwM/Pjz179hQ4vmfPHlq2bFnkfVq0aFGo/e7du/H390dfX/+xbfLPWZx+PTw8cHJyKtAmKyuLgwcPatpMmTKFCxcucO7cOc0NYMGCBfzwww8leSqEqFLUajUrVqzAx8eHd955h86dOwPg7OxMeno6iqJw5coVli5dyosvvoiOjrwlq4pyc3M5cuQI06dPp3v37tStW5dq1arh6+tLt27d+PHHH7UdooaiKGzYsIEHDx6U6v4ZGRksX74cDw8PPDw8qFOnDsuXLycrq+it/i5dusT06dMZPXo0LVq0KFTZvii5ublER0eTkJCgOZaZmVmgj+zsbK5du0ZwcDCHDh1i7969rFmzhtatW9OrVy9WrFhRqscnnj0ZURWV1s67i7QdgngelHLqb0lMnDiRoKAg/P39adGiBStWrCAiIoJRo0YBMHXqVO7du6eZDjhq1CgWL17MxIkTGTFiBMHBwaxcuVJTzRdg3LhxtG7dmrlz59KrVy+2bt3K3r17OXLkSLH7ValUjB8/njlz5uDl5YWXlxdz5szBxMSEQYMGAXmjrkUVUKpevToeHh4lfzKEqALOnDlDUFAQly9fpmnTpjg6Omq2lzI3N8fAwEDLEQptys7OZseOHURGRrJp0yb27t2LnZ0dzZo1o0uXLlhYWBAfH8/x48cZOnQou3fvZvz48dSqVQtra+sC58rNzX3mH3LExcURGhqKmZkZiYmJREREkJOTw6lTp1i2bBmurq5Mnz4dNzc3EhIS8mp2mJuTkpJCTk4O9erlLXlKTU3l4cOHJCUlkZ6ezowZM7h//z6vv/46vXv3Zt26dbz55pt8/PHHdO/eHT09PdLT07l79y7Xr18nLCwMW1tbqlWrhre3N6GhoTRv3hwnJydMTEzo1q0bAQEBuLq6olKpOHnyJIsXL9ZswWZtbY2BgQHR0dEA2NjYYGtrS3h4uKYw4T85OjpiY2PDuHHjOHjwIEZGRmRkZJCVlUVycjI5OTnk5OSQm5uLkZERFhYW1KlTh7fffhsHB4dn+jMQeSRRFUJUaSpKOPW3FH3079+fuLg4Zs2aRWRkJL6+vuzYsYMaNWoAEBkZWWBvUw8PD3bs2MGECRP45ptvcHFxYdGiRfTt21fTpmXLlqxbt44PPviA6dOnU7NmTdavX09AQECx+wV47733SE9PZ/To0cTHxxMQEMDu3bsxNzcvxSMVQgD85z//ISYmhu+//54xY8Zgbm7O0qVLCQgIoEGDBjJ6WoUoisLff//Nrl272LNnDxkZGVy9epWoqChUKhXu7u6sWLGCYcOGFfq9yM3N5eOPP2bZsmX88ssvADRv3pxXXnkFW1tb9u7dy6+//oqnpye1a9fG3d0dZ2dnzMzMqFevHi+++GKx44yLi+PQoUOsWrWK33//naJ2r7S0tOTtt98mJCSEN998k9zc3BI9F3369OHTTz/F29sbgN69ezNjxgy++OILTp48SU5ODoaGhri6utK7d2/atm1Lly5dNB/sqNVqtmzZwsWLF3nw4AE7d+5k8eLFmvMbGhrSv39/+vTpQ3p6OhEREaSnp+Ph4YGiKNy/f58HDx5Qq1Yt6tati6OjI/r6+ujp6eHo6IipqSmZmZnMnj2b/fv3oygKRkZG6OvrY2FhgZ6eHiqVCh0dHTIzM0lMTOTjjz/m448/Zvfu3TRr1gxLS8sSPSfi8WQfVSFEhVeW+6i+0H4menol2EdVncHRv2bK66EoQK6TVVtsbCwXL16kQYMG2NjY4Ofnh5mZGW+99RYDBgxg+PDhjBo1iiZNmsjat0osMzOTjz/+mPPnz9OsWTMmTpyIiYlJgTaRkZEcPnyYnTt3cvnyZa5cuUJiYiJGRka0adMGa2trHBwcGDZsGA0aNChWv1lZWZw+fZobN26wbt069u7dS3Z2NrVr1+a1114jJiaGW7duER4eTnR0NMnJyWRnZ/PHH3/QtWvXx547Li6OkSNH8ttvv6EoCl5eXkyaNIkXXniB1NRUrKyscHV1RV9fH5VKha5u3pKm9PR0Hjx4oBnhTU5OxtjYGD09PUJCQjA0NMTKygpzc3MsLCxISUnBxcWlFM/64yUlJREdHa3ZF9zMrHy3Avz888+ZM2cOiYmJqFQqvLy8qFmzJjVq1MDd3R1PT0+ys7PZu3cvAQEB9O/fv1DNh7JU2a9NkqgKISq8skxUW71Y8kT1yD5JVEVBcp2suvbv389LL71EWloajo6OvPzyyyxdupSVK1cydOhQPvroI77++mvi4+Pp2LEjv/32W7m/mX4epaSkFPk8KopCTk4Oenp5kwazsrJ48OAB6enp6OjoYG1tjZWVVbE/MIiLi+PChQuEh4fzww8/cPLkSVq3bs2+ffswMDBAX18fb29v/vvf/xISEsKyZcsAaNCgAY0aNaJu3bo0adKEwMBAjI2Nn8ljz83NJTMz85HnS01NpXr16ri7uxMSEqI5npGRwdmzZ4mPj+fhw4eEhYWxceNG7t69yyeffEK3bt2oXr36M4mxKlEUhWvXrnHs2DEuXLjArVu3iIiI4NatWyQlJQHg6enJ7du30dPTIyAgADc3N5ycnGjSpAkDBw4ssw+wKvu1SRJVIUSFJ4mqqOjkOll1DRs2jEOHDrFu3TpefvlloqOjadOmDX/++aemjVqtZtu2bQwePJjBgwezfPlyzciUKJ6oqChOnz7N1atX2bFjB/v27aNatWqkp6czadIkBgwYwOLFi/n555+JiorC2NgYKysrIiMjC53LwMAABwcHpk6dipubG/fv3ycjIwNFUcjNzdUkcdeuXSMkJEQzDbZRo0Z8+eWXvPjii5o4srOz2b17N3/99RdmZmaMGTOG0aNH4+bmVt5PEQA//vgjQ4cOBWDs2LF89dVXADx48IB27doRGhqqaWtnZ4evry8LFy6kYcOG2gj3uaYoCgkJCeTk5GBra0tUVBTr16/n6NGjREdHExkZyY0bN3Bzc6N9+/YMGjSIGjVqoCgKJiYmmg9bLC0tC43cF1dlvzZJoiqEqPDKNFFtV4pEdb8kqqIguU5WHYqicO7cOf7880/+/vtvtmzZQqtWrdixYwd///03jRo1Ijs7m40bNxZYVw7w3XffMXLkSMaPH8+XX36ppUdQfhRFYdeuXZw8eRJLS0teeeUVfvjhB3744QdcXV15/fXXMTc3JywsjPv375OamoqtrS3NmjXj/Pnz/P3334SHh3P79m1iY2MBMDY2plmzZvTs2ZMHDx6QmJjI8uXLyc3NRV9fn7feeov69etz5MgR7t27x6uvvoqLiwvGxsYoikJcXBzR0dEcPXqU9evXa/aNNjIy0kxttbS0xMPDA3d3d1588UVatGhBjRo1MDJ69LUiPj4ec3NzTXKhLcOGDeP7778H8kZQDQ0N+f7775k6dSq5ubls3rwZT09PLC0tMTU11WqsIm8LuJ07d/Lrr78WqFXxb5aWltSpU4fmzZvj5+dHr169inWtqezXJklUhRAVXlkmqoFtPyxxonr4wEfyeigKkOtk+VEURVN0xtHREQMDA5ydnbG3tychIYHPPvuMVq1alVn/P//8M6+99lqBY/mjbNeuXWPChAkoikJSUhL3798v9PswZswYtm3bRnh4+HNdVOnOnTu89957rFu3Djs7OxISElCr1QD06NGDs2fPcvfuXSBvX2pXV1fMzMy4ePEi6enp2NnZ0aBBAzw9PalRowbe3t6aKZP/nib5999/c+vWLZo0aVKidZD5/VerVu25WTu8bNky3nzzTSDvg5Fjx47x/fffM3jwYGbNmoWnp6eWIxRFycnJ4datW9y7dw8dHR3S09NRq9WaUdm7d+9y8eJFTp48yY0bN3BwcNAU5Hqcyn5tkqq/QoiqLff/byVpL4QA8pLGiIgI7OzsCozOpKSkYGJi8kwTMbVaja+vr2arCUDz/zt37miOBQYGkpOTQ0ZGhqa4TI0aNXBycmL79u28/fbb9OvXj3bt2qGjo4Oenh5dunQpNBIWGRlJXFwcvr6+BY77+PgUiu2dd97R/N/Y2Bg7OzsURSmycmrv3r355ptv2Lx5c6ER18osKiqKnTt3cubMGY4dO8aZM2ewtrZmzZo1DBo0iAcPHrBv3z4UReHll19GT0+PxMREIG8bkfw33DExMdy7d4+GDRsW+/fHx8enyJ/Lk7i6upb4PhVds2bNcHNzIzIykuHDh1O9enUWLlzI2LFjn5tk/Hmkq6ur2SbucdatW8fAgQNp3Lhxlfh5yoiqEKLCK8sR1daBM0o8onro8Cx5PRQFVNXr5NatW+ndu7fm63r16hXaAinf7Nmzadu2LV5eXmRkZBAcHExwcDD9+/enZcuWT+zrnwVy6tWrh5GRESYmJsTFxXHt2jVUKhUeHh7o6OiQmJhY5NpEyEtk//77b+Li4jTHLC0tsbKywsbGBjc3N1xdXVmzZg1JSUnY29uTkpKCq6sr3bt3p169eoSHh3PkyBHOnDlDcnJygfM7OTnRvHlzJk+eTPPmzQv1n5WVhaWlJT179mT9+vVPfNyVwR9//MFLL70EQO3atWnWrBmdO3emZ8+eVervoSJRFIXs7GzZs/c5EB0dzfLly/n777/ZsGEDr732GitXrizWNPPKfm2SEVUhRNWm/P+tJO2FeA4oikJGRgZqtZqEhATu3bvHpUuXOHPmDOfOneP69euYmppiYWHBgwcP0NPTo0aNGujq6pKSkkJkZCS6urro6elppnSGhobSr18/jIyMyMjIKNDf9OnTC8Xg6OjI4sWLGTJkCOHh4fj4+NC6dWucnJxo2LAhVlZW5ObmEhkZycOHD1m4cCHjx48nNDQUPT093nvvPaZPn05GRgbz58/n/v37qFQqXFxc8PT0xNPTEwcHB27cuEFCQgKOjo68+OKLqFQqHjx4gEql4s6dO+zatYu0tDRiY2MJCwtj165dDBw4kFatWnHjxg0sLS25efMmP/74I/Hx8djb29OkSRMmT56Mr68vLi4uODg44OTkhKGhYZHP9XfffceOHTs4d+4carWafv36lc0PtpxlZWVpfra1atXi6tWrWo5IAKhUKklSKzFFUfjpp5+YPn06d+7cwdzcnIYNGzJz5kzef//9KlOMTUZUhRAVXpmOqL4wveQjqkdny+uhKKAiXydTU1MZP348ISEhWFhYULduXW7evMnp06eJj48v0FZHR4c6derQuHFj6tSpQ2pqKklJSTg4OJCdnU1ERISmIqWzszNZWVnExcWRkJBAVlaW5o2xWq0mLS2N7OxsTExMaNWqFc2bN8fGxoZr165hbGxM/fr1cXZ25qOPPuKXX37Bx8eHCxcucPv2bSDvjbalpSUpKSmaRLgomzdvLjCqW5bUanWBvSQfJSkpiStXrnD79m1Onz7Nrl27uHDhAm3atMHb25vRo0dXyiqriqIQFRXF2bNnOXnyJMePHyc4OJikpCRcXFxYtmwZPXr00HaYQlRqhw8fZvz48Zw5c4a+ffvSp08fOnfujJ2dXYnPVZGvTcUhI6pCiCpNpeTdStJeiMpAURQuX77MF198wapVq6hbty5mZmYEBwfj4eHBhAkT8PDwQF9fH0tLS5ycnPD29n5mez0+yr/XfM6aNYtZs2ZpYs4vQnTixAliYmIwMzPDzc0NBwcHsrKyePjwIXfv3iU8PBxXV1d69uxZpvHmS0hIIDk5mdzcXFJTU0lLS0NPTw99fX2ys7MJDQ1l9erVhIaGaor0ADg7O9OmTRsWLlxIu3btyiXW0lAUhUuXLnHz5k3u3r3LvXv3iIqKIiMjg+TkZKKjo7l586bmww1bW1sCAgKYNGkSvXv3LvRzFUKUXHh4OF26dKF+/frs3buX9u3bazskrZJEVQhRtSlK3q0k7YXQgkuXLtGpUydeeOEFmjZtSmJiIrGxscTFxdGuXTt8fX15+PAh165d49y5cxw9erRAkaFPP/2UXr16afERPFn+KKqlpSV169bVdjga2dnZWFtbP7Fdu3btCAoKom7dutSrVw93d/cChYIqmuTkZI4dO8ahQ4fYvHkzly9fBtBUUs7f1sXExITGjRvTu3dv6tatS+PGjXF3d6+wj0uIymr37t2kpaWxZs0aatWqpe1wtE4SVSFElabKzbuVpL0QZS04OJj4+HgcHBzw9vbG3NwcRVGIjIxk48aN7Ny5Ezs7O2xtbTE1NeXtt9/WVJi1sLDA19eXV155hU6dOuHn54eVlRX6+vpaflSVV2JiIvXq1SM0NLTA8S+//JIWLVqgr6+PtbU1NWvWLNM4Tp48yf79+wkJCeHu3bu4uLhQv359+vbt+8QRzdzcXNauXUtwcDB///03N27c4O7duyiKgoODAy+++CILFy6kYcOGODg4SBIqhBa0adMGe3t7+vTpw/vvv4+9vT3NmjWrlNN2nwVJVIUQVZuMqIoKJjIyskAVXH19fbp168aHH35Ily5d2LVrF4qi4O/vT//+/bGwsCA5ORljY2M8PT1xdXXF2Ni4WBUhRfEEBARw69YtjIyMyMrKIjc37xOrli1bFlnZ91lLTk7mrbfeYvXq1UDeyG2tWrW4f/8+CxcuZObMmXz22WdMnjz5kedYvXo1Q4cO1Wzl0rx5c6pXr64Z+TUxMcHW1rbMH4sQorCMjAxOnTpFRkYGb731FjNnzmTQoEFA3gyHjIyMKvnhkVzFhBBVm1T9FRWMiYmJpvgF5E073bp1K3/88QdZWVmcOXOGv/76i2XLlrFp06ZHnsfd3R1/f3+aNm1Kv379cHd3L6dH8PzJ38pm8ODBzJkzBysrq1JXVM3NzeX777/n0qVLDB06lEaNGhVqoygKcXFxhIWFERISwhdffMGDBw9YuXIlQ4cOLbC/aGZmJiNGjGDKlCmMGzcOI6Oii8Pl7zkbHx/P0aNH2bFjB2lpaQXanD59Gj8/v1I9LiFE6dy8eZOXXnqJK1euaI4ZGhpia2tLYmIib7zxBrm5uVWm0u8/SdVfIUSFV5ZVf9s2nVbiqr8HTn0ir4eigGf9O6ooCn/++Sc7d+7k7t27mJqa4ufnx7hx4zRtcnNzSUxMJDk5mfj4eG7fvk1OTg6ZmZmkpqZy/PhxvvvuOwDs7e2JiooqkOCI4gsPD2fZsmV88cUXKIqCo6MjNjY2ODo64uXlRd26dWnWrBmNGzcuUIzK09OTsLCwR57XxMSElJSUQiMlffr0YcuWLZqvX3jhBT799FPMzMy4f/8+t2/fJiwsjGvXrmmm8UJeQm1jY1NkX6mpqXz11VeEhoby4MEDcnJyUKlUZGdnc/v2bU215T///JNOnTqV9qkSQpRATEwMXbt25d69e2zevBlnZ2eMjIxwcHB4Jq/XlT2HkxFVIUSVplIUVCWYzluStkKUlkqlokuXLnTp0qXQ93755RcGDx5cqL2iKNjb2+Pj40N4eLgm8TA2NmbMmDFVctrYs+Lu7s5nn33GhAkT2L17N2FhYTx8+FBTnfinn34iIyMDHR0datWqRe3atbGxsSErK+ux533jjTeK/LmkpKQU+Pro0aO0bt1a87Wuri6Ojo54enrStm1b3n//fQIDA7l58yZLliwhNDSU7OxscnNzyczM5P79+9y5c0czMvxPZmZmmn1hTUxM8PLyKuWzJIQoqfxtaAD09PRk5su/SKIqhKjaZI2qqGTatm2Lq6trgS1QFEXh5ZdfxsfHhytXrhAQEEC9evUICAigdu3akqQ+I46OjgQFBRU6np2dzYULFzh79qxmi5dbt25hbW1NdnY2MTExmrbGxsa4u7vj7u5Oo0aNyMjIwMjICEVRuH//PhcuXKBDhw5YWVlx9epVoqOjefDgAf+cAJeTk8P9+/e5f/8+R44c4fvvv8fZ2Zl79+5haWlJw4YNMTExQUdHB319fVq0aMErr7yCm5sbbm5uODk5YWVlhbW19SOnCgshyt78+fNp1aoV3377Lc2aNaNly5Z07dqVwMBA/P39MTU11XaIWiVTf4UQFV5ZTv1t12QqerolmPqbk8H+M5/K66EoQFvXybt37/Ljjz/ywQcfMGTIEH788cdy61sUX2ZmJvfu3eP69etcvHiRS5cuceHCBc6fP4+DgwNNmjThxIkTmhFPc3Nz6tWrh4eHBzVq1MDLywtvb29sbW3R0dFBpVKRnp5OYmIiCQkJ3L9/n4iICLy8vBgyZIhM8RaiksnKymLjxo1s2LCBffv2kZSUhK6uLvXq1aN+/frUrFmT2rVr07dv3xJ9uFTZczgZURVCVGky9Vc8S1u3bqVp06bk5uZy+PBhatWqRUBAAEeOHOHEiRPEx8eTmJhIUlISXl5etGnThubNmxdrj86iuLq6atYnHj58mE6dOtGgQQMGDBiAo6Mjtra2GBsby4iqlhkaGuLp6YmnpyedO3fWHL9+/TqTJk0iOjqat956iyZNmlC/fn3c3d0l2RSiCjEwMGDQoEEMGjSInJwcQkNDOX78OKdOneLy5cv89ddfREVF8fHHH1OvXj1sbW1xcHCgW7du2NjYEB0dTXR0NIaGhtSsWRMPDw9MTEy0/bCemoyoCiEqvLIcUX2x0RT0dA2LfT91Tib7zn0mr4eigPzfp8dxcHDAzs4OKysrTE1NuXTpEpGRkUDeGkgnJyccHR1xcnLCw8ODWrVqUb16daysrLCyssLS0lKzTUFUVBRRUVFkZGRo3sRkZGSQnp5OSEiIpmIw5CVJxsbGJCUlabZVqVGjBqdPn8bOzq7snhQhhBDPzPHjx/n666+JjY0lLi6OiIgIHjx48Mj2Li4u9OzZk2XLllXa9ywyoiqEqNpkjap4hq5cucL9+/fJysoiMDCQ69evc/z4cVq2bImvr2+BkU1FUbhx4wbHjx8nNDRU84n4iRMnWLt2LUlJSYXOb2hoSGZmZoliyszMLHSf27dvF6hOK4QQomJr3rx5gX2bc3JyOHr0qKYSuaOjIxkZGdy8eVNzs7e312LET09GVIUQFV6ZjqjWn1zyEdWLc+X1UBRQFtvTxMbGcvfuXRITEzVrEZOSkrCwsMDZ2RknJyeMjY1JTU0lJSVFc4uJiSEsLIxbt26hr6+Pm5sbrq6uVKtWDWdnZ5ydnalWrRqGhsX/vRdCCFH5VPYcTkZUhRBVmqxRFRWRSqXC3t6+0n8aLoQQQpSWrNQXQlRt+VN/S3IrhSVLluDh4YGRkRF+fn4cPnz4se0PHjyIn58fRkZGeHp6smzZskJtNm3ahI+PD4aGhvj4+LB58+YS96soCjNnzsTFxQVjY2Patm1LaGio5vsPHz7k7bffxtvbGxMTE6pXr87YsWMLrIEUQgghhHjWJFEVQlRt5ZCorl+/nvHjxzNt2jTOnj1LYGAgXbt2JSIiosj2YWFhdOvWjcDAQM6ePcv777/P2LFj2bRpk6ZNcHAw/fv3JygoiPPnzxMUFES/fv04ceJEifr9/PPPmT9/PosXL+bUqVM4OTnRsWNHkpOTATR7Nc6bN4+LFy+yatUqdu3axbBhw0r8PAghhBBCFJesURVCVHhluUa1vc+7JV6j+tff80oUS0BAAE2aNGHp0qWaY3Xr1qV37958+umnhdpPnjyZbdu2cfnyZc2xUaNGcf78eYKDgwHo378/SUlJ7Ny5U9OmS5cuWFtbs3bt2mL1qygKLi4ujB8/nsmTJwN5hXccHR2ZO3cuI0eOLPLxbNiwgddee43U1FT09GQFCfzv9+nOnTtynRRCCFEhJCUl4ebmVmlzOHmHIYSo2kpZ9fffFVkNDQ2LLE6TlZVFSEgIU6ZMKXC8U6dOHDt2rMgugoOD6dSpU4FjnTt3ZuXKlWRnZ6Ovr09wcDATJkwo1GbhwoXF7jcsLIyoqKgCfRkaGtKmTRuOHTv2yEQ1/4InSer/GBgY4OTkhJubm7ZDEUIIITScnJwwMDDQdhilIu8yhBBVWy6gemKrgu2hUELy4YcfMnPmzELNY2NjycnJwdHRscBxR0dHoqKiiuwiKiqqyPZqtZrY2FicnZ0f2Sb/nMXpN//fotrcvn27yNji4uKYPXv2I5PYqsrIyIiwsDCysrK0HYoQQgihYWBggJGRkbbDKBVJVIUQVVppq/7+e4rnk7b6+Of+mZBXxOjfx57U/t/Hi3POZ9UG8kaRu3fvjo+PDx9++OEjY6+qjIyMKu2bASGEEKKikURVCFG1lXLqr4WFRbHWe9jZ2aGrq1to9DQmJqbQSGY+JyenItvr6elha2v72Db55yxOv05OTkDeyKqzs/NjY0tOTqZLly6YmZmxefNm9PX1n/jYhRBCCCFKS6r+CiGqtlyl5LcSMDAwwM/Pjz179hQ4vmfPHlq2bFnkfVq0aFGo/e7du/H399ckiI9qk3/O4vTr4eGBk5NTgTZZWVkcPHiwQGxJSUl06tQJAwMDtm3bJqOGQgghhChzMqIqhKjaSjmiWhITJ04kKCgIf39/WrRowYoVK4iIiGDUqFEATJ06lXv37vHTTz8BeRV+Fy9ezMSJExkxYgTBwcGsXLlSU80XYNy4cbRu3Zq5c+fSq1cvtm7dyt69ezly5Eix+1WpVIwfP545c+bg5eWFl5cXc+bMwcTEhEGDBgF5I6mdOnUiLS2NNWvWkJSUpCkkZW9vj66ubomfDyGEEEKIJ5FEVQhRxZV0b9SSJ6r9+/cnLi6OWbNmERkZia+vLzt27KBGjRoAREZGFtjb1MPDgx07djBhwgS++eYbXFxcWLRoEX379tW0admyJevWreODDz5g+vTp1KxZk/Xr1xMQEFDsfgHee+890tPTGT16NPHx8QQEBLB7927Mzc0BCAkJ0ezNWqtWrQKPKywsDHd39xI/H0IIIYQQTyL7qAohKryy3Ee1g8fb6OmUYB/V3Ez2hn0tr4dCCCGEEGVIRlSFEFVbrkKJRklLuEZVCCGEEEKUnCSqQoiqTcnNu5WkvRBCCCGEKFOSqAohqrZyKKYkhBBCCCFKRranEUIIIYQQQghRociIqhCiapM1qkIIIYQQFY4kqkKIqk2m/gohhBBCVDiSqAohqjaFEiaqZRaJEEIIIYT4f5KoCiGqNhlRFUIIIYSocCRRFUJUbbm5QAm2nMmV7WmEEEIIIcqaJKpCiKpNRlSFEEIIISocSVSFEFWbJKpCCCGEEBWOJKpCiKpNtqcRQgghhKhwJFEVQlRpipKLohR/3WlJ2gohhBBCiNKRRFUIUbUpSslGSWXqrxBCCCFEmZNEVQhRtSklnPoriaoQQgghRJnT0XYAQgghhBBCCCHEP8mIqhCiasvNBVUJ1p3KGlUhhBBCiDIniaoQomqTqb9CCCGEEBWOJKpCiCpNyc1FKcGIqlT9FUIIIYQoe5KoCiGqNhlRFUIIIYSocCRRFUJUbbkKqCRRFUIIIYSoSCRRFUJUbYoClKSYkiSqQgghhBBlTRJVIUSVpuQqKCUYUVUkURVCCCGEKHOyj6oQompTckt+K4UlS5bg4eGBkZERfn5+HD58+LHtDx48iJ+fH0ZGRnh6erJs2bJCbTZt2oSPjw+Ghob4+PiwefPmEverKAozZ87ExcUFY2Nj2rZtS2hoaIE2mZmZvP3229jZ2WFqakrPnj25e/duKZ4FIYQQQojikURVCFGlKblKiW8ltX79esaPH8+0adM4e/YsgYGBdO3alYiIiCLbh4WF0a1bNwIDAzl79izvv/8+Y8eOZdOmTZo2wcHB9O/fn6CgIM6fP09QUBD9+vXjxIkTJer3888/Z/78+SxevJhTp07h5OREx44dSU5O1rQZP348mzdvZt26dRw5coSUlBReeuklcnJySvxcCCGEEEIUh0opxjy2pKQkLC0tSUxMxMLCojziEkIIjbJ4Dco/Z1t6oafSL/b91Eo2B9haolgCAgJo0qQJS5cu1RyrW7cuvXv35tNPPy3UfvLkyWzbto3Lly9rjo0aNYrz588THBwMQP/+/UlKSmLnzp2aNl26dMHa2pq1a9cWq19FUXBxcWH8+PFMnjwZyBs9dXR0ZO7cuYwcOZLExETs7e1ZvXo1/fv3B+D+/fu4ubmxY8cOOnfuXNynTgghhBCi2Eq0RjUpKams4hBCiEcqy9ceNdkl2p1GTTZQOCZDQ0MMDQ0Ltc/KyiIkJIQpU6YUON6pUyeOHTtWZB/BwcF06tSpwLHOnTuzcuVKsrOz0dfXJzg4mAkTJhRqs3DhwmL3GxYWRlRUVIG+DA0NadOmDceOHWPkyJGEhISQnZ1doI2Liwu+vr4cO3ZMElUhhBBClIliJaoGBgY4OTnh5uZW1vEIIUSRnJycMDAweGbny39dOxK1o8T3NTMzK/R6+OGHHzJz5sxCbWNjY8nJycHR0bHAcUdHR6Kiooo8f1RUVJHt1Wo1sbGxODs7P7JN/jmL02/+v0W1uX37tqaNgYEB1tbWxY5fCCGEEOJpFStRNTIyIiwsjKysrLKORwghimRgYICRkdEzO9/TvK4pioJKpSpwrKjR1H/6d/uizvGk9v8+XpxzPqs2/1acNkIIIYQQpVXsqb9GRkbP9E2iEEJoW3m8rtnZ2aGrq1to9DEmJqbQSGY+JyenItvr6elha2v72Db55yxOv05OTkDeqKmzs/Mj22RlZREfH19gVDUmJoaWLVsW70kQQgghhCghqforhBBlyMDAAD8/P/bs2VPg+J49ex6Z6LVo0aJQ+927d+Pv74++vv5j2+Sfszj9enh44OTkVKBNVlYWBw8e1LTx8/NDX1+/QJvIyEguXbokiaoQQgghykyJiikJIYQouYkTJxIUFIS/vz8tWrRgxYoVREREMGrUKACmTp3KvXv3+Omnn4C8Cr+LFy9m4sSJjBgxguDgYFauXKmp5gswbtw4Wrduzdy5c+nVqxdbt25l7969HDlypNj9qlQqxo8fz5w5c/Dy8sLLy4s5c+ZgYmLCoEGDALC0tGTYsGG888472NraYmNjw7vvvkv9+vXp0KFDeT2FQgghhKhiJFEVQogy1r9/f+Li4pg1axaRkZH4+vqyY8cOatSoAeSNUP5zb1MPDw927NjBhAkT+Oabb3BxcWHRokX07dtX06Zly5asW7eODz74gOnTp1OzZk3Wr19PQEBAsfsFeO+990hPT2f06NHEx8cTEBDA7t27MTc317RZsGABenp69OvXj/T0dNq3b8+qVavQ1dUty6dNCCGEEFVYsfZRFUIIIYQQQgghyousURVCCCGEEEIIUaFIoiqEEEIIIYQQokKRRFUIIYQQQgghRIUiiaoQQgghhBBCiApFElUhhBBCCCGEEBWKJKpCCCGEEEIIISoUSVSFEEIIIYQQQlQokqgKIYQQQgghhKhQJFEVQgghhBBCCFGhSKIqhBBCCCGEEKJCkURVCCGEEEIIIUSF8n+wJtpAWdmgAQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "if region == \"New Zeland\":\n", + " fig, axs = plt.subplots(nrows=2,ncols=2,\n", + " figsize=(12,8))\n", + "else:\n", + " fig, axs = plt.subplots(nrows=2,ncols=2,\n", + " subplot_kw=dict(projection=ccrs.PlateCarree()),\n", + " figsize=(12,8))\n", + "axs=axs.flatten()\n", + "ds_out_con.GPP.isel(time=month)\\\n", + " .sel(lon=slice(lon_bounds2[0],lon_bounds2[1]),lat=slice(lat_bounds[0],lat_bounds[1]))\\\n", + " .plot(vmin=clim[0],vmax=clim[1], ax=axs[0]) \n", + "axs[0].set_title(region + ' conservaitve, no mask')\n", + "\n", + "ds_out_con.GPP.isel(time=month).where(fv_t232.landfrac>0)\\\n", + " .sel(lon=slice(lon_bounds2[0],lon_bounds2[1]),lat=slice(lat_bounds[0],lat_bounds[1]))\\\n", + " .plot(vmin=clim[0],vmax=clim[1], ax=axs[1]) \n", + "axs[1].set_title(region + ' conservaitve, destination mask')\n", + "\n", + "\n", + "ds_out_bilin.GPP.isel(time=month)\\\n", + " .sel(lon=slice(lon_bounds2[0],lon_bounds2[1]),lat=slice(lat_bounds[0],lat_bounds[1]))\\\n", + " .plot(vmin=clim[0],vmax=clim[1], ax=axs[2]) \n", + "axs[2].set_title(region + ' bilinear') ;\n", + "\n", + "if region != \"New Zeland\":\n", + " for a in axs:\n", + " a.coastlines()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "4659783e-c119-4031-9988-61e43f659583", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAHACAYAAABwEmgAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC+Y0lEQVR4nOzdd3yN1x/A8c+9yc29N3svicSW2KO1xRZ7tjrxo7oUrWpVqVG1KdVBldpV2thaqwS1V8yIFTsRQYbse+/5/RG5dWVIglzhvF+v++Ke5zzP832eu745z3nOUQghBJIkSZIkSWaiNHcAkiRJkiS92GQyIkmSJEmSWclkRJIkSZIks5LJiCRJkiRJZiWTEUmSJEmSzEomI5IkSZIkmZVMRiRJkiRJMiuZjEiSJEmSZFYyGZEkSZIkyaxkMvIYFixYgEKh4NChQzkub9++Pf7+/kUbVD41adKEJk2amJQpFApGjx79RLbv7+9P7969jc8vXbqEQqFgwYIFT2T7BTV+/HhWr15d6PXNHb+UKTQ0FIVCQWhoqLlDMfEkPzuPK+t76dKlS0+kXk5u3LjB6NGjCQsLK1SM5tC7d+8CfR83b96c999/v9D7MxgMLF68mBYtWuDq6opKpcLd3Z327duzbt06DAZDtnW6du1Kp06dCrSft99+m86dOxc6zmeFpbkDkMzjp59+yla2d+9efHx8nsr+vLy82Lt3L2XKlHkq23+U8ePH07179+fiQys9e57mZ+dpadeuHXv37sXLy6vA6964cYMxY8bg7+9P9erVn3xwZrZmzRp2797NokWLCrV+amoqnTt3ZvPmzbz22mvMmjULT09Pbt26xcaNG3nllVdYvny5SeKRlJTExo0bmT17doH2NXr0aCpWrMi2bdto1qxZoeJ9Fshk5AUVGBiYraxu3bpPbX9qtfqpbl+SHiUlJQWNRoNCoXji2y6O7203Nzfc3NzMHUahpaSkoNVqn8q2x48fT5cuXShRokSh1h88eDCbNm1i4cKF9OzZ02RZ165d+eyzz0hJSTEp/+uvv9DpdHTo0KFA+ypTpgzBwcFMnDixWCcj8jJNEfvxxx9p3Lgx7u7u2NjYUKVKFSZPnkxGRoZJHaVSSUxMjLFs2rRpKBQK+vfvbywzGAw4OTnx6aefGsvGjBlDnTp1cHZ2xt7enpo1azJv3jweng/xcS7TpKWl8fXXXxMQEIBGo8HFxYWmTZuyZ8+eXNfJ6TLH6NGjUSgUHD9+nFdeeQUHBwecnZ0ZPHgwOp2OiIgIgoODsbOzw9/fn8mTJ5tsMzU1lU8//ZTq1asb161Xrx5r1qzJdlxJSUksXLgQhUKBQqEwOfaTJ0/SqVMnnJyc0Gg0VK9enYULFz7yPAD8+++/NG/eHDs7O6ytralfvz4bNmzIsV69evXQaDSUKFGCr776irlz55o0k/ft2xdnZ2eSk5Ozrd+sWTMqVaqUr5gedOvWLT788EMCAwOxtbXF3d2dZs2asWvXLpN6Wa/P1KlT+fbbbylVqhS2trbUq1ePffv2mdTt3bs3tra2nD9/nrZt22Jra4uvry+ffvopaWlpxnq5XVLJ6b1w6NAhXnvtNfz9/dFqtfj7+/P6669z+fLlAh8z/HcJYvPmzfTp0wc3Nzesra2N8S1fvpx69ephY2ODra0trVu35ujRo9m288svv1C+fHnUajWBgYH89ttvOTb35/TZyc/7KuscLVu2jOHDh+Pt7Y29vT0tWrQgIiLCpO6WLVvo1KkTPj4+aDQaypYty3vvvUdsbOxjnaMHL9M0adKEypUrc/DgQRo1aoS1tTWlS5dm4sSJxssKoaGhvPTSSwD873//M36mHjz+Q4cO0bFjR5ydndFoNNSoUYMVK1ZkiyE/nwvIvOzbvn17Vq5cSY0aNdBoNIwZMwbI33dqQRw9epQDBw7w9ttvFyre6Oho5s6dS+vWrbMlIlnKlStH1apVTcpCQkJo1qwZTk5OLF68GIVCwd69e7Ot+/XXX6NSqbhx44ax7O2332br1q1cuHChUMf8LJDJyBOg1+vR6XTZHjlNiHzhwgXeeOMNFi9ezPr16+nbty9TpkzhvffeM9Zp0aIFQgj++ecfY9nWrVvRarVs2bLFWHbo0CHi4uJo0aKFsezSpUu89957rFixgpUrV9K1a1cGDBjA2LFjn8ix6nQ62rRpw9ixY2nfvj2rVq1iwYIF1K9fnytXrhRqm6+++irVqlUjJCSEfv36MX36dD755BM6d+5Mu3btWLVqFc2aNWPo0KGsXLnSuF5aWhp37txhyJAhrF69mmXLltGwYUO6du1q0ry6d+9etFotbdu2Ze/evezdu9d4mSoiIoL69etz6tQpZs6cycqVKwkMDKR3797Zkp+H7dixg2bNmhEfH8+8efNYtmwZdnZ2dOjQgeXLlxvrHT9+nJYtW5KcnMzChQuZPXs2R44cYdy4cSbbGzRoEHfv3uW3334zKT99+jTbt283SUTz686dOwCMGjWKDRs2MH/+fEqXLk2TJk1y7Hfx448/smXLFmbMmMHSpUtJSkqibdu2xMfHm9TLyMigY8eONG/enDVr1tCnTx+mT5/OpEmTChwjZL5vK1SowIwZM9i0aROTJk0iKiqKl156qdA/tgB9+vRBpVKxePFi/vzzT1QqFePHj+f1118nMDCQFStWsHjxYhITE2nUqBGnT582rjtnzhzeffddqlatysqVKxkxYgRjxozJV3+Vgr6vvvzySy5fvszcuXOZM2cO586do0OHDuj1emOdCxcuUK9ePWbNmsXmzZsZOXIk+/fvp2HDhoX+4c1JdHQ0b775Jm+99RZr166lTZs2DBs2jCVLlgBQs2ZN5s+fD8CIESOMn6l33nkHgO3bt9OgQQPi4uKYPXs2a9asoXr16vTo0cMkAc3v5yLLkSNH+Oyzzxg4cCAbN26kW7duxvPyqO/Ugli/fj0WFhY0btzYpDy/8W7fvp2MjIwCXRJOTU1lw4YNxmPq0aMHnp6e/Pjjjyb1dDodP//8M126dMHb29tY3qRJE4QQ/PXXXwU82meIkApt/vz5Asjz4efnl+v6er1eZGRkiEWLFgkLCwtx584d4zIfHx/Rp08fIYQQaWlpwsbGRgwdOlQA4vLly0IIIcaNGydUKpW4d+9entv/+uuvhYuLizAYDMZlQUFBIigoyKQ+IEaNGpXnMS9atEgA4pdffsmznp+fn+jVq5fxeWRkpADE/PnzjWWjRo0SgJg2bZrJutWrVxeAWLlypbEsIyNDuLm5ia5du+a6T51OJzIyMkTfvn1FjRo1TJbZ2NiYxJPltddeE2q1Wly5csWkvE2bNsLa2lrExcXlGn/dunWFu7u7SExMNImhcuXKwsfHx3i+X3nlFWFjYyNu3bplrKfX60VgYKAARGRkpLE8KChIVK9e3SSWDz74QNjb25vsp7CyzlHz5s1Fly5djOVZx1elShWh0+mM5QcOHBCAWLZsmbGsV69eAhArVqww2Xbbtm1FhQoVjM+3b98uALF9+3aTejmdy5zivHfvnrCxsRHffffdI7f5sKzPZs+ePU3Kr1y5IiwtLcWAAQNMyhMTE4Wnp6d49dVXhRCZr4+np6eoU6eOSb3Lly8LlUqV7XP98Gcnv++rrONp27atSb0VK1YIQOzduzfH4zMYDCIjI0NcvnxZAGLNmjXZjv3B91VOcqoXFBQkALF//36TuoGBgaJ169bG5wcPHsz1NaxYsaKoUaOGyMjIMClv37698PLyEnq9XghRsM+Fn5+fsLCwEBEREXkeU17fqb169crz+zhLmzZtRMWKFbOV5zfeiRMnCkBs3LjxkfvKsnr1amFhYSFiYmKMZaNGjRJWVlbi5s2bxrLly5cLQOzYsSPbNkqUKCF69OiR730+a2TLyBOwaNEiDh48mO3RsGHDbHWPHj1Kx44dcXFxwcLCApVKRc+ePdHr9Zw9e9ZYr3nz5mzduhWAPXv2kJyczODBg3F1dTW2jmzdutXY1Jxl27ZttGjRAgcHB+P2R44cye3bt00u+xTW33//jUajoU+fPo+9rSzt27c3eR4QEIBCoaBNmzbGMktLS8qWLZut2f6PP/6gQYMG2NraYmlpiUqlYt68eYSHh+dr39u2baN58+b4+vqalPfu3Zvk5OQcm0khs7PZ/v376d69O7a2tsZyCwsL3n77ba5du2ZsZs9qQXF1dTXWUyqVvPrqq9m2O2jQIMLCwti9ezcACQkJLF68mF69epnspyBmz55NzZo10Wg0xnP0zz//5HiO2rVrh4WFhfF5VlPyw+ddoVBku7ZdtWrVQl9WuXfvHkOHDqVs2bJYWlpiaWmJra0tSUlJ+X4tc5L1l2aWTZs2odPp6Nmzp0krpkajISgoyNjqERERQXR0dLbXqGTJkjRo0OCR+y3o+6pjx44mz3M67zExMbz//vv4+voaX0c/Pz+AxzpHD/P09OTll1/OFk9+Xtvz589z5swZ3nzzTQCTc9y2bVuioqIK9bnIiqF8+fLZyvP7nZpfN27cwN3dPVt5QeMtiJCQEBo1amTSh+eDDz4AMi8VZvnhhx+oUqVKtlYbAHd3d65fv/7YsZiLTEaegICAAGrXrp3t4eDgYFLvypUrNGrUiOvXr/Pdd9+xa9cuDh48aGyKe7BDU4sWLbhy5Qrnzp1j69at1KhRw3i9f+vWraSkpLBnzx6TSzQHDhygVatWQOYbePfu3Rw8eJDhw4dn235h3bp1C29vb5TKJ/fWcXZ2NnluZWWFtbU1Go0mW3lqaqrx+cqVK3n11VcpUaIES5YsYe/evRw8eJA+ffqY1MvL7du3c7ybIKsJ9Pbt2zmud/fuXYQQ+Vr39u3beHh4ZKuXU1mnTp3w9/c3vicWLFhAUlJSoS7RAHz77bd88MEH1KlTh5CQEPbt28fBgwcJDg7O8f3g4uJi8lytVgPZ3zs5vT5qtTrf5/1hb7zxBj/88APvvPMOmzZt4sCBAxw8eBA3N7fHet8+/PrcvHkTgJdeegmVSmXyWL58ufGSUNZrl9/X7WEFfV896rwbDAZatWrFypUr+fzzz/nnn384cOCAsT/Pk/hs5xZLVjz52UfW+R0yZEi28/vhhx8CmJzjgpzfnM5nQb5T8yuro/PD8htvyZIlAYiMjMzX/jIyMli3bl22xNnDw4MePXrw888/o9frOX78OLt27eKjjz7KcTsajeaJvg+KmrybpgitXr2apKQkVq5cafyLBsjxXv3mzZsDma0fW7ZsoWXLlsbyESNGsHPnTtLS0kySkd9//x2VSsX69etNPkyPM77Gw9zc3Pj3338xGAxPNCEpjCVLllCqVCmWL19ucofEg50oH8XFxYWoqKhs5Vmdwx78K+hBTk5OKJXKfK3r4uJi/JJ+UHR0dLYypVJJ//79+fLLL5k2bRo//fQTzZs3p0KFCvk+pgctWbKEJk2aMGvWLJPyxMTEQm2vILLegw+/Hg/3AYmPj2f9+vWMGjWKL774wlie1SfocTx850zWa/Lnn3+afAYflvWDnN/XLaf1C/O+ys3Jkyc5duwYCxYsoFevXsby8+fPF2g7T1vWcQ0bNoyuXbvmWCfrvVyQzwVkfy2hYN+p+eXq6prj+y6/8TZt2hSVSsXq1avzNU7J1q1biY+Pp0uXLtmWDRo0iMWLF7NmzRo2btyIo6OjsdXpYXfu3Hlmx7XKD9kyUoSyPkxZf/UACCFMmuGyeHl5ERgYSEhICIcPHzYmIy1btuTWrVt8++232NvbG3u1Z23f0tLSpJk9JSWFxYsXP7FjaNOmDampqc/E4F8KhQIrKyuTL6no6Ohsd9NA7n/ZNW/enG3btpn0TIfMS2/W1ta53rJpY2NDnTp1WLlypcl2DQYDS5YswcfHx9ikHBQUxLZt20x+hA0GA3/88UeO237nnXewsrLizTffJCIiIte/hPJDoVCYvN8gsyNebpefnqSsL8bjx4+blK9du9bkuUKhQAiRLc65c+eadOB8Elq3bo2lpSUXLlzIsTWzdu3aQOYPpqenZ7Y7QK5cuZLnXWNZCvu+yk1O3x0AP//8c4G286Tk1mJWoUIFypUrx7Fjx3I9v3Z2dkDBPxc5Kch3an5VrFiRixcvZivPb7yenp7GFr7cxim5cOGC8XMREhJC3bp1c7yNuFatWtSvX59JkyaxdOlSevfubXJZPotOp+Pq1as5DtlQXMiWkSLUsmVLrKyseP311/n8889JTU1l1qxZ3L17N8f6zZs35/vvv0er1RqvU5cqVYpSpUqxefNmOnbsiKXlfy9hu3bt+Pbbb3njjTd49913uX37NlOnTs32BfY4Xn/9debPn8/7779PREQETZs2xWAwsH//fgICAnjttdee2L4eJetWvw8//JDu3btz9epVxo4di5eXF+fOnTOpW6VKFUJDQ1m3bh1eXl7Y2dlRoUIFRo0axfr162natCkjR47E2dmZpUuXsmHDBiZPnpztUtuDJkyYQMuWLWnatClDhgzBysqKn376iZMnT7Js2TLjF+Xw4cNZt24dzZs3Z/jw4Wi1WmbPnk1SUhJAthYmR0dHevbsyaxZs/Dz88tx3IHRo0czZswYtm/fnu0W7YfP0dixYxk1ahRBQUFERETw9ddfU6pUKXQ6XX5PdaF4enrSokULJkyYgJOTE35+fvzzzz8md0QB2Nvb07hxY6ZMmYKrqyv+/v7s2LGDefPm4ejo+ERj8vf35+uvv2b48OFcvHiR4OBgnJycuHnzJgcOHMDGxoYxY8agVCoZM2YM7733Ht27d6dPnz7ExcUxZswYvLy8Htkq+Djvq5xUrFiRMmXK8MUXXyCEwNnZmXXr1pncXVeUypQpg1arZenSpQQEBGBra4u3tzfe3t78/PPPtGnThtatW9O7d29KlCjBnTt3CA8P58iRI8Yf74J+LnJS0O/U/GjSpAm//vorZ8+eNemjUpB4v/32Wy5evEjv3r3ZtGkTXbp0wcPDg9jYWLZs2cL8+fP5/fffqVSpEmvWrDFpEXzYoEGD6NGjBwqFwnip62HHjx8nOTmZpk2bFvq4zc6s3WeLuaze6AcPHsxxebt27bL13l63bp2oVq2a0Gg0okSJEuKzzz4Tf//9d453CKxZs0YAomXLlibl/fr1E4CYOXNmtn3++uuvokKFCkKtVovSpUuLCRMmiHnz5uXYa74wd9MIIURKSooYOXKkKFeunLCyshIuLi6iWbNmYs+ePcY6Bbmb5sHe6UJk9nq3sbHJtt+goCBRqVIlk7KJEycKf39/oVarRUBAgPjll1+M231QWFiYaNCggbC2thaAybGfOHFCdOjQQTg4OAgrKytRrVq1bHcJ5HYHyK5du0SzZs2EjY2N0Gq1om7dumLdunXZYt+1a5eoU6eOUKvVwtPTU3z22Wdi0qRJAjDeWfGg0NBQAYiJEydmWyaEEJ9++qlQKBQiPDw8x+VZ0tLSxJAhQ0SJEiWERqMRNWvWFKtXr852Z0HW8U2ZMiXbNh5+X+T2+uR03qOiokT37t2Fs7OzcHBwEG+99ZY4dOhQtnN57do10a1bN+Hk5CTs7OxEcHCwOHnyZLb3UUHvpsnts7l69WrRtGlTYW9vL9RqtfDz8xPdu3cXW7duNak3Z84cUbZsWWFlZSXKly8vfv31V9GpU6dsd2vl9NnJz/sq63j++OMPk/Kc3m+nT58WLVu2FHZ2dsLJyUm88sor4sqVK9n2/bh30zz8GRMi5ztRli1bJipWrChUKlW2GI4dOyZeffVV4e7uLlQqlfD09BTNmjUTs2fPNtlGfj8Xfn5+ol27djkeR36/U/N7N018fLywtbUVkydPzrasIJ9jnU4nFi5cKJo1ayacnZ2FpaWlcHNzE23atBG//fab0Ov1YuvWrQIQFy9ezDWetLQ0oVarRXBwcK51vvrqK+Hq6ipSU1MfeXzPKpmMSJKZtGzZUpQrVy7HZYMHDxZarVbExsbmuPyll14S3bt3f5rhSTm4e/eucHNzE/369TN3KM+tvD4XReWjjz4SAQEBJsMh5OZx4v3ggw9EzZo186yzdu1aAYgNGzbkuFyn0wl/f3/x5ZdfFiqGZ4W8TCNJRWDw4MHUqFEDX19f7ty5w9KlS9myZQvz5s0zqbdv3z7Onj3LTz/9xHvvvZfjnQ0JCQkcO3Ys36PESoUTHR3NuHHjaNq0KS4uLly+fJnp06eTmJjIoEGDzB3ecyG/n4uiNmLECBYtWkRISAjdu3c3lj/peHOaIyzL6dOnuXz5snGU6QeHOnjQkiVLuHfvHp999lmhYnhWyGREkoqAXq9n5MiRREdHo1AoCAwMZPHixbz11lsm9erVq4e1tTXt27fnm2++yXFb9vb2BbpjSCoctVrNpUuX+PDDD7lz546x4+ns2bMLNTS/lF1+PxdFzcPDg6VLl2bre1KU8X744Yfs3r2bmjVrGqeyyInBYGDp0qVPvH9VUVMIkcOY5ZIkSZIkSUVE3torSZIkSZJZyWREkiRJkiSzksmIJEmSJElmJZMRSZIkSZLMSiYjkiRJkiSZVbFKRnbu3EmHDh3w9vZGoVA80QngcjJ69GgUCoXJw9PT86nuU5IkSZJeNMUqGUlKSqJatWr88MMPRbbPSpUqERUVZXycOHGiyPYtSZIkSS+CYjXoWZs2bXIdhQ4gPT2dESNGsHTpUuLi4qhcuTKTJk3KcyKxR7G0tJStIZIkSZL0FBWrlpFH+d///sfu3bv5/fffOX78OK+88grBwcHZZnAtiHPnzuHt7U2pUqV47bXXcpxaWpIkSZKkwiu2I7AqFApWrVpF586dAbhw4QLlypXj2rVreHt7G+u1aNGCl19+mfHjxxd4H3///TfJycmUL1+emzdv8s0333DmzBlOnTqV45whkiRJkiQV3HPTMnLkyBGEEJQvXx5bW1vjY8eOHVy4cAGAS5cuZeuQ+vDjo48+Mm6zTZs2dOvWjSpVqtCiRQs2bNgAICcokyRJkqQnqFj1GcmLwWDAwsKCw4cPY2FhYbLM1tYWgBIlShAeHp7ndpycnHJdZmNjQ5UqVR7rso8kSZIkSaaem2SkRo0a6PV6YmJiaNSoUY51VCoVFStWLPQ+0tLSCA8Pz3X7kiRJkiQVXLFKRu7du8f58+eNzyMjIwkLC8PZ2Zny5cvz5ptv0rNnT6ZNm0aNGjWIjY1l27ZtVKlShbZt2xZ4f0OGDKFDhw6ULFmSmJgYvvnmGxISEujVq9eTPCxJkiRJeqEVqw6soaGhNG3aNFt5r169WLBgARkZGXzzzTcsWrSI69ev4+LiQr169RgzZgxVqlQp8P5ee+01du7cSWxsLG5ubtStW5exY8cSGBj4JA5HkiRJkiSKWTIiSZIkSdLz57m5m0aSJEmSpOJJJiOSJEmSJJlVsejAajAYuHHjBnZ2digUCnOHI0mSJElSPgghSExMxNvbG6Uy9/aPYpGM3LhxA19fX3OHIUmSJElSIVy9ehUfH59clxeLZMTOzg7IPBh7e3szRyNJkiRJUn4kJCTg6+tr/B3PTbFIRrIuzdjb28tkRJIkSZKKmUd1sZAdWCVJkiRJMiuZjEiSJEmSZFYyGZEkSZIkyaxkMiJJkiRJklnJZESSJEmSJLOSyYgkSZIkSWYlkxFJkiRJksxKJiOSJEmSJJmVTEYkSZIkSTIrmYxIkiRJkmRWMhmRJEmSJMmsZDIiSZIkSZJZyWREkqT8MRgQ4RvR/T0J9BnmjkaSpOdIsZi1V5IkM0q7B8eWkbz6R6L/uUdavIqSX9zDpvdYc0cmSdJzQiYjkiTl7O5lODAH/d7FxByEuAs2gAqAezt3Y9PbrNFJkvQckcmIJEn/EQKu7IN9PyHC15NwSc3No/bo0ywyl/t7wqVoki9EmTdOSZKeKzIZkSQJdOlwaiXs+wmijpGeaEH0ISeSbqoBSCnhyaymLly2Pst3cyAlViBiI1G4ljJz4JIkPQ9kMiJJL7J7t+DwfDg4F+7dxKCH2xGO3D5ti9AZ0KksCKljy+r6t9BbxIIQ3NOAbaqC1H/Xoe080NxHIEnSc0AmI5L0Ioo+Aftmw4k/QJ8GQFKiF9GHHUmPjgcMhPlbMC8YbjolIQxW+Kka4W3jw3mv+VSPFKQc2CWTEUmSngiZjEjSi8Kgh7MbYd8suLTLWKxzqkHUKU/u7TwGxBNnAwubK9kdCBZ6D4JcOvJFo7fxcXDmwu1olq6bT/VIiDt9FmfzHY0kSc8RmYxI0vMuNQHClsL+2XD3UmaZwgIR0JGz0X7cW7AG6+SbGICtNRQsDbJAo63BRwGv07dWKywtLIybKuPiSaSHAxBH0o2UzNt+1bbmOCpJkp4jMhmRpOfVnYuwfw4cXQLpiZllGkcMNXux7p4nitkLKXdlP9bAJXf4pZUtVhXaMLt+b2qWKJ3rZuP9qgC7sEywQH9mJxbV2hbJ4UiS9PySyYgkPU+EgEv/Zl6KifgLEJnlruWJr9mHSTGp2C1bTvv98VgaIFUFqxq4ouzahwWNX8Neo33kLsr7v8QNp11434WUfzdhK5MRSZIek0xGpBdDRircuQAOPqBxMHc0T15GKpz8MzMJuXnyv/KyLTlYuh3jr5xGu3EO/Tan4hmXuehUOVesPx3G100KlkwEl61LhLcC77uCxKOHkRdpJEl6XDIZkZ5vN0/BkUVw7HcMqXGZkzHZeYFr+cyHW4X//rX1AIXC3BEXTOJNODQPDs6D5NjMMpU1GVVfY46mLEuv7UR5dBq9/jHQ8HRmK8k9BxtcvviCbp27oSjE8Tb0C+QvLxWNT6Vz51IMXgYDKOU0V5IkFZ5MRqTnT9q9zAG8Di/k3o3DbLS1ZpWTLSfVvpTM0FExPZ2Kd44QEL2fCmnpuBgMmeupHcCtPLhW+O9f13Lg5A9Kizx3WeRuHM28NfdkCBjuT1pn78O1Km8wNlHH3ph/wGILLcIEb4QasEkDoVDg9OablP/4YyxsbQq9a0sLC26UKAVEYLilRMSEo/Cs9GSOS5KkF5JMRqTngxCZP9BHFmI4EUKYIp2VdjZsKlmC1Af+ar9kpeKSlYqN/Pdj7KITBKanEpCWTsCdk1SMPkIJnR5jm4GFGlzKZk9UXMqCSlN0x6jXQcSGzEsxV/Yaiw2+L7PJpwXTYy5w49ofKJR6St4RvPs3lL+RmWhpKlXCc8wYtJWfTNJgXf5l0i0isEpTkH7wb9QdZDIiSVLhyWREKt5S4+H4CjiykNhbp1hra8MqN1suWamMVSx0HtR1b8MblYM5GRPJkehTXIw/y+2MSAyWt7htqWCXpZZd1v913tTqFZTNgCpp96iUnkrFu2cpHXPK9AOjUIKj3/1LPeXuJyr3L/toHZ/cMabEwdHFmXfGxF/JLFNakhTQielWfqy6vZ/06CUAaHSCHrvsaHsoHqVBoLSxwe3jj3F643UUFk+udadxmXpEei6mwnVIPrALdYchT2zbkiS9eBRCCGHuIB4lISEBBwcH4uPjsbe3N3c4krllTeZ2ZBEZp1axWwUr7WzYaa1Ff78PhDBY4aOqS++qPXi1ckOUufRpuHkvnq0XjrL/2gnOxUVwM+0i6cobKBT6bHWVBgUldGoCdXpqpMZRKTWR8ukZWOf0EbL1eKBPSlZrSvnM/ir57acRez5zbJCw3yAjKbPM2oXTFTrzTbKeEyl7wSLl/vFa0vJSWXpvi8Lq1m0A7Fq1wmP4l6g8PPK3vwKIS0libr+XaXfIgEVlJeX/PPXE9yFJUvGX399vmYxIxUfSbTi2DI4s4nLcBVbZ2bDW1oZblv+1V6j1pWheogODG7yKh23h7ppJSksj9NIJdl85xunbZ7iRfJ5kxVUUyrTslYUCB501ZYWa6voMaqbcoWriTRyz+qE8TG3/QCtK+f9aUxz9wMIyM9G6uD2zP8i5TcbVdO4BLPdqxOy4q9xVnEahyPzYKnTONFc15f09URhCdwKg8vbGY+RX2DVpUqjjz6+PPgui/7oYUl111Ni4G2zdn+r+JEkqfmQyIj0fDAa4tBMOLyQ5Yj3/aCxZaWvLIe0DfTX0NpS3aUL/2m/QrEzVpxKGTq/nwLVz7Lh0jOMxp7iSdI4Ew2WwSMyxvpXOFh/sqaRQUduQRq3kWHzvXkYpsre4AGBhldkHRZ8Bt8/dL1QQU7oZU6182JR0HIPlbWN1O1GZHmVf5fXzCdz9/nsMSUlgYYHL/3rj+uGHKK2tn/AZyK7v7IEMmbEFg1IQ8Nt4lNW7PvV9SpJUvOT391v2GZGeTYnRELYUw5GFhCdFsdLOhr9KuHMv63KLUGBPZTqV7kz/Op2wUaufajiWFhbU96tIfb+KJuXhMdfYdvFoZj+UhAjuZFzCYBlLuuU9LnKPi8A6C8ABsC2LMx5UsLCnlqUFdQwpVLp3A9XtC6BLgZjTmRtV2bC7TGsmpwsu6I+hSDuX+UnVaylv04zBdXtTM1FP9KhR3D6VeXlEW60anl+PQVOhwlM9Dw+qGNiQOOstOCYrSN23GWuZjEiSVEiyZUR6dhj0cH4rHF7I3fOb+ctGzUpbW86qrYxVlDoXajq34pN6b1DV0998sebhRsId/rkQxoEbJzl79wy30iPv90PJfulGGCzRCB/8VJ7U0DigFun8ce88KRZXjXVUOl9a+XZhaMPXsTfAre9mcnfpUjAYUNrb4z54MI6vvoKiiMf6OHPrOgf/15La5wV2QXb4/HygSPcvSdKzT16mkYqPuCtwdAn6o0vYn36bVXY2/GNjTUZWR0+DJe6WtXkjoDu9arQwmbituEhMSyH04gl2Xz1G+O0zRKVcuN8PJT3H+sJggadlHfpVe5NXKjdEoVCQuGULN78Zhy4mBgD79u3x+GIolq6uRXkoJsb0q8Wru5JJK5VO9bWnivZWZ0mSnnnyMo30bNNnQMTfcGQhNyJDWWNnzWp7W26o/usEqdL50MirHUPqv46vo0uhd5URE0P86jWkHD2KhYMDlm5uWLq73//XLfNfNzeUmqf3Q2qn1tIh4GU6BLxsLNPp9ey9EsHOy2Ecv3Waq0kXSDXEU925EV806E15N6/M+K9fJ3rsN9wLDQVA5VcSz5EjsW3Q4KnFm1+3fMsCxzHcsswc58WvnrlDkiSpGJLJiFS0bl+AIwtJC/uN7SSxytaGvb5eiKxWEL2GUtpG9Kv+mskPd0EJnY57O3cS98ef3Nu5E/S5dBx9gNLe3piYGB/uDz13c3+s0UsfZGlhQaNSgTQqFZjzMWRkcGfRIm798CMiJQVUKlz7vYPLu+8+1cSpIOyq1sfw23G095ToTm7HUiYjkiQVQoGSkVmzZjFr1iwuXboEQKVKlRg5ciRt2rTJsX5oaChNmzbNVh4eHk7FihVzWEN6LmWkQvg6OLKQc9f3sdLOhvUuNsRZ/DfImI2hAm38OjGoXlcctYX/sU+/dIm4kBDiVq9GfyvWWK6tWRP71q0wpKahu3Xrv0dMDLpbtxBpaRgSEkhPSCD9woU896GwtkaVU7KS1dqS1dJib1+ouV8Ako8eJXrUaNLOngXAunZtPMeMRl2mTKG297Q0qxTENdfZlIyFxP07cWr3pblDkiSpGCpQMuLj48PEiRMpW7YsAAsXLqRTp04cPXqUSpVyHw46IiLC5FqRm5tbIcOVipWYcDi8kMTjv7PRMp1Vtrac8PEyLlbo7als35KBL79O3ZKFvwvEkJJCwqZNxP8ZQvKhQ8ZyCxcXHDp1wrF7N9SlS+e6vhACQ2Ji9iQl5la2MkNyMiI5mfTLl0m/fDnPuBRqdfaWlhwuEVk4Oho7n+rj44n5djpxK1aAEFg4OuL++ec4dOlc6MTmaWpaugpzvCwoGavnesRFnIQofpMNSpJkdgVKRjp06GDyfNy4ccyaNYt9+/blmYy4u7vj6OhYqAClYiY9CU6uxHBkAUdvnWClnQ1b3G1IUdplLhdKnBXV6V6+K/1qt0Gjssp7e7kQQpB68hRxf/5JwoYNGO7dy1ygVGLbqBEO3bth16QJCpUq7w0BCoUCC3t7LOztH9nyYEhKMk1Qbt0i437ryn+PWAzx8Yi0NDKuXSPj2rW8A1CpsHR1xdLNjYzr19HfzhxPxKFrV9w/G4Klk1O+zok5WFpYcNXbC05cI+mWyLwM51rW3GFJklTMFLrPiF6v548//iApKYl69fK+TlyjRg1SU1MJDAxkxIgROV66eVBaWhppaf+NdpmQkFDYMKWicuMoHF5IzKk/WaeG1ba2XPL+bxhyC507dd3b8knd16ng5l3o3ejj4ohfu464kBDSIiKM5SpfXxy7dcWhS5enMvx5FqWNDVY2Nlj5++dZz5Caii42NsfWlQef6+/cgYwMdFFR6KKiALAqXRrP0aOwebnwfWaKkr5CNdh0Dc0tC8TlPShkMiJJUgEVOBk5ceIE9erVIzU1FVtbW1atWkVgYM4d8Ly8vJgzZw61atUiLS2NxYsX07x5c0JDQ2ncuHGu+5gwYQJjxowpaGiSmeg3DmfXsXmE2Nmwy9PROD8MBhU+VvXpVeXVPOeHeRRhMJC8bx9xf4aQuGULIiMDAIWVFXatWuHYvTvWL79U5ONs5EWp0WDl44OVj0+e9UR6Orrbt43JiTAYsA0KQmlVuBYjcwio3YJU1QY0GQrSDm9HU6unuUOSJKmYKfA4I+np6Vy5coW4uDhCQkKYO3cuO3bsyDUheViHDh1QKBSsXbs21zo5tYz4+vrKcUaeQYbjfzJ81+esf+AOE42+FM19OvBJ/cLPDwOQERVF3KpVxIesJOP6dWO5OiAAx+7dcGjfHguHwm9fejJuJyeyvVMdKl0VWDW1osysY+YOSZKkZ8RTG2fEysrK2IG1du3aHDx4kO+++46ff/45X+vXrVuXJUuW5FlHrVajfsrDe0tPQOw5VmwdwnoXO5QCymrbPfb8MCI9ncRt24kLCSHp338zJ44DlHZ2OHRoj0O3bmjz6J8kFT0XazsuedlR6WoCt28kUib5Dlg7mzssSZKKkcceZ0QIYdKK8ShHjx7Fy8vr0RWlZ1t6MseXvc4UJ1sA6jm9zexOnxd6c2nnzxP3Zwjxa9agv3vXWG798ss4du+GXatWz8zYGlJ2d0qVgwOHMcSq4NpBKN/a3CFJklSMFCgZ+fLLL2nTpg2+vr4kJiby+++/ExoaysaNGwEYNmwY169fZ9GiRQDMmDEDf39/KlWqRHp6OkuWLCEkJISQkJAnfyRSkYpbO5DhmnukK1W4GCryQ/tPC7wN/b0kEjf+Tdwff5Jy7L+mfUs3Nxy6dsWxaxes/PyeZNjSU+JaszEsP4zdHQWGc7tQymREkqQCKFAycvPmTd5++22ioqJwcHCgatWqbNy4kZYtWwIQFRXFlStXjPXT09MZMmQI169fR6vVUqlSJTZs2EDbtm2f7FFIRcpweCETb27jkq0NVjprfu3yQ77nixFCkBIWlnlL7t8bEcnJmQssLbFtEoRjt27YNmqEwlIODlyctKoTTKzddFwTFdw+sAu3duaOSJKk4kROlCcVTPQJ/vitHV+7OKAQMLTG97xZrckjV9Pdvk38mrXEhYSYjHBq5e+f2Rm1Uycs5WB4xdrCjlV5+WwGybXTqLUwAiwePcaLJEnPNzlRnvTkpSZwesVbTHbKHMDsZcc380xEhF5P0u7dmbfkbtsGOh0ACq0W++BgHLt3Q1uz5jM5sqhUcNd9SsDZSyTFWkDUcfCpZe6QJEkqJmQyIuWPECSuep9h2jRSlSqcDBWZ3eGzHKumX7tGXEgI8atWo4uONpZrqlbFsVs37Nu1xcLWtqgil4qIMrAmbLuE9pYF4so+FDIZkSQpn2QyIuXP/p+ZeHsvF+1sUelsmN/5e5N+Ioa0NBK3bCUu5E+S9+4zlls4OGDfqSOO3bqjqVDeHJFLRaRq47bof1yJbZKC1BM70dbvb+6QJEkqJmQyIj3atUOs2v0Na12dQMAnNcdTxsXTuDjhr7+IGvM1hvj4zAKFApt69XB8pTu2zZsXq9FEpcJrEViHre4KSt0UXDxxlEpy0jxJkvJJJiNS3pLvEPFHTyY4Z450Wtv+dd6u0cy4OOXUKW58MQyRno6llxeO92/JVZUoYa6IJTOxsrTkspcTpW7eIfamDuKugJO8NVuSpEeTyYiUO4OBe3++wxe2elKUVjgYyvNzx/8GNtPHx3N90MeI9HRsmzXD5/uZKPJ5i6/0fEosUx7C9iFiVXB1v0xGJEnKl2dnZjHp2bN7OpMTjnLeygpLvTXz2n+P1f3xP4TBwI0vhpFx7RoqHx+8J4yXiYiE10tBADjdUiIu7TVzNJIkFRcyGZFyFrmLdfu+ZZWdLQgYWO0bKrh5GxffnjuPe9u3o7Cywmfmd3LCOgmAls06kaQGKx1cO/KvucORJKmYkMmIlF3iTc6F9GGsqyMANexf5X+1WhoXJ+0/wK0ZMwDw+GoEmnzO2Cw9/zztnbjomTnJ5ZXLtyA1wcwRSZJUHMhkRDKl15H0Z2+GOihJUSqx05dnbsdhxsUZMTFc//RTMBhw6NwZx+7dzRis9CyKKekLwL07Krh+yMzRSJJUHMhkRDIVOp6p98I5Z2WFhd6aXzt8918/EZ2O64MHo4+NRV2+PJ6jRsrRU6VsrKrUBEB7ywKu7DdzNJIkFQcyGZH+c3Yzfx2ZxZ/2diCgf5WvqejmY1wcM306KYcOo7SxocR3M1BqtWYMVnpW1WreCQC3OwoSInaaORpJkooDmYxImeKucnH1e4xxdQagql03+r303zTwiVu3cmferwB4TRiPulQps4QpPftqBFTnpkPmV8vZ8DNg0Js5IkmSnnUyGZFAl07Kip587mhFslKJjb4s8zp+aVycfuUKN4ZlPnfu3Rv7Vq3MFalUDCiVSq6UcALg1m0F3Dxl5ogkSXrWyWREgi1fMS0tkgi1FUq9lrltv0OjyhzC3ZCayrWBgzAkJqKtWRP3TwebOVipOEgtVxHgv8HPJEmS8iCTkRfdqdVsPLmI5fZ2ALxfeTSVPUsaF0d/8w1pZ85g4exMienfolCpzBWpVIyUrNcUANebSnRy8DNJkh5BJiMvstsXuLxuAKPv9xOpbN2FD15ua1wcF7KS+D9DQKmkxLSpqDw8zBWpVMw0atmRDAuwS4Fz4fsevYIkSS80mYy8qDJSSF3+Fp85W5OkVKLVl2F+5xHGxalnzhD99dcAuA0cgE29euaKVCqGbGzsuOKuAeBqdBIk3DBzRJIkPctkMvKi+uszpuuiCFdbodBrmdt2hrGfiD4xkWuDBiHS0rAJaozLu++aOVipOLrtnzn4WdJtK9lvRJKkPMlk5EUU9htbI/7kN4fMfiLvBn5FVU9/AIQQ3Bg2jIzLV1B5e1Ni0iQUSvk2kQrOpmptAKxj5OBnkiTlTf7KvGhunuLK358y0tUFgABtRz6q28G4+M78Bdzb+g8KlYoS332HhaOjmQKViruXW3UGwOuWgqgLu80bjCRJzzSZjLxI0hJJX9GToS52JFoo0ehLsaDLSOPi5EOHiJk2DQCPL4ehrVLZXJFKzwHfwCokaJWo9HD28mVITzZ3SJIkPaNkMvKiEALWDmS6iOWkWo1Cr2FO8HdYqzJnWNXFxnL9k8Gg12PfoQOOr71m5oCl4k6hUHDNJ/NOrVt3VHDjiJkjkiTpWSWTkRfFwblsi/ybJQ72APSpOJwa3plDugudjuufDkF36xZWZcvgNWa0nABPeiJ05QMAELGWcEXe4itJUs5kMvIiuH6Y61tGMOJ+P5HymnZ8XL+zcfGtmd+TvH8/CmtrfGbORGltbaZApedNmYbNAXC7qST50h4zRyNJ0rNKJiPPu+Q7pK/oxeeuDiRaKFHr/VnUeYxxceL27dyeMwcA72/Goi5d2lyRSs+hak0zJ1v0iINTl4+CwWDegCRJeibJZOR5ZjDA6g/4XpnIcY0a9Bpmt5qOjTqzn0j6tWvcGPoFAE5vvYV927Z5bU2SCkzl6EiUy/3Bz24bIPasmSOSJOlZJJOR59memey4GsoCx8x+Ir3Lf0Ftn7IAGNLSuD5wEIaEBDTVquLx+WdmDFR6nsX5Z851lHRbDVdlvxFJkrKTycjz6tJuokLHMdwts59IGXUwnzbsZlx8c/wEUk+fxsLREZ/p01FYWZkrUuk5Z1/zZQCsb1lgkJ1YJUnKgUxGnkf3Ykj/sw+fuzkRb2GBla4ki7t8bVwcv2YNccuXg0KB95QpqLy9zRis9Lyr1bw9AP5RcO6y7MQqSVJ2Mhl53hj0ENKXH1UphGnUYFDzU8sZ2Km1AKSePUvUqNEAuH74IbaNGpoxWOlF4Fi5EmmWCqzT4PytO5AUa+6QJEl6xshk5HkTOpFd0Qf41dEBgDfLfEadkuUA0N+7x/WBgxCpqdg0aIDrhx+YM1LpBaGwtCS6ROblwpg4jZw0T5KkbGQy8jw5v5Xo3d8a+4mUtmrFF417AJkT4EWN+Ir0S5ew9PTEe+oUFBYW5oxWeoGIgMDM/9ySg59JkpSdTEaeF/HXyAjpx1B3Z+5aWKDS+7Koy1jj4ruLF5O4cSOoVPjMmI6lk5MZg5VeNOXvD37mcVNBjOw3IknSQ2Qy8jzQZ8Af/2OWRs8RjQYMan5o/i0OmsyRVJOPHuXm5CkAeHz+Odrq1c0YrPQiKtmgUea/MXAyNgJ0aWaOSJKkZ4lMRp4HW0ax5/Zx5t6fd+a1UoOp71cRAN2dO5kT4Ol02LUJxumtN80ZqfSCsvT0JN5OjYWAK3GWEHXM3CFJkvQMkclIcXd6LTEHZzPMzQWhUOCnas7wJm8AIPR6bgwZgi46GqtSpfAa+42cAE8yC4VCQXyp+4Of3bGS/UYkSTIhk5Hi7PYFdGv684WbC3csLLDUlWBJl3HGxbE//kTSnr0otFp8Zn6Hha2NGYOVXnQuteoAYHvTghTZb0SSpAfIZKS4ykiFP3rxs1bBQa0GDFZ812wajtrMhOPerl3EzpoFgNfXY1CXK2fOaCWJik1aAFA6Ck5HHQYhzByRJEnPCpmMFFcbh7Iv7iw/3593prvfxzQuVQmAjBs3uDHkMxACx9d64NChgzkjlSQArCtXxqAA10SISE6FOxfNHZIkSc8ImYwUR8eWExu2iC/cXBEKBb6WTRjV7G0ADOnpXPv4E/Tx8WgqV8bjyy/NHKwkZVLa2HDbM/OW8lt31XLwM0mSjGQyUtzEhKNb/zFfuLly29ICS503S7tM+G/xxEmkHj+O0sGBEjNmoJQT4EnPEEVgZuudiFVhuCw7sUqSlEkmI8VJ2j1Y0Yu5Npbs12oQBhXfNp2Kk7UtAPHrN3D3t98A8J40ESufEuaMVpKyKduoGQA+0RB5VXZilSQpk0xGigshYP3HHLx3iVn3553p4juQpqWrAJB2/jxRI0cC4PL+e9g1aWKuSCUpV861agNQJgpOJd+AlDjzBiRJ0jOhQMnIrFmzqFq1Kvb29tjb21OvXj3+/vvvPNfZsWMHtWrVQqPRULp0aWbPnv1YAb+wDv3K7VMhfO7mikGhwNuiEWNb9AbAkJTEtUEfI5KTsa5bF7cBA8wbqyTlwqp0aVLVlmgy4GKSGq4dNHdIkiQ9AwqUjPj4+DBx4kQOHTrEoUOHaNasGZ06deLUqVM51o+MjKRt27Y0atSIo0eP8uWXXzJw4EBCQkKeSPAvjBtH0W/8gi/dXIi1tMBS58lvXScB9yfAGzmK9AsXsHR3p8S0qXICPOmZpbCw4F7pzMHPkuXgZ5Ik3WdZkModHrpFdNy4ccyaNYt9+/ZRqVKlbPVnz55NyZIlmTFjBgABAQEcOnSIqVOn0q1bt1z3k5aWRlraf3NXJCQkFCTM50vKXVjRi19tNeyx1iIMKqYETcXF2g6Au8uWkbBhA1hYUGL6t1i6uJg5YEnKm1vteojwizjetODO5T04mzsgSZLMrtB9RvR6Pb///jtJSUnUq1cvxzp79+6lVatWJmWtW7fm0KFDZGRk5LrtCRMm4ODgYHz4+voWNszib8MQDqdE84NTZj+Rjj79aVG2GgApx49zc8JEANyHDMG6Vi2zhSlJ+VWiXn0Ayt4QnLh9KnOiR0mSXmgFTkZOnDiBra0tarWa999/n1WrVhEYGJhj3ejoaDw8PEzKPDw80Ol0xMbG5rqPYcOGER8fb3xcvXq1oGE+H85v5e7plXzu7oJBocBL2YBvmv8PAN3du1z7+GPIyMCuZUuce/cyb6ySlE/aqlUBKBELJwGiT5g1HkmSzK9Al2kAKlSoQFhYGHFxcYSEhNCrVy927NiRa0Ly8MRs4v4Q0HlN2KZWq1Gr1QUN7fmSngzrBzPW1ZkYS0ssdB4s7TEZpVKJMBi48flQdDeiUPmVxGv8ODkBnlRsWLq6kuhsj92dBG7d1cDVA1CiprnDkiTJjArcMmJlZUXZsmWpXbs2EyZMoFq1anz33Xc51vX09CQ6OtqkLCYmBktLS1xk34a87ZzCjrSbbLGxBqFgXMOJuNlmDv0eO3s2Sbt2oVCr8Zk5Ews7OzMHK0kFY1k5s4+Z8pYlaZf3mjkaSZLM7bHHGRFCmHQ2fVC9evXYsmWLSdnmzZupXbs2KpXqcXf9/Lp5mqS93zPeJbNrX4B1B9pVyByfIWnPHmK//wEAz1Gj0FSoYLYwJamwfOs2AqBUFJy+ccDM0UiSZG4FSka+/PJLdu3axaVLlzhx4gTDhw8nNDSUN998E8js69GzZ09j/ffff5/Lly8zePBgwsPD+fXXX5k3bx5Dhgx5skfxPDEYYP0nzLG35obKEoXOiVntvwAgIzqa658OyZwA75XuOHbtYuZgJalwbGpUBzI7sZ4yJELcC9ovTJIkoIB9Rm7evMnbb79NVFQUDg4OVK1alY0bN9KyZUsAoqKiuHLlirF+qVKl+Ouvv/jkk0/48ccf8fb2ZubMmXne1vvCO7qIc9GHWVjCE4A+AYNxsbZDpKdz/eNP0N+9izogAI/hw80cqCQVniYwEL2FEsdkA+fSrDInzXN8ge+ak6QXXIGSkXnz5uW5fMGCBdnKgoKCOHLkSIGCemHdi0G/ZSRjXZ3QKxQ4UZOP63cGIGbaNFLCwlDa2eEz8zuUGo15Y5Wkx6BUq0nx88H24hVS7qgxXN6Lskp3c4clSZKZyLlpniWbvmSNpY6jGg0YrJjZagwACRs3cmfhIuD+BHgv8rgr0nPDvXadzH9vKrhyRU6aJ0kvMpmMPCsubOPOqRC+dXYEoJHrW1T38iftYiRRX2ZeknF5py92zZqZMUhJenIca2d2yi57Q3Ay6TKkJZo5IkmSzEUmI8+CjBRYP5hpzo7EW1ig0vvwbXB/REYGNz77DENyMta1a+P28cfmjlSSnpiswc9KRcMxlRVcP2zmiCRJMheZjDwLdk7lYMoN1trZgoAvXxqBRmXF7blzST11CqWDA97TpqGwLPAYdZL0zFL5+ZFuo8VKDzEJariy39whSZJkJjIZMbeYcNJ2f8fY+2OK+Fk1p3uVBqRGRHDrp1kAeI4YjsrD3ZxRStITp1AosKpcGQD1LQviLst+I5L0opLJiDndH1NkoZ2WSCsV6G2Z3W5k5uWZL4ZBRga2LZpj3769uSOVpKfC9aXMTqxlb8CJW2Fg0Js3IEmSzEImI+YUtoSrNw4yxzFzRt5XSvXHx8GZ2J/nkBYejoWDA16jRsl5Z6TnlrZaZr+RsjcEJywFxISbOSJJksxBJiPmcu8Whs1f8Y2LE2lKBbaGAEYEvUFqeDixs2cD4DHyKyzd3MwcqCQ9PdoqVQDwugvh4v7gZ5IkvXBkMmIum4ez2SKdPdZahMGSqc3GoNDpMi/P6HTYtWqFfdu25o5Skp4qC0dHMkp4AZBy24p0OWmeJL2QZDJiDhe2k3hiBZOcnQCo6dCNBn4BxM6eTVpEBBZOTniOGikvz0gvBKeameONlIyCM9dky4gkvYhkMlLUMlJhw2C+d3Ik1tICC507P7b7lJSTp4j9eQ4AnqNGYuniYuZAJalo2FSvBkC5G3BSfwcSb5o5IkmSippMRorarmmcvHeN3+1tARhQ7XNsFBZEDfsC9Hrs2gRjHxxs5iAlqehoq1UHoGyUIEythqv7zBuQJElFTiYjRelWBBn/TudrV2eEQoGnsj59a7cm9ocfSTt3HgsXFzxHjjR3lJJUpDQVyqNXqbBNhRsparh6wNwhSZJUxGQyUlSEgPWfsNxWQ7jaCvRafggeRcqJE9yeOxcAz9GjsHRyMnOgklS0FCoV6oAAABxuKrkaucvMEUmSVNRkMlJUwpZy89o+vnfKHFOktXcfytm7ZN49YzBg37499i1bmjlISTIP+xo1ACh3Q3Ai8WLmfE2SJL0wZDJSFJJiYfMIJrk4kaxUotaXYmLLfsR+/z3pFy5g4eqKx/AvzR2lJJmN9n4n1rI3BMfUlnDjqJkjkiSpKMlkpChsHsFOUthiY40QSr5uMIqMEye4/et8ALzGjJaXZ6QXWtYMvn4xcNLCCq7ITqyS9CKRycjTdnEHKcd/Z9z9ifAqWrcl2K8SN4Z9CQYDDp06Yte8uZmDlCTzsvT2Rjg5YWmAjLsqEi7Jwc8k6UUik5Gn6f6YIj872nNDZYlC58istsO49d1M0iMjsXRzw+NLeXlGkhQKBXY1awJQOgpOxBzJ7PQtSdILQSYjT9O/0zmfcJkFDvYA9K7wCTZnz3NnwQIAPMd+jYWDgxkDlKRnR9almnI3BCcs0iH2nJkjkiSpqMhk5Gm5dRb9v98y1tUJvUKBI9X5uFYbbgwbBkLg0KULdk2amDtKSXpmZM3gW+561uBncmh4SXpRyGTkabg/psharYojGg3CoGJmy6+5NWMGGZevYOnhgcewL8wdpSQ9UzSVKyMUCtwS4FKGFXo5aZ4kvTBkMvI0HFvG3at7mHp/IryGrm9S4XosdxYtBsDrm7FY2NubM0JJeuZY2NpiVaYMAF43FZy5KpMRSXpRyGTkSUu6DZuGM83ZkQQLJZa6Ekxt3JcbXw4HIXB8pTu2jRqZO0pJeiZZGyfNE5zKiMn8PEmS9NyTyciTtuUrDook1thlToT3xUvDuTfzBzKuXsXSywv3oUPNHKAkPbv+68QKRzVquCbnqZGkF4FMRp6kyF1khC3lm/tjipRUNaN9shV3ly4F7l+esbU1Z4SS9EzLmsG3TJTgmMpKdmKVpBeEpbkDeG7o0mD9JyxwsOeilQr0tsxqOYSot/8HgGOPHtg2aGDmICXp2aYuWwastWiTUyDBkhuR/+Jt7qAkSXrqZMvIk/LvDK7GX2S2Y+a4Id38P0D1y69kXL+Oytsb988+M3OAkvTsU1hYYF25CpB5i++J+AjQpZs5KkmSnjaZjDwJsecx7JrKOBdn0pUKbAwV+dSqDHHLfgfAa/w4LGxtzBykJBUPxvFGbgiOWSkh+riZI5Ik6WmTycjjEgI2fMIWtQW7rbUIgwVTXvqc6JFfAeD0xhvY1K1r5iAlqfjQVvtvBt8wtVpOmidJLwCZjDyu48u5d2kXE+93Wq1h35WyK9ajuxGFyscH908HmzlASSpeNPfvqPG9BZGoSLq8x8wRSZL0tMlk5HEk34FNX/K9kyOxlhYodW5MdWpA3IoVQOblGaWNvDwjSQWhcnfH0tMTJeB3E05EHZKT5knSc04mI49jy1ec0iXyu33m7bqDyg4k4etvAHB6+21sXn7ZnNFJUrGlrV4dgLI34KQiBe5eMms8kiQ9XTIZKaxLu9EfXcLXrk4YFAo8lPUI3nwQXXQ0Kr+SuH/ysbkjlKRi68EZfI9q1HBVDn4mSc8zmYwUhi4N1n/M7/a2nFarQa/he8dg4kNWgkKB9/jxKK2tzR2lJBVbD87ge8xKJSfNk6TnnBz0rDB2zyTm7gVm+mQOx9TO4Q0sp3yHDnDu2RPrWrXMEpYQAp1Oh16vN8v+JemJKVMGg48PDno93gYLImLOUzo11dxRSZIJCwsLLC0tUSgU5g6l2JPJSEHdvgA7pzDJ2ZFkpQK1vhQfHbhJYkwMVv7+uH08yCxhpaenExUVRXJysln2L0lPmmHkV4iMDAZqIcXCQOTFC6CQjbnSs8Xa2hovLy+srKzMHUqxJpORghAC1n/CLisFm21tEELJFFV7EtdMB6USrwnjUWq1RR6WwWAgMjISCwsLvL29sbKykpm6VOyl29hgiIsj0RoMWoGHrQeo5dxO0rNBCEF6ejq3bt0iMjKScuXKoVTKZLmwZDJSECf+IOXSTsaV8AKgumhOiTmL0QPO/+uNdY0aZgkrPT0dg8GAr68v1rKvivScsLSzIyMhAaGHWCvQKDJAozF3WJJkpNVqUalUXL58mfT0dDTy/VloMo3Lr+Q7sHEYvzjac11liULvyJjjAv2tWKxKl8Zt4EBzRyizcum5ktUJXK2DdIWCjPREM0ckSdnJ790nQ57F/No6igsZccx3sAdgyL2WpP+9EZRKvCeMR6lWmzlASXq+KKysUFhYoBBglQEpulQ5+JkkPadkMpIfl/cgjixirIszOoUCn+RK1F2+GQCXvn2Nc2lIkvTkKBQKFPf7YGkyBMkKICPFvEFJkvRUyGTkUXTpsP4T1tjacFirQRhUTD7ugP72bdTlyuI64CNzRyhJz62sDuHqDEhWKiA9ycwRSZL0NBQoGZkwYQIvvfQSdnZ2uLu707lzZyIiIvJcJzQ0NPMvnIceZ86ceazAi8yemdy9fZapzk4A9LpRD8vtO8HCAq/xE1DK27leWBERETRt2hQPDw80Gg2lS5dmxIgRZGRkmNTbsWMHtWrVMtaZPXt2gfeV02dIoVAwZcoUY505c+bQpEkT7O3tUSgUxMXF5bitDRs2UKdOHbRaLa6urnTt2jXPfffu3TvbfusW0UzUWf1GNOmQqlCiT79XJPuVJKloFehumh07dtC/f39eeukldDodw4cPp1WrVpw+fRqbR0wIFxERgb29vfG5m5tb4SIuSvfHFJnu7Ei8hRKnBA86bjiKAXDp9w7aKpXNHeFzJz09vdjcr69SqejZsyc1a9bE0dGRY8eO0a9fPwwGA+PHjwcgMjKStm3b0q9fP5YsWcLu3bv58MMPcXNzo1u3bvneV1RUlMnzv//+m759+5psIzk5meDgYIKDgxk2bFiO2wkJCaFfv36MHz+eZs2aIYTgxIkTj9x/cHAw8+fPNz4vqtcoq2VEpQeFAVL1ScipJyXp+VOgZGTjxo0mz+fPn4+7uzuHDx+mcePGea7r7u6Oo6NjvvaTlpZGWlqa8XlCQkJBwnwyhIANn3LYQrDKLnNsg0mHPTHcOYy6fHlcP/yw6GMqACEEKRlFPxKrVmVRoDFOmjRpQuXKlbGysmLRokVUqlSJHTt28O233zJ//nwuXryIs7MzHTp0YPLkydja2iKEwN3dndmzZxt/jKtXr86NGzeIiYkBYO/evTRu3Ji7d+9ia5t9bIrevXsTFxdHw4YNmTZtGunp6bz22mvMmDEDlUoFZCZGI0aMYOnSpcTFxVG5cmUmTZpEkyZNAChdujSlS5c2btPPz4/Q0FB27dplLJs9ezYlS5ZkxowZAAQEBHDo0CGmTp1aoGTE09PT5PmaNWto2rSpyf4//vhjILM1Mic6nY5BgwYxZcoU+vbtayyvUKHCI/evVquzxVAUFJaWKKysEOnpqDMEKZZ6bHTpYFk8ElZJkvLnscYZiY+PB8DZ2fmRdWvUqEFqaiqBgYGMGDGCpk2b5lp3woQJjBkz5nFCe3wn/iTj4na+vj+mSIezATjuOwyWlpmDmz3jf72nZOgJHLmpyPd7+uvWWFsV7G21cOFCPvjgA3bv3o24f7eEUqlk5syZ+Pv7ExkZyYcffsjnn3/OTz/9hEKhoHHjxoSGhtKtWzfu3r1rbJ07ffo0gYGBhIaGUqtWrRwTkSzbt2/Hy8uL7du3c/78eXr06EH16tXp168fAP/73/+4dOkSv//+O97e3qxatYrg4GBOnDhBuXLlsm3v/PnzbNy40eSyx969e2nVqpVJvdatWzNv3jwyMjKMiU9B3Lx5kw0bNrBw4cICrXfkyBGuX7+OUqmkRo0aREdHU716daZOnUqlSpXyXDc0NNT4B0VQUBDjxo3D3d29wLEXhlJrjT49HU0GJKuUkJEkkxFJes4UugOrEILBgwfTsGFDKlfO/XKFl5cXc+bMISQkhJUrV1KhQgWaN2/Ozp07c11n2LBhxMfHGx9Xr14tbJiFk3IXNg1joYM9F61UOCRY8/bWKwC4vvce2kd8cUsFU7ZsWSZPnkyFChWoWLEikPlXftOmTSlVqhTNmjVj7NixrFixwrhOkyZNjC0AO3fupFq1ajRr1sxYFhoaamzByI2TkxM//PADFStWpH379rRr145//vkHgAsXLrBs2TL++OMPGjVqRJkyZRgyZAgNGzY0uVwBUL9+fTQaDeXKlaNRo0Z8/fXXxmXR0dF4eHiY1Pfw8ECn0xEbG1uY08XChQuxs7N7ZF+Ph128eBGA0aNHM2LECNavX4+TkxNBQUHcuXMn1/XatGnD0qVL2bZtG9OmTePgwYM0a9bMpPXyaVJam3ZiFWmy34gkPW8K3TLy0Ucfcfz4cf79998861WoUMGkGbhevXpcvXqVqVOn5nppR61WozbnuB1bR3Mt7Q6zXL1BCEb+6wnxZ1FXrIjre++aL64C0KosOP11a7Pst6Bq166drWz79u2MHz+e06dPk5CQgE6nIzU1laSkJGxsbGjSpAmDBg0iNjaWHTt20KRJE0qWLMmOHTt499132bNnj/GyRW4qVaqEhcV/8Xp5eRn7Txw5cgQhBOXLlzdZJy0tDRcXF5Oy5cuXk5iYyLFjx/jss8+YOnUqn3/+uXH5w5etslp/Cjtk/6+//sqbb75Z4NEeDQYDAMOHDzdeIpo/fz4+Pj788ccfvPfeezmu16NHD+P/K1euTO3atfHz82PDhg0FTogK48E7avQoSEu/hxznUpKeL4VKRgYMGMDatWvZuXMnPj4+BV6/bt26LFmypDC7fvqu7EMcXsA4DzfSlQqanvTA99hZsLTEe+IEFM/45ZksCoWiwJdLzOXhzs+XL1+mbdu2vP/++4wdOxZnZ2f+/fdf+vbta7xTpXLlyri4uLBjxw527NjB119/ja+vL+PGjePgwYOkpKTQsGHDPPf78CUShUJh/ME2GAxYWFhw+PBhk4QFyHbpx9fXF4DAwED0ej3vvvsun376KRYWFnh6ehIdHW1SPyYmBktLy2xJTX7s2rWLiIgIli9fXuB1vby8jHFmUavVlC5dmitXrhRoO35+fpw7d67AMRSGQqMBhQILg8BSDykiHY1BD8qCJ76SJD2bCvRrJYRgwIABrFq1itDQUEqVKlWonR49etT4xfhM0aXDuo/ZYq3lX2stDolK3tseB4Drhx+guX8JQXq6Dh06hE6nY9q0acahlh+8RAMY+42sWbOGkydP0qhRI+zs7MjIyGD27NnUrFkTOzu7QsdQo0YN9Ho9MTExNGrUKN/rCSHIyMgwtn7Uq1ePdevWmdTZvHkztWvXLlR/kXnz5lGrVi2qFWKgvVq1aqFWq4mIiDAmahkZGVy6dAk/P798b+f27dtcvXq1yD7DCqUSpUaDISUFTbogRa3AKSMZ1IV/fSVJerYUqM9I//79WbJkCb/99ht2dnZER0cTHR1NSsp/oyIOGzaMnj17Gp/PmDGD1atXc+7cOU6dOsWwYcMICQnho4+ewcHC9v7AvdgzTHBxASH4bKsbyntJaAIDcb3fqVF6+sqUKYNOp+P777/n4sWLLF68OMexOZo0acJvv/1G1apVjWNrNG7cmKVLlz6yv8ijlC9fnjfffJOePXuycuVKIiMjOXjwIJMmTeKvv/4CYOnSpaxYsYLw8HAuXrzIH3/8wbBhw+jRoweWlpl5/vvvv8/ly5cZPHgw4eHh/Prrr8ybN48hQ4YUOKaEhAT++OMP3nnnnRyXR0dHExYWxvnz5wE4ceIEYWFhxv4g9vb2vP/++4waNYrNmzcTERHBBx98AMArr7xi3E7FihVZtWoVAPfu3WPIkCHs3buXS5cuERoaSocOHXB1daVLly4FPobCMs5TkwHJCqUc/EySnjeiAIAcH/PnzzfW6dWrlwgKCjI+nzRpkihTpozQaDTCyclJNGzYUGzYsKEguxXx8fECEPHx8QVar0BuXxRirLuY+F1JUXlBZfHhJ3XE6QoVxenKVURKRMTT2+8TkJKSIk6fPi1SUlLMHUqBBQUFiUGDBmUr//bbb4WXl5fQarWidevWYtGiRQIQd+/eNdY5ceKEAMSQIUOMZdOnTxeAWL9+fZ777dWrl+jUqZNJ2aBBg0zeu+np6WLkyJHC399fqFQq4enpKbp06SKOHz8uhBDi999/FzVr1hS2trbCxsZGBAYGivHjx2d7HUJDQ0WNGjWElZWV8Pf3F7NmzTJZvn37dgGIyMjIPGP++eefhVarFXFxcTkuHzVq1CM/n+np6eLTTz8V7u7uws7OTrRo0UKcPHnSZDsPrpOcnCxatWol3NzchEqlEiVLlhS9evUSV65cyTPWJy3j7l2RfOKEuHvmhDh566RIv3WuSPcvSbkpzt+/RSG/v98KIZ79macSEhJwcHAgPj7eZOC0J0YIWNKN01d38pq3F473BD/8aoUqOQW3jz/G9f2cO/Y9K1JTU4mMjKRUqVJyCutiaMGCBYwbN47Tp08X6tLNi8CQnk7a2bMI4JKHAh+9HnuPKlDITsCS9KTI79+85ff3W85NA3AyBP2Ffxjj6oJAMGCjParkFDSVK+PyTt9Hry9Jj2Hjxo2MHz9eJiJ5UKhUKCwsUQBWOkhRALpUc4clSdITUjxut3iaUuJg4zCW29lyWm1F0DELKp+/i0Klyrx7xlKeIunp+v33380dwjNPoVCgtNaiT0xEky5I1t6fNE+lNXdokiQ9AbJl5J8xxKTeZoazE84Jgne2ZV61chs0EHXZsmYOTpKkLIoHxhtJUSowyMHPJOm58WInI1cPwKFfmeLsSIoCPvjLCnVqOtpq1XD+3//MHZ0kSQ8wzuCbAQIFKRnyjhpJel68uMnI/Ynwdms1bLS1oekxqBaZgsLKCq8J41FYyAGVJOlZkjUSq6UeLAyQInSgzzBzVJIkPQkvbjKiUBAfPJWvXDxxiRf875/MXvluH3+M+oGZUCVJejYoLCxQ3J8mQp0hSFHK8UYk6Xnx4iYjwAeH/uaWpZ73/1KiSdehrVED5149H72iJElm8eA8NckKBUImI5L0XHhhkxGDwcCNpMs0DxNUu5SBQqPBa/w4eXlGkp5hxn4j6aBTZE6aJ0lS8ffCJiNKpZJNzb7mndDMsR3cP/kYdSHn2pEkqWg82DICkKpPg/uTG0qSVHy9sMmIEILor0ZikZqGtnYtnN5+29whSc+oBQsW4OjoWOz3kaV379507ty5SPb1pCk0GlAqUQpQ6SBZAWQkG5f7+/szY8aMIoklNDQUhUJBXFzcU9+XQqFg9erVxudnzpyhbt26aDQaqlev/tT3L0lP2wubjCgUCpx6vIqltxfe48ahUL6wp0IqYjn9YPbo0YOzZ88+0f1cunQJhUJBWFiYSfl3333HggULnui+iopCoUB5f8htTYYg+Ql0Yk1JSeGdd97Bzc0NW1tbXn75Zfbs2fMkwn1qRo0ahY2NDREREfzzzz9mjWX06NEoFIpsDxsbG2OdlStX0rJlS9zc3LC3t6devXps2rTJZDunTp2iW7du+Pv7o1Ao8pVUpqam0rt3b6pUqYKlpWWxTbKlFzgZAbBv04aymzZhVYDp0yXpadBqtbi7uxfJvhwcHIqsFeZpMM7gmw5pCgW6x+w3MmXKFP7880+WLFnC8ePH+eqrr4yzLj+rLly4QMOGDfHz88PFxSXHOhkZRXPb85AhQ4iKijJ5BAYGmswEvXPnTlq2bMlff/3F4cOHadq0KR06dODo0aPGOsnJyZQuXZqJEyfi6emZr33r9Xq0Wi0DBw6kRYsWT/zYpCJUFLP2Pa4imbW3GMtx1kiDQYi0e0X/MBgKFLterxcTJ04UZcqUEVZWVsLX11d88803xuXHjx8XTZs2FRqNRjg7O4t+/fqJxMRE4/Ks2XenTJkiPD09hbOzs/jwww9Fenq6sc6PP/4oypYtK9RqtXB3dxfdunXLM6b58+cLX19fodVqRefOncXUqVOFg4ODSZ21a9eKmjVrCrVaLUqVKiVGjx4tMjIyjMtHjRolfH19hZWVlfDy8hIDBgwQQmTOUsxDs+pm7fPBfYwaNUpUq1ZNLFq0SPj5+Ql7e3vRo0cPkZCQYKzz999/iwYNGggHBwfh7Ows2rVrJ86fP29c/vB+smYkfnjG4tTUVDFgwADh5uYm1Gq1aNCggThw4IBxedaswlu3bhW1atUSWq1W1KtXT5w5cybXcxgZGSkAsXz5ctGwYUOh0WhE7dq1RUREhDhw4ICoVauWsLGxEa1btxYxMTHG9Q4cOCBatGghXFxchL29vWjcuLE4fPiwyba/GjpU+Hh6CiuVSrh5uIn3+r5hfN/5+fmJ6dOnG+v++uuvwt7eXmzevDnXWMeOHSvq1auX6/LcZJ2XrJmkY2NjxWuvvSZKlCghtFqtqFy5svjtt99M1gkKChIDBgwQn332mXBychIeHh5i1KhRJnXOnj0rGjVqJNRqtQgICBCbN28WgFi1apUQIvvrOmrUKJPzHRQUJNRqtfj111/zFdOjPoMFFRYWJgCxc+fOPOsFBgaKMWPG5Ljs4dcxP3KaibsoyFl785bf3+9nO/2XCi8jGcZ7F/1+v7wBVjaPrnffsGHD+OWXX5g+fToNGzYkKiqKM2fOAJl/KQUHB1O3bl0OHjxITEwM77zzDh999JHJZYbt27fj5eXF9u3bOX/+PD169KB69er069ePQ4cOMXDgQBYvXkz9+vW5c+cOu3btyjWe/fv306dPH8aPH0/Xrl3ZuHEjo0aNMqmzadMm3nrrLWbOnEmjRo24cOEC7777LpDZfP7nn38yffp0fv/9dypVqkR0dDTHjh0DMpurq1Wrxrvvvku/fv3yPDcXLlxg9erVrF+/nrt37/Lqq68yceJExo0bB0BSUhKDBw+mSpUqJCUlMXLkSLp06UJYWBhKpZIDBw7w8ssvs3XrVipVqoSVlVWO+/n8888JCQlh4cKF+Pn5MXnyZFq3bs358+dxdnY21hs+fDjTpk3Dzc2N999/nz59+rB79+48j2HUqFHMmDGDkiVL0qdPH15//XXs7e357rvvsLa25tVXX2XkyJHMmjULgMTERHr16sXMmTMBmDZtGm3btuXcuXPY2dnx559/8t2sWSycOJHAsmU5YrjN9ZPhoE8DS9MZU6dOncqECRPYtGkTdevWzTXGDh06MGrUKObNm0ffvoWfGDM1NZVatWoxdOhQ7O3t2bBhA2+//TalS5emTp06xnoLFy5k8ODB7N+/n71799K7d28aNGhAy5YtMRgMdO3aFVdXV/bt20dCQgIff/yxyX6ioqJo0aIFwcHBDBkyBFtbW2JjYwEYOnQo06ZNY/78+ajV6nzFlNdnsDDmzp1L+fLladSoUa51DAYDiYmJJu8v6QVXRMnRY5EtI3nLMTNPuyfEKPuif6Tdy3fcCQkJQq1Wi19++SXH5XPmzBFOTk7i3r3/trlhwwahVCpFdHS0ECLzryE/Pz+h0+mMdV555RXRo0cPIYQQISEhwt7e3qRFIS+vv/66CA4ONinr0aOHSatFo0aNxPjx403qLF68WHh5eQkhhJg2bZooX768SevMg3L6qy+nlhFra2uTuD/77DNRp06dXGOPiYkRgDhx4oQQ4r/WiaNHj5rUe/AvyHv37gmVSiWWLl1qXJ6eni68vb3F5MmThRCmLSNZNmzYIIBc/xrM2vfcuXONZcuWLROA+Oeff4xlEyZMEBUqVMj1mHQ6nbCzsxPr1q0TQvx3bhOOnxDJJ06I89dPisibx4VIihVC/Hduv/jiC+Hl5SWOHz+e67aFECI6Olp4enqKYcOGiXLlypm8LrGxsQIQhw4dynHdh1tGctK2bVvx6aefGp8HBQWJhg0bmtR56aWXxNChQ4UQQmzatElYWFiIq1evGpf//fffJi0jQghRrVo1kxaVrPM9Y8aMPI/34Zge9RksqNTUVOHk5CQmTZqUZ73JkycLZ2dncfPmzRyXy5aR54dsGXnRqawzWynMsd98Cg8PJy0tjebNm+e6vFq1aiYd4Ro0aIDBYCAiIgIPDw8AKlWqhMUD48N4eXlx4sQJAFq2bImfnx+lS5cmODiY4OBgunTpgrV1znGGh4fTpUsXk7J69eqxceNG4/PDhw9z8OBBYwsFZF67Tk1NJTk5mVdeeYUZM2YY99m2bVs6dOhQ4H4I/v7+2NnZmRxXTEyM8fmFCxf46quv2LdvH7GxsRju3+J65coVKleunK99XLhwgYyMDBo0aGAsU6lUvPzyy4SHh5vUrVq1qkksADExMZQsWTLX7T+4TtbrVaVKFZOyB48pJiaGkSNHsm3bNm7evIleryc5OZkrV64AGM9tYOtWtKhfnwYtG1GnUxCGtHsorTP7TkybNo2kpCQOHTpE6UeMpjxt2jR8fX0ZP3487733Ho0aNeLWrVuMGzeOEydOYGdnZxJvXvR6PRMnTmT58uVcv36dtLQ00tLSTN6/D58TMH1dw8PDKVmyJD4+Psbl9erVy9f+AWrXrl2gmB71GSyolStXkpiYSM+euQ8euWzZMkaPHs2aNWuKrJ+U9OyTycjzSqEo0OUSc9Bq857+XQiBQqHIcdmD5SqVKtuyrB9mOzs7jhw5QmhoKJs3b2bkyJGMHj2agwcP5tiJUwjxyLgNBgNjxoyha9eu2ZZpNBp8fX2JiIhgy5YtbN26lQ8//JApU6awY8eObLHmJa/jgszLC76+vvzyyy94e3tjMBioXLky6enp+d5H1vE+fJ5zOvcPxpO1zPCIMT5yWufhsge30bt3b27dusWMGTPw8/NDrVZTr1494zFlnduNf/7Jlo0bGf7VN3jNm8+OlQtxcMrsiN6oUSM2bNjAihUr+OKLL/KM7/jx49SoUQMAPz8/tm7dSqNGjYiNjSU+Pp633nor18tbD5s2bRrTp09nxowZVKlSBRsbGz7++ONsr0der2tO77/cPgM5eTjxeVRMj/oMFtTcuXNp3759rh1Qly9fTt++ffnjjz9kh1PJxAt9N41kXuXKlUOr1eZ6a2JgYCBhYWEkJf136+bu3btRKpWUL18+3/uxtLSkRYsWTJ48mePHj3Pp0iW2bduW6z737dtnUvbw85o1axIREUHZsmWzPZT3bxHXarV07NiRmTNnEhoayt69e42tNVZWVuj1+nzHn5Pbt28THh7OiBEjaN68OQEBAdy9e9ekTtaPaF77Klu2LFZWVvz777/GsoyMDA4dOkRAQMBjxVgYu3btYuDAgbRt25ZKlSqhVquN/SGyaLVaOnbtyrRhw/h7/nyOHTzG4dPhoNcB8PLLL7Nx40bGjx/PlClT8txfiRIl2LNnj/EclS9fns2bN7NixQpWr17NV199VaDYO3XqxFtvvUW1atUoXbo0586dK9DxBwYGcuXKFW7c+K9Vc+/evQXaRkFietRnsCAiIyPZvn17rv1uli1bRu/evfntt99o167dY+9Per7IlhHJbDQaDUOHDuXzzz/HysqKBg0acOvWLU6dOkXfvn158803GTVqFL169WL06NHcunWLAQMG8Pbbbxub/B9l/fr1XLx4kcaNG+Pk5MRff/2FwWCgQoUKOdYfOHAg9evXZ/LkyXTu3JnNmzebXKIBGDlyJO3bt8fX15dXXnkFpVLJ8ePHOXHiBN988w0LFixAr9dTp04drK2tWbx4MVqtFr/7t5D7+/uzc+dOXnvtNdRqNa6urgU+d05OTri4uDBnzhy8vLy4cuVKtlYAd3d3tFotGzduxMfHB41Gg4ODg0kdGxsbPvjgAz777DOcnZ0pWbIkkydPJjk5+bE6cxZW2bJlWbx4MbVr1yYhIYHPPvvM5K/3rHP7cu3aWNyIYvmatWi0GlxLloCM/5LWevXq8ffffxMcHIylpSWffPJJjvsbOHAgdevW5bXXXmPYsGGo1WrWr19vbDlYvHgxn3/+eb5jDwkJYc+ePTg5OfHtt98SHR1doKSuRYsWVKhQgZ49ezJt2jQSEhIYPnx4vtcvaEyP+gwWxK+//oqXlxdt2rTJtmzZsmX07NmT7777jrp16xIdHQ1kJpZZ78n09HROnz5t/P/169cJCwvD1taWsmXLAvDDDz+watUqk+Tp9OnTpKenc+fOHRITE43j6sjB4IqZp9995fHJDqx5K84dqPR6vfjmm2+En5+fUKlUomTJkiadQ/N7a++DBg0aZLyNddeuXSIoKEg4OTkJrVYrqlatKpYvX55nTPPmzRM+Pj5Cq9WKDh065Hhr78aNG0X9+vWFVqsV9vb24uWXXxZz5swRQgixatUqUadOHWFvby9sbGxE3bp1TTp/7t27V1StWlWo1epH3tr7oOnTpws/Pz/j8y1btoiAgAChVqtF1apVRWhoaLaOjr/88ovw9fUVSqUy11t7U1JSxIABA4Srq2uet/Y+2FHz6NGjAhCRkZE5nsOcOs/mtJ2Hj/vIkSOidu3aQq1Wi3Llyok//vjDpDOjybm1thYvV60qliz7RZyJOSFE/PVsHR937NghbGxsxHfffZdjnFn7bN26tXB2dha2trYiODhY7NmzRyxevFgolUrx559/5rjew8dz+/Zt0alTJ2Frayvc3d3FiBEjRM+ePU3OdVBQkBg0aJDJdjp16iR69eplfB4RESEaNmworKysRPny5cXGjRvz3YH14c7K+YnpUZ/BoKAgk/hyotfrhY+Pj/jyyy9zXJ7TLe2AyXazjuHhR9b7VojMz8WDnwEhMju75rReUSnO379FIb+/3woh8nGR3MwSEhJwcHAgPj4ee3t7c4fzzElNTSUyMpJSpUqh0WgevYIkPQfSr19Hf/cucTZwx05BWWGJ2i3nFi+p8Pz9/Rk9ejS9e/c2dyjPJPn9m7f8/n7LPiOSJBVL/83gm9nBM0WfBkJOmvcknTlzBjs7uzzvjpGkJ0EmI5IkFUvGGXwz+62SogAyUswX0HOoYsWKnDhxwtgxW5KeFvkOkySpWFKo1SiUShRCYKXjiUyaJ0mSechkRJKkYkmhUKAwXqoRpCoU6NIeb9I8SZLMQyYjkiQVW1mXajQZ9/uN6JLh2e+TL0nSQ2QyIklSsWXsN5KVjGAAff5HoJUk6dkgkxFJkoqtrDtqVDoDSgHJCoXsNyJJxZBMRiRJKrYUlpYoVJnD3qszBClKBQaZjEhSsSOTEUmSijWl9f1+I+kKDChITZedWCWpuJHJiCS9IC5duoRCoTDO3fGsUigUrF69OtflDx9Htk6shnRCt/2DQqEgLi7usWLx9/dnxowZuS7v3bs3nTt3fqx95MeCBQuyzTI9Z84cfH19USqVecYoScWBTEYkSXqmREVF5TjZWm6y+o2oMzLvoklRKkGX+lRie1YkJCTw0UcfMXToUK5fv867775bZPsODQ3NvK06h8fBgweN9QYNGkStWrVQq9W5TlonhGDq1KmUL18etVqNr68v48ePz3P//v7+2fb78CSRUvEjZ+2VJCnf0tPTsbKyeqrb9vT0LNB6Co0GFAqUBoGlXkGyUvHcJyNXrlwhIyODdu3a4eXllWOdjIwMVCrVE993/fr1iYqKMin76quv2Lp1K7Vr1zaWCSHo06cP+/fv5/jx4zlua9CgQWzevJmpU6dSpUoV4uPjiY2NfWQMX3/9Nf369TM+t7W1LeTRSM8K2TLynBJCkJyRXOSPgs67aDAYmDRpEmXLlkWtVlOyZEnGjRtnXH7ixAmaNWuGVqvFxcWFd999l3v3/usTkNVMPnXqVLy8vHBxcaF///5kZGQY6/z000+UK1cOjUaDh4cH3bt3L1CMCoWCuXPn0qVLF6ytrSlXrhxr1641qbNjxw5efvll1Go1Xl5efPHFF+h0uly3mdXsvn79eipUqIC1tTXdu3cnKSmJhQsX4u/vj5OTEwMGDECv1xvXW7JkCbVr18bOzg5PT0/eeOMNYmJijMvv3r3Lm2++iZubG1qtlnLlyjF//vwcYzAYDPTr14/y5ctz+fLlHOtknd8JEybg7e1N+fLlAbh+/To9evTAyckJFxcXOnXqxKVLl4zr6XQ6Bg4ciKOjIy4uLgwdOpRevXqZXNJo0qQJH330EYMHD8bV1ZWWLVsaz/eDl2kOHDhAjRo10Gg01K5dm6NHj5q+Pkolm/fto2r79lTzq8VbXfpw/sL5bMeyZ88eGjdujFarxdfXl4EDB5KU9F9n15iYGDp06IBWq6VUqVIsXbo0x3OSl40bN9KwYUPjcbdv354LFy4Yl2ddYlq5ciVNmzbF2tqaatWqsXfvXpPtLFiwgJIlS2JtbU2XLl24ffu2ybIqVaoAULp0aRQKBZcuXWL06NFUr16dX3/9ldKlS6NWqxFCPDImgGvXrvHaa6/h7OyMjY0NtWvXZv/+/TkeY1bCmPVwcXFh7dq19OnTB4VCYaw3c+ZM+vfvT+nSpXPcTnh4OLNmzWLNmjV07NiRUqVKUb16dVq0aPHI85z1/s96yGSk+JMtI8+pFF0KdX6rU+T73f/GfqxV1vmuP2zYMH755RemT59Ow4YNiYqK4syZMwAkJycTHBxM3bp1OXjwIDExMbzzzjt89NFHLFiwwLiN7du34+Xlxfbt2zl//jw9evSgevXq9OvXj0OHDjFw4EAWL15M/fr1uXPnDrt27SrwcY0ZM4bJkyczZcoUvv/+e958800uX76Ms7Mz169fp23btvTu3ZtFixZx5swZ+vXrh0ajYfTo0bluMzk5mZkzZ/L777+TmJhI165d6dq1K46Ojvz1119cvHiRbt260bBhQ3r06AFkth6MHTuWChUqEBMTwyeffELv3r3566+/gMy/UE+fPs3ff/+Nq6sr58+fJyUl+3wt6enpvPHGG1y4cIF///0Xd3f3XOP8559/sLe3Z8uWLZlJbnIyTZs2pVGjRuzcuRNLS0u++eYbgoODOX78OFZWVkyaNImlS5cyf/58AgIC+O6771i9ejVNmzY12fbChQv54IMP2L17d46JbFJSEu3bt6dZs2YsWbKEyMhIBg0aZFLn6tWr9Ojfn3deeYXXe73Gv+dPMnzkFJM6J06coHXr1owdO5Z58+Zx69YtPvroIz766CNjsta7d2+uXr3Ktm3bsLKyYuDAgSaJXn4kJSUxePBgqlSpQlJSEiNHjqRLly6EhYWZzO8yfPhwpk6dSrly5Rg+fDivv/4658+fx9LSkv3799OnTx/Gjx9P165d2bhxI6NGjTKu26NHD3x9fWnRogUHDhzA19cXNzc3AM6fP8+KFSsICQnBwsIiXzHdu3ePoKAgSpQowdq1a/H09OTIkSMYDPmbdHDt2rXExsYWeFbfdevWUbp0adavX09wcDBCCFq0aMHkyZNxdnbOc91JkyYxduxYfH19eeWVV/jss8+eWoudVEREMRAfHy8AER8fb+5QnkkpKSni9OnTIiUlxViWlJ4kKi+oXOSPpPSkfMedkJAg1Gq1+OWXX3JcPmfOHOHk5CTu3btnLNuwYYNQKpUiOjpaCCFEr169hJ+fn9DpdMY6r7zyiujRo4cQQoiQkBBhb28vEhISCnROHwSIESNGGJ/fu3dPKBQK8ffffwshhPjyyy9FhQoVhMFgMNb58ccfha2trdDr9Tluc/78+QIQ58+fN5a99957wtraWiQmJhrLWrduLd57771cYztw4IAAjOt06NBB/O9//8uxbmRkpADErl27RIsWLUSDBg1EXFxcnsfeq1cv4eHhIdLS0oxl8+bNy3a8aWlpQqvVik2bNgkhhPDw8BBTpkwxLtfpdKJkyZKiU6dOxrKgoCBRvXr1bPsExKpVq4QQQvz888/C2dlZJCX9976aNWuWAMTRo0eFEEIMGzZMBFSoIJKOHxdxZ06Lk7dOiv4f/U8A4u7du0IIId5++23x7rvvmuxn165dQqlUipSUFBERESEAsW/fPuPy8PBwAYjp06fneX4ePKaHxcTECECcOHFCCPHfazB37lxjnVOnTglAhIeHCyGEeP3110VwcLDJdnr06CEcHByMz48ePSoAERkZaSwbNWqUUKlUIiYmJtd4corp559/FnZ2duL27dt5rpebNm3aiDZt2uS6fNSoUaJatWrZyt977z2hVqtFnTp1xM6dO8X27dtF9erVRdOmTfPc37fffitCQ0PFsWPHxC+//CJcXV1F3759CxX7k5DT96/0n/z+fsuWkeeU1lLL/jdybmZ92vvNr/DwcNLS0mjevHmuy6tVq4aNjY2xrEGDBhgMBiIiIvDw8ACgUqVKxr8CAby8vDhx4gQALVu2xM/Pj9KlSxMcHExwcLDxcktBVK1a1fh/Gxsb7OzsjH81h4eHU69ePZMm6gYNGnDv3j2uXbtGyZIlc9ymtbU1ZcqUMT738PDA39/fpMnZw8PD5K/zo0ePMnr0aMLCwrhz547xr9crV64QGBjIBx98QLdu3Thy5AitWrWic+fO1K9f32S/r7/+Oj4+Pvzzzz/5Og9VqlQx+avz8OHDnD9/Hjs7O5N6qampXLhwgfj4eG7evMnLL79sXGZhYUGtWrWy/bX9YB+DnGS9Bx6Ms169etnq1KlTB4VCgZXOgEJA5Zeqm9TJivnBSy9CCAwGA5GRkZw9exZLS0uTeCpWrJjtDpZHuXDhAl999RX79u0jNjbW5PWpXLmysd6D76esPh8xMTFUrFiR8PBwunTpYrLdevXqsXHjxkfu38/Pz9hKkt+YwsLCqFGjxiNbI3Jy7do1Nm3axIoVKwq8rsFgIC0tjUWLFhkv/82bN49atWoRERFBhQoVclzvk08+Mf6/atWqODk50b17dyZNmoSLi0uB45CeDTIZeU4pFIoCXS4xB60278RFCGHyA/+gB8sf7qSnUCiMX7h2dnYcOXKE0NBQNm/ezMiRIxk9ejQHDx4s0A9NXvvIKU5x/5JDbvHnts289pOUlESrVq1o1aoVS5Yswc3NjStXrtC6dWvS0zOHQG/Tpg2XL19mw4YNbN26lebNm9O/f3+mTp1q3Gbbtm1ZsmQJ+/bto1mzZo889geTQcj8EalVq1aOfSoe/CHM7Zzkte2H5bROjnWUShQWFgi9HiudgoyH9m0wGHjvvfcYOHBgtvVLlixJREREjjEXVIcOHfD19eWXX37B29sbg8FA5cqVja9Plgdf56x9Pvh+KqyczuejYnrU5zAv8+fPx8XFhY4dOxZ4XS8vLywtLY2JCEBAQACQmSjllow8rG7dukDmJSqZjBRfsgOrZDblypVDq9Xyzz//5Lg8MDCQsLAwk06Gu3fvRqlUmnyBPYqlpaXxWvTx48e5dOkS27Zte+z4H4xzz549Jj8ie/bswc7OjhIlSjyx/Zw5c4bY2FgmTpxIo0aNqFixYo59Gtzc3OjduzdLlixhxowZzJkzx2T5Bx98wMSJE+nYsSM7duwocBw1a9bk3LlzuLu7U7ZsWZOHg4MDDg4OeHh4cODAAeM6er0+W8fT/AgMDOTYsWMm/V727duXrc7+/fsfmMFXwbFDxzIXCoMx5lOnTmWLt2zZslhZWREQEIBOp+PQoUPG7UZERBRonJLbt28THh7OiBEjaN68OQEBAdy9e7dQx/zwMT78/EnGVLVqVWNLW0EIIZg/fz49e/Ys1F07DRo0QKfTmXSmPXv2LJDZwpNfWe+r3O4qkooHmYxIZqPRaBg6dCiff/45ixYt4sKFC+zbt4958+YB8Oabb6LRaOjVqxcnT55k+/btDBgwgLffftt4ieZR1q9fz8yZMwkLC+Py5cssWrQIg8Fg/Kvrhx9+yPUyUX59+OGHXL16lQEDBnDmzBnWrFnDqFGjGDx4sEmnxcdVsmRJrKys+P7777l48SJr165l7NixJnVGjhzJmjVrOH/+PKdOnWL9+vXGvzYfNGDAAL755hvat2/Pv//+W6A43nzzTVxdXenUqRO7du0iMjKSHTt2MGjQIK5du2bc/oQJE1izZg0REREMGjSIu3fvFrjl4Y033kCpVNK3b19Onz7NX3/9ZdLKA/D+++9z4cIFhk6YwNnISDaE/MWa39dkLkxPBmDo0KHs3buX/v37ExYWxrlz51i7di0DBgwAoEKFCgQHB9OvXz/279/P4cOHeeeddwrUapB1Z9GcOXM4f/4827ZtY/DgwQU6XoCBAweyceNGJk+ezNmzZ/nhhx/ydYmmsDG9/vrreHp60rlzZ3bv3s3FixcJCQnJdofPw7Zt20ZkZCR9+/bNcfn58+cJCwsjOjqalJQUwsLCCAsLM7bItGjRgpo1a9KnTx+OHj3K4cOHee+992jZsqXxj40DBw5QsWJFrl+/DsDevXuZPn06YWFhREZGsmLFCt577z06duyY6+VQqXiQyYhkVl999RWffvopI0eOJCAggB49ehj/2re2tmbTpk3cuXOHl156ie7du9O8eXN++OGHfG/f0dGRlStX0qxZMwICApg9ezbLli2jUqVKAMTGxma7zbGgSpQowV9//cWBAweoVq0a77//Pn379mXEiBGPtd2Hubm5sWDBAv744w8CAwOZOHFith9mKysrhg0bRtWqVWncuDEWFhb8/vvvOW7v448/ZsyYMbRt25Y9e/bkOw5ra2t27txJyZIl6dq1KwEBAfTp04eUlBTs7e2BzB//119/nZ49e1KvXj1sbW1p3bo1Go2mQMdsa2vLunXrOH36NDVq1GD48OFMmjTJpE7JkiUJCQlhw5Yt1OnenUW//c6g4ffvuElLBDL/+t+xYwfnzp2jUaNG1KhRg6+++srkr+n58+fj6+tLUFAQXbt25d13383zLqOHKZVKfv/9dw4fPkzlypX55JNPmDJlyqNXfEjdunWZO3cu33//PdWrV2fz5s2Ffi/lJyYrKys2b96Mu7s7bdu2pUqVKkycONGkH1ZO5s2bR/369XNMdgHeeecdatSowc8//8zZs2epUaMGNWrU4MaNG8bY1q1bh6urK40bN6Zdu3YEBASYvF+Tk5OJiIgw3qqvVqtZvnw5TZo0ITAwkJEjR9KvXz+WLVtWqPMjPTsU4nEuUBaRhIQEHBwciI+PN37ZSf9JTU0lMjKSUqVKFfjLXpKKgsFgICAggFdffTVba86TInQ6Uu/fFn7JXYFBCRWEJZZu+et7IEmFIb9/85bf32/ZgVWSpCfu8uXLbN68maCgINLS0vjhhx+IjIzkjTfeeGr7VFhaorBSI9LT0GYoSVIbSNKn4mDQgVJ+1UnSs6xAl2kmTJjASy+9hJ2dHe7u7nTu3NnYCz0vO3bsoFatWmg0GkqXLs3s2bMLHbAkSc8+pVLJggULeOmll2jQoAEnTpxg69atuTbpP7H93p/B11qX2aHynlIBaXIWX0l61hUoGdmxYwf9+/dn3759bNmyBZ1OR6tWrUzudnhYZGQkbdu2pVGjRhw9epQvv/ySgQMHEhIS8tjBS5L0bPL19WX37t3Ex8eTkJBgHIr9acuawdf6/kj8SQolIi3hqe9XkqTHU6C2y4d7dM+fPx93d3cOHz6c6xfN7NmzKVmypHGK64CAAA4dOsTUqVPp1q1b4aKWJEnKQdYMvhZpmR0eMxQK0tIS0QgBjzmGiCRJT89j3U0THx8PkOfIfXv37qVVq1YmZa1bt+bQoUMmk5k9KC0tjYSEBJOHJEnSoyjU6sykw6BHrcscNTZJ6ECfZubIJEnKS6GTESEEgwcPpmHDhibDHD8sOjo625gQHh4e6HS6XKeKnjBhgnHwJAcHB3x9fQsbpiRJLxCFUmm8VGOnz+o3ojTe4itJ0rOp0MnIRx99xPHjx/N1f3dBh8oeNmwY8fHxxsfVq1cLG6YkSS8Y5f0h0W0zMr9nkpQK9KmydVWSnmWFut9twIABrF27lp07d+Lj45NnXU9PT6Kjo03KYmJisLS0zHUeAbVajVqtLkxokiS94JS2tnDrFhYpqShslAiFgZSMJGxlvxFJemYVqGVECMFHH33EypUr2bZtG6VKlXrkOvXq1WPLli0mZZs3b6Z27dqFms9AkiQpL0praxTKzEnzrHWZf9TcUwDpud/1J0mSeRUoGenfvz9Llizht99+w87OjujoaOO8A1mGDRtGz549jc/ff/99Ll++zODBgwkPD+fXX39l3rx5DBky5MkdhVRsNWnShI8//jjPOv7+/sa7sSDz8t7q1asBuHTpEgqFgrCwsKcW45MWGhqKQqEo0CRsz+I+sowePZrq1as/9f3kl0KhQGmbeanGXpf5FZdUyH4j+Xl/PilF+V5++DMVHR1Ny5YtsbGxKdBs1pL0pBQoGZk1axbx8fE0adIELy8v42P58uXGOlFRUVy5csX4vFSpUvz111+EhoZSvXp1xo4dy8yZM+VtvVK+HTx4kHfffTfHZb6+vkRFReXZifp5l9MPZv369YmKisLBweGJ7uvBRDDLkCFDcp152VyUtrYAaNMyBxxJVShIL6LxRgwGA0OHDsXb2xutVkvVqlVZs2ZNkey7sKZPn05UVBRhYWHGmXPNZcGCBSgUihwfD85SfeLECYKCgtBqtZQoUYKvv/7aZObsqKgo3njjDSpUqIBSqcx3Unnw4EGaN2+Oo6MjTk5OtGrVqlj9sVNcFajPSH6msVmwYEG2sqCgII4cOVKQXUmSkZubW67LLCws8PT0LMJocqbX6zP/In+Cs/Q+DisrqyI7L7a2ttje//F/Vijt7DL/k5qKpUGFTqkjWZ+KVREMDb9kyRKmT5/OokWLqFu3LufPn3+q+3sSLly4QK1atShXrlyudTIyMork0nqPHj0IDg42KevduzepqanGiQsTEhJo2bIlTZs25eDBg5w9e5bevXtjY2PDp59+CmQOEeHm5sbw4cOZPn16vvadmJhI69at6dSpEz/99BM6nY5Ro0bRunVrrl27JrsWPE2iGIiPjxeAiI+PN3coz6SUlBRx+vRpkZKSYiwzGAxCn5RU5A+DwVCg2IOCgkT//v1F//79hYODg3B2dhbDhw832Y6fn5+YPn268TkgVq1aJYQQIjIyUgDi6NGjQgghtm/fLgCxdetWUatWLaHVakW9evXEmTNnTPa7du1aUbNmTaFWq0WpUqXE6NGjRUZGhnH5tGnTROXKlYW1tbXw8fERH3zwgUhMTDQunz9/vnBwcBDr1q0TAQEBwsLCQly8eDHHY9ywYYMoV66c0Gg0okmTJmL+/PkCEHfv3jXW2b17t2jUqJHQaDTCx8dHDBgwQNy7d8+4/McffxRly5YVarVauLu7i27dugkhhOjVq5cATB6RkZHG85C1j6x4N27cKCpWrChsbGxE69atxY0bN4z7OHDggGjRooVwcXER9vb2onHjxuLw4cMmr8OD+/Hz8xNCCDFq1ChRrVo1Yz29Xi/GjBkjSpQoIaysrES1atXE33//bVye9ZqFhISIJk2aCK1WK6pWrSr27NmT4/nLAojZs2eLdu3aCa1WKypWrCj27Nkjzp07J4KCgoS1tbWoW7euOH/+vBBCiNSzZ8XJv/4SrVq1EM5uzsLaWitq16whtmzZYrLd3M6tEJnvz0GDBhmf//3338Le3l4sXLgw1zgXL14svL298zyWnDz8XtbpdKJPnz7C399faDQaUb58eTFjxgyTdXr16iU6deokpkyZIjw9PYWzs7P48MMPRXp6urHOzZs3Rfv27YVGoxH+/v5iyZIlJp+ph1/XXr16CSEyz/esWbNEx44dhbW1tRg5cmS+YhJCiHnz5onAwEBhZWUlPD09Rf/+/Qt8PrLExMQIlUolFi1aZCz76aefhIODg0hNTTWWTZgwQXh7e+f4HfTw65ibgwcPCkBcuXLFWHb8+HEBGN9XD8vp+1f6T35/v2Uy8hzI6cOgT0oSpytULPKHPimpQLEHBQUJW1tbMWjQIHHmzBmxZMkSYW1tLebMmWOsU5hkpE6dOiI0NFScOnVKNGrUSNSvX9+4/saNG4W9vb1YsGCBuHDhgti8ebPw9/cXo0ePNtaZPn262LZtm7h48aL4559/RIUKFcQHH3xgXD5//nyhUqlE/fr1xe7du8WZM2dMkocsV65cEWq12uT4PDw8TBKF48ePC1tbWzF9+nRx9uxZsXv3blGjRg3Ru3dvIUTmF6SFhYX47bffxKVLl8SRI0fEd999J4QQIi4uTtSrV0/069dPREVFiaioKKHT6XJMRlQqlWjRooU4ePCgOHz4sAgICBBvvPGGMdZ//vlHLF68WJw+fVqcPn1a9O3bV3h4eIiEhAQhROaPAiDmz58voqKiRExMjBAiezLy7bffCnt7e7Fs2TJx5swZ8fnnnwuVSiXOnj1r8ppVrFhRrF+/XkRERIju3bsLPz8/k4TwYYAoUaKEWL58uYiIiBCdO3cW/v7+olmzZmLjxo3i9OnTom7duiI4OFgIIUR6VJTY9+efYsa4b8TKHSvF3/vWiy8/HSA0Go24fPnyI8+tEKY/YsuWLRN2dnZi9erVucYohBA3btwQNjY2YsSIEXnWe9jD7+X09HQxcuRIceDAAXHx4kXjZ2P58uXGdXr16iXs7e3F+++/L8LDw8W6deuyfX7atGkjKleuLPbs2SMOHTok6tevL7RarfEzFRMTI4KDg8Wrr74qoqKiRFxcnPF8u7u7i3nz5okLFy6IS5cu5Sumn376SWg0GjFjxgwREREhDhw4YPL5LaipU6cKBwcHkZycbCx7++23RceOHU3qHTlyRAA5/lGQ32QkISFBuLq6ilGjRom0tDSRnJwsBg0aJCpVqpTre1MmI3mTycgLpLgnIwEBASZ/zQwdOlQEBAQYnxe2ZSTLhg0bBGA8P40aNRLjx483iWPx4sXCy8sr1zhXrFghXFxcjM+zWjfCwsLyPL5hw4bleHwPJgpvv/22ePfdd03W27Vrl1AqlSIlJUWEhIQIe3t7Y1LwsJy+aHNKRh7+6+7HH38UHh4eucau0+mEnZ2dWLdunbHswXOf5eFkxNvbW4wbN86kzksvvSQ+/PBDIcR/r9ncuXONy0+dOiUAER4enms8gMkP/N69ewUg5s2bZyxbtmyZ0Gg0mfEnJorkEydESni4OHnrpDh566RIij4pAgMDxffffy+EEPk+tz/++KNwcHAQ27ZtyzU+IYRISkoSlSpVEv369RN16tQRgwcPNnnt7ezsxJ9//pnjug+/l3Py4YcfmrTc9OrVS/j5+QmdTmcse+WVV0SPHj2EEEJEREQIQOzbt8+4PDw8XAAmn6lOnToZW0SyAOLjjz/O83hzisnb21sMHz78kevlV2BgoMkfAkII0bJlS9GvXz+TsuvXrwsgxxa2/7d353FR1fsfx19ndhh2WQQVXFLclVwSlbK0zbJbtpmZ2m65U13TymxRs9Qszby2XjNL+6FlWpblnjuK+y4iCooKsgrDzJzfHyNcSUUw4LB8no/HPLpz5pw57zlymQ/nfM/nW9JiRFVVdffu3WqjRo1UnU6n6nQ6tWnTpoXF65VIMVK8kn5/y7za1ZTi5kb4tlhN9ltanTp1KtIALzIykilTpuBwONDr9deVo3Xr1oX/Ozg4GHD1twkNDSU2NpYtW7Ywfvz4wnUcDge5ubnk5OTg7u7OypUrmTBhAnv37iUjIwO73U5ubi7Z2dlYLzbVMplMRfZzJfv27bvi57tUbGwshw8f5ttvvy1cpqoqTqeT+Ph4br/9dsLCwmjYsCF33XUXd911Fw888ADuF+dhKSl3d3caNWpU5LhcOiAwJSWFsWPHsmLFCk6fPo3D4SAnJ6fIgPRrycjIICkpiS5duhRZ3qVLF3bs2FFk2dX+jZo2bXrV9790m4LOzq1atSqyLDc3l4yMDDw9PMjOzWXCzJn8vG4Np0+n4LDbyc3NK/xMJTm2MTExnD59mnXr1tGxY8diP//XX3/N+fPnmTFjBtnZ2XTr1o2BAwfyxRdfcOLECbKysujcuXOx73GpWbNm8fnnn5OQkMCFCxew2WyX3bnUokWLIv8/CQ4OZteuXYDr589gMNC+ffvC15s2bVriO2Yu3a4kmVJSUkhKSqJ79+4l/ozF2bBhA3v37mXOnDmXvVbaZpolceHCBZ566im6dOnCd999h8PhYPLkyfTs2ZMtW7bgdh2/30TJSDFSTSmKglLKL6vq5NKBZgW/nJxOZ+F/33rrLXr37n3ZdhaLhYSEBHr27MmgQYN455138PPzY926dTz99NNF5lNyc3O75i++gl+QxXE6nTz//PMMGzbsstdCQ0MxmUxs27aNVatW8fvvvzN27FjGjRvHli1bSnUb5t8H3ymKUiTfwIEDOXPmDNOmTSMsLAyz2UxkZCQ2m63E+7j0vS+lquply4r7NyrJZyjY5mrvo+h0vPbRRyxftYo3x76OV3ggvmYTI54dVfiZPD09r3ls27Zty7Zt2/jqq6/o0KFDsf/mO3fupEWLFphMJkwmE8uXLycqKooHHniAxo0bc9dddxUWXteyYMECRo4cyZQpU4iMjMTT05MPPviATZs2XfWYFByDguP4T7+gCwrvkmYq6y/rzz//nLZt29KuXbsiy6/WTBO4bPqR0pg3bx7Hjh1jw4YNhYPR582bh6+vLz/99BN9+vS57vcWxZNiRGhu48aNlz1v3LjxdZ8VuZYbb7yRAwcOcMMNN1zx9a1bt2K325kyZUrhL6QFCxZc176aN29+2a2wf/+8N954I3v27LlqHgCDwUCPHj3o0aMHb775Jj4+PqxYsYLevXtjMplwOBzXle9Sa9euZebMmfTs2ROAxMTEy+aPMhqNxe7Ly8uLkJAQ1q1bV2Qm7/Xr11/zrEJ5+Cs2ln7/+hcP39aDeO9ccrJyOJZQ9ExPcccWoFGjRkyZMoVu3bqh1+uZMWPGVfdXp04dFi1aRGZmJp6engQGBvLHH38QFRXFkiVLiI0t+dnKtWvX0rlzZ1588cXCZUeOHCnV52/WrBl2u52tW7cWHv8DBw5cd/+Za2Xy9PSkfv36/Pnnn9x6663XtY8CWVlZLFiwgIkTJ172WmRkJGPGjMFms2EyuSZE/P333wkJCaF+/frXvc+cnBx0Ol2R4q3g+bUKZfHPVI77EEWNlpiYSHR0NAcOHOC7775j+vTpDB8+vNz2N3bsWObMmcO4cePYs2cP+/btY/78+bz++uuA68vHbrczffp0jh49yjfffMOsWbOua1+DBg3iyJEjhZ9v3rx5l93+PmrUKDZs2MDgwYOJi4vj0KFDLF68mKFDhwKwZMkSPv74Y+Li4khISGDOnDk4nU7Cw8MBVwOrTZs2cezYMc6ePXvdvzRvuOEGvvnmG/bt28emTZt4/PHHL/tLt+CL5tSpU6SlpV3xfV555RUmTZrE/PnzOXDgAK+++ipxcXHl+m96NTc0bsxPf/7Jzrg4Du06yL8H/dt1fC6eMbjWsS3QpEkTVq5cSUxMTLH9Kp5++mkcDgf33Xcf69ev58CBAyxevJjz58/j7u7O559/XvLsN9zA1q1b+e233zh48CBvvPEGW7ZsKdXnDw8P56677uLZZ59l06ZNxMbG8swzz1z3GYySZBo3bhxTpkzh448/5tChQ2zbto3p06eXel/z58/Hbrfz+OOPX/Za3759MZvNDBw4kN27d7No0SImTJhAdHR0kUIiLi6OuLg4srKyOHPmDHFxcezdu7fw9UWLFhW5LHj77beTlpbG4MGD2bdvH3v27OHJJ5/EYDD84+JKFE+KEaG5/v37c+HCBTp27MjgwYMZOnToVZuclYU777yTJUuWsHz5cjp06ECnTp2YOnUqYWFhgOu0/NSpU5k0aRItW7bk22+/veJfZyURGhpKTEwMP//8M23atGHWrFlMmDChyDqtW7dm9erVHDp0iKioKCIiInjjjTcKT+f7+PiwcOFCbrvtNpo1a8asWbP47rvvaNGiBeBqOqbX62nevDkBAQGlGuNxqS+//JK0tDQiIiJ44oknGDZsWGFfhwJTpkxh+fLl1KtXj4iIiCu+z7Bhw3jppZd46aWXaNWqFcuWLWPx4sXF9rAoL9M++ghfb29u69ePwf0G0+XWLrRs1QycrmZo1zq2lwoPD2fFihV89913hb0s/i4kJITNmzfj7+9P7969iYiI4Pvvv2fevHksXbqUzz77jKlTp5Yo+6BBg+jduzePPvooN910E+fOnStyRqKkvvrqK+rVq8ctt9xC7969ee655y77dy2pkmQaMGAA06ZNY+bMmbRo0YJ7772XQ4cOFb4+cOBAunXrds19ffHFF/Tu3RtfX9/LXvP29mb58uWcOHGC9u3b8+KLLxIdHU10dHSR9SIiIoiIiCA2NpZ58+YRERFReOYPID09nQMHDhQ+b9q0KT///DM7d+4kMjKSqKgokpKSWLZsWYkvr4nro6gluaitsYyMDLy9vUlPT8fLy0vrOJVObm4u8fHxNGjQAIvFonUcISqV/KQk7Kmp2DytnLDmYFJVGlv8wVP7Znk1Ubdu3ejWrRvjxo3TOkqZkN+/xSvp97eMGRFCVGs6T09ITcWUawMr2BSFvNx0zFKMVLjMzEyOHDnCkiVLtI4iKhkpRoQQ1ZrO3R0UBfLzMduN5BnsZDvyMDsdoCufQdLiyjw9PUlMTNQ6hqiEZMyIEKJaU/R6dBdvUfXMd90Gm61TwJalZSwhxCWkGBFCVHv6ixP5edhcQ+SydArO3IqZxVcIcW1SjFQjch+8EFemu1iM6HJz0akKThRy8qQYEf9cdfi9q9rtJWrQWJ5kzEg1YDKZ0Ol0JCUlERAQgMlk+kctkYWoblRVxabXo+bnY84xk22yke5wYsjKAINJ63iiClJVFZvNxpkzZ9DpdIXN16qi05NfI2flGoLfmYxbxy7X3qAcSDFSDeh0Oho0aEBycjJJSUlaxxGiUnKcP48zJ4f8DBPnzTbOqyoZ52xg8tA6mqjC3N3dCQ0NLezWXNU4zp4i5bvFGPMgduEHdJViRPwTJpOJ0NBQ7HZ7mbQGF6K6yVq3jtPjJ6CEBDPp3jMoqHxtDMf33slaRxNVlF6vx2AwVOkz0QdfexJjHhz3hw3d7qSrRjmkGKlGFEXBaDReNnGWEAKMHTtyJiUFXXIyxnZ+HK+VwfbkI/Q0fSS3+IoaKS/uD/L/iseIwrIof6bc8bxmWarmeSUhhCglvZcXbhenuo9KqgPAZpMKyTs0TCWERhx2tr4zEqNd4UAd6P3sLE0vNUkxIoSoMTyiXCehOye57oBY72bBefhPLSMJoYmk+WPx2euao2l7z1uIanj5fEwVSYoRIUSNYe0aBUDggWMY8xWSDQb2H1ymcSohKlhaArvnxqBTYfsNBl4e8qHWiaQYEULUHJbmzdD7+aFmZ3PjiSAAYjMPQZ50YxU1hKqyfnp/6h3V4VTA9PxoPM1uWqeSYkQIUXMoOh3Wrq5bF28+5QfABjcTJKzXMpYQFSZn+/ekrTkNwLbWATzUq6/GiVykGBFC1CgeUa5LNW0S0gHYajGTc+g3LSMJUTFyUln87Zs0PKFgM0DU2zO1TlRIihEhRI1i7dIFFAVTfAKB6SYu6HRsPbpC61hClLu9i4bju9l1G3v8rTdRP7ylxon+R4oRIUSNYvDzw9LCdedAl0TXLb5bnamQflLLWEKUK+eRVSzbtInQM5Bj1nHP29oPWr2UFCNCiBrHevEW3y7JrgaBG9wscHSllpGEKD/5ucQsHkL7ja6zIsoT/TD6+mocqigpRoQQNU7BuJHQgydQnCr7zSZO7pdbfEX1lPzH2+w96CAgAzK93Gg7ZKTWkS4jxYgQosZxa90anacnZGTQ+oQPAJtPbYRqMB28EEWc3svsvd9z9wbX0/ovj0JnsWib6QqkGBFC1DiKwYA1MhKALkmBAGw2OeH0Li1jCVG2nE5WL3oWwx4LnrmQW6c2Ab0f1DrVFUkxIoSokQrGjbRLvADABosF+yFpDS+qj+xN/+E/F85xz2YVgBvGvI5iqJzz40oxIoSokTy6uooRz6PH8cnWcc6gZ+fBXzROJUQZyUjiy82T6bRZh9kOutat8LjtNq1TXZUUI0KIGskYHIy58Q3gdBIZHwDAtsxDYMvROJkQ/9zuRUNYZrdwW5zrrEi9UaNQFEXjVFcnxYgQosYqmDgv8pQHABulNbyoBpx7FzPlwi4eXKuiV8F6azfc27XTOlaxpBgRQtRYHhfHjTQ5fBpUlW0WMxkHpTW8qMJyM/jh939zPtVM5H4VVacjcGTlu5X376QYEULUWG7t2qG4uaFLO094soV8RWFjvAxiFVVX8i+jme6p8PgqBwA+//oXliZNNE51bVKMCCFqLJ3ZjLVjRwA6JwYBsM2ZCpmntIwlxPVJ3Mz0pF9pkKCjxXHAZCJg6BCtU5WIFCNCiBrNerEba4eTroZnf7lZ4Ii0hhdVjN3Gqp8GscTDnb4rXT/Lfv36YQwJ0ThYyUgxIoSo0QrGjfgfTsQtV+WYycjhfUs0TiVE6WStncoHlhy67lGpfwZ0np74P/es1rFKTIoRIUSNZgoLwxgaCg4HneJ9ANhyeguoqrbBhCipc0f4Yud/SFIM9Fnt+rmt9eyz6H18tM1VClKMCCFqvIIGaJ2SfADYYnLA6T0aJhKihFSV3Quf52tvK7dvVwnIUDEEBuL3RD+tk5WKFCNCiBqvoDV8i/jzoKpstFjIO7Rc21BClIB921w+cCZgzIOH/3I1NfMfOgSdm5vGyUpHihEhRI1n7dgRxWjEdOYcoWf1ZOp1xO6X1vCikss6Q8yacWyzWLh/o4rHBQemhg3xeeABrZOVWqmLkTVr1tCrVy9CQkJQFIUff/yx2PVXrVqFoiiXPfbv33+9mYUQokzprFbc2rs6VHY55g/A9pzDkH9By1hCFOvkzyP5yNuCT5bKvVtdX+cBI0dU2snwilPqYiQ7O5s2bdowY8aMUm134MABkpOTCx+NGzcu7a6FEKLceHQtuMXXBMAGixGOb9AykhBXd+gPPk5dT6Zex2NrzRjz7bi1aYNnjx5aJ7supS6f7r77bu6+++5S7ygwMBCfKjSyVwhRs1ijusIHH1DnaDLGfJVdZhNn9y3Dv1HlnelU1FC2bFb8MpxffKyEnFPptjMXgMCXX6rUk+EVp8LGjERERBAcHEz37t1ZubL4hkJ5eXlkZGQUeQghRHkyN26MISgIJS+PdsfccCoKfx2T1vCi8sn4423et7oamz2zLgDF6cTjlltw79BB42TXr9yLkeDgYGbPnk1MTAwLFy4kPDyc7t27s2bNmqtuM3HiRLy9vQsf9erVK++YQogaTlGUwrtqOiX6ARCnnoOsFC1jCVFUUhxfHPqek0YDTRPNtNx7ChSFgOhorZP9I+U+yiU8PJzw8PDC55GRkSQmJjJ58mRuvvnmK24zevRooi85sBkZGVKQCCHKnUfXKNL/L4Y2ia7T3uvd3HAeXoGubR+NkwkBOOzs+ukF5nh7gqoyfGsQcBTvf/0LS3jlnwyvOJrc2tupUycOHTp01dfNZjNeXl5FHkIIUd6snSNBr8ealELgeUgyGti392etYwkBgH3jp0zSncOuKNxytD619h9FMRqrzGR4xdGkGNm+fTvBwcFa7FoIIa5K7+WFW5s2AHQ54vojaMuZrdIaXmgvLYEfNk9mh8WM0aHjxW2uxb6PP46xTh1ts5WBUhcjWVlZxMXFERcXB0B8fDxxcXEcP34ccF1i6d+/f+H606ZN48cff+TQoUPs2bOH0aNHExMTw5AhVb+SE0JUPwUT53U46QFcbA2fsk/LSKKmU1VO/jSE6d6un8knT0ahHD6CzsODWs8/p3G4slHqYmTr1q1EREQQEREBQHR0NBEREYwdOxaA5OTkwsIEwGaz8fLLL9O6dWuioqJYt24dS5cupXfv3mX0EYQQouxYL/YbaXg0Bb1DZYvFTM6h3zVOJWq03TF8mL2HTL0On9za3LXK1TS01jPPYPD11Thc2VBUtfKff8zIyMDb25v09HQZPyKEKFeq08mhLl1xpKUx4TEzcfUdTLMF0f3ZP7SOJmqinFRWzLqJ4bUsKCp8crYP/p/PxRAQQKPflqFzd9c6YbFK+v0tc9MIIcQlFJ0O68VZfCOP+QCw48JRsOdpmErUVJnLxjDJy3XjaxvlDoJilgLgP2RIpS9ESkOKESGE+JuCcSNtT7ieb7QY4fhGDROJGil+LbMTfyXJaMBs9+DdsyE40tIw1a+Pz4PVa6iDFCNCCPE31i5dAPBNPI13lso+s4nEvUs0TiVqlPxcdv48lG+8PQF4ru5QLnw7D4CAkSOr5GR4xZFiRAgh/sZQqxaWFi0A6HzYDYANCcVPYyFEWcpf/T4TLTk4FIUgIrhv0xHUnBwsrVvjecftWscrc1KMCCHEFRS0hu+Q6PrLdLuaCtlntYwkaoqUfSzY+Rm7zWb0TgPTWw0mbcECoGpPhlccKUaEEOIKPKJct/iGH8tAcapscLPgPCJnR0Q5czo5sehFpvu67jy5rfazeM2dD3Y71pujsHbsqHHA8iHFiBBCXIFbmzboPD0xZmXTJAnOGfTE7vpR61iiuov9kimO42TrdHjY6/F2na5k/PIrKAqBVXwyvOJIMSKEEFegGAxYIyMB6HLU9Vdq7Llt0hpelJ+MJP5Y8y5/WN1RVIVxN48nddo0ALzv64WlaVNt85UjKUaEEOIqrIW3+BoB2Gqyw9mDWkYS1Vj6kmje83ENmG5uvY8uKTlkr9+AYjTiP3SYxunKlxQjQghxFR4Xm58FJZ7FekFlm8VM+v5fNU4lqqV9S5h1dgOnDQZMdi9m3v1vUqZMAcC372OY6lb9yfCKI8WIEEJchTE4GHPjG1CcTjoeMZCvKKw7sFTrWKK6yc1gx68vM8/LdefWM61eQ796LXl796GzWqk1aJDGAcufFCNCCFGMgonzbkpwfVG4WsPbtIwkqhnbH+MY76HiVBRqKx0Z1LYHZ6Z9BECtZ6vPZHjFkWJECCGKUdAavnlCLqgqmyxGOLFZ41Si2kjcwvcHF7DPbELvMDHj7ndIW/AD+YmJ6AP88evfX+uEFUKKESGEKIZbu3Yobm5Y0rMIS4GjJiOHd/2kdSxRHTjySfzpRWb4egNwR53nucHNm7MzZwIQMHhwtZoMrzhSjAghRDF0ZnNho6kuhy0ArD++SsNEorpwrpvG+7pULuh0eDjqM6HH06R+/TWO1FRMYWH4PPig1hErjBQjQghxDdaL3VhvTHTddrmDVMhJ1TKSqOrOHeHPzR+x6mJPkfG3jIe0NFK//BKAgJEjUIxGjUNWHClGhBDiGgrGjdQ9noYlT2WjmxmbtIYX10tVOf/TEN7zcw2KbuXRm9satebsp7Nw5uRgadUKzzvv1DhkxZJiRAghrsEUFoaxXj10Dgdt4xUy9Ho27ojROpaoquLm8WnWPlIMBkx2Xz655xVsx4//bzK8l6rnZHjFkWJECCFKoODsSGS8FYBtaXHSGl6UXtYZ4v58ne+8PAB4sc1r+LhZOfPRx5CfjzUqCmunmzQOWfGkGBFCiBIo6DfS8rgTVJVtpnw4d0TjVKKqsf36Ku96mVAVhRBdZ55ufycX9uwhY6mrmV5g9EiNE2pDihEhhCgB600dwWjEMzWT4FTYaTZzZq90YxWlcPgP5iX+xgGzCb3DzMyebwFwZuqHAHj16oWlWTMtE2pGihEhhCgBndWKe7t2AEQeNuBQFNYcWKJxKlFl2LI5vmQEMy/2FOlZ7wUa1apN9vr1ZP/1FxiNBAyv3pPhFUeKESGEKKGCcSPtE1y3+O7MiwdHvpaRRBXhXDmR98y5F3uK3MC73Z9EdTpJmTIVAN8+fTDVratxSu1IMSKEECVUMG6kQWI2xnxXa3hnorSGF9eQvIPfd37JWnc3FKeOSbe+i06nI3PZMnL37EFnteL/QvWfDK84UowIIUQJmZs0xhAYiN6WT4tElZNGA7t3LtQ6lqjMHHbSfhrMJD8fANp6P8zNDVqg5ueTcnEyPL+nn8Lg56dhSO1JMSKEECWkKArWi5dqOh92XarZeGKtlpFEZaaqsHYyn+Sf4KxBj9Huzyf3vARA2g8/kH/8OHp/f2oNGKBxUO1JMSKEEKXgcbE1fOvjrl+fO0mFC2laRhKVkSMflowkbsMUFni6eooMj3gdT7Mbzuxszn7imgzP/8UX0FmtWiatFKQYEUKIUrBGRoJOh9+ZTPzTVba4mck5tELrWKIyyT4Hc+5n8555DAkKQFUU6uhvZsCN3QE499//4jh3DmNYKL4PP6xx2MpBihEhhCgFvbc3bm3aANDxsEKOTsfaHf+ncSpRaaTsw/lZN75PjeO52oGk6/WYHWF8du/bANhTU0n9/AsAAkfUrMnwiiPFiBBClFLBuJGOx1zjRuLSd2oZR1QWB5Zh+7wH7+ozGe/vh0NRqK3rwh+PzaeeTy2A/02G16JFjZsMrzhSjAghRCkVjBtpfDwPvUMl1mSH1KMapxKaUVVYN41z8/vynJ87P3h5ggqdfQfw2+Mz8XFzjQmxJSaS9v33AAS+/BKKTr6CC8iREEKIUrK0aIHe1xdjro0mJ2Gf2UTirsVaxxJayM+FRYM4sPpd+oYEEetmAaeZ55tO4D/3vYzukoLjzMfTXZPhdeniGnskCkkxIoQQpaTodFi7dAFcreEBVh+UeWpqnMxT8PU9/HH4J54ICSLJaEBnD+DjW75iSKdeRVbN3buXjJ9/BiDwpWgt0lZqUowIIcR1KGgN3zbBNQBxty0BHHYtI4mKlBSH47Pb+DT7ICODArig0+HpbM6SB3/g1oatLls9pWAyvHvuwdK8eUWnrfSkGBFCiOtQcGak9qksvLNVNlv0OE9s1TiVqBB7FpH91V28Ysljpq8PAI3NPVnR75vCgaqXyt64kex161yT4Y0YXsFhqwYpRoQQ4joY/P0L/8K98YjKGYOBzdsXaJxKlCunE1ZOIGnR0wwI8Ga51R1UHb2CR7CwzyQsRtNlm6iqSsrkKQD4Pvoopnr1Kjp1lSDFiBBCXCfrxbtqOh01A7AleZ2WcUR5smXDDwPYtnEaj4XU5oDZBA4PxkR8zIQ7nr7qZhlLlpK7ezc6d/caPxlecaQYEUKI61QwbqRZggPFqbJDSYPcdI1TiTJ3PhG+vJOYxD95OjiQVL0eo6Mec+6ax2NtbrniJqrNRspHH5E0ahQAfk89haHW5ZdwhItB6wBCCFFVubVpg87DA0tWFg1P6dle20z6wT/wbv2g1tFEWTm+ifz5jzPZbGdegKuYCFA6EtPnI3zdPa64Sd7hwyT9exS5e/cC4NWrF7WefabCIldFcmZECCGuk2I0FvaLuOmwgk2nsGrHDxqnEmUmbh7nv+nFC54K87w9Aejg3Zc/+n12xUJEdTo59/XXxPd+kNy9e9F7e1Nn2ofU+eB9dGZzRaevUqQYEUKIf6CgNXy7Y67BizsydmsZR5QFpwN+f50jS4fSN8iPTW4WcJoY2GgcX94/ukgjswL5J09yfMBAUt6bhGqzYb3lZhr8vBivu+7S4ANUPXKZRggh/gGPrq5ipG7SBawXdGwz5UNaAviGaZxMXJfcDIh5mtUn1jAqpDbZOh06ux/v3zyNOxtHXLa6qqqkL/qR0+PH48zORnF3J2jUKHweeRhFUTT4AFWTnBkRQoh/wBgSgumGRiiqSutjKkdMJg7ExWgdS1yP1KM4P+/OFykbGBoUQLZOh7uzCYseWHDFQsR+7hwnhgwlecwYnNnZuN14Iw1/XITvo49IIVJKpS5G1qxZQ69evQgJCUFRFH788cdrbrN69WratWuHxWKhYcOGzJo163qyCiFEpeTR1XWLb0Fr+HWHf9Uyjrge8Wu48NltjFbOMc3PF1VRqG/qwcp+82joF3TZ6pl//snRXveR9eefrmZmL0UT9s0cTKGhGoSv+kpdjGRnZ9OmTRtmzJhRovXj4+Pp2bMnUVFRbN++nTFjxjBs2DBiYuQvByFE9VAwbqRlAqCq7Mo/7hp3IKqGLZ9zat6DPOlr4hcPK6g6bg98kZ8f+xB3Y9GBp47MTJJGj+HE4CE4UlMxN2lCgx8W4P/ssyh6vUYfoOor9ZiRu+++m7vvvrvE68+aNYvQ0FCmTZsGQLNmzdi6dSuTJ0/mwQfl9jchRNXn3r49isWCR2Yu9c7o2VpLj+1ELKbQjlpHE8Vx5MOyV9m5cw7Dawdw1qAHhzsvtRnPwHY9Lls9e+MmksaMxp6UDIpCrWeexn/oUHSmyzuvitIp9zEjGzZs4I477iiy7M4772Tr1q3k5+dfcZu8vDwyMjKKPIQQorLSmc243+QqPDocVknX6/lr6zyNU4li5aTC3N4s3vcdT9YO4qxBj8EezOc95l5WiDhzczk98T2ODxyIPSkZY716hM39hsCXXpJCpIyUezFy6tQpgoKKXm8LCgrCbrdz9uzZK24zceJEvL29Cx/1pJe/EKKSKxg30iHeNYvvltMbtIwjinPmAPbPbmXK+Z28FlALm07BlwiWPfoDN4U2LrLqhd17iH/oIVL/+18AfB55hAaLFuHerp0WyautCrmb5u+jilVVveLyAqNHjyY9Pb3wkZiYWO4ZhRDinyhoDV//ZD5mm8puXRrkZWqcSlzm0HLSP+/BEFM2X/t4AdDa40FW9PuKIA/vwtVUu50zM2dyrE8fbIePoPf3p+6sTwl++y30Hlat0ldb5d5npHbt2pw6darIspSUFAwGA7Wu0qffbDZjlm51QogqxBgWhrFePUhMpGWCjrgbTKTs/43ANg9pHU0AqCpsmEH8yrcZFliLYyYjOA30afAKr3XrW2TVvKPxJL36Krk7dwLgeeed1B73JgZfXy2S1wjlfmYkMjKS5cuXF1n2+++/0759e4xGY3nvXgghKoSiKIVnRzod1uFQFFbs/D+NUwkA7Hnw02D+WvsujwcHcsxkRLF7M6HTf4oUIqrTSercb4nv3ZvcnTvReXoS8sH71Jn2oRQi5azUxUhWVhZxcXHExcUBrlt34+LiOH78OOC6xNK/f//C9QcNGkRCQgLR0dHs27ePL7/8ki+++IKXX365bD6BEEJUEtaL40baHNOBqrIzc4/GiQRZKTj/ey9zji7mxaAAMvU6LI6G/HDfAno1+9/dTvmnTpH4zDOcfvdd1NxcrJ0jabj4J7x79ZIGZhWg1Jdptm7dyq233lr4PDo6GoABAwbw9ddfk5ycXFiYADRo0IBffvmFkSNH8sknnxASEsLHH38st/UKIaod600dwWjE57yN2ml6tnvmQ/oJ8K6rdbTSyU1n1+KXiDu1gWBzAM0DWxFS70YIbA6BTcHife33qAySd5L3XR/eMV3gp1quMxt19DfzQ5/JeJrdANcYxowlSzj19js4MzNRLBYCX34Z376PoVxhDhpRPhS1YDRpJZaRkYG3tzfp6el4eXlpHUcIIa4qYeCT5GzcyNc9dPzSQcfcugNo073qnAnO2bmQz1aP5r+eRvIvOSMQaLfT1JZPuM1GQ9VKY++G3BAcgb52CwhsBgHhYHTTMPnf7F3MmR+fZ2QtT3ZYzKAq3OL/NB/3HFo40Z09LY1T494i87ffALC0bk3Ie+9hbthAy+TVSkm/v2WiPCGEKEMeUV3J2biRm47o+aWDytqjy6pGMZJ5inX/9yxT7Ac5aTby3BIn7Q5DYoCOHQ1UdoXpWReiZ417QcFxHPfkY4QnzCfclk94Xj6NjP6E+zfDPbilq0AJbA61bgB9BY4PVFVY8wF7/nqf4UEBnDYYwGFhSMu3eL5jz/993FWrSH7jDRxnzoLBgP+LL+D/3HMoBvla1IIcdSGEKEPWrlHwwWRuSHRgtCvssZ8ApxMq6yl/VSVt42w+iZ3MAg8z9c8Zef9HJ0HnXSfNmyU6aJYIfQCb2cjhUE921rUT2yCHhECF7RYL2y2Wi2/mRJ+/mwZHthO+L5+meTaa2J00ttYjIKjF/wqUwGbgU7/sj4ktB34azK/HlvFGcBB5Oh16eyCf9JhBl7BmroTZ2Zye9D7nFywAwNSoESGTJuHWskXZZhGlIpdphBCiDKmqyuFbumFPSeGdPjqOhMHK277CPawStoY/e5hfY57iQ8MZkvV67t6q8sQKFYNTxRgSQtDrr5N/KpmcDRvJ3rwZZ3p6kc0dPt6cvKEO2+qY2RSUQYLPKez6vCvu6tLLPE3zbDRx6qjn1xh9YMFlnmau/3qFwPUMGE0/ieP7x/gk9xif+bjGtHirrVjQewYhXn4A5MTGkvTqaPIv9q7yGzCAgJEj0BUWU6KslfT7W4oRIYQoY0mvvUZ6zEJ+a6/ji9t1TPK4lZ4Pfqx1rP9x5HPiz4l8fGgOv3q4Yb2gMnQJ3HjYNbmfR4/uhIwfj977kiZgDge5+/aTs3ED2Rs2khMbi5qbW+RtjXXrktemJXvq+bLG384eRyLp9qPkG1KvGMPd6bxYnOTT1GYj3GajkeKGpeDsyaX/tV65LxUAJ7aS+X1fxrg7WGV1B6CZ+33MfeAtTAYDTpuNs9Onc+7zL0BVMYQEEzJhItZON/3DAymuRYoRIYTQSMayZZwcMZKUWkaGPKfySI47b7ywSetYADhPxBLz47NMd88lTa+nyQmVVxYb8U7PRTEaCfz3v/Ht9/g1b2d12mzk7thB9oaNZG/cyIWdO8FuL7KOuUkTrJGdsLVpxXpfAxvOH+Fg6n5S8o6Sp5wE3eUzG+tVlQb5+TS1uS7zhNtshNvy8XXzv7xACQiHA7+SuHQEwwK8OGwygVPPg2HRjLvN1WIid/9+kv49iryDBwHwfuABgsaMRu/pWUZHVBRHihEhhNCIIz2dg5GdwenkhRf1BFnymT9wG5g0bCNuy+bg0tFMPfUrf7lbUFSVR9ab6L0uD8XpxBgaSp2pU6977IQjK5sLsVsLi5O8/fuLrqDX49ayJe6RnbB2ikRp2Zz1p47y1/Gd7D67jxPZh8lSE0Cfc8X3Dyq4zJNno6nNRlNbPnXsdrZazEQH+pOu16M4PHnzpsk82KIzqsPBuS++5Mz06ZCfj97Pj+C338Kzx+Wz8YryI8WIEEJo6NhjfbmwfTv/uVvHijYKS9u8Sb2IhzXJYjv4B9/8Npz/eMAFnQ7fLJXRvwVQ/6Brqg6vnndT++230Xt4lNk+7amp5GzaVFic5F/SfwpAMZtxb3cj7p0isUZ2wtK8OaqisDflBCvjt7P99F7iMw6Smp+A03DmivuwOp3kKgoORcHsCOPrnjNpWTsU2/HjJL06mgvbtgHgcdttBL/zNoarTEEiyo8UI0IIoaEzn3zC2ekz2NFYz/iHFKKVZjzZf0HFhshJZfuiwUzOimWnxTXfV2S8L8OWO9CfS0Uxmwl6bQw+Dz9c7l1G80+eJHvjxsLixPG3Wdt1Xl64d+yA9WJxYmrYsDDTqcw0/jy6g80nd3Mw7cDFyzxJKDrXZaHaus788NBUvC3unF/wA6cnTULNyUFntRI0ZgzevR+QLqoakWJECCE0dGHnTo498ih5Zh0Dhyt0z9Mx5YWdFbNzVSV7+3d89tc4/utpwq4omO0KI3e15cbfY8HpxNSwIXU+/BBLeJOKyVQknort8OHCwiRn82acWVlF1jEEBuLe6abC4sQYHFzk9Zz8PP46to9cez73hLfDcfYsyW+8QfbqNQC4d+hA8MSJmOrWqbDPJS4nxYgQQmhIdTg41KUrjvPnGdtPT2qwg+UPLkfnU86t4c8nsjbmWSY7j3HU5Go21jS9Pm9t9EDZFgeA9/33U3vsG+jc3cs3Swmpdju5e/b8bzDstm2oNluRdUxhYYXjTdxv6lhk4rqMZcs49eY4HOnpKCYTASNH4jegv7RzrwSkGBFCCI2dfOllMpYu5adIhW+76flPcD863zGqfHbmdHB23XRm7pjB/3laUBUFN4eRQXkP0HXubzjOnUNxc6P22LH4PHB/+WQoI868PC5s336xONlA7q7drsZxBRQFc9OmWDt1wn76NBm//AKAuXkz6kyahLlxY42Si7+TdvBCCKExa1RXMpYupf0RHd92gw0Jy+lMORQjKfv4JeYppprOc9rL1a69iRrBpJSm5P93Lg5VxdykCXWmfYi5YcOy338Z05nNWDt1wtqpEzACR2YmOVu2uPqbbNxA3qHD5O3bR96+fRc30FHr+ecIeOEFFJNJ0+zi+kgxIoQQ5cSjSxcA6qQ48M7Ws1dXxq3h7Xmc+P0tpsXP5zcPd8CAp92NF+pGEzVnCRdivwHA59FHCRr9apXtNKr39MTzttvwvO02AOxnzpC9cRPZGzfgzMig1tNP49a2rbYhxT8ixYgQQpQTQ0AA5ubNyNu7j9ZHVTa30JN+fCve9f95a3jnsfX88PMLTLfmk+7hjqJCa3MPPqh9J5lvvsWF8+fRWa0Ev/M2Xj17XvsNqxBDQADeve7Fu9e9WkcRZURG9wghRDny6BoFQMcjkKfTsXzLnH/2hrkZHPjhOQYt68+7Xk7S9Xp88n15p+0spiSGcH74SBznz2Np0YIGC2OqXSEiqicpRoQQohx5RHUFoNUxUJwqcee2XPd72fYu4bPZHXki6y82uLlhcCp09XyEpT2+pvXEj0n98ksAfJ94grDv5mEKCyuLjyBEuZPLNEIIUY7c2rZFZ7Xinp1Nw1N6dvunQ/4FMLqV/E2yUtgWM4gP8naz29vVvCzQHsLbPabR6kAiyQ/3wZmZic7Li5AJ46Xluahy5MyIEEKUI8VoxNo5EoC2R50cMRk5sGNxyTZWVbI2f8nUL7vwtHqQ3WYzZoeOe4MG8VvfH2k0J4aTw4bjzMzErU0bGi5aKIWIqJKkGBFCiHJmLRw34mpJvmLP/117o9SjrP6sO4/teJ+vvC3YFYW6znC+uXcpbzW9h+OPP07at98CUOuZpwmb+w3GOtJtVFRNcplGCCHKmUdX1y2+YclOrBcUdqsHrr6yw87ZNZOZsfszYrzcASPudhMPN36Fl2/uQ/qSpcSPHYszJwe9ry8hk97D4+abK+aDCFFOpBgRQohyZqxTB1OjRtiOHKHVMZUdTezYzp/A9PfW8Mk7WLrwGaZaskjxcrVqb6zryMcPfUCIyY3kN8Zy/ocfAHBv356QKZMxBgVV9McRoszJZRohhKgAHl1dd9W0O6KSrtezZsMlt/jacjj+80tEL+zNqx65pBgMeNqtvNTyQxY+8QUBZ1I59sijrkJEUfB/8QVCv/5KChFRbUgxIoQQFcAa5Ro3EhGvgKqy6cSfADiPrOS7WR3pc2YZyz3c0akQYbmLX/r+ycB2PTi/cBHxDz9C3qFD6P39Cf3yCwKGDUMxyIltUX3IT7MQQlQA9w7tUSwWvLJyqXdWzz7PJPZ/P4DJ59ezydsCKPjm12JU1GTuCW+PMzubpFGjSP/JdeeNtXMkIe+/j8HfX9sPIkQ5kGJECCEqgM5sxr1jB7LXrKXtUZVfOup54sJWct0sGJwKnX37MOWel7EYTeTu38/JkdHY4uNBpyNg2FBqPfccSlnNaSNEJSM/2UIIUUEKWsN3OKziUBRydToC7fX4tPsPfHL/GMwGI2nfz+fYI49ii4/HEBRE2Jz/4j9okBQiolqTMyNCCFFBrBdbwzc+qVArx4MuDZ/kndufQafT4cjMJHnsWDJ/XeZa95abCXnvPQy+vlpGFqJCSDEihBAVxFS/Psa6deHECX5uOgHPW28F4MKu3ZyMjiY/MREMBgKjo/EbOEDOhogaQ37ShRCigiiKUnh2JHvtOlRVJXXONxzr25f8xESMISHU/3YutZ56UgoRUaPImREhhKhAHlFRnP/ue7JWrSL/9Gmy/nTd4ut5ew+C330Xvbe3xgmFqHhSjAghRAVy73gTGI3kJyWRn5SEYjQSOGoUvo/3RVEUreMJoQk5DyiEEBVI72HF2qE9AMawUMK+/w6/fo9LISJqNDkzIoQQFaz2m2+StXoN3r0fQO/hoXUcITQnxYgQQlQwU1gYfv2f0DqGEJWGXKYRQgghhKakGBFCCCGEpqQYEUIIIYSmpBgRQgghhKakGBFCCCGEpqQYEUIIIYSmpBgRQgghhKakGBFCCCGEpqQYEUIIIYSmpBgRQgghhKauqxiZOXMmDRo0wGKx0K5dO9auXXvVdVetWoWiKJc99u/ff92hhRBCCFF9lLoYmT9/PiNGjOC1115j+/btREVFcffdd3P8+PFitztw4ADJycmFj8aNG193aCGEEEJUH4qqqmppNrjpppu48cYb+fTTTwuXNWvWjPvvv5+JEydetv6qVau49dZbSUtLw8fHp0T7yMvLIy8vr/B5RkYG9erVIz09HS8vr9LEFUIIIYRGMjIy8Pb2vub3d6lm7bXZbMTGxvLqq68WWX7HHXewfv36YreNiIggNzeX5s2b8/rrr3Prrbdedd2JEyfy1ltvXbY8IyOjNHGFEEIIoaGC7+1rnfcoVTFy9uxZHA4HQUFBRZYHBQVx6tSpK24THBzM7NmzadeuHXl5eXzzzTd0796dVatWcfPNN19xm9GjRxMdHV34/OTJkzRv3px69eqVJq4QQgghKoHMzEy8vb2v+nqpipECiqIUea6q6mXLCoSHhxMeHl74PDIyksTERCZPnnzVYsRsNmM2mwufe3h4kJiYiKen51X3U10VXKJKTEyUS1T/gBzHsiHHsWzIcSwbchzLRnkeR1VVyczMJCQkpNj1SlWM+Pv7o9frLzsLkpKSctnZkuJ06tSJuXPnlnh9nU5H3bp1S7x+deTl5SX/ZysDchzLhhzHsiHHsWzIcSwb5XUcizsjUqBUd9OYTCbatWvH8uXLiyxfvnw5nTt3LvH7bN++neDg4NLsWgghhBDVVKkv00RHR/PEE0/Qvn17IiMjmT17NsePH2fQoEGAa7zHyZMnmTNnDgDTpk2jfv36tGjRApvNxty5c4mJiSEmJqZsP4kQQgghqqRSFyOPPvoo586d4+233yY5OZmWLVvyyy+/EBYWBkBycnKRniM2m42XX36ZkydP4ubmRosWLVi6dCk9e/Ysu09RjZnNZt58880iY2hE6clxLBtyHMuGHMeyIcexbFSG41jqPiNCCCGEEGVJ5qYRQgghhKakGBFCCCGEpqQYEUIIIYSmpBgRQgghhKakGBFCCCGEpqQYqaQmTpxIhw4d8PT0JDAwkPvvv58DBw5oHavKmzhxIoqiMGLECK2jVDknT56kX79+1KpVC3d3d9q2bUtsbKzWsaoUu93O66+/ToMGDXBzc6Nhw4a8/fbbOJ1OraNVamvWrKFXr16EhISgKAo//vhjkddVVWXcuHGEhITg5uZGt27d2LNnjzZhK7HijmN+fj6jRo2iVatWWK1WQkJC6N+/P0lJSRWSTYqRSmr16tUMHjyYjRs3snz5cux2O3fccQfZ2dlaR6uytmzZwuzZs2ndurXWUaqctLQ0unTpgtFo5Ndff2Xv3r1MmTIFHx8fraNVKZMmTWLWrFnMmDGDffv28f777/PBBx8wffp0raNVatnZ2bRp04YZM2Zc8fX333+fqVOnMmPGDLZs2ULt2rW5/fbbyczMrOCklVtxxzEnJ4dt27bxxhtvsG3bNhYuXMjBgwe57777KiacKqqElJQUFVBXr16tdZQqKTMzU23cuLG6fPly9ZZbblGHDx+udaQqZdSoUWrXrl21jlHl3XPPPepTTz1VZFnv3r3Vfv36aZSo6gHURYsWFT53Op1q7dq11ffee69wWW5ururt7a3OmjVLg4RVw9+P45Vs3rxZBdSEhIRyzyNnRqqI9PR0APz8/DROUjUNHjyYe+65hx49emgdpUpavHgx7du35+GHHyYwMJCIiAg+++wzrWNVOV27duXPP//k4MGDAOzYsYN169ZJR+p/ID4+nlOnTnHHHXcULjObzdxyyy2sX79ew2RVX3p6OoqiVMgZ0FK3gxcVT1VVoqOj6dq1Ky1bttQ6TpXz/fffs23bNrZs2aJ1lCrr6NGjfPrpp0RHRzNmzBg2b97MsGHDMJvN9O/fX+t4VcaoUaNIT0+nadOm6PV6HA4H48eP57HHHtM6WpVVMIv832eODwoKIiEhQYtI1UJubi6vvvoqffv2rZAZkaUYqQKGDBnCzp07WbdundZRqpzExESGDx/O77//jsVi0TpOleV0Omnfvj0TJkwAICIigj179vDpp59KMVIK8+fPZ+7cucybN48WLVoQFxfHiBEjCAkJYcCAAVrHq9IURSnyXFXVy5aJksnPz6dPnz44nU5mzpxZIfuUYqSSGzp0KIsXL2bNmjXUrVtX6zhVTmxsLCkpKbRr165wmcPhYM2aNcyYMYO8vDz0er2GCauG4OBgmjdvXmRZs2bNZPbtUnrllVd49dVX6dOnDwCtWrUiISGBiRMnSjFynWrXrg24zpAEBwcXLk9JSbnsbIm4tvz8fB555BHi4+NZsWJFhZwVAbmbptJSVZUhQ4awcOFCVqxYQYMGDbSOVCV1796dXbt2ERcXV/ho3749jz/+OHFxcVKIlFCXLl0uu7X84MGDhbN1i5LJyclBpyv6a1ev18utvf9AgwYNqF27NsuXLy9cZrPZWL16NZ07d9YwWdVTUIgcOnSIP/74g1q1alXYvuXMSCU1ePBg5s2bx08//YSnp2fhdVFvb2/c3Nw0Tld1eHp6XjbOxmq1UqtWLRl/UwojR46kc+fOTJgwgUceeYTNmzcze/ZsZs+erXW0KqVXr16MHz+e0NBQWrRowfbt25k6dSpPPfWU1tEqtaysLA4fPlz4PD4+nri4OPz8/AgNDWXEiBFMmDCBxo0b07hxYyZMmIC7uzt9+/bVMHXlU9xxDAkJ4aGHHmLbtm0sWbIEh8NR+L3j5+eHyWQq33Dlfr+OuC7AFR9fffWV1tGqPLm19/r8/PPPasuWLVWz2aw2bdpUnT17ttaRqpyMjAx1+PDhamhoqGqxWNSGDRuqr732mpqXl6d1tEpt5cqVV/x9OGDAAFVVXbf3vvnmm2rt2rVVs9ms3nzzzequXbu0DV0JFXcc4+Pjr/q9s3LlynLPpqiqqpZvuSOEEEIIcXUyZkQIIYQQmpJiRAghhBCakmJECCGEEJqSYkQIIYQQmpJiRAghhBCakmJECCGEEJqSYkQIIYQQmpJiRAghhBCakmJECCGEEJqSYkQIIYQQmpJiRAghhBCa+n85EkYIDT/WtAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "716.5\n", + "721.1\n", + "716.506\n", + "717.332\n", + "701.8\n" + ] + } + ], + "source": [ + "# elements include nodes, edge centers, or face centers) \n", + "element = 'face centers'\n", + "element = 'nodes'\n", + "\n", + "var = 'GPP'\n", + "bbox_var = ds0[var].subset.bounding_box(\n", + " lon_bounds, lat_bounds, element=element)\n", + "\n", + "bbox_area = ds0[\"area\"].subset.bounding_box(\n", + " lon_bounds, lat_bounds, element=element)\n", + "\n", + "bbox_landfrac = ds0[\"landfrac\"].subset.bounding_box(\n", + " lon_bounds, lat_bounds, element=element)\n", + "\n", + "# Area weighting\n", + "bbox_wgt = bbox_area * bbox_landfrac / ((bbox_area * bbox_landfrac).sum())\n", + "y = (bbox_var * bbox_wgt).sum('n_face').values\n", + "x = bbox_var['time'].values\n", + "\n", + "plt.plot(x, y, label = 'raw ne30, ' + str(np.round(y.mean() * spy, 1))) \n", + "\n", + "#repeat for regridded climo\n", + "bbox_area_r = fv_t232['area'].sel(lon=slice(lon_bounds2[0],lon_bounds2[1]),lat=slice(lat_bounds[0],lat_bounds[1])) \n", + "bbox_landfrac_r = fv_t232['landfrac'].sel(lon=slice(lon_bounds2[0],lon_bounds2[1]),lat=slice(lat_bounds[0],lat_bounds[1])) \n", + "bbox_wgt_r = bbox_area_r * bbox_landfrac_r / ((bbox_area_r * bbox_landfrac_r).sum())\n", + "\n", + "# Better with destination area\n", + "bbox_area_rB = ds_out_con['area'].sel(lon=slice(lon_bounds2[0],lon_bounds2[1]),lat=slice(lat_bounds[0],lat_bounds[1])) \n", + "bbox_landfrac_rB = ds_out_con['landfrac'].sel(lon=slice(lon_bounds2[0],lon_bounds2[1]),lat=slice(lat_bounds[0],lat_bounds[1])) \n", + "bbox_landfrac_rC = ds_out_con['landfrac'].where(fv_t232['landmask']==1).sel(lon=slice(lon_bounds2[0],lon_bounds2[1]),lat=slice(lat_bounds[0],lat_bounds[1])) \n", + "bbox_wgt_rB = bbox_area_r * bbox_landfrac_rB / ((bbox_area_r * bbox_landfrac_rB).sum())\n", + "bbox_wgt_rC = bbox_area_r * bbox_landfrac_rC / ((bbox_area_r * bbox_landfrac_rC).sum())\n", + "\n", + "bbox_var_r = ds_out_con[var].sel(lon=slice(lon_bounds2[0],lon_bounds2[1]),lat=slice(lat_bounds[0],lat_bounds[1])) \n", + "y_r = (bbox_var_r * bbox_wgt_r).sum(['lat','lon']).values\n", + "y_rB = (bbox_var_r * bbox_wgt_rB).sum(['lat','lon']).values\n", + "y_rC = (bbox_var_r * bbox_wgt_rC).sum(['lat','lon']).values\n", + "plt.plot(x, y_r, label = 'cons destination mask & landfrac, ' + str(np.round(y_r.mean()* spy,1))) \n", + "plt.plot(x, y_rB, label = 'cons. no mask regridded landfrac ' + str(np.round(y_rB.mean()* spy,1))) \n", + "\n", + "bbox_var_r2 = ds_out_bilin[var].sel(lon=slice(lon_bounds2[0],lon_bounds2[1]),lat=slice(lat_bounds[0],lat_bounds[1])) \n", + "y_r2 = (bbox_var_r2 * bbox_wgt_r).sum(['lat','lon']).values\n", + "plt.plot(x, y_r2,\n", + " label= 'bilinear destination mask & landfrac, ' + str(np.round(y_r2.mean()* spy,1))) \n", + "\n", + "plt.title(region + ' climatology, annual regional integral (gC/y)')\n", + "plt.legend()\n", + "plt.show();\n", + "# Print mean annual flux from region (not time weighted correctly)\n", + "print(np.round(y.mean()* spy,1))\n", + "print(np.round(y_r.mean()* spy,1))\n", + "print(np.round(y_rB.mean()* spy,3))\n", + "print(np.round(y_rC.mean()* spy,3))\n", + "print(np.round(y_r2.mean()* spy,1))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "537d79e9-58a4-4c50-a251-a15e1ab56852", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Size: 4B\n", + "array(650.67285, dtype=float32)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.DataArray 'landfrac' ()> Size: 4B\n",
+       "array(650.57477, dtype=float32)
" + ], + "text/plain": [ + " Size: 4B\n", + "array(650.57477, dtype=float32)" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print(bbox_landfrac_r.sum()) #destination land frac sum\n", + "\n", + "bbox_landfrac_rB.sum() #regridded land frac sum\n", + "#bbox_wgt_rC.plot(vmax=0.18,vmin=0.04)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "293363a0-ffd0-4a02-a503-ba1681e3eb20", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAAHGCAYAAABjORGMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABi7klEQVR4nO3deVQUV9oG8KfYUQEXtiZCuxsVVzCK+4pioriMwei4xC2KRhCNikhEo2IyxmC+jGs0iaNGJ4uZJBIRTTAqEhVBiRJXEJcmKAqICwhd3x/Ejk2zdNOt3QXP75w6x75169ZbZWZ8z7237hVEURRBREREJGFmxg6AiIiISF9MaIiIiEjymNAQERGR5DGhISIiIsljQkNERESSx4SGiIiIJI8JDREREUkeExoiIiKSPCY0REREJHlMaIiIiEjymNAQERGR1tavX4/GjRvDxsYGXl5eOHLkSLl1FQoFxo4di5YtW8LMzAzBwcFl1ouKikLLli1ha2sLd3d3zJ07F48fP9YpLiY0REREpJU9e/YgODgYYWFhSEpKQs+ePeHn54eMjIwy6xcUFMDJyQlhYWFo3759mXV27tyJRYsWYenSpUhNTcXWrVuxZ88ehIaG6hSbwM0piYiISBtdunRBp06dsGHDBlVZq1atMHz4cERGRlZ4bZ8+fdChQwdERUWplc+ePRupqak4dOiQqmzevHk4ceJEhb0/pVloXbOGUiqVuHXrFuzs7CAIgrHDISIiEyaKIu7fvw83NzeYmT2fQZAffvih0uRBW02bNsUnn3yi9u+btbU1rK2tNeoWFhYiMTERixYtUiv39fVFfHx8lWPo0aMHduzYgRMnTuCVV17B1atXER0djYkTJ+rUDhOaSty6dQvu7u7GDoOIiCTk+vXraNiw4XNp+6effoKzw1mMGWGnVzt37xVj1qLj2LFjh1r50qVLERERoVH/zp07KC4uhouLi1q5i4sLMjMzqxzHmDFjcPv2bfTo0QOiKKKoqAgzZ87USJwqw4SmEnZ2Jf/B9MAQWMDSyNEQERnf/3K3P9f2/R0m6FTflOIpwhMcRbTq347n5eXmlvjHsNp6tXFTUYRZi4CcnByNHpqKlB6tEEVRrxGMuLg4rFy5EuvXr0eXLl1w+fJlBAUFQSaTITw8XOt2mNBU4ulfkgUsYSEwoSEisre3f67t6/r/tSYVz1+zUqU0RcHe3l6reB0dHWFubq7RG5OVlaXRa6OL8PBwjB8/HlOnTgUAtG3bFg8ePMD06dMRFham9dAdv3IiIiKSGCVEFItKvQ9dWFlZwcvLC7GxsWrlsbGx6NatW5Wf5eHDhxpJi7m5OURRhC7fLbGHhoiISGJElCQ1+qjK9SEhIRg/fjy8vb3h4+ODzZs3IyMjAzNmzAAAhIaG4ubNm9i+/e9hwOTkZABAfn4+bt++jeTkZFhZWaF169YAgKFDh2Lt2rXo2LGjasgpPDwcw4YNg7m5udaxMaEhIiKSHBFK6NbDUlYLugoICEB2djaWL18OhUIBT09PREdHQy6XAyhZSK/0mjQdO3ZU/TkxMRG7du2CXC5Heno6AGDJkiUQBAFLlizBzZs34eTkhKFDh2LlypU6xcaEhoiIiLQWGBiIwMDAMs99/vnnGmWVDRtZWFhg6dKlWLp0qV5xMaEhIiKSGKUooljPdXH1vd7UMKEhIiKSGMPMoalemNAQERFJjAgRxUaYFGzKmNAQEdVwscqvjB2CGinHk5eXBwcHh+cYDZWHCQ0REZHEGOuzbVPGhIaIiEhiShbW46TgZ3GlYCIiIpI89tAQERFJTMmQk374lRMREREZlQjwK6dSmNAQERFJjCgCxXrmI/peb2o4h4aIiIgkjz00REREEsM5NJqY0BARVTOmtjAdGZ4SQDEEvdrQ93pTw4SGiIhIYkQASj3nwFSzKTScQ0NERETSxx4aIiIiiREhcMipFCY0REREEsM5NJo45ERERESSxx4aIiIiiREhQCnq18Oi7/WmhgkNERGRxJRsfaBnQmOYUEwGExoiIiKJKZkUrN+sEX2vNzXV62mIiIioRmIPDRFRNTPQbLRO9bmysPSIIufQlMaEhoiISGIM8dm2kp9tm46IiAgIgqB2uLq6qs5PmjRJ43zXrl2NGDEREZH+RAgoFs30PqoTyffQtGnTBgcPHlT9Njc3Vzs/ePBgfPbZZ6rfVlZWLyw2IiIiejEkn9BYWFio9cqUZm1tXeF5IiIiqREhQKnnIIu+15sayT/NpUuX4ObmhsaNG2PMmDG4evWq2vm4uDg4OzujRYsWmDZtGrKysipsr6CgAHl5eWoHERGRKVH+tZeTfkf1IumEpkuXLti+fTtiYmKwZcsWZGZmolu3bsjOzgYA+Pn5YefOnfj555/x4Ycf4uTJk+jXrx8KCgrKbTMyMhIODg6qw93d/UU9DhEREVWRIIqiaOwgDOXBgwdo2rQpFixYgJCQEI3zCoUCcrkcu3fvxsiRI8tso6CgQC3hycvLg7u7O/rAHxaC5XOLnYjIWPjZtuHk5eXBwcEBubm5sLe3fy73CAwMxD38F5PfcdKrnTuZTzC22xUolUoIgvS/eJL8HJpn1a5dG23btsWlS5fKPC+TySCXy8s9D5TMubG2tn5eIRIREelNhP6fXfOzbRNWUFCA1NRUyGSyMs9nZ2fj+vXr5Z4nIiKSgqdbH+h7VCeS7qGZP38+hg4dCg8PD2RlZWHFihXIy8vDxIkTkZ+fj4iICIwaNQoymQzp6elYvHgxHB0dMWLECGOHTkRkMriyMFUHkk5obty4gTfeeAN37tyBk5MTunbtioSEBMjlcjx69AgpKSnYvn07cnJyIJPJ0LdvX+zZswd2dnbGDp2IiKjKlH8trKdXG1xYz3Ts3r273HO2traIiYl5gdEQERG9GFyHRpOkExoiIqKaSBSBYj03lyyuNt84l6he6RkRERHVSOyhISIikhjlX1856ddG9erTYEJDREQkMSIEvSf1VrdJwdXraYiIiOi5Wr9+PRo3bgwbGxt4eXnhyJEj5dZVKBQYO3YsWrZsCTMzMwQHB5dZLycnB7NmzYJMJoONjQ1atWqF6OhoneJiQkNERCQxxlpYb8+ePQgODkZYWBiSkpLQs2dP+Pn5ISMjo8z6BQUFcHJyQlhYGNq3b19mncLCQgwcOBDp6en4+uuvceHCBWzZsgUvvfSSTrFxyImIiHTChfiMTxQFA3zlpPv1a9euxZQpUzB16lQAQFRUFGJiYrBhwwZERkZq1G/UqBHWrVsHANi2bVuZbW7btg13795FfHw8LC1L9kyUy+U6x8YeGiIiIol5ug6NPof4115OeXl5asezGzQ/q7CwEImJifD19VUr9/X1RXx8fJWf5fvvv4ePjw9mzZoFFxcXeHp6YtWqVSguLtapHSY0RERENVjdunXh4OCgOsrqaQGAO3fuoLi4GC4uLmrlLi4uyMzMrPL9r169iq+//hrFxcWIjo7GkiVL8OGHH2LlypU6tcMhJyIiIokxxNYHT+fQ5OTkQBD+Hn6ytrau8Lpn6wKAKIoaZbpQKpVwdnbG5s2bYW5uDi8vL9y6dQv/+te/8O6772rdDhMaIiIiiRFRktTo4+n19vb2WiUkjo6OMDc31+iNycrK0ui10YVMJoOlpSXMzc1VZa1atUJmZiYKCwthZWWlVTscciIiIpKYkknBZnofurCysoKXlxdiY2PVymNjY9GtW7cqP0v37t1x+fJlKJVKVdnFixchk8m0TmYAJjRERESkpZCQEHz66afYtm0bUlNTMXfuXGRkZGDGjBkAgNDQUEyYMEHtmuTkZCQnJyM/Px+3b99GcnIyzp8/rzo/c+ZMZGdnIygoCBcvXsS+ffuwatUqzJo1S6fYOOREREQkMcba+iAgIADZ2dlYvnw5FAoFPD09ER0drfrMWqFQaKxJ07FjR9WfExMTsWvXLsjlcqSnpwMA3N3dceDAAcydOxft2rXDSy+9hKCgICxcuFCn2JjQEBERSYwIQKnnOjRVvT4wMBCBgYFlnvv88881ykSx8m29fXx8kJCQUKV4nuKQExEREUkee2iIiOi54srChicaYMipWM+vpEwNExoiIiKJEUXutl0aExoiIiKJKemhMcw6NNVF9UrPiIiIqEZiDw0REZHEiOCQU2lMaIiIiCRGCf0n9XJSMBERERmVISYFi9Wsh6Z6PQ0RERHVSOyhISIikhgRgs6bS5ZWrOdKw6aGCQ0REZHEiBD0/uyan20TERERmRj20BAREUmMUjTEkFP16tNgQkNERCRB+u62LXIODRERERmT0iCbU1avHprq9TRERERUI7GHhoiISGJEUf8hJ32vNzVMaIiIiCSm5LNtPfdyqmafbTOhISIikpiShfW4Ds2zOIeGiIiIJI89NERERBLDOTSamNAQERFJjAj9d9vW93pTU72ehoiIiGok9tAQERFJTMnCevoNGel7valhQkNERCQxIrj1QWlMaIiIiKRG5Bya0iT9NBERERAEQe1wdXVVnRdFEREREXBzc4OtrS369OmDc+fOGTFiIiIieh4kndAAQJs2baBQKFRHSkqK6twHH3yAtWvX4pNPPsHJkyfh6uqKgQMH4v79+0aMmIiISD8lKwXre1Qvkh9ysrCwUOuVeUoURURFRSEsLAwjR44EAHzxxRdwcXHBrl278NZbb73oUImIiAxCCei9UrC+15sayffQXLp0CW5ubmjcuDHGjBmDq1evAgDS0tKQmZkJX19fVV1ra2v07t0b8fHx5bZXUFCAvLw8tYOIiMiUiH/NodHnEDmHxnR06dIF27dvR0xMDLZs2YLMzEx069YN2dnZyMzMBAC4uLioXePi4qI6V5bIyEg4ODioDnd39+f6DERERKQ/SQ85+fn5qf7ctm1b+Pj4oGnTpvjiiy/QtWtXAIAgqHepiaKoUfas0NBQhISEqH7n5eUxqSEiIpNSslIwtz54lqR7aEqrXbs22rZti0uXLqnm1ZTujcnKytLotXmWtbU17O3t1Q4iIiJTIgIGmBTMhMZkFRQUIDU1FTKZDI0bN4arqytiY2NV5wsLC3H48GF069bNiFESERGRoUl6yGn+/PkYOnQoPDw8kJWVhRUrViAvLw8TJ06EIAgIDg7GqlWr0Lx5czRv3hyrVq1CrVq1MHbsWGOHTkREVGUlk4I55PQsSSc0N27cwBtvvIE7d+7AyckJXbt2RUJCAuRyOQBgwYIFePToEQIDA3Hv3j106dIFBw4cgJ2dnZEjJyIiqrqSrQ/0XCm4eg3SSDuh2b17d4XnBUFAREQEIiIiXkxAREREL4AhemhE0UDBmIjqlZ4RERFRjSTpHhoiIqKa6OlXTvqobl85MaEhIiKSHE4KLo0JDRERPVexyq+MHUK1I4r6JyRVvX79+vX417/+BYVCgTZt2iAqKgo9e/Yss65CocC8efOQmJiIS5cuYc6cOYiKiiq37d27d+ONN96Av78/vvvuO53i4hwaIiIi0sqePXsQHByMsLAwJCUloWfPnvDz80NGRkaZ9QsKCuDk5ISwsDC0b9++wravXbuG+fPnl5scVYYJDRERkcQ83fpA3wOAxobMBQUF5d537dq1mDJlCqZOnYpWrVohKioK7u7u2LBhQ5n1GzVqhHXr1mHChAlwcHAot93i4mKMGzcOy5YtQ5MmTar0TpjQEBERSczTISd9DvGvhKZu3bpqmzJHRkaWec/CwkIkJibC19dXrdzX1xfx8fF6Pc/y5cvh5OSEKVOmVLkNzqEhIiKqwXJyctQ2bba2ti6z3p07d1BcXKyxH6KLi4vGvom6OHbsGLZu3Yrk5OQqtwEwoSEiIpIc0QCbSz693t7eXi2hqUzpuqIo6nT9s+7fv49//vOf2LJlCxwdHavUxlNMaIiIiCSmZOuDF/uVk6OjI8zNzTV6Y7KysjR6bbR15coVpKenY+jQoX/HpVQCACwsLHDhwgU0bdpUq7aY0BAREUmMMTantLKygpeXF2JjYzFixAhVeWxsLPz9/asUw8svv4yUlBS1siVLluD+/ftYt24d3N3dtW6LCQ0RERFpJSQkBOPHj4e3tzd8fHywefNmZGRkYMaMGQCA0NBQ3Lx5E9u3b1dd83RuTH5+Pm7fvo3k5GRYWVmhdevWsLGxgaenp9o96tatCwAa5ZVhQkNERCQxhhhyEqtwfUBAALKzs7F8+XIoFAp4enoiOjoacrkcQMlCeqXXpOnYsaPqz4mJidi1axfkcjnS09P1ir80QRSr236bhpWXlwcHBwf0gT8sBEtjh0NEVO1JeWXhp/9m5Obmwt7e/rncIzAwEPtyEtFkag+92im4fR/Hx2yBUqms8qReU8IeGiIiIokRUbUeFvU2pJ/EPIsL6xEREZHksYeGiIhIcgy3Dk11wYSGiIhIYoy527ap4pATERERSR57aIiIiCRGhKD/pOBq1kPDhIaIiEhiDDHkxISGiIiIjIw9NKVxDg0RERFJHntoiIiIJMYYu22bOiY0REREEiOKJYe+bVQnTGiIiIgkRuTCehqqNIemqKgIBw8exKZNm3D//n0AwK1bt5Cfn2/Q4IiIiIi0oXMPzbVr1zB48GBkZGSgoKAAAwcOhJ2dHT744AM8fvwYGzdufB5xEhER0TP0/8rJQIGYCJ17aIKCguDt7Y179+7B1tZWVT5ixAgcOnTIoMERERGRpqfr0OhzVLfPtnXuoTl69CiOHTsGKysrtXK5XI6bN28aLDAiIiIibemc0CiVShQXF2uU37hxA3Z2dgYJioiIiMonwgBfORkkEtOh85DTwIEDERUVpfotCALy8/OxdOlSDBkyxJCxERERUVn+GjLS96hOdO6h+eijj9C3b1+0bt0ajx8/xtixY3Hp0iU4Ojriyy+/fB4xEhER0TNKemi49cGzdE5o3NzckJycjC+//BKnT5+GUqnElClTMG7cOLVJwkREREQvSpUW1rO1tcXkyZMxefJkQ8dDRERElRD/+lJJHzVy64Pvv/9e6waHDRtW5WCIiIhIO9z6QJ1WCc3w4cPVfguCALHUmxCEkkyvrC+giIiIyIBEzqEpTauvnJRKpeo4cOAAOnTogJ9++gk5OTnIzc3FTz/9hE6dOmH//v3PO14iIiIiDTrPoQkODsbGjRvRo0cPVdmgQYNQq1YtTJ8+HampqQYNkIiIiNSJ0P+z6+rWQ6NzQnPlyhU4ODholDs4OCA9Pd0QMREREVEl9J0CU82m0Oie0HTu3BnBwcHYsWMHZDIZACAzMxPz5s3DK6+8UuG19evX1+legiDg9OnTkMvluoZJRERENYjOCc22bdswYsQIyOVyeHh4AAAyMjLQokULfPfddxVem5OTg6ioqDJ7eEoTRRGBgYE6TTKOjIzE4sWLERQUpFrNeNKkSfjiiy/U6nXp0gUJCQlat0tERGRKRANMCkZNH3Jq1qwZzp49i9jYWPzxxx8QRRGtW7fGgAEDVF86VWTMmDFwdnbW6l5vv/221nGdPHkSmzdvRrt27TTODR48GJ999pnqd+mNNYmIyHQMNButU/1Y5VfPKRITxzEnNVVaWE8QBPj6+sLX11en65RKpU7179+/r1W9/Px8jBs3Dlu2bMGKFSs0zltbW8PV1VWrtgoKClBQUKD6nZeXp12wREREL4oB9mISUcN7aJYvX17h+XfffbfKwVTVrFmz8Oqrr2LAgAFlJjRxcXFwdnZG3bp10bt3b6xcubLcXqLIyEgsW7bseYdMREREBqRzQrN3716130+ePEFaWhosLCzQtGlTnRKaixcvIi4uDllZWRq9N9q2s3v3bpw+fRonT54s87yfnx9Gjx4NuVyOtLQ0hIeHo1+/fkhMTIS1tbVG/dDQUISEhKh+5+Xlwd3dXetnIiIiet5KNqfUs42aPuSUlJSkUZaXl4dJkyZhxIgRWrezZcsWzJw5E46OjnB1dVWbfyMIglYJzfXr1xEUFIQDBw7AxsamzDoBAQGqP3t6esLb2xtyuRz79u3DyJEjNepbW1uXmegQERGZDK4UrKFKc2hKs7e3x/Lly/Haa69h/PjxWl2zYsUKrFy5EgsXLqzyfRMTE5GVlQUvLy9VWXFxMX799Vd88sknKCgogLm5udo1MpkMcrkcly5dqvJ9iYiIjEvQ/yulmt5DU56n2yBo6969exg9WreZ7KX1798fKSkpamVvvvkmXn75ZSxcuFAjmQGA7OxsXL9+XbWGDhEREUmfzgnNxx9/rPZbFEUoFAr85z//weDBg7VuZ/To0Thw4ABmzJihawgqdnZ28PT0VCurXbs2GjRoAE9PT+Tn5yMiIgKjRo2CTCZDeno6Fi9eDEdHR52Gx4iIiExJyTo0+rdRneic0Hz00Udqv83MzODk5ISJEyciNDS0wmufTYaaNWuG8PBwJCQkoG3btrC0tFSrO2fOHF1D02Bubo6UlBRs374dOTk5kMlk6Nu3L/bs2QM7Ozu92yciIjIarkOjRueEJi0trco3K50M1alTB4cPH8bhw4fVygVBqHJCExcXp/qzra0tYmJiqtQOERERSYfOCc3kyZOxbt06jR6OBw8e4O2338a2bdvKvVafZIiIqLrQdWVbXVfOpRqAXzlpMNP1gi+++AKPHj3SKH/06BG2b9+udTvLly/Hw4cPy2ynssX7iIiIajzRAEcVrF+/Ho0bN4aNjQ28vLxw5MiRcusqFAqMHTsWLVu2hJmZGYKDgzXqbNmyBT179kS9evVQr149DBgwACdOnNA5Lq0Tmry8POTm5kIURdy/fx95eXmq4969e4iOjtZ6jyYAWLZsGfLz8zXKHz58yJV6iYiIKiCiZOsDfQ9d7dmzB8HBwQgLC0NSUhJ69uwJPz8/ZGRklFm/oKAATk5OCAsLQ/v27cusExcXhzfeeAO//PILjh8/Dg8PD/j6+uLmzZs6xab1kFPdunUhCAIEQUCLFi00zguCoFMiIopimZtZnjlzBvXr19e6HSIiInox1q5diylTpmDq1KkAgKioKMTExGDDhg2IjIzUqN+oUSOsW7cOAMqdkrJz506131u2bMHXX3+NQ4cOYcKECVrHpnVC88svv0AURfTr1w/ffPONWtJhZWUFuVwONze3StupV6+eWmL0bFJTXFyM/Px8vT7lJiIiqvb0GDJSawMlIzDP/ltc3or5hYWFSExMxKJFi9TKfX19ER8fr2cwf3v48CGePHmic+eG1glN7969AZRM7PXw8Cizd0UbUVFREEURkydPxrJly+Dg4KA6Z2VlhUaNGsHHx6dKbRMREdUc+k7qLbm+bt26aqVLly5FRESERu07d+6guLgYLi4uauUuLi7IzMzUM5a/LVq0CC+99BIGDBig03VaJTRnz56Fp6cnzMzMkJubq7E677PatWtXYVsTJ05EUVERAGDAgAFo2LChDuESERERAIOtI5OTk6PRQ1OR0h0a5U0hqYoPPvgAX375JeLi4srdo7E8WiU0HTp0QGZmJpydndGhQwcIggCxjCUGBUFAcXFx5Te1sEBgYCBSU1N1CpaIiIgMy97eXquExNHREebm5hq9MVlZWRq9NlWxZs0arFq1CgcPHqy0c6QsWiU0aWlpcHJyUv3ZELp06YKkpCTI5XKDtEdERFRjGHAOjbasrKzg5eWF2NhYte2DYmNj4e/vr1co//rXv7BixQrExMTA29u7Sm1oldA8m3Rcu3YN3bp1g4WF+qVFRUWIj4/XOkEJDAzEvHnzcOPGDXh5eaF27dpq56uSnRERGcLzXviOC+WR/gyx27bu14eEhGD8+PHw9vaGj48PNm/ejIyMDNXHPKGhobh586baunTJyckAgPz8fNy+fRvJycmwsrJC69atAZQMM4WHh2PXrl1o1KiRqgeoTp06qFOnjtax6bxScN++faFQKDTWnMnNzUXfvn21GnICgICAAADqezY9HcrSduiKiIiIXpyAgABkZ2dj+fLlUCgU8PT0RHR0tKozQ6FQaKxJ07FjR9WfExMTsWvXLsjlcqSnpwMoWaivsLAQ//jHP9SuK29ycnl0TmjKm/yTnZ2t0ctSEW6DQEREVEVG3G07MDAQgYGBZZ77/PPPy7hPxTd6mtjoS+uEZuTIkQBKelEmTZqkNgu6uLgYZ8+eRbdu3bS+MefOEBER6YG7bavROqF5ul6MKIqws7ODra2t6pyVlRW6du2KadOm6XTzK1euICoqCqmpqRAEAa1atUJQUBCaNm2qUztEREQ1igijzKExZVonNJ999hmAkmWM58+fr9PwUlliYmIwbNgwdOjQAd27d4coioiPj0ebNm3www8/YODAgXq1T0RERDWHznNoli5dapAbL1q0CHPnzsXq1as1yhcuXMiEhoiIqAKCnkNG+l5vanROaADg66+/xn//+19kZGSgsLBQ7dzp06e1aiM1NRX//e9/NconT56MqKioqoRFRERUMxhhHRpTZ6brBR9//DHefPNNODs7IykpCa+88goaNGiAq1evws/PT+t2nJycVN+mPys5OVnjk3AiIiJ61l/r0Oh7VCM699CsX78emzdvxhtvvIEvvvgCCxYsQJMmTfDuu+/i7t27Wrczbdo0TJ8+HVevXkW3bt0gCAKOHj2K999/H/PmzdM1LCIiIqrBdE5oMjIyVJ9n29ra4v79+wCA8ePHo2vXrvjkk0+0aic8PBx2dnb48MMPERoaCgBwc3NDRESE2mJ7RET60nXl3+fdPlcKrtjz/vuqFgwx5FTN6Dzk5OrqiuzsbAAla8kkJCQAKFkor7LFc54lCALmzp2LGzduIDc3F7m5ubhx4waCgoIMtmsnERFRtSUa4KhGdE5o+vXrhx9++AEAMGXKFMydOxcDBw5EQECA2mZVurCzs4OdnV2VriUiIiLSechp8+bNUCqVAIAZM2agfv36OHr0KIYOHaranEobf/75J+bPn49Dhw4hKytLo3eHezkRERGVg185adA5oTEzM4OZ2d8dO6+//jpef/11nW88adIkZGRkIDw8HDKZjMNMREREuuBKwWq0SmjOnj2rdYPt2rXTqt7Ro0dx5MgRdOjQQeu2iYiIqGRRPC6sp06rhKZDhw4QBKHSSb+CIGg9VOTu7q7TJGIiIiKi8miV0KSlpRn8xlFRUVi0aBE2bdqERo0aGbx9IiKiao1zaNRoldDI5XKD3zggIAAPHz5E06ZNUatWLVhaWqqd12WRPiIiIqrZqrSXkyFwvyYiIqIq4hwaDUZLaCZOnKhVvdWrV2PGjBmoW7fu8w2IiIyGK8NKC/++yBTpvLDei7Zq1SoOPxEREanh5pSlGa2HRlv8EoqIiKgMnBSspko9NDk5Ofj0008RGhqq6j05ffo0bt68adDgiIiIiLShcw/N2bNnMWDAADg4OCA9PR3Tpk1D/fr1sXfvXly7dg3bt29/HnESERHRU9z6QIPOPTQhISGYNGkSLl26BBsbG1W5n58ffv31V4MGR0RERJoE/L1acJUPYz+EgencQ3Py5Els2rRJo/yll15CZmamQYIiIiKiCrCHRoPOPTQ2NjbIy8vTKL9w4QKcnJwMEtSzevbsCVtbW4O3S0RERNWHzgmNv78/li9fjidPngAo2b8pIyMDixYtwqhRo7Ru5/Tp00hJSVH9/t///ofhw4dj8eLFKCwsVJVHR0dDJpPpGiYREVH1JhrgqEZ0TmjWrFmD27dvw9nZGY8ePULv3r3RrFkz2NnZYeXKlVq389Zbb+HixYsAgKtXr2LMmDGoVasWvvrqKyxYsEDXsIiIiGoOfefPGGClYVOj8xwae3t7HD16FD///DNOnz4NpVKJTp06YcCAATq1c/HiRXTo0AEA8NVXX6FXr17YtWsXjh07hjFjxnBrBCIJ40qyRC+AvgvjVbOERucemu3bt6OgoAD9+vXD/PnzsWDBAgwYMACFhYU6fbItiiKUSiUA4ODBgxgyZAgAwN3dHXfu3NE1LABAZGQkBEFAcHCw2n0iIiLg5uYGW1tb9OnTB+fOnatS+0RERGSadE5o3nzzTeTm5mqU379/H2+++abW7Xh7e2PFihX4z3/+g8OHD+PVV18FAKSlpcHFxUXXsHDy5Els3rwZ7dq1Uyv/4IMPsHbtWnzyySc4efIkXF1dMXDgQNy/f1/nexAREZkEQ8yfqek9NKIoQhA0u7lu3LgBBwcHrduJiorC6dOnMXv2bISFhaFZs2YAgK+//hrdunXTKab8/HyMGzcOW7ZsQb169dRijYqKQlhYGEaOHAlPT0988cUXePjwIXbt2qXTPYiIiEyFQdahqWYJjdZzaDp27AhBECAIAvr37w8Li78vLS4uRlpaGgYPHqz1jdu1a6f2ldNT//rXv2Bubq51OwAwa9YsvPrqqxgwYABWrFihKk9LS0NmZiZ8fX1VZdbW1ujduzfi4+Px1ltvabRVUFCAgoIC1e+yPlEnIiIi06J1QjN8+HAAQHJyMgYNGoQ6deqozllZWaFRo0Y6fbYNlOwJ9fXXX+PKlSt45513UL9+fZw/fx4uLi546aWXtGpj9+7dOH36NE6ePKlx7ulCf6WHsFxcXHDt2rUy24uMjMSyZct0eg4iIqIXigvradA6oVm6dCkAoFGjRggICFDb9qAqzp49i/79+6Nu3bpV3hPq+vXrCAoKwoEDByqMp/QQWXnDZgAQGhqKkJAQ1e+8vDy4u7tr+VREREQvhr5DRtVtyEnnOTQTJ07UO5kBSvaEevPNN/XaEyoxMRFZWVnw8vKChYUFLCwscPjwYXz88cewsLBQ9cyU3pIhKyur3InH1tbWsLe3VzuIiIhMCicEa9A5oSkuLsaaNWvwyiuvwNXVFfXr11c7tHXy5Mky57DosidU//79kZKSguTkZNXh7e2NcePGITk5GU2aNIGrqytiY2NV1xQWFuLw4cM6TzwmIiIi06XzwnrLli3Dp59+ipCQEISHhyMsLAzp6en47rvv8O6772rdjiH2hLKzs4Onp6daWe3atdGgQQNVeXBwMFatWoXmzZujefPmWLVqFWrVqoWxY8dqHSsREf1toNlonepzocXnhHNo1OjcQ7Nz505s2bIF8+fPh4WFBd544w18+umnePfdd5GQkKB1O4baE6oyCxYsQHBwMAIDA+Ht7Y2bN2/iwIEDsLOzM9g9iIiIXiSDfLJd0xOazMxMtG3bFgBQp04d1SJ7r732Gvbt26d1O4baE6q0uLg4tW0TBEFAREQEFAoFHj9+jMOHD2v06hAREZG06ZzQNGzYEAqFAgDQrFkzHDhwAEDJnBhra2ut23m6J9Q333yD1atXY/bs2YiOjsbhw4dRu3ZtXcMiIiKiF2D9+vVo3LgxbGxs4OXlhSNHjpRbV6FQYOzYsWjZsiXMzMzUtiZ61jfffIPWrVvD2toarVu3xt69e3WOS+eEZsSIETh06BAAICgoCOHh4WjevDkmTJiAyZMn6xxAv379MHv2bLzzzjs6b3BJRERUYxnhS6c9e/YgODgYYWFhSEpKQs+ePeHn54eMjIwy6xcUFMDJyQlhYWFo3759mXWOHz+OgIAAjB8/HmfOnMH48ePx+uuv47ffftMpNkEURb1G0RISEhAfH49mzZph2LBhWl+nVCqxcuVKbNy4EX/++ScuXryIJk2aIDw8HI0aNcKUKVP0Cctg8vLy4ODggD7wh4VgaexwiCSBk0ArpuukWqmrSf89PP03Izc397kt+xEYGIg9KRfhNOBVvdp5kpeDq2uXQ6lUlrs2W2ldunRBp06dsGHDBlVZq1atMHz4cERGRlZ4bZ8+fdChQwe1aSEAEBAQgLy8PPz000+qssGDB6NevXr48ssvtX4enXtoSuvatStCQkJ0SmYAYMWKFfj888/xwQcfwMrKSlXetm1bfPrpp/qGRURERFrIy8tTO57d/udZhYWFSExMVNtOCAB8fX0RHx9f5fsfP35co81Bgwbp3KbOn20DwMWLFxEXF4esrCwolUq1c9p+ur19+3Zs3rwZ/fv3x4wZM1Tl7dq1wx9//FGVsIiIiGoOA322XbduXbXipUuXIiIiQqP6nTt3UFxcXOZ2QtquH1eWzMxMg7Spc0KzZcsWzJw5E46OjnB1dVXrphIEQeuE5ubNm6odtp+lVCpVn3ITERFRGQy4l1NOTo7av+WVfeCjy3ZC2jJEmzonNCtWrMDKlSuxcOFCXS9V06ZNGxw5cgRyuVyt/KuvvkLHjh31apuIiKg6E2C4vZzs7e21Sh4cHR1hbm6u03ZC2nB1dTVImzonNPfu3cPo0fpPaFu6dCnGjx+PmzdvQqlU4ttvv8WFCxewfft2/Pjjj3q3T0T0onCSL9UEVlZW8PLyQmxsLEaMGKEqj42Nhb+/f5Xb9fHxQWxsLObOnasqO3DggM5bFOk8KXj06NGqtWf0MXToUOzZswfR0dGqoarU1FT88MMPGDhwoN7tExERVVuG+GS7Cj08ISEh+PTTT7Ft2zakpqZi7ty5yMjIUM2FDQ0NxYQJE9SuebrXYn5+Pm7fvo3k5GScP39edT4oKAgHDhzA+++/jz/++APvv/8+Dh48WO6aNeXRuYemWbNmCA8PR0JCAtq2bQtLS/VPmefMmVNpG0VFRVi5ciUmT56Mw4cP6xoCERFRjWeoISddBAQEIDs7G8uXL4dCoYCnpyeio6NV00cUCoXGmjTPTiNJTEzErl27IJfLkZ6eDgDo1q0bdu/ejSVLliA8PBxNmzbFnj170KVLFx2fR8d1aBo3blx+Y4KAq1evatVOnTp18Pvvv6NRo0a63P6F4zo0RLqraUMSHHKip17UOjT/PXMRzn30XIfmfg4u/59u69CYMp17aNLS0gxy4wEDBiAuLg6TJk0ySHtERERUc1VpHRpD8PPzQ2hoKH7//Xd4eXlp7N+k60J9RERENYYBP9uuLrRKaEJCQvDee++hdu3aCAkJqbDu2rVrtbrxzJkzy60vCAKKi4u1aoeIiKgmMsYcGlOmVUKTlJSkWuwuKSmp3Hq6jMGVXmGYiIiIqKq0Smh++eWXMv9MRERERsAhJw1Gm0Pz8ccfl1kuCAJsbGzQrFkz9OrVC+bm5i84MiIiIglgQqNGq4Rm5MiRWjf47bffalXvo48+wu3bt/Hw4UPUq1cPoigiJycHtWrVQp06dZCVlYUmTZrgl19+gbu7u9b3JyLSFz/DJlMniJxDU5pWKwU7ODioDnt7exw6dAinTp1SnU9MTMShQ4fg4OCg9Y1XrVqFzp0749KlS8jOzsbdu3dx8eJFdOnSBevWrUNGRgZcXV3VlkImIiIiKotWPTSfffaZ6s8LFy7E66+/jo0bN6qGg4qLixEYGKjTIkJLlizBN998g6ZNm6rKmjVrhjVr1mDUqFG4evUqPvjgA4waNUrrNomIiGoMDjmp0Xkvp23btmH+/Plqc1vMzc0REhKCbdu2ad2OQqFAUVGRRnlRUZFq1003Nzfcv39f1xCJiIiqN/HvYSd9jupE54SmqKgIqampGuWpqak6fYrdt29fvPXWW2qfgSclJWHmzJno168fACAlJaXCrRaIiIhqLCNsTmnKdP7K6c0338TkyZNx+fJldO3aFQCQkJCA1atX480339S6na1bt2L8+PHw8vJSbXBZVFSE/v37Y+vWrQBK9nv68MMPdQ2RiIiIahidE5o1a9bA1dUVH330ERQKBQBAJpNhwYIFmDdvntbtuLq6IjY2Fn/88QcuXrwIURTx8ssvo2XLlqo6ffv21TU8IiKi6q8a9rDoS6eEpqioCDt37sSECROwYMEC5OXlAYBeO4o2adIEgiCgadOmsLAw2rI4REREkiH8dejbRnWi0xwaCwsLzJw5EwUFBQBKEpmqJjMPHz7ElClTUKtWLbRp0wYZGRkAgDlz5mD16tVVapOIiIhqJp27RLp06YKkpCTI5XK9bhwaGoozZ84gLi4OgwcPVpUPGDAAS5cuxaJFi/Rqn+h5et4LkUl9YTepx08kCfxsW43OCU1gYCDmzZuHGzduwMvLC7Vr11Y7365dO63a+e6777Bnzx507dpVbVPL1q1b48qVK7qGRUREVHNwpWANOic0AQEBAEqGhp4SBAGiKEIQBBQXF2vVzu3bt+Hs7KxR/uDBA5127SYiIqqR2EOjRueEJi0tzSA37ty5M/bt24e3334bAFRJzJYtW+Dj42OQexAREVHNoHNCo+/cmaciIyMxePBgnD9/HkVFRVi3bh3OnTuH48eP4/Dhwwa5BxERUbVkiM+2q1kPjc4rBQPAlStX8Pbbb2PAgAEYOHAg5syZo/O8l27duuHYsWN4+PAhmjZtigMHDsDFxQXHjx+Hl5dXVcIiIiKqEQRw64PSdO6hiYmJwbBhw9ChQwd0794doigiPj4ebdq0wQ8//ICBAwdq3Vbbtm3xxRdf6BoCERFRzcYeGg06JzSLFi3C3LlzNdaKWbRoERYuXFhhQvN0IT5t6LNYHxEREdUsOic0qamp+O9//6tRPnnyZERFRVV4bd26dbX+gknbr6WIiIhqIr2HjGp6D42TkxOSk5PRvHlztfLk5OQyP8N+1i+//KL6c3p6OhYtWoRJkyapvmo6fvw4vvjiC0RGRuoaFhERUc3BIScNOic006ZNw/Tp03H16lV069YNgiDg6NGjeP/99yvdnLJ3796qPy9fvhxr167FG2+8oSobNmwY2rZti82bN2PixIm6hkZEREQ1lM4JTXh4OOzs7PDhhx8iNDQUAODm5oaIiAi1xfYqc/z4cWzcuFGj3NvbG1OnTtU1LCIiohrj6VdOerVRzXpodP5sWxAEzJ07Fzdu3EBubi5yc3Nx48YNBAUF6bTCr7u7e5kJzaZNm+Du7q5rWERERDWHaICjmtG5h+ap27dv48KFCxAEAS1btoSjo6NO13/00UcYNWoUYmJi0LVrVwBAQkICrly5gm+++aaqYREREdUMnEOjRucemgcPHmDy5MmQyWTo1asXevbsCZlMhilTpuDhw4datzNkyBBcunQJ/v7+uHv3LrKzs+Hv74+LFy9iyJAhuoZFRERENZjOCU1ISAgOHz6MH374ATk5OcjJycH//vc/HD58uNJJwWfPnoVSqVT9btiwIVauXIlvv/0We/fuxcqVK9WGm86dO4eioqJy29uwYQPatWsHe3t72Nvbw8fHBz/99JPq/KRJkyAIgtrxtDeIiIhIyrhSsDqdE5pvvvkGW7duhZ+fnyqRGDJkCLZs2YKvv/66wms7duyI7Oxsre/l4+ODjIyMcs83bNgQq1evxqlTp3Dq1Cn069cP/v7+OHfunKrO4MGDoVAoVEd0dLTW9yciIjJJhphDU80SGp3n0Dx8+BAuLi4a5c7OzpUOOYmiiPDwcNSqVUurexUWFlZ4fujQoWq/V65ciQ0bNiAhIQFt2rQBAFhbW8PV1VWr+xEREUlByVdO+mUk1a2HRueExsfHB0uXLsX27dthY2MDAHj06BGWLVumWiCvPL169cKFCxd0upetra1WdYuLi/HVV1/hwYMHanHExcXB2dkZdevWRe/evbFy5coKFwAsKChAQUGB6rcu2zUQERGRceic0Kxbtw6DBw9Gw4YN0b59ewiCgOTkZNjY2CAmJqbCa+Pi4qoaZ7lSUlLg4+ODx48fo06dOti7dy9at24NAPDz88Po0aMhl8uRlpaG8PBw9OvXD4mJibC2ti6zvcjISCxbtszgcRIRERkMVwrWIIii7n1Wjx49wo4dO/DHH39AFEW0bt0a48aN07o3xZAKCwuRkZGBnJwcfPPNN/j0009x+PBhVVLzLIVCAblcjt27d2PkyJFltldWD427uzv6wB8WguVzew4yrljlV8YOQc1As9HGDoFqEFP771/K8vLy4ODggNzc3Oe2yXJgYCD2HruIhl76fRFc+CAXZ/+7HEqlUqd15ExVldahsbW1xbRp0wwdS5VYWVmhWbNmAEpWGT558iTWrVuHTZs2adSVyWSQy+W4dOlSue1ZW1uX23tDREREpknnr5wiIyOxbds2jfJt27bh/fffN0hQ+hBFUa2H5VnZ2dm4fv06ZDLZC46KiIjIgPiVkwadE5pNmzbh5Zdf1ihv06ZNmVsZPE+LFy/GkSNHkJ6ejpSUFISFhSEuLg7jxo1Dfn4+5s+fj+PHjyM9PR1xcXEYOnQoHB0dMWLEiBcaJxERkSE93cuJ69D8TeeEJjMzs8weDicnJygUCoMEpa0///wT48ePR8uWLdG/f3/89ttv2L9/PwYOHAhzc3OkpKTA398fLVq0wMSJE9GiRQscP34cdnZ2LzROIiIigzJi78z69evRuHFj2NjYwMvLC0eOHKmw/uHDh+Hl5QUbGxs0adKkzM6PqKgotGzZEra2tnB3d8fcuXPx+PFjneLSeQ6Nu7s7jh07hsaNG6uVHzt2DG5ubro2p5etW7eWe87W1rbSr66IiIhIe3v27EFwcDDWr1+P7t27Y9OmTfDz88P58+fh4eGhUT8tLQ1DhgzBtGnTsGPHDhw7dgyBgYFwcnLCqFGjAAA7d+7EokWLsG3bNnTr1g0XL17EpEmTAJTs+6gtnROaqVOnIjg4GE+ePEG/fv0AAIcOHcKCBQsq3fqAiIiIDEPfIaOqXL927VpMmTIFU6dOBVDSsxITE4MNGzYgMjJSo/7GjRvh4eGBqKgoAECrVq1w6tQprFmzRpXQHD9+HN27d8fYsWMBAI0aNcIbb7yBEydO6BSbzgnNggULcPfuXQQGBqpW8rWxscHChQsRGhqqa3NERESkKwOuQ5OXl6f22XZ5X/sWFhYiMTERixYtUiv39fVFfHx8mbc4fvw4fH191coGDRqErVu34smTJ7C0tESPHj2wY8cOnDhxAq+88gquXr2K6OhoTJw4UafH0TmhEQQB77//PsLDw5GamgpbW1s0b96cnzoTERG9IE8nBevVxl/X161bV6186dKliIiI0Kh/584dFBcXa2x/5OLigszMzDLvkZmZWWb9oqIi3LlzBzKZDGPGjMHt27fRo0cPiKKIoqIizJw5UyNxqkyV1qEBgDp16qBz585VvZyIiIhMQE5OjkYPTUVKL8InimKFC/OVVf/Z8ri4OKxcuRLr169Hly5dcPnyZQQFBUEmkyE8PFzr56hyQkNERC8GV/IlDaJYcujbBgB7e3utVgp2dHSEubm5Rm9MVlZWmZtWA4Crq2uZ9S0sLNCgQQMAQHh4OMaPH6+al9O2bVs8ePAA06dPR1hYGMzMtPsgW+fPtomIiMj4XvQ6NFZWVvDy8kJsbKxaeWxsLLp161bmNT4+Phr1Dxw4AG9vb1halmwn9PDhQ42kxdzcHKIoQpfdmZjQEBERkVZCQkLw6aefYtu2bUhNTcXcuXORkZGBGTNmAABCQ0MxYcIEVf0ZM2bg2rVrCAkJQWpqKrZt24atW7di/vz5qjpDhw7Fhg0bsHv3bqSlpSE2Nhbh4eEYNmwYzM3NtY6NQ05ERERSY6TdtgMCApCdnY3ly5dDoVDA09MT0dHRkMvlAEo2gc7IyFDVb9y4MaKjozF37lz8+9//hpubGz7++GPVJ9sAsGTJEgiCgCVLluDmzZtwcnLC0KFDsXLlSp1iq9Ju2zXJ051Tudt29WZqcxS42zY9y9T++6Tyvajdtr//5QI82um323bBw1yc/vG9mr3bNhERERkZuyPUcA4NERERSR57aIiIiKTGALtlV7fdtpnQEBERSZGB1qGpLpjQEEH3SbjPe5Lm826fk44Ni5N26UWryjoyZbVRnXAODREREUkee2iIiIikyAjr0JgyJjREREQSxCEndRxyIiIiIsljDw0REZHUGHC37eqCCQ0REZHECOCQU2lMaIiIiKTGSJtTmjLOoSEiIiLJYw8NERGRBHHISR0TGqIaSNeVbaW+sjBX8qVqRwSg5KTgZzGhISIikhrOodHAOTREREQkeeyhISIikiDOoVHHhIaIiEhquLCeBg45ERERkeSxh4aIiEhiuFKwJiY0REREUsOvnDQwoSEiIpIgQc85MPpeb2o4h4aIiIgkjz00RCQ5XPmXajwRgNIAbVQjTGiIiIgkRhBFDjmVwoSGiIhIijgpWA3n0BAREZHksYeGiIhIakRwpeBSmNAQERFJkN4L41WvfIZDTkRERCR9kk5oNmzYgHbt2sHe3h729vbw8fHBTz/9pDoviiIiIiLg5uYGW1tb9OnTB+fOnTNixERERIYg/r1BZZUPYz+DYUk6oWnYsCFWr16NU6dO4dSpU+jXrx/8/f1VScsHH3yAtWvX4pNPPsHJkyfh6uqKgQMH4v79+0aOnIiIqOoEERCU+h/ViaQTmqFDh2LIkCFo0aIFWrRogZUrV6JOnTpISEiAKIqIiopCWFgYRo4cCU9PT3zxxRd4+PAhdu3aZezQiYiIqu7ppGB9j2qk2kwKLi4uxldffYUHDx7Ax8cHaWlpyMzMhK+vr6qOtbU1evfujfj4eLz11ltltlNQUICCggLV77y8vOceO5Gp48q8RGTqJN1DAwApKSmoU6cOrK2tMWPGDOzduxetW7dGZmYmAMDFxUWtvouLi+pcWSIjI+Hg4KA63N3dn2v8REREVSIa4KhGJJ/QtGzZEsnJyUhISMDMmTMxceJEnD9/XnVeEAS1+qIoapQ9KzQ0FLm5uarj+vXrzy12IiKiKvlr6wO9jmqW0Uh+yMnKygrNmjUDAHh7e+PkyZNYt24dFi5cCADIzMyETCZT1c/KytLotXmWtbU1rK2tn2/QRERE+uLCemok30NTmiiKKCgoQOPGjeHq6orY2FjVucLCQhw+fBjdunUzYoRERERkaJLuoVm8eDH8/Pzg7u6O+/fvY/fu3YiLi8P+/fshCAKCg4OxatUqNG/eHM2bN8eqVatQq1YtjB071tihExERVZ0IQN/PrvnZtun4888/MX78eLRs2RL9+/fHb7/9hv3792PgwIEAgAULFiA4OBiBgYHw9vbGzZs3ceDAAdjZ2Rk5ciIioqrTe/7MX0dVrF+/Ho0bN4aNjQ28vLxw5MiRCusfPnwYXl5esLGxQZMmTbBx40aNOjk5OZg1axZkMhlsbGzQqlUrREdH6xSXpHtotm7dWuF5QRAQERGBiIiIFxMQERFRNbZnzx4EBwdj/fr16N69OzZt2gQ/Pz+cP38eHh4eGvXT0tIwZMgQTJs2DTt27MCxY8cQGBgIJycnjBo1CkDJdJCBAwfC2dkZX3/9NRo2bIjr16/r3Pkg6YSGiIioxjLQpOC8vDy1r38r+jhm7dq1mDJlCqZOnQoAiIqKQkxMDDZs2IDIyEiN+hs3boSHhweioqIAAK1atcKpU6ewZs0aVUKzbds23L17F/Hx8bC0tAQAyOVynR9H0kNORERENZIhVgn+K6GpW7eu2vprZSUmQElPSmJiotqCtQDg6+uL+Pj4Mq85fvy4Rv1Bgwbh1KlTePLkCQDg+++/h4+PD2bNmgUXFxd4enpi1apVKC4u1umVsIeGiIhIagw4KTgnJ0ejh6Ysd+7cQXFxsU4L1mZmZpZZv6ioCHfu3IFMJsPVq1fx888/Y9y4cYiOjsalS5cwa9YsFBUV4d1339X6cZjQEBER1WD29vYVLjhbmq4L1pZV/9lypVIJZ2dnbN68Gebm5vDy8sKtW7fwr3/9iwkNERFRdVfVr5RU1+u4UrCjoyPMzc01emMqWrDW1dW1zPoWFhZo0KABAEAmk8HS0hLm5uaqOq1atUJmZiYKCwthZWWlVXycQ0NERCQ1BpxDoy0rKyt4eXmpLVgLALGxseUuWOvj46NR/8CBA/D29lZNAO7evTsuX74MpfLvMbSLFy9CJpNpncwATGiIiIik6QUnNAAQEhKCTz/9FNu2bUNqairmzp2LjIwMzJgxA0DJfogTJkxQ1Z8xYwauXbuGkJAQpKamYtu2bdi6dSvmz5+vqjNz5kxkZ2cjKCgIFy9exL59+7Bq1SrMmjVLp9g45ERERERaCQgIQHZ2NpYvXw6FQgFPT09ER0erPrNWKBTIyMhQ1W/cuDGio6Mxd+5c/Pvf/4abmxs+/vhj1SfbAODu7o4DBw5g7ty5aNeuHV566SUEBQWp9mTUliCKVUjRapC8vDw4ODigD/xhIVgaOxwyEbHKr4wdAhGZoKf/ZuTm5sLe3v653CMwMBD7vzqDFq599Grn8ZP7OHzh/6BUKnWaFGyq2ENDREQkNdzLSQPn0BAREZHksYeGiIhIYgRUfXNJVRvVbMYJExoiIiIpMtBeTtUFExoiIiKpEUVAqWdCou/1JoZzaIiIiEjy2ENDREQkNSIMMGRUvXpomNAQERFJTtVW+lVvggkNERERGZMhemiqWULDOTREREQkeeyhISIikhp+5aSBCQ0REZHkiICo594F1WzIiQkNEbjZJBGR1DGhISIikhpOCtbAhIaIiEhqOIdGAxMaIiIiKeLCemr42TYRERFJHntoiIiIpEbkSsGlMaEhIiKSIiY0apjQEBERSY0oAko916HR93oTwzk0REREJHnsoSECMNBstE71uRAfERkV59BoYEJDREQkRUxo1HDIiYiIiCSPPTRERERSY5CVgg0TiqlgQkNERCQxJVs56ZeR6Hu9qWFCQ0REJDWG6KHhHBoiIiIi08IeGiIiIqkpGXPSs43q1UPDhIaIiEhquFKwBiY0REREksOF9UrjHBoiIiKSPEknNJGRkejcuTPs7Ozg7OyM4cOH48KFC2p1Jk2aBEEQ1I6uXbsaKWIiIiIDEEWISqWeB3toTMbhw4cxa9YsJCQkIDY2FkVFRfD19cWDBw/U6g0ePBgKhUJ1REdHGyliIiIiA3g6KVjfoxqR9Bya/fv3q/3+7LPP4OzsjMTERPTq1UtVbm1tDVdX1xcdHhEREb0gku6hKS03NxcAUL9+fbXyuLg4ODs7o0WLFpg2bRqysrLKbaOgoAB5eXlqBxERkUl5urCePkc166GpNgmNKIoICQlBjx494OnpqSr38/PDzp078fPPP+PDDz/EyZMn0a9fPxQUFJTZTmRkJBwcHFSHu7v7i3oEIiIiLYmAqNT/qEYkPeT0rNmzZ+Ps2bM4evSoWnlAQIDqz56envD29oZcLse+ffswcuRIjXZCQ0MREhKi+p2Xl8ekhoiITIooQu9JvWI166GpFgnN22+/je+//x6//vorGjZsWGFdmUwGuVyOS5culXne2toa1tbWzyNMIiIiek4kPeQkiiJmz56Nb7/9Fj///DMaN25c6TXZ2dm4fv06ZDLZC4iQiIjoORCNN+S0fv16NG7cGDY2NvDy8sKRI0cqrH/48GF4eXnBxsYGTZo0wcaNG8utu3v3bgiCgOHDh+scl6QTmlmzZmHHjh3YtWsX7OzskJmZiczMTDx69AgAkJ+fj/nz5+P48eNIT09HXFwchg4dCkdHR4wYMcLI0RMREVWRKEJU6n/oas+ePQgODkZYWBiSkpLQs2dP+Pn5ISMjo8z6aWlpGDJkCHr27ImkpCQsXrwYc+bMwTfffKNR99q1a5g/fz569uypc1yAxBOaDRs2IDc3F3369IFMJlMde/bsAQCYm5sjJSUF/v7+aNGiBSZOnIgWLVrg+PHjsLOzM3L0REREVWWIHhrdE5q1a9diypQpmDp1Klq1aoWoqCi4u7tjw4YNZdbfuHEjPDw8EBUVhVatWmHq1KmYPHky1qxZo1avuLgY48aNw7Jly9CkSZMqvRFJz6GpbEKTra0tYmJiXlA0REREL0YxivVuQ/lXG3l5eRAEQVVe3lzSwsJCJCYmYtGiRWrlvr6+iI+PL/Mex48fh6+vr1rZoEGDsHXrVjx58gSWlpYAgOXLl8PJyQlTpkypdAirPJLuoSEiIqpphg0bhkxkoEh8olc713EZtVAHdevWVVuuJDIyssz6d+7cQXFxMVxcXNTKXVxckJmZWeY1mZmZZdYvKirCnTt3AADHjh3D1q1bsWXLFr2eR9I9NERERDXNoEGDUBv2yMAlNEHrKrXxWHyIm7iK307+hhYtWqidq+xL32d7c4CS0ZLSZZXVf1p+//59/POf/8SWLVvg6OioyyNoYEJDREQkIYIg4Icje9GnZ180FJvCStB9qZGrOA8nvARvb2+tr3F0dIS5ublGb0xWVpZGL8xTrq6uZda3sLBAgwYNcO7cOaSnp2Po0KGq80plyddXFhYWuHDhApo2bapVfBxyIiIikpgePXqgLhyRjj90vvaBeB+ZyMDRSz/rdJ2VlRW8vLwQGxurVh4bG4tu3bqVeY2Pj49G/QMHDsDb2xuWlpZ4+eWXkZKSguTkZNUxbNgw9O3bF8nJyTotbMseGiIiIgmKPR0N706d4SE2h41QS+vrruIcZJCjWbNmOt8zJCQE48ePh7e3N3x8fLB582ZkZGRgxowZAEpW27958ya2b98OAJgxYwY++eQThISEYNq0aTh+/Di2bt2KL7/8EgBgY2Ojtl0RANStWxcANMorw4SGiIhIgjp27AgnyJCGVLSCl1bX5In3cBsKZNy4VqV7BgQEIDs7G8uXL4dCoYCnpyeio6Mhl8sBAAqFQm1NmsaNGyM6Ohpz587Fv//9b7i5ueHjjz/GqFGjqnT/ighiddvMwcDy8vLg4OCAPvCHhWBp7HDIRMQqvzJ2CERkgp7+m5Gbmwt7e/vnfr+LFy+iVctW6Apf1BLqVFo/STyK2rDDNfHic4/tReMcGiIiIolq0aIFXOGBqzhXad0c8Q5ycAeJt8teM0bqOORERqFrD8dAs9HPKRIiImk7fu0wGsub4L6YAzuhbpl1RFHEZaRAjhZ6fx5tqthDQ0REJGEeHh54CY1xpYJemmxk4gHuIyn3+AuM7MViQkNERCRxp/48hnu4jRwxW+OcKIq4gnNohJdfyLweY2FCQ0REJHHOzs7wQDNcwe8a+xxm4QYKUYAzDxOMFN2LwYSGiIioGkjKScB95OAuslRlSlGJKziHjzdFwdbW1ojRPX9MaIiIiKoBBwcHNMLLar00ClyDCODNN980bnAvABMaIiKiauLMgwQ8xiPcxi0Ui8W4ivPYumszLC2r/zpqTGiIiIiqiVq1aiFq/Vpcwe+4gSuwhBUCAgKMHdYLwXVoKvG0264ITwCuqWwweXl5OtUvEp88p0iqRtf4iahmePr/DcZchH/KlCmYF/gOLiMF3//wPczMakbfBbc+qMSNGzd02u2TiIjo+vXraNiwodHuv2/fPgS+NhfpygsQBMFocbxITGgqoVQqcevWLdjZ2an9R5GXlwd3d3dcv35dkt/1Sz1+QPrPwPiNi/EbV3WNXxRF3L9/H25ubjWmZ8RUcMipEmZmZhVm2fb29pL8H+NTUo8fkP4zMH7jYvzGVR3jd3BwMFI0NRvTRyIiIpI8JjREREQkeUxoqsja2hpLly6FtbW1sUOpEqnHD0j/GRi/cTF+42L8ZGicFExERESSxx4aIiIikjwmNERERCR5TGiIiIhI8pjQEBERkeQxoSEiIiLJY0JTyq+//oqhQ4fCzc0NgiDgu+++Uzv/7bffYtCgQXB0dIQgCEhOTtZoo6CgAG+//TYcHR1Ru3ZtDBs2DDdu3JBM/H369IEgCGrHmDFjjB7/kydPsHDhQrRt2xa1a9eGm5sbJkyYgFu3bqm1YarvX9v4TfX9A0BERARefvll1K5dG/Xq1cOAAQPw22+/qdUx1fevbfym/P6f9dZbb0EQBERFRamVm/L7f1Z58Zvy+580aZJGbF27dlWrY8z3X9MxoSnlwYMHaN++PT755JNyz3fv3h2rV68ut43g4GDs3bsXu3fvxtGjR5Gfn4/XXnsNxcXFzytstfj0jR8Apk2bBoVCoTo2bdr0PMItM77y4n/48CFOnz6N8PBwnD59Gt9++y0uXryIYcOGqdUz1fevbfyAab5/AGjRogU++eQTpKSk4OjRo2jUqBF8fX1x+/ZtVR1Tff/axg+Y7vt/6rvvvsNvv/0GNzc3jXOm/P6fqih+wLTf/+DBg9Vii46OVjtvzPdf44lULgDi3r17yzyXlpYmAhCTkpLUynNyckRLS0tx9+7dqrKbN2+KZmZm4v79+59jtJqqEr8oimLv3r3FoKCg5xqbNiqK/6kTJ06IAMRr166Joiid9/9U6fhFUVrvPzc3VwQgHjx4UBRF6b3/0vGLoum//xs3bogvvfSS+Pvvv4tyuVz86KOPVOek8P4ril8UTfv9T5w4UfT39y/3GlN6/zURe2gMLDExEU+ePIGvr6+qzM3NDZ6enoiPjzdiZLrZuXMnHB0d0aZNG8yfPx/37983dkhlys3NhSAIqFu3LgDpvf/S8T8lhfdfWFiIzZs3w8HBAe3btwcgrfdfVvxPmer7VyqVGD9+PN555x20adNG47ypv//K4n/KVN8/AMTFxcHZ2RktWrTAtGnTkJWVpTpn6u+/uuNu2waWmZkJKysr1KtXT63cxcUFmZmZRopKN+PGjUPjxo3h6uqK33//HaGhoThz5gxiY2ONHZqax48fY9GiRRg7dqxqt1spvf+y4gdM//3/+OOPGDNmDB4+fAiZTIbY2Fg4OjoCkMb7ryh+wLTf//vvvw8LCwvMmTOnzPOm/v4rix8w7ffv5+eH0aNHQy6XIy0tDeHh4ejXrx8SExNhbW1t8u+/umNC84KIoghBEIwdhlamTZum+rOnpyeaN28Ob29vnD59Gp06dTJiZH978uQJxowZA6VSifXr11da39Tef0Xxm/r779u3L5KTk3Hnzh1s2bIFr7/+On777Tc4OzuXe40pvf/K4jfV95+YmIh169bh9OnTOr9LU3j/2sZvqu8fAAICAlR/9vT0hLe3N+RyOfbt24eRI0eWe50pvP+agENOBubq6orCwkLcu3dPrTwrKwsuLi5Giko/nTp1gqWlJS5dumTsUACUJAOvv/460tLSEBsbq9a7IYX3X1H8ZTG191+7dm00a9YMXbt2xdatW2FhYYGtW7cCkMb7ryj+spjK+z9y5AiysrLg4eEBCwsLWFhY4Nq1a5g3bx4aNWoEwLTfvzbxl8VU3n9ZZDIZ5HK5KjZTfv81ARMaA/Py8oKlpaVa96hCocDvv/+Obt26GTGyqjt37hyePHkCmUxm7FBUycClS5dw8OBBNGjQQO28qb//yuIviym9/7KIooiCggIApv/+y/Js/GUxlfc/fvx4nD17FsnJyarDzc0N77zzDmJiYgCY9vvXJv6ymMr7L0t2djauX7+uis2U339NwCGnUvLz83H58mXV77S0NCQnJ6N+/frw8PDA3bt3kZGRoVo75MKFCwBKMnNXV1c4ODhgypQpmDdvHho0aID69etj/vz5aNu2LQYMGGDy8V+5cgU7d+7EkCFD4OjoiPPnz2PevHno2LEjunfvbtT43dzc8I9//AOnT5/Gjz/+iOLiYtW4dP369WFlZWXS71+b+E35/Tdo0AArV67EsGHDIJPJkJ2djfXr1+PGjRsYPXo0AJj0+9cmflN+/x4eHhoJsKWlJVxdXdGyZUsApv3+tYnflN9//fr1ERERgVGjRkEmkyE9PR2LFy+Go6MjRowYAcD477/GM+IXVibpl19+EQFoHBMnThRFURQ/++yzMs8vXbpU1cajR4/E2bNni/Xr1xdtbW3F1157TczIyJBE/BkZGWKvXr3E+vXri1ZWVmLTpk3FOXPmiNnZ2UaP/+mn5mUdv/zyi6oNU33/2sRvyu//0aNH4ogRI0Q3NzfRyspKlMlk4rBhw8QTJ06otWGq71+b+E35/ZelrM+eTfX9l6V0/Kb8/h8+fCj6+vqKTk5OoqWlpejh4SFOnDhR490a8/3XdIIoiqKeORERERGRUXEODREREUkeExoiIiKSPCY0REREJHlMaIiIiEjymNAQERGR5DGhISIiIsljQkNERESSx4SGSEImTZqE4cOHq3736dMHwcHBRounIunp6RAEAcnJydXqvoIg4LvvvnsubRNR1TGhIZKwb7/9Fu+9955B24yIiECHDh0M2uaL5O7uDoVCAU9PTwBAXFwcBEFATk6OcQMjoueKezkRmaAnT57A0tKy0nr169d/AdFIi7m5OVxdXY0dBhG9YOyhIaqEUqnE+++/j2bNmsHa2hoeHh5YuXKl6nxKSgr69esHW1tbNGjQANOnT0d+fr7a9cuXL0fDhg1hbW2NDh06YP/+/arzT4dI/vvf/6JPnz6wsbHBjh07UFxcjJCQENStWxcNGjTAggULUHqnktJDTo0aNcKqVaswefJk2NnZwcPDA5s3b1a7ZuHChWjRogVq1aqFJk2aIDw8HE+ePAEAfP7551i2bBnOnDkDQRAgCAI+//xzAEBubi6mT58OZ2dn2Nvbo1+/fjhz5oxO7/Lw4cN45ZVXYG1tDZlMhkWLFqGoqEjteebMmYMFCxagfv36cHV1RUREhFobf/zxB3r06AEbGxu0bt0aBw8eVBsGenbIKT09HX379gUA1KtXD4IgYNKkSap3FRUVpdZ2hw4d1O536dIl9OrVS3WvZ3dRfurmzZsICAhAvXr10KBBA/j7+yM9PV2n90JE+mNCQ1SJ0NBQvP/++wgPD8f58+exa9cuuLi4AAAePnyIwYMHo169ejh58iS++uorHDx4ELNnz1Zdv27dOnz44YdYs2YNzp49i0GDBmHYsGG4dOmS2n0WLlyIOXPmIDU1FYMGDcKHH36Ibdu2YevWrTh69Cju3r2LvXv3Vhrvhx9+CG9vbyQlJSEwMBAzZ87EH3/8oTpvZ2eHzz//HOfPn8e6deuwZcsWfPTRRwCAgIAAzJs3D23atIFCoYBCoUBAQABEUcSrr76KzMxMREdHIzExEZ06dUL//v1x9+5drd7jzZs3MWTIEHTu3BlnzpzBhg0bsHXrVqxYsUKt3hdffIHatWvjt99+wwcffIDly5erEgmlUonhw4ejVq1a+O2337B582aEhYWVe093d3d88803AEp2llcoFFi3bp1W8SqVSowcORLm5uZISEjAxo0bsXDhQrU6Dx8+RN++fVGnTh38+uuvOHr0KOrUqYPBgwejsLBQq/sQkYEYd29MItOWl5cnWltbi1u2bCnz/ObNm8V69eqJ+fn5qrJ9+/aJZmZmYmZmpiiKoujm5iauXLlS7brOnTuLgYGBoiiKql24o6Ki1OrIZDJx9erVqt9PnjwRGzZsKPr7+6vKevfuLQYFBal+y+Vy8Z///Kfqt1KpFJ2dncUNGzaU+4wffPCB6OXlpfq9dOlSsX379mp1Dh06JNrb24uPHz9WK2/atKm4adOmMtt9+lxJSUmiKIri4sWLxZYtW4pKpVJV59///rdYp04dsbi4WPU8PXr0UGunc+fO4sKFC0VRFMWffvpJtLCwEBUKhep8bGysCEDcu3dvmfd9uoPyvXv31Nota6fq9u3bq3aej4mJEc3NzcXr16+rzv/0009q99q6davGMxUUFIi2trZiTExMme+FiJ4PzqEhqkBqaioKCgrQv3//cs+3b98etWvXVpV1794dSqUSFy5cgK2tLW7duoXu3burXde9e3eN4Rpvb2/Vn3Nzc6FQKODj46Mqs7CwgLe3t8awU2nt2rVT/VkQBLi6uiIrK0tV9vXXXyMqKgqXL19Gfn4+ioqKYG9vX2GbiYmJyM/PR4MGDdTKHz16hCtXrlR47VOpqanw8fGBIAiqsu7duyM/Px83btyAh4eHRvwAIJPJVPFfuHAB7u7uanNkXnnlFa3ur6vU1FR4eHigYcOGqrJn/z6Akvdy+fJl2NnZqZU/fvxY6/dCRIbBhIaoAra2thWeF0VR7R/oZz1bXrpOWdc9mxTpo/RkYkEQoFQqAQAJCQkYM2YMli1bhkGDBsHBwQG7d+/Ghx9+WGGbSqUSMpkMcXFxGufq1q2rVVxlPfPT5OzZ8orir+h968rMzEwjOXw6l+jZ2ErH8iylUgkvLy/s3LlTo66Tk5NB4iQi7XAODVEFmjdvDltbWxw6dKjM861bt0ZycjIePHigKjt27BjMzMzQokUL2Nvbw83NDUePHlW7Lj4+Hq1atSr3vg4ODpDJZEhISFCVFRUVITExUa/nOXbsGORyOcLCwuDt7Y3mzZvj2rVranWsrKxQXFysVtapUydkZmbCwsICzZo1UzscHR21unfr1q0RHx+vlijEx8fDzs4OL730klZtvPzyy8jIyMCff/6pKjt58mSF11hZWQGAxjM5OTlBoVCofufl5SEtLU0t3oyMDNy6dUtVdvz4cbU2OnXqhEuXLsHZ2VnjvTg4OGj1TERkGExoiCpgY2ODhQsXYsGCBdi+fTuuXLmChIQEbN26FQAwbtw42NjYYOLEifj999/xyy+/4O2338b48eNVE4ffeecdvP/++9izZw8uXLiARYsWITk5GUFBQRXeOygoCKtXr8bevXvxxx9/IDAwUO+1VJo1a4aMjAzs3r0bV65cwccff6wx0bhRo0ZIS0tDcnIy7ty5g4KCAgwYMAA+Pj4YPnw4YmJikJ6ejvj4eCxZsgSnTp3S6t6BgYG4fv063n77bfzxxx/43//+h6VLlyIkJARmZtr9X9HAgQPRtGlTTJw4EWfPnsWxY8dUk4LL67mRy+UQBAE//vgjbt++rfoCrV+/fvjPf/6DI0eO4Pfff8fEiRNhbm6uum7AgAFo2bIlJkyYgDNnzuDIkSMaE5DHjRsHR0dH+Pv748iRI0hLS8Phw4cRFBSEGzduaPVMRGQYTGiIKhEeHo558+bh3XffRatWrRAQEKCa01GrVi3ExMTg7t276Ny5M/7xj3+gf//++OSTT1TXz5kzB/PmzcO8efPQtm1b7N+/H99//z2aN29e4X3nzZuHCRMmYNKkSfDx8YGdnR1GjBih17P4+/tj7ty5mD17Njp06ID4+HiEh4er1Rk1ahQGDx6Mvn37wsnJCV9++SUEQUB0dDR69eqFyZMno0WLFhgzZgzS09NViVtlXnrpJURHR+PEiRNo3749ZsyYgSlTpmDJkiVax29ubo7vvvsO+fn56Ny5M6ZOnaq63sbGptz7Llu2DIsWLYKLi4vqC7TQ0FD06tULr732GoYMGYLhw4ejadOmquvMzMywd+9eFBQU4JVXXsHUqVPVPtcHSv7+f/31V3h4eGDkyJFo1aoVJk+ejEePHlU6L4mIDEsQK5thSERkwo4dO4YePXrg8uXLagkJEdUsTGiISFL27t2LOnXqoHnz5rh8+TKCgoJQr149jXlKRFSz8CsnIpKU+/fvY8GCBbh+/TocHR0xYMCASr/SIqLqjz00REREJHmcFExERESSx4SGiIiIJI8JDdEL1qdPH9VO1snJyWXWiYuLgyAIeq87Q2WLiIhQ/R2U3nGbiKSJCQ2REUybNg0KhQKenp7GDqVaS09PLzNxnD9/PhQKhdo+TUQkbfzKicgIatWqpbbBorE8efJEY++kmqBOnTqoU6eO2srARCRt7KEhMgHR0dFo0aIFbG1t0bdvX6Snp2vUiY+PR69evWBrawt3d3fMmTNHbQ8phUKBV199Fba2tmjcuDF27dqFRo0aqQ2pCIKAjRs3wt/fH7Vr18aKFSsAAD/88AO8vLxgY2ODJk2aYNmyZSgqKlJdl5ubi+nTp8PZ2Rn29vbo16+f2m7hZ86cQd++fWFnZwd7e3t4eXlpvSVCZc+1Y8cOeHt7w87ODq6urhg7dqza7uH37t3DuHHj4OTkBFtbWzRv3hyfffYZAKBx48YAgI4dO0IQBPTp00ermIhIepjQEBnZ9evXMXLkSAwZMgTJycmYOnUqFi1apFYnJSUFgwYNwsiRI3H27Fns2bMHR48eVS3jDwATJkzArVu3EBcXh2+++QabN29W+4f/qaVLl8Lf3x8pKSmYPHkyYmJi8M9//hNz5szB+fPnsWnTJnz++eeqZf5FUcSrr76KzMxMREdHIzExEZ06dUL//v1x9+5dACV7GjVs2BAnT55EYmIiFi1apFXPjzbPVVhYiPfeew9nzpzBd999h7S0NEyaNEl1Pjw8HOfPn8dPP/2E1NRUbNiwQbVh5okTJwAABw8ehEKhwLfffqvl3woRSY5IRC9U7969xaCgINXv0NBQsVWrVqJSqVSVLVy4UAQg3rt3TxRFURw/frw4ffp0tXaOHDkimpmZiY8ePRJTU1NFAOLJkydV5y9duiQCED/66CNVGQAxODhYrZ2ePXuKq1atUiv7z3/+I8pkMlEURfHQoUOivb29+PjxY7U6TZs2FTdt2iSKoija2dmJn3/+uW4vQovnKsuJEydEAOL9+/dFURTFoUOHim+++WaZddPS0kQAYlJSUpnn5XK52vshIuniHBoiI0tNTUXXrl3Vdov28fFRq5OYmIjLly9j586dqjJRFKFUKpGWloaLFy/CwsICnTp1Up1v1qwZ6tWrp3E/b29vjbZPnjyptvFicXExHj9+jIcPHyIxMRH5+flo0KCB2nWPHj3ClStXAAAhISGYOnUq/vOf/2DAgAEYPXq0VvsqVfZcrVq1QlJSEiIiIpCcnIy7d+9CqVQCADIyMtC6dWvMnDkTo0aNwunTp+Hr64vhw4ejW7duld6biKoXJjRERiZqsVi3UqnEW2+9hTlz5mic8/DwwIULF7Ruu3bt2hptL1u2DCNHjtSoa2NjA6VSCZlMhri4OI3zdevWBVDyGfTYsWOxb98+/PTTT1i6dCl2795d6e7glT3XgwcP4OvrC19fX+zYsQNOTk7IyMjAoEGDUFhYCADw8/PDtWvXsG/fPhw8eBD9+/fHrFmzsGbNmgrvTUTVCxMaIiNr3bo1vvvuO7WyhIQEtd+dOnXCuXPn0KxZszLbePnll1FUVISkpCR4eXkBAC5fvqzVOjadOnXChQsXym27U6dOyMzMhIWFBRo1alRuOy1atECLFi0wd+5cvPHGG/jss88qTWgqe66UlBTcuXMHq1evhru7OwCUOdnYyckJkyZNwqRJk9CzZ0+88847WLNmDaysrACU9DgRUfXGScFERjZjxgxcuXIFISEhuHDhAnbt2oXPP/9crc7ChQtx/PhxzJo1C8nJybh06RK+//57vP322wBKEpoBAwZg+vTpOHHiBJKSkjB9+nTY2tqqDWWV5d1338X27dsRERGBc+fOITU1FXv27MGSJUsAAAMGDICPjw+GDx+OmJgYpKenIz4+HkuWLMGpU6fw6NEjzJ49G3Fxcbh27RqOHTuGkydPolWrVpU+e2XP5eHhASsrK/zf//0frl69iu+//x7vvfeeRvz/+9//cPnyZZw7dw4//vij6t7Ozs6wtbXF/v378eeffyI3N1ervxMikiDjTuEhqnlKTwoWRVH84YcfxGbNmonW1tZiz549xW3btqlNChbFksmwAwcOFOvUqSPWrl1bbNeunbhy5UrV+Vu3bol+fn6itbW1KJfLxV27donOzs7ixo0bVXUAiHv37tWIaf/+/WK3bt1EW1tb0d7eXnzllVfEzZs3q87n5eWJb7/9tujm5iZaWlqK7u7u4rhx48SMjAyxoKBAHDNmjOju7i5aWVmJbm5u4uzZs8ud1FtaZc+1a9cusVGjRqK1tbXo4+Mjfv/992oTfd977z2xVatWoq2trVi/fn3R399fvHr1qur6LVu2iO7u7qKZmZnYu3dvtXtzUjBR9cHdtolesD59+qBDhw7Pfcn9GzduwN3dXTWvhDQ1atQIwcHBCA4ONnYoRKQnDjkRGcH69etRp04dpKSkGKzNn3/+Gd9//z3S0tIQHx+PMWPGoFGjRujVq5fB7lFdrFq1CnXq1EFGRoaxQyEiA2EPDdELdvPmTTx69AjA33NEDCEmJgbz5s3D1atXYWdnh27duiEqKgpyudwg7VeFn58fjhw5Uua5xYsXY/HixS84ohJ3795VLQro5OQEBwcHo8RBRIbDhIaInptnk7fS6tevj/r167/giIioumJCQ0RERJLHOTREREQkeUxoiIiISPKY0BAREZHkMaEhIiIiyWNCQ0RERJLHhIaIiIgkjwkNERERSd7/AzBNNhIZBZx/AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bbox_wgt_rB.plot(vmax=0.18,vmin=0.04)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "3158b3ed-a0d4-436e-95ed-c0ebedfbee56", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGwCAYAAACKOz5MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdYklEQVR4nO3dd3hUZd7G8e9kMuk9gRQIJfRQBBJAOihFQJFXWBFwWeu+qCsC4tp211VfxbUtllUsIJa1t7WggkrvLYgQirTQQgglvc6c949ANEtQAkmemeT+XNdca07OTO4ZlsnNmd95js2yLAsRERERN+ZlOoCIiIjIb1FhEREREbenwiIiIiJuT4VFRERE3J4Ki4iIiLg9FRYRERFxeyosIiIi4va8TQeoLi6Xi0OHDhEcHIzNZjMdR0RERM6BZVnk5OQQFxeHl9fZj6PUmcJy6NAh4uPjTccQERGR87B//34aN2581u/XmcISHBwMlD3hkJAQw2lERETkXGRnZxMfH1/+e/xs6kxhOf0xUEhIiAqLiIiIh/mtcQ4N3YqIiIjbU2ERERERt6fCIiIiIm6vzsywiIiIZ3M6nZSUlJiOIdXM4XBgt9sv+HFUWERExCjLskhPT+fkyZOmo0gNCQsLIyYm5oLWSVNhERERo06XlYYNGxIQEKDFP+sQy7LIz88nIyMDgNjY2PN+LBUWERExxul0lpeVyMhI03GkBvj7+wOQkZFBw4YNz/vjIQ3dioiIMadnVgICAgwnkZp0+s/3QmaUVFhERMQ4fQxUt1XHn68Ki4iIiLg9FRYRERFxeyosIiIi1WDAgAFMmTLFdIwat3fvXmw2GykpKbX6c1VYRETcUUkhFOWYTiGGLFq0CJvNprVpfkGnNYuImOQsgWM/QUZq2e3oqf89vhu8/eAPX0DjJNMpRYzTERYRkdrgcsKxXZD6OSx+HD64Hv51MTwSCy9cDB9eD0seL/v+sZ/AckFJPtaHN0Bhtun0tcqyLPKLS2v9ZlnWOWfMy8tj4sSJBAUFERsby1NPPXXGPsXFxfz5z3+mUaNGBAYG0qNHDxYtWlT+/X379nHFFVcQHh5OYGAg7du3Z968eezdu5eBAwcCEB4ejs1m47rrrqs0x9y5cwkLC+OLL76gTZs2BAQEMGbMGPLy8nj99ddp1qwZ4eHh3H777TidzvL7vfXWWyQnJxMcHExMTAzjx48vX9wN4MSJE0yYMIEGDRrg7+9Pq1ateO211yrN4HK5uPnmm2ndujX79u0759ewqnSERUSkOrlckLW/4tGSjFTI3AGlhZXepdDmz26vJvxYEsc2Z2N2WI05ZEXyhs9jND65F+ZNh6tert3nYVBBiZPEv31T6z9360NDCfA5t1+Ld911FwsXLuSTTz4hJiaG++67j/Xr19O5c+fyfa6//nr27t3Lu+++S1xcHJ988gmXXXYZmzdvplWrVtx2220UFxezZMkSAgMD2bp1K0FBQcTHx/PRRx8xevRotm/fTkhISPnia5XJz8/n2Wef5d133yUnJ4errrqKq666irCwMObNm8fu3bsZPXo0ffr0YezYsUBZmXr44Ydp06YNGRkZTJ06leuuu4558+YB8Ne//pWtW7fy1VdfERUVxU8//URBQcEZP7u4uJjx48eza9culi1bRsOGDavwileNCouIyPmwLMg5/HMhKS8o26Akr9K7FNt8SfNqzOaSRmxzNmK71ZidrsYcJAooW6ci0MdO65hg2oX5c8fm23jf5yHsP7wHLS6Bi66pxScoZ5Obm8vs2bN54403GDx4MACvv/46jRs3Lt9n165dvPPOOxw4cIC4uDgApk+fztdff81rr73Go48+SlpaGqNHj6Zjx44AJCQklN8/IiICgIYNGxIWFvareUpKSnjxxRdp0aIFAGPGjOHNN9/kyJEjBAUFkZiYyMCBA1m4cGF5YbnhhhvK75+QkMCzzz5L9+7dyc3NJSgoiLS0NLp06UJycjIAzZo1q/R1GDFiBAUFBSxatIjQ0NCqvIxVpsIiIvJbco9WPFpyupwUZlW6e6nNmwNejdlS2oitpY3YYZUdNdlvNcR16pN4X28vWsUE0SM6mNbRwbSJDqZ1TDBxoX7li2z97T8+zFyzhTsdH+L6YhpejbtBZItae9qm+DvsbH1oqJGfey527dpFcXExPXv2LN8WERFBmzZtyr/esGEDlmXRunXrCvctKioqvwTB5MmTueWWW5g/fz6DBg1i9OjRdOrUqcq5AwICyssKQHR0NM2aNSMoKKjCtl9+5LNx40b+/ve/k5KSwvHjx3G5XACkpaWRmJjILbfcwujRo9mwYQNDhgxh1KhR9OrVq8LPHTduHI0bN+a7776rlZWKVVhERE4rOFF2hOS/y0l+ZqW7O7Fz2B5HqrMRW0rj2O6KZ4fVmH1WNKWn3l4ddhsJDYLoFBPM76KDaHWqnMRHBGD3+vXVP+8b3o6rdl9LnxM/0qNkG9ZHN2K7YT54+1T7U3cnNpvtnD+aMeFcZl1cLhd2u53169efce2c00XipptuYujQoXz55ZfMnz+fGTNm8NRTT3H77bdXKY/D4ajwtc1mq3Tb6VKSl5fHkCFDGDJkCG+99RYNGjQgLS2NoUOHUlxcDMCwYcPYt28fX375Jd9++y2XXnopt912G08++WT5Yw4fPpy33nqLVatWcckll1Qp8/lw3/9HiIjUFGcpHN4EGVsrzprkHK50dwsbR+wxbHc1ZnNJHDtcjdlhxbPbiqWYsl8MXjZoFhlI6+hgRsQE0zo6iDbRwTSLCsRhP7/zG/wcdp4Zn8zNz/+JT627CTu0ERb+Hwx+6Lyfuly4li1b4nA4WLVqFU2aNAHKhlR37NhB//79AejSpQtOp5OMjAz69u171seKj49n0qRJTJo0iXvvvZdXXnmF22+/HR+fslL6y0HZ6rJt2zYyMzN57LHHiI+PB2DdunVn7NegQQOuu+46rrvuOvr27ctdd91VobDccsstdOjQgZEjR/Lll1+WP/eaosIiIvXPh9eVnY1TiUx7Q3ZajdlUHMdOV2O2W435yWpEIb7l+zQO96dNdDADTxWT1tHBtGgQhN85fqRQFa2ig/nfK/pz96d/5CWff8LyZyBhQNlMixgRFBTEjTfeyF133UVkZCTR0dHcf//9eHn9XExbt27NhAkTmDhxIk899RRdunQhMzOT77//no4dOzJ8+HCmTJnCsGHDaN26NSdOnOD777+nXbt2ADRt2hSbzcYXX3zB8OHD8ff3r/ARz4Vo0qQJPj4+PPfcc0yaNIkff/yRhx9+uMI+f/vb30hKSqJ9+/YUFRXxxRdflGf7pdNnH11++eV89dVX9OnTp1oyVkaFRUTql5JCXNu/wQvY4NWRjcVl8yU7XI3ZaTUil58/i48O8aV1dDDXnpozaR0TTKuGQQT61u5b5zXd4lm68wreSv2Ba72/w/XxJLxuXQGBUbWaQ372xBNPkJuby8iRIwkODubOO+8kK6viTNNrr73G//3f/3HnnXdy8OBBIiMj6dmzJ8OHDwfKjp7cdtttHDhwgJCQEC677DL++c9/AtCoUSMefPBB7rnnHq6//nomTpzI3LlzqyV7gwYNmDt3Lvfddx/PPvssXbt25cknn2TkyJHl+/j4+HDvvfeyd+9e/P396du3L++++26ljzdlyhRcLhfDhw/n66+/PmPWpbrYrKqceO7GsrOzCQ0NJSsri5CQENNxRMRd7V0Oc4eTYYXRvehfgI2IQJ/yj3BaRQfTJiaY1g2DCQ1w/ObD1Zas/BL+55lvmVVwJ629DkKrITD+ffDwqxwXFhayZ88emjdvjp+fn+k4UkN+7c/5XH9/6wiLiNQr2dsXEwKsdbXhzRt70C42hKgg39+8n2mhAQ4eH9eDO16+nU8df8V353xYPQsuvsV0NJFaoZVuRaReKdy1DICDIZ3p26qBR5SV05KbRTDs0kH8X+kEAKz5f4PDPxhOJVI7VFhEpP5wlhKauQEAW9Oa+Zy9pt02sCXb48eywJmEzVVctnR/ceUL1YnUJSosIlJ/HNmMr6uAbCuApondTKc5L3YvG8+M68Ij3reSboVjO7YTvr7HdCyRGqfCIiL1Rt7OpQCsc7WmW/MGhtOcv9hQf+4b04epJbfismyw4Q3Y8onpWCI1SoVFROqN3B1LANgd0InwQM9eLXZI+xha9RjOi84rAHB9NhlOphlOJVJzVFhEpH6wLIKOlK3m6Yy/2HCY6nHf8HbMi7yeja6WeBVlY310c9kqviJ1kAqLiNQPmTsJLD1BoeUgrp1nDtz+Nz+HnZnju3GXdTs5lj+2/atgyeOmY4nUCBUWEakXinaXnc6cYrUkqUWM4TTVp1V0MDdcfgn3l9wIgLXkCdi3wnAq8STNmjVj5syZpmP8JhUWEakXTqYuAmCbTwfiwvzNhqlm47rHU5J4FR86+2GzXLg+ugnyj5uOJVKtVFhEpF7wO7wGgMLYHoaTVD+bzcZjV3Vilv//sscVjVf2Qfh8MtSNK6+IACosIlIfZB0gtOgwpZYXUe1q7mqyJoUGOJgxvhd3lN5OsWUvuxr1+rmmY9VZAwYMYPLkyfz5z38mIiKCmJgY/v73v1fYJy0tjSuvvJKgoCBCQkK4+uqrOXLkyFkfc+/evdhsNt5//3369u2Lv78/3bp1Y8eOHaxdu5bk5GSCgoK47LLLOHr0aPn91q5dy+DBg4mKiiI0NJT+/fuzYcOGCo/997//nSZNmuDr60tcXByTJ08+a47XXnuN0NBQFixYcH4vTg1RYRGROq9kz3IAtljN6NIq3nCamtOtWQSXXnIZT5SOBcD19T2Qsc1wqvNgWWWr99b2rYpHpF5//XUCAwNZvXo1jz/+OA899FD5L3nLshg1ahTHjx9n8eLFLFiwgF27djF27NjffNwHHniAv/zlL2zYsAFvb2/GjRvHn//8Z5555hmWLl3Krl27+Nvf/la+f05ODn/4wx9YunQpq1atolWrVgwfPpycnBwAPvzwQ/75z3/y0ksvsXPnTj799FM6duxY6c9+8sknmT59Ot988w2DBw+u0utR03TxQxGp805sXURD4Ed7IuOjAk3HqVF/uqQl43+6liUHN9OPzbg+vB6vmxeCw4OuhFySD4/G1f7Pve8Q+Jz7/z86derEAw88AECrVq14/vnn+e677xg8eDDffvstP/zwA3v27CE+vqwkv/nmm7Rv3561a9fSrdvZV1qePn06Q4cOBeCOO+5g3LhxfPfdd/Tu3RuAG2+8kblz55bvf8kll1S4/0svvUR4eDiLFy/m8ssvJy0tjZiYGAYNGoTD4aBJkyZ07979jJ9777338vrrr7No0aKzFhqTdIRFROo87wOrAMiJ7obNZjOcpmbZvWzMHNeVB71v56gVglfGVljwt9++o1RZp06dKnwdGxtLRkYGAKmpqcTHx5eXFYDExETCwsJITU0958eNjo4GqFAgoqOjy38OQEZGBpMmTaJ169aEhoYSGhpKbm4uaWllCwn+7ne/o6CggISEBG6++WY++eQTSksrrtfz1FNP8dJLL7Fs2TK3LCugIywiUtflHycifzcAIa37Gg5TO2JD/fnzmP7c9e9JzPV5HNa8BC0GQpthpqOdG0dA2dEOEz+3Krs7HBW+ttlsuFwuoOwjocrK8dm2n+1xT+/739tO/xyA6667jqNHjzJz5kyaNm2Kr68vPXv2pLi4GID4+Hi2b9/OggUL+Pbbb7n11lt54oknWLx4cfnj9u3bly+//JL333+fe+5xz2tT6QiLiNRpzlNrkux0NaJTm5aG09Seoe1jiO9+Ja+WlpUU1ye3QvZhw6nOkc1W9tFMbd+q8ehbYmIiaWlp7N+/v3zb1q1bycrKol27dtX2cwCWLl3K5MmTGT58OO3bt8fX15fMzMwK+/j7+zNy5EieffZZFi1axMqVK9m8eXP597t3787XX3/No48+yhNPPFGt+aqLjrCISJ12YusiooAUWzuuig0xHadW3T+iHWN238zFJ1PpULgX6+M/Ypv4KXjZTUer8wYNGkSnTp2YMGECM2fOpLS0lFtvvZX+/fuTnJxcrT+rZcuWvPnmmyQnJ5Odnc1dd92Fv//Paw3NnTsXp9NJjx49CAgI4M0338Tf35+mTZtWeJyePXvy1Vdfcdlll+Ht7c3UqVOrNeeF0hEWEanTrFNHWI5HJWH3qtvzK//Nz2Hn6Qndme6aTL7li23vElj+jOlY9YLNZuPTTz8lPDycfv36MWjQIBISEnjvvfeq/WfNmTOHEydO0KVLF37/+98zefJkGjZsWP79sLAwXnnlFXr37k2nTp347rvv+Pzzz4mMjDzjsXr37s2XX37JX//6V5599tlqz3ohbJZVN1YWys7OJjQ0lKysLEJC6te/okTkLIpycc6Ix46LN3p8wcRh9WOG5b/9e/U+Uj57niccL2PZ7NhunA+Nq/df+eersLCQPXv20Lx5c/z8POhMJqmSX/tzPtff3zrCIiJ1lnVgLXZcHLCiaNeuvek4xozv3oTctmP53HkxNsuJ68MboDDbdCyRKlFhEZE662TqYgDWW23p1DjUcBpzbDYbj42+iOf8b+OAFYXXyX3w5TQt3S8eRYVFROqs4lNXaD4S1gVf7/o9aBoa4OCR8X2YUvInSi0v2PwBbHrXdCyRc6bCIiJ1U2kxESc2AeBo3ttwGPfQrVkEfS+5nJmlowFwfXknHNtlOJXIuVFhEZG66XAKDquYY1YwLRKTTKdxG3+6pCVr469jlasdXiV5ZfMspcWmY1FHzv+Qs6iOP9/zKiwvvPBC+aRvUlISS5cu/dX9Fy9eTFJSEn5+fiQkJDBr1qwK3587dy42m+2MW2Fh4fnEExEhe3vZ/Mo6Vxu6NoswnMZ92L1s/POaJP7qdQcnrCC8DqfA9w8by3N6pdX8/HxjGaTmnf7z/e/VgauiygvHvffee0yZMoUXXniB3r1789JLLzFs2DC2bt1KkyZNzth/z549DB8+nJtvvpm33nqL5cuXc+utt9KgQQNGjx5dvl9ISAjbt2+vcF+d4iYi5yt/51JCgP3BnQny1RqZvxQX5s+dYwZy99s387LPP2HFs5AwAFpeWutZ7HY7YWFh5dfGCQgIqPPXe6pPLMsiPz+fjIwMwsLCsNvPf5asyn+Ln376aW688UZuuukmAGbOnMk333zDiy++yIwZM87Yf9asWTRp0oSZM2cC0K5dO9atW8eTTz5ZobDYbDZiYmLOOUdRURFFRUXlX2dn6xQ9ETnF5SI0c33ZfzftaTaLm7qsQwzLuo/mrXU/cK33d7g+/l+8bl0JQQ1qPcvp9/5fXtBP6pawsLAq/Y6vTJUKS3FxMevXrz/jwkhDhgxhxYoVld5n5cqVDBkypMK2oUOHMnv2bEpKSsoPD+Xm5tK0aVOcTiedO3fm4YcfpkuXLmfNMmPGDB588MGqxBeR+iJjK/7OXPIsX+LbXWw6jdv6y4hEfrf7Frqd3E6b/ANYn96Cbfz74FW74402m43Y2FgaNmxISUlJrf5sqXkOh+OCjqycVqXCkpmZidPpLL/c9WnR0dGkp6dXep/09PRK9y8tLSUzM5PY2Fjatm3L3Llz6dixI9nZ2TzzzDP07t2bTZs20apVq0of995772XatGnlX2dnZ1e4jLeI1F/5O5cSAKx3tSY5ofaPGHgKP4edpyZczJ3PTeZD2/34/rQAVs+CnrcayWO326vlF5vUTedVo//788Xfulx2Zfv/cvvFF1/Mtddey0UXXUTfvn15//33ad26Nc8999xZH9PX15eQkJAKNxERgOwdZQO3uwI6EhnkaziNe2sdHcw1V1zGw6XXAuBa8AAc3mQ4lciZqlRYoqKisNvtZxxNycjIOOMoymkxMTGV7u/t7V3phZcAvLy86NatGzt37qxKPBERsCwC09cCUNJIHwedi/Hdm5DZ5lrmO5PwchXj+uAGKM4zHUukgioVFh8fH5KSkliwYEGF7QsWLKBXr16V3qdnz55n7D9//nySk5PPenqTZVmkpKQQGxtblXgiInBiD8ElmRRbdmIS+5hO4xFsNhuPjenE0/6TOWxF4HX8J/jqbtOxRCqo8kdC06ZN49VXX2XOnDmkpqYydepU0tLSmDRpElA2WzJx4sTy/SdNmsS+ffuYNm0aqampzJkzh9mzZzN9+vTyfR588EG++eYbdu/eTUpKCjfeeCMpKSnljykicq6KdpUtx/+D1YKklnGG03iOsAAfHhrXjztLbsFl2WDjm/Djx6ZjiZSr8mnNY8eO5dixYzz00EMcPnyYDh06MG/ePJo2bQrA4cOHSUtLK9+/efPmzJs3j6lTp/Kvf/2LuLg4nn322QqnNJ88eZI//vGPpKenExoaSpcuXViyZAndu3evhqcoIvXJydTFRAOpjvYkh/mbjuNRujePoPslo3hh0Y/8yfs/uD67A69GSRDe1HQ0EWxWHVkPOTs7m9DQULKysjSAK1KPnXisA+GF+3ml8WPcfNMtpuN4nFKni9+/vJy7Dk+hq9dPuBp3x+v6r8CuxfekZpzr729dS0hE6o6cI4QX7sdl2Qhr29d0Go/kbffiqXHJ/MVrCtmWP14H1sDif5iOJaLCIiJ1R8me5QBss5rQpbU+xjhfcWH+TB4zmL+U3AiAtfRJ2LvccCqp71RYRKTOOJG6CIAf7Im0aBBkNoyHu6xDDCHdr+GD0n7YLBfOj26C/OOmY0k9psIiInWGV9pKALIbJusCetXgLyMSeTPiNna7YrDnHML67HaoG2OP4oFUWESkbig4SURe2WKTQa37GQ5TN/g57DwxvjfTXZMptuzYtn0B618zHUvqKRUWEakTnGmr8cJijyuajm3amI5TZ7SJCeaqyy/n8dJrAHB9dQ9kpBpOJfWRCouI1AknUsuuH7TR1o52scGG09QtE3o04UCb61js7ISXs6hs6f6SAtOxpJ5RYRGROsF16iyWY5FJeNv11ladypbu78zj/lM4aoXgdXQrzP+r6VhSz+hvtYh4vpICIk7+CIBfC10/qCaEBfjwwLiB3FVyajG+ta/AtnlmQ0m9osIiIh7POrAOb0o5YoXRum0n03HqrO7NI+h8yRheKR0OgPPTWyH7kOFUUl+osIiIxzu5bQkA6622XNQk3HCauu1PA1uysNEkfnQ1w154AtfHfwSX03QsqQdUWETE4xXtWgrA4dAu+DnshtPUbd52L54Y1537vKaSZ/nitXcpbNdHQ1LzVFhExLM5Swk7ngKAvXkvs1nqiUZh/tw6ZiivO4cCkLvsJcOJpD5QYRERz5b+A36uArKsAJq162Y6Tb1xWYdYDrcch8uyEXRwKRzbZTqS1HEqLCLi0XJ2nJpfcbUhqXmU4TT1yxX9L2aR6yIAilbPNpxG6joVFhHxaLmnCsu+4IsI9nMYTlO/dGsWzqLgywGwNv4bSgoNJ5K6TIVFRDyXZRGSsR4AV3xPw2HqH5vNRqs+V3HAisKv5CTWlk9MR5I6TIVFRDxX5g4CnScptBw0SlRhMWFU1yZ8ZF0KQO7ylw2nkbpMhUVEPFb+zrLTmTe6WpHcIsZwmvop2M9BbvvxlFh2go9ugPTNpiNJHaXCIiIeK2tb2QUPd/p3ICrI13Ca+mtU3y5840oGIH/lK4bTSF2lwiIiHisgfQ0AJY0uNpykfmsfF8rqyFEAeP/4ARTlmA0kdZIKi4h4ppP7CS1Op9TyIqqdLnhoWuc+V7DLFYuPMx/XpvdNx5E6SIVFRDxS0e5lAPxoNaNry3jDaWTERXF8bC9b+TZv+UtgWYYTSV2jwiIiHunE1kUApDra0zjc32wYwc9hx6vzOAosH4KztsP+NaYjSR2jwiIiHslxcDUAeTHdsdlshtMIwFW9O/K5s+z08rzlur6QVC8VFhHxPHnHiCzYA0Bom36Gw8hpzaMC+TFuDAC+Oz6HvGOGE0ldosIiIh6nZO8KAHa4GtG5TQvDaeSXevUdzGZXM7ytYko3vGk6jtQhKiwi4nGOn5pf+cErkZYNg8yGkQoGJUbzuWMYAIWrXgWXy3AiqStUWETE49jSyo6wnGyQrPkVN+Nt9yKk+ziyLX+C8vbD7oWmI0kdocIiIp6lKJfInG0ABLbuaziMVGbMxW341FX2Z5Oj6wtJNVFhERGP4kpbgx0XB6woEtu2Nx1HKhET6seeZmMBCNizALIPGU4kdYEKi4h4lOPbFgGwgXa0jwsxG0bO6tJ+A1jtaosdJ8VrXjMdR+oAFRYR8Silu5cDkBnRFW+73sLcVa8WkXzjPwKA0rVzwVlqNpB4PP1tFxHPUVpExMkfAHAk6PpB7szLy0bjXleTaYUQUJSBtX2e6Uji4VRYRMRjWIc24mMVc8wKplViV9Nx5Ddc1S2Bj6yBAOQs0/CtXBgVFhHxGCe3LQZgvdWWzk3CDaeR3xIW4MPR1uNxWTZCDi2FY7tMRxIPpsIiIh6j8KelABwK6YKfw244jZyLEf16sMh1EQCFq2YbTiOeTIVFRDyDy0lY5kYAbM16GQ4j56pzfBhLQ68o+yLl31BSaDaQeCwVFhHxDBlb8Xflkmv50TSxh+k0co5sNhtt+o7mgBWFX8lJXFs+MR1JPJQKi4h4hJztSwDYYLWia0IDw2mkKkZ2iedjBgGQs+wlw2nEU6mwiIhHyNlRVlj2BlxEiJ/DcBqpigAfb4o6jqfEshOauRHSN5uOJB5IhUVE3J9lEXxkLQDO+J6Gw8j5uLJvV75xJQOQt0KnOEvVqbCIiPs7vpvg0mMUWd7Etu9tOo2ch9bRwaxvcBUAjh8/hKIcw4nE06iwiIjby/9pGQA/WAkktYgznEbOV5d+V7DLFYuPKx/npvdMxxEPo8IiIm7v9IJxO3070iDY13AaOV+XdYjlU++hAOQtfxksy3Ai8SQqLCLi9vwPrQagME6nM3syH28vvLtOoMDyISRrO+xfYzqSeBAVFhFxbznphBcdwGXZiGjXz3QauUBX9erA566ywemcZbMMpxFPosIiIm6teFfZ/Eqq1YSk1k0Np5ELFR8RwPbGvwPAf+cXkHfMcCLxFCosIuLWjqUuAmCLd3sah/ubDSPVone/wWx2NcPbKqZkw5um44iHUGEREbfmvX8VALkx3bHZbIbTSHXo3yaaL32GA1C08lVwuQwnEk+gwiIi7qvgJJH5PwEQ3EbzK3WF3ctG+MXjybb8CcrfD7sXmo4kHkCFRUTcVum+lXhhsdsVQ6c2rU3HkWo0+uLWfOrqC0DWMq18K79NhUVE3NaxrWXrr2zyakerhkGG00h1igryZX+LcQAE7V0A2YcMJxJ3d16F5YUXXqB58+b4+fmRlJTE0qVLf3X/xYsXk5SUhJ+fHwkJCcyadfZT2d59911sNhujRo06n2giUodYe5cDcCIqGS8vza/UNYP69We1qy12nBStnmM6jri5KheW9957jylTpnD//fezceNG+vbty7Bhw0hLS6t0/z179jB8+HD69u3Lxo0bue+++5g8eTIfffTRGfvu27eP6dOn07dv36o/ExGpW0oKiMreCoB/yz6Gw0hN6N48gu8CRwBQum4uOEvNBhK3VuXC8vTTT3PjjTdy00030a5dO2bOnEl8fDwvvvhipfvPmjWLJk2aMHPmTNq1a8dNN93EDTfcwJNPPllhP6fTyYQJE3jwwQdJSEj4zRxFRUVkZ2dXuIlI3eHavxZvSkm3wmmXeJHpOFIDbDYb8b2vIdMKIbDoKNb2eaYjiRurUmEpLi5m/fr1DBkypML2IUOGsGLFikrvs3LlyjP2Hzp0KOvWraOkpKR820MPPUSDBg248cYbzynLjBkzCA0NLb/Fx8dX5amIiJs7nlo2v7LBakv7RqGG00hNuTK5OR9bAwHIWvqS4TTizqpUWDIzM3E6nURHR1fYHh0dTXp6eqX3SU9Pr3T/0tJSMjMzAVi+fDmzZ8/mlVdeOecs9957L1lZWeW3/fv3V+WpiIibK9ldtsJtRkQSDrvOD6irQvwcnEwcj8uyEXZ4GRzbZTqSuKnzehf478WbLMv61QWdKtv/9PacnByuvfZaXnnlFaKios45g6+vLyEhIRVuIlJHOEuJOJ4CgKN5b7NZpMYN79uTxa5OAOSvfNVwGnFX3lXZOSoqCrvdfsbRlIyMjDOOopwWExNT6f7e3t5ERkayZcsW9u7dyxVXXFH+fdepVQ+9vb3Zvn07LVq0qEpMEfFw1uFN+FqFZFkBNG+fbDqO1LAOjUJ5JHwUA7M3YUv5Nwx9ABx+pmOJm6nSERYfHx+SkpJYsGBBhe0LFiygV69eld6nZ8+eZ+w/f/58kpOTcTgctG3bls2bN5OSklJ+GzlyJAMHDiQlJUWzKSL10MltZfMr6622dGkSaTiN1IY2/UZzwIrCvzQL15ZPTMcRN1Tlj4SmTZvGq6++ypw5c0hNTWXq1KmkpaUxadIkoGy2ZOLEieX7T5o0iX379jFt2jRSU1OZM2cOs2fPZvr06QD4+fnRoUOHCrewsDCCg4Pp0KEDPj4+1fRURcRT5O8sW9vpQPBF+PvYDaeR2nD5RY35xDYIgGwN30olqvSREMDYsWM5duwYDz30EIcPH6ZDhw7MmzePpk3LLvt++PDhCmuyNG/enHnz5jF16lT+9a9/ERcXx7PPPsvo0aOr71mISN3hchGWub7sv5tWfuRW6h4/h53Si66lJOUDwo5thPTNENPRdCxxIzbr9ASsh8vOziY0NJSsrCwN4Ip4soxt8EIPCiwfVl29gYHt9bFwfbEnM48tz/wPl9tXk9txIkGjnzMdSWrBuf7+1rmCIuJWsncsAWCj1ZKuCTGG00htah4VyKbosqPvji0fQlGO4UTiTlRYRMSt5GwvKyx7Ai4i1N9hOI3UtqT+V7DLFYuvK5+SlHdNxxE3osIiIm4lKH0NAKWNehhOIiYMSozhM8dlAOQvfxnqxtSCVAMVFhFxHyfTCC05Qollp2F7XQS1PvK2e+GbfC0Flg+h2Ttg/xrTkcRNqLCIiNvI/6nsdOYtVjOSWjY2nEZMuapXB75w9QQga+ksw2nEXaiwiIjbOHHqgofbfTrQMEQrndZXMaF+/NTkagACfvoC8o4ZTiTuQIVFRNyG38HVABTEdjecREzr038Im13NcFjFFK1/03QccQMqLCLiHvIyiSzcC0B4u/5ms4hxvVs24Gu/EQAUr3oVTl1jTuovFRYRcQvFu5cDsN3VmM5tEgynEdO8vGxE9ZxAtuVPcP5+rN0LTUcSw1RYRMQtHNu6CIAfvRNpEhFgNoy4hVHdW/Efqx8AWbq+UL2nwiIibsFr/0oAchp2w2azGU4j7iA80IdDLccBELzvW8g+ZDiRmKTCIiLmFeXQIHc7AEGt+xkOI+5k8IABrHa1xY6TglVzTMcRg1RYRMQ4577VeOFiv6sBHRITTccRN9IlPoxFwVcA4Fo3F5wlZgOJMSosImJc5qn5lRSvdrRuGGw2jLgVm81G097XkGmFEFh8FNf2r0xHEkNUWETEONfesjOEjkcm4eWl+RWp6IqkZnzKJQBkLdHKt/WVCouImFVaRFTWZgD8WvQxHEbcUaCvN9ntJ+CybISnL4dju0xHEgNUWETEKNeBDTisEjKtEFq172o6jripy/v3ZLGrEwB5K141nEZMUGEREaOOpS4CYANt6dAozGgWcV+to4NZE/k/AHht+jeUFBpOJLVNhUVEjCretQyA9LAu+HjrLUnOrm3/0Ry0IvEvzaL0x49Nx5FapncHETHH5STi+EYA7M16Gw4j7u6yjo34j9dgAHK08m29o8IiIsZYR37E35VHjuVP8/Y9TMcRN+frbcfVZSIllp3w4ymQvtl0JKlFKiwiYszJbUsA2Gi1okuzBobTiCe4sk8X5ruSAche9rLhNFKbVFhExJi8nUsBSAvqjL+P3XAa8QTxEQH8GDcGAN+tH0JRjuFEUltUWETEDMsiNGNt2X836Wk2i3iU5P4j2eWKxdeVT8nGd03HkVqiwiIiZhzfTXDpcYosb+Laa8E4OXcD2kbzhc8wAPKWvwyWZTiR1AYVFhExImd72fzKD1YLklrEGk4jnsTuZSOw++8ptByE5eyA/WtMR5JaoMIiIkZkbV8MwC7/ToQGOAynEU9zZc/2fGn1AuDkkhcNp5HaoMIiIkYEHF4NQHEjnc4sVdcg2JfdTccCELjrS8g7ZjiR1DQVFhGpfdmHiSg+hNOy0SCxn+k04qH6DhjKZlczHFYxheveMB1HapgKi4jUuoJdZaczp1pN6dq6qeE04ql6JESyIOByAIpXzQaXy3AiqUkqLCJS645vLZtf2ebTgegQP8NpxFPZbDYa9ppAtuVPSMF+rN0LTUeSGqTCIiK1znFwFQD5Md0NJxFPN7J7Kz6zyj5WPLFkluE0UpNUWESkdhWcICp/FwChbTW/IhcmxM9BRpsJAISmfQvZhwwnkpqiwiIitap4z0q8sNjliuWitq1Nx5E6YMiAAax2tcWOi7yVs03HkRqiwiIitSpzS9mcwWZ7Ik0jAwynkbqgQ6NQloaOBMBa/zo4SwwnkpqgwiIitcorbSUA2Q2TsdlshtNIXdG8zzVkWiEEFR/Fuf0r03GkBqiwiEjtKc4nKmcrAIGtNL8i1WdE12b8x3YJACcXa/i2LlJhEZFa49y/Fm+cHLYiaNeuo+k4Uof4Oezkd/w9LstG5JHlcGyX6UhSzVRYRKTWHN2yCICNtra0iQ0xG0bqnBH9LmaxqxMA2ctfMZxGqpsKi4jUGufe5QAci0jC7qX5FaleCQ2CWN/wKgC8f3gbSgoNJ5LqpMIiIrXDWULUiU0A+CT0MRxG6qr2/cdw0IokoDSLks0fm44j1UiFRURqhXV4E75WISetQFp26GY6jtRRg9rH8bl9CAA5y14ynEaqkwqLiNSKY1sXAbCBtnRsHG42jNRZDrsXJE2kxLITcTwF0jebjiTVRIVFRGpFwU/LADgU2hkfb731SM25sk8X5ruSATi5REdZ6gq9a4hIzXO5iMhcD4C9WW/DYaSuiw31Z1vj3wHgv+1DKMoxnEiqgwqLiNS8zO0EurLJt3xpktjTdBqpB7oNuJJdrlh8XQUUbXjHdBypBiosIlLjTqQuAiDFakmXhIZmw0i90KdVA+b5DQMgf8XLYFmGE8mFUmERkRqXu3MpAPuCLiLAx9twGqkPvLxsBPeYSKHlIDxnJ9b+1aYjyQVSYRGRmmVZBB9ZC4Ar/mLDYaQ+ufLi9syzyj6CPL7kZcNp5EKpsIhIzTqZRlhJBiWWnZj2uuCh1J7wQB/2Nx8LQMiuz6HghOFEciFUWESkRuXsWALAj1ZzurZoZDiN1De9Bgxjmyseh1VMwfp3TceRC6DCIiI16uS2ssLyk19HwgN9DKeR+ia5WQTfBpQN3xauelXDtx5MhUVEapT/oVUAFDXqYTiJ1Ec2m43wi68tG77N/Qlr/xrTkeQ8nVdheeGFF2jevDl+fn4kJSWxdOnSX91/8eLFJCUl4efnR0JCArNmzarw/Y8//pjk5GTCwsIIDAykc+fOvPnmm+cTTUTcSe5RoorSAIhop/kVMePy7ok/D98u1fCtp6pyYXnvvfeYMmUK999/Pxs3bqRv374MGzaMtLS0Svffs2cPw4cPp2/fvmzcuJH77ruPyZMn89FHH5XvExERwf3338/KlSv54YcfuP7667n++uv55ptvzv+ZiYhxBbvKluPf5oqnS5sEw2mkvgoNcHAgoWz4Nvinz6HgpNlAcl5sllW1D/R69OhB165defHFF8u3tWvXjlGjRjFjxowz9r/77rv57LPPSE1NLd82adIkNm3axMqVK8/6c7p27cqIESN4+OGHzylXdnY2oaGhZGVlERISUoVnJCI15cA7d9B4+1w+8b6M//nLe6bjSD22fu8xAuf0p63XfgoGPYZ/n1tMR5JTzvX3d5WOsBQXF7N+/XqGDBlSYfuQIUNYsWJFpfdZuXLlGfsPHTqUdevWUVJScsb+lmXx3XffsX37dvr1O/sh5KKiIrKzsyvcRMS9eB8om1/Jje5mOInUd12bRvDdqeHbglWzNXzrgapUWDIzM3E6nURHR1fYHh0dTXp6eqX3SU9Pr3T/0tJSMjMzy7dlZWURFBSEj48PI0aM4LnnnmPw4MFnzTJjxgxCQ0PLb/Hx8VV5KiJS0wqzaZi3A4DQNppfEbN+OXwbkbsT68Ba05Gkis5r6NZms1X42rKsM7b91v7/vT04OJiUlBTWrl3LI488wrRp01i0aNFZH/Pee+8lKyur/LZ///7zeCYiUlOK967CCxdprgZ0aJdoOo4II3ok8tWp4dtji18ynEaqqkoX9YiKisJut59xNCUjI+OMoyinxcTEVLq/t7c3kZGR5du8vLxo2bIlAJ07dyY1NZUZM2YwYMCASh/X19cXX1/fqsQXkVp0dMsiGgE/2BMZERVoOo4Iof6nhm/3Ljm18u1J8A8zHUvOUZWOsPj4+JCUlMSCBQsqbF+wYAG9evWq9D49e/Y8Y//58+eTnJyMw+E468+yLIuioqKqxBMRd5JWNlR/skHyrx6BFalNvQYMZ7urMT5WkVa+9TBV/kho2rRpvPrqq8yZM4fU1FSmTp1KWloakyZNAso+qpk4cWL5/pMmTWLfvn1MmzaN1NRU5syZw+zZs5k+fXr5PjNmzGDBggXs3r2bbdu28fTTT/PGG29w7bXXVsNTFJFaV1pEg6zNAPi37Gs4jMjPujYN/8XwrVa+9SRVvs772LFjOXbsGA899BCHDx+mQ4cOzJs3j6ZNmwJw+PDhCmuyNG/enHnz5jF16lT+9a9/ERcXx7PPPsvo0aPL98nLy+PWW2/lwIED+Pv707ZtW9566y3Gjh1bDU9RRGqb88B6fCjhqBVC2/ZdTMcRKWez2QjvOZHC7+eWD9/a4rubjiXnoMrrsLgrrcMi4j7Sv3yEmLWPM9/qwaUPfIPdSx8JifvIKihh4YyrGOW1hMyWvyPq2ldNR6rXamQdFhGRc1GyezkARyO6qqyI2wn1d3CgRdkR/JBdn0FhluFEci5UWESkermcRJ1IAcCR0NtsFpGz6DVgODtcjcqGb9e9YzqOnAMVFhGpVlb6ZvxdeeRY/iS0v9h0HJFKdWkSzneBwwEN33oKFRYRqVaZWxcDsNFqTccmEYbTiFSubOXb3/9i5dt1piPJb1BhEZFqVfDTUgAOhnbB19tuOI3I2Q3vkcg3VtlRwMwlLxtOI79FhUVEqk9JAQ0zygZuadrHbBaR3xDi5+BAi2vK/vsnDd+6OxUWEak2pVu/wM+Vz35XA+I79TcdR+Q3nR6+9bUKyV+v4Vt3psIiItXm5MrXAfja3p8eLaIMpxH5bZ2bhPP96eHblbM1fOvGVFhEpHrkpBORXvZxUFHi1TjsensR93d65dsiy0Fk7g4N37oxvaOISLUoWP8uXrhY52rNgF46nVk8x7Du7fj69PDtYg3fuisVFhGpFoXr/w3AisBBtI/T5THEc4T4OTh0evhWK9+6LRUWEblw6ZsJz9lBkeVNSPLV2Gxajl88S6+BI9h5avg2b927puNIJVRYROSCZa16E4DvXF0Z3q2d4TQiVdcpPqx8+LZQK9+6JRUWEbkwzlK8t3wAwI6Yy2kY4mc4kEjVnTF8e3C96UjyX1RYROSCuH76nsCS4xyzgmnRa5TpOCLnbVj3dnxD2fDt0UUvGU4j/02FRUQuyPFTa698RR8Gd2hsOI3I+Qv2c3Dw1PBtqIZv3Y4Ki4icv8IsQvfNB+BEq9H4OXTtIPFsvTV867ZUWETkvBX98DEOq5gdrkZc3PsS03FELljHxmEsDNLwrTtSYRGR85azuuzsoO99LyW5WYThNCIX7szh2w2mI8kpKiwicn6O7yHq2Hpclg3vzlp7ReqOYd0TfzF8O8twGjlNhUVEzkvO2rcBWObqwJCLkwynEak+Qb7eHG45Fjg9fJttOJGACouInA/LwrWxrLBsiriMJpEBhgOJVK9eA674efh2vYZv3YEKi4hUmbV/NaGFB8izfInpMcZ0HJFq1zE+jEWnhm8LVmr41h2osIhIlR1f8QYA31g9GNq1heE0IjXj9PBtVO52Dd+6ARUWEamakkICdn4GwMEmowjxcxgOJFIzLuueyHx6AJCh4VvjVFhEpEpKtn2FvzOHg1YkHfuMMB1HpMaUDd+WrXwbpuFb41RYRKRKTqwoW4p/vr0/fVo1NJxGpGb1GngFP7ni8LUKyV33juk49ZoKi4icu9yjRB5eAkBx+9/hbddbiNRtHRqHsSj49Mq3szV8a5DebUTknOVveBc7TlJcCfTv3cd0HJFaEdHzDz8P3x7aaDpOvaXCIiLnrGDdvwFYGTSYtjEhhtOI1I6h3RJZcHr4duGLhtPUXyosInJujmwlMjuVYstOcPI1ptOI1JpADd+6BRUWETknJ1aVXehwkdWFy7q3N5xGpHb1uuQKdrliy4ZvtfKtESosIvLbXE68f/wAgB3RlxMV5Gs4kEjtat8ojEXBZafxF6ycbThN/aTCIiK/yblrMcElRzlhBdGy91Wm44gYEdHrDxRZ3jTI3YbrgFa+rW0qLCLym44tL1t75RtbLwa0b2w4jYgZZcO3FwNa+dYEFRYR+XVFOYTu+xqAEy1H4+ewGw4kYkaAjzfprcYCEL7rP1CUYzhR/aLCIiK/qvCHT/G1CtnliqV7nyGm44gY1WvgleXDtzlrtfJtbVJhEZFflb267OyghX6X0LVpuOE0ImYlNgotH74tXKXh29qkwiIiZ3dyP1GZawBwdL4Gm81mOJCIeZEVhm+18m1tUWERkbPKWv0WXlisdCZyac9k03FE3MKQbol8e2r49oiGb2uNCouIVM6ycKWUfUa/KfIyGocHGA4k4h7Khm/LVr7V8G3tUWERkUpZB9cTXrCPAsuH6IvHmo4j4lZ6XTKSXa5Y/KwCctZp5dvaoMIiIpU6emrtlQVWdwZ3aWk4jYh7aRcXypIQrXxbm1RYRORMpcUE7fgUgENNRxHk6202j4gbCj81fNswN1XDt7VAhUVEzlCy/WsCnNkcscLo0Gek6Tgibmlocnu+s/UANHxbG1RYROQMx5a/AcAC+wB6tmpoOI2Ie/L3sXOkpYZva4sKi4hUlH+cqEMLASjqcDV2L629InI2PS+9snz4NlvDtzVKhUVEKshd/x7elPKjqxn9+/QzHUfErbWNDWXpqeHbQg3f1igVFhGpIH/tvwFYFTyYlg2DDacRcX8Rva7T8G0tUGERkZ9l7qRh9mZKLS+Ck8eZTiPiEQYnJ/KdrTsA6YteMpym7lJhEZFyx06tvbLUuojB3TsaTiPiGfx97GS0Gg9AxK5PNXxbQ1RYRKSMy4X3lvcB2BFzORGBPoYDiXiOnpdcyW5XTNnw7VoN39YEFRYRAcC5ZymhxUfItgJI6PM703FEPEqb2JDy4duC1XMMp6mbzquwvPDCCzRv3hw/Pz+SkpJYunTpr+6/ePFikpKS8PPzIyEhgVmzKi6w88orr9C3b1/Cw8MJDw9n0KBBrFmz5nyiich5Or0U/3xbL/onxhtOI+J5InpdT5HlTXTOVlwHNXxb3apcWN577z2mTJnC/fffz8aNG+nbty/Dhg0jLS2t0v337NnD8OHD6du3Lxs3buS+++5j8uTJfPTRR+X7LFq0iHHjxrFw4UJWrlxJkyZNGDJkCAcPHjz/ZyYi5644j7A98wA42Wo0Pt46+CpSVYO7JfL96eHbhVr5trrZLMuyqnKHHj160LVrV1588cXybe3atWPUqFHMmDHjjP3vvvtuPvvsM1JTU8u3TZo0iU2bNrFy5cpKf4bT6SQ8PJznn3+eiRMnnlOu7OxsQkNDycrKIiQkpCpPSaTeK1j/Nv6f38I+V0NO3rSGi5qEm44k4pHm/vsNrtt5O4U2f/zu+Ql8g0xHcnvn+vu7Sv+MKi4uZv369QwZMqTC9iFDhrBixYpK77Ny5coz9h86dCjr1q2jpKSk0vvk5+dTUlJCRETEWbMUFRWRnZ1d4SYi5+fkyjcBWOR/KZ3iw8yGEfFgvS4d9fPwrVa+rVZVKiyZmZk4nU6io6MrbI+OjiY9Pb3S+6Snp1e6f2lpKZmZmZXe55577qFRo0YMGjTorFlmzJhBaGho+S0+Xp+5i5yX7ENEZ64CwN75Gmw2LcUvcr5ax4Sw7PTwrVa+rVbn9UH1f7+hWZb1q29yle1f2XaAxx9/nHfeeYePP/4YPz+/sz7mvffeS1ZWVvlt//79VXkKInLKydVv44WLta42XNqrh+k4Ih4vovd1FFt2onO34tTwbbWpUmGJiorCbrefcTQlIyPjjKMop8XExFS6v7e3N5GRkRW2P/nkkzz66KPMnz+fTp06/WoWX19fQkJCKtxEpIosi9KNZUvxb4oYRmyov+FAIp5vUHJ7vreVlf/0hVr5trpUqbD4+PiQlJTEggULKmxfsGABvXr1qvQ+PXv2PGP/+fPnk5ycjMPhKN/2xBNP8PDDD/P111+TnJxclVgicp6swylE5e+myHIQ02us6TgidYKfw86R1mWXtojY9R8oyjWcqG6o8kdC06ZN49VXX2XOnDmkpqYydepU0tLSmDRpElD2Uc0vz+yZNGkS+/btY9q0aaSmpjJnzhxmz57N9OnTy/d5/PHH+ctf/sKcOXNo1qwZ6enppKenk5urP2SRmpSxtGztle9J5pLOrQ2nEak7el86ij2uaPytfLK08m21qHJhGTt2LDNnzuShhx6ic+fOLFmyhHnz5tG0aVMADh8+XGFNlubNmzNv3jwWLVpE586defjhh3n22WcZPXp0+T4vvPACxcXFjBkzhtjY2PLbk08+WQ1PUUQq5SwhcMcnABxqOooAH2/DgUTqjpbRISwLvRyAglUavq0OVV6HxV1pHRaRqineOg+f98dx1Arhp2vX0bNV5XNoInJ+vly1icFfDcTH5sR582LsjTqbjuSWamQdFhGpOzJPLcX/nXd/erRoaDiNSN1zaVIHDd9WIxUWkfqo4AQNDn4HQHGHsXh5ae0Vkerm57BztHz49lMN314gFRaReih7wwc4KCHVFU+f3gNMxxGps3peeuXPw7fr3jMdx6OpsIjUQ/lrytZeWRMyhISGwYbTiNRdLaNDfx6+1cq3F0SFRaS+Ob6bmKwUnJaNoORxptOI1HlRfcpWvo3J3YLz0CbTcTyWCotIPZOxrGzYdrnViUHdO5sNI1IPDOzanoW27gAc/n6W4TSeS4VFpD6xLBw/vg/AT7GXExrg+I07iMiFKhu+HQ9A5K5PoTjPbCAPpcIiUo+U7l1OePEhci0/mve52nQckXqj56CfV749oZVvz4sKi0g9krF0LgDfefWkT2ITs2FE6pEWDUNYcWr4tkjDt+dFhUWkvigpIHzvPABOthqDw66//iK1KeIXw7elBzV8W1V6xxKpJ/J/+Bx/Vx4HrCiS+o0wHUek3rkk6efh2/SFGr6tKhUWkXrixKo3AFjidyntG4WZDSNSD/l628ls84uVbzV8WyUqLCL1Qc4RYo4uB8De5RpsNi3FL2JCz0v/h72uaAI0fFtlKiwi9cCx1W9jx8UGV0sG9uplOo5IvZXwi+HbwpVzDKfxLCosIvWAc+PbAGyOHE7DED/DaUTqt4i+11Ns2YnN/VHDt1WgwiJSx7kOb6Zh3g6KLTsNe2kpfhHTBnZNZJGXVr6tKhUWkToufWnZUvyLSWJg5zaG04iIr7edzNZl/3iI3P2phm/PkQqLSF3mLCVox0cAHG42Cj+H3XAgEQHoOeiqXwzfvmc6jkdQYRGpw4p2fEdI6XGOW0G06zvadBwROaV5g2BWhpWth1SolW/PiQqLSB12+srMCx39SG4RbTiNiPxSRO/rKdHw7TlTYRGpqwqziT60AICixLFae0XEzQxM6lA+fHvo+5cMp3F/KiwidVTW+g/xsYrZ6WpEn36DTccRkf/i4+1VvvJt1O5PoCjHcCL3psIiUkflrX0LgDUhQ2gSFWg4jYhUpuelV7HbFUOAlU/2OzeBy2U6kttSYRGpg6wTe4k7uR6XZSO423jTcUTkLJo1COb9xvdRZHkTsvdr8hf8n+lIbkuFRaQOOrLsTQBWWe0Z0KOL4TQi8mtuuXY8//S7DYCAlU9R8sNHhhO5JxUWkbrGsnD8WLauw664KwjxcxgOJCK/JjTAwZgb/8zrlF1jyPrkFqxDGw2ncj8qLCJ1TMm+NUQW7Sff8qVZn7Gm44jIOWjZMIhm1zzFItdF+FhF5L0+FnKOmI7lVlRYROqY9KWvAbDQ62J6tmtqOI2InKv+bWM4MPA5drliCSo6QtbrY6G0yHQst6HCIlKXlBYRsecLALJaj8bbrr/iIp5kwoBOfNz2KbKsAEIzN5L94Z/AskzHcgt6NxOpQ3J/+IJAVw6HrQi69h9pOo6IVJHNZuOOq4fxbMRfcFo2Qra9T/7iZ03HcgsqLCJ1yImVbwCwzP8S2saFG04jIufDx9uLW2+8ied9rgfAb9HfKd3+jeFU5qmwiNQVeZnEHl0KgFfncYbDiMiFiAzyZegNf+dDayBeuCh973o4usN0LKNUWETqiKMr38YbJz+4Eujfp6/pOCJygdrGhhI25jnWutrg58oj+7XRUHDCdCxjVFhE6ojSjW8DsDlqGFFBvobTiEh1GNQxni19/sUBK4qQ/DROvj4BnKWmYxmhwiJSB7iOpBKbl0qJZSe61wTTcUSkGv1hcDLvJPyDfMuXsPTlZH92t+lIRqiwiNQBh5bMBWCZrQt9LmprNoyIVCubzcbt4/+HZ0OnAxCy6VUKVr9mOFXtU2ER8XQuJ4Hby649crjpKPwcdsOBRKS6+Tns3HDzZF6xXwOA46vpOPeuMJyqdqmwiHi4gp2LCC89SpYVQNv+vzMdR0RqSMNgP3pe/w++cl2MN6UUvjUeTqaZjlVrVFhEPFzG0rkALHL0o0vzaLNhRKRGdWgcBqNe5EdXMwJLT3By9mgoyjUdq1aosIh4sqJcog+WLShV3P5qbDab4UAiUtOGdU1gVY/nOGqFEJazg+P/vgFcLtOxapwKi4gHO77+I/ysIna7YujZ/zLTcUSkltwwrC+vxz9CkeVNRNo3ZH39sOlINU6FRcSD5a15C4C1oUNoHBFoOI2I1BYvLxu3TZzAC0F/AiB0zdMUpHxkOFXNUmER8VDWyf00OrkWgKBuWntFpL7x97FzzR/v4d9eVwDg9Z9bcB3caDhVzVFhEfFQh5e+gRcWa6xE+vdINh1HRAyIDfUnceJMlrguwtcqIvf1qyHniOlYNUKFRcQTWRbeP74PwK64ywny9TYcSERM6dIsiuzLZ7HLFUtIcQbH5lwNpUWmY1U7FRYRD1S8fz0Ni/ZSaDlo2ldXZhap7y7vnsh3XZ4lywog8kQKx967FSzLdKxqpcIi4oEOLS5blnux/WJ6tG1uOI2IuIObrhzM7Ji/4bRsRO78kOyFM01HqlYqLCKeprSYyD2fA5DVejR2L629IiJlZw798Yabedn/JgAClzxEUerXhlNVHxUWEQ+T/eNXBLuyyLDC6DpglOk4IuJGgny9ufzmB/nEdil2XLg+uAHr6HbTsaqFCouIhzm+4nUAlgcMpGVMuOE0IuJu4iMDaTT+X6x1tcHflcfJ2WOg4ITpWBdMhUXEk+Qfp1HGYgDsnccbDiMi7qp7q1gODnmJA1YU4YVpHH1tPDhLTce6ICosIh7kyMp3cFBKqtWUPn0GmI4jIm5sVJ8ufJn4FPmWLw0yVpD5yV2mI10QFRYRT7FnKYErnwRgc+RwIgJ9DAcSEXd345iRvNrgbgCifpxD9orZhhOdv/MqLC+88ALNmzfHz8+PpKQkli5d+qv7L168mKSkJPz8/EhISGDWrFkVvr9lyxZGjx5Ns2bNsNlszJw583xiidRNLicl3z2K6/WRBJUeZ4erEQ363Wg6lYh4AG+7F3+4cTKv+ZSt1+Q//88U7V5uONX5qXJhee+995gyZQr3338/GzdupG/fvgwbNoy0tLRK99+zZw/Dhw+nb9++bNy4kfvuu4/Jkyfz0Uc/X6QpPz+fhIQEHnvsMWJiYs7/2YjUNdmHyX91BI6l/8ALF+85B/BVz7cZcFFL08lExEOE+jsYcPOTfENPHJRS/O/xWCf2mY5VZTbLqtpSeD169KBr1668+OKL5dvatWvHqFGjmDFjxhn733333Xz22WekpqaWb5s0aRKbNm1i5cqVZ+zfrFkzpkyZwpQpU6oSi+zsbEJDQ8nKyiIkJKRK9xVxR9bOBRR9cDN+xSfIs3z5h/f/MnTcHfRuGWU6moh4oBWpaYS8cwUdvPaSGdiKqMmLwDfIdKxz/v1dpSMsxcXFrF+/niFDhlTYPmTIEFasWFHpfVauXHnG/kOHDmXdunWUlJRU5cdXUFRURHZ2doWbSJ3gLKHoq79g+/cY/IpPsMXVlAfjZnH7lL+orIjIeevVrgnbB8ziqBVCVN5OMt64Hlwu07HOWZUKS2ZmJk6nk+jo6Arbo6OjSU9Pr/Q+6enple5fWlpKZmZmFeP+bMaMGYSGhpbf4uPjz/uxRNzGyTTyZg3Gd/VzALzpHMLKAe/y2M3/Q4NgX8PhRMTTXTXwYj5u9Q+KLG8aHpxP5pcPmo50zs5r6NZmq7gUuGVZZ2z7rf0r214V9957L1lZWeW3/fv3n/djibgD19bPKXq+F4FHN5JtBXC/z5/pcPPL3HRJIl5afl9EqoHNZuOGcdcwJ3wyAFHrZ5Kz/gPDqc5Nla5JHxUVhd1uP+NoSkZGxhlHUU6LiYmpdH9vb28iIyOrGPdnvr6++PrqX5xSB5QWUfDlffhvfBVfIMXVgo8THubPY4cQ6u8wnU5E6hiH3Ytrbr6X9/75E2NLP8Pn89soadgSR3wX09F+VZWOsPj4+JCUlMSCBQsqbF+wYAG9evWq9D49e/Y8Y//58+eTnJyMw6E3Y6nnju0i94WB+G98FYDZrsvZPvwDHvzDcJUVEakx4YE+dL3xOZZanfGliLw3rsbKqXy0w11U+SOhadOm8eqrrzJnzhxSU1OZOnUqaWlpTJo0CSj7qGbixInl+0+aNIl9+/Yxbdo0UlNTmTNnDrNnz2b69Onl+xQXF5OSkkJKSgrFxcUcPHiQlJQUfvrpp2p4iiLuyZnyHsX/6kPQ8S0ct4K43/9v9Ll1FmMvbnFBH5eKiJyLVrFhMHo2u1yxhJVkcPTV30FpkelYZ1Xl05qhbOG4xx9/nMOHD9OhQwf++c9/0q9fPwCuu+469u7dy6JFi8r3X7x4MVOnTmXLli3ExcVx9913lxccgL1799K8efMzfk7//v0rPM6v0WnN4jGK88n7z50EbnkbgNWutnyf+AhTrhqIv4/dcDgRqW/e/3ohQ1eOJ9SWT3rCaGJ+Pxtq8R9N5/r7+7wKiztSYRGPkJFKzlu/Jzh7Jy7LxkuMJn7UA1zepYnpZCJST1mWxStzX+XGvXdht1lk9v4bUYPvrLWfXyPrsIjIebIsSta+TvGL/QnO3kmGFcYDYY8wYvJzKisiYpTNZuMPv7+B10P+CED48v8j78evDKc6kwqLSE0ryiHn7etxfDkZH6uIJc6OvNP13/z19ltoEhlgOp2ICL7edq64+SE+tw/CjgvbRzdQemSb6VgVqLCI1CDrUAo5z/QieOcnlFpePGebgGvCh9xxZR98vPXXT0TcR4MQP1peN4v1VhsCrHyy5oyBghOmY5XTO6ZITbAsipa/iPOVQQTnp3HQiuT/GjzJ2KlPM6CtLvApIu6pXXwDsq54jQNWFJFF+zn86jhwlpqOBaiwiFS/ghNkvX4NvgvuwdsqYYEriXm93uevt95AwxA/0+lERH7VJcntWZb0DPmWL7HHVnL4g9obwP01Kiwi1cjav4acZ3oSuvdrii07M+03EH79B9w8NBm7ltcXEQ8x9ooRvN3ofgBit83l2JJXDSdSYRGpHi4X+Qufxjn7MoILD7PP1ZAnGj/HdXf+g+Tm538JChERE2w2G9de/yf+HTABgJDv7yZ/51KjmVRYRC5UXiYnZ48iYPGDeOPkS1dPVgz6mPtuGk9YgI/pdCIi58XPYWfQ/z7Jd7aeOCil9J1rcR7fZyyPCovIBXDuXkruMxcTdnAxhZaDp3xvo9n/vsu4fh21vL6IeLzo0AAa/n4OW61m+DrzWLZskbEsVbpas4ic4nKSM38GgaueIggXP7ni+LTVI9xy9UgCffXXSkTqjo4JcSy4bDbL9+7m+hFjjOXQO6tIVWUf5sRb1xGesQqAj60BeF/xBNO7tTYcTESkZgzumQw9k41mUGERqYLi7fMp+eCPhJeeIM/yZVbwbVx13XSaRwWajiYiUqepsIicC2cJWV8+QOiGf+EDbHU15fuOj/Gn/xmKr7eusCwiUtNUWER+y8k0jr/xeyKOpwDwHkOJ+t2T/KmjLlooIlJbVFhEfkXRj5/h/ORWIpw5ZFv+vBI+jfHX305sqL/paCIi9YoKi0hlSos4/uk9RPw4B4AUVwvWd3uKO4b3x9uu1QBERGqbCovIf7GO7eL46xOIzE4F4N9eI2kx/nFubB1rOJmISP2lwiLyC/nr38P2xRQirXyOW0G8EX0PE//wv0QEasVaERGTVFhEco9StOVzstd/SIOM5QCsdbVlZ9+Z3DHoYq1YKyLiBlRYpH46sY/8H/5D3qZPiTy+AV8sGgAuy8abPmPo8vvHGN8kynRKERE5RYVF6gfLgqPbyd74McU/fkZUTioBQMCpb29yJbDSpxe0H8mEYZcQ7OcwmVZERP6LCovUXZaFdXA9J9Z/jG3b54QXpBFy6ltOy8YaVztSgnrjaD+SXl0787+xwfr4R0TETamwSN3iLMW1dzmZ6z7Cb9dXhBRnEHHqW0WWN8tcHdke3p+Qi66gX+dEekYG/OrDiYiIe1BhEc9XUkjJzu84tu5jgvctINCZRcNT38q1/FhidWZfw0tp0OVy+ndqwaXBvkbjiohI1amwiGcqzKYw9WtOrPuI8MOL8XMVEHPqW8etIBbRjYzGg4lPGk6/xMYM10yKiIhHU2ERz5F7lNwfPiN74yc0OLoKP0o4vZTbISuCJV4Xk938Mlp3G8yIVtG6KKGISB2iwiLu7eR+Tmz4mMIf/kP0yY0E4SLo1Ld2uWJZ4dOLklbD6dR9IL9rGoHdS0OzIiJ1kQrLb9jzxRM48jMIbNSW0Ebt8GrQGgIiQWeT1BgrYxuZaz/ElfoF0bmphP/iez+4mpMS2Adb4ki6dbuYa6N1Zo+ISH2gwvIbXJveo3HJTtj687Y8r2CyAppSEpaAI7oNofGJBMa2hYgEcPiZC+upLAvXgQ0cWfMhjp1fEFWYRoNT33JZNtZabdgW1h+/jlfSK6kLEyN0Zo+ISH2jwvIbNjT4H344uoUGRWk0sx0mjmMEunIIzP0Rcn+EA8D6sn1d2DjpiCE3uBlWREsCYtsQFt8eR3RrCI4DL13lt5yzlOI9y8lY8wFBe74hrCSjfB6l2LKz0urI3oaXENb5Svp0bkePIJ3ZIyJSn9ksy7JMh6gO2dnZhIaGkpWVRUhIyG/foYpKnS4OnChgb3omx9NSKTyyA6/jPxGSt5e40gMk2A4TYss/6/2LbH6c8IunMDQBe4NWBDdqR2jjdtiiWoFf9ed1SyWFFOz4nqNrPiDiwLcEObPLv5Vn+bLc1oX0uMHEJI+kd/sEAn3Vp0VE6rpz/f2twlINcotK2Xs0l/0H08g5kEppxk58s3YTXrCPptZBmtgycNicZ71/tj2c7MBmlIa3xCe6NWHx7QiIbQfhTcHuhqfjOkuhKBsKs6AwC1dBFoW5JyjKPUFx3glK8rJwFZzEOvV9e3E29uIcwgrS8LcKyh/mhBXEMq9unGw6lObdL6d760b4eOsolIhIfaLC4gYsy+JoThG7jmSRuX8HeYdSsR3bRUDOHhoUp5FgO0xD28mz3r8UO8d9G1EQ3AwrshUBcW2JiG+Hd8M2ENjg/AZ/LQtK8qGwrHBYhVkU552gMKescJTkn8SZfxJXQVnZsBXl4F2SjaMkG5/SPPycOfhZhef9mhy2IljlczEFLYbT9uLL6NwkCi+d2SMiUm+psLi54lIX+0/ks+/QEU7u30px+nbsJ3cTmreXRs4DNLelE2ArOuv9822BnAhoSnFoAvYGrfGPaERJQTal+Sd/cXQjG3txNt4lufiU5uBXmoOfKw9vzn60pyryLV9y8CfbCiSbAHIJoMAeRLE9iGLvYJw+wTh9QrB8Q/DyD8MnPJZOSX1oGR2iM3tERARQYTEd54JkF5awJyOHwwf2kHNgK67Mnfhl7Sa8cD/NrIM0tmXiZbuwPzanZSObQHIs/7L/JYB8r0CKTpWNEkcwLp8QLN9g8AvF7h+KPSAMR2A4vkER+AeHERTgT4i/g2A/b0L8HPh6e6mIiIhIlZzr729NNbqhED8HFzWJ4KImEUBS+XbLskjPLmR1+nGOpm2j8PB2bMd3EpS7l8CSExTaAyn2DqLEO5hSn2Asn1Asv2Bs/mHY/UNPlY0w/ILCCQwKJdjfh2A/b5r5Owj0satsiIiI21Jh8SA2m43YUH9iQxtBm0bApaYjiYiI1AqdkiEiIiJuT4VFRERE3J4Ki4iIiLg9FRYRERFxeyosIiIi4vZUWERERMTtqbCIiIiI21NhEREREbenwiIiIiJuT4VFRERE3J4Ki4iIiLg9FRYRERFxeyosIiIi4vZUWERERMTteZsOUF0sywIgOzvbcBIRERE5V6d/b5/+PX42daaw5OTkABAfH284iYiIiFRVTk4OoaGhZ/2+zfqtSuMhXC4Xhw4dIjg4GJvNZjpOrcrOziY+Pp79+/cTEhJiOo7H0utYPfQ6Vg+9jtVDr2P1qMnX0bIscnJyiIuLw8vr7JMqdeYIi5eXF40bNzYdw6iQkBD9hawGeh2rh17H6qHXsXrodaweNfU6/tqRldM0dCsiIiJuT4VFRERE3J4KSx3g6+vLAw88gK+vr+koHk2vY/XQ61g99DpWD72O1cMdXsc6M3QrIiIidZeOsIiIiIjbU2ERERERt6fCIiIiIm5PhUVERETcngqLB5sxYwbdunUjODiYhg0bMmrUKLZv3246lkebMWMGNpuNKVOmmI7ikQ4ePMi1115LZGQkAQEBdO7cmfXr15uO5VFKS0v5y1/+QvPmzfH39ychIYGHHnoIl8tlOppbW7JkCVdccQVxcXHYbDY+/fTTCt+3LIu///3vxMXF4e/vz4ABA9iyZYuZsG7s117HkpIS7r77bjp27EhgYCBxcXFMnDiRQ4cO1Uo2FRYPtnjxYm677TZWrVrFggULKC0tZciQIeTl5ZmO5pHWrl3Lyy+/TKdOnUxH8UgnTpygd+/eOBwOvvrqK7Zu3cpTTz1FWFiY6Wge5R//+AezZs3i+eefJzU1lccff5wnnniC5557znQ0t5aXl8dFF13E888/X+n3H3/8cZ5++mmef/551q5dS0xMDIMHDy6/Dp2U+bXXMT8/nw0bNvDXv/6VDRs28PHHH7Njxw5GjhxZO+EsqTMyMjIswFq8eLHpKB4nJyfHatWqlbVgwQKrf//+1h133GE6kse5++67rT59+piO4fFGjBhh3XDDDRW2XXXVVda1115rKJHnAaxPPvmk/GuXy2XFxMRYjz32WPm2wsJCKzQ01Jo1a5aBhJ7hv1/HyqxZs8YCrH379tV4Hh1hqUOysrIAiIiIMJzE89x2222MGDGCQYMGmY7isT777DOSk5P53e9+R8OGDenSpQuvvPKK6Vgep0+fPnz33Xfs2LEDgE2bNrFs2TKGDx9uOJnn2rNnD+np6QwZMqR8m6+vL/3792fFihUGk3m+rKwsbDZbrRxJrTMXP6zvLMti2rRp9OnThw4dOpiO41HeffddNmzYwNq1a01H8Wi7d+/mxRdfZNq0adx3332sWbOGyZMn4+vry8SJE03H8xh33303WVlZtG3bFrvdjtPp5JFHHmHcuHGmo3ms9PR0AKKjoytsj46OZt++fSYi1QmFhYXcc889jB8/vlYuLKnCUkf86U9/4ocffmDZsmWmo3iU/fv3c8cddzB//nz8/PxMx/FoLpeL5ORkHn30UQC6dOnCli1bePHFF1VYquC9997jrbfe4u2336Z9+/akpKQwZcoU4uLi+MMf/mA6nkez2WwVvrYs64xtcm5KSkq45pprcLlcvPDCC7XyM1VY6oDbb7+dzz77jCVLltC4cWPTcTzK+vXrycjIICkpqXyb0+lkyZIlPP/88xQVFWG32w0m9ByxsbEkJiZW2NauXTs++ugjQ4k801133cU999zDNddcA0DHjh3Zt28fM2bMUGE5TzExMUDZkZbY2Njy7RkZGWccdZHfVlJSwtVXX82ePXv4/vvva+XoCugsIY9mWRZ/+tOf+Pjjj/n+++9p3ry56Uge59JLL2Xz5s2kpKSU35KTk5kwYQIpKSkqK1XQu3fvM06r37FjB02bNjWUyDPl5+fj5VXxrdlut+u05gvQvHlzYmJiWLBgQfm24uJiFi9eTK9evQwm8zyny8rOnTv59ttviYyMrLWfrSMsHuy2227j7bff5j//+Q/BwcHln9OGhobi7+9vOJ1nCA4OPmPmJzAwkMjISM0CVdHUqVPp1asXjz76KFdffTVr1qzh5Zdf5uWXXzYdzaNcccUVPPLIIzRp0oT27duzceNGnn76aW644QbT0dxabm4uP/30U/nXe/bsISUlhYiICJo0acKUKVN49NFHadWqFa1ateLRRx8lICCA8ePHG0ztfn7tdYyLi2PMmDFs2LCBL774AqfTWf57JyIiAh8fn5oNV+PnIUmNASq9vfbaa6ajeTSd1nz+Pv/8c6tDhw6Wr6+v1bZtW+vll182HcnjZGdnW3fccYfVpEkTy8/Pz0pISLDuv/9+q6ioyHQ0t7Zw4cJK3w//8Ic/WJZVdmrzAw88YMXExFi+vr5Wv379rM2bN5sN7YZ+7XXcs2fPWX/vLFy4sMaz2SzLsmq2EomIiIhcGM2wiIiIiNtTYRERERG3p8IiIiIibk+FRURERNyeCouIiIi4PRUWERERcXsqLCIiIuL2VFhERETE7amwiIgxixYtwmazcfLkSdNRRMTNaaVbEak1AwYMoHPnzsycORMouwDd8ePHiY6OxmazmQ0nIm5NFz8UEWN8fHyIiYkxHUNEPIA+EhKRWnHdddexePFinnnmGWw2Gzabjblz51b4SGju3LmEhYXxxRdf0KZNGwICAhgzZgx5eXm8/vrrNGvWjPDwcG6//XacTmf5YxcXF/PnP/+ZRo0aERgYSI8ePVi0aJGZJyoiNUJHWESkVjzzzDPs2LGDDh068NBDDwGwZcuWM/bLz8/n2Wef5d133yUnJ4errrqKq666irCwMObNm8fu3bsZPXo0ffr0YezYsQBcf/317N27l3fffZe4uDg++eQTLrvsMjZv3kyrVq1q9XmKSM1QYRGRWhEaGoqPjw8BAQHlHwNt27btjP1KSkp48cUXadGiBQBjxozhzTff5MiRIwQFBZGYmMjAgQNZuHAhY8eOZdeuXbzzzjscOHCAuLg4AKZPn87XX3/Na6+9xqOPPlp7T1JEaowKi4i4lYCAgPKyAhAdHU2zZs0ICgqqsC0jIwOADRs2YFkWrVu3rvA4RUVFREZG1k5oEalxKiwi4lYcDkeFr202W6XbXC4XAC6XC7vdzvr167Hb7RX2+2XJERHPpsIiIrXGx8enwrBsdejSpQtOp5OMjAz69u1brY8tIu5DZwmJSK1p1qwZq1evZu/evWRmZpYfJbkQrVu3ZsKECUycOJGPP/6YPXv2sHbtWv7xj38wb968akgtIu5AhUVEas306dOx2+0kJibSoEED0tLSquVxX3vtNSZOnMidd95JmzZtGDlyJKtXryY+Pr5aHl9EzNNKtyIiIuL2dIRFRERE3J4Ki4iIiLg9FRYRERFxeyosIiIi4vZUWERERMTtqbCIiIiI21NhEREREbenwiIiIiJuT4VFRERE3J4Ki4iIiLg9FRYRERFxe/8PYraCJ8f45NEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "(bbox_landfrac_rC*bbox_var_r).sum(['lat','lon']).plot(label='dest mask')\n", + "(bbox_landfrac_rB*bbox_var_r).sum(['lat','lon']).plot(label='no mask')\n", + "plt.legend();" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "5fa74a76-d239-4155-a123-3deadd3cbec5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "6683227.0\n", + "6630415.0\n" + ] + } + ], + "source": [ + " print((bbox_area_r * bbox_landfrac_r).sum().values)\n", + " print((bbox_area * bbox_landfrac).sum().values)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "db8184cd-e3a6-4585-9eec-ead1704ec0f6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'/glade/campaign/cesm/cesmdata/inputdata/share/meshes/ne30pg3_ESMFmesh_cdf5_c20211018.nc'" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mesh0" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0a8b6931-dfd1-4c10-aace-fa24f93edf4f", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "NPL 2024b", + "language": "python", + "name": "npl-2024b" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/scripts/regridding/regrid_se_to_fv.py b/scripts/regridding/regrid_se_to_fv.py new file mode 100644 index 000000000..317d17ce0 --- /dev/null +++ b/scripts/regridding/regrid_se_to_fv.py @@ -0,0 +1,65 @@ +# Regrids unstructured SE grid to regular lat-lon +# Shamelessly borrowed from @maritsandstad with NorESM who deserves credit for this work +# https://github.com/NorESMhub/xesmf_clm_fates_diagnostic/blob/main/src/xesmf_clm_fates_diagnostic/plotting_methods.py + +import xarray as xr +import xesmf +import numpy as np + +def make_se_regridder(weight_file, s_data, d_data, + Method='coservative' + ): + weights = xr.open_dataset(weight_file) + in_shape = weights.src_grid_dims.load().data + + # Since xESMF expects 2D vars, we'll insert a dummy dimension of size-1 + if len(in_shape) == 1: + in_shape = [1, in_shape.item()] + + # output variable shape + out_shape = weights.dst_grid_dims.load().data.tolist()[::-1] + + dummy_in = xr.Dataset( + { + "lat": ("lat", np.empty((in_shape[0],))), + "lon": ("lon", np.empty((in_shape[1],))), + } + ) + dummy_out = xr.Dataset( + { + "lat": ("lat", weights.yc_b.data.reshape(out_shape)[:, 0]), + "lon": ("lon", weights.xc_b.data.reshape(out_shape)[0, :]), + } + ) + # Hard code masks for now + s_mask = xr.DataArray(s_data.data.reshape(in_shape[0],in_shape[1]), dims=("lat", "lon")) + dummy_in['mask']= s_mask + + d_mask = xr.DataArray(d_data.values, dims=("lat", "lon")) + dummy_out['mask']= d_mask + + # do source and destination grids need masks here? + # See xesmf docs https://xesmf.readthedocs.io/en/stable/notebooks/Masking.html#Regridding-with-a-mask + regridder = xesmf.Regridder( + dummy_in, + dummy_out, + weights=weight_file, + # results seem insensitive to this method choice + # choices are coservative_normed, coservative, and bilinear + method=Method, + reuse_weights=True, + periodic=True, + ) + return regridder + +def regrid_se_data_bilinear(regridder, data_to_regrid): + updated = data_to_regrid.copy().transpose(..., "lndgrid").expand_dims("dummy", axis=-2) + regridded = regridder(updated.rename({"dummy": "lat", "lndgrid": "lon"}), + skipna=True, na_thres=1, + ) + return regridded + +def regrid_se_data_conservative(regridder, data_to_regrid): + updated = data_to_regrid.copy().transpose(..., "lndgrid").expand_dims("dummy", axis=-2) + regridded = regridder(updated.rename({"dummy": "lat", "lndgrid": "lon"}) ) + return regridded \ No newline at end of file From 3917a4ef7aefc4d8b5ac2f74378651e75fde095d Mon Sep 17 00:00:00 2001 From: wwieder Date: Wed, 22 Jan 2025 14:59:33 -0700 Subject: [PATCH 25/59] append additional variables to timeseries files --- lib/adf_diag.py | 26 ++++++++++++++++++++++++-- 1 file changed, 24 insertions(+), 2 deletions(-) diff --git a/lib/adf_diag.py b/lib/adf_diag.py index e222c7864..5fba1e3c7 100644 --- a/lib/adf_diag.py +++ b/lib/adf_diag.py @@ -714,19 +714,41 @@ def call_ncrcat(cmd): ts_outfil_str ] - # Step 3: Create the ncatted command to remove the history attribute + # Step 3a: Optional, add additional variables to clm2.h0 files + cmd_add_clm_h0_fields = [ + "ncks", "-A", "-v", "area,landfrac,landmask", + hist_files[0], + ts_outfil_str + ] + + # Step 3b: Optional, add additional variables to clm2.h1 files + cmd_add_clm_h1_fields = [ + "ncrcat", "-A", "-v", "pfts1d_ixy,pfts1d_jxy,pfts1d_itype_veg,lat,lon", + hist_files, + ts_outfil_str + ] + + # Step 3c: Create the ncatted command to remove the history attribute cmd_remove_history = [ "ncatted", "-O", "-h", "-a", "history,global,d,,", ts_outfil_str ] - + + # Add to command list for use in multi-processing pool: # ----------------------------------------------------- # generate time series files list_of_commands.append(cmd) # Add global attributes: user, original hist file loc(s) and all filenames list_of_ncattend_commands.append(cmd_ncatted) + + # TODO, add some logic to control if these are done + # add time invariant information to clm2.h0 fields + list_of_hist_commands.append(cmd_add_clm_h0_fields) + # add time varrying information to clm2.h1 fields + #list_of_hist_commands.append(cmd_add_clm_h1_fields) + # Remove the `history` attr that gets tacked on (for clean up) # NOTE: this may not be best practice, but it the history attr repeats # the files attrs so the global attrs become obtrusive... From 7494f5f228f35a935b5a57eb5d9c5cf690ae08df Mon Sep 17 00:00:00 2001 From: wwieder Date: Wed, 22 Jan 2025 15:43:08 -0700 Subject: [PATCH 26/59] TODO for climo or ts year control --- scripts/averaging/create_climo_files.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/scripts/averaging/create_climo_files.py b/scripts/averaging/create_climo_files.py index d90bfbe52..82ba0f43a 100644 --- a/scripts/averaging/create_climo_files.py +++ b/scripts/averaging/create_climo_files.py @@ -76,6 +76,7 @@ def create_climo_files(adf, clobber=False, search=None): overwrite = adf.get_cam_info("cam_overwrite_climo") #Extract simulation years: + #TODO, make this an option to be different from the time series start and end year? start_year = adf.climo_yrs["syears"] end_year = adf.climo_yrs["eyears"] @@ -284,4 +285,4 @@ def check_averaging_interval(syear_in, eyear_in): else: eyr = None #End if - return syr, eyr \ No newline at end of file + return syr, eyr From 4b2fbec64cd5cf29ee0e0a5567f0028dc9781310 Mon Sep 17 00:00:00 2001 From: wwieder Date: Thu, 23 Jan 2025 11:35:08 -0700 Subject: [PATCH 27/59] trying to avoid conda errors --- lib/adf_diag.py | 16 ++++++++++++++++ 1 file changed, 16 insertions(+) diff --git a/lib/adf_diag.py b/lib/adf_diag.py index 5fba1e3c7..9773c196e 100644 --- a/lib/adf_diag.py +++ b/lib/adf_diag.py @@ -67,6 +67,22 @@ print("Please install module, e.g. 'pip install Cartopy'.") sys.exit(1) +# Check if "uxarray" is present in python path: +try: + import uxarray as ux +except ImportError: + print("uxarray module does not exist in python path.") + print("Please install module, e.g. 'pip install uxarray'.") + sys.exit(1) + +# Check if "xesfm" is present in python path: +try: + import xesmf +except ImportError: + print("xesmf module does not exist in python path.") + print("Please install module, e.g. 'pip install xesmf'.") + sys.exit(1) + # pylint: enable=unused-import # +++++++++++++++++++++++++++++ From d3fe601346679c69a162d2ceb7d3029b91735b3e Mon Sep 17 00:00:00 2001 From: wwieder Date: Thu, 23 Jan 2025 11:35:36 -0700 Subject: [PATCH 28/59] adding spatial averaging for lnd --- lib/plotting_functions.py | 52 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 52 insertions(+) diff --git a/lib/plotting_functions.py b/lib/plotting_functions.py index 7605d2335..04cca7c17 100644 --- a/lib/plotting_functions.py +++ b/lib/plotting_functions.py @@ -409,6 +409,58 @@ def spatial_average(indata, weights=None, spatial_dims=None): return weighted.mean(dim=spatial_dims, keep_attrs=True) +# TODO, maybe just adapt the spatial average above? +# TODO, should there be some unit conversions for this defined in a variable dictionary? +def spatial_average_lnd(indata, weights, spatial_dims=None): + """Compute spatial average. + + Parameters + ---------- + indata : xr.DataArray + input data + weights xr.DataArray + weights (area * landfrac) + spatial_dims : list, optional + list of dimensions to average, see Notes for default behavior + + Returns + ------- + xr.DataArray + weighted average of `indata` + + Notes + ----- + weights are required + + Makes an attempt to identify the spatial variables when `spatial_dims` is None. + Will average over `ncol` if present, and then will check for `lat` and `lon`. + When none of those three are found, raise an AdfError. + """ + import warnings + + #Apply weights to input data: + weighted = indata*weights + + # we want to average over all non-time dimensions + if spatial_dims is None: + if 'lndgrid' in indata.dims: + spatial_dims = ['lndgrid'] + else: + spatial_dims = [dimname for dimname in indata.dims if (('lat' in dimname.lower()) or + ('lon' in dimname.lower()))] + + if not spatial_dims: + #Scripts using this function likely expect the horizontal dimensions + #to be removed via the application of the mean. So in order to avoid + #possibly unexpected behavior due to arrays being incorrectly dimensioned + #(which could be difficult to debug) the ADF should die here: + emsg = "spatial_average: No spatial dimensions were identified," + emsg += " so can not perform average." + raise AdfError(emsg) + + + return weighted.sum(dim=spatial_dims, keep_attrs=True) + def wgt_rmse(fld1, fld2, wgt): """Calculate the area-weighted RMSE. From bd32cf7bfb69812a0b2eeaa1e3e7dc40698fa374 Mon Sep 17 00:00:00 2001 From: wwieder Date: Thu, 23 Jan 2025 11:45:06 -0700 Subject: [PATCH 29/59] python environment issue: works with npl-2024a but not b --- lib/adf_diag.py | 12 ++++++++++-- 1 file changed, 10 insertions(+), 2 deletions(-) diff --git a/lib/adf_diag.py b/lib/adf_diag.py index 9773c196e..52e733a9a 100644 --- a/lib/adf_diag.py +++ b/lib/adf_diag.py @@ -75,9 +75,17 @@ print("Please install module, e.g. 'pip install uxarray'.") sys.exit(1) -# Check if "xesfm" is present in python path: +# Check if "esmpy" is present in python path: try: - import xesmf + import esmpy as esmpy +except ImportError: + print("xesmf module does not exist in python path.") + print("Please install module, e.g. 'pip install esmpy'.") + sys.exit(1) + +# Check if "xesmf" is present in python path: +try: + import xesmf as xesmf except ImportError: print("xesmf module does not exist in python path.") print("Please install module, e.g. 'pip install xesmf'.") From 82e8ce778095c17b6ae37d1934f5db8467126353 Mon Sep 17 00:00:00 2001 From: wwieder Date: Thu, 23 Jan 2025 12:45:16 -0700 Subject: [PATCH 30/59] more places to load ux.datasets --- lib/adf_dataset.py | 18 ++++++++++++++---- 1 file changed, 14 insertions(+), 4 deletions(-) diff --git a/lib/adf_dataset.py b/lib/adf_dataset.py index 071ddc3fe..cc79256bd 100644 --- a/lib/adf_dataset.py +++ b/lib/adf_dataset.py @@ -1,5 +1,6 @@ from pathlib import Path import xarray as xr +import uxarray as ux import warnings # use to warn user about missing files @@ -185,15 +186,22 @@ def load_climo_da(self, case, variablename): return self.load_da(fils, variablename, add_offset=add_offset, scale_factor=scale_factor) - def load_climo_file(self, case, variablename): - """Return Dataset for climo of variablename""" + def load_climo_file(self, case, variablename, grid='regular'): + """ + Return Dataset for climo of variablename + uses grid flag to determine if reading in a regular or unstructured grid + returns a xarry or uxarray dataset, respectively + """ fils = self.get_climo_file(case, variablename) if not fils: warnings.warn(f"WARNING: Did not find climo file for variable: {variablename}. Will try to skip.") return None - return self.load_dataset(fils) - + if grid == 'regular': + return self.load_dataset(fils) + elif grid == 'unstructured': + return self.load_ux_dataset(fils) + def get_climo_file(self, case, variablename): """Retrieve the climo file path(s) for variablename for a specific case.""" a = self.adf.get_cam_info("cam_climo_loc", required=True) # list of paths (could be multiple cases) @@ -296,6 +304,8 @@ def load_reference_regrid_da(self, case, field): # DataSet and DataArray load #--------------------------- + # TODO, make uxarray options fo all of these fuctions. + # What's the most robust way to handle this? # Load DataSet def load_dataset(self, fils): From 853a7a4e74c82d566eb045cb4c95e4ec104cbf7a Mon Sep 17 00:00:00 2001 From: wwieder Date: Thu, 23 Jan 2025 12:47:14 -0700 Subject: [PATCH 31/59] add ux function to open dataset --- lib/plotting_functions.py | 32 ++++++++++++++++++++++++++++++++ 1 file changed, 32 insertions(+) diff --git a/lib/plotting_functions.py b/lib/plotting_functions.py index 04cca7c17..f05014219 100644 --- a/lib/plotting_functions.py +++ b/lib/plotting_functions.py @@ -162,6 +162,38 @@ def load_dataset(fils): #End if #End def +def load_ux_dataset(fils, mesh=None): + """ + This method exists to get an uxarray Dataset from input file information that can be passed into the plotting methods. + + Parameters + ---------- + fils : list + strings or paths to input file(s) + + Returns + ------- + ux.Dataset + + Notes + ----- + When just one entry is provided, use `open_dataset`, otherwise `open_mfdatset` + """ + if mesh == None: + mesh = '/glade/campaign/cesm/cesmdata/inputdata/share/meshes/ne30pg3_ESMFmesh_cdf5_c20211018.nc' + warnings.warn(f"No mesh file provided, using defaults ne30pg3 mesh file") + + if len(fils) == 0: + warnings.warn(f"Input file list is empty.") + return None + elif len(fils) > 1: + return ux.open_mfdataset(mesh, fils) + else: + return ux.open_dataset(mesh, fils[0]) + #End if +#End def + + def use_this_norm(): """Just use the right normalization; avoids a deprecation warning.""" From fd624d00f3d288e4b84020fc15357cdc339e425f Mon Sep 17 00:00:00 2001 From: wwieder Date: Thu, 23 Jan 2025 12:50:24 -0700 Subject: [PATCH 32/59] changes to make work for land model results --- lib/adf_config.py | 2 +- scripts/analysis/amwg_table.py | 10 ++++++---- 2 files changed, 7 insertions(+), 5 deletions(-) diff --git a/lib/adf_config.py b/lib/adf_config.py index 61a8ba112..d470ba14d 100644 --- a/lib/adf_config.py +++ b/lib/adf_config.py @@ -21,7 +21,7 @@ import copy #+++++++++++++++++++++++++++++++++++++++++++++++++ -#import non-standard python modules, including ADF +#import non-standard python modules, including ADF: #+++++++++++++++++++++++++++++++++++++++++++++++++ import yaml diff --git a/scripts/analysis/amwg_table.py b/scripts/analysis/amwg_table.py index 0c21dbcdc..d3b16eef9 100644 --- a/scripts/analysis/amwg_table.py +++ b/scripts/analysis/amwg_table.py @@ -90,6 +90,7 @@ def amwg_table(adf): # in future, provide option to do multiple domains # They use 4 pre-defined domains: + # NOTE, this is likely not as critical for LMWG_table, and won't work we'll with unstructured data domains = {"global": (0, 360, -90, 90), "tropics": (0, 360, -20, 20), "southern": (0, 360, -90, -20), @@ -206,7 +207,7 @@ def amwg_table(adf): #Load model variable data from file: ds = pf.load_dataset(ts_files) data = ds[var] - + weights = ds.landfrac * ds.area #Extract units string, if available: if hasattr(data, 'units'): unit_str = data.units @@ -259,8 +260,9 @@ def amwg_table(adf): # flags that we have spatial dimensions # Note: that could be 'lev' which should trigger different behavior # Note: we should be able to handle (lat, lon) or (ncol,) cases, at least - data = pf.spatial_average(data) # changes data "in place" - + # data = pf.spatial_average(data) # changes data "in place" + data = pf.spatial_average_lnd(data,weights) # hard code for land + # TODO, make this optional for lmwg_tables of amwg_table # In order to get correct statistics, average to annual or seasonal data = pf.annual_mean(data, whole_years=True, time_name='time') @@ -362,7 +364,7 @@ def _get_row_vals(data): def _df_comp_table(adf, output_location, case_names): import pandas as pd - + # TODO, make this output an option for LMWG or AMWG table output_csv_file_comp = output_location / "amwg_table_comp.csv" # * * * * * * * * * * * * * * * * * * * * * * * * * * * * From 6369c1e08e8773fbe1988ad54067a24b8a5cd56f Mon Sep 17 00:00:00 2001 From: wwieder Date: Thu, 23 Jan 2025 12:52:06 -0700 Subject: [PATCH 33/59] hack to get timeseries plots to work with CAM history --- scripts/plotting/global_mean_timeseries.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scripts/plotting/global_mean_timeseries.py b/scripts/plotting/global_mean_timeseries.py index 6ecb2ddea..cd01e77a9 100644 --- a/scripts/plotting/global_mean_timeseries.py +++ b/scripts/plotting/global_mean_timeseries.py @@ -69,7 +69,7 @@ def global_mean_timeseries(adfobj): ref_ts_da = pf.annual_mean(ref_ts_da_ga, whole_years=True, time_name="time") # check if this is a "2-d" varaible: - has_lat_ref, has_lev_ref = pf.zm_validate_dims(ref_ts_da) + has_lev_ref = pf.zm_validate_dims(ref_ts_da) if has_lev_ref: print( f"Variable named {field} has a lev dimension, which does not work with this script." From 7b44d27fe5221c99a47c9379997aec347e76a1f0 Mon Sep 17 00:00:00 2001 From: wwieder Date: Thu, 23 Jan 2025 12:53:42 -0700 Subject: [PATCH 34/59] correcting clm config files --- ...2.yaml => config_clm_baseline_example.yaml | 225 +++++++--- config_clm_baseline_wwieder.yaml | 418 ------------------ 2 files changed, 165 insertions(+), 478 deletions(-) rename config_clm_baseline_wwieder2.yaml => config_clm_baseline_example.yaml (69%) delete mode 100644 config_clm_baseline_wwieder.yaml diff --git a/config_clm_baseline_wwieder2.yaml b/config_clm_baseline_example.yaml similarity index 69% rename from config_clm_baseline_wwieder2.yaml rename to config_clm_baseline_example.yaml index fbdf4d68c..d87e4a027 100644 --- a/config_clm_baseline_wwieder2.yaml +++ b/config_clm_baseline_example.yaml @@ -64,13 +64,6 @@ user: 'wwieder' #This first set of variables specify basic info used by all diagnostic runs: diag_basic_info: - #History file string to match (eg. cam.h0 or ocn.pop.h.ecosys.nday1) - # Only affects timeseries as everything else uses timeseries - # Leave off trailing '.' - #Default: cam.h0 - hist_str: clm2.h0 - #hist_str: cam.h0a - #Is this a model vs observations comparison? #If "false" or missing, then a model-model comparison is assumed: compare_obs: false @@ -85,7 +78,7 @@ diag_basic_info: #Location of observational datasets: #Note: this only matters if "compare_obs" is true and the path #isn't specified in the variable defaults file. - obs_data_loc: /glade/work/nusbaume/SE_projects/model_diagnostics/ADF_obs + obs_data_loc: /glade/campaign/cgd/amp/amwg/ADF_obs #Location where re-gridded and interpolated CAM climatology files are stored: cam_regrid_loc: /glade/derecho/scratch/${user}/ADF/regrid @@ -114,7 +107,7 @@ diag_basic_info: #Longitude line on which to center all lat/lon maps. #If this config option is missing then the central #longitude will default to 180 degrees E. - central_longitude: 180 + central_longitude: 0 #Number of processors on which to run the ADF. #If this config variable isn't present then @@ -131,6 +124,12 @@ diag_basic_info: #This second set of variables provides info for the CAM simulation(s) being diagnosed: diag_cam_climo: + # History file list of strings to match + # eg. cam.h0 or ocn.pop.h.ecosys.nday1 or hist_str: [cam.h2,cam.h0] + # Only affects timeseries as everything else uses the created timeseries + # Default: + hist_str: clm2.h0 + #Calculate climatologies? #If false, the climatology files will not be created: calc_cam_climo: true @@ -140,31 +139,31 @@ diag_cam_climo: cam_overwrite_climo: false #Name of CAM case (or CAM run name): - cam_case_name: b.e23_alpha17f.BLT1850.ne30_t232.093 + cam_case_name: b.e30_beta04.BLT1850.ne30_t232_wgx3.121 #Case nickname #NOTE: if nickname starts with '0' - nickname must be in quotes! # ie '026a' as opposed to 026a #If missing or left blank, will default to cam_case_name - case_nickname: '093' + case_nickname: '121' #Location of CAM history (h0) files: #Example test files cam_hist_loc: /glade/derecho/scratch/hannay/archive/${diag_cam_climo.cam_case_name}/lnd/hist - #cam_hist_loc: /glade/derecho/scratch/hannay/archive/${diag_cam_climo.cam_case_name}/atm/hist #Location of CAM climatologies (to be created and then used by this script) cam_climo_loc: /glade/derecho/scratch/${user}/ADF/${diag_cam_climo.cam_case_name}/climo + # TODO, should we be able to define ts_start_year and climo_start_year independently #model year when time series files should start: #Note: Leaving this entry blank will make time series # start at earliest available year. - start_year: + start_year: 10 #model year when time series files should end: #Note: Leaving this entry blank will make time series # end at latest available year. - end_year: + end_year: 14 #Do time series files exist? #If True, then diagnostics assumes that model files are already time series. @@ -184,6 +183,20 @@ diag_cam_climo: #Location where time series files are (or will be) stored: cam_ts_loc: /glade/derecho/scratch/${user}/ADF/${diag_cam_climo.cam_case_name}/ts + #TEM diagnostics + #--------------- + #TEM history file number + #If missing or blank, ADF will default to h4 + tem_hist_str: cam.h4 + + #Location where TEM files are stored: + #NOTE: If path not specified or commented out, TEM calculation/plots will be skipped! + cam_tem_loc: /glade/derecho/scratch/${user}/${diag_cam_climo.cam_case_name}/tem/ + + #Overwrite TEM files, if found? + #If set to false, then TEM creation will be skipped if files are found: + overwrite_tem: false + #---------------------- #You can alternatively provide a list of cases, which will make the ADF @@ -196,8 +209,8 @@ diag_cam_climo: #Also please note that config keywords cannot currently be used in list mode. #cam_case_name: - # - b.e20.BHIST.f09_g17.20thC.297_05 - # - b1850.f19_g17.validation_mct.004 + # - b.e23_alpha17f.BLT1850.ne30_t232.098 + # - b.e23_alpha17f.BLT1850.ne30_t232.095 #Case nickname #NOTE: if nickname starts with '0' - nickname must be in quotes! @@ -216,20 +229,20 @@ diag_cam_climo: # - false #cam_hist_loc: - # - /glade/p/cesm/ADF/b.e20.BHIST.f09_g17.20thC.297_05 - # - /glade/p/cesm/ADF/b1850.f19_g17.validation_mct.004 + # - /glade/campaign/cgd/amp/amwg/ADF_test_cases/b.e23_alpha17f.BLT1850.ne30_t232.098 + # - /glade/campaign/cgd/amp/amwg/ADF_test_cases/b.e23_alpha17f.BLT1850.ne30_t232.095 #cam_climo_loc: # - /some/where/you/want/to/have/climo_files/ #MUST EDIT! # - /the/same/or/some/other/climo/files/location #start_year: - # - 1990 - # - 90 + # - 10 + # - 10 #end_year: - # - 1999 - # - 99 + # - 14 + # - 14 #cam_ts_done: # - false @@ -247,6 +260,26 @@ diag_cam_climo: # - /some/where/you/want/to/have/time_series_files # - /same/or/different/place/you/want/files + #TEM diagnostics + #--------------- + #TEM history file number + #If missing or blank, ADF will default to h4 + #tem_hist_str: + # - cam.h4 + # - cam.h# + + #Location where TEM files are stored: + #NOTE: If path not specified or commented out, TEM calculation/plots will be skipped! + #cam_tem_loc: + # - /some/where/you/want/to/have/TEM_files/ + # - /same/or/different/place/you/want/TEM_files/ + + #Overwrite TEM files, if found? + #If set to false, then TEM creation will be skipped if files are found: + #overwrite_tem: + # - false + # - true + #---------------------- @@ -254,6 +287,12 @@ diag_cam_climo: #This only matters if "compare_obs" is false: diag_cam_baseline_climo: + # History file list of strings to match + # eg. cam.h0 or ocn.pop.h.ecosys.nday1 or hist_str: [cam.h2,cam.h0] + # Only affects timeseries as everything else uses the created timeseries + # Default: + hist_str: clm2.h0 + #Calculate cam baseline climatologies? #If false, the climatology files will not be created: calc_cam_climo: true @@ -263,18 +302,17 @@ diag_cam_baseline_climo: cam_overwrite_climo: false #Name of CAM baseline case: - cam_case_name: b.e23_alpha17f.BLT1850.ne30_t232.095 + cam_case_name: b.e30_beta04.BLT1850.ne30_t232_wgx3.120 #Baseline case nickname #NOTE: if nickname starts with '0' - nickname must be in quotes! # ie '026a' as opposed to 026a #If missing or left blank, will default to cam_case_name - case_nickname: '095' + case_nickname: '120' #Location of CAM baseline history (h0) files: #Example test files - cam_hist_loc: /glade/derecho/scratch/hannay/archive/${diag_cam_climo.cam_case_name}/lnd/hist - #cam_hist_loc: /glade/derecho/scratch/hannay/archive/${diag_cam_climo.cam_case_name}/atm/hist + cam_hist_loc: /glade/derecho/scratch/hannay/archive/${diag_cam_baseline_climo.cam_case_name}/lnd/hist #Location of baseline CAM climatologies: cam_climo_loc: /glade/derecho/scratch/${user}/ADF/${diag_cam_baseline_climo.cam_case_name}/climo @@ -282,12 +320,12 @@ diag_cam_baseline_climo: #model year when time series files should start: #Note: Leaving this entry blank will make time series # start at earliest available year. - start_year: + start_year: 10 #model year when time series files should end: #Note: Leaving this entry blank will make time series # end at latest available year. - end_year: + end_year: 14 #Do time series files need to be generated? #If True, then diagnostics assumes that model files are already time series. @@ -306,6 +344,21 @@ diag_cam_baseline_climo: #Location where time series files are (or will be) stored: cam_ts_loc: /glade/derecho/scratch/${user}/ADF/${diag_cam_baseline_climo.cam_case_name}/ts + #TEM diagnostics + #--------------- + #TEM history file number + #If missing or blank, ADF will default to h4 + tem_hist_str: cam.h4 + + #Location where TEM files are stored: + #NOTE: If path not specified or commented out, TEM calculation/plots will be skipped! + cam_tem_loc: /glade/derecho/scratch/${user}/${diag_cam_baseline_climo.cam_case_name}/tem/ + + #Overwrite TEM files, if found? + #If set to false, then TEM creation will be skipped if files are found: + overwrite_tem: false + + #This fourth set of variables provides settings for calling the Climate Variability # Diagnostics Package (CVDP). If cvdp_run is set to true the CVDP will be set up and # run in background mode, likely completing after the ADF has completed. @@ -324,11 +377,72 @@ diag_cvdp_info: cvdp_codebase_loc: /glade/u/home/asphilli/CESM-diagnostics/CVDP/Release/v5.2.0/ # Location where cvdp codebase will be copied to and diagnostic plots will be stored - cvdp_loc: /glade/scratch/asphilli/ADF-Sandbox/cvdp/ #MUST EDIT! + cvdp_loc: /glade/derecho/scratch/${user}/ADF/cvdp/ # tar up CVDP results? cvdp_tar: false +# This set of variables provides settings for calling NOAA's +# Model Diagnostic Task Force (MDTF) diagnostic package. +# https://github.com/NOAA-GFDL/MDTF-diagnostics +# +# If mdtf_run: true, the MDTF will be set up and +# run in background mode, likely completing after the ADF has completed. +# +# WARNING: This currently only runs on CASPER (not derecho) +# +# The variables required depend on the diagnostics (PODs) selected. +# AMWG-developed PODS and their required variables: +# (Note that PRECT can be computed from PRECC & PRECL) +# - MJO_suite: daily PRECT, FLUT, U850, U200, V200 (all required) +# - Wheeler-Kiladis Wavenumber Frequency Spectra: daily PRECT, FLUT, U200, U850, OMEGA500 +# (will use what is available) +# - Blocking (Rich Neale): daily OMEGA500 +# - Precip Diurnal Cycle (Rich Neale): 3-hrly PRECT +# +# Many other diagnostics are available; see +# https://mdtf-diagnostics.readthedocs.io/en/main/sphinx/start_overview.html + +# +diag_mdtf_info: + # Run the MDTF on the model cases + mdtf_run: false + + # The file that will be written by ADF to input to MDTF. Call this whatever you want. + mdtf_input_settings_filename : mdtf_input.json + + ## MDTF code path, sets the location of the MDTF codebase and pre-compiled conda envs + # CHANGE if you have any: your own MDTF code, installed conda envs and/or obs_data + + mdtf_codebase_path : /glade/campaign/cgd/amp/amwg/mdtf + mdtf_codebase_loc : ${mdtf_codebase_path}/MDTF-diagnostics.v3.1.20230817.ADF + conda_root : /glade/u/apps/opt/conda + conda_env_root : ${mdtf_codebase_path}/miniconda2/envs.MDTFv3.1.20230412/ + OBS_DATA_ROOT : ${mdtf_codebase_path}/obs_data + + # SET this to a writable dir. The ADF will place ts files here for the MDTF to read (adds the casename) + MODEL_DATA_ROOT : ${diag_cam_climo.cam_ts_loc}/mdtf/inputdata/model + + # Choose diagnostics (PODs). Full list of available PODs: https://github.com/NOAA-GFDL/MDTF-diagnostics + pod_list : [ "MJO_suite" ] + + # Intermediate/output file settings + make_variab_tar: false # tar up MDTF results + save_ps : false # save postscript figures in addition to bitmaps + save_nc : false # save netCDF files of processed data (recommend true when starting with new model data) + overwrite: true # overwrite results in OUTPUT_DIR; otherwise results will be saved under a unique name + + # Settings used in debugging: + verbose : 3 # Log verbosity level. + test_mode: false # Set to true for framework test. Data is fetched but PODs are not run. + dry_run : false # Framework test. No external commands are run and no remote data is copied. Implies test_mode. + + # Settings that shouldn't change in ADF implementation for now + data_type : single_run # single_run or multi_run (only works with single right now) + data_manager : Local_File # Fetch data or it is local? + environment_manager : Conda # Manage dependencies + + #+++++++++++++++++++++++++++++++++++++++++++++++++++ #These variables below only matter if you are using @@ -355,33 +469,45 @@ regridding_scripts: #These scripts must be located in "scripts/analysis": analysis_scripts: - amwg_table + #- aerosol_gas_tables #List of plotting scripts being used. #These scripts must be located in "scripts/plotting": plotting_scripts: - - global_latlon_map + - global_unstructured_latlon_map + - global_mean_timeseries #- global_latlon_vect_map - - zonal_mean + #- zonal_mean #- meridional_mean - #- polar_map + - polar_map #- cam_taylor_diagram #- qbo + #- ozone_diagnostics #- tape_recorder - #- tem #To plot TEM, please un-comment fill-out - #the "tem_info" section below + #- tem #- regional_map_multicase #To use this please un-comment and fill-out #the "region_multicase" section below #List of CAM variables that will be processesd: #If CVDP is to be run PSL, TREFHT, TS and PRECT (or PRECC and PRECL) should be listed diag_var_list: - #- SWCF - #- LWCF - - SNOWDP - - TSA + - ELAI + - GPP + - FSDS + - ALTMAX # - +# MDTF recommended variables +# - FLUT +# - OMEGA500 +# - PRECT +# - PS +# - PSL +# - U200 +# - U850 +# - V200 +# - V850 + # Options for multi-case regional contour plots (./plotting/regional_map_multicase.py) # region_multicase: # region_spec: [slat, nlat, wlon, elon] @@ -394,25 +520,4 @@ diag_var_list: # region_season: # region_variables: -# Options for TEM diagnostics (./averaging/create_TEM_files.py and ./plotting/temp.py) -#tem_info: - #Location where TEM files are stored: - #If path not specified or commented out, TEM calculation/plots will be skipped -# tem_loc: /glade/scratch/richling/adf-output/ADF-data/TEM/ - - #TEM history file number - #If missing or blank, ADF will default to h4 -# hist_num: h4 - - #Overwrite TEM files, if found? - #If set to false, then TEM creation will be skipped if files are found: -# overwrite_tem_case: false - - #For multi-case - #overwrite_tem_case: - # - false - # - true - -# overwrite_tem_base: false - #END OF FILE diff --git a/config_clm_baseline_wwieder.yaml b/config_clm_baseline_wwieder.yaml deleted file mode 100644 index 5f25d509f..000000000 --- a/config_clm_baseline_wwieder.yaml +++ /dev/null @@ -1,418 +0,0 @@ -#============================== -#config_cam_baseline_example.yaml - -#This is the main CAM diagnostics config file -#for doing comparisons of a CAM run against -#another CAM run, or a CAM baseline simulation. - -#Currently, if one is on NCAR's Casper or -#Cheyenne machine, then only the diagnostic output -#paths are needed, at least to perform a quick test -#run (these are indicated with "MUST EDIT" comments). -#Running these diagnostics on a different machine, -#or with a different, non-example simulation, will -#require additional modifications. -# -#Config file Keywords: -#-------------------- -# -#1. Using ${xxx} will substitute that text with the -# variable referenced by xxx. For example: -# -# cam_case_name: cool_run -# cam_climo_loc: /some/where/${cam_case_name} -# -# will set "cam_climo_loc" in the diagnostics package to: -# /some/where/cool_run -# -# Please note that currently this will only work if the -# variable only exists in one location in the file. -# -#2. Using ${.xxx} will do the same as -# keyword 1 above, but specifies which sub-section the -# variable is coming from, which is necessary for variables -# that are repeated in different subsections. For example: -# -# diag_basic_info: -# cam_climo_loc: /some/where/${diag_cam_climo.start_year} -# -# diag_cam_climo: -# start_year: 1850 -# -# will set "cam_climo_loc" in the diagnostics package to: -# /some/where/1850 -# -#Finally, please note that for both 1 and 2 the keywords must be lowercase. -#This is because future developments will hopefully use other keywords -#that are uppercase. Also please avoid using periods (".") in variable -#names, as this will likely cause issues with the current file parsing -#system. -#-------------------- -# -##============================== -# -# This file doesn't (yet) read environment variables, so the user must -# set this themselves. It is also a good idea to search the doc for 'user' -# to see what default paths are being set for output/working files. -# -# Note that the string 'USER-NAME-NOT-SET' is used in the jupyter script -# to check for a failure to customize -# -user: 'wwieder' - - -#This first set of variables specify basic info used by all diagnostic runs: -diag_basic_info: - - #History file string to match (eg. cam.h0 or ocn.pop.h.ecosys.nday1) - # Only affects timeseries as everything else uses timeseries - # Leave off trailing '.' - #Default: cam.h0 - #hist_str: clm.h0 - hist_str: cam.h0a - - #Is this a model vs observations comparison? - #If "false" or missing, then a model-model comparison is assumed: - compare_obs: false - - #Generate HTML website (assumed false if missing): - #Note: The website files themselves will be located in the path - #specified by "cam_diag_plot_loc", under the "/website" subdirectory, - #where "" is the subdirectory created for this particular diagnostics run - #(usually "case_vs_obs_XXX" or "case_vs_baseline_XXX"). - create_html: true - - #Location of observational datasets: - #Note: this only matters if "compare_obs" is true and the path - #isn't specified in the variable defaults file. - obs_data_loc: /glade/work/nusbaume/SE_projects/model_diagnostics/ADF_obs - - #Location where re-gridded and interpolated CAM climatology files are stored: - cam_regrid_loc: /glade/derecho/scratch/${user}/ADF/regrid - - #Overwrite CAM re-gridded files? - #If false, or missing, then regridding will be skipped for regridded variables - #that already exist in "cam_regrid_loc": - cam_overwrite_regrid: false - - #Location where diagnostic plots are stored: - cam_diag_plot_loc: /glade/derecho/scratch/${user}/ADF/plots - - #Location of ADF variable plotting defaults YAML file: - #If left blank or missing, ADF/lib/adf_variable_defaults.yaml will be used - #Uncomment and change path for custom variable defaults file - #defaults_file: /some/path/to/defaults/file.yaml - - #Vertical pressure levels (in hPa) on which to plot 3-D variables - #when using horizontal (e.g. lat/lon) map projections. - #If this config option is missing, then no 3-D variables will be plotted on - #horizontal maps. Please note too that pressure levels must currently match - #what is available in the observations file in order to be plotted in a - #model vs obs run: - plot_press_levels: [200,850] - - #Longitude line on which to center all lat/lon maps. - #If this config option is missing then the central - #longitude will default to 180 degrees E. - central_longitude: 180 - - #Number of processors on which to run the ADF. - #If this config variable isn't present then - #the ADF defaults to one processor. Also, if - #you set it to "*" then it will default - #to all of the processors available on a - #single node/machine: - num_procs: 8 - - #If set to true, then redo all plots even if they already exist. - #If set to false, then if a plot is found it will be skipped: - redo_plot: false - -#This second set of variables provides info for the CAM simulation(s) being diagnosed: -diag_cam_climo: - - #Calculate climatologies? - #If false, the climatology files will not be created: - calc_cam_climo: true - - #Overwrite CAM climatology files? - #If false, or not prsent, then already existing climatology files will be skipped: - cam_overwrite_climo: false - - #Name of CAM case (or CAM run name): - cam_case_name: b.e23_alpha17f.BLT1850.ne30_t232.093 - - #Case nickname - #NOTE: if nickname starts with '0' - nickname must be in quotes! - # ie '026a' as opposed to 026a - #If missing or left blank, will default to cam_case_name - case_nickname: '093' - - #Location of CAM history (h0) files: - #Example test files - #cam_hist_loc: /glade/derecho/scratch/hannay/archive/${diag_cam_climo.cam_case_name}/lnd/hist - cam_hist_loc: /glade/derecho/scratch/hannay/archive/${diag_cam_climo.cam_case_name}/atm/hist - - #Location of CAM climatologies (to be created and then used by this script) - cam_climo_loc: /glade/derecho/scratch/${user}/ADF/${diag_cam_climo.cam_case_name}/climo - - #model year when time series files should start: - #Note: Leaving this entry blank will make time series - # start at earliest available year. - start_year: - - #model year when time series files should end: - #Note: Leaving this entry blank will make time series - # end at latest available year. - end_year: - - #Do time series files exist? - #If True, then diagnostics assumes that model files are already time series. - #If False, or if simply not present, then diagnostics will attempt to create - #time series files from history (time-slice) files: - cam_ts_done: false - - #Save interim time series files? - #WARNING: This can take up a significant amount of space, - # but will save processing time the next time - cam_ts_save: true - - #Overwrite time series files, if found? - #If set to false, then time series creation will be skipped if files are found: - cam_overwrite_ts: false - - #Location where time series files are (or will be) stored: - cam_ts_loc: /glade/derecho/scratch/${user}/ADF/${diag_cam_climo.cam_case_name}/ts - - #---------------------- - - #You can alternatively provide a list of cases, which will make the ADF - #apply the same diagnostics to each case separately in a single ADF session. - #All of the config variables below show how it is done, and are the only ones - #that need to be lists. This also automatically enables the generation of - #a "main_website" in "cam_diag_plot_loc" that brings all of the different cases - #together under a single website. - - #Also please note that config keywords cannot currently be used in list mode. - - #cam_case_name: - # - b.e20.BHIST.f09_g17.20thC.297_05 - # - b1850.f19_g17.validation_mct.004 - - #Case nickname - #NOTE: if nickname starts with '0' - nickname must be in quotes! - # ie '026a' as opposed to 026a - #If missing or left blank, will default to cam_case_name - #case_nickname: - # - cool nickname - # - cool nickname 2 - - #calc_cam_climo: - # - true - # - true - - #cam_overwrite_climo: - # - false - # - false - - #cam_hist_loc: - # - /glade/p/cesm/ADF/b.e20.BHIST.f09_g17.20thC.297_05 - # - /glade/p/cesm/ADF/b1850.f19_g17.validation_mct.004 - - #cam_climo_loc: - # - /some/where/you/want/to/have/climo_files/ #MUST EDIT! - # - /the/same/or/some/other/climo/files/location - - #start_year: - # - 1990 - # - 90 - - #end_year: - # - 1999 - # - 99 - - #cam_ts_done: - # - false - # - false - - #cam_ts_save: - # - true - # - true - - #cam_overwrite_ts: - # - false - # - false - - #cam_ts_loc: - # - /some/where/you/want/to/have/time_series_files - # - /same/or/different/place/you/want/files - - #---------------------- - - -#This third set of variables provide info for the CAM baseline climatologies. -#This only matters if "compare_obs" is false: -diag_cam_baseline_climo: - - #Calculate cam baseline climatologies? - #If false, the climatology files will not be created: - calc_cam_climo: true - - #Overwrite CAM climatology files? - #If false, or not present, then already existing climatology files will be skipped: - cam_overwrite_climo: false - - #Name of CAM baseline case: - cam_case_name: b.e23_alpha17f.BLT1850.ne30_t232.095 - - #Baseline case nickname - #NOTE: if nickname starts with '0' - nickname must be in quotes! - # ie '026a' as opposed to 026a - #If missing or left blank, will default to cam_case_name - case_nickname: '095' - - #Location of CAM baseline history (h0) files: - #Example test files - #cam_hist_loc: /glade/derecho/scratch/hannay/archive/${diag_cam_climo.cam_case_name}/lnd/hist - cam_hist_loc: /glade/derecho/scratch/hannay/archive/${diag_cam_climo.cam_case_name}/atm/hist - - #Location of baseline CAM climatologies: - cam_climo_loc: /glade/derecho/scratch/${user}/ADF/${diag_cam_baseline_climo.cam_case_name}/climo - - #model year when time series files should start: - #Note: Leaving this entry blank will make time series - # start at earliest available year. - start_year: - - #model year when time series files should end: - #Note: Leaving this entry blank will make time series - # end at latest available year. - end_year: - - #Do time series files need to be generated? - #If True, then diagnostics assumes that model files are already time series. - #If False, or if simply not present, then diagnostics will attempt to create - #time series files from history (time-slice) files: - cam_ts_done: false - - #Save interim time series files for baseline run? - #WARNING: This can take up a significant amount of space: - cam_ts_save: true - - #Overwrite baseline time series files, if found? - #If set to false, then time series creation will be skipped if files are found: - cam_overwrite_ts: false - - #Location where time series files are (or will be) stored: - cam_ts_loc: /glade/derecho/scratch/${user}/ADF/${diag_cam_baseline_climo.cam_case_name}/ts - -#This fourth set of variables provides settings for calling the Climate Variability -# Diagnostics Package (CVDP). If cvdp_run is set to true the CVDP will be set up and -# run in background mode, likely completing after the ADF has completed. -# If CVDP is to be run PSL, TREFHT, TS and PRECT (or PRECC and PRECL) should be listed -# in the diag_var_list variable listing. -# For more CVDP information: https://www.cesm.ucar.edu/working_groups/CVC/cvdp/ -diag_cvdp_info: - - # Run the CVDP on the listed run(s)? - cvdp_run: false - - # CVDP code path, sets the location of the CVDP codebase - # CGD systems path = /home/asphilli/CESM-diagnostics/CVDP/Release/v5.2.0/ - # CISL systems path = /glade/u/home/asphilli/CESM-diagnostics/CVDP/Release/v5.2.0/ - # github location = https://github.com/NCAR/CVDP-ncl - cvdp_codebase_loc: /glade/u/home/asphilli/CESM-diagnostics/CVDP/Release/v5.2.0/ - - # Location where cvdp codebase will be copied to and diagnostic plots will be stored - cvdp_loc: /glade/scratch/asphilli/ADF-Sandbox/cvdp/ #MUST EDIT! - - # tar up CVDP results? - cvdp_tar: false - - -#+++++++++++++++++++++++++++++++++++++++++++++++++++ -#These variables below only matter if you are using -#a non-standard method, or are adding your own -#diagnostic scripts. -#+++++++++++++++++++++++++++++++++++++++++++++++++++ - -#Note: If you want to pass arguments to a particular script, you can -#do it like so (using the "averaging_example" script in this case): -# - {create_climo_files: {kwargs: {clobber: true}}} - -#Name of time-averaging scripts being used to generate climatologies. -#These scripts must be located in "scripts/averaging": -time_averaging_scripts: - - create_climo_files - #- create_TEM_files #To generate TEM files, please un-comment - -#Name of regridding scripts being used. -#These scripts must be located in "scripts/regridding": -regridding_scripts: - - regrid_and_vert_interp - -#List of analysis scripts being used. -#These scripts must be located in "scripts/analysis": -analysis_scripts: - - amwg_table - -#List of plotting scripts being used. -#These scripts must be located in "scripts/plotting": -plotting_scripts: - - global_latlon_map - #- global_latlon_vect_map - - zonal_mean - #- meridional_mean - #- polar_map - #- cam_taylor_diagram - #- qbo - #- tape_recorder - #- tem #To plot TEM, please un-comment fill-out - #the "tem_info" section below - #- regional_map_multicase #To use this please un-comment and fill-out - #the "region_multicase" section below - -#List of CAM variables that will be processesd: -#If CVDP is to be run PSL, TREFHT, TS and PRECT (or PRECC and PRECL) should be listed -diag_var_list: - - SWCF - - LWCF - #- SNOWDP - #- TSA - -# - -# Options for multi-case regional contour plots (./plotting/regional_map_multicase.py) -# region_multicase: -# region_spec: [slat, nlat, wlon, elon] -# region_time_option: # If calendar, will look for specified years. If zeroanchor will use a nyears starting from year_offset from the beginning of timeseries -# region_start_year: -# region_end_year: -# region_nyear: -# region_year_offset: -# region_month: -# region_season: -# region_variables: - -# Options for TEM diagnostics (./averaging/create_TEM_files.py and ./plotting/temp.py) -#tem_info: - #Location where TEM files are stored: - #If path not specified or commented out, TEM calculation/plots will be skipped -# tem_loc: /glade/scratch/richling/adf-output/ADF-data/TEM/ - - #TEM history file number - #If missing or blank, ADF will default to h4 -# hist_num: h4 - - #Overwrite TEM files, if found? - #If set to false, then TEM creation will be skipped if files are found: -# overwrite_tem_case: false - - #For multi-case - #overwrite_tem_case: - # - false - # - true - -# overwrite_tem_base: false - -#END OF FILE From bf47cc87a98bb48b7287c220f64fccb08c3cec2e Mon Sep 17 00:00:00 2001 From: wwieder Date: Thu, 23 Jan 2025 12:54:36 -0700 Subject: [PATCH 35/59] need help getting this to work --- .../global_unstructured_latlon_map.py | 929 ++++++++++++++++++ 1 file changed, 929 insertions(+) create mode 100644 scripts/plotting/global_unstructured_latlon_map.py diff --git a/scripts/plotting/global_unstructured_latlon_map.py b/scripts/plotting/global_unstructured_latlon_map.py new file mode 100644 index 000000000..9f58dd985 --- /dev/null +++ b/scripts/plotting/global_unstructured_latlon_map.py @@ -0,0 +1,929 @@ +""" +Generate global maps of 2-D fields + +Functions +--------- +global_latlon_map(adfobj) + use ADF object to make maps +my_formatwarning(msg, *args, **kwargs) + format warning messages + (private method) +plot_file_op + Check on status of output plot file. +""" +#Import standard modules: +import os +from pathlib import Path +import numpy as np +import xarray as xr +import xesmf as xe +import warnings # use to warn user about missing files. + +# Import plotting modules: +import matplotlib as mpl +import matplotlib.pyplot as plt + +import cartopy.crs as ccrs +import cartopy.feature as cfeature +from cartopy.util import add_cyclic_point +from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter +import plotting_functions as pf + +import uxarray as ux #need npl 2024a or later +import geoviews.feature as gf + +# Warnings +import warnings # use to warn user about missing files. +# - Format warning messages: +def my_formatwarning(msg, *args, **kwargs): + """Issue `msg` as warning.""" + return str(msg) + '\n' +warnings.formatwarning = my_formatwarning + +######### + +def global_unstructured_latlon_map(adfobj): + """ + This script/function is designed to generate global + 2-D lat/lon maps of model fields with continental overlays. + + uses uxarray to handle unstructured grids + also set up to read in raw climatology files (ne30 resolution) + + Parameters + ---------- + adfobj : AdfDiag + The diagnostics object that contains all the configuration information + + Returns + ------- + Does not return a value; produces plots and saves files. + + Notes + ----- + + It uses the AdfDiag object's methods to get necessary information. + Makes use of AdfDiag's data sub-class. + Explicitly accesses: + adfobj.diag_var_list + List of variables + adfobj.plot_location + output plot path + adfobj.climo_yrs + start and end climo years of the case(s), `syears` & `eyears` + start and end climo years of the reference, `syear_baseline` & `eyear_baseline` + adfobj.variable_defaults + dict of variable-specific plot preferences + adfobj.read_config_var + dict of basic info, `diag_basic_info` + Then use to check `plot_type` + adfobj.debug_log + Issues debug message + adfobj.add_website_data + Communicates information to the website generator + adfobj.compare_obs + Logical to determine if comparing to observations + + + The `plotting_functions` module is needed for: + pf.get_central_longitude() + determine central longitude for global plots + pf.lat_lon_validate_dims() TODO, remove this, or check for unstructured grid and mesh file + makes sure latitude and longitude are valid + pf.seasonal_mean() + calculate seasonal mean + pf.plot_map_and_save() + send information to make the plot and save the file + pf.zm_validate_dims() TODO, not necessary for land plots, but maybe keep for atmosphere + Checks on pressure level dimension + """ + + #Notify user that script has started: + print("\n Generating lat/lon maps...") + + # + # Use ADF api to get all necessary information + # + var_list = adfobj.diag_var_list + #Special ADF variable which contains the output paths for + #all generated plots and tables for each case: + plot_locations = adfobj.plot_location + + #Grab case years + syear_cases = adfobj.climo_yrs["syears"] + eyear_cases = adfobj.climo_yrs["eyears"] + + #Grab baseline years (which may be empty strings if using Obs): + syear_baseline = adfobj.climo_yrs["syear_baseline"] + eyear_baseline = adfobj.climo_yrs["eyear_baseline"] + + res = adfobj.variable_defaults # will be dict of variable-specific plot preferences + # or an empty dictionary if use_defaults was not specified in YAML. + + #Set plot file type: + # -- this should be set in basic_info_dict, but is not required + # -- So check for it, and default to png + basic_info_dict = adfobj.read_config_var("diag_basic_info") + plot_type = basic_info_dict.get('plot_type', 'png') + print(f"\t NOTE: Plot type is set to {plot_type}") + + # check if existing plots need to be redone + redo_plot = adfobj.get_basic_info('redo_plot') + print(f"\t NOTE: redo_plot is set to {redo_plot}") + #----------------------------------------- + + #Determine if user wants to plot 3-D variables on + #pressure levels: + pres_levs = adfobj.get_basic_info("plot_press_levels") + + weight_season = True #always do seasonal weighting + + #Set seasonal ranges: + seasons = {"ANN": np.arange(1,13,1), + "DJF": [12, 1, 2], + "JJA": [6, 7, 8], + "MAM": [3, 4, 5], + "SON": [9, 10, 11] + } + + # probably want to do this one variable at a time: + for var in var_list: + if var not in adfobj.data.ref_var_nam: + dmsg = f"No reference data found for variable `{var}`, global lat/lon mean plotting skipped." + adfobj.debug_log(dmsg) + print(dmsg) + continue + + #Notify user of variable being plotted: + print("\t - lat/lon maps for {}".format(var)) + + # Check res for any variable specific options that need to be used BEFORE going to the plot: + if var in res: + vres = res[var] + #If found then notify user, assuming debug log is enabled: + adfobj.debug_log(f"global_latlon_map: Found variable defaults for {var}") + + #Extract category (if available): + web_category = vres.get("category", None) + + else: + vres = {} + web_category = None + #End if + + # For global maps, also set the central longitude: + # can be specified in adfobj basic info as 'central_longitude' or supplied as a number, + # otherwise defaults to 180 + vres['central_longitude'] = pf.get_central_longitude(adfobj) + + # load reference data (observational or baseline) + if not adfobj.compare_obs: + base_name = adfobj.data.ref_case_label + else: + base_name = adfobj.data.ref_labels[var] + + # Gather reference variable data + odata = adfobj.data.load_reference_grid_da(base_name, var) + + if odata is None: + dmsg = f"No regridded test file for {base_name} for variable `{var}`, global lat/lon mean plotting skipped." + adfobj.debug_log(dmsg) + continue + + o_has_dims = pf.validate_dims(odata, ["lat", "lon", "lev"]) # T iff dims are (lat,lon) -- can't plot unless we have both + if (not o_has_dims['has_lat']) or (not o_has_dims['has_lon']): + print(f"\t = skipping global map for {var} as REFERENCE does not have both lat and lon") + continue + + #Loop over model cases: + for case_idx, case_name in enumerate(adfobj.data.case_names): + + #Set case nickname: + case_nickname = adfobj.data.test_nicknames[case_idx] + + #Set output plot location: + plot_loc = Path(plot_locations[case_idx]) + + #Check if plot output directory exists, and if not, then create it: + if not plot_loc.is_dir(): + print(" {} not found, making new directory".format(plot_loc)) + plot_loc.mkdir(parents=True) + + #Load re-gridded model files: + mdata = adfobj.data.load_regrid_da(case_name, var) + + #Skip this variable/case if the regridded climo file doesn't exist: + if mdata is None: + dmsg = f"No regridded test file for {case_name} for variable `{var}`, global lat/lon mean plotting skipped." + adfobj.debug_log(dmsg) + continue + + #Determine dimensions of variable: + has_dims = pf.validate_dims(mdata, ["lat", "lon", "lev"]) + if (not has_dims['has_lat']) or (not has_dims['has_lon']): + print(f"\t = skipping global map for {var} for case {case_name} as it does not have both lat and lon") + continue + else: # i.e., has lat&lon + if (has_dims['has_lev']) and (not pres_levs): + print(f"\t - skipping global map for {var} as it has more than lev dimension, but no pressure levels were provided") + continue + + # Check output file. If file does not exist, proceed. + # If file exists: + # if redo_plot is true: delete it now and make plot + # if redo_plot is false: add to website and move on + doplot = {} + + if not has_dims['has_lev']: + for s in seasons: + plot_name = plot_loc / f"{var}_{s}_LatLon_Mean.{plot_type}" + doplot[plot_name] = plot_file_op(adfobj, plot_name, var, case_name, s, web_category, redo_plot, "LatLon") + else: + for pres in pres_levs: + for s in seasons: + plot_name = plot_loc / f"{var}_{pres}hpa_{s}_LatLon_Mean.{plot_type}" + doplot[plot_name] = plot_file_op(adfobj, plot_name, f"{var}_{pres}hpa", case_name, s, web_category, redo_plot, "LatLon") + if all(value is None for value in doplot.values()): + print(f"All plots exist for {var}. Redo is {redo_plot}. Existing plots added to website data. Continue.") + continue + + #Create new dictionaries: + mseasons = {} + oseasons = {} + dseasons = {} # hold the differences + pseasons = {} # hold percent change + + if not has_dims['has_lev']: # strictly 2-d data + + #Loop over season dictionary: + for s in seasons: + plot_name = plot_loc / f"{var}_{s}_LatLon_Mean.{plot_type}" + if doplot[plot_name] is None: + continue + + if weight_season: + mseasons[s] = pf.seasonal_mean(mdata, season=s, is_climo=True) + oseasons[s] = pf.seasonal_mean(odata, season=s, is_climo=True) + else: + #Just average months as-is: + mseasons[s] = mdata.sel(time=seasons[s]).mean(dim='time') + oseasons[s] = odata.sel(time=seasons[s]).mean(dim='time') + #End if + + # difference: each entry should be (lat, lon) + dseasons[s] = mseasons[s] - oseasons[s] + + # percent change + pseasons[s] = (mseasons[s] - oseasons[s]) / np.abs(oseasons[s]) * 100.0 #relative change + + pf.plot_map_and_save(plot_name, case_nickname, adfobj.data.ref_nickname, + [syear_cases[case_idx],eyear_cases[case_idx]], + [syear_baseline,eyear_baseline], + mseasons[s], oseasons[s], dseasons[s], pseasons[s], + obs=adfobj.compare_obs, **vres) + + #Add plot to website (if enabled): + adfobj.add_website_data(plot_name, var, case_name, category=web_category, + season=s, plot_type="LatLon") + + else: # => pres_levs has values, & we already checked that lev is in mdata (has_lev) + + for pres in pres_levs: + + #Check that the user-requested pressure level + #exists in the model data, which should already + #have been interpolated to the standard reference + #pressure levels: + if (not (pres in mdata['lev'])) or (not (pres in odata['lev'])): + print(f"plot_press_levels value '{pres}' not present in {var} [test: {(pres in mdata['lev'])}, ref: {pres in odata['lev']}], so skipping.") + continue + + #Loop over seasons: + for s in seasons: + plot_name = plot_loc / f"{var}_{pres}hpa_{s}_LatLon_Mean.{plot_type}" + if doplot[plot_name] is None: + continue + + if weight_season: + mseasons[s] = pf.seasonal_mean(mdata, season=s, is_climo=True) + oseasons[s] = pf.seasonal_mean(odata, season=s, is_climo=True) + else: + #Just average months as-is: + mseasons[s] = mdata.sel(time=seasons[s]).mean(dim='time') + oseasons[s] = odata.sel(time=seasons[s]).mean(dim='time') + #End if + + # difference: each entry should be (lat, lon) + dseasons[s] = mseasons[s] - oseasons[s] + + # percent change + pseasons[s] = (mseasons[s] - oseasons[s]) / np.abs(oseasons[s]) * 100.0 #relative change + + pf.plot_map_and_save(plot_name, case_nickname, adfobj.data.ref_nickname, + [syear_cases[case_idx],eyear_cases[case_idx]], + [syear_baseline,eyear_baseline], + mseasons[s].sel(lev=pres), oseasons[s].sel(lev=pres), dseasons[s].sel(lev=pres), + pseasons[s].sel(lev=pres), + obs=adfobj.compare_obs, **vres) + + #Add plot to website (if enabled): + adfobj.add_website_data(plot_name, f"{var}_{pres}hpa", case_name, category=web_category, + season=s, plot_type="LatLon") + #End for (seasons) + #End for (pressure levels) + #End if (plotting pressure levels) + #End for (case loop) + #End for (variable loop) + + # Check for AOD, and run the 4-panel diagnostics against MERRA and MODIS + if "AODVISdn" in var_list: + print("\tRunning AOD panel diagnostics against MERRA and MODIS...") + aod_latlon(adfobj) + + #Notify user that script has ended: + print(" ...lat/lon maps have been generated successfully.") + + +def plot_file_op(adfobj, plot_name, var, case_name, season, web_category, redo_plot, plot_type): + """Check if output plot needs to be made or remade. + + Parameters + ---------- + adfobj : AdfDiag + The diagnostics object that contains all the configuration information + + plot_name : Path + path of the output plot + + var : str + name of variable + + case_name : str + case name + + season : str + season being plotted + + web_category : str + the category for this variable + + redo_plot : bool + whether to overwrite existing plot with this file name + + plot_type : str + the file type for the output plot + + Returns + ------- + int, None + Returns 1 if existing file is removed or no existing file. + Returns None if file exists and redo_plot is False + + Notes + ----- + The long list of parameters is because add_website_data is called + when the file exists and will not be overwritten. + + """ + # Check redo_plot. If set to True: remove old plot, if it already exists: + if plot_name.is_file(): + if redo_plot: + plot_name.unlink() + return True + else: + #Add already-existing plot to website (if enabled): + adfobj.add_website_data(plot_name, var, case_name, category=web_category, + season=season, plot_type=plot_type) + return False # False tells caller that file exists and not to overwrite + else: + return True +######## + + +def aod_latlon(adfobj): + """ + Function to gather data and plot parameters to plot a panel plot of model vs observation + difference and percent difference. + + Calculate the seasonal means for DJF, MAM, JJA, SON for model and obs datasets + + NOTE: The model lat/lons must be on the same grid as the observations. If they are not, they will be + regridded to match both the MERRA and MODIS observation dataset using helper function 'regrid_to_obs' + + For details about spatial coordiantes of obs datasets, see /glade/campaign/cgd/amp/amwg/ADF_obs/: + - MERRA2_192x288_AOD_2001-2020_climo.nc + - MOD08_M3_192x288_AOD_2001-2020_climo.nc + """ + + var = "AODVISdn" + season_abbr = ['Dec-Jan-Feb', 'Mar-Apr-May', 'Jun-Jul-Aug', 'Sep-Oct-Nov'] + # Define a list of season labels + seasons = ['DJF', 'MAM', 'JJA', 'SON'] + + test_case_names = adfobj.get_cam_info('cam_case_name', required=True) + # load reference data (observational or baseline) + if not adfobj.compare_obs: + base_name = adfobj.data.ref_case_label + case_names = test_case_names + [base_name] + else: + case_names = test_case_names + + #Grab all case nickname(s) + test_nicknames = adfobj.case_nicknames["test_nicknames"] + base_nickname = adfobj.case_nicknames["base_nickname"] + case_nicknames = test_nicknames + [base_nickname] + + res = adfobj.variable_defaults # will be dict of variable-specific plot preferences + # or an empty dictionary if use_defaults was not specified in YAML. + res_aod_diags = res["aod_diags"] + plot_params = res_aod_diags["plot_params"] + plot_params_relerr = res_aod_diags["plot_params_relerr"] + + # Observational Datasets + #----------------------- + # Round lat/lons to 5 decimal places + # NOTE: this is neccessary due to small fluctuations in insignificant decimal places + # in lats/lons between models and these obs data sets. The model cases will also + # be rounded in turn. + obs_dir = adfobj.get_basic_info("obs_data_loc") + file_merra2 = os.path.join(obs_dir, 'MERRA2_192x288_AOD_2001-2020_climo.nc') + file_mod08_m3 = os.path.join(obs_dir, 'MOD08_M3_192x288_AOD_2001-2020_climo.nc') + + if (not Path(file_merra2).is_file()) or (not Path(file_mod08_m3).is_file()): + print("\t ** AOD Panel plots not made, missing MERRA2 and/or MODIS file") + return + + ds_merra2 = xr.open_dataset(file_merra2) + ds_merra2 = ds_merra2['TOTEXTTAU'] + ds_merra2['lon'] = ds_merra2['lon'].round(5) + ds_merra2['lat'] = ds_merra2['lat'].round(5) + + ds_mod08_m3 = xr.open_dataset(file_mod08_m3) + ds_mod08_m3 = ds_mod08_m3['AOD_550_Dark_Target_Deep_Blue_Combined_Mean_Mean'] + ds_mod08_m3['lon'] = ds_mod08_m3['lon'].round(5) + ds_mod08_m3['lat'] = ds_mod08_m3['lat'].round(5) + + ds_merra2_season = monthly_to_seasonal(ds_merra2) + ds_merra2_season['lon'] = ds_merra2_season['lon'].round(5) + ds_merra2_season['lat'] = ds_merra2_season['lat'].round(5) + + ds_mod08_m3_season = monthly_to_seasonal(ds_mod08_m3) + ds_mod08_m3_season['lon'] = ds_mod08_m3_season['lon'].round(5) + ds_mod08_m3_season['lat'] = ds_mod08_m3_season['lat'].round(5) + + ds_obs = [ds_mod08_m3_season, ds_merra2_season] + obs_lat_shape = ds_obs[0]['lat'].shape[0] + obs_lon_shape = ds_obs[0]['lon'].shape[0] + obs_titles = ["TERRA MODIS", "MERRA2"] + + # Model Case Datasets + #----------------------- + ds_cases = [] + + for case in test_case_names: + #Load re-gridded model files: + ds_case = adfobj.data.load_climo_da(case, var) + + #Skip this variable/case if the climo file doesn't exist: + if ds_case is None: + dmsg = f"No test climo file for {case} for variable `{var}`, global lat/lon plots skipped." + adfobj.debug_log(dmsg) + continue + else: + # Round lat/lons so they match obs + # NOTE: this is neccessary due to small fluctuations in insignificant decimal places + # that raise an error due to non-exact difference calculations. + # Rounding all datasets to 5 places ensures the proper difference calculation + ds_case['lon'] = ds_case['lon'].round(5) + ds_case['lat'] = ds_case['lat'].round(5) + case_lat_shape = ds_case['lat'].shape[0] + case_lon_shape = ds_case['lon'].shape[0] + + # Check if the lats/lons are same as the first supplied observation set + if case_lat_shape == obs_lat_shape: + case_lat = True + else: + err_msg = "AOD 4-panel plot:\n" + err_msg += f"\t The lat values don't match between obs and '{case}'\n" + err_msg += f"\t - {case} lat shape: {case_lat_shape} and " + err_msg += f"obs lat shape: {obs_lat_shape}" + adfobj.debug_log(err_msg) + print(err_msg) + case_lat = False + # End if + + if case_lon_shape == obs_lon_shape: + case_lon = True + else: + err_msg = "AOD 4-panel plot:\n" + err_msg += f"\t The lon values don't match between obs and '{case}'\n" + err_msg += f"\t - {case} lon shape: {case_lon_shape} and " + err_msg += f"obs lon shape: {obs_lon_shape}" + adfobj.debug_log(err_msg) + print(err_msg) + case_lon = False + # End if + + # Check to make sure spatial dimensions are compatible + if (case_lat) and (case_lon): + # Calculate seasonal means + ds_case_season = monthly_to_seasonal(ds_case) + ds_case_season['lon'] = ds_case_season['lon'].round(5) + ds_case_season['lat'] = ds_case_season['lat'].round(5) + ds_cases.append(ds_case_season) + else: + # Regrid the model data to obs + #NOTE: first argument is the model to be regridded, second is the obs + # to be regridded to + ds_case_regrid = regrid_to_obs(adfobj, ds_case, ds_obs[0]) + + ds_case_season = monthly_to_seasonal(ds_case_regrid) + ds_case_season['lon'] = ds_case_season['lon'].round(5) + ds_case_season['lat'] = ds_case_season['lat'].round(5) + ds_cases.append(ds_case_season) + # End if + # End if + + # load reference data (observational or baseline) + if not adfobj.compare_obs: + + # Get baseline case name + base_name = adfobj.data.ref_case_label + + # Gather reference variable data + ds_base = adfobj.data.load_reference_climo_da(base_name, var) + if ds_base is None: + dmsg = f"No baseline climo file for {base_name} for variable `{var}`, global lat/lon plots skipped." + adfobj.debug_log(dmsg) + else: + # Round lat/lons so they match obs + # NOTE: this is neccessary due to small fluctuations in insignificant decimal places + # that raise an error due to non-exact difference calculations. + # Rounding all datasets to 5 places ensures the proper difference calculation + ds_base['lon'] = ds_base['lon'].round(5) + ds_base['lat'] = ds_base['lat'].round(5) + base_lat_shape = ds_base['lat'].shape[0] + base_lon_shape = ds_base['lon'].shape[0] + + # Check if the lats/lons are same as the first supplied observation set + if base_lat_shape == obs_lat_shape: + base_lat = True + else: + err_msg = "AOD 4-panel plot:\n" + err_msg += f"\t The lat values don't match between obs and '{base_name}'\n" + err_msg += f"\t - {base_name} lat shape: {base_lat_shape} and " + err_msg += f"obs lat shape: {obs_lat_shape}" + adfobj.debug_log(err_msg) + print(err_msg) + base_lat = False + # End if + + if base_lon_shape == obs_lon_shape: + base_lon = True + else: + err_msg = "AOD 4-panel plot:\n" + err_msg += f"\t The lon values don't match between obs and '{base_name}'\n" + err_msg += f"\t - {base_name} lon shape: {base_lon_shape} and " + err_msg += f"obs lon shape: {obs_lon_shape}" + adfobj.debug_log(err_msg) + print(err_msg) + base_lon = False + # End if + + # Check to make sure spatial dimensions are compatible + if (base_lat) and (base_lon): + # Calculate seasonal means + ds_base_season = monthly_to_seasonal(ds_base) + ds_base_season['lon'] = ds_base_season['lon'].round(5) + ds_base_season['lat'] = ds_base_season['lat'].round(5) + ds_cases.append(ds_base_season) + else: + # Regrid the model data to obs + #NOTE: first argument is the model to be regridded, second is the obs + # to be regridded to + ds_base_regrid = regrid_to_obs(adfobj, ds_base, ds_obs[0]) + + ds_base_season = monthly_to_seasonal(ds_base_regrid) + ds_base_season['lon'] = ds_base_season['lon'].round(5) + ds_base_season['lat'] = ds_base_season['lat'].round(5) + ds_cases.append(ds_base_season) + # End if + # End if + # Number of relevant cases + case_num = len(ds_cases) + + # 4-Panel global lat/lon plots + #----------------------------- + # NOTE: This loops over all obs and available cases, so just + # make lists to keepo track of details for each case vs obs matchup + # Plots: + # - Difference of seasonal avg of case minus seasonal avg of observation + # - Percent Difference of seasonal avg of case minus seasonal avg of observation + + # Loop over each observation dataset first + for i_obs,ds_ob in enumerate(ds_obs): + for i_s,season in enumerate(seasons): + # Plot title list + plot_titles = [] + # Calculated data list + data = [] + # Plot parameter list + params = [] + # Plot type list, ie difference or percent difference + types = [] + # Model case name list + case_name_list = [] + + # Get observation short name + obs_name = obs_titles[i_obs] + + # Get seasonal abbriviation + chem_season = season_abbr[i_s] + + # Then loop over each available model case + for i_case,ds_case in enumerate(ds_cases): + case_nickname = case_nicknames[i_case] + + # Difference with obs + case_field = ds_case.sel(season=season) - ds_ob.sel(season=season) + plot_titles.append(f'{case_nickname} - {obs_name}\nAOD 550 nm - ' + chem_season) + data.append(case_field) + params.append(plot_params) + types.append("Diff") + case_name_list.append(case_names[i_case]) + + # Percent difference with obs + field_relerr = 100 * case_field / ds_ob.sel(season=season) + field_relerr = np.clip(field_relerr, -100, 100) + plot_titles.append(f'Percent Diff {case_nickname} - {obs_name}\nAOD 550 nm - ' + chem_season) + data.append(field_relerr) + params.append(plot_params_relerr) + types.append("Percent Diff") + case_name_list.append(case_names[i_case]) + # End for + + # Create 4-panel plot for season + aod_panel_latlon(adfobj, plot_titles, params, data, season, obs_name, case_name_list, case_num, types, symmetric=True) + # End for + # End for + + +######################################## +# Helper functions for AOD 4-panel plots +# ####################################### + +def monthly_to_seasonal(ds,obs=False): + ds_season = xr.Dataset( + coords={'lat': ds.coords['lat'], 'lon': ds.coords['lon'], + 'season': np.arange(4)}) + da_season = xr.DataArray( + coords=ds_season.coords, dims=['lat', 'lon', 'season']) + + # Create a list of DataArrays + dataarrays = [] + # Define a list of season labels + seasons = ['DJF', 'MAM', 'JJA', 'SON'] + + if obs: + for varname in ds: + if '_n' not in varname: + ds_season = xr.zeros_like(da_season) + for s in seasons: + dataarrays.append(pf.seasonal_mean(ds, season=s, is_climo=True)) + else: + for s in seasons: + dataarrays.append(pf.seasonal_mean(ds, season=s, is_climo=True)) + + # Use xr.concat to combine along a new 'season' dimension + ds_season = xr.concat(dataarrays, dim='season') + + # Assign the 'season' labels to the new 'season' dimension + ds_season['season'] = seasons + ds_season = ds_season.transpose('lat', 'lon', 'season') + + return ds_season +####### + + +def aod_panel_latlon(adfobj, plot_titles, plot_params, data, season, obs_name, case_name, case_num, types, symmetric=False): + """ + Function to plot a panel plot of model vs observation difference and percent difference + + This will be a 4-panel plot if model vs model run: + - Top left is test model minus obs + - Top right is baseline model minus obs + - Bottom left is test model minus obs percent difference + - Bottom right is baseline model minus obs percent difference + + This will be a 2-panel plot if model vs obs run: + - Top is test model minus obs + - Bottom is test model minus obs percent difference + + NOTE: Individual plots of the panel plots will be created and saved to plotting location(s) + but will not be published to the webpage (if enabled) + """ + #Set plot details: + # -- this should be set in basic_info_dict, but is not required + # -- So check for it, and default to png + basic_info_dict = adfobj.read_config_var("diag_basic_info") + file_type = basic_info_dict.get('plot_type', 'png') + plot_dir = adfobj.plot_location[0] + + # check if existing plots need to be redone + redo_plot = adfobj.get_basic_info('redo_plot') + + # Save the panel figure + plot_name = f'AOD_diff_{obs_name.replace(" ","_")}_{season}_LatLon_Mean.{file_type}' + plotfile = Path(plot_dir) / plot_name + + # Check redo_plot. If set to True: remove old plot, if it already exists: + if (not redo_plot) and plotfile.is_file(): + adfobj.debug_log(f"'{plotfile}' exists and clobber is false.") + #Add already-existing plot to website (if enabled): + adfobj.add_website_data(plotfile, f'AOD_diff_{obs_name.replace(" ","_")}', None, + season=season, multi_case=True, plot_type="LatLon", category="4-Panel AOD Diags") + + # Exit + return + else: + if plotfile.is_file(): + plotfile.unlink() + # End if + # End if + + # create figure: + fig = plt.figure(figsize=(7*case_num,10)) + proj = ccrs.PlateCarree() + + # LAYOUT WITH GRIDSPEC + plot_len = int(3*case_num) + gs = mpl.gridspec.GridSpec(2*case_num, plot_len, wspace=0.5, hspace=0.0) + gs.tight_layout(fig) + + axs = [] + for i in range(case_num): + start = i * 3 + end = (i + 1) * 3 + axs.append(plt.subplot(gs[0:case_num, start:end], projection=proj)) + axs.append(plt.subplot(gs[case_num:, start:end], projection=proj)) + # End for + + # formatting for tick labels + lon_formatter = LongitudeFormatter(number_format='0.0f', + degree_symbol='', + dateline_direction_label=False) + lat_formatter = LatitudeFormatter(number_format='0.0f', + degree_symbol='') + + # Loop over each data set + for i,field in enumerate(data): + # Set up sub plots for main panel plot + ind_fig, ind_ax = plt.subplots(1, 1, figsize=((7*case_num)/2,10/2),subplot_kw={'projection': proj}) + + lon_values = field.lon.values + lat_values = field.lat.values + + # Get field plot paramters + plot_param = plot_params[i] + + # Define plot levels + levels = np.linspace( + plot_param['range_min'], plot_param['range_max'], + plot_param['nlevel'], endpoint=True) + if 'augment_levels' in plot_param: + levels = sorted(np.append( + levels, np.array(plot_param['augment_levels']))) + # End if + + if field.ndim > 2: + print(f"Required 2d lat/lon coordinates, got {field.ndim}d") + emg = "AOD panel plot:\n" + emg += f"\t Too many dimensions for {case_name}. Needs 2 (lat/lon) but got {field.ndim}" + adfobj.debug_log(emg) + print(f"{emg} ") + return + # End if + + # Get data + field_values = field.values[:,:] + field_values, lon_values = add_cyclic_point(field_values, coord=lon_values) + lon_mesh, lat_mesh = np.meshgrid(lon_values, lat_values) + field_mean = np.nanmean(field_values) + + # Set plot details + extend_option = 'both' if symmetric else 'max' + + if 'colormap' in plot_param: + cmap_option = plot_param['colormap'] if symmetric else plt.cm.turbo + else: + cmap_option = plt.cm.bwr if symmetric else plt.cm.turbo + + img = axs[i].contourf(lon_mesh, lat_mesh, field_values, + levels, cmap=cmap_option, extend=extend_option, + transform_first=True, + transform=ccrs.PlateCarree()) + ind_img = ind_ax.contourf(lon_mesh, lat_mesh, field_values, + levels, cmap=cmap_option, extend=extend_option, + transform_first=True, + transform=ccrs.PlateCarree()) + + axs[i].set_facecolor('gray') + ind_ax.set_facecolor('gray') + axs[i].coastlines() + ind_ax.coastlines() + + # Set plot titles + axs[i].set_title(plot_titles[i] + (' Mean %.2g' % field_mean),fontsize=10) + ind_ax.set_title(plot_titles[i] + (' Mean %.2g' % field_mean),fontsize=10) + + # Colorbar options + cbar = plt.colorbar(img, orientation='horizontal', pad=0.05) + ind_cbar = plt.colorbar(ind_img, orientation='horizontal', pad=0.05) + + if 'ticks' in plot_param: + cbar.set_ticks(plot_param['ticks']) + ind_cbar.set_ticks(plot_param['ticks']) + if 'tick_labels' in plot_param: + cbar.ax.set_xticklabels(plot_param['tick_labels']) + ind_cbar.ax.set_xticklabels(plot_param['tick_labels']) + cbar.ax.tick_params(labelsize=6) + + # Save the individual figure + pbase = f'AOD_{case_name[i]}_vs_{obs_name.replace(" ","_")}_{types[i].replace(" ","_")}' + ind_plotfile = f'{pbase}_{season}_LatLon_Mean.{file_type}' + ind_png_file = Path(plot_dir) / ind_plotfile + ind_fig.savefig(f'{ind_png_file}', bbox_inches='tight', dpi=300) + plt.close(ind_fig) + # End for + + # Save the panel figure + plot_name = f'AOD_diff_{obs_name.replace(" ","_")}_{season}_LatLon_Mean.{file_type}' + plotfile = Path(plot_dir) / plot_name + + # Save figure and add to website if applicable + fig.savefig(plotfile, bbox_inches='tight', dpi=300) + adfobj.add_website_data(plotfile, f'AOD_diff_{obs_name.replace(" ","_")}', None, + season=season, multi_case=True, plot_type="LatLon", category="4-Panel AOD Diags") + + # Close the figure + plt.close(fig) +###### + + +def regrid_to_obs(adfobj, model_arr, obs_arr): + """ + Check if the model grid needs to be interpolated to the obs grid. If so, + use xesmf to regrid and return new dataset + """ + test_lons = model_arr.lon + test_lats = model_arr.lat + + obs_lons = obs_arr.lon + obs_lats = obs_arr.lat + + # Just set defaults for now + same_lats = True + same_lons = True + model_regrid_arr = None + + if obs_lons.shape == test_lons.shape: + try: + xr.testing.assert_equal(test_lons, obs_lons) + except AssertionError as e: + same_lons = False + err_msg = "AOD 4-panel plot:\n" + err_msg += "\t The lons ARE NOT the same" + adfobj.debug_log(err_msg) + try: + xr.testing.assert_equal(test_lats, obs_lats) + except AssertionError as e: + same_lats = False + err_msg = "AOD 4-panel plot:\n" + err_msg += "\t The lats ARE NOT the same" + adfobj.debug_log(err_msg) + else: + same_lats = False + same_lons = False + print("\tThe model lat/lon grid does not match the " \ + "obs grid.\n\t - Regridding to observation lats and lons") + + # QUESTION: will there ever be a scenario where we need to regrid only lats or lons?? + if (not same_lons) and (not same_lats): + # Make dummy array to be populated + ds_out = xr.Dataset( + { + "lat": (["lat"], obs_lats.values, {"units": "degrees_north"}), + "lon": (["lon"], obs_lons.values, {"units": "degrees_east"}), + } + ) + + # Regrid to the obs grid to make altered model grid + regridder = xe.Regridder(model_arr, ds_out, "bilinear", periodic=True) + model_regrid_arr = regridder(model_arr, keep_attrs=True) + + # Return the new interpolated model array + return model_regrid_arr +####### + +############## +#END OF SCRIPT From c87b114caa5d5cfe5916e5d878d778a2997ab475 Mon Sep 17 00:00:00 2001 From: wwieder Date: Wed, 29 Jan 2025 12:32:56 -0700 Subject: [PATCH 36/59] brainstorm for SEWG hackathon --- lmwg_wish_list.md | 19 +++++++++++++++++++ 1 file changed, 19 insertions(+) create mode 100644 lmwg_wish_list.md diff --git a/lmwg_wish_list.md b/lmwg_wish_list.md new file mode 100644 index 000000000..9f61d79cc --- /dev/null +++ b/lmwg_wish_list.md @@ -0,0 +1,19 @@ +# List of ideas for SWEG hackathon: +### Simple / busy work +- Identify list of default variables in `config_clm_baseline_example.yml` +- Adapt list of variables in `adf/lib/ldf_variable_defaults.yml` (plotting controls for list above) +- Identify list of regions and bounding boxes where we want to make timeseries or climo plots + +### Integration +- Integrate `regrid_se_to_fv` regridding script into ADF workflow. +- Integrate `plot_unstructured_map_and_save` function into `/scripts/plotting/global_unstructured_latlon_map` +- Develop coherent way to handled structured vs. unstructured input data (maybe adapt all to uxarray)? + +### Development +- Seperate time bounds for time series and climo generation. +- Write python function to make regional timeseries or climo plots +- Adapt adf timeseries plots for land +- Handle h1 files for PFT specific results + +# + From 00eedb18e83ef2d3d8123c41fb14888afdccf01f Mon Sep 17 00:00:00 2001 From: wwieder Date: Wed, 29 Jan 2025 12:53:46 -0700 Subject: [PATCH 37/59] updates for SEWG --- config_clm_baseline_example.yaml | 14 +- lib/plot_uxarray_test.ipynb | 29 ++- scripts/regridding/regrid_conservative.ipynb | 224 +++++++++++-------- scripts/regridding/regrid_se_to_fv.py | 8 +- 4 files changed, 167 insertions(+), 108 deletions(-) diff --git a/config_clm_baseline_example.yaml b/config_clm_baseline_example.yaml index d87e4a027..0b110a2c7 100644 --- a/config_clm_baseline_example.yaml +++ b/config_clm_baseline_example.yaml @@ -1,9 +1,9 @@ #============================== -#config_cam_baseline_example.yaml +#config_clm_baseline_example.yaml -#This is the main CAM diagnostics config file -#for doing comparisons of a CAM run against -#another CAM run, or a CAM baseline simulation. +#This is the main CAM/CLM diagnostics config file +#for doing comparisons of a CAM or CLM run against +#another run, or baseline simulation. #Currently, if one is on NCAR's Casper or #Cheyenne machine, then only the diagnostic output @@ -184,6 +184,7 @@ diag_cam_climo: cam_ts_loc: /glade/derecho/scratch/${user}/ADF/${diag_cam_climo.cam_case_name}/ts #TEM diagnostics + #TODO, this isn't needed for land, but may be a helpful way to think about looking at CLM h1 files #--------------- #TEM history file number #If missing or blank, ADF will default to h4 @@ -462,6 +463,8 @@ time_averaging_scripts: #Name of regridding scripts being used. #These scripts must be located in "scripts/regridding": +#TODO, this needs to be modified for a land model workflow +#This is not the regridding script wwieder made for land regridding_scripts: - regrid_and_vert_interp @@ -471,7 +474,7 @@ analysis_scripts: - amwg_table #- aerosol_gas_tables -#List of plotting scripts being used. + #List of plotting scripts being used. #These scripts must be located in "scripts/plotting": plotting_scripts: - global_unstructured_latlon_map @@ -490,6 +493,7 @@ plotting_scripts: #List of CAM variables that will be processesd: #If CVDP is to be run PSL, TREFHT, TS and PRECT (or PRECC and PRECL) should be listed +#TODO, round this out with more variables for alpha land diags diag_var_list: - ELAI - GPP diff --git a/lib/plot_uxarray_test.ipynb b/lib/plot_uxarray_test.ipynb index b2c52cbf0..4f20fa080 100644 --- a/lib/plot_uxarray_test.ipynb +++ b/lib/plot_uxarray_test.ipynb @@ -99,7 +99,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 8, "id": "55ceea85-e3e2-4e2e-a88c-03c1313acf31", "metadata": {}, "outputs": [ @@ -107,6 +107,23 @@ "name": "stdout", "output_type": "stream", "text": [ + " Size: 389kB\n", + "array([ nan, nan, nan, ..., 1.27199839, 1.42239865,\n", + " 2.10174724])\n", + "Coordinates:\n", + " time int64 8B 1\n", + "Dimensions without coordinates: n_face\n", + "Attributes:\n", + " long_name: gross primary production\n", + " units: gC/m2/d\n", + " cell_methods: time: mean\n", + " landunit_mask: unknown\n", + " Size: 194kB\n", + "array([ nan, nan, nan, ..., 4.2150470e-05,\n", + " 1.9083785e-05, 4.9214168e-06], dtype=float32)\n", + "Coordinates:\n", + " time int64 8B 1\n", + "Dimensions without coordinates: n_face\n", "/glade/derecho/scratch/wwieder/testFig.png made\n" ] } @@ -119,8 +136,8 @@ "obsfld = b\n", "diffld = c\n", "pctld = d\n", - "area = ds0.area\n", - "landfrac = ds0.landfrac\n", + "area = ds0.area.isel(time=0)\n", + "landfrac = ds0.landfrac.isel(time=0)\n", "wgt = area * landfrac / (area * landfrac).sum()\n", "\n", "plot_unstructured_map_and_save(wks, case_nickname, base_nickname,\n", @@ -132,7 +149,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 9, "id": "b288e743-1371-466c-8b03-7c3096ec9697", "metadata": {}, "outputs": [ @@ -158,8 +175,8 @@ "obsfld = b.subset.bounding_box(lon_bounds, lat_bounds, element=element)\n", "diffld = c.subset.bounding_box(lon_bounds, lat_bounds, element=element)\n", "pctld = d.subset.bounding_box(lon_bounds, lat_bounds, element=element)\n", - "area = ds0.area.subset.bounding_box(lon_bounds, lat_bounds, element=element)\n", - "landfrac = ds0.landfrac.subset.bounding_box(lon_bounds, lat_bounds, element=element)\n", + "area = ds0.area.subset.bounding_box(lon_bounds, lat_bounds, element=element).isel(time=0)\n", + "landfrac = ds0.landfrac.subset.bounding_box(lon_bounds, lat_bounds, element=element).isel(time=0)\n", "wgt = area * landfrac / (area * landfrac).sum()\n", "\n", "plot_unstructured_map_and_save(wks, case_nickname, base_nickname,\n", diff --git a/scripts/regridding/regrid_conservative.ipynb b/scripts/regridding/regrid_conservative.ipynb index 4bc707ac6..56b2bd0b4 100644 --- a/scripts/regridding/regrid_conservative.ipynb +++ b/scripts/regridding/regrid_conservative.ipynb @@ -72,11 +72,12 @@ "metadata": {}, "source": [ "#### Conservative regridding\n", - "- set NA values to zero\n", + "- set missing values to zero\n", "- Weight fluxes by source landfrac, \n", "- Regrid, then\n", "- Divide by regridded landfrac\n", - "- Mask should be where destination landfrac>0" + "- Calculate global and regional sums\n", + "- For plotting add destination landmask to get rid of bloated coastlines" ] }, { @@ -84,17 +85,27 @@ "execution_count": 2, "id": "bac26d5c-492e-4b35-9476-b6601de4bb06", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAHFCAYAAADIX0yYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC980lEQVR4nOydd9wdVZ3/32fKLU9PLxDCQyfACiRuSJBiScN1ERHjur+sIKJZFE1igVAkgBIRJKzSRJFigSwCgrskJCiyINEFjCzShcQESC9Pv23m/P44M3PvfVqecp+a7/v1mtdz78yZM2fmzsxzzud8i9JaawRBEARBEIQ+xRroBgiCIAiCIOwPSKdLEARBEAShH5BOlyAIgiAIQj8gnS5BEARBEIR+QDpdgiAIgiAI/YB0ugRBEARBEPoB6XQJgiAIgiD0A9LpEgRBEARB6Aek0yUIgiAIgtAPSKdLEAYxzz77LMuWLWPv3r1ttp1++umcfvrp/d6m/uKmm27iE5/4BLW1tSilhvW5CoKwfyCdLkEYxDz77LNcddVV7Xa6br31Vm699db+b1Q/cfvtt/P3v/+dD33oQ4wZM2agmyMIgtBrnIFugCAIPWPKlCkD3YQ+5ZVXXsGyzLjw2GOPHeDWCIIg9B5RugRhkLJs2TK+8Y1vAERTbEopfv/73wNtpxc3btyIUorrr7+e6667joMPPphkMsnpp5/OG2+8QTab5ZJLLmHixIlUV1dz1llnsX379jbHXblyJTNmzKC8vJyKigrmzJnD+vXr++OUiwg7XIIgCMMFeasJwiDl85//PBdddBEADz30EOvWrWPdunWceOKJne53yy238Ic//IFbbrmFn/zkJ7z22mt87GMf4/zzz2fHjh389Kc/5Xvf+x5PPPEEn//854v2vfbaa/mXf/kXpkyZwn/+53/ys5/9jIaGBk455RReeeWVfbY5l8t1adFa9/zCCIIgDFFkelEQBikHHnggBx10EAAnnHACBx98cJf2q6mp4de//nWkFO3cuZNFixZx1FFH8cgjj0TlXnvtNW666Sbq6+upqqpi8+bNXHnllXz5y1/mBz/4QVRu1qxZHH744Vx11VWsXLmyw+Nu3LiR2traLrXxySefFMN4QRD2O6TTJQjDjDPOOKNoau7oo48G4KMf/WhRuXD9pk2bOPbYY3n88cfJ5XL827/9G7lcLiqXSCQ47bTTePLJJzs97sSJE3nuuee61MYjjzyyS+UEQRCGE9LpEoRhxsiRI4u+x2KxTtenUikAtm3bBsD73//+duvdl41VLBbj+OOP71IbbdvuUjlBEIThhHS6BEEAYPTo0QD86le/YvLkyd3eX6YXBUEQOkc6XYIwiInH4wC0tLT0+bHmzJmD4zi89dZbnH322d3eX6YXBUEQOkc6XYIwiDnuuOMA+I//+A8++9nP4rouRx55JJWVlSU/1sEHH8zVV1/NZZddxttvv83cuXMZMWIE27Zt43//938pLy/nqquu6nD/WCzGtGnTStae559/no0bNwJQX1+P1ppf/epXgJkC7YkaJwiCMJBIp0sQBjGnn346S5cu5Z577uHHP/4xvu/36dTc0qVLmTJlCv/xH//BfffdRzqdZvz48bz//e9n4cKFfXLMjrj55pu55557itadc845ANx1112ce+65/doeQRCE3qK0BMwRBEEQBEHocyQ4qiAIgiAIQj8gnS5BEARBEIR+QDpdgiAIgiAI/YB0ugRBEARBEPoB6XQJgiAIgiD0A9LpEgRBEARB6AckTlcrfN/nvffeo7KyEqXUQDdHEARBGKRorWloaGDixIn7zE3aG1KpFJlMpiR1xWIxEolESeoSuo90ulrx3nvvMWnSpIFuhiAIgjBE2Lx5MwceeGCf1J1KpaidXMHW7V5J6hs/fjwbNmyQjtcAIZ2uVoTpVTZv3kxVVdUAt0YQBEEYrNTX1zNp0qQ+ScsVkslk2Lrd4+8vHExVZe/UtPoGn8lTN5LJZKTTNUBIp6sV4ZRiVVWVdLoEQRCEfdIfpigVlYqKyt4dx0dMZgYa6XQJgiAIwiDH0z5eL5P2edovTWOEHiOdLkEQBEEY5PhofHrX6+rt/kLvkZARgiAIgiAI/YAoXYIgCIIwyPHx6e3kYO9rEHqLdLoEQRAEYZDjaY2nezc92Nv9hd4j04uCIAiCIAj9gChdgiAIgjDIEUP64YF0ugRBEARhkOOj8aTTNeSRTpcgCMIwZZZ1TtH3tf4DA9QSQ+v2tEdHbdzXvgN9boLQFcSmSxAEQRAGOeH0Ym+X7nLrrbdSW1tLIpFg6tSpPP30052Wf+qpp5g6dSqJRIJDDjmE22+/vU2ZBx98kClTphCPx5kyZQoPP/xwt4/70EMPMWfOHEaPHo1Sir/85S/ttmfdunV86EMfory8nJqaGk4//XRaWlq6fgFKjChdgiAIQ4yuKEal3K8/6e9zGyoK2UB4L65cuZJFixZx6623cvLJJ/OjH/2IefPm8corr3DQQQe1Kb9hwwbOOOMMLrjgAn7+85/zhz/8gQsvvJAxY8Zw9tlnA6YTNH/+fK655hrOOussHn74YT71qU/xzDPPMH369C4ft6mpiZNPPplzzjmHCy64oN32r1u3jrlz57J06VJ++MMfEovFePHFF7GsgdOblNbiQ1pIfX091dXV1NXVSe5FQRAGJUOh8zRU6E2nqz/+X4THeOPVcVT2MuF1Q4PPEUdv63J7p0+fzoknnshtt90WrTv66KP5+Mc/zvLly9uUv/jii3n00Ud59dVXo3ULFy7kxRdfZN26dQDMnz+f+vp6Vq1aFZWZO3cuI0aM4L777uv2cTdu3EhtbS3r16/n+OOPL9p20kknMWvWLK655pp9nmt/IUqXMKgZbDYpgjBQSEerb+jqdR3od48fLL2tA0xHrpB4PE48Hi9al8lkeOGFF7jkkkuK1s+ePZtnn3223frXrVvH7Nmzi9bNmTOHO++8k2w2i+u6rFu3jsWLF7cpc9NNN/X4uO2xfft2/vSnP/Gv//qvzJw5k7feeoujjjqK73znO3zgAx/ocj2lRmy6BEEQBGGQ4wXei71dACZNmkR1dXW0tKda7dy5E8/zGDduXNH6cePGsXXr1nbbuHXr1nbL53I5du7c2WmZsM6eHLc93n77bQCWLVvGBRdcwOrVqznxxBP58Ic/zJtvvtnlekqNKF39SF9633RntNZXI+b+GAl2t+0DPToVhJ4gqtbgY5Z1zoC+Tzxtlt7WAbB58+ai6cXWKlchSqmi71rrNuv2Vb71+q7U2d3jtsb3ja73xS9+kfPOOw+AE044gd/+9rf89Kc/bbej2R9Ip0sQBEEQ9iOqqqr2adM1evRobNtuoy5t3769jQoVMn78+HbLO47DqFGjOi0T1tmT47bHhAkTAJgyZUrR+qOPPppNmzZ1uZ5SI52uElCqUWln9XQ2wurO8ftyBB3WPVjUpcHSDkHoCFG0hK5SSpuurhCLxZg6dSpr167lrLPOitavXbuWM888s919ZsyYwW9+85uidWvWrGHatGm4rhuVWbt2bZFd15o1a5g5c2aPj9seBx98MBMnTuT1118vWv/GG28wb968LtdTaqTTJQiCIAiDHB+FR9en1zqqozssWbKEBQsWMG3aNGbMmMEdd9zBpk2bWLhwIQBLly7l3Xff5d577wWMp+LNN9/MkiVLuOCCC1i3bh133nln5JUI8NWvfpVTTz2V6667jjPPPJNHHnmEJ554gmeeeabLxwXYvXs3mzZt4r333gOIOlfjx49n/PjxKKX4xje+wZVXXsn73vc+jj/+eO655x5ee+01fvWrX/XsApYA6XR1kYEYkXZVqWmvXF+3dyioSOL5KAwEol4NfeRdYZg/fz67du3i6quvZsuWLRx77LE89thjTJ48GYAtW7YUTdXV1tby2GOPsXjxYm655RYmTpzID37wgyhGF8DMmTO5//77ufzyy7niiis49NBDWblyZRSjqyvHBXj00UcjWy2AT3/60wBceeWVLFu2DIBFixaRSqVYvHgxu3fv5n3vex9r167l0EMP7ZPr1RUkTlcrOoq7Mpg7Xe0xXDpdpTwPeZEK/YF0uoY+XX1X9GecrudfHkdFL+N0NTb4TDum63G6hNIjStcgo1QdA+lgCEL/IJ2soc9QeF96JZhe7O3+Qu+ROF2CIAiCIAj9gChdXaT1SKivRreDzQOwq/SV/VQp7dUGo43XUP2992dE2Ro+DKXnTpSu4YF0unpIdzphYdmuvKwH20ugNx2cUpxLf4S4aI+++B06O95g7BDuz+wPHau+DJQ8VBjogKfdwdcKX/fSe7GX+wu9Z8hMLx588MEopdosX/rSlwA499xz22w76aSTBrjVgiAIgiAIhiHjvbhjxw48z4u+//Wvf2XWrFk8+eSTnH766Zx77rls27aNu+66KyoTi8UYOXJkt47TH94og41Sj3a7M3Ic7CPtwepBOlRG50OdwX5/9oSO7p3heK5dpafPU396Lz711wNK4r142rHv7lf/3wYbQ2Z6ccyYMUXfv/vd73LooYdy2mmnRevi8Tjjx4/v76YJgiAIQp/iYeH1cnLK23cRoY8ZMp2uQjKZDD//+c9ZsmRJUQLM3//+94wdO5aamhpOO+00vvOd7zB27NhO60qn06TT6eh7fX19n7V7MDCQqpZQOoaSLcpQZDirPoXn1pMAzMP52gxmdAlsurTYdA04Q8amq5Bf//rX7N27l3PPPTdaN2/ePH7xi1/wu9/9ju9///s899xzfOhDHyrqULXH8uXLqa6ujpZJkyb1cesFQRAEQdgfGTI2XYXMmTOHWCzWJrFmIVu2bGHy5Mncf//9fOITn+iwXHtK16RJk4b1nHd/jFT3V8+oUiUm7+2xhJ6zP923g9VmsT/pzTXoT5uuNS9NpryXNl1NDT6zj/v7sP7/NtgZctOLf//733niiSd46KGHOi03YcIEJk+ezJtvvtlpuXg8TjweL2UTBUEQBKGkeNrC07206RpyEsvwY8h1uu666y7Gjh3LRz/60U7L7dq1i82bNzNhwoR+atnQoLuj054GhR0uo+Du0lm8rd6qf6JsCaWmJ/Zdw4n98ZyFgWVI2XT5vs9dd93FZz/7WRwn319sbGzk61//OuvWrWPjxo38/ve/52Mf+xijR4/mrLPOGsAWC4IgCELv8VH4WL1cxJB+oBlSStcTTzzBpk2b+NznPle03rZtXnrpJe6991727t3LhAkT+OAHP8jKlSuprKwcoNa2z75GloNp5NlfqY+GM6W8Zh3V1VpBK+V9019R+wfTfb+/0t5v3dlv0Z1MG4ONoXiPSRqg4cGQ6nTNnj2b9uz+k8kkjz/++AC0SBAEQRAEoWsMqU7XUKQ7+fb2tb2/R2dDcQS7P9L6d+rqfdPfuSe7euye3ncd2cx15VzkXt+/GIqJ5ktjSC+W9AONdLoEQRAEYZBjbLp6mfBaphcHHOl09SGDYfQ8GNogDCw9uQf68r7pq7o7qleegZ7TFeVwqMXkG0rqljD8kE6XIAiCIAxy/BLkXvSR6cWBRjpdJaI/RnqlsNURhFLRVY9DuR+HB/vyZBzsv/NQV7jEpmt4IJ0uQRAEQRjkhLG2eleHdLoGGul0DWEG+8hS2H+QOFvDn6Ho8QdDr73C8EY6XYIgCIIwyPG0wtO9DI7ay/2F3iOdrhIgipMg5BmqiojQNQY6fmB3aX0/DmR8ut7glcCQ3pPpxQFnSOVeFARBEARBGKqI0iUIQp8gCvD+xUDkYuyOB/dQvx99beH30nvRF+/FAUc6XYIgCIIwyJHpxeGBdLoEQRCGMX2lQA2E/VNf59GcZZ0zqO26hKGPdLoEQRAEYZDj03vvQ780TRF6gXS6esgse775oOU2FgRh8DKUbZl6ojoNhej4PaE0wVHFd26gkV9AEARBEAShHxClq5t0W+FSVr6ssrq3ryAMMgqVh+GoJgi9ZzDcIz1VuwazPVdpci+KzjLQSKerCxQ9vIWdqH0RdrKU1f56kA6YMGRp/Q9KOmH7D33ZOSlV3d25PwdzZyvER+HTW5suiUg/0Ei3VxAEQRAGOaHS1dulu9x6663U1taSSCSYOnUqTz/9dKfln3rqKaZOnUoikeCQQw7h9ttvb1PmwQcfZMqUKcTjcaZMmcLDDz/c7eM+9NBDzJkzh9GjR6OU4i9/+UuHbdJaM2/ePJRS/PrXv+7SefcVonR1l30pU61VLUBZ+dGF9nXrjT1rQ+v9OmpXV8sJQi/pTqBKoTS0d82H+vXuqzRSQ0HNGmysXLmSRYsWceutt3LyySfzox/9iHnz5vHKK69w0EEHtSm/YcMGzjjjDC644AJ+/vOf84c//IELL7yQMWPGcPbZZwOwbt065s+fzzXXXMNZZ53Fww8/zKc+9SmeeeYZpk+f3uXjNjU1cfLJJ3POOedwwQUXdHoeN910E0oNDpVPaS0hagupr6+nurqauro6qqqqgG6+xLrb6eoJ0ukSBoie/OMa6p2AwcxAdbq6eh/0pi1DoZPU3v+LvjrGDc9/gGRF73SSlsYcX5/2TJfbO336dE488URuu+22aN3RRx/Nxz/+cZYvX96m/MUXX8yjjz7Kq6++Gq1buHAhL774IuvWrQNg/vz51NfXs2rVqqjM3LlzGTFiBPfdd1+3j7tx40Zqa2tZv349xx9/fJs2vfjii/zTP/0Tzz33HBMmTODhhx/m4x//+D7Pva8QpaurdGSH1apTU9jBaq+MsvL7tu6AKUsVr+voOO2pY11VzPZVTjplQgGD6h+fOKJEdPa7DAZD9pDhGr5hIPC1wu9tnK5g//r6+qL18XiceDxetC6TyfDCCy9wySWXFK2fPXs2zz77bLv1r1u3jtmzZxetmzNnDnfeeSfZbBbXdVm3bh2LFy9uU+amm27q8XE7orm5mX/5l3/h5ptvZvz48d3at68Qmy5BEARB2I+YNGkS1dXV0dKearVz5048z2PcuHFF68eNG8fWrVvbrXfr1q3tls/lcuzcubPTMmGdPTluRyxevJiZM2dy5plndmu/vkSUrp6grPYVrS7uWzhSb11P8Xe73Sq6MkUZ1tPt6czW3pniablfMaiUrZDgHoyU4CLluGDq3vP69Pht6OfnYagGCu2u8jYo78FBgF+C3IthcNTNmzcXTS+2VrkKaW0LpbXu1D6qvfKt13elzu4etzWPPvoov/vd71i/fn2X9+kPpNMlCIIgCIMcX1v4vYyzFe5fVVW1T5uu0aNHY9t2G3Vp+/btbVSokPHjx7db3nEcRo0a1WmZsM6eHLc9fve73/HWW29RU1NTtP7ss8/mlFNO4fe//32X6yol0unqAmv9B5jtfjq/or2Rb3uj3g5GyL01pu+xitX1A+x7vaheQ54hoSgUqsrKQtl0+Kyt9e8vUlKUbZRi7eu2zieluH/72Uml8NwG+rfraVs6S7490Oe0L2bHPlP0fU3mlwPUkv4hFosxdepU1q5dy1lnnRWtX7t2bYfTdTNmzOA3v/lN0bo1a9Ywbdo0XNeNyqxdu7bIrmvNmjXMnDmzx8dtj0suuYTPf/7zReuOO+44VqxYwcc+9rEu11NqpNMlCIIgCIMcD4XXy+Cm3d1/yZIlLFiwgGnTpjFjxgzuuOMONm3axMKFCwFYunQp7777Lvfeey9gPBVvvvlmlixZwgUXXMC6deu48847I69EgK9+9auceuqpXHfddZx55pk88sgjPPHEEzzzzDNdPi7A7t272bRpE++99x4Ar7/+OmCUtMKlNQcddBC1tbXdug6lRDpd3UTZthnhhqPvYBSt/fbtTFqjfV28vRceWa1DUXTXzqyNt2Srde1tLyjYeZu7E7lfANravpTaC22glIQ2kcHDVFrQNkVWq3XKUkU2XSiLx1s6VhjaDaFgz88/t0H92u/G/VmgkvU45l6Jn4XuKE2dqUsDxWBXtQoJFa7W78NZ9nxyOttv7Sjl9GJXmT9/Prt27eLqq69my5YtHHvssTz22GNMnjwZgC1btrBp06aofG1tLY899hiLFy/mlltuYeLEifzgBz+IYnQBzJw5k/vvv5/LL7+cK664gkMPPZSVK1dGMbq6clwwNlvnnXde9P3TnzazUVdeeSXLli3r1nn2J9LpEgRBEAShXS688EIuvPDCdrfdfffdbdaddtpp/PnPf+60zk9+8pN88pOf7PFxAc4991zOPffcTutozWAISyqdri6yJnt/9HlOcoFRuCAawbarXgXbuzQi7kjx6kABaF22I5WrU7Wqg+1dUsz2NXLvqgo2SDzDBprWI/99fYfuKxet1bOBYq23ssA+JvDQLfq9C7x2W90fj7f8rEfHm1P+bxB5N9qgNLrQ2bGLwYX39Sy1Jirfh8pvZ7/rYFK3hN7h0f3pwfbqEAYW6XQJgiAIwiBnIKYXhdIjna6e0M6ItdAOqnU55ZrLrDOZDmN8FY2IO6L1ti6qREVqVoF9iva8To/XYXT83tKZJ1lPclEOYQaD8tTftPYCK6ITFfTx1C96fExl2+gwxo/WKKXz3o2eB60ifbf7PLfalm9yJzGLCj2N+9D7dyAVrb7KlTgYmGXPL/gNi2cYlKVQWvWbfNTThNWt6xAGFvkFBEEQBEEQ+gFRurrJLOscrHiijTpTmFMx2ma3iijfSST71ut1K5uxcP/u0m49+xhl91n8r+KDdL69PRu3YWj/1VOVoCfKxmBQItpVuQptE227U+/EnrK6/q7o85zEv5oPwfOpsCOlK1K42k8GAdrvUTaKNraTw9C7dzgrXkCk0OfvEZv+1C00Cr+XNl26l/sLvUc6XYIgCIIwyJHpxeGBdLo64Myac3nSfwigKBq9aqVemVFP8aR+URmlQOu261vTRe+pLlEwit6X92K32tIX7Ov8uqIIDINI+d31LOxOTr2BUh4K4xt1RqFncH/weOoXzK3Kx/fRyo8eYWX5nca8K4zHZ8oX20t261nralyvoaCKFZzLLHs+a72VA9iY3jE79pl2vdLNfVGgdA7230QYlEinSxAEQRAGOb5W+Lp304O93V/oPdLp6gDLdUxsH+hUSVG2XTTCbTNCLgzG1t7ouQOvxdBGrHDk3Gk07KJj+rRry7UPCnPcdXffUtG+t1g3bLkGsO29pTtq12BXuTpiMOarU5YFVuDRm82hvQzKcsKN5m8HNpHaz9tpRnG/unLvdUXlKiwzmOwZu6C+h1kHhqLiZd7p4W86eCJbeVh4vbQh6+3+Qu+RX0AQBEEQBKEfEKWrI1RecSlWX+zika7nmXgthSqRHY6OdV7JgvaVrsJ1vi7I6RjkegvNwNrxlmwv9lbb89iHPUirUXubY/WEfalNrdvauv37Uv0KlYDWx+gkav9QoKseYN2x6RoICr0Uta8HncKl4vG8iuF5ebtL18GylImpR/D8KavgnvRa3Yde3ktZWeZ7V+69zjIydMeOs71nqdW2olhh+2pXF4/VWfyyHtmRDjKie6PA41zZrZQvZVGc1qBvkenF4cGQUbqWLVuGUqpoKcwgrrVm2bJlTJw4kWQyyemnn87LL788gC0WBEEQhNLgY5VkEQaWIaV0HXPMMTzxxBPRd7vAG/B73/seN954I3fffTdHHHEE3/72t5k1axavv/46lZWVvTtwoddhwQgIgpGwpYoVrRClTLdWdTC60DrapiwrENHCGF/G61Fnc0FZvziCdtFxSqTqlEoV6k5exkBFaG1PFp1jF1W6drcVKRRdaNdgoAQR+QeDHddgU7Zas2rH7UXf51Z/znxwHVQGiMUAY+OlLL9INYrEjUBpDe/VdlXpfdFFNbirscHa864s/NxhZPx93Hdtjr8Pha3DOGdDgMdbfpb3WNd+xzaldP13EYSQIdXpchynSN0K0Vpz0003cdlll/GJT3wCgHvuuYdx48bxy1/+ki9+8Yv93VRBEARBKBmeVni9nB7s7f5C7xlSWuObb77JxIkTqa2t5dOf/jRvv/02ABs2bGDr1q3Mnj07KhuPxznttNN49tlnO60znU5TX19ftECQL1GptottF4/ywpGOpfKftc4vBSirde5EhbKstutDChQt7Wu05wV54vxohF20+DpawjKDXt3ReXutsN2F59jrugf7dQjVuNaqXBdY6z/QRtUaDCrXUGR13U9ZXfdTlLLAcVDBYiXipkB4DykLKxbDisU6ziLRFbqRY7U7akpoXxrZmba6t1pvV7ZtltbrW29vvXRWzlIo14lyzg51wvershTKcfOLbYPTf5JeaNPV20UYWIbMUzF9+nTuvfdejjjiCLZt28a3v/1tZs6cycsvv8zWrVsBGDduXNE+48aN4+9//3un9S5fvpyrrrqqzXrteVD4fzp8EVrKGMp7HfwTt618Zyt8Cbd+v4bbC6Ydte8XGd63N722rzARpZiaGhBaJ+HeX+gkLVR3kI5WCXFslGNDztyH2vNQSqFzwTR/OPAhH+w4/Otnc5137rsx1V1ojN5usNaeBk0upPCd0WqasU34GMg7CAE6k80HEHVc89dtey+HYXceb7q3++0dQNoL2BuljwqxVMf/B/oArS38XkaU1xKRfsAZMr/AvHnzOPvssznuuOP4yEc+wn//938DZhoxRLWyndJat1nXmqVLl1JXVxctmzdvLn3jBUEQBEHY7xkyna7WlJeXc9xxx/Hmm29Gdl6h4hWyffv2NupXa+LxOFVVVUULYEYwhVM+0fSCCozeg6XV9KOyrEhmj6Ybg21Fapavi7Ypyyoyxu92yqBSqlw9nO7qFYN5CrCrdOWa7eParsne3+9pcYQ8q7bcAuVl0fOtXAcVi6HicVQ8DgXTaBA8p8HvablO57//vqa6C+6LIhOB9soV1Fk4Hd/hNGEHU4etj10U/qY1ng+ej7IsrEQcK5nESibzphWF78Ki9g6PKa3HU79A57L56cbCd3w/4KFKsggDy5DtdKXTaV599VUmTJhAbW0t48ePZ+3atdH2TCbDU089xcyZMwewlYIgCILQe8xYvbc2XQN9FsKQsen6+te/zsc+9jEOOuggtm/fzre//W3q6+v57Gc/i1KKRYsWce2113L44Ydz+OGHc+2111JWVsZnPvOZfVfeHk6BwXxnZkYFYR+AwNA+CAOhVDvhHZQJB0FgWB8a0QehIroUKqEr9CaZbhfdyIUu0ME1jIycw+9BOqk5yQWAcVsXBoZVf7ueeeMvNF/CsC86r1r7hWFcHLcoPIKxxQrDydjoXLbnDWl97xR8b/2eKIzRqYqCtRbQzjtlnzaF7QZBNYp9sVJWXK6zbUOd6NxiLope/L7CfsmQ6XS98847/Mu//As7d+5kzJgxnHTSSfzxj39k8uTJAHzzm9+kpaWFCy+8kD179jB9+nTWrFnT+xhdgiAIgjDA+CUwpO/t/kLvGTKdrvvv79zORSnFsmXLWLZsWUmOpyzLuI8DWFYUtFRZVrF65esokGnQkPw2y0JpnQ94WlB3e2WxLVQUQqFYgSpKrdEFBaqjEWwbD8j2PJgKtwn7phNFoni1KipTpHZZCrCHnSowVFm19VYAo3gpVfQuKCS08WmXzp6tjsqHFCrQygo8GIvfB+aDu+96C+vsaltU8TtKFbwDw3dd9F2pQNXLe3iGwWWH2/28Jnt/pEb3Nz4Kv5c2Wb3dX+g90u0VBEEQBEHoB4aM0tXvOA4QzN37ftsApuHoNvBkikZ54d8COgx+aln5kWCbQKoKFUtGaYBMcD4zsrSSSeNBU2Bb0qH6pf1idau9Ua4oWiWlMMFwu+pWiOMUK6RarFwHHbZdFKS4XVo/P609EMN1vUgP1NoGMFofpgYLbccCVczg5fcN22CpIhvV1sp3VNYq8KqGSM1qj9V1Py36Pqfis0Xq/uON97TeZVigXBe8/guOKhHphwfS6RIEQRCEQY7YdA0PpNPVATqTyUdgbqVIWMkEfp1JF4Sv8VtS0cjUGjkiH1U+HK2Go0mtjZdiezZdIWFE6EQ8KBuU8QpGpbZtgr5GalsMFYvl25vNmTZFVbbyoixVguy+oruqQH/QhWvW2o6uvaje4e+gfY3lOG3UA1WWBIwtUWhXJAwgoTeyl2mzSdl2sZoVUmo1OUi6rCKnRNXuPRW2KTyWn80V319hLK1QHcsWqPKtEsQr2zblgneKUlb+fRaSbavqw/BStuZNuTT6vOqVa4G8Z/G8Iy9BuRr2DkTLhKGKdLoEQRAEYZDj0/vciWJIP/BIp6sjtA7sulrFnIm54DpYoVoVJLYOR41+YxPWiBqzn1JGrSqw89LZXFHsG1Vop1FgN6G1z+o9P2Fu1XlRG0I7CZ3NojPZSElRto2Kx/L12DZ24D2k02l0JlOsdPWxihQpAB2xr+P3tcq1L+/P1l5knezbnq1NkcJVaFNXUO9ab2Ub2xcVi+VzudkyDTAocBzIZqPfo/A56rc8oa1sAVt7MhbZdNoWoX+U8nVx1HTPa1+ZCw9j26hY4A3pOsXvJkuhyL8HV227rdenNZiZd/Bi88FxohmFeUdcHMVTjOjP3Isl8F7U0ukacKTTJQiCIAiDnDCqfG/rEAYW6XR1gFVRgSqrMF9S6fyGmAuOgy4vA0C1pNF766LRpEom0E3N5vPokWYkFCplmYxRgYKRpgq9icwXlJMfSa7ecjuzrHOi73ZFReRJtLr+LuZUfBarptps1NqoaaH6FtpjgBm5tqQg09YmpZS2U1EOOsKYYsX2HkVxxgaK7kTYLziXdq9TR55kod0MRKPgUKV4PJWP8RPF+rGt4n1D+nEELbRl3hEXmw+ObZ6t4PfQmUxpnpmuPHut78ECCp8l7etWUfEL3gOQtzFtR+UK61GWyudxBKyyJKu23JKPzA/7p41hod2t70Mmm7fvdSSuntB9pNMlCIIgCIMc8V4cHkinqyNsG6wCG4aCUd68Iy5GhVGZK5OopqbIpkvFXHSmxWzbvhNVUZ4fcToO6Gw+Tk7MLc696HlRvK954/4dZ8zo6Jja81CBjdm8Iy7GGjvGKGzhMb2C/PG+jw68F1U8hoq52BVGtfMaG/Pn2DrHYk9G8IUj8Mhrqr0R9eDxSOxQvYrI/+6RF1eoFnhe22j/BR6nqiyJThtlVDc2AfB46hdR0dDzaU7iX9vG8fJ8iJljD3ebmUFPqDq38tBTtl06W67O7sH2lNSC+G/F6+y83anWRXkZtefl44aF9247z7v2NcqxjNc0QGAjul+qW8CqjSsA46EY2vYaxdPLq1s5j/7MIC3Ti8MD6fYKgiAIgiD0A9Lp6ohMFtJps7S2r2luMXZSLSlUs1E1VBCZHq0jmyoVixkFKx4zi+tALIZyXRPN2LLy25Qy2+JxVDwOrmsWxwGnlSdRcwu0tKBcBxXWmUxCPA7xuFHdPM8oZ03N+I1NJoJ9wai3CO2D9ttGnG6vbBjLR1nmnC3V1uakgzhF0TUaaFpHhg/XOW5+icXyS2hvZQXepY5T9BurRNws8ZhZV1WFqqri8dQvilSuImzb/H7hNXEdVu/5Cau23SYq1yBAK4VWyjyz5UlIxM3iOEXxrPqEjuwFw+cueOYi7+XCe7lQeQnv6cLyRd7SBXWFNqDKKn7X7O9YyqieofJZmF0km913toISEuZe7O3SXW699VZqa2tJJBJMnTqVp59+utPyTz31FFOnTiWRSHDIIYdw++23tynz4IMPMmXKFOLxOFOmTOHhhx/u9nEfeugh5syZw+jRo1FK8Ze//KVo++7du7nooos48sgjKSsr46CDDuIrX/kKdXV13b4GpUSeLkEQBEEY5ITTi71dusPKlStZtGgRl112GevXr+eUU05h3rx5bNq0qd3yGzZs4IwzzuCUU05h/fr1XHrppXzlK1/hwQcfjMqsW7eO+fPns2DBAl588UUWLFjApz71Kf70pz9167hNTU2cfPLJfPe73223Le+99x7vvfceN9xwAy+99BJ33303q1ev5vzzz+/WNSg1SmtJ+FZIfX091dXVfGTs53FGjTErm1uiOX6AuaO/ENlX4bqs2vwfzDvsGwDoHbvydhGxmFG+gtGRriw3tmCZIE+aZeXjMaXSxn4ktBcI/urm5nzjQsUtjGpfGMspmyuOdB/anGUyRd/9VLpjT7ww3k9rW69wW6t1hapVYdT71jYvbeJ2ldq2q3X7C4/TTnujWGiFkbxjgfoIQTyjoI1a5+26wFzzgmutYm7+N0vEwbJZ9fYN+2xyGH9tf8hRN5SZe9xlxrM4F/xOu/bg7TEj5ULbqYh9eSUWRHzXntf+cxV4+hbG4aO1QlwY+62jZ9YyWSvaRKwviOkVejrqIJ6gqigHYPXOOzo+h/2AeUcvBUDH8tlIVCrwXAyzfWSz5MjxxPafUFdXR1VVVZ+0Jfyf9NHHP49bHtv3Dp2Qbcrw33O63t7p06dz4oknctttefX96KOP5uMf/zjLly9vU/7iiy/m0Ucf5dVXX43WLVy4kBdffJF169YBMH/+fOrr61m1alVUZu7cuYwYMYL77ruv28fduHEjtbW1rF+/nuOPP77T83nggQf4f//v/9HU1ITjDIxJuyhdgiAIgjDIKaXSVV9fX7Sk0+k2x8tkMrzwwgvMnj27aP3s2bN59tln223junXr2pSfM2cOzz//PNlsttMyYZ09OW5XCTubA9XhAvFe7JAH3/w+809qX7ZUZWV5lSlQR1b97XogiGQcej1q39iABB6JOumiAStUujIZo4aBGcm2pPKeMlobe4HCvI0B2vOCeDFB7KBwVByOYC0VKXHKcUzssDAqfqrtw1U4Mg+9oYqOZTaYP63UrRA/m+tQQTOja13Q3r7xZLRisSLVq7UNm3KDaxsoU1HrbcvY3xHuWpBFQFlo5Rddz0JvRhzHeKHmd+5aYwP1MbqersPcf7ic1f/37a6ertAPrH7pO8z+x6uxMoF3clUlVvAM+YEKrf1ilSp8ftpTdwvtsHQrc6DCTAaWWzANFN57BfZEWoVKbKCIZ8N4WwXqrueZ5zKsP1R6w+cg5uaVrQIlXyigYJYAFcTgcwu8GftxnqiU3ouTJk0qWn/llVeybNmyonU7d+7E8zzGjRtXtH7cuHFs3bq13fq3bt3abvlcLsfOnTuZMGFCh2XCOnty3K6wa9currnmGr74xS/2uI5SIJ0uQRAEQdiP2Lx5c9H0Yjwe77CsahUAVmvdZt2+yrde35U6u3vczqivr+ejH/0oU6ZM4corr+xRHaVCOl2d4CeNgmFlssyrXQKArkhCdbmZ6wesBjO/P++gRWZ7YxMqiFaPY0M6w6pNNwEwa+a3Ub4PQcR6KitY9cZ1Zv8jLi6223BsyGajUWlhzkbl2+ZGjkSo4EYMR9NOvM3oLLRXam+EXUhnUeNV4HFnLk7bfILtVBbVqVwnH8vM8jttQ7cJ44NlMtEo34rFUE6x3VukKtm2URELVCblOOh0Pmp/qHxp38cqL8srfp5vvNlCxdD387Z28VhRns32iCJ8h7ntQvs/12WVqFyDEpUtyLeYcFFlSfOlJdWu1294rxTnS7Ta2hyaQm2PZ9t5lZzgXixUurPZvOqlVNvYceFz16odkbdsMhHtWxiLUCggfL9lPXDyMwj4uvg3y/Wj92IJla6qqqp92nSNHj0a27bbqEvbt29vo0KFjB8/vt3yjuMwatSoTsuEdfbkuJ3R0NDA3Llzqaio4OGHH8Z13X3v1IeITZcgCIIgDHI0vQ8b0Z3Z0FgsxtSpU1m7dm3R+rVr1zJz5sx295kxY0ab8mvWrGHatGlRZ6ejMmGdPTluR9TX1zN79mxisRiPPvooiUSiW/v3BaJ0dcDZJ3wLxwl+oEIbHh+wCka/vs+8w79ZvHNgMEg8xqoNN0ar1z57ObNPuhqSwUi5YPS66o3rmDfpq/l1lm3ibgXebVFcr7D+bDaKeK5bqU66JRUpUsq20elMpL7Zo0biN5io9DqT6Ty6dqGKpX2UVXC7hDkGg5GT8rwO1avIS6tVjKA2xygFYX3aN7HLCnMbhtK01mgKbFssy4xYI2XAytt9WZZRElqPjgIVQjc151UHy0JXlnXYtHm1SyJlS2VtSCbQZea72HINXh5ffxVz33cFYLzZVBCt3UrEI/XWbPSDPIht1SPLVflYeRA9NyFFMexsC2U5kWdr3tMxeM49P/8usKwgSno+6nyRjaZtGw9bMLHkwth/AMlEpLQLrQiudW5UWfQusBvTWM0Z8L18mdbx/vqQgYhIv2TJEhYsWMC0adOYMWMGd9xxB5s2bWLhwoUALF26lHfffZd7770XMJ6KN998M0uWLOGCCy5g3bp13HnnnZFXIsBXv/pVTj31VK677jrOPPNMHnnkEZ544gmeeeaZLh8XTByuTZs28d577wHw+uuvA0ZJGz9+PA0NDcyePZvm5mZ+/vOfR04DAGPGjMEeoJiR0ukSBEEQBKEN8+fPZ9euXVx99dVs2bKFY489lscee4zJkycDsGXLlqLYWbW1tTz22GMsXryYW265hYkTJ/KDH/yAs88+Oyozc+ZM7r//fi6//HKuuOIKDj30UFauXMn06dO7fFyARx99lPPOOy/6/ulPfxrIOwW88MILUeyvww47rOi8NmzYwMEHH1y6C9UNJE5XK8KYKB8+8mu4XkHcq3DuPu7C7r15r8PQuyW0k9hTZ2JjAaqyglXv/KCo/rnHfwvVFMR50TqvvmSzZgQb/hxuEPk6tBGKF8RnaWgErcnt2JlfVxBlXcXj+fg7oXoTGEoq10EH3pM6m0Wn08VqVwdxhsLI1qEdlIm95UfH8VPp9uMWFVXSR+pWO1ixGFZ1VfHvFCqQWhfFT8OyjEpVV58v6xaMRzw/UguwLFZtuSXaNO+Ai/Lei44Djo1XaZRMqyVt7OlCVTSbK/B88sxvG6gOq978XknPXygts2YaJdJuaEE1BfZ8DY34jU1FMbKKYmK5Tl4hD+2BCtC5bKRSW4X3m20bL9kwFpzjmHpDVcXXHdp4ac8rtl1UKn/vum4QXT1QaZMxUVj3wUdO/Q52s3lvqHTWxGsL43QBubjFE2/c2C9xuk7/r3/HKe/Y4L0r5JrS/P6fbuvT9gqdI0pXB+iYA7vM9F2RgXtDo/knG770UmnzMgymsVbtaJvyoJDVf7maeRO+1LbedIZVO25vO1UZN//A/bJYZLQPRB2nojaHL/BYLP+CThlD7ygJczodTaNpX7edXmzVISqaKimYHgynVbRX4AofSddBMNTWnat+THgdTbmG6TuUle8cZbLRtG1ENlv0e4SpULQ24SIiJ4DWknSQhgkw1zWdRYUvxjAIazz456kUfjw/TWk1tqCTvQt2KPQT4cx0PD/Nr3I5aGmBMHCqbWGVJ6Pgx9r3Ua5d/DkMeux54FmodmY4lG0bY/1woOVrlOfl79nW967nRR0pK5mIwtigtbnnw++2hXbtyAlIF6a0Edrlif+5jFknm46pBaByqHTBj9aP7zRJeD08kKdOEARBEAShHxClqwOsbbtAmRGiX1ePXyApFxm9BoFIuzV+yOUNMaOgpYFi1Hqaad4RF5uibmE4CQcdGMObBhVP2/mNTWbES2AIXjiD7OtIBYqCh3Y2HRgGOLWUKRcEgtS5bPGxC9C+LpouaTdwah+jPQ+dyaIqK8z38oRJ4wFg5cApUJjSaROoNAzfYFl5BwY/NKgPpgFbJ6N23UhV1GGdYcqlhJNPHwP4sWLPGV2eaKtaCIOStX+4HIB5h3w9H4bEN+EioudLa6MqB+YFRcppYAxfmGqqKMxDYRDfAgcaAF1djnYcVBigtb7g2bctU2eoWCfiBQprLB/uAPMO8WMOXrm5l3+39pKeXYz9DCsdBkoO0kFFzjoavP6zzhGla3ggnS5BEARBGORordC97DT1dn+h90inqwN0czN+IIz4mUzxtpxfFHhQZzJYwehy3kGLIkNLnU6zuv6uaL+5x1yGynlQXQnkUwd1RujSPfukq6G5JWhbS35kC23CMehcFt8UNaNpx8EKwlToXC4K7Nnavbw1xUmswyCLrZJaq/aDpGrPi4z3LWXhp1P0JypMheS2c4u7LjrmmkC1YAzaLStv/+Xkk9ySShcZLbdLoFz6o8tQOR8/UCW9pIPSGrslsH+zFCobhPVwLFb/79W9O0mh//G9KGSAv7cOZVlRiii/JQVKGQcOAF/jt5gH0Uomi54nZcfRqbxtprL8vEKVyZiAqIVhSizwaswz7OTy9l06YWzMQmcNbavI5ixUx3X03ULbShSubjD3+G9FKaBobA6SiAfXvr4BP9cygK0ThiLS6RIEQRCEQU4Y4LS3dQgDi3S6OsBrbEIFNl3t2j0VJm+GyDvQhGQoVsbmlP8bAFZVJSTi+Ft3ADDLnl9U31r/gejrLOucou/2tr3oMH0Q7NPrMLS50soyKlzgCaUAbYej632kBGp1jPbKWoHnXmslS/s6erxVMoFlW1GC4D4ltEGLxSCZwC8rCBkReX/ZxoUklNp933gghjY26Uz+c2jfFagF8w5aFKV1gmIbvFknfxuvPG/j5cUtLE/jFSTT/v3qi0t7vkK/sqpVYui51Z8rVkI9PwoNoTOZaJvWPspy84F0nSCcRJhCSvv58DEBOgxq6uniSOK2hY4FamplEqV1ZDuobYVKB6qXY6Fto26BUVp/+/tLe3X++wtzj/+W+ZD1TKiXkKaW6P2uM9m80t8PiE3X8EC8FwVBEARBEPoBUbq6QheSOvuhnVQ2V+TZN9v9NMoJvCD31hv7sA7qm2Wd0+H3sA7Yty1WIcpS4Hno+gazosDzUiuLKGt2+zu3PU4rT8kO0whpv8BexcKqKI829ZnipazIa9KqrIBkAquxIDF1aNsSd9C2jU4EybEz2SCVShC/qKYi7+kIUN+QVyTsjscpa/9wOR+ccx2hLGFnfbIVDk8//PUSnqQwmCgKhhp4KOow8XyBwqnicXOPFahiUeJpAjuuyCPagpE1EClUNn7cRQUKmh938cvM+yBXYf5aGXNMpzETDaVz5TH8mIWdMm387ZNLS3Xawx5VH7yjslkIla1szqROS+dtYn3dNl5iXyGG9MMD6XQJgiAIwiBHpheHB9LpKhWh8lMQlwnto71O1KDuVJ/L9jiNjva8aLSmysoiLymrvAyvviGqL0qsW9D+johG9bkORnqF3pSZDCoexxo5omBdNn9e3aEwLlhB+hXzR+XVhYpyY1vVGIxYfd8kEAd0WRzt2vn0PGF0/4S5Ln4ilo8kbtvYvg91DV1rXysTD1G5hjfKtvOx9sLnKLxHLZVXs2zbKFhRDC8L4rG8WXNhSrBW+DEH7Vr5mFCujR8PPRPNPplq8yrPVjqonCnnJSyUht+v+mbbSoXOKYiDGHqg4vkmdVMJ3uc9QZSu4YHYdAmCIAiCIPQDonQNJQqVp84iyRfuUpBnEcBqbs7naasox3KdKA5Zd0Zw2u/Ea0dZJmp/YcTtirIoR6FVXYUfJJdWMbdbNl5WLBYl8NWZbJECqCyVj0BfkTRR5kMbLNtChzkRHcsMN8Jo3cmE8QYLFcCmNNmxFQUHrUTV5G3SOuPJNeKduF9hWUWJrE2E+jCbgYX2gijyWkNVZT72ViaTtxPEPAeR0mXnVdZou6dNjD/ASufVYW0rPDfvoei7CuUGz3pOt1FehX0zp/zfot9CWVbehqu9fLL9iC7B9KIoXQOPdLoEQRAEYZCj2Xec5q7UIQws0ukaqhRGoe/K6CuKK6bRYcT8TNZ4TPWgnogClSlUv0KFq+h7YzOMCexbKsqxomjwnrHDClQ2v7m5reIWHsO2sQ6cgDfKqFBWSxZrV52J0B9sp7zM7OP7+GUxrFzw3bXzEbpthbYsdCAkqLhDriYZjW7dHY2ExjZe3EY7+UjyoZeYIACs3vMT5iT+1XxxnOBeDp41pfOewtkcSimIB0qX74Fl57/vrY8UaLQGSxXlW1WejwpsulQmhxXYjjq24nfrrihq0wc+cQMAdouP7yhO+bjJfPH0r79R2pMfhsyyzil6J2rtD5gNlzA8kU6XIAiCIAxyfBRKItIPeaTTNZTZRwytdncp8BbUOb/YK7IrtD5G5EHoYrmquEyIbRlPwoYm8z2ZgCAXJLYFyVikMtmpbD5yPKDLE+jA9kpbFunqGH5gv+KNT+KOLie+xdiH4flop8ADMevhjQiVL23sagCtlFESgmb6iRjatlCBQpEdXU6mKojZZSusrMLNiTAvtM/jqV8AMHf0F4rttKoqInsvlTX3tV9p1F4V3NN+0tgZ2g1NBRkTfLRjmewGtI2vVRi/rzBrRUjy138CIDdrGtgKKyv37r4ovKZG2Rp86pZ4Lw4PxHtREARBEAShHxgyStfy5ct56KGHeO2110gmk8ycOZPrrruOI488Mipz7rnncs899xTtN336dP74xz/2d3MHhq7YZHXR67HLFNh0hV5X7cUb0mHUd0Cl0lBulC5dHjdeWqGaFXPMKD+IQ5Qry9+i2lX4tsKLB7GJKi2skTZQBYC7uwUVqAV+wsapy0Zqlio8ZUvhO8p4d2Fy1PmuBTFT2EtY+I6K9vMdRa7CtOMpieotdIbvoxJBPLjGJjhwPACqJQPNLaCMF6xOxLDqW1BO4F1cXYmqD2JDJRN4lckOI8i3p261t/2Us4xtl9Mkdoid0ToTyGDF1wolwVGHPENG6Xrqqaf40pe+xB//+EfWrl1LLpdj9uzZNDU1FZWbO3cuW7ZsiZbHHntsgFosCIIgCKVB69IswsAyZJSu1atXF32/6667GDt2LC+88AKnnnpqtD4ejzN+/Pj+bt7QoR07sMjbsCtmDB2oZNrXqNDZSmuU4xQ/4bZl8s+BiW1kmcKqJYOyvcgWSycc0CqvlinIJQP7F1fhu4ps0mzLlYGdUWQD+ys7HcOuMzG/7OYs2RFJVNAEK5uL2mNsuiy8eKDSaY0fLx5/hMqY5WnslE9qpDnGjM98n3W//FoXLpSwv7F65x3GriuIxaXicXSQ9cAbWY6dTmM1mZhP2bGVkPMjZVYnXVRz8AxUJKOI871Ca5Qm8nr84OzrUFrzu7WX9L5uQRB6xJBRulpTV1cHwMiRI4vW//73v2fs2LEcccQRXHDBBWzfvn0gmicIgiAIJSM0pO/tIgwsQ0bpKkRrzZIlS/jABz7AscceG62fN28e55xzDpMnT2bDhg1cccUVfOhDH+KFF14gHqosrUin06SDiMMA9fX1fd7+QUWQH7InqMKI2ZZCZ3PF64O/Kh4z+emsoI/v2GYBoz7ZFtj5l4G2LexUUJev0Y5RDryERTap0MFda6dBafACr0ltK/wK4x2WqY5hZ3yslly+3iDukR+z8GKWyWcHaAvjERk0wXfyHl9Os4fTkOnZBRL2O1bvvIN5hwe5DrNZVIt5t6QOraGspdLYdgFWxiM3IhHFffPiNm6gSPlJN/Kk7Q3aVuCb5wbAlhhzbRgq9lwg3ovDhSHZ6fryl7/M//3f//HMM88UrZ8/f370+dhjj2XatGlMnjyZ//7v/+YTn/hEu3UtX76cq666qk/bKwiCIAi9QQzphwdDrtN10UUX8eijj/I///M/HHjggZ2WnTBhApMnT+bNN9/ssMzSpUtZsmRJ9L2+vp5JkyaVrL1DndATKhwRFnpOzY59pjjSfeidaCl0LmfsusB8HlGTr7QllY/llU5DRXmx0uVYqEyQZ64lh50IbF2qbaNGBXZadlrjO3nlS9uKTE3gOWaByuVH9l6ZG+Wn00qhXYtUjanXzmisrEYHtm3K06ggvlJsRzPpceWRXZm25KUl7INA0dXlZcZGEUhsbSE1oQI7be5rd1czXtymaaJRZi1Po20TU07bilxZzy0/Tp97nflQZpMtU6ikuc+rXm8iPaasx/UOJ4aSwiUML4ZMp0trzUUXXcTDDz/M73//e2pra/e5z65du9i8eTMTJkzosEw8Hu9w6lEQBEEQBgOl8D4U78WBZ8h0ur70pS/xy1/+kkceeYTKykq2bt0KQHV1NclkksbGRpYtW8bZZ5/NhAkT2LhxI5deeimjR4/mrLPOGuDWD306ig0U5lcEL696eZ4xjwptumwbXCefSy4ZQ+0Oo8h70NiEcgNVbHQ16LzqhFJRBPow5la8LojF5ShyZWAFQfbTNS7ZClPIadFoRxVleLXTQfssBb7GTpuNdsYnvidLy5gYAIndWfwgbtjqv1zNKWfdQC7wmAzjdwmlY84JV0afH18/DKb6M8ZuSxGDwBxQ2Zqdx7okd5n7vCbt4e5poenAQOlqzt+o6RE2mfKeKV0fnH2due9NA7ByeU/clgMrUBKdfshiOl29tekqUWOEHjNkOl233XYbAKeffnrR+rvuuotzzz0X27Z56aWXuPfee9m7dy8TJkzggx/8ICtXrqSysnIAWiwIgiAIgpBnyHS69D666Mlkkscff7yfWiMAkQ2X+VLsGaV9nY9ArxTkPFRLymy07XwcLq1NLsbgu1fm4rs2VjA81wW2XnZGky1XJHcaj0TfVuTKXJLbgnqVIht4L6ZqLJRWqKCJTlrju2F+R998DptgK5w9zTjlQbyv5iyFUZK0lVfTcjIT3SeEtk9zpi3j8eeXDWxjesmqDTcCMO/IS1j90nei9cctWUGmMlBMXQunvgmnuRowXrjuXuPpmCu3ySU6ft995LRrsZuMhObHHfyYXRy9vuCZcRu9/DOkyKtgwpBDvBeHB0Om0yUMPtZ6K5llBx6jhUmulWWmC4OpR53Joppb8ttdN9/psixyY6uxgiCSvmujfE3jgYFBvK2I7w2M6rNBWp4gXU9ycwN7Dx/B9qnGONjOgG+iS2CnIJdQ2EF/zElp0lVmv0QQ8DQMC5GtsFn9f9/u8DyfefDrPbg6QnfIVZgfzt2dY97RpgOx6tXlA9mkXrPq9e8WfX/pxsW87ysrAPBjNsRi2KkwYTxRZylbbpFLKo79hin71+sXF9WTrXKjTpcJqZL/R6q0Bi/ssCme+u9vcvI53weg4u16clUJTrjQ1Buv8ynfYur57e+WRusB1t9afExh4NEUWUv0uA5hYBmywVEFQRAEQRCGEqJ0DROU46Jz2ZLWua/EuoVYiTgqZgzRVcyoFn6TScmjQ8PiuNlOKh1NPeI4aNei8QCTADu5LYWV8vjjL9om+53xL98nVu/TNNZM/jVMHIHvEk0henFwAkFNW5CtMBmFABK7IbnbFMyWWWhLYQdK17MrJa3PQPL4+qv44GwT5kDl/MjhYs77r+Lx567sbNchRxjepO6QGFaumsR284w0HVSBlzQb43tytIx0o32O/eYK/vq9vPJkpzxUoAxr1yZbkX+Nt5fi5w8PmPt7zglXYmV93CZz31s5yAVT6u8/70a8EQq3oVRnKpQamV4cHkinSxAEQRAGOzK/OCyQ6cWOUB1fGmXbKMdFOW6HZfqDwjYoS2HFYliB2tQb1voPdFnlWuutZK23kseb7mX1np+wes9P0GNHwsgaVCKOSsQhTGkSj5nFcYKk1xYohZXO4buBPZZSpMcl2z2WF1fkkgo/ZhYA3ybaV/mQS5jFS4Dv5LdlKxRekP7HhJqwyAbLvnj/527k/eflF6H0PLnmYp5cczGqOZ2/N4YhvmOW1GjIJW20ZaEti7L3msmVO+TKHVIjHcq35R1TrJxRok5cuIITF67AbvFQdY2oukayVTGaxncxOfabG8mMiGFnNHYmTP5uFrdZY2XAymmsnGbGZ77PnGnLmH3S1cw+6WpO+9j1fXE5Bg5ldfqOH5SUIu9iD5SuW2+9ldraWhKJBFOnTuXpp5/utPxTTz3F1KlTSSQSHHLIIdx+++1tyjz44INMmTKFeDzOlClTePjhh7t93Iceeog5c+YwevRolFL85S9/aVNHOp3moosuYvTo0ZSXl/PP//zPvPPOO927ACVmiN11giAIgiD0BytXrmTRokVcdtllrF+/nlNOOYV58+axadOmdstv2LCBM844g1NOOYX169dz6aWX8pWvfIUHH3wwKrNu3Trmz5/PggULePHFF1mwYAGf+tSn+NOf/tSt4zY1NXHyySfz3e8WO6wUsmjRIh5++GHuv/9+nnnmGRobG/mnf/onPK+HCYdLgEwvdoDlOpALYwoUh0NQsVjkfVdqO6quUmjDtdZ/gFn2fOzqKrMxm2vT5v7ET8ZRnoeVNIqVbkmhypKRNyNxB8Lgp65D40HlVG4wti1r1l3RYb2NExXxvURBTVEQ36twgu9uo0/9wUFqnzTGPiU4jBdTeLH8fr5NfuM+8OIFKYrEJKJPyb21IVJrcycdM8CtKT2hbdaUy1aQS1q0HF0BQNXGFLE9xvYx8U4GHIuGSeZ5trL5wMAAqTFxKjaYsCm5si6qXEDLh47FdxTr7jM2Xief8/3oEYjvzYF2cIIAwl7MIjMyidNk3jF6mA3PoxkBS4Hn4Wdz+Y0D+O7sjIGISH/jjTdy/vnn8/nPfx6Am266iccff5zbbruN5cvbehfffvvtHHTQQdx0000AHH300Tz//PPccMMNnH322VEds2bNYulSY7e7dOlSnnrqKW666Sbuu+++Lh93wYIFAGzcuLHdttfV1XHnnXfys5/9jI985CMA/PznP2fSpEk88cQTzJkzp3sXo0QMs0dJEARBEIYfvZ1a7K4hfiaT4YUXXmD27NlF62fPns2zzz7b7j7r1q1rU37OnDk8//zzZLPZTsuEdfbkuO3xwgsvkM1mi+qZOHEixx57bLfqKTWidHWASiawAgVF57KRZ55VVQmOg79jZy8qD/q63RxRKTs/qlWWQhfaJBTUZVdX4e3d2/P29RKrJY2Ou+gaM4q3slkoS4IdJAKOuzTVmlF8qsbCynWucIW8cu1iPvCJG6JUPF5CoRNExqHlm5pxG018Lz9mkamyaR4TKJK2idsFYAfxvro6es+WESkCanAOgocN3fGYHcq88p3FTPv8jaRGhimuElF6q7ItPloprCCFkLYgl8wndq+rtdl9xCGAuR/tdBcPqkwQ1gitySXMQ5CLWzgpn3S1ecc4LT7K05Gi79vDS+K1qsy7CaXQuRxOmH9XKXDsvCqfTkefvb17C9KeYd65yhqSxun19fVF39vLQbxz5048z2PcuHFF68eNGxel4WvN1q1b2y2fy+XYuXMnEyZM6LBMWGdPjttRW2KxGCNGjOhVPaVGlC5BEARBGOyEhvC9XYBJkyZRXV0dLe1NFYYoVdzh1lq3Wbev8q3Xd6XO7h63q5Sqnp4iSlcHqLIyrBEm0nmUqiaksRk/iD3VvUqtIrVK5zqXTZRtR+ULj6diMawRNbBzFwCzY58JRlzBzR1zI5sFP5Mxxw1sqLSvO1XYSqE01B07klijT+K9RtOeqkp0wjWeaYAui+E0G0PGsrTPU499s8t122kf3y24hgXPjp90iO02x/DKXbQFieD6pWsUuRpTONYAL9zRtYjbxy1ZgdJ5VcwaGBM+YRjy/E+WMOVSEwW+cZLCzpqbbOf7KvBiULXJ2BntOtZBWwX3YKZAcVXGG7Ir/M8j3yj6/odf7ceZFkKbLt83/4CD97tfXYbVks0bP9kW/miTqgnnAKysh0qbl4BK56C5Ht7tnyaX0qZr8+bNVFVVRetbq1wAo0ePxrbtNqrQ9u3b26hQIePHj2+3vOM4jBo1qtMyYZ09OW5HbclkMuzZs6dI7dq+fTszZ87scj2lRpQuQRAEQdiPqKqqKlra63TFYjGmTp3K2rVri9avXbu2w07LjBkz2pRfs2YN06ZNw3XdTsuEdfbkuO0xdepUXNctqmfLli389a9/HdBOlyhdHVGWBDsYDWmdjzWlNTg2dk1N9N1vai72YiywtVKWitQqFY+jM9nIc88qL4uitQP4qXSkSKlYDOU4eI1N0fbQnkC3tMDRh6AajJLkNzSYmF0V5VFZK/Bk1Lv3YJWVmeNC0fGgb2xorKxGZX1yleZBdj0zRNPlZjSpbRsrY65nd3v9e45wcYyjI05KY3k6srfyHQu/2vxmXsxEnY81muM0j7VJm4FW121gMDG+Yo15ZWG4eXEJA8sr17ZVXKdcatTV1MjAEzdlvG3DezA9iugZsNLgJ+Hw5UYxcxsL7m/f5HsU9oFtg2v+FfoJF3ywUvn3pFUXZNaIOyhPo8OpKa2hnc5KnzEAwVGXLFnCggULmDZtGjNmzOCOO+5g06ZNLFy4EDCeh++++y733nsvAAsXLuTmm29myZIlXHDBBaxbt44777wz8koE+OpXv8qpp57Kddddx5lnnskjjzzCE088wTPPPNPl4wLs3r2bTZs28d577wHw+uuvA0bhGj9+PNXV1Zx//vl87WtfY9SoUYwcOZKvf/3rHHfccZE340AgnS5BEARBGOQMRBqg+fPns2vXLq6++mq2bNnCsccey2OPPcbkyZMBoxwVxs6qra3lscceY/Hixdxyyy1MnDiRH/zgB1G4CICZM2dy//33c/nll3PFFVdw6KGHsnLlSqZPn97l4wI8+uijnHfeedH3T3/60wBceeWVLFu2DIAVK1bgOA6f+tSnaGlp4cMf/jB33303tt31UCulRmnd21ni4UV9fT3V1dV85JCv4sSNTZe2VRQhWzW0QC4HfoFdVC4XTZbrllTk8QOA66AC5UvncqjKivw238+X9X38unr8lhRg4oSpWAwvyF9Y5J1YU4MaMwqaTaJBb9sOs35iMN9dljSxugC9fSd+S6rdeGJ95Sk281PfJ1OpiDWYa1KxsQm7oSXyAvIrE+QqjCL1299f2q26j1m6AtcIfMQaNOkaRXKHuTblWzJRLjljA6OiPI3pkZAaFcTzalK8dmXXFIBjlq4gvgdiDeYYvqPQFjx315JutVsQusPR3yq4z+s1qRGKWGN+e9NE89dLaPBV5JVop/K5SJVvvCSFtswb9+/mg1IQi6FHBjMDtsLaVeDZ52uoyP8fUJ6OcoOqlgxZy+O3r3+furq6IhupUhL+Tzrojm9hlSX2vUMn+M0pNn3h6j5tr9A5onQJgiAIwlBAJJIhj3S6OiA3qgK7KfAGzHjgB0pRqDgVqlmxWBSDSillcguCifeS86KyyikD14UgSBzxWN6dJJMFz8dKBDYCnofO5rAKvCZVYIioYi40NhmFjcA2rKUFf5uJHaYOOQgVKm/p9D6j5s+t/hwAq+t+2tXL0ynP/ufXmHb+jVFcIa/Mwd6bV+q0Y6H8nr09Xl5ePHL/h8UryJaba988PobnBnGFHDPST40J2hADtzH4HXzjldgVe5eXly/mH5aswG0OA3UZFe0fFhsbmv9bIUqCUHpevbrtfTX1AnPPaRucwNTTblEc8PsmMjVGOd49xcULXxnDK7RWaSm0y/JMLksA5fnohsai93toZ0t1BRrfzHYAJGJop/8u8kBMLwqlRzpdgiAIgjDYGQBDeqH0SKerA5y6FlSQhwyrwOiuucWoVaEilc5AJpOP+2Lbkf0XjmNGTIFCpeMO+AVB3wrN6bJZrJqqqCy2ZdSv0DvGKhihNDah02lUsE0lE+hsNvJQVO9tQwfKm5/JFNluzY59Jvo8tyowQuyDQHHP37mEqV8wI3OnxsXd5aBj5nbzyty8B1AvcRuJFLWWkVb0WVtB/KKCeEaR52E3XzwayFTmVTJt5SN7H3/RCv7yQ1G7hL7nhR+b++wflqyIPBR9B5onJshUmps7sUvTEmZh6MYjNmfqlVgtWWO/Cqx+6Tula/hgJPBG19o39q+BfSy2ZZZQifc8dOBBrjy/eFtGoaQXI3QT6XQJgiAIwqBH0fs5Y5leHGik09UBevtOcJL5FfFAyQpzc6WDOC6+bxSrQFki5ka2VrgO/ogKrD2BvUBDsxk1jQkCRnk6b9/lukYZS5jjhB4y4V+rrhlSwfA2FkNVV5m8YADJBNbYMeggQr3OZKJ4XGv9B5hlnZOPhK/aBpoqlS1Xa9wmM5rMVNm4Yyuj9V68dMGurJzGD18kNuSCn8xtCEb6gXBoZcCPhTt1vf5jlq6AOJAKDpEyHpOhh5gMdIX+5v9a2SIedeUKyreYz7FGHzuVtz9sj6OuMgp0crvxjASoLI+hMrmozNzjLutQ7ZpbdR4cMonVf7m6F2cxsHiHHQCAXdeCH3exmoIHvKnZvOOD93KRc79tQVNL/nsmg7L7MRmrTC8OCyTUoyAIgiAIQj8gSldHeB7EAtuITDbyWgw9CCPVyQryduW8/L6BCqaryrF21uHvMAqUCu2+whhae+si2wLlOKau8DgtGPuwIIo7zS2R7ZWuqgDXNoob4FUnsZszqFD5am6JlK25Iz6Pcty8VyTgt5jR2ur6u3p1ifaFkzLDqqZxFmpCDKc5sKOwFX944GslOYZf4D1kp+EvNxsV4IQvrcDK5tUtOw06ld+vq5G6VQ5QsP7WoN4LTbRw3y1J8wWh1/guZINkFL5j5TM0dBD/MbRtzFSB8kzhpgMSJJIObr15d6mcz7zDvhFlkfBffSvygrZiMaz65r45mX5izborAJjxme9TP8li5OvmnZzclsJqzkQeispqydvehrMcwbtepzNoL9W28r5ClK5hgXS6BEEQBGGwo1X3vCM6qkMYUKTT1RGOk49C7zjo0E7L0WakE3gTas9DATqIHK9ibt6T8Z1taK2L42spZRQuMIpXMIryMxlUMgF1DaZseRnYNmp3EB1ZKag0w1m/Mk7jQeVUvmW2Ka3JVSfQNRNMExvSWHuCQD65HHZ1ZV6Jy2ZR2bztRl+ya4oZascaIFORf2H4rmLmp74PmJhevSGy0yKfmw4gU2kic0c56nJEo7xQteqM475m7F4UFI0OM1VmpR88OcozufKg/Tx6gtDXvHH5Yo74jrkHY3vznrXKhymXrcAOzJCUNiqXN9Z811b+f3C62qJlVAwd5JuteTNLXCnsRqPk2KNG4AU2o342B9u2M/e4y4Ch7em47pdf46irVrD3EPNAN4+pwM5onJYaACo2N2NvC97XuZyxvQ2VrxzFHuiC0AWk0yUIgiAIgxyte9/Hkz7iwCOdrg5QrpuPmZVMopoC5cjzQRdEePd8dH0+KZpOZ/KejWFdsaCeUPEKPSE938T4AsjmUIlE3mumpQWVyeRjfiWTZMeYvI31hyRpHqPQtsmdVfPiLmyt8WpMjrDUuHLigU2X1ZRGpTN5pauqEmvUiJ5fmG7w6jV5O6h0NSgvUA59TbbCDLHf95UVvPiDnitEhWq5AqadfyMAL99pciNO/7cb89t74GikLfjr9fn2aSdQuQrUhJ7UKwilxC+IT1cYm86P5e9PKxvMUNnm5rVSKsrv6LsmP2moijVMctGuIvmu2dlqiWNVGg9kv6EBFYuhPFPPvEO+zqq3b+jrU+wzXrtyMcdcYpTCljHgJVTkAZqurmB01rw7rd2N4Hv5/wu5nEkP0F+ITdewQLwXBUEQBEEQ+gFRujoiEYtss5qOHoPTYkY77t40qjmD2hvYWnmeUcXCfIuFMV7SGaNqJU3wKF0eN9sLItKrVBBFvrnFKGR23o6sKFK8bdE8wXgS7T1cccD/ZIjtNvYW2rVRzekoCr2V03hlpj1WOguZvD2YV5nEK+9f17v1ty7myGtWhKGucJtVNED0Yh3u1iUsL692acuMUgv5071LelRvaCvWOtejyoKTgVxZcEwbGT0KA87fLs7fp+9bZFQbL2aeiawRyLHTJl6dnTHPiJXNx7XLVgaZHYJ7ORUHJ2UT22seBKvOiTyilW0b9T704kvGmXfYN1j1t+v7+Cz7jpe/a67fUVetQHnm2gCkRsPeo4MZhVfBas7glwXXpD6B2rur/xophvTDAul0dUD6kDH4yoRZqDvEIRc3lyrWEMdp0ZRtqwZMB8fdm446Mk59KgoyqDKeSf0ToF3bdJDSwVSfY6HDacDWQVfDTleY/kcprKx5IzpNYKc8VCooa1nGtTuYsLcyHl7CDqqxTPqKILyEvXkba7bcUtJr1RVev2JxlCTaixMl5e1t6IU/35afGiic6jvmkhXRi7S7nPjvK3Di7W/L1OQNlQHQoCR8hDCIePEmc98fesON5l4N/9Gq4ulH3wYr+JyekKXydTfqbADkyhRNE82DUJmpRFWZHprVUA0NjeiEufH9RAzLVsybcqnZcU8dqwbgHVMK0iN94rutaFBlZWHPkaEDUBXxOp/UiGBwm60i+VYcdvRP25Ru9e7pYR3CwCKdLkEQBEEY7IhN17BAOl0dsOvoOFYikGMsyAS2516ZCShYf4gZ5WUrNTWvx0gbBZoRb7okdhkFyq43wUp1Ikj0HLfx43Y08Gya4EaBCmvebMGpc6OgfGSzJkArYfoeReVruwGo+JtlVK1glKpyOVCK7ISK4DgqUny88hhWXTPaCaYtrYEz4yvbYZ741AhlQi8AXrL7b4H3fSWvmOXKwA+mT2L1+elK7cDR31rBq1d3Xe069humXn8U0cvpmItX8PJ1+TreXLqY2h9+P/quPIWVEcleGHy89fW2U+uHf3dFZEiPUlGCeKvZpmybJlcWGJDXhCElQlUniZULlHSvAqepBi8WbtM4lpl6A2MaMW/SV03FleWseuXaPjrD0hPba6FyeQU+UwZ+zJz3ruPAbbAj0wMvronXJOEPA9RYYUginS5BEARBGOyITdewQDpdHeC78HJBqpgw+KDvglNg92BlofEAY9ANsO39NlUbjO1DzRuQGh3j3Q+GNhWa6tds3GYzcqqvVZHSpe0yKje7xHYFYSW0Nomyw3RD2RzeCCMP+XEHd8P2QAkD4nF0VVnkwg0KO2WkLrs5C75GpY2d2ap3f1iS69MT/vjznhm1tyE0nLeNopUIbFmVB9kx+WJ2S9td2+PgO66n6lUHHWZpKg+CqWISZ7dmw0WlSWEkCP2NF9fRva0tyJWZd0Ziu4WV89GBDanTHBiTB89aaqQdpfWK1Xt4cZv4TvOA5cpdvDI3Ut6tmgp0PLD3ijl8+EPL+e3vlvbPCfaS169YzJFXr4iULj+mIVAGfVeTcRROo3lpa0fTfIAkvB6uaK3529/+Rjab5YgjjsBxStNdkpARgiAIgiAIARs3buT444/nqKOO4rjjjuOwww7jz3/+c0nqFqWrA/50zZeKvscDNSU9Mp8wFkDlFEpDLMgUkR4Be44xw4k9UxKg8qlocmXQdEDeZduPafy4Kbv3KEXDQS7xvWaINeLNHGWZHMoPhia2FXk9Og1pvPEjUb4ZZeWqjIeR02yGsO5eD2xzjMyoJL2MyjD4CJUuJ7A7CX4POw1uEMkjPap9lao9yjY55Mrz7vN+TEeJgGVkKAwnlAZ8FX2O7zafK97ReDGFFThEu02aXFKRC7x4c/GCIKsexPamsbbtAcA+YBTZqhhOEERUbd0VBX22D5qAH6/on5MrEa9/Kz/DceiNN2I1mReMP9JD+Yo3l5rtUy5bQc2ffTb1V8NE6eo3Lr74YlKpFD/72c9IJBJcf/31LFy4kP/93//tdd3S6RIEQRCEwY50uvqNp59+mvvuu4/TTjsNgH/8x39k8uTJtLS0kAzibvYU6XR1kZduLPaCO+La0MZL47tQtiWwhWgiUkl8p1WKGK2wM/l1dkpF6Tu8So9ctcYPUkzE6hyS79qoRGholMNqNDYU/jtbsMeMovl9B5hNZRZuo4cdqFvxd3bijzZxxNz6DCjF489dWbqLMcCkwyxGvrGxi1Kg2BDfaz57CbPtqGXmd3ptWVsvxuO+HsT3cowKma0yP4zSoJrD2Dx9dhqC0K8c8Z0V6Eod/eP1UcSD7GbaMu8lK7AL1Rag87aN5jkLFLKcRiuFHmHSAmmlsFtyWE1BsGbto3NBrMJ3tmFXJJgz1bx/Hn/hqn4409Lx1pKO7VBf+c5i6uvrqa7+Vj+2SOgPtm7dylFHHRV9P/DAA0kmk2zbto2DDz64V3VLp0sQBEEQBjvivdhvKKWwWoVXsiwLXYKM4T3qdH3uc5/jP/7jP6gMEqCGNDU1cdFFF/HTn/601w0b7HhB7Bav3IeEj/OKuZS5hIriuIAZPRbaHGlFFBsn3A4mCa1TniXnBJ6NOkZyVwXJrWb06GzZja4wsqZKxCHmYmXMzo4FuTKbvYcGsszRB0XelFUbs8M2IbPvGrutMLo9kE9ErTtORB2mSclWB7s4kK3Q6LjZQeu8Apk6NNteFUUcebWpz07BK9f2PHm3IPQFB999HQAxZV5MXpm5z929NrEw4bWjsHIaHajlXpiRoSCxu53Oq2CZmhh6tClkp3zchkyU9UIpCx14VutMBntvM2SN8jXvoEWs2nRTn53rcEYi0vcfWmuOOOIIVEEqvsbGRk444YSiztju3bu7XXePOl333HMP3/3ud9t0ulpaWrj33nv3i06XIAiCIAjDj7vuuqvP6u5Wp6u+vh6tNVprGhoaSCTyEoPneTz22GOMHTu25I3sLrfeeivXX389W7Zs4ZhjjuGmm27ilFNOKekx/EQw6ov7KEvTMsr0iFNj8nYQyjMqTKh0WTnMyDHoPPsFyZKV41NRnqIpyPfoNsbIVFpYwZBTu6Oxm4xHkFVtOrsqF448FS2j8/nCohg7GAXsDw8Mr7hSr12ZV5OO+9oKUqPNZ98FvyBnop3qOKG25+ZHfZ4DftKPfieVzsdPi213OfSGG3EbzI+WKzeKZaiivXblYlSgKiLKvdCHzLLnR5/Xeiu7tE/tL5ajPaNA5ZLa5FtMmZs7XjBIVz74rsorXBgbySjDgwVW1tzg2Qo7+B7kgm3RoHU+EXRhA3wNjc3574Gtl9ADxJC+3/jsZz/bZ3V3q9NVU1ODUgqlFEcccUSb7UoprrpqYA0lV65cyaJFi7j11ls5+eST+dGPfsS8efN45ZVXOOiggwa0bYIgCIIgDH4eeOABfv3rX5PNZvnIRz7CF77whZLU261O15NPPonWmg996EM8+OCDjBw5MtoWi8WYPHkyEydOLEnDesqNN97I+eefz+c//3kAbrrpJh5//HFuu+02li9fXroDhSMGX4GjaZ4YSlZEiodSCt/VedsirYqULssDP5gzVrYm6ebIuOYnSY/UVL+lyZaZcaPdYpMtN1JWWUMKbAvfDewvYgqtwA3sM9ymfNTp4aZyteal7y+OPBS1XbBBQ7YSUpMzbfbJJY3HY6ECqbIKFYzklafy+eksyI3MoW3zu7iNiswIH7ulQNay8vUKwmBDZYI4U0F09eR28z3WkH9m/FZ/gSLJymnJ23RlKo0Xdi4Revi6xB0rihOocjn8IE4XysJKpSEW2JsOYO7XoY6iBDZdJWnJ8OeOO+5g4cKFHH744SQSCR588EE2bNhQkj5EtzpdYcyKDRs2MGnSpDbW/QNNJpPhhRde4JJLLilaP3v2bJ599tl290mn06TT6eh7fX19n7ZREARBEITByw9/+EMuu+wyrrnmGgDuvvtuLrroov7vdIVMnjwZgObmZjZt2kQmU6wm/MM//EOvG9YTdu7cied5jBs3rmj9uHHj2Lp1a7v7LF++vEdToqF9g9IWnpVXluyUIltlhiNWoGpZ6VDaCrwZg9GKtoiGLmpnnMwIm1SzsYtI7lTUHaKYfPfbQcU22YNNYkGdjOEnHLKV5ufLlpuo+GH06L/cXKIch0OEsuCn9RKQGmU+K8/kXnR2tA20pW2KFEnfMb9RGF9NacjWBIZa5TkU4I8yRnKpaoUV83B25e0ZowwFysRvC6N6e3GTn81pDhW0fNn24oYJQmfYFeXmg9bMjn3GfPS8Tu27lKWLzHjsRou4CSRv7LXCeze0F7Ly2+w02MG97KSKvYE9F/xYXmlHgZ0KItLHXFCmImXbYBXoK77PvAMugiCbhk5nWL37x924CvsxEjKi33j77bc577zzou8LFizgC1/4Alu3bmX8+PG9qrtHna4dO3Zw3nnnsWrVqna3e2Ei5gGi0M0TjPtn63UhS5cuZUlBALz6+nomTZrUp+0TBEEQhG4hhvT9RktLCxUV+fRVtm0Tj8dpbm7uZK+u0aNO16JFi9izZw9//OMf+eAHP8jDDz/Mtm3b+Pa3v833v//9Xjeqp4wePRrbttuoWtu3b2+jfoXE43Hi8Xi72zrDaQo9eUApsIJ8inYa0jEzivMT4NTZRVGddYHCUpg30Hc0nq/Qfr6eWAN5b594HHdHY7CfRW5UGU6z6dymqx2cFo1v73+jmGnn3xgN1pvH570O0UZpCm2vDv7x9aiyIDdlWQIrS5Gnltuo8vYtDjj15ovfYoEFfvCbKlujLasoUn0Ua82CNy7N25iZCgra5Oe9So++YgXaFsVL6Dq6B55/XrODCmL/2XUW8d0mHhdAtkxFNj7KB1RhtoxADC44pOfm3y9KF9hEeua9lkuaZ8Y5cCxOkDM2anM4EPd8sHzj1Rgwd4Sxv1295yfdPj9B6Ct+8pOfFHW8crkcd999N6NHj47WfeUrX+l2vT3qdP3ud7/jkUce4f3vfz+WZTF58mRmzZpFVVUVy5cv56Mf/WhPqu01sViMqVOnsnbtWs4666xo/dq1aznzzDMHpE2CIAiC0GtE6eo3DjroIH784+Jp7/Hjx/Ozn/0s+q6U6lGnq0eW8E1NTVE8rpEjR7Jjxw4AjjvuOP785z/3pMqSsWTJEn7yk5/w05/+lFdffZXFixezadMmFi5cWNLjJHaaxcoqyKrogVBZIGGi1KO0if4cPiyKtlc8UL50MrCH2Oui9ro4LTDy5Sb02JHosSPBdaC+EeobUTkPd28LbkMWtyGL75gI6qlReZum/RFdeG1DNdExS+Idh/gbCeJvJMiVa/DNKF4FsdOUl/9up/OL06Kw0gqnwcZpsLGabNytsUilPOz6GyNTC+UbBStboclWGDs/KxvED3MxnpDJYCkzf4+4doVZvr2inTMShAJ8HS1rMr9kTeaX+4zXpXIWKm0Wr8zHaTG5ErVSRZkxtAqUd/KvqkIbLt/GvLusQOVSwTPjmXhdVg78uIUft8jWJKGmCmqqUPFYG49F7XnRgtZGBfM85iQXMDv2GWa7n44WIU8Ykb63S3e59dZbqa2tJZFIMHXqVJ5++ulOyz/11FNMnTqVRCLBIYccwu23396mzIMPPsiUKVOIx+NMmTKFhx9+uNvH1VqzbNkyJk6cSDKZ5PTTT+fll18uKrN161YWLFjA+PHjKS8v58QTT+RXv/rVPs9548aNbNiwodPl7bff3mc97dGjTteRRx7J66+/DsDxxx/Pj370I959911uv/12JkyY0KOGlIr58+dz0003cfXVV3P88cfzP//zPzz22GOR8b8gCIIgCPsmjHt52WWXsX79ek455RTmzZvHpk2b2i2/YcMGzjjjDE455RTWr1/PpZdeyle+8hUefPDBqMy6deuYP38+CxYs4MUXX2TBggV86lOf4k9/+lO3jvu9732PG2+8kZtvvpnnnnuO8ePHM2vWLBoaGqIyCxYs4PXXX+fRRx/lpZde4hOf+ATz589n/fr1nZ53KpXiv/7rv6Lvoe13uHzzm98klUp1+3oCKN2DDI6/+MUvyGaznHvuuaxfv545c+awc+dOYrEY99xzD/Pnz993JYMUkzW+mrq6Oqqqqjosd+LCIN9eRpOqUST2BB6LOWiaENh7VULqgCx2gxlSOo35nH6msI6++xUeOJr4O8ZYaNxzOcpf2oI3psYc590dxngMzF+lyNYatXHncUn8GPzfjWIfdNzXze/ixY1SFUbUzlaBFze/kZ/0ie208YKsArF6ZaLKF+RtDFWzKK9jsC1Xrnnra3nHiyOvWVHkEGRnKIpQ78WJjmMUr8Bb1QflK6OMYhRTbRHlzHzj0ra/5dHfCs4tBm9cLr+1sG+OuXgFqTFBntixWUY/lTdGTI1UkXdiSKFarLx8do3wO2BswpRRzMC8A50WTazeFLbTPnaLubHt+hQ0t+RtuDIZ/IZGlFMoswX2X5kM2tegA8/GYJ+uRt8fCLr6/6IUxzj429/BSiT2vUMn+KkUGy+/rMvtnT59OieeeCK33XZbtO7oo4/m4x//eLvhEy6++GIeffRRXn311WjdwoULefHFF1m3bh1ghJH6+voiR7y5c+cyYsQI7rvvvi4dV2vNxIkTWbRoERdffDFgwj+NGzeO6667ji9+8YsAVFRUcNttt7FgwYKonlGjRvG9732P888/v8Pz/tGPfsR//dd/8Zvf/AaAyspKjjnmGJJJE4zxtdde4xvf+EaRE15X6ZHS9a//+q+ce+65AJxwwgls3LiR559/nnfeeWdId7gEQRAEYVCiS7RgOnKFS2GsypAw7uXs2bOL1ncW93LdunVtys+ZM4fnn3+ebDbbaZmwzq4cd8OGDWzdurWoTDwe57TTTitq2wc+8AFWrlzJ7t278X2f+++/n3Q6zemnn95u+0N+8Ytf8LnPfa5o3S9/+UuefPJJnnzySa6//noeeOCBTuvoiC4b0nenR3fjjTf2qDFDiT/fbpSGD334u4x4JYOVMqO8bE2CltGmNzzmLx7v1th4lWabtmxUTuEEHnW5BPjJfHiN8jdcKt41T0V8ZxocB3tPEGY+5kImkEXSGUgmohFivE6z+5j9z3OxPZwW89fKYgxTArsUP16gWtFWKTr8uysiz0Irmx/xO42mnmzgxKLbGaaEdhKhnVeoCGgrsBML4n8R0xB6ttoaNFjNxuNL20b9slKm7NHfWsGrVxe3MYq4P7hiEguDmHF/TpMJ4vnt/IcYZTtzkRdittIuyJZh/oT3rlFiKdpueYEipcwzEn63Mho7q/Hj5sbUlsoHI/QT2A1NYAc3rdbobA4dxHZUhZ7jjgOZrLH1ClFys/cFrcMiXXnllSxbtqxoXU/iXm7durXd8rlcjp07dzJhwoQOy4R1duW44d/2yvz973+Pvq9cuZL58+czatQoHMehrKyMhx9+mEMPPbTd9oe88cYbRakOE4lEUTD4f/zHf+RLX/pSp3V0RJc7XfuaAw3pKB6WIAiCIAg9o6eG8K3rANi8eXPR9GJnYZO6E/eyo/Kt13elzlKUufzyy9mzZw9PPPEEo0eP5te//jXnnHMOTz/9NMcdd1yH51BXV4dTMAUeOguG+L7frjrYFbrc6XryySd7dIDhzu9+ewlzR3/BRF4GYltg4g6Tk/Kdj47moFVZts4wdhTl70LdETpSX6yUwmk0P4HyjZIR2iDZTWlIpaPIzdh2/rNjQ3mSPUeaXIwv/Fjse0LW32KuxYlfXGG8swJ1KLkdXruyY7X2zUvav4b/sGSFCdTdQbzf16/o/NofefUK7MDe0soovHT+kfNjGj8ZKF/lnlHEVNBgDYd9b0Wwn7EHU8G9ESpeoY0X0EYVEwSA2PYm7CbzD9U+vJzUCJvyLUbSjdVbJpo8gSei1m2VL53/XvgP305plJ+3TzTqmanLzXnoQNnKVcZQXk30zlPVFdiAt9uExdfpNMoJ8zIqrGQCryGQnAOVa5Z1TnTctX7PpnSGBSWMSF9VVbVPm66exL0cP358u+Udx2HUqFGdlgnr7Mpxw6jwW7duLXLeKyzz1ltvcfPNN/PXv/6VY445BoD3ve99PP3009xyyy3telWGHHjggfz1r3/lyCOPbHf7//3f/3HggQd2uH9niHYrCIIgCIOdEtp0dYXCuJeFrF27lpkzZ7a7z4wZM9qUX7NmDdOmTcN13U7LhHV25bi1tbWMHz++qEwmk+Gpp56KyoTR41vniLZtG9/36YwzzjiDb33rW+16KLa0tHDVVVf1OB5pj4KjCsX4dfXRaE0lE2THGgOgTA24TTlqHzBJtLedMgqv3MczJl9U/s1m/J+CG6MpcCMK7o/siCRuzkftDRJw+wVJGx0HPxFj7B+M5Dnr5G+z9g+X9+1JDjESe3xSIyzctLlmlZuyfOATNwDQMMmmbLtP/cH5hzE9ArxAddpw0dei9ZlqsJtNTDYw8bW6Q6wu//ml7y/m8O/m1SvlKeyUka28MoVX5uONDEb5WQtnb2jEZXJr+oH3ZWHUfUHoDLW7HltVm89+OTumaqw/mXeV26ghSOdoeaC8/A1lBfHronh3dl5ksbLGg9F3VH6bBbE6IwdrV+GVhekdNN648sj+y27JYTtjsVrMPzM/lcYP7Lss14FYLN943fk/RqHvWbJkCQsWLGDatGnMmDGDO+64oyju5dKlS3n33Xe59957AeOpePPNN7NkyRIuuOAC1q1bx5133hl5JQJ89atf5dRTT+W6667jzDPP5JFHHuGJJ57gmWee6fJxlVIsWrSIa6+9lsMPP5zDDz+ca6+9lrKyMj7zGZOX9KijjuKwww7ji1/8IjfccAOjRo3i17/+NWvXri0KB9Eel156Kf/5n//JkUceyZe//GWOOOIIlFK89tpr3HzzzeRyOS699NIeXVPpdJWANdn7o0B+KuegPPOyiO+EjR9NcsivjCH9uGd2k6kaSdNk83Ia/6dmrJT5J6u0RiuFyppt7u5mVCbbJrAgAJ6H1dAcuWGrbO/ciIcjz/6n6Tid8vHrAbCyPm6T2Va9QZNLWFGKE6VNJ8hOm2t9woUrWH+rma577cq203ZTLlsRGRyXb8n/o/rfe8z05TFLg2k/3Y4dcFhcmVQrkXG8tsBT+DGzgz0qTS4wwI+nbFQW7CBxetimwumeYy4JwkkkzTEkvZAAoJuaUUnzfqh4zyc90qIxmI2p3uBj5fLTVU4qP72ofF3c6bJU1OlSvjbPTNCRCjtfYQJsAB12yJTCdxWxevPAZCtcnLoUqtpMbanMzqg3pz0P3dhY2gswjCilTVdXmT9/Prt27eLqq69my5YtHHvssUVxL7ds2VIUO6u2tpbHHnuMxYsXc8sttzBx4kR+8IMfcPbZZ0dlZs6cyf3338/ll1/OFVdcwaGHHsrKlSuZPn16l48L8M1vfpOWlhYuvPBC9uzZw/Tp01mzZg2VlZUAuK7LY489xiWXXMLHPvYxGhsbOeyww7jnnns444wzOj3vcePG8eyzz/Lv//7vXHLJJUV2abNmzeLWW2/tcIp1X0inSxAEQRAGO92cHuywjm5y4YUXcuGFF7a77e67726z7rTTTttnZppPfvKTfPKTn+zxccF0gJYtW9bG67KQww8/vCgwa3eora1l9erV7N69m7/97W8AHHbYYYwcObJH9YVIp6tEhIH8/FQad6OZ9pvYMgLftdGOUS+2nDSSyk0+2Uojb+w4oYxxf6yP6lBa4yeMvG43BLEPQk+MbBaCOXF8H703P29l22Ka1xFuQxi/QeMFLu1KQ65MRYEfY/Ua5anIiSFTDcd+0yhHuSTE90Kswfy+LaMVXoUxzAcTGFK1MrIvnFIMFbOQcKTpNAIFCc/DdEF2EDKCdxOhDwBOM7y8vK1y9cq38+sidU0QCli9+8fMm/RVAKpfq2f3lBpywZSiH1PYmSBwaixIhB3cn1ZWF9lsK6XRdmB0ryEXV9G7SfkabSmyZeZmdpv8vAoWKLe5svw7qvHQaipDhT+ZjNSt8B0aycMyvSgMAkaOHMk//uM/lqw+6XQJgiAIwmCnBNOLYgc68Einq1SEqSs8jCoFNNRWkBphkRpjihz06C42/fMoah/KSyHpIJCq25jDSudoPNgMQ6tfajHpM2KhO3WBgWkuh25swgrmrul+Jqf9ht/99pLo88z53wfAbfZJ7vL437u/AcBpH/0eKIeWMQVxZMKgqjGTykcXmJqUbYPKd4xMlotb5JLFbtyt1a1CchWmYrfeIpfMK12xOnAtxWtXmX2nXLaCTHWwT5kJPRHa17QXpqK1gX+YQFvSBQmrNv8HAPMO/AqoGrwgJFO62iKxOzTigmyZhdMSvMcs0LbCygbOG+T/4VtpHxJOdO9qS+HFlUmKDfiuwk6ZepycRy5pkS03hb2YCebsVZsb1t6bT0sEmNA7he/Soo37uaI/QNOLQmnZz+9iQRAEQRCE/kGUrhKjLGXSWQBl29KUv+NHnjwAkx/cDlmjkmQmjaTuUKNgjXhDY7VkSO4IQkcohR5VDYFthNq1x6T+AfTIGqxkMkqtobftYO7oL7B65x39co5DlWdXfq3d9U/99zfbrDvhQqMU+a5RkepGmN+wchMkdvs4zflh+I4T2n+Mjnzoal7/xLeK1r39leI2RAFQPUjuzK9/5TuLo+CnvhukCGqVnLiQUP06atkKE45CzGGEVvi79lD2Xi1NQUzH5vEm0TqA26TRFuSS5p3iKB0pVwAo8O3wPWYV3f/pGhs7pdFlZrsXV5GnrZ3WoBReaI7qKrw4+AlTuT2yBitIb6azWXQ6XZwGCKLA0/s9onQNC6TTJQiCIAiDnIEIGSGUHul0lYrQ3kBZkZehthVOXQaC2FsqmzNBTt0gAe1xCZOqBnAaMqicj7uzMdpXNaZMyh8wnkKh96JrQ9aG+gazqaoSyrsZtVPolNAu68SFK8hU5eNevf9zN5IaYdEwyRjGvHRDsc1U7S+WY9nmzRaLa973X1fw4j9d0+FxktvM31id5vk7i9MUtRxqpK2a52N4sfaTbbfmtWWLOeaSFVH8ryOvWbHPVEXC/oGfTjHmL81o27wrGg7WNEw2ilT5O4rEXj+6x7yYwkkVy6XhP+xMpWWSwwe2pNkyC+2A0xKo8p6O0mZ5CYtMpbH5AmMf6TaZeF1mew3xwLubDe/kPRgBlIWybTN7IAjDBLHpEgRBEARB6AdE6SoR4WjMKi+DINaWVgrtWKhCG4VUGr/GeCi2jAc/+AU2z6rkoNX1WDsDz0bPRzc3oyqCoDpaQ5AuQ1cmUI6N32BUMauyAury8b7aY964fzcfLItVW27p7enuN/z59mKV6Lmfdpw0G8By/CipdUuLw6QfpZj9HaN0NU9ImlhIwP88ajwnrSDrj5PSfODsG3jmwa9HdW387MXmw2fhuCUr2sQD64iXv7uYKZdJ3C6hmLX+A8wd/QVGxQ8BIJeI03SwuanSo6Big82IvwWqvKfxXRXZcdlZXeStmKkEOxNsy2gIkrKbfRUquM+9pGXyNIcKWhxyCUWm2g7KQmy32dEaOwa1tw5yYaoIhfY8VJCVY3X9XX10ZYYIYtM1LJBOlyAIgiAMcsSma3ggna5SY1toNxzF+VjNGQhyMeqEi8p5WPUm2vzEp8vYeawZ5bWM12w7qYoJ/1UX1aPi8cjTEYi8F/GBuoYo9yJKodMdu7Z95LRrcStNEm7qGphlnQOYka9QWibd7bLnSPObVm7ysP++DQLvqzJvNLnqWFH5rElBR8V7OrJ7aY+XbuyeXdYr3xE7LqEtOpUmtqsZgOTOGFbW3Jt+HBoP80CZ79Vve9hZTWpE4CFtWVH0ejuj8Z38d8sDtI48H5Wvowj02QpFtlxF3rROM2TL816SdhqqXg7k3lwONWoENOSD4inbZtW7P+yjqyEI/Y90ugRBEARhKCBK1ZBHOl0lRjkOBHnFnEYbcnlDHNWcNh+CiPWJ9xqYuNcoH9nKGG5Dpqg8gG5JmX1jLjQZhUy5NjqdxhofhLrXutNYNqnRMawWE73e9jVOTVUvz1KYd8BFgPl9VJA1wD9gDN6kCiauMbk32b3X2OIFv6m9Yy9YNUX1pMaYt6j7gs/eCS4nftHYYv35R6JUCaXHb27G2bYLgLKdlaggGJeT1sT32uw9IsiZ6NpUbjJ2XUDgPRvE9Gr0cZs1mQrzPTUSnJSK4sh5cUW23NSrLWPrFeYj9RKQqTB/AeK7Md7YABVlaKVg3CjzXWvUnoa+uhRDD7HpGhaI96IgCIIgCEI/IEpXqfF8kzMRsEKvxdD2SvugNbra2FephhbsQBWzd9SbWFyJIDGa1sa2IYiFo1tSKGVGlqo5DWVlka0Ylsrbe7Xiw6dfS/PRSZxms92qjJGplp+9N8yb8KXifJfB75CtSVLxxw1FZXUma35XQGWy2Huai7Yf/KiRB9y9LVRb5dH6U//5+sjDURBKSW67SX1Q9nYN8R0m96uVyZGaUI7yzLth1/Ee2rZJBqKtnYJYUxB/rsEjoxTeaHNf+3Hws+An88eo2GLKtoxSWDmiuHFeHLwkWKHoXwXZEWbH2Dt7jFd2LLB79H1WB3kjBTGkHy7If19BEARBGOzI9OKwQDpdJWCWdU4UkV6n00bRAlQqbfIjBkoHvo/2PLK1YwFwN29FlQXDQ8sytl5h1HnfR2dzxkYMIOZCqJyFnophtHqt88cI+PAHl5vdtjVQY1u0jAti4WQs/JhEeO4VWudVRkAfYH7P2PYGo2wFqHGjYceuyANVN7dA2gzx577vCla/eA3ZysDT1U9QtmEvftL8TrnKeL+cSlc5ZMWNALy9uPM4ZcIQIHg/8c427CB/KweMI7YrTTKw4ap+zabhMB87ZbZXvKeJNZj3j7YUzWMsUqPyVXqFKtdmTdVbTQCkRhhV3wtu51zSqGbhP/9sGeQqzDvOLU+QHltOusZ8l/eUMByRTpcgCIIgDHJkenF4IJ2uEqM9DysexMTK5YqUDwLvn9ibW6KykWoVc43aFUadz+WM/Vc4Km1uyateI8uNehJEag7Vk5CT/t+NVKWC+F71jez50NgoLxpxk2NN6BlzR16Ach3z2wGqphoywbVOZWDcaJoOHwlA+Ws7UcqCMKuAUuhU4I0aeLKWbzCZBNTuemPPFyhdVtZnxr98H4B1932tX85NGP4UxuabZZ2Dcsz9ZjsO9qgRxMrNOybWYBHbZeEH5lXpaoWVMe+b5oMsmseDHzPvlOQ2xZgX01gZ815pHh/n3dPMOzBTDU5L3qYrlwSUjuq1mxV4pp6Gw6pwGz2axpvj5PImjgLI9OIwQbwXBUEQBEEQ+gFRukpFqEgpBeVlwTqNam6JconpbM6oXaG6ZduR+kUma/KMhfG2fGOnFX1PJCK7LT/uYmVz6FhgD2QnWfXKtRzyy2sBqK5ORqNHKsqp2pBl53FmROs2w3N35fP7Cd0kl0NrjQpinenyOCrjRZ/xIb7LqFheTTmpo0YT321+b99RxN7da+ppSXHqP1+PO9LcK7H6JkhnyNYYlaxxUgyrIBnBQHHYdSZumLLzaoUwPChUvWbHPoOVyRLfa5TXdPVkYvV2lBvUtyE1yozRY/WabJnCDzIoeHFQOU3jgcZwy3cULeOCeF/lHllPYWVDu1YFlsYPzVErNO+dGtqbgp22oxyjvvx3KkaUrmGB3NaCIAiCMMgRm67hgXS6+oIghlNm0ghif8uAH3gzliXNNje47I1NkW0Qno8aPwa9w0SLVjHXKGGFkeYrjCpi1TVBNsvqN79XdNgjrzKj1L0nxkmPMXG5yvY2gYJcYGbmFoeJErrI7NhnALCrg2j+gX2daslEcdiU1pBKYzv5fHVlf6/HqzS/hZd00OXms64pJ1thUfZ384PohkZUMmnqwETy9orTNA4IdiDK5pLiuTic0bksXl099gTjiYtSJHdpmscGUeib8vdjYpemapMmlzDbmscqdhyf4IDHtgGw66SxEAhbsZ0O6bE5fN+ssNCM+KvF7n8I3okavERwz9uQHqVx683zE9/d56c9tBCla1ggNl2CIAiCIAj9gChdJUZnsiaSPKBy1Sa2Vhi9XGt0Oo2K52MwqSC+FwkXvWMXKhFElk8mjO1XqIRVV6JtM1rU1eU8vv6qNsde9fp3ATj+ohVU/c20Qccdtk91o9Fk0wES+6YrzEkuMB+0j/Y1OmeMW7y6epRtY4W2eLFYPkaa9sFSqCbjoUgyhnYcrBYjFyXqmlFefqhZ/m46H437PQtsC6fO7FvxroWXGPgxUZhPj2SnxYQhzlr/AWZZ56A3bgagIuaQHZ0kXW3eVXZa0zLG3OflW0D5ULXR2C7mkglaxpC3TwUmrTUGifHdad74Ygxco2z5zTa7j/PRdvgcqMiGy0tocH3stBV878szHoKI0jUskE6XIAiCIAxyxKZreCCdrhIQjhLBxN7SLUatcLfUkasdTzaIuBzf0Yx6cxN6p7HbIubCyBoAmo4cRfkr2/Oxt7Q2KlcYsV5rVItRW1KHV7fbjsOuN1HDa19oxtq2BwB/VDXZSo2VMaPQNy5bXLoTH6bMHfH5aNSus8FbKsw44HkoS+E3mojbKpZFhfky7ThYNoTbPA+VTOSj19sWXoUZvtu7G7BdG68syEBQWWFUskAJS2zaG7Xnwx9azm9/t7TH53PyJ2+IPqdG2rQEZjuvfHvf98Kr18j9sj/ht5i8sU5zGqfBpmy7uT8zFSqKKh9r8NBOXtUas74RqznDruljAKg/WGFn7KAeByyNqg89FBVepWe8GAGtdfRfSLsau8GO1JhIZRWEYYR0uvqCcDqxsYnsYaPJJc0/bLsyTqymGl1nDN7JZKPApm5jDm9kJfZe8w87mlpMme26poL0pNEAJN/c0e5h3QbzIsvUxHB2GKtX5XlYaYWTKvlZDivmVp0XfdZ+q+Cx2s+ndnJcUFYUqFY5Tr6jrMwUYeT8kPOgJZW/H+Jx7Lq8J4NqzhC5ScRd/PI41s46893zodJEh7QyJlBqKYKkWllNfLdMMQv7IJvDas5gp4NBX6UdBUNNjXKofLsZP27u3t3HlFO5OcbuY0xRlYMdJwaBoPcksJwWnL3mGanaoNn9Dza+G4bYAb8sCDTsK7wxWSo2m3eXhIxohUwvDgvkthYEQRCEQY5MLw4PpNNVarRJVA1ANkt8exNqlAn14DQFkQbDkBGeb5QQILZpN+Ry+KPN1KFKxlDbd0fhJlCK+Lv1nR76wN8alcze24I3KogR4YN2RKrvjFnWOVixWF6hUiqfckkp8IwxfRFWwXRjGOkxkzHrQ+XLtozaVZiMPEww7HlgK1Q2CKwac/ATLnr8CFPs3V141UZlsJoyxOpcZnwmSAv0y+4pXn/4lQmGe/I538fOguXJm1foHL23jtyBI8hWmHs7W66IB1YR8T1Z/JiF02BUeCcVp2mCi50KpgwV0T3fMtEn/nqSzAhzz+04OYdKW+h4Xk1WWfNMWM0WvutTd7x5WW089+I+P09B6G+k0yUIgiAIgx2ZXhwWSKerRIQpNWZZ5+STIWeyWM0ZrOogIKZjQTJhAp8C3pgqdKB8OLsaIZPFjwc/SdzBqY8bpQSMIuJ1nqjaajZKmtKa9BijkmyZ7uA7mihaodAu2vPy4TtslQ9a26agD9j5UB5OwSMUOD/okSaAqkplIWlHvyHpNLiB4Xwuh2rwInXNH1GBtsirZK6LFThOaMfCaTHKGMAJF65g/a3dN3D/wwOSOFvoGl5dPVbKQwUKrxdXJIJgpbG9GZTno3LmfZTcnsXdm8a3gyTXVYr0yKAiDanxHiQCm0jbh4yFszewifQgscPc19lKsHbHxHmjI6TTNSwY+EBAXWDjxo2cf/751NbWkkwmOfTQQ7nyyivJZIrnzJRSbZbbb799gFotCIIgCIKQZ0h0ul577TV83+dHP/oRL7/8MitWrOD222/n0ksvbVP2rrvuYsuWLdHy2c9+tt/bqz3PLJkMZHM49Wmc+jTaUvhlcWPT5TqkR8bxkjZe0gZfoyvLyVW45CpcvISDX1MJjm2WVNrYDGU6Ns7yky5+0gWtie3JENuToWwbJHYq/vq9xfz1ezKC7Ajta/xMBj+TMQnKPd/YcqXToH2UpVBWQRDUcL+WFH5DI35Do9nP91F1TaggVRPZnFmfyxk7l2zWLG6Q5kkpY0OWyaFyGiuTw8rkwHVQTSlUU4rUuDKsrI8Klmz5AF0kYb/BSiZQWuO5Cs9V5MqhfGuO8q05o6gX2CkmNuzCq3Cp+VuKmr+l8F2wsmZJbrFwGuzIAThWlkVlFYntZonvUlS+41P5js+Y9Z6oXJ2gSrR0l1tvvZXa2loSiQRTp07l6aef7rT8U089xdSpU0kkEhxyyCHtCh8PPvggU6ZMIR6PM2XKFB5++OFuH1drzbJly5g4cSLJZJLTTz+dl19+uU0969at40Mf+hDl5eXU1NRw+umn0xKERhkIhkSna+7cudx1113Mnj2bQw45hH/+53/m61//Og899FCbsjU1NYwfPz5akkkJpS0IgiAMcXSJlm6wcuVKFi1axGWXXcb69es55ZRTmDdvHps2bWq3/IYNGzjjjDM45ZRTWL9+PZdeeilf+cpXePDBB6My69atY/78+SxYsIAXX3yRBQsW8KlPfYo//elP3Tru9773PW688UZuvvlmnnvuOcaPH8+sWbNoaGgoOtbcuXOZPXs2//u//8tzzz3Hl7/8ZSxr4Lo+Sms9JGd5L7/8clavXs3zzz8frVNKccABB5BKpaitreX888/nC1/4QqcXOJ1Okw5iZQHU19czadIk6urqqKqq6lHbZtnzo8/O6JFQbqQJXZHAT8SwWoL0GSPKSI80MWlidTmstEe2ytj85MpsnBaf5EYT5JSWVDS6XLXhxnaPO682SEhs2+i4qbfpiBGkRlg891NJVtwRs6xzouCnAMq2UaGtVSaD5TqR7VXomRpuR/v55Neua36jQBFTjtM2aXnovZiIo107sovx4y46buMlAhsxSxHbmn95aMciO8rcRzuOT/B/K0QREEpL5MULWGPH4B0wip3HGzutdDUc+ISJIacyObSbv6etxjQNx4wmW27u7eZxCitw4NYKUmMgPd7YJzplOdTmBPGd5hl5+bqhfR/X19dTXV3dq/8XXT3GMQuvxY73LjeSl07x8u2Xdrm906dP58QTT+S2226L1h199NF8/OMfZ/ny5W3KX3zxxTz66KO8+uqr0bqFCxfy4osvsm7dOgDmz59PfX09q1atisrMnTuXESNGcN9993XpuFprJk6cyKJFi7j4YuPlmk6nGTduHNdddx1f/OIXATjppJOYNWsW11xzTXcuU58yJJSu1rz11lv88Ic/ZOHChUXrr7nmGh544AGeeOIJPv3pT/O1r32Na6+9ttO6li9fTnV1dbRMmjSpL5suCIIgCANKfX190VIoPIRkMhleeOEFZs+eXbR+9uzZPPvss+3Wu27dujbl58yZw/PPP082m+20TFhnV467YcMGtm7dWlQmHo9z2mmnRWW2b9/On/70J8aOHcvMmTMZN24cp512Gs8888w+r09fMqCdrmXLlrVr/F64FCpZAO+99x5z587lnHPO4fOf/3zRtssvv5wZM2Zw/PHH87WvfY2rr76a66+/vtM2LF26lLq6umjZvHlz70+sIIK539RsvNbSaVRLBiuVQcccdMwhV+ZgpzV2WuPFLdKj47SMdWkZ65IaYdE40UE7lvF6bB0nqh1WbbjRqGCZLKq5BdXcQtnGBir/LkG6ukWBzZYKlKpQ/VIxF2WpvN2eb5KY63Q6n9w8sAeLItEn4maxLWObl0pDOmsSoLs22rXxy1y0Y+M0ZXGasrg7m8z+WpMbWU6uJomV8bAyHvG6ISlOC4MdZUXKrL99B2iNFwMvBm4jqJzxWFSpIB3ZuHJS48ppOHY0uTKLdLUiXa2w04BvlkwN5JIalbZQaQt/h8kl9PJ1i4e8ytXvlHB6cdKkSUViQ3uq1c6dO/E8j3HjxhWtHzduHFu3bm23iVu3bm23fC6XY+fOnZ2WCevsynHDv52VefvttwHTz7jgggtYvXo1J554Ih/+8Id58803221/fzCgISO+/OUv8+lPf7rTMgcffHD0+b333uODH/wgM2bM4I477thn/SeddBL19fVs27atzY8TEo/Hicfj3Wq3IAiCIPQ7JRpvbd68uWh6sbP/gUoVm99rrdus21f51uu7Umdvy/hBYPEvfvGLnHeeSfN2wgkn8Nvf/paf/vSn7XY0+4MB7XSNHj2a0aNHd6nsu+++ywc/+EGmTp3KXXfd1SVDuPXr15NIJKipqellS7tJaB+kfcjlogTYSilUQbutrMaLBzeNpYzaVR1Edbah5s0sKmNiPK3adFOXD9+dskJAoUeiR/QbqsDDMIq9FotBLJb3Is3lwDEvLJ3Ngefl7cHq01ijRkBDoynruvmYXWA8HAPbO8ux8MpjeEnzSDqZXFQuMyJGcnMD2RHGKWTP0XDc11fw0g2iFAglRPtR/DlVVka2PBbZZsX3+ngV5j73RybJVjgmrhxgp3y0Arc5yNKgwA8SYtspsJIKv1wHh1CSU3EQUFVVtU+brtGjR2PbdhtVa/v27R2KGOPHj2+3vOM4jBo1qtMyYZ1dOe748eMBo3hNmDCh3TLh+ilTphTVc/TRR3foCNAfDAmbrvfee4/TTz+dSZMmccMNN7Bjxw62bt1a9KP85je/4cc//jF//etfeeutt/jJT37CZZddxhe+8AVRsgRBEIQhTZh7sbdLV4nFYkydOpW1a9cWrV+7di0zZ85sd58ZM2a0Kb9mzRqmTZuGGwSG7qhMWGdXjltbW8v48eOLymQyGZ566qmozMEHH8zEiRN5/fXXi+p54403mDx5cpeuQV8wJMYca9as4W9/+xt/+9vfOPDAA4u2hdKl67rceuutLFmyBN/3OeSQQ7j66qv50pe+NBBNNijLKCSB0oWlUK4DQdR55esoyjieUb3soGguCXW1LumaMQPQ8P2QAu9FtI/OBdH9bdvkxAy8Fm3HQSXikSKgIW+7BUYVC/NlBkqn32hyYloV5VAehDCJu0YtC++NmnKUpyMPVT/uYgX1JrY2kx2ZRIf3iq9MfjtBKBFzR38hUHUDhbemGt9VJHeae7n83RQqUGlT4+PkkgWKvafJxRXZsoLpo+CRsNKYh0TlN+gh8V9nEDIAEemXLFnCggULmDZtWmTWs2nTpsiJbenSpbz77rvce++9gPFUvPnmm1myZAkXXHAB69at484774y8EgG++tWvcuqpp3Lddddx5pln8sgjj/DEE08UGbjv67hKKRYtWsS1117L4YcfzuGHH861115LWVkZn/nMZ6Iy3/jGN7jyyit53/vex/HHH88999zDa6+9xq9+9aveXMVeMSRu/3PPPZdzzz230zJz585l7ty5/dMgQRAEQRjmzJ8/n127dnH11VezZcsWjj32WB577LFIKdqyZUvRVF1tbS2PPfYYixcv5pZbbmHixIn84Ac/4Oyzz47KzJw5k/vvv5/LL7+cK664gkMPPZSVK1cyffr0Lh8X4Jvf/CYtLS1ceOGF7Nmzh+nTp7NmzRoqKyujMosWLSKVSrF48WJ2797N+973PtauXcuhhx7al5etU4ZsnK6+ohRxV2bHTE+7SC0BlOOiEnHUWGPHlhtTSWq0selRGlI1djRCbBqvaDgqi3LMio3/dnGPz0nYN3MqPovOBLkOPS+y8bLiCaN8BcqWVVYWbA9+KKXyMbssC2wLnTLu18p1wbZMvC4IbLoCI5nyMpOZIFS2ymJ4Za7xVAXSNS522rRh99Eu6RFQ/ZY55u5jTRVvLZHYa0JpmO0ahyarwsTlUqNH0nzUGOxmc9/HdjZBoOA2HVqDtlSkXjVOtPEdyFSb71aOSLHPVEGuQuPF8/9mlIYNXx4eeUD7M07XcZ+/FjvWyzhdmRQv/aTrcbqE0jMklC5BEARB2K+RhNfDAul09QFrMr8EzOgxjOcEJr+fZVuounoArKokdtoYF/oxRbzep3mMUU2yFaBSFqo6OwBnsP9h1VRHn3VTM35j4HGofROnK1CrtOehYjGTVxNMrK3Q4wtM7sXAQ1Vns1hOsjgifah6eR66PBEpZtq10baF02Dq9WIWTROC7ARJyIz02BvU443IohoL6hSEXqI9z9hzhfaI9Q249TXYzcH7Ryl0cO+6DR5eworsupwWTbpGoQLHXN+GXE3wOQb4YKcDr2wFby8WhVbYf5FOlyAIgiAMcrrrfdhRHcLAMiRCRgxV1mTvB/K5/KxYzNj0BJHGrcYUytcoX5OusvFche+C74KX1FDhseFfl7LhX5cO8JkMf1a98wOoqoCqCmN3F4sZRcvzjKdiEGVeZ7Im7lrwGwL5z2GORqXytl7xWLB/IAM4tlkSccj5UUR6lcmhHRVlIEj+fS9OWuOkNamxPjiabLVHttpDuV7HJyIIPURZytzDrgOWhd2YRjVnUM0Zk2vRscCxiG+pR/mQLbfIllsk9vjYKYjVmQXLKFx+DLRjvBXtlMJOKVG5esMAJLwWSo8oXYIgCIIw2BGbrmGBdLr6GOW4ee82MDY9QZA47VgmVhfgpIxaogKTCqdR4TTF+ru5AsamK/I4hMB+K1CXgthryja/oXLdyAMRQMVccIJYXNms8WgMt+dy0W+Pr1FeDh0LYrZpjcr6qGxwnJxnPMQAKwNeAkiYm0P7FhsvGh7eX8IgQlmoZHDvVpRhNWfQoX2iUqTHGM+5WJ2JRu8Ht3IuoUjs1fjBay41RqGtIPVLTuEnffKBugRh/0Y6XYIgCIIwyBGbruGBdLr6GHvsaKN4ADqTRcVj6NE1AOSqE3gJMzx0Gz3SNTYqCONk5eCV70huvf4kV1MGgFNfmbfBSmfM51CtDGy1VMyokFr7kZKpPQ9G1uTzKzoV+GUxrObA07GxGezAjDKTgWQCKx14h3k+dtJFhd9zOTIVRh1wmsDKOOQqAqUrJm9OobTYI0fAuDE0TzZevIntzVi76lFJo275SSdS4XNlDpkqGy9m7s9MlcJtzCtfyjc2XACJXdBYC29cKu+yXiPTi8MCMaQXBEEQBEHoB0Tp6mP0yCpUcxChvCUFVRXGEwiMDVcuiNOkwG3yo9HkCz8Wm53+pv5Qo3RVMRZnZwMAKpE1o/1Q+UrEjZLlBFkGmlpYte02AGZZ57B25x1Rfaf+8/W4DTns4Pe2G5qiXIt6ZBV+eRyVMtKmyuVQOR+/wigLzYePwAvytOfKja2f3WLGSFZ935x/7c+XR583/D/xmN2f8A87kGx1nMYDjFwVq3exPD/KkIDW2C3mXvXjRuUK31UAXhyc5rwdV2jG6DbB21+Rd1kpUFqjeplAprf7C71HOl19jFeVxA5udOU6aNfGqmsGwGqy0ZZJu+ElbJ569JsD1k7BGAQD7JhazsjXzKMR29ZoOs3hFGLCRe2uZ9XGFW32X+s/UPT9fx79Bh+a9d0otIQ/tgar0XTA/bIY6RFx7Kz5J+fUZdCuRa7cfG8eY5MrzPjhK6yg31e2tTTn2xqdtcGSl/L+SHpkAqWDYKaA1WKm1VU6SPTenI0Gi7lyh3i9HyXHziUVuSS0jDHPj5fUqJz53Dipn09kOCPTi8MCmV4UBEEQBEHoB0Tp6mPWPnMZHzn1O9F3uykThQVY9cq1A9UsoR108DTYaWgZYxQnK53EbWiOElWrdDpvDN8Ffrf2EmZ+6vsAOGkfp9m45GtLkSuzoCU4dk0cbSucJmNI76Rc6saYbcoHyzOhIwD+8sM+MkpO5c+r9offZ4OEpdhv2HOUi9MMVuDH4cddLMuC/9/evcdFVef/A3+duXP3gjGQiGhmspSb0BLsmlZf8ZIbXX5K9c3qt2XLFhZim5L6lbS8ZebuemH7LWu3LfyVUfjIdsFVKZIsiMzU3bUVxRJyMWUQBOby+f4xcGxgwEGGmTnD6/l4nIfOOZ9zzuczH2De87mdZvsPqKTXXBwWAUDTZEVbcPtjgFqAloCL1xJqQLRPkzuaw8VQ3YWzF/0Dgy4iIiJfx+5Fv8CgywN2fbTY21kgF3yxxd6ClPTAetg09jEp7qi7ff+/a4vRjf/9IhpGqyAke+vBkCM2tAxRwda+eOr5aEDoOuboS7AJwFDf56z0SBXWBltT+7x/q4SRL7+A44/+tn9vSj7hfIyA7pyE0Gr7p7K6Y5mTdpLZCquhfSFfq4CmyYzg7+w/n+YQDSA0+CKPy0IQXQqDLiIiIh/H7kX/wKCLqJP9r/XfOJSY/LUAAKNag9ahArZA+/i+ukFq6H8A2ga1z3TUXZwBpmmSIFRwmKLfb9r/KNsMNkASiPmzPb+acxr8O5vjc/zNyE3t4w3bJFgChbzgqc2ggVqrBUT7D51NQHPOvtyJ1mqFNcQAc7D94+PCUDW7rTyB3Yt+gUEXERGRj2NLl39g0EXkQScetq/FNtL6AmBWAbb2tY1CLTCbtVC1tbc06ASEpn18TasEqx44sKF/x8wcu+8ZjHrTPqPW2qKRW9oAwKblX2t/JIXZx26ZDWqomtUQ7auaqlosgLBBBNunJUoWG2yB7Q95t6ph06lhDrLPXmwLtbfEEtGlMegiIiLydexe9Av8fkLkBccf/S1UFgmS2b5pzmog1ALmUBvMoTYItYCqTYKqTYJN65nxXNft+B+otTaotTZIGpvc0kb+S6URUGkEJJsElVmCsE9EhE2nAQIMgCQBkgRrSACERgWhUcEaqIVQ2Vu3hAqAAMxB3i7JwNDRxXi5G3kfgy4iIiIiD2DQReQlx57MRnXmAlRnLoDKLOHfC7IhAqwQAVaozCpomiRomiSoWoF/LOv/NZCiljq+ltQC0NkAnY2r0/spq1kFq1kFqVUFCMBisG9Q2VeltwwKgGVQAKzBWlgCNbAEamDVq7H774vQHKFCc4QKQg0cWcE1uvqdEO7ZyKs4pouIiMjHcfaif2DQReQDjubMx8hX16B9gXrYBrehVWf/9QyuViPx4fWoyO+fdbISPrSvun8mOwQqc/vgMdE+c1Hq5iTyD6JjtqIETbOEoDp7/asumCE0KvnnwRyggU1rT9sxa/Gr9WzdIuotBl1ERES+jrMX/QKDLiIfIaltEFZ7K4Iwq6BqXyfLpgF+iO+/+545Pth+/1AzhLjYtCUsEjRBlv67MXnVyFfWAKr2JyDoBaTzEjQt7a8DdRCSBFWbvf7VFyxoC9Hbj2nZ/OkNkq3vs5g98lQL6hEH0hMRERF5AFu6iHyEWmeF2WT/lZSsEoSuY0X6/rlf7MYXYTPYoOpoXbNJcvdD0KALOJSW2z83Jt+ggjxmTxKApgnQmewtW5LZCmhU9vW6AAi1Sh6EbdV6Ia/E7kU/waCLiIjIx3H2on9g0EXkI76ZvQQj89bJr1Wt7c+2GwQcm+++mYsjX19t/49WA3WzCtYgq/1+koBosjdjHHog1233Ix/VqgK09kE+QgJUFkB/4qz9tV4DSDqI9tm06gtmWPU6AIBNwzFdXuGOdba4TpfXcUwXERERkQewpYvIhxzPeKrfrj323eVoPa+DPJCnfXakpL04pak/708+RgC4YG/KEmoBSyDQGm2fyaqrb4JQSzCH2lu3LoRr5FavL/7I9bm8gd2L/oEtXURERL5OuGnrpc2bNyM2NhYGgwEJCQn4+OOPe0xfWlqKhIQEGAwGjBo1Cnl5eV3SbN++HXFxcdDr9YiLi0NhYWGv7yuEQG5uLqKiohAQEIDJkyfj0KFDTvMkhMD06dMhSRLee+891wvfDxh0EQ0gkkkL1TmNfTNLsAbaoDFYoDFYUH1/jrezRx4w8uUXMPLlFwCzCppGtX07r4ZNC9h0Kth0Kly4MgSwAZJN2DcBfPZKNj57pX+eikC+adu2bcjKysLixYtRVVWFiRMnYvr06aipqXGavrq6GjNmzMDEiRNRVVWFZ555Bk888QS2b98upykvL0d6ejrmzJmDAwcOYM6cOZg9ezb279/fq/uuXbsW69evx8aNG/H555/DaDRiypQpaGxs7JKvDRs2QJJ8Yywigy4iIiIf19G92NetN9avX4+HH34YjzzyCMaNG4cNGzYgOjoaW7ZscZo+Ly8PI0aMwIYNGzBu3Dg88sgj+NWvfoV16y5OENqwYQOmTJmCnJwcXHPNNcjJycGtt96KDRs2uHxfIQQ2bNiAxYsX46677kJ8fDxeffVVNDc3480333TI04EDB7B+/Xr8+c9/7l3h+wmDLqIBQtgkYFCbfapa+8rzkt6K4KBWBAf102Jg5LNUZgm6c4DuHKA/CxjOAPr/NEP/n2YEfvUt1PUm6L9vgv77JgyqOuPt7FLH7MW+bgBMJpPD1tra9fe/ra0NlZWVSE1NddifmpqKffv2Oc1ieXl5l/RTp05FRUUFzGZzj2k6runKfaurq1FXV+eQRq/XY9KkSQ55a25uxr333ouNGzfCaDR2/956EIMuIiKiASQ6OhphYWHytmrVqi5p6uvrYbVaERER4bA/IiICdXV1Tq9bV1fnNL3FYkF9fX2PaTqu6cp9O/69VN7mz5+PlJQUpKWlOX8jvICzF6lPYv/wIgCget4CL+eELuVf/2cpRm5de7GLQQIggC9vW+HNbJGHHX/0twDsv7uaC+3P99QCOpNAc3QwACC4oRkwmy+u66Th93Nvc+fsxZMnTyI0NFTer9fruz+n01goIUSP46Ocpe+835Vr9jVNUVERdu/ejaqqqm7z6g2KCbpGjhyJEydOOOxbuHAhVq9eLb+uqanB448/jt27dyMgIAD33Xcf1q1bB51O5+nsDgg3T10DaZp9Mc3rdvwPNGr70gNfzHjOm9miHhz/v097OwvkZVetfQkAoGtVQbKviwu1DbAESAj7pgUA0BI7FIaj38Omt/9+q1rNXskr/YgbHwMUGhrqEHQ5Ex4eDrVa3aVV6/Tp011amDoYjUan6TUaDYYOHdpjmo5runLfjq7Curo6REZGOk2ze/du/Pvf/8agQYMcrnP33Xdj4sSJ2Lt3b4/l7y+K+vqyfPly1NbWytuSJUvkY1arFbfddhuamppQVlaGgoICbN++HQsWsAWGiIioN3Q6HRISElBSUuKwv6SkBCkpKU7PSU5O7pK+uLgYiYmJ0Gq1PabpuKYr942NjYXRaHRI09bWhtLSUjnNokWL8NVXX+HLL7+UNwB46aWXsHXr1t68FW6lmJYuAAgJCel2MFxxcTEOHz6MkydPIioqCgDw4osv4qGHHsLzzz9/yaieLk/IcXtTboM+FENGnvNuZoioR7FvrIIYbP+zbzuvRkSFvanrfKQG56OB8AP2phDDwRogOAjWYPsHZfFn/+OdDJPMG4ujZmdnY86cOUhMTERycjJefvll1NTUICMjAwCQk5OD7777Dq+99hoAICMjAxs3bkR2djbmzp2L8vJy5Ofn46233pKv+eSTT+Kmm27CmjVrkJaWhvfffx+7du1CWVmZy/eVJAlZWVlYuXIlxowZgzFjxmDlypUIDAzEfffdB8DeGuYsXhgxYgRiY2N790a4kaKCrjVr1mDFihWIjo7GrFmz8Nvf/lbuOiwvL0d8fLwccAH2GRGtra2orKzEzTff7PSara2tDjM3TCZT/xaCiIiot2zCvvX1Gr2Qnp6OM2fOyL1M8fHx2LlzJ2JiYgAAtbW1DmtnxcbGYufOnZg/fz42bdqEqKgo/P73v8fdd98tp0lJSUFBQQGWLFmCpUuXYvTo0di2bRuSkpJcvi8APP3007hw4QIee+wxnD17FklJSSguLkZISMjlvjseIQmhjCdgvvTSS5gwYQIGDx6Mzz77DDk5OUhLS8Of/vQnAMCjjz6K48ePo7i42OE8vV6PV155Bffee6/T6+bm5uLZZ5/tsr+hoYGtYy64eqV9fIhQAUcX8fEgRL5u5Bb7mkkakxpBp+z7rHrgfIwNgbX2EScxb37ncM6Hx9ahM0vdVfL/NcZv+im3vs1kMiEsLKxfPy867pHyX89CozX06VoWcwv27VrGzzcv8uqYrtzcXEiS1ONWUVEBwD71c9KkSbjuuuvwyCOPIC8vD/n5+Thz5uL6Mc5mVFxqpkVOTg4aGhrk7eTJk+4vKBEREQ14Xu1ezMzMxD333NNjmpEjRzrdf+ONNwIAvvnmGwwdOhRGo9HhMQIAcPbsWZjN5m5nWgD2lrCepstSz/71DFu3iBSlvW9DaAQuRNi/kLZFtyJ0UDOsNfYHXreNGAJVmw0l+5Y4vYSt7mqo2r+z22DDhdpYBERW93/eBzAJbhjT5ZacUF94NegKDw9HeHj4ZZ3bsfZGx3TR5ORkPP/886itrZX3FRcXQ6/XIyEhwT0ZJiIi8oYfrSjfp2uQVyliIH15eTk+/fRT3HzzzQgLC8Pnn3+O+fPn4/bbb8eIESMA2B8REBcXhzlz5uCFF17ADz/8gKeeegpz585l3zURUScB30to6fjOKyRo1DZoJtmHa5z8mR5TY/+B/94/FwDwl6T/1+V8s7AAACywz4BsqrUPcg6KPNElLRHZKSLo0uv12LZtG5599lm0trYiJiYGc+fOxdNPX1zoUa1W44MPPsBjjz2Gn//85w6LoxIRESmZN5aMIPdTzOxFT/HEbBQiIm+79qmXYLY/9QeWQCDgmnOYPNw+C3FUwH8wKegf2Fo/UU7/hwl/cTi/o2ULGLitW56cvfiLm3Oh0fRx9qKlBWV7cvn55kWKWpGeiIiISKkU0b1IRETuZdNCns4mWYHmb8Kwo+6nAIDAK5qwN/xqWGz27+XB2rYu5w/U1i1vkYSA1MeOqb6eT33HoIuIiMjX2dq3vl6DvIrdi0REA9ChVfNh09pbvKwBAprzEoZWaDC0QoML34bgaH04fmgJxA8tgWi2aDFr328wa99vvJ1tIkVjSxcREZGPY/eif2DQRUQ0QHU8USJ244toGyJQH2Xvf5J0Ngghwdo+pmvHxD94LY/UTkB+mkCfrkFexaCLiIjI13FFer/AoIuIaICrzlzg7SwQDQgMuoiIiHwcV6T3Dwy6iIiIfB27F/0Cl4wgIiIi8gC2dBEREfk4yWbf+noN8i4GXURERL6O3Yt+gd2LRERERB7Ali4iIiJfx8VR/QKDLiIiumxTVLMcXpfY3vZSTvwbHwPkH9i9SEREROQBbOkiIqJe6dy61fkYW7v6AQfS+wUGXURE5FY/DsoYgLmJANDXJR8Yc3kdgy4iIiIfxzFd/oFBFxEROdVTNyIR9R6DLiIiIl8n4IYxXW7JCfUBgy6Sv80qYexFb75596Y8HINC5B78/eknHEjvF7hkBBEREZEHsKXLz3Wevn2pqd4/5qlvrM7y5OzevR1fcrnjUS73vBLb270+t6OcXGCSfE1/tSrTZbIBkNxwDfIqBl1EREQ+jrMX/YMkBGvhx0wmE8LCwtDQ0IDQ0FBvZ+ey9OeMo87faF1tpbrUOdQ9tiKQJ/T193Ig/px64vOi4x63xj8NjVrfp2tZrK34+9drFf35pnQc00VEROTrOgbS93Xrpc2bNyM2NhYGgwEJCQn4+OOPe0xfWlqKhIQEGAwGjBo1Cnl5eV3SbN++HXFxcdDr9YiLi0NhYWGv7yuEQG5uLqKiohAQEIDJkyfj0KFD8vEffvgB8+bNw9ixYxEYGIgRI0bgiSeeQENDQ6/fA3di96KP66/xTpfL0+Ok6CKO+yJfxZ9FD/DC7MVt27YhKysLmzdvxs9//nP88Y9/xPTp03H48GGMGDGiS/rq6mrMmDEDc+fOxRtvvIFPPvkEjz32GIYNG4a7774bAFBeXo709HSsWLECd955JwoLCzF79myUlZUhKSnJ5fuuXbsW69evxyuvvIKrr74azz33HKZMmYJ//vOfCAkJwalTp3Dq1CmsW7cOcXFxOHHiBDIyMnDq1Cm88847fXsf+4Ddi534WveirwVdrvD1/CkNB9uTJ/Tld3Sg/ix6tHsx7in3dC8eXudyfpOSkjBhwgRs2bJF3jdu3DjccccdWLVqVZf0CxcuRFFREY4cOSLvy8jIwIEDB1BeXg4ASE9Ph8lkwocffiinmTZtGgYPHoy33nrLpfsKIRAVFYWsrCwsXLgQANDa2oqIiAisWbMGv/71r52W5+2338b999+PpqYmaDTeaXNiS5ebdPcHy9nMwe7+QLn6R8/XAxhfz5/SdPd+9vQ+D9QPQXIdf08VxsMtXW1tbaisrMSiRYsc9qempmLfvn1OzykvL0dqaqrDvqlTpyI/Px9msxlarRbl5eWYP39+lzQbNmxw+b7V1dWoq6tzuJder8ekSZOwb9++boOujmDTWwEXwKCLiIjI97lxyQiTyeSwW6/XQ693bEWrr6+H1WpFRESEw/6IiAjU1dU5vXxdXZ3T9BaLBfX19YiMjOw2Tcc1Xblvx7/O0pw4ccJp3s6cOYMVK1Z0G5B5CoOubqSFPQCNpAXQc6vBpb4tOjvOb5jU35T0lAHyLP796ZmrT6eYopoFizB7IksA3LtkRHR0tMP+ZcuWITc31/k5kmOkJ4Tosu9S6Tvvd+Wa7koD2IPM2267DXFxcVi2bFm3efcEBl1EREQDyMmTJx3GdHVu5QKA8PBwqNXqLq1ap0+f7tLC1MFoNDpNr9FoMHTo0B7TdFzTlfsajUYA9havyMjIHvPW2NiIadOmITg4GIWFhdBqtU7z7ikMulzAb4akVJf62WVL2MDRn3/HOj/5Qkl685QOr3LjmK7Q0NBLDqTX6XRISEhASUkJ7rzzTnl/SUkJ0tLSnJ6TnJyMHTt2OOwrLi5GYmKiHOwkJyejpKTEYVxXcXExUlJSXL5vbGwsjEYjSkpKcP311wOwjwUrLS3FmjVr5HNMJhOmTp0KvV6PoqIiGAyGnt8fD2DQRURE5OtsApD6GHTZend+dnY25syZg8TERCQnJ+Pll19GTU0NMjIyAAA5OTn47rvv8NprrwGwz1TcuHEjsrOzMXfuXJSXlyM/P1+elQgATz75JG666SasWbMGaWlpeP/997Fr1y6UlZW5fF9JkpCVlYWVK1dizJgxGDNmDFauXInAwEDcd999AOwtXKmpqWhubsYbb7wBk8kkj2UbNmwY1Gr15b+PfcCgi2gAc2XWLblfT8t/cGkQ8hXp6ek4c+YMli9fjtraWsTHx2Pnzp2IiYkBANTW1qKmpkZOHxsbi507d2L+/PnYtGkToqKi8Pvf/15eowsAUlJSUFBQgCVLlmDp0qUYPXo0tm3bJq/R5cp9AeDpp5/GhQsX8Nhjj+Hs2bNISkpCcXExQkJCAACVlZXYv38/AOCqq65yKFd1dTVGjhzp9vfLFVynq5OONVEmI00eSE800PCDvn95I+jq764ypf7M9OV9sQgz9uJ9j6zT9V+jnnTLOl27jv3OZ9ahHIjY0kVE1K6/Z31ezpprvQkKXHk2an/x9RmzPjU+67K4YUwX2MbibXz2IhEREZEHKKKla+/evbj55pudHvvss89www03AOi6ZgcAbNmyRR58R0QDV3fddu5cS68va/q5gzdbc7zZwqX8ViwXeOHZi+R+igi6UlJSUFtb67Bv6dKl2LVrFxITEx32b926FdOmTZNfh4WFeSSPRERE/cYm0OfuwV7OXiT3U0TQpdPp5MXQAMBsNqOoqAiZmZldWrcGDRrkkJaIeuarY3Bc0dPq4ZfztAh35of6H99vUhpFjukqKipCfX09HnrooS7HMjMzER4ejhtuuAF5eXmw2WyezyAREZE7CZt7NvIqRbR0dZafn4+pU6d2eX7UihUrcOuttyIgIAB///vfsWDBAtTX12PJkiXdXqu1tRWtra3y684PAiXyZ0po5XK1NYOtHr7Bk+uM9bTUht/hmC6/4NWWrtzcXEiS1ONWUVHhcM63336Lv/3tb3j44Ye7XG/JkiVITk7GT3/6UyxYsADLly/HCy+80GMeVq1ahbCwMHnrHMgRERF5nU24ZyOv8mpLV2ZmJu65554e03ReNXbr1q0YOnQobr/99kte/8Ybb4TJZML333/f7QM6c3JykJ2dLb82mUwMvIg8jCvjK5+ra5C5s079vnWL/I5Xg67w8HCEh4e7nF4Iga1bt+KBBx5w6UnhVVVVMBgMGDRoULdp9Hq90yesEw0E7vrQ6ssHqWIeOExuwTq9TOxe9AuKGtO1e/duVFdXO+1a3LFjB+rq6pCcnIyAgADs2bMHixcvxqOPPsqgioiIlE3ADUGXW3JCfaCooCs/Px8pKSkYN25cl2NarRabN29GdnY2bDYbRo0aheXLl+Pxxx/3Qk6JBha2XhARXZqigq4333yz22PTpk1zWBSViIjIb7B70S8oKugiIiIakGw2AH1cZ4vrVnqdIhdHJSIiIlIatnQRERH5OnYv+gUGXURERL6OQZdfYPciERERkQewpYuIiMjX2QT6vNAWHwPkdQy6iIiIfJwQNgjRt9mHfT2f+o5BFxERka8TbnhgNcd0eR3HdBERERF5AFu6iIiIfJ1ww5gutnR5HYMuIiIiX2ezAVIfx2RxTJfXsXuRiIiIyAPY0kVEROTr2L3oFxh0ERER+Thhs0H0sXuRS0Z4H7sXiYiIiDyALV1ERES+jt2LfoFBFxERka+zCUBi0KV07F4kIiIi8gC2dBEREfk6IQD0dZ0utnR5G4MuIiIiHydsAqKP3YuCQZfXsXuRiIjI1wmbe7Ze2rx5M2JjY2EwGJCQkICPP/64x/SlpaVISEiAwWDAqFGjkJeX1yXN9u3bERcXB71ej7i4OBQWFvb6vkII5ObmIioqCgEBAZg8eTIOHTrkkKa1tRXz5s1DeHg4goKCcPvtt+Pbb7/t9XvgTgy6iIiIqItt27YhKysLixcvRlVVFSZOnIjp06ejpqbGafrq6mrMmDEDEydORFVVFZ555hk88cQT2L59u5ymvLwc6enpmDNnDg4cOIA5c+Zg9uzZ2L9/f6/uu3btWqxfvx4bN27E559/DqPRiClTpqCxsVFOk5WVhcLCQhQUFKCsrAznz5/HzJkzYbVa++Hdco0k2N7owGQyISwsDJORBo2k9XZ2iIjIR1mEGXvxPhoaGhAaGtov95A/k6Q7+/yZZBFm7BWFLuc3KSkJEyZMwJYtW+R948aNwx133IFVq1Z1Sb9w4UIUFRXhyJEj8r6MjAwcOHAA5eXlAID09HSYTCZ8+OGHcppp06Zh8ODBeOutt1y6rxACUVFRyMrKwsKFCwHYW7UiIiKwZs0a/PrXv0ZDQwOGDRuG119/Henp6QCAU6dOITo6Gjt37sTUqVN789a5DVu6iIiIfJ2Huxfb2tpQWVmJ1NRUh/2pqanYt2+f03PKy8u7pJ86dSoqKipgNpt7TNNxTVfuW11djbq6Ooc0er0ekyZNktNUVlbCbDY7pImKikJ8fHy3+fcEDqTvpKPhzwJzn9ehIyIi/2WBPZDwRIeROz6TOvJrMpkc9uv1euj1eod99fX1sFqtiIiIcNgfERGBuro6p9evq6tzmt5isaC+vh6RkZHdpum4piv37fjXWZoTJ07IaXQ6HQYPHuxy/j2BQVcnZ86cAQCUYaeXc0JERErQ2NiIsLCwfrm2TqeD0WhEWZ17PpOCg4MRHR3tsG/ZsmXIzc11ml6SJIfXQogu+y6VvvN+V67prjSduZKmPzHo6mTIkCEAgJqamn77JfIWk8mE6OhonDx5st/GH3iTP5ePZVMmlk2ZXC2bEAKNjY2Iiorqt7wYDAZUV1ejra3NLddzFnR0buUCgPDwcKjV6i6tQqdPn+7SwtTBaDQ6Ta/RaDB06NAe03Rc05X7Go1GAPbWrMjIyG7TtLW14ezZsw6tXadPn0ZKSorT/HsCg65OVCr7MLewsDC/+0PSITQ01G/LBvh3+Vg2ZWLZlMmVsnniy7nBYIDBYOj3+/yYTqdDQkICSkpKcOedd8r7S0pKkJaW5vSc5ORk7Nixw2FfcXExEhMTodVq5TQlJSWYP3++Q5qOQMiV+8bGxsJoNKKkpATXX389APtYsNLSUqxZswYAkJCQAK1Wi5KSEsyePRsAUFtbi6+//hpr167t03vTJ4IcNDQ0CACioaHB21lxO38umxD+XT6WTZlYNmXy57L1RkFBgdBqtSI/P18cPnxYZGVliaCgIHH8+HEhhBCLFi0Sc+bMkdMfO3ZMBAYGivnz54vDhw+L/Px8odVqxTvvvCOn+eSTT4RarRarV68WR44cEatXrxYajUZ8+umnLt9XCCFWr14twsLCxLvvvisOHjwo7r33XhEZGSlMJpOcJiMjQwwfPlzs2rVLfPHFF+KWW24R48ePFxaLpT/fth4x6OrEn3/Z/LlsQvh3+Vg2ZWLZlMmfy9ZbmzZtEjExMUKn04kJEyaI0tJS+diDDz4oJk2a5JB+79694vrrrxc6nU6MHDlSbNmypcs13377bTF27Fih1WrFNddcI7Zv396r+wohhM1mE8uWLRNGo1Ho9Xpx0003iYMHDzqkuXDhgsjMzBRDhgwRAQEBYubMmaKmpqYP70bfMejqpKWlRSxbtky0tLR4Oytu589lE8K/y8eyKRPLpkz+XDbyLi6OSkREROQBXByViIiIyAMYdBERERF5AIMuIiIiIg9g0EVERETkAQy6Otm8eTNiY2NhMBiQkJCAjz/+2NtZ6rXc3FxIkuSwdazgC9hXJM7NzUVUVBQCAgIwefJkHDp0yIs57t5HH32EX/7yl4iKioIkSXjvvfccjrtSltbWVsybNw/h4eEICgrC7bffjm+//daDpXDuUmV76KGHutTjjTfe6JDGF8u2atUq3HDDDQgJCcEVV1yBO+64A//85z8d0ii53lwpn1LrbsuWLbjuuuvkRUGTk5Px4YcfyseVXG+XKptS64yUhUHXj2zbtg1ZWVlYvHgxqqqqMHHiREyfPh01NTXezlqv/eQnP0Ftba28HTx4UD62du1arF+/Hhs3bsTnn38Oo9GIKVOmoLGx0Ys5dq6pqQnjx4/Hxo0bnR53pSxZWVkoLCxEQUEBysrKcP78ecycORNWq9VTxXDqUmUDgGnTpjnU486djs9f88WylZaW4vHHH8enn36KkpISWCwWpKamoqmpSU6j5HpzpXyAMutu+PDhWL16NSoqKlBRUYFbbrkFaWlpcmCl5Hq7VNkAZdYZKYw316vwNT/72c9ERkaGw75rrrlGLFq0yEs5ujzLli0T48ePd3rMZrMJo9EoVq9eLe9raWkRYWFhIi8vz0M5vDwARGFhofzalbKcO3dOaLVaUVBQIKf57rvvhEqlEn/96189lvdL6Vw2IewLD6alpXV7jlLKdvr0aQFAXtzQn+pNiK7lE8J/6k4IIQYPHiz+9Kc/+V29CXGxbEL4V52R72JLV7u2tjZUVlYiNTXVYX9qair27dvnpVxdvqNHjyIqKgqxsbG45557cOzYMQBAdXU16urqHMqp1+sxadIkxZXTlbJUVlbCbDY7pImKikJ8fLwiyrt3715cccUVuPrqqzF37lycPn1aPqaUsjU0NAC4+DB5f6u3zuXroPS6s1qtKCgoQFNTE5KTk/2q3jqXrYPS64x8Hx943a6+vh5Wq7XL09MjIiK6PO3c1yUlJeG1117D1Vdfje+//x7PPfccUlJScOjQIbkszsp54sQJb2T3srlSlrq6Ouh0OoenzHek8fV6nT59OmbNmoWYmBhUV1dj6dKluOWWW1BZWQm9Xq+IsgkhkJ2djV/84heIj48H4F/15qx8gLLr7uDBg0hOTkZLSwuCg4NRWFiIuLg4ObBQcr11VzZA2XVGysGgqxNJkhxeCyG67PN106dPl/9/7bXXIjk5GaNHj8arr74qDwz1h3J2uJyyKKG86enp8v/j4+ORmJiImJgYfPDBB7jrrru6Pc+XypaZmYmvvvoKZWVlXY75Q711Vz4l193YsWPx5Zdf4ty5c9i+fTsefPBBlJaWyseVXG/dlS0uLk7RdUbKwe7FduHh4VCr1V2+sZw+fbrLNzulCQoKwrXXXoujR4/Ksxj9oZyulMVoNKKtrQ1nz57tNo1SREZGIiYmBkePHgXg+2WbN28eioqKsGfPHgwfPlze7y/11l35nFFS3el0Olx11VVITEzEqlWrMH78ePzud7/zi3rrrmzOKKnOSDkYdLXT6XRISEhASUmJw/6SkhKkpKR4KVfu0draiiNHjiAyMhKxsbEwGo0O5Wxra0NpaaniyulKWRISEqDVah3S1NbW4uuvv1Zcec+cOYOTJ08iMjISgO+WTQiBzMxMvPvuu9i9ezdiY2Mdjiu93i5VPmeUUnfOCCHQ2tqq+HpzpqNszii5zsiHeXzovg8rKCgQWq1W5Ofni8OHD4usrCwRFBQkjh8/7u2s9cqCBQvE3r17xbFjx8Snn34qZs6cKUJCQuRyrF69WoSFhYl3331XHDx4UNx7770iMjJSmEwmL+e8q8bGRlFVVSWqqqoEALF+/XpRVVUlTpw4IYRwrSwZGRli+PDhYteuXeKLL74Qt9xyixg/frywWCzeKpYQoueyNTY2igULFoh9+/aJ6upqsWfPHpGcnCyuvPJKny/bb37zGxEWFib27t0ramtr5a25uVlOo+R6u1T5lFx3OTk54qOPPhLV1dXiq6++Es8884xQqVSiuLhYCKHseuupbEquM1IWBl2dbNq0ScTExAidTicmTJjgMA1cKdLT00VkZKTQarUiKipK3HXXXeLQoUPycZvNJpYtWyaMRqPQ6/XipptuEgcPHvRijru3Z88eAaDL9uCDDwohXCvLhQsXRGZmphgyZIgICAgQM2fOFDU1NV4ojaOeytbc3CxSU1PFsGHDhFarFSNGjBAPPvhgl3z7YtmclQmA2Lp1q5xGyfV2qfIpue5+9atfyX//hg0bJm699VY54BJC2fXWU9mUXGekLJIQQniuXY2IiIhoYOKYLiIiIiIPYNBFRERE5AEMuoiIiIg8gEEXERERkQcw6CIiIiLyAAZdRERERB7AoIuIiIjIAxh0EREmT56MrKwsb2eDiMivMegiIiIi8gAGXUREREQewKCLiBycPXsWDzzwAAYPHozAwEBMnz4dR48elY+/8sorGDRoEP72t79h3LhxCA4OxrRp01BbW+vFXBMR+T4GXUTk4KGHHkJFRQWKiopQXl4OIQRmzJgBs9ksp2lubsa6devw+uuv46OPPkJNTQ2eeuopL+aaiMj3abydASLyHUePHkVRURE++eQTpKSkAAD+8pe/IDo6Gu+99x5mzZoFADCbzcjLy8Po0aMBAJmZmVi+fLnX8k1EpARs6SIi2ZEjR6DRaJCUlCTvGzp0KMaOHYsjR47I+wIDA+WACwAiIyNx+vRpj+aViEhpGHQRkUwI0e1+SZLk11qt1uG4JEndnktERHYMuohIFhcXB4vFgv3798v7zpw5g3/9618YN26cF3NGRKR8DLqISDZmzBikpaVh7ty5KCsrw4EDB3D//ffjyiuvRFpamrezR0SkaAy6iMjB1q1bkZCQgJkzZyI5ORlCCOzcubNLlyIREfWOJDgQg4iIiKjfsaWLiIiIyAMYdBERERF5AIMuIiIiIg9g0EVERETkAQy6iIiIiDyAQRcRERGRBzDoIiIiIvIABl1EREREHsCgi4iIiMgDGHQREREReQCDLiIiIiIPYNBFRERE5AH/C+ZUg8bLAGznAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "con_weight_file = \"/glade/work/wwieder/map_ne30pg3_to_fv0.9x1.25_scripgrids_conserve_nomask_c250108.nc\"\n", "gppfile='/glade/derecho/scratch/wwieder/ADF/b.e30_beta04.BLT1850.ne30_t232_wgx3.121/climo/b.e30_beta04.BLT1850.ne30_t232_wgx3.121_GPP_climo.nc'\n", "ds_con = xr.open_dataset(gppfile)\n", "\n", + "con_weight_file = \"/glade/work/wwieder/map_ne30pg3_to_fv0.9x1.25_scripgrids_conserve_nomask_c250108.nc\"\n", "\n", "fv_t232_file = '/glade/derecho/scratch/wwieder/ctsm5.3.018_SP_f09_t232_mask/run/ctsm5.3.018_SP_f09_t232_mask.clm2.h0.0001-01.nc'\n", "fv_t232 = xr.open_dataset(fv_t232_file)\n", "\n", - "\n", "# Fill in with missing values\n", "ds_con['GPP'] = ds_con['GPP'].fillna(0) # fill in missing values with 0 for this test\n", "ds_con['test'] = ((ds_con.GPP)*0+1.)\n", @@ -103,18 +114,23 @@ "ds_con['test'] = ds_con.test * ds_con.landfrac\n", "\n", "regridder = regrid_se_to_fv.make_se_regridder(weight_file=con_weight_file, \n", - " s_data = ds_con.landmask, \n", + " s_data = ds_con.landmask.isel(time=0), \n", " d_data = fv_t232.landmask,\n", " Method = 'coservative',\n", " )\n", "ds_out_con = regrid_se_to_fv.regrid_se_data_conservative(regridder, ds_con).load()\n", - "#check to make sure NA removed\n", - "#ds_out_con.GPP.isel(time=0).plot() \n", "\n", "ds_out_con['GPP'] = (ds_out_con.GPP / ds_out_con.landfrac)\n", "ds_out_con['test'] = (ds_out_con.test / ds_out_con.landfrac)\n", - "\n", - "# TODO, add a global area and landmask field from the destination grid for calculating sums and plotting.\n" + "# drop time variables\n", + "ds_out_con['landfrac'] = ds_out_con['landfrac'].isel(time=0) \n", + "ds_out_con['area'] = ds_out_con['area'].isel(time=0) \n", + "ds_out_con['landmask'] = ds_out_con['landmask'].isel(time=0) \n", + "# TODO, add a global area and landmask field from the destination grid for calculating sums and plotting.\n", + "# TODO save this as a .nc file\n", + "# TODO, drop the test field from this once integrated into ADF\n", + "# Quick check of results\n", + "ds_out_con.GPP.isel(time=0).plot() ;" ] }, { @@ -143,11 +159,14 @@ "\n", "# Read in weight file and regrid\n", "regridder = regrid_se_to_fv.make_se_regridder(weight_file=bilin_weight_file, \n", - " s_data = ds_con.landmask, \n", + " s_data = ds_con.landmask.isel(time=0), \n", " d_data = fv_t232.landmask,\n", " Method='bilinear',\n", " )\n", - "ds_out_bilin = regrid_se_to_fv.regrid_se_data_bilinear(regridder, ds_bilin).load()" + "ds_out_bilin = regrid_se_to_fv.regrid_se_data_bilinear(regridder, ds_bilin).load()\n", + "ds_out_bilin['landfrac'] = ds_out_bilin['landfrac'].isel(time=0) \n", + "ds_out_bilin['area'] = ds_out_bilin['area'].isel(time=0) \n", + "ds_out_bilin['landmask'] = ds_out_bilin['landmask'].isel(time=0) " ] }, { @@ -209,12 +228,12 @@ { "cell_type": "code", "execution_count": 5, - "id": "ea20b3bd-f303-43c6-bf13-b7d7e23db4bf", + "id": "511aac49-6baa-477c-aa17-4f7c7ad9d617", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABPAAAAFICAYAAADeYgC8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6JUlEQVR4nO3deXwTdf7H8Xd6cgcoQqlUBOUQwQsFiwcoCKiIiIqK28VjwV1ckEvFa2VdAQEFXG9RxJ/i4q6KynoAKuLBpSi6iuJBQRAqHrUVBFqS+f1RE5M2bTPTJDPpvJ4+8pBOvt/vfDMzST7zzffwGIZhCAAAAAAAAIAjpdhdAQAAAAAAAABVowEPAAAAAAAAcDAa8AAAAAAAAAAHowEPAAAAAAAAcDAa8AAAAAAAAAAHowEPAAAAAAAAcDAa8AAAAAAAAAAHowEPAAAAAAAAcLA0uysAAAAi27dvn0pLSy3lzcjIUL169WJcIwAAALhJbeJRiZg0lmjAAwDAgfbt26d2bRupcJfPUv7s7GwVFBQQMAEAAMCS2sajEjFpLNGABwCAA5WWlqpwl08F69uqSWNzM16U/OJXu+5bVVpaSrAEAAAAS2oTj0rEpLFGAx4AAA7WsFH5wwyfEZ+6AAAAwH2sxKMSMWmssYgFAAAAAAAA4GD0wAMAwMH8MuSXuZ8vzaYHAAAAqmIlHg3kQ+zQgAcAgIP55ZffQh4AAAAgFqzEo4F8iB0a8AAAcDCfYchnmPv10mx6AAAAoCpW4tFAPsQOc+ABAOBggSELZh9mvfXWWzrnnHOUk5Mjj8ej559/vsq0V111lTwej+bOnRu2ff/+/RozZoxatGihhg0bavDgwdq+fXtYmqKiIuXn58vr9crr9So/P18///xzWJpvvvlG55xzjho2bKgWLVpo7NixKi0tNf2aAAAAUHtW41GzMSnxaPVowAMAwMH8MuQz+bDSgLdnzx4dffTRuvfee6tN9/zzz2vt2rXKycmp9Ny4ceO0ePFiLVq0SO+88452796tQYMGyefzBdMMHz5cGzZs0KuvvqpXX31VGzZsUH5+fvB5n8+ns88+W3v27NE777yjRYsW6dlnn9XEiRNNvyYAAADUnpV41EpMSjxaPYbQAgAAnXnmmTrzzDOrTfPtt9/qr3/9q5YuXaqzzz477Lni4mI9+uijeuKJJ9SvXz9J0pNPPqnc3Fy99tprGjBggD777DO9+uqrWrNmjXr27ClJmjdvnvLy8rRp0yZ16tRJy5Yt08aNG7Vt27ZgUHbXXXfpsssu09SpU9WkSZM4vHoAAADYjXi0evTAAwDAwRI1hLbGevj9ys/P17XXXqsjjzyy0vPr169XWVmZ+vfvH9yWk5Ojrl27atWqVZKk1atXy+v1BoMlSTrxxBPl9XrD0nTt2jXsF9UBAwZo//79Wr9+fcxfFwAAAKqXqCG0NdbD5fEoPfAAAHCw2ixiUVJSErY9MzNTmZmZluoxY8YMpaWlaezYsRGfLywsVEZGhpo1axa2vVWrViosLAymadmyZaW8LVu2DEvTqlWrsOebNWumjIyMYBoAAAAkTm0XsYhVTOr2eJQeeAAAOJjf4kOScnNzg5Pzer1eTZ8+3VId1q9fr7vvvlsLFiyQx+MxldcwjLA8kfJbSQMAAIDEsBqPxjImJR6lBx4AAI4WmATYbB5J2rZtW9gcHVZ737399tvatWuXDjnkkN/34fNp4sSJmjt3rrZs2aLs7GyVlpaqqKgo7FfPXbt2qVevXpKk7Oxsfffdd5XK//7774O/cmZnZ2vt2rVhzxcVFamsrKzSL6EAAACIPyvxaCCfFJuYlHiUHngAADiaz7D2kKQmTZqEPaw24OXn5+vjjz/Whg0bgo+cnBxde+21Wrp0qSSpe/fuSk9P1/Lly4P5du7cqU8++SQYMOXl5am4uFjr1q0Lplm7dq2Ki4vD0nzyySfauXNnMM2yZcuUmZmp7t27W6o/AAAArLMaj8YyJiUepQceAACQtHv3bn311VfBvwsKCrRhwwY1b95chxxyiLKyssLSp6enKzs7W506dZIkeb1eXXnllZo4caKysrLUvHlzTZo0Sd26dQuuAnbEEUdo4MCBGjlypB566CFJ0qhRozRo0KBgOf3791eXLl2Un5+vWbNm6aefftKkSZM0cuRIVqAFAACow4hHq0cDHgAADhY6f4iZPGa9//77Ou2004J/T5gwQZI0YsQILViwIKoy5syZo7S0NA0bNkx79+5V3759tWDBAqWmpgbTLFy4UGPHjg2uDjZ48GDde++9wedTU1P10ksvafTo0TrppJNUv359DR8+XHfeeaeFVwUAAIDashKPBvKZQTxaPY9hWFhKBAAAxFVJSYm8Xq8+2NhKjRqbm/Fi9y9+HdflOxUXF9NrDQAAAJbUJh6ViEljjR54AAA4mN8of5jNAwAAAMSClXg0kA+xQwMeAAAO5pNHPplbrt5segAAAKAqVuLRQD7EDg14AAA4GA14AAAAsBMNeM5gfhAzHG3VqlWaMmWKfv7550rP9enTR3369El4nRLhiy++0KRJk9S9e3c1bdpUzZs310knnaRnnnkmYvpdu3bpsssuU4sWLdSgQQPl5eXp9ddfr5SutLRUf/vb39SuXTtlZGSobdu2uuGGG7R3796wdFu2bJHH44n4WLRoUdSvI5p6lZSUaOrUqerTp4+ys7PVqFEjdevWTTNmzNC+ffui3pck3XPPPercubMyMzPVrl07/f3vf1dZWVlYmu3bt2vcuHHq3bu3mjZtKo/HE/UEogGbN2/W0KFD1bRpUzVq1EhnnHGGPvjgg4hpFy1apGOOOUb16tVTTk6Oxo0bp927d7t+XwAAAAAA96IBr45ZtWqV/v73v0dswLv//vt1//33J75SCbBs2TK99NJLOv/88/Wf//xHCxcuVIcOHXThhRfqtttuC0u7f/9+9e3bV6+//rruvvtuvfDCC2rVqpUGDhyolStXhqW95JJLNGvWLI0aNUovv/yy/vSnP2n27Nm66KKLItZjzJgxWr16ddjjjDPOiOo1RFuvb775RnPnztVxxx2nhx9+WC+++KIuuOACTZkyRYMGDVK069JMnTpV11xzjYYOHaqlS5dq9OjRmjZtmq6++uqwdF999ZUWLlyojIwMnXXWWVGVHer777/XKaecoi+++ELz58/Xv//9b+3bt099+vTRpk2bwtIuXLhQl1xyiU444QS98soruvXWW7VgwQINHTrU1fuCu/kNj6UHAAAAEAtW41Fi0hgzUKfMmjXLkGQUFBTYXZWE+v777w2/319p+9lnn200aNDA2LdvX3DbfffdZ0gyVq1aFdxWVlZmdOnSxejRo0dw2+rVqw1Jxl133RVW5rRp0wxJxrJly4LbCgoKDEnGrFmzLL+GaOu1e/duY/fu3ZXyB87922+/XeO+fvjhB6NevXrGqFGjwrZPnTrV8Hg8xqeffhrc5vP5gv9+7733DEnGY489FvXruvbaa4309HRjy5YtwW3FxcVGixYtjGHDhgW3HThwwGjdurXRv3//sPwLFy40JBkvv/yya/cFdyouLjYkGSs/OdhYvzXX1GPlJwcbkozi4mK7XwYAAACSVG3iUWLS2KMHXh0yZcoUXXvttZKkdu3aBYdwvvnmm5IqD6ENDPucNWuWZsyYoUMPPVT169dXnz599MUXX6isrEyTJ09WTk6OvF6vzjvvPO3atavSfp9++mnl5eWpYcOGatSokQYMGKAPP/wwES85qEWLFvJ4Krfu9+jRQ7/++qt++umn4LbFixerU6dOysvLC25LS0vTH/7wB61bt07ffvutJOndd9+VpEq9zgYNGiRJevbZZ2P6GqKtV8OGDdWwYcNK+Xv06CFJ2rZtW437evXVV7Vv3z5dfvnlYdsvv/xyGYah559/PrgtJaV2HxOLFy/W6aefrrZt2wa3NWnSREOHDtWSJUt04MABSdKaNWu0c+fOSnW68MIL1ahRIy1evNi1+4K7+ZRi6QEAAADEgtV4lJg0tjiadcif/vQnjRkzRpL03HPPBYdwHnfccdXmu++++/Tuu+/qvvvu0yOPPKLPP/9c55xzjq688kp9//33mj9/vmbOnKnXXntNf/rTn8LyTps2TZdccom6dOmif//733riiSf0yy+/6JRTTtHGjRtrrPOBAweiehhRDgutaMWKFTrooIPUsmXL4LZPPvlERx11VKW0gW2ffvqppPL57yQpMzMzLF3g748//rhSGXfccYcyMjLUoEEDnXzyyXrxxRejrmu09arKG2+8IUk68sgjo9qXJHXr1i1se+vWrdWiRYvg87W1d+9eff3111W+rr1792rz5s1hdaqYNj09XZ07d65UJ4/HE9YgXVf2BVRkWBiqYDBcAQAAADFiJR4lJo09VqGtQ9q0aaNDDjlEknTsscfq0EMPjSpf06ZN9fzzzwd7Wv3www8aN26cOnfurBdeeCGY7vPPP9fcuXNVUlKiJk2aaNu2bbr11lv117/+Vf/85z+D6c444wx16NBBf//73/X0009Xud8tW7aoXbt2UdVxxYoVphfgeOSRR/Tmm2/q7rvvVmpqanD7jz/+qObNm1dKH9j2448/SpK6dOkiqbwnXmg933nnnbB0Unmj3siRI3XGGWeodevW+uabb3TPPffo3HPP1bx58yo1fEYSbb0i+fjjjzVz5kydd955ERuVIu0rMzMzYk++5s2bV7svM4qKimQYRlSvK/D/qtJu2bIlbFtqamrYea0r+wIqYhVaAAAA2IlVaJ2BBjzorLPOChsmecQRR0iSzj777LB0ge3ffPONunbtqqVLl+rAgQP64x//GBwuKEn16tVT7969tWLFimr3m5OTo/feey+qOnbq1CmqdAGvvPKKrr76al1wwQXBXomhIg23rfjcmWeeqcMPP1zXX3+9WrVqpRNOOEFr1qzRjTfeqNTU1LBj1rp1az388MNh5Vx44YXq2bOnJk+erMsuu0xpaWkyDEM+ny8sXVra72/DaOpV0ZYtWzRo0CDl5ubqkUceCXsu9LxI5Q1RgXKs7MsqM/uqKm3F7RVfW13ZFwAAAAAAFdGAh0o9gzIyMqrdvm/fPknSd999J0k64YQTIpZb09xpGRkZOuaYY6KqY2jvp5osXbpUQ4cO1RlnnKGFCxdWaiDJysqK2MMsME9e4HVnZGTolVdeUX5+vvr37y+pfP65adOm6R//+IcOPvjgauuRnp6uiy66SJMnT9aXX36pI444Qo8//niludACw4OjrVeorVu36rTTTlNaWppef/31SmnS09PD/n7sscd02WWXKSsrS/v27dOvv/6qBg0aVNpf9+7dq31t0WrWrJk8Hk9UrysrK0tSeY+1Vq1aVUob6fW7YV+Az0iRz+SUtT5rsw4AAAAAlViJR8vzxaEyLkYDHixr0aKFJOmZZ54Jm8g/WvEYQrt06VINGTJEvXv31rPPPhtsdAzVrVs3/e9//6u0PbCta9euwW2HH364Vq9erW+//VY//fSTDjvsMBUXF+uaa67RqaeeWmN9Ao1zgcbMc845p8peh2bqJZU33vXp00eGYejNN99UmzZtKuWtuK/A8Q7Mffe///1PPXv2DD5fWFioH374odK+rKpfv74OP/zwKl9X/fr11b59+0p1Cgxflsp7v33++ee65JJLXLkvwC+P/CanrPWLaAkAAACxYSUeLc9HTBpLNODVMYEFFvbu3Rv3fQ0YMEBpaWn6+uuvdf7555vOH+shtMuWLdOQIUN08skn6/nnn6+0+ETAeeedp9GjR2vt2rXBxqsDBw7oySefVM+ePZWTk1Mpz8EHHxzscXfzzTerYcOGuvLKK6utT1lZmZ5++mm1aNFChx9+uKTy3liBHlm1qdc333yjPn36yOfz6c0336yyAfX444+PuH3gwIGqV6+eFixYENaAt2DBAnk8Hg0ZMqTa12bGeeedp7lz52rbtm3Kzc2VJP3yyy967rnnNHjw4OAQ4p49e6p169ZasGCBLrroomD+Z555Rrt379bQoUNduy+4G3PgAQAAwE7MgecMNODVMYHePnfffbdGjBih9PR0derUSY0bN475vg499FDddtttuummm7R582YNHDhQzZo103fffad169apYcOG+vvf/15l/oyMjCobmMx65513NGTIEGVnZ+vGG2/Uhg0bwp7v0qWLmjRpIkm64oordN999+nCCy/UHXfcoZYtW+r+++/Xpk2b9Nprr4XlmzlzprKzs3XIIYfou+++07///W89//zzeuKJJ8KG0E6YMEFlZWU66aSTlJ2drW3btumee+7Rhg0b9Nhjj0U1BDjaeu3atUunnXaadu7cqUcffVS7du3Srl27gs+3adMmYm+8UM2bN9fNN9+sW265Rc2bN1f//v313nvvacqUKfrTn/4U1lNMKm9skhRcWfX9999Xo0aNJEkXXHBBtfuaNGmSnnjiCZ199tm67bbblJmZqTvuuEP79u3TlClTgulSU1M1c+ZM5efn66qrrtIll1yiL7/8Utddd53OOOMMDRw4MKzctLQ09e7dW6+//nqd2hdQkbUhtPzaCQAAgNiwPoSWmDSWaMCrY/r06aMbbrhBjz/+uObNmye/329pBddo3XDDDerSpYvuvvtu/etf/9L+/fuVnZ2tE044QX/+85/jss9IXnvtNe3du1dbtmzR6aefXun50GOQmZmp119/Xdddd53GjBmjX3/9Vcccc4xeeeUV9e7dOyzfvn37dNttt2n79u2qX7++TjzxRL355ps65ZRTwtJ17dpVDz30kJ566imVlJSocePG6tGjh5YuXRqcP68m0dZr48aNwYa0P/zhD5XKufXWW8MakKpy0003qXHjxrrvvvt05513Kjs7W5MnT9ZNN91UKe2FF14Y9vd9992n++67T9Lvw4SrctBBB+ntt9/WpEmTNGLECB04cEB5eXl688031blz57C0f/jDH5Samqo77rhDCxYsUPPmzfXHP/5RU6dOrVSuz+ertCBIXdgXUFH5kAVzv16aTQ8AAABUxUo8GsiH2PEYNd19AwCAhCspKZHX69WzH3VUw8bRL+QjSXt+8en8o79QcXFxsPcxAAAAYEZt4lGJmDTW6IEHAICD+ZUiH4tYAAAAwCZW4tHyfMSksUQDHgAADsYceAAAALATc+A5Aw14AAA4mF8p8tMDDwAAADaxEo+W5yMmjSUa8AAAcDCf4ZHPMDcBsNn0AAAAQFWsxKOBfIgd802oAAAAAAAAABKGHngAADiYz8KkwT6GKwAAACBGrMSj5fmISWMp6ga8ffv2qbS0NJ51AQDA0TIyMlSvXr2E7tNvpMhvctJgPxMGo44iHgUAuF2yxKPl+YhJYymqBrx9+/apaYPm2m/sjXd9AABwrOzsbBUUFCQ0aKIHHlBu3759ateunQoLC+2uCgAAtkmWeLQ8HzFpLEXVgFdaWqr9xl6dknau0pQe7zoBAOA4DVpk6qXChSotLU1owOSX+QmA/fGpCmCr0tJSFRYWatu2bWrSpInd1QEAIOFKSkqUm5ubFPFoIB9ix9QceOkZ9ZXmyYhXXQAAcKy9P9nTC92vFPlN/uJpNj2QTJo0aUIDHgAACWQlHg3kQ+yYasDzZGbKk0IDHgDAfTyeMomptwAAAADYwFwDXnq6PCkMoQUAuI9HmdLuxO/XZ6TIZ3LSYLPpAQAAgKpYiUcD+RA7phrwAABwrXR7fsDyyyO/zM6BZ36OEgAAACASK/FoIB9ix1wDXnqaRA88AIAr2bOKFj3wAAAAYCd64DmDuQa8jHQa8AAA7mTY1ICnFPlMTgBsNj0AAABQFSvxaCAfYsdcA15ampTKqFsAgPt4vfWkzYnfr9/wyG+YHEJrMj0AONWZR9wQs7Je+Wx6zMqSYls3q2L9mgAgEivxaCAfYsdUa5yRkSaDBjwAgAsV//yr3VWIq7feekuzZs3S+vXrtXPnTi1evFhDhgyRJJWVlenmm2/Wyy+/rM2bN8vr9apfv3664447lJOTEyxj//79mjRpkv71r39p79696tu3r+6//361adMmmKaoqEhjx47Viy++KEkaPHiw7rnnHjVt2jSY5ptvvtHVV1+tN954Q/Xr19fw4cN15513KiMjIyHHAkB8DTz6lugTZ8Tu3qOq/b760T+iThsmhnWzKrSekV4HACQT4tHqmWvAS0+VkZoar7oAAOBchj03an4LQxb8FoYr7NmzR0cffbQuv/xynX/++WHP/frrr/rggw90yy236Oijj1ZRUZHGjRunwYMH6/333w+mGzdunJYsWaJFixYpKytLEydO1KBBg7R+/Xql/hY/DB8+XNu3b9err74qSRo1apTy8/O1ZMkSSZLP59PZZ5+tgw46SO+8845+/PFHjRgxQoZh6J577jH9ugDYZ8DxUyI/ke6s+4mI9XRYHaNR5fGuxtL3zedBuKqOe6RjGymt3efAiXWC81iJRwP5zCAerZ7HMGqe1KekpERer1enHX+j0tLqJaJeAAA4in//r3r9wztUXFysJk2axH1/ge/eaetOU71G5hoP9+0+oBt7rLBcV4/HE/aLZyTvvfeeevTooa1bt+qQQw5RcXGxDjroID3xxBO66KKLJEk7duxQbm6uXn75ZQ0YMECfffaZunTpojVr1qhnz56SpDVr1igvL0+ff/65OnXqpFdeeUWDBg3Stm3bgr+mLlq0SJdddpl27dqVkGMPZwq8JxL1HoR5/fOc0wNs2epbHFUfp1i22kTvRxuYPWfxfj1V1Sd0v7W9zuw4J9HW2enXixsl+ruwNvGoVLuYlHi0MmYUBAAgCkaaPb0xfPJYekjlQVfoY//+/TGrV3FxsTweT3Cowfr161VWVqb+/fsH0+Tk5Khr165atWqVJGn16tXyer3BYEmSTjzxRHm93rA0Xbt2DRsKMWDAAO3fv1/r16+PWf0BAAAQHavxaLxjUrfFo6aaUP3pKfKn0eYHAHAff4o9339+I0V+w+QQ2t/S5+bmhm2/9dZbNWXKlFrXad++fZo8ebKGDx8e/AWysLBQGRkZatasWVjaVq1aqbCwMJimZcuWlcpr2bJlWJpWrVqFPd+sWTNlZGQE0wBIjH6nTo24/bW3boq43Z9u/31CoG79Tp0qOaA+dqvqXCVSVddRRA47Z9H0QEvGXmrRvlfNfgag7rISjwbySfGJSd0Yj5qbAy8tRQYNeAAAF2rctKEt+/VJwV8vzeSRpG3btoV18c/MzKx1fcrKynTxxRfL7/fr/vvvrzG9YRjyeH6vf+i/a5MGQO31PT3yCqavv1G+umpVcX9V+WTDfcLrb9wQVp/gv118zxI4f07x2ls3VX3NRMlprynZRWqAM3OOQtNybtzBSjwayCfFPiZ1azxKDzwAAKJQUrzX7iqY1qRJk5jO0VFWVqZhw4apoKBAb7zxRljZ2dnZKi0tVVFRUdivnrt27VKvXr2Cab777rtK5X7//ffBXzmzs7O1du3asOeLiopUVlZW6ZdQAFU7bcCMiNtXLL3+9+cj9MIJPC+F99IJ3V5V2TXuL4aqqifKj3Xo8XGC0EYeK9eCE19TXVNVQ1xN5yvwPOcH1YllTOrmeNR8Ax5fkAAAFzJ8yTeENpYCwdKXX36pFStWKCsrK+z57t27Kz09XcuXL9ewYcMkSTt37tQnn3yimTNnSpLy8vJUXFysdevWqUePHpKktWvXqri4OBhU5eXlaerUqdq5c6dat24tSVq2bJkyMzPVvXv3mL8uoC7pfc6s3//IiPw5EEyTkaKVS66ttL33ObOC2/0hZURTdk37i5XQeku/NxyE1RGO5a/mWqh4buuC0Oty5ZJra7xOnXQMep8zK+r3bjTvPye9NphT2yG0seL2eNRcA16aR/40hq8AANzHSLfn+89npMhnMvgxm16Sdu/era+++ir4d0FBgTZs2KDmzZsrJydHF1xwgT744AP997//lc/nC87/0bx5c2VkZMjr9erKK6/UxIkTlZWVpebNm2vSpEnq1q2b+vXrJ0k64ogjNHDgQI0cOVIPPfSQJGnUqFEaNGiQOnXqJEnq37+/unTpovz8fM2aNUs//fSTJk2apJEjR7LyKFADs3H6Kefd+fsfIXmD2x0S97+9eFJU6VYuuTb8NcGR6nIjTsTrr+J7q5r3VbTXuhWW3hsO+QywwuzrDT32oXnjeU6SiZV4NJDPDOLR6plfBxgAABey6wcsQx75Tc45YliYo+T999/XaaedFvx7woQJkqQRI0ZoypQpevHFFyVJxxxzTFi+FStWqE+fPpKkOXPmKC0tTcOGDdPevXvVt29fLViwQKmpv6/gu3DhQo0dOza4OtjgwYN17733Bp9PTU3VSy+9pNGjR+ukk05S/fr1NXz4cN15JzflAAAAdrASjwbymUE8Wj2PYRhGTYlKSkrk9XrV49zblZZeLxH1AgDAUXwH9mnt8zeruLg4Ib+8Bb57r111tjIbpZvKu393mWb1eilhdQUSIfCe4Lqu7KQL76q07d3/TKz2eave/c/EmJZndt/xYtdrird4HjOUM3PtJPp8OO26dvLrD9StYh6nvYcS/V1Ym3hUIiaNNZNz4JU/AABwG79No0j8hkd+w9zOzaYHkJzyhv92oxkhPg8+V8XzoVY/FX6DGpY3Qpra3g+sfmpixH3UJJCnYn1jIXCTbqVeThSPY4Rw1b3/pMSegyqvW4fdu9f02WI1bVVCG9+iLc9pDXZOYSUeDeRD7JhqwDNSmQMPAOBOTRo1sLsKABAmVnF5zz/ODt9QTbk9/zi71vNi1baMnn+crbX/N6FWdahK4Ia+0jFJAvE6JqispmvY7Lmo6noLlFPj9ZjE9+hVvrYIr6liWjPHOdLnZWh5vH+QDEwuYiF5mDUPAOBCP/+y15b9+pQin0wuYmEyPYDkc8IVs22ZzXrt/00o33eU3pv/+02xmXw1iVRW6L5qy889DyIIXndVXB9WrsHq3ss17c/NIh3rE66YHdxe8d81HcOaPp9i+fmSjKzEo4F8iB3Tq9B6krh1HwAAy2wKnhlCC4Q7dex9Ss0on5N5/cPjY15+91Fzok4bj/1HK/Rm0kydrQrsY/3D44P7jma/ofniPZKnYn1qc34YdeQs0VxriXg/xvK6CL4mrjVLIl4TaZ6w4xrLY+yE74buo+bIV7ovLmXXhCG0zkAPPAAAomFTgO1Xivwmf700mx5INrG6OTp2dKQbwFrmj8KH99dcf1NlR6hz6D6s1jOS0LI+fDj6fRw7ek4wfSzrU9M+peiOd0XrHx6fsHoiimsiivdl2LVp4ZxHY32U13x1zwXqRi/PuivS+Y/FZ/KHD4/XMZdNt1yv2rASjwbyIXb42AAAIAp2Bdo+wyOfyV8vzaYHksmBenbXAAAAe9j1HWglHg3kQ+zQAw8AgCj4/TbtlyG0QCVHj52jj/5prYfN0WNDej7YFNeG1aEqtaxbIl6n2X0E04ekDZzHqI5JgiVLDymr7wW7xfMajXQ9WTlOFcsJu17TKpcb6Rqvsswkub4QG7G43u38nGQIrTOYXIVWMvigAQC4kLd+fburAEC/x6NHTfj9Rubj2dHfmBPLOkvwPFZxXkLPbeg5t7QPmbtWAg0zVvcba2bq7mQ1nfO47zdETdfXx/8cH7Y9Ut3D8vH5gjgzfHbXAHYy1wMvVfKkxqsqAAA418977FmF1jBS5DfMzR9imEwPJJNI8WjXayM3sHwyq3KDx8ezx1eZHs7mj8F9SKRzH+k6ifV+zaipPsku0cezOl2vnRM83pHq1fXaOZKD6gvYxUo8GsiH2DHXAy+NXy0BAO5k2BTA++SRTybnwDOZHkgmZuLRI28ob6z5dPr44L8l0UsmCXw6vXIjVqSGrbDzGieJuv+J9JqrYuV1myk/Xo68YY7j3n/BY+mwegGR2NUAbiUeDeRD7JgfQssvEAAAF7LrByy/YX7+EL8Rp8oADmA1HiWGTR4bb4/c0NTl5giNVlGc10B5FfNXtZ+K4nntRFuHiqzUqcvNcyzvL1bseB9WPP8bbx8f+VoCkkAyxaOBfIgdfmcAACAKdt38+y0MWbAyxAEAAADOlkzxaCAfYodVaAEAiILfpkmD/fLIb3L4gdn0QDLxp0mbKvQi6jylcm+az6eEpwn0womUFs4Seo4+nzL+978t3odEyl/x+qjOxtvHx+S6MbPPmiTT9RxWR5PnMHDMavM6K57/zlOcN4wXiFYyxaOBfIgdc0NoUxh+AABwJ77/AGeI9GN+pIaRTv8Iv+HfdMv4YNqKz8G5Ov2j8iICgXMZlibOAteY064dM99NFY9bvFQ6RrX4/gyWxXcwICnydyDcw/QiFn5+rQAAuJA3o74t+/UZHvlMzjliNj2QTKKd/2fTLePVYXrkxhbiWXt9eUPkhqSqzleN6Uycz6r2HS2r105t91uVRDXK1STsnNTy/RU4VtFeD4Cb2DUHnpV4NJAPscMiFgAARKHo17227Jc58ADrIjWaHD6zco8uxN9X19Xc0FTl+bKwH7P5ovXlDeNNlR3N664LYnWPGHq8uO8EKn+GHHbrdFvqwRx4zmCyB54hI41lRAAALmTXpMHymF+FlvlGUId9OPHqWuX/6rrxOmz27BjVBjX5esKEWuU3e76CaUPucmpbh0h1irhPF4vVPWLYsaSnLJJA6OdLrD4LqvvM+nDi1fLedmNM9mOGlXg0kA+xQwMeAADRsOn7z7AwabBBsARU0v6fd/3+Bw0DCbF57MSYlBO4mQ07hyZEyheruknhN9tW65js4nGPuHnsRNceTySHip8jtf2siuXnUqxZiUcD+dxk6NChpvM8+OCDatmyZVRpCV8AAIiCkWpPA57fsNADj/lGAAAAECNW4tFAPjd5/vnnNWzYMNWvH93c2U899ZR2794dnwY8w8OqJwAAd+L7D0huVfVsaHdvbHr4FPw1+p4Tsdqn04W+TjPHp8pyYvg53O7eu2pVp6o4uQeNGWbPXSy/I0P3x3cv4ilwrVX1mVzw14mmPq+r+6yKx+cNnOmf//xn1A1yzzzzjKmyGUILAEAU7Pr+YxELIL4i3VQd+uCdUeXd8udJtd5ntPtyM+4/Eid4PaZF2Kaqr/l4nKNDH7yT8WKIm9BrubrGtZoa3sI+w+vw9coiFtFZsWKFmjdvHnX6V155RQcffHDU6WnAAwAgCs0a1tM3NuyXIbRAYrV9ZFZCb8K2/HlS+T7ruIqvceufro06b+BGO9bHKVCembrUdVbv9UIbQ2J1nrjvRDzE8v2e6O8LOzGENjq9e/c2lf7kk082ld7U5eZJNeSxaQ4gAADs9NPufbbs129h0mBW/ALMO/SxmZIkT4UVp7dcfl3c9x24oQzUwQ0qvtaqjnNouornJpZ1ScR5TgZV3euZOT5W7hcjlc99J2Iplu/xqr4v6jIr8WggH2LHXHtxqr/8AQCAy9h1I0EPPCD2Dv2/OypvDLkR2/LHyYmrTIjADWbE+tVxFV9z4Bxsufy6hByPqvbvBmGvvYoGiUCaqI5LlPeLW/44OVhuTe9JoDZi/n420SZSVz5L6IFnzv3336/nnntOzZs315///Gedfvrpwed++OEH9ejRQ5s3bzZdrrsGJAMAYJVNP2AFAiazDwAAACAWrMajboxJ//nPf+raa69V586dlZmZqbPOOkvTp08PPu/z+bR161ZLZZsbQpvCEFoAgEul8P0HJLN2C38PnkOHPRVceoMNtanelj9ODquv29lx/9Fu4XRHXhux1m7hdFPDAAPXZVXHxkx5ZvcNWBXp87Q27+9Ar7qaPqfd8BmCyh566CHNmzdPw4cPlySNHj1aQ4YM0d69e3XbbbfVqmxTDXgpqYZSaMADALiQwRBaIGkdtmiaUkIaCr6++Eb7KhMlt8fchy2aJqn8XLn9WMRTVcf264tvDJ6DSA5bNC34PgpNl0KDHJJE6DVsVXXvn7qGIbTRKygoUK9evYJ/5+Xl6Y033lDfvn1VVlamcePGWS7bXANemk+paT7LOwMAIFl5G9ZTgQ37pQEPqL1kvJki5v6dXcei4zP/kCR9ccEttuw/Eao6th2f+YdSo7xT5FpFsqrte7zitV+XPytowIteixYttG3bNh166KHBbUceeaTeeOMNnX766fr2228tl22uAS/FUApDiAAALlT06x5b9mvI/ApefFMDyS/SjWDn52o39CYZdX7uNqUwa3fcVLy3+3zo3yRFd60F0nB+4FZuahuxEo8G8rnNySefrGeffVannHJK2PYuXbro9ddf12mnnWa5bFMNeKmphlJZhRYA4EJ+m4I0euABCPh86N905AtT7K6Ga3x67hS7qxB3gQa7irjnA2pW1funLqIHXvQmT56s9evXR3zuyCOP1IoVK/TMM89YKttUA146Q2gBAC7FHHgAnCDQqHTMS3V3qFaibDj7H8F/RzqeodtC07pBaOMl1xrqumNeusV173GzaMCL3lFHHaWjjjqqyuePPPJIHXnkkZbKpsMzAABRSK/jP2C99dZbOuecc5STkyOPx6Pnn38+7HnDMDRlyhTl5OSofv366tOnjz799NOwNPv379eYMWPUokULNWzYUIMHD9b27dvD0hQVFSk/P19er1der1f5+fn6+eefw9J88803Ouecc9SwYUO1aNFCY8eOVWlpaTxeNgAAAByCeLR65nrgpfiUmlK3b2AAAIjEb9P3X6J64O3Zs0dHH320Lr/8cp1//vmVnp85c6Zmz56tBQsWqGPHjrr99tt1xhlnaNOmTWrcuLEkady4cVqyZIkWLVqkrKwsTZw4UYMGDdL69euVmlq+NOHw4cO1fft2vfrqq5KkUaNGKT8/X0uWLJEk+Xw+nX322TrooIP0zjvv6Mcff9SIESNkGIbuuece068LqKs2nP0PnfBK8i3OYbf3zoy8smo69ziVBK6vdLp8oI6r6nMBv0tUD7y6Eo8ahqGxY8fGPHY1Nwdeil9pzIcAAHAhX4o933+JasA788wzdeaZZ0Z8zjAMzZ07VzfddJOGDh0qSXr88cfVqlUrPfXUU7rqqqtUXFysRx99VE888YT69esnSXryySeVm5ur1157TQMGDNBnn32mV199VWvWrFHPnj0lSfPmzVNeXp42bdqkTp06admyZdq4caO2bdumnJwcSdJdd92lyy67TFOnTlWTJk1MvzagriIuj52ajmXessmSpNX970hEdRyB6wt1ScX3bt6yya56P9dWohrw6kI86vP5lJ+fr4KCAlOvPRrmeuCl+pSWyq9TAAD3aVavni37NQyPDJPBj9n0NSkoKFBhYaH69+8f3JaZmanevXtr1apVuuqqq7R+/XqVlZWFpcnJyVHXrl21atUqDRgwQKtXr5bX6w0GS5J04oknyuv1atWqVerUqZNWr16trl27BoMlSRowYID279+v9evX12rlLqCuCdx8nvr6tTbXJHlUdaxW958VdVq34PpCXRS4ntNTf//3W30rv/8Rzko8GsgXK8kQj+7bt09Dhw7Vzp07tWLFipi99gDTQ2jT6F4OAHCh4rL9tuzXL4/8MtkD77f0JSUlYdszMzOVmZlpug6FhYWSpFatWoVtb9WqlbZu3RpMk5GRoWbNmlVKE8hfWFioli1bViq/ZcuWYWkq7qdZs2bKyMgIpgEQjuGf8cFNfbm3+s5S3xUT7K5GjV4/bbYkJUVdYZ/Qz8vANYOaWYlHA/mk2MSkyRCP9uvXTz/99JNWrlyppk2bmnp90TDVgJdBDzwAgEv5knAOvNzc3LDtt956q6ZMmWK5Lh5PeD0Mw6i0raKKaSKlt5IGwO8yiM9r5ZVT77a7Co6XTNfY66fN1plvXWN3NeAgoe/x0Gs5cJ3wGVCz2g6hjWVM6uR4dNWqVbrnnnt00EEHVVsfq0w14AEA4FbpSXTzErBt27awOTqs9L6TpOzsbEnlv0a2bt06uH3Xrl3BXyezs7NVWlqqoqKisF89d+3apV69egXTfPfdd5XK//7778PKWbt2bdjzRUVFKisrq/RLKAAAAJwvFjFpMsSjc+fO1aRJk3TooYfq7LPPNv0aa2JyCK2fLvoAAFdKsWkRi9rMgdekSZOYLPrQrl07ZWdna/ny5Tr22GMlSaWlpVq5cqVmzJghSerevbvS09O1fPlyDRs2TJK0c+dOffLJJ5o5c6YkKS8vT8XFxVq3bp169OghSVq7dq2Ki4uDQVVeXp6mTp2qnTt3BoOzZcuWKTMzU927d6/1awHqogzi86i9cPK9dlfBcc59568RtweO1bnv/FUZDl+JtuJ5ra5HVVWvF3VP6HUROO+RruVz3/krnw01qO0ceLGISZMhHh07dqyysrI0fPhwLV68WKeffnqtXnNF5obQpvhowAMAuFJKEg6hNWP37t366quvgn8XFBRow4YNat68uQ455BCNGzdO06ZNU4cOHdShQwdNmzZNDRo00PDhwyVJXq9XV155pSZOnKisrCw1b95ckyZNUrdu3YKrgB1xxBEaOHCgRo4cqYceekiSNGrUKA0aNEidOnWSJPXv319dunRRfn6+Zs2apZ9++kmTJk3SyJEjWYEWqODCVX+RFPmG1K3+0+sBu6uQVC5c9Zcqrx8z11fguF+46i9h/3aiF06+17F1Q+xU/Czgh47aSdQqtHUhHr300kvVrFkzXXLJJRF7+tWGyTnwDig9lQgBAOA+TTLq9iq077//ftiKWhMmlE8CPmLECC1YsEDXXXed9u7dq9GjR6uoqEg9e/bUsmXL1Lhx42CeOXPmKC0tTcOGDdPevXvVt29fLViwQKmpqcE0Cxcu1NixY4Orgw0ePFj33vv7r96pqal66aWXNHr0aJ100kmqX7++hg8frjvvvNP0awLqusAN6qVrR9pcE+cIHIuFPefZXJPk8J9eD8T0+gltNMlIPRB1vsD5qk1dasobek3w3qkbzLzPq7se+byoWaJWoa0r8ehZZ52lxYsXm3rt0fAYhmHUlKikpERer1fD3xiujEYZMa8EAABO9+svfv277/+puLg4IT3BAt+9xz0zQakNzc0T4tuzXx9cMDthdQUSIfCe4Lqu7PL3Lre7Co7z2AmP2V2FpFHb66fisY5UXiBNTft67ITHuJ4RNTPv8+quy2SS6O/C2sSjEjFprJmbA8/jV7rHnjmAAACwU7rHnqEXhqSaf2qrnAeAe7g9Pn/4+MftrkJSs3L9PHz84xr1/ghJ0qj3R4Sdg+rKC20wCeQPNer9EUqvosNOYB+R8sF9zL7v3f45WVtW4tFAPsSOqQa8zBSfMlKi7woNAEBdUUbgB8ChMl0cn99z3EK7q5DUxnxwqTItzpBU1XUXaFgZ88Gl1eZ/+PjHK6W557iFNeZz8/VeVwXexzWd+9rgukGiGYahZ555RitWrNCuXbvk94ffSzz33HOmyzTVgAcAgFtl2rWIhTzyyOQiFibTAwAAAFWxEo8G8rnVNddco4cfflinnXaaWrVqJY+n9sfC9CIWmanuPQEAAPfypNo0hDZBi1gASF6B3iuTPrrI5pog2WSaWGiiopp6P0Z6vuI1mvnbnPJ3Hv101HWqTZ3hbNFcM1ZM+uii4LUWEHrNoWaJWsSiLnnyySf13HPP6ayzzopZmaYa8NI8PqV5WIUWAOA+fo89Nwx+wyOPyeDH7+JgCXCzNJvm6rTDHUc9Y3cV6oQ7j35akz++IOr0kY67mfxpFb6eIpUXaFipqlyzdYbzRTqfgWujqs+1yR9fUO3nQGiZFa87mGclHg3kcyuv16v27dvHtExTDXj1Usosz5EAAEAya5he35b9GoaFRSyYMRhwpTuOekZTPjnX7mogyYQ2glR1/Uzp+kKVz9czcX8YKCca9VLKqnwuUGeu97rP6udaddcPzLMSjwbyudWUKVP097//XfPnz1f9+rG5jzDdAy+dHngAABfa7fvFlv0yhLZmxx13nKn0Ho9HL774og4++OA41Qiwj10rZqNuqOr6mfrpoN+eT1xdQhv7pn46KFgHSbrpyP9WShOaNjRd6N9wtsB5raim6zJynphUCb9hCK15F154of71r3+pZcuWOvTQQ5Wenh72/AcffGC6TJOr0B6gBx4AwJX2uzf+cLwNGzZo4sSJatSoUY1pDcPQHXfcof379yegZkDiZbqg18mkI5baXYU66c7PBsTtXq+25+ymI/+rOz8bEFXazJSysP254T1R10U6h5OOWBr1NRFIDyTSZZddpvXr1+sPf/iDPYtYAADgVnatQksPvOhce+21atmyZVRp77rrrjjXBgAAoO6gB555L730kpYuXaqTTz45ZmWaasBL9/iUHoNWQwAAko3fpmFpLGJRs4KCAh100EFRp9+4caNycnLiWCPAPqG9TO7+vJ+NNUGyCFwn8RxyGNjHNZ1fs1xGtD2oKr4HGEqZPO7+vF/EayTSuY/m3NbmekM4FrEwLzc3V02aNIlpmRbmwHPvCQAAuJfPpgY8FrGoWdu2bU2lz83NjVNNAGcJ3Lzev+k0m2tSO6M7rbC7CnXW/ZtOS2gDV8VrMdK5rel6NXM9MCdk3RXp3PJZET8sYmHeXXfdpeuuu04PPvigDj300JiUaW4VWk+Z6nlcfAYAAK6VkVrz/GrxUB4wmR1CG6fKAEhK9TzJOwfYFR3fsbsKdZrd18b8L8KHll3R8Z0a6xSaJ3B9VNwW+LsefU/qrNDrhM+J+LMSjwbyudUf/vAH/frrrzrssMPUoEGDSotY/PTTT6bLNDmE9gBdkAEArvSLv9juKqAaZWVluummm/Tcc8+pefPm+stf/qLLL788+Px3332nnJwc+Xz0xoD7XNHxHT3x5Yl2VwMOlO45YHcVwjzx5Ymm7jcD13VoHrNlIDnRaAenmzNnTkwWrghlrgFPfmXQDRkA4EJ23QywiEV0pk6dqv/7v//TpEmT9PPPP2v8+PFas2aNHnrooWAaw80/A8P1nBbDX3T4e5Kkp786weaauJvTrgsAzsQiFuZddtllVT63d+9eS2Va6IFH8AsAcJ90pdiyX+O3h9k8brNw4UI98sgjGjRokCTp8ssv15lnnqnLL79c8+fPl6SY/woKJJNAg9lzXx+bsH0OPezD4L9D9xu6PVCvUKFpn/v62LD0qJ2K55+eatEbetiHCX3/AE5iJR4N5HOrq6++Wvfdd1+l7Xv27NHZZ5+tN99803SZ9tyNAACQZNJsGmYU+MXT7MNtvv32W3Xt2jX492GHHaY333xTq1evVn5+PkNnAQAALLIaj7oxJg1YtmyZbr755rBte/bs0cCBAy3HpSZ74Pn4lQYA4EoZHr89O6YLXlSys7P19ddfh63ylZOTozfeeEOnnXaaRowYYV/lAAeJ56qc57T/uMrnzPSiY+XQ+OHY1g7HD65FFzzTli1bppNPPllZWVkaP368fvnlFw0YMEBpaWl65ZVXLJVpeghtBkNoAQAuVGZbA56FXy9d+Gvn6aefrqeeekp9+/YN2x5oxOvTp489FQMcJsNhixZEkgx1TEZLC7oow2VfDwPabdTSgi4xKWtpQRed035j8N+IvQHtNtpdBVTFam86F8akAe3atdPSpUvVp08fpaSkaNGiRcrMzNRLL72khg0bWiqTHngAAEShQarX7iqgGrfccos+//zziM8dfPDBeuutt7Rs2bIE1wpwntAb5De2dAr++/RDN1XaZpcB7TY6oh51ReBYuvU+Lpa95gLHckC7TdU+DwCS1LVrV/33v/9Vv3791LNnT/33v/9V/fr1LZdnehXadMu7AgAgee3xF9myX8Mof5jN4zZt27ZV27Ztq3y+devWDKMFKkjX7w0bb285/LdtzhCpbgGnHPpVoquT1EKPpdu8veVwnf7b9VLxOopF2RU55f2TrN7ecjjvb4eyEo8G8rnJscceG3HRtMzMTO3YsUMnnXRScNsHH3xgunxTDXipHr9SXfrLDQDA3dJlzxeglQmA3TxhsN/vV0oKa3QB0QjcKK/a2j64rVfbzWF/2yX0Jt4J9UlWq7a2d/39W+D6ieVxiOa49mq7OeqyAKezuiCF22LSIUOGxLV8Uw14aR6/a7teAwDcLTXCr2kJYXjMzx/ismApYP/+/br44ou1ePFiu6sCJJVebTfrvW8ODftbUti2RKhqf73abkloPeqSdLvmb3WgEw7ZIilx13VgP4H9VqXi+89tTjhki6tff9KwEo8G8rnIrbfeGtfy+YkaAIAopNl0ExQYsmD24Ta7d+/WmWeeKcONLx4AACCOrMajhGWxZaoHXoZ8ynDzOsAAANey7fvP+O1hNo+L/PDDDxowYICysrL0n//8x+7qIMl99E1u2N9HH7LNppokVqReQhlxmjst9BgHju9H3+QqI4r0oXlQtcAxq+qYupGTj0m83mtOVfE97LbXn5SsxKOBfC7SvHlzffHFF2rRokVU6Q855BC9/fbb1c7jHMpUA16Kx1CKx2VnAAAASRmpzSR9a3c1EMHJJ5+sli1b6vnnn1d6OlOIo3aOPmSb/retTfDvwL+75W63q0q2iXXcHziWKRFGVFXXKBd6PgJ/u/F8mME9m/3MXKOB67/itR5LofWJ134C+wgtP5rjQKM86oqff/5Zr7zyirxeb1Tpf/zxR/l80Tdgm+yB53fkLxYAAMTbbv9PtuyXRSxq9vXXXys/P18NGjSwuyqoIwI3nJu25QS3bdqWo065O+yqki0yZG7qgMDxinScNm3LsXwfEakeoecmEredq4rMnjs36ZS7o8brxy6JOm+RPuNiIVAebQZ1D4tYRG/EiBFxK9tkD7zIv5gBAFDX2XozREeKav373//WpZdeqoMOOkijRo2yuzqoQzrl7tCX2515o58IgUawWByD2txD1NQYF6l+X27PUYc27m3Ei+W5q4vifXysXnuh13os61ZVfWL5Gdehjbs/L12BeLRGfn987xfMNeDJUCpnDQDgQnb9gEUPvJqdd955eumllzR06FA1bNhQl156qd1VQh3i5kaggA5tdmjz9tZRp4+UNrUW+69YXvs2O8Oeq6rs6vK5BfdulW3e3jp4LTj5+MSibtFc87E8BqFlmXm/RfrMcOP71cnogecMrEILAEAUUuxexMLsw2VOO+00vfbaa7ruuuvsrgoAAEDdYjUedWFMGk+meuCle8ofAAC4jX3ff57fHmbzuE/37t21YsUKu6sB1EmhvWG2fRt9b7yq5B4cfe+a6nri0Eunety7VS/Wx8fMdV0Tq3UzW4dYHYNt37a2/H7kOk0GVuLRQD7EiqkGvFR5lMoJAAC4UG2GfyFxOnbsaHcVgDov0ECw41vmu3I67t2ql3vwzphcxzkHx36ofaLOXSz3EziWZo8H1ykQHZNz4DHmFgDgTmkpzSUVJn7HVoYfMFwBQAKE3qQXhjSCZP+2vbCahpHqngstA9YEji/3bpEFjk/2wTssH6N4X6M5B++o8X0Symp9nHCNhNaB975DWR0OS0waU6ber6keDw8ePHjw4OHKh9//U7y+i6uXgPlGDhw4oJtvvlnt2rVT/fr11b59e912221hK2kZhqEpU6YoJydH9evXV58+ffTpp5+GlbN//36NGTNGLVq0UMOGDTV48GBt3749LE1RUZHy8/Pl9Xrl9XqVn5+vn3/+2VyFq7Fv3z7NmjVLZ511lo4//ngdd9xxYQ8A8ZF98I7gI3Sb1c9c1I7d35nJ8vh+x8Gm0ke6zp1wHmtTn9DXFHjU9rjW5nXCoRI0B15dikk/+OAD/e9//wv+/cILL2jIkCG68cYbVVpaaqlMkz3wPEqheysAwIVsCyoNT/nDbB4TZsyYoQcffFCPP/64jjzySL3//vu6/PLL5fV6dc0110iSZs6cqdmzZ2vBggXq2LGjbr/9dp1xxhnatGmTGjduLEkaN26clixZokWLFikrK0sTJ07UoEGDtH79eqWmlg9CHj58uLZv365XX31VkjRq1Cjl5+dryZIl5l5jFa644gotX75cF1xwgXr06CEPNwOArbh3sAfHPfaycrbXnCjG7DqPid5v6P5+3NEm7Dk7jjsisBKPBvKZUJdi0quuukqTJ09Wt27dtHnzZl188cU677zz9J///Ee//vqr5s6da7pMj2EYNbaJlpSUyOv1auvnOWrS2AmdbAEASKyff/GrXecdKi4uVpMmTeK+v8B3b5t7/66U+vVM5fXv3aftf7016roOGjRIrVq10qOPPhrcdv7556tBgwZ64oknZBiGcnJyNG7cOF1//fWSyn/ZbNWqlWbMmKGrrrpKxcXFOuigg/TEE0/ooosukiTt2LFDubm5evnllzVgwAB99tln6tKli9asWaOePXtKktasWaO8vDx9/vnn6tSpk6nXGYnX69XLL7+sk046qdZlwVkC74lEvQcRPz/vyK32+aY52yyXZzZvXVXTMUZ0qrueAsc4EddcrN8zsdpvdczUKdr98P5O/HdhbeJRiZj0gw8+0GGHHaYZM2bojTfe0NKlS/Xuu+/q4osv1rZt5q9nWuMAAIiCbb0ZajFcoaSkJOyxf//+iLs4+eST9frrr+uLL76QJH300Ud65513dNZZZ0mSCgoKVFhYqP79+wfzZGZmqnfv3lq1apUkaf369SorKwtLk5OTo65duwbTrF69Wl6vNxgoSdKJJ54or9cbTFNbBx98cPDXVwAAAMRALYfQujEmNQwjOPT3tddeC76G3Nxc/fDDD5bKZAgtAABRSMZfvHJzw3/RvvXWWzVlypRK6a6//noVFxerc+fOSk1Nlc/n09SpU3XJJZdIkgoLyxfvaNWqVVi+Vq1aaevWrcE0GRkZatasWaU0gfyFhYVq2bJlpf23bNkymKa27rrrLl1//fV68MEH1bZt25iUCSC2muZsU8mOQ2JWXuj9SWi5TXK+idk+kk2gp1Isj7MbVHfNVLy2EtkbzAlDaZvkfBP19WT2vRd6LLlm6yY3xqTHH3+8br/9dvXr108rV67UAw88IKm8EbJi/aNlqgGPiSUBAG6Vmtpckg3zsNRiDrxt27aFDVfIzMyMmPzpp5/Wk08+qaeeekpHHnmkNmzYoHHjxiknJ0cjRowIpqs4n5xhGDXOMVcxTaT00ZQTreOPP1779u1T+/bt1aBBA6Wnp4c9/9NPNi1GAiBM4AZ/z07zDe0V81R1f1IxXcPWWyPur2HrrabrkCy4dzOnuuvRzmNZm/dLbVR8zfE4BqGvqWHrrVyzTlXLOfDcGJPOnTtXl156qZ5//nnddNNNOvzwwyVJzzzzjHr16mWpTJM98Mr/AwDAdWxahdZjlD/M5pGkJk2aRDXfyLXXXqvJkyfr4osvliR169ZNW7du1fTp0zVixAhlZ2dLKv+1snXr1sF8u3btCv6CmJ2drdLSUhUVFYX94rlr165gkJKdna3vvvuu0v6///57y79EVnTJJZfo22+/1bRp09SqVSsWsQAcLtK9xd6d7VS/dUHw3wGBbVbvR/bubOe6e5nQxsnQY4nklOjrN0Upwfed9Pv1VNW1FJrWzD6q+9tKmYg9K/FoIJ/kzpj0qKOOCluFNmDWrFnBhTTMMtWABwCAW9l20xcyf4ipPCb8+uuvSkkJf32pqanBeTvatWun7OxsLV++XMcee6wkqbS0VCtXrtSMGTMkSd27d1d6erqWL1+uYcOGSZJ27typTz75RDNnzpQk5eXlqbi4WOvWrVOPHj0kSWvXrlVxcbHlXyIrWrVqlVavXq2jjz46JuUBiK/Qm/PQRoFIDQTxaoAKbTAEklE8r+HA+y60/Ooa2M2WW1Pe2uwDMWQlHg3kM6EuxaRVqVfP/GIgAcyBBwBAVKxELbHYrfUhtNE655xzNHXqVB1yyCE68sgj9eGHH2r27Nm64oorJJUPMRg3bpymTZumDh06qEOHDpo2bZoaNGig4cOHSypfaevKK6/UxIkTlZWVpebNm2vSpEnq1q2b+vXrJ0k64ogjNHDgQI0cOVIPPfSQJGnUqFEaNGhQTFb7kqTOnTtr7969MSkLQGLZeZ+xf2d7SVJm68221SHe6rcuCL5OWGP39ZHoc1jTe7I2DWpV5aW9waFqOYQ2WnUpJvX5fJozZ47+/e9/65tvvlFpaWnY81amdaEHHgAAUbB9FVqzeUy45557dMstt2j06NHatWuXcnJydNVVV+lvf/tbMM11112nvXv3avTo0SoqKlLPnj21bNmysBVf58yZo7S0NA0bNkx79+5V3759tWDBgrBhAgsXLtTYsWODK4MNHjxY9957r8kXWLU77rhDEydO1NSpU9WtW7dKc+BFM3wDAAAAIRLUA68uxaR///vf9cgjj2jChAm65ZZbdNNNN2nLli16/vnnw16PGR7DMGo8pCUlJfJ6vfrxi3Zq0thd80YAACBJJb8Yyuq4WcXFxQlpBAp89+bO/odS6pvrau/fu0/bJtySsLo6SWDYRVWTG/t8PjuqhRgIvCfceF270YHCw23df1r2V7buP17sPq7JzmnXRej5jEfdKl4vsdxHoOyqyox0rTrt+Nsh0d+FtYlHJXfHpIcddpj++c9/6uyzz1bjxo21YcOG4LY1a9boqaeeMl0mPfAAAHCyBPTAq0tWrFhhdxUAxECkG/VENj7Fs+HCToHXQUOeeXXlGjAjLfursGulpka3aFUs043HNukkqAdeXVJYWKhu3bpJkho1aqTi4mJJ0qBBg3TLLbdYKpMGPAAAopHSrOY08UADnil5eXnKyMiI+NwPP/yQ4NoAqCti1XDhFLVtyKt4HGgQtEc8esRFU76V94PZa6SuvNfqDBrwTGvTpo127typQw45RIcffriWLVum4447Tu+9954yMzMtlWlhEQuG0AIAXMhfZM9+E7CIRV0ybNgwPffcc5VWMPvuu+/Ut29fffLJJzbVDEBtOeE+xF/YUSnZX9hdjZhJy/5K/sKOlbabfY2BxpZIZSE5RDqH/sKOMXvfOeH9i1pI0CIWdcl5552n119/XT179tQ111yjSy65RI8++qi++eYbjR8/3lKZ9MADACAKdi1i4THKH2bzuNXOnTt15ZVX6rHHHgvbdvrpp+vII4+0sWYA4EyxbJCMVFayN+rVpQbbRIr2vHN8k4OVeDSQz63uuOOO4L8vuOACtWnTRqtWrdLhhx+uwYMHWyqTBjwAAJyMIbSmvPzyyzr11FM1fvx4zZkzR99++61OP/10HX300Vq0aJHd1QNggdMagAL1oeGh7uMcx19d69VaZzGEttZOPPFEnXjiibUqg36sAACgzsjKytLSpUu1ePFijR8/XqeddpqOPfZY/etf/6o0rBYAAACIlyeeeEInnXSScnJytHXrVknS3Llz9cILL1gqj0gWAADUKW3atNHy5cv11FNPqUePHvrXv/6l1NRUu6sFwAKn9b6DO6Rkf+HaXmG1ed3+wo7BR23zRyqrtuUDifTAAw9owoQJOuuss/Tzzz/L5/NJkpo2baq5c+daKpMhtAAARMOmVWg9sjAHXlxq4lzNmjWTx1P5Vf/6669asmSJsrKygtt++umnRFYNwG8YJuc+ydjIwjVaLnAcEnUOk/FacRsr8Wggn1vdc889mjdvnoYMGRI2H97xxx+vSZMmWSqTBjwAAJyMVWhrZPVXTACJFXqTXlNDSTLc0Mdi9VY4B+euspTsL+L+XqxpHxXPS02Ni6HPc05jiFVoTSsoKNCxxx5baXtmZqb27NljqUwa8AAAiIa/yJ79sohFjUaMGGF3FQBEwQ0302YaKQGnq6nxruL1bqXnXjT7CH0vhS4iY7Z+qAUWsTCtXbt22rBhg9q2bRu2/ZVXXlGXLl0slUkDHgAATkYDXo1KSkrUpEmTqNP/8ssvaty4cRxrBKAiN948u73xINHDMK1y47mJVqSGs6qYPc/R9qSraVu0Ku6H824SDXimXXvttbr66qu1b98+GYahdevW6V//+pemT5+uRx55xFKZNOABAICk1qxZM+3cuVMtW7aMKv3BBx+sDRs2qH379nGuGQAAANzo8ssv14EDB3Tdddfp119/1fDhw3XwwQfr7rvv1sUXX2ypTBrwAABwMI9hYRELl/3aaRiGHnnkETVq1Ciq9GVlZXGuEQCEc3tvPKfiXCSHWA7JjZSO66BmVuLRQD43OnDggBYuXKhzzjlHI0eO1A8//CC/3x/1j81VoQEPAIAo2BZ/MIS2RocccojmzZsXdfrs7Gylp6fHsUYAULXQObzcIBELISD+zC42UVF1Q2XNXB+R9lPb66u6xjyG3v6GIbSmpKWl6S9/+Ys+++wzSVKLFi1iU66ZxH4Z8ssfkx0DAJBMjJSmNu1YNODVYMuWLXZXAUCMueGew194ePDfadlf2ViT+HPa+azrxzteqjuPKTXkra7hK1K5oeXV1GgWeP5AyHvKqpQayqnpddZZNOCZ1rNnT3344YeVFrGoDXrgAQAQDZtWoWUILQAg2QUazGLRwAL7RGr4DJzTqs5tNI2l8WhQDS3TzHUXzes44KLG9wCG0Jo3evRoTZw4Udu3b1f37t3VsGHDsOePOuoo02XSgAcAgJMZnvKH2TwAkMRo8EE8Ba4rtzS+2CmejV0Vz2Osyue6iMBKPBrI51IXXXSRJGns2LHBbR6PR4ZhyOPxyOfzmS7TVAOez/DL5+IWVACAexlybwACAHbxGc4aehkvbulV4bTz6ZbjHk+Bxq79O2te2d0XRZqaZLbe/Ht5v11PVZ3HaOoUSaCeofsKFdrAF2kfVeWDuxQUFMS8TD6zAACIgm03HcyBBwAAADsxB55psZz7LsDCIhYuPgMAANcybPr+Yw682NmwYYOOOeYYu6sBwITM1pu1d2c7u6uBGOFesu6qqddZPN7HNe0z9Pnq9l+/dUHE50O31W8duTdVtPtIdsyBZ93GjRv1zTffqLS0NGz74MGDTZdFDzwAAKJgW/xBD7xaKS4u1sKFC/XII4/oo48+sjTfCADES1WNAkBdU9W1XrHRK5AumsazWOy/uv1aFSijTr2/6YFn2ubNm3Xeeefpf//7X3DuO6l8HjxJ8Z8Dz++4BcABAEgMI6WZpK027NjCr5cuDpYC3njjDc2fP1/PPfec2rZtq/PPP1+PPvqo3dUCYAF3IHVH/dYF2rMz9sPKkLyqauSqqfEr0nXUsHX0cdqenW0jpg/db1VpqhLIG6ib2fyOZrEHnptj0muuuUbt2rXTa6+9pvbt22vdunX68ccfNXHiRN15552WyjS5iIUhn+HiMwAAcC3D/5NNOxY98KK0fft2LViwQPPnz9eePXs0bNgwlZWV6dlnn1WXLl3srh4AiwI3wCU7DrG5JrHVJOcbu6tgC+4nEQuRrqPQz4iq3l9mPkesNr7VmUa7UPTAM2316tV64403dNBBByklJUUpKSk6+eSTNX36dI0dO1Yffvih6TKZAw8AgCiwCruznXXWWXrnnXc0aNAg3XPPPRo4cKBSU1P14IMP2l01ADHCfUjy+3lHrt1VMC20zk1zttlYE4Sq6fOgqvMWmi+QhvOKePD5fGrUqJEkqUWLFtqxY4c6deqktm3batOmTZbKZA48AACiYNuNIz3worJs2TKNHTtWf/nLX9ShQwe7qwMAAFB30APPtK5du+rjjz9W+/bt1bNnT82cOVMZGRl6+OGH1b59e0tlmu6B53PzGQAAuJZdDXisQhudt99+W/Pnz9fxxx+vzp07Kz8/XxdddJHd1QIQQ4FeMj/uaGNzTWonK2e73VWwjdPuJX/c0aba85Hs11pdEXoeAucrmmsp0rl12jWYLFiF1rybb75Ze/bskSTdfvvtGjRokE455RRlZWXp6aeftlQmQ2gBAIgC33/OlpeXp7y8PN19991atGiR5s+frwkTJsjv92v58uXKzc1V48aN7a4mgBjg8zh5Jdu5S7b61kXf7zi42r/NinROv99xsA7K+bZW5QIVDRgwIPjv9u3ba+PGjfrpp5/UrFmz4Eq0ZrGIBQAA0fA0k7Qz8ftlCK0pDRo00BVXXKErrrhCmzZt0qOPPqo77rhDkydP1hlnnKEXX3zR7ioCqCXuR5JP4bc5dlfBlGSrb10Ui3MQKCP74B3BbVV9fkRKixAMoY2J5s2b1yq/yR54YhF3AIAr+W1ahZYhtNZ16tRJM2fO1PTp07VkyRLNnz/f7iohBnbu6KgmTQrtrgZsFHqDvYOGlqTg1HvIHK4lx4nHedjxbU7wXDv1WozGjm9z9Msv9rwChtA6g7keeMyBBwBwKZ/dFYBlqampOvfcc9WrVy+7qwIgxkIbYLZ929rGmqA6TruHzD24co96p9XRreJ1HpL58yGZ647YMtWAV2aUPwAAcBtbA3u+e2vUoEEDbd26VQcddJAkaeDAgXrsscfUunV50Ltr1y7l5OTI56MpNtm1zvnC7irAobhPcS4nnZv2bSJPh+GkOrrV5u00VEUSem2Wfwd67akI7xHbpdhdAQAAksEBu4IWw+LDpG+//VZ/+MMflJWVpQYNGuiYY47R+vXrf6+GYWjKlCnKyclR/fr11adPH3366adhZezfv19jxoxRixYt1LBhQw0ePFjbt4evAFdUVKT8/Hx5vV55vV7l5+fr559/Nl/hCvbt2ycjZF6bd999V3v37g1LYzBvFgAAgHlW41EXxqTxZHIOPI98srZaBgAAycyuOVMSMQdeUVGRTjrpJJ122ml65ZVX1LJlS3399ddq2rRpMM3MmTM1e/ZsLViwQB07dtTtt9+uM844Q5s2bQqu7jpu3DgtWbJEixYtUlZWliZOnKhBgwZp/fr1Sk1NlSQNHz5c27dv16uvvipJGjVqlPLz87VkyRJzlbbA6opfAJJD+zY79eV2585j1qGNeyfHD/R6s/P81HT8a7rPdfP5SxQntDV8uT3Hcec6tNdoSUmJLXVI1Bx4yR6TmlksbfDgwabLN9eAZ5Q/AABwG5/dPfDM5jFhxowZys3N1WOPPRbcduihh/5enGFo7ty5uummmzR06FBJ0uOPP65WrVrpqaee0lVXXaXi4mI9+uijeuKJJ9SvXz9J0pNPPqnc3Fy99tprGjBggD777DO9+uqrWrNmjXr27ClJmjdvnvLy8rRp0yZ16tTJ5AsFgHDcqzibHeenU250jTFcO4mzaZtzG9ql3+sX7bUTTVmxKs82CVqFNtlj0iFDhkSVzuPxWJrWxVQDXqlSVMqoWwCACxkpzSQlfuXL2vTAq/grbWZmpjIzMyulf/HFFzVgwABdeOGFWrlypQ4++GCNHj1aI0eOlCQVFBSosLBQ/fv3Dyurd+/eWrVqla666iqtX79eZWVlYWlycnLUtWtXrVq1SgMGDNDq1avl9XqDgZIknXjiifJ6vVq1alWtGvA8Hk9YD7uKfwNwB+5VnK1T7g79b1sbu6sREddO4iTLsf7ftjbqlru95oTVCH2tgWu/tmXaIVE98JI9JvX74ztmx2QPPI/8BsEwAMB9Dvh/srsKpuXm5ob9feutt2rKlCmV0m3evFkPPPCAJkyYoBtvvFHr1q3T2LFjlZmZqT/+8Y8qLCxvuGzVqlVYvlatWmnr1q2SpMLCQmVkZKhZs2aV0gTyFxYWqmXLlpX237Jly2AaqwzDUMeOHYONdrt379axxx6rlJSU4PMA6j6n3qscfcg2u6vgGIk+Rx99U/5dWNU5CDwvBwzfrMt+P85SMh3rmq6fmgQa60Jf/0ff5LruMyHaH5XrQkwaTyZ74KUmTWs5AACxlIxDaLdt26YmTZoEN0cKlKTyXwuPP/54TZs2TZJ07LHH6tNPP9UDDzygP/7xj8F0FXu0GYZRYy+3imkipY+mnJqEDrUA4F6lSrW7CqiB085RTfU54ZAtialIHee0855oSd9gV8shtNH+qJzsMek///nPqNOOHTvWdPmmGvAAAHCrMrt+wKpFA16TJk3CGvCq0rp1a3Xp0iVs2xFHHKFnn31WkpSdnS2p/NfK1q1bB9Ps2rUr+Atodna2SktLVVRUFPaL565du9SrV69gmu+++67S/r///vtKv6SaNWLEiFrlBwAAQBVq2YAX7Y/KyR6TzpkzJ6p0Ho8n/g14B4wUlRn0wAMAuM8Bm4ZgJmIV2pNOOkmbNm0K2/bFF1+obdu2kqR27dopOztby5cv17HHHitJKi0t1cqVKzVjxgxJUvfu3ZWenq7ly5dr2LBhkqSdO3fqk08+0cyZMyVJeXl5Ki4u1rp169SjRw9J0tq1a1VcXBwMqOJl586dmjp1qu6999647geAvZxwr9Kr7Wa7q+BoTjhHoQI97FZtbW9vReo4p513swLXh1vf37WdAy/aH5WTPSYtKCiwnDcaphrwfEaKfEn+xgMAwAqfXXOoJWAV2vHjx6tXr16aNm2ahg0bpnXr1unhhx/Www8/LKn8V8Jx48Zp2rRp6tChgzp06KBp06apQYMGGj58uCTJ6/Xqyiuv1MSJE5WVlaXmzZtr0qRJ6tatW3AFsCOOOEIDBw7UyJEj9dBDD0mSRo0apUGDBsVkBdqNGzdqxYoVSk9P17Bhw9S0aVP98MMPmjp1qh588EG1a9eu1vsA4Gx23auccuhXtuw3GQUaQN7ecnhC9hftueE+N744vkkuQavQ1pWYNFRpaakKCgp02GGHKS2tdoNgTeUuU4rKXD52HQDgUileSTb86pqABrwTTjhBixcv1g033KDbbrtN7dq109y5c3XppZcG01x33XXau3evRo8eraKiIvXs2VPLli1T48aNg2nmzJmjtLQ0DRs2THv37lXfvn21YMECpab+HjssXLhQY8eODa4MNnjw4Jj0ivvvf/+r888/X2VlZZKkmTNnat68eRo2bJi6du2q//znPxo0aFCt9wPAud7Y0kniXiVpJOK+8vRDN9Wc6DenHPrVb9eQtfyoHu0ISS5BDXh1ISYN+PXXXzVmzBg9/vjjksp7ErZv315jx45VTk6OJk+ebLpMjxHFsmwlJSXyer169qOOatiYNx4AwH1Kd5dp8FFfqbi4OKohALUV+O7tdM00pWbWM5XXt3+fNt19Y8Lq6gR5eXnq0aOHpk6dqocffliTJk1Shw4dNG/ePJ166ql2Vw8xEHhPuOm6hjlLC7rUnCgOBrTbaMt+k108zxfnxHnsen/Gmt3XVqK/C2sTj0rujEkDrrnmGr377ruaO3euBg4cqI8//ljt27fXiy++qFtvvVUffvih6TLN9cAz0lRq0IAHAHCfMsNvy34TMQdeXfDZZ5/p8ccfV6NGjTR27Fhdd911mjt3Lo13gIuUGqzPl0wGtNuoJZuPsrsaSJC68v5csvkondP+Y7urkXC1nQPPjZ5//nk9/fTTOvHEE8NWtu3SpYu+/vprS2WabMBLVRkNeAAAFyqzK/BMwBDauqCkpERNmzaVJKWlpal+/frq2LGjvZUCkFDcpyQfzpl7cK6TXIKG0NYl33//vVq2bFlp+549e8Ia9MyoG83gAADEmV2BJz3wordx40YVFhZKkgzD0KZNm7Rnz56wNEcdRW8PAAAAM+iBZ94JJ5ygl156SWPGjJGkYKPdvHnzlJeXZ6lM00NoaTkHALiRXUNo6YEXvb59+yp0at/AohUej0eGYcjj8cjn89lVPQBxluie0hcd/l5C91cXDT2sfA6op786IWZlcl6caehhH8b0PCPB6IFn2vTp0zVw4EBt3LhRBw4c0N13361PP/1Uq1ev1sqVKy2VaXoVWubAAwC4UZndFUC1CgoK7K4CAJtxn5K8OHfuUBfOc36HNXZXAUmiV69eevfdd3XnnXfqsMMO07Jly3Tcccdp9erV6tatm6UyTffAS6sjk08CAGBGiqepPTumB15U2rZtW2OaDRs2RJUOQHJKVA+8Kzq+k5D9uEkszh3nxflsm08YtUcPPEu6deumxx9/PGblmXoH7TPS5eFNBwBwIcNfbMt+Pb89zOZBueLiYi1cuFCPPPKIPvroI4bQAnXYPiM97vsY3WlF3PfhRoHGt/s3nWYpP+clOdT2PEuRz3VtykN0rMSjgXxu9fLLLys1NVUDBgwI27506VL5/X6deeaZpss01Rp3gFVoAQAudSABN4YR0QPPkjfeeEPz58/Xc889p7Zt2+r888/Xo48+ane1AMQR9ynJj3NYt939eb/f/mXuPF/T+bVqnw806v1ePmKOHnimTZ48WXfccUel7YZhaPLkyfFvwCszUpXKhyoAwIV8rELreNu3b9eCBQs0f/587dmzR8OGDVNZWZmeffZZdenSxe7qAYiTOz8L9G6I3+f0pCOWxq1s/C7aBjzOR3Ky0kBr5lxf0/m1kM+D2ErENRdad6dd46xCa96XX34ZMf7s3LmzvvrqK0tlptS2UgAAuIFtvQIMiw+XOeuss9SlSxdt3LhR99xzj3bs2KF77rnH7moBAAAkP6vxqAtj0gCv16vNmzdX2v7VV1+pYcOGlso01QNvvz9NHr9NQ4gAALDRfr+bZ/FwvmXLlmns2LH6y1/+og4dOthdHQAJtD8O9yc3HfnfmJeJmjmt1xFiK3B+p346KGx7LN9voddQxf04XTw+y2CfwYMHa9y4cVq8eLEOO+wwSeWNdxMnTtTgwYMtlckceAAARCEjpZF9O3fxr5fRevvttzV//nwdf/zx6ty5s/Lz83XRRRfZXS0ACcD9CZBcEtVAHrqfKZ+ca6mMKV1fiFV1ahSo75RPzg3WN5H7rxHxqCmzZs3SwIED1blzZ7Vp00ZS+XQvp5xyiu68805LZZpbhdafLoNWYQCAC3l8v9izX+bAi0peXp7y8vJ09913a9GiRZo/f74mTJggv9+v5cuXKzc3V40bN7a7mgBibPLHF0ji/gRA9fYlUTtGaF3LP+N+d+Oh8xNdHUnMgWeF1+vVqlWrtHz5cn300UeqX7++jjrqKJ166qmWyzTdA49FLAAAbuSzK/BjFVpTGjRooCuuuEJXXHGFNm3apEcffVR33HGHJk+erDPOOEMvvvii3VUEEEMHuDcBEIVk+qxwZF1ZhdYSj8ej/v37q3///jEpz1QDXqkvTfKZygIAQN1gHLBlt/TAs65Tp06aOXOmpk+friVLlmj+fHt+tQYQP/tjfG9yz3ELY1oeAGe48+inw/4e88GlwX/fc9zCSn/bKdafa7FADzxncN6VAQCAA5XaFUzRA6/WUlNTNWTIEA0ZMsTuqgAAACQfeuA5gslVaFNl+GnzAwC4T6mfCAQAnGZ/Le5NHj7+8RjWBEAyqdjLzu5ed5I06v0Rv/0r8ufaw8c/rpKSksRVCI5j6huvzEiRx0iJV10AAHCsMpu+/xhCCwBVs+uzGUDdcfl7l0fc/tgJjyW0HlV9niW6HpEwhNYZTDbgpUn0wAMAuFC9lAb27JghtABQpVKL9yYLe86LcU0AJCurnyOxdOnakYrUPOOYzyqG0EbFTA/JJk2amC7f9CIWhgMnVAQAIN7KfHvs2TENeABQJdvmJwVQZ9j5OXLhqr/89q/wOvyn1wOJr0x1aMCLStOmTeXxeKJK6/P5TJdvrgHPnyrD78AljQEAiDOPTcEdQ2gBoGqlJu9NXjj53jjVBECy+k+vB3TuO38N/p2Iz4nf91f5M8yJn1MMoY3OihUrgv/esmWLJk+erMsuu0x5eXmSpNWrV+vxxx/X9OnTLZVvbgitP4UGPACAK3ns+v6jBx4AVMlsAx4ARJLIRrMz37pGkRruXjn17oTVwTR64EWld+/ewX/fdtttmj17ti655JLgtsGDB6tbt256+OGHNWLEiEhFVItZXwEAiEKZn69MAAAAADVbvXq1jj/++Erbjz/+eK1bt85SmSbnwEuV38evXAAA9/HZ9P3nMQx5DHM/X5pNDwDJpu+KCb/9K/rP5tdPmx2fygBAFKx8bjmFlXg0kM+tcnNz9eCDD+quu+4K2/7QQw8pNzfXUpkmh9AyBx4AwJ0apTa2Z8cMoQWAMKe+fq3M3AC/1XdW/CoDAFEqq6YtxfGfUwyhNW3OnDk6//zztXTpUp144omSpDVr1ujrr7/Ws88+a6lMcw14vlQZ9MADALhQcdmvtuyXRSwAINxbfWcpb9nkqNMH0q7uf0e8qgQANQo00oV+fiXL5xKLWJh31lln6YsvvtADDzygzz//XIZh6Nxzz9Wf//znxPTA8/lTJB9zAAEA3Mdj1w9Y9MADgDAnvHKjmMobdUn5NV3uvTOn2VgTJEKyNNqFoQeeJbm5uZo2LXbvadNDaP0MoQUAuFCqTYtY0AMPAMJVNwwtkg1n/yNONQFiw+w1DSQaPfCi8/HHH6tr165KSUnRxx9/XG3ao446ynT5phrwAABwK4JrAAAAAFU55phjVFhYqJYtW+qYY46Rx+OREWEhD4/HI5/PZ7p8cz3wDqTKf4AbGACA+/gP2DRciyG0ABCmLMr7kU/PnRLfigAxQi9ROB5DaKNSUFCggw46KPjvWDM3B57Pwxx4AABX8tv0/ccQWgAI9+m5U9T5udtiVl5oWZ8P/VvMygWAuoIhtNFp27atJKmsrExTpkzRLbfcovbt28esfFN3I36/hwcPHjx48HDlw5veMGZfvqYYFh+1MH36dHk8Ho0bN+73ahiGpkyZopycHNWvX199+vTRp59+GpZv//79GjNmjFq0aKGGDRtq8ODB2r59e1iaoqIi5efny+v1yuv1Kj8/Xz///HPtKgzAdaL53LZSFgAgAqvxaC1i0mSOR9PT07V48eKYlRdgqgee/0CqxBBaAIALFZX+atu+E/nr5XvvvaeHH3640sS6M2fO1OzZs7VgwQJ17NhRt99+u8444wxt2rRJjRs3liSNGzdOS5Ys0aJFi5SVlaWJEydq0KBBWr9+vVJTy+OH4cOHa/v27Xr11VclSaNGjVJ+fr6WLFmSuBcJIOl9ccEtkqTDFlW9ul/gua8vvrHKNKFlAQCqRjxqznnnnafnn39eEyZMiFmZ5hrwfB7Jxy9TAAD38dg2B55R/jCbx4Ldu3fr0ksv1bx583T77beHFGdo7ty5uummmzR06FBJ0uOPP65WrVrpqaee0lVXXaXi4mI9+uijeuKJJ9SvXz9J0pNPPqnc3Fy99tprGjBggD777DO9+uqrWrNmjXr27ClJmjdvnvLy8rRp0yZ16tTJUr0BuJc/inuTdgunS5IKLr0h3tUBgLrJSjwayGdSXYlHDz/8cP3jH//QqlWr1L17dzVsGD6aZ+zYsabLNNWAZ/g9MmjAAwC4kBu+/66++mqdffbZ6tevX1jAVFBQoMLCQvXv3z+4LTMzU71799aqVat01VVXaf369SorKwtLk5OTo65du2rVqlUaMGCAVq9eLa/XGwyWJOnEE0+U1+vVqlWraMADYFpoo9yh/3eHjTUBAMRCXYlHH3nkETVt2lTr16/X+vXrw57zeDzxb8ADAMCtDH/yLWJRUlIStj0zM1OZmZkR8yxatEgffPCB3nvvvUrPFRYWSpJatWoVtr1Vq1baunVrME1GRoaaNWtWKU0gf2FhoVq2bFmp/JYtWwbTAAAAwFlqu4hFtDFpXYpHbV+FVr4UVqEFALiTXT3wrEwA/Fv63NzcsM233nqrpkyZUin5tm3bdM0112jZsmWqV69elcV6POHHwDCMStsqVaVCmkjpoykHAGqy5Y+T7a4CANRNVhekMBGTEo/WzNwQWh9DaAEA7tQsvYG+sWG/Hn/5w2weqTwQatKkSXB7Vb3v1q9fr127dql79+7BbT6fT2+99Zbuvfdebdq0SVL5L5atW7cOptm1a1fwV9Ds7GyVlpaqqKgo7FfPXbt2qVevXsE03333XaX9f//995V+TQUAAIAzWIlHA/mk6GLSuhaPVrV4hcfjUb169XT44Yfr3HPPVfPmzaMu01QDnueAR54DNOABANznp7K99uy4Fj3wmjRpEhYsVaVv37763//+F7bt8ssvV+fOnXX99derffv2ys7O1vLly3XsscdKkkpLS7Vy5UrNmDFDktS9e3elp6dr+fLlGjZsmCRp586d+uSTTzRz5kxJUl5enoqLi7Vu3Tr16NFDkrR27VoVFxcHgyoAAAA4TC174EUTk9a1ePTDDz/UBx98IJ/Pp06dOskwDH355ZdKTU1V586ddf/992vixIl655131KVLl6jKpAEPAIAo2PX9V5s58KLVuHFjde3aNWxbw4YNlZWVFdw+btw4TZs2TR06dFCHDh00bdo0NWjQQMOHD5ckeb1eXXnllZo4caKysrLUvHlzTZo0Sd26dQuuAnbEEUdo4MCBGjlypB566CFJ0qhRozRo0CAWsAAAAHCo2s6BF426Fo8Getc99thjwcbLkpISXXnllTr55JM1cuRIDR8+XOPHj9fSpUujKtNcA55hrdskAADJzu0/YF133XXau3evRo8eraKiIvXs2VPLli1T48aNg2nmzJmjtLQ0DRs2THv37lXfvn21YMECpaamBtMsXLhQY8eODa4ONnjwYN17770Jfz0AAABILskUj86aNUvLly8P63nYpEkTTZkyRf3799c111yjv/3tb2Er5tbEYxhGjW2iJSUl8nq9ajvjdqVUM5kgAAB1lbFvn7Zcf7OKi4ujGpZaW4Hv3h6D/6G0dHPfvQfK9mndi7ckrK5AIgTeE1zXAAC3SvR3YW3iUcndMWmjRo303//+V3369Anb/uabb+qcc87RL7/8os2bN+uYY46ptEpvVRhCCwBANOrwEFoAAACgKokYQlvXnHvuubriiit011136YQTTpDH49G6des0adIkDRkyRJK0bt06dezYMeoyacADACAadn3/1WIRCwBAdA6fOSfs76+uG29TTQDAgWq5iIUbPfTQQxo/frwuvvhiHThwQJKUlpamESNGaM6c8u+czp0765FHHom6THMNeL7yBwAAbtM0s74t+6UHHgDER4fpvzfaBX6i+fKG8cHnAv8GALejB555jRo10rx58zRnzhxt3rxZhmHosMMOU6NGjYJpjjnmGFNlmuyBJ6UcMFU+AAB1QtGBvfbs2DDKH2bzAACqFem+ptM/yhv1UhJcFwBwNCvxaCCfyzVq1EhHHXVUTMoy14DnpwceAMCd+AELAJJf5ymVe91F8vkUet/BnULfI7wPAGcx1YCXckBKSa05HQAAdY3fb89+GUILALHR5eY5Vfas23g7DRWIXpeb50TcXheuo9AfLKt6nQHVvd5IeevC8XErhtA6g6kGPAAA3Mq2HngsYgEAAAA7sYiFI7CIBQAAUbDr+48eeABg3pE3VO79Y9Na4khyZq6lQNpPp9vX0yxSfc0w8z6pbl+Ryqlt3eLJznOWDOiB5wymF7HwMIQWAOBCHrt64PmN8ofZPADgYrZ9ZiOpdb02Ng2/kcqJ1iezzDckhe6PhmprAsfQyvF3BSvxaCAfYsbcHHi+8gcAAG7TtH59e3bMEFoAMO2TWeN11ATn9vZB/ISe949nR26MqeracMLqwzXVP1LdnVDvusLM50ZV11edxBBaRzA/hJZfswAALvTz/r12VwEAEMHRYyPfcEfbE+mjf7roJtyiise4NsesqvNlpdxIZXlqeL5iGier6fXBXlVdX3ymIF7Mr0JL8z4AwIVsW4VWFubAi0tNAMAZjh0dftNc29uTY0fP0Yf3u/eGu+LxjKTiMY4mT7Rl1aZcbk3hRDVdx8n4eWMlHg3kQ+ywCi0AAFGwbxVao/xhNg8AAAAQC1bi0UA+xAw98AAAiIZNDXisQgsA4Wz7QaUO6D6K+dMAu0V6H0rS+oed2zOPVWidwWQDnqGUFM4AAMCFDtj0/cciFgAc5IQrZptK/978CcF8gX/Xdp80ONWsqvPEsQNgCYtYOAI98AAAiIK3gT2r0HoMQx6Tww/MpgeQPHr+8feGmbX/Z61BrDb7NXsrEJovtO7VWft/E8LScvsRHY4ZkLwS+XluhZV4NJAPsWNyFVpDKXb1QAAAwEY/l+yzuwoAXCRv+F0Rt6dEkaY2Vj81MeL2wM1lPPZZUd7wu2iAiqCmY88xA5JPVZ+5QCTmeuCV8cUAAHCnFLvGAPh/e5jNA8BWJ11Yu4Yuu2LumupdV+8FAq/73f8492Y6pczuGgCoDSd/vtTISjwayIeYMT8HHrMQAgBcyK4pYBlCCySHU867M+zvutrQVddVPI8Bby+elOCalAutD9cUkNwC72e7Pk9qgyG0zmCqAQ8AALdK8bGIBQAAAFyIRSwcgR54AABEwSizqwHPKH+YzQPUUWefN0dvv35rXPfR+5xZpvPQO6pui3RNrFxybVzLl7iugLpi5ZJrg+/z3ufMsvz5cfZ5c2JZrehZiUcD+RAzJufA8yvFYBAzAMB9DJ89338eo/xhNg9Ql502YIYkacXS6+NSNo0miEbgOjQrcN2G5ueaA+q2it8tVj8/7GIlHg3kQ+zQgAcAQBQaN6pndxUAKDwe7Xv69NiXH/MSgXCB65ZrDYBZKQdoj3EzUw14ngN+eVhGBADgQiXF++zZMUNogTDEowAAJBhDaB2BHngAAETBk2LTEFp/+cNsHqCuIh4FALiVx6Ygz0o8GsiH2GEVWgAAopBSZlMEQg88AAAAKMni0UA+xIz5IbSGL151AQDAsTx+uwKm3x5m8wB1FPEoAMCtPDYtqmYpHg3kQ8yYa8Ar88njJ2ACALiPXd9/HsOQx+Svl2bTA8mEeBQA4FYeX/LEo4F8iB1zDXilB+RJTY1XXQAAcCyvN9PuKgAQ8SgAwL08vgN2VwE2MjcH3oEDkp+ACQDgPsVF++3ZMXPgAeGIRwEAbpVi036ZA88RzDXglZZJKXZdMQAA2CjdxjlHzO6aWAl1GfEoAMCt0pIoHg3kQ8yYa8ArO0DABABwJ8OegIk58IAKiEcBAG5l06JqzIHnDEQ/AABEo8ymOUcM/T5sIeqHuV1Mnz5dJ5xwgho3bqyWLVtqyJAh2rRpU3g1DENTpkxRTk6O6tevrz59+ujTTz8NS7N//36NGTNGLVq0UMOGDTV48GBt3749LE1RUZHy8/Pl9Xrl9XqVn5+vn3/+2cKBAQAAcJmkikeJSWPNVA88o6xMRoonXnUBAMC5jDKb9hv/OfBWrlypq6++WieccIIOHDigm266Sf3799fGjRvVsGFDSdLMmTM1e/ZsLViwQB07dtTtt9+uM844Q5s2bVLjxo0lSePGjdOSJUu0aNEiZWVlaeLEiRo0aJDWr1+v1N8WHRg+fLi2b9+uV199VZI0atQo5efna8mSJeZeI1yLeBQA4FaGP4ni0UA+E4hJq+cxjJqPaElJibxer05vcLHSPBmJqBcAAI7iU6le37NIxcXFatKkSdz3F/zuPfp6paWaWwH3gG+/3vhohuW6fv/992rZsqVWrlypU089VYZhKCcnR+PGjdP1118vqfyXzVatWmnGjBm66qqrVFxcrIMOOkhPPPGELrroIknSjh07lJubq5dfflkDBgzQZ599pi5dumjNmjXq2bOnJGnNmjXKy8vT559/rk6dOpmuK9yDeBQA4HYHjFK98WtyxKMSMWmsmeuBV3pAhodfPAEA7tO4RX1pjw079ksy+9X72/QoJSUlYZszMzOVmVlz8FVcXCxJat68uSSpoKBAhYWF6t+/f1hZvXv31qpVq3TVVVdp/fr1KisrC0uTk5Ojrl27atWqVRowYIBWr14tr9cbDJQk6cQTT5TX69WqVascGyzBWYhHAQBuZRg2DaG1Eo8G8omYNFZMNeB17tVWGWnmW10BAEh2W77YXnOiOKjNIha5ublh22+99VZNmTKl2ryGYWjChAk6+eST1bVrV0lSYWGhJKlVq1ZhaVu1aqWtW7cG02RkZKhZs2aV0gTyFxYWqmXLlpX22bJly2AaoCZ+T6m6nNLR7moAAJBwmz4qkH5M/H5ru4gFMWlsRNWAl5GRoezsbD3w1l3xrg8AAI6VnZ2tjIwED92rxRx427ZtCxuuEM0vnX/961/18ccf65133qn0nKdCryfDMCptq1yV8DSR0kdTDhCIR1cWvqiVb7xod3UAALBF0sSjgXwiJo2VqBrw6tWrp4KCApWWlsa7PgAAOFZGRobq1auX2J3WogGvSZMmpuYbGTNmjF588UW99dZbatOmTXB7dna2pPJfK1u3bh3cvmvXruAvoNnZ2SotLVVRUVHYL567du1Sr169gmm+++67Svv9/vvvK/2SClREPAoAQBLFo4F8IiaNlaiH0NarVy/xFwkAAIg7wzA0ZswYLV68WG+++abatWsX9ny7du2UnZ2t5cuX69hjj5UklZaWauXKlZoxY4YkqXv37kpPT9fy5cs1bNgwSdLOnTv1ySefaObMmZKkvLw8FRcXa926derRo4ckae3atSouLg4GVEB1iEcBAKi7iEmrZ2oOPAAAkGC16IEXrauvvlpPPfWUXnjhBTVu3Dg494fX61X9+vXl8Xg0btw4TZs2TR06dFCHDh00bdo0NWjQQMOHDw+mvfLKKzVx4kRlZWWpefPmmjRpkrp166Z+/fpJko444ggNHDhQI0eO1EMPPSRJGjVqlAYNGuTYyYIBAABcr5Y98KJFTFo9GvAAAHCyWqxCG60HHnhAktSnT5+w7Y899pguu+wySdJ1112nvXv3avTo0SoqKlLPnj21bNkyNW7cOJh+zpw5SktL07Bhw7R371717dtXCxYsUGpqajDNwoULNXbs2ODKYIMHD9a9995r8gUCAAAgYWq5Cm20iEmr5zEMK82oAAAgnkpKSuT1etWv4wSlpZpbAf6Ab79e+2K2iouLTc03AgAAAATUJh6ViEljjR54AAA4WQKG0AIAAABVStAQWlSPBjwAAJzMb0gek8GPn2AJAAAAMWIlHg3kQ8yk2F0BAAAAAAAAAFWjBx4AAE7GEFoAAADYiSG0jkADHgAAjmYlYCJYAgAAQKxYbMAjJo0pGvAAAHAyeuABAADATvTAcwQa8AAAcDK/IdO/XjJhMAAAAGLFSjwazIdYoQEPAAAnM/zlD7N5AAAAgFiwEo8G8iFmWIUWAAAAAAAAcDB64AEA4GTMgQcAAAA7MQeeI9CABwCAkzEHHgAAAOzEHHiOQAMeAABORg88AAAA2IkeeI5AAx4AAE5myEIDXlxqAgAAADeyEo8G8iFmaMADAMDJ6IEHAAAAO9EDzxFYhRYAAAAAAABwMHrgAQDgZH6/JL+FPAAAAEAMWIlHg/kQKzTgAQDgZAyhBQAAgJ0YQusINOABAOBkNOABAADATjTgOQINeAAAOJnfkOklvPwESwAAAIgRK/FoMB9ihQY8AAAczDD8Mgxz84eYTQ8AAABUxUo8GsiH2GEVWgAAAAAAAMDB6IEHAICTGYb54QfMNwIAAIBYsRKPBvIhZmjAAwDAyQwLc44QLAEAACBWrMSjwXyIFRrwAABwMr9f8picP4T5RgAAABArVuJRiZg0xmjAAwDAyeiBBwAAADvRA88RaMADAMDBDL9fhslfPFnxCwAAALFiJR6ViEljjVVoAQAAAAAAAAejBx4AAE7GEFoAAADYiSG0jkADHgAATuY3JA8NeAAAALCJlXhUIiaNMRrwAABwMsOQZHYVWoIlAAAAxIiVeDSYD7FCAx4AAA5m+A0ZJn/xNAiWAAAAECNW4lGJmDTWaMADAMDJDL/M98BjxS8AAADEiJV4NJgPscIqtAAAAAAAAICD0QMPAAAHYwgtAAAA7MQQWmegAQ8AAAc7YOw3PfzggMriVBsAAAC4jZV4VCImjTUa8AAAcKCMjAxlZ2frncKXLeXPzs5WRkZGjGsFAAAAt6htPCoRk8aSx6BPIwAAjrRv3z6VlpZaypuRkaF69erFuEYAAABwk9rEoxIxaSzRgAcAAAAAAAA4GKvQAgAAAAAAAA5GAx4AAAAAAADgYDTgAQAAAAAAAA5GAx4AAAAAAADgYDTgAQAAAAAAAA5GAx4AAAAAAADgYDTgAQAAAAAAAA72/xitq+k2cVAFAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNwAAAFICAYAAACLA+PiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXOUlEQVR4nO3de3xU1bn/8e/OJBMCJAMJJCEaEU8BQagXFIzagiIXNVJFjZU2RaXAr1hoKnhprUfqERS0isdLVRTjQSy19VI5KoJ3abhoemiLF2wVESwhWMNEMJfJzP79kc7UMSCzdyZZSfbnfV77dZo9a81eE17befLsZ61l2bZtCwAAAAAAAEBSpJgeAAAAAAAAANCVkHADAAAAAAAAkoiEGwAAAAAAAJBEJNwAAAAAAACAJCLhBgAAAAAAACQRCTcAAAAAAAAgiUi4AQAAAAAAAElEwg0AAAAAAABIolTTAwAAAAdWX1+vxsZGV339fr+6deuW5BEBAADAS1oTj0rejklJuAEA0AHV19drQP+eqqoOu+qfn5+vbdu2eTbAAQAAQOu0Nh6VvB2TknADAKADamxsVFV1WNsq+ysr09kKELWfRzRgxHY1NjZ6MrgBAABA67UmHpWISUm4AQDQgfXo2Xw4EbbbZiwAAADwHjfxqERMyqYJAAAAAAAAQBJR4QYAQAcWka2InD0edNoeAAAAOBg38Wi0n5eRcAMAoAOLKKKIiz4AAABAMriJR6P9vIyEGwAAHVjYthW2nT0ddNoeAAAAOBg38Wi0n5exhhsAAB1YtITf6eHU66+/rnPPPVcFBQWyLEtPP/30QdvOnDlTlmVpyZIlcecbGho0e/Zs9enTRz169NCkSZO0c+fOuDY1NTUqLS1VIBBQIBBQaWmp9u7dG9fm448/1rnnnqsePXqoT58+mjNnjhobGx1/JgAAALSe23jUaUza1eJREm4AAHRgEdkKOzzcJNz279+vY489VnfffffXtnv66ae1ceNGFRQUtHitrKxMTz31lFauXKl169Zp3759Ki4uVjgcjrWZMmWKNm/erNWrV2v16tXavHmzSktLY6+Hw2Gdc8452r9/v9atW6eVK1fqiSee0Ny5cx1/JgAAALSem3jUTUza1eJRppQCAACdddZZOuuss762zSeffKIf//jHeuGFF3TOOefEvRYMBvXQQw9p+fLlOvPMMyVJjz76qAoLC/Xiiy9qwoQJevfdd7V69Wpt2LBBo0aNkiQtXbpURUVF2rp1qwYPHqw1a9bonXfe0Y4dO2JB1K9+9StdeumlWrBggbKystrg0wMAAMC0rhaPUuEGAEAH1l5TSg85jkhEpaWluuqqq3TMMce0eL2yslKhUEjjx4+PnSsoKNCwYcNUUVEhSVq/fr0CgUAsuJGkk08+WYFAIK7NsGHD4p5YTpgwQQ0NDaqsrEz65wIAAMDXa68ppYccRyeLR6lwAwCgA2vNpgm1tbVx59PT05Wenu5qHIsWLVJqaqrmzJlzwNerqqrk9/vVu3fvuPN5eXmqqqqKtcnNzW3RNzc3N65NXl5e3Ou9e/eW3++PtQEAAED7ae2mCcmKSTtbPEqFGwAAHVjE5SFJhYWFscVgA4GAbr75ZldjqKys1J133qny8nJZluWor23bcX0O1N9NGwAAALQPt/FoMmPSzhiPUuEGAEAHFl101mkfSdqxY0fcGhNuq9veeOMNVVdX64gjjvj3NcJhzZ07V0uWLNFHH32k/Px8NTY2qqamJu6pYnV1tU455RRJUn5+vnbv3t3i/ffs2RN7ipifn6+NGzfGvV5TU6NQKNTiSSMAAADanpt4NNpPSk5M2hnjUSrcAADowMK2u0OSsrKy4g63CbfS0lL95S9/0ebNm2NHQUGBrrrqKr3wwguSpBEjRigtLU1r166N9du1a5e2bNkSC3CKiooUDAa1adOmWJuNGzcqGAzGtdmyZYt27doVa7NmzRqlp6drxIgRrsYPAAAA99zGo8mMSTtjPEqFGwAA0L59+/T3v/899vO2bdu0efNmZWdn64gjjlBOTk5c+7S0NOXn52vw4MGSpEAgoGnTpmnu3LnKyclRdna25s2bp+HDh8d2iRoyZIgmTpyo6dOn6/7775ckzZgxQ8XFxbH3GT9+vIYOHarS0lLdeuut+uyzzzRv3jxNnz6dHUoBAAC6sK4Wj5JwAwCgA/vy+hdO+jj11ltv6fTTT4/9fOWVV0qSpk6dqvLy8oTe44477lBqaqpKSkpUV1ensWPHqry8XD6fL9ZmxYoVmjNnTmz3qEmTJunuu++Ove7z+fTss89q1qxZOvXUU5WRkaEpU6botttuc/GpAAAA0Fpu4tFoPye6Wjxq2baLrSYAAECbqq2tVSAQ0J/eyVPPTGcrQOz7PKIThu5WMBikKgwAAACutCYelYhJqXADAKADi9jNh9M+AAAAQDK4iUej/byMhBsAAB1YWJbCcrb1udP2AAAAwMG4iUej/byMhBsAAB0YCTcAAACYRMLNHeeTcNGhVVRUaP78+dq7d2+L18aMGaMxY8a0+5jaw/vvv6958+ZpxIgR6tWrl7Kzs3Xqqafq97///QHbV1dX69JLL1WfPn3UvXt3FRUV6aWXXmrRrrGxUf/5n/+pAQMGyO/3q3///vrZz36murq6uHYfffSRLMs64LFy5cqEP0ci46qtrdWCBQs0ZswY5efnq2fPnho+fLgWLVqk+vr6hK8lSXfddZeOPvpopaena8CAAfrlL3+pUCgU12bnzp0qKyvT6NGj1atXL1mWlfCClVEffvihJk+erF69eqlnz54aN26c/vSnPx2w7cqVK3XcccepW7duKigoUFlZmfbt2+f5awEAAAAAOg8Sbl1MRUWFfvnLXx4w4Xbvvffq3nvvbf9BtYM1a9bo2Wef1QUXXKDf/e53WrFihQYOHKiLLrpIN954Y1zbhoYGjR07Vi+99JLuvPNO/eEPf1BeXp4mTpyo1157La7tJZdcoltvvVUzZszQc889px/+8Ie6/fbbdfHFFx9wHLNnz9b69evjjnHjxiX0GRId18cff6wlS5bohBNO0AMPPKBnnnlGF154oebPn6/i4mIlug/KggUL9JOf/ESTJ0/WCy+8oFmzZmnhwoW64oor4tr9/e9/14oVK+T3+3X22Wcn9N5ftmfPHn3rW9/S+++/r2XLlunxxx9XfX29xowZo61bt8a1XbFihS655BKddNJJev7553XDDTeovLxckydP9vS14G0R23J1AAAAAMngNh71fExqo0u59dZbbUn2tm3bTA+lXe3Zs8eORCItzp9zzjl29+7d7fr6+ti5e+65x5ZkV1RUxM6FQiF76NCh9siRI2Pn1q9fb0uyf/WrX8W958KFC21J9po1a2Lntm3bZkuyb731VtefIdFx7du3z963b1+L/tF/+zfeeOOQ1/r000/tbt262TNmzIg7v2DBAtuyLPvtt9+OnQuHw7H//eabb9qS7Icffjjhz3XVVVfZaWlp9kcffRQ7FwwG7T59+tglJSWxc01NTXa/fv3s8ePHx/VfsWKFLcl+7rnnPHsteFMwGLQl2a9tOcyu3F7o6Hhty2G2JDsYDJr+GAAAAOikWhOPEpPaNhVuXcj8+fN11VVXSZIGDBgQm9L46quvSmo5pTQ6DfLWW2/VokWLdOSRRyojI0NjxozR+++/r1AopGuvvVYFBQUKBAI6//zzVV1d3eK6v/3tb1VUVKQePXqoZ8+emjBhgv7v//6vPT5yTJ8+fWRZLbPnI0eO1BdffKHPPvssdu6pp57S4MGDVVRUFDuXmpqq73//+9q0aZM++eQTSdIf//hHSWpR1VVcXCxJeuKJJ5L6GRIdV48ePdSjR48W/UeOHClJ2rFjxyGvtXr1atXX1+uyyy6LO3/ZZZfJtm09/fTTsXMpKa37z8RTTz2lM844Q/3794+dy8rK0uTJk7Vq1So1NTVJkjZs2KBdu3a1GNNFF12knj176qmnnvLsteBtYaW4OgAAAIBkcBuPej0m9fan72J++MMfavbs2ZKkJ598Mjal8YQTTvjafvfcc4/++Mc/6p577tGDDz6o9957T+eee66mTZumPXv2aNmyZVq8eLFefPFF/fCHP4zru3DhQl1yySUaOnSoHn/8cS1fvlyff/65vvWtb+mdd9455JibmpoSOuwEp0l+1SuvvKK+ffsqNzc3dm7Lli365je/2aJt9Nzbb78tqXn9NklKT0+Paxf9+S9/+UuL97jlllvk9/vVvXt3nXbaaXrmmWcSHmui4zqYl19+WZJ0zDHHJHQtSRo+fHjc+X79+qlPnz6x11urrq5OH3zwwUE/V11dnT788MO4MX21bVpamo4++ugWY7IsKy6B3FWuBXyV7aJ03/Z6+T4AAACSxk08SkzKLqVdyuGHH64jjjhCknT88cfryCOPTKhfr1699PTTT8cqmT799FOVlZXp6KOP1h/+8IdYu/fee09LlixRbW2tsrKytGPHDt1www368Y9/rP/+7/+OtRs3bpwGDhyoX/7yl/rtb3970Ot+9NFHGjBgQEJjfOWVVxxv+PDggw/q1Vdf1Z133imfzxc7/89//lPZ2dkt2kfP/fOf/5QkDR06VFJzpduXx7lu3bq4dlJzEm769OkaN26c+vXrp48//lh33XWXvvOd72jp0qUtEpUHkui4DuQvf/mLFi9erPPPP/+ASaADXSs9Pf2AlXLZ2dlfey0nampqZNt2Qp8r+v8P1vajjz6KO+fz+eL+XbvKtYCvYpdSAAAAmMQupe6QcIPOPvvsuGmDQ4YMkSSdc845ce2i5z/++GMNGzZML7zwgpqamvSDH/wgNn1Okrp166bRo0frlVde+drrFhQU6M0330xojIMHD06oXdTzzz+vK664QhdeeGGs6u/LDjT99KuvnXXWWfrGN76ha665Rnl5eTrppJO0YcMG/fznP5fP54v7nfXr108PPPBA3PtcdNFFGjVqlK699lpdeumlSk1NlW3bCofDce1SU/99GyYyrq/66KOPVFxcrMLCQj344INxr33530VqThxF38fNtdxycq2Dtf3q+a9+tq5yLQAAAABA50fCDS0qb/x+/9eer6+vlyTt3r1bknTSSScd8H0PtfaX3+/Xcccdl9AYv1xddCgvvPCCJk+erHHjxmnFihUtEho5OTkHrOCKrvMW/dx+v1/PP/+8SktLNX78eEnN66ctXLhQ//Vf/6XDDjvsa8eRlpamiy++WNdee63+9re/aciQIXrkkUdarOUVnS6b6Li+bPv27Tr99NOVmpqql156qUWbtLS0uJ8ffvhhXXrppcrJyVF9fb2++OILde/evcX1RowY8bWfLVG9e/eWZVkJfa6cnBxJzRVheXl5Ldoe6PN74VpA2E5R2OGSq2F3s/ABAACAFtzEo8392mAwnQgJN7jWp08fSdLvf//7uIXjE9UWU0pfeOEFnXfeeRo9erSeeOKJWJLwy4YPH66//vWvLc5Hzw0bNix27hvf+IbWr1+vTz75RJ999pn+4z/+Q8FgUD/5yU/07W9/+5DjiSbTosnHc88996BVfU7GJTUn28aMGSPbtvXqq6/q8MMPb9H3q9eK/r6ja7f99a9/1ahRo2KvV1VV6dNPP21xLbcyMjL0jW9846CfKyMjQ0cddVSLMUWn80rN1WXvvfeeLrnkEk9eC4jIUsThkqsReTy6AQAAQNK4iUeb+3k7JiXh1sVEF/Svq6tr82tNmDBBqamp+uCDD3TBBRc47p/sKaVr1qzReeedp9NOO01PP/10i80Oos4//3zNmjVLGzdujCWbmpqa9Oijj2rUqFEqKCho0eewww6LVbT94he/UI8ePTRt2rSvHU8oFNJvf/tb9enTR9/4xjckNVc7RSueWjOujz/+WGPGjFE4HNarr7560ITniSeeeMDzEydOVLdu3VReXh6XcCsvL5dlWTrvvPO+9rM5cf7552vJkiXasWOHCgsLJUmff/65nnzySU2aNCk2pXbUqFHq16+fysvLdfHFF8f6//73v9e+ffs0efJkz14L3sYabgAAADCJNdzcIeHWxUSrae68805NnTpVaWlpGjx4sDIzM5N+rSOPPFI33nijrrvuOn344YeaOHGievfurd27d2vTpk3q0aOHfvnLXx60v9/vP2hCyKl169bpvPPOU35+vn7+859r8+bNca8PHTpUWVlZkqTLL79c99xzjy666CLdcsstys3N1b333qutW7fqxRdfjOu3ePFi5efn64gjjtDu3bv1+OOP6+mnn9by5cvjppReeeWVCoVCOvXUU5Wfn68dO3borrvu0ubNm/Xwww8nNCU20XFVV1fr9NNP165du/TQQw+purpa1dXVsdcPP/zwA1a7fVl2drZ+8Ytf6Prrr1d2drbGjx+vN998U/Pnz9cPf/jDuEosqTk5JCm28+Zbb72lnj17SpIuvPDCr73WvHnztHz5cp1zzjm68cYblZ6erltuuUX19fWaP39+rJ3P59PixYtVWlqqmTNn6pJLLtHf/vY3XX311Ro3bpwmTpwY976pqakaPXq0XnrppS51LeCr3E0p9fbTRAAAACSP+yml3o5JSbh1MWPGjNHPfvYzPfLII1q6dKkikYirHT4T9bOf/UxDhw7VnXfeqd/85jdqaGhQfn6+TjrpJP2///f/2uSaB/Liiy+qrq5OH330kc4444wWr3/5d5Cenq6XXnpJV199tWbPnq0vvvhCxx13nJ5//nmNHj06rl99fb1uvPFG7dy5UxkZGTr55JP16quv6lvf+lZcu2HDhun+++/XY489ptraWmVmZmrkyJF64YUXYuu/HUqi43rnnXdiia/vf//7Ld7nhhtuiEv4HMx1112nzMxM3XPPPbrtttuUn5+va6+9Vtddd12LthdddFHcz/fcc4/uueceSf+eNnswffv21RtvvKF58+Zp6tSpampqUlFRkV599VUdffTRcW2///3vy+fz6ZZbblF5ebmys7P1gx/8QAsWLGjxvuFwuMUGFF3hWsBXNZfwO3s66LQ9AAAAcDBu4tFoPy+z7EP9tQwAANpdbW2tAoGAnvjzIPXITHzjGEna/3lYFxz7voLBYKy6FwAAAHCiNfGoRExKhRsAAB1YRCkKs2kCAAAADHETjzb383ZMSsINAIAOjDXcAAAAYBJruLlDwg0AgA4sohTH27B7/WkiAAAAksdNPNrcz9sxKQk3AAA6sLBtKWw7W3DWaXsAAADgYNzEo9F+XuY8RQkAAAAAAADgoKhwAwCgAwu7WKQ27PHyfQAAACSPm3i0uZ+3Y9KEE2719fVqbGxsy7EAANCh+f1+devWrV2vGbFTFHG4SG3E4wvUAgAAIHncxKPN/bwdkyaUcKuvr1ev7tlqsOvaejwAAHRY+fn52rZtW7sm3ahwAwAAgElUuLmTUMKtsbFRDXadvpX6HaUqra3HBABAh9O9T7qerVqhxsbGdk24ReR8wdlI2wwFAAAAHuQmHo328zJHa7il+TOUavnbaiwAAHRYdZ+ZqfJ2sw27m23bAQAAgANxE49G+3mZo4SblZ4uK4WEGwDAeywrJLGUKQAAAIAEOEu4paXJSmFKKQDAeyylS/va/7phO0Vhh4vUOm0PAAAAHIybeDTaz8scJdwAAPCsNDMPnCKyFJHTNdycr7EBAAAAHIibeDTaz8ucJdzSUiUq3AAAnmRmlyUq3AAAAGASFW7uOEu4+dNIuAEAvMk2lHBzsQ27m23bAQAAgANxE49G+3mZs4RbaqrkYxYqAMB7AoFu0oftf92IbSnicBt2p+0BAACAg3ETj0b7eZmj7JntT5VNwg0A4EHBvV+YHkKbev3113XrrbeqsrJSu3bt0lNPPaXzzjtPkhQKhfSLX/xCzz33nD788EMFAgGdeeaZuuWWW1RQUBB7j4aGBs2bN0+/+c1vVFdXp7Fjx+ree+/V4YcfHmtTU1OjOXPm6JlnnpEkTZo0SXfddZd69eoVa/Pxxx/riiuu0Msvv6yMjAxNmTJFt912m/x+dkoHAADoqrpaPOos4Zbmk+3zOekCAEDXYJt54BRxUcIfcVG+v3//fh177LG67LLLdMEFF8S99sUXX+hPf/qTrr/+eh177LGqqalRWVmZJk2apLfeeivWrqysTKtWrdLKlSuVk5OjuXPnqri4WJWVlfL9K36YMmWKdu7cqdWrV0uSZsyYodLSUq1atUqSFA6Hdc4556hv375at26d/vnPf2rq1KmybVt33XWX488FAACA1nETj0b7OdHV4lHLtg+9KE1tba0CgYBOP/HnSk3tlvCbAwDQVUQavtBL/3eLgsGgsrKy2vx60e/ehZtOV7eezpJ99fua9PORr7geq2VZcU8UD+TNN9/UyJEjtX37dh1xxBEKBoPq27evli9frosvvliS9I9//EOFhYV67rnnNGHCBL377rsaOnSoNmzYoFGjRkmSNmzYoKKiIr333nsaPHiwnn/+eRUXF2vHjh2xp5UrV67UpZdequrq6nb53QMAAKB18ajUupi0K8Sj3l7BDgCABNmpZiq8w7JcHVJzkPTlo6GhIWnjCgaDsiwrVnpfWVmpUCik8ePHx9oUFBRo2LBhqqiokCStX79egUAgFtxI0sknn6xAIBDXZtiwYXFTAyZMmKCGhgZVVlYmbfwAAABIjNt4tK1j0o4ejzpKUUbSUhRJJUcHAPCeSIqZ77+InaKIwy3Vo+0LCwvjzt9www2aP39+q8dUX1+va6+9VlOmTIk94auqqpLf71fv3r3j2ubl5amqqirWJjc3t8X75ebmxrXJy8uLe713797y+/2xNgAAAGg/buLRaD+pbWLSzhCPOlvDLTVFNgk3AIAHZfbqYeS6YSn2dNBJH0nasWNHXMl7enp6q8cTCoX03e9+V5FIRPfee+8h29u2Lcv69/i//L9b0wYAAADtw008Gu0nJT8m7SzxKBVuAAAkoDZYZ3oIjmVlZSV1zbNQKKSSkhJt27ZNL7/8ctx75+fnq7GxUTU1NXFPFaurq3XKKafE2uzevbvF++7Zsyf2FDE/P18bN26Me72mpkahUKjFk0YAAAB0fMmMSTtTPOo84ZZGwg0A4D12uPNNKU2maHDzt7/9Ta+88opycnLiXh8xYoTS0tK0du1alZSUSJJ27dqlLVu2aPHixZKkoqIiBYNBbdq0SSNHjpQkbdy4UcFgMBYEFRUVacGCBdq1a5f69esnSVqzZo3S09M1YsSIpH8uAAAAfL3WTilNls4WjzpLuKVaiqQynQMA4D12mpnvv7CdorDDYMVpe0nat2+f/v73v8d+3rZtmzZv3qzs7GwVFBTowgsv1J/+9Cf97//+r8LhcGz9iuzsbPn9fgUCAU2bNk1z585VTk6OsrOzNW/ePA0fPlxnnnmmJGnIkCGaOHGipk+frvvvv19S8zbsxcXFGjx4sCRp/PjxGjp0qEpLS3Xrrbfqs88+07x58zR9+nR2KAUAADDATTwa7edEV4tHne/rCgCAB5l64GTLUsThmhm2izU23nrrLZ1++umxn6+88kpJ0tSpUzV//nw988wzkqTjjjsurt8rr7yiMWPGSJLuuOMOpaamqqSkRHV1dRo7dqzKy8vl8/17h9cVK1Zozpw5sd2jJk2apLvvvjv2us/n07PPPqtZs2bp1FNPVUZGhqZMmaLbbrvN8WcCAABA67mJR6P9nOhq8ahl27Z9qEa1tbUKBAIa+Z2blJrWzdEFAADoCsJN9dr49C8UDAbbpdIq+t17VcU5Su+Z5qhvw76Qbj3l2XYbKwAAALqe1sSjEjGpwzXcmg8AALwmYmhFhYhtKWI7u7jT9gAAAMDBuIlHo/28zFHCzfaxhhsAwJuyenY3PQQAAAAAnYTDTRMki1XfAAAetPfzOiPXDStFYTncNMFhewAAAOBg3MSj0X5e5niXUosKNwCAFxl64MSUUgAAAJjElFJ3qHADACARhh44RZSiiMOng07bAwAAAAfjJh6N9vMy0mcAACQgYugbM2xbCjt8Oui0PQAAAHAwbuLRaD8vo8INAIAERCKGrsuUUgAAABjElFJ3HO5SKtkk3AAAHhTIyDA9BAAAAACdhLMKN59k+dpqKAAAdFx795vZpdS2UxSxna1/YTtsDwAAAByMm3g02s/LnFW4pVLhBgDwJtvQA6ewLIXlcA03h+0BAACAg3ETj0b7eZnzKaVUuAEAPMjUA6eI7Xz9i4jdRoMBAACA57iJR6P9vIx6NQAAEmDqgVPERQm/m5J/AAAA4EDcxKPRfl7GLqUAACQgEjZ0XVmKOCzHd9oeAAAAOBg38Wi0n5c5m1KawpRSAIA38f0HAAAAIFGON02IUOEGAPCggD/DyHXDtqWwwzUznLYHAAAADsZNPBrt52VsmgAAQAJqvqgzcl3WcAMAAIBJrOHmjsMKN1t2qse3mQAAeJOpTRNkOd+l1OPrZQAAACB53MSj0X5eRsINAIBEGPr+s10sUmt7PLgBAABA8riJR6P9vIwV2QAASIDtM5Nwi9guKtw8vl4GAAAAksdNPBrt52XOKtys5p1KAQDwGr7/AAAAACSKKaUAACTA1PcfmyYAAADAJDZNcIeEGwAACejdo5s+NnBdppQCAADAJKaUuuMo4Wb5bFmG1rABAMCkz/bVG7luxMUitV7fEQoAAADJ4yYejfbzMmebJvgizQcAAB5j6oETFW4AAAAwiQo3d9ilFACARBh64ETCDQAAACaRcHPH2ZTSFKaUAgA8KoXvPwAAAACJcZRwS/HZSiHhBgDwIJsppQAAAPAgKtzccZZwSw3Llxpuq7EAANBhBXp00zYD1yXhBgAAAJNIuLnjLOGWYiuFKTUAAA+q+WK/kevacr7DE9/UAAAASBY38Wi0n5c5Srj5fLZ87FIKAPCgiKEHTlS4AQAAwCQq3NxxlHBLY0opAMCjWMMNAAAAXkTCzZ0U0wMAAKAzSOviD5xef/11nXvuuSooKJBlWXr66afjXrdtW/Pnz1dBQYEyMjI0ZswYvf3223FtGhoaNHv2bPXp00c9evTQpEmTtHPnzrg2NTU1Ki0tVSAQUCAQUGlpqfbu3RvX5uOPP9a5556rHj16qE+fPpozZ44aGxvb4mMDAACgg+hq8aizCreUsHwpXfsPDgAADiRi6PuvvSrc9u/fr2OPPVaXXXaZLrjgghavL168WLfffrvKy8s1aNAg3XTTTRo3bpy2bt2qzMxMSVJZWZlWrVqllStXKicnR3PnzlVxcbEqKyvl8/kkSVOmTNHOnTu1evVqSdKMGTNUWlqqVatWSZLC4bDOOecc9e3bV+vWrdM///lPTZ06VbZt66677nL8uQAAANA67VXh1tXiUcu27UPOkamtrVUgENCJT5YptUd6wm8OAEBXEd7foDcnL1EwGFRWVlabXy/63XvaM1c4/u5t2t+gdZPucT1Wy7L01FNP6bzzzpPU/DSxoKBAZWVluuaaayQ1Pz3My8vTokWLNHPmTAWDQfXt21fLly/XxRdfLEn6xz/+ocLCQj333HOaMGGC3n33XQ0dOlQbNmzQqFGjJEkbNmxQUVGR3nvvPQ0ePFjPP/+8iouLtWPHDhUUFEiSVq5cqUsvvVTV1dXt8rsHAABA6+JRqXUxaVeIR51VuPnCSvVR4QYA8J7e3boZua5tW7IdPh102v5Qtm3bpqqqKo0fPz52Lj09XaNHj1ZFRYVmzpypyspKhUKhuDYFBQUaNmyYKioqNGHCBK1fv16BQCAW3EjSySefrEAgoIqKCg0ePFjr16/XsGHDYsGNJE2YMEENDQ2qrKzU6aefntTPBgAAgK/nJh6N9kuWzhiPOp5SmsqUUgCABwVDDUauG5HleBv2aPva2tq48+np6UpPd/50sqqqSpKUl5cXdz4vL0/bt2+PtfH7/erdu3eLNtH+VVVVys3NbfH+ubm5cW2+ep3evXvL7/fH2sC76uvrWc8PAOBpfr9f3dr5QbCbeDTaT0pOTNoZ41FHCTc/FW4AAI8Kd8I13AoLC+PO33DDDZo/f77rsVhW/Dhs225x7qu+2uZA7d20gffU19drwJE5qtr9hemhAABgTH5eb2376B/tmnRr7RpuyYxJO1M86ijhBgCAV6V1wgdOO3bsiFtjwk11myTl5+dLan7a169fv9j56urq2NO//Px8NTY2qqamJu6pYnV1tU455ZRYm927d7d4/z179sS9z8aNG+Ner6mpUSgUavGkEd7S2Nioqt1faFtlf2VlppgeDjqY1LzNpofgCU27jzM9BMDTaj+PaMCI7WpsbGz3KrfWSEZM2hnjUYdTSiNKY0opAMCDUlIiRq7bmjXcsrKykrLJwIABA5Sfn6+1a9fq+OOPl9Sc/Hjttde0aNEiSdKIESOUlpamtWvXqqSkRJK0a9cubdmyRYsXL5YkFRUVKRgMatOmTRo5cqQkaePGjQoGg7EgqKioSAsWLNCuXbtiwdSaNWuUnp6uESNGtPqzoPPLykwh4YYWUtlQpV00fcG9B3hRa9dwS0ZM2hnjUWdTSlPCJNwAAJ6U0gmnlDqxb98+/f3vf4/9vG3bNm3evFnZ2dk64ogjVFZWpoULF2rgwIEaOHCgFi5cqO7du2vKlCmSpEAgoGnTpmnu3LnKyclRdna25s2bp+HDh+vMM8+UJA0ZMkQTJ07U9OnTdf/990tq3oa9uLhYgwcPliSNHz9eQ4cOVWlpqW699VZ99tlnmjdvnqZPn84OpZAkhe2IwrbpUaCjYdpO+wjbZh4+AWhm6h5s7ZTSRHW1eNThGm5NSvPxVAMA4D1Z/q69S+lbb70Vt+PSlVdeKUmaOnWqysvLdfXVV6uurk6zZs1STU2NRo0apTVr1igzMzPW54477lBqaqpKSkpUV1ensWPHqry8XD6fL9ZmxYoVmjNnTmz3qEmTJunuu++Ove7z+fTss89q1qxZOvXUU5WRkaEpU6botttuc/yZAAAA0HrttUtpV4tHLdu2D/mMsLa2VoFAQFNeniJ/T7+jCwAA0BV88XlEj4/9HwWDwXaptIp+957w+yvl6+FsnYvw/gb96cLb222sQHuI3hNVW49gSilayOi3zfQQPKFu1wDTQwA8rfbziPIHf9wp4lGJmNTZGm5WRGkWZcQAAO9Js8xMKbUlHfrRWMs+AAAAQDK4iUej/bzMUcItPSUsf0pTW40FAIAOK8QDJ6BDiCgi7kbADO4+wCzuwc6F9UUBAEhAuqlNE2TJksNNExy2BzqTsG0r7OYxO4BW494DzDJ1D7qJR6P9vMzxpgnpPm//wgAA3mT5DE0pbadNEwAAAIADaa9NE7oaRwm3VCusVItFagEA3hOxzCypELEtWQ6DFTfbtgOdRUS2Ip5fFQYwg3sPMMvUPegmHo328zJHCbduKSGlk28DAHhQj7QMI9e1bRebJvD3ELqwiGyF+aMfMIJ7DzDLVMLNTTwa7edljivc0qhwAwB40L7w50auy5TSQzvhhBMctbcsS88884wOO+ywNhoR2hIVboA53HuAWeYSbkwpdcPhLqVNVLgBADypwdvxQoe2efNmzZ07Vz179jxkW9u2dcstt6ihoaEdRoa2wKYJgDnce4BZ3IOdC7uUAgCQAFO7lFLhlpirrrpKubm5CbX91a9+1cajAQAA6DqocHPHUcItzQorzfL2LwwA4E0Ry0zCjU0TDm3btm3q27dvwu3feecdFRQUtOGI0JYi/zoAtD/uPcAsU/cgmya442INN2//wgAA3hQ2lHBj04RD69+/v6P2hYWFbTQStIcwmyYAxnDvAWaZugfZNMEdZ7uUWiF1szz+GwMAeJLfd+j1wdpCc4DjdEppGw0G6ABCdvMBoP1x7wFmmboH3cSj0X5e5nBKaZPSKHADAHjQ55Gg6SHga4RCIV133XV68sknlZ2drR/96Ee67LLLYq/v3r1bBQUFCofNVCoieSKyFBYBKWAC9x5gVoR7sFNxlnBTRH5DU2oAADDJ1AMnNk1IzIIFC/Q///M/mjdvnvbu3auf/vSn2rBhg+6///5YG9vrj1kBAABcYNMEd1xUuBGsAgC8J00pRq5r/+tw2sdrVqxYoQcffFDFxcWSpMsuu0xnnXWWLrvsMi1btkySZLEObZcQsZsPAO2Pew8wy9Q96CYejfbzMkcJNwAAvCrVajJyXSrcEvPJJ59o2LBhsZ//4z/+Q6+++qrOOOMMlZaWavHixQZHh2RqVIoaDSXAAa/j3gPMajR0XSrc3HFY4RZmDTcAgCf5LUMbsVPilpD8/Hx98MEHOvLII2PnCgoK9PLLL+v000/X1KlTzQ0OSRWxLUU8HsADpnDvAWYZuwcpcXPF8ZRSP1NKAQAeFDKWcHPxRNGDfxCdccYZeuyxxzR27Ni489Gk25gxY8wMDEnXKB9VNoAhjfKZHgLgaY2mNk1wWeHmxZj0y6hwAwAgAd19AdNDwNe4/vrr9d577x3wtcMOO0yvv/661qxZ086jAgAAgFc53qU0ra1GAgBAB7Y/UmPkurbdfDjt4zX9+/dX//79D/p6v379mFbaRTTZKQrZVLgBJnDvAWY1mdo0wUU8Gu3nZY4Sbj4rIh8VbgAAD0ozVMLPpgnORCIRpaTwB2FXFrZTFOaPfsAI7j3ArLCxhBubJrjhKOGWakWYUgoA8CSfZW7NDMfrX3g0uGloaNB3v/tdPfXUU6aHgjYUUopCrCMFGMG9B5gVMnVhN/FotJ+H8YgCAIAEpBraNCFawu/08Jp9+/bprLPOku3FDw8AANCG3MajXg/LHFW4+RWW3+v7ugIAPMnY95+bbdg99lX96aefasKECcrJydHvfvc708NBGwvZPoVsqmwAE7j3ALNCpmI8N/FotJ+HOUq4pVi2UiyP/8YAAJ7k9/WW9InpYeAATjvtNOXm5urpp59WWhrbO3V1ITtVjfzRDxjRaDv68xFAkoU8PkWzs3FY4RaRv61GAgBAB7Yv8pmR67JpwqF98MEHKi0tVffu3U0PBe2ACjfAHO49wCxTFW5smuCOwwq35gMAAK/xy8wabpI8X45/KI8//ri+973vqW/fvpoxY4bp4aCNhexU/ugHDAlR4QYYZbTCjXjUMWcJN9ny8VsGAHiQqQdOVLgd2vnnn69nn31WkydPVo8ePfS9733P9JAAAAC6DCrc3OERBQAACUhh04QO7fTTT9eLL76oSZMmkXDr4kJKYQ03wBDuPcCsUGeKR6P9PMxRwi3Naj4AAPAac99/1r8Op328Z8SIEXrllVdMDwNtLGSnKpVpbYARTCkFzDK2S6mreDTaz7sc/RfTJ0s+j//CAADexDP9zmHQoEGmh4A2Vm+nyeKPfsCIepudoAGT6j0+RbOzcbiGW/MBAIDXpKZkS6pq/wszpRSI08QupYAx3HuAWU02U0o7E0f5M59lcXBwcHBwePKIRD5rq+/ir2e7PBxoamrSL37xCw0YMEAZGRk66qijdOONNyoS+ffOrLZta/78+SooKFBGRobGjBmjt99+O+59GhoaNHv2bPXp00c9evTQpEmTtHPnzrg2NTU1Ki0tVSAQUCAQUGlpqfbu3etswF+jvr5et956q84++2ydeOKJOuGEE+IOAAAAOOQ2HvVwTCo5rnCzlMKUUgCAB/ksU9uUWs2H0z4OLFq0SPfdd58eeeQRHXPMMXrrrbd02WWXKRAI6Cc/+YkkafHixbr99ttVXl6uQYMG6aabbtK4ceO0detWZWZmSpLKysq0atUqrVy5Ujk5OZo7d66Ki4tVWVkpn6+5KmLKlCnauXOnVq9eLUmaMWOGSktLtWrVKmef8SAuv/xyrV27VhdeeKFGjhwpy9S/G9pMyPbJR5UNYAQVboBZIWMVbi7i0Wg/B7pSTCq5SLixhhsAwItMPXCy7ebDaR8n1q9fr+985zs655xzJElHHnmkfvOb3+itt9761/vZWrJkia677jpNnjxZkvTII48oLy9Pjz32mGbOnKlgMKiHHnpIy5cv15lnnilJevTRR1VYWKgXX3xREyZM0LvvvqvVq1drw4YNGjVqlCRp6dKlKioq0tatWzV48GBnAz+AZ599Vs8995xOPfXUVr8XOqaGSKqsCOtIASY0cO8BRjVEDt2mLbiJR6P9nOhKMankMOEGAIBXGavwbsUabrW1tXGn09PTlZ6e3qL5aaedpvvuu0/vv/++Bg0apD//+c9at26dlixZIknatm2bqqqqNH78+Lj3Gj16tCoqKjRz5kxVVlYqFArFtSkoKNCwYcNUUVGhCRMmaP369QoEArHARpJOPvlkBQIBVVRUJCW4Oeyww2JPN9E1sYYbYA73HmBWk20q46ZWreHmxZhUYkopAAAJ6YybBhUWFsb9fMMNN2j+/Pkt2l1zzTUKBoM6+uij5fP5FA6HtWDBAl1yySWSpKqq5s0i8vLy4vrl5eVp+/btsTZ+v1+9e/du0Sbav6qqSrm5uS2un5ubG2vTWr/61a90zTXX6L777lP//v2T8p7oWOojabKpsgGMqOfeA4wyVeHWWl6MSSWHCbfowtEAAHiNz5ctaech2yVdK9Zw27Fjh7KysmKnD/QkUZJ++9vf6tFHH9Vjjz2mY445Rps3b1ZZWZkKCgo0derUWLuvrodm2/Yh10j7apsDtU/kfRJ14oknqr6+XkcddZS6d++utLT4Pw4/+8zQ5hcAAACdVSvXcPNiTCo5rnBr/j8AADzH0C6llt18OO0jSVlZWXHBzcFcddVVuvbaa/Xd735XkjR8+HBt375dN998s6ZOnar8/HxJzU8D+/XrF+tXXV0de8KYn5+vxsZG1dTUxD1RrK6u1imnnBJrs3v37hbX37NnT4snlW5dcskl+uSTT7Rw4ULl5eWxaUIX1MSmCYAxTdx7gFGmppS6iUej/SRvxqQSa7gBAJAQYw+cWrGGW6K++OILpaTEfz6fzxfbgn3AgAHKz8/X2rVrdfzxx0uSGhsb9dprr2nRokWSpBEjRigtLU1r165VSUmJJGnXrl3asmWLFi9eLEkqKipSMBjUpk2bNHLkSEnSxo0bFQwGYwFQa1VUVGj9+vU69thjk/J+6Hgaw6lSmBAWMKGBew8wqjFsapdStWoNt0R1pZhUYg03AAAS1Im2YXfY/txzz9WCBQt0xBFH6JhjjtH//d//6fbbb9fll18uqbnkvqysTAsXLtTAgQM1cOBALVy4UN27d9eUKVMkSYFAQNOmTdPcuXOVk5Oj7OxszZs3T8OHD4/tEDVkyBBNnDhR06dP1/333y+peQv24uLipC1Oe/TRR6uuri4p74WOqSHikx3hj37AhAbuPcCoxoipTRNaN6U0UV0pJpWocAMAICGdcZfSRN111126/vrrNWvWLFVXV6ugoEAzZ87Uf/7nf8baXH311aqrq9OsWbNUU1OjUaNGac2aNXE7gt5xxx1KTU1VSUmJ6urqNHbsWJWXl8vn+/cUpBUrVmjOnDmxnaMmTZqku+++2+EHPLhbbrlFc+fO1YIFCzR8+PAWa7glMp0BHVvITpFls8QJYEKIew8wytg92E4Vbl0pJpUky7btQ/4KamtrFQgE9M/3Bygrk//IAgC8p/ZzWzmDPlQwGGyXpE30u7fw9v9SSkY3R30jdfXaceX17TbWjiQ6DeFgi+mGw2ETw0ISRO+JKS9Pkb+n3/Rw0ME8fNLDpofgCZe9eZnpIQCe1rivUY+d8ViniEclb8ekEhVuAAB0bO1Q4daVvPLKK6aHgDYWslMlprUBRjRy7wFGhQxtmtBeFW5dDf/FBAAgESm9D92mLZBwc6SoqEh+/4Grnz799NN2Hg3aQmM4VTYLtwNGNHLvAUaFwiTcOhMXmyYwpRQA4EGRGjPXbYdNE7qSkpISPfnkky12uNq9e7fGjh2rLVu2GBoZkqUx4pMd8R26IYCka+TeA4wKmboH22nThK6GRxQAACTA1KYJlt18OO3jVbt27dK0adP08MMPx50744wzdMwxxxgcGZIlFEkh4QYYQsINMKspYqYAyk08Gu3nZZSrAQDQkdkuD4967rnntGnTJv30pz+VJH3yyScaM2aMhg8frscff9zw6AAAADoht/Goh2NSiQo3AADQheTk5OiFF17QaaedJkl69tlndcIJJ2jFihUtppmic2oM+xQJU2UDmNDIvQcY1cQ92KmQcAMAAF3K4YcfrrVr1+q0007TuHHjtHz5clmWt9cQ6UpCrOEGGGNs/SgAkqQm7sFOhYQbAACJMLRLqSUXa7i1yUg6rt69ex8wofbFF19o1apVysnJiZ377LPP2nNoaAOhsE82T/gBI0Lce4BRpirc3MSj0X5eRsINAICOjF1KD2nJkiWmh4B2FI6kSGGmBwMmNHHvAUaFDW2awC6l7pBwAwAgEZEaM9d1s+CsxxaonTp1qukhAAAAdF1uN0DwWEz6VSTcAADoyEi4HVJtba2ysrISbv/5558rMzOzDUeEthSK+BRhDRvACNZwA8wKm7oHSbi5QsINAAB0ar1799auXbuUm5ubUPvDDjtMmzdv1lFHHdXGI0NbCDX5FGnij37AhBD3HmBUmHuwUyHhBgBAB2bZLjZN8NjTRNu29eCDD6pnz54JtQ+FQm08IrSlcNhiDTfAkDD3HmBUOGxmTTQ38Wi0n5eRcAMAIAHG4gWmlB7SEUccoaVLlybcPj8/X2lpaW04IrSlSMSSFfH2IsyAKRHuPcAoY/cgU0pdcZRwi8hWRJG2GgsAAB2WndLL0IVFwu0QPvroI9NDAAAA6LpIuLlChRsAAIkwtEspU0qBeJEmn8QaNoARrB8FmGVqDVOmlLpDwg0AgI7MtpoPp32ALioStiRDa9gAXhfh3gOMMnYPuolHo/08zFHCLWxHFPZ4hhIA4E22vB0wAB2FHbFk80c/YAT3HmCWzTqKnQoVbgAAJCBsG1rDlDXcgHjhFHYpBUzh3gPMMnUPsoabKy42TfD4bwwA4Em2oe8/1nBLns2bN+u4444zPQwAAIBOhTXc3KHCDQCABBiLF6hwa5VgMKgVK1bowQcf1J///GeFw2HTQ0Ir2WGmlAKmcO8BZhm7B6lwc8VhhVtEhibUAABglJ3SW9J2Axd28XTQ48GNJL388statmyZnnzySfXv318XXHCBHnroIdPDQhJYTZasJv7oB0zg3gPMMnYPuqxw83pM6nDTBFth2+O/MQCAJ9mRzwxdWFS4JWjnzp0qLy/XsmXLtH//fpWUlCgUCumJJ57Q0KFDTQ8PSULCDTCHew8wy2TCjQo351jDDQCABLBLd8d29tlna926dSouLtZdd92liRMnyufz6b777jM9NCSZZUsWUy4AI7j3ALO8viZaZ8MabgAAJMDYAycq3BKyZs0azZkzRz/60Y80cOBA08MBAADoOqhwc8VxhVvY678xAIAnmUq4sUtpYt544w0tW7ZMJ554oo4++miVlpbq4osvNj0stAGmlALmcO8BZpm6B9ml1B2mlAIAkAC+/zq2oqIiFRUV6c4779TKlSu1bNkyXXnllYpEIlq7dq0KCwuVmZlpephIAhJugDnce4BZ3IOdC5smAACQCKu3pF3tf12mlDrSvXt3XX755br88su1detWPfTQQ7rlllt07bXXaty4cXrmmWdMDxGtZIWbDwDtj3sPMMvYPciUUlccVrg1HwAAeE3E0C6lTCl1b/DgwVq8eLFuvvlmrVq1SsuWLTM9JCSB1SSlNJkeBeBN3HuAWbahe5Appe44q3BjDTcAgEfxUL/z8vl8+s53vqNTTjnF9FAAAADgEY4SbiG7+QAAwGuMPnDiu/eQunfvru3bt6tv376SpIkTJ+rhhx9Wv379JEnV1dUqKChQOEzqtLOzIkxrA0zh3gPMskxOOSQedSzF9AAAAOgMmkwFGbbLw6FPPvlE3//+95WTk6Pu3bvruOOOU2Vl5b+HYduaP3++CgoKlJGRoTFjxujtt9+Oe4+GhgbNnj1bffr0UY8ePTRp0iTt3Lkzrk1NTY1KS0sVCAQUCARUWlqqvXv3Oh/wV9TX18v+0jqzf/zjH1VXVxfXxmYd2i4hpYmDo+WB9mH635mDg8PQze82HvVgTPplDtdwsxQWu2IAALzH1APF9ljDraamRqeeeqpOP/10Pf/888rNzdUHH3ygXr16xdosXrxYt99+u8rLyzVo0CDddNNNGjdunLZu3Rrb/bOsrEyrVq3SypUrlZOTo7lz56q4uFiVlZXy+XySpClTpmjnzp1avXq1JGnGjBkqLS3VqlWrnA3aBcsihukK2DQBMId7DzDL1D3YXmu4dbWY1FnCzW4+AADwmrDpCjenfRxYtGiRCgsL9fDDD8fOHXnkkf9+O9vWkiVLdN1112ny5MmSpEceeUR5eXl67LHHNHPmTAWDQT300ENavny5zjzzTEnSo48+qsLCQr344ouaMGGC3n33Xa1evVobNmzQqFGjJElLly5VUVGRtm7dqsGDBzv8oPAiq0myfKZHAXiTZaq6BoAkg/dgO+1S2tViUkcJt0alqJFZqAAAD7JTekuqavfrtqbCrba2Nu58enq60tPTW7R/5plnNGHCBF100UV67bXXdNhhh2nWrFmaPn26JGnbtm2qqqrS+PHj495r9OjRqqio0MyZM1VZWalQKBTXpqCgQMOGDVNFRYUmTJig9evXKxAIxAIbSTr55JMVCARUUVHRquDGsqy4Crav/gwAAAB32qvCrSvEpF/msMLNUsQmeAUAeE9T5DPTQ3CssLAw7ucbbrhB8+fPb9Huww8/1K9//WtdeeWV+vnPf65NmzZpzpw5Sk9P1w9+8ANVVTUnGvPy8uL65eXlafv27ZKkqqoq+f1+9e7du0WbaP+qqirl5ua2uH5ubm6sjVu2bWvQoEGxJNu+fft0/PHHKyUlJfY6uoaUcPMBoP1x7wFm2Z30Hkz0IXBXiEm/zGGFm48KNwCAJ3XGKaU7duxQVlZW7PSBAhtJikQiOvHEE7Vw4UJJ0vHHH6+3335bv/71r/WDH/wg1u6rFWO2bR+yiuyrbQ7UPpH3OZQvTz1A12aFmdYGmMK9B5hlbB3FVk4pTfQhcFeISb/MUcINAACvCpl64NSKhFtWVlZcwu1g+vXrp6FDh8adGzJkiJ544glJUn5+vqTmp4H9+vWLtamuro49YczPz1djY6NqamrinihWV1frlFNOibXZvXt3i+vv2bOnxZNKp6ZOndqq/ug8UpqkFJ7/AkYY2yERgCTJ7qRruCX6ELgrxKRf5ijh1mSnKGQT4QAAvKfJ0JTE9til9NRTT9XWrVvjzr3//vvq37+/JGnAgAHKz8/X2rVrdfzxx0uSGhsb9dprr2nRokWSpBEjRigtLU1r165VSUmJJGnXrl3asmWLFi9eLEkqKipSMBjUpk2bNHLkSEnSxo0bFQwGYwFQW9m1a5cWLFigu+++u02vg7ZHwg0wh4QbYJaphFtr13BL9CFwV4tJHSXcwnaKwiTcAAAeFDa1Blg77FL605/+VKeccooWLlyokpISbdq0SQ888IAeeOABSc0l92VlZVq4cKEGDhyogQMHauHCherevbumTJkiSQoEApo2bZrmzp2rnJwcZWdna968eRo+fHhsh6ghQ4Zo4sSJmj59uu6//35JzVuwFxcXJ2Vx2nfeeUevvPKK0tLSVFJSol69eunTTz/VggULdN9992nAgAGtvgYAAIDntNMupV0lJo1ylHALKUUhsQ87AMCDUgKSPmz/67ZDwu2kk07SU089pZ/97Ge68cYbNWDAAC1ZskTf+973Ym2uvvpq1dXVadasWaqpqdGoUaO0Zs0aZWZmxtrccccdSk1NVUlJierq6jR27FiVl5fL5/t37LBixQrNmTMntnPUpEmTklJ19r//+7+64IILFAqFJEmLFy/W0qVLVVJSomHDhul3v/udiouLW30dmJfSZCslhU0wABNSmrj3AJNsU/dgOyXcukJM+mWWncC2XbW1tQoEAnriz4PUI5OEGwDAexr3hTTpm39XMBhMqCS+taLfvYN/slC+9G6O+oYb6rX1zp+321g7gqKiIo0cOVILFizQAw88oHnz5mngwIFaunSpvv3tb5seHpIgek+MuHiBfH5n9wS6vo3/c6XpIXjCqB/cbnoIgKeFG+tV+dvrOkU8KnkzJv0yZxVudqoabRJuAADvCdkRI9dtjzXcuoJ3331XjzzyiHr27Kk5c+bo6quv1pIlS0i2dUFW2KbKBjCEew8wKxLuPGsKR/t5mcOEm08hEm4AAA8K2YY29m6HKaVdQW1trXr16iVJSk1NVUZGhgYNGmR2UGgTKSGZ2jMY8LyUkOkRAN5m7B5spymlXY2hvx4AAOhcTD1wosItce+8846qqqokSbZta+vWrdq/f39cm29+85smhgYAANBpUeHmjuMppVS4AQC8yNSUUircEjd27Fh9eWna6CYJlmXJtm1ZlqVwOGxqeEiSlCZbKV6P4AFDmFIKmGXsHqTCzRXHu5SyhhsAwIuYRdOxbdu2zfQQ0E5IuAHmkHADzOIe7FwcV7ilmlrDBgAAg1KsXmYuTIVbQvr373/INps3b06oHTq2lFBEKaYqTgGPS2nk3gNMSmnqRDMuov08zFH2rN5Ok0XCDQDgQXYkaOS61r8Op33QLBgMasWKFXrwwQf15z//mSmlXQAJN8CclBD3HmCSqYSbm3g02s/LHGXPmtilFADgUU12mpkLU+Hmyssvv6xly5bpySefVP/+/XXBBRfooYceMj0sAACAzocKN1ccTin1yUfCDQDgQWF2Ke3wdu7cqfLyci1btkz79+9XSUmJQqGQnnjiCQ0dOtT08JAkVlNElqiyAUywTE1nAyDJ3D3ILqXuMD8UAIAEGKvwpsItIWeffbbWrVun4uJi3XXXXZo4caJ8Pp/uu+8+00NDkjGlFDCHKaWAWazh1rk4Srg1RFJlRQxNqQEAwKCGiNdXoejY1qxZozlz5uhHP/qRBg4caHo4aENWU0SWzVp8gAlWiHsPMMkKk/TuTFjDDQCABPhTepq7uMefDibijTfe0LJly3TiiSfq6KOPVmlpqS6++GLTw0IbsEJhWRH+6AdMIOEGmGWZ3PyJeNQxZ7uURtJkU+EGAPAgK/y5meuyhltCioqKVFRUpDvvvFMrV67UsmXLdOWVVyoSiWjt2rUqLCxUZmam6WECAAB0Oqzh5o7jCjc2TQAAeFHY1AMn1nBzpHv37rr88st1+eWXa+vWrXrooYd0yy236Nprr9W4ceP0zDPPmB4iWslqbJLlIx4FTLAam0wPAfA0K2zoHmQNN1ccJdwaw6lSmH0WAAAeZJsJcKhwc2/w4MFavHixbr75Zq1atUrLli0zPSQkQ1OTFCHhBhgRIuEGGBXpPPFotJ+XkT0DACABjaYeOFHh1mo+n0/nnXeezjvvPNNDQTI0hqSUFNOjALypMWR6BIC3RQzdg1S4ueJwl1Kf7Ag5OgCA9zRGPB4xAB1FqImEG2BKiIQbYJShCje44yh7FrJTZNkEOAAA7wkZ+v5jSikAAABMYkqpOw4TbqkSFW4AAA/qltLdzIWZUgrEsUMh2SmW6WEAnmRT4QYYZTOltFNxvGmCzaYJAAAPCoX3m7kwCTcgjt3QINvrj8wBQ+z6BtNDADzNthsNXVgk3FxwlnCL+GSzKxQAwIMsQw+cmFIKxLMbm2RbVLgBJthsmgAYZdvsUtqZOJtSGkkh4QYA8CTL1PcfFW5AHLspJJt8G2CE3UTCDTDJtplS2pkwPxQAgASEImwaBHQEx581TOlp3UwPAx1MbW2t6SF4wonnHmt6CICnvb3pHanK9CiQKIdruPkUCVPhBgDwnrCh7z/LtmXZzh4POm0PdAZ+v1/5+fm64/kFpoeCDuiWwPWmhwAA7SI/P19+v79dr+kmHo328zKHU0pZww0A4E09fZlmLsyUUkCS1K1bN23btk2NjYYWjAYAoAPw+/3q1q2dK72ZUuqKs4Rb2CebCjcAgAcFQ18YuS6bJgD/1q1bt/b/IwMAAI9j0wR3HCXcwpEUKcwaNgAA77FMPXCiwg0AAAAmUeHmiuMppRGmlAIAPMhnaNMEKtwAAABgEhVu7lCuBgBAAkI8cAIAAACQIGcVbk0+RZr4gwMA4D2RJkPPqJhSCgAAAJOYUuqKszXcwhZruAEAPCli6PuPKaUAAAAwiSml7jj66yESsTg4ODg4ODx5BNJ6tNV38dezXR6tcPPNN8uyLJWVlf17GLat+fPnq6CgQBkZGRozZozefvvtuH4NDQ2aPXu2+vTpox49emjSpEnauXNnXJuamhqVlpYqEAgoEAiotLRUe/fubd2AAQAA0HbcxqOtiEm7QjzqqMIt0uSTmFIKAPCgmsYvjF27PZ8Ovvnmm3rggQf0zW9+M+784sWLdfvtt6u8vFyDBg3STTfdpHHjxmnr1q3KzMyUJJWVlWnVqlVauXKlcnJyNHfuXBUXF6uyslI+X3P8MGXKFO3cuVOrV6+WJM2YMUOlpaVatWpV+31IAAAAOEI86pyzhFvYksJWUgcAAEBnYBlbw81uPpz2cWHfvn363ve+p6VLl+qmm2760tvZWrJkia677jpNnjxZkvTII48oLy9Pjz32mGbOnKlgMKiHHnpIy5cv15lnnilJevTRR1VYWKgXX3xREyZM0LvvvqvVq1drw4YNGjVqlCRp6dKlKioq0tatWzV48GBX4wYAAEAbchOPRvs51JXiUUcJNztiySbhBgDwIC98/11xxRU655xzdOaZZ8YFONu2bVNVVZXGjx8fO5eenq7Ro0eroqJCM2fOVGVlpUKhUFybgoICDRs2TBUVFZowYYLWr1+vQCAQC24k6eSTT1YgEFBFRQUJNwAAAI/rSvGoo4QbAABeZUc636YJtbW1cefT09OVnp5+wD4rV67Un/70J7355pstXquqqpIk5eXlxZ3Py8vT9u3bY238fr969+7dok20f1VVlXJzc1u8f25ubqwNAAAAOpbWbpqQaEza1eJRZwm3cAq7lAIAvMlUhZubBWf/1b6wsDDu9A033KD58+e3aL5jxw795Cc/0Zo1a9StW7eDvq1lxf8ObNtuca7FUL7S5kDtE3kfAAAAGOJ2AwQHMWlXjEedTSkNM6UUAOBNvdO662MD17UizYfTPlJz4JKVlRU7f7DqtsrKSlVXV2vEiBGxc+FwWK+//rruvvtubd26VVLzE8F+/frF2lRXV8eeMubn56uxsVE1NTVxTxWrq6t1yimnxNrs3r27xfX37NnT4mklAAAAOgY38Wi0n5RYTNoV41FHCTeryZLVRMINAOA9n4XqzFy4FRVuWVlZccHNwYwdO1Z//etf485ddtllOvroo3XNNdfoqKOOUn5+vtauXavjjz9ektTY2KjXXntNixYtkiSNGDFCaWlpWrt2rUpKSiRJu3bt0pYtW7R48WJJUlFRkYLBoDZt2qSRI0dKkjZu3KhgMBgLggAAANDBtLLCLZGYtCvGoyTcAABIgKnvv9as4ZaozMxMDRs2LO5cjx49lJOTEztfVlamhQsXauDAgRo4cKAWLlyo7t27a8qUKZKkQCCgadOmae7cucrJyVF2drbmzZun4cOHx3aJGjJkiCZOnKjp06fr/vvvl9S8DXtxcTEbJgAAAHRQrV3DLRFdMR51lnCz3ZURAgDQ2Xn9gdPVV1+turo6zZo1SzU1NRo1apTWrFmjzMzMWJs77rhDqampKikpUV1dncaOHavy8nL5fL5YmxUrVmjOnDmx3aMmTZqku+++u90/DwAAADqXzhaPWrZtHzLnWFtbq0AgoP6LblLK1yxeBwBAV2XX1+uja36hYDCY0DTN1op+946c9F9KTXP23dsUqtemZ65vt7ECAACg62lNPCoRkzKlFACARHThKaUAAADAwbTHlNKuiIQbAACJMPX914pNEwAAAIBWa+WmCV7lLOEWbj4AAPCaXukZRq5LhRsAAABMosLNHYcVblJKU1sNBQCAjqumqc7MhW27+XDaBwAAAEgGN/FotJ+HOUu4RahwAwB4Ew+cAAAAACTKUcItpUlK8R26HQAAXU0kYua6TCkFAACASUwpdcdRwg0AAK8yVuHGpgkAAAAwiU0TXGHTBAAAEmDq+48KNwAAAJhEhZs7jjdNsJhSCgDwIMtUhVvEbj6c9gEAAACSwU08Gu3nYc7WcAs3HwAAeE2vjAwzF2ZKKQAAAExiSqkrzqeUsksbAMCD9jbUmR4CAAAAgE7C+S6lKW01FAAAOi5ju5TKxRpubTISAAAAeJGbeDTaz8vYpRQAgASY26XUbj6c9gEAAACSwU08Gu3nYVS4AQCQCEMJN3YpBQAAgEnsUuqOw4SbrZQUj//GAADe1GTo+49NEwAAAGASmya4QoUbAAAJCHQ3s0upZduyHJbjO20PAAAAHIybeDTaz8sc7lJqK8XUE34AAAzaW1tveggAAAAAOglnFW4hiQI3AIAXpZiqiY/863DaBwAAAEgGN/FotJ+HOV/Dzeur3gEAPMnUEqZMKQUAAIBJTCl1x1HCDQAAr0oJs2kCAAAAPIhNE1yhwg0AgATYIVMJN7v5cNoHAAAASAY38Wi0n4c5XMMtohTb45NwAQCeZIfNfP9ZdvPhtA8AAACQDG7i0Wg/LyPhBgBAAjJ7djM9BAAAAACdhKOEm9UUkeX1bSYAAJ5UG6w3c2GmlAIAAMAkppS6QoUbAAAJsFIMTSmNNB9O+wAAAADJ4CYejfbzMnYpBQAgASkhQxEDFW4AAAAwiQo3V5xPKbXDbTUWAAA6LCtiKuEm51uqezu2AQAAQDK5iUej/TzMWcItFJYVIeEGAPAeU99/lm3Lcvh00Gl7AAAA4GDcxKPRfl7mLOHW2CTL52ursQAA0GEFAummhwAAAACgk3C2hltTkxQh4QYA8J5gTYOZC7OGGwAAAExiDTdXnCXcGkNSSkobDQUAgA4szeAabk4v7e3YBgAAAMnkJh6N9vMwZwm3UBMJNwCAN9lmEm6s4QYAAACTWMPNHbJnAAAkItRk5rq2/l3Gn/Dh7BI333yzTjrpJGVmZio3N1fnnXeetm7dGj8M29b8+fNVUFCgjIwMjRkzRm+//XZcm4aGBs2ePVt9+vRRjx49NGnSJO3cuTOuTU1NjUpLSxUIBBQIBFRaWqq9e/e6+MUAAACgXbiKR4lJHVW42aGQ7BQrqQMAAKBTsEOGrtv2a7i99tpruuKKK3TSSSepqalJ1113ncaPH6933nlHPXr0kCQtXrxYt99+u8rLyzVo0CDddNNNGjdunLZu3arMzExJUllZmVatWqWVK1cqJydHc+fOVXFxsSorK+X716ZLU6ZM0c6dO7V69WpJ0owZM1RaWqpVq1Y5+4wAAABoH+20hltXi0kt2z70b6C2tlaBQEBndP+uUi1/0i4OAEBnEVajXtq/UsFgUFlZWW1+vdh377HXKNXnbIfUpnCDXv7zItdj3bNnj3Jzc/Xaa6/p29/+tmzbVkFBgcrKynTNNddIan5ymJeXp0WLFmnmzJkKBoPq27evli9frosvvliS9I9//EOFhYV67rnnNGHCBL377rsaOnSoNmzYoFGjRkmSNmzYoKKiIr333nsaPHiw47ECAACgbbQmHpWISZ1VuDU2ybaocAMAeE9mnwxpv4ELRyQ5/er913JztbW1cafT09OVnn7oYCkYDEqSsrOzJUnbtm1TVVWVxo8fH/deo0ePVkVFhWbOnKnKykqFQqG4NgUFBRo2bJgqKio0YcIErV+/XoFAIBbYSNLJJ5+sQCCgiooKEm4AAAAdkZt4NNpP3o1JHSXcjj6lv/ypzrOaAAB0dh+9v/PQjdpAazZNKCwsjDt/ww03aP78+V/b17ZtXXnllTrttNM0bNgwSVJVVZUkKS8vL65tXl6etm/fHmvj9/vVu3fvFm2i/auqqpSbm9vimrm5ubE2AAAA6Fhau2mCV2PShBJufr9f+fn5+vXrv0rahQEA6Gzy8/Pl97fz0gqtWMNtx44dceX7iTxJ/PGPf6y//OUvWrduXYvXrK9Uudu23eJcy6HEtzlQ+0TeBwAAAIa0cg03r8akCSXcunXrpm3btqmxsTFpFwYAoLPx+/3q1q1b+160FQm3rKwsR+tlzJ49W88884xef/11HX744bHz+fn5kpqfBvbr1y92vrq6OvaEMT8/X42NjaqpqYl7olhdXa1TTjkl1mb37t0trrtnz54WTyoBAADQQbQy4ebVmDThKaXdunVr/z8yAABAm7NtW7Nnz9ZTTz2lV199VQMGDIh7fcCAAcrPz9fatWt1/PHHS5IaGxv12muvadGiRZKkESNGKC0tTWvXrlVJSYkkadeuXdqyZYsWL14sSSoqKlIwGNSmTZs0cuRISdLGjRsVDAZjARAAAAC8qavFpI7WcAMAAO2sFRVuibriiiv02GOP6Q9/+IMyMzNja1cEAgFlZGTIsiyVlZVp4cKFGjhwoAYOHKiFCxeqe/fumjJlSqzttGnTNHfuXOXk5Cg7O1vz5s3T8OHDdeaZZ0qShgwZookTJ2r69Om6//77JTVvwV5cXMyGCQAAAB1VKyvcEtXVYlISbgAAdGSt2KU0Ub/+9a8lSWPGjIk7//DDD+vSSy+VJF199dWqq6vTrFmzVFNTo1GjRmnNmjXKzMyMtb/jjjuUmpqqkpIS1dXVaezYsSovL5fP54u1WbFihebMmRPbOWrSpEm6++67HX5AAAAAtJtW7lKaqK4Wk1q27SZNCQAA2lJtba0CgYDOHHSlUn3OdghvCjfoxfdvVzAYdLReBgAAABDVmnhUIialwg0AgI6sHaaUAgAAAAfVTlNKuxoSbgAAdGQRW7IcBisRbwc3AAAASCI38Wi0n4elmB4AAAAAAAAA0JVQ4QYAQEfGlFIAAACYxJRSV0i4AQDQobkJcLwd3AAAACCZXCbcPB6TknADAKAjo8INAAAAJlHh5goJNwAAOrKILcdPBz2+QC0AAACSyE08GuvnXSTcAADoyOxI8+G0DwAAAJAMbuLRaD8PY5dSAAAAAAAAIImocAMAoCNjDTcAAACYxBpurpBwAwCgI2MNNwAAAJjEGm6ukHADAKAjo8INAAAAJlHh5goJNwAAOjJbLhJubTISAAAAeJGbeDTaz8NIuAEA0JFR4QYAAACTqHBzhV1KAQAAAAAAgCSiwg0AgI4sEpEUcdEHAAAASAI38Wisn3eRcAMAoCNjSikAAABMYkqpKyTcAADoyEi4AQAAwCQSbq6QcAMAoCOL2HK8xVPE28ENAAAAkshNPBrr510k3AAA6MBsOyLbdrb+hdP2AAAAwMG4iUej/byMXUoBAAAAAACAJKLCDQCAjsy2nZfje3y9DAAAACSRm3g02s/DSLgBANCR2S7WzPB4cAMAAIAkchOPxvp5Fwk3AAA6skhEshyuf+Hx9TIAAACQRG7iUcnzMSkJNwAAOjIq3AAAAGASFW6ukHADAKADsyMR2Q6fKHp9RygAAAAkj5t4VCImZZdSAAAAAAAAIImocAMAoCNjSikAAABMYkqpKyTcAADoyCK2ZJFwAwAAgCFu4lHJ8zEpCTcAADoy25bkdJdSbwc3AAAASCI38Wisn3eRcAMAoAOzI7Zsh08UbY8HNwAAAEgeN/GoRExKwg0AgI7Mjsh5hZu3d4QCAABAErmJR2P9vItdSgEAAAAAAIAkosINAIAOjCmlAAAAMIkppe6QcAMAoANrshscl+M3KdRGowEAAIDXuIlHJWJSEm4AAHRAfr9f+fn5Wlf1nKv++fn58vv9SR4VAAAAvKK18ajk7ZjUsr1e4wcAQAdVX1+vxsZGV339fr+6deuW5BEBAADAS1oTj0rejklJuAEAAAAAAABJxC6lAAAAAAAAQBKRcAMAAAAAAACSiIQbAAAAAAAAkEQk3AAAAAAAAIAkIuEGAAAAAAAAJBEJNwAAAAAAACCJSLgBAAAAAAAASfT/AaTYlaXWmwo4AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -224,13 +243,28 @@ } ], "source": [ + "# calculate are directly from weight file.\n", + "ds_weight = xr.open_dataset(con_weight_file)\n", + "\n", + "SHR_CONST_REARTH = 6.37122e3 # radius of earth ~ km\n", + "area_raw = ds_weight.area_b * (SHR_CONST_REARTH**2)\n", + "area_shape = xr.DataArray(area_raw.data.reshape(192,288), dims=(\"lat\", \"lon\"))\n", "fig, axs = plt.subplots(nrows=1,ncols=2,\n", " subplot_kw=dict(projection=ccrs.PlateCarree()),\n", " figsize=(16,4))\n", "axs=axs.flatten()\n", "(fv_cam_area).plot(ax=axs[0]) ;\n", - "fv_t232.area.plot(ax=axs[1]) ;\n", - "\n", + "# fv_t232.area.plot(ax=axs[1]) ;\n", + "area_shape.plot(ax=axs[1], x='lon',y='lat');" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "3eb7bc4d-8c25-4273-a739-1c2ff0f9778a", + "metadata": {}, + "outputs": [], + "source": [ "# add wall to wall area to clm history file\n", "fv_cam_area['lat'] = fv_t232.lat\n", "fv_cam_area['lon'] = fv_t232.lon\n", @@ -239,7 +273,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "id": "2527cd61-ebea-4762-a7b3-4cd5e8782285", "metadata": {}, "outputs": [ @@ -267,11 +301,13 @@ "axs=axs.flatten()\n", "ds_out_con.GPP.isel(time=0).plot(ax=axs[0],vmin=0,vmax=1e-4)\n", "axs[0].set_title('Cons. raw')\n", - "ds_out_con.GPP.isel(time=0).where(ds_out_con.landfrac>0).plot(ax=axs[1],vmin=0,vmax=1e-4)\n", + "\n", + "ds_out_con.GPP.isel(time=0).where(ds_out_con.landfrac > 0).plot(ax=axs[1],vmin=0,vmax=1e-4)\n", "axs[1].set_title('Cons. regridded mask')\n", "\n", "ds_out_bilin.GPP.isel(time=0).plot(ax=axs[2],vmin=0,vmax=1e-4)\n", "axs[2].set_title('Bilin. raw')\n", + "\n", "ds_out_bilin.GPP.isel(time=0).where(fv_t232.landfrac>0).plot(ax=axs[3],vmin=0,vmax=1e-4)\n", "axs[3].set_title('Bilin. dest mask') ;\n", "\n", @@ -284,7 +320,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "id": "9231d764-7083-4af8-a10f-6edbf81a7271", "metadata": {}, "outputs": [ @@ -333,7 +369,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "id": "f4c5ceb6-e10d-410b-b4e6-193afe90e56f", "metadata": {}, "outputs": [ @@ -354,7 +390,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "id": "7edf1061-927a-45b2-b454-88cbb18ddc3d", "metadata": {}, "outputs": [], @@ -376,7 +412,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "id": "358e9579-c679-4907-9f7e-c1f59b4707cc", "metadata": {}, "outputs": [ @@ -384,7 +420,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "source, ne30 land area = 149.188288 1e6 km2\n", + "source, ne30 land area = 1790.2597119999998 1e6 km2\n", "destination, f09_t232 land area = 149.189408\n", "conservative regridded land area = 149.18937599999998 1e6 km2\n", "bilinear regridded land area = 151.03866439950346 1e6 km2\n", @@ -424,7 +460,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "id": "a3a301cf-fb84-4fad-821a-fa991b79aebb", "metadata": {}, "outputs": [ @@ -807,7 +843,7 @@ " landmask (lat, lon) float64 442kB 1.0 1.0 1.0 1.0 1.0 ... nan nan nan nan\n", " test (time, lat, lon) float32 3MB 1.0 1.0 1.0 1.0 ... nan nan nan nan\n", "Attributes:\n", - " regrid_method: coservative
  • regrid_method :
    coservative
  • " ], "text/plain": [ " Size: 6MB\n", @@ -976,7 +1012,7 @@ " regrid_method: coservative" ] }, - "execution_count": 11, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -987,7 +1023,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "id": "54dcc949-7255-45f7-84a0-33cd2eddffdd", "metadata": {}, "outputs": [ @@ -1004,7 +1040,7 @@ "array(1.00000006)" ] }, - "execution_count": 12, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, @@ -1037,7 +1073,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "id": "c194849b-a9aa-4125-a579-a814dfc36d23", "metadata": {}, "outputs": [ @@ -1058,7 +1094,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "id": "b7a88577-4501-4c0b-8549-b9e1bd1aece9", "metadata": {}, "outputs": [ @@ -1092,7 +1128,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "id": "0898c0c8-56bb-4880-a515-bfd091a82007", "metadata": {}, "outputs": [ @@ -1102,7 +1138,7 @@ "Text(0.5, 1.0, 'bilinear remapping, dest mask')" ] }, - "execution_count": 15, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, @@ -1146,7 +1182,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, "id": "b251911d-2f91-4207-b3ac-aab7c519cd74", "metadata": {}, "outputs": [ @@ -1196,19 +1232,21 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 18, "id": "eaa75249-1414-44d5-b061-c98ad3f566d4", "metadata": {}, "outputs": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABiUAAAMrCAYAAAAmyZGtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5wdVfn/3zNze9vesn2z6T2EFjoJ0qWIDQsoKirIVxC/AirFhhRR8Ks/rIAgWBEpIi30QEggvbdNsptsr7ffmTm/P2bv3b1775YE0sh58wp379wzM2fOzD33nOdznudRhBACiUQikUgkEolEIpFIJBKJRCKRSCSS/Yx6sCsgkUgkEolEIpFIJBKJRCKRSCQSieTIQIoSEolEIpFIJBKJRCKRSCQSiUQikUgOCFKUkEgkEolEIpFIJBKJRCKRSCQSiURyQJCihEQikUgkEolEIpFIJBKJRCKRSCSSA4IUJSQSiUQikUgkEolEIpFIJBKJRCKRHBCkKCGRSCQSiUQikUgkEolEIpFIJBKJ5IAgRQmJRCKRSCQSiUQikUgkEolEIpFIJAcEKUpIJBKJRCKRSCQSiUQikUgkEolEIjkgSFFCIpFIJBKJRCKRSCQSiUQikUgkEskBQYoSEonksEFRFG699daDXY0PHZdffjk1NTX77fiLFy/m1ltvpbu7O+OzU089lVNPPXW/nVsikUgkEolE8uFkrHODBx98EEVRaGho2O91StLQ0ICiKDz44IMHtR4SiUQikRyq2A52BSQSiWSsvPXWW1RUVBzsakj2ksWLF3Pbbbdx+eWXk5ubm/bZr3/964NTKYlEIpFIJBLJYY2cG0gkEolEcvgiRQmJ5EOKEIJoNIrb7T7YVXlfDL6O44477mBXJ41IJHJQ2zeRSKAoCjbb4duVT5069WBXQSKRSCQSiURymHAozw0OBT4M8wOJRCKRHBnI8E0SySHOv//9b2bOnInT6aSuro57772XW2+9FUVR0sopisLVV1/N/fffz5QpU3A6nTz00EMAvPHGGyxYsAC/34/H42H+/Pk888wzafuHw2Guv/56amtrcblc5OfnM2/ePB577LFUmW3btvGpT32KcePG4XQ6KSkpYcGCBaxYsWLEa7j88svx+XysXbuWBQsW4PV6KSoq4uqrryYcDo/5Ooa6aCddoBctWsSXv/xlCgoKCAQCfP7znycUCtHc3MwnPvEJcnNzKSsr4/rrryeRSKSd77bbbuPYY48lPz+fQCDA3Llz+cMf/oAQIq1cTU0N5513Ho8//jhz5szB5XJx2223sWDBAiZPnpxRXghBfX0955577ohtkzzuv/71L2bOnInL5aKuro777rsvrdwrr7yCoig8/PDDfOtb36K8vByn08mWLVsA+OMf/8isWbNS9+6iiy5i/fr1Ged78MEHmTRpEk6nkylTpvCnP/0po0zyXK+88kra9mxu6ABLlizh/PPPp6CgAJfLxfjx4/nmN78JwK233sq3v/1tAGpra1EUJe3Y2cI3dXZ28vWvf53y8nIcDgd1dXV897vfJRaLpZVLPisPP/wwU6ZMwePxMGvWLJ5++umRmlwikUgkEolEcpD5IOY42cI3vf3225xwwgm4XC7GjRvHjTfemDH+H4mRxrVJNm/ezKWXXkpxcXFqTP2rX/1qn9ohG1u2bOELX/gCEyZMwOPxUF5ezvnnn8/q1avTyo02P3jxxRdZsGABgUAAj8fDCSecwEsvvbRP5zJNkx/96EdMmjQJt9tNbm4uM2fO5N577/3ArlsikUgkRxZSPpdIDmH++9//cvHFF3PyySfz17/+FV3Xufvuu2lpacla/oknnuD111/n5ptvprS0lOLiYl599VXOOOMMZs6cyR/+8AecTie//vWvOf/883nsscf45Cc/CcB1113Hww8/zI9+9CPmzJlDKBRizZo1dHR0pI5/zjnnYBgGd955J1VVVbS3t7N48eKsuQKGkkgkOOecc7jyyiu54YYbWLx4MT/60Y/YsWMHTz311KjXMRJf+tKXuPjii/nLX/7C8uXLuemmm9B1nY0bN3LxxRfzla98hRdffJE77riDcePGcd1116X2bWho4Morr6SqqgqwJjLf+MY3aGpq4uabb047z3vvvcf69ev53ve+R21tLV6vl/nz53PBBRfw0ksvsXDhwlTZZ599lq1bt2aIC9lYsWIF3/zmN7n11lspLS3lz3/+M//zP/9DPB7n+uuvTyt74403cvzxx3P//fejqirFxcXcfvvt3HTTTXz605/m9ttvp6Ojg1tvvZXjjz+epUuXMmHCBMASJL7whS9wwQUX8LOf/Yyenh5uvfVWYrEYqrpvGvVzzz3H+eefz5QpU7jnnnuoqqqioaGB559/PnVvOjs7+eUvf8njjz9OWVkZMLyHRDQa5bTTTmPr1q3cdtttzJw5k9dff53bb7+dFStWZIhpzzzzDEuXLuUHP/gBPp+PO++8k4suuoiNGzdSV1e3T9ckkUgkEolEItl/fBBznGysW7eOBQsWUFNTw4MPPojH4+HXv/41jz766JjqNdq4NnmO+fPnU1VVxc9+9jNKS0t57rnnuOaaa2hvb+eWW27Z+wYZwu7duykoKOCnP/0pRUVFdHZ28tBDD3HssceyfPlyJk2alFY+2/zgkUce4fOf/zwXXHABDz30EHa7nd/85jeceeaZPPfccyxYsGCvznXnnXdy66238r3vfY+TTz6ZRCLBhg0bxjQPlEgkEokkK0IikRyyHH300aKyslLEYrHUtr6+PlFQUCCGfn0BkZOTIzo7O9O2H3fccaK4uFj09fWltum6LqZPny4qKiqEaZpCCCGmT58uLrzwwmHr0t7eLgDxi1/8Yq+v47LLLhOAuPfee9O2//jHPxaAeOONN0a9juRnt9xyS+r9Aw88IADxjW98I63chRdeKABxzz33pG2fPXu2mDt37rD1NAxDJBIJ8YMf/EAUFBSk2kYIIaqrq4WmaWLjxo0Z+9TV1YkLLrggbfvZZ58txo8fn3aMbFRXVwtFUcSKFSvStp9xxhkiEAiIUCgkhBDi5ZdfFoA4+eST08p1dXUJt9stzjnnnLTtO3fuFE6nU1x66aWpeo4bN07MnTs3rU4NDQ3CbreL6urq1LbkuV5++eW0Y27fvl0A4oEHHkhtGz9+vBg/fryIRCLDXuNdd90lALF9+/aMz0455RRxyimnpN7ff//9AhB/+9vf0srdcccdAhDPP/98ahsgSkpKRG9vb2pbc3OzUFVV3H777cPWRyKRSCQSiURy8Pgg5jjJzwbPDT75yU8Kt9stmpubU9t0XReTJ08ediw6mLGMa88880xRUVEhenp60rZfffXVwuVypeqZbdycnLuMVo+h6Lou4vG4mDBhgrj22mtT24ebH4RCIZGfny/OP//8tO2GYYhZs2aJY445Zq/Pdd5554nZs2fvVb0lEolEIhkJGb5JIjlECYVCLFu2jAsvvBCHw5Ha7vP5OP/887Puc/rpp5OXl5d2jCVLlnDJJZfg8/lS2zVN43Of+xyNjY1s3LgRgGOOOYZnn32WG264gVdeeYVIJJJ27Pz8fMaPH89dd93FPffcw/LlyzFNc6+u6TOf+Uza+0svvRSAl19+ecTrGI3zzjsv7f2UKVMAMkInTZkyhR07dqRtW7RoEQsXLiQnJwdN07Db7dx88810dHTQ2tqaVnbmzJlMnDgxbZuqqlx99dU8/fTT7Ny5E4CtW7fy3//+l69//esZLujZmDZtGrNmzUrbdumll9Lb28t7772Xtv1jH/tY2vu33nqLSCTC5Zdfnra9srKS008/PeWivXHjRnbv3s2ll16aVqfq6mrmz58/ah2zsWnTJrZu3coVV1yBy+Xap2MMZdGiRXi9Xi655JK07cnrG+pyftppp+H3+1PvS0pKKC4uzrjPEolEIpFIJJKDzwcxxxmOl19+mQULFlBSUpLapmlayjN8JMYyro1Go7z00ktcdNFFeDwedF1P/TvnnHOIRqO8/fbbo55rNHRd5yc/+QlTp07F4XBgs9lwOBxs3rw5a3jWofODxYsX09nZyWWXXZZWR9M0Oeuss1i6dCmhUGivznXMMcewcuVKvv71r/Pcc8/R29v7vq9TIpFIJEc2UpSQSA5Rurq6EEKkDaqTZNsGpELjDD3G0O0A48aNA0iFZ7rvvvv4zne+wxNPPMFpp51Gfn4+F154IZs3bwasmK0vvfQSZ555JnfeeSdz586lqKiIa665hr6+vlGvx2azUVBQkLattLQ0rQ7DXcdo5Ofnp71PTnCybY9Go6n377zzDh/5yEcA+N3vfsebb77J0qVL+e53vwuQIcwMV68vfvGLuN1u7r//fgB+9atf4Xa7+eIXvzim+ifbIdu20dom+flw9zj5efJ1pHPtLW1tbQBUVFTs0/7Z6OjooLS0NEPMKS4uxmazZbTH0GcKwOl0Ztw7iUQikUgkEsnB54OY4wxHchw5lLGMdccyru3o6EDXdX75y19it9vT/p1zzjkAtLe3j6muI3Hdddfx/e9/nwsvvJCnnnqKJUuWsHTpUmbNmpV1jDu0fZJhsC655JKMet5xxx0IIejs7Nyrc914443cfffdvP3225x99tkUFBSwYMECli1b9r6vVyKRSCRHJjKnhERyiJKXl4eiKFljqzY3N2fdZ6ghNy8vD1VV2bNnT0bZ3bt3A1BYWAiA1+vltttu47bbbqOlpSXlNXH++eezYcMGwFpV/4c//AGwVhP97W9/49ZbbyUej6cM8sOh6zodHR1pRuTkdQw1LI/Fu+CD4C9/+Qt2u52nn346bUXUE088kbX8cPXKycnhsssu4/e//z3XX389DzzwAJdeeim5ubljqke2+znWtkl+Ptw9Tt7fZLmRzpUk2RZDE0sPnWQVFRUB0NjYmHHMfaWgoIAlS5YghEi71tbWVnRdT12PRCKRSCQSieTw44OY4wxHQUHBmMa62RjLuDYvLy/lcX7VVVdlLVNbWzumuo5EMh/ET37yk7Tt7e3tWecXQ9snOV7+5S9/yXHHHZf1HEkBaKznstlsXHfddVx33XV0d3fz4osvctNNN3HmmWeya9cuPB7P3l6mRCKRSI5wpKeERHKI4vV6mTdvHk888QTxeDy1PRgM8vTTT4/5GMceeyyPP/542koX0zR55JFHqKioyAhHBNYg9fLLL+fTn/40GzduJBwOZ5SZOHEi3/ve95gxY0ZGiKHh+POf/5z2Ppl07tRTTx3T/h80iqJgs9nQNC21LRKJ8PDDD+/1sZLJ7S655BK6u7u5+uqrx7zv2rVrWblyZdq2Rx99FL/fz9y5c0fc9/jjj8ftdvPII4+kbW9sbGTRokWpJHaTJk2irKyMxx57DCFEqtyOHTtYvHhx2r41NTUArFq1Km37k08+mfZ+4sSJjB8/nj/+8Y8ZAsZgnE4nkOl5ko0FCxYQDAYzhKE//elPqc8lEolEIpFIJIcnH8QcZzhOO+00XnrppTTBwzAM/vrXv46671jGtR6Ph9NOO43ly5czc+ZM5s2bl/Evmxfv3qIoSmr8nOSZZ56hqalpTPufcMIJ5Obmsm7duqx1nDdvXsqzfF/OlZubyyWXXMJVV11FZ2cnDQ0Ne3eBEolEIpEgPSUkkkOaH/zgB5x77rmceeaZ/M///A+GYXDXXXfh8/lSLrejcfvtt3PGGWdw2mmncf311+NwOPj1r3/NmjVreOyxx1Ira4499ljOO+88Zs6cSV5eHuvXr+fhhx/m+OOPx+PxsGrVKq6++mo+/vGPM2HCBBwOB4sWLWLVqlXccMMNo9bD4XDws5/9jGAwyNFHH83ixYv50Y9+xNlnn82JJ574vtppXzn33HO55557uPTSS/nKV75CR0cHd999d8bAfCxMnDiRs846i2effZYTTzwxI0fESIwbN46PfvSj3HrrrZSVlfHII4/wwgsvcMcdd4y66ig3N5fvf//73HTTTXz+85/n05/+NB0dHdx22224XC5uueUWwMp98cMf/pAvfelLXHTRRXz5y1+mu7ubW2+9NcOlvbS0lIULF3L77beTl5dHdXU1L730Eo8//njG+X/1q19x/vnnc9xxx3HttddSVVXFzp07ee6551Ii1IwZMwC49957ueyyy7Db7UyaNCktF0SSz3/+8/zqV7/isssuo6GhgRkzZvDGG2/wk5/8hHPOOYeFCxeOuV0lEolEIpFIJIceH8QcJxvf+973ePLJJzn99NO5+eab8Xg8/OpXv0rlTxiNsYxr7733Xk488UROOukkvva1r1FTU0NfXx9btmzhqaeeYtGiRftc/yTnnXceDz74IJMnT2bmzJm8++673HXXXWMOmerz+fjlL3/JZZddRmdnJ5dccgnFxcW0tbWxcuVK2tra+H//7//t1bnOP/98pk+fzrx58ygqKmLHjh384he/oLq6mgkTJrzva5ZIJBLJEcjBzLItkUhG51//+peYMWOGcDgcoqqqSvz0pz8V11xzjcjLy0srB4irrroq6zFef/11cfrppwuv1yvcbrc47rjjxFNPPZVW5oYbbhDz5s0TeXl5wul0irq6OnHttdeK9vZ2IYQQLS0t4vLLLxeTJ08WXq9X+Hw+MXPmTPHzn/9c6Lo+4jVcdtllwuv1ilWrVolTTz1VuN1ukZ+fL772ta+JYDA45usAxC233JJ6/8ADDwhALF26NK3cLbfcIgDR1taWtR6D+eMf/ygmTZqUuubbb79d/OEPfxCA2L59e6pcdXW1OPfcc0e8zgcffFAA4i9/+cuI5QaTPO4//vEPMW3aNOFwOERNTY2455570sq9/PLLAhB///vfsx7n97//vZg5c6ZwOBwiJydHXHDBBWLt2rVZy02YMEE4HA4xceJE8cc//lFcdtllorq6Oq3cnj17xCWXXCLy8/NFTk6O+OxnPyuWLVsmAPHAAw+klX3rrbfE2WefLXJycoTT6RTjx48X1157bVqZG2+8UYwbN06oqioA8fLLLwshhDjllFPEKaeckla2o6NDfPWrXxVlZWXCZrOJ6upqceONN4poNJpWbrhnpbq6Wlx22WVZ20kikUgkEolEcvD5IOY4Q+cGQgjx5ptviuOOO044nU5RWloqvv3tb4vf/va3GWP74RjLuHb79u3ii1/8oigvLxd2u10UFRWJ+fPnix/96EdpZYaOm5Nzl9Hq0dXVJa644gpRXFwsPB6POPHEE8Xrr7+eMW4ebX7w6quvinPPPVfk5+cLu90uysvLxbnnnptWfqzn+tnPfibmz58vCgsLU/fsiiuuEA0NDaO2qUQikUgk2VCEGBTHQyKRHPIkEglmz55NeXk5zz///MGuzpi4/PLL+cc//kEwGDzYVdmvfOxjH+Ptt9+moaEBu90+pn1qamqYPn36+3ZXl0gkEolEIpFIDlcOxzmORCKRSCSSfUeGb5JIDnGuuOIKzjjjDMrKymhubub+++9n/fr13HvvvQe7ahKsZNDvvfce77zzDv/617+45557xixISCQSiUQikUgkRyJyjiORSCQSyZGNFCUkkkOcvr4+rr/+etra2rDb7cydO5f//Oc/Mrb+IcKePXuYP38+gUCAK6+8km984xsHu0oSiUQikUgkEskhjZzjSCQSiURyZCPDN0kkEolEIpFIJBKJRCKRSCQSiUQiOSCoB7sCEolEIpFIJBKJRCKRSCQSiUQikUiODKQoIZFIJBKJRCKRSCQSiUQikUgkEonkgCBFCYlEIpFIJBKJRCKRSCQSiUQikUgkB4QxJ7qORqPE4/H9WReJRCKRSCQSyWGOw+HA5XId7GpIDiByniCRSCQSiUQiGQ05T5AMZkyiRDQapba2lubm5v1dH4lEIpFIJBLJYUxpaSnbt2+XE44jBDlPkEgkEolEIpGMBTlPkAxmTKJEPB6nubmZXbt2EQgE9nedJBKJRCKRSCSHIb29vVRWVhKPx+Vk4whBzhMkEolEIpFIJKMh5wmSoYw5fBNAIBCQkw2JRCKRSCQSiUSShpwnSCQSiUQikUgkkrEiE11LJBKJRCKRSCQSiUQikUgkEolEIjkgSFFCIpFIJBKJRCKRSCQSiUQikUgkEskBQYoSEolEIpFIJBKJRCKRSCQSiUQikUgOCFKUkEgkEolEIpFIJBKJRCKRSCQSiURyQJCihEQikUgkEolEIpFIJBKJRCKRSCSSA4IUJSQSiUQikUgkEolEIpFIJBKJRCKRHBBsB7sCEonkwHKG+vG09y+Yfz9INZFIJBKJRCKRSCSHCr27q9LeB8btPEg1kUgkEolE8mFHihKSI46hRvl94VA15O/LtY20jxCCH7x5HW+99RbhcJg/3vwoArP/PwMTEwAFFQUFtf914D814++r770Cm82Gx+OhurqampoaKisrsdlkdySRSCQSiUQiOXgMNcrvK4eiMX9frm2kfUxTsGptguUbbqSvr4/e9ruIxQXxuCAWs14BNJuCTQNb/6tmU7DZwKb1vw567yu4DZvNhsvlorKyktraWqqqqnA4HPt83RKJRCKRSA5NFCGEGK1Qb28vOTk59PT0EAgEDkS9JJIPlI6ODpYtW8Y3z7qJGBF0EiSIY6BjYiIQiNSrwIYdJ24MEuiD/hkYqKioaP2vA38raGhpr2r/XzZs2FP/XLjw4Mem2FP121uRY1+FFSEEEUIE6SVIN0F6CdGLiZkmJSRlhgghEsRR0bBhG3StA9cNpLXd0LYUqRY2Mz5PoqDgxI0bLy48/a9e3P1/O3GjKMqw13WoikQSiURypCHHjEce8p5LDnf6+vpYsmQJG1Z+gt17DLq7TXp6TXr7BLG4wDDAMAZeXS6FygoboZCgt8+kt9ekt88kFBbYbQpOp4LDAU6ngtNhvXc609+7nAoOp4LHrRDwKwT8Kjk5KsVFKrV1NvLyBqIsF4xr3Kvr6d5dmbFNZfhxdBIhBE27DdZtSLBmfYJ1GxKs35AgFBFoKthsoGkKqgqaBnuaDVpaTVwuBb/PujaHw7pWh8N6ryigG6DrAkMH3RDo/a/We+szXbfaNvlZPD5QL0WBslKNqkqN6kqb9Vplo6pCo6rSRvk4DZtt+OvLHbdrr9pPIpFIJPsHOWaUDEWKEpLDjsEGeSEEBjoxovTQQRdt9NGD2i8F+MnDhZutrEUnAYATFzYc2LGjYR+yut/6O06MOLFUGUtQsKFhy/AUGPxqYGR8bqCjk0h5FQymjBqmKfPGfO2Dv66DjfRJsaGXLkwMvPjx4MeuWKuKDGGwg43sYBMGOgB2HPjIwUsgdV1JoSD5twMXhZQSIH9EUSBbPTPFCDNNojDQiRAkTKj/NUiEEDEiWY95HB/Bp+y//kcKGxKJRPL+kWPGIw95zyWHEh27K1J/CyEIhQWtrSbLV8Z5Y3GMlasS2GzgcStMm2pn0kQ7d93Ty55ma5xeXKSSn6eSE1AJBFScDssInzTI2zTo7RM07dHx+/rL+RUCARWPRyGhWwb1aNTyFojFB71GSb2Px61t4bCgt1cQiWZOyU8/1clfHi5AVUceg2v9gsNI84TG3QbLV8Tp7hHUj7cxsd5GQb6KoigIIfjDgyF+dFcPPT3WMfw+hamT7UydbCeQo1qijA6GOSAe5OaqLDzVyTHznDgcmXUcTggRwmoj3RAkEtbxEgmI6Aa6DomE1R47dxrs2GGwbbtOww6dbQ06uxqNrMd88m+FnHSCa8R2MhjV7DEseysMSSQSiSQTOWaUDEXGS5EcFvzxj39k8eLFbN++nXfEuyljf5wYYpCx308uOeQhECSIs4cG4sQoppx6ZuDCg6rs//zupjCJEEyJG3FixAjTQyddtKXKdbCHzWIVMSLEiaGjp0QMo/9vkWUArWEjXxTjwU8f3fTRRYJ4RjmHcOLGR5CelBgBUEoltUzBux+M/IYweJl/fWDHU1EpYhxuvIA1kbE8Xax2TRDvf42hoGLDjh1H6tWFJyXOjMQZ6selMCGRSCQSiURymPHEE0/wzDPPsGPHDpp3txKNWcb+jk6DaHSg3MQJNo6e50BRoK9X8MyzUX7z+xAnneDkb3/Ooa7WhtM59kU4ScxhjN12ss85TFPQsMOgudWgrcOgrd2kudlg+co4i16Jpcq99kaMH/+0lz3NVplgUBAM9b8GTYIhSxwYusTQ5YITjncyc5qDdRsSLF8Zp7WtP+SqMlA+L1dlfK2Nnj6TzVsG5gkLT3fyv9f7mT1rYPw83LUMRyLLYiywhIqiyqaMOu8rDgfMP9bJzOlWXYUQdAUN2jtMOjtNOvpf2ztNVAVyAiq5OSo5AYWcXJVxZRpFhdqo5+nYXSGFCYlEIpFIPmCkp4TkoDI0DFFYBIkTHbSi3sSFh7d5IVWmiHLceNCw4cCJHScOnPjJzTA+CyGIE8OBc69W+r8flolX6KY9Y7sdJy48OHHRzp7U9mR4IgdObNj7AyXZ+j00bP3hlIBBq41iROmgmShh/OQSIK//Xz4aGmGChOgjRG9/CKYYHbRk1OloTiNHKfjA22CrWMt21vfXWk15mSSvzcAgRpQEsYx9NWxpAko5dUQJESVCol+EyCbU2LCnPDCGMpm5VCh1Y6q7FCYOLMk+4INo930Ja/Zhud+jXXuyL4wRwUDHTx42Ze/XJXxY2kuy/5BjxiMPec8l+4vmpnHp75sNtjfoCIG1oj4uqKnROPGUgXH3aac6mTTBhsetUlioUlCgUpivMnmynZLidOOzEIK2dpPCAnVUb4RsDCdGjMSN3+vhDw+EMrYXFCiMK9MoKdF45dUYev9wtqJco3ycRlGRis+n4POp+H0KXp+Cz6ti748GqyjJfwodnQavvBpj02adKZPtzJllZ/ZsOzNn2snLU2lo0Nm8RWfbVqs9u7pMnnshc0z+wO/zOPdsd8Z2Y4j5QNvLOdZDD4f49g09ANjt4PMqeL3W9Xk8CvGE5d3S2popbLicEB1U1QvOdxGJCBqbDDq7LAEinrlOC7/fqmNfX+Y9++bVPr53Y86o9Y4Jk3Hlu8d4lZIPgl1NZQBUlu8ZpeTo7B7Sn4yFD8v9HtqXDkUIQUenSUuLSXeXyZRpdnJz934h54elvST7DzlmlAxFihKSg0rSkNYpWtjNDprJnhTORw4mlvcBKJRRRS5FBMjFgz/l/TA0bFAy58P+FiRCoo8gPQTpSRnjB5NDPkF6Mwzm8zkTj+Lfr3UbiiF0OmklTB8V1KMpo68OOhB10kngwEWYPt7i+dRnyVBULjzYcaSEqMF/27ARJkiQHvroppt2eulKHcODj/nKWWOqy+FqdD1D/TimMNFJYMeReuZjIkKCRH/YMvtBy80xnNFcFwn66E55vBjoKSHOi5+v/uZzrFq1in/+6ik8+LDjoIzqtJwsB5ND5XkZ2r5REaaTVjpppZcuIgQz8rgEyCefYooYR0DJG9N5DpXrlRy6yDHjkYe855L9RUNjGS5FYfnyOI88GubRxzJDfCoKTJ5swzRg23Ydw4CPnu/ipBOdTJ9uZ9LEAe8H07TCBCVzGGgaeDwK7IMgsTc0NuqsXaOzYWOCO+8KZnw+7yg7W7fpdHWlT8sf/2cBxx479gTP9v4x3lDRYG+IxQRL3o3x3rIEX7zcSyCwbx7mSaEisQ91GXrGaFTQ1WVSXKzS1yeYMn1goVVdrUZtrY2KSo3CApX8fJW8fEuMys+z3ufkqOzcqbNhg87atQmWLovzzjuJtHNs31aaNQRVNg5Hw+uupjJ03QoVlpOjoGnWtXZ1mbS2GBSXaOTmKql5gpHlttVUvH9hYKT6ZSMaFaxenaCr3+ult1dgt1vePtU1GppyL8uXL6elpYWi4ifJzVW56GI3BQXpT5E2hpwqQ4kPena1fewiPggx5YOgoTG9fdvaDN56M86bb8RZtSrBtq16Rh6X6dNtnHSikzPOcHH00SPPIZMcjt8NyYFFjhklQ5GihGS/MNYVy1ERZh3v0kkLXgLEiOAlwDTmpfI7tLKbRrYSpu9912sis6lS6t/3caB/RQHNNLCBbjoAK0+DgpK2mt+FJ+XJ4CcvZVjVsB0w743DCSEEXbSlEl4n2yguYmxgOTrx/vwdJnYc2HHQQXMqZ4gLDz5y8BHof81JE66G41Aytp6hfjwVF3jwM2IKo//KTTppYR3L8JObCmWWDOGlYcOLH4Ggj+7U/ipqv1eOC2+qfQLkUDCqOPV+2mek/mCrWMN2NuzV8SYyiyplwj7XZ39wsJ+fZBtvEWtoGNSefvLIIR8vAZy4ceFCRaObdjpppYs2EsTJIZ8K6imhHDXLs3Cwr09y+CDHjEce8p5L9pahBrLh6O4y+f53e/nPM1HKKzSEsHI7/Or+XAIBFU2DN16L8aeHwqxZPbDwR1XB7F9kPzhc0WhcfbWXG2/44J7hpUvj3PfLIIsWWUv7AwFwu1W6ugZW85eUqMyYaXkxzJxpp7pWIz9fxedXcGljEwT2JleCfZBxNrGPORb29RhjNQyPZgxeujROXp5KdbWG3W4VCAZNbrulj+ZmK2RXNCrwehVKSzXeeCOW8rooLbG8ZiZPtjFpso0pk+3U19twuw8fg2vy+2OaIs3DJx4XRMJWvpIVK+Jc9z+9VFdr6Dq0t1teJEJY4b3q623Y7QorVyZS3xWHAwqLVEpKNOrqNCZPsTNhoo25R9nx+0d+Ft+PYDGcIAHw8qIYl32+a9jPs3HllR6++/3hv8cJAa5B86v4GDuIfRUm4OCLE8ln5u9/DfO/1/emtk+caGPOUXYmT7FRWqpRUqri86qsWB7nzTfjvPVmnNZWk0mTbXz+Mg8XXOTC6818FvanYCX5cCHHjJKhSFFCst8YizCRNKDlUcRU5uFWvFnLCSGIEe0P4xMmSpgQQUL0pK2IH415nEquUjjm8kkSIk4nrcT6QwjFidNDJ0G6CZBPDZPIpZCdbE4zCCZDM9UxlXyleK/PKxmgQWxkC6sztudSQA4FFDEOHzkjrqA/WIbV0b4LpjDZww7C9PUn/g4RxXLtr2ICdpz00EErTZhkT/CXpJxaAKJE0LD15+PwECNChHAqqfjg3CZHcQp5SlHW4+2vNku2SVgEaWIbdhxsYU1GOScu8ijGgRMnbtx4KWLcQRX0DkUDfbI9N4j3aGRbavtU5jFOqRl2P1OYtLOHRrbSSSsOnIxnOuVKbarMoXi9kkMXOWY88pD3XLIvjEWYePSRMN+9sZcpU23cdV8uUydm934WQtDeZtLYZNDUaNDUZNKwXWfzJp2VKxKpUEijcf9vcznz7JGTJWcjHDZZ/Gacpiajf0W3YN26BO8tSzBhoo0rv+7llJMcvPB8lJtuHFhkVVKiUlGp8ZUrvXzkrLGfN1u2Bvsow6JsK9+HMpzR9f3smySR5Rh764Mx0jn++XiEa6/pydg+e46dGTPtnHOuk8mT7eTm7T/j+r6ycdfooXX+81SULesT7NxhsGunzs6dBtGo4AtXeCkr01izJsFzz0ZTicqH48KLXfh9Cnv2mCgKLFzopH6CjZZWk91NBg0NBtu367z1ZjwlVnznJh9f/Zov6/H2V3slhYruLpN77w2Sl69y952ZXkYuF5zxERdFRSrFpRrjylTOPtuV8o7K9txl44N8Fg+2AJGNzY3WM/aH+4Pc8eOBPui67/i58qqBRYDmkPYyTcFbb8R59E8hXn4xhten8KWv+rjmGwM2GylISPYGOWaUDEWKEpKsjNXTQQjBCt7Ahh1b/6r15Ap3N95RE0sbwmALq2lkKwKBEzcxBlyzT7FdjENxjliHFnMnq4w307bVqtMYr84galghS1x4hjdiioGh/S6xlY0sT7238hRY6/LBWmmezGHhwkMl9eRRhIlBhBAh+mihkS5a0xJPT2Am1crEEa9DMjKWMBVhIytoYzd5FDGZuXj3IvzVoSpK9IlulvAiAPkU48aHGy9h+tjDTkCgYaOcWnIoQEEhTow2dtNJ64hChdIfxMzEyMjF4cBJgDwmcxQuZSBm8ME0Qp+knEcfXWjY8ODDiTvjuzu0fvuSS2K4Yx2uDG0DUxhsZAVNbMdPLjkUkEtBqk0duDLaNSR6Wc4beAlQSiUtNBIlggMHbnzkkE8O+Xjwp+37YWlDyQeDHDMeech7fuSxblf5mMoJIbjhf7pIxCEnVyUnV6G0TKOqWqOiykZ5hTZiyBxdF/zm/4L87tdBolFrFXdnh5kylj73ahG1dSPnR1r6dozPfLwzbdsln3Tz47tyaGszCYcEldXDh3p1KgNjp/88E+Wqr3an3rtcoGkK4bBACCs/Qn6+Sn6BSkmpxqcudbPgDCfxGDQ2GuzcofPMU1HeXhynuXlg/nH5l7zcdEvmd8c+aNyWPW308CRE+vUMvo5h9xnGk8E+Bm+I2JDz2cdwvsEMni0OV4/BaFnq1NFh8ou7+3j0kQjTZtj48U9zmDVz78J9HoqiRGeHwUnzWjEMOPY4O9U1NqqqNDo7TB79cxjDgEQCvvJVL1PnOPA6rDBNi16M8erLMYJBq60GexAlsdvB4VSIRUWGeBfIUZgx084N3w8wfcrA9+xgGqHfXVnCqpUJ7HaoqdEYV65l5IMZWr9tY/TMSjL4WfywGNyTokQSXRf8v18G+eU9Qeon2jjqaAdz59mpqbNRXKJRWKSmvJCSNDXqfOMrXRgGfPPbfh7/W5imRgO3W6F+op0p02zMOcpB/URbKjwYwKTKQ8PDSHJoIMeMkqFIUeIIZDgDniF0trGu3xAVRkVFICiinGkcnTW8S4PYkLa62YY9FUYHrLjlbrxUMZFyajEwWMx/iRPtN+47CFBADvmoqEQIpeVkWGD7RNZQIgB9oosdxiaaRQNiyFB9gjqbasYoAgwSJdrEblayOPW+igk4cWPHgZ+cfm+NMBHCRPtXtEcIpyVsVlH7BRlLmMmhgFIqZaim94kQguW8ThftTGY246jN2qaHmoF0rAbznWIzm1hJPsVUMYECSsf0zAghaGEXW1hDlPCgTxTqmIZJAg07duyo2ND6/7PjIEB+6hyHWru9Hz7I5NmHC9meMyEEzeyikxa66ejPyWOhoODAhRMXJgKDBDoJEsTxkUOQHvIowoOfOFHCBAkx4O5dxDimcQwvi38dkOuTHD7IMeORh7znHy5W76rIul3XBQ/cH+TJf4TZsU3H4QTTgLnHOLj3N/kEcjIXIT39RJjvXNOdeu9yQTQ68LmqQlm5xqc+4+HyL3ux2eD8he1s2ayTl68SyFGYOdvOrDkOfH6FbQ0mv713YJXvu2tL8A+T82D7Np1H/xTib4+GiQxJRfG5L3j47m2jJzYeynvL4lx6cUfq/bkXuJg+047XqzJlpp2eLtPy1NjV77GxS6dxp0F728Bcw26H8gqNikqNyiobk6fa+MSlnjQjXpKhq5azkTT+DxUhRsPoN/zvrXiQPE82UWAk7IoYcx33NsVH8rjfu76LJ/4e4Zpv+/niV33YbJkHmlrZtHcH38+MJkgkefapCNdf0830WXa+8CUvC89yZVyfkUXMEULwxqsx7ritl+1b01WHr37DA0LB5VLIzVNxua1E4y63lVB95mx7SjScUPHhMSwnRYq6D4ngMBaGihJJXno+yssvRXlvWYItmwaeD0WBgkKVohIrbF4oaBLsE/R0m9RPsrFpvc7MOQ4mTLHT12vS2JBg43orp4/NBjNm2bn3/jxOmteS9bySIxc5ZpQMRYoSRyjZVtVuZR072Ji1/Emci3PQSuokukjwCv/Ouo+Ghg1HyvPBjY9jWZAqn0shOjrB/pj3+ZQwg2Ppop3NrCJCEAUl5YVheS0IDPT+GPpRQIFBg2IvASYxmzyK9koEMIRBF20E6aaXLlqxBqxzOIkCpQRDGLzMgPEt6Q1iCQ8DniFuvFlXIEveP0IIXuKfo3qdHG6G6MHfxRbRSAMb6KMbD37KqSWXAnzkoCnZVwKGRC/v8FJ/HokAKhodNKeV8eCjigm48RIgH7tiJU083NpK8v44RfkoUcLEiBAjmnpVUbFhI0GcFhrRSZBLAXkUkyCOTpwECaL93mBJ+vr68Pmyu/NLjlzkmPHIQ97zDx9DhQldF/zt4RA/vSUzPA7AP/9bxOSpmSvS4zHBnAnZDX8ut4I/oNDZbmIY4HDCK8vHceZxe+jrFUyfbcdmU1ixzPI8rp9k4w9/K2bzhjh33trNpvU6qgo+v4I/oKbEiUjYJBIWtLaY2Gykrf4uKdO48Qc5nHqGC0bJNTb0+t9bEmPr+hgb1ur8+3FrbvPju3O48BNehBCcMb+VPU2W52pxiUpltY3ySo3yCo3yShvjqmxUVGkUlWhZBYgkZr+B3aWMHK4zPsaAM47+hVvZDNYfJEmRYiz1cozi9xEVAwvS1DGKJhqChce3sPAsFzfcMrLgdKgJE6OxcmclAG+/EeV3v+zl3bfjlI7T+NRn3Bx1jIOqKW58fjXrM9PeZvCxs9qIxwX1k+wEclReeSGaVqawSOWLX/dTXWtj8jQ7RSVW+8+obNz/Fyc5ZHh9dTl7mnRamw3aWqwE6G0tRn8/qxKNCJ5/JkxHm8mEyXZOP8tFb4+gt9ukt8ekpdlg07qBxak7duygqqrqIF6R5FBEjhklQ5GixIcUXdd54403eP311zFNE1VV+ePNj/bnRIgzgRl4FetejiQsAPjI5Thl4bCfd4t2+ujGgROzP9hRmD566aKP7jTPiTmchIrKWpYOWdWdjgc/k5hDRAlaq3dFAp04CmpqpbeKljXHAFireGcp80dsIyEEUcL00EkDGwjSg4YNHznkUUQpVfj62yguYrzN88T7PSJs2PESwIETGw5UNAx0FEjVrYhxw8bpl+wbi8S/KKOKSczhJfHPg12dD4ShAqEQgh462Mlm2tidCrlUyxTGK9NS5YKih3W8Sx9duPFxDAuwKTY2ihXsYgsAfnKx46CT1tR+NUymXpmeUQ8pUHz4Gc1r5y3xfMobIikqa9hQ+sVfAxMDnbpJNRxzzDHMnTuXq666Crt970IjSD7cyDHjkYe854cfpmmybNkyXnrpJWKxGJqmsb3tZ7S3GHS2G3z+6znMmmflOBBCcGL9DoxhbOR2B7yxqQpFUdCyGJu3b07w5itRiss0DF1gJAQ7t+usXxNn/ZoEXR0D+9x6Vx5TZ9i58ZpOtm4aPhGEqsJv/lzAzu0GfX0mfb0mvT0CVbXEDrdbIb9Q5Sffyy6i1Iy38fiLJRlhX4bS0mywZnmcRx/o490lcVwuhfrJNmYf5eScizxMnO5AURQMQ/Dxhc3s2GbV2e1RqJtop7BYwxdQcbmsEE+qCh6X5TFy9PFOTj1jYMGXOQYvgqHCgl0Z3rifECOLA4MN2KOVzXa+wcLBaGVHq9tYvC6GEyeiYmDRzsdObaK23s4P7yvk5Mk7Rz3m4UBSkBjMhrVxHnsgyHNPRYhGrXa54JNebr4zP1VmT5POrd/qZPXyOD6/yiPPllFQpPG3B3u5+xYrH2NdvY3KGhuvvjggUhw938EvH81cVX9s9fYP+tIkhxjZnrXBfPXzHbz9qiXIOl0KgRwVj09B0xSEsETocNikILeOuXPnMnv2bK655hq83uw5QyVHJnLMKBmKFCU+RCxULqGDZlpoop3dJIhjw47WP9RTUNCwEaaPmcynWLEGHKYw2cJqWmlC7w/h4cKDBx9eApRQiRMXTtwj5ocYzGADZzwep6uri3A4zJfrvp3aHqSXbaylk1YM0icefnKZyrx+Y5glArgUDwCdopU2dhMhSDvNOHEzg2MJ0UcXbTSzkwB5HM3pw3ssKCrLzdfSVpRXMJ5JytyBfUT6YDqZ0yBID9tZTw/p8WmzsVC5ZNQykpExhUmIXvroZh3LUtuP5jRylIIPtTH9aOV0lvEyAHYcjGcaAfIBwQZWoBOnknqKqcCpWMaDTtHCCt7Egavfq8jARw5eAtiwUcH4YfNwfJjbcm8JBoOsXr2atrY2urq6+MnlP8eLn3xKhu1XDuf2O0P9OLpIYGBgx0EHzTSwIdXP2bDjIweBmdb32bBTyxSqmICBjomZ6reTrxo2FEU5rNtnMNnEnQ/LtX0QyDHjkYe854cHbzbUsmJJlEXPhHj9hTBtzQZev4LboyJMUDUI5Khs3ZjgW7fl8/HLBu7ln3/bw98e7CURF3S2mxQWa1SPt1Ez3s4Z53spGadRVGLD4cwuTEC68Xh+9bbU34lEgu7ubnp7e2lRFgCW6NC4I8EDv+zh9RfC9PWmT1dLxmn88L5CPD7LMO72KJRXWQL5htUx/vtEiD2NOq8+Zy2A+uO/y9i+OcGa5TH+9ec+/AGVZ5ZW4nAOLwT89MZ2nnhsIOzhcSe7+NkDJSkvB3uWVekdbQabNyT420N9vDpkNXo2XlpThdeXfW7lUgbmRmPxckgMEQmy1W+4stnOmWTwfRvKWM8xUrnBDBYnRjrvYIHCMAQ7tibYtDbOz3/YlRK5fv5AMUed6uekmi1jOvfhyL/equLi+btS76/9Xi5zj3WiKPDbX/SwdmWcz301h1M+4k77fnzjc604nQqGAcFek5oJduom2vH6Vc6+yMe02dnzOUphYoBIJMKaNWtoaWmhq6uLZVuupbDExslneYcVOw/nZ3HJjlqiEZNgn4k/oLJuZZwH/q+bd163+jm3V6FuogN/QE0JF0m+cn0en7wigG6qxGMCRbHCQ6GAqii4PJawcTi3z1Beb6hPe/9hurb3ixwzSoYiRYnDjGzGEF3o7KaBXWwmQggPfooZZ8WkR6GbDoL0oJOgizYEgkrq+8UHNy68uHDjxosdaxCiKRo9opONrKC33wClojGT4ylUSkesoynM/hXeJma/AauHDmJE0LARJUwuhZRSxQbeG/O1+8ljCnPZxlraB4kJbnxUUIsdJxo2DHR09P4Y6VaoJwdOnLgHiSs2Vou3CDKwgspLDserZwLwgvHXEdu/QWxgK2tTq9jzKKKcWtz4UFAwMVKhnAQCgdn/av1npR7WxizyHKnsFg2s571UzhA7jlQC8akczTilGvhwGgSTz1qf6KaDZtpppoeO1DOnoDCHk3hXvDqm44zEh7H9RqKzs5MNGzbQ3d3Nd879QUqMNUgQI0ovXWl9w2BKqGSGcuywxz5Uk6knSf7kJ4UVXSTopp0eOtD7xWETkya2kUshldSTQwHO/rB0MRHhHRYRI4KKipcAfXTjwjOs95uVvySPHAoIkE8uhdiyhCM7FJ/Dwe0qhBhTaL5D8ToOJHLMeOQh7/mhw6sNmeEt4zGTl57s4x9/7Gbrhjgl42ycfKaHExZ48HgV1i6PsWltnL4ek7UrovR0mXz8ijxifQmKy2yUjLNRWq5RWm6juFQjbNhxulSatkW55+Z23n3TMkBpGvzvHUWc/THrGdCGWSkvhOCNF8P0hVUMHTaujrLuvQh7diVwulTa9ujUTXZw2dcD3HJN+5ivvXq8net/kM+iZ0L869EBMSE3X+XSL+eQV6Di9atEw4JQ0CQcNAkFrZW9gRyVohIbRaVWeCW3V+XeH3Xy5ksDxjWnS+HVDda4czjjbNIQ9ew/e/n599uJRqzf3MkznXz00wHqJjvQbAoirlNYbLWpoVuGdcOwXk0D7HYFm0vFZh/5N2eseR3igwQCx2hhoYYIFntTfrSyScYisozl2t54Ncb3vtqcamdfQCXYaz13X/1OPpd+NQ/4cBoEF++oA2DH1jhvvxJhyasRlr8dJR4faLdb7y3ilmtahzsEYBmbR+NIEyN6e3tZv349XV1d9Pb2smTrNwgFTSJ9Jt2dBhtXR9myLoaRxZmrfoqD3z1VMWyItoP1LGb7bciGEAIhSAkrkbDJ+hVRVi6L0ttpoKggBDz5SDe1k5x87At5zDzWTfE4G6qqEOw1+NanG9myLoZmg/GTHGzbFKegyEZbs56RaB3A41OZPNPJ1Nkupsx2MfMYN/6cTOH0lJpN76sN9geLGial/tZMfVTvO/hw9kd7gxwzSoYiRYnDjGyGp3fEopRw4MGPCw9xooToQ2CiouEnFxt2okQI0YOGhhtfKpxTEg0bRYyjmAoiBNnMKpy4qWMqLeyik1byKEqthnXhZgrz0pJgd4t2lvFK6r0DF4WU4caDiYGCShPb0LBTx1Q6aaGHzn7DYByDgQHtBGaQSyHddLCZVQAUU0G4P665JXsYJIineVskwzypaCgo/ULFQBipJF4C5CgF5CqFFCiluBQPzyf+Mqa2T4g4LexiDzvpwUp6l0waa/YHOhGjDKitnBlJg10+OeSnxfw/0gmJXhrYSAfNxInhxMUxLEx5BQzmSDAE9vT0cEbuRahoOHDymnj6YFfpkKe5uZmzyy6hl276+kPKZTOeJwXNwe9t2FP9S5Lhwl8l2Z/P4UjCgylMooRTOXf0foFlF1tIEMfEwOjvl1Q0cikkTjQlvjhwDhJRBbkUMIWjxmSE3ybWESFMHoWp3D8AKAoCQZg+ekQHvXSmPPiqmEAtUw65ROtDRYhtrKODFiIE0dER/b99Cmp/snAnHnx48Pe/+lK/w9m8Q44ELws5ZjzykPf80CGb4emXt7Xxzwe7ASgqs1E70UFnm0Hj9jjRiMDhUKif4iAnX6W9zWTzmhh2h0LVeAcdrTrdHQPjcodT4dhTPZx6jh/DENz+rRa8fpUvX5/PyneiLHo6yKQZTpwuBaEo5OUpfPMnZeTkD8wTWpoSXHrigJHTF1A5foGXyvEO4jGBpim88kwf7Xt0brynmGWvR1jzbpSeLoNgr0EkNDC2/szX8zhhoY/mpgQ/+Ia1YGnhhX62rY+hqpDQIRET9HYbKWM1WIlYnW4Vh1PBbleIhE2CvSZDZ8XlNXamznExda6bo070UF7j4PSa7Pn3hq6MDQdNXnsuxPP/6uO9tyKYJuQXaQgT4nFBPCZIxEeeJ2iaZbCbNN3BtDlOps1xMXW2E19+9pXsg1FHyduQJIGGnbGJCXtTFsAcJb+EPYtnRpKosFb2jyROtDXr/Om+Dpa8GqZ1t47Pr/Lrx8upqU+fR0WFnTNq14+53ocr4XCYR1+YgM0GgVyVi0/YNfpORzgdHR389pk5bFkbZcvaKFvXRmlqSLcZKAq4vSrRsJkyqrs8CoFcjVhU0NdtpLYv/KiP7/+ieMTx8/4ySv9n+/DzE0MXtDcnCPeZREIm4ZBBX5fBU3/qpLNFJx4ziUVN4lGBZlOYfpSLaNhk01pLfPHnqBSW2hACTAMqx9v53n1lOJwjf8cNofLkw12sfTfCrOM8BHK1lPABYJgKzbvibFgRYcOKCF1tBi63wnmfzuHK7xRi70+0fqgIEv/ZPh2XMvB8/POBLl77Tx9NDQmCvSZ6QqDZQNMUNJuCL6BSXuOgvNZBRa2D8hrrtaTCjs2uZPRLz22fmnHOM2vX7ffrOpDIMaNkKFKUOAwZatToFC3sYlu/MSqBo98jwIOPXArxkUOIXlbxNlFC1DODMqyVPkmDW5ggEYJ00EIXbQCoqJj9A1obduZyEq3spp1mfASIEqKbDmZyPMVKeao+QdHD27yQVsf5nIVHGUiIulq8TS9dHM+ZbGc9nbTQRw8mBrkUUkgZzexEReUYZQGmMGhgI92000tXmsCgoqXCVMWJZYSCyoYDF1XKBGq19I5/OEFiOJL3Ii6idNJKiL4BLwg0VFSU/v8nDVkwIKaYGKmV2ZYwYxk/iylnpnL8XtXlw0xcRNnJFhrYwBSOolwZflXPh83AJxk7Z6gfJyR66aKd7v5/SQHChp0AefjJxUugv9/rI0aUKGHCBDH7J9oKSn/iesvI7MbHL/7zE+bOnUtJScl+v4bRCItgSnjooYNOWummI1X/weRRRC6FKZFWRUMnThftOHCSSyF5FFpeXkMmUIpt+FwRin3A08GMRLIUyJykCCFopZGN4j10dE7lgqzeYgfyOzxSe+8Qm9jMKkqoxEcAG3YU1EHebyZxYoQJEqaPMKGUV5eGjWNZyEZWECbY7znn7Pfac/V77ln/kr+NH5a+S44ZjzzkPT+0eGrbTAACqhVWY/umGL+9owMhBN1dJnlFNvKLbJRVO5g61039dBedrTo/ubqRTatjXPr1fC68LBebTSEeN2nvttG9M0hjQ4LVyyK8+UIIAJsdTNMyUDmcCj/8QwXrl0d487kg5TV2gr0my14LcfUtRVx0eV6qfsFegwtmbU2r88//WsHMYzyp9/f/uI1/P9zNM6vqeOKRHt54LsSW9TFCfSaTZjg47sxclr0apHlXnAffsISYJx/sZMWbQTavjtLdPjAXcDgVPD4Vt08l2GPQ1z26sd6fq3LmxwJceVNR2srX4QSJkXhu+1SCvQYr3wqxbX0Mm13B4xSWIOJQsNkVNA0Um4qmWaGrEglSBsLeLqPfmySaEogmz3Fz/+MVGeca6uUwFJeSIMHIZfYWO0ZKQBiObB4UQ8MzjRbiKZs4kTxGqM/g2ce6eODuNi69qpDP/U/hsMc5EsQJSXae2jaT5l1x1r4TYsOyPtYsjdC03Zp7u70q46c6qZ/mYsJUB5GQyc6tcdpbdFr3mDQ1xIgErb5D1aC03E55df+/GjtnHvNHZs+eTWXlyHkZ3i8jCQ9J2vck6O02iIZNNq4Is+rtMGuWhAgHM/u++uku5p3mx+lUcLhUnC6FaNhk9TthXG6VKUd7mTbPS+UE55i8AAaTFCU9SizLZ5nHEkLw3hsh/u/7zTTvSvDHNydTUJLZt5xft2qv6vF+GKm9X3u6hzuuaeS4072Mn+HBn6dhsysYOpiGwNAFPZ0Guxvi7GmI0dQQJ9afA8buULj9r3U891gny18PUl7nJC9fJa/QRl6RRkGpncISG/klNipqrdxFHxZxQo4ZJUORosRhwlhDcwzHevEuTYzd9bKCOvroTosd7sGXSuhsoJMgjgsPczgpTXAQQtDCLkxMEsTYzGrsOHDjxcBAJ06MKFOZRzcd7O6vVw75OPHQSiMA0zmWNSyhjBq8/StP3Xhw4iZIT9rq32T4FTtOPEr/KlVU6M+m4cSFikpcRGhnD5v7E2Qfy0L8Si6wbwah9xMaJ7Vvv1FOCEGYIGvFEnrpJJciipVyKkTdER/maY1YQjPWap/JzKFCGT9i+Q+LcU+SneG+d52ilfd4DSAVLiiXQgLkYcNOB8209QurBjp2HHgJ4MWPB3/q1Y03w0B/oJ6pkfqUkOhlM6vSwtdp2MilkHyK8PV7xNmwoaVebSOu1tJyczG6uzO2j1WQGImYiNBrdtBjtNNjdtBjtqMTR0VlPNOpVoZ3JT8Q7T1a/71SLKaN3ThwUkw5+ZQQJ0qYIFEigOjPm5FMBQ5RwvTQQSFl1DONt3lx1HrM4FhKlIFJ7OHef8kx45GHvOcHn6QQMRYcWVanP/p/7fzpnrYxH+O0jwboatNZ9U4Ys9+WXFBiIydfIxq2VuL29Zp4fRrf/0Mt9TM9aSv3336hl2CPVY/7vtOEN6BSVuUkHjMJ9Rl0tuh8+n+KURD8+RdWvcZPc1Fe6+C1p3sB+PHD1Xz3czs44awA9dNdFJfbKS53UFhmo2l7nO52nXhMpOoT6jPw+FTKqhyUVjmwOxWr7gLyimw4PSrdnSYrFwd58I5mIkGT7/+umqNPt57pfTGEZVv1OpThDE3JsCDJ3AxCCFqaEvy/21pY8lKQiTNdHH+Gn3MuK8LtHRAaBq/iTTKSEJEsP5qwMJZy2bwohpbP9vylHaNfnAiZ2b1Bsu3/xzta+dtvLK/1T341nyv+tzijTFgMHO+CuhUj1kFyePP41jmpvweLXU3bY3xtobXivnqSixlHu5l2lJsJM1x4izysfDPIkhd7WPZyL31dBr6ASkW9i/I6JxV1TirGOymvc1Ja6cgIrXagDOX/2T592O9G++44j97dxBtPdqW22Z0Kk+b6mHacj/EzvHgDVng6l1fD7VPx+LUR5wmmUPGomaLCaIzkJWUI63zBHp0tq8JsWRVm80rrtbtdx2ZXOP/yAr5wQ9mwxzgQ7T2SIJEQNn53WxPP/KkdX47GMQsDHHVqgGhfnN0NcVqbEpgmCEVFUQfCYXW1Jli7JMik2R6+fV8lV5w0utB9+Y1lXPilgT7tcO+/5JhRMhQpShxmnKF+nCaxnQ28Rw4F/Ub5ZA6FgdwJbrxo2FIr9ZOr9d14YdCqfRWVtbyTFp5kME7cePH3eyLY+kOa2FKhTUqpGjHUkBCCNnYTpIcoETS0lEBRShUtNLKNdcSJpnk/uPAwnum0sIsgPcSJZawCTtZJ7f/RE/1ZLJKiyVAUlLRwSgWUMI2jcWQJBZTkQBqHzvR+HrBivO+JbKKNPXTQTB5FzOR4bMrIk4UPI1ERYTVvo5MghDUJLaOaacrRI+53uBv1JJmMZECOijB72MEuthInyiRmU6lYYRR6RCdbWZPKpxMgj0LKKGIcPnIOyRwB2a41LIK8xXMoKEzhKLz4UdHw4N9n0VLLzR3+w2GGBootuyBhhgdCYjXrDayKv556b8dBjlpIjlJAjlpAnlKSFvJvKM9F/zxyxYdwhvbJYfMAjfkYWdpcCEEPnbTSSCtNRAmnvGhceCAlRZAKewXgJ5cJzERVVEKijx6s0FW9dBEjmvJyseOgmAomMitrexyu/ZgcMx55yHt+6PDUtpm89VwPd1+7iwkz3OgJQSRsEg2ZRCMmXr9GbrGd0monPr+Vs8But8JMKCqUVjlRVUFcceB36tjtCg/d1UzDhuxJm3MKbFSMd+LPs+Hyqrg8Gh6vgtOt4fGpzD87l4JSa/w6XDihd1/tY+vaCK2NcZwuFW/AWiV6/IUlrHunj0d+uouuVp2+roGxvSeg8YXvVbDqzT42LQ/S26UT6Us/vtun4vZqOFwqpikQphXCJBIyiIYyQzVpNgVDH9g4ea6Hb95VwbgaJ+FhjICfrF866j35oPj71qMA0OMmS//TzjuL+li6qJfK8U5u/kMNeUXp84TBiaZdahahYphE0kNDKmUrN1zYpahpH1Rm9DBPIxkuRws/lRAaoV6dn1+7g449CXZusp7RWSf6ufkPtWi24cd3h7tRT5LJYCFiKMGOKK891cOLf+9ix8Yo536hmMu+a3kaNW2N8ue7mlj5Wi+JuKBqgotjFgY4ZmHAElNVZUyh0A7k6v1kXzCYUK/O109aQzRs8oXvV1A/24vdoVBW6xo1xNJwmGLv9zNG+E67FMvetG5pkO9/eiCElcujMnGOl/pZXupmeJg5349rkNA6tA+6tH7JXtXp0S3H7vU+Q0kKFIPrIoSgYUOUxc92s/jZHpq2xVBUKBrnoKjCaQlXpsAU1u+PMAWmsH5nr7i5HLdXo2W3zoZ3g2xZGWLLyjBdrQnCfQahXgO3V2Xe6QGu/EEFvkDmPOFw7cfkmFEyFClKHAYMNZZsE+vYhrWqpohy3His1bCoGCSIECZCCBO9P72ymfJaEAj85FLEOKqYiE2xERQ97GFnSqpw4sJHDl4CwwoOfaKbXrpSYkYuBeRQkGHgi4gQjWyjgxbcePASQGCSIE6COOXUUkApDWxgOxuyhh9JoqAQII8aJqeFzLAS1FqeG1HClFOHjxxAkCBBjAhh+hBYYZFiRAjS0591IimyWHk3CihNM/4fKKNQUpAYSqfRzIrYK7gVH3Ocp+OI7Z3b5OFOj+hgKS+n3udRhI8cJimzU9sOV8OdZN8Y2h++KZ4lghVKopQqyqginxJMTLaxlh1swk8u5dRSSBkuxZNxzNGeobF6qu3Ls3i6chE72ESEEFHCxLBCISVzFlhTISvMXhxrwj1RmU3VEC8DW35exrEBcA8vuuLILnSKjq6s24cTJAAY5NK9oud5mmPbBj5Cw2PLIWaEMDGZos0jLqLEiBATEQSm5dmhDPLyUOyUBabiUAfq/2zb/am/Z6jH0yGarZBIihN7vzdcklytiNcTTw5f31EYes+FEMSIYsdBL53spoEwwVSOjHyKKaSUXGX4kBFDj5dNEPsw9GdyzHjkIe/5weXRLcemvX/l72387ibLC3na8QEqJ7nxeBVcHpW+Lp2u1gTNO2JEQyaJBJi6gZ4QBLsNEnFBWZ2LeQvzOPdLpeTnK7Q2xnjxsXYU1YqT7c+3UTnBTc1EBzkFmb8jmiLYsMFg5/ow3W0JdF1QN93LlGP82Bwq2iADX1drnJf/3s7SF7rJK7ZTMcENWCtog90G8xbmcupFebz41zYevr0pFT4lG6oGpdVOPvPtcoI9Bq2NMRq3RAn26MTCJuE+g93bYpxycT4T53hRFOjrNuhpT7Bne4xo2OSohbnocZPNK0JoNhWXR02JLeXjXcw9LRd/3sBv4YESJbIZIQEa1oe5/UtbsdkUbvzDeKrrR841Mdiglk2ogHRhYazlRsoNASMbKiF7eKfkavCRjt22I8JVCwbCMdXP9FBe5+SqO6pw9F/q4Wq4k+wbg8WJqHBwz9c28e6L3QDMOyOPUy/OY+6pOSgKPPm7Fv7xyz0UjnNwxqWFzFuQS1VN5lh3tGfooc3zU3+PJGB8bsLbe3cxwO/Xn8DzD+5m95YwXc0xuprjYJoomopmU9DsCkZCEO7T6dht2WXOuqKMT32nZq/PNRRjGFHCO4LnxHDf9aR3BMCjt+/gvw8M8vq2KZTWugh264R6dC7/XgV6XNDZmqCzVScWMXF7tZR3h9ur4fJpzDy9gPzSgT7vsgmLU3/f8MAk3nq6E3+eDX++nUC+DYdLTYnR5VP83HjW8jG1Qzb+vW126u+oabfCI7Yl8OXYaNwS5aW/ttG4OUKwW0dzaEw5LsDRJ7mZeYI/5TUxUr84eJ4wtH883Ps0OWaUDEWKEocBQ40jYRHkPV4jToxjOB2fkjPqMcIiSDM7U2IGWJ4GLryUUUkVE4kRIU4MHzmplbdxYeVocCteOkQzLTQRpo9u2jPOMYGZqXAcyRWmy/oNyqVUpZJvq2hECAKWR8QEZrKat6liAmVU9wsXlpgSJUIzO2lgQ3/Ij2kUUMpmVtFBC0C/tGAn1m+wm6DMYofYQBzrB1NBxYufCGFUVAQmOgkcuHDjIUGCKKFU/ox8ihnPNHLUooxrfL+rccfCUIGiL97Bcv0VBDDHdjJ+Jd34KPTsk4XDlXfES/TSlfKCSQpfeRRxlHJK1n0+DIY8ycgM7QcNodPMTtbzHgBFjGOWMh/V6aLD2MN6/R2iIkQd06hiAqqi7tVzMpwQYQqTProIEcTZnxzaiRs7jjQjsxCWHDySRwBAt2hnGa/gIxcvPpy4UVAw+yVlgdmfN8fyTkNRKKUap+JOO85eixLDCBL0BYev7HCixGDjesLqj0xh5csJ6d0E9U5CehdOzUtbbCc9iRY0bDg1L07Vg6po6CKBYcbRRQJdWK8BWwFF9mo0xYaqaGiKDc3pQVVtbO56k7gZwaY6ieuhrN5xfiWfEqWSKnUimmLV/fn4o8Nf3wgkn4eEiPMqw4sd0zmG1WJJ2j7Z+DD3WXLMeOQh7/nBZago0d0W584rNrFrU5gbHpjMtOOtexI2HeRo4ayr/ruaY7z73zb+cncjen/yZZdXpaTKxayT/Hzqm2X0dRvs3gPlEz2plbfhPp2+thiltS62rQrx+uNttOyMsvbN3oxznP2FEj57UzUappVjaFecb521Bj0hOPasPEIhwe6tETRNoW2XNaZXNfjfh6fz00vXcOLFRZz+6RKqpngRgJEQdLfFWf5SF4//YieGLjjzC+NY8NkS/nL7Dpa/1IWhC+xOhZwiB+2N1rzgk9+p5qU/N6feazaF4irLIBaPGnhzbHTuieP2aZRP9BDtS9DWFCcWtuYJk47ycdHXyxh/YvYcU1+a+HrW7R8UQwWK5t0Gd35pE53Nca799QSmHpv+HdTGsMo7KuxZwz7tbRkY2dA2VGAY+iyO5F2R3Pe+67bzxpNdaDYFT0Cjr9Panlds555X5mT1kNgXY7Dk8GKwMACgJ0xWPN/O/11r5a8pKHNw32uzCZsOtq/q45FbtrBrQ4jzv1TCJ64pw+FS+fj4d/f5fClMg50bwjRuDOPPs5NbbCe32IGW60VVFTTF+j4KIYhHTZxuDXWEZO7tTVG+c/q7lNW5GTfBQ36pA82mYhomRsLEMEDTwO234elfTT/vIwUUV42wKGkMDCdIjES2PBFDj5UMBWXogq52ndadUZo2R2jaHMYTsLFzXYhVr3VjcyjklTjJKXLg8KjEQgbR5L+gTiRoUFTp4rhzC7G7VBz9/zSnDbtL5cWHdtO0MYS/wE6w0/I+GMq4ejfzzsznI5eV4cu15kWDhY294a9bjk5d12emDP8cfeJ/q/jrHTtS73+/6aSMMjlaeK+excMNOWaUDEWKEocJZ2ifBCxxYZlYhA07MzluREEiKHppYhutNKVW34LlceDBh588mtnZv01NJei046SUSgwMmtmBiUmAPGtVK1HyKe6PqT0QrsOJi6NZgEtxo4sEr/F0mtdDCRXMUI4DLKPeqzyJgY4TNzkU0Eojx3EGPiUHIQS72Mp21qUM0oWUMZFZqKgsZREadmqYRBHjsCsO4iLan1xbIUGMfEqoUMbjJYALL6qiEhMRNotVNLMDa52WgR0nCTLVfj95HKMszIwrv59FiTPdn8u6PSrCLI8tIkgvE9U5VIrhEz0frnSJNtqVFnaJzalnJ5dCytU6XHjIMfMzwtR8mA17knQGG3jjIsZbPE+CGEWMo5J6CpyVxImwMfEuzeYO8tQSptqOwaum95HPRR7ep3OCZWhfxiv0kulJoKBQwfiUF89y8TodtFDNROqZkepLkmLFYA+2t3ieudqpFKgDsVOVYZLJqXm52Subl/23wHRmFx/UUPZQHMKVXl5psWI0j0mQGIwr+2rNmD1Bx+41lLrGow4VbIwBw0l7vJH1oTfRRQJT6BgYmCLdmDEhdz7jc44Bux1T6JjC2t8UBm0736PV3EWraKJMrWG6/bis9RlLqKiP2D8FQFD00GhspYlt/X1UMjCi0u+loZCrFOJVAthxYlcc2AwrZKH1z4kdR6of+7D2X3LMeOQh7/nB59cbTwOgryPOzz+3gmifzld+MYmJ87L/NtgVg/amGC8/1syy5ztpaRj4TVBUKKpwMfHoAG/8szVjX7dP4+izCnD5NF77ewvRkEl5vRs9YdKyI0b9UQF62+O07hg4pt2l8v3HZ1M23oMQghsXLKOjaWD8XVzl4vYXBoztN37kXVp3RPHm2ph+Yi5Lnm7n+j9OYfqJuQC89VQbf7tzJ10t1jxh4jw/n7u5loJyJz/+1BrCvQbnfHkcx55biD/fRiIu+P75K+nrTKAnBBUTPJz95XGUj3dTXO1CsdkI9+o8cd9OXnpkDza7gh4XuH0a0bCBGGLX9+bauGfxsaha+m/g/hYkshmwAMK9Or+9Zh3rlvTy0SvL+MR1lWnhmw4GQwWGsOkY8fOhnw0tv3N9kHeeamPlog6at1vPVkm1i/O+Wk5eqYNJc7w4PenXLMWII4fBIoGhC244czltu2JMOj6XUz9XwdxTc4iGDB7/WQOv/bWZyilePntbPbUz/WnH2Zvv8EOb56fldzBNwW+vWsPqlzsyyqoazD6jkK/dOxmAP31vM6//vYXjPlrEF346EVv/oyuEoDvmRI+b6HGTHGecb8xbwmd+PJnjLh4+x8KBYqjo6Fet7+JYBImRjpMkGBRseHE3cz9SmBbCaeixdq7t46GbNhHuSRCPmMRjJoloekd9yqdK+ext9cSFzWrPRL8gZMKuZW0se66TZc93Ujfbzzd+PyNrIu8rJ72atZ6D+c1Ga9Fke2OUN/+5h1ce2U2kz0BRwWZX0OwqNpuCAKpm+KmY5MOba8eTYyMnV8Wba8ebY8OXa8Oba8fuVImadq6evGjUcx+OyDGjZChSlDjESYoRYIVCelM8gxsv85QFOJO5EIaMlOMixjbW0sg2NGyWpwNeyqkln2J85KKqNnQzxmreRkUjjyI8+LBhp5WmVFLhKupx46WBjfTRDUAl9UxSZhMXMbaznl1soZ4Z1ChWQjZdJHiFf6fVaSKzqKQ+ZZiLiyjttNDIFvrowYUHAx0/ucSJ0kd3f2inMnwEUom0V4g36aObYzg9Y6Vw3K6zJvE2PjXARG1uyvBjJtINWavNt2lhJw7FQ1xYwooNB35yCBMi1i+2WMlNKyhRqsilEHWIUW5fV9yOxnDCxC59E+v1dyh1jWd27pkA6C2Zk8XDkYgI8SbPZmwvppyZyvEZ2z+sxjzJyFg5dbbRzC66aGMmx1OslKc+XyHepJt2JmlHUabUZHxnRxMkRlrZbgqTTaykie3MYj55FBInRpwoMaLsYgvdtHMKHyVBnOW8QZg+wAqzp6HRTXuamAuk+miA42xnpXlCZRMmPghRYqyCRKoe4WHctPVhQioMI2AId/ZwgEp00MrL7iGra/2+gf2FsAQKoWMKA6fmRbFlMbr018swEyxp/hu98TZOc3wsFY5Q8VhGsagZxKX6Ur9L/+38HQBn+i7LWs/FoScJ0k25UkeuVoQuElYoQhFLvcaJo/e/H5wnaTAaGg7c1DGVUip5Ufwj9dng3/wD4Zm3P5BjxiMPec8PHkkxAiDYFecHZ72DAL7917kU11jhCocmBo6GDJ68v4mXH2xE1SAeNQkU2Dn5U2VMmZ9H1TQ/Cbsbjwjz4E2b6NoTZ+bp+QQq/PjyHWx6o413/t1CJKhz0qfGUT0zwCt/amTTkm4AZp9RwFd/OY1In87Lf97NM/+3g5M+XsJnbrVyPQkh+MZRbxMLDRilT7y0ggu/MyEV3incm2DDm10s/vtuNr7VRd3cAC3bwlTNCBAPG2x9t4c5ZxUx56xiSsd7KR3vQVEU/nrbRt59ppXrHptL6Xhv2nWHexI8dvNGbA6VT/9gEg53dqP9k/ds5YXf7SS31ElPawxhgtOrUjPNR+eeGO1N1ja3X2P2wgKOObeIKcfn0qd4M451/ZTn9vqejsZwwsSKlzr49VXrqZ0d4FuPzQUyw6wMDc2UxKUmRhQxkgLCSPsPZmgi3pGSW4+0Iju5qjweNbhq1lsZn1dO9XHD4/Mytn990ssZ2yQffu7dsJAVz7Ww4skmVizq4pKb6jnt8xWpz/9y2ybe+ucezvvWRE74dAW5zvTvx2iCxL0bFmZsS343hBA895udPPWL7Vx252RmLSwi1htndzP0tsVY/tQeVj3fwrefOQGvT+OR/13NliXWIqe6o3IpqvGw7d1u2hrS5wkun0Y0aJ3jqj/MYvL8/L1vmA+I4YSE4XJPGMMIFR41ey7T4fqgoccfnHh78D5CCPS4JU6Eowr+AieqpuDMmlNHwzQFv/nyCjYu7uSGp4+jpt6R+kwIQdeeGLmlzpRYkRQJ/m/D6Vnref9XV7H21Q7mnVNE/fxCYmGDcE/C+tedINKTINSdINSTINyjE+nVs6bws7tU/PkOTrusgpM/W8E1Uwf6s5+v/0ha2WunPJ+1Locyh+KYMRqNEo9nfy6Hw+Fw4HK9P48kicVeiRL5FOPBT4A8cinEo/gOCeNg0pAUFzF66OC3S35OfX09+fkHr9P+oDlD+yTbxFq2ibUA5FNCDgUUUkKOUgBYHXGEECt4kzB95FFMF6248VHPdBw4MRSTGBFKqbbCigxd+tNP8rEYEBFiLGUREUJUMJ7JykC8xo1iBU1s5wTOSgkFutDppKU/WfMe4sRw46WGyXjwkSBON+200pSKId7DwKoCFY0K6qhiQloM+NXibcIEmc0JgIIDZ6qOqiO7wWuoKLFbbKdZ7MTvKsar5eK35ZNjK7JCiHR2oYsEPXT0h6vaRYwIuUoRBUoZURHCxKBam4xfyUPRMn8892Yl9kicXXFN6u/m0CZWdD+HXXFS5p5AwoxR5KymxFWHaO38QM53sAiJXvroQUEhRC/dtNOJJbYUUsZs5YRh9z0U+p9DlaO+8vO09+/+9toRy8+/5C6UIZ4ob/79Wx94vfaFwWLBG+I/RAnjJcBk5pDrKEHtH5BuNN6j2dzBLO0kcpSBHDdjFRCziRImsIcGGsR6IoSYrM6lUp2Q+lwYBjvEJjazCg8+HLjoph0NyzCfFBx8WL+hXjUHDQ0VDQWFHtFJo9iCTgKb4mBhwRdSxza6u7PWU6utzty4FwMpfVxB9uMGM8UKw28NtmwtPUMOMnL86DSyeFMInztdjBiCGXBnbFO7QiOfJylQ9IeQCiW6eLPpYTTVwcyqCyn011nHFiYrNz5Ka2IHTsVDob0Cr6eIUKKLkN5Fwojisefi1T24FR9dRgthNUTMCBMzQ0wKnEB1LMs9GPR7oHo8mMJAF3HiZtQSLkSMaG87CeL0aN20GjvJV0sptlVRpFXgjGUXc5LixJmuz6Rt39uE4Psb0zR56623WL16NV/72tcOqcmGZP+SnCfUzy8gr9zDuKkBqufkUTrBz41T/3Owq8ft684BIBbS2b6skytn3Ud9fT1FRUVZc7scjvx642m89fgeHrlpIwDj5+Uwfk4OdccVMvH4gXlCqCXEn/53HVuW9TD15HzWvdaJr8DBJf9bS0G5i2BEo2NXmLnnleHyWX2SqmTOFUKGnYAaSRlr4hGDn312JY1re5l2ehGX/9/APOHVBxp45u5NXPfP4yifbK1KTsQMtrzTxfpXWlnzcjvdzTH8hQ4Wfrmaikle4hGDbe/1sOqldoLdCermBFj90sA8QbMpHHtRKad/oYqS2oF5wr/u3MLSp1r4zj8tQ7Uvz45m37swJGtebuflP+2ipN5HcY2HcRN9VM4I4HBpmEIlHjHYuaaHzW91suLZFtp2hCmd6GPueWV07Y4Q6dWZ/+lKao/Ky2qs+9+pmYtw9oXBxqmGFd388jNLsTlVjr2wlGifzsRjc5l7TjE2b7pAMDgEUzYj4GCBIZsIMdTDISrsI36eJGbaR8wPkelZYdW7tyXMpre78OXZaVzXx841vaxZZIURHjfBy41PzMvwWAEIGq4PrK0/jCT7xSSj9dWGYfCzjedlbD8U2niwWHDfZ99l27vd5JW5+NStEyiaXUKu33o+Xv3TDp65ZwtX/Ho2E4/PT/X/e2PYHSpMBHU7a19o5rXfbqZpQ4hTv1TL2ddOSn2uKibLn97DX25aQ6DISWGVh61LO9HsKk63Rqjb+r4VVrkZP7+Ykol+7C7NEmjtKi2b+1j55C7ad1pRL3685qyD9rs1WuLrwWLDcILEWAWM5LGGK5+t7/KosYyk2IOJ9n+WPHaoO8GPzlyMHje55IczmHV2KYqiIITgiR+u4+2/7sKXZ2fyCfkUTwzQsStC67Ygfe1x8ivdjKtzU1zjYeeaPnauCxIN6XTuinDCZ6v5+HfrM84/2PvLpeiYhiDSZwkWoX7hItYTI9yTYMeGCMv+1UTlzBxmnlnKlFOKKKt1Zb33yed3b7/TBxohBCtWrGDRokVcf/31h8w8IRqNUlvto7l1eO+9bJSWlrJ9+3YpTHwA7JUoMZQFfCxthd/+5COOS1N//zf6CBs2bOBj0z6HThwVjQ5a6KQFMSgmnxsvtUwhRgSlP63xXU/+gPPPPz/j+NlWRj4XfGjkOvWHdHg+8Zd9vaxhObvkawA82/L/UtsSiQTHO86ghw666aCHDhLEKaYilbw5aQCrVibhVrzsMRvoIdNoPUmZQ6UyYFgbTpwYTFgE6aadMqrTOkRdJHidZ8ijiErqyaMoLcyOlV+igwY20M5AUiMXHnLIp51m7DiYyGwC5BIhRAfNNLINBYUZHEe+UgxAi9jFapakjlHFBCYqs6w3SvYfrWzCgWLP/oNlRiJpxxFCsI6l7BEN2HHgwoven4OiXBtPrlqMV8nBqwRSCbI/CFFisCABENF72dz7Nh2xRmJmumEul0LqmEIexYfl5HqrWMt21qOiUc90yqklQZwGNtDINo7mtJTwNpQjXZSYdU268LDyPkt4GCpIAMSD3TQvf4FYTxuKZkNRNYRpkAj3kOjrRk9E8eSU4i+oIVBYS6CwFntO9jwFbz164MWKpGDQIDawky2ppM8OXMywz8cm7EREiNXGYgQmHvyUK7VUMnEgXM4YV54PDpf3nniVKCGKKKdOm0ZgsCdDf9/yduxZeunCjY8IQRy4OEo5lR1iA7tpAGA806hVpmTtjwAiPit/hN828KwfSFFiJEEis2ym54QyVBx19g+8h+mThC9TdAAQjmEmE8P8RKk9oQExYghGgY9QpJ0NW/5NZ2gHHkc++b5qEnqE1t5NTCpbSCTRQ3vfVqLxXrz2PHz2fOyqk5DoIxRrJ5LowessIE8rIWFGiZtRCp1VjPfPA7XfG68ze2JwsMQJcjMH3OaeFpr1BnYlNtJttiIQeJVcimzlOFUPhtDRSWAIHUMk0NExDKvd7YqV3NuBi8eXP8KMGTOAg+tlEQwGmT59Ojt2DMTJPVQmG5L9z3DzhBtfOZ2fnPLSAanDrWsuSP19y7Qn2Lp1K2+88QaPrbwdp8fG9mWdbHi1FT020Jn4i5yc8tWJRHsTKKqCzalx+Zzv87GPfQxtSF/947WZxrjvTnt6xDr9YM1HAbh5+vB5aPaV5LEHH980Ta772/E0rOhm+/Jutr/XTV97nGmnFRINGuze2Eek15onzDyrlOlnlLD4zztpeC+zDzv9SzWcd501T+gzXOTYwhnhdAC0QfOuvvYY6xa1cszFZWlCgKGb3HHmG+SWuTj9SzVMODYf3TnwGyCEYM+GXt58cBsrn9md2u4vdFJ9VB473uvC0E3O/tZk6ucX0r07wrZ3Onj7sZ1E+xJc8pOZzDjTCmuyY3kXv/nsQMie6R8p5dKfDwgkY2Uk49tgw5sQgqd/vpWXf78dd8BGbpkbUzdp2Rpi9jll1B9fQPF4H8V1Xtx+a57wQRhxh66WDXUneObnm9n4Rgdde9J/zyum+DnzqlqmnVqIqinEBgkNniwJa4eKDEPzSAzOA5FtBfJAOQeuYUSIweLEaHkllv57N4/daC3KO/sbdZz02QrCup03H27g5fu38pl7ZjPzzNKs5zkUDOYHk8H9IsCt061IBkONlwDh7jgv/76B3Wu70eyWQVyYgr62KL0tUcJdcQprvNTMzaN6Ti61c/MIVPqzzj1H6xv3F/duWMiSf+3m6Z9vo6/NeradXo2P/3QWRSU2In06D127ikivTqDExdyLKjjlS/XYXdpe1fveDQsJmw7C3XF+/4V3aN7UR/3xBSz46njq5qUvig2bDv553duseaGV/EoPnbvCOH02Pnf/cWxb3MKiX28G4KiPVXLRbTOHPWd3U5Bwd4KK6aPnEt0fjCZIDGY476fBIZ6S/ehw4kXCzD4fGOqVlSo/jJeFR42nxIhsdDTrPPvTNax7YQ85pS7qj81H0RSWPd7Egm9MRI+ZbH6jjfbtQQqrPRTXefEXOujYFaFlW5jOXSFySt1MOL6AaFAn1BmjbFKAj944JSXq2tXhxViXomf9bbUrBpvfauf1hxrYuqQTPW5SUOlh0smFBMr9xMM68bDR/6oTjxgkwglMQ+DJc+DNc+DNs/PDz/yJ44+3ok4M7g+SfcGBZN68ebz77kCujENlnpAcw25/t5qAf2zPeW+fSe1ROw6Zazjc2StRwoYdO068+CmlklKl6oAYBRfYP8EesYOg6CIsgvQKyxivoKBhxyBBjlJIqVZDoVpOPN5HhCBNbKeTVjRsKCipUApu1Y9HC6CgEjPDKH4fvqANr5KDRw3gUJxo2LEpdhy1ddg1F0IIYnoQNu/EoWSPlQ1gHj+DF1/7btbPzpr1fQD+u/KHWT8/s/Zawr17sKsunKqbxsgGWmLbCdgKqfZMxx4f+JIkRAxV2GhIrKEltg0vfnzk4icHHzk4cKF5vZjRKC8bj2dNApqNHAqYy0mppKBjpUlsZxvriBFBw0Y+xal/HgYGLAkRJ0bUMr4puYRFkMX8l7mcnBIeBq4xzmrepos2JjGHCqUOIQTv8moq0XYJlQTItZJWK37ceHEwoCIPZwBMihKmMNGJ41BcliCRBSsGvJFqE1OY7GQTjWxLC8XiUryUiEqqlAkDoaWE+b6/I2don8RWZiXT6wvt4a3uf6Xl60jiwMXJSuak+VAkeV+azG2sM5eOWDYZLmwwR7oYAZmCRBJHS5Te6B4SwR4Umw1VsxPcvYWWNa+i2Z34yyYghIEwDFRTweHJwenMQbO7CHU10dexnUhfW+p4FTM+QsX0j2Sc50AJE2dP/A7PbrojbduZrs+QEHFCoocViddTAkU2pivHUapUAWArLUaMkMj5v70PpL0/xnMWSyPPMUGbTa1t6rD7GUJndXwxPXQwQZnFBvEeKionKucSEj2E3XHytGLcqrVCVMnJMniJRKEoi3dfT1/m+aqKM7Yp0Sx9vC3LwGqYn/xEzthWeTjaM70VMgSJ5KlKsouJhs+J1pPunh4tzz6gM/uTqbp3pt83ZZjrUMIxjAJf2jYhBO3dm2jv3kxX11YiiW6mlZ/LuLwZ6efqX02qDhJoTNNAUVQURcH0WW2kNbZnPTcwrEAyNKSVmWOt7FXDcRJGlI7QdtqCW2kPbkMXCTRhJTfXFGssotnd2FQ7IpEgbkaJiygxM4xOnHLHRKboszNOmU2YOKvwK1mrl+yTTWGgYF1vUnQZzLN7fpV1f13Xqa+vZ8eOHVRXV7NjhxyoH0kk5wlOnw1XwEHheD9180uY9+k6fjLrX/v9/N9ffj7rnt9N05puuhvDNK7uItQRAwXcATvRoE5xfYCpZ1cw6fRxxGKCSFM3q//TxNrn9+DwaGg2lUivNU/QHCqVs/OxuzSC7VEUTaW4xkNhjZfCGh++QicOj4bDY8MecOHJdVheCB0xFCHwFTqHXSQSM238eObj2a9j9UUA/HBG9ja78b0LCe/pxebUyCl1s+HlZpb9fQfF9X6O+XQNgbKB8EGxkI5qg5X/buS9fzRQUOWldKKf0kkBSicFyCl1ETGd5Ngi3H/ZErYvG15cHUxBtYcrHzkOX77VXw4WJYYaVgYnb92wqJnn7l5L564wNqdK7dEFjD+2gLrjCimdFEh5XMRCOn3tURLhBGWT/Zi64OY5z3PJj2cw8bx6fLaB/jkRNfjrd9ex7r+NLLiqntO/ZoWJ/ctNa1n1bytnXv186zz+Qie55W4KKj34i11ZY4cPJmmAM01BuDOOrzD73M8QqpWwNmzg9NpS+7z7z50sfmgrXTtDqZ/dQImTCaeWc8zn68mrsO6VgcpPZ76/BX63rrmAHM2aw7TsSXDfxW8S6cluuPvpmjOzPptJg95wIkNSyBjOCyJq2kc1vMHY80okjXmbXmvhz1e9k/G5ogwMZ6YuKOGy+9KFpyNdjIBMQSJJJArBbe10NYWtWPcOlT0benn199swDcGEE4sRAoyEiRDgL3ZRUGoZOJs3BWl4r4s9mwbGpjPOKuOTd8/NOM+BEia+u+pigLR+9fZ15xAL6bTvCPG376ykbdvwnrZnXjeZk744HoCw4cCuDr9aeqgh98qnz+K35z/H7IurOeeWgTYYegxTN3nuzjUsf2IXF/1oNs/dtZZwd5xvvfQRQm1hGjZEKZqQQ1H98GOmHFuYoH7wVmSPlMB+MMOFZsqWcyJhDrOoCDXjOMPlrEgew6Nlnnc4oSJbYvHtS9vZ+EoLW5d00LG1l4XXTEo9F0mS/dJgYcRImKg2BUVRCBtW/+YcoS8c7joyPMX6j2VXDRIRne3vtLPptRa2vN5KuDuO02NLjUOSr6rbgaZaAmO4M0awPUqkO874k0q49JfHZHiUZRMmblh1ybB1T12vpqCoClqWFWPDjW8AFixYwKJFi1LeKIfKPCE5hm3duHeiRPEkOdf5oNgrUeJULkitBk+yv42DMwML2BBcTELE8Gm5uDU/OfZicqJ+cmzF2BQ7Qoi0AZZaaBl2hBCE9W48thwSE8aRSERoXf4CUTNI1AwhhIlWXIphxIiE2wmH2zD0zBUjds2DbsYQwuosXKqPgL0Qr5aHK6rixodL8eLGA/Nnp+1r6xkYPAshCMU6UBQVh82DECYdbRtoC2+jJ9ZMWO8BBKpio8RTT2toCy7NR7R/ZXxN2QmU5E1lx6YX2Z3YzETn0VQ5ptCY2ESf0YmaMHHhIZ9i/J7SASEgGmSX2MIWc9WY2vwk5fyMfA1j8aQQQhCkh3b20EFLSjjwk8exyoJ+j4lONrOKHjr6k23n0kIjuRRQRg2lVFlhpfrpEm28i5Vg6CTOxYELgaCFXexhJ1FCxImlxe62xCobGpolLuHA0S+mORQXol+ISBCnk1YihChQygiQi0fxU6pUoyoqwhjdhUsXOmF6CSpBekUne2gAFOYqJ1ur+7O02958ZwavfAXYYq6mia2cWvA5FFRCnbsJ0cs6sRQFhUplAjXK5P4bMvo9O5gIIXiJf45YxkcOczkJhzIwCJOCBMz92s8x+rtiIUz6GtbTs2UV0T07ifS2ZhieVc1O8YxTKJ1xGprDakt7OLPrF/2T9FVP30mkpwUAT24Zntwy3DmlFNUcxbtP/GA/XpklQozEUIHiNPViYkSsRMhYCZGtvw1cecUUOCvSwlK1dW2kTW/Eobhwqh6cihu3Mxen6sWeSB+sCSFYGnqWiAhyouOjGYnWB/cRe8wG1phLmK2cyEqxmArqmKTORfNlxpiGYYQJnydjk+nNNISILAYFdcuuzONl68P6nw0xccDbYqyChJrIPJ6iDzOEUEALpU8QDF92o47uTTfYC2VAjBiKvW9goG/vTBeSo2W+ocUBcO1MDz1lCjPtXpqBfZvkaY3t4Mnu8THYcyVRVTiwTyj7ZE0NW9vFECFJ6c2cSIt+ocoUJqvDr9Ch7+akks9h64uTEHHCZi8GuuU56vNiU+04NR8uzYuqaJghKwyhIXTsimU8VTSN5uhWVvUuQiBwqG6cqhuH6sGhurGrDkynHTMSTon0Pi0Pny2fJ9bcz7hx49B1nXA4jGEYFBQUyIH6EURynvCtN8/D6UufJ4w0Qf0g+NivTuaFH71LX3OYvBo/gTIPpVPzGX9UgNIZhbgCjox5wmDjSteuIP4SN9gd6DGDzU9toqsxTG9zhETUwFPgxkiYdO4I0rkjSKQ78zvszrGTiJnoUauP9BY4KZmaR0Gtn6IKJ3nlHvIqPOSO82A60vtBVRnoQ4UQlhHbFHjyrVjYW99qY+vrLTSu7KBrVwhTF6g2hUmnj6NhSSsuv51YMEE8bDD7E3XM+lgt657YxtK/NjDvE9Wccd001j7XRMM7HShuB4XFGnXHFpI7sTCVt0g1Eiz7WwP//emaMbX5lx9fQNH49O92NkPeUMOPEIJd2xJse303299soeFtK1Snr9jNlU+fic2p0ba5h1fvW8PW15oJlLmpnFvA2mcaKZ4YYNZFNcz8aFXaM9a2tZffXWx543zhsVMpnZILAja9sodVT+ygc1eIUHuUaO+geYKKJSi5NBxeS0jz5DnJr/HiK3AhFJVob5xIT5ymlZ20beqh8qhCymcVEChzM/38auzu9DAggxlsdEpEDToagjRvCdG8oZtVT+4kHtS5+O5jmHBqWVZD396IFEMNz8v+1sAzP1zFt187k5w8hc5mnc6dIf5711o6d4Y4+pM1fOQ6a5GFliUs194w3GropDgRG0PoJxjZEHzH/GeJ9g3vjeH02fjS3xeQM25g/LS/+5zDgetXfhKfZtkghBDsWNbB6meaaFrbTduWXswhYzfVpjDv49WccuVEfAVWHzWSEfnv17zF5let6AeugI0pp5eSW+pm9kfLuefs/Z/PIylEZGPo/f/usvNS/Xkiaq0sT0QNzFgCl89O2dFl2BwDtoeWNe2sfqYRd64Df5ELf7ELrSCAv9iNP9+WIeo9c9M7bH6tma89fQae3IH+3a4aBI2B8WXju2389YqX+ejdx/HfW5dRfUwxF/zseLS9iC6XzQgcNIZfLPt+8GkDNrGxChKmGCZkU5b9DaFk9J/DnUcfIi4kn+3hRI2kGDFUqBguJ87QdjV1E3XQeHzw7/RQhrtmsMSJbF4QkC5sJAUIGF6oTfaRg58pAFuW8snrEabgxbtXs/TPW7ni2fPJLXMTDyfo2hkkHrS8KjAM7C4Nb5EbX5Ebu0tDwcSIm8TDOi6/PdUWO5e18fg33yIR0fHkOfHkO/HmOfEWOHHlOIglFIy4gRE30ewqebUBCsbncO/5D1FVZS0Q7OnpwTRNCgsLD5l5QnIM27yxaq9EidJJOw+ZazjcOWQSXQ8NO9DW1sYpdRezKfQ2BfYKJvvn49EGzi0iWVbGOgY6GsU9YCiI12e6dEaKBr78zm5r8CSEIJEIEdWiGHoMQ4+RiPURCbXj6VHwRDQModObaKNXbyek9xA1g5AadCt43IUUFkyiKH8yAX8lkXEeelu30Lz1Lfr2bCZhZK7G93vKyLeNw2fPx2PPpS28jfbIDgIVk6medAbOPUG2N7/BrtZ3MIWB3eZBVTQSiTACE4HAby/EFAYRvRcTA6fiJkctwqvm4FVzcCdcbDVX04llaCzRqlFQ8Ko5eHQvfnJx40FRVFS3C3NI+yqqgjAFpjAI0UeUEDo6CBMPPrwMhC9qFNvYwHupfb0EmMvJvM7Aiol6ptNJKyH6iBHBhh2dBC48TGRWKnntcvEGHYNCPuVSyCzms4ed5FGIX8kFrJXKESXMLrGVJrZix4nZb5gcHNJLQUFBxYkLGw48+MilgBYaiRImShgbdmZrJ5GnlmTcK6FnGRgPMm4lRJwV4nWC9DCXk8lR0lc+74tBffB3Y5fYwkbxHm7VEudiZphevQ1DWM9wHsXMsy/IepysdT/I6CJBkB7a2E0rTUSwDHAKCsVUMIW5B1wIPZSYd8U9ae+X/eE65n7N8pAwDZ2uTctoXfUq0a4WPIFSfMU1ePMr8OZX4PQVoGsGpqGjOVzYHFafaIsN3+WL1ErFLnYuf5rOHSsAS5iI9LUhDINAST3ugnHY3T7sLh82l5+/3Pk1ZsyYgd2efbA3GmfNGPAuU2JZVpdkGbE/u/721N9n116HvrMpo8wLxl85u/wbqfftvj6WbbLC8tk0J7qRLkK7VB+5ahH5WinFtkpceaUsaf0nXfEmcu2llLsmUuke8JgwBoXt2WKspklsI4d8euniKOU03JoPVdFQ3S6UoTlvcvwZ9dWLM12yswkBH4QokXbe2ZlxT4caxwEUPXMylFWUyDI+j+emX7+jJ5EhRqTK+jMnGVpCpAkSaXUd1B6mY6DeztYsXh1RHeEe/jnNdt0DOyuovdm9chR9oK2NnAHjiOnOfo227uyeednuj9IbwszLHHuprZ1s7l3C1qDlbWZXnCTEMEnJ+9FUB6aZSP0uejxF1NQtpLhkOkveuodopJuKqhPQVBvxeBC9t5u4HkY3o6iKzXqedWF5KuldKa+9QCDA7NmzOe+881iwYAFHHXWUHKgfQRyIecLX3/ts2vuf1v+aT/x8Ia/ft4r82gCn3zCHogm5qc+NLIYCfZABw2sb+K4MNXgAJMz0viBpoAl3x+jrNoiHdBJhnXBnjM4dfXh9Cp5SHwhoXt9Ny/ouOncE6d0TTjMA5pZ7GH9SKRNPLaNybgGGw0Xzmk6W/2UzO99uJtie+R3Or/VTdUwJxXVeCmp87F7dxdr/7GLcnCKOv3Iabp/Cske28M5Dm4iHdBxeG558J30tEehf8VxYH8A0BH3NYRIRA3eeg4pZ+RTW+imo9VNS52HV040s/UsDABMWVqBqCnnVforqfJRMySW33ItmVwnpTgK29D4sbDrQFIGpm3TtDNK9yzJ6CMMgt9JHQa0fd7/BbturTfzzfwaSFttcGlcvOo9fL3yGeNjq50+5ZjpNy9voaAjStSuEw28nEdZx5Tg4/qqZTLuwDkVRWPSjpax5fGvqWIEKL5f+5Sw2/mcHhRNyKZtlicJ6zKC3KcjmF3ax5DdrcOc5MRImRszASAz8tqk2BdWm4sl34g44CJS5qZ1fysYXG+neFaKv1bruC+8+jvGnlmfcq2zGN+fgHA4RnSduWMrWN1q4+BfHM/6ksrSy++I1MViY2PhyM3+55h18RS7K5xQQ7Y7TvL6bWL9hv6DGy5X/zvR+hZENbzC88S25Kjib8W1oqJXU6t9RDG9gGd8SEZ32LT00vN7Exheb6Ng2sEK/7oQSzvvhXHwF6Ua6I0mUGNov/nruI1y/0po3mrrJ5peaWPanjTSv7SS3ykfVnHxKp+ZRNjWX/Bofuq6gxy2jZPL7ma0/HGoEDnfFePVX61nxz+0IEwrq/PS1RIiHdMbNKqB4WgHufBeefBeefCffn/8zpk+fjts9zEKOUUheUxLnkJBiMZF9XHf3rAGP0WyeI7dO/3eawNG4Pc6fLnwGALvHRiKiM1hb9Ra5KJ+ZT+VRhUw4dRy2knxeuu1t1j+5jcIJOUw8s4pjrhiYJ2iDvlOr/rmVF3/8HjMurGHDc7u49MHTsI/Lx+ayEbBF6R3iBRGwRQnpQ0Xsg7PgMFvopuHCLiVJ/mYOJ0gMRc8iMDi17OP+ob/PyfMN5xkRGxQKyq0NPDvZnvXkszXcM+VW40SGERqcSmLY/QaLBxFjoMxwXhWxYcJX2dXMZ8CmGBnPCoBNNVj9z6289KNlALhyHER7Rg73a/faMKKGJVgAvlIPR10xg0nn1/GfbyyicWkL0y+ZgKfARaQzSrgzQqQzRrQ3ngr7pjlU9KhB5/ZeEv2/6V6vl+nTp3POOeewYMECTjzxxENmnpAcw+7eWLFXosS4SY2HzDUc7uyVKOElwDillgqlHptqy7qSfF8MhgvUj7NJrKCDPZj9RvYEVkdWlDORaZUfxW6zfsTU7oHBiOgY5GrsyOwAjMmZcbdNu5omSCTx7k43NEQLB8p4F63LKK8U5BGrK8Y0DWKxHiKRTqLRLnp7dtLWtQE9aoWa0OwujEQUT04Z+eXTCRTUWmbx3Z0IYZLnr8HlsB7knsnWKk9nd2a7Gk4V26Ymuvp2UpQ7kZ5QEx09W3A788iN+slxWOE8DKHTFWuirXszQaWHoNGdloNAVexW6BZMFJSUYSKgFlBvn4OJji4S6CRI6JH+v+PoJOgT3YQZLMKk48CKcW1i9JeD2ZyADyv017u8Rh/p7uEatlRoqXLqUomO53MWHsWHKazE3DEiNLKVlv7E2AmsDrWUKiYyC4dqPR8NYj3bxXpOUwcGGKaw6tMidtHIVvzkMFc5Oes1rBVL2YMVE7tem4WXAHlKMXbFMapRf7tYTytN9NFt7a/OoEYMJLraV2P62UVfTbuW9vguOvQmevR2nKoHEJh+D23t65gw/hwqK09Ae3N1ap9DTYzQhU4vnXTQTDt7CNGHgkIeRRRTzst7/kNpafbYsEcaQ0UJgLiI0L52MW1rXkcPB8mpmUZ15ckECmrTC2bp2g2nytDxl2d3diNmqOL/s/fecXIcZf7/u9Pk2Zx3Ja1yzrYs55ywMQaOnHO4ABw+4Di4g+PIwffFHBwHHBkTDdg4JxxkyZaVbeW4q815dmLH3x89PdPd07uSbNmY3+l5vfTSTnV1dXV39VNVn88TIuTG+hClEJFEHbqaY7hvF6NHt6Omx9DyaQy1DEpISoTqtkXUtC/hqdu/SX19cOgegGw2yzlXfoRQpIpwtIaqY9mKOkZ1DHkwFUhIFJISE5PdTPTtYzTfw1jhOHOrz2Fezbm2VxsWRlUMVc8wMnmYkclDSFKIWc3ncrDnYcbSR2msXsDKOa9FO3qYQsQip6eYKPQzVuglVejHwqIm1GLnIxJkUtoQqpmjJTyXRYnzCGNvHoQiEbNz/EEGCodJyHVMaDb5G6eK85Tr7OcT5BnhIybM6ligN4F/7W5EKhfRSqryO5eyAQtP37jQA7wkTpqQMCrHWKHe2//wSKGCkADQo5XXcEgxwbQCy90SGTk5vaZMBf47UiQ0jFjlGkJU7blYDAqN5SKLtKayh4aUqeyXMI3Xnf+5WqKIYAZvOq2AcErCwAjpBpnxdDd5dYxouI5wXQuyHCmGnRLR9Tzm0CAFbRLVyCGLIZucqInT1/s0oyP7icebEQSRdLqPmto5rF77HkL9k9DVV3FNx2jBskxyZEhbE7z+P17Gxo0buf/++0kmkwwODp5ZqP8fEmefkJyRZM7Vc1jy+iWEq4KtN3949g8Dy6eTD2x5E1u+9wz7/nQYQzexdJN8SsXUTdrPbuGSfz2XRIvtleYGGZKuUD9BgEdcLlQAQTFJCwQ8oDIUhAO6BIEHmiURkzRMwyQ9mGOiJ8NET4aB3WMceqSXyX573gsnbE+HmhkJ5l/eTsuaVuSIhD6RRcsbtK9uoKbD1jEFw77OVECNOp7lyBMDtK7vINWb4cC9XSTb4rQtTNCxphGwCYrenSPsf2KYkT2jjB1Nkeot7xOkiASmZYdoEAVM0wILqmcmufCja7AMCzWjoaY1tEwBNa1RSGsUJjVGD08weqTSCtuRcHWIeEMUQRQYOTAOwDVfu4jaudUkWxPc//FHOfKI18BAjkglD5S5l3dgGRaH/9zDK797KTPObsY0TDJDOdIDOfbf18WOW/cTb4qSKZIHsy9u5+J/Wk1Vm/0M9919lHv/ZRPv/fOriFSFSs9ksj/DwQePs+vXB5CjMm/6bTkcqht82/KDZ3jq2zsAOPt9K2idH6NjTQPxusgJwbedvznInj8dZeDZUUzDYtmr53HJJ9eVCLLnGsbpQ9veUPrbMi26Nw/Q92QvPTtHidWG7HlOFDn8SC8rXzuXSz66ygPqBoFo0aIFcxD4Nh1o57fadcC3qYA3h5xwW3vreZ2xA6McebyPw4/1Mbh3HARoW1HHwiva+d+/u53Ozs7A9v6viZ+UAFDUHM/88QhbfrqfiZ4MM9c1seati5h1Xos3J2SATjQQiEnedcxU+jAhFRjsymEZFnWdSbSczt4/D7Dv7mOMd6fJjeXJuzzL5IhExzmtzLqgnVv/9ve0trYGtgugqiqv++HLiNVHSDTHSFZVrgMLhkyVnAsch1pe59jOFAPbB+jdNkTXxn6WvGI2l//rupKFuGqIFFIqPU/107WxF0s1WPv2xTxz2yEO3NdFw8IaXv/Tq1DHsowM6Ez2ZxjaM8rAziEGdg7bZO/CWiLVISzDItWXYbI3w6zzWrjkY2uQ222dW6PkSOshnvr2dnb8+Fla1jTTu9k2uAwlQ7z9/lchKcFguhSAuaSNYED8hZaEy+vgRISEI0FEpp8ISMr5KcdixbnFelGfB8RUZMRU5Ke7vnu8O3OsW5z59rkeA8i6SIiT6ZNb/PVzRgh5Cs+yoPEiiwb9vQYDO4aYODpBoi1BXWeCSFUIQRIRJAE9p5MbzpIZzJIbKyCHJZS4jByROfxgFwfvO0ayLUG8IUr/jiGqZyR4yx9uOOFYtCyLzECG8cPjXKNfw+bNm7n77rvJ5XJomvaS2Sc4a9juve2nRErMWNTzkrmHv3Z5zomuq6lnDkuo8yXXfS7A67zIGg4VtgEQF6tpVjoJt8ykObmAkOwNfeEmJUris861RscCCQm1qnLSkjQTKRf8YcuDKW+7/babsVDvTf6aWW5Pqrl6W5lYlklmqJvceD/W5CSxmnZqGxcExvCUCxb52mAl5JAThi+MReKoLya6A2rsP1LRhtjeij4yRMaYIGNOkFdUcloK0YRxtY8Jzb4nWQihW2UFLyAiy1Ek3UIJ2+RARh0u1VWEMBEpQVZPUbAyREmQFKrRLA0DDRGROSytyBNhWAZPcDcFVwx4CZkktTTTwQDHUclzLleVn1fRE6HL2s9+azutdDKXJfTTzUF2sZDVzJQXkLFSPGU8QK3QxCrpggrS7Lh1mH1so5kOlgnnBD7zPusY+9iOnXLWLJE3tUIzzeIM2oQ5pbAfnvYtky3WI4xhx+IPE6VV6KRaqOfnO/+bOXPmPGfrEDcp4ZaBwhF25B/B1AqIokJry2oWzL/B9nZ5ZGvgOS+GaJbKID2o5LEAjQI5MuTJUSBbIpRCRGighXpaqKfZ4xHxf8kbYirxExKF1AjDOx5l8MhTWKZJY+daWhddTDLUWHmyVQnqmkql/lEm7TEsZ12bxQA9ZRYTVmbafLpW1dELGdTMOBN9+xjv2U1mpBsEgWR9J7VtS7j3V19j0aJFpXMufOXXGOzeyv4tt5bK5FCMULyGWhqZv/AGZMkLZqlahsmevYwY/YxPHmMy029/m4KI5QpTFgnXkC+Me84VBZnaxCxy6jjZwgiCIBGSYyya+woaa23SUO73nqMaOQaEHoYGdjFc6MK0dOJKHaqZQzNyLIqdy6zosvIjUxTyRpp9kxvpyx8gLtWQMcZpr13Bso6Xl59jxLt4CwKrX1BSIshLIoCU0HzhVyw5aOzYY8YB7qGSkIDK+QvK9+MmH4KIB3deOneuTDlfCdobYZHwaBAhUK4rT3oJOEH1giR6bdnDwfKRYcpYmdwwXcm4jXjlusIMiYSGK4k2v2g19pzgD0NV6p+LnNBq7bpqTQB41Ft5vp50uYIXw0gGES8A46kujnb9GcNQqY/MoKV6MYlwOeSUn5jwe1IC3Kf+ArAJx23btr2kLKDOyAsvpX2CBE7Kq5o5Naz5wBo6zu/whEF4LqTE+k9eyJNffByAWHOcWVfMIdaSYNFlLSSavfuEIMtHv1VmQlKnBFX84IhmiR7LyunqOkBJELigmjLRotW4ZVkM7x9naN8oudECDbNizLhoJmIQCW/KUwK6OVOhRsl5AA9HThbIyBkKUS3NeNckY8cmGe3Nk+7PIEkwemiCnqds8CxcHaLgsrAUJQElESIUk5DjIQRRYHS/bXikxGXCyRDx5ji5kRyp42nizTGaltQXCQ0VURJZ9bbFzLl0ZqlNCZsM+c1b72F4/3i5PCJR3VnN/Ovn07e5j4HtA7zmjtcgR7xA0LGHj/Hwxx9mxkUzOPtDZzO0a4jHPvMYy9++nLUfXEt2OMud77iTSF2E6390fcW+7NjDx3j8M4/RuKiWV33/ylK5e6x0b+rjgU9twCgYmLod4gIBWlY2MvvSmSx+9XyUYr/8BNk9/7KJffd0YZkW4eoQi66fTevKRr501beYO3cuiURwCMITiZuUcEvvtiH+dNPj5McKSCGRuRe3cc3n1qFE5AoQzQ2gPddjUAbfpgLeALIZkyN/Ps5kXwYsi/yESqY/zWRfhsl+GxQDe8zNPLeNmee3MePcVqK15fXKt9f8bMr2/6+In5DIDOXY9av97P7dftSMxpzLZ7LyLUuoXeTdi79QILBuShX18qpAfrxAZihLz9MDHHv0OP07hrFMi4bF9cy4sIMfvP+HrFq1qvQ9vvfptzGyo5fb3v1AqZ1wUiHRHKdhXpLzP3o2sTrv2rUwqTK8a4CjW0bo2zbI4O5RTM1ECksYhfJYrJldzfgRb0hPURJoWdWImtEZ3juKFBKRIzLrP3I2C663cwr4daea0eja0MvRP3dz9PFetIxGoi2BqZlkh7Isf8tS1v3DWaX6smCQHy+w+b93sOe2AyTbE0z2pmlZ28rl37y23JcAb6W/lHfEdOL3nAgiH5zwXx7jgJOYn93tezwaA8as5uqHxwNiirpTzeWq25PC5d3lNzhwz8XTHcu5wkSFAubvnKGgTPFe3WMtV9KnJ67reEoEjRcpYFy5CeTJonGGP+SiMx7HDo6y83+3kxnI0Lq2hVmXzaJhcQOnIs7aT1VVNm7cyCWXXPKS2Sc4a9hje9tOiZSYtaj3JXMPf+1ySqTERbyCEfrp4RA5MhTIESFGK520Cp3EqIyH7Rc/2HhN7btJ6SMcKmwnbYyRNSdQhAgz286js+V8RLH8wWu1XsDDEgWih0YqrmHUeDco7vAJmitchKQFfLQ5g1xTmOQzQ57yfGdlAtLIAdsa1iElHHHIiaD9jqiBnDMDQ6iYEqhVEkHh8ULpcv34sWKIm4CwHkYyhLRlH2K7z/rAZ3k5muvmqd6yS2M02oAix7BMHdPUMc2ip4Rhh2yojXYwkj0KwJz4WhYkbVDfsiyGGWT/2KNMqt5nFiFGFXXoRVjaSU5eIEcLM5nNIlLCBEetPWQoE0BLOZtWwUUqFUkAw9JRKRAV4mCZ9FtdPMNTLGYNYTHObnMzCiHOli63PRt8gN826zFGGGAZ60qJb92iWgU2cR8CIlXUMkQvYSLMFpcxaHUzag3SLHSwXDq/4nk6UrByjDDAqNXPCAMljx+wk3IvYCXhYn6EUwXeL73ajqWfbVJID3ex5/7/orp1IW1LLydW34EoSkSHNJT7nj6ldk+XGJbOfnbQyzHAQqHook2YCDHPvzhJktQEEnVnCAlY8ZFyEmvLNOh//E6Gtz6CokRpWnA+zfPPIxRJIudPqL49gLabmHAICUdEn9W7qJrFcyonZyfef77Gq6wk1ULNpRjr28NY724mBvZjGhr1c9Yyb9ENKCF7jrAsk20P/yfZVB8zF13JZG6QsWO25WGkuollN3wMY+sz9E3uYWL0CLm0TZ6Go7XUxWdSk5xFomUeshxm88b/RNdzSFKY+pr5NDcsRRAkO49ELEqD1oCQjGNaBv2D21G1LB3NZ3uIDzNs34ccEJrHnEgxkj3KQPoAo7lu2quWMWf2FUgTXiDYiEc4NrSJ/b33s2zmjRzoexDD0Lhw4QcIyfZ9+0kJgMzMynkzlPK+G0sKAOx9RdMRB6V7CXnfZVAkBjMkVoRk8rcdFEZJq6q0EjJO4npBhkGC4SUkphIlbQaSHgCxvjxmwDNxxjWANOnLSdFRNr6Q8t53IDneEgHeIYigVQdbhTvkhFrvfc9BXibKaI7cDC8oFUQ2uYkJqbiWUAJibot5b9lUpITnet2Vayp8ocfMgFBp9+Z+Wvr7xQjlc0ZeWuK881fc+zaGt/dz8HfPku6eINM3Sbg2ysyr59N53SKq51Supf3ym/O+4/n9liffzWRPih3f3cL4oTHGD4+hRBXm3riI5e9eg+Ia135gxLREYnKlN6AfUNFdv+MuUE0LCFkRlTQmtUgguOGv79RRfeCFA3oEeVgUTDuUR9CxnGGTELmAuNhu4CPnscr0rldzhkJSyZ+w3kR3il+/6g/lPjdESbQlbSA+r6MXdLSMRmG8gCAJtJ3dSs+mXgDmXzeXyz57buncI9tTbP+vpxjcVgzHKgAWROqiNC5vxCgYZIezFMbzCKJAbiRHy9oWzrnpHMYOjLHvtn30bymHcl3zwTWsePuKimdg6iaTPZNUz7J1+cC2Ae5+392sfNdK2s9t57F/ewxDNbjuh9cRb6rM97Th8xs48McDrP27tSx/63K7Tdc71fM6d77tjxQmCjQsa+L4Y10IksDZH7+AgccO072pj6al9Vz/31diSQEe/JZAYaJA71O99G7qpefJHrKDZQK79Zx21n/8XKJtNQD8/JzvVbQxnbxj8zsAe9xNdE9y29vupXZOFes+sJKmZQ3IYclDjrnFPd78JNh0x5yxGAS8gRccNHWTp7+zjWd/sw89pxOpDSOIAuFkiFhzgmRLjERLgkRLnOpZVTQuqUeUxApA+AwhYetFRyzLYvfPdrHjf7YgKhKLb5zL8tcvItmWOCkQ2D3GpwOBp9JvQfpwKrBYNWUKEwW6n+ih67Fuejb2oKY12s+fwUWfWFfyeLMsi/tvephjjx5n2avnoZsCe39/oNTOOze8idSBIfbdfZSerUOMHhwDC6L1UdpWN9K6uom6lW0k25P86Z1/YuLIBEpcoXl5I/Ovn4sUkhAlAUMJ07mqCiMSs3NvPHSMiaMTLPub+URqysRHpmgRLgcAvpam0belj64/d9H7ZC8d53Ww9O8uQAl7n7MoWBy9/xBP/OvDrP77czhy1wFSXRNc99MbqZ5VU6rjF1EwSWunnvvsROHYYPp8CFOeg0DCN69WzL0BIFggcREwRweFitJ9ZXFJDZyfKw0FtMB6UDQUCJjH3cSr//i0utDxCgvwZMwZypQ60pl7cz7jgiAjAkUwS2OxVC9gTLqJiew0ZIV/jAQlAPfXyerPzVPHvbZ7qe0TnP4c2dtK8iRJiclJk9mL+l4y9/DXLqeW6Fp4Zcma2U5aPEKfdZR+ujDQkZCZwVxkFGSUYpJhmRoaUAR7AAeREm7JGimOhY/RPfw0iWgTM5rX0VizEKGpMhSI37LSD5yEB2zAwR/TuQLMKYJuarJyA6BkigrhBE/JiNhtaPEABRktJpLz6T1TgdiQ3b6fiHB7T4RTZSUS6/ZaXxoJBXksj5GsVBBKv9fTQ2upQk4V4/tZBsdHtqEbeXJSjkIhhSBISFIIJWchJuJIUpgqqYGxTBfHhp4EoKV5FbM7LycSqSF0rAxeWJaFOjqILCgYlsaY0c9IoYdJfQSFEGGiyNjP18KkhZkkBHvTsN3awDB9rOMyktQGAtVBolsaz7KZIexNUD0tLOGsEujvFsuyGGOIHTxBHc2sFM6tqDNujfA0D1NLIyIiIwzQRDsrFTvU00FjJ0fMZ1krXUadL99EUCgzy7JQyZMjTYpxjli7sTCZw1LiJJGQiJLw9HcqQN4hJAAMQ+PJx74CgsA559+EqEw9OSj3b31REl6nrRS72ESeDLNZQiuzAt+DW4Lu1Z1bwJF7dn3+hNe//JIvVJQ9+OdPnvC8l6o4pISeS9N110/Jdh9izuwr6WhfjyQVww0EWMs7YkTLx/z6TtIClJlhVZASylglkKPVhAMTEKvFCdxvGKfKOiNHttD19O00zjuH+QttrwFdgadv/wyiKLPy6ps4svU2hru2IUoKDbPX0jT/XJ655z+JJOqprZ1LVd1squtnE46VvdQkn7W8UJzKpJyBHqvU5XJWrwSpg7zXisSEY8UOEO4ew6z2gsrieDnchWrkeGbwHgYzB+msOYu8nqY/vZfmqkWsqL8GyUWu5+d6LUuC8iecDlIiiDg4WVLCLX7wPCjsUtCY8hMSYoARQFBbgRJE8KtBuSwEYn1T53wICn/kEFJB35OWkIgfD/Z4kEbSGHWVoJZDTvhJDSNc2X7QtxT0ToKek3+MQDAxIaV85FmyUi/LQz4PVM3Xjj8fCpXExBlS4v+2OO/8lfe/AyVeHi+jB0Y5eudeuu47gDqeB1Fg4RtXocQV5HgIJR5CiSvULWkmUiTugkgJt2SHMjzz6/0c+s1OIvUxFr1+KR0XzSLaVJmn50TWnDHZJiD8gIcf2HBAkyDrS+fciA+8qCAiiseDwjyUjvnOyRsK1Yr9DfsBCzfw4T7mBz7yhkJSLlScD5WgR1YPl8os0+LIPQfJDWVQx3JkBjIIIsgRBcIhonEBJaYQ7Wxk8tg4e36yDT2nMeOS2Sx771qqO2srknhPjFlUJ+3wW4M7Bxh4uo+RPUOEEiGiDTGEqjiCZeelaD13Jg0rbQOrnd/ayP5bd3D+V6+lZf3MUoJuR6YC3wzVYOvXH+fIHXsBqFvWzLpPX0bCRUC7ZXz/MBs+djeRhhiXf//VQHmMAKT709x246+pX9xIpDZCz4Zu6pc0cNX3X4EgChy4bQ+bv7KBc/71EmZfO9/TdhD4ZpgChfE8k8cnGT88xs4f7iA/mmPZO1ZTu6gBOSITb00QbvT291fn/ndF3x1CwnnWt7/pdiZ7J3nVb19FsnFqT+2CMQUwVxyLQV46OUOZMoQYBFs+FwYmefCTjzK0e5ilb1nBvFcsJNGanBJ4A/ifs35ccew1T3ygosyvM4LklRv+tqLs9+f/1wnPe6mKoxf1nMbG/3iMYw8eYfGblrP07asIJYuJqqchH9xjcTqS1pEgEDhIHzpjyV/X0Yf+sZYriHQ/eozNX9tI08pmrv6KvecumDJ3vOUPTHaneMWvXs3e3+zm2Z/uQgpLtJ07g1XvX8s977qdUDJE21kttKxupmV1M3JrnQdHOFV9mPXF5Q8anw4I7AZnE0q+4lw3CKznNLb+50YO376P9svnEWmIc+hXO2he28raz11LqCriOi8AGD4REBUgLyQpcapt+OdH+7wTe1uEAvRM0LibkhT1XSMiaRVzs7vdoHac+kH3kDemJmVVU54yzFJI1EvnOhJELkzV1wrPnYB1xcl63fj7ESQnQ16cSP4aSIlDe1tOiZSYu6j/JXMPf+1ySqTEZeHXIgtlBWwWiiEBLJ2dbColJFYIoVNOpCgh08E8OsNLCQvlhZF7Ewtw8dKPMJ49zkTmOAPje8hrjnudQHvHeubNexmiKKMnysrIASaCrERl3wZdrVEIjQcsvOq9G25RtzAloUxIuMQBtUQfCGO4QAMt5v7b2y+3V6Pb0Cky6r2WVrxHOedVHs71o0OVscL9samV7hG0GZVkjkNMlK5VGyXUM15Rz4yXJ8iClsaoDhMKlTd9ligQPjLsPWfQ6y0BYGanD2ORszKoFCqSQp+MWJbFAN2YmLQyix4Oo1KgnhZERArkmGCUfrrJkSZEhGWcTZ3Q7AHFrxRfg2VZ7GM7GVJIyNTSSDtzkJA4zG6OsIc6oZkV0gUlkg28ORssyyJLGlXSsDCpE5rBtMAyUa0CB9hZylkBECPBecI1nns6kafAxVd+gT27fsnQwC4WL3ktLS2rPcelP2+b4mGdXnLCtEzGGGSAHvrpIkqcFawnLlQq5pPxfnAICVXPkNNSFLQ0giBQn5iN2lEGo61MDkEQkYpWaIX8OIPDu8nlRpBEBVEK0dG+nkcf/9xputMXV9a/6esAZMZ6OfDoDzFzeVbVv4z6SEepjjqnaVpSArzEhCOWUAkguy3HAZSJon7wDRcjLPDU1v8inR1AECSqq2YQrWkl3NhKrLqZWHUrcjiG7rIMMvN5hg9tpmfHvcQbZlAzazmmrqJEkwiZAke2/YGqhjkkW+ZyfOc9SKEoplbAskzkcIxzLvgYslzWQ37AXFRNBLNMSHjvVagA1N2hfMrPSQ58Dn5RinpTKJS/d2FsktHCcXaM3kvByBASY8hSmKw2xrKma+moXl7hVeWQEpprHjN9pIMYEI/bTxr515W6zyIr0BvPN0/6czcYvhBf/vkHTo5I8BsMSAHPNsgDx5kvJRfhEGTgJFiVpIRjGOCW5NGcJwG1p/4Uya6zLSGC9jZVOwYD6wMYdXEMXxgR/17AIcqCPCTc5ISz1wry1PY/+1h/JXEoZbxrA3+IKqgkJvyhKvXGSh0uD3rDHehHujy/7zfKnpcvtc3GGXnhxXnnV9z1PuR4pdeQqRnsvvlhjt9p52hTqiPoaRWrqJPFkET7tUuY/Ya1RFrKAOy9F/+np51r73gHY7sHGHt2gP6Nx0gdLBvHtF8xn5X/dAlyLITuT1Kt2N+FH/SoJCNEYnLlPiGoXpWSDwTvpgIw3ECKG8Dwgw7u8/LTkA3OeUGgR34Kq0w/6JE1QoFASCVZEVzPDVQUUnmsgkrMlWMnq4dOChg7EeBRGMuROjpG4+q2k27DLX1PdDF5PMWcVy6l55HDTBwcoWX9TJRkmNxgmolDI3Tdd5CJgyOEqsKs/uiFzLhingdEcUDtvf+7meHtvUgRmdrFTcx51XKUqjBHfv8sz9zyONVz67joK1cRbSyT1m7wzbIsMj0pMkM59JxG09p2kjH7eecyBjv/Zwv7f/0sVnF+lsIyr3ronR6gNYiUcMvbn3o7T37tSfb+Zi8rP3g2S9+60vuspgCUVFMOBN7se5gaeAyyig6JOqZhMrhjkEMPdnPs3oPIUZkLP38ZjcuaKur/9JzvT3dLQJmQUFMFMn0p8iNZTM2kZf0MCpKLeFELYIFcnOe1iSx9jx0hdWgEKSwjRRVmXruQe1/1kxNe86UozljM9KZ48p/vJtM7wZp/uZz2S+aW6sRkdVpSwv4dFO9f9BBxUAkCO3ov5gvVpFsiT3z6QboeOAxAw/Jm6uZWk5xdR/WcWqrn1BKpiyIIQqlNUc1z7IHD7PjuFpTqCAteu5zCRJ5wdYRwGJ786kaidREWvnk1m7/wCEo8hKEZmKqBFJa45hevI95axib8ums60LhELrgsz4P0HEBWV5B9CYb9dR0dlNbK7VWF8vTtTbHlM/eRPjaGHA8RbUoweWSURe9ex8K3rQ00xhQFy9OOX78lZJX0c7RYfz5SSeyfOL9b4DjzzdEnM++6z3PXn75eeYwGAfwRSQskOaYT1ZQITUE2TCWyaASC/+5x6ZBc/nEG3rGW1ZWTqgeV4yjovJOZo51rnup5brn7ov9X+vultk9w+rN/T/MpkRILFg+8ZO7hr11OIkBCWZ4s3EtYjLJGuawUVx9AEmTarFmM0E+YKBcK12FZFqZgW4oftw5znIN0Fw4wS1rEfMUGUS+LvI4RaYghrYtRvY+CZYPXkVANpuWePCx6jm9kMtXD2rO8FhJmSKiwLPQTBm5xhz1wQBE/MAM2AOSAHGpSIjzmC4OhCIiahSUJmCGfhWrWpFAVrOD0SLmuG2TKNpVfhZItl+tRES0qeLwlAHKNIYyQQKLHBiXcMamFiXLOCaV7BCsRLcXKNhWpFEbCfd9qe00FMWGFJcR9NvAQAegBdY3vo5MlcIE+Zi6PGHWBiCcgJACiQpwolRanJyOCINCCHYpp1BpgL9sQEDlMOTm5hEwT7SxidUUOFH9bi1hdUX7Qeoaj7GUOS5htLUYwBCyCJ+F9bOc4h0oxlauEOhZZq6kSagkJYZZyNguslQxynH1sp46yx8WJgHsHtI8CdUIzQ+yiplDe/IX3Fi1XW8qLfb2vn9MhhmWQZoI0E2RJUyDLMP3oaERJMIv5dLIISZCfc/ile3Z9nmUd1/Nsz124XZNC4Sra1HOJxuoZ7NvO6NA+AJKJNhAEUqkuBEEiFq3HMHXy+VF0Lcvll0T/ar0lRo5u4/CTvyZS1cT6qhuJyuXvrrDQTgLu6A89gHzQ4iJy3kLNT5KZ6CU72Y860E880kBz3VIioapy2KCwRGgyYHFVVPGFYtxWyzJRFCf8ksH4xFEKeoZ815OlvA5KJEmktgVBlMiPD6BmyontU737mew7iCiHMLQ8giBhWQb1bctpXHo+Ne2LGTv+DBESROP1xKvbkPGCp471v5aUSySCJYKFUHoepit2uSUJHrLByRMgGGaJjJhK9LjkAZaNWIzoMS8wa9Um2fHsPRRMW89ZskhDdDb14rk0SbMhU9R/LmIisrOLyfN8Scl9YspCIDHxfOREhESQ+PtgCaCky2PF7cHhAOZ+QsJUKgkId1+UrFVB3hshoQLUFwzLU+bMuw4Z48dRwqN6MY9U0Z16ND9liKV8nXcsOPuW6LArruysMjEaPjaG3uC1yhZV00OaiTl7rKr13jFsSWWyLIiMKNUTy8SEE05LmTSQCuWxZMoios8YwYiHbGKiSNRZigS7D3sbX73Q81NvrEIeKhMT8lAqkJg4I2fkRLL5pj9g6SZnf+OVKC7yS1QkWq9YWCIlLvvDe0AAUzXQUnl67tnD0d9s4/gdz9B2zRIW/+NliLLI5ff8LaNbuhjaeITRrd3k+uxxGqqPE6rxWn/3PHCAvkcPc90D76voV0rzfvsOSBIEhLg33yXwLaBeyhVOQzdFInKlRW5E0kgXrx2RvESEWvzo/eCGu133sanO0U2JvCFXAA2qKZPXZapC+eJ9uYA3V13dEsnqClVKwXX/laCHbokVgEdKC5cB7mgIopD16aSUGqYqVEmgusUPmlSAHckQ0eXVpKc2zp9W4mfPJ3429B8cYvPnHwYT9v6kbMAjhiSazp/D3HeeS8O6WYiKNOW1Fr3z7IqyI394hp3feJTZr17Okg+ejxWScFJ1ucG3hKKy7+c72PntJ8u3NrOGFR+9iMa1HRCCxX93EfPesZ6+J4+z66sP0biqrbRvOREZ8eonPlj8K0bVipnwm71EZ5aN004GfDsZq9kgMVSDbNcIYwdGGD06SX4ky8DGLgpjOaKNcTqvnc/Sd6wmXB3hp+f8z3O6xm/O+w5rvngDOz5zF6Yrn5VSHWHm9UupXtxM38MHGXj8MKZmUDW3HiUeYnRXH5ZlP2tTM8j0pBh6+jivbP7bv1pvicHN3Wz+t/tQEmEu/u6rqZpTfs+mJZT0jiN+ENgOwaOipvKMHxghdXiUiaPjRJsTtF82j3h7teecQF1ZBPPd9ZRE+Vse3jVAfjxP9q5DpfcVqo5QPacWOaYweXScdG+qvOUbyvL0lx5FjiloGRVBFLBMi9mvXMbs6xfRsKKFrgcOISYiJNqrqZpXT7zZOw84951QCp6x7ADSIVGvCD8zlT4MAmLdktLCVCkFDzng6NFSHTXCjq/8kfQxez9kAXXLWpj5hnW0XLaAjG4/u1MFeP8ShESQ+J9RJRFW/u0YBwSNRf/9uM+LyVrFOVldqSAjgut5jRTc87RuiqTN8ncSkfTSHHsicc/FQec4c3Te8WAwHCOC8ljL6zJ5Kudup7+yaFY8X/ccrJti6Vx3vROR/O7znLk32Kvi9O5D/xrEpMImc9q6Z+T0yXNKdN3ObPLY1soJqmgX5xITEhiGgYWJJMiYlslBdpIni45KxpqkQI56oYW1ocvQLY1H1D9goKEIEdpD86lpX0J1vJ2wkkDTcxzs+zNqFERRppAbp6F1OfXz13n6JmlWRfJOPynh9qJwdFyQlaYbbHEAD39oDYecCCLScw0nALkiXkUtGhahSYt8rS9G40jRYqauUsk55IThIkJqd4176jikhJXwTtSqz7U9X68QHVI9z0eerPTAcIgJAGveDLSqMOHuMtioHzrqPeFFCBfkl36ri2fZXPLOiRCjhZm0MpMYyQoiwu8lUbDyjNDPR773Pr7+nu9gYWGgoaFxDBsEv0L4mxP24ynrQTJMMp/lxEiynx2kSdFOJ23MJkaCA+ykl6PU0cQy1vGIdcdJ36dDTIxlutne9TtMTBaaK2lhJoIgIBcJidNBRgxbfRznMBlS5CiHqokSRyFMPc000c5G876TDrkVJJdeZYemGh87yvan7Q1XJFxNVaKDqkQb2dwofcM7sEydZFUHTW2rEASJyZGjmKZOi9xJU3we1gyb4Hl8wxcQRIkF819OQ/1iHvorIiZWv+ur9Gy6naHdj1M7bw1LZ7+yFK4JvECy87eflNDidvLnvr2P0L3zbizLRBQVouFasvkRLMukqXYxcy99e+m9BYaCSRVKhIQjZkigkJug99Bj9Bx6lKVnv4P2oWoGFspkJ/rITvSTSw3YBEZ1PYN7HrPbj1TTOms9re1nEwonyZFhqHsrgijRNvcCD9jsB8uVCQ0jInnAWEeMsFhR7vYgkTPlTZSpeJ+TAyB7nqluoce99fxrsuixCfJtZV1ayE+QzvRTyE9Q17iQcLSG2PZu70kuUiK7elbx+tOHkpoiBGpJ/PNcUCJzb3vTtz+FhzAA0WF9inwQ3kK12vvs/OcE5ngI4MP8fQsiaPyeISUpFsf6yxsPy/dsnNBfQaGzTEUgPF7ZKVE3EQuV5Q5h4CYkpGwAmhUQgqvQUBlKyb+3CQpT5Yx5qdifIG+QipxTPmLCXL3QmxfF1z8z5t0gSod6Pb/1EW/uCfec+lKzgDojL7z49wlNVyxBzxSwDJPYjDqarlxKYl4TlmlhFjSkaMiO3/3jJ8h2jaKn8xT6J8j3jhOf28SKb74JMSSz5U3fIT+YRoootF+3lOqlbVQvaSHclMTSDA5+bwNaVkOURfKDk9StnUn7q9Z6+mZZAlHFC6hVeEwEWG1OZ33p1Ak61wE9/OVQBjIikp/AkAPLQ6JBSgtXlDvnBFlrOmBDXpcDy91/Twd4OMerQoVpAQ+oBD1k0ZzWyneqslM5fqoyvLmLbf96J2bBwDJMQjVR2q5eRNuVC0nMrkeUvcrXbdV5/v0fR0/nGd10iI/Pv5Gv7/klmCZ6VkNPFzj6i80AXHr/h0hGvKCXX7Z8+i4GNx5h3tvOoeGsmez5r8cY39VL++XzmH3jUmoWN7HnB1s49KttVM9vYM1nryHeVs0dF95yUvfpEBOpI6M88bG7KIzkWPy+9cx+9QoEUfCRY957dsbTyZannu1h3y92kDoyRronhVUk3KPNCcI1URrXtNF+yRwefPdvEQPCJ56KXP3Ih8keH2fD23+KpZuE6+NUL2qiamEz2mSenjufRc9qJDrraLtyIaHqCBO7+1DH8zSfN4uq9QtLIeKeev+tZHvHWfCBi2i9egkPXPafz6tvL6Zc9fCHOPzTpzj0o03UnzWTZZ96GYor9I9ftyUUNRAEtiyLnrt2s+eWRzFyGoIiEWuvIdc/gZnXaVjTztlffjlSuKxHTgYE1k0RdTxH1x3PsP9/n2TVRy+k7upVMDBC6rD9L31sDD2rUdNZzf5f7gRssmLW9YvpvHEpUlMdkVyKIw8cpjCeZ+Fb1yKIwpR60imfSh9Opwvdum0qy3N3Hb8+hGAQ2F1HHcuSOTRAfmCS2pUdxGbUTqsT06oNlAsvso70y4nCMll+rwmlEkOajqTwt+HM0yeanwFCUuW79tebypvB0WNuos2v25wxlg8IixSR9FMqd/rhHhNBfQsiN4LGpGqcuJ4zNnJa+Zr+8VQxbgN+O2Mx6Hy/nGg8Pnr5V0t/v9T2CU5/nt3TdEqeEksXD75k7uGvXU6JlGhhFhYGGSaJCHEsTFLWKAphOoR5VFNPVTEnQEZIsdG4h2rqiQgxQkKUVmkW1UIDgiBwb/7n/PCHP+Tv3v1hsmaKlraz6Jx7BeFwNYIgoFbLWJaFIAhYlkkmM0Bm5DjZiT5a519EOFZTEYZESXknKSMiBod1cpEPiFCoUTyEBJQ3+45k2uyP0m9RLBZMco2VTLqTV8ofY13JFK17fQBAqNh3d0gPsIGnTLNcAcr4vRAtCeq2jVEhLjAsN6M68BqRMe9mzSEm3OEo3OAegDjh9YD4SxITI1Y/23icKmpJMcYM5tHNQQAEBBpoo5E26mmuSDJ9pfgaVCvPZv5MjrKHiYCAjIKBjolJG50sEc46YV8mrFH2sZ0UoySppUloR7UKDNCNSh4BERGR+aygndk8YP32lO712iVlgF3Vszx74PcM0MVq4WLqhWZEV+xvJ7zac5ED1i6OsY9q6qihgRhJElSToOp5eUNMJZde9WU0LcuubT8mNeEKbxVt4Lw1HyYnF5AOHCemuOLqhiutntW2ajKZQbZu/x6almHl8rexfeePTmtfXyg5evQoS9ddRG6kl471N9Kw5Dyqjns/dD9g7ydCnbw1h57+NYNHNtO66GLmRNcQCVdjYdE7sIW9R2wS7NzzPkEkUo1WJSP7QtX59VOuQSYyopeAdMsy2XD7J1hafyUzqlbQm97D7tQjYFnU1M2hpn4e1bWdPLv1p2hqhrMu+ShhpXLCjvRlyMxOVgD/8cMTZDurUCYCPJIEAVH19tcM2TrNDbyLflAWm5jwJ0b2h0VyjrvJDs1HVMjZyrb94bIig97vT632WQE9B1JCcodTOgEP6H+H/vs+FVLiZMT/DityXoiVHVYyJror3OF0RIx7DgwkJIKeh2PA6wqP6A9RVTrdN2U5oav8fQrK22DX83lMjuUC67nB/kyHDZD4w1tV5IEpWBVrEn+4MTcx4XwP/lCNQso7b1tRnw49BWLCGB+327AsNFTuSd+Kpmncfvvt7N69my984QtnFur/h8TZJ9Sun0O4LkFqTy/hxiSCKJA+MABA+6vPIrmkjeSiFkRZQs+qbLzhm8TnNBLpqEOpilB3/nxq1naWCPOb0ufx2c9+lu3bt1N7zlxmf/Byws3VCKKAadnAGgAW5HrG0Y4cZ3JvP63XryA+s64CNKlIlhkA2AEYrjLdEkmGCoHgm1scgMMPLAR5UUAZWPCDK6dabntDuL0cbPGDHkHhR8ALZjgAhuQPU+L7ndFCJEOFlxTgMZ2kDwyw/R9+QayznsyBQdpfcxY9v3m6dLx23WzqzptPzVmdRJrtdebjV3wFsAkJI6fy7Md+SXpfOVG3IIpIMQVLMzHyGvXrZ7P8319eIjeCAD3LEjD6Btl7yyMMP9VFfGYtzZfMx9JN+h7cR35gEqFoQDH7betZ9MaV3HnpqVnyX/nnj5T+1nMqx77/GEdu28WqT1zGzOsWe8anG9z1g2lTgXJO+aHf7OSZb20g0VlP45o2Ep11VM2uo2puPXIsxB8v+NYp9ftEcvUjH8Yo6Oz6/D0MPnqofEAUuObhv2dy3EQbSxPt8OYmDBp3heE0T3/4t+R6xln0j5ez5+sPnNa+vlAyNDTEgmvXMb71KDPefD6L3r4GS/QZ3JwkCHz0J09w7CcbaX/ZEjpffxbRtmoESWDgzwfY+dm7AVh7y+uoXtqGYYoVxG6Q3vSTFA/9zQ9pvWYJc995HsNPHWXfNx5AmyxQu7KdutUd1K+Zwe7//DMTewa45H9fQ/Xc+orxphoSVaHCSZeDrfv8xEEQMDyVPnTrNajUh069jIt49RO6Qfosp4U85SfSac9FJ2ZUFxl8grj//rBr8ZCXVDhVUqKi/YCxF3URF0Hn++doyxKIuMgDI2DcOedE3SGdAuoFve8gLwo/6O/MuadaDl7jgKk8IqbrZ84J1eQbX/4xmdeVivEy3ZjMFcfuieZtv5zKmHSPRX0yhxiS2XjNv3P33Xfz0EMP8a1vfesls09w1rA7d58aKbFiyRlS4nTJKZES4+PjHksogO3bt3PJ6stJMY6FSYwkTbRjJiN0TW7n3LY3Ux1uxuzt85x3b/7nABiGwZLlr2X/3j+AZSJJIULhKjQjh17IEo7XYWg5dLW8mZ5z9mtob/G6z1qSUEFKyL7YymqtDUh7NvNB8aoDYj57wlTEinEQKyx0RQo1leylYJTJCLeIhlWRrBVsi0sjJFRYwubqy20bRa8LOVcZE7zxqVEAJhfU2HUyfgBPKCUhdXRHZNjHbvuGhR6XiQzmin8XFWTaF7v6gDfGtDFZTp4pz+xA7zrO6RDd0tCx/3VxkF6O2GGZELEwWc2FFLABwQG66eYgeezxU00dKziPEOHSonWPtYUejtDKLGIk0NEx0NDR6ce+p0baaGYGjbQiCdOjd5ZlMSwN0mceZdjqxcJiIauIEmeCEdroJCLYYNSpgvtuUsK51oP7b6az7QLmDLdW1H8uxIRhGTzM75nJfOazAkEQTjsJESTnvOUbDB7YyNEnvUTN0pVvprFpGQCR/V4PEL27t9TnSUbpXRtl9NBW8mMDNCw6h/ZzXoGkhNnyvY/wUpPl/3gzAKauMrrjCYY23Y8UijL78rcRb5xR8phyRI8KFb/937+oga7l2P3n/0YyBM5a+0EMQ6N/YCtdxx4lVxijpnYuLc2raGldg+4Dyt06zdENQR5gobTJpts/RTLUSEdiGc+OPIBp6TTF5qIZOcYL/Vgux8a1nW+gITkHAOtQUU8s8IYwynba3gfxw94QSVqt7fElT3oBVjNi6yFHH0Gl7pZyOpYslMI2OeL2LjHDInLWqLCa9xPQWlzykEJS3qwMVeQD/t3ERKE+XJmLyJcHoSKvxXSz8ymSEv51pBuc93tZ+L36HJJdCshTEdS2EECa+70k/HOiljjxItDt0ZOvLVo6DQTH2Mg2+3I8uC7nvrbbuMGd28MTYso1hzoEQpDXhCUH34MykkVtKocoLNRUGjJIqlnyugjqM/iMJazgHClumZKUiNjfvdqSnLa+/3783hfWzn10mwfYa271lJ9//vls2LDhzEL9/5A4+4TR0VFqa2s9x44ePcqKGy8hvbcHq6CjNFZRd8lSEAQGfv0Ecz71amrOW1gBejmgsGVZLP7Mqzjw5TsxCxpiWCbUmMTIqOipHEptHMu00EbLhiVtrz+X9rdd4mkvpqiBgIdbIrJGRg17QBD/OYYpeo6Xyl31nCTAftBBMyWSoUIgiBFk/Vgw5MCEwgVDJhkqTGsB7CTUloRK8CJRJDFyboDOVS+vK8RdIZeCAA//OVktVDrnuQAeOU0h5gLFsmrI83sqsKN03DVhGjkVI5PHyKoM37+TwT9uJjKjgdjCNtLPdrP0u+9DTo0gKjJDj+yj94/byB2zvb9inQ10fuq1hBqrEIoEw/CvHqH7J49Te+48kovaMLIFjKyKkS0w9KAdkqz6rNnUX7SIuvMWkKgNyOnlG2vD244zeN8zjG44gJFTmf32c6lbPZPRbV00XTifeGc9GTXMpqu/OOUzCxI3KeHIxnf8lOoVHSz40OUVBNlzJccef9V/U7dmBiv+5SpEWfR4lryQsvizr2TvZ/7gKZv/4Stpu34FUDnm8sUxbuoG2YMDpJ89zvCje0nv7aP+ooXM/tsrCNXG2XDll1+U/p+KrLnrUwBYhsnoAzvp+9mfsQyLBZ+4npq1nRX1pyIg/ECwUdDY/dk7mDw4yLpffRDLMBl+ZB/Hf7mJ7JFhqha10HzFItpfvgJL8q5X3PpwOhDYsES2vfdHIAp03LCCoz9/yvYUWDsLy7JIPdPjCcG16J+uou3apYA95ibVcIXuc/TeVCDwVPqw4CIuptKHuWm8xhx9mPfVCQKBsy6iIh4qlHThVOf49drzBYU9bZ8iKXEimY6EcMaeQ2xM5xERdNwojVVtynMMD4FQ9FQMmJ/9dYwpLJ78Y0FzEbbuseceP6dSrgR4Q5yoL+4xVmEcIJgVY9Bfx0s8KEgnmIOnGo/OHHs6xuP4pv0c/ncvtrN8+XJ27dr1ktknOGvY7adISqw6Q0qcNjklUmKqh36l+BpMy2CcEbo5RIpRLBEaY3NYWn8lx9O7+PS33k0+n+faa6+lubm5oo3zLvok6ck+sukBCmoKRYmjyBHSmQFyYo6q5rkc33EPhppjwarX0TzD657tibPsAhbCozYo5BASjoTGymCRngyOyycYFlJaqwDu1Cq3B4GtcPzgkkNOhCa9yiI8olKoC1VY5zrkhD+Rq1sfO5auuQafAlZA9hllRsYrLS/91pj+EFZuYkKtlgNzc8iZstKdipTQV9qJtpQubxLs50tKZK00+9nBMGWCS0ZhDkvIMEkPh4lTxTlcjihIZK00h9lNP10kqCZClGHKoPZyzqFZmEHWmuQIexmiFwERGRkZBQkZE5M4STKkSDGGiEQtjcxjGUmhxtO/49ZhVFGlU1xcIi50S2Ov/jT9dLGeK55zEuip5Kr1/872fb9gItPDOcveRyRUhbB9H6Za6UJ5sjJs9bGdDazifBqEMtHxYhATAOve/HV6dz1Az857ABClEK0z1hGOVBOO1JDYNUhICJOxUoxbw4ybg6QYxcREQiYxcyGta64m1tDxkiIjVnzEJiF23mz3admHvsbYs08x+OR96JlJ6heto2399cjhGEq6/O05AKqblPATFJFRE13N0Xd4Az0HH8UyNDrnXE5IinP4yP2oaprm2sXMbrmAqridKNKt99Rqe5HjJiXkvHcxlW4PU/PMRIk8OH7gYQa7t5JNlb+pZfVX0ZFcSnpODanxY6iFSWrr51E1JmId7q4gOx1iQuz36gqryU56b7lDLhXP1at8IaVcekxOT5GgMWy3owaAwZ56xcs5Yfr8YH0lieCE7inWEwSvN4vvdp8vKaG49K+Ts6DUd1/ic7XGO2+5SYrSmrjY/smSElDp/edfj0p5X/jEgFwJbpFzVgUhETj3+JJuy1nffCYL5AMItPC4USIwHHGHP4wPlp+j5vLacN+nXJyf5ZzPozKrIxYqAUO9yrb+lV3rDK0hWlHP72UZmgjy7vF5VU74vKd8xITfi0iPe8dBuM+b1Ho6YsIhJcRc8bvq9oUFNAw0q8DG9B3krEkkSeLQoUPU1ta+pNyyz8gLLyfaJ6y9+1+wDJPsgT6G7tzK5M5jWKpOfHE7s/7pBiYe38dX1r+FVCrFVVddxcyZMyvaWPebvydzcICxw+NoQymkRAQpGUXtG0MdGCexajaj92wlf3SQjrdfROvrzvecb7gW1EEhI/wWmIbp2ksoemCdEonhI1Q0F2hmmCLxUMEDeEAZxCj4LH11QyIeKpx0uRv4cAALxe9NoVWCan4wo6DJSKJvb3ICwAOYFvTIaTKxkFZx7HQCHqW2sVBH0/T878OMPPxMaX4Twwotr12PqZv037oBMaKw/OcfQoqG0EbT9P9qA8N3b0NpqCKxuIPRh58ptdnxvqtovOFstJFJ+n/9BOOP7sbCQo6HkWMhpFgIy7QINVahjqaZ3NWNIIkklnTQ8eYL7LwOlAG40Q37SD/bTedb1yMn7LWMqep0/XQjPb/cxNKvvZ7qFTMrxtmpEhNuufShj7L/mw8ycN9u1nzrjcQ77dwDmikFgr7ACctT+wfY8sFbmfMPV9Jy3cpSPYdIfKHlggc+xuD9z3LgK3eVyppuWEuosYpQQxWRpiRKbZx83zjpPT1MPtNNek9vidRMLmmn4w3rqV416yVFRiz5w2cA2H2j/f/qP/0L44/voe9nj1DoGaXmgsW0v+cKQg22jj0VINi0BIy8xvC92+n79Sa08QxNN5xF3ap2jn73YfJ9E9ScNZv216+nankHgiCcEAQ+kT7sv3sXfXdsJ31wEIpr4863n0fnW9ZTyFtM7ukl3ztO1coZ1MxIklHDyD7dNZWenKpcEY0K4DZIHwZ5PzhlBc1uMx5SpwSBp/ISm0of5optxkIaWbV8biKser0bTkEn5gqVexq303UspJINIHCnkiBEMBrWisdO1Sti6rph2fs+jIC2/XP0dPOzI7LkMxb2j09F88zN7nohH1mru+q5x+SJyv3jF0DV5cDxpkgGeW3qOdlutxIg98/TfpLOP2/6x2RBnz5vhj8i98mMyaCx6LRlqjrH/u2n5PbYOOHu3btpb29/Se0TnDXs1t3NJE6SlEhPmqxZcibR9emS00JKBMm1c24C4PEjPyDNeMXxeqGFFeJ5PKT/rlR25QWfx4hKTKZ6GB7ajW4UiERq6e7dSCFdjl+8+Ky30NC63NPeVKQEeMG10J7jGLMqSRH3F6gnFOSJAFC32G62rQwuaPHywHWsOP3Ws1LexIiKhEe8bWpFIDAoP0WpW5p9UEuWJ12z+N1nfeSEm5hQizhD8rjP3csFemlxscLS2h8epgIc8t2b7AtlUREP3kVMTEVKyI0N9vGh4cDjYFvKbeERcmSYzWKixJCQiVPFKIPsYlOpbh1NmJiMM0yICO3M5jiH0PA+/1ZmsVSoTFjnFneYp5yV4Rj77UTWwHlcQ0xIlPr3IOWxXCc00ybOpt5oQkRiE/eRoJqVwnmB7T8fWX/1v7Lt0f+HkNdYppxLvdjiOX6yBEXBytPFfro5RB2NrOR8jwv0i0VKACx566fpfeJ2BFFGz01ijI1RyE1gmt7xpkSSJJpmUxfvpLq2k3hVK4JgfxeP3PWxF62/JyMrPnIzpqGTOX6IzLM7GTv+DHp2kuqFq2lbfQ2RmsZSXTcpAV4gtwLUPdDPsf6NDBzbjGUatMxez8ymdRw8cDcjw3tobl5FZ+elxGN2+2LBKIH0Jan47k1vHdNCnvBaUWc7k8S6JtH0HMOpg4ynu+lYfR2KEvOE2glt2O05z1mpis1N3vKcrcDUhe3leysSn26LbSPqs2ZKq6i1kSkJCcGVdDPXHqs4LuoWqmsBEh3wxR4vgsL5+qLlS8YseZpBJdlbsXazQK1yLWJ94HrI5eFn+Ejp00VK+L0m/GPITUIYoenrCqZ3znLfr7+u/3eQp4UfdBcMb6gm//MCyNdJJI67rKl818k1KYF5ITLNwV5uoYxZ8aylIuHknwPDI8EJW8WCXrmS9yV8zbfGK8J2ucNXKWmHgPTekD9vSrTfa4Ug+Lw2LN/37SYmjLDomafDQ96QToVG7zcS6StbnweREo4cV/fzbH4DN998M29/+9upra09s1D/PyTPNT7w2rv/hYNfuoPUo7sqjoVnNdPx6Teh1FWx55X/BsCi2/6dcEij0DvK+CPPYKTzhFpqGX1gO/nDA6Vz295/LfUvs0NuOsBEJDS1BaYbUDFNgXBAuCWPJ4SsB4aRcMAVt3W5v54DfrjBDdWQiIVUTxmUAY6pysEGPKAS0FANqQKMqCAidLnCWtQNeOR1ORCQcIMeeVUhHi6vM58P4JErKCUQzH2d6QAPRyzLoufm35PZdpCG11xEuKMBMRIi1FaPOjjG0Y/9oFQ3sqAdKR4ls+MQYiREzbVnM/n4LrQBr6dmYsUs5n/xzZ4yP/i2/brPAbDyT59GG51k7MGd9P/kYQCWf/udRGaX95w73/EdCv3jAETntdB47Wqq1i1Arolz6OM/wtQMlt3yjor7fD6kBMDa39/Eno/8GHV4krkfvorGSxad8BzdkCoANj1ToOe2bfTd9hTRtlqW3/wGxFB5Xn2xSAmAFb/8MD3fexDLtDAmc6hDKdShFGbOu+eREhFiS2YQXzqT+JIZROe2IhYNXnZc/7kXrb8nI0v+8BkswyS3r5vJTXtIP7kXdXCCqrPm0vrWS4jNLe/vTgUEVkczTNzzJEN3bkNP52m4fBlNf3MuA797kpH7dtjtv/liYvNbS237PWr8ILBhiR49mVWVCrDZAYGNbIGJ7ceY2HqU5lefS7i52gMCn6reCwKGVZ+XhFvXOaDtVPqwoE/tSeEcF116cSpr83yRbIiHVfKaXHF8KhEEKKhTR2Fwnx8Na1PqQ6et5yonRgSdeicO6xQOBe/Jgs73kF8h7YReFf45Osj7wDAFz3j0Ex8hyQicw6cC4FVDOmlvsqA+T9WPIMKgwjjANSadsSr66gSNybw6NeEx3ZgsqMGekSdzbmXd8t+TWw7Q/blf8LGPfYx/+qd/orGx8SWzT3DWsE8/e2qkxFlLz5ASp0teMFLCkTXixfRbx7CAUfpRsTf0AiKXSq/kQb3sznPlBZ8nmxvmqZ3ftWP6yxFy+VFqGubRNucC1LBJY3wuslJpcQgBYZesSmvf0J4yMG4UE+P64yi7SQU/yF46t7jpT88sW+26LUTdoIo7RJNcTIDpEBLl61RewyEkAMIjtsVlan7CU8dNTDhtGD5S3CEmtLh9X5IvcaafmPBbYlZ4b7jCWuhhoeRh4YCYigu8lHq8yTCZBiAPIiXGrKFisugJLCxms5i5wlJv/yyTNOPIhBimj/3soI4mmulgknF6OFJKgN3MDGpooI5GIsQQkYp5SywmGEFFJU6SKHEk2X5HlmWRJ0vYCGNhsY9t9NGFiUGCauqFFuqEZqrNWvazk16OePoXJ0meHK3MYpGwulR+OkD+i15hJw0q5CfYv/XXjA8foGPuxSw4VI8onHxSuSPWHo6wFwGBGcyjk4XIgvKiEhF+WfV3tmfB9m/ZngUX3PhVdC1LITeBVphEbm4mFC/Hjo0Me8ftX5qUcJKSA0zk+tir7CB1eDemmieUqKN21nLq551NrLYVNemKf+tb24RSViApYVkWvQ/9hr7up1CUKG0d59Ay+zxC4SS7t/6E8ZFDLFn6WhrrFpfb9oOXHut5+29R8yojxxPBTUpYvqTRgmGQb4l7yqJP7Lfraq6FqWu6cZMSektN+XqOvnHpYSnrXdxKh3pRl82q8NZyklnLI2Ug1agug6xajW3B7g+zpPoWINEBzaP7M22+MFeu7oQmDYyw4Jk3KvM5lH9PR0qoVbKnHTljeKzz5XFvODYxX75/M+7ND2C6gAKtyjvfFGpdiQtdXjdSwZqWlJiOQIeyV4SoB5BnPg8KT24HodIDA7xzlVQwydcFhMQoNpPoKVo7Ryr13lT9DgwZZVXOkQCJgxMVZUYi7JmnAQTXGNeKHhP+fB4OMeH28vETDw4xEesvrpl8BIffQ0IoGKguQiFfL5MZ70XNjmMaGk3xhUiSYwjhI1oCiInQg9vsH2uXeI5ZrmSlQkFjMtePqmWIhKpZeE6OH/7wh9xyyy38/d///ZmF+v8heT77hNlfeTdj92/FUnXyB3tRe8vrxnnf/ygH3vW10u9Ft/07+tgkXZ/8PkY6j1QdRxsYJTy7lbpXXYgiqEgL5pNoKutDP/Dg3vVEQnog4OEWwxRLnhLlMjeJIRJSKkkMx8LRDYy4Q5y4gQy3pePJxKl2jnnCNemOpaaPZHABCE6dqUCPqQCPgip7yIK8KnvAhr8k4JE/0k/f/9xN/lAvlqpTc8Vq2v7uBk89y7LIH+lHiobJHeql5+u/I7pwBlUXLkMfSTH6pyexVPsdxlfNJbFuIdEF7YTaGxAkGUGWsCyLwuE+tKFxQq31KG31CK59gj6SIt4cAVFg4NZHGfrdRixVJ9ReR2LlHJKr5hBZMpuR2zcy/OtHPf0LtdZi5lRiC9uZ/enXlsodwuP5yLp77LCvejrPsVvuYfTRPTRcuZyZ778SJX7yVtSDd++g6/sPYao6Tdeuov2N56PUxJ43YfJ8ZO3d9jp7y7WfB2D57Z/GzBTQRlJoo2nCLdWEWr05JtzylyYl5v36P0p/q71DTN71OJNP7cOYyCDXJkics4jqi1cQWzRjWiB4OhB44NZHGfz1BgRFovaKVdRet55QSy19/3MXY/dtYebfXUvdFStLzyhXUAiHyvrMrQ8dINgPAjv6cDoQWDfECtLC0Ycn0oVTlbvL/PH6T6QP3eSpXx/aXmM+L9QAEDivuokHz2HP+XlVIRpWPSCx/22erE5UfeRFKKR7yp4rKXGyhEQopJ9wLHp+T3HcMRKYbn5213fGZND87EhY0QM9KExnnCmOQcCJvQ+mE90QK8bVVCKLZgVR7z5X1Zw5N8hzxyp57di/g8ekQ2j5x1DQmPSMQcFC7R1G6x/DzBWIr5qHFI8EtuUXQbAqxmKwWGg9Q2hD48j11bxpOMGXvvQlPvGJT/ClL33pJbNPOENK/OXleaa2PLFsNR8B4ErpdQDkBXvzGxW8ANaV5/8HvYPb2Hv4DsKhJOtWvB+zpQbT0BBEGUEQ7NAiFqCaFaBSkEiaWQKHwsfG7MJkAibT3opFMkPqsq0A9bltge1ZT+7EvGi1pyzRlS8lgZ6cXSYM3B4UblLCiW0upw10V8JpJ2yK+76cEE/KeBkMrDqQLhETgg7xfvu8bJPL2jILmsvYcbJDJDJWVi5GSKDqWIFMa4jkkbLFZaHR3sTpCcmTDFxUTcyQ6E2Q7Zo18g2hivjrpWu111cSE5QJCHnenFKZMFYGfUzLYL++lW4OUk09C1hJmBh12EDmdGB5JpMhHo9zvnAte/DGum5lJg1CK8etQ+xlGzIK66zL2c3TjFMmRQQEInqcMFFypCmQI0qcVmYxl2UsYBXDYj/DVh/9VhfHrH0ICERJkKDG4x1UQxN5IUOntbBUdrrA/kf/+E+ATU4sO/ddDN79aw4cegxVbGelchGCIJxUXokR+pFROJerUITQae3jcxWHjHDk8T/8Exe+8msooTiP/f6mv1CvTk0sy+Lw0AYODj1OJFlPy+ILqZ25go4DCoIpMFzbcFLtOKCqOxlxqm8/fd1P0rnwGma2nYskhTBCIqapMz5yiKaGZTTWLi6tCAWjrA+D8ub4yQjwgqZ6ddhLFBQ9EwoNRWLWCZVgWISfOlDuu6JgLO60j+3YXyrXZtSV67iurcfsm3QTykZMIbS7G6OzpZRsN/TMMbuPna2Ivfa3W+ptwp5f1FZ7kSBl9RIhAba+dXRt7OAoMSCzoNwfPSF5chTFe1UybSHifWUSwHBZo0sFywPuC4ZlP+uinpTylgcYd+/nCtVypXeF04+4VBEy6IUUm1wp/7Z8K1rThV9MF6bJlH3kvmGhFZ+PkrMqkk1bAliusa1kKx9IttGfI8Jbx8n15D4WlLPJHX7RnfvC3X+HmHETKZk51YCd80QYHrePF6cMo72xeF2XJ2K1y2ChOL87c37Q+zbCIhGXN6WS9n6nliyWiAnHW1OLeZ9jvK8MSozueIL9e24r/Y6sfw+1DfOL9yoQGi2vK5zvx5HQzso525FcYZzR8YOMThxidOIwml4mNJ4oOkWNjEx9/hk5I3458rHvw8fKoUvUkUmsvIrSWu8BE+f+8gtktx1i8Nu/RZBEZn31fSgtdZiqhqDIRQOTomeb8ym5PbksAcVHHrgtTt3khD9ckwMMOICIn4RwgAUHEFFc4FtBl0qgiLvcHcLDDVKcqNxdliuWuQENN2CiugANdx3HI8ENeEAZ9DBNgYJmExEO4JErKBXgWChUfk5BgIdbThUrOxHgYZkm479/hNHf/ZlQWwP1b7wKua6K6NLZqKrMgdd8aspzM5+x9wmz//eTHH2XF1SPrV9O3dUrSW3aw9GPfR9Mi1lffg9jdz1J6pGd5YqigNJQg1yXRB9Po/WPItUmqbpoBTXXnUPVKy5D27mHya0HSW89xOhdT4MoEGquJTK/nfyBnlJT8dXzKBwfpuXNF5fKTgchAfDUNV8AYPnt/8acT7yC6rPmcOzb95HtHmXBV96KIJ0cADO27RimZrDkfz6AWF+LBmy5+t9PSx+fqzhkhCO7bvgcK+74V6REhMisJna+/C/bv5OV1AObGf7x3UjJGMmLVhNft4TwvHYEUSx9YyeSQvHbc391ha4BBm59jJqXrafutZcQr5VLOi2z7RDxpZ3ELz6LQnHp4OjPgip7iAlH/KGA/CCwW9dBJQjsgLN+fagaUqnOc9WFuimiFdsP0oeqT9f59aFd5sJKijoNyvrfrQ/Bq+MsywaBNc3ug4bkUXq5gjfJtYV9WHPruedA1p4cMHz6RFXl6T0lXMdk3xhyn5dXlQrGwjmuKJXEh987JIgUOFEdVZMr5mhnLLqW7ydFjAcRG+7rOmNRo3JMOv10EyFOP/zt+sdkxXHPGBRKfde0SqLCPybTWw7Q+4WflX43vv/VJC9eU67wHI0H9PFJcrsOkd15iNyuQxhj5RyzXyr+/1LdJxgIGCe5WjnZemfk5ORF02T3G7+a8tiV5/8HqXQvew7+gebG5Sya83KEZBwxa2DDTN6EolPpQsuXSFOXJeSsUSYkHKlKYlkWwvgkoiBhVMdKhASAfKgXY2S0XP+ssmW++KhtPWhetBppw06EVWUr5OSRNMIRe5E5dm3ZNdYqAjBuoB/KQKM/YTaA5ALkHDBNLYZwcsAgf+JQ0aX7lazdvlrkSfK1AnIB6vaUAWo3wAYQ3zVAZnmzncBVFjyTRQWIKQgeYsLtTVFojKKkXG7yvb6QD1Ywu2wZBoIkYVomu4wnGKKXBcIqZjDvlD77eNwGJCVkWpiJhkotjXQwB1lQsCyLI+wFQEfDxMDCop5mlnAWGSbJMEmONKqgUkUN1VYdIwxwlH0cZR8dzGGeuZxmoR0LiwyTjDFElkmyQgbD0siRAWBx6CxEoYx4OUneT5es+cDN0FaMf/nuN7PiBwl2aI9yvLCXdmH2SbXRzAz2sR2TFw8AfS7y10JGOJJVRzk4+CjNiy+k46yXI4pFUFKwQcCGJ4cZuKgRKQBAARuoVauK+iNnlY5blkX/k3eRrJnJjDmXgCCQq3bGmETHnIvpOvggnSuuJ6qGMRURyW1Z7RAVjkeXLyybY17heHxZklBh/S9mbFAzmimQm1WNYJXB4MK6IvgpCiiuUHjmygWByES2zQZw3XkC9IiEJQsoaZ3Q7m77zo72gySCYZJdVyY0aZpBbLtdR13oIpWL/TFiMqJqYIYkD7ma3FNeFMX3j5JZUFcCzI16hciIVgqd588PJBUMCrVKSY+77x9gmvWqR+Sc6Xn+ekSganPZo0+b6SKu/OGRXB4r/iTE7rxFYdexfGPUk7tAj7i8Joogd1CYJcu3WnB7f0iql3QxFKG0lvXPHZovH4qkVVpSucF2hyBw2i95CvnHrEscMs1URJTJ4qY4XtwYFPtjSkLFPfnFIZrknFV6t9nOKuisIv60HRtVc4VTkFzjV5nIoye93itKSkdzkSJO38r3KnrCgUmpAkbR28KyLIYn9jMmDFPoGyWfsf+JoRALr3w/cjxBukNBEzVGDzzN8QN30DD3bNLDXYiiRGTOAkgFbyL0Oa3Ih/swi+QKw+Xvwnh6J/11E/RN7iWrjVEwMoBAdayVGXVrqKuZSzRUQ16d4EP/egWqqnLDDTfwmc98ZvqHe0bOiE+cOOpTiT48zsA3f0lk4SyaPvgahKo4WgFABr8TrgVyqHI942zUFaVsXWqZIqGw18q4oNnAi6XpCIqMIhseC01Vkz0kRshnAazpEopskFcVzzFNL4NvboLCDaYElQeVuQEX0xRRdYlISEPTpRIg4rf+zKtKOcZ5ABCX93kx5AqKB/RwiAjnOToAHFQCHlpBRgm7cvb4wbPn4S1hWRbD/3snqQc2U/vKi6h79SUIyslvaZ19giBLJC9diz6WIjKnjeprz0WqiqOqMPKHTaU1RCGlYRRMQjNbaPnk29D6RtB6htEGRrAmU4RmNhF74+Xk9hxj4oEtjN25iaqLV9LwtmuoX7OMegvU/lFyzx5BPT6E2jtih5UqegXV3nAeoaZa+1oqpXBlp0uW3263l9dCxC9eS2dzE4f/+Uf0/2oDja+72FNXlswK4EuWTKovWMb4o7vJD2eJ1dt9XXHHv77kgP+XWn9OJGa+wND37yBx7jIa338jYtiXx/IUQGDLwvPNDd/6MHJjDQ1vvhJBkcm7ok/WvPJiBr/9ezJHRonPrkNVZRQlWCfZbQsePWSaQgWpG/F5a/j12lT60N2ubpTJhRPpSHddvz4URRcw7NOHqi6BAxa7dI1pCoii5QGUg/ShW++59SH4dJcFuioF7nvsusHlfjEK3jbksI5eeHHJiJIUb08KB+AFvnGqTddH3xztHuN+osUyRQ/BYVlC6R3Zx4trdff4tITiey6L33vFkZBrPLlFkQ3PdaYrd5f5x6R7vLn7YJjCCUNIqaqM4JvH3WPMtAQMvdxG7pnDFI70og2Mog+OoQ3aGGjbJ95EqK0BvSBhGTqZTc8w8tM7ia5cgKXpaP3DxNYt83bEEirmaaNQvG/Xq7Z0g8yTO8k8tgWtfxhj1DYyVma0EF+/ivjq2YTaG9HHUnx93uVMTExw/fXX873vfa/i3v/ScoaU+MvJX0ijecWSRTLqKBYm6ewAhgyKZmIVgQU/+GCGxJJSdAPzRkQoJYV1JPxMt/fc6jg9Yzt4dvBeAFZffhOxqhh0zMGyTNTxIbRHN1El1BERbGtEYbtt3SuEI5iFPIIkIW2wrWWs7XuwinGVpbra0nVq796LlcmRu2pFqUxPSET6bM+EQnM5BJUT0kmtdcV9jkhE+jJorgTdoUm9REwAyEUyI1cvlSxLTdlr6RpKl3NQAIwujpSIiZCT8LJQXkTEdw2Qn18EJgTKzzksIudNdFdoDD8IJQUkJwVQr1lL6J4tqFfbycljB8uAh37oqKeuOKuDZ/r/xFC6l5Xi+TSKNsB4n/bLwLank0etOwLLrxRfw2rrAro5SA0NJIRqqqxahukjLEQJEy15ZJREsIH7edZyujnIUfYyTD8hK4yETA31zBYWl1y5wfb2MAwVdAsT+x2L0QhXJ94GwL3pH5/yPQXJ1u98xCYmilJ/wTW07Emzp38LY9YQTXSU1KaTqNsd2smyLI5zmBoaCBFBDEe4N/fT09K3/8siFHRCxVhqtfFZRFMABkrGoNBedvPzg63TN1qs2zPI5MRx2uZeWJFLACASq8UyDUAoAbSGAz4Lvlwwjn4VHC8KE7BKXl1+7wrHk8G9XXHWLJZYTvTs6G2t2n4GyoTqWcQIukmmPUpsoLxL0mMiCAJyxiiRzFpCRls3m/hTR0iv95JsTrx/PSaROq/TvneXtbkel5EzOqEDfaUy7ZxZpb9Hz2qk7ukhxtaW83m4revz9QqSapWegVqtnNx7wiZY3PkDLNGnI6cIDSgHWPefqrhD7Ewn2SlyLBhhwaPfTf8Qc71HJeNbsBZJHWd/4fY2joyb5OpcXoTFYeiELHOTEf5QUpaIl5Tx5bbI1Zc7GRl3WdS1uDYeRWJJMEEyLSheX48KFUSMERZKIaXsfgildyOYkF0z075/F+lmxBTyjWEkf1LuoreLHpUQimMgKDSkJ4xSsQkpVSAdyrJ3/+8ZHT+ErEQJx+uIxOupb1/O4LGnOPbUbXSc/XKG9mxgaP8mDC1PrKEDQzTJTwyw5JL3I+sCWkwoJXHX44rXM7NQ/gaElYvIb9/OcesQ3eYBtCGVpvhcOqIrSFS1U5/oRJHtNcw92ysBoFQqVVF2Rs7I85HOn3yZQu8Elqqj9gyjpw2ISIjK1IYUumrrBD+gJ4eMCtBDdYNrhkl+6y76v/FrANo/806iS2YX27JQB8YxevsJzWgk1GJ72LmtZx1gxAE9VF0qgSaSCzjTdMljjeuIc567PKiubogYhugBLPKqN4FrKayDaOGAIm4PB70InrjbcFtb6qXzXeEmXKGbvHUrwQo/KDUVCGcUJKSwEQh4BMnYrXeRuv8p6t71KpIXn41uAAYcfcsnpj/RJ4ff+jl4a6VHQudPvkT9e17P5H2PoLTUE1s+D7VrgOyWvUiJGPLiJNFF5fWIY6MVOWsV1a++msmHNjP2+4fJ7jyC0lCFEFYItTfS8LZrcE9klmFgZFWERBQn0qVlisz9pe3dcOj1nzyl+5lKdt3w2RIxARBbNIP6V11I/88fJbO/j9orViGIAropIUgisaWdhIse/w7JNXzXFkLtdUTntpBXFfa/+tOnpW//l0UvyFhINvE5awYmMcygtFXTAcE+cb45M6+S2byX+Lql6GYIQRWQXfpSbqixmzbNkj50wPYgEBjKYKsfBDZLHmpK4HH3MVWXKkBgp12/jnP0np/sCNKRjj4Mh/RAEFjXJZw7cus70xIQBaukC/3HHR2nuz0kAvRhSf9x8iHoDNUHmof1sg6cRv5ihIRLgvsZrLgr5uni4wmcoy2Q3GSF40HgGBG4Hq0cMkpjDex37DYekBXfcdPx1BGQ5Mp5EspztGGKGKprvyKaJQIhqLyirDgewTueDFPE0MWKcGBOHd1FeDl1nHsQRMs3zsrnG6kMwz+6nczGZxAiYZTmWpSmWmJrFpLZvJf+//ojTR96A5MPb2bygacwxicJzWxBqqsi/fDT1L/3dSBFMSqirE8xli0wsznSj20hdc/jGKMTRJbOI37BGkJtTUSWzkWqthPcBs3LL9V9gmkJU+YDCap7Rk6f/MW12sXnfYqJyW6wTGZ1XMSx44/S3f04M2dehEzRQtAVJiPXEGy16og7bJJgwMRFc6h+9DAAhaTM5qM/Il0YKtcvoiKWZfL0PV9AzTshhASS7fOpnrmEji0pEkItoiAiJcohmsxcrkRIABijYwiygiCV+xu9bye5q1YQvXc71opy+J7wQA7BMDCjZSIiNKaiJRUPMKGM5T3ERPyY7QKV6yj3IzRpoSaFEkHjj59tiXZZaNJWLOmOMHWbhwiS7CIbjHdbEysugCU8rlGoKS46JAHBsMrW1EIZ0DPCkieBqUNIABRm1BLutplbeW6nh5joT++lL72HVS030DgcnDvkdEhCqGYx5T7VUE83B8la6VLy6iAJCWHmspRqq44hejHQSTHOJOPMZjGW7k7QJyIXQyEZEZG0OU4t9rs8XYSEI1u/Uw51dPllX2TxoldRXT2LI4fvo1/r8tSNk2S+sJIGoQ1Mk366yJBiXegaJNF+5ldH33KGmHgecu2CjwOgiBFkMUwuE+ymODG7bEntj2NvieA4rriBXz0qEIk30LHgMo7vfwjT1Ji5+BokJVEK75Qq9IMgcGjvncxqv5B4okiyCWAYGimjj/F8L4XcGIauYugqkigzK7maqoRNBEo7D3r6o6+eXyIkAPIzq0t6Qil6gbmt4kshjLDHvxEp6zEjVPbEyjbbz0AwrdIKy7FqD6V0jLBIaEJDW9hBeEyjUKugZHxxaV2he9LtYRI9BfSoVGxLRl9le1KMXdLper72tUbPKobesbzlJYt6xQvQC2YlgeS23vcD0uXzKhd2WtwVAsplIZ9b3Fr625MYuTbkIU0ih13jypW7Qwj78kskyr8jg+X5Rc6Vy/WEz7W9YDIxNyDetG8N5g7FpGQtT2Jod7gxhyiIjhbDg7hzE0WFilBERuQEiz2hHHLJn48iX+MmPsr9KVS5kukV+2NKIKqWxyDIEgVP3hDn/brvVS6SGFp1iEKV6An1ZBTzQTikilr0YnJ7qJzQRE6E9KwEA0ef4ujWO5CUKEsueA81LfY6YsNvPgrA3EvewuFHfsbYsZ1ISphofTtWoUBm+DjqxAgzVl1HddO8wEvkRwcYGtvL6Pghkg2zaOs8HzWfomffQwwbOxAEgY7kMjrrziam1JSfhxwJbO+MnJEXQmZ+998pHO7CTGWo+ZurGf/13Uzc8TA1r7m6FKrPs292HAADPCUAdBeYUiILQsW1a67AwNd/Rv7Zw6U6WsbAWY0e/+T/UDhU9mQLL5hJbO1i4ktnEJ7ThqjIHsJDkk0PKOIAFW5AxAHiVFWuKDf0yrqGLnrIDcsUPKCHc3036OF4LTiAh6p6E7c6bUwFeFimWALijADywWO5WZAQfeCpqU0FtLn0phvkcmKbBEh+31FSdz9G7RuvI3nx2VO0+/xFbqyl9k03FvsGoc5ZWJpO9pnjRBbPrajvAG9iLEL19RcSnj+T9GPbMAsqWs8Q2e0bqX7tyzx7REkBKWGPLlPVyO/rIbJkNoIgnDZCwpFdN3y29Pfi33+WhjdcSrizmcGf3M/kF73hWuWGaurfcDnJC1cgy5DZdYTM9kO03PQ6Cqat/xf87nNniInnIbN+8BWEEAiCgNxUhzY4GlzRpdsqgeCpQWAxEqL+bdcz8qM74Ju/pO7NL8NM2CSqoJjkj9g4wMivH6H6ZRcSW2yv/S1TtC2fjwxSOHwcbWAUM69iFVRApOrSlUSXdCIIQgW5WwECu0DikwGBPf+7dJ9DQkylD0MhvQQAF4qW5VpBRpRMjCIJOJ0+LD03vw6ssFAv3lderjzu1pcustYM0JdT6TajIOMHgS11Kt3pbu/kSJCTlpMEWwULKOn6abyXVZ9ud7ehVHrxO3OM5csPISre/ZWW9+1bZN9xF3kjK15vR0MXMZ2QYS7SxD9/O3UNF5ksyWbJO8EpD6rrjG3LFNA1CdHjzWP3xfR5Z3gIM1PA1Kc+bllgaiLZp59h5Md/BMOg4YOvI75+BYIgcOTN/wxA27++l77/+D7df/dlBEUmNGcGUm01ancf2sAoVddeRPzclQSJPjxOdttu8jsPorQ0kbzqIixdJ3X3w2Q2bcXSdWJnr6Lq6osJz20KbOOvSc54Svzl5AVPdH0iicTrKGTHSr/lUBxdzaKE43S0nINq5Snkx6hrWETNivUILgtQd4JmJ2GlA5C7QQrLMhk/vIOje+8hXwQHF138bqpbFqJmJ0iPHKXQ30PX4Yepb1rCnGU3MKAdZuzQNtIDR7AMHVEJEa5vQRqcRLdUwlKMKrmR6uK/8LiJpHiBIEGSKkIVia3NmHVJT5leHUFUTbRk2VLLTUyYkaKLda5MXxaKCS01l+eEFhdKIEgp2bXre5EK5RjZdZuHGF/tjWcfGne5VLpIiciI5rFQ1XzglRuIdANmpi9uuCe3hguQCh8vs6Ub9/w3CmHWyJdwn/oLXmi5UnodWCaGZbCBu2ikjcXC2hOf6JJD1rP0cJgLuT4wmVoqlGan+ih5K8vS0Pl0hOeXjt2T+uHzvofp5PL1n0E38lgWjC+KoaZHGbr9l4xaA0SJY4kCqpmjQWxjVajswn2GkHh+cu2ccpipxyZ+Ray2nTnr7eSFugvPC094QXyAQo3jIVau5yYlHN1mWRYDh56g65m7EUSJVdd8HClu6wU1l6K3ayPje57G0PI0zlxLITNGPjtCbnIIy7K9KCLxeiQ5hCSFyGfHUPMTNHWsYfGy1xHZsKd0zdwF5TB1APkG2aN/3db9Tjg6B5h1xBKFiiTKWkxAyVhe4B3bSt6dANo5X9SDAf9co60jTV+IqcioTtgVOz81J+Y5bvep/Nshbkv3Ylhli38Dj4mOP5yVW9z9cO8V5LyJmvAS5454wvb4rPbdz8fRo/l62RPuKjxWRtGVnuKcKkkeQsK+qGvDmAwmJdwhBf2Jo0U3edJkP3ctKlTkgXCHj6ra47WISc/zriMyzS7L0eKfjhdFxd7Icexxnl3ACsZPzJf64qobTpkV7RdcZIbzbeoucsSdpNxUhECvGb9np7MmAVATYonMMA0dQ82RnAwjCGLJ4MKpr+ZSHHryl0z076e5cx2dy69HVqKe9jf85qNYlsWMdddjmgb58QHGDu8gXN1A64ILCcfrSWd6ichVmIbOwIEnMA2VmtZFjPfuIT85jCgpJBpmMjl8zA4zKIjISoSWueczb2IWimQrrLsPl5MNn0heyDXjGXlpygv5zqPLFpF/dl/ptxCNYBVUhFCI5JXngmagDY0QmTeL5OXnIiguPz7XBy6EDBswL5IVbsDDsizyuw4w9pt70Lpsz7r6d7+KxEVrMCez5PcfQ+vqZ/z3DxKaO4PmD72W/L5u0k/sIL/7iA3YKTKhjmYwDcxsHjEeITS7g/CcdsKz24nOacASvUSvG9wo9cUQECSrokwOGxV1HdDDAdfcoIehVXpB+H+bmugLwyCWno8geC1CK85Vy+SDpUqVwNhJgHAURBvUKoKtJ4OFDX37x+iDI7T824cQRJFj7/rYiU96HtL5va/afVM0+j71TaS6appvemdwZf98VPyd2bCJ4e//gVk//PdymClXXfX4EEO3/Bytd5Da111J1csuLx07+taPn6Y7CZb5v/4MRjoHVhGoS6UZv+1h0pueRa6vAknCmMgQam9kxpffW9rnnCEknp/M+sFXSn8P/ddPsFSNpg+/e9pzSp/YiYBg19jKbNrB6C/uwMoXaP33D6E0NSKEDIxMjtS9m8lu2oI+NEbikrMwxtLoQ6NovYNYmr0Gl5vqEKMhhFAIYyKNPjhKeNFsWv/lPR6Q2A8gW6aA5AJ73eCrAwIbPkBWkk30glSh/4L0ZGCZZHotzU9SH5qaqx3fI7WPu4mBYH3q6EMPieDWif5XVXBdM2J6f7uvdrK4ZwAxIeRPTGhYkROHYTrJy7nODygLm5XHfKHHPO3L/v2e15vCU8d3rjMWnfHpH5tQOQ4sw3uOuwwojcmTLQNK46piPvf1xz8nO78tw8BMZxGr4iX809LLc7aZzTPy49+T3bSD6Jol1L/tRqSapKc9h5iof9urMMZTGGMTpJ/YilSVJHnV+YRnd1DY1217NQgC6ceeQh8ZJbZ2Bfk9B9B6+kGSCM+dhdrVi6XriNEICJC8+FwSF52DVGOv+Y69+58qnvNU8lLbJzj9eeiZGaeU6PqyZd0vmXv4a5e/qKfEBa/6GgvPfjOHd/6R7OQApl6gaeZaWuecT9eeeznW/SjhaA2KEmX/7ttoq9JoXnUphmgiiCKJnkpFasq29b4TK3q80Ef3fT8jOzlATeMC5Koa8uODpLJ99Dz+KJM9BwCLULiKqtpOouedTWZREwmaaFi0nkJEJzfYTbbnCIXRAZIjcWQ5Qt7MMKb10Z23MzuKgkxLZAE117yC9j8cRRCFEiEhzO/EOnAUsbXZrjtqezuYdUn0YjJMMyQiFYxS8tR0Z9laP9Zvg2pmNASmhVbliqs4qXuICUm1UBOVylcq4nJ6RMCSYOASm80MT7jDXMgkerRiuV6ONw92KIniN6qk9RIxIeVNL1Anlq2cS8dPQXJWhiaxA4CrV/8b92777AnOeO7iJF9HEJlgGMMyKYh5RMXeNJpqhQ9boNQ2L+TIwB60jhpiSk0JvLlSfA3ZcIGt+QdJiDXUis3sVp8gLEVplDtekHvyy4ObPgPA2vfejAIosSSxd32M2bf9meFCF5Jpe3N0RBZy78jp9d44I7ZEkg1kx22QQw8wMDYMjd79j5BPDTJn5SsJj0c8SZPduWKchLlGSEQQBOpmrKBn70Mo0SqM+iims2ipqaG19VoaV11C1wM/p+/Q4wE9s2zCNZLEtAx0LYskhYjHbD2VP98mIjKt9rce67c7ki+Cp04fLRFkVy51N6HpgMG6EybGURVCOVSPFi9aUWkQSrk8z8IiUsGcMndAut3+Tt0eJqJhYUpCqUxLSIRdxmcOcO4OIeSWfJ1IZNQshbwzlXJYH1Pyvgs3uQBe8NljZe+ywNcjojfsnSsvgxGWSv02/DyCC+DX4qcwbRsG4oQrJJAv5nYolSv9Lbty/4ht5TwJCAKZhfV2eQAhAXby6uhQ+aYjveWkZpbk3RSNL6su/V2o8W4y3CC/oZTDOjnHPXsSqUg+CJRDHU0RQrB8L953CJCvc1nFubxZnPHpfl96rGj8UArBVLyPsI6Wm0TPp+3/c5MYk2kKSgFJiSCGwyhWFCkUQZQUJrp3M3rgaQw1Z3vURZPMXPNy6jtXY8oCom4xdORpJvr3k2ybz9zVf1MCghwPCbcoUozunXcimBYLFr6cto5zME2DJzZ9FaOQLYZyg+rWhRh6gZGuHdS0L2HmmhuoapmPJClouUn69j5Cdvg4C9a/BSUUQ9naX3GtM3JGXkzp/N5XqXv9DYz85LdoPf2Y2RzRZYuoe+0NTNz5AJP3Po5UXYVUW83Yr+5CH0xR97pXYJkmgiCWgRBsC34oWm26VIU+NMbw936Oerib0NyZRFcvJv/MAYzJPIM3/5zcjn1gmojJGOF5M4lfsAaxuoHYugZi61YjiBqFowMU9h1F7epHCCuIsTBGKoN6uIf0I1vtLJqSRHTlAmpuvILogmYsQ0A3XPpHskrghvO/u8zx8HAADlMTK0AP07DL3CCI25OiVF+cWleaFTHQvV4Q7mNmQSrz3AHxp4FgsM3d/kmEK3GLMTROeF4ngiieFOj2fGT2t75O0Wkf7fAQ5mTWvs+Cb03jiGu8uY8pHbMAyO85TmTRXI6+wyZSZv/si2gjkwx89X8RI2GSV5zL2K/uR0xWk7jwrBforrxy4LWfAWDurz5vgwI1CZo+/AaSe7rIPPUsYkhCiIRInL+SA3/zry9Kn/6vidzUQPbJ7Xa+ywDjNsswSD+yicK+w9S94cZSWJRyhYBGi2MxunIR0p8exgqHkJL2eZYqIcgJqq+7lKqrLmDkx7cx+cCTlcgw2Hl1qpNYpoWZzoIsEZ7dDpT1yVQgsEMEWIbgAXvdFu6lc1z60CFmS7rPKOu+oDKnH359WPJoCNCHbiLCY33ukAoOMAw+fSgAFpZz767jHn0IkPfp0qmQ/LyXHBZcv62IiZh/noTFNHIiHXpSThiW3U/n70ApiN4Ou+uFfViRRen52r+L82HI9Jxn6SK4AH7B56ljauVrOgRGxRzrmwtNTSyPZ7dXTnGeOtkyz5gyBEzVwJhIY6QymKlJ++/JNGY6jxAJIUYjiLEwYiSCEA2T33OYzKNPY0xMgiAgVSWouu5iqq66oLQfym7fQ3bTDuTmBhr/7o0lLzyHiHCLGE4w8ciDmNkcNdddRdWVF4Ek0feF/0TrG4Ri5Jfw3E6U1mYyT24lumQh1dddQXTpAsRoBDObY/LhJ8g9u4/6d70euaGu4jp/7WKdQvimaXP9nJFTlr+4p8QFr7IBXMu0kw2LosvVqmiVWMiPs+nPX6Rh2QXo2UnGD+8ELNoueAVJtYrJWJb8cC+ZY/uZd/V7SYTqS20MDO7k6AM/JVzTyLLrb2Lk0GaObvwNohIm0jqTmqVrScxdghxLVCQRffaLH2HFP95c+r3zGx8p/X1t4/uhpgrdVEkVBhnP93BsfCsFM0PdvLW0rLqSjtuPATYp4cjEsjpqNvVgNpSBGT1ZDPHjShbtBvbkgkVoxBtkUq0Pe0JRQNkzQU0InlAS4LXeDI+b5OtF9Kjz21vXISYABN1CyrniSrpDbsTd1miWq7yopHXLE6LDT1C4LXCdkCeP3/cpInKSqlgbVdFWZs44395YAvdtPL1WOVdH3wLAkNHDdu0R6oQmVioXIgtFq+uTICWkxQvQjQIP7fsGyVAj1S2LmDXrEmQ5wkS6iz27foUkh1h91gcIP76HndYTDBs9rI5eSoNpg7+nO/H1ieTa9r/3/L6755YX9fp/DXLpJf/BZKoHSbK/TU3Lct8DX6ShoeEEZ1bKgjWv48C2X3P2Vf9CbllZN0k5i4kju+jdcDtaegJBkokmGzlr2bvJzyiTkkGkxORoF0NdWxkd2otpaKw+/+8JR6p55M6PcfHLv0pqZlmPNj05wSM7v4Gm50jWziRe1UokUmOHlcqNkjdSCKKMUlNP04JzkSN2OIzYoF4iJADPQtABi70gsv2tR0dcHleucHoOuO9OLqwXQXn3ojcyapCvkwi7PLecc6fKgWAFgM2SaqFMuqy0wl59masTS3pRMC2PZ5c7PKCStVBdVhPTrUE8RlHuBM+uXYroA87d3iP+EF72Bb2eEvHe8lygupIme0JMuQgSd7gmJzG2NJ4FV+JzcxpCwiOueWRihc/TbsJ+AW5CAgDXcxg92x7/guEjJKAUiql0KXcIYb8Flf8x+fYzfk8JKIdbcsQZex6io/i3f/4MvCaQ11Icf+p2Rg9v89dGisaQlDCGpmKq3lCPciRBw7yziTfMRM+l6d5yB+FkPdHqZvRCBjU7QT41XDJsWPzKj7L7NnutdPY7vlFqR8umOLLhV6R69tIwdx0z1lxHzVgItTDJM7t+QSrVzZJX/ROheDXCpIpS/Lbd73XTz/6x8saep7zULKDOyAsvL+Q7L1mqmybohtcToiiWadL1gU8QP2cNiCLZp7djaTrVL7uC8OyZaEOjGOMTZJ7cQuN730ZoYdkwJL/vKIM3/w9iNEL75z5G4XAXg9/8AUJIITSzjfg5q4iuWWZbIMpeRXD0rZ9g9s+/WPp95E1lMGDOrV8oghEaalcf6qFuUvdvQh8YIbpmCTU3Xk5oRjtiyPCGaDCFijIH9HCXeUEPsVJJGWIJWCuf5DpHExHc06K7rmoTOpbbU2IKq19BwEs8nAwI56hfHxg3nTj6uedzX8YqqITn2OBJ7YWXIRbHxKF/PL36bPa3vg5Aoaub/lv+G6W5gaa/fydSVREUnmoH7VsoWIbJ8Y//O2IyRnTBAqquvhS5pppC/3FGfvQbzMkMzZ/8W6TqasZuvY30n5+i/p2vInHOOQAcfc/JW6CeDpnziy94fh9+4+kNJfX/B5nzta+h9vSAJCGIImY2y1P//M+0t7efclvN//B+Bm/5Li3/9A9EZs70HMvtP8job/+A1j+AGIkgxmO0fuTvkJLJaYFgtXeAzIbN5HbvQx8Zp+Xjf0eorYWj77uJzu98DctHoPV/4b9Qu3oIzeogNLMdub4GsSqK3j+GMT4GkohUU0XyknORa20Mww8C+8e9IJseK/ISQOwLP+dIkJ6bqsxUJY/OKluXF+udgj60SmSt9zCiZetCmFYfCj6Psmm9xAQLYQqviCnbmEKcxy0VTj84aoStk48KdZL1rJAVXD9o6xNyxnaw5zkAvvnYHZzEP1fj95aQzMoNXdANm4J33Djt+MeSv55TnM4zftt9TD78pG2c4BIxHkOMRTALKlYuX/JOAhCiYeLr1xBdMg9jMsPE7Q8gKAqhzg7MbA5jbAJ9ZKwYVg0a//4dDH7zf0vnd37H3jOYuRyjv/oDmae2El25lLrXvAK5oRYzn2f4h78kt3M3zTd9gPCsdsxcvjy3QWkMvhDzz0ttn+D0575ds4ifpKdEZtLkquXHTukeHn30Ub761a+yZcsW+vr6+P3vf8+NN94IgKZpfOpTn+Kuu+7i8OHDVFdXc8UVV/ClL32Jtra2UhuFQoGbbrqJW2+9lVwux+WXX863v/1tOjrK69qxsTH+4R/+gdtvvx2AG264gVtuuYWamppSna6uLv72b/+Whx56iGg0yhvf+Ea+9rWvEQoFhG5+EeQvnlPi8dtumvb40n++GcusR96cZPiZxwk1NhPtnEPu6CF6H/9jRX1JDqFH7Bjgpq5hTk7aianFEJZl0TBvHVVtC5Grqktgdy4m8OyXP1LRFniJCLfcPfTfpb/XvudmEpzNYv06hvdtYmDHg4we2EJXvJma6k6UyX6knIHamkA6GCE9v522Mftc8fggzqvPrSwvRJxklEYxVrpa7zOdxQ4/4SYmBMO2sHUAFcfi0j5meUKTREZM0h3F+Is1AuFxqxQiplAjl8E8SUAqG9OWZHyBzWhILtzenUTUsTh1ExNGRJzWcyLfIDNj7cvJDBwlkxmjv/d+ool6muqWTHnO6ZC8lcHCRJdN8tUiVUodhJQyR5UtPwB9aLjifFkKs6T1ZQwaXfT1PsXw0LMIgkg2O0Q01sDyVe8gumEfCCIrOJdd4hNsyz3MSvkCmqQOrj677A1y7+Z/e0HvFc6QENPJ5Zd9EdM0eHb3LxkaetZz7POfT3DzzTdPcebU0ly1iMNSiG1//k+qBlcTa+ukMDpI9thBMn2HSc5cxJLz34Opq+x68Jt0H99Ip3Qx4LXcnpwVKXlS7X/ktxi5DDUN8+mYfRHhSDXpdoW1772ZBFDVZeuP8EAOSxSJRRqYzPZiGCot7WtJVLd7gNt8neQhEJWshZaQSjrDCAsYLhzI9M0c/oTDJQDY+U8CvWh57gDvpiwEkhtuy3WwiQ0tXvlcjZDtEeGsKU3ZJiYccFuPCigufFwsmJhhkWxDpVWQQ06UdKcieLzIPPdq2evYUh4JV3Nufejk3LF/WERGyovN0LgrpNTc8s15QwWd7G7g1MWoiSForkRydeX42LrsirfuCkOlDJYfppuQiA56yVvBFWIrM7+W2MFxoExIAORrfRtXD5lTvLbzfJ31f/HxBREObrFk7/7Gaa/k+eB3sPR5aID9HpLdGrnG8kC3hLInhmUa9O/fwPFd9yLICh3nvIJIdRNKNIkSS7LlJ59i7U1ePWvqOg/929tJpVLMmDGDC977rRLZlu47RG5yCD2bRorGqK5ppXF+DUpVLeGqemJ15cXo5h/+I6vf8DlSfQfoevL3CBYsvOhdzNA64Thk84Ns3v9DLNNg/nUf5JnffJEzckb+muVEG+LZt3wdAZHQjA4yT25FrqslunAB2Wd2M3HXAxX1xUjYBpEs2wLZGBxHUBTESBjLNIksXUD7lz6JlKwqx/8PmSXrdr+4iQi3HH5DGcjt/MmXCM+ZReKyc8ls3M7EHx+i719vQW5tJLJgNlJNFYIsgiAiRiMobY1EFs0tgRyemNy+spIVsCXYRIPkA1D8VsBuYsJ0AXGOxaxTv+Cz3i1MQyBMUX5S4JvPC246kQoCdVdcRXbfPvTxcSa2P4CsxKi+8MKTa+A5ijE+gaVqmDkV/dgw8vzqKeuWgLdSAQiiSP0bX01m2y4yW3eQ3b4LqSqJ2t2DVFNF44feiVwEC2pf/0owRUZ+8DusgkXyovV0frccPu/o+6bfN58OOUNCTC1zv/ENLMti5A9/ILVhg+fYh/r7+e1vf3vKbcZnzEWqrmbglu8SX7WSyML56MMjFA4fIbdnH+HZs2i96UOI8Rh9X76Z8Xvup/41r7JJvSlk/Dd3Ujh6jMiSBdS94VWE2loQCwJzvvl1UCq/TaWxEe14H5amEV21hOiSBV6M1gFjQ443BFiePDCCNz+AKXhDGbmJCEMsW6o7VuamUNZzjg46UZnTni6WHbH9+jBk2ISEcw+iBQWxvO4L0oduksGlDwWKDmGqAAhT662iThPVcoUy/j29snOfEygvknF2BdFxElsS06/7fCKolYZopXMVy1dX9FxTMAUvkWYK4Dwrp55SJjIszUVmmICrfcsQwKicU90PV/AREVaRFHOP18Cy4ndimSaZjdsY/82dWJpOzY1XEJrVhlidQKpOcPiDnyUUCtH54y+X+6XrbHnF+0ilUrS0tLDkV98qjUWte5D8gUMYE2nEeJTIonlIdTXIdTVI9bWEZs/wPs9cnsLho4zcehtmJkvDm99A4qw1CIKAMZqh/5vfRh+foOk976D/K//FGbHFsESMoNi8gXVPvf1MJsPKlSt5xzvewatf/WrPsWw2y9atW/n0pz/NypUrGRsb48Mf/jA33HADTz/9dKnehz/8Ye644w5++ctfUl9fz0c/+lGuv/56tmzZglRcs77xjW/k+PHj3HPPPQC8973v5S1veQt33HGH3XfD4LrrrqOxsZHHH3+ckZER3va2t2FZFrfc8pfBCf/inhLTydJ/LgOAlmFg6hpWVRgsCyM9iXmoDwSBsBpm713fZM7Fb6Fm5jImBw8xfvQZRo9sw1BzSNE4pq5jaQVqVq+n+WWvIWFHU+HpH5xeq5rLL/kChqExOPQMY+OHSaW60AQVyzKxDB1DLYAAa87/EIkqO5lpbKvtUWG22UCPVlNO8Kwli14HJwj5V6guK1cj7E0i6rbMFXUb7HKHDXHEbaXrkBKON4M7Pni20Z2ctXy+Q0q4E14DFOpcbpruUCsua17NFQrF6e/uh76Dlc5wzvL3Iwgimfbyc0nuHy/9fc/O/6i4l1ORK8//D8ZTXew5/Edy+THOXv4eaidcJJCLlKC6PP71hjKbbETte8xmh9m//w+EQgla286mpna2J+67uHUPpmWyS9/AoNnDmgVvpr5qDvDiEBJnJFiuvODzgB1Gbd/+2+ntfYrFC1+NZZns2fc7AJra1xAKJ2iecRZP//nrJ932ZVd+iWxmiN7ezfQNbUfPTiLHkoQbWqlfcyF1TYtIHd9PuucgxsQE4z27WfWKf0GRoyWr+LEF0RLQr6s5tv7q08w+/7U0zFtXkadhy/98hItf/lXU/CSj+55C03PUrrmQo9v/yGjPMyw87+3UzlpGeKysVNxEgGOhLlh2aCW3B0KJmPABxY5YIhVJocFLYrj1lqPXHF3gvpdS264pypTtTYD/nuW85bmG/7puPaW7dJ+/v+ANASQYEEq7PApca1iP94RUzvthKmUyONZfvrDbE24qUqKktwWQs2U97b43d+4GtzeGe45wJ412919x5ekIHegr962jTDJYU5AS8nCmfF33skF3Xdh1bmZ+belvt+fOdIZJStq7HFGTU+++JJ8jW3mDWfzPNzYDN3IBqx9Js0qhyhxx50eZGD7M4e2/Jzs5QPO8c5mx4hqs6vhzXkuc+4ZKXeK896d+5G2zfvE5TBzZhVGw56TatiXMWfcalIg9FyWO5ejuf5J9R/5EctYiahaupXbRWnb8v2DjihdKXmoWUGfkhZe/1DuffUv5+7EMA0vTEEP2+s2YmECbHEOfSBFpncnxz32BuhteTtXFF5I7fpjcjmdJP7UNc3ISMR7DNAwoqESXLqbpHW+Fotfv6QaBO3/0ZSzDILt1N/ndBykcOIqZyWEZpn0P+QKYJo0fehfRZXZi+1LoCcda2G0hrBdBELcRrwPMad75rlzBQpgijrqgClgRswRaWlMkc3VE1CoLTyaqwQnBtymu55bBX/yC3MGDzPjEJxBDIaR88An7P/n8dODcr38Dta+Pod/9lsKxY7S8+z1Eli844Xl+8M1ULIyJFCO33gZA4ryziS5dhCC6FheKhWVZjP3qdiYf2kDDO99IfN3q0uEXg5Q4I5Wy4PM2JmFELcYfeojRO++k/sYbkWtrGfjhDwGIL1mOUltHYukKur/7zZNue+43voE+NkbqqadIP/00+ugoYjRKqLWV5LpzSKxZQ/7IEbJ792Dm80w++SQzPvZxlPoGzHDRCLAglP62TJPuf/43qi69iJprrqwYh4f/4aN0fudrGNks2S070AeHSV58AZOPbCD14CPUvuYVVF9kE30lINjjEeFqzPQScaU1tR8Edh233Fbspo+cwKXnCNB9QWUn0IelcjdB6zhUOHrIox9df/r0oX2ua+2t+sjaKdwLLMF+RwBm2Ar8+6QJBwGknIARtUo6z4hYU+q/5yyuWzEiJ4HAnkyVqYgL/6RhgRlyjF2nGHuApfiVrOvvabwlLNmq2P9ZslXpUREggiFgSVPfrNrdy9gvXlL8IAABAABJREFU/kDh4FFi56yi5jXXoTQkOfq255YfyE1Kl6Q4Bv1GGzVXXsHkpicx02kAwnNm0/jmN6DUl0MtZXY9y+D3f4jS3Ez1+ReSPOccDn/sxZ1XXmr7BKc/d+6cQzx5cmEhM5MG1604/JzvQRAEj6dEkGzevJl169Zx7NgxZs6cycTEBI2Njfz0pz/lda+zw9D39vYyY8YM7rrrLq6++mr27NnDkiVL2LRpE+cUvS03bdrEueeey969e1m4cCF33303119/Pd3d3SUvjF/+8pe8/e1vZ3Bw8C/yTv7inhLTybNfLC8il/7zzRCXbH0tCCTUaqy2BMPPbKBr0z1ISoRE02wOPPA9JvsOoiRrkaMJDDVHuKkVbXwMbaLA+LZNNFxyLZm2JHs+d/o36g/+2bYuWfOBm2nlPFp9x3VBZ/+tX+Xgs39g6dq3oYRiEPF6QSjjOTAhO6scwsWUbNDJA9q5wLNCtUB01NauYhbAKnlRRMa9yVX1qFBWxAIlBW+Eyok79Yg9NByiIVcvlcKyREZND+mg1kildqWipbHbKyI8qpeICcG0SlbJpixgRCoXD06M+dZ1L2Pfn27h6YHbwLLQ940TTTaSrJ+NkK8nHm4IjL35XKSmaibrlr+fp5/5Pjv23co56z6EJIUQC64Y98VnEu4e8xASeqJsQh5NNrJ65btKv8Vs+Xxxm+0tIQoiy5UL2C5tYvuBWzlr0dupjrZy9VqblLh3S9lz4oy8uDLeYtH7yNO0rbqamrnncGzXnQAIoszkeBe5zDBKOHGCVrzy0P2fKP2t6zqpVIpLP/tjJrp3k+46wNCGe8kNHQdg7nlvZOz4s3Rt+xNzz34NmTZXIuIiUJka6gIsom2zp7zmcP4Yex76Lo65zuim48QbbE+seJP9f6FWqrDMd1uRO9+hA4i7CYiSNbuzjnZZm5cW+q7Fnqjj8bTwt+dv1y2lsEqOurPscE5GuDJMnbvfbs8wI2SD2KJmESrqTUc/uokJ0bCwRF/oIJ+4gXp3mCenn6JmlTYW2ZYQsX6VTGsxRF/xHWbaFE8y7ERv+YKOdb4eE0rPQ9QrvVOej7gJCb2zufS344kD3vsUdROt2R73oX6X+4mLkMgsLhMbbhLiRDIVeCWpFtERx3tP9BBCgkUp7wf4xo1FOddEpfFTqU7F9VzzabalqOvHy6ER1PwkR5/9E0NdW4k3zGLptR8mXt/Bkz95foYNG2/9aImY2HhrZb6I1R+0gZBU1x5G9z1NtKGd5hWXEqlpYsbBKMJRC0gBML68mmjrahqlISaGDtJ938+pnrfyefXvjJyRl7Ic+fvyNzP7lq8jusDdUKQOJVRDunsrfb/8Jogi0cULGfr5rWS2bEVKJpGSSczJSZSmJsxcDq1/gNwzu9GGhggprZ72T5ccfbsNTMyyvkpsdcD3qVkM3Pxdxn51B0p7ix0qxbFIdoAQU0DQhPJvimCfWATfdAdoc4FnedEFpnmBOMFHELjDKgmmUDpPDPKWKIJwYl7ELIaTkfLCycU7D6gj5YUSACblhGnr1l98FV07djD4vz9GDIfRxkZR6uqJzppNZNZswi1tpQShz1dCra20ffBv6f/BDxj82U/puOljyFNs3M0pQp+ImoAYq6blne8s1xXL6wjBFKAgIAB1N96IlSkw/KNfIkYjxBbaXuOzb/n6CzIuz8jJiZixmHj0MarOPpe6sy9ifONjpWPa0CCZ3btKeZxOVtxhxyzLYmRkhHU//jGFI0fIPPMsff/93+QPHwKg/sZXIiWTDP/+97S88132N+n0rQhuq/1DmLkc0Y7OKa+pdw/R95+3YObzCIpCfs8BYkXyKzJrVqme3xvDAwIXh66jPzyAsyaUCQe8ILBDHGAIpfYsXURwyIuiXhPcFu3TlTnPYCp96BNBtb0eHH1VuhcRW6/667v1oSYgTOclAd4cEG5PDEfturwQnL+fSwgmKVfux2knJPzXOoX2jXAwYC9YIDj36ZogTH/94k/R5y0BPkKL8vtyiAtTcREZbk8V/3nOmHG8KwyhPP6gIqR7xb0Ylc/DzOUYv+M+Jh/egNLSRPOH309kwVyOfuD5Af5H33dTiZgIIqXn/Kcd1jV/7BiTG55AjMWof+UrUBobiTR22HOgk/tRsIjNmEvVeeeTO3SI4dt+S3T+fOZ+7Rscuun0h3P9axMDAeMk2UGnXiqV8pSHw2HC4coIN89FJiYmEAShFHZpy5YtaJrGVVddVarT1tbGsmXLeOKJJ7j66qvZuHEj1dXVJUICYP369VRXV/PEE0+wcOFCNm7cyLJlyzxhoa6++moKhQJbtmzh0ksvPS39PxV5SZMSjpzz1m+QAJ78yT+y6u9vxijkGNi1gZFnnkBLjxOqqicUr+GZP34ZU1Np/5u309CwnL4DjzD44O1ku4+AZRJftYLa61+GzAtDSLhl63c+UvL0CI9DocYuV9IyHZe8hqN3/i+bH/86SxIXEo0vRBAEtDrbE0AZtq0gY8fSFcSEYFglsChdjPfugDO5OrFETOgRO7SJE4IklPYSE6bssqx1gTfOJO60W6hxnSOd+COVXSC8O4/FiRJeu6/rSKK5k+ZllzB2dCfhqgaiVU1kJwYY6trGYSwiSjXttctZ9frPokSTbP7hc1Om92/4FADnvfbrdCZew64H/x/pdB+1kXJsNoeQAEgvmTqvQCjlRVrNSNG93rAw1tmJg5W+CURgldnEw0e+w+HeR1g99/XPqe9n5PSKvm03lqlT1TofgJnLXsaMJVcR0iSOHXiQY/vupa5p8XNuX5Zl6urqmDy2n2N//AGhqlpC8VoiNc3kxwcQqxLMWH8Dxx7/Dcn2+dTPXm0Tka611PDejSjxGqqNOoS0iRvr3/Dbm7jgFV/mwIafkaifwYKL3oHe18ezm3/ExMhh4o0zEWur0QkmAJxQRDYwX86zYIk2sO/87SYc3OCwm2iwxOI/n9qQS4mjXQvSIN1iWXhyGgiu0E+SUA5v5CzyfSSHmrRDTiX6g3VPZMwuL3kjuMNTKTYxUXXE1sWCC3xPz7I9GzweCw6p8f+x995hklzV+f/nVlXn7sl5ZsNsDtqkXWWttJIQSESRDZhgDMbYP7BFMDiAZWODDUKLwV9sTDDB5CCCUEAoZ23W5jQbZnYn587dVff3R+XuntnZ1SoAc55nn52uuhX79rn3vu857yn6jwccQuJMlrEKiHu/F2/2mp1FUYi6ixDNk8TllfrykiV2cWql4BLCxblNzv4ZZqkCEBjJIIPmfUohIGS+tPR8l6Sd7PAUbi3pY74i357XEky636W3AHp41HDGIEUv6UueccsZs4KgpUvaeK0SSGRlm7jjnntQullFGgbjWx/n5O47EUJhwYY3Ur/sYkf+8ZJ33HZeiImpbMeXb2butW+h+4EfUN26lMWX/TFaMEJotEjeKv8R6jcfumb3OGOramh/6ZsJ7HyQvi33IGMaF/zNZvZ89rmd88zarL2QtvRTmwmicPATN7Pos5sxCnnGn36K8ccfpTA0iFpdQ3jefHq/+GWMdIqG17ye+FWXktr1DIPf/g65k92g60SWLKHuFa8g0PbcEBJeO/GejzL/y1ZdvaB0iQFVUPdHN9H/H/9D7ydvpeY1N5K4+jKzsLMNpNjkgm4RE7Ymun3yUrCuEsFgF2qdoui1kneJBR8IJ93zmYCaB2DLurUttIygGLHIBS/RMAPwrSIA5rmubcH6RuqvfzljTzxCoK6eYHMLhaFBBu/6Jeg6ajxBYu16FvWNEKipY/8/n5sfPPph08cv+dfNtLz2LRz7t38kf6gLbcPaiu2VnPCTElMBcNIC3uznszcHJAJB/R+9keyRLsZ+cQ/Rv3lupWxnbWaW6z2FPjlBdJGZKVN96ZVUbbgUJRBgYvsW+n/6fWJLz/27EkLQ0NCAfryP3q98BTUaR6upJdQ+h9ypblQCNL/mTZz+9leZfOARaq/cBNIfyT7x1JOIYJBwx1yUkt/SkY9+iEWf3czQ//0AtaqK9o9/FCOVoe9//oexn9+JWlNDqLnDBN9lBVmdaUBgYV/LnpsFXD/lA3EDhum77POVSPO4vpDpt1Xwh95MCa8/NO/bcWjmYVkFURQYQWNKf6jkXd/nm4Na/qg8y6Gyf1Ozpj+cEtyfAQ6q5s7c5rk2fQZYa6Vn9PrD0qwLL0nj9YNeOSj7eIc0km4bbyaFUnCJDKlJF9+y+619nNWPfBkw3kwJ79LxDMU1pJSktz3D6E9/iZHNUvOaV1B13ZWO/OP8/7r1vBATU1nXX3+Ilj//M/q/+nVC7R20/PG70KprKvcpKVAjEVpueD2Te3bS+6NvE1Djzzmp9btiZyffZPaLOXP80ln/+I//yC233PKs7yWbzfLxj3+ct771rU7mQl9fH8FgkNraWl/b5uZm+vr6nDZNTU1l52tqavK1aW5u9u2vra0lGAw6bZ5ve9GTEpe8w2L/JoZYeOXbKKYn6T/8OPnMODWL1qKGYwzteghFDVB36SYSK9YSamgmb0DdxVcRqKkjow8TW7cWraYagP0ffO4X517pKZuQAMhXQXDFIlaG/obup37BM8fvIr2ujTlyke/4fFOUXLX79RTigvCI7sg0eSOcwQXISrcXogqBtEExojgkhB2x7K33IFX/YOsFJ20gKVejEO23hb1xil4HUgbC1tpWhAOOebMifPcU9wweHiDRGwlsA4WtG19N68ZXA26xW72QJdV/gtFjOzl2bAvKz7fTsvolbN++iVWrVhGoUATRazfO+Sv//SywfpTNIcb6Dprb6mNko+7IGxxzI5mVguIDrmwLpHSHMLKBwLI2vePO3xO5AXQjT76QYniiC/WiNect82PWzs4KcbPzxQLzCZ6q4+S2XxJ85fsJ5TQgyPF9D3Ly4D0kmhagtJY7+rO11P5nCMXrWP2qj2OEFY49+D2yY/10P/kLGpdfQaSmheOP/5iajhUQDNO74x5Gu3ahaWGSg8dZeOUfo8dUnvr2h7jiDSao8dhPPsJVr/4cup6jkBlnwcpXooVjaJ2LWDf3FopaEcUq3G2DxULHkx1lZh54x+LS6HQvYVkxTde7Tfh9iiNNZP2OFV1SDImKElCOtJuUKAXzt+8t9qzoEkMVvnoOtp8KTkjyVW4NjGSL4hATisdPlVpkSCfToNLwsCeLoKXGbK+piKKOVBRi3RlkwH1J2Xrznao5lzD2ZloEJw0ip13pI68c1chqc0xKN2lnrJXwfJgtyyRV4fxdjKjoVsiQEXClpoID6fIT4Jdg8pIqXrkrNS8d+SVDFQ4pVbrYSTf7J4aKR7LJlzni+TqLUbcbBtIV2mJ9P/a6QyvpC55A4vRAD92P/IT04Enql11C55KXEwjFIAd6mGdNRpzJLnyfOY8YeuYRquaupPNl70azMoBytRqJ4+YDyrCG2H0EgPDBNIfaDpMaOIkWcYMaZomJWft9taWfMn8nhYkxWt/0DvTJCSZ2bSPXf5r48lUklq9m5PEHEapK1cWXEF+1llB7B4aQxNasQf3zKPnuHmKrVhFobATg6Aee34hBb6aCyAtCjW20feKjjP3iLkZ/+HOEVEhcdbl7gKWN7s2KMME1ac71LcDPiczNm/tE0YryBR+xYISkX07JE33rkAml2Q/TTFdtgMMLdPhAjzNMdc8GfGvYsImGDZt824xCnuzpbiYPPMPEti2MP/U49ZdfyxNPXMqFF154xijG5Z/cXHlHCNKHDgCgBENTAjnCCxKXRGY4ANwU4Bu40laFkQmKwyMEmptIPbOH+OKV5y3zY9bOzuw+GalqItTcztCvf0HV/BWoWgAIMLFrO/23/4BgfROxpvnP+nrpvftAKCz4y79DxjRGHryX3KluBu/8BY2vuIlQ+xyGfnMH8QvWEKiuJfnIE4w9+ShqNErmxDEaXvoKNBHh0EdvZtHnTCzlyEddv5Yf6KfuJS8jGKqBUA3zPvoPkC9gxDWEqjo4rFIQZX3VBwLnS0BdT1uvT3FAYAOzXg1+EFjkFGce7Ejj6G5Eeuk2H25oiLLAFTvY8Uz+0HkGH9HKtFlcXmLVuaZFUtj9RA/Zf7tttUzlDLIyf/cihgIq+uYpMPupCIyp/KY3WElID4E9na8sIbmlZ77v638Bf/aavc/OoBDSnyVjqN5Aqqm/kMLgEMM//hnZA4eIrllF7Rteg1ZbY9/NsyYjzmSL/80cqyYffpxQaxsd7/uAK6Ury6VuAfRsjr47byfTcwKhqijhMABL/mUzh/7hD3udYCAwZvgDtNt1d3f75I7OR5ZEoVDgj/7ojzAMgy9/+ctnbC+l9GGIlfDEc2nzfNqLmpRY9+e3kc32MrDrIUYOb/WBOYFwgokT+9GzKao6L6D+z9/pTNT2f6T8B7Xgi6Y8QtcHn5+UV1t6yiYnSkm3utEodUvewpPj/fTvfZjwFc1oDQ3UHM2Tb4oCEBovkqvWHBA/W6c6YKKWlRRi7qBciApf5K4eFI7GeSGq+ByxVF0SQylKRxLKLuAK5n4vWGMTAoW4SiBZOS1Vy5jblby7P9NsOjphuECjDf6dq6mBMNXtS6luX0r7hS+n++lfcGrrHaxf/0vUQJi6hRdSs2AtaihCJKmgaiECoRihtPU8K9oI7zvtO2c+n+TYQz+mb2AnreteSlXMEt6S0kdIFGPmT0YpSIeUARPkLMQ1Asmin5Dw9NliVKO4oI5I14j5HBevZUFjjt6jj7HtyP+RmHiCzovfwKVv+7wDxukhv4zZrJ1fu3GxVbhyoVmENxhKUL/sUnq33Mmur3+M5S/9/0g0dTLWexCEYHKgi+NP/wSoXPByJnbJO25DKKr5TyiM7HuakaPb0MJxk5h44mdO29NP34kWjNK77zfUdK5BkQptLYupm7/WAURTLf7fkoKGEApZXNBYRjRUy91768loHp9hBAS6LzLE86cnkwpMMsMGeu2MA8DJxvKCwIYm/OB0TDELVNsEh1ZOqhqaIDRhUIgKx/coeZOYsCXiVCR5S4LJyVCwa5JOWBkVAfNcuSqFyJDrl2zCNJAxCGRcv+dtk11gZkQpBev5Aooj5yYKhkNMKEXp+D7zHjyT2uCZwYP6baY/GF/pRj0ErDo03ho8mmcSXwyZ5y16akf45LWszLRsvYYdVpavctuGRwNl5/daaLxcW0vNud9z+Pio83d6UZ3j84QuiWV0Uq0B33eebvISEqbUn3l99/z5av/1jIC7+LG/Hz3kZrQ4+0qHEk8fLkRBtd23vcAu4l9flMy99BDo+Sz9T9zN0K5HCNe1sOwG0w8AFIGnv/X8AJbbv3IzK978t2SGT9G65iWoujnW1/9wl9NGrlrk/C92H2F/20kmuw9R1bmSeMfi5+U+Z23WXkgr9g0xuuURxrY/jtQ9fl5VyXYfJ7l3F+E58+l41/tRrKCVgx8rn1ctvM0E7rxSKs+1Hf8LE7CY/+Vby+QgAlqcxte/EX14lORjTxJeuIBQY6srUeIB2lxwTfgkTLxRvkreD+QpOa8sk/D5Qi8BoWbdfd51wtTEgWfRK/1AYcVjnoP1rxIIEp23kOi8hTRsupHB++5g+NHfcvnldyO0AFVL1lCzYj1qJIaiBUyCIRJH0czJiwroEf859VyWoXvuYnTLo1SvvYTE3OWIXDnwZs+XpgTeQvhANh/4hrnPzqbQamppetsfM/7oIwx+7ZuMt7fT+Po3svDW21xgWMKRCv151s6PXfBRcx1v9wklGKLusk30/vy7HPrMx2h/47tILFtNqusQKIL88ACnf/ItjM98DOUcCaTln9xsEgNCIFSV9N79DN//G9RIDD2TYuD2Hzpth+/8FZG2uQzcdwfRRUtQI1FqLrmSmsuudgDG4Ljbv5Z+ajMq5m9ETyWd7YqiQlg150iewBpvZo+a9RMUwhA+kNhHbEq/1NNMQGDnvFZmhfT5MovIsLPAjBIiFtff2P5QgJs1VrDoWI8/tLc7mRDeLAmHZPATGs7vWnjmsDMgGpQK4PBMTc1MvU+PTL8fmCJi/tzvx77umaySv7f9YyXCwgHQvSSEV6q1gq+0paJsfyjy7vFO/5P+vumrv1R0Jc29mT12n5KaLBubpSohpzN23/2M//Y+1Koqmt/zp0RXWBlSeei6+fmZRxz++M0s+OS/kD50gMaXvgpVV0Fn2nF1/JGHmNyzg8Sy1YTXXYaWFzPKgPlDMAPFCcQ7c1uzv1RVVZ3XGgyFQoE3velNHDt2jPvvv9937paWFvL5PKOjo75siYGBAS6//HKnTX9/f9l5BwcHneyIlpYWnnrqKd/+0dFRCoVCWQbF82UvOlJi3V9upphJ8pZFKvt/8AVy44O+/Uo4QrxzKaqhoUUT1C5dT3G9W7lhKj2054uMKDUvoLzi782JTfNWd2Tq7NjEwf0/Y8+PP03dskswNr4WvSZI4648yfbyiH8bhHJSqm3NROkCPTZxUYiZxESmwdzu1VhPNSvE+i35koBw9LSFdKNbvZkUXivEVafAanjIM8pazJoRVB1iIjRaIFdrPkdoyB2d9GC47LyaRzu2YAXkejM/dM/f9jOqahXzr3s7c4tvJjvQw3jPAYYOP83ggcfLzl9bv5g16816D3d1/wfr3vIpCjt2M7T/QYZGDoKmMm/jm6hffDGM2CisoJhwvwfVI09VjJszKG/UdTGqQtTcrmZsbd0ixaj7U8ssqMMIKWhFaJ9zKQ3LLmO89wDHt/6cZ+74dwKJGkJ1zUSa51Bz8ZUOsTVLTjw31p88zKH7v05GnyQQiFHXfoGzb/LQLuqNZtat+VMKlwoGTmzlyPYf8a1vfYt3vvOd53Q9PQCR5jn0H3iE4b49jA8cQQ2GWXD9uzn0qy8SDFejqgFy2XH6jjwKCBrnrWfh+j8iX6Oy7as3YxgGW7du5XUf+zzB6gYije1sfOW/cfr4E4wNHQYgNdqDFBZB4In+ts0mJIRBeeF7e9Kuu0SETTR46xx4i9WDq8uvFqAQEY7/cIhPw/UvwjDJiLwnc0rLSrSM4WQc2GSFvVhRLDJDGKavsuXpCjG/xE+lyZV9r/a5vUWinYWMhPTyJqL7B5x9RkBxiQlFOMQkgB6aeuKiZnWMoELsiAXgF1ygPzfXLDhmExJTmREUUxIHYH6HXmLifJluyc4pOU/9IM9l9DrTQefq3BftfZ/eWh/ZOqVipE4xAliLGu/35ZN4CpVHvnn3Of20QFmmyVR1QQzNqnHiichSCy5BM35wF91P/ZxiPsv8FS+nbcGVKIqKPXoJAy55uwlePvWd527RsfYDpt9PjZ8CIF4SeZm9eiUAoRF3XB29aTWD3/02sfq5zH3JW82Nadj5n7Njx6z9/tgFH92Mnsvy/kUx/uZf/43cQK9vvwgEiXUuQYlFUUIhEqsuJNwx14n+OviJyr+H55OMKDWbnLALd3tBkOqrNzHw7W9z+jO3El21ioY3vYlAKGrWLSg4eQ8O0GJHjjrAiwWueduWyjn5gB4bfMu7frIMUJtm2Cklk89kasYFuM4Irp3JKoGDMkz7NW+g9aqbyA32kjxxkNFnnmJ839aytqH6Zha+628QQrD/n29m+V99honTB0kd3k/y8F6MQoHG615F3cUbnf40FTkj5BTAm7e9NVQaQf9nV/5JUL3iQuJr15E9foyhn/2MU1/8AmoiQbCphWBbG9WXXsGifzfHi1ly4rmxVPdR+h78BbnhAZRAkOqV6519E9u3kGhZTMf1f0T7S95M6vhBTvz0q3z605/mH/7hH87pemoGYvVzGMznmHjClKpGGnS87X2c+NptKMEQgdoG8sMDTO7byeS+XcQWLKHjDX+KVlDZ87mbkVKyZ88eXvp3nyZQVUO4pYPlf38b4/u2kDq8HyOXI3+yx5yf+SLR3b+F9IDwJVNRGwRW8qIiCAyWzylZQ/jA4YBZ5NkrKe0FgU1yokTGRxeIohuQ4pxPLfeHShEnk8zrD0sJWue9ewgH94Luu5BiirmldNtNl+VV6hPVrJl1q2Yrt5+JPWuf+RxfV/fAPd4A2anek16ieGu/b++x3mx9Necnynwkhqf/gYcQs7cZwldrwpt1YWjmetdHSFh/Zg8cZuinP6UwMkLNpmuoue4lKMEg6Ga/VIpUzE4637b0n02/Xzw9YMpPzpnv7pwiS0JKydCj96JGIrS++i0Iqw7XH3qGhG3nIt90Ps0mJA4fPswDDzxAfX29b//69esJBALce++9vOlNbwKgt7eXPXv28NnPfhaAyy67jPHxcZ5++mkuvvhiAJ566inGx8cd4uKyyy7jX//1X+nt7aW11cTRf/Ob3xAKhVi/fj0vhAkpz/xGn68K6ev+cjPpgW4O/WSzf4eiUHPBBqqWryM2dxH7PutPhVp4qxXd9DtSoOWal/07xWKO8QUBFC2Ans0w1rWLnod/StsNf0TtKrMDBZI2SGd+Rd76DlJQptdtp6wVw37n7UulLPgddsAKkvAW+dSDwi3w6TWvX7YAKC3nJy6C44WyawpP+LWwgMF0Wzkp4dWPt4vVhkd0km2WhrknCtre730Htja4Lgyy44MYxQKB0Sx6IUfPwd9C0WD9pf8fD9zzMaSUhKsayCdHiNS0UDNvFe3zriAQijvnsZ/DAVrTlTNEbHLCC/zahAT4M0cACtXuF1CIut9pXikwdnI3k7l+smP9pE4eQRoGC9/9YQ7/96crXnvWZm4v23CL87fIFUjlhjl46l4G0100RDupbV/J2NhxBgf3UNO0hLGBQ077lo6LWLDh9QhF5fC2HzF4chtVtfNYsuoNPP3gZ8947euVNzp/j/7JZUgp2f+L24jWt1O3cB2H7/4fonXtVHUsI9V/nOTgCarmLaduyUVUz1mOgkoxm2Ki5wDj3fuY6DmInvPI5whBVdNCJvqPUtW6iHhTJ/UL1hOJNTgLAT1YGSFQiq7skFoBAHcmb2ULEu+PXPi2FUtIDj3oL0qtZWW5XJGUvutLVfivgUmgBic8xGDMBc/Bzgyw2oagfts4AIOX1BDrc0kBqQpCowXrWPd8eQ/IHhzNo0esmjBF6RATpaREcKx81uclKoMDlpMtISWCA2bBaL3KDTcqxk3fkK1zrxHtN8+faXBn6l4JPN2u++GJMosOWBkdnteXbLPIUs/ix+v37cy6lEcyqfaQ9WyerzMw4T7vxIKo83dksGhdU1r3GyBb557LK2NYKvPlbK6QQCcqFERXs2CEKrfRShZ3Tiq99fp8CxsVwqPuhlxqlF23/4vzORSvZ9Vlf0b6wkaKqUkyp08QmwgRrm4iGKmiEBds+c8P8r3vfY+amhpe9apXld/sOZpNSuQnRtj/7X+h86XvZunxRmd/elGd87foH+ZI9/30p49QTI6hBqOse8MtFGrNfvR8kxLP15xx1l489nx+50ve90kO/8+nyrYnVqyjesU6YguXcuDfyrMZl35q85SExIvNFnzhNox8AbIFlHAYI5shfeAAQz/5MTWbrqXuerPIoVIQ6CHpL+ZqRftKpSRyGReYU/NMKcXklbeDyuSCmvO3cbZnXRDKlyHxLEC30utOG9E5w4hgKQ3yo0MY+RxGsYCRzzGy41GyA6dY+v5b2PM5s5/E5iwk3dNFoLqeqsWrqLtwI8Gq2rLz6ZWWNNOsrp1nmKKNqeVf3kYWdZL795AbOk1+YIDssaPo6TTt7/v/6Pnyf0x9wVmbsa35oItB5JNj9D55B+P7txNpm0/10jVkB3sZ27OFcEsH+eF+jII5J0osuoCOV/wxSiDIwGN3M/jEvUSaOmi/+nUc/tEXzuq6dv84+ZOvYRgFWq97HUf+99/REjVUL11LfmyIya59xOYupmbFBqoWrzIzH3JZUicOMtm1n+SxAxRT/gKssQXLSHUdINLRSXTuAqpWrCUwt71iPyzFESr1R7BIDJuEMEr3SR8ADBWAYXu35l/TC12UFyculmRPFE3/V1rPrpI/VAr+oE67rRe4LfWJNiBuBN2/p838moKIVex56FkSEC+GGhJnsnONsDcl7ko2TuEPvURZWRtP3yz1ud6s/bJ9nvWGTYjZ9VO8RIRRkikhi0W6/vFvwcrKVBMJWt7zZ4Ta2pDJLNljXRDSCDQ0EKitQykIDv7tX/Pzn/+cdDrN2972tsoPeY629J83Y+TzHPnM39P8kldTt2Gj56E9z5vPMfjQ3SQP7SE/NgzA4r/6J9SEWRPwua61W2ovtnWCfT/f23kB0cTM1FzSkzpvXbvnrJ4hmUxy5Igpt7tu3Tpuu+02rrnmGurq6mhra+P1r38927dv54477vBlLNTV1REMmj+E97///dxxxx1885vfpK6ujo985CMMDw+zbds2VKuOyY033sjp06f5yle+AsCf/dmfMW/ePH71q18BoOs6a9eupbm5mc997nOMjIzwrne9i5tuuokvfelLM3tp59leMFLCjuqwLWBJbqvdkxz91VcIRBPE2hcQrmsh3rGY3V/52/Ny3ReLbdy4kUcfNaOghaKw4u2f4OivvkJ+coTGK15G/YUbCWbMjuWVR8lVKb4BoBgxC2kXLWzIl5JmZ6FZztp+x/ka0Ky/A8nKx6g5lwzxmtepa57i1TYx4ZAS4Awcxbg7KhTD7sXsyGUv8Oik0PmAKvODt1B3ae0M897KJzr2fR2556sYepHFr3o/2//rZja85zZGjm7nxKM/prZzDUvWvtm9rxJSovS5S4HS0ralpuQN1Kw5eOVr3ZHV+4xevXX7/ou5NLt/9VliDXNpWXk10fZOtn39udUm/H02LylxvOdhDvc/RDiQYPH8G2iqXY5QFNLZER7b+QU6519HR8flpLKDjI+foOvIPbTNv4KFK1+FUcjT272Fnq6HiCaaWXeBmTFx3/1/W/F692y9xSElUq9Yx9jAQQr5NEd2/gQ1GGH1Gz/B8N7HObX3t+gFc7YqVI1grIbcxBDBeC3h2lYmevaDlEQbOqias5xY51IiDe2kuw4xdOAJKBSpaV9B86qry57dS0h4+50308Gu2WD/7n2LAzl11KOj2Qo+abdsrem/bLAbzGwuLzkRmNRNYsEzDKl5iZYqz0gKjporB7vofHDYJGWyzW6dAzCJCfv3Wr133N3eGiPsqYNQrHIdqZLTUdKm7zJi7m/UJiUA1IzuErBeTUa9nMANDKWQAYvQKFQmM22/djakhO2b7MwQMDNSwB0DoByYN+/T0ritQEp4vyOblPD6PG+WXbTPfE+65cvzCcUhJMzjzLaDa9z3a9+b0PEDLJ55nyzJxPGaPV6V3n9o3JuRIQiNlRzo6bNF6zXbi1fvuGpLbhUjgsxoH/nkKHI8yamdd4FQqGtZzkDfLvS0STApWpA5V7+JusUXMnnqMEd+9V+AOVdKJNyi38/W1n5gM0oe9n7vU1TPX0XH5TfR/GC/Q0jYxdFPPP1zhrq2ULvyIhILVnDgu/9xXjRNz9VebIuNWXvu7bn4zr0gndcKSp4TP/sqUteJz1tCqKGF2JxFHPh/nzgv132x2Fvf+la+//3vmx+EoOMvb2bkN3eSPnqY2iuvoeb669CE+Tv3ASwF8KoPKAWTlC2t3wTuuO5E/1YgKqSoDI6puXJQSc3OPEOi9FwvtPU88GNSPUdZ+vaPs+uLN7Pmg5uZPHmQk/f8H5HGdua9+c/P6bzGVK64ZM1gr+2mCiqrBLAZ+Twn/+cLKOEI9ZteSmzeIg7+8+w64dmY7XdG92+h58GfogaCtFz2cmpXXIwQCsVsmv3fuIXapetpu+omsiMDZAa76X30lyTmLWfeje9EGgajB7YyuONBhBCseM2HEML8UW79mj+AcsN7bmPr1z7kXFcaOpMnDlLMTNL76C/RcxmW/+k/MX7kGQZ3PEBhwsqwFQqh2kZyI/2okTixjgVMdu1F6jqh+mbincuJz19KpG0e2f4ehp6+H0PqRNrm0HTNK81zTLFu1UOeflihP04FAoMnq9q7z3CPUTxzvJmAwGBlT3iIBqlKlJLP4BIPTna17ddKAp+lqOwPHV85hT9Ucv7PZSbcOaqXgDhTHQm3/sSzM6+M97la4bnIvp5C4m4mbSv1US8RVnpOo0RkxIcJBfAXsAZ/3/BlVfiPd/qUDvnhIQojwxQzScYeegA9OUl85WpShw9QHDEBf1SVhhteRc1lGykMD3Fi82cAOHbsGPPnzy9/qGdhK/5+M8e//SW0WIKO17/LvHxJfxrccj8Dj91FzcqLSSxYwb7/+w9isVj5yZ4ne7GtE+z7+c6OVWdFSrx93e6zeoYHH3yQa665pmz7O9/5Tm655RY6OzsrHvfAAw+wadMmwCyA/dGPfpTvfe97ZDIZrrvuOr785S/7Cm6PjIzwwQ9+kF/+8pcAvPrVr+Y///M/qampcdqcPHmSv/iLv+D+++8nEonw1re+lVtvvfUFWz++IPJNy27Z7Luw12Hs+d9PAp8E3EjBnV/63Yhsmqld8vbb2LPvOACRmmZykyNE8hEWvfb/o3frXfQ/9Cv0sVE6LnstAFWHzEiHwQ01gOloijGXbMjVuEx/dECST7gDSn4KfKQYMwmJYswiNqw5jqG5AJW3WJAdiWpLnABEHj1IatMy8zoWYZCPhzyFrt3jg8mZV3EthoRv0mIP5tF+b7FpS3oq7DoOG6izdea9luhYwukn70DPZVj7AbP/1S28kOzEEP27HyR72etRtABajooFbgIpSzPdQ0goHo31qbTjba11PawiA4oDAuueQtnFqFuEHOkWB1cjUdrX3ciJp37KWM9eGpZeyob3mNdJtZmp5bM2c7tn6y0OUTCe6UVVAly+6L0oVe6PZCJpSqXMnbuRU6ee5vjJB1G1EELRKKYnUdM6+eYwjXUbUWqrOPzYdxgZOUJd3aJKlyRfTLN87ssZkNsYYxjjjp/49jcsvphgMUDbsk00zLuQ4ZM7CScaiDXNRwtGSY+eonvXXRRSE8y95HXUzF2JVl2DEXDJxJr5q6iZvwowAeGy+ZY3gsgLAgvQVbdmQ6lJq8iXU0dClmi+Gu49GCpEhoq+AvCREQ+xYMkc2YRHeLjgSB/ZBEQxqhA76SENEkHUTBE1Yz6A1ATacJqAlXFgJEw0JNyfQqoqyU5zcqXmpXMfqQXmd2tnLmWbooQH0hhBDSVrZxP4n19J5TFiQZRUHiUFeGtExC3CQkoQgmC/me1gxMwBXI9oBIZSvvPJgOonJsbNY0TURMm1bAEZMc9rhMwXHO3PU7R8mzdD4lzNkbvLuRFHwoCi5o8cszPQvMd4Fzk2IeG1mp2uBFWuowppETaBSSiUjD++RVjQvIZUKSlM5z/GmypfddJDcHnmTEZAEJy0+qxevqjx/gYMzcyOMDTh+GNb4jCQgkhtC1XBJqiDWG07fc/cx0jffqrjHSy49DXkY4JTu+/lxH3/R/bAASbksHPu5W/4M3ru+X7ZOzpX2/mlm1n14c1E5y0i2XsUgP5NzSR6CkgpUU+NMaoOM3ZyN1Wr1tN6tTlneCEJiVmbtfNh69/rXycUXe6WfV/4GHzhY4Cr925Htv8+2a927wMg1NpOrvcUgVgVLW97F2MP3Mfoow9QGByg9W3vAtw1gAN+Gf76OWreI++UpwxQKwXNKuqfV5AnqRT16w1i0M6RpDiTPRfgW2LOEkb2PEFufIj1790MEUjMXUrrFa+i574fYoxMEIhNDTxUihg25W9m1lbNMaWMDtIvY+IAvMEgDde/kt4ff5tT3/4KscUrWCrMYDckHLjl9+938XxZZug0Ui+y6O0fJxivcbZnh83tjeuvZfzYXk4/+DNznSAU9GTS6puC5vkXEYs0cvCOLzFyZBv1iy8qu8aG99yGns8yf+ObGT21l2TPEYyCH02sWXIhWjhKw+orqF22npG9TxGsqiPaMo9ArIrsSD/9T99DbqSPlktfQfXCVQSr601ZZ4s0jHcsIt7hWaeU9Elff6zQZ42SaahPFkb693v3eUFgpWD5Bi+B6i0YrWFJvLrEgpq32uvuNl/hasXEJxzCQrGuY0tBTeEP7WOhvC6EnUU2ZQaF9z2UFbX27Mv623itTMappI12lpJMpeuYZ2OBtHTm8Wdj3jG61CoFStlW6gsrydtN2wY/EeEdu7xrC1O2y/PR7od2PRKjArnvaeftD8H6BkI1Zt3BWMcChh+4h/SRQwTiVbS/5d0QDDD+1GMM/frnZLuOYujuImTDn76fofvu4nyamoV4+yJGnnkcJWs4BCiAnk2THe5nfP8OEnOX0X69GST5QhISL2bTz6KmhH4OhVk2bdrEdPkAM8gVIBwO86UvfWnajIa6ujr+7//+b9rzzJ07lzvuuOOM13u+7EVVU6IUZP19IyNse+o7H2LFDcc4/Ph3yIz1IRSVfEgnoEaYe8nrkIbB+NE9JJasIdo23zmu9lCWwXVuWJJacIkJqZiEBJhRrcKQ5KoVgpMQ69dJN5WzfobmOvJcHQTH/fu9tSYCGcMHwoe2HD7jc+pB4ZARdoSxUpTE9w0BkG+rdtqm2s0RR83OnLw44/U9EjJVi9dw+qlf07vjN7Rd+RqKEcHOL93M0rf307v9HkZGD1G94AK0CgCtFC7pYoNYak5iWLUjvNHmikcORfXIwvgkXzzAraGZmvE+DUTDTUVtnXMxdcs20LvrPnq338OcS28iM9ec/S3/5OZZYuIszY6On7P4Wvq3fZn+/DHaCiud/ePJbkCQCxn0Du4kFK6irmk5ejFLW9MGACL9BTLNAermrKa6ej6793yXRKKd5jW/ofXil6OoGtv/+2YMQ2fLwf8lnR2hLj6PRfELyHTEiTd1EoxWk0+NEm+cT8Hqp7KqhrrmTQCoWYnQIVbXwdJr3wt4ouQKJuguDP8ESy1IDM0vb2AEhNO3HD3XokkO2Atym3RQs2axOHui7mQtKeVp1t7Mi8iw7hRBVgrSkXYzLNJBFCWBovlbKMRUwsPmTM8+Rg8phEayJjGqYC4ecgWCOSsiPxZCHS+foSujJvivN5ggQfxYimRnjKCnSLMt76RHFNSMQeS0JaVUssCSQiAjAZRMASVn/jNC1ovTJagCJZUjmMqBN1NK9U9cbAIFKRH5IuTs3O/K2RLTWfTYKADjqxqcuhG23Js3OtWnG07J35XmNtY2LSOdOkTTmZfk1q0isfFTBYdwLTTGCAymyHW4YM34fPMFByZdAtwen1ItwqcZG+1z/w4mDSbmmQ8U9pTbKJV10oMuOS4MM7utGBYmwaF69nleu/278Mo1ZWv935+dxSNVgdAlNWoTNeve4msTzxrULnoDp2PzOLz3dkDS/qZ3M/r0I4we2npe/fKqD5uAa2zOIsb2bqWQmSQYSpBsC9B13zcZO/aM+ZyBINVrLmL352fHg1n7/bZdX/T38d9HMsK2p3/0fdZu3ESu1wyWEAZoIkjDtTciVI3RR+8nc+Ag0fmLwMrMc8iJknoSYPpABwyzABo7ir9UjmnKYtbTDBnnEul7tuAbnD8AziY2bACupmkZp8Jx+h+5kwXXvQMtA9u+ejNr3v4v9AhB8sBuGldcMSX4Zj9/pSjgM4FqUEFL3VZPrBABrBRwxvKqzhXEP/5pxnc+Tf8vf0RhdJhgnSn1t+yWzbPExFma3Sdbll/N0K6HmdizjZY11zn7cz09ACiTeSb2b0cNhKhbuB49n6G2c7XvXPHm+dQuWMeJx37C0MGniFa1suGNabRghCe/+2GklBy59xsk+7qINc+nefW1KFqQaH0bkbo2MiOnibcuQljgvUaY1mVuNnQRCNc1M++Gd1R+lrMhxMAHAnvXEqVAcSlJoeQr9FMPCCw8mRLCW6vOmtuZRa+tw6zgElV325dusz97yQeTrCh5rin8oTfYxesTpyteXZGAKPGTZ+MDz8X3lVogff4wE7+5TswrMz2dnel5KkncwRS+MOS7hcp1eDxtlAp1Ubx9ypvh4wTa2WvcUhkne7tTA8XfzhusJxUIxmtpfdUf+dsUIfyS1xDt6KT3p/+H1Is03/h6Mt3HmNi5jWWfuI0Dnzo/kvPedcLgU/eSHThNpLkDNQenHvk5Q7seth5EofWSG1Fzv7/46vkwQyoYM6wpYTwHNSX+kO0FJyX+ECdLyz+5GS5ewLxlf8XR//hnpKHzzDf/jjXv/jf06iA1F1zMRNcejv3oPwkkaii86QN0HDVnwY07shQSGmOLNEcSwy42lG4SRAekE80fGjcckKXxm9sZfNeFNH1vNwCn3mtGVpex+8LUK4+fcoE9ZSo8raOZ2JFRZFAjCuTrXf2QVKs/f07JG2XZBFIxNePVbBGkOcPxkgI5K+MhOGkRGx4wX1qaaTbwn252Z0iBpHkOr0yMUVdDy8U30Pvkr0nMW05izhIu/PPNRIJ1CC1AduAU9c0XOFIo3owIe1JTWtTXvif7vsyCweb28LCLFnsJCVPqxjxP0VMkNzTmvuRC3B0h9aBAK6hEIyYjP1mXRbMQ1VlC4uztvvv/luuu/Qz9/bsQQiEarsPQFCbGT9I7/AzdQ1tZOu9GlGwBDINUsp8lS19DTc18CjEVJ6NXB4Fg/g3vYuDA44yf3s/YMw/StHoTihVJd3x0C+nsCBde8UHiCbOIkB4S5KotOaJodaVbdPqtobqTeC8JoBTLa8PY5KFNZqk5f90B3/mtbAVvpKEzoceKVPL8drwF5u3fgFKUFKIKkWHdei6FQFL3/UaDY+bbKljybWreQM0bDvGgWXJJWhpTDklKlKz1ANZnDAN1MuMcIzLls1d1aAK9oQp1PE31TjPTItNZS+TEmPlsQW/Kl5WFlMqhx0IoGfMeZMR8mUYkgJIrgG6gpHNONobPFAGGxLBkl6Rm/o7Vfg+rGyrJH1ZUKHpqWkwmYTIJnR2+c2jjWQo1fsSjevcQw5c0MlMLpM7cxjYtI8nUCcfv2QtNpeiu7exFY2So3P/ZsnSFxhjFiPkMxYhCaML02anW8old7WHP2GLVEJnsCDgEdtUJw9ffvYW8J+f4+3Ss1+PjPV+zM5+0XannsGytKEvbL31nmrXQ04PCqXNSsIhpNWsghKCt9SKOHrwDQy/SVHsBesMpBvc/DpxfwtjQILbQzEgcGT5AS9tFFHMZxo7voWn1JuqXXUKoqoFsi8ryT2x+3nVhZ23Wnmvb9tU/vD697BYTaJj73r/myL//A0iDrs/dwoK/+ScC0QRVK9cxsWMLPd/5Cmo0xty3vI9wS4dbM8ICFEtlSJxirfa81kNGKDkT6FFKADevnS3x8GxrSQQykkJEPIfgGziIVTREx2Wv5fgD32H48ArqF2/g0j++jbAME4xVkx4ywehzAd+mBN48t1CpjRf8VUoj0C0TElRdIVzTZJ43497gH+Ia+9natq/ezPr3bma0aydISbimBSkl2dFeRo7uoP+Z+2ldfjVRtRqZy5NPjhJPtFI/d415ghLp4wXrX89AopWx3oMMHH6cxgUbiNfPBWD8wHaSfUdZuum91LQtdY6xgeBE2+KK92j/Lp6TvkgJyO4FgS2rBAL79tnbPSCwUvCvk+1ttkmthGiYAgQubSOKHlfl8X92e/scUikpUl1CKDjkxBn8ofNurOecTnrpbP1fwOo7hYhw/rbNt+15BEMDaQNmmDlRmCbQaap3MeM+WiLZ5JXSKvOHU+wr3e7tW0ZJ8JPd1iglJ2xZJ0+/c7Ip7GOsz4llqxmMJyiMj1K1bA2KojGxZzsYxnlbJ+z+/M2s/cBmEo2dKIEQqSP7idd0mBJyB7dRu3QDjes2EappRNECZzzfH7o915kSsza1vSCkxB/6JGn/P9/M8k9uJlBVw6K/voUT3/oSjZEQ93z6XVx36/eItM9lyZ9/kpHtj9D3wC+QeoGBdbWoBag6YaIpNUeKDK12vz4jAAhIdghAkDhpetnY3c84kb2N39wOQdMhtTyRou8yM3XLHlDz1RC0amIl2zWHmAj1Z5zIJDuiyFg8F6UEIAzvPkl21VyCg2mUojvKFC1d9tCw2T7XUePsU7Ml6NBzYGpWEj+tE2u6klTDfrp+8RUaVl5O20Uvp3/XA2AYtDRf6Ksl4USJeSZXdh0LIyDAkiWxQVqv5jpAtt6coXnJVm8NDj1gEjJlEehhV+IpWyXIjvfTv+sBho5tRQSC6L2jHP7+P57zu5g1yBzeT3fPY2hqmK5TD5NM95HNjxMIxFk45zrmtFzKjt3/RypphnCPjR4jHK5FjdWVnSsQSVA7dyV9e+4nXNeKFjU7xqobb+bYyQfoaLvEISRsC43r5KusegMGKGmbpPKfuxgRZUSYHnKJB5t8MzT/ZEotIRG99QJy1YJ8QpT1Vz0sHBBayUtXEzUkwAIxavaNM77MJFyUIoQmDIeEsDOElIJbENq5ftL9jRtBBS1ZLgEkiuYxMqCaGQa2KQoYBmLcQo01z5CVy0EoBIaOOmBmFRAKQTpDZG8G4iZJKvJFZFBDTJqrN5kwQX81lUMqCkoqi5LKUmxIoA1YxIJFeiqTWUimIGL6MyNhEa9a+YRFb65G7R607iMAo+a5ZM50IiIR95279PmlpqBMZlHibkc4/VITZLAn1QUr2zY4CQXrdN7oM/Av+AJWYkjilE0euQuGZIv5DPYEu1JgSOkkHSB+uugsUDJN5sWEpOx7jwwViJhJcYR2n3R36Aapyxc6hARAosftE+kmT1ZZUDjSgfmEu0j0khGl2R6yEjlhmTeaD9zfXNC6vC3T5y5OBXpI+BY1k3MCRId0eo4+jFHMIxQVJtIoeQPFECROSp7+5vmJgNr9+ZtZ+bHNaLEE4dY5TB7ZQ1XTIk49/GNAUrdhI+FALdv/+w97TjVrv3/2h0hEeO3ALTez7JbNqKEwi/7mU5z64TconjrJr975Bt7w3XsIxxtY+L6/ZfLALk7d/m30rDm+eaWZ1Jw/QrhUtsk7z7XdohfosYkNn1TLFHau4NuM2p4FIRFIGb6aS2djgbRBU8tqJudfyImHvkfy+H7mbXgNIyd3k0+O0jz/Yt99TwXAzRR8O2O2hCwB3oKe7Z4sivz4CEM7H2Zs22MIVaM4PMqBr26e/mFnbVqTw2OcevoOhKoxsvdxTj/1S7ITg6iBCC1LNjJnzSs4vvVnTPSbBUtTw91Ea1qJVDWVnUsLhKnvvJDT++4nEKkiUt0CwIbrP8bJHXdQO2eVj5CAmQHBXgDbd72sdNar560v4u+LAlepwQcCl0o5VQCHfUSHDfh6shyMUnKiAggsdEwCwpofGmpJjQibWMjjK1INFjkxVTZEwf/sM/GHDkkxQx9oB54Vw+XEg22Vttvb7HnqjGwm5MWMCAerr53Bt1a671KpqtKaoOfSR719U+B+b76aJ94sCvyyd14fKjXrsx0TZ5RkT5RkSth9olIbhxSz5BIn9u2gMG6uT2U6B0VbVUCw71/P3xxn55csYmLOEiaO7aVp0eV0P3E7ejZF09IrCDe0Oe1mbXozAH2GmpPPZajEH6K94JkSf6jmY0c3l4PMQijE5i0FoTDa/Qzt8ZcAMDFPc4iJlqdMz9i/3kRWbA3v0JhZV6Hx2zvMk1mRvQBGOo28+ALz+CdSdF/v15SLDBnEj00daquOp9GroygHj0PA7D4CEJasR3DQjFTWRrMUayvn6oVODGPUmoiaHSFsDwaFqOKA9w57bWcieMdCmxyxImpVD8BlR5iUR5krrLj6ffQdfpSTe+9meP+TSEOndfnVhOP1btanNAcvb9aGDaAZQUHeBmI9gLE9QHonC7onE8LQXAko+3mCE27bVIv5LqWh03fsSVJH95MaPEkx534XspAn2XeYFX+/+bwOZn9oFgvWsbhuI5niOBmZoTG6gJbmZTxx7DvccJVZiGp++0aGx0yJsmNHf0PPycdY//p/cs6hpXSkNAjoKoylkHqRgBLh1H0/YnKgi+zkIJGqZloufjkFS+JHLUg3vdnWRbWslJCwzdBEmVRAIQbBCVOqqVKhNj3oyW6QkI8LgskS0qzOk/1QcM9j93ObuFBzEj0kqNlnAuzVBybINZrAfL7a7LOBSd25V+9vQrUyIfSo+UNUU3lUqzvbRaDVEXODURVBmcggw/4oDtFno9rWC8qVrJy8nxUF0p6wMd0AVfFnSgBiMoNMRBCZvG89og2ZtR7kyJjZrrHeJCQ8pkymMRJRlL4RjJY6lJR1/WTa147JEh9qGMjxCYRFboj6WnP7RAqsGhl2jQnbCk1TF0zOJypLRMzUbEKiknkzIiY6Ld+rw6RVbyJ+2r4Hi1hzFgFmtoya00FKp3h0ZOcJ9+RWUfCQJ5PMCCroIXd2Hx0w30emUXN8cLrB/aZCY+VEBPgXKYqn3gmU6MgKCI9Zi8Im8zylizy7CLk3wi+fEM7ialgd5Ni+O2lccjnDXVs5vfMe4k0LKGQmSE30OoUrz4ft/XeTmKhbvJ7Tj/ycQ8cOoQRDzH/luwkmatn+hdmxYNZm7ffRfAFc//Z3nj33ACCEIDpnISIQZHLvLmLti6wsQ6aMArazLMsyKHCJCS/o5pV1UrP+4q2l5gVD7c9em8mYpaUNitYc/lzBtymPm2G078LL30p161JObv8FO27/FNLQqZu3lkTjfF+7UgDOi2OUAm8wRW2JUuDNfve2jE4FrX4pJWMHtjF+dDeZ3hMUkxO+c2S7jrDqI5vZfevs2HCu9sT3/44ll+8kOzFIPjNOVc08Fqx4FTse+i+CwSAbX3sr7XOvYODIkwD07n+Q3v0PcuVrPuucQ0qJlGZmZX4yjV7IEY7UcmrLHYwPd5Ge6CMUqWHh8ldNUSPl3IBgKfy/vdLfZDEsZtYXS6bbdl+0z6Z6JMRKQeCZSjn56jaomPKtU4DA4Eo5mScHlBJZJ082RGnNCKXg3vyU/tB6QDXvnzfaZvvDSsWsS81+16V+0Lvf97mEfC1GFWfbs5nvn0/z+tbpcFvbh1dqU+l9zMRfegOuKhHlZfJ29n2W1okokXISFepMeEmxskwJtfJne5v9WZ+c5PSvf0jV0jWkerrov/+XNFx8LQDpIwdZ9eHN511ytX7Berp++032/ujTIGDe1W8h1jQPsrOBHjM1AwVjhpkSM203azOzWVLiRWa2Pu7yD36GEz/9b0QgwNB9dzLy+INE69uJz1lMcfWVqKEw9ftMj9m8LcfIUpeYsK33feuI9bkDSOLHW3zXkppCxwMZTl4fwdCgYbfZNtkZc4gJ5cAxmN8OgMiZYJE6njZ9eqHoEBO2KTl3JAgMmu2DKS9wOLNFwbnadNqHQgcjrNK06mpiy1czcngLNU1LiDXOQ0pX0sOeBNiEhzeiF0zdc+8A6hSELSEkpJTohQypaA5p6Ka2pxBoMkaAkAOs5arNtvm+0xx//IdkBk8Rn7OE8AXLSe7YTqixlVz/KcJtc6m7eNOzfEOzdu/RL3Dj0o+bHzz9UVVV7n3sH3jJ5f/MeLLH2d7cvp5cdpz9D/4PgXCCzMQA2YkB9KLbr7VQnMmhLoqFNFUti+hYeyMNzSvNKGrd338ydeaMxVDBsCLXbSk2ty9JpwC1UoB8lSA0LslV+38/XmkbO6rdCJRP2LzHeWVu7ImbXfwXyvt7VVcaI+wSC7aFh9zfuh5SCE64n4Xu/hYCg0n32tEgIl/0Z0MAyoQ/B12ctjIO7O9Hr6AhZ2VR+CxszVqztvirgcjkzULSmv2CDEQq655jwiIjcvaKybymHBxGRMLITBYyWUTIXJEpVjulbwQSFqkbj8KgpwgCmPUmpEQEA8hsyeouk3WyLwBT2mliEjSNwNEMmQtMn5utt27J+ko0D9dhf8c5SwXMXkCGPCpS9btNssSWkJPCIhI8t5JuMk8eGvP3LZuQ8FpoDEaWB0ic1D0ygeZ3qYdVpCYQHmLKCCmkLuk0r9NoFfEeML/L0EjekfRTc7pTeBxgYpErBWiobt8UhtvnfaRDyYLSq1Ms8US9GX7SJdbv7z+T7apvu1RKin9LMytuvPcUSIP5q15BQA3Tf+QJ5q98JSfDVfTvfZj5G9983omJVX9ZZOzwTsL1LbRe/krUyDRVBWdt1mbt99bsoJTlf/d5Tn73ywghGN35OOP7thNqaiPesZD6tRvRonGXUCj4gTjbfHUmKthUxVu95gWZpgLgALSMQTGioGUMplM9OCsy4jmwYFrS1nwhjdcuoe/4U8Tr5lDduAhRIWOjOMWaY6r3UClKWM9nKOYySL1oSeQI1HAUNRR1iv7alk0Pc+q+H5M8eYho+wIS81cwtn8rgeo68qNDBKtrab7yxnN67llzLRQKMXfuxrLt1735izxy+0eQUjI5ehIhVKTUaZqznnxukmce/W8isXrSyQHSkwPoBXduqwWipCZ60fUCVfWddCzaRH37alR1ekmVsgzOSiZwflul6+Ay8NsTqe+1MxVkL11XTAUCC1kO5NrtS6WcfHUmzgAC2/ttYsJeszsgcQkZIQwzu6I0G8I+zs708PlD+5qlGRRnkGdyghhLfval7/5ssr5KSQotXbIOej6Jigp9rxCrkEpttdUylZ/Tfq+23KttznsqzarwZHeXkWSevimkv386BJrEybbG0y9Li17j6TMAGG6Gjn1ee11R+lno+Osx6uY1CwMDyEKepstuINV9hN77fkrHS99KuLGd4e0Pk+hc7tSDOB/kxM4v3cyF77mN6rkrUbQAHZfeRCBadeYDZ81nulTQZ1hTYqbtZm1mNktKvEgt065TnHSjX4xMmmTPYZI9hxnc/gDtl9+EWHIhdUdNb1t30CQmbGdpS3ukWhSHmFASCTNCd8A8b6GtBoB5d6Y48fIY2RqF2kPmCKvHAgS2HfLdk9FzGqWjDRnSkDZIqOsoLVa6arDyxErGQgiLmDBqLBDPSmETRQMjFiR2KktyrgnS2YWg7YwCO2oVcIro2nIxQvgjWr0Dmh2pKxRrsLMxyaAgSB0dF7zUc5Pmf46WeKh8BK4UreJOooRTC8LQoJCZ5MhD3yQ5cLz8hQCoGoF4NYFQlGI2TTE9iVHME6pvZv4ffxCxtIWezZ8nNGcOuRNWpLGUhI6OE4rXcfG7bkMK2PK/5wf0+kOzuw7+25T79o3eT++Jh5zP/ae2oQbCRGvaSE/2Eapppm7uagLhODmZITPSy2TvEaoal7L0uj8DzMmKk01qF0O251yeeiXCkMhpiDp7vAtO2ACwRA+adUzsiY8skW8CfyFgJ1rIC9xK95x2FoW3HgRAvDttHS8QuuHUe4icNFHvXKs52VEzRaeujZrKYUQt6bIKUYlK2nRQUlMQYy5ZYQP0Dhlh32bevGlhyTbJjOmfRMwCrW1iwpZEyuUhFDTJiXQGrHYi6z68HBz2kan2uUUoiGFlRohgEHQdmUw555a5PCIURCZTiHgMY2gEhkYQFhEitJLhVDccUkWEQ2a2mm4g7ewO+9mm8JuVrBjzExPTmU1ITGeptnJCItlu/t24w3Ru3iw0u49oKZ1CXHUICa/pYddPTswx312lKEBvdoRdGwgg3R5x6p4YmtlvvTUm7AWGwJ+WH0y6CxE95I4JTrq/dQuZBuHWHbL6raH5+2qm3qrx4VlQhsYN57eqZ9MIRSMyqRAqBlBQUBSV9mWbOL7rV7Qtuopgq1+27dna7v/3Ufh/Hz2v55y1WZu1313T0oLC5BhG3ppf57NkerrI9HQxtPVBWq58BfUrLkOxMpntehKl4KK9HaYG37ScpBgSvgxioByE8xAPlaJ7pwKr/M9VIQjh+QLgPEOBRoSOZddN3Zbpn6dSkJQXfNMLWY4++j3GevZWPoGiEoxWoUbj6LksxfQERiFHIF7Lglf+GdEFS+j68X8SqKqlMDYM0kAWdYqjYwQaoqz5q80gy4vDz9rM7JHbPzLlvv4Dj3Dk4K+czwPd2xBCpbpmHsmRHqKxBhrmLSMYSlAs5Egle5kYP0kwGOeiy2521q5koaw6M5wdCGyZ3RdLgW8pykFgsPriNCAwTA0EVwKB1ZynLpkn4Mm8Cb+Mjo9IKCks7AV91QJI3f0MrtSTs7ax77FkrVNWwLpE3kktlEvaTfXcpTalP7RSznwE7AxMS1Uu3vmiyJCYYokaSOlnIMrE1KRthfdSqW3p+52OpDBKs8qkZ7udxVP0bNc879dTMN02px/ZZEQJ6VX6WRgWYWbH0qXNNVggGEPVrHWiotB4yUvovuNbpI4cILZo2XnNltj+tQ8Bs7jQszEDgTFVp6/QdtbOn82SEi9SUyIRmt79TkbvuJPCwCBKJEj9yitJD/aQOnGIkw98n75tv6H1ohuo7VxHZByiA6aTz9UoBJLQ+OO99L5zJekmhdZv7wNADo860iHDF0Ro2GEiXPPuTDG8KsbokrBDTAAm+XDU1QOXIQvAWzAH2dXtu2fZ04u0IpeVOW1mxKwddRwpraIlyiLIz6eVTqwqtol4MiFswsIqrm0DWoFk+cBpD1CGKpzj9JApCZIrTDJyeCd9ex9C1/M0X/VKFDWAEVbpv+sn7kn0IlJIqI4RW7wI2R4jnqsnvmgluXaVkV/9iuL4GPMufw3HT3wdgGxvNwfv+W9CVfWEqhqp61zLRX9yG6Fxg0d/NvXkedbOzuo6VjHed5hoQwcNCy/CSKWI1XYQitWw/7FvMH5yL9r8IGOn9jE5eByhKCTal9J+0SvO+ZpaCX7sZEDYE6mCS8iVmjd1uRguSW/2mO7BvqNDEj0A4VG3LkTslDvDyzS6szs768EIa24haiAwlvG0kY58gpLOgxAYwSmGl6KOKJU7siSTbHOAe5sQmLQIDJucSKVNYkJVzH8AhkSm05BOI8JWFkIqDbEosrffulHrvVpZXsa4SdAKb50HTUPm8whVxbBJEHu/XVunRNYJwzCPiZTkv3uOqWQ2IWGTLbZFjpiyVe26mSpx+sqQK15pYxrWdx6xeJzIkNnA8WseIiaUtECroCkJZS8OQyPWd99nntQL/peal5AACCR1ilHzvYQHsmjJAkNr49b5dIeQENK9p+rjVradB3RyCAmL/Ir1pJmc72ZKmItHK7IvZEqEGZowF5n2wjfgX0xIFV+RRM9rIzTmfh+pZrPvRIaniNIKC4R0szuEIRmfrzK67xTBukZGLgihH8lDKMBYeBzR3kTgYIIT23/BsmvfN+W7nLVZm7VZe7YmhGD+a97L6Qd+SnaoFxSF+jVXUExOMn54J70P/pzBp++n+eLraVh8iZ8494Iv09SM8IJCZQAcFrBZMsbZgJMU5aCaljamHBOfDQCnJQsU4+e/iGfAAxZOBcAVK4DFcopo4WJEoZhLM9q9m779D5NLjtC+5ga0oJn5dnLbL5GGjcLqZpa1FiHRvJBApAqtuoqqeStQg2EGtz9Muvc4nS9/D8fu/BoAheQYh7//eRLzV6BFYlQvXMPqD9yGgpjVEz+PVlu3iETVHMKRWto6LkEvZonGmojGGjm0/+f0ntqCogQYG+1idOQoSElN3QLmL7jeISTOts+eCwhst68IjgtRJoU5HQgMJTUiKtSOsKWb9BJyAvwgsNCtTIlSaR2sLIgCZTUXS0HgUvKhLFPCIlvLyIjSbAibtJjCD1bye97t2hR1IUrf+blIMUnhqctX6jdfAKLW/OxuKMSnWOfZfdxDkJXVlvD2VSHK3mMlmdbp+qdLernrmdKi1951sOrpm06foXxbKTnhZOiUkhGeficMyPb1oIZjaKEoMm/VFkzn0ESQcH0rpx/9BUvmVC5kP2svnM1mSrxwJqQ8cxWciYkJqqurGR8fp6pqNhXo+bIFX/w8ANXVhzn2pXsY336cUH0LQlHJDpxy2gUTdSy95B3EazscMLPuFyYJkd64lPEFGtVdRR/glG42vWtk0CDWk0FqAiPgzg6CWw4CuBkRthkSpdrSOvcAcHJ41PzfQ0oALikxMOTUtWCOWeTLjqg2glaGgSXlYWc4FBLuYGf/7p1obqvbhkfM+8s0mG3tqAy7vR3Z6tXltycEpTr63omCm2JqDW7WwOeL2PUUlpXSoPeJXzO488EpF1zh9rmokTipI/t82+f8z787k9Rj7/4w8y++ie7td9By2ctpuug6jGIBY3SS7od/THrwJOGqJnKTIxSzk6x7yUeJJsxMlVli4vxaKpXivvvuY+/evWz+5q8IxmuZ7DvCxOlDBKPVRGtaqVmwlpo5FxCwFpSlGQtOBLZ3puNMoK1ocNXODHInT96ChmZb838bnHV+D54Ib09tebcvW//rIffvqCVf4yXcAikdJW9+9hWft4kQBV9FJ1HQ3XTXachFO1vCkXUrWj+aSnJGmDVvwCUBnIlc0HwheiqNWl2FMenq1KntrY5vkWmX7BCa5oL93t+kEM51vCZUFSOfR4lGXVLEU8jGS1zIopXlYNW6sPd5SQlZmgmhG242Wd7+Qi3d1RJSQjTWO3/nOi1i4nLzWm2Pm/eWrzKdnZ2CH7S+z8CkJZt3fNg8d5UL8GfmmL57fJ5mncPcXkpKxPrMc4RG3FWaNmplzlhkkxEOkGsIER5w790mJexC6tF+93g9bL6j0JDb3ivjZZ9XD7t+365bApCtdd+/N6vHKyHgFMWuLl/QllUksyLanL8pX2xonq9FzUqy9QIpDQ7+9z9Rs2IDLVe/iq7vfwk1EsNIp0j1HnPaL7v2fey/77/5Q7TZOeMfns1+5y+Mrb7ZlH8wJpP0PPhTxo/tJhCrJpioNf2RNfZp0SrmXvsWquYsdbLf7PHZjvq1/y41NSvRw+WgkWOlpERJpHYZCFfWvkgxqrngW4U2LzQANyX45mnjNUempAQkPn34YU7sudMlHkosXNNKpKqB0ZO7fdtX//Gn0MJmpvnW//lrFmx6Kyce+yn1yy+mY+PrMYoFZCHPyYd+RKq3Cy1Rg57LUJgYofNV76Vq3nJgttDp+bZ8Pu+sE774me8T0uJM6iP0D+8hGEgQizTQXH8BjXUrCAXjMz/xswCCbZsWBK7QHioDwb79FQL+SkHgUtMD5etrr4ys/dsuCyQp/eyRx6n0eap5HFgZYt5sccvsdZjZZnqCxjY1W44Z+I7L2gUx7Qcrb+NIsqbNmy1GVMcP2tvK5rBn4RPVZIW1TyXzPLMer1wHdLq+CP73XKlNMapVJtO822ysJlx+Mu+xeoXaE14rLc5um08JwM6UsKXDPO+5dA3vLXpd2i/BT0aUfj78w82EqhuYf/3bOf6b75AbHyRU08jY4R1O+47r/oju335/2mf6fbUX25zRvp9bt15JZLrx3mOZZJGPbHj0RfMMv+s2mynxIrauD34YgMt+83GWf/rNfLnxzVx81TUUk+O+dvnkKCePP8i85e8gZEmyZC5f4sgeVXdZ0al5SWgoR7otTGTQU2S5I0K0L4tS0H3EhDQMc2CxBzW7WPb4pElMWLroxuCwU+haqKoZNXy63yE0bHmTszUj4C5upAPcWiCnNemIHDfJkMgO850M3bho2nOWEhLgEg42EGxL0QjDlZJSSoBXB1DWBCKn0/3QDxk5vNXZH0jUULPqEqINHajhCKNPPszoyWdoXHQp7X//WbK9PWT7ThGK1JI4Yr67QjXMWfsyTu/+LfWdFzKn82ryOqgiQCBRx8qN73XOv+++/2IiO8n+J/6X9S/92Cwh8RzYP/3TP/G5z30OTQmZer3HdqAXzIneyhv+mmCkyuwHOhRs7sFTnL0iWH+GBB49ZKYmC7tQr7BqT9hpzRUm1eDWpIDKxbeca0uzaHB4TJKrUQiNuX7ACCqoWd0hCZWM+yNxnqXonb2BKFpt1EqRgu7DOoWD7VOWgvMeCSuhquhJMzNC8ZARtul2doMiTCKhbwClqdH/qLYkk1UTQhoGQlEwMv7aFVLXEaqK1HXHXxnptLnNkIDu3MOUViwii0VQVTOjw5aUs46T+YJJTKjuzNUmVaTlU5VIGJnLIUIhZC6H7DntECLBMdO3zU3OMS93ltGgYswicIJBogdzZBbUUXPE7CSZRstvW/eRj5v3PmGRFlqTRu2BdBkhYVtoKEe+xvTvE/PNc0UGzffolXEKjGax71oUPJGnmh2KpCCKBiJfdCS+Up3uBE/NSYcoEYZkYp77nZSl6uOXFXAWGRV+e4rhb+OtRWFf1zy5+V94WDJ+6hDF9CTxhcuQCuQnhomEoqR6j9F29U18+k9uYseOHbzvfbOZErM2a7P23Nozm02Qee0HNjP/xndy+4duYvmFl5I63eVrZxRy9D99D7XNS5xtU2VB2CSEmvVvKzUHfAMXgJvCbKDNsRKwzEdITGNqMoseD/v+n+qcZWaNzTMG3yrcXxkAVwK+gX8sctYwSI4fvJvurgfdfaEYTfMuoqqhEy0QYahnJ31HHyccruKit32O9NhpUkPdqMEIISII6zuav/HNnHzsx8Sa5jFn/StR8hIVDSMcYMHL/sQ5f/fDP2Fo3+OcuPtbrHzPv6Dps0v+821f+cpX+OAHP4iqBIgEa8kVJino5jxz3ZzXUxO1AvRyQM5eXE4PBKupHHp86nVzIFmcth+C2xe95ovcV8wFQSkIrGVkGYDsBYIrAfU2EFxJ6tPcbm/zXN6S0alUl6KsRkSFmhFKwRt86N+PZz3mLXztkBb2fZY853QkRKk/BCsbyuMDp8uA0DI2k1KZ0LD3l/pJNWn2BTWZQ48FUZMlAV1njiuesfl8qddKyasy8kugJ4JT7tfSRbdPlfVT1bf+s9+ntw96+2jpd1BKUlSqK2FKh1mYjadfejNjpsqCADerZ6oC12WZEgZkh/vIDHTTeMGVIM11ghaKMXZkF83rrmfzR/+ELVu28IY3vIFZe3GZIQXGtClp/razdv5sdobyO2BPvNTUv1/6qc10fuQTjG99koE7PFJAUjJ+ZCeG/laUokpo1AJvdOmAgZH7dmOsMRcj0dNZUh3+IpnZhhDRnjRKVjeLW1cyaTiRwTJtTa6s/2Wh4BATXlNam5H9pr6IaLaAwxETVFRHQFbFzYDr3gHzPi4xU9lyteUg50ws0eMH2+xByX4PshR8skGpaXBHPQw6wtUo192BTc/nOPbbbzHZfcC8/rwVtCy6nOrWpehWjYn04QOMnnyGhgUbWLDylagHBDCHx379H6z82Gb2/vvNLP+EGe3Wu/9B87ztVYxmu6FXYBRyGNIg2jwXLRJD33mQaLyZeM0cTh96kMnRbq58/a08+tNZYuJ8Wn19PUIoNFUvJbRyJdVtS9E1gV7IEAgkzni8VN2oITuLwalBEgDCwv8Zc0Kkq+Waz7blqgSBlDspE7pEGBAch3y1cCZLdqQ6mESHloVMvfDXlQDUnCXNpAm0lOk3lLyOVAQyoLgSQIp/4SJKC0zbGVVCOG2FlOV1JUon0LacRC4H0QiiJGPAyNv5uPbqw3D+loZEGkWEIpAWUWHXipDpDCIacWpEmO2tya5NltrZGBWKaEtdd65j5PMowSBGLosSCmPkss49yUwWJVAyjEppkh8VsjHsc9rHCEUgDYmRyZp/56YWslUOmjJ6AatNKGoxURbpK6vMKDxpZRrImJXFMWqRElnz/3C3uX/0QjMDwyYk7DoKpQu10WVRqo6bxwRHTH8vMgXUbBFpZbvZhITXIoMFpCJQM0X0qLlfG7fksKx+JQCpeXy9RVLoiTDhIfO7t7OBDE8NCi/hp1QIONUjdmabu00pwbzUnGdB7E3jr2QCcjWCiVOHOfnAN4nOWUi0Y4F5y/FqJo/tRY3EqV91BbdtH2HXf3xhihPN2qzN2qydf7Mj4Df86W2sfO3fMN69n6O//bqz3yjkSA0cJ58cJRKsrXgONScdH1iJhLDnC+AhbtM6elRFy+hWtG9pMdYzg2bqZN6Jtp72WOuzDZ5NCaKd6XrnCL4BFKumBot94Jvn+HwYDu/5Gf09ZuBSVV0n7fOvoL5lBUI1x9aJ/CB9Rx+npnU5iy76I7S8oCrazp4nb+OSd9zGU9/+EJe/+fPoIcHwgScBCEVqSA+fAgRGMY/Ui0TrOwhEq5gc7UYoKq0X3UjvlrtIHtlHTefqmb2gWZux1deb86jGxGLq4vNoiC9CFSr5YopYqOGMx1fsi0L4wecKIDDgB4JLz2sHFT1LEBhKfIEor7lor1cqgcDgCSb0gsB2MWuPTJPh2QaVQWAvGVF6fS85YQTMICj7TtVCOdmi5q1aGCXrLTUn0UPCDUrxvAPN9oFTuDXHH6aK07aTArSkfeN24OcU57T6gpqaWmdPTKb95zpXK+1rVbFp99umTnruTSlpKwTFWOVgKpuM8a4VS+XwtKzhW5cUQ+5aRS0hkrx900dQOEXN/aSQHhC+YtheYsHcgK/QuhMwyBSF1XVIj5zi6B1fIVzXSs28VShFCESqGD+xx/TJy6/mtnt72fKN2yq+k1l7Yc1AQaeU9Z267aydP5slJX6H7OAnbmbppzZTveFSxp5+lEBtPY0XXMnxn34FgMJAP4TayNVqxLuzaDuPAJhRvF5TBLHTWfSI6WnzlkySOppEr41jrOh0JDS0LQd8h9rRvHYGhYiE3YJd3sEwEHALjDY3IvsHkf2DJjERDpXJt8hOM5rElpDR0haJYE+erFPXbjHJC+OkJV8VNwfM4rApVaLeb/5fYxXfHr6+c7pX6phqzws9ch5SNQcZR1KnZEzNTQxx6PYvUsyaUd0dG19Py6LLEbqnJgCgtpr3EutcTr7ZDWm/8H2bCWqw7i83UwwlUWWUcMdcMse7GHv0QcZ4cNp7Xr3pA/R3PclQzw6irXNn9JyzNnN75zvfyZdv/RkjyeMkH30GNRim44rXUbd4AzIrkUCuyg/k2pNyp0aEJ53YOAtvm7XUe9zoEus8ebNvRQYrRC1a+Lualx65M38bIwAokG4WxE95oiQ9hARQVoBb5Lzim9IlHjzgsC4MxrO9ZAsTjGd6kUiWtr/M9A+lE1kbyLfPG/WTpGrCJH10K6NACYcwsjmKskBGpkiotQjhnwzIYhGKRZdssAnTEqC/NDNiSrMJEGk4RIRDSNjnUsTMzuU9Jx6yBZccQbWrNM/wXM/Sqg+bfsv29ZEhqyj1hEUGBCxSxsqeC9iEQsbPbIWGMtRadSFs8tctXOjxg6k8UlPMTAjF9u8lE7qigQxqKNbiq1htES6qYtYoAopxd8ESGXFXcXrQ1Ue2Fxha0SSVzWtZ2zzJMkrB/7u0F8rCekQ7c0RqMHFsHyd/9U1iHQuZc9OfIIQl2WX1Qz2TZHj34zSs2ciav9rMrv+YlcmYtVmbtefXtn79Q2z409uonrOcRNsS9FyazkvewN47vwBAdqCXSIdJSpQCOoCTUanlShAyW27EIh/UrO74eXv+4EQDl5iWKrjrA+86wXMJKURlYsJ7a5MlRP95AuBkInqGhtblhKgMvnnOVYwHfZ/z+Ul2bvlfkqk+AObPv5b5nddhxAI+kDSmVKMoGjW1CwjLMMJ6/1e95nMEBWy86XMUyKAZYcKJBlLD3Yyc2MXIiV3T3vOCl76bUE0To0d2UN++akbPOWszt1e+8pV0Vm1gJNPNvvH9KCgsqb2CeYl1iELmzCcA3/x4pn0RPEBwKQhs/V0JCK4EAuvRmYPA4PcbU4HA4ALB3gyKoirJDHaTT46SGTpFIT1Bx1WvR9GC02ZGeD/bVpoBYV9HNwpkB/uJJlpQVM33LHa2uXtv5c/k/WwTsWVZELaftMlYj+/z1kxDgJr033iZn7MVKSyZXCWVrewvwSMJNbMC2s/WxIS1sLTXW0rJWk4I8/Va/clIVM5C01KF8iA165R20JK9rXQcKZb2z5zhl3QKuY54yr5pfwXe7Bzp9hkjIBCGdAky1T22LFOipJ96MyVSAyc4euf/EKpuYOHL/ww1GDZVBRRrXWro9D1zH+0bXsFF7zZJiS3fmC1M/WIyQyoYM6wVMdN2szYzmyUlfsfs4CduZtWHN1O34lL6H/4VkZe8lfoLryZ14hDhWAOFgKD2UIlEST5vyoQ8ZWmUXmZGywSfOkj+kqUktvZAyK5KZf5nF4iSqxYhdh9BScRdjfRSqRYpzQHJK/Vk7xodM4+xQceC5c0t7XUxYQJjMlzzLN7K1BacsKNArOjqEi1+xQK67Cja4hR6haVFu4yJSfb94NPO/oWv/gtq6xcCUIi75zACoIXqCNW20PPYzzhx33eYd83biDXPx1B0gok6kqeO0nXHV2h77duZ+5Y/J1sYN6O6pYE0DJRQiMH//irpCbNYbyhWSy41yunjj6MXs1TPWfEs39KsVbKWlhaWt78MgFOrNE49+QtOPPA9CukJ2pdec9bnU4ruZMjuh/lq67OnYDqAETYID0w92DkyZHZpgpwEJLlq9xipWFEbzf50VcMT6Jet1wiN6xSqAwQmXPJSSWbJFZKcGttNNjtKa/1q6oJtjtyOSJtA/1hxgP7JQxT0DEPJLrLFCd99Lm7ZhKa6F5RBWy7IQIYCCLvGhC0LZcs6FSyQo6mRrJ5kZOI4g6KHfk5ioKPpQQIEkRisDV9Dle65hiXJVCrVZO87K5tu4i8NnEr3lcyb3XGWplRXYUwkUeIxp66G7X/t89lErH0dNWN2JsUuBm6T0bbvszNEMlbUlfXulZBGoe7MC2FleML/XPk8YhyIRgiOp8nNK4++tQkOUdBBCJSUSxA50k2e8aRYHUadyJFvdO8nMJkHzHvNNpnjRnRIpxBVKIYFWlY6tTC0jKQQEwTSkkJUOJF1zjN4+PliyM2ysIkJJxuuZB2YNsY4ecc3iS5aSsub3omuacS7LJJkfIyq1sVM9B7m9EO3E6lpITZvtnjdrM3arL0wtvXrH+KSd9xG8+LLOPLQt1ADYeaufzV9Bx6lKt5WmYzAnwnhbMsa6GEFNWs4YJoDGlkgmk0oqOnClNG+zvrAs05QUiW65y8QAFdGdkwBwNkBWEY8UtLejQj2gm+GUeTRbZ9xml2w8i00NpvrLzXrn4toqFQ3LKLnyIMc3/drFlzwauqaliGFJBiuJpMcZOdD/8HcVS9n8UVvYe6KG5DSQEoDXZOoWpATW3/BWM9eAMLVjWTHBxk/uovc2ACtK80560V/chtb/ncWBDtfVlVVxdLaKwEoGDmOjD3BgdGHyRQnWFZ7tRu0N0Pz9cUz9EOEwIhVAIGt/WqpZNoUIHBpX5RCoEfctcR0ILCcTDNwbAvZ5BC1rcuo6lzp7FMLgIRUqo+Rrp0Us0kme4+QnRj0Xa9l9bWEq5vcdbmv4LUbIDU1WSEpZJJMDB5nvHs/o1070QtZlECIQCSB1IvMv/gN1LQvt96PeW9T+sG8LMcyhDkvdPyhRwrLR0hkii7pMAVpapKb1vqkVPbuLIhWOZlEJOLu/+OTiKo40sJVZnS+qfpnWZ9TIHHmmihKqbyU4vZVmEKuzMrq8RFlMc3Zpmb8JJkUfnlYNWf4nsNeD5RlUQT9/Qvc4us+6THVxYaEdAkKk5xw+6Pi1Hi0/H0uR9fdXydc08zil74HVY2gWBk2heQYscZ5pAZP0LfnAaLVrdQtWT9LSLwITUegn0lr29N21s6fzZISv4NWjEF40QLkgzrp7CAtm14NgDrhAR8ff8a3NrBlQgCUnYcQVoRq6KAZvUOhAIEAUlOdaFe74K1ctQiO9yGCAWS+4IB+aKor62KDfXah1+IMwL/RcReEPHjcvLcLTYmp0KgFvFm6mFrKHEX0WhOsKs5dae23o3jnIi3NdjWnU8TUyA+NmQuE4DhMzLcKa09BSOghK41Pt9M0Pe/PAa+sdxMI03LBNQSjNdTNW4NsqsIJ2jAA4QLQuRqouvgSBu/5BQAnHviuc96ahWuZOLEfgNTjTxJauYRAop7Df+uPsl23LcVY/yHaUs0IFA4PPsR43xEaOzdQ1byIJ7734TO87Fk7F7t75z8DcP3l/0Jzw03sTdRz+qk7UIRG0wVXOSSC3YdsULNgqTupWTf62i4qLAy3bglUJiQAsg1mPwwPCZBWHxQQmIRC1AReS80udlywMnWydX5CAtwo8lSzIGplXNjFkfWwhpbMowdVth/7Kan0ALos0D2+k/rofOKhetqDS6lKtLOr7w56k/sJqTFCgQR1tQvpHXoGKXVaai9gcdu1DiEh7ULQehEjFkLJlyyWtMpDUV/2KDvHfwNAjCoWiBVUUc+YHEBH5zTH6c0eoSpW79SRMDJZZKHoZDlMSURY+58NeXDWJIdlii29pFtRWJYftGtTAChV8TPqdJ8vC/ZbEk925ooiTLolZ3Uam0yOTk1ehI5ZJEnQH51nRF2JAcNakIislY0RcftCsdrcl21z08VDI64TLkYDaEmdSauehJaRCN2q+yOhEBPOwsXQhBMBV4x4fmOqueBw/LmKf7FTwgMWqsAoFun/+e0ILUDba97m9DPnmYp5JnoPO5/z40MkirOkxKzN2qy9cKbmJDXVZqZwdrCX9oVX0bZgI1rBpnj9QIwjjWSBbkrOcCWaHIkXN5tBTbljuC/y1yIqnPtIeqJ+S8ezVBpiUUimzKxn+//JpAuATSaRpWPzVOPiuQBwpeCbXayyQkSw/b+Syk57Lj0RsZqqLO64HolBS8NqIuFaSJtjqRTCAd7sz22tG9g7YGand+35JV38EoCaxsWkJsy12tDxbTS3rSNcXc/jP/TP+9fcJEk0LyReP5dgrIbu7Xcw2ddFdccK6haunyUjniO767gpv3tD3XtZpm0gFomyb/JxRF5naeTi8gNmAASXgcDe34TnHEp6ChDYanMuIDC4v3lzGw4xqYcVBwSW0uDoU99ndOAg0tDpP/o4VQcXEqlqomHuOmLtC+necQe9ex9AC0UJRmuJ1rRh6EXyqVHijfOZf/mbCFWbagKqXatRFagFSalKbCkIbLef7O/i0N1fQRpFgvE6mpdvJNG6mFTfcYr5NKPduxk6to2a9uV+n+d9J1Nt95Cy3m3gqf/gkBAlBwuBYstzOQEvZ/BRqTTOg5eSGxX8npxM+v/3EhLn2yY95y4hG5z/bUwoXiL7ZB9mBybZc22rvR7zRMsJi1DzSTr56/V4vw9b9cM273dpExHe7fY2Id0MCkPD+f6UokVG2HJilkyyLfvt9lP3s5QG3U//Cj2XZsHVb0MLRHzdQUFhcvCY8zkz1leW+TNrLw6bzZR44WyWlPgdtUCtqe9SGBlG1JjSPfZgV4yocN06gvftMLdrAYtIAGFrrluFX4unetHmWIW4LODJrkVhhDSUXBElU0DvbHWurXaddm/EMMxBRVVNYiKbcyNfVRURjboFXu3tubxZJBvMQrfBylqDM34X4zPz7LbUh0062LqZhjVAFe2xteS4ojVWBpNmNLo50qjMv+AVThsbY3YibS3Zp1zMQBkvUrtgHbm5h5joPugDP8eO7iRY3YienmS8/zCxnz3Iqb2/Lbv3Hb91tQc33fDvLF/iFvR+8PuztSSeDxNC0Lr+BvLJUfp23UfTBVdN216dRu5Yj7h1JooJe6Jt/h/rVsgO9TH62INM9hxAagrz3/EBgvGSSHRr0qToZrEvNSd9epfOfesuUWaTG1KljJBAQGAoRTEAu47+mMl0HxtW/imqIegb2cPxvscYTh+nV9nHNYH3kswPkQg1sqD+cvRogES0mVRmiFR6gIWtVxEJ1WBYhZGFRXAaMb8es4yYALPIWBH1moaUksOTT9FfOEFaTtCkzGGpsYZIyAQLCrkMGioSgz66EcKsxSAswFzYUSuFGRTOLCUkngVB4T3eLo5dKvc0rc1rQ5y25OnsWhjWIsRLfngJZq/po+PmH9a9C830q4pdcyKfB01DDgyixKLO+QW4Pnoa0gFAjtnXsKKI4jHTl9t1ISLlC2BRSkBZxxoR876MoEbR0kZWPIXUs3Ua2TqNyKDr31Nt7lhhaMKZwTgSTBIQJuFsaIK8Zw3vLfwuVYj1S9KNrjwTuISdndpfTKfo+cn/kj19krbX/jFqKMz+T5qE8eoPmUBEbP5Skl37WHrjX9C/9yHi7a5vnrVZm7VZe6FMC8VQtBDZ5BBgR1jLigCcWU/CJSbAEx2cKboa22BlPOAD4ZS0Xc3W1r/wtHfkSYQLrNljnA10lf4/Puk5XCknJp4rmywB9aYD37zAm6edmsw64O6CmovM7UX3lTjArwVqSmlgSIOG8DyaWtYy2L8bKd0xf2zwMMFQFZF4I+nJfo7vu4uBk9vKbn3Xz93s7UvefhuLNr7d+fzUt2YJiefL5oSWkzVSdOV2sTi8HkXMoEZiKQkG5SDwZNLXDzP6JMfTuxjIHidvZLh07ttJRJqc/TA1COwNFikFge01hB7RykBgNWsSEsWQ5MjOnzLSt4/ll7yTaKKFge7tdB+8l4nBo/QffYKLX/cZsqP9BKM1zFn3CqRhEKtrp2fXXRQyE3Rc+Aoi1c2OXKY9j7NBX9sqgcAAffsfZujIFrJj/cQb5tF55VsJxmpQdTCkQVCNoBdyTA4cNdfkJX5PKciyrFglZ2CElJJ6EhYJUVKs2n1/pn9TMoWpsyS8WWWTKX+bM2RWeE0fn3Dm+GXrgAo+Uq2uRh8fP+N5y8wjjysc32YFftZaKf5TERJCmORK2X5T6qmSRJlqjR9OllnM7Z9SsYg0u39ap9PDqulvS+qiGJ5MHsXTl+zaJmUF2aX0ZOd4AvmsYuzS6Xfu/Xg/F408XY98j7HuPcy7+HWE4nVOBsSlb/s8ALH6uUwOHmPlDX/FwOEnqO24oOwdzNqLw3RmngHx/Igt/+HYLCnxO2aLPncbJEDTA4BATOacqE/bjJBC5L49YBWlRjdQq6vMwQycFGq78Gux+7RDTEjVLbCVb4iih1VCmQJKOu+bxMhM1pVkKg1nOJNZIJkDZGkaSjQCxSJK9zCFOfUYlrSHPcjYGROFJhvIch2GFCaCFHvoIGABZUB2hflM4UOm7FFg0IzktQG58asXOefJx/zZE5pd2EsItBwEUh5WPuB3VoWoQMtIR79QD8GJO77JxFFLLssz0Zj/tg+QG+wjdfII+aF+skOnyY8PomhBmtZdx/4Hf3bG1/fg3R87Y5tZO7927+P/AMCyWzYj62OoQxH0sKtHWrDmWIGURTZ4yIHSour277X2kNkvBteXX6/7J1/HKOYpZsyF+ZH//BQ1C9Yw/+q3omgB9KAZGW4XvS5E3aJsdpS4TTzoQUG+pC53cNKUKqs6nkcPKqh5g8BQipHUSQ4PPcLYxHHWXvBOqhNzUAo6ufwkx3kMgOpIG0JTaYzMp2t8C7tO/8J37otXvpdIVSsGLlGa7TDR4VC/Sd8ZVh0DB8iwyVIp2Td8P936IdrVhcwVS2jR56Aq5v6MTPIYv8bwTAUSSp15bEntCCWgmcSEnRHhMafuxAwm9c/W7BoWzn2FrGyBhXMdnypSuYrHVrJKhMQZj/HUsJi23ZDpI6W3cDmAlIigv6iiqBQJVSiJHFMURFFHhk0frVe5she2dJcRsvqCRUgEkkWSc8IICeEhl5DIV2tOfzcCAin8cnvuQkGSr7L8uZ255M06NyDRY2UhjZr/pyL2c7rNcqODdP/4a+j5NHP/+P0c/+YXyx5Xz2eZ7NqL1HWS+UGGj24vfyezNmuzNmvPsykFiREQqFoImc/5wBkwwbcys8A1W87FC9hJxZ3DKFlXpmm6yF+RSnskmGYOvAGe9crMAbhzspLaVFMCcJUsmSoH3uz/EyXjo2LVU3KANcH+nrvoGTbJBS/psnrF2yjqOYZHj5DMDJBO9pPPTSDyKm1zL2PHlp+f8bGe+s4sCfF8290jXwXgeuWNqFKioiInkjMDrs6hHz4z/Bsm5RgSA10WeOzEN2gMz2dV3fUE1agLAsfKQWAl42bsmBvAiPjneLYfKAWBJ8d7ONF1P8P9e1m6+k3Ut5oAa0PbBXQfvBeASKIZRdWobV3O6Ol9HH3su75zL736T6mu74SidIDgUq3+qUBgqUDfzvvo3nUndfPW0rjgIhrnr0cLRkEHvZBj5y//lWLOlcKqb19tXaOyLJNNRoDrGx1ZqwokhJIpIgzDk8Vgn8/KJrPrbmbyrpLEVL5PCKTl75y5t0e6TqmuwhifOKe5/7MlJCqZYfvm0vZWn7XXV6K6qvLpk1YYpx2oWiqLp4CSyfv2SUXB8JBk4MoNFksyJZyxTfilxioRFP6C7G7QaiXZJjAxMlsZQSqQz0xw+P5vkJnoZ/E17+bQfV8re15pGAwf3wlAsvcYA0eeqvheZu3FYbOZEi+czZISv2N25KMfYtHnbiNTHAUkRmctxSjETpsOMzJiDmiZ6y4gct8elIgLAqnVVRhpc5CW+QJIA6EIhBbA6B9Cv3i571rBh56hcMUq8g0xQl0DqBMpjMFhE2xUFGQ6YxIT9gAMrgyLTTwE/F1MKgoi//znrBklhASxGNVbexnfYGaA2LdtF0plKoxQmlFmekhBGCYophTNSZSUktRkLyO7HmXiyDNlh8Y6l5Hs2s/Y7qcpJicQWoDYgqXEOpdSvfJCDv3HP57PR561Gdi8r38WYbiznOPv/egZjykmJ9CiiTO2m87ipyT51BjJgRPUphagxhOASW6BgZHN0NSymsRFl3HwZ5sJxGoY69rFYONcmldf45wnX22nWkO2VnEID5tUswmRyLA78QqN6aRa/L9LbTJPQdPZ0vUdADraLqO+drEZeJ7WaYx2smbu69h18mcMpo6yVf6cofQxhFCIhusJBKKMTZwAYPfhH9PcuJYFHVczudSclNp+aXKRuVBPdJmRQjJk1Zgo5pABlWRxmG79EMu1i2nX3eLtUkq264+QNEYx0FkXvpawEiOtT1Kfq0MK3SUaLHk5qetuVsEUGRB2oerpzCEVziT35NleVhC7hJiwZZtssteIhXz1FmZiQgsgi+ffl1YiJCqaTUYriinXZxhm5pudLWFHTRkGIp1DRkOoExYpZZExNiHh1Wm1/6865EYJpubFEIa/cJ0wpCNhlo+7E0M9JFBzJjnsJeO85P1kh0nchUcqP1v+4FGO/eZ/0cJxlr76rwgFGnz71/z1ZgSQPLofWSxQtXAV3fd8l8b1p2i8cBP7vvqPPPbYYzQ1NbF48ayU06zN2qw9/yazeQrZCULRuor1ImzTHPDNv13JueH9okRSRMnmMcJBs75UKeHgHevs7AgLpJOTSaddJQDuRWHWWC4U4QfgzgS+eSOCvZHCHvBNxsKkciN0D2+je2hL2aWrq+aSTPXR27+DTHYEIVSqq+dSV7uI5qY1PP7k587vs87aGe2lwbeaf1j98zeFH5zxmDxZglQu+ns2lpdZRhmkeixNRFhEl9UPizJPrdLIsvAlPJL6KRG1isHscQ6PP8nKumudc4h0ZRBYWvUolKw5D1UyHtLMAoG9pubMGiY7n/ovDKNIQ8sqmtvXQ87U/I+Hm1l+2bvZ/8Q3yEz2c/ixbzPcuxeEQjhWRzBSxcRgFwBdT/+Eurmr6Vj1MgIB8z4Mh5xwHVEpCKwUJbnsBN277qRl+Sbmr32l2xboevwHTA4dp5hL03nh60jUzyc/MUR142LfedWcgR5SfH5RyRmoOaNiIWo1WwQpTQWJTNG3Dykdf6iksshoCJHyrAFsJYlUxvV5DplxZp9n+yDfeuZF5itLfSJCICcm/dkT3v3VCd92RxYPnMxtO7NeKjZZ5H/vetgsYq455JlHjixsy3l7AkqnIig8tUykp8sruvRId5tEhSi6EmLZodMceOjrSGmw4iV/Qayug0vf9nme/O6HPdeBiaETFLLj1LWv4sSuX9I8/2LmLH0JW+/5NDt27EBRFNasWVPp7c7aC2C6VNBnSDbMtN2szcxmSYnfMev80uchDLlJMx07aoElqTZB7LQkU6cS7S8SefIwlES22oVRbVkPx6xFg3h0F0pgBl1CN5C6gVJXY514BjIp4BQ2leGAyUYHNHdxoilAAJHXMQLmoKVHXfZbqoKCVXjLBqa0jEHi4Kj5TKOTEIsyfsU8wNXUrzmcwegzi2oZ65dhAJPzTaImNFL5voOTVrZE2nCuVwwLK0pMONkUxbCpqTnZ38V47wHGTu4lOz6AGktQ97KXE2xto++bX6Px2lcgpGDw0d+QOXWMqtXrSaxYQ7Sl0ylKu+9fb57RO5y182/FoRH0ZIpAU8MZ2xYikvzoIMHaRrL1ELOUzDRbNlTDTZO251rWnCg0Yv6fCqboO7id7q2/RBo6QqgkOhbTfsFLqYmbQHws3sLQwF5Ck0tZ8v/9E2o0xv7PfoRTT/2K4CWrCdbVoyX917ZNzUuk4snQ0KUTDRQaM2dYiW4rSkp1U1/Hkj0ArF/5p9RWzefeh/8egBvWfhIhFJobV7GcLEdPP0RBz7By4etoqb8AxcpiKMg8+w78mMGJIxw/9SDdfU+wMPEuqtuWMLzMbJM4ZV5rstONIqw6kkQG/JEuI8Ve2phjyk0IBaRkqNgNQERJ0BCejygUSWi1oIGRTiMN6USXOUWdVRWheqSc7DoTMwFBvOnLquonN86jqX2j7vWqqpDDIyi2drAF8MuRsZKDLAImn3f8r1GSDWETFnrSQ1xYbQxbPs/z/N7sEVvyaSpzsuQ8xINjmawpyWcvvjTXz4NJRAldkq/zL0S1jO4QEuGhAvk68x6yDQHUnEQP4o4XqgCEeR4PISFVN7rXS0hIxY22U4qmtB64NVfULOhhM9Np9NB2uu/7PrGWTjpf+i4C2tSSVtkTxwlVNbB44zvprfotfbvvZ2jHw4iv3QJAdMky2t/5Zxz6u1n/PmuzNmvPj139qs+hAtlJc84fDdaWtVELxpRFqdWcXk4+5ArIUMCMsC4tVG2bXSMinSmXHjyLAq6OvRBZEh5CYqY2JfgWN8cOKSXjuT4G08cY7D7CRG4ATQmxoP4ymuKLefLEt5nXfBnRcD1Heu5jcvI0zfUrWTbv5VQ1LUJVzbXcfQ/87bN94lk7R8vJDBk5SZSZBSSlST4rUqIoCwzKUxwwtlO0KhbWimbmq8tp1DoAiCs1DOo9jBR72RT/IwIixH2T/0d3ajdtSic1WpMLAiuirFCxSOcc+U47i8eIBqcFgdPpIQyjyPLlb6S1ZR1kde67/2+5+hWfRQhBY+1SWPc2uvbfQWZygAWrX0PT3PWomjmfu+/7H2DOso0Md++k/+AjDBx+goWXvJmG+ev8sjoVQGB77e284+EejFwBJRRwsiwmh46TTQ4hhEJT6xozeyLukZ8uISYA1Lxfcs7OdlBydsaYe4z9TpSMOYm0I+vB9JX2ewXMTKpY1CfD5QY52ZJ2ijl/tj+fhU0l5fqis1JCwpYiA9dv2v9XxZ1jlHQeqZrZPk42RTTo/G1/P2Z7syaivf5W84YrBRUQZp08z3fvVbyw+5VUhSMl5ltrSE8Wj2YGOI2fPsihx75FKF7P0qvfTShagwQfIWHb5PBxFDXIsov+mP7Gpzix924GTmxFiM8AEE20sOHqD/HQr84cFDlrz71JBMYM5ZvkbKHr82qzpMTvmB37wIfp/NLnyXX3IAIaxcVV1OyR5BOCXI2g9qA/clYfG3P+tgdDbySxk0nhAfOEqoJQUOa0EeoeJbOwnsyyFsJPHUYEg8hMBZ10ISBgkR3WRHy64kzTWahnjFxHjechrHQ66zy2ZI6al3BqANqbzur8XgskdUKjOdRxM5LEHsRSiz3Xr+B0lKLEUOD4oz9k+MhWtGiC2MJlNC5/NYHVSxCahthrItZDD92N1A1q119B/UtuRA1HOHDLLEj1Qtqqj2wmPzbM8P67ST2x3V1kf/RfzQYCtNo6AvUNkC8ipY5QFIx8ntypHpoufilqxi1erVmBSGbGjEFuqI9MzwkyA90ooTDB6gYisQayI330brkLI5+jYfElzF18HSOn99Lb9Rgnt/0S7a0fBGDODW/j5CM/4ti936Kx62IGjjzF4pFhjv/gy5z86heoWncRdYs3EG40Jcoynp9AcNzsr4Gk/bsxtysFSSGmOKBtcFx3CInJWIFDBx8gGEoQb1vEvb/5uHM+u9g3wMs23MKcxou4Z+stU7zZT7Hpxs/Sc/ghurru5tBvv0LH+lfSIq8i06wxuM79LWlpQbxbMrzGXOQ1bBkltmAlq2vgma4f00QbzcwxM7qEwsbQa9mVfwiEgkCYYLymIfMFh2gtrSMhjaKfaD2XYtaGRAloCNUFWCpGK9lZFJ7tWke7tc+Vg3PA+onUWd9LqQlFQdrAyrOth+ExI5tzQBn73Uqr5pASiZjPoKpTHu+YnYKmqohcEVTFzIqxao0YHv1WI2CRzhE3hT7bYI0pUjpEQjFqRVGpgCpQ89LNcANyNeb/StHVKBaGRVbYgbwhoGeE9EA38RWrECjI4SSntz/M4NO/pXbpBjqueROa1Nj23+W+evLwXpLdhxnr3k28dQFCCJoueyl1F25k7OgOcuPDTBzbQ+5UD/JcwLhZm7VZm7VztId+9VGuftXnSI6bgQaReKMJvNjDUIlPUnJ6WZaEFyRzwLZcwb8vk/XUkLD+L63J4DWP3Mn5ypJQa2rQx8ZQq6eRWRLCtxY6J/NEBIuSiHMHUCu1ZBoUweHk03Slt6OJEA2hOSxouYzGqkWoSoCCYa6nTg48jZQ6rdUrWbzw5YQCcX7z5Cef3T3P2rOyG5vfT05Pc0TfxinjCIaFWqtCw4JKCSkxYmo1UkoMiggUUCXDxdMsj1yGGqrQL4VASsnkWA/jDDPBKEIqREWcCHHyZDlsPEOBHI2ig2WBCxk2+ujWD7O/+DQNajtCCJYFL8LIG+zNPU598TiDhR6urSmwNXknWyfvpC20hLbwYmoDLeZ1J5PTgsBg/sanAoGNdJrDh36FIjSaE0u5736XJHvo13/j/H31Kz5LY+tq3zavDRx7mo2vvZW+Uzs4uu1HHHniuyQHTjB/9SsQgYAPBBbSDCixwX+pQlirYuWmv2DfQ//NwOHHaFtytfMMq6/8Cw5t/wGZyQEU1Q3MLK1T4fWHDglRsEgIvXzOZstdVcxssDNRdKO8TSpd3n4aK8uqPg/2nPvGqWwqv1i63/t/Mu3WuBMC4hH/IVm3SLsAjEjAgWjs7w8sggKwa8yBxAi696NWyJQQHtLLDuorpCYZHzhM3dw1qEJFT2fp73qSk3vvorppEUsueztKOMwT3ysnI1Zv/AuGe/cw2n+QeE0HCgrtHZfS0nohQ727SU8OMDp4kOREL7o+M4ndWXvubTZT4oWzWVLid8w6v/R5pGGQfOIpouvW0LDHdbxIiO44gTE2Uba+AHyRvvagZ2QyDsikBDSXtNAUjO7TKHYRbECmPYOrpmGMTzg64yLkz8rwXTfkdjNpR+NazQ1La9wImdttYApcXUB7wJjSTg1AvT8SzNakTM4JEw2uACBXaxV+tQajcK8JCmY74hTbI1TtG6l4ei1jOPclDOloGvbve5jhI1vpuP4tBK9dj1AUjvyNC2BJKZmbHiY/Nky0vZNj3/rC9M8xa8+b5UYGOPy//wZA8/U3EenoJJMeRE9OghRgGOTHhimMDKMGAhCIIA0dRdVoet2bSSyqXKQqVwdDt9/O8DOPgVCIJpooygL55Kiz6G5YfjkNF19LIFFD/yO/ZeTkLuov3MjpB2+nePgE2uJ5BOO1LLrxfYzseITjW29n2TXvJXTRCha+88MMPnw34zu2Mvr4Q9SuvoTaC68kWGv+ToOWfKiWMSM87N+BoYE6YtaX0DwF3PSwghFUOLL1TnK5cVZf+Cc86CEkvHa98kYA7jV+POV73XTjZ813uvYaapdt4MjWH9Cz7Q5O7b6X2mtfQs3V16CgOABzco5JTGQaBN031tFx3wS1VjaFruFWkZIGESXO4sCFbMv9lgfHv0ejaGOxXEOA6aP6S4kKR3LB+t+bYeAA8MWCX6rJc2yZLJQ00ObNse6zxPNOQ8hOXmh+ZzYxFDllgjmyPoEeNO+t+3ozoyQ8ZJ4/1mdluhyxJCW6uqd7dMAsul2aRVEJACpdCEndE9lUyXS9PEsuGHQXZDYhYS84rIWGTUiE+lPk600CW4+qGKpwshkydSpgAz9mJoNi3V5w0mCy3dwXSJmEvHNLIRBFM5rJ8CQEOkVaBRhjKYae/C0jOx5FGjrxPYvRognGj5qSe42XXE/r+pex6/+VLzLW/PVmMoOnOHb3/xKM16AGQoSqGigGJcIQGIUcg/seIzfQa76CeBVqepaUmLVZm7Xnz6552b+jAL3Hn6SmdgERxQQelbyOEVRR7Mhg73glrChgR1O73G85WuDefXakr9fOIUtCqan2t/WMnWVFrkvGVbWm5ozXUGtqKlzUv7YQ3vG+QoFrY6xES73UvBHB1vF92aN0pbezOH4JnYn1KELhrlNf8h22obOfZHaQRLiRLce+N/01Zu15s7yR5YHh7wCSRdENNAbnki6OkzVSCAQSSUafJK1PoAgFjQgSs2j5kvBFzAkun/Lcx3LPcBhTvium1CAx6DGOIi3ioyW4gEXRDcTUGrpz+zmZOUxnYi27Jx5gKDJMY7aBgAixJnQVg/IUOzL3s6r+JXQonVySeDVHszvoy3fRndtHS3Ah82KrqNGaTfx2GhDYzJxQkVFzXu0FgU+cfoCxyZOsXf52HnjqUxWf67pNn0YD7nvw7874flva19HQvJzD235E39FH6T/2JK0Lr2DuyhtQhebUmhBWjT5huHO5REMnCEGxYJJ65vxQEgwnWHDBq9n+wG1sueufqW1cSueyG1CjZu05x/eBg5uouZK5rypQ0xYJUUpQWP7OVyvCNlUxiQnbJ5b9L2YcpKnUVGGMTUzrF83NnueZ6txn6xun84v2/rPxizOxknWC40uTGTcAyi7SHnMzkJR80ddej2ggBGpO9xS+Vq22/oLYMqCYKgIO4eU+t8zlOXXkIXqOPIRRzBE/8ijRRBPDp3dj6AWaOi9h/oU38eSPy4m3ja+9lVxmjH1PfgNVCxMIRonGGqBQRCoq0tDpO/EU46PHzUfWQpWDfWftBTFDCgx5BtzR03bWzp/NkhK/gyZ1neL4BPHGRgCnqKfDFtdUIbM5jKQFck01UAnFjCKuwMpLXUetrgLDIHJ4EKPndOV7yecRigLRCFjEhC3TVDaYz9BsEsKZkFjstZNi5xTYo6yAlPEsevTEijpHh9AmLsQ0wVuTpw4Trm6mKtDM3o+XA1hCCLp/8o1zv6FZe84skKghkKhBVMWpu+gqALSECfzaGpKKk8YJuUazI4iC2SczipW1k7H7qtVfdEGm+xh189bQedmb2fp9M5Lowj+9lXTRlOmJhRoohmFg2/307bobgIZInEjzXA7e81/MG38DNSs3ANC0+DJGevZy6KFv0Ja8gaaVV9G+6bW0b3otA7sfZfjp+xl95kmi7Z203fBm5BwzZSLQXT7JytYpBJKSYsjUaM3WaYRHikgpGTy1i/ZFV7H1ifJivuASEqxdypUXfAApDTItEX79fx+mtdVNjX7wLnOCdsUbbiUYTnDBpe9hYuQEQ6d2cfruXxOoqiaxbgN6yJTQKUYlY0vNl6wlBSdeXoW88XLq//VxDha3ESdGlTAXE0YmQy01XBx6Gf16NyeK+9D0AE3aPGJKNYGi6nEOJZNoz8TdV3NCVX01I5xtdr0Gi5gwCmbGhQiFnLwpYddOCIfw1dWxLLOsBS1tpXpbmqdqMkt6fk3FdzydtTxsynAYYYsEHjbZJz2TOWNUVRkhcRYmdd0ZPxTreY1MxtmvVCigiKKYiwjNIqAtaS5R9DtTLyEBEBw2maqJhVE3y8F6pZl6lxzRQ6ZfVopW/Yi8WWjeIeAswlvopiST+ywG41seZ+DOn6EEgjRddD2humYGt96HnsvQfNFLqVl3Gfu//A9lj7Tmrzc7fw9uvZ9goo6Vr/0oJx/7CX3bfsPIsZ3UrbuC0V1PoucztN70NsLN7QTrG83xcdZmbdZm7XmyB+75GNe87N/JZcaoa1wGuICMknfHCyWvu1HB1hxa5IvIoGZmRVSK/C01776p2gmBiMfMa9jXKdVUP4uMMmHrkZ9rFppnrJbTZXaUmFJTZY5vUxS3lsny7MfhwmmCSoTaYCv3nP5/Fc+7dZaIeFFaQISo1ppI6aMsiq4HoEqt97URtiTSWfbFsewQtaF2Lmx6Fb89+V8AvKz+PWSNFLoskgiY1+nJHmBf8hEACkaBxuBcdo7dw9LE5cyLr0UIQbOooX20l72j95NKXMiiqktYLC5iSeRiThePciS9lb7RoyS0elZWbaIm3DrlfTnPlc45ILBNUPSO7qE5voRteyuva6/b9GkADGlw2SUfQUodicGPf/Jh5s6d62v7yO0fAUwAd/kl7yA5fprh07vpOfQAgUCUjqXXmtKzqkAY0iEkDM2U7VSBxjkXcurg/VTVzqOu2fRzQpfEYk2s2/hBhnp30334PkDSMfdKQqEqwqHqMlLWKXZtkbZqpuhmg6kCdOlmiekeH2fXijgH6SXzZj1+0XM/QkowDNPfPJ9+0bonOEe/6DkeIab1izO2EkICVUHJ5h2JMQBp1aiTqnDHNyHQS8gIBOiebAlRMEV67AwKoUswJAOndnBkz+0YepHWhVdQ07SY7v33kho/TeuCK2hedDlbf12ZlNv42lsBON31GEIorN/0IU51PcLJQ79ldOAgbXMvZ3ToIKnJfpasfD2JqnZisSZHBnnWXnjTUdCZ2bptpu1mbWY2+yv4HTQlECC2djWpHbtQr7ueyJBEzUqSHQr6vGaUgyfLjvHqo5aSFHYksS3bVMkc2RLrf0c2Pzh1hgQ2IGpPbFTh/J2rt9Aia9AqjVQ4XxZIGeYEA0jsN1PZZaOZVZGZZ0YgFMMKhuYvfFRqtnSU0E0FOcMoIqIhsqf62XfnF2j78yyRxYs5+uEPPSfPMWvn1/b+x8d4x+hefvzwo44Ek3IeumBhdIRCdpJ443zUgBvBv/3rH3H+vl55I6k3Xkrh5Em0SJxiJonIFBg+doC5K67k2KPfo+HEflo23URQxFi66U/peeYeTm29i1Nb7wTggld/lLlzr6L7Nz9m+cveS8/2O+n6zmba3/ZeovMWONeySfxC1JU9UzzB7dk6jWDSoLF9Nf0nnmb9624hEEk4tSe0jI5h6PTJLvrjw4zvvB1DWi9qH7S13UZi7lIaVl7OoV9+Bc2Kjo/2mlEf9z72D1zxxs8TnreA8bET5J/cA+s2ELACa2IjglSH+dsqxiWN2yWhMZ2ma9/Pri1fY8f4o6yXVxMXbvpxVaGakAxxgn2c0A9wQj9Ao2hjrbqx/AupkBHgSi8oji90akaAj5gQqooIBsrO4TNDQsxMMc61mfdpBMSUzbMNtnSR+Tlq6eiOrzCPjZ/IOAWhO39oFQQPTJOx8FyZra09TTq5tMcOO1POroERCSLy/iyKYo1JQuRrzLa5Oo1or9kpvYSEbXrQinyyhgo1a8ku4fZlgLytPqCDbmV6Fz1ciU1UD/7gh0zs3EKgtp45r3gHR79zG2s+uJmaRWsA2PXFqSX1dn3hZtb89WaUPKhaGKRk6MQOho9so3H55eSMFH33/wIlGKLzrR8g0GHKJez/51mZvlmbtVl7fu26az+DArQ0r+XU6adZvug1gAnOGEHFBG48mtnCBt1s7Mb23XbkL5QFAPnAOdtsgNau6TQTCddSUNcLqNnj83NY1FV4dfaFUhYlXJGAmEKSRXilcFQVKQ20fIx8JsPTIz9nZdNLmVuzjrsO/ft5fopZey7s7oH/5u//vp7bPvslszCvIc9LX8zrGTLFcSJaNQHFjZy4Z/hrzt83rPkEd+/6FJ01G1BFEEMWKQYkp0ePsrjxMg6MPcaQfpoV8Y1EA9VcUPsS4oF6Do0/zvHJ7QBc3PwGOqrXsmv8Pi7ueBOHRx7lqZHbWVP7MloiC6e/SQ8ILHIFUBRaqpZzYvhpNi75c2KhejdyPRpESoP+if309m1jfPwkuuFO0ubN+yLVNZ20t13M9u3fIhQyJ3KbbvwsKmYw08bX3kq8qpXUeC/Dp/eYpIS0ghKldAKslKJ0FAsWrX4dxVySA09/m1UXv4fq+k7AXPdURVtJLGim+/B9DJ7exeDpXSTibWzY8JfY0S62P/TiDzaoLSzJurK6O6XZEDMlJjy+8Vn7Rc+xz5VvLPOL4PeNlfziFOSDKJEI8xVcPxvCws629gb6KNZ3pSgeOSf3+7XNCJvXLKs1IYQP++k6cg/dR+4nGK5m6YbXs/eJr3Pl626l1iK9Hv2Zu5afypSiRFPMPj7af4BTXY/S2L4WFZXjR+4FKVl90XuoqTX764N3f2zm72DWnnObzZR44WyWlPgds2Mf+DDz/+tWtOZ6soeOMDFfUHvAdLzxHkvuaOlcxJ6jvuO8RWDtYm6yWDCjaEslSiwQrjgyCiOj7jElprQ2uwVYpcSoMhEhUZg5uuuk19l64mHF2WYz2jYhUAb0CSiuXQRAqt1KNbXWUnaUe65aRc0FCUycOVrYCAg3rc8eg63BKjvSy5F9v2R88EjFY7VKqeGz9qK25uZm8oMDGPkcSjCEoZryR07Rak/kdaTP7BAFqz5zeND6f1SSGesnc+QA6cl+Bk/tRFPCzI+spaorw1QmpUFV00KGe0zJmOr5FxCJRFh02VupaV3G8a23M/r9TxNvW0hN9QLmL7+RhrZVnDrwACM9z7Dnl59j3sWv49J3ZKmdt5pgUyv7f/hv5HtOEW9Z4DxDcNIgU+/+vrNVBvQMoUUSRDJBhDCLtceqOxjs2cn22//JfDft61FiMUJ5jf7+XWQYoS62jLkLX0E83opQVLKNGtmRPob2PsGxu75BtPonJNqX0sY8AlqUTG6UzrWvQVGDDJ7YSmqkm8i6NagZiA5I0k3mjy3WI0j06A4InatRqdkywUWJl7Ml/RO2649xkXE1EeEWxw7ikqELxQUclXs4oG9nafAiFKH4sgMUmzi1CBOZs7SjSmpAzLTIpUPERi3ku1iEVMYhJgACE6YDmlxgtsnWCuv7iE+bfWWbXhWBJ3YxVZ2IYoVjzsrOsv6EUFWnOLZQBCI0vWQWQLHeXIiIogtQyZJsksl55rs0NH9ByELUT0ggTUKimE0TTAPRqEtQFED38EbFCJTqFxYnJ5nYuYXGG29i4M7bne3TERGltusLZts51z3J8L4n6H7gB2aaeFszc9ZtpDA5ijQMDv3Pv8z4nLM2a7M2a+fb7rv/b3nJVf9KNFRHsZhB5IuOBIcbNSoQ2SLCm92g4AfhdGPq7Ae7dpzuiTquAMrJWNQF4aQsB+JmENUrq2JnbjvdPnEG4MCWCpmces7mMztDsETiKV2c4EDPXQxkuioelgg1zuz8s/aisebmZnLFFNniJGElbq6dE5Gz7ouZ/DiDk0dI5obonziAlAbLWm5AxmMVTmDay1b/AzXhdo6PbwOgNb4UTdNY1ngt9dFO9gzcxaOD36U+Oo+qcAsLW66gsX453WM7OTGyhaf7f8KSmit5ycoP0xjtpCbczn3Hvsg4w7TEVvmlctJu35dSks6PEFAjBJSotU6QVIVbkBg8evgrALTVrkLTomihKIOjB5hM9VJb1UnnnE3Ea9pRlAAoCtnMKKdPb2Hfvh8ST/ySurrF1DQuIRyuIZsZYeHKV6FpEQZ7n2F08CCtnZej6GbNB0cxQZc+GU4hQZMqy9f9MXuf/l92P/111l7+fhKxNjeb2YNtLFh4A11H72bvvh+wcsFrneLxXuBa5HTXHzqSS4BhAuFiuowx21TFDM7x+kXv/16brv7mDLMdZFXszG3P1Td69s3IN3r7skfiyZ73i3SFc8RjFolbuS9Oa/bXq7hkhcjpFPU8hqIT1KIYQQ0UgZI3HFxHBlRQMPsYtsqGgpSSnqMP0TH/KhZc8Eqn8PRMiAjb7Ayg1RsOcKKQ4cCO7wOCkJZg4fJX0rn4RoqFNE8/+vkZn3PWnl8zUDBmmAEx03azNjObJSV+x2z+f5mpYfpEEhG2mNhl5o8i2gu5VQkavr/Td4ziyWaQRX8hbG9RVjsAWuCPDFbCIaQF8tnnUlqbp7xHW6bDmUxkzGMLbdUUI1Y6na3hN93DnkcrVAXJXjQfgHSjJRcyaZMdIK3FhZqXDjhq26nDD3F8zx3+EwqFOe/4C5RgEGVRy/Ta67P2orTXve513HrrrRg9AwTb5qDkzv4ceiHH4Xv/h3xqjGhVK81tF7K49VoCWmTa44a7tnFsuwuOJrc/DeAUy1r31k/Rt+cB0iOnObH7DoZ7dtG69CqWXPZ2RgcPcWrPvZx4+md0b7+D1qteQ6SxA4BI29yyaxlHe1CiGse23E66/wRG0QXsF61/E6eOPExmvM93TDo7THGim0IxTbRxDsvmv514dRtFS94sW6sQB2It82lcdCnpoR7G929lvO8we8ZNnVyEgqKoGHqBcOcCWl7xJ0SXrwRrvhkdkESGdCbmmcOQmpckdg86IEgwFOei5tfzeM932M2TzGc5jbIVgZly28ECeuhiQPagotEtD9MiO6kVTSiRsAmie6SX7MLYNqAuc7kyfyg0d4IhDYkS84DvpQuSyaQZPWeDMZMpQgfNqJ/i3CYqWXjULS4ePm4Svv8/e+cdJkdx5v9Pdffkmc05aVda5RwQQuQMBkww4HQc9tk43jnbd07nc8J3Thxn++dzOtvYOGEM2GSZJAkkIYRyllar1eYcJ3fX74/unrSzq5WQAMF8n2eememurq7uqamuer/v+30ZNKWY3ENm+IgRi0+ZLDidSBAzVlsS9zQbPGZ/t/MH6T4XkWInrr50MlhISTTfHCtjXoEjKNFTgu1siT7VjpR3W0TVUC9dm55g6NB2HJ4A9W//CE6nJaNgPUSihfY5MmT8xiL0P/xXAByFRcz++l3s//LJRTAs+Ze7cPrNEwWmzSEWGqN/6/MUnHUealEhe+7MRUbkkEMOry0uu+CbAERjownjG1iJQBORDllm3zZfkUZUmMY5aSUczZR7siF97hTjmi37NHEbDb8ra5m0XBavRIbkJCADnnFGukwiHQXTu3Yk/VnYObyPbW0PkIkVM25DU5wEjHzUnETHGYcbb7yRj3/84wyJAVyBkyOVDKmzreV+hsOd+FwllARmMLP8ItyOwKTH9Y81s63rr4nvx8J7ARKRNpcu+Twt3RsZGm6lqW8jXSMHqC1cxtzyyyjPm8OR3g0cGFzPgcH1zKy4hKqiRQDk5U8bd65RNYjQVPZ1/J2BsRbiRnJBNKfsUnrGmugbO5J2TDAySCzUSWwgiM9dwlmz30t+0fQEWWcbgY38aZRXLSE41kNnx1b6+w/Svet+zMmbQFE1DD2GP6+K2UveTmnVYkRcJqO4ZNJJDKzoCXvNrjqYv/I9bH/+x+zdci/TZlxKWdUSVMueMWvODRzY9yCdHVtwOHx0d++krGAOFaWLUWI6hkNNc6RMIx+y5cvJgPS6krJLehZiVoi0MhhGcpydYHwz/K7Jx0V4zcfGrOMiZB0bE8fYSaszpJ5EMGPx7fUkpYftMuEM21UWRGKjHO5cS8fADhShsnz2P5InTKky3ZMcexXLRpWa+FrG4jQdfAwpddzeorSk1yeKi67+Nk53HiDIL5gGQqGz7SWmT78ct+bj6WeySz/l8PqALgX6FCMgplouh6khN0M6w9D84c9Q/+PvEm1tQ/V5UUcM9IA5sAYrTWICAClNj94JEx+NT+IKJDTWAdSFs5EHm7MePnRWNQCBw+akSnc70AayhzSnQolLDE0k80ZY77rDnsQk/+AJ4iLDa9k+VncJogHTldb2oFD19NwSWgSG69IlpsRxEk2p0aRHhqGJBCHh0LyU1C7BU9VAYfU8RqdZD9gx2PfVnDHqTMOmTZsQqopWUoJUkpr0CSOp1U3cfdjRvng7zY3ufgNDj7Pr2f+HHg6x/Ox/5qWN6ckLJ4O/2FwUNC67haGeQ3QcXp+2X3P7qFlxLc4Rydi+HRxrfZ6Dm37P2HAnVQsuIR41jd9GPErb0/dRvPBcAIZ3vYyntJbRKstzpHeEPX/6flrdNRffgqI5aVlzL4e2/Glc22YsvwX3JecA4LRkltSoJAS4BpMzZUco+T+qGiqhYOlbAYgFRzD0GFp+Ae4hiWHEUFUno06NaLdZPnVCm3c0ju/wICJi+f87rD+vIXF6C2goO5e93WvYIV9gASupoM6UVtI1MCBKhBIqqRDTyNcLkEYMobrSjOg2MSGjMYRVv9Ac42SJFIvoNcLpk2QR8IMt4xS1Jsepsk5W6HZ8mklGDM20PaCseqcY2pCI8MiMZDjByIbjwR7jFbfVTk1DRiJp+SKyQfG4zRwJ1rULtxXKoKkQHx8hFylOIcSzRJ9E/ea2cIEt8Wcmr06cL6TTte0pOl/+Ow63n0BFI8Nt++jbuo6qC28gNjpMuLcNZ1U12lgecZ+lD6xDfGSY4WefY/jQDuKjI5RcfT2+mXNPmpAA2PaDT1K64mI0Xx7TbryD4NFDND3wY8JHmvBMP44cQg455JDDq4C/r/0il13wTUZGO3A6/MhY1PRahqTMiCqSxrgMw1sid5GlbQ6kGcEMrzPFyEaybAYMX3pEnUiNppiCUU33Z0TknS47XOqjyZaUHZ3cS8UIuNM8gbftTRIS1SXLKHRXU5rXiNORlEF5bNvXTl2bc3hVsGnTJgA8RdXo7pT+OMW+KKVk+/57GYn0sGTOP7J176+ndJzud+F310MTNJSdC0iaezYhpURY/U5TnUyvvACqBAOjxzjatYG9XU8yYvQzq/ZKYn1rE/Ud7HyaUHQAEHQN7qGkrhFVM8cEQxqs3/vTtPPPrLgYr6uIHS0PsK/7qXHtayy/kOmVF5pfUg3IMT1hUJZO1TRSW0Zgn7OY6Y1XMJ0riMZDxGJBXL5CFEVD180xSgiRuLUJw7AqTHldXSZsBhjJdbqGg4ZZV7HzpV+wb+cfiYaHmTbNzBWoR801QCwWpCC/nvKSBZTnzU5E8Cqpyg5W/oiJoiLSxkXISlgYVn6DEx4XYcpjo+53pZd5NcZFMCODjzMuQnJszEZcKGPjjzd87jRSA0jm8LAgva5kfapAhJL7pZQc69vCwc5nEEKlOG863YP7aOpYy5IZbydiBBnp7sDrKcHjNp2KdJeKiBnE4iGOtb5AT98egmPd1E+/jIrypYn8iCeDZx/7HDPnXAdCsHj5+wmHBnjxhe/R27mL8uqlJ11vDq8OcvJNrx1ypMQZiOYPf4a6x3Zz7OF76N+2nuJlF6Do4O22kvEqStLYpggzIautlz6SHMiFIhCaI+nVEMtiOUvRXAcQM+onbFe80Is2EExMSPS8dG9xmwxQ4nJSzfXTDc1+JtpzG00kPHTjlmeuEY3Qu/t5CmsW4vaX4FMLWDbnNgCeXP/vr3aTczjFWPbOb7LviR/hqWlAdU8e1TARuo9tYWS4jWUrP0Igz4xUOO+m76KFkhPViSY2Lm8BAM5RAxGK4RTpbdj8f+m5SS45/+vs7V5D+56nGOlpIjzcg6+wGl9hLd1NG3GVV1Hmv5LuDU8g3C4qVr8FAMWRTsg5XH7KXDPRG0uItLXStec58kqmM2P5Leh5ThTNiTfqZsgqbxM0+UdijFYnjfD5zabx3NAEWijdGO10m0RlXBOEi8HbDSMV5qMm0Gbem0ieHW6bHAeiNdY96RhOqy/UcwwHTqpooADTU03GY7iFF4HAjYfF3ovM7ZZRX0YiCJdJTNhyTZm5dMZpR6fusuQZhKYl8iRkIlprJuBWLD1aJTox81CydQQAtXvYjLCAcQTAK0lIfaqgeDxJPXAroiQzb1BC/ioTmoq0JLJieQ6EJX0nM8Z6e4yVwsx14sjgsmM+gToSJR4N07zzIQaP7KBs8UWULDyPPb/9BqrHB0Jh78++SnzU7KnC4cRX10j55TfgLCwh7pYc+/F/I2NR/DPmUnz2pagNFRz40isjjxd96i6c+cXEQ6OgG3jrZqA4XIQ6jsK11a+o7hxyyCGHU4W/r/0iZ81v4uX+33C49Rlm1V1h7sgWKaEoSKc24T7DrWWPorBgeB0gsxjXsnHoQqB7Uwj9DANcmrzhq+wNnAqbEJGZvlsphjYDg7amdZQUzKLAP41YfIzVC/8FgCdfzK0TznRccMU32bnll3jcxXg9xSfVH/sGD9E7sJ9Fs99JSeFMAC6+Ij2nyDNPZteU1zQ3Ds2L4vESiwVxaN4EIQHwxJavppW/YsV/0NS5liPt6xgN9zA4chSvu5iSgpm0dG7E4clj7vS3srfpIXBoLKo1c80IIRBCQVpOL0IoFJfMJl8tJaqH2Nv6KB5nAUsa34lDc6MIDZd0HdcWrsQs1QRFJCSabaLB4fDicHhNg7ou0YQjKfNj86A212EdI4X5WaSc2LYrhEZ6EEKlpu5cSkrnJY5xOQMoigNFqCxpfHvyQJmMxJgsH4R0O7OPi2QhIAxjXD26N4PIkHLCCDLdlzLXnmxcfA0xlXERQA1mj2wwfK5xsk4IUDIiIQyPRdzYUtrh9PWV9DgwpE5MD3OkbS0tvS9SU7yMxppLWb/rBwih4HOVsG7n3YQilgy5UCnMm0bjtCvJU6pACLbvvIex0U6KimcxZ+b1BEoaJvw/ThUXX/FfuD3FIA3iwRH87mK83lKGh48lopVyeP1CSgVjXAefuGwOpw45UuIMRctff4m74VmG+49Qql+Qti904Ty8G82cEjLFs9ZO3gokkrmmQs03M/4mjHhZoiSk9YCNWJ6t8QX5ABS/0Jn0cJ4AhlNJhH7b9kA9RS8SQNENDJedS8IsEw3YWrjWQ9pazygxmYiacIxa4XjWdy1slo15lUTERWKic5wx5PDa36BqLnoObeLozkcAqHj/P/Lkz3KLjDcK+pq2EB7qZsaVH0OzjKIO01ac6B+J6JuoTHiiyJS/zGDXflzeQl584W7UE5DvWmPcx9nv+i5CUdlz4H4AiqoWTFj+guu/A0Vuppe/FT0cpKdlC0LRGBtoo+HsW6hpvJDI/DKEEIQGOxnYvI68uUtxl1XidLjJn7GYocPbmXX2bZTUmBOi53/wSUob/wBAedVSPIFSoj7La90v8HWYF6w7TSMxgL8thqGmLMjtaCc1fTLqHDaN2oHDQSKlpnG/aI8Z2TFWY5Iv+c3mGBMNWHI/eR6UiI7hUhmbZRr7ffv6CEYH6ZBHKRaVzGRh2nmmyUZa2E+QUY4F91DrnZc0oOv6OON5ImG1rfWaQkokxkXL4JI2NobCpvarNYGO15SQCWXrfvP4lXMBKNg3Oq7MZBhn6J9qhESK/F6COM7si5pmkg0AVkJq3bqGqLUIGq53JiJfvO0RtI27J2yrcLmSRI0dWeLLTtwAeNrM3354piVVIEjz7Ip5wd1vRSANxGiKbKXl+fuRhg5CYda5t1FUs5Deg1vBMNBDY/S9vJbCJavw1c/CVVzOwNYX6N+yDn/jXNSqEmJ9vcRHBlF8PopvfhuH/+PzE7bvRBEbHUIoKlLqxIdHMGIRZKN5Pxt++y0AjvzDqTtfDjnkkMPJYPPuX1BR8iKDI0eTsksWpFtDpsqOpMDwWJFwWfJE2IRCwkiWxZiXIB0yd8l0g2I2xPxWJGO2cq+WRzBJg6gWzO5scLDpMaKxMTq7tnKg9UkAFi96b46MeAOhv3c/g/2HWbj0PcR9GevbKfbF3rbDqKqTF7b8DJ9v4vwRmVjz/JcA8Hi+z+GjawASzk/ZcOFbvg1lXqYFLsdwKBxpfgpNcxMM95FfcjXnVqzC4yoARWUs1MOxzo30la+gML8BqUB97UUcaXmambVXUF9lRl4/vvHfmV57MQAVZUsIeMoS82BDTc8ZMJlTDlgEhRAJh0Q7ekIKkZR6tp0nlfTvCe/5lO+pigfRyCgdbS+Sl1/HzOlXJc8ZNagqXkybbyOjY10c6VhPQ+V5yTqzERGqQDrUrGNj2rgIWcfGceNixil0i8BNg32uSfqUVCDu1V7zcRGOPzYCxH3JhNOZ9amh8ccZHnMtIlMiJpSUcobHkUZi9HXvYUfT/YmE6nPqr6G2fCUDY63EdTM65kjnOipLFtNYeykBXyXd/Xs4dOwpuvt2kxeoRtejDA+3ADB7xnWs23DnhNdzIhC6JBoaAgQSSTQ6SjDYQ22VqUBw+XmmvOKa9V88JefL4dRCR6BP1PmzlM3h1CFH8ZzB8M2bz9iO7fQf2IKhmh6otheqDSEU85XFaCqcDoTTgeL1othJW1P3axrC7TJfTuc4j9lU6MV+80HuMMM1sSYaUhUYLhXD9frLuRD1C6J+855JxXyNhXrob95Gz6FNOAJmmF/d7f+Mu3LiyWAOZx7ikSBC0UyP56kg47kjpUTV3ESC/bz44osnfH4hBPUrbsJXUM30pW+jfuE14+ofGRlJTIz1eITgcHeCZJRGHE9+OZ78Chwlpez6/qfY+b1PUnnVrTgKimn948+Ij5re+fkNJuHRdfgF/vyDd/P8n81EXNULLwMhCI32ooUN1Jip5R8uTG+rY0wSydeI5CcXZTGfihKXiQgjMMkI57CeRvq5eoK4W4cS3/1Hx/AfHUt893RH8HSbBnlhSNRQHHd32L4JHO57nihhGuScrPdxGefjwkM7RzBCITNSwvL0VwIBlEAA4XJlTcwsY3FTBkpLz6EjHI7EGIbfm0xGZ0E73IZ2uA3H9iYc25tQxyKIWfVZ22c4VQyniogbZq4dlwMjFLLaGjNfE0UevIaIr5oPdZXmy74HLqf58riRRXnZjytwEy9wY7gU4l7zFS4b/2yxExV6+iWe/mQf0vUoR9fdR56vikXz3s2qZf9MUY1JRoWGuwAoXH4eDf/0KSqvvJm82YugsZxI1Iyu8VTXA6CWl1By3Y3IeJzWn/yAGV/9L2Z+666Tvh+zv34Xc798FyExSt+2dRSedR5RJUzTA/+Ls6gUz8xGRN/xk3/nkEMOObyaKC2YzdBoK009GzBcGobTfKVC92joHs3c78rY59bQ3RqGx3xlQvdq5sunEfc6iHsd48rYiHu1475eb8jWxjElSEvrejq7tlJUas5N5sy+ieKima9xa3M4lYjHzGjWeDyS5uB3IlA1N7oe5ZFHHjmp4xvnXIsvUMmMOdcxa8Hbxu0fHR3FsJxpdD3GiDGArsesdodxOgPk59fhKixjzcavsOaFL9Ew92oKChvYvu9exoI9ABRYeSZae7Ywagzx5EaTXKurXI2qugiG+zBcWtpYkQrDmX38SCCFWBCGTDP2C12mafjbZbJ9F0a6BLOIS9qOPs/YaCczZlyVVHfQZYLsWDj77eQFqjnWsXG8HLTVZntclA41bd/xxsWJxsbUcfF4Y+NUxsUzZWxMe3my233se2HfG32C6zM8Wtp9tiGlZFfzQzhdARbNezcrl36E2vKVAIyMmRrmlaVLWLHwAyyYcRMVxQvxeUoT6+k8vxnVrDhdzJ/zdhwOH5u3/j/OX/0FLr3o5ImJSy7/Ty65/D/R9RhHm5+hrGwhDsXN9h2/xuHwUVI0e5wTXw6vPxgyKeF0/NeJ17927Vquu+46qqqqEELw4IMPpu3/y1/+wpVXXklJSQlCCLZt2zaujosuusiKcEu+3vGOd6SVGRgY4LbbbiM/P5/8/Hxuu+02BgcH08q0tLRw3XXX4fP5KCkp4WMf+xjR11C14fU3yuUwZZSsuIR4ezetj/8eIxahqvYcDE0wWqnhDpru32lkg6ai5Jn6plLXwZZrsh7SxrBpoBU+y6s2Q85JGgaREivZnfVP1F3HH2CVqBXF4FCSDylbc9J6j/lNS6YakQlvbGGkeyoYzqTsB1iyINaAEPdYxyQ82u3vMqHnbnswxLx2Tgq7fcm2Hnj4R4nPsZEBXGWVeKsbXjehkzmcGlRXnEX3nrU0P/Qz5gf+Hae/ANeQ+SPbxJ7db+Jugbfb/KJYkjSh5gN0t2xmevWFnH322Yl61//lMyz7kGn8zDsa46Krv51VwmnjvZ+etH0zlt3EkW0PIoSS0FtNRWn5QuYvfjfP/CE9zFR1e6i99f00/fTbDG16nprAxXiCVbQAQ72H+fjHP86f/mTmkehv2QlS4nLnj2+AnUOjR08khk/dbkdJmJ9tb35zv2r930NVpleY98hgWr4ZPc+dGAdUS/pJxOywFEE034kSMb87VA8OnHjIYtgGfCIPTWq4U/ZPRJ7axKzUjfHbVSs6y5GxaIjGwG95t03yoBbDY4iKUpT2QQCMfKs9zonJ2MzIjTR5KXsBnBExoVjRaErAijpQlWT7xsx7LMfS9ZBkLJ4ks8otPVXb48s6d9wjGKsyf9O+eeYYr3vdzPxl34Ttl0V5CeOW7jfrCxc5cPeND9sOl3kJF5nXYCcs1FJy4UXyzX0xn5/yBRfStes5mo89R23VavJjtfT5BolrMPMtH0Zd1JjQHd5z5yeZ/s1vM7Z7JwA9ax+jYOQcArPmU7D6fDwNM2j98d30PvIgZTfeysxv3cXBz09dwmn215NERrDnGF33/Q4QlCy/mJ61j2NEI9S/5xMYHg9NH//UxBXlkEMOObwGKK9aymi0j0NHn0A3osyoucR0EkqNWrCMNVIVZuLXVC9f67P9zE4eg/V9/Ko84VVuyLSykyHuzeI4dSIL/smkdTI9dierZoKiWjApU3lg9/2Jz/09+3C6ApRMW0b8BCJmc3j9o6B+MZ7m59i78/c4iorJK5w2tQOtvhgO9nO06SnKp63khhtuSOy25WFWvft7ifeJ1gQ7t94z4WnmrrqdfZvuAQSq6kTX0x1c8grqWHzOh1n76L+lbVcUjQWL/oEXN97Nka7nmVN6M16tFofTRyjcx859fwDMtvUGm9D1CE5vIXGXihpPzp9129lQiISMKZjOOInt0fG5xsD6nxky8deUSnr0g/k95QCRLmGUKKuAw+FDERpeV5HVAGlKPUlzTHO7CnA6AmnEkuG0xsCMtb19TaljT9ZxMQVpY+Mk46Juj3FTGRdTIjle12OjAG0s+28M1r2xj8sghNRw+nFxr5Yoa58rtYzhttZwQlDfcAkHDz7MkaNPU1mxHO/0OqLRESJGkIUL/oGyvFmmJBlmRMJlF95Ja9dmAFo6NqAbUcorllJRtoj8gmls3vIj9u6/n0ULbuPSi+7kqWe/MOX7AiYhARAc62Hv7vuIRkdoqL+U1vaNjI11s3zpB3C7C4BchMTrHcYJyDdNtVwqxsbGWLx4Me9973t529vGE81jY2Oce+653HLLLdxxxx0T1nPHHXfwta8l81R5POky4O9617tobW3l8ccfB+ADH/gAt912G3/7298A0HWda665htLSUtavX09fXx+33347Ukp+8IOp50g9lciREmcwhBBUXHcrdAzS+cxDVL5jBarhQHcKet+9lNKNfch2M7NsprFN+H1gew8PDmVWbQ7mDg1RZspSGC1t2dtgSIr/sB2lqBDDMnjZCYpO2pBvSzu5zT+7Y8wiNVTrweq2jaAS3SIqYj7LaBeXCemmqSLuS5Ir0973cQ7/8BuJfRXvvJ2938wZm95ocHnyWXDuB9n27H8TGx1EqBpyNITLVwgkJ4COMQP3gMQ5YOVQiIbZeejP9Azsx+0sYHrNxSjK5A+lxR83DZviUCex8AiGQ5AXqEUoCmOH99HbtQtN81BetRTF78flLWC4txkw5dfy8mspK1tE85GniERGqKpZSX3j5VnPtedO0+Ba8PhDDB/aiVxyES1Hn0vsd6YY7Pev/yPTFl3M4T1/xe0rolCdZ15zUEMqyf+vt0cnXGTeE8Oh4ho0J4k2MWE4BGokOclOkBQWwtWmV72nxRxn1OEwvuEw6AZSs+61YmmNSolzMEK0wEVwZjEllefTvHYz63iEQlnKTBbhEekh8CoacU2i+vORsZScOV6LQLUM+dJKXi0mkZlLEAVa9jJGQQDFuofCNv5H46aMUUpybGUoiPQ4EW6zvoTkRSSWIE3kCXojqH6fmXAbEmMtBgmNb6PIJCqUkNWOFtNjSPg8yeTcJ4iD7y3Gd8z8nUu3mSyCGooRt2SftJHx1xAudmA4BboVpj9SZxFQGQEhSkwmFh6KniSja5a9Bb9SSNPOv7LnwJ+pNLroOPICSEnX9r+jPePHVVjOjOs/ZB7rcFDy1hvpffB+Rg/tYfTQHmpueR+BWfOJN1ZQdPMN9P3+Pvwz5+OfM3/K197R0cFtYoxfjkoGN62nf+3fcZdUMePtH8Ol+TFiUVxFZRz60denXGcOOeSQw6uN6dMuJRQd5MixZ6iqWYUL81khhWmcSyZuTT9Od6uTGrR0j5JmWJvQUCYg7lEmL3OCHoe2c1HaSU4AjuCJrhOS88LGle/g5TXfJh415wCzVt3GuidyhqY3GjSHm4UXfJQXH/0PIsFB4r4yYtFR3L5ihEjOczP7ojQMjrz4Z3qbX0Z1uKk567q0uTckCYnM75GxASJjA4DEW1SDqjkZ6T5C39FtKIpK0bQlOL35uHyFDPcftc+IN7+Cktol9LS8zOjAMcqqlzFt5uVp7bTx9BqTpKiZ8TTdbVsxjDidbVuIRc0oZlVLtnXbtt/Q2NjJ0aPP4nEXUF1nStBIIUAkc6oZLjXFoCwSCaQNp2rO84RI5JjIBiEl6IyTckqcS5plZIZ0k9AlFWWLaTr8BBs2fZf8/Gk0NlyJ31+RVr+qOojFQxgOJW0MMpwpTlWQGO+S5MT4HBC6ZRyfaGzMHBfNerJddHJcnLDMSXhiv5Zjo41UAiM1z2LacamRFAkSIr1s4l4LgRSgWSRFdc1qNKeHQwce4cDhhwnro7S3bsIwYhhGHE3z4HEXsmTJ+xJ1zZ75VnbsuZfB4WYGh5uJyxg1VWfjduUzb87NbN/5a9o6NlNTvWrK1z48PMzdd99NOBykt2sXhw8/gcuVx7Kld+DzldLZGcXp9PPiSz+ccp05vLYwEBhT/M9MtVwqrr76aq6++uoJ9992m5m/trm5edJ6vF4vFRUVWfft3buXxx9/nI0bNyYcZ3/2s59xzjnnsH//fmbPns2TTz7Jnj17OHbsGFVVVQB873vf4z3veQ/f/OY3ycvLrohwOpEjJc5g7PsP0wC55OVedjz2XY4deJraRVciDEnJi/3phS0tceJZGO08y5hlG+KyGLCUWrPD2lIsniZrwtHWMWH77MRF8TyT/IjmOxKGTHtSYT+ApNdmwCesbsqIu5NGUjWSlLQyrFtgE5t2Et+4ZeN0DoKjoIj8xSsZ2v4igUXLcJaUvfIG5fC6w7oHPsN9993Hrc/+Nwce/B+E5kDGY6hODzMvvwN/6TQYGKXj2DaIxa1JlaS3bx9Do63MabiWssI5BGt8rH7bdwgNdTE6eIxoeJigHCYeHkMMh9DjUeReN3o0QrDjSOL8qtNj6uPHI3h8JYTGemltXgvA8ss+R8OS6/HlV9B7ZAsD/YcZHGhGSh2/v5LZs27g6af+LfuFWSheuJqmB35M89FnGBhoQlEdLFh6O7/4RXJi5PF46DqwgaKKORza/RDVY32gKnhKluPEx9hgG90th1AUDa/aiCe/HIBIgcpwsJ2+QxvJd1WCphIorMNdaO63SUTnYBQ1GCNS4kFICNeaERlK1MDZbo4jIhZH2t7/YxEMn4tweZLt9/rLWbL6owz07KfryItsjK+hQJbgwYtAYUyM0k8XfsM00it+H9gErL1gcDiQhQHEmJUrpzfp/S/cdjLn7GHVsigvGalVEMheRlHMhYvHjdSm4DVRa04ilGFLxmrUNGyIiHkfjFAIaVgGHMvzUpkg2faJQuk0nwsO3bxfoWorck4Fzcq77Row30cazPdQOXi6stcXKzDvX9xrRzrYCczHk9L2d9eYHQEHRsoMJJH7R1EpWXgevvxKmvc9Qceh9RQvPpe8ecvofPZBgu3NxEOjhHpaATj0uU8Cn6TxC3fi3tnP3sd/QPtD9zLvfV+Bcgf+VSsZe/4lBjeuOyFSYtYlVzK6bydYpGPRBZdRfOHluIdURhsMIuF+hD83hcohhxxev/j7WtNYfv55Yfr69tPU/CSzF95i7szUO3elP7+EJOGxazsJTeahG3dnPP+mkBg41Sh3XJzCxNdphrsT8BbWQgYOl4+aWRfTvOsRvHkV5JU0nLJ25fD6wfq/fIaNGzdyzqP/wf7Nv0V1uNFjYRTVQeO5/0BhzXz0eIS+Q1vR41GTAJCS4Z4mBlp3U7v4aoqnLYZ8Lyve/30iw72MdjUTCw4RHx4iFh5Fj0Uw4hGEooEQDHceSJxfdbhBCPRoCJeviMhYP5371wEw97KPULnkclyefLpbtjDSf5SR/hbAlJZtXPXOhFTrRKioX0Vb03oOHn6UsaF2s96V/0hB6axEGU3TaG5+hsralTQ1rSGuGig6lJQvwO0pYFQfoK9nL4riIN9XTV7AlMYxHCqhcD/HWtbhc5eiaW58vjICeeb+iXRP7Pm2FCIhMG6TEfZnjPRIBKfTx4rlH6a3bx9dndt46eUfU1BQj9tVgKa6GAv10te/H01zW3WDdCjp9QgSybjNQsmPWcfFFJzw2Pg6HhchZWw8wSgKR3Ai8sH+IcfXp0YySQglUV+iTApREXcniYzSaSsIBKo5fOhxjh1dR1nFImqmnUfzoTX09e5jZDTEwICZX/Xvz5mRDxeeN4NYbIwtW3/CgcOPUFQ6G4+zgOKiWZSVLaK1bcMJkRLz519Na+sLiUTxNdWrmDHjKlTVCRLC4UEUJbdOOJOgS4E+RWOkXW54eDhtu8vlwpVFNvpU4t577+W3v/0t5eXlXH311XzlK18hYKkobNiwgfz8/DQlj1WrVpGfn88LL7zA7Nmz2bBhAwsWLEgQEgBXXnklkUiELVu2cPHFF5/W9mdD7p/yBkB0UTlFAxfTs+lpCmcvw+8qZWiBaXQq6B8eV16OBREFeQnt9XEPilIzBFIMDJlJXiGR0DQNuo5SaRoi5cAgImxa94WdwMo5te5lOJWEzqOiS2IWiWCTB6FiW9qJRBkb9iTAltWxEbONZH7w9MpxuTayIVoAagjKVl7B0K4tqAX5yNw/5A2Lc845h8qFlyGdCghBIL+W1pcepnX9/VQ1XkDT9gfR9QiKMJOeCSHQVBePPf4w3/jvrUgp6WnZwrE9fyc81guA5vTi9OTjcPnRFCdOj59IaAQVjWlL342rqpaoCDPUtBPF4aLE14g/r4rm/Y9z7MizCKHidOehai6O7nqMi674T6JdrXQP7KOlYwMVZUsSCeImQ7loINR4HkcPP5UIWc4vbODaS74DJJPoCSFoWHQ9u5//Gc37n0AaOsreJyiuX0Jfy3aMeNS89m2CqobVSL+beHCU3uYtKJqT7vALAFROP5eGwhsAcAyZ3vPSIiBdvSFEKEakJi8h5RaaXoSnyTSQi1gc6XGClCjBKN4jUYIN+Yk6/GX1+MvqaTTm09S3kdFoL4Phfgx0fDJAgzKfqtIlCIcPYjHz5XCAFSkhM7Rghc+SVgpnuO47nYkEzpnHAIQtOSpPm52ULt2TK/W7CJn3QBsw83rIQssz1e1EHCchIIBQBNKQKLMtY4c1Ruv7mszvXd12QZQqcwwWvRYRPc3MfyNn1pnbo/HEmJxMvndii5hQOYzUmc8AT49KqNSKPrHWB+7+8WS3Yj9erHdDTW6zoVnkcTyLDKCnbgZz6z6ClJKx4Xb2/eUnAORVz8FfWoffXZ5W/tCdX6Dqohsx4lGKF52HUDScg+ZzwDt9JkNbNqaVn37X9xOfmz6ZjIab/bW7GDt8gNF9Oym5/FriAwMULF6Jc1otWhB0N0Q7OgkfbqLuqtsmvGc55JBDDq8XqP4ADTOv5ODeBymvOYuCwvpE0tmki3OyvGEb4qRM7k9B/DiGukS54xjXpipDEvOIce3IJpEyFcgsxjFHaGp12WuLwjkraTu0FndhxYkZEHM4ozBnzhyqFlxmyqjGI+RVzKRtz99p3voQMYdB64YHiYVGUFQNKQ1TclVz8Nvf3MNdz5jeHEPH9tL20iOE+k0nPtXpweHNx+HxozjdOHx+4pEgRizMtAveia98GupYnP5jOxCKSqBsOoHSBroOrOfoSw8C4M4rRXN6aNr+EGff9n3Cwz0Mtu+lc8+zFNYtnlKfdBaXU7fwao7tfhJpmPNSf4EZnbH67d/jhT8mJaXqZ13F0EAzzQeeREqdpkOPU1q9lIGeA8Qio4BESkll7UqcTvN6uru2AxCLmY43hcWzWLroPQBIWzI1CzmR+H8apBETqd/TSArA76/A76+gtvpcWo6tY2Ssg5HRduJ6GK+nlLraCyipmG+SESnQndkJhbSxMdu4CFnn0VMdF2HysfFE5JnsMSl57MmTFKdibJwI2VQsdJcyzhlVy0ZUpLRLSdnvLqpk/sr3IqUkHBlk54afEouNUVDcSCCvmkDZ9LS6nlv/Ve6//35uvvl7Zs4HzZvoi0UFM+ju3pEm83XJpf+Z+JzqDHjJpf/J2GgXbW0bqZt2IYYRp7h4DsWFM5L3Ixaku2cH02ckk6/n8PrHycg31dbWpm3/yle+wn/8x3+c6qYl8O53v5uGhgYqKirYtWsXn//859m+fTtr1qwBoLOzk7Ky8U7VZWVldHZ2JsqUl6evowsLC3E6nYkyrzZyJtc3CErOuZSRPds58tefsmLeHRgNpQAMXjCNgpe6ExEScmwkeZCug6rCqOWxm+1BFo4gSwrMcqRMBEKTSI/E7XBOs3upIXOyIwscCb15++EljNM/mR+ttkiOjN5u2M7RMkmAhOsMfC1FeKc3EuvtOe1ty+G1Q01NDe071iS+n/Ou7+E8y8Xuv/+IA1t+D8DKsz6OOyxwOHyoigMpDT724R/R3r+d4Gg38ViQouqFTF98PXmlM1AczsQEyzVo9vtYwJKvCRsgTW3iymKTgVZDcegNM9t3Nq1iLSUlc/CMKYAlgSYEfm85fm859Q2XTPnahBA0LL6euuKVDAwcRhEqTTsepLp8OZqucsGiT+JyBFiz5Wu8vObbwLcB6OnpYdHqmxjs2kd+WSMNZ93E+t/9GzOWXUPXoQ0ITUN1uFGcbqbPvBKtsoo9j9+NZmh4etLHBMexvkTUlSzIw9WaJEj1unxC04twDkZQ+0btRpvvUuI9MpQgNYO1fhzDcfQZlcwWFyTqiJfloQ6b7v1icDRxrNR1iMcRFsGQGKtc1h8+ZB3j9SSJ2Qx5O8NjRQDkO1GD2UkE6U4eI0Yt8tY3uWeEsWUXWp1FGuSbUQpY72LYXLiphm4SJJxU5PYJwTFqXpsWdBCsNLdFrYjNeIG5z9UxceJSG7a8l933DYcgWAGBY+lXYKgw3GAW8rdIRCQ9FD8aMPfFLd7I0xSkefMD9DW/jCevjAUXfRSH05sol4mC2cvoXP83qC4kVK0m8sIoUiAkKDGY/js7kZ0bfWyMyNGjFN9wPdGBLuIDQ2hlxYR37cdT10DhuRejxgXRfEkciRY0z+s9ahFT6vHvTQ455JDD6wGVtSvp6tzKrm33sPicD+HzJxekukuZQGJEJGRSgQkfSnZetzQcx9twKs5CrxZi2do/CRz4KaiZx1h/dmnbHN4YKCgooG1ncp2w/I67qCsuZs993+LIU78GYNa1/4LLX4jqdKM6XEgp+cJvn2Rg+wuEBruIh0YIVM1k+qW3k1c1C9WZjHzNZgQGIB/KUzxY40Dxkgto2/0UTn8BFOYRSznWnVdKRV4pFXMuGF/XJKiecwkldcsY6NiDUFSOHnqG0mlLcLgCLLvmCzg9+Wz887+y4amvAaZ++cjICAuW3UhPx3Z8gQoaz7meDWvuZObC6zl26BmEUNA0N0LRqKpbTUXZQjY+/x0cDm9C3jUREWHnGVBIS36dQKYP1nF8shSHk/rplya+pyYWto31yTx4yfMlZJwSG2wZpwnGRZjS2Himj4tw4mPjRBLaWe8FoGaUj7uUcTy4Gk35rVzp0RQiGKVp3yN0tGzC4fKz/IJP4fYWJnMVZuCaa67B4fDhcAVQ3B4z/0hcJqKi7T5p54mIxyMMDR1l1qy3Egz2EA4P4HIXMDLchttdSEODSVpmkkFSMSWYc5ESZxYMzCTWUy0LcOzYsTS5o9MdJZGaa2LBggXMnDmTFStW8PLLL7Ns2TLAtANlwnawtTGVMq8mcv+UNwBsHfm5fUEO3/9Dtuz5PxbUfxLV4aJo4wS6G0IZl3QIIZBFBWA/sMuKwJhgBmAP3l5L/iTiBdv4dwKdOWoluLYfVlJVElrkiVPZ8im2KoudmFsD1Tpl3J/cBhC28105TUOUfbwtUTIZhgL9RLrbcc2sJ1Z+clrsOZx5iPoVho6aIczeQAWh0R5e3Hw3YOZY8fsq0ONRguFeCivmUVVxHr7qGeSVN6I7zUWDFpYo1uTJTvDm7tXTvqNLhGEk8gwAqIqDsrxZDA63prXpmSfSE1lPFZlh2w31l9DWtZk2K9GXjd273878+UlJm9LSUhqW3QCQ5iXlL65jrP8YQ10HiYVMYrO/ex8zrDBvj7coUVZrNaNG5OBQIgcCx8z7iiUD5zlsSijpxX70Yn/iWLV/LC1KQURiOIaTpIBd1vZs0fM8qPtbEsmrhdOBUFWM4dHEokIUFZgHx+Jm5JeaRQ82YEZBZIvu0r0aakjH3WWSBvF8c0GZmrxb+t2I0XDieD1gRmlovRYJbPWrqSDe0nr8QsnWjS+/1wz/16pMlsGoKCJWYo7T4SKrz1ljtD3vinvA20GCmMiGSL5ZOOZ3ELfmW7bRX3eBp2/8QmSkViTG3Jh/3G6zDYpI1COMJEEspeTwS39iuP0AjfNvoKJ2BYbTPPHm/8ue58cT86I5fehjJtEe7x8k2HyI4e1bcBSXpl9PayudP/0ZxugowuFAKy9BLcwnvGs/+uAwdW+/nVixJIZECQvihXGKnpMM9zdztPlJFK8PdW5ttmbkkEMOObyu8Ozj5lxi9ZVRdmz8CTs2/ZQll3wSp3u8bnCaoS0TIpmD7Xh4pca1uOd4JU7Pwnkq64SwCDPS24zqdL/ujIg5nD7EPTDWbnqROgtKiY0OcuBhKymoELiLTHnOcF8H/pqZFC04B295HYH6uQghMDiuXX0cUvtj4fQl9Ox5HqQBwpzLbvrNyeU9fOFP6cm1Z6y4he6mDXQ3bUjb/re/zeO6665LfA8EAtQuvIrahVex/i/JtUagoBZ/XhWDfYeIRU1HoY5jm6ibfiFCqLh9yXWCHUkNlkGYFALhBG9QKvGAkVJ3RrJqmTFeGM7shINpgxj/n550XAT0KY4Dp2K8mHxsPH3j0VTGxsmuz46OTkW2+6ZmlMu896kkRdOhx+lo2UTd3CuonHEeTmmuc+xnXibcbjdubyGxuLmGi0bHGOw/TFv7JjyeIkBw8ZX/hQBCoX62bf0F4XA/Qqh4vSW43QUMDTYTCvWxYOFtaaSDVAVSSkZG2jja9AyKolFQMiNrO3J4fUKeQE4Je0zJy8t7TXIw2Fi2bBkOh4ODBw+ybNkyKioq6Ooab//t6elJREdUVFSwadOmtP0DAwPEYrFxERSvFnKkxBsIe3/5NbZ9/CaWLl1K2/YnyK+ajXNaLarmxHMwi9e/RSwY1aaxRoTGG+Cl20rqaievniwsMBoDt4tYpSm9YrPUiuVFrOju0+/6exykPsjj3qSWpB6IE953mLFH1hHccRjV76Ho3de/No3M4TVBdGyIjpceo6L2LGYtvoV4ewfDo604hItgfIjh0TakYTB/1s04G81JxisJ21eDMZQhc1I0EupmeKwDv7sYR1/wOEeeOKp8c9GLRzjW91La9t/+9rd861vfStv2wh8/zeq3pyfhG2new1DXwcR3T3E1c8+6LZkYT3UlZdtGxxB+y8gfSZdI0vcdAkCbUW8e12Xmlog0lOBqHQRAROJIl5YYc5zdI8SKfTh7ghheczxS9x41K0whVmU0ijEWTORhSJx70Mpfkeq5EImCpibkmtKQQsQ6u8fQA+PLSEUk2zJkW90nJjBFhRVGOTJygqTDq4dIgSlfpxeY3x195sQ+WmSSaY4R8746R7MfHyoWxKy0G0qcCcd6Oz+FoQnCVkSEazBF+sqAwDGDWGiEwSM7cQYKcbnzUBSNdfd9OkuNSRixCLHQMMbYGN1/+RPDWzeDruMqqaD6sluIzAlhHIOhl55h6G/rcJSXUf7u9xMO9hJtbkPGonhqSih/7w2ousLIc3vp3fs8uh5BRqO0DQyjDwzhKCyi6pbb0PLyJ21PDjnkkMPrCS888RW6uj5ERUUlzbsepbRmCb7yejRndivXVAiIbPJ7k0FPeaSeijxypxqTGfxC3a30vPwMIy37Acn0y977qrUrh9ceejRM+9oH8NfNZvr1HyQ2OsRo+2GTnBobJth9DCMapvK8txKom31Kzmn3x+jIACNdTbgKS9GzJBd+pQhMm0NF6CI69zybtv3nP/95GikBZr6N8276btq2waFmBvsOJb6rmptQsI8LrzMjsVXVlR65YDkOyYxck7ZE03HJCYU0okEqyTwUkEFW2Ns0kTbmZDpBpsKYZB8cf2x8o42LMPHYmEnuqOEJjp/gnmSSFdnubSpRYZMU0tDpPLoJ1eHG6c5DUR0898BnJ2h9EsGxHlzuAg4dfIT2Yxsx9BhuTxFzF74dHAqGEaejZRPNR55G09wsW/EhIuFhRobb0I0oTmeA5Ss+gqo6GRpqoaXlOeLxCIYRIxodJRzqx+kMMGfBLWkRiTnkcDqwe/duYrEYlZWmZ+E555zD0NAQL774IitXrgRg06ZNDA0NsXr16kSZb37zm3R0dCSOe/LJJ3G5XCxfvvw1uY4cKfEGwyc++zil5Yvo3PscnXuf46inkMKS2UyffTX+zgiirMQsODScSHBtQ4xYMk6WUc6oLB5Xvx1eqReZRkfV9hZWlXESKNlgJ7o2EwdDuFC1tpv7o36Bbj30VMvWp0XMY+wQv1iepa/uSiZPFZanbdSyEdnREbobYnl2pIXtwZ7+sIt2djL67DaGHn4KV105RTeeT+CiJRz5wNePez05vDFw4MABmv9+D0JxUH32W4m4VPLbA/j9cwlV+ykI6VSRDPuNWBMizUrsZUdDOEbjaP3W/2jANIbLMfM/Ytg5DKSRlEOzZHp2RZ4gZoSZVTl1iaYTwfO7f8RVi7/M3KoriQ33oyoOVOEYR0jYSI2SAKifdSVCUQkTpGTaMgqr5kAIWg+aeTACnnK0pg7i080HmxwdQ+o6IgpkSSIte1KSTRcWABCpMd+dPabV2446iAcsMkGXKIfSDfoyNH7mK+MWgWrd28R2i6QQImXVEo5AXiBFw3b8KkgdtRJk29EFmRFmNgI+lH4zMiK4xIwIUQrMNngP92c/5jTC6LMyVg8O4awyvfei+SYBrYbN/hoNJMdfOcU1btQPukUmRK2x1TE63jPNxli1udHTaS089fHnCpZaOYVSlLIcngDzLv8orTseY/eWXzPvyo8dt21GkQdXYTnDWzahBvIovuwq8s5aher1cfDzn6TuR//GsX/7L7OwoiDcLo799O5k1IyV1LV41cV0H3yJ/jWP46qtRS0rQjgdeKum45u7EPe0eg59cXKCJIcccsjh9Yjy8nIqZ55Hx6H19BzbgsMdoKBiNnULr0YtKJj02Kka2vQsfP9Uob8S5YPM5r1CRyg7l110uJ+hQzvo2vQ4Dn8BxQvPpWj2cnb/NvscKoc3Htra2mj5+73Ew0Hqr7gZ3QWKK5+84mWJMvkkk+Tqp7gvtj/yIJGBLuqvfd8rq2gCbLv/65z9j9+nbvl1xMKjCEVFdbh46DfZE2anRkkAVM04Hz0WJjTaQ2n1YoorFyCEoL15A1Lq+ItqkZpIRkYo6QRFqpSVkHJiciKVeLCPSVVRypijp0ZlJLZlISxgYiLiVBEQb7RxcSIc7zozSYts9+94RIUakQhFZcEl/0Lr7ic4+PIfEa70dd9EyCucRm/XLjSHl+pp51FdtxqXO49nH/sc51/6VTau/U/icbORgUAVW7f8NC3XBEBl1QrGgl0c2PdXvL5SfL5yFFUjkF9DUclsCosaeW7NF6bUnhxePzDkCcg3nQR7ODo6yqFDSfL2yJEjbNu2jaKiIurq6ujv76elpYX2dlNhYf/+/YAZ2VBRUcHhw4e59957ectb3kJJSQl79uzh05/+NEuXLuXcc88FYO7cuVx11VXccccd/OQnZj7GD3zgA1x77bXMnm2S5VdccQXz5s3jtttu4zvf+Q79/f185jOf4Y477njNoj5ypMQbDM+u+TcuvkIggjcxGuzm2MGn6Di2ke7WLSyqvZ5yt+nhbYyMIuKmBUjRxluj9KoS1CPt6I3V5gYrIYOIZ88loZcXoDabIa2qz3wa6XmWtNOYbYw9Ndd4qiA1yehLL9N77x8B8J97NkW3Xs/Rj56cZE4OZx7OXvExWo4+R1fvLhy+fGZc8A9oLu+4cq5D3UQaxycNOlUoVMoYMjrZ3nQfq4tuRlOmNrE6ETy+/eRJthdS9GTPeZcZRRHv7aWtaR0zyi/E7ysHWtGaOjCiGWNENIaMxRGOlBDXUAjhsRJRDwzicmgJUiJcbT4MXd0muWO4kuOTfYzRP5B+DpswiMcSkRJCs8Ysi4SwJ5TSGveE0wFWREeiGivaQx1M5tmRvvTZtb3AkZpNLFnniY1P9jxcbxIy3h1Wvoi5sxDdJiET7+sbV/51BZGMJINk2LbUIFQgcQ6On4w5LLWqaCFES618FYPjny9CNxctcevW6h5wJFOOEPOZv5mzYDoNjR9m7z130n3wheM2efvdn2ShHgcJO3+U9Jaques/KLjhSoJrtyQLGwaRpubEV8Xtxgibi5CmX30PYyxI4eVXUHjp5egW2d38oeyL8xxyyCGHMwn1S6+n+qzriIz00bn3OXoObaTn6Ms0nH0zpTPPBkBPmYZMpH2fZig7zvo8tezr1RM4E7oLRo8e4NiDv8SIx8ibtYjqq97Bnv/OrRPeLJjx0S/Sv/EZhnZsRnG4qHnLO3EWjHfaOxHonqTj3VThrZ/BcNNOWp78LTPe81kcvlNvONp0z8lJQQFs+OsXANMIe/6NZhTF6OgozQeepKL+bApLGgFrDm3Lq1p2Xims4UPa30V2ZYaMRNc2EuNJwnmIcRLVRhZyIts2yJALEpn70r9nGxvHEQiTjHeZZc+EsXEigmRcxMQE5IXuZpxNKLNs3JXRBySoKQHp9m/kLquisey97H38B3Qd3nj8xgMLznovhjRY/2iSNDjvim8wY+61dLW+lCAkAAYGjyCtdgihIqWOEAo7d9xDLBakqmYVjbOvTcg4PfNk7tlwJuNkEl2fCF566SUuvvjixPdPfcocc2+//XZ+9atf8de//pX3vjcZgfmOd7wDSCbPdjqdPPXUU9x9992Mjo5SW1vLNddcw1e+8hVUNbnevvfee/nYxz7GFVdcAcBb3/pWfvjDHyb2q6rKI488wkc+8hHOPfdcPB4P73rXu/jud9Mj4F5NCCkn0+MxMTw8TH5+PkNDQ6+pZlYOU8dlF3wTAEf7ICORHg4OvED32CFWVN1Mibceo70zmQjW+k1lnmmMNSwjWxopAUTznUiH+QfUrASpjl7Tq9nwuRKkhFFpeuPapISjfRCA4MwSXL3mQB8tNs9tJ0i1jVBxTzI8MG7ZC21Dl6fX7Koj05JeuXZZh2VDjBSaZWyDWbQ4hdk2rLwTbgOp64xsfJ7BPz2Oe8FMSt9zW8JomjM8vTnw2GOPcc011+FyBqirWk2dfzGqoiVyBiQTshk4j5p5EhL5COwEyZnfgyFkzErsbnnx2577NqSumzldUqEJ+mUX22LrAEGxs5p8RylSEeT5ayj21KGlaGg+duzurNd0xcqvoetR+oYPMxbuxTum8PMnvsGSJUtwTCGS6URQW3IWHYM7uXDeJ9BUF+Jwi3l9KdEGMhJB8XgS98QmLBTrvyYNieLzIspKEomjw1VmBJf9rFcsrypnfxilMyXiIBxJRD/Y5zSCSekrNZCMBJO6jlJgWpbtyBXh9SQjIwqs55q9uIhbv+fQMHgt8iTPHJCiZVaUWMgso7X0JBc/VlnDSqrdfU4BABV/PWLWkR9IkBIAFBUkE2Zbj2J9137UhXPM5kTtZAtW/Vbi8ES/UxXoHzQ/W3k19EHzuzLfzPcxPCufuNeKLrMm8XYiacNe4GnJ8daWtTM0M3Ih7jfrzd+rJsqOTkufNmhj6TkqhBxPSri7rWgI69YKPZ2UgOQCVRsD50gyj1D31mdp3/gwL21+8aTCSgtuuJKhh57EO2c++W+9gtFNLzHy3Dpzp6IgXA5kLI6nehoF17+Fc9s72THfQPeZXieHPnvyC/U3I3Jzxjcfcr/5mYezb/t+4nN4pJe2PU/Rd/BF6s9/J8UzV6QZ0jK9VCcynE2VpMg8Pqtn7WthnEu1gUnJ8K6X6XryAVyFZUy7+QOJJMW7vvPJ16BxObza2Lx5M6vOOx/hcFJ41nkUnnUeqvu4yU5OHVL7o2EQ7jhG6+9/ihGN4qmbjrd2OtLQcZdX4Z3WiOZJJu/a883sfXThp+5C6jqjR/cT6etE8/j501c/xpIlS/B4Tu21fetb3+ILX/wSKy77VzP5sO3rErfZB+u7IZMGbXubbZ5KdVDPJCVsc4D9rmRsT5Vrso4x1OT31HHIcCTLpEk8ZfqIZY5dKWPjZIRCYmw8zrgmhTke2tEEr8exMRWpUQ8TJgXPcnw2wmLc8TIlf4QcX1ZJWV73N2/j0Prf8PDDD3PNNddM0pDsmL3oVg7svI/8wgYaZl7FUH8TRw49kdivKBpCKLjdhcyefRNz5gzx8tYIFTVnATky4kTxepsz2u25/sl/wuGbmmNobCzKQ1f83+vmGs505CIl3qD4+9ovpn2/auZneaHlHo4NbaNEqTQfvEb2p4ewDawed8JzOFKcPRYvXpj0KpczTMkSrcdkEZQ+U76GKYbT2dBCJtmQ+XC3E63aRIThNhLxsbETICvj/YP0/OTXRI+14b9gBYVvv5qjH/63E2pjDmc2Llr8GdbtvJviolksmvl2FEVFHcseBQQgR0zyzfa+l5Zx2CYebGO7SA1H1qZOAihCpURUsVq7hi6jhV7ZRXNwB4pQiY5sNve7plEfWEqRq3rc8VfXm4uPAc8wu488QCgygKq40I0IK1c+SR6FzFZXUKCY8m1PRn835bZlw+VLv0j7wHbqS8/BORIFosn5Ytw2pFs5a0IhZMZYI+0xRigYY0GUDivRgKbhcpgrhnC5FzVsIPSUFYkd1TWaJB/0sSCKO91tR3G5E78RanJwsH9HsHJfeFMWYP2DEJggGzMghsfA7cLVMmgenxphZsg0ryzFyodRst1kSzuvbwCg4m9HkwSIcnL5SPSSALrb7IdKzICC9Mge3VdvvjtsolegBWWCmDgRGBpoVi4JO19EqNJAqpYUXkSZcHEkworVRkt+L5q+uIu7kySE04qSSE2GHQ2At9s8T/Gy8xk4uIVzr7iWxls/xq4ff/6ErsN/8QqGn3iOWG8PUh3Cu7KBkefW4Z5TR3hfC7M/fjHR+rmo+T4Up4P7bvrBCdWfQw455HCmITNB7vJ/+h6x0Ajde9dTON80tExkZDOssTztyX48oiLL/lfqFXwycigT6Z2n1Rsao+0vvyF45ACBuYspu+IG9v73iT13cjiz0fiVb9P83a/hKquk9l0fRHFNrp9zuvqiDaEoeKqn0fDhzzOyZyujB/fS/+JzCM2BPjYCQsFXP5PCFecRmDk/ax3zP38X0d4OWh+/l3BPO4rDhRGLsHrNH3AWlFJ9ydvw18xECMH2/35lxNs5t36XrY9+h7Jpy3H5i5AkJaBt+SQhAV2aBIE1mkxq2DZIk28CawzJjJxQBZmSTuOcmqXEyJK82tBSIy8y9jknJyCENMe7cZcw2dg40b5XIvV0mvti5rmy/mYp27IREKnrgcQtkOZaIb2cSKtfSXHQMxzJ8xRMX0x+02ZuvOVdzL/2k2z9039M/SKA0urFNB98knCon0hkiKKyuRw59AT5BfUMD7VQ33ApFRXLUVUnmubi3ntzdqM3IowTSHQ91XI5TA05UuJNgscPfocf/3g6H/nIRwkGhnADY+E+2kL7KY/PxKcWoOXVjTtO6RrAKC/EOZg9Bs9wTixELgOm661hacKrMQNUW4vfNFzqFZaR15Z0d5ge0sLgpGA4zadTtNBqf0jB8Fhe1A6JPjxM5/d+CEJQ8eWP0PHVH05UVQ5vYPQMHcCQcebMvhGhOZCA4TFJBK3XCruxJrCif/iklMcSMkYyS2e2ttlSQ4YVSeBRPNQrs5lRaOrSSk0j5IzSNXqQtsEdbO19mAsq38OV/tt5YvTXaVVG9CDbDv4On6eUJTPfjd9Timxrpy/Syva+x9msr0HTnXjxs0hdjUcEEELg0wMoQmGN/sdEXVdV/wtxGSEy2MOa/t/jdqfPcHuGD2EYMSqMquQl2REiup64rmREyHhpI7ssmPk2FEtKSTS1IZwO1PzkeGS4VIy4TK5FLAJAH0uSE0LTUJzOcVEoiWiKFEICwAiFEdY+JUsuCcaC4HQm8w1kSYot+geR4eTYKCLWb144SQLkSNQcGxN6uXZiHMt4v2huIkLCTqZtk8NG3smtUkIl5snCtuJAhncZSnKBYOf3cfeYO32dkoE5k7m8JqNaEu8TFFWjySgNpEl02JFwqUjNLQHm/6T2yndz6L7/4eijv0bXP5cWpno8aAV5lP/bB+j6z58QfGovcTmMc1o5NV97H+WuLhx+874+c0kuj1AOOeTw5sSW//s0Dz88m+uuu47RziP4KxqIB0fp3rMWf8Nc3EUVk3qJn4hkiY0EuZFZdipr/ZO0BxxPm92IRDj22/9HfGSYqts/SNuv/vfkTpTDGY1Q8yH04Bil7/0QMs81wSzWwmnqi8C4CZXi9JN/7vnkn3t+wtgbGxlm9MAuhnZupvX+XzHjQ//G7K/dBcD+fzfJhfmfvwsjFuXoQ79AcTiZ8c6P4ymvQ8ZiBLtaaHn4Vxz5y/+iOF0484qp2bkRT0kVIPAUlaNoTrb9IElUrHj/99GjYWKhURyeAFvvSSftxgZaiYwNULhkQfJSbOcdKZPrfFUg9ZRICfteZkZMkEpmSJNoSCUeBAkbQ+q50sooSbIiNbdZQsYpMwrCkUJuZOxLEBCp27P0A2MKZTKRte4pHnvSfTGLpFJWpJQRxyEeEnW7xtctJCjHIyvk+LoTeT/sfVFbWklQv/pW9jzy3xx46hcEg5/D6x0vxzwRVM3JolUfYMfGn9LV/jIeTzEOp5/FK96PYcTRhAMhFJ5ekyMj3sg43TklcpgYOfmmNxGCwSAF/mJKXdNYVHApOzsfp40mABzCzVzvOVROX02sxDQOOo8NJDyT9fzxCxElGMVwW08PJcVw5rLknwZNwUyblIgHnGijpgexTWYMTTeNQdG8ZBSELSOSmcQ6kbDaZb0XxJFxa4KiWJ67g6ZhWYkkB4oEKaFCz89+TeRoMxVf+We0wnyab8+F273ZIKUkz1eJ25nPoqXvQRh2AnRzyWHLkCUSVGfx9E9WdpLsmQXbeG/Xb0dapEZZ2Ib7iDHGev0R/EoBJWoVxUoV+UoJilBQSosZCLezqetPnF16M4He9PMYimSAXkbkAO1GE0GSBnoVjSLKKaGCEioJe3X2x7YwHOu2W4kDJ/XqXAr1In62/S4WL16MU/FwccX7YNTK/RAMmgRPilyV0Bxm++18DrZ0VQopIw2ZzAPhdCTICTtqITzdtKRrY3GE/Rsd7TDrsxNd2yHXkQjC8mYz7H32b2SRFfY9loZMfLZJIdUiE4QtdWVFxhCNgs9qVyhdCDiVlABA1xPSeLKsyKzfY7ap9YoAdQ9YP06m15bt6aUoSVLCkoGSVl4Ne9xMjZRQIuY9ieWbY/GYRfTak3ndKYhaUQ42aRD3meNrNlJCd5sHppISACO11n1TwTlolrU9msZq0usHK5ItBZ42W4/L2iBTZKSs2+3ugbgfnFaQnafPPLe3I0q4xEHbyA5aHruHHTt2sHDhQk4EPT09lJWV4V44k/CewxS+8xpKrje9gQ/c/OUTqiuHyZGbM775kPvN3xgwDANvSRUOXx4NN36I7pf+TteGxwBQHC7KV19N0coLxnsSi+yew2keuycg55StrP1sOmXOibZRK5xeYc8jDzC05UVqP/BxXOUVHPhSTqrpzQjf7HnEh4eo++inERme+KerL8L4/pjNmDsRjEiEI3ffierx4ps1D9/0WXimzUDRNNQwxIYGOPjjr1N93W3kz12aXl8oRrDzKKGOFoYObiPU3Zo8p6rhr24kb9pc8uvnEw+N0fHCw4y0H0yUUTQnFQsvIb9iJvd/78MsXLIcPRpi1dv+C0VYc3zDIiNsjf7EOj9JSohEvgnrXc+ItFZFknDIJB5Uk6iQCkm5Ji2jjPWuO1MIihTHyHH1JsqnH5/t2GzjYtq5LZwJ4yJk6YsZ+09IrikjEiNNrkumb7NlmSYqo8TGHyMMCRKCHUfZ+9j/8Oijj3L11VdP0sDxMAwDh8NFIL+W0eF2KutW0TjTrOOZJ3L2olOJ19uc0W7P1Y/fcULyTY9d9bPXzTWc6chFSryJ4PV6melfyZ6RtUyLLcDlK0CMKSzzXc7+0Gb2hjdRIc9JOybYUJj23dNmubUen8tKeCzE8k2DnKt9mFiJaWgcbjC36VlCJ6cKaRhIQyAsGRQjGkNILW3yKFWJUWA+3TRXlNCBAxTdeAGtn7jzpM+bw5mNWCzGaKibWudsHN2jCMsgzbDVtydI6Hg6kJAxSnxP3664kjNXl/CwUDmHdtHMsdgBmtiJhpNytY66lkbimDO+sfgAAdL/t4ohKKaUYkqpZQZjDKNoDnQZp9/opE92shcrCXAQ/FoxiwqvwBGStMcP0xFv4qC+DSBBSCxRz0f29Zv5GixvlMz8GUYkOQtNRE9kEDlCEch4LFmHFW0gLEO6+4iZR0K6tKS2rB21kCAerMWLMzmRUDxuZDyOzEy8jUUCSQMjmpSRsqEPDKH6LGu505Fsd2YdwZB1zfFETpHU82dD3UO9tF9pSmiVv2jltrCJFiu5tnRpifwQpxNSSZIIWii5+FEsoteOVgiVWFEp7onDu9095rtNMkQLZEK3V8lwL9TGktsjJmeDSCmjjULE6r7hEkHhfiv6LTTM0MsbAHAe5z5nQ1FREb7VSxl7YSu+C1YQuPCsHBmRQw455JACRVGoPPc6mh/+OcNNO1EtMr72+vfQ//J6Op57kIKlq9KedYYz3Xg3kSEuFUlJJzlx2VMwFZOGYXplJ6JSYwgtfZ2QMOoBSBg7vJ/A8uUc/cF/vfIG5HDGItLZhn/5cgw3gDx1Rt/jILM/ZiJpqE02yPYkV5wuKm+9ncGN6xjZ+TIDzz+DcLrwz5pH0aqLTIcbRSUy1D2+YrcDb30jvmmNFJ91IeHeTpQ4SD1OsP0Iwy37aH/+r7StewAAp7+IaeffitNXyHDbAbp2PkP71sdp53HmPfYDFM3FrAv/CZwqUk8SEKYaQmY4RJZrzSbVpE7wI2QZczLlmqQ2vgwyg0xIPb1m1pstl629b1x9GchGZBzPudqUdJpkXEyt7zTjlfTFTBj2mD8ud8j4iAk7YjuVlEjNH2E4UvqTTK5X9FiYzr3PASe3TlAUher68zjW9CzFZfOpm35Rjox4kyEXKfHaIUdKvMlQW3YWLZE97B1aT4NvKRIDn1rALM8KXh57ksHhowSK5gEQrSnMWkeoJoCrP/0JonuSXcn23J0MeUciDE13jZP90N0pn60HWKaU08iOl+n/00MYo0EQArUggAxHMIJhnHVllP7D5bgXTGd0w25wuAhMm41QFML9TnPe8yoY/HJ4/cLpdOLXChmNWcZuhwatHaZxGRK5VlIN6lNGShTAqYCRYVAvpYpSWYUUkmHZRy/ttOvNtHEIgAKKKRnwTzphVYVKHoUJRaV8CmgQc4jKCH104vEWkR/KQwwJkAb5cgl1jkZ85DES60cnRoFSYSagtiV/gsEEkZKI/hhHuIwfF9KknlJDtKVksGc/PdEWeo0OKvyzMTTB9KLVCWOCXlGIav2X5ZCVlEDTEE7T1clIlWsSSlqERGKzqqZFcugDQ+PbaEVC2F5bthxUGnmlqqDrSQLEaoMYMYmHeJnJsDhDk8Q32+dzO0GYs29l1CQ+4tuPmPWtXmJ+91kGFk1LrAXUmNm+cLG5wc7H4AhKSjeafV1YeX6MSjP6pG+J6dkRKp3axEp3g7cruThQrMu1FwTxLJHS2qg5oDttzk+CnpFuxV74hMrNdmgpwSgDswWOUZXISD9DXQcprlnErFmzptTeVKiqysj6LdTe/SVaP/HNEz4+hxxyyOHNAF/jXPzTZtOx/m/UvOXdAGjeABWX3MDhX3+XoSM7yVu43Cw8waMjm9dwGnExFUgrMnqCYyazB4T2HqDvd39CHxoGKVHz85CxGMZYEK2kmIK3XIFv2RKCO3cjY3F8Sxch1OQ6ZgoiAjm8weGsrCLW2Zn4bjhPri9Ohgk9zW2P8cgU52bOZH3umdOpaJyOlJJYZwdje3czvHUzR39+FwgFZ3EpBcvOSUinpRl+rTmdUFQ8ZdWJdniqp1F81kUwGma4ZR+K6iC/Zq7pFCjBVzuLwmkL8RRUEhnsRo8G8RXUoLm8YCW1Ntf2VjS4PQ8/3uUZyXuBIOmYpJj/0eHBVoYGmuhqf5nSysXoMkbdrMsQqhVlnCWXhJBm9ESqYw5YERX2WJWyXRjm/Z0ozwRYMnRi8jKJso70MlM5Zvz5Jr5/r8ROOlluiCn3RUuqaXzicqueLOkbJ+uLiTIZREVq7glDM4muWDDEQPN2/BXTOf/886fU3ky0HH6GVZd+CacrwNpHc4TEmw05UuK1Q46UeJNBCIW5JZewuf1PDIRa0XCwM/gcy/xXEHCVsbdrDSvqZqEoGmo4jmPAtA5FS01rU6gmMHHlGSGXtrSTu3kAgFhFXmLfYON4bXQpJSN7djC8fweR1haMWAxPYyPEDVAVit9yDVpBAeEDhzFGxii6/UakDnr/II4iDTXgZXT9Ttq+9TsUrwtjzDQqhy5bTtkH34pQFFxzGhndtP8U3MkczlR0dHQQN6JEYiOIoZFxuQbOBAghyKeIfIpokHPppBWQVFCHIrK49UwBTuGikmkQAnMWaXnMC4Xu2DGOcYjzuRZVqAih0SOPkRcpwCnS/8upSaynQtAk8krYskjhCKNyiE3yCQACajEH+9YhkfjVQiry5qBXJAlTmec38z/Y36MxhNORlFCKZSQoSJWSGtcYI+2YzJB9MPNfQAr5kipXNUFUhavDJE1G5hQlogKiheb42LPQfAwX7TPHWN+xsax1nE64+kGvND87LH5nZLbZUDuptTZkXlvcLXDGxlUBgG6p/AkDsI4z1PHREqp1vC0DpcQEwarkaihcbd3/cLIv+4unUVS9kL7WHfzoRz/in//5n0/wKs3fM0dI5JBDDjlMDCEEFRdez6HffJeB/VvQfAHanrqP2ts+jG/GXLqfeQRf41xUjzcpd5IlUiIbbPnVTOvXiaztQ3v3M/byNsJHmjGCIdyN0xGahozFKLj2ahwVZUSOtqAPDFJw/TUoHg/64CDC4UDNCxDatZfee35P/58fwgiac4exl7dR9r7bEaqKe84sgtt3EI/H0bTcMvnNiOHhYTN5tCKSffY1QLZzJ/861gcpEh9T5XaEELgqqnBVVFF4waWM7t6JHhwlf/FZKE6nGYiQafh1WvO3hCQOCQllAOF1kz9nCZjBxol9QgiCgx3se+SHLHrHv+Nz1iAMGOlqwuUpwO0tTNRnN9ncYF2PIhI2hAkhSeSSAND1CFs3mnkhfXmVNB94EgCH00vlrAuT+SsAqZIi+ZRyver4bZA0gGeLlBhHKmSLpEgdF1PKnujY+HqyeU65L1pfs0o/kXL/jkNWJPqiVTazLyZ+o5S+6gwUUbrgfHp2rePLX/4y//VfJxfttvGpb5zUcTmc+ZBMPYF1znXh1CI323qT4bGD3wagzruL5tAuAAbinbw08hhzKy9jc+sfaW15nvqq87IeHywzu4zuNp/Crj7zKaJEjWSiqEkQLjENcXaiIlumQxmJ0f7UnxnYsxl3WQ159QswvArBpoM4pIvIUA/H9n4HV3E5ofajAPg89bT8+Ptp9cfjcb72ta8xMjLCRz7yEVZ96wv0//LPCF8hBZdfhf+ss+j56a948cUXWbly5ZTvWw5vDKx0X8Xu6AYkBo1yIUbfwMlFREyEUxglMdW6FaFSxbTTer44MeLEOMJeGllAX6yNbaxnGrOYySKA9PwYr+Q+SAOfNGXeqpVG5ilnoesRdrq2sL/nWcoCMxFWNJbM8ycOE3l+GAuBy3K5sSJfskVITLkpkUhC2ikRIZENdhn7HJasVCI3hXfi5KAAdQ/3Ia38EU035VG61bx/nh5rfC0zIxoSOSHcljSeVxD3mJ/tkGlPj9mGMSvqoHRHlGipeZ+ijQUABHaaoftFu83frHu5n/zD5nHBKURN2F55cYuPihZY3z0SLZSFyFFJ5LWIWz9ZuDKOryk5BfG2C0ZmW79Zxk/VtUIjlm/gX/kO+j+3C5+d3yOHHHLIIYdTip3f/yQAZUd20rPucUxNoxFafvkDKm96N62/+Qk9zz9B2VtuzHq8njCumW8n6gksXbbQfPp2QxoMPfA4w48/i6OyHPf8WSgeF+G9hxCqgj44Qse378JRW0n0cAsAWlUhPf/vN+n1S8ldd93FgQMH+NCHPsSVv/wh3T/6FX3330/xbTfjO38ZI2vX89BDD/G2t71tao3O4Q2Dqi9/ir7f/plYXx/lH39/1v44sazOFOeZVgWZpccdnqrfHzm+w5H938v0UkcKAgsXp3uwM97wC+Pld6RGIkJBinQnE9ND3fqimo5IzWt/z8wrP0BksIu9T/6Igup5zLngnxLHA2YeypQ6025nwlgtkUKkR1GrVm64uERT3QihUlA8g4XL/wmpSg7ueZCWA09RUn8WqtdnHZNSdUp0hJG6XU3uz8Rk+yCdpJioDFi/TQp5e9LjYsYxr7gvplSSesTp64ugZom6yNYXhZEu25TZFyEZqQ3mb1V13g30H3o5t07I4aSQi5R47ZAjJd6kmOc6h0p1OlvH/k5MhhnR+9nZ+SjF3nqOtD5HqazAVzUjIffhtCcFNeM1+uI+DTVsEM03u1Pcaz6sAk2mB9LoPFND3dBEMmTTghGNMLB1AwOb1xMfG6b85ndRWrsCgKhFWPhaIR4eo33/M8RHh3HPmIHq8+OqqBrXFk3T+NrXvpb47j/vLOLdfQw98gyBVefimT8XR1UF59/yNir+9WMc/chnT/YW5nAGQUrJ9773PTZHniAgiliiXoBPTBL183rC6SQ6pojpzOMYh2hmHw1yDocxCc0iyhJl0qSYXqGMlRCCIsoZlQNmvgmhMMt9Fi8M3U9Tx1qmT7/SLGePSynkBJGomQvCJgrsOhWRHh2RrY32MVb0Q1rkg1DM7XYZfXw+inGw2xc16/N2hDA0K+qsyKy77uG+Se/Fqw2bYJCaeW8cvZYcVq0ZyRKJexAGeLJIEoNJTChxEFZuCiORhE+QuQK35Z5sQmRkdvp+ezETrY3i6HAy3HQIpOTss88+uYvLIYcccshhSii54HL88xbS+sefExvsJz48ROtvfoJv1jyGXtqAd958PLaUngCpTGwEkw5p7s9cw4/zJB5fh4zrjG54iZGn1hPr6KbglmsJXH6+GckoJNxozgeMSJSRJ9cS7+nH1ViP4vXgnj9e6k8Iwac+9anEd8+C2RS946303/sAgUvOw1VXg3vBTN7+wfdT1b+Xlju+NNVblsMZjt/+9rd0fOt/0IoLKf/EHbjqa1/rJiUgLckemWnkRaYYcQUiNkUPdWv6q2Z6qGfo9UM6UWGo1t80NdpBh6KZK2h57o8Mt+0nGh6h+9AmAPKr5yQMyEIkzy8VEAmjXvaxQ0gzAXbieKtBhmbOu8sqlzDY34RUJUJRqZ95BT2t22je/QgzzrrVrHmCiAapiDTCwr4nhiNZNtXmOJUIiYTUk5JZduKx0XBmIWGnMC6+lpi0L1pvdt4QER3fH3WXTOYVkcn+lkhinQK7P8qUfptGVNi/oUX4hDrb0MNjrFq16mQvL4c3MXKkxGuHHCnxJoZTuChx19IROsicgvPZM/gsdb4FxPQgm1r/QJ2+igY5G6fqQYTNJ4Atu2Eb1NTw8btQYkIgwHfMJCpGagPEgyM0/+5nRLo6CCxYwgu//RULFiyYsJ7Lle2AmRl1jXHflK5x1vs3s+ttVQzHddRRiaZq5F95Cb2//B3G6Ksvk5LDq4uzxaUcYAdBRogSoV7MpVFZCLqBJGYalm2j8uvA+P96hUM4KZXV9NDGc/wNw0pI0cYRimR5QuYolZiQqfZ/O3dDYsPxSYs6ZTbb9LUM0kuBKMGvFTLds5TDwy/ibfJR5mxAKS1LP0hVzPwOAE6HKc2VQTSAGdEgVBUZn7wN0pAIZWK5J6Gq6ddhnWsiGadUaCGJY0yn52wzv0Nei7kynP6nQXrPKgCgb6EZiuDpMo/JP2Jeg3PUPKcWFileX+ZvMFptbohbTkJdK5w4zjFzSowFzUQ97beY9Rv95vdAE4SLzOPjXnPm7zvsYGzGBDpNQKgsmQvClqSyPZYmS84XLTCsYwRqNCURIKAGrYspNVfAzuI40VbzQnof/SuD657FWV7B3LlzJ2xXDjnkkEMOpwaqw4Vv9jwGN62n5Krr6Hn4L2gF+XimN9L+65+Rf8555K8+H0dxEdKWLMk0wE1l3e6ySf70Y4xwhJ4f/YbwnsN4ls7luT8/wDnnnDNhNfWB/0x8br7t36Z2kS4dx7RSs+2EwW2Q/9ZL6brzf4m1d02tjhzOWFR963MM/O4hYq2d6IPD+M5bTvHtNyIcllt2Fjf+xKZTZZMaZ3MW4/elRD0wiae6dEgyU6IIQyTypGTmBkgY21MMw5mGX7uMPdfDSPFqxzQMC1QqzrqSzs1PsPN3/5HY17V/PaUzVqIKOynAhE3PuJCU9stxmwCorj+XrvYt9HbuorRqMZovj4YF13Fo25/xFlRQWr8CxWF6v2SLkBC6RUJMEA0hNcYRFzbGSTQp2ee+qblI0sbGye6DyzB/Ywm49Unkn+Sr2xft/VPsiwCGI71Cm4yQUqJkISwMB2l9EcZH7xiOjL5ofe7Z+iztL/wN1e3joosumrRdOeSQDTlS4rVDjpR4k+LxgZ+T5yhhJN5HjW8+df5FdIWaaBrZwsrSt9FwueD3v/sT0bwhFtRcg4hmT14dzTOf1g5NoFuSItGApUUfmzzhdcf6h4kPDlD3wU/gqqyelJCAqRMRmdCDQdNQaYV9OhtMqZvQrr0nVV8OZwZ2797NSzyLjzxqmEEeRZSq1cBEPjmvQ7yOiJL5nMWztCUIiTKq6aaNZvbTwJzjHp9qqJeGPC4xUWyU4yOP7bzAfM6mZEBhesFSBuPd7Bh+GgWVmdFV1PuXWotHMAaHEC4XESOEhpZYBEldPyn5JrutIkWbNvF5sggJp72Cs8pGTMJB7R3B6zCPiwUc2Y48IRy7Qae6yiQcRsMmwaAbVru25r/i+n2HHQRnW23vNAmSuN8Av8k+KAOOCf9MIuOnDZdkL6hGoW+J+VmrshKDx5J9xVkzxsDTxxhc9yyf//zn+b1wZc31kUMOOeSQw6nDnm98Ev+seYwd3Iunfjr5K88l0t7K4IZ1VH3ww/zTFZfx/37xC6LdHVR8+IMT1mPLjph5J9KlnY43lA8/8hyRg0cp/9f34Z47Y1JCAk6AiMiAMWo+e4TTZMmdtRUIp4PQ9n0nVV8OZwY6Ozvp+uaPUPxe/OefhaO2Au+KBa94juFwxyfcFwtraK448cgrMMG4jHQv9YT3n7XREFk91MEkLVKL2nO1rGSFvc/mDFOW9Wke6ta+8mWX0fXyU0jdvP682nmMtB2gZctfqV/5tkSOMpFhHkiVcBIZjIrQU+SbFNu+YCA1QSCvmoLiRvZvvw/diFFeu4LyaSsZ6j9C87a/0rz9YSrnXUjN4qsBNa2OWGwMNBWVZF68bOSE0M3tiRwGE8o4ySwREtnLQsa4aF544lgBJjFxCiIkjtcXXzEy+yKYFzWFvmg45bgoCDi5vhjqaaN9w8O8/33vY320HKdzvLJHDjkcDzlS4rWDkDKTTx+P4eFh8vPzGRoaIi8v79VoVw6vAs4uuYkX+x7AIVz4HcXMLbyQl3v/hiI0lpW9lTZHK83HnqNx0U3UK3MRQhCxEl73zTcNav42S+IjaBDzmU/fSL6Vb2LQ3Bc4YkYkDM3yk3fYnPh3nOvj4M/uJDBjPr0vPXtar7Pmv/+Dji9+G8+SeRT/0604ux20//In6OEQ4ZajfPGLX2TLli3s27ePW265hTvvvBOH45UbDHN4bXC5cgtSSrbwLFEinM3lqOL4nus5HB+tsol9vMwyLqBIlHFI7uIo+1nGBRSK0uMen5Z3wvwwafmwDLGTjYwyzByxlCpthrndZ9AS3s3R8C5K1Rqq1Uby1RI6oodpNQ4SlKNoOFjiuIBCS2LKjnRIkCPSyN4OoaSVSUZ+ZBxvJ8BMeYQKe5tFkiRyStjb3S5QzPHR8Lqsd7NMtMCcQAfLNWJec6ITtm6p7rJOYMsZlVnyUppMkBIjGaREXDffqwqGaN5tSt3JPHNxsnB6a9p9PjZcQPglMwrNNWBuC1lBKJHyGEKTqH0Oqy0ynZRIgWEtskRcIDXLKy9qRY9YXne6J2WB6TbvqTpq3h+t2nxWCMubTFMN9FCEQx/+MY6KMoJ79ucIiTMAuTnjmw+53/yNiWkf/1dafvAdhMOBo7SM0ptupuf++9BHRii/4z1EWzvpve8+Ct/6FgKXnm8+HzMMc1jjeTZSQrEiJETGdnMbtH/9F6gBL6Mbd57W64xEIvjrqtBKC6n4wnsRQtDzswcIbT9ItKefu+66i2eeeYaDBw+ydOlSfvnLX+LxTJ4rKofXL+rv+S+klPT++PeE9xym8hufxlFsGqez9UVzO+OMxCKL0fh4U5RsVheZadyyNf5Ty8qMshKMqJpGSiSakyKNY34nTS5HiSXlNBMOJNZ+RSdpALbmbUqKVzqYBmFFN48VKdsARpr20PToz6k771ZK5qyid/fztGy4nxnn/wOlNUvS643bJIVEiVlzRiuCWcQMq6yRdlMNTSAt5x5DU4hFx9i3+88M9Oynfs5VVM28EOlQCMUG6Wl6idZdT+IvqaNs/gUEyhsYaNtD9+71hAc6EKpG7aXvpGDuUvPWWGOXbkdBqCTGs9QIC8ORZbsynpQwbJkjO0JCIfu4CGlj42Tjork94xiy98W0sllwWvqidcxkfREy+qNFWmTti9YxQoKIZ++L0tA58uu7QEqG2ppzhMQZgNfbnNFuz7kP/TOaz3X8A4D4WITnr//h6+YaznTkIiXexChyVXNB2W00jW6hNbiHjd33UetfQE+omZ29T7Jk9UcJyhEObruP/rwZLJ/5D4lj85vMp8Jgo/k0Ltpv4LAkRaaS8Bown5Svgn1J9fsoeNvV9P/mL/jOW4GzYDbu+ukMPr+WBx54gDvvvDNR9rvf/S6NjY188IMTe33l8PrGmBxhNy8yzADLuCBHSJxCVDGNI+ylnWaKKGM68xikl91sZrW8EuU493qchNNx4BYelijns9vYxG75IoWynKgMUyBrmeM+myJRzr7wi2zTnwQLiMMAAQAASURBVDWrRFCsVBKUo8SJ0azvpUAWZtSapY1TaMs4MiJbGbc1kbFXAYY1a7aSbhPmuEmvM1GxMUbMb547kmfWG7EIAi0IvRUV5rZy695auRy0oPneXOXAUWmSwRfVHwKgI3RikycZF7h6rUi4ApFIVi1suSYHxw0/sqU9CFgHjSTvo2pFSCgpoe32p57fP4sRClL36atzhEQOOeSQw6sIV3kFDZ/7CgMbn2PwuWdo+8F/E1h9DpGWFrr+7x5qvvJ5Yv29DDz0CKObXqLyS59G2BN7WyvdGtfN4dv6PInGeipSoxRPJ1wuFyXvvZbO/7qHsQ078a9ehHt2PaPPvMSzzz7LZz7zmUTZAwcO0NjYyDe+8Y1XpW05nHrEB4fp+8mfCO85RMmHbsFR5D7+QRlwOuOnnJSIRk/MLKM4daRhielDiuHXMiQbIGKWhKmS1PE3HDIpiaTbBmGZyAWWaJeWVh1Cz/BQT506W7JPgbq5eEpq6D+8heJ5qyiZcw6jHYdp3vhn8q+bicPtMyMjMu+DlGk3LzWXhH3TDMf4ubrD6WPOsndxeNeDHNnzCHkl09EVibeyjuqFlxGoaqR5059pevYeu2YCtbMJD3Qg9TjdLz9F/vx0UiIVdoREIooiy+8rNYuQUOWEZRLIOi7CiY6NaVVO0BfT6x+P09MXAcSkfXHcOe3onZS+CIA+vj9m64v9W9YR7u1gxrs/kSMkcnhFMBAYUzROTrVcDlNDjpR4E+Oxth8AcHX9J2mMr+bw8IscHdlGgauSwUgH8e4Oqq56J6HHg4z2dTA83UfBdjMp68j8kgnrtb0dwkXmw0eNmNEVhTsG6TrXNBDqbnAUFjF67NBpuz4bjgGVgvnnMNrwEv2/uA/vre9DjgRR3V5Wr17N17/+dWpqalizZg2/+93vmD59+mlvUw6nB1JK9rCZGFGWc+GUvPdzmDoUoVIvZ7OfbdTI6RSIEubK5WzgCQ6zm0a5cOqGY2kwlXweTuGiSjTQKzt4Mb6GKGHmRFcxzTWfUqOcEse1BI0RhmQvPpHPjvh68zjc9BkdHGYXbnwEKMBPPkpKbok0MiK1DdakXNd1tIz8EDY5Ycs8YBtNFCVJQmS73FgMYRigmccrlpycsI6xHKpwDsUSxK7uOT2P6GrvIAAjcXMhXuAO0Vxn3hclZrIHeVby6bAVDTFWZ+DpmIS8ESQWtFKTYEVKGIqBEs5yXCCWICGyLuyB/u199P9tEwW3XkV+jY+Vj38BgBevunNc+RxyyCGHHE4tDnzhkwDM+N73yb/kIgbXrWPo6adxTatDHxwk1NTE4JqnCFy0mrEXNiM1HawktNlnAgKQqE7bE9jaOk7WydRKd5blMfrSfqSUp52Uzl85g9FV8+i/52Fc5X4IjSKcGitXruQb3/gG5eXlNDU18a1vfSu3TjjDMfDbvxFt7aT047eRt3oWoE/aF+2vExl+TxWcTtNpwzYMy5TPmd7ptkFZGgp6NNUFPx3SYZie6wZIZNJIrIuk17ldVpMYCgjbGJwRBQFJ47w921VTp84KCFVQftYVND/2fww0baO4bjF1K29kx1/u5OiWB5lxzjsBxVT4se9xogKZrBjLOz5FejUtt4SRvAmqw0nFtFV0HXuJ3Rv/j3h0jMq5F1G39Fr85Q0seOtnCYcHGO06grOojLZNfzOPc3sJ97bT8dxDOAtKcZdW4ayqSszvs+WTkAmSwprjSh2R4exkG9kT0RCJCAo5qRlTdRoIxZhSX0zbfxqQrS8mvh+3L2aH3RcBsH9XQ2Tti5DMRyF0MWFfjA31073+cQqXnYunvJaFn7kLgJ3f/eQJXG0OOZjIyTe9dsiREjnwWLM5gF+59CsED48h0XEZAfYde5xa+VECVTMYbtnN9ie/z7wZN5CfX4f/oKnx0bfAJCeCpSruganr37t6JfHIGErAd+ovKAOHPvspAGqH++n8+c9pv+/XxMdG8c+aT3l5Ob8f9DB88EWig2HKr72FSy655LS3KYfTg2PHjjFEPwtZlSMkThNqmEEHLezlZc6Wl/GCfJxGsYDD7KaQMkqoOKXnk7qOX5qe/VHCAPSFW9gb3MCV7ncjhGB97G+cp1zDVrmOEKYE0EyxmHZ5hHaOEiEEgEDBK/34ycNLHgoKERkmShiJgURioBONR4gQIkaU6ngj85xnIyabfHgyvOxC4fRriE2cMDoTsYAjMWdPhLYb9ru5w9dpfted4O63oieKrYOsSASj0Jy5V5QME7KIBs2a9W/uqgOgyBuccrsAQpUGFEZhxJJy8tjtMvdLh0TExt8nw22YixFAdSRXFEZMSfMKsxdYuqGgj4bou/v3OOsqKVp8CfHhVpr/53F8c6owrjBQlONHt+SQQw455PDKcfjT5jy64QffQx8bIXK0BUdNFQN/+St18+pxz5rO6HMbaP/Sdyi67Tq8S+Ykx3bboKbI43qRp0ICcmwMLe/VkUnad9O/M29sgKav3UfHXX9CaCruWbX4/X7unR8jdHgzY61NlH/wGt75zne+Km3K4dQjHo8TfGkXRe++msCqOaRZwSeByxlL9F9lCjJOSkb4aDav2kypHCPDyBuOTk1KWLHmV3KcVI79XSBjyrhcX4aa0vaUyAk1k6zIkj8isc+eisnkvryG+eTXL6T1hQfIq53D9j/+O9PP28uR5/9AXnkjFdPOTqs/q209ixu/EtXNaImEvJTEcJhSQV6vaY+IR801wHDHQTbu+TQrb/8+ADv++HUW3fZ1mtb8H2NdzQCUrbqS0aP7GTq0g9jIkOmcpCg4C0twFZfjKC9HcbmIjw4THxtBxuNIaYCuEx8bIT48jDE2hnf+PEre+w8IdeLfSzhMDaJs4yIcP8ImFS5nLHHMqeqLkN4fT7Yvqk4zx8Tx+mImJuqLSkZKjNS+aMTjtD74a1SPj9ILrsaIRWl/6n40Xx7R6EdzURM5nDCkFOMlzCYpm8OpQ25Vn0MaFKESjo7QUH4ufSNNOB59kbq6C6j7x39G+hzs2HkPoVD/uOOCZYKBRpWBRpVgmUKwTCFUZuqSj9SqjNSq6H4XoVIIlUK/s4tIWysF55z/ql2bo7SE0ne8HRBoPj9F55nkw1jLIVrv+THdj/4F38y5qGpO7udMxOXKLVw57QYA/OS/to15A0MIwRyWMMYwh9nF5cotHDR24sRNF8dOrDJpTBolYcMr/FST9Ex0Y0ZfGdEoRjTKKuVKXpRPIZGsElcgUBiTwyxXLuJ8cQ2hUIizuJiZLKKQUqJEaKOJFnmAQXqIE0ViAAINJwWUUidmMV1ZQJt+mD3RTaAq5kuxX8J8eT0TryYMCYZEeDwIj8eUflJVUFWkU0M6NXSfC93nIu53EPe/Nrls2gfyEz+FNma+QmWCUJkguCxEcFkImR9D5scwwloiQV82SIdEugykIk0dXW8cvHEc/ui4soGCEP68MAGf+bIneEYsTuf/3I8eClJ183vRQ0F2ffKPDDy/n9ZfPMOWLVtO273IIYcccshhYghVRR8ZIe+y84i1dzK2aSvelYup/OrHcJQX0/uj3xE50jbuOM2poznjaM44DoduveLWy/zudsYSLy0yzPDmgxRfe9arJt3nKPQz7VPX4Sj0IYDKf7gQgEhrL82f+Sk9v/k77hlVuXwSZyhm3vcN6r70XpASz4yyKfdFt3PqjiWnEqnnn6id5n9KR3NmcTVPgVAlOKQpNaRJcBjgMBL5v1JhaNJ8qaaxODNiQKopLyVd9siUMRJUn3c9RjTCsbV/Ztkd36dp/e/xFdfRd3Rr1qCORFCAlObLnmZKmXjZ8k12GcNhyf3EDBxOLzOXvT1Rn9NbmGiPVGDBO7/Mgb/eTWS4l5k3fRzNl0eoq5X669/P7Du+TCQcov69n6LiipvwTZ+FHoswvG0z/c8/TbDpIHpwDGnopuXM5cRVP428886j6K3XENp/gJ5f/NqMFLPuqXmPzZdwTDxntn+79LHxTO6Lx++PwmEk7s3x+yJZ+6I0DLofvZ9IVzvVN78HoSg0/+WnDO7eTO+LT/Hwww+frluRwxsYdqTEVF85nDrkIiVySMDwOqisXM7+pr9xoP0pADa3/ZFZx5zUVi6iYun72LrhB2za8WPmLXwnRaWzKDhoPmiHGqbGb9kJW0Oj+0FVcF1ac1quJRuaPmF6enG3KVs156tmhIjUkzT8yK6tr1p7cji1MJMwb6WUanwi8Fo35w2NPFHETLmIg+wgIAsQQlDFNI5yEEWqzGQhmji1BvbZLMGn5HHA2MYxeYgiUYaBgYrKCIO48bGU83DiYhqzOMo+3HgpV2p4a+A95Iti8ilmjXHfuLovV24xP1hyTmv0Pyb2zXWuZF9sMzX6LPLVdNk6qeuIWHL8kGEzQiKR4NqYfJFoQzvWgz6rEgD3gU4GV5vjYrjAbE/MCihTI1a1lvOPuy8Z6l600yw7Vm3ujBaYOwbcXmaXdQOwqWsaAL0dJmnX7zWTQ+gjDgIHTmw6IF0GQrP1c62FRNxOai0Soe2pcPijqJrZLr8nQiw+ngAOHWyn47sPEe3rpfqd/8SR736DwOKl6MMjeJcvIbR7HwsWLDihtuaQQw455PDKITWJd+ViQgf203fPn0FK+n/1J2Q4Qv61Z1P26X+g8xs/petbP6H0jhvwn7c4LVfQVOB2xFGEZPDQUTAkZaumnaarGY/t137d/PDhHwOw6G//DoARiZpOCIZk+Lkd8NlXrUk5nEKMvbSXju/+AVdjNZ759cctb/dFML24j+eVnrl/ImQasyaOmEgavsYix/f6tg3BRkLHP/lu6/Wjj593SU0mygqRzO2QTbYJANUiEcarniZ8dJyBImovfgdH19yDt6Qa+BQl01dwdPMDHNx4L9MWX4dbS1+rCQmpTv3CAKHLtO+kFLFvt+E0556ldcvR9ShH9z7OQPsuAmUNSAGK6iA81IVQNWbe9HFcecWUr7yCtmf+jLO4lPzFZ7Hk33+Ip6IGT0UNe+4cL/3T+F+WzcCa2x7+zKcS+x588EFuvPFGQtt241kynzTWRTVMQggrWswaDycbF93OOOGMnA6ZfRHS+9vJ9kVI74+T9UX7ezimoRvHt/toTj1rXwQrf4Q+vo5xfdH8kNYXIwPddP35D4Rbj1J+/a00/+L7FJ99MaHOYxQsOpvBnZs5++yzx9WdQw7HQy5S4rVDjpTIIYE1z38JgIvP/jIHjz5BW9dmAA5u+h2u8/PIK66n9sOfoPNP97Jr0y+Ys/QdVOUvBGC02k2kwKxnbJr55FAsXcFQrWm004LexLn0wRHUPB+K6/SG1i396F2JdtlzBJsYMVww8z/vorhkHqMXXE7/2jUY8fHevDm8vnG5cgtDsp99vEwNM5jNkte6SW8K1DGTg+yglSYAGpiHgkoLBxmmn7PkJShTSCA9VShCoU42IoDD7EbDgYYDnTilVDGTRTiEOZ5MZy5REWGfsYV9bMFHgOnKAsqp5XL17WmkA5CVqLBR45rN0fheNoUfpVipZIF2EW7Fl560OwMyFjMjI2yJISv+WRbkIazPon8YAK3v9GoUnyjilgNoeKEpeaUHzWmCaiWmNnw6joA5TkoJ8XB28slfYkpDBdwmk6Jbi4ye7nxcgUha2VhcxQhH6fvDE/Q+uAF3QwX1N38KV3kl69atY3THNir/5Qb67l9H4OxZOS/VHHLIIYfXAM0fNhM+182uYejhpxn+m+nANPCHh9AqAvhWzKPyy++n9xcP0f3D+4gPjlB20yrANMKpipH4DIwzsqkphrTYwCgArrK803pNlz9rGiBTPR9tY0OeR+G8v3+Owrll6B+5imM/fAwi4QnryuH1idl/+Rqx7gE6774P/8rZ1H76bQiHRFX0KfXF1wNsD/lU4zCYBIRtILYNwIYUxGPZo/5tr/0ESWFNU4UOjEt0beVNsBbQCulEBUqSrBAG6UpYAgpnLuHYM3+gZ8/zAJTNPAdp6HTsfppdT/2AJZd8Cs0xQZJxY/z9VyJxDIcKE/w0Qggqp6/GGShk/wv3oDo9aB4/RjyKv6qRqpXX4Mg3IyiKFqwiMtpP9/OP0b3+URx5hRSvuoT8Vecy5yt3se+r6cTEoX+dOEfB9ddfj7Ohlp7/vQdnQy0lH7gVR2XpBLpU1uUZAqcznuh/mWOjOyV59eutLzo0HQd61r4IpgTrVPoiqoFQxJT7oozHGVi3loG/P4GWX0DtP/0znmkNHDx4kP6X1lJ63lWMHT2It6aB6urqU3vRObwpIE8gAiJHSpxa5EiJHMZBU13Mnf5WvAWVHNz/V6Sh03nweXY8+0MA9K9+nsZr53Dg73/EM99LYeGMSesTlnZgNB98i0zpp+HNo2h+JwX5Y6ftOnRdZ7BpBwNtuwi1t2BEwibb7nSi+vz4Fy8hsHQFIw0eaqIXo+UX4J+78LS1J4fThyPsxUeA2Sx51cL83+wQQuCRPhw4uUzcjCpUDhu7WSkuYTPP0EkLVdSf8vPWikZqaZy0jCJU5qsraZDzGJb9tMtmdhmbcAsv+aL4hM6nCo1zfTfQFWnmQGwLLwz/hYV5l1DmsLw3dd2UZAJEgSUbFjk+uRmeY0ZGaGPmQtPVOmju8Lgp2NJjfrYIjMHlZWb91oLPjqDQXSIl8Z8k2HWUYCSGs6QMWWOSwOFhF81OcxE21G+GXNhSSpoVtaBLR6Lu4JyIdd1ZJX3HQXPHEsSE4rLyWagqkYg5vbBJiVRERly4HHF8DBPtG6Xjb2F61/6N+HCQsndeROlNq9l10zcA+OlPfwpAQa2HjvY+yj9wzfEblUMOOeSQw2mD0DQKbrgCV30VPT/4DQDDj6+n+y7zs7z9KxS/7QL6f/s47lIfeedPPrf2OMznoGY9iISQKOEQqtuBzx2f7NBXBCklfS8dpevZgwzv6yI6aJLpqtuB5ndTdN4syq6Yj7fIT/Hli5GKQmBJLsn1mYj+h55HcTmo+tiNCMfEMr3Z+iKYpIWSxUM92/epItP4ZWQaeVO8duOWRpKUIpEnbDJoDj3hcW4YAsNykrENwDJLxASaRKb526R7qENKouuUXM4JqSUlJemxYm73ltYi43GW3f5fKG4HR196kGXXfIFtj3+HjsPrqJ1zeToBYTvuSIkU6RNRw6mllUmDIbG9Dwur5rHq5v9EdwoM61bpjpTk4QqgKlRccC1FS84l2HuM4f076HzyfpSCPAJzTswWIISg/HMfJrRnP4P3PUrHV/6HotuuJ+/SpeZtUZOEg1Cy96H0SxEoQk7aF+33E+2Lwwe6iY1E8FTl4a1MlzpO7Y/Z+iKY/e+V9kUgrT9O1hdlLIbeP0ysrYuBRx4l1tND/urzKbriapq+/K8APPbYY2AYeGqm0bP2UaquyeX8yeHkIJna2tcum8OpwxlLSpxz+b9jyDjhBWYy2+3/PTGDncOJYc0LZsTEpRd8k87OrYRDA9Q0XJDYr6oqtR+/lqGeB9h96F4u+8bbKf/OLPoWmN6rsXrzIWo/eAiN72bRnmEcBacvyfWS27/FgYd/QKi/Y9y+glXnExvop/eRhxh8fi2uqmpEXFJyydU4LDmTHM4cGNJgiD7KqMkREq8ypjGLfWzlZdayUJqhsi/Kp3nb297G43958rSQElOF1HU8ePBQTamsZAvPsUU+wzxWnlA9jw//EoCrSz9EqTGdrSNreHnoMc4tuoWAZhEcNjERt4wnhrVCc6SPfdLrhOjpMbDEw6McePB/AFBcLiq++nEcZSdGwGRCCHDlm6SCYUVH+D1RHJq5SrUXyxFXnLGh7NELUWuxMTBgjvelD0VpeunPdLt6CB/tRsbMunyz5lHzrhtpuvsbaccvWbIEgCP//TjO8jyqzj61idRzyCGHNybqf/FFjJEgWpm5Tmh61xde4xa9cXD0nz4HQMNvv8XYivmEdh2k8MaLE/uFEFTdfjFyYJiOHz6If2YpnmnFqJZxTc3wDs6GSO8IziLvhPtfKa5/7sNs+PTD9GxpHbev+oalRAfGOPabF2i//yXyl9QhwxFq37WK/Lpc8tQzDQ41TmRfC97Z1bgDCqqVPVcVxpT64qmGX4syGj/5fuRxxBLREboh0GXyM4CRsi9uyWQqqoGRIpcjLKcUOwGxtNzUhZ7hoa6SjPa1jdZGelqItLwSRjJAQCpQuvB8mp/6Lfse+QEzLr4dgJcfuZNPfCLID3/0E6pnXYyKkkyULVOkoKSEVPmmTGthIomy9RtGDHSXde1OK7ojBrqTRIMz8184CgoJlBbin7MQQ8Zpv+9XlF7+VuDE7EotH/o89ff8J56F0+n/5V/o+8WfcZQF8CxMd6KShsDljKMoGWNhyth4uvqiNCQv3PEHAISqcPYPb6Zg3iubU2f2RQBdKpP2xUxk9kU9Emfg9w8SO9ZJrKsHGTHXIa6GBqo//Ulav/3dtOMXLlwICDoeuw/F6SIwd9EruqYc3rwwEIgJEsFnK5vDqcMZSUoYhsGmp76JlAbzZnyd/MMxzrvym6iqg+ce/dxr3bw3DJ5a+0Xi8X9FSonDkc6EKw6VOZ9/C5tv/wVNf9lFNbMS+wo2uBmYr6OVmCHOgU2mXpLhgHDErEdoKvGRcMJ2NxVceM23AXAOmaRHsMJFNJCcXWz+panv2NzczPZ7kotPxeWmcPlq+l54GoDBjetw5hVTvOwCRpr2EO/tw4hGOfrT71N21Y1I+YmccfsMgZSS3bxIjChVvHq6wzmYqBEz8MoAu9jEy6zDMAwURWH58uX87S+vnyRjilCYy3I2yicJMnLS9TgVD6rqhBjokRAyHkkQD0Kd2PPOhojEEEFzcu0+apG3ASt0XU2RelKsybzP3Bc4bEaUtV1i6u+KsE5ksBdxrI/WvU8SGx4kPmbKQZXceDODzz3D4G8epvyO92Hkx3CqpuG/8efm+5GPmOcKj5ltr3lCoCeSV5vjdeQcUzpDtxaxmXq1mfDlhxhtHSPW1Y9vdgVCMdvu0szFf7S9m7Hnt9H+5FaioSHzui4/n7998evU1tYyfXp279OVK1fiXbSA4I5d/PSnP+WOq+6YtB055JBDDgBtX/gx8e4Bar73KRSfm7qffx3F6aD5H//ttW7aGwZH/uHzGO/6V2KxGC6XK22fEIKqj1zD2O5meh7YgO8T1yb26YbA54wmjG+aLV1iewAjcTlBD0XxitCU2/Peze+ddP8vzzKdDAYGBvjrRf+b2K44VWa8YwkH79kCQNuDW3GV+qi9cRG9m44SOtoDQrDtE3+g/h9Xo1+ko07hmZ/D6wOdv1pDuLmL8nedP27fVPqivX0ir3Qli89sZtnMqAi/Fk0YtSaKmIgbyrgy8YSR18ojFp2c3NA0Hd1QkIZAUXT0jIgJI5rRj1Uz8jYNcnzEhC21k80uJ0WSWCiYvog5no9x+Olfs//RHzE29gV8Ph/Lly9Hj4fTIiNsiAnclUU4jnSpaapI5nGWMduVwjjYks2p5ouUdqXeciUGhlNQfs3bGN27g2hv1/iLmiIUlxPVb46FIhZCc+iJ6AhVSZJgE8GtxabUF1O3ZysjdYPR9mHG2oY5dN9Ohpr6CfeakWDz3reCjg0t7Pv+U1z6y5sTNg+D8dI1mf0utczJ9MXIQJBIcxeu+irUgBddURJ9Mdo+xNjG7Yyu20K8uxcA36rl+FatYO2HPsmsWbOy2mdqamooWHkugy+u58tf/jJf+1ruGZ/DySGXU+K1wxlJSiiKwvR51zLU10R0uJ8NT5nJh2oaLqC3958oKSk5Tg05TBWalr2LPHupyVKX/GwDB/6wk4Lz3kLJNvMhefDdE+hDpqDossUc/tLvGFy3F05AjUOPR2jv2kb/0GEGt7Whyygg0GNh/nR1DbfeeiuRSFIupPTsyyhYdT6aP0DZ4ksJdR/D6Blg6Ogu+rY8l5j0lF97C+GOVroevg/fkl3kz1yGb+Y8Dn0r51n3ekZHRwddtDKLxScsy5PDqUGRKGOBPJuXWcumTZs455xzKCwsJE4MQ+oo4rVfuMdljANsx4mbOjm59NNEeKzHNGAsK3srfeFjHI5sY7HnYlQ0YnkuWod3oKku6vKXIPPMqAAxaBr2mWAcnSr6lphkhFRhaOdLdDzyR2RKEm2tNB/VlY9n8Uz8F56NocTp/8tDKAM6hkNlcNT0Ni3QJVI9uUmU02mSC8W+scRELBgzFyB5aheHfrKetod3Jco7Kospfd81dD74NKGWPuLDIVSfi4IL5rLpR3+muLiYgoKCKZ275Ja3MdpQz3ve856TansOOeTw5kPR2y9jZO02JJKWD90JQN5bLuDwubcwY8bksqM5TB2KoowjJAB2vvWrAFT/dR0dv38B/ebleKeb8zRNHN8jqebKWRz+w1aa7tsBF029PXpUp+W5Fto2ttGzq4foSBRFU4gMRVjyrSV8/OMfN0mUQjeRgTDTb15I4zuW4C7PY/q7z2JwbxfBrlF6X2qh5f5tyLjZ1ob3noO+agbNv36ekpenUX7lfIpXNvD8zf97nBbl8FrCMAz6/vYiZW9bRdn5MwE9YfRVFWNKfXEi+DVzvamcZB2G5bZvSMFofPx/aCpwOeIpnurWuzTbE7ecSlRDEo2rCQmdNFhGcttbXaKYnsJZZJukTSAYApkq20QyAiFhMxYkIhm8xdXMvOIOdt//nzz66KPccsstFBaasqKx8CgONUVGyD6HNV8VKd6LhseRXiaVuJCTpnAYT56IZJulBlKP0/3EQwiHk6KLLp+koolhE97VRw4zsn47Aw+txzOvHi3fgxoNMvTcdgiFqXj76kSeiNS++EpgSEGeI4wiDNo3tfP0Z58mHk5GZrvyXXhKPJTOL2XF++ZxbFaAZ/71GejtxV8VsOpQXnFfBLMfZvbFaFCn6w/r6HlgI+jWNRf4Kf3gjQw9tpHo0Q70oVGE04F3+Xw2P7GG+vr6Ka8TSi99C1pePp/97GdPqu055ADm/0hMkWyYau6JHKaGM5KUADi06yEA5n/i27i9xRhGjNYjayktLaW4dB693btf4xa+OeBtLKfviW3EIqOEyqsA0EZNI6RumHIeath88EbyBXPLTe8DZ2WAoUUVxDZu5UNbbgPgf5f/ZtJzxaJBtqy7i2hkhDx/NYUVcxABL9Iw6Njxd+6//35uvfVWZs+ezdIPfh+AkWnmnGjP58eHYQ4MDLBu3Tre/cFP0v/sGooWrYZrLmNk7UY6d+wFoP6xDZRMW47THeCFP3467fjp//M9AJo+9ulxdefw6mBwcBCAGON163N49RCgAIA1a9ZwzjnncOGFFwLQzH6mM+81bBkYUmcvLzNEH4tYhSaOr386GcoL57Hc6WFr+1/YEHoYbzSf3r4WJAaa4qI2b/G4Y6TfImqVpBfXyHyTPPfvHwAgXmQSGVrPCB1XlANQsW5gXF3RwT6EqtFw/QeJLCvCUx1GK/ATsRNO9whcdbUgJcGD+3CWzU07XuiSaT8zx+j2j5qSTG03SYyIuU31WDklrMmWHjTr1R3mCtXviDISTS5YBjcfZvvdj6CHYkz/6CUULK5l393PEtx9lP4Hnid6bICvfvYLLFq0iCuuuOL/s3fWUXIUax9+unt83V2ycXeFQIJEIAS34HqxC1wIrh9ycb+4u3sIkBAIcXeX9ay7jXd/f1TP7G6ySTbJJoHQzzl7Zqa7urq6t2a6ql75Mer3R/Z5QTDv3gf3qbyBgYFB6YtfAJD16cPY+3bGnVNM3fQ5dJneBVNcFN6yqsPcwn8GoT1T0fwq7rI64rsJ0eqAp29gQXjnz7KkEd41jLSxnSj5Y0u75wl+j58fL/6RmuwaorpEkTgwEXuMHdWrsvHLjXzxxRfcdNNNxMfHc/bPFwAtUzC4+X7cmzCuub6GhgbmzJnDFY//m8IvV5Bx9gA6Xz6KHT+tY/NTMwBIO28lSSf3w5YUyZzjn2rVnn4/3g/AmlMe2p9bZ9ABNDQ0gF/FV9uIpmmtPK3tJm+7+qJ4VfcYGXGghJrcu0RFBBaJoVlTIuCd3vKzT5Vx+fY8tpUlDRStOYJAD3WQdXXqNiMmAimVFN37XpV2MUTsYoxoSQsDhTVcGCRnzJjB2WefzbBhw5AVCwWbf6N7rzODItlSC+cZya/RMqWC5N/pvgd27cu/Q9r1var5KZ89nfoNq0k89VzMkVH7UOGuhPRJJ/XByyh69APy73gVR5ckGlZuR3WJCOnYkwehhLVe+LebdP2IFoayPfXFwOdAX2wZNdFQ0oDP5eOE504gMisS2Sxjj7G36vuxvWJBgsJ5hfQ8p/U8YXd9MfB5T30x8NrYYp7QuGkHOU/9gLe8jvhzRhM+sifl3y+mdtZKaqfPx7WlgPvvvJvevXszceJE+nzzv2Dq1vay5b937VN5A4O20LR90JQwRCU6lL+tUSKAbDIz9IQ70FQ/VXlr2LD2UyrLN/DEE09w7bXXEh4efribeERT8PKvAJgTkmEfUqV7VIXuYxJY+PIaChZmkTYyea/HlHty8LjrGDLyRkLDkvFbZeoyTJQu+w2As846K1h2xWt7zwUZFRXF5MmTyfxsGTnzPqN0wXQA4m++Cm1jGZV/ziBv9TTyVk+j+1GX4vP5kCQJRVHw+/1ofj+SopD14jOGYeIw0bNnT1LIIodNRGnxREvxh7tJ7UOSQTt0+WsPNh5EqraePcXAtlevXmTSgxw2omp+Oit9kSUFzb9z/PfBpUGrZSl/4MdHTwaxQpvbIfXGhnRiWMzp5Ho24NQa6BJ/Ag89eRnnn38+zsYybKF6KrHIfdeo0SwKYYXiPm28QXgvhW0W+6TV+dQuX4QjMont37y8+zo0jZBfZlD6/eekJd2EVxYTrK1Xi3rt4eL/ZdbF99zsm6GmrF5cV9WCYkqf/Rpbz85s/3kWqampAGRUXkn+XW/jWr8dx4h+3HvvvcFjV5z0SJt1GhgYGBwMJFkm6Z7LUH3QtGo7ZU+/i6+8mjvvvJNbbrmF+Pi/ybjhb8q2h78GIH5Q0j4dp2oyWcemMPu+bDZP2073SXs3Zru2FlOTXcMpLxxDp9HN84qN03JY0+jl7LPPDm77cPhbe60vNDSUk046iX7at6x+4ne2vbsYgN53T0CVZLa+OIvCz5ZQ+NkSutx8Iv4xfjRNw2Qyoaoqms+PZFLo9+P9hmHiMBEeHk7qJaMpfH8usYNTSTixdzB//74QYvJg0nMY7ZyaSaH1YvHeCCzw+ndy3282QAgDQb1375kHAthM3qC2hFfX8gp44/tULZiC0++R266gRcREUF9CJZjnP4Amg6pAwLE/IGgdRNrpNXBtPuEE06NHDwDi4+PJ6juZbau+QtZkumaMw2QS1yv5W6wMqgRTRUkuD5rV3GycMLehM7EzbURItHz11teQ88Hz+OrriDlmHMVff7zn+tqJrXMy6Y9eTs13c/GUVBF/5ghCeqax/d5P8OYWEzEoBWC/+qKqyYSZXZgk/y59sS6vlk2fric8JZRf/v3LHtPM9TmtM8v/t4z0fpEk9I5p1R8PpC8C2HSR7tptVWy791Ps6TGs/n1B8P/fI+Qman9fiXNtNraeGTzwwANBo4mRYtHgcGGkbzp8/O2NEmufbl58PvHoRwkfeCOLVr7InXfeyf899DSlJdmEhYUdxhYe2YQN6kz9iu3UnlZKyG9iwhG7WjxgyweLL2vFCDGIi12ssKlMTP7GZW4i9cLuFCwvZ+Ydczj9m7O5ZMkVALw/7O02z+Wqr0RWzISENk9sVJ+HshW/E9VzWKvJxr6gpUaROuYsNn/4GABlz7+5S5kGtSqoq2GJDsFTJXK8mxPisffqSfc8F4rdwYZHDMH1Q4kkSfRgIOXsoJISovkbLS4cQYYJG8LLPxC5AtCJnvjxkc9WGtQ6+stHIUmBWOlDc92FZCMh0ZuhJJLeIXX+vPlxACb0vod+dEUNEd5AAU0Ev6prRTjMmKrFe5r0nNgWC1qoiCCzlwrDAGZ98ljv2u05Gwu2U774NxpzN2OLSKDzsZfssY2SJBF78RSKn/sf+S8+TejRw4g+59Tdltf8Mj06F7XatnmzmDBhE7/fmTHCqzjJXkdThBlXaR2b/vcxth5ZxN94CampqXT98hFqZy2j4oOfg/U0LVrD4sWLGT58+B7bbGBgYHAw2H7uPcH3WdJ/SX/1bvKv/S9PPPEET736MgUbN5OcvHfHGIP9I+HEXhT/uBqlvhZHuJiP7eqd7m/1WZZUFEkjdHwnSpYXM+fhRWT1C+N2kxjnP9n/yzbPVVckUiYm9m1O56lpGkveWE/a8ARuuumm/bqGyGiFkfcdw3fjsgFY/99fdinjLq8Pprw1x4bhrRD6Vea4CMKHd6NHeS2WuAjDOHEYSJ0yiur5W6hekkP6hO5YAv1NVtvVFw8XDpM7aMBo9kZXdvosBz3UPfq+gFGiLYJpgvQVoL1GTMhac9qngHFAbtZxgNYREzuv0wU+KxYbJnsYtbW1wX0JGcPwuhso3DqbxupCBgy4HIumO8n4NQikGw0YQILpm/R27KxDsQfaapcmQ82G5fgaG0mYdDbh/YfsuZJ2suXM+wARKRV602RMugOQt0r8JqguL16/QqjF3aovBl731heVNi62YnMVy99eR/bvBYTE2Tnt1eP3qntz7G2DqNxey9eXz6Tz8Wkc/8hRSHLbC60OPVWZqsl77IuBV4+q4Gtws+neL7AmRdLzsXPp0aMHI369i+qFW9n+/M/B/6NrYx7ffvstZ5xxxh7ba2BwsDGMEoePv71RYmeCi16As6mCJUuWcPzxxx/GFh3Z9Lp1DMuv3UH23e+T3u00wlO677Zs3YRGzLonxg/r+wFw/uO1PHP8TNZ9uJYhNw5r8zhN01i4cCFlWxYQntoDe3YlADsmJ1PdpQbV48Kf5Tig6zCHRpI0+lQItWJyhILHj9/lxCqHYI9Jxu9pXjAM65FI7KgulJeH4ly3hbo//qTujz9xZHSh4c6rCA0NZcxEIcpd3a3ZA3n1C4bB4mAgmy3glZDZjffPwUT/vQmIHGs+794PMZmRdHFk1aWnnfqbGycUSSFMi+K+qx/my+tmATBL+5oT5bOJ0RJYpc1nh5RLuk2kclKbhNgaB9FI4dU8VFGKjRDWaUs6vP5f1j/a6vOSJeIcaogd1dH+yAN/iAW5yRuc3mkWEyHZYtImmUJpWLCSys+/wBaTRPLpFxHWsx9uee86Hfl33k/hhZeTlpZG/ez5RF8yHsUmzuKsF4aUsEhhLAmJcOL26YLdkhYUxt4TJbM2gd9P3PUXIFlEe9y5xZS//j3hY/sTetwI6n5dRMO81W0K0+0LmW+KlBi5Vxm5Yg0MDA4QpXmsoNY1MHPmTC65ZM+GXoP9p9uVI6lZlsPim7+j179GkHxcF3Y3XAvRF74UtOCC3IR7+pM/t5AFb2xk0mPDdvs8WbduHSve3UBS7yjiYgA9rafq16gtbCC1X9QBPYvMIRYG3nEsPo+GLS4Ev1/CW+eCEDuhmTHINhMFHy8CwBIbRuoFR+Pzi9QlldOWUjltKbaMeCpG3hjUPuz8+aOo3uabkXOhkYLkYGAzeZFkMFna//9v2RdBLBArwfRNuwoNi7LtG8v6d/oCBFPkEMjDHxASVoLe6z5VodG/ZyHhADY9FZBXXzSW2zBS7DFiIiDGrB+2c9omUU5/bUNDAloYASTQJAlJ0wiNz+C51z7gt81CQ2LBd7cx+nSJmMhurF7yOrm5s+meckKLRmqtNCW0ndM3BY0TLbe1NpgEaUPgWvW4ady+CcVqo/iHzw94rLozOxsgi4uLSeZFLIqPUMvu0w47TG6aWug6+DSZCLOzVV8EYZyQUcldVMo3/55PeJKd8fcOpM8pGZise58nvDzySx7+o4q0rsls/TWPk+7th0VPK9VWXwQR3dPevli+IBtPRQMDnz8Xe7gexVPdyJaHvyF8SBfiTx9O7bJsyr9eEHT83F+6Pib0Zbe2ka7bwKC9GJoSh48jyyixYBV2TcUWEoPf66JTv1M57rjjDnerjmgWTXmLlT2vZ8zFp7B15ptE9BxIt4FTkGSZuOV62KhNPMjqJu56vCPSwpjruvPb8+so+DOPpOEppA9+EHd+IVpTAa7cEpwb8vBV1OKISSV18CRYLQZbvqZ6yp5+BwD7gB77fQ2JT81n9eU2vOFNmKKtzLn/Lrp0EWK4/S97jJxZH2Ay2YjuPJiq7ctRvX4SJ/ShfpUVc3ICDms8lQtm0ZS3jej0TNKu+Q+mghU4ndX4GsMJSc7CkZC23+0z2DOa308UcThpPNxN+UcTJyWTp22mUasnRApjnPk8ZqrCmzFOTmGHbztplp6tB/2a2myY6EAqtVLWsRgvHqKI6/D62yItTXzHK5I8WEPE4FrR9XUkh4iO8MaFBsPO/fqEwVzl3G2dTcvXUfn2l0T3GEramHNwx+7bvUpNTSXxjn9T8uT/qP3xT6LPHtOu4zx+Bez6pMfib94GbK2LpbQujLoGE6gaWk4jSqLwfvU3iGuJGDMAd1kVDQvXEn3RRIYNa9vg3F789Y04l84jbu5vmDOSkW0WbF3T2HbOvXs/2MDAwEBHUjRM4Tas3TLw5BUTPWUiF1xwweFu1hHN7Mmvsq3XrYy+5ASW/98MCqat47hnTsRkMwUX18x78EZXzApjbunP9HsWs2NlBenD4tFuPJ7K/EZKN9dSuq2B3GVVVOY3EZ0ewimPDA4e62nyMe2BFQB0OSZxv6/BYXJTMK8AX0UdjjgHb5z8OP36CeeqyX9ex7IHZqBqkH56P/K/XYPq8hI3vh/OWg/WlBisGQkUvz0TV14Z8anJdHv5Gh4KO5qqT2cgOUKwdkrB1jNrv9tnsGdsJh/RfRJozKnE0UJHwiL7dvFK31NfPNyEKB688k5e6rKMRxXLOSZ9Ad8TNEZouP1in0XxB8dxsPuICUkV2hOaf9e0TS21Jdpcj5No0x4AwjARldKbnAVfUF+ZR1hMBqPOfYYF304FIDVlEaVlq+maNAZZNjVHQfjVoCFZalPgukWqpzZSOWk7GRoUD/gt4CwrJP+7d/DV1WCJPjTzhJiYGGSLgreoEodJRCO37IvQHBXhMLmDfTHQN9uicGUF3928gIzhcZzx/CgU877NE6Kjo7nowzG8c9Zv/PnCOk68d/DeD2L3fRHAo5owqSom1SOMUlU12NJERL3f6QFVI2p0T1SPl8pflhN76ghOOeWUfWr3zqgeD3Xz5xL3+2/YEzJAgpDMrmx82DBSGLQfQ1Pi8HFkGSUAWZIZeMJUNFVFMVk63OptsCsDBw6kz7Pnk/dCMTumf8qq3O1EpvTEkphMdM9hoKc3Cf8lBFuVeMBG61/kkl7hdLlwIGWxXalals/2nzfg//r/AJBsFqypcYSO6EVI/870+j4NeauMP38HAGVNKp6cQgCsSZ32u/15pydR8c7/gp+7fvgFd9xxB48//jiu6hLqCza1Kl+9NJelV/5AU+7WXeryNzXiraoge/03YkM2SLJCzyse3O/2GewdBRMN1Ox2v2QSi8TtiWTYF2Q94gE9ZF/z+/fq9S+HhoAeHit5fXq7/rqToPaSau1OsSuPRf5f6SEPIkVunmBnSN1Yrs2myFpEWmgfNI+3+X/RgVESPs1LBcXksBErDoZyHDYOLIqqvSQlJWENjaG+PBdCeu+2nGrRvYXC9T5jEu2zljYb1bZcFkX94sVUvvI10en9yBp6Nktf3T/dmhGn+Pl9wxhqvvudkCFDMUVHgVXc8/odwpiQ3q0Unhapz2x3id/XzqllAOSWxbRRK8ScdhS1f2yi7KOPSNZTYkgRCchhIRQ88D4A9kG9CDl6xH61uyX1v8+j9pc/kBQFzeNFiQwl8/U7DrheAwODfyaJd1+J5vEh263BlDsGB48uXbow6qmTqFqWy9w7ZvLN5M9IGZVKYo8Iuk/qhD1ajNHMwVQ6/qDXuVn2M3RyAnEJI9k6r4w10wp5+sc8sc8mE5sRQpdRsYy/JYbux8Rhtiqg61zl51SzaYZ4pg04LnK/2+8trWbWLbOCn/s/3p/TTz+db775BldFI8V/bm9V3plbzpZ7P6N2bSGat/WCoub24nd6OffKc1ttT358/1JLGbQPS4Sd0rzdi9vbFTEmNeu6ES37IogoCLO+OBwQF95ZD2BfNSUCBLQgAuLCgQgHvywHc/p79XaYAjn+1b17wgNYFTHP8PmVtqNgfeBXd13IlpTmtE2thK53DlbYKW2TJu0+lVJ0Wj9Ko+ez7veXSe8zgZSezY6jKckjKCpeRs6OOXROHdtK4Br/Tvd1D0aIveGVvdRtWU/l6rkgSXS6+jbM0XGHZL3IYrEQ0SuR6rVFcF6/3ZZrT18EyJm7g69vX05K30imPDeYhwd/s1/tSsswMXFqT354eB3DzkwlpU9km30RhMZEe/ti+sQe5P+6hTUP/8qod6aIa4u1YU0IJ++ZHwAI7ZtO4tkHnt61ftVyKn6bjmS2oHlEFEr3e54+4HoN/lkIo0R70zfte/1z5szhqaeeYvny5RQXF/Ptt99y2mmnBfd/8803vP766yxfvpzKykpWrly5i+i72+1m6tSpfPrppzidTo4//nheeeWVoK4jQHV1NTfeeCM//CC+Z5MnT+all14iMjIyWCY/P5/rr7+e33//HbvdzpQpU3j66aexWNoXkdfRHFEj8YBXrsGhZ/6JT9Fp8zMk9YpDyZ1L1dJtlM9bTNWmJSQddwYhybs3GkiSROyozsSO6kz0hEEUzqzE1qMboQNDkCQpGA0q/+BpdZwSJsRWY6+8EEnef29rR1wqkb2HUbO+OcXL4sVCzC48PJ2so6dQXrkBW3wySp0XV1MlNZtXgCSRNHgCSvc0rIkpOIvysMQnYAoNJyQ0Eb/fg2qRCM3ogew4NAuj/0RMSQlQZUH22zDFJaHW6PlKWwxiD7XA8j8JSREC1jY5hFH2U1jvWsAmdQWxUnOO7igtliQy2FD9B5rqJ4UkJJO5Q41EmqaxhFk00YCMTF9G4JD2XWj6QIiREmjI24q3txigm3SDrNIgFkhkjx+/fc+PXa/fRflnv9CweAlx3UaQPvyMA/p9AwifOJq6H//AtSWb0BHt84IKEB0ujCUun1g0irU34ogWE/uGSy6k6NkXqJr+E9xxB4W3PEZGeCieLcXI0VbMyR2j8dK0YiUp43vS/frR/HHaWyBJaIaLioGBwT7SUl/C4NDy9ahXuMx8GZHvTyLv1+3kz99B7sxs1n+1hTG3DyLjqD0LYWcNjyVreCwjzktn4+8ldBoSQ0qv0D0uJlpDxPP2+Ou7BN/vD6EJDgZc3JPVH28KppBZuXIlAFHJdkY/PZHtP20honMMbreGp8FL4berAEiZMgpLVjIh3VNoyC7HFBGCLT2Wo446isVbNyApCpb0RCxJ0fvdPoM9Y1N8SF4PilnBpviCnucW2XdYIiNkSd3FMLGvBBauvZocTCPlk/QIid1YBXy70ZpQZLVVqiZN1SMS2oqYkECSmo0RbaG1iJhoub6nWGz0mngjO5b+RP7an4lK6hncF+ZIICPtWLLz/wANusYcJXa0NE60et+28UPSaJVGqlWbgNzv3qCxcDvIMokTzsQav+ffnY4mrm8CeT9txCp7kSSpVV+E9kXqeF1+5r66kUXvb6XH2ETOfGwgZlv7jFS7Y8hZ6fz67Ca2LywnpU/kPh3bsi+C6H8+SQEFht1/PL9f8jkbn/4N7WSNhac8z1Hvm6hZV4IpwoGc1DEGofo1K3FkdSN5ymXkv/wMnqpyUI15gsG+cbA1JRobG+nfvz+XXXYZZ555Zpv7jzrqKM4++2yuuuqqNuu4+eab+fHHH/nss8+IiYnh1ltvZdKkSSxfvjyoIzNlyhQKCwv55Rehf3X11Vdz0UUX8eOPPwLg9/s5+eSTiYuLY968eVRWVnLJJZegaRovvfTSPl9XR3BEGSUMDi85N7T25O3/8iVsf+FXsr94iZRBcZgjxhEV0xWzPQzZJx4Uv+UIDYrIEJH2oy4kjpjzM0UFkoYGJEQIYahN1yQAEJ8l9qvfbQFg/aPPEB+//4tfq1+/A7iD/Px8Nm/ezKhRo3DoRgRJkojJGoz1GCF+ZS8HnwPCs3pjDoti2+cvtF3pI3cC0O8/z+13uwzah6ap1HrLiDAn7Lqzd2cA1BBh9ZXdYtAn6ZEJcqMbTRca1rILRFld70C2i5Q7qsu9W29+OSpSf6OHFpvNaE49HY/+YJDjdE/zgDem2YRWWiHO2cGRG7vQwZoNgYgTSZZQPc1GQklRkBQFEwo9zUOp8BSRq25sdVwvbQR+k8y2+sUkJl+ERXGglpS1qqe91xDQ8HD7mqihggK24cNLEw30ZiirvAsOi/drhDWJ4vpNqH4vstI6P6ov0o5mklH10Gpzg+iL7khRruC4KPxNTRS8+CKq08Wbb77JFVdcccCD9W+PepnuM55FtjvwlVSBV0ZTNPz1jdTPmEvomJHUNNmJbxR9sfSTTABs1eJ+N3XS88rq6W1jT8gO1m1JTibqlJOp+vZ7Ev5zOV1OiiM1A8gIYf6JTxxQuwOoqoq3pIqIngMwhViJu/E8yp75CFd2aYfUb2BgYGBwaHh36LswFDhHfL7qhwnMeHQFP9w4h8SekQw5J4Ouo+Oxx1uDXt2BPOoBL/SwdBOpl6YKMWx2n5cdoKhSzB/+7/z3OKrXUfvd7teGfgLvQ+mTpaxatYoRI0YQFhYW3J80Kp2YEcL5yuU34fErxAzLBFlm1e1ft13pZPGS9el/97tdBu2nZmM5oanhu2y3K2IMag0uCge801tHRZhl3y59cdfP+6YpETBMBHQjgp/lgJe6qdljXTc4eHXvdLekp2zSPwdSOO0JUxuREoGFNVWTmgWtWyApWlBoGn08qsn625ZrvlLr190oOyDLCul9J1JVuIbCDTNbNoSs9LF4nfXkFM8lJaQnDmsUBJzKFKXZNVltPgaajRNtGSl87iaaygso3TgXv6uRptI8Eo46idjBY1n3wtQ2WnhwieqdwJYPV9BU2kBIYlirfXbFi1ny77Ev+rwqb140h/KcBsbf1I3pz2xEPkDHpXt6TwPg1dQw6grqcChCYN3T5GPuO7n0nZBIdFYUIKJ59qUv2uNDGXjnGJbc8yuD7jqOxJP6EW6H8KEx/HzMbtZQ9gNfZQXhA4Yimy0kn3ERuW89S8P2jXs/0MCgBbuxae627L4yceJEJk5sI5+9zkUXXQRAbm5um/tra2t5++23+fDDDznhBKG/89FHH5GWlsZvv/3G+PHj2bhxI7/88guLFi1i+HARhfTmm28ycuRINm/eTPfu3ZkxYwYbNmygoKCA5GThRPrMM89w6aWX8uijjxIevuuz8mBjGCUMDhqh3RLp99LFRK2Zz5ovtpH7x8fkAo7oFFJ7nUBkSq9W5d0lNTRtKMaSmsAxwyuJMIvF3aWl6QA4khsAkdtcUzVcG7ORrGaioqI6pL3p6emkp6e32rbk/VsOqM41zxm5DA82NbYGGn3V9MiahBoeg5opjBOSx99KIG2/GdEXv0PPyVomvMY1kxgAah4xcAwO1BOjkfRtTZ0isc9ae+Dn3wc6KvogKNytTwZkPZRPa+F1Iltt4jVcRCOoaQlIW/IwSxZSla4U+rdxovV8Zro/FeUkme6mQSx0/Uh24yp6xI0N1r1Hw4SmimiMFuHlHs3FOnUxlZQAEEE0DsJIIYtE0g9bOg7/sX3Rvp5FraeE0LgMzGF62jDT3g0LnvIyambPwl9TS9KtN3LllVd2WLt8xaWoziasnTIBcK7fQtX7X+GvqsVXWU3Mve3P5WqSVRq8oj9Y0+uJu3AATds2Uf7KR4S4jyHx1EFIcseEwZ8850ayP18hRn4OB26fCV+5LpJuieiQcxgYGBgYHB6iMsI45/VjKFhYzPLPspn20GrQICYzhDFXZtHvpCQUa/Ozv7bURdnWemLTHXRuEYC9cxqdALlLhANI165dO6S9CQkJjB8/vtW2z0e+1nbhse2rM/v8uw+wVQZ7w1deS/nyQkbeOxqL7AumNAp4px8oYbIr+H53fTGAv0WIgYpEvd9+wOdXJA274sXdzmWy3UVMSLKGrKhB40QgIlWT2xC6Bl3EWrxty2l4d62RZRPJ3ceQs/I7Rk74Pxb+8gC/zbmHE455lK7JY6ms3crW0tkMSDmt+SC/H6nBCXZbi7mduA7F6cNvaz3u93vd5Cz8nOqCdWiqH1tMErboJMK69SVm4DHBec6hJr63ELmv21RCVLJ9n/pibYmTRR9lU7KlninPD6TPiYkHbJAIUF1dTcnWBo66QKyDFKyp4Yt711G2vYHsJZVc+u5R7XaS2rkvZo7NpPSUXqx++k/qS5rofNFQZHPH3P+sF56lcfUafLU1yHY7mgTeRmGMVsIO/cKqwd+b/YmUqKura7XdarVitVrbOuSAWb58OV6vl3HjxgW3JScn06dPHxYsWMD48eNZuHAhERERQYMEwIgRI4iIiGDBggV0796dhQsX0qdPn6BBAmD8+PG43W6WL1/O2LHtHMB0IIZRwuCgEfSUHQ/cJqx+13x2Ieu/2caWee9jspuJmNOdiLgu5DlWUrYoL3jsrCHJjLljENFZbS881fy5joY5InQ6ZnBn0ruYkWSJLbNLMYXb8DZ6Ce2TTuZFI7CnRHWY167BXw9V03NbylbkmkbcXcSAT5PNeEP1NDouXfwtTCyk28v0hftoOw0puihxX2HcsjToURQe3Tuqbi+e/HvAeXzfYIhzQKfMVtKEuqVu9wcdIJLJjGxr/TBUnc59S2GlRyfIVjOqu3myJYcKoTI0LSjejK95IK11y0AuqyHR3Zfcsg2UqvkAzPB8EiwzadIkFv6+TtSXJoTe1O05u1zDztEdkiwFryFX3UgNFfRkMJHE4iCU37Sv2n99BwlbTDKSYqK2eDOhcRk440TfslY3D3DsBeJ/7w8VfbGqdj35m2bSVF+KYnGQMvgkEqrSd638AGgqFPe3YfkyGpYsomnZWqw9swg7ZiA13/9Jfck41BGi/zsTRb8PnynudWOmnjs5UnwPVm7IRNYFvK2Z9UiSRNx1F1Lz1c/kvDoLV0kNna49vsPavumV+QDUm+PwfL+Kqg9/x9avB6YowyhhYGBg8Hfmyf562t0BwLVQVFTEkiVLuO9/V/P1vWv54eH1dBkaQZ9jY8hZWcvyX8qDQ4PMPqFMuS+LzgPC2qx74+Japr0m9CSOO60LMYkWHKEKS2fVYA9RaGrw07l/KCf/K4XM3qFc0nXBwb9gg8OCqut6mB1m7Io36IluVXzBPP02eac8/ju9ypIafB+IiNibAaI9hCnOoKEiEEER8EBXJV/w/c7e6YEUTWZNbY7Y0F/3FjVhUvyo+oJaICpDkQNREBKqrO0SNaHJgKxHJkgSmhwIT5DajpjYC9EpfchZ+S0l+Us4ZvJTzPnhNn6bI9LrXXNNHR++q/82tEzVqc875CYPqt0cNJT4dMcxxanit4l7WL59CVX5a0kdPpmw5C7YohJZ8db+abN1JPYYB46EUIoX7yDjuE7Y9X4XME6YJP8ufbFgWTk/Pr6R4i31WGwKYy9PZ8gJUcjy/s9Pd2bx4sVoKmz5o4SiVZUs/LaU1J6hnHp7F75/cht1W8pJ7RWOV1P22BdBRBDt3Bf73zoae1wIm99fRkNuJQP+76QOa3vl10JLQwkJoWHDGoo//wBrQjK25LQOO4fBP4T9CJVIS2vdzx544AEefPDBjmxVkJKSEiwWyy4O2QkJCZSUlATLtJVBJj4+vlWZhITWGUaioqKwWCzBMocawyhhcMjIzMyk67gMuo7LoGxjFUt/b2DHb9lUrv0eW3wyySefjyMtC1PkcvI+XsxXF/9Kr0fOwNtJLLAelSYW1hYUZiLFxiCHWFEb3Wg+lZK1lWiqRuTAdCSzglczUb98O6uv20TK2cPRTtAM0fMjEL/fz5ba+dgcMUR6I9o9GG5J6A4vsk+lIUX0M2eMPhlQ9MokMyaXePI0pFj0fWKXSc8coOhGD3OjijdEn1zoA2NJbfY0AnCHhxLp7Y5/7eZ9b+xuMCWLnKhatPAK8evGF2Xt9t0eo4SKCAd/g4hACkRD7By1IFttwWgIIsVCsGYzQ0WN2BYuFgRqeolzm9NDiViqES+nsda3kK6WgWSoXZElmRnez5g+fTrR9nSQJfxRol6lIgJ/rdACCaSIUlLENanllaKdPg9VvhKKyaeEfBJII0Xq9JfSEvJHmIgaMJLilb+TZuuD1iV5j+U1TSVn3TQstgiyjr6AqIy+LPuo4wWcj77FxsaEAWyZWYzqdhN92TlUvP0ZqQ/eQc13s/HsqCCqLhHPPjoVndF5NQDVGQ4Y1onPX4im+INp+DN7wYkd0/awrBhcLhl7rwzy755J5NAsuj0wGUmp7pgTGBgYGBj8JUhOTua0004jp/srlGY3kjO/mFUzKvjy0W0kdbJx0b0Z9Dsmksya+7jjoYt54sK1/PuZTow6KXKXuhLjITbZQkWRB3eTSt7GJrwejS4DQnGEKUiyxMZFdTx8zjqOm5KA7/YRXNFr0aG/aIODzoa3lmAJt9JpVBtpXttJiOxuNlAEjRK600aLtE17E7tuqSURMEL4AymUdjJK7G8UhU3ZfcR0szEi0I7dR01oO+dF2l0UbFsaEjund2pZXAOLPYLkTkeRu3E6Hlcdxw1vQFHMzFxwL9OnT9cr01qLXOsGCtVhafVZ0l89Vqir2E5Z6RpKsxcSGpdJctfRLP7gwLIedCQ2xUvPc3qy/H9L6XVKJyIH7l1L5ufnt+D3aZz9YE8GTEzkriG/d3i7xowZwzm3prLk12oKNtRz/p3pvP/Qdl5bewzfP7mNkm0NpPba98iDYF+0mOl35SDCO8ew5J5fKP5hNRzbMW23pKXh3p5NWN+BlHz5MdaEZNIvu6HDorYN/kHsQ6RE4MeuoKCgVbqjgxUlscemaK3XOdta89yfMocSwyhhcEh5adDHAIypnkr6FFBHT0Lz+Qjd3iwEHX9iL+KO7sra+39g/V1fk3zbOYQO7taqHkePNHp/ejsOi3jYDY/PBWBllVCer3PZ8De52fHsNxR8MI/5V83n6KOPPgRXaHCoaGxsZPTo0dRW5TA07XwkRfycWfX0LrXdw/Bb9cG3RY+YcOrGgzphTdAUGdV6eEJ4lb7dg6Jtku7F5d8mDG8toxoC2haBFFGSWdd1iIrEl9scXdQW/n5dxLlqm5B0ccbgAF/T0ErKdjmmlRFCN1Rgs0JdfatyarwYSPsihQGkpUGmYWgaA2aOZatrBdu8qymngD7KcMaZzyMlJYXCwjzcyRH4QhRsZboGhx6doURHtjpPjbOEbG09VZSi4sdOCF3pRwp/LYMEgOKB5OEnUZ+9gdXF39Jl2HVIkoy5UVybpdqDK0UfuGgablcdbmcNGQNPJSa5Lws+OjheXJYwK/2vGUL90c0pLCRJwhQbDZKEa1sNhIKlDhoyRD/JPUMflFh9geaKawz34PeJAVeuU+il9AnbQYErmrATR9K4cA31s5d2SLvDLS7i+saR/f0mCh75EndBBebUISw+6QlG/HpXh5zDwMDAwOCvxX96zuAtZTRduqZw0mWJ+DxqcDgCcObxZ+Lq9V9evSOXF27OxuPMYMyZMa3qSOls45U5fXYRFG65EOzzqHz+TCG/vltM5/5hXNE6q6zB3xyfz8d5551H7oxsxj58NGFhEtCcvskqNUdNmPVXmxTI5986r//hwCG7myMlNDHHcemvAU90t2ranV0BVZOCnuo2xYfLv+uyj0kRcwJVDehZaEiBiIg2IiYANLnFwtWejBAtjBU7I2mQ1XsyNkcMuRunU1uymd5dzuLEUY+QlZVFQcGfaD49DW/AgBKYv+xk93E2VZK9fQaVlVvw+1xYbOGk9BtHfLdRfymDBAjtkgEXdKfwj2zmPDyfS74Yh8mqYJW8wf0t+6KqahSsqeGMO7ow+uxEbujR8QYJAJvNxqnXJDPpXynBbSaTCVuIQkScmZq8+mB/3GNfhDb7Y6AvJh+bRcrxXcj7cQM8c+Dt1mQNa0YazvUbKHz3VXx1tViTU9jy6B30eNDQ9TTYNzStdXDW3soChIeHHzINhsTERDweD9XV1a2iJcrKyhg1alSwTGnprrqL5eXlweiIxMREFi9e3Gp/dXU1Xq93lwiKQ4VhlDA4LMw+/um9lhnss5H9+HcU/vdTIk4ZQ87psdgTQhmYJMKxS5rC6BpeDkCarQqAX2t7AhAV2gQRMlmTe7B80Xbs9gPP2Wnw18Lv97NypUjhFWKN2UvpZsLnbqdpiEhG7NhaSe1AEeKmuANPIX3xX49wUE3N+xoTdS0JfXws1YjtlvrmJ5jPoUdI6EaAQMSFX59Qm1xQOTBSPwf68eKNY1vrNEZ7w5SZgTctmqZQk35ufSTYIg8sQHhtU5vHS4nxKBXiWMkujAuEOFAjhJFQLqlqLhwehhouvkd+u6nZyNECc6OKvVSke5IT4ula2I84JYW17vks8f/GEMuJRJamU0ghHk8DckgErng7IdWxQaOH5vbg07xU12yhSatji7YCOyFk0YtYElmg/vqXjnqSzVYSJpxB4adv4iwtwJGYsduyZnsYsmLG6anGZzt41/Tx8DfFm+Gtt3fqVUFV5zi8+dsJdwwDoHKY3v/9+9aeNFsVAzvtYNOxiWz/bDV+vx/lAHP2fjriDYpfLSb5+2Scq9YD0LBgGeakBJSwUOLHFmPv24u8G24/oPMYGBgYGPy1uLLb3D3uv6DnckKe6curDo1X7sgjf109J5wVSUyiiWg9dSK0zuEPzd7ofk0CG4w7O5Jf3y0m1H74Fp8NDh7Lly8HILpL+/UHrbIXy05GCbPkDxoqlJ0iJeQWq+T7pinROlKiOX2TSX9VUPSUOLI+rm/LsLAnAloFLr8Ji+zHpy/wm3XRa79ujJBlNWiYaIkkaxDY3HJY2NYQcR+HsTISqZ2OJiasExvXfM6y9W8xOPM8NEQ6lDp3KRGEBx24gqfRNFTNT2V1Hm5PHVvyfsZkspOaNZro+B6ERqQwZ1rHRx13FLIic9x9w/n03Olkzymi24mt0794VVPQMCHLEnFpNmqLm4JpnQ4WU7os3mWbQ/bQuV8I25fXYJO9KJp6wH0xeUQqS3/ftsvC6v6Q8+9bqb/0asLDw3HliTm0v74Oa0ISsslCysplhPccwMbHbzug8xj8M9gfTYlDyeDBgzGbzcycOZNzzjkHgOLiYtatW8eTTz4JwMiRI6mtrWXJkiUMGybm9osXL6a2tjZouBg5ciSPPvooxcXFJCWJzBQzZszAarUyePDgQ35dYBglDP7CyBYTne85g21vLaV2+hx+/8EHskTamEzSxmZiGtQLv91PY5kTdqNhV7E0H0u0g27durVdwOBvS3h4OBUVFSQmpJJdtYhesSKPvStJ6B5YGlRUp3hghC0rFAe53Yelre2l8bShAJia9By3ZU4a08X1+C3iWmSvPgnS58+yR0UzSUi+3Zv2K4bFYGkQ++3lnuBxAFK0qF8pKN/lOG+WsJYHjBueSF0jobL5PrpihbUlYIwwVTS0qiOSGEbYT2KZ6zeWe2bR33IMkiRTUr6K6KzjxHXaLXhj7XjUJuoat5DjXkOTKtI5JZNJdwai6DlM/8oGidXPC2H7zo8/hfSNlaacbYSHZ+AJFTM6+w4fliJxXU1dYpCQsIXH4arb9d4fKqIGZ1D0ywbUYT5k2YS/th5vUSnWWge21HQ8YqxC/Azxfx5ze3Pe7RqvMFLNqxAROV3CylGGh7LpLTdr1qxh4MCBB9y+pKQk7IP74Vy+BlNYBL76WnwlLnwlZZRvzcbWoysYRgkDAwODfxyKInH9oyl06m7lg2fLmPahcKQYNDqEMadGMnRsKPZwMyX5HpIyLG2OH5b/UYvFJtGlr2OXfQZ/b0wmExs3biShSxwrX19J5vNiQcau5+K3yd6g0cG6Ux7/vyoOve0BIWFFUpHVtsf/KlLw1aTJ+NowOrREllVkSUbWIyWCQRLy7ucXuwhd708aXUciw/pcxarNn7Ai9zMGdzofs2yjqG49EfZmbxqXtx63r5EGdx155YupcxYDEBPbk549z0aOEFHef/74112AfmPI+wBMNZ9LVEYYRctK6D8+oZWOxM59MSnLQWmO8/A0GOh7VAQf/Tefhhov1giFpjovhRsa0Ez1ZA6IQJGb+yLQZn9s2ReTBieABnPnzmXy5MkH3L6wsDAixoyhdvZslPAI/HW1eMpEXvyiHz6hYt5vYBglDNqDJrX4MWtH2X2koaGBbdu2BT/n5OSwatUqoqOjSU9Pp6qqivz8fIqKigDYvFmk+k5MTCQxMZGIiAiuuOIKbr31VmJiYoiOjmbq1Kn07duXE044AYCePXsyYcIErrrqKl5//XUArr76aiZNmkT37t0BGDduHL169eKiiy7iqaeeoqqqiqlTp3LVVVcdsqiPnTGMEgZ/WZZO/K94MwkqKysZ9/m/qd9USvbHSyn4PQfJNp+5Li8aGgvSjqFz1nhc54qFsxrde6VySzWh/TIJC2tbCM/g701MTAwRtiSaPG3nl5f9GiErCpvFmPWBkn3hVvHZbCJ8nfgZrOst0hEFok9DisWg0FZQR1OXSHFcpXgA6dlr8Ove7Q2J4iBLoxaMiFAVOdgGAHuFGFxKGjTFKcH3AOYGsc8dtf8/yZpJQtWdA+2lumBavZi8NKU6sFaJ984Ea9Aw0RJnX5H6TLXIQYOFJ1y0Z+fy7mgLjgJhfAhfpYt2u9x4OzULKzX2jifELY4zV1Qx2HIcSz0zWeuZj4aKt66a8FwXXm8Tq9d+QJlaEDw2ijh6MYbpZV8QFxfXrusfb7sAgF9dH7er/MFEUhSsKak0lRe02u6LsOAPFf8kV4zeZyxh+BsbMDe1V1mr45h9/NOsS1hHv68HsM4+nbhLxlN5/+e41ovvx4A3LmV4P9FXt/7ZvrwW8b3E9+iCz+9kw8BfO6Sdro2bAPA11GHv3w3n6i3N+zZtZcS3N2LSdVTmnfBkh5zTwMDAwOCvzSlZawCY/H/w1NR6Pvm9N7nbPHzwUhXPTt2BxSphtkg01qscNS6Eh15PCXqqq7qBonBTI137OUhO+us6PBjsPzabjZTB8ZRtqGpzv1dTiFCaggvAuwpei/G0RfIHIyICURQyrRdjgaDo9O7wtzCM7dwXPXqEhEU/t6dFqhyzJra59IG+Iotz1vrbb0wzySoW3aMpYKAI1KPIgYgJbbdpm2ghbr1XI0Rb27W2t0uahiKZGND1PFZseJ8VuV+gal7cvgZQVfyal031CylwbQgeE25PZlCPiwl1JDB72RPtclga8G+RzmfVS//Za9lDQWKfaEo21LTa5mihXRLoi1FxCgWbmoIGqUPJlC6LGfOvIr56Pp1PHtrO9c915YMnc5j7lXCm+vebfeh2tJintbcvhiSFYgm3cu/0hzvEKAHQuHEjAP66Wuxdu+Pc2qzb6Kkqo/vV92O3iqiMv8r/3+Cvx/6kb9oXli1bxtixY4Ofb7lFpJe75JJLeO+99/jhhx+47LLLgvvPO+88oLV49nPPPYfJZOKcc87B6XRy/PHH895777XKTvDxxx9z4403Mm7cOAAmT57M//73v+B+RVH46aefuO666zjqqKOw2+1MmTKFp5/eeyabg4VhlDD4WxATE0N4jyTCeyTBsWPwltfQMHc16o/ZVNXnkFcwh8yM4wDLLsf6nR37EN+xYwdff/01EydOpGvX3YRoGBwyZL+Ghg8aRYoix7IW2gemjvmJs1Z6cMfs2rcONqpZIXRrDQB1PcRgStYjIlxR4uHjtymY9AXtvUSNB3HGWTA3icI+2075lq0StorWFdVmCStMIE2VuUHFEysGn7a6Zu8dc04ZOIT3vK3YiS89DlO+GLhaJBsDGc0KZgOQX7yA8upNOF1VSMh0Vwbx2bK3SUtLIyamfem4xlmmiOv+i4mZbbvtFqaWFvH8629Ql+jFUSsmkSElrctpqp+m+lIiE7ofhlYK+vTpg2NQV9x5Iv+kv6YeOcSO2uhkwz1fUz8iib6XDeCkO2cDYvKd44wF4IyYZQBsdghB742NSTgbRd8xhXSc0FfilLEUv/UraBohw3rz/j2PcMmj9+NcLYwVG+75GntaNBlXHtNh5zQwMDAw+PsQFhZGj/42evS3MeHMcKorfMz8rp7N69zM+r6e+TMaaajzYw/b1Vu8qaFjveOrqqr45JNPOProoxkwYECH1m2w71isEqhqMG9/YLHXKnuxSQc3Jc7BxtoipU9AxDqQ09+vWwD8mhTcF0jfZJLVPUZOSC20JXaJhpA1MIPk3Y+xt0bzal7Aoz6gWaZYGJRxDstyP6XOWUxJ42bmukpp9NcA0NkxmC/mvkFycjKJiYntOt3gq4Qhwm/b96YeTJ7u/zlpJ77A1NtvwV/biDVm9/eycEsTIRGHb8kuOTmZ0adFs3a+cEKrKfUSEqHQWOvng7u3kDW4lAnXZhLdtTlt3p76oqZp+Fw+zCFmzl90NZ+OeOOA2xg9cSJl770HgD09k+/+9yJn3XwH9RtXAZD/3dvYIhNIHD6BAf9+zjBMGLSNxq7aOHsqu4+MGTMGbQ/WjEsvvZRLL710j3XYbDZeeuklXnrppd2WiY6O5qOPPtpjPenp6UybNm2PZQ4lhlHC4G/DH8ftpIh0DRz/xy2U/r6ZDU/OYFn123RZfSOSrFAXbUJTVRq3lxJ+dN8Oa8PgEf9mw+qPcbmqmXrrXfTsdjpbtk2jT+cziQrPYMai+zvsXAbtI9KazLbaRdR4Soi0JKLpQsmSs0WqJpM+KgqIRHv1QXyTE6mqBoCIJbrugq6toJkDx4hXa6UHTRYLrdYq3bPIradA0h8wSpMXv12cwxumC29XiHaYKoSxRI1w4IwWkTsmp77IXyPK2HIqAXCnC2/zphQ7pkZhDDE3+PGGti9HvytWtEHWB7GOYif1nRx6m8U5dzZGtCSQIsobqofbmsSryd3GxD2gXxEQx94JX3ocUqkwTISExjJIHce8xm8AiPFEE2rKIkZKZJ7nx1bHnaicy0z/5/opNIYoY8nTNjP1sZu4884793T5fwmuuuoqnnnuOarWzEUbJdJURW2VcetRMqoJqvM24GmqIWrw0Thj9xxWfzDx1XoxRdnwOf0oNeWMPC2RGlMUfq/K5ul5ZP+ajeu9MwjPjCLK0sigsDxW1LetleGqEWm8zBEdp+NT+Pp0HH92wr01H19NI0cffTRNqzby+++/c/JFZ1K/sYj6jUUiWuLsDjutgYGBgcHfiGMzm6PoyITThsDivE6cdo6Du64p58Yz8nn9+1QcIXIwn//2tU0kZ5gJkTsmvefF357M9DsXUrmlGsWqMPrR41j67GJ6XzuC1OM68/WoVzrkPAbtJ7l/DKu/3M62OSV0OSax2RNd8u4SGREwUuwsdG2RfMH3gWgIOagtobbavjeCC7R6Hwz0xUD9AXFrGVOzfkVgyUYfKga0JlBBlcRGq+xrFhveCZvixeU3t9pmktXmSInANcgqPr2+PQUfSD4JpDbSNu2vj5B+OWbJxqC0c5i95QUAosxJpNt6E2lOYEH1160Omdjrbn7eILIqaJrG4KNvJm/bTOyOWApz5uxnQw4dU6ZM4Y57pzLn9S2cd08W0DqlmE3ysn1tI9tWNXLXG52wSYc+UiKAu85LSJiMFTeluU4GHhtBVKodn0dj6S+VPH76Uv797gC6DotCleSggLx7pz4H4HP6UD1+rBEdZykqffddwtesp37FUlTVT5cuXajbsJLly5dz1IRJuMqLcJUXoakqmRMv6bDzGhxZ/NU1JY5kDKOEwd+aWWOf5XhuwRUaw/a7PyKn/h0yxl0MgK+iBs3lxdE7c5/r7fyZGORIW800bd+CVlmHu7SI6qXzCZhGJUlm7cbP0DQ/67Z/TURYGtu2TaFLly57rX9iNyHAVddPhDzO/2rqPrfRQBBxwkmYf97AssrvyYwcSqfw0chSxy7wKg1u/KFWbOVuTCU1+BIjATBt1bUqdG8ff+dkFGezYaKjMTf48evGBG+IeBhGbvMEjQjWfBGerlWI17pxPfdaZ+CZ6rOLN5oCzgTRflWRgumnWuINVYhYJnK5+pIiAWhMtRO+rjk8Xqltor638KgP6Sc0XaSCUrZVzQYg2dyZ3vbR/FL7Tqu6T1TOxa05qaGCa6+9lm/e+IlqtQwvYsHgo48+CholZng+2ev1HS66d+9O2KiRVP8yg5CufbDExe9Sxt1QhWy24ohNOQwtbMaankL93EXUz1mFq9HPMRekUhzXQ+w87RS2XP8aG95bwYgHjw8eMygsj5m1fQBoDOYz87HpGxEy/eWkxw64XatXr2br1q2cddZZ1K3byuzZsxk/fjzJXyaDycRvv/yCqXM6FNUAUPLLelRVRZYPn4HHwMDAwOCvw/CMHKATr3+bxJWTi/jPBUU88XYS4TEyLqfKjlwvE8+N2GeP+Rc2ifzN9W4TeauqKd7uoq7Eyfx3t6P6xAqrpmosenQurmoXK5/8k8JZ21j+9PJ2CUl2+kg8Q1WPWKDOu9zQTtpfek9IYcVHkXxz62KGnJPBpP90wWxrn5PP/mCTfMhS67FzwHPcpZlQ0IKGiY7GKvuC4tVmfS7kkxScfjMmScWkGyGCr7oxYs8muUDapub0Ta2MEPubfbSN4yRNI7diEQARlgT6xI3j5/znW5WZ2OtuPL4mapxF3HDDDXz5xVxqa3Nxe4Qnvyw3z8GWv/nX9YiPi4vjuKuy+PXFrQw7KYasgRG7lCkvFP+ZnkPbdvw6VHTuY+fPH2r487tqygrcXPVwBl1Hiaj2yTdl8vj5a/jpxRxu/qi1cLUpmAZNn7sis/4rkWrpsWMf4NgRxx5Qu3Jzc5k1axZXXHEF1UsWsmLFCoYNG0bnzp1Blvn0448JzeyBu0KEqtdmr8HvPnz6HAZ/Aw59NmUDDKOEwRHArLHPcrb1WpKemsi8W6ez7buXiT/qBtz5QlDW27h/4nX1c1ZS8dYPaF7hmSCZLcRMmkzo6mryCubg8eo59UNSsFsjqW0opHvvvvQbeBl2RyweTz0mD4Q4hOHhnfcvYNOmTTQ0NFBUt57KiCbM28JpqMpj2rQeTJo0qQPuxj+PpV/dw9at5zB4yoVsW76Awrh8Uu48n6zXWgj16B44cqMY3Eke3dvEYglGUbi6CVFn21bh1S85Xc3HywqmuibYS5ogpaQaVA0FsISKfheIuFBDhEeIJ8pG1EbRd5RcMUhyDhBe5/ZaEa3hjtYjHXxacOBvnysGcTuu6gdA4qJGygeG7O32iGuLs+EoEddsKawR7UgWg19zZWOwXNWgXdMmqYqEV5dkkYTuEhFrK9DaSM9T1yea0DxRn99moiFZXHtIfnOZHhFH463xUOTNJtPSB5/Px7Jly7hywt24/A1UqNnUIiJGct7YiEWzkqp0JlKKp0DdQnp6eruu+a9A8shJbF+zgeo/fiPh3ClU9jJj0ruV5ANVAZBY8erhnTSZYqLRPD5qZ63E0jmNhycuat45BF6tyOC6G65HGjaY3sdFE2MWk45NdeI7U9oQRtPWImre+Zmy9RWMvHkQWVlZB9QmVVWDaS+OnnErc098mtGjRzcX8PmCol7BYxqd5OTkiMmIgYGBgYEBwjBhltJ584t4LpxUytlH5/HnpgxKde0wy36KG2+YU8GHt2/AWSvqkU0Swy7tjiXSzpynV6J6VVzVLsIyo4jsFkvNlgqGjRpOn/tPJrxXEg2VXlxuGXsn8SydPugG1q5dS319PQ3zV+EtrUCyOvDk7uB9JYFLLjE8fPeHpwZ/wy2/F3PG1JEs+zKP3IVlXPlqfyLSTbtESDRHTuiREgQiJfzBbcFICX2RvjmaYe+rWTbJhx8JM+DXF2oDBouAoaI5EkNrjmAIpjxqXZ9fkoMpnALH2wKiwnq9Tr8Fu+LF2YbXeoCAWLEsa8HrknTDRSBFqrY7A8SB2lc0DUnT0PTQjM6xI3G7qilu2kKFKw9VVVm9ejUrV67ksf+8QbW/lMrGPEBj01vRWGwRxMf1ISyhC1VlG6mvLdjz+f5CnHB5CutmFDP9he385/3+mCV/q75o0vvfqVnzDpsALUBauoyqwm+flRObZOL/LtzQKod9yn9/ZPLkySz6spCBp6ZiNu3aF6ty65nx9DoK5u2g38W9W4/p95Osnj3RXC7+r6aI/FvvY+jQoc07VZXzzz+/9QGahrNixwGf1+DIxIiUOHwYRgmDI4IvR72Kd6gXy60WNGsj3rJqrN27YM1Kpn72H7hcLmy29ocJeorKKX/1K8IGDCakd1/CkrsiKQr+KAtN6dvhFREW2vmWB4kvEN4L9WFO1r/3IKsWv9qqrrSUUUTb0+nUqTOa1mLiU9r89oMPPjCMEgdA165diT/7PMKGDKP4vTeo+m4+WYxr38E+P4Q6sFQIg4AaIRb6ZZduuHB7IWDE0IWbTfXCqIBF15mw6q9mE3h1Ue1qYRQjTizgSrrYtqXKiVzvwh+1f8aylsStbETZmIdk1n/Kw0RflHRdB0utOKd9ZS6aX/Q9DZCio3apCyB6RSUVw2KI+EXk6m8YK7QObLqOuD23BmdmZKtjVKsYlAbEuv020RZ3dLMGRzAVVnQkNiIZZJnMwvIvWdz4EzaLA7/mBSSssoNwcwx9rf2IIJoQORzNLQxJmqay2becqKi22/5XRLZYiRo4gooFs1BPPQNo/g1y15ZTs33VHsPjDxXOTVsxx8XhydlB9IWn7LL/qquu4rbXnyLvkc8peFKh6ZrujLxMRL9ofpWCl3+mYvoK7BmxdH9sCr6+B244evfdd4Pvvbqxzu/f88JRwkXH0alTpwM+t4GBgYHBkcWg9HwGpmlciIymaVQUuOjWWeGYE2x8/0kd50zZtzFZU62Xt29YQ5eRsQw+PZXkQfFY7Apei4OifC88vRKAM787EyVeRI3WN8AfF3zMmnt/aFVX9PH9cAztSer5nfHXNbV5vtd4zTBKHABJSUlMvqcXw85O4/1/LWX6C9u5+pn263nZJO+u6ZuCRonWr2Jf6+Nb2hKa0zep+r62jRIerWOiOUyyX0RKyH5MausIiWahazV4TZKk7X7BLRghoe20of1ILQIvWp5G0lVmzbKNflHjcfubWF7+A1bFjg/dsUp2EGaLo3fieCJisgixxeEPFfMNn8NEUe58TKaOSx96sFFMMqMvTOOTuzZQUegkNd2ETfbiUs1Ul3v57UvhpNUeIe+DyYr5TcQmmsjf6uakKdGtDBIAkyZNYvip8Xx8/1Y+fWgbI6dkMOGW7qCI1FrzX13Porc3ERLvYMIzx9BpTNoBRzX/+uuvaC7h6eWtqGzXMTF9j8KR8PdxbjM4xBxkTQmD3WMYJQyOGMxmMyHdEmncUkLRHU8QcdqJxF02kR0PvU/U0H70e/RkTHYL0TYx4F+z1o5rawERXaOxpMSw7tSHgnVJeVtAluj90NEodgu1TWJh1O31UPVm82TC362emtEakZ+EYbKF0O2smzFtKQVJxmINpbZ0G7l5v1OgLsBujaZX+iTCHYms2vwJ1a7CYD0pKYc3fcuRwLbbhbd54o75lP4wn7Vn+nEMPQtJkoheJ8pY68Sk01ItDA/maieSx3dY2qtUNwWFuC21YrBdPURE1UTN0UMLvF5KTxdi6g6riExI/V4PVwhEcthtoA/stBAbUmOLCI/doFVVYy7XB3CBga4+g4pZY0HtkrbbY+25NeD14YuLBMClR3UEoiJi1zTfT7duP2hMFfe9aZAwmiR+38iwuDMoqFuNhESUkkBESAqypIt3p8ejVImICy1UXHft6kU0Uc+VV1651+v7q9B5fDbJA+KZ9aeHuqLV2KKHY6vS0DSNvNmf4m2swRaVSPqEC4nqMZjVzx+eiAk5LATvqvUgSYR2G7LLfpPJxPgXTqByXSk5fxYy+8UVbK8MJ+bcnuS/MI2qP9bx0ksvcc0112A6AHH57t+I3+DXo48J/p8jTz+eUpfoj6GhocReMYnKj2eg6UbDqP7JuKua8Na5CNs18t3AwMDAwAAQC3vHT7Ax6xcXk0aXcOLJdm68K5LLzyjj2gvKePa9NKJiTMHF4IoqWLWoibhMB5ndrUzqvD5Y1461Nfi9Gmfc2ZW4zBCa9Fz+TX4/i19aESznr3ViTfTjUxUUm5kRz59K5XaRZkYLC6N2ezU73vmdqllrMMWEk3jLudh7Z1H2zs80zl8VrCcpKekQ3KEjm7t6TYdekDc3i++fzeFDi8p1/01HMUm7REgEtSXoWBH0fcEmeYNRGEEC67hq8+dAuiab3vaAxoQ5mDrHj08fX5tk0Rf3hiRpzU4zUmBb6897or1OxJKmGyl2Er+WJInBMaeQX7kMP36ilHgio7JQJH2M6bCj6s6GASOHx1lHTdV2evQ9t30n/wtglvwMGR/DVw/JrPq5lC7XiFSvNtnLK48Usm2Nk56D7Nz7dCfOvDSCYzptPyztjI6CihLRv8aftmuUviRJ/OuJLE44P57VCxr4+ZU8PHUeJj88gJkvbmbBW9t54IEHuPPOO/fJSXRnsj4R6bW/73sKEyZMACD06OFY0pKDZZLOuYiyX37EX1cDgDkiGktEDM7ifBSbg+Uv3rLf5zc40pFov6H1L+BVeARhGCUMjijSb5lM3nPTaNpcRO13M/HmdCbmX+dQP2sRq695l+73nYYjUSbnq9UU/rARtcFJGWCKDiP5grW8enMOK+fWU/BiNpaECBS7ZZdzSJYW4a9+MSqsmVKPb30EJKfQMDaRiI0KfiDS2YX+6olIO6qw2iPAZMIFDNCmUFS0lDKpiOryLbw9bRa/yc+x9pm/bu7LvwuZ156AJS6cgnf+JMYVT+Qxx1J1sh4F4ddDpfUcvWnfhmOtFhMPU7Uo44sUHjayW88vbDaBqk9K/DsN5FW1uQygWc1BA4GkR1VIem5hf6gYhMkeH5pV/+k1ibxISo7QZ4iqOvDQXC3EFoycsK/WjRsmE5J5p7BtvX3OIVnYFm9ts67AvTGXi8gQzSLq9caF4oloOwzcFyLKmJwqllpxvxpSxD3R53zUDxdeKunlIm2V5NdQJQkVkPzNEzDNbkHTvXGqzVUofjNHH330Xu7AXwt7QhiWzmk0LV0L44fjjJWo3byaxtJcQnr3oXH9Ohp/zcVTUwEcnu+/J0/vJ5pG4/zvqKm5gcjIyFZlZLNC3MBktORECr5ZBRpsf+Az6lfnkjn1VG644YYOaUv9/HWMffYBACJOO47IM45vtT9lWBwVb+sec2EWBjxyCr4mD3PPfZdt//ud2PmZDHr6DH477vkOaY+BgYGBwZHD/f8XjselMXe2m5k/OSku9PHIs5F88FYjF00s5qEX48joaeOb92r54bN6yovFQlxYpMIZ16Rw4uUp5K5v4uWr1iMrEJO+a4SFydo8VvS5xPjRJPsxyQqRGRFYUkTkRKPXgqV7JrETBtBQ7ESJDMGPcMSIvfI0rF3Tca7JxrlmI9NWLCXz9afJ/ZehQXegnHhVOqExFj57YAuhESYuuydlt8YIS4uFfbMeXWAhEFUg6mtOt7QHWqxfqXr5QGREYNTraauG3QQkuNh/7bpAXxTv9RRNgZRNLYwRLbftPnKidQN3LtbuDCeatstnRTKRaendfCrhdg8hbUc11VRtAyAqrls7T/rXwOpQ6HdsJMt+reSsa+IxSz62rnUyZ1odfYbY2LLWxcYVTrI3ezjms8PTxi1rmh3ePnulkgl9duziUCnLEl0HhZHQO5pZ7xViskh8cfsq1v5cxMTbe/Lggw92SFuc67bT7wKRytgxZADRU85sFUliz+iM6tJ1IySJzLOvRTKbyfnkf5QtnUlEYgbdJ9/Eynfv6JD2GBxBGJEShw3DKGFwRGFPj6X7M5dQUezAtWYz5S99hJKYSOjRg6h88yvWXPc+SGAOtSKHhqI2OJHMCua4SIpf+o7/bgxnxZ/1JI1Ipf81Q8jX9Sgai3WBKYePmHPGUPR4IY6+nVFio4OZfbyJYiDriHZSSwgRG8WAT5IVbCHRQPPvl9lko1PscDoBK7uvpWzRDMqXzKK29nIiIgx33wNh0cQnYSJ0bRpA9lfTmHSzlXmV/Q53s/YNRZ+Y+CQSvhLCwQSMYa6d5OgUBS2itddKUMciLQGloJS94RreFXu2EKmWqhugQUQpyDF6qMMeZlqaIgaC/S4QHoQrSlIBiH43hOSZZRSd2CzwHFokJncNSaJ9miQm3+YGP/pcD1Oj+B5pLQyCmqZSpGYTG5qFeWfjyl+YH0e/BEB0/1yqf/iZhj7bUCtr2fHTxwBIVhtIErEDjqF08QxSrv83tk6d2D710HnxlJSU4M0vIeHCY3FuK6Fq1moyLz6HyFNOJPeq24Llvhwl0tJVVVURa3qPgs+WoISEkHjN1UgpXTukLY0rt1H87JcAxJw2iviLj2bD6Xe1KrPq6nf4wDaGS6+4jOju0bhK61l83ecAyFYT1SsLcJXWdUh7DAwMDAyOLJKSFd76IAqnC1Yt93Dp+VVM+8bJFTeEc+0F5Vx3ntD6sjkkEpJ1fS8F0rpYeP/xItYtbWL9ojo69QvlrNs7YVUCi9Z6KkvZz4jLe5A7p4jITuGkDIjGSeuUObKkBfP9g8jZb44TY3+/7rwhW8xEnDicsGNH0TBnNZXvfkrNj79ScuqFJCYmHvwbdQRzfY/ZXH83SI0ZfPTffCacE05Yj7/XkkjAiOJHxhKMkJD0fc19EcCsqXj19ME7p2/aWZB7d0iShhbMu9RsbNj5dY917HyqnQ0RbezTWqTtlNowXLSkZMdywiLSsZjbp7f3V+C67n8AsPmkrrx44zaW/lxBbCzcfUEuACkZFtYtc3H+1ZF8+kYNTx0bw7iTHfRPP3S6GT6fjyXznEy5KpziIj+LZjfxr1t6cscT8YzO3BYsd0nXBcHy99lCWPx1EWabzJSn+9N/YsdEenkKSil57B0AHMP6EXvlmeS1mKsAbH/yAWacMJLxJ52ELT4Z1esh95MX8Dc1IJnMOKuKaSz/++iOGBxCDKPEYePv9QQ2MNgLyyc+Gnzv8/lwfDOT+l/nAxCSEkFIWgSxA1PJ/mo1rpJKOl1xNEU/rMK5uYCMK4+hPCeXHmclc9ptXVDMKrlbJWS59a+OvVcnOn9w3x7HUkhQ28uPSfcU9xaL16htYuDoSgjB5BKe88lSD2qtiylfMIO4uBQ6Z01g46avOuqW/GP58YHP6PlZT9TsQu48VkQirGgQnvmzcoUXTdnFEPOZGLwG/G5kjxgAq1YxGVVDLJjydQ+RgHZEwJtfXyD3R+j5S1VwpwgDlqVGbDMVicV+JZBuSdNAT8UU7EQBbYqAHkVg4d1iQdOjHqTKalD2Pb+sPy0BSdOQmvTIDY8+49UFvu1r9IFZRFhzmySpzclCIGrBZ1MoGi0sFf2Gi1DiDW/p3kyTalsdkzyzDF+0uMeeaHHd9oqdwtEBTRZprCSvX2+nLijo8VHekE2jp4re8RP27eL/IhR++DmTJ09m1gevAGDv3ZO4qRdQ8doX2FLSiT7lFOrKt1P183SSr7v+kLZt2zYxoSj96E+SH7sTzTaH+tkLiTj5+DbLR0dH89qLL3HzGy8Re9oZmDpQeK/685kAZN19Otsf/abNMkd/djmbX/8TzadSsqyEkis/wRxhZ8Bzp+GyRrHhylco3tTQYW0yMDAwMDhy6JpaFHzfvyu88bKVGT85mfGTk8RkmbRMEyPGhPDj5/XkbvNw7pURbF7vZdXCJs79dxyVZSojJkRy3r1dsIUouFQ/3p1y/8dkhXP9nNNoCggLt5ElVJY0TJKKEtAl0D3WvfqCcnPufrD37II5KZ663+aSnJlJ5IQTqPz2x8OeZ/7vzit3ruOj/4aTs7aB3j3EGHjnCIlASiSzpAYjIsxS68gIJRgx0fz/2NmXp7WmhH68Ps5WA4dpur7DTloVYl/gWFFzQCTbjy9ohPBL8i59MYBD8Tb3xzYIakxI2h77onjV2CV0Y1/Y+XBNa75BwTROu84T1Jpa5PCwFmWaj2loLKWmchs9+p63/+06jDx73SYqFl3MMzd+AkDXPjZe/SqZN5+uJC5R4ca7IijOcfHSE7UcP+HQamYUFhbi9cAnb9bxwU9JdOtj5d3nqrn+npg2y5tMJt5/4wvueuZyJt3Vm9iMjjMS1f40F4DoCyZS8eFPbf4Gdr7rYcp++hZUDVdxAdvffwrJZKHTqdfgSEhj/Zv34aou6bA2GRxBaFL7LKyBsv9QVq9ezY8//kh0dDTnnHMOsbGxwX11dXXcfPPNvPPOO/tUp2GUMDhiMZlMJD54Hc4586hfuAFHtELZonzKFolUJeZIBxlThmEJMbH5xdlEj+jMsGtEWhnF3Oxpq6oSmV3FwyvG3kSCTezbXCs8wLN3CB0AW5RYdNY0CUuMCBv0qGLg0KQpOHZ6/vlsCiaXn5DwRIaceAdqSQXbs39l0+av6dz7FLSrx4r6bzJyH+4PXbt2JTLFwR8vb2L40B5YHR0jGHdY8fubk7qGikGeGmrHFyUMXH5r29eoySD7RBnF6cNcXNtmuVZIEpgCERt6eLc+EfCGKgwaIVI++bTWUy/H92KR2hkDIXoqK9UsXi3VwjDitYu2mJy6x1aTD9nbegLiD9fTXbl85FQvJsyeRERc5723+y+Iw+EQD+8Rg1Gr64k583QkRQG/H9lqQ5Jloo4/gdL338NdVLT3CjuQfv2ao4hKn3mDyEknUD97Ab6yit0ec/XVV3P11Vd3eFu6PHA2sknGFL57wdEtL8+hYkE25vgovGVCgX342xcRn6RQWiEj2y24CtoneGdgYGBg8M/mtfei+e4rJx+910hWNzO//OBk6QJPcP81d8Yw/08PqxY20bWvgzOPEwtxTS3y8ovUPmIRW0bDFBREFtNseSevdJnmtDhyO1LkKBFhJD84FbXKSc3PM6n+/ieijh1D3LhTkSSJLfcYqV/3h7CwMHoOdvD16xUcNdZOVOzff1lk574IYJL8NPqsKGh77IuB7VI7oycOiN2dYmeHKLWFeHjk7p1g8grnYrGGE5fYpwMad+hRFIUPPviAMu/PbFrWyC1PJGKxSvh8EBomI0kSV98UzpRJZcyf7WJQp0PXtrS0Zp3Bf19Yyq2PxuHxaGxa42bibhIRnHrqqZx6asePxaMvPImo88djigzbrVG28o8ZNKxdiSk8Cl+dmCd0vvgWHCHx+D0ubBFxuGr2nkXA4J+Hpu05gGvnsv9EZsyYwSmnnELXrl2pr6/ngQce4IsvvmDsWLFu6XQ6ef/99w2jhIFBS/KvvB90XdybV5zL8g8imffCGgBSeofz+9inOUe7lB1fhlD96Swie/TEEWEh1lwPQGaM8HIPhFnfmPwbt2w8G4BIm3Of2tKUCJ5I8ZWzVkPsamHEsH2/GICyG0YRP+QiTD+Fkr1hGsk7umNNSSbrhWcNw8R+oCgKb71i45Ip1dx/2hqOubYnF562FpNZwtFZRAtMz+lJ0yU1ADTMEim2rDXiKePQBb1Kh5uJ3CIGZOFbRVojpVp4YvvixABZ0xfdZaePvHPE8THxon9UFOth9rorlCPPRPwqUbc9TzcOOEQEgT9EREyolmbvpEB6JCUQjaGPwbzhoqzk17CUNwUNE+3BmxSBqUbvv359QtKo627ERqDFhLbaR+DU/l2fwL3CRBRKcVMWAGG5ol5ngq3ZfWwn7BViwu+OFF5bJqeMT085ZWrSC+lP+ypvEVUNuQxIOYMZKx7apa6/C3a7naZV64OD6C5fPII5IYLGgi04U3xEdE+h9H3AUnhI2xUeHs769es5f8HzbLzrM3zrlqE4rNR/+QWLTjyTYcOGIct7zJR8wGS8/STeolJca9YROqI3lrS2jRJVVVWUzxOROd7KZsNa9ZpCvJv9LL7nVwCk2pqD2l4DAwMDgyODvp2L6XsH3HcHbChIYcxxVu68uQaAHn3MDE9eh/+YfnTpaWHmZ5WkdXeQkGrBqy/8BrzJA4u9ZtmHou7f9Fpqa0G4xTBKCQkh5qzTMIdHUTXtRxxpWYT26ke3R58zDBP7yS1PJHL7eXlcf0oOl9wYwyln2LDZ5RYi0fr/VdIw6yvpO0dGNEdMSMh7iSBQ0QgE4AfqCUZO6K/eFqX9Owltq/rZ1KAehbzHvgigqCZCTG4afda93Y5W7Kkv7lp4n6pufagqnJ60lovMgRU/TW1jW+t2uStKKS1bQ9dOE5kz4579b8hhRlEUZn5RhaZpSJLE4rxOpKbK/FTow4SP/v3E70pA5+ZQtisQVT3+pB58+VYNiSkKLz9SweD0OYwcOfKgp9bt8c1DeMtrqJ+1BnvfLpijwnZbtnbxPAB8Dc3zhPrtG9BiG9n+tUira4tMOKjtNfibYqRv2isPPvggU6dO5dFHH0XTNJ5++mkmT57Ml19+GRSf3x8Mo4TBPwZJlhhyaU/SBsXi86ikDY5DkiQsoRbGvzSOHy//idmvKJx0V/u8LHKKRaiSpi82+zzi6+T3yuASA8PwLeLVUSYGVfXpusd4nYYnQpRvuZQsSRLxqYPYkTOPomeeI+GqK4iK68no054CwF7aLDQ1Y+F9+3Mb/lEMHGThq++juf5+he/uXEbBL2Hc/nLmPtcz4JZVrHp2wB7L+P0eGpvKcK5xoakaSkQjlpgwCDn4GiGuJBE14Q1tHWptbhATFb9NDkZC+/SIEU0JiE/rXlN2M3LFniMo/A4x6LSXe1i6LROApYjXVJd4OvtCdx2YqnoEh6ynjgqIf0u6B5TfqgS1JAJpm5AkNE1jW+5MQq2xJIT9vYTr2mJnrx5zUgy+iip8FVU05Yk0WkrooQ3LBujVqxf2ghiSzhxG/huziJ80mMrf1zFy5EhSju/CoHuOR7EofHvUywfl/KrLTdnz7+CvqqH254Wk/N+VbZaLiIggc1QCkSkhjL+tN2u+z+fnR1cz8Tg/71wyL1hu4FBjaGNgYGBgsO+ccoaDjO5WKsr9DB1pw263YzJJPPFeMteduYN3HtnBXa+1z03ZpOf0V9SAF7oeHSo3e6vvvPAbzJCzh0Xe0AEDqZr+E8WfvEfCmecT1WsofW57TpyrhezY6hcNQ8XeSMuy8vy3nXjv8RKeuaeMn7+w8PwHCcREdvy53G6N7bleiotUvH4VnwaRETKDhh58rTS3asIk+/fYF6G1IaI9fbEjkVq6KbflhrzTvkD09raKOZjNdlISBh+KZh50Ws4V0jqZcTk11q3yEOEQ1xsaeujTxnTuLCLV//WfCG6/tpJTzg1l0Wwnxx57LANH2fm/15IJCVM4LnPzQTm/5vez48nPcGcXU/PdnyTeeeluy4YNGILm95M07kychTkUfv42IeldKPnjh2AZR1z6QWmngcGRzvr16/nwww8B8Vt12223kZqayllnncWnn37KsGHD9qteY+Zu8I/huQGfiTcDWm//ePib3G47m85HJVC0ppIwxcUAWx4Af5h6ANAjTOReqlEdVG3XPeorxKJu7NHCU9ztFV+n6noHPlf7UwXVXjwSAEV3jWk6LpPOwx+i5MfPKX3zbZq69aGyQcHVVIXa1EiII4HQtK4MmXAPNkcU876Zum834h9EVmoxWalwYuRF5M/fwYzb53Dt6Tu47jGFjD6hHNd/PfV+sQhs6yn+AU9ljwNA1ieTd6UtZGFdZwbcsorfc8TCuLdE97Aob6Jh1Ur8uYupWV+C5ldhvb5Lb8Mpd/di5AUZzKvoAkB4HxdpZ4lw0nKPiEhw6Xlet72u97drNgCw9qPewcgNS4PoX4prpzRHNpmmuIChQTeQ6Y7mmiQTtcVLe1FjI5Ab3cFwaU2P2FDtVr2+wDkVur+kR1poGptv3HUhXZMJzmRM9aIN3gg9EsS864DaF2LGWt4UzBEr+X2U1myguimfwZ3OB8sR9rjKDSEsfRQ1EbMpfuBpNI+PuF7RjBu7bxFY+0K3rx4GICW6BoDO4SK0+q0h79Evpoi+lyfz9YYeVM/bRN+Pb6Jm/ibynp1GfW4VRz1/aoe3p9+P96O6vVS88T1qQyOpT1xH0SPvUfq/r+ltd+LoFM/Sif8NllcUhZz5zXnwilKKyHgyhe9umE1MpEKV+Nmmy9iUDm+rgYGBgcGRTa+0Hfpr6+3HZm6BTPji5Gh+/boeGTUoNBwUFQ6mbNKCAsOK1pw+B1qkzNlJ6Hqv7FTUFBlB5kMPU/XtD5R+/SkNa1ZjMjvw1lbib2rEEhlHeHxnep9dhi0ynuVvGsaJ3TG+0wboBF1ezmLDVeFMvayEy04p4sEnohh+lLVZRwItGNlg1v8hihSIlNA/s2ukRF29yvc/NfH1900sXOLB5dp1sf2G60O4+86w5v9zQGuC5kiNAH69UODVo+25L4IQvO6wvgit++POh+5Lt96Tp7G66061tg45rLWHfHVjASXlq+nZ5TQUxdL+k/8NMEt+Ro+x0K2niavPLcPjhoxMhaNHH7zrLC8S42d/IF1vC3fwtJRiJpxsY/UVoXz1USPfLU5j/Uo3915fxpUT8njm01R0P7UOpf8P91D6xi+4c0pIfuAqyt/8jvLXviYJM5bOaeRdcler8nUrlwbfNzU1Ef79JxRO+xBLSGRwe3SXQR3fUIO/P4amxF6xWq3U1NS02nb++ecjyzLnnXcezzzzzH7Ve4St8hgY7B8p1mqq8xtoY610v1DCRXqaum6BRWJdhEwPi6hPl2iKF1+/xk5igOgoaE5fY5JCST73UqrmzsKZvZWa8lKs9kiiIztT31hMzpofyV79HaFRaXQ9rwhHQhqrXzAmHXsi/agUJr01kbkPzee/56zivHs6c84loXS1iLySAXG417t9RHmpyofrOuGs9fBbjp0Ljl6ExSpzTswSAOZvDOW7F/JYOasaNIgc0omXXniRwYMHk5KSgqIoKIrCk08+ybP/fZaYzFDGHi3+z4urs3Aoon/8O2EWL5W2LSjcUVR3M+NzwLtXvwjAVc/fCIDJqQtdV4oJj11Pr+kLtTRHLeji2LLLg2rb/SC4+4tOVJswrEi6ULi12INUJ9JdmRpFhI+kheOJbA4fl736pMijYq51tawSLz42l8wiLrw7y7I/2Z9L/8sjW60k/+dMGpZv4cOr7uHEE088qCHQTWuzKXnpa0riHVjjw6hIs5A4KIEruZS3hrzP1csuwdEpnrpVucgWE9Fj+5DZw8rCqdNYdPtPnBn+L2STzJejXt3vNuQWJgEw5vebsTZWUPD8D3jyS+nz4CnEDLEReu1otr05jw3Xv409K4HSBTeRkNB2mHVycjJPfJjOe8+Ws3ZJEwNHh7Fsds1BTzdlYGBgYPDPoyhPjI20DkgmLet6Es0e6uivet3BFdsW52oxR5FtNuJPOwdrYhKNGzfQWLwFxWInNL077soSipZNZ8fiH7BFJdIzexMRSd1Z9JGRCnZP9Bpg5f3v4nno9mquOr+Cf90UxtRbHMiyhCI1GyNkoKJSJS9bpaJCJTREZsRQC+EhzWOPgkIfjzxdyzc/NOFyaxxzlJVHH32aoUOHkpGRgclkQpZlPv74Y6ZOnUrXzmbOOSeQK7XZEIKm4tlFNnvfCVVcNPjbTvPash+K6B29Ge3si/vKLsaIlhESqgZyc+VaC+OEEtFaU0JVfWws/IVwexLrNn99RI79TCaJ/z4fzfdfNjJwqJV/XViAw7F73bUDZcNGLxdfXkWIQyI9QyE5RaFfPzNnnNncd7r2suB2N2C2SIwc6+DN6RnceekObr9wB6HTe2APkYWxbz8Z/+fNADR4rLjL68l5dgb1K7NJuuFUbD0ziLlwAuXvTKPk4VcxxUWzecQZdO/evc26HA4HmedcR+m8n2nI3oAtJomu597CmpcNh06DXZG0vRhLdyr7T2TAgAH88ccfDB7cOjLt3HPPRVVVLrnkkv2q1zBKGBjoxCWaqK+VqffbKPeLgU+yvQaAE8KE+/sbpcdiLReDHleWWLBtcOt6AH6xXdMkbDYxcXGJoApckWKAJRXbMDXqXi42UFqvw7ZCRiF29DjMg8Zhq9I912WIB9yKm7rcjZSv+oPtX71EynFnd8AdOHJ5bbAIMzvbfS1j3jqLgjd+55OHtlO8Noqb/mMjLcNEUYGX6V838sOndZSVqkCzCNZHQFiEzLAxIdRU+lm5sImYFBsZV40hbmwvzJEOrj/x+l3O+/TTT/PZL2/z+ytb6TFiMIpJRlM1yrbWsemPEnqd4uHf3WfxXLGIzjCdXwZAXkMUAAMvXhOMoih4Uo/S0FM0NSaI/vbUrW9Q5BPlj3PkAHDsF7cB4A8TBoJj+m7m7fJjALjtus8BuPfPM4lZ1v5HgOzy4HeI8vZNJVSMSQXAWiuMGmFry1of4FdRY8KRK+tabbbUuPGGCQNHILJD9qlouqi2pPnRNI0NBdPw+l10TxnX7jb+ndh2+6E3IvpqGvBX16PFOfA3ecn7s4R1n2xg9H2j6Lz9Ubaf+z4JtlPxN7hJKllNXJ848m2p9HnkVJbf8Bk5P2yg8xkdIyLYMGcp+R98hyUunCveGcHWBJEOI3F8b7zmELY/+g3O7FKqq6t3a5QAuOXcPG45F5YtW0bnzp2PyEmpgYGBgcHhJy5Bwe6QsMp+fHpOTFkP71QIpMFRg9oAMq1T48g7JaGWW6xqyPuxwiFJEpEjjyFm0DEoepBlIH2TXO+hbscWKtbMYdMfb5I24GQ07T+7FYf9pzMqIxuA1VIab30Wy0ev1fHck/VsW+/hlttD6dvLTFmZn6+/cfLhR03k5Pp3qSM0ROKEsTZ8Xpg520lUpMId/wnnvDNCSE0xEZK0q1Ho1ltvZdZv9/LCS/VMmmTF4ZBRVY38fD/TprsYMNjKoKGWoIZEIPoh8GqRfEGnqrb6otiu0eC3IqMetL7YobSMktDU3e7fWjKbBlcpw7pcekSO/Qal5+uvcOYhmgrV1ank5/tJTJBJSlKYO8fNu+80UVjo54abkgiTICZa9MXlc5s4dnwIaRlmnno/hcvG5/HpyxVcfnt8h7SlatE2tj4+DclmIfWeCwgd2AWPBxyDuhNnDaXk4VfxlVdRUFCwW6MEwLb3nwaeZv369URFRZGcnNwh7TM4AjE0JfbKtddey5w5c9rcd/755wPwxhtv7HO9hlHCwABQNZnQGAt56ypRJJWtbrEIZpV9uPdTsG53+EI0HIUSTcka3lCIXyAGUrZqEX5b2VOcT4/+RpMhcrNQ/5X8YnDmt5lQ+g4kvEsfdvzxFYUzPyX25EbKp31nTDj2QNDD+xh4e+zb3HjbdZz+fQ0hCSE0FDdgc0gMOSWR046JIaGTnZuH/0JBQQH/+vwGGksamPdzOYrNQdz4/uR+/SE2257FpSVJwnbhKWTf9wkvX7IS2SSRt2xG8EG25AsH5313BjckzQLgXdPRAPyyrD8AjekWekSLxf5+965izSMDOvR+VA7x4cgT/S3MITy0muIl7JXiuiI3iX6n1IrZrrlSRD7UDktp7pO+NiYMLVBjwtH01Et+u3gNGFZkX/MT3aeLfJvqPRSULqakZj19u5yNPTz2AK/SIEDosB7UdE7GXVZN77sn0LuXxoInFjH30UXE35gO54Jj9FCUr/9k5U+ldErrxYi4PDgKNvZMZ/vSWtyjD1wc7pefXVS+8w1x4/uRee0JpGZtIZWt5DhjaChpYP7rvwGQePmJ9OjRo111Dhky5IDbZWBgYGBgsDuiYxWK871ImooiBUSPNfwHOY1DoPp9OYtsshCZ0YfY2J4UrvmFgpXTSO16LJ36TGLed7cflHYeCfRPF/peAx+HY0Z+z3XXn8HJ4ypJTVUoLvajKHDqJAcP3m2jc5aZHgPWU15ezoIFC8jbfCs/z3SiKPB/d0Rz7a05hIeH7+WMcN/tEYw7pYzTz6wiLk7mj9nuoA6cxdrAopUJmEJ1HbiAwUtrNji0py+GKm4a/PsmdL07NOmAAiX2Urm4Li3w2sJAEdgmaSqljdvILV9I96QTiHQYKTs7ilFDbJxwnI0FC93cclMYA4eYeeHFep58soHQcIlLLwvhmOOs9B1oZuaPjYyd4EDWVFLTFUadGMaG5U27GLz2h5p1RWx59AciBmSQestpeM3Nabv89U1Uf/krAKFjhzF27Nh21dm7d+8DbpfBEY6RvmmvnH766Zx++um73X/++ecHjRP7gmGUMDDQ2b60mrpSFzXFThJSmr8aVtnHG6XHAjB/RXfkGN0TxSqsBvX1YjHXr+tIRMQ2EO0QC7ZyuHgwlzcI7YB6s56b3yQRlid+zNzCyR23LnyteMHfjgwuMWudVAywk3rCuTgby6mc/gMzZ85k3Lgj07O8o7niiivY2u97/vy2itrcGiYPrmT0hFDyTKnBMtHR0URHR9PVJTwwvGnNA5q9GSQChPbNJH3qaSh/zgWgz7+GM6SvF0mWePfa5Uy/YSbnvGUhImrvOiT97l3FpKhVABR5Rcf5snIY18T/Ibb5RJuumyAGa6qm656Y6ulsEcaNSFkYGJad9DwALn2Qn6KIAV/Wt1ejmkVbIrdIbeZ1bQs1XA87DwhqR9rQTLpnl1O3sOl12SqEK5/S5MWZLES6Awa38obtbM7/hbSkkazZ+kW7zm3QPmSbhZR7L6b0/95k5S1fEvv4MYy8bTgFxTbKXvic6Ip6IiaMxNopmeol2aRdfFTwWNXr3y+xw25fP8yWM+8Lfj5t2jjW3foZ0Ud149anE5Gk9VR4xe+j02vij7vngKqSecM44k8eeMDXbGBgYGBg0BFsXS/GLlvXukjt2zwGVCQNRQp4qTe/39njvGWKnAC7CF3vLDjc1nNXot1empIkkdZ/Ip6aCoq2z8URlti+Aw049dRT6dUvjunTXKxf66NrlonTJtuJi2yeI0bGxBATE0OPHj1wFj/M3TdHBfdZ22GQAOjZ3cxHb8fwwmv1eNwat/wnlK5dTcQlyZx7VhUXnlPJ06/FkJq+92Wbnfui2KZS77e1GQ2xcx+V2uibHdUXdxGvbpkVah9SotW6S1lT8TMJji5s3DHDcMbrQBRF4oM3YjjronLOv6iS55+L5MZ/h1JVo/J/99dTUqJyzW0R9O1v4ZefnFSU+QmN1R3OvNp+i6JftvQy3h36LgDOkjpWPzCd0K4J9HjgVFyaDZ+nuS9WvPU9nvwiIs8eT/jE0ShK+3U8DQz2iBEpcdgwjBIGBoDV70TSNCISbURGK2TpC7gVXrFQu6a0OdRPjRARDYFHoOrTUzOZVTRvx4SPKl7w6in8HWVa8IdP8ut5RmtE3qeIbGG9SL/k3+S98TTvvPOOYZTYBx4f+gMM3Xu5D4e/Jd4M3/dzrJ70MExqe1+9azg/3r+Cx56M5aIH0+kTIkQWZ9aLxdjKwkjW6ALqASH1GLOIVtjWGAdAk8/Crw0ipY5NF7tbWZfOwPD8fW9sW8gSnmTxPbDmVgFQmykTsViIJGsNoj1SmFhYxqZ7YmlW/Lpxw9Sgi22bdh042osacSWFYKr30tBQwtotnxMT1YWumeM7pv0GQQLGgRMiylj5f78w/ZpfOe35o8i64xTyXo+g+qOf8GTvYN4bHzN41EjWPjaXqCdE9I7JDIrmJdy+h5xzu6HLp/fj3Z6PO6+Uqm/mYkuJIuuWk5Ckja3K5f66jcp1ZfR44nwi+mcc+AUbGBgYGBh0AJqm0djgx2yRSEpVdk2VE/Bgl3aNHlVa7As4ixww+7j412Pohaz3uSnNX9Ix5/+H0LVTCTf9u31l7Uk5+3WOyOQCTj0XTj13133vfBjNbf+p5YkHanjl3Zhgf2s2PKjBqIm/S188EJz+BlaU/UCoOYZ+sRMMg0QHE5lcQCTw8XvJ3HBzNVdcWc1TT0Rw331hJCUqPPJwPRvWeXn7rXXM/Lkn9/27nBc/E2skJhP4fc1GsfZy2dLLUH0qY18/ndptlWz+fC2yRaH7fZORzQp4mss612XTuHg9Mf86m9CjDLFqgw7GMEq0my+++IJzzjmnw+o78hLwGRjsIxNem8AT566ivMDJxS8OxGzbf4u7ZFbxeE1UNTmoanJQ7RR/IVYPIVYPql1FtauYnKAp4s8dIf78VvFncoo/R6n4Mzk1VIuMapGDYmCS24vk9mKp1QWJJQn76N588f23ZLz7UEfdGoODTI/jk+lxfDLbltftvfA+srIunS1NCWxpSmBZQyYLmrqwoKkLLs2ESzNhRsaMTJISQpISwpu1SbxZm8TQ/ttxxWu44luETEuS+LNb0OwWHOUaakw4akw4+FXx1+Tca5s8URY8URbMOWWYc8qEsqMkYWr0UVOby8o172C3x5CTv5xZCx7o8HvyT2fMrKmMmTUVa0wIw549nYyRCfz22ApUp5voKROJvf5cGhet4djbriVs/LE4V6ylfFEuAI7MOOrXFeAqruHE2e3Xw/AUVZB77bPk3/c+Ze/NxJYaQ5f/O5fjO+fTyVpGJ2sZSZZakiy1qLGxIEu412zllZ4fs2j8YwfpThgYGBgYGLSPL35JYOhIG8vmuXjw1SQiY/bfpy+gOSGj7RIxsXPUxM7skllCYrcLwpKmIe3kfR6b0p/6qjxGHXvPfrbe4FAz6igrZ59rZ+VSz94L7yM790W5RWTEwe6Le0XVxJ+mBv/qvZUsrZuGpElszl/NjLyX9q1Og73SWJxBY3EGYaEy770Zzfnn2nnokTpKilWuujqE9z+JYtlSL9fe0Jdrp4azfJGbX79rQNM0srpbyN7kZut6Fz9m92v3OV3VLr49+1tmX/Mdq56bj8lhYcjTp2GJFs5uLfuiEh2GZDXj3rAFTdPIvejODr8HBv9gtH38+4fy2muvcfPNN3donUakhME/nnkPzSMiXOKSZ/ty/OAmoIljbcIL/MltEwCorxQpZpRoN6oeDSHJumeKHtGQEFUPQE2THY/u1S7L4hfLp4tgW8v03PoWYZAQhQimvNkfLLVeTE0mHEP7UPPVbzQuWE2G/DiSJJF78R37X7HBQcehuKncXkufHhqDbXlk6L/IbxaIkX2DpFAniUFZv+4i8qHG6xD7vCIiwWHysqFeeKlYFREpEWYS3uxWWXyu89kocUcA8CciR39axGoAwnXb9KXhIo/ub5W99v+CmpzBEGylyY43QkTyeCLEl0TV+3zN0ekA+C0SmqZSuWouOeunEZKYSeb4SwkNDd3/NhjslWhrE1gh+urJFFz7Htm3vEHm1FOJm5SF5jqVyre/xZyRgmQ2s/yOH0g6qQ9RJx9F9dJsit/7ndgHTt5j/Vu2bOHzzz/n4osvxrdgMXi9DH79QkIyY+gZUwlU0c9RQLieSqyLtQSAzkMzabpkAOvfXUblf5JZQXpQ6G9fOHvBtZQsyqekSCV2TA8Um5l5Jzy5z/UYGBgYGBg8dl8NFWV+7no8hhHH7Xl8oqAGPdR3Fhxui3aJCktah+Svjk7sBZJMceESThj5EJIkM3PBvQdcr8HBQwa2bvHRtbtJpAbbSeh6T7Tsf+3pi2J/+1baNKuK5D4Ivq1tGC80TaOEAjbVrcCuhDMw5EQSEg5c38xg9ygIp7EH74vgjz/dnHxSJc88E8Exx1l5/tVIrruimoICPzFxMg/dXM7s6Q1cfnsCf0yr5/n7K3jyy4g91l9cXMwbb7zBeeedR87MHOp31HPsy6cS3SsepyzSATd6d+0LluQ4Yi85ifI3vif0xNFkfvj4fhkmRlzwDI1VhTQWZpOQPhiTxcHcb6fucz0GRxiGpsReeeSRR3j++eeZNWtWh9ZrGCUM/rEU7UjmjTcbaCxu5OjTO9F/XDxQcXgaI0Njui7glScGeeYGsctvlajsIx7QiXOEVgVuESEhO/VUUm4wh6Zg7dyJyre+QXP7CTth5CG8AIP9ob7CzY51tVx1SdTeCx8iPs+axTFNIl3TjvIkACy1Yl9Srp6GSYO67iJXbmS9ns7HF1Bm1yfjtU1YAsLW4cI4oegDTE0RD3JfaRnbl39JXUU2UcNGUzpvFmZzOwRVDDoEW1Ik/V+5hO1P/sjmuz+j//vXETZW5DNzrs1GMpvxbMulZMYGqteXYu+cSOnsLXS/sWm3dRYVFdFr1DD8lbXcf//9AMQe15OwLvHtapM1SvzWzfnNyenni8WfqavPZc5SC7a4MEZ3EgaMgGDjjrpQVv9vIbXbqsidvw2Hw4Gmacy7dToAJT+tptudezaiGBgYGBgY7MzmgmRmzXCxapmHCZPtnHpeGI2HyzuynYvFe8JscRCf0Jfc7N/QXG66ZhjpXv/qeDwa8+Z4uPxfIQdUT6jJRYOvfVp4e0XSkFyHJo+/W3OxiRWUU0QiaWyr3UhIyIHdC4P2ExUlM/PnOG66pYbLLqtmxu+xHHucjedeiWT6T25i41UW/Olm0Z9ONq0rZMhoB9M/ryNnoxOy2q6zrq6OAWN6ULaljgcffBCAhIEJxA0Qc058e26TEi6c85wrNmLJEE55mS8/gz+/DNlux2oRBhFFn57KTSoVi3+ndvNK8tauDBq0ts3/GFd9OaX5S+g6sOPS0Bj8fZG09j9qO+CR/Lfj5ptv5t1332XGjBn079+/Q+s2jBIGf3kG3PBc8P2q/7U/bcjuUEu6UVXt54nX6nnxRbHyf+0VEpG2fFya+Er8u0Dks693iYUv2dr8hDTpAtcBUqJrACipFYu0NqsXsyzKZEWKHPxbq2MB8CQHwm8t+Oy6t4tbLNBaaoQxIuBN7rcEXiVsNaKsf91mcUzPbqJdLlGfyQmSKpFw7ZUUPvAovqqOTwdk0PHULs9H06Bflkyc4qdGF4Ju1CVMThq7nE11YjHXYRIGgSKXGGwl2EVkjl320qB3lkafHpGg54kNeERFmJ049TK1PrHoGyq1/vk36593+OupnikGhk29Rf9Sc8SxhacIgUTZD7G/lgOgWcVxUqO+UB2uexGqGpJ39x5Z5bnLyF7+NWZrGGkXXktIZlfDIHGQmX38060+Z33yXzBH0PeRU1l4/ltos/6ky/lj4MIMnL4uaJpGxRfz2PLWIrx1Tlx55UiytMew/jfeeAPN6abbK9fg3FZMRIqD0B7JRFpFVERANyVMduLXo3SyPaKPh5g8dB2bzMYPQ3jkzmq+3pTFurdV/nx2Ncs+2IxkVsjrH0VEkh1sViRZIn9FFTVbRWRbZWUlDoeD6nzxux45II2aVQXULtoKl3TorTQwMDAw+IuglnQLvpcTtxxwfbmFSTidGm+93cSzT4ix1uXXCWeNluLB0DzO2tc86rsjkCK/w1Pl6x7oPfucS0PNDtweY57wd2D9Oi8NDRoxsW0bAVoLq+++L+6PQeJg98WW+ENtKA2tNcvKvQWs5Q8kJPoyggQp1TBIHGRCkvJafa4sSiUp3sSbb0YxclQZb73RyIOPRzJuop1jJoj53lefO3nk9ko0DaZ/Ln5X9hRx8+WXX1K+rY7LPxtLUa4bNTSU+H7x7EmxrmVftPfuhDklgdrvZuGrrEG76E7qZv1J9XfTALClZ2KOjEIx2ZBkGXfRDpp2CL2XgoICEhIS8HvduBoqCI1MpaGmkPLClft5xwyOKAxNiT3y4osv8sYbbzB8+H6IrO4Fwyhh8I/k7U9qefHFBk68OJHTrksmMlpMOl4sOAGAjTvE4qtiUrFY9mKy309MTilomOgINFWl4oNPUd1uHAN7g/+fGVb2d0INEd4eXotEjSoRqUdC9x+9FRAGiMHRIq3S9oa4dodV/9UwNYjvkDvKjKZpZK//kdL1fxI6dCixp56ObLWyceqBGxwN9o3sKXcH3yeMmc+mabmMv8iNJEnUOIXxKuqsY4jeUkPtsu10vmQY396SS0zMtN3XmZ2NOSUeW1ostrRYQq27z4Ps1+RWk2dN0/j9ztm4qpqwx4fgqmxk2MXdWf7xNrHf6yd/WdvRbMPuHUNaWhoAslk3yln0SbzxU2hgYGBgsA/M/NXFs0/Uc9IpNm6+J4LEZBNNHWN3OKxs2zyNJlcFXTMnHO6mGLSDyCgxnomNlZGlZhHrfV0Q69BIiYOAUt9aly7XuYbNriXEkkQvhmCRrMxUvzxMrfvnEpNcKF6Ba655gOeef5h7H9KwWKVgX5x0Thjbt3j58v06zroskklXxBOXvHsns+zsbMLi7ST2jCS0m5W6QL/0tq9NZa99h7eoDCUyDLW+kegpp1Lz7Y/B/a68HFx5u4rOxx89kSFDhgAgSTKSJCMrhjOcgUF7OfPMM3nggQc47rjjyMraTSjUfmIYJQz+VnR97Dn8tuaRWPZ/btnnOjRNY+acJpKy7FxwbyfkvQg6eDwm7CGeVp+hWXhJ0bUlVD23nNtjAj3KYUO5CBEMaFLI9WKRzBPjR3aKgabfKurxJoiFW61IPCA1/TmpyRC9ufWT2r+xtSeYMmgkUnEDTWvWAVA343dMEaHE/rmSDPOwYLnlbxoLv38lti6uJjTaTM8+7RsUqZqETRF9IdIsBvBuv4kajzBuBIwWgb5o0l1Lqj0hOExuUV7vWKFy25MTlyYx4IwNAKz5UuhL1PcR/T98tji2bKRK1GaRcspWqOd2ChV9XJN1y4pFRlLFd0Mzie+Mzy6Rv/InSjf+Sczk04gYNZrtd+z7d9ig44k7oTdlv65jw+uL6PWvEcHtkiSRdfMECl+cxvb3l7BwZCSTJtl3W4+iKEj4iA8V0QqBvuhTRb+oV0W/y/PEUuptnXPWlVNG+foKhj1+EolHdaKTXMgLR30PQHhGJLYYO5rZgmxWCK0rIX+Tk6gUOyPPSWHsBc1ehCGJoSh2E1VLcgEY0E98L6auPhcAk+TH74eyzTV07axhCxX9c2rPX/fv5hkYGBgY/CVoGTUB+x85MXeOh8goiSeejUSzdmyqmrYcTOQDdbtsh/Fd9fso3rEUgKLS5VRUb6Zn8lwyLc1aYj/nPre7ww0OA3/OdmM2w4hRlgOqZ3cGiYPSF+GAnEHy6lax2bWETtZ+dLUN4deatw+8PQYHzJQpU3jkkYe4785aHn0qAlr8LF57WxROl8RX79YQmWzl9Ctid1uPoij4fbuuvezO8a5lf/Q3NNG4eAPRl5xK2PEjUF1QcPVdAJiiozFFRSHLZiSTCbWhEVfJDkz2ECJ6DiJ2xAnNdZrMOKKSqasUxouQcJGi4MRRj4g21juhrpF6bwXWRrDoc+Zfqt9qz60y+JsisQ/pmw5qS/6afPHFF1xzzTUcf/zxzJs3j5SUlA6r2zBKGPzl8YqIaTzhHVPf0lVuZs1xcsULvan32+huLebjCqG/sH5tBgBKjFjAjQoTKWkCC2pur6lF1Kn4OQosukWGiEXiytoQPG6xeOt36gaMBv3JrYqysksK/pqpZlGhZBEpnzy6V4xqEa/2EglV2c1PnyTKmJwasSURmI6/nJKq1firG2jcugV//XLcsUtQrA7CU3tQXHweSUlJ+3rLDA4CdXV1LPqhnC7HpbHILQZDQ225AHj8or+szU1h+GAxYNqhRLY63i4LQ8HG2gQsir/Vcb5A+iZ9IGeSmwd/Zt0z/c5SkQvw8YTVreo9c+WVaHqfbhoq+n/PG4WnjL+qWpwndDiSX5zTFyUMIqZK/bsSq4vCN7hRrQFjhGhXdtVcyjfOJm7CaZR9/217bpPBIaIhfiBR5zew9aOfKKuL4OS7uwCQVx+FEmZGTU4BaRuzU49nWXEIb+xmHNK7d288n36Es9qNOcJOtE38LsZYGgFwq+K3MacpDlX/EfTqOetG2n/nE+CC7hu48eifeOV/zVora6eF4bX/wWc/DmX1cg+/T3cx9aZQbr05nJjk1otOifZ60oYlkvtnIRdccAEfXfOROI/LR/78Isq31pI9r4TiddXIikRq73B6HxfHLc+oyPJBEG40MDAwMPjbUFzs5+uvnNz9QDhWm4Tr7xmkuguyYqLfoCsozVuMx9tAdfU2dniqKbNuQJYUYu2Z5OTk0KlTp8PdVAPA5/Px6UdOjh5tJSz8nzE2KW7cwsbq2WSGDyK7dvnhbo5BC7p3785zL0Rwy821aMBDz0YH91msEt372+CjWnoNceyxnt69e9NY4aYytx5rmnWf2qD5xRzWEucg96I7Sbjj2uC++BuuYsnV/2bIrXfh2lFAfV4OEf2HkjjxTDY+tKtTZmRSdxorC+jXrx+rV3wm6tdUKmq20lhVQFVdNlUuka0gTIkm1pSGy+XCZvvrRhwZHCCG0PUekSSJ119/nbvuuovjjjuOzZs3d1jdhlHC4B+FqqqcfMEOTCbofWzM4W5OhxOZ1httXB8AqlfPp+qTr/E669E0jYIF35Cc8jURCd2IyxzMmt/fwm7fvcezwcFl4cKFNFa46D0pnb2qeh0BOBsrKP/jB6JGjSFq5DGHuzkGLej8zLMQB+ETRqN53NR8+zt1F8YRnt4cyWCODAVJ4uvzfmD0q6dzpuc6vsz6Lbg/4I168cUXc8f997Dt1T/pfssJ0M6xe8XGCh57YAc2h0RMghia/DjNSWSEhMUiccxJxRQUdUFtIemzcLEwzJ0+/3oAvj3q5eC+0XcNJ/fPQuYX/sl1Ky7klUEfsfqL7fz5rDDCpQyM4bRnR6LU1bJhdhk/P7+NkzqNx92nHwCRVtcudRoYGBgYHPlcdnE1mgYnnXLkLT5FRmUSaxZeBVVFa1mR9wWNvhpCzdFsrp5HVlYWkcSQRAaLav8gPLyDPMIM9pktW7awZYuPf9904DoKf/X0TQBev5N1lTNJcnSne+Tow90cgxYU7RDOc5NPs9Pkhrum1nLquW4GD282KoSFy1isErecnsN/v+5OozqYJrV5/yVdF4g6Jk8mPNHOzCfWMO6J0WBtX790F1VS/PQ3oMiY44XTUtOyNaDImKKjKX3+VdIefw7N05zdomHTWph4Jn1uExFg655qNk4k9RrLjnW/sT2vkqNPfZJ5399OaeV61m39AoBwSzz9YiegNjVR6d1Bjns1g+xHkSKJtDVKhJgjGdETRxCGpkS7eOyxx4KC8R2FYZQw+Mvjim3+1m+/9cBSvciyjGyCs861MyRCCK5+WjWC2XnCK9jUKDxRHOliQSqQmsnl1T2+/c2eKqoe9bCjKrLVZ80voXr1yAiPXl43pmqKuBbNpCEFNB/0bYF0UJKvteVVcYMzXpzfkZHWap+7ixCINdf7UfRzRWwT57Zo3ZD7/D975xkdR3U24GdmtmpXvcuSbLn3DraxwVSb3lvoJKF+QAKE0ANJgCT0AIGQkNBC793YFBdwwRj3LlfZ6r1sn5nvx51t0kqWZBsMzHPOntXO3Lkzs3r3zr1vnUrJwJlYbEk0pfpo2rKK5lVLKV38MtkF8xl16FUsev82TL5/DjroICzJDr54tZYZh4hwoHCh9S11wmAm19sI6uL/WewURdMnuETkxBs1BwFQ3eYmI0lEKYRDX8MRE+EIipAmEzI8wP2aOIddTmwIOapoEx99LAoYqfkiVVSoRuTxtwwUEzF3eVQzrLSIyZ+/j1i4Sqoh4ykOAqniXFWUUbbiDZQUN+6Lj8Jv67zOgMkPg1JjZcuNNzApo4YV85ew7MnvOOjPx2JXhJwMO2sQRQddwOJLX6T01VVMuO2IhP3k5OQw5toprHhwPpKkc9iDQwDwaiL1wMqmwkhbixG1k+1o4b27vsRid7NqxRIGDRqErut8+ZXKob8cxJTjUnnmyhW4UxSQoLVR5f+ucXH2OU5+ve2UDtfQFrJDmp3LF5+LbImO2e/c8SUFL/XFV9VC1fpGlHQ342ZkMO7MEu497HOqVlWTJmy66JpO+bytpF6WT6jFhzXZQeHMIfSZORRLko2PDnts7790ExMTE5N9yr4odG23weFH2MjMVtD0aET0viJRf9reJoPohYIkxZlPYfo4BiZNwGFxE2yspzq4k3LPetbzHXmpBRzEkczT39+7azPpFQMGDKBvX4XXX/Ny9IlOJEnqtSx2ZpDYL7IIPZbHFl8168pnATpDMw5D2ufVtU32BTZJ4pQznfzveQ+P3NfM8+9kR/ZNm+Hm+c/68otDt/PKw+Xc+fyghH04nU5m3DqGd3//DR9ev4Cjnzwe6HycDctjxVMfobV6+HbJN0yYMAEA/4ZS3NMOIvWYGdT84xn0YBDZnYza2kLaxKmkT5iK4k3YLYrFziEn/QVJkiLytnTV80ybtoVly5bREqhFkSzk2wbRxzaI1sZ6GqmnD2ItrOs6daFyMhyF+HUvimwlN2cMBTkTsFmTmLPwjp5/wSY/LKZRotv89re/3af9mUYJk58VgUCAlmaNV1/ysm7jbv7yTN73fxESyAE5YqCIGCFqxITR2mzUAxB6Zry5EHQZ6XTOEkaJtFKhFLZ4NaNtiJDxc3bvEttS/Snk5ZyIGlIgpOFyOnEVTaJvxsG01O9k9RePsearf5I1/lOSbBmk9hmCy5qFJEk4q4PIwaji+bP5t++vb+NnS0ZGBiWXTmXzY5+z5uthjJyatl/Pp+lSh3yd45K2R/7+TbkwcnywdByKUbclf7YwbigjRI5mf44wnri3NKEbyl5/nlFLwhDjpLUi1ZNnTBH+ZImazUvY/s1b2Ir7kH3Jr9l5uTlJO5CRbRaKLj6MLQ9+RM23ZTjHDIjsc/fLJP/C6ex8ZQGSIjH/Ei+HTRHRVmM/upNT+64CoOSU4dRsaqJh+U5gSKfnCukyFkmjxpeMvzFA//MHM2iQWMQsXboUf1uIYEl/0vupnP/KDF65aiEV6xqZN28B06ZNA+C1787v0G9pk8hle2huU2TbSQuupSVg5+7Zk6gsbeWVP2zmrUvn8FbMcU1bGzgqcxeeBj+vXrGIhvXVpE8oJmNMH9rKGlj3+Hw2/WcxhccN4+gF03jh0tcpKCjo1fccZvv27WzatIljjjnGXISbmJiYHADU1WusWhXinFNreeixNLKK9m1NiT2h68Skit1HJHi+2K1uRhQej9Qs0itaZBsF9oHkerPw6C0sYjZL+YISx2jszjQyncW4M/siSRKqW6xZQm6RkvHL2Tfv4ws2sdvt3HFXMpf9spF33/Ry2lldp8Xpit5ESjhsQbx+636Xxer6dazZ8jpOWxrjS37BF1v+tY9PaLIvkWWJm25L5pJf1PPBWx5mnBGNqs4vtHL9A3145KbdPHHTdsbNzGbckSLN0xMbjozUlRt8eD6HXjWMr5/pnhHZYQuitXpxjx8YMUiUlZURrKwl+ehpWNJSKbjmGqpffRXP6tW8+eabnHHGGQCRKImE96JEVaFHzPgbltYgadaTmTpoApt2zWF5zYdx7cOSq+oqK9pmUxvaRaotj5yUwfiCzWwt+4Jtu+aSnz2WYSNXkZpewuIFf+vWPXZGVVUVS5Ys4fjjj8diMVW3+xNJ70FNiV6Mi/Pnz+eBBx5g2bJlVFRU8M4773DqqadG9uu6zh//+Ef+9a9/0dDQwKRJk/jHP/7BiBEjIm0OP/xw5s2bF9fvOeecw6uvvhr53NDQwHXXXcf77wuHgpNPPpnHH3+ctLS0SJudO3fyf//3f3zxxRc4nU7OO+88HnzwQWy2vatf1FtMyTY54Nnb6IhYrFYrM0918/5rraz61sd7n9uYecpaPq4aC0R/EEk2w0PciIzwBaKFiMNzqfAkTQ2JxYqmhiMl5EjtiLDhAUO/L2n7T+mk+IUxQk0S16M6xLUHko3aFDXC47ktz4IlSSjSWhvK8Kut1Lc2U7bkXWxJabgyCpF9KroaIjW5kOLCafvtmn/u+McdiWNUGf/4bSlXvjIVeaAIheubIWo3bNyWQrpFLBZzrULBuspbDMDBqdsBWFuTF/Euae9lEo6YkCUdm6Ki6RKekHjYxBok9gdtBRbK2UTFkjdx9CuhtXQzivL9LuxNukfsGLtoxl/RjtbI+rwvy//6JVOfysKe6aLG4wbguCsLmVU/nKpvyzhqjpdBj/wKR2F8KrxRKbtZmZOMt7KZWf/aCRoMmZxK3ogMdq9rwpmXSmFOgHq/WGCnaw34WwPYU6Jh3nfeeSep/dPJGZ/Py7fO4tv3KphwTglVG5u478mTuaZPAceXrIk77/WLTqF+WwstVQUkDc7j0z8to3JtA21ecBem4RiYz9vHjGDJBf/mhfv6AnVxx1cur2LTgmpW/G8Dnopmzn7mcIom5qAav6umihF89+JGSj/fxLbXPfS5ow+ZE4ooPmkEudP688lRPUv1pOs6Bx10ELW1tVgsFpYuXcrYsWN71IeJiYnJz519ER0Ry+lnOHn8722s/C7IrI98XHBl9NmkGmop1ajdpRnv4c97yz5XAPeSJCkZXdfx0kZlYCuBgJ+NjQuw1bhIdRagWxQ0WSPJlUNxSeLISZO956ij7Zx9jpO7bmui/0ALQ8bGp91Vkboli71J3eT1W/fcaC9pa61m1cZXcNhSqa7fSVJS7w0vJvuPgj7lcZ+HnAtvvuHigT82MnRcEsX9rZGx8fDT0tm8IcSK+U189f5Gfv/CKPqMjy987bb4uHzSHXz56C9Y+Z+VyBYZ54A8cg8upGVrHfYMJ7iiylGPz0KwvgV3clQ+7r77buRkF0kTR9Pwzgc0fz4P98SJyElJXHT7H7hlww423x6vQ/L5fIw751Ykjx93RjE71n1GfdUG9FAQuyONVEceeVmjcWcV4ahwd/geWmmiSi+jlkrqQxWMyz6RHOcASBVtvXaVnRWLqKxfza6qbwBIyXiV7MGTyeg7hqWv9Tw7xamnnsrixYsBmDdvHocdZqZA3m/s50iJtrY2xowZw6WXXhoxmsVy//338/DDD/Pcc88xePBg7rnnHo455hg2btxIcnJypN1ll13Gn/70p8jn9unYzzvvPHbt2sWsWbMAuPzyy7nwwgv54IMPAFBVlRNOOIHs7Gy++uor6urquPjii9F1nccff7zb97N7926+/vprqqur0bT44vXXXXddt/sB0yhh8jNDkiSuvS2NT95pxe6yMGJaGhDg4ZkvccOnHT1uFVmnxWcn6DMKVss6etiwYAxGkqzHfUYD/GJC2N4EIQfEFhEdYSxsnOJHLBmGi/Bc0pcpOkzeLpFUI9oEk8Qx9kZhNPFmiwe2VQbFFz8YdIZql8BuY+CZ12G3pSLnpmOp8dFSuZXWnRvxNlcjIyNLCjvKFrC7/BtGFC6jMH0sn66+t1vnMOkekiyTddW5+B54iP9cupjbXxhMfkniOh8B3cJTT5/M1PO/A6AwWaRzumjgEt7ZNRYAqyyEyGqkbQpHRjiUEJ6QWFykWEUR97KgUCTXadVGW6N4WJaXfv8Rx8k+kWapbUAaAK4tjeK6G1qQUsQELCyvzt2t4jqHRD3H29asQrLbKbjyGtMg8SNClmVG3nIM3/zf63xz03tM/vsZoIj/t2JTOOHu8ayvPILFZ/yDfus/I3usmCAX2uojfZQckkf9vHRWP7caNaSx/L8SisNKoNGLNT2JrAlFpBw6krRJA1j36jZ0Vcc/cGjk+IyMDJp3NLLp7Y2sfK8CgGBeATPObOTjlxo495psKIHHx78UOWbwkX3Y/KVYOJ100kl88MG2yL62nY2wcDs7/rcY9Rf/JPOgvtQv20neIX3pe/wQBjirWPTKTj64di6SDEc9dhxFE6MTQIDkPBfTbxrP5BsPxlvvY828era9v57ld8/CmuJgwLTZ5E7tT+6kIixOK28c8lSX37MkSTz88MNcdNFFhEIhxo0bx3PPPcfFF1/ci/+aiYmJicm+4Kr/c/PO2z52lakce2LXytwk2R+XN11FjiqHiVcWJ6Jb6Xh+oIKakzgaW0oGTjkZPcVJo6+CWr2cZm8VEjKKrlBRvpSK8m8pGfkdBQOm8fV7t/wg1/pTRZIk/nRPCptLQ/z6wnqefDGbUWPjPVldsp82zZ5QFkHIX3dkUez/fuWxpno1AJPHXGMaJH5k/P7uNNatDnDdhZX86818XHlCLiVJ4vLbcmj5XSHXHrmaxR/WcOp4kW46Vv4OOeQQ8sZkse6VdahBFTXwHY7MJLzVbVhcNtIO6k/6wSW4p4+l5eu1qE1tOIcXR47PyMhAa2qhdcFSWhaIehWy00nGYUdSO+tDfGU7gPg6Etdddx0b3hdK12nTplG26avIPk9bNQ1sYvvu+Rx+8B2k2fPZ1boOl5LKEOfB+FsbqGQnq1kCwKikw8kJ5SFJUkQFZLO6GFh8NP2GH0co5KOmZTNVO5eydckbbF/2Hun9Xyd50EiS+w7D4khi5WMdC3C35/bbb+ekk04CYPr06fz5z3/mjjvMrAP7hf1slDjuuOM47rjjEnen6zz66KPcfvvtnH766QA8//zz5Obm8vLLL3PFFVdE2iYlJZGXlzjby/r165k1axaLFy9m0iSRjvvf//43U6ZMYePGjQwZMoTZs2ezbt06ysrKIhH/Dz30EJdccgn33ntvt2pJPfvss1x55ZXYbDYyMzPjov0lSTKNEiYmXbFjxw5OOrYF3e7g2qcG4U6zUhlK4okXTyYJCDuSqIbhwRP4/kOYLEbuw6QKcQ3WNp2QwzBg2MV7cz8x6QwbKWwOCUOnjNUTTukkRktbk1BQhyMnwrjy+iEHgDawYicjbxgpJcMBSCv1YWnw4c1rpHT356zb/TF1rds46mCZz7/58364658n2y8Si7dBG2V2vvQUd/xiKyMeOR9/iijglbxd4q3ycQBUf1DUaT/7i1CaMJDYmkWUjeQVRor6I/qRWioiOJJK69sdJY5pCdXSvGQRfX59FGmj6zD5cbHTO4SM6y+n+i9P8e1f55N7w9lIksSSymLSnV5Cba2EAho5/d0J52Vpg7I46r9n0NdVT8AT5M071+LITcY5qoS6rzbRsn43VQvew5adgm+XkCFncUbk+DvuuINXX32VDS98F9m2460VpM7IBRr49NtkLjok/pwZhw4GwyiRmprKyDMG4G8OIKe4CLQF2TZrC2g6n3/+OXlnTsJT62H3m8uoXLiDJcBBZxQy5IQSnKk2Zh7dRrZFGEN8ungONKpiwdykOqEPuE7Pp//xg2neVk/FZxsom7+TrR+XItsURvx6ItpkDVnuWgFw4YUX8p/k+ay5dzZ13+7kkksuwWKxcP75HY3kJiYmJib7l4aGBs46vY7aGpUn/pNBfpEVn6GEVRPk2o9VAn/vdKEU0SMKgm5oTjpJHZgspaEoQjkhy1Yyk4rJSBbOA+H0TR6bn207P2f7uk9oqNrAxLNCWGxOFr90Y7dvw6Rz+hWKecg/X8jnyovrufL8Gp5+NYeSkdEohjZDBr9PWZT0draJXshiKOhjx9YvKMqfgsVyYBfhNumIK1XhH//L5pLTqrn9mhoefKUYi9XQn2h2dE2juS5IwYDEznbFxcWc+d8ZtKo2tJDGgr8uRbErpB7Un9qlO6lbVcnmBz7B8fq3+LbXAJA0NLoWvv7663nosb/T+MZHyG4XeiBI2/LlWCeJIulho0Qs4TQ2AA6Hg4IBh+L3NmKXk1DVIFUVywGdqtrV9E0eQVDzs6FhHstahcd5Nn0YzkQACuwDkVKTO5wjjMXiILtwLNmFY2nVGqjavZymHWsom/0SyDLZY6cTDF6D1dp1RNKJJ55I4b/upv4/b+NZsoo777wTu93OTTfd1OVxJj2nN+mbmpub47bb7Xbs9p6Pxdu2baOyspIZM2bE9TV9+nQWLlwYZ5R46aWX+N///kdubi7HHXccd911VySSYtGiRaSmpkYMEgCTJ08mNTWVhQsXMmTIEBYtWsTIkSPjUhDPnDkTv9/PsmXLOOKIPUc//uEPf+APf/gDt9566x7Xut3BNEqY/Ky47777CDVpDDzzRj5ckglLIPm4SpxVYr9qjCG1deKHbbELhb4eFD+2uHHKKCytWYzaEOGi1mrUQBApZm0cqPiMNDtWPZLiydpsRFV0L9AhDnuz6NjeqEbSNLXmC4/0ZFHHO2K4CPevGc8+SQNbmzjenyLauCoNT/uqViSPFxcKI4edQ079elaXvsl361/g8Al+5i67v+cXa9Ipmx+9i6pbr6RoyAg23PQRw467BtliJeSA6o/EBGzomSI9webfCcPRlH9tAWCQvYrjC9YCUOoRBcc8ISHIG+rE58EZtUzO2ArADq+IkNjoERb2yR+LAmNpG4woHDe0DBTC4trl69mNKDJBtwVdUyn/5iMki4WNj76Hy+XqWT8mPzjbLxb5obMrqqh94mXU5mcZeP0M6uRBFPRrpnWnWCj/8aS3KCkp6XD8rwfHf37ss/jPl319Lm9e/RX2nGRyJxaQMiCLDEdU3kaMGMGA35/Elvs/AAnGnj2QFa+Vsuil7QC8/Jtl/PH4UgYOHBg5puS4QeRPKkQNqjx/0vMdJkkej4d3332Xgw8+mPlpM9g1ZBfDvxtLysAs8sZkseKppVjmVFIw2A1rFa67VKK4rwWf4dnlMAbRpT5RrDuoWXArfhgJE0cNYNdVE6ne7mXL22tZ/eQS0leMoOiG01hzxn1dftc1X22l7tud0e/qscdMo4SJiYnJD8ATTzzBltIQr72XRckwOypRj3NVl6OpcmgXDUE4jWbHxbnabl+0bVSrq3fD+7w3OayDSXLEWWmPyMY1SHLHbQkIua3YsDJgzOlkFY5j/ZLnWDfnCQZP/2XPL9SkSw4eXsH8L1s5eGomN11Zy78/KCIlTUHV5R9EFqHn8hgri7qus33Lp+i6Sp8BhzFngen5/WNjfPFOKIY//L0P151bztWn7uT6v+RTONKJiszuHT5CAZ0rZzzPoUMPTdhHbLQz78Xvm/rp79jwp/dQNZmkUQOQ3Q5kR9RZtKCggOzrfkn1g0+jtXlwjxtH68qV1H3+CQC1H7/H4sWLmTx5cuSYo48+mtEX3oMa8PHRC3d2yJ8fDAZ5//33mTx5Mn369KG5uZnizEHYJAfZoTxK9VXUUUky6bR42ih2TiTZFp+aKhF2dwb5444hf9wxeNRGGtZ9Q9XS2aT1H0bxqb9k/eNdp3UKbNyOZ8mqyOfbbrvNNErsD3Sp+5FgRruionin0bvuuou77767x6eurKwEIDc3N257bm4uO3ZEDWznn38+JSUl5OXlsWbNGm699VZWrlzJnDlzIv3k5OR06D8nJydyjsrKyg7nSU9Px2azRdrsCY/Hw7nnnrtPDBJgGiVMfmZ88803OHOKsKVm9ibqqtdY2uINAzISFpHtJpK2KbxPEc7oqMZzMuSMGjkc9eKqLT7xrlk7Hzibi8K1JcRne6OxwzgkkAqBZPFBERl9SF4jPBF0a/zQkJMxjInDLmH5xpdZsPwRcuyvY1Oc5DsHs7Su3SzCpFfk5uZSfOIlbH317+xe+hFFU07dp/0vru/P5IytHJW2DoCakPB+06YLGfBOEwK3847B2BrijRGSkcbJM0QYOTIWVUBIRE+gGb8kdzTsuq5yHa3rV5F/5kWmQeJHjuugUci//xXNL77J8sufI+Oi06BfAapXpJBLT0/vVb9Wp4WGlbu6bFOzrhXZnQTo5OXCsMOzWD+3NrL/jTfe4NZbb418fmVy18URk5KSOO+88yKfCwsLad4i+jtu/m+YOnko5e+vwLO7mY/e2Mk7//VTMr2QqReVUDwhi3RrG6cnr+qsewodDZSmDyL7V0UEBgxl54NvU/XSXH7R5/LItfn9fmw2G2VlZZxzzjlcc801lL29ItKHbJE45ZRT0DSNq6++mkMPPdQ0UJiYmJh8TyxdupSSARaGDrPg/wHOH1YIRxTDiRYrPVjAdGWQUN0OlLYe3mVMVIWlNRgpdJ2aWcLwGdew8ctnWPnB30gpfAtLcgrJ/YaTNmhst9KUmHSN2+3mr09lc+EJFdx/aw33PJU4fUcikhUfLWrPohH2pyy2NpSxu2wRAwYdj8PZu3mkyYHBqIlOnnyrD3+7tZbrTtvO+TfmcezlxfjaxP87trhuT5AUmbqvN3fZJlhRDbKMJT0Nye4gedIkWhYtiux/4YUX4owSACtfuL3T/qxWa1yu/5SUFBqDwnN1hvVcsrUCdumltOktVAd2UFa+nkxHEcUcQnbyQKFj2cNvwuZOI/fgGThLBlL27n8on/MGw/4goknW/+n6yDqhqamJ0047jfPPP5+m97+Mfi82K7+6VBh+77jjDrKysvjtb3/b9UlNukcv0jeVlZXFpTvqTZRELFK7yEVd1+O2XXbZZZG/R44cyaBBg5g4cSLfffcd48ePT9hHon6606YrfvWrX/HGG29wyy37JmWjaZQw+VlxxRVXcNVVV2NbWU5gnAhZynB4WG8426ZvMCIPtoiJm7dQKN7CURBSSIoWqw5HQ4TnWOEaEzqRKIjeRD+EUcM6Xh2shgHDKBlA0GVMFI2BQ0pRIrn9E0SXR/Clg25ESmiWaL8dzp2eRLgCgK6IjjO0LKaV/IryiqXUBXbRFKxmt3cja9euZcSIET2/QZMOlGxNQ8ufxs5NixjQ/1jcIQuKT/zT678Vlvicv4o8+S9cdiIAtzz7Ip//VhQjV24XE6ftNSIaItAiDA0rvHaG51eyuL4/A/OrenxdUkgIsnO7KLaNokA7y7huE4+TxgEWdq1ZhjO3mPI3nu/xuUwOLMIpxgaMKqD22Y+p+8+bLG6aidoi0netXLmSrKwsBgwYgMPR/QXvk+P/t8c2gW27QNfR/AHUkMYFD43h7T+tY5lRY6KzfJq9Ydcn69j0z6+Z9MSZzD//BTweD8ffdySrXtnA/365gNMfOpgpx6Xxdstosi0tABydvCaSNsElC8VO2FNx98lpLF43gO2ffssyuYkZx5+GlJLE7LNeBsCekYS/3hMpXgfgznbwq3eO4bapt6GqKk8//TRPP/00j9a9S8aYPnw6/dF9dr8mJiYmJh254oorOPHED1i8KMCYyWIiHvYi15AjnuWq3v497K0eW3g4fkIe6acXXum9pn3qnGhJO5TWjgYJSZKRZCnuc+J+270DztRcRh5/A9W7l9NUtg5vXQUNG75FsSdO32LSc3L7WPm/W9L56611VFaopOTZupTF8OdWNV5RlkgWoffyqDr0SDaATomRxaqdS7E5Utm4/n2z5tyPnEP7lXJoP+gzbBj/e6yGFx+opLZewp0q/q/r1q1DkiT69euH292xeHRnfHX0nrMyBLaXIVkU1LY2dFSyTz0T2e6gaa5Q4u/LdUKtVsFqbTHjlGmUhlYTDAaZmDGTHYF1LN/+GkMLZlCYfGjcGBshgaLXVdifzAmHU7N4NhXvv0LK6IPo9+d72PmnP6KHQihpqaiNTcydOzfajd1G4UPX8c//ewCAe+8VtT6fqptL1mFD+PqYv+2z+/050pv0TSkpKd2qwbAnwrJaWVlJfn5+ZHt1dXWHqIZYxo8fj9VqZfPmzYwfP568vDyqqjrqempqaiL95OXlsWTJkrj9DQ0NBIPBLs8Vy1/+8hdOPPFEZs2axahRozqkIXv44Ye71U8Y0yhh8rMiEAgAOl5PLQoFe2zfHawt4kEjhxLsNAYszRb/2dIUEzVhHNfeuLEnNKuEZBzrS5Mi/YSMub9iOLsHjed/V/PMsLEj/NDUbDKKRUxqLbuEJ7He3IoN6KsNpCR9LJoMn1c+w4cffmgaJfYh+Vlj2bZrLnUVq8nPHtejYw/OEOF9nqBRAD1D/GP7uJvY+O9hAPxVGgBA6naxGA26xKQxXCi9aaCN7G/FvnCh6z1iUWgdIB7I6ev8rNm+kZJBMxh14yOsfsj0jvspINttZF9xCna3RM2bn0a2H3744WK/203uqePJOmEc1lQXy467l1AoxNatWxk4cGCvwjv7/nYGVS/NQ7WlsHbAVGaPv5/y285Bzl5DSoGbiy66aJ/cm6qqrP/7PFRvkJrF2+F8EVVxwUVW9AtHcuelu/jkgfX0O+wYFKtMbVCk91vtKSLHKnKJjnNu79DvuKsmYk12sP2TzWx+ax0Zo6OLI3+9J67tpAv6c+g5eeRmiN+eoijMnDmTTz/9lOW3vs/BT5wF0/fJ7ZqYmJiYdILfL8bgDWtDjJm8h8adkKT48cQogaNGjcRGivZ/t6c3aZt6hGF46NQAEdNmT1hsTrKHTyV7+FSCDp2NL95H89Y1++IqTQyOOt7FX26pY/bbLZx5dfcMPm7FT6tq32tZhMTyuEeDRDsaqjeRWTCSo49/EIAvP725R8ebHHhYrBKX3JiD4rTx0oMVke3nnnsuAHa3hYln92PiOf1IK0ji7pHvoes6mzZtYsCAAVgsPVdLpp92HJIsgyaTMu0Qtv7+JgYFFKx2FygKN9+87+Rqs7aSEAGqNBHlbbVaKcgeT74+jrXNcymtnEdOnwnYrN0v2J45cTqaRaNp1bc0rVyKNTcXXRPrcbWxKa6te/pBpM6YiDUrLbLt6quv5sknn2TTPe9he+gXcMze3+fPmv1c6LorwimZ5syZw7hxQv8TCASYN28ef/tb58amtWvXEgwGI4aMKVOm0NTUxDfffMPBBx8MwJIlS2hqauKQQw6JtLn33nupqKiIHDd79mzsdjsTJkzo1vXed999fPrppwwZMgRgj1EYe0LSdX2PX2lzczOpqak0NTXtE0uQickPxYIFCzjq8BmoWpD8k39B6vDx+MZ6eHnyMwCc8+E1AKRuMuoz9I3/ech+CTlofAinXjUU+j0xSihGMWtbTKSCkeIfW6NxjGFwdNSLqAaIFuK2GseHjRKqXRgjbC1Ro4TFMEq0FoX7EycPR1TYmiTcZUY9DOO6MpeI9E1qshPZKxZmUotQnunN4mJ1Y8EmOR0sa57FmMMG89ln7RLGm/Qan89HSnImTlsqk4ZdRihd/EPLp4oF7rBjSgGo/2s/ACwtwcj/b9Lj3wIwt2oQAFa5o1EiHF3T3igRNkgl7Wpj57FinC/6VHiEKy1C4NRUcS1Kgwe8hoAZaZtahokixZY2lSXz70e16hQdfyFbXvn73n8pJgcUhQ/fTtX9/yJU00CfGWejDkqnbdlyWhYuQklxkj51CAF/KsGaWryr12JLc2AfNoCk0f05/IIsFKvC+TkivPr4kh9GWTHivbtZe8rdgDBKhBdDff50GbvujE8DNeTRX7Lp+meZ8thpZI7tg0XWGJJcRUhXOhglwgv9IotYTHzRNoT5L+3ijXtECPqXX37JNW/ewe4vNuOpaiVtWC79zxnHwmve5KENxwLwu2HC6LNp06bIZE+2W0hzpfDcc89x0kkn7advZd9gzhl/fpj/c5OfCmvWrOGYmWOprlS5/o40fvFLN37EhNynWyPRcT4j7DhcXDi8vVV14DEm/a1GupzWkPjcYkziPcbn1qAt4kTSFhDv/oB4FgWMd9VvAb9hNPCJdzlgpF71RVOwhtcV4XSsFuOz1SsmiFYjlYrFo2JpE4uHcKSE1Go0bhJzPrUpWrhTSTV+z0ZBV90t5oGq207IJa4xlCTmkUGXuL6gU1xXyAm7vnyD1l2l+Buq23/VJntB30F2fB6Nf8wegu6IL3QdK4tiu61bsgjCqalLWQTwy13KIsTLYyJZXLXgKbzNVQwdeRaZ2UNNo8RPjH8sPYi/X7WBzctaOfO2gWQPz2Td59XMe1ZE+48+qRBLmovmuiClH2/F6rKSMbYP2RMKyZgxBktSdGwEWDTjr9/7PRw79g/MWvGnyOewonW0MpWVoa/i2h4x4nrmrnuUEYPOJD9nbMKxMXZchGgdU9UJzetWUv6WyC7w2muvcfXbr9P67XKCNdXYCvJIPvpQKv/+DLIsM+C1e9lyjkhBVVNTQ15xHzSfUE5lZ2fzxz/+kauuumo/fCP7jgNtzhi+nv533ofSzah/1edj659v69E9tLa2Uloq9Djjxo3j4Ycf5ogjjiAjI4Pi4mL+9re/8Ze//IVnn32WQYMGcd999zF37lw2btxIcnIyW7Zs4aWXXuL4448nKyuLdevWceONN+J0Olm6dGkk6uy4446jvLycp59+GoDLL7+cvn378sEHH4hrV1XGjh1Lbm4uDzzwAPX19VxyySWceuqpkULweyI9PZ1HHnmESy65pFvt94QZKWHys+LQQw/l8LxLWdv4Jbvf/x/oOvaxw7o8xlEtEUgVf0sa2Iy5etiRJBxlEDZOQFTxH45+CNeHiBTA1qMTt64IGxnCBopw9EPEOGEYNfwZYgIYSO5oHMlaIU7qS5cjbQFsTeDLFDfh3i3ahDLdWOra5XQKGh22s1/qPj+ZUh5fffUVHo+HpKTuewaYdI7D4WB0/zNYtulFaptKSUsfFdlnbYXvNvQF4Bf3irC7eX+dgqNW/I8W3jQJgBMfmQfAmpY+AFT9voRUSQiPN0fMgnQjPD/83h1PPCloCLmmgU0IpWYX77ZGcQ3+dAvDDv01Kz5/mLrl83t6+yY/ApSQE0mxIikS5XPfIbPwWFJOOZi0qdOpef1VmlfXoAV2o/t89JleQnK/dLYvrqHq3x+yomkEY66cGOmr39PCS277Fb/bJ9c29I+PALDhrsQROiPeu7vj/SgKuVefRqixhaRhRR325+VpbJIl6ldVkDlW/KY2tuTS6HcwLE2EyIaVUDI6oYDKePdOFIvE1Wm7WLOzGkmRGPqrgzn44IMZYBnLgHPHEtKinqeSJEWMEWEGDx7MsPvOovTBj0kZWUjd/I2cfPLJPPDAA5SWlnLiiSdywgkn9MojxcTExMSkIyNHjuSjBbk8dn8zD/2pkWBQ55wrMro8JqgrBHWjjhsSQc3421gohIx97VPmaLoU+Ts8xY7m7+/BuN6N+Vu3ugvPB2OLW3dR6NrSFiLksnTZd3LRYOrXLGLnzp0UFxd34yJMusMfnsjn8hN28OW7jRx+rki3EZbBWFkECGpKt2Qx/P59yOLgg85j1Rd/Z8e2L8nMHtr9/k1+FNhS7Oi6hC1J4a2/lnLCLVZGnZDPmAuH8u7vl1JZ2kbQ24S/NUTuxAJyJhRQsbSCdU8tJGt1NUN/dwxYokaJMR/eycoT/7xPrm3CZWKdsOzfnUfyHzv2Dx22jbUcRqNeQ56lb4IjZGyWJBqbd5CfMzaytbOfjqaG0FSQFQvoEKgTRtv0aUdw9NFHk1xVRvLUKeiOaB7wcMR52CABwggx/IFfsPm+93EUpFOzbBtXX301W7ZsQdd1Ro0axUUXXbTPihH/5NnPkRLffvstRxxxROTzDTfcAMDFF1/Mc889x+9//3u8Xi9XX301DQ0NTJo0idmzZ5OcLJwCbDYbn3/+OX//+99pbW2lqKiIE044gbvuuisuDd5LL73Eddddx4wZMwA4+eSTeeKJJyL7FUXho48+4uqrr2bq1Kk4nU7OO+88HnzwwW7fi91uZ+rUqT3/EjrBNEqY/OyYvftJdF0nrf8oar/6jOJxYznHfwUAI0aJ9Dc7t5QAwiCxt8jBqAEibFyQg0QGM934FSYZkY7hqApLfK3hDn3qMoQMO4DiixbIDhsufFni3VEXPS6QGl9HInmneNjpMek8Q5lulFZ/NELC8IjXfcZNxCxQLFgJBAIEg0FM9h1ZLSkkKanUVK4ivY9IjdVZ/Y/u4ssSgqXZ4o0RcsiIljHeNZsSiZCQ/eL/qiXZ6Ay5xUP9lHxa+4j+0jepKLIVXQ3hLhq0dxdtckAiO530ueVGgi3N1Pz7eWr/8x7oOpLNjh7wI9ms2Pv1wzVuNKPPdpCU60Y/uYDa179k46tz2fjqGmZnKgSKh5FybBn2vlFDgN/vZ9euXQwYINKMDXjtXlyLxUC36pHrGXzvI2h+P7aScmw5qXiWR5VFskqvqfzH2x22HfHFjQSbvHxz+atY3Xa81mR2btXwJ2cjSRIDs2rZ0mIMtMlQtaaWjS+tYtP8KhwOickzUki/wMUvf5HCM6+1Uv7ZJsY9fyOOoqxuL67W3fo63ApT59zM3RzNjBkzeOzrFyh7dzVPP/00ruJ0Jv/9dD479Zne37yJiYmJSYTx/Xfz3D+hpS2FF55u4djzs0hyyQR1Bc2oGxQ0Ju9Bfe/y4bfP4a9HtifY2NnnBIScUQ/1uEP3tKxpb+Teg9F7T/3JNuFF1dbWtocTm/SEwsFJjJiYxOI5zUw9p88e2yfJgYjzRHdJKIuxO9r/3QmJZNFqcxEKeUnPHNgjm4fJjwNJkrj5lTHUtyj897rVfHL/BtSQjtWhEPSrKFaZnGHpDD5tCJmTS0guTKXkgkns/GgdK/76JdVfbsKS4sQ1KI/M0w7BNbpfpG9VVSktLY1EEvf71wNIRjTZtmtvZPA9j6CFQug1jdgysiJ6EYA1D/Q+pfDy4LwO244b9Hs0PcSSsmdRtSAOeyoebx0WV3bCdHjehioqv/qCpq2rQddJHjCc5HEHkTJyAvVL5tKyejmj/nA3jn792PK7G7p1XauveR6ugSmzb+HxjDM56KCDeG3dx+z6ZD0Al19zOSc9fxJvnfFWr+/9Z8N+NkocfvjhdJWkSJIk7r77bu6+++6E+4uKipg3r6McticjI4P//a/r2o3FxcV8+OGHe+yrM37zm9/w+OOP89hjj/W6j1hMo4TJzxJJksidcDSb33mcptffI+mO4wGwyEJJH0gX7RyinEIk8kGzR5X+4W1hg4OsGkpdRYpERGjxNV/aXQRxA5pP1CbGaUQ4h9c5vkywNxj9hSMuEqSKCkdIhCMhrMb8v2acuNBwH4lIXVNvdGx4SdU1obeKDnRVRbIlmMjqOg1qFaNHjyY1NbXzzk16zKzyJ/jd7xw8/vCTjNhRhyRJFLSK4iA534r/xdKXRM4/ORM8eULQBv6fmIB8eoNIPj/zYfHgKr8rBZ7Mp7sEMkQ0RTiVmOQX2t5QmlhcWgOhSPHr+onZCToQFjJbSma3z2ny42HbtTdGP9z2R2bOupLGDVVs/jyA4naht3jx7FxP3Rvv8MlrGrLLgZKSiuyMhsT6bS586zfjWb4G1+QJlLj9NH28mLZFK0SBa0XBfegYnEP7Uv7WNwRbGzl5y5dUllXQskKkKRvz4R2AGKNaN6whUFZGoLaa1o1ruHT7Kv773/92iCJoq3L16F53vf0dwRY/1qJ8dj41h51PzUFOdZP1y9PYPG0gfTPF2Ll9/i4+uX4eeQOSOP7qvqytyeDrL0o57K3dXPnGdM7532jeumEJ2//8GoOfuKLH33m4eN3oD+6gIKWZnCklLLv5fdp2NvD5af/hyCO24vF4WLhwoekRZWJiYrIPOP/yFGa908o9N1Rx9z8LCegWAu290SNFrQ1jhWZBNQwXoXYRE+E24Si5PeXu3yNdKEUSGSQihxmPiHA6z8hzsisDhLEvfIxwjNqzGqGtfCuKw8XQoaY3/L5kZsk6Nvzi7/zuputpbtFxui0JZRFARaYtJOb1e5LFXhde77Es6mhaCIczvXfnMzmg+fXgBZG/f/813PntCZSva2TryhbsSRY8XomypVUsfeI7tEe+xZJkxZHtxprsQFJkdFVDsllo21xJ0x0v4R7Tj0E+K41frqF13jJ860QaKMewQbgPn0Lzx3MJVdcw44NPqWpoofnbxQAMvuVvKFjRdZ3WbevJPXgG/uoKmnas4cgtH/DJJ59gt9s7XL/egwjk3c1r8QYacTmy2Vr2BVt2fobF4qD/kBPIHhwtTOSp3cWG9x7B6k4ja+xhYFVo2riCplf+RdF5V1B89e+oePMFKp/9D0W/v6XH33k4xdXx864FYMhpQ/j88ncJtgV5+8y3OfOMM1m7di3ffvstLlfP1kI/F3pT6PrnyjfffMMXX3wRqS3bvtD12293dPbrCtMoYfKzZdObj/LQQ0X87qab6FM9GWtO1+HZe0JTJOSQLlIzBcVIFUmlFI6AVQzv9KCOP92YGO7JyUqKiWQwBkBXjVAIe7I7Vz6FjRyqIzxqivOFcxi6yzVSNghLheQ3LjRcJ0CNdznWAzEFjzWjP6uFBq2KMw47fg83YNIbmpubCekBNF1FkXo2VPf5Yyljkncx5/JpAPj7OLB6xP/U2ireI0Y0qxCu5n7iYZJW2vlTVjaME1JII5gjQglDDiFXthYi/SoWB5Ks4KnY0aPrNvlxYkmykTW+iBpZhDTLfonU4smozW34S3dxbepQHnp7FqrPi31iHoG6Wrzbtoi2KS6shWl4V26i4eUYjw1VpXXudwR2VhKoKQeI5MIEsOXm0bYinZa6TTR+NAf/5i1x11ReXp4wrdH2y2/q9n3lONvwD02mZuJQJItC0si+pI4rouaT1VT//SXU8uk0ZGdizUkns0JElh30wMm8e9orgChQllxSwPO3b+Gi/xxC31vPZPN1/6Ls7+8zfP0mBk2PGgrfm/ZEwmtoT15yC5ou8e3v3+MXEy5g/l+X0rC2ki+//DLyHZ1yyindvkcTExMTk8Scfugugv95jXPPPZe1yzwMGL93DjhJFj+tQUek9pAel76pE6Xw96H4aG+UiPXw7cJgYfGE9miYaN1ViqugxEwzuB9oampCVXU8LSpOd9f/B5fFHzFMQGJZhHD6pu9DFiUsFifNjTvJ6zNxz81NftRYHQp9x2eSPVbMe9tCdsacN5T6JqhZU8PR3qN58ttXCLb4sRdm4q9rpWHZDtB04diUn4N/eyW1T70Z169v/WaQILBjJwBz5syJ7JMUBdlixburjJoln9GyeXXcsZs2beq0uPany//YvRuTJJJs6WSnDEaWFNJdxaTnDKG6aQOb1r5Fq78GV2oBSlo63lAj6Dol0y9g4wfCu1zXdVx9B1I1620Kr/wtuRdfyq77/0r1qy+TvW0jriljI6fqbprb8G/aOqSY8+ZdxIqnv2Xbp9uYteBj2qq9PPvss1xzzTXduz8Tk05IS0vj9NNPT7ivN8970yhh8rPmqquu4rab/0DTe1+Ref7pNAeMfPvDRa4c6UvhnR5OjaQrEBS62IjnR1i525PJmsWnEwwaP1gt3I94V40CSMEuSjSEjR2uKnGwP1WOpHIKF1CKJbaGRfi6kyoDSEZhJN0pvO8lbzTGUTIKp2GkbdJD4qSS4VFQ6luOV2/l7LPP7vJeTXrH3LlzyZH7oNjE9y15xf+qfpJYFCs+IXAlv9pM9T0i3djuu0W6pOMf+rLb5wkbypoHGgXoPFaUgPjb1hTOCdb5wyVsgMtaLoqtaA4rduwU5h5MxdK5Zr2RnwEfHWaEbh7WeZuXG8XA5Dec4vSMnbSVe7EPLEJWJDzfbUBSFBy5fbCOyEV2OWn9bAnBXVXY03JwFBQjKTK2nHzRZlAx9Z/Non7unLjzOEYMIvmoKXzyyLN7fV+vTfknTIGBg+6JbCs9+w6OPOK3bHrCzu7Xv4yM+7sBW78+rKgcEmlrs9noc+1JbL/rf3zw23mMvOsklMsms/6phTTNX4flhun0O3k4ktK7yAZbsh2nXae8ohlHlgtfbRunnnoqPp8voeeXiYmJiUnPOOuss/j9nRfzylP13PyvjA5pm9q/a0iRvP3hnP5hr/RwUeFuoce874v8Nt1J2xSOsourKSFH9/ew77q1i/FUbKP42Iu6fZkm3WfevHkMHOsmJS+JoJ5YFkHUkfCoRh24vZVF2Ht5lEC2WCjufwTbNs+i74Cj964/kwOeP4x8v/OdRor9L+fvBsAbFLLaVB3EW1aHZWBfAroD36YyJIcda24G1uI+KOkptM1fhm/jFiwZGTj69gNFwZ6Riz2/D67sYhq/W0Tlx2/Enc6V04/s4VPZNPvZuDz8veGTTSKKeea4uyLbPl3+R6bP/CsOZwY7t3yBrkfrQthTs7G6osZtSZLIO+Esdjz/OLuffZLcX/2KzFNPp+bVl/Fu2ECouYGUI6chWbtKvdE5FocFi8OGt86L08iCcO2113LuueeSlZXVqz5/0uzn9E0/JY466iguuOCChPtuuqn7DoBhTKOEyc+apKQk+qZOYPPXi0g9oXuTItnQ06rh50OSmJyFlf1BF4Rn6JIWb7CQu1F6IWyMsDeJd78cjaboMlQsfCpj/RBKEQ9BKRSdPLrLtYhnu+INoTttSN4AHXDY0esbRX+a1mH3dv8atgRW0L/kGKZNm7bnmzLpMWeddRZ/u+9+Qpofi9y5grH8kYHIdvHPd9QIA9Ks34j0TRYjwkUO6fjThRDlXiVCXpv/1LGgb3tai4Uw2pqFxcxeKVJ6qclOtl0l2mTOij9G9gXxZzkp7DuVsorF9JtxBjlTZuxVHk+THz9r7t/D//88GGEdB0BgfBttKzbT+K4olO4PVBMINOOtb4wo2wf96hbq585BUizoqkpenwkoNxyDJUNM9vdlCqPSs++I+/zF0Y/C0cLDyev1MuAvN4EEtgFFHbxDtt7yLPOmXMJRJ86k6crXKTl5GANOH86Wt9ex+uF5tGyrY+hlk7p9LZ9OfzTy95bmTNok8Rv11bZhzcsgWFmPqu5FcQ0TExMTkwiyLHPWlVk8dONutq/3kjd0z8rcoBafvikUTpWjx6fKCelyJJ2OqoVzKu35msJrgV6lj5CkqIFBjtkWs1+KVdRJUnxRgfbHdGKsqN+ynN1z3yRj5CGkDRrbiws12RNnnXUWV//fF9Tt9pHZx9Fpu6Amd0sWQaR32t+yGHLKWLwa+UUHs33LZ+zY+gVHHXYPn8+/Y88Hm/xk+eSwv++xTf++/QDQAgr+7btpfv8LAEL19bTW11NZWUlurij8PujGP0cMEpKi4C4eSsG0k3HZRdrh9ulm9ob2kRXzPr0FuAVd1/H7/Rx0+m34JT/u/P4dak1sfeqvrLrqPCYcehi7//4oqVOnkXr0kTR99gWN73yMb2MpmRd13wE09ns8f8llSHah7vXW+0kpSqa5rMWsBdoJZvqm7nPNNdeQlpbGiSeeGLf9hhtu4JVXXuGBBx7oUX+mUcLkZ0+fhky2WC14X5vPtlyRiuiS8QsBeGG3cP11VogHiK1pD3Ui2qHawpN28RY+VrPI2JvEaKZa4yf03gQp+pVg+DjxHjYsJBoQnTXgyQM0w/jgE+/u8hjjQswpdacNqbZRfAgr8rw+sFggFFO8wlikbEkrp3TnUvr1OYySvEM7XoDJPuGqq67iL/f9hdKGRQzNPQotWShj3eVC4Wgx0jEFUro3jGdfuR2AmsdFVIWUIoTH4hfvuYvD6ZzA1ij6DiYn8CBRJAIZdgpfkIw24rhgulgQaUZUhdOZQWHhFHZ9PYukvOJu3rXJz5m1f4kxXJwFg1v7U/v1HBpXLUGyWtBiDKQhj8gXpqsh0kYdTPqxZ7Puhhvbd5mQ85dchlOJTsifmfhcr65XkiRGvv8woZoKbEW57Lg4cQ7Y6dOnM/Kxi9j9+Ies/+8yQt7oube/swa/IwWO69Ul0P+ao7EePJZgVSMtS9YTrKzH5XIx5bmLWHjx873r1MTExMQkwpQTMsl5pIbX/1HNVY+JVK+BSMREu8iJPeZkjSeaKqf953DeVymiHO6OEqR9m0RO7aEkCxZPqPtFrdsZLWL7SXSu+tJlbJ/3MumDJ1B42Ok/e+XN/uKCCy7gd7dcw+sP7OBXj4zYa1kEIXddyiLAHhR3sfti/w4fbvWIuZzF6qTfwKPZuvET0hzdr3tn8vNl63m3xX0uTsmmac48WuctRA8F45xyNF+0mIm731AKT7yQdY/e3K3zzDzoj8it0ewRn6z/S6+uV5IkHA4HvrYGFIuN755JvE4ZPXo0xVdcT+UHr9E49ws0X/TcvnWbaHz3E7j5z726huEXjaHvxGyadjZTt7GONa9uoKCggF88eziF47K4f8wbe+7k54T5vOoWr776Kueeey7vv/8+hx0m9KXXXnstb731ViSlcE8wjRImP3ssko3Mgw6ndvEcnHWHYMlMi9s/avw2Vm4rBMC+3Y6jxtgRLn4dNhREIhz0SEREILnzENdgkoTVo0ciG8L9hdNDhftLVCDMYqTu8aeI/gMp0VoRQXe0nRSKFuaOGFPCdhJfKLoKchsFj1rbooYJEIYJv/C+lwvy2NW8htKdn1I45GgGZBxm5ojdjxQWFtLPOpIdDd8xJOfIyHZPllhkpOwUEy9HXSBSdDpc70PxGKm29Gjx9e5g8WtYq4ME0oUnYDiNUyTiJ0E/1hZxHUqbOKfNI6IzgmkOUs45A8tTq/Hs3tat85uYxLLp73cBdxEMBpFlOS7MOiV3IEMuvg0pMwXZ2r00BAfPuo1B6TWoAZWvHllE9eoahp4+mP8LnY3FrvD3ca/06PpKHn+Itk0rqX36HSSnndDNj3ean/asg8tZ99QJ6LrO4jUZ+LdV0DLnG2S7leQje5dP+auj7xd/zDSu56kbaPt2EwCVn2/kmL7XM+fwR3rVt4mJiYmJwGKVOOfaXB6/uYxjV7dSMsodt9+nW+JS50T/bhcxEYmgEO/dLircXknS7rieKv0tnhiHI0mKpmtKFP0QiaqI2WfMLRPVlGiq2Mj2uS+TOfgg+hx1NtI+jFo0icftdnPG9cW8cPc2zvlDAGuqWOglSi22r2RRb2+Q2EtZLCqZTs3ulTQ2mzXoTHrOzhvuhBvuJGQ4UcbOwe3p2Qy85g4sUhKKvfNIoliOOvw+ABRdZ3PNfMqb11GcNo6jC6/CKtv5ZOejPbq+qWc+SFPNFkrnPwdAQ8NfSU9PXNzdkpxC/qWXoes6IbWFQGUVzV99ha7ppBzZRX7cLnhp0r/FH0a97V/NO5s1r24AYPW72ykcZ6ZwisNM39Rtjj32WP75z39y6qmnMnv2bP773//y3nvvMXfuXAYPHtzj/kyjhMnPnjnqaxw98mYWSAto+8/nFM78BS9YRTqNUeN7rkwNOSUwnn221nDBa/GuG5N6b5aEZoFQkoS1pWMfchAkw9gvB4gMfLbmxOdU7SKKA6LGDCkU38abKSaeYU/7moPTyF4mDpJ8wejCQ9NAliPh27qxPeCS2bRtHlmF4ygeNgOfJPHV290rumTSO+yqHV1XoaUVz7DMHh8fMKIX0q/ZEQnNbukj3pN3CUNGOOrG4u+YpgvA2hxCNoweulEUuy3finu3sLxplvgFSVheNJtC5mYVQhqupt7n7Bzy2h+QrOJRteH0P/S6H5MfL4lCrFc+2vt0YMHWABvfEcr7RfcvofT9TUy8dBhjfnMNjRdnoza3Yfm8hg//eiMjR47ssq+2haUA6F4/ixYt4tBDE0eP3T4iWsR78O4/Y0lPJmNS/17fQyKsOekMePlO+iRVY03p3gLMxMTExKRrTum/ghNvVHnr38m89mAZv312dETh69N7vpQOp8dRNTlBoWujUcRbfc/lIGDPyuC4wItwh51FSsQaEqSOxggkKWF/mqayY+m7uPP7U3zo2UgBmWX/NlN37k+S88Siz+uTULuInHYqQbxqx7lUrCxC+0LXRqMYWewuXcljx8ALDVnpvUrqiOl/RpbF8Z9/eWuv+zH58ZLIIWjdPb0fe3RdZUudyJqxseZLdirfMTB1EpNTTsYlp6ESosXm4R/v38LkyZO77KuhYl3k7w8//JALL7wwYbuNd0avt/9jD+Ec6MY+bN+uE+zJNi5ffC42Xxv25B7UlfmZYKZv6hnnnnsuDQ0NTJs2jezsbFHnaODAXvVlGiVMTIDP1vyNYX1WsmHtbIZYDqatSDwEVrT1BeBfR4miqe8Mn8CczcMASP5KFG51NYpRKWREKqiOzpcPkqbTmmdMAA2dUXhSZhO1tRPWndAs4M+EjHXxM0M9QYHU9hERlrb4/Z5ssZCyeNvHeOvCIAEiQqLd7HNz+ReEtADD06Yz752eF7Ax6Rm6rtNgqcOppyElJUWiFcLvYQOXKFQt5EBpE2ExcpMHgFD/zj0gWgplAtNayHxNRMnIRlSE6rTg3G0c38mEJWWbjy3nin15C8LyLj47YlLT1A21wJdWWlND7bvoFsuXL2fzJX8j65wjyDj5kF71YWISZlByJWtf3sjOz0pJH9OHhpW76XdoAZ5aL5/cvBBYiLzMgeYRv6NRHz3H2rVrGT58eML+1JYWvKvXkHrMkTTPW8Bx115L7oUXseXGG7q8jk1n3Lmvb22/9mtiYmLyc0dRFM68oZjHrt7IqgWN9D2kAICgES7tMybffs0S442eOI9/V1itKgG/FV2LpsqJ0IU3u+qIRkbvEcPQoHdWFyL2syxFonCFMSJ6TMgZ73BSuX4evuYaRkw7v9M0JSb7lrVfN2F1Ktiz3AQSyCIIOQwbJL4PWewpsmxBVXuX437Hjh18vehv5OWOZdDAE/bZNZn8PNGByqrllJctJtPVj7q27aTbC5CQWV0/GwAFKxohdHSmTHmPefPmRdLXtEdTg9Ts/I7sQVNo3L2Oq373Bx6dX7tHY+3W6/bP+Pnk+P/tl35/MpiREl1yww2J17c5OTmMGzeOJ598MrLt4Ycf7lHfplHCxMRg5bb3yUgrZP2W98jQftPtkOPmfmJilrZZKPSDGnjyxDZ/unh31Bv5953R4xQPqEkxn43c/slGBGvYAuvJlQikxp9TtRvRC0aqJ3Q6uFJJqlG8zDiHkqCedQSLsbAIp3Hy+aP70txsbVlGWc1ShhYfj92ZOOzQZN8xw3ou27UNVGnbGJN3UrePC2SJf3bYMKD4RVRM88NF6NeIvGPKUfUAeP2dF0dpHiTkwFUhhMZSb1i2jOgZ1R5diFYeKtz4St42jCVGNEU4dZQtLRNvoLbb9xDLQw89hO4LUPPCbJJG9+cY+SzmaGbuS5Pe8e3Di9j87kYKDimivi6JtGOOpm/pIJzWFGqPkfC21tC6cxMtZ2dg26xS+fWHrFixolOjhK9mG3owhLNvf+QjbDR8NodARcX3fFcmJiYmJt8Hj165nk+ez+D1P23iN2/nYEvq3jK6faqcSFFhTUIzFL6RgsOBLvps57keS7cNEom6NQwNktyJolmOMUbEYPGqhJwKuq5RtXUxu1Z8TP6Iw3FlFPb+Yky6xRMbjuTbj6qY++Iujr9xCLIsQeKAZyAaKdGVLAJomrTXstiePRnMnI5MvL76PXeUgKeeeopgsI2yXV+TkT6I6SeItJbzPvp9r/oz+XmzY+c8tm6bTWbKQCRVo1/mZArtg3FbM/A1VtOi1tOoVmPBii0pldV1s1m8eHGnRgm/p5GgvxVXRh+S8vuyY/6rNO/e9D3flUl3MSMlumb58uUJtw8YMIDm5ubI/t6kdzeNEiYmBjabjRHqeL7xfkraywvIGzad2rFCwXr1278GQHVr3HeUUIr+0SY8MpTvkhN3CIQMI0TTIDFyOaqMVDk+8BnZeJQENSMAvJlRzxTZMCiEI28t0TpOaDYIpEI4gtzeIN797WwHRqQ5ASNCI7ksBGonMbkWBezC831LcAVbmpdQlD+FotxJnd6ryb6jQa9hs7aS/q7x5LuHgq4TdImFg9WIcLE2Ra1MqnPPQ7nv1TwAJMOg5R8phKjyFGGAKvm32O7L6hgdEcx2Y63zQFAc0zjIiWwY0TRHu1WQYctT2kJ4+1gh1Y4e6Moi1hFd1+n/+7vY/fEskkaNIlBeTuDGj0E6qEf9mJgATD/+fpobd7Jp0Qby+hzEEQ+OpvaCDNgGusuKDmRt8gDJhPrNZNeCpWzY+jHO9HzOOuusTvvVaqtBlnFkF+IcOIjGuV/iWb/+e7svExMTE5PvD0mSOP3ukTx06kJmPbGF424aHvVGT5S/vxve6Gq7nP7R6XjHQtcd6IFiOHoTCbaFLzNsnIip3xRN6dR5fzU7l7N1xTtk9hlN4djje3AxJr2lepuHl25dz4RT8plyyQCCupRQFsW7jC9B6qZEqJrctSxCQnlTbaD4E+/r1CARjui32FE9PY+UOHzC71mx8RVSUoqRgB3lCxhdNKzH/ZiYTD/pAQL+FrZum01G+iDGD7wA2SvWx1KrUNQ4rMk4rMlk05cq/zZW1n+BXXFz+eWXd9pvW+NuANxZfbHmFVC54nOadqzZ/zdk0jvMSIku6U0B6+5iGiVMTGJIk7NJkpJpKFtD3rDpCdv85clzARh+hsgl7jhxFwArPhITIVe5Hik63RUOw3k8HAXR5jSUxWlilHNWRdtaPKJuRIsRlWFtCafuibYJ16AI16gIGzLCkRLNA4Ty2F4rVhaWtlDEqx1jwqg7hUJaCiqE0oW3fOWKVWRnDGNIyfHM/vqOPd+YyV6zTVtPMmkMcndtBJJCGrpVxtJi/LONQtSaXSw+whEOmi0Zb1bXdR00m5ALe310YWBpNiZkQTWubc6X5aRuF1a1rWcrccfHXpulWUbWLGgBP91l0Bv30PLVSqoeexNJUSiechlNa5ZRteprbI+ZRgmTxOi6zvScC9jt3UidWk6yI5fB2dP5fNOjaFqIjateR7ba6OccRc3l+UgYsu0LotuskfQUlpoW6ivXga4xeuwvE9azCBOsqsOWk4slJQU0kO12VF8rmzZtYtCgQb3yFDExMTExOXDJ6ptE37GprPu8kuNuShxFF06jE4ikz4n3To/k8d+T0cLw2pTapc9J5KGp2g2l8J6Qpahhot3pdbcTyRuIFrWGSIRs9HjjXYKQS9xf3Y7vcKcXMXjSBSz8n1lr7vvgi+fKcGfYOOOu4Wh7mGsENMveyyJRuZM0qYMsyj3zPTIOEtctyxZ0rftpXo8dcycNbTv5ZssLAEwYfwWtrZVs3PQ+qh5EUcxc+SaJGX7pXTSuXkrLzvXYXOkUjz+R5W/9CV3XWb/sJUCiqGhq3NiYaFysC5Wj6SEOLjiHtLS0Ts/na6tDsTpJSi8gJEkodifBYCulpaX069cvYS0Mkx8Q0yjxg2H+EkxMYtD8PtL1LKrrKkhZvIvacSIE2V5reA9Vd69gb3hyFq7voPjCymLx2VqrE3R1nET603TUHKEU9sriYGelFIm4CBM2ZGi22BExvj9vrnHuThYptWOd5C6Mr7IteURj3RUtkhpSfVz5f2fypz+ZBonvg5qaGur1SoZaDkKyWsEo8pyyRRgYgilCiKRQF3Hascgysl/FVW5M+MOeSV7Rr60lbEHruCCQPeEQHeNcCarcFX0sxbVRk4TcKq1B+r3fQqXdjrK9unvXahCsFGHc+ef9Eqc7B19WLlqrB83TSViRyc8aVVXpn3UwOxu/AyAveSiVzeupbd3CiPOTCZStweupY8DFN5D6jQ1CWqSQp26krtOTXUiNzTT7Kqlp20LxwKOxO1K6PK8l3YVW10T+whA7Z8o4hgykad5XDBkyhNRjjqLh0zkHpGHis88+Y8KECaSnm6n4TExMTHqCX7PS76Bstn9XSnVFCGu2cODxq/GGiD2hanJc+ia93XtnCg+pE6VJpwaJDkWtYw5uV9haMuqSdSh0revRbTH1KCxtIUIuC2rIz1mnHs1//2vWm/s+CAQCfDermsnnFqPZHNEaErrx3ktZBJG+qTuyKOlG4ERvonTayaKi2AgE21BVFaW9EawTPH6RFmBI3+NJSeuHrmuAjs/TgCs5twcXZfJzQNd1+kw7mYqFHwKQXjSKlspSVn/4IGOPaSXU1EBT/VbGjrmU9MzB4Al2HBeT3dDmwau2UO7bTJ/kkbhsXc+jrY5k1KAXNeQHHCQXDKRq9VwGDRpE+tCDqF27GLmb6cK/T77++mtKSkooKCj4oS/le8VM3/TDYRolTEza0Y+hVGq7+KbsZVLrf401I4PCz4TyXrfINA4RoQcbPxHV5T1Fwov8N+d9AsDjs47FUZO4b3eZGMGSalV86UZYrduIkMjoOLpZmySCySIsFkBXjAmcP6rosrRJaNb4qIlY/MWGYrmtYwPdYijmwhETsozkF+3DKYFkiw2v11QGf198++236OhkyvkJ99urREX0SO0GT0wUgxHkEK7nQBcTHVeFMELYGsVKVrMa3lNJFuRgR1kM5iYj+8S5lIZWbJXiNxEcGD8hs9YLWZECIdQUBzk1yWz1Vu9xsXHoqQ+gaSGqmmbRMv9rUo6cjmvwMGgAR3KOuOfyjZ0eb/LzZUjOoexs/A6LZGNc2nFk5g7DF2xmYc1rrHvl3ogxrd/8AJIio1stoAkjmtRmaHKC4vews3E5Ohp9+kxCVruecaasctKoBVElDZBJPfZo1KYWLBnpNM35nJwZJ1Ez58P9dt+9ob6+nmOOOQaAuro6MjIyfuArMjExMflxMfm8fix+eQcv/vIrTnp4KtmD0iKpc/xqbKFrMa8KGJ9VPd47PSHhx05YIZzAKz2WiJGiBwqSDvUhOit4Hbs/xhgRnmOG+5EVq7lO+B7ZuHEj3uYQgyZnJtwfK4sgCl33RhYtNpWQX4mXRehSHnuTUsyRlEkw2EZVVVWXStDjBt+Mrutsaf2G0sr55GaOojh/MiHA6coGoKl+q2mUMOlA4YxzqFj4IbLFRt/DziW7zxhCfg8b5zzNys8eJSywNkda9KD242KrcA7c7d1ISPfTL21i52OmgawIQ6GmBpFwkDNiOm31u7CnZVO3eiHZ4w+jbsVX+/BO9w3Tpk0DYPPmzQwcOPAHvprvETNS4gfDNEqYmLTDKbmYqE9npX8h5X95gJJ+R6GlH4Qsd+298cQqke7p/KMX8NIXhwLRGhKJcrg6GoRhIhz1oBtRD5YqI/VOa8eD+r8rJv1hBfLu6dGIBluTeA9HVVhbjc/G3Cyp3FBiGw7xqg00h9gmB61IfqHR1u02tCQbzf0MS8gKGx6Pp8t7N9l3vP766zilZJLs6XEFxxUjEkF37DkvrFQjPIhaJvcFIPnrrVgyhfFATRMCEkxJHN5sr/FE0j+pbiFfYTmJO0c4x2aV6E9qF0WhW2Q0XaO8dgU56cO6NEgcfOGD+Gq3sHvLV7RWbSDj7NNJnjqFoKThTw9R9cG7ADQu3LLHezf5eTEs+yi21C9iUNpUBrjGi42tHhxYGHzyNTRuX4NzdTmarqIENHCCFIyJCgoZRj1VvBc4B1PZupHvvn6M/pmTaWm5muTkxHWDQiEfkiymUcMeqQSgedwVACwrKMdfuZshf3qEjX+4fj/cee+ITUc1f/58Tj311B/uYkxMTEx+ZHhUG7hsnPvCUbx/w9f87xefMf7iYYy6ZAwWR9fL6qAaVgiHvdLlSFHhcMREl7RTBscqhbubvkmXiKQm6dQ40T5SggTGCBlCTmMNoVjNdcL3yOuvv47dbSF7ZBYe1dYhQiIRDiWEL2Z/IlkEUXA9Unw9uGfjWSJZ7C66JDzYKyq+JSW1uEuDxLGF19EkNbCreSW7mlczIPcw+pUcFZHFzZs/AKCuah35/ab0/GJMfrIUn3gx5Z+9ScaIyRQdcbaoceLXsdiTGHHo5dTuWoXmbSMU9GFzJIPcbmxsNy7mOgdQ5lnLN7tfpST9YGpra8nKykp47lDQC1L0d2RNSmbAKVcCEPA04aspZ9SNj7D6oQNnnRDLBx98wPXXH5jXtl8wjRI/GD0ySmhaN9OFmJj8yFmsz6GpqYlRaRMp3foJlbalDM85BufIsaRtFspYX7qImEhbIyZ2LdMS96VZIW1L/MglBTW82daEA5pm19GSVVRDESypEporPqd/eF84PZQU89NUAuDLgnDUrmN7VPnsKVAhrBtWIX+hFqkFoNutkdQ7bQV2PLkSSVU6WtCP3d6NIhkme80xlnOYq75LsW1YNO1LuEi0YaCQFCOcNJyH0mYD3RAAtfMxWmpqQU9NxtIgFo5KiwhHlVrEZzlZyHMkagZhWLCU16EYBjktVaQp0J02pJb4dFDhnPyasSiXPQF27piP19fA6MHnJrymgadfS2Ppclq3b8TfUossWRgx7kIym4dR0SjO6Q214t+8VdxqSWGn92fy82LaEXdRVbGc0tovyHMPYUD6ZAgKw2rLwUUAZFeGyHZMxJ5SGT2wRVhrQyUiEsmy0wjLNoxmGeQxNftcNjZ+xYaqz8hOz6ff4eeTWjAEgCUv3BDpqrpyJdl9xiBLMm3Dc+Kuz5aRRbCxYd/f+F6SnJzMyy+/zHnnncddd93FSSed1O10CXsiFAqxePFiFixYsE/6M/nx0dzcTEpK12nPTEx+Cjxzwkf4jvIx9bpJfPfcGjZ8vIODbphM1iH9IwWGA+0iJrqifcqc8LQucf0IXaSFjdnXrXoSBiGngsWrxtQvNlLUAihyvFFCkSNzS12S4pysLF6VkFNBDZnrhO+Lu9ecwr9e+5LhR+djc1rwa1FjRCRCol1Nk4CmRAwS34cs9oSa3ctpatzO6LGXJNy/evVqTpp6EfW+XbQEa5GQGVF0En0yx6EZcqppKtVVqwFwp/y80s2YdM7Q6++ldesGdn/0P5x5xRQefmaHNhZbEnn9J6P4Y9bPxtgYNy5CZFxMtmczNe98NrUtobT+a/Lzihg64GTyskcDMOer2yNd1ZWtJD13CFaHu0OSZFtaFk1Vu9ATpEb+oZk9ezYzZszgb3/7G1deeSVOp3PPB3UDTdNYvnw5b7/99j7pb19jpm/64eiRUeJAzI1sYrIvmaO9Efk7NTWVIdJY8vW+bJTW8c2uV0j3LWNgwZGkJheS940HKaBSdqzwolW2CKXuu87RTJ28DoClH4/o9FyeXPF7CuWH8/Yn/n0VzNdIKheGkNLzhFK4+JOokSKQpmGvlwm6jG5inhuqS0N1hOtZxDxwZZ3kTYbyOKChhVMBtUtX0poewN9Sz+jRozu9D5N9RwAfIQIkqyloXh+y1YJENxSGkgxtbeA0ImcM8XBvMJSiqgYWYZggxd3xeIsFyS+mS1JzWzQqSIs3hskVNZH2nnFC8Wurj18JB9IdBPwtVJZ+wba6RfQrOJRkV+JUVJWLP8bXUEWuYwBFfY8lxZFH6UX5tAFSyEhVJqUhWSxYs7NJHTp5z9+FyU+a6cffT0XZEjaviU5os61FEYNELOEUY9gNw2xjs3i3KCgtRqqJZGPgbG4V0RLJbpweGJs2A6/Fz5q6z9j4xb/JHTKN7IHRwvPr1q0j0FpPvjMb98oK2kYJGbc1id9RVtJAtq15C+fSqn149/uGs88+m/POO49Vq1bx0ksvcdFFF+11n6tXrzafEyYHZG5kE5N9yb2jo88eh8PBhMvHMvDY/iy4fylf3vQZmSNzGfKrg8meWIhDCdEcsBMMp8wJFxlWw6lzovn7E6JLoHUsdB2bwhXa1ZnoRFGitzMmRA+WokVdlXbGiNi/5Zj2sf3qOm3NlYwaNarz+zDZZ2iqTt32Nkaf3h+PZiPUWe7ednRHFoHO5dGQRYgvdJ1QFqFLedQlCAW8lJcuYvuGWeTmjSUjc3DC086cfBY13m1kOfsyOPdI0pMKkd3GOiacPkxWSHLlEAi0UjT46C6+BZOfA0PveoTWTevY/eozkW3J/UcgIXeQR72duMeNjV2MizYcjMw/joHFR7Nh1yzWbHqdusbN9Mk9KNK0pqaGlvod9B19YruTijd30UDqls3Fs+vAywIQTvNaVVXFww8/zO23376HI/bM7t27GTlyJI2NjXvd137DjJT4wTCNEiYmXRA2Umiaxptvvskvz72MpbX/JCttMMOKT8RhT0143IqqPmgL0xhx8mYA1s0aBICjVuxvzbd1sLCmLRNRCuH5ZdZq4cHrT4um29CcYka4/cTwJDRqaFCd4M9RkT3Gw1OJnkC36NhyhBIu0BBN+aRZxG+6cpIwqBR8bXjNB3UC6Tq+HRWAbiqbvmd0TUPXVQgEwW54AhWKPFwRw4CRbgavN5Ifv0vCSttW8T+WwopaS4LHgGwsTpLFxF9qbuvQxLl07l1VAAEAAElEQVRD5AvbeJlICzXgTT9NzWXsXLmEmspVYJHJOHImWz/7pMOz47DPb6JtWw1tVdvpM+00RjYMFUXWQ6A5xL0oreK+25Z/hx4KkXbcTLb+3iyi+HOnpbGM0rXvRj4XJg2nT9IwSHLiGSDqIzhqA3HHBPqkGY3TCaYIeU/a2iiGTyNtXeT3BJDkREtNwrmrmokpx7Eqp5SqDQuo2rCAvuM2kDtkGqPdm7FZ3GQnlQDgKhUGwGC2+M1YJo9CWf4R25a+Tf/Hstl63Y379HvYGxRFYc2aNXz00Uecfvrpe9XXRYt/ya6vytgwL1rM/pRTTuG9997b28s0+RHidicwepuY/IT518TnYSLop+l8+umnnHfDxSy8/gPSRxUw6LdH4S7pPIJA1eQOha4jWrL22jI6Gid6pRSJ8QCmfYqS8OdYJVwn9SbCfQT8zYSCHsaMGdOLizHpLUFdwataCepKJCKifYHrcKSOT7UQULs2XoSNFLGFrveHLHoaK6lZu4CaHcvQNZX8fpMZMPJkvnz/5rh2x466HV+whRrvNoqSRzMkfRokCa87rZ0s1jdsxdNWzcAhJ/H1R7d170JMfrIEGuqoePvFyGd33yHkTDoGAl0c1C5qLG7cSzQuKjJIEjabm1ElZ5CcWsy2si+pqF5Ocb8NFI2cyTETA4BEVvH4hKd0FQ3EmpLO7s/eZPjNA5AkibV/PXBSJe3cuZMXX3yRyy67bK/6eWLDkWz4up5NSxoiBonDDz+cuXPn7v1F7mPMSIkfDrOmhIlJN5BlmbPPPptnLnyHisBW1jUuY23gLcYXnkHxR0KZte2MNAA8XhuO5UkJ+2kVzuWkbtFpK+jayKcZRagrJymUfJBgMmnVkFzCKzeQCnqbUUwpKZzKR7yFn6XBiiSsBZ5IsWxvnk75YWKCJxvO7nUjxXWHnIAGgcoKkCSGDRvW5bWa7BusqhUZGR8djQAJSXYLg4Qvvlhv+J8u1XUjfYyRzoYkI32TKylS7DyCkQ9TKzIMI1Xt+s3wsmn9+5TVLMWSmUHa6ceRPnQyijOpU2N2zdyNKFY7WYMnoa/woCY74vanDa8DoO7zrVhy00k5dsCe78XkJ0/ryiVYsDIudQY7vGsokgejt3mQXEkkbanHX5yGFBRjYCBHRLFJRuoJW1ULkmYoTY1hUnfaCWa7kDRhXJMDYuDU7BZkQJJkxjQMR8sZwjLLQnau+JCyVbNYqoXoN+xYcKahIQq7x2JxJ5N99IlUznqTtDYP/R976IAyTIwYMYIRIzqP5OsuK55exurnVkU+T3zmYl446zFSUxMb7E1MTEx+ikiSxLHHHsth7jPYtqCc9ffPZs2fP2Hkg+cguYVhIhRR/HYRUWQoe6UEXukdztlL44TqlFF8Gnq76ActyYbkD8bN23SlnTEicgyoDpm2apEecV88T0z2jA87yXlJtFR0r4ZH2CARKXqtxqcU67EsQkJ5644slq/+jF0rPsHqSKZg6BH06TMJmyOZ+e8ldjiqaSklpAfon3oQSFKnstjSshtJttCn2KwlYQLeHVvQAn76Xfgb6hZ/TtbYw7p/cFjExQIASDwughgbdVlG0jSKi6ZSVDiFTTs/pWzHfHaVLWThRyFyB0zBaneh0hHZYqPgyDPZ8e6/8ddW4cjO690N7yeKioq47ba9N/IteGU3r/9pU+Tz/z0zhvvOeu/AXCeYkRI/GKZRwsSkB8z2v8Ix8llousYG7woWbHmasQPPJdXVBwB7HXhsTloHC+/blQtEhISeKkYuORB9oLnKhWFCbhDGhHCB6rYxIkIiY310oqg0icmnLd1QttVHFbhOlx+LotFmEedQmwwPeAV0iwYhI9QwS0RKWBqNtE0xIbey8bQMp4CSNNBVlYYvPsfRt2Sf5RI06RpJkrDrTur0Cor0AeiBAFK+MASEUsWi1qoKb3DJ1zFdTRxJzqhXhz8YqU0RKhTFuCw1zR2P8fuRLEqkPoTUYKS/iYmm8Gc6sCTF5M9P91D79Du01ixnaNFxrNn2Qbdy1FvcdnRVw9loeAlaZKSQRvFH4ty5t9QDsH5XDba8zD32Z/LTZsaUP6NpIWoDu7DLSWRYC0geMxldlggCmk1G0uJniLZaYdzTY1LKWGtaCWW40Fzi96QmWYw2EpbWAJotphDkYDGuWzfuQgYGHnY+BcOPpKF8HcnZJRS25iHvEuFverqRxs8jfpeeYhtqnRN0HT0UPKAMEvuSlt1ijJBtFnRdx5F7AC4yTExMTL4n3p32JEcFb2D4zTNZc88nLLv4GQbecjJpBwnHipAqR1Lm6JqEFv67kxSuEFM3rouiwj3JZaD4RIeq04LiUyPPSNlrOLjEzuEkSTzHws/RGMWc4tPYufEzHEkZ9OvXrwdXYNJbWlU7STkudnxTzRiPgm6zRiIjQlp8LZPYwtZ2JdShEHZ7WQTQVLlLWUQ35LGrAtd6vDzquk75tx9RtfILCkYdw7ZvP8RmsyU4MB6rYkQZKYp4dSKLntYqnM5MJKkLA4vJT54hf34EXdNoK92AbHeQVNCXpNN/idJVhERnSFKHcVF3O5G8HTvTZRE1IUkKA4eeREHRZKrr15GUnEtKcefGWgmwOIXiRQv2oCjQj4y6XUL/5Ey24G0JkdMvsePuAYFplPjBMI0SJiY9JJzSaZp0PN+qc9kZ2MCAYUOx13V+jHuHmDg1TxIGB3mDHSWok1aqU5UZnbplbArRZkRAlx0jjBV9P/FF9vf/o4/SO51g1IdwuqIPsex0oRyqlcUDLtgiJny6RaNwlsLu48XkLlZdHF7oBIy6lDaRkYe2PjrBqnpCDfVkn37WHr8Tk33HEMaygq8pZQ1DmNBhf+Mo4dGdPm+H2GBRIiHNhItldZFqT9lgHGekb2qdLNLPuJfu7NBWN/Lte/uniW6D8WmifHUVVF73Jr7GavoeeQHrP3+xfRcJsR+znVRdRcOPp7mSFIRCV7fIVE8Qj6VcwN/gxbt2K7mXHY/FksjPxOTnxPptH9CkVjO6+DSCfYvj9ik+NSKfSlv85F4yUjOpKQ50ixgBdZuCpb4NKWikx2vngRd0W7A1iMVH6yEDcC/cQsglY3P1IT9XGCvY0Bo9R6uYdKup0cm2JVsY0zxff8fwmx9CkmXW/uXACc3eF1jOPJnszBU4aSP70IHYXPumaLaJiYnJj5XPj3gYjoAJJb9hw+2vUvnRSpLGD44ogBNipMgJK4S78kqPHkOHNpqt66LXuhTNxhPOn645Lcj+UOdzx9i6EzH9qGqAloYdDBp7VrecUUz2DVN+O453fz2HBfcsZOofO3qBh40R4ZRNftUSiZAIb/s+ZBEg1NbC9k+eo61qG30mncKuxe920UkMkoTbIRygGn3lZLv6R7bHyqKmhaitXkdB8eREWaZMfmbUffkpLetWknvcGR1ksat0O4kylbUfFyWPMbDKsshSECOLuiT61yVwurMpzDoCADXBmBp7HdbkNCRFoXndd9gL+jD8jkdYd89Pa50w6ZJBKClO2uoDDJmejTU/7Ye+pE6R6L6B3xxu9i2mUcLEpJc4JRcpejr+baW4Q7vQLCI3k6sSKqcZBcRyDYv67niPkNgHUuZKo7+6+PQfAKGcINY6T8RrqfS2aD+D/xlAl8VPuOxGjSSb8NDNSm2jrtkVzrhDn4/FsYpT9B9W7UqqhRDxobltfY00J4VttJUKD2BrZnb3vhCTfUKWlM8AfQRbWEtRYBDuVuHtbTUiaujTeX5iJEnUjjDSOan9RCiosrUcOvFKci/ZLv4Iex5pGrqz4zmcZS0E00SETuk5Ngqe2MJ3pS9DkoPBp1zLxnce7fY9ztHewOfzkZ6fhpr2IdT/gqBLyPKAI7ax5csSHEqQnfM3I0kw9ZQ0HBm7ut2/yU+DY8fcCYCmqezyrKO8ZgVDC2aQ6xoMRhRE2JgQSo8aA7QkIetyO+MEkhRJ5aQ0CSOC7A+ipjqRQmK7bKRhstdpKM0+Qmmi39ZDBpC5QkQXNYwUVlylrCbStZ7iijtVwRcS0IfWQ6ZQ9+lHtHzzDTmHn9D7L+MAxZabRva5h5OXkiDyysTExORnjDUtieQRRTSt2E5IlQmG4osMq114pesWHckvxxWxlrSO7SI5sMOFhzvzCo45jeow0jeFU6X7jPVHeB4YW7A+1itd1+OUdh5VeDI53FmdnNRkX+NVrSQPyWPSLVNZ+Mf5lJw5muRhBUA0JVMiLIpKSFWwKSqegDWhLELiiJ04WYRotEQ74vKx6xBoqmPH+/9B9XkYeOwVbP7kn92+z1mr7kHXdZIdb1HWsors5IEJZbGusZRQyEt2nln78OfIwAceBkDy67StW0PDwnlkTDmcjPGHIIXHwq6MaV3UdQ+Pi1qSDdkX6jguGhESYYfAhEaxrjTXOliTUsiafAw1X39K86ZVZB06E13Xf1J1fN2Zdg6/7EeSgtmMlPjBMI0SJiZ7QRJuqpWqDtvzvpKonKZj3ymUYxYj2GHawC0AbPp0eFx7OQSWVsNc0CCOCeXEpOfRdfx5boLN4oE45D++uOOTnT5cNqGA21kr0vtY3QHUkEzlmUY/kdWHGEVDyRoWZGS/RMBIC6WniAewrmk0z1+A7HYj56Z0/wsx2ScUMZBtrKeC7QyiH1pjE3KqiCZI3u6Nb6zGrAyCXaR0MgwVUq6xeAwX+PV6OzTVbeEUX6KNs6wlbn/xU7tYsOnfWHOzyLnh12y88Z7u3loEh8OBK9iHmk90CvsGQEkCVcjmgCO2EdAsbJ21lbyD+uDIMNOH/ZQ5rvA68UfIGH90nVteO4fvtr1GSAvQ7K1A1QL0yRhHUerYuGPDnktWfwjNyNsdlt/OvD6VRk9kn5pqyJZRLF63xnt7Who9JIV/K1I7I+7EYpIWbEJyRtPpyW1iFaRZxLass88kefIkmt/7lF3vPEf6oJUUHnoaq/97Z7e+m71l/vz5LF26lLPPPpuioqJ93v/aU+7usK252TRQmJiYmARUBUt+Jv6PV6DriTUY4bQ5Ua90Y0cwqgDTrTqyX4oofCM5/mMjJKwg7yGrZ5hI+iaHguLXOj4rYwq66pKEFBuFG9O2fNM8ZNlCkjsHk++XfjMG8N0TS9n20SYmjsihOeCIpG0KGyeC4c+q0q0ICV0VRa67ksUwXckigBrwsfnlh1EsdgacchXrX/5rj+9RkiTSnX1o9lWBIieUxcrqlbjcubjcB1Y+fpN9S7+nHgRAChnjpa7z9rQjqXzxeVSPh0B5OZrXg3vICLKnzdj7E8aMdbLXGFiVTn47seNijJGiu+QcMoPUIWOo/mYOlR+/jnvgCvJOOpstj/65t1ffI1asWMHs2bM5+eSTGTp06D7v/9bhH3fYdqCuE8xC1z8cplHCxGQvsGAjpHpRKyqxtuQDkNQSpOpgFymbwJ8e335ltfBmSW3RUG3Gw65dgETJu0E0m4ylTezwFiYjh6Ijn2TV0I0Ho57g+ZjmFvUn6hpFQVdFiXdnUQMKij2E6hETVM2uQ7rhTmBMVuvfmot3w0ZyrvsVurvbX4fJXhJODQZw2WWX8eIzL1HSMAZ5D3lSW0eIaBbXAqOQlJFbXw6nasrKgMZ2EwC7laZRWaQu3Q2Anir+0W0lKSRtF0YIzW5FCoRQXYahzIhmaN1dDapK9rUXs6sXBol+z/2NwK5K6tu2MzhnetT7RJHITxLXuaFUpnZVJZPuOpKXJv27x+cw+XHRFKim1ruNoOan0lfKp0f8E6ctnVRnPv1zDiHLPYBkaw5yq1Hc0Wbt0IfcGs6HLRYQYQND+F0KqtHoiZBhBG63eJA9gYhXlJoiDAuyN4hukSP5ZRV//DG61xepv+IdWRC3b+CrbUAGWs4vKC3ZyI7PXqKlbCPaM7cjy13/rvcFJ19wJU1l6/ndTTfRd+qZyFePjezb+ou9L2BnYmJiYpKYkCojJTnRQyoBr45uMbzSQ13UkWivEFalDusEzQpygLiUOe3bSJ0pxmIUaIpPPAd143P4XSK+FpMuSZF9YSp2L6Vy97cMGnc2Voe5UPi+ePagZyN///Havvz5r/fQ75fTsO3Bf6zTCIkuZDESIREjixAfJZFIFgECTfVofi/9j720VwaJmRPvxh9sobJlIwVpoyLyGCuLIdVPbe16SvodybxPb+nxOUx+XASrqvEuX4fm8dK2ajUTqm9CSU7BUVJC2uSpJA0aSlJeP+SQ1LnHu97J2BhrVAg3TTAuApHi1nHjohRzvnbG28gpwudtH1Khgz0jlz4nX0DKmInseulfbH38PhruuoH09PQO/exrjr/7UireW8HNN99Mya+m0f+8CUiyuMY5hz+y389/QGFGSvxgmEYJE5O9QMGCSnyue82ukFwmtoWM/NoBY74e+xhSAjr2+gCePOHdG0w20iy1U3iVHWMheWCDOL4ufuLvzxDK4qEZ2yj3iBlpisNHw+tFyEe0xbV12IWiLhyia8nwoboNZZ2iiwmpXyZYWU3ta/NJPeEYnMMH9+DbMNmX/OY3v+GZZ56hPLiZQmUgGMpYxVjUtkwSOfVjDVYdkCSQJfS6BiSj7oS/UBSi9aXHK3Wlplb0FBeurU2RQl66Nf4RYa83in1Zs5ElhQsaendvejBI7dOvYrcm0zd9IgCaRfw6trVkUJJcT/W8UmSbgnPSvvfaMDkwODb91wQtKqtb51Lj244iWdB0jXzHQPLTR5HhLEKRrWBR4hQkQNSQZRRwJxQCuxEpoSRQ9ABSSItEUYRlXAqKsVoy0jYhScieAMhyZOERObZdzmzNItF2mBgjdVki+dtoirHUjUYBaMMIome4SB88gUBLAxVLPibv/AtJnjCBLb+7oUffWU/JH3MMTWXrQdfZ8dUbJNu3k3nxiUgWc/pnYmJisr+RHUZ9N38QLMYzylDuaiEZwvn6tU6eW1rMPkMZ3NEAEZ82Z0+oDhnZr3VMLWI8O+Oet0o7pZsEwaCHzeveI6/wIHL7HrTnE5rsF6688kr+eO+f2fzaKkounYpqeKoF1XjDQ0iTO42QUCwaIb8iZBGErBnyJgXjBUS36MgBY38XsghgT05HcbqoXb+oV/em6xqrt72Ljs6A7EONi42Xxbq6jWhakJwcM3XTT5W+zzyA7g1S/9LbtH3zHZLFgh4KkTRqBJnHn4Cz7yAUpxM52Lks9mRsjNgL4hQ2HcdFXZbF9jhjRCcpnDqhw/UBroFDyT/9fCrefolBZ11A5vSj2Xjn/q0x0ee0CVTPXovqDbLtP1/RuqmSEbfOwOLcczH6nySmseEHwVyVmpjsBTIyGiqaqqHZDS/aQMdEm1YjQ05Dk1AMZ3rUiIdSGNUuI4d0KieLn2XxR/EpmiC6kCm9Upyr8E2xPaBZSDHSN+3430AAUr50gQ7NR0aNE6omk53WGvNZorZOpAWSFJ2DR21h+65NlOs6KUceyvbLb+rBt2GyLxk5ciT59GVTaDlZcgFJCdpYW1WCbiXitaT3FdE6cp2INtBb2zocY6sW23RJGLh8g3IBsFdF5UJ32pDafEheIVNhVaxmeI477WlkHXQUf//731n2MXy2+m89urfG978guLuKfsmTkFt9+IozcW1rpq1EGNa2tWSw+8vPcI8fSL2a0aO+TQ582traODh7JkE5wM7mdWiojE6bQX7KUEBCal//JBhCChsEXEa6pdi0ZTabME60D63Wwj+MmO1hz6c9TLb1mEWI6hKKJEnTQANri2F0TpJx1gbwZYm+WiYW4i5tFG1bjIgOhzhWaQuQvMuOO2c6LeOrqHvvHVyj9/9C2pXTl0EzL2fL58+hhQK0fL6UwI5Kcq4/b7+f28TExOTnTDCkoEnCASTk05DsnUfHSWq8cSJRagjNKmpGRFLmxHqsW4RSrjspJWS/ODAUSd/UvkHshcWkI5GE13BLWxW6FqKw5FAWvPO7PZ/QZL+Qm5tL33MmsOO1b8k+fAjOfh3TaPlDClqMUaI7ERKSRQO/0kEWY40UXckigGJ3kjflBHZ/8Tojzr+DtS/1LKp6V+131LdspShjPDarMe+L9T6XoLpmDcnJfXAkmeuEnxqhUIjcX/0Czeujde5i1KZmMs4+jZSDDwZZRjYMb+F0TpLeuSwCRoREx82qXergDApGdERX4yLERFfQIZKsKzozkkiaeKWOmICvuoK6L2eROv7gbvfbW5yF6Yx66BzW3PImoWYfNQtK+WZHHWP+fNJ+P7eJSZj9nzvAxOQnjA8PdpKQJAl7rR97rR908KUr+NIV/Gk6/rSODztrcwDNIqNZZKwtKtYWtYPHe/n0ZMqnJ2Npk2jakUbTjrTIvozMVjIyW1GurUK5VtS0sMkqq78eiOWUGiyn1EQedjZbCJstFJmIAuS6WshOEkrorMwWbPYQNnuIXV9uZc2/l+IqTGXcQZX7+Nsy6SmDGI2Che8Cc9H9fggE0BUFXVGwtqqdHqenuEThXVWLKG91jxfd07F+BICjrJFgRhLBjCRUtx2pLd4gJgVDSMEQmlVGs8pUHpZG2uBx+P1+NlV80eP7CqzcRvLIsQxIPgg9MzWiAHZtaybN7sPWWItn425SDzGjJH6KlKQOZZ33aza3LSXLVsSUrLMpSBqMFNKQ7PZo6LM/IF6x+IPipeviFWvAaPVAqwcpoCIFor8PyRdC8oUS5nmN7APh+adG28j+YOQV3QhKUEMJRlc9jtoAziofziofjaPbLY6N32DjyDTsdQEkSSLtyKPQvF6233YLuaeexcC7e2bU6wnf/ucGNs16mgFnXostVdST8ZeWsfuGx2htbd3D0SYmJiYme0OwtgkUGSXNJXL2qxJaSI5ESeghGT3UcTmuKYAqIWkgq+LVoYi1Hn3JQeKVXN1IQ6EYxgldkcQ8LDbtSLiQK4AkRdo0NG5h06b3UBQ7jiSzwPUPTd65h+AszGDVLe/Q1gK+oJWAUUPCH4pGd1rapfJNJIthecTfLio0RhbD8tiVLIZfaYPHAbBz7ms9vq/6lu2kuYsYXnBsvCwi5DVEkLq6jWRnj+xx3yYHPpmnHUv9C2/S+MaH2Ir7kHfjNSQfegi63YKkK3GyKLdbDmtWOspjLDGfwwaJcErtuGZ7Ghdj23RHo9pFSqnwK2xQyZh2BGgaWx+4m+zjTmHA7fd24wS9Y/5RD7D8qhcZ+fjFuAYKR0XPzgYWXfwCu3bt2sPRPy3CUYfdfZnsO0yjhInJXuCllSRcoCcyy4MckpBDEo1DdBqH6KQtcpC2yBHXRvFrWLwqtsYQtsYQiheUdrpjxSeh+CTcmR7cmZ7Idl/Iii9kZcmKgSxbMASA+lXZ2CwhfMc24Tu2KdI2L6WZvJRmcl3RosUuWwClsZampaU0f72GhXfMwV6UzeA/ncl7057Y26/HZC+xSXaGShNopRGPKqIf5IoaZF8Aa4Mfa4MfJaAjacYrEIqmoUmEHm1jr2zBXtmCo6wxrok3z4Fut6HbbUKu28m2bpHJWdpGv1VWo8vEst8VzkZI2uVHz0yNbGsrSaGtJAVNl6j4ajuSIjP4qDwKUg7MYlgmvWOm+2JqVDHJ7Zs0mlGpR5Aku0VUg6tdPJDTIV5eHzQ1i1cs/oCoDRFSwRqTjswrjGqSP4Tkj/4eJF8Qgqp4tSdWjMOGiZiFh+wPolsUdEt0se6oDxJItxFIt8WljGocnUGwKJNgUWa0doWBvS5A8bZsMvJHAFD93ps0Lpqf8Lvalziz+zD4vN+RM0kUAHRk5mG1dqzLYWJiYmKyb1BVGX9FA5bsdDQ98XgrqZKIklABNeotKwdivdJ10KL7wq84epALW7PLwgtYJk4TEFWwxSvdfFobdQ2l1NZtYPXKF7BYHIyd8GsWzLq1eyc02W8odisDbjqBQG0LbRvLxTZJJxC0EAwpBEMKgZCCP2BBVWXUkByJkkjEnmQR6LYsKlYjyrQX9bNkxYKOnlgBLEnUN25B04Jk544wtVk/Mfo+8wBti74DwDFiCNm/vAB7fkFCWUw0NsqxBrNODBNqu+FYCUSjwSJjY7iLBOMishw1WES2xRzfHTq5NkkDi8NF6sRDAKid9T61sz/sZqe9x5GXxsjHLqLkqiORrAr2vFScTud+P+8BRQLjapevHjJ//nxOOukkCgoKkCSJd999N/70us7dd99NQUEBTqeTww8/nLVr18a18fv9XHvttWRlZeFyuTj55JM7GI8aGhq48MILSU1NJTU1lQsvvJDGxsa4Njt37uSkk07C5XKRlZXFddddRyDQ3tr8/WGmbzIx2Qs8tJKMKEJkaRDGglCGC1treIYWP1NqGqRT8r4f2ROI/PhUR/zP0FkjRrmsZY0AbPxVauQhHFxrKHFHCGOD1SHS60jJQbIH1AKgyOLcGW4PyTY/tW2uSN9+1YLbGqB1ZyPrX1xB7aIKgk31kf2yKwnXxZdSp9l783WY7GPmaG8wRRJKxIC3kSTFhtQnr9P2mlsYvCJ58otFOiepvrlDKicpqIqii4bSVAl7ixMzUzNSz4TbhIs0AqhJNhzWVJHzv4ekuQopq1mK6mnDItvYdiZIhiI4C6j6poyMUXl8dvw/e9y3yYGPXXKSImcy1C0m3Oi6MCr4jCLU4SLWsTUcFAUCQQgaUQuhdrP+YFAYMGKRJFBVpIBxjCwjhVR0mxJN7RQmLNrGokNSdZH1SZY7hGUrbeK3InuDaJakSOq+WMOE4gmiJhn3EVKRVB3J+B21FioMPeQSqkaE2PKnW/FXlNP3mQfY8ev9ly5v5WPhnLQ377dzmJiYmJjEE6ysx5qTiRaU0dvVj9BDcgf9la7oyAEZybBnS6qE1N7XJKw/0+I/d/g7AboUjZBQbTJyUG+XFkdCl2V8gWa2VX9NXes2PL7a6G7ZwvDR5+FwpHV9IpPvha+Ovp/R9SKFlrfBh91I19QeSdbRNQktaMxXEsgixOtTE8lie8KFrhPKIuDKK0GxOjoctydS3YVU1q7GE2rBaTPWvjFyWtdQitORweKFD/W4b5MDHyUlGcWVRM7VlwKdy2Ls2LgnWYyLkDCWBeH0TR1qTycoVt2htl1Mcez264Qua0vE1JKItDOiJCIB3RrknXgm2SecyrYH/0SgqoLB9z3Cptv2X32JRTOMgvTHAU/ut9Mc0PQkAqI3kRJtbW2MGTOGSy+9lDPOOKPD/vvvv5+HH36Y5557jsGDB3PPPfdwzDHHsHHjRpKTRbr13/72t3zwwQe8+uqrZGZmcuONN3LiiSeybNkyFGPdfN5557Fr1y5mzZoFwOWXX86FF17IBx98AICqqpxwwglkZ2fz1VdfUVdXx8UXX4yu6zz++OM9v7F9gGmUMDHpJbqu46GVXAo77LM1i6emtcUoOpYpPg94Jfr0lD3x1khfdsdJW924NAo/Vyk/LD6U1moR/dU1Rw0OrT6hQE53CeOIyyr6H5pRDcDmiiTqF25gx6qt7P6ilOKCQtyDR5BUPIBMvQ+SrFB3uAXZYRokDiQkQ1uqqSF0VCRDcavmioeT7NdQnV27CTUeWhyZuNmbxB/28nivc6W2hUBhOuigGTn0lZZoyI5us2JpETIVctugtgFfsAlPoOfVrjPHHsa2WV9R01pKvrU/7s1W2vqL62psVahZtpu+5+3/PJom3z8NWhV+3UuBYzAEQ6JuZvsIiVjjA4hZutreFc8gZAi2LEGbJ9oeokaK8LGyLAwSYSQp8lkKhaIh2sbx4agjCdDsVmRvYg8S2a8RdHc0zimeIFqqGKPTVtSipkY9jloLFfouCBIqns6OtQuwLRhAv+CDAGy/yszRbWJiYvJjJxRUCFTU4xjaP+H+iFc6MUq2dopfSYtRfiR4DIb3t1eQdKe4qxwUO8OKMVULUtOwkfr6Uqoa15GRlUpGSgkDCo/AnVGMLFuQHE4svVAym+w/JMNhKOiHQNCCZvxDw4YHTZPQOil0HekjLHdq57KoWXSUgCRkK0Gh61hZDb+3VW7DmdWnx/eUnz2WTTtnU9m4lpL8qfHXgU5dw2YyMwb2uF+TA5/QrmoCO3aRftoJSCjRaLIY4mQRQOtGoevY7ca2SIREAlS7ghxQ440TYecjNX7sjCt4nYhOlN1xY3f78V0D2WIh84iZVH/4FvVfzmGArCNJEqU379/i1z9behIBYbRrbo7Xp9jtduz2xLq04447juOOOy5xd7rOo48+yu23387pp58OwPPPP09ubi4vv/wyV1xxBU1NTfznP//hxRdf5Oijjwbgf//7H0VFRXz22WfMnDmT9evXM2vWLBYvXsykSZMA+Pe//82UKVPYuHEjQ4YMYfbs2axbt46ysjIKCgoAeOihh7jkkku49957SUlJ6eaXsO8wjRImJr0kgB+VEC45FUlW0OxCKSX7Q8R5mwNJ2y3403Ws9SJ1km5VIt7sYRw1PjSbgrNCKNbqxqVF9hXMVymfpmAZ3kR71N1J6BlRBV5DWxIn91tNjk0Mkt829WP3wjK+/dMi1KZW7CW5ZJ55KOv/83FcWN7BFz9M/jfwzfM39P5LMdnn2CUn6ODVW0knN2Ebi8covGsoRhWvWHzIascnqz/VQvKWZnRDXnWHzTg2mpvfU5iErSlEKFVss5W3xPUh766hrGUVAOlJHY1ye8JpS0NWrPh8jZGfir1SPI7WfNOA6g2Sfai52PgpUh0qw4KNXGuJ2CBL6F5h/JKSDONErEEChJFA7sTtyG9EV7hcRLQ7YYw0ToQnh8FQxAtQtwt5k8JGjXaeolJA1KDQbaKdHK5jgRi/ASRNQ7PEX5e1rfN0ZnWjhCHR2hr9XZaUHE1diZ/6F94iVF5L2mkndHq8iYmJicmPB9UPwco63IdPRlflaFHhcAHhmLbd8UrXLaD4o57A7QtdKwG6pVBR7TJKMF5L1tS0g/Ub3sLjq8PlyKYwewLfrf+Q9PT0SJujDr8PdPh8thlxdyARlJ3ISXaC1Y2dtglHSIS1qL2Rxdjc/V3JIoAeCNCwSaTgceclNsp1hWJx4LClEghFa1+FvdGbW8rw+erJzhzR435NDny8azeCpuGeNgUIp7gj8jd0rCMhq53LYqeREwmIHRtlv5ElwJA7SYk3TujtHJlE2qdu5G5qH+mW4FrD96dJkHrQIYS8rdR99gn+uhpyzjxnz+cw6RW9iZQoKiqK237XXXdx99139/jc27Zto7KykhkzZkS22e12pk+fzsKFC7niiitYtmwZwWAwrk1BQQEjR45k4cKFzJw5k0WLFpGamhoxSABMnjyZ1NRUFi5cyJAhQ1i0aBEjR46MGCQAZs6cid/vZ9myZRxxxBE9vv69xTRKmJj0kjaE0t8ltbMm6jqBVKG08vQVCi+lOT7SQQppHf6OpPowUB3iweZeV8umy4Uy2l+agpobILRDKNlUd3TkLExrBGB8WhkA1YEUrs1czD/uqWfzS8txjh7Mxg8/6zB4hjGNEQcmX2rvMHz4cBo3VpOv942kuLE2CoWrblUIpiW2yGuGTKWsb6ZpuJDT1A3t8vLrOqEUOyGXeBwEkmXcu+I9wqWgkGNPSxM7ar9hd/0KND3E1VdfzSOPPNKr+3KnFFAeLCU9dwK6Aj6Xj8CitTQt/Az7gBIqPWbxup8iydYsQsF1NKt1pNqy4/bpHg+S1doxtVIi2rdpa4uvKxHGFrNNFumcACSvUeDTYTU+J4iCsChxNVrCxoiwASOQE41Uk0NiLA6ktgvhtotjNIuDzDVicV0/QhxnaRK/4f5TzqJWzaX8s/eQHSH0q36HJHVjYWNiYmJicsASqmmAkIo1L/5ZJwWjCuGIIq2dEUK36Ch+oYwLK+TaewITo4QL79MtCYpet0MxIiQ0m4wc0CjbvZDNpR+T4u7D2rVrGT58eMLjPp97W1e3a/IDse7UPzJz2mK+2rCDUEhBC6dkaveeiFhZBCPaoQtZBCGPncliqKWZulVfUbdqIarfQ9rAsWxd9HGv7ivZlUdV43ryM0eT4ipAQ6O2YSM7yr/C4UgnPWNAr/o1ObCx5onUw/61m0gaHb8WTCSLHejMUNaDsVF00O530/5z2ADR3fl6u8iN8JnC16lL0fvRY9RGsiaRNX0mtvRsKt9+GVQV9ebrI6l6TPYhvYiUKCsri4ss6CxKYk9UVlYCkJsb74Cam5vLjh07Im1sNlucs0C4Tfj4yspKcnJyOvSfk5MT16b9edLT07HZbJE23zemUcLEpJd4aEVCwpWajywp0Xz7enQ0y58rUzkF0jZJcft0myWaGiQQQnXb0Yzjra2Gdy9igNt4VS7WVnG8v58/0rccBM0hnmTOZF9k+4ik3QAc6SzjP/9tY/NLy+l/xXQKz5zQqUHC5MBm8uTJvLH+HWg3/5CaWpEcdqyGgjaULB6EoSQxtFvaoh7nqeuaaR6WQv1okZvVWR9OMRa/srB6dOqHi35St0SPL637mtL6hVhlB30zD6YofTz/+Mdjvbofb6ZCwSEns3XOsyz+9lEyN/SnQapGa2nFVtiHz59/kalTp+65I5MfHakWMVHa5P2Gg5wnC+V7eMxsl69VD0ZTM0l7KrbWLtIBAGu7KY6qRutUhFM0xRTCjqSCshjHhYtUy7KI6DCOlQKhSASFvV6Mvd78+BRUDSPF+B1IFteSuzhqDMwwjBOq2ygCKUlkj51OYLBK7X8/5L333uPUU0/t+n5NTExMTA5oQuV1AFiyctCDckLPWF0WxVu79EpXjOKtEQNG+06IKEg6S2GSCDmgUVO1ms2lH1FUOJUBA47t1CBhcmAzadIkPnv0K3RNI3axoAVloe0MGyjUqPEhEVJoz17pkkpCWaxftZCKL99BUixkDD2Y7JHTsKdl43a7e35DskT/vkezYu3zLF7/L9KS++ILNOHzN+JyZvPaa89x8skn97xfkwMeW4EwStR/8BFJQ4ZHUjhBR1mMHRsTjosx73GpxrqjeA4vK2KiH8K148J1EMNtdKnrPhN64HeVYq/d70tXIGX0eLAqVL76Ak8++STXXnttN27CpEf0wiiRkpKyT9MdtXdK03V9j45q7dskat+bNt8nplHCxKSXeGnFQRKyJCZ/+or1ACj9imnNE4rf1pIEs76QBjaQfELhG8qKn6zVTBUeVZ6ORk7winPJMdlNnLltFGc0YGk3w7x+8QReu/sjYYw4ayJzj3qwx/docmAwc+ZMnn32WdpCTSQHhbxITa2dto81RgB4i9wE3R3zyfpTFXRjsqVajYlWzMO4fqjhZb7dR2n916TYc5lUdD6yzcGstff2+n6W/ldE5Yy8tojGjd/RtvBrUgaOJHPykdjSs0yDxE+YdZ6vAKgPldMUrCLNFlO4PWy0VTu6PkVSPDkS5LK2WIQhwmIsxEOJXKcMwn0r8VEPcSmjQqFon2GDiabHpXqSAiGs9V40ZzTtGUQXEKmbPTQNijdUhFP21Y9KIX199PebVCXG7tx+R9Kat5IXXnjBNEqYmJiY/MgJVtWBxYKSbhTqNVLoRKIjdCBBmiY5JjpC0uhQ6DrueAPNIpRukqZ32AckVLQEgh7Wr36dnJxRDBx4HF98eXsP7s7kQOLYY4/lz3/+M22ryyI1TOIiJGQ9YpgAEstiAtrLYnsiXt6hEOVfvo3F4WLIBbdgVZwsf7L3ee/nfCVk8ZhJqVTXr2dX9bekphQzuvB8kt35pkHiJ0zzp18AEKqqoW3FCpLHTojsay+LcYWujRR2CWs3aJ2MjZ3IfWyhas0mI4W0iEEChHFCl0VqJym8dkmky40YHnTCFozIdWiij8g1xtRqkdT4aInw/aYMG0PL0BG8+OKLplFiP7C/C113RV6eWA9XVlaSn58f2V5dXR2JasjLyyMQCNDQ0BAXLVFdXc0hhxwSaVNVVdWh/5qamrh+lixZEre/oaGBYDDYIYLi+6LrqkcmJiad4sePHSeSw9FBUVb4QQXBZPHAkTQJZ62Ks1YVBgkDLUV4/npzHXhzHbQW2WgtildwWVsBRUeX4h92gXSdQLqOM7etw3V9UDuGD2rHULGiBh0Yf9U40yDxI+eEE05AQqIeEVKnt7ZBq0e8/EEkXwjJF8La4MXa4E3YR8ghEXJIuCpDuCpD+FM7hn3602RqxsqoNlBjRNFuFYYQRVeYvfmhvTJIxLLm8ZvYNfsVGlp30rB8Ebb0rH3Sr8mBS2OoOvK3HlLRA8GE7SRFEZN4XQet3cwv1oBgifGt0Iy2shwfdaHI4iUZL0jQRhEvi0W8IjliE6wywtcVgxzQxCumjkvqZg+5i5rIXdTUoYZQwzA3sj+E7A+hBPVIyLircABr165N+J2YmJiYmPx4UBtaUFKTkTUFKZTY+1AOhV+SeCWwqYdTOMWmcors08RLCbRTGoc9PhM8r8K0NO9C04L0GzzTNEj8yJk8eTJyigvv6lIA9KCCHpQjL/wyBCURCdGJLEpBac+yGEosi7JiQbbYkCxW1jx9214ZJGKZs+RuVm5+jbqmLVRWryTZnb/ng0x+1ARraiN/y5IlIosdInbayaISk4U1PC6GX3HsYVyMNJNE3YhIyu1wDYnYF9GaE3tEj3l14zrjxv1Q1ACT1HcAa9as6d45TXqG3sPXPqSkpIS8vDzmzJkT2RYIBJg3b17E4DBhwgSsVmtcm4qKCtasWRNpM2XKFJqamvjmm28ibZYsWUJTU1NcmzVr1lBRURFpM3v2bOx2OxMmRI2A3ydmpISJSS8J4MOGI6LYklONdB2F6ew+LIE3L0RSfqhOi0j3lBzV/NqaNTzZCqqRpcQa4wivGFmbnLvE8f4MMRJ6a4UnbiitCZvxtD44dTsAL+ES9QK8iZV+Jj8e3G43yaTRQC3FrR0NUWHCik/ZI/7nmtOIdEikVzX0sW3/z955x8dRnfv7mZntu9Kqd1nuHTeKMR1sbOBHJwEC6YQkN/cmEAKk3STkEkgPySXlJoQkBEIJIQmhOnQwBhts3HuRLcnqZXudOb8/Zne1K61s2diWjM/jz36snTlz5pzdszNz3u9537cynbS3f1+sBBBQvdysR+0O4NK8eKwl768jB2DT3YdnEiMZvZxSfhUrOh+nwj6WYletKUqkhYWUQKHsL07qwCTY2Z4OA+N4DpxwGHp/+UxopgE/jrSXRPbx6SR36bwTmoawpbzWUh5vSoE185tSdUGk0rwH2HviWILmcY2Xmqtl617tD7eX09zTfYhNYSxh+WgmkUgkxzq6P4BWWJCJ259ZWbmfEDoDY6VnG36Flis+DBIhsv/fD+lFTkrK0zupx/ZTWnIsoKoq9okNRDfvRiQGP0MJNWX4PIJj0Vlei2rNXVx3uHnxdSmefdApu+wKmjZtxlJaivuEWTmhmYbKJbG/RNf5ro2GRcnkgsspmr42Qv/S7YHhdFQl4+0wcHl35ngx2HMiZ1uWUVsx+ufkmUTX6XYywGNCx8xTlC+HnuR9owiR8XwZTtmDJRgMsmPHjsz73bt3s2bNGkpKShgzZgw333wzd999N5MmTWLSpEncfffduFwurrvuOgC8Xi833HADX/nKVygtLaWkpIRbb72VE044gUWLFgEwbdo0LrjgAm688UZ++9vfAvDZz36Wiy++mClTpgCwePFipk+fzsc+9jF+/OMf09PTw6233sqNN954WENRHQzSU0IiOUSiSgS76sq7T1jMV+ka86VFDbRo7l0yVGMnVGMnWqwSLVYJl/ffdex9At0BugNsvVk/U2Fus4QVLOH+u93O5gpsmo5N679La0VuEBAJDCNprGTUU6mOoUM0EYj3YCSSGJEIRiQCgSBKLI4Sy5OoF0AxH74MzXzFijVixbkTFsMC0WLzlSg0Bk1qe2tUwrqPkgknHaHeSY4XigsbGFd0Cl2xJvPB3jlAwNXUvCuRMqS9IQZitZrCRLZoYQiIxftfMHh1lCEGnyMdpimVVL7f0yIrFmdcT80W+utSjPzX+qTHhuGw0PB0gIanA/07Uv0LVWmEqjSiERuq08bmnTsZc/d3B/dRIpFIJMcMercPzVOQd5+aBCWpoCbMV/ZK2JwyQ6wEhvwrbA2LkglBkR1eIt82m930gtWTUpT4IOA+dQ6x7XuIrt8NcRUlkXrFFdSoihLPb/ZJj8X0eDyUsaiHw4RaduEdf8IR6p3keMHmLaPssitJdncj+kKDxiIMz3ts4LUx+xqYFiQMa/5rY/bzvmFTzYgVqpIJeSxUJVd0yDNfGe51eH9tHthXNQmq3YE/EGTcf34t38cneT8cYU+Jd999l7lz5zJ37lwAbrnlFubOncu3v/1tAG6//XZuvvlmvvCFL3DSSSfR0tLCv//9bwoK+p8j7rnnHi6//HKuvvpqTj/9dFwuF0899VRO4vO//OUvnHDCCSxevJjFixcza9YsHnzwwcx+TdN45plncDgcnH766Vx99dVcfvnl/OQnIxdZRS7Hk0gOkgvLP09voo2w8DPFfhLYU6tCCtwAxIsGq9e2vtynt3hR/0oSSwxClQp6yjbnacm9ysVKDITN3Gbr7r/gJAoMyHLBDSbMOn0pVwvf1g40pxVPTf4JkeTYos4YTws7WSPe4ETOwUWWMdcXMMdhypiqpONeKoPHYmYVR+qhxxhwF7B3q8RKzZ3BOvP42B4zNqHzO/lFOInkYCh1NrC7byUdwR1U2schhDneFEvuYFRsVkQyaeZzUAZMptPigy11LRXCDL+UTEIsZWBJh2eKp66/6ZVFmtq/LS2KDBT10g930ZiZq0LJLC01j89GCGy9pvdDrNSsT4ulks+7zT5p0f5ZlRYx/953pmkQsmXpFM5558PT7+J/7Q34BhKJRCI5xhj/i5+R6Oomun0npZdfhppIZ0M1/8u3Kj0TmsQY8J4DeEiQa8hKhxA0LGb+uf3FvQ74WwBwF8qQOB8EXLNmYZ+wnM7f/ZnKWz6fSRgMIFSBGs9Ktn6IYxHM8agkco+P9XYAAldp/eHoiuQ4xzlhEgDB9WsoOenM/Y7F9LUx33Ux+//+g/qvi+owgkkoiazwTYeIkidaVKZd6dtDnhwS6dmGnrWvaObJdC97iZ5lLx1yeyT5OdI5Jc455xzEfjwsFEXhjjvu4I477hiyjMPh4N577+Xee+8dskxJSQkPPfTQftsyZswYnn766QO2+WghRQmJ5BDYFX4Pj1pEuSX34StWW0jMq1K0zbzgFOzJH99fixmIlNt0uCL3Jtc3OR2jcMAxRTHiuhmeRMlKjKd641js/Xfpt7rHYezZR+Pf11F12liUgeFJJMckmmplnjibd8UrrBVvckr4fJTUA5Ja5M17TDoplzWoEyvMv0IqnjpUS0WUyX7eq/robmI9YVa89gqusaVYUnlQJJJD5bkdPyaRSFDlXs664CsstI1BST2Ri4yoZl4bsxNeC10HVckf2imRMEWE7ATZqgrGgIlEWmBI0i86hCP95cEUHHTDPCbtKeFxmbOJQaugBKQmK8Kaqm9A4vi0OGHYNJrON0W9hEcw8a/9Ydgq3uoFILJYo3xelLZiL8ZQnk8SiUQiGfX4Xn4F1eXCM39+znY1rvQbM4yhDRvZYUryrZzN/h9ShuLsECb6gPJZhhChKcT93TTteoXC4rFYrXLByQcBNWGh4sZP037v/9Fx7/3U/vdXUW02FEMZclVvRjDbT8LrQaFzjNx9ejxK+8qlWJweHEXlh6czkuOWHV/9MkIIvC++QOcz/6Rw6hwsLnOB5f7GolBTQmy+XCiGyH8dHWAgzns9zjz7mzuFpqDo5pxgYD6J9PGZalL1K7oCWm6bFaW/vuw+pSvIFinU1LomoYGqWbGXVmDEpYfbYedgPCAOc06J4x0ZvkkiOVhsVgJGL+WOcahul2nUCkeI1Q6OwWbpDWPpDaOF42jhXCOTq8OU52te7qPm5T5TKR8YRaTAQHiTaEW5Nx7hMBAOA9XbX6chFPPV2MIrn/sHjmInb/3xJZ4845eHpduSkcehuJnJKQToo5U95sZkEhEKm69gCBEMoYRiKKHcMWP3Gdh9Bgm3SsKt5r3xWqKpSW1pDKU0Rt/mNpbd8AixjgB1X7yEUDx/rhSJ5GCwWq1Mq1qELhLsTWxBcThQHLljS+g6itVqvuy2nNwPQtf7wzhlh2tKJ6vOTmBttZoig56aBSR1RDSWG8bJGDBTGRCqiUQSEkmEPSvXhBAYjv51HckCG8kCG2ost65IuYVIuYXumblGnx1XuwnOjBGcGWP3VcWZ7Xo0jt7bQ9HE/eTVkEgkEsmoRUlAvKUV18TJWLChJBQziXB88CIhNTHglew3QGXqO1CoEh3UhOiPc07aCCfyGugSgV7eW3YvupFk+RtP8+pztx+ObktGAZrbRfkNn0APBPG/8jpgjkc1bo6/7LF4wPGYbywOCOMU6+tk22M/I9TWyJhzrkVTj2xOCcnxgaIoVJ53KYrFSu8bLw9rLGZ7PaSvi6ZQmxtmdajr4kBEtuigmOJBWkAQmgIKqIk8rkZD9Sl9TR4qPNMBEl1n0A1iXR1YPfkXJEoOnezwWsN5SQ4f0lNCIjkE7KqLuJHrBeHY1QWAYa/A3p7fQ0KkjFhqwiDp1HD09N9l6p/po2VREcKM6EHS0393SqvpuFN30VRc0OJic7WtllbbdYM371qOpbyY6rtupL5eutF+UHhBfwyACyv/g0rfXnbGN1Btn5BZ3ZRDylBrbfMDIOqKyCzRSJF0mvEw0+HCEu7+yYl9s5NAYQ+rv/8UBbUFVH31OqwlnsPeJ8nxS4G9gjL7GLpiTYz1zAFVzQgTIjogEXRSz4RvyvaeAPrFBt0AWyo8U1psyE4EpypgiIw3Roa0IJFM9ntPpHGnPIOsFlOYgIwwoSTN4+KV5u/C0JRM2Aw1ZmD1m+2MFzgyYrMl5RwRqxscIHf3VcXMqdrKxqUtGNEENeeMH1RGIpFIJMcGWkEBeiiYsy1tVBsYQienzICwOORbCZwnLImaZ+XwUOfYseFJFEVl3plfYsaMGQfqiuQYYfd/fQWACT/7GYWnn47vxVcoPOlUVE8BQhWmx0SK4YxFFFDjQ49FEYqx+6nfoygqU6+6BbtXeklIDh+WgkIKZ8wltGsrLBp6LMIAL7EB+/JeG/ON96HC6mTCKymDctoZ1iHWdw/0rk4ZsbNDKPcnsxaZXBUZsSTtcZFVvZI0jwu1NZH09+KdOCv/uSWHjvSUGDGkKCGRHCweN3qXYd6cnI68N7FYpRPX1q7Me+EavOrVEtFJui10nlIEQHyAo4VQ0wE/++u3OBOomkBTc++4gYiduK7R+a+VRLfvY+wPPs3mq+86xA5KRjtT3PNZFvsrjdp2JrrmQjw1ix0Y6z6FtTNI0mmuqLD3mQ8+0eLcskbKfqvPDhLvddD3x+cQhuCcH5/P4xf8/Ij0Q3L88tz2H1HtfZpIwpfr2QD9QoNl8LU1E9opMSDUUzwOA3NTpOvN8rJQHPb8DRooSCQHiB9WS0aIEBYVYVEx7BaEophhnDCFCd1p1qPFsuNqmL+vUL2Buymrr7r5d6yh3+Ote2UjroZSnDVF+dspkUgkklGNFlMgnoSkYRrShgydcwCjMCmD2hDx//tDmGSFZlJTSYmHiF/e1bKe7vaNTJv3UZYvvWO4XZIcYxSffz7Bd96l96lnqLryI/1jaD9jEVLjZIjxpmYZTBUDWle/RDzQw9Rrbmfjw3cf7i5IjnM2/8+XuS2yj5//ditKLNfIrw4w3meT77povk/9LwZvG1KQgIy3hKIbg7cr+duQrjMtBKbFBUUwSNzrb6sySIzI9CUtjAgI7tqM5nDiqh03ZJslh8aRzikhGRoZvkkiOUhC8R6C8U4qXRPNDS6n+YrGIBrDtbM3R5AAUMIxhEVFd1rQnRZsTb2ZBKiZMqkLYdptNrPdZ0WPa+hxDVUzr4C6oWKzJtENFd0wf8Yd74RpfeBVPGefyu6v3n/kPgDJiPJc+294rfthxnnmsiu4mkCyu39nOqRNPJ77ysIa0omWqsSKIFZkekwknbku3PYtLxB6axVjP3s2j1/wlyPfKclxSVnxFHyRffhjHeaTtq7n5oUAM2arMDKvDKkQSkLX+70nEkkURUXEE4h41kXUZjNfqtLvGWEYuWGbFCX3lSVkGC4bhqs/JIGiCzOebLopioJQlcxKJ3Ob+Sp9p4vSd/rvB6F6w/R0i6tgyZ3g1Lt6KUj0cdqkubxy3k+H+zFKJBKJZBShR6OEd2zFM20mkBUOJ556DXjOB1KhQFKrYbPCkmSTDmEycJ+qp8OSZMUeVxWzXJaRJRbuY9f6f1JSOZWN7/75yHReMuLsvOUWGv/7vylbfBGB1e8Q3rGtf7W3cnjGYmDnJjpWvUTlvEVskoKE5Ahx8cUXkwz0Edqx+ZCui9nXxjQDr4swhDF6YFjtgfOE7HIDD81X/xDh99LtzNengSGrAIxolIkNY9j4k1sH75S8P8RBviSHDekpIZEcJHqhGWJE8xQiPK7M6tkcUuFzRIEZR1zYcn9qsbElGRVcS6TC55BOjDrEiRVQU3c4uy1VvwDDUIlsbqT9x49hKS+l+IoLD7lvkmOHsZOX0L55L+uib7DAdhGqMrTGrIRi2HpNcaJ7tjtnn5oaf7Eic/x1/2s1PQ+9QM2ls6m+YOYRar1EAlUlM9jV9jrbA29zYukl/Qnh0mGYlDxP+nlQ0rkkst/brAjDIJjspiu6F1+8naSSJJmMYgidavcUxpSelOvRMNDTyJYbG1nYzXYJi4oajqPG9Ux8WcOipf5Px5vNrcvRI/CnbxVxBWFLPc1aDKoqfAB0xZy0bfGx6JJJw+q3RCKRSEYfmm4K4JrVOdjgm0KNkwnpAQwycOSE18ljLFMTIsfoJdS08S2dWLV/u5oUhH1tbFz+exRVY+KsK1GGeX+VHLsUzT6V4Lq1tD/xCGP/43Y0hzPv6t70WITUeNzfWAT6dq5jzwsP4m2YTtW8849U8yUSzjrrLFy142l/8zk8Y6ehJVNeC/k8zPJcFzO79MHXSzVpLuSLhrroa9+Gv2cPejxizhP0BKXl06gbczo2xZFzjkHnzSbtnZHyosic08gK0ZQuk/GKMLeruiCz9krpn0+oyf7zChWi7S1MPnH6EA2QvF+kB8TIIEUJieQgcdqLURSNoOijxG5FLzCNUZb0ytxwZJAxTXeZxqy0d4QW1bGEdZIuDWe3TrAq/0/R3q0hVEgU592NYah0PPY6HY++hn3KONrfWo3XKxMfHQ9oqpUpdUtYtf1BwtUaBdYyRE+vuXM/k027z3zi0e25RlMhBJ3LltLz5r/xnnYmzvmX0bxShfOOWBckxzl6sYfahtPZsf0Z4lVebM3decspTici0p+nR+h6RkDI5JoQgl46CSX70EWSYLiHzlgjMT2EqljwOqqwKS7sdjdJzWBb3zK2+97CprmoKprOWPsJOMgS7KwWhFVDiSYyXhGG04oaMa/zhsvWnwCP/odYe1+CWFF/Lot0mXB5ro+3Elewlpp1xXUNm6bT+k4rgeYAV1xxxaF8nBKJRCIZBag2OxZvMfGudrQsg+/+QuhkVsQOFds/MdiYlTlO7CdUiSFo272C3Wv/idNTzowFN7Di+TsPrWOSYwpFVam46Eoaf/VDIs2NeMdMe99jsWvDcprfeILisbMZe/ZHUHUpbkmOHIqiUD7nbPY880f03l4sBSU5+/sFMzFovOYL4xTq2EvY14YRjxIN9dDbtploqBtFUfEU1WOzeXC4SkAImna/yt7dr2K1uigrm0ZD/Zk4nanzK+SPN5OKwpT5Oyu3RLaQIrLMPv3tBD07FV6yX8gQinlMtKeN0L5dXH7nNw700UkOhZQX/rDLSg4bUpSQSA4SvciF1eYmFvUN2mcUuVHbejIrbNMra7NJuFTiBSq6zbzRJO39D3TxQhCpBb/27v6Vv5rVvGPZrLl+fH1PdtPx8KsUXnIORVcskoLEccTSd77DF77wBVZtB1Xk95IwyosASBTmj6PvaTEI1KvosQgtTz2Bf9Nqiq66gNITz0dRFLZ/7ctHqvkSCQBWqxshDAwjAel8D6l8EdnhlRS7uU/Ecl3JIlqUzmgjLeEt+BLtAKiKBYe1kKqi6ZQVTKREq0bs2gunzUGNmB5DfkuQrq7NxH2dNPe8R6PxNjPqLqa2Yp5ZR9gsp9tVgnovhZqpDBtOq+kdl/bqSHnKKVY1M3mw9yWw7zPvD8JmgVQZe5f5O016Bj/I+nb3sP7HqyiYXMmiRYsO6bOUSCQSycijxsHiLkDv68u/PztEax67hpYgx3is5BEhBh4rVAUtPtgwF/V3svO9J6gccxLjT7gMzZLrASj54LLlO1/mnnvu4RZAMwbnNoTBoZvyihQJMJJxWlY8Q+eGNyiffgb18y9DUVXe/f0th7/hEkkWFqe5YEiPR/vH637EtIFjWA8G6G3dTNfeNfjat5llNStWm5viyqkUz7yEopLxWDUHpBYhKQLiky6ks20dsaiftn2r2NeygnHjFjFubO5qPSEMQv4O3IXVmbal2yDMAmZuCSEy3tVKMitPhCYwtCyvCMgIG3rW5TrR10vzS3/F6vZy/fXXD+ejkxwkMqfEyCFFCYnkIOkqDhCP+eGECXSOL8S7yzReqUXuQWUTRaYhTXeYD4MJV7/xWIsLwmVqRmkfmOg6WmPeeRVDyfxQwxEbNluScMCBEU/Q/eKz2CqrmeL9f6z8lIwteLzhdptjTq2tJmFxYE0n5zX0QWXjXnMURYvMAedpMYhHfHS+8x5dq1/DSMQYs/hjFFfNZc3XpRghOfL4Jtjp7u5A0+wopUXQY4oKWC39LtAATgeEwoDpNQGA3UZCj/LmngfQRZLiggbm1X2EMs/4TOLp59ffBcD56oczVS1d9V0AFp5zN2Pqz8CYqFEXW8Ly1+5iY/PTFJdPxqV40AucCD3JWxt/SyjWxbnzvoGmmLMDBUBRUBM6hqL1TzIMQTKV6DpHBrSoJN0QLxbYevtFaL3R/P12W7tpuu0POKoKmHzrEhlWQyKRSI5hlGCMWHsLRZPmoWbp6Pmu7Goq7ddQBg4tIYZc1a5kGdAyscqVVKgSA4Sh07jpOax2DxNPuJxlT8vVtccbWiq0pcNVesCxCAxKzJ6Mhujc/h4d614lEfJRP/9yKqefyTt/kGKE5OgQa9sH0O+lAKCQI8LmCLSK6WWgCPMauO7FXxAP+/CU1DN5/kcpqz4BNWV8eeMfpu3k7Et+nDn+tWdvB+DcJT+kruEMFEMwbvxCXn/lO+ze/SJlZdMp8FSZ5zIEG9Y+RHfnJk458zac7jJze7qZqbVV6QWnii4ydp/03AFSoZtSebPTYZugP8RyIhZky99/imqx0nDe9djt+RcbSt4nB5MrQooShxUpSkgkB8G0b91DuHkLKCoFtZNz9glL6i6jqqZRLQ/pCUTSqRIrHBDiyZlKYq0ahDduxF46CcVqQfNrJHUznqGrKgiAwxag8Tt/IdHSyuTzbsiEMJEcX1x77bX85Cc/wR9ooaR4QmZ7fFwFQhj09e2mr6+RZFeSuIjgKqwi2pIk1L6HcPtektEgiqZR0jCHijMvwuYpGrnOSI47Wlf/m/a1L1NYOo54gQV7OodDtH/mHEh04ff7icZ9xPUwHrUYTbUQUaAvsBedJGfOugmHzfQSW/rOdwad5wXj8UHbXnrVNM6cu+SH2OwFzD/5Ztauf4D3tjzEKTM+Q5ww23b+i1DMTFIdsUTxYAoiGREibRBKTSZySIkqzYtzXc3jxQLDbs5SbBUR9N1uev/5OqrHScWXbqMnIlexSiQSybHKnC/eQ6h5J0LXKRg7NWffgQQIs8zQO/vD6gh6WzZRUDEei9Vhrh4eEErCUAy2rniQnvbNTJ13Lao22HNb8sHn2muv5aabbiK4dzslJ5RmtqtxM+xltL0Jf9MWhK6TCPlwFFWAohJu30OwdRfJaAiAojEzqDv/szi85SPVFclxyB/+8Aeal/0dW2EpFsOKkugXYtNE/V2EWxtJRHzEw34cheVYbS6SQT8hXyvxcB+zzvsSnuJ6AN782+BFnK89ddugba8s/SoA553/AzTNxoLTvsb6dX9m7do/cdLJX0DRNHbueJ7uzk0AxCO+jCiR9rjAkpVHIpMXYsAcwjDfp70i1GR/yCehgGGBjk3LEHqSaVfchtU1YBWr5LAxMCn6gcpKDh9SlJBIDpKu3avx1E7AYnWCAb5x5l2kbG3WEpRIFNxOlKR5wxlksKL/hhr35G6P7txJxx//hPXZStzz5uJsGId11jgURcFm1dHDMfb+/GViTS1MP/8LbHzuF0eim5JjgNraWgDeW/8Hpp7ycSonTKOjbS09m17C599DNNqLxeJAtdixOD10NK9GQcFqL0DVLIw741qKa2ZgsTlZ8Se56klydAkH21FUjdLaWQjR/3QnigsIxbpp7lnDns4VCAysqgOLs4A9/jWAQOuzoWl2Zo69nNfW/uyQ25CedCw89/vMOOWTrHr9Hlq71rGz+WVTYE63NdyJva4SAFtvFADDbiFWal7/1ZjZ/qTDPKb93EoqX2nPHG8JQ7RisLEpHttM4NX3qLjwShxBB/GS0fOUK4Tgqaee4tb1j+CdN453Lrx7pJskkUgkox7fxlXYi8pxustR4kOXM1elDy1C5IRxyiLi72Tba39A1azUTluIu7CG4uqpKCioOhh6gr2b/01P2yamn/IJNq744/vvlOSYpKioCIB9L/4VzVApnnoSgT2b6du5jnD7HmK9Hag2B6rFis3lpW/nWoSexOYpBmEwZsGVFDXMxOos4N375TxBcnTZvHkzoFA6fh5CGCgpNwM1AfFQH507V9C66VWMZBzN6sDqLKRj+1sIoaNqNjSLjbGzLmHtS4duK3n5ha8BcN7CHzBr9id4+60f09q6mra2VcTjwUy5SKQHrxgPgIJiej6kxQlVyXhLqFnBDLKjqmWHUjOy1ifFe7toW/8KVdPOxGEpZHAshJHllVde4RO/+DMFE09AURQ2/PgYjrYgPSVGDClKSCQHQbS1iXDrbhou/GRmmyJMFTvpNu8gmsUCA3JJWANJhEVBaKmfXNaFzOaDWBEZ5cKhmAp4or2dvueepw+w1ZQikjq94yoIbdyLHk1Qcv3lBM+qPTIdlRwTVFVVMfaMj9DyztNsWflndjm9xCM+3GVjKGyYzpSSWRSWjEURECu2IAwDIQxWPnL7SDddIqH0lHMw9AS71z1JW+d71BbORlE1Evva2NO1EoFB+YT5TDjhMmwx88ld6w4iEBilBYe1LUmPBadehtXiYkvj0yiqhTGzL2bPqn8CsG7Dg8yf/iMcfkE8FZYve5WMkUocb/MniRea1/n2cyv748I6+8sqSXOjoSv0LX0HW1kFRSefBsCuL33lsPbr/dDe3s5ll10GQM3Hz2JG361s/MhPRrhVEolEMnpJBPvo27mWmtMvzQnFp8X2c1C6zH4EDC3Lg8KmmN7Thp6gacPzANhTyVldhVWEfC3EowEapiymrGL6oXVE8oHAZrMx/tLP0fTKX2l6+VHaVj5PItiHs6QGT8U46k65jMLaKSjpRRiGjtB1Vv/pqyPbcIkEuPHGG/njEy/TuvYlenetpWLyAhTVQjIaoHXjqxh6nJLamUw45Voslv7roqEnsaeuk4cTu70Qh7OE3bv+DcDkqZezbcs/Adi68W+UV85Es5rnVVIG7nTax34xQmRCNJnb+hewZrYn+q/33VtXoFps1J6wBGBUiYOGYXDeeWaOjZITz6Jy9nkHOGJ0I3NKjBxSlJBIDoLO9a9jLSzGNXMG1n3m1WhgGCYAYU0Z0CKm7J0syA3Joer9E5RwZe6xtqoqGv7zNlqfeph40z68ly9E7+5DddlJ7m2m8OxZOM9ZiKWkiD2flsbl453dbzzM7JvuoW/be4T27cY74QRKCycC4OzW87qkSiSjAWdVPWOu+DSh5l20vfxPdu54DmHoKIpG9ZzzqZ18DqrFihoTvPZsrrv12Rf9COiP/fp+Sf9OZn1K0LHuNeyGPSNIpPF37oSKiSiqgr3HjKORTk6nOxSsoVRYJn8S77udADR9qF84VhOpsk4DJakQb+4gtGITxZefxdbvjh4xIk1VVRXXXHMNjz32GPv+/Dqtjy5ncpefbV/83Ug3TSKRSEYlPWuWo2pWysedsl8hwhLbv0VD289+u8XDiUu+wY7Vf8XXuYPaiWejJ6Noqo2Qr5Xi8snUTzgXl6dcPgNK2Pnk/3HijVPwN2/Bt3cTBTWT8DbMzIhmq+47hlc2Sz7QTJ48mQlnXE/1jPPY884/aFr9TMqzWlA18QzqZyzGYutf9bP8sf5n6TOvMBfRpPNGvF9efsn0mDj7nDjNzW8hMDKCRJrOtvVU1Z6Ioqj9YZoMMiFdRVp0SPaHfc3JLZHsv+4bVoV4xE/H7pWU1c3inUdGn1Coqiq33norP/nJT+hZ9To9q99gfHcru/75fyPdtENDiEGhEPdbVnLYUIQ48Cfq9/vxer34fD4KC2UcM8nxSW9vLyUVFVScvoSyUxdS0Cyw9ySJlZjanrPDFCAczb5MfgnDZYoRaS8K3WWKFTFvOvG1QswMhU5iwE8r0rSHpvt+QcUXP41r/sTM9t3Xf/3IdFByzDL7pnsAWPsLObGQHHtM/4Y5fq1BM2SQza+jqBrv/HFkVgPN+7zZnjsumsDXfvlvOrYtp3vPewCUNcxj/KnXoKoaNp9OtNSCNWigO8xJRazAvPZXvtACwN5rTFEiNFZHC5n7dKcpXrT/8n6S3d1U334ze28ZnQlIu7q6qJs9mURvCCMap+zyU6n59CIA1l58Z95j5DPj8Yf8ziUSSCaTOAtLKB43i/rTrspsP5AAAfsXIbJXzWYTi/h49/nvMemEK6kae2pm++v/kkKEZDAn3niPFCAkxySnXfPTzN9CCBAGiqrliBBHk/MW/gCAb3z9JG796qP0dG2jae8bABSXTGLGnI9isfQno04LFNkY1txt6ZX3etb2He/9jZ7Wjcw578usfPZ/Dnc3DgvhcJjyCdMJdzShKCqF42cy4eyPA0MLnqPtmTHdnvmX3InFOjwPm2QiyoqnvjVq+nCsIz0lJJJh8uijj4JhUDDvZHQ7mZWygxACJWwuj1LsgxPLCcWcYCTcSkoR77/5GFbQHeZdyZjgwVJWQud9f6Htv/dSUVFx2Psk+WAgxQjJB4G1/zs6xvHq/+tvx6WXXophGOzbt48zrvsKe954HOuUCRTPWUCZz/TFTnhU4p504jrzuH2XmGJEcEISz07zUUsvSO106BihCNEt2yj50GWo9v6Jy2ijrKyM2T+4ktU3PYYRidP1j7eJtXRT9dFzRrppEolEMqp4/vnnSUYCVIw7Zb9ChBZN7cuTbw5yQzUNzEmnZQkUNmy4C6vZseFJ/vHI/zBjxoxDbrvkg48UJCTHOiMlQgwk7TUBsGbVIoQQtLW1sfiC29i04a807XqV8eMXZzwjMrkl6PeMyIjNQmDY+nPYpa/xQhh071tP5dj52Byj1+jtcrmYuOgGtj71S2K+Dnzb17At4KfmpItGumkHj8wpMWJIUUIiGQa13/okrT9+BOf0KVgKzBuD7jRvIJaIuerV0dhjFtb6byxqbxDh6XcrzJ5cWEOCUKWaSXxkDNAvLAVFeC9aTPefH6Wvr0+KEhKJ5APJprtH90RZVVXq6urQLpuPd9d6fJtXUzxnAV0nWDPJ6Bxd5v+RVDi+yIQ43tXmzuCEJGpUBRSE3bxfxPbsA8OgsHIyth6V0YyzpogxX7+aXbf/AYDAyu0EVm7npPGlBGPm/S0a6g9RuO6yL4xIOyUSiWSkmHXeTWx564+4imtwl9QBYIn0xwrfH1rMACV/IS2WlbxowGpbq7AxYfLFrHv3Ptra2qQoIZFIPpCMFjFiKBRFobq6morSGfRUzaWjfS3jxy9GSYVjUoTASEXRUJP91/TMtriRKkdGoIiGuknGw5R4x+feB0YhFoeHSRd9ng2PmN4cwbZdbHv6l5z0oQosdteg8v/+zY1Hu4nDQuaUGDmkKCGRDAPf8ysQsTiFS85FDPGrCZxQjqMzhqUvgqKbNw/hyl0Bm745GRaIlOYaojJJU1NzjmR3L71/exLnCdOZNGnSYeuLRCKRSIbPhJ/+LPO35aQp+J5+il7fVmyzJ+JsNVXleNYiJqHrJHv9+OYVZj20quiBAJEVW9FFlNDyd82tzsEP66ONVxf+hBNC36HovNn0vbw2s73lz69hP3k2kU2N+N/ZiXvBbDxnnjiCLZVIJJKRoXPPuySiAcbPvTIjRuTDkmVcyidWqAONT1ll0oarNPFkmG0b/0ZhQR1nnnnmIbVbIpFIJO+Phed9P/N3ackk9u1bSXvrGqoqZiFSi1XVROr6LQSGBWIxP3a7FyV1IzCsCslElO7WLSSTUXo6twBgsY7+eULaC6t23XL2bXwxs33vmmeomDCfiL+DrsbVFFVPoXra2SPVzAMjc0qMGFKUkEiGgep24pgyBsfEccTQsfZp9EwxjVFlG8wwTra++KDjlLi5z+qLAqBX9N9Y0uJGcsC9RiSThLZtou+Zf6M4HJR+7JpMMjKJRCKRHF12fuWWjDBRcOqphLdtpvW++3BOmYRz0mQs9eWU2Cah2uwEN2+g+W+mR0H9b/8H1WbDiMXpe/LvBF9djUgmQdPQCtyUfOIqdv7w2yPZtYPCOamGvlfXcerTt7DrN6/S8a93Mf76Vma/SCSkKCGRSI5LLDYnNlcRpbUnmO+jxmDRIc+jvBZNGapSz/mDwjXFDUR6DpBOjCoMfO07aNzzMslEhLmzP4PNZkMikUgkR5+XXv56RpgoK5tGVeU8Nm3+K/v2raSkZBIeZzne4vFYrU76fI2sXnMfAKeedDPOwkoMQ6dxy4s0Ny9H1+MoiopmcTB+0gW8+8bPUdXR7VGdxlNaD8Dcy79Fx463adu2jM6dKzL7o/6OUS1KSE+JkUOKEhLJMHDVFtD17mYUdwRLi2fQfmdTEL3Q9IpQYkmSFeayWUtPqL+QokAqjqARjtCx8m1UixWj2IHRFyCW9JH0+Yju2okRCmOtq6HqE5/Epg0+n0QikUiOHju/YibdHnfvT6n4zKcILHub8IaN9D73PCKRoMOi4ahvINq4O3NM69fuwXvxAgKvv0eitZuiJYspOG0BaoFzqNOMWiod3XRu24GtsoiI4aT28xdQ9fFzSbR0ArD1m49RMHsMroLoCLdUIpFIjj5OaxHxsA/hD2K15V/ZqkXSAoT53yABIqpn9ulCp7n5LVDAYnOhh4PE4n5icT99vr3E436czlJmzvgIbs17hHolkUgkkuHw0stfB2Dhud9n2tQrKSoaS2fnRvbsfQ1dj6Gg4i2sxxdozhzz7nv/R0P9WXT3bsfn38OY+jOpq12A3VaQKXOsCBLJZJJA83ZUzYbLcDNu4mIaxp1LONCOEIKt7/6FwtJxWEOjOBSVzCkxYkhRQiIZBp4542h/+HWiO1oosE4BwO4z9zmbgoPKWzoDGAUO4lXmTcUSyPWiSHZ10v7mM5n3qsOJVuTFUlhI6ZRTKZ56IskTq45QbyQSiURyKOz+ohnXdrz6M7xnnYlu00l2dhHZsIXouq2ULL4A77nnEm7bTeCN5XQ/+CzWmnLqPvdF7NW1bP+66eI87t6fjmQ3Doqrl3+Otz/3BKHGbqo/vSizXegGe3/zbyJ7uzESSbwL545gKyUSiWTkKC6bDAj6OrdRVWx6SzDAliQGeD1bInq/MDFgXzIeZueOZzPvNc2O3V6I3VZIZcl0qspmU1hYJz2pJRKJZBTx0ispceKcu6mpOhEMQSzmo6tnG93dWxhTvYAJYxYSDLbS0rGKXY0vYrN5mDfjUxR7x/HCsm9mjj9WOHfJD1m3+o/0dG2lZsKZKKqW2de46TkCPXvQkzGmzPvICLbywEhPiZFDihISyTAILN+EYrNgKSmEQO4+/zTTK8K71kx0bRQ4Bh0fqTZXTaVzSmiVZtLqMWdeTcnEk3jvD7cx9Y57ALCn8mUHEey85ZbD3heJRCKRvD923dx/bZ74o3twnlwFJ5/DjttN0WHsr3+CY9J4klddguZ2oVit0Nd/fFrcGM1cMOu/ASj4lSDS7gcgvmsfWsiP8BTgf2cHoa2t3HLLLVx00UUsXLgQAL/fP2JtlkgkkpGgZ+9aQMGtFg3ap4XNUK6ZEE1psSJLUNCiZpm0cOHAgUVzUF97GmPrz+LlZd9h8YI7c8qgKBkDlkQikUhGDy+9+o3M3+efcRf1lSdTX3ly5pq9eMGdeD11TKg7D4tqQ9NsOYvvs48frZx/+vfMPzxWIuFuAGK+LhJdnTidJfT1NtLXsY1rr72Wa665hssvvxwYxfMEQ5iv4ZaVHDakKCGRHADDMOhaupaSS09Ds1egpK6j4ZQjg6M3t7wSSZAs3X9SomBgHwD/+PlXmTdvXmb7lju+fNjaLZFIJJIjT1qISBOLxTCUEHv/4zsAjH3gh4BOwqUz+a572PbNY+M6L4TBvr4NlNw4hkUPX8/WZ3bT/OjbKL/XqLvpEnpf24hW4OTOO+/E5Rr9ifgkEonkSLGv9R2qS2dTbKmEcAJgUC6INIoBajSBUNV+b4oBHg+xQDdJPYrXWs7Ly76T2f7vt751pLogkUgkkiPAQPE4mUwSI8Zrb5lG/SUnfxd0gaInWXLSHSx9944RaOXBI4Sgo2cT7lApTXu3sOCMG9iz+xW2bfo7s0/8DO2ta1BUCz/5yU+ora0d6eYeGBm+acSQooREcgB2796NEYnjnNowaJ+zHTx7zRjaijCvTron11MiriTYtOJB4lE/ZWPmolkd9PWZcce3b9+eESWkICGRSCTHPkUnzyK6fhvWO+7FPX82Fluc4Nq9GOEoVncJkwwDd7tpiVrzy9F33T/35a+gRxKs2/l3fJEW3PZSKh+upWRKOa0uB7GuIB3/WoX/3Z2M/fY1UpCQSCTHNeFwmHC4i4aKBTnbFSFQI4l+cWIIAUIJRdnQ8jT+SBtVRTOwWwvxR1vNumM9mXJSkJBIJJJjn4b6BexrexeH/V4qy0/Aotrp7dtFPBHCqjlYODeGBRsAS9/77gi3djAXzPk2QhisbfobXb1bsVicnDztPWzuYuwWD/GIj549a2ltWcnU8ZceG4IE5vqBYYdvOqItOf6QooREcgDWrl0LgGtCBcnu/gCxzvb85RVdR03l+kwUW+jr2ElPx2aKSiexZ+NzCGFg8xRTd+LFXHnllUe6+RKJRCI5Coz7y/cBEJEIAPbJYwm89CaKzYJrxliSARvhdVuw74mAwz2STT0grUs34Iu0UH3VSbQ+8S67Hu82DWlCEO/wEVi3h9KLT6bw5Ekj3VSJRCIZUTZs2AAIvEoJaigG6cSkQ+R7UMNmnjmhKaAo+KMd7OtdT7G7gd0db6IbCeyWAsaVnsYYz5yj0wmJRCKRHFHOW/gDAJKGeQ8oLZlEa8cahDAoLhyL1eqio2cT4XAPha7RnVu007+drt6tNJSdwp6ulezuXA6d/fs3bv8b5cXTqK04aeQaebAIYb6GW1Zy2JCihESyHyY8ejc9f30BFOh76T1sNRoWj3mTsIbMi1E6NuzABHYAWiSJS/EAUFw1BZu3hNIxc/BWTUK3K1it1qPTEYlEIpEccWzOBEVXL6H97t/jmVFF3c3/j2jYjqIoRNdvIbJuB8HCCEVxN33TjJFubl561zSx495XKDtnKmM/ey62GRPpe6cR33Nv4zl9FuE126m8aj4VV56KqsqHcolEcvxy4Zib2RtcD0BHYDuKqlLorgFMDwigPxm1NlisUMIxnLodgGJbNYW2CrzOamoKpyNUlec33nWUeiKRSCSSo8GYSQvp7NyI1V7AGad/HQQoikq4p4WOnk0ktFQIQLt2gJpGhmC0kzV7/kaxewyTqxdRXjiZ3tBedra/Tk3RCbT7tzCm9CTGl5+OJRQb6eYOG5noeuSQooREcgBiO5pBQMdDL4PyCg033Y6tvHJQOd3rzPytxpMYDiuGVcPpraa4Yiq7Nz4NgK99G3Mv+SZaTF7NJBKJ5IOCzWlOIrwn1hOcNwnfG1twnnG66WBgGPQ+8SpaWTF2WyF9E0aPIDH+np8BYLh1kn0+2u95BfvEBkr+8xp6giqRPvA9v4KiK8+l5MOL2HHN1/uNbBKJRHKc44u3AbCr6012db3JyTVXU+ocM9hTIhg2/0+JE4qigKZhVZ3UFsxkV+/b5v5eqPRMQkMuXJJIJJIPCobVvCe4rZVU1Z5IR+dGJoxbDIqZn2HnvtewWlw4vZUIMboEiQurvgBCkDBibAg8j9NSyMnlV6AGY6iRGLva36TWM52Z3oU096w9NucJRzinRCAQ4Fvf+hb/+Mc/6OjoYO7cufziF7/g5JNPBuCTn/wkDzzwQM4x8+fP5+233868j8Vi3HrrrTzyyCNEIhEWLlzIr3/9a+rq6jJlent7+dKXvsS//vUvAC699FLuvfdeioqKDr7RRwn1wEUkkuMXYRhEdzTlbHNQiDUAtoCBLWBg7QyiheJYuoNYuoMohoHhMCcSWkxHUTSKC8Zmji+unQnAW4985aj1QyKRSCRHD/dJU4hu3kV4wy70YJy2O+8jtnMvpXPORLXacLapNP7n6LkHCCEIr9lA2/fvRcQTlN7wIRRVxffqGjp+/Tie02ZRfNV5AMfmREMikUiOEH2xtpz39qgCgSAEQ+YrFDZf+dB1FEWh2NEfc7umcCYKCs9t/v6RbLZEIpFIRojSiulEwp3s61pL0mKwbtNf6OzaQGXFCdhtBRh2C/9++9sj3cwceuL7eKv374QTvcyquAhVsdAZ3sXq9icpcdQwo3QRiqIcs/MERYiDeh0sn/nMZ3jhhRd48MEHWb9+PYsXL2bRokW0tLRkylxwwQW0trZmXs8++2xOHTfffDP/+Mc/ePTRR1m2bBnBYJCLL74YXdczZa677jrWrFnD888/z/PPP8+aNWv42Mc+dugfzFFAekpIJPtB1QzsYyqJbmsCIbDV1eFIOiEIhW+ayaqNmrJBxwlNQdEFim7Q3riCXbufp37yQsrnL0bVLCSBkz/1M9754y1HuUcSiUQiORJsvdKcPIz98w9wLFiAY9lmOn7yB9BNrwhbbQ3WU6ay+c7Rk9y64f4fkNjdQu/zzxPdvgPnzKmUXvNhNFchgdUbaLv3H6iFHkquvZZd131tpJsrkUgkowoRCOJWCgnTi0BgV1y4Fe+BD3Q5IRJFeJx0BnawoXMpdcVzmFK7BItmJji9YM63eX7N/xzhHkgkEonkaPDq818F4NwlP6SsbCqV1XPZsvFxtmx4DACXu5yymjkAvPjaN0aqmTksdnyUgOhlt7KF9tguiiyVzCu4AHfUQ29wB6t8TwIwx3keSjDCc12/G+EWvw+M1Gu4ZQ+CSCTCE088wZNPPslZZ50FwB133ME///lPfvOb3/C9730PALvdTlVV/nwiPp+P+++/nwcffJBFixYB8NBDD1FfX8+LL77IkiVL2Lx5M88//zxvv/028+fPB+C+++5jwYIFbN26lSlTphxcw48SUpSQSPZDvEUh2RvGMW0c8aY2nBMn4J8gKNyp0PqhiVT/bQeqP5JJdqOXF2aONYUJ8AVb8BTV0TD9AghAtAgpRkgkEskHlMaPm8b7nks/z8SbPokRDOOZPBtbbQ27vjR6vCPeeOMNWr76Q/TuPqzlFVR98tO4pk0Hzx6av/8b4s1dAFhKS1As8nFRIpFIBiKEQdQI4NXKiYowRZbK/lWihmEmvXY5+0M5aVlBCpwOAHzhfdgsHmbU/b+cuqUgIZFIJB88XllqihPh8BeZe9JHicX8lJROwls0llf+/dURbl0/69evZ3n8aULChwMXMy0LqFbHEg9GeVt/Ap/oBsCmONGUYz/c4MF4QKTL+f3+nO12ux273T6ofDKZRNd1HA5Hznan08myZcsy71999VUqKiooKiri7LPP5q677qKiogKAVatWkUgkWLx4caZ8TU0NM2fOZPny5SxZsoS33noLr9ebESQATj31VLxeL8uXL5eihERyLBJr3Euyowu1wIERiuKaMQNL2JxYeBuT4HHnlNc6/cQaSgHwq73Ekr30RpvwFI/BsJjHSUFCIpFIPviUlJTQ8+C/RroZgxhz/w8JvLiMvr8+i33SWMqv/whFzgkoqkrYbdD10Ar0YJzKr30ee/14FEWh8fO3jnSzJRKJZNQRMnz49W4KtTJiRpgK+1jwuCAcgQJPvxghhPm3bmAUmEaJSMJPONpNd6QJt7Mcw2F6SPx75egK2SGRSCSSw4/L5WLrpr+PdDMGscT9cVqTu9kYfwuXUsg863mUKOWoipnnoklsJyh8zNHOpgxTiF/afd8It/owcAg5Jerr63M2f+c73+GOO+4YVLygoIAFCxZw5513Mm3aNCorK3nkkUdYsWIFkyZNAuDCCy/kwx/+MA0NDezevZtvfetbnHfeeaxatQq73U5bWxs2m43i4uKcuisrK2lrM8NItrW1ZUSMbCoqKjJlRiNSlJBIhmDsn39ArGUPqtNJ9U03gSFQVBUCEK4GbyMYRW7UvhCRSeXY20IAGIbOrl1Ladq7jPQVa/y8D41cRyQSiURy3NNw/48ACCx9nb7Hn6XwnLMpvvwiFE1D2Weu3k10dBJauYqiKxfjmDyOxk/dNpJNlkgkklHLhfU34bcEADil6kNomg1FSXlCuJwACJcdJRxDuB0o4RiG24HQBY2dy9nZ+iqGMONAnzBezhMkEolEMnJcWPclANrtHawPL6PGOYVpxlw0xQLCjFcUF1H26lupUcdRrtbw7/jDI9nkw4sQmegnwyoLNDU1UVjYHykln5dEmgcffJBPf/rT1NbWomka8+bN47rrrmP16tUAXHPNNZmyM2fO5KSTTqKhoYFnnnmGK6+8cj9NETl5PPLl9BhYZrQhRQmJZAiMSIzIqo3YxtTh3aHhn2jg3qsSLwZ3M/jrLTjaTGECIFblxrm5ldZoI017lzF+whIqKk7A8DpZ8dx3R7g3EolEIjleSQsSya4e+h5/Fve8uZRccjGKUCEJkWoD3R+g+y+PoxUWUHTxfHZ//PYRbrVEIpGMXgyh0xreittSjKWwGMIRhNtl7syK0iRc9sz/htNKZ+9Wtu97iYaKU6kvPxlVtfLq2p+MaoOBRCKRSD64pAWJpBFnQ9/LFFmrmFl0Hqro9/ZLGDG2+N9GKDCxaAEEEiPY4sOPIszXcMsCFBYW5ogS+2PChAm89tprhEIh/H4/1dXVXHPNNYwbNy5v+erqahoaGti+fTsAVVVVxONxent7c7wlOjo6OO200zJl2tvbB9XV2dlJZWXl8Do3AkhRQiLJQ/1P/4eOe+8nsa+Tuo9fBUDhDhXdBrZes0zlG10Ihw1ldwuO3aCkQjl1tK/D4Siipu4UrFYnLz8nk4NKJBKJZORRbICiEFr9HqH31uCZNQfHlEkkA334XnkNRVOp+OI1qLZjPzasRCKRHCkWT7qV93qfoyvWxNzaK8yNKe+INIbbjhpJYLjMsEwiJTq0d69H0+yMGXMmdlshL7z530e17RKJRCKR5MXtQlFU+hJt/Lv1N5S7xlPpmUQi7Gd36D10kWS650zsqpPn4g+MdGsPL4fgKXEouN1u3G43vb29LF26lB/96Ed5y3V3d9PU1ER1dTUAJ554IlarlRdeeIGrr74agNbWVjZs2JCpY8GCBfh8PlauXMkpp5wCwIoVK/D5fBnhYjQiRQmJJA/xvc3E9zQBsO+h+9HnL6Z23JkAaLH+i5ASjecemEgyXpnOuvgLrFr+C+q8s1gwdjNvNX7ALtoSiUQiOWbYc8PtjH3wB1jKiqj5wZdJNLdj7AzgW/4GwbXvgapScM4CvJecj61KChISiUSyP8KJXrrDuwHButanGaN3MLH+/EHlDGfu9VR3W6hpWECPfzdvr/01NXXzmXviHt5b9QGIxy2RSCSSY5Lnmv8XgAunfI3TGz6FP9pONBlgr+89NnQsBaDGM53JpWfiCI1kS48cimG+hlv2YFm6dClCCKZMmcKOHTu47bbbmDJlCp/61KcIBoPccccdXHXVVVRXV9PY2Mg3vvENysrKuOIKc+GD1+vlhhtu4Ctf+QqlpaWUlJRw6623csIJJ7Bo0SIApk2bxgUXXMCNN97Ib3/7WwA++9nPcvHFF4/aJNcgRQmJJC/tv/gd1XGF9vv/iNCTOJylOfsLt/kRNguJIidUFGBf1wihCNisVDjGctrYT7Gl82V29axgR9cylkyvYemm749MZyQSiUQiSWGtLscp6qAWvAvPRhgGCIFRZO7fea3MIyGRSCT7Y1nj/SyYbmHVtgdJGjGc9pKc/bo7JUakI19khWbyFjVw8vwvsmPbM7Q0v8We3S8z//wKVrxw19FqvkQikUgkOVw4xYzu4bR6cVrMkEQNRfMQhoHAQE3FJXyu88cj1sYjyhH2lPD5fHz961+nubmZkpISrrrqKu666y6sVivJZJL169fz5z//mb6+Pqqrqzn33HN57LHHKCgoyNRxzz33YLFYuPrqq4lEIixcuJA//elPaJqWKfOXv/yFL33pSyxevBiASy+9lF/+8pcH3d6jiSLEgT9Rv9+P1+vF5/MNO2aWRHKs4xg3FnwRxp//abxqGQBq0tzn2eUHMEUJQBEC67rdAIgG08Uq7O9gTdMTOCwFnNhwLQDPb5QTDonkWGb6N+9h011fHulmSCSjFvnMePwhv3PJ8UhVyQx6Q03MnvFRCgrrzI0D80JkvU26zbWA6RDdsaiPrasfIREPMe/sW1AUhdf/JUVhieRY5uxLTIPta0/J37JEko/R9syYbs85J38Ti8UxrGOSySivvnPXqOnDsY70lJBI8tDwmZuJNe6h4dIbsNRWQGu/j1bCpdA700vpG/uw94aIj831ohCNLWzkXfb1rMOmuZhefcHRbr5EIjkCTLnlewR3baXuyk/iaphAbLIDRVFo/PytI900iUQikUgkR4kz5t9Oe+9mpky8mMKCOrJX+CWdqRWLaUFCHSBUGIJdW55h3+43UVUrU+ZeI5NcSyQfAM648Hv0du0gmYiw4PxvY7W6URSF1565faSbJpFIDoAiBMowPSCGW04yPKQoIZEMYPzPf0aipwsAd/1EKleYgfMMmznJSIyx55S3NXYj+nwA6FMbaGpbwb7d65g89iLWbHocpzM38Z1EIjn2OP+079FjWUbXG0sz2yzlZdR8RwoSEolEIpEcL5xzwQ+JRHsBQXHReJKuXA+IQRiCpMucQ1iiBp29W2jZ+Tp1085n49t/k6ssJZIPAKd/+Kd0ta5j29rHM9usNg8nnXXLCLZKIpFIRj/qSDdAIhlNjP/5zwAwKlwAROzhzD41YRCpsGGJCpJOhfbFtQi/H+H3Z8pENq5hV9PLVJfPYUz1qVy68KdHtwMSieSwc/5p3wPAuqUdAIvbNCAY0Si7pJeERCKRSCTHFWoqxnNUi+dsT7rU/pez/5WOPx3U+9iz/mm8FZOon76YC2+QCa4lkmOd0z9szvfDsR4A7G4zikIiHuLZx2XIV4nkmCCdU2K4L8lhQ3pKSCRZ7Lr5FibffQ821WNu6Ayy74x6at4M5y3f8aFpVD7TiCGSrOl4lo5EIw7NwxRtDi8s/++j2HKJRHKkqSidSSIZIVHuRLXaeP4P9+YklpJIJBKJRPLBJunWULSUKKGEcbv2v8Yv6VQRwmDvW3+jffcKNKuTCWd/At2lsuLPchW1RPJBobh6GiFfG6pmwVs2ngd/9z2KiopGulkSiWQ4CMA4YKn+spLDhhQlJJI8WMvKUF1uOt9cSv1VNwCwd7GL0o0GnXPNyYertb/8rsAqOhN7mVm8iBrXFFRF48L6m3iu6RcHdd7b136YeCRJuCfG7y569rD1RyKRHDpSYJRIJBKJRJLGanfjcJfSvOUliqumoqoWEvsRJ7p2vkP7rrcZc+KllE86Fc1qH7Ls/pj15Xsw9CQJfw9b/ni3zEUhkYwC3nz8KyPdBIlE8j6ROSVGDilKSCQD2PaNLzP1u/dQfPLpdL/2Amo4QfvJZjin7hn9E45wNUx4tBdR6kULWFAUlcqauSiqjefWfW/Y5/vCq5ez6sGtrP/HLorHFBDqjODbF+bls2t495+b5AoLiUQikUgkEolkFLDsiVs59aM/o3rmeexe8Tgh4cfhKstbNukwRQPVYgOgcNJshMdBElh13/DCusz4r+/TveZNute8gcVVgNCTxHra8bz4V7a+/Rp1dXWHpV8SiUQikRy3CIYflklqEocVmVNCIhmCeFcH1pIydJcFPbWgKVEo0B0Cw2q+0njLJ2GIJOvGvED3D3ROef4bwz7Pb89/ipV/2EKkN86+td349pmhona+1sq1j11/WPskkUgkEolEIpFI3h8Rfwea1YFaUpwRH5IOJeeVxlHbAMCet/5G0qqjO4Z/nt1/+w3tbz5DMuQn2tlCrMfMbxVu2cWpn//a4euQRCKRSCTHKzKnxIghRQmJJA9bvvNlqmpPwW71sPvPP8e/dR1asD/InNDAO6WT7Vds5dXQH1i5408AdD63hq6lawGGJUwIIZg8cTIAZdNK0ewaVpeV6lNqWPCN06mcW8UnVt5w+DsokUgkEolEIpFIDpq3H7qF4mkn4yyrY9Pff0z3tneIW/WcMkm7wNezi23P/h8bH7sLgMCezbS/+wIAc754z7DOteiUOQDYSytRHU4UixVX3Xgqz74Y77R5zLx9ePVIJBKJRCIZAuMgX5LDhgzfJJEMgbdmCroeZddLf6b5n3/CWljCmCUfI3l2PQB7fvEsPS+uA0ArcoMAEY3iaMjvwp0PRVFYs2YN69at4//4JXpMR7Wq6IoVgAdOuf/wd0wikUgkEolEIpEcMpue+DETPhRl1xO/ZM/rj9Dy7tPULbwWb8M0ANpXPE/7O6YAodldqBYriXAAR2l1po45X7yHNffuP4zTP/7xD959910+9bdlCMNAURQUTUMRsOFHwwsBJZFIJBKJZGhkTomRQ4oSEskQvPPHW5h5db+3Q8Lfw87Hf4Hl9XK8E+fQ86YpSHg/tATvxecwu2YHr9zwN9rvX8qUX13OP8/5LRNSK6N2XvPNIc9jt9s5+eSTOZkHjmyHJBKJRCKRSCQSyWHBUVKZ+TsZDtD41H3YCkoomDSTnvVvg6JSMnsB1edeDgJ2//XX7HvraVwTJ7Pp3m8w/Zv3MP2b97DprqHFBU3TmD9/Ppvmzz8KPZJIJBKJ5DjkYMIySVHisCLDN0kk+2HDX+9m5ue+j3fC7My2ZHsn3W+aK59sJeV4l5yBoihY3Tbc111P75Yunr78EUqvv4Bktw8hREackEgkEolEIpFIJMc+G3/330z/8o8pmXtGZls80EP36tcRiTia00XFgiUoqobh1qi+9Fr0SJCtv/8eZWcsJt7bjRCC6d+UIZgkEolEIhkxZE6JEUN6SkgkB0Cz2mm44OP0bnmHtpVLSQR6Uaw2iksnMWXO1eyzWXFvsrFl0yQcE5LUfOcWuv/8OD0PL6Xn4aUAOGdOpaFbYc8Xhp8AWyKRSCQSiUQikYxeFE2jeuGVuMdMouONZ4n1tKNoGs768dRceh1KgYd0tglbSTnjb7yd9hefpPvNFzKLnOzVtUxMBtnxw2+NXEckEolEIjlekZ4SI4b0lJBIDsCae7+MoiiUTDuFqR/9OtXnfxhrQRE9bRt5e+l36fjCT+h44zn8/kbY7iO+pYlEa0dOHdGtO0DTGHvfj0emExKJRCKRSCQSieSwsuHHZuilwkknMOGTt1Fz+UexV9QQbtzOjnv/hx2/+h5trzxJsG0X0Ug3kZY9RNqbcuqItbaApjHlf6THhEQikUgkRx2Z6HrEkJ4SEskwyE5CN/O2eyieNZ9w826ivW1E21voefd1jOXmaicUBeeUyTgmjCfR1Y3qdVKw8AwUVaXxxttGqAcSiUQikUgkEonkcJMWJgCm//c9FE6fS7S1iXB3C/H2Vnxr3qV3+WuZMo76sRSdfDrxznZUh5Oik09DczjZ+m2ZuFoikUgkkqONTHQ9ckhRQiI5SLInHgAzvn4PVYsuJ97TSYQAtopKrEXFbP+anFhIJBKJRCKRSCTHC5u+l/v8P+XOeyhbcimJ7k6SAT/W4hJspeVs/ZacJ0gkEolEMiqQ4ZtGDClKSCTvk43fl5MKiUQikUgkEolEkosUHyQSiUQiGeUYApRhig2GFCUOJ1KUkEgkEolEIpFIJBKJRCKRSCQSyfGF9JQYMaQoIZFIJBKJRCKRSCQSiUQikUgkkuOMgxAlkKLE4USKEhKJRCKRSCQSiUQikUgkEolEIjm+kJ4SI4YUJSQSiUQikUgkEolEIpFIJBKJRHJ8YQiG7QEhc0ocVqQoIZFIJBKJRCKRSCQSiUQikUgkkuMLYZiv4ZaVHDakKCGRSCQSiUQikUgkEolEIpFIJJLjCxm+acSQooREIpFIJBKJRCKRSCQSiUQikUiOL2T4phFDihISySjkfPXDg7a9YDw+Ai2RSCQSiUQikUgko4Upf/+fQdu2XvntEWiJRCKRSCQfAKSnxIghRQmJZBSQT4TIV0YKExKJRCKRSCQSyfHDjCfvwDCUrC3KoDJT/v4/UpiQSCQSieRQEByEKHFEW3LcIUUJiWQEGY4YAbleEuljpEAhkUgkEolEIpF8MJnx5B2Zv1VVZIQJhy2RU27txXdm/j7xuW8CsOrCu458AyUSiUQi+SAgPSVGDHWkGyCRHM8MJSwkRYKQ8CNSF7zz1Q9nXmmGK2hIJBKJRCKRSCSSY4uNl90BgN2axG5N4rQnsFmTGNEE0aYuRFIH4JTnv8GJz30zI0gAg95LJBKJRCIZAsM4uNdBEggEuPnmm2loaMDpdHLaaafxzjvvZPYLIbjjjjuoqanB6XRyzjnnsHHjxpw6YrEYX/ziFykrK8PtdnPppZfS3NycU6a3t5ePfexjeL1evF4vH/vYx+jr6zukj+RoIT0lJJKjzFBighCCPrpoZAvdtAOgorJALMGpuIesS3pMSCQSiUQikUgkxz6nLv06AHrKK8JlA12oCCGI7Gij/Ym36Fu2ORM+Yvq9n8I+sWqkmiuRSCQSybHPEfaU+MxnPsOGDRt48MEHqamp4aGHHmLRokVs2rSJ2tpafvSjH/Gzn/2MP/3pT0yePJnvfe97nH/++WzdupWCggIAbr75Zp566ikeffRRSktL+cpXvsLFF1/MqlWr0DQNgOuuu47m5maef/55AD772c/ysY99jKeeeuqg23y0kKKERHIEOZA3g1/00sJuWtiVd7+BgZrHoUkKERKJRCKRSCQSybHL6S98NfO3bgx+3o82d9O5dC3tT6wYsg7FYhoiNMU0kuhCkaGbJBKJRCI5GI6gKBGJRHjiiSd48sknOeusswC44447+Oc//8lvfvMb7rzzTn7+85/zzW9+kyuvvBKABx54gMrKSh5++GE+97nP4fP5uP/++3nwwQdZtGgRAA899BD19fW8+OKLLFmyhM2bN/P888/z9ttvM3/+fADuu+8+FixYwNatW5kyZcpBtftoIUUJieQoEhMRWthNH1300DFkuRIqKKeGCuqwKw5AChESieTokE9MldcfiUQikUiOHJpqEPPF6X3xPXrfbaR31Z4hy3qm11Jy+mRKz5yCvdKLbsDKC+4+iq2VSCTHK2e8eDtCKDnb3jz/hyPUGonkMGEIhp3B2jDL+f3+nM12ux273T6oeDKZRNd1HA5Hznan08myZcvYvXs3bW1tLF68OKeus88+m+XLl/O5z32OVatWkUgkcsrU1NQwc+ZMli9fzpIlS3jrrbfwer0ZQQLg1FNPxev1snz5cilKSCTHGwMNe3vENnayAQUFHT2zfQIzqaIeBy4MDJLEsStOaQSUSIYgX9iygb83+fvJ5f3koBFCsEj5EC+Kvx32doym7ykYDPLQQw9x6aWXUlNTM9LNkUgkEskHmCWv3YzHBsG4HYclQeu/N7Ht3lcw4joi0T9PqP/IKZQtnImzvgShGyR6Q9grClm26Ecj2HqJZPRy2bL/4skzfpmz7f+9/qWc98+c9b9Hs0mjnrNeum3QNmOA8JCNooiMMCGE4LSlt7N8yeG5Ji157ebM30vP/vlhqfNwkEwmuf/++1m0aBETJkwY6eZIDjNCGAgxvFwR6XL19fU527/zne9wxx13DCpfUFDAggULuPPOO5k2bRqVlZU88sgjrFixgkmTJtHW1gZAZWVlznGVlZXs2WMuUGhra8Nms1FcXDyoTPr4trY2KioqBp2/oqIiU2Y0IkUJieQIkDa8GcKgk33sYzfdtDOGSYxjGu/wCk7czOF0FKX/hq+hoSEFCYkkH9kG7bOUSwjiI0yAGFF0kliwYsOOHRfnKJdhVWyZ8vI3dfAIIehkH9tYS5IEFUotVYyhgtrMdWuozzX7uxJCYGBgoBPCj58+CimikJKMwDQcsWI4Hhz7y7MzlDCTPv8+0cgm3uUL//EF5nM+b4mlB+U1ki4rx5pEIpFI9kfa6CaEIPLeVrY/vZHON3dSed4UZv3Xabz3vReI9UU47XfXomjpsE5x8z+3nefOkoKERDKQy5b9V+bvC5/5DP5d3QT39BLuDJMMxdFcVmxFThzlHhb1fAZ3Wf+q5YEihmR4+N7bw+7fvES03UfZzL9SuXAKVedORrWZZsYXzrkn73HZIpGBgpHQ0aNJwvt89G5ow91QTNHMmsy10qbqOcc/dea9eevNHgMw+Hu9avkXeOK0X+c99oo3/zPv9n+c/iuuePM/6VzVzJs3/QuA0//3MpZ98Z/7PWYgVy3/AsCQ55eMMEJkPCCGVRZoamqisLAwszmfl0SaBx98kE9/+tPU1taiaRrz5s3juuuuY/Xq1Zky2XZB8zRi0LbBTcktk6/8cOoZSRQhDhwQy+/34/V68fl8OR+6RCLJjxCC2epp7GA9EUJ4KaWWcbgpIICPLZgXn7mcSalSmbcOadiSHE8MZZTO3h4UPlrYTRdtRAgCoKBgx4mGhSQJ4kQRCBQUxjGN8cr0QXUeC+zPs0EIkREKpjAHi2I9rOcWQtBNG3vZTg8dlFFNIcV00YqfXtwUMo5pVFK33wecmIjSQTPN7CKEf9B+N4VMZCZlVGfy5xzogUkXSXz0ECeGBQsuCrDjREUlQog4UQCs2Hkh+ASXF3wSQxiECRAiQIQgSZIYKW81gSBGlDgRQgSw4SBBnAK8zOZ0VGVwjO+D5Vgad4cD+cx4/CG/c4nk4Dnpp1ey/Tev49/ZjXdSGRVLZlI9r4q+LR2s+8krYAhmfm0RdRdOx2VJDDpeGrYkxxPXvPX5QdseW/B/me1R3UJon4+9T22i7c1GArt7AFA0BXuJC4vbTjIcJ94XwYjroCqMvXQGs75ydqa+Y0mYuPD1m/a7f9df3sW3uZ3pXzkXe7HrgPWFErZB29zWOIF4v5G1wBbDEApCCHrXtrD3iTV0vLGTopnVlC0YR/fKPfSubcFRWcC4j55C9eJpFLqNQR4XyVT+nEQgRtsbO9n7rw34Nrf3F1AVMASOygIm3XgaledMwqnE0RULqiX3udym5YoVRlKnc30nsZ4wqlXDXV+Es9yN3a0RaQ8S6TDnj9YCO09c8jtu3Hg7hm4QbPIR2NNHoMVPNJDAiCXNFAOGINYTJt4Twr/XZ56z0IFq1Tjzl5fj8pjtiRtabruyRJSkGHouYVOTPHLq74bc/0FktD0zptuz0PsxLMrg30E+kiLOS74HD6kPoVAIv99PdXU111xzDcFgkHvvvZcJEyawevVq5s6dmyl72WWXUVRUxAMPPMDLL7/MwoUL6enpyfGWmD17Npdffjnf/e53+cMf/sAtt9xCX19fzjmLioq45557+NSnPnVQbT1aSFFCInkf5DMcRkSIDazARw9lVDGeGViwspMNtNMMgA07BRQzg5OxKUMrqsebMUtyfHGgkEJJkcBPD6AQxMcO1qNhoYI6SiingGKcuHMM2UIIooTZyUbaaaaGBmoZzwrx4rDOub/f3JHKtTCwXl3oGQO9IQxiRIgSRkFBQaWNvTSxAwAvJTQwFQ+F2LCTJEGMCBpWrFhRUEmSIEEMKzaceAZ9XjEixIjiwEWMCNtZRy+deChiAtMpV/pDGflEDzvZQA8duPBQRjUqKqAgMIgRJUqYCCFiRFBQKKOacmrQsODARQFF+OlhB+vpoztTtxU7ldRRRCkFFGPHgYYFgfmdtrKHZnaSSK8WzUJBQeSJA2rBioGOgelmq6X8aVS0zHGmd40TOw7qmECYAGt4EyceiilHRUUniYGBQKCTJEkicz6BQGCkvh3T382CDSduahmHU3Fn2nM8XNPlM+Pxh/zOJZL8DDSkGkIh1hvhnbteoe2tvZScUMX0z52Ku87L1j+8Q+NTm0CAvchB4dhiTv7mOThqioasXwoTkg86n1h5A1E9/+KbZCxJz0YzR2Owxc+6X72NkTSoPnsCZfPqKJ1ehqeuENXSbzC2Kgl6O5LseOQ9dv11LbWLJjP2shm88YUnUBQlr/gBYEkZmf8y/74h2zqUcPJ++fDy/8h5r8d1wooDRVEQukG0O0S0PYAwBJrdQueKPez4w9sAuMcUM/FT8ymcXIGtyIkeTRDtDKLZLFgLHag2DT2SINYdwuKx46rxolr7Py8hTKN8rCOIvdRFIqKz/b436XhjJ676IqZ/ch7F583MzC305nbW37eKjte34yhzU3P2eFS7FUVNtbUnTLQjSKg1QLTDbHPpvHrGnT+OpMONvdRN7QnF+Hb3suG+d2hf3p9bx+K2UX32BEpm11A0tQJHuYdCr0JSV4h0h2l+YTs7n9hApD046DNUNAWh55knuKwIQ6BHk+Z7p8UUHWwWUE19xF7sxFnmxl7iZNxFU7AqCZZ+/lnsXgcVJ9VicVlJhhOQSGDogmTMIB6MY6TD8BkCoRugKigWDc1hxVZgx1nhZuIlk/CO6zcwHw8CxWh7ZsyIEgXXH5woEfjL++pDb28v48aN40c/+hE33ngjNTU1fPnLX+b2228HIB6PU1FRwQ9/+MNMouvy8nIeeughrr76agBaW1upq6vj2WefzSS6nj59OitWrOCUU04BYMWKFZx66qls2bJl1OaUkKKERPI+GGhMFEKwjGcBwXROplSpZK/Yzg7WY8XOBGZSzZhhuU8dD8YryfFJPuN+UiToo9s0xqPQxl7a2JvJv6KgUEIFM5mfE5ZpKJIiyR62sI89xIjgwIUdJx681DKOAooyv0MhBL10sI89OHFRSAlO3DhwHdAL4XCJEkHho5ld9NBOmCAqKhpWEsQGldew0MAUSqlkAyuIEBr2uSxYceAmQhADPa8h34WHKcyhhMohr1U+0cMethLElzLKCxRU7Dhw4MSBGxcFlFG1X+HVJ7oJ4kdFI0AvnezL6U+22KBhoZoG6hiPAxcJ4kQIEiNKkiQuPNhxAiLlMxMmRgQVjUKKcVGAFduwrr8+0U0TOwnQl/rcLCioqfGpZgSfdBsV1JQ0oWdEi146ATidC3Eq7uPmmi6fGY8/5HcukeQnnyjx8o1/J9DYy2n/fQZjzhtL47938fYPl6NoKjNvmMukK6chtNznHJclhj/hzNkmBQnJB5VPrLxh0LZgWKF7fRtCF1jdNppe3kXjs1uJ+1PPyQqUzapi/rfPw1ub6xkQ1a3Y1GTONiNpsOXhdex+eiuBJj+uCjeucheehmLG/b8plM2uRlH7nxf7Nrey459bsBfaKZtZgbfOg7vKg73QnjlHPg6XKBFq9bPjiY20v70Xf2MviqZiLbCT8EcHGdtVm0bdxTNpuHIW7337WYK7uoeoeTCa04q7rohwqw89kjCj1AwIaeMoczPri6dRu3BCagHV4OfqQGMP2x9eQ8+GNoykYYa7UUyvFU+lC3e1B09dEdULxuAs71+8M7Cu7h299G5qx+kQBJr8NL2yG19jXyYfsaKpCMMAYfa7YeE4pnx4OgV1heixJL17A0Q6wyQCMdw1BRTXmGJOsC9JuCNEpNOccxRPKaNygodkYRH2Ad4XTi2BL+HEofV7rPXt6mXToxvp2dRJMgk2lwXVpqFqCqpVw1Zgw2pT0IUKioJqUc1wtgkDIxon7o/TuqoVBCz8v0son111XAgSMPqeGTOihOe6gxMlgg8fVB+WLl2KEIIpU6awY8cObrvtNux2O8uWLcNqtfLDH/6Q73//+/zxj39k0qRJ3H333bz66qts3bqVgoICAP7jP/6Dp59+mj/96U+UlJRw66230t3dzapVq9A0U0y88MIL2bdvH7/97W8B+OxnP0tDQwNPPfXUIXw6RwcpSkgkh8BQq60NYfA6T1FFPVOVeQREHyt4kWrGMpU5aMrw07gcLwYsyehnf7H4D/V4QxgE8dFDO1204aM7x0Bux0kNY6miPrWa3XFIYYrSeV389BIjQi+dxIjgwoMHLyoqPnqJEMRFAQniOUKAFRs2HKYxOxUqaipzc9pyML/V7HwzAXrpoZM+uuihHRsOyqmhgKKUYTuZZeQ3J1g6SdwU5lxLoiJMiAAJ4liwYseBngpmJRBoaKmwRDF66SJOFBceNMw+OHBiw0GUCABlVB2WsEWHSlzECOIjTowEMVQ0bNgppvywh6o6kjSJnWzlPZy4KaWSQkopopRlxrM5wsj7/X2NNuQz4/GH/M4lksF85t1PAqAPMLI98eF/4q0v4Lyfnk+kO8LfLn6UinnVnHn3QoqL+8v6Ek5clsELE9L88eQ/HpF2SyQHy2ff/UTe7b876YFhHf/F1dcTM3LnyJGEin+Pj9aV+2h5u5n21W3osX5jsd1rZ/xFkxh/0SQsDgsFxRp2r53IAHFgoBgBpoBgUUwPWmEI9r3dTMfadmLdITrWduBv8uOscFMyvQKL3ULf9i58u3rx1Bagx3UineFMXVaPDVeZC6vXgaqpWAvtzLvldJxlbgqsZkjR35/0p2F9DtAvyAhD0Lujh7ZVrexb3Un7iiYsTgvVZ4ylZHoFRtIg7o/hKHHiLHfjqipA1VQS4TieOi+2AjuqYs6rIt1hAo29xPqiaA4LznI3eixJ3B9DTwhUq4qz3E0iGKd7QzvBZl+mDgBHqRNnhYdodxg9mqTy9LFo9v7vy2OJ4U84Mn+DmSdiIPnEC2NAaCOXJTZoG+SGQIoH40R3ttPdqSP8QVSLir3ITuWcShxFDpIDQik5tQSJPHXGU2POqQ0OjxfT+/s3cH96rNrzjK30+LNrufvS4zB7fDYvb+bFm1/E6rYyflEDFTPLqZxVzmMf+geqmtvefL+x4f6+Rhuj7Zkx3Z7zXNcelCjxcvjRg+rDX//6V77+9a/T3NxMSUkJV111FXfddRderxcwF0l+97vf5be//S29vb3Mnz+fX/3qV8ycOTNTRzQa5bbbbuPhhx8mEomwcOFCfv3rX+ck3O7p6eFLX/oS//qXmf/k0ksv5Ze//CVFRUXD/ESOPlKUkEgOwIFiuw8MhbKK1wA4STmHqAiznKV4KGQCMymmDFXRhqgtl2PVICU5PIyUoXJ/4z0mojSyhSQJ3BRQzVjsiuOASYmFEPTRRTdthAgQJkiYAAKBikYJ5ZRSTQkVKCgkiFNI8RFJyGQIgx466KSFCGF0khRQRDnVlGDmd0mHSzLDEIWJE80Y+LtopZRKTuDUQ25fq9jLDtanwixZ8FJKGVXUMWFExQDJ4cX0wOmklb346SZEADCFLhcenHhw4MKBCycuXBRgw4GCQif7CNBHKZUUUTZorI3m+4N8Zjz+kN+55Hjm86s+lvM+KXJDnwAY9N/bX//263Stb+fyv1+DNRrk4Sv/hc1lZcFNc6meX4fFkWuczWdMAylKSOALqz86aNuv5z10RM9503sfISFy57JpI3A8GGftAxsItoXwNniZeME4Khvs/GLuI4Pq+eLq6zN/CyFo3uCjaVkzvY0+/Hv99O3xo8d0VKtK1ZwK6k+vo25+NVaXlUhPhNLJJWg2La/xG/IbgQGsKTFiIOnfmTAE7Wva2fPyHgJNPhKhBEXjvNSfXkfZ6eOxaoJoT4Rga5Bga5BQW5Bod5hYXwxDN2h9t5XC+kIu+s1iNGvu52RRclfgp0WDNKGkKQI0v9nEqv9dia/Rh2bXKJ9ZTvXJ1Uy/djpW14EX5wRTAsHA+vNhCAVPSjw5GAYKB3kFhwHfjSEU3JbBIVgHCrf56ndbYoPEhjQDr5FOLZG3bLpcPhEiniWKOdX8IkSabDEie99AkSJimN9VPmHMmhoLe9f72fqvHbSv66R3Zx/CENg8VrxjCvDWFVBQ7aawyomjyou3oRB3uQvVorJvVRtt7+yj9uQqak6qyIw1LbXA7955fxl0ztHCaHtmzIgSzmsOTpSIPDZq+nCsI0UJieQA5DPSdot2drGRIH6ceJjJKbjwsI01NLOLmcynSjEVyz7RxWZWE8KfCj8yhrFMxaHkTzo1mo1NxzMHykWQzZHIMzBU/cMtdzD15yMofKzmdQQCJx5C+LBgo5oxOHCnhISinJA/7aKZFnYToJcEcWw48ODFhQc3hXgoxEvJsIW60UCHaGEdbzGdk6hRxh708U1iB1tZQwW1jGEShZRIIeI4ISHi+OjGTy8RQoQJEk2JXkPlw0iSwIGLahooowoXBViwDimIjYb7h3xmPP6Q37nkeGagKAHQtqmPVf+7ks6tvTiK7Cy5cz7lMyt4574NrPztek67aS7zPj4NHYWenX28+r0VtK/rwmLXGLuwgVM/PYWS8d6858tn4JWMPDe995Fhlz0c32E+QSJNtjBx69pr8hp9Ae6Z8+iQddy69hoAEsbgZ9SBogRAX2uUZ/7j34S7IpRMLMbX2IeiKky9eBwlYwuI+uOUNniYdF4tiqoQ0y00r2zjvb9soXNzD+HuKHavjfLJxXjqCikfX0DJxCKqTijD6uw3/MYMS94V6mn0IUSKtBE4oucaHS2qnrfswHJDlU0bgYOp8h3rOnj2xmeZ97k5zL1hdv+xyuBj84kSe19t5LWvv0LlvCpO+ORsKmZVYHWMvnlCPtEgf7nB30dywPgpsETpS4Wn82i5osXA79OlJTJeGQDOrPIDx6VHi9GXcOWUGaqsK0uoyPaSgFyvh4H7YoaFwpSos7/jAMIpgcyaZyzY1STxUILWDT3sWefH1xzE3xwg0BYm1B7CSA6eJ9gKbMQDcZylDqZcPJ6xp1VTNqkIe4EtE3os35jd3+/+aDDanhkzooT96oMTJWJ/HTV9ONYZfiwZieQ44UDGWp/oYQ3L8FLKOKbSyh7W8iZ1TKCZXUxjXkaQAChSyjhVnE8QHx2YRtpOWjlZnJtXmEiffzQYlySHHyEELS0t1NbW5jUsZo8/Q5irebKN1kIIzlYuJUEMHR2BASiZED3ZMfMPVnhIkxQJAvQRxEeUCCH8dNOGm0LmcRY2xU5UhNnBBlpoJEEsY0AtoIgyUU2YIB0046WUeiamwteUHBHvh6NFQsQzxuMkg1fZQL9XSJgASZLo6CnPC9MIHSFEPROZzOxj+rOQHDxWxUYZ1ZRRnbPdEAZRwoRTIbgEAhcFeCnBRzct7GYv29nNZiCVnFs4sOOgmHImMFMKWxKJRHKUuH1t7rNVoSXXE8K/L8Qzn32e4oYCTvzEVHa/vo8nv/QGZ90ym5W/Xc/pn5/G6Z8ah6KkjHgTirj+gXPp3RNg+8strHt8J49/qomrfr+QsklFgGlcS/PNdVcCcNesvx/ZjkpGjJaWFqqqqjIxwrP52roPAea464vaEELkrMh3qnH+640rCHVHScZ09LiBUBU0q4a7zIGzyJ4xWH55zbWDDPwDDcZW1RgkTCixGJ1b+2jf5iPQFsa3N0DTmy04i+1c/9gFeOs8RP1xlt+7lh0v7iXYEcHusRILJChuKGDyojqCHRG2vtBEybhCpl02gfr5VYw7sRjVknuutKE3beDNZyAeaPzNZmDb0wbq7H4H9f7cZ2mDcbYh26r2e1eEszwvtKwFJR4tTiKSxBoO4Ci0oYQjFFhMY7WmCIJJ09gphKBjYzd9u/qIhxIko0nCXREC+0L07fHj2xtgwqIxLLr7dFRNRWNw39QhvD2OJPlCKg0lAGVTaIniT6ZDO/V/pgOFsiJrJK93Q/r4bNEgLQLkE8wg93pZZDVDbQ30dii09HuHDBzzdi2JXTHPFxPWQfucqtmPiGHLGXvZx+U7NvuckBXqKTUWbW4rDfMraZhfmSNcGLqgvVWnd0+AcHcUxdApqHQxZn4FnVv7WP/P3Wx9cgdrHtgEmEm9nUV2PBVOKqeXcOaXZ2Nzm+caaUFiVGMmUDmIspLDhfSUkEgGcCBDbqvYy0ZWcg6XY1EshEWQd3gZNZXo9Az+334NRDERYQUvUkgJszltv4ZJKUwcXg7VSP9+EUIQJUwf3exjN7104sCFhoUYESqpZxInZOLlt4q9tNJIH10YGCioeCnGiYd2mjEYvOohjYKCBStO3ExmNkVKGUII9JSBPPvYdGLeCCEihIgRIUAfvXRmEhc7cGLHSQW11DB2UEz/7FtID+00s4teOnFTQAmVjGPaMW8w1YXODtbTwm4MdNwUMpczBomKhjDYyEraaQZAQ0PFgh1nKjyPhyLKKFdqRqIbkmMYMwdJX8qzIkacKFHCtNGEBQuFFFNKVc5vdKTuH/KZ8fhDfueS442BwgSYwoRHi9L4ThcPfHo5//nkuVjHVIAvwB+ve5VEJEnEn+CmNy7B7h4cgiUpNDxalFgwwe+vfwOby8KnHjgdYdn/yk0pThw+0gb/bLRhGqmyDdsHIttoCmbIoEBHhJb1vWx8toltL7fiLrXjLnPgbw0zdkEli746G3epadzd+UYr7z22i73vdpKI6KgWhdLxhdTOKWPzs3uJBfMvnAFQLQo2jxV3mZPTvziLqWeXoygK8XCSRCSJHjdIGipCgKEb6HGDQHsYX3OIvrYI/l297F7RSTJqntdT7sRT4WTCmVWccMW4TBvTXgBCCBCgqAota7tZ/ehOdr3ZTmG1i3GnlHHmf0zD5sryhMgy5KaNv2kiRu5vIdsAnH1sPq+ENPlW7sPg1evp7zNbkEgzsH5DFyz/3WbeeWgH8WCCwho3l/7iDMomFqFleUMIIXj1x2tY/fB2s26HhsVhikXeahfFDR6qZxQz7YJ6AobpOaAN8KQdCUEChhYlBhrazbL5QjnlOX5AOVfq+9bzlB0oHIApSgz8LWX2DfKE6B9LUWPw9delxgcJF2nS42rgeARwpEI9hfN41kCu+BUeMH4d6uDfaVi35fWkALAO8HpQEfh1JxZFRxiCjq0++lpChHtiRHoiBDqibHq+GUWBqunFjJ9fykkfbsBVbI7tO2Y+mfc8R5rR9syYbs+5lg8NO3dhUiR4Jfm3UdOHYx0pSkgkHJyxulnsZAvvcR5XZMLO+EQP7/AKIBjDJCYrs/dbR6fYx1qWU0IlszkNbYjwNVKUODQORXyIiBARgthw4KbwkFax6yKZyUMQJUSAPvrozuRPACigiDomEKAPAA0LzezEgoUyagjiw0c3JVRQShVWbCRJ0MhWFBRqGYebQuw4UNEyYlh6RX6cKEmSdNKCn17cFBIjMuTK/jQqKnacuPBQRjXFlOOi4JgXFA4H5u/7ZcBMwD2Ps3ArBTlloiLMdtbTQTMzOIUKauVnJzniBEQfHanfeg/tKKi4KcgkRjcTnVuwYEGk/mlYsGLFnkqg7sGbEdgOxz1HPjMef8jvXPJB566NF+e89yWdeY1hBgpbX23j0S+u5EvPLaS4zk3C0OjZG+SP175CIqYzY1El1/5kDkkx2PiRjsHevK6XP33yTSomFfDR3y7AWujM3y4pSBwSA79PgIDuGLQtW5AIdkfp3ObHVWKndJwHi+3gQ48mYzr+tgi+fWF8rWHat/poWdtD1y4/yZh5rpKxHk6+fgI9TWES4STOYjtr/rYLoQumLq6jtynInpWd1MwqYdLZNbjLHcRCSVY/vINoIM6sK8ZRMaUIV5mLQreOxaYiDEEiZtDXESfYFSUWSNC4spPGtzspafAQDSQI9wydVB1MMaOw0om3xsWEMyoZO7+CsgkFmc9hoME0m2wjsCvLsJvPCHwg4/H+jMADvT6yjcD5DMAAiSHyFAzVn3xtCnZG+NWiZwGwuS185P9Op3ZWSU4d4d4YL/x6J2se3cHCr81h1hXjsNj7zz2c/A8wfJHsSJBPLMhHPlHCo8Xy5v8Y6vMfeK70uBkqh0h2Pa79hHQCsKfGQmIoESK13ZUn7FP6eF/SlXdMpQWFfOMEzDHptaS9NwbmO8kfSix93EDUPKFfrdkeQEkHvU1BNi1toX1jDzuWdyJ0QelYN8W1bhQNhC6wOrWMMGgkBXaniqPQiqfURnGti/LxHkrqXSiKwjdnPJ23XwfDaHtmzIgS2pUHJ0rofx81fTjWkaKE5KgzUgl898dQbYqLKG0000sHAfoQCJIkKKKUucqZOWV3io2Z8BpTmUudMmG/5+wW7azlTcYylfHK9Jx9Uow4dIb6LoUQ9NBOG03oJNGwUkYVFdTSTRvreDvjRVBMOZXUo6ISJUKEYMrgH0sda8GDlzrG000bPnoI4idO/2oRBQUXBRRRigcvTjwUUoRNGTzpiYow21hLiAAeCimjmmqlIaeMLpIoqMM2dBvCoJMWumnHiRsnntTK/awHYNSUN4QLOw4ZTmgIhBBsZQ3N7ATgFM6jUCnJ7GtkC7vZjIrGZGYfUq4JieT9EhVh2mnK5Kowr0JKyksqmXoPOjoJ4jm5LOw4KaSYAoqopH6Q6JZmOPcm+cx4/CG/c8nh5PubLsq7/evTnz3KLeknnxFbFyoRf4JNL7ay661OWtb3IHSIhZN4Kx3c9PfTUVNhcnQU3n2iib9/ewMA53x2AotvmpxjFCvQ+p8hfbqTns2d3P/Zd5mxsJIP/c/MQee/ffpzh7ubxwX5vss0e9/rYfW/WvD36thcFsbMLWH25Q20burjsS+8ScRnGiErp3qZe9U4rE6NQEeEvuYQ/vYooS7T08XqslBc52b+xyeyd3U3ze9107nDj78t0n8yBUrq3dTNKaViipeSMR4qpngprOwXoNKG2XBvjDd/sYa9a3qpGO9h/PwyTrm2oX98CZVETEdRyBFL9mcEFkKw760mNr7YTmGlg+L6AuweC5pNzcwHVIuCYlEprHRSWOlE1ZSMcTifsXfgdvsAo20+I3DasDtUfel6Bhpw0+zPCGwdIFJk1zHkavQhjMD5DMDZ53jp19t56Vc7ALjqnvnMXFSZKbP6iT38+ycbMXTBOf8xmTM+NTGnDm0/3g8DxbLDLUp4LFGCycFz03ykx2P2tWrIsnk8K2DoMenJ43Fh7hs8Zgq0KD7d/J24Bngv5BtH6TJRkV+EcKlxfElzcU4+oWF/Yxr6x9VQY8quJvKKCgAOZWghbaj6woYNr2ZeS7LHx8DxnibtbRPqjbPm2VY6dgbp22ceb6gaiahOPJQEBVQVElGDiD9BsCuGnjDHm6fUTu1ML9VTC5m+sIqa6d68XjvDuU+PtmfGdHvOUa44KFHiVfGPUdOHYx2ZU0LyvslnBA4JPyt5OWXsdGLHgQUrGhZsOHDiQiCIE6WYctzK0fsxD3cVfUD0sYIXASiijCrqEQgihJnA9EHl7Zg3hWrGspU1lIoqnIp7yPpLlUqKRQV+evfbRilQDJ+hvltD6GxjHc3sxE0BdpyECdFKIwoqAgM3hcxiAX562MY6elkNgBUbTtw4cOGiAA0LOkla2UMbe7FgpZhyahmLK7VCOT3uhysgOBQXs1iw3zKacnCXa1VRqaSeSuoPXFiyXxRFISJCAExgJoVKCUIIYkRoZCvN7KSByYxj2rAfZiSSw41DcdHAlGGXT4eVC9CHj24C9LGX7exiE1PEHOqViQeuRCKRSA7APZsXD9oW6Irxo8vewl1spajCTmG5HUeBBadHxVNso7TWQUy14e+IUTu9kLoTio5qm3+xZVHOe482OHyJryPKTy94k0TUoP6EQmYtqUJVobspwukfG5sxGINpFPKUmiEzzry+jld/t5PZ5xQzbq4XX9I1yMjn1SK4ZniZeX4lzet9uNTBq9h/ueU8AP5r6suHpc/HA+ZYHGwcNHTBa7/fwUv3bqOo1kn5WA++jiDP/msPS+9ag54UuEtt3PyvM+neG+Jf39vE0u+vQRjgKLRQWu/CW+WkfI4Xu8dCPKKz8d9tPPipN7C5NMadVMLci6spG+umqNpJUY0Db5UTiy3fPKF/LKTHXEEZXHnn0F74mmKAfWC4mlhOHRlSb3UUppxVwZSzKnJ2p43AA8dkQuQaY9MG07TBdqBxGAYbga1qMlNuf6vE8xk7s43B+UIJZRuThzIC29XEkEbggQbg7P5k7xvKCBzqNc8//9oxnLSoCEWJEeyKs+LxJl741Q5OvqKGi74yGU+JjXDWqfYnSEDu93CkQjcNJQjkI99nfyBcA7zK9jcmB+K1hPOe06tF8goQXs30QkjkESAcSnLQmEx/z0N5Lwy89kYHeLg5lAQOLfe3ETb6Q7mlx+3A8eTTnYPGYrqcddAYzc15khYkoH985BsbYcOWE/7LXWzj9Osbhiw/MFSYYQiCXRH2bQmy+z0fTZsCvPPXPbz62x2c/9kxnHvTjEF1HMskRQzE8H5jB4pAITk4pCgheV9kG4GFEITwY8dJH13oJAnhJ4T/gPWcLM4dtlgghKCXDgopyTEAHm7jffaKcgOdfTQSx7wxddDMeDGDMAGC+IkSIkmCKsZQRR2tNBLCj5OhRQmAQorZwzbCIoBriJWp56sflsJEFgczTkL46WAfLewiRoSpzKWW8ZkVQN2inTABdHRKqcStFOCmgGoaEMLMuKAOEVqrQUwmRoRCSmSYng84QgjU1BPzTjbQKLZAKmSWijoszyiJZLShKErKi8pNBbUIIdjGWprYkXP/SyPvQxKJ5GD5/bYzgf6V3x27QzgLrXTvDRHqTRDqTdCxK3zAem74xUx+qZ437PPuXNVHxTgXBSW5hsnDacC32DQSUdOAYVEFa57ah6/TNDytW9rOJTePo3NPhNYdIbpbogR7Ekw6pYgFV9fwxl+a2bc1wLi53owxzBDqIAPYpBOcvPNEM7tW9zF+XlHedvxyy3lSmMjit1vPzrs9bdhLGweFEHTtCbPp1Q7eenwfHbvDLPnCOJb85zhUVUHDyBjigjGNuhO8VEzwUDHBw7RzK818bQljyDBO5352Ap27g4yZU3RIoZ4KVNPYmC9kzlCG4XxGXVUx8pbXEHlXfaPG85a3KnqWADFYJBvKCGxXE/sNoRMzrHnrS5M2Ajuy80cM6GbYsA/qy0Aj8FCeFmkj9kDChj3vSvUCLZrfoGuYhuQVj+5l9ZMtqCrEQjqKCud/YTzn/+eEzPwzbaQfaAROM5T4oGEQMIbn1XC42d94hPc/Jj0p43q+saIqBm41RkDPDWNnVXRcaizvMWnDfva4tKsJ7AOMyQOPzR4P+ep1KIkcASyfh87AMZUtZKTHVLawAGBTkkOGfHKpsbxjUVMMQsbQuWwGngPye9oEDEfesaiqCkWVDooqHUw/28xR+dLv9/D0z3ZisaqZMZHmWL0P2Ww2qqqqWNZ2cN6YVVVV2Gz7z/kkGR4yfNMoZaDh1QzdoqAq2gENA0drlf3ANmZ7FiioKCgIjEx4CDOQhJoJJ5GOcx0jygRmME6ZlqlLF0liRIkTNVeep+JdG8JgK+/Rwm5s2KllPB68WLGRIM7XH/4Sl1xyCR6PZ7/G65AIoKENSlQ7EL/opZU96CRx4MJHD920AWDBih0HtlRsf4FBnDhB+iikmJM494DGal0keZ2nqWEsU5Q5g/Yfj0ag/YX32t93qgudbtoI0IufPvz0kCCOhoVyahjH1KPqkSP54BESfvz0ZsRJFx4KKcau5I/1LJEcKwgh2MS7tLKHScxiDJMGhXMb7v1IPjMef8jv/OjzwPbTct4n4gbCENgcGp+YtPygjj1Q+UPFFCT6CfUluHn+CgA0q4KmKRi6IJk0E+GqGlisKppVIR42k+h6y210Ncc477pKPn7H+Mwq5URMx98Vx98Zx1Nio6zeDEEphODZXzby/K8bcXg0zrimltppHrzlNkJ9Sc4p+SoXXXQRJSUlmc8hX5iRPU0Chx6lcmzu/X1g6JG2XWGWPdGOrzNBaa2DrpYoK57sAMBZoFFQZsNbbsfqUFF1nXAgSePGECW1Tr71xGxchYMNudntMXTBty94h7EzXHz8Z7MGXZePVSPQ+2Hg+E3ziUnLhxQkNMVATwpWvRGmaaOf5o1+9qzzEeiKY7GpTD+rlEWfG8uYmeb1ayTj9g/kYI3AQxn4h6pnqLBJbjU2ZAieoY5xqAniQ4TIyT7WoeRfZTyw3nyhdKLDCMGUNgIPtR9MI/DA+g5Ub3bd+Y7pbo6w8z0/wZ44ekJQ3uCkYZqLsrrB84TwEMbk/QkSo4WDGZMFWmTIcTRUPW41Rp/uynmfc9wwxmW+sZNvbKbrHkoQyK5nqHEfNawZj4Xh1DNQSLDl8ZiAA+enyOdlM3DsZp9rqDE0lLdOdsgyIQT/+Plenvm/ZhbdMIaLvjQO6wBPr+Hej0bjM2M0GiUez59DZChsNhsOx8iIhB80pChxlBiOUDCUwXWjeIdW9gCgoVFBHRXUUkIlmqLRJ7p4l1dxU4iLApy4cODGIMketjGBmdQp4wfV+4LxOEIINm7cSH19PV6v95D6k8YQBi9jJlybwhx0kpmkmgoqMcKECNBLZ8qroN5MpItGkjhRIkQJEyaYE5sf0qGRFJIkMNCZxCwC9NFFKwlyLyBWbBRTjoqGhoYNB/ZURH8HLvbRyC42AVBCBRoWEsRR0SikmHJq8KbixRvCIEwAH9300oWfHqKEMQZc1DU0HLgopIQSKqmkbtir57eKNTSzi/O44pCNQMcShyo67I8u0com3iVODBt2CiiikBKKKDXHwhDeDhKJRHK8YgiDKCEihGlhNx0089BDD3H99de/r3rlM+Pxh/zO3z+P7Tg58/c1E985YBnoN449+/sW/vqjvQAoCpy8pJj5F5Yw5+wiHG6Nfbsi3LZkPZUNDmomOimrs1NWa06kn72vhYUfreKqL1TnPedHJrzN9u3bKS4upry8fNj9GShIpPnGonfpbIpy3bfGE4/oJBMCu0vFalPp64jT3hhhywo/gZ4Es88tpmGmB4dTIRLQ6W2P070vRvueKD2tuc/+haVWrA6VsD9JJKBzxZfqCPQmWflsN/7uXOOU3aUy4zQvNqeGzaFSUGqjqMJG9XgnleOcrP53N3/7yR4SMYOJ8woyggYKjJ3hYfqZxUw91YuiKDiI0dYYZefaEOtWhGhc46O7NU4snDtPsNoVSqrtjJ3hZtp8L6ddUY7NruYYuYaKjf78H/bx6A/28IvlJ+Ity12VeaQEpZHk4R3z826/buKKIQUJNTUvy2fo1RSDnWv83HfLVrpbYriLLNRPdTN+dgETZnuYeqr5OxkO2ca7fImxD5W0QXMoY+tQDJX0dzhG4IGG3v3ldBhY33DyQEC/EXjguWD/Saz316aBRteB9QyV0DptnB3KAJxdd762DWW4PVJG4OGQrudIjEU4+PEIBz8mXWoM4yAFs+y6hkxgvp/cEvsbtw4lQZ+eP4l1dpmA4diveJUW3vYnYg1kOPkkBm4fGKZsqOPUIcdi/5jLrktFYBiC7pYY3ftivPNsF68+2saHbx/LX3+4O29dw0U+M0oGIkWJI8RA42pcxIgTxYoNGw4EggQxEsSx4cCKLccgbQidGFEUFPaynb1sz3ues7kUnSTLGNrdqIgyPHhJEMOFBxcFJIgTIkA3bUQJY8HKRGYOCkEyXKN4ur9tYi8bWEkZ1RRSjAUb5VTn5FYwhEELu2hiB8lUAk4rNuw4U3H7PTjx4MCJDTthgvjpRcH0TiiiPCMapD/bJHGs2EmSYC/bMyF5dJLEieUk9FRRqWciLgrooBlQsGIjSQI/PcSJ4cSDTpIEcUTqIl5IMV5KceLO5MmwYseGHQvWg04SLISgk1Y2swoXHk5Wzh1U5oMkShyq4HAgDKHzMv8AoIJaZjJfhlOSSCSSPOgiSRA/QXzsYSthgoAprM/gFNaK92/gks+Mxx/yOz94ntw1B+g3foX8SXraErgKNLxlFlRVIe6L4OtOYi9y4i2z5DxnJhMGfV1JNCPB6tf93Pftlrzn+fkL0ympsPLx2WuHbEvVWDuzzizC152gos5O7UQnkZBO++4w69/007IzhtWucPnnqvjQF6tQFCVjbLtywnvD6u/vt51JgRpl88oA371+KzNOLWDaKQW4PBqzziikblL/SmLDELz1TA//+HUroYBOLGzgdKuUVFoprbFRPdZO5Rg7ZdU2vGWW/8/eecfHUdz9/717vah3ySq23DvGBmOaKabGdEJMHmoe4AkBQgjPjwBPQgmEEAJJSCBACgkQCKEGEjo2GGJsY4y7LTfJTb2X67fz++Pu1jrp7nSSJUu25+3X+XR7uzOzM3Ozu9/PzPdLU62fbWu6EBrYUwyMnmJj2rz9/bCrPUBbU4CUdCPBoOC95xvYsc5FwKfhcWm0NQVoafAT9IdXdqtwyiXZjJ2byaq36wj4Bc50IwGfxvZ1XTTX+skZZSbgF3S2BvB7Q8eVTLQxblYKuSVWMvPNpGWbSMk0kZplJC8zSKewx53FHsv1DcCGlV388Y7taJrgkcWzouJURDhchIl4YgSEXLHEnVmeYAZ5xOD23WNX094coHyGgzv/MhFht/XbABxKb2hnqx+oEbi7sBUU8Z9LkzECJxNAuOf3seJKxDu2+2qJeIbb7vsls0+8/RIFDE70fazvkjEcJ9Mne6Y3Evsj9L9POlQvHZo1Zl8YaJ+M168i38ciMtbGG1sBrIqPDs0W/ju2CNG9P8Xbx6r69ZUd8faB/S6lPCK+y5+e8SRgv9iauJ/GC3Id38VTz74I4PNqVG93s2+bi3f/UkflxpArKoNJ4er/K+aPP9kVtwzJIu8ZJT2RokQcehpQk3WZpAkNN1100kYHrXTQQgdtUTP/Q26Noqs95MrIhCDkx77n7H8VFQMmDGE/z5HgKibMKChoaAQJoOnukiL/axgwYsOBEZO+CkFFxYaTdLLJoYB6qqmmkhwKAWilEQep5FBICumYsWLFFjeIa6QbKYpCrdhNFRX4wqKLisoYJlNM+bDNWI+seOiig3Sy4rpbEUJQzz5aacSEGRNmnKSRQgbGfgYajoVXeNjOerpox4MbHx6yyGcKszEroVkOh5MQ0Z2hEiW8wsM6ltFGMwDzuWBQ2koikUgOJ+rFPjaykiChh5oMcihjgj4J4GPx+qDkcyTeMx7pHIlt/vbO6VGfF45Zl3D/iAihaYL6vT52b/VQudnNjg1udm5001iz35ChKKGX1s3eZLYqpKQb0TRB0C/oaA3S/QnOaFKwO1UsNhVVBVenRjAoSEk3YDAoBILg7tQI+DW0oNDT9nsFZqtCXrGZtEwjdXt8NFT7MZoU8kvMlM9wcMyCdLat6eLNp+uYdpyT1CwjG5d3kl1o5pjT0xg3005alpGcfCMp6bHvv0QwiKqGnhO++NTDy4/to6XeT2dbAAScd0M+37g2H5sz+jlhqAK79iQQUKip8rBvu4fSSXbySmIbcYQQrPu8nQ1Lm7GnGElJN1A8zkr5VBvOtP3nHs/4Fs9dCYSNZ10unn+khspNbppq/TTW+JlwlJ3bflVCXnGoTOePWTPwEx3BxBMlEhnbutPT8BYxuHW1BXjmzkpWfdgCwK+XzCB/VHwDdzwOVl8cSCDheP0qXj90qN6++2IC4rVJvGOtii/h91H7qv647mr6s0/3MsYyAic6B0hczkTH9tcIHDmmv4zk/gjJ98lerpn62S+7H+/rYwXEfgEinngWnX5f7sOS3S9Rf/EIMymqO6HoZk4gfiU6LlG/itUXN6zo5JGbqmhrDuVXPt3Ohd8toHCMjexCM1dM/Spuev3hSLxnlCTmiBYlEhlJNaHRQgMuOvHiJo9RWLHjpis8c7+ZdlrQCIZlhCB+fOGZ9aEqNWMllXRSSMdJOhas+PHhxY2CihkLJszhLZ0E8IdjLqhYsIZdFqGn68cXdl+kYcCAEp4ZIXr8C0VuUDFiJpNcUsmInl0l/CGXSt22CSGoJSQmmMKrETpppZn6KFdFDlJJJSN8xkG8uHGFyw7o+VrCLpNMmHXXU+OZSYkydpBa79AhEnC5kRp2sRUFlWwKsGAlnSwyyYu7ykIKFL0JiiDtNNNGMy000EwdABnkUsYEMpXcwSqmRCKRHNIIIWimnl1U0Ew9ORQxmgk4SMXQTbwdzGvN4XrPKInP4drm71dO7rUt4o5ECMHGL13s3eGlsdrHUSelMHqSlbq9Pup2edm61s229W7cnRpBTeD3hoSEjtaQyyKAlHQDY6daKZ9iY/REC7mjzHS1B2mq8yM0SM8x4ki34GrzUrvbT0drAINBwWBUSM82kpVnxGBQaA+n29Gm0dkWxO8TmMwKRrOCEKG4BFpQgKYRDIRiN5jMCnaHysRj05hwlAOjSdFn97q7gpgtKgZj9L3p14tbeOHxRgCOOt5B9S4fqz7txOPa/yhZWGZm3IzQjFGPK7Sao3aXl7bmIIqyXzzJzDORlWciPcfIR6+EjMUXXZ/N1XfsdyN1MGYBRxjIDHWIP7u3u+Etluua7r7NhRDUVPlY/VkHrz/TiKszyNwz0sjKMzF6io25Z6ShqkpMQ9qZozcNqNwjnZ6iX0/DW6rqjmv41fxBKjd72LK6i01fdvHVknYCfsGk2Q7OuyaLeWfud1ccb/VFLEaqETgyIzxeX4TEM9TjGYGtij9hmhDbCNx9pnhfqysgvqE+QsS4m8idToRE5xlBd9EUx5gbzwAM+1dAxDq2L2Eh0XmqaP3qi3Dw+iMkjl/Ss9zdV4MNVp/sufogUbpWxUd7H6sfIM7qnV7uw2ILU91FhmT26U4yMVEg2s1YLFEt0WocjzCRqkYHuY5yK9ajL1Z83cUbf2hg+fttTD3WwZW351E8zoojZX8duTRLXNeS/eVwvWeUDJwjTpRI1hgaieOgoGDAqBvdI9hwhGbPY9JFgJArHzN2UnCSqs98P5QJBZx248OLi05aaaSLdlQMqBiwYMWGQ3dJpYWdHnlx6zEi3HSRQTZTORaTcvhGqI+skuminU7a8eDCQxcdtOLHh4JCAaWUMxXLEPSNQ0HA6K8Y4RchN2OdtNJBK+200ElbOFaJgVQyyWUU+RQf1n1LIpFI+kv34NVO0hjDZHIojCmCS1FCciAcbm0eS4zoyXO/auDF3zaiquBMM9DeEm1cyMozMnGGFWdGyBWTyaKQkaGQmqZSVGambIKZ7Lz9E4R6GrmScSVhIr5BozvxfHzr6SQwjHRploQ+2H1ejZY6P61NQWp2+9j4lZsdm70YjWCxqqRnGSgsNZGdZwwFtfYLOts1muoD1NZo1O31U7/XR/E4C3c+WUpW3v7zO5iiBPQtTMQSF/o6rnvda5qgbq+fXdu87NrqpWZvkIZqH5WbPTTXB1BVOOFMJ9ffmUNBsYkOzRZ3Rm9PknH9smD05qTSGk4WV02IKzZA73gArs4ge3b4qKrwsn2jh4r1XnZuchMIC3Njp9k45vQ0Tr4gg8xcU0JDXiJGWl+MRzJG4L5EsmTS7dkv+zoewgGu+xAWuht4k12N0deKB49mSjjGQe9+1dMI3Fe/iTVGRvpxX2LEQDhU+iPE75N2JSKmxb8+JepXITdRiVc+JEojSjwj8QoLSOw+rGd6ifaNdd3uvn+i6y3Evl53HzMTHR/rOvGXxxp48XdNFJaa+Pb3MllwUSoGw/42iaTd12rQ/nC43TNKDpxDWpRIxsDZ36DSQRGKQbCSj/HjYz7no2KgnpCvVhuOkBFe6Z+afSQjhOh3vIVDBbfooooKWmnERacef8KEGRsOrNhxhMNnp5EZNTN1qBlJIkXk9yaEwIcXDy68uPWXDy+a7oQstJ7Ii1t3Y6ag4CCVFNJJI5NUMnGSJmNHSCQSSRz2iO1UsIbJzKaA0oO2Im+k3jNKho6R2uafVo1Par+Ty7b22hYRJlJUT5QBzOvVaG0M8uP/qWHrBi8vLS0jr8jI0o/ceFwa+cVm8otNFObGfryKZfyIZaSIZySJJ0REGzX6FitMSqBPI4uhD0N3d4NazJnDSRrOYj0n9JX3UBDsQ7xJeGwco11Xo5sXnung6/90sXenD184/oQjRaWwxERekZFRY8xMP9bO1KOjZ6ZGiMzotSYSh/pwWxKLE8u2xz3mYLO4agIQ6gvtrSGxqrE2QFN9gIaaAC0NAfw+gccH7i6NloYAzQ0BWhpCfV1RYNQYM2OnWJk408rEGTbGTrFiMofaNJm+mEgMGYlG4IGIZJCcEThe2smsfPAJY8IZ6tB7fEtGhE20b8/9khFsPcI0IAMwJBc0GxKLhfH6VKJ+2NexB4JD8dGVINZBon4Vr78kcywk7pNWJZDU2Byvb3YfN5MZJxMJFBEi/auvfSP9MkXx9Hm9jXfd9oR/k30Ja4mumfFW+Cz7sIN7b9jHNbfnsOh/0qPEiO6cWlaRMO/+MlLvGSXDxyEtSgCcpHyDOvbqQYijg0VrussjO86YD+RBEaSDFlppoolaWmmMivdwIufGjT8gObzoFG2s4hMUFMxYAaEH4tbQ9BUxCiqimwndjIVcinCQioMUHKRhxjKihJhkjE7dhbpE+8cT9Hoe0z3OSjN17GE7LTSidbtRVFCwhAOah1bfqBgxYcaKGQt2nDhIxU4KhmGKRyKRSCSHIqvEEkxYmKHMS2r/wRInRvI9o2RoGMlt/q915Xz4egel48zMONaGsZtLIpPmo71Vo71Vo6jUiGLsbTjx+wTbt/jY8JWH5Z+6Wf2FRzcsA/zl7QImTos2IiUyfMB+40Nf+3Xft6/94xs0ehjr+jCiQbRxI5Yhpa/ZvckYzGIZUCIGseEQJCL0NH45us3A3VOv8oNv7qZ2X4Di0SaEAI9L4OrS8HoERpOC0QgGo0IwKAj4QwZ0u0Pl5LMdlI23UDLWzOjxZnLyjb2eEyJ5J3Y5kihoa+i4ds3ap1E4Qvd+c2xpZcJ9V+wandS+3ffrTs9jlu0aA0AgIPjqywBv/LWVrz534erc339UA2TlGsnKMWCxqhhNYHeqZGQbycg2MKrESOlYEyXlZuyO0O/3QASyWAxXfxwKkSzSL/pyy5RM3snUS1/unSCxYbenuNCffSF2X+hLtB2Mc0/k5gkOzf4IieumL1HDqvijBJdYY9RA+2W0y7A+Ypb0Y5w0K8Goc0okdnXvm32JYt37YF9iReL4JaLPNBJdr+//fh17q3z88Z+xV1F7hCnqGtjXNSJZRvI9o2R46JcoMZ/z4wY6hoMzM7unQbRa7GITIf9mEeNmAD8B/FHBolNIJ58SggQI4MeDiy7aw7PbBSoGMsghm3zspGDChAWbFCSOILzCzWf8u9d2B6nkUYwBQziQuKaLEybM5DHqoK6AGOkEhJ92WmihgVYaaaMZjSApZJDPqHBQVTtW7KFA7SNIvJFIJJLDha/Ep3TQylGcSJqSOahpJ7rfkw8bRx6RNv94fQmOlPhGhcF6oE3El7vLoj6vWubhxkWh2FOZ2Sq5BUY62zU6O0JiRCTgc/FoI+ddlkIgIGhvF9RXB9i13c/uSh8+LxhNMHO2hRNOtVI+wURqmkpatpn8okTBUMOzKZMQHwaCSQkmlXa8GZaebsabZAxdap++3419GtuG06B2oLhdGqdM3t1re2GxkQUXOElJVfH5QkZ2o1HBZhbYnQqnnWsnNS26nbSE/tQTzxoG6EhSeOhuFE5mBc1QY1KCuF0a6zdqrFnhYe1KD+u+8uDqFJSWmzjzIiclo00UjTKQW2AkPVPVZ+/2VyAbqDgGRBkiR4oR2BHDRU1fBvS+Z6gnFi+Sm6Het3scSF6ETWa/yL7JpBur38fqS/0RbOMZgZNxx9TfMbKnoX8k98ee+8T8vp99Mt4411c+ViVAh2ZNmEaEWH0o3njZn30hNOZ1aeak9o3s3x1PnN9Xn8JYnOu1R9uf3kO31/HR2508/Ic8jj3Z3u88+iLePZ98TpD0ZMhFiQMJaAshd0oKalw3LW7RxX94l0LKMGBEQ8OIKTzb2oKZkCK7i62004wRM0ZMWLHpsR+kKxhJhA7Ryj4qdddBnbTp8USO5mQylJxhLmHyeIWbVppw04kr/DJixIYTBylkU4BV6X0BSpagCNJCPZ200UUHLjpw0amLgSbMpJFFBjlkkEMK6VKAkEgkkoOEW3SxjuX48DCD47DhDMXBGoRxWIoSku4ciCixdndxv/LqaYjwegSKAmaL0m2f/WVwuzROm76H40+1UTrGREebhjNVxZGikp0JmVkGLBaFl5/rZMXnHhwpKimpKtk5KmPGmSgba2LKDDPjJ5uxWAfnHiYZdzzdSdZ9w0Doy+jgEcY+xYhQOgM3ACfK+2CSTHvs3R3ghb+6qN/rp71No3K7n6aG0Lk/8nQWp54Vuq+OFzy4O92FiXh599dtSaI+0lPAamoIsmW9l6rtfqqrfOypCmA0QUmZkZLRRo4+0Ulpeezn/lj59Ew/EBB89YWHqgovO7f52bXTz56qgF5fDqfCjKMtHHWMhWlz7RwzS0VVlT7bPZn+eLgLZN1J1ghsVeP370QiWbx8YvXZoRJgfcIwJKJarH7cs/8l20/6MgIfiEh2KGFVAnQlmLkfFCoO1dfvMTJRXsmM3fH6ZjJjWax8u5NozEp2TE7m+u4RRhwx3ZdF59/XGBm5Xrc0Bbn7+01sXOvj0WeyGTvRREqqirkfP+N4555oEop8TpD0ZFBFicFmu1hPFSEfZhGRwUEqORSRS6FellXiE1ppJI1MMsglgxwyyZUGUEnS1IrdbGM9Xtxx9zmKE8lS8g5iqQZGUATZzVYq2ayLdHac2HASJICLTtzhFULpZDGemaQqGf3Kwy98rOAjPLgwYAy7WHLqLydpOEiVv0GJRCIZRtyii6/5DBed+jYDRqYxl2wlf8DpSlFC0p1Imy/bWIAzgSiRjOErGSLGsdf+1snP7moBwJGikJWlUjbGyCmnW1lwjpXUzNDD8p3fb+bfb7gZP8nIcSdZOfoYM8efHPI3n0yZrJEZuUkYUQD8oudMz8TGhp77A5iSMGB5ogwaybsDMaNFHRuPZIy/0NuQFivtwTK2JVumRAykHy7/3MNPf9TCvj3x2/LBxzM563wHEGrziGGuL4NZfw3Cido6Vl/qjlUJEgwKXnnRxa8fbqejXWB3KBSXhoSIQECwuzLAnl0BfF6YNNXE7XelMvcECx3h2b59Gc9MiobfL7h8YQMVm/xYbQpl5UZKx5goGW2kuMzImHEmxk0yYUlSd1IVgUszJW1sS7zPwPrQwRTJkhUsIyQjXvXHCJwo/wNxKxWPnkbgZM7fExXs+uAKtpG8kx8jB1cgG8l9McJg9MlI3smO2Yny7Dlu9jVWhvYxkKL6kt6/Zx59XWeTHcsHYyVjtFvG/eVqbQlyy1WNbFwbjuOpgNkMdz2YwfmXOvrMNx4zSvbE/U4+J0h6MqJFic/FO3hwYcVOASUECdJGE200Y8DIaCZRpkxAExoNVFPLHlppxI+XFNLJIg8DRoyYMGDCjBlT+BXyXx/yYW+gt19PyZHFWrGMBqqZwhycpKGghN2ABUKGdsU53EVMCpfoYC1f4KKDYsZSzpSYrqUCwk8D1VRRQZAAc1nQr992o6hhDf9hNvPjxnIJ4kdDIMLxOKRIIZFIJENLs6jDRRciPPpGVvw1UB21nw0HxytnDyiPvlx1yoeNI4+eooQ1wYO2NogTQW/5nxY+eMeDw6mw6EoHwaBg43o/X63wYTTCoqsc/PCuVDRFYdlSL2+/5mLVci/1tRqlow2ccbYVp0PB4VRxpiikpqlkZKqkpavY7Qpmc2gFhtWqRMWigN4ChbkPo1NiY0nvSvH3YYRJZKSIJZ70Vb4Iao9sPQkMMcka0gZz9m/P8nUnVlnj9cX+9sMH72nj+WddPPCLNCZNMWGxQEeHoK1DkF9gYOz4+M+SyRjnrIqGS4usoElsYO1LHOvZ1t3zb6gLcuv/NLPmKz8XXWbnh3elkp6xP72IIczjEXyxxMVf/9DJzm0B3vwol7z82Aa2WOLY1s1+Ljmznl8+mcnp51hRuzWcGgjS1qrR2Snw+wRd/lCeYyeYegVaHagwFqtsAA4lkJQglwyDIZDB4Iu1Penen5IVFJItU3/qIJZRN1Ffj2cETmTIjdW2/RFsB/u84xmC4+1zIAxWf+w+Fh14WkG6eggosdo82X6ZqGw90+3vJIK+xt3uRK7ZfV2nu9Oznfs7jvek+7Uw0XW6Z/5rV/vYusVPIBCKmdXVJdi5PcA7/+w9MXfzrvwB2W48wiBFCUm/GNGihF/4qGILu9kGQBpZpJBOF+00Uw/AHE6N8pUshKCVRnayCQ8u3bAsEvywFVRSSCOFjHDA7ExpQD3CWC+WU8deTJgpZTxlysSDlrdPeKhhNxnk9HvFwv40vFRTRSWbsGBjOsfhVNL6PM4lOlnGe0xhDgVKadL5tYgGvuJTbDhQwjcSAoEPL0Fiz6iYyfFkKwVJ5yGRSCSS5AgIP5v4inr2AqH7GhUFAybsOPRYPiG3llZSSB+w2C5FCUlPIm2+elNewpUSMLiihMul8dyzLp5+vBOvVzBjpolpM0zs2xPk44+8ADz5TDpnnh3yKx1EQQjB5o0BfvNoB9u3BujqEnR1ani98fMxGGD8BCNTp5mYNt3EjKNMTJhoxGTa/5yQjHHC0s1o5O/HbGNTN2OGN0kjSCyhozs9y5vI2N+TZIxoHqEOuiuS/pSxL/rbD3/xYDt/froLh1Phkm/Z+dGPU/TnxO4GtUSCXJcwJPw+Xtk6OzRef8XN5Ckmjj7GhLnbT6wrbOjsy4DV2aHxrzfd/PqXnRiN8KunMpg1x9JnP2lr1Th5bj3Xfc/J9Tel6Nv7atuqygDnntpAbr5Bd62mBQRtrRrt7bGPve+hNC77tj1uO8czvCXTz4ajL3Yv78ESaiHZGep9ucXZX97+lK8/gmgy5ezZP5MZZ+O1dTwjcLKCLexv976MwCNdsO1rHBqOPhkpU1evVTMHJixH+lCXMPSrrS2KwNWt3voaK/X92H9csu07kIkJyYxB3fP3egUP3tfO354PiQ8mExhNCjabQnGpgdJSI4WjDGRlq2RlqYybYGTchIHZfScUVyf8Xj4nSHoyokWJCG7RRQM1NFOHi05MmMKxIYyMY3pSfvGDIogfH368+PGhEUQL//PhoYNW2mmhi3YATFg4ltMOyOe+5NBBExrtNFNNFdVUkUoGWeTjIFVfXWPGggVbv8Sq3WI7hvCKnJCRSMWAAQNGDBh1AS0ShyGdLI5mfsI8hBDsYycdtOGmCw9duOkCoJDRjGNawt9pUARx00kHbbTTzB62M5pJlCtTkj4vgBqxi07a9M8KCsZwPZkwY8CIiopAsJqlAJQxkTFMloKfRCKRDCIVYg3VVDGJo8lj1JCNsX0JEiAfNo5EIm2+blMuKX2IEkNBQ32QDz/y8p/PfFRs8ZOSopKWrmCxKNz2vymMGx89UzNiIOlu7Pf5BK0tGi0tGi0tAq9H4PUKfD5Bc4tg40Y/G9f7qdgSIBAAqxVefyuLCZOi77ciOkVwAEYdP0pUmfpDZIK5P8nD+9NKfpR+Gc8Oxwh9mibYuCHA22+5+cPTLiZMMHLKaRYmTTKSnqGSkaGSlqGQl2+IEqti0d1A9/orLnw+cFjBaACTWcFuU7A7FBwOhYqKAI883EFNdciYNn6CkZdfyyQ1LXYt+0VIeHv7DTdrVvup3hNgz54ge3YHCQTgnHOt3PvTVLKyuq2O6GEw9PsFu3cF2bHFz/p1fp7+fRffvMzGw7+MnuwUTyCLGNg++sDDlyv3B8NVVYX0dIWMTJX0dJWUVAWTSUExKtxwdQstzRqXX2nnrp+kRsWI6clA+mKyYl7S6Q7yJXaojMDJiGD9cccUq5zxjLX9mUUeEWz7I9bC/jG8P+2byLgcq8xHmmALoXpNpk4tSvL7Af2QBPqzqmf/38kKBxC/f1r6EvQTrXpMol2711d/ypvouhqrTD372B+f7uKRn3fwf/ek8O0r7frqtcG+XnuFIkUJSb85JESJwUIIgUDEDGitiSDttNJELZVsBmAsUw/qjHnJ8COEoI49NFBNE3V6kOsIKio2nNhJIYU00sgijcyYvwtNaCzm9T7zTCWDiRzFBlaioDCXMxIalOrEXtazHAA7KaSSgZM08hiFBRtBAvjw4MWDDw8eXLhx4aErHE+iS0/LhoNUMihjIilKepK1tJ+ACODFhRcPAfz48YXfvfjCIqAPL2006cfMZj7pSna/85JIJBJJNJrQ2M56drONMUxmjDJ5SPOTooQkFsMlSphj3CsF+2ns6Ske+P0iplHZ7xfs2BLk88+9/P6pTpqbBVddZeenDybXx7vnYxiAAelAjwcwhA0Xvr4f/QaUjyGOsSbZ/A4FhBB8/JGX997x8MknPpoao81sRiOUlBooLzcyaZKRo2aZOOooM5mZvX8XQghKi+v6zLO01MDPH0njV492sGNHkE/+k43drhJP+/jqKx8Xnt8MQGGRyqxZZsaNN3LuQislJQY8HkFDg0ZDvUZDQ5Daao29e4Ls2RtkV1WAXbtCAgZAYaHKtOkmrr7WwdzjzL3yitdHIuKYxy2oqQnSUK/R1hZ6tbftFwCbmzSamzU2bQzQ2Rk66PHfpbHwfFvvNMP9K+nAw0ntdXgzUCNwMsbV/qQNA28PfwwRuT8YlOTFWki+nP3tj/1J+3DGrCh4krgm7BfWRL9F/r76ZryxM9l84o17fR2fzDXVQHT99KfPxEpf0wRPPtnFY7/s5JJLbPzil2kxr9WDdZ0uG1XT5z7yOUHSk8NKlNgjtlPBGv2zDQdmLGEjachgKtCw4SSdLKzYcdFBJ+246AgJFhhII5NCysijOKaAITkyEEIQJKCvsPHhxUUXLjroop0OWnXRwoodJ6k4SMOCFSNmTJjopJ1GammjMak8Z3ESmUpuwn3aRQub+YpO2hBJ3AgZMWHDgRU7Nhw4SMVBSmgViBL9gKGJIB200UkbGhroOQgC+PHixoM7/O7qJdpAKIiqSV8xEVo1EcnXSWpSbqUkEolE0jf7xE42sxqAIsYwmolDtsIzGUEC5MPGkUikzbduzktalOivQau/xBIn/v0vD9/9n1b9c26uSkmxgY7OkFuZ1lYNjzdkiJ0zx0z5GCNVVQG2bguwfVsAjzcUAHL6dBMXX2zjkott2O1qzLxMSc7y9Ce4j0s2jVjpxBMI+iJW6yUq44HklSxD+SR2IP1QCIHLJfTVNc3NGlW7AuzYEWDH9iAbNvppDIsW+fkqEyYYGT/BSEGhgbQ0lbRUhb37gnz0gYevvvLj7u3Suxe/+XUal1wSGuPjCXC7dgW49fttrF/nx+eLuUsUDodCcbGBUcUGiosNjB1nZGy5gXHjjWRnd4sXgUIgINhSEWDjRj9dHoGmCTQNNA1cLkFtbZCaGo3amiD79gVpaeldRrtdISNDJSNTITMzFMelqNDAuAlGxo41MmXq/vgcgyWMRTicBLJ4DIVY2xcDFUp75tPfdA70eP04lH71jcHol0dqX+xOf/ulib4FjXh59ievntfevq6BvfISYFUGlkay19Pu18VEaS9Z7OWqK1sAuPAiK9+7ycmk8UNjzy0sSrxCIoJ8TpD05LASJVpFE6tYEvO7NDLJIh8LNjpopY0mvLixkxI2JqeSRhZO0qQQIUkKIQQuOmmnmU7a6KSdLtrx4UWjd7AkAwbMWLFgxYYTB6lYsWHCgkDDhCUqPkpfBESAdprDqyH2CwWhINNBVBQU/ZIlwi6jTBjDwd9NmLFix4odIyZ2splGavT4K6FYEZGIEQpGjFiwYcGGFRtW7FiwY8WmCzFGTPL3I5FIJAeJoAjSwD5aaKSBagSCMiZQSFkv0flAkaKEJB4DESVgYAZh0wBckwXDjzoVW/3MPzX2JJGpU43MP8nC6NFGtm0P8OWXPqp2BRk92sD4cUbGTzAxc6aJWdPMWK1J+Gzvl4ErjhFlENLoiT9GmgO5a0s2v2TyT8TBuKMcqDDRV18UQrB7T5AVq71sqwiypSLk/quuXsPt7l0PVivk5BjIzVUpKzUwdqyRUcUGsrNUgkGwWhXmzjXrBvtY+XuEphvUPB7B2nV+6uqC1ITFgurqII2NGi6XhsGoYDSAqoZcoFisCk6nQmpKKPB7ZnpILCgqMpCTrfL0M1288U83Hk8oL6MxdKyqgKIqWK1QUGAgv8BAfr5KUZGBokIDhQUG8vINpKcppKaqmM3x662v9o5nfLMqar/71kAY6v44HGJtT3oaZAdapnh5JSO29mXAPVDRdyBCas+2T8bIfCgLthGGuk9GxjGPiJ1Torbub9l6jpn9ucZ2x9CjzP2ZQNAzjZ4kO44l2/bBoODf73v4aoWf9z700NSk8b3vOrni23bycnsHDT+QcVSKEpKBcliJEt3xCS972UkD1XTRjkYQMxbmcTZGxdh3AhLJAaCJIH78uiujkGjgwhMWDrrowEWHvr8NB07SSCeLIsb0+p0JIfDipoPWsADSRhcdvVYrGDHhICUU+wJVFxQAtPC6j0jw90h8lQhmrJQxIRxQPg1V6X2hkkgkEsnIxCe8bGUtdewBQpMxMslL6GYwWZIVJEA+bByJRNq8ckvBQXPfpA3QlUfECNHRofHKPzy8+ZabLVv9dHQILBZY9Z98Cgpi3/8MJE9TD9OB/wBNPN3TG0ha6gCMJ/5uxqKBihEDyfdg4RUaln5OqDnQ/ufzCdo7Qq6Mmls0GmoF+6qD7KsOsG9fkO07A2zbHtDdKBUUqEyZZGLWLDNX/ped3JzoPiqEoL5eY+NmP5s2B9i0yc+27aF4Es0t+9vP6VBCYkdRKPaFEhEVlJCI0dEp6OjQ6OgIrfxobNp/bEqKwvdudDL3WDPTphqx29VBE6cOpjAW6YveOEbQ+McdHA62WNtf4pUvmTL0N89YbTwYafQkniF2oG3e3745UEPwweiTJkXt128lMpYe6BjZH0zdxm+v0Ab0e+gr7/62aeRa7RH7J6oO5fXTH6eNuufZ2aXx4EMdvPR3F26PYMZ0EyefaOGYOWaOnrXfzeBArtdZhXuT3lc+J0h6ctiKEt0RQvAli2mnheM4E4eSMtxFkkgIiiBdtNNJO51hsaGFRlRUxjCZVDJopIa28EqMiPhgxISTNBykYsOONeyayY4DE5Z+BTgNigCecEyIFNIHfWatRCKRSA4uXuGmgRqaqKOFev3a4SCVVDJJJQMHTmw4sWLv85rRH0EC5MPGkchQiBI9jfnxGKjhA/bP5BVC8L3vt/CP19y88Y9sTjzeknT5DiT/nkREhmTPPRkixoWBiiEHOtM3KWPKkM/FPXDitYk3vDK6v23mEcEoQ1osfD7Bjp0BNm3xs2lz6LVsuY9gUHDDfzs58wwrHy/x8OVKPxs3+2lqDtWjw64weaKJiROMlBQbKR5loHiUkbISIwX5KoqiJF3nQY9CdU1ILBk/zhRzZi0k14YHKkx174sHS5A7lDigsbCbOaivfjlY+UZ+M4P1+z/Q9PrbP3oagQ9HwXYwOFAxv78ungaafzJjeLJ9q7/XAxVFv5Z03zYQ/ELD2sfE0tZWjXfed7PkMw+ffualIexmsHy0kaOPMjNrhplxY42MLjVSMsqIyZT4mtEfQQLkc4KkN0eEKBGJNTGRWRQxul9GW4nkYOIVbirZwl52AGDGQgY5OEknhTScpIVWQcg+LJFIJJI+CLkZ7KCVJtpppp2WqHhECgo2nJQzhTxlVK/j+ytIgHzYOBKJtPmeLUWkHsRA193pr+Gju+Ht3++7uOyaRn54cwo/viNtUO6x4pXnQA1QsdIdTKNWLMNavBmY8ThUjWx+tAELQgdiEDYpatRs2kRlaG4J8vs/dvLY79oJBCA9XeWE4yxMn2Ji8iQTkyeaKC0xoKp9t0G8dhqo0NJXuhH6YzQ+GKJYdw5lgaw7gyHWDhQT6pCItZG0BwuV5MW5WBxpgq0JtVd5+tseB9oveo6Vfe7fR/kGWp5EbTeQNAdyzex5re7vdTqCEILduzVWfOnlqzU+Vq/xsX6TD683nI8BikcZuPmGVP77Kmev41MLd/c7T/mcIOlJv0SJGczDhBknaRgVE5oI0kwDXtykk4WdFBRFwSNcNFCDh65u7mJCLwWVdLLIIIc0sg6KyLFG/IdGQpHgVVRMWDBjIZt8iijHglUaeSUjinYRCkiUQrrsmxKJRCIZNDSh4aELF1246aSJOhqpwYYDE2ZMmDnr26eTnZ3N8ccfz/nnn4/ZbKarq4va2lrq6upobm4mPz+f8vJyMjIyotKXDxtHHpE2f/sf2SiKwpSJJjIzDQQCgi9Wetm+M8DRM81Mm2LCqKrUNwZ59wM3OyoDtHVotLVptIffAeYcbeHE4yzMnWMhK3PoXUl+/0fN/Om5TiAUyDor00BWpspJ86xcf62T0uL4Rt6Bzo4dChck/c1noGkOFwN1N5OIkVoHfZ1rxTY/La0as48yYzRGgkLH81Ee+l0NllgUyae7EeyAV0EkHRMlecPboSqODSYDmqXeY6XEYP7uDqZYOxjpdmcwjMCyT/avTya7audA++hguAnrT9oHmtdQX7cCAcHe6iCVVQF27vKzbIWXl193UVpsIDPDQEaGSmaGSv6oa5k9ezaXXHIJDocDt9tNXV0ddXV1NDQ0kJOTQ3l5OVlZWVH2LPmcIOlJv0SJ7liwEQgH1I0QeaBtpwUFBSsOjHpg3VAQ3CABWmnAR0h+CwWYzsSKHTNWzFj0YMAWbIMSNNcnvHTQih8vPnxhH/8u6tlLkCAKCsbwg3jkZcRIaA6h0i3grwIInKRTrJQfcLkkEolEIpFIhhMhBNVU4aIDPz6OuWAmTU1N1NXVsXXrVlJTU9E0jc7OzpjHZ2ZmUl5eTnl5OWPHjqW0tJTrrrtOPmwcQcR6TsjLVfH5oKV1v+GmIN9A6SgDK1eH4lmVjDKQlqqSlqaSmqKSlqri94eEjD37Qs8X48YYmXO0hZJRBnJzwq9slbxcA0UFxqSCTsdC7TaDsqNT46s1XpqaNRqagjQ1a9TUBXjz3y6aWzRUFTLS1PCDuIGMdJW0FBXVIDAYFFQlNJtQURWEEJSMMvK/t6QmNalETTCTUxukWbKJ8kiWwSqLpDfJto8/PEN4MA1SB1O0CgqBqYdbkUO5Xw2msX6kimPx6OvcD5ZYO9C8hqr8w8WR3Be703MsHYoxs2c+/kGIGRGLSJv2HDPjMZRjqRCCV//pCrkJbNFoc51BU1MTDQ0NbN68GbvdjsFgoL29PebxqampUc8JhYWF3HLLLfI5QaLTL1FiCnNwkhb2gd+GERM5FGDDQQsNNFKLHy85FJJNQdxVEN3dCbTRTActeHHrQkV3bDjCLydmLBgxhUUDU9QrgB8fHrx48OHBhxcNDQMGDBgxhKURQ9TLgIsutPDR+19e3Ljw4CJIoFeZzFg4SVk4gOqWSCQSiUQiGXnEctW0ceNG3njjDex2O3l5eeTn55OXl0dmZibV1dXs2LGDHTt2sH37dv09NTWVLVu2yIeNI4jIc8KvHszklBNsbNjsY8MWP6oC5yywM3WiiWVfevlgsYvK3QHOPNXOwrPs5GTFf9iu3O3niy+9rPzKw6o1Xqprg9Q3BvXAvxAKzltUYKB8tIkxpUbyc42khwWO7u9pKSpuj6C2PkBtfZC6+iA19QHcHoHDruKwKzgdKg5H+N2u4HCopDoVdlSF9mtuCdLcrNHcqtHcEmT33gB79gVpbYttCOjYU4rBcHCMO91n3w6m25RY6R9pBAhiZPBW6wxF+yQyRg2GINVXHkOVZzwOZSFjpDOSBMx4ZRnM9j/Q85V9cXDpOdYOxXgZQUUhQHKuoA7GODoU4+ZgXrsDBHEU7Oq1vbKykn/84x+oqqo/I+Tn55OdnU19fX3M54S2tjb9JZ8TJDDCYkoIIcKrGbx48eAOuxaIuBjw4+u1OiMWJsyYsaKiEiRIkID+EjEGNzNWbNhRMeDBjRdXr0EjtILDhgUrpYwnU8kd1HOXSCQSiUQiOdgMJG5EIpqamsjOzpYPG0cQkeeE+orSIY0poWmCllaN+sYgtfVBdu0JuRbYWRlgR5WfhqYgbe0aHZ2JH20y0lXycwzYbCoul0anS6OzS9DZpUWJHhGyM1XKSow4nWoo6G9NgC6X6LVPfp6B/Fwj11yewsULHcmf10FwPZIshjgr1IMD9Fct6Zue7T/Y7T4Yhr2BlGm48pUMnKEyAkfacSiNzInyHaq8Zf88uBgUNWplwkAYaJsdaP8Z7L4S61o9VNdpS8HOQU1PPidIemIc7gJ0R1GUsAsnK07S4u6nCa1XrIqQg6jQsfFcPgkhEGgEwgKFB1dY+Ai9BBqpZGDBhhV72IWUHTOWQXEjJZFIJBKJRDLcDLYQ0R2TaehjhUlGJgZFjWvUHpT0DZCbZSA3y8TUCfH3CwYF7R0are0areF4FVarQn5OSDSwWOIbB3y+kDjR0amxrzZI1W4/lbv8VO4J0NWlMX2ymaICI0UFBkYVGinIN1CQa8Rs7p1msnVxoPPw+2OIGGj7DGW7HmoEhTao9RGr/QfTuKSiJF3e7ga/AzWi9XX8QOtQCmRDRzxXMYNV5/3pU4Mt1h543BMp2CZLpK4OpG7i1Xdf7oyGqj2695/+jl2DXaZ4+Q/WdSkotEEXIrojnxMkPRlRokSyqIoaXrlg6ddxiqKgYMCMgVBUDAcZ5AxNISUSiUQikUhGAEMpQkgkIw2DQSEj3UBGev/N/WazQqY5FMyxtNjEvDnWISjh4CIFg4PLwajv4WrTZP2XxyOR8W2wzkn294NPX3U+FMLooSDWHuixhzvDUTc98+yrHxzO43l/MeZvD70PczkkRx6yz0kkEolEIpEcRkgRQjIcqChD7k9+oIxE39/J1tVIK/tIbeORxEhrs4PFoWJ8kwwuI7HdR2KZJAefoegHPa+Bh+J4HxEgJJKRgBQlJBKJRCKRSA4hpOggkfSPQ9mQfiiX/UglUZv1ZcAaye19sI1vI7kuDgdGojH1UBVrQfbXg8XBavtk23M42r2vOpCig+RQQooSEolEIpFIJCMAKTZIJBLJ4c2hbLg8lMsu6c2h3J6HctklB8aR3PZq/tbQ+zCXQyIZTKQoIZFIJBKJRJIkUjiQSCQSiUQikUgkPYkIBxKJJDkOmighH+IlERaolw53ESQSiUTSA3mdlkgkw4l8kJcAaLXjh7sIEolEIumBvEZLJJKhoF+ixPN7fkdqauqAMmpvbx/QcZLDj9da/zTcRTjiOD/tyuEugkTSL/7Z9txwF+GIQ16nJYOB7EdHLp22T1HtA3tOAED2HQmAfdVwl+CIQ6s7ariLIJH0CzXv6+EuwpGHvEZLBgH5nCDpSVKihNlsJj8/n+Li4qEuj0QikUgkpKWlDXcRJBLJAMnPz8dsNg93MSQHCfmcIJFIJJKDi3xOkEgOVeRzgqQ7ihBCJLOjx+PB5/MNdXkkEolEIpFIJIcwZrMZq9U63MWQHETkc4JEIpFIJBKJpC/kc4KkO0mLEhKJRCKRSCQSiUQikUgkEolEIpFIJAeCOtwFkEgkEolEIpFIJBKJRCKRSCQSiURyZCBFCYlEIpFIJBKJRCKRSCQSiUQikUgkBwUpSkgkEolEIpFIJBKJRCKRSCQSiUQiOShIUUIikUgkEolEIpFIJBKJRCKRSCQSyUFBihISiUQikUgkEolEIpFIJBKJRCKRSA4KUpSQSCQSiUQikUgkEolEIpFIJBKJRHJQkKKERCI5ZFAUhXvvvXe4i3HYcfXVV1NWVjZk6S9btox7772X1tbWXt/Nnz+f+fPnD1neEolEIpFIJBKJRCKRSCSSkYVxuAsgkUgkyfLFF18watSo4S6GpJ8sW7aM++67j6uvvpr09PSo75588snhKZREIpFIJBKJRCKRSCQSiWRYkKKERHKYIoTA4/Fgs9mGuygHRPfzmDt37nAXJwq32z2s9ev3+1EUBaPx0B3KJ0+ePNxFkEgkEolEIpFIJBKJRCKRHESk+yaJZITzz3/+k+nTp2OxWBgzZgy/+c1vuPfee1EUJWo/RVG46aabeOqpp5g0aRIWi4W//vWvAHz++eecdtpppKSkYLfbmTdvHv/+97+jjne5XNx+++2MHj0aq9VKZmYms2fP5qWXXtL32blzJ9/61rcoLCzEYrGQl5fHaaedxpo1axKew9VXX43T6WTjxo2cdtppOBwOcnJyuOmmm3C5XEmfR0/3TX/5y19QFIXFixdz3XXXkZWVRWpqKldeeSVdXV3U1tbyzW9+k/T0dAoKCrj99tvx+/1R+d13330ce+yxZGZmkpqayqxZs/jTn/6EECJqv7KyMr7xjW/w+uuvc9RRR2G1Wrnvvvs47bTTmDhxYq/9hRCMHTuWc889N2HdRNJ94403mD59OlarlTFjxvD4449H7ffJJ5+gKArPP/88P/zhDykqKsJisbB9+3YA/vznPzNjxgy97S688EI2b97cK7+//OUvTJgwAYvFwqRJk3juued67RPJ65NPPonaXlVVhaIo/OUvf4navmLFChYuXEhWVhZWq5Xy8nJuvfVWAO69917+93//F4DRo0ejKEpU2rHcNzU3N3PjjTdSVFSE2WxmzJgx3H333Xi93qj9In3l+eefZ9KkSdjtdmbMmMG//vWvRFUukUgkEolEIpFIJBKJRCIZRg7d6bUSyRHAe++9x0UXXcRJJ53Eyy+/TCAQ4Je//CV1dXUx93/zzTf57LPP+MlPfkJ+fj65ubl8+umnLFiwgOnTp/OnP/0Ji8XCk08+ycKFC3nppZe47LLLALjtttt4/vnneeCBBzjqqKPo6upiw4YNNDU16emfc845BINBfvGLX1BSUkJjYyPLli2LGSugJ36/n3POOYcbbriBH/3oRyxbtowHHniAXbt28fbbb/d5Hon47//+by666CL+/ve/8/XXX3PXXXcRCASoqKjgoosu4vrrr+ejjz7i4YcfprCwkNtuu00/tqqqihtuuIGSkhIAli9fzs0338y+ffv4yU9+EpXP6tWr2bx5M//3f//H6NGjcTgczJs3j/PPP5+PP/6Y008/Xd/33XffZceOHb3EhVisWbOGW2+9lXvvvZf8/Hz+9re/8f3vfx+fz8ftt98ete+dd97Jcccdx1NPPYWqquTm5vLQQw9x1113sWjRIh566CGampq49957Oe644/jyyy8ZN24cEBIkrrnmGs4//3weffRR2trauPfee/F6vajqwDTq999/n4ULFzJp0iQee+wxSkpKqKqq4oMPPtDbprm5md/+9re8/vrrFBQUAPFXSHg8Hk455RR27NjBfffdx/Tp0/nss8946KGHWLNmTS8x7d///jdffvkl999/P06nk1/84hdceOGFVFRUMGbMmAGdk0QikUgkEolEIpFIJBKJZAgREolkxDJnzhxRXFwsvF6vvq2jo0NkZWWJnj9fQKSlpYnm5uao7XPnzhW5ubmio6ND3xYIBMTUqVPFqFGjhKZpQgghpk6dKi644IK4ZWlsbBSA+PWvf93v87jqqqsEIH7zm99EbX/wwQcFID7//PM+zyPy3T333KN/fvbZZwUgbr755qj9LrjgAgGIxx57LGr7zJkzxaxZs+KWMxgMCr/fL+6//36RlZWl140QQpSWlgqDwSAqKip6HTNmzBhx/vnnR20/++yzRXl5eVQasSgtLRWKoog1a9ZEbV+wYIFITU0VXV1dQgghlixZIgBx0kknRe3X0tIibDabOOecc6K27969W1gsFnH55Zfr5SwsLBSzZs2KKlNVVZUwmUyitLRU3xbJa8mSJVFpVlZWCkA8++yz+rby8nJRXl4u3G533HN85JFHBCAqKyt7fXfyySeLk08+Wf/81FNPCUD84x//iNrv4YcfFoD44IMP9G2AyMvLE+3t7fq22tpaoaqqeOihh+KWRyKRSCQSiUQikUgkEolEMnxI900SyQilq6uLVatWccEFF2A2m/XtTqeThQsXxjzm1FNPJSMjIyqNFStWcMkll+B0OvXtBoOBK664gr1791JRUQHAMcccw7vvvsuPfvQjPvnkE9xud1TamZmZlJeX88gjj/DYY4/x9ddfo2lav87p29/+dtTnyy+/HIAlS5YkPI+++MY3vhH1edKkSQC9XCdNmjSJXbt2RW1bvHgxp59+OmlpaRgMBkwmEz/5yU9oamqivr4+at/p06czfvz4qG2qqnLTTTfxr3/9i927dwOwY8cO3nvvPW688cZebrZiMWXKFGbMmBG17fLLL6e9vZ3Vq1dHbb/44oujPn/xxRe43W6uvvrqqO3FxcWceuqpfPzxxwBUVFRQXV3N5ZdfHlWm0tJS5s2b12cZY7F161Z27NjBd77zHaxW64DS6MnixYtxOBxccsklUdsj5xc5nwinnHIKKSkp+ue8vDxyc3N7tbNEIpFIJBKJRCKRSCQSiWRkIEUJiWSE0tLSghCCvLy8Xt/F2gbornF6ptFzO0BhYSGA7p7p8ccf54477uDNN9/klFNOITMzkwsuuIBt27YBIf/9H3/8MWeeeSa/+MUvmDVrFjk5Odxyyy10dHT0eT5Go5GsrKyobfn5+VFliHcefZGZmRn1OSLixNru8Xj0zytXruSMM84A4A9/+AP/+c9/+PLLL7n77rsBegkz8cp17bXXYrPZeOqppwB44oknsNlsXHvttUmVP1IPsbb1VTeR7+O1ceT7yHuivPpLQ0MDAKNGjRrQ8bFoamoiPz+/l5iTm5uL0WjsVR89+xSAxWLp1XYSiUQikUgkEolEIpFIJJKRgRQlJJIRSkZGBoqixIwfUVtbG/OYnobcjIwMVFWlpqam177V1dUAZGdnA+BwOLjvvvvYsmULtbW1/P73v2f58uVRqzJKS0v505/+RG1tLRUVFfzgBz/gySef1AMZJyIQCPQyKEfOo6dhOZnVBYPB3//+d0wmE//617/45je/ybx585g9e3bc/eOVKy0tjauuuoo//vGPNDc38+yzz3L55ZeTnp6eVDlitWeydRP5Pl4bR9o3sl+ivCJEVj30DCzd2NgY9TknJweAvXv39kpzoGRlZVFXV9crcHh9fT2BQEA/H4lEIpFIJBKJRCKRSCQSyaGJFCUkkhGKw+Fg9uzZvPnmm/h8Pn17Z2cn//rXv5JO49hjj+X111+PmjmuaRovvPACo0aN6uWOCEIrMa6++moWLVpERUUFLper1z7jx4/n//7v/5g2bVovF0Px+Nvf/hb1+cUXXwRg/vz5SR0/2CiKgtFoxGAw6NvcbjfPP/98v9O65ZZbaGxs5JJLLqG1tZWbbrop6WM3btzI2rVro7a9+OKLpKSkMGvWrITHHnfccdhsNl544YWo7Xv37mXx4sWcdtppAEyYMIGCggJeeumlKIP/rl27WLZsWdSxZWVlAKxbty5q+1tvvRX1efz48ZSXl/PnP/+5l4DRHYvFAvReeRKL0047jc7OTt58882o7c8995z+vUQikUgkEolEIpFIJBKJ5NDFONwFkEgk8bn//vs599xzOfPMM/n+979PMBjkkUcewel00tzcnFQaDz30EAsWLOCUU07h9ttvx2w28+STT7JhwwZeeuklfeb9scceyze+8Q2mT59ORkYGmzdv5vnnn+e4447Dbrezbt06brrpJi699FLGjRuH2Wxm8eLFrFu3jh/96Ed9lsNsNvPoo4/S2dnJnDlzWLZsGQ888ABnn302J5xwwgHV00A599xzeeyxx7j88su5/vrraWpq4pe//KVuRO8P48eP56yzzuLdd9/lhBNO6BUjIhGFhYWcd9553HvvvRQUFPDCCy/w4Ycf8vDDD2O32xMem56ezo9//GPuuusurrzyShYtWkRTUxP33XcfVquVe+65BwjFvvjpT3/Kf//3f3PhhRdy3XXX0drayr333tvLfVN+fj6nn346Dz30EBkZGZSWlvLxxx/z+uuv98r/iSeeYOHChcydO5cf/OAHlJSUsHv3bt5//31dhJo2bRoAv/nNb7jqqqswmUxMmDAhKhZEhCuvvJInnniCq666iqqqKqZNm8bnn3/Oz372M8455xxOP/30pOtVIpFIJBKJRCKRSCQSiUQy8pCihEQygjnrrLN47bXX+MlPfsJll11Gfn4+N954I9XV1UnP5j/55JNZvHgx99xzD1dffTWapjFjxgzeeuutqADRp556Km+99Ra/+tWvcLlcFBUVceWVV+rxFfLz8ykvL+fJJ59kz549KIrCmDFjePTRR7n55pv7LEfETdItt9zCAw88gM1m47rrruORRx4ZWOUMAqeeeip//vOfefjhh1m4cCFFRUVcd9115Obm8p3vfKff6V122WW8++67/VolATBz5kyuueYa7rnnHrZt20ZhYSGPPfYYP/jBD5I6/s477yQ3N5fHH3+cl19+GZvNxvz58/nZz37GuHHj9P0i5/Twww9z0UUXUVZWxl133cWnn37KJ598EpXm888/z80338wdd9xBMBhk4cKFvPTSS73cW5155pksXbqU+++/n1tuuQWPx8OoUaM477zz9H3mz5/PnXfeyV//+lf+8Ic/oGkaS5YsiblCxmq1smTJEu6++24eeeQRGhoaKCoq4vbbb9cFFolEIpFIJBKJRCKRSCQSyaGLIno67pZIJCMav9/PzJkzKSoq4oMPPhju4iTF1VdfzauvvkpnZ+dwF2VIufjii1m+fDlVVVWYTKakjikrK2Pq1KlJu+SSSCQSiUQikUgkEolEIpFIDmXkSgmJZITzne98hwULFlBQUEBtbS1PPfUUmzdv5je/+c1wF01CKBj06tWrWblyJW+88QaPPfZY0oKERCKRSCQSiUQikUgkEolEcqQhRQmJZITT0dHB7bffTkNDAyaTiVmzZvHOO+9I3/ojhJqaGubNm0dqaio33HBDUq6sJBKJRCKRSCQSiUQikUgkkiMV6b5JIpFIJBKJRCKRSCQSiUQikUgkEslBQR3uAkgkEolEIpFIJBKJRCKRSCQSiUQiOTKQooREIpFIJBKJRCKRSCQSiUQikUgkkoOCFCUkEolEIpFIJBKJRCKRSCQSiUQikRwUkg507fF48Pl8Q1kWiUQikUgkEskhjtlsxmq1DncxDmvkfblEIpFIJBKJpC/kfblkJJOUKOHxeBg9ejS1tbVDXR6JRCKRSCQSySFMfn4+lZWV8gFoiJD35RKJRCKRSCSSZJD35ZKRTFKihM/no7a2lj179pCamjrUZZJIJBKJRCKRHIK0t7dTXFyMz+eTDz9DhLwvl0gkEolEIpH0hbwvl4x0knbfBJCamioffiQSiUQikUgkkmFG3pdLJBKJRCKRSCSSQxUZ6FoikUgkEolEIpFIJBKJRCKRSCQSyUFBihISiUQikUgkEolEIpFIJBKJRCKRSA4KUpSQSCQSiUQikUgkEolEIpFIJBKJRHJQkKKERCKRSCQSiUQikUgkEolEIpFIJJKDghQlJBKJRCKRSCQSiUQikUgkEolEIpEcFKQoIZFIJBKJRCKRSCQSiUQikUgkEonkoCBFCYnkCGSBeikL1EuHuxgSiUQikUgkEolEIpFIJBKJ5AjDONwFkEgONgM1xn+ovTLIJRka+nN+yez79PaH+eKLL3C5XHi9Xh6/+Q9oBNHC/xRAQUFBDb8n/vvHf78No9GIw+GgtLSUsrIybDbbAZyxRCKRSCQSiURyeBMMBlm5ciUVFRV4vd5eL7/fj8FgwGg09vuVmZlJWVkZRUVFGI3SRCCRSCQSiWTokXcckiMCj8dDRUUFV828EQ9uAvgI4CdAAA0NEAg0RPifARNWrAQIhPfzk6nkEiSIqv8zxHmP3mbAiBETxvC7BRsWbCiKAgxM7DiQVQ4BEaCLNjppo5N2OmkLiws9/6m46KS8/FX9WKXbGUbOkXDtda8/rdvfAi0q/29961u9ymTGghUHNhzYsIf/tmPDgRU7qmJIeE6HimAkkUgkEolEcqTT1NTE1q1b2bVrF3V1dbS2ttLW1kZHRweBQIBgMKi/B4NBRo0ahc1mo62tLeoVCASwWCxYrVasVisWi0X/3PM98nI6naSlpZGenk56ejplZWVkZGQMSz0IIairq2P9+vWsW7eO9evXs337dhRF0cUFg8GAwWBACMHKlStpbm4GQFEU/XwjL5PJhKZpBAKBhK9EGI1GiouLKSsrY/To0b3eCwoKUFXpbEEikUgkEsmBowghRF87tbe3k5aWRltbG6mpqQejXBJJXHoa5IUQBAnQSiMtNNBJGwoqRkykkoEFG1tZixc3EJrVb8SMCRMGTOF5/GqUOd6HFx/esJiw/2XAoK8Q2L9aIPa7QCNIEI1gr3NQw1JFAWWMU6YNSr0EhJ92WtAI4iAVK3Zd+NCERg27qGILbrr0Y+yk4CQVA8ZuIkLoHwjMWMkij0xyMWDU0+svQohudROqHz8+3HTiohM3Xfp7pJ16Mo+zsCvOAeWfDFLYkEgkkgNH3jMOPbKOJSMZTdPYu3cvn376KUuWLKG6uhq73U5OTg4nnngi+/bt48c//jF+vx8Am81GRkYGaWlppKSk6DP3I0Z5RVGorKwkEAiQlpYW9TIajfoqAY/H0+d75O+eZGZmkpWVxSOPPML5559/wHUghGDfvn2sWbOGtLQ0Jk6cSHZ2tn4f3drayl133cWrr75KQ0MDAHa7nalTpzJ+/HhUVe0lzGiaxrRp0zjnnHM4+uijMZlMA7ovF0KgaRperxe3243H48HtdlNTU8P27dvZvn07O3bs0N9bW1t7pVFSUsKuXbsOqI4kEolEMvTIe0bJSEeulJAcErz99tssX76cqqoqVovPwub+AD68+PGGVzuABSupZCLQcNNFPXvR0Egnm2kciw0nZiwDNq73B7/whcUNT9jo3kEbzbTQgEYQH0GqqcQsLHhx48NLMLwyIxheoxEkoAsE6P+DEROZ5GLHSQettNOCi46o/FVU7CIFG066aI/6voRxjGYSJsU86OetiSCLeWNQ00wlAzMW/XNEiAq1vw9/WERSw2JURHQKvZtRlb5ndC1QL5XChEQikUgkEkkCAoEATzzxBFVVVezatYv29na8Xi8tLS00NDTQ1NREMBiakDN9+nTGjh2Ly+XiP//5D8888wyKovDDH/6QK664gtLSUtLS0oa8zJqmUV9fT319PdXV1Wzfvp1NmzaxdOlSNm7cSHNzM83NzTz99NNs3LiRvXv30tLSQkdHh/5qb2/H5XKhaaFnDiEEkbl9o0eP5qyzzsJoNPLll1/y5ZdfUltbG1WGzMxMJk6cSElJCX//+9/17ampqfz617/myiuvxGBIvDJ4ICxdupSTTz55UNO88soroz5rmqa3f2NjIw0NDbS2tuJ0OklPTycjI0N/z8zMPCjPYRKJRCKRSEY+cqWEZFjpuerBL3z48RGZVy8QmLDwH97R98kiDxNmDGFnSObwK4UM7DijbnSDIoiLDpykHbQb4PViBXXs6bVdQcEadknUTL2+XcWAFRtmrOH1E0YMYXdPBowoKN1SCOHFQxO1eHCTQhqpZJJKBqlkYMCIiw66wq/I6oMu2nuV6RhOI1UZ3CXrQgg2sYoaYs+gUjHEXD0Sj9FMwoNLF24iIkREiEqG6RxHrlKU1L5SmDi06a9rs8OlvZM5byEEPjwECPQaK5PlcKkvydAh7xmHHlnHkoNFdXU1LpcLn8+H3+9HVVWam5uZP38+EJrdf84552C1WklPTyc3N5ecnBwKCwuZN28e2dnZUenV19fT3t7O2LFjD0r5m5ubycrKivmdzWZj3LhxFBQU8P777+vbs7KyKCoqIisri5SUlKiXw+FAVVX9+hl5X7duHR988AGKojB79mzmzJnDnDlzmDVrFh0dHWzZsoUtW7awefNm9u3bx7Jly/D5fL3KpGnaoD+vNDY2MmnSJBobG3t9pygKVqsVtzv2KuVY3HXXXWzbto26ujpdhGhqatLFmr7IzMzk66+/pqSkJOk8JZLDEbfbTXV1NRaLhVGjRg13cSSHKfKeUTLSkSslJMPKh9orLFAvpVO0UU0Vu9nWax8VAymk48OLFzdttDCKMWSQTQoZmBVLjJRDGJTQsUONX/j0GA2xBIlMcnHTpb8izOEUUhn4jCEhRMxjbTjIIj/m/m66qGMvHrqwM/jukBRFYQpzmMKcpPbXhIYXN3582HHixcMX7H843MN27KRgxY6dFEyYMWMJC1JmTOG/BRodtNFKA6000k6LnkYFa8glOVHiUCVilO7ZJ4Ii5DLLSOJl/kNtbI5nNBdCEMCPFw8+PPjxQXh9kJM07vzn91i7di1tbW38+9HFWLGTSV5Sq18OpFzJMlKN9AERoJUGmqmng1ZcdODFo39vxESGyCWTHHIoxKrYh7G0EolEIhkpBINB/vWvf3HHHXdQUVHR6/uysjKmTZumr5KoqKjghhtuYPbs2UybNg27Pf71JDc3l9zc3KEsPkIIdu/ezYYNG1i8eHHMfU477TTWrl3LunXrWLduHRCKpdDW1paw/ImICAqx7rWmTJkS8xiv18vq1av561//yqRJk4ZkAlV2drbuIioZOjo62LNnD4qiUF5ezhNPPMFtt92mf//8888zbtw4SkpKmDVrFjk5OWRnZ0e9Z2Rk0NTUxIoVK1i6dClLly5l586dQEgo+tWvfsWvfvWrQT/XkUjP+/KWlhbMZjMOh2MYSxWfQCBAQ0MDtbW11NbW0tnZiaZpqKrKzJkz+eKLL9i4cSMWi4Vx48YxYcIEjjnmmOEu9ohn3759fPzxx3z00UdUVFSwfft2PT4MwNixYzn11FM57bTTOPfcc0ds/5BIJJLBRq6UkAwJyRr6fMLLVtZSxx5MmPHhRUFlFieGgygrNFBNNZX4iPiAVdjvyAiMGAmQOGhbhMnMoVAp7d/JJKBdtFDFFurZp28zY0EgwsbV/aJKZCWDDed+w/oQuE861InEv7DjxEGqLjoFRYBdbCWAX49PYQjrqo3U6GKPigEnqThIw0kqTtJIJSPpuh4JRua+fj9CCJqpZzvrseHAz35XYQH8WLHjIBWBoIV6NDRUVMxYsWDFgg0HKThJx0laUrPmD6ReEp3PdrGBKrb0K71xTKdUGT/g8gwFw91vInW8W2xjK2v17RZspJKJk1Qs2LBgRcUQjsFTTxvNCAQ5FDKKcjLJjdkXhvv8JIcO8p5x6JF1LBkqVq1axS233MIXX3zBuHHj2LZtG5dddhm33HILJpOJtrY2nn32WV555RU9JoTJZNL/VhSFnJwc6uvrE2Wjs2XLFiZMmDAoZQ8Gg7z66qv87Gc/04UGp9NJSkoKHR0ddHZ2ApCXl8fs2bOZPXs2s2bN0ldF5OfnY7VaB6UsyDM7CgABAABJREFUhxM1NTW8+eabnHDCCZSXl+uizYYNG3jxxRf1uBQej4e8vDzq6up47bXX6OgIuY3Nyclh2rRpTJ06lWnTpjFt2jSOOuoozObD5xlI0zQefPBB3nnnHQoKCqirq6O2tpa6ujqCwSATJ05k4sSJbN26ldWrVwMht10FBQUUFBRQUlKi18306dMpKCgYtnMZiDC2fft2ysvLh6A0hzZut5szzjiDzz//XN921FFHMWPGDMaPH09RURFFRUW0trayePFiFi9ezJYtW0hLS+Paa6/lxhtvPGiryiSHL/KeUTLSkaKEZMhIRpiIGCQzyGEac+OuetBEkE7a8eDSVxtEXBTFC4wci5kcT7bS/xs9TWi004wHtx6/oI1mmqnDhoMSxpNBNrXspor9s8psOEgnm2LGDrqbpCONnWITO9nUa7sdJ2lkkUMhTlKxJTCwD5dhNd5vIVIeIQT//ve/uW3hXbhx4Q4H/QYoYTwmzHTQQg278OFFIFBQwusJohlFOQKBhy4EgizysWLHhwcvbrx48OCihf2z5o7mZDKUnIRlHEy610eHaGUb6zBhibnKCEIrjcxYMWHGgpVixmFQBt/vcn8ZSYb6SJ2uFV/Q0E0kncE8cpTCuMcFhJ9adrOHHXTRjp0UxjI1yt3ZSDpPychH3jMOPbKOJUPF1KlT2bhxI/feey933303RmPsRfVNTU1s2rSJXbt2sWvXLnbs2MGmTZvYunUrbW1tSbvy2bNnz4DclrS0tLBy5Urq6+tpaGigvr6e1157je3bt3PGGWfw3e9+l1mzZnHCCSewZ8/+e4vjjz+eY445hh//+MdkZMj78gMh3r329OnTOf/88znppJOYNm0aeXl5B7lkB05raytvv/02lZWV7Ny5U3+fOHEiN9xwA4qi8PLLL/Puu+/idrv1GCo9yczM5Prrr6e6uprKykqKioo4++yzMRgM1NTUUF1dTU1NDVu2bGHNmjX6cUmYZ4aMJ598knfeeYeOjg6WLl3a6/tRo0YxY8YMCgoKcDqdnHDCCVx88cXDUNKRT0NDQ9TKsOzsbFavXk1xcXHcY3bu3MnTTz/NH//4R5qbmznrrLN4/PHHGTdu3MEosuQwRN4zSkY6UpSQJCQZYaFCrAHAhBkj5rCbHQc2HBiUxB7C/MLHFlZTx14UFJyk68ZTgPnGi/uc4b5P28mm4IqobaPVKRSr4/AEOxEIUkhHjRgxRfwHpRqxm42s1D87SA0HpQ4FoYZQZIeQadRBMeXkMgoFBT8+OmhlD9tpo0lfKQEwhsmMUSYnPA9JYiKrA6rYQgsNOEljEkeTpmT2K53hMLD29TtqFy2s5GMg5LLIFv79dNFBE/sDJRZQSiqZqKj48FBPNR26m6roFURAOOi3CRWVIAGC4QDx3cUMCzaO5mTsyn5XXsNlhD5NuZhO2uigBQMm7DhIIaPPmfuHqwum/tC9DoQQePFQwRoaqSaTPNLJIo0s7DgxY+3l/koIQSuNbGAlTlIpYRz17MODC1N4bU0amaSR1WtMPhzqTzJ4yHvGoUfWsSQee/bs4c4776SgoIDMzEyys7MZPXo0Y8aMoaSkJK7IEOHrr7/m8ssvZ8uWLWRlZTF69GhWrVoFwI033sgTTzyR8Hiv18uiRYt44403ora/8847TJ06laqqKnJzcxk/fnxSM7KPO+44li9frn+eNGkSbrebvXv3EgiE7sudTifZ2dnMnj2bO+64g9mzZxMMBtm7dy8ffvghf/zjH1mxIvo54auvvmLWrFl95i+JT0NDA4sXL+aWW26hvr6eb3/72/zqV78iJyf2JJdDiXvuuYf7778fp9PJ1KlTGT16NKWlpbzyyivs2LEDgOLiYi6++GImTJiAyWRi3bp1vPHGG7oI1n0FUeRzWloaaWlpCCHo6uqiq6srKng6wOmnn87777+Pqg6Om9IDob29nS+//JKtW7dSXFzMpEmT5IqIAeD3+1m3bh0XX3wxLpeLM888UxdIS0pKyMrK6jUeut1unn32Wb73ve/x29/+lmAwyMqVK2lqaqK0tJSJEydy3HHHcdRRR2GxxHdlLZHIe0bJSEeKEkcg8Qx4Ebc5DVTjogMjZgSCTHIpZ0pMH+49XYX0nL0dkiiclDKeHKWQoAiwik/w4tZnPqeRiZ1U/HhxqV3s03box59q/GbcGdEe0cXe4A72iG0EiA4WN1qdQjmx/bf2optIUSN2sZEv9c8FlIbLaSKNLEDBjwc3Ln3VRuQ92M2FlBGTblhOI4sSxh20QNuHM+vFcurYyxgmU8bEmH1ypBlIkw1AvIMNVFFBPiWUME5fWeMXob6toGBUTL2ODYoAdexlJ5vw4NK3K6iUMh6NAKCExQlD+J8RI2YyycUYFg5HWr0dCJE6P5zOqS9i9TNNaOxhO83U0UpT1Bi135WXFUEorkcAPy46SSGDdppxkIodJz68uOjEH3ahZ8FGDgWMYwaLxesH7RwlhwbynnHokXV8ZFBTU8PTTz/Ne++9h9vtxmw2I4Tg3nvv5Rvf+EbMY4qKiqiurtY/q6qqGzwNBgOlpaUcffTRPPjgg4wbN45PPvmEyy67jIyMDGw2G2PHjmXmzJmUlpayZcsWGhoaeOaZZwC45ZZb+M1vfhMzXyEEy5cv5/HHH+eVV17pNXP8iy++YO7cuf2ugzlz5uiiCMAPfvADbDYbxcXFzJo1i66uLmpqaqisrKSqqkp/3717d5RBuKioSBdnFi1axFlnndXvskiiqaur45hjjsHj8fD8889zxhlnDHeRBo22tjbOPPNMNm/ezA9/+ENuuOEG8vLyCAaDtLS0YDAYsFqt2Gy2XsfW1dXx0EMP8Yc//AGXa/99+cSJE1m0aBFNTU04HA7sdrv+cjgclJWVcfzxx48IMUIyNOzbt49f/vKXfP7553z99df6OGk2myksLKSwsJDs7Gw6Oztpa2ujsbGRXbt2MX36dDZu3Mi8efPIysqisrKSiooKPB4PFouF8ePHc9NNN3H99dcP8xlKRiLynlEy0pGixBFILOOVEIIqKtjBhpjHHM/Z2JTeAZd8wstS3tY/dxclQoZPk77qIYt8pjGXT3gTgHSyCeCnkzYAciliunIctexhi/iaAD5duIjM+AYIEiBAgE5a6Tk73EEq5Uwlh4J+iQBCCDpopZM22mhiH5XAfndPmtD4lLd0o56KARt2rGHhwYpdFyFsOGSsiCFACMHHvEY5UxitTIq736FoiF6gXooQgr3sZBcVeHCRThZFlJNOFlbscfuzR7hYwUcE8OuBwFtpjNonlQzKmIiDFGw4dTHnUKwrycAIBoOcYDwbDy68uiuvkDsvBRUjJgQaTdThx0s6WeRRjB8/AXz48dFOC12062m2tLSQnp4+fCclGZHIe8ahR9bx4Y/L5WLhwoUxAzXn5eVRW1sb4yj4y1/+wjXXXKN/ttlsuN2h+/D09HScTid79+4F4I9//CNZWVlceOGFAJxzzjl89dVX1NXVAfDcc89xxRVXcN111/Hss8+iqiqFhYWkp6fraXk8HlwuF/X19foM8u58+9vf5n//93+ZMWNGv86/s7OTVatWsXbtWl5//XWWLl2KzWajtbUVs9nM8uXLOe644/T9s7KyKCsrY/To0ZSVlVFWVsaYMWMYM2YMpaWlMlbEEPD2229z3nnnsX79eqZOnTrcxRl02trauPPOO/nrX/9KIBBg0aJF/Nd//RezZs0iMzP+Ku2XXnqJyy+/nNTUVCZOnIjP52PNmjUYjUZ9dc8NN9ygr7IoLi6WE9eOQLq6utiwYQPV1dXs27dPf29qasLpdJKamqoHx/Z6vXz3u99l/PjxNDc309LSQl1dHUuWLKGxMfTMd+655/Kvf/1rmM9KMhKR94ySkY4UJQ5jNm/ezGeffYamaaiqitfr5dFbnsCPl9FM0kWGgAjoQkEsHKRxnLIg7vf1Yh9N1OqBdTWCdNFBB61RBiyAWZxIgAAb+TJq1m5PMsmjkNF00a7P4A3gR0HBgAEVAybMcQPkjqKcicpRCWonREAEaKeZSjbrPvZtOMggh3xKyCAHRVHwCg+f829dcLHjxEkaZiwYMWNUTCgiNDtdDZcvnUzsSkqfZZAkz2LxOqMoZxzT+Ui8OtzFGRR6ioSa0Gigmj1sjxIXegZ3dolOtrGOVhoxYOQYTsOsWKgQa9jDdgBSSMeEmWb2B5wczUTKleiHRylOHBn0tWrnC/FB1JitoGDEjAGDLjhraIybUs7pp5/OmWeeyVlnnSUfpiVRyHvGoUfW8aFHIBDgs88+Y8uWLaiqiqqqtLa2snfvXkwmE4888og+li5dupSTTz45blr33XcfP/nJT2J+5/F4+NnPfoamaWRnZxMIBGhra2Pt2rWsXr2affv2Re3v9Xq5/fbb+d3vfpfQj/0jjzyCw+Fg7969tLa20tbWRkdHBzabDbvdjtPppKWlhRdeeCHm8Z999hknnHBCX9VEdXU1S5cu5dZbb6Wurg6z2cyUKVNYuHAhV1xxhR70NWL4jTB79mwmTpxIZmZmlIsci8WCzWbDZrNx4YUX6kGaJQfO+++/z1lnncWnn37KSSedNNzFGTKam5v505/+xO9+9zt2796tb1+1ahVHH320/vmNN97gscceY8WKFVx66aW88MILKIoSdY90+umns2HDhihRMRAIYDAMf5w0ychix44dvYJc2+120tLSsFqtqKqK3+9H0zQKCwv51re+xWmnncb06dOHqcSSkYq8Z5SMdKQocRixQL2UdtFCPXupD7tggv2rFxRUTJjx4WE6x+mBTDWhsYGV1LNXT0tFxU4KNhyUMREnaf0KLBsxcno8HhobG2lubqarq4v/m/dLVEVFE0FaaKSaKhqp6SVQWLEzm1NQCc3oNmDQ41O0ixaaqMVFJzXswoCBKRxDF+26j30zVk7k3PjGMkVlg7aCWnbpm4oYwzhlRshFToy4E0ERpIs2OmhjD9v1FR6JOF25JKn6kiTGKzx00MIa/qNvm8sCnEraYW1Qn6kcz1qWASGXOROYSRqZCASbWEUXHRRSSgFlekyIerGPdXwRlY4VOxasKKiMZ0bcoOuHc132F03TqKqqorGxkZaWFpqbm/n15X9KGLD+UK6/BeqleIQLPz5MmHHRwW6200iNvo8dJ6Do15bItjFMJo/EM/0O5bqJRXeB53A7twNF3jMOPbKODw38fj/vvvsur7/+Om+//TbNzc268TEYDJKamorBYKCtrQ2Xy6X7Bd++fTunnHKKvqIBICMjg0mTJjF9+nTuuusuCgsLB2TIbGtro6mpiebmZmw2G1OmhFydNjU18d577/HEE0/wxRdf9Druvvvu47vf/W5UeSLxKV599VXWrFnDp59+yueff84ll1zCN77xDTZt2sRjjz1GIBDggQce4O67745brsbGRqZMmUJ9/f5JFK+++irnnXceJlNv15WRY9atW8fatWu57bbb+jz3a6+9lj/96U997idJjKZpbNu2jcWLF3PjjTcCMGbMGDZs2BDTndHhQjAYZNGiRbzySuiaf+WVV3L99dczbtw46uvrmTdvHjNmzOCSSy7huuuu0wWw//mf/+Hpp5/GbDbj8/kwmUyMHz+etLQ0srKyeO211+L2ccl+3G43lZWV+j15R0cHp5122iEZSD0ZhBCsX78eo9FIWloa7777Lr/97W9Zt24dEFoFN3nyZL766quo426//XYuueQSjj322OEotmQEIu8ZJSMdKUocgsSbWb2brbTRjAkz2RSSSyE2HLTTSietBPDTRB0+vJQzhSABrNjDrofsWLADAh9erNhx0cF2NtBIDQKBBRvTmEu6kpWwfJGAqZFVE20000YzXtwYMNBOC7mMIpdCNnQLKp0IBYVsChjLNLayNir4r50URjMRExaMGAkQIIg/7OTJj0YQE2Ys2LBgw4oNRTGyWnxCB616Og5SOU4N+Zj9MPhywrrfLtZTRYW+PbKywqCYCBJAEwHSyEpowJT0TZ3YSwVr8OHp9d0EZlKshGaQHI5GwYhLp0ZqaKaeJuqijMEAM5jHGvGfuMdrQkMjGDMWRXcOx/pLRCAQYPfu3bS2ttLe3s6tp9ytr8by4qGdZtppIYC/17HFjGWCMjNu2sNVlwMN9h1xXddGk74aLUiQSjZjJ4ViykkjCwepGBQDbtHFf3hXP96MBR9eUsmgk3YEEUFXQQm/W7GHg2RnkkomKaT3Gbx8JNHfuh2p53GwkPeMQ4+s45FNc3MzzzzzDL/73e/Yt28fkyZN4sILL2ThwoWoqsqyZcvYuXMndXV1vPXWW4wbN47/+q//QtM0SktLKS0tpaSkhIKCAhobG1FVlezsbF577TUeeOAB1q5di8Fg4Nhjj+W9994jJSXxqty2tjZWrlyJxWKhpqaGZcuWsXz5ctxuNz6fj4qKCn76059SXV3N73//+6TOMTMzk2uuuYYf//jHvdz4ffvb3+a8884jJycHVVXp6Oigvb1dfw8EAhQUFDBq1CiKior0OBiTJkW75rz77rt54IEH+iyLEIJp06axceNGAKxWK4sWLeKMM84gGAzidrtxuVxcddVVpKWlJXV+kth873vf469//StdXV29vtu4cSOTJ08ehlIdPDo7O3nxxRf59NNPef/992lqatK/y8rKYuvWrQldO3V0dGCxWDCbpZvf7nR2drJ3717a29tpa2ujvb1d/3vHjh0sX76cNWvW6O6vuvPWW2+xcOHCYSj10NDZ2cmKFStYvXo1gUAAVVX5+uuvefnllzn33HO56qqrmDlzJmPGjMFgMPDGG29w0UUX6cenp6cTCAQoLy/Xx8TIih1VVTGZTEydOpW5c+dy7LHHMnfuXEpLS4frdCUHAXnPKBnpSFHiECOWcWSV+ER382InhVTS8eGlkzZ84cCkNhzhwNWaPsM/Ykzqjg0HORSSxyhaaGA7G7Bgo5Tx1LKbDtrIYxRBgqgoWLAxlmlRAYfbRBNfskT/bMREOtnYcKARRMVANVXYcFBAKS3U00YzAfxRQbIBxjCFFNJoo0kXAQoooZkGhC57BNDovbIBCLtSUmMaF4FQoG0lm3QlixylEKeSzgf+vydV9y7RSS27qWEXbrpQUXGQiqb/C6KhIdDCZRW6wU4JhxyOuKFKIUM32jlIjRnA+UikTTSzk4200ICGhoNUZjM/ZsyOw90QuEC9FLfoooM2VFQsWFkuPhzuYo14vF4vJ1nPpYNWOmjRRdp4Y0aESEycYFjcjFBIGZOV2XGPG65+eLpySXg0DOhl9uFhD9vx4yNIEI0gQYIYMJBONj48egDsiKsmwiNVOllMZ15SY9EW8TVuusggOxybAiKxfoQCLtFBG8100opAYMXOaCZSpIzR0xgpv9+e4/wesZ1m6nHRqV9rlLCjPgUFE2bspGDH2e3dqa/si3VePfMYKec+WMh7xqFH1vHIprvoesopp5CTk8O+ffv4+uuvcblcWK1Wxo4di9Vqpbm5mZ07d2K32zGZTLS17V+FazKZOProo7n00ku55JJLWLRoEcuWLePUU0/lwgsv5Ec/+hE2m41vfvObVFdXY7fbWbBgAVdffXVUee68805+/vOf65/Ly8s57rjjSE9Px+Vy4fP5ePHFF7n55pux2WwsXryYzZs309ERPRGisLBQd+P03//93zQ2NnLhhRfS1NREZWUlPp8Pj8dDV1dXTOOhqqrY7aEYWT3TjjB27FjmzZvHcccdxze/+c2EBt7uaJrGZ599xvPPP88rr7xCe3s7ubm5FBUV4fV68Xg8eDwefD4fgUAg6gXoLp6sVivFxcW6sW7u3LmMGjVKuikM88wzz/DUU0/x9ddfoygKN9xwQ9JC1uFGMBjUY7BYrVamTp1KQUHBcBdrxNPS0sLXX3/N6tWr9feKioqE7uMgJPrYbDZaWlqiRLGXXnqJb33rW0Nd7H6jaRqdnZ10dHTor5UrV/L3v/+drq4uXSx1u90UFxcza9Ys3c1eMBjE6XRitVrRNA0hBPfccw/f//73+8y3qamJiy66iLKyMubMmYPBYEAIoafjdrtZs2YNy5cvp7IyFENz/vz5/PznPx/xqyva2tq47777WL9+vR5/w2g06i+z2UxxcTHjxo1j/Pjx+ntZWZm+su9IRN4zSkY6UpQ4ROlu1KgTe9nBRlRUggQwY8WCFTtO0skmjSz8+NjACjpoZTSTGcUYTJgJEsRNJ67wq5VGfRWCGas+Q92CjenMZS87aaSWFNLw4aOTVj0YdIQO0coKPtI/q6jM4yysyn4/rhvFKpqp4wTOYR87aaKOdlrw4SGLAlLJoIYqLNiYrcwnKAJsYz0tNOCiA4HAgDHk1gkjKkYMqPjw4sXdS9zoiQ0no5RyStUJUQ8a8QSJRJyuXEIXHbpLKVX/ZwgbrkLGKyVsylIgLFmEjIQ+vLTTTCdtCAQqBgopSyomxpGCT3jZw3Yq2cwUjqFAKYm53+Fm3JP0jwXqpfiElzaaaKWRVhppp0UfDxykkkI6KaQD4KKjW9BnT9SKHANG3cBsC7+/uum5XjM5h+Ic+iIg9gsPbTTRTD0tNODF3WtfB6mkkxWWQUNCqB8frTRixko62aSTRSqZvVz0KcbEK2wUkxHN3TvP0Je9xYygCNBIDRViNX78nML5qD3yPNi/4UT1vU9UspmvyCQXOykYMaGi6gKzQODFE75+dkSJVzYcHM3JVLEFN12YsWLCrF+fIyv3LNgwJhAwDkXkPePQI+t4ZPOd73yH9evX09LSgtlspqCggPz8fGbOnMkJJ5zArFmzePfdd7n22muxWCw88cQTnHPOOZjNZhobG9m2bRtbt26loqKCf/7zn2zevBmAgoICampCLvUWLlzITTfdxE9/+lMaGxspLS1l/fr1tLW10djYGBXY+f777+eee+7RPx9//PF8/vnn+me3283YsWO58MILuf/++/n5z3/Ol19+yddff43ZbOaiiy4iMzOTRx99lIceeojbbruNdevWcffdd7Np0yZ27tyJyWTSjWhOpxOHw4GqqlRXV8cNyh3BZDJxzDHH8MADDzB//vwDrn+v18sXX3zBhx9+SEtLC1arFYvFgtVqxWw2YzKZMBgMuiErYqiLBO2OzMzetSvk4jU/P5/f/e53XHzxxQdctsOFtWvXctddd/Hee+/R1NTUa7WMRAKhVUzbt2/n888/5/PPP+ezzz5j27ZtADgcDmbMmMGsWbOYMmUKtbW1VFZWUl1dTU1NDfv27aO1tVVPq6CggLFjx0a9Tj/99KSFy6FCCEFzczNer5d9+/bxySefsGTJEj777DM6Ozt77X/OOedQUlKC3W7XhdAtW7awdu1a/Rpx4oknMnHiRFR1aCcp1tXV8dvf/paHHnqIb3zjG/zzn/8c0vwOBCEEF1xwAUuWLGHBggWMGjWKvLw8/H4/gUAAv9+P1+tl165dbN26le3bt+P1hibfGo1GzjvvPH77299y9dVXY7fbycnJIS8vTxevCwsLKSoqIj8//7BbySTvGSUjHSlKHCIM1DVHhI3iS2rC8RNUDBAOWBqPIsbQQSvtNOvbUsnQZw4HCeLBhYLC0ZyMU9m/HFoIwW62IRD48bGLivAMUgdBggTw00Er45mBBxe7Cd2cpJGJBbse22ISR7OZryhjgh7fwoodA0YaqcWPN2zYD4RdrwQwYcamhIyIJszhmBSh2awaQQLCRysNbGM9AMdxBg4l1KcHYhBKpl36nCkbNt4FRYB2WtgkvsRNJ3kUk6MUkSeKjvgZWhvESmoJBZcbyzTKlAkJ9z9cjHuS+MT67bWKRlbxCRASUvcb3DNwkEo7zTRQQwPV+vhlw4GdFByk4CBVn/Fuwqz/7g5mf0o0pniFhx1soJqqqO0ppJNBDimkY8Skr/IwYMSGY8ArrxKJEoqp7xlHmgjSobXSpjXSrjXSGmzQXZCVMZGxPQKud+dg1Hlf4/dq8RnN1OEkjVyKyCQXH15cdOLBBXR3UqXgx4+LDtpoIp0sxjODlSzusxzdYzzBoT9+yXvGoUfW8aGNEILs7Gyam0P32A6HA5/Ph98fe1UvwL333svzzz/Pjh079G0LFy6ks7OTrq4uOjs72bp1K3PnzuXjjz+OMqrs3r2b5557Tl8F8f7773PMMceQmZlJW1sb1dXV7Nmzh6+//pqpU0PjsqIonHvuubhcLhYvXsz555+PwWBgxYoV3HrrrbqbqdLSUlpbW/nwww/1Wb+dnZ20tbXpM4DLy8spLS0lJSVFXy1ht9vp6uqitbWV559/nmeeeYbx48dTUVHR69yHi9raWlasWMEFF1wAwC233MJ//dd/MWfOnOEt2DCjaVpUPJMjwW2TZGBEVmkpisL06dM58cQTmTt3LkcffTTZ2dm8//77/POf/+S9996jo6MDu93OxIkTo14TJkygvLwch8Mx3KfTi+XLl/ODH/yA5cuX69tsNhsnnngi8+fPp7y8nJSUFP2VmZlJcXHxsJW3paWFVatWsXLlSlauXMmKFSuoq6vDZrPxzjvvDIooPFQ0NzdTVFREIBDgtNNO45JLLmHy5Mns3LmTbdu26a4OIy+Affv2sXr1anbs2MFPf/pTVFVNGNsoQmtr62Hl6k/eM0pGOlKUOMRYoF5KndhLJZtxkBJ2xhHQXyYsWLCF3TUZw04mwkZvgpixhGdzKvp8/k2sipufiqob+EMrE4xhg1fI6FXE6KgVED3RhMY+KumiDQ9u3Vhmx0kxY9lHJRV83es4IyamMVePk9HT/ZIJsx5DQkGFbnNXg/j1WcRaN3dJoXMPuTEBcJLGTI5PWP6BGocWqJcO6NgzHVficbexlx00imraaSGPYqYwu9eM4iMBn/CyjXX48ekBd0sZzzhlesLjDnWjnqQ3iQzIAeGnjr3sZitddFDGRMqZgqIouEQHO9lMIzUE8GPBRg6F5FBABjlJ/66GW5hwiy6W8yECQTmTsZOCAQMpZMR0Z5YMhkQzG+PcGigxlj9rLlfU56ZgDV9596+WU1BJUdJJU7JIV3PIVPOwKLGDYb7v+VvfBR8CYtV5UARpopZ69tJADUFCbj4MGLFiR0HptipP6G6rUshgMkdjUIy0itCKnTZaaKcZH56olXwZ5DCDeTHjvhyq45i8Zxx6ZB2PHDRN4/bbb2f58uUUFRXpAkFkhmxKSgrjxo2jtLQUq9WKyWTCbDbj9XoxGo04HA5aW1uxWCxYLBYMBgPXXntt3PwyMjIYM2YMqampOJ1O/eVwOCgrK+O73/1uwlmee/fu5dlnn2Xbtm20traSnp5Oeno6Z555JqeffjpXXXUVL7/cO67aFVdcwbnnnsv9999PVVUVrm7jvtlsJjs7W3evYjQa0TSNYDCIx+PpFU8iUi/p6elUV1cTDIbuy6+55hr+/Oc/D6gdhpJVq1bx7LPP8tZbb1FTU8PTTz/Nd77zneEu1rDw1Vdfcc8997B582Z27twJwDvvvMPZZ589zCWTjCR27NjB888/z3333QdARUUF48ePB0IxIH7961+zdOlSgsEgs2fP5rzzzuO8885j2rRpQ746YLB49tlnufbaa5kwYQI//vGPycjIIDMzk1mzZo2omfZCCO68804efvhhfVtaWhrHHHMMxxxzDPPnz+f4448/JILUV1dX88Ybb/Dqq6+ydOlSNC1k58nPzycvL093U9X9JYTgxhtv5NZbb8XtdvPee++xYsUKVq5cydq1a2lpaYlyHfbjH/+Y++6777CaECrvGSUjHSlKHAL0NJZUiDXsYTsQMmiYserG+SAB3HThpisqpsF+47xCJnkUUkoORaiKSqtoZB+VuoMhM1acpOEkLe4sW69w64FgBZBOJnald6A9v/BRwy6aqA3PSE5FoOHHRwA/+ZSQrmSxR4Rc8/SMcdEdMxYcpJJPse6myYOLAP6wI6QAPjxkU4CdFFRUNIL48ekunzLI1evIhBljN6ElhXTSyY66CB0so9CZjitjbq8L7GK973PS1BxmWk7G4EnsB/9wo1nUs5ql+mc7KaSQzjQl2ufloWq8k/SPvmLqZJJLAaXkUYyCwm62soONmLFSQCk5FA4oyHKyK9UG0g99Ph9/+ctf+NkNj+LBHXbBJMKu3kIO4DQ0vHjooh2AScrsqHgMAMbMjNgZ2KyxtwOYow3hork1/Ef824JYogQA6v46/bLlbZr8+/Zno9pIMWbhCXYRDPqYYjoWn3DjFR68uNCEwKgYMWDS302YyEkbr8dmAHi34Sn976PUk2gVDZgUC2asmLGEBeoQqaSzRHsj/rn3Qc82D4ogXbRjwYYfHzVU4aITPz5MmMkkl0zycMS4DvYkKILhSQTmQyrgd7LIe8ahR9bxyMHr9Ua5Srrwwgt1oSAYDNLe3s62bdvYs2ePvhqi+6qIjIwMLrvsMq6++mrdn/cTTzzBV199hcFgwGw2M3bsWKZOncrUqVPJz8/vNW4IIdi0aRMbNmzA4/HgdDo55ZRTYro12bx5M08//TQ7duxgypQplJaW0tbWRnNzM0II7rjjDhwOB9dffz2vvfYa7jgu+sxmM/n5+SxcuJCJEyfS2NioB+/u7OzE7XZTW1uLzWbjkksuITMzE4PBQHt7O9XV1ezYsYPs7Gzmz5/P2rVr8Xq9ZGZm6nWXnp7Oqaeeyrhx4warqQ6YQCDALbfcwu9///vD0nCVDP/v//0/HnnkEf3z1KlTuemmm7jhhhuGsVSSkUIwGIzy3X/ttddy7bXXcvzxx9PQ0MDNN9/Myy+/zMknn8y3vvUtFi5cSFFRUYIUDz67d+/m5ZdfZvfu3ezZs4fGxkYMBgMmk0l3/dbV1cWnn36qG7OrqqpGbLDohoYGcnNzo7ZNnDiRkpIS1q9fz/Tp03Whsbq6mrq6OoxGY9QKj5SUFIqLiznxxBNjjnlCCB599FE6OzvJyckhNzeXzMxMXWCy2+0cffTRgxrXob6+npqaGkaPHs3y5ct55ZVXqK2tpaWlhYkTJ7JgwQIWLFjQp3svIQRdXV1omnbY3k/Je0bJSEeKEocAPY0jXuFhFUvw4GIOp5KqxDFGdcMvfOyjku1ht0UQcm+SSga5FFGglBIUQfx4sWDTLzhBEUSgYVRMtItmGqimiw7q2dcrjwkcRbFSrn9uFy2sYgkaGpnkhn1vd6Bi0GecWrEzkaNYw3/Ip4QCSrDh1GegBglQx16q2AKEZsmPopydbKKOvWjhVQ8hASJksJ+gHMU+sZNO2okEWzVjwY8fKzYC+HVDUvdAthoaJizkUEgp43Co6b3O8cNg79ljg01PgaIlWM8a7xLMWDnKeDI2xRn1vQjEX+5/KLJWLKOBapykIRC6ITaFDI5VTot5zKFuxJP0Tc9xUAhBIzWsZRkQci93TLh/dJpcbPJ9QTstlDCOcqZgUIz96ieJhAi36MJFhx4fwIRlwIaJiMspK3ZsOLAQmqkUWfuloaFiwIgJI0aCaJQqE7D3GAf6LUqY47hm6ujt/3Z/JnEeJiLnHjayCSHwai48woUr2EZnoJnOQAsW1U6Lv5rOQAsABsWERbWjKgaCmp+A8BMQPkR4LM80FZJvHoOqGDEo4fhBNgcGxcim5sW4Aq2AQlD0HgMVVLKUfPLUYvKVMlRF5QPfi/HPLQHd+4Jf+PiUt+LuO4N5rBH/iXlsdw7nMUveMw49so5HFu+99x7nnnsuZWVlbNu2LamZvtu3b+e+++7jhRde0LfNmjWL6dOn873vfY/Zs2fT0tKCpmlkZWXp+7S0tOBwODCZTPzjH//giy++4KuvvoqKEdE9j/Ly/fflDz30EHfddReZmZnMmTOHTZs2sW/fPlJTU3Xf7bfccgsej4fnn3+eu+66iwULFlBYWKj77K6rq+NnP/sZ7733HhkZGTz33HNYLBYefPBBPv30UyDk+qn74+UjjzzCY489psfDUBSFgoICqqurOf744/nPf0JjZnl5OX6/X19VEQwGmTJlChdffDF33HEHdnv8lc0HCyEEDz/8MHfeeSdXXnklf/jDH0bUrOjBprKykjFjQpMgjj76aFpaWvQVEr/4xS/43//93+EsnmQE0dbWxrPPPssPfvADAJ566iluuOEGhBA899xz3H777QghePzxx1m0aNGgCXrBYJDVq1fT2dlJQUEBhYWFpKSkDDj9O+64g1/+8pdMnjyZ4uJicnJyCAaDeuyCQCCA0+kkLS0Nk8lERkYGP/rRj6LE6ZGG1+tl79697N69m4qKCjZs2MCePXsoLy/nySef1GMvROIsBIPBqADdkRUJt956K5MmTcJms0W9fD4fZ599Nunp6XR2duor4rqTnZ3NBRdcwJVXXsmJJ544aOd23333ce+998b9vrm5mYyMvm1lhzPynlEy0pGixCHCAsNlQGiFwiqxhCABpnEsGUpO3GO8wk0Nu6hjLx20Rn1nwkwqGTRRB4QEikiQVDspFFBCkCD72EkAP1nk00kbHlw4ScNNp+4GKcI8zsKuOAmKAMv5EDdd+neFlDFZmY0QIVPbJ/wTjSA2HKSTQw1VHM/Z2JSQv8g6sZedbNJXOKSSyUSOwoqdVYTOfxRjyaUQK3YC+FnG+5gw48OLkzSKlNFhH/GpmBULXaKdCvE1zdShoCLQcJKGBzcBfFHnkkYWc9TeBvChFiXOtF0Rc3uX1sZq3xL8eJlomE2BWnbYiREu0UGjWsc2bZ1ulEwhg3y1GAt2srW8w8rFiaR/9DQMf8liXHSSRibFjCXfUk6QIDsCa9kd3IpTSWOy6VjS1egx8n338wPKE0Lu6NayjCaig3ZGVpiNYgyjlVAg7PViBXXsYRzTKVXGx82jS7TzBR9wtOE0MtX9M5kUNfbDlJqRHjuhjNi+TzVLbPFB7fLE3C6sof2VuqboL/oSJHpitcTc7G6rpdazkyLbBMxqjwe4YOh3r4kgdb5KNnZ+RkD4gdi3KeVpxzIu/TiCBvAFXWhCQ1FCxzfsXUud2EOraKDUMJEJxlm9jk/WVdQZpm8B4BEuqrUqKsUmBFp4Ncv+mBICjRylmDQlE6MScjFoCqoYMYddDpqHZSXewUbeMw49so5HDu+99x7nnXceJ554Ii+++CJ5eXlx912xYgUvvfQSr7zyCtXV1fp2g8FAWVkZwWCQqqoqILSCoqWlBUVRdP/Zn3zyCa+88gppaWlccMEF/PnPf8ZutzN27FjWrVsXldfxxx/PkiVLMJlMfPTRR5xxxhlRQkFlZSVlZWUIIXj33Xc599xzATjzzDPp6uqiq6uLL7/8EoPBgMfj4Z577uGFF16guroaRVG47rrrePDBB1m/fj1nnnkms2fP5qabbuKkk04iLy+Pl19+mSuuuILJkyezadMmrrnmGs444wwmTZrE+PHjsVqt/POf/+Tmm2+muroaIQRms5kxY8ZQWVmJxxN9jXr00Ue57bbbDrS5Bo0XX3yRa665hgkTJvDyyy8zadKk4S7SoCKE4IMPPuCLL77QXfAAXH/99UydOpXx48dzxhlnHHErRSSx+eCDD7jooovwer1ceuml3HzzzcydO5dNmzZx4403snTpUhYtWsSvf/3rXrP2D4QdO3Zw0kknRY2nEIrTM2rUKJ555hlOOukkmpubmTFjBvX19Xz22Wccc8wxcdN8+OGH+fnPf05zc/MR0b/ff/99WlpauOiii2IKrEII3G43t956Ky+88ELc1XMQcu921FFH0dbWRlNTE0IIFEWhoaGBN998k1dffZWdO3fy8ccfc8oppxxw2VeuXMmjjz7KG2+8gaIomEwmVFXFYDDgcrnIy8vjiiuuoKioiKysLDIzM6PenU7nEdHG8p5RMtKRosQIJyJGAPiEh5XiIwSCo5VT9s+UFdEufYIiwC62UkVFOMqCwISZPIrJJp9UMjGrNvyah1V8goJCNgXhOBQmGqimnn0oQCGjseFkD9txE5pBGwlQ2ina2MlG6qlmAjMpVsYCsWeSTuJoipTR+ucu0UED1dSwS59xbMBIBtl48dJINdkUkE0BTlJJIwtFUVgvltNMPXM4tddM4S7RznplBQ4ljanGubrbD82/X60XQrBOLKOBfdjVVDxayM2VgoodJx5c+ioOJ2nkKqPIowSHkoLSLajbQGfc9kU8UQKgOriTDf5l5FhKODrjGwAE6uqHpBwHG49w8Tnv9NqeSxHTleN6bT9cjXmSxCxQL6Ve7KOWPdSzl8nMplAp079fK76giVrK1WmUqBMw9AjU3JcgkWh1hBCCnWyiks1MZjbpZOPHhxc3PjzUsoc2mjmZ8xBorOITfZVPMWNRUGilSXetF1kFYcWuB00+0Xh+VIybWMLEYIgSfQkSPVFccdzqxZgJRSAYV5AQttizSRVPN4G1tT36GKcDgUZQBNC0QOhdhN6dpiwMpjgzVAMBNBFkRc0/aPPVcor5Ej32hhKebRsUgSj3UO81/wGAM51XxUzyi6636KCVHKWINDU7tOpOePHjC70LH35Cn7Ueon0EIyZMmLFgZTSTyVLyeo1nkev+wViZNxTIe8ahR9bxyODDDz/kjDPOYOHChbz22muYTLHH0J07d3LHHXfw6quvYrPZcLvdTJkyhUWLFnHqqacya9YsLBYLH3zwAQsXLuSiiy5i2rRpjBkzho6ODl544QWWLl3KmDFjuPnmm6mrq+M3v/kNbrcbRVFYtmwZc+bM4Z133uGOO+5gx44dbNmyhdGjQ/fdL730EpdffnlUmbrPHhVCsGTJEt59912eeeYZZs6cydKlSzn99NOZNGkSH3/8Mdu3b9dXcMyZM4dx48bhcrkoKipi9uzZvPPOO73O/29/+xu33XYbP/nJT/je974Xs25cLpcewDY/P5+mpib8fj9ZWVlkZGSwa9cu/H4/ZrOZk046iW9961tcdNFFwz7zNRgMcvnll/OPf/yDp59+muuvv35YyzPYPPPMMzFdMv3tb3/r1ZckRy4ej4ff/va3vPTSS2zcuJHKykoKCwuB0Oz8jIwMioqK+P3vf8/pp58+qHm73W7mz59PY2Mjzz33HLm5udTU1FBdXU11dTUPPfQQxxxzDP/+979Zu3YtM2fO1I99+umnWb58OcuWLaOxsRGv14vP50MIobvWO/3003nvvfeigrpLwquhvV7cbjculwu3243b7cZgMDBp0qSERv6tW7cyffp05s2bx+LFi6O+0zQNv9+PxRL7GaInu3btoqysjPT0dBYtWkRRURHNzc00NTVFvUdesVZvmEwmMjMzyczMZMqUKTz22GPDGoh8qJD3jJKRTr9EiXxKsJNCKukhw7ZiGRHGwYghSRNBHlrxI/Lz8xk1atQhEyipLyIGih3aBirZBBCOxZBNpsiNMs4HhJ81/IdWGskgmxYaseHUVxmgKPjx6Ub+noJGhKAIB/QMG2w8wsVKPsaHl3xKmKrsn2GwUXxJA9XM4yzMSuhC4hVuGqihgWpaqEf7/+ydd7wU5dn+vzOzfU/vvdF7V1RARAVBiIq9mxiNsSUaX40lr4UkaIzYjVGT127sqFEpgo0iIL2XA6f3tmd7m/n9sWd3Z3aXKij55Vx8zofdqc/MzjzzzHXd93Ujk0IG5QzEQjJ+vHTRTiPVgIIZK22q6GM9BkroTxEVmiKuG5UV+PAwlpC6rn7wiQZDRJFXQy1KANQou6hTKkk15mKVUkmRssjQF6ATDfjbO3DjxEY77UoTrdQTJECeUEq6mItHCRGKxWJ/zIJVI1SEcTiR2AfC9KJbI59bXftY2/kpesFAiWUoQSVAtrGUDEMhwZbWo7K/nwoexYULBw66cdBFK434e2qL5FLEMGF8wvWOh77neMaY6x/XfF/7wm0HXeeUCx/TfF/+7u+OapuOFGqxYJnyGR5cWElhGONJNmRGAul3BL+nRa5nrG6KpsbNoYqIiUQJBYF2GtmrbKWbTirEofQRh0TnB4M0KFVsZy1GzCSTTjuNqrLHof+NmEkjiyQxDbHnn4BIt9JBg7IPAJ1g4IzMn0e2Heyx04iFVJ7At9bni5+2HwQKMhNOlxzxYkUw2YSu2ZZgIwkEiQNB1S8rSdFiehpBQgU5RVtwT+x0JlxOA11Pf9zzQunwtbOs4VUMooUxFZeQYs4P7V9R2Lbrfep8O0mRMsnUF2G15uDyd+H0d+CTPViCZqxiGhYhiY5gMy7JhTPQiTvYzZDU0yj05CdugyQhWiwElQB+2Ytf8eDr+d+vePE6OvDjwyZ20SW3kCeVk6srIVPKR9xPzSC1ODHNdHnk809VFPxA2LNnD+vWrePiiy/uffk5hgiPy3/xi18watQoxowZEyG2jye0trZSVVVFRUUFGRkZ/99FJI4YMYJNmzYxZMgQpkyZwimnnMK0adNIS0sDQn1NXV0dJSUlpKSkUFhYyPbt27nooov4/e9/j9Vqxev1IooiQ4YMOeC+Ojo6SE1NjRBk77zzDhdffHHk84UXhp5fdrudIUOGMGLECD755JNIO9avX88nn3zCxx9/zLp165AkiSuuuIJf/epXZGdns337dpYtW8Zzzz3HxRdfzMKFC6mrq4vsf+TIkdx7772cd955kTa4XC6ysrK4//77ufPOOwES1rs42O9+zjnnUFtby7hx4+jfvz8nn3wyJ5xwApIk4ff72bhxI8uXL+fjjz/myy+/RFEU5s2bh06no6qqivz8fG6++eYf1T7llltu4ZlnnmHMmDFMnz4dSZK4/PLLj6saGEeK1atXEwgEmD9/PtXV1bzzzjuReR9++CHnnnvuT9e4XhxX2LBhA6NGjQLg8ssv59lnnyU1NRQkoygKpaWlnHTSSbz44otHbTzgdDr5+9//zqOPPkpHR0dc5kMgEODqq6/mzTffZNKkSfj9flauXElaWlrEpg5C/feECRMoKirCaDRiMBjw+XwsWrSIBQsWAPDnP/+Zu++++6i0uxchy7e77rqLqVOn8uabb0asCVtbW5k8eTJ79+5l8uTJTJs2Db1ez44dO9ixYwc6nY5BgwYxcOBAUlNTmT9/fqRotcFgYN26dfTt23e/+1UUBbvdvl/Ror29nXfffReHw8GNN97I2Wefzfjx4//jBalgMMiKFSGb40mTJvWOy3tx3OKwRAk1RERO4zy+UN47Zo1TY6ohFJURJpfa2tpYvnw595z7R0QkOmimhXoChMgIAZEU0ilnIF48iIg88O6dlJSUJEzZSxQZudDxyoHbpL+ERf5//dBD2y+m5/6az5v/FvnudDo5KekMumjDRnvEkqmQCry4cWCLWCYVCOWYBSv18j48xJM5/YVRlAiqgfN+xAk17EoX7TRTQj9N8Wuf4mUZn5JDEWUMwEqK5gUkqARop5kqdtBNZ2S6hEQKGdixAQp9GUYyaXhw0UYjTdRiwMhITiFZSAOgQaliG99HthHO2gAgQUFuIKFwIOjjrUhkT3w0cFAJsIVVtCqhGhpGzMgECRKkTBpMmphNkpiKEUvkmI+GKKEWJAAc/g62276hw1sfsTYKo5i+FNMnYaHx/wTsUbZQxQ7MWOnDUHIpwoGNfWynhXpO5IzI7x+L/3ZhYsStUeFh41NR0SFWkAAI+ty0bPoaj60VUZIQRB2KHMTvsuG32wh4XVhS80nJKiMlq5ykjBIEczzBtfLNn0aoCAsGu5VN1LA7QvZbhGRGSBPQYcCp2NgYXEaQAFnkUyj0IYv8yL15qJHnYSHYo7jYqCzHTiepZFEhDiZT0BYZFSSJ5d5/46QbC0m4cGDAxBhhMvuUbTRRA0A/hlEqDEjYHymKTKfVgSToyNAXRKb/mKJEIkECQqJE/LKJMyeElo7QB6Mqe2E/ZJRamNBMN+zHJirBI0q09TzbdPt/aWg3dLK98iMcnlbSLEVkJpXiC7io7VhHefbJePzdtNn34g+6MEnJWPXp6EUTrkAnDn8nshLAIFlI0+fikz34gi5yTBUMTD0FegIf5I7O/e5ftFggLf4FINjQRG1gJ7X+nTgVGwIi6WIOmUouJmMqQcUfqnek+AkqAQJBL8Ge8Y1BMKLHhEEwsajqfU2RyJ8qy8LlcjF58mTWrFkTmdb78nPskGhcfvnll2vqE/yYUBSFPXv2sGrVKgRBwO128+6777JkyRKCwVDWUFpaGueddx6XXHIJNTU1ES/qsWPHUlJS8pO0+4eipqaGBQsWsHz5clasWMGePXsoKSnh/PPPZ9OmTWzcuJG2tjYA3nvvPV588UW+/PJLfAn66yMplPraa6+RlpbGrFmzNNNff/11rrzySp577jlmz54dZylVX1/PO++8w9y5c2ltjQa2FBQUMGDAAL766iuGDx/OX//6V3Q6HXv27OG1117jm2++4eyzz+bNN9+M3NuzZ8/mww8/jGxj2bJlnHLKKYd1HIeD+vp6hg4dSldXFwaDgZKSkkjE7B133MGwYcMYNGhQRBg6Vnj99dd59NFH42yzcnJy+MMf/sAVV1xxzNtwrGC1WnG5XFx44YX8/ve/Z+TIkXz00Ufcd999+Hw+duzY8R9P1h0P2L59O0888QROpxODwYDRaKS7u5va2lrq6uoIBoOcdNJJTJgwgQkTJjBs2LDj7rwHAgHGjBmjuQ9+8YtfcO+992KxWPjb3/7GQw89RHJyMldffTU33HDDQQXYA+GTTz7h2muvpbOzkyuvvJJ77rknjozevXs3AwYMIDMzE7/fj81mY/r06bz//vvk5uZit9sB2LFjBwMGDEi4H7vdzkcffcQpp5wSyTjrxQ+HLMu89NJL3HnnnSiKwpQpU5gyZQqvvPIKdXV1/OY3v2Hp0qV88803yLJMv379GDhwIMFgkO3bt1NZWYksy4wYMYLCwkJaWlro6OjgueeeY9q0aT+obZ2dndxzzz289957tLW1kZGRwVlnncUZZ5yBTqfD4XBgt9txOByaP4vFQnZ2NtnZ2RQXFzNr1qzjor7IihUrIs/iCRMmsGzZst5xeS+OWxy2KCEhRbyzS4UBPwopeKb+EtqURuxKJ27FgU1pj9hihGEWksgXy8iSCvH5HLhw0EA1jphaCgBpuhzMYgqCIOKTXYiyiFVMwSKkYhWT0QsmdOiQBD26ivIIAfXJ2vsBONuyf4udA4kUZ434Aws2ztnv/OkVd+C3dyAKIpKgp9m7j1ZvNSm6bArN/VnU8hJnpf4CCL0ABpUAu71rafLvw0oyyaSRRCrJpGElBUmnR1EUvgi+E7cvPcZINDqAAROgkEkegxiNKBzeoKdK2ck+thEkiAkLmeSSQS7pZEeyJxRFwYUDX49IlEw6HlysYAEjmUCWkKfZpkdxsZEVOLEzlBPIEQqRFZnvWISrx0qqgLLQPjBhFpIwYdUIJokIQIiKEuEaF6IgIu/HIzGoBPDiwYQFURAJKH4q2Uo9+yIWHRJ6koRUcimigPJI7YOjQQypBQqHs4WVtg8SFnZNIpXxwpk/eH8/JtqFFrbKq/ERJURFxJ5smpA1TjF9GSCMjFu3V5CIFx4ATG1BnHIXPmcnoqRHkPQ4G/bQsH4RcsCPNbsERQmiBIOIioDBkorRmIakN+HsqsPeVkXAH70XysacR17/eILhxxInpve/i893PaKZdqbxEtyKE4diY0tgZcRyLRGGCSeRK4RScXV5OSgHKOS8oPv/ovuQLqZdaWa98jV9pGFUSEP3G+3pU7xs8i3DhYMSoR+VyhYMGDmRMyICco61L8lSyG5CSE0wIHR7IDsjfrrNHjcpWBLvxyt4EpwDXQKhdj+PfH/qwQfQkidwcEFCvavcxBkZBOOtjTyFiQfJsjF0DOaa+N9NSHAsgstLMFNr7SfLQRrbNtDWtZtO2z78QTcD8s+kLCsUoKAoCrISQEgOrSf2CDSKouAN2DHorIiChJxkQqprS3xMhMQJMScr8cwENTnkVAuiy4fL10Wro5JWxx46XNXISvS5ohN0SOiRBB06QY8CoeyLnswLAZFS+tNXHB63/f09f87KircZSfisTJBt+nnjswm36fP5yM7Opru7m7y8PJqamnpffo4h1OPyrKws8vLyeOGFFzjppHi7w2OBrq4uPvjgAyorKyMR9mpyWxCEiNXO2LFjqaqqYuvWrTz55JN0dsaLeNOmTaOwsBC3201bWxsFBQX079+f/v3706dPH9LS0khKSiI5OVnzsu92uzGZTMcsA0OWZVpaWsjJyUEQBP7whz/gcDiYOnUq06dP1+xXURT27dvH1VdfTUNDAyNGjIj8jRw5krKyMgDWrFmTMDgqXEMCIDk5GavVSiAQ4K9//StXX53YUm5/8Pl8nHvuuSxYsABFURg3bhxTp07l9NNP5+STT45k1LhcLnbv3k1LSwvl5eX06dOHJ554gvvuuw+bzYYupt/6/PPPufTSSykqKuLjjz+moqKC2tpajaj08MMPU15eTkFBAX369CEvL++wfp9wQdUDZbs3NzcjyzK5ubmIosi2bdv4zW9+w5IlSyJ1M/Lz8xk1ahQ33ngjM2bMOGbXyPPPP8+vf/3rhPNef/11Lr/88oTzjkfIssyf/vQn/vd//1czvaKiAqPRSGNjI11dXXz55ZdMnjz5p2nkfyB8Ph/btm3DbrdjNpsRRZG///3vvPTSSxQWFlJRUYHP58Pr9ZKcnExxcTFFRUUEAgFWrFjBmjVrIpZCEOpDxo4d+xMeUTy6u7vZvXs3n376Kffff/8Bl/0hY4Obb76ZZ599lm3bth2wjsvGjRuZMmUKM2bMwGAw8M9//pPbbruN3/72t6xYsYLq6mpuvvnmiHVcL35cNDU18fe//52lS5eycuVKLBYLX331VcRiy+PxIElSnCWg1+ulra1NE4xztBEMBlmzZg2ffvopn332GevWrQNAp9ORnJxMUlJS5C8s4La2ttLS0oLT6aSgoIAXXnghUqfpp4JalLjpppt49tlne8flvThucViixCRmRQjmMI41MTgmbQY7HCtwBW3oBRNmKZkUOZU0IZt0XR5GTATwo8cYGXCKWSFiR1ZkunyNpOhzCPTNJ7BpM7We7XhlNx7ZgYKCUTDjS9bjdrXi9cRbVIiCDoshnYDsweO3IwgSyVIGqfpsrFIaRpeIWbCG6jEIeuSThmnW19m00ae+gDskOogGsDvp9NTR6tpHl7cRp78Tv+xGL5ooMPajwbMLUZDwyR4MoomK4inkpA2kdvtiqn3bGGAaR7FhAM3+KuzBTgRfSBDIIBuDYApFaAJej4198nZqlF2HdM4nCDM1vubAIWVSBJUgXbTSRhPtNOMiRKZlkscoYQIALsXBHjbTSiOppJNEKnXsDUU1U66JagawKR2sIeQ5OJlz0Qk6AoqfWvbQTB1unHGEpA49OvRI6CPu3QbMWEhCLxhBkUMe4PhopwkHNvKEUpKFNCwkkyFnH9LLi6IouHHipBun4KBb6aCVegyYGC2cilVISXjeDueeUdcUAdgjb6aOPZycfgEiEs6uRhzY2K58jwkL5cJgCoWKngYe/Df7KaEoCkt4/4DLmLAwmkkai7L/djECYPSvHyeoGqe5mmux7dmIt74WZ2cdQV+MwCYIZPU7gfzR0zBYQ0SW3hXf9SuigKLIrPvgQQKeEAlsTS8kJbcv5tQ8MouHsfrde4/ZcYUxvf9d+52nFiimmS7H7bPjwkGQAEGCyJH/g+hS0ii0DNTUDbB1VdMaqMMgmDGJZoyCBZMpHYNgiss2kBWZVc5/EyDAKfoZCDHZWIqKXG+Uq9gir2K0MJkNyrfkUMRQ8USkpMQvPAmFiSRL/DSVKCEXhAhvJUH/JO6pjV9X1T6lf08EboJH/qEIEgCiP3GdBCEQv03JFR8JHExKbC0TsEZ/H0V1aGFBIhZ6e6jP13dor3NPflLcsoYuL2J39DmsKAr+oBuDLnqu5ZQji2iS6trAkjjjI/Za8peEfjvJmTijRew5X0FR7hHKdQiCgNAdn+mo9FwTAcXHJudXdAVbOdV8AaIghoQUJVQbSUGBlCR0ogGjaEUSe8R4V6iGidpWRZAk2n11bOpeGircLpoxiBYMohmjZEYnGFGQufCWM/B4PHz8wjdYpXSSdRl8Uf8KJpMJu90eKYI7YMCA3pefY4jwuFxdF+DHgKIo3H///ZHo3qKiIvr06cPJJ5/MhAkTOOmkk9DpdAQCgbhMDghZNOzdu5dx48bh9XpZvHgxixYtor6+nvr6eiwWC5mZmdTX17Nz506N1UYYWVlZFBQUUFdXR0dHBxkZGYwePZpRo0bRt29fysvLKS8vp6SkJGHRTjVkWaa1tZW0tDSMRiMdHR0sWLCABQsWsGnTJnbv3o3L5WLs2LEMHz6cf/7znxQXF1NbW8vJJ5/Mww8/THp6Og8++CD//ve/2bFjBzk5OTz33HO4XC6SkpIYNmwYEyZM0IgpK1as4J577uHrr78+6DkvKytj3759B/9xEqC1tZXPP/+cTz/9lCVLltDe3g7AE088wW9+85tQ4NIXX/Db3/6WhoYGpkyZgs/nY8GCBdx+++1cccUVDBumfa+54447eOyxx5g0aVKk/bt37+aRRx7hiy++oKmpCa83Kl6bTCaSkpJIS0sjJSWFjIwMcnJyKC0tpaysjJSUFJxOJx0dHbS0tPDqq6+i1+u5+uqrKS4uZuLEiYccWe12u9m1axfbtm1j27ZtLF68mFWrVnHWWWfxwQcfYDbvp7/+ARg2bBh9+vTh+eefx+VyUVVVxVdffcWcOXOYPHkyf/nLXxg3btxR3++xQLhGyoFw++23M2fOHCyWBOOVXgCh7IEPP/yQJUuWsHbtWjZt2hSXHZWRkcEf/vAHfv3rXx/Udq++vp6ioqLI98suu4y8vDzOPvtsJk+efNzZVW/dujVC0LpcLs3fkCFDmD59emRZRVF45513qKqqoqCggIKCAgoLCykoKCA5OTnufXzHjh2MGjWKm2++mUcfffSA7bjoootobGxk9uzZ3H777bz77rtccMEFx+SYe3HkcLlcKIpy3ApETqcTvV5/0PEEhGpmTJgwgRkzZvB///d/CIKA1+ulrq4On89HMBhElmWysrLIycmJE/7V43JFUXjggQd4+umnSU9PJzc3l5ycnMj/ZrMZr9eLx+PB5/ORn5/P4MGDGTJkCKWlpYiiSH19PR6PJ5JV2Dsu78XxiuOm0HWs5YDH4+Gk3HPYYv+KFF0W/ZNOJE0fTT9W3AmsJgwhlk6IGXT6+ubFLerOjnYsxq4QwREM+nC72vFIHuSAl2DAi89rx+1ox+IUMXt0BAnQ7W+lO9CGK2DTFLPU6yxYrblkZwwkK3MgFnMmrnwTLlsjzZXfYa/dgdMbeiEIZSIIyEoAoz6ZDEMhVn0GVn06ra69tLmrSM0fQMWQWegbbFQ2fEljx+bQuqIuJGoEQwWafYobo2gNWTwooReBZDGDNDEbq5iCVUzF7DOxQV4WyRzJlUpCxZ1lK1ZSMWHGTBJ6DEgWM3LM+RVEAUUOXSo+xYMbJwECoMhYSMKksi9qVKrZStTCwYyVcUxhGZ/1FJUWKGMgNtqx0UGQADr0BPCTTBoDGEmaECJw1inf0EGomLOISCb5DOUE2mgglUxMgoWgEsSLG7fgplHZRxM1iEiRIt+JICKhx4CFJNLIoolaPLhQkEkmjaHSiSSJ8VHLSiCB/7mKqHQrTjYqy/DhYTSnkiRo75cjIdTVwkSNsotdygZSdbmk6XPwyk66/C145BCBnEY24/TxhcQStvs4gFtx4sZBO800Uxcp+AuhzI9RTMAoaO/n/yZRYuy18yKfv//H7UBIkICQ5U93zQ5aNnyJo7ESnSWZ5IwSrOlFWDOLMCZlEpBklKAfnTEJY3LoetZ599/lKz2FlV1djVR9/yH25koA9MYk/F4HoqQno2gYlvR8JGsyenMybz1yA7m5uRQUFPygSMSzhoXEDsGbIOJfShCxvX2u5nusgAeh58n0wlsi3zt9jaxqSyyECYik6LJCtXqkPDJ1BejSMvi+dT5t3hpyDGUUmgeQa4ymcQdVtj2V8lZq5d2kkUU3HYwXpqEXDAiShGg2IcQOZlPj7dYCOfEkXiIh4EhEiejK8b9/YGS8D6uSIMtCCMQLnYkECRJcBr407fEbbH6NGKFZNjk+al/yKxExIq6tPedDNmjbbGyJJ/TDGSWKOXFBWkUv7TebBEHQCByRyQHteQ6mqgQPc+JjlJw+hNjfdj/7DQsTcnr0eSL2ZKbssC2jyrkBSdBhllLixiVq6CQTBslMUA4QUHwEgz5S00oprziT9IwKvlv+VzyeLvILx4Ki4PM5CDi68QacBGQPoiAhCjpEOSSIeOVQfy2KIn379mXEiBHMnDmTSZMmUV5e3vvycwzxUxQtbGpqilhx3H777dxxxx3k5++ntspRgKIotLe3s3fvXrq7uyPWCfv27aOpqYmioiIKCwuprq5m3bp1bNiwgdraWk2kfVFREePHj+ecc85h+vTppKenI8syH3/8MW+99RZffvllJMMjOTkZp9OJLMuMHDmSE088kQEDBpCTk8OTTz5Je3s7V155Jffffz+LFi3i7rvvZv369QCUlJRQU1NDaWkp7e3t+Hw+MjIy6O7uxuVyYTKZmDRpEqNGjWLgwIEMHDgQo9HI6NGjASL3T1paGkOHDmXgwIEUFRVRXl5+UKJGluXIObHb7aSkpDBw4EAyMqJj2KuuuorXXotai95xxx1Mnz6d008/HYBx48Zx+umns3jxYtauXYvFEhrTO51OrrrqKubOnUtBQQFdXV0aESw9PZ2HH36Ys846i1WrVjFr1iyMRiM2m426ujoqKyu599572blzJzqdDp/PF/l9YpGWlkZGRgaTJk1Cr9fz4Ycf0tER6ueuuOIKnnrqqYRC18Guoc8++4yLLrqIk08+mY8//vioCxOnnXYaa9asYcqUKVRUVLBjxw6WL1+OwxEalz/22GPcfvvtR3WfxwqKorBx40b27NnDRx99xDvvvKMh03/5y1/y/PPPH3cWQscLHA4H//jHP3j88ceprq5myJAhjB07ljFjxjBmzBgyMzNxu914PB4GDx58WH3322+/zR133BGp85Kbm0tzczPFxcVccMEFlJWVkZOTEyEtCwsL/yPsw+69917+/Oc/J5yXnp7OiSeeyMknn8zUqVMZN24cDocj0g9cddVV/O///i99+vRJuP6YMWMYPnw4b7zxBpdeein//Oc/e6/dXhxz9O3bl8rKSvLy8rBarezbty/hc08URfLy8jCZTJHxTTAY5KqrropkZQ4ZMoSioiIuueSSSDZGS0sLzc3NeDweTCYTRqMRvV5PXV1d5LljsVgYNGgQJ554Iueeey6jRo0iOzu7d1zei+MWhyVKpJNNiTiALPIRRVETJRrGkRCGZ4gXsY/ttCuNyD1EsgcnAfykWgoZWX4xRn2PrUJXKEJQaY9J/zbEEwyC2UygVGtzIetFjSARhrVBSzR4sqLLWJdui992Zjqe8mx8PjseTydudwcedyfd3TV0dFaiyAF0Bgs6oxWPvRWDOZX0/EGkZFaEoh+bOpCVIBnJFSRbQqnNtoGhYzR2xZ/XoFFE2baHDvs+8jKG0eWooaVrJxZjOmneFLLNZaF2B520e2po667ETifOoC1Sg0BAwoAeH944sj6TfPqbxhAkSEDxE8CH3+8igD/y3aHYsNMVqduhhoiEhaRQ5onixd5TO2IQY0glAyNmVrAAP76etogoyBgx4yUU7ZpHSaTY8cmchUVIIqD4cdCNFzeNVNNBM0bMuHEiIlJMX8oZFLJLEkSqlZ1UKluYIp4f+r2VID68uLDTpNTQTC1pZEUyN2KxWfmOZkIDvsHSCSE7LCEjFIF6EGK/XtlHC/V00UaQAOXCYPowODL/SMn06dk3RD4HFD+Nvj20++rpDrRiEpPQi0bkZDNtbTsoLz+DstLJSMs3R9Y53gSJkI2XnTaaaKORLtpQULCSQg6F5FDISnnR/3cFMY8EalEijIAUpHP3Olo2fomnsxlLTgklpaeSWTBUG8kf07V70iX0LgUlZjxuaUhsx+MoNGJv3I2kN2LNKMbn6qSldj0dVRvwOToJ+rV9pjEpg7TCIbz29B849dRTDxhREggE2LNnDz//3TtIOhNJe+Oz1IKpFnQt3QkFCUVRsBns2Oq30+VtoNW1j77pJ1OWMkqzjCdJosO+lzZ7JZKkpzh7LJur5uNwN5ObPoRBjMIrO/EYZdyBbmzeJrq89bgD3YiCjixjCQHFh6wEsfmaUZApMQ+ln3UcOiVENgs9qcWbupbQ6q0iWZ9Jh68BgFQhkxN0oahDKVFmxH6ECUUfk5ERcysETfEvVfru+Ps8UbZC7HURSJAlcciCRDB++ODNjEb8GdtD11asIAEQMB96ZF9YLIuFqf3AfZu+K7ElXwTq2keW+DGE6As9i8VYa6wYMcGfE83QkJyJ2yQkEohIfF4TQdlfJGRzKzZ/Cx2mbty+LizGDIzpeeh0IUsbQRAJBLwE21vx+u34A24kUY9OCj03GhvX4rA3kJbeBznoo7u7lvSMvowcfS0AhgY71DVqdhkOWvArPpyKDQc2pt1yCitXrmTVqlVkZ2fT2tra+/JzDBEel1922WXcd999B7SxOBJ0dHRw4403UlVVhd/vj9iPSJLEL3/5S5599tnj8hnt9/upqalh37597Nu3jz179kSilUVRJD8/lI1bV1fH2LFjmTZtGqNHj8Zut0cyJqZPn35I1hCyLDN//nwcDgeXXHIJ//u//0t3dzcVFRWcffbZDBo0CEVR2LJlC4sWLWLp0qVs3bqV6urqyDbS09PR6/W0tPQE34gisiwjSRIPPvggM2fOpLu7G7vdjs1mo6urC5vNhs1mo7W1ldWrV7Nr1y5NZkIY2dnZlJeXk5ubGyl4bTKZIrYSmzZt4rTTTgPAaDTi8/mQJImcnBwaGkLPsN///vc8//zzlJSUsHHjRgBqa2uprKykrq6Oe++9F0mSaGpqwu12U1xczJ/+9CeuvDJqc3vqqadSWFjIm2+GagI6HA4aGxv5/vvveeWVV1i4cCEvvPAC1113Xdwx+Hy+SBR5dnY2zz77LCNGjKBfv34Hvf5sNhsPP/xw5PeXZZnVq1cf9ayFyspK3n77bRYvXkxDQwN9+/bFbDbT2NjIihUr2Lx5M0OHDj2q+zza8Pv9LF++nM8++4xPP/2Ubdu2odPpOO200zj//PM599xz4+qS9CKKpqYmnn76af72t7/R3d3NJZdcwh133BGxojlacLlcLFiwgHHjxlFUVMR3333HK6+8woIFC+IylARBYPz48cycOZNZs2YxdOj+LUghZMnX1tZGUVHREfnhu1wuVq1axTfffMOKFSvYtm0bb731FhMmRN+3FUVh+/btLFy4kG+++YaTTz6ZsWPHRsTRl156iVNPPZWGhgYaGhrYtWsXK1euZMWKFdhsNgoKCjjrrLNYt24dmZmZLFmyhLS0NB5++GGuv/76uONLS0tjyJAh7N27l6amJgRBYM6cOdx777HP+O7Ffy+6urpYtmwZy5cvx+/3M2DAACoqKjCZTEiShCAItLa2RjJEw7ZtycnJ2Gw2nn76aWw2G1deeSUffPABXV1dPPPMM9x0000H3K+iKNTV1bF161a2bdvG1q1bWbJkCdXV1Vx99dW88sorvePyXhy3OKJC1wICmeTRl6EkCdqolSMhXgeYT2CXJxRZbxFTydTlo/dL5A84FatJ688cFiU0iPGbUzo6CQ5MXCzOl6JdVvLLSO79RBW2ROtWKE0tkc9CpjZV3jksFCnmzgwRRUG/l+7G3Xi6mgjaHVjTC8guHIkoxkdM6rwKnvTEqn1YnAjGWFgkVcV4a4dJjV0J0rsLcnG31+EMduEK2nDrvLj9NkRZwB20Y/M3AyGbKlmJj0KV0KFDj6DT4QlEz72IDqNoxiu7kAmSRComrPjxRkSLPgwhR9C+2PkUD2tYijsSES8gIZFMOoWU00wtDmyczFnR2hA9/1crO9itbCKTPPowmGbqqGYXAxhJiW4AHsXFquBirEIKY6XTtKKZINKs1LJNWUM62YwUEhfhCxfSFhAiwo0OPdlCITliMdlCYTStLrz9HpuklcqiSK0TI2ZKxQGkCVl81vwvMjIyjvgFXi1KqNHuq2djcAU+ZyiSLCtrMEMHX4Io6hC/XndE+zoakJUg7TTjwwso+PDiwdXz58ZDyFpERCKDbDLJJ4s8zEI0GvC/KRtif4gVJAJeFx2bVtC0exl+j530gsHkD5xMenJZ/LWVoFuP7UcA9PYgOlfMfb+f61TWizgLov2nHPQTcDoIeBz4XF3YGnfRVbcNn6sLSWckNa8/6QWDWfnvp8nOzo6sN/G8v9JSs5Zd60L1dySdEaM5DYM5lQwli7K+U+P6SrHNhs3TRLvcRJe9mi57DYFgfMR6SlIhDmcziiJrCsInm3LxBhz4gx4kUY+CwoDysynIDokYuqYuzXac/g6au3fS7NmLzdeEgECKKQ+XvytUj8AynjJz1NJC0OtxBDrY1v0NHb4GzFIK7mA3+alDGF5ybvScmbTkfCKiOpHF0VETJRJlSSQQJfxJMc9UXfw1ERYc1FALEpG2JrjuFAEEWduWRMKDoroMBNVlqvMkJvJ1zv0Q/8HQ8jq7ts2CT3vtB9KjGQ6KSgzTd2rFDVlVjDtoTZxxoUuQURELf1ooYjfWhirSPlVklT89tKwvLX5/5ob49QPJ2mttf9ZbiqLQ1r6dfbVfEQz6yDQXU5A2nDSL6tldk1iUUGORL0Q4NjY2snbtWmbNmtX78nMMETsuT0lJ4eabb+a3v/2tpr89UowePTqSBTB58mSGDh3KsGHDuOCCCzQR+P8pqK+vZ8GCBdTU1NDd3c0FF1xwTIsxHwhOp5Pdu3ezfft29u3bR1VVFQ0NDWRkZLB48WKampowmUx4PPH3mSRJpKSkkJaWhsPhiGR5iKJISkoKmZmZVFZWYjAYGD9+PElJSREblYyMDN58801N/QdFUfj444+57LLLcPXYuplMJkwmExdffDFTp07lhhtu4KKLLuKZZ56Ja8/EiRNZtWoVt912GxdddBG/+93v+Prrr6mtraWoqIj333+fCy64IGIXpYYsy9xyyy0899xz/OMf/+AXv/hFwvN19dVXRyydwr76ffv25bzzzuPKK6+Ms5cKY8OGDZxyyimR45o4cSI33HADw4cPp6Ki4pjYD82ZM4e//vWvdHd3YzKZ+Mtf/sItt9xy8BWPMVpaWli0aBEejwe/3099fT01NTVUV1dTU1NDXV0dgUCAvLw8ZsyYwYwZMzjjjDMOOzPlvw1bt25l3rx5vP766xgMBq677jp++9vfau6xHwuKomC32yOR1Dt27ODTTz9l0aJFOBwOSktLIwLF5MmT4yyjzj//fD744AMgVKy9uLiYkpISLrroIi655JK4/XV2drJ8+XK++eYbvv32W9auXaupewGh50hTUxNtbW0EAoFItLjRaGTMmDGsXr2atLQ02tvbGTRoEO+++y6DBw+O21cgEGD58uV8+OGHzJ8/n+rqatLS0hg4cCDr1q3D5/NRWVlJRUWFZr13332X3/3ud9TW1jJkyBC2bt3K22+/zUUXXfSDznUvenEs4XA4eOaZZ3juuecoKSlhypQp3HzzzeTkxNcTPBgURWHTpk14vV5OPPHE3nF5L45bHJYocTJn00QVTdTgxU2QAMmkUyCUkUcJehK/nIeRiGg8K/2XdPgb2eH5DrfsIKD4sIgplJZMpjBrlCby15+ufYCadjXHCRIAwTRtqrPaPsGvsouQ/PHEhuQO4s4xkrylNW6epyz6Imba3Rz5HBYlwgiLE4ksLEQ/6NxyQguVsDghJ9AoDI7o8klVDhRBiLd+AILJBqS1O0P7KlS1KyZtrMvTyHf1b0S+W635GAxJEAwgK0EUJYg/4MHt6UAvmUg3F9Hi2A1Av6QT6JMUKrAlK0EaPbvZ7ViDJ6gWjARSSCeFDAL48eImgA8BgW46yaaAYvpiF7qoV/ZGClcDDGAkxYLKTqTnGggoPpzYSSEDAYUmpZYtrGIoJ2KRktkc/A4FmROkMzEKprhMnu+Vr+iijeGcFCeWhLbvZxVf4MeHlWRsdGDETIFYQatchwMbRWI/BkljE2YJKYqCAxvtNNGuNPVkAPSQYejJp4w+DI4WwT5M4v20aSEvfdO6fdSflMq2BU9hSS8gb9AkknIq0ButmFv96Bd9f1jbPVqQFZl9bKeOykhGDIAeAyYsmj8rKaSTjZSgoHqvIAHDb4sWsVYUhba1X9KyYiEKCtllY8gfMAlzai46z0G77wihLeu1HZLerr2GxZiod9En96wXTyqHvf49adrfT/TKuGyNdDZso7NhG46OWhAE8gZNorziTCRdiCiVgwFWL5xDwOciv/xkXL5ObPXbAUjKLmPQ9FsQNlbS5NqFrWMv9s5aZNmPKBlISyomPbmUpNw+GAzJrFkZFW/SUsrIyRyCKEgIgohgMZMt56NPyyAQ9FLb+B1+v4vS/AkYDdHodtkYOo5ERLKvs5UWxx6anbvpdNdRmDyEgboxSBnaIs5ykpnGjs1srvmQAYXTqGpeDsAp/X+FXgoR/7GiBESFCUd5KGvC3OojaNSeV0VKQNjH6lAJhINYu6NYe6PY7ehcgThBItG2E9ko+VPiRffgQfYXmaY6XCGs9SZ2PYq2wRF9piUSPgBMrfHCSfi6BpDsMTUpiqIEjOTR3h9SOFsiQXYIxI9PwjC0hQgxX2aUAEuUYQIhccJdrK2LkUhsihUmJK+C3p4gg9GjnZYoGyQWuk4XgiNG5IjJepJr6uPWW+iOWsP8FNZC/20In+PvvvuO559/ns8//zxidTNz5kx+/vOfM3369Di/4kPFvHnzeOKJJ2hqasLv9zN16lQeeOCBH62Q9n8j/vCHP/DHP/4x8v2ss84iGAxGMlW8Xi8NDQ00NjYyduxYJEli1apVAKxbt45Ro0Iie0tLC/PmzePJJ5/UCBtJSUlMmjSJiooKmpqaaGhowOPx4HA42LVrF/PmzaNv376sXLmSuXOj9ogGg4GtW7fSt2+8zd/u3buRJClCBl522WV8+umn7Ny5kw8//JDbb7+dc845h7feeisueKKpqYnS0lLS0tLYsGFDQiuwr7/+milTplBcXExWVhZr167l3HPPJSsri48++oiuri7ef/99Zs2alfCcejwevv32WxYuXMjChQvZsmVLZF5ZWRkPPPAAV1111VHJ+nnhhRf41a9+xS233MJFF13EuHHjDlor4Fijvr6eW2+9lY8//phAIPQME0WRwsJCSkpKKCkpobS0lOLiYsaPH8/IkSOPu/oExyO6urq47rrreO+99ygsLOTWW2/l+uuvPy7tkrxeL19//TWffPIJn3zyCdXV1eTm5vL4449z6aWXRpbbvn17RBB48MEHeeWVV9i7dy8AL7/8MldddRUffvghS5cu5ZtvvmHLli0oikJBQQGTJk1i4sSJTJw4kY0bN0YypXQ6Hddccw0jR45Ep9Oh0+koLCxk0qRJWCwWKisreeKJJxgwYAC/+tWv4ooaJ4KiKGzYsEEjUDz33HMJC8r7fD5+8Ytf8OGHH/Lss8/y85//nMsuu4w33ngjwZZ70Yv/f9E7Lu/F8Y7DEiUmC+dFCFVZCdJGEw3KPtppBASSSSWPElWh4VCUfTKpPTUU4gnHs9J/GfmsKApdwRaqdXtp7tpGRkoFJbknkZFSjpwZX8AyNrJSTZwYm6Mv1bGeznFkTg/p5kuOf3nThyMvD3KWgiaVeGLVDugC5p4C3DGcgawHS2to+7FCRGz2hLE7RKRYal2a6cEkPbpOD8HkeLJL39St+e7PS0HXHSJpAkEflc1f4w968Ut+vN5uBEFCkgxIQqhmhU5nJMmSh61zHw0dmwCFzIwB9O1zFlZrLobq9uixKAGc7bXoBANBJUBHoJEOXz32YEdPqWkzOgzQY89VQDlpQojUC9eNGMkpJJOOQVW0/EDwKh42sRIb7QgIoVoQnKgpiqxGt9LJWr7eb6ZEp9LKWr4mi3z0GGikmgxyGKMPpZXuDm6kSt7GOOkM0kRtJGIikSKoBHBix40Du9JFDbvQY6A/I7CSjIiEEZOmCO/+CPmwIAEgy0FWL5+HLPs54eTbkQz7T7P9sQQKj+JiM6vopoNi+lJAGVZSDvg7JhQph8Wn1C7Y/KdDasPpk7WepEu+uueQ1jseERYlZL+XukVvY9u9geLCUygtmRQSD0kcLQ8QNMcQ2jE/geSP6cx6CNJYUULfqSV0/Wmhl+tExYd9yaFpQsxt4FYctO7+joZNX5A7aCJ9+80AIKCHtZ/MQRAERk7/PXvXvktbdSi7J71oKKXjzmPjR39G0htJTSsnNbOc1IxyLKkFiGLo+CRVtLyiKMhyAJ2oQ3IHCVi0fbk6G0RWE+wJrk+1MBGOZDfWdiKnWjQFyMSuaL2CoOxne9tS6ro3kZc+FIOsp8a2njRLEWNzZ6MTo/2zp482+y9R/QRDt/ZEHokokUg4iBUlEgkEscvEEuixtkumdv8hCRJigiCAQ7Zw2k83IvpUbev5XSyN+8lQkBM/xMOCVKL7yZ8kYa1zxU0H9lv/wZ8auk9iRY1YoSm070MTbfTdfty5WnIr9hoB4oQJ0eOPywYJJmufF7rWBNmnMdGOsaIExAsTvaLEj4tE57itrY0333yT//u//2PDhg3k5ORwyimncMYZZ5CSkkJqaiopKSnk5OQwcODAQxpnud1uPvjgAx599FE2b97MrbfeyhVXXMHo0aOPS/um/2Ts2rWLBx54gOTkZBoaGmhra8NisWC1WiN/OTk59OvXj+eee47vv/8ei8XCL3/5S+bOnRsX+d/W1kZ7ezvp6ens27ePpUuX8uWXX1JfXx8pKGu1WgkEAhgMBh566KFIFkz4t927dy/p6emHTLYuXbqUSy+9lK6uLnw+HzfccAOPP/54QjsYRVF44oknuP322/ebKfG73/2Op556iuuuu46amho+/fRT/vSnP3HPPffg8/k44YQTIgLLoZDpLS0t7Nq1i8rKSj7//HPefvttzjjjDO6//34yMjKwWq0UFxcfNjH//fffc9JJJ3HxxRfz+uuvH9a6xwqLFy/msssuw2g08vvf/55LLrmEzMzM3vv2B2L79u2cc845tLa28sQTT3DppZceUgHc4wFhO7kHH3yQ999/n5UrVzJ+/HgAVq9ezYknnsgvfvEL/vGPf5CSkhLJrHnyySdJSkri2muvpV+/fkycODEiRJSXlye8pmRZxufzHZEV1OEeU6L97969m0svvZRNmzbxxBNP8Mwzz7Bz507uvvtujfjbi178N6B3XN6L4x2HJUpMMV6ETog+eGVv6OXfq3jYwio6ic8ugJCVTYnQn2LDIHSCTvPyqsYZI+6h29VAl6ue+rZ1uHyhqC9JMlBSOpnS0lND/shJ0Zd7NSkRS8roYl7QfWl6DF3x0YTezJjBRM8m9QmsIMKElhhD7AVV5Irfov6sbZOkctOQVQEBpo4Yj+qeY9S5tUROeP/m1niv8Fhvan1tO/7izLjlwsJEZF/pZgz1XXHLydboQMLpaSOQbMBqjaaOKaKAcV+bdp0W7TUgu/ZD6KjgUGx4cJMlxBckPxgURaGG3SGvd/rTSgN+fGSRh4CIFxfddNJIDTbaEZEYygnkCIUaUvxM8UIURWEz3+HEjoREOtmUMRAdeurFanbK60gildG6yRiE6LlR12xQFIUgAXy6ADIySaRGslTcsp0drKOdaJZNEqmMF87UHNOBMgVOm/YIshxg09p/0tW5lyFDLiUnd3hkvqwX0C8+gHWTcmj+5YcCRVGw00UL9dSzFxGJYYyPiE1qHEr2Q1iQkJUgXr8Tb8CBIIRscxZu+TOTzwoJM2IP2RcehAYCHjo6duFytSNJekTJQG72cL5e9uDROtQfFeMvfwwAj6Od3d+8jMfRzvDUM8iz9APAVxG6B/cnSoQRK05AiPCMFSXUkeNh6G1eiJkcNAps3Po67Z27sJizSLLmY87Ix5iTjzk1D1NSJkLPi3zA2NPvBWQ6azZRvfpDkrJLyew3DjngQ29OxtfcSPXGf5OWPwhTajaN27/ClJxFMODD7+5GlAyMPO8+ku2h/lnRi3GEreiTEWQQEjzGFEGII9TDNj7aiQJBk5TwPGjOiarfFLyhe17otGP3tbGh43OcgU4MOisWXRpdnnr6Z55KefoJcW1TixLhfl6OER3EBMWjY0UjIaa5kXPeg0TZeHLMMzLWQimoyqaRfErCiP5DERLUAQOCkliQSJSB47cISD7tPpUEuxOUGEECbWAAQHJVKDAhtgh1ZPn9FLpW15OKRcrGloTTgxlWgiatMCPEnLqwUJbonKrFiXCAQuzvC/Hn3tAdb78mObVjg1hRAvYjTKiu00B2/AuLrkVb9yWwr0bzfXHw7cjn3pefY4+DneMNGzZEIucT4eSTT+aee+5hxowZByQpm5ub+e6771i5ciWPPBINjigrK+Oll16KeIH34seFLMssX76cwYMHk5kZP+b6oZg/fz7Dhg3bbwHZA6G1tZU5c+Ywffp0zjjjDB5//HEGDBjApEmTsNls1NTUsGjRIt544w2qqqqoqKhg2bJlCTMlqqqqOPfcc1EUhfT0dC6//HKuu+46HA4HN9xwA2+88QY333wzTz311H6vY1mWaW1tpbGxkaysLIqKiiLzFixYwA033KCp83HfffcxZ86cwzrmjRs3MmPGDDo6OmhsbPzJIua9Xi9Llizh7bff5rXXXmPq1Km89tprP9jSzel00tDQQFNTUyS7Qg1ZljVCTm1tLZ988gnd3d1YrVYKCwuZPXv2D2rD8YCPPvqIK6+8kpKSEubPn58we+jHxO7duxk2bBher5fx48czdOhQhg4dypAhQxg6dCi5ublx90VnZydPPvkkDz74IPPmzSMzMxOTyURxcTHz5s3jvffe46WXXuKRRx5h7969DB48mOrqarq7u5k2bRoLFiz4iY720KAoCq+++io33XQTTqeTMWPGYLPZqK2t5bvvvjvqdT560Yv/BPSOy3txvOOwRIksoRC9YGCo/iQEQYyIEgD1yl62sw4deiYxiyABAkIQHx7qlEqaqEaHgQrdUEp1oYJ8siJj03XRGqihI9CIPdiBgoIo6pHlALHpCRmZ/Rkx4ucaUQLiIwtFv4LOGf8iHmt5ECZFYomZWEJI8shxZE54P4okIBvi53lTeqIvY/WOHrImlmAydQRx5ejQu+J/Dr9ZiGRKqBE0CCTVh4gytSe1YNPWnFCSzBGvbFkfalfsMQNxwkQww4q4U0s8+EZrB2CxokSguhbRrCU8DkWYOBroVjpZw9K4It4CAhnkkkcJ2RSg68lMiBUl9odqZSe72UwRfejP8EjWTyLsUbZQxY7I9yyhgP7K8Ej2RrjIcyet7GIjeZQwWBgb155EUGcR1LSvZXvjQsaOu4Xk5AIAjDviLTUCTS1HRYhQFAUvbux04cKBFzetNODGiQ49ORTRl6EYBOMhHcv+MLr0QjbVfURQjgo91qQ8CktPwWzJpKVxI63NmxEQSE0pAUGgo2MXshxAr7MQlP3Isp+ykslUlJ/5H5ktMf7yx7A17WbPsteQDGbGWs8i2RAlsr0D4sW7QIwA4beK6DwKwaAft70Fl72FQGMDVlMWWWn90UlGnCXRqEqDyspJb9OKlt6M0P0s2T2sWvs0Lnf0ntfpLQT8oftbkHSYk3MwZeQjiCKermbctmZkf+JC2jq9mYDfTeng6eSOnIKtcRedtZvRm5Ox6jJISS/Fqo/3Lpe8Mv5kXZyIEO5T5ZgizYnEBiEoE4zJoItdLmCV4ohlc3V8Qe6vtj6BVw5lTUiCnixrBZlSPsWWwVH7wRj7PPvJ5ZrvsaIExD+HfqgocTBBArSiBGivC0iQndHTbjVZHpvBKCfg/sNtCT/vYsV70JL6YSI/9veA6HFLMfEGxo5AzHdPJIshFp6MxBY3YgCMCQIZjNWdoX1naQuVq7NMpB6xwJcZHyUYPp5EYoRmuZ7fWFBdC5I35rpPUCg7IkyEh3fb9mrbOWpA3Dq6Vm1mZaww0StKHF8In+OJEydy4YUXJvStv/DCC3nvvfe4/fbb+eMf/0h3dzfd3d1s27aNv/zlL6xYsYIRI0bw9NNPM3HiRCBEWC1cuJBPP/2UZcuWUVVVBUBeXh5NTU0AmnoHb775psYCpBe9UOOhhx7i/vvvj5uelpbGhRdeyOWXX87EiRMPKzMhGAxy+umns3btWl544YUDXn+KojB8+PCIbZNer+fOO+/knnvuiWSWeDweduzYwZNPPsnLL7/MRx99xM9+9rPDPNKQ3dbOnTuprKz8USyQ/H4/O3fuZOPGjdTX17Np06aIENC/f3+uv/56brvtth/UFlmWue2223jqqaci00RR5JxzzuHmm2+mubmZN954g0WLFlFRUcEJJ5zArl27WLVqFXq9nqSkJDo7Q8/LNWvWMHbs2B983D8FZFnmoYce4sEHH2T27Nm8/PLLJCcnH3zFBGhvb2fbtm1s27aNxsZGTj/9dE455ZQj+p127NjBoEGDNNPU/XNGRgZDhw5l4MCBkf3u3r07YuUVi8zMTJxOJ8uWLWPAgAG8+uqrbNq0iYqKCvr27RvJujuesWbNGk444YTI97KyMqZNm8Yll1zC5MmTf7qG9aIXPyF6x+W9ON5xRIWuyxmEFzeCIGIVUsgXSjEIJvxBH0ECGAUziiJTLezCo7gI4KNb6cCFg2QhnZMM0wkofpb5/41PcaMTDOToSkjNG0CatRCrOQd/wMX22s/wG0CU9DhtDeSXjSdvyGmatkkJCKfYLAZ1BkXUXz1B0VdHj5WSSmSItdYwdoYe5ImiGN1ZB/buDZhiomGDCga7gidd2xZze6gd7ox4liIsTgRVbUzf3KVZJixKKElmzXRfjnYA5cnUY271ac6Pzh6fgaEWJpS+xfhTQsSOsbaHmKms0q5wFKPxDxXtShObWImMjAIkk0omeWSTj4Vk9IJWHYoVJAKKnzs/+xWBQID7fvYwCjJBAvjxsZtNAJwhXHDQdqxWluDETl+GosfIbjbjx0MpAyigDCMm9rKdanZiJZWRnIxJsBwyiR8WJtrse9lQ+wF6ycSgwEgye7JMdHnRTJZAY9MhbXN/sCkd1LMXJ904sUcKmItIGDCSSS45FJJODkuU9494P6dNDUVfdttqWb/mbyiKjMmYSkpSEUmWXLod9bR1huqkGE1p5OSPRJIFbLZqZDlIVtYgCuVSdGWhyK1vls1Br7cweOCFpKaWsOTLu3/QefgxMfq6x2hav4TGdQtILujPsAGXoDeovOhVRHL4cyJBQlEU2qq+p2rtfIKBHuFSZ8UfcCKKegqzRlE04QJNBFWsHYy+2xsRJMKQDQJOWyN1e76mtW4dw068jqxGieZyBZetCVd3Ey5bEygyhrQsOvaGCqVKkoHcorHkl52EyZiOM9BOa+06BFFHyaBpCIIQIZxjyXK9zU/QJMWRsRCqJRA7XZ1BonNGCeWwIBs9lmi/G96nEFAIWLXLJRImPAXRvtRhb8Rur8frsZGVNwxrci6WDbXalWJECdeo0ngxOyaaLVGGgBqxz7nYmiGxiLM7jNm+vJ/Hl7kt9MxLXAtCO9GXeuCAgdB+Yp+DidoaPy1R9kisEANErJ4sTdGXbiXm3IStvxJZZ8l6AWNXfKPC5L/ojc4TYtoUvqak2OLxhMQJQ1eM4JcVL1jEihOxGSEQFSaknrYkygaJqzm1H2FCsvUENMT8lrJF+8yUKhs03wPt7Zrv6mdY78vPsUfsuPyuu+6ivr6e7OxsRo0axWWXXYYkSdTX15OWlobVaqWmpoa//e1vtLe309nZyYIFC3A4HDzwwAPcf//9LFq0iLPPPptAIMDAgQOZPn0648ePZ/z48RQXF7No0SLmzZuHxWJBEAS2bdvG888/30v09CIOsixzzz33RLJrkpKSOO2005g6dSqnn346FRUVB623sHfvXrZv304wGIxYwXR1dbFgwQI+/PBDbr31Vp588skDbqOpqYn8/HwGDx7MvHnzWLFiBQ8//DAFBQURgrmzs5PrrruOhQsXcu211/LCCy8cEUF855138uijjzJ16lRefPHFo17sWFEUXnnlFT777DO2b9/Orl278PlC72xpaWmUlpZy7rnncsEFFzBkyJCjYtP04IMP8sADDyCKIkOHDmXcuHGUlJTwr3/9i+3bQ3XATjrpJM4991xqampYtWoVRUVFXHDBBcycOZPU1FSWL1/OhAkTmD17Ns8++yx5eYefFf9Toq2tjSuvvJKFCxcyZ84c7rnnniM6ty6Xi9/97nc8//zzQLRofWdnJwUFBTz++ONHVIA5GAzyySefMGfOHHbt2kVHRwdVVVVs3bqVLVu2sHXrVrZv305WVhaCIPDFF18AUFFRwY033sg111yDTqdj5cqVvPXWW5x//vlHJModLwgGgyxZsoRdu3bhcrm48cYbSUpKbOvci178t6B3XN6L4x2HJUpkkIOMjAsHJiwoyDixYyWZMmEQqWRgEkJFpl2CnRXBz7GQhBEzBtFEnlhGjliIIIRIsypxN1XeLfgVLyXlkyktn4IkhcIqfalahiTY3U23uxGPs53MohHojdY4GxJ9d4x3sklMWPxT51C9rIvgTdNHBIkwJBXx4CyIDpxjI0dFr4w7O0FhUCneXx1A75R75sdEpHYH6C41RASJyPb9Cs7c0LlQkzJiDOeRvrkrsce1igxzF6dG7ELUMHVqI0HDwoTajkJN7gGINm32w08pTNiUDr7nS6yk4MBGLsU0EyIF9RjIpYhsCkhTFVYOEyhhQWItX2Ona7/7yCKPkcKEg7alXWliBxtw4yCTPLKEAhxKF41UIxNEj5EAPsoZRBkDD5vMnz44Gvnv8nWxufJ9OmlhrDCFNCEL0RBvr3YkqFZ2sYfNmLCSSgZWkkkilWTSMGLmC+W9I952Ipw29RG8nm42b3gZhz1KflnM2Zw8+jd004VYWUuqIS/6MpDghdZXkEp3dx0bN7+C3+9k5IhrWb/hpaPa1mOFtrY2+oyaSHfdTvJGn0n+qKmk1Gv7g1jCPlYIDdetqdr8CY07viarbCzlSaOxmrORJCMNrevYXjkfgJNPuRujMQV/ig5djFXd/moYhIl0RZFZ/vHdDMk8g+KU4bS69rHNvQwUSEvvQ1pmH1LSS1m//GmCQR9jT70doyE1bpumRifO8uQ44t+614arLAW9LSZKPVzPwadtr2wI3ddq4l2MJWUJCROxRZFjMxDC89Vihz9GqNC5EhS6lwSN0GFq0d5/vtSYYsFHQZTYX8FkiLczOlJR4lAR+xsmFDFi2hC3zn6OOVaQOJAYod1g6D9zjD1ibEYIxAcaqK0T1e1KVFA69rgiy3a646apyX5nkSVhYEXsuTN0x4scsZk9scKE6IlfR+jWPrcVc0wfeoTChKIofKG8RyAQ4KuvvmLjxo3ccccdvS8/xxDhcfn111/PokWLEASBgoICmpub2bNnD9dccw2XX345J5xwQuQ3eOSRR7jnnnsYPXo0aWlp9OnTh1//+teMGDECCPnt33HHHbz11lskJyfz2muvMX369IQErSzLVFZWsmHDBoLBIBdeeCGSdGBLwV789+CBBx7goYceikRx6/V6Nm7cCMCgQYO49NJLmTVrFsOHD094fa1Zs4bJkyfjism0Do//FEXh8ccf57e//e0B2yHLMnPnzmXu3LnodDouvPBCRo8ezfz581m0aBFmsxlJkkhNTeXFF19k+vTpP+i4FyxYwHXXXYff76euru6IC83HwuVycemll/Lxxx8zYcIEhg0bxqBBgxgxYgTDhw8/ZnZRS5cujbNou+eee/jjH//IypUryc3NPajFl6IoPP300/zmN78hOzubmpqaY15n4Gjhu+++46KLLsLlcvHmm28yderUI9qO1+tl7NixVFZW8qc//YmpU6fSt29fZFnm17/+Na+88gpjx45lzZo1R9zW+fPnc95559Hc3ExmZiZz587lmWeeoX///kyZMoUpU6bg8/kiwuDChQt7i5r3ohf/HyJM7QqCgM1mY/78+aSnp3POOef0jst7cdzisESJjo4O0tPTAZiqvwQIFQfeGlyFm5B9RRpZ5FBEMM1EZdd3nFRwOanGPOSGRs02F3reAEIDrSHDz6WqcjEgYDZnYDCm4Fc8+L1OTJZ0An4Xbnu0VkHZmPMoLjgp8j1MoMWKEroYb2VPrlkrSAAk8qtOQPSoSbqAJfTiJcZF6Ir4kiWUmPcyIRgVIzS7DioEDWIc4SAbRIIGIS4S1p0Z3XCwJ+tC5473BM9eHarFYe+fFlrGGUvgCZoipIICpraYDImYyyJg1WFqcau+69E5Yryrd2vtHIL2aAFNXUkRgZo6jhZkRSaAj1r2UM0ukkjFgIkAfkYzCQc2BASaqKGRanx4ERHJJI9hjEcUose/Q1lPHZXkU4qFZIIECBL6TWrZA0ARFeRQRDrZB42QkRWZRqmWRrmKLqUVHXoGMBIAGx0UUk6ykHZEFkdqUQJ6yKCdj1FRNJny1tz4thyBMCErQZbyIQWUMZDRkXN1pJZMh4oTr5xH49YvqV3/b830EaN/SXpmyDbMtCs++yNQ24CiKLhxUDchhY7d3+NoqiS1dCilEy9GZ7Ky9sXbjmnbjwTDbg8Vs1YUGdvO9TR/8ylK0E/Z5CtIKRoQJ1AGzELc99j7X/SDLAfY+uXfEPwBxo25CUWRaWvfQXX113Tba7Fac8nNHUlxyUSCaVpSUt2nhQnjRBlgBofMdx/fR7qxkJKUkWxq/Ry/7CbDVIwnYMcV6AIERFGHLPsZVXoROSmhmhjuohRMX2+B/loLI1dZKPvAuldrE+NPD2V86ezRKHPZFBWCA9bo50R9t+gPokjR+z02swRCfXFs1HysAO23ShpRSPLIGjI6UdHiWGHCn6IleWOFAzXRHDSJSO4DiLsHCdSLFZZiBQA1MR+bZRGb1adIICWoUbG/bQsJnAGCMUJC7DPRn3Twl2N1No8nPfR7WZrjd+bKjb9mw6JD7H7VwQ1qGy11Roe6vlRYRFBnTISh6OKPQd8eJdV8OaGgDW9afCBDeLvh7ItE2ZhSzD5j60jFIrZ+lEaUMBnw5SUfcPnY44nNvlA27aRe3ss2OUSkpKSk0N3dzaBBg9i+fXvvy88xxIGi3v785z/z6KOP0tXVhV6v54orruDEE0/ks88+Y82aNTQ0NOxnqyHU1NTwq1/9igULFmA2mxk4cCAWi4XW1lYcDgcDBw5k48aNtKuyZaqrq496ZHgv/nOgKAput5uqqiruvvtuPv74Y+677z7+8pe/MHfuXK688kra29vZt28fL7/8Mh9++CF+v5+cnBzuuusubrvtNo3gUFJSQlNTEw888ACyLONwOHC73axbt47ly5dTXl7Otddey0UXXUS/fv0O2r6mpiaeeuop3n77bfbu3cuwYcN46qmnWLVqFd3d3dx5552azKMfgi+++IIzzzyTXbt2HVLbDgXvv/8+F1xwAe+///6PXpshPT2drq4uzbSmpiZyc+PfOdTw+XysW7eOb775hqeeeoq2tjb+8Ic/cO+99x5wveMBXV1d/PWvf+WRRx5h3LhxvP322xQXFx/x9mpqaigtLWXOnDncd9992O12/v73vzNv3jyampqYNm0aN910EzNnzjzifXz99ddMnjyZ+++/n+LiYn75y19iMBiYNm0ay5Yto7OzE5PJhNfrxWw209bWhtlsPviGe9GLXvxH4Wc/+xmffPIJAAaDAb/fH8ks7B2X9+J4xWGJEvu7kM8UL8SreOiklVr20E2oNkSWuYzRuefQ4trLvH/dhtfr5dRTT417CJ429REc9gbs3fW4HM14vXb0egt6vRmnoxmv5CWtaCg1388HYOCYK8guGK7ZhjqqNUwsGDuihJAvXRuVYeiMzgskJy5sKQQVJIefQEyEqy9FnUEQekmPJZe8aSHCxGDXkgbGdh/eDENcdG7YTkIdaQvaiMlwBK87S7tMUA/GbkVDMpm6tPtVhJA9lTo6N9bCSiNMKAoBq5bYia3TcSBRIjCiD/qamHoTP1CU8Coe9rK1J+ughxhCpIT+GDCwi02kkckYJiMIAj7FSzU7qWUPZpIwY6WNkDgmIDCKCWQIuXQrnVSylXZChLeEhIQeHXoC+LCQjAcXHlwYMJFDASX0j9SJCKNVaSBIkDxdeeTlyqO42BFYQwctjOdMzD2ZRGocKdk/ffA9BFNMrN3+Cm5vJycO/RV6XejeUlZvPqJtQkhoXMvXDOckcoTCH9zOw8W4y/5C3YbPadr+FQB6vZWi8kkYzakYTWkkr63HgAmHYsOmtNEpt9BFGz5C97Qlu5iCMdNJKRoIcFwKEgBDb5uHfe9Wmld8jretkZTSIRRPPB9DUhp6R6h/UBOoalEiVqAwdcjIcoCWmrXU7VyC19VFcdEppKdVULl3AU5XC2lJJVTkTyQzpS+CIGj6PV9qiCRVixI6j5aAdBQaSdtii4gH+7b8m5aa7/H7nJFlhmSeQXHyMLpKjHR1VOLzOshV8kk25cG+uvhsrh5hQmzS9hVKTqiWhKK2XFIX4k2J9uex/ZgQVJDcMUKvMbqd2NpCkWVUuwrb9MWS9fEigorQNgggCNpslpjDjRWaDyRKJFpfr+qDxdhjjCl87kvTPrfUIkVsJP6hiBJqqLMA1YKEGFDiBInYdUGbeaBzK3GCRCJrqlh7MZ1Le65knYBnPxaKibI2ggYBa4u2sX5LT52pGL1B1/N81rnjhQh9Z7zwG+ixONSp5vmz4l/+Y7MsDbYENkyyVtAx2LRtTlS8XZ1JFLBqrwNjo7Z2xIGEiVhRQtwVY0sWDOKVXXzliNaTWL16Nf379yctLa335ecY4mDjclmW2bVrFx9//DHPPvsstbW1GAwG5syZw1VXXcWqVauQJImcnBzGjh0bF2zh9/v56quv2Lp1K9u2bcPr9ZKdnY3BYGD58uWUlpZSVFTE3LlzgVAtip+quG8vfjqsXLmSu+66i2XLlkWiM4uLi5kzZw6LFi3izTff5IUXXuC6664DQgWh7777bj7//HNmzZrFjh072L17NwAjR47k448/pri4mJdffpm//OUvbN++HUEQSElJITU1laSkJPbu3cuMGTNYtGgRDoeD0aNHc/7553P77bdrIvDdbjfPPPMMs2bNYuDA0HhQURRWrlzJZZddRmlpKV9++eVRjxZva2ujuLiYyy+/nBdffPGo2CjdcccdPPXUUzgcDgyGxO+sxxLt7e0MGjSI1tZQgOBFF13EKaecQnFxceRPr9fz/fffs3z5cr799lu+++473G43FouFmTNn8vDDD1NeXn6QPf20cDqdPPPMMzzyyCN4PB5uv/127r//fvT6xOPGg6G5uZlHH32U5557DoPBwMsvv8yWLVuYN28eDoeDq666ijvvvJP+/fv/4LZ3dHRw0UUXsXz58khNiXAbsrKy2LhxI1999RVJSUnMmDGDwsLCA2ytF73oxX8qPvnkk4gF24UXXsi8efMiz9DecXkvjlccFVEiFtMr7kBRFARBYNW+V+mkNW6ZAqGcgeJolgSiNjBTznwYALerg472nQSCPkymNKobl+Nsr+2xfZLpP/JicovHaLaXSJQIQ02uBY2SRpCIQDVoDCTp0dniaysgCbgKtMSC3xodzKpJE42dQ9htpl27TX8PEZgoIjKyqj80058cJVtkPXhTRYIxYySdyinC18MzJNfFRIWqSC+/VUTyaaOL44p+x5BDOmeAQHJ0x7oYK4s4P3iVMHEgUUKXnUWgtW2/8wHWK9/STSfF9MWEFQmJVDLoppNNrIwsl0sRCtBGAwIieZTQRDVBtIRPFvmMFE6JfA8qQQQETRZFmIg/Q7iAbjqoYU/EGmoSsyKFnRVFYQlRK6YCoYI8sZS0YDoyQVayiDQyGSaMjzuuH0r2jzvj92z45ikMAT3DdSeTImqLA8u+BNdyAgSVAHXspYodWElmNKcmPBc/BgZeehfVi15FNJiQfR783V0EA/H3rSBKWLNKSE8qIzWjjJS0UnT60D369Wd3/mjtPRQMv+1xFEXB09aAc8tmOuo24W1vwlrcl8KxM7DmlkWWDYsSYahJ3FiLG9O+Lmpbv6dx73J8nm4yC0dQXjiJ+rqVNDZ8T3p6X8rLTictLVRzQ2f3xQuxcfe9rCHyQUuwQiizwVzdjcvbTpttD53OWirGnI/BmKyx2zEs36ZqvMqCLjda/wR3tPPyDYi+KIWFTzU5GjRrOz6dw4cv3YTOEW+rA9pocnehJW6+GFDwJUe3b27WbkdN2HsydeidsibTLNZ+J64YswK+FFWdi5jsB3WmXDBGlD5aokRs1kTsNaQWIYKGAy8bax14IAumWPEh0fZiBREhqLVrij1fEC9IxG7TnaNPWBfCmSCDAsDglOPOtdQjOMU+AwGM7fHF20VvIM6CiwSZDK5SrZgdsGgbr3fImsLhEF/c2mALILmj16kQk0GhxNy7scKE+pwbW7X2KN5s7T1ianREv9TGZKoFo/vd693Ebu9a3nrrLaZPn94rShxjHO64XFEUFEWhu7s7kvGshtVq5eGHH+bmm29OuP5XX33F+vXr0el0SJLEAw88QFtbG4qikJSUxNatW3szJf7LYLPZyMvLY8CAAVx33XWkpaWRmprKlClTuOGGG3jttdciy9599918+eWXfPfdd/Tt25cTTzyRN954I26bL730Etdeey0QumZdLlekhkks3G43n332GRdcEKr3ds011/DCCy9ECOSdO3dGxAgIFd2ePXs2gwcP5quvvmLKlCm89dZbXHLJJUf1vAC88sorXHPNNVx00UU8//zzCe+5Q8G+ffuYO3cuL774InPnzuX3v//9UW7poePtt9/m1ltvZcCAATQ0NFBXV4fXG/8szMzMZMKECUyYMIGJEycyevToIyb1fwz4fD6WLl3Khx9+yAcffIDNZuP666/n3nvvJT8//4i2uXXrVh5//HFef/11jEYjv/3tb5k1axbXX389mzdv5qabbuKOO+6gqKjoKB9NyCrq+++/Z/78+QSDQebNm3fU99GLXvTi+IbX62Xq1Kns3buXpUuXkpub2ytK9OK4xjERJdQYJp5ErbKbIEEcMZ79p0mzWRqIErlnTvgTXp+dVRueCxVkFXQEZR/WlHwKyk/GZ5DJSRmIyZJ4cBdn3aHER/satkeJ8WBxT+ppHGET/S7ICgSVuGWCPS/9jpJoVI7kUdd80Np8hKFTFcA8mCgRFiQAjO0euvvFF2pyqbImwtsJxvCNamHCbxUiZEukTTEWMIKsoFdZl8Rlb6hsLQJGQZNhIRsl9LboIFWq1xbD5AAEeSJRwqHY2M0mHHTjxU0ZA+krDNUsE1QCtNGEETNtNFDFTpJIJY8iAgRooAofPkAhhyKsJJNOdpwVk0tx4McbKYwtqPyRg0oQUQ7taxPf0U4TIiJpQjaZQh6ZQi7GoIn1wnK6legxS+hIIR0H3WSTz2BhbGTe0SD5J53zaKjt9hZ2rH0Tl72ZskFn0XdPCoo/MUmbCHXKXirZQgA/+ZTSl2EYBOOPKkTEYuTNIXujDc+EMh1OmvlHfG4bXncXPq8dfU4ulowCxJ46NKY2LVv6U4sS4aLkAC5vJ9uTt9NduRmfrR1JbyK1eDBZfceRUtAfX7KqFkIMl2roVvZL9NavX0Dz5q8Ahdy8URT0mYg1OZedm96lpWED/Qf8jILcMZHrPNZyJkxWa2sxxESg92Qi6FT3tRJTNFoIBvHkabOAzCt2hZZVX4f7ESUCeWnR/an7m552SS7ttSxVNuAbWhqXrSXrJXTtDs20YKqWZPWnGeOsltSiBISECbXA6izQdqpizK0l+bRWTrEigDrS/UCiBGitfXTOoCY6X9elFYZEj6rvtWqtuGRDlID3p2gJAW+6lpxXX1MHEiUOJKBDKCtCLVrEigU61TMyktmn1u9jrv3wsypMynsy4tMuFAGS6qM/SGz2yYHanMgyan82VUl7bHHTgklGzXMaQFBd4/6ejInYOibhjEV1lk+s8BAWJixNofsu1qopNkMiLEz4ekQFT6YOn7sbn7sbOegnU1+E0CMyxwYP7E+YiC3MDaCooopFXwCPz44/4MRoSCGr3z7ee+89/vGPf3Dttdf2vvwcQxzpuDwYDHLXXXexcOFCJEmK+PwDXH755bz++utx63z88cecc845WCwWAoEAPp+PK664glNPPRWj0cjs2bOxWuOzQHvx/x8UReHtt9/m0Ucfpaqqio6ODlatWsUJJ5ygWa6mpoY1a9ZQWlrKLbfcwpo1azjrrLOYMWMGX375JYsXL8Zms2EwGLjlllvIysri/PPP19gdBYNB1q5di8VioV+/fprC2LIs4/f7MRqNbNiwgRkzZtDY2Eh2djZTp07lzDPP5Mwzz6S+vj6ubYWFhQwbNowFCxbw0UcfHbOivu+88w7XX389KSkpvPHGG0ycOPGQ1/V4PNx000288sorZGRkRCyujqcaAIqi0NraSm1tLbW1tbjdbkaPHk2/fv2Oq3buD4sXL+bll1/m008/xWazUVFRwezZs7nxxhuPOKOjs7OTyy+/nM8//5yCggJuueUWfvWrXwEwbtw4BEHgX//6F2PGjDnIlnrRi178/wZFUdi9ezft7e2kpKQwZMiQo74PWZbZsWNHpJ7RtGnTaGlpYdOmTfTt27d3XN6L4xbHXJQ4U7o48llRZLrFTgQEUkhHEEQW+f8VWu6UP9LWsZOtez5AEEROHHEjSn4mXncXRnMqgiBqrEXi/LuVeFFCHcFqrO6MzrCHSKuIKBFeviYUBRjoUxCZpn55V1ZtQjhxeESQCCNcBNpeHhUN1CSUqT3K0oSJh0BMwemwd7j6uCRPEH0CUiAsTqhtMlw5KqIgAP6YgGBTZ+y5CX1P3heKUPZmawmt2NobYaIwUig75rJR+6+rRQmIESZUokSgtQ1d34rI92BV1BpCURT2BbeyV9mKGSu5FGLEQg6FByTLFUWJeHdOEGawnM8184dyAnlCCU1KLdtZixEzY5jEDjbQSn30eDCFirQLZlyKAzudpJJBPmXkU0oQP01iHe1KE51Ka08RawNJpBIkSDcdkW1lU4gbB8MZj0UIpbAcbbJ/0jmPIgcDVO1YQH3lNxRKfRmiD2VlHEpdidXKEjy4GcdpEYupn1KQ2B8mnvfXyOdvP7zjJ2zJwREWJWo71rOjZQmizkB6yVDSS4ZRVpdOx/ho/3MwUSIMdTFiR8s+dnz2DIVlEygrORWDIYmgQUSWA6xYdD+5OSMZNDDqPRwmMdX9pJo8T1SPIdYaKSISqLISvFlaazwxqGBcvVszLTioLDRv467otLHRCEY1sRuO8I8TlLfVEizLiyu2K5flIzbECJpJUYLMl5+C5Argj6mfEe5rLXtC96qzvzbDKLZGkbPAgLUx2n/FPgfU0e0aUSJccEzFIceS9epsg9iiyWrR91iIErFWYBoBLLb4ds9qagE+Mi9GL4grah1U0PcI4LGFpmPPh94Vv31viuoZF1QSWjKZOnuu8Z7ntjogAELPsYApnixRdMRlSoBWRAnDuteG0NalmRYszI58FuSe7MZU7X0RNIoosXZgMYK/KSabMvaeDAsT4YxNv0W7PWtj9L5sbd7M1s1vRq6/oWOvJSNvQGS+oSP6nNbt1db8CrapntljBmvm+RU/nd1VdHTtoaOrEqcnmglrtVpxOp3cfffdzJ07t/fl5xjih4zL1bDb7axcuZK+fftSUVGhmSfLMvfddx+PPPIIZ599Nh999BE+n4+2trZe64//QrS0tPCrX/2K+fPnM3PmTE466ST69OnDhRdeeEAS2m634/P5yMzM5OGHH+buu+/WzK+uriY/P5+bb76ZF154gWuuuYY//elPnHjiidTVhQLJJEmioqKC0tJS0tPTWb58Oe3t7fzsZz/jV7/6FVOmTGHTpk3861//YvHixaxbtw5FUejbty8DBgzg+++/p7m5GQjZS/Xp04ekpCQ++uijY0qgV1dXc8UVV7BixQo++OADzjnnnENar66ujtLSUs455xxef/11LJb4LM9eHBkcDge33nor//d//8ewYcM4//zzOe+88xg2bNgPttq66667ePbZZ3n++ee56KKLIlZb//73v5k1axYff/wxs2bNOhqH0Yte9OI/DD//+c95+eWXATCZTLhVLgE/BHV1dSxevJjFixfzxRdfRGz21Fi2bBkTJkzoHZf34rjFMRclDgVnnvJHnK5WVm18jvTUCob0PQ8pxptWE4UqJC4qGoYQUCLR/DpXiNjSiBIxg45gqiUiSESmtUdJZcaGlExl1abIJHnSqIgYodn3vno6pw/UTDP22DrFEv3BBAWzw8clxRByYXHCWRwl29SFOF05Yrythgw+VXKFzgsZ22NJreh+wsJEhMiJuTJ8qTHWF6pLx2APaiKc9d0qa4llGzWroagyR1SiRKCyCkGSUBSF7cE11Ct7KWUAFcIQpJiqrodCmE8QZrCV1QQJkk42JfTHJJhRFIVv+TRSg+AEprCD9Ujo6MdwXNhxYseNE5/gRY+BVCWTDppoowkDRkroTyn9EQSBoBLERjudtOLCjgsHTuzIPXZRZxguRhSijF24yPvRwuhfP6757n3pbbYFVjFSfypZgez9rKVFrbKHnWxgImdjFEKE1/EoSvwn4axh9+LydfLtrr+RWTGG0vHnI+lD91jm6iiJ3jxJ9RvFJnupbjlDt6IRJfZ88hx+n4vRE25FEER8qdFrrG71v2moWsEp4+9Crzcj60UkT7SDEALaHSk6QUuAxpLRkhAX/a9vjmYkuEtTEZQEEdird0cEiei2QdywSyNKuLN7hIhYWx6dgN4RwLAt1stexnWClkCzbAgt4xsQFZVjbalkgxQVVoHk7dpMrrAwESbNTe1+jXWe3qHtZINGKRKZrwhoagXFEu8HEiV0quj8gEkkZU00o89fkhX5LDljSGt14eHY30xNtKjsrzzZWgtCdVHoOGFBtU0l1vlIdWpjs+/UzyZILHhF5h0k+yKcuXGg82dpTVB0uud61dtDv1nAqj04WRLijwlCxxXDS+jcSty1bf0+WkPJ3ycPiM/oCSRrhSIAv6omleiNP/g4OzDVueu219EhteN1dOBxdeB1tCMYjfQ99Wokg4mARUCRZWzVW6n58l+k5PbF3d2CIgcZNvN/sNhVtSk6tMEDamFCLUooikxbto9G+3Zc/i4cvjYUZEz6VDKTK8hMrcBkSMPjt3HVjePx+Xxcc801FBQU9L78HEMc63E5wFNPPcVvfvMb/vSnP3HnnXdGIu968d+H1tZWJk+eTGtrK88991zEMulw8cEHH/Dggw9isVi4+uqrueaaazCZTKxatYrx40OBNCUlJSxfvpzi4mL+/Oc/M2HCBLZv386OHTuoq6ujpaWFUaNGkZeXx+uvv86WLVsYO3Ysf/7znznzzDOBUF2HJUuW8N1337F792527doVqV0xbdo0FixYcHROzCEgGAwye/ZsVq5cyZYtW8jJyTn4SsDUqVPp6upi9erVx7iF/114/PHH+Z//+R9eeOEFfv7znx+Vmh8QKv5dUVHB7bffzh//+EfNvEAgwIgRIygvL+ff//73UdlfL3rRi58WXq+XL7/8ksrKSvbu3cvevXvZt28fs2bNYs6cOZHlurq6ePzxx3nooYe46667+Otf/8rNN9/ME088cUT7tdlsvPDCCyxdupTdu3dTWVmJIAiMGTOGM888k9NPPx1JkqipqaGmpoaKigpmzpzZa9/Ui+Max8UbhqIT6XLVIisBZCWAYNJGGMZGXMoGMUKIqMmPMCGkthcybtGSWUpaCm32SrY0fYY36GTM1N9jslqgKERwKS4XgS++JYlUJCF0eoQNoehewWiKRJ1LyzdFOBklGETKiFpKpX++IzTd6cY9NVqQO5AkYWrsyUzIjRJDYUsnX3rUIiRokjA1OvH3FOiOjfIF0PUQGu5MKRJZKusEDWFjcIRqUITRMcikESZ0nU7whogUXY8u4+nXQ5IKaIgnnUfWRJmqSSK/VUJK4L0N4DtrDIYFa0Ofp43BsidKeAQqqzTLiqVF7GhbSn1XJUPEEygQQym04Yyaw8Ey5bOE088UL2SYciLV7CKDHFKEDFKUDDpoJkVIJ4UE9mAClNAXl+Kgmp3sYTNtNGBUzD0WTRn0EYYg6EInW1EUvLgJBv0QUJAJIOp1oNMxLelqABY6XjnsY0qEdX+7TSNMGK69iKz3u9nYvowSpQ85FBJm2SQkrKRoBuGKotBIDcmkYyB0vfUKEj8cgjeALhC6X7IzB2Nx6oAgemcQb+HhDwjU97Fc10JXeyVF/acgm+K78aSUAuSgD79FQCLUhmB4OSGmFowohO7lnmsilFGhoEg9ZLsUnh66vwMWHVKMDVQ40l8Ro4WeFVHAMz5avE9v80XIXnlkf4SAjLPQjKU5So6G/fV1LjnSj/uTdPhPKMe6eh+O8dqU+rDff8Ai0X1yGRATbS4KICsYdkcJV/+JpZHP9kGZJG9vp3NMVBhSR9d7MvURwl2RBHyp+vgsB1l7DiLb8Wuj+RVR0PaRapJb9YzTeQ7C0h8ClEOM/HTF1FhQZ/jFigXqQuDh31H0xwsSsWKMen7suZNidP1w5H/YQkltJaWIQHj98Dnv+d+dGW2cqUvbcFde9MYx2OXIepKsQM/+A2YhzrYpfC6EYLgdgua3cY0O+efrVfWnghY9/qR47+ywBVfALCH44wWOMCI2SjHn3mMOsnPPv2luDQn8BnMqJmsGpuQs2uu3ULPuE4rGzqRt7WpadizDZ+/AlJGPLjUVT+1m+k3+BfqghN8SLeIesOo1wR2iV5XtUZhNYMMWGpUqquWduJocpBrzSTXlUZQ9hszkciyGDARBYMGGh+KOo7u7O25aL/7zsGTJEkRRRJblYypIOJ1OXnjhBW6//XbGjh3L6tWrI2MURVGora2lra2NkSNH/kfYwvz/hs7OTs4880w6OjpYtmzZDyrKO3v2bGbPnh03/YQTTuCJJ57gs88+46GHHqKoqIji4mI6OzuZOHHifq2P7rzzThYvXsxDDz3E2WefzYwZM7BarVitVn7xi19w8cXRbH2/38++ffvIyspKuK1jBUmSePHFFxk6dCijR4/moYceYujQkA2tIAjk5eVRXFysWae6upqvv/6ae++9N9Eme/EDkJSUhKIoXHHFFUdNkAB44403cLvdCe3AdDodw4cPp7q6+qjtrxe96MVPh7Vr13LNNdewZcsW9Ho9ZWVlVFRUUFFRwR//+EfGjx9P3759efrpp3n55Zfx+XzMmjWL9evXk5qayv/+7/8e9j5ramp4+umn+fvf/47H42Hq1Kn87Gc/46STTmLKlClkZmbud93ecXkvjnf85JkSUyY+hNPVitdrx9ZdRVXt1/StmE5R0UmR6HJ1wVV3VujFKEwuqEWJoEk7uBCCkPrN3sj3QIqJdXXv0eGKRjgOnnIj6anlKIrMpi+fwmELWfiIkoG08mEUVptJF7Mx9VjaCHpVwWm3GyUYQ87p9JpaBADuqcMxL9yAMnyAdtlgENms9Sr3J+tRdAKmRmd0WnpUpNF3hEQNd5HKKsog4ksW4qJTI/ONIRLGYI/+1BlrVKldXi0zZBurLeylV3mgS56gxvM8TFSKASXeKkNNTqmuMrUoAVphoiM3wLrGDxicfSaFnVE7lSMRJfaHM8UL46Y1KtVsZQ0TmIFJOHiadINSRQv1yARxYkdBYZIwMzJf0Ok110ZQCeIzBbGKofvnaAkSiXD6lLkEg35qar+luvprZFn7+6aSyQBpFKlCJkowSItSzyZWMkZ/OplS9Ldf6H4tdtO9OERM738XECJUvqh8guJBZ1LUbzIAemf0urCVR8VGMTZ7QcW96J095HuP1Y6hM8Ce9e/TUr2G4oFnUNj/NASTgRVv/47xlz9Gzfp/07jjG4r6TaY490SMptTQhoQewczTRbetFpfcTTDoQw74kAQdJZZhmE0hUU7culfTnsCofgQsWmIqnHWg78kCi42IDwsasT7/QYMQlxUiyEpctH/Y7s5gU9lFpet7zokqy0vVJwVMAkn1XgLmaD8czqIA6JxcFmqbunaQWh8IFzhWHUssQR9bZ0H9XVL1l3JMfQaNNZes4FdF76sj5NUEeew21P2saa+qL1XX7jDGWDklqb6rzrE6kj+QpP1t7UWqZ10CQSIMUaUBqW2X/BZt/aJYsUD9vAqYhTgrotj9xEGd2BOfKBGBWghSi0Th9qiPTS2uRdZR/9Y914QuRsDwpohxVk+SW9ZkLwEYbInFvDCMLU7Nd2dZMu0NW6lc/z6yHKB85DlkFY1AlPQsf/d3AJSefAE1K99H1BlQ5CCWrGIIBnF3NaEoCrn9T6Fs2MwI+RIWJQC8gpuOlp10te8hJa2UzD5j8XsdNO75lpbKVQRkL7mWfpRnnECaKZqBpFijY5L9iRK9EVnHFsfyHHd1dbF582ZsNht/+9vf+OKLL1i9ejUjRow4qvsBWLduncZfPS8vjz179mC1Wlm7di1nnXUWbW2hzMKSkhIuueQSTj/9dMaPH997bf1I+OUvf8kHH3zAt99+e0w8sPeHCy+8kH379rFmzZqDksc+n4+77rqLXbt24XK5WL16NVdeeSXPP//8ftdpbm5GEIRDzlz4oaiqquKuu+7inXfe0UwXRZHrrruOBx54gLy8UNbdNddcw4IFC9izZw9JSfH1BHtx5Fi6dCmnn346O3fu/EECWyyam5s57bTT6Ozs5G9/+xvnnHOO5rodMGAAPp+P//mf/+G6667TFP/2+/1s3bqVdevW0dbWhtPpxOl00qdPH6666qremj296MVxAp/Px5w5c5g7dy7Dhg3jxRdfZNSoUUg93J+iKJx99tl8/fXXuFwusrOz6devHw6Hg02bNpGfn89zzz3Hueeem3D7O3fu5JNPPmHbtm1cffXVTJo0ieXLlzNv3jw++ugjkpKS+PWvf82tt95KQUFBwm0kQu+4vBfHO35yUcKSnIvb0RL5LulMBAMezEnZlOSfjA8vXncnGdkDsQwcqnnAxxZo9ieJEWIvlqRw1O1m39Z/R0SHPideTGbJKBQ5gLOzHl9jPXu2f0x6Vn9KB5xJs3cvnZXr8XSG0gf0KemYsgowVHfgV/wYBTOpxlxSddmk6LKROl2RKPkwBEnSWBUBiPm5yBnJmmmBVBOiT8afHF1fXXhSNoWmi+4o++PNtmhsRSBUxDocWRopdq0axxttWlGia5Q2WsjQFT1paosTU7s/GqFKKHJZc5wq8k5NmMmxEbOqeZpslrqoertq+4sAjJVOZ7H/LY41wgJFQPGzjM/Ip5QBwsjD2kalspV69mlECTVcRi+bvN/iUGyMNE4m1xCN1F7Q/X9H3PZDweRx9+D1daMAtr4mfI5OWha9jwMbqWSgAG7BSbKQzljDGZH1egWJH4bpFdF6F990vUVSZinlJ4bsDgKqRDD1PSkEFbxpqroECUSJ0HI98xWZ2q2LaNj5JQZzKsPPvA3REsrA8nS3Ulv5Fd17NiFKBvIrTsbr6sDj7MBpa8DvC5Gfks6IKBmQJAN+n5Ng0EdB+cn06z8L0/LtkX26JwzSHJ8nSxfX/4ajyMOWNEGzVohQRCGuiHIk4001PUzIqwtAh+3sZEPiKFl3th7RHxIk1DB1BDCqbGq6K7SCY6hN0e9q4VYtSoSsmdBY1sXaWakhS4kFD51Hxqcqrqx+Tu1PlICY83OYooRGkIBDEiXUtkKxgpKoamd3afTkxdaBUJ+/lO3RPt5VlhwnoDtz46/7cBZFXO0IIeb5HiduEYdIW1TLGrvluO2r77/wvam+ptRFymW9EJf5EWp/jBClEht9SWJE0AgNvRQsbdFturN0keUDPjdV6+bTVrWW9LxB9Bl1PgZrmmbby9/9HYqikDfsVARBJOBz07FnLZLBTG6/k0nOLsfn6sJgTkWWAzTvWo4c9JNWMJCu+h3Y2/aBomBKycHT3YrBnIKiKChBP8WWIRQnj8SiDwman+/9K4eK3pefY49jdY737NmjKTYMochih8PBOeecwznnnENlZSV2u52bbrrpiEk9n8/Hyy+/zF133UVXVxcAW7ZsYfDgwTQ0NLB+/Xr+8Y9/MH/+fObMmcMpp5zCO++8w3vvvUdbWxuiKDJixAiKi4ux2Wy4XC4GDhzI2LFjGTt2LCNHjuz14T8KaGpqori4mEceeYTbb7/9R933p59+ysyZM/nyyy+ZPHnyYa07YsQITj75ZP72t78lnP/mm29yww03kJaWxnfffXdY5M4PRVVVFd3d3YRfv5csWcIf//hHfD4fY8aMwel0sn79ep588kluvvnmH61d/y2orq6mrKyMzz77jOnTpx/VbTc3N0cEpZ///Of885//jMz797//zXPPPceiRYs444wzOPHEE9m3bx+7d+9m48aNuN1uRFEkNTUVq9WKxWJhz549pKWl8c9//vOQ65H0ohe9ODLIsowgCPsVwTds2MDVV1/Ntm3b+MMf/sDdd9+tERfDqK+v57bbbmPQoEGsWLGCL774glGjRnH77bdjNpsJBAIUFBSwZcuWiKiRlpbGJ598wu7duzGZTBQUFLB3717Gjh3L2rVrGTx4MDfddBNXXHEFycnJCVp3YPSOy3txvOMntW+aMPuvlA2byc5VryLLIQIqI38w+X0mUL31M3bu/ghJZ8JgsNJQt4oi63lkD52IrIOkeq3q4O8heuQeb/SwV3S33E794n/R3b4Pa0o+SamFeHzdBEwCe9a/S2fVRpRAAEGQMJrSMY0biW9EH9LpQ/6oM/G77Ni69+Gq34enoxmdYMSsS8UtO6h2b8avhAgvo5REgXUQSWfPIu+d7QiiEBEkhH5lKLurEPNDhW3FDnuorRnJBHqKYcoGEckbjBRPdZSFImMsTVFCTTYbQtG1PUVLw17ZanFC8in4khJ3pmFyRZGgeXIoMshoU9lR5OlIqvf3TA9ofedlIsKE3hGICBOSR9YSdaLWuzs2e+JgcCndFIuhWg3TRt3PwvUPHtb6h4MzpYtBCB2UCxeCIuIQuhF7CpPJPt+BVo8gNacv+1q24y9Kx6xL4fO9f42IHV6jzPeeL9ALBjLFfDZ7v8UomUmTfpzIrK/W/BmAMdc/jgWwZBaSeu1g/O9/Rru7Bgkd6YKeUvMwRMnK5637jyrrxZHBmJSF2xYqsBgwxc9XFJmWqjW4bS2UDj4LUdJpig+ra8VIXjlSHFcQRAoGnEp77QYEQcSfbkTssVwS0nIpKbkY/wnTqfroJaq3aQu+h2Gx5qBPSgNFxt5WTTDoQ5RD2/CcEhIinPmhe93SFGqIpydbLdxGnVvR2NqoBc0wGRwI28So/PpjI+MlPxi6VdlFRhHJK6OIQiRDQwxE9+MoDN2n4Wh8WR/anyxFI/T9SRJGVXmglL0u3Hlm3BmJxQ1fsoDBriDrQ6SzzhO1YJIl4ur2qAUGNfksqvQBRYgKE2H7uzBxrrZLChqlSLuDsTqCiuD3W9VFqqOWO8bO6E719dEaSqItKnCj1z7yDd3RImu6hmhdJbEgL/LZOTAqXqsFCXeOPlK4GsDcGt2/qSH0jLMNjbfCU58zAG9aNGtGTfIH9TGZJaprJ1z7ImQ7RsTuaH8WghEIod9Q74weh6BE7Z/Utkrh61MtcoTtxcK2YeF5fquAHAwQcNvxO+wEu+343Xa8Rh+S3ohoNGOQTUguI4Kkp7t2O+07V+F1dKI3JaE3p1A04izSGISsExADCs17VtBWtZbUkiEMGnN16CVJVlBEIZIlASH7j9TsvlSvmU/Abaek9FRKy05FECRWrp6HzxG9ASzpBcgBH/WbF5OS35/yEy4grWAQBnMKblszDduW4mqvZ9CEX2I0p2JZp6211Yv//1FRUcFvf/tbjdfx888/jyAI3HPPPXz00UcUFhZSX1/PU089xZ49e+jTp89h7eP999/ntttuo66ujosvvpj58+czbdo0vvjiC2688Ua++eYbAFJSUhg2bBizZ89m8ODBnHbaaTz33HPs3LmTZcuW8e2339La2kpBQQFGo5Ft27bx9ttv4/P5EEWRYcOGceutt3LllVcmJA56cXBUVVURCAQitRp+TIStbjZs2HBEosSqVasSznv33Xe5/PLLufjii1m2bBkzZ85k6dKlpMXUMjxWKCsr03wfMWIE11xzDY899hjV1dVYrVZmz57N9ddf/6O0578NRUVFkf5if6JER0cHjzzyCEOHDuXKK6885G3n5uZy7733snjxYlJTUzXzZs6cycyZM1m4cCGXXXYZCxcujFs/NTWVUaNGkZGRgd1uZ+/evQiCEInC7kUvenFoUBQFu91OU1MTzc3NkT9FUUhJSYn8paam4vF4eO2113jzzTfx+/3k5+dTXl7OG2+8EcleA7jhhhvYtGkTr7766gH7haysLAYNGsQjjzxCTk4O7733HrNnz2bdunWMHTs2spwoikybNo0333yT9PR0Zs6cybx585gyZQpms5lPP/2Uhx9+mEsuuYTXX3+9176yF/9f4yfNlJgwOxp5F/C5UBQZvTFExiuKguBwI0lGfF4b3301l9xRUwj6vHTt24SoN5F34lmkuJOwJ7vxdrXirNpFn3EXY1RFEzbWf0/N1//CmJbDsJn/Q8vO5dSsmQ+AMTOX1CFjSeozGGNGDoJe+9DfOvc2ht8e9erfNO+2yOfp2TegpCbjDtjo9jbT6a6nrnszigTZg08hZ9hp5L8Xqi0h9CuLrCc4QiSQnBUdrASSQ+RaUBUFrCb2dF4FQ7u2KGVYmPBkhkgmdVZCWJRQ20moozeNXTKeTJGAOfxdewmEhQkIFcSV3FEmTp3hELCqXvJUl1FsQdEwYgUKdQRu2PJk2aL7sBoyyUgqJcVcQG7+yIhivWjlHxJu90gxzRx6oHTKLazzLcUqpDBKPxmj0CMUHaIoIRfnsLTmOTJMJaQXDaWwcDySpMfpaWfLxteQgz5Gn3AjlnXVfO9ehD3YyRjzGaTJ6Ue96PWhYHrhLZrvn9c//aO34XiHoijU1NRw5WUvoigK/oCLL7/+M2az+eArx6DvyPOp3PghJ571B5yD0yLTdR5wNu6jbtmHuFvrEASRlOw+jBp4Je6iaIRnrCgB4LK30FG3mbamzXhcnYw65WbM1iwcBXqSmgJ0l0TJ5+zvuvh2y5N4fDYsSTlYk/MwmtPRiQbcrg48ATuiKGFMyiR72CRMySFPSktLICJIhE5K9GOYLNaSyKH71Nyuyriyij3tVvVFqk0Gwr79qm2bOoJ4MiSMqsyt8PqxNRAi832KJjshPA1Ab+/JslD554dFiXC/KMiKpg8N2wOG9x0moyFB5L4KYkCJq8ER+qISmWKIc3X2SGx9hsjqQSXSX1obos8Cn6pospo8VwvKppaoKCE6Vc+RoCrqfz+CRGzb1bUvbMOjYoXBFr1Iw4JEdD/RtnSMy+w5ntB3b5rKJinmsSHG1JvQ2DXFnibVsYeFidjrIdZyCXquP7XLYM/nWCumRPsM6iHo89CwfiHtu9cQ9Llj1wjZ+AXinyOCpCOjbCRJWSX4PXaatnyFOaMAa1YJAa8Tv9OG29ZEwBPKaBp83h1s/eBRAMb9fF60DX4PNavm075nDamFgygddy6ZjhQCAS/bt75DW9t2Bs66FZ3JiuDwYU7NBRQURUGUeq4dReG7N34X28QfhN6IrGOPH+Mc19bWkpWVFXnuBQIBvF4vVquVxx57jDvuuINXX32Vd955h6VLlzJx4kQeeeQRdu3ahcFg4F//+hf5+fk89thjmsjDc889l48++og77riDRx99lDPOOIMlS5ZgNBqZOHEi11xzDZMmTaKoqOiwPd99Ph9btmxh3bp1fPbZZ3z44YdUVFRw3333ccUVV/SKE4eJL774gjPPPJPZs2czcOBAzj33XMaNG3fM9/vQQw9x//3385vf/IZ58+YdNhnzyiuvcM0113DdddcxY8YMzj33XGRZ5pNPPuHiiy9m9uzZkSLZkydPpk+fPixcuJCMjIyDb7wXPwm8Xi8NDQ1kZGTgcDhwuVz07dv3iOpCzJgxA4fDERFAwwgGg7z00kvce++92O12fD4fjz322CFlCS1cuJDFixfzyiuvMHjwYL744ov99jcbN25k5MiRGI1GRo8ezcCBAykuLiYQCLBz5066u7sxmUxMnjyZ66+/vtfCqxe9OERs27aN2267jW+++QaPx6OZp9frkSQpbjpAYWEh11xzDdnZ2axbt45XX301kpXQ0tJCbW0tq1evBiAzMzNiKxmLrVu3cvnll7Nt2zb+53/+h3vuuQer1crmzZs599xz0el0rFy5kubmZlJSUigsLMTr9aLX64+p6NA7Lu/F8Y6f3L7pYBhy9+MowSA7n/oDsteDlJSMZLbia00cwTf0onsxJmWEfL4Vmc7qzexb9hYGcypDf3YHIODubMSQkY1kCJHP7iyBrY/cFtkfhASJQ8X0fnfSMjmfgMdJy5avadn6LYosk55SRlpqKXq9FZ3TjyBI+MozsaTmkdMcDZkW60L2Ve4RJdFpPcRK0HLg6Ahvitr2QtBE2IYjLkMztdYkAI4ilVVFjzARtokJE3kAhq4oqaIWJexlWoJWTeSpI07VVh1qYSKRKFG1ezFd9mp8rk489jZGD7yKzLS+wLETJfYFtrI7sJ5MYzFDUk/DoksBg2og6QqRTYHW+AeQNChkXbC3bSUt3n10d9eSlJSHKOmxdVWhNyQxcsz1pH0fKrQbUPxsCH5Dt9LBKP1kMsQcGBa1P1i45v6jeoy9ODycPmUuiqKwc9d8GhrWaOb95je/0USPHipOnH4/axb+CaMlnZSR47Dkl+HtbMFdtYeuyo2Ys4voM+xc5GCAbV//nf79ZlJUeBKgvY/spdE+Y9vH83A7WklJL6Wk7+mkZpTjKAxds0mNUYLY2By6dldvexG3t4uUzDLKBkzDkpSjIbE9GZLmPo214gkaBYLqdyvVO2Ak6l9F6kcI4PB/qm4sktmg2l8iG5ywKBEWNkArvgYNoYwItUggBrT7MrdoUxtko4grK3GfqkhaMlqdReZLjrGiEqJt1h6bdpuxwoSpLcS0G7pUllJ9ol7B6nOitsdS2zf9EFFCUQnvgj/axys61XNEF11GbVGlb4mKDWpBwtyiPWhDc3Q5Z790LHu6gKggEYY3Rf3DaWZp7JnCv29YnEtkz6QWLNSil+iLFztitw+Jr7/kWj/u7HgRTPKHSP326vVUr/+EYMBLzuAJmFJz0ZmT0FuSWfLcHUyb+waCKKHIMrLfS9DrQbB5eOl35zJ48GCm/vafEbFt29K/4ba3ojOYkYxWDNZUDNY09MlpGJIySC0eyNp/RC3hxl79Vxwt+6ha/jZ+t4Oy0edSLg5BEAS8vm7WVL6Kz9lF2eTLqVz0jwQn7Nii9+Xn2OOnPsdhshpgzJgxrF27NuFyOp0Ov8pazul0ct999/HEE09w88038/TTT9PS0kJTUxODBg066qLBpk2beOihh3j//ffJz8/ntNNO44QTTsBisSBJEiaTibS0NCZMmNB7rSZAa2srv/vd76isrGT37t3IskxVVdUxJ0knTJjAihUruOeee7j33nsPOyCkq6uL2267je+//54tW7Zw3nnnsX79eqqqqjj99NP59NNPMfbYHG7YsIEzzjiD4uJiFi9e/KMXwu7FwdHa2srkyZPZtm2bZvrSpUs57bTTDnt7r776KldffTWnn346V111FVlZWWzevJm3336b9evXc8011zB37lweffRRnn76abZv337AjLC6ujqKi4spKiritNNO47HHHiM7O3u/yzc2NlJUVMTgwYMjNmO9UdC96MWRw+FwMGfOHObNm0dZWRk33ngjBQUF5ObmRv7S09ND42SvF7vdjs1mo7u7G7/fz+jRo9HpQmP+yspKTj31VHQ6Henp6WRlZVFSUkJJSQn5+fmMHz+e4cOHa/bv8Xh48cUXufPOO6moqOCNN95g5MiRAHz22WdceOGF9OvXj/nz58dly/0Y+KnHjL3oxcFwXIsSYYEAIOB2EnS7kHIzUGQZX3srcmVDiOhRrOxe/AJlp1xMZt9xuGyN2Kq20LZnDT5HBzprMoKkQ1EU0kaPJ2viVKwNocP+/h9H1yN1zHWPY93WTkPTWjo7K+nuriUgezWZBIIoMXbi7ZitoYGvZV0oRVkuCH33p0UH3/5kSWthEQNFAG9MMc2wMBEmuNSRuWphQm0dAtoo3bAoERYO1P7grmx1cdbo+mpRQu1J7s1QeZWr9qG2O/GrbVB6SJ8ti59C7xcYO/haBEHAWRg9L8m7uiKfF2z6Iz8EZ57yR1o6trNz76fIfg/jsy/EalENJl2qCNjU6PUfyIp6+gXNoWPs7q5jx/b3MBiTyC8YS1b2EAweVZT0uu0ElAAb/F9jU9oZO+jnpFoLI/N7RYmfFqdPmcvevYupqv6SvhXTEUUdu/Z8AkBB6ckYLWlk5w9n1ZK5h7zNKWc+jM1WQ33td7S0bQ1FTosixoxcMkdNJKf8BNztDdgb9uCuq8LeupeRP7ublBYhIkp09jdHiP6g38vat++jbPz5ZPcfH1enISxKBIM+bDs34A+4MA8eRuX372Jv20v/k64io2w4xs5ox+LJUFku9fBHghKypVFnakSEiRiiOAxFjCHHez7L6oSL8Lqqfi3cF6iPJbJtJUbgFIg7Zp1H0exD3QZzSyBiOQXR7IxE7Y21/1ELE6AtiqwWKsLEt94ZyrgIH4+lKdpBqjPhDlWUCPfR6mNTC0Zq0UN9PtXWWAZH9Bj0qjodht2NyHmhqNBDESV0bdEizIJ62BAI7dhXmBYnSESOsURL7quFpP/H3nmHSVGlXfxX1bl7coZhYMg5B0ERAQVzlhUxrmJOa9p1PxMrxkVFxbQqukaUNYERERQkB8mZgWECk/P0dKyq748KXT0zYAJB7fM880yHqlu3qqtuV59z33PMFQi2RvN3gnDQqpTmApAhLGjrCM3OzVaDs1u5+4kvbF6iEZ2P0lRfSt76T6ivzCMlpy8dBp6FmJbyi+4lRlz0ZKuv65/7qv9Gt5k54ETq920h0FCFIoWJS+1Al+EX4YxPI26f+j1VWLqSHXs/I6FzX1L7Hkd8+25seOanT7I4FIj9+Dn8OBqOcUFBAaAGUBcXF9PU1MR7773HmDFjeP/993nhhRfYv38/SUlJLFq0iA8++IBZs2bR1NREdnY2oijicDh45ZVXGDVq1GHt64YNG3j77bdZtGgRGzZsINisEnbIkCGsXLkyRgweBAUFBXTu3JlHHnmEu+6667Buy+/38+ijj/LYY49x7LHH8vXXX/8iwUpRFF544QWmTZvGiSeeyJVXXsmxxx7bYnb9pk2bOPHEE+nQoQMLFy78RZ7dMRwehEIhhg8fTlFRES+++CJvvvkmc+bMAeDhhx8mKSmJK6+8EqezFX/UA0CWZd566y3++9//8t133wEQHx/PMcccw9SpUxk0aBDz5s1j//79PPjgg5xwwgm8++67B2zv/fffZ+LEiZSWlpKZmXnA5YqKivjggw/o1asXkiRx2mmnAdDU1PSLKrFjiOHPDkVR+OCDD7jtttuoqqrinnvu4c477/xZ48EvRU1NDZdccgmbN2+msLAQRVG4+eabefzxx6Ou5/HjxzN//nymTJnCpEmTWuR2/RY4Gu4ZY4jhYDiqRQkdujghmcYXZ6U6EDVuXkfRms8J+Rvoe/49FK76hJr8DYg2B1anh2BDNY6sdsheL6EG1We7y23/wuqJZ9vUw/dD/cTRj1DTMzIgKYqMIsuEQl52ffAMca5Meg+6FNFiw71VrfqICsCWoalD9EwkUWpG2pkItPr2VlzV0QSaXkXhrpBa+HgbRJxA9CxT02JmkSGQJBq2LLJFiKp4CCaZMyRaD73WhQmLXzYsU3TiLhQnRm1XJ+Dqi3awa97LpPc4FoBwbQ2uhAwSUnNpU5uC3apa3BwKUQIgFPaxeuN/ECxWhg65EVG0IgZMHvdOK45C9RwyCxLhuOgfSrrvveiPVpPEdTsi6ygh1grf0xSuZVj3v+JxRGYRz1t7+HI0Ymgd40Y+DEB1roX1708ho8exdOpxOns3zKVkl1rebbW5CId85PY4lb3bvvhF22loaGDI9Q9hTU/DX16MtzCPpvxdNBSq50bHYyaQv/pjMrsfR27/M431zNdvw/5d7PriRXqe/3fi4jJbEPRrX76NfqfdwdYFL2qWMgJpWX1wp7enYNPnDDzrXsPizhziawkoUZY54WaZD2KYqGoJfQzRSeXms80FOZrwl1rhE3ThQRc9dcud5lY5spUWBLLkEKIqG/RxI+RR27A3RAsVlmD0mGmuMtP7qffDfBzMpL4uSigWgZBbiBojzVUcZgJcFya8bexRQrDZXihuf2SD5tn55hn9+r4cSlECIJwb+QGtZxrp+2i0rY1ptrLGVgUJAG/PyOzS5iKEGQcSGppX8plFcl9qs++v5uHWzYR747zTl2u+zVbuelrLo3DUmir7wgEKts+nZPf32ONS6DDsXJLa9mDlm79+YoMuTiyf1dJGaeAN6v1PU3kBuz6egS0uiYw+o3AkZRDftgsZayJCUG3fRPz1FRSsmUtD1T4kv5c+N/ybTc8fXgKxOY70PeOfAUfrMfb7/TzwwAPMmDGDY445hvfff59BgwZRXFxMhw4dKC0tJRAIMHbsWBYuXAios+K///7737yvsizj8/lYsmQJp5xyCk8//TS33HLLL7KD+bPgxhtv5K233uKOO+5gz549NDQ0MGzYMEaOHMmQIUMOORG0aNEiTjrpJP72t78xbdq0Q9p2c6xbt47Ro0czZMgQvvjiC6OSIoYjCz3wfNmyZYwYMYLU1FSqq6txOp2IokhTUxNbt26lZ8+ev6j9oqIiJEkiJyeH999/n7y8PGbOnEl+fj4AL7/8Mtdccw2LFi06oHh666238vnnn7N79+4DbmfGjBnceuutCIKAoihMmzaNRYsWUVRUxA8//PCL+h5DDH9m7Ny5k5tuuon58+dz1lln8cwzz/xmVQiKovDQQw9x//33c/nllzNq1CgGDRpkVEeYMXv2bJ599lnWrFnD2LFj+eKLX8Yh/BocrfeMMcSg43chShxzmeqhvPLN2xlw83RkKUztjh+o2LgYf+V+7HHJOJLS8dWXE66vpd3x55PS8xj2b1tA5ffzsLg8SD4vjs4dSTnrDBI9HQ+rIKFDF1MctRBIUl+zNULdns3s++oN7J5k+rlPINWl2jYFuqjhx7bKyMz85sIERMgi3YZENpF9ujChk41RFiQmYlMRWwkRNb0X2VbksZmgOZgoYW2StHZM+RNmT3bT65KJFNW3ayYS9y6aRW3+RhzxqTjsCTTVlxL01QGQ4GpDdnJ/nGNGYbE5WP36ryOHjv3Lk9RX7mXLt88zeNB1JCa2byFK6AjFt/QEsTbJUUG8ZujkoWXVNgDEnLYEJR+L8/9DcnwuAztPNJaNiRK/PXRRoqJ6Oxu2vU2v0/9GkqsdshQiFPDiFuIo2beS3Zs/ZuDxt/DD4md+1fa6/OVW9nz4PILFit2TRNjvJexvpPsZN9FYlk/x6s/odtLVJGb3UEUH0/WZv2gW9YXbGHrafQhCNFm79IM7GXn246z99klEi42uoy4nXFLC1rVvo8hhnImZ9Dnv74BaXWAWJcx2QYoYTbJHjQliNGlvHn+aV05ASxJar/ho7vnfHIKsgCA0ExZaWbdZM4HE6H2KsqJqhcw2qhGaiSZiCBL2qmOxYCLfGzt4TOubRBFbpKpEtkWOkWSPtPljooQvzRpduWEi5qOCwfXsA9NnZs7tiArd1sKpzYJMazlBgvzjogSArVo9JoqJuGvKjdfaUFoIEmbBIEqkMh0Xe2P0B6Pvq7NGJpDU0jpLbYwWn6dsB2sTB0YrdzvmKkBoJi6h/vBo2rSR/HWfEA42kd3zRDL7jYlkMsAhESYOho6n/JV9X7+JO7kt3Uddhd0Zj6PGbNMW2enavokE4wUqNixm/8rP6fm3xxAEgc3//u2qJY70PeOfAUfbMS4pKeGFF17gP//5D9XV1fTq1Ys2bdqwdOlS7HY733zzDQMHDmTAgAFs3LgRu92OLMtMnjyZKVOmHHR28W+B66+/npdeeomzzjqL5557jpycnCPan6MVtbW1DBgwgKamJrp27YrD4WD16tU0NjZit9s588wzmTx5MieffPIhE3fuvPNO3nrrLcrKyg5JewfDhx9+yAUXXMDMmTO58sorD/v2YvhxTJ48ma+++orCwkIEQaCqqgpBEIiPj+fcc89l48aN7Nu371efbw888AAPPvggGRkZ9OvXj2+++QZQz/mzzjqLvLw8NmzYQGpqtBVlY2MjPXr04OSTT2bmzNbtEjdu3MigQYO47rrreOihh7jvvvt47rnnALj77rt59NGfXn0dQwx/dvh8Ph599FEef/xxsrOzefbZZznjjDN+0z5MnjyZmTNnctNNN/Hss8/+pPFnzJgxZGVlMWvWrN+gh9E42u4ZY4ihOQ48nfEogS5IhPyN9Bh3HWFvAyXbF9FUU0x8h17Et+tGxYbFyFKYuF59Seg9CHf7ToRkSDv2JKzuOHzhKjyDB+HIbgvAtlt+O0ECIoIEQDABXAP60MtxB/uWfcDqsg/pdur1ZIfat2ijoWtk0LBoxJJu1WQmE3XYmpQWr4fcIrYmmbBLVCstoghExbALUSzR5KFZjNCJpECSiKNWVsN2hQiZZfPKCK3MMhVkJUqAiOpXnF4tEXnNTD7q5F37cZPIUS5CEAQsAdXWKeitwVuyh+r8DWwr+hr7nFVkDzqV/fv307Zt21a3Z8apObdG96WT9mM400FT7X51X5PtBOOs6JeIvTaEoAXDBpNaLyEXlEjIrU4EKhYhiriUhvXEVqKKKt5gNWE5iCQHafCVIw/s8qN9j+HwIBSnfs5OSzbWvXEUrv8C++nXYm+yY/HYKd69ij2bPyE+oxO2Q0BWNGxci80ZT/cr7sEeEMlf/B5Vu1ZTsPRDsgaOx5mYyZ7v36X/hPsAOxXbllGbvxGrxUlNwUZyj7kAyWNl5Zu3c9wFTwCqIAEghYP4GyroPngSzvg0iE9jYPv7CCo+bG51TBEkNQNCkCKCQ9ipVh7oz8VQ9HgiKCbh0EarBG/Ua0JLQUK2CqCR56KkEHYIrVpARbJw1OoNS0CJylUwltXGKTPZba9XCCaoGRiSTSCQIBBXGiHmZW2/m0MMqfuVtrjEeC2claRux2oxhAlPoQ/FFiHK/akqu24JmK5/c6VFg4xrf8T6yGxHVd0v0XjsSzuyX8eKGLFlUiyC8TjssiChB5bLBDI9OMq8B2hDiLJg0kWVQKLYQmzR7Zdki2AINFKzialNmSZbv2Z2TebvCzGkChIAYXfkNLQ1tVze+GwE/fVm55WpuiJQW0XRso+pL9hKQvtedO5zNk5PKoRAshx+MWLQtep9RMX67/C06USX067F3qj2N5BsJT5f3UHFaUXYpM7Q9OwMsKdzMY3Fu7G5440fSn3+Pv03FSZi+ONj586d7N69m7y8PO69915kWWbSpEmUl5fzySefIIoi//znP7n44ouN2Yvz5s1jxowZpKSkcOmll5KRkXFkd0LDCy+8wEknncTNN9/MkCFD2Ldv329i//B7Q1JSEnv37o0iYMLhMBs3bmThwoW89dZbnHrqqZx22mnceeedDB069FflT0iSxObNm38zWy09yHTXrl1UVVW1IKBj+O1x4oknMnPmTJ5//nluuukmUlNTkSSJiRMn8vnnn/PEE08cEgHstdde47rrruPFF19ElmUsFvUG89577+WMM87goYce4qabbmLWrFkEAgFuuOEGSktLqauro6qqinvvvfeAbW/YsAFJkpg2bRoul4sZM2Zw++23I8vyEfGXjyGG3yvmzZvHjTfeSEFBAf/4xz/4v//7v9/c+qykpITXXnuNadOmceedd/7o8qtWreL5559n/fr1XHHFFYe/gzHE8DvEUV0pMej66YSaGijfuIjKzUuQwxFWwu5JRrBZCdRW4M7KJfNvNyBoNxB5d0YTBZ2ejfg277mlpT3C4YQuTjS3NslcE0RRZFasfApXchs6jLwQIcFNUl408xJIVJkUncQ3k2khjxDVrnlGsGQXjNBqiLa7kGymIFqiLaF0EtEaUKIDqk3L2xq1SgjT+0JIwepTXxeDkU76Mk2B3qbZuz6tyiPKr761GcWmfpv7oO+Pv66Sfcv+R0OpSsg44lNJ7TKExE4DsDpcuOtFRKsdUbQY/QZwbt1vPA51yiQsBdi7byEFxctI73ks3budbZCH9toIwxj2RJgwJSqoV8DWGNb238S+Nbu8wm4rrj3VANT2SaZ4x7eU7llByF9PSvv+dBh8NnZXgkHGbXwqRiIdTpzaVa0a8HWO/PDcWb2IktVfYnXF0WPstbiT27Lly6fxVhUCkNXzBEq2fveLt3nMZU+xb/Un1Jfsou+Zd1FTuIldi99US7rlaLY8p/fJ2Bxx7PnhI+KyOiIoIs74NHKPOZ9Vb6s3QgNums7659TzZNRZ05DCQZZ9eR8dh51PRlc1MPtAs/WtTYpJaBBazLbXRYnW7HLMpLBTq6LSq7HkZvy6IDcLvA8qLcYuyR49njnqZULu6D7JdiHKIi6oWTAZFQrNCphkW2S7rsroY6uIAjafJh6afs96tpYbj8NZScgmAcJcOWUWJmRTXoS5AkJ//cdEidS11dT1jmQw2Jo0ESUYve9Gvxxqu2aLLfN4b/Wq/fSnRj6IoClY2lnTsn0zHHWRgTnsUg+qxZQT5MyvMR43dUkxHguSgreNKtqaqzyaMiLHx5wFYRYaghF9BlA/O4sWvWH+fPSKFuO95kVrzYrVLPrwrXWnRTVPK9ZOIVuYyh++o2zVfKwOD+2OPYfUrD4G8bHqjcMrRpjRe9J9bJ31EB1PuJiUzoNIfX9DdHf7RsRsYdNuNuTspWL3Stxtcklo35PkY08w3v+tRInYjKzDjyN1jBVF4YcffmDq1KmGr7uO0aNHs379empra3nooYe45557frN+HSps2bKFPn36MGPGDK677joj+DKGnwZFUfjss8+4/vrrKS4uRhRFjj32WCZPnszo0aNxuVy4XC48Hs+PCg27du3i+uuv59tvv+XLL79k/Pjxh73/e/fu5V//+hfvvfceoijywAMPcPvttx/yAPYYfh46duxIfn4+Y8eO5bPPPqOsrIzu3bsTDAYRRZFvvvnmFwVem5Gbm8vFF1/Mww8/zDXXXMMrr7xCfHw8DQ0NhuWS1Wrlk08+4aOPPuLtt9/mlFNOobq6mquvvprLLrvsgG3/1MyJGGKIoXXs37+f2267jdmzZzNmzBheeOEFevTocUT68swzz3DXXXdRVlZGcnLyQZcNh8P07NmTUChEr169uOeeezjuuON+o55GELsvj+Fox1EnSgy8cTpyOMgtw9K49d6H8ZbubbGMu31nRMWKzZNAcrfBKMd1RtBubpsLEkcLet0TqZzIXBNhYooLlrNrx1wE0UJG/9FkDTmZcKKF9A1BGrNb3gTrhGJUVYN2X68Th2bhQieqfGlClGd3MF7AU6YRiR4xyk/bTCbphJ6ZGFS3oT53VppYJdNMFV2YkO0WAsnqfohhBUelyiQ1tW1lBpppfd0X3jxTO6p6Q4r+H/TW4ivdR13RNqr3ro8SsEDNA0hJ7U6vfqpN0rfz/sHJ7W6iIqWJyuodlFdsIij5aDNgHFn9xuCuMVuXmI6NZk0VjjPZnJiqQfRgYgCLRnha/CoLFnZHftzKDtNMa5dM1b51FKz7DEkK4kzNwpGSiSszh4SBQ7E41GO15dGYQHGocWrXv1PjK2ZX9fc0KY3YbB4SsrpQvOs7ADp0PpEOXcaBIuO3BSjLX8W+LV8yZ84czjrrrF+0zSFXPUXF9uUULPuQbqdeR8X2ZdQX7SD3xCvI++ol7M5E7I44vPWlKIp6viVmdqfn8Vex/H8Rb/iioiJGXf8gjsQ07AmpJBRKVO7fQG3lbsqK1pLacTCdRlwYLRAIkTHEahYxHc2uc7NTULOwavP4IoaVqFwHs+ARcgktZqELcvT4YmtSCMYJUYKq1SdHWQdBS7FBkKOFkpBHjFrWbMVk7oOrUopaz9wXRYi06d5Wjr+TmpEghiIstxiSo4RJSbuOdUFW3X60KOHZrRH4oQgbHmivEvn2ikbjtdZECYgIB62JEhARJg6lKKGL1qJJiDCfE7b6IJZqVWjRRQlzRVggObJdf4raV8keLUiETROb9AoJS6CljZbSyrnYvE9iqOV7YvO86maihFmo04ULMajQUJJHwfIP8ddVkN1pJO17jMNidRhVivp2Vr51eO81Btys3jPU7FxHwddv0W/iA0alU+r7G/Cf0BsAR3UkNL22s5vV79xJfEZnOk240XhdFy1/K8R+/Bx+/NbHuKioiJdeeon33nuPvLy8qPfi4uIYM2YMXq+XESNGcMkllxwxsuBQ4LTTTuPLL7+kbdu2vPTSS5x55pk/vlIMUZAkie3bt7Ns2TL+97//MX/+/Kj3LRYL6enpPProo1EzR6uqqvjqq6/4/PPP+fDDD8nOzuaFF17glFNO+U37X1FRwaOPPsozzzxDamoqffr0oVevXowbN44zzzwzFoh+GCHLMi+//DIvvPACtbW1HHvssZSWlrJo0SJADSXv06cPfr+f6upqLr30UrZu3cr69et/FeF/+umns3nzZtauXUtubi5nnnkm2dnZPPnkk5x99tnMmzePYDCILMsIgsAzzzzDzTffHNXvjRs3Ul1dTe/evcnIyKCuro7XX3+dr776iq+//vpX/XaIIYY/I8LhMC+88AL33nsvLpeLp556ikmTJh3R7KeLLrqIvLw8o7LuYFi4cCEnnngir7zyCpMnT/4Netc6YvflMRztOOpEiR4T72LH+0+0eD2hfU/i+g0kvktvtk//v6j3Oj+hWjwdrYJEc4w5+XEURaa2sx1BFAl566ncspSyNfPJPv1iknoNBtT8CZ3ws/qUKG9tRWgZ7qloPFDY2Wxms+mxvUEhGG+aXatxYmZRQrILUfkRBszkkEZAWQMK1oYQwWSV4bHXhVpsU7c9AhA0gv+nihLq/kQspiJtRv+HiDd4SArQVFmIHA5hrfUjhQOU5C1DkBWGjLiFb+f9A0VRcCe3wV9Xhs2dQGK7XuR0HoMzLjXKY9xMWuqCRHOYBQozdFECoqtHQokR1i1kytrwy16q8tbQ6C/DX1WKr7wYi9NFpytuZ+fzsZyJQ4GTh0wBQAiECIQa2bV/IcUNm0lwZJKc1ZPa2nzq6vJJyuhObbkaPm2xOMjucBzt+qs/ireveIPa8l2kZvSgU4/TWbHwkR/d7jhxgvG45q8jUBSZrR9Nw5OZS3KHvuyeP5OEtt3wpOdSW7AZX20JSZ36k9x5IJ6sXGw2D4os01i6h/rCrdQVbSdQG5nRb7G7SGzTnep963ElZRGX0ZGMLsPxpLQzxITmgdigji+yNZIfYGmFpG4RGkwziyUwrl1dlAubxAl9u2bxAqIru9RGlWiRwCJEiXyS5vVvr9eEQU/kutPJczMJLzkgda1qlVZxTBKeUlOOgkXAURPS1o1cm8GUiH+QvSaIpFUJCGHFECeaixL22ma+QkQLlfZybZBtTZQob0BKUNn5xvYunNXqMv6UyDbcZWr7vrQIi65XzkHkuJjHR3e5uk/m74HGtlrFgz/ymnnc10UNr8kyKXmntm/NBAkd9Z3cxmNXhdb31JaCBETbGOrnkiUYbdnUvOpBaCWjBFqp3DEtJ0rRgoReUaGLEOZ1dbHLWaPZTHlr2PDxw4CCIFrwpObQe/Dl2BweKjtJBCpLiat1YPckYbE6CMUJrH3hb8yfPx+Px3NIZz/pokSgppzt7zxGp1OuptueSFWKuULFUl7HvpJlVNTupMG7H0G0MHjio4Q0cSgmSvzx8Fse4+eeey6KfAPweDxcfPHFXHjhhYwaNeoPUVEQCoWw2WxGNci9997LN998Q0VFBUlJSUe6e79r5Ofns2vXLnw+H01NTdTU1HDLLbdw77338sADDwCwefNmBg4cSDgcZtCgQZx//vn87W9/w+12/0jrhw/r1q3jk08+YevWrWzatIkdO3Zw2mmn8dlnn8UC0Q8Dli9fzq233srq1av5y1/+QseOHXnrrbeorKxk3LhxfP755wDk5OTw6quvMn78eEpLSxkwYAAOh4NJkybx8MMP/yLRaMeOHfTo0YO5c+cyd+5cXn31VW666Sbi4uL4z3/+g8Vi4YorruDCCy+ka9euJCYmGiLaZ599xjfffENlZaXR3pAhQwA1T2L48OGMGjWKO+64IzaWxBDDz8ALL7zAjTeqk2wSEhK4/PLLeeaZZxAEgcLCQsrKykhKSqJTp07Gdd/Q0MBnn33G8ccfT7t27Q55n6ZNm8aUKVOoqanBbre3usymTZt4/vnn+eSTTygrK2PSpEm88847h7wvPxWx+/IYjnYcMVGiy+PTo57bNHcLMb+GHbOfQLQ7ScjtjTM1i4TcXmx9/Y9Fyp588sl8/fXXWB1xKIJCz4v+wc4Pn0EOB8kccxaJPQdh90bCPnUEEsQoEkcnXMLaPbvZ/kQnXyRb5PgCBJPAqj23Nba+TquiBNGEjtUUdq3PRjZECTCIJ0GSCSWqg3bYabJC0UhNM/GoE6DR+RbqE3NQd2uZGroHunnGrN6vXV+9DCh0Of1afnjxNoZMfoqyzYspWvUpGd1H0LnvuZF+mYNP9X0w86/yAS6ZA7xsq48cE128geh9DMZH9s3I8PDWsPnzJ0lq14u2/cZhT01nzau/D+HtaIQuSAAUl6xme+k3iIKFzjljaZcxBEG00OSvYun6Z8nJOY522SNoaCqhrm4fhfu+p33Xk8jtPp5woImivYspKVhJUmpn+vZQq28WLPznAbetixK+M4fQUFNIONTEjh/eQxCt9D3vbkrXfk3JjkXa0ppA4HAiBXy40trhTs2mZs965FAAmyeJhJwexOV2w5WWTUPBdmo2rUSRJZLb9SF7yGkttq8LA80zHszCgmwXooKTowKKlZbrGu9pgdRAlEWaP1llfM0z+MMuoYU4IchEWRpZgoox0x8iop+9RiXD9cB5e5Xqp+/PjARPg0qK69dr4pa6yOttPDjLIyED4YTIQCoGJMQm9TqVPZFrVBclACw+KVJ1YSIjzKKrGdY6lf0XQq2Lmfq4posS6r6qgmVrogREhAnJNP6FXFpVmYm3sZqEB12gOJgoYf6MdFHCPOaZq+zcpSGtD+pywXjRECTU9SLLVvR3RPVNkIgWt0wihNJKJY6xP9r3leSI7r+jTm3Mn6IeA0dtsxWbnbNhV7R9k/7dqle3hJzQWLKbYGMNcn0jpVu+xe5KJK1tP/aXrCZUW6X2xxFHh3GXkNCuGw3Fu9j96YsANDU1HVJv2wE3T0cIKGx+51+kdB1M9jFnkvmdGvba1CXFyCEpXPspZduXkNClL/Ede7LurWdIS0s7ZP34uYj9+Dn8+C2P8UcffcT555/P2LFjGT58OP379+eMM844omTxoUZlZSXt27fH5/ORmJjIyJEjefTRR+nXrx/HHXcczz//PP379z/S3fzDwO/343a7ef7557n++usBNbz0oosuYs6cOcyfP5+TTjrpCPeyJd5++20uvfRSXnnlFc4++2zS09OPdJf+EAiFQkyePJk333yTQYMG8cwzzzBy5EgAnn76aW6//XYWLFhAfHw8O3bs4M033+Tbb7/l+++/55hjjmHjxo08++yzzJw5k3feeYdJkyb95G3X1tbyww8/4Pf7Of3007nqqqu49dZbmTZtGm+99ZaxXHx8PH6/38izqKioYMGCBciyzKBBgzj11FM56aSTyMrK4umnn2bp0qUIgsC///3v37zSJ4YY/ihoaGhg/vz5VFZWsmPHDp566ikmTJhA9+7dmTZtGoGASoQdd9xxvP/++2RnZ3Prrbfy7LPPMn78eObNm3fI+7R69WqGDRvG0qVLOfbYY1u8rygK3bt3x+fzcf7553P66aczatQoHA5HK639Nojdl8dwtOOIiBI9pkQEibArmjDf9qA6o0+fJQiwfsYfy7bmmEufYtOn0/DVleJKaoO/vpxBf3kIn62J4uVzqdu9gYyh42g75FQAMlbWAlAxJMloQ3JE21/othiuSoWmDAGrT30ejI8sox/noNaMXiURdoFDjTkwiChLQImaRWueiaovo4sSslWIEgx00j4qfLZRm2X8M0QJnbTTyVAz4anPWpacEVarMdvaYrs6iVi6cQEla7+m3+VTwWU3yNfi1Z9TsWMF/S+agiBasEacMKJg88ot+mq2NjF7ypthzpcwe9Drs5sBwqZqCZRIOLgiQumW7yhc+ykAWf1PIls7J7xtBeNaieGnQxcm1u18hxpvIcd3ux5romabIwiUV29jw85ZnDBqCmXlGyksWILF5qDJW0FKSld695mEL1MljsvzVrFn1WwGD7qexMScFqLEyUOmEJaCVNbvpnzPSuqoImiVkMIRVjWl0yC6Dp2IIIj4G6soz1uBMz6d+KzO2D3J1JfspHDDl4QCjaR3Poakjn1xZLRFMeUvmElaodlwHrGqaTmbXr+udMsm3R4oSpiQm11PzYKlzYKmqzKMbDqv9XHCbDUUeRNsDdHsc9gt4ikwiQbxdiw+U3WDdi3bSuvVvsRHqq0Ui4XGjhFxQu+H1Sfj2dOAv03kPV2YkO3aeKGLmf7ItmSPHdGrDaomO6ZwnGlGjCBgL2vQlldvNCWXFVulOtAqtsjBbiFM1DWAOzKAKy613VBapJ9hbWwLmSqxjGowk13Vj4kSRh+0Luj2SFHB0369XbNtndY3S0SU0AUJiIgS7rxa47VAu8j9QWXfyLHS+2Y1BU/rlQuKJSJIAFh80f02Vz14ykwCl+nePuq8k1oGZuvb0aFXRujfQboQo39H6uN9Q0U+xeu+oqGmAHdcOp36nE3IBfu3fENdyS7Sho4lUF1GQ95mAGbNmsXEiRNbbvxXYNC109mz+G1CVRV0P1cd8+OLNAFNlqh11LJr4WvEZ3Yi6yx125uePLLfDbEfP4cfsWN8aFFUVEROTg4ejwePx8OwYcP49NNP+e6777jxxhvZvn07S5cuZfjw4Ue6q38YHHvssWRkZPDJJ58YrymKQp8+fRg8eDBvvvnmkevcAaAoCqNHj2bx4sW43W4+//xzRo8efaS79btHQ0MDmZmZjBs3jo8++sgImQa46qqr+OCDD6irq+OSSy5h48aNeDweVqxYwbvvvstFF11kLHv22WezceNGtm3bdsCg+qKiIj755BPmzp3Lzp07KS4uJhyO3P+98cYbRj7EF198wYoVK+jfvz8nnXQSsizz9ttv869//YsuXbpw1VVXccYZZ9CmTZvDdGRiiCEGM5577jlmzpzJ5s2bufLKK7n22mvJz8/n1ltvxe/3869//Yu///3veL3qDX1VVRUpKSk/0urPQzgcJjU1lb///e8tsrMaGxtZvHgxp59+OnPnzj1q7B9j94wxHO044qIERMiRPxPJ2v3Ea9i99C3kgB+rw03vS6YgWlRmJv/7WXj376XDuVfjSE6n7aJaAMIJTioGRt9kSRrBJIbBXR6dGaHDUybRlBG5wfNrmb4Wv7pe2AX2yITiqFmzujBhb5ANEt6xepfxvne06hvcmighWwVDjDATYHFb1fLWYNtIsqk326H1SfM6N3F4P1WU0Ik6PfzW7G/va6xk+7uPkTlkHFnDTgZUsavbpDvYNespOp5zLSkp3VoVJcwzxHUSSydyrU1SlCAhmrM5TLYwUZYvJgJNtgoRr3jTpagTgmGnQFBqpGTDQso3L2bgFY/hy4nYP/2ZrplDgRPHPgpAbW0+P6x7mX5dLyQrvrvx/q6yRewtXsTwk+5j8+rXkaQgCUntkcIBctqOICmpIwC+TBuKLLPl8+kEgw0kJXXC2rE9Gf1OQBAt/PDSbYwffD8rt8+kvmk/cc4MUuM6Esh0EZeei80VT8jXSFJOb2SN3DWfZ3bTNai/bs6G0HMExGbOQc1FCTnqXFP/i2FVeAi5W4oQomTKqDHHCei5EtrlZraCclVJUSHIurWbnpsimKoxQh4LzioTsa0t46g2segyiAHTMh4HlroIUy3oNkhhCTnZg2L68drY0YNdC2n2p9mwmizULD4Z135ViZXcEcJcUBQUrfJB9IWMbcsOU7iBRUD0aoODuVLKogV7e0xVF95A5FrW98McYK73/2eIEvrnrX9mkulrwBCGTN0yhP5WKr1kKyD8PFGi+XJxxSHTaxK2Cm+UIFGXaxIkTIUs7nIFb5YQlefgqog81r+bAJzVpn3U+qCLI+b1BfnHs4d0SI6IIAGR70m9PVeVJlCZquXsDTKKIiMIora/6vP8/G/Zt1v1Sc86fQK1P6zA4vGQc9E1h2xc7nuHeq9UvWkF+7/5H30vm4rV4UaQoWDZB1RtVyukEEXaX3wd+958/pBs99ci9uPn8CN2jA897r77bh5//HEAbrjhBp5/Xr2eQqEQbdu25YwzzmD69Okx+5VDhBkzZvC3v/2NlStXGlY3AFOmTGH69OmUl5cf0ZmlB4Isy+Tn5zNhwgSysrIMS6EYfh3uuusuXnrpJQoLC41rLBgMctxxx2GxWPjoo4/Izs7m1FNPJS0tDVmWef7550lMjPyW3L59O/3796dnz54MHTqUs846K4oU3LlzJwMGDCAcDjN69GgGDx6MKIqcc845FBQU0K1bN/r27ftb73oMMcTwMyFJUpR4WVFRwSWXXML8+fNp164dTz75JBMnTuSFF17g2muvPeTbP/PMM2lsbOTbb78FVGF1xIgRbNmyBVAt5rZv337UVJTG7hljONpxxE1gt0/585GqPe+fjnhcT3J7/I09LzxGONDEpjfupe/lDyElWEnsPYTaXRvY9d9HcWa0I3TOZLJ3qqxJ+jo/oXgrtV2sxuxTfWZpU4aAu1xBkBXD1kK3Skn/7w9UXDGIjHc3AVB8tXrTFUhSLaCCiRFhIhQnEFccmTUiNiN2AkO7GsKEZ3cNit2KGwimRgZeb5votFJFbCWktDkUxQhYBdWqClRSCKIJVp2I1In/pswIS2VrjOx7IFEjPRPTyBg4lvI135CQ2xt3RjsGXTcdtycLwWrDu38v8R26mwhZs52MdhzC0YQvQDAxcgkJcmSGrrMqwhabBQlFjMx21meQi0EFm8muxjwzWpDBIcSRkJJLOYtoSPZjRT22MUHi52PBwn9y4thHqandAwjYLC4UmwV/YxX7qzewt2QRHduOwhYWQZYJNFWT0+svxCdkE/JY0KlYQQIBkY4n/5XSTd9SX7EH/8qNpHQdjM2j/kAqqN9AfdN++g+9hqTUzjj3N1A9IPmAfdNh9SsG+a/PajeLAGIrPvtRVU2m67V5aDBERAg900EXPfTrXJAj5LPUzCZNvwbEsELILeKqUleSHCK2RinqGrXXqkcrFKee/5agjCUogwjIYG0KRc2cBxD1agVBUIl9WcbS4DPWASAsgVU9QGKNyr5LaQlY6ppIXN+Er6N6jJ2VIVz7alHspq85TXyweANIHgeiT+2j4lIPlOyyqaKEJCM2BaKqMSKdFEBWkDXbJcWqkdVlJmXX0ezAixZVmNDGFaWhERoaoWO7qDasdX5CSWq77r01xupVx/x0iwhz5eEBoUTOA1+KYFRbyNowKoZBP430c9FV2XL8s/jVpULpHsIudR/CLhFHvfphedtEBFtdNE/eZfpuCSo0tFOPlb1Rxq5V75nPd12QAWjIiT4fPSWRsT6o5WzoAoxsAfSh1LSaP1locQ01P2a66KxnnAiCSChOxFkZNp537HgihfsWIYfDtGk3AkrrqNi+HFC/4w/V+CxbwdOlB8xXqK7eQWbmQKRQgKrtK0nuOpiUbkOgSxZWTxw975vOtqmx74UYYvgleOyxx+jcuTPXXHMNL7zwAikpKUydOhWbzcbVV1/NY489xjvvvMPll1/OK6+8cqS7+7vHddddx2uvvcZVV13F0qVLiYuLA2Do0KHU19ezZcsWBg0adIR72RKiKNKpUyf69OnDjh07jnR3/hAIBoMsWbKEpKQkLBYLsiyzYsUKHn/8cTZu3MjChQuprKxEEAT27t3L3LlzW82x6dGjBx9//DHvvPMOH330EevXrzdECUVRuOWWW8jKymLt2rUkJ0ffjw8dOvQ32dcYYojh18MsSACkp6fzwAMP8PXXX9OrVy8mTJjAI488wg8//HBYtn/qqady6623UldXR2JiIl9//TVbtmzhpZdeYsiQIfTs2fOoESRiiOH3gCMiSvwZhQgztj14Gz3vn449NYNON9zNnhceQw4H+fxfkzj56dl4crvS48YHqVy1kIrlXyP5fZQPTMASgoR9KimStDtMZb/IxyfbAAEa2wmAQHyBSgp5vtpoEGHp//0B7CoBlLXcS+mIaC/2YCLYVWcUGrOthjDhKPMZM7D1GcVy1/aIvuiyAuemAvx92wMQXxh5L6z5stsaVAIw0C7JeM/apAdjtx4U9GvhqJMNgrVz9lga87ay+4NnyBo8noz+Y6jcshQlHCYzrR/2esXwFtdhMc1E12fjyjYBNFssMaxg8yotBBd/qro/ZnsbcwaHZBNatbmSnKJB/AYSRaSGRsq2f0/J9kUIFitKRQPbnrr/Fx+PGCCweyd7C7/BZnVTWrWRXYXzqfcWI4pWcrKOoXPOWNZvmEVjw34AGhtLcbnTgJY3F474VDJ6jaT6y/XY41OwutXZBwPOuYe8/Pm0yRxEUmpnAPxt43HUqSRuMEELUJZBbNJFqh/vu+RQCWMxZLJdskaIY7OAqIchmyufAokCwXghKiNAUNSsB31VMahELKG0xRQBkrbWUddD3T8xDI56GdkmRFUHiaFIILQOW6PJFskuYm0M0RxCVI5LS/JbqNNYY/1HaFiCQAAcDpAlLOU16mPAtUX93IhTPy8hGEaxWxEaVPVWiVdJf4s3gKKFolkrGwinxWMt14QF7WZXbPAjxzsRa9Xty/G6D1FLSyopMxFLoTbt32GDGrUtJaAOIkJ8XFTbUfsXlg1hAkAMq8dw//gMdbuaxhHShmx7A4S05gw7Ju0DNFsX6RZ98cW6eBQZ3xqzovdBbmUIllt2lbj9YUPc8WVoFW7BloqzqzKES8t8dGwqMF73HqNWG4ka4a9bEeloyjBVldkFwzrQbEWoixE6wi5TRZBZD5KbWUM1q4TTrzm71gXdtkkX6iS7AIJgtOnXMhxsXpmygjXIoSCCaEFoDKjnvjbgHypBYtOTt9H7H9OxxSfhyGhLY94WEtt2Z//3H6HIEunDT8TtTIcm+OGpP/d9VQwxHApcffXVJCUl8Ze//IWNGzcarz/yyCPceOONXHLJJSxevPgI9vCPA5vNxmuvvcbIkSPp3bs3L774IuPHj+fpp5+mZ8+eR22Gx8aNG5kyZQoff/wxffv2JRAIHJUVHb8nPPnkk6xYsYIBAwZw6623Mn/+fIqKimjTpg1vv/02gwYNMgi+kpISNmzYwMCBA1sNtD7ttNPIz89n1qxZRi4FqHkg8+bNY86cOS0EiRhiiOH3DUVRmDZtGhaLxRgXZFluVbw8FDj99NO58cYb+frrr+natSsPPPAAvXv3PixVGTHE8GfAEa+U+LMiirR4/tEW74s2O/Fd+lCx/Gvqq3bjScgEoL6D1RAmslaqDEvZYPVm2NYAoXg17DOYIJL+5jqtMcEQJuSmJpRhfdT1l3spHOdRw0M1ssZVKRO398BTbS11TUiJGjFXohJwAiDYtNmuFSZP+OTW/Twd+6oIdEjFVh8wiDh95mrILRrkvWEZo82+Fsz3nro4os2o1We06m2o66nPI7NuHfQZezNFW+ezf808yjcuQgo0kd75GNxJWUhoVQwmvkuvahBN7ftTNMIyHLE80QlindSSmvnoy9aIxZVsE7A1ylFihDdLvRQVRaF23ybqC7fRWFGAv7Y0qp26/I30umc6Wx+OEVC/FA6rh/aJg/CF6qj3luByJNGhzQiWrXudc09+GoDszMFU1qgz4LZv/YA9efMYdO4DRhu2Jv0cFfHX+pACPuJTcilf+iUN5XtorNqHzRFH9jFnEtKyRCwhJcpGx4zWBAmdaDVnx4BKTNvrW29Inx1urnAIxgnYG6OX14OBQRU49OtPP8914cISUJAcAklbVYI9cXs9gXT1+terhCymbBlzNZFFExwlt3ohWrxBLNrQouctWKo1sj/BhVjvQ3FGVxgI5ZqHj/6DPxwGyaS8BAJgs6qWSM0DpyUZLGJ0pQQgNPhQ4l0IvmBUDrK1Us2HUKpr1eXSU6HRi9joBZc6lokNTcjxbsTSauSslIilU2Ozko+GlmOoUlePoLUjpGo/iOu9hp2ToNk5iXHqvoYy4lu0oSMYzwHPpZ8LpdldgLkior6jNvZK0KBZO8Xt1/ugCWsKyNo5bmuUjOo1XeB1rd8XaVyS8SzLI9w9J2qbofjI5+4uV4+HL92KNaAQdgiGICEGwOaLFiF0iBKEtGtFlDVB2DQMi8GI2OCs1YTADF24iz539DwjfYwWQ+o1oa/fEKph16aPSO7Qn9rCzZRuWogjIZ1QUx2WbeUMmfwUa169vUUffwm2PK4KE8mdB1K28iu8+buQwyHanTQRR1I6Pzwd+y6IIYZDiQkTJtCas212djYnnHACjz/+OHl5eXTu3PkI9O6PhYEDB7J582auu+46Tj/9dFJSUqiurmbOnDktZsIeKTQ2NvLyyy+zZMkSVq5cyf79+xG03yCbNm06ais6fk8YNWoUV1xxBcXFxaxfv55zzjmHCRMmGNZNAFdeeSWvvfYadXV1DBkyhKlTp3Lvvfe22l5BQQGKomCz2bjhhhtYtGgRW7duZcKECUeNx3sMMcRw6PDiiy/yySefcM011/DKK6+wevVqunXrxqJFi1AUxRizDxU6dOjA8OHD+dvf/kZZWRm9evU6KnOQYojh94IjkikRw4+j162PsWf2c4Qb6pCavNhS0ohLzyW+Q3cSuvRDtFhJ3RqZ9lnd3eRprnF2YRd4SiNkS/z/VgMYogSotiEF41QmJ21TZFldmBC374XcbACEgCl0trRcfWDTwmI1UYLkiLenQex4TdNTtRBnOTnO2D5AY/vILHRdlNDFBcNCwzybWtBJo0h+hXkdaBnoara1qW/aT+X2FSRldiWpXS9EIj9+rE0ywXjRsJIyCxK6CGL2MBekiEDRXJRQFAVfgoQsS9j8ar9Fqx2LyT4kkChiCSgEG2vIX/EBDQXbcaa1xZKVinfbVmwJKYRqKrCnZZJ7+a1YHM6YKPErcWr3u9UHYuRz/HKbKg6edOxUSirWsy1vDooikZzWDQEBMS4OmzMef305vtoywiEfCAJS2I8o2pDCfqyOOOIzOpKQ2YXMnCFYbA7jvNUtlnwpkXNNP291KzbzOapXOASS1GUcdQqBRPWxLkrIJpsbfVa71adERAm90sH0217PFIDoEGHdaz/sIKqSwlMcyXOweIP4szzaupFlJIeIvT7SmCDJCNpsf9F0/ctuO0IwcvKbxxTAECWE/VrFgf75tDbTRVQttqKeO7Vx0B8whAQ9r0HwaWVPzdep18QIraIB042r4HKi+NSyEcFhb9mXeK10obEJfM3SpS2iUfWh+ANGewb0x0ZGRtho29dHHXNLjtX6rh1qq0nr0Ku4AtqQqwvLDpOLVOomVSzRLeR0IaGhfeSE8LZVG3fUqlUJuiihCxIQOS8dtdpuF0ROVIeW4SGbq0eU6FwRgKb0yDaTt6vnVFQejz/SZn2XyPeBuVpDkCN2TuYqtChRz/S7Q4jWmAHwmLKXmlfl+FLVRj1lkXPEnLMB6vVVuW8du5e/w5DzplK0+Wsq89cy+Mz7WPvpVFK6DCZnxDkAh0yYAOh7/WPsnPUkztQssk84D1tCEgAbjkJRInbPePgRO8a/PRYvXsyll15KRUUFiqLQv39/Ro4cyXnnncexxx57pLv3u4aiKMyaNYu1a9dy6aWXMmDAgMO2LVmWaWxsNIgqh8NxwEqH+fPnc80111BSUmJ8xt9++y39+vVj48aN3HTTTcyYMeOw9TUGFU1NTdxxxx289NJLJCUlMWLECERRpGvXrgSDQbZu3crOnTsJBAIIgkBlZSWpqalUVVXRvXt3Ro0axZlnnskZZ5xxyMnJGGKI4chj4sSJlJSUsGDBAnr27Mnxxx/PpEmTGDduHAsWLGDs2LGHfJuLFy/m7LPP5vbbb+cf//gHdvvhcf04FIjdM8ZwtCNWKXGUwpsVJFBabDwPVVVQU1VBzfbV2JYl027MBQhdepCyW2WmUnYEDGFCkCLWHt4s0RAmxPh4dYZuuerRFGqbBECHL7zsO82DP0kkeadKrEkeG7a1O6P6JBftR2zXFsVhRdFnK0sSYpZqMaJbQzWH4nFECRNykgc0wlIIy8geO55iP43tVZJOD4LWKyQUi5kc04SCkO71HT2j1UxI6TN1BVEjnjRyS7EIuF3ZtD/u/EiFhba+VZsBb2+Qo6xOIBKkbYZO1slWQZ2pG2dBtoIU8rN3yXvUFm1Vg0jNsFiwehJw2hMRPR6kgJeQt56gtw6rO46cCyZjG9yNomenY8/IJFiiTk22JSTjLgphczoYdsVTrPrvoSO8/qzQhQgzdjQupWj3PON5TeVOBNGCI5iKJAVxJmaS1L43NmccISFMsKEab8U+XK629Bh/A4IgIFtUT34JULQwZCN02JRXIsgKitjyB5IuSChidFWEo05BsgvINiE6O8JE3AYTor31FTFafND7Ym7X7NuvCxJxhU3a+gKCJBt5D64ClfUOtFFvaiy+sJFrg7YsaIKjFE36ik1B4z2htjHyhl5BoIsRejeDascFjaw3BAKPRlrrwkTzGZVOBzT5wONG8EfvvFJRZYip5rYj2wwi2O0gSSiNXqNtJRBEcNhRGr0IcR7kymqorEbQhJDm7SDJhqgiOB1qtZokowS0sVDftwOMm60h7IkWJg4GXZA4GMyCBKhVE43Z6uP0deoJZq5CM8Zk7XTRBQl1XW3ctkbOpfoczbqvKdKGu1wikGLHasrRsfgi7TRlu4y8C9mqnrthp2CM8dYm9RoQUC2nxFDEfkkPrJYcJjFaa1e/HnxpWnVEo4JVO2/NfQbwZopqILzffO3JxrUq+ZsQBAvuRisuxQMKiBYbbboeT9G2b2jTZSTW9DQOJTa9eDfKC/+IESoxxHCEUFRUREFBxIpu5cqVrFy5kieffNIIwe7SpcsR7OHvF4IgMGnSJCZNmnTYtrFhwwYmTpzIzp07keXo6riEhATatm1L27ZtcTqdlJWVUVJSwv79+xkzZgwLFizA5/MxcOBA/vKXvzB79mwAOnbseFhm4cYQgaIoDB48mO3btwNQW1vLl19+Sdu2bVm7di0pKSn06tWLkSNH4vF4qK6upqysjPfee49p06Zx5513HuE9iCGGGA43ampqyMjIwGq1kpaWhiAIjB07liFDhvD3v/+dVatWtWr39mswatQoqqurY+N/DDEcAsREiaMUFo+HtIkTqPrkUxS/H8EqkjZwDA1Fu/CXFLB37iu4MzvQZtippDs6IwgC7nL1JjuQJGJrVIUJQYamDJE2b24FQKmqMaxDqvq4SFunMlxxhep2a7o5DWECUMWHvMiPMMWhVUZ0ykHZUxjVZ7kgIqKIOW0Rwoox61hxObT/GgFnEVoQlocSYceBvyDMs8bDLkGthNCDhbVwbUFWhQ9LoGUfzevr1lCSQ7UEkcJBaoq2sn/jNwS8NWQcdwqi1Y7sECn76kNtJYlwfQ2BFAtWRGxZaViyckkJJ5PYZwjB9k5qvvmGYFkZOeMnUVjyNgDePdvZWfsyruQ2OBLS6HNuGa6kTBx1Mks+it10/xx8ueOxA77nSWmHYLGSkNWVtC5Dkb2NxKd1xJ3Uhu3L38BbsY+ElPZ4q4uoKd6GIoVwp+XQdugvn4HVPPDZEAl0Pa2V8xBQ/fYFsOjVUU5VKFOacfSyLXrGuLtSQdIuRXujgr1RwVUeCVDxpUdme+gig+y0RoKoAVttpIJCdtiwmCuiBAFZs02S4pxYGk1VBGEJobndkWaZpMMg7nVBoEETMHRxwtukChMWUf0DkBWUGrUdwalVIXibwONGKSkz+gWo1QmaMCFVVSPooobefjCIYLEg6yKI/r5e+dDYTBmQZXUdVyuWdT9ejGiILTpcu9UwhmwpFYD9Ix2RoG9d3NI+c5em47gq1QV0ayPRJMY4GtXjKdtVHyRR+6gd1eqynlIt2Fwbz5oyW/ZRFyTMYkLYrR4XZ7kfa2MIX1bEa0wXJPTMEoDEfPX8sTSZBImAFBFvJBlPkXpuNOTq5UMYVWtBszAsRIttkmmCkmJR/8RQ5FrQPwVHrUmMcwkEEgRcVZo4U6cQSBKMdsNOAUFRhRRQRcS6XAu1O0qwJaVS3ceBtDuIYLdRH+/D0aMH1j3LKVj3Gd1GXdHyIP5KxH74xBDDkcPEiRP59NNP+fDDDwmFQnTv3p3LLruMf//733z11Vd88cUXXHHFFdx3333k5uYe6e7GoGH//v3MmjWLKVOm0LVrV55++mlkWcbhcHD99dcD6izSQCCA1WqlXbt2DB48mKysLPr27cv555+PLMscd9xxdO7cmR49ehht33HHHZSXl1NYWMjo0aM577zzSE1NPVK7+ofFhAkTmDp1KnfccQfHHHMM1dXVXHjhhbjdbhITE0lISKBfv37MnTuX5cuXY7fbOfPMM5k8efKR7noMMcRwmCHLMhs3buSyyy4DwOv14nQ62bNnD7fffjuTJk3irbfe4vLLLz/k247dl8cQw6FBzL7pKEanZ59EURQ88nr2Pjefpj3luNp0QA6HCFTsV0MWFBl3enu6DZqIKyHDIDNT5qgiRNPx3anrZCVxT9iUrQBNmSpT46qQ8RSp5KLkimhU9tWqn74iNZvlLyuIiZrBt4mAU6pq1P/a7CMxp636hi5KlFcauRbkZKlNuVUWSbZbtP9a5oJW4RCKj/RHt+rQiTGd6HNWq/3zaQGksjV6efMsdN2bX58x29xH3+zRHvES18g6TeQwH8PmwbIV6xdRuuor5FCzNFUN7tyuSP6mqAoYBIGc/zxmfKntm3wXnUdezN4V75M28ATaHHcGwYYaaAiw9+vXCdRX4ohLIeRrRA4HGHLKvThcqn9LTJg4tAiHw6xdu5YtW7ZQWFhI+/btuf2BJ6kt3IIgWnEnZZHUsT8puf1xxqk/QpsHAxszsM33LIZ1kjYbvJl/PZhCh/VzVSNJdQsos3WNYQFl4sONc1n7Lzkij92mzABbo7pRm1dC1MKKLSbhAUmJ+PKb+ieEJOP1FiHVphs0RRAQAybmOKxdNP5m14hGystNKiGtiwBKUAuJ1kpiJW8TlsQE5IYGY1VLdhtjbFGaImKHYLVGyH7z15wgGNsxQ7BYkINBRLc7IoqYgmwEUzWGEtaqHDTLB/295qKEEgxFKiEkOVJNFtQ/UM3mrZkoIaSr51OgY4Tc2H+sui1dwLJqqwiSOovfrn2W/iS1L8lb1Io43UYLwJejjt11HTQ7J+3rvLko4SlVzwFHdUSostZolTOa2ORrp5bjOcsjfa8coL5mtv9yl6ltSM7I8XNUamKPycpLb1dyRsZ9Pbck7BajhGbje4DoYGsjFFuztDJfU0RPjG0JIfKdAOo1ZjV9LHrIuKIo7HzlIRK69KHN2HPZ+78XEUQRQRZoKNhuLN9r3E1s+frPaesRu2c8/Igd4yOHYDDIq6++ypQpU6ioqOCCCy5g0aJFVFRUGKGaF154If/9738PW8hmDD8Or9fLFVdcwYcffmhkhFgsFiTtd01cXBwnnXQSX331FX5/ZLC/7LLLeOONN4znPp+PW2+9lVdffZUlS5YwcOBAvF4vX375JTfeeCMNDQ306dOHLVu2MHjwYJYvXx773A8TampqWLNmDVu3bsXr9dK1a1duvPFG6urUCt5TTjnFyI1ITEz8kdZiiCGGPwLWr1/PwIEDWbhwIQMGDCA9PZ0HH3yQhx9+mCbt916bNm3Iz88/qi2WDidi94wxHO2IiRJHOUZ8rXrfK4pC3Q/57HxgTiukt0ByzyHknHQRDs2SxVURjrI90qGTTs0tY9ylGimoBdDaV+8wBAaD0DPZzjQXJpTaem2ZCPOjCxq6vcnPFSUCKVY1hDckIzlExLBC2KUFY2vkrL3+p4kSzQUJiBBQuhWJTgTrVjSCHAk0bi5KRPnpW2D/yk8p3/hdpG27g8Seg3GnZ2Nxuqnd/gP1uzeROOAY0k46HV/BXgIlRTjiUknqOwyAUCL4P1xI4Q+fkZjdk64nXE4oxW4Q0o56GSkcRLRY2f7dq9SV7sSdkMXAE++ICRKHAffeey8PP/wwAFZnHGG/F53ZH3ju/djdicZ5EHKrM6p/VJQwXXbNRQmdXNUzYQwhztSmfn0b7zXLpIDILHjFQrQoQeQ5QGJ+RHC0abPfLZqvvxiUoiqZBL1CQBBUQUJ/PaxdRK0EUirmbAZtOSNDQh8ndHJeEwHkRi+CxYLUqFZGiNrNoxwKY/G4kbwm0UEUDDFAzEhXt6mLGs3snhRJQhBFZF+kusN43WJpIb4aooisGH2IWs8sSjQ/BrqlnGk9Q5jQlwmGkBsaULQxUXQ5UQIBBIejhSAieNTBS+6qhkOH49S2ggkaYa/lh+iihK1B7Y89v0ptR7eP0/rj65Ri9MuXrmV4aP3QMxX08zR9nXo8mwsSALKW/xFKUNutz1WftyZI2GoihI/5/NEzhdBKqs0ihbdj5F7DXCnUkHMAm0DTtSWZwuGbX5PNIUrNllGivyccddHBFI3l+9j+xbO0v+Bq4jv2ZMcLU/C07UTdrvVkDhnH7RNOYt26ddx5550MHjz44Bv/gyJ2z3j4ETvGRx7BYJCpU6fy0EMPRb3etWtXdu3axccff8w555xzZDr3J0dVVRWnnHIKa9asMV7r0qULl1xyCbm5ucTFxXH77bdTUFDAnDlz6NmzJ4sXL2bPnj2cccYZjBgxwlhv6NChrFmzhpdffpmrr766xbYaGxtxOBwG2XXvvfcyderUw7+Tf0L07duXzZs343Q6cbvdVFdXA+pntHLlytis5Rhi+BPin//8JzNmzKC6upoNGzYwbNgwLrzwQj7++GPeeOMN1q9fz/79+3n55ZdxOlupaP8TIHbPGMPRjthUjqMcy8dHbGa6r5pOp38MombZIqoWfmlaSqF25zrajfkLYljEUaMRgJJiCBOuBZuQ+3cDwNvOxNho8Kc5cBc1IfolNdy6NSiyMTNYadLIvSafIV4INlvL8FmIeKdnqsQh1aqAYakGJSFOnXBdogZn++la+cUAAQAASURBVI/pCkAgWSMbQ1rlRbh17cyVr1ZouNZpPvd92wMRsk239NCPg2HlIahElD6TVj6AcB5yi0ja91fUTHaNtVMkiYJFs6neqYaIuzJyyOxyLCkd+qMkOgm7oLFoN/W7N5GU3Yuu7U7BttcF9GLp4tfo/Y/pbHn8NnreNx2A4q3fqMemRwcaLfVQJyCHAijIhFKyiKux46soxh2fhd2RQMW+NTQ1lDLy/CdY8mFMmDiUcLlcCIJITspgnAMH4EnNwResQwr6sblafqErgul8skXnOuhVDEYGiQ1wCtHP0YSyZsVJZgQSBCNvQm1Pf6yJZZogYSaGJYc649uXGrGlcdYqBJJE3GV6SLEQdY0pogCiELEA0knjkG5jI6OYvTnNpL5eNaAoUcKE2nCz61ifTRgIgNuF0KxiQA7q4dOiKkgoskHWK7KCYFGvQaVOE0U1SyYlHFYrJUz9UmR1/GpRjdG8Gkx/TduOHAxGCRNyQC9REFF8fkRbs69RrVpEqq1t0a7epr6OIAoosoLs86uPA61XWQGIO1QbPZu2jMOtKVGa6KskqFUKilZpoHi0Ko4ararEr1eXqKLEjwkSADU91G0k5Ktt2qvVcV/whbD4w/jbqzMRdUECwOLXc3kkFFHA4gsjuW1YmkKR80c7rwRAsZoUAU2kkOKdOCvVz14X3iSXFUFWSNgXpKFdZHtiK9eL5NJF5Mhr5ioIdb9N70maoK3r8IJ67TrqdK8s9frxlRWx79uZODOy8eSo3vFWTzx1u9ZjcXpIHzaOd4qtbJg1q2WnYoghhj8U7HY7U6dO5YYbbuCSSy5h4cKFAOzatQuAt99+OyZKHAEUFBQwfPhwSkpKANV26+qrr2b06NGGp/gdd9xBcXExDz30EKeffjoWi4WuXbu2aCs/P98QNvr378+ePXuQJIn6+noSEhLo0qULHo+HL7/8kmuuuYZNmzYxe/ZspkyZgqWVyRox/Dq4XC7atWvHzTffzIknnkj79u3ZuXMnqampMUEihhj+hHj22Wd57LHHuPvuu7Hb7WRlqRNf33//fS655BImTpzIxIkTj3AvY4ghhh9DTJT4nUG020keOYb69auwpaST3GUQxV+9iyKFCVWUgb0NgWQrjpowriWqlYQSjmZjPEU+JI/JIiM++jSQe3U0LDSsq7dHvafP5kUQDIJRjDN8LdT/No3sgkglRVkFSlmFKkw4HS3tW/T90yxkrE3NKjq0ppNXq+KFkV+hbTtcpc4KtizUZgdfOKzV9g8Ei86FmjheRRMtLFpXdeJYJ5JDvgb2fPkqTRVqtkbm4PHk9BqHIIiGjZbVB06rStyl9B5OuG0itioJX6qFQddOx26FnvdNR5HCWHxWrEnJBEtLqF7wFdV8ddA+9xt9M9XFmynbt4bind/9rP2N4ccxadIknntiFqV1Wwl+sxqbJ5H2J0wkoV13FL+CAgQSoolcnQQ1MiKEaPLzp0CyQ0grRDJmf+uWT0GwNYszEGSw1ykGeWsJKia7s+hlZRsgQlOmQFxxRCCwesNa+yYS31RNJZgtmBQFRBFBlg1RRLEIKIpCU6iWQKiBhkAFshKmQ8ax6g/F5j8WdSJfb9cdLZRa4tUDIGk2TaLTgewPICsyIcWH06oR8M0EBcXnN1k/qW03J/r1yojWxIjoxmTDIs8QIppBEIWf1pa5TUxiCyZbKIue0vwT2/qFcBaqAo69VhUt9LHeVamFUtdrYoAtIjpJTqshSJjhqFRfSw6ofTbE31bC21EUFKuohp2L+nLNQufCMordiuhV+xBO1AQXi2h8N9TnRpQGV3Xk4gokmqy2tK88a1itIhLkSHWRtdluyFbTdSISFQwfSFSFQ8UKvsJ88j95GUdyBh0uuAbRon3PWTUB3N9EXd5GkrsPov+t09nwzG0tj0EMMcTwh0ObNm2YNm0agwcP5rHHHiMvL49XXnmFuXPnHumu/emwaNEiRo8ebTz/+uuvGTduXIvl2rRpg91u5/bbbz+geBAMBgmavquPOeaYVpdzOBwEAgGys7N5/fXXGT9+PMuXL2fkyJG/bmdiaIH77ruPZ599lilTpvCPf/yDsWPH8vrrr9O+ffsj3bWjEj6fj127dlFYWMiaNWsYPnw4J5988iHdRm1tLaIoxmZfx/Cb47HHHuOf//wnd955J4888gigCpc6Fi5cyJ49e+jUqdOR6mIMMcTwExETJX5H2HGfSnJ0nzqdlF7DKV8+jw6nXI631xAa92zD7kwm5BBI3tnMoiQYVG1CVm5SXxjRD4tPQnKpN+Lxa4rAoXm2p6pkn6CohKjStwvCpt2I8XEGyWf2VkcUIj7yulARChnChBE8q5OOIY3t0cQKoV61aZE7tj1ER0lF0qJ8ABqO6aD2Q59d3cz2Rp8dLoYjNiitQSebjQDUgI/Nbz5gvJ87/nLSsvsBEHJF+507ktKxJ6RRtOxjCr7/Hx3GXIwn1AFFlBEtTqRtBez68Bmy/3IVHS69maaGUpBkFFkCFESHg/LX3yDoq1X7YHUghwNUlGxACvuJy+rEiElPsvzdO37x8YqhJTp27Ej/DuehKAoF3QIUL59D3hcv0370RDLbD/nJ7ShiZJa2Tn7q56Hufa9X8Og2S/b6A7fnSxdwl2vnrR5NEFAIJEafv4qoCmhNmZHXxSDIjsgy/lQrjjqJUKINW31EvBQb/YQkP6X1O/H5qslM6UW8K9Nk5SYj+EM0KQ2UN+4iFPZR3ribhkB5VB/apQ7CZjFlz9j12fkyisOGoGdM6LkHus1RSO2LNSOdQFkJtVIZFWIh++U9hAjgDsdjx4GCTG/XSOIkRySEWrNkam7VpL/3s6AcRFFSZOAgMyH1PIqDtfEjEOM8Rq6GPv7q7elCrL4di089mURrpFrE/L5hp+dTRRpLWEJKNvl+HQCyzYIgKYhV9VHtEQwi1EGwWxu1fZNdoKCNq9Ym7TsjJEUJ2WCybjJndZjEq2C62jdbQxCQCLtthOMsuCvV/Qi5RcJOAatfQbILWH2alZrHlGliiYjKzSslwo5IlYUYUi3+dAHRsG/SnksNjaogkdmGthdfjex0Er9Hy+GoqyO+cx8a8jZTOO9tnHGpuLI7HOyQxhBDDH8wDBo0iBEjRrBkyRLeffddPvvsM44//vgj3a0/FebNm8cpp5wCQHp6OsuWLaNLly6tLnvGGWdw11130bZtW4YNG8ZLL71EZmYmsiwTFxfHbbfdxtNPP01jYyP5+fkUFxcTDocJh8OIoojVajU+34A28cFisfDSSy+RkJBA3759f5ud/pPhzDPP5MwzzyQYDDJv3jxuvPFGhg0bxqJFi+jevfuR7t5hx/bt21m4cCGVlZXccccdeDyeqPcVRWHRokWsXLmSsrIyXn31VRpMGWwjR448JKJEWVkZS5cuZdasWcyZMwdFURg0aBCiKJKZmclHH31kVCXFEMPhwIcffsg///lP7r//fqZMmWJUShUVFQFwySWX8PbbbzNu3Di2bdv2p82SiCGG3wtiosTvEGIInN27oiz5nGBtBdknT0SRZazeyMcpLtsYleup24QAiOt3IogiFkBI0lhRTUhQrBaDXNIDb5W+XSC/FMFuQwmGDNIPq8WwdTFm9+pBr+GfQf7JMuzIV/s2SLWYctRoxJtbq9jwquSWTqKF2/fW3tdm99a1R9FCYy0BiTBqRoWjNoQiCAQS7QcVJCBCROmzv62mCdaGzY62rlUSSek4EJsrgYxuIxCzM9Dnkuvt6AS0LwPihwyjauEXAOR98ZLRbkqv4dTvVsUi35KVOHp1xZWcy65/Rs+y7bspQEXRetpLHbGINraVfkPprqUktelBcnbPmCBxmPDV+gcBGHfsQ2TnXMyG+C8p+O49xNEiKV0GGyKCcQ5pF51e6WDxq7OsIRIq3FxwaC5IyE4ZvxOQ1XPNWSmoPvcSIICtgVbhqJONtkLulgKbbu2kzyL3Zgq4K9STVc8hkJxWrI1BZIeV9ds/pNq7D4C86mW0TeiNx5FGm+Q+uGU32yoWsq9uLaJgxW5x4fFkgiZKpMZ3omvWGEOQUHRLJymM7HEgBpsxxAcIhawKFLGWL5EDYWw4yKI9iUIqtVQgKWEq2E+JbxddPUONHAnZ50cJhY0qhwMKEdr7v0Y8+NkihwZRt16SNOs7TYxRwmGwWCLVZ6Ycn8MBS00TosMayXnQK1dEQZVbAtpJo4vJ7pYihr2oVn0gRwtLUqIqRJszJBBF5Dgngl9r1yRIhBPVcyUUFzkXHNXRVS7WRrWthg52rD4FQQLJpl4fobjIOW+JTG4l7FKvMcmkHxmagwUQWoqFOkIJqu1Xyfefocgy2Rf8FbGZH60cDtCQt9l47qvcjyczJkrEEMOfDWPHjuWNN94gPj6evLy8P6139ZFCRkYGY8aM4cILL2TSpEnEaxWXraFHjx707duXTZs28fXXX0fNpP2///s/nn76aQBmz57NFVdcQYcO0WO6oijMmDGDvXv3cssttzB37lymT5/OF198weOPPx4LWT7MsNvtnHnmmQwfPpwxY8YwZswYFi9efEAR6o+AwsJCjjnmGOrr1R8RL730Eueccw79+/fn8ssvJxAIMGbMGNatW0diYiLJyckcd9xxfPWVWnX/xBNPcNFFF/3qftx99908/vjjgJrx8fjjj+NyuVi6dCler5ePP/6YH374gSFDfvrkrRhi+DkoLy/nnnvuYdy4cfzrX/+Kek8f999++20A9uzZQ319PWlpab95P2OIIYafjpgo8TuFPSkVAJ+vEpfYDkEUjTDasMsCJw7EvmAdoNpLqEKCifySZQRRJFxcgjVHq1LQiCc9i0J2WBEDYURfCKljG2Pblj37Ix2RZVWYsFhUYcIfUO2ZFAUsFgS3GyzNZsQGguDzRyyc7M08Zn4mbHWhH10mviBISAuG1UWHsFPzjNfCq8PNMol1hPXZ640KoIee2uh2zMXGMvqcbPNMW0sAgvGqlU/y0OPwb92GtzQ6r6N66woc7hRkKUj1/s04Z8+neMs3Lfq/afGLxuPRpzzOgO69jOffzbrrR/c/hl8PQRDJGXkBYb+X4lWfktLl4CG2ltYdfwipxUhGzkQ4Xg+vVv97CkVCjXXULV9Cbc1uLFjJPucybK7ID+yQW82WkK3qbG/JKUSFAevwp6j2M4KMZuAfea+5IKG/LysSW/PnUu0tYGDPy7HIAiVVGyiuVMeTgqrVjG47meqmfcQ50umePgYl3kWCpy2bdn9ATd1eumafSIK7DbIWjCxoAqfsMZVpAIpLnbki+FQWWbBaURSFfd6NlAfyqVOqSCKFrvQjjkQsDgdSIEASqSjI1FKJJEiqrZxGmOuh0XKomfDRGpoLEr+2ukHPjNADug9g+3TA1TVRV27UPLrkSPVHZBMRgdkMqUbN1dH7rtsKiXrmRDAIVitKeQWix220L4A6Rif/OImi1OrbULcvxHnUsdxqUcd301huqVNHRaMiwmgk0nf9/AjHa5V6zsiy/hQr/hTNWqpCHeO9bSPty1bBuIORrURZ74lh1c4sGGfabLOiFk+ZQlO6ZiOltaMLdpK2GTkYoHjOOzTu2kLW6ROweuLYdr8qGPe7Xc0BcmV3omHPZrqcNJnSTQvxZOU2P2wxxBDDnwCdOnWiuLgYv98fZSERw2+DgQMHGrkePwUvvvgiEyZMMLInAARB4JFHHuHEE09kwYIFXHnllfTu3Zthw6ItYQVB4KabbjKe33zzzdx8882/fidi+FlIT09nwYIFDBgwgCeffJIXX3zxx1f6hVixYgXPPfccq1at4vzzz+eRRx75zXIsiouLGT9+PAkJCeTn5/Puu+8yZ84cY3+3b9/Orbfeyrp167jyyiu56KKLSEtLw2q1sn79elJSUrjllluw2X7Z7+36+nruueceVq1axapVq7j//vuZPHkyOTk5AITDYcaOHUtZWRkff/wxXq/3R1qMIYZfhq1bt3L66afj9/uZPn16i/c7duyI3W6nZ8+eXHPNNcybN4+kpKTfvqMxxBDDz0JMlPidocu0pyAerLITEBBqfcYsfh2yQ8S1YDM4HMZMXEtiAlJdfcRqCYyA6nDhfkOYEH2RKabBNDeS04LDF0JsCiK7I6Vvis8fsWRqHmz9U8hAp0MlsgCsVkS3C8JhxMIqQjmpyBqRpXvq6xUToQyVYNOFBHUZ9SbLs2gHoBFlgL+Xuk/OnWUA2CpUuxPf2D4tuhP0RFdPWP162YRgVExYgppdhy36JjTkVq1DJIcWruqAkm8+or5gG7IUJOyNTG1vf8HVNJUU4C8rJlRdSaC6lIBPDetO7jaYtQve/rEjx3df/eNHl4nh0GL+snsB6DFlOkKbVISaUiRnZEZ2SON4bV5NbDB52MvaaW4IVtr1mrxToaZb6z9o9r37IqGmOuSQevLteuYB0nqPJGf42QiiJSrA1wxBBskuYAmqJKy7IkK8GstIYGtS7coS8iPXu63SS6O/gl01yyiv2kzv7hNITeqCGJKQ5ZAhSiS62iJYLaS5ctlbv4a1RbOj2h/U/VLiE9shm4RSfzuVHXaUqUS1rOUYiE3a9k1h0burl5EX3kiamE2u2JN2cmdsgh3RZsWvNLGSeQSIWDPFC0lAy+yIyA6LLUQGwWJpldj/LSA6NOu6zu2NMVXwan3fX36g1Qz8kn4rJl/sA6KmDqVJExJ0EUT/wa2LEHZ7y3wQHZIEoejlEUUjvBpASogQdUKzajoxLCM2qp9TY44TQQFnZURwDiZajZB32SZEvhtMtnuiFDk2YTeIMsgiSKYCj/iCyDLuClXY8+qWe6ZDG2qsp+iDmfhry2g34UoK33+1xS7L4RDeot0IVjtSnIWG0rzWj00MMcTwh0dycjKKolBXVxerkjjKUFxczGWXXUZBQQE1NTVUafaH7du3Z9GiRcyePZudO3eya9cu8vPzWbRoEampqdx+++0MHnzwCSgxHFlkZmYSFxdHXFzcjy/8C7F9+3ZGjBhB165d2bVrF4899hjffvst1157LX/9618P23ZlWWbJkiVcdNFFhMNhlixZQnJyMjfeeCObN29m/vz5AAwePJh27dqRmZnJa6+9xmuvvWa00a1bNxYsWPCLBQmv18sZZ5zBhg0bOPfcc7nmmmu48sorDUHmvffe48orr8Rnskzt16/fr9jrGGJoHQsWLOD88883xu3WsmS++eYbgsEgiqJwzjnncMMNNxyBnsYQQww/FzFR4neG3XfdTpdpT+GTagAFOTeJsFudjS9I4KpWiR7fiX1UYcIiImoztiyJCchNTVHChCAKCFYbclkl0rCe6nKNKkFmX7SR0HF9CaZ5cOwpx1LvRa6oQgYEUURp8qnChKk9w4ZFm51rJhtBDTb9rWaWtAbR48azcg9oPpx1Q9ogBhWj22GdnPJHE382r0ZqKgqWoILkEBFklRATwxEf85C3noofllG5eUmLbTszsglUl9O4azP+cjWo25GZjadjNzJyh7Ft1mOHYY9jOBg6zPw3ghw5H/Ov/vGqk3BjPTbPgW0BfgriihWkoB/romISU3MQHHZA98WXkX1estoMwt1/ILs/fQHBYqVyyxLcKW1J6zEcUM85fYa3xa+KY4JkEtRQBRGHNrldF9UctRLerMh1KdlFHFV+wlaFpbteBiAzvS9ZGf1RAKFJItXZnh5tx7N9/9eUe3ezUfyaksbtRhuCYEFR1LFnd9ECfOFGsjMGUdtNvc70camhi/o8fo86i0pxaBkT4QCKzUJjqJK88Ea6WPuTK3VVSWJBRFEUtihr8Eq1BPDR23EsDtGNT2ogI9gGRZEiAdeavZyghynLSuvChPl9Ha1USOjB2D9q92R63VwhYe5X5KCr6+pir+xxIHoPIKocAILVhhL+8Sqxn4uDChLm525XpFIuLKmPrdZoQQIQmiL7pRcr6GKM7NAqaWSlRTh2ws5G47G3g8cIq5Y1UVjQPjdbk0IwTt2WJApgKswImi5TXQxsaKcHwoOzunWBR8rfz96vXgVZptsZN+FOaNdiGUGGxj3bkIN+PG07sXfuK7Q9fj87v3yXuLg4du7cSXx8PG3atGllCzHEEMMfDfv27cPpdJKRkXGkuxKDBkVRWLNmDTfddBOrVq1q8f4555zDp59+yocffkhpaSlOp5Nx48ZxyimnMHny5Fh47+8EJSUlh+S7dt++fZSVlTF06NCo36o1NerksVdeeYVPPvmEp59+mrVr13LVVVcxduzYFvZehwpz587l3HPPBeDNN9+ka9euxnv/+Mc/iIuL44knnuCaa67h5ZdfpqxMnYTndrtpamoCoKKiguuuu4577rmHoUOH/uw+PProo3z//fcsX76c4cOHG6/n5eVxyy23sGvXLlJSUvjvf/9LdXU1oiiSnJz8a3Y7hhhaYObMmVx33XWceOKJzJ49+4Bj8zvvvENubi7V1dWMGDGC//znP0aOyvLlyxk2bBjWA1gGxxBDDEcOsavyd4aOM54EJwQa1Fk+bpvqkRd2g6MWfCkW3GVhXCt2gd0eHUoNyD6fYethkGqioNp4LNmAaPsJp4QkIyRqXwbhn1AVoUERRRBBcdpUCyVbhMBSLT5sCEEJ2ab2WXKbAlAtAiGXRjxpFQlWn0z8DvVGUahpAI+buuPUG0PdUz9plw+5tELd98E9kIGGXFWkSV5msqFqDkHA2iQDagVE2CloM91bCiq+2jJqt2+ntmALjaV7EGw2Eo89nriMjhR/8iYpx47FnpBCxeKvKPv2U+K696bNyDHE5XTFqpHbWx++rUW7Mfw2kJt8yP4AlqQf//EZdkOovhpbchL+VPBop5BV46BlKxFSVLcD0y4zR7X63xcXpqpgM/nLZiOF/FhsTpLb9yWr92jiHZkAOJ3JVFfswCMMpvPkf2BLSGb7U3dT8P1sbMf0xhoXj7Uxets6DF98U0aKHujrqFUfxBeqZLZiEbD41Q7WeVWhrE/XCWSm9uWbxfcAcMqA+xFFK+3bjCBMiN37v6XaV0iXnLG0TR+M3aZOQ/dLXjZtfZdabyH1eR+TV7iArmnX4E5uQ1UPdVyJL1a31dBRFScSdqs7odiix6lA2IuCYvpRqFAc3AmAXXDSxtUNMSSDCHJI/eGlyEpEaNBDnS0WBAuqlZNJNDCEiIPZNAkRdtuorBDEAy//K2AprVHbTkhAqapGjNdm/Gl2Tkp1bbMVNKEjGDTGYLlZNYQuWEiNJuFCW0b2aSeNaf/17wrhJ4TBGVVyeqaQXi2nVVpgt0VyhjShQnFrNlIOdfwPpmhWVRYBq09dVhcmnJUhginq8qF49dwxqoMU1V5QFxl0QQLU6iA908csSChi5LoQw5Hwa39K9Hhu80JD4Q7yv/wvjoQ0Op16FQ5nUov97/83tWTcW5KPPS6FHuOuo3DVHEqWfkZiahogIIcCeHr0pu0lV7Lz/2Ljewwx/NGxZ88eOnbseEQn3sQAoVCIZcuW8eWXX/Lhhx+ye/ducnNzeeaZZ8jPz+fVV1/lueeeY/369TzzzDMkJiZy2WWXccYZZzBy5MhYlctRgMLCQuLi4n4SuV1ZWYnX6yUrK+sXb6+qqop///vf/Pvf/wbU6oLzzz+fe++9F7fbTVZWFlarlWeffZann36ayZMn43a76dSpE7m5uUiSdFiCnb/77jtArfRp27Zt1Hu5ublMnTqVjRs38vXXXyMIAv/73/84++yzjaqIxYsXM3HiRObMmcOcOXM45ZRT+Pjjj3/WOa63VV1dHfV6QUEBX3yhZiXecccdnHTSSb90N2OI4YBQFIV7772XRx55hOuuu44ZM2YcVFRYtmwZZ599NnfeeScTJkzg1FNPJTc3l/z8fABef/11rrjiit+m8zHEEMNPRkyU+J0iWLwfRJFwt0TslWqlRCBJIHlH9MxZqba2xbr6TGJFkowqCkxknmCxgCAi5rTFUViDr3Mqvh5ZOFfuQrDbUXx+5OpaxJQklXDShQmdzIrTvDL0GbM6AXiUnW1NPTKwNUo4agIR/3Ptx6S3a5L6XGz541K3eAokihSu/pSyzd8hWKy4O3Shzel/wTG4Lxa3GzarJG/9+tWEmxqI79Gf9FPPxpaQxPYpMZLqSKLvndMJ+7zU7llAw8KlKMEQgs2G7f+mqaSmANbkFGypqRCSkGX1upCDAfz78kk65+BhceGmBnwF+/BVFCE6nDiS0nC6UvHXlFG8/BPCjfUk5fSmXdexVO/fQkXBGvxN1XS88EYA2o2/mPxv32bX3Odo02ss+7csoEt5OXvefYaCV58hadhIkjsOwBafBKhBvQHtt5u9TsBRq9rSgCqKKIJaKRHyiAZpa6+TDEHCG6+wO+97rDY3qbkD+ebrfxr7ood9A5w8ZAq5mccxb82/DvAD7DFGjXuIPds+p7h4BVs+fYKOIy/CnaHOzqoYqF5P6T8o1PQQCWmiXNpqVVz0dOpNz7gmthV8TjIZZKD+CBMEkeGO09kU+B6HxYNFsIJdJeUNkRVVmDBXPgjNcgR+UZi1rCDarAiWiNjRavWFXkXR7HVLm6zIWCgIEbK+Xq0WsdQfXd67spb1ows8+vFVtMwh8ed4pes/HCwWhEAYLCJCOIA/Jzq/IuyyGOOq5BIRA+rx86ep27b4ZUNICLs1cdquVzwokQo3IJCk/hfDRF0D5v+SA8RyL/7qMlwdO2HxgRwKUr5lBaWLPyUupxsdxl+GTXSw9qWWY7V/Xz4NJXk05G3BndkeQbTQdsz5pA0ZQ9WO1YR9jTQU7CRQXPjTj1UMMcTwu8aGDRuiZjLH8Nujvr6esWPHsnbtWjIyMjjjjDOYMWMGJ510ElarlX/96180NTVx++2309jYyMMPP8ytt94aywA5SrBhwwYeeOAB5syZA0BqaiqJiYkoioLT6aRbt260bduWhoYGFEXBbrezadMmEhISOO644w7YrqIo7Ny5k+XLl7Nr1y5ycnLo3Lkzubm5vPbaazzxxBPIssxjjz3GkCFDeOONN5g2bRqZmZnceuutdOzYkTfeeINbbrmF7t2789lnnzF27Fieeuopbr/9dsaPH89VV13FOeecc8jOpdWrV/Puu+9y+eWXtxAkdDidTubNm4ff729VaBg1ahT79++noKCACRMm8NVXX9GmTRvWrl0bFe5+MPzf//0fa9eu5YILLqCiogKP5jQwevRo3nnnHS677DIjWyKGGH4Ntm3bhtVqNb5Hi4qKuPvuu3nnnXd44oknuP3221sV/WVZZtasWeTl5bF7926GDRtGu3btWLZsGUuWLGHWrFnIsszs2bNZvXp1TJSIIYajEEcZTRzDT4GiKDQuX4m7Xx/SttgAhWCCYMyMdn67idZMKcwzfXVyTfb5DJLJPMtYsIrIhfsRc6JvhBStHBSrFbmu3phVq9rPHACiYMyEVvQZvtrislMlnWSH+rpsixCdOjElW6PtOnQff0tQgWLNgz01ejaNHmramOPEbVdDoQPJWvBrSG3HWaJZyDgPfBkIsoLVpxj9EmQFRYBggkjlzpWUbf6OrGNPx3Xq8Yh2O7v/HiGwJEmiXcU+QnVVuNp1ovB/LT3JYzgyCNZWsXPmwwCkHnsSruwO+JsqCTc2IChq3kqopgp/YSGi1YZgs6BIMooUJvXk00npNhR8ENSKK6zaBHF/OtR8/gXla9SwcpsjDkkKIocjs9gTc/uSfupYnBnZNK5dTWNdEWlDxlDy/VwCNeU4kjNwJWfS49zbKF/5NcWb5tPn5Ftw9u9Il8n/pGzBJ1Qu+IJK4QtSh4wheeAILGlJANg1qya9mki/DmQrWKoVJLuA1RSILTlFZLtI3vp5NDQU06f/pXxnEiTMGCdOAGC+/L8DHtfRp/4b0WqnS99zSe81kp1r3mXvkllYt84jeex44tOGIioCNT3U/jXmCMQVKhSemgJAuwX1ZJS52AZINgXCGAR/gphCV9tA1gcXsbT+I9JpQ0dLLyymr7EoiyRoNezaqAjQ/psrDAwCPhyKtmpq3oYeNq0JENYO2g8ypdnIe7D8h2CIhuEdDGHIVaxVjaTGI9nVvhWOU3/8OSvV9j2lWqXL7nq1H3sKUfQ+HsBWSrTbW1RRtCbOND92EbOlVqAv27xSzm6PVE3ogoQuXlm07x67FUeZOvYGU91YwopaFRdWkLRqONkh4kvRw1giofGiBPYGmYZs9T2bVyEYH/mBIply1GWTfbIuRiAA3hDVP3xP5coFSAEfSd0GYXXHU7NjDZKvieS+x5Bz3PlsePHOFrvd/2/TCdRUsEuzVLNY7bjT2iE51Eo60eagsTKfpoI9KOEQosOJ6P35QlgMMcTw+8KOHTtYvHgxb7311pHuyp8al156Kbt37+bbb79l1KhRLSZPXH311TgcDmpra7nyyivp1q3bEeppDM3x6quvcvXVV5OTk8PMmTMNG0Q9NNnr9bJjxw6WLVtGQkICgiAQCoVwOBzMmTPngBZKiqLQr18/Nm/ejCAItG3bltLSUiTtPsbhcHDfffdx2WWXkZiYyJQpU0hPT2f8+PG89dZbXHvttTidTiZNmsTpp5/OWWedxbXXXsv69eu57bbb6Nq1Kw8++CCTJk0iNzeXf/3rX0yYMOFXiROBQIALLriADh068Oijj/7o8j9W+dC+fXtWrlzJzJkzuf/+++nWrRsjRozgmWeeYdCgQQdd12azceaZZ/Lpp58SDAYNUUIQBCZNmsT8+fO56667+OKLL7j44ou57LLLfvqOxhADatXN/fffz5tvvonT6eRvf/sbe/fu5YMPPsDtdvP2229z8cUXH3D9l156iRtvvJGMjAwyMzPp27cvoJ6jiqLw3XffsX37diPzKYYYYjj6IChKcxalJerr60lMTKSuri7mr3mE0XHGk8jBEAV/v4fk00+hU8aJAKooAWTP2g2A4g8gN2ok10GIseZ2TRE/cRFLYgIkqjOZ5aJmVkca4STY7RAOIyTER6xGXJrioIeOWkyh1LqdlO76cQBRQrYKKNp6gjaDVg+31qsXLCEF1+Jt6jLpqQDUHJOFGMYgqmxeBXeZSsjpooQucsTvVIk9f7s4wnpItVPdvi5cCDKIIbmFKAGwZeXrhJrq6HLC5Wz46GFi+P2g182PsuPlB7GmJNP5SjVHIqTZvei2MPosa2sTBNJVYlHQg3x1ntWnk//a+SIJ7J/2FHZXAh2OOQ83CfiTLYR9DTQFq0AQSEzKJeyEqs3LKf5WJfhzTrmUshVfIfm8dB51CZ5OPQCw1YXY8vUMfPXl5Iw4F88xw7CGBKSAn9K186letxRFCpHQtS9ZY89ByEoCIK5Q9eg3ixIAtka1n2IYnNUqoSzZBJbN/SdtO4+kaNd3rR4vXZAQBvZCkoMoioyiyHyx4sFWf3gdd8ET2vGSqC7dSkXxBiqLN5B18RXE9VED8CwBCLsjY5O1Uc94kCl9+FF8SiNDGI1HiPjwKIpClb2SMqmQEmkPnSx9aGvrjENwI4YjlkUtxIRWbIr0x4okRTIjTO83b0sfKwWHynwL2nhn5OcIQgtRItRetdcT/epJZWn005SbBGAQ8C1ECZsFuYUoobaXsapBXadEte+TSstaERMOMfT9d7X80St63NEv6NVyDruRJ6TYIlUSoIoSoAoSELHps1eppRD1ndXXZSuGBZpki3yHmMUG0aSJ6HZNskkfl0xdVmSFxq0bKfvkfeRQkNQ+I3CkZBoCYmLnfqQMPp6drz3SYj91uyaAwq9n0Vi4i97n/Z39a76kfOv3uNt1ImXQSKrXfk+gppzU407CkdkWZ1Y7LE4X26b+uSrjYveMhx+xY3x04cMPP+SCCy5g27Zt9OjR40h3508JSZKwWq3ccsstPPjggyQmJv74SjEcNViyZAnHH388TzzxBHfccccha7eoqIicnByeeOIJJk+eTGJiIqFQiIKCAvLy8ujWrRu5ubkoisLEiROZPXs2TqeTuXPnctZZZzFw4EDef/99oxpg27ZtDBkyhA4dOjBr1iz69+8PqMLk7bffzhdffEFSUhI33XQTU6ZMwWI5yASPA+CLL77g9NNPZ8mSJQetAAEIh8N4vV4kSUKSJFJSUg66zdraWmbPns3zzz9PXl4eRUVFJCUlHXQb27dvZ9iwYQwfPpxPP/0UhyMyA6SxsZGZM2fy5ptv8sMPP7BixQoSEhLo2bPnz9rnGP588Hq9TJ06lccff5z09HTuv/9+Nm7cyMcff0xGRoYRqh4ff+AcR0VRSElJ4bzzzuOll16iZ8+eFBYWctFFF3HmmWdy1VVX0adPH6688kr69+9P3759sf8Em9o/GmL3jDEc7YiJEr8zdJzxJADlM98gXFXNgDG3A2DxKzS2E8la1oC4owAgSpRoNdSVCNEmh8It8ifMogSAtK/QIMBEvUJC/9+aKGFsRCOjLILxOJCqsUVaGZ4loFVu2ERDNPilogREAqvd5RLOCnWarSW/VF0/Xa2q8HVQf7CEnSKyVRUiWhMl1P866axlYCgK23Z/RPXWlQC0velmnLm55N1xOzH8PnD55Zcze9H3ZF9/M4CRu6CXGYmhyPOfKkrI9U0UPfUEye16kXvMBax8s/Xz4dgLn2TH0v/SUFtIyFtHzgl/Yf1HL9Kp9wjqSneS3vcE2gw9BZffhhQKsG/tJ1TsWY1gsSEIAn3OvBNHfCrzn72Kfqdcxf6N80EUyL54Ms422cQValY42jUTjFcrjBy1ShSRC2BvlNmy/DW8dfvpf9bdiFabkT1h9UmqEPDd55Qn11HTuI9AKBJALFhtJHcZSGrvEez433SjrHbccQ8xf+m9ABx/zjSC8RY2fzEdZ3waKdddhk3VA7F5wdsuMial/6DgqJUIBb2sX/kSsreRwZyAS/BEOiyIhB0K3/kiFRtZQgf6WoZHE/SthFuDSZRoVlkQbfsUqaYQ7DZagyFK2O3gUYWZQFt1TNHDmK1N6sE2ixLVQ1ShQta64a5U3wvGq/2J2+fDUq+W3ghhrW9apZnsVMfW30SUaCbstCZKtKiU07MwZDlKlACQ4tT1g0naPmiVcJLb0kKQgEgukC4sWPyRSghzjkowLvJYMuljYZNeIluheu5capZ9h2C30/6sv5L/v5fof0tEbNjw7MGFg/5/m44YhILv3sdbmk/2iDPZO++/JHXoQyBYT1PRHgSrjdwLb8DRSZ2xue3BP5cYoSN2z3j4ETvGRxe8Xi9t27bljjvu4P777z/S3flTIhQKkZWVZXjfB4NBww8/ht8HkpKSuOeee7jrrrsOWZvz589n/PjxfPnll5xyyikHXC4UChEXF0dGRgZFRUWUlZWxd+9eLrjgArxeL8899xwXXXQRgiCwbds2LrroIjZv3owkSZxxxhnMnTsXQRDYvXs3L730Ek899RQnnXQSn3zyCW63+4DbbQ2VlZV07dqV8847j1dffbWFZY3X6+U///kPX375JcuWLTNCrQHatWvH1VdfzVVXXUV2dvYBt1FYWEj79u159913ueiig1vSgppvccopp3DGGWfw3nvvtfD1nzlzJpMnTzaez549mwkTJvzUXY7hT4b6+nrGjBnDDz/8QI8ePVi6dCkpKSm/qK309HTOPfdccnJyuP/++7nrrrt47733KCwspF+/fnz//fd/+vuk2D1jDEc7YvZNv0MoVgVbdhaB/H3U5wokb1fJnbgize6oe3tDmDDW0YQJXZxAEFHCIdXWoxn5pJNw4eoaqNaCpFvJVlDf0F5XFOQEzQYq9PNJMr0SQXKKRiWCZI9UJ6jLNOuDAOEBXQDwZqtslU646oRyINGCs+Kn9kEwtm2EomrihNRYT8He7yjft4ZwyIfN7iEUjHjBi6ZZIzH8PpCUlESouhIlHEYw3Vw7Vb7XII1lO7hK1RMipHHj+jnlrFEINtUR2JNHU0MZZfmrUKQQ7R29Sdjja3W748QJMGE4SW16Ul28We1Lbh9SUlLoMXoyJdsXU7jxK+p2rSOhQy+SEjrSddCFpGb3o3jbAhoq89k05990Ov5iTrzpZTJ6HIurXS47PngS365duFOyDdJWaqYPBpIELOVNWOwOHA0Q1mbrp7bpTU3ZNlbP/idWm4s2OccgxHlw+i2Ulq6nngLilBxSOw8jPi4LQbDgT7Xiry6latsKqrevwp06m8ScnmRLHbBZXfTvMQlfoojFaqd8zRqaaopx9e6p+vfbIteop0ggvkgyBJRAkgVHrYdhSWeyMvA/fmApQ8KjcAgRUlz0RwSEHLpQqOwmTk6go70fgiBE2RXpAqpe3aUEtHCCZhkQgihEqiUONN5hCoLWf2SGw+D1GcIEgK1e3bmGTloIeLLanr0hLmIldBBICS4s9T7CO/dE+mpCS1Oqn4kDCDatLqrbXGnh2IIoGNUiB4LicSLFq5+XEG79+6Cpjd04P2WrE2dZRGloLkigqIKEIknYGmVwqN9RkgMsIZBMvFPYFVkH1HNNamykZtl3pI45mdTRJ7PjflUs+DEhwowNT6vLZo/6nuptK9nzxasgiLi69qD6q1l0vlyd2Zn3xpM/uc0YYojhjwGPx0OnTp0oKys70l3502DVqlVMnTqVzz77DIC4uDgaGyOTJn7JDPUYjiySkpLYunXrr25n/fr1rF27ljVr1vDqq68yePBgRowYcdB1BEHgtNNO45NPPmHw4MFkZGSQkZHBhg0buP7667n44ot59tlnGTp0KH/9619ZsWIFb775Jtdeey2fffYZl112GbfddhuDBg3iiSeeoK6ujldffZX9+/fTpUuXA25XlmXq6+ujqhXi4+MZNGgQr732Gq+99honn3wyw4YNIyUlhUAgwNNPP011dTXjx49nypQp5ObmGuf7V199xb///W8efPBBTjrpJMaPH8+YMWPw+Xzk5+fjcrmora1lxowZAAftmxmjR49m9uzZnH/++Vx++eW8/fbbUWKJuTLihBNO4IYbbiAzM5NRo0b9pPZj+H2iqakJl8vVatbDwTB79mx++OEH1q1bx4ABA35VH/r06cMrr7wCqGPILbfcwiOPPML8+fMZMmRIjISPIYbfAWKixO8MilUj6Jt8CNpM1JoeKpHmLoFA33jSZq1vkSmhE3OGJUlUo9psXN25iQPPLNLbEdtkqutU17ZszmZB9IUilQ4+lSAMtU0k7FJvmkSt4kDW7dAPuMVfj1CC2mf/0FwAmtI1u5AGXexoPdBaR2XxBnaseju6zaCXthdchmBzYO2Rg8XjOcDaMRytmDBhAs8++yxSQSnOtu0QAz+/DVkKs+OrFwjUV2JzxJGU3JHu7U7F6Tj4DVDV3nXsWROZ6e/fvAWAFbPuAu6i34R72b/+a7wVBVTuWEFV0Xqyuo6k9+jrKS/6gZLti8lb9Ab2uBTajjkXmycJAHe73KjtuKpkAk212FwW9q2fi7ckn1BjDYLFis3mpvPgCZTuW0lN0WZjnXDIR3nZJsKFTUghP660bPoMv5rk9K6EtUoif7KIC1A69aVNnxOpL95B7fY1VO9YRVlgYYv9taWlk3b2eSQMPQYCEFesXnuuSon6Duo4ZgkqxG+qiGQSOJMZlnkBy4rfYTOr6Kz0IklIA0VGBDLJoYxCmmjEgpXd8iaSlCxShExEl1Ml0QURORRWK8LCYbBaERwOQ5hoPh4K1ohAq8gKosccUtAKiS9qlk2KAg1eHDtUoTLcPqPlsoCzJhIu7sxXBV9qVX9TZ51aPiKHwqDISHDATItDgh8RJgxh5qeIF5qFl+JQP0vJ01K0ELSizGCiOv6G3IIRbg3gz3Qaz1WhITImh32NlK9dSO3WVdjciXS48Dqsbq2Kz/RlJzlBUCJ2ZQCCX6J24QIAHFnZv+rLZsDN03FltAPAmdYWWQpRtf57ev7zKRzZ7dj6yJ+zMiKGGGKAmpqaKFuTGA4PFEXh1FNPZd68eVGvn3jiiVx++eVkZGQwZMiQFnkSMRz9uOCCC3j//fd/VRvr169n4MCBgEq4/9///R/33nvvj1bNXHrppXzyyScA5OXlkZeXR+fOnUlJSeH9999n8uTJTJ8+nblz5/Laa69x2WWXcffdd1NWVsaLL77I1KlTefvttzn55JOZMWMGOTk5ZGRktCD9FUVh9+7dlJWVMWXKFFavXk19fT1ut5vevXvz/PPPc9ppp1FZWWmsM2/ePLZs2UJNTQ0+n49JkyYxdepUcnNzW+zHeeedxxNPPME777zDxx9/zD333IPf72+x3CmnnMKCBQsYOnToTz62Z511Fm+//TYTJ04kOzubG2+80cjyOPbYY43lHA4HlZWVnHPOOVRWVsauxT8gVq9ezeOPP86cOXOYPHkyzz///E/+nAsKCnjjjTcQBIF+/fr96r4MGTKEJUuWMGbMGJYuXcqrr77KlClTOPXUU3912zHEEMNvg5go8TtFcF8hluRkLI0KUpzKsjS1UYUJABRFndErK61zMOYQ12akkz4z1tK3O8qufHWRZkGpckkZDWcNIj5PJYYkpw1rTRM/FbJFAAEUzapJJ6DM4oAuXDQXDHR7J8khENRn42q7YNHFDj0PIAD17SPTxT1lB59jbAlG2zbJViFKkEhM60J8u26kdRqKr5fmVyvB9jtiZNTvDZs2bQJBxOFIQhEjodBGdYEeHF+FQWS6S7WQ9GoZRZbYtmQmwYYa+g64go3rXv/J23YlqqJex/5nU1eRR+H2b6Led8Sn0PH4idgbFGo2Lqdo/zK2L3md9gNOJ6PbsZTtXApAsLGa/E9nkjbgBAC8eTtwZXagsa3W4WovW2Y/hGi1G2HbbY49A0EQ2b90LtuWzmzRtw59zyDulLEA2OpkBEHEElTwAY7ayFhh8+lssEBiTk/Sk7ujKDK+mlJkKYQtORVXo0go2ITTlcT+EXZcpdqhNc2oSdgXxpNXq+YOgGrxZhFBVnB50umcfhzbKxayhnL6KSPIELIRrDackgdkaKCGBJLJEjqQJCWhyCEEiyMiTIAhTCjBEILNaoyNza2PRC0fQva3VKh0iziCmpBhHpdMeRLhDhnUddWqKHQrsJ9T2tDa2HyAsfqXQh/jRaeW62CaXXog6PZNgiiCVk0nHCRcMZAaXaajiAKu0ujqIb06xp+k7p/VVAFjCSkogkLVtpXsX/kZKOBObUdDyS4qVi2gzehzUEIhAtVlWDPSEe3qZ6cIai6M5PfjXbaC2p3rCJQUk3z8WNydu7Ljvl8+Vq+fcRvpQ8ZgdcfT5eLbady7nfy5rxIsKsKh+U3HEEMMfz5UVFSwb98+w3c+hsOHvLy8KEHikksu4YQTTuDyyy+P2TX9zrF582Y6d+78i9fftWsXp556Kjk5Oaxbt47U1NSfvG737t0B2LJlC6NGjeKFF17gyScjlY/jxo1j3LhxNDU18cADD/DWW2+xaNEiXnjhBSZOnMjDDz+MJEnMmzePbt26cd1119HY2MiSJUsYOXKk0c6sWbO4+OKLadOmDSUlJVitVt555x0+/PBDPvroI4YNG9aib5s2baJPnz6AWlnxY+RvQkIC119/Pddffz1+v5+1a9eSkJBAbm4ufr+fcDhMmzZtfvKxMePCCy/k1ltvZdq0aUybNo3KykrjOHft2tUQdCZNmsS1114bEyT+YKitreX//u//eOmll+jevTvdunXjpZde4sILL2T06NFUVVVRUFDAgAEDWlRPbN++nf/+97+8/vrrOBwO3nrrrUNyfnzyySdcfvnlvPrqq1xzzTW89tpr3HfffbFquRhi+B0hJkr8zpB//Z0AZH+8mv3zZ1OzeSUpfYcT9kDSbpnEzzaDKEbINlFQvc81CySlITIzWBAFBKvNINeUUEvmTOiai7Jjb8RjvXMuAPW9D+z7p1dISAnRAbiCrBgzYVtYMf1G8GZaI2Sq1gXZGpmxG3ZqeRUNISoL15Gc3QeHJxWXGMfQXlcC8PWKmF/w7x0+n4+77n8cV3Z7SI/78RVaQWXxRmqqdtFv4JWkpHUDYOR5T2D1RYjj7778e6vruuLUXAGX30ZAdhASomdXrn4tkkVx0gmPkJnel02Fc9j3wxzqynbjrS7Ck5yNw5NCddEmrElJpPQ/loql8xCsNtKHqaKCbq+mCxIAWXG9kLtlIdXUUbZ1EQ53Ml2HXoQUb8dic5IgplKnLSs71JvFxL0hGrMjP/YT89X2mjJtxBUFtMd2BEHEk9QWUK+lkBvc5Q4a2thI3AWOevXYBBK0nBlRMOzZFIeVUHoc9pL6qGMRqCzFgpVUIYs4Ra1AUcIhREEdk5y4GepWfYJ18VQJBBAcqjBhVEU0y9PhINVReoCzYLUaWTnNEcxRx0AxICEGw9rxOvBXatq6Bizl9dCgCgCyL5qgl5sJv78lLElJEVsr7bvDCPQ2BcI177MBqxYOrllkhRJsCCEFpdk478tyGWOsIkDIDTaTlh3yqO/ZmhQURSZ/1RwqtywlpftQMgefxI7/PYXodGFxuNj99lP4K/eDLGPxxBPXpRfpo07FFpcAkkLBzGcI1lXhbteJrIk3YO/ZiZ33/jrxuN/t07ElJCMFmkBRiMvtgWiz4y3YhSsrRkbGEMOfFWlpaZx99tn885//5IILLoiJE4cBeXl5bNmyxbCJmTFjBjfddNMR7lUMhwrbtm1j8eLFTJky5Re3ce+99+JwOFi5cuXPEiQgYj+Uk5ODKIoHDH92u91MmzaNSy+9lEsvvZQzzzyToUOHEgqFuOSSS/j444/xer1ccsklLFq0iOOPP57du3e3EFtKStRZhOPGjWPixIlMmjTJIHFvueUWLrroIhwOB23atCErK8tY7+eSuE6nMyos+2ChwT8VGRkZ2Gw2Lrrooqj2XC4Xsizz17/+lXvuuedXbyeGowtVVVWMGTOG/Px8pk+fTnZ2NhMmTOCCCy7gww8/5Morr2Tv3r0ADBgwgPPOO4977rkHURTZvHkzgwYNIjk5mVNPPZXHH3+czMzMQ9KvDh06UFOjVp9fcMEFvPLKK0aIfQwxxPD7QEyU+J2i+Ov3cXZYQX1VHmnScOwaj1d3Rh/sDTLuFXkAKM2rIKwqsahIUotga8FmRXS7IyTernxDzDBDcdsJaDNbw33UaoHUZaVGsOnBoAdF63ygpFs86a9LskGE6tUKegCsqFUx6O5SYkgxqiZsjVqehvZcn3EbcotGxYXeniJyUF/3onVfokghSrcugjVqGXHmZRfy9RsxMeKPgp5jL8NbVUinc6/FqpGiNm2yuJ4nYlTfBBVjxrtiumSq9m/C6Ulh/dqWIXQHw3z5fxwz6QkQBLbu+ACAtJQeB1w+mGQDbHTPmsQOSaKqeCMWqxNvTTGdBl9AdufjkQd0QhBFAg1VVK3+jvjeA7AnpWB3eEjI7U19/ha6DJlIevtBCILA0hm3kZr7JgAdu59KQnonglrFld8m4ClRd1jPQgCIKw6pFU4aZKuAsypM2GXBEoxcUPZ6ldSOz2sikK6S+/FFIWz1QbztVKEyMV8dY4LxVhRRQEpwITvUg+vtppL9nu1VBMJeypQCUoUs+jE8ynqns9KT/eQRwE9p026y3F0iBLokRUh2HYqsEu2S1leTKGGMi5pFU9TY6PNDnNsQeMLt0lp8RrLdihgMo2j2T0nbf7zy4KD4qRUSJgsmczh3FKxWRM1eCS2QWtL2IehRn9fn2g2xNuGjHw7YLaMdXajRK0s8rQs3QkjBWa5eYPVdW/8hHHKDs1qrQKoJUSDsouD7/xHyNwIKHYdeQGbn4dQUbUUOBSAE5cvnEd+tL0kDjsGRmkntxlXUbViJM6MticcfT7C6mkBVGdaUVLKumszuew9daKYc8IOiWrfJwQByKIjcPgFvfz8d334UgL2X/POQbS+GGGI4+iEIAv/5z3/Iyspi5cqVMVHiEMLn83Heeefhcrn4+OOPAejRowcXX3zxEe5ZDIcSd955Jzk5Ofz1r3/9ResrisJHH33EzTff/IvITj2MOiMjA7/fT7t27Q66fL9+/Vi0aBHt27dn+/btACxcuJD9+/eTl5fHwIEDWb58OZmZmdx00018+umnWK1WzjvvPKONkpISQ3Dw+/0kJSVhtVq54447aN++/c/eh98CCxcuZPPmzbzxxhtceumlUe/NnDmToUOH8s033/CXv/yFrl27HqFexnCoIMsyf//733nxxRdpamoiLS2NFStW0KtXL0PI++CDD4iLi+PKK69k+PDheDwerr76au6//36uuOIKcnJy+OKLLwiFQjzyyCNcddVVh6x/iqJQX19vVMmtXbsWi8WCJ2arHUMMvyvEaup+x3B17Ubj+nXU529Dtqgzk/VZqDoEQVT/LJaWIoTdhmC3Ibrdxl/U+1YrgtOh/tntCHY7irtZcq4Jis2CYrOo5J0goFjUP9lhUf/sR8/ppogQjBMIxqnHTBHVP7/cSMmmb1RBQpuNkv2XK3F3+GlBYDH8PhBqqsditSPaD2w/E4VWNAebIw6/t5oVK1b87O0LgkBOv1OxuxLJ6TWetgNPOejyiqIQDvqwOtSbLCnsx+rw4EjJxJ3dic3T72DTk7fR9oxJiHYHhe+/jORXZ7XHd1BvGquLN/Hla9ew9AO12ipn0OkgCNRX52P1y1hCqpe/P9m0j14Fm1chkGglkBgRHUMeC2JYrXzSBQl7vYS9XjJEHQBHRRPOojps9WoVQNw+L3H7IgHxrvIArnJVPLD4wlh8pmotRWFX5WKaaKSj0rpo05cRWLCSz3Zkn0+tlDBZMonx8QgOh/EXdUxDYQSrzRAkdAg2mzGGEedW/0yw5hVjzSvGtmEPtg17sHgDWLwB2JLXah9luwUhLCOE1YBm2efT+hpS/wKBlgLKEUR4eG/Cw3tD+zbqn34MHHb17wCVIwDhJCfhJCeyQyTsVv9aQFD/BAVc1Qqu6ojwLUlB9nzzX5zWeHp0OYtB/a4is/NwAOpKdwIQ17U37SddT855fyVl0HFY+3dB1rJOXNm5AFjSkkg6YSzh2hr+n73zDI+i7MLwPbN90ysJISH0FmpAuoIIIoIFRBEBOzZAFLBi+VRsKIgVVBRBUVAsKEUUKQLSe03oJCG9Z7N15vsxsxtCLwmhzH1deyWZnZn3zOxmdvY87zlP6tTJ1H19PPXemnje56TB6xNp9NJE7Ho7WZuWEdSiLW6TxIHfPkfvH4i1SWOEHK2XvIbG1UxkZCRNmzblueeeIz09varDuWKYMmUKCxcuRJbLPiv++usvQkJCTrOVxuVGWloaNWvWxHmeVaM2m43atWvz7bfflnuvnC3dunXjpptuolmzZkyYMIHbb7/9tOtLkkRpaSn+/v6+qocbbriBwMBAn6dFUFAQv/76K3///TcjRowAylcuzJs3zxer2WzmjTfeIDs7m6SkpHOO/2Jx9913U6dOHfr373/Cc61ateLLL7/k33//5ccffzzJ1hqXG3PmzOH9999nwIABTJ06lbVr19K4cWMkSeLgwYMAPP300+zcuZNJkyZx991307t3bwoKCoiMjPQJ9AMGDKBHjx489NBDvPPOOxUW38KFC1m3bh0jR47kv//+44033uCuu+4iJiamwsbQ0NCofLRKicuYyA434k45yqF506jR827MEc0BKI7WY7Yps1PLCQ16HWKg0qpG9njguHZNUrGSLBT81NmwJ2nn5AhXnvO2XPGY1FZNYf6IpScx0VYRnRKSQfQZXaPOuPa2enL5K0klnUP2zcb2juGtopCMZW0/AKU1iHrf6bao2/hmtHv/ln393L0z311WrycF6G3lb1x3/3JM4kqSMISEEVC3yWkrKzQuP6IjW5K27W/2/jCRhCH/w2ANwFSgvMheYc/7vnGbBayZyh+iSzXrPXyQ9AP/USOyTTmTuBU/jz6r8Vd/NwoYdcrn67UZwP5NP2PQWxD0Bpz2IiRP2Re14NA6NE98kKWzys/I1vsFEHvnwxz4agIFq1cSY+2Mn1SPVARyj+5g+PDhTJ+uVEjkHtqqtKAJPslsMK+HRpbHZwx/7HJvRZLyu3c2v/K8V6Qora4IKNYD+T6/GU+gktD2Xgd0pWqrIJe3LEVAdJT9s4mCHhMW/Di5cXiwEIZJNmOkLCHsrZYQ9OU/3ryirOyRTlyuU6uzTtaP2lt9cZovykJhCUJUBGJaPgBSkOrVYD1zf+uyKo1jrkXeyojjKiZEtRpN9JbL60TwV2cDlSjnWC4p7+0ju9y+ijm5mpLE8VhUTwj1XLgtAiWqD0lOY+UaX3tWCadCDlVeD8moGlv7K/uzhxow55T/HLBHWtXnlGOQdGAsLn/ddQQpz7n8/Amr25rcvRvJzt1DDVMQokvmt8n30fKWlTTrNRpXc6U9mAzsfPMpao97l+ItSnVH/ub/CJI8WGPjCe/ZG78GjUn98lNy/l5AeM8+1HtrIsnPn30Lpwavl30e2IuzyZz9PbLLSUTbG8hethBXQS41Bw/zGX1rFRIaGlcvgiAwd+5cOnbsSNeuXfn9999PMLnVODeys7N56inlmu01IX766afPOItd4/LjySef5P7776d///6sWrXqnLd///33OXz4MDNmzDin6mUvVquV+fPnn/L5/v378+effxIeHo7H4yEtLQ23u+x78oQJExg5cuQJ2/Xs2ZNJkybxxBNPMGzYMBo3bszo0aNZuXIlDz30EBEREdxyyy0AzJo1i6CgoEv6umE2m7nhhhswn8RTTBRF7rjjDh566CFq1apVBdFpVDTdu3enTp06LFy4EI/HQ/fu3QHYtGkTH3zwAXfccccJrdLmzZuHw+EgMzOTl156iccee4y4uDgWLlzI2LFjeeGFF2jfvj3XXnvtBcX2+++/89BDD9GpUyd69OhB7dq1admyJV9++eUF7VdDQ+Pio4kSlzGCqCO632DSJn9C2p+ziRyQgCgqibfse1oSsToHOS1TWfe4ZJvg7wfemcP5BRyPIIjIBj1CpNLmQzqceso4wmduRgwNQVITXoJDSUp5E/mC89wy+qJHESY86uxXQ4namknndR72JkFln1Gqy0/0rXcuuK0CkqFMXIkZcD8Hp5YloqIG3HteN7calzYW/3CaXzuMLcs+xFmYg85oxuN2o9OffLazOVv1KnC52H3wDzJytmPQ+9Egvhf645LfrR5V3j+Bh5T/g7z6yv+e4UgRbkcJHqOAnzEMBAHnkSPkZGxHrzcTUa0pYmAgOr2RvPTdSB4XDo+LEL+6xFRvy8H9f+PxOAmLaES9hrcgCCfOQt/5pvLlPfCv3ynctx05oRNHDq/Eq97Z7XbfulsXT6dW004kbZmN2RJCoE7pd2uwlT8ea5YHe6hyXTEck6f2ChOSQUDn8KqBikghusv+F+0xSgLbcrgAXaEyvl+hHTwSsupFIPmZlLo9WcaY78AZbMJWL4ywyE4cXrmR1fxFqBxJbRpjFE58jSS9iM4/CNl1jGeOVRVQ1US+rJpXC0aDz5T6eGSXS/GT8L6mTleZKOElWGlZJ3iT/0630sboZObY6mnwihOCw1XOo0F58tyvW1Kc2ppAAkFtOSWFKkKFWKrGcfjoOe/3WJLvV75k+B1RXueIzcprpyt14fYzYsyxnXQ7e5gBySjgUf0kiuJ0hOwuL1Q4/QWMRbJPYPZe8wHi2vbFKgZxeM9f5BYeIFbMJSr2VTz2ElIA8+ooTKFR1OwxCFDEp+Au15P39yLyN68mf+taat7zONa42rgT4gnr0YuchX/gX6cR1lpn/0U/Ly+PMdEBvHM4h8JN68j683cM1gBq3f4oZlMwHnsp5ojq7P9i/FnvU0ND48omPj6eJUuW0KRJE15++WVmzpxZ1SFd1oSHh/PRRx8xfPhw37LXX3+9CiPSqCzuu+8+9uzZw9SpUwEoKCjAz8/vhHvs4zlw4AD33nsvq1atYtCgQdxxxx1nNZ4syxw6dAi73Y6/vz81atTA6XSyYMECVq1aRf369RkwYAB6vR6j0cjvv/+Ow+HA7XYzYMAAEhMTGTZsGFFRUQwYMIARI0ac8vvifffdx9NPP82vv/5KzZo1y1VhFBUV+X73Jnk7d+7Mrl278Pc/P8+7yuS+++5j3LhxbNu2jf79+zN8+PATfC5EUcRmO/k9osblRXBwMAsWLGDChAlMnjyZvXv30rp1az766CMkSeKpp56iSZMmDBkyxHed7tixIx07dmTlypW88cYbzJ49m7Vr1xIUFMRrr73GihUrGDhwILt27Tonj5ONGzeSnp5Ox44dGTlyJNOmTaN37958+aXSRjk3N5dhw4Zh8baa1dDQuGwQ5LOocSwsLCQoKIiCggICA08+Y1Wj6mjWcxTbFk0kNrE3kc27ABC+Nld50itKeGfTutXWJnpdmSihJrWwqSamTiWBJMuST5RQF/h6pgtOZT9SqpL4Opko4Qm0INpduAOVcZxBBl8i01sFobOrxrfB6sxph+yrcvCaYZeJEkoYnpOIEt51vYbV3iSpLJa1tJLUXKC3vYxH/dutnhpjPjiDIO23mRRuW4+1XkNihgy9YHNUjUuTOXPmcMcdd6AzWREEAbe9BHNgBHW63oslJBpDnoPc9F0ITg8GmwdZlsjK3klm3m5qVe9MVHhzqKvM1nOVFlGSn4rDUUiJUIi7tARdfiketwNPqAXJ6aBg/3bfzHeTfxjI4CjJQW+w4napN++CSOvuz+ERJY7uXUHOoU24XCUYDH64XCX4+UVxTdsn+Wfxc6c9tlp9HubgH19Sv3FfjhxcTqktmwYJd7By6eRyM1okSSI4ojYel524ut1AL2JolYDZbsBRnEvpkYOIOj2W2HgMlkBfpUiJK5eizevwD4xBMBmx+EdgCAhGb5N81Ur6Ehc6mwtHuMW3DJSqKWNamRAq63W+RoKSnwl7tbKbScEtk5Oxk9ysPWSnbEaQIIwoLFgRELEJxRyVD+EnBtEpsJ8iKoQEqztWB3W5kCNDEUpUr5zsHOWnWgmmtKc7rqJB/RIshwaWVWqZlHVEm5r091YmBAUgqGN5r49ePIHKsXivOfo8G6Sq1+Qg9Ua8WN2P2sJJKi31VU14qztEtWWSEKB8QfVea8uJEt74jhclDHrfNd27vRyhbF8ao/ydX9eApJ4CnapbFdVSYvBLObkoAWUVad42TY4g9Trukn2ihD1M9flRP170qneFfOx3d+/v6kumc0Hxvp3s3/E7pUWZBNVrSVjra0lf9hu2tIMA1Ov/FEmzJ/h2Ueupsfjts7NrwUeIBiN1ho/FUUOPLEmkvzMJfWAwMfc8yJ6Xzu56Htz8Ggq2rkM0mZEcdoLadCCiRx8sJSaKa0mkf/Y5skeiNCn5rPZ3NaHdM1Y+2jm+tBk3bhyvvvoqW7ZsoXHjxlUdzmWPN9m7du3actWpGlcWAwcO5Pvvv6dly5Zs2bIFvV5Pt27d+O233zAYDBw5coR///0XnXpv5Ha7eeWVVwB45plnfMbLsiyza9cukpKSSE1NJS0tjdzcXIqLiykuLiYuLo4VK1awcWOZh1bLli05dOgQubm5+Pn5UVKizMJp164d//33H3/++SdTpkzhjz/+wOVykZCQwPbt23nppZd47bXXznhsQ4cOZe7cuXzwwQfcfffdNG7cmM8++4z27dv7+uEDHDx4kEaNGnHXXXfRo0cPoqOj6dKlC4IgsGLFCtLS0ggICKBbt24Yj5nksmjRIjZu3EjHjh2x2+107tz5pNUMF4rdbufzzz9n2bJl/PLLLyQmJtK2bVvi4uIoKChgx44d/Pbbbzz33HO89dZbFT6+RtXx6quv8tFHH1FaWsr//vc/6tevz+DBgykqKiIyMpKMjAzfum63m3379vHPP//w+OOPM3jwYF+l/oEDB6hTpw5ffPHFWftLlJSU0LBhQ1JSUggKCkKSJCZNmsR9992HIAjk5+dTrVo1xo8f72uVplGGds+ocamjVUpcAbhb1SAkuyOpWxbh37QlVjGIggQl6RScW3jC+nKJDSE4sKz3+vEzOyIUo1khr0AxeQWfoenxiNHKjF05Lx/BrmT3BXWWtGg/dTunkyGLAqJHxqWKCN5EXmmYt7WTOqanLMPpTXZ6k6VeXGqSzGt4fTY4g0FXChGJ11O4bT2mmBrI2n/IFUvz5s0Jr9MG2aRHQMA/OJajW//m0OpfiK9zPds3/IjdkV9uG1HQ8f333/Hp9EMAZGfs4ciuxRTlHMTbv8hg8sdg9kePEZ3ehCNNSYLHt7wFa0gMLuzkH9iGTm8iPKAuIeH12LvjV46mrAVZQq83YTZaOZr8L9d1f5Pi1CSycndxJGMtkWGNylUhnIpoY32Ka7QgaefPvmWR0S0ZcMtnAPy1cqxyPKJI7ea3s/3fz9i9SZnRadweRESda8jctxpXqTKDS7fOTGy965EDzLhLi0lPWoHkciBLyjUkOr49tRL74raKWNOUa4asCpCm7FKEUheOGoGI3tZOtUOx7M8FWUZwuZEtRpBlRJsT6wEntlpBvn2ExCYQEptAA10rkrOXU+zMIceZgSR78COAGKE2NcJaIpj8EI6plECtlJBN5WfhCH5qS7uTVDYQFKhuc+I/vuhwYasVjCVVFQyO0fNlQSj3t1CqVNbo85TzJ4coMchmI0KsYmpI4anbI5Ubt0Et3zXas3u/sjAjUx1IRKyuXIOFbFWIrqkIZXI9xSRRcLp91+RTVYicjlK1KKMoTvkMsGTpKI1QRRsd+KeceJ13mwR06mJB/ZiRdCCW2X0gusuu5W7TibML/es0pmntRridNmx+Tvb9/DHukiKsoTH4RdbEzxBabv0DE98g+tpbkNxOAuskYCgWkPNFQMSvfmMKN60tt37tiYqgsf+pp8stb/DaREpTDlGwdR0hHbrgzs0lqGU7rI0aoreBxwyuzCxKdydR44YBZz6BGhoaVx2jR49m2rRpDB8+nL/++uuEmcQa58b48eMZM2bMeXkFaFw+3HHHHQQGBlJUVET//v3R6/U888wzvPPOOwQEBPDcc8+Vq/iFsuqk+Ph4XC4X48ePZ/Lkyezfr9wvGQwGqlevTlhYGP7+/litVn799VcSEhKYM2cOkZGR7Nq1i//++48+ffpwxx13UKdOHZ9RbvXqSsvIG2+8kRtvvJGcnBz+/vtvPv/8cwB69+59Vsf24osvsmzZMu6++24AGjRocNL2NfHx8bzxxhuMHj2ab775BoDOnTvTrl07xo8vq8xs2rQpTz75JEVFRezZs4fJkydjNBp9nhyLFi3ytdqpSMxmMyNGjGDEiBH8888/TJo0ieXLl3Po0CH8/f1JSEhg1KhRvrZrGlcOr776Ks8//zxOp5NFixbRt29fAgMD6dq16wn/B3q9ngYNGvDQQw9htVpp376977latWqRkJDAxo0bz1qUeOutt8jKymL8+PFs2rSJN998k5o1a/qe91ZYnczrREND49JHS7leIURcexNFu7dyZPbntGzxEK644LInrRZfhYRcUnTixqqXxEkTVnYHcngwePuxq8kxb9LtBEHDi9uDpCb2vOa1crDB12/eKxoIkvJTFiunRVJpuIBH1VOOFxi8M4ORywQQHWAOj8JStz7O7MxKiUnj0qBu3bpk7S1LVLYf+D5mYyC7l37B9gzFtPia1iPwc5lBEBEEAVHQ8darv5OavxVbcQa24kwCw2tRN7E/QeF1MPgF+2a3m/KV970rQJ09rlYF6Us9xMUovVZ1pW7IcdIkuCtHU9YRVa0F1lIDqP4soqgjLKgOYUF1qFP3JkTx7C7ZgiBQv+09xEa2JS83Gb3ORMquv4ip1hqDR8cNiWPRiQb+XPcKm/+ZiN3+Fm63m659XuPA3kWk7/kXa1AUja9/jHlTRtCy8+0c3DUfQRDRmazoTBbqNemL209k77/TMYoWLFnlPRcMR3LA6UKKViozTCmKQOqKVGbnl9YOxZjvQJdT7A1a+SnLWA8UIKt+BbZYtXy9XhxNdTf59u+ODERXqEy/F/KLfdvKpeoyb3WB91qlVhKgPg8gmNRZZifxkpAsJtxBRnQ25XV0BhtPWEc2q22ZitUvyX5nNjsWCpRY5SD1uNSfQqFSMaGTPL6WUScTRyoE9VpvKFaOTW8zYItWnnKqE2jcwcpzpqOn98UorlH2vLf6QTII6Fwnfp5IOiispazkf1gGp1BOZHYGeCsvlL/9DrpI27GYjKSVGIz+tOr5PCZrsG+94wmu35L0FfPQ14/HXsPg84UREUGSEV1Qe+ab6tpmJJeLmKefwpWVhaMgA09uAfqIMGwbt2KKiiG8e290HhFnkIwbGb1NGddyQPk81VsuvdYKGhoaVY/JZOKTTz6hZ8+ejBgxgo8++khrBXoBPPbYY4wZM4Y9e/ZwzTXXVHU4GpVE37596du3b7ll69ev56WXXgKgXr16/Pfff8iyjNFoRKfTIcsyn332GYsXL2br1q1kZGRw33338cknn9CqVSvCw8PPKAp26tSJhx9+uNyyWbNmcddddzF06NByy8PCwrjrrru46667KCoqOuv2MzVr1mTHjh3MnDmTffv2ER4ezieffMJ9992H3W4nODjYVwEyatQoHnnkEURRZPny5Tz//PNMmzaNBx54gIkTJ7Jnzx4effRRX8I3MDCQxMREZsyYwSuvvMKPP/5IaGjoGSK6cK6//nquv/76Sh9H49Lh8OHDPPnkkyxYsIB+/foxa9Ys3/v2ZAwePJhVq1bRq1evcssNBgOSdOIku+zsbHbs2MGePXtISkqiqKiI+vXrM378eJ555hlGjz65d6PNZkMQBMLDw0/6vIaGxqWNJkpcAXj7yDfIKGDfz5+weevXNKg5AlGn980WPoGT9KMHkMNCwNuCJDK0rLXT8ag3eLJVScIJDiucSag4CU7V4NprVC3rRF/bD99Q3vYpau7LK2BIetCpQ7r9y5YB2NV7MckIojpjVyzzIzslJXESnpISXPnZGGpE4ap2btUeGpcvTn+RUrm43LJ1Gz5Blj0YDH4E+sfgdtspKDqMf0gsgZF1qd68B6E1WyB5Z3rbZQSn8n4V1RZn5mxPub/xyHj8DWWz1wGdaCAioC65efvKjb/kz2fP61hW/lR203Z9t7c5uP9vDqQs5UDK0nLrHT06lOjoaF+J97ol79LhLmVq/KpZo2g/8H1iYmIIj09EljxkH9qE214M9mLSD6+mYcu72YuAweDn26c+JRsAOb8AIcAf8WgOcpF6XmOrY8gsxqi2TvKE+eMJUxK7os2JYHeVS8QLDheGQlXU1Au+dWXdMdevo1k+82rBaEDQ6ZAKi8HbAik0uGzdwmKfwCpYLWXVYi4XhAb7hBCvgfOxmDMU0cAdpJwr/THXRtnfjFBsRyhxIIX44QlQrrv6bFUEPpSm7LeoCDHuzAad7r37z7iOggf34ZTyi3YlKWNXV1QGKSoUV7hynbaHqhdR9RotC2DNOEnFyElwBKn+Pf4G3Kr24r2mHm9cDVAUW75tk+sk+XtBVivk1P0IUplADLB/y6/kJq8ntlYXoppch96gnNd1Xz194s4APzkIgzUAd55SNSKX2ClNPUzxru3oA4PKrevKziZ9yue4c5RKJjHQH31IELaN25DtDmLvfwJXOLiQEO0C7hA3YcsFbMWZpBxaiGgwItStdtpzpqGhcfXSo0cPJk+ezCOPPEJISIjmhXABrFmzBkEQcLm0e/KrDe/Mf4Dk5GSqV6+O0+mkXr16tGjRgjVr1nD06FF69uzJkCFD6N+/P4mJiRc8bp8+fTAYDPz222/ceOONJ13nXPrhgzJ7fMiQIQDUr1+f5ORkhg0bVm4dj8eDKIo+P4mePXvSs2fPcuu0bt2aBx98kGrVqrFgwQJsNhvp6ens27ePHj16MGfOHEJCQs4pNg2NM1FYWMhNN92EJEn88MMP9O/f/4yCX+vWrZEkicOHD1OzZk1SUlJYtmwZO3bsOEGAnD17NoMHD8bpdCKKIrVq1cLPz4+vv/6amJgYnn/++RP27/F4WLp0KVOnTiUxMfGMHjQaGhqXJtp/7hXEnu/eYcWKPnTu3Jn0ncsIrtEYc+0wBEHEkpx14gbqB4kUEwGAUHrizb5sVmbs+syrz1Q6LYq4olUjWJfaxkmdRSx6zL6e4VWB+zh9xm1VgxHAE+DGeSSN0j9WUbJ+D5LLQ8iAsyvJ1bgycNtLSF37O+HRzWicOAj74QPkFR7EIJoodRdQWJSKTmegRaPBWBs2VXwoLOfXkkFfqCSCxQIl0V3qyKfUnou/MQTDKQyEz5d/Fj9H20Z7KQqoQ3ZRedHj1VdfZcqUKafc9r+ZowDI3bOO7LSy3ruiwURC+4dVLwwZo8nfJ7LIxSU+DxuvT4IXz+69AOjrxAOgy1C8JRy1wjHlKhVbgsOttNRyHGNa7ZEwZtmQrMr1SLfrkBpImYApO51IJTZfpYpveb4yhmA6ropBkkCtpvD9PA5jZgmegJM/54uloNTnCyFFBp90XQAhKhKKik4UEaoYWzUTbovSug7AE6z8NOQoAoYzVBFuDEU6n8BwPKWqb4RL/X4uujnltd6itpyV9AJ2K5jzyq8oSBBwRMJVWkTO7tWYgiIIjaiP2WVk2a+jTnssHqcdV0kBSDK5ixaS/99yJIcdndWfmv0extGwFDndQPGuVeTOWoxoMRP1+KNILjdyZj4eWwm6mhDSuhMGnQXbmkNkJa9Gku3IThe5BwooLkhFNFuo1vduDCFhp41HQ0Pj6mbo0KEkJyfz7rvv0qVLF+rWrVuu5YTG6fnxxx/54YcfWLBgAd27d2fw4MFVHZLGRWTevHn8+uuvfPvttwwcOJDZs2eTlZWF2Wxm69at7Nixg06dOvHqq69Sr169Ch17+fLlCIJAgwYNKnS/XkaPHs3bb7/NgQMHyi1fu3Yt7dq1O+P2TzzxRLm/hw0bRu/evfniiy+QJIno6OgKjVdDY9asWezbt48777yTa6+99qzaEu7YsQOAI0eOcPfdd/PDDz8A0KFDB55+WplglJmZydtvv80HH3zAwIEDGTp0KHl5eRw+fJijR4/y4osv0rt3bywWC19++SX//vsvpaWl2O12Nm3aREpKCo0bN2bmzJlaRaKGxmWKZnR9hdGl+1ts2fAl+XnKTFv/gOqEVWtCA6kJgtXqM6imoBAClQySpJqxipn5ynNe49TosoRLuQShW8ITqCTqdHlqAtXp9LVAOV6U0BUpmSxb7WAkXXmja3uIalamVkq4zeBRxQNvkkyv5jV1qj+E26r2VzcpCSwlJjUMdTKst4+5KwAkk7fSwjuDXUBnF3yihLuwgJJ928mb9Tu6QCt+bRoS1KMNh0Z+dNJzrHHlkZGRQYPW11OceYBmvZ/BaAkkaJeSzC6N8Udfqhq7q1VExxqzA+htauK22I1eTa6Tp2wvq4bIktfDQJZ8iXPBaESoFsHqI99S7MolsfZAgq0xACzcUrGzKns2fwlJlijJS0EnGDDoTCw+8MlZbduuywvs2/07DslGeHwrwmu2wOw0ciT5Hw7u+pPWrR8nPEXGXTvaJxjIDoevhZLXaNmjngudeu0RVFNqR62ycltjltreyKBeGwIUMcGQa4M0taWaev04XvSQXW6fmbigtkASjhMcBG+VmF7n88qRvRVl6vVJUsVY0eE6pqpAvUYFq9c+VcTVFZR6d+zz4CluUV3dXonFuk+Zue9OLi8KVSaiST1unYhYXfGxKG6iCNDeVmJOtbVYUQ0RyahcN53BymbeyjS3v/Le9jtUJvZ41PZKzkBvGyhv6y117GNECZe6jiVdUNdVvCgEj1LJBuAxHLMdYMlR4stN2U7KloWUFmaQ0Otptv3x3mmPudmICeye9gauojwEvZ7Ath0JatMOQ3gEe18cRc0vXiJl5AQkmw1EEWvTJth27Aa31wBDAFmm7vCXKUjdTdZvc9AHB6MLC0Y0GtDprfg3aop/3cYkv/bMaWO5mtHuGSsf7RxfPiQlJdGxY0eys5Uqwttvv50BAwZw5513VnFkly6bN2/myy+/5JNPPqFdu3b07t2bESNGnPPMdI3Ll7Vr19KvXz8aN27MwoULL2qyMT09nZiYGNq0acOiRYsq9Rqbn5/PoUOHCAoKIiws7Kzf4/Pnz+fdd98lIiKChx9+mBtuuAFJkrj22mtJT08nKSlJmzWuUaGUlpbywQcfMH78eMLDw9m9e/cZhYnNmzfTsmVLAGJjY3nxxRe57bbbqFZNqTRetmwZXbp0AaBRo0aEh4ezYsUKn3+QKIq0aNGCFStWMHToUL799luuueYaAgMDsVgsxMfHc88993DNNddogsRp0O4ZNS51NFHiCqRL97dxF+RQbMvkyL4l5NqPYNL70zz2dkINSrJMSkkr67keqSYE1dm+vpZNDieeukqCVHCpLWhsShntSUUJNSEnRUeo66jJxCNKQq4koRqS/tIQJQAko4xtxy6yvvkW2e7A2rIpYffdzeERJ5YHalyZdGz3DCmHV5KasR70Omp1uIuwmKYAF02UANjpXMsRx06C9JG0Db0NUdCxIP3TSjvu86X9wPd9v+uO5PHfqneIC7+G2k16Y9ylVABIRcUIRqMiSni9aFxuBIPeJ0qIBj2Cpax0SYgMx1EjWNneqJxjU6ZyHp3hSgbclFIIGUrFl1xa3ujQKxxItvKVEqLV6jvHsipW4G31ZLWAt6JDX7aNIMs+Dx5kGdlPudZ5RQlXuBK3Tn1P6IqUWASX56SiRGG8gai5ykw4OSgAIVNpF+RtG1RZnI8oAWXVDpJRvd76K+sG7VJfS33ZdfZ4UcJQqC4PAWeE6leRr2x3rCgBimG0Ww3RY1G29YoSevXllQwgSx52fvM6ITWakJG06ozH3WToG0huJ1smj8WovvaxH7+Bbe0mSv5agyM99ZiTJPo+70STCUkVuQwREbiysghs157wW27DE6K8Jw8+evJethrl0e4ZKx/tHF9eOBwODh06xJ9//smbb75Jeno6vXr14ptvvtF6YB/HmDFjeO+999Dr9UyYMIHhw4dXdUgaF5F///2X8ePH8/vvv9O0aVP++OMP4uLiLmoMkiQRHx/PkSNHePXVV3nllVcu6vjny7fffsvgwYNZsWIFHTt2rOpwNK5Q/vvvPzp06MCCBQtOaC12Mg4fPozFYiEsLMwnYuzfv5/p06czadIk8vPzfeuKoniC14QoisTHx3P06FGmTp3qM4vXOHu0e0aNSx1NlLhCueHacQAY0vLJKT3M3txVFDiO0qb6XYRYYpDS0svNIBYCA5EDleSft5+67kDaCaKEPVpJ4ulVg1RDtpJhkvxM6A6mK7+fTJTQidjqhWPKVrJNzjBlbHuokrBy+Xm9JcraLLnVNvUGtS27JVt5qxbVLJuV613XoOaBHSHKOsZ8QR3nmA82yTsLWkKWZWw7NpP71S8Y4qOJuG+Qb/a2lni6Ovjvv//o3LkLAiI1oq6hVvA1GPUWn2eAV4AQPBLGQ8oMR68fgc+L4Pi/baXKbH3KEueyu3xbNNnjOcHTRdLLZBoy2V6yHJNoIcIYR5AhElkUCQysQaApCtGuCIILjkw65TH1uOY1JNlDYXEqNkcOJkMgv/79BjVq1KjwGSS1qnXkcPY6rms8EoPegrDvsHJ8x3otOByIFovvnEhqb2DRoFfXlRH9rAiR4T7TaHt15f/Q6y0gutX/6Vw7YroicEq5eYhWq69SwjumZCtrfaU7ZraZ7PEgBiuZdK9IJHirIyQJgtXPNe858ooSBYU+Xx45ULkgOSOVn8eKEl7zau+6kmqqndk+GOC0ooSuaUM1SOU4Pdv3+JYJTq/ZghqXWnHie9/pRMjNV35XxRaPenMvNqkPQGH9oDIh11jeSFpSz7GsL7veuq0yolM4rShRXLP8bYO+pMyjwpR7clHCnKmsI6qnVvCUFyWgTGTWl4CxqKxaI33tn2RsWszO7dto2LAh50rwbTdS8NsiLLG1COx9AwVLlmHfnaQOplOqOjwejNWiCbqpOw33HSCllRUxpgcAe8ec3MNC4+Ro94yVj3aOL1/cbjdfffUVY8eOJTQ0lI0bN2K1Wqs6rCqnpKSE119/nXfeeYfXXnuN0aNHY7FYzryhxhXDuHHjGDt2LI0bN+aZZ55h0KBBpzXRrUz279/Pe++9x2effUbz5s25+eabqVGjBoGBgbRt25a6deue9b7y8/NZtWoVOTk51KtXjwYNGlS454PH46Fp06bExsby559/Vui+NTSORZZlEhMTEUWR1atXn1dFTuvWrdmyZQsDBw5k0KBBDB48mIwMpb+rv78/LpcLh8PBE088QWxsLH/88QcfffQRLVq0qOCjuTrQ7hk1LnW0ur4rlL+Xv1ju7xvrjmLl4WkcLthEiBCuJLm8RrDB5Q1ARacbWSeAxezrE+8IP/UXA3eI8mVKrqPMDtZnKSqCmKPMFMdkvPADOnY8C6fsbX42eEpsZH/1HfadSVhaNiL0vts4MuJ/FRegxiVP15bPsmLbJPz9q9OywT3o9WZ0Jc5Tru+sGV4mTICSFPZ4kFLTEWOiLjgevWCgujsGf/2NpEkHyHGlk2LfjYCIXCBh0FmIMtchzr85N8U+eYIwcVO8YnZf7O9k+4FfKLId9T0XFzedMCGKhro2WAXFOG+Rc+YFxdu91UukZG8gNiwRU7EbKCqzEHB7p7urptGlpchS+SS27BVxBBGpxIZ4NANqKQbQpixFNLBXs6KzSwieY4RFtaJBPCaB4ymxIZqP84sAZF8C/7jSYukY7wvrcdc156lNNIXCEjCbMB3OV7ZXYxGKVEVULC/6iA4X4VuU59JvrQVA1O+HfAKIXjXgvmCbndBgyM3HXa8G+uSK8auQjDKSenegL1KFY1XjKY2WkHXeqrMTy7YdoYqBtWBXnhNdJxfD3OYyEcKoVlgca4btDABrpjJOeJuu5CVvJLHLjdTuN4xtn4w5p+Px69SCgnn/ICGhi9YTfMe1pL+RhKF6OK60bOoNvx5nXH0M1YLR+VlY3vcb2i96jv96aGKEhoZGxaLX6xk6dCjt2rWjefPm/PHHH1d9K6fVq1dz1113kZGRwcsvv8yLL754Vv3KNa4cfv75Z8aOHcurr77KSy+9VOWvf+3atfn444/p3r07c+bMYfLkyRQWFuJW73ETEhK48847GTFiBEFBQafcz3fffceIESPIzc31LRNFkVdffZXhw4cTHBxcIfEuXbqUXbt28fnnn1fI/jQ0ToUgCEyePJn27dszbty486okevjhh3n00UfR6/W0bt2agQMH8tVXX2E2m8nNzWXnzp2kp6fToUMHRFHk2WefrYQj0dDQuFTQKiWuIt577z2eGfMs10Xfj7HQhVPvJsN5kEhjTUyCBaGmUhUhq33VxawCpGoh5ZYdj2Q8pu2JR21lo4oS2B3IAX5Iak94d4ARfbGr3HYFtZWpst4ZvK6AshnSTvWt5k1YiWq+0KZ6d0lmCTxqrGoe1OsT4U2EiQ4ByaLOotYpCdL0iR/hKSwm7KE7yZz49VmdO40ri6a1+7L9wC90bP8sZoPyRhNVvxWxUO0do74PhdxC34x8QU20exPe3moIbwWAcKzxsjcRL5cvQz0WX3sjr0AoCiCI6EKC8MhuBIORArGAzJJkjhbuRJIlro26F7GghD+Lv/Ht56b4p3BJdv5N/xaDzkLDmjcT5BeDK/UIOY4j7MxfCsj4EYhF8CdebIhZ8EdAwOgx8rc0u1xcN9UYgSzLeGQXi1I/O6HKIrHeIDbu/Y5r6j1AqEv5MialZ5U/XkH0iQ8+EcJ73Op58h23ToeotlICEIwGHE2Ucn3BIyGZdOhL3OhTj2l5ZCvFna18yfOJEiepQvFWqojHzUSVSu2+OMQg9WITcExWvMSmCCteUcNbWeb1s/C2fErLKIvbG0eIck68gm12C+XYon4/5BNpvZUhZRur51gUfRUSkkVZxysOe//2mJX3oeiSTlA1PH7Kcx6DEndphB6Xn7Jvu9cmyFts5n1ZRfB4/R3Myg7NWWq1WbCy3KhqzOVECYcyhs6uvp7HnHqPet01FCkLvQbX3ioNZOUhSGXVE15RwjuWOVdt8xcqYEs/xL45nxBYpyl5uzecU+VP/DfvULpzL1mTphPQtCUekx3n/hTiPhhOWOkhLDWCEQSBJde/f+adaZwR7Z6x8tHO8ZVB586dAaVlDSjmullZWXTr1q3CkpWXOv/++y/du3cnMTGRGTNmULt27aoOSaMKuOOOOzh48CDr1q27JHvDezwePB4PJSUlLF++nNmzZ/PLL7/Qr18/ZsyYcdJtFi1axI033siAAQN4/fXXiYqKIjk5mQ8++IDp06djtVpp1KgRLVu25IUXXkAURYKCgk75v+92u3E6nSetrHriiSf4+eefSUtLuyTPn8aVx2uvvcYrr7zCzJkzz7mlkiRJvPzyy4wbN445c+YwdOhQ7r//ft544w2OHj1KfHx85QR9laLdM2pc6miixFVEQUEB4SGRVDc3oHFQZ7anLyKFvQBYxUAa1exNuH8tXOFKAs14JM83M9kTdGKlhGhz+gxhEY9JnJnU9k/5SjnDuYgSjpCyNiLH+0V4DVN9HhHBbmS36lEhqkmy/PKJvuNFiezp31O6fQdRLz2BITqCg/dqyvvVSLB/LKKop2XiUJ+/yQmixJE04OQz/X2cRnA4G04qSgCCvux97E3ol0qFrPQsIFSsRoQ+ljAxGj9RFVQiwsi1p7A24yfaRtxBwDFFHfqY6pQcPUAOmRTLeaRLh3FS5slgxo8wqhFOFKFUw+kHSZ5NZNsPIyNhwIifEEQNXV1CxUhmH55C9eqxCDLcEP0IFCvVAJLNhqA3lG9X5RUI1PN0glCjPl/msWEoEydUgcBeW8mk60vcCOprpDtUVgkil9rLzKi94pHJhOT1nTj2NRLEcoKI93dJbS+lU8UEwaCe/2NFCVEVIUrLl2nJXq8QjhElvNUYkaHKnxZleUqPAOJ+UV+c4ycBnkaUAMX423vdPFaUEB3KOXEFKdfikijlOUE91R6jgFOtcpBFxcvhXEQJv3S1bV6set50YMxX1tU5obCufFJRQjKX/9+wpIro7eVFCV8bKfUwzVng9i8TJSw5ytjWo07s4QaO5K4n5e8f2LFjB40bN+ZciP3kFVKGvYa1dQK2LbsJvv0GIvp3ACDpjpfOaV8ap0e7Z6x8tHN8ZTB37lxuvfVW/v77b7p160ZoaCh5eXkA9OrVi88+++yi99O/mNhsNmrXrk3Dhg35888/MZlOrHrUuPJJSUmhVq1avPfeezz55JNVHc5Z8+mnnzJs2DAef/xxOnXqRI8ePQgNDfU9P2rUKKZPn05mZmY5oUCWZbZv3878+fPZuXMnM2bM8Bn7CoJA69atuemmm+jduzetWrVi/vz5jBkzhqSkJGRZJiYmhuuvv55BgwaRmJjI4cOHadWqFQMHDuS777676OdB4+pElmVuv/12duzYQXJy8jlvP23aNO6//37uuecevvvuO3bt2nVeLVo1zox2z6hxqaO1b7qKCAoKoo5fK5KK1xDn1wS91Q9skGC9ln32TWw/MpcujY67GXR7sNUrM+GzpKpVEKfRskSHWxEm1OoKV5DyJcOUVogrXEk0FtZSlnnFCE8Ffw8RHd4EmowUrCRJ9WYXpTt2Enxze1Kfe69iB9S4bHA6nRSUpNAo6FoMmcUIakKaQvW97U1wX4RYjq8gkD3ll/vMigGL4E9jsTUp7GePcz0yElYhkGq6OGocrgWq0FDiziOAsl617tQ0TJioTiwQSy0aUijmIwgiHtzketLJJp1U9iMiIpVImEQ/GgR1wGCHo+4DZHtSyXcrlRBRUb8hoKOF4VrknFyEY5IIJ/hnHPO3oNOdIOL4BAK3y1fJIDvUqhM1kW4+oFRDyCa9L7nvrVqQvX4K3i9zRqPv9RMtZmS3G1mtYjm2gkKWZJAlJKfnhOegzHcCo6HMONvPr/w6tlI1dneZp4j681i/nmOJ+y2btBuV62m1taq3hVdoyS/xHafXHwL1h2yquJ7KOnuZ8OsVEfSlZQKF6C5ffVYafvoZd4F7Bd/12ysyOINlJF1ZBYQXt1nxiwDlOUeoEs+x6IsVcRrAHi4Qskf1tnCWUrpn91kf5/Hse/hFgqb8gG39dizNGxBwfVtNjNDQ0KhS+vTpQ8eOHRk5ciSbNm0iPDyc2rVrc++99zJixAjefvttPv3006oOs9JYv349GRkZmiBxlbNmzRrcbjd9+/at6lDOiYceeohdu3axaNEiPvnkE3Q6HR07duTee+9l0KBBBAQEkJ2dTW5uLmFhYb7tBEGgadOmNG3aFIDnnnuOQ4cOodPpOHLkCIsWLeLDDz/ktddew2KxUFpaSteuXRk9ejQGg4H777+fGTNmlKvQqFevHhMnTrzo50Dj6mX9+vXs3bv3vCtz2rVrR0xMDLNnz+att97SBAkNjasYTZS4yqhZrT1HHLvZXbCSGtZGAITra6Az69li+4fColSsIfUAcNYIwW05eTJM8iv/5cFjKXsreWfung3epJj3p8d8zO/qEMJxk9FL9u4i/7c/8RQUIMsy+tBgZGcpnrxizHVjCB94Pbo6NbBt2w96E1ZrDVw2I8gystuNYNDe9lczRqMRqz6YEnd+ueVSkWpWrM7mlxzHZUvPBkG84OqJcjE5y/tcRBNPNPF4BDe5cjrZYiaH3bs5xE4A/AgkNM/qmwl/MgyCkTA50qe6RAhR1JdlbBSRzVHMlhAi7BGIRYqIEC6Hk6evQ5AYRr4zAzduwvTVMYtKBtprLi17PGUJfE4muJx4XSi3zXFCZ0nOEbKch8mR06kW0ABZL1BDalFuHUFtuyQXFJYtUwUB3+vpXX5cyyhQhBLZ4/G9Zp48ZYq+zq+sNF72eMDl9lXUeKsxOPYmXPUY8QkgRrXtUpFybtyRisJiLC2rqjgdslEHgoBYrAgf7i2KUbbQQTl+t59yziS93icm6Fxqq6MwZYHXj8Fgk4lYrQg7gurzI0UrX45zWgRSFHd2XyY8qs5izShrpSeqhyu6weV34jaSDowFygXd6NX8ZPAcU9DmMYNkUGItrabEcqxnUF4DAUOxjpL8Q+Qc2UxojWY0aNDgrGI+FqPRSOTI+3ClpJP60gdaewMNDY0qRxAEJk2aROvWrfnyyy9p3749e/bsYfjw4axdu5YFCxbgdrvPy0j0YiHLMm+88QbTp08nNzeXoKAgwsPDycjIoKioiL59+/L2229jMplYuHAh11xzDTVr1gTAblfus8zmkwv5GlcHTZo0AWDPnj3ExsZWcTRnj9Fo5KOPPgIgNTWVefPm8csvv/Dggw8yatQo8vPzGTp0aDlB4mQ0atSIRo0a+f5+4IEHcLvdrFixguXLl9O9e3fatWvnu2/p2LEjeXl5mM1mkpOTEQSB3r17YzAYTjXEBeNyudi9ezfvvfce/v7+NG/enIYNG3LttddW2pgalzYzZ85kx44dfPPNN2de+SQ0bNiQbdu2kZ+fT61atSo4Og0NjcsJrX3TVcZN9Z4hoziJTem/Uc/Uiv2OrYQZYmjm15VVJb9h0vvRsvUjCIKI6PQglirZJ2eEkqTzGJUEkym3fHLNJ0pIMjqvKKF6TOgKlMScK6rsvZNfV23bZCpfKZGfv5+ipK3YU44guZ1Y6tQDjwdBFAm+4QZ0VisZv82ieOVagm67AdkDnrx8DMEGdAFWilfvxJmShS4kAHemUgIf0u9awu++AUe+icwPvkJ2OLAnHajI06pxGVFQUED10Dj8dMEkRt6KrCavZa9B8yUkShw/g78c6jgu2UkqBwCZGtRBL1TQl5JjjuWwnEwqB2jLDYiCiKA3UODKxIp/xY13zLglciH/yQsBMAlWHLJyDUmscScR/rV97eR0qseEr7LBuwujwfd6SoXF6m5VUeIUPhfH4q1QEYxlxyYYlf5GHlUA8bXeOr4aBBDUFlTCMT4ZWC0UNQylKFZZJ3i/El9WU+XaGbpbicfvSAmCQ9mnUKpk/d371OuVKkrYI5QLpqQXThAl8uso+/eKEoIEwVtPLUoASDrB59VjUPWdogbqeVL9I/QFyn79jwgniBKyqisVq11GJIOMO0DybSd6wE/14BaOueOwqxURogts1WVEp3Iw7lDl3HjNsmsslnAbYceSzyjKPsBXX33F/fffj8aliXbPWPlo5/jK4r777uP333/n8ccf54033mDKlCm0bduWli1b8vbbb/PMM89USVxOp5PZs2ezcOFCdu7cSVBQEJ06deLo0aMkJibyyCOPIAgCYWFh5OXlMW7cOAoKCsjKyiI6WvlQmTJlCkajEZvNRkFBAWazmYULF3LddddRVFREeHg4b775JqNGjaqSY9SoelavXk379u2ZOnUqDzzwQFWHc8Hs3LmTr7/+mjZt2tC/f/9KmQTRs2dPGjZsyAcffAAofhP//fefz6emonn77bd5/vnn0el0BAYGkpeXR3h4OHv37j2t0bfGlUtSUhLt27fH4XCwc+fOK7rV4OWOds+ocamjiRJXIbIsE22pQ4ajLDEfpq9BrWodWJ86m4bxvYmNugbgBFGiqIaSmDMVKgknU46SlRLdMpJeuek6kyhhDzdii1CyWF7jVV2JRMaq+WSt+we9fzB+NWojm0Vs+5PRi2ZctgIEoxFLVBxFe7cDEPf4KA59Ur4NU2lpKSNHjqSgoIDhw4dz88Q3KJizkJCBtxDY4VpK1m8ie9p3bN++3TczR+PqoZPlVrY5V2KTi2njfxMBLv/zEx8uFseKEhUpdpwjO+X1pHGQejSlptCAAjmXdfxDPA2oKyjl5+X8MWTpggQaWZZZzBwihVhaBHWnND+T7caNuAQXHePvRxBEJLPR573A0cyyGLxG0uoMTFn1vDjez+JsRAnfcRy73THm3KCKEseJR95qLDFQ7UGlelWcTpSI/UtRA/b3DSRikzKWJUu9vjq9AoFyjS2JUeJzWQXcFu91VxlK51Tis0UqyyO2OhHcyjJnkDJWwDblfHnClfgyE/0xFcgU1BHOKEqYswTfWN6qNq8ZtstfRl8qnCBKAJgUXQS3ambtl1ZelFDGVMUI9aXyihKGAhFXkITkcHD4mbF8PmUKDz/8MBqXJto9Y+WjneMri/T0dBITE8nIyMCjfjZNnDiRtLQ0PvjgA5KSki668WdmZib9+vVjxYoVtGrVisTERFJTU1m/fj1RUVFs3bqVxMREgoODWbx4MeHh4Sf0zgfYvXs3Tz/9NAkJCTz44IM88cQTrF27lpUrV9K0aVMGDBjA5s2b2b59+yVdEaJR8ciyzK+//sp9991HQkICCxcuJCAgoKrDuizw/p8dOXKEGjVqMGTIEGbMmEFSUhL16tWr8PG+//57Bg4cyIIFC7j22ms5ePAgrVu3ZuTIkbz55psVPp7G5cGsWbMYMGAA6enpVKtWrarD0TgF2j2jxqWOdvd3FSIIAs3NXcnU1WabbZnSV96diit7GaGWOA4cWUKkHIUpKtY3s9bo1a5UUeJ4PCadL+HltiqJpID9ihhR3FjpoS7pBV8LFC+y5KFw52byVi+jNCuV8J63UK3hdQiCgFNNWPmlgLM4j9Rtf+IqLiCgZRt0ZguG8IgT4rBYLEyZMsX3d9CernhyC8ifsxC/5q2xNm+KPjyUxNtvpdrIRzj0+JjzPIsalxszZsxglf0PTIKFRF0X/O0WqLhW/ZVHFYoRXurQhDQOksw2YuV67EMRBgMpK0kv14rJK0icpzAhCAJBhOPCgVRQiEkw0zCwI/9l/8ihjNXExXdR1vNelwLVTHdJKTiciheEKhSUu+IcZ3p9QmzebdTqh2PbUSGI5QQIn6hxmmoWqbAIMcAfnMr+rEdLkfSKwFsaquw77g+12sNUeWX3Z0vQPpn8empFiV45N4ZsJS4pVump5HBbECSwZJ58H26LjOgGQfWmkMzeV6B8oion0Y0pXe8bF6DouK5MXnHCGetEKNTjOHgYZJk2bdqc9zFqaGhoXGpERUWRlJTEq6++ynvvvYcoijz11FMMHz4cvV7PsGHDmDNnzkXxXcjOzuazzz7j448/RhAEVq5cSYcOHU5Yb9GiRUyePJnS0lLuvfderrvuupPOCG/YsCHz58/3/f3LL7/Qpk0bnn32WebPn8+oUaNo27YtH3/8MSNHjqzMQ9O4hHA6nQwdOpRvvvmGm266iVmzZmmCxDkwceJEnnrqKe6//37+/PNPn7+EtzVaRXPttdei1+tJSkqiZ8+eNG7cmFGjRjF+/HgGDx5crv2UxtXDihUriIuL0wQJDQ2NC0KrlLhK6RnyEA6plGT3JlJtu6gb2Ja9hWtoENSJFNtOXJKdWjW6EOuKQy+qQoTVQl6bSABc6uxc/zQl2aazS6cUJezVzMiCIkr4H1RmLWd0CMDjsLN/0deU7k/GWqc+C7764rS9KbuL/X2//yX9eFbH2V3sz47+Vo7Onk7c8y9iCAklf/tacqbPosa7r3JkzCtne8o0LkM6Cjexl+3YKKKYAmJ0dWhkbAv2E82PL4Xk/wlUdDuoC2CdvIQCcvAjkBKU6fQx1KIhrcolInwVBMdUIvi8G3wLznxcGWIa2zyraMsNBAjB6EJD2O1Yx5HibbQK7kmYIQYhXBVFVNNp7A7F30FFLipGVo3Mjzfh9okMxy0r+1UAQTyh7dMJVRGicOwfyg+1UkKwKm2mUNs4eSICKY5VRAlvhYPHqPwMPKy8J42ZNrLbBANQrLZWtmQoP4MOePsmqQl/veCrVpDUKoriGGWBU62mF11gaK+UKZTY1LZPHmUdKVf5O2C/6DO2Lo5VjaVDlAXHixLiEYvP58ejCg6C99QcczfhsXifU+KyHFV+2mLUihOjjCVVh8dYJkrktPQanailGFlqvEFuin/4l9x//kLn548zJ1vzhLiE0e4ZKx/tHF+Z7Nixg379+hEdHU1mZiY7d+7ku+++44EHHqB9+/aMGDGC2267rdKufxs3bqRXr14UFhYyZMgQXnrpJWJiYip8nEGDBrF9+3Y2b94MQN++fcnMzGTFihUVPpbGpcWvv/7Kp59+yu7du8nIyGDq1KkMGjSoqsO67CgtLcVqVe4n+/Xrx5w5cwCYN28evXr1qpQx7777btauXUtSUhI6nQ6bzUZiYiIWi4WffvqJ2rVrV8q4GpceDoeD2267jb/++othw4b52ohpXJpo94walzqnaViucSWzMO9LNtgWkWrbRZSlHnUD2xJsjOZg8WZahN7EtV07kHR4IXvs65CD/cGbXDsOZ6AOZ6AOt78Oj1nAYxZwBigP0eVBdHl8Pc+PJ33VPByph4m5/zFi7nu00syy3AX5oNMhmpVjMMUrPQ/tu5MrZTyNS4MDBw6wlsUUkUcwYTSmNY1IRHCdvRF7lXOJCBIALegI4BMkAggmlQOqn8WZEXQ630NZcPqPnwipOmasbGEV+XI2nrwC6hlb4qcLZn3+PJZkTyctfT0Ulje0lotL8BQVIRUWlV8uyeUep41VPHXCRxAF5XHssRyH7HIrZteCoDwcTnA40WUXYU23Y023Y8l2Y8l2nzaOqsRvnwG/fQbcUU7cUU6EdDNCuhm3v4SruhNXdecpDdVlQfGyEI55+9rDZezhJ553nRNyWigPffXy3iDGGiUYa5Rg33aEnD/n8+CQIVS/f6gmSGhoaFxxHDx4kISEBPbs2cOjjz7KX3/9hV6v5+eff2bRokUcOXKEvn378vfff1fK+C6Xi379+lGjRg3279/P5MmTK0WQAKXlzLEza9u2bcuGDRvIzc2tlPE0Lg2mTZvG7bffjtPppH///ixfvlwTJM4Ti8XC3LlzAXyCRIsWLbjrrrtISkqqlDFHjx7N/v37uemmm8jLy8NqtfLdd9+RnJxMnTp1aN26NTt27Djptk6ns1Ji0qga/ve//7F48WImTJigte/S0NC4YLRKiauYVqE3sylvPhZdAKHGGGoGtmJd1i9Y9YG0jOjDAWEPKWlraNjmHmLcSiLfoXpL5DRRZs/6p6otPmwSLj8lyegIUs2w85XnAg4o1REF9f0J3KcknY529CP5y7fwr9WAnA3/Vupxxrw3lqNjx+PXqQ2hd9+CMdNAyudKWbpt/14mTJhAcnIyO3fu5K677uKxxx7Tkl6XMd3F/siyzGZWUkwB7eiOQTh52zGNc+OQnEQyW2lBJ8KFKHbJGznKQdpwPQFC8Bm3L+c7ofxy2vVL5EK2sQYnDhoLbYjQ10CWJQqtpRy27yDduY8YQz1qiHUJEENIdx0gxbOXAjkHE2aaGzoTSKgylFrp4BMSZOnEOLyVDsesc3zlh+85b+/rYz5CBe8yb6WEwVB+XbMJRLVKwapWAViVdZzBynvUVk2Py6pcf+xqhzqPt2OHt51RpNpeSi8TU11J4hTZlZU8krJ/t1oNUT24gIM7qiubByoiSNPaKeXO85HCYOzrlfNkylOWlUaqY8UoXyR1OQY1Fhn8lf2IeeVbTkkm5TwKbgFZLyO6BLyqtKAWeXgrKABks3JOdcXK+dHHKJ8Vgqj6WOgkJKebvcM+R/SzYEvej+4UQpDGpYN2z1j5aOf4ykOWZYYMGcK3335L69atGTBgADExMdx9992MGDGC9957j6ZNm2I2m5k7d26Fm4ru2rWLxo0b8/fff9OtW7cK3ffxfPvttwwePJjFixdz/fXXk5GRQWxsLO+++y533303EyZMICcnhzVr1jBz5kyaNm1aqfFoVD6ZmZk0aNCAPn368M0332jfsyqIa6+9ln///Ze8vDx0Oh2tW7fGYrHw33//YbGcfELhhfDzzz8zcOBA2rZty7Rp06hVqxZFRUUsWrSIV199lf379/PGG29w++23ExAQwIcffsisWbPYs2cP119/PXPnzsXPz6/C49K4eKxfv562bdvy+uuv88ILL1R1OBpngXbPqHGpo1VKXMVUs9SmffidBBjCSS3dzbqsX6jh3wS7p4StOX8SV7sbQRF12LHma7Ye+LnctkH7PQTt91AUK1IUq5qRFkvKo0TGUHJGrQtkGUFX+bYm+uAggvp0p/ifVTgPpQJgrdsAR0Y6CxYsYNSoUUyePJnly5fzxBNP8PXXX1d6TBqVh122sYWV5JBOA1pqgkQFUoPaGDCSTRoA9WmOH4FsZw3SWVR1yB6Pktw/ywoQPyGQlrprseDHFnkFTtmOHRshYgTNLNfRxNSBDNdB1jgWsLj0e7a7/1PGQcKOjYOenchul9KmSZZOGNdXESGIZ6zc8FVG6PVlIsPxx+d2I5hNCHq9IlBIkvJwu5WH3XFWx30qgvbKBO2VCdxlIHCXgZA1RrL/iyL7vygK0wIpTAukJCWAkpQAPPv88ezz5+DRcAzRtjPv/BTIbgHZLWDKVh76kmNaXLmVx6mQDMcIEAblQcCJG+iq29BVtyGKMqIolyvAyJ6zAk9uDnGjbtYECQ0NjSsWQRCYPn063333HXl5eYwePZqPPvqIYcOG8cknn/DZZ58xa9YscnNzqVevHtOnT6/Q8b1z1C6Gb8U999xD586defzxx3E4HFSrVo3mzZuzfft2/ve///Huu+8ydepUtm/fTrNmzUhPT6/0mDQqj7///puOHTui0+mYMGGCJkhUIC+99BIAa9asISAggB9//JE9e/bw8ssvV8p4ffv25ffff2fbtm088MADFBYWYrfb6devH2vWrGHAgAGMHj2aWrVqERUVxfjx433iyD///MMvv/xSKXFpXBw8Hg+PPPIIzZo145lnnqnqcDQ0NK4QNFHiKmZB6kesyppFy8hbaBt1J6HmGA4UrseqDyLXfgRy84i75UECajQg33mUojoBWPbnYtl/+vJq0SUjumTsoSL2UBFbdSu26lZCtuaT3cKP7BZ+eMygDw6hJHV/pR+nIU9HaOJ1GKKrkTN1NlJGLrLNjs5kpnHjxgwbNoy3336bPn36AIrhoMbliSzL7GQDheTTlHZECtWrOqQrCp2gpyb1SeUARXI+OkFHIxIpoYjDnGO5uNcI+wyYBSs1xYbIyKx3L2aF+3fSnMkIgkAM8XQx9qO17gbqis1prbsBGUV40KEnS0rliLyXLDkNu2xDlmWfSCF7PCe2cfIKF+rjZG2evOKEaLEoD38/5REYgOh/htlfTqfvITpciA4XumIHumIHxjwnxjwnwUmlhG1XHlGrXUStdhG5QSJyw4W18jJE2+jRZCc9muwkxppPjDWfQKOdQKOdYHMp9jgX9jgXLn9w+UPgPpnAfTIBuw0E7D6DCbegPAS34KuSQH1I5pPEHeCGABeiyYNo8iAIJznPQP7uIrLnrCDgpuswx0ZwzcIXuGahNitLQ0PjykQQBAYOHMiWLVv46aefyM7O5ssvv6RFixZ88803NGvWjC1btiDLMtu2bavQsWNjFROj5cuXV+h+T4YgCHz22Wfs27ePxx9/HKfTSWFhIYGBgdx88808+eSTfPzxx771Q0NDKz0mjcohIyODfv36Ub16dZYtW0Z4eHhVh3RFccMNN9CuXTvGjBmDw+GgWbNmPP/883z00Uc+z5aKpnv37vTp04etW7dSq1YtGjZsyIEDB7BarUydOpWcnBx+/vlnxo8fz9y5c31xBAUF8cEHH/DVV1+xdOlSCgsLKyU+jcrjk08+YdOmTUyePBn9KSZoaWhoaJwr2tVEg4WHPgDgxpavsG6vMvPK4LaQlPIX1YWH8IusSXrKHnYunUJ8y1sJc4bin6z0+MhJUG4ubRE6zHnnljST3a5T9mSvSPaOeZq64ycQfu8AMj/7mtTZ0/AUF2GJq0XNmjX5xxxPyYGjOHT+hHXpWell6xqVR2pqKrlk0IQ2VBNqVHU4VyRx1OMoh9nFRvI9iuFwnFCPvWwnWA4nWDjHL5xnML2WPR6sstI2zutnkV66l60ly7jRfA+iILLO/RdZWVnUi2xIAYpoWl9owWE5iSS2IKt9j4yY8ZcD8SMQPyEQQRZxUIpLdiAhISMj4cHpceCQS3HiINZTnzqG5pwkb14e0zEVOaX28sfgUtstneX1TnTLOAMNiG7VLFry/lRmF/qlK397jGDOVZY5wtSZh2olghSitEaKCi+k1KWICnpRWbYuQ2n7UT8066ziASiNVl+jECcUqa2cvGbWZ7j0S2YJ2aCKRYYyTxfZc4xBuiD7xAmPJCI5nGR9MhN9WDBhbW/EKGVx6JMl+DWsjnyjrM201NDQuGLx8/OjX79+3HDDDYSEhFCnTh1mz57NzJkzGThwIE2aNGHSpEmUlJQwfvz4CmmHYrPZEEURo/HiVJc2adKETz75hMcff5ysrCySkpJ45ZVXuPnmm7nxxhv59ddfmTFjBrIsX7SYNCqen376CZvNxi+//KKJS5WAIAhMnjyZ1q1b8/777/PCCy/w1FNPMWfOHHr37k1ycnKltHFq1KhRuWqtpUuXUqtWLQCCg4O5/fbbWb58Obfddptvnc8//5wnn3ySBx980Bd7/fr1adSoEY0aNaJ+/fqUlJRw9OhRcnNz8Xg8eDweiouLSUtLIy0tDafTydSpU+nevXuFH5PG6dm4cSPPPPMMTzzxBG3btmX79u28++67jBo1iubNm1d1eBoaGpcxmiihUQ69aKTUWUDt6GvZk/In8fPXk3poAbF3PkD20gXsXvoFbVo/wcnmzebVVRJuejUf51DvPSW9stySaaJU7ZFeWpxFacpBqg0YUslHpLB3zNPU/mAC4XfdSdb07xAQCO3YFQBb6kEOfa/MyKoz+rWLUrquUfF0F/uTLh8BFBNmjcpBFHQ0kFuwkeXUF5sTLzTgoGcPZp2VNA4RzDmIEmfZxslfCCJSrkEmiheCETMAkmqc10m8mY3yMjy4SRS6skFeigsH7cWeyJIHB6UUkk8huZRQRA4ZpMj7kJExYsKACREdAgICIibZjB8ByCLsd29DRqKesZViWq16QuBt/WRVv+ydxp5J8H4hlCTwelQYlY9fj1VJtrj9lauqrBO8NgyVTrZdSWSl5QX5Xgq9YutAaaQSRGmzUiUul3Lcsl1/Kn9rZLVdk2yUfP4XguobgevEqhj/QOXDwmhQhJSSUhOCICNLEplTfsednkvsoyPAI7Fj9M849h2APzayccBGEhMTz/u4NTQ0NC4HAgMDkWWZyMhI+vXrx6hRo7jrrrtYunQpn3zyCePGjSMvL4/vvvsOUbyw4vdvv/0Wk8nkSxheDIYOHcrevXuZNGkSbdu2pV+/fgA899xzvP/++3Tt2pV//vnnosWjUbHIssyKFSuIi4vTBIlKpHnz5gwfPpw33niDm266iZYtW/Lpp5/SqVMnFi9eTO/evSt8zNGjR/P888/7/j7WuB4UMeqee+6hU6dODBgwgKFDh5KQkMDRo0dxOp0kJyezbt06Nm7cyK5du5g+fTqpqakYDAaio6MJDQ1Fr9ej0+mwWq3ExcXRrl07NmzYQJ8+fViwYAFdu3at8OPSODlZWVn069ePpk2bMn78eDZs2ECPHj3Izc3ln3/+ISUl5cw70dDQ0DgFmiih4UOyGoiIbMKe/fPYf1Qp316TMpOE6/2pFZZA9TY12PTvJFbv+IymCYMICI4lOFnJZBXUEhE8p9u7gtew1XZ0NwgClu41K+twTmD/yKcBaFCtAQCC+gXOXVLkW6do28aLFo9GxZIhp7CdNYQQgb8QVNXhXNGECpHEyw3Zyzb85SBEUaQaNTjKQUyymVo0RBQqtgqqCa2xCv4clHeTKu8nWohDQkJERx5ZiOhow/VY8KMGddgv72T8z6/x8R0zsQgBmD1WIlHaef0l/YhLrV4wGAx0F/srg6jtpP7yzPKNW9fYgn2urcQY6mMVAk4MzFXmkSDblSS7z+DafRYXRRXBo2TxzUnp5HdQqnzswUo8LnUSrE61pJDUSaPmHBm1WxWh25R1S2KUJ53ByhN5ZisNIjMBWJOhXG+zjyr/H7lWfwA8RQYCkvQUNXSdVayy19Bar4oQ3jISt5oUO4k+Y/BXDbP1yrb+Fgcutw75OAXGkZZL+ru/U3r4ANF97+HQh+MJbNseZ2oaluYJ2HftoUGDBmcVp4aGhsblzqBBg8q1MmrdujWLFi3ihRdeoG7dugwYMICioiJmzJhBSEjIeY+zbNkyOnbseEH7OB/effdd3nrrLURR9FXAeT0klixZwoEDB3wzsDUuH2RZ5oEHHuCHH35g0qRJVR3OFc+4ceNYvnw5t956K+vXr6d169bUrl2b0aNHY7fbueOOOyp0PL1ez9atW3n22WdZsGABt912G3369EGv16PX65k1axZ33nkn06ZNw+PxMH78eAYOHMh3331H48aNadKkCU2aNOG+++7z7bO0tBSTyXRagdXhcHD99dczZswY/vvvPwyGM7QX1bhg5s6dy9ChQ5EkiaVLlyJJEn379qVOnTpERkZSv379qg5RQ0PjMkfzlNDw8dfKsexI/pkOLZ8iOCjet3zPym+wFaZjsgYT+9hIdH7+bF71KbmZewCwpjvROcEVoDwKGngoaODBGSTjDJLJb+4iv7mL3EZW3z49eYXogvwQreZKPaaWT0yk8YvqY6zyQC+CXsRjgnpvTyQiqjnBbTsB4HacvyGsRtXQXexPe6EHO1hLNWrQgk5VHdJVQR2aAHCQXQDUJYFo4jnEHjaxwmeaWVHoBD11SaAWDQEopQQPbuzYCCCYRK7DIvj5YgkVIrn99tv5xzOH9e5/yBWyyhlaGwwG35eZv6QflYdnVjlBAiDelIBRMLGy9Fe2la7AJTtBEMpMu0+FXg9Gg/KQZZBl5OBA3zIhtxAhtxD9kSz0R86+jVJlErDbgNsCbotSIVHarBSPTY/HpkfMNSLmGhFkMAY4MQY4T7kfwS3gH27DP9xGVGQBUZEFhATYCAk48foqCDIutw6nQ6Bg3koOPv0p7qJCYu97nMBmiWzYsIGidWuIHNwNqSAL/8R6+Pv7V+Zp0NDQ0LgkEASBGTNmsHLlSp/nw5YtW7j11lux2+3ceeed/PHHH6xatYq2bduSkZFx3mOlpqZSp06digr9nNDpdOVa8n355Ze+lk35+flVEpPGhTFx4kSmTZvG1KlTGT58eFWHc8VjsViYPHkyR44cYfr06ZhMJn766Sfi4uLo379/pQhDTZs2Zd68ecTHx+Pn50dhYSG5ubkcPHiQESNGMGPGDIxGIxaLhVmzZlFYWEhCQgLh4eEMHDiQtLS0E47hTBVfJpOJl19+mQ0bNhAdHc2kSZMq/PuGhkJGRgaDBg3i1ltvpU2bNmzevJmaNWvy7rvvkp6ezrhx49i9ezf9+/ev6lA1NDQuc7RKCY0TMBn9aVb/bvZlLOXggX+Q3A5Sdi4mM3UTAI43xlL7+nrs3vQNLT2PQEDMGfcpuEScQeDXTOn3XrihGL2fkeCgkko7DlmWKUk/SO7GbThyMvGUliC73QhGAzr/APxbtMCvUQKgJ6zLjeis/gS2aFNp8WhUHgfYhREzTWhT4TP0NU6OIAiYZSsmLNwg3MES+VcAWgmd2cQKMkmlGhXv61FHSKAOCaddRy/oaSF2poAcCuVc0qXDbJFW0kbods5VNHrBQAfrrRx17GWfeyt5Rb/Q3K8rIRb1uufx+FoyCcHqvh2nTtgfi71hNPoSpTrBlJKvLLSYCd6gihTqF638xEhl/2pVhLeCwmMSyrwuBHAU5uDIdGEICkb2V2KyF5o4aFRmvhbkKqKNt2pBr1YteGSDb9+2hko5xtnMWNCbldjddkXcEU2qn4VOh8Ohx2Ryn7CNo0gplzMZ3ASYS/HYnKTOcZK9/GfsR7IIvakN1QZfz8673gJg8uTJIMuYa0fjOJhBxMDrzyIyDQ0NjSuHDh06sHXrVm699VaWL1/O6tWrmTt3LnfeeSe9evVi3bp1dOrUid69e7NkyZLzEm69RtOVicPh4JdffuHff/8lMzOTzZs3ExYWhtFopGnTpgwePJi2bdtiNptZunQpq1evJiHh9J/3GpceJSUljBs3jscee4wHHnigqsO5avAKeTVqKPfeLVu25M8//+SJJ57gpZdeYtCgQYSFhVXomIIgcODAgTOu17JlS7Zv387ixYtZv349n3/+OX379mXZsmXn3Db5xhtvZPPmzUyePJmRI0eyaNEipk2bRkRExPkeRqXg8XjYsWMHZrOZunXrXnCLvYuBJElkZWXx008/8eKLL6LT6Zg2bRpDhgzxCcdr1qzh+uuvZ9WqVfj7+3P77bdXcdQaGhqXO5etKNHppjeQJDcljYLY8sFTVR3OFcVfq8YC0O1agcys7ZTacomObet73mQyUfv52ykaM5vtR6Zxw4y7qDauDjkJSt90V7ySqJJUU1ah9MS3mSu7CH2Q9YTlFUXL+99l36IvKUpLPuG5wBZtcGZlkD5zOsboGCw14xHcEHptN/a9/79Ki0mjcpBlmTyyiSBaEyQuMjHUYh87AIGuwu0skX9ho/wvN954I6sWrakUUeKskSSCCCGIEKpTk3UsYYO8hCZcc067WVj4NQA3RTxKlKcBm4r+Yk3R73Q23I2fXhUhvMKE3QF6neIdAWAof+2TrUZwKol6R8PoCzu+43CXFrNz5jgAdP4BRL02An3w+SeYvJNWTUGKSCGplRH+FicGvVIh4m29lGs/efm8w6HHpPpF5OUpgkjkHxKHt/xBbkgWpbtTcBcqnhXmmDhqPvQUB6e8X24fTZooFTlZX/6OIcSP6h3PLIJraGhcfNLT0wkNDdVMiSuJ4OBgPv30U5o1a0bDhg3p1q2b77k6deqwYMECOnfuzGOPPcaMGTPOad+SJHH06NFKTept2bKFXr16nTA7uqCggB49ejB37lw+/fRT+vfvj7+/P/Xr1+fpp5/W2rNchmzfvp3c3NxK8TLQODUNGzakQ4cODBkyhNzcXB577DEEQeB///sf06dP54MPPuD111+vsvisVit9+vShT58+9O7dm86dO9OuXTvmz59PdPS53RM3b96czz77jFtuuYVevXrRu3dvVq9eXa7iqqqZNm0aDz30EAC33HILv/766yUVn5ddu3YxduxYCgsLWbZsma+97cMPP8xbb711gpDVpEkTvvnmG7Zt28add96Jn59fVYStoaFxBXFZihKSJLH6byX50qDWWDrfOA5B1CEIIsvmP1PF0V05LF4+loKC4UiSdEKPWZ3FQOOX+rD+ga/Z/8sOojix5FtvVpJRAWuUGRCSAewO1czVLSmPc3B0ve7mdwEwFigflrYoE84AZdbBuq+f9q2Xnp7O5mnPlm0o6ghs3ILC7RsAKNm1A3NwNcLb3kDhnk2U7t+Hp6SYwh2bqJGWQsr3U886Jo2qZw+bcWInsioT4FcptYRGWGV/drKBzfyLLMsIgkCXLl1YsmhpVYfnQyfoaUJb1siLKJBzzns/Fl0AJoM/uLNw2Auw6s0+4UHQ6RRB4gwIJYrvhPmQKt4GqC3sdF4/Btlnoi35Kc8F7FMqylKvVzwtRBe4S0sQD+eSkvwPzvxsnAXKcQV36UbRhnXkz5hH5L2DkYJcGHWKiFD3S+XngceVsewlSuw1/hTwmLym48r12tG+GACPR0SnO70huV+QIizYcj248wqxxIaAKhCa9G4cbj2ewmJKVm8j46+1lBYoLUasbVvy7VPPEhsbS7t27U46i6xTp06Y69XFlryXCRMmMFt//u1JNDQ0Koe1a9fStm1bnn/+ecaNG4fdbsdsNl+SCZjLmSZNmnD48GEiIyNPSNa3aNGCSZMm8eCDD/LCCy/QqFGjs96vx+NBlmVfMqqi+euvv+jRo4fv7/j4eMxmM7t37yYrK4tly5bRqVMnTCYTS5YsISIighkzZvDzzz/zww8/ULt27UqJS6Piyc7O5rHHHiM6OpqOHTtWdThXFUajkSVLljB69GieeOIJbDYbo0ePJiIigoSEBFJTU6s6RB9t2rTh4Ycf5uOPPyY1NfWcRQkvnTopLXtTU1NxOp3nXHVRUciyzOHDh0lOTub555/HZrOxc+dOAD799FMef/xxZs2axYABAy5qXEeOHEEQBF/1zLFs376db7/9lilTppCfn4/BYODll1+madOmNGrU6JReEU899RSff/45eXl5PPvssyddR0NDQ+NcuCxFCUEQqB7fgfysZJyFuaxYNAGD0Y9aDW6moKCAoCDN5LaiONW5XNrtPQBCP1/JnplbCWx3E+GbVWPVJmqSLfzU/dZDuiZw4I2fKFibDL3OPh5Z8pCdl0Ru/j7ydqfhUfu7mwPf4tfZM+jZsyeZmZll4yS0JaRTV0xhkUS17YUtdT+enDwKDm4ne83f6nRggahb7qR4z3ZSf/iKgJTt/Pa/t+jcubM2Q+sSJyMjgxT2UZvGhAnVqjqcq5JqQiyirGMLq9i8eTMtW7bE398fN24kWUIUqr5cWZI9HGAnegzEnkRAPRsWZE0GoGl4D7JKD5Di2kOQLgIRkIL9SS/eg85jICqgAXKgMmtIyFcS++hV4cJx4QmfwqStpP85B7etyLdMMOqRPRKWlg0Ivq0nYpCF3D8WoMuXkCrg49DjETGZlNjD/Ep8YrLNpcyIDrHkcOC7dRz6fgOyy41gNmKuV4Pwu28gacEySg/nUHokBwSBwMQ6rPhsvm8m7JkQBIHwu++k8N+VPPbYYzxlrlwfIg0NjXOnVq1adOnSBZPJxDvvvMPzzz/PI488wo033qi1dqhgYmJOXS1211138eyzzzJ27FjmzJlz1vs0GAzceeedTJgwgccee+yczK7z8/P55ZdfWLFiBVu2bEEQBOx2O/7+/vz6669Uq1aNPXsUDzqz2cz//vc/Hn30UQIDA1mzZg1bt25l//79fP3112RkZKDX6yktLWXevHk8/vjjtGjRgldeeYUePXqQkJCgCV2XOD///DNbtmxh/fr12vfxKsBoNPLhhx9is9n48MMPGTVqFIIg4O/vT0FBQVWH5+PQoUP89ttv9OrVi8TExPPej7d90O+//86cOXMYOHAgoIgUM2fO5Kabbqr0FnDDhw9n2rRpFBcX+5bFxcVhMpkYP348jz32GDNnzuSHH364aKLE4cOHGTZsGL///jsAYWFhDB48mB49ejBhwgSSkpI4fPgwoaGh3HPPPTz//PPA6T9fvMTExPDdd9+RmpqqmVxraGhUCJetKHE4eTEAjUcofaclj4ukbbMJDp5N9RptST2yuipDvGoITKxN3rKdOErzMITG4DEI6IuVGbIeSWnnpLMrTc8dQQKNqimzXA03hZL/YziulRt4dMNgACYnnr7c3O12sHnVx9iKMzGbgvCLiEf081OEiuQ1TJs2jZ49e9KsWTNaPjIBgKKayrY7nz+xxVdycjJLly7lyRdeI3f5YiISuyLGR1C0+F9fWXzdtncTGpOATm9i1axR5bav/eH77B8x6oT9alw8srOzAdBdnpeyK4YQlJYP8+bNo2XLlnTs2BEZiRT2EUe9Ko4OkthCFmk0oQ1G4cKS2jXCWiEazGxLn4eNEvw9oWTk7sMlOzCIZqr5n/wGXfY3wzGVAEVNwgHw35MHgDtUETL0WUUc7aEIbFH/Ks9lX6N8sZd1YM8+iuRyEHfjYJzNQjFHOzDVrIbTobZMyRIwxsWCx0PpwX3oI+qQX6y0ygv2KNfiml8o1+i0J5SWTKl9ZSSHskxnUdo16VThwWNThFmP4eQic/HuVHZM/J3StAJq3NmGoOaxJH/2L6Xb9pPFEpz7jvDY/Q/SrFkzPg7YjT7ISqtWrc7ybCsc+d+4c1pfQ0Pj4hIREcGSJUsAWLFiBQCzZ89mypQpACxYsICePXtWWXxXC35+fnTq1Ik1a9ac87avvfYa06ZN488//zzrxNm///5Lz549sdvtNGvWjMTERHQ6HQUFBcyaNYt//vmHu+++m2HDhjFs2LATtm/bti1t2yrtYV9//XVWr17Nxo0bGTNmDF9++SXPP/88CxcuZPTo0QCEhoby/fff0717d02cuETJzs5GkiSCg4OrOpSrmiZNmjB16lS2b99O06ZN6dy5M2+//Ta7du06pyqqysBut9O1a1dEUeSjjz66oP9lQRCYPXs2Dz/8MIMGDWL+/PnYbDbmzp2Lx+Nh165dfPXVVxUY/YmsXLmSZs2a8eKLLxIVFUVoaCjx8fHl1mnTpg3fffcdxcXF5+X5c7bIssxnn33Gs88+S2BgIN988w3+/v7069ePH374gblz5+Ln58fdd99Nhw4d6Nmz53m1XOzTp08lRK+hoXG1ctln8nRGM51veReP20na7qUc3P83aSlKgnrgwIFab9tK5tCEPwAwRsXgcZ/9TYUgCER3rMme77aQsb0e1RLCz7hNpmMftuJMmiU+SEhoXSSzjsKaerK3r4LkNdxwww2+dTdOLhMh6r018aT7q1evHvXq1WPion3sX/INqX/PBiDqxRE4V+4md+ki9q75HgSRxtc+fNJ91P5Q6X+uiRNVQ8OGDYkghmS2EiyHEySEVnVIVyV2bAC+FgutWrUilrrsZRvIEKerD5J8ul1UCja5mI0sx46NejRjm1wxYnX1wMYYnQL7izeSK2VQvVoiY8YOZNiwYZSWZGP2j1VWDD6/Lx7RizI42qMau4Yp7ZoClEmmGHbnULxlI2b/cA4tnH7K7WVZxvL7fNJ/+4HYqJG4REXwSB6qCAuWQLu64rl/EfQ3ONmXo/SXzducR8bbP2CoHsnWTct9s9Hi3fdz6MVp2Lcl49e+OR9//DEAQ895NA0NjcuNTp06Icsy+/fvZ8yYMfz888+MHTuWgIAArZ1LJbN7925+/fXX8zrPsbGxNG/enLfffptevXqdlen1l19+SXR0NMuXL6d69eqA8vlz88034+/v7xMczga9Xk+nTp3o1KkTISEhjBw5kh9//JHExESysrK4/fbbWbFiBTfeeCOJiYksXLiQ8PAzf3fQuLgMGDCAqVOncsMNN7Bz584qa6dztVNaqrTVbNCgAQBjxozhhx9+oF+/fnz00UflPGkuJt9++y2DByuTEXft2lUhrdn0ej1Tp06lbt26/Pbbb0iSxIcffsjKlSvZsGHDBe//VMiyzO+//8727dt54YUX6NXr1K0fRowYweTJk3nwwQf5/vvvK830esKECYwePZpHHnmEd955x1et9NRTTzFxopIP+emnn+jXr1+ljK+hoaFxPlR9X40LZNt7T7H8tzGsnPcidaO70LaFMhPn/vvvJzyyLna7vYojvLLxa6Ik34r65+AIFnEEi4RvkQjfIiE6BUSnQHY7D9ntPFgzZXZnRrI7M5IocwFdHqpFRMMQFo5cQkEB3Lv2Qe5d++Apx3IU5yGIOkJC6/pmVUgeN+mrFxBcr6XPTOp4kk9SJXEsYq1q1Opdtm36uA/JW74YnUU1bpIlinIPIwgCgiAQUDcSQRA49PzLHP3oM/IXL6HhM2+fy2nTqCB0Oh3NaIcBE5mkVHU4Z48gKo8rBAvK/4rD4fAtq0tTIqlBElvYIa1TfBIu8nGnsA8XDurRjFjqVsg+F+x5mwV73iYsKoE2dYfQsekI6sfeSJs2bQDwSGXnQHBLyqOwRHnYHMj+FmR/C5YMO5YMOxh0YNChK7KjK7IjG3UUNw4nIKWsMsGenU7K/Jls++UtPC4Hdbrce9oYBUEg4v7BIMkc+XQi+fP/Pul6Br0Hg96D7BFpWCeNhnXSqFc9k3rVM3HlmXDlmUAngU4iPiyX+LBcoi2FRAcV4s4vJuuDrzFUj6TaM4+QkJBAvR/fIPqZe0id9KtvjJL/trB169YLOOMaGhqXI7Vr1+ann37iqaeeYsOGDXTq1IlXX321qsO6ovG2XYqKijqv7b/99lsOHjzIgw+e+l78WA4ePEirVq18ggTAsmXLWLBgAd999915JxwHDx7Mu+8qPnIbNmwgIiKCLVu2+Gbfb9iwgZ9//tnXliYoKAhBEIiKimLIkCHMmjXrvMbVuHBq167N9OnT2b9/P+vWravqcK5a6tRRWpV6WwpZrVZmz56Nn58fPXr04IcffqiSuF555RVatWrFzz//TMOGDStsv6Io8uKLL7J27VrWr1/P448/Tnx8PIWFhRU2hhdZlpk7dy4dO3bk1ltvpXv37rz44oun3SY+Pp5vv/2WH3/8kfbt2/Pnn39WeFy//fYbo0eP5oUXXmDy5MkEBQXh8Xh45pln+PLLL33rvfjii3g8p26xraGhoXGxuXKyYirHlgAWFRxh+fLlVRjNlU/jp69HNBs48Or3lGSfOSksijKiKDN3RzPm72vFPRNa4Cx2snv2ztNul5ycTFbyfwRE1cWyPwfzvmzy6+rJSyjCYy9BqnNhpZA6sx/hLa4jvGMPonv2J6rLrYS1upbYa++g/m0jMNcpa0Gj8zcT/0AnAnp0QhYk8ubOY8/45wlu0dZnEtjlpnfpctO7NH9yIs2fPHmlhkbFIBqUaiiRM5sMVzhqkl3QGxD0Z+c/IugNiGYTotl0xQgTOkGPP0G88MD/6GEYQA/DAP6RfyZBuIYE2nJUPkiacBjRclzrpEoUKTyyhzyy8COQJHkLi+Wz7699NizcMY6FO8axaO3LLFr7sm+55GdBshqQrOfoRyMIIAjIRj1++wvw21+AoJew79zF/unvYzu0l4gb+lBr+PO4mkSccXdHXn6d7atX4yksoGD+X2B1oDO70ZndlBaZKC0qm73oF1SKw31uhZPy2vV4SkqJHHkvokU5VmdKJunvfY8pNoJqowbid00TAHJzc89p38cT/8X4C9peQ0OjahAEgdDQsgrGd955B1m++FVzVwvVqlXjww8/ZM6cOYwcOZKsrKxz2j4hIYH33nuPOXPmsGXLllOuJ8syv/32GytWrOD6668v99zatWsBLngG9DXXXMP999/PxIkTmTp1Ki+//DLPPfccM2bMYN++faSnpwNQUlJCly5dmDJlCg888ABz585lwIAB+Pv78/PPP19QDBrnh/e7uNVqreJIrl68E2W8bfUAmjZtyurVqxk0aBCDBw8mLS3tosaUmZnJ/v37uf322y9bryFZlhk5ciS33norOp2OP/74gz/++OOsPCj79u3Ljz/+yNq1a5k6dWqFxzZx4kS6dOnCG2+84Vs2YcIE3n//fR5//HH+/vtvjEYjRUVFOJ3OCh9fQ0ND43y5MjJiXlZtxropFb3BgiDqqNOwd5WVJ14trH1gGn/P/xO5qJhdv09k/9bfkASQRYGIDTIRG2TCV+sIX62jsGfJCdsHRprpMKQOmz/fyIKH/2DLl5uoOfFtqj/7FNEj+hF6a0fMdWOo36ABsixRo3Vv37YeRyl5388DwNyswXkfQ/R7q8i2HERqGIrYogZbZ3xK2uI5ZKyYT2jd1mTvWk1B0ibCG7QHwBhsoebAtgTc0JHQ++8gvHMPAAq2rCUgvg42m43szJ2kHFxJ3p6NOApyNGGikgmjGg4u06qoK0SYCKc6ORzFISsl4z0MA/hL+pFt8mpChWqkufchy3J5YUKWKiWWAjmX1SyiiPxK2f/J8M5MzYnx4PY34PY3IBt0yAYdWC1gteCKDsLjb1IeZj0esx5ZEJBP0U/XvnsfWR/PICCuIY3ueYHQttchGs++FULDhg2JHPkIeCSKFp+5x7jDrcfp0eH06MDiAYsHnUl5eJcnF4ZztCCQvAw3gk6HkFm2vTu/GGSZiLuvR7SYsG3aQ0j/bnTp0uWsYz4Zkt1OtcduI2p4P+I+eJK4D56k7uw3zryhhoZGldOpUycAGjduzLx58zQvgEpm2LBhvPPOO3z11VfUqVPHZ3R6tgwaNIjmzZvTuXNnbr31Vn788UdKS0tZvHgxkydP5v7776dWrVrcdttt9OrViyFDhvi23blzJx9++CFBQUEXZIDqcDjYunUrnTp1olWrVgwaNIjRo0fz7LPP0rhxY1566SWcTie1atUClJZBQ4cO5ZFHHmHbtm20a9eOkpIS+vXrx8svv0xJSQlffPEFn3/+OT/++CNFRUXnHZvGmWnatCkJCQns3bu3qkO5aqlduzYJCQl88803vglzoFSYT5o0CUEQmDlz5kWL5+OPP/b5LFysz4Bq1aqRlpZWoV0zxo4dy4cffsinn37Kv//+y80333xOx9OvXz+efPJJfv/9d/bs2VNhcYEi+kiShCSVfbdKSUmhdu3ajB07lqVLl+J0Opk/fz4Wi+WCxtq9ezeTJ09m4cKFrF+//pIyUdfQ0Lj8uOw9JY5HFEQSezyPJLkwmgPR6apg9vRVRteuXWn5xf3sezuZjKVzKd2XTEiNJliDowmJaYIzUJnJHrjQD3Ou8kEZqk6US28cSJNH2pAVHE/u+kNsnbYVhB3IqoKvDw/C0jCO4J7X0HRpfXQHDHgO7wcgo+gIJSs2AmCOPf/WLAVyLhkf/OT7O+KTrxg/fjyjR4/Glp1C7p615dbPWpbE5vx/Kdq5BcnlKPecIz2Vhk+9wJGN3ygLdisz+Rve/zIalYPs8SCio/giJqC9iAb1EqrX+2I5U6Jd9PdTWhkBgsutbOeunOT8xaSGuT6p9v2s8iykiXgNkWKM77lYoR5b5BVkWXKIstZDdrqQ3eqXpAoUJiTZQz45JLMVAZHWdMGf4Arb/+mIi4vDaA2mKOsAxJ25JF3n8GCPMCHrlZmEpowy0Tbp/hBs23eQ9f63BETUol6nwayfMua84upwh47F29qT98NCrAkt0AUFgEk550WpimdFXP0MeC8SAPPzqQDUqZHJvpTIU+437PaOFCzZSeZ331H98ceVhX5hCEYDB0cr5ramunH4db3wHvJF/6wi/9eFvr8N0WHEfTDygveroaFR+XTp0oX9+/dTvXp1rb/8RUAQBJ555hkeeOABHnroIfr27Uu3bt3o0aMH11xzjU8kOhVms5kFCxYwZcoU/vrrL+68806sVis2mw2dTkdCQgK33norvXv35oYbbiiXkBs6dCipqan07t37gjz9XnvtNd58881yyzZv3kzz5s35/vvvT0imDhw4kPnz5/Ptt9+esK+NGzcyZcoURo0q837r1asX8+bNO+/4NE5PQEAAR48e1USJKmbUqFE8+OCDtG/fnp9++sknCgQHBzNo0CDefPNNBg8eTLVq1SothvT0dNasWcOIESO45557ePbZZ2nSpEmljXcsnTp1wul0smHDhgv2M/J4PDz77LO8//77vPfeezz22GPnva8333yT+fPn89hjj/HPP/9cUFzH8tFHH9G9e3fGjx/Pc889ByiTkz788EMCAgIQBIHRo0fTvHnzCx5ryJAh5dqzTZgwgaeeOn27bA0NDY1TcUWJEn9JP1Z1CFctK298j1rJ7xPZKBKSVpC5bgXu7Xb8Y+oS3a0f5tBT3/CIepGY3k2J6d2U9I0ZpP6ZjrlhfQLbhSGajXgL/XXLy5ca6oKUhFroXbcjXID4ZH+wG/5/p1J8qGzGwqxZsxg9ejRBQTWJTexDTuYOTNWqQ14JLmcxBVsUoSK0/jUYGsRjrh5LadohzDXiMASHYTD64XbZkWUP/jUbIprNpxpe4wLRR1eDPBOCy4g+MhopX52t4SlLdstq70xfIlyjwrGKgXS03MJ2+wp2SGsIEcqqmiLkKCKozrbcRSBJRBCCoDdU6OshyzLrWUoheQA0oQ3BwsU1wQwVoyg9mIyrkXLsej8lAacrVmZpiU4PHovysesMOnmptyS5yZ03n4LF/xAcm0DtTncj6s6xFdRxBN3WjaLF/2FP2odfmxZnvV2dGpkU2pVrl92txBBuKcEamguhUDT4Ho5+9Al5/yyGMWMwVAsnZsLzOLYfRgwxYmpQq0JmxJVu2ED0DQ2oN7Qjy+/8Ck/JZVoVpaFxleKd0a5x8QgPD2fWrFl88cUX/PLLLzz77LO43W7GjBnD2LFjT2tkHRUVxSuvvMLLL7/MlClTyMvLo0+fPjRo0OC0bUpq1qzJypUrL7g1yW233caMGTM4cuSIb9kff/xB8+bNGTNmDHl5eWRkZFC9enU8Hg8LFizg22+/JS4ujgEDBtChQweqV6/O8uXLefDBB1m+fDmiKBIQEEBJSQl9+vS5oPg0zozH49GqoqqY++67jyZNmtC3b1+efPJJfvvtN99z7777Ln/88QfXXXcd8+bN83lQVCS7d++mTZs2FBcXExYWxuuvv+4TRi4GzZo1w9/fn5UrV16QKHH48GEeeughFi9ezIcffsjw4cMvKC6r1cqYMWN49NFHKS4uxt//wlpQe+nWrRvPPvssL730Et26daNNmzY89thjdOnShUOHDlG9enWaNWt2wePs3buXdevWMXv2bKpXr06nTp04evRoBRyBhobG1Yogn0Vz18LCQoKCgigoKDjtTazG1U2tj9/3/X5g2CiavHUn+yYtwpldSN3ra4ChN0HB8Yg6PaJbedvl9LMBEOyntHzJyg7AYFFmjwuCsk61IKXM+vAeRdiIrK30Jz/wWzLZk38iPT39gmd5yLLM+vXr2bNnD+3btyc6Ohqr1co1904AoLiGcmNtyQKXRSZny78YgyM48Ovnp9xnl57vkNuobKbY1onaDILKoGfMcFZl/YC/PpTmoTeeKEo0qYPHT/WdcKjvLbUyQSxxKO11AHm/8uVXsinvSVEtbZXsjlPO5tdXU2eSi0oLJtlWilyqvJdRhTIxIkxdWdWADXrkjGwlxPz88z3ss8PbGqqCqhG8vhmCKCCp1UxeQdB7vuyOAv51ziVeaMg+aTsAPYwDccsutoj/UeLOp3PMEPSiCSk907efczkG75get5Mi8jnMXty4yCGdujRlVeZiIiLO7LtQ0TSKuJ6knH9pe8sbiKIOS7qSPPeKEq5wPySDcjyCpFzfHMHKOc1oLSI5HKRM/gBXZjavv/oqL7zwAqJ44e29Gr46kb3vvoR/lw4E33wjstmD5HBSvHwtfu1aEVpHInK8IqDkNlYqN8x5yvkuqKWMH3h9BqCIEpKsXA93bYonb8Gf5C/6i2rPP0qdLgG+MVd2f+eC4wbl2izqdTR6sguxtzZj05x0sj6aRcy7I0gZM6lCxtCoWLR7xspHO8ca54okSbz55pu8+eabWK1WHnjgAR588EHq169fYcnjO+64g+Tk5NP6UZwtdrudv//+G0EQaNq0KTVq1Djl52F2dravb3psbOwFj61xYRw6dIj4+HhmzZrFnXfeWdXhXPXMmDGDIUOGsH79ehITE33Ld+/eTdu2bbn11luZPn16hYxVUFDAvHnzmDlzJrt27WL//v1s376d+Ph4/Pz8KmSMc6Fr166EhoYyZ875+cr9+++/9OrVi6CgIL7++mu6d+9eIXGtWLGCzp07s2HDBlq1agXAnj17WLZsGQ8//PB5X5NdLhcdO3YkLy+PTZs2VZjgcSx//PEHffr0IS0tjejoaAYOHMi6detITk6u8LE0KgbtnlHjUueKqpTQqFoODBtV7u/g1rVoOfVBzMuXsOXHveQd+AxB1BEYVY8ajbsREFF+5py72I7jYBFSVBimkNNXPsiyjHN/CoJBT0hIyAXHLggCbdq08RmDeVn7zdOn2OJUy8tYuvDZC45L48wUWEoocmVTt2Z3pOAwpHhFoBKcHgSpYpLxnm6J6BZvqJB9XQ54k/7eChNRbcMgS2UatmhSZtCLgcoNrxRbDSHpECbBQg1dHVI8++hhGsgih9JmQS8YaGhozRrnPA6UbKZe+LW+fZ9JmBBEAVkqS0a4ZCdJ0ibSOYKEByv+mLBQm8bEUa9KBAkAT+cEpF+WUOhKxy8sFkOAIjjI+jN/ufAUF5O3dDGuoxlUe2IoY8eOrbC4nLlZeEpLMMbWUP4+lErO1Fm40jJwH80kdHSPM+4jb6XyfxXVYy/FLuX9YIorotpDbSndt4esSd8QJNxA+HVnbl11tty8fAQpC3eBJIPVisOtR3Kooo7xwqpHNDQ0NK4mRFFk7Nix3HvvvUyYMIEvvviC8ePHExwczJAhQ3jmmWeIiYkpt82RI0fIy8sjISHhjAK5zWZj27ZtNG7cuELiNZvN9O7d+8wrolSFvPXWWxUyrsaF88UXXxAUFETPnj2rOhQN4O677+aVV15h8uTJfPHFF77lDRs25LXXXmPkyJGMGDGC1q1bn/cY69evZ/To0SxbtgxQWifVrFmTDz744KK1azoZ11xzDd999915bbt161ZeeOEFAgIC2LFjB0FBQRUW15o1azCbzTRq1AhZlpk2bRrDhw+npKSE2NhYbrrppvPar8FgYObMmbRs2ZKuXbsyffp0GjVqVGFxu91uXn/9dQBf/kWWZc3UXkND44LQRAmNSsM3U/ZmkN+WWbt2LWN+eoIdv+xlx9+fYI0KIHB1AsHhdUmPWE/Koj3IbgmdSUeN6+K5dmQz/KtZWZcRB4C1ejEATo+O/FW7KVy0GoDoHi2oW1/5srRzaTb6ADPOYhd+CTWpeVcr1t358cU/eI2LhiQriXODXpmB4/ImgkUDLn8lua63K+KEM0BJpFsy1bZBoRaKY5T1dU2VmytjsVpF4VQS8IZCJWHu6ZaIMVPp+y/r1coIp1J5gTqjRY4KRVCX2WoFq3Eoq4hKmJjTbUhJhRd83CfDW8kgmsv37ZZKS30Cw9ntyJt8KL+N6K/OcpJlBKtqkuZ2+56X69dEzMwnytGMw5lJZEtpACxylvV/vvnmm1mzdIeyv1glASLtO3DicZysukNddljaQzpHiKchIYQTRBiL5fObBVWRWMJjQBQpTN+LX1gspRHK62HKKxMlLEeU197jr7wXC0v2cyT5Hwp/PghAZOPOxNjO3yD0ZNj37VN+7k+idO8eipf8h6FGNQK6t6Vo8TqKh3RFaqe8/0ujlPd94F/Ka18Sr/ytC1b+DzbtjEcs1lGnpVJZJOh0RIy4l9zpv5A0bi6lKbnE3tOhwmLf+tbfABgCLWQs3kXOV4sw1YtHDDi134WGhoaGxsmJjY1l4sSJjBs3jqVLl7JixQomT57Mxx9/TMuWLenXrx+xsbFMmTKFFStWAIph7LBhw3jmmWdO6RXx4IMPkpSURHFxMffccw/NmjXjwIEDrFmzhpCQEHQ6HbfddhuPPPIIer329fNKxuFwYDabtRm5lwh6vZ6+ffsyY8YM3n77bcLCwnzPPf7444wcOZLVq1dfkCjx6KOPUlJSwpdffkm7du2qVIg4lrZt2/Luu++SlJRE/fpnd2/95ptvMnv2bLZs2UJ0dDSTJk2qUEECYNmyZVitVj755BPmz5/PkiVLGDJkCMnJybzzzjvnLUoA1K1bl3/++YfBgwfTqlUrli1bxjXXXFMhce/du5e1a5UW1mazmXvvvZcffviB8ePHV8j+NTQ0rk60u0KNi4IgCLRt25bmhgY0u6s+m5YVkLHmCEf+2En6gf/Q+wcS0bkX1hq1Ea2bSflxAz8MTCPh7f6URioJ1o6xSuJyVUo8kqHMo6FkTxrbttqRJRlz3WhEgw59qIncPzeR/88W6v63l70TF540Lo3LG1mW2Vu8DqM5iGBXIGJ+CYRbLmifpWGKkCHp1ESyYEBvVxKzxTFG9TnlKb3qc65TRQ9DiYTLT0noe8zl2/TIooCp4ByEgXNAXz1aGSNU+QLoCTCj27bvtNvo1JJeT7Ei9p2sYuH4agiClZtyOTO7bKVApWVPfmNlbEOcPyHrJEKESLa4V9DE1J4YXV0W2WYAyo24RYgEUcATouxXlx2Ep0Bpu+UVVhBEdNWrIWXlKH+73RQ6cznKIQ6TTATVqS00uqS8hDzBRoIbt+bo1r+JMzfBXev0iXNZltm3/VcEQaRGq5sJq53oe10qknaP69mqb8CBJVuQnU6C+/YksFdHPNmZFP21BmdaNlbOLcm/b1Msd3dTElZ5Na3IHZry/RvhHJm+FGdMA6iYCnf84oIpzXNir9WEI69MI6BxdRr8ry86S17FDKChoaFxFWK1WunVqxe9evXiueee46effuKvv/7i9ddfp7S0lHbt2vHDDz8QGRnJnDlz+N///sc///zDb7/9RkBAwAn7q1mzJgBHjx5lw4YN/PHHH4SEhNC8eXM8Hg8Oh4MRI0Ywffp0Pv744xMqkzWuDDIyMvj666/p27dvVYeicQxDhw7lm2++oUOHDnz//fe+lkGZmZkAp/WKORV2u50lS5bwxRdfsGHDBr766ivuv//+Co37QunRowexsbE88cQTLFq06IxtkXbt2sWLL75Inz59ePnll+nTp895nZszMWrUKBwOBy+//DIxMTEsWrSI7t27M27cOCZMmHDB+2/Tpg2bNm2ia9eu3HnnnWzZsqVChBWz6pH53HPPkZuby/Tp0xk3bhyjRo06w5YaGhoap0YTJTQuKh+1UkoouxSMpkaLRrh6huEpKCIwI9x3oxDZXU/UjU3Y+tzPbBs9i5gXB2FpUL5HrH+LOiT8OharyaUIHpEHAdiUq7QnKbSbceUVk/LOT+z74E9W37Wadu3aXbwD1ah0nE4nffv2JTdzFy1j+vrMgE1ZiidEQYMAPCblPeUxqhUTpap4UKioCbJOJPCQsqw4pnx1QWXgCNLhCPQn2NVAWaC2lxJciljh2asIb8dWNXi9GrzVGIJ6c+xN4p8KT9M6vm10BTYEj9p6SfXakI9mnLCNaDSCIJaJEN4ZkWYTFBaVrRgXjaS2cnAHn2jiXtwmjsT8HuwqXc1O52oyhcNcp78Nk2BGZ9WRXXgAR/Ug9CVlIoguKAhPYRG60OCyMQF7sJ59acvI5igOStFjoCb1iaPeaY+/qqje8RaSDu5mc9bv1E58EEEQMJQo58qY58Qeo84clGUc9kJKi7Oo334wYbHNWTWrcm7qLeFW2r7QGdct9ZAlCUEUOfTAM8RNUtpd2PcWYFTfZsU1lffJwb7qFzeT2xsuALpAJx638tocLFVm2wUZShEEgeC+3SjdtIeiv1bDuAuPO9BoJ6JxOAf/3Ef6F0twpGSjb9sKneXkM3U1NDQ0NM6dwMBAHnjgAR544AGKi4txOBzlZlN37dqVu+66i5tvvpkePXowf/78E1qnvv3227z55psIgnDKxJ+3j3qfPn04evSoZoR8hbFr1y7atm2L0WjkjTfeqOpwNI6hfv36rFq1irvuuou2bdvyyiuv8Nxzz5GTo0z8WbNmDY888shZ7WvBggV89tlnLF68GJvNRuPGjfnkk08YPHhwZR7CeeHv788XX3xBz549+fLLL3n44YdPu/7SpUsRBIHZs2f7EvCVwXXXXcd1112HJEnlrpn16tUjNzeXnJycctfg88FisfDDDz9Qq1Yt5s6dWyGvT0xMDGFhYXzxxRd4bWk7deqkXcs1NDQuCE2U0KgSlnZ774zrtPSY2fvqjxx++RuCB9xE2h0hmILMtIxOBSDdFkC9wCwAYs2K+fWfBUrfxBB/G5ZIE/XuacGG51MqZZaDRtVSVFT0f/bOOzyKqovD72zNpvcekkAoofdepEvvooCIgCCColIsoH4qKCrFggIqICAqKAoiKCJI771DKAklvfet8/1xN4sxgJRgAOd9nn223blzZnZ2d+b8TmHNmjUAeDnfemNDo48TzjFpZNUREeJqY1G/BLvz357hYNNcfS8v0F62yV7dSMoUr+tyrvZasDjbMyTsIkBRxoXV7kfVFEJaHU/7OsRrPntSbtl+TYSISjSHeZPvqrGv257CIV/NzgBwz8ovsbwUaN/uVLGsZLCffLs4Y/NwRnUxsfgC7m7Y3IXn2mrQXBU57GjzxMYYkkRTZ01AINWTm+NnDOW4aSd7rOtpoOtASH4VstmL2VyAxV+IHy4ZvliKBBmjCZtsIyfrEvlyNieMu1CjJoBQfAlkp/GP65aPKGvUJsDJGf+OPYlfsZjC+vEY/EKuO16nd0VSqSm05GBxunsn9Esb2WsINyr+evnqaaRF+GC+fA53rWh+mF7j1k8Lin5/65SPR/9QELGrjiPL8h1fpHzb+HPOzT5HVFQU2eu3AJC3+yCHnr2C2t2NoPU5JExXyvMpKCgolBaurq7XbI7aokULNm7cSMeOHWnYsCHz5s2jRo0a+PpeDSr6p74TzZs3Z+jQoaxbt05xYj2AnDlzhpycHCpUqIC/v1Ji8V6jYsWK7Nq1izfffJM33niDAwcOsGzZMjp16sSFCxduuGxGRgYXLlzghx9+4N1333UIG507d6ZatWr39Pe5Y8eODBw4kClTpjB8+PAb2hoeHo4syyQnJ1OuXLm7btvffzOLGpHv2LGDbt263fH8ERER1KhRg82bN5eKKKHVapkxYwZDhgzhvfdEme6xY8ei0+lo06YNY8aMKdGbSEFBQeGfUEQJhXsWjYsTlaY8ypmPNpOxZDW/LgGNQUv5LhUJax2BrVJFZJuMucAC1+mvlH7oClo3PZGRkdceoHDf4uPjQ1xcHOUjo7iQsYfK3qJxcmGQ6Hugy7VhKxAnnm77LouFjCJDIr/+vXU85ESLaBi5ui8AmnyRKeGUXEBeObE9Vp39ot8sxICiHhUq0z83805t6IMuVyxnSDEVW07ydkF15lKJZWzlArE6F/XnEOs2eWpxvpxXbFyhrxAIHGJEai4WX+HQkE0m/KVg3J26stf4O/vMf1BT2xyApNQjeEa2EMs665ECvDHbCknPvcS5woNkWYVQ40sg1WiIVhLruVcFCYDDH74AQIV330f6WUv+uRjcXEIwuYqLDsMVC7p4keGSH+UDqHFy96MwO7msTMarXgRJm2KQ69mQJBVWVQGW1HQMGS5ovbwxBopx/r+L/f7QxB2OZTPNQqTalhoFQJRbCsm1gzmzaD8nTpwolZrCFSpUwFC3OgUHjqH19MGcmYYxR5Qcy99/GJc/t5G3/9Adr0dBQUFB4cbUr1+f3bt38+ijj9K2bVtAOL3Gjh1Lu3btqF69OoWFhUiShF5/7ezTLVu23FHteoV7lx49erBgwQKGDh3Kzp07adKkSVmbpPA3dDodU6dOpUmTJvTu3ZvBgwfTtWtXnnvuOeLi4hxl2AAyMzNJTU1lw4YNTJo0ibS0NFQqFdOmTWPixIn3tBDxdwYMGMDSpUs5d04EulyPKlWqAHDq1Kl/RZT4OxUqVKB8+fKsXbvWIUokJiaSlpZGYGDgbWVPtGrVil9//bXUbHz88ccZMmSI4/mhQ4fQaDTs2bOH6dOn8+WXX/LEE0+U2voUFBQefBRRQuGeZW+nd8SDnqKxUq/vxpNzOpGY5Qc488MJND7u7My2YTTnUqH8w4SHtaCwv3CcZUrCAZtyPBXXOuXx9vYuo61QuJuUK1cOT+dQsgtLliIqhtne2Nqe/WDYGSOeazW4HxM/g9nVxDFis/8quiSIZZwuZZMf5SmWSxMn4PbqNVjt0e25gWIhXZ7syIiwqYUjWmXPKDCkChVBkiHfT+14DKDNFe8ZvW7vJ1nWCDts9oQgQ5IouaPJEQJEfqgz+nR7qSRVyYsIW6UwTJ5io2w6lUOwMLkLe4qEDDGXC8gyzpeEY9j9kGjcbA66WqtUk5pLXjV/XIxiOafUdOrr27On8DeOmXeiktSYMlNwjy3EajVx8si3XLLFOJZ3wZ0aNMYFN3bYbi6isqPTQADWFS79x7F3G0mjQR8cQn5qSbHHFOoJQKGP/ZjRuWPNzUWbL5cYe7fZ1HY6e9z20Oinxhz3Xo9Pv4dIe+s7Cg6fBKDOl0Mx2qrc0pw16+vYAfT7ehwn3i2dXj6FJ04DYM5ORxcZjulCnOO9/ENHabL6edQGHdvavV8q61NQUFBQuDZRUVHs3buXXbt2ER8fz3fffccLLwhBvm7duhw4cACA06dPl2gsm5mZydmzZ3nrrbf+dbsV/h0eeeQRhg0bxqFDhxRR4h6ma9eufPvttzzyyCNcuHABq9XKpUuXCA8P59y5cwwaNIhdu3YBoi9k7969GTVqFJUrVyY0NLSMrb91iho979+//4aiRFCQ6NFX1GujLBg0aBDvvPMOw4cPJzo6moiICIxGI5UqVeL06dO3PF+jRo2YPXs2WVlZpdJXYvPmzY7HHh4eBAcHc/KkuG6wWCwsW7ZMESUUFBRuCUWUULgviIqKwrdpBXybVkDTpSOmuCRythzCvPEcRnMu587/RrnQZtdcVjaXbnPhjIwM1q9fT6tWrQgICCjVuRVuHcliQ0KCPFGiyHnfX3ofaO7vnzibVo1rTCYA2VVE/WaVRTivC72EsGF1UqOxO7Ql21UR5HoU+AnVRJsvhAeLU/HUYbWxZOZFVnkhWBSVqdLm2jD5OqNLvVoWSnvBfgLvLKLnnRIKsJTzQ3NRZDwYcKau1JL98iZsWIhL2E5m3mWysoWDOVJdlc9+mUFERASVK1e+KSGig26A2O5rCC1lydkJLzL2chyfLVpMTrAVQ4b4rFw8dMXKXsmyDWN+Ojrv8OtNdddp2LAhLnUrUXBCfA6WtEwkgx65wMiZab8Q0Ww/VQdUp/rLQnxSSzYuFIiMnt4++wA47RwMwMm8IArtTd/VTqVXMs+vV1OSv90MNhnX1rV488XxvDD1TSyJqWCzcWrKz7iU96dx3lh29fio1NaroKCgoFASSZIcDuc+ffqQnZ3N+vXr+fnnnx2ixNSpU1m0aFGx5YqyJ4z2rNXS4uTJk5w+fZouXboo5VrvASRJQnOfn3//F+jTpw9ffPEFw4YNA2Dw4MEYDAZOnDiBl5cXX375JeHh4dSqVQs/P78ytvbO8PX1JTw8nM2bN9O/f//rjisqY2Uo6udXBkyePJmpU6eyc+dOfHx8MBqNuLu7c/HiRR566CGGDh3KwIEDUavVNzWfySQCxJydr1NW4hZp0aIFDRs2ZM+ePWRlZbF7924++eQTlixZQnZ2Nr/++isjR46kbt26N92nREFB4b/NjYt/KijcQ/zZZgZ/tpnB2Uff5OJLc8lYs4tGax8naqQoAbPftATPIyq8jqoxmTQYC1Xkn0vCpiu9RlWNW0ykXFhV+vfvT3h4ZerVegoP11Aa1xhFh8ZK5FdZ4KELJM14iVxzuuM12dsTDAbQasXNSS9uXh7g5YHk4Ybk4QaAlJ6JlJ6Jx57LeOy5jO+uFHx3peAUn4NTfA5o1ejTTOjTTGjzbGjzbLgkWHBJsOB5xojnGSNeMYV4xRTifjYXj3NGPM4ZcU2w4JpgwetEPl4n8nE9kYrriVQM8flIVpCsoCmQ0RTIaDONaDONeBxIwuNAEupCG+pCG/khBgpC3SkIdb/p/WFTSxT6ain01ZIf6kx+qDPOCQXkB+vJD9ajssioLHIJMaIIk7salVlGZZYxu0qYXSVsGnHT/E2wMPk6i/4Vsozs7ipumuInyZZyfshWK7LVirtrII1cujje0+daKa+uRkNtB85bjvPwww9TpUqVawoSjVUdCZYi+eKLL256X5QlTzzxBJasTNJP7iYvBPJCwKZRkR+oIz9Qh00DmUmnKcxNxbNuUwp8y+7v2JprReVswGqU0eak0KCjFxW7ViCgggsnvjvBit4r2H3aleM5wVwq9LrhXIWZwtmk9Si9C7rLi9ajCRJCCLLEE088gSk+Gd+nH0Pr5Uzmngtc+W43V77fW2rrVFBQUFC4Odzd3enTpw+LFi0iPz+fDh06sHjxYubPn19s3KFDhxzjS4uff/6ZevXq0atXL0aPHs3HH39M+/btS134ULg5XFxcqFmzJnPnznU4QxXuXYYOHcrnn38OQFxcHPXq1WPq1KmcPHmSYcOG0a5du2sKErIs88033zBw4ED279//b5t9Wzz55JPMnz+f2NjY6475+OOPCQoKKpV+DreL0WjEarXi5eXlEEnGjRtHv379cHJy4oknnqBdu3aORtP/RGpqKp6enqUm2Go0GpYtWwYI8SYuLo5PPvmE+Ph4xo4di16v5/PPP+fpp59m586dpbJOBQWFBxsljEHhvqdc//pYfAOJnfo9F9O/pdxDIgLCmp6NrcCES60Ktzxnhe9E6SjVBQPGhHhsyRkYk+JJ27Ee2SZK4yDLHD3xDWZLPsfOrsDHswKJiSMIDAz8x/k7VXoJgOyafmz/Yfwt26dwFc82D6Nae5S9aauo4N2EUN/6lHbcvDrXiNX12vWR/y2KSjxZ7WKC2UVspedZk6PPhP6iEGbkVHGf3SHa8d61sDipkO07y2IQD2Q1FASIE1ebWiqReaEx2jC7qvHYlyCWC/IEIC/UgPsx+/o1atRZ+eRUE45kl5r2Eg5n4ogxiijKEG1Fqhua81vWgmLzt1f3xyZbySKdrq+3JCUlhUVzlpIni14MH374IU899RQAv5u++Ye9VnbUrVsX1/r1yFizFteoqmg8PEuMKchKRqXV4xIQ8a/b91c0Ab7k7z9M7q7j5GdZaD04lNQw0Q9Cd8Kbs899zqnFB6n/cisA6rqJrIr1WdUByLPXM5Owcn69uID6ttPbd2zX+fPniY2NpU2bNqSfPk/5l4aTOmc57gvd0fj5svXn1XS6eIHMtaLEQPzqo6XSYFtBQUFB4fYwGAz8+uuvjBgxglGjRqHT6RwNVrds2QJAhw4dbnt+WZb57bffkCSJL774gh9//NHxXnZ2NmPHjgWgZ8+etGnThhdffPGmI4oVSoc333yTHj160Lp1a2bMmEHjxo3L2iSF62AymRgxYgQAW7dupWnTptccl5WVxS+//MLx48e5ePEiGzduJCFBXAdERkY6GjTfy4wfP5558+bx9NNPs3bt2hJNpkFkXbVp06ZM+9c5OTkRFhbGqlWr8PDwIDw8nMmTJzvsXbVqFT179mTt2rV06dLlhnNlZ2ezdu3aUqvssGHDBsqXL09kZCQxMTHMnj2bjh074u3tTXR0NKtWreKrr75yiMILFixQyrgpKCj8I4oooXBfs6H1TAD66Ufhr27Dnrc2Yi3IxavJEAovCAepxeh2W3PnHzpD6txVWLIyxQuSirDwFtiM+VxJ2IvRJMqZaDUGtFpnElKPUK5iVerWHYne4IHZlI+60IpO58KGTa+SmZlJXFwcubm5pOXHkREEqktXCK7Yku/mT6Fly5Z3vD/+i+z76X8cONCdFgMGcuL0ei5GXCTwud5Ezv5LJJ49wF+VJ06SpKLoLZ0O7JH9hZXECZtTjCg3JBUUXl1epUaTnY9ror2nRKAnAJoYewNte68KXAyo7Y91riJNVtaK+W0uImPH5OWE10nRj0EdmwhAQW1RvseQJcohGb2FKKCyyBQpLIatol7nladqimVvMgjQppUo9HPCOVFss+5yprAjWNQV1aaJxtXpda/dPM2mljDbv0JSvLj3OJqK7KJHyituRHZ1b1zjxHxWJw25wfayRRftyxuciNI2JCczg3jzOcrrawEQGxvL0aNHefnxGaTYzpJGAjZsHH1rJ1r0eEg+RKijSbTGERYWdnMbfg8Q1KIn50+eIWPjevx69yOtqhaN/bCSLGBTA0gcnPtiWZqJLiyE3C27yfxtL9qwQKb1+kvGQX34ICmIl159GallU6IbeuKjFZ/xqWzxnQlzziT7cg67P9xL7ObL1BpctUQt8VtFlmUqVBCCcvP149jabjqXZy3Gac5yACwpqSUudGzZuVy4cIHy5cvf0boVFBQUFG4flUrFnDlzOHfuHIMHD8bX15dOnTpx8aI4Gbid0j5Wq5XXX3+dadOmYbOJkzp/f3++++47Ro0aRUZGhiN6t1KlSmRmZvLyyy+zc+dOVqxYgdlsJjExET8/P0dplkuXLpGcnExubi4mk4mEhASys7OJjY1lwoQJSonW26R79+58+eWXfPjhh7Rs2ZIpU6YwceLEsjZL4RrodDqWLl3K008/zbhx49i6dSuSJHHo0CHOnTvHuXPnWLlyJXv27AEgPDwcPz8/Bg8eTJs2bejUqdN902PCxcWFL7/8ki5duvD777/z8MMPlxgjy/I1xYp/E41GQ82aNTlz5gwXLlxg7NixxWzq3r07zZo146WXXqJFixbXzTxbt24dzz77LElJSY7fxjvh4sWLtGvXjkaNGrFr1y6ioqKoWrUqAOnp6Wzfvh1fX99iyxT1JVFQUFC4EYooofBA8H3TORjrGXF6y4mC3Eu455nQV6yANtCfnE07sFqttxQpZU5OJ/GDJThHVcKrVVtcg8qjNrggB7lTcDkWPhFOu4iR4wlMC0CSJLIM2ZxY/Ba7t0xDeJJlJElF+Yj2NIw+z4EzS7Da/pLKfOXqw9mzZyuixB1Qt25dgoaOIPfYEZKXfU3GL7uI5KHbmsvm4QKAqtD+WRnNUCRi2Bs3a3KEqEBRJI3efq/VgNmeSZMhIvvxu3G5m9vF76BwDKtPxiFp7T/lbq4ASPa+DrosYYvhYCyy1d5bxfva9ngfSAMgtaEPHr+dAiC3dWUAnDKubYPsosemF9+rq5kcJf9WioQZvD1xxZMm+v5sS/6G3Xm/4Kx2p8Am+oBIqHBTe1NR3wAPfPBU+zv2vSzLxFlPlUqTtn8LjbMLnrUakbF/Gz5dewBXI6/MeVlkXzrJvRDUX3j8NNogP4znL+HVt2OJ95999lne+HwW58Yv4LKvC/KYStTqFQGIz2X1hxdIWrYDjYczFSb3Rtfs5nqC3Ii/Rr+aM+1i3T+U4/Dt2YRy5crd0XoVFBQUFO4crVbL5MmT2bRpE0eOHKFNmzaMHDmSOXPmMGfOHEdz7Jtl7ty5vPvuu7z44ovUqFGD5s2bExAQgKurK7t372bWrFmMHDmSN9980yEmFEVF/9WhFxoaykcffURycjKjRo267vrq1KnDwIEDb2/jFRg2bBiPP/44EyZM4KWXXqJjx47UqlWrrM1SuAYDBgwgMDCQDh06ULVqVVJTU8nIECf+Li4utGvXjkWLFtG4ceNiAScXLlzAZrOVajm2u02nTp2oVq0aCxYsKCFKbN68mXPnzhEZGVlG1glsNhvr1q2jVq1aZGdnM3jw4GLvS5LE3LlzadSoEV5eXtSpU4f58+c7vl/p6ekMGjSIX3/9lRYtWvDLL7/ccaAQiEwTgNzcXMdrTk4lS2SrVCqHcDxt2rQ7Xq+CgsKDjyJKKDww6PV6nMv7k38+mctjXsd7SF/8hnYkftpS3JvXo+Zr7VBp1Xg7CQfX0RgPllTsSM2aNUs4OqW4M2CzUeO99mhcncjKNwA2jOZc0hf/IgapJNQurkjpwvmmc/WkQvdRqGISQJLQ6d3ISj7LuQvrOAdoNc5UDuuIp0sY+04vwmTNc6zvfm8gdi9wdqK4wPWL30vaj1s4OUSFvmJnALyPiTH6bJG9oMsQwoM2owDJJBz3f23afDeQLPb1pBegyrGHy9ujBXVZwvGeUV8cB15b7KkFZjNJvSoC4GxvEBm6yp6uUJTJYXACleqqcPIPyOniQkObkmY3zO48tjeL9jmiwxYVhurspRLLGmIz7XZZsPh5AlBoz+rIDVbjec7sGGv01mG06x95oWK/59d1JXBjMhqVjka+fYjN3gdIeGkC8XQOQa9ycWyH5OMNgM1eNivnyB5y5UyeeOKJm9rOe4EKHc8TUDWATQMLyUk6ipNbPZzSZWRZ5vzmZRSkXMbJM5DyvZ7GLbwyhz+8NSdNaSG5GDDHJ4Mk4RrdoMT7Tk5OdPisE4m7LhK35TJr/neQ41fc8OwRTfz8DST/tJtJkybxyiuv4OLicsf2HDp0iL59+wLg1qYhiQUiCs/d3R2v/m3JWrsTW474vrpV8MWYkY8pI58P+45WmmsqKCgo3CMUZbu9/PLLvPzyy8TGxjJ69GjGjx+Pl5cXQ4YMKTb+7NmzZGRkUK9evRLRyhs3bqRVq1ZMnz692OuJiYnMmzcPEE7Sv2Y3DB06FIPBQF5eHk5OTvj6+jJt2jT69OkDQHR0NAsWLCAvL4927doVm9ff379U9sF/GZ1Ox3vvvce3335Lly5dWLFiBY0aNSprsxSuQZs2bfjtt9/4/vvvCQoKol27dlSvXh0PD4/rBpksXrwYDw8Punfv/i9be/tIkuhL9tprr5GTk4Obm0gFT0pKokePHnh6epKens6lS5fKLDNbpVLh6enJ/v37adKkCVFRUSXGVK9encOHD7Np0yY+/fRTGjduzI4dO4iMjKRDhw7Exsby448/0rNnz1IpaTp9+nS+//57AN5++2p51s6dO/P444+zZMkSx2tPPfUU8+bNIzo6mujo6Dtet4KCwoOPcvWu8EARNqYT59/5EXNqDulf/YBbq1r4DOtNzsY9nJj0PRXHd8bsY+PSmhNc/u4oLVOnAqCPDMRvQBtmDz1OzJF8Ls6MQevrhsa1ZASAbHdiY5OxRKST2UKU67Ec90AVXBFTp/J4nBSR4f4FtfEu7IR8ORln9wBUOidkoGnBYC6k7yPNdoXcnHi+2bSHLeNmcXRG2TglHyTKj+2Ixs2Jy19swO8RX9zrNywx5tyT4vMJ+8kdfYZwpGsyhJPT4imyDFRGu4NdqwGbPcvA+rdsG3skCPZMBVmvFQIBINmzKiSLGGO1H0sqkwVZb//p1YiTYfWFBKyRQbe9zQDodMj2ElFFmROGw3ZxQ6NB+nuDM7t9jgyKv2GLCnPsG22KiIqRdWJes58rJg8t+rTikeuZFbR4nrOvssCGLkvsr9wQFa5XxH5IbOOPS6JYZ1SKONGWrDJIElZAsopx6nQh2sn2DKcMTToqi5q2bdve7B65J3AN80JbLoj8vcegjai5m5N4juzLp/CMqElm7BEurPyc4Id6A2Xz/Tfb6wKDjOn0n+TnT8TZ2bnYGK2LjrC2UTjViiJpcwzWAhNx01eRsek4oU93YMqUKXdsR+Uf3yLv8DmuvLUYANeH6uM9pEexC6qwFiFkLBPfVY2Thjrv9QBgS/8FDBo0iHHz36L6a534o/WHd2yPgoKCgsLtExERwdy5c3n66acBIQJMmzaNYcOGsXDhQmJiYnjppZdISEhg3rx5zJ49G7NZnHd0796djz/+mPDwcGbPns2PP/7I6NGjS6zDZrM5GioXlYcqQqvVlogy7tq1K3FxcaSmplKvXj3H/8vmzZv58ssv2bRpE5cvXy4WDaxw+zg5ObFr1y4GDRrEww8/zP79+5USi/co7dq1KyHO3YgNGzbQpk0bXF1d76JVpU+/fv2YOHEia9as4dFHH8VmszF27FiysrIYM2YMU6dOZc+ePfz+++9lkt0THx9PamoqACkpKSxduvSaWVtRUVFERUXh7OzMwIEDOX/+PIMGDSIhIYGNGzdSu3btO7ZFlmVefvll3n//fQD++OOPYtdhvr6+xTJLWrduzWeffcaAAQNo1aoVFSpUYMGCBTz55JN3bIuCgsKDiyTL8vW7oNrJzs7Gw8ODrKys+ypFT+G/R71fJ2EzmkmJ1VBw8CTpi1fi0astKmcDGUtFhoPGWYvNbEXl7YklKR2VQYc20BtjXBJtenmy47csnMN9qDWyHknhIqInL8F+wuVswXTyOAnTvsapUjlC3n7KsW5zjijNIplVDlFCUyDec0oXTljZHo3udi4bVb64iNrvsY+0A1sJatOb8z9/VabNtR4UZFkmsntVrvwRw6Df+rA1qQYANqsQDGymIlFCdV1RQptqz2Sx2qCobIzxb9kIRZF87uL4kPVaMIvPWsq2X9C6icjxv4oSDjHD3kRaSrPXR/Kw/77+dX0Wu2igs4sKRQ7aop9utRrZXnLKYY/9PSkl4+rrf4+UsW9LQX1xcWg4n263yQq5dkHAx57qUDStXZSweDhh8hD2WHVi3govip4XBxJFVLv3QhfURpmMilrH8u5xYltyg8T+d04Wz7W5ViT7LtHkic9DnSfss+k0yLLM7oOf4OTkSXLuWe43vLp3ImvdBsoNeQ45JZOLPy0AZFxr1SH38EG8ouuTcfoAIWNfQB8czLnx/16PidTUVPz8/PDr15S8oxfJj4nHs+fDeHR8iNinJpQYn5KSgn9wEJJKBZIK30f74lq3DuefG3fHtoRPf5qLE0TEq3uL6oSM7cmJPiUbZs+cOZNx48YR0iSECuMeZscTS7DkXf1uNl82jK2PfHnH9ijcHso5491H2ccK9xPJycnk5eXxwgsvsGrVKk6dOsXo0aPZsGEDOp0Om82Gp6cnkiSRkpJCuXLlkGUZo9FIixYtWLFiBU8++SSvvfbaNUurjBgxgi+++IJp06bx0ksv3ZGtZrOZRo0aodfrmTp1Km3atLmj+RQEWVlZ1K1blypVqrBmzZqyNkfhDomNjaVChQrMmzeP4cOHl7U5t0zDhg2RJIkNGzY4GmCDyBhJSxOZ5BaLhf3796O3Z6r/WyxcuJBhw4Yxffp0Pv/8c06fPs3JkyepUqXKNccvWbKEwYMHYzAYqFChAsuXLy+1DIWxY8fy8ccfA7B8+XL69etXYozJZKJz585s376d119/naioKB555BHH+3Xq1OHAgQOlYo/C7aGcMyrc6yiZEgoPFPs7TXU8NpvNGNb4k/XTBgDcK/qiddHhXSOQxK0XyIlNJ6RXbVI2ncF4IZGQ/o04ERNLSNMwHplSjTg5mKTEkutwqVuZ8otfu+ok/huGgDyyJOEk1tgjxc0J4t7rrMiyKAxwQVMonNTBtqqkSVu5su47PD1/p2KFLhw+uqh0dsh/FEmS+OXd76nxSw24cIWXm4qSRwdyRUPpDbGitmbyYPD5TnxWRXHhKpNwlNv04vO1uejQXLSXSirqHWEtypCwO+Y9hJCBDYwhQqDQZYrXNPHC2a8uKrcky1B0glskLBQJUUX9KIqyGnQ6ZK0GKTnttvaDNUyUMZBkGckugkkmewaIvcG34Yi9TJOHvZv1dTIn4GrWgsVJTXwLoTTUbCRSI058WU0M6prlGG+IzcAQCxZvsY9N3mK7Dak2Cnyv3UhOZbTY7RT3apOFjPxL5FjTqOR5fzoHLiz+lnbt2rF//ocAOEWVx2/CINIXrUIfFIpfn0fI/fwS6Wt+IeipEf+qbadOif4hKd/vIGTG60gr1pKzcQfuHVpdc7yfnx8e3dtTeOQUfv37o/UvvdJzKbNFH4mwEe2Im/v7NVPOW/00krMbdyBpVFzZeYUrjyxApdNQ/e0emD39OP3sl8SfUiJcFRQUFO4Vikohvfzyy6xatcrhXGvYsCGhoaFERkby6aefolarmTlzJi+++CJRUVEMHz6cpUuXMmvWLJ5//vnrzj937lw+/PDDEhl+t4NWq6Vv37689dZbtG3bli5duvDhhx9es4SKws3j4eHB0KFDmTFjBjabrcybCSvcGZ9++inu7u489thjZW3KbfHRRx/RsWNHQkJCyM7OZsqUKYwfP56AgABefPFFevbsSZ06dViwYMENe8/cDY4dO4Ysyxw7doxDhw4RERHBp59+yieffHLN8Y899hiLFi2iQoUKzJo1q1R+BwGsVqtDkNi3bx/16tW75rj9+/djNpspLCzk1VdfBaBZs2a8//777Ny5k9deew2LxaKUV1VQULguyq+DwgOLVqsl6M3R5K79g5xdJ5CAtEPxpB0SDmqNuxMVx7TByceZc1/uIODhGjSYIOr36/TZVCSZAzYR9R1RUagTPoZ8ApyyATidJS6yzl8RTjknL+F0lmUJnY9IkTDZ7M7qhOs32XbzCqNp5ymYrlwm5uwajhxbTJU6RkxDGnJ+7L8XMf2gUblyZVz99Gz7MoZG9aPQ6O7fCyDZ3+dqNkWRo9ZVOPptrgYsXkLgsuqvfZzJKlBZxBin8/8gcPw1q0Jj32f2ElSSXUQxu6qp2ziGA7sqlljceZWIwCjwARf7RadNK+51GSZMXkKAMaTa0BSIeTX5FlRmW7F5rO72zJJCC+ev7MZF74u3/7WjhO51PD09Wb9+PYH1a2HLzMWnby9UBidshSY0Lq5IGg2ebduS8u03GOPj/1Xbqlat6nicPPNz3B9+iLwd+7CkXae7OZC54te7YkuFSb2QNGr0gZ7XrYF7Zs4WEtefQhvghTkpA2wyjeY/jj7Qk8w8PSq9lsKLqXfFPgUFBQWF26dx48bs37+fiRMnkpyczPnz59mzZ4/j/XfeeYcXXniBmTNnEh8fz2uvvcbrr7/+j/OqVKpSc8QBvPrqq7zyyiusWLGCCRMm0Lx5c7Zu3UrFiiXPeRRuntatWzN58mQ+/fRTnn322bI2R+E2ycjIYN68eYwaNapU+oiVBU2aNGHdunV06tSJrl27Mm7cODQaDbm5ufj7+1OzZk369OnDjBkzGDly5L8qopUrVw4QGRPOzs706NGDzZs3X3e8RqPhjz/+KHU71Go127Zto1atWtct0VVQUECPHj1ISUkhKiqKs2fP0rdvXxYtWoSzszM5OTkUFBQQFxfn6DGkoKCg8HcUUULhgebS6CkwWtQ6H7vvEbbMOMSh72IA8A1zZmPr6fQ1Pc7l7/eT/cNGfKtWRueswVebA0CEj4hyt8nCQfZc8B8sSy/Zo+CfyA8U9yZP8ZXTZ4DvYRGR7rRqNwDZY5oS2uhpdCu/5fShZYSmR1H+o5kAijhxG2i1Wj6Z6czIYclMGWDmoeeq0rf1USRJwrmCyBZYeyGa/CcyAcjdIBor6zOF4905UUTqJzXS4nlGNDtzjxFljdQZIhLb4icc8LLd6a4qsBD3iFjex18IU6kJ9g/fJo4h5zgN/ofE3IY4e1aBs8ggsLoIh71NZxcXJJDVYjl1UTaG3VdrdtdhOHvrzldzkGjqrsm01xYrKiGVJ8pX2Xw9kH1ci72HAVQ5xftHANRtHEMl1yQAEvJFGSi3WDFvQYATqEs6lnUZJjR5Yn8ZPUVGiKZAhUVrL3lW1G/cLoBkFySSkh1DjeCu/H7grVve3nsFLy8v8s9cQJZlNBoNUcunoAvwIC/hHAUhFrwqR5LyLUjOCf88WSni7e3N1q1bGbl7LmfeXIH1xAEknYb8X34k9rGRRERE3HUbwue/jyU9E9OZRFzqVCK20zvXHJeZmUniepHZYU66Kppkn07EOy2Vwy/+gmyxIWVm3nWbFRQUFBRunbp16zocaBcvXqRKlSoUFIjzBpu9tOUnn3zCk08+yfvvv3/H5ZhuF0mS6Nu3Ly1btqRZs2Z07tyZEydOoP17fy6Fm6Zp06Y8//zzPPfccxw5coRXXnlF6S9xH1LU++WFF+7vPohNmjQhKSmpWHmmsLAw4uLiAGjRogWrV68mLy/P0RD732DMmDFUrFiRy5cvM3LkSB577DGOHj3Khx9+yBNPPIGXl9e/Yse2bds4f/489evXv+6Yn376iZSUFADOnj3reO2rr75i3LhxzJwp/BiXL19WRAkFBYXroogSCv8ZVBoVD71Ul4gmAZjyLVRsG4IkSTh5Gej4cTvWjlzH5gAV7V+4cR3G3UmiBFBGhogOke3OZotJfJ2sZhUUCger+5mi2vniQiunnD1iPFvG5KFBl2UpNrckqQgKb0zS5f1cefd9AkePwsM1ghY9PwDAkCSyMX7f+dqd7Yz/CC0f0rPkW2+em2Rl6VPbie/lxZhpYbc8T+0XD3FoZu0bjpFlGaM5B2NsKiCTl5mL1tMF8Lgt22+GgihfJKuMTSOOQbPrVTEDRK8GAKuTytHGwuIsxshqu5Biz1DQ5BWpAdfG5qbHZm/QbUgxsfdsBAB7EfehhfaG765aNLnm4svaMzhU9tJRRc2/JZtYxqpXO3pJFJVtKsrWOBv/JwatJ0Hu1W5o3/2AWl08k0Ub4I0lZS/WrByM6ULcKWpS/m/SvHlz3PLWENirAVe+2Y5fp9qk/HqYyMhIyvetQY3nmiOpJH5q9uldWb9stpA8az6WhGQyvNwIt9mIGzOjxDgXFxf8K3viHuxM51dqcHpjPOumHaVTGysLntiCbD+uatS4dpaFgoKCgsK9Q7ly5cjIyOCrr76iSpUqtGolygb27NmT8+fPM27cOFq0aEHTpk3LzEZ/f3/69OnDe++9R5s2bfj555//Nafgg8jMmTOpUKECb7zxBgsXLmTx4sUMGDDgrqzLYrEQFxdHVlYWsixjtVqJjo7+Vx3MDxqpqanMnDmTp556isDAwLI25475e7+IChUqsGPHDmRZJjExEY1G86838lar1XTu3BmAL774gt27d9OvXz9eeOEFXnnlFb7//nu6du16V204ePAgLVq0AGDZsmWsXr36mtki0dHR+Pj4MGHCBJ555hl69+5NXl4ely5dcggSwHX7YSgoKCiAIkoo/IeYVfs78aB28deXNvqCiU79OPNQEJcPpOCmjqS2k4iS+FMj/kSruInyTZk2Z9LP2SPqU8Wfs29zEdmckOp5yzaZPDQYBzcBQG334+a3q0BErYkkrl5O4qdzKajVgOwMFcb8DGx5ubga/KnSKAZP/0potE5s+3H8La/3v0L50ATKh8KGsEGcWXOeTVN2cfqyE2Pe1eEX5kSbWsfJsYoMBKdo8QF8cL4DACqVcOi/EraTndkVqP3iITZeEL0ozIn2Xg1ZVvJPHke6soO0g5cxZxXCIbHuRECtkeg3rRY1OwWxLVXUI3avXkhYXxHlnWISJ7qFVhF5d3ae/Xh7+gQAR7+u5sjc0OWKn2t14d/KHDmpyPcrEhrsApkzuCQUH/dP2HyFeKLKM4JdLJDtGRs2gzhptycMYXVSU/mTAk4/63TNuSyuWmQVDmFBkyP2rdnDngmildBlmq65LHazJauFlJyzpOSepVa5PkjX6eFy3xLrgmt4YzIMG0l8eybW7DzcQ13p0LqwTMyp6RNP9VHhfH/8Mpl7zlF98RjSNx7j/JcbyDqbRpP3u5T+Ole/jmy1kb7kNyzJaQRNHkLSzO9InvMjtbzM6Lxd2fuXrAmtVkviyXRHaacLUReo8F55Nk7eSoCfRLr42aZy+5BSt1VBQUFBofTR6/WMHDmyxOvPP/88r732Glu3bi1TUQJgypQpNG/enCeeeILGjRvTt29fkpOTiY+Px2w206RJE9q2bUuzZs1KBB8oFEeSJMaMGcOQIUMYPXo0gwYN4siRI7zxxhsYDIY7nj8pKYmlS5eyevVqduzYgclU/FwzIiKCP/74Q4navk1ee+01ZFlm8uTJZW3KXWHs2LF0796d0NBQ4uPjGT58+HXLif4bfP/999SvX5/g4GBOnTrFyy+/TLdu3XjzzTdvqrTd7XD58mUGDBhAzZo1mThxIoMGDWLq1KlMmDABJ6fi13116tQhJSXFsY+6devGiy++yNy5c3F3dyc7O5tatWoREBBwV2xVUFB4MFBECQUFO9nxeWC8fpPff8LbQ5T0ychxRtaJebIrFTmJxUWK1f5fnlNOIt9ffP3yIsVY50t/KV/jF0joE0+T8vtq8s+fJTMtBb2TO56GUNKyznFpzx4klRpP/8pUeSIdvacfhz+6v9No7yaSSqJytwo4+bmydcoO/tctiaHTKhHc7doXjzazlVqW/eRlmtiZbaBfrd1IksQjPqL28YFLHqydd5mtP2dgySnEpVIgLz07nnr16hEaGoparUalUjF9+nSWTvgaj0AnuPUEjTsiL0iFLAnhzOIMC0eIZmVPffgcAJoCe6PrNKECGESgPhZX3dWshXwT3KCMauVPCh1llmxOQjSQ7I3C9QkmpGxR7kqTJxztZo+rTZFNnjpUZrGsymRDnf+37AqbhVMJf+DlGsHB2O/L9KLgbqF2diFwdA9ydp6gbitnotqXQ+t898SXsHdGkLroN1y8tej93QiJ0BBQ05+AWv6oENlk7jXDyTsVj8bDmYDejQiv5syeSb+xe9Kv9HV+GkmS+L7pnNu2IfZyEAAPbXweg5zD5U9+Ie/gOapM7Ehga2+cUxpy4audHHn8E9zrlSe90Xi8vb0dy//1OIiMjOS1z0JYOD2FS+dMVK7jzM4Nl5UoVgUFBYX7nPT0dPLz88nPv3EW57+BRqOha9eu7Nixg3HjxrF48WIuX75M06ZN8fHxYfbs2bz11lv4+fk5HHil4WB/kHF1dWXhwoVUqVKFN998k59//pmff/75ug3Fs7KyOH/+PHl5eVSsWLGEk3Pbtm289957/Prrr6jVajp27Mh7771H9erV8fb2RpIkCgsLGTJkCG3atOHMmTMlouQVbszBgweZN28es2bNcjSvf9Do1q0br776Knl5eTz88MN07Njxrq5v5syZ/PDDD4SEhBAREUFERAQ9evQgNNTe0zIigooVK5KRkUHlypVZvnw5U6ZM4Y033sDHx4fRo0eXqj1bt25l4MCBAKxcuZKIiAiWLVvG66+/zvTp0xkzZgxTp04ttsxfz8uffvpp0tLS+Oijj8jOzubNN99kwoQJpWqjgoLCg4cky3aP0g3Izs7Gw8ODrKws3N3d/w27FBT+VT461Y7PRx6i0CjxxJdNqOV8EYCNWaKUU2+v/QB8ntSK/WtFY9jC8iL6xtNXiBFWq/De5hfocHISDtbCQuFglG0STscMDlFCsmsf6sKSooTKHtRjsV/PaPNAl2oRf/r2kjv55gyyzh8l9eg2LAV5lHt4EBdWfVG6O+UBpN+OUVjyzZye/hsn112h51N+jHlGi5e3mvRMWL86j9Xf5XD6hNlR7gjAzVOFl6+GRg+5kJlmYcu6fLR6CY8O9fBrXx3ncj5sb/9eifXZbDaCKnngHuDEiC/qIEkSuzPKE246z5ktSTzVJpmQchpmJYjsjLNZvgBo1eKYqOCe6siiuPS+yNIoyobICxDHwgfjPifeIpywbZwvANBquTgBtLqJeVrWOI3BnorTwuM0H3zWH429pcRVUcLeqF0lFRclwNEbwuwtGknq4lJJfUicMOuzxPJuR5OLbbtsEFkRUnYeaOylzew9OMxuumLbosm3oDKKsk2SWdh88uJaLqcdpHGlp9hx6vad4ApXCXy2D0mzf8S5nDeSWoUpKRNLoZU27z3EhbC2nOs/Cb8nO5O6ZB09vu6GVwUvLuZ6kbY3jsMv/UiDya0J71S5VESJhjM6kP7lMiS1huiXO+DTMNIx5tLGWM5N/RGAI0eOUKNGjRvOabVa+e2336hVq5bjQk6h7FDOGe8+yj5WeNDJy8vDy8uLGTNm3JNNkY1Go8OpbbPZ2Lt3Lz/88AOzZ8+matWq/PTTT46GtQo35uTJk/Ts2ZPU1FQ++ugjHn30UTQaDTExMXz55ZcsXbqUK1euFFsmMDCQqKgoWrduzY4dO9iwYQO1a9dmxIgR9O/fv1gww185deoU0dHRzJ492+HQlWWZw4cPs2vXLoYPH45Go8Rs/p2cnBwaNGiAXq9n3759Sm+VUqJXr16sXLmSFi1aEB8fz8WLFwkMDGTHjh2O89nWrVuTlpbG/v37Hft99OjRfPXVV5w5c4aQkDvPDrbZbEycOJEZM2bQpEkTli9fXux8un///ixfvpzIyEjOnz//j/NlZmayfv16evbsqRwr9wDKOaPCvY7yr6ugANhkFV6hzhz789YbB98shdULkBKEKuF8WSI/WMbsCv47hHPZKUM4ZdOixdfSXj0IWQXeMaLJsGQVDmBLA2/8arfCq1pDLq5bSuzPXxLYv4DEZV/fNfsfBIqcqXJbmXfeeYf/TXmD1YvBK8qbrJhUrBaZGm186d/Pm4BIZ0bU/4ZLly4xccUr5CXm8uN3CagNLrjVb0LMyu/+MSJbpVLhPKAzZ99ezvznjqHWqji3ZyumzAJkG2z9yoO+33VnTOAGABZqmgPw275aAFSoe3eOxwnPLGPy5j6AaLwN4OYsVLB8fwlDmjhOPU+JCEV1llAwtGki8yGrYQiep8V7BYHXLuEk5RZi83JB9nFH1tlFCYO4L+p9obJc1cQt9ibfmhwTCWlHuZS6j+iIrrh6BpXGJisALvUrow32xWY0UfejR6gcYeTPSVvY+OpWAl+KgP7g+lBjMlZuZd9PCUQ8VYnGfnHQUcOlxQEk7b1MXv2Wd2zHju1GUj79Bq8GkUQ+35ke0eeBGC4U+FCYWcjOJVsB8OvTlOrVq//jfGq1mi5dSr+8lIKCgoJC2eDs7Iy/v7+jeeq9xl+j7FUqFY0aNaJRo0YMGDCAXr16Ua9ePfbs2UNkZOQNZlEAUZd+165dPPnkkzz++OO8/PLL+Pj4cOTIETw8PBg8eDBNmjQhKioKFxcXDhw4wNmzZ9m/fz8fffQRjRo1YtGiRQwaNOiade//SpUqVRg+fDgvvvgip0+f5uDBg5w4cYL09HQA4uPjeeutt/6Nzb5vkGWZp556ivj4eEWQKGWef/551q5dS2BgIBs3biQpKYmmTZvy8MMPs3HjRvz9/Xnrrbdo2bIle/fudZSye+ONN/jss8/YuXMnffv2vWM7Xn/9dWbMmMH06dN5/vnni5Wh279/P8uXLwdg4cKFNzWfp6cn/fr1u2O7FBQU/hsoooSCgp2zu9PJSiggPzWfGHtasF4lhILPk0Tzve0HKqPyEcKAWi9Ug5wc4cy12ptbe/jm4u0sHLYqd+F0TckVvQNytPba/BoJtzgRJW60+7WNHho8Yos3vr4ePkeFkzi1toHwrkM4/e0HJC1fyo6xz5R57d37AUmSmDRpEukttrPxmySyYjPp3U2mbU93Uj2vRrZFV44mOjqaJR7iZExd+2qz5ZstEePesBIhozqRvn47AGFto6hV3YZsgx/fPM7GSVsY8JGMs0vJC6kjqcFU8RYZCDUnHwKgq5e4jzeL9X+f1pCn/f8Ur1mEQPDMw+sAIbYB+GpyqKAT83iqxLGzr/OHABTK4ngOUYvGf+V/GoFNq8Yl8R+T6ABwviyOdZu7PbWnqKG2pxOyvQG3usCusNl7VTilCpHN5KlzzKOy2JAlyCzk4I8RAAEAAElEQVS8wonYlQT61eL4+Z8fyLJNZYXa1UDI60+Q+MYXHBz3AwHTW/LQWy1YNmoXCdMW45eeh1uzWugiQsjcH4vtiWaOZQusOiz5eu603V+fjV05OvYb3KuFMOGzSNTa06SaxawFFg2bX9uKJS2bkIHNCBnQTPn8FRQUFP6D5ObmcuXKFX799Vc++uijsjbnpqlTpw4//PADDRo0oEWLFpw7d04pE3QTeHl5sXLlSg4fPswXX3xBTk4Or7zyCj169ChRCqtq1ap3tK7Zs2dTWFjIhg0b8PHx4emnn6Z58+YsWrSIGTNm4OnpyYsvvnhH63iQePvtt1m2bBnff/89lSpVKmtzHihatWrFsmXL6Nu3L4899hjz589n3bp1PPTQQzRp0oS1a9fSoEEDNBoNa9ascVzjF4lvVuvtl50uYsmSJUydOpXp06czbty4Yu8lJCTQtm1boqOjeffdd2nVqtUdr09BQUHh7yiihIIC4EQhkmzDyU2Di4tEebsDN9UsHLVHkoIdY20eQji4G63ssiI0jobXZru/1jlZBrt/WLKKB9pMUWrH47yIVokc9RIXPn2XefPmKaLELTCj5Vq4icDvJY2+FA8a3fo6Dnd9G7qWfF2WZbpY67B++jHenxVIvwlhVHcR6enrc+oAkHbZkyNm8TNttN/7aEW2wtk80Z8h36JjXa6IJm/jcvLWDbwOeYESnmeEQ9gULL4H+lgRSZYVocJjd5rYjlxhj+Rmd1c72S++ZT1Wrb1PSq4ZWV1SdDHEi2ULg1zQ5JgpKEjn0MmluLuEEF2hh+KQLmXO9HkNgNYeKex7dQ2rh6yhz2ctqfC/flyY+Rupny3HdCGe9bPn0/yhVhz9YBcebzYAQCVb0KqtuBturRF3pRVvI9ts2JJSMMYlkfbNH6hd9US90gO19kyxsZc3x5K4+wqV3uyLV6Nr15VWUFBQUHjwSUsT5xj34zlt/fr1OXToELVr12bNmjX07t27rE26b6hVqxazZ8++q+vQ6/UsWbKkxOtNmzbF2dmZcePG0ahRI5o1a3aNpf9bfP3117zxxhtMmTKlVCLyFUrSs2dPli9fzpAhQ2jYsCF79uxh165ddO7cmQYNGvDNN9/w6quvOjImOnbsiMViL3l7m9dJBQUFHD16lO3btzNx4kSefPLJawpxL7/8Mlqtlm3btl23JJqCgoLCnXLjHEcFhf8A3b/uzuwRx0g8X8ATn9RF73JrWp3NImGzSEhaG5LWhsmsIT3fmfR8ZzIKxM1Fb8JFb8JmsGEz2NAUgKwWN6OHuFn14qYpEDfnJHHTFMjYdCpsOpVoKizLSMbiTYEllQrnljX5esX3RCyaUpq7R+EuIUkS9R6JpGqHYI5uySiVOXfkV2RHfkUOZpfjYHY5zuQHcCY/gH25EezIj2JHfhSFsoZCWYMWFVpUBKldCFK78EVWEF9kBdGg1jkK/WUK/a9mSsiSJG4GHbJBh3OKjM3HHZuPO1htN7DoL9trtWHy0mHy0qG9kIz2QjJIEkgSmjwLuXlJHDyyAI3WiZjz+9i4881S2ScKV3low3ge2jAe52APms17BP8qnvz+9j5AxndkX7wHdSH71210mfE67h1akbf7IFmnRAd05whfck5cwZSeS/tNL9z0Os2pWcQ9P5vzz37Klek/gFpNxbcfpX2VK0Tqk4nUJxOkyyJIl0WBykUslJjEro7vsqvju3dhLygoKCgo3MssXLiQTp06Ua5cOT7++OOyNue2qFWrFjVq1OCnn34qa1MUbhIPDw++/PJLvLy8+PXXX8vanDJn0aJFDB06lCFDhvDqq6+WtTkPNL1792bPnj1cunSJN954g4iICHbv3k2bNm3o168f7du3p3r16kyZMoW0tDQCAwPx8fHhxx9/xGa7ueuwIlasWEFgYCCNGjVi/Pjx9O3bl88///yaAoeLiwt5eXlcvny5tDZVQUFBoQRKpoTCf55tb25DbSqk3xuV6dTCCCTQyklEaL1/9mEActKEs0ztbcRmFlqepLKXcbJnNAR45QCQmW/AZI9qV6mEY9dib4KtT776lZOsQpS4XSSjGV2WECc0+RqcG1Qja9WfFBw+Q8Ri0XQ5dvBLt78ChbuOs9pI1uVcoqNk6jnFEW4/PL64JE4McyU12ZLIQKhZWTRfzzSLZtO5ZpGR4KwxcyJHZPLo1SJyxk0jotmLyo9lW5xINHoAsJkqAIR5HAbAHRU2bu2EtgRWG+TbO2fL4phX5xswe4hMHpOH+JLY7Md7ZnNRIsuqE9uZfeIAMYe+R+fuQ0TnYfj6+t6ZPQo3xFufD3rwe6Y7R8YsxvryfMqN64n/wJrYTBYyl6/DqVolJJWKnaOWE/5YA7y6NCJj1zkSFv2J90sdbjh/fHw8v/zyC/3790feuxdrWiY1p/XGtaI/NcJzgRxqOl/C3V5KLEqfCECllo1J61eHmHnb2DAiBC9vNXXLXbzl7eu3YxQZp1JIytLhViUIlVbNtnbv3/I8CgoKCgr/LufPn2fo0KG0atWKDz744L5uytm7d28+/PBDsrKy8PDwKGtzFG6CjIwMMjIyqFKlSlmbUmYUFhYyceJEPvnkE4YOHcqcOXOUzOV/gSpVqvDmm28yYcIEcnNzmTVrFsuWLaNjx450796dWrVqsXPnTqKjo5k/fz7vvvsuI0aM4LHHHqNHjx43nHvr1q2kp6fTpUsXZsyYQY0aNfjwww+pVq1aifJof2XGjBls2bKFZ599ls2bN9/R9q1YsYLatWtToUKFO5pHQUHhwUMRJRT+s8RfCebHHwvIOJtJh1ERNHs0FLh7ja7/ilX3F0HCnq+UV044hqU48YI21z5WL5FWXZwwBG4R9fuxZ0qoCuylpIyg9SyHNiSI5FlL8BneF9cW9e/+hijcEQVZZi4dzuTxvmV7sapCxRD3SwA85ZFAy3xRrulKimgyrcsS44Ji7Rk6MmRXFo4Czxx7OR9LUWd2u1iXlY+uqLG1uxAn1GYhWMhqcXEjp2Vz4dBPpF05glvVOiTs2YqLi8td2kqFv+MS6UeNWQM59/5qTk34mpoLRuHRrSXINgqOnkdyc4H8fOK+3YvL4UTc6lUg4bejVBp1/Zpn6enpRDSojTk+hadHP4NsseLVuALeDSLsI3JvaJNPqBNxNpmDe4y0eVgIcOMP92dXjAdaNyeaBolorVyrEOUS8t05tfQwmWdSiFlzAr1ejyzLbBi2AgCvxhWo8Fz7O9tRCgoKCgr/Ck888QQAM2fOpG7dumVszZ3Rv39/pk2bRnBwMKdPnyY0NLSsTVL4B3777TcA2rRpU8aWlA07d+5k6NChnD9/ntmzZ/PMM88ogsS/yLhx4/D09OT5558nKyuL5cuX89NPPzFmzBji4+NxcXEhOzub7t278/LLLxMYGMgnn3xyQ1Fiy5YtdOjQAaPRiE6nw2Qy8eWXX1K//j/7CQwGA/7+/pw5c4a4uDjCw8MB0cviypUrhIWFlTg+0tPTee6556hXrx4vvCAyq48fP+4o/zVhwgTee+895bhSUFBwoIgSCv9J8vPzWbgwj8mvZQMwdAAEOl2kUBZfiWcvdQQgp1A4vlT6qw2oNfriTaVCvDMBSMwSTlonvRmtSowp7ylq8MdkiMhvU7DJvpQOi8EeUW4Uf8q6TCFGFEWTW3VF9xJOmWKs9dhpsUy0aDSmKhTzaQpAJasIfH4UV/43DXPivyOuKNwZGftisVll6ker8VNbybQ3gs6ztzDp3Ho/p7L9AZERARBfKASMAIPIzDGozOTaD5Y8iz0jwd7gWiUJgcBDW0CBfUyWRQhcrlLxn3+t/fkVaw4Z64UYkV9NHF+2C2LZy90CxbxW8F2XAoCsF8tJeXbBzN0VCkUja21iNubAa0c5ZiSc5OzubwGJ4N6DcYuupQgSd5lNbacXe17+m3fAy4NaH+jYNXABqi1bqNirOTxTjQJLbWSrjfgv/iB2xWEKLqSQd0xkLchm87WmB2DOnDlY0rIo/87jFJxNwC3YGa/6kXjqhXhV1DfFTVWA1a7InjeJY9xFY6Jyh1BOfu3ChKfTqDW2CgdnyuxbfJrtMw+jcXciuakv7oEGcHZCAs7tSSd5n5gzPj6eyMhIMq+IY9Ep2IOMXedIqxsOj5XeflRQUFBQKF1iY2P56KOP2LZtG3q9nlq1apW1SXdMdHQ0P/zwA926dePKlSuKKHEfUCRKBAcH/8PIBwur1cobb7zBu+++S/369Tl48OAdNxRXuHUkSWL48OEAjBgxgtOnT1O5cmWWLl0KiMbT3bt35/Tp07z//vvYbDbCwsJuOOf48eOpV68e06ZNY+fOnTRo0ICHHnropm0aO3YsvXv3pkGDBvz2229UqlSJ/v37s3btWqpWrUqTJk0IDQ1Fo9Fgs9n4+OOPSUtLY8+ePQ5RYv369YAoa/fBBx8wevRoh8ChoKCgoIgSCvc8tcfMcjw+NPvma5lfD1tiJT6dk8Hkt7Lp1s2J0KdbEhh64Y7nvVU0BZJDmCgNZFkm46c12AoKMURXAqsSgXCvo3cSCpT0oHX3cdKDTcbi44pktqHJFaKe0UtkTFw6v4nL+9bgHF0Fv0f6o3Z149T4kg3WFP4dnPzc8G5eibNrzlK/V3PH65JaRfSzLci9lEH6yVS8H2lNdNcwnHxdrzvX2bNn0YUF4FojXNz0RULs9YWMv7L59W0UpOQhaVSk7L9Cq+dqsHX2cQAs2YWc+O3adW1rPduEyMhI8cReQsyzVhiJ8VmorJZrLqOgoKCgcG/w+OOPs23bNv73v/8xYcIE1Oo7qG96j5CWlsaECRMIDw8nOjq6rM1RuAlkWcbPz6+szfhXycnJ4bHHHuPXX3/l7bffZuLEiWg0iouoLHn88ceZMGECX3/9NW+//bbj9aCgIFatWkX16tWpU6cOY8eO5eGHH77hXGfPnmXixIm0aNGCFi1a3JIdSUlJDBw4EJvNRn5+Prt27eKxxx7jzJkzeHp6cuLECU6cOHHNZX/44QfHY6vVilqtJiwsjMOHD2O+QXCTgoLCfw/lH0fhvqLiu7OwOl115J9/4fYcmTv2FuAdpKPPjDqoyHK8/vGldgCcvCIiwtUaEWlucDE5xphM9shwyZ7pYO8tYZOFCGA0acCe5XAiJQC42pNClSMuskw+VlQFwhNt1Yt5zAHCcSbHC8etLO6QVeB9uvift/XkmWLP1XWbIMXnkLtjNwAFhw9jij1LwP4zhBqrOcbt/+LORR2F0uP4wUIM7hoiaujItEl42sWJWi1iAJEVUc9blFU6lysukpzU4ljw1Ip6/EarhkyTKHOjsh+TRceixp4am2FywVkjsheM9gPLVeV0TZsKZYnavcUJ5pHvRZRUTnVx/LtvEssmN7HhddpL2HPZ/v1xFce4rLJvhE6FZG++JtsvbiwGiYSTm7h88Bc8W7fFu0Mnzr087uZ3mEKpcn7A1caFVXfEcXLyKRJ/2kvUI7XILBAZNRk2F8q92B35g1WkLf+T4Q970SHKCfjwmnNarVZUahl/V1GmqehYtNjEcZFjE8ddnMmXJHPxsmXGuGTi9yZQ97V2hLSrRAV9Ah82Fk1CtW46DD7OoNOi0qrRZKSTGm/C2UND4z7BdBt1tSaua4gbaoOGxF+PAVC9ishcG3+4PwAayYpNlshJKiAy2ITKXk5sfPS629uRCgoKCgq3TXp6OidPnmTMmDG88cYbZW1OqfHdd99x6tQpGjRowP/+9z8CAgLo1asXlSpVKmvTFK7D0aNH6dDhxn2zHiSMRiM9e/Zk3759rFmz5h8d3Ar/Dnq9nr59+/Lpp5/Ss2dP6tWr53gvODiYFStW8MQTTzBq1CiSkpJuOJfVar3h+zdi4cKFyLJMfHw8QUFBrF27ljNnhA/CxcWF0NBQnJycUKlUnDp1iuzsbCpUqMCsWbOoWbOmY56mTZtitVr55Zdf0Gg0BAQElFiXyWQiPT2dwMDA27ZXQUHh/kQRJRTuecyivD2mUup1dyrGxMpf8xj0bjQ5Vicq6xNYmtoEgONHRSqh2kc4cL3cRBmQIoea0awpCsIFhCOryOnm6SKcxGlZLpiMwnlrLbALGLn2iC+bGKsqlIoWx6YVE0o6cdJg8rKXcdKJe0OihE19nawHe4i9pkDGN9EDmj1CUvIhCo9ewpKZgWzdiimkGhq9AfewaPLy8pQSOfcIBQUF7FyVQvlWIewxh4EZGjjFAmCyiuPlaGwIjeqJLJ4ras9iyxtUQig4mRWATm0ttpylqHwT4tjSqK42stbaSzq9nCRKI0wLOFxs3j4HhyPbj+n8BuL4j35ORKdb0zPEelwbIdlPci1eQhDRpNm/K772pvC5Rmz6IjFC2BVXeIDEg7/g3bIdaRvX3+SeUvg3yAttgHvnNI59vJkrqR50ek6ULojL8cLgY0BbszIcuMQ639bsSHDl85BrzxMdHY3xh2UU5lrQOOvwdhK/iz66PACMNvHbeCHfD5v9R9Bsr1nXWP8nXwND6p3l2Zbrmf+Fl2Pey/sD0fgcZPmvlTl5NJ9juyWaDnbn2Wdc8Q+LK2ZDoCGHgOq+xO9NZOTIkcx9fi4ANouN5GMppMRkcW5rEue2JGBw11C+vhfV2vgjvyorNW4VFBQU/mU+//xz8vLyePXVV/958H3EsGHDOHPmDIcOHeLXX3/l/PnzfPPNN4SGhlK/fn06depEw4YNUaketHTZ+5Ndu3Zx5MgR/ve//5W1Kf8KVquVxx9/nO3bt/P777/TsuX1+4Up/Pu8//77HD16lDZt2rBp0ybq1KnjeK9169aEh4fj5+eHs7PzDeeJjo5m165dt2VDYWEhXl5eBAWJsr7Lli0DoEePHqxcuZLz589z4MABtm7dire3Ny+88MI1Rb2/iip//PEHbm7CuZORkeH43i1YsIAzZ84QGRlJmzZtGD58OI0bN74tuxUUFO4vlLMghf8UNpuNjo9eQaWC2h0evPRc34qNCB7+NGHPj8ezZydkk5m8pPPkxJ/l/PoFuHt54xdZn6qtn76jyAmFO2fr1q1kxedTs1dEWZvyr2AsyCRx1TLc6zTEp02nsjZH4S9UmDETSZLwfORh3Ds2I+P738lL+ltDapsMMqyfsImLsVb67HgGW2Ilx62IgQMHIlttxH61A9l28+Xpsi9m8fGkBNQacPcWIsUva0QfCnc3iXY9EwgO9WXUoFQ+fi+bjZuMbNxciFot0Wv7aHptH11svodeExcyq3b/yDMHBgFw8LuzLB2ymd+nHiIrIZ/2k+rQYnA42SlGlk8+TtfPO9F64zhabxx3zTkVFBQUFEqXPXv28Morr9C+fXuH4+tBwcnJiY8++ojNmzdz8uRJ2rZty5EjR7h06RKffPIJTZo0oXz58kyePJnTp0+Xtbn/eZYsWYKfnx/dunUra1P+FRYsWMAPP/zAt99+qwgS9yBeXl6sX7+e8PBwxowZgywXP6eWZZkDBw4wZswY8vPzrzvP8OHDWbVqFRs2bLil9f/000988sknjt9lo9HIqlWrcHd3Z9WqVTRv3pwKFSrQr18/Pv74Y3777TdiY2OvOZdOp2PevHkAHDx40PF679696dy5My+//DLly5fn66+/pmvXrqxevZquXbtiMpmuOZ+CgsKDhZIpoXDPU+h79U/43Lg7qzsvSRJ5BVZ69HaiobdojvptemM2xUUBoMkTOp1zOeEMKyrNVGi2R3xbr+p4NnvWw5V0z2LPZauEzWzPjDDZx9uDb2W12BZZIyMV9Xywv1ZUDkqyFI/UVRuhwF+s3zm8eDMrY5RoEKvNsaK2r8vjrFi3xloea/laRFXrjs7gQbo+jcyYQ2Qd30tq7H58gjZStekwdqx86WZ2nUIpU7NmTVROWrb8kkPH5qKhelGj9XNpPgCo0nWYZfF5ljOIpun1XETmxPcpDQBIznPF21mcjBaVbyrKmCjKoLDYVFjskXhGm1iHXnXtOvttw86wZm0jAKxBolSUJUU0TtdElQfANf6qoKXOESeMxhCRyiRZ7ce4uxMmD7GuNH0aF/cuR9Jp8XiqCyaDUkv0XkOdouXcuBdp6JHEwV0HOTD3EHVebYteLY6T6kNqEFLHi/3P/8CZbw5RZ/y1L2DLlStH1aH1OD53N7LFSou3RZ+HApuoaXc462qjT409a8fPKYdfXv4DS6GGHdt307BhQ2RZZt2fVlqPqkj91m7MGX4IjUZC56kiJ9NK335OPPWUC8Mv9ChhQ55Fj8pfz5A/+qBz1TleX/rCGkKmixSP/AwTPjWCqF49mBYjKzOl+QYSDyThXvFqubvUw/H4vRSFJacArZsTYQ9Xxr9peVQaFWtafnwnu1tBQUFBAbBYxH/M+PHjy9iSu0+PHj2oWbMmU6ZMAWDHjh0sXbqU2bNnM3XqVGbOnOloDKvw79O0aVM+++wztm7dSuvWrcvanLuGLMusXLmSSZMm0bNnT3r16lXWJilcBzc3N6ZPn07Hjh1ZtWoVPXv2dLy3adMmJk2axPvvv0/37t3p2LHjNed48skn+eqrr2jfvj2//vrrdcf9lXPnztG7d2969OjB/PnzASEgZ2VlceDAAf744w9effVVgoKCSE5OxsnJiQkTJvDoo49ed84RI0bQvXv3YuWZnn/+eTZt2gQI0aNfv34MHDiQ/v3707x5c06ePEmtWiKz32w2s2DBApYtW4bFYiE6OpqRI0dSt27df9weBQWFextFlFD4T2GxWDCZYOWKQtJzE3llun+Z2SKrhTAhWSRkjQwpota6NtveD8Ae9FAQAGYXezmdfkKU8DwrnMKaApt9rAWL/evselm85mH0ITjiUayyGvJtuBt8ca/cDk1IGzISTnJqxwLO7P2GwOZbcdH64B5cESebqMtuSDazccPL/8Je+O8SGBhI+KDGXFiwjXOPVaNCLbeyNslBUd+WoN+FuKGuJiLhjf7CRtdzWcgau8gRaO8lYdfSnI+LUk/5tcIwuqnIvHycmG2LUXt64DdmCBdHvf6vbYfCraN21hM6qBmxn60nomd1tBWvCqFetULx79uEi6v3ovdw4sjjRmpWFYJa7TWv0TP8CACVH69LxqU8Mo9eASKvuy6LrHIIE/mphdQaVIWGDRsCcPz4cQqyzVgiIwmqLjNmYxcWPbGVpNNZjggqgNUHBpaY92yWLwAtArL4a4Pt4OBg3t7ThtiDmfz03jmWP/4b35mvljbLOp9Oa5/LmPLMLJ9wgKQdcbiW98Wtoh/5FzM48NqvGILcCe9Rg42WjTRs2BBX1+s3/b4ZUlNTuXLliuOiS0FBQeG/RFGE76uvvkq7du0e6NI5I0eOLPa8ZcuWtGzZko8++oiXX36ZF198EZvNhslkomnTpjRp0gSdTned2RRKmwEDBvDpp5/yzDPPsGfPHkeJmQcJo9HIK6+8wqxZs3j44Ycd0esK9y4dOnSgffv2TJgwgQ4dOjjKNWk0GqZNm8bq1auZMGECR48eZfjw4Xh6ehZbXq1Ws2nTJsLDw9m2bdtNiRKJiYkAvPPOO/j4iEC5LVu2oNPpHE22i/rjVK1alZUrVxIVFfWP8/69X0SPHj2Ii4tjw4YNjBgxAicnp2IZIceOHaNWrVrs37+fRx99lLNnz9K5c2e8vb1Zs2YNn3/+OW3btmXgwIHUrl2bmjVrolar/9GOG3H8+HF8fHyU3hYKCv8iiiihcM9zp9kRf0WlUlGnsRPbNhSw+bc8qnTU0qHbcdYm1QaufiGcdfYIcXtmRKFJ65ijqOR40X+m1SL+/GzWokwJlaN3RFFmBPbAcqmop4RJdfU9SmZH3DFqCauTsN3kZu9NkSKi0fICNRhcKsEOSIs/gpR8CtliAiRcvENx8Q5FnWchKGAZHu7lCA6ox8ZtiiP5bmBt0gHdn7F8ODqGUd81RxUqGn+Fe4veDacvuOOlEbX4A7SiofSRgnIANPSIBeB4SqCjr0nRfRFFGRMqSUYni4Mw3yIucOs4xxYbOzZeZF6s3luHOzudu4rxTAwxexai9Q8gOy4WJ6drN9dWKFv++hu7s8M0LG0s+PwRwoGpG2g6px9aVz0p+cL53vnZCH6JT+Lcj8ep/6NEpY+Go/Mr3rC6hvsVDgd7krTxNFtWpCDbZCrWdcUn0p2UBDNadwPBHvmkG8WFlT5PjSnPDC5X6+JOmjQJlxA3AuoHs3r6n/y5II7avcNJPJXF4jVPoqoWQOfIY8XWO2F/b/JSCymMD0Mf7Mm2T4+RcDwDq9HKspDq6COD8GtZme0jPmPVogrYzmcVWz7xUBKXjmWzf+Fx0g4l0uW9xlRuH4bN3rsn8WQm+xeeIGbBTtrObYvaoCGgeQXKdauGV81g1rb65Jb2uyzLNGjQgNjYWKpXr86aNWsoV67cLc2hoKCgcD8TERGBj48P27dvZ/v27UycOPEfa6Q/aDg5OdGsWTM++ugjxo8fj4uLi6MHXKtWrQgPD8doFL3uBg8eTKtWrcrY4gcTSZKYP38+DRs2ZMiQIXz//fcPXL+PIkHipZdeYtq0aWVtjsJN8sknn1C7dm3Gjx/Pp59+6uh/JkkSX331Fc888wyTJ09mw4YNrFmzpsRxq9FoCA8PZ+PGjURHR2M2m+nVqxcuLi7Ex8cTGhparKdacnIygEPgyM7OZtq0aQwdOpSkpCT69u3L7t27GTp0KF999RWJiYnXFCVycnJISUnBYDCg0+l45plnSE9Px8XFheDgYNq1a0ePHj3o2bMnQ4cOLbH80qVLqVOnDj169CAgIIBDhw45gngsFgs//fQTH3zwAcOGDQOE6DF06FCGDRtGZOT1g6Kux5EjRxzzT5gwgTfffBODwXDL8ygoKNwakvz3AnXXIDs7Gw8PD7KysnB3L6VuwwoKZcSWU+VoFX0JtUbivY31iAy28OI6EW2rsTek9q0l/oytdhEhK7/4H5Jsk7AYxVhJJTteA5AtKij8m1vXHoyrLhQnCX8VIawG8abKLF5TF4h7q17M6xYr4ZwixpidxXvuceLipMBPOJi1uVbUhWKM1bmoqba9lI+HvZRPlnBK5wUK6SUj/jgqbw+c/EJQJWSRHX+GnIunKchORm1VIQHZOVdw0XtTKbANfm4VWXd06o12rcItErF4GpaMbHLenYXOWc1riyvhFaDjmwRRPun0/nDGd14NgE4SotJlkzcAHmrRQHjh2ca4OYnjQasSn7HWXrapqJyTk9pCoVV87u5aMba5dwwAA9xPAjAlSZTj+fV8VSLeE8upCkVpprzywunsci4TACkjB9yFkzo/0hMAwxXRg8DsLb4rWeX1nD2zmqxtm4l8exrnJ028s52l8K/SbPFg9oxejlt5Hxp+0J10m2g6Xdv3ChdyvTFlFbC135cEPNaCgEeaA9Az/AihOlFm7JtNvux6bT0FyUJU07o7ofdxJvdCOk4hXgQ2i8ClcVXcqoWStuEIMe//Su15T3BwxFcA9OrVi1/WraHOuObsnfInADWfa0pA/AnW/5DJoh2VGNykeA3u6IfDOLVOZOo8/vjjLFmypMR26f3dKEjMInJAA+K+209Q8wjK96lOkJTCpo9PkHo+B4CW09rS4GERHWb9m+hXYFKRcSGLE5vTiF19kvwrWTiHeBDZphx+zSrgU9UfSa3i+6Zz/nE/f/DBB0ycePW7sXbtWjp1ur97rijnjHcfZR8rPEjs2bOHRo0a0alTJ9asWVPMOfZfITMzk/Xr19OwYUPCwsI4fPgwv//+O3/88Qepqano9XoyMzM5ffo0PXv25L333qNSpUr/PLHCLbNy5Ur69OnD448/zvz58+848vpewWQyUbt2bcLDw1m7du1/8nt2P/P5558zcuRI3n77bSZPnlzi/W+++YaBAwdy7NgxqlWrVuL9d955h/fee4/s7GwAqlSpQlpaGikpKXTo0IGGDRsyevRo/Pz86NOnD4cPH+bCBVEyOCcnh+DgYKpUqUL79u159913AYiJiaFZs2aEhoayf//+YuuzWCwYDAZHib5hw4Y5SkH9lUmTJjFx4kTatm3Lvn37mDt3Lq6uruTk5PDSSy+RnZ1NQEAABw4cIDg4+Jr7Ji8vjz179rBixQqWLFlCTk4OLVq0oGfPnvTo0YPy5cvf1D7Ozs6mW7dubNmyxfFafHz8fd/vSDlnVLjXUUQJhf8UycnJVGhWg/xL6Tw3uxI1WnpRKGuZvaQ7ABZ7ILdHvRQA8k3C6Z+fK0qUSCrZIT5g/+bcLVHCOUG8r82TsVc4wWKwjzGJdRaJFLqcq2O0+UUlncS9bA+WKMqcyAsQtslqUJmKlpGLze95thBNRiHZ+YmcufI76XmxhHnX40Ly7gfm5PxeosLoV7m4ZA4aN4mqMwdSoBfOUO2fHvj2vARA8mpRRqfZwAMA1HeLBSDT6sxPl2uL8XdJlDD7ihJNuovC4ZzeJAiPs8LZrE7PK7YtphAhYFyJLOD0wrcJfKw5wYNasr+TImjdT0Qseg/j2TiSP/gC79bV8BvZEwCtxoqXoQBTRj47+81hwIxaqJrVB6CV11WRYF1qdQCC1cmYcs0sn3AQpwA3XGpGkLY1hvyziZjzzThH+JFjL/nVdN14tnf4AIC9e/fSsGFDnHycKUwT5T08KvoS0DiMM0sO8uT8RiwYuquYzfXGNeXAzJ0AdOnShePZBzHlmNB4umDKM5G4V/yo/vnnn7xuXUPMzN9JXCtKTqk1Es0HR6DyckXnoqXXAFf8NOLCrVAW/wOZVhG9m2UVwtulQm+SC1xJORBP/PpTXN52icKMQvTeBmo+05g9b2+8qX390MoRHJq8mqzjIl3+r+Wp7keUc8a7j7KPFR4UNmzYQO/evQkKCmLz5s0EBASUtUn3LDabje+++45XXnmF5ORkli5dSu/evcvarAeSb7/9lkGDBjFo0CC++uqrB8KB/9lnn/Hcc8+xfft2GjVqVNbmKNwGb7/9Nq+//vo1zxO/+OILnn76abKzs3Fxcbnm8rIsk5uby+7du5k0aRKtW7cmMjKSRYsWcezYMSIiIkhNTSUhIYF69eqxb98+x7JFQTQhISFcuSL6co4cOZKYmBh27NhBfHw8Xl5exdZXu3ZtDh8+DMC4cePYvXs3er0eDw8PLl++zJ49ewCwWq3YbDbKlStHQoI4Vw8ODmbSpElcvHiRPn360KBBg5vaR3l5eXz//fd8//33bNiwAaPRSIMGDViwYAHVq1e/qTk2btxI+/btsdmELyUhIeG+LueknDMq3OsoooTCf4oXXniBT+bMo3yvZ3AKEg1P3TolUrhc/NFYhfZAVmPR6FqjF85dc5625GT2xtKyxt6guqiptVVyCASOZtb2b5nGLjjYtLKjxFNRv+GiZdTCZ4wuU9zfjCjhftHiKNNU6CXu3a5Yi40pmiPfX+V47pQh5jG6izEuiWIZ19MZSPkiEt8S4MmV5P2cuvALPp4VqRnVlw17p5TcHwp3xPnz56lcozZ6b38qtx+JpFJjcZKw2oWyKr3PAJA+SZR3Gfy5yKDwVOdzrEA0Dz6b7wdAvkUcyKfSxPNK3qnU9YwDIK7A3kTbLlis2yQahHmeEseAyRVcE8XB4nJZfA+K+kfcjCiRV9kHWZY5Gv8jWYf2kpmejodH8fI+CvcPPkN7k77wJ3xaVab8M21ILgwnOiKe1L0X2Td+JTExMTdVR/bvDNvUj+8Gb0Dv54pakvGpE0rFwfVZ3eJqCaQKE7pxfvovoJKo2rkcJ36JwzPYQGa8+G26fPkyISEhjvGP7RpB5jlxjK7suxS9Xl9snSkpKXz11VcMHjyYgIAAYmJiqN6wFu5RvgTU9OPkkkN4+OoIr+VO3doSowfIeHqpKLQru072H9G9heL7drowiFyrngt5vjhrTNisNi4fyeTcimNcWn8W7071CB7xMEd73vj3stqEdpyYvsHxvHnz5mzduvWW9+m9gnLOePdR9rHCg4DVaqVy5cqEhISwevVq5Vi+SQoKCnjyySdZvnw5s2bN4rnnnnsgnOb3Gt9++y0DBgxg+vTpjBs3rqzNuSOSkpJo06YNwcHBrF+/vqzNUbhNZFmmW7dubNiwgf/973+8+OKLaLXCRzF69Gg2bdrE8ePHb2vu9evXM3DgQLp06cKBAwf4+OOPS5SK69OnD6tWrcJqtTJkyBC++uorqlevzrFjx6hUqRInT54sVjrKZDKxfft2qlatek3Bee/evezZs4dnnnkGSZL48ssvGTduHCNGjODMmTP8/PPPNGzYkCpVqtCtWzd69uyJRnPz1edzc3NZt24db775JjExMXz99df06dPnH5fr2rUra9ascTz/5JNPGDNmzE2v915DOWdUuNdRekoo/KfYsGEDLiEVMPiF8I9q3F3AXoEHFRKaXPtrjn4T4l5tz16w2nvbWQxXRQ6ndGG1ptAeyW7553XmhoiTA31mkRHizuQBJje7yGEXQtyOpZBT3a+4zZJEaEB9nHTuHIlZztZDswgzrECrcSbQKYodKcv+2QiFf6R8+fKEdRnMhR/mkHBwPcH1Hr6r67PJEjVdL2NrZS9J01wccBcnV0KXUVhsrGTPmMivLI4N750JYE/HLSoThuvVGtAZyafIOrAb/y59FEHiPse1VQNUeh1Z363mwLAFeA/vDxGeWPLFMVHUAO9W0bvreWJlZ05n+QOwofXMEmPSzhYiGfRIKolyFbQYG3pxbk+G4/2lS5cWK330bePPofH11+nn58eECRMczytWrIgxQ2RhdNoyFu821bi4bB+Xr2RzZGYii2dBpa7laT6oHGPrnbzuvJEuqWjtP+Tny1cibEIlbJWOc2XOWjSeLjwWOELY9heSkpJ4+umnefrpp0n4rfgFZIMGDZBlmf/97380bdr0ppoSKigoKNxvXLx4kXPnzjF58mTFUXILGAwGvvnmG8qVK8fzzz/P/Pnzad26NX5+fjzzzDN4e3uXtYkPBI899hiHDh3ipZdeolmzZjRufIMTjHuc119/neTkZL755puyNkXhDpAkieXLl/P666/z6quv8t1337Fq1SrKlStHTk7ObZ+TA7Rv397RS+J6XLhwgbCwMGJjYxk0aBBLly7l2DHR3+3MmTPExMRQuXJlx3idTkfr1q2vO1+DBg2KZUAMHz6c4cOHO57//PPPfP311xw9epTFixdTrlw5xowZw/Dhw0tkZVwLV1dX+vTpQ+fOnRk6dCj9+vVj79691KtXr8TYP/74g7lz5zJixAhHBkcRtWvXJjExkTfeeIM333zzvs6aUFC4F1EyJRT+U0yfPp2JE1+iQasJFNYSin25Puc5uUPUGvQ6Jb4OORF2R22oaHhdlAUhWSRHs+qikkxFgoGjnJOMIwviasZE8bGyhn8UJWz2KklWA2jtY4syG4oEC9keGaUtkB1lmowe9jJSdjOLIu2LRIkCf/v8mqvlm4pEidDVonyIxd8dtd1ZZ/USzmZNeh55pnQuJewizXQZo60Ai83I6ZhTtxUprVCS9k2ncCb2N+JTD9Cw0+toTSrUhfYDxP5T7T8tFoDklyMAeHnhEt4d8QQA6klJAMSmiJNSU444UHRuJqoGic92UJAob5NiEb/lR3JF1HeB9Z9FCccxb7Fe7fRuR3YWUenxrb2IW7MIU0Yy+clXlOi9B4TyC14lee5K8g6cxueJXlgyssn6aT0nT57Ez88Pb2/vUv+sDdUqYrqciFxYSNth5Wj+eDm+eeEQZ3ZnAqIUwahRo0plXXWndiVm/k7qvd+DTX0X0GXNEFJ+Ocjx78+Qn17IY3OaUbelSIf304i+ExV1ieTZxHHvohI/oj9nicyjKwWe7HhrM5e3X6LSI9WJ7FQRi0rH7/2/QeOqQ+OiI+9iZjEbnDx0PPFNG+Z0WovVanVEvzX+4jHcK/qzrtWHpbKtdxvlnPHuo+xjhQcBWZZp2bIlhYWF7N27t6zNuS/5/fffmT9/PseOHSMuLo7o6GhlX5YiFouF6tWrU69ePZYuXVrW5twW+fn5BAUFMXbsWN56662yNkehlNi/fz99+/ZFkiQWLFjAlClTMJlMfPvtt7i7u+Pm5laq68vNzcXNzY3w8HDi4uLYv38/er2eBg0aUFBQgCRJXLx4kdDQ0FJZ3zPPPENqairLli1DkiQOHjzIRx99xLfffouvry8nTpy4pcA3q9WKn58fkZGRPPfcc46sj0GDBlG3bl0OHDhQYpmePXsyf/58vL29+eWXX+jWrRsgSkQ5OzuXGH+vopwzKtzrqP55iILCg4OnpyeybKMgP730J5dAnymhy5LQ5YAuR4gJ2lxQWcVNsombNgtUZnFTm4rfkMXN6ixuN1yl3TFc6ClhdhY3iwEsf+nLbXYVt0IvcfsrResssg9JAknCplOBRtw0l1PRXE5FTkzBOd1KFbemNPN5hJb+jwOi/rlC6RHsXweLuYD0hBO3PUeEXxr+njlEhicTGZ5Mw3JxXPmqPFe+Ks+0aYOYNm0QP4zpyA9jOnL87Zocf7smca9XIu71SmRG6ZAlCVmSkIxmcbPYkCy2G65TyjeSW8EdrxNGcs4dJ8irpiJIPECo3ZwJfLE/Xs0qk7ZgBVk/ifT/6OhofH190QcEEP5cZ2p9P456v04ChMMpKyvrttcZNvIhnMv7YagdzfGwbrzR5E/azmxHtV7laTK6BkOHDi2VbbPZbByfsZHcC+kkbTkHwJouXzHiBXemb6qLT81gVr97gsR8V5JN7pwsCOZkQTA/ZjbgYEEEBwsiHOLEX6k1sh7Bzcpx6uvDrO79HQc/2IzVaMGYll9CkKjeKYRhc2oTFWlDkiQ0Go2j5vPBV1dTkJRdKtuqoKCgcK8gSRKenp7s27fP0QxV4dbo0KEDy5Yt4/jx4yxZsoR9+/Zx/vz5sjbrgUGj0fDII4/www8/kJubW9bm3BZbt24lOzubRx99tKxNUShF6tWrx+bNmwFo3bo1GzZsYOvWrYSGhuLu7k7nzp1Zu3ZtsWWMRiMFBQW3tT5XV1cWLFhAWFgYzz33HNHR0VSrVo09e/bQq1cvfv7551ITJA4cOMCcOXP4/vvvuXjxIgB16tThq6++4uTJk2RmZjJ16q31KlSr1SxfvhwPDw+GDBlCYGAgv/zyi2N9f2fUqFHMmzfPkXn211JWw4cPx2g03u7mKSgo/A0lU0LhP8XatWvp0qULWklP0CNDcI2sTGHtfL5p/CUA/X8R9QI9zgi9Lje8+NdDZZRQme1P7P7WokyHa5ZSsi9u0xV/rrafD0g20IqEBPLtmYBFvSRs9jYWTukiqwGuNuLWFi1vX6dVX3z9FgNo7MHuuWFF89kbctulSF2WhOslez8Mu10+u0WDb6ubAVWBEVQqpCxxEi5n2+/tf8KSwYl92Wtp2K5miZMehdunoKAAN1cP3JyDaFD5SSxe4kOPbyacntHtzwKQPi0CAE2O2fH5NfpENCTblFQRuNr4OsQ1i9NfRANXs2s8YsXnaHYRKTnqQhtWgxrny3lcfFj8zoetExHh6hxxwFk9hNqlzsiHAvsBZi/blBMtTto0eVZ2bnoHyc2FsM6DiFn0funsGIV7ApvNRsjbL5L6xTIsCSkEt+2NJcRA7v4D5B89hj7EG6+W0RjzvTAnp5C7czfuEV6ooiviUqsCLbs7I6kkBvqLjJ3OkcfKeItEJGRRVkLQpCHET1lY7P1K7w8m5qUlNJvTF69qgVTzEE34LLIaf60QC+oYYgGw2f8YwjRCjNmYV5mdP8TzzWuiCfhvv/3GmMWvcOWPGAqSc/GIDqD8I3Xo1luLm70J/fjodQAcPHiQunVF5oXGVU/1qGjmzp17zzeoVM4Z7z7KPlZ4UJgwYQLTp0+nQYMGrFy5kuDg4LI26b4lKysLHx8fPv30U0aOHFnW5jwwrFmzhq5du/LFF18UKy1zv7Bv3z4aNGjAgAED+PLLLzEYDP+8kMJ9Q15eHhs2bKB///5ERkYydepUUlJS+Oijjzhx4gTdunWjQYMGuLm58e2337J//36aNWtG27Zt6d69O7Vr1y7rTSjBypUr6dWrFyAyNP7euHv8+PEsWbKExMTE2wqA69u3LytWrMDPz48ffviBefPmsWrVKoxGI4888gjjx4+nTp06JZZ75513mDRJBF7Vq1ePkJAQ5s+fj6+v721s5b+Hcs6ocK+j9JRQ+E/RuXNn2gQN50j6ei4u/4KwPk+irR1508tLNtDZA1aLyiOpisovWa+OK3L8F5VkKiq35CjnJF8tmXQzWOwZE2q7H9ghTtiDdozeV4WOv4sjrpfAKc3maIBttJea1WVBoY/YCNcr14mCt9nAbJ/w7+V6Co14E8DmzZsxGo0lmsoq3B4Gg4Hqkb04fG456TkXcPeKvua4JlN3A7B5WhOcUsVntGOCcFZ2nSUiZ47liCbASRMj8ZDEwVPgLz4nWSUVu7ca1Ddln2S2iuNCJ5y4Nr2412UKG4xeGio3fYJjmz8jZfcfN7vZCvcJKpUKjY8ntpxcsFlJ2vYrvs/0wnd0DyyHW5Hy4wpS1h7DZjQiG414VfHDs6IPl/fEkPnrHk5k1qfakNqO+SLmTQcgduT4UrOxypuzOPXGC9d8r9qq/zkeH+8hHms0Grz7tMKSnYdr7fIlltGH+oBKIu1wPF7VAjmdI0r/ZRqdiPYUJdPy7cqzyq48m5xjAXjG8zJLD+aCSqJCv5o0atSIqi5NqTqqKRbb1WTVN2t+XGK9derUoeIrXYl59xecy/tz6NAhGjduzPz580lISKBjx47Ur1//1naOgoKCwj3EBx98QN++fenTpw8NGzbk4MGD+Pn5/fOCCiXw8PCgUaNGrF+/XhElSpHOnTszaNAgJkyYwBNPPOEIYrhfqF+/PtOnT2f8+PF069ZNyZh4wHBxcUGSJMxmMydPnmTevHm8/vrr7N+/n5kzZ7Jw4UL27NlDTk4OBQUFPProoxQUFDBr1izeeust9u/fT61atcp6M4rRuHFjunTpwvDhw0sIEgDVq1cnOTmZM2fOFOthcTPIssymTZsoV64cr7zyCi1btqRly5Y3texLL73EuXPnWLBgATqdjp9//hk/Pz/Wrl3LoUOHGDZsGP7+/rdkj4KCgiJKKPwH2RD/BRaLBa/wKqRuXkdo9RfobxQn79VqxAFw8ZwQKpyShcPWdIe9etUmIUIUZT+ozDiyJmT7t9BZBN86siqKMh0sNwho+atYUdSLoki4KLSL9p4xxQUH7V+yj90u2sgpd9UxZvFxFXPkGpFyRAqHbI+IlwvtKorqakSCXjKQn59Pfn6+IkqUIoH5fpxWuZKScASPIHGyVfS5HTgVDkDlBkm3Nbch2UheqJNDjFBZ7Nky9nubTu3IkFAZRVqQzVkclJLZ+vfpHCQ1EJ+/1xkrTk6iTJpzUMRt2ahwb6OR3Qh7+w3MqSkkffYFSTOWiNd9fLDm5KJ2dca5elWca9Wg2WMaNAYtusQgkhf+yuG5uzjx9RF2hkpE13PGHJ2O1vdqU06bzUZWVlaxBnY1X5gFwJFZL1Bp6ixkqxWnqimoDTryD15dVnX9w/MfSfthU4nXWm8chyXfRMzzC1FpVBRo3IhPcyJfFr+TUb6pnMux/9C6gSYpkd1LznFyQyLuLjaadfIg6jFn3h2kps1KyDqVSJOVb6Dz9eJw17dvyi6/1lXxbVkFSa1iVFINHn/8cSZ/+z4Jf5xm8uTJ+DUOp/bkDvze5fN/nkxBQUHhHqRRo0bs2rWLSpUqMWfOHF5//fWyNum+JSgoiJSUlLI244FCkiSef/55vv76a7Zs2ULbtm3L2qRbpqj2fpMmTcrYEoW7Qbdu3TCZTHz99deMGjWKZs2aodPpKFeuHAkJCZQvX57BgwfTp08f6tevj1qtxmQyUaNGDWrXrk1gYCARERH069ePkSNHFhMCcnNz0Wq1N7zOz8vLQ6fTlZpg99fSSn9nw4YNDB06lODgYLKzs7FarajVJQPrZFnm999/Z968efzxxx/UrVuXRx55hAEDBjB06FA++OADzp49i9lsvmm71Wo18+fP5/PPP8dmszFo0CCWL1/O4sWL+e6773j11Vd5//33GT9+vFLCWEHhFlBECYX/JBqNhoD6HTj38xzS/lyHe9RDyFYJjUo48E12f5hTqrgvynyw6a86/YteK8p4UFntTl215MiIKBIhpGslIkg4hImi54XeYEi2z2//fy30AX2Gfb6ijAvLX+awU5QhUZQJoc0T9yl1hKFFc2j+VkrS7aIN95P2Hhv2P1ApLQs5V0wgW61IOh0lkGUybclUrVq1mANR4c6RJAl/p0iSc2OIjktDkiSCc4Uj1H+f+Cz2Lq0HgMoH8gPFgRY1+iQA614UdS87zhQZE/FvuGP6LAgAq9M/txKStSrMblpHKTHJKLy9Fk+RoqM1WRw9JjKrl1TsrBYTyDJ6LyVa5EHkwrPjHI/lN6fRZvkQMo4lcmFrAWpXF2w5BeSfP0nevgOsXAD6EF8kF0/H74g510RitgexK/KRTe/h3qY55d1M5Gw9Ru72/RQePYPG1xvXVrXQRwaT99M+zLlZPGOMIfX4aTK2bESl11JjxUvCBlmm8GIsxksXMaUmkXP0IK8UJvPOO++UuCjISyoZcXUjrvx0EGNKHvqocC7O/YO4z35HGxKAzxPdocPV38XLexJZM2Yjrt5a6nf252yKGz8tOc+P89N45qfW9Pq8Cqtf3k3u28uoOHPYTa9/e/v3ij3/wPM0we7Z+NQL49h7f5CyK471Xb9gwGO52Gw2vv32W+VCSEFB4b4jNDSUESNGMHXqVNq3b684T28DWZbZvn07Tz75ZFmb8sBRt25dQkNDWbVq1X0pSmRlZWEwGAgPDy9rUxTuEiqVisGDBzNgwACOHDnCjh07OHXqFOXKleP06dMsXLiQDz74AIPBQNWqVfH398fX15czZ86QmJiIj48P48aN491332X+/Pm0bduWTz/9lLlz53LhwgXq1avH+++/z5YtW1izZg3u7u7UrVuXlJQUFi1axKhRo/jss88AIWSsX7+eo0ePcvbsWX766SeWLl1K9+7d73g7X331VdRqNZGRkTRs2BBnZ2fatm3LwoUL8fHxcYybMGECM2bMoG7durzwwgvs2bOHsWPHsnjxYrZv305QUBATJ07EycmJKVOm3JINarUatVrNsmXLWLZsGUajEbPZzIoVK5g4cSKbN28mIyODoUOHMmzYzZ/zKyj8V1FECYX/LGdXfcZrr/kw9Z13ce5bF41X6dTYk2RQm4XaoPqbeCCr7dHpZhmjl3hss4sPtmv4/YsoEiiKRAyXFOEQzve7voPZYhCZFFanIuXDXqbHHujgGm/D/ZRQKiSj3dCiPgF/X7/JdPWJzT6fVkOGLZkuLZQ04NLm1yuf8Pzzz/PxR8ewyRbU0u1Fnmwc0QwAY4gT2nwhLGhzxb1DRNOKgys7QqzD86zsENyuh2SxYfZ3A8DiJI4rnUiuQGWV0aAGScKYfnvZHAr3D5Ik4RzkgXOQB9l+4mJXZZSQy7XHFJ+CfOE8BeeTsGblYb1swblyVcxpqRTEC/VV0mpAZaLg5AVS537rmNeSmk7mij/RRQZjiosHYM6cOY73VS7ihyzPnEDmL+vIP3CkmF3r16/nnXfeKWFv7IgJN71t/oY8cv3VxEeFImnAvXFlXKqHk7bhOEnvLWBvSidUfj5o/b3wu1iIzSrTcm4vVvf+DhAXZd6RIaydepQOs9oQ/mo/zo5bQPwXv1MzLpbIulfF3FXNZ9+UTYFuOdhkidDOVfGrH8aht34j82QS334r9t3w4cNp167dTW+jgoKCwr3C+++/z7Zt25g4cSJbt24ta3PuO2JiYkhMTKRFixZlbcoDh9lsxmAw3LdNxF1cXDCZTMTExFCxYsWyNkfhLqLRaKhbt66jJ1kRFouFnTt3snfvXk6ePElaWhpWq5XOnTuzY8cOjh8/7ljeZDLx0ksv8emnnzqW379/P//73/+K/TZv3LjR8Tg4OBibzcb69esZO3Ysp0+fLrb+c+fOlcr2Va5cGZVKhVqt5oUXXiAoKIgPPviAFi1a8N577+Hu7k716tU5ceIENWvWZN++fY5gna1bt9KyZUvmzZvHCy+8QGZmJu+++y4hISF0796dkJCQ27JJr9fzww8/sGXLFtq3b09OTg47duxgx44dPPbYYzg7O5fKtisoPKgoja4V/tNkZWXh6x2Ac9tGePXrSmSFRACuZHgC4PyniE632ns4WAxXhYaijANtblEdJvudWkJtsjeVLgpYlYqWFw/UhTJm1+KiBHZHcNH8Zvv/l9Ug+j/8dR2u8TZUlqvZGkYPlaOUU2FRNRP7Os2uYiG3WKmY3Z5nC9FdzhTTGnRIBaarooTZ7OghUVS2ydHgWq9HNpm5SAynCnfz22+/0bFjRxRKl6ioKHIvmKlTQYg+slZoyEkPiXIx6kLx+UQOiyF5iig3VtTwuvOMPwFYP6I5AHkhTmhzhBgh2UWlIlHCYlAjqyXiW4iDyecIjuPX7YIo4VVUtsmmEzZoMvIcokRGJQNqs4zXMdFsxeYkxI0TMT+SmnGGnNw0dNfKtFH4T1F9oijBZPQS0ZwWzSny4/MwVK+I2llH7s4jpMxehtbdC13lQNTe7lhOxmAttIDZgNbbV2Tf+AfiFBCCrmoUOUcOkrpmZbH16P2CcOnShPi535RaSbmo5VcjqM4+MpmH1j3Hiam/krL1bLFxal8vui/pyo8PL3a8FvH6AOKmfkeFtmFUmtiZMwv3cO6bAwA0fLczAc0ikCTppkWJjpufB2Bdqw95Ys8wdr2/gzMrTuFazpPci5kAFBYWlmk5PeWc8e6j7GOFB5XVq1fTvXt3tmzZojjXbwGr1UqnTp04ePAg58+fx83NraxNeqA4duwYNWrU4JtvvuGxxx4ra3NumYKCAipVqkS7du1YuHBhWZujcI9hNBr5/fff8fDwoFmzZqjVaoYOHcrChQupVasWtWrVQqVSsX79emw2GxEREXh7e+Ps7EydOnWoU6cOrVq1onv37vzxx9V+giqViu7du/Pcc8/RunXru2b/mTNn6NixI7GxscVeHzhwIF9//XWx10aPHs3cuXOZN28egwYNokmTJhw6dAgfHx+2bNlC1apVb9sOWZYJCwvjypUruLi4kJeXR+/evVmxYsVtz1kaKOeMCvc6SqaEwn8aDw8PynnU4cKWXbh3bnNLy1oM9jJKzsWd/WYXKFIEihzARWKCSpToR/MXUeLv2DSiMbbeLkQYVVeFiyKn89+bWf91HUVChcVdZFNIluLr0RSIgeoCy1UxgiJhwi5KOOmR0zPF67aStacSiONU4R7CQpspgsRdolu3bnz64RysNjNq1Y0zJfwnXyDxgwo4pQjh6LexonyTxp7horLIGL3EQRQw6gIA2W+FAVezd65FTqQzkhV02UKU0CeKkl5WNwMXRokxPr+V1LXNrhpCI1oQn3yAiM4D8K7TjGMfXLvxsMJ/g2Pv/8PnPwCquYpG7aa6eeTuOk7iut32N7OxmQrJz0xFoxGnLZVGTCZ1zUpUWj02swkf/2i0o9qiCw9GkqRSdcqffWRyseebOn6M3EEmOTmZuotnYL6UCBIYalfhQHLxuraxb33DT3X60efRR0i/8iNRfaqT37MuCSsPsOeVtVR6sgEVBxaPZrsR61p96Hh8LtuHjCzxg597MRO1uzPW7HxuItZEQUFB4Z6kS5cuVK9enXfffVcRJW4Si8XC4MGD2bhxI+vWrVMEibtA1apVKV++PL/88st9KUoYDAaeeeYZ3nzzTSZNmkRUVFRZm6RwD6HX6+nWrVux1xYsWMCCBQscz4cOHcqVK1cASEhIYOzYsXz44YeO9z/77DP++OMPIiIiiI2NZcqUKTz55JMEBwffdfsrVarE6dOnSU1NJSsriz179lC9enXq1atXYuwnn3wCwFNPPcXu3buZPHkyM2fOZMeOHVSrVo3169ffdsaxxWJx7KO8PHHNHB8ff5tbpaDw30ERJRT+84Rm+nNBLWNcvp0L3qJO6JC6OwBYfKUlAIYE4fjRZV3tE/FPJW7+itVe4qZoWZtGhT5LOI6s2uJO4QK/ksvLWtDkC8ECrpbMka7je5LVgK0oK0Pcu8bbii3rGGvQIaVmiicq+0Zdq4yTvYnUJb9MTpzbRrB/XSqFdbi2AQp3zOjRo/nwww+5kLWPKL/m2NyEk9U1XggEGns5pvhZUY5m1TdDyif2rAp3sYzGKO4DdhWVcwJdppjb7FaycRiAyVtP6GLJPkYsZ/YS6UQ2u8jh6hJAQEAtEjasQO8XdNP2Kfx3Of7uX4SLflAhN5yULb+Rc+owFmsBhYWFuLqK7DVTpmj4YzMbcS0fjV+vIZz8382XZhq+b4jj8Zf1v7plWyVJIiAgAKdyHlhTEtAG+hD35KvXHNurVy+qzRhA3Ac/s/ftjcXeO7NwL7lGHdxmieoKz7VHW7MqpoQ0CmKukLfvDD4Vg6g7vTdb+8+/vUkVFBQUygiVSsUrr7zCwIED2bdvH/Xr1y9rk+5pLBYLgwYNYsWKFXz33Xf3Zb+D+wGVSsWzzz7LhAkTeOGFF+7L4/Kpp55i7ty5tGjRgri4OCWLWeGWmD9/Pj179mTSpEkcO3aMuLi4Yu+fOHECgMuXLzNjxgxefPHFf9U+nU5HcHAwPj4+7Ny5kypVqlxznEqlYvbs2VStWpXJkyfz5ZdfFnu/ffv27N+/v0T5q5tBq9Vy4cIF1q9fj9lsZvTo0ezatYsRI0YwZ86cazbkVlBQUMo3KSjQXt2fg/VSyDi0neAZE1B7uF0VJTZeFSXyqhrRx+pxSrEvWNT8uqjskvDjosuRHRkRJje7AGC/KxIlVPYWDdp8GYteKjZfTjn7Ivb5NAVXszCKRAmXBBlNoYzRXSxr9JIcvSLMwmeH1SC+2vp0McbzrM0+h/350Swkq72kT1FPidw8IUyYTMhm8VpR2SZVcCBJuTEcTFxFQERDqgd1RpJUrN9ePIpYofQI11blivUs7SqPw+ZhAKAgyJl8XzXuF+1ZEGabo+m0VCROFB1SJvH55kS64vNsLABpsyPEEGtxUcJsEAegIdmIyav4hUqRAKJLEwei0deArCoSJdRoc6zoMoU96nxxb/Z0IrG+E6c/ewPv2k1J3rGuFPaIwn+RrKwsZFnG09PT8VrNsTPJT4hF5eeF1k28fnzajbMxGv72KhW9UrBZbZxZcoD0mAwqdIgkuo0/KrWKj+p8e8Pl/07kJzMouHiQpOlLUXu4YkrPQqW6tlo99XhXTuQGYc4zsWu/C8YLCeT8sQdJrSJ4dDdixnx2S+u+FuEzRnNxvJgnYkB9op5qzvqHZt3xvLeKcs5491H2scKDjMVioWbNmoSEhLB+/fqyNueeZtiwYSxevJjly5fTq1evsjbngaawsJDatWtTv379EiVh7hd27NhBs2bNbtvpqqBgs9lISUnBy8urmLCVk5PDwYMHqVu3riOA6GZJTExk3Lhx+Pj48OSTT1KnTp3btq+o7NTEiRN57733bjhWlkXWc0xMDOvWrePnn38mOjqaRYsWlUrG9RtvvMFbb70FwM6dO2ncuPEdz3k7KOeMCvc6SqaEwn+e9dZltKk2nq22neQv2Exwm94s1ooyIjXqilI3hy+E3tKcRWKELreo4bW9P4PdkVvgK2HTgMVZQptz7TmKhA2VCUdpJp0o24+msLiWaNVf7TtR1FtC+luJpwIf4SwrirRPaeiJ336xkEOUALDZQKVCsqv5sr05lNVm5mTqBrwCqlChdm8KJRXbfhz/D3tC4U5wkV2xymbknFzyo30AKPC5tSgLk5cTXmPisNhTe3JCxL3b5eKZMxpjyTJdRagLxTEj25ti5wVpcb0iDtCiXhVFWJ11qArM2HRqfGKsqKwyzhm3kFb0NyqveNPRoOxU79dvex6F+xcPD48Srx356PYjsIwZhRyYewiA2A1xnGkYQMOnqtHgpVdIGeSKXGjip/o98PPzIyws7P/s3Xd4FOX2wPHvzPZseiX03qsoFgRFLIBiw4oFKyr2rlev93q9PzsqlqvYsKFiQ1RARRELWFCadEIvKaQn23dmfn/MZpOQ0BM2wPk8zzyQ3SnvbHY3u++Zc84u91X500oAtLJKFixYsNOrJx/o8RUAl/x+Lc722TjbZ5M5rPc+n0N9HG2b0e6Ne8lStuJqkdyg+xZCiAPFarXy6KOPcs455/Ddd9/tcymNQ928efN48803efXVVyUgcQA4nU46dOhAeXl5rIeyz6o+T+/PhKthGNH9iMOPqqpkZWXVuT0hIYHBgwfv0z5nzZrF+++/D5jlle6++26uuOIKkpKSaNGiBfn5+axcuZKjjz4ap9O50/2EQiGmTZsGwNtvv81jjz2204uFoDrrOSsri+OPP55HHnlkn8a/Mw8//DBjxoxB0zQpmSbELkhQQgjAbnXRLuNYcpb8RFq/QZBvNhNe5GkDwKtDzaZgU7v3Z9aabgAk/GJeue4ujTQMjny+C7uUaBBhZ3S1unl2VTNse6X5b1Uwotb6VgikQeryqsYRkSCHpe4f2qpsjKqr5a2e2vd7M8yJ5areEjX3R1X/CKvVvE2rnqhe6/2LgOahf9pJ/DL1nl2foGgQpfp2XNYk1Li4aH+Sqn+rAlxmTwjzeWDxmGW31DKzQbW/ffpuj1FVhkyNNLfWXFZcW83twwn1p3Ynrvez9iLzvmY/V30xMX925lY/4Sw+HcNuwZO684DHrqxZs4Z11z9L+kUnkTSk7z7tQ4gqnZPzyflmE5tm5ZB+dBsKf99IVs80SjaW8+m1s4HZWBemEC6roH/oP6h2B2tXraRt27b17k/z+vAuXkrCoOOo+OVXhlx/PZkXj2btnTsPmEw++jU4unHOb/WofzbOjoUQ4gA766yzOOaYY7j33nv5448/pOzFDgKBALfeeitHHHEEV199dayHc1jweDwsXLiQCy64INZD2WdVfbkCkSz4vfXmm2/yyCOP8O2339KpU6eGHJo4DFVWVvLkk0+ycuVKunbtysqVKznzzDN54YUXeOqppwCitwMMHz6cL7/8cqd/D7788kuKi4t58MEH+e9//8vnn3/Oueeee8DOpz7t27eP6fGFOBjs++WrQhxCvl78CIvWfoXDlkDhZ1P2ulFoeVsFe6WBvdLA6jUIJkEwCSpaKVS0UggkqQSSVDyZCp7M+q8usQQMLAGDhI2RZbO5GJGARE3hOBXNoRBMgGACZhBEIRqIAFA0BUVTCMdVZ0/slNViLvFuc4kOSkVJTmKLbTPr8n6mffMTiHNn7tVjI/beqbaL6Gk5mlxjA+1SBuzVtsH0OLDbwG7DEtCwBDTKn2lFRdBBRdCBZWgxlqHFFF3koegiT737KO/kpryTG8UwUAwDa7EHa7EH1RdC9dWOmuUNMsgbbKBq5mLYLBg2C4phUNDPji05jVCk/v/eevTRRwkXlpH/yhcEtxVxinr+Pu1HCIDFE//i9399R7DYQ/mWMPHHHE2nynMYmHgzvQfdSKd+F+Lo2pakMwaTfsSJ6MEAc+bM2en+AgU5GIEA7q49SDrhRDxL/iZUuG/PdSGEENUUReHpp59mwYIFvPTSS7EeTpNSUVHBpZdeyt9//83LL7+8yyuBRcPQNI0xY8ZQVlbGuHHjYj2cfVY1Qbp27dp92v6mm25iw4YNXHnllWiatvsNhNgJv9/PiSeeyFNPPcW2bdvIyMjggQce4MMPP6SwsJDp06fzwgsv0LNnT1555RWOPfZYvv32W4qLi3e6z08//RS73c5//vMfunTpwpNPPomu79uFcUKIA0cyJYSIiIuLo7t+BAvKZpP80R9kdDyawr5mJH7cZ9cAoMXrPDr0YwAetp8OQHBBwm73XdbJDHI48yOlcvwQjFyEbvHtfDtfmpl1UdWDQotkQexYvimYBEbk1ewoMf8NpNTelxG5qCAYydBI2BwGrXbmRZTVAg5zgOv15aze+gPN0nvTLvuEXZ+oaBDlRgnL9fm0dHWnVWIfMAxCbvNLpy2S4WIrC0bX11zmLz+YvrvoEygzUgEI9DS/TOSdZV4t1e4187npT99J4ztVhZC5TWknF2qkF4Xu3OHDXuS7scUTxtfChpLsIsTeX5HV8V9PsHnGTFxduxLM3Ubw5q9Akfq3Yt8cOehOlv6ymLanduD4/5zI3F+70+WlPIx48021+SYbkE2buF7kL/+bFRu+wh6fyoUXXrjTfWqFBQDYMjNxtm1H+dy5eJYuPRCnI4QQh7yBAwdyww038I9//IOzzjqLNm3axHpITcJZZ53FDz/8wPvvv8+AAXt34YrYN0888QRTp05l6tSpdO7cOdbD2WdVvbkqKnZSO3gnDMPg77//xufzcc011/D666/z7bffMnz48EYYpTgc3Hnnnfz111/8/PPPHH/88XXuHzFiBGAGwm699VZ+/fVXrrvuOjIyMna6zy1bttCrVy/AfM2effbZrFu3TkonCdHEyaUVQtSQbmmOS4mncN1fu123e1Y+3bPy6XPGCvqcsYKSziolnVUM1ezxoDkg7DKX+jiLwFlINJPB01zB01yhpBuUdIsEJHZQ0Vahoq1CZQuVyhYquh30HeaQbRXm4so3l5rKO+jR41k94ehV7VUMlx3DZQeng3BmEuHMJHILFpKc2JYenUYxa/6/+PYPqevf2Nbry3ERT/fEQXtUt9VaEcRaEcRWbi66w4busEUzHGweDf+HzfB/2Gyn+9DtKrpdxVEcIi7PXKzlAazlATMgsYO2XwVp+1UQVANUI7p9rXGVq6i6FfzhOtvvTKeP/0v2XRez9j/3EdxeQLNjhpPctT95Sdt3v7E4rJWXl9M9cRCZCZ3omH48p3Yxe94MHv44q5ZMASAj5zi2j82my0t51RvqgG6AbmDdXkHB1oWEAx46n3YdLtdO3sCBUG4R9qxmOOLTsCpOVJcTvdxDSUlJY56mEEIcNv75z3/i8Xj47LPPYj2UJmHjxo388MMPPP3001x88cWxHs5hwev18thjj3Hbbbdx5plnxno4+8VisWCxWPa6fNPVV19Nnz596N27N8899xxdunSJ1u4XYmdWrVrFAw88wPDhw/nss8+ilShWr17N//73P7p160afPn12uQ9d13n++ecBov/uTE5ODsOGDUNRFFq0aAFAfn4+ZWVlDXA2QojGIpkSQtSgB/wkGamUFOWT/Ns2Cvs1B8BRaE4MKwUWHlt1EQAdR+XsdD/xmw28WUq0v4PFb26vR/pO2AoNQu76J5u1TLM8jk81N3blKSiRDFmjxis2mAS6vTrDQdFq788X6UFliXzuLO9Q+4r2wr4usubVvlJG8ZorG+7qJlLBkId777yWhx+WYMSBUFpaynZjG52t/VBtDrCZv/TEtWappVCi+SRSwubv07DtPrasBjTc2yKBgapeIz5zv/aKqmZ3dQMHqrcqRSfy3Il8mMz8YRuBdtU1xVrNUKLraHHm89ZSaT6PFZsN68ai3Y6xptD2UgCyzr0Yd2orAhn5aL9XsOp/DdsYWBwaDMOgS+aJrCn8CYAUV0vWFf9GfsUqeo1JJLh1KZXlW2k3+hZSF8VDWK8OtNV8W9Q0PIEiCj3radH2eFK9ybs8rjXZhV5SQfa8MJtOU7G3a03Z73NJTU0l9ZwzKfqsaX5hX7x4MV26dNlls0AhhGgKUlJSSE9PZ6lkoQFQGCkROGTIkBiP5PDxxRdfUFlZeVCXbaopLi5ulyVwdqTrOkuWLAHMmv1ut5tevXqRk7Pz78Hi8FZRUcGoUaOYNWsWAAMGDGDUqFGMHTuWV155hXvvvZe2bdvy559/Ehe36yz/V199FYA5c+Zgt+8kmz8iPT2dvDzzoqMuXbqQlJTE6aefjqZpzJ07l969m973yEAgwMqVK3cbnBHiUCaZEkLsoB1dCWpe/tr2CVplZfT2lt9V0PxnD84SA2eJwaqZHVk1syO/Lu7Mr4s7M3b0TMaOnklxT/Bm7fzq9vjNBu4CDWepgbPUQNFA0SCQbBBIrtvLIpRQnU0RdhmEXWbPiprUoIJhqS7RVFOgdZBA6yCGxcCw1N6/YVXNJZIxYTiq/9hrLiuay4pqseHz7aLGlGhQf/75JwY66Wrzna7jyK9E0XUUXUf1hlBCmrn4w+YS6QWBqtab5VDFnRvGvcWLe4sXiy+MxRdGt+38uaslu9GS3aAo2PMqsOdVmAGJGmzFPmzFPiyVftp+VUFWUTIVntzd1p4ddPZTHH/WExS+M5eid78h/pgBJPY9EgBnQiRVd7t8ARJ1dc88ORqQ6Jt8Gke3uZTj2l6B3xJgxYePs/pvs+Reh98UlFAk+KbroOsoHi+KxwuR5+eGkvloRog2bU9E1XbdWyhhiRNdC2EYZmQjedgpWFOScfXoRvHUL5g4cWIjnfG+Ky0tpW/fvrhcLsrLy2M9HCGE2CWn08l9993Hm2++yb///e/Dvj541QSefC4/cObOnUvnzp3p0KFDrIfSILp168b8+fP3aN2ioiJGjhzJX3/9xdSpU2ndujUAHTt2ZMmSJfI8FHWEw2HOPfdcZs2aRWpqKkuXLuW3337j9ddf59VXX6Vly5Z8/vnnZGdn7zYgAfDwww9z5JFHcsIJuy8h7XA48HjMi/gSEhJ46KGH6N27N+3ateOEE05gxYoV+31+De3jjz+mb9++3HjjjbEeihAxI5kSQuzArSTSzziev72/Uf7fJ+nUfgTNE3rAbsrovLjE/GN5yck/M3n2IKC6h0TV1enubdWTXM4SDX+KhYQtBkU9FIxI1oM137zS3FppblQzO6L95+aHPz1ydfzWE5yRn8EeyUysKhdli8RTwpGMibhtZsRCiczJaXbQneZtasiGEjCvbDccdvQ4O+VtIwGKhXa8Xu8uz100nM8++wyHEofbkQr+6vRqSyQTYcdG0/VRtpvlYyqOMesvJ8xdhzXNbDKiJZtPEGUn3+sd273oDvM5qMVHnl9VzxN/dWBBqTSfi878yP6MegJeGOQVLyUtuSMWSz0Rs4ijL3+GcEUBW3N+pHTTnyQNO5nkYacQUnUCqRqFc34AoOSHVSAJO6KG3s1OZ2XhbNok9qNr/ECz3FmllwTcdDrzRkrWLMC2ahsGoAbD4HJUByYAwpHndCQokeFow1aWsmTeK3TMOJ5QKITNZqv32EYkzUJXDLo9mwdYKD/+bgzDYEHRs9z1wis8k+9l1UO3N+IjsHdqloP7+eefOf3002M4GiGE2L3bb78dn8/HQw89xDfffMPLL79M3759Yz2smKgqKSifyw8MTdOYOnUqI0eOjPVQGsSaNWuYP39+9OrznQmFQsyfP59rr72W/Px8Zs6cybBhwwBYt24dL730EhUVFcyZM0f6SogowzC4+OKL+eGHH/jmm2849dRTo/ddffXVZGVl8dtvv7Fx48Y97odz3nnn8eKLL3Leeedx3333ceSRR+503XA4TDhc/Rn/jjvu4I477mDDhg20a9eOhQsX0q1bt30/wUZQFWj/3//+x3PPPbfT7xxCHMr2Kihh7NgMV4hDVKqSyYYt6zmixdEsX/Uxua7f6JFxCpbuXUheY07G+lPM6H7yUnOytaJuj6aoxI21XztKSMeXYQMDinrWDXaE08NokYlgRVPQ3XWvMteclmh5qPommKuCE84NtVMdPe2qJuEge54e7QNgOGzR0jue5o7o+roe3uWEsmg4p9ou4sfw5zS3d0JRdshwKC4FQLGYtyvWyNu33Q6RK7WjZZZ2wVpifpG1VPjN/VSYP6sJ5vO5Zo8RAEtBCRbVvE1PcpvruOwoFTUmdhXMmvyA7jTHpXqDbNv8O5XefLq2r78G799//82p195L5boVVG7fACh06XU+zehPbpm5H2+oBO8CM23c1iJzt+cnDg+hUIg+R1zOivwZZMS1p2vqEJSQGbCrGNAKgGZFYZqlDsGRWqN/RIUZrQ23ywbAusl8HRB5j8u0tObYjAtY7vmFRVs/J8XdjLanXI47rRW/v3NHrTEU5C0mvXkvVNWCp3v1c1NRFGwpaWiVTS8TISkpifHjx3PnnXfy7LPPMmLEiD3qW7MnDMMgJyeHH374oUH2J4QQAKqq8uCDDzJ48GBuuOEG+vfvz80338zDDz9MUlLS7ndwCKnqBWC1ynWFB8Iff/zB1q1bufTSS2M9lP2maRq33347LVu25JJLLql3nalTpzJv3jymTJnC5s2byc7OZu7cuXTp0iW6zpdffhltlN3UJnhF7Pj9fm666SY++eQTJk6cWCsgUeWMM87gjDPO2Kv9vvDCCxx33HHcd999HHXUUVxwwQW88sorpKSk1Fpv1apVLFy4kH/+85919pGdnY3T6YyWdmpKhg4dSp8+fVi8eDHTp0/n7LPPbrB9h8Nh5syZc9hnGIqmb6/KN0lQQhzqZukfR5fmzZvTSzmGfhxPIFzJL5smsXLJR3h9tevjB1LMxbI2DsvaOD5f35uBxyxn4DHL0W1EAwc78mYpeLMUwtlBwtlB9AQNPUEjnF63tn/nN3x0fsPH2gucrL3AGQ1Y1BRyR5ZEc6kSTDQIJhp4m2t4m0cCEmr1a1kN6ug2C7rNglKjXIk3S6EyNUSgvJCePXvuxaMo9lXQCBAkQKKWhO7zm2VhgkFz2ROqYi4R8StLiF9ZApqOUlaBUlax002VQBglEEYtKseaV4o1rxRLQd2GvWrudpTicrw9s/H2zI5mAUXPIcWJL1FlQ8HvLN/2NS0yjyQ5oXW9xzxuxCgK/voeh0+lb4tzOLHjjQSvPppNw6yE3ZHMoZQUUFUsCQkk9Ry4Z4+DOGSdMOJJehxxOXa7nRVLPwQgw94aJRw2s9lqTLBXlRjDYTcXnz+aGWGp8GGp8EGC21yqxLlIsKVxdMIZHNtsNBbFyvKvX2Tb39/R77x/RVdbt24d/rICsqua91QdsyyMvSxMWlwHfJs24F7Y9Jpe33zzzQB8//33fPjhhw2yzzVr1tC2bVs6d+7Mdddd1yD7FEKImgYPHsyiRYt4/PHHee2112jfvj2PP/44lTVKrR7q/v77bwD5XH6ALF++HFVV6d+/f6yHsl82bdrEJZdcwsyZM3nxxRejGTc1lZeXM2rUKN555x1OO+00fvnlF1atWlUrIAFEa9//85//pG3btgdi+KIJMwyDa6+9FpfLxRtvvAHAaaed1qDHuPjii1m3bh3vvvsus2bNYsCAAUyePBm/3x9dZ+bMmVgsFoYOHVpne4fDwXHHHcenn37a5CboW7RowXPPPQfAOeecs1f9Xnblgw8+wGazccoppzBq1KgG2acQjWWvghLqLmqTC3EomqV/zALjZ4orcnn++QmUbFvGrwsmsHz1Z6T9kEf2L/VP8i7KbwFAj9PW0OO0NZS1VyhrrxBINJfCXnUbNSX/ZSP5LxtJi8yl/dQg7acGaf5T9R/Pju970F06G86wsOEMC8FknWBypMGwC7xtNELxBqF4A82to7kjzZCtBvZMH/ZMXzQgkbDWgm5V0K0K2wZVT8opmoEaMgimGHiCeWAY0nzpANExJ0xVLBiaBsGQmYGgG+gts9Bb1pgA1TRz8fnAG1l2JRQyl0ovVHpRfEEUXxCsVnOpKRLcMJLiMZLizUwMQ0fN3R5dJW7hZlwby8i5yEXORS50hxWPXs7alV/x2w+Psqrge5IGHMvGbb8xa96DdYZz1LvX4sldT9aAYRzZ7mKaOTvgNJzoTh3daT5vw24D7/JloOuknjWS9ffdu28PrDhkeCryWbmkeiK9uasrreJ6QJwLb68WeHu1wFkYxFlYHcgznDaCLZIJ9myD57gOeAa0rd5hIGQuVa8ngDgXestMkowkjk4+i7R2/diyaCaLp/4fHY8djWEYvPTSS9gsLjLj2hO/OBd3TgnunBIsAQ1LQCOlZU8UVWX9/E9p//z4A/To7Bmbzca8efO46aabOOWUU/ZrX5f/fhUj3hzJyf+5nE2bNgEc9JM3Qoimy2azcffdd7N69WouuugiHnroIdq1a8f48eMPi4vnlixZQrNmzcjIyIj1UA4LgUAAi8VyUGamGIbBDz/8wDnnnEO7du2YMWMGH374IWeeWX/28uTJkzEMg59//pnXXnuNgQMHkpCQUGe9t956C7vdzi233NLYpyAOAi+88AKvv/569OePP/6YNm3aNPhxLBYLl156KfPnz8ftdnPppZfStWtXVq9eTSgU4pVXXuG8884jMTGx3u3HjBnDvHnzmDRpUoOPbX+deOKJTJgwgWeffbZOBsje8nq9zJ49m7fffjt622233bafIxSicR18f2GFiAGHw8HNN9/MtLt+YYuWw+rtCwn7Kujb8hxaTzcnstaPSgbA67PjXBjHApLpeuaaWvvxp5tllZLWGnia77pkhm41g4B5R1to96WZGbFmTI1ghk1HcZtZFcEkMDxmSoYeV1XKx/ynVmUOhWiza18zg22DzStl1ABsG+TGUasvhUEgkubYo0eP3T5GYv/ZNTsKKj69ApRme7aRO66690RVrfzIL10p2sVV2oGgefV4pJwNkWZjhjsOJbBDZkaklJTeygyKqPklGMnx0bsNw2Djmlnk5M5BjXMRP2QAqb2Ox5aaVm/pr8Hf303BrGWoFisZXY/FWBJAS3DWWie5u5mRVDR7Jda0RBLP6FJnP+LwU77gZ1RdoU/CqazzLaKF2h68foivfj4qIfM9MJhpfplWqsqaGQb20khPlhoXSgVbp6Lo5pcANWi+ceoOKypgUawc6T+GUHY/5us/sPa3D3C4pxPyldOy44koianogBKsneEW6JFKhud0Cn74iiSfj/bPj2fdLXc2/AOyj4499liOPfbY/d7PsveWsuBFs2GmYlHpO+EiZl/28mFXUkUIcWC1aNGCl156iXvvvZcHHniAu+66i4SEBMaOHRvroTWqpUuXSpbEAdSuXTtCoRC5ubm0atUq1sPZYxUVFZx77rl89913dO/enZdeeolLL72U+BqflXY0ceJERo0aRefOnXe5759++olrrrmG9PT0hh62OAhNnjyZ8847j44dO7JixQoGDRrUqMfr0KEDCxcuZMmSJQwdOpSuXbuSmZlJQUEBr7322k63u/zyy3nzzTf56KOPuPrqqxt1jPuiIYJ8hmFw6qmnMnfuXMDMavrll1/QdZ3//ve/+71/IRqLBCWE2AvfBaZwino+BhqrKxczd90b9OlwAfGuGlcsbXZR2dmc+Fr8cycAjCQzEKAGqyME7m1mYEItMYMJVT0gPH3MVMTUFdWZSZYys+6/PSUy2VZcewI3IcmHx2oeQyurDlwYDh3Ckf3UCE5YS62ogeob1EgAIxRJmFB0MMIGZT/Owd68BW53jfImotEoioLDcFJibKel0R4jGETJNgMB4SSzz4dNSzXX9VdNru4iDTUlMjEYCEVLQIVbml8irNvrqXcfCKBYLdH+EEpJJBNohyvEQu1q9HZI81P6/teU5f5C+2aD+Hvt18RFAhy7YnHaMAB3hQ2obujderp57Kz7zPTVlXlF2LLTUSRT77B26rGPYBg6paF8HGocWY52ZDnaEezZhhCg21UsodqvBXuhBwAj8txRA+ZrJpQRj+42X09aRvV7m8UbQrdXP9dDnc2MN9uqLdhQ6TbkGsrycyjZtpyEzPa0DbZH3VqMnpVSax8A3tZ2jOJk+E5DDwTZcG/dbKFDQeEyM3tKsaoYukFcy/27wksIIfZG69atefvtt8nNzeW6665j1qxZTJ48Gbu9bkbywW7p0qVMnz6df/zjH7EeymEjO9vsP/Xjjz8eNH0liouLGT58OCtXruTLL7/k9NNP36PeUfHx8bv9/F5ZWcm2bdvo2rVrQw1XHMQKCgpYtWoVJ554Io899tgBO66iKPTp04ecnBw+/fRTFi1axLXXXkvv3r13uV379u1ZsmTJARrlgadpGn/99Vf054yMDOLj4ykvb3o97oSoSYISQuylWfrHAByjnMLC4M+sD/xNhy5n4Yi0mvBm190mfqP5YbD8aDPgoK50YAkZJOcY5KfV/0Fx8ylmsKLNTH+t23VdAYc5+eZyV0/mZqSYE8iFqjnJFqqo/kLW4juFrSPMSThrafXLvqpBdjCS6WiPZEp4WhiEC0oI5ufR7IprdvJIiMbQgZ4s4w82kkJ7etW7TmmvFFJ+3Gj+YLVAXCSiVVW6YBdfPqybCjC8PjNLAqg8ph0A8fM31VnXiNTa97VPNncbmfS1+swoVri0iMK7v6ByWw4tjjubtXOn7tE5Ok7ZQKIRRsePr2I7CbgwIplBBf3N52cWEKwI4FuylozLTsZqrdvsXRxeVm/8hu2hzfRoeTqh9nX7lFg84ci/gVq3K5GyTFqiE8Na3TvHUulHCUWa/lhqv2ZC8VbsJbUzhsLxVtzxXUloY34ZV1aaWUZqfgnYzOetllT9hd6SZL6xBhavovt9z7D88dqNsg8F1rOHk+L4A4fuJfPELjgSD72JQCFE06aqKrNmzeL1119n7Nix3HDDDZx00kmxHlaDmzVrFhaLhfvuuy/WQzls9OnThwsuuIDrrruOHj160K9fv1gPaZdmzZrFNddcg8fj4YcffuCII47Y4227dOnCb7/9tst1pk+fTiAQ2OtmxeLQEwwGGTRoEC6XiyuuuCImY0hOTt6rrIfs7Gw++eQT1q1bR/v27RtxZLFhtVp55513+Pzzz0lPT5cSa+KgIZeeCrGPEpRkEknF7ykk/q8tJG7SSdykk7HQQAmoKAGVcFaQcNaumxSnLTaX1NVhUlfXLgESzgxhK/KCxQIWixmQqKHFU1ZaPGUlGKoONKQnecx+r6q5tPjO3KbFDAsWVxgtxVx0h0HYCeEaSReeNjqeNjq29pUEKwsBsGdkIg6cbKU1bejMWpbiD1ZCpQcqPdhKfNhKfJT22oMrkSsqoaISLTkOLTkOPJ5oE2Cjnt4T8b9vqP5B1zFcDgyXo9Y6rs0VWPwaFr9GzoV2giXb+XP1OwTKttN+2DVs2cOABJiBvbmV32J32zAyvwQg5LYSclc/j52WENt/ycHQNI47J5Ujmm/Z4/2LQ8ewPv/ktN4Psr1kJZvz/6BTsxNomdoXa6EHa6EHW5G5WPzVQSs9zo4eZzeDdDVrjCsKiqajaDqWykiAOBDCcFqjrw81GEYNhnEU+bGWmhlqlcd1oPK4DqQtKidtUfXVRpbN26PHMBJrZ5M1n63Qbn0b4nr3ouCzj9jw3gu0vfTmRnykYsPZJpPs68+g+33DSI8EOIUQ4kBTFIUxY8ZgsVhYs2bN7jc4CFVNpDkcjt2vLBqEoihMmjSJTp06Nfm67F999RUjR46kc+fO/Pbbb3sVkAA499xzWb58OfPmzdvpOh9++CFHHXUU7drJ3/vDWSgU4u6772bNmjV8++23dOvWLdZD2iM333wzCQkJdOnShSuvvJLc3NxYD6nBnX/++UyePJkJEybQoUOHWA9HiD0imRJC7Ic44iksyoV6siMAHJvMq0atkWSH4zuuBWD1N93rrGutjEyqlZjbhDND1XcaBoFm8YTKzThilzfMHRqqGXBIcPlx282rgzcVmuV9bPFBtLBK3nmR/RiRgEakp0Q4QceKihpQCEbKQhmJ4cjhDCp++x3F6URtlrxHj4VoOG3owibWkMcm2mNeEa6EzOdHwoYdggpajZI14dpBrVoifSeUrEgN2Egpm1oBiQgjUsKmqtyNa3Pthu5tJ+by0+r/oca5yLxrLGv/8eQenVdNbrebRFqx7bMgzdoGwRIHmkGHIesBCOpW1n69jsx+2cRlSvmwQ93wlrfUev4+O+cWTh54MZoWpNS7FX+ojIzEzrRJPgrCNZ7zmoESCGILhNHjzYmaqufvzjKGLKXe6H1aUiTLKFIGzbDV7oFiLfUSF3kdRHu1RA7vObI1cT+vRnGZkV0j0Y3qMYPQutW8LfPKMfhWrKTsy2/YOPklMv5ezIZ5Mw9YSbwlS5bw999/c/rpp5OcnNzg+1921r/r3CZp4kKIWLDb7bRt25acnJxYD6XBFRYWMm3aNAYOHBjroRx24uLiuOOOOxgzZgxr165tkhN9kydP5tJLL2XkyJF8/PHH+xS4OvnkkwFYvnw5xx13XJ37i4uLmT59Ok899dR+j1ccfKZOnconn3xCeXk5P/74Ix6Ph2effZZeverP6m+KmjVrxurVq3nttdd47LHHmDZtGs8//zyXXHLJHpU421+GYTB9+nQURWH48OGoUppYCECCEkLsFxt2QmE/Wm4etgozMhFXEcIbmUQN1HNR++KC5iRV6Gh284+fWs88cpsZGtZIKRJfywTUsFHrfsNi/hEz6vlblhxvXt1bVGo2M7NYatdZ14IWLI4wmtecfNMdBqREsjk0c4dlX/+GZ+Ei0q+9BGPnPdFEA6sqDQZwySWXMPX9L2hT0gNFUVGTEna+oc9P5ZGtcP+82vw50hNCXRkp8ZSeCqV1JwrLjswmaf5WAIwk8xftaZdI3IbqIIShKGjuSKAskslQsTUPIxAk86Fb2bYPAYm2bz1BaHsxxd5NtEuv0WzXopAdZ46zYJtGwV9bOfLewUw+eueNy8TBb3jLW/CFyynybSSkB8j159Ct28vYrW7cjjQyEzuTltSR9ISOWIrLgSDYbXX2o1ZGyjZZzCBCVYCh6l8lpKFWlXYKR4LARu33VtUbRI+zo/rDaInO6HZQ3ZvCEtjh/djnj/Zf8fVsjjPXE72v0xQv0Bq97TWsaPcX2+Z9QWrzNvhKCg7Il5FBIy6kfOtKLI442g6+CP1KczJl3cVSk1wIcehJS0ujtLQ01sNoUJqmMXr0aHw+H08+ufefucT+O//887njjjt48cUXefbZZ2M9nDp+/vlnunfvzueff77Pny3eeecdAPr371/v/Z988gmapnHhhRfu8zjFwcEwDH799VcWL17M5s2befvtt9m2bRvdunWjZcuW3HvvvZx11ln07Nkz1kPda263m9tuu43LLruMm2++mcsuu4yFCxcyfvz4Rj92MBhk5MiRABx77LFMnjxZso6EQIISQuwXC1Y06kYVEjZHau67zcmwYGRif3FB8+ptgwaaXYlOcIUSzHXbzKhdO3/zKVYSOpYAoBTVjhAEUs3J4q6p69nmNeuXJzr9lHzUCnWIp9a6Toc5UadFAg/WVD9afO2rggmohAqLyX/zWxJOGoT7yD67ewhEI7ntttt4//33yQutJ9vSFirNYJMl0nuh4mgzg0ING9GMmXpZVIyiEpRI34lAS7P5tT+l7qQuhoF7XRmKzwxSGbbafyIcxeaErmZNRkHhJpL36dwMTaPojY+xqQ7apQ4AVUW3muewviKVdgnFrPpuC4pFxX1c3awiceg4JfMaVnp+Zat3BQbme2G6vRU9M4eR6e6A3RIHVosZEAjVeG8MhsDpiDZwJxyGqisDNR3DvsN7W0RVFkXVc9xS7EFPcKIEI+/jioLqDYKqYqgqiq6jRDIzDEvtfepWBc/gzuZ9qkLCn2aJMX+2m6RVZpCiKghipLrJ7HsiocpSti/5iRbXjiX3jdf39WHbY1k9B1O+dSVawMvaWW+SnHgSyecMof0Hj0pgQghxyHG73Xg8nt2veBCZOHEi33//Pd9++y2tWrWK9XAOSy6Xi+uvv54JEyZw77330qxZs1gPqZbOnTvz+uuvs2TJEvr27bvX2xcXFzN27FguueSSnfbN+OijjzjppJOa3LmLhrV8+XKuueYafv31V8B87l955ZWceuqpnHHGGVgs9X++PtikpaXx/vvv89tvvzFhwgTuuuuuaGP7xuJwOLjtttt47rnn+PXXX+nfvz+ffPLJIdkDSYi9ITlDQuwHFQs6GrqmozvUyFL3j7UWBzYfVJS5qChzYfVqOIqDxOXVbshqWBTyjrGRd4wN1a+h+msHKAxNwdAUcq5Xybm++uUb1K0k2gMk2gOUfGR+YUn8wU3ibDe6rtTqRZGRXElGciXpSR7S08yJM8VioFgMju61ltah+aDrJI04mQ1j72bD2Lsb7PESe+6oo44ig+asCi8gZAR2ul7VZD6A0SYbo002SmI8SmI8WOq+xTtWbMNe4MFRGsZRGsbfKQt/p6w6V4wDKL4Aii+ApdSHpbS6bJTbmU5a38E89thjnNL7/r0+t/KZPxFYtZ5sV2eslUECWfG411dncqyvSGXrD+uI792OEiV9r/cvmrZQKET/+NPolXgivxV/Rq5vDV0SB3Jyq3Gc1HIsR7a+iJaJvcyARIQS1lDCGrhd5uKsUZrAHmmubFHNIFxVQELXzSXS90EJ69W9VVx2DJcdPaFGU516GKqK5naguauPZ6vQsFVoGAo4C6t7BlUc2RLXlnJcW8pRi2pnJlk8QRK2hOnSejhx3bqz/aMptH+i8UsgJLboQrsTLzUbDAGln84mf/x7aJ66vWWEEOJg53Q68fkOrfe3n376ieOPP56hQ4fGeiiHtdtvvx2n08mtt96KUc9n5li66aab6NixI4888sg+bT9ixAgURdlpw+LCwkLmzJnDeeedtx+jFE3V1q1b+eabb3jwwQc57rjjKCsrY/r06VRWVpKfn89LL73EWWeddcgEJGqaM2cO6enpPPDAAwfkeOPHj2fMmDEAlJSUMHToUB5//PEm954ixIEkQQkh9kMAHw5c0TqEjsIAGOBPseBPsRBINggkGziL6m6rW1V0q1o9wWWpfbX7thMS2HZCAlaPQtnGZMo2JkfvS02rJDWtEsvN+VhuzgfArmr8Pbcj1rO2Yz1rO5GLjrHbw9jtYTRdRdPNl3yWu7o8T3paBXZHGLsjTMHCbax4ZyGuzHiOOLqgAR8psS+60BcDnYXBnzACAQgGMSwWDIsFW6WGrVLb6bZGotvsNxHpOWF4feaSllRnXefmUkKpcYRS49DiHdWTuRGKL4ASCqPbVHSbSt7gZFK6H0VlZSU5eT/u9XkF/lxDfPdedE06HiMtKfrcd68vJ9nhx+kpxrNsE0kDu+71vkXTN3bsWBZ4vmVpxY+4LAkcnX4ubeP7YlXt2F3J0cABgaC5hGpko+mG2Q+lqol1VUACzGyiSi9KUEMJVr82lGAYxR+uP/Dmj9xXRTPXMSwKaiAUXQDzE5MKlpCOJVT9+nAWBnHl+3Hl+yntnRq9XS0qj74GS3sm4ygKoqgWUk47Da2yko3/eZiWV91AKFSjf1AD+/ONO1j3w7u0P/s6rC4z0863cBW5d7xEILDzYKcQQhyMtm7d2uhXux4ouq7z/PPPM3PmTPr0kczlWEtLS+P555/no48+4rnnnov1cGqx2+2MHj2azz77jI0bN+7VtsXFxfz++++89dZb0b4SO5o2bRq6rnP22Wc3wGhFU6LrOi1btmTYsGE8//zzXHbZZcybN48RI0bgdrtJSNhF+eBDQOvWrbn++uuZNGkSl19+OWvWrGnU46mqyqRJk2oFEO+//37uueeeRj2uEE2ZBCWE2A8+KnHhBkM3AxI7SF6loIYVSrsYlHYxSP7VSfKvTmzlwTrr2kvD2EvDWHxg2eEiL4tfweJXiE/zEp/mjd5eEXTgD9v4fVFH/vq5CwDFSzKwW8P4h5XhH1YWXbdZYjnNEsujAYmMuErc9iBOzYNnTR7eZRv48dbpaHYHnf55NtOOf7EhHiKxH5xKHF2V/pSyHb9eWes+W0kAW0kAS9BA0SNLMIwSDJsBifoY1es48ipw5FXg3FxadzWHHcNhB0M3F2v1lTGGVSVzvod2S80rx8Pa3k9sOos04vOMWgEST7tEPO0S0Q2F3F82gKLQ+eTmNE+UprmHktPix/DWW28B0NzZmf4pp5NoSTODYDUDDFVcTvD5oazcXEI7lMsLa+Ziq1GOzOcHQAmEUQJhqIofhHWzBFTNMlCRcmjoVK8XCUxQoy6zGghhWC0YNV4LzuIQwRQ7wZTa4y7tnUqoVRqhVmnVvSsiHEVBWm/KJj61NbrXw9ZJr9D8nAt29nA1mPiWneh86b2k9jKbVypWK+FwPQ2NhBDiIGUYRpNtRLw3cnNzWbBgAU899RS33nor5513Hg899FCshyWAiy++mEsuuYS333471kOpo6oJ+vLly/dqu6oeFLtqjv35559z/PHHk5WVte8DFE3Szz//HP3/Dz/8wAsvvEBSUt0L2A5ll19+OXa7nXfffZfOnTuzdu3aRj2eoig8+OCDLFiwgMGDBwNm7yAhDlfSU0KI/eClEjfmH25riRksCKe6sVeas1uFferG/VJX+FG9weiLT9HN/1X1BciaH6C8rZ30v0oBWHV1EmrQvM+fk4gloEAPM9iQ4KyeEM7oa2ZMWFTz2KnxXhLsAQo9dSeo/UUeVn20jIIfC/DnbcaIXE2vOOwkj7uOUpdr3x4Q0aBm6R9zrHIqAH5vMU6LFdVvBrQ0W93fkbd9Ms4Cf7Qxr9LavFpQKS7HqKynxrJhRCdNLZGrxb3NXcRHSjUZcS4UXY+uY1irn8+624nLnoJFrac3xW4kxGWTW7wE3evDolpZfx4omkGrmebzPP+PLaR0y+T7M1/d632Lps+huHAqbnomnlj7Dn/k/ayqibWrRmkli8XsI1GVVRCOZJZZI++koVDt9avoOkqwKtPBfP4adkt1JlBVIKLqqb1jg0hVxVBqZ7FZPOZrRfWFCLvN7IMdM91qCWsommGWn8L8MtLrxJvI7+pn3aMPEdiyiTavP8XGaxqvVN7i52+P/O9BKioqcLlcWK3yEVAIcejIz8/H4/HQsWPHWA9lr/3666+88cYb/PTTT7Wu1B0xYgRvvPFGDEcmdtS1a1dmzZoV62HUUdXrwbWX3+GSk5Np164d06dPr7eJdTAY5IcffuDBBx9skHGKpsXtNucJnn322Z02OT/UtW/fHr/fz9dff82IESNYtGjRAQlu9+vXjx9//JHS0lKSk5Mb/XhCNFXyjVSI/eDDQwbN69wev9lPMMmGrcKc4AqlmZNRqSuqr0xVvUH0OHt0MtifYU6oeTNq12ts+b3OtsHmbRZ/9cSXzapRVG5+kFASqst/qIp5la/bZk5ep7s9pDs8rC1KpGzxZgJLclj/5UqS7C5szdqQ1PNIUiwtURSV0hOcqHESkGhKFMzfuWEYGJqGEpm41bLMdFo1oKO5zOeZs8Bf7z5KB7VGiTz1HGXmfxzb6mYgaE4rGKBH6udbKmqn7FgrzOdUON4OhSX4giX4gqV7fU7pfQazadZvbPespZm1DfFrbHjah9k83MDqs1Hw5xZanlN/oz1xcCsziggYPjq7BqCEdAx0FHdc3RU91RlhGEa0DFkdVVf7q0r1NlVlmmoGKTTdDDDUbICtKNGflXC4umyUYaBoRnTfhsMMkqi+6gw3veq2gDmuUHzt4JzFa74n60nme3TyokK0JPO9tbKlecy2v1oJtjyOrSvm41jUi7YvPw3Ahhvuqv9cG8ihnoovhDg85eTkABw0mRIFBQV8++23TJ8+nQ8//JBOnTpx6qmn8n//93/Rc+jUqVOMRyl2ZLPZmmSm4fz58wGzHM/euuGGG3jggQd45ZVXiIur/Zls3rx5eDweTjvttAYZp2hapk2bhsVi4fLLL4/1UGJKURSGDRtG27Zteeihh+jfvz9t27Y9IMeWgIQ43ElQQoh9FDQChAjiVpNQVEuNSaow/sy6E/uWMgu2YrN0kmGzoIS0aGACwLndj2634Mo1J9aK+iWbt5doNP9JY9vxFqzdzQwJm7U6xU/bGoeRGqLSb04kp7i9DMpYS6bdnHT+s6wthcu28+c/vyC0bTvWlHiSBvVkzXtfk5aWBsCAMc8A4F4Kf7x9R4M+TmL/2BQXGODTKki21t/02eLTUQyDcGRi1OIzgxSqtvOmWVUTrYbTfP5pzuo/B96WcdjLwoSTzPvs2ypqbWvNLSHXswqABGfmXp+T25WOqlrx+4ohoQ0Ajjzz+MsWlhOuCJBx/MExqSD2Tn5oA1bsNLNX/36NSFNSpeqLcM2ABJhBBnUXmQiBALjdwA6pz5EyTtQoSVDVa8JwmM83RdPM/dfMhlAUlKDZg8KwW6t7SkSCHYbNghoIoeh6rUbzADbPzicDinqZwQBbZfXrskP7UynKLKfwf++gnXs6iUNP2Pl5CiGE2KlVq1ahKEqTz5QwDIOJEydy11134fF46N27Ny+88AI33HDDIdlI9lCTmZlJSUkJ5eXlJCYmxno4ABQVFfHbb78BkJqaupu16+rTpw+hUIjt27fTpk2bWve99957tGnTRvqaHKKmTJnCRRddtE/Pm0ONoijMnDmTESNGcPTRRzNt2jSOOeaYWA9LiEOeBCWE2EdezIlat7LDVaeGQTDJ/FLhbWNeSWMp2/mXDCVsTmJpcbWvtNWc5mRX/PJCVo+tXcPTu9D84KDFV09utUwuBeCI5M3R2y5MWM7rL/lY+r9fsbdpTvYjN7L1gReijbmrSCCi6fpR/5xOnTpRuq6AZkaraIkbW6k54WrYLISS668Dq0eeU4kryinrbn5xshdGJnxrPAfCCXbCbvPPQTBBJX5L7Z4nSqSOf9DjZ0vxAjYV/UkgXElWYlcWr5u5T+flSsgkV99IeouBGBYIJIXRFq6n7MfvsbdqQUG47z7tVzRtTmsi4VAQr15GvG0nX4D25Cq/qnX2pkl0Vb1WiwUlkvVgOM3XiOLboc+PLRK0CFZfDWnYIu/jkddOMLO6NJ4aNt+Lg0m131sNh7mNbnWStrSSop7x0fusZX6sQKdjryCPGRR8+hWGbkAjZ0oIIcShaOXKlbRr1w6ns55Sfk2Ez+fjvPPOY8aMGVx77bU88sgjUqf/IHP00UdjGAZ//vknJ510UkzHsmzZMp555hkmT56MYRhMmDCBvn377vV+OnfujKIovPbaazz00EPY7XbKysqYMWMGH374Iffcc0+094Q4tLRu3Zo//vgDwzDqzA8cjrp27crvv//OOeecw6mnnsr333/PUUcdFethCXFIk6CEEPvIUxWUSGqOqlir6+0bda9OT16t1L5vhz/6ut2CHtneVllVgqf66hurz1zfW2F+0apqq6o7zYk5V0J12Z4ecVsBOMm1mU8/87H0xXm0PP9I2l19PD+d9uzen6iIuWOOOYYv1s6o9z610o8tMkEbTog0n44z39qtnroTtsW9zR4ormJzgtZWUTcFvbi7uZ+ktdXbbypdyKrCORjoNE/qRevUI5m79rV9Oh9fmoXmR5/B2u8mMXf+UzRb1Y3ttjzCBduxJCby5YcfMnz48H3at2jaMm2tWen7lTW+vzjCFfkdV70v1hNgMEJhUBWU3dVI9nqr+0tUvb/adviIo2lmb4oazeSUQI3nf1U5Bqu1dkPtSHNrI3IFqxIMY9jNfTuKzfdeX3YcVk/1fkt6mu/fwQSFzPnVmUZpSyuj56vFOyLDVck+7gxC7XRKPp3OrFmzOOWUU3Z9vkIIIWpZuXIlXbt2jfUwdkrXda688kpmz57N9OnTGTFiRKyHJPZB165dSUxMZN68eTELSni9XsaOHcvkyZNp0aIF//73v7n66qvJyMjYp/21bduWu+66i//7v/9j0qRJDBs2jE8++YTy8nIGDBjA2LFjG/gMRFNxxhlncPvtt/Puu+8e9iWcqmRkZPD1119z6qmnMnz4cDZt2lSnrJkQouFIyFuIfeSlEidxWJRIo+pFKzAWrUAt81LZTKWymYoSMJf6KP4Qij+Ebq+dRbF9YAbbB2bgzQRvJqy6ocYVVD4L+CyoIVBrzN+1Ti3BquhYleorjO9aMIBb7iwn69QetB87WAISB7GTTz6ZcqMYX7gCIxTCCIVQyipRyirrXV8NarUCEr5W8SgGKPVUcwom2Qgm2Qi5VEIuFZu3eqWyDjaKu9rw2QIs3z4Lly2JE9rdQI/mI/Y5IAEw/807WP3NRLqO/ReZx5xGmWcrzqRM2lx2M53G/UsCEoew5b55ABSENlAe2l77TsMwSyZpmrnUCAwYPp9Z5imyTi1Wa2SxRAMIO6VptYIS6LoZxAjXE5yoCm7oBuiG2XciQgmGsRX7MGocL+y2oGigaJC0proEVcFRZjadEtJQQhol3aqzJQDi8nXi8nWy243Ekd6MSZMm7fochBBC1JGTk9OkezBMnDiRKVOm8N5770lA4iCmqipDhw5l2rRpMRvD22+/zeTJk3n22WdZt24d99133z4HJKo8+eSTLFu2jOHDh/Ptt98yduxYNm3axO+//x5toi0OPbfffjsAY8aMifFImpb4+HjeeecdioqK+PLLL2M9HCEOaZIpIcQ+CuLHQRxKVZp4Wd3GwYpuTmq5CiOTYJFSTdhBT3ShlvvwZZnbBxPrBi9slRBMMzB2yKwIppiTcq4sT51tviw0a37mL1iKHtIZcNcxfHHy+L0/QdFknHXWWYBCEXm4yTZvrKwqw6SiRFKqbVWlwOLrlnMKR8qBuXPNiVVfhvn2b6+oDmQFklUq2oCjOHJDZO7XZjGvDrFhZ/baFxrqtFj28gO1fu7+DwmcHeoKQ9Xl5cJBP4YRQtkxowFQLBYMLRJY09l5TwlrjW31yBN2xxIDlsjPVbEIQ69ep+q91VK7NFP1QGr/rNTT3NKwWlCD5uvIUFV0i7lN0hovaiQTQwnr1dl0QEm3eFJWmEFFS8iOZlNQFAV3m84sWLCg/nMVQgixU7m5ubRo0SLWw9ipWbNmcdJJJzFq1KhYD0Xsp3PPPZfLLruM7du373cwYF8cccQRAGiaht1u383ae6579+68/vrrDbY/0bQZ9VR3ENU6duxIu3btWLBgARdeeGGshyPEIUsyJYTYRwH8OHASzs0HVUVNSkRNSiTYMoVQAoQS6m5j2K0Ydiuay0o4wU6wRVL0Pnu5TtihEIo3F1uNi+DDiTqWALi2WHFtqZ6E8xXG4SuMI6xXv5QrQw4GJG2gzO8AVcHQ9qA+u2jSkpOTiSeJUgoxKj0YlXWDUQCE9UgD9RCqN2QGFQygnvlcQzUXT5YFT5aFQHL1cyiQCoEUSF0ZInVlCGuJB7c1hThrcmOcXtTyR29n+aO3N+oxRGz1TzsTgDR7S5KtkSywqkwHTQdNR9lVo89QqHaZJ0Uxl/p6S+yYVaFrZkCiSlirmzlRFXSo2rbG9oovaC7B6vVVfwjVH6JGkhqqZuDLckYDzlU2nJnEhjOTSNwYIHFjoNZ9lpCBMbAMsgNS01cIIfaSz+ejrKysSV/RHQ6H0fekZ5Jo8gYNGgTAL7/8EpPjp6WlATT5pu6iaVMUhRNPPBGAL774IraDaaIMw5B+KkI0MnmFCbGPgoofh+rC2iK7zn2G1VzSFpmLxa9j8df+IuJp7sDT3IE/RcWfouLNqD0RpznNxV6i4the1a/CvM3qVbB6qyeu1m7JxG7RsFs0TkpfBYAtMwl0g8riHRq4ioNSptqSfGMT3mA5eiiM7vOh+3xQUYkSCJrLTq540a0KusVcAikWAil1J339KeYSStSjGRJVSptb8YRLSG3fvzFOTRxGMpI70zqxL6WhfBSXE8VVT0PSqkBD1VJTpJRSHTZb3YCFbkAgWL1AdaAhrFWvs+MxdsyGsKjmUmM9JaiZGRw1gxZ63ff6cLydcLwd3WmlzVcV1BI5P08zC55mFvw+O1hUVm/eRJsn/1v3HIUQQtQrNzcXoEkHJdq0aUNeXl6shyEaQOvWrTniiCMYP358TK42nzp1KnFxcdJ/Suy3GTNm0LFjRz788MNYD6VJslqtrFmzJtbDEOKQJkEJIfbS8IzrGZhyHpVGGSn2bHDYzSUrA7IyCCbb6mzjzbJiL60ODgST66ba+tPNxVFq4Cit/oAbSNXxtdTwtdTQavR6DSXoEFbMBagM2akM2SnTXJRpLsrXbEd1WElokbjjocRBqLXeASt2Fhk/EzRqX2VNWQX4A+D1gdeHEg6bZWYU6mRJBN0qhmJOoCo66FZzqSmUpBNK0qlsaaOypQ2PJx+ApMSWjXeC4rCREdcezQhR7NsEwRBGIIARCFRP/tcUKdukKCqKUuO+qgBEfYGLQMBcqgIUwaC51Mwaq7qt6nhVgYuwVh2w8AfMpeaEg6LUHadhYC/xYy/xR2+yBHQsAZ2w20rYXf0Ca/NVBRZfGIsvzLZBtXtLAMT1PxkjFKL8p7m7fhCFEEJEvfvuu7hcLvr16xfroezUokWL6N27d6yHIRqAoig8+eSTzJ07l5tvvvmAByaWLVtGr169pPmu2G8ul4uhQ4cyd+5cSkpKYj2cJufBBx/k008/ZcmSJbEeihCHLAlKCLEP1nkX4lISyLK2rXNfIEklebVB8mqDpLU+ktb6SF7lrbWOJaBjKGAoEEhWCCRXT6pVtlAo7awQiofQDnNWwWSNYLJmBiQi1KQg9rjqq4N/LWrHH6sT2DhtKZlHtUTZcZJPHJSsqoMjlBMI4GeJMRfN60P3+c1sCUf99WQNi4JhUbBVaqhhAzVsYPPWztgJJpmLGjYXR1H186W4l076uavYZPsJZ7MkeFiybsT+mZnzFL+sn0yiNYNFZbNqfZE3wmGMcLg6m6FGHwlD0zAM3bxtx/4SoVC95ZbQdXOpuV7NrAmIBvKiLDV6TVQFJcDc7w4BEMUwos2royLj0xy133d1u4WNIxPYODKBnAvc0du3DYon89cSMn8twe4I0WJACGtaGlpl/U3shRBC1FZZWcmECRO49tprSU9Pj/Vw6vXll18yd+5chg0bFuuhiAYydOhQXn31VV566SWee+65A3bcZcuWMW3aNI499tgDdkxxaBs3bhyFhYXccccdsR5Kk1NVqq2wsDDGIxHi0CWzlULsLbuNUm07zVwdsLjd0UmtQItEAjtkJVhLvFhLvFi8QSze2hO6cQVmIKH57FKazy6NXtUerp6vIpygYySFsSQHsCRXXx1vOHUMp46aVL1P3VDQDQU1v4Dvr/oUDIM5r3/NtONfbPCHQMRGvJJET46ilEK2s9W8MRzG8HjNJdJvQvEEUDy1sykcZTqOMp2QWyXkVqv7TexA0UBJC6CkBWidvJC5Y6dQuSqPFjeNwBOsp9SOEHvJ6XTSvdmphAw/W8JrUJxOFGfd55Zis5mLw143EFFVxqlmuSaLxVxUtXaz60ivCjQdwhpGVfZDVQBjxxrfO5RqIhQ2lyqRbXVndQZEOMFOOMGOGqjel+ZQ8WVY8WVYKepZ+2rGnAvcVPYMUNkzwPpRKdWnFQyjl5WQ1E4+ngkhxJ7IycmhpKSkyTYifeuttzjzzDMZOXIkl1xySayHIxrQtddey7hx4/jPf/5DUVFRox9v8uTJHHXUUbRo0YJ//OMfjX48cXjo3bs3t9xyC1OmTGHjxo2xHk6TUlW6KSsrK8YjEeLQJd96hdgHdtVFaIcSOs51hTjXFeIq0khaVUnSqrpXuiqGgeG0ooZ0dKuCs7h27XI1UN2AOFwjG0ILWFEUA9yauUSkpHhISfGQ7Dav9DUMg5/++xuG00nLJ66nS5cuDXnaIoZmaVOYpU0hK7Mn6fZW5PA3OKz1rxwpbWPLK8eWV44aqttYMexSCMUpxG81iN9qYPWD1V9jFwUh/rp3GlYLdJ5wNYn92jfSmYnDUbKzOan2luT710WzEKqCE4amYdRsPk11+aY691UFG4I1ghOqau7TZjMXiAY1jB37RVQFJKoyNGpyu8zFZr7ODIfVXKzVH52CWfEEs+LRLdVBDDWg4ywK4iyqHYi2esxFTw6jJ9cex/pRKfRulotvSQ6aN0D2oLa7eviEEEJEZGZmAlBcXBzjkdS1detWbrnlFsaMGcPUqVOx2+vPbBUHr3/9619omsYjjzzSqMf5/vvvufzyyznvvPP4448/yMjIaNTjicPL/fffj8/n45tvvon1UJqUjz/+mI4dO9K9e/dYD0WIQ9ZOZrSEEDsV74YiBU01wOWsO5FVgxIwJ56MOLOxsO6q7jdh9WmE3Va2D0gGzIBETYYa2a9iYHWY+7G6QqgWA4tae5K5wucgqFko/n4J3r/X0/pfl7Dqsif35yxFE9Yl/ljmFX/MZtsG2tp6VE/I7qJUlyVyBbej1Jw89afsUF4m8tTU+lSilzgp+3IGgbIAp0wewdSzX274kxCHtZlrnqRZ4hcEw97aWQ1Q3fvBatT+GVAs5nupEclciP4cDIJhrqdYIx9twmGw186yUJyO+gdk2aH5e7h2UASbFSWsRwMShlVFd1gxFCXaYF63KGgucz+WQGT7qmQMG3ha6bg318zgMP8faFMdvCj+fR2uFsnEtUmrf5xCCCFq0SPBZa/Xu5s1D7xbbrmFuLg4nn32WdQd/9aJQ0JmZiYPPPAADzzwANdeey09evRo8GP4fD7GjRvH4MGDmTRpEpYdP7MIsZ/i4uJwOBxUSvnQWmbMmMHo0aNRduxfJ4RoMPLpSIi95A2VUR7IJ8PVzrxBUSDOFa0/Hre2BEupB0upp9Z2hlVFc1nRXFbsm0tqNT8FUAxzUUPmEr29zIYWtKAFLaiW6gCI3RZG01U03XwZF/6tsfXV74gb0JeN/36vcU5exNzM/Jf5pWgKrd29yKmYj1crr74zGDJL2lQ18Y0stu11P2AGks0l7FIIu2p/0Irf9jMVs+fS5vLjmHr2lMY9IXHYSkvpRIlvC55gsRnc1TRzqUlRMAw9ukRFSijVypwIhc1simAIIxgyAxJg/lsVnKjKjNix30RVv4iqpUYgQ4+zo8eZ+1LCOopmoGg1emEoCoZqLtW3mUva/ELS5lfXofW00iGomou1dnC5VVwJ8b5iBnY7kjlDn9nbh1MIIQ5Ln332GXa7nVNOOSXWQ6nlgw8+4LPPPuP5558nJSVl9xuIg9Ztt91G+/btue6669B2/ByznwzDYNy4cWzatIkXXnhBAhKiUVgsFk4++WTeeuutaKD3cGcYBoWFhbRr1y7WQxHikCaZEkLspVCC+bJxJKRhxMehhOv5wx2pc24kmHXEa5b7qGJEbrKEzMmtEOaElr0MtJ2U7lcVc127rbr0h6apBDflkffE+6guJ6kXnLn3JyUOOh06n07Bsk38HfiFAdaTURS17tXeEYongL3EvBq7orW7zv1qyIg2Wy/5YRVFr80g44TOtDzviMY7AXHYy07tzdrcn1hT8Tt9UyPNPw0DxR5J29nDq5KUql4SNW+LZLEFNC9F/k2UhfIJKRpa2IduaGQ7OpKd0RfFX6PE0o6ZRjuU2TAc5riUoPn+qwY1jEjZJt0ayYazRspEWVSUGhkezmKD8siPtXLrrDrNMssAKArGUbiunONPbL1H5y2EEMLMkHC5XCQnJ8d6KFGvv/461113HaNHj+b888+P9XBEI3M4HLzxxhuccMIJPPnkk9x///0Nsl9N07jhhht46623eOedd+jZs2eD7FeI+vzjH/9g4MCBfPTRR1x00UUNvn/DMFi+fDnffvstq1evpqKigvLychISErjjjjvo379/gx9zf+Tk5BAKhWjVqlWshyLEIU2CEkLspThHCgoqnmARKY6OaAnmZJS1qoSO11dnMk2LMyezqrIjjLap0ftcRRqVzapfijUDEo4iC4YKoZ1cYKVpKsXf/EXuG99izUpn0+8LaNas2f6eojgIWC0OurQexqKcD/G4y4m3JFdf3b2LyVxHmTkzqjnMCVg1VD1FWrxgLoWzPiO+dz8ST76IrfOtMLTRTkEc5vTUBFq2OZ51a78h1CwZ25bCetdTXC4Mn6/2jZEAgqJUBxIqlQo84VJ0wlSWl7A9sIHy0HYA3LZUbBYXVtWOZtFZUvYdqyp/w2mNp1lKD1rZumClRhDCZo2WjarKitBdNlRfKJo1YdR4nUXixThKQwSSzfd7w6JG1/FmKFSFI5SgeZstrUZKHFCwpIDideWc9exZu3/whBBCANClSxfKysooKCiIeTNSr9fLuHHjePvttxk3bhzPP/+8lP04TAwaNIgrr7ySN998s0GCEj6fj0svvZRp06YxadIkLrvssgYYpRA7d9xxxzFo0CCmTJmy30EJXddZvHgxCxYswOl08tNPPzFjxgy2bNmC0+mka9euJCYmkpiYyPz58znyyCPp2rUrrVu35qabbuL000+Pecm7N998k/j4eIYMGRLTcQhxqJOghBB7SUt2Y3PE1y6bU1NYi15hW3Vl7Y58GTY0u/klJeyo/WUl7DL/dRRVX/lr2+BE7+SplSEBUD6zgm2vTCf+hKNIufQMCUgcRr6Z/y/uvfdeFj0JpKWgONIxiktqraNnJAMQStxJHX0gmKigh8PkfT+d4vk/knDyQDKHnIOiqqy57/ZGPAMhwOlIwjA0wloAW1W/h0i/iJrllRSHeZ8RqN18J2TVKQ5sYatvFQX+ddHbraqT9IT2tIk/hnR7KywbCmBAX1SfmRlRbBRQsH0ZwYpCVuf9wCq+p2/b88lM7QaA6g1iOG0YhkFA8eM0zGix7rKZ2XGRPhJVmXKKTY2Wb3KUhnBsM7MfjBpfqByF5v/D8QaaszoYGNQsBAvLWf70AuJap3LGGWfs68MphBCHndatzeyy9evXxzwo8fjjjzNlyhQmTZrEmDFjJCBxGNE0jZ9++gmPx7P7lXdjy5YtnHfeeSxZsoSpU6cycuTIBhihELvXqlUrNm7cuM/bb9iwga+//poXX3yRZcuWRW/v2LEjo0aNYvjw4QwePBiXyxW9LxwO89FHHzF//nz++OMPzjzzTFq2bMkff/xBdnZ2rf17vV40TSMhIWGfx7gn5syZw4svvsiNN97Y6McS4nAnQQkh9lLAX04wUI7RvS3bOyWStM6c5FKTzbI4al71pFko2ZxI05xmgCEUVz1BZQkaaHYFLfI3OZhY+zj+5uZVtIquYE0y9+n12bHbw3grnBiaRuF3n2BLTadbywv445q7Gv5kRZNW9cXH1qoVIYsdW1VzXr1uPdtgkvl27082n4PxW3W0cICtvqUU/PEdwdIimg86h4wug1j0DwlGiMZX1sFBcVkpFosDNT0FSvKr76xZjsnlBI/ZwFRxOMzG2A47YT3ILxtfJ6B7cTsz6NlyJNnJPdG1IKpq49uljwFwilpdOuObvx4GYOiJj5KY2ArdYaG1p5A/5j7Nog0fc2LCndhtbrQEF+gaC1a9S1Hlek7q/yBqjabWKApqSENXLNESTopuEI40uo6GASOl+8JuCKYY2EvMdS1+BW2D+Tej2F3Olntew+Kw0P3BM2J+ZZgQQhxM5s+fj8VioVu3bjEdx9atW3nhhRe44YYbuOKKK2I6FnHgKYpCIBDA7a5bJnVPbdy4kUmTJvH000+TlJTETz/9xJFHHtmAoxRi11atWrXP76WzZs3itNNOQ1VVTjvtNF599VUGDBiAx+MhKSlpp9tZrVZGjx7N6NGjAbjnnnt46qmnuOOOO3j//fejwd2qbLghQ4Ywe/bsfRrjnnjvvfe47LLLGDx4MPfcc0+jHUcIYZKghBB7aRs5gEJiyy61bo/2jVBVs/RHParKgIRdKoHEHUo8ucz7NItBYONGrJnNUSKTU+Fi8yrduGZmw2IjrLH9mcn41q6m0wljouuJw8vll1/OSy+9RKUnj6TE6jr0wXaZAHgq8ykt20C4XCOw1UdcYjN8JSG8BZvx5G8gWFaEHg6SlN2FdhdeiTNNMm3EgVOw9Cdy/5qJK60FwQQrjqoeDnp1FoFfq6TCm08gWEZA85KgJmNRbASCAQr1PAK6l2O6X0diXHa018O3fz9d6ziz9I/rHPv7Of8AYMhpTxDnTqd/v+tYsvQ9Fq6fQv/uVxJWg6xdP4OiyvUAeC1e4nGY5ZiqghCR93NFMzB2vBg2cg5bTk2l5bfF0ZuDKQa6w8yusHjM9+3SL37GQKHZnfdQpu77ZIYQQhyOZs6cyXHHHbfLSa/9UVJSQm5uLt27d9/pOmvWrOGkk04iPj6eu+++u1HGIZo2VVW57LLLGD9+fL33a5rG999/z6ZNm9i2bRt2u50ePXqwbNky5s+fz/Lly1m5ciVut5trrrmGhx9+uNGe00LUZ9iwYfz111+7zNhdtGgRmzZtYv369ei6Tt++famoqKC0tJTnnnuOPn36MGfOnFrP3b19Hj/++ONkZ2dzxx130KVLF/7973+zdOlSLrnkEgDmzZu3bye4B0KhEA899BBnn302n376qVwoJMQBIEEJIfZCt38+S9GGxcQ1a4PNEQ86lLUzJ9LSFwfqrK+EzYmpOhNWgKPcIJigEIyvfXtg/XpyX3wJZ6dOxPfri7N1WywdzElmu03DCGuUTv4B3/JVdB5yNau+f7VhT1IcNJo3bw7An4sm0mvwONI6tqakKIfinN8pK9tIecVmABTVitURR8hXDiioFiuKaqF5n1NJa9UHR3wqv797RwzPRByOKoo3oKgWWrQZWOt2IyWBQKiS3NKV5BT8iGaYWWNW1UFYr36fVRSVLq2GkRiXzTfz/7VPY/jhm3sBGDrkMXoMuIJFc18iv2gpOVtmEwp5q45EMFhBqJlZFsRe4gdAd1gJpJnv/2rADDSEneaXl/whWWT9YGZ+bDk1FasX/Jm1WlxjaechsD6Xsm/mkz5kGJb9uLqysfz+++9cNX8icR2aMX/4o7EejhBC1FJcXMysWbP497//3WjHuP/++5k4cSIPP/wwbdq04cwzzyQlpbrZ2/bt2xk9ejQul4s5c+bUKTciDh/JyckEAgHGjBnDf/7zH7Kzs3nnnXf47bff+Pbbb9m82fxcnpqaSjgcpry8nLi4OLxeL0ceeSRvv/025557LvHx8bs5khAN78cff6RVq1ZceOGFde5bvHgxEyZMYNKkSQA4neYFk36/P7pOZmYm33zzzX4H01RV5fbbbyc/P59HHnmEY489lhEjRqBHyrp26NCBwsJC0tPT9+s49XnqqafYtGkTn3/+eZMLSASDQWbNmkX//v2lZLc4pEhQQoi9ECjMp3LzKlqfMrrW7YYFwm5zcspitVY3HK7B6tMwLJGXnGHW8q+9E/Nne9As/OFfswb/mjUAuLq3xghpVHTIpHLhOoL5ZSSPGo5/RMeGPD1xkGnZsiXZfU4ld/G3/P3T/4hPaEFlxVbs8am401rSrdMJpGZ1QzUUgmkOwgEvii+MzRHHD+/fisOx814TQjS25D7HEiwvIWfBR+SVLaW1uy+KaiGcn0tO/k9oepDkFj1o3+tM4nQ3imrFKNiOrmsomWmoqhVFUflmxv6nVofjrbi15qiqjRXrvkRHp3O3s1m9/DPAYMGi1xh82uMoikIwUpZPqW55gR5pHG8vDxNMNN/n84dkQT0BaSVs3qhrCqVf/4EtKZnU44agFKus/HfTKZ2Wm5vLMcccA0CbW4YTHBrEbrfvZishhDhwXnvtNXRd58orr2y0Y2RmmhcG/etfZvA7Pj6eo48+Gk3TaN++PR9++CEWi4XZs2dHLxYRh6dbbrmFDz/8kHfeeYcvvviC1NRUNmzYQJ8+fRg5ciRjxoyhX79+WK3m54QtW7aQlpaGqqrY7fYmNwkqDi//+c9/eP755+nbty933HEH/fv3x+l08sknn/D2228DMH78eEaPHk1mZia6rrNmzRqSkpJIT0/HZrM1aB+d448/nieeeIKzzjqLfv36MWDAAF5++WWWL1/OzTffzAcffNBgxwIzm+n555/nuuuuo3fv3g2674YwadIkrr/+epxOJz///DP9+/eXvkXikKAYhmHsbqXy8nKSkpIoKysjMTFxd6sLcchKHHQc3oVL6XT9P0nKM2uHV5VhSlllXsHrWF+IER9pihpnTuCEE8x/Q/Hmh9CQWyUUZ27njfTkC0V6KFkC4N2wltzPJ6OVlpNw8rGE8wtR3U5CG7fgaNsM96mnYG+ZzcarpM6hgN43j6doyS94tm0gqUMvMrP6oCgKriKzt8SPX0opAdH09LznWQzDoGLN3+TN/pxQRWn0vowux9G8ywk43KlYzbY9zP2kum/OCSOejP7/xwYISlTpcck/yV8wC4fiZtuK2vVqew27A3dyc1DAURxG0SEUb/4d0JwKNo8ezZhwrd4OwObzWgCg2yGQGinR59JRwgq6JZctd71I4rCjKfnsxwY7h4Y0ZMgQ5syZA4AlMY6OT45h5XX/2+U28pmx8cljLITZHLV9+/YMHTo0evVuY9B1nQkTJnD33XeTkpLC2LFjWbp0KYqisHTpUkaPHs1tt91Gampqo41BHFyKiop46KGH8Pl83H777fTq1SvWQxJij/h8Ph5//HGeeOIJAgFzbiMpKYknnniCCy64oFaW2IEwe/Zsxo8fT+/evXn88cejt7tcLoqKimo1zN5f7777Lpdffjm///47AwYMaLD9NpTt27dHg+QAgwcPZs6cObsNTMhnRtHUSVBCiD1UWVlJYno6af1PIHPQMBK21H7puArMEiPOLWXR/hLRoEQki0KLiwQykizRoIT5M4R2eGmVe9eR9/iLZN52LXFHtjOP4Q6w/Ox/N/i5iYNbn1ufBWDxhKZzlbUQe6r7P57F0HUsJQEMXcNWaWBzxjN/0oEvKXbE9eZryTAMbugfz5Nv/0jh+j8py10NQHaXwbTudwaKomIv0/CnWbFV6mhO8/08kGC+92fN2grApgvNoISnrRbtIaG5zMDF9lffIbBxM9n33s7mex86cCe5FzZv3kyHft0Jl5mlrDLOPZZmlw1h8RmP7HQb+czY+OQxFgK+/PJLzjzzTP766y+OOOKIRj/eP/7xD1588UVKSkqwWCyNfjwhhIgVv98fXeLj42NeUiw3N5e33nqLY489liFDhgCQmJjIe++9x8iRI/d7/16vl+zsbM444wzee++9JpuB8Omnn3LeeedFPwP+8ccfHHXUUbvcRj4ziqZOyjcJsYc++eQTjECAxCMHoDnMK2UBAqk7vIwMA8VrXlmgOGz17ksNGajm5vjSqv/o6TbQnGawQ1XdqPFuCt/8gMKHNh3wKxPEwUOCEeJgp6gqSyf+I9bDYMErtV9LY8eOxefzcdS5/6Bk+yq2/TUTtWMrknr0J73MzEQKxasE4xWcpdX1nLaNNIMRlR3CxK81/0ZoCeb6ODV0fwDv0hWkjByOJb7p9ZKo0qpVK3o/di4Lb5uC7g1Q8OmvaN4g3QpKWXHVC7EenhDiMPbmm2/St2/fAxKQAOjatSuVlZWMHj2aKVOmHJBjCiFELDidzmjfiKYgOzub+++/H4CCggJWrFjB+PHjueCCC9i4cWOtDIJ9MXPmTMrLy3n44YebbEACYNSoUUyYMIFbb70VgAsvvJDbbruNsWPHNqnflxB7Q4ISQuyBVo9dT+7j7+Hs0hFbspmenX+UjfSlGlafORHl3FBsrmyprgeqllRixFenFdZseG3zGITcCkbkYit9h/iFLSWd1PPPonDS++Tm5kpQQghxSFr+aNMOqrlcLpbOfJYBY56hYusaSpf9SVKP/hT2sqHbIXGDGUj2J6v4Iz337GXV21d2CKP6VUDBcJh/L4IbtkE4TGLzLjiKm3YN6fj2GbS6exQbH34fNJ2ir+ZTNPMvjmwWT6Xf/Pvm95jZgBsuuy+WQxVCHCYmTpzI559/zvPPP3/Ajnn55ZczY8YM/vrrrwN2TCGEELVlZGSQkZFBz549ycrK4pNPPmHcuHH7tc958+bRrl07OnZs+v06b7nlFpYvX87EiRNZv349t956K6tWreKll16K9dCE2CdN+5uwEE1EyWc/opV7SDz5BAwrGFZIX6rVWS/ULBHDZgFVBVWtFZAAsHo0lLCBbgVPlnl1bRVFjzROVcxFq6ik5LOvcHRqT9euXRv5DIUQQtSnw/hn6DD+GYp6g61/F7xb11EW3BS9v7ytQjARgpGMaMMwKO3lpeyIIIpVR7GagQg9GMS/aA2e35ZT9vkPAFjiYpsOvyfmDH2ahCM6knhst+obNZ2CafMJl1RQ/svfFL76Md6FK2j77uM735EQQjQAXde5/vrrAbjkkksO2HGnT5/OlClTuOGGGw7YMYUQQtQvNTWVAQMG8Oabb1JeXr7T9UKhEJpWd95m8+bNfPXVV3z88cdMmjSJjIyMxhxug3rsscdIT0+P/vz555/z9ddfk5+fz7/+9S/GjRtHTk5ODEcoxJ6TTAkh9oAa58DZpTWunl0JoGErtVDcxUxxSF9q1mEKNatbo08JmvfZyvwA+DPjove5inS8WSrhuNrbGIaBf+tGSj6fjqHrpF95Caoq8UMhhIi1xGOOpXLp32x7+WVK+/QirlNnLG0ySDFaoSgqvo3r2PjOiwC0evURVJsNI6xR/uO3lM34Dd1r9mZQbFaSzj6VnCceatJp4jW5e7el/PeVHD3tNlY/MZPNr8+GV7+P3h/OLyKuX7dd7EEIIfafqqokJiby4IMPHpDm0n6/n6+++orrrruOkSNHcvvtTTu7TwghDhfPPPMMp512Gn379uX888/n2GOPpV+/frRp0wbDMHjmmWe46667OOmkk/j+e/Mz65YtW7jrrrv45JNPosGKNm3a8MgjO++X1tSkpKRwxBFH4Ha7efjhh7nkkksYPnw4AFarlXA4TNu2bbnnnntiPFIhdk+CEkLsAVezeLyL16DE+7Fu2Un978jEkhIIE840AxTWYk/tdSzmOoY/yLbKJSildvRUB+HKCoKBMrSyMrw5qwkXFGJJSiTjqktxOJIb67SEEELsxto7qxtut3thPM1uHEvZdz/gXbIMzx9/AlAQ78bVviOeZUuj6+b/ZyLJ5wyk/Pv5+FdtIHHgQBKOOxY1KR7VbkexWQ+agER2QiklmzdhS0/Er7hpe/8omheWE1iXi2qzsPbJL4nv1ZK4BH+shyqEOAy0atWKlStXNtj+1q1bx/fff09mZiaKorBt2za2bt3KunXrmD59OmVlZQwcOJC33nrroHnfFkKIQ93RRx/NL7/8wvjx45k0aRJPPvkkAD169KBFixZ8++23AMyePZuLLrqIs846izvvvBNVVZkwYQLnnHMObreb+Ph4LBZLLE9lr5SXl7N69WrOPPNMevXqxeLFi1m8eDGrV6+msrKSq6++msGDB8d6mELsEQlKCLEH4vu1p+CjuQTXb8OmdALAEakZ7tpcCYCW6Iiub91egZ7gJNgswfy5Ilhrf96yPLZ8/2Gt21S3G2tiIgmp7Ug+9jw4vgOKZEgIIUSTsf7mOwFob3OROnwEYd1LcOs2fEtX4v97FUlHH0vK8OFUrl9Bxc/zKHhhCpbkBJpfeT1x7Tuy5n7zCtt2L4yP5WnslQvmXcf8W7+i9O9tZJ5/XPR2i9tJ4TeL8a4rQKv0kXRinxiOUghxODnttNP44IMPMAyjQYIEb7zxBo8++mj0Z4vFQnZ2Ns2bN+emm27i0ksvlVKqQgjRBPXs2ZNJkyZhGAZ5eXnMmzePL7/8kvnz5/PBBx8waNAgPvroI5599lmmTJnCkCFDeP/992nWrFmsh75P1q5dS58+fQgGg4waNQoARVHQNI0nnniCjRs30r17d4466qgYj1SIPSNBCSH2gO/v9SgWFcXlgh0uBC04LhlniU7SYrPRtZ7grLN9OMFOKN6KEjYborqSMwFoMeBMUtr34c+3HqDPY/8DwBHpl12pGqy94446+xJCCBFb626rfm/u+OSzxGd1gqEjybnHDDq0/d/TxB3Rm9DWbVjSUrDExUFp9fZVwY2mbFjvBwFIeEmnbEUeAGo4hC3oQXPEUT4/h9Lf1nD55ZczYsQILrzwQoBd1vUVQoj9FQ6H+emnn0hPT2+wrIXu3bsD8Pfff5OWlkZmZuZBddWsEEIc7hRFITs7m1GjRkUn66vcfvvt3HDDDSxevJijjjrqoC6NvXz5cjweD/Hx8axevTqaETF+/HgWLlzIbbfdxlVXXSV/w8RBQ4ISQuyGYRgUfPEnmWceiTU+G8Vn3u6NBNdTV+h1ttHibLV+DsXXfqlVVGwDYNr/HqJ///617lv8vNSqFUKIg0VVIKKKYRisv+HO6GRZ27efADRCcXWb7DVlhmFQVLkeR7mNE968gFXTcsj/ahGGptH8uuGU/roK1WnjxRdfJCEhIdbDFUIcJubNm8eff/7Jjz/+2GD7XLBgAS1atKBnz54Ntk8hhBCxV5VR53Q6Ofroo2M9nH3m8Xj47rvvOP300/nyyy95/fXXufbaa2nbti39+/dnzpw5nH766TzzzDOxHqoQe0WCEkLsxqZNm9Aq/Vi7dar3/vhNZuqEYphZEPoOkXdNC7Fm0ecE/GWktzkCq9VJSWkOAGvWrIkGJVb+W4IRQghxsIs/ug/e+X/j6NSGuAF9sDsClC/eguELkDjhU7LOvQh3nhmwWPRi03vfHzL7TvRgmBUbZ7K9Yg3rLmxDs0uzaX10FsW/JVC5djuF3y+l9KfltLrzLAlICCEOqEWLFuFwODjuuON2v3I9Vq5cya233krLli0577zzKC8v588//2Tbtm14PB7c7p30jhNCCHFQqayspHXr1ni9Xs4880xGjhzJmjVrWL58OZs3b+aaa67h2muvjfUwd2vZsmUMHz6czZs3c//996NpGuPGjWPatGksXryYiRMn4vP5+N///hfroQqx1yQoIcRuLF68GIC49plopdUBB1d+/esrmoYaKfEUSrFSXLqevM1/EJ/YnDV/fgCAarGR1f0EzjzzzEYduxBCiAOj3eTHAAgXmjX4VJeTkg++RFFVXJ1bovlCVCzPofURZ4KzaU96Ffy4mu0Va0g9rhPF89ZQMnEjWC0Q1ggVVrAlZwbJJ/Yk5cResR6qEOIws3jxYnr06IHVum9fY5955hnmz5/P6tWrefPNNwGzcfa7774rAQkhhDiEVFZWUlJSQkpKCqtWreLjjz8mLS2Nvn37sn37dt55550mH5TQdZ2HH34YRVHo168fjz1mft94++23AXjvvfdYtGgRH330Ea1atYrlUIXYJxKUEGIXOnz4KCWfzgaLimfxWmypSVgtiQD4siBxnYERiVMY9dS1tfjCOA0XAC3aHk+pdwvJzbuSnN0V3WkhLi7ugJ2LEEKIxpd8zkkUPPMuyUN60PLucwgEXVjjrHgXryHv8bfwJPlJCrgp7Va39F9TUL4qj5VPfkNSvzZ0eehsNk1fSeWa7ZR9/Ruunu3wrdhIxogjyB4zBItqxHq4QojDzKJFi1BVlalTp3L66adjt9v3avusrCysVitvvvkmEydO5KmnnpKJHCGEOAQ1a9aMq666io8//piZM2ditVpJT09HVVXGjRvHL7/8Eush7tZ///tfPv74Y55//nkuuOACvvjiC15//XU8Hg8Oh4P8/HzeeOMNzj///FgPVYh9IkEJIXbDn7MZNJ1tL3wB1hm0ueUe7GnpJK2pOxmjJZkBCDUYRnfa0G0WXEnZxCe1YNWSjwAoL8ghpXl3LAGZzBFCiEOF3RUy/x3YkYpZ7Sj5YSmOI49EtYMehtIv56ImuLFZmlZAov2z1bVnF1x5FUufmIOtRRZZ942h2GNBi0+nbNZ0Ek85mrQrzmDh6TeTlJQUwxELIQ5XXq+XJUuWEA6HOffcc+nfvz9//vnnXu3jrLPO4sUXX+Skk04CoHPnzvznP/9pjOEKIYSIsaeffpq3336bL7/8kuuuuw4gmiVxxhlnxHh0uzZ//nweffRR7r//fm6++WbALEE4f/58pk+fzgknnIDVat3r4LwQTcnB23ZeiAPAMAwCOZurbwiHcYSd2CrAXqFjr9Cxba/E4gmihDWsRZUouo7uNBtdWwIaFouNltnHRHcRl9z8QJ+GEEKIA8h9RCf8y3Lwr92K7tfIf/Y9/MvWkHbUECwOJ648lQ033hnrYdbizVtLRtfOhAtLSLv6PBSrhcq/VpP/3Pu4enUk7fLTUVRVAhJCiJj566+/CIfD0Z9dLtde76NHjx6ceuqp0Z9btmzZIGMTQgjR9KSkpHDccccxYcIEvF4vq1atIjMzE4/H02QD0pqm8fLLL3PCCSfQr18/HnjgATRN47777uOZZ57hhRdeYPjw4cTFxUlAQhz0JFNCiF1QVQ3V7USv9AFga56NS4+HSkicux4AvXl6ne0Mi4KiGSiaTl7eElau/JSsNgPIPvYMrE434TpbCCGEOJitOvchANq+8zhxgwdh/2kZ+U++AbqO4Q+ixrux9e8EwIpHmkaD67aTnkTbXkrJ11/jWbgQe9tWZF1zJbbUTLzr1rP10cmoCfGkj7mcdZc+EOvhCiEOc1arFZfLhc9nfi4fMmTIXu9jzJgxfPnll7z66qtcccUV2Gy2hh6mEEKIJuSVV17hyCOPpEuXLmzZsgWAwYMH065duxiPrDZd1/nuu++45557WLx4Mddccw3PP/88drudf/7znzzxxBPceOON3HjjjbEeqhANRoISQuxCMNeCJT4Za0YawU25uDp2pLyDQeJahdzzOpL9SQ5quQ8MsxSTlpEY3dYMTEB54VriErPp1O988IPfad4/f9IdsTglIYQQjWjD5fcBsOXUK+gx7nL0Si/xPY/A1bED625pOtkRS5cuJfc/LxDcsAVLQgIZo84n4agBBIPl5D3/Mv6ctQCo7jhUpyPGoxVCCAgGg3Tt2pXmzZszffr0fQpK/Pjjj9x9991NvrmpEEKIhtG9e3emT5/O9OnTCQaDPPDAA2RlZcV6WLW888473HvvveTl5XHMMcfw66+/cswxxzBjxgxuvPFGNmzYAJiZH0IcSiQoIcQuBDZsIrB2PdaMFPRyD65uXbF6zYbWSRvCEO+utb5lezlaRiK6VcXrCBC0VlASyCUuKQvdam4nwQghhDj0tWzZkrIvZsd6GHW0efNJPL8vovitT7BmppNx5aWkpvZAtTvwxuuUfTSbYF4u6TdcgrNtR1Snkw3X3xXrYQshBJ9++ik5OTls2LCBpKQkjjnmmN1vFLFu3Tq2bNlCQUEB3bt3b8RRCiGEaGqGDBmyT4HsxhYMBrn99tv53//+x+jRo7nuuusYNGgQiqKgaRrjxo2jVatWTJkyhfbt25OamhrrIQvRoCQoIcROtH3ncYK5m1AcDlo8eD96pQdLQgJUgDcbkjaAnuxGLfXg65SBI88DQMhlYfOmn1m/7lt03SzU1Kbn8BieiRBCiMNdmzeeBKDyl/kUv/UJccf0I/3881HtdtRtZouxcEkplb/+QeKwwbiP6g1+aT0mhGg6/vzzT0aOHMlbb71FZWXlHvWUKCoq4qabbuLDDz8EzKtMm3pzUyGEEIc+wzC44IILmDlzJq+++mqdDL53332XjRs38umnn9K/f/8YjVKIxiVBCSF2wgiF8S1cgb1VC5LWWinvmIB7k0owBdxboLyVFWeeGZgACDRz48jzkF+wiLU5M2jZaiCp7fphsdhYMPuZGJ+NEEKIw1VVQCJcUkbJ5M+JP7I/6RdcjKIoEAZfto4eCFD8wWcoDjspZx/H+ivvifGohRCi2rp161i4cCHnn38+Npttj0tYXHfddcyePZvXX3+dnj170rx5c+Lj4xt5tEIIIcSuvfPOO0ybNo1p06Zx5pln1rpvzZo1PPDAA1x44YUSkBCHNAlKCFGP1hMeZfvEdwmu20Lzi68CIDFHRbODvcRcJ+vnQgynHWX9VpzrQYmUcsqrWIjTlUr7jqdhsdiYPeu+WJ2GEEIIUUMQIxSm8s+/8K1cTXyfvjh6dkIrLaP0m2/RPD4ybxiFGueM9UCFECJq6dKlnHLKKbRq1YqLL754j7crLy9n2rRpXHvttVx99dWNOEIhhBBi7xQXFwNw0UUX0bp1a2688UY6duzI999/z/PPP092djZPPPFEjEcpROOSoIQQ9fCvzsG/YjUoCkVffYF6VCXNmh8JgCVgRNdT/MHaG4bCtNTbssy/noXzXqR1yhEM7rCen9ZOPJDDF0IIIaI2Xn0Pbd99HFtWGln/vJ7Qxm1oG8qp+OM3yub+DEDckb1JOXcEjnYJMR6tEELUNmHCBPLy8igvL2fUqFG8+eabdOnSZbfbud1uRo8ezcsvv0xpaSnnnnsuQ4cOlUahQgghYu6WW26hRYsW5Obm8uuvv3LrrbdiGAZut5uHHnqIO++8c4/KFApxMFMMwzB2t1J5eTlJSUmUlZWRmJh4IMYlREwZhkGza65i+7uTMcIabU64iMw2ZtqcJWCQuLocJRgmmGlO3jiWbDA3tNsAKLd7WJb3DWX+XBQUTul2D98sfywWpyKEEELQ9t3Ho/+3bnMAoIdCaCEPqCpK8zgANlx7934dRz4zNj55jMXhxuv18u9//5unnnqK5s2b8+OPP9KxY8c92tYwDCZNmsTDDz/Mpk2bOOecc/jss88aecRCCCHE3iktLcXj8ZCYmEhCQsNcJCSfGUVTJ5kSQtRDURTKf56L1eGm3YjLSXW1hoCBGq5ex7DXfvkYhg6BAEabbOJJ5Qj7BSzY/BGqYkVRpFmoEIeC7g88y/L/uz3WwxBir224bOelBNu+9pS5zn4GJIQQojF4PB5eeOEFhg0bxrvvvkt6evoeb6soCldddRV9+/blmGOOYdCgQY04UiGEEGLfJCcnk5ycHOthCHFASVBCiHq0u/5u/GvW0GrEZTjat4VcPXpfKE6hpGcSaT9vw1HiIdg2jWCvNtiWrDdX2LCN1bblbNo+H8WAvq1GATCsxwN8vez/YnA2QoiG0PXux/Hlbqbt5TfjatEWXxsz0XDD9XfFeGRC7B8JRgghmrKJEyeiKArvvfceaWlpe7Xt1q1bue6665g+fTqdOnXi8ssvb6RRCiEOpNLSUmbMmMHAgQNp3bo1iqLEekhCCCH2kgQlhKhHoCAXgIR23cj63QOAbrcAEGrtqLWufUMRRmkZAFrXNmzbvpANOfNo22Iw8xd9uldXcwkhmqZTjvsvxc7f2P7DdPMGVcXRrjVZd9wQ24EJIYQQh7glS5ZwzDHH7HVAAsya3fPnz+fdd9/loosuwmqVr79CHApOPPFEFi9eDJj9Y+666y7+/e9/x3ZQQggh9orUlBGihvbPPUP7555BzzAbCvmc/lr3+zLtWP0GYZdC/qktMMrLMcrLo/eHl69g7abvyEztTsfWp3Dxma8c0PELIRreKcf9FwDL31vMfxMTQNcJbs1j7dg7Yjk0IYQQ4pCXmppKWVnZXm83Y8YMPvvsM55++mkuvfRSCUgIcQhZuXIlABaLBY/Hw4YNG2I7ICGEEHtNPpkJUcO62+6g86PPYrfEmzcUVrLt+JY0n+tFDel11i84rxtZ0zdgGDrLC79nS2AVFsVKx9anMmvegwd49EKIxpSe3AmvrxAt0Yma1opPJz4nExxCCCFEI0tLS2P79u17vP7mzZsZPXo0v/zyC8cffzyXXHJJI45OCBELY8aMYfHixcTHx5OZmcn//Z+USRZCiIONzKYIUQ9bahqK3U7x/B9pfvpoADadGkfaMp3t/cwEo7jc6vU3VC5kS2AlnRKPpVV8L2yFOsNb3crMzRP2+th3/TWKkF9jwsDPG+JUhBD7SQKMQgghROz07duXRx99lI8//pjzzz9/t+tffPHFbNmyhalTpzJy5EhUdd+LA3i9XlRVxel07vM+hBANb+LEibEeghBCiP0k5ZuE2MHqf9yOzeYm9ZgTKFv+F6o3SP5RcQAU9ah+yXizIfvHEoy0JHRDQ1VttGk1CJvqYObmCXsckLj191GcdE8/Mjom0XloC969dDYvnPAF/S7ogNfrbZRzFEIIIYQQ4mBw3nnn0atXL1599dU9Wj8QCDBgwADOPvtsLBbLXh1r8+bNjBs3ju7du3PllVfSokULWrVqxVtvvbUPIxdCCCGEEDsjQQkhdiJYWIA9PRPV5kCL9LYOJRpoTgPdZi5V0pv1QtODbCj8g6LX3Az4+h97fJzXR0znh6cWUbi2nDWzt1GwshRDM1j08TrOevPchj4tIYQQQgghDhqKorBq1SqOOOKIPVp/5MiRfPXVV8yfP3+vjuPxeGjdujUvv/wyK1as4K233qK0tJTCwkJuvvlmwuHwvgxfCCGEEELUQ4ISQtRj5b9uJzOrL1bDwbovX8O7ZT3WHZIWkrsXsfGarfzi+Jhf17wGwJr8HyicvRRgjwIThmHgUsz+FfHZbhSLAgokd0yh7/VHkH1Uc8b8cXXDnpwQQgghhBAHkeuvv56ZM2dy1113sWXLljr3h0IhPv30U7p168a//vUvfD4fAwYMIC8vb4+PUVxcHP1/hw4dAHC5XAwePJhPP/1U+kgJIYQQQjQg+WQlxE6ktOmNFgqy4ZcP8KxdgSuzNa1Ou5TA0alggy2vfkfB538AoDhsYBioKjiaJe/xMRRFYd26dfz00098lv4RvhI/NpcVJc4FwNsD3miMUxNCCCGEEOKg8cwzzzBs2DDGjx/Ps88+y/XXX89TTz1FXFwcgUCA3r17s3r1agBSU1MpLS2lc+fOpKSk7PExWrVqxYoVKygvL+fII49kw4YNtGrVCpvN1linJYQQQghx2FIMwzB2t1J5eTlJSUmUlZWRmJh4IMYlRJPQ49y7WT716Vq3OTq2J6XLAPKmTwEFEk4dSMr5w+jVLIfZV31MQpsUBj5zBp8d/zIdpvwfAGsvfCAWwxdCCCEOKPnM2PjkMRaHq3/+85/897//jf4cFxfHWWedRZ8+fbjvvvtQFIVvvvmGk08+mW+++Ybhw4fzwgsvcNNNN8Vw1EIIIURsyGdG0dRJ+SYhdsGVmk2Pq/+Du3mH6G2BnHXkTf8QMLC6E0g+5xQUmxVHiouEiy+iYP4WvrpwKpnjRqEHQwDR4IQQQgghhBBi7z3yyCP88ssvJCQkAOD1evnggw+47777ALjqqqs45ZRTUBSFYcOGMW7cOG6++WbOPvtsfvnlF3Rdj+XwhRBCCCFEDZIpIcRu9L35WQxNo2DRHLYvmI0W8KFYbSSntKNzv4vIuyQO93I7AJ4OYfw5Gyj5cBrBTVtBVVEcdtz9e5E6+hw23nB/jM9GCCGEaDzymbHxyWMsDndbt27l/vvv59133wUgPT2da665hv/7v/9DVauvuQuFQrz77rtcfbXZn83tdpOcnMxDDz3E2LFjYzJ2IYQQ4kCRz4yiqZNMCSF2Y9ELt6NYLGT1H0qXMQ+QMXAYFruTku2rWfDjs5TcPpHiBb/gMYqx5OlQGkQrqzA31nUMn5/KX+aDotD2tadiezJCCCGEEEIcxFq0aME777zD0qVLueKKKygrK+Ppp5+mc+fOjBo1iq+++oqCggIqKiooKyuLbufxeNi6dSuLFy+O4eiFEEIIIQRIpoQQe63n3c+ih8NUrF2KvzgPf/5WKteuAKM6JdzevDnOjh0IFRaiJrpIGnEStmaZbLj27hiOXAghhGhc8pmx8cljLERtubm5TJs2jZycHL7//nsWLVoUvU9VVS6++GKCwSDBYJCOHTvyf//3fzgcjtgNWAghhDgA5DOjaOqssR6AEAebpU/dXuvnHvc/S7iyHH/BNvxGBfasbBzNW6AoCmvuu30nexFCCCGEEELsr+zsbK6//noADMNgxYoVrFq1Co/Hw9ChQ8nOzo7xCIUQQgghxI4kKCHEflr2mAQehBBCCCGEiDVFUejevTvdu3eP9VCEEEIIIcQuSE8JIYQQQgghhBBCCCGEEEIcEBKUEEIIIYQQQgghhBBCCCHEASFBCSGEEEIIIYQQQgghhBBCHBASlBBCCCGEEEIIIYQQQgghxAEhQQkhhBBCCCGEEEIIIYQQQhwQEpQQQgghhBBCCCGEEEIIIcQBIUEJIYQQQgghhBBCCCGEEEIcENZYD0AIUdcp6vl1bpulfxyDkQghhBBCCCGEEEIIIUTDkaCEEE1AfUGI+taRwIQQQgghhBBCCCGEEOJgJkEJIWJoT4IRVSQgIYQQQgghhBBCCCGEONhJUEKIJsgwDMKEsCn26G1S0kkIIYQQQogDKxQK4ff7SUhIiPVQhBBCCCEOGdLoWogD7BT1/OiyI49RwTJjPnP4nB/5grnGTAKGf5f7EkIIIYQQQjQcTdP45ptvGDhwIC6Xi8TERG688UYMw4j10IQQQgghDgmSKSFEI9pd0MBneMhnC5tYQ5C6wQcfHnS0ereVLAkhhBBCCCH2n2EYzJs3j/fee49XXnml3nUWLVp0YAclhBBCCHEIk6CEEAdQ2AiRxyZKKaKYgnoDEQDxJJFBNtm0waW4AQlCCCEOnB0DqvL+I4QQ4lCzfv163njjDVatWsUnn3xS7zqqqnLqqady+umnc8UVV6AoygEepRBCCCHEoUmCEkIcINuMjaxhMSGCtW5vQXuyaUM8iYQJESRAAsl8Z9T/5UgIUVfNSXSZQK9rf0u9naKe32CPa1P9XQUCAWbMmMEpp5xCfHx8rIcjhBCikYRCIW666SZef/11EhISKCsri9739NNPM3LkSFq1asXatWtJTEykdevWMRytEEIcftavX8/69es58cQTUVWpOi/EoUqCEkI0gqpJN8MwKKWQbWwgl400oxUd6cVCfsGBi74MRFWq/8hasfGzPj1WwxaiSas5ma0ZGj4q8VBBED9hwlixYcfBAOUkEkiJvraa0sT3wabUKGQNSwgRoqXSgWxak0Ra9ErRnT22OwuCeI1KKiglgWRcuKPBjj3NzNjdersKntQ3pqp1T1HPJ8/YzFJ+x4KVozmZucbMXW5T3/7luSaEEE1XIBDgo48+4pVXXmH+/PmMHz+eoUOH0rt3byZMmMAtt9xSa/2ePXvGaKRCHFxKSkpYsWIFa9eupaCgAE3TSE1NpVmzZnTs2JEuXbpIltF+0jSNiRMn8tRTT9GsWTNOP/10LrvsMtq0abNP+wuHw/z+++8UFxczcOBAUlNTG3jE++fOO+9k6tSpDBkyhO+//16eP0IcohRjD7p1lZeXk5SURFlZGYmJiQdiXEIc9I5UTmQNf1NOMS7ctKA9mbTAQzmLmWeuw4kkK+n1bi+TW+JwsrPJ5pq3+w0veWyikFzKKMFAB0BBxYqVMCEMzD9pNuy0pwetlA519nkw2F1mw3pjJWFCdKA7qmJp8OOXGyVsZDX5bCaRFBJJpZBc/HhJIYP2dCeZ9F1+QdAMjUJy2co6yilBQ4v+zgCSSacTvUlS9vxLkGEY0UCUFRtxxGNVbIBZHi9IAAA7DmbrUznVcgEAQcOPhwp8eAgTjvbqMdAJEiCAjzKK0QijoJBKJj05erdfgOoLqOx4/+FGPjM2PnmMhdg74XCYV199lUceeYS8vDxOPPFE7rvvPpKSklixYgVXXXUVAD6fD6fTGePRCnFwmDdvHlOmTOHbb79l5cqV0dsTEhKwWCyUlZVFG8N37dqV999/n379+sVquI2msrKS6667jrPOOosLLrigwfcfCoX44osv+O9//8uiRYsYPXo04XCY6dOnEwgEuPbaa7n33nt3G5zIzc3lgw8+4LXXXmPLli34fD40zfw8bLFYGDduHPfffz/Z2dl7PLaKigpycnIoKSmhRYsWtG/fHpvNhmEY5Ofn4/F4sFgsNGvWLPrequs669evZ/Xq1WzZsgWPx0MoFALA4/GwdetW8vPzmTVrFi1btiQnJ4fJkyczevTofXwED2/ymVE0dRKUEGI/1DcZFTT8rGAB29lGIim0pzuJpLCelWwmJ7peHAn04/hoz4j6HI4TWuLwsqsJXd3Q8VKBgkIlZaxgAToaaTQjhQwSSSGOBGzYURQFwzAIE8JLJetZQQkFtKYzLWjHz8b03R5vd6+3vblqfm/sLgChGWH8+FBQUFHJZRNrWQpAGs1oTzfiScKiWNEMLTphb8WGoiiEjTAhAtiwRyfwa+9fI0QAO04C+Mjhb/LZggMX7elOc9pGH99CclnLMiopI4k0MmiOigooGOgE8OHHhx8PHsrR0EgilQyaY8GKkzgSSaGUItayDC8V2LCjo+PERRatSCaNRFJrjbWqH88m1uClstb4LVixYK3To8eCFQcuzLOrvk9FRcUM5Cgo2HHiwIkdJ23ojIcKlvI7yaSRShYKKhohdHQMDHQ0woTQqfr4ZKCjR38/lkjOjgs3zWiNTbFHj304vKfLZ8bGJ4+xEHvu559/ZuzYsaxatYrLL7+c+++/H4/Hwx133MGPP/4YXe/aa6/l5ZdfxmJp+EC/EP/f3n2Hx1Hd+x9/z1Zp1YtVLFmy3Avu4Iax6T04EEgguYR0ICGQkPsjjQfIJQlObjAJIQRCCZeEAKGaHoox2LiAsY0bLqqWZcmyetdqd8/vD0lrrSTbclH158WjR+zsmTlnZiTr7PnOOd+hoLKykqKiIowx/Pvf/+bXv/41w4cP5wtf+AILFixgypQpjBkzhoiI1s+2fr+f/fv3s3HjRm688UYiIiL4yU9+wle/+lU8Hk8/n82xMcZQWVlJSUkJHo+H+vp6fv7zn/Pqq68CcNddd3HNNdeQlZWF0+mkqqqK6upqEhISgtflwIEDtLS0kJCQ0G0QtKKiAq/XS3JyMitWrOCmm25i+/btnHHGGfzhD39g9uzZQGsw5K9//Su/+93vqK6u5qtf/SpTp07F6Wzt/9fW1rJ371727NlDXl4en3/+OQ6Hg6uuuopZs2YRHh7OjBkzSElJ4dlnn+XXv/41zc3NxMTE0NTUxNy5c7niiiuYM2cOp5xyCi7Xwf5sdnY2Dz/8MA8//DC1tbXB7ZZlkZiYSEtLC1VVVSHnlZiYSHJyMgUFBdTV1QXLezyeYJvDwsIYPnw4qampjBkzhv/5n//hxhtv5Omnn+bqq69m2rRpNDc3U1dXR0tLCz6fj7q6OmpqajDGYIzB7/fj8/lwOp2EhYURFRVFfHw8c+bMYfHixSfdv/HqM8pAp6CEyHHoPJhojGEt7+CliXFMI4UM9rOXHWzAYMhiIqlk4sQVsmxTd06GwSs5OXU3CG+MoZYqbNiwsFHCHorICxlojiSW6cwnzDryBxmvaSaHrZRQSAA/UcThJpxIokkjq8sx6kw1xRS0DZrHE05EMNhxuKfhT1RQosk0sI98KthPHTXBoEIzjV3y0FhYpDOaRFLYzFr8+IDWwfZAh5kI7WUNB//Me4gknAgaqCOAH4MJzi6waJ0V4MDFOKaSQka3MwWMMZRTQj47qKMmWKeFhZswwvAQhgcPUQxjOBFWVLfnbYzhAMXUUY0dO7VUcYB9Hc7H3haw8NOCFwuLRIaTzijC8OCjhUbqaKYJHy14iMRNOEBw9kMzjdiwEUUcEUQRTiT2HswsKTPF7GE3tVQBrQEOG/Zg4MGBsy0Y03rmNmzBgIUfPz681NP6IW0BFxNmeU6af9PVZ+x9usYiPbN582ZmzJjBvHnzuP/++5k8eTK33XYb999/PxMmTODee+9l/vz5xMTEaGkQkQ7q6urYsmULycnJ7Nu3j0cffZRnnnmG5ubWPqPD4eBrX/sajz/+eI/W+1+7di133XUXb7/9NnFxcUydOpXhw4dz9tlnc/XVVwcH7KH1SfqXX36Zjz76iFmzZjF9+nQyMzNDyvS21atX889//pMPP/yQvXv3kpKSAhB8sr+j2NhYHn/8cdatW8fvf//74OyQ8PBwGhsbg+Usy8LhcARnBdjtdubMmYPNZiM/P59AIEBjYyOVlZUAuN1umpubmTNnDg8++CAzZ87stq11dXU88sgj/OUvfwkGPAA8Hg/p6emMGDGCrKwsZsyYweLFiw+5TFN1dTVPPfUU1dXV2Gw23njjDVavXo3P5wueZ1RUFFVVVdTW1hIbG8v111/PFVdcQVxcHIWFheTl5VFSUoJlWUyaNInY2Fi8Xi/79u1j7969lJSUkJGRwbRp05gwYQLp6elHDBL4fD5+97vfsWzZMnbu3El4eDiRkZE4nU7sdjtRUVFER0cHfw4dDgd2u52Wlhaampqora3lwIED5OfnM3fuXNasWXPY+oYa9RlloFNQQuQYdTdIGTABPmAZqYxkgjWDelPDGt5mGMOZyCxclrvHxz9ZBrBk4DsRA/LdHaPZNFLOfsopoYLSkMF3Ow5SyCCZdCwswvAcdlbRofiMj2LyqaGSZpqophw/PmJIIIpYbNiopoJqynHiClkCyoadcDy4CMOJOzjoPoZTQpZMOtbr0GjqqaCUKsoppRCwSCCZKGLbBrZbcBOGGw9hbYPtfnxEE4fban0dMAFqqaKBWlrw4sCJmzB8+NrOJYAdBy7cePFSxQG8NBNOBA5aZyK4CcdNGE20fnBKJQO71T8pp4wxNFBLLVV4aaYFLzbsuHCTQAphbec9GOSaz8llG9HEkUgqMcSzovr1bvtRvTULpz+oz9j7dI1FeubNN9/k4osvZt26dcyePZvf//73/PSnP+W+++7jpptuwuFQekURaA0EbN26lf/85z+8+eabrFq1Kji4DZCVlcX3vvc9Fi5cSCAQYOrUqcf09ycvL4/HHnuMnJwcCgoKWLt2LeHh4Vx44YVkZGTQ0NDAe++9R05ODsOHD2ffvn3BfRMTE8nIyCApKYnY2Fgsy+KCCy7guuuuO+7z9/v9bNiwgRUrVrB8+XLeeustRo4cyXnnncfo0aMpLS3FGEN6ejoZGRkkJyfT1NSEMYaFCxcGZzxUVVXx8ccfs3fvXmpqakhNTSU2NpaKigpqa2vx+XykpqbidrvJz8/n/fffx+VyBWdWOJ1ORo8ejdvtJi8vj3HjxnHxxRf3W9C0sbGRjRs3smPHDsrLy6mpqSE2NpaMjAwuvfRSwsMHT7987NixZGdnc8011zB//nzmzp3LtGnTcDq7ziIfStRnlIFOPTGRIzjS0iod2SwbMSYh+HSt1fYkrR8fzTTiNC49iSVHpacJgHurvo58poVCsvHRQgTRnGV9EYfl7LZNnY9Tb2opp4R6ammglnpqgk/oRxNHOqOJJwkLixa8xJGE4wQMjDssByMYE3IOpRRRShFVlOHHTxQxTOY0khmBwVBPDU000Eg9TTTgpYkWvBgMByjCj4+JzDrkuR5JudlPNluC/05EEsMIxjCSCd0ur3Q4NstGDPHE0LO8DKlkHNXx+5plWUQQTQSDv9M8kvF4iKSYAvawGx8txMTEEEF0cMZKGBGtATc8eIgMBoOqTBnjrRkkkNxlpslgDVaIiPS1+fPnY7fb+fDDD5k9e3ZwyZiqqirKy8tJTk7u5xaKHLudO3fy0EMPER8fz4wZM7jkkkt69DnT5/OxcuVKVq5cSXZ2Njt27GD79u3U19cTHh7O2WefzdKlS5k/fz7l5eW43W4WLFjQoxkRR5KVlcWvf/3r4Ou8vDyeeeYZ3nzzTT7//HPsdjvnnnsu//jHP5g3bx4HDhxgx44dFBQUBL/KysooLS2ltraWp59+mvj4eL7whS8cU3taWlq4//77WbJkCWVlZXg8HubOncvf//53vv71rx/1OcfGxnL++ef3uPz3v//9o21ynwoPD2f+/PnMnz+/v5ty3NatW8eDDz7Ia6+9xvPPP09LSwsej4epU6cyevRoRo0aRUZGBhkZGYwePZqRI0cGZ1w8++yzAFx88cUDLiG4yGCnmRIiR9DdgGONqSSPz6mjGg+RTGQWbsLJ43Ny2c4EZpDelmC3zBTzOZ/STBNheBjOSEYwJmSd8Y404DQwHc3Ac2/nGeh8/GOdyXA059Ro6tnAhzTTiIswmmgggijS2pbSacFLNHFEWbHBfSpMKcUUUE0FDdRiw4aHKDxEEkE0kcQQx7CjmkHU34pMHp/zKVOYS7KVftT77zd72cJaYkkgg3HEMeyQ/xbI0NE+A6SKcmqppIH6YNCrY/Lv1mWibCGzhqKJYzgjW2eK4DnsgMNA+PuhPmPv0zUWCfX444/zj3/8g5ycHK6++mp+/etfU1dXx1VXXcW6devYuHEjY8eOJRAIcMcdd/D73/+elpYW5s+fzw033MDXvva1EzLgKtJXXnzxRa6++mri4uLw+/2Ul5dz2WWXceWVV+J2u6mvr+fSSy9l2LBhQGs/5IEHHuDdd99l9erVlJWVER8fz/jx4xk/fjyTJ09m5syZnH766bjdg6NfHggEuPzyy1mxYgXZ2dnBc+0pn8/Hd77zHf75z3/y7W9/m2uvvZbZs2eH5E6QoampqYmNGzfy0UcfsWXLFnJzc8nNzaW4uDi4/JbT6SQiIgK/3x/Mm+FwOLj88sv56le/yllnnUVMTEx/nkaPqM8oA52CEiKdHGmgts5U8zHLCSeCeJIopQgHTkYwhh1sYBSTyWJCyMCR3/ip4gClFFHMHsLwcCpnHnYwdiAMLslBJzIo4fV6j9jhPVx97Qmd/fgxwQS79mAOhOPVPoBa1zZjoIFa9rMXJy5mcAYeK5I6U8MuNlFFWUgegwSSSWQ4DdRSRC7hRBJLIgmkkEByj9bzH6gCJkANFaxnBWOZSqY1rtty9aZ1NogfH378NNEQvI7VVJDMCE5htmZNCca05vRopI4G6mihGYPBQxQJJFPOforIo5wSoDVviBN3MDl3HMPIYGzwZ2kg/N1Qn7H36RqLHLR06VJ+8pOfcPHFF5ORkcGjjz7KzTffTF5eHu+99x6vvPIKixYtCtmntLSUt956i3/+85+88847fOc73+GRRx7ppzOQ/mSMoaWl5bgGotuT+jY1NQUT7Lavc38i+noNDQ1s2bKFHTt2UFxczKpVq3jzzTe58soreeKJJwgPD+df//oXv/vd79i8eXNwv4iICP7rv/6LqVOn8s477/Dyyy9z3nnnMXv2bC677DJOO+20Qd0Xraqq4s9//jN33HEHu3fvZsyYMV3KeL1eNm3axN69e2loaKC6upo9e/aQk5PDpk2byMvL44knnuDaa6/thzOQgcbr9VJUVER2dja7du2ioaEBv9/PxRdfTGJiIs899xx/+9vf2L59OwDR0dEkJiaSmppKWloa119/PWeffXY/n0Uo9RlloFNQQqSTIw0+F5sCtvEJi7gMp+Wi1lSxnvdxEkYAP2dw+KmzDaaWj1nOMIYz2TrtsHUNhAGmoeRol9k5kXzGRzXl7COf/RQSTRwOnDTRSDLpZDExmPy83OynmAIqOUAAP3YcRBNHOBGUUtT2dHXXf7otLFyE4cBJOBGMZWrI0i/GmJAAQuurQNsT2/U00dj2LHdJ8EltG3bC8JDEcEYwJpjLoJ3ftGY/cOCghL0UkUs15YThIYEUxjFtUAcioDUYUcAu9rCbFppx4eZUzsJjRYaUM8awi88oJDtku6st+bOnLUCTRtag/hAofa/FeKmijEYaaKEZL0000UA5+/EQSQwJJJBCEmnYLFu//u1Qn7H36RqLHHTVVVdx4MABVqxYAcB9993HrbfeSnJyMosXL+bhhx8+7P6PPfYY3/nOd3jhhRe44oor+qDF0t+MMRQXF7NixQp+97vfsXPnTs4880xqampobGzk7rvv5tJLLwVan6b/61//ymuvvcYnn3yC0+kkMjKSL3/5y2RnZ7Nq1Sr2799Pd0MqERERJCcnEx0dzaJFi/jNb34TkqzZ7/cH8zYEAgFaWlqoqakhNzeX/Px8CgsL+fDDD3n//feDyYbj4uKYNGkSX/va1/jud7/bJS9KRUVFcMmZ+++/nyeffJK9e/cybdo0vve973H99df31mXtM3v37uX222/nqaeewufzcc455/DOO+906VuXlpZy4YUXsnHjxuA2h8MRTPw8fvx4rrnmGs4444y+PgUZ5PLy8vjoo48oKSnhwIEDlJSUsHnzZjZv3sy8efOYPXs2V199NbNnz+7vpqrPKAOeghIiHN1gdfvyLWdxeXCwtdyUsJFVAIxmMlnWxMMeY58pYDufkEIGkzg1OBjdmYISx+ZYgg8txhtcmuhYZxy0z2Boz0dQSxXVlFNPLc1tSYTdhJPOKGqpBgx2HJSwBw9RJJNOHdWUUtQ2zJgcTL5cSA4AqWQSQRQuwrBjb8tbYvDjp5lGvDThw0cZJTRRTyyJeGmikfqQgER37NgJJ4pEUohnGJHEHtO18Bv/oA9EdFRtyvmE9wEIw8MsFnVJuu0zLeSwjUKyGcc0kknHjrP1HikAIb2kwpSyn73UUEEtVbgII4pYwvC0lWj9N8aOA9P2nx0HTpy4CScMDxFEsdy8dMLapD5j79M1FjnoC1/4Aj6fjzfffBNo7YvdcsstPPDAAzidTj766CNOPfXUQ+5vjOFLX/oSb7zxBn/961/55je/2VdNl8PIy8vD7/eTkpJCZGTkkXfoRiAQoLi4mIKCAnJycli3bh0ff/wxu3fvpqqqCoDTTz+dSy65hJUrVzJs2DD27dvHu+++y5VXXsmoUaN4//332bBhA+eeey4LFizAsiyys7N54oknGDduHFdffTUZGRkkJCQQHh4eDAhUV1dTVFTEgQMHqKio4J///Ccej4cZM2awY8cOSkpKgoGGQ0lMTGT69OlcdtllzJs3j0mTJgXzovSUMYbm5uZgIuah4Oc//zlLliwB4PLLL+fFF1/sUmbnzp1ce+217Nmzh6effpqpU6fi8Xhwu91aqk16hd/v59FHH+X999/no48+Yu/evZxyyilMmDCBpKQk/H4/0Dq7Ijw8PBiQjImJISEhIRgsGzNmzAn9GVWfUQY6BSWkzx3r+ve96VBt8hs/ZeyjggPUUglAEw2EE8lp1lkhZXeZz9hDNmCYwhySrRGHrbPY7GE7nzCGU8i0xoe8p2DEsTtcQKLWVFFCYfDJ/gRSiLOGUWXK+IzVwdkByaSTzAhs2GmmgQbqgwP+/raZC1HEkEYW5eynmgrqqKGROvwc/IDhxEUMCUQRQziRRBNHBF2ncteaKnawkQZqiSCaYaSSwbiQcs2mCTv2HidC9hsfReRRwX7CiGhNotu2Xn07Cxs2bG2JdiNw4NQAejcCJsA2PmY/ewE4lTOJtRKD7xeZPLLZgg9f2+9z98s6ifSm1n/f9lBPLU00YtE6e8qPDx8+rLb//PiCidtpKxNFLFHEEU0swxiOy+p+8KInf5vUZ+x9usZystq3bx/Lli3j7bffpqCgAJfLxaeffso999zDf//3fwfLeb1epk6dSmlpKW63m7Vr15KZmXnI4zY1NfGDH/yAJ554gq1btzJx4uEfLpLj1x5Ieuutt3A6ncTHx/Otb32L9PR0lixZwi9+8QuMMTgcDn71q18xdepUAoEAubm55OXlUVxcTElJ69KGUVFRXHPNNYwbN4433niDjRs3sn37dgoKCoIDfwDjxo1j7ty5TJw4kXHjxjF//nxSUlJC2mWM4V//+hc//elPcTgcnHLKKfz4xz/mnHPOCSmXk5NDVlZWjwcP8/Pz+eMf/0hBQQETJ04kPT2d8PBwHA4HlmVhWVZwDftRo0YxcuRIwsPDj3zgk9DWrVv55je/yfr164HW4FP755fGxkZ+9KMf8cgjj5CSksJLL73EnDlz+rO5chLy+/0sW7aM//znP+Tk5HDgwAGcTifGGGpra2lsbAy+rqqqorq6OjjbKjo6mjlz5jBz5kzmzp3LxRdffFzLy6nPKAOdghJy3LobBG4wdWxlHXYcuAnH3bakjANncCkTMDTTRDTxhFnhfToQ35Mn6etNDR/zHn78bctjJGLDooUWRjGJSCv0d2GfyWc760kklQpKOZ0Luyx109kGsxI7dqZZ87t9X8GJo3Oo+2qMIY8d5LINV9t67C1tK7mH4WkLNEUwiVOpoZJstoQsjxSGhzDC22YnONpmIhQH8zlEE0dkW+AhHE9b+QhcuDXIP0RsM59QTAGZjGcMp2BZFgHjJ59d5LKNVDIZwylH/J0XGQiMMbTQHJzR1ZqAu4oGajEYJnMaqVbXATwFJQYGXWM5Wv/3f//HAw88QFJSEmlpaSQlJREdHU1MTAzp6emkpaUFB0YuuOCCAflU9V/+8hduuukmXC4Xs2bNYurUqXi9XpxOJ3/605+6tPmKK65g165d1NfXk5GRwQcffHDY4zc0NBAREcHf//53vvGNb/TimUhNTQ1f/OIXef/99xk3bhwOh4OioiK8Xi/Jycnk5+dz3XXXcd111/Hoo4/yr3/9K7iv2+0mKyuL9PR0kpOTsSyLwsLC4P2Ni4tj9uzZTJ48mVGjRpGRkcHIkSPJzMzUv5dDRFlZGcnJyQQCAV5//XUuvvhiAIqLi/nGN77BypUrWbJkCddff/2gSdotJzefz0dRURG7d+9m3bp1rF27NpgLJTk5mTVr1pCVlXVMx1afUQY6x5GLiBxa50Fgr2nGiYtKSqlpm1nQE3PNeUe15E6dqcZDVMiyRz0dwO9pPQEC+GmdZuchiloqqaMagFL2MtHMop4a6oPJgOtJJJWRTKCMYmqoZBiHH6CMIoYi8mgyDYRZXafjtrdVwYmDjubnpNk0UUYxhWRTRzVZTAzmbjDGUMKetoTEfoYxnDhrGHEMI92Mxo+PAH5chHW7vFatqaKBOhJI7vHsBRmc2hN/A+wlh1KKwBgaqQcgi4mMYpICUDJoWFZr/hkXYcSQQDqjMcaQw1by2UkLLV320d8hkcElEAhQVlbGsGHDuOGGG2hqaurRfm63m8rKyh4/pd3c3Ex2djaTJ08+nuYeUWVl6+eK6dOn4/F4eO+998jObs3hdODAAc466yy2bNnCzp07KSgooKCggMcee4xdu3bxhz/8Ab/fj91+6KUlPR4PY8eO5R//+AfXXXed/qafYMYYtm7dygsvvMADDzyA1+vl3XffDc5AqKys5NFHH6WyshK/3x/MC3LmmWfy0EMPUVdXB0BycnKX2QnGGF555RXi4uKYP39+lzwLMrSUlZURCLQuSfuNb3yDYcOGUVZWRmlpKYmJibzyyiuce+65/dxKkZ5zOBxkZmaSmZkZ/Nmtqqpizpw57Nq1q59bJ9K7NFNigDqeJY467tubgwid21hnqlnLO0DruvmtQ/q+kHXsLaxuE/SOZDxjrCkh23zGh5cm3IRht1o7l62DJtvIZwceIslgLBFE48SNDy+/X34HZ5xxRpfOaHfBExu2Iw4ml5sSisjHj49wPFRwIDg42X6ebsJbl71pO7dKSgkjgrmcG2z3obQYLyt5nUzGMto6pdsyJ9tAUHc/++3X4HABCWMM1VRQSyU1VFFDBfXUABBPMllMIM4a1juNliHPGEMVZdRQgZdmoDVYGUM8kVZMP7dO5PgYY8hmCwXsIpNxjOaULsHYnv4tUp+x9+kaS0/89re/5Ze//CUxMTFERUVRW1tLQ0NDcDmb9mVjOi5v0+6jjz5i/vyDs3iNMVRUVFBdXU1mZmZwcL+iooIvfvGLrFy5ki984Qt89atfZdy4cdjtdsrLy0lMTGTq1KmHbacxhj179pCenn7YoEFTUxOPP/44L7/8MjExMWRmZnLvvfcG33c6nWRlZZGamorH48GyLEpLS1m/fj033ngjDz744BGv2bPPPsvVV1/NJ598ctg8FHJktbW1rFy5kk2bNvHJJ5+wbt06iouLiYqK4tprr+VnP/sZI0YcfqlbkUNpaGhg2bJl5ObmUlpaSlxcHBMmTOCcc85h2DB93pPBraqqigsuuIBdu3bx6KOP8qUvfemYj6U+owx0Ckr0kZ4ECg414Nqaq2A3ADEkkEQaiaTgIQrLsqg1VeQlbcZXCh4iCSOCcDwECLCPfNIZTbKV3uW47e0oKysjJiYGp7PnT3t319aA8bOc1mSZWUzA17a2vg07FhbNNNFALTVUYDBkMLb1HLDaVrhuTcbbQH3I2vwWFpHEYGHhbTvKSMZTSxXl7O/SjnAiSCAFGzbsOHARhpswIonGjYdi8tnFZ4BFEmlty/F4sWEnmjgSSMFjHUyo5jVNVFNBJQeooZImGmimsUtwxYmLaOKIJ5l0Rh0xINHuc7OBYvI5i8u7PJU1FAMSxxp0OJwqU8bnfEo9tcGfl2jiiSGBRFJwWZq6KyLSmc+00EQDe8llLzmMYxo7zaaQMufZrjqqv0XqM/Y+XeP+5Xa78Xpbc1BdeeWVXH755Zx77rkkJSUBsHTpUu69915mz57NmDFjGDlyJGlpaeTm5vLmm29y//33HzJngTGG/fv3d1nn/lisXr2a008/nZkzZ3L++edTX1+P3W4nIiICn89Hfn4+mzZtYufOnQwbNozbbruN2NhYLMviwIEDFBUVkZOTw+7du0PW5o+Ojmby5Mk0NDSwd29rrqWf//znPPzww+zevbtLO84++2wmT56M2+0mJiaG1NRUMjIygsGKX/7ylzz22GOkp6dz2WWX0dTURGVlJSNGjGDOnDl84QtfICoqCmid/bF7925Wr17NBx98wNatWyksLKS0tDSkTsuyGDlyJHPnzuUrX/kKl112WY9mPjQ1NTFp0iROO+00nn322eO6/iez++67j1/96ldUV1cTExPDrFmzmDNnDosWLeLMM8/UkjoiIp0YYygtLSU3N5ebbrqJvLw83n33XWbOnHlcx1WfUQY6BSV6SefB1YAJ4KMFB87g04ft25y4uu0o+40fC4udbKSIvG7rWcRleGlmDf85ZFtiSCCBZFrw4iESD1G04KWeGsopoYZK3IQzjmkhwYtjWQ5pr8lhBxtJI4so4nDiIp4knNbB5Dw+00IBO9lDdjDwYMOGm3DC8OAhinAiCCMcJ24aqaOGSiwsHDiJYxiJVmrbNfTTQB0teHHhxkcLe8imntrgTA0vTV0CCKlk4iGS/RRh0RpQ8NFCLdUYAsSQgB8/LTTRTOt0dzfhxJJAOBG42/ILtOcnCCO8x0GIjqpNOVv5GDtO5lpdp5kOpaDEsQYcjiRgAiznRQCSSGMys7Fbh37STkTkZGWMoZlGaqkin51UUw60Bv/HM4PPzafHXYf6jL1P1/j41dXV4fP5iImJCUmQ2tjYSFxcXJd+uTGG+vr6YGLa7px++umsWrWKn/zkJyxduvSQdd98882Eh4cTCAQ45ZRTSEtLIz8/n88++4yXX36ZwsJCFi5cyKOPPsrYsWOP6zwvuugi1q5dy09+8hPS0tJISUnh/PPPD5mRkJOTw0033cQHH3xAY2Mj0Louf1paGllZWYwdO5asrCyGDx+Ox+Ph008/ZefOnURFRREXF8c3vvENxowZA7Q+3blr1y6MMSQmJvLpp5/y0EMPUVZWFgw2lJWVBeu2LIvIyEh+/vOfk5+fz4cffkhMTAwxMTHk5eWxe/du4uPjmTx5MuXl5ezdu5eamhosy2LatGnMmjWLjIwMhg8fTnJyMsOGDWP48OGkpqYe1cNW0JqY9KGHHuLWW2/l5z//OXfddddxXfuT1fLly4NLMj344IPccMMNWgpLRKQbXq+X3bt3s3LlSn71q19RUlICQFpaGq+//jrTpk077jrUZ5SBTkGJQ+g8gHqkweGO5VtM64B/DVXUUkktVdRTi2lbxsiFGwO0tC0BYmERRgROnBgMAfw004SvbU1nOw4cOLFjx8KGweClCQsbHiKgbaZBC8348WPajmJhI9CWE8GFGwcuGqkLDtA7cRFLIomkUkYxB9hHGqMAqKKMSKIZxnCiiMXVlqj6SJ1KYwx72N22JnVzW91hjGMqyYzo9kNegAA2bL3WYTWm9XrVUUMDtcSR1CVJdTu/8bGPfKoow4ELF67gU/dheI67jT7TQh6fU08tTTRSRxXRxHEKc4KzM4ZSIKKj3gpK+IyPjXxINRUAnMli5XgQEemk0hxgC+vwtgXaI4gmk/F4iMBDJB+YV09IPSdjn7Gv6Rr3nDGGwsJCtmzZwoYNG9iwYQOfffYZeXmtD/s4nU6Sk5OpqamhpqZ1yceoqChGjhyJy+XC7/dTW1vLvn37aGxsxLIsYmNjiYuLw+1243Q6qa2tZf/+/cEE0u25HMrLy2lpacHr9WKMwbIsmpubsdvtjBgxAmMMBQUFwMEn+y+++GJmzpzJkiVLqKys5IYbbmDbtm3s2rWLc889l0svvZRRo0aRnJxMRETEEc+/oqKCH/3oR7z44ovU17fmQVq4cCF//OMfmTFjRpfygUCAlpaWXn2S3ev1kp+fz5YtWygvL+fLX/4ysbGx3Zbds2cP999/P/v37yc+Pp7U1FRmzpzJaaedRlxc3HG35bPPPuNPf/oThYWFwRkhN954I0uXLh2Qyb4Hg40bNwaf7L3gggt46623+rlFIiIDSyAQ4Pe//z133nlncOblV77yFa655hoyMjIYP348Hk/XfKPHQn1GGehO+qDEoQZKjTHUUU0DdXhpYhjDcROOlybq25YgqqUqGAQI4KcFL16agx/4LWxEEkMUsUQSQxjhtOClmUbAwk0YTlw0tw1P+/FhYcNqe89FOGBowUsLXny04MPbNojfGqCgLQTRGmgwBDDYsNoWLnISTxJxDAsO0gZMgCbqceIOmb3QGkzYRT47ceAijkRqqaa2Q7JqO3ZiSCCKWAwGP36aaaSROrw0Y2FrzdOAC3fbkkkWVnCWx3hmMMIa3Ru3ccDzmibKKCGPz/HSTBzDcBNGDImkktFtsGOoBifg+AIUxpi2cE45lRyglCL8+IgkhlFMIslKO4EtFREZ3OpMNfnspIQ9xJLISMYTQXRIoP1E/r0Zyn3GgeJkvMaNjY1s3LiRnJwcWlpa+OpXv4rNZmPPnj1s3bqVtWvXsnPnTnw+Hz6fj5qaGioqKti3b18w2BAbG8usWbOYPn06U6ZMITw8nNLSUkpKSoiNjSU5ORm32x1Mkuzz+XA4HHg8nmDAoa6ujvLyciorK6msrKSqqgqbzYbb7cbhcOD3+/H5fPj9/uCXy+UiLCyMzMxMLrroImbOnBl8ir+2tpbi4mIyMjJCBsFLS0v56U9/yjPPPMOsWbMYN24cb7/9NkVFRcEyw4cP54wzzmDUqFHU19dTW1tLQUEB2dnZNDQ04Ha7CQsLC84eSE5OprCwkNdeew1oHfA/Gdf0N8awc+dOnnrqKf7whz8wfPhwZs6cSVpaGldffTVz587t7yYOKl6vl40bN7J69Wreeust3nnnHRwOB+eccw4PPPAAo0efnJ/9REQ68/v9vPbaa9x99918+umn3HrrrSxevJhJkyaRmJjYK3WejH1GGVxOuqBETwdDO+ZxANqCBQSTNttxEEVsMMGxDTtOXDhxEUEUkcTgIapLosiBrv1JrnbNppFG6oOBkyrKqaMaG3bs2HERhodIXITROuchEAy8NNNIEw1ty0ZFMYtFuK2h/dSRz7RQRzX11NBIQ1sWjUrq25JjJ5LKOKaF5Kw4UQZDEONogxHGmLZrWEUtVdRQSQ0VtND6REEE0SSR1rocVy9cUxGRwcoYQw5byWcnbsLJYgLDyeq2X6KgxOBysl3jhoYGZs2axY4dO4DWWQUej4eGhgbaP8YMHz6cKVOm4Ha7sdvtREdHEx8fT3JyMpMnT+aUU04hMzNz0C0j07Ffboxhx44d7Nu3j5KSEjZv3szKlSspLi4mIiKCyMhIMjIyGD16NFFRUXi9XhobGyktLWXfvn0UFhaSn59PY2Mj3/nOd3j44Yex2QbX55SjYYyhqKiIrVu3smPHDvbs2UNubi5r1qyhtLSUsLAwfvSjH3HHHXcQHh7e380dFJqamti5cyebNm3i008/5ZNPPmHjxo00NzcTFhbG3Llz+a//+i+uvPJKYmJi+ru5IiIDRlVVVXBJxdNPP5177rmHM844o9frPdn6jDL4DOqgRE8GOI82qTS05nJYw39oooEFXIwDJ/vIB1qTKIcTQQTRg+6DTX/xmRbsOIbk9fKaZgrJpppy6qkJ5p8AgjkyIokmjmHEMowwq28+9Ay0AEXH37eACQSDVs000UwjXpoJ4CdAIJj0vD0Q1h4IdOImmthgAusY4kNm+4iIyEH7TAHb+YQxnEIG4w75kMSJ/nsxUPuMQ8nJdI2NMWzfvp1TTjmFsWPHsmHDBvbt28dzzz1HSkoKI0eOZPz48aSnpx/5YBLMjREZOTQf5Ni8eTN//vOf2bx5Mzt27AjOkmmfqZKRkcFpp53GokWLmD9//pC9Dkejvr6ewsJC9u3bFwxeVVdX4/V6aW5upqysjJKSkmBQq33oYOzYsZx66qnMmTOHefPmMX36dFwu9ctFRLrzpS99ieXLl7Ns2TIWLlzYZ/WeTH1GGZyOPjPvANNivJSzn2jiun1S+lzrSvz4DrnGfOtSMPVUUU45JVSwP/gUdisLh+Ukg+NLNHcyGyzr+zeYOrawFlvb4letS1T58OMjQACrbU5Ma16PAIYATTRiAfGkkMpIIogmkmgiiMLWj8mWjzYnSsf9elK2J8dvL2OMoZYqCsmmkgM00xiSeNyGDRdh2LAHr72bMDxEkUYWEUQRQUzrcmBDMLAlItIbiskngWRGWhP6uylyEtm6dSvZ2dksWrSo2zX/m5qa8Pv9h8yH4PV6+eyzz/jwww954403WLVqVXC95ejoaCIjIxk3bhy//OUve/U8hqr2xNKDwbPPPsvPfvazYBJtr9dLXV0dtbW1wWWxXC4XlmUFB9Bzc3MZOXIkixYt4oorrmDixIlMmTKFzMzMIT0r5Gi0tLSwbNkyHn74YTZv3kxpaWnI+3FxccTHx+NyuXC73SQkJDBixAjmzJnD+PHjmTBhAlOmTNHglohID1VXV/Piiy/y0EMP9WlAQmQwOKqgxOKYrx92gLmvns7uOCB6gH1sZz0AUSYWF+623As+vDQHky0nmGRSyMSPDx8tNNFAPTXUUR0MQkQRSzqj8BCFAydhePrsyXbpfxYWtVR12d6+RBC0Lt9lMG3hCRtOXAwnC5fVewkBT4TuggiHmi10LPkeOu5jjKGeWqo4QCVlVHGAZpoIw0MSaXiIJIwIwgjHTXiPEqiLiMjRMQSoo5Z6U0OEdejBo2P5N3+gzcaTgeO2227jzTffxOl0smjRIqB1yYKqqipKS0upqanB7XZz4403cuqpp1JVVUVFRQW7d+9m+/btbN26NbgUzFlnncWSJUsYPnw4cXFxnHLKKf18dtKX6uvryc/PJz8/P2T7+eefz8yZM4NJxAOBAG63G5fLxcSJE7nmmmuCOTukNRD48ccf8+GHH/Lhhx+yevVq6uvrOeOMM/j+979PVlYWmZmZpKWlkZqa2qME6iIi0nNerxfLsnj11Ve59tprT1gSa5Gh4KiWbzqTxccVlDie5LaHUm9qWcN/SGEEBgjgx4ETB06cuHHTOlhcwG4a2tb1d+DETXjbE9jRxBBPNPEDfmBZel+tqaKIPJpppAUvdVTjowWAOZxLlBXbvw08Cj7jo4YKmmiggVoaqceOAw+ReIginqTjmsXSOgOikjpqqKeGBupooI5G6gngx8IiiljiGEYcw4gnedDlWBERGazqTDWbWQNYzOQM3ISfsADw4fp7mibe+wbyNf7d737Hz372M+6++24+/vhjwsLCiImJITY2lqSkJJKSksjLy+O+++6jpqYGp9NJbGwso0ePZuLEiUydOpW5c+cyY8YM3G71y09mxhief/55XnvtNcrLyykuLmbDhg0ATJgwgfXr1w+qAfTS0lJWrVpFUVERu3fvpqioiLS0NMaOHcvUqVNZsGABdvuxz7Kura3lk08+Yfv27Xz++efs3r2b7Oxs9uzZg9/vJzo6mgULFrBo0SIuvPBCpk6degLPTkREDufJJ5/k+uuv56tf/Sp/+ctfCAvrm1yrA7nPKAInOChxou0xu8lmK3bsOHHjwk0k0QxjOHEkYbNsGGNYx7vUU0MiqcSTRBzDiLRCk2sZ07oUz1DNbSDH54DZRx6fU0cNAfzdlpnKPJKstD5u2dEzxrCPfLLZEpwF5CYcD5H48dFAHT5asGEjkVRGcwoRVtRR1eEzPtazgrq2mSVhePAQhYdIwokgkhhiScBuDfoV4kREBq06U80GVuKlCattdp+bcCYwgxgr/piPq6BE/+qPa+z1erniiitYvnx5SIBhwYIFXH755UyZMgWAnTt3MnXqVCIjI7nqqqtYtGgRZ511FikpKSHHa25uJhAIEBampRmlq1/84he88MIL7N69m0N9VC0uLu7yczUQVVZWcscdd/DAAw8A4HK5GDVqFOnp6ezdu5fc3Fy8Xi8pKSl87Wtf49e//vVRD1Z99NFHXHrppVRVVeFyuRg3bhzjxo1j9OjRjBkzhtmzZzNlypTjCnqIiMjxefTRR7nhhhvw+/1ERkYSHx/PjBkz+Mc//kFU1NGNx/SU+uUy0A3ooMSH5jW8bcu+DGM4LTRTRTlNNOAmnNFMZrg1Er/xsY98SiikhgoMhgRSSCAZO462mROt8yOcuHDial2/Xk9tS5vNZg2lFDGOaa1JzAFf21Jframq4wfFz0uzaWILa6iinBQyyGIiYXiwd8hvYYyhiQb2s5e95GDHzmzODSlzJOWmhI2sYirzWn/POgUf2oOABhPMx6GZSCIivavOVNNAfTDvkY8WqqmgmIKQcuFEcLp10THVcaRZsfrw0/v64xobY4Jr8l944YWMGjWKoqIili9fTm1tLQsXLuSPf/wjM2bMID8/nz//+c+88cYb7NixA5fLxfXXX8/48eOJiooiKiqK2NhYEhMTSUxMJDY2FrfbrTX/BYBAIIDD4SA9PZ277rqL0aNH09jYSE1NDU1NTcybN48xY8YMimDWihUr+PKXv0xjYyN33nkn1157LYmJiSHBAb/fz/r163n66af561//yg9+8AOWLl16VPX84Ac/4I033uD1119n3LhxOByh/XKv10tjYyMtLS20tLQQFRU1aHKLiIgMRn6/nw8++ICamhq8Xi8tLS2UlJTw0ksv8dFHH4WUvf3227n77rt7pR3ql8tAN6CDEo2mnly2U0wBTlzEk0QksVRSSgWtSbk6L6njN37KKCaX7cFlZA7Hhh0nLqKIJYpYookjhgQNoJ5kNpmPKKOYCKLIYBxpVlaf1e0zPsrYRyyJhFnHtr6g3/jZz16y2QxYTGEOcdawI+5XZ6pZyzucwhxSrBE9rq89KBFDPBatgwiGAC14g1+dzWJRj9okIiJHx2/8ZLOFQrJDtltYhBGBhwjC8OAiDCcuYkkg+hhnSigo0f/6Kyjx/vvv89///d9s3LiRCRMmcN555xEXF8eTTz5Jfn4+TqczmJS63f79+3n44Yd58MEHqaiooKWl5ZB1OBwOwsLCSE9PZ9asWZx66qmcdtppzJw5k/Bw5Xg7WTQ1NRETE4PX62XRokX86U9/Ytq0aX1W/+7du/nss8+46KKLjnl5qJKSEu677z7+8Ic/cOaZZ/LPf/6T1NTUI+73m9/8hrvuuovy8vKj+t3+/ve/z1NPPcX06dOD2xoaGigrK6OsrIy6urqQ8vHx8ZSVlQ2KwI6IyGCTk5PD17/+dVavXh2yPSIigjFjxjBmzBjS0tJISkoiISGByy+/nOTk5F5pi/rlMtAN6KBEsH5TSSlFVLCfBupw4sKBExs2JjMbj3XoJz0CJhBMbt1xwDSAv+0rgJcmaqmihsqQpNczOEPBiZOEz/gop4RiCiinhARSSCQFD1G4Os6wOYrZBNC6LJTVlha7PTm2HUfwq4oydrOZJhoASCKNKcw97IcEYwwH2EctVTTRQCP1wdwXwxjOBGbitg497dsYQwteaqmilkqy2UoWExltTe7xeRlj2MMuaqkObmtdGsQZvF72tt/RAAG2so4wPIxiMqlk6EOQiMgJlGO2UsAuxjCFZEZgC/5nP6H/3vYkwbU+/PS+/rzGfr+fZcuW8dZbb/Huu+9SV1dHfHw8fr+fWKq5RQAAKh5JREFUhQsX8uijjx72Z665uZna2lqqqqooKyujvLycyspKmpubaW5upqmpidzcXD799FM2bdpEU1MTDoeD733vezzwwAPqP5wk9uzZw+uvv86f/vQnysrK+OIXv8h5553HiBEjSEhIICEhgbi4uKNajqipqYnnn3+exMREnE5nMAgWGRlJREQELpeLRx55hHvuuYfm5maio6P57W9/yw9+8IPDHre2tpannnqK3Nxc8vLyyMvLY9OmTTidTm6//XZ++tOfdpm50JHf76egoIANGzbwyCOP8Pbbb7NhwwZmzJjR43MrLy/nrrvuorr6YL88LCwsOBspISEBj8eD0+nk/fff5/777+e8885jyZIlzJw5s8f1iIjI4QUCAWbMmEFtbS2PPvooU6dOxel04nQ6CQ8/cfndekr9chnoBkVQoi8YY2iknhIKyWUbAKOZTJY1sZ9bJn0pYAIUks0B9lFNOYbQX4/2BOkeoogihhgSWpd76uaPS8AEWM6LR6wzmjgmMJOtrCNAgNO56LB/rA6YfXxGa9S9dWmpODxEkcwIIqwojDH4aMFLE800BQMXrQmv62igNhh8s+MgiljGcAqxVuLRXCqAkLpa8LYF/1pooZkWmvHixUsz5RQTIADAqZx5THWJiEgoYwyFZLObzaQzmvHW9F6tT0GJgeFkuMYtLS2sX7+ev/3tbzzxxBMAbN26lcmTe/4AhQx+e/bs4f777+f1119nx44dIe85HA7GjBnD+PHjmTBhAqeeeipz584lPT2922O9/fbbXHDBBUes84YbbuArX/kKZ511FjfffDN/+tOfDlv+O9/5Do899hgACxYsCLblK1/5CrGxsfj9fg4cOEBJSQlFRUUUFBSQn59Pfn4+O3fuZNeuXTQ1NQGQlpbG/PnzeeSRR4iJiTlctd3y+/3s37+fsrIyKisrg19lZWUcOHCAsrIySkpKePPNN4P7BAIBBftERE6Aqqoqvvvd7/L888/z3nvvcfbZZ/d3k06KPqMMbkMqKFFsCtjGJ8HX8SRhxxEcKPXhxY+PCKKIIZFwPNRTSz011FGNl2YAIogmlUzSGTWgz1d6l8/4aKaxbXZNMy14g4P69dTSQC0Ggx07EcQQSTSRxOAmDAdO7DgppYgSCoI/W0cylfkkWcMPW6bSHGAza0KWSLI6PBfrw4dpCwC0cxFGOB7CicRDFBFEEUk0HqJCPogYY2imkTqqCRAIBmUMrcGHZhppppEmGmiikWYa8HezRJoNWzA5vRMX4UQQ0VZfAsn68CMicgLsM/lsZz0AWUwkg7E4LVev1NWTgATow09fGCzXeOHChaxcuRKApKQk5s+fj9/vp7KykoqKCiorKzHGMHv2bE4//XTsdjvbt29n27ZtbNmyhYaGBlwuF2eccQY33ngjV1xxhfoPJ7HS0lJKS0spLy+nvLyc4uJidu3axc6dO9m+fTuFhYUAJCcnM2XKFKZMmcLEiRODeUvsdjv/+7//y5tvvonff/jlfQESExPZvn07w4YdfunR3/72t9x+++3BhNw2mw2Xy4Xb7cZut1NVVUUgcLBf7nA4yMjIYOTIkYwbN44JEyYwfvx4pk2b1mWJJ5/Px7Zt28jLyyMQCAS/2gMde/fuZe/evRQWFlJYWEhRURE+n69LG2NiYkhMTGTYsGEMGzaM8ePHM2bMGM444wwmTZp0xGshIiJH9sUvfpFly5YB8Pjjj3Pdddf1e76swdJnlJPXkApKlJkSNrGq2/diiCeWRBw4qaWaasrw0kw4kcEB2hgSiCZeSzZJj/iNjxoqqaYiGNiqpyY4I6Cj9twlrYsbhbWt8R2JCzc27PhowYWbYUcISHTUaOqppgJf25JkzTTRTGMwKNFx+Q4gmPS9/bsTF2F4CMODAyd5bKeUosMGUNyEB7/CCA/u3x58cODCibNL4msRETnxWoyXInKppoIKSnHhZjSTSSIdm3ViPwQpKDFwDJZr/OUvf5nnnuv6cxMTE8OCBQs49dRT8fl8rFmzhnXr1gEwceJEJk2axNSpU5k/fz4zZ87E7Va/XI6suLiYtWvX8umnn7Jt2za2bt1KTk4O3X3UjYmJIS4ujuTkZFJTUxk7diyjR48mMTExGDhbsGBBj2fm+P1+Nm3aFAymlZaWUlRURElJCXV1dRhjcLvdwS+bzUZUVBTR0dHExMQQHR1NSkoKI0aMICMjg4qKCm677TZWrVpFY2Njt3W2519JT08nLS0tuG96ejpJSUnExcURFxdHbGwsTufA/fwuIjJUbNu2jSeeeIK1a9eyatUqLrroIu644w7mzp3bb20aLH1GOXkNqaBEO2MMDdRSSA4H2EczrZ25cCKZx3nYLDvGGAzmhH9ol5ObMSYkh4mvLVzQPrug/Xs9tfhoTfZox9E2yyKWWBJa1wPv5ufSb/zUU00t1W0BkNq2GQv1IYGQcCJwE96Wy6L9iUKLAL62/1qCXx3ZcTCC0cSQQBSx2HG07WkRnIuh3xcRkQGp0dTzOZ9SQSkOnMSTRDxJxJJ4yGUGe6qnAQnQh5++MNiucXNzMytXruSPf/wjq1atCq5733FpHL/fj2VZ/f5EoQwtPp+P6upqqqqqqKqqorKykv379wdnFhQWFpKXl8fOnTuDSdhTU1OZOnUqU6dOZfHixZx++undHrusrIzPPvuMzZs3s3nzZrKzsykoKKCoqCg4MyIsLIyxY8eSkJCAzWYLfgUCAWpra6mpqaG6uprq6mrq6+tDjj9p0iS+9a1vMWfOHMaPH4/D4Qg5hsfj0cwhEZEB6tVXX+XHP/4xOTk5jBo1ivPPP5+zzz6b+fPnk5aW1mftGGx9Rjn5DMmgRGc+08KnfEgtlczlPCKto1+jU+REOrhMUusMi45fbsIZwxSiiaWMEqopp45qGqgL7u8hkgiiCcNDOBGE4cFDJOFEYu9hMu6ACYQES2JJJMzy9NYpi4hIH6gz1ZRSRDn7qaGibZlBBzHEE00c0cQf1d+LowlIgD789IXBfI2NMezatYsJEyYwevRosrOz+7tJIrS0tJCdnc2WLVvYsmULmzdv5tNPP6WoqIiFCxfyxz/+kZqaGt566y02bNjA5s2bKSkpAVoDD5MnT2bChAlkZmYGv8aNG0dGRkaPk3HX1NRQWFjInj17qK2tZfHixZolJCIyiAUCAd5++21ee+01/vOf/wT7PBkZGcyePZvTTjuNmTNnMmbMGEaMGNHjvxdHYzD3GeXkcFIEJdpzTYxlKpnWuP5ujsgh1ZlqctuWUYLW3AzRxBNFLJHEtH1Fa3kkERE5Ir/xUU0F1ZRTQyU1VNBMU/B9N2GEE8koJhFvJXXZ/2gDEqAPP31hsF/jxYsX8+6777Jy5UpmzpzZ380R6VYgEODVV1/ll7/8Jdu2bQNac6PMnTuXqVOnMmXKFKZNm8aYMWN6ZSBJRESGluLiYtasWcOaNWv45JNPWL9+fXCWnNPpJDMzk+nTp/PAAw+QnJx8Quoc7H1GGfqOKihxGmcHk9ZaloUxhjqqaaKBGBKCuRh8poUKSmmkPmSpGB8tWNiIJYE4hhFJTJ9MO91kVlFGCTbsbWvftybgTSSF4YzUAK8MOGWmBEOgNVm7fj5FROQEaTZNNFJHA3U0UkcFpdRQRTSxONvyAzlxceM93+L0009nwYIFwb5afX09+/fvp7y8nJSUFNLS0rost6MPP72v/RovX76cyZMnk5TUGlBqbm5m1apVOBwO5s2bh8vVmvS8oKCA5cuXU1paGlwqpqqqiurqaoYPH87ChQs588wzSU9P7/W2e73e4NPfsbGxDBs2jMTERNLT0/nWt77FBRdcoCVpZEBpbGzkueeeY9KkScycOVNLjImIyAnh9/vJy8sjJycn+PX000/j9/uZOHEiCQkJJCYmkpCQQHJyMosXL2bkyJFA68zT9iUJGxsbGTlyJPHx8V3qUL9cBrqjCkq0s2EnkuhgYt12McTjxE0F+wkQCCbU7fjlx0cNFcH3W5cTiG9LlhuGqy1g4CbshA3GNpp6qiinhWa8NNNCM000UM5+LKyQD+HOYMJeR3At/YMr87f+XwTRJFu9/8FNREREpDcFjJ8CdtFAHS14GTtvJOXl5ezfv5/q6mpGjhyJw+EIJmztyO12M2rUKEaPHs2YMWMYM2YM6enpfPGLX9SHn17UuV+elJTEmDFj+Oyzz4JP3EVGRnL22WdTXFzMJ598gmVZxMbGEhMTE/weHR1Nbm5u8CnwESNGMG/ePGbMmEFqairJyckkJSUFv5+oZLkfffQRO3fupKysjAMHDnDgwAE+++wzNm3aRGRkJAkJCcGv+Ph4EhISCA8Px2azYbfbQ77bbDYWL17MtGnTTkjbRERERPpLbm4uf/7znyktLaWsrIzy8nLKy8spLi7G6/UyefJkqqqq2L9/fzAXUrvY2FjGjBkT0i+fNGkSc+bMUb9cBqyjCkqMZSqRRAfXwXfgJJFUPERSQSlllNBCM8MYThJphFsR3R7Pb/xUUx6ypIC3w3IC7Zy48RBBOJFtyXvDugQ5HG0BBD8+mmnCS1Pwe4AADhzYu/ly4CBAIBisaE1K7KWl7cvXFrrw4+umXS4WWZcdw+UWERERGXg6L9UUCARYsWIFL774Ih6Ph+TkZFJSUkhOTiY+Pp59+/aFPNmVk5NDbm4umZmZZGdn68NPL2rvlz///PMYY9i6dSu7du1iypQpXHLJJfj9ft58803efvttEhISuOqqq7j44osPeT8OHDjAypUrWbNmDWvXrmXLli3BZNTtbDYbI0aMCH7IzcrKIj4+ntjY2JBgR2xsLOHh4ZSVlVFcXExJSQnFxcWUlpbidDqJiIggMjIy+NX+OiYmhry8PLZt20Z5eTkVFRUh39vX2/f5uvbLb731Vu69995eudYiIiIi/a2+vp5///vfrFu3jmHDhgX75CkpKbhcLvLy8sjNzSUnJ4fs7GxycnLYu3cvt9xyC3/605/UL5cBa8DklDDG4KUZL03B743U00h92xID9bTQjOGIzQVaAxo2bPjx4cd3yP3sONqCHh5s2GmmgSYaaaaxyz4uwnATRhYTSbLSjvucRURERPrTseSNOBS/309BQQGjR4/Wh59e1BdT8ZuamigtLWX//v3s37+fffv2kZubG/ygm5eX1yVwcSgOh4OkpCQCgQB1dXVdZtx0lJqaSlZWFiNHjqS+vp69e/dSWFhIaWlpSDm3201qaiqjRo3i0UcfJSsr67jOV0RERGQoaWxs5MCBA2RmZqpfLgPWgFms3rIs3G2D/odijCGAn5ZgjgpvMFeFHQduwnARjgs3NssWsp8hgK8tQOHHhw8fzTS0BT4agvkvwogglkTC8OAmvO0rrDXIYWkNURERERncTmQgoiO73U5iYmKvHFv6VlhYGBkZGWRkZByyjN/vp7a2Npijoj1PRX19PYmJiaSmppKSkkJ8fHzIOvyBQIDGxsZggKKuro7Kykry8/PJy8sjLy+PgoICIiIimDVrFosXLyY9PZ309HSGDx9OamoqcXFxyj0hIiIicgjh4eHExsb2dzNEDmvABCV6wrKs4PJLEH5U+1nYcWEH3B3eSTjRTRQREREZcHorECEnL7vdHlyyKTMzs8f72Ww2IiIiiIiIIDk5uRdbKCIiIiIiA9WgCkqIiIiIyOEpACEiIiIiIiIDmYISIiIiIoOMAg8iIiIiIiIyWCkoISIiIjKAKOAgIiIiIiIiQ5mCEiIiIiJHSYEDERERERERkWMz4IIS+pA/eJ1nu6q/myAiIr1Mf6dFRERERERE5HgcVVDiH4UPEB0d3VttAaCmpqZXjy+954Wqx/q7CSetxTFf7+8miPSpZdVP9ncTTlr6Oy2Ho5+PvqNrLSIiIiKHor6iDHQ9Ckq4XC5SUlIYMWJEb7dHRETkiGJiYvq7CSJyCCkpKbhcrv5uxpClfrmIiIiI9IT65TKQWcYY05OCTU1NeL3e3m6PiIiIiAxiLpeLsLCw/m7GkKZ+uYiIiIgcifrlMpD1OCghIiIiIiIiIiIiIiJyPGz93QARERERERERERERETk5KCghIiIiIiIiIiIiIiJ9QkEJERERERERERERERHpEwpKiIiIiIiIiIiIiIhIn1BQQkRERERERERERERE+oSCEiIiIiIiIiIiIiIi0icUlBARERERERERERERkT6hoISIiIiIiIiIiIiIiPQJBSVERERERERERERERKRPKCghIiIiIiIiIiIiIiJ9QkEJERERERERERERERHpEwpKiIiIiIiIiIiIiIhIn1BQQkRERERERERERERE+oSCEiIiIiIiIiIiIiIi0icc/d2AY9XU1ITX6+3vZoiIiIj0K5fLRVhYWH83Q0RERERERKRHBmVQoqmpiZjwOLw09XdTRERERPpVSkoKeXl5CkyIiIiIiIjIoDAogxJerxcvTSzgYhyWO7jdslnt/9PptXVw507bLFuHFazay7Vvs7rub7Udu/NxQuvovH+Hxgfr6Lx/h3Z0afeRz8MEj9tNXd20sUv5btpqOm/rXFd373U+HmA6lem2Dtsh6uxmf9O5bgheD9PpkpmOZazuy3RbR3dlbKHbupxXR13KdFdXd21s32Ydscwx19GTNh6prsPtf5h29KiN3bT1qN7rruzh6rDMUbf14HdzsEznhnV7zcwR29i5zOH2t7ppR9djd33PskJba3Wzf+djdyzTpd5ujnvw18OE7tPh/22djt1dHZ3L2DhcHSZkn+62hezf+b1u9g/W3+l1d2U61xFaJtDpeB3eC5ZvLWPvpq0H9299baf9nANd2nFw/27eI9Cp7MEy7W2yB+tqaw8HHdwW2ubD1dWxDlvnOtrb06GOg20MhLy2d7yenY598DgHy9g7t/Uw71md2hx6jibktT3kvoSeV/t52Dv8vNvbfnoOvnfwTVvwvdDvoWVsnd4LfV1TGyBzVj5er1dBCRERERERERkUBmVQop0DJw7LGXxtdRrg7/y6bWPId6vb9zoFFWxWhyLHEpTodjSu+zoPd+w+CUocuUy/ByW6G9AdIEGJngy093tQoif7H6ns4fbvyWD+4drYkzo6OFQdPWornLigROe2dduOARaU6Pz6MMfuLmBwuOMc/PXoecDhqIMShyrTC0GJzoGG4w1KhAYcjiYoETowbjuBQYkuAYNOA/fdbescOOiurp4EJToGHIKD+G03uP11aFCifVtomdDAQ/t7Xa9He9Cga+DhoKMJStiPMyhxsIzVTZlDBSWUFkxEREREREQGJ32iFRERERERERERERGRPqGghIiIiIiIiIiIiIiI9AkFJUREREREREREREREpE8oKCEiIiIiIiIiIiIiIn1CQQkREREREREREREREekTCkqIiIiIiIiIiIiIiEifUFBCRERERERERERERET6hIISIiIiIiIiIiIiIiLSJxSUEBERERERERERERGRPqGghIiIiIiIiIiIiIiI9AkFJUREREREREREREREpE8oKCEiIiIiIiIiIiIiIn1CQQkREREREREREREREekTCkqIiIiIiIiIiIiIiEifUFBCRERERERERERERET6hIISIiIiIiIiIiIiIiLSJxSUEBERERERERERERGRPqGghIiIiIiIiIiIiIiI9AkFJUREREREREREREREpE8oKCEiIiIiIiIiIiIiIn1CQQkREREREREREREREekTCkqIiIiIiIiIiIiIiEifUFBCRERERERERERERET6hIISIiIiIiIiIiIiIiLSJxSUEBERERERERERERGRPuHo7wYcDx8tYA7GVSxjtf2frdNr6+BOnbZZpmNcpu294La214GD+1tWp/esTt871H/wvY5VdGpTsEw37ThU2Y7n0bbNtL9nuqmrmzZ2Kd9NW4NlAqFlTMd2WJ3es4W+7tjUw9Zh6/S621tmhTQ55LrarE5lO+0b0v6u+3epo7synW59l/PqqEuZ7urqro3t26wjljnmOnrSxiPVdbj9D9OOHrWxm7Ye1XvdlT1cHZY56rYe/H7wF67jr163dXYsf5g2di5zuP2tbtrR9dhd37Os0NZa3ezf+dgdy3Spt5vjHvz1MKH7dPh/0+nY3dXRuYyhax2BTmVsIccJ3WbjMO91s3/7/1udXndXpnMdoWUCnY7X4b1g+dYy9m7aenD/1td22s850KGM6bR/N+8R6FT2YJn2NtmDdbW1h4MObgtt8+Hq6liHrXMd7e3pUMfBNgZCXts7Xs9Oxz54nINl7J3bepj3rE5tDj1HE/LaHnJfQs+r/TzsHX7e7W0/PQffO/imLfhe6PfQMnR6L7TOmtqDbRYREREREREZDAZlUMIYQ2RkJKvq3ggdCfT3W5NERERE+kVkZCTGdAmNioiIiIiIiAxIgzIoYVkWdXV1FBYWEh0d3d/NkeNUU1PDiBEjdD+HCN3PoUX3c+jRPR1a2u+n1d2sPREREREREZEBaFAGJdpFR0drQGUI0f0cWnQ/hxbdz6FH91RERERERERE+oMSXYuIiIiIiIiIiIiISJ9QUEJERERERERERERERPrEoAxKuN1u7rzzTtxud383RU4A3c+hRfdzaNH9HHp0T4cW3U8REREREREZbCxjjOnvRoiIiIiIiIiIiIiIyNA3KGdKiIiIiIiIiIiIiIjI4KOghIiIiIiIiIiIiIiI9AkFJUREREREREREREREpE8oKCEiIiIiIiIiIiIiIn3ihAclHnzwQbKysggLC2PWrFmsXLnysOU/+OADZs2aRVhYGKNGjeKhhx7qUuaFF15g0qRJuN1uJk2axEsvvXTU9RpjuOuuuxg+fDjh4eGceeaZbNu2LaRMc3MzP/zhD0lMTCQiIoLLLruMvXv3HsNVGDoG6/2sqKjghz/8IePHj8fj8ZCRkcHNN99MdXX1MV6JoWGw3s/OZS+66CIsy+Lll1/u+ckPUYP9nq5Zs4azzz6biIgIYmNjOfPMM2lsbDzKqzB0DOb7WVJSwrXXXktKSgoRERHMnDmT559//hiuwtAxUO/niy++yAUXXEBiYiKWZbFp06Yux1CfSERERERERHqNOYGeeeYZ43Q6zSOPPGK2b99ubrnlFhMREWEKCgq6LZ+bm2s8Ho+55ZZbzPbt280jjzxinE6nef7554NlVq9ebex2u/ntb39rPv/8c/Pb3/7WOBwOs3bt2qOqd8mSJSYqKsq88MILZsuWLeYrX/mKSU1NNTU1NcEyN9xwg0lLSzPvvPOO2bBhgznrrLPMtGnTjM/nO5GXadAYzPdzy5Yt5oorrjCvvPKKyc7ONu+9954ZO3as+dKXvtRLV2vgG8z3s6OlS5eaiy66yADmpZdeOnEXaBAa7Pd09erVJjo62txzzz1m69atZteuXea5554zTU1NvXC1Br7Bfj/PPfdcc9ppp5l169aZnJwcc/fddxubzWY2bNjQC1dr4BvI9/PJJ580v/rVr8wjjzxiALNx48Yu7VGfSERERERERHrLCQ1KzJ4929xwww0h2yZMmGB+9rOfdVv+tttuMxMmTAjZdv3115u5c+cGX3/5y182F154YUiZCy64wFx99dU9rjcQCJiUlBSzZMmS4PtNTU0mJibGPPTQQ8YYY6qqqozT6TTPPPNMsExRUZGx2WzmrbfeOuK5D0WD+X5259///rdxuVympaXlkGWGsqFwPzdt2mTS09NNcXGxghJm8N/TOXPmmNtvv70np3pSGOz3MyIiwjz55JMhx4mPjzePPvroIc95KBuo97OjvLy8boMS6hOJiIiIiIhIbzphyzd5vV4+/fRTzj///JDt559/PqtXr+52nzVr1nQpf8EFF7B+/XpaWloOW6b9mD2pNy8vj5KSkpAybrebRYsWBct8+umntLS0hJQZPnw4p5xyyiHbP5QN9vvZnerqaqKjo3E4HIc79SFpKNzPhoYGrrnmGh544AFSUlKO5vSHpMF+T0tLS1m3bh1JSUnMnz+f5ORkFi1axKpVq472UgwJg/1+AixYsIBnn32WiooKAoEAzzzzDM3NzZx55plHcSWGhoF8P3tCfSIRERERERHpTScsKFFWVobf7yc5OTlke3JyMiUlJd3uU1JS0m15n89HWVnZYcu0H7Mn9bZ/P1IZl8tFXFxcj9s/lA32+9lZeXk5d999N9dff/0hz3koGwr388c//jHz589n8eLFPTrnoW6w39Pc3FwA7rrrLr773e/y1ltvMXPmTM455xx2797ds4swhAz2+wnw7LPP4vP5SEhIwO12c/311/PSSy8xevToHl2DoWQg38+eUJ9IREREREREetMJf2TcsqyQ18aYLtuOVL7z9p4c80SV6awnZYayoXA/a2pquOSSS5g0aRJ33nnnIdt+Mhis9/OVV15h+fLlbNy48ZBtPVkN1nsaCAQAuP766/nmN78JwIwZM3jvvfd4/PHHueeeew55DkPZYL2fALfffjuVlZW8++67JCYm8vLLL3PVVVexcuVKpkyZcshzGMoG8v08Fid7n0hEREREREROjBM2UyIxMRG73d7lCbrS0tIuT+y1S0lJ6ba8w+EgISHhsGXaj9mTetuXejlSGa/XS2VlZY/bP5QN9vvZrra2lgsvvJDIyEheeuklnE7nEc99KBrs93P58uXk5OQQGxuLw+EILsH1pS996aRcGgYG/z1NTU0FYNKkSSFlJk6cyJ49ew5z5kPTYL+fOTk5PPDAAzz++OOcc845TJs2jTvvvJNTTz2Vv/zlLz2+DkPFQL6fPaE+kYiIiIiIiPSmExaUcLlczJo1i3feeSdk+zvvvMP8+fO73WfevHldyr/99tuceuqpwcHjQ5VpP2ZP6s3KyiIlJSWkjNfr5YMPPgiWmTVrFk6nM6RMcXExW7duPWT7h7LBfj+hdYbE+eefj8vl4pVXXiEsLOxoLsGQMtjv589+9jM2b97Mpk2bgl8A9913H3//+9+P5lIMGYP9no4cOZLhw4ezc+fOkOPs2rWLzMzMHl2DoWSw38+GhgYAbLbQboXdbg/OijmZDOT72RPqE4mIiIiIiEivOpFZs5955hnjdDrNY489ZrZv325+9KMfmYiICJOfn2+MMeZnP/uZufbaa4Plc3NzjcfjMT/+8Y/N9u3bzWOPPWacTqd5/vnng2U++ugjY7fbzZIlS8znn39ulixZYhwOh1m7dm2P6zXGmCVLlpiYmBjz4osvmi1btphrrrnGpKammpqammCZG264waSnp5t3333XbNiwwZx99tlm2rRpxufzncjLNGgM5vtZU1Nj5syZY6ZMmWKys7NNcXFx8Ev3c/Ddz+4A5qWXXjqBV2jwGez39L777jPR0dHmueeeM7t37za33367CQsLM9nZ2b152QaswXw/vV6vGTNmjDnjjDPMunXrTHZ2tvnDH/5gLMsyr7/+em9fugFpIN/P8vJys3HjRvP6668bwDzzzDNm48aNpri4OFhGfSIRERERERHpLSc0KGGMMX/5y19MZmamcblcZubMmeaDDz4IvnfdddeZRYsWhZRfsWKFmTFjhnG5XGbkyJHmr3/9a5djPvfcc2b8+PHG6XSaCRMmmBdeeOGo6jXGmEAgYO68806TkpJi3G63WbhwodmyZUtImcbGRnPTTTeZ+Ph4Ex4ebi699FKzZ8+e47gag99gvZ/vv/++Abr9ysvLO76LMogN1vvZHQUlWg32e3rPPfeY9PR04/F4zLx588zKlSuP8UoMDYP5fu7atctcccUVJikpyXg8HjN16lTz5JNPHsfVGPwG6v38+9//3u3fxzvvvDNYRn0iERERERER6S2WMW1ZFEVERERERERERERERHrRCcspISIiIiIiIiIiIiIicjgKSoiIiIiIiIiIiIiISJ9QUEJERERERERERERERPqEghIiIiIiIiIiIiIiItInFJQQEREREREREREREZE+oaCEiIiIiIiIiIiIiIj0CQUlRERERERERERERESkTygoISIiIiIiIiIiIiIifUJBCRGRXnDrrbdiWRZXXHEFfr+/v5sjIiIiIiIiIiIyICgoISJDWnZ2Nt/85jdJT0/H7XaTlZXFNddcw/r160PKNTY24vF42LFjx3HX+Zvf/IZHHnmEhx9+mDVr1nD99dd3KbNixQoWL15MamoqERERTJ8+naeeeqrb4z3xxBPMnTv3uNslIiIiIiIiIiLS3xSUEJEha/369cyaNYtdu3bx8MMPs337dl566SUmTJjAT37yk5Cy77zzDiNGjGDChAnHVeff/vY37r33Xt555x2+973v8eGHH/LOO+/w05/+NKTc6tWrmTp1Ki+88AKbN2/mW9/6Fl//+td59dVXuxzzlVdeYfHixcfVLhERERERERERkYHAMsaY/m6EiMixqK2t5YYbbuDll18mOjqa2267jWXLljF9+nTuu+8+pkyZQlhYGB9//DE2W2gMtqqqitjY2ODrb3/728THx/O///u/3HXXXbz88svcfPPN3HXXXVRUVHDttdfywAMPcO+997J06VICgQC33HILv/zlL4PHeP755/nhD3/Im2++yfTp04Pb9+zZwznnnMN3v/tdbrvttkOezyWXXEJycjKPP/54cFtTUxOJiYmsW7eOyZMn8+CDD3LfffdRWFhITEwMZ5xxBs8///zxX0wREREREREREZE+4OjvBoiIHKtbb72Vjz76iFdeeYXk5GTuuOMONmzYwPTp09m0aRPbtm3jX//6V5eABBASkAgEArz22mu88MILwW05OTm8+eabvPXWW+Tk5HDllVeSl5fHuHHj+OCDD1i9ejXf+ta3OOecc4JLK1155ZVceeWVXerKyMhg9+7dRzyf6upqJk6cGLLtvffeIyUlhcmTJ7N+/Xpuvvlm/vGPfzB//nwqKipYuXJlTy+XiIiIiIiIiIhIv1NQQkQGpdraWv7v//6Pf/3rX5xzzjkA/P3vf2f48OEAwSBAT5ZjWrt2LYFAgPnz5we3BQIBHn/8caKiopg0aRJnnXUWO3fu5I033sBmszF+/Hh+97vfsWLFihOS7+H555/nk08+4eGHHw7ZvmzZsuDSTXv27CEiIoJLL72UqKgoMjMzmTFjxnHXLSIiIiIiIiIi0leUU0JEBqXc3FxaWlqYPXt2cFtMTAzjx48HoH1lOsuyjnisZcuWcemll4bMqBg5ciRRUVHB18nJyUyaNCmkTHJyMqWlpcd9LitWrOAb3/gGjzzyCJMnTw5uN8bw6quvctlllwFw3nnnkZmZyahRo7j22mt56qmnaGhoOO76RURERERERERE+oqCEiIyKB0q6NC+fdy4cQB8/vnnRzxWd4mknU5nyGvLsrrdFggEjq7hnXzwwQd84QtfYOnSpXz9618Pee/jjz/G6/WyYMECAKKiotiwYQNPP/00qamp3HHHHUybNo2qqqrjaoOIiIiIiIiIiEhfUVBCRAal0aNH43Q6+fjjj4Pbampqgss2TZ8+nUmTJnHvvfd2GzhoH8jfvXs3+fn5nH/++X3S7o5WrFjBJZdcwpIlS/je977X5f1ly5ZxySWXYLfbg9scDgfnnnsuv//979m8eTP5+fksX768L5stIiIiIiIiIiJyzJRTQkQGpaioKK677jr+3//7f8THx5OUlMSdd96JzWbDsiwsy+Lvf/875557LgsXLuQXv/gFEyZMoK6ujldffZW3336bDz74gGXLlnHuuefi8Xj6tP3tAYlbbrmFL33pS5SUlADgcrmIj48HWmdw/OpXvwru89prr5Gbm8vChQuJi4vjjTfeIBAIBJesEhERERERERERGeg0U0JEBq2lS5cyb948Lr30Us4991xOP/10Jk6cSFhYGACzZ89m/fr1jB49mu9+97tMnDiRyy67jG3btvHHP/4RCE0k3ZeeeOIJGhoauOeee0hNTQ1+XXHFFQDk5OSQnZ3NBRdcENwnNjaWF198kbPPPpuJEyfy0EMP8fTTT4fkoRARERERERERERnILNO+ALuIyCBXX19PWloa9957L9/+9rePWL6srIzU1FQKCwtJSUnpgxb23NKlS3n33Xd54403+rspIiIiIiIiIiIiJ4yWbxKRQWvjxo3s2LGD2bNnU11dzf/8z/8A9HjmQ0VFBUuXLh1wAQmA9PR0fv7zn/d3M0RERERERERERE4ozZQQkUFr48aNfOc732Hnzp24XC5mzZrF0qVLmTJlSn83TURERERERERERLqhoISIiIiIiIiIiIiIiPQJJboWEREREREREREREZE+oaCEiIiIiIiIiIiIiIj0CQUlRERERERERERERESkTygoISIiIiIiIiIiIiIifUJBCRERERERERERERER6RMKSoiIiIiIiIiIiIiISJ9QUEJERERERERERERERPqEghIiIiIiIiIiIiIiItIn/j8j8bc0f1DJpAAAAABJRU5ErkJggg==", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" + "ename": "ValueError", + "evalue": "Data Variable must be 1-dimensional, with shape 48600 for face-centered data.", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[18], line 11\u001b[0m\n\u001b[1;32m 8\u001b[0m dc2\u001b[38;5;241m.\u001b[39mset_transform(transform)\n\u001b[1;32m 9\u001b[0m dc2\u001b[38;5;241m.\u001b[39mset_clim(vmin\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m, vmax\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1e-4\u001b[39m)\n\u001b[0;32m---> 11\u001b[0m dc1 \u001b[38;5;241m=\u001b[39m \u001b[43mds0\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43marea\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_polycollection\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprojection\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mprojection\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43moverride\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n\u001b[1;32m 12\u001b[0m dc1\u001b[38;5;241m.\u001b[39mset_antialiased(\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[1;32m 13\u001b[0m dc0\u001b[38;5;241m.\u001b[39mset_transform(transform)\n", + "File \u001b[0;32m/glade/u/apps/opt/conda/envs/npl-2024b/lib/python3.11/site-packages/uxarray/core/dataarray.py:213\u001b[0m, in \u001b[0;36mUxDataArray.to_polycollection\u001b[0;34m(self, periodic_elements, projection, return_indices, cache, override)\u001b[0m\n\u001b[1;32m 211\u001b[0m \u001b[38;5;66;03m# data is multidimensional, must be a 1D slice\u001b[39;00m\n\u001b[1;32m 212\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mvalues\u001b[38;5;241m.\u001b[39mndim \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m1\u001b[39m:\n\u001b[0;32m--> 213\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 214\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mData Variable must be 1-dimensional, with shape \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39muxgrid\u001b[38;5;241m.\u001b[39mn_face\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 215\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfor face-centered data.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 216\u001b[0m )\n\u001b[1;32m 218\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_face_centered():\n\u001b[1;32m 219\u001b[0m poly_collection, corrected_to_original_faces \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 220\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39muxgrid\u001b[38;5;241m.\u001b[39mto_polycollection(\n\u001b[1;32m 221\u001b[0m override\u001b[38;5;241m=\u001b[39moverride,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 226\u001b[0m )\n\u001b[1;32m 227\u001b[0m )\n", + "\u001b[0;31mValueError\u001b[0m: Data Variable must be 1-dimensional, with shape 48600 for face-centered data." + ] } ], "source": [ @@ -1302,7 +1340,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 19, "id": "a6287eac-a56f-4695-8f40-350b8ea779c3", "metadata": {}, "outputs": [ @@ -1826,11 +1864,11 @@ "application/vnd.holoviews_exec.v0+json": "", "text/html": [ "
    \n", - "
    \n", + "
    \n", "
    \n", "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " const force = true;\n", + " const py_version = '3.6.2'.replace('rc', '-rc.').replace('.dev', '-dev.');\n", + " const reloading = false;\n", + " const Bokeh = root.Bokeh;\n", + "\n", + " // Set a timeout for this load but only if we are not already initializing\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || (force || !root._bokeh_is_initializing)) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks;\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + " if (js_modules == null) js_modules = [];\n", + " if (js_exports == null) js_exports = {};\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + "\n", + " if (root._bokeh_is_loading > 0) {\n", + " // Don't load bokeh if it is still initializing\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " } else if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n", + " // There is nothing to load\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + " window._bokeh_on_load = on_load\n", + "\n", + " function on_error(e) {\n", + " const src_el = e.srcElement\n", + " console.error(\"failed to load \" + (src_el.href || src_el.src));\n", + " }\n", + "\n", + " const skip = [];\n", + " if (window.requirejs) {\n", + " window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n", + " root._bokeh_is_loading = css_urls.length + 0;\n", + " } else {\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n", + " }\n", + "\n", + " const existing_stylesheets = []\n", + " const links = document.getElementsByTagName('link')\n", + " for (let i = 0; i < links.length; i++) {\n", + " const link = links[i]\n", + " if (link.href != null) {\n", + " existing_stylesheets.push(link.href)\n", + " }\n", + " }\n", + " for (let i = 0; i < css_urls.length; i++) {\n", + " const url = css_urls[i];\n", + " const escaped = encodeURI(url)\n", + " if (existing_stylesheets.indexOf(escaped) !== -1) {\n", + " on_load()\n", + " continue;\n", + " }\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " } var existing_scripts = []\n", + " const scripts = document.getElementsByTagName('script')\n", + " for (let i = 0; i < scripts.length; i++) {\n", + " var script = scripts[i]\n", + " if (script.src != null) {\n", + " existing_scripts.push(script.src)\n", + " }\n", + " }\n", + " for (let i = 0; i < js_urls.length; i++) {\n", + " const url = js_urls[i];\n", + " const escaped = encodeURI(url)\n", + " if (skip.indexOf(escaped) !== -1 || existing_scripts.indexOf(escaped) !== -1) {\n", + " if (!window.requirejs) {\n", + " on_load();\n", + " }\n", + " continue;\n", + " }\n", + " const element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (let i = 0; i < js_modules.length; i++) {\n", + " const url = js_modules[i];\n", + " const escaped = encodeURI(url)\n", + " if (skip.indexOf(escaped) !== -1 || existing_scripts.indexOf(escaped) !== -1) {\n", + " if (!window.requirejs) {\n", + " on_load();\n", + " }\n", + " continue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (const name in js_exports) {\n", + " const url = js_exports[name];\n", + " const escaped = encodeURI(url)\n", + " if (skip.indexOf(escaped) >= 0 || root[name] != null) {\n", + " if (!window.requirejs) {\n", + " on_load();\n", + " }\n", + " continue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " element.textContent = `\n", + " import ${name} from \"${url}\"\n", + " window.${name} = ${name}\n", + " window._bokeh_on_load()\n", + " `\n", + " document.head.appendChild(element);\n", + " }\n", + " if (!js_urls.length && !js_modules.length) {\n", + " on_load()\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " const js_urls = [\"https://cdn.holoviz.org/panel/1.5.4/dist/bundled/reactiveesm/es-module-shims@^1.10.0/dist/es-module-shims.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-3.6.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.6.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.6.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.6.2.min.js\", \"https://cdn.holoviz.org/panel/1.5.4/dist/panel.min.js\"];\n", + " const js_modules = [];\n", + " const js_exports = {};\n", + " const css_urls = [];\n", + " const inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {} // ensure no trailing comma for IE\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if ((root.Bokeh !== undefined) || (force === true)) {\n", + " for (let i = 0; i < inline_js.length; i++) {\n", + " try {\n", + " inline_js[i].call(root, root.Bokeh);\n", + " } catch(e) {\n", + " if (!reloading) {\n", + " throw e;\n", + " }\n", + " }\n", + " }\n", + " // Cache old bokeh versions\n", + " if (Bokeh != undefined && !reloading) {\n", + " var NewBokeh = root.Bokeh;\n", + " if (Bokeh.versions === undefined) {\n", + " Bokeh.versions = new Map();\n", + " }\n", + " if (NewBokeh.version !== Bokeh.version) {\n", + " Bokeh.versions.set(NewBokeh.version, NewBokeh)\n", + " }\n", + " root.Bokeh = Bokeh;\n", + " }\n", + " } else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " }\n", + " root._bokeh_is_initializing = false\n", + " }\n", + "\n", + " function load_or_wait() {\n", + " // Implement a backoff loop that tries to ensure we do not load multiple\n", + " // versions of Bokeh and its dependencies at the same time.\n", + " // In recent versions we use the root._bokeh_is_initializing flag\n", + " // to determine whether there is an ongoing attempt to initialize\n", + " // bokeh, however for backward compatibility we also try to ensure\n", + " // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n", + " // before older versions are fully initialized.\n", + " if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n", + " // If the timeout and bokeh was not successfully loaded we reset\n", + " // everything and try loading again\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_is_initializing = false;\n", + " root._bokeh_onload_callbacks = undefined;\n", + " root._bokeh_is_loading = 0\n", + " console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n", + " load_or_wait();\n", + " } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n", + " setTimeout(load_or_wait, 100);\n", + " } else {\n", + " root._bokeh_is_initializing = true\n", + " root._bokeh_onload_callbacks = []\n", + " const bokeh_loaded = root.Bokeh != null && (root.Bokeh.version === py_version || (root.Bokeh.versions !== undefined && root.Bokeh.versions.has(py_version)));\n", + " if (!reloading && !bokeh_loaded) {\n", + " if (root.Bokeh) {\n", + " root.Bokeh = undefined;\n", + " }\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " }\n", + " load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n", + " console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + " run_inline_js();\n", + " });\n", + " }\n", + " }\n", + " // Give older versions of the autoload script a head-start to ensure\n", + " // they initialize before we start loading newer version.\n", + " setTimeout(load_or_wait, 100)\n", + "}(window));" + ], + "application/vnd.holoviews_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n const py_version = '3.6.2'.replace('rc', '-rc.').replace('.dev', '-dev.');\n const reloading = false;\n const Bokeh = root.Bokeh;\n\n // Set a timeout for this load but only if we are not already initializing\n if (typeof (root._bokeh_timeout) === \"undefined\" || (force || !root._bokeh_is_initializing)) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n // Don't load bokeh if it is still initializing\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n } else if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n // There is nothing to load\n run_callbacks();\n return null;\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error(e) {\n const src_el = e.srcElement\n console.error(\"failed to load \" + (src_el.href || src_el.src));\n }\n\n const skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n root._bokeh_is_loading = css_urls.length + 0;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n const existing_stylesheets = []\n const links = document.getElementsByTagName('link')\n for (let i = 0; i < links.length; i++) {\n const link = links[i]\n if (link.href != null) {\n existing_stylesheets.push(link.href)\n }\n }\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const escaped = encodeURI(url)\n if (existing_stylesheets.indexOf(escaped) !== -1) {\n on_load()\n continue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } var existing_scripts = []\n const scripts = document.getElementsByTagName('script')\n for (let i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n existing_scripts.push(script.src)\n }\n }\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const escaped = encodeURI(url)\n if (skip.indexOf(escaped) !== -1 || existing_scripts.indexOf(escaped) !== -1) {\n if (!window.requirejs) {\n on_load();\n }\n continue;\n }\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (let i = 0; i < js_modules.length; i++) {\n const url = js_modules[i];\n const escaped = encodeURI(url)\n if (skip.indexOf(escaped) !== -1 || existing_scripts.indexOf(escaped) !== -1) {\n if (!window.requirejs) {\n on_load();\n }\n continue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n const url = js_exports[name];\n const escaped = encodeURI(url)\n if (skip.indexOf(escaped) >= 0 || root[name] != null) {\n if (!window.requirejs) {\n on_load();\n }\n continue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.holoviz.org/panel/1.5.4/dist/bundled/reactiveesm/es-module-shims@^1.10.0/dist/es-module-shims.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-3.6.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.6.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.6.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.6.2.min.js\", \"https://cdn.holoviz.org/panel/1.5.4/dist/panel.min.js\"];\n const js_modules = [];\n const js_exports = {};\n const css_urls = [];\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (let i = 0; i < inline_js.length; i++) {\n try {\n inline_js[i].call(root, root.Bokeh);\n } catch(e) {\n if (!reloading) {\n throw e;\n }\n }\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n var NewBokeh = root.Bokeh;\n if (Bokeh.versions === undefined) {\n Bokeh.versions = new Map();\n }\n if (NewBokeh.version !== Bokeh.version) {\n Bokeh.versions.set(NewBokeh.version, NewBokeh)\n }\n root.Bokeh = Bokeh;\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n // If the timeout and bokeh was not successfully loaded we reset\n // everything and try loading again\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n root._bokeh_is_loading = 0\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n const bokeh_loaded = root.Bokeh != null && (root.Bokeh.version === py_version || (root.Bokeh.versions !== undefined && root.Bokeh.versions.has(py_version)));\n if (!reloading && !bokeh_loaded) {\n if (root.Bokeh) {\n root.Bokeh = undefined;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "\n", + "if ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n", + " window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n", + "}\n", + "\n", + "\n", + " function JupyterCommManager() {\n", + " }\n", + "\n", + " JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n", + " if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " comm_manager.register_target(comm_id, function(comm) {\n", + " comm.on_msg(msg_handler);\n", + " });\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n", + " comm.onMsg = msg_handler;\n", + " });\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " console.log(message)\n", + " var content = {data: message.data, comm_id};\n", + " var buffers = []\n", + " for (var buffer of message.buffers || []) {\n", + " buffers.push(new DataView(buffer))\n", + " }\n", + " var metadata = message.metadata || {};\n", + " var msg = {content, buffers, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " })\n", + " }\n", + " }\n", + "\n", + " JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n", + " if (comm_id in window.PyViz.comms) {\n", + " return window.PyViz.comms[comm_id];\n", + " } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n", + " if (msg_handler) {\n", + " comm.on_msg(msg_handler);\n", + " }\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n", + " comm.open();\n", + " if (msg_handler) {\n", + " comm.onMsg = msg_handler;\n", + " }\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " var comm_promise = google.colab.kernel.comms.open(comm_id)\n", + " comm_promise.then((comm) => {\n", + " window.PyViz.comms[comm_id] = comm;\n", + " if (msg_handler) {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " var content = {data: message.data};\n", + " var metadata = message.metadata || {comm_id};\n", + " var msg = {content, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " }) \n", + " var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n", + " return comm_promise.then((comm) => {\n", + " comm.send(data, metadata, buffers, disposeOnDone);\n", + " });\n", + " };\n", + " var comm = {\n", + " send: sendClosure\n", + " };\n", + " }\n", + " window.PyViz.comms[comm_id] = comm;\n", + " return comm;\n", + " }\n", + " window.PyViz.comm_manager = new JupyterCommManager();\n", + " \n", + "\n", + "\n", + "var JS_MIME_TYPE = 'application/javascript';\n", + "var HTML_MIME_TYPE = 'text/html';\n", + "var EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\n", + "var CLASS_NAME = 'output';\n", + "\n", + "/**\n", + " * Render data to the DOM node\n", + " */\n", + "function render(props, node) {\n", + " var div = document.createElement(\"div\");\n", + " var script = document.createElement(\"script\");\n", + " node.appendChild(div);\n", + " node.appendChild(script);\n", + "}\n", + "\n", + "/**\n", + " * Handle when a new output is added\n", + " */\n", + "function handle_add_output(event, handle) {\n", + " var output_area = handle.output_area;\n", + " var output = handle.output;\n", + " if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + " var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + " if (id !== undefined) {\n", + " var nchildren = toinsert.length;\n", + " var html_node = toinsert[nchildren-1].children[0];\n", + " html_node.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var scripts = [];\n", + " var nodelist = html_node.querySelectorAll(\"script\");\n", + " for (var i in nodelist) {\n", + " if (nodelist.hasOwnProperty(i)) {\n", + " scripts.push(nodelist[i])\n", + " }\n", + " }\n", + "\n", + " scripts.forEach( function (oldScript) {\n", + " var newScript = document.createElement(\"script\");\n", + " var attrs = [];\n", + " var nodemap = oldScript.attributes;\n", + " for (var j in nodemap) {\n", + " if (nodemap.hasOwnProperty(j)) {\n", + " attrs.push(nodemap[j])\n", + " }\n", + " }\n", + " attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n", + " newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n", + " oldScript.parentNode.replaceChild(newScript, oldScript);\n", + " });\n", + " if (JS_MIME_TYPE in output.data) {\n", + " toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n", + " }\n", + " output_area._hv_plot_id = id;\n", + " if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n", + " window.PyViz.plot_index[id] = Bokeh.index[id];\n", + " } else {\n", + " window.PyViz.plot_index[id] = null;\n", + " }\n", + " } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " var bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var script_attrs = bk_div.children[0].attributes;\n", + " for (var i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + "function handle_clear_output(event, handle) {\n", + " var id = handle.cell.output_area._hv_plot_id;\n", + " var server_id = handle.cell.output_area._bokeh_server_id;\n", + " if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n", + " var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n", + " if (server_id !== null) {\n", + " comm.send({event_type: 'server_delete', 'id': server_id});\n", + " return;\n", + " } else if (comm !== null) {\n", + " comm.send({event_type: 'delete', 'id': id});\n", + " }\n", + " delete PyViz.plot_index[id];\n", + " if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n", + " var doc = window.Bokeh.index[id].model.document\n", + " doc.clear();\n", + " const i = window.Bokeh.documents.indexOf(doc);\n", + " if (i > -1) {\n", + " window.Bokeh.documents.splice(i, 1);\n", + " }\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle kernel restart event\n", + " */\n", + "function handle_kernel_cleanup(event, handle) {\n", + " delete PyViz.comms[\"hv-extension-comm\"];\n", + " window.PyViz.plot_index = {}\n", + "}\n", + "\n", + "/**\n", + " * Handle update_display_data messages\n", + " */\n", + "function handle_update_output(event, handle) {\n", + " handle_clear_output(event, {cell: {output_area: handle.output_area}})\n", + " handle_add_output(event, handle)\n", + "}\n", + "\n", + "function register_renderer(events, OutputArea) {\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " var toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[0]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " events.on('output_added.OutputArea', handle_add_output);\n", + " events.on('output_updated.OutputArea', handle_update_output);\n", + " events.on('clear_output.CodeCell', handle_clear_output);\n", + " events.on('delete.Cell', handle_clear_output);\n", + " events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n", + "\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " safe: true,\n", + " index: 0\n", + " });\n", + "}\n", + "\n", + "if (window.Jupyter !== undefined) {\n", + " try {\n", + " var events = require('base/js/events');\n", + " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " } catch(err) {\n", + " }\n", + "}\n" + ], + "application/vnd.holoviews_load.v0+json": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.holoviews_exec.v0+json": "", + "text/html": [ + "
    \n", + "
    \n", + "
    \n", + "" + ] + }, + "metadata": { + "application/vnd.holoviews_exec.v0+json": { + "id": "f6ff4eb1-0355-4ce7-9fed-ec376a0714a7" + } + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " const force = false;\n", + " const py_version = '3.6.2'.replace('rc', '-rc.').replace('.dev', '-dev.');\n", + " const reloading = true;\n", + " const Bokeh = root.Bokeh;\n", + "\n", + " // Set a timeout for this load but only if we are not already initializing\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || (force || !root._bokeh_is_initializing)) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks;\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + " if (js_modules == null) js_modules = [];\n", + " if (js_exports == null) js_exports = {};\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + "\n", + " if (root._bokeh_is_loading > 0) {\n", + " // Don't load bokeh if it is still initializing\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " } else if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n", + " // There is nothing to load\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + " window._bokeh_on_load = on_load\n", + "\n", + " function on_error(e) {\n", + " const src_el = e.srcElement\n", + " console.error(\"failed to load \" + (src_el.href || src_el.src));\n", + " }\n", + "\n", + " const skip = [];\n", + " if (window.requirejs) {\n", + " window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n", + " root._bokeh_is_loading = css_urls.length + 0;\n", + " } else {\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n", + " }\n", + "\n", + " const existing_stylesheets = []\n", + " const links = document.getElementsByTagName('link')\n", + " for (let i = 0; i < links.length; i++) {\n", + " const link = links[i]\n", + " if (link.href != null) {\n", + " existing_stylesheets.push(link.href)\n", + " }\n", + " }\n", + " for (let i = 0; i < css_urls.length; i++) {\n", + " const url = css_urls[i];\n", + " const escaped = encodeURI(url)\n", + " if (existing_stylesheets.indexOf(escaped) !== -1) {\n", + " on_load()\n", + " continue;\n", + " }\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " } var existing_scripts = []\n", + " const scripts = document.getElementsByTagName('script')\n", + " for (let i = 0; i < scripts.length; i++) {\n", + " var script = scripts[i]\n", + " if (script.src != null) {\n", + " existing_scripts.push(script.src)\n", + " }\n", + " }\n", + " for (let i = 0; i < js_urls.length; i++) {\n", + " const url = js_urls[i];\n", + " const escaped = encodeURI(url)\n", + " if (skip.indexOf(escaped) !== -1 || existing_scripts.indexOf(escaped) !== -1) {\n", + " if (!window.requirejs) {\n", + " on_load();\n", + " }\n", + " continue;\n", + " }\n", + " const element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (let i = 0; i < js_modules.length; i++) {\n", + " const url = js_modules[i];\n", + " const escaped = encodeURI(url)\n", + " if (skip.indexOf(escaped) !== -1 || existing_scripts.indexOf(escaped) !== -1) {\n", + " if (!window.requirejs) {\n", + " on_load();\n", + " }\n", + " continue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (const name in js_exports) {\n", + " const url = js_exports[name];\n", + " const escaped = encodeURI(url)\n", + " if (skip.indexOf(escaped) >= 0 || root[name] != null) {\n", + " if (!window.requirejs) {\n", + " on_load();\n", + " }\n", + " continue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " element.textContent = `\n", + " import ${name} from \"${url}\"\n", + " window.${name} = ${name}\n", + " window._bokeh_on_load()\n", + " `\n", + " document.head.appendChild(element);\n", + " }\n", + " if (!js_urls.length && !js_modules.length) {\n", + " on_load()\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " const js_urls = [\"https://cdn.holoviz.org/panel/1.5.4/dist/bundled/reactiveesm/es-module-shims@^1.10.0/dist/es-module-shims.min.js\"];\n", + " const js_modules = [];\n", + " const js_exports = {};\n", + " const css_urls = [];\n", + " const inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {} // ensure no trailing comma for IE\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if ((root.Bokeh !== undefined) || (force === true)) {\n", + " for (let i = 0; i < inline_js.length; i++) {\n", + " try {\n", + " inline_js[i].call(root, root.Bokeh);\n", + " } catch(e) {\n", + " if (!reloading) {\n", + " throw e;\n", + " }\n", + " }\n", + " }\n", + " // Cache old bokeh versions\n", + " if (Bokeh != undefined && !reloading) {\n", + " var NewBokeh = root.Bokeh;\n", + " if (Bokeh.versions === undefined) {\n", + " Bokeh.versions = new Map();\n", + " }\n", + " if (NewBokeh.version !== Bokeh.version) {\n", + " Bokeh.versions.set(NewBokeh.version, NewBokeh)\n", + " }\n", + " root.Bokeh = Bokeh;\n", + " }\n", + " } else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " }\n", + " root._bokeh_is_initializing = false\n", + " }\n", + "\n", + " function load_or_wait() {\n", + " // Implement a backoff loop that tries to ensure we do not load multiple\n", + " // versions of Bokeh and its dependencies at the same time.\n", + " // In recent versions we use the root._bokeh_is_initializing flag\n", + " // to determine whether there is an ongoing attempt to initialize\n", + " // bokeh, however for backward compatibility we also try to ensure\n", + " // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n", + " // before older versions are fully initialized.\n", + " if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n", + " // If the timeout and bokeh was not successfully loaded we reset\n", + " // everything and try loading again\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_is_initializing = false;\n", + " root._bokeh_onload_callbacks = undefined;\n", + " root._bokeh_is_loading = 0\n", + " console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n", + " load_or_wait();\n", + " } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n", + " setTimeout(load_or_wait, 100);\n", + " } else {\n", + " root._bokeh_is_initializing = true\n", + " root._bokeh_onload_callbacks = []\n", + " const bokeh_loaded = root.Bokeh != null && (root.Bokeh.version === py_version || (root.Bokeh.versions !== undefined && root.Bokeh.versions.has(py_version)));\n", + " if (!reloading && !bokeh_loaded) {\n", + " if (root.Bokeh) {\n", + " root.Bokeh = undefined;\n", + " }\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " }\n", + " load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n", + " console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + " run_inline_js();\n", + " });\n", + " }\n", + " }\n", + " // Give older versions of the autoload script a head-start to ensure\n", + " // they initialize before we start loading newer version.\n", + " setTimeout(load_or_wait, 100)\n", + "}(window));" + ], + "application/vnd.holoviews_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = false;\n const py_version = '3.6.2'.replace('rc', '-rc.').replace('.dev', '-dev.');\n const reloading = true;\n const Bokeh = root.Bokeh;\n\n // Set a timeout for this load but only if we are not already initializing\n if (typeof (root._bokeh_timeout) === \"undefined\" || (force || !root._bokeh_is_initializing)) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n // Don't load bokeh if it is still initializing\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n } else if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n // There is nothing to load\n run_callbacks();\n return null;\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error(e) {\n const src_el = e.srcElement\n console.error(\"failed to load \" + (src_el.href || src_el.src));\n }\n\n const skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n root._bokeh_is_loading = css_urls.length + 0;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n const existing_stylesheets = []\n const links = document.getElementsByTagName('link')\n for (let i = 0; i < links.length; i++) {\n const link = links[i]\n if (link.href != null) {\n existing_stylesheets.push(link.href)\n }\n }\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const escaped = encodeURI(url)\n if (existing_stylesheets.indexOf(escaped) !== -1) {\n on_load()\n continue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } var existing_scripts = []\n const scripts = document.getElementsByTagName('script')\n for (let i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n existing_scripts.push(script.src)\n }\n }\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const escaped = encodeURI(url)\n if (skip.indexOf(escaped) !== -1 || existing_scripts.indexOf(escaped) !== -1) {\n if (!window.requirejs) {\n on_load();\n }\n continue;\n }\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (let i = 0; i < js_modules.length; i++) {\n const url = js_modules[i];\n const escaped = encodeURI(url)\n if (skip.indexOf(escaped) !== -1 || existing_scripts.indexOf(escaped) !== -1) {\n if (!window.requirejs) {\n on_load();\n }\n continue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n const url = js_exports[name];\n const escaped = encodeURI(url)\n if (skip.indexOf(escaped) >= 0 || root[name] != null) {\n if (!window.requirejs) {\n on_load();\n }\n continue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.holoviz.org/panel/1.5.4/dist/bundled/reactiveesm/es-module-shims@^1.10.0/dist/es-module-shims.min.js\"];\n const js_modules = [];\n const js_exports = {};\n const css_urls = [];\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (let i = 0; i < inline_js.length; i++) {\n try {\n inline_js[i].call(root, root.Bokeh);\n } catch(e) {\n if (!reloading) {\n throw e;\n }\n }\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n var NewBokeh = root.Bokeh;\n if (Bokeh.versions === undefined) {\n Bokeh.versions = new Map();\n }\n if (NewBokeh.version !== Bokeh.version) {\n Bokeh.versions.set(NewBokeh.version, NewBokeh)\n }\n root.Bokeh = Bokeh;\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n // If the timeout and bokeh was not successfully loaded we reset\n // everything and try loading again\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n root._bokeh_is_loading = 0\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n const bokeh_loaded = root.Bokeh != null && (root.Bokeh.version === py_version || (root.Bokeh.versions !== undefined && root.Bokeh.versions.has(py_version)));\n if (!reloading && !bokeh_loaded) {\n if (root.Bokeh) {\n root.Bokeh = undefined;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "\n", + "if ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n", + " window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n", + "}\n", + "\n", + "\n", + " function JupyterCommManager() {\n", + " }\n", + "\n", + " JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n", + " if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " comm_manager.register_target(comm_id, function(comm) {\n", + " comm.on_msg(msg_handler);\n", + " });\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n", + " comm.onMsg = msg_handler;\n", + " });\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " console.log(message)\n", + " var content = {data: message.data, comm_id};\n", + " var buffers = []\n", + " for (var buffer of message.buffers || []) {\n", + " buffers.push(new DataView(buffer))\n", + " }\n", + " var metadata = message.metadata || {};\n", + " var msg = {content, buffers, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " })\n", + " }\n", + " }\n", + "\n", + " JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n", + " if (comm_id in window.PyViz.comms) {\n", + " return window.PyViz.comms[comm_id];\n", + " } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n", + " if (msg_handler) {\n", + " comm.on_msg(msg_handler);\n", + " }\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n", + " comm.open();\n", + " if (msg_handler) {\n", + " comm.onMsg = msg_handler;\n", + " }\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " var comm_promise = google.colab.kernel.comms.open(comm_id)\n", + " comm_promise.then((comm) => {\n", + " window.PyViz.comms[comm_id] = comm;\n", + " if (msg_handler) {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " var content = {data: message.data};\n", + " var metadata = message.metadata || {comm_id};\n", + " var msg = {content, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " }) \n", + " var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n", + " return comm_promise.then((comm) => {\n", + " comm.send(data, metadata, buffers, disposeOnDone);\n", + " });\n", + " };\n", + " var comm = {\n", + " send: sendClosure\n", + " };\n", + " }\n", + " window.PyViz.comms[comm_id] = comm;\n", + " return comm;\n", + " }\n", + " window.PyViz.comm_manager = new JupyterCommManager();\n", + " \n", + "\n", + "\n", + "var JS_MIME_TYPE = 'application/javascript';\n", + "var HTML_MIME_TYPE = 'text/html';\n", + "var EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\n", + "var CLASS_NAME = 'output';\n", + "\n", + "/**\n", + " * Render data to the DOM node\n", + " */\n", + "function render(props, node) {\n", + " var div = document.createElement(\"div\");\n", + " var script = document.createElement(\"script\");\n", + " node.appendChild(div);\n", + " node.appendChild(script);\n", + "}\n", + "\n", + "/**\n", + " * Handle when a new output is added\n", + " */\n", + "function handle_add_output(event, handle) {\n", + " var output_area = handle.output_area;\n", + " var output = handle.output;\n", + " if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + " var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + " if (id !== undefined) {\n", + " var nchildren = toinsert.length;\n", + " var html_node = toinsert[nchildren-1].children[0];\n", + " html_node.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var scripts = [];\n", + " var nodelist = html_node.querySelectorAll(\"script\");\n", + " for (var i in nodelist) {\n", + " if (nodelist.hasOwnProperty(i)) {\n", + " scripts.push(nodelist[i])\n", + " }\n", + " }\n", + "\n", + " scripts.forEach( function (oldScript) {\n", + " var newScript = document.createElement(\"script\");\n", + " var attrs = [];\n", + " var nodemap = oldScript.attributes;\n", + " for (var j in nodemap) {\n", + " if (nodemap.hasOwnProperty(j)) {\n", + " attrs.push(nodemap[j])\n", + " }\n", + " }\n", + " attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n", + " newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n", + " oldScript.parentNode.replaceChild(newScript, oldScript);\n", + " });\n", + " if (JS_MIME_TYPE in output.data) {\n", + " toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n", + " }\n", + " output_area._hv_plot_id = id;\n", + " if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n", + " window.PyViz.plot_index[id] = Bokeh.index[id];\n", + " } else {\n", + " window.PyViz.plot_index[id] = null;\n", + " }\n", + " } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " var bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var script_attrs = bk_div.children[0].attributes;\n", + " for (var i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + "function handle_clear_output(event, handle) {\n", + " var id = handle.cell.output_area._hv_plot_id;\n", + " var server_id = handle.cell.output_area._bokeh_server_id;\n", + " if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n", + " var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n", + " if (server_id !== null) {\n", + " comm.send({event_type: 'server_delete', 'id': server_id});\n", + " return;\n", + " } else if (comm !== null) {\n", + " comm.send({event_type: 'delete', 'id': id});\n", + " }\n", + " delete PyViz.plot_index[id];\n", + " if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n", + " var doc = window.Bokeh.index[id].model.document\n", + " doc.clear();\n", + " const i = window.Bokeh.documents.indexOf(doc);\n", + " if (i > -1) {\n", + " window.Bokeh.documents.splice(i, 1);\n", + " }\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle kernel restart event\n", + " */\n", + "function handle_kernel_cleanup(event, handle) {\n", + " delete PyViz.comms[\"hv-extension-comm\"];\n", + " window.PyViz.plot_index = {}\n", + "}\n", + "\n", + "/**\n", + " * Handle update_display_data messages\n", + " */\n", + "function handle_update_output(event, handle) {\n", + " handle_clear_output(event, {cell: {output_area: handle.output_area}})\n", + " handle_add_output(event, handle)\n", + "}\n", + "\n", + "function register_renderer(events, OutputArea) {\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " var toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[0]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " events.on('output_added.OutputArea', handle_add_output);\n", + " events.on('output_updated.OutputArea', handle_update_output);\n", + " events.on('clear_output.CodeCell', handle_clear_output);\n", + " events.on('delete.Cell', handle_clear_output);\n", + " events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n", + "\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " safe: true,\n", + " index: 0\n", + " });\n", + "}\n", + "\n", + "if (window.Jupyter !== undefined) {\n", + " try {\n", + " var events = require('base/js/events');\n", + " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " } catch(err) {\n", + " }\n", + "}\n" + ], + "application/vnd.holoviews_load.v0+json": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import os, sys\n", + "import shutil\n", + "import warnings\n", + "warnings.filterwarnings('ignore')\n", + "\n", + "import numpy as np\n", + "import xarray as xr\n", + "import xesmf as xe\n", + "\n", + "# Helpful for plotting only\n", + "import matplotlib\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.dates as mdates\n", + "import cartopy\n", + "import cartopy.crs as ccrs\n", + "import cartopy.feature as cfeature\n", + "import uxarray as ux #need npl 2024a or later\n", + "import geoviews.feature as gf\n", + "\n", + "#sys.path.append('/glade/u/home/wwieder/python/adf/lib/plotting_functions.py')\n", + "from plotting_functions import *" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "07650a02-db90-4ee9-8880-e3f4ac140871", + "metadata": {}, + "outputs": [], + "source": [ + "# Load datataset \n", + "# TODO, develop function for this too\n", + "gppfile='/glade/derecho/scratch/wwieder/ADF/b.e30_beta04.BLT1850.ne30_t232_wgx3.121/climo/b.e30_beta04.BLT1850.ne30_t232_wgx3.121_GPP_climo.nc'\n", + "laih1file='/glade/derecho/scratch/wwieder/ctsm53n04ctsm52028_ne30pg3t232_hist.clm2.h1.TLAI.1860s.nc'\n", + "mesh0 = '/glade/campaign/cesm/cesmdata/inputdata/share/meshes/ne30pg3_ESMFmesh_cdf5_c20211018.nc'\n", + "#ux file for plotting\n", + "ds0 = ux.open_dataset(mesh0, gppfile)\n", + "ds1 = ux.open_dataset(mesh0, laih1file)\n", + "\n", + "#xr files for manipulations\n", + "ds0b = xr.open_dataset(gppfile, decode_times=True)\n", + "ds = xr.open_dataset(laih1file, decode_times=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "029a4caf-2ffc-4a5c-9cfe-ca8fe4692522", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
    <xarray.Dataset> Size: 421MB\n",
    +       "Dimensions:             (time: 120, hist_interval: 2, pft: 710683)\n",
    +       "Coordinates:\n",
    +       "  * time                (time) object 960B 1860-02-01 00:00:00 ... 1870-01-01...\n",
    +       "Dimensions without coordinates: hist_interval, pft\n",
    +       "Data variables: (12/16)\n",
    +       "    time_bounds         (time, hist_interval) object 2kB ...\n",
    +       "    pfts1d_lon          (pft) float64 6MB ...\n",
    +       "    pfts1d_lat          (pft) float64 6MB ...\n",
    +       "    pfts1d_ixy          (pft) float64 6MB 737.0 737.0 ... 4.86e+04 4.86e+04\n",
    +       "    pfts1d_jxy          (pft) float64 6MB ...\n",
    +       "    pfts1d_gi           (pft) float64 6MB ...\n",
    +       "    ...                  ...\n",
    +       "    pfts1d_wtcol        (pft) float64 6MB ...\n",
    +       "    pfts1d_itype_veg    (pft) float64 6MB ...\n",
    +       "    pfts1d_itype_col    (pft) float64 6MB ...\n",
    +       "    pfts1d_itype_lunit  (pft) float64 6MB ...\n",
    +       "    pfts1d_active       (pft) float64 6MB ...\n",
    +       "    TLAI                (time, pft) float32 341MB ...\n",
    +       "Attributes: (12/102)\n",
    +       "    title:                                CLM History file information\n",
    +       "    comment:                              NOTE: None of the variables are wei...\n",
    +       "    Conventions:                          CF-1.0\n",
    +       "    history:                              Thu Mar  6 06:04:05 2025: ncrcat -v...\n",
    +       "    source:                               Community Terrestrial Systems Model\n",
    +       "    hostname:                             derecho\n",
    +       "    ...                                   ...\n",
    +       "    cft_tropical_soybean:                 63\n",
    +       "    cft_irrigated_tropical_soybean:       64\n",
    +       "    time_period_freq:                     month_1\n",
    +       "    Time_constant_3Dvars_filename:        ./ctsm53n04ctsm52028_ne30pg3t232_hi...\n",
    +       "    Time_constant_3Dvars:                 ZSOI:DZSOI:WATSAT:SUCSAT:BSW:HKSAT:...\n",
    +       "    NCO:                                  netCDF Operators version 5.2.4 (Hom...
    " + ], + "text/plain": [ + " Size: 421MB\n", + "Dimensions: (time: 120, hist_interval: 2, pft: 710683)\n", + "Coordinates:\n", + " * time (time) object 960B 1860-02-01 00:00:00 ... 1870-01-01...\n", + "Dimensions without coordinates: hist_interval, pft\n", + "Data variables: (12/16)\n", + " time_bounds (time, hist_interval) object 2kB ...\n", + " pfts1d_lon (pft) float64 6MB ...\n", + " pfts1d_lat (pft) float64 6MB ...\n", + " pfts1d_ixy (pft) float64 6MB 737.0 737.0 ... 4.86e+04 4.86e+04\n", + " pfts1d_jxy (pft) float64 6MB ...\n", + " pfts1d_gi (pft) float64 6MB ...\n", + " ... ...\n", + " pfts1d_wtcol (pft) float64 6MB ...\n", + " pfts1d_itype_veg (pft) float64 6MB ...\n", + " pfts1d_itype_col (pft) float64 6MB ...\n", + " pfts1d_itype_lunit (pft) float64 6MB ...\n", + " pfts1d_active (pft) float64 6MB ...\n", + " TLAI (time, pft) float32 341MB ...\n", + "Attributes: (12/102)\n", + " title: CLM History file information\n", + " comment: NOTE: None of the variables are wei...\n", + " Conventions: CF-1.0\n", + " history: Thu Mar 6 06:04:05 2025: ncrcat -v...\n", + " source: Community Terrestrial Systems Model\n", + " hostname: derecho\n", + " ... ...\n", + " cft_tropical_soybean: 63\n", + " cft_irrigated_tropical_soybean: 64\n", + " time_period_freq: month_1\n", + " Time_constant_3Dvars_filename: ./ctsm53n04ctsm52028_ne30pg3t232_hi...\n", + " Time_constant_3Dvars: ZSOI:DZSOI:WATSAT:SUCSAT:BSW:HKSAT:...\n", + " NCO: netCDF Operators version 5.2.4 (Hom..." + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Missing coords for lndgrid, add them here and change name\n", + "ds0b = ds0b.rename({'lndgrid': 'n_face'})\n", + "ds0b['n_face'] = np.arange(1,(ds.pfts1d_ixy.values.max().astype(int)+1))\n", + "ds" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "b91ac4a9-36ac-494b-b45f-d8b2c1c04ed6", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "starting pft 1\n", + "starting pft 2\n" + ] + }, + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
    <xarray.Dataset> Size: 4MB\n",
    +       "Dimensions:             (npft: 2, hist_interval: 2, n_face: 15962)\n",
    +       "Coordinates:\n",
    +       "  * n_face              (n_face) int64 128kB 737 738 745 ... 48598 48599 48600\n",
    +       "Dimensions without coordinates: npft, hist_interval\n",
    +       "Data variables: (12/16)\n",
    +       "    time_bounds         (npft, hist_interval, n_face) object 511kB 1869-12-01...\n",
    +       "    pfts1d_lon          (npft, n_face) float64 255kB 19.5 20.5 ... 136.0 135.0\n",
    +       "    pfts1d_lat          (npft, n_face) float64 255kB -34.9 -34.73 ... 36.2 35.74\n",
    +       "    pfts1d_ixy          (npft, n_face) float64 255kB 737.0 738.0 ... 4.86e+04\n",
    +       "    pfts1d_jxy          (npft, n_face) float64 255kB 1.0 1.0 1.0 ... 1.0 1.0 1.0\n",
    +       "    pfts1d_gi           (npft, n_face) float64 255kB 1.0 2.0 ... 1.596e+04\n",
    +       "    ...                  ...\n",
    +       "    pfts1d_wtcol        (npft, n_face) float64 255kB 0.0 0.0 0.0 ... 0.0 0.0 0.0\n",
    +       "    pfts1d_itype_veg    (npft, n_face) float64 255kB 1.0 1.0 1.0 ... 2.0 2.0 2.0\n",
    +       "    pfts1d_itype_col    (npft, n_face) float64 255kB 1.0 1.0 1.0 ... 1.0 1.0 1.0\n",
    +       "    pfts1d_itype_lunit  (npft, n_face) float64 255kB 1.0 1.0 1.0 ... 1.0 1.0 1.0\n",
    +       "    pfts1d_active       (npft, n_face) float64 255kB nan nan nan ... nan nan nan\n",
    +       "    TLAI                (npft, n_face) float32 128kB nan nan nan ... nan nan nan
    " + ], + "text/plain": [ + " Size: 4MB\n", + "Dimensions: (npft: 2, hist_interval: 2, n_face: 15962)\n", + "Coordinates:\n", + " * n_face (n_face) int64 128kB 737 738 745 ... 48598 48599 48600\n", + "Dimensions without coordinates: npft, hist_interval\n", + "Data variables: (12/16)\n", + " time_bounds (npft, hist_interval, n_face) object 511kB 1869-12-01...\n", + " pfts1d_lon (npft, n_face) float64 255kB 19.5 20.5 ... 136.0 135.0\n", + " pfts1d_lat (npft, n_face) float64 255kB -34.9 -34.73 ... 36.2 35.74\n", + " pfts1d_ixy (npft, n_face) float64 255kB 737.0 738.0 ... 4.86e+04\n", + " pfts1d_jxy (npft, n_face) float64 255kB 1.0 1.0 1.0 ... 1.0 1.0 1.0\n", + " pfts1d_gi (npft, n_face) float64 255kB 1.0 2.0 ... 1.596e+04\n", + " ... ...\n", + " pfts1d_wtcol (npft, n_face) float64 255kB 0.0 0.0 0.0 ... 0.0 0.0 0.0\n", + " pfts1d_itype_veg (npft, n_face) float64 255kB 1.0 1.0 1.0 ... 2.0 2.0 2.0\n", + " pfts1d_itype_col (npft, n_face) float64 255kB 1.0 1.0 1.0 ... 1.0 1.0 1.0\n", + " pfts1d_itype_lunit (npft, n_face) float64 255kB 1.0 1.0 1.0 ... 1.0 1.0 1.0\n", + " pfts1d_active (npft, n_face) float64 255kB nan nan nan ... nan nan nan\n", + " TLAI (npft, n_face) float32 128kB nan nan nan ... nan nan nan" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# select a single PFT\n", + "## TODO this step is kind of a memory hog\n", + "npft=3\n", + "var='TLAI'\n", + "for i in range(1,npft):\n", + " print('starting pft '+str(i))\n", + " temp = ds.where(ds.pfts1d_itype_veg==i, drop=True).max('time')\n", + " # TODO, this should be time evolving, but not currently doen\n", + " # Rename coord, since the pft dimension is not meaningful\n", + " temp= temp.rename({'pft': 'n_face'})\n", + " #temp[var]= temp[var].rename({'pft': 'n_face'})\n", + " #temp['pfts1d_wtgcell'].rename({'pft': 'n_face'})\n", + "\n", + " # assign values from pfts1d_ixy to n_face\n", + " temp['n_face'] = temp.pfts1d_ixy.values.astype(int)\n", + " temp.assign_coords({\"npft\": i})\n", + " # combine along PFT variable\n", + " if i == 1:\n", + " dsOut = temp\n", + " else:\n", + " dsOut = xr.concat([dsOut, temp], dim=\"npft\")\n", + "dsOut" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "245040f2-7796-430f-a055-1ca6d00f57ca", + "metadata": {}, + "outputs": [], + "source": [ + "# align subset pft output with plotting data array\n", + "target = ds0b.GPP.isel(time=0)\n", + "AlignOut, target = xr.align(dsOut, target, join=\"right\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "56e648bf-ca0e-4e72-82b9-96d177800489", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
    <xarray.UxDataset> Size: 3MB\n",
    +       "Dimensions:         (n_face: 48600, npft: 2)\n",
    +       "Coordinates:\n",
    +       "  * n_face          (n_face) int64 389kB 1 2 3 4 5 ... 48597 48598 48599 48600\n",
    +       "Dimensions without coordinates: npft\n",
    +       "Data variables:\n",
    +       "    GPP             (n_face) float32 194kB nan nan nan ... 7.436e-05 8.893e-05\n",
    +       "    area            (n_face) float32 194kB nan nan nan ... 9.519e+03 9.519e+03\n",
    +       "    landfrac        (n_face) float32 194kB nan nan nan ... 0.6608 0.2991 0.07713\n",
    +       "    landmask        (n_face) float64 389kB nan nan nan nan ... nan 1.0 1.0 1.0\n",
    +       "    TLAI            (npft, n_face) float32 389kB nan nan nan nan ... nan nan nan\n",
    +       "    pfts1d_wtgcell  (npft, n_face) float64 778kB nan nan nan nan ... 0.0 0.0 0.0
    " + ], + "text/plain": [ + " Size: 3MB\n", + "Dimensions: (n_face: 48600, npft: 2)\n", + "Coordinates:\n", + " * n_face (n_face) int64 389kB 1 2 3 4 5 ... 48597 48598 48599 48600\n", + "Dimensions without coordinates: npft\n", + "Data variables:\n", + " GPP (n_face) float32 194kB nan nan nan ... 7.436e-05 8.893e-05\n", + " area (n_face) float32 194kB nan nan nan ... 9.519e+03 9.519e+03\n", + " landfrac (n_face) float32 194kB nan nan nan ... 0.6608 0.2991 0.07713\n", + " landmask (n_face) float64 389kB nan nan nan nan ... nan 1.0 1.0 1.0\n", + " TLAI (npft, n_face) float32 389kB nan nan nan nan ... nan nan nan\n", + " pfts1d_wtgcell (npft, n_face) float64 778kB nan nan nan nan ... 0.0 0.0 0.0" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dsplot = ds0.max('time')\n", + "dsplot[var] = AlignOut[var]\n", + "dsplot['pfts1d_wtgcell'] = AlignOut['pfts1d_wtgcell']\n", + "dsplot" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "55ceea85-e3e2-4e2e-a88c-03c1313acf31", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.92\n", + "0.22\n", + "-- wrote pft TLAI figure --\n" + ] + } + ], + "source": [ + "#var='pfts1d_wtgcell'\n", + "var='TLAI'\n", + "transform = ccrs.PlateCarree()\n", + "proj = ccrs.PlateCarree()\n", + "cmap = plt.cm.viridis_r\n", + "cmap.set_under(color='deeppink')\n", + "levels = [0.1, 1, 2, 3, 4, 5, 6,7]\n", + "\n", + "figsize= (6, 3)\n", + "\n", + "# create figure object\n", + "fig, axs = plt.subplots(2,1,\n", + " figsize=figsize,\n", + " facecolor=\"w\",\n", + " constrained_layout=True,\n", + " subplot_kw=dict(projection=proj),\n", + " #**cp_info['subplots_opt']\n", + ")\n", + "axs=axs.flatten()\n", + "\n", + "\n", + "for i in range(2):\n", + " wgts = dsplot.area + dsplot.landfrac * dsplot.pfts1d_wtgcell.isel(npft=i)\n", + " wgts = wgts / wgts.sum()\n", + " print(np.round((dsplot[var].isel(npft=i)*wgts).sum().values,2))\n", + " ac = dsplot[var].isel(npft=i).to_polycollection(projection=proj)\n", + " ac.set_cmap(cmap)\n", + " ac.set_antialiased(False)\n", + " ac.set_transform(transform)\n", + " ac.set_clim(vmin=0.1,vmax=7)\n", + " axs[i].add_collection(ac)\n", + " cbar = plt.colorbar(ac, ax=axs[i], orientation='vertical', pad=0.05, shrink=0.8)\n", + " axs[i].set_title('Max LAI, PFT= '+str(i+1), loc='left')\n", + "\n", + " for a in axs:\n", + " a.coastlines()\n", + " a.set_global()\n", + " a.spines['geo'].set_linewidth(1.) #cartopy's recommended method\n", + " a.set_extent([-180, 180, -60, 86])\n", + " #a.set_xticks(np.linspace(-180, 120, 6), crs=proj)\n", + " #a.set_yticks(np.linspace(-90, 90, 7), crs=proj)\n", + " #a.tick_params('both', length=5, width=1.5, which='major')\n", + " #a.tick_params('both', length=5, width=1.5, which='minor')\n", + " #a.xaxis.set_major_formatter(lon_formatter)\n", + " #a.yaxis.set_major_formatter(lat_formatter)\n", + "\n", + "fig.savefig('h1_test', bbox_inches='tight', dpi=300)\n", + "print('-- wrote pft '+var+' figure --')" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "b288e743-1371-466c-8b03-7c3096ec9697", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/glade/derecho/scratch/wwieder/testPolarFig.png made\n" + ] + } + ], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ded6d0b6-1dca-4170-8a87-039f297773a2", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:cupid-analysis]", + "language": "python", + "name": "conda-env-cupid-analysis-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.4" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From d14acaa180a248ddfa5629b7050792711c43cd1b Mon Sep 17 00:00:00 2001 From: wwieder Date: Fri, 7 Mar 2025 07:39:37 -0700 Subject: [PATCH 56/59] complete notebook for h1 files --- lib/plot_uxarray_h1.ipynb | 871 ++++++++++++++++++++++++++++++++------ 1 file changed, 736 insertions(+), 135 deletions(-) diff --git a/lib/plot_uxarray_h1.ipynb b/lib/plot_uxarray_h1.ipynb index 54b58b50b..71d48abbc 100644 --- a/lib/plot_uxarray_h1.ipynb +++ b/lib/plot_uxarray_h1.ipynb @@ -545,12 +545,12 @@ "data": { "application/vnd.holoviews_exec.v0+json": "", "text/html": [ - "
    \n", - "
    \n", + "
    \n", + "
    \n", "
    \n", "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " const force = true;\n", + " const py_version = '3.6.2'.replace('rc', '-rc.').replace('.dev', '-dev.');\n", + " const reloading = false;\n", + " const Bokeh = root.Bokeh;\n", + "\n", + " // Set a timeout for this load but only if we are not already initializing\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || (force || !root._bokeh_is_initializing)) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks;\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + " if (js_modules == null) js_modules = [];\n", + " if (js_exports == null) js_exports = {};\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + "\n", + " if (root._bokeh_is_loading > 0) {\n", + " // Don't load bokeh if it is still initializing\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " } else if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n", + " // There is nothing to load\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + " window._bokeh_on_load = on_load\n", + "\n", + " function on_error(e) {\n", + " const src_el = e.srcElement\n", + " console.error(\"failed to load \" + (src_el.href || src_el.src));\n", + " }\n", + "\n", + " const skip = [];\n", + " if (window.requirejs) {\n", + " window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n", + " root._bokeh_is_loading = css_urls.length + 0;\n", + " } else {\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n", + " }\n", + "\n", + " const existing_stylesheets = []\n", + " const links = document.getElementsByTagName('link')\n", + " for (let i = 0; i < links.length; i++) {\n", + " const link = links[i]\n", + " if (link.href != null) {\n", + " existing_stylesheets.push(link.href)\n", + " }\n", + " }\n", + " for (let i = 0; i < css_urls.length; i++) {\n", + " const url = css_urls[i];\n", + " const escaped = encodeURI(url)\n", + " if (existing_stylesheets.indexOf(escaped) !== -1) {\n", + " on_load()\n", + " continue;\n", + " }\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " } var existing_scripts = []\n", + " const scripts = document.getElementsByTagName('script')\n", + " for (let i = 0; i < scripts.length; i++) {\n", + " var script = scripts[i]\n", + " if (script.src != null) {\n", + " existing_scripts.push(script.src)\n", + " }\n", + " }\n", + " for (let i = 0; i < js_urls.length; i++) {\n", + " const url = js_urls[i];\n", + " const escaped = encodeURI(url)\n", + " if (skip.indexOf(escaped) !== -1 || existing_scripts.indexOf(escaped) !== -1) {\n", + " if (!window.requirejs) {\n", + " on_load();\n", + " }\n", + " continue;\n", + " }\n", + " const element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (let i = 0; i < js_modules.length; i++) {\n", + " const url = js_modules[i];\n", + " const escaped = encodeURI(url)\n", + " if (skip.indexOf(escaped) !== -1 || existing_scripts.indexOf(escaped) !== -1) {\n", + " if (!window.requirejs) {\n", + " on_load();\n", + " }\n", + " continue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (const name in js_exports) {\n", + " const url = js_exports[name];\n", + " const escaped = encodeURI(url)\n", + " if (skip.indexOf(escaped) >= 0 || root[name] != null) {\n", + " if (!window.requirejs) {\n", + " on_load();\n", + " }\n", + " continue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " element.textContent = `\n", + " import ${name} from \"${url}\"\n", + " window.${name} = ${name}\n", + " window._bokeh_on_load()\n", + " `\n", + " document.head.appendChild(element);\n", + " }\n", + " if (!js_urls.length && !js_modules.length) {\n", + " on_load()\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " const js_urls = [\"https://cdn.holoviz.org/panel/1.5.4/dist/bundled/reactiveesm/es-module-shims@^1.10.0/dist/es-module-shims.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-3.6.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.6.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.6.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.6.2.min.js\", \"https://cdn.holoviz.org/panel/1.5.4/dist/panel.min.js\"];\n", + " const js_modules = [];\n", + " const js_exports = {};\n", + " const css_urls = [];\n", + " const inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {} // ensure no trailing comma for IE\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if ((root.Bokeh !== undefined) || (force === true)) {\n", + " for (let i = 0; i < inline_js.length; i++) {\n", + " try {\n", + " inline_js[i].call(root, root.Bokeh);\n", + " } catch(e) {\n", + " if (!reloading) {\n", + " throw e;\n", + " }\n", + " }\n", + " }\n", + " // Cache old bokeh versions\n", + " if (Bokeh != undefined && !reloading) {\n", + " var NewBokeh = root.Bokeh;\n", + " if (Bokeh.versions === undefined) {\n", + " Bokeh.versions = new Map();\n", + " }\n", + " if (NewBokeh.version !== Bokeh.version) {\n", + " Bokeh.versions.set(NewBokeh.version, NewBokeh)\n", + " }\n", + " root.Bokeh = Bokeh;\n", + " }\n", + " } else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " }\n", + " root._bokeh_is_initializing = false\n", + " }\n", + "\n", + " function load_or_wait() {\n", + " // Implement a backoff loop that tries to ensure we do not load multiple\n", + " // versions of Bokeh and its dependencies at the same time.\n", + " // In recent versions we use the root._bokeh_is_initializing flag\n", + " // to determine whether there is an ongoing attempt to initialize\n", + " // bokeh, however for backward compatibility we also try to ensure\n", + " // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n", + " // before older versions are fully initialized.\n", + " if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n", + " // If the timeout and bokeh was not successfully loaded we reset\n", + " // everything and try loading again\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_is_initializing = false;\n", + " root._bokeh_onload_callbacks = undefined;\n", + " root._bokeh_is_loading = 0\n", + " console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n", + " load_or_wait();\n", + " } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n", + " setTimeout(load_or_wait, 100);\n", + " } else {\n", + " root._bokeh_is_initializing = true\n", + " root._bokeh_onload_callbacks = []\n", + " const bokeh_loaded = root.Bokeh != null && (root.Bokeh.version === py_version || (root.Bokeh.versions !== undefined && root.Bokeh.versions.has(py_version)));\n", + " if (!reloading && !bokeh_loaded) {\n", + " if (root.Bokeh) {\n", + " root.Bokeh = undefined;\n", + " }\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " }\n", + " load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n", + " console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + " run_inline_js();\n", + " });\n", + " }\n", + " }\n", + " // Give older versions of the autoload script a head-start to ensure\n", + " // they initialize before we start loading newer version.\n", + " setTimeout(load_or_wait, 100)\n", + "}(window));" + ], + "application/vnd.holoviews_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n const py_version = '3.6.2'.replace('rc', '-rc.').replace('.dev', '-dev.');\n const reloading = false;\n const Bokeh = root.Bokeh;\n\n // Set a timeout for this load but only if we are not already initializing\n if (typeof (root._bokeh_timeout) === \"undefined\" || (force || !root._bokeh_is_initializing)) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n // Don't load bokeh if it is still initializing\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n } else if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n // There is nothing to load\n run_callbacks();\n return null;\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error(e) {\n const src_el = e.srcElement\n console.error(\"failed to load \" + (src_el.href || src_el.src));\n }\n\n const skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n root._bokeh_is_loading = css_urls.length + 0;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n const existing_stylesheets = []\n const links = document.getElementsByTagName('link')\n for (let i = 0; i < links.length; i++) {\n const link = links[i]\n if (link.href != null) {\n existing_stylesheets.push(link.href)\n }\n }\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const escaped = encodeURI(url)\n if (existing_stylesheets.indexOf(escaped) !== -1) {\n on_load()\n continue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } var existing_scripts = []\n const scripts = document.getElementsByTagName('script')\n for (let i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n existing_scripts.push(script.src)\n }\n }\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const escaped = encodeURI(url)\n if (skip.indexOf(escaped) !== -1 || existing_scripts.indexOf(escaped) !== -1) {\n if (!window.requirejs) {\n on_load();\n }\n continue;\n }\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (let i = 0; i < js_modules.length; i++) {\n const url = js_modules[i];\n const escaped = encodeURI(url)\n if (skip.indexOf(escaped) !== -1 || existing_scripts.indexOf(escaped) !== -1) {\n if (!window.requirejs) {\n on_load();\n }\n continue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n const url = js_exports[name];\n const escaped = encodeURI(url)\n if (skip.indexOf(escaped) >= 0 || root[name] != null) {\n if (!window.requirejs) {\n on_load();\n }\n continue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.holoviz.org/panel/1.5.4/dist/bundled/reactiveesm/es-module-shims@^1.10.0/dist/es-module-shims.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-3.6.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.6.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.6.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.6.2.min.js\", \"https://cdn.holoviz.org/panel/1.5.4/dist/panel.min.js\"];\n const js_modules = [];\n const js_exports = {};\n const css_urls = [];\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (let i = 0; i < inline_js.length; i++) {\n try {\n inline_js[i].call(root, root.Bokeh);\n } catch(e) {\n if (!reloading) {\n throw e;\n }\n }\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n var NewBokeh = root.Bokeh;\n if (Bokeh.versions === undefined) {\n Bokeh.versions = new Map();\n }\n if (NewBokeh.version !== Bokeh.version) {\n Bokeh.versions.set(NewBokeh.version, NewBokeh)\n }\n root.Bokeh = Bokeh;\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n // If the timeout and bokeh was not successfully loaded we reset\n // everything and try loading again\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n root._bokeh_is_loading = 0\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n const bokeh_loaded = root.Bokeh != null && (root.Bokeh.version === py_version || (root.Bokeh.versions !== undefined && root.Bokeh.versions.has(py_version)));\n if (!reloading && !bokeh_loaded) {\n if (root.Bokeh) {\n root.Bokeh = undefined;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "\n", + "if ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n", + " window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n", + "}\n", + "\n", + "\n", + " function JupyterCommManager() {\n", + " }\n", + "\n", + " JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n", + " if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " comm_manager.register_target(comm_id, function(comm) {\n", + " comm.on_msg(msg_handler);\n", + " });\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n", + " comm.onMsg = msg_handler;\n", + " });\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " console.log(message)\n", + " var content = {data: message.data, comm_id};\n", + " var buffers = []\n", + " for (var buffer of message.buffers || []) {\n", + " buffers.push(new DataView(buffer))\n", + " }\n", + " var metadata = message.metadata || {};\n", + " var msg = {content, buffers, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " })\n", + " }\n", + " }\n", + "\n", + " JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n", + " if (comm_id in window.PyViz.comms) {\n", + " return window.PyViz.comms[comm_id];\n", + " } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n", + " if (msg_handler) {\n", + " comm.on_msg(msg_handler);\n", + " }\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n", + " comm.open();\n", + " if (msg_handler) {\n", + " comm.onMsg = msg_handler;\n", + " }\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " var comm_promise = google.colab.kernel.comms.open(comm_id)\n", + " comm_promise.then((comm) => {\n", + " window.PyViz.comms[comm_id] = comm;\n", + " if (msg_handler) {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " var content = {data: message.data};\n", + " var metadata = message.metadata || {comm_id};\n", + " var msg = {content, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " }) \n", + " var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n", + " return comm_promise.then((comm) => {\n", + " comm.send(data, metadata, buffers, disposeOnDone);\n", + " });\n", + " };\n", + " var comm = {\n", + " send: sendClosure\n", + " };\n", + " }\n", + " window.PyViz.comms[comm_id] = comm;\n", + " return comm;\n", + " }\n", + " window.PyViz.comm_manager = new JupyterCommManager();\n", + " \n", + "\n", + "\n", + "var JS_MIME_TYPE = 'application/javascript';\n", + "var HTML_MIME_TYPE = 'text/html';\n", + "var EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\n", + "var CLASS_NAME = 'output';\n", + "\n", + "/**\n", + " * Render data to the DOM node\n", + " */\n", + "function render(props, node) {\n", + " var div = document.createElement(\"div\");\n", + " var script = document.createElement(\"script\");\n", + " node.appendChild(div);\n", + " node.appendChild(script);\n", + "}\n", + "\n", + "/**\n", + " * Handle when a new output is added\n", + " */\n", + "function handle_add_output(event, handle) {\n", + " var output_area = handle.output_area;\n", + " var output = handle.output;\n", + " if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + " var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + " if (id !== undefined) {\n", + " var nchildren = toinsert.length;\n", + " var html_node = toinsert[nchildren-1].children[0];\n", + " html_node.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var scripts = [];\n", + " var nodelist = html_node.querySelectorAll(\"script\");\n", + " for (var i in nodelist) {\n", + " if (nodelist.hasOwnProperty(i)) {\n", + " scripts.push(nodelist[i])\n", + " }\n", + " }\n", + "\n", + " scripts.forEach( function (oldScript) {\n", + " var newScript = document.createElement(\"script\");\n", + " var attrs = [];\n", + " var nodemap = oldScript.attributes;\n", + " for (var j in nodemap) {\n", + " if (nodemap.hasOwnProperty(j)) {\n", + " attrs.push(nodemap[j])\n", + " }\n", + " }\n", + " attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n", + " newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n", + " oldScript.parentNode.replaceChild(newScript, oldScript);\n", + " });\n", + " if (JS_MIME_TYPE in output.data) {\n", + " toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n", + " }\n", + " output_area._hv_plot_id = id;\n", + " if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n", + " window.PyViz.plot_index[id] = Bokeh.index[id];\n", + " } else {\n", + " window.PyViz.plot_index[id] = null;\n", + " }\n", + " } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " var bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var script_attrs = bk_div.children[0].attributes;\n", + " for (var i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + "function handle_clear_output(event, handle) {\n", + " var id = handle.cell.output_area._hv_plot_id;\n", + " var server_id = handle.cell.output_area._bokeh_server_id;\n", + " if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n", + " var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n", + " if (server_id !== null) {\n", + " comm.send({event_type: 'server_delete', 'id': server_id});\n", + " return;\n", + " } else if (comm !== null) {\n", + " comm.send({event_type: 'delete', 'id': id});\n", + " }\n", + " delete PyViz.plot_index[id];\n", + " if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n", + " var doc = window.Bokeh.index[id].model.document\n", + " doc.clear();\n", + " const i = window.Bokeh.documents.indexOf(doc);\n", + " if (i > -1) {\n", + " window.Bokeh.documents.splice(i, 1);\n", + " }\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle kernel restart event\n", + " */\n", + "function handle_kernel_cleanup(event, handle) {\n", + " delete PyViz.comms[\"hv-extension-comm\"];\n", + " window.PyViz.plot_index = {}\n", + "}\n", + "\n", + "/**\n", + " * Handle update_display_data messages\n", + " */\n", + "function handle_update_output(event, handle) {\n", + " handle_clear_output(event, {cell: {output_area: handle.output_area}})\n", + " handle_add_output(event, handle)\n", + "}\n", + "\n", + "function register_renderer(events, OutputArea) {\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " var toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[0]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " events.on('output_added.OutputArea', handle_add_output);\n", + " events.on('output_updated.OutputArea', handle_update_output);\n", + " events.on('clear_output.CodeCell', handle_clear_output);\n", + " events.on('delete.Cell', handle_clear_output);\n", + " events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n", + "\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " safe: true,\n", + " index: 0\n", + " });\n", + "}\n", + "\n", + "if (window.Jupyter !== undefined) {\n", + " try {\n", + " var events = require('base/js/events');\n", + " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " } catch(err) {\n", + " }\n", + "}\n" + ], + "application/vnd.holoviews_load.v0+json": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.holoviews_exec.v0+json": "", + "text/html": [ + "
    \n", + "
    \n", + "
    \n", + "" + ] + }, + "metadata": { + "application/vnd.holoviews_exec.v0+json": { + "id": "0c5bc51a-1f13-430c-9f2f-e79a4f480c50" + } + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " const force = false;\n", + " const py_version = '3.6.2'.replace('rc', '-rc.').replace('.dev', '-dev.');\n", + " const reloading = true;\n", + " const Bokeh = root.Bokeh;\n", + "\n", + " // Set a timeout for this load but only if we are not already initializing\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || (force || !root._bokeh_is_initializing)) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks;\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + " if (js_modules == null) js_modules = [];\n", + " if (js_exports == null) js_exports = {};\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + "\n", + " if (root._bokeh_is_loading > 0) {\n", + " // Don't load bokeh if it is still initializing\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " } else if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n", + " // There is nothing to load\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + " window._bokeh_on_load = on_load\n", + "\n", + " function on_error(e) {\n", + " const src_el = e.srcElement\n", + " console.error(\"failed to load \" + (src_el.href || src_el.src));\n", + " }\n", + "\n", + " const skip = [];\n", + " if (window.requirejs) {\n", + " window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n", + " root._bokeh_is_loading = css_urls.length + 0;\n", + " } else {\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n", + " }\n", + "\n", + " const existing_stylesheets = []\n", + " const links = document.getElementsByTagName('link')\n", + " for (let i = 0; i < links.length; i++) {\n", + " const link = links[i]\n", + " if (link.href != null) {\n", + " existing_stylesheets.push(link.href)\n", + " }\n", + " }\n", + " for (let i = 0; i < css_urls.length; i++) {\n", + " const url = css_urls[i];\n", + " const escaped = encodeURI(url)\n", + " if (existing_stylesheets.indexOf(escaped) !== -1) {\n", + " on_load()\n", + " continue;\n", + " }\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " } var existing_scripts = []\n", + " const scripts = document.getElementsByTagName('script')\n", + " for (let i = 0; i < scripts.length; i++) {\n", + " var script = scripts[i]\n", + " if (script.src != null) {\n", + " existing_scripts.push(script.src)\n", + " }\n", + " }\n", + " for (let i = 0; i < js_urls.length; i++) {\n", + " const url = js_urls[i];\n", + " const escaped = encodeURI(url)\n", + " if (skip.indexOf(escaped) !== -1 || existing_scripts.indexOf(escaped) !== -1) {\n", + " if (!window.requirejs) {\n", + " on_load();\n", + " }\n", + " continue;\n", + " }\n", + " const element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (let i = 0; i < js_modules.length; i++) {\n", + " const url = js_modules[i];\n", + " const escaped = encodeURI(url)\n", + " if (skip.indexOf(escaped) !== -1 || existing_scripts.indexOf(escaped) !== -1) {\n", + " if (!window.requirejs) {\n", + " on_load();\n", + " }\n", + " continue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (const name in js_exports) {\n", + " const url = js_exports[name];\n", + " const escaped = encodeURI(url)\n", + " if (skip.indexOf(escaped) >= 0 || root[name] != null) {\n", + " if (!window.requirejs) {\n", + " on_load();\n", + " }\n", + " continue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " element.textContent = `\n", + " import ${name} from \"${url}\"\n", + " window.${name} = ${name}\n", + " window._bokeh_on_load()\n", + " `\n", + " document.head.appendChild(element);\n", + " }\n", + " if (!js_urls.length && !js_modules.length) {\n", + " on_load()\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " const js_urls = [\"https://cdn.holoviz.org/panel/1.5.4/dist/bundled/reactiveesm/es-module-shims@^1.10.0/dist/es-module-shims.min.js\"];\n", + " const js_modules = [];\n", + " const js_exports = {};\n", + " const css_urls = [];\n", + " const inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {} // ensure no trailing comma for IE\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if ((root.Bokeh !== undefined) || (force === true)) {\n", + " for (let i = 0; i < inline_js.length; i++) {\n", + " try {\n", + " inline_js[i].call(root, root.Bokeh);\n", + " } catch(e) {\n", + " if (!reloading) {\n", + " throw e;\n", + " }\n", + " }\n", + " }\n", + " // Cache old bokeh versions\n", + " if (Bokeh != undefined && !reloading) {\n", + " var NewBokeh = root.Bokeh;\n", + " if (Bokeh.versions === undefined) {\n", + " Bokeh.versions = new Map();\n", + " }\n", + " if (NewBokeh.version !== Bokeh.version) {\n", + " Bokeh.versions.set(NewBokeh.version, NewBokeh)\n", + " }\n", + " root.Bokeh = Bokeh;\n", + " }\n", + " } else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " }\n", + " root._bokeh_is_initializing = false\n", + " }\n", + "\n", + " function load_or_wait() {\n", + " // Implement a backoff loop that tries to ensure we do not load multiple\n", + " // versions of Bokeh and its dependencies at the same time.\n", + " // In recent versions we use the root._bokeh_is_initializing flag\n", + " // to determine whether there is an ongoing attempt to initialize\n", + " // bokeh, however for backward compatibility we also try to ensure\n", + " // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n", + " // before older versions are fully initialized.\n", + " if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n", + " // If the timeout and bokeh was not successfully loaded we reset\n", + " // everything and try loading again\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_is_initializing = false;\n", + " root._bokeh_onload_callbacks = undefined;\n", + " root._bokeh_is_loading = 0\n", + " console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n", + " load_or_wait();\n", + " } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n", + " setTimeout(load_or_wait, 100);\n", + " } else {\n", + " root._bokeh_is_initializing = true\n", + " root._bokeh_onload_callbacks = []\n", + " const bokeh_loaded = root.Bokeh != null && (root.Bokeh.version === py_version || (root.Bokeh.versions !== undefined && root.Bokeh.versions.has(py_version)));\n", + " if (!reloading && !bokeh_loaded) {\n", + " if (root.Bokeh) {\n", + " root.Bokeh = undefined;\n", + " }\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " }\n", + " load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n", + " console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + " run_inline_js();\n", + " });\n", + " }\n", + " }\n", + " // Give older versions of the autoload script a head-start to ensure\n", + " // they initialize before we start loading newer version.\n", + " setTimeout(load_or_wait, 100)\n", + "}(window));" + ], + "application/vnd.holoviews_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = false;\n const py_version = '3.6.2'.replace('rc', '-rc.').replace('.dev', '-dev.');\n const reloading = true;\n const Bokeh = root.Bokeh;\n\n // Set a timeout for this load but only if we are not already initializing\n if (typeof (root._bokeh_timeout) === \"undefined\" || (force || !root._bokeh_is_initializing)) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n // Don't load bokeh if it is still initializing\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n } else if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n // There is nothing to load\n run_callbacks();\n return null;\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error(e) {\n const src_el = e.srcElement\n console.error(\"failed to load \" + (src_el.href || src_el.src));\n }\n\n const skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n root._bokeh_is_loading = css_urls.length + 0;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n const existing_stylesheets = []\n const links = document.getElementsByTagName('link')\n for (let i = 0; i < links.length; i++) {\n const link = links[i]\n if (link.href != null) {\n existing_stylesheets.push(link.href)\n }\n }\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const escaped = encodeURI(url)\n if (existing_stylesheets.indexOf(escaped) !== -1) {\n on_load()\n continue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } var existing_scripts = []\n const scripts = document.getElementsByTagName('script')\n for (let i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n existing_scripts.push(script.src)\n }\n }\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const escaped = encodeURI(url)\n if (skip.indexOf(escaped) !== -1 || existing_scripts.indexOf(escaped) !== -1) {\n if (!window.requirejs) {\n on_load();\n }\n continue;\n }\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (let i = 0; i < js_modules.length; i++) {\n const url = js_modules[i];\n const escaped = encodeURI(url)\n if (skip.indexOf(escaped) !== -1 || existing_scripts.indexOf(escaped) !== -1) {\n if (!window.requirejs) {\n on_load();\n }\n continue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n const url = js_exports[name];\n const escaped = encodeURI(url)\n if (skip.indexOf(escaped) >= 0 || root[name] != null) {\n if (!window.requirejs) {\n on_load();\n }\n continue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.holoviz.org/panel/1.5.4/dist/bundled/reactiveesm/es-module-shims@^1.10.0/dist/es-module-shims.min.js\"];\n const js_modules = [];\n const js_exports = {};\n const css_urls = [];\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (let i = 0; i < inline_js.length; i++) {\n try {\n inline_js[i].call(root, root.Bokeh);\n } catch(e) {\n if (!reloading) {\n throw e;\n }\n }\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n var NewBokeh = root.Bokeh;\n if (Bokeh.versions === undefined) {\n Bokeh.versions = new Map();\n }\n if (NewBokeh.version !== Bokeh.version) {\n Bokeh.versions.set(NewBokeh.version, NewBokeh)\n }\n root.Bokeh = Bokeh;\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n // If the timeout and bokeh was not successfully loaded we reset\n // everything and try loading again\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n root._bokeh_is_loading = 0\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n const bokeh_loaded = root.Bokeh != null && (root.Bokeh.version === py_version || (root.Bokeh.versions !== undefined && root.Bokeh.versions.has(py_version)));\n if (!reloading && !bokeh_loaded) {\n if (root.Bokeh) {\n root.Bokeh = undefined;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "\n", + "if ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n", + " window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n", + "}\n", + "\n", + "\n", + " function JupyterCommManager() {\n", + " }\n", + "\n", + " JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n", + " if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " comm_manager.register_target(comm_id, function(comm) {\n", + " comm.on_msg(msg_handler);\n", + " });\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n", + " comm.onMsg = msg_handler;\n", + " });\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " console.log(message)\n", + " var content = {data: message.data, comm_id};\n", + " var buffers = []\n", + " for (var buffer of message.buffers || []) {\n", + " buffers.push(new DataView(buffer))\n", + " }\n", + " var metadata = message.metadata || {};\n", + " var msg = {content, buffers, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " })\n", + " }\n", + " }\n", + "\n", + " JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n", + " if (comm_id in window.PyViz.comms) {\n", + " return window.PyViz.comms[comm_id];\n", + " } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n", + " if (msg_handler) {\n", + " comm.on_msg(msg_handler);\n", + " }\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n", + " comm.open();\n", + " if (msg_handler) {\n", + " comm.onMsg = msg_handler;\n", + " }\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " var comm_promise = google.colab.kernel.comms.open(comm_id)\n", + " comm_promise.then((comm) => {\n", + " window.PyViz.comms[comm_id] = comm;\n", + " if (msg_handler) {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " var content = {data: message.data};\n", + " var metadata = message.metadata || {comm_id};\n", + " var msg = {content, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " }) \n", + " var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n", + " return comm_promise.then((comm) => {\n", + " comm.send(data, metadata, buffers, disposeOnDone);\n", + " });\n", + " };\n", + " var comm = {\n", + " send: sendClosure\n", + " };\n", + " }\n", + " window.PyViz.comms[comm_id] = comm;\n", + " return comm;\n", + " }\n", + " window.PyViz.comm_manager = new JupyterCommManager();\n", + " \n", + "\n", + "\n", + "var JS_MIME_TYPE = 'application/javascript';\n", + "var HTML_MIME_TYPE = 'text/html';\n", + "var EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\n", + "var CLASS_NAME = 'output';\n", + "\n", + "/**\n", + " * Render data to the DOM node\n", + " */\n", + "function render(props, node) {\n", + " var div = document.createElement(\"div\");\n", + " var script = document.createElement(\"script\");\n", + " node.appendChild(div);\n", + " node.appendChild(script);\n", + "}\n", + "\n", + "/**\n", + " * Handle when a new output is added\n", + " */\n", + "function handle_add_output(event, handle) {\n", + " var output_area = handle.output_area;\n", + " var output = handle.output;\n", + " if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + " var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + " if (id !== undefined) {\n", + " var nchildren = toinsert.length;\n", + " var html_node = toinsert[nchildren-1].children[0];\n", + " html_node.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var scripts = [];\n", + " var nodelist = html_node.querySelectorAll(\"script\");\n", + " for (var i in nodelist) {\n", + " if (nodelist.hasOwnProperty(i)) {\n", + " scripts.push(nodelist[i])\n", + " }\n", + " }\n", + "\n", + " scripts.forEach( function (oldScript) {\n", + " var newScript = document.createElement(\"script\");\n", + " var attrs = [];\n", + " var nodemap = oldScript.attributes;\n", + " for (var j in nodemap) {\n", + " if (nodemap.hasOwnProperty(j)) {\n", + " attrs.push(nodemap[j])\n", + " }\n", + " }\n", + " attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n", + " newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n", + " oldScript.parentNode.replaceChild(newScript, oldScript);\n", + " });\n", + " if (JS_MIME_TYPE in output.data) {\n", + " toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n", + " }\n", + " output_area._hv_plot_id = id;\n", + " if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n", + " window.PyViz.plot_index[id] = Bokeh.index[id];\n", + " } else {\n", + " window.PyViz.plot_index[id] = null;\n", + " }\n", + " } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " var bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var script_attrs = bk_div.children[0].attributes;\n", + " for (var i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + "function handle_clear_output(event, handle) {\n", + " var id = handle.cell.output_area._hv_plot_id;\n", + " var server_id = handle.cell.output_area._bokeh_server_id;\n", + " if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n", + " var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n", + " if (server_id !== null) {\n", + " comm.send({event_type: 'server_delete', 'id': server_id});\n", + " return;\n", + " } else if (comm !== null) {\n", + " comm.send({event_type: 'delete', 'id': id});\n", + " }\n", + " delete PyViz.plot_index[id];\n", + " if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n", + " var doc = window.Bokeh.index[id].model.document\n", + " doc.clear();\n", + " const i = window.Bokeh.documents.indexOf(doc);\n", + " if (i > -1) {\n", + " window.Bokeh.documents.splice(i, 1);\n", + " }\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle kernel restart event\n", + " */\n", + "function handle_kernel_cleanup(event, handle) {\n", + " delete PyViz.comms[\"hv-extension-comm\"];\n", + " window.PyViz.plot_index = {}\n", + "}\n", + "\n", + "/**\n", + " * Handle update_display_data messages\n", + " */\n", + "function handle_update_output(event, handle) {\n", + " handle_clear_output(event, {cell: {output_area: handle.output_area}})\n", + " handle_add_output(event, handle)\n", + "}\n", + "\n", + "function register_renderer(events, OutputArea) {\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " var toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[0]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " events.on('output_added.OutputArea', handle_add_output);\n", + " events.on('output_updated.OutputArea', handle_update_output);\n", + " events.on('clear_output.CodeCell', handle_clear_output);\n", + " events.on('delete.Cell', handle_clear_output);\n", + " events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n", + "\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " safe: true,\n", + " index: 0\n", + " });\n", + "}\n", + "\n", + "if (window.Jupyter !== undefined) {\n", + " try {\n", + " var events = require('base/js/events');\n", + " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " } catch(err) {\n", + " }\n", + "}\n" + ], + "application/vnd.holoviews_load.v0+json": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import os, sys\n", "import shutil\n", @@ -48,8 +1186,2524 @@ "# Load datataset \n", "# TODO, develop function for this too\n", "gppfile='/glade/derecho/scratch/wwieder/ADF/b.e30_beta04.BLT1850.ne30_t232_wgx3.121/climo/b.e30_beta04.BLT1850.ne30_t232_wgx3.121_GPP_climo.nc'\n", + "laih1file='/glade/derecho/scratch/wwieder/ctsm53n04ctsm52028_ne30pg3t232_hist.clm2.h1.TLAI.1860s.nc'\n", "mesh0 = '/glade/campaign/cesm/cesmdata/inputdata/share/meshes/ne30pg3_ESMFmesh_cdf5_c20211018.nc'\n", - "ds0 = ux.open_dataset(mesh0, gppfile)" + "ds0 = ux.open_dataset(mesh0, gppfile)\n", + "ds1 = ux.open_dataset(mesh0, laih1file)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "029a4caf-2ffc-4a5c-9cfe-ca8fe4692522", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
    <xarray.UxDataset> Size: 12MB\n",
    +       "Dimensions:   (time: 12, n_face: 48600)\n",
    +       "Coordinates:\n",
    +       "  * time      (time) int64 96B 1 2 3 4 5 6 7 8 9 10 11 12\n",
    +       "Dimensions without coordinates: n_face\n",
    +       "Data variables:\n",
    +       "    GPP       (time, n_face) float32 2MB ...\n",
    +       "    area      (time, n_face) float32 2MB ...\n",
    +       "    landfrac  (time, n_face) float32 2MB ...\n",
    +       "    landmask  (time, n_face) float64 5MB ...
    " + ], + "text/plain": [ + " Size: 12MB\n", + "Dimensions: (time: 12, n_face: 48600)\n", + "Coordinates:\n", + " * time (time) int64 96B 1 2 3 4 5 6 7 8 9 10 11 12\n", + "Dimensions without coordinates: n_face\n", + "Data variables:\n", + " GPP (time, n_face) float32 2MB ...\n", + " area (time, n_face) float32 2MB ...\n", + " landfrac (time, n_face) float32 2MB ...\n", + " landmask (time, n_face) float64 5MB ..." + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds0" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "97422a27-562e-484c-b018-aa4368fdc457", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
    <xarray.UxDataset> Size: 359MB\n",
    +       "Dimensions:           (time: 120, hist_interval: 2, n_face: 48600, pft: 710683)\n",
    +       "Coordinates:\n",
    +       "  * time              (time) object 960B 1860-02-01 00:00:00 ... 1870-01-01 0...\n",
    +       "Dimensions without coordinates: hist_interval, n_face, pft\n",
    +       "Data variables:\n",
    +       "    time_bounds       (time, hist_interval) object 2kB ...\n",
    +       "    lon               (n_face) float32 194kB ...\n",
    +       "    lat               (n_face) float32 194kB ...\n",
    +       "    pfts1d_ixy        (pft) float64 6MB ...\n",
    +       "    pfts1d_jxy        (pft) float64 6MB ...\n",
    +       "    pfts1d_itype_veg  (pft) float64 6MB ...\n",
    +       "    TLAI              (time, pft) float32 341MB ...
    " + ], + "text/plain": [ + " Size: 359MB\n", + "Dimensions: (time: 120, hist_interval: 2, n_face: 48600, pft: 710683)\n", + "Coordinates:\n", + " * time (time) object 960B 1860-02-01 00:00:00 ... 1870-01-01 0...\n", + "Dimensions without coordinates: hist_interval, n_face, pft\n", + "Data variables:\n", + " time_bounds (time, hist_interval) object 2kB ...\n", + " lon (n_face) float32 194kB ...\n", + " lat (n_face) float32 194kB ...\n", + " pfts1d_ixy (pft) float64 6MB ...\n", + " pfts1d_jxy (pft) float64 6MB ...\n", + " pfts1d_itype_veg (pft) float64 6MB ...\n", + " TLAI (time, pft) float32 341MB ..." + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds1" ] }, { @@ -197,9 +3851,9 @@ ], "metadata": { "kernelspec": { - "display_name": "NPL 2024b", + "display_name": "Python [conda env:cupid-analysis]", "language": "python", - "name": "npl-2024b" + "name": "conda-env-cupid-analysis-py" }, "language_info": { "codemirror_mode": { @@ -211,7 +3865,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.4" } }, "nbformat": 4, diff --git a/scripts/regridding/regrid_conservative.ipynb b/scripts/regridding/regrid_conservative.ipynb index 6fe38f2dc..59f69bf2b 100644 --- a/scripts/regridding/regrid_conservative.ipynb +++ b/scripts/regridding/regrid_conservative.ipynb @@ -94,7 +94,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAHFCAYAAADIX0yYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC980lEQVR4nOydd9wdVZ3/32fKLU9PLxDCQyfACiRuSJBiScN1ERHjur+sIKJZFE1igVAkgBIRJKzSRJFigSwCgrskJCiyINEFjCzShcQESC9Pv23m/P44M3PvfVqecp+a7/v1mtdz78yZM2fmzsxzzud8i9JaawRBEARBEIQ+xRroBgiCIAiCIOwPSKdLEARBEAShH5BOlyAIgiAIQj8gnS5BEARBEIR+QDpdgiAIgiAI/YB0ugRBEARBEPoB6XQJgiAIgiD0A9LpEgRBEARB6Aek0yUIgiAIgtAPSKdLEAYxzz77LMuWLWPv3r1ttp1++umcfvrp/d6m/uKmm27iE5/4BLW1tSilhvW5CoKwfyCdLkEYxDz77LNcddVV7Xa6br31Vm699db+b1Q/cfvtt/P3v/+dD33oQ4wZM2agmyMIgtBrnIFugCAIPWPKlCkD3YQ+5ZVXXsGyzLjw2GOPHeDWCIIg9B5RugRhkLJs2TK+8Y1vAERTbEopfv/73wNtpxc3btyIUorrr7+e6667joMPPphkMsnpp5/OG2+8QTab5ZJLLmHixIlUV1dz1llnsX379jbHXblyJTNmzKC8vJyKigrmzJnD+vXr++OUiwg7XIIgCMMFeasJwiDl85//PBdddBEADz30EOvWrWPdunWceOKJne53yy238Ic//IFbbrmFn/zkJ7z22mt87GMf4/zzz2fHjh389Kc/5Xvf+x5PPPEEn//854v2vfbaa/mXf/kXpkyZwn/+53/ys5/9jIaGBk455RReeeWVfbY5l8t1adFa9/zCCIIgDFFkelEQBikHHnggBx10EAAnnHACBx98cJf2q6mp4de//nWkFO3cuZNFixZx1FFH8cgjj0TlXnvtNW666Sbq6+upqqpi8+bNXHnllXz5y1/mBz/4QVRu1qxZHH744Vx11VWsXLmyw+Nu3LiR2traLrXxySefFMN4QRD2O6TTJQjDjDPOOKNoau7oo48G4KMf/WhRuXD9pk2bOPbYY3n88cfJ5XL827/9G7lcLiqXSCQ47bTTePLJJzs97sSJE3nuuee61MYjjzyyS+UEQRCGE9LpEoRhxsiRI4u+x2KxTtenUikAtm3bBsD73//+duvdl41VLBbj+OOP71IbbdvuUjlBEIThhHS6BEEAYPTo0QD86le/YvLkyd3eX6YXBUEQOkc6XYIwiInH4wC0tLT0+bHmzJmD4zi89dZbnH322d3eX6YXBUEQOkc6XYIwiDnuuOMA+I//+A8++9nP4rouRx55JJWVlSU/1sEHH8zVV1/NZZddxttvv83cuXMZMWIE27Zt43//938pLy/nqquu6nD/WCzGtGnTStae559/no0bNwJQX1+P1ppf/epXgJkC7YkaJwiCMJBIp0sQBjGnn346S5cu5Z577uHHP/4xvu/36dTc0qVLmTJlCv/xH//BfffdRzqdZvz48bz//e9n4cKFfXLMjrj55pu55557itadc845ANx1112ce+65/doeQRCE3qK0BMwRBEEQBEHocyQ4qiAIgiAIQj8gnS5BEARBEIR+QDpdgiAIgiAI/YB0ugRBEARBEPoB6XQJgiAIgiD0A9LpEgRBEARB6AckTlcrfN/nvffeo7KyEqXUQDdHEARBGKRorWloaGDixIn7zE3aG1KpFJlMpiR1xWIxEolESeoSuo90ulrx3nvvMWnSpIFuhiAIgjBE2Lx5MwceeGCf1J1KpaidXMHW7V5J6hs/fjwbNmyQjtcAIZ2uVoTpVTZv3kxVVdUAt0YQBEEYrNTX1zNp0qQ+ScsVkslk2Lrd4+8vHExVZe/UtPoGn8lTN5LJZKTTNUBIp6sV4ZRiVVWVdLoEQRCEfdIfpigVlYqKyt4dx0dMZgYa6XQJgiAIwiDH0z5eL5P2edovTWOEHiOdLkEQBEEY5PhofHrX6+rt/kLvkZARgiAIgiAI/YAoXYIgCIIwyPHx6e3kYO9rEHqLdLoEQRAEYZDjaY2nezc92Nv9hd4j04uCIAiCIAj9gChdgiAIgjDIEUP64YF0ugRBEARhkOOj8aTTNeSRTpcgCMIwZZZ1TtH3tf4DA9QSQ+v2tEdHbdzXvgN9boLQFcSmSxAEQRAGOeH0Ym+X7nLrrbdSW1tLIpFg6tSpPP30052Wf+qpp5g6dSqJRIJDDjmE22+/vU2ZBx98kClTphCPx5kyZQoPP/xwt4/70EMPMWfOHEaPHo1Sir/85S/ttmfdunV86EMfory8nJqaGk4//XRaWlq6fgFKjChdgiAIQ4yuKEal3K8/6e9zGyoK2UB4L65cuZJFixZx6623cvLJJ/OjH/2IefPm8corr3DQQQe1Kb9hwwbOOOMMLrjgAn7+85/zhz/8gQsvvJAxY8Zw9tlnA6YTNH/+fK655hrOOussHn74YT71qU/xzDPPMH369C4ft6mpiZNPPplzzjmHCy64oN32r1u3jrlz57J06VJ++MMfEovFePHFF7GsgdOblNbiQ1pIfX091dXV1NXVSe5FQRAGJUOh8zRU6E2nqz/+X4THeOPVcVT2MuF1Q4PPEUdv63J7p0+fzoknnshtt90WrTv66KP5+Mc/zvLly9uUv/jii3n00Ud59dVXo3ULFy7kxRdfZN26dQDMnz+f+vp6Vq1aFZWZO3cuI0aM4L777uv2cTdu3EhtbS3r16/n+OOPL9p20kknMWvWLK655pp9nmt/IUqXMKgZbDYpgjBQSEerb+jqdR3od48fLL2tA0xHrpB4PE48Hi9al8lkeOGFF7jkkkuK1s+ePZtnn3223frXrVvH7Nmzi9bNmTOHO++8k2w2i+u6rFu3jsWLF7cpc9NNN/X4uO2xfft2/vSnP/Gv//qvzJw5k7feeoujjjqK73znO3zgAx/ocj2lRmy6BEEQBGGQ4wXei71dACZNmkR1dXW0tKda7dy5E8/zGDduXNH6cePGsXXr1nbbuHXr1nbL53I5du7c2WmZsM6eHLc93n77bQCWLVvGBRdcwOrVqznxxBP58Ic/zJtvvtnlekqNKF39SF9633RntNZXI+b+GAl2t+0DPToVhJ4gqtbgY5Z1zoC+Tzxtlt7WAbB58+ai6cXWKlchSqmi71rrNuv2Vb71+q7U2d3jtsb3ja73xS9+kfPOOw+AE044gd/+9rf89Kc/bbej2R9Ip0sQBEEQ9iOqqqr2adM1evRobNtuoy5t3769jQoVMn78+HbLO47DqFGjOi0T1tmT47bHhAkTAJgyZUrR+qOPPppNmzZ1uZ5SI52uElCqUWln9XQ2wurO8ftyBB3WPVjUpcHSDkHoCFG0hK5SSpuurhCLxZg6dSpr167lrLPOitavXbuWM888s919ZsyYwW9+85uidWvWrGHatGm4rhuVWbt2bZFd15o1a5g5c2aPj9seBx98MBMnTuT1118vWv/GG28wb968LtdTaqTTJQiCIAiDHB+FR9en1zqqozssWbKEBQsWMG3aNGbMmMEdd9zBpk2bWLhwIQBLly7l3Xff5d577wWMp+LNN9/MkiVLuOCCC1i3bh133nln5JUI8NWvfpVTTz2V6667jjPPPJNHHnmEJ554gmeeeabLxwXYvXs3mzZt4r333gOIOlfjx49n/PjxKKX4xje+wZVXXsn73vc+jj/+eO655x5ee+01fvWrX/XsApYA6XR1kYEYkXZVqWmvXF+3dyioSOL5KAwEol4NfeRdYZg/fz67du3i6quvZsuWLRx77LE89thjTJ48GYAtW7YUTdXV1tby2GOPsXjxYm655RYmTpzID37wgyhGF8DMmTO5//77ufzyy7niiis49NBDWblyZRSjqyvHBXj00UcjWy2AT3/60wBceeWVLFu2DIBFixaRSqVYvHgxu3fv5n3vex9r167l0EMP7ZPr1RUkTlcrOoq7Mpg7Xe0xXDpdpTwPeZEK/YF0uoY+XX1X9GecrudfHkdFL+N0NTb4TDum63G6hNIjStcgo1QdA+lgCEL/IJ2soc9QeF96JZhe7O3+Qu+ROF2CIAiCIAj9gChdXaT1SKivRreDzQOwq/SV/VQp7dUGo43XUP2992dE2Ro+DKXnTpSu4YF0unpIdzphYdmuvKwH20ugNx2cUpxLf4S4aI+++B06O95g7BDuz+wPHau+DJQ8VBjogKfdwdcKX/fSe7GX+wu9Z8hMLx588MEopdosX/rSlwA499xz22w76aSTBrjVgiAIgiAIhiHjvbhjxw48z4u+//Wvf2XWrFk8+eSTnH766Zx77rls27aNu+66KyoTi8UYOXJkt47TH94og41Sj3a7M3Ic7CPtwepBOlRG50OdwX5/9oSO7p3heK5dpafPU396Lz711wNK4r142rHv7lf/3wYbQ2Z6ccyYMUXfv/vd73LooYdy2mmnRevi8Tjjx4/v76YJgiAIQp/iYeH1cnLK23cRoY8ZMp2uQjKZDD//+c9ZsmRJUQLM3//+94wdO5aamhpOO+00vvOd7zB27NhO60qn06TT6eh7fX19n7V7MDCQqpZQOoaSLcpQZDirPoXn1pMAzMP52gxmdAlsurTYdA04Q8amq5Bf//rX7N27l3PPPTdaN2/ePH7xi1/wu9/9ju9///s899xzfOhDHyrqULXH8uXLqa6ujpZJkyb1cesFQRAEQdgfGTI2XYXMmTOHWCzWJrFmIVu2bGHy5Mncf//9fOITn+iwXHtK16RJk4b1nHd/jFT3V8+oUiUm7+2xhJ6zP923g9VmsT/pzTXoT5uuNS9NpryXNl1NDT6zj/v7sP7/NtgZctOLf//733niiSd46KGHOi03YcIEJk+ezJtvvtlpuXg8TjweL2UTBUEQBKGkeNrC07206RpyEsvwY8h1uu666y7Gjh3LRz/60U7L7dq1i82bNzNhwoR+atnQoLuj054GhR0uo+Du0lm8rd6qf6JsCaWmJ/Zdw4n98ZyFgWVI2XT5vs9dd93FZz/7WRwn319sbGzk61//OuvWrWPjxo38/ve/52Mf+xijR4/mrLPOGsAWC4IgCELv8VH4WL1cxJB+oBlSStcTTzzBpk2b+NznPle03rZtXnrpJe6991727t3LhAkT+OAHP8jKlSuprKwcoNa2z75GloNp5NlfqY+GM6W8Zh3V1VpBK+V9019R+wfTfb+/0t5v3dlv0Z1MG4ONoXiPSRqg4cGQ6nTNnj2b9uz+k8kkjz/++AC0SBAEQRAEoWsMqU7XUKQ7+fb2tb2/R2dDcQS7P9L6d+rqfdPfuSe7euye3ncd2cx15VzkXt+/GIqJ5ktjSC+W9AONdLoEQRAEYZBjbLp6mfBaphcHHOl09SGDYfQ8GNogDCw9uQf68r7pq7o7qleegZ7TFeVwqMXkG0rqljD8kE6XIAiCIAxy/BLkXvSR6cWBRjpdJaI/RnqlsNURhFLRVY9DuR+HB/vyZBzsv/NQV7jEpmt4IJ0uQRAEQRjkhLG2eleHdLoGGul0DWEG+8hS2H+QOFvDn6Ho8QdDr73C8EY6XYIgCIIwyPG0wtO9DI7ay/2F3iOdrhIgipMg5BmqiojQNQY6fmB3aX0/DmR8ut7glcCQ3pPpxQFnSOVeFARBEARBGKqI0iUIQp8gCvD+xUDkYuyOB/dQvx99beH30nvRF+/FAUc6XYIgCIIwyJHpxeGBdLoEQRCGMX2lQA2E/VNf59GcZZ0zqO26hKGPdLoEQRAEYZDj03vvQ780TRF6gXS6esgse775oOU2FgRh8DKUbZl6ojoNhej4PaE0wVHFd26gkV9AEARBEAShHxClq5t0W+FSVr6ssrq3ryAMMgqVh+GoJgi9ZzDcIz1VuwazPVdpci+KzjLQSKerCxQ9vIWdqH0RdrKU1f56kA6YMGRp/Q9KOmH7D33ZOSlV3d25PwdzZyvER+HTW5suiUg/0Ei3VxAEQRAGOaHS1dulu9x6663U1taSSCSYOnUqTz/9dKfln3rqKaZOnUoikeCQQw7h9ttvb1PmwQcfZMqUKcTjcaZMmcLDDz/c7eM+9NBDzJkzh9GjR6OU4i9/+UuHbdJaM2/ePJRS/PrXv+7SefcVonR1l30pU61VLUBZ+dGF9nXrjT1rQ+v9OmpXV8sJQi/pTqBKoTS0d82H+vXuqzRSQ0HNGmysXLmSRYsWceutt3LyySfzox/9iHnz5vHKK69w0EEHtSm/YcMGzjjjDC644AJ+/vOf84c//IELL7yQMWPGcPbZZwOwbt065s+fzzXXXMNZZ53Fww8/zKc+9SmeeeYZpk+f3uXjNjU1cfLJJ3POOedwwQUXdHoeN910E0oNDpVPaS0hagupr6+nurqauro6qqqqgG6+xLrb6eoJ0ukSBoie/OMa6p2AwcxAdbq6eh/0pi1DoZPU3v+LvjrGDc9/gGRF73SSlsYcX5/2TJfbO336dE488URuu+22aN3RRx/Nxz/+cZYvX96m/MUXX8yjjz7Kq6++Gq1buHAhL774IuvWrQNg/vz51NfXs2rVqqjM3LlzGTFiBPfdd1+3j7tx40Zqa2tZv349xx9/fJs2vfjii/zTP/0Tzz33HBMmTODhhx/m4x//+D7Pva8QpaurdGSH1apTU9jBaq+MsvL7tu6AKUsVr+voOO2pY11VzPZVTjplQgGD6h+fOKJEdPa7DAZD9pDhGr5hIPC1wu9tnK5g//r6+qL18XiceDxetC6TyfDCCy9wySWXFK2fPXs2zz77bLv1r1u3jtmzZxetmzNnDnfeeSfZbBbXdVm3bh2LFy9uU+amm27q8XE7orm5mX/5l3/h5ptvZvz48d3at68Qmy5BEARB2I+YNGkS1dXV0dKearVz5048z2PcuHFF68eNG8fWrVvbrXfr1q3tls/lcuzcubPTMmGdPTluRyxevJiZM2dy5plndmu/vkSUrp6grPYVrS7uWzhSb11P8Xe73Sq6MkUZ1tPt6czW3pniablfMaiUrZDgHoyU4CLluGDq3vP69Pht6OfnYagGCu2u8jYo78FBgF+C3IthcNTNmzcXTS+2VrkKaW0LpbXu1D6qvfKt13elzu4etzWPPvoov/vd71i/fn2X9+kPpNMlCIIgCIMcX1v4vYyzFe5fVVW1T5uu0aNHY9t2G3Vp+/btbVSokPHjx7db3nEcRo0a1WmZsM6eHLc9fve73/HWW29RU1NTtP7ss8/mlFNO4fe//32X6yol0unqAmv9B5jtfjq/or2Rb3uj3g5GyL01pu+xitX1A+x7vaheQ54hoSgUqsrKQtl0+Kyt9e8vUlKUbZRi7eu2zieluH/72Uml8NwG+rfraVs6S7490Oe0L2bHPlP0fU3mlwPUkv4hFosxdepU1q5dy1lnnRWtX7t2bYfTdTNmzOA3v/lN0bo1a9Ywbdo0XNeNyqxdu7bIrmvNmjXMnDmzx8dtj0suuYTPf/7zReuOO+44VqxYwcc+9rEu11NqpNMlCIIgCIMcD4XXy+Cm3d1/yZIlLFiwgGnTpjFjxgzuuOMONm3axMKFCwFYunQp7777Lvfeey9gPBVvvvlmlixZwgUXXMC6deu48847I69EgK9+9auceuqpXHfddZx55pk88sgjPPHEEzzzzDNdPi7A7t272bRpE++99x4Ar7/+OmCUtMKlNQcddBC1tbXdug6lRDpd3UTZthnhhqPvYBSt/fbtTFqjfV28vRceWa1DUXTXzqyNt2Srde1tLyjYeZu7E7lfANravpTaC22glIQ2kcHDVFrQNkVWq3XKUkU2XSiLx1s6VhjaDaFgz88/t0H92u/G/VmgkvU45l6Jn4XuKE2dqUsDxWBXtQoJFa7W78NZ9nxyOttv7Sjl9GJXmT9/Prt27eLqq69my5YtHHvssTz22GNMnjwZgC1btrBp06aofG1tLY899hiLFy/mlltuYeLEifzgBz+IYnQBzJw5k/vvv5/LL7+cK664gkMPPZSVK1dGMbq6clwwNlvnnXde9P3TnzazUVdeeSXLli3r1nn2J9LpEgRBEAShXS688EIuvPDCdrfdfffdbdaddtpp/PnPf+60zk9+8pN88pOf7PFxAc4991zOPffcTutozWAISyqdri6yJnt/9HlOcoFRuCAawbarXgXbuzQi7kjx6kABaF22I5WrU7Wqg+1dUsz2NXLvqgo2SDzDBprWI/99fYfuKxet1bOBYq23ssA+JvDQLfq9C7x2W90fj7f8rEfHm1P+bxB5N9qgNLrQ2bGLwYX39Sy1Jirfh8pvZ7/rYFK3hN7h0f3pwfbqEAYW6XQJgiAIwiBnIKYXhdIjna6e0M6ItdAOqnU55ZrLrDOZDmN8FY2IO6L1ti6qREVqVoF9iva8To/XYXT83tKZJ1lPclEOYQaD8tTftPYCK6ITFfTx1C96fExl2+gwxo/WKKXz3o2eB60ifbf7PLfalm9yJzGLCj2N+9D7dyAVrb7KlTgYmGXPL/gNi2cYlKVQWvWbfNTThNWt6xAGFvkFBEEQBEEQ+gFRurrJLOscrHiijTpTmFMx2ma3iijfSST71ut1K5uxcP/u0m49+xhl91n8r+KDdL69PRu3YWj/1VOVoCfKxmBQItpVuQptE227U+/EnrK6/q7o85zEv5oPwfOpsCOlK1K42k8GAdrvUTaKNraTw9C7dzgrXkCk0OfvEZv+1C00Cr+XNl26l/sLvUc6XYIgCIIwyJHpxeGBdLo64Myac3nSfwigKBq9aqVemVFP8aR+URmlQOu261vTRe+pLlEwit6X92K32tIX7Ov8uqIIDINI+d31LOxOTr2BUh4K4xt1RqFncH/weOoXzK3Kx/fRyo8eYWX5nca8K4zHZ8oX20t261nralyvoaCKFZzLLHs+a72VA9iY3jE79pl2vdLNfVGgdA7230QYlEinSxAEQRAGOb5W+Lp304O93V/oPdLp6gDLdUxsH+hUSVG2XTTCbTNCLgzG1t7ouQOvxdBGrHDk3Gk07KJj+rRry7UPCnPcdXffUtG+t1g3bLkGsO29pTtq12BXuTpiMOarU5YFVuDRm82hvQzKcsKN5m8HNpHaz9tpRnG/unLvdUXlKiwzmOwZu6C+h1kHhqLiZd7p4W86eCJbeVh4vbQh6+3+Qu+RX0AQBEEQBKEfEKWrI1RecSlWX+zika7nmXgthSqRHY6OdV7JgvaVrsJ1vi7I6RjkegvNwNrxlmwv9lbb89iHPUirUXubY/WEfalNrdvauv37Uv0KlYDWx+gkav9QoKseYN2x6RoICr0Uta8HncKl4vG8iuF5ebtL18GylImpR/D8KavgnvRa3Yde3ktZWeZ7V+69zjIydMeOs71nqdW2olhh+2pXF4/VWfyyHtmRDjKie6PA41zZrZQvZVGc1qBvkenF4cGQUbqWLVuGUqpoKcwgrrVm2bJlTJw4kWQyyemnn87LL788gC0WBEEQhNLgY5VkEQaWIaV0HXPMMTzxxBPRd7vAG/B73/seN954I3fffTdHHHEE3/72t5k1axavv/46lZWVvTtwoddhwQgIgpGwpYoVrRClTLdWdTC60DrapiwrENHCGF/G61Fnc0FZvziCdtFxSqTqlEoV6k5exkBFaG1PFp1jF1W6drcVKRRdaNdgoAQR+QeDHddgU7Zas2rH7UXf51Z/znxwHVQGiMUAY+OlLL9INYrEjUBpDe/VdlXpfdFFNbirscHa864s/NxhZPx93Hdtjr8Pha3DOGdDgMdbfpb3WNd+xzaldP13EYSQIdXpchynSN0K0Vpz0003cdlll/GJT3wCgHvuuYdx48bxy1/+ki9+8Yv93VRBEARBKBmeVni9nB7s7f5C7xlSWuObb77JxIkTqa2t5dOf/jRvv/02ABs2bGDr1q3Mnj07KhuPxznttNN49tlnO60znU5TX19ftECQL1GptottF4/ywpGOpfKftc4vBSirde5EhbKstutDChQt7Wu05wV54vxohF20+DpawjKDXt3ReXutsN2F59jrugf7dQjVuNaqXBdY6z/QRtUaDCrXUGR13U9ZXfdTlLLAcVDBYiXipkB4DykLKxbDisU6ziLRFbqRY7U7akpoXxrZmba6t1pvV7ZtltbrW29vvXRWzlIo14lyzg51wvershTKcfOLbYPTf5JeaNPV20UYWIbMUzF9+nTuvfdejjjiCLZt28a3v/1tZs6cycsvv8zWrVsBGDduXNE+48aN4+9//3un9S5fvpyrrrqqzXrteVD4fzp8EVrKGMp7HfwTt618Zyt8Cbd+v4bbC6Ydte8XGd63N722rzARpZiaGhBaJ+HeX+gkLVR3kI5WCXFslGNDztyH2vNQSqFzwTR/OPAhH+w4/Otnc5137rsx1V1ojN5usNaeBk0upPCd0WqasU34GMg7CAE6k80HEHVc89dtey+HYXceb7q3++0dQNoL2BuljwqxVMf/B/oArS38XkaU1xKRfsAZMr/AvHnzOPvssznuuOP4yEc+wn//938DZhoxRLWyndJat1nXmqVLl1JXVxctmzdvLn3jBUEQBEHY7xkyna7WlJeXc9xxx/Hmm29Gdl6h4hWyffv2NupXa+LxOFVVVUULYEYwhVM+0fSCCozeg6XV9KOyrEhmj6Ybg21Fapavi7Ypyyoyxu92yqBSqlw9nO7qFYN5CrCrdOWa7eParsne3+9pcYQ8q7bcAuVl0fOtXAcVi6HicVQ8DgXTaBA8p8HvablO57//vqa6C+6LIhOB9soV1Fk4Hd/hNGEHU4etj10U/qY1ng+ej7IsrEQcK5nESibzphWF78Ki9g6PKa3HU79A57L56cbCd3w/4KFKsggDy5DtdKXTaV599VUmTJhAbW0t48ePZ+3atdH2TCbDU089xcyZMwewlYIgCILQe8xYvbc2XQN9FsKQsen6+te/zsc+9jEOOuggtm/fzre//W3q6+v57Gc/i1KKRYsWce2113L44Ydz+OGHc+2111JWVsZnPvOZfVfeHk6BwXxnZkYFYR+AwNA+CAOhVDvhHZQJB0FgWB8a0QehIroUKqEr9CaZbhfdyIUu0ME1jIycw+9BOqk5yQWAcVsXBoZVf7ueeeMvNF/CsC86r1r7hWFcHLcoPIKxxQrDydjoXLbnDWl97xR8b/2eKIzRqYqCtRbQzjtlnzaF7QZBNYp9sVJWXK6zbUOd6NxiLope/L7CfsmQ6XS98847/Mu//As7d+5kzJgxnHTSSfzxj39k8uTJAHzzm9+kpaWFCy+8kD179jB9+nTWrFnT+xhdgiAIgjDA+CUwpO/t/kLvGTKdrvvv79zORSnFsmXLWLZsWUmOpyzLuI8DWFYUtFRZVrF65esokGnQkPw2y0JpnQ94WlB3e2WxLVQUQqFYgSpKrdEFBaqjEWwbD8j2PJgKtwn7phNFoni1KipTpHZZCrCHnSowVFm19VYAo3gpVfQuKCS08WmXzp6tjsqHFCrQygo8GIvfB+aDu+96C+vsaltU8TtKFbwDw3dd9F2pQNXLe3iGwWWH2/28Jnt/pEb3Nz4Kv5c2Wb3dX+g90u0VBEEQBEHoB4aM0tXvOA4QzN37ftsApuHoNvBkikZ54d8COgx+aln5kWCbQKoKFUtGaYBMcD4zsrSSSeNBU2Bb0qH6pf1idau9Ua4oWiWlMMFwu+pWiOMUK6RarFwHHbZdFKS4XVo/P609EMN1vUgP1NoGMFofpgYLbccCVczg5fcN22CpIhvV1sp3VNYq8KqGSM1qj9V1Py36Pqfis0Xq/uON97TeZVigXBe8/guOKhHphwfS6RIEQRCEQY7YdA0PpNPVATqTyUdgbqVIWMkEfp1JF4Sv8VtS0cjUGjkiH1U+HK2Go0mtjZdiezZdIWFE6EQ8KBuU8QpGpbZtgr5GalsMFYvl25vNmTZFVbbyoixVguy+oruqQH/QhWvW2o6uvaje4e+gfY3lOG3UA1WWBIwtUWhXJAwgoTeyl2mzSdl2sZoVUmo1OUi6rCKnRNXuPRW2KTyWn80V319hLK1QHcsWqPKtEsQr2zblgneKUlb+fRaSbavqw/BStuZNuTT6vOqVa4G8Z/G8Iy9BuRr2DkTLhKGKdLoEQRAEYZDj0/vciWJIP/BIp6sjtA7sulrFnIm54DpYoVoVJLYOR41+YxPWiBqzn1JGrSqw89LZXFHsG1Vop1FgN6G1z+o9P2Fu1XlRG0I7CZ3NojPZSElRto2Kx/L12DZ24D2k02l0JlOsdPWxihQpAB2xr+P3tcq1L+/P1l5knezbnq1NkcJVaFNXUO9ab2Ub2xcVi+VzudkyDTAocBzIZqPfo/A56rc8oa1sAVt7MhbZdNoWoX+U8nVx1HTPa1+ZCw9j26hY4A3pOsXvJkuhyL8HV227rdenNZiZd/Bi88FxohmFeUdcHMVTjOjP3Isl8F7U0ukacKTTJQiCIAiDnDCqfG/rEAYW6XR1gFVRgSqrMF9S6fyGmAuOgy4vA0C1pNF766LRpEom0E3N5vPokWYkFCplmYxRgYKRpgq9icwXlJMfSa7ecjuzrHOi73ZFReRJtLr+LuZUfBarptps1NqoaaH6FtpjgBm5tqQg09YmpZS2U1EOOsKYYsX2HkVxxgaK7kTYLziXdq9TR55kod0MRKPgUKV4PJWP8RPF+rGt4n1D+nEELbRl3hEXmw+ObZ6t4PfQmUxpnpmuPHut78ECCp8l7etWUfEL3gOQtzFtR+UK61GWyudxBKyyJKu23JKPzA/7p41hod2t70Mmm7fvdSSuntB9pNMlCIIgCIMc8V4cHkinqyNsG6wCG4aCUd68Iy5GhVGZK5OopqbIpkvFXHSmxWzbvhNVUZ4fcToO6Gw+Tk7MLc696HlRvK954/4dZ8zo6Jja81CBjdm8Iy7GGjvGKGzhMb2C/PG+jw68F1U8hoq52BVGtfMaG/Pn2DrHYk9G8IUj8Mhrqr0R9eDxSOxQvYrI/+6RF1eoFnhe22j/BR6nqiyJThtlVDc2AfB46hdR0dDzaU7iX9vG8fJ8iJljD3ebmUFPqDq38tBTtl06W67O7sH2lNSC+G/F6+y83anWRXkZtefl44aF9247z7v2NcqxjNc0QGAjul+qW8CqjSsA46EY2vYaxdPLq1s5j/7MIC3Ti8MD6fYKgiAIgiD0A9Lp6ohMFtJps7S2r2luMXZSLSlUs1E1VBCZHq0jmyoVixkFKx4zi+tALIZyXRPN2LLy25Qy2+JxVDwOrmsWxwGnlSdRcwu0tKBcBxXWmUxCPA7xuFHdPM8oZ03N+I1NJoJ9wai3CO2D9ttGnG6vbBjLR1nmnC3V1uakgzhF0TUaaFpHhg/XOW5+icXyS2hvZQXepY5T9BurRNws8ZhZV1WFqqri8dQvilSuImzb/H7hNXEdVu/5Cau23SYq1yBAK4VWyjyz5UlIxM3iOEXxrPqEjuwFw+cueOYi7+XCe7lQeQnv6cLyRd7SBXWFNqDKKn7X7O9YyqieofJZmF0km913toISEuZe7O3SXW699VZqa2tJJBJMnTqVp59+utPyTz31FFOnTiWRSHDIIYdw++23tynz4IMPMmXKFOLxOFOmTOHhhx/u9nEfeugh5syZw+jRo1FK8Ze//KVo++7du7nooos48sgjKSsr46CDDuIrX/kKdXV13b4GpUSeLkEQBEEY5ITTi71dusPKlStZtGgRl112GevXr+eUU05h3rx5bNq0qd3yGzZs4IwzzuCUU05h/fr1XHrppXzlK1/hwQcfjMqsW7eO+fPns2DBAl588UUWLFjApz71Kf70pz9167hNTU2cfPLJfPe73223Le+99x7vvfceN9xwAy+99BJ33303q1ev5vzzz+/WNSg1SmtJ+FZIfX091dXVfGTs53FGjTErm1uiOX6AuaO/ENlX4bqs2vwfzDvsGwDoHbvydhGxmFG+gtGRriw3tmCZIE+aZeXjMaXSxn4ktBcI/urm5nzjQsUtjGpfGMspmyuOdB/anGUyRd/9VLpjT7ww3k9rW69wW6t1hapVYdT71jYvbeJ2ldq2q3X7C4/TTnujWGiFkbxjgfoIQTyjoI1a5+26wFzzgmutYm7+N0vEwbJZ9fYN+2xyGH9tf8hRN5SZe9xlxrM4F/xOu/bg7TEj5ULbqYh9eSUWRHzXntf+cxV4+hbG4aO1QlwY+62jZ9YyWSvaRKwviOkVejrqIJ6gqigHYPXOOzo+h/2AeUcvBUDH8tlIVCrwXAyzfWSz5MjxxPafUFdXR1VVVZ+0Jfyf9NHHP49bHtv3Dp2Qbcrw33O63t7p06dz4oknctttefX96KOP5uMf/zjLly9vU/7iiy/m0Ucf5dVXX43WLVy4kBdffJF169YBMH/+fOrr61m1alVUZu7cuYwYMYL77ruv28fduHEjtbW1rF+/nuOPP77T83nggQf4f//v/9HU1ITjDIxJuyhdgiAIgjDIKaXSVV9fX7Sk0+k2x8tkMrzwwgvMnj27aP3s2bN59tln223junXr2pSfM2cOzz//PNlsttMyYZ09OW5XCTubA9XhAvFe7JAH3/w+809qX7ZUZWV5lSlQR1b97XogiGQcej1q39iABB6JOumiAStUujIZo4aBGcm2pPKeMlobe4HCvI0B2vOCeDFB7KBwVByOYC0VKXHKcUzssDAqfqrtw1U4Mg+9oYqOZTaYP63UrRA/m+tQQTOja13Q3r7xZLRisSLVq7UNm3KDaxsoU1HrbcvY3xHuWpBFQFlo5Rddz0JvRhzHeKHmd+5aYwP1MbqersPcf7ic1f/37a6ertAPrH7pO8z+x6uxMoF3clUlVvAM+YEKrf1ilSp8ftpTdwvtsHQrc6DCTAaWWzANFN57BfZEWoVKbKCIZ8N4WwXqrueZ5zKsP1R6w+cg5uaVrQIlXyigYJYAFcTgcwu8GftxnqiU3ouTJk0qWn/llVeybNmyonU7d+7E8zzGjRtXtH7cuHFs3bq13fq3bt3abvlcLsfOnTuZMGFCh2XCOnty3K6wa9currnmGr74xS/2uI5SIJ0uQRAEQdiP2Lx5c9H0Yjwe77CsahUAVmvdZt2+yrde35U6u3vczqivr+ejH/0oU6ZM4corr+xRHaVCOl2d4CeNgmFlssyrXQKArkhCdbmZ6wesBjO/P++gRWZ7YxMqiFaPY0M6w6pNNwEwa+a3Ub4PQcR6KitY9cZ1Zv8jLi6223BsyGajUWlhzkbl2+ZGjkSo4EYMR9NOvM3oLLRXam+EXUhnUeNV4HFnLk7bfILtVBbVqVwnH8vM8jttQ7cJ44NlMtEo34rFUE6x3VukKtm2URELVCblOOh0Pmp/qHxp38cqL8srfp5vvNlCxdD387Z28VhRns32iCJ8h7ntQvs/12WVqFyDEpUtyLeYcFFlSfOlJdWu1294rxTnS7Ta2hyaQm2PZ9t5lZzgXixUurPZvOqlVNvYceFz16odkbdsMhHtWxiLUCggfL9lPXDyMwj4uvg3y/Wj92IJla6qqqp92nSNHj0a27bbqEvbt29vo0KFjB8/vt3yjuMwatSoTsuEdfbkuJ3R0NDA3Llzqaio4OGHH8Z13X3v1IeITZcgCIIgDHI0vQ8b0Z3Z0FgsxtSpU1m7dm3R+rVr1zJz5sx295kxY0ab8mvWrGHatGlRZ6ejMmGdPTluR9TX1zN79mxisRiPPvooiUSiW/v3BaJ0dcDZJ3wLxwl+oEIbHh+wCka/vs+8w79ZvHNgMEg8xqoNN0ar1z57ObNPuhqSwUi5YPS66o3rmDfpq/l1lm3ibgXebVFcr7D+bDaKeK5bqU66JRUpUsq20elMpL7Zo0biN5io9DqT6Ty6dqGKpX2UVXC7hDkGg5GT8rwO1avIS6tVjKA2xygFYX3aN7HLCnMbhtK01mgKbFssy4xYI2XAytt9WZZRElqPjgIVQjc151UHy0JXlnXYtHm1SyJlS2VtSCbQZea72HINXh5ffxVz33cFYLzZVBCt3UrEI/XWbPSDPIht1SPLVflYeRA9NyFFMexsC2U5kWdr3tMxeM49P/8usKwgSno+6nyRjaZtGw9bMLHkwth/AMlEpLQLrQiudW5UWfQusBvTWM0Z8L18mdbx/vqQgYhIv2TJEhYsWMC0adOYMWMGd9xxB5s2bWLhwoUALF26lHfffZd7770XMJ6KN998M0uWLOGCCy5g3bp13HnnnZFXIsBXv/pVTj31VK677jrOPPNMHnnkEZ544gmeeeaZLh8XTByuTZs28d577wHw+uuvA0ZJGz9+PA0NDcyePZvm5mZ+/vOfR04DAGPGjMEeoJiR0ukSBEEQBKEN8+fPZ9euXVx99dVs2bKFY489lscee4zJkycDsGXLlqLYWbW1tTz22GMsXryYW265hYkTJ/KDH/yAs88+Oyozc+ZM7r//fi6//HKuuOIKDj30UFauXMn06dO7fFyARx99lPPOOy/6/ulPfxrIOwW88MILUeyvww47rOi8NmzYwMEHH1y6C9UNJE5XK8KYKB8+8mu4XkHcq3DuPu7C7r15r8PQuyW0k9hTZ2JjAaqyglXv/KCo/rnHfwvVFMR50TqvvmSzZgQb/hxuEPk6tBGKF8RnaWgErcnt2JlfVxBlXcXj+fg7oXoTGEoq10EH3pM6m0Wn08VqVwdxhsLI1qEdlIm95UfH8VPp9uMWFVXSR+pWO1ixGFZ1VfHvFCqQWhfFT8OyjEpVV58v6xaMRzw/UguwLFZtuSXaNO+Ai/Lei44Djo1XaZRMqyVt7OlCVTSbK/B88sxvG6gOq978XknPXygts2YaJdJuaEE1BfZ8DY34jU1FMbKKYmK5Tl4hD+2BCtC5bKRSW4X3m20bL9kwFpzjmHpDVcXXHdp4ac8rtl1UKn/vum4QXT1QaZMxUVj3wUdO/Q52s3lvqHTWxGsL43QBubjFE2/c2C9xuk7/r3/HKe/Y4L0r5JrS/P6fbuvT9gqdI0pXB+iYA7vM9F2RgXtDo/knG770UmnzMgymsVbtaJvyoJDVf7maeRO+1LbedIZVO25vO1UZN//A/bJYZLQPRB2nojaHL/BYLP+CThlD7ygJczodTaNpX7edXmzVISqaKimYHgynVbRX4AofSddBMNTWnat+THgdTbmG6TuUle8cZbLRtG1ENlv0e4SpULQ24SIiJ4DWknSQhgkw1zWdRYUvxjAIazz456kUfjw/TWk1tqCTvQt2KPQT4cx0PD/Nr3I5aGmBMHCqbWGVJ6Pgx9r3Ua5d/DkMeux54FmodmY4lG0bY/1woOVrlOfl79nW967nRR0pK5mIwtigtbnnw++2hXbtyAlIF6a0Edrlif+5jFknm46pBaByqHTBj9aP7zRJeD08kKdOEARBEAShHxClqwOsbbtAmRGiX1ePXyApFxm9BoFIuzV+yOUNMaOgpYFi1Hqaad4RF5uibmE4CQcdGMObBhVP2/mNTWbES2AIXjiD7OtIBYqCh3Y2HRgGOLWUKRcEgtS5bPGxC9C+LpouaTdwah+jPQ+dyaIqK8z38oRJ4wFg5cApUJjSaROoNAzfYFl5BwY/NKgPpgFbJ6N23UhV1GGdYcqlhJNPHwP4sWLPGV2eaKtaCIOStX+4HIB5h3w9H4bEN+EioudLa6MqB+YFRcppYAxfmGqqKMxDYRDfAgcaAF1djnYcVBigtb7g2bctU2eoWCfiBQprLB/uAPMO8WMOXrm5l3+39pKeXYz9DCsdBkoO0kFFzjoavP6zzhGla3ggnS5BEARBGORordC97DT1dn+h90inqwN0czN+IIz4mUzxtpxfFHhQZzJYwehy3kGLIkNLnU6zuv6uaL+5x1yGynlQXQnkUwd1RujSPfukq6G5JWhbS35kC23CMehcFt8UNaNpx8EKwlToXC4K7Nnavbw1xUmswyCLrZJaq/aDpGrPi4z3LWXhp1P0JypMheS2c4u7LjrmmkC1YAzaLStv/+Xkk9ySShcZLbdLoFz6o8tQOR8/UCW9pIPSGrslsH+zFCobhPVwLFb/79W9O0mh//G9KGSAv7cOZVlRiii/JQVKGQcOAF/jt5gH0Uomi54nZcfRqbxtprL8vEKVyZiAqIVhSizwaswz7OTy9l06YWzMQmcNbavI5ixUx3X03ULbShSubjD3+G9FKaBobA6SiAfXvr4BP9cygK0ThiLS6RIEQRCEQU4Y4LS3dQgDi3S6OsBrbEIFNl3t2j0VJm+GyDvQhGQoVsbmlP8bAFZVJSTi+Ft3ADDLnl9U31r/gejrLOucou/2tr3oMH0Q7NPrMLS50soyKlzgCaUAbYej632kBGp1jPbKWoHnXmslS/s6erxVMoFlW1GC4D4ltEGLxSCZwC8rCBkReX/ZxoUklNp933gghjY26Uz+c2jfFagF8w5aFKV1gmIbvFknfxuvPG/j5cUtLE/jFSTT/v3qi0t7vkK/sqpVYui51Z8rVkI9PwoNoTOZaJvWPspy84F0nSCcRJhCSvv58DEBOgxq6uniSOK2hY4FamplEqV1ZDuobYVKB6qXY6Fto26BUVp/+/tLe3X++wtzj/+W+ZD1TKiXkKaW6P2uM9m80t8PiE3X8EC8FwVBEARBEPoBUbq6QheSOvuhnVQ2V+TZN9v9NMoJvCD31hv7sA7qm2Wd0+H3sA7Yty1WIcpS4Hno+gazosDzUiuLKGt2+zu3PU4rT8kO0whpv8BexcKqKI829ZnipazIa9KqrIBkAquxIDF1aNsSd9C2jU4EybEz2SCVShC/qKYi7+kIUN+QVyTsjscpa/9wOR+ccx2hLGFnfbIVDk8//PUSnqQwmCgKhhp4KOow8XyBwqnicXOPFahiUeJpAjuuyCPagpE1EClUNn7cRQUKmh938cvM+yBXYf5aGXNMpzETDaVz5TH8mIWdMm387ZNLS3Xawx5VH7yjslkIla1szqROS+dtYn3dNl5iXyGG9MMD6XQJgiAIwiBHpheHB9LpKhWh8lMQlwnto71O1KDuVJ/L9jiNjva8aLSmysoiLymrvAyvviGqL0qsW9D+johG9bkORnqF3pSZDCoexxo5omBdNn9e3aEwLlhB+hXzR+XVhYpyY1vVGIxYfd8kEAd0WRzt2vn0PGF0/4S5Ln4ilo8kbtvYvg91DV1rXysTD1G5hjfKtvOx9sLnKLxHLZVXs2zbKFhRDC8L4rG8WXNhSrBW+DEH7Vr5mFCujR8PPRPNPplq8yrPVjqonCnnJSyUht+v+mbbSoXOKYiDGHqg4vkmdVMJ3uc9QZSu4YHYdAmCIAiCIPQDonQNJQqVp84iyRfuUpBnEcBqbs7naasox3KdKA5Zd0Zw2u/Ea0dZJmp/YcTtirIoR6FVXYUfJJdWMbdbNl5WLBYl8NWZbJECqCyVj0BfkTRR5kMbLNtChzkRHcsMN8Jo3cmE8QYLFcCmNNmxFQUHrUTV5G3SOuPJNeKduF9hWUWJrE2E+jCbgYX2gijyWkNVZT72ViaTtxPEPAeR0mXnVdZou6dNjD/ASufVYW0rPDfvoei7CuUGz3pOt1FehX0zp/zfot9CWVbehqu9fLL9iC7B9KIoXQOPdLoEQRAEYZCj2Xec5q7UIQws0ukaqhRGoe/K6CuKK6bRYcT8TNZ4TPWgnogClSlUv0KFq+h7YzOMCexbKsqxomjwnrHDClQ2v7m5reIWHsO2sQ6cgDfKqFBWSxZrV52J0B9sp7zM7OP7+GUxrFzw3bXzEbpthbYsdCAkqLhDriYZjW7dHY2ExjZe3EY7+UjyoZeYIACs3vMT5iT+1XxxnOBeDp41pfOewtkcSimIB0qX74Fl57/vrY8UaLQGSxXlW1WejwpsulQmhxXYjjq24nfrrihq0wc+cQMAdouP7yhO+bjJfPH0r79R2pMfhsyyzil6J2rtD5gNlzA8kU6XIAiCIAxyfBRKItIPeaTTNZTZRwytdncp8BbUOb/YK7IrtD5G5EHoYrmquEyIbRlPwoYm8z2ZgCAXJLYFyVikMtmpbD5yPKDLE+jA9kpbFunqGH5gv+KNT+KOLie+xdiH4flop8ADMevhjQiVL23sagCtlFESgmb6iRjatlCBQpEdXU6mKojZZSusrMLNiTAvtM/jqV8AMHf0F4rttKoqInsvlTX3tV9p1F4V3NN+0tgZ2g1NBRkTfLRjmewGtI2vVRi/rzBrRUjy138CIDdrGtgKKyv37r4ovKZG2Rp86pZ4Lw4PxHtREARBEAShHxgyStfy5ct56KGHeO2110gmk8ycOZPrrruOI488Mipz7rnncs899xTtN336dP74xz/2d3MHhq7YZHXR67HLFNh0hV5X7cUb0mHUd0Cl0lBulC5dHjdeWqGaFXPMKD+IQ5Qry9+i2lX4tsKLB7GJKi2skTZQBYC7uwUVqAV+wsapy0Zqlio8ZUvhO8p4d2Fy1PmuBTFT2EtY+I6K9vMdRa7CtOMpieotdIbvoxJBPLjGJjhwPACqJQPNLaCMF6xOxLDqW1BO4F1cXYmqD2JDJRN4lckOI8i3p261t/2Us4xtl9Mkdoid0ToTyGDF1wolwVGHPENG6Xrqqaf40pe+xB//+EfWrl1LLpdj9uzZNDU1FZWbO3cuW7ZsiZbHHntsgFosCIIgCKVB69IswsAyZJSu1atXF32/6667GDt2LC+88AKnnnpqtD4ejzN+/Pj+bt7QoR07sMjbsCtmDB2oZNrXqNDZSmuU4xQ/4bZl8s+BiW1kmcKqJYOyvcgWSycc0CqvlinIJQP7F1fhu4ps0mzLlYGdUWQD+ys7HcOuMzG/7OYs2RFJVNAEK5uL2mNsuiy8eKDSaY0fLx5/hMqY5WnslE9qpDnGjM98n3W//FoXLpSwv7F65x3GriuIxaXicXSQ9cAbWY6dTmM1mZhP2bGVkPMjZVYnXVRz8AxUJKOI871Ca5Qm8nr84OzrUFrzu7WX9L5uQRB6xJBRulpTV1cHwMiRI4vW//73v2fs2LEcccQRXHDBBWzfvn0gmicIgiAIJSM0pO/tIgwsQ0bpKkRrzZIlS/jABz7AscceG62fN28e55xzDpMnT2bDhg1cccUVfOhDH+KFF14gHqosrUin06SDiMMA9fX1fd7+QUWQH7InqMKI2ZZCZ3PF64O/Kh4z+emsoI/v2GYBoz7ZFtj5l4G2LexUUJev0Y5RDryERTap0MFda6dBafACr0ltK/wK4x2WqY5hZ3yslly+3iDukR+z8GKWyWcHaAvjERk0wXfyHl9Os4fTkOnZBRL2O1bvvIN5hwe5DrNZVIt5t6QOraGspdLYdgFWxiM3IhHFffPiNm6gSPlJN/Kk7Q3aVuCb5wbAlhhzbRgq9lwg3ovDhSHZ6fryl7/M//3f//HMM88UrZ8/f370+dhjj2XatGlMnjyZ//7v/+YTn/hEu3UtX76cq666qk/bKwiCIAi9QQzphwdDrtN10UUX8eijj/I///M/HHjggZ2WnTBhApMnT+bNN9/ssMzSpUtZsmRJ9L2+vp5JkyaVrL1DndATKhwRFnpOzY59pjjSfeidaCl0LmfsusB8HlGTr7QllY/llU5DRXmx0uVYqEyQZ64lh50IbF2qbaNGBXZadlrjO3nlS9uKTE3gOWaByuVH9l6ZG+Wn00qhXYtUjanXzmisrEYHtm3K06ggvlJsRzPpceWRXZm25KUl7INA0dXlZcZGEUhsbSE1oQI7be5rd1czXtymaaJRZi1Po20TU07bilxZzy0/Tp97nflQZpMtU6ikuc+rXm8iPaasx/UOJ4aSwiUML4ZMp0trzUUXXcTDDz/M73//e2pra/e5z65du9i8eTMTJkzosEw8Hu9w6lEQBEEQBgOl8D4U78WBZ8h0ur70pS/xy1/+kkceeYTKykq2bt0KQHV1NclkksbGRpYtW8bZZ5/NhAkT2LhxI5deeimjR4/mrLPOGuDWD306ig0U5lcEL696eZ4xjwptumwbXCefSy4ZQ+0Oo8h70NiEcgNVbHQ16LzqhFJRBPow5la8LojF5ShyZWAFQfbTNS7ZClPIadFoRxVleLXTQfssBb7GTpuNdsYnvidLy5gYAIndWfwgbtjqv1zNKWfdQC7wmAzjdwmlY84JV0afH18/DKb6M8ZuSxGDwBxQ2Zqdx7okd5n7vCbt4e5poenAQOlqzt+o6RE2mfKeKV0fnH2due9NA7ByeU/clgMrUBKdfshiOl29tekqUWOEHjNkOl233XYbAKeffnrR+rvuuotzzz0X27Z56aWXuPfee9m7dy8TJkzggx/8ICtXrqSysnIAWiwIgiAIgpBnyHS69D666Mlkkscff7yfWiMAkQ2X+VLsGaV9nY9ArxTkPFRLymy07XwcLq1NLsbgu1fm4rs2VjA81wW2XnZGky1XJHcaj0TfVuTKXJLbgnqVIht4L6ZqLJRWqKCJTlrju2F+R998DptgK5w9zTjlQbyv5iyFUZK0lVfTcjIT3SeEtk9zpi3j8eeXDWxjesmqDTcCMO/IS1j90nei9cctWUGmMlBMXQunvgmnuRowXrjuXuPpmCu3ySU6ft995LRrsZuMhObHHfyYXRy9vuCZcRu9/DOkyKtgwpBDvBeHB0Om0yUMPtZ6K5llBx6jhUmulWWmC4OpR53Joppb8ttdN9/psixyY6uxgiCSvmujfE3jgYFBvK2I7w2M6rNBWp4gXU9ycwN7Dx/B9qnGONjOgG+iS2CnIJdQ2EF/zElp0lVmv0QQ8DQMC5GtsFn9f9/u8DyfefDrPbg6QnfIVZgfzt2dY97RpgOx6tXlA9mkXrPq9e8WfX/pxsW87ysrAPBjNsRi2KkwYTxRZylbbpFLKo79hin71+sXF9WTrXKjTpcJqZL/R6q0Bi/ssCme+u9vcvI53weg4u16clUJTrjQ1Buv8ynfYur57e+WRusB1t9afExh4NEUWUv0uA5hYBmywVEFQRAEQRCGEqJ0DROU46Jz2ZLWua/EuoVYiTgqZgzRVcyoFn6TScmjQ8PiuNlOKh1NPeI4aNei8QCTADu5LYWV8vjjL9om+53xL98nVu/TNNZM/jVMHIHvEk0henFwAkFNW5CtMBmFABK7IbnbFMyWWWhLYQdK17MrJa3PQPL4+qv44GwT5kDl/MjhYs77r+Lx567sbNchRxjepO6QGFaumsR284w0HVSBlzQb43tytIx0o32O/eYK/vq9vPJkpzxUoAxr1yZbkX+Nt5fi5w8PmPt7zglXYmV93CZz31s5yAVT6u8/70a8EQq3oVRnKpQamV4cHkinSxAEQRAGOzK/OCyQ6cWOUB1fGmXbKMdFOW6HZfqDwjYoS2HFYliB2tQb1voPdFnlWuutZK23kseb7mX1np+wes9P0GNHwsgaVCKOSsQhTGkSj5nFcYKk1xYohZXO4buBPZZSpMcl2z2WF1fkkgo/ZhYA3ybaV/mQS5jFS4Dv5LdlKxRekP7HhJqwyAbLvnj/527k/eflF6H0PLnmYp5cczGqOZ2/N4YhvmOW1GjIJW20ZaEti7L3msmVO+TKHVIjHcq35R1TrJxRok5cuIITF67AbvFQdY2oukayVTGaxncxOfabG8mMiGFnNHYmTP5uFrdZY2XAymmsnGbGZ77PnGnLmH3S1cw+6WpO+9j1fXE5Bg5ldfqOH5SUIu9iD5SuW2+9ldraWhKJBFOnTuXpp5/utPxTTz3F1KlTSSQSHHLIIdx+++1tyjz44INMmTKFeDzOlClTePjhh7t93Iceeog5c+YwevRolFL85S9/aVNHOp3moosuYvTo0ZSXl/PP//zPvPPOO927ACVmiN11giAIgiD0BytXrmTRokVcdtllrF+/nlNOOYV58+axadOmdstv2LCBM844g1NOOYX169dz6aWX8pWvfIUHH3wwKrNu3Trmz5/PggULePHFF1mwYAGf+tSn+NOf/tSt4zY1NXHyySfz3e8WO6wUsmjRIh5++GHuv/9+nnnmGRobG/mnf/onPK+HCYdLgEwvdoDlOpALYwoUh0NQsVjkfVdqO6quUmjDtdZ/gFn2fOzqKrMxm2vT5v7ET8ZRnoeVNIqVbkmhypKRNyNxB8Lgp65D40HlVG4wti1r1l3RYb2NExXxvURBTVEQ36twgu9uo0/9wUFqnzTGPiU4jBdTeLH8fr5NfuM+8OIFKYrEJKJPyb21IVJrcycdM8CtKT2hbdaUy1aQS1q0HF0BQNXGFLE9xvYx8U4GHIuGSeZ5trL5wMAAqTFxKjaYsCm5si6qXEDLh47FdxTr7jM2Xief8/3oEYjvzYF2cIIAwl7MIjMyidNk3jF6mA3PoxkBS4Hn4Wdz+Y0D+O7sjIGISH/jjTdy/vnn8/nPfx6Am266iccff5zbbruN5cvbehfffvvtHHTQQdx0000AHH300Tz//PPccMMNnH322VEds2bNYulSY7e7dOlSnnrqKW666Sbuu+++Lh93wYIFAGzcuLHdttfV1XHnnXfys5/9jI985CMA/PznP2fSpEk88cQTzJkzp3sXo0QMs0dJEARBEIYfvZ1a7K4hfiaT4YUXXmD27NlF62fPns2zzz7b7j7r1q1rU37OnDk8//zzZLPZTsuEdfbkuO3xwgsvkM1mi+qZOHEixx57bLfqKTWidHWASiawAgVF57KRZ55VVQmOg79jZy8qD/q63RxRKTs/qlWWQhfaJBTUZVdX4e3d2/P29RKrJY2Ou+gaM4q3slkoS4IdJAKOuzTVmlF8qsbCynWucIW8cu1iPvCJG6JUPF5CoRNExqHlm5pxG018Lz9mkamyaR4TKJK2idsFYAfxvro6es+WESkCanAOgocN3fGYHcq88p3FTPv8jaRGhimuElF6q7ItPloprCCFkLYgl8wndq+rtdl9xCGAuR/tdBcPqkwQ1gitySXMQ5CLWzgpn3S1ecc4LT7K05Gi79vDS+K1qsy7CaXQuRxOmH9XKXDsvCqfTkefvb17C9KeYd65yhqSxun19fVF39vLQbxz5048z2PcuHFF68eNGxel4WvN1q1b2y2fy+XYuXMnEyZM6LBMWGdPjttRW2KxGCNGjOhVPaVGlC5BEARBGOyEhvC9XYBJkyZRXV0dLe1NFYYoVdzh1lq3Wbev8q3Xd6XO7h63q5Sqnp4iSlcHqLIyrBEm0nmUqiaksRk/iD3VvUqtIrVK5zqXTZRtR+ULj6diMawRNbBzFwCzY58JRlzBzR1zI5sFP5Mxxw1sqLSvO1XYSqE01B07klijT+K9RtOeqkp0wjWeaYAui+E0G0PGsrTPU499s8t122kf3y24hgXPjp90iO02x/DKXbQFieD6pWsUuRpTONYAL9zRtYjbxy1ZgdJ5VcwaGBM+YRjy/E+WMOVSEwW+cZLCzpqbbOf7KvBiULXJ2BntOtZBWwX3YKZAcVXGG7Ir/M8j3yj6/odf7ceZFkKbLt83/4CD97tfXYbVks0bP9kW/miTqgnnAKysh0qbl4BK56C5Ht7tnyaX0qZr8+bNVFVVRetbq1wAo0ePxrbtNqrQ9u3b26hQIePHj2+3vOM4jBo1qtMyYZ09OW5HbclkMuzZs6dI7dq+fTszZ87scj2lRpQuQRAEQdiPqKqqKlra63TFYjGmTp3K2rVri9avXbu2w07LjBkz2pRfs2YN06ZNw3XdTsuEdfbkuO0xdepUXNctqmfLli389a9/HdBOlyhdHVGWBDsYDWmdjzWlNTg2dk1N9N1vai72YiywtVKWitQqFY+jM9nIc88qL4uitQP4qXSkSKlYDOU4eI1N0fbQnkC3tMDRh6AajJLkNzSYmF0V5VFZK/Bk1Lv3YJWVmeNC0fGgb2xorKxGZX1yleZBdj0zRNPlZjSpbRsrY65nd3v9e45wcYyjI05KY3k6srfyHQu/2vxmXsxEnY81muM0j7VJm4FW121gMDG+Yo15ZWG4eXEJA8sr17ZVXKdcatTV1MjAEzdlvG3DezA9iugZsNLgJ+Hw5UYxcxsL7m/f5HsU9oFtg2v+FfoJF3ywUvn3pFUXZNaIOyhPo8OpKa2hnc5KnzEAwVGXLFnCggULmDZtGjNmzOCOO+5g06ZNLFy4EDCeh++++y733nsvAAsXLuTmm29myZIlXHDBBaxbt44777wz8koE+OpXv8qpp57Kddddx5lnnskjjzzCE088wTPPPNPl4wLs3r2bTZs28d577wHw+uuvA0bhGj9+PNXV1Zx//vl87WtfY9SoUYwcOZKvf/3rHHfccZE340AgnS5BEARBGOQMRBqg+fPns2vXLq6++mq2bNnCsccey2OPPcbkyZMBoxwVxs6qra3lscceY/Hixdxyyy1MnDiRH/zgB1G4CICZM2dy//33c/nll3PFFVdw6KGHsnLlSqZPn97l4wI8+uijnHfeedH3T3/60wBceeWVLFu2DIAVK1bgOA6f+tSnaGlp4cMf/jB33303tt31UCulRmnd21ni4UV9fT3V1dV85JCv4sSNTZe2VRQhWzW0QC4HfoFdVC4XTZbrllTk8QOA66AC5UvncqjKivw238+X9X38unr8lhRg4oSpWAwvyF9Y5J1YU4MaMwqaTaJBb9sOs35iMN9dljSxugC9fSd+S6rdeGJ95Sk281PfJ1OpiDWYa1KxsQm7oSXyAvIrE+QqjCL1299f2q26j1m6AtcIfMQaNOkaRXKHuTblWzJRLjljA6OiPI3pkZAaFcTzalK8dmXXFIBjlq4gvgdiDeYYvqPQFjx315JutVsQusPR3yq4z+s1qRGKWGN+e9NE89dLaPBV5JVop/K5SJVvvCSFtswb9+/mg1IQi6FHBjMDtsLaVeDZ52uoyP8fUJ6OcoOqlgxZy+O3r3+furq6IhupUhL+Tzrojm9hlSX2vUMn+M0pNn3h6j5tr9A5onQJgiAIwlBAJJIhj3S6OiA3qgK7KfAGzHjgB0pRqDgVqlmxWBSDSillcguCifeS86KyyikD14UgSBzxWN6dJJMFz8dKBDYCnofO5rAKvCZVYIioYi40NhmFjcA2rKUFf5uJHaYOOQgVKm/p9D6j5s+t/hwAq+t+2tXL0ynP/ufXmHb+jVFcIa/Mwd6bV+q0Y6H8nr09Xl5ePHL/h8UryJaba988PobnBnGFHDPST40J2hADtzH4HXzjldgVe5eXly/mH5aswG0OA3UZFe0fFhsbmv9bIUqCUHpevbrtfTX1AnPPaRucwNTTblEc8PsmMjVGOd49xcULXxnDK7RWaSm0y/JMLksA5fnohsai93toZ0t1BRrfzHYAJGJop/8u8kBMLwqlRzpdgiAIgjDYGQBDeqH0SKerA5y6FlSQhwyrwOiuucWoVaEilc5AJpOP+2Lbkf0XjmNGTIFCpeMO+AVB3wrN6bJZrJqqqCy2ZdSv0DvGKhihNDah02lUsE0lE+hsNvJQVO9tQwfKm5/JFNluzY59Jvo8tyowQuyDQHHP37mEqV8wI3OnxsXd5aBj5nbzyty8B1AvcRuJFLWWkVb0WVtB/KKCeEaR52E3XzwayFTmVTJt5SN7H3/RCv7yQ1G7hL7nhR+b++wflqyIPBR9B5onJshUmps7sUvTEmZh6MYjNmfqlVgtWWO/Cqx+6Tula/hgJPBG19o39q+BfSy2ZZZQifc8dOBBrjy/eFtGoaQXI3QT6XQJgiAIwqBH0fs5Y5leHGik09UBevtOcJL5FfFAyQpzc6WDOC6+bxSrQFki5ka2VrgO/ogKrD2BvUBDsxk1jQkCRnk6b9/lukYZS5jjhB4y4V+rrhlSwfA2FkNVV5m8YADJBNbYMeggQr3OZKJ4XGv9B5hlnZOPhK/aBpoqlS1Xa9wmM5rMVNm4Yyuj9V68dMGurJzGD18kNuSCn8xtCEb6gXBoZcCPhTt1vf5jlq6AOJAKDpEyHpOhh5gMdIX+5v9a2SIedeUKyreYz7FGHzuVtz9sj6OuMgp0crvxjASoLI+hMrmozNzjLutQ7ZpbdR4cMonVf7m6F2cxsHiHHQCAXdeCH3exmoIHvKnZvOOD93KRc79tQVNL/nsmg7L7MRmrTC8OCyTUoyAIgiAIQj8gSldHeB7EAtuITDbyWgw9CCPVyQryduW8/L6BCqaryrF21uHvMAqUCu2+whhae+si2wLlOKau8DgtGPuwIIo7zS2R7ZWuqgDXNoob4FUnsZszqFD5am6JlK25Iz6Pcty8VyTgt5jR2ur6u3p1ifaFkzLDqqZxFmpCDKc5sKOwFX944GslOYZf4D1kp+EvNxsV4IQvrcDK5tUtOw06ld+vq5G6VQ5QsP7WoN4LTbRw3y1J8wWh1/guZINkFL5j5TM0dBD/MbRtzFSB8kzhpgMSJJIObr15d6mcz7zDvhFlkfBffSvygrZiMaz65r45mX5izborAJjxme9TP8li5OvmnZzclsJqzkQeispqydvehrMcwbtepzNoL9W28r5ClK5hgXS6BEEQBGGwo1X3vCM6qkMYUKTT1RGOk49C7zjo0E7L0WakE3gTas9DATqIHK9ibt6T8Z1taK2L42spZRQuMIpXMIryMxlUMgF1DaZseRnYNmp3EB1ZKag0w1m/Mk7jQeVUvmW2Ka3JVSfQNRNMExvSWHuCQD65HHZ1ZV6Jy2ZR2bztRl+ya4oZascaIFORf2H4rmLmp74PmJhevSGy0yKfmw4gU2kic0c56nJEo7xQteqM475m7F4UFI0OM1VmpR88OcozufKg/Tx6gtDXvHH5Yo74jrkHY3vznrXKhymXrcAOzJCUNiqXN9Z811b+f3C62qJlVAwd5JuteTNLXCnsRqPk2KNG4AU2o342B9u2M/e4y4Ch7em47pdf46irVrD3EPNAN4+pwM5onJYaACo2N2NvC97XuZyxvQ2VrxzFHuiC0AWk0yUIgiAIgxyte9/Hkz7iwCOdrg5QrpuPmZVMopoC5cjzQRdEePd8dH0+KZpOZ/KejWFdsaCeUPEKPSE938T4AsjmUIlE3mumpQWVyeRjfiWTZMeYvI31hyRpHqPQtsmdVfPiLmyt8WpMjrDUuHLigU2X1ZRGpTN5pauqEmvUiJ5fmG7w6jV5O6h0NSgvUA59TbbCDLHf95UVvPiDnitEhWq5AqadfyMAL99pciNO/7cb89t74GikLfjr9fn2aSdQuQrUhJ7UKwilxC+IT1cYm86P5e9PKxvMUNnm5rVSKsrv6LsmP2moijVMctGuIvmu2dlqiWNVGg9kv6EBFYuhPFPPvEO+zqq3b+jrU+wzXrtyMcdcYpTCljHgJVTkAZqurmB01rw7rd2N4Hv5/wu5nEkP0F+ITdewQLwXBUEQBEEQ+gFRujoiEYtss5qOHoPTYkY77t40qjmD2hvYWnmeUcXCfIuFMV7SGaNqJU3wKF0eN9sLItKrVBBFvrnFKGR23o6sKFK8bdE8wXgS7T1cccD/ZIjtNvYW2rVRzekoCr2V03hlpj1WOguZvD2YV5nEK+9f17v1ty7myGtWhKGucJtVNED0Yh3u1iUsL692acuMUgv5071LelRvaCvWOtejyoKTgVxZcEwbGT0KA87fLs7fp+9bZFQbL2aeiawRyLHTJl6dnTHPiJXNx7XLVgaZHYJ7ORUHJ2UT22seBKvOiTyilW0b9T704kvGmXfYN1j1t+v7+Cz7jpe/a67fUVetQHnm2gCkRsPeo4MZhVfBas7glwXXpD6B2rur/xophvTDAul0dUD6kDH4yoRZqDvEIRc3lyrWEMdp0ZRtqwZMB8fdm446Mk59KgoyqDKeSf0ToF3bdJDSwVSfY6HDacDWQVfDTleY/kcprKx5IzpNYKc8VCooa1nGtTuYsLcyHl7CDqqxTPqKILyEvXkba7bcUtJr1RVev2JxlCTaixMl5e1t6IU/35afGiic6jvmkhXRi7S7nPjvK3Di7W/L1OQNlQHQoCR8hDCIePEmc98fesON5l4N/9Gq4ulH3wYr+JyekKXydTfqbADkyhRNE82DUJmpRFWZHprVUA0NjeiEufH9RAzLVsybcqnZcU8dqwbgHVMK0iN94rutaFBlZWHPkaEDUBXxOp/UiGBwm60i+VYcdvRP25Ru9e7pYR3CwCKdLkEQBEEY7IhN17BAOl0dsOvoOFYikGMsyAS2516ZCShYf4gZ5WUrNTWvx0gbBZoRb7okdhkFyq43wUp1Ikj0HLfx43Y08Gya4EaBCmvebMGpc6OgfGSzJkArYfoeReVruwGo+JtlVK1glKpyOVCK7ISK4DgqUny88hhWXTPaCaYtrYEz4yvbYZ741AhlQi8AXrL7b4H3fSWvmOXKwA+mT2L1+elK7cDR31rBq1d3Xe069humXn8U0cvpmItX8PJ1+TreXLqY2h9+P/quPIWVEcleGHy89fW2U+uHf3dFZEiPUlGCeKvZpmybJlcWGJDXhCElQlUniZULlHSvAqepBi8WbtM4lpl6A2MaMW/SV03FleWseuXaPjrD0hPba6FyeQU+UwZ+zJz3ruPAbbAj0wMvronXJOEPA9RYYUginS5BEARBGOyITdewQDpdHeC78HJBqpgw+KDvglNg92BlofEAY9ANsO39NlUbjO1DzRuQGh3j3Q+GNhWa6tds3GYzcqqvVZHSpe0yKje7xHYFYSW0Nomyw3RD2RzeCCMP+XEHd8P2QAkD4nF0VVnkwg0KO2WkLrs5C75GpY2d2ap3f1iS69MT/vjznhm1tyE0nLeNopUIbFmVB9kx+WJ2S9td2+PgO66n6lUHHWZpKg+CqWISZ7dmw0WlSWEkCP2NF9fRva0tyJWZd0Ziu4WV89GBDanTHBiTB89aaqQdpfWK1Xt4cZv4TvOA5cpdvDI3Ut6tmgp0PLD3ijl8+EPL+e3vlvbPCfaS169YzJFXr4iULj+mIVAGfVeTcRROo3lpa0fTfIAkvB6uaK3529/+Rjab5YgjjsBxStNdkpARgiAIgiAIARs3buT444/nqKOO4rjjjuOwww7jz3/+c0nqFqWrA/50zZeKvscDNSU9Mp8wFkDlFEpDLMgUkR4Be44xw4k9UxKg8qlocmXQdEDeZduPafy4Kbv3KEXDQS7xvWaINeLNHGWZHMoPhia2FXk9Og1pvPEjUb4ZZeWqjIeR02yGsO5eD2xzjMyoJL2MyjD4CJUuJ7A7CX4POw1uEMkjPap9lao9yjY55Mrz7vN+TEeJgGVkKAwnlAZ8FX2O7zafK97ReDGFFThEu02aXFKRC7x4c/GCIKsexPamsbbtAcA+YBTZqhhOEERUbd0VBX22D5qAH6/on5MrEa9/Kz/DceiNN2I1mReMP9JD+Yo3l5rtUy5bQc2ffTb1V8NE6eo3Lr74YlKpFD/72c9IJBJcf/31LFy4kP/93//tdd3S6RIEQRCEwY50uvqNp59+mvvuu4/TTjsNgH/8x39k8uTJtLS0kAzibvYU6XR1kZduLPaCO+La0MZL47tQtiWwhWgiUkl8p1WKGK2wM/l1dkpF6Tu8So9ctcYPUkzE6hyS79qoRGholMNqNDYU/jtbsMeMovl9B5hNZRZuo4cdqFvxd3bijzZxxNz6DCjF489dWbqLMcCkwyxGvrGxi1Kg2BDfaz57CbPtqGXmd3ptWVsvxuO+HsT3cowKma0yP4zSoJrD2Dx9dhqC0K8c8Z0V6Eod/eP1UcSD7GbaMu8lK7AL1Rag87aN5jkLFLKcRiuFHmHSAmmlsFtyWE1BsGbto3NBrMJ3tmFXJJgz1bx/Hn/hqn4409Lx1pKO7VBf+c5i6uvrqa7+Vj+2SOgPtm7dylFHHRV9P/DAA0kmk2zbto2DDz64V3VLp0sQBEEQBjvivdhvKKWwWoVXsiwLXYKM4T3qdH3uc5/jP/7jP6gMEqCGNDU1cdFFF/HTn/601w0b7HhB7Bav3IeEj/OKuZS5hIriuIAZPRbaHGlFFBsn3A4mCa1TniXnBJ6NOkZyVwXJrWb06GzZja4wsqZKxCHmYmXMzo4FuTKbvYcGsszRB0XelFUbs8M2IbPvGrutMLo9kE9ErTtORB2mSclWB7s4kK3Q6LjZQeu8Apk6NNteFUUcebWpz07BK9f2PHm3IPQFB999HQAxZV5MXpm5z929NrEw4bWjsHIaHajlXpiRoSCxu53Oq2CZmhh6tClkp3zchkyU9UIpCx14VutMBntvM2SN8jXvoEWs2nRTn53rcEYi0vcfWmuOOOIIVEEqvsbGRk444YSiztju3bu7XXePOl333HMP3/3ud9t0ulpaWrj33nv3i06XIAiCIAjDj7vuuqvP6u5Wp6u+vh6tNVprGhoaSCTyEoPneTz22GOMHTu25I3sLrfeeivXX389W7Zs4ZhjjuGmm27ilFNOKekx/EQw6ov7KEvTMsr0iFNj8nYQyjMqTKh0WTnMyDHoPPsFyZKV41NRnqIpyPfoNsbIVFpYwZBTu6Oxm4xHkFVtOrsqF448FS2j8/nCohg7GAXsDw8Mr7hSr12ZV5OO+9oKUqPNZ98FvyBnop3qOKG25+ZHfZ4DftKPfieVzsdPi213OfSGG3EbzI+WKzeKZaiivXblYlSgKiLKvdCHzLLnR5/Xeiu7tE/tL5ajPaNA5ZLa5FtMmZs7XjBIVz74rsorXBgbySjDgwVW1tzg2Qo7+B7kgm3RoHU+EXRhA3wNjc3574Gtl9ADxJC+3/jsZz/bZ3V3q9NVU1ODUgqlFEcccUSb7UoprrpqYA0lV65cyaJFi7j11ls5+eST+dGPfsS8efN45ZVXOOiggwa0bYIgCIIgDH4eeOABfv3rX5PNZvnIRz7CF77whZLU261O15NPPonWmg996EM8+OCDjBw5MtoWi8WYPHkyEydOLEnDesqNN97I+eefz+c//3kAbrrpJh5//HFuu+02li9fXroDhSMGX4GjaZ4YSlZEiodSCt/VedsirYqULssDP5gzVrYm6ebIuOYnSY/UVL+lyZaZcaPdYpMtN1JWWUMKbAvfDewvYgqtwA3sM9ymfNTp4aZyteal7y+OPBS1XbBBQ7YSUpMzbfbJJY3HY6ECqbIKFYzklafy+eksyI3MoW3zu7iNiswIH7ulQNay8vUKwmBDZYI4U0F09eR28z3WkH9m/FZ/gSLJymnJ23RlKo0Xdi4Revi6xB0rihOocjn8IE4XysJKpSEW2JsOYO7XoY6iBDZdJWnJ8OeOO+5g4cKFHH744SQSCR588EE2bNhQkj5EtzpdYcyKDRs2MGnSpDbW/QNNJpPhhRde4JJLLilaP3v2bJ599tl290mn06TT6eh7fX19n7ZREARBEITByw9/+EMuu+wyrrnmGgDuvvtuLrroov7vdIVMnjwZgObmZjZt2kQmU6wm/MM//EOvG9YTdu7cied5jBs3rmj9uHHj2Lp1a7v7LF++vEdToqF9g9IWnpVXluyUIltlhiNWoGpZ6VDaCrwZg9GKtoiGLmpnnMwIm1SzsYtI7lTUHaKYfPfbQcU22YNNYkGdjOEnHLKV5ufLlpuo+GH06L/cXKIch0OEsuCn9RKQGmU+K8/kXnR2tA20pW2KFEnfMb9RGF9NacjWBIZa5TkU4I8yRnKpaoUV83B25e0ZowwFysRvC6N6e3GTn81pDhW0fNn24oYJQmfYFeXmg9bMjn3GfPS8Tu27lKWLzHjsRou4CSRv7LXCeze0F7Ly2+w02MG97KSKvYE9F/xYXmlHgZ0KItLHXFCmImXbYBXoK77PvAMugiCbhk5nWL37x924CvsxEjKi33j77bc577zzou8LFizgC1/4Alu3bmX8+PG9qrtHna4dO3Zw3nnnsWrVqna3e2Ei5gGi0M0TjPtn63UhS5cuZUlBALz6+nomTZrUp+0TBEEQhG4hhvT9RktLCxUV+fRVtm0Tj8dpbm7uZK+u0aNO16JFi9izZw9//OMf+eAHP8jDDz/Mtm3b+Pa3v833v//9Xjeqp4wePRrbttuoWtu3b2+jfoXE43Hi8Xi72zrDaQo9eUApsIJ8inYa0jEzivMT4NTZRVGddYHCUpg30Hc0nq/Qfr6eWAN5b594HHdHY7CfRW5UGU6z6dymqx2cFo1v73+jmGnn3xgN1pvH570O0UZpCm2vDv7x9aiyIDdlWQIrS5Gnltuo8vYtDjj15ovfYoEFfvCbKlujLasoUn0Ua82CNy7N25iZCgra5Oe9So++YgXaFsVL6Dq6B55/XrODCmL/2XUW8d0mHhdAtkxFNj7KB1RhtoxADC44pOfm3y9KF9hEeua9lkuaZ8Y5cCxOkDM2anM4EPd8sHzj1Rgwd4Sxv1295yfdPj9B6Ct+8pOfFHW8crkcd999N6NHj47WfeUrX+l2vT3qdP3ud7/jkUce4f3vfz+WZTF58mRmzZpFVVUVy5cv56Mf/WhPqu01sViMqVOnsnbtWs4666xo/dq1aznzzDMHpE2CIAiC0GtE6eo3DjroIH784+Jp7/Hjx/Ozn/0s+q6U6lGnq0eW8E1NTVE8rpEjR7Jjxw4AjjvuOP785z/3pMqSsWTJEn7yk5/w05/+lFdffZXFixezadMmFi5cWNLjJHaaxcoqyKrogVBZIGGi1KO0if4cPiyKtlc8UL50MrCH2Oui9ro4LTDy5Sb02JHosSPBdaC+EeobUTkPd28LbkMWtyGL75gI6qlReZum/RFdeG1DNdExS+Idh/gbCeJvJMiVa/DNKF4FsdOUl/9up/OL06Kw0gqnwcZpsLGabNytsUilPOz6GyNTC+UbBStboclWGDs/KxvED3MxnpDJYCkzf4+4doVZvr2inTMShAJ8HS1rMr9kTeaX+4zXpXIWKm0Wr8zHaTG5ErVSRZkxtAqUd/KvqkIbLt/GvLusQOVSwTPjmXhdVg78uIUft8jWJKGmCmqqUPFYG49F7XnRgtZGBfM85iQXMDv2GWa7n44WIU8Ykb63S3e59dZbqa2tJZFIMHXqVJ5++ulOyz/11FNMnTqVRCLBIYccwu23396mzIMPPsiUKVOIx+NMmTKFhx9+uNvH1VqzbNkyJk6cSDKZ5PTTT+fll18uKrN161YWLFjA+PHjKS8v58QTT+RXv/rVPs9548aNbNiwodPl7bff3mc97dGjTteRRx7J66+/DsDxxx/Pj370I959911uv/12JkyY0KOGlIr58+dz0003cfXVV3P88cfzP//zPzz22GOR8b8gCIIgCPsmjHt52WWXsX79ek455RTmzZvHpk2b2i2/YcMGzjjjDE455RTWr1/PpZdeyle+8hUefPDBqMy6deuYP38+CxYs4MUXX2TBggV86lOf4k9/+lO3jvu9732PG2+8kZtvvpnnnnuO8ePHM2vWLBoaGqIyCxYs4PXXX+fRRx/lpZde4hOf+ATz589n/fr1nZ53KpXiv/7rv6Lvoe13uHzzm98klUp1+3oCKN2DDI6/+MUvyGaznHvuuaxfv545c+awc+dOYrEY99xzD/Pnz993JYMUkzW+mrq6Oqqqqjosd+LCIN9eRpOqUST2BB6LOWiaENh7VULqgCx2gxlSOo35nH6msI6++xUeOJr4O8ZYaNxzOcpf2oI3psYc590dxngMzF+lyNYatXHncUn8GPzfjWIfdNzXze/ixY1SFUbUzlaBFze/kZ/0ie208YKsArF6ZaLKF+RtDFWzKK9jsC1Xrnnra3nHiyOvWVHkEGRnKIpQ78WJjmMUr8Bb1QflK6OMYhRTbRHlzHzj0ra/5dHfCs4tBm9cLr+1sG+OuXgFqTFBntixWUY/lTdGTI1UkXdiSKFarLx8do3wO2BswpRRzMC8A50WTazeFLbTPnaLubHt+hQ0t+RtuDIZ/IZGlFMoswX2X5kM2tegA8/GYJ+uRt8fCLr6/6IUxzj429/BSiT2vUMn+KkUGy+/rMvtnT59OieeeCK33XZbtO7oo4/m4x//eLvhEy6++GIeffRRXn311WjdwoULefHFF1m3bh1ghJH6+voiR7y5c+cyYsQI7rvvvi4dV2vNxIkTWbRoERdffDFgwj+NGzeO6667ji9+8YsAVFRUcNttt7FgwYKonlGjRvG9732P888/v8Pz/tGPfsR//dd/8Zvf/AaAyspKjjnmGJJJE4zxtdde4xvf+EaRE15X6ZHS9a//+q+ce+65AJxwwgls3LiR559/nnfeeWdId7gEQRAEYVCiS7RgOnKFS2GsypAw7uXs2bOL1ncW93LdunVtys+ZM4fnn3+ebDbbaZmwzq4cd8OGDWzdurWoTDwe57TTTitq2wc+8AFWrlzJ7t278X2f+++/n3Q6zemnn95u+0N+8Ytf8LnPfa5o3S9/+UuefPJJnnzySa6//noeeOCBTuvoiC4b0nenR3fjjTf2qDFDiT/fbpSGD334u4x4JYOVMqO8bE2CltGmNzzmLx7v1th4lWabtmxUTuEEHnW5BPjJfHiN8jdcKt41T0V8ZxocB3tPEGY+5kImkEXSGUgmohFivE6z+5j9z3OxPZwW89fKYgxTArsUP16gWtFWKTr8uysiz0Irmx/xO42mnmzgxKLbGaaEdhKhnVeoCGgrsBML4n8R0xB6ttoaNFjNxuNL20b9slKm7NHfWsGrVxe3MYq4P7hiEguDmHF/TpMJ4vnt/IcYZTtzkRdittIuyJZh/oT3rlFiKdpueYEipcwzEn63Mho7q/Hj5sbUlsoHI/QT2A1NYAc3rdbobA4dxHZUhZ7jjgOZrLH1ClFys/cFrcMiXXnllSxbtqxoXU/iXm7durXd8rlcjp07dzJhwoQOy4R1duW44d/2yvz973+Pvq9cuZL58+czatQoHMehrKyMhx9+mEMPPbTd9oe88cYbRakOE4lEUTD4f/zHf+RLX/pSp3V0RJc7XfuaAw3pKB6WIAiCIAg9o6eG8K3rANi8eXPR9GJnYZO6E/eyo/Kt13elzlKUufzyy9mzZw9PPPEEo0eP5te//jXnnHMOTz/9NMcdd1yH51BXV4dTMAUeOguG+L7frjrYFbrc6XryySd7dIDhzu9+ewlzR3/BRF4GYltg4g6Tk/Kdj47moFVZts4wdhTl70LdETpSX6yUwmk0P4HyjZIR2iDZTWlIpaPIzdh2/rNjQ3mSPUeaXIwv/Fjse0LW32KuxYlfXGG8swJ1KLkdXruyY7X2zUvav4b/sGSFCdTdQbzf16/o/NofefUK7MDe0soovHT+kfNjGj8ZKF/lnlHEVNBgDYd9b0Wwn7EHU8G9ESpeoY0X0EYVEwSA2PYm7CbzD9U+vJzUCJvyLUbSjdVbJpo8gSei1m2VL53/XvgP305plJ+3TzTqmanLzXnoQNnKVcZQXk30zlPVFdiAt9uExdfpNMoJ8zIqrGQCryGQnAOVa5Z1TnTctX7PpnSGBSWMSF9VVbVPm66exL0cP358u+Udx2HUqFGdlgnr7Mpxw6jwW7duLXLeKyzz1ltvcfPNN/PXv/6VY445BoD3ve99PP3009xyyy3telWGHHjggfz1r3/lyCOPbHf7//3f/3HggQd2uH9niHYrCIIgCIOdEtp0dYXCuJeFrF27lpkzZ7a7z4wZM9qUX7NmDdOmTcN13U7LhHV25bi1tbWMHz++qEwmk+Gpp56KyoTR41vniLZtG9/36YwzzjiDb33rW+16KLa0tHDVVVf1OB5pj4KjCsX4dfXRaE0lE2THGgOgTA24TTlqHzBJtLedMgqv3MczJl9U/s1m/J+CG6MpcCMK7o/siCRuzkftDRJw+wVJGx0HPxFj7B+M5Dnr5G+z9g+X9+1JDjESe3xSIyzctLlmlZuyfOATNwDQMMmmbLtP/cH5hzE9ArxAddpw0dei9ZlqsJtNTDYw8bW6Q6wu//ml7y/m8O/m1SvlKeyUka28MoVX5uONDEb5WQtnb2jEZXJr+oH3ZWHUfUHoDLW7HltVm89+OTumaqw/mXeV26ghSOdoeaC8/A1lBfHronh3dl5ksbLGg9F3VH6bBbE6IwdrV+GVhekdNN648sj+y27JYTtjsVrMPzM/lcYP7Lss14FYLN943fk/RqHvWbJkCQsWLGDatGnMmDGDO+64oyju5dKlS3n33Xe59957AeOpePPNN7NkyRIuuOAC1q1bx5133hl5JQJ89atf5dRTT+W6667jzDPP5JFHHuGJJ57gmWee6fJxlVIsWrSIa6+9lsMPP5zDDz+ca6+9lrKyMj7zGZOX9KijjuKwww7ji1/8IjfccAOjRo3i17/+NWvXri0KB9Eel156Kf/5n//JkUceyZe//GWOOOIIlFK89tpr3HzzzeRyOS699NIeXVPpdJWANdn7o0B+KuegPPOyiO+EjR9NcsivjCH9uGd2k6kaSdNk83Ia/6dmrJT5J6u0RiuFyppt7u5mVCbbJrAgAJ6H1dAcuWGrbO/ciIcjz/6n6Tid8vHrAbCyPm6T2Va9QZNLWFGKE6VNJ8hOm2t9woUrWH+rma577cq203ZTLlsRGRyXb8n/o/rfe8z05TFLg2k/3Y4dcFhcmVQrkXG8tsBT+DGzgz0qTS4wwI+nbFQW7CBxetimwumeYy4JwkkkzTEkvZAAoJuaUUnzfqh4zyc90qIxmI2p3uBj5fLTVU4qP72ofF3c6bJU1OlSvjbPTNCRCjtfYQJsAB12yJTCdxWxevPAZCtcnLoUqtpMbanMzqg3pz0P3dhY2gswjCilTVdXmT9/Prt27eLqq69my5YtHHvssUVxL7ds2VIUO6u2tpbHHnuMxYsXc8sttzBx4kR+8IMfcPbZZ0dlZs6cyf3338/ll1/OFVdcwaGHHsrKlSuZPn16l48L8M1vfpOWlhYuvPBC9uzZw/Tp01mzZg2VlZUAuK7LY489xiWXXMLHPvYxGhsbOeyww7jnnns444wzOj3vcePG8eyzz/Lv//7vXHLJJUV2abNmzeLWW2/tcIp1X0inSxAEQRAGO92cHuywjm5y4YUXcuGFF7a77e67726z7rTTTttnZppPfvKTfPKTn+zxccF0gJYtW9bG67KQww8/vCgwa3eora1l9erV7N69m7/97W8AHHbYYYwcObJH9YVIp6tEhIH8/FQad6OZ9pvYMgLftdGOUS+2nDSSyk0+2Uojb+w4oYxxf6yP6lBa4yeMvG43BLEPQk+MbBaCOXF8H703P29l22Ka1xFuQxi/QeMFLu1KQ65MRYEfY/Ua5anIiSFTDcd+0yhHuSTE90Kswfy+LaMVXoUxzAcTGFK1MrIvnFIMFbOQcKTpNAIFCc/DdEF2EDKCdxOhDwBOM7y8vK1y9cq38+sidU0QCli9+8fMm/RVAKpfq2f3lBpywZSiH1PYmSBwaixIhB3cn1ZWF9lsK6XRdmB0ryEXV9G7SfkabSmyZeZmdpv8vAoWKLe5svw7qvHQaipDhT+ZjNSt8B0aycMyvSgMAkaOHMk//uM/lqw+6XQJgiAIwmCnBNOLYgc68Einq1SEqSs8jCoFNNRWkBphkRpjihz06C42/fMoah/KSyHpIJCq25jDSudoPNgMQ6tfajHpM2KhO3WBgWkuh25swgrmrul+Jqf9ht/99pLo88z53wfAbfZJ7vL437u/AcBpH/0eKIeWMQVxZMKgqjGTykcXmJqUbYPKd4xMlotb5JLFbtyt1a1CchWmYrfeIpfMK12xOnAtxWtXmX2nXLaCTHWwT5kJPRHa17QXpqK1gX+YQFvSBQmrNv8HAPMO/AqoGrwgJFO62iKxOzTigmyZhdMSvMcs0LbCygbOG+T/4VtpHxJOdO9qS+HFlUmKDfiuwk6ZepycRy5pkS03hb2YCebsVZsb1t6bT0sEmNA7he/Soo37uaI/QNOLQmnZz+9iQRAEQRCE/kGUrhKjLGXSWQBl29KUv+NHnjwAkx/cDlmjkmQmjaTuUKNgjXhDY7VkSO4IQkcohR5VDYFthNq1x6T+AfTIGqxkMkqtobftYO7oL7B65x39co5DlWdXfq3d9U/99zfbrDvhQqMU+a5RkepGmN+wchMkdvs4zflh+I4T2n+Mjnzoal7/xLeK1r39leI2RAFQPUjuzK9/5TuLo+CnvhukCGqVnLiQUP06atkKE45CzGGEVvi79lD2Xi1NQUzH5vEm0TqA26TRFuSS5p3iKB0pVwAo8O3wPWYV3f/pGhs7pdFlZrsXV5GnrZ3WoBReaI7qKrw4+AlTuT2yBitIb6azWXQ6XZwGCKLA0/s9onQNC6TTJQiCIAiDnIEIGSGUHul0lYrQ3kBZkZehthVOXQaC2FsqmzNBTt0gAe1xCZOqBnAaMqicj7uzMdpXNaZMyh8wnkKh96JrQ9aG+gazqaoSyrsZtVPolNAu68SFK8hU5eNevf9zN5IaYdEwyRjGvHRDsc1U7S+WY9nmzRaLa973X1fw4j9d0+FxktvM31id5vk7i9MUtRxqpK2a52N4sfaTbbfmtWWLOeaSFVH8ryOvWbHPVEXC/oGfTjHmL81o27wrGg7WNEw2ilT5O4rEXj+6x7yYwkkVy6XhP+xMpWWSwwe2pNkyC+2A0xKo8p6O0mZ5CYtMpbH5AmMf6TaZeF1mew3xwLubDe/kPRgBlIWybTN7IAjDBLHpEgRBEARB6AdE6SoR4WjMKi+DINaWVgrtWKhCG4VUGr/GeCi2jAc/+AU2z6rkoNX1WDsDz0bPRzc3oyqCoDpaQ5AuQ1cmUI6N32BUMauyAury8b7aY964fzcfLItVW27p7enuN/z59mKV6Lmfdpw0G8By/CipdUuLw6QfpZj9HaN0NU9ImlhIwP88ajwnrSDrj5PSfODsG3jmwa9HdW387MXmw2fhuCUr2sQD64iXv7uYKZdJ3C6hmLX+A8wd/QVGxQ8BIJeI03SwuanSo6Big82IvwWqvKfxXRXZcdlZXeStmKkEOxNsy2gIkrKbfRUquM+9pGXyNIcKWhxyCUWm2g7KQmy32dEaOwa1tw5yYaoIhfY8VJCVY3X9XX10ZYYIYtM1LJBOlyAIgiAMcsSma3ggna5SY1toNxzF+VjNGQhyMeqEi8p5WPUm2vzEp8vYeawZ5bWM12w7qYoJ/1UX1aPi8cjTEYi8F/GBuoYo9yJKodMdu7Z95LRrcStNEm7qGphlnQOYka9QWibd7bLnSPObVm7ysP++DQLvqzJvNLnqWFH5rElBR8V7OrJ7aY+XbuyeXdYr3xE7LqEtOpUmtqsZgOTOGFbW3Jt+HBoP80CZ79Vve9hZTWpE4CFtWVH0ejuj8Z38d8sDtI48H5Wvowj02QpFtlxF3rROM2TL816SdhqqXg7k3lwONWoENOSD4inbZtW7P+yjqyEI/Y90ugRBEARhKCBK1ZBHOl0lRjkOBHnFnEYbcnlDHNWcNh+CiPWJ9xqYuNcoH9nKGG5Dpqg8gG5JmX1jLjQZhUy5NjqdxhofhLrXutNYNqnRMawWE73e9jVOTVUvz1KYd8BFgPl9VJA1wD9gDN6kCiauMbk32b3X2OIFv6m9Yy9YNUX1pMaYt6j7gs/eCS4nftHYYv35R6JUCaXHb27G2bYLgLKdlaggGJeT1sT32uw9IsiZ6NpUbjJ2XUDgPRvE9Gr0cZs1mQrzPTUSnJSK4sh5cUW23NSrLWPrFeYj9RKQqTB/AeK7Md7YABVlaKVg3CjzXWvUnoa+uhRDD7HpGhaI96IgCIIgCEI/IEpXqfF8kzMRsEKvxdD2SvugNbra2FephhbsQBWzd9SbWFyJIDGa1sa2IYiFo1tSKGVGlqo5DWVlka0Ylsrbe7Xiw6dfS/PRSZxms92qjJGplp+9N8yb8KXifJfB75CtSVLxxw1FZXUma35XQGWy2Huai7Yf/KiRB9y9LVRb5dH6U//5+sjDURBKSW67SX1Q9nYN8R0m96uVyZGaUI7yzLth1/Ee2rZJBqKtnYJYUxB/rsEjoxTeaHNf+3Hws+An88eo2GLKtoxSWDmiuHFeHLwkWKHoXwXZEWbH2Dt7jFd2LLB79H1WB3kjBTGkHy7If19BEARBGOzI9OKwQDpdJWCWdU4UkV6n00bRAlQqbfIjBkoHvo/2PLK1YwFwN29FlQXDQ8sytl5h1HnfR2dzxkYMIOZCqJyFnophtHqt88cI+PAHl5vdtjVQY1u0jAti4WQs/JhEeO4VWudVRkAfYH7P2PYGo2wFqHGjYceuyANVN7dA2gzx577vCla/eA3ZysDT1U9QtmEvftL8TrnKeL+cSlc5ZMWNALy9uPM4ZcIQIHg/8c427CB/KweMI7YrTTKw4ap+zabhMB87ZbZXvKeJNZj3j7YUzWMsUqPyVXqFKtdmTdVbTQCkRhhV3wtu51zSqGbhP/9sGeQqzDvOLU+QHltOusZ8l/eUMByRTpcgCIIgDHJkenF4IJ2uEqM9DysexMTK5YqUDwLvn9ibW6KykWoVc43aFUadz+WM/Vc4Km1uyateI8uNehJEag7Vk5CT/t+NVKWC+F71jez50NgoLxpxk2NN6BlzR16Ach3z2wGqphoywbVOZWDcaJoOHwlA+Ws7UcqCMKuAUuhU4I0aeLKWbzCZBNTuemPPFyhdVtZnxr98H4B1932tX85NGP4UxuabZZ2Dcsz9ZjsO9qgRxMrNOybWYBHbZeEH5lXpaoWVMe+b5oMsmseDHzPvlOQ2xZgX01gZ815pHh/n3dPMOzBTDU5L3qYrlwSUjuq1mxV4pp6Gw6pwGz2axpvj5PImjgLI9OIwQbwXBUEQBEEQ+gFRukpFqEgpBeVlwTqNam6JconpbM6oXaG6ZduR+kUma/KMhfG2fGOnFX1PJCK7LT/uYmVz6FhgD2QnWfXKtRzyy2sBqK5ORqNHKsqp2pBl53FmROs2w3N35fP7Cd0kl0NrjQpinenyOCrjRZ/xIb7LqFheTTmpo0YT321+b99RxN7da+ppSXHqP1+PO9LcK7H6JkhnyNYYlaxxUgyrIBnBQHHYdSZumLLzaoUwPChUvWbHPoOVyRLfa5TXdPVkYvV2lBvUtyE1yozRY/WabJnCDzIoeHFQOU3jgcZwy3cULeOCeF/lHllPYWVDu1YFlsYPzVErNO+dGtqbgp22oxyjvvx3KkaUrmGB3NaCIAiCMMgRm67hgXS6+oIghlNm0ghif8uAH3gzliXNNje47I1NkW0Qno8aPwa9w0SLVjHXKGGFkeYrjCpi1TVBNsvqN79XdNgjrzKj1L0nxkmPMXG5yvY2gYJcYGbmFoeJErrI7NhnALCrg2j+gX2daslEcdiU1pBKYzv5fHVlf6/HqzS/hZd00OXms64pJ1thUfZ384PohkZUMmnqwETy9orTNA4IdiDK5pLiuTic0bksXl099gTjiYtSJHdpmscGUeib8vdjYpemapMmlzDbmscqdhyf4IDHtgGw66SxEAhbsZ0O6bE5fN+ssNCM+KvF7n8I3okavERwz9uQHqVx683zE9/d56c9tBCla1ggNl2CIAiCIAj9gChdJUZnsiaSPKBy1Sa2Vhi9XGt0Oo2K52MwqSC+FwkXvWMXKhFElk8mjO1XqIRVV6JtM1rU1eU8vv6qNsde9fp3ATj+ohVU/c20Qccdtk91o9Fk0wES+6YrzEkuMB+0j/Y1OmeMW7y6epRtY4W2eLFYPkaa9sFSqCbjoUgyhnYcrBYjFyXqmlFefqhZ/m46H437PQtsC6fO7FvxroWXGPgxUZhPj2SnxYQhzlr/AWZZ56A3bgagIuaQHZ0kXW3eVXZa0zLG3OflW0D5ULXR2C7mkglaxpC3TwUmrTUGifHdad74Ygxco2z5zTa7j/PRdvgcqMiGy0tocH3stBV878szHoKI0jUskE6XIAiCIAxyxKZreCCdrhIQjhLBxN7SLUatcLfUkasdTzaIuBzf0Yx6cxN6p7HbIubCyBoAmo4cRfkr2/Oxt7Q2KlcYsV5rVItRW1KHV7fbjsOuN1HDa19oxtq2BwB/VDXZSo2VMaPQNy5bXLoTH6bMHfH5aNSus8FbKsw44HkoS+E3mojbKpZFhfky7ThYNoTbPA+VTOSj19sWXoUZvtu7G7BdG68syEBQWWFUskAJS2zaG7Xnwx9azm9/t7TH53PyJ2+IPqdG2rQEZjuvfHvf98Kr18j9sj/ht5i8sU5zGqfBpmy7uT8zFSqKKh9r8NBOXtUas74RqznDruljAKg/WGFn7KAeByyNqg89FBVepWe8GAGtdfRfSLsau8GO1JhIZRWEYYR0uvqCcDqxsYnsYaPJJc0/bLsyTqymGl1nDN7JZKPApm5jDm9kJfZe8w87mlpMme26poL0pNEAJN/c0e5h3QbzIsvUxHB2GKtX5XlYaYWTKvlZDivmVp0XfdZ+q+Cx2s+ndnJcUFYUqFY5Tr6jrMwUYeT8kPOgJZW/H+Jx7Lq8J4NqzhC5ScRd/PI41s46893zodJEh7QyJlBqKYKkWllNfLdMMQv7IJvDas5gp4NBX6UdBUNNjXKofLsZP27u3t3HlFO5OcbuY0xRlYMdJwaBoPcksJwWnL3mGanaoNn9Dza+G4bYAb8sCDTsK7wxWSo2m3eXhIxohUwvDgvkthYEQRCEQY5MLw4PpNNVarRJVA1ANkt8exNqlAn14DQFkQbDkBGeb5QQILZpN+Ry+KPN1KFKxlDbd0fhJlCK+Lv1nR76wN8alcze24I3KogR4YN2RKrvjFnWOVixWF6hUiqfckkp8IwxfRFWwXRjGOkxkzHrQ+XLtozaVZiMPEww7HlgK1Q2CKwac/ATLnr8CFPs3V141UZlsJoyxOpcZnwmSAv0y+4pXn/4lQmGe/I538fOguXJm1foHL23jtyBI8hWmHs7W66IB1YR8T1Z/JiF02BUeCcVp2mCi50KpgwV0T3fMtEn/nqSzAhzz+04OYdKW+h4Xk1WWfNMWM0WvutTd7x5WW089+I+P09B6G+k0yUIgiAIgx2ZXhwWSKerRIQpNWZZ5+STIWeyWM0ZrOogIKZjQTJhAp8C3pgqdKB8OLsaIZPFjwc/SdzBqY8bpQSMIuJ1nqjaajZKmtKa9BijkmyZ7uA7mihaodAu2vPy4TtslQ9a26agD9j5UB5OwSMUOD/okSaAqkplIWlHvyHpNLiB4Xwuh2rwInXNH1GBtsirZK6LFThOaMfCaTHKGMAJF65g/a3dN3D/wwOSOFvoGl5dPVbKQwUKrxdXJIJgpbG9GZTno3LmfZTcnsXdm8a3gyTXVYr0yKAiDanxHiQCm0jbh4yFszewifQgscPc19lKsHbHxHmjI6TTNSwY+EBAXWDjxo2cf/751NbWkkwmOfTQQ7nyyivJZIrnzJRSbZbbb799gFotCIIgCIKQZ0h0ul577TV83+dHP/oRL7/8MitWrOD222/n0ksvbVP2rrvuYsuWLdHy2c9+tt/bqz3PLJkMZHM49Wmc+jTaUvhlcWPT5TqkR8bxkjZe0gZfoyvLyVW45CpcvISDX1MJjm2WVNrYDGU6Ns7yky5+0gWtie3JENuToWwbJHYq/vq9xfz1ezKC7Ajta/xMBj+TMQnKPd/YcqXToH2UpVBWQRDUcL+WFH5DI35Do9nP91F1TaggVRPZnFmfyxk7l2zWLG6Q5kkpY0OWyaFyGiuTw8rkwHVQTSlUU4rUuDKsrI8Klmz5AF0kYb/BSiZQWuO5Cs9V5MqhfGuO8q05o6gX2CkmNuzCq3Cp+VuKmr+l8F2wsmZJbrFwGuzIAThWlkVlFYntZonvUlS+41P5js+Y9Z6oXJ2gSrR0l1tvvZXa2loSiQRTp07l6aef7rT8U089xdSpU0kkEhxyyCHtCh8PPvggU6ZMIR6PM2XKFB5++OFuH1drzbJly5g4cSLJZJLTTz+dl19+uU0969at40Mf+hDl5eXU1NRw+umn0xKERhkIhkSna+7cudx1113Mnj2bQw45hH/+53/m61//Og899FCbsjU1NYwfPz5akkkJpS0IgiAMcXSJlm6wcuVKFi1axGWXXcb69es55ZRTmDdvHps2bWq3/IYNGzjjjDM45ZRTWL9+PZdeeilf+cpXePDBB6My69atY/78+SxYsIAXX3yRBQsW8KlPfYo//elP3Tru9773PW688UZuvvlmnnvuOcaPH8+sWbNoaGgoOtbcuXOZPXs2//u//8tzzz3Hl7/8ZSxr4Lo+Sms9JGd5L7/8clavXs3zzz8frVNKccABB5BKpaitreX888/nC1/4QqcXOJ1Okw5iZQHU19czadIk6urqqKqq6lHbZtnzo8/O6JFQbqQJXZHAT8SwWoL0GSPKSI80MWlidTmstEe2ytj85MpsnBaf5EYT5JSWVDS6XLXhxnaPO682SEhs2+i4qbfpiBGkRlg891NJVtwRs6xzouCnAMq2UaGtVSaD5TqR7VXomRpuR/v55Neua36jQBFTjtM2aXnovZiIo107sovx4y46buMlAhsxSxHbmn95aMciO8rcRzuOT/B/K0QREEpL5MULWGPH4B0wip3HGzutdDUc+ISJIacyObSbv6etxjQNx4wmW27u7eZxCitw4NYKUmMgPd7YJzplOdTmBPGd5hl5+bqhfR/X19dTXV3dq/8XXT3GMQuvxY73LjeSl07x8u2Xdrm906dP58QTT+S2226L1h199NF8/OMfZ/ny5W3KX3zxxTz66KO8+uqr0bqFCxfy4osvsm7dOgDmz59PfX09q1atisrMnTuXESNGcN9993XpuFprJk6cyKJFi7j4YuPlmk6nGTduHNdddx1f/OIXATjppJOYNWsW11xzTXcuU58yJJSu1rz11lv88Ic/ZOHChUXrr7nmGh544AGeeOIJPv3pT/O1r32Na6+9ttO6li9fTnV1dbRMmjSpL5suCIIgCANKfX190VIoPIRkMhleeOEFZs+eXbR+9uzZPPvss+3Wu27dujbl58yZw/PPP082m+20TFhnV467YcMGtm7dWlQmHo9z2mmnRWW2b9/On/70J8aOHcvMmTMZN24cp512Gs8888w+r09fMqCdrmXLlrVr/F64FCpZAO+99x5z587lnHPO4fOf/3zRtssvv5wZM2Zw/PHH87WvfY2rr76a66+/vtM2LF26lLq6umjZvHlz70+sIIK539RsvNbSaVRLBiuVQcccdMwhV+ZgpzV2WuPFLdKj47SMdWkZ65IaYdE40UE7lvF6bB0nqh1WbbjRqGCZLKq5BdXcQtnGBir/LkG6ukWBzZYKlKpQ/VIxF2WpvN2eb5KY63Q6n9w8sAeLItEn4maxLWObl0pDOmsSoLs22rXxy1y0Y+M0ZXGasrg7m8z+WpMbWU6uJomV8bAyHvG6ISlOC4MdZUXKrL99B2iNFwMvBm4jqJzxWFSpIB3ZuHJS48ppOHY0uTKLdLUiXa2w04BvlkwN5JIalbZQaQt/h8kl9PJ1i4e8ytXvlHB6cdKkSUViQ3uq1c6dO/E8j3HjxhWtHzduHFu3bm23iVu3bm23fC6XY+fOnZ2WCevsynHDv52VefvttwHTz7jgggtYvXo1J554Ih/+8Id58803221/fzCgISO+/OUv8+lPf7rTMgcffHD0+b333uODH/wgM2bM4I477thn/SeddBL19fVs27atzY8TEo/Hicfj3Wq3IAiCIPQ7JRpvbd68uWh6sbP/gUoVm99rrdus21f51uu7Umdvy/hBYPEvfvGLnHeeSfN2wgkn8Nvf/paf/vSn7XY0+4MB7XSNHj2a0aNHd6nsu+++ywc/+EGmTp3KXXfd1SVDuPXr15NIJKipqellS7tJaB+kfcjlogTYSilUQbutrMaLBzeNpYzaVR1Edbah5s0sKmNiPK3adFOXD9+dskJAoUeiR/QbqsDDMIq9FotBLJb3Is3lwDEvLJ3Ngefl7cHq01ijRkBDoynruvmYXWA8HAPbO8ux8MpjeEnzSDqZXFQuMyJGcnMD2RHGKWTP0XDc11fw0g2iFAglRPtR/DlVVka2PBbZZsX3+ngV5j73RybJVjgmrhxgp3y0Arc5yNKgwA8SYtspsJIKv1wHh1CSU3EQUFVVtU+brtGjR2PbdhtVa/v27R2KGOPHj2+3vOM4jBo1qtMyYZ1dOe748eMBo3hNmDCh3TLh+ilTphTVc/TRR3foCNAfDAmbrvfee4/TTz+dSZMmccMNN7Bjxw62bt1a9KP85je/4cc//jF//etfeeutt/jJT37CZZddxhe+8AVRsgRBEIQhTZh7sbdLV4nFYkydOpW1a9cWrV+7di0zZ85sd58ZM2a0Kb9mzRqmTZuGGwSG7qhMWGdXjltbW8v48eOLymQyGZ566qmozMEHH8zEiRN5/fXXi+p54403mDx5cpeuQV8wJMYca9as4W9/+xt/+9vfOPDAA4u2hdKl67rceuutLFmyBN/3OeSQQ7j66qv50pe+NBBNNijLKCSB0oWlUK4DQdR55esoyjieUb3soGguCXW1LumaMQPQ8P2QAu9FtI/OBdH9bdvkxAy8Fm3HQSXikSKgIW+7BUYVC/NlBkqn32hyYloV5VAehDCJu0YtC++NmnKUpyMPVT/uYgX1JrY2kx2ZRIf3iq9MfjtBKBFzR38hUHUDhbemGt9VJHeae7n83RQqUGlT4+PkkgWKvafJxRXZsoLpo+CRsNKYh0TlN+gh8V9nEDIAEemXLFnCggULmDZtWmTWs2nTpsiJbenSpbz77rvce++9gPFUvPnmm1myZAkXXHAB69at484774y8EgG++tWvcuqpp3Lddddx5pln8sgjj/DEE08UGbjv67hKKRYtWsS1117L4YcfzuGHH861115LWVkZn/nMZ6Iy3/jGN7jyyit53/vex/HHH88999zDa6+9xq9+9aveXMVeMSRu/3PPPZdzzz230zJz585l7ty5/dMgQRAEQRjmzJ8/n127dnH11VezZcsWjj32WB577LFIKdqyZUvRVF1tbS2PPfYYixcv5pZbbmHixIn84Ac/4Oyzz47KzJw5k/vvv5/LL7+cK664gkMPPZSVK1cyffr0Lh8X4Jvf/CYtLS1ceOGF7Nmzh+nTp7NmzRoqKyujMosWLSKVSrF48WJ2797N+973PtauXcuhhx7al5etU4ZsnK6+ohRxV2bHTE+7SC0BlOOiEnHUWGPHlhtTSWq0selRGlI1djRCbBqvaDgqi3LMio3/dnGPz0nYN3MqPovOBLkOPS+y8bLiCaN8BcqWVVYWbA9+KKXyMbssC2wLnTLu18p1wbZMvC4IbLoCI5nyMpOZIFS2ymJ4Za7xVAXSNS522rRh99Eu6RFQ/ZY55u5jTRVvLZHYa0JpmO0ahyarwsTlUqNH0nzUGOxmc9/HdjZBoOA2HVqDtlSkXjVOtPEdyFSb71aOSLHPVEGuQuPF8/9mlIYNXx4eeUD7M07XcZ+/FjvWyzhdmRQv/aTrcbqE0jMklC5BEARB2K+RhNfDAul09QFrMr8EzOgxjOcEJr+fZVuounoArKokdtoYF/oxRbzep3mMUU2yFaBSFqo6OwBnsP9h1VRHn3VTM35j4HGofROnK1CrtOehYjGTVxNMrK3Q4wtM7sXAQ1Vns1hOsjgifah6eR66PBEpZtq10baF02Dq9WIWTROC7ARJyIz02BvU443IohoL6hSEXqI9z9hzhfaI9Q249TXYzcH7Ryl0cO+6DR5eworsupwWTbpGoQLHXN+GXE3wOQb4YKcDr2wFby8WhVbYf5FOlyAIgiAMcrrrfdhRHcLAMiRCRgxV1mTvB/K5/KxYzNj0BJHGrcYUytcoX5OusvFche+C74KX1FDhseFfl7LhX5cO8JkMf1a98wOoqoCqCmN3F4sZRcvzjKdiEGVeZ7Im7lrwGwL5z2GORqXytl7xWLB/IAM4tlkSccj5UUR6lcmhHRVlIEj+fS9OWuOkNamxPjiabLVHttpDuV7HJyIIPURZytzDrgOWhd2YRjVnUM0Zk2vRscCxiG+pR/mQLbfIllsk9vjYKYjVmQXLKFx+DLRjvBXtlMJOKVG5esMAJLwWSo8oXYIgCIIw2BGbrmGBdLr6GOW4ee82MDY9QZA47VgmVhfgpIxaogKTCqdR4TTF+ru5AsamK/I4hMB+K1CXgthryja/oXLdyAMRQMVccIJYXNms8WgMt+dy0W+Pr1FeDh0LYrZpjcr6qGxwnJxnPMQAKwNeAkiYm0P7FhsvGh7eX8IgQlmoZHDvVpRhNWfQoX2iUqTHGM+5WJ2JRu8Ht3IuoUjs1fjBay41RqGtIPVLTuEnffKBugRh/0Y6XYIgCIIwyBGbruGBdLr6GHvsaKN4ADqTRcVj6NE1AOSqE3gJMzx0Gz3SNTYqCONk5eCV70huvf4kV1MGgFNfmbfBSmfM51CtDGy1VMyokFr7kZKpPQ9G1uTzKzoV+GUxrObA07GxGezAjDKTgWQCKx14h3k+dtJFhd9zOTIVRh1wmsDKOOQqAqUrJm9OobTYI0fAuDE0TzZevIntzVi76lFJo275SSdS4XNlDpkqGy9m7s9MlcJtzCtfyjc2XACJXdBYC29cKu+yXiPTi8MCMaQXBEEQBEHoB0Tp6mP0yCpUcxChvCUFVRXGEwiMDVcuiNOkwG3yo9HkCz8Wm53+pv5Qo3RVMRZnZwMAKpE1o/1Q+UrEjZLlBFkGmlpYte02AGZZ57B25x1Rfaf+8/W4DTns4Pe2G5qiXIt6ZBV+eRyVMtKmyuVQOR+/wigLzYePwAvytOfKja2f3WLGSFZ935x/7c+XR583/D/xmN2f8A87kGx1nMYDjFwVq3exPD/KkIDW2C3mXvXjRuUK31UAXhyc5rwdV2jG6DbB21+Rd1kpUFqjeplAprf7C71HOl19jFeVxA5udOU6aNfGqmsGwGqy0ZZJu+ElbJ569JsD1k7BGAQD7JhazsjXzKMR29ZoOs3hFGLCRe2uZ9XGFW32X+s/UPT9fx79Bh+a9d0otIQ/tgar0XTA/bIY6RFx7Kz5J+fUZdCuRa7cfG8eY5MrzPjhK6yg31e2tTTn2xqdtcGSl/L+SHpkAqWDYKaA1WKm1VU6SPTenI0Gi7lyh3i9HyXHziUVuSS0jDHPj5fUqJz53Dipn09kOCPTi8MCmV4UBEEQBEHoB0Tp6mPWPnMZHzn1O9F3uykThQVY9cq1A9UsoR108DTYaWgZYxQnK53EbWiOElWrdDpvDN8Ffrf2EmZ+6vsAOGkfp9m45GtLkSuzoCU4dk0cbSucJmNI76Rc6saYbcoHyzOhIwD+8sM+MkpO5c+r9offZ4OEpdhv2HOUi9MMVuDH4cddLMuC/9/evcdFVef/A3+duXP3gjGQiGhmspSb0BLsmlZf8ZIbXX5K9c3qt2XLFhZim5L6lbS8ZebuemH7LWu3LfyVUfjIdsFVKZIsiMzU3bUVxRJyMWUQBOby+f4xcGxgwEGGmTnD6/l4nIfOOZ9zzuczH2De87mdZvsPqKTXXBwWAUDTZEVbcPtjgFqAloCL1xJqQLRPkzuaw8VQ3YWzF/0Dgy4iIiJfx+5Fv8CgywN2fbTY21kgF3yxxd6ClPTAetg09jEp7qi7ff+/a4vRjf/9IhpGqyAke+vBkCM2tAxRwda+eOr5aEDoOuboS7AJwFDf56z0SBXWBltT+7x/q4SRL7+A44/+tn9vSj7hfIyA7pyE0Gr7p7K6Y5mTdpLZCquhfSFfq4CmyYzg7+w/n+YQDSA0+CKPy0IQXQqDLiIiIh/H7kX/wKCLqJP9r/XfOJSY/LUAAKNag9ahArZA+/i+ukFq6H8A2ga1z3TUXZwBpmmSIFRwmKLfb9r/KNsMNkASiPmzPb+acxr8O5vjc/zNyE3t4w3bJFgChbzgqc2ggVqrBUT7D51NQHPOvtyJ1mqFNcQAc7D94+PCUDW7rTyB3Yt+gUEXERGRj2NLl39g0EXkQScetq/FNtL6AmBWAbb2tY1CLTCbtVC1tbc06ASEpn18TasEqx44sKF/x8wcu+8ZjHrTPqPW2qKRW9oAwKblX2t/JIXZx26ZDWqomtUQ7auaqlosgLBBBNunJUoWG2yB7Q95t6ph06lhDrLPXmwLtbfEEtGlMegiIiLydexe9Av8fkLkBccf/S1UFgmS2b5pzmog1ALmUBvMoTYItYCqTYKqTYJN65nxXNft+B+otTaotTZIGpvc0kb+S6URUGkEJJsElVmCsE9EhE2nAQIMgCQBkgRrSACERgWhUcEaqIVQ2Vu3hAqAAMxB3i7JwNDRxXi5G3kfgy4iIiIiD2DQReQlx57MRnXmAlRnLoDKLOHfC7IhAqwQAVaozCpomiRomiSoWoF/LOv/NZCiljq+ltQC0NkAnY2r0/spq1kFq1kFqVUFCMBisG9Q2VeltwwKgGVQAKzBWlgCNbAEamDVq7H774vQHKFCc4QKQg0cWcE1uvqdEO7ZyKs4pouIiMjHcfaif2DQReQDjubMx8hX16B9gXrYBrehVWf/9QyuViPx4fWoyO+fdbISPrSvun8mOwQqc/vgMdE+c1Hq5iTyD6JjtqIETbOEoDp7/asumCE0KvnnwRyggU1rT9sxa/Gr9WzdIuotBl1ERES+jrMX/QKDLiIfIaltEFZ7K4Iwq6BqXyfLpgF+iO+/+545Pth+/1AzhLjYtCUsEjRBlv67MXnVyFfWAKr2JyDoBaTzEjQt7a8DdRCSBFWbvf7VFyxoC9Hbj2nZ/OkNkq3vs5g98lQL6hEH0hMRERF5AFu6iHyEWmeF2WT/lZSsEoSuY0X6/rlf7MYXYTPYoOpoXbNJcvdD0KALOJSW2z83Jt+ggjxmTxKApgnQmewtW5LZCmhU9vW6AAi1Sh6EbdV6Ia/E7kU/waCLiIjIx3H2on9g0EXkI76ZvQQj89bJr1Wt7c+2GwQcm+++mYsjX19t/49WA3WzCtYgq/1+koBosjdjHHog1233Ix/VqgK09kE+QgJUFkB/4qz9tV4DSDqI9tm06gtmWPU6AIBNwzFdXuGOdba4TpfXcUwXERERkQewpYvIhxzPeKrfrj323eVoPa+DPJCnfXakpL04pak/708+RgC4YG/KEmoBSyDQGm2fyaqrb4JQSzCH2lu3LoRr5FavL/7I9bm8gd2L/oEtXURERL5OuGnrpc2bNyM2NhYGgwEJCQn4+OOPe0xfWlqKhIQEGAwGjBo1Cnl5eV3SbN++HXFxcdDr9YiLi0NhYWGv7yuEQG5uLqKiohAQEIDJkyfj0KFDTvMkhMD06dMhSRLee+891wvfDxh0EQ0gkkkL1TmNfTNLsAbaoDFYoDFYUH1/jrezRx4w8uUXMPLlFwCzCppGtX07r4ZNC9h0Kth0Kly4MgSwAZJN2DcBfPZKNj57pX+eikC+adu2bcjKysLixYtRVVWFiRMnYvr06aipqXGavrq6GjNmzMDEiRNRVVWFZ555Bk888QS2b98upykvL0d6ejrmzJmDAwcOYM6cOZg9ezb279/fq/uuXbsW69evx8aNG/H555/DaDRiypQpaGxs7JKvDRs2QJJ8Yywigy4iIiIf19G92NetN9avX4+HH34YjzzyCMaNG4cNGzYgOjoaW7ZscZo+Ly8PI0aMwIYNGzBu3Dg88sgj+NWvfoV16y5OENqwYQOmTJmCnJwcXHPNNcjJycGtt96KDRs2uHxfIQQ2bNiAxYsX46677kJ8fDxeffVVNDc3480333TI04EDB7B+/Xr8+c9/7l3h+wmDLqIBQtgkYFCbfapa+8rzkt6K4KBWBAf102Jg5LNUZgm6c4DuHKA/CxjOAPr/NEP/n2YEfvUt1PUm6L9vgv77JgyqOuPt7FLH7MW+bgBMJpPD1tra9fe/ra0NlZWVSE1NddifmpqKffv2Oc1ieXl5l/RTp05FRUUFzGZzj2k6runKfaurq1FXV+eQRq/XY9KkSQ55a25uxr333ouNGzfCaDR2/956EIMuIiKiASQ6OhphYWHytmrVqi5p6uvrYbVaERER4bA/IiICdXV1Tq9bV1fnNL3FYkF9fX2PaTqu6cp9O/69VN7mz5+PlJQUpKWlOX8jvICzF6lPYv/wIgCget4CL+eELuVf/2cpRm5de7GLQQIggC9vW+HNbJGHHX/0twDsv7uaC+3P99QCOpNAc3QwACC4oRkwmy+u66Th93Nvc+fsxZMnTyI0NFTer9fruz+n01goIUSP46Ocpe+835Vr9jVNUVERdu/ejaqqqm7z6g2KCbpGjhyJEydOOOxbuHAhVq9eLb+uqanB448/jt27dyMgIAD33Xcf1q1bB51O5+nsDgg3T10DaZp9Mc3rdvwPNGr70gNfzHjOm9miHhz/v097OwvkZVetfQkAoGtVQbKviwu1DbAESAj7pgUA0BI7FIaj38Omt/9+q1rNXskr/YgbHwMUGhrqEHQ5Ex4eDrVa3aVV6/Tp011amDoYjUan6TUaDYYOHdpjmo5runLfjq7Curo6REZGOk2ze/du/Pvf/8agQYMcrnP33Xdj4sSJ2Lt3b4/l7y+K+vqyfPly1NbWytuSJUvkY1arFbfddhuamppQVlaGgoICbN++HQsWsAWGiIioN3Q6HRISElBSUuKwv6SkBCkpKU7PSU5O7pK+uLgYiYmJ0Gq1PabpuKYr942NjYXRaHRI09bWhtLSUjnNokWL8NVXX+HLL7+UNwB46aWXsHXr1t68FW6lmJYuAAgJCel2MFxxcTEOHz6MkydPIioqCgDw4osv4qGHHsLzzz9/yaieLk/IcXtTboM+FENGnvNuZoioR7FvrIIYbP+zbzuvRkSFvanrfKQG56OB8AP2phDDwRogOAjWYPsHZfFn/+OdDJPMG4ujZmdnY86cOUhMTERycjJefvll1NTUICMjAwCQk5OD7777Dq+99hoAICMjAxs3bkR2djbmzp2L8vJy5Ofn46233pKv+eSTT+Kmm27CmjVrkJaWhvfffx+7du1CWVmZy/eVJAlZWVlYuXIlxowZgzFjxmDlypUIDAzEfffdB8DeGuYsXhgxYgRiY2N790a4kaKCrjVr1mDFihWIjo7GrFmz8Nvf/lbuOiwvL0d8fLwccAH2GRGtra2orKzEzTff7PSara2tDjM3TCZT/xaCiIiot2zCvvX1Gr2Qnp6OM2fOyL1M8fHx2LlzJ2JiYgAAtbW1DmtnxcbGYufOnZg/fz42bdqEqKgo/P73v8fdd98tp0lJSUFBQQGWLFmCpUuXYvTo0di2bRuSkpJcvi8APP3007hw4QIee+wxnD17FklJSSguLkZISMjlvjseIQmhjCdgvvTSS5gwYQIGDx6Mzz77DDk5OUhLS8Of/vQnAMCjjz6K48ePo7i42OE8vV6PV155Bffee6/T6+bm5uLZZ5/tsr+hoYGtYy64eqV9fIhQAUcX8fEgRL5u5Bb7mkkakxpBp+z7rHrgfIwNgbX2EScxb37ncM6Hx9ahM0vdVfL/NcZv+im3vs1kMiEsLKxfPy867pHyX89CozX06VoWcwv27VrGzzcv8uqYrtzcXEiS1ONWUVEBwD71c9KkSbjuuuvwyCOPIC8vD/n5+Thz5uL6Mc5mVFxqpkVOTg4aGhrk7eTJk+4vKBEREQ14Xu1ezMzMxD333NNjmpEjRzrdf+ONNwIAvvnmGwwdOhRGo9HhMQIAcPbsWZjN5m5nWgD2lrCepstSz/71DFu3iBSlvW9DaAQuRNi/kLZFtyJ0UDOsNfYHXreNGAJVmw0l+5Y4vYSt7mqo2r+z22DDhdpYBERW93/eBzAJbhjT5ZacUF94NegKDw9HeHj4ZZ3bsfZGx3TR5ORkPP/886itrZX3FRcXQ6/XIyEhwT0ZJiIi8oYfrSjfp2uQVyliIH15eTk+/fRT3HzzzQgLC8Pnn3+O+fPn4/bbb8eIESMA2B8REBcXhzlz5uCFF17ADz/8gKeeegpz585l3zURUScB30to6fjOKyRo1DZoJtmHa5z8mR5TY/+B/94/FwDwl6T/1+V8s7AAACywz4BsqrUPcg6KPNElLRHZKSLo0uv12LZtG5599lm0trYiJiYGc+fOxdNPX1zoUa1W44MPPsBjjz2Gn//85w6LoxIRESmZN5aMIPdTzOxFT/HEbBQiIm+79qmXYLY/9QeWQCDgmnOYPNw+C3FUwH8wKegf2Fo/UU7/hwl/cTi/o2ULGLitW56cvfiLm3Oh0fRx9qKlBWV7cvn55kWKWpGeiIiISKkU0b1IRETuZdNCns4mWYHmb8Kwo+6nAIDAK5qwN/xqWGz27+XB2rYu5w/U1i1vkYSA1MeOqb6eT33HoIuIiMjX2dq3vl6DvIrdi0REA9ChVfNh09pbvKwBAprzEoZWaDC0QoML34bgaH04fmgJxA8tgWi2aDFr328wa99vvJ1tIkVjSxcREZGPY/eif2DQRUQ0QHU8USJ244toGyJQH2Xvf5J0Ngghwdo+pmvHxD94LY/UTkB+mkCfrkFexaCLiIjI13FFer/AoIuIaICrzlzg7SwQDQgMuoiIiHwcV6T3Dwy6iIiIfB27F/0Cl4wgIiIi8gC2dBEREfk4yWbf+noN8i4GXURERL6O3Yt+gd2LRERERB7Ali4iIiJfx8VR/QKDLiIiumxTVLMcXpfY3vZSTvwbHwPkH9i9SEREROQBbOkiIqJe6dy61fkYW7v6AQfS+wUGXURE5FY/DsoYgLmJANDXJR8Yc3kdgy4iIiIfxzFd/oFBFxEROdVTNyIR9R6DLiIiIl8n4IYxXW7JCfUBgy6Sv80qYexFb75596Y8HINC5B78/eknHEjvF7hkBBEREZEHsKXLz3Wevn2pqd4/5qlvrM7y5OzevR1fcrnjUS73vBLb270+t6OcXGCSfE1/tSrTZbIBkNxwDfIqBl1EREQ+jrMX/YMkBGvhx0wmE8LCwtDQ0IDQ0FBvZ+ey9OeMo87faF1tpbrUOdQ9tiKQJ/T193Ig/px64vOi4x63xj8NjVrfp2tZrK34+9drFf35pnQc00VEROTrOgbS93Xrpc2bNyM2NhYGgwEJCQn4+OOPe0xfWlqKhIQEGAwGjBo1Cnl5eV3SbN++HXFxcdDr9YiLi0NhYWGv7yuEQG5uLqKiohAQEIDJkyfj0KFD8vEffvgB8+bNw9ixYxEYGIgRI0bgiSeeQENDQ6/fA3di96KP66/xTpfL0+Ok6CKO+yJfxZ9FD/DC7MVt27YhKysLmzdvxs9//nP88Y9/xPTp03H48GGMGDGiS/rq6mrMmDEDc+fOxRtvvIFPPvkEjz32GIYNG4a7774bAFBeXo709HSsWLECd955JwoLCzF79myUlZUhKSnJ5fuuXbsW69evxyuvvIKrr74azz33HKZMmYJ//vOfCAkJwalTp3Dq1CmsW7cOcXFxOHHiBDIyMnDq1Cm88847fXsf+4Ddi534WveirwVdrvD1/CkNB9uTJ/Tld3Sg/ix6tHsx7in3dC8eXudyfpOSkjBhwgRs2bJF3jdu3DjccccdWLVqVZf0CxcuRFFREY4cOSLvy8jIwIEDB1BeXg4ASE9Ph8lkwocffiinmTZtGgYPHoy33nrLpfsKIRAVFYWsrCwsXLgQANDa2oqIiAisWbMGv/71r52W5+2338b999+PpqYmaDTeaXNiS5ebdPcHy9nMwe7+QLn6R8/XAxhfz5/SdPd+9vQ+D9QPQXIdf08VxsMtXW1tbaisrMSiRYsc9qempmLfvn1OzykvL0dqaqrDvqlTpyI/Px9msxlarRbl5eWYP39+lzQbNmxw+b7V1dWoq6tzuJder8ekSZOwb9++boOujmDTWwEXwKCLiIjI97lxyQiTyeSwW6/XQ693bEWrr6+H1WpFRESEw/6IiAjU1dU5vXxdXZ3T9BaLBfX19YiMjOw2Tcc1Xblvx7/O0pw4ccJp3s6cOYMVK1Z0G5B5CoOubqSFPQCNpAXQc6vBpb4tOjvOb5jU35T0lAHyLP796ZmrT6eYopoFizB7IksA3LtkRHR0tMP+ZcuWITc31/k5kmOkJ4Tosu9S6Tvvd+Wa7koD2IPM2267DXFxcVi2bFm3efcEBl1EREQDyMmTJx3GdHVu5QKA8PBwqNXqLq1ap0+f7tLC1MFoNDpNr9FoMHTo0B7TdFzTlfsajUYA9havyMjIHvPW2NiIadOmITg4GIWFhdBqtU7z7ikMulzAb4akVJf62WVL2MDRn3/HOj/5Qkl685QOr3LjmK7Q0NBLDqTX6XRISEhASUkJ7rzzTnl/SUkJ0tLSnJ6TnJyMHTt2OOwrLi5GYmKiHOwkJyejpKTEYVxXcXExUlJSXL5vbGwsjEYjSkpKcP311wOwjwUrLS3FmjVr5HNMJhOmTp0KvV6PoqIiGAyGnt8fD2DQRURE5OtsApD6GHTZend+dnY25syZg8TERCQnJ+Pll19GTU0NMjIyAAA5OTn47rvv8NprrwGwz1TcuHEjsrOzMXfuXJSXlyM/P1+elQgATz75JG666SasWbMGaWlpeP/997Fr1y6UlZW5fF9JkpCVlYWVK1dizJgxGDNmDFauXInAwEDcd999AOwtXKmpqWhubsYbb7wBk8kkj2UbNmwY1Gr15b+PfcCgi2gAc2XWLblfT8t/cGkQ8hXp6ek4c+YMli9fjtraWsTHx2Pnzp2IiYkBANTW1qKmpkZOHxsbi507d2L+/PnYtGkToqKi8Pvf/15eowsAUlJSUFBQgCVLlmDp0qUYPXo0tm3bJq/R5cp9AeDpp5/GhQsX8Nhjj+Hs2bNISkpCcXExQkJCAACVlZXYv38/AOCqq65yKFd1dTVGjhzp9vfLFVynq5OONVEmI00eSE800PCDvn95I+jq764ypf7M9OV9sQgz9uJ9j6zT9V+jnnTLOl27jv3OZ9ahHIjY0kVE1K6/Z31ezpprvQkKXHk2an/x9RmzPjU+67K4YUwX2MbibXz2IhEREZEHKKKla+/evbj55pudHvvss89www03AOi6ZgcAbNmyRR58R0QDV3fddu5cS68va/q5gzdbc7zZwqX8ViwXeOHZi+R+igi6UlJSUFtb67Bv6dKl2LVrFxITEx32b926FdOmTZNfh4WFeSSPRERE/cYm0OfuwV7OXiT3U0TQpdPp5MXQAMBsNqOoqAiZmZldWrcGDRrkkJaIeuarY3Bc0dPq4ZfztAh35of6H99vUhpFjukqKipCfX09HnrooS7HMjMzER4ejhtuuAF5eXmw2WyezyAREZE7CZt7NvIqRbR0dZafn4+pU6d2eX7UihUrcOuttyIgIAB///vfsWDBAtTX12PJkiXdXqu1tRWtra3y684PAiXyZ0po5XK1NYOtHr7Bk+uM9bTUht/hmC6/4NWWrtzcXEiS1ONWUVHhcM63336Lv/3tb3j44Ye7XG/JkiVITk7GT3/6UyxYsADLly/HCy+80GMeVq1ahbCwMHnrHMgRERF5nU24ZyOv8mpLV2ZmJu65554e03ReNXbr1q0YOnQobr/99kte/8Ybb4TJZML333/f7QM6c3JykJ2dLb82mUwMvIg8jCvjK5+ra5C5s079vnWL/I5Xg67w8HCEh4e7nF4Iga1bt+KBBx5w6UnhVVVVMBgMGDRoULdp9Hq90yesEw0E7vrQ6ssHqWIeOExuwTq9TOxe9AuKGtO1e/duVFdXO+1a3LFjB+rq6pCcnIyAgADs2bMHixcvxqOPPsqgioiIlE3ADUGXW3JCfaCooCs/Px8pKSkYN25cl2NarRabN29GdnY2bDYbRo0aheXLl+Pxxx/3Qk6JBha2XhARXZqigq4333yz22PTpk1zWBSViIjIb7B70S8oKugiIiIakGw2AH1cZ4vrVnqdIhdHJSIiIlIatnQRERH5OnYv+gUGXURERL6OQZdfYPciERERkQewpYuIiMjX2QT6vNAWHwPkdQy6iIiIfJwQNgjRt9mHfT2f+o5BFxERka8TbnhgNcd0eR3HdBERERF5AFu6iIiIfJ1ww5gutnR5HYMuIiIiX2ezAVIfx2RxTJfXsXuRiIiIyAPY0kVEROTr2L3oFxh0ERER+Thhs0H0sXuRS0Z4H7sXiYiIiDyALV1ERES+jt2LfoFBFxERka+zCUBi0KV07F4kIiIi8gC2dBEREfk6IQD0dZ0utnR5G4MuIiIiHydsAqKP3YuCQZfXsXuRiIjI1wmbe7Ze2rx5M2JjY2EwGJCQkICPP/64x/SlpaVISEiAwWDAqFGjkJeX1yXN9u3bERcXB71ej7i4OBQWFvb6vkII5ObmIioqCgEBAZg8eTIOHTrkkKa1tRXz5s1DeHg4goKCcPvtt+Pbb7/t9XvgTgy6iIiIqItt27YhKysLixcvRlVVFSZOnIjp06ejpqbGafrq6mrMmDEDEydORFVVFZ555hk88cQT2L59u5ymvLwc6enpmDNnDg4cOIA5c+Zg9uzZ2L9/f6/uu3btWqxfvx4bN27E559/DqPRiClTpqCxsVFOk5WVhcLCQhQUFKCsrAznz5/HzJkzYbVa++Hdco0k2N7owGQyISwsDJORBo2k9XZ2iIjIR1mEGXvxPhoaGhAaGtov95A/k6Q7+/yZZBFm7BWFLuc3KSkJEyZMwJYtW+R948aNwx133IFVq1Z1Sb9w4UIUFRXhyJEj8r6MjAwcOHAA5eXlAID09HSYTCZ8+OGHcppp06Zh8ODBeOutt1y6rxACUVFRyMrKwsKFCwHYW7UiIiKwZs0a/PrXv0ZDQwOGDRuG119/Henp6QCAU6dOITo6Gjt37sTUqVN789a5DVu6iIiIfJ2Huxfb2tpQWVmJ1NRUh/2pqanYt2+f03PKy8u7pJ86dSoqKipgNpt7TNNxTVfuW11djbq6Ooc0er0ekyZNktNUVlbCbDY7pImKikJ8fHy3+fcEDqTvpKPhzwJzn9ehIyIi/2WBPZDwRIeROz6TOvJrMpkc9uv1euj1eod99fX1sFqtiIiIcNgfERGBuro6p9evq6tzmt5isaC+vh6RkZHdpum4piv37fjXWZoTJ07IaXQ6HQYPHuxy/j2BQVcnZ86cAQCUYaeXc0JERErQ2NiIsLCwfrm2TqeD0WhEWZ17PpOCg4MRHR3tsG/ZsmXIzc11ml6SJIfXQogu+y6VvvN+V67prjSduZKmPzHo6mTIkCEAgJqamn77JfIWk8mE6OhonDx5st/GH3iTP5ePZVMmlk2ZXC2bEAKNjY2Iiorqt7wYDAZUV1ejra3NLddzFnR0buUCgPDwcKjV6i6tQqdPn+7SwtTBaDQ6Ta/RaDB06NAe03Rc05X7Go1GAPbWrMjIyG7TtLW14ezZsw6tXadPn0ZKSorT/HsCg65OVCr7MLewsDC/+0PSITQ01G/LBvh3+Vg2ZWLZlMmVsnniy7nBYIDBYOj3+/yYTqdDQkICSkpKcOedd8r7S0pKkJaW5vSc5ORk7Nixw2FfcXExEhMTodVq5TQlJSWYP3++Q5qOQMiV+8bGxsJoNKKkpATXX389APtYsNLSUqxZswYAkJCQAK1Wi5KSEsyePRsAUFtbi6+//hpr167t03vTJ4IcNDQ0CACioaHB21lxO38umxD+XT6WTZlYNmXy57L1RkFBgdBqtSI/P18cPnxYZGVliaCgIHH8+HEhhBCLFi0Sc+bMkdMfO3ZMBAYGivnz54vDhw+L/Px8odVqxTvvvCOn+eSTT4RarRarV68WR44cEatXrxYajUZ8+umnLt9XCCFWr14twsLCxLvvvisOHjwo7r33XhEZGSlMJpOcJiMjQwwfPlzs2rVLfPHFF+KWW24R48ePFxaLpT/fth4x6OrEn3/Z/LlsQvh3+Vg2ZWLZlMmfy9ZbmzZtEjExMUKn04kJEyaI0tJS+diDDz4oJk2a5JB+79694vrrrxc6nU6MHDlSbNmypcs13377bTF27Fih1WrFNddcI7Zv396r+wohhM1mE8uWLRNGo1Ho9Xpx0003iYMHDzqkuXDhgsjMzBRDhgwRAQEBYubMmaKmpqYP70bfMejqpKWlRSxbtky0tLR4Oytu589lE8K/y8eyKRPLpkz+XDbyLi6OSkREROQBXByViIiIyAMYdBERERF5AIMuIiIiIg9g0EVERETkAQy6Otm8eTNiY2NhMBiQkJCAjz/+2NtZ6rXc3FxIkuSwdazgC9hXJM7NzUVUVBQCAgIwefJkHDp0yIs57t5HH32EX/7yl4iKioIkSXjvvfccjrtSltbWVsybNw/h4eEICgrC7bffjm+//daDpXDuUmV76KGHutTjjTfe6JDGF8u2atUq3HDDDQgJCcEVV1yBO+64A//85z8d0ii53lwpn1LrbsuWLbjuuuvkRUGTk5Px4YcfyseVXG+XKptS64yUhUHXj2zbtg1ZWVlYvHgxqqqqMHHiREyfPh01NTXezlqv/eQnP0Ftba28HTx4UD62du1arF+/Hhs3bsTnn38Oo9GIKVOmoLGx0Ys5dq6pqQnjx4/Hxo0bnR53pSxZWVkoLCxEQUEBysrKcP78ecycORNWq9VTxXDqUmUDgGnTpjnU486djs9f88WylZaW4vHHH8enn36KkpISWCwWpKamoqmpSU6j5HpzpXyAMutu+PDhWL16NSoqKlBRUYFbbrkFaWlpcmCl5Hq7VNkAZdYZKYw316vwNT/72c9ERkaGw75rrrlGLFq0yEs5ujzLli0T48ePd3rMZrMJo9EoVq9eLe9raWkRYWFhIi8vz0M5vDwARGFhofzalbKcO3dOaLVaUVBQIKf57rvvhEqlEn/96189lvdL6Vw2IewLD6alpXV7jlLKdvr0aQFAXtzQn+pNiK7lE8J/6k4IIQYPHiz+9Kc/+V29CXGxbEL4V52R72JLV7u2tjZUVlYiNTXVYX9qair27dvnpVxdvqNHjyIqKgqxsbG45557cOzYMQBAdXU16urqHMqp1+sxadIkxZXTlbJUVlbCbDY7pImKikJ8fLwiyrt3715cccUVuPrqqzF37lycPn1aPqaUsjU0NAC4+DB5f6u3zuXroPS6s1qtKCgoQFNTE5KTk/2q3jqXrYPS64x8Hx943a6+vh5Wq7XL09MjIiK6PO3c1yUlJeG1117D1Vdfje+//x7PPfccUlJScOjQIbkszsp54sQJb2T3srlSlrq6Ouh0OoenzHek8fV6nT59OmbNmoWYmBhUV1dj6dKluOWWW1BZWQm9Xq+IsgkhkJ2djV/84heIj48H4F/15qx8gLLr7uDBg0hOTkZLSwuCg4NRWFiIuLg4ObBQcr11VzZA2XVGysGgqxNJkhxeCyG67PN106dPl/9/7bXXIjk5GaNHj8arr74qDwz1h3J2uJyyKKG86enp8v/j4+ORmJiImJgYfPDBB7jrrru6Pc+XypaZmYmvvvoKZWVlXY75Q711Vz4l193YsWPx5Zdf4ty5c9i+fTsefPBBlJaWyseVXG/dlS0uLk7RdUbKwe7FduHh4VCr1V2+sZw+fbrLNzulCQoKwrXXXoujR4/Ksxj9oZyulMVoNKKtrQ1nz57tNo1SREZGIiYmBkePHgXg+2WbN28eioqKsGfPHgwfPlze7y/11l35nFFS3el0Olx11VVITEzEqlWrMH78ePzud7/zi3rrrmzOKKnOSDkYdLXT6XRISEhASUmJw/6SkhKkpKR4KVfu0draiiNHjiAyMhKxsbEwGo0O5Wxra0NpaaniyulKWRISEqDVah3S1NbW4uuvv1Zcec+cOYOTJ08iMjISgO+WTQiBzMxMvPvuu9i9ezdiY2Mdjiu93i5VPmeUUnfOCCHQ2tqq+HpzpqNszii5zsiHeXzovg8rKCgQWq1W5Ofni8OHD4usrCwRFBQkjh8/7u2s9cqCBQvE3r17xbFjx8Snn34qZs6cKUJCQuRyrF69WoSFhYl3331XHDx4UNx7770iMjJSmEwmL+e8q8bGRlFVVSWqqqoEALF+/XpRVVUlTpw4IYRwrSwZGRli+PDhYteuXeKLL74Qt9xyixg/frywWCzeKpYQoueyNTY2igULFoh9+/aJ6upqsWfPHpGcnCyuvPJKny/bb37zGxEWFib27t0ramtr5a25uVlOo+R6u1T5lFx3OTk54qOPPhLV1dXiq6++Es8884xQqVSiuLhYCKHseuupbEquM1IWBl2dbNq0ScTExAidTicmTJjgMA1cKdLT00VkZKTQarUiKipK3HXXXeLQoUPycZvNJpYtWyaMRqPQ6/XipptuEgcPHvRijru3Z88eAaDL9uCDDwohXCvLhQsXRGZmphgyZIgICAgQM2fOFDU1NV4ojaOeytbc3CxSU1PFsGHDhFarFSNGjBAPPvhgl3z7YtmclQmA2Lp1q5xGyfV2qfIpue5+9atfyX//hg0bJm699VY54BJC2fXWU9mUXGekLJIQQniuXY2IiIhoYOKYLiIiIiIPYNBFRERE5AEMuoiIiIg8gEEXERERkQcw6CIiIiLyAAZdRERERB7AoIuIiIjIAxh0EREmT56MrKwsb2eDiMivMegiIiIi8gAGXUREREQewKCLiBycPXsWDzzwAAYPHozAwEBMnz4dR48elY+/8sorGDRoEP72t79h3LhxCA4OxrRp01BbW+vFXBMR+T4GXUTk4KGHHkJFRQWKiopQXl4OIQRmzJgBs9ksp2lubsa6devw+uuv46OPPkJNTQ2eeuopL+aaiMj3abydASLyHUePHkVRURE++eQTpKSkAAD+8pe/IDo6Gu+99x5mzZoFADCbzcjLy8Po0aMBAJmZmVi+fLnX8k1EpARs6SIi2ZEjR6DRaJCUlCTvGzp0KMaOHYsjR47I+wIDA+WACwAiIyNx+vRpj+aViEhpGHQRkUwI0e1+SZLk11qt1uG4JEndnktERHYMuohIFhcXB4vFgv3798v7zpw5g3/9618YN26cF3NGRKR8DLqISDZmzBikpaVh7ty5KCsrw4EDB3D//ffjyiuvRFpamrezR0SkaAy6iMjB1q1bkZCQgJkzZyI5ORlCCOzcubNLlyIREfWOJDgQg4iIiKjfsaWLiIiIyAMYdBERERF5AIMuIiIiIg9g0EVERETkAQy6iIiIiDyAQRcRERGRBzDoIiIiIvIABl1EREREHsCgi4iIiMgDGHQREREReQCDLiIiIiIPYNBFRERE5AH/C+ZUg8bLAGznAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAHFCAYAAADIX0yYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC54ElEQVR4nOy9ebgcVbm3fa+q6mmPmbMTycRMCAImGhMOg0MmfH1RORiP50RFQfKhQBJlCIMEUJAxiBCQIyLoEXIUEXxPAgkOHJCtIkaUUZGEAEkImfbcQ1Wt749VVd29p+yh95jnvq6+dnf1qlXV3VW11/rV8/wepbXWCIIgCIIgCH2KNdA7IAiCIAiCcCAggy5BEARBEIR+QAZdgiAIgiAI/YAMugRBEARBEPoBGXQJgiAIgiD0AzLoEgRBEARB6Adk0CUIgiAIgtAPyKBLEARBEAShH5BBlyAIgiAIQj8ggy5BGMQ888wzrFq1in379rV575RTTuGUU07p933qL2699VY+9alPMW3aNJRSw/qzCoJwYCCDLkEYxDzzzDNcddVV7Q661qxZw5o1a/p/p/qJu+66izfeeIMPf/jDjB07dqB3RxAEodc4A70DgiD0jOnTpw/0LvQpL730EpZl5oUzZswY4L0RBEHoPaJ0CcIgZdWqVVx44YUA0S02pRS//e1vgba3F7ds2YJSihtvvJHrr7+eqVOnkkqlOOWUU/j73/9OLpfjkksuYeLEiVRXV/PJT36SnTt3ttnu2rVrmTNnDuXl5VRUVLBgwQI2bdrUHx+5iHDAJQiCMFyQq5ogDFLOOusszjvvPAB+/vOfU1tbS21tLe973/s6Xe+OO+7gd7/7HXfccQff//73eeWVV/j4xz/Ol770Jd59911+8IMfcMMNN/DEE09w1llnFa177bXX8m//9m9Mnz6d//7v/+ZHP/oRDQ0NnHjiibz00kv73WfXdbv00Fr3/IsRBEEYosjtRUEYpBx00EFMnjwZgOOPP56pU6d2ab0RI0bwi1/8IlKKdu3axbJlyzjyyCN55JFHonavvPIKt956K/X19VRVVfHmm29y5ZVX8tWvfpXbbrstajdv3jwOO+wwrrrqKtauXdvhdrds2cK0adO6tI+/+c1vJDBeEIQDDhl0CcIw49RTTy26NXfUUUcB8LGPfayoXbh869atzJgxg8cffxzXdfnc5z6H67pRu2Qyycknn8xvfvObTrc7ceJEnn322S7t4xFHHNGldoIgCMMJGXQJwjBj1KhRRa/j8Xiny9PpNADvvPMOAO9///vb7Xd/MVbxeJzjjjuuS/to23aX2gmCIAwnZNAlCAIAY8aMAeBnP/sZU6ZM6fb6cntREAShc2TQJQiDmEQiAUBLS0ufb2vBggU4jsM///lPTj/99G6vL7cXBUEQOkcGXYIwiDnmmGMA+M53vsPnP/95YrEYRxxxBJWVlSXf1tSpU7n66qu57LLLeP3111m4cCEjR47knXfe4Y9//CPl5eVcddVVHa4fj8eZNWtWyfbnT3/6E1u2bAGgvr4erTU/+9nPAHMLtCdqnCAIwkAigy5BGMSccsoprFy5kvvuu4///M//xPf9Pr01t3LlSqZPn853vvMdHnjgATKZDDU1Nbz//e9n6dKlfbLNjrj99tu57777ipadccYZANx777184Qtf6Nf9EQRB6C1Ki2GOIAiCIAhCnyPmqIIgCIIgCP2ADLoEQRAEQRD6ARl0CYIgCIIg9AMy6BIEQRAEQegHZNAlCIIgCILQD8igSxAEQRAEoR8Qn65W+L7Ptm3bqKysRCk10LsjCIIgDFK01jQ0NDBx4sT91ibtDel0mmw2W5K+4vE4yWSyJH0J3UcGXa3Ytm0bkyZNGujdEARBEIYIb775JgcddFCf9J1Op5k2pYIdO72S9FdTU8PmzZtl4DVAyKCrFWF5lTfffJOqqqoB3htBEARhsFJfX8+kSZP6pCxXSDabZcdOjzeem0pVZe/UtPoGnykzt5DNZmXQNUDIoKsV4S3FqqoqGXQJgiAI+6U/QlEqKhUVlb3bjo+EzAw0MugSBEEQhEGOp328Xhbt87Rfmp0ReowMugRBEARhkOOj8endqKu36wu9RywjBEEQBEEQ+gFRugRBEARhkOPj09ubg73vQegtMugSBEEQhEGOpzWe7t3twd6uL/Qeub0oCIIgCILQD4jSJQiCIAiDHAmkHx7IoEsQBEEQBjk+Gk8GXUMeGXQJgiAMU+ZZZxS93uj/dID2xNB6f9qjo33c37oD/dkEoSvIoEsQBEEQBjlye3F4IIMuQRCEIUZXFKNSrtef9PdnGyoKmWQvDg8ke1EQBEEQBKEfEKVLGNQMtpgUQRgohoJKNRTp6vc60NceP3j0tg9hYJFBlyAIgiAMcrwSZC/2dn2h98igqx/py+yb7szW+mrG3B8zwe7u+0DPTgWhJ4iqNfiYZ50xoNcTT5tHb/sQBhaJ6RIEQRAEQegHROkqAaWalXbWT2czrO5svy9n0GHfg0VdGiz7IQgdIYqW0FUkpmt4IIMuQRAEQRjk+Cg8VK/7EAYWGXR1kYGYkXZVqWmvXV/v71BQkSTzURgIRL0a+si1QugrZNAlCIIgCIMcX5tHb/sQBhYZdA0ySjXDkpmaIPQPomwNfYbC9dIrwe3F3q4v9B7JXhQEQRAEoV3WrFnDtGnTSCaTzJw5k6eeeqrT9k8++SQzZ84kmUxy8MEHc9ddd7Vp89BDDzF9+nQSiQTTp0/n4Ycf7vZ2f/7zn7NgwQLGjBmDUoq//OUv7e5PbW0tH/7whykvL2fEiBGccsoptLS0dP0LKDGidHWR1jOhvprdDrYMwK7SV/FTpYxXG4wxXkP19z6QEWVr+DCUzruBULrWrl3LsmXLWLNmDSeccALf+973WLRoES+99BKTJ09u037z5s2ceuqpnH322fz4xz/md7/7Heeeey5jx47l9NNPB8wgaPHixVxzzTV88pOf5OGHH+bTn/40Tz/9NLNnz+7ydpuamjjhhBM444wzOPvss9vd/9raWhYuXMjKlSv57ne/Szwe5/nnn8eyBk5vUlpLBcxC6uvrqa6upq6ujqqqqi6v1xW7h65crAfbRaA3/2BK8VkG6h9cX/wO3fksg+04ONA4EAZWfWmUPJTozbnW0/8XPdnG0y9MpKKyd4OFxgaff5mxrcv7O3v2bN73vvdx5513RsuOOuooPvGJT3Dddde1aX/xxRfz6KOP8vLLL0fLli5dyvPPP09tbS0Aixcvpr6+nvXr10dtFi5cyMiRI3nggQe6vd0tW7Ywbdo0Nm3axHHHHVf03gc/+EHmzZvHNddcs9/P2l8MmduLU6dORSnV5vGVr3wFgC984Qtt3vvgBz84wHstCIIgCIOL+vr6okcmk2nTJpvN8txzzzF//vyi5fPnz+eZZ55pt9/a2to27RcsWMCf/vQncrlcp23CPnuy3fbYuXMnf/jDHxg3bhxz585l/PjxnHzyyTz99NNd7qMvGDK3F5999lk8z4tev/DCC8ybN48zzsjP1BYuXMi9994bvY7H4/22f12ZLQ1W9aLUs93ufM7BOtMuxW2/3ny2viwZJeyf7qjTQ43CY6fw+XD8rF1hoMv7dJVS3l6cNGlS0fIrr7ySVatWFS3btWsXnucxfvz4ouXjx49nx44d7fa/Y8eOdtu7rsuuXbuYMGFCh23CPnuy3fZ4/fXXAVi1ahU33XQTxx13HPfffz8f+chHeOGFFzjssMO63FcpGTKDrrFjxxa9/va3v80hhxzCySefHC1LJBLU1NT0964JgiAIQp/iYeH18uZUKFu8+eabRbcXE4lEh+soVTzQ01q3Wba/9q2Xd6XP7m63Nb5v/PfPOecczjzzTACOP/54fvWrX/GDH/yg3duj/cGQGXQVks1m+fGPf8yKFSuKfoTf/va3jBs3jhEjRnDyySfzrW99i3HjxnXaVyaTKZJW6+vr+2y/BwMDqWoJpWOozM6HKsNZ9Sn8bD0xYB7O381gRmuFr3undOlg/aqqqv3GdI0ZMwbbttuoSzt37myjQoXU1NS0295xHEaPHt1pm7DPnmy3PSZMmADA9OnTi5YfddRRbN26tcv9lJohE9NVyC9+8Qv27dvHF77whWjZokWL+K//+i9+/etfc/PNN/Pss8/y4Q9/uN171YVcd911VFdXR4/WsqsgCIIgHGjE43FmzpzJxo0bi5Zv3LiRuXPntrvOnDlz2rTfsGEDs2bNIhaLddom7LMn222PqVOnMnHiRF599dWi5X//+9+ZMmVKl/spNUNS6brnnntYtGgREydOjJYtXrw4ej5jxgxmzZrFlClT+J//+R8+9alPddjXypUrWbFiRfS6vr5+WA+8Sp2x1FFfwyUzqrufoaN4mZ70JQwMB+rv1F3Va7h8T0NFMR4Iy4gVK1awZMkSZs2axZw5c7j77rvZunUrS5cuBcz/z7fffpv7778fMJmKt99+OytWrODss8+mtraWe+65J8pKBLjgggs46aSTuP766znttNN45JFHeOKJJ4oC3Pe3XYA9e/awdetWtm3bBhANrmpqaqipqUEpxYUXXsiVV17Jsccey3HHHcd9993HK6+8ws9+9rOefYElYMgNut544w2eeOIJfv7zn3fabsKECUyZMoV//OMfnbZLJBKd3s8WBEEQhIHG0xae7mVMVzcNohYvXszu3bu5+uqr2b59OzNmzGDdunWRUrR9+/aiW3XTpk1j3bp1LF++nDvuuIOJEydy2223RR5dAHPnzuXBBx/k8ssv54orruCQQw5h7dq1kUdXV7YL8Oijj0axWgCf+cxngOKkgGXLlpFOp1m+fDl79uzh2GOPZePGjRxyyCHd+yJKyJDz6Vq1ahXf+973ePPNN3GcjseMu3fv5j3veQ933303n/vc57rcf3/4rgwkvVFuerL+gU4pv7+hMiMf6hyox3h3j6/h8D319pzqT5+u9X+dRnkvfbqaGnwWvXfzsP3/NhQYUjFdvu9z77338vnPf75owNXY2MjXv/51amtr2bJlC7/97W/5+Mc/zpgxY/jkJz85gHssCIIgCL3HR+Fj9fIhtRcHmiF1e/GJJ55g69atfPGLXyxabts2f/vb37j//vvZt28fEyZM4EMf+hBr166lsrJygPa2ffaXOdSTzKK+QlSu3jMQ8XOlPG66Ummh1NsZ6OP+QKW937qz32Iox3YNxWNMCl4PD4bUoGv+/Pm0dzc0lUrx+OOPD8AeCYIgCIIgdI0hNegainQ2C9zfDHGgCzQPxRnsgUjr36mrx01/qVjd3XZPj7uOMma78lnkWD+wGIqF5ksTSD+kQriHJTLoEgRBEIRBjonp6t3tQYnpGnhk0NWHDIbZ82DYB2Fg6ckx0JfHTV/13VG/cg70nK4oh0PNk28oqVvC8EMGXYIgCIIwyPFLUHvRR24vDjQy6CoR/THTK0WsjiCUiq5mHMrxODzYXybjYP+dh7rCJTFdwwMZdAmCIAjCICf02updHzLoGmhk0DWEGewzS+HAQXy2hj9DMeMPht7+CsMbGXQJgiAIwiDH0wpP99IctZfrC71HBl0lQBQnQcgzVBURoWsMtH9gd2l9PA6kP11v8EoQSO/J7cUBZ0jVXhQEQRAEQRiqiNIlCEKfIArwgcVA1GLsTgb3UD8efW3h9zJ70ZfsxQFHBl2CIAiCMMiR24vDAxl0CYIgDGP6SoEaiPinvq6jOc86Y1DHdQlDHxl0CYIgCMIgx6f32Yd+aXZF6AUy6Ooh8+zF5omWw1gQhMHLUI5l6onqNBTc8XtCacxRJXduoJFfQBAEQRAEoR8QpaubdFvhUu2Ma0UdE4YohcrDcFQThN4zGI6RnqpdgzmeqzS1F0VnGWhk0NUFun3ytjfQ2t/73R2IKUsGb8KA0voflAzCDhz6cnBSqr67c3wO5sFWiI/Cp7cxXeJIP9DIoEsQBEEQBjmidA0PZNBValqpWMpqO7PQfjteKftTx4o7aLtOR6pX635btxPFTCgR3TGqFEpDe9/5UP+++6qM1FBQs4Thjwy6BEEQBGGQUxpzVFG6BhoZdHWVjlSlYHl7ilZH6xa2LVS9lKWKVbB2ttPmeWfL9rcvHS0T5UsIEHVgcNLZ7zIYAtlDhqt9w0Dga4XfW5+uXq4v9B4Z9gqCIAiCIPQDonT1BGV1rmztZ91QSdK+btNPsQo2CMbEXYkbE4YNg1rZai/+sL+Oz46U5H48J4aqUWh3lbdBfQwOIH4Jbi+KOerAI4MuQRAEQRjk+NrC72X2YW/XF3qPDLq6wEb/p8yPfSa/oKs+W2G7VtmGhXFbrTMZC5WujtS0drMfS0lHs3pRvYYVQ0ZRKIqbtKPjv/X5sSHXStVpfbz29PjtLF6yH7N/Cz/bQP92Pd2XzopvD/Rn2h/z458t+q035B4cwL0Rhioy6BIEQRCEQY6HwuuluWlv1xd6jwy6uksYz1WgYmlftzsbzs/E7WhZe3FcggBtY19KnYU2UEpCr5zrW59XymKj95MubwtM6S5l263O2W4oVK1UsvD8jRTnzpSwPlLBuqM0daYuDRSDXdUqZH78s/kXBcrmPHsxrs71237I7cXhgfwCgiAIgiC0y5o1a5g2bRrJZJKZM2fy1FNPddr+ySefZObMmSSTSQ4++GDuuuuuNm0eeughpk+fTiKRYPr06Tz88MPd3u7Pf/5zFixYwJgxY1BK8Ze//KXDfdJas2jRIpRS/OIXv+jS5+4rZNDVRTbkHjSPbDDL1n6kcilLFT9s28ysCZtq8/C8/Kw5nB0XPu8i4XaGJd38LoYLrWf+7b1u/egug0Xp6PK+F8Ryhcd7dP51Z3veWpQT6/D83G/MVqBuFypc7cVVtrkOhIp4D87x7tDZ7zrPOiN6CEMbj/wtxp4/usfatWtZtmwZl112GZs2beLEE09k0aJFbN26td32mzdv5tRTT+XEE09k06ZNXHrppZx//vk89NBDUZva2loWL17MkiVLeP7551myZAmf/vSn+cMf/tCt7TY1NXHCCSfw7W9/e7+f49Zbb0WpwfE/88D8DycIgiAIQ4jw9mJvH93hlltu4Utf+hJnnXUWRx11FLfeeiuTJk3izjvvbLf9XXfdxeTJk7n11ls56qijOOuss/jiF7/ITTfdFLW59dZbmTdvHitXruTII49k5cqVfOQjH+HWW2/t1naXLFnCN77xDT760Y92+hmef/55brnlFn7wgx9067P3FRLT1QPam+UWZVS1iuMIZ9Xa7cRjKIwVaJ3x2Ak9ym7szOeoM8J96+tMrf7aziBhKMW2lIp59uL9Vnhoj15li9kW0RzT81GWj4rHg81r6KJTd5uqEeynGkVxw/zzEh/fA6lk9VWtxMHAPHtx/vdtp66u0opuy0c9pL8LXmezWZ577jkuueSSouXz58/nmWeeaXed2tpa5s+fX7RswYIF3HPPPeRyOWKxGLW1tSxfvrxNm3DQ1ZPtdkRzczP/9m//xu23305NTU231u0rZNAlCIIgCAcQ9fX1Ra8TiQSJRKJo2a5du/A8j/HjxxctHz9+PDt27Gi33x07drTb3nVddu3axYQJEzpsE/bZk+12xPLly5k7dy6nnXZat9brS2TQ1U3mWWdgBTPkQtqrp1gUN5JvSEHD/ddU7AHtzcY7nFm33ofO6A/1qTDWrb1tdtUjbYjQU5WgJ8rGYFAi5tmLO31fWapP/I8eb7wver4g+e/hxswfm0jpau0B1m7sVuFp3Yn/V6eK8/7U3CGo9g5XxSt/TPitXvdvjJBG4ffS8kEH60+aNKlo+ZVXXsmqVavaXad1LJTWutP4qPbat17elT67u93WPProo/z6179m06ZNXV6nP5BBlyAIgiAMckp5e/HNN9+kqqoqWt5a5QIYM2YMtm23UZd27tzZRoUKqampabe94ziMHj260zZhnz3Zbnv8+te/5p///CcjRowoWn766adz4okn8tvf/rbLfZUSGXR1wGkjvsBv/J8DtHGjL5rBtqPEtJkBBW2UbRev2wun68J+9jvj2t+MuZVjfr/PsLv6PbRu1x2VbpDT2pdrf3Snpt5AKQ/7U7VC+nv/Hk//FwsqPp9foDX4YaakX3xu2XaH6lXokB+953ndqxbR2TneWZzbYFTACvZxnr2Yjd7aAdyZ3lHoPN/6DsZwyRyvqqoqGnS1RzweZ+bMmWzcuJFPfvKT0fKNGzd2eLtuzpw5/PKXvyxatmHDBmbNmkUsFovabNy4sSiua8OGDcydO7fH222PSy65hLPOOqto2THHHMPq1av5+Mc/3uV+So0MugRBEARhkONrhd/FhI/O+ugOK1asYMmSJcyaNYs5c+Zw9913s3XrVpYuXQrAypUrefvtt7n//vsBWLp0KbfffjsrVqzg7LPPpra2lnvuuYcHHngg6vOCCy7gpJNO4vrrr+e0007jkUce4YknnuDpp5/u8nYB9uzZw9atW9m2bRsAr776KmCUtMJHayZPnsy0adO69T2UEhl0dYCybRaklrRd3mqW00a9KqQdJaZbGYf7Ubu61FdPZsUDpXhFm28bH9chg3HW30O6o3YNdpWrNZHP1iCsV6dsOxKsdM5Fe1mUVXBpbH0e6jC2p1V1CqUpSmXbX8xW4d9COlJ2W6/ble30BV1Ql0OVcygqXkbdNMern3OL3hvIiiIeFl4vXZ66u/7ixYvZvXs3V199Ndu3b2fGjBmsW7eOKVOmALB9+/Yi76xp06axbt06li9fzh133MHEiRO57bbbOP3006M2c+fO5cEHH+Tyyy/niiuu4JBDDmHt2rXMnj27y9sFE7N15plnRq8/8xlzR6qz+LTBgNJhlJsAmKyO6upqPuT8KzEnCYB2W5V6aFUSpNMU8i4GxHY6cOugfckHXQN1Me9kYGrS+Tu5vTjMGE6DrsLbi4Nt0FV4e1FZ+eNK51z8bBYr5oRvBm8UBFEXHI+Fgy7tecYAOeqsC4Ou9tjfoKuj9v1FN27pD8VB14LUkug7bT3oguLrk6tz/Mb7OXV1dfu9XddTwv9Jy373f0lUxHrVV6Yxx60nPNqn+yt0jihdHdBm4NQB7Q64OvMg6sCLKxy8tRlwFLYteN7egKtb8STtf5jerd+b7Ra4jxdivpce+BsNwewv6HoGWHdiugaC1vFcg2WwFaKSCfCC46NgoKRiDpal0ME/W2UDBbFbCg8/F5xnOocGlNODf4SdDay6e+zuZxDUJhOzp+dFO/UnO6LX16IBJhw8d3o9Nw36bZ8G4vaiUHqGTBTyqlWrUEoVPQrv12qtWbVqFRMnTiSVSnHKKafw4osvDuAeC4IgCEJp8LFK8hAGliGldB199NE88cQT0Wu7wAfrhhtu4JZbbuGHP/whhx9+ON/85jeZN28er776KpWVlb3abmEGU7seLa1npuF74WyvIy+uwueWQqm2twULb1eEPjHtMaRnlu3MFns9Kx8qzvZ9MFMeDHFcg/220mO77i56vbD6i+aJbYPvo4LbizrnorDz53Q7VSTC8INeKV7dpDOlqU2GZaQi52PRerWddsIBim6rKqvYy2yI8XjLj4oz1ltlrw6H7EVh4BhSgy7HcdrNRtBac+utt3LZZZfxqU99CoD77ruP8ePH85Of/IRzzjmnv3dVEARBEEqGpxVeL28P9nZ9ofcMKa3xH//4BxMnTmTatGl85jOf4fXXXwdMZfMdO3YU1XxKJBKcfPLJ+63VlMlkqK+vL3oA4ASz2/Bh22DbKNvef7yX55lHd3ykwgDd8AFtZsHa1x0+2lDYzxAi+jyl2P/B/vl7qXJt9H/aRtUaDCrXUOSxuh/wWN0PjOIci6EcxzziMXMc+TpSrq14HCseb6N4aM/rExUk9IYqfHTS2FyjwutUa2UuCP7v0iPsJ3w4MfNo9T7KMssLtqviMfPdDQPCa1Lh542+53j/6RZhTFdvH8LAMmSUrtmzZ3P//fdz+OGH88477/DNb36TuXPn8uKLL0bOte3VanrjjTc67fe6667jqquuavuG5xOmfxdJysoKbkG0Guh0lPpdOPCyVNv1wqbhIK0zBvsgoqcM18/VBUrxT1oGWqVDOQ44oN0wkN5MtsLXFGQohmW+wr9+zi3dbf6C60m7t7TaS7DppI8uLS9q0up2ajDIivYpm81/D2GmZ+i7UVCqZUH55wB4vOn+/W5zMNFe4kdUPirEtsFrm93YV2ht4ffSkV73cn2h9wyZX2DRokWcfvrpHHPMMXz0ox/lf/7nfwBzGzGkJ7WaVq5cSV1dXfR48803S7/zgiAIgiAc8AyZQVdrysvLOeaYY/jHP/4RxXn1pFZTIpGISiIUlUbQukiOj7CUmckV3nospCsleQpvnQV9tC6O3ea24f7UoGBf+zOFWWhF6++/IzuAwuOq8HdTFhtyDw46e4UDifU71kBZWfFttXg8elBwmw0out0UeXv19tZ4oYrVXj+tjqtIJQ+sZHryyHet2t6WBPB13odMKVQigVVehlVeZq6HquB2pFV4Dqgi5Wso83j6v1olDPTv5/JQJXkIA8uQ/Q+dyWR4+eWXmTBhAtOmTaOmpoaNGzdG72ezWZ588smonpMgCIIgDFVMWGFvY7oG+lMIQyam6+tf/zof//jHmTx5Mjt37uSb3/wm9fX1fP7zn0cpxbJly7j22ms57LDDOOyww7j22mspKyvjs5/9bM82aFv5mUzrFOtCE//wKA5mi8q2wQnMCD2vuC2YOIACQoVLKx+l7eKZVFHDVgZ9+ysS3VnbAziGql/pxACztZoQqg1h3Mjj6f/q+/0T2mX96zexqOZc8yL8ieywbI/Cz2bMc+0H6k5+3UIz3zZWCr2lMM4r7DeyliloFl5julHOq00MV3jdiJYXKCRao32/SDMpUrcK92GYoQruSqh4HKVcyAzwTglDiiEz6Hrrrbf4t3/7N3bt2sXYsWP54Ac/yO9///uoFtNFF11ES0sL5557Lnv37mX27Nls2LCh1x5dgiAIgjDQ+CUIpO/t+kLvGTKDrgcf7DzORSnFqlWr+qbQpW3lFSul8uVDQgqzEuPGXBHM7E/7flu1q2DWqAvb2nY0e1R2MJstmHn2KDOqVXmdIW2iOlToRIUsVBTatR4R48VBwfodawAixUtFv0/beKoiI99Wv2ukZBfWbNwfHSnZrcqGmSddsGVorV51th+t1Nm8apZX7cJrVnhdU5bJ6Na5oEatlzeXHS7xXCEbcg+a2owDgI/C72VMVm/XF3qPDHsFQRAEQRD6gSGjdPU3ynFM+Y+A1rO7whmhsm20b/xaotleUWftzy7aZPkE/UWLEk5+e76OCvOqWCLKJtovgULW67I6Qo9pT9FSoeFuq5hAYZBh55XrDik8p7TfrTI7XeozpJPYwLAUEcoqULMLijaH61sqXBxsplj5jpStMHYpvC5ZVpu4rZDH9n6/6PXCqjMLNqB5rP7edtcbsgS/jYo54Pdf7Jo40g8PZNAlCIIgCIMciekaHsigqwO066KtIEslFis2WY056MamoKGP39ISvWWVVxW7zmtdPFMujO9SqkA504H/V/CWbUeeOEGDfNaM45iSI+FsuHBGCibmrHVWU+HMuXV2o9A7uhLDFRDFxXhg2XY+Ky7ASqUAWDR2KevfvavEOyp0m/DcCs9hVehrZbcfq1XqcypQz1SUlFiQ+WqpSAGHQKkKtu/n3GBfC9Mr8+sWKeWt4shCJ37lOPntFF7XLIXOtqPqw7BSthYddlF0jV7/2o1APrN40cFfR9ka6gZs94QhiAy6BEEQBGGQ49P72okSSD/wyKCrI3yNSgSZQQWeXSrmQCxWXIfM8yAXxHQ1tWCNCFztLQtcFx28Z2alHc+Ci2IotObx+ntZWP3FYB9aOdZnMvn4IEcZt+xQNbMKZrA5F6V9/Gy2u99Az+mGP9CQoDOfs9ZZiO2t1873sNFba7KgCsP6HAcdxotIZYHBgeOA60ZZi22yFfuSwvi/jo6HMLYzfN+2IPjHrIIizVG8oOehsx3XeDXu++E1zy6oqYi5Ljn5fVi//Y6ef64hwKJJF5gnBSrnoqnL29bOLaUP237QJche1DLoGnBk0CUIgiAIg5zQVb63fQgDiwy6OsCqrEAly82LXC6vUMXj4NhQXha856IaGtGBEmVVxNFpY1GsRlSZGJCCfnWruIgIXxepZ+vfvYt51hnRa7uiInr+WP29LCj/HNbIEWaB65r4ilAlc5x8X+FMvVDp6osZ+lBUZroS29ZB/cR21a3CeooUxMwErzdkfxJ5/ITO82G8jVEkChzHh4tKOERZdMQl5okTxEhlzXmrM5nSnD/788tqd5VCV3i/4KkucsWPVPnwGhDFERYfj4Xef5F7vmfes1JJ1u9Yw6IJX4m6He7qVrtYKlIOowzyML7PkX+fQveRo0YQBEEQBjmSvTg8kEFXRzgmdgsArVm/47borUWHXpiPn0rGodnEbgFF2UR6Xz0qES/qB8+LVDMVixdv0/ej+K9FE76CM24sOuwXUMlktH1r3Bh0XUN+m4V4Xn5Wa5l4tDArrjDTstcUztYLs5+GikpT6L7dWnkoiKcxPmxt/dmi12HbmINKJKJjIfwNNmR/EnX7eMuPAJgfNzVBlQr6tTEz6CCb8bFdd5fsYwrdRzuBAplzizKOlRMrXT3FztSubijHyirIqCzMjm5VxUL7usP4Q+1rrFgQGwqQTAAHqLoFrH/zO0BwrVfB751zzbkd1eT121Qo6Evk9uLwQIa9giAIgiAI/YAoXR3heXn1qkBtAiCTNbEeAG4wCwr9lnydzzQMl5WloraqsL9YrCCzyDfxX5Evjqn3GM1LvIIajhkTnxVlGoV+X8H7fjZb7GRfsC+R/1dndMfHqzsz8rAOXT9m/HRIOypdvs5cgV9REKOlrPB7sIvXVfnfUMXj5jcJfu8NnfgVtalN5zg8tuc/S/LRhNKhYw7KKQiYamwqiaKrLNVxHdROnOfb267Jei64/hT0E9Vwbd1HYb+FSGWEYpTKX89zbrGytb9KBSVGai8OD2TQJQiCIAiDHLm9ODyQQVdHKAWhkpRoG3tFTkft1u9YYzxcAL23DpVK5vvQGoJsRl1Zjip0IC90pI9h2hXUPgPQ6XTQ1EK3mOcUxmsFryMvsIJ1TQe+idMIFDSdybTzWVvNoFvHOhUua7NqQV231i74hf1rv+8Vrvb8tDpSDaCoRp4q9CXyi+NigOj7C5VCZQVtC7zVVCoJlhXFg3S6q7adr+cJ6P70URP2y2MvfguARdMvRStlYvUAq6I878SuVVtH+v1lJaoCxdkviNds5cNXtErgDp+noGZneIy3jjWEfHxpa2UsPGfteLH6XHB+rt+yuuPPcACw6OCvA6BTCVR4NyPmmGtu0XVMBjFC95BBlyAIgiAMckTpGh7IoKsDHvrHzSx+3zXtv5lKFtc6JD8zXDR5WT6WK+ea2VFIzEY7Fqo5UJvcghmTY5tYrzCmy9OQy0XO5NrzIlUsUozCLLlA5YpmsL6Vj+GKx1FlqeKsptZ0Z6ZeQGGdN93OjDrfpan/pttTkEpIm5iV1heYQodvAIJYl9ZKQoEqF9W7DFVFyypSJZRt5xXRbu1sKy8l22bh0ZdFCoswOFj/0rUsPO4b+fidVBIr8OjzGxuD2KxWMYCB91p7x3uRMlxIZ7GRtt1GCdMqVKXDmNDgpeflFVvPw88Vq2nKUnnVNh5HVRgvwse23trx9g9glF8QS6ssoFXGYj/6E8qga3gg2YuCIAiCIAj9gChdnaBTJpZLNWWMXwsYVSMeQ4dKRRDfsWjyMrNOQ6NRlsCoJzmX9W8Zj68F77/KZCTmgpiQRIL1r37brH/YRa1mUCq/PUC5rWYoRTOwoKZjqB7ZVrEq5rp5xayjjCmIHNULZ+7t+lKFbxXGNuxHuTIz9Xz7NnFfJcDUoDOfz4o5RZmFJqu04HN5PsrJ+2th21Elgfz+Yr6TwLMoei8RR4e/oZWvzUYi3mltTYBF4/8/8ySIIQtjhYg5rBeVa1CiMrm8Ku04+Qzj4JywYmGMYLESXZgZqP1WCnJnfm+hghzVVg1iify8qhwpr0q1iZWM4jtbqWuq9TFnqeJzQsjTXhan9ou/L60h238ZjKJ0DQ9k0CUIgiAIgxxN7y0fOplyC/2ETHM64FMfvBrlaZQXKCRKFWcbWsHDsfN12gJ0JmOyBC0VqVwAjz97pXniOOZRkEm4/h83mPivcDu2FblCA5BImFiyVNJ4QVmFcSSWUWvCbEPXNcqOr01fOdfEjDk2zqiRWIkkViIZ+fuoIGako3qC7cZ5heuFbtidxDZoX6M9z/z1C+Ij+iIeQvuRE7eKx1CpJCqVxKoox0qlsFIpVCwGtlGwVDKRj6OzlHmE+6asvJJlW/kHRn1QjmPUMd8P3KntvCdbOyyavMz8jomE2beKcqiuhOrKAz5bbDCz/uXrzDnlBu70gdqt4rG8R1bh+RDGYBUcR1bMiSobhOdDa6JzybaMSh4eb7FWc2PPR/vmEfnzFcYlFp4Dto1yYuaRTJgM22D/KUuxfvMtrN98Sz98i0MTvyyOX5XCr0qZ66/jFF+7ehLP2dN9CZSu3j6EgUUGXYIgCIIgtMuaNWuYNm0ayWSSmTNn8tRTT3Xa/sknn2TmzJkkk0kOPvhg7rrrrjZtHnroIaZPn04ikWD69Ok8/PDD3d7uz3/+cxYsWMCYMWNQSvGXv/yl6P09e/Zw3nnnccQRR1BWVsbkyZM5//zzqaur6/6XUELk9mJnhKpWYeaf60FLGlWYvVigSqlMptgzqxVWc7bI52XRtBXmiecXxxEoK7CACfoqiBfSORedy+X9gijO3FOJRH4m7floraE5qLkYcyInexVzTF+u6SeszZb3sSp2t4ZiPyGzzWCm5+Y6jtPSftF7fRHP1R4qHs/PRK2C+pjaRxEris9QtlPklVXkGK913hfJUkX16BaNXZqvrel74FssON4omlY6a9YvrFoQqmq2ZX7Pgt9QGMSEv3FLOp95Go+jMxn8IBbQijlF54yKx4riLpWy8j59nm/OmfaUX63b+nYVOKOrZD6+C62LMqlNJq7ZV8syilkUgxYq5MFn0aniWEUhz/rXbgRgwcwrTUwfoB0LnDiqodk0chxzzvcTAxHTtXbtWpYtW8aaNWs44YQT+N73vseiRYt46aWXmDx5cpv2mzdv5tRTT+Xss8/mxz/+Mb/73e8499xzGTt2LKeffjoAtbW1LF68mGuuuYZPfvKTPPzww3z605/m6aefZvbs2V3eblNTEyeccAJnnHEGZ599dpt92bZtG9u2beOmm25i+vTpvPHGGyxdupRt27bxs5/9rLtfXclQWnfmJXDgUV9fT3V1NR89ZBmOH1z4Mpnon6POZMythQIrBxWPQVAodn0XUq8XTbqg7ULXZf32O1g0/dL8ssJiu7ZtLviAbmxCZ7P4zcHJ38oKQSUSxaaHrS7MkdVEeJujnULPQYOi1+3dfoy2U2AS2SZYfwAKYCvbxh4xwtwSgOA2YbBfuVybEh46LGYLaN/P/9MLCoZHA2XbLirXs2jCV4pvAztOlICBp4u0ZJVx0cn87QjVmDYF0zHWBMLgJUqk8bz8OdHcjN/YhB+cl1YwUA+PfxWP5QPeKT6utOd1OGnCtsx64eQokShOnCmYBISJMoWlx1Ss4JZXLFY88XBsdDzYT1vx+HNX9fKbGf589GRzbloZF6s5i6pvMm/EYrhemic2f5e6ujqqqqr6ZPvh/6STfnkuTnnvBspuU4b//fiaLu/v7Nmzed/73sedd94ZLTvqqKP4xCc+wXXXXdem/cUXX8yjjz7Kyy+/HC1bunQpzz//PLW1tQAsXryY+vp61q9fH7VZuHAhI0eO5IEHHuj2drds2cK0adPYtGkTxx13XKef56c//Sn/8R//QVNTE44zMJqT3F4UBEEQhAOI+vr6okemnUol2WyW5557jvnz5xctnz9/Ps8880y7/dbW1rZpv2DBAv70pz+RCzK+O2oT9tmT7XaVcLA5UAMukNuLHdPUjE4bdUPncnkVxPOgpaVIXdJZByvVDTWn0OohuuVllrVWPPLlKGxUU5ACHo+hQ5WrsNtQjcnmzC0IMLPeAqUmDGgvat8R+wmOb6OQRd+JH9lPAMagsZ/VLu1rtOvm1blUMirHhGcVm6HmcmDlS70oqyAN39dBgL05VR7bdXfxhhynoHSTVaQo6rhjzBUD/Mpk8boVSZTb/yqg0H3C202LJnyloPyW+e2sQOUOVW8VntOuGyngrc2Uw/O9SD0usHbAslDJ4HipLDfHUi44Jhua8uuH15ConFjMJM0AxOPowmLdMRs/7uCVmWP5V78tUNWFDrGbCsIOMq5JmIkW9F9geilvL06aNKlo+ZVXXsmqVauKlu3atQvP8xg/fnzR8vHjx7Njx452+9+xY0e77V3XZdeuXUyYMKHDNmGfPdluV9i9ezfXXHMN55xzTo/7KAUy6BIEQRCEQY7WCt3LQVe4/ptvvll0ezGR6Pi2pWo1sNRat1m2v/atl3elz+5utzPq6+v52Mc+xvTp07nyyit71EepkEFXB/h1dVh+B/FK2ic0+tTKQnkefnBgLRx5Vt440/N5vOVHUZ+LDrvIzEqDA6crhZHXv36T6feYy6Li1yZlvOO4KRMvYmZnKpUKAnqDnzqdAStU7WirQHWqSNltg+tbx4AVEki4lm3jt7R00m/pUZYyAcRhfIsqiJmJBZYdUbJBYDYZKlaOjQpNTvdXiFqpKN7PH12N8n10zPTjlcVQPljpIB7QsvJqhWPx2F8lnmbIoXWkTvvNzcYGInwrm0XpAvNRraOi5ioWK05CAWNsGhw7JqZL5bfh+/nXnnnuVRnly865eRPeZBxtK1Q2OK4K+tExU4xdBybA2rHQliUKVzf46EnfIvzVrF11RvkOru+6qRnf7d/rWqmoqqrab0zXmDFjsG27jbq0c+fONipUSE1NTbvtHcdh9OjRnbYJ++zJdjujoaGBhQsXUlFRwcMPP0ws1n82H+0hMV2CIAiCMMjxUSV5dJV4PM7MmTPZuHFj0fKNGzcyd+7cdteZM2dOm/YbNmxg1qxZ0WCnozZhnz3ZbkfU19czf/584vE4jz76KMlkcv8r9TGidHWA35LGtwok104UIO1rk2kIRCV5CliQWgKAVVUBsRj+rt0AzLMXF/W/0f9p9HJ+/LNsyP4keq127omsKHQ213kJHu1HhW6V34ylVFSaSAWxTgDK87pl36ALM7fC/QqzsQrS36MsyjD2JR7Dgv5Ru6LSKTFIxPPZgkqhwvgWHWaJha+1UcQK0/lDlcGy8uaTwKL3nMf6t78bba4wW3XBrFX4yTg66MeP2Shf48fyx9GvfvONEn5Yob9Zv2NN0esFFZ+PzndlBbGThZnDIWFsn5U/9opsIVy3ONPR89reSik8zRPmuPYqkiZuMNymUqhscJ1wLLRtR0oXlmLj05d19yMfkMyb+00AnOYsqjmIBXU9yGSjuwi6MLu8HxgIy4gVK1awZMkSZs2axZw5c7j77rvZunUrS5cuBWDlypW8/fbb3H///YDJVLz99ttZsWIFZ599NrW1tdxzzz1RViLABRdcwEknncT111/PaaedxiOPPMITTzzB008/3eXtgvHh2rp1K9u2bQPg1VdfBYySVlNTQ0NDA/Pnz6e5uZkf//jHUdIAwNixY7Fb27L0EzLoEgRBEAShDYsXL2b37t1cffXVbN++nRkzZrBu3TqmTJkCwPbt29m6dWvUftq0aaxbt47ly5dzxx13MHHiRG677bbIowtg7ty5PPjgg1x++eVcccUVHHLIIaxduzby6OrKdgEeffRRzjzzzOj1Zz7zGSCfFPDcc8/xhz/8AYBDDz206HNt3ryZqVOnlu6L6gbi09WK0BPlFE7DUT2499taCQrKgoTv+dlslzL5wpIhYVurrCxvjurm9p95WNBPWAIETPmacF2/sSkyRu02YXZigV9Z8dvKqE1gyo/EY+jAz8hrbOzZNruwT2EmmVVVAZUV+ffCLEQwqoClotgrta/RKBFhplnMycdyaQ1NLfkixrbN+nfbOiyHfOSUfPap0pArd3hy3UUl+oDCYGNB+eeKPbMAK/KGs/Jxg2EMYeHsWueLsOumlsiQV/u+OWeCmBtdVYafdExJMkCls/iBsalXHhih5sy1wW5IR+qLO7IM37GwM2YfROXqOguPMd+VSueirGfd1IzOZo1XI+b3dnWO3/JIv/h0feDhC0ri0/XHT36nT/dX6BxRugRBEARhkDMQtxeF0iODrlLTSsXSXhf8sNrrptU6fnNzQZmQrns7aV+js1msMM7KcSLlTcWcYkf6bvZvYri68Nk8D+1ZqBHVAFi+H2VtdVtpK/D/ipTAAs+0sMQRlRUmLqsxcI8uVLIqy03GV5hJmMsVFRDXyQKvI8dC+Trfz/52r5VuLCrXMEcpsMMYRhUc64Eqaln5TEbbymcQE5zfXkF5KduKMh0hcKEPj3PHMn5bfl410/Eghitok6s0x71b7qBc06eXtEDDr391SR988OFNVOrH9dBBCTXdkjaZ4T24npeCUlpGCAOHZC8KgiAIgiD0A6J0DSV64uoerBMW5YV8xqFRvdySF6A2ilM87xeUzWJVVeZ9uyor8OsbzPNUEq+hoct9W8mE6RvQ6QzazRXFzKmKcvNeWcK4vYcKlmWZouGYDC8gyupSyYTZt6Ctas7gjc7Hg1mqCkaY1/sLgHziSfFAOpBQltVxgXuVr2ygACrK8k7yLWmj0BYUXS+qVBFzzANQro/y/Ki6gXJdrCAR2HcS6JiFdoLqD5ZChZcJT2N5ErLbXRaOKiie7HlRbc02dWr7GV2C24uidA08MugSBEEQhEGOpvcOFTIEH3hk0HWgEM7QCmovQlhnsFWb3qKsIFsw/1qn03lbvljMZGMG2NXVkY+R39zcNmYijNmybaz3TMCvCjzHMjmsPfWRIzy2BYHShafxEzGswJ8Mq0BVsAPX7tAHyXFMn8Fra18TOlC9/HgYT2O+MyvbgaohHJA8Vn8vC5L/bl6oVjU9IR+X5XlGkQ3fz7lFx6Ty/Hx2LUAslvfX0tqotqFKlvUiB3rbttnwx2Lvt5M/bupEOs0uWIoPz/s2AL/eKLFd+2OedYbJgA6zsruRKS4IXUEGXYIgCIIwyPFRqG44ynfUhzCwyKDrAMPPucVO2L1Ut5TV9iRWliqqAadSCVMHMRN4XyXiEGYZxhwoL4sywOx0rqjunC5P5mf8QLYyEcWveMlynNHlxN41mYWFdQ91zEa5Pn61UdRUttg9WjtWXulKxtC2HcXM+CMrcCvM/mkLtKexm0XhEtrn8fR/AYE7vdaRs7yqKM870edyRmWuCFRazzPqaeAsTzqTV8E8D52MoYMYyMc3FdfonGedET0vrGIREv+fP5onc4/Dj6nI30vomMLv1N9fvdUBQrIXhweSvSgIgiAIgtAPDBml67rrruPnP/85r7zyCqlUirlz53L99ddzxBFHRG2+8IUvcN999xWtN3v2bH7/+9/39+4OakJvrNau912iwHG/SOUqdOKPfLPyMSl4fkFtQy+vOqWSKK3RwTp+ZRIds/ET5tDMlTuR95VWoGMKL27aZqoU1iibykCxcurT0S545XGcunQUm6WUym/TsswjVCFsGx2z8AOlwU/Y6EB5Q2t8W6ES5r2Nv7u869+VcGAR1lwNPbQaGlETxpll2byzOYA/ohxrX1Neba2qhCBLjpiDTsR4/E+r2t1Me+pWe+9/5MPXoZXCcgcu424oUKhyDWZ8rVBijjrkGTJK15NPPslXvvIVfv/737Nx40Zc12X+/Pk0NRWbVi5cuJDt27dHj3Xr1g3QHguCIAhCadC6NA9hYBkyStdjjz1W9Pree+9l3LhxPPfcc5x00knR8kQiQU1NTX/v3tChQNXSnmdUqe440Re61yuraJ0oVqwgnsu8odDaR6nw/QKVqSUNmSwq8NCiPAmWFTltA7hlQSaRpfASCjcobZcrU1gu5KqCw1gncBqMmmClPbyKBCqoSYfvmwwwQp8uGx0Pat1h1K3oIxbsu9Jgpz0yo8z+nfjJm3jq4a/v/3sSDjgeb/kRC8o/Z+IXAcpTUTyiTpVhpTOoJqNm5SaNxFEKlQkqM5QnsMJYolQyik3sFRqU1tE5MO9fvkV2ZJwnf3lh7/sWBKFHDBmlqzV1dXUAjBo1qmj5b3/7W8aNG8fhhx/O2Wefzc6dOwdi9wRBEAShZISB9L19CAPLkFG6CtFas2LFCv7lX/6FGTNmRMsXLVrEGWecwZQpU9i8eTNXXHEFH/7wh3nuuedIJNqvzp7JZMhk8rEW9fX1fb7/g4oeZi8qS4H2I88vK1asbAFRNpZKxI2yFSphWuefKwXJBDoeZgtaaMfCbgniznyNdsx72SqLXEqhQ8HMNUqUmzBzh5il8FNGkfISNnaLW+SrFWU2xh38hIMfC1QIR+EXZEj6MRXVr3NaXOymLPEgxqtQBROE1jzedD+Las41L1wvquGXmzqWWLoSFWTw2o05clUJLDc47hXE0ibTVscdvFTvL81+zEJpjY857q2cj18CAW04MVTiuUCyF4cLQ3LQ9dWvfpW//vWvPP3000XLFy9eHD2fMWMGs2bNYsqUKfzP//wPn/rUp9rt67rrruOqq65q9z1BEARBGAxIIP3wYMgNus477zweffRR/vd//5eDDjqo07YTJkxgypQp/OMf/+iwzcqVK1mxYkX0ur6+nkmTJpVsf4c6YSZUOCMszJyaH/tMUd3DSDXTysS1hKqQ70MqCVbQtrkZYoE/keuCk/fpAhO7pXKBgtbiYqWCrELbptDbz8qBdoiULzS45U70XPl+XplKxvPPLaOEZUcEtSBzGuXqyP8LiDImnd3NZGsq8crs8KMJQueEx1lZCh3UT4ztbiI7sRIrY9zNnd3NWEmbXKU5D5SnYUxQ71NBZkSsx5v/0PzrAdC2IpeyUYEaXb6lAad8yF3y+4ShpHAJw4shcwZqrTnvvPN4+OGH+e1vf8u0adP2u87u3bt58803mTBhQodtEolEh7ceBUEQBGEwUIrsQ8leHHiGzKDrK1/5Cj/5yU945JFHqKysZMeOHQBUV1eTSqVobGxk1apVnH766UyYMIEtW7Zw6aWXMmbMGD75yU8O8N4PffbnDaTdXN6fK5CJVDDLJ5GAeLzYk6ih0Tz3fdhXn89eHFFp+gtjrJSpfwiBoqUhUW8UNS+myCZNBiNAttohV27aOi0abSWwCty4Q5UBpVBaY7lhPUWfWH2OzBgz+I7X5SJF67EXv8VJ//dG3GQY/9WVb0voDovec170fP3b3x3APSkRYfai60VVDlCKXTMSpHabY6466+Hsbqa5xiQC2VkfK1B33QobN9UzSfXDH/k2Ooiv1I6KFFuAhsOqiTVIZYWhihl09Tamq0Q7I/SYIfMv5M477wTglFNOKVp+77338oUvfAHbtvnb3/7G/fffz759+5gwYQIf+tCHWLt2LZWVlQOwx4IgCIIgCHmGzKBL72eInkqlePzxx/tpbwQocLRvjW3lsxPBTK9cD0IfotARHszyskSkknllcZN1FfTrx+xotm5nNO4IRfINM1vXtsIti1H+pjHI1ZZFbpqpbZetsvCSyphwAU5aYwXZinbOx3esSM3SMQtnXzNeEO9iNxXXXtMWkSqWSwxZl5XBTXC8LDrofNa/ddsA70zvWP/mdwBYdOiFrH/txmj5seevJlsRqlA2qqEJJz0CAN9RxOrSwXsprGTHx9mH532b2D6Tce3HbXJVcX67/qJ8g0BR9p2g7mJwnBuPu57HigkDi2QvDg+GzKBL2A+tjEr7g8fT/8WC1BLzQqv87cVYDBWP5bXsdMYU/A0HYvEYtAS3+mwLb+wIVM689pM2+Jqmg4wDqhdTpPaY9yzXbMYPBj6prfXsO2QUO+YaJdPK5fctXq9xkwoVbiaryY4w24/vAzvjo3xzAcqV26x/6doOP+dTvxAzyb5GV5YDoOobWXTQ+QBDf/BVMOACeP625bzv/1sNmAERiXh0SzH8C5CttMmVK47/imm76Y7lRf14MYtYcNtS+cWDMy9p4QXnR67c4g8/WsEJZ9xstpHVaAeOP9f0m9rtk9hrJjC/2XAx7//iLVE/z/5gBcLgQhPNIXvVhzCwyLRdEARBEAShHxCla5igbBsdqDqlUrz2FzwPmJI/gLLjqDAL1LHN7UM3uA3ouuApVBArT0u6TbHppilG6Ui9k8ZKe9T+5NI2m/rgf9xCvEHTNN4oVg0TR+HH87M3bYHTkn+erVI4zcGbDRCvM19QrsJGxxRWxuzD0z+Xsj4Dyfq3v8vCYy4zL3w/uj226OCvs/71mwZwz0qPH1xx66clqdYjSOw0t8abJ1eSHm/MUZU2Cm94J+jY81fz/G15tctpdlGB6a+O2fjx/C2jJ/+n4DZjwO9++jUA5n76ZrSCRH2grrnaKG6Ycys7WmGn26wuDBLk9uLwQAZdgiAIgjDYkfuLwwIZdHWE6uTOq7JMGRyCotEDTbCvVmDR4GeznbXeL11SuAIeb7q/zbJFR1xi4rmaApnJ84wKFlpGtCqlY2W9ItPR7Ohku9tyk+Db+TJAyjOKVl7qIiqGbTkK384rC7kKy7QF/BjkHAsr3rW76+8/85YoGFkr+NM9Eu9Sah7727cAWDjqbFRZaoD3pu/wgzj29ChF+XYbu9kcg8l30mRHGinYTSrijT7pkcF57cIHvnALbsIchKOzPqrOKGTe6HKax3Sttk/Vr19lz8eOJNbkB/3qvAlwi4/l2thBbNncxTdT9fLeqHRWZlx5cbD+UCe8vvdzHGyvKEXtRFG6BhyJ6RIEQRAEQegHROnqACvmgBvKG8WzISsej54PmNJVoMRt9NYyz16MVR74keXcAZ3B6WQMfB+VC0uceFBelreMcJwo3otYjKZJ5VRuNmapjz97ZYf9toxRxBuMdUSInVEk6szrWKNP/dSgyHYW7AyRuuXFwQp+T22pQBzrmtbux1TUj5ZpSp/i7duHamgAwJ46eYD3pvT89RYTm3XM11eTrXJIjzHnbPlbaWINJv02ua0JbEX6g9VAkLVbcNylxyWo2GzaupUxtN019aJlzmE4LZrf/czEMH543rfxArU3Xu/ipixjMYHJ7s2NKsNp7J1qPlgJ7wpg2+B5+LkC09hBqn6JI/3wQAZdgiAIgjDIkUD64YEMujpAJeJYQcCD9jxUoG5ZlRVg2/i79/Si8x7GE4Q+WJbxxCpS2Qr6sivK8QK1YCBQWRcdd9BVgfdSPI5OOJAy36GO2aQnmPcy1TbK050qXCEvfns5cxffXKBeKayCI7ji9XoSe0xQl5+wyVbaNNWExbIVXiBQ2llt1C6raxcgN5Uvqi0Txb6lO/GEQ5m/3bSc9y5fXaCgJok1mnM4qRRWxs2bmsaNsWnYtn6yQ/3kQ80LRVQGa39oRVFZIAA3ZTp1y2zsjMYL4saUDgyBg/jL4fa/2ho3Nv/C9/NxNlqbzOtQEsrlIDBq9vbtKzaD1n7gj9gvuywME2TQJQiCIAiDHa16P/odbqPnIYgMujpAlZdjjTK+OXi+8Z4CiMWguaVnGYLKwoo50WxJu/tRulplSYbPVTyOVVmBF6ht8+zFZsYVzEpVMoGVCcqEZLNtMzE7UdhKoTQ0TB9NrNEjttfsg3JMrIhqDvYpUY6dNipdKuvzm8cv7nLfTtqPilqrVinUfipGbI/JmPTLE2gVJ7XbfCfpkRaZKvM81tT1DMRjl63OZ0kC1uAM9xCGIH9dvZyjLzHu8I0TFFVvmuNz7xEp/BhUvmXOkT1H2KAK4roUWMHlR/ngdy15kf99tLiywq83XtLrzzBU8UcH8XLpLHg+flU+Y9ZqyphrPkDOgaTxH7QmBupYWA2gJQstDbCtf/ZZYrqGBxIWLAiCIAiC0A/IoKsjKsshkTCPijKIx83DN6qXPWKEeVRWopxWRWSVFT2UbWPF41jxOHZ5GSqRwKqqwKqqwK6sxEoko0fYXtm2WRZz0J4XxW6Fz/10BpIJrOoq80gmUJZClaWMx1EshqooNw/bxkolsZIJrGDGVshG/6dFj5KhwSuP4ZXH0HEHtEYnHBPbZStUzkflfOyWLgakBOw72CFTZZGpMr5bSpuZvm+b4r/uyDLzqIihYxbxRp94o48fg8wo8/BjXZfYvZiJmXFazKOr8TOC0BVe/PZy87h+ObU/+Rq1P/ka2SrIlUPzWJvmsTZWztQVdZrNw4ubGENtB7VI43Dklas58srVzLhoNe9dETyWrx7ojzdosZozWM0ZUx0jmzV3CZTCTwbXq+A1AK4HrofKeajmDKqxBdUYlL4oL+u/ndYlenSTNWvWMG3aNJLJJDNnzuSpp57qtP2TTz7JzJkzSSaTHHzwwdx1111t2jz00ENMnz6dRCLB9OnTefjhh7u93Z///OcsWLCAMWPGoJTiL3/5S5s+MpkM5513HmPGjKG8vJz/+3//L2+99Vb3voASI4MuQRAEQRjkhNmLvX10h7Vr17Js2TIuu+wyNm3axIknnsiiRYvYunVru+03b97MqaeeyoknnsimTZu49NJLOf/883nooYeiNrW1tSxevJglS5bw/PPPs2TJEj796U/zhz/8oVvbbWpq4oQTTuDb3/52h/u/bNkyHn74YR588EGefvppGhsb+T//5//gDaCpudJa7vIWUl9fT3V1NR89bDmOYzLhQldmANWUhmwuf3Nca+M5FcQA+C0tKMuMZbXvo+JxlG3W19msUaKcIJROKQh/fNfFb2wyKhamlqKyVLuxY3ZlJWr0qMjryn93N9rNYb9ngmmQSkLG+PjoXbvROTffT0E8V19liv3L6TeRHmGRqDPbSu3M4OxrMTEQgDeyArfSpBL++lfdiys5+pLVxIwZN7EmTbZKkXrXbKf87Qx+Iv9b+baiaaL5rtMjFVkTxoHTDC9du5yucPTFq0nuJXLx9uIKFDz7A3GlF/qO6ZetRgWqaqIecmUQrzevlda0jDH/PN0yE9cVKhiWS7Se0vDCDV07zg80Fo75MgBKWZBMoEdUAKAdB2t3XXHjchPvpa1ijUK5HrmYz69evJG6ujqqqqr6ZF/D/0mT7/4GVln71Tq6it+cZuuXr+7y/s6ePZv3ve993HnnndGyo446ik984hNcd911bdpffPHFPProo7z88svRsqVLl/L8889TW1sLwOLFi6mvr2f9+vVRm4ULFzJy5EgeeOCBbm93y5YtTJs2jU2bNnHcccdFy+vq6hg7diw/+tGPWLx4MQDbtm1j0qRJrFu3jgULFuz38/cFonQJgiAIwlCgRLcW6+vrix6ZIPGqkGw2y3PPPcf8+fOLls+fP59nnnmm3d2rra1t037BggX86U9/IpfLddom7LMn222P5557jlwuV9TPxIkTmTFjRrf6KTWSvdgBXnUKOxPe0/dRbqBIhcpUYf3AeByCzEILwA6y68I2gdKlKivMe4GaRSKeV8yCZaFTcpjhaKWCrBpfo+KBw3s8Ds3N0bpWVQV+XT3+jp3m9aT3RCqYzmb3m2m5sOpMAB6rv3d/X0uXePqhrzPrrFui2Ckv5WA32UBQW64yjt/FuoetefHbxTP3Y5etJldm+moZn4i26dvGZ6hlbLAPceNQD0YBOHbZap6/df8qwIvXL+e9K1bnjwVlFLRjvmbiZf52sygJQul56Vttj6v3f/EWwMRx2WH2ogcTn2ogE9Qr3X10rM16QltUkNGttY9yXdQ+UxFDAbq+wXh1hW3DvxVlaKVQzUE8VyzWr+mApTRHnTRpUtHyK6+8klWrVhUt27VrF57nMX78+KLl48ePZ8eOHe32v2PHjnbbu67Lrl27mDBhQodtwj57st2O9iUejzNy5Mhe9VNqZNAlCIIgCIOdHgbCt+kDePPNN4tuLyYSbZOsQpQqHuhprdss21/71su70md3t9tVStVPT5FBVwfYe5tRmSD+yS5QZVrSZoYT1l/MZo1rcRin5diRskVY3yvIGtRxx9QkLNxQ+ONrjTVyRH4drU3WTDjj0jrvFdbcgs7mUIlgH2IxcBx01si3/vZ38nFknlcUuzU/9pnoeahw9QV/+v4K3rfUqEHKd4jVO2RHm0yfXKWNnS6N4ZXTBDr4ylrGWPjBc+NdpFDtxEt2d7KogVyFil5om+jidewFq3n+O6J2CX1PGEd43HmrsXL55S0TyshWmOtE+XZN87i8KttVTvzEjcQavCibeOMzl5dknwcrOoxt9TU6nQFCGVzlr98ArotuCFQw30c5trkuBwxVq9Gqqqr9xnSNGTMG27bbqEI7d+5so0KF1NTUtNvecRxGjx7daZuwz55st6N9yWaz7N27t0jt2rlzJ3Pnzu1yP6VGYroEQRAEYdCjSvToGvF4nJkzZ7Jx48ai5Rs3buxw0DJnzpw27Tds2MCsWbOIxWKdtgn77Ml222PmzJnEYrGifrZv384LL7wwoIMuUbo6QO/eg7YDydXXqFSQNaKUUZyCoMAoczH0fkom8m7GsRh+VQprt0k7Ug1N6KZmGDs62IiOYq+IOUatSoUFAm3jCRYoXaqxJR8LFo+jqqvyr5MJrDGj8HcF9SA9H68lDcBGby0Lkv+er9tot7WvLlUsV2tizUYOylRbxMYkcRMFJ3wX6x7uD6U12g/iuGLgBj+T02Jehy7edha8UEHvxqaPXrkaEkQTYTujyVarvDO95P4K/cxfvlusrE6/dDXlO8yBGGvSWG5QxaKDKfXh3zIKdGonxBrNeqEfuwqqZCyYtYrH/7Sq3fUXjV2KHjeax178Vi8+xcDiH3wQAHZdMzoVz/tuNTaZa28YE1toLeDY0JKOlqmcDXY/XgBKeHuxq6xYsYIlS5Ywa9Ys5syZw913383WrVtZunQpACtXruTtt9/m/vvvB0ym4u23386KFSs4++yzqa2t5Z577omyEgEuuOACTjrpJK6//npOO+00HnnkEZ544gmefvrpLm8XYM+ePWzdupVt20xJgFdffRUwCldNTQ3V1dV86Utf4mtf+xqjR49m1KhRfP3rX+eYY47hox/9aI++vlIggy5BEARBENqwePFidu/ezdVXX8327duZMWMG69atY8qUKYBRjgq9s6ZNm8a6detYvnw5d9xxBxMnTuS2227j9NNPj9rMnTuXBx98kMsvv5wrrriCQw45hLVr1zJ79uwubxfg0Ucf5cwz8yEyn/mMCZ0pTApYvXo1juPw6U9/mpaWFj7ykY/wwx/+ELsd8aG/EJ+uVoSeKB+p+CxOotwszLn5DMR4EM8VKEmAUbfCr9GyTJwXwKgR0NCEv3efWTeQV1V1JQC6vjFaTzmOiR0LFTWtwbLR5UaeUbv25eO7KsrRyRgqG/h0VSRRzVnUHrMdnc7ksywhr5oRuNoHsV8bsj/pzVe1X+YuvhmAxvdYOM1mFg4mq7D2ga+VZBvHn7va1GAM+POdRgU49oLVaMtkLYJx9C68mf63m7ru0wUmixHguK+uNgpacM5qBS/cKDFdwsBxxNWrSQYit3KNQz2YuMb2js0jrjHHtJ3Oe3+V7fRxWnxi9ebaYLkaZ8e+6Lqnd+9BJYNrUy4HlRWsf+3GPvtM/cWcf7uZxvdYjHrVXEsT77RgZXKo+sAMsCWdv7aXpYzSFVw/8TxcneVXDf/VLz5dk9aswkr10qerJc2b567q0/0VOkeULkEQBEEY7GjV/Syg9voQBhQZdHVEUAMRAs+sMPbKtotUJO15KKXQjWZmpBzH+G8BevtOk60YKlzxGFiWUbjAZMaEClQ2i0okIGNUMlNDEdTeBtPWsqI6X35VisapFVS8HkxTfR9dFserNo70VksOa1+wnpt3vAeTgaPttkZ4fcHew4205DSbWnLhCW+5ZoYJ9FrxCmf1kHfiBrO9sGYigJ0jimf48137V6ZmXBhkXiqK4iCyweRQF6jTR11h2r58jSheQv/z6jeWR3FasQbyMYs+HLlqdeRPh2/e80eYl1rl475yFRbxegs/yMKu3uzilo0h+bKJl2H8WGgw1zjteaimZhZNXgbA+q239uGn61tqH/gaR12xmn2HmM8dG1+BnQU7PQKAii1N2Dv3msauZ7LUw/8FXquYL0HoAjLoEgRBEIRBjta992KVYKKBRwZdHaDiceN/BSZzsclIJtrzUIUG755nVK4CxYrWDvChz1fYX0V5tK4K4gO065rthK9b0qisnffmSiZwxxmZpWFKkpaxFmBeVz1vFDUqjRLmjkzi2IGq1JA2+xPOzlJJ44zfD4TKz7EXrCZXaZQnALsevCCT8fivrGbTHT1XiHyrIBnRgvedY2b8L33P9Dl7iXHxVhqU3/0rjraKXfC1XezTZXkgGYzCQBP602mLAgt1k8Grgkxb5QIW+E6Q6ZhWOEHokh83Km6oirWMsVG+TXz3CPN+MoaTC9RyL/APDDKQF41dyvp37+rbD9iHvHzNco75urlutIxVeAmwsuazZasqGP2cUbOsvUEWehDbpv0WlO7HgOwByF4USo/4dAmCIAiCIPQDonR1RDwWucM3T6/BaTGzHacujWrOwr4gnsq1UDHHZLaERHUPA9f40JG+LAV2QSCj1qiWIIarJY3OZKI4MmU5JqAo1INtm+Ya08++Qy0m/D5LfI/JoNTJGCqdQ4W1GDMeXlmgqmVdVM6FQF3TZYniupH9wPPfWc6Rq0zWH4BbpgLH+ALvrB5i+fm4FO2A1+qj/eFHK3rUbxgr1roGnuUCWfCCn1tbtOt6Lwj9yWsX54/TGRcZ1cZLmuPTNQI4Vs6oXaGPFzp/HHsJo4jZQVJ2epTCykF6vLluOGkPnQyuKZSZ+KbQqzCVZOGYL/PYrrv79kP2IWE281HfWI3yiRz/W8Yq6o8K7ii8auJl/ZT5Hqz6JGqfDw39tJMSSD8skEFXB2SnjUMr85+37uAYXlBsOtaYxElryneMAMDK+jj1abwKM3pw9jZHBoPK9dCJ/FesEzG0Y6EywX9pO19yQlmWGXCFF7LQR6Sg8KqdNYMqpwXsFherKbgXoDU65qCDwZSVzQ+6UAp8L1+Ee9c+1r/93VJ8Rd3ilVXLee9y888gV54fbOleHoHP37o8CmRXHpF9xPTLVrdbNLgrHLtsNVYHdYOz1fnbNRGlqWgkCCXhhRvMcX/wrbcUHat+HJymgtJYBfc5cpWayi0qKqStLWME3DDJnAjl7yi8uLG6cZrd4DqXv8Yoz2PRWGNcqTOZPjNc7muyIzSxOhUNRq0c7DnSfFFevJp4vU96ZJAglKkm+XoCdvXPvilNkT1OT/sQBhYZdAmCIAjCYEdiuoYFMujqgD1HJbHCgEkHMkG9TLcMlK+on2ZUMDcFI19NkB5lVKZRLznE95npot2UAaXwk+Zr9lIx/LiFDgJQW8Y60a2x6tdasBvSeVO+nGusKQpuBZa/YqZUZf90UL4PYWB4YFvhjSyL2irPvKfjjqmoHipm/sDJMqldZp9axipyZtLco9uL710R3D6JmdsjfjArdZoKAooVHHnVal65sutq1/RLTb9+gZo1/dLVvHRtvo9/XLKcad+9OXqtfIXVKm9CEAYDry9re2v9sG+vjp5rP3/+2RlFok6TKwsDyMHKqUjFbRljozyjvtu5GPER8XzIRUMW2/Pz15a9+1g48izAWOgMpSD7+D6jBIahELlK8GPmurVnusJptvPmszFNfGQZ1A7QzgpDEhl0CYIgCMJgR2K6hgUy6OoALw5/uy2vcISlM0xcBNE3Z2ehYbKK7BB2zIlRtdm8OeLvipZxCbadEgauKka8oqLjPj06H9PkJsqo2hoj4YSKFMbgNCw5kc2hK4Ng+FQM9fa7+ZllPA6V5ZHypR2FlQ2KsmZyUbFrgPXb7yjF19MjehrU3ppQIQ/tG5JBTIVWkAlqieMTxafsj6lrbqLqNZsghA8vmQ+OjzW1bb/5vNKUMBKE/kbb2ihY4evg+hNrAHRe4bEzwTkQNM2Vqyi43PI0uXIrUvS1bZEbX4ndHJQQ0jpS1nXCYcH7r+LxZ6/s649WEl6+ujjpx4vrKPbNj/loR+E0mS/FL4OWCcO74PWBjNaa1157jVwux+GHH47jlGa4JJYRgiAIgiAIAVu2bOG4447jyCOP5JhjjuHQQw/lz3/+c0n6FqWrA35/7VeKXsfrzN9cJaAKMtg8k+ESC9KG/ZGw9wgzE9p7ZBna0tjBzMhLaZomEsUAaYvIOqFxCjTXxEjuGQHAiH9kSWVyecsIpaIhsrWnET1qRH4GVm5sIKxMmOdMZB/hVSaxbLvYqmKoU2ARAfnJm/KJzB6z1e2rVO1Rts3GTZn4PDCxGrafT6sXhOGCVhRl24YWEal3jWFxqPBaORPvFcVIOqacl1lHE2vycOrMym51Ei/pENsVlAnavRcdZGFb75mAnxpa155XVuXvcBxy8y3YzcH1e6QGDa9eEdhLXLGa6r/4bOmvHROlq9+4+OKLSafT/OhHPyKZTHLjjTeydOlS/vjHP/a6bxl0CYIgCMJgRwZd/cZTTz3FAw88wMknnwzABz7wAaZMmUJLSwupVGo/a3eODLq6SGieF3LE1SbGSzsmDiKxzyy300FpGExcWGREiMl0i2IlMEpXWEXCi4OX0GjHtI/Xx0hut6Ni2Widz0jctRtVWUHuUFPg2kvaxrcr+Dntt3ahRwbpgRr8VIyNz1xeqq9iwMmV559rm7wCmM7/Dn7MzNLD3+nVb7TNYgxLfyjbZEG65aGqCCoolN1bHzFBGCwcfu1qdKpAIdZ5ZVjbxTHWvmNeh75OGqL4Ljvro21FbnQ+W9rOeNCSznfgBWXRdu6C6sksON7EdD2+6ao++GR9xz+/1nEc6svXLKe+vp7q6iv6cY+E/mDHjh0ceeSR0euDDjqIVCrFO++8w9SpU3vVt/xLEQRBEITBjmQv9htKKSyrOOTdsix0CSqG92jQ9cUvfpHvfOc7VFZWFi1vamrivPPO4wc/+EGvd2ywE3q1uOU+2tZUvhE4y/vghd9qq+PbzgTqVvBbKr8gNkyDjmly1eZHrZ9qkdxXRWqbCaSwdtXhp8zM0iovA8vCagnKDVkKtzxGZmSwD5MnR9so257BS/ZjUdZ+JIwz8ZL5ZWGMivI7dl8Oy6SEClmoculYfoXQS6150v5r/Ey/zPRn5fJu4IIwWJh6100AxJS5Dnhl5qLjNFo4wfnixc05EynvMXP+hP+jlVegilmKXLkiM8KYfMXrPZI7M5AyJ6JqSaNbAqnY80ysaVClY9HBX2f96zf15ccdtogjff+htebwww83HpcBjY2NHH/88UWDsT179nS77x4Nuu677z6+/e1vtxl0tbS0cP/99x8Qgy5BEARBEIYf997bd2WsujXoqq+vR2uN1pqGhgaSybzE4Hke69atY9y4cSXfye6yZs0abrzxRrZv387RRx/NrbfeyoknnljSbXipIL4qpkFBOnCsz47Mq1fKMzNICmaLhcWRtVNYrFnjJ/JTmVijRbbSRo0zQXvxhIMVFMcmFoNE3LjSB2RG2HjxoPZiTuMlzPPM6DhPP/T1kn72geaVq/Jq0jErVpMZZZ57cbDCQtTKKIt+BzUUtZ1/z3fAS+poVl/oY5TYaXPoDaujWb5bhlEH/Lb7osWARehD5tmLo+cbvbVdWmfKPTdETvJ+TIOtUcHx7RRm92pzTnjxgkUqr+hrK5/dmxlh4SUUdsZcq5QGLIVXbRrYe+ugwNNINaXz1TOyUr6hx0ggfb/x+c9/vs/67taga8SIESilUEpx+OGHt3lfKcVVVw1soOTatWtZtmwZa9as4YQTTuB73/seixYt4qWXXmLy5MkDum+CIAiCIAx+fvrTn/KLX/yCXC7HRz/6Ub785S+XpN9uDbp+85vfoLXmwx/+MA899BCjRo2K3ovH40yZMoWJEyeWZMd6yi233MKXvvQlzjrL1P669dZbefzxx7nzzju57rrrSr9BbVSq9Lj8FEJ5geKkjYpiFapbdqv76oGo4sc1JDzIGbkkMwoqtmmy1WaWauU0utJIM6nd9QC4VSamIlsdw4srYo1GfrE8cFrMRp7++fBSuVrzt1uWc9QVQSZp4XerwS2Hlkm5Nuv4sSBbqyC2rrDOnPJUXrVSJm4vDABzWiBXrrGzBa7eVr5fQRhshMq7Do7PxF5z7Bb62IWxXG3irIN17Uz+3MpWqsDHK6ghO8pG+XGcJhNjamWy+EEmo7IUdlOzUecBnOEZX9ofKEoQ01WSPRn+3H333SxdupTDDjuMZDLJQw89xObNm0syhujWoCv0rNi8eTOTJk1qE90/0GSzWZ577jkuueSSouXz58/nmWeeaXedTCZDJpOJXtfX1/fpPgqCIAiCMHj57ne/y2WXXcY111wDwA9/+EPOO++8/h90hUyZMgWA5uZmtm7dSrbVffr3vve9vd6xnrBr1y48z2P8+PFFy8ePH8+OHTvaXee6667r0S1RFdRatLSFb/l5dcsFN4j3Ur4ynk+h0qUwypjKvw5VErvFwh/t4WfMTDDWCPWTLSbf/1rQwMabNBYAXV6GTjpkRpjZo+8onBYdZdw99bMDqzZg2Tvmr5eATBBbR+BBFNvVVn4KVa5odm+DyuVryykNuWozxfcTGm1rcgnz2mux0DFNbLtd1B8EvmDXrI768WPmt45q1uWIMiZf+qZkOQrdw4rlL9fz458FQHtep/FdytZ5dcQHp8UiFswrC5VZ1SpeSDumcoZV4FAfXsdC5SyspkFSkR5pk3JNB/FUEuqCjahWE3Nfs2jysoLXPuvfuq3jDy3kEcuIfuP111/nzDPPjF4vWbKEL3/5y+zYsYOamppe9d2jQde7777LmWeeyfr169t93/P2n2bflxSmeYJJ/2y9LGTlypWsWJE3wKuvr2fSpEl9un+CIAiC0C0kkL7faGlpoaKiInpt2zaJRILm5uZe992jQdeyZcvYu3cvv//97/nQhz7Eww8/zDvvvMM3v/lNbr755l7vVE8ZM2YMtm23UbV27tzZRv0KSSQSJBKJbm/LCepxuSmTcWgHdyiVC/7oQCVJQqzOjpQOL158T12rArXF0WhfmUAwzMwyXge4wQA2mcDeE9Q2i9t45XFiTea9zAgHJ+3jxQ68Wcz7v3hLVLW9ebyKasUpD/wExPeZ11PX3AQV5vuKJ+ImszSRb+sUmGlrC5wG06uf0UYVi7zXNFrnfzezLP/01SuWc9Q3Vhe/F2ao2nm1YPrlq9HKuFoLQpcoUo26OLFttvNqesbUiA3VKzdVEG8aqFfhtQoXKPSF0gWZ1lbg4RW+9o3K65aZBd57xuKEmdWuB5YF4WsveB3i+yyaYOrcrt9+R9c+kyD0A9///veLBl6u6/LDH/6QMWPGRMvOP//8bvfbo0HXr3/9ax555BHe//73Y1kWU6ZMYd68eVRVVXHdddfxsY99rCfd9pp4PM7MmTPZuHEjn/zkJ6PlGzdu5LTTThuQfRIEQRCEXiNKV78xefJk/vM//7NoWU1NDT/60Y+i10qp/ht0NTU1RX5co0aN4t133+Xwww/nmGOO4c9//nNPuiwZK1asYMmSJcyaNYs5c+Zw9913s3XrVpYuXVrS7SQCI1qvRkHOiuIcLBeIBy8yFl6Zj9OUn9lpRaSMFLrT+zGN1gq7IYjpaoDRLzTC2CBDNOdCfYN5PnYkdkMWK2e20zI2RiZukx554CldhWiLvOoU/A3d6svetgHz3WZGamKNCisIRdQOZqYf+qm5UVPstFHPVKBk+rYiVpdve9h1q7GDC5nlGXf6XLV57TQZcSKMnbH8At+jQAE74ppAFdPt14cUhPbYkP1J1xpqhQrqv/oJjZ0uuEYoIoUrjDctVLag/Ww5yzPxXIV+hFrlsxlzIxNYTSPMew1NpshjIYXhJ1qjs0ZeW1D+OePnpYO6jb7u+uc8ABBH+v5jy5YtfdZ3jwZdRxxxBK+++ipTp07luOOO43vf+x5Tp07lrrvuYsKECaXex26xePFidu/ezdVXX8327duZMWMG69ati4L/BUEQBEEQOiKdTvPEE0/wf/7P/wFM7Hehy4HjOFx99dVFBvFdpccxXdu3bwfgyiuvZMGCBfz4xz8mHo9z33339aTLknLuuedy7rnn9uk2wtiH6tcgPcaKZozxRoj9xUgb2WpomeSSGRX44jSqIjXGxAoV+HvtixGrM29Wbc1hv70bf6yRTaz6RkgZx2fV0IxyPdwgm1F5mvQYi+dvO/CUkmd/sKLodVhX0Y+ZOowq+J3cinwMl5/Q6BYVqU5Oc6BQhmhMTAtGmSrM3PLLTNxWyFFXrG4T3xXGkZlt5ROGcpVB1QFMZqvyiNzBLRcO/1Y+Fuzvl7X9LaPPFpfsxwORx1t+tP9GrRj1N4umwDoxM9YnXq/xg9hP5RV7CLZHVBu24LnSUZhisMD8Cb0BAbwRgTu9rVDpXF7tylnoPfsgHpaDKKh3ms2ibBtdoITNj39W1K4Qub3Yb9x33338v//3/6JB1+23387RRx9NKvgf/Morr1BTU1OUhNdVejTo+vd///fo+fHHH8+WLVt45ZVXmDx5clGQmSAIgiAIJUAGXf3Gf/3Xf7F8efHE9ic/+QkHH3wwAD/+8Y+54447+nbQ1Z3Ob7nllm7vyFDjL7ebH+TkU2+gYhvY6TCoC959r5FUxj7v8tYoG7/czNxylo1y87X9/JSPnwqzfBTlW2wq3zKvE7tawHGwGoK0ulQSMkEQUkva1F50TVs7o6O6aAc6dhinpfIqFQRxWsn8FadQrQI4/Juro1l/GKMCYDdjXOnL2t+e0kQqp++Y9aKoGctsP/IzihVkfMV80OQNhi3AV1EW5VHfWM3LVxfvY1QrUky9hS5SvTlL2U5zwNQdbJPa7ZIrN8ecm7KKasEWZuEWKlyAOVYD9TfMwo2UL19j5yBXFlzXbDvyDNSOReyNd/OO9GF3jYEdvrJQgf+YisfB89B+4chgYO2HhAOTv//970WlDpPJZJEZ/Ac+8AG+8pWv9KjvLg+6Nm3a1KV2HflhCYIgCILQMySQvv+oq6vDKSja/u677xa97/t+UYxXd+jyoOs3v/lNjzYw3Hly3UUsOuyiKGZBp+JMaDByy9snVzL1lxm2n2CUr7IdsHeGHybnAGDXBdmKTQptg5sM4i3SWcjlIPxhbRtC53/bgrIUTZON/PK7nw3v+ord4flbjTp0zNdX4xcYOMcb4JWrOlZr/355+zFS712+GqXzKpNupTLtL7bqqCtWR+qVnVG4ufykxI/nY7zclAYftG1mU8pTUYyX5Rp1yyrMfMR4fXV1P4QDk8SORpwKc/1pmFxOeqRNcp+5AMUbNL7TapLcTl3YNst9o3KpQJFS2ngQWkGWpJ0tiGOsiuGMqETbgfIVq8D2fPTefaaB6+ZjuJRCpVKQM1naylJoXzPPXhxtujP3/WHPADnSr1mzhhtvvJHt27dz9NFHc+utt3LiiSd22P7JJ59kxYoVvPjii0ycOJGLLrqojXvAQw89xBVXXME///lPDjnkEL71rW8V2Tx1Zbtaa6666iruvvtu9u7dy+zZs7njjjs4+uijozY7duzgwgsvZOPGjTQ0NHDEEUdw6aWX8q//+q+dfuaDDjqIF154gSOOOKLd9//6179y0EEHddpHRwyu4omCIAiCILRFl+jRDdauXcuyZcu47LLL2LRpEyeeeCKLFi1i69at7bbfvHkzp556KieeeCKbNm3i0ksv5fzzz+ehhx6K2tTW1rJ48WKWLFnC888/z5IlS/j0pz/NH/7wh25t94YbbuCWW27h9ttv59lnn6WmpoZ58+bR0NAQtVmyZAmvvvoqjz76KH/729/41Kc+xeLFi/d75+7UU0/lG9/4Bul0us17LS0tXHXVVT32I1VatzZRObCpr6+nurqauro6qqqqurTO/PhnUUE2jjVqJI0zzQh4+wdtpj3ahL2vBYB3ThnD3mPdKK6n6iWHCU+bA8TK5EAptArjvWI4e5tgX1DDzLIg8LMhHkOPHQk5M0NsmVrNk/9zUa8/+3Di2PNX4yXzcSiVb/pkqsx323iQouwdaAyqPSnf1Fr0R5rvd8uSfMH06ZeuJtZkVAGAhimKV67suqr03uV5Neqvq5dH6pWdyddmBPDKNF65H+n/KmNF/m52xsSC+ZErPvzjkuVMv6xA6fqWKF1CWxa95zz8GuP199a8EWRGwYhXzTHmZMANqzIEPnXh8ah0K1GkHdUrjNsK14s3hkFeKopx1ZbCyfioXLDNtEf87bqoNqNubsFPGzVf2TYqmcAL/Qh1q8AyZQ06pasn/y96uo1pq67F6oFFQSF+Os3mVZd2eX9nz57N+973Pu68885o2VFHHcUnPvGJdos/X3zxxTz66KO8/PLL0bKlS5fy/PPPU1tbCxhbp/r6+qIyggsXLmTkyJE88MADXdqu1pqJEyeybNkyLr74YgAymQzjx4/n+uuv55xzzgGgoqKCO++8kyVLlkT9jB49mhtuuIEvfelLHX7ud955h+OOO454PM5Xv/pVDj/8cJRSvPLKK9x+++24rsumTZs6rHTTGT3KXhSK2ZD9SVSAlkwmkt2Tu+GNReVMe9j8Mx//1G5yZaNpPMQMliY804AKBk5obeR114wSnH05yOQgvK/s+xBe5Hwf1ZKNXscaC/0OBCCyz3jfOWZg4iUUftx8XxVvafy4igZkygOVVVi7zf27Y5etjm5TvnRtO9YNF+aD7hP78nOW0L7i2GV5w1Pd6gyLimPHgoFXeLuy2VQ/9+OmP7/MC10rsDMWyoVYcKc5upVYMF06emXwOYNrcncGhsLwRbfkZ+qxRmip0WQCE+XYNh/l50dTVi6f6NE6kL7QyDn/XnCsOqBjilxQBsjOalRwrvmOwk3ZxJrCAvIWTkMKKyoT5Ea3W3Q2i9/U+9p2w5VSxnTV19cXLW+vHF42m+W5557jkksuKVo+f/58nnnmmXb7r62tZf78+UXLFixYwD333EMulyMWi1FbW9smM3DBggXceuutXd7u5s2b2bFjR9G2EokEJ598Ms8880w06PqXf/kX1q5dy8c+9jFGjBjBf//3f5PJZDjllFM6+IYM48eP55lnnuH/+//+Py655BJCbUopxbx581izZk2PBlwggy5BEARBGPyU0DJi0qRJRYuvvPJKVq1aVbRs165deJ7XZnAxfvz4NvWNQ3bs2NFue9d12bVrFxMmTOiwTdhnV7Yb/m2vzRtvvBG9Xrt2LYsXL2b06NE4jkNZWRkPP/wwhxxySLv7X8i0adN47LHH2LNnD6+99hoAhx56KKNGjdrvup0hg65SEUjhflMz5a/sBiD1dtLcMrSNnLFz9giqtvpkq83rfUdUMPKFOrN+MOPUCXObUjWkjZJVmA0apl3HHFNKI5Ds7fqeZVEcCDiZIMHBAi/4+kKFyQmy1uP1xsbDCwLVMyPyQepuEmJN+bZuGegYVG01v3es0csrkAHxugL1697i4H0VyFexeqDg57Vy4McVdkugQtRb+eLdbvuFsQtVuOmXrm7zviA8tuc/WfD+qwAY89dmGieVRfYyvpNXe/0YWJ7OOzRootJAANpW4SUKFRS4jpRiHyxXR5YRSoPlhfYRpp/QpiJR79M4pZzyILDezmTxW0xNNe15xkIitJsQt4g+48033yy6vdha5SqktSOB1rpTl4L22rde3pU+S9Hm8ssvZ+/evTzxxBOMGTOGX/ziF5xxxhk89dRTHHPMMR1+hkJGjRrFBz7wgS617Qoy6BIEQRCEwU4Jbi+Gg+iqqqr9xnSNGTMG27bbqFo7d+7s8NZaTU1Nu+0dx2H06NGdtgn77Mp2a2pqAKN4FZYeLGzzz3/+k9tvv50XXnghymg89thjeeqpp7jjjju46667Ov38fYUMukpEmPasPB+CuIT0oaNQnmbXe42EctD6XWz9+BimPbwvWi87xtg+OI05rKxH0+RyACpe81B1mbyKogsSTXMuuqHRpFcDVl1TX360Ic0ff5hXmmZcaNQg3QSxZs1fbjfvffA/bgGlaDFVldBWXpHSjpnVhxc7KwuVb/uUv2WSI7ykg5csTgJurW4VEsZ0Kd9sxwpCW+wms63QEHXGRavJBoWz/TgcedXq6BBobewatoFAMXPyhbTbayscWDz+7JUALJq8DDszBddcYshWqChBRFuQSyliLWGZqkDNCtUmpSNLCKfFJ1uRP+a1BV68wArFUaggZssE66vIciU90sJJazKjTfBhqqEcFQTVK9tG+36+ZFA2G6lfQKSAHbD0syN9PB5n5syZbNy4scjOYePGjZx22mntrjNnzhx++ctfFi3bsGEDs2bNIhbcqZkzZw4bN24siuvasGEDc+fO7fJ2p02bRk1NDRs3buT4448HTCzYk08+yfXXXw9Ac7P5P1xoagpg2za+3yposR+RQZcgCIIgCG1YsWIFS5YsYdasWcyZM4e7776brVu3Rr5bK1eu5O233+b+++8HTKbi7bffzooVKzj77LOpra3lnnvuibISAS644AJOOukkrr/+ek477TQeeeQRnnjiCZ5++ukub1cpxbJly7j22ms57LDDOOyww7j22mspKyvjs581SW1HHnkkhx56KOeccw433XQTo0eP5he/+AUbN27k//2//9dfX2EbZNBVamwLkub+eHxfFivjMuHpwOrBhyk/2wGumT5mp4xm36FGohj5d43VnCOxOzBA9X10dQUqG0gue+tMKSCAeNyUzAiMNGluYdGEr7B++x398hGHKi/c2L7q8/sft1Wmjv9KPkZKW5AZaZ6PfzaH0+xiZc1v6Cds6qfE2qwPcPQlq3nx28Xb/MfK4teh+uakNfb2/Ez+hRuWR3FafgJThiXX8Wd7ZdXyaJtOFqmxJrTB37OX8m1TaAw8HdNjiLIXnRaNF1fkgnJXdjZQfINM7EJfTm0pYs06UqT8mEWsWeOm8hYSoemqldM4aU2u3LzOjFCwD2KNQcxXZQK72tzm0s3NKM9HBybQyrYjlQtE6RqI2ouLFy9m9+7dXH311Wzfvp0ZM2awbt06pkyZAsD27duLvLOmTZvGunXrWL58OXfccQcTJ07ktttu4/TTT4/azJ07lwcffJDLL7+cK664gkMOOYS1a9cye/bsLm8X4KKLLqKlpYVzzz03MkfdsGEDlZWVAMRiMdatW8cll1zCxz/+cRobGzn00EO57777OPXUU3vy7ZUEGXQJgiAIwiBnoMoAnXvuuZx77rntvvfDH/6wzbKTTz6ZP//5z532+a//+q/7dYXvbLtg1K5Vq1a1ybos5LDDDisyZh0MyKCrVIQzMq2NkSngx23sxgxOU5BdmHPB1yb7ENh1TDKK8XGC0kGxd4P4LAujcnkF954Dzy4dt03MRLOJKyIey/t5CSVh0x2Bz9fS1bhl8NdbzOsT/vUmchUJfMeombUPfK1ovSNXrY6MJN3RmqNXrubF6zqOqyrMgmxtcJsea66QI15RuOX57MvOePHby5lx4ero4nrkqtWRCiYc2PgtaUb/tQmUCeqqO0Tjx8zBmtqpcJp1ZHjqxTVOi44KYpsYL3NQ5coVvmPKWpm2JmYrzGa0chorF6pgyhSBL7iMaWWKbQM0TyyjIm1WVIk4NDYZT0JA+xor6UTKV6HqJQhDFTmKBUEQBEEQ+gGRR0qECry4imKtAG1ZxV4imQz+SDPTbKnJx0ls/5dKap5pwkkHs7rmDKQzkAirHGtoaDTP4yPBsiK3aZVI5FWvDlhUE8i0jsP6t27rxSc9sPjzXcUq0f6Ki6en5KAl8CTabTP5FztZ9IuVAOTGVqA8owBs/N3lANgZM6tXPpyy6AZ+uz6vdr2+PB9r9t7lq7GzXdvnF25czjFfF98uoZiN3loWjjyLUc40ANKjymiZYI6/XKUi+a6icmvg/Zc1MV6hp5eTzt+X8mIKL1ngUO+Bk9N4iUJ3+6CQe1KZ7MZk4OHlm3ivMHbMdyxS75hrnFPXCOVlqNCPsLHJXPeCa+vjTfeX+BsZYgxATJdQemTQJQiCIAiDnIGK6RJKiwy6SkVYnFUptBP4yng+VnMmilEgHjO1xuqNKvWeJ8vYc5SZ5TVNgG0nlTPpl4FiVZEy6lm6wG0+yIpUrgf1Dfksn1wuXwy7HebN/SZOWTC1bGhknnUGABv9n/b6YwvFTHtAs2e6mZmP/lsG9uyLYvycuINXXuz8HGZ5xRo83Aqbjvjr6u7FZf3tJonjEtqis1liu0zcaNmOFFbWHJtuGbTU+JF8VbXVqF3pUea1l1BYrvmPbXka1QKJoPJCtlKhvHzdTzSR6uWWGaXLCpOyE2A54Np593q7MX+Nc8dXR69VIg4taR7b+/0++jYEof+RQZcgCIIgDAVEqRryyKCr1FgKFXg42Q1ZUyMxJIjBwjXZOontDdTsMfELzQeVE6t3UYWxWZ4PmWCKaFsm8xGMh1cmizUmKLzp63zsVzvsO7KMURmjhFmA/Z5xvfuMAosOOh8A3dyCipvf0D9oHO6kCiY+vtM02rUXrf3oGFB7G7Cc4tyVltFG3ap4o4mWcRXM+bebgbZZkYJQCvyWFqx6Exta9u5ItGX+BZTt1Lg7LBpMuBcNkxTl24j+yXtx0EFsanKvj1umaB5rjuXMCHDSpqYpgJtSZKuC+okKYi1EKVsK43mXqzCvK94ElQuukakkfswiO9n4dlkZn+RbdX3xNQxNJKZrWCDZi4IgCIIgCP2AKF2lIvSQ8XWUSWjlXBPrFdYS842Lsz9uhHl/TwMqYxSq8r9nUTkX4gWKVWNTVHtRu24+C9JxUBXlxR5esfZ/ykWHX0x2UQ2ZcSZjMpaMkR6XbLet0DUWvee8fJweRL9DbmSSimf+GS02KldBu2w2iucLGf2Cia+x6pqp2GrjlZnf8cRP3sRTD3eeKSkIPcHfZ9Sj8tcqSL4b1G9typCpqcRyjWq792jjPJ/cZdaxPFOvFCC1M0NmdJxcuVFpLdfEbHnBpUv5UP6OOe6trKbxPXbkR5grz6tcAJlqcEcG9We37yO2t4X0GNOROyLGbzZc2zdfwhBEAumHBzLoEgRBEITBjtxeHBbIoKsEzLPOQDmBt4zroptMdXMshSpwUdZBbI9bVQNAbPM2VJmZaSrHNvFboUeN75uMxMDzSyWT+fiwICYs8gPz/DZuzQuPvcKsl84w7k9NNEwNZrSuk1fehJ7h+0VKlz/F/J5OQ9b8xoG6pSrK0S0tUSyezmTB3QeY3+ex56/Bbgpi9rTGeacOa2SBDDCImPll4/v13N2SFTnU8ZuD69PWt7HLjcqkx4wisbMJP2aOv2xVjKaDNHaLUdcrdvjE68z1x3I1vqPwgkRcKwfaycd0jX6xBSfIkExPqsK3bVM/FKJ1/IQ5J9JjIVcV+HTtjZMdU07jRCOL+fLfSRiGyGEtCIIgCIMcub04PJBBV6nQYb0wHyvMJHQ946VlhfFePlgW8S3vmraeh04HrvKhwpUJpou+NjFBbqCoZHPGtwagoszUcQxx01HsF8D8D16NnQ58u3I5ds8oxwqc0DPVDuVbm0v4wQ8sFh1xCWiNDr5/NXpk9BtZTRn0xHE0HVwNQMVf30GlM5AKflul8r93c+BF1BRktDY0QioZKWhWxpNMRqHkFHrzzbPOQAXXJrV7L1RXEWs0x3Vyr0NmpMIL7P0ylRaxRnNsNkxJkh5pRXUZy971qXy9Kaq20DilnLoPGGU9a06F6J+9HzMql58IjvO0FVXlaD5kJL4NmSApu7Beo4DcXhwmSPaiIAiCIAhCPyBKV4nQQdyOZVnoUSMAUNkcqqERHcZgBSqGrmsgaGzqJoZ9tOQVqzAWLKzpSFmxkzmen4/pcmzWv3YjU35wAwCTJpZRuTdQsyorSO3x2Xt44DydtPndz75Rks98IKK3vwPxGCrwSPOryyKfIb8iiVYKK2uOBX9kOZnDx2KnzftOQwbr3cB3qLGJeXO/iZ00KphqtsH18IPX6bGtfu8B4tgLTCyXXwXx+gHeGaGkFKpeC5L/jnJdYvXm2hQfPY3EPjuqr5grBzdpXuTKLLQNTpCIm62wUDmP5smVAHhJi5YJOnjuozyFlQvkrLBwhxdkZTuaHXMCn7sYaFuj7eBami2oWSuI0jVMkEGXIAiCIAxyJKZreCCDrhKjfR/LNcqGN7ICu7Epn8FYljKZg0H8lm5simomas9DH3IQ6p9vmbZxC2XH0GNGAKDS+UxG0lnwPda/flPRtqdfZ0x1Go8eS8u0kQCk3tiHtvJ10bx0X3zq4c+isUsBUKNGoKsr8Avi9FQ2UDK1xsp5pNImI1HbNol3msmONYExLe+poCxoq7Ieueo4zm7jDq4zGVQigcoFUoAGOzPwV0g7OF58WzIXhzN+Nouq87APngqY+orJ3ZqmCUZtcpohPdoc82XveDhv+fhx817jRAe3OknF394BYN8HasA37yV22WRH+kUKy7g/we6jg5qOSU2uMsjutTU6rlGBwqVyonQVIUrXsEBiugRBEARBEPoBUbpKRZi9mMlA4PisqlKmTmLwHjkfci6qwHU+9O5SMQdeexMV+OaQSkI6g6o3fje6sgwCR3q/oooNf2wbl7X+Hyam6/hzVzPuj2YfdMxmz1FW5HnTNFmmOl1hfuwzAKh4HGXbqMrAPyuTRTWlUYU1NYPfU2mNjtmRD5rKuuBYxHeb+Do/EYsyvLAUsfosXuDGbe3eA5aF1WSyGlM7bbQ98DN9J1Db3LKB3xeh79jo/5R51hl4m7cCUJZwiI0qIzPCZCE6aWgZY9pWbvWxXJ/ELnOs2ukkDZMSjN4SxmJppqw3Cn783Ub+8flRkS+XlVW8exxR9qLyFCpKxFZo5aODa5WOybWqCFG6hgUy6BIEQRCEQY7EdA0PZNBVAsJZIhjlym8M6unta8I99D14SfM1x+rSqL+/gb9nL2C8uVS1yfhJHz6e5MvbIRlkrWltnOcDby7l+pE3V9Nh1e3uxzErTKbZxD/sw9q5z3QzshJtE3nqvH7BihJ+8uHJguS/5194HjhOvgqAUtBU4HNmWfn6ivEYyi+4qvk+2oqhsuZ9O+1G6pVqyqI8Hx36JI0aCW5ePXPeqYuez59zDRtqr+j553n/VeaJ1jRNrqBuqsmI/dst+4/R+uMP5Xg5kNCuUahUSxan0aFim7keZapVpLTH92ZRWkdZu8mt+0j+PUPzdFOZoWmCTbzevKdjNjqmie8NjnMPsiN0/p+/Ah0W4Yj54CkIRFUvKUZdwvBDBl19gM4GpV0aGnEPHo0XpFrbLQ5OWSoqiK1zOVQQSB/f1YweUYFqDCKXs1nzTzgdmKXGY2TfMwKAqud3trvd1J4gIDXu5MsHZVyUC5ZcvzplQfLfo1u92vPyZZ2UZQbA0WBKG1sP1c7ttnBgFhQf1/EY+JhC5mDWCU1sYw5W2sWPB21TcfxUDHuHGZCTcyG41azSbkkKYGvHItboMeJ1me4K+yGXQ2VdnLS5cGQrbezAIsJP2MR31Jtb6YA7qhy7Kca+w8LRE+w9wkwWLTcO+JTtMG+V7/B49zg7KnrtxzXEwkmLbwZcjcG/JUeO0yLk9uKwQAZdgiAIgjDIkduLwwMZdPUBkWKSyRLf3UImsAywcsGtqsDwVBEE3oMxzdQaP7SI8JKonXsKilx7xN5tCjbQ/pkz8nlzS8pqzuCPrjILlcJP5G8vCm2ZZ50ByoqMaJUNKh6Ylto22HZxwoNlRb8hkFev/EARCwteK2UUq0JVLLwVqZSxm8iFv6+P1ZzFqzFWH/Zbu/BGGznAakwT35vlpP97IwD/++iF3fp8jz97JQAfPelbxBqyxOrlyit0jq5vxJs4mlyZUcyzFYp46Omc8dAx29jYAKosjlceJx4cV9kqhRf8Z2kZByNfsMiVm9d7D7dN2Z8wb97S4Ibnh4V2NMkJ5jr36qfExFkYfsigSxAEQRAGO3J7cVggg64SEZbUCAPqwcR2WQ1pnLLADFUpiMdRjlFJvAmjorb2jr2mQHYQdK89GzuZyBe2dj1UqHB57ctW0fu2hVtpAmB3fDCFl9DYLZLyv19Caw9VYF9nhTFdgSWIpYyCFf4GjpNXr7QG34uMIdEWOllgE+F6edVLa1RL1vQF+JVJUxYqLHAej+dVMNvGyvlRMeITzriZ3/20+0Wwn/jfy7q9jnBg4jc2YWVyWK5xVdYOxJvCYuxG4QqPZeX6WE0ZKt4y1zm33GbvoeYal9xlyvuE5sxuCvw40fXIbrGJBeWlclXgVvi8+kVRuNpFBl3DgiFhjrplyxa+9KUvMW3aNFKpFIcccghXXnkl2TBgPUAp1eZx1113DdBeC4IgCIIg5BkSStcrr7yC7/t873vf49BDD+WFF17g7LPPpqmpiZtuKi6Fc++997Jw4cLodXV1+/YK/YLnQUsaZ6+Z9WnHQVckURmjWGTGJLGbjZphKwsqEriBKqa0xkqXo/aZMjHkchAUUsaxaQ8/Zda1MznsjOnXyoKdVvz9cinh0iGBshUWLVeFX68XqFNWwfyksNi47xfHbPk6r4JZFjiWUTghUjijPor2QeHH7LyKEHOw6k26WNORY0i+m44Us2ylqJZC32IlE+D6Jv4K8B2INQZqb9zJq7eA9c5e3EljSb5lYkp3zR4TxZAm9mkyIxSu8VglM8bDbrZI7M4fw6ndpq/YZk3tA91XcA8UFJGbRq/6EAaWITHoWrhwYdFA6uCDD+bVV1/lzjvvbDPoGjFiBDU1Nf29i4IgCILQd8jtxWHBkBh0tUddXR2jRo1qs/yrX/0qZ511FtOmTeNLX/oSX/7yl7Gsju+iZjIZMkEGIUB9fX2v9qvQKNXPuajGJlQQD6SSCXQqjg4Uj8SuNJkxJtjBnTACNGjHzEWy5Q6+U0kyyBAKvb0A1m9Z3e62syNMHJcTt6PYoHgDuBW9+kgHHMpSkeeWdswpogLvLaUsk8kYxH8p284rj55v4roiFStnfvsw09EqmGfaxlRVx4OMyUwO4g5+yvgbeRUJnF0mi6v8tb3omI2XLOurjywIAPkM3hHV+DGbbKW5dlouxOqDa5EX+gEGbbM2bkWM7IgRALgpRXJvvnxUZiSm6DWgEz6qIa/4vni9KPBdRSwjhgdDctD1z3/+k+9+97vcfPPNRcuvueYaPvKRj5BKpfjVr37F1772NXbt2sXll1/eYV/XXXcdV111VV/vsiAIgiAIBzgDGki/atWqdoPfCx9/+tOfitbZtm0bCxcu5IwzzuCss84qeu/yyy9nzpw5HHfccXzta1/j6quv5sYbb+x0H1auXEldXV30ePPNN0v6GXVLGt3cgm5ugcYmVF1T9J6XdLCbPexmD7ciRnp8kky1Q6baoWW0TcOkmFFRHLtDb65Cfrv+In67/iIaD0qYOCOlGPlqM1VbZHrTKdpHWSp66MJSPlqjLMtkkeZcU7zcUqYIdqhghf5cjm3KONmWeahWp5fnR79L1LdnHtg2WAor42JlXJw9RiFVvk92XAVeZTIK6rBy/fKtCAciKjhuczlQCjdlHnYaLFdjuRrtWHhlcVomVdMyqZrm6TV4KSt6xBvz50+mCnKV+dd2g5nnv3j9clG5uosu0aObrFmzhmnTppFMJpk5cyZPPfVUp+2ffPJJZs6cSTKZ5OCDD243me2hhx5i+vTpJBIJpk+fzsMPP9zt7WqtWbVqFRMnTiSVSnHKKafw4osvtumntraWD3/4w5SXlzNixAhOOeUUWlpa2rTrLwZ00PXVr36Vl19+udPHjBkzovbbtm3jQx/6EHPmzOHuu+/eb/8f/OAHqa+v55133umwTSKRoKqqqughCIIgCIOOfh5wrV27lmXLlnHZZZexadMmTjzxRBYtWsTWrVvbbb9582ZOPfVUTjzxRDZt2sSll17K+eefz0MPPRS1qa2tZfHixSxZsoTnn3+eJUuW8OlPf5o//OEP3druDTfcwC233MLtt9/Os88+S01NDfPmzaOhoaFoWwsXLmT+/Pn88Y9/5Nlnn+WrX/1qpyFHfY3SugsSyiDg7bff5kMf+hAzZ87kxz/+MbbdfgZfIbfffjsXXngh+/btI5FIdGk79fX1VFdXU1dX1+MBWKFXl7JtVLBtlUygHAcqjD1zdtIo3IrgDq+vyVXYNE40B4ObgjEvuJS//C4A6/9xQ4/2Rdg/kSN9EHOlCo+tUNEK1alWx52KOcarK3zPKbhjr32Ix4t91cKTPch+1NFrhVeRjOK+rIyLFdThbDpsFMmdLeSqzHG0c2YcK9O1gtWC0FXmWWdENUftkdVkp09m7xEm5jRR51O2w1j0+DELP6bwEuExDHZWR6lx6RE2OjiscxWK5hrIjgg8vjywMorXLhwehdRL8f+iq9s4+pxrsePJXvXlZdO8+L1Lu7y/s2fP5n3vex933nlntOyoo47iE5/4BNddd12b9hdffDGPPvooL7/8crRs6dKlPP/889TW1gKwePFi6uvrWb9+fdRm4cKFjBw5kgceeKBL29VaM3HiRJYtW8bFF18MmPjs8ePHc/3113POOecARniZN28e11xzTXe+pj5lSPh0bdu2jVNOOYVJkyZx00038e6777Jjxw527NgRtfnlL3/Jf/7nf/LCCy/wz3/+k+9///tcdtllfPnLX+7ygEsQBEEQBiNhIH1vH10lm83y3HPPMX/+/KLl8+fP55lnnml3ndra2jbtFyxYwJ/+9CdyuVynbcI+u7LdzZs3s2PHjqI2iUSCk08+OWqzc+dO/vCHPzBu3Djmzp3L+PHjOfnkk3n66ae7/iX0AUMikH7Dhg289tprvPbaaxx00EFF74VCXSwWY82aNaxYsQLf9zn44IO5+uqr+cpXvjIQu2xQFtrXqDCbLeeaeIkCaTP0wbF8yJWraIaoPGg4yMGLj+vnnT4wUQWZhdrzohk/SqF9P69+eV5QezH06cq71UcEdRux45DNQjYIwkokIBtkylaUQc5FBWegtk3GaZgR5qUcVM70U/ZGPbnRZZE3kheXuC6htCys/qJR5YMsXcpS+HGL5F5zbKfeyaCDY94tN0pWeO1ymn3cMivKdPRjxW5Qllu8Lb3/mxRCe5TQMqJ1ln4ikWgjTuzatQvP8xg/fnzR8vHjxxcJHoXs2LGj3fau67Jr1y4mTJjQYZuwz65sN/zbXps33ngDgNdffx0wseM33XQTxx13HPfffz8f+chHeOGFFzjssMPa/Qx9zZBQur7whS+gtW73EbJw4UI2bdpEQ0MDTU1N/O1vf+OCCy7AcYbEuFIQBEEQ+oVJkyZRXV0dPdq7VRiiVPEgWmvdZtn+2rde3pU+e9vGDybD55xzDmeeeSbHH388q1ev5ogjjuAHP/hBh/vf18iIpC8IstaiTLjA00kH3k/KDdziMx6qLFA2EgrfVsQCA/r0aNh3lM/e9/bzvh+AbPR/ysKqM6PX2vPQQc1LBWAH3lwE8V4Fypa2QVmxfGdaQ0u6eAPhhcH3jPIFkI0VO9lrjSqYSHjJGH7CHBtNNXHSIxXl7wTHkQPNE4ZEKKYwRNCZjIlrDBVdxwEN5W+bY9lK5/Dj5t+Fl7RMBm/OHI/pMTG0Kq6UEKpbuTLjZm+FYY06r+YL3aOUPl1vvvlmUUxXeyE4Y8aMwbbtNqrWzp072yhMITU1Ne22dxyH0aNHd9om7LMr2w0N0Hfs2MGECRPabRMunz59elE/Rx11VIeJAP2BHP6CIAiCMNgpoWVE64z99gZd8XicmTNnsnHjxqLlGzduZO7cue3u4pw5c9q037BhA7NmzSIWi3XaJuyzK9udNm0aNTU1RW2y2SxPPvlk1Gbq1KlMnDiRV199taifv//970yZMqXd/e8PROnqAzZ6awFYUP45dDrvdh/V8AsCCq2si501P4GbckjU+zSPM+NgLwXKU+i4KBr9gaquipzlVTqDX9/QfkOtTYxX4aKgooFRwQp+LyfIZgwVLaWMj1f4PJY//bTjgO9jNRv1wLYV2RHGnd54JUHd1DCmRke17QShVChL5bNzm1tI7GwylRKgSJWN1ymyVTG8VFBT1ipWs4zqZZ6H1TDs5kD99+Hvl0rW7VBhxYoVLFmyhFmzZkVWTVu3bmXp0qWA8bl8++23uf/++wGTqXj77bezYsUKzj77bGpra7nnnnuirESACy64gJNOOonrr7+e0047jUceeYQnnniiKMB9f9tVSrFs2TKuvfZaDjvsMA477DCuvfZaysrK+OxnPxu1ufDCC7nyyis59thjOe6447jvvvt45ZVX+NnPftZfX2EbZNAlCIIgCIOcgSgDtHjxYnbv3s3VV1/N9u3bmTFjBuvWrYuUou3btxfdqps2bRrr1q1j+fLl3HHHHUycOJHbbruN008/PWozd+5cHnzwQS6//HKuuOIKDjnkENauXcvs2bO7vF2Aiy66iJaWFs4991z27t3L7Nmz2bBhA5WVlVGbZcuWkU6nWb58OXv27OHYY49l48aNHHLIId396krGkPHp6i9K7bsyP/aZ4jgJwEqlzOuxo8i8x2yj4SCjajSPMzPK9DiNV+6zZenXe70PQtdYePRlAKj6RnRTs1noeUGtxSAYNB4vXqlVbUWlCjIbw+WhSuAUpG3F4yZWLMxkdawiNUE1pUkfbGIg9h4WJ1uVz/pKj/Ox08PH60gYeBYk/x2UhVUd/MNyHHOMhlm9MQev2ly3rIYM2ZpKMqPM7SI/Br6tjFcXkB5hkRlhVstVAhY4wen00jeHl8rVnz5d7z2zND5df7236z5dQukRpUsQBEEQBjsltIwQBg4ZdPUxVioVKRjadY0jfYHiEXovWa7xXwpTG6ycIrlZDG36ExWoWbqpOT/DtxxTezHMWFSm7mIbNQvyqlekXoUmXMG6WoMVqp42WqmiVBZtK5QbtHVd/Lh508oBKn9rwMqJyiWUFuNNZ0FZmVnge9DSAoEqrxMxdHDd8qpTKM/PewzmQLkaP0ji9RImdgtMnJcbQxCEABl0CYIgCMIgZyBiuoTSI4OuPkaNGQ1BdhstaVR5GXp0NQC5kSnSo02MkLaMk7MVNNUKXrx+eMU/DHbCmBWbsdDQZBZms2hAhS7zvjaO86GalSqIsWhuMSpmoGbpVAK/PIGVDTy/MnkbeR2z0TE7ihXDsozSFbRFa3Ipsw07pyl7B1pGG2nBbunYmFAQeoJVWYkaO5rse8y1Kf52HWSykeLrlcXJVZpzwHJ9vKQdxRj6tsK3ITPStHUToIPTJfUONB00/GK5BgS5vTgsEJ8uQRAEQRCEfkCUrj5GlyciTydlWVBZHqkb2lJYrnlu5yC5z8NNmHHw32752kDs7gFN/SHlAKR2xkm+FSxMx1B2wdxEKXTMQWWMs7xOxnjsr98EYJ51Bhv9n0ZNP/Lh67AyHn5wmllaQxCzpS0LPxnLK10adCyfzZg7qBo3ZY6cTLVC6Xz2Yli1oNRMvf/b0fMtn7ukbzYiDEr0lIlkR6VommiU9xH1SawwgxcT72hlzbHrxy3cpFFmwXh0KR8S+8yx7I9ReMF/lliz5u+XSvxhKVBB1Yre9iEMLDLo6g/CwPlk3NxCajb3EOM7fJQfuAdqh/995MIB2kEBwA3uFNYdEkdb5jZL4p1mlNZRCRTleShPs/7FG9usXzjgAvjVr1dywhk3U/Z2S9B/Mkqc0LZCO4VR9OafmRX8I8tV2NGgy48Fj+BsrXyzjy6cniVBHwcouVEpvDIbL/DujY7NoHSZ1ZTBCY7d3IiEMQkOE4QU+HHIVAXHbnk+kL5pgtwKLxlye3FYILcXBUEQBEEQ+gFRuvqYx/72LT568rUAqJyP3ZSJgrAfe/FbA7lrQiv8WFiYGlrGBZHAqpz4vnwpJ00+gLgr/O6nX2POv90MgJXT0e1kK6fRtiLWaJQEP27hJS3sFjdaN228UbGygMoXEX72B310uyaTn4NNveNmtnxFbnEfKOw5KoGdITo+I6Nez0hWyvVROVPnx3J97KyFH5Qo82OKXLkqLo0VHEovXicB9KVCsheHBzLoEgRBEITBjtxeHBbIoKsfeOLJSwd6F4Qu8Oc7zaz8/V+8JYqf+u36i3rdb+0DbRWjuYtvpmmCFQVqlb/jk61U1E8y5pTp0aCDfXBTxoCyfHuvd6VzyjxIBxKFp5jy/Rt54yyJMzwQSI+FWAOUvWNeq3Qgq7p5CxOCeEPlaeyMH63rxW20BX+9RVQtQdgfMugSBEEQhEGO3F4cHsigSxBa0WcxU5hYKYAax6hZXlA/OzPKIl4H2RHmtZvMx3A5LaA8ooLCfYoXFjj2URqmfu8mAKy0xesXSOr/cOOw61YDkGg0imoYmKW0hpiTtzTJuaigno+V9fDjFr6Tt4zw5T9J3yO3F4cFcqoIgiAIwiBHlK7hgQy6BKEfCTMCD87eguXqqGhwrhKsrDLFrQHKNF7gG5bYq0DDH3/Yt0rTls9dzNT7rzcv0ha4iryzr1ythyO5USYj0UtZ2C0qyjpEa3A9SATGXa4bFX0P/bmUX2DsK+ZDgtAlZNAlCIIgCIMdub04LJD5iSAMAK8vX4FyVXTLwGlSaBuylebhO4HylVU4LeCk+36fDn/oGpTloywf7WhwtFG6xFR82KIdH+34oEzcoBdXeHGFXxZHV1VAImYeqaTxF7QslOtjZX2UH5T/qdfY2YH+JAcG4fWipw9h4JFBlyAIgiAIQj8ggy5BGCD+sXI5r124gtcuXIGVg5evWY47wsMd4WHlFIm9kNgLvg2b7uh7D6SDry6WK7QCbWu0rXn9fHGnH44oX5lHkCkb1fmM23jVKfxkHD8ZR8cddMxGx2xUzuOJJy/FTQaFrxX8dbV4dPU5WpfmIQwoEtMlCIIgCIMcyV4cHsigSxAGAS9fs5wpP7gBFWSGuSNdWmxT5LH6NcWJn7iRp37RN+7wRz+yCoDGCypRYe09PzJs6pNtCoMLO21iB5N7g1qLnkb5PjoWFBrVFtoJbowEx+gz/y3qpyB0Fxl0CYIgCMJgR7IXhwUy6BKEQYJSRAqTyimUa557MXj32L47VVveqDRPKjy0l09VVJ5Clbt9tl1hYJl6942Rv5aX1DgtCjtj/itrWwE2yjPKl5tw8FLmGLRcv73uhD4mzBbtbR/CwCKB9IIgCIIgCP2AKF2CMEhQMQ8aTQyN8hR+0qgOYY27UnPoDatxy32cTFBDL6kILfJVeY7N/7GyT7YrDBIU+Zg9DXYzOE3GoV55JtMtdJ/343a0WlNNvL/3VAC5vThMkEGXIAiCIAxyJHtxeCCDLkEYJGz+j5Uccsst+QVB/EV2BLz6jdL5IE29+0YArLhNrMHCKws2pBV2k4k4+Oc5onINd1TaMlUHACywc5Dc0QSAW5VA+fnam06zS8MUUww0VyElCgaEUvhsiU/XgCMxXYIgCIIgCP2AKF2CMIj454oVfdb31Puuh2abUL6wsgrlgx+qHX7fbl8YXChPYeXMsaAt8BKQHV0GgNOUxUs65KpjALSMtnHS5jj5853iPj8QyO3F4YEMugRBEARhsCOB9MMCGXQJwgFErC6fhYYGt8KP4nq2fLlvHO+FwcXBq03coOWC05xXutwU5CrN8eE0BapImNxoQe1PxIFeEHqLDLoEQRAEYZAjtxeHBxJILwgHCkqTG+Xmna0V+AmNKnNRZeI8f6BhZRSxOojVQWIPJPdAfF+O+L4cdl0LsXcbSezKkNiVYfRf6gd6d4Uwe7G3j26yZs0apk2bRjKZZObMmTz11FOdtn/yySeZOXMmyWSSgw8+mLvuuqtNm4ceeojp06eTSCSYPn06Dz/8cLe3q7Vm1apVTJw4kVQqxSmnnML/3979R0Vd5f8Df44wMyDqSEAMk4hoarKUJbQErT+yrwhGYrVJdSL97n7ZWEMbsJO/v5CWiJW5Lf7YznJsq93glFG06QamUuToKpGZ8i13JdGE+GDGkMjPud8/Jt41zACDDDPzHp+Pc95H5z133u/7mgvMa+697/s+efKkzToJIZCYmAiFQoF3333X/uCHAJMuIiIislJUVAS9Xo81a9agqqoK06dPR2JiImpra22Wr6mpwbx58zB9+nRUVVVh9erVWLZsGXbv3i2VMRgMSElJQWpqKo4fP47U1FQsXLgQR44cGdB5N2/ejC1btiA/Px9Hjx6FVqvFnDlz0NzcbFWvrVu3QqFwj6VOFEJw4Y5fMhqN0Gg0aGpqwqhRo1xdHbc3fqt5fsgZPa96k4PwP78IZbP5u5YYBnQEdOKbNM7luhZNevYl+F0w/194AYouQHOmHQDgc84IRWcXujTmqxnhpUCpYZ2Lauq+nPF50X2O2MT18Fb6DOpYnR2tMOz9v3bXNyYmBtOmTcOOHTukfVOmTMGCBQuQm5trVX7FihUoKSlBdXW1tC89PR3Hjx+HwWAAAKSkpMBoNGLv3r1SmYSEBPj7++PNN9+067xCCOh0Ouj1eqxYsQIA0NbWhuDgYOTl5eHxxx+XXnf8+HEkJSXh6NGjCAkJQXFxMRYsWGDnO+Z4sunpGjduHBQKhcW2cuVKizK1tbW499574efnh8DAQCxbtgzt7e0uqrHnu2tuHhSdgKITuLkkG7d+sA63fsA/zO6sZulyfL06E1+vzsTplZlMuK5BEWtfQsTal6BqAoZ1mDevVgAKwKu1C16tXegM9IPw9oJQDoNQyuZjwrMJB20wJ3K/3Nra2qxO197ejsrKSsTHx1vsj4+Px6FDh2xW0WAwWJWfO3cujh07ho6Ojj7LdB/TnvPW1NSgvr7eooxarcbMmTMt6tbS0oKHH34Y+fn50Gq1NuvsbLKaSL9+/XqkpaVJj0eMGCH9v6urC/fccw+CgoJQUVGBixcvYtGiRRBC4M9//rMrqktEROR2QkNDLR5nZ2cjJyfHYl9jYyO6uroQHBxssT84OBj19fU2j1tfX2+zfGdnJxobGxESEtJrme5j2nPe7n9tlTl79qz0ODMzE3FxcUhOTrZZX1eQVdI1cuTIXrPV0tJSnDp1CufOnYNOpwMAvPjii1i8eDGee+45DhUOkRHnzOPkTX4jMXpsk4trQ0R9Gb91C7x+uo2PlxcQ9IV5JKD1Om9cumkYvCrNF1R4nfsfYNQIdPmYPyL2f7TS9gHJaRx59eK5c+csPhPVanXvr+kxF0oI0ef8KFvle+6355iDLVNSUoL9+/ejqqqq17q6gqz6jfPy8hAQEIBbb70Vzz33nMXQocFgQGRkpJRwAeYuy7a2NlRWVvZ6zLa2NquuViIiIrdiEo7ZAIwaNcpis5V0BQYGwsvLy6pXq6GhwaqHqZtWq7VZ3tvbGwEBAX2W6T6mPeft7nzpq8z+/fvx3//+F6NHj4a3tze8vc1fIB544AHMmjXLZv2dQTZJ15NPPonCwkIcOHAAGRkZ2Lp1K5YsWSI9b6vL0t/fHyqVqteuUADIzc2FRqORtp7drtS7Ax+uQIsWaNEC3kYvfH7PBnx+zwZXV4uIenFGnyXNwxzWATSPUaJ5jBJXAoahY4TAhRkjcWHGSMBvONBlgrr2e6hrv7d5rM76G6WNnMCBc7rsoVKpEBUVhbKyMov9ZWVliIuLs/ma2NhYq/KlpaWIjo6GUqnss0z3Me05b3h4OLRarUWZ9vZ2lJeXS2VWrlyJL774Ap9//rm0AcBLL72EXbt22f9GOJhLhxdzcnLwzDPP9Fnm6NGjiI6ORmbmz/f7uuWWW+Dv74/f/va3Uu8XYN3VCPTfFbpq1Spk/eJ+c0ajkYkXERFd87KyspCamoro6GjExsbilVdeQW1tLdLT0wGYPz+//fZbvPbaawDMVyrm5+cjKysLaWlpMBgMKCgokK5KBMwdKDNmzEBeXh6Sk5Px3nvvYd++faioqLD7vAqFAnq9Hhs3bsTEiRMxceJEbNy4EcOHD8cjjzwCwNwbZms60tixYxEeHj5k71l/XJp0ZWRk4KGHHuqzzLhx42zuv+OOOwAA//nPfxAQEACtVmuxzgcAXLp0CR0dHb12hQLmsey+xrOpb6dX8ea3RHKiMHX/B7gSZP5CejmsC8rAVigu+AEA2seMxrDWLpQdWmvzGKb6SRj200BJh+hE04UxCNCdH/K6X8sUcMCcrgGWT0lJwcWLF7F+/XrU1dUhMjISe/bsQVhYGACgrq7OYu2s8PBw7NmzB5mZmdi2bRt0Oh1efvllPPDAA1KZuLg4FBYWYu3atVi3bh0mTJiAoqIixMTE2H1eAHj66adx5coVLFmyBJcuXUJMTAxKS0sxcuTIq3tznES263T985//xL333ouzZ89i7Nix2Lt3L5KSknD+/HmEhIQAMC+wtmjRIjQ0NNg9kZ7rdBGRJ5u8/iUAgFebeW0u4Oeky+ewOem6vqq136SrW4foxI+i/ZpMupy5Ttedd+fA23uQ63R1tuLTj3L4+eZCsrh60WAw4PDhw7jrrrug0Whw9OhRZGZmYv78+Rg7diwA8xoeERERSE1NxfPPP4/vv/8eTz31FNLS0vjDRUT0k+7ekuH1Ai3B5r4PRacCCoVA52/MFxKduU2FX084j/9zbDEA4K/Rr1odp02Y111qER1oEV1o+db8ZTf0hrqhDYBIxmSRdKnVahQVFeGZZ55BW1sbwsLCkJaWhqeffloq4+XlhQ8++ABLlizBnXfeCV9fXzzyyCN44YUXXFhzIiKiweMNrz2DbIcXhwqHF4noWnD7/96Cdo25p6tjBND6qyu4Lcw8RDh2+PeYNer/YX/TFKn8n2570+L1P1z4+YKj0bpzTqix+3Hm8OJv7nLM8GLFAQ4vupJslowgIiIikjNZDC8SEZFjmZQKad0mRSegPO2Lqu/Ma259rm3F0cCxEMLcEzZafcXq9ddq75arKISAYpADU4N9PQ0eky4iIiJ3Z/ppG+wxyKU4vEhEdA2qfCUTJiVgUgJdvoCyGQj6zLzhvA8u/M9o/NDiix9afHG5Q4W55XrMLde7utpEssaeLiIiIjfH4UXPwKSLiOgadeIF8x0lJj37Eto1wBXzUlvoUgsoTAqYTOY5XQfv5tI7LjfAeyf2egxyKSZdRERE7k4I8zbYY5BLMekiIrrGfb2W91AlcgYmXURERG6OK9J7BiZdRERE7o7Dix6BS0YQEREROQF7uoiIiNycwmTeBnsMci0mXURERO6Ow4segcOLRERERE7Ani4iIiJ3x8VRPQKTLiIiumpzhj1o8bjM9JaLauLZeBsgz8DhRSIiIiInYE8XERENSM/erZ7PsbdrCHAivUdg0kVERA71y6SMCZiDCACDXfKBOZfLMekiIiJyc5zT5RmYdBERkU19DSMS0cAx6SIiInJ3Ag6Y0+WQmtAgMOki6dusHOZeDOSb90Di4RwUIsfg788Q4UR6j8AlI4iIiIicgD1dHq7n5dv9Xer9S876xmqrTrbOPdD5JVc7H+VqX1dmemvAr+2OkwtMkrsZql5lukomAAoHHINcikkXERGRm+PVi55BIQRb4ZeMRiM0Gg2ampowatQoV1fnqgzlFUc9v9Ha20vV32uod+xFIGcY7O/ltfhz6ozPi+5z3B35NLy91IM6VmdXGz76crOsP9/kjj1dRERE7o4T6T0Cky43N1Tzna6Ws+dJ0c8474vcFX8WnYBJl0fg1YtERERk0/bt2xEeHg4fHx9ERUXhk08+6bN8eXk5oqKi4OPjg/Hjx2Pnzp1WZXbv3o2IiAio1WpERESguLh4wOcVQiAnJwc6nQ6+vr6YNWsWTp48KT3//fffY+nSpZg8eTKGDx+OsWPHYtmyZWhqarrKd8Ix2NPlIL315Ni6crC3b4X29ga5e6+Ru9dPbnp7P/t6n9nzQP3h76nMuKCnq6ioCHq9Htu3b8edd96Jv/zlL0hMTMSpU6cwduxYq/I1NTWYN28e0tLS8MYbb+DTTz/FkiVLEBQUhAceeAAAYDAYkJKSgg0bNuC+++5DcXExFi5ciIqKCsTExNh93s2bN2PLli149dVXMWnSJDz77LOYM2cOvvrqK4wcORIXLlzAhQsX8MILLyAiIgJnz55Feno6Lly4gLfffntw7+MgcCJ9D1c7MdKZSRdRf5h0UX8c+ffmWv15c+pE+snLHTOR/qsX7a5vTEwMpk2bhh07dkj7pkyZggULFiA3N9eq/IoVK1BSUoLq6mppX3p6Oo4fPw6DwQAASElJgdFoxN69e6UyCQkJ8Pf3x5tvvmnXeYUQ0Ol00Ov1WLFiBQCgra0NwcHByMvLw+OPP24znrfeeguPPvooLl++DG9v1/Q5saerF8max+CtUALo+w9Kf3+4bD3P5IqGmpzuMkDOxb8/fbP37hRzhj2ITtHhjCoBcOySEUaj0WK/Wq2GWm2Z0LW3t6OyshIrV6602B8fH49Dhw7ZPL7BYEB8fLzFvrlz56KgoAAdHR1QKpUwGAzIzMy0KrN161a7z1tTU4P6+nqLc6nVasycOROHDh3qNenqTjZdlXABnNNFRER0TQkNDYVGo5E2W71WjY2N6OrqQnBwsMX+4OBg1NfX2zxufX29zfKdnZ1obGzss0z3Me05b/e/A6nbxYsXsWHDhl4TMmdhT5cd+M2Q5Kq/n132hF07hvLvWM87X8jJQO7S4VIOnNN17tw5i+HFnr1cv6RQWC6DL4Sw2tdf+Z777Tmmo8oA5p69e+65BxEREcjOzu617s7ApIuIiMjdmQSgGGTSZTK/ftSoUf3O6QoMDISXl5dVz1FDQ4NVD1M3rVZrs7y3tzcCAgL6LNN9THvOq9VqAZh7vEJCQvqsW3NzMxISEjBixAgUFxdDqVT2GfdQ4/Ai0TVszrAHbW40tPp6v9kW5A5UKhWioqJQVlZmsb+srAxxcXE2XxMbG2tVvrS0FNHR0VKy01uZ7mPac97w8HBotVqLMu3t7SgvL7eom9FoRHx8PFQqFUpKSuDj4zOQt2BIsKeLiIjI3blgyYisrCykpqYiOjoasbGxeOWVV1BbW4v09HQAwKpVq/Dtt9/itddeA2C+UjE/Px9ZWVlIS0uDwWBAQUGBdFUiADz55JOYMWMG8vLykJycjPfeew/79u1DRUWF3edVKBTQ6/XYuHEjJk6ciIkTJ2Ljxo0YPnw4HnnkEQDmHq74+Hi0tLTgjTfegNFolC4gCAoKgpeX19W/j4PApIuI6CdDfdXn1ay5NpDeLnvujTpU3P2KWfn3Gjog6cLAXp+SkoKLFy9i/fr1qKurQ2RkJPbs2YOwsDAAQF1dHWpra6Xy4eHh2LNnDzIzM7Ft2zbodDq8/PLL0hpdABAXF4fCwkKsXbsW69atw4QJE1BUVCSt0WXPeQHg6aefxpUrV7BkyRJcunQJMTExKC0txciRIwEAlZWVOHLkCADgxhtvtIirpqYG48aNG9B74Shcp6uH7jVRZiFZWjKC6Frjrh+cQ81VSZejuDLp6q0O7mIo3otO0YGDeM8p63T9r/HL4D1skOt0mdqw78zLvOG1C8mip+vgwYO46667bD7373//G7fffjsA6ysZAGDHjh1SlyQRXbt6u3elI9fSG8yafo7gyt4cVyZb8u/FsgPvvegRZJF0xcXFoa6uzmLfunXrsG/fPkRHR1vs37VrFxISEqTHGo3GKXUkIiIaMiaBgQ4P2j4GuZIski6VSiVdIgoAHR0dKCkpQUZGhlXv1ujRoy3KElHf3HU4yB59rR5+NXeLcGR9aOjx/Sa5keWSESUlJWhsbMTixYutnsvIyEBgYCBuv/127Ny5EyaTyfkVJCIiciRhcsxGLiWLnq6eCgoKMHfuXISGhlrs37BhA+6++274+vrio48+wvLly9HY2Ii1a9f2eqy2tja0tbVJj3vek4rIk8mhl8ve3gz2eriH3ubODYVfHtvj259zujyCS3u6cnJyoFAo+tyOHTtm8Zrz58/jww8/xO9//3ur461duxaxsbG49dZbsXz5cqxfvx7PP/98n3XIzc21uAdVz0SOiIjI5UzCMRu5lEt7ujIyMvDQQw/1WabnWhq7du1CQEAA5s+f3+/x77jjDhiNRnz33Xe93rZg1apVyMrKkh4bjUYmXkRO1lsvhRx64sjM3jXIHNmmHt+7RR7HpUlXYGAgAgMD7S4vhMCuXbvw2GOP2XX/pKqqKvj4+GD06NG9llGr1X3e7JPIkznqQ2swH6SyueEwOQTb9CpxeNEjyGpO1/79+1FTU2NzaPH9999HfX09YmNj4evriwMHDmDNmjX4wx/+wKSKiIjkTcABSZdDakKDIKukq6CgAHFxcZgyZYrVc0qlEtu3b0dWVhZMJhPGjx+P9evX44knnnBBTYmuLey9ICLqn6ySrn/84x+9PpeQkGCxKCoREZHH4PCiR5BV0kVERHRNMpkADHKdLa5b6XKyXByViIiISG7Y00VEROTuOLzoEZh0ERERuTsmXR6Bw4tERERETsCeLiIiIndnEhj0Qlu8DZDLMekiIiJyc0KYIMTgrj4c7Otp8Jh0ERERuTvhgBtWc06Xy3FOFxEREZETsKeLiIjI3QkHzOliT5fLMekiIiJydyYToBjknCzO6XI5Di8SEREROQF7uoiIiNwdhxc9ApMuIiIiNydMJohBDi9yyQjX4/AiERERkROwp4uIiMjdcXjRIzDpIiIicncmASiYdMkdhxeJiIiInIA9XURERO5OCACDXaeLPV2uxqSLiIjIzQmTgBjk8KJg0uVyHF4kIiJyd8LkmG2Atm/fjvDwcPj4+CAqKgqffPJJn+XLy8sRFRUFHx8fjB8/Hjt37rQqs3v3bkRERECtViMiIgLFxcUDPq8QAjk5OdDpdPD19cWsWbNw8uRJizJtbW1YunQpAgMD4efnh/nz5+P8+fMDfg8ciUkXERERWSkqKoJer8eaNWtQVVWF6dOnIzExEbW1tTbL19TUYN68eZg+fTqqqqqwevVqLFu2DLt375bKGAwGpKSkIDU1FcePH0dqaioWLlyII0eODOi8mzdvxpYtW5Cfn4+jR49Cq9Vizpw5aG5ulsro9XoUFxejsLAQFRUV+PHHH5GUlISurq4heLfsoxDsb7RgNBqh0WgwC8nwVihdXR0iInJTnaIDB/EempqaMGrUqCE5h/SZpLhv0J9JnaIDB0Wx3fWNiYnBtGnTsGPHDmnflClTsGDBAuTm5lqVX7FiBUpKSlBdXS3tS09Px/Hjx2EwGAAAKSkpMBqN2Lt3r1QmISEB/v7+ePPNN+06rxACOp0Oer0eK1asAGDu1QoODkZeXh4ef/xxNDU1ISgoCK+//jpSUlIAABcuXEBoaCj27NmDuXPnDuStcxj2dBEREbk7Jw8vtre3o7KyEvHx8Rb74+PjcejQIZuvMRgMVuXnzp2LY8eOoaOjo88y3ce057w1NTWor6+3KKNWqzFz5kypTGVlJTo6OizK6HQ6REZG9lp/Z+BE+h66O/460THodeiIiMhzdcKcSDhjwMgRn0nd9TUajRb71Wo11Gq1xb7GxkZ0dXUhODjYYn9wcDDq6+ttHr++vt5m+c7OTjQ2NiIkJKTXMt3HtOe83f/aKnP27FmpjEqlgr+/v931dwYmXT1cvHgRAFCBPS6uCRERyUFzczM0Gs2QHFulUkGr1aKi3jGfSSNGjEBoaKjFvuzsbOTk5Ngsr1AoLB4LIaz29Ve+5357jumoMj3ZU2YoMenq4brrrgMA1NbWDtkvkasYjUaEhobi3LlzQzb/wJU8OT7GJk+MTZ7sjU0IgebmZuh0uiGri4+PD2pqatDe3u6Q49lKOnr2cgFAYGAgvLy8rHqFGhoarHqYumm1Wpvlvb29ERAQ0GeZ7mPac16tVgvA3JsVEhLSa5n29nZcunTJoreroaEBcXFxNuvvDEy6ehg2zDzNTaPReNwfkm6jRo3y2NgAz46PsckTY5Mne2JzxpdzHx8f+Pj4DPl5fkmlUiEqKgplZWW47777pP1lZWVITk62+ZrY2Fi8//77FvtKS0sRHR0NpVIplSkrK0NmZqZFme5EyJ7zhoeHQ6vVoqysDLfddhsA81yw8vJy5OXlAQCioqKgVCpRVlaGhQsXAgDq6urw5ZdfYvPmzYN6bwZFkIWmpiYBQDQ1Nbm6Kg7nybEJ4dnxMTZ5Ymzy5MmxDURhYaFQKpWioKBAnDp1Suj1euHn5ye++eYbIYQQK1euFKmpqVL5M2fOiOHDh4vMzExx6tQpUVBQIJRKpXj77belMp9++qnw8vISmzZtEtXV1WLTpk3C29tbHD582O7zCiHEpk2bhEajEe+88444ceKEePjhh0VISIgwGo1SmfT0dDFmzBixb98+8dlnn4nZs2eLqVOnis7OzqF82/rEpKsHT/5l8+TYhPDs+BibPDE2efLk2AZq27ZtIiwsTKhUKjFt2jRRXl4uPbdo0SIxc+ZMi/IHDx4Ut912m1CpVGLcuHFix44dVsd86623xOTJk4VSqRQ33XST2L1794DOK4QQJpNJZGdnC61WK9RqtZgxY4Y4ceKERZkrV66IjIwMcd111wlfX1+RlJQkamtrB/FuDB6Trh5aW1tFdna2aG1tdXVVHM6TYxPCs+NjbPLE2OTJk2Mj1+LiqEREREROwMVRiYiIiJyASRcRERGREzDpIiIiInICJl1ERERETsCkq4ft27cjPDwcPj4+iIqKwieffOLqKg1YTk4OFAqFxda9gi9gXpE4JycHOp0Ovr6+mDVrFk6ePOnCGvfu448/xr333gudTgeFQoF3333X4nl7Ymlra8PSpUsRGBgIPz8/zJ8/H+fPn3diFLb1F9vixYut2vGOO+6wKOOOseXm5uL222/HyJEjcf3112PBggX46quvLMrIud3siU+ubbdjxw7ccsst0qKgsbGx2Lt3r/S8nNutv9jk2mYkL0y6fqGoqAh6vR5r1qxBVVUVpk+fjsTERNTW1rq6agP2q1/9CnV1ddJ24sQJ6bnNmzdjy5YtyM/Px9GjR6HVajFnzhw0Nze7sMa2Xb58GVOnTkV+fr7N5+2JRa/Xo7i4GIWFhaioqMCPP/6IpKQkdHV1OSsMm/qLDQASEhIs2nHPHsv7r7ljbOXl5XjiiSdw+PBhlJWVobOzE/Hx8bh8+bJURs7tZk98gDzbbsyYMdi0aROOHTuGY8eOYfbs2UhOTpYSKzm3W3+xAfJsM5IZV65X4W5+/etfi/T0dIt9N910k1i5cqWLanR1srOzxdSpU20+ZzKZhFarFZs2bZL2tba2Co1GI3bu3OmkGl4dAKK4uFh6bE8sP/zwg1AqlaKwsFAq8+2334phw4aJf/3rX06re396xiaEeeHB5OTkXl8jl9gaGhoEAGlxQ09qNyGs4xPCc9pOCCH8/f3FX//6V49rNyF+jk0Iz2ozcl/s6fpJe3s7KisrER8fb7E/Pj4ehw4dclGtrt7p06eh0+kQHh6Ohx56CGfOnAEA1NTUoL6+3iJOtVqNmTNnyi5Oe2KprKxER0eHRRmdTofIyEhZxHvw4EFcf/31mDRpEtLS0tDQ0CA9J5fYmpqaAPx8M3lPa7ee8XWTe9t1dXWhsLAQly9fRmxsrEe1W8/Yusm9zcj98YbXP2lsbERXV5fV3dODg4Ot7nbu7mJiYvDaa69h0qRJ+O677/Dss88iLi4OJ0+elGKxFefZs2ddUd2rZk8s9fX1UKlUFneZ7y7j7u2amJiIBx98EGFhYaipqcG6deswe/ZsVFZWQq1WyyI2IQSysrLwm9/8BpGRkQA8q91sxQfIu+1OnDiB2NhYtLa2YsSIESguLkZERISUWMi53XqLDZB3m5F8MOnqQaFQWDwWQljtc3eJiYnS/2+++WbExsZiwoQJ+Nvf/iZNDPWEOLtdTSxyiDclJUX6f2RkJKKjoxEWFoYPPvgA999/f6+vc6fYMjIy8MUXX6CiosLqOU9ot97ik3PbTZ48GZ9//jl++OEH7N69G4sWLUJ5ebn0vJzbrbfYIiIiZN1mJB8cXvxJYGAgvLy8rL6xNDQ0WH2zkxs/Pz/cfPPNOH36tHQVoyfEaU8sWq0W7e3tuHTpUq9l5CIkJARhYWE4ffo0APePbenSpSgpKcGBAwcwZswYab+ntFtv8dkip7ZTqVS48cYbER0djdzcXEydOhV/+tOfPKLdeovNFjm1GckHk66fqFQqREVFoayszGJ/WVkZ4uLiXFQrx2hra0N1dTVCQkIQHh4OrVZrEWd7ezvKy8tlF6c9sURFRUGpVFqUqaurw5dffim7eC9evIhz584hJCQEgPvGJoRARkYG3nnnHezfvx/h4eEWz8u93fqLzxa5tJ0tQgi0tbXJvt1s6Y7NFjm3Gbkxp0/dd2OFhYVCqVSKgoICcerUKaHX64Wfn5/45ptvXF21AVm+fLk4ePCgOHPmjDh8+LBISkoSI0eOlOLYtGmT0Gg04p133hEnTpwQDz/8sAgJCRFGo9HFNbfW3NwsqqqqRFVVlQAgtmzZIqqqqsTZs2eFEPbFkp6eLsaMGSP27dsnPvvsMzF79mwxdepU0dnZ6aqwhBB9x9bc3CyWL18uDh06JGpqasSBAwdEbGysuOGGG9w+tj/+8Y9Co9GIgwcPirq6OmlraWmRysi53fqLT85tt2rVKvHxxx+Lmpoa8cUXX4jVq1eLYcOGidLSUiGEvNutr9jk3GYkL0y6eti2bZsICwsTKpVKTJs2zeIycLlISUkRISEhQqlUCp1OJ+6//35x8uRJ6XmTySSys7OFVqsVarVazJgxQ5w4ccKFNe7dgQMHBACrbdGiRUII+2K5cuWKyMjIENddd53w9fUVSUlJora21gXRWOortpaWFhEfHy+CgoKEUqkUY8eOFYsWLbKqtzvGZismAGLXrl1SGTm3W3/xybntfve730l//4KCgsTdd98tJVxCyLvd+opNzm1G8qIQQgjn9asRERERXZs4p4uIiIjICZh0ERERETkBky4iIiIiJ2DSRUREROQETLqIiIiInIBJFxEREZETMOkiIiIicgImXUSEWbNmQa/Xu7oaREQejUkXERERkRMw6SIiIiJyAiZdRGTh0qVLeOyxx+Dv74/hw4cjMTERp0+flp5/9dVXMXr0aHz44YeYMmUKRowYgYSEBNTV1bmw1kRE7o9JFxFZWLx4MY4dO4aSkhIYDAYIITBv3jx0dHRIZVpaWvDCCy/g9ddfx8cff4za2lo89dRTLqw1EZH783Z1BYjIfZw+fRolJSX49NNPERcXBwD4+9//jtDQULz77rt48MEHAQAdHR3YuXMnJkyYAADIyMjA+vXrXVZvIiI5YE8XEUmqq6vh7e2NmJgYaV9AQAAmT56M6upqad/w4cOlhAsAQkJC0NDQ4NS6EhHJDZMuIpIIIXrdr1AopMdKpdLieYVC0etriYjIjEkXEUkiIiLQ2dmJI0eOSPsuXryIr7/+GlOmTHFhzYiI5I9JFxFJJk6ciOTkZKSlpaGiogLHjx/Ho48+ihtuuAHJycmurh4Rkawx6SIiC7t27UJUVBSSkpIQGxsLIQT27NljNaRIREQDoxCciEFEREQ05NjTRUREROQETLqIiIiInIBJFxEREZETMOkiIiIicgImXUREREROwKSLiIiIyAmYdBERERE5AZMuIiIiIidg0kVERETkBEy6iIiIiJyASRcRERGREzDpIiIiInKC/w9sQa+/IcZd2gAAAABJRU5ErkJggg==", "text/plain": [ "
    " ] @@ -148,6 +148,437 @@ "ds_out_con.GPP.isel(time=0).plot() ;" ] }, + { + "cell_type": "code", + "execution_count": 3, + "id": "7f58c441-3f24-4791-8616-e69cbe28ba43", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
    <xarray.DataArray 'GPP' (time: 12, lndgrid: 48600)> Size: 2MB\n",
    +       "array([[0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 9.2530281e-06,\n",
    +       "        4.7339649e-06, 1.7577652e-06],\n",
    +       "       [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 8.1039307e-06,\n",
    +       "        4.2056104e-06, 1.5534362e-06],\n",
    +       "       [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 1.0241940e-05,\n",
    +       "        5.4556108e-06, 2.0470754e-06],\n",
    +       "       ...,\n",
    +       "       [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 3.4669843e-05,\n",
    +       "        1.6131389e-05, 4.9520345e-06],\n",
    +       "       [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 2.7128302e-05,\n",
    +       "        1.3086953e-05, 3.9950073e-06],\n",
    +       "       [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 1.4469586e-05,\n",
    +       "        7.3627734e-06, 2.6298280e-06]], dtype=float32)\n",
    +       "Coordinates:\n",
    +       "  * time     (time) int64 96B 1 2 3 4 5 6 7 8 9 10 11 12\n",
    +       "Dimensions without coordinates: lndgrid
    " + ], + "text/plain": [ + " Size: 2MB\n", + "array([[0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 9.2530281e-06,\n", + " 4.7339649e-06, 1.7577652e-06],\n", + " [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 8.1039307e-06,\n", + " 4.2056104e-06, 1.5534362e-06],\n", + " [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 1.0241940e-05,\n", + " 5.4556108e-06, 2.0470754e-06],\n", + " ...,\n", + " [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 3.4669843e-05,\n", + " 1.6131389e-05, 4.9520345e-06],\n", + " [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 2.7128302e-05,\n", + " 1.3086953e-05, 3.9950073e-06],\n", + " [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 1.4469586e-05,\n", + " 7.3627734e-06, 2.6298280e-06]], dtype=float32)\n", + "Coordinates:\n", + " * time (time) int64 96B 1 2 3 4 5 6 7 8 9 10 11 12\n", + "Dimensions without coordinates: lndgrid" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds_con.GPP" + ] + }, { "cell_type": "markdown", "id": "e42505aa-4d41-42d3-8311-497209386c38", From 481ff52804a9997ef29bc2db06225b84d145bded Mon Sep 17 00:00:00 2001 From: wwieder Date: Fri, 4 Apr 2025 13:55:32 -0600 Subject: [PATCH 59/59] match years with diag branch --- config_clm_baseline_example.yaml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/config_clm_baseline_example.yaml b/config_clm_baseline_example.yaml index cc84b42c4..411bb47cd 100644 --- a/config_clm_baseline_example.yaml +++ b/config_clm_baseline_example.yaml @@ -173,7 +173,7 @@ diag_cam_climo: #model year when time series files should end: #Note: Leaving this entry blank will make time series # end at latest available year. - end_year: 44 + end_year: 35 #Do time series files exist? #If True, then diagnostics assumes that model files are already time series. @@ -336,7 +336,7 @@ diag_cam_baseline_climo: #model year when time series files should end: #Note: Leaving this entry blank will make time series # end at latest available year. - end_year: 44 + end_year: 35 #Do time series files need to be generated? #If True, then diagnostics assumes that model files are already time series.