diff --git a/docs/.buildinfo b/docs/.buildinfo index e952b49..41207e7 100644 --- a/docs/.buildinfo +++ b/docs/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 1c6c44e0140fc763c96b46c891ab7a11 +config: cf783ec3fa4bf23b54613056da754048 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/docs/.doctrees/environment.pickle b/docs/.doctrees/environment.pickle index 4b74486..5523b55 100644 Binary files a/docs/.doctrees/environment.pickle and b/docs/.doctrees/environment.pickle differ diff --git a/docs/.doctrees/index.doctree b/docs/.doctrees/index.doctree index 686f127..e5c731f 100644 Binary files a/docs/.doctrees/index.doctree and b/docs/.doctrees/index.doctree differ diff --git a/docs/.doctrees/prototype/inductor_windows_cpu.doctree b/docs/.doctrees/prototype/inductor_windows_cpu.doctree new file mode 100644 index 0000000..49a27b5 Binary files /dev/null and b/docs/.doctrees/prototype/inductor_windows_cpu.doctree differ diff --git a/docs/_sources/index.rst.txt b/docs/_sources/index.rst.txt index b1c1f39..2129ac0 100644 --- a/docs/_sources/index.rst.txt +++ b/docs/_sources/index.rst.txt @@ -5,10 +5,7 @@ * `Compiled Autograd: 为 torch.compile 捕获更大的后向图 `__ * `通过区域编译减少 torch.compile 冷启动编译时间 `__ -* `使用 Tensor Parallel (TP) 进行大规模 Transformer 模型训练 `__ -* `利用半结构化(2:4)稀疏性加速 BERT `__ -* `torch.export 教程 `__ -* `nn.Module 中 load_state_dict 和张量子类的扩展点 `__ +* `如何在 Windows CPU 上使用 TorchInductor `__ .. raw:: html diff --git a/docs/_sources/prototype/inductor_windows_cpu.rst.txt b/docs/_sources/prototype/inductor_windows_cpu.rst.txt new file mode 100644 index 0000000..4fc455a --- /dev/null +++ b/docs/_sources/prototype/inductor_windows_cpu.rst.txt @@ -0,0 +1,130 @@ +如何在 Windows CPU 上使用 TorchInductor +======================================= + +**Author**: `Zhaoqiong Zheng `_, `Xu, Han `_ + + + +TorchInductor 是一个编译器后端,它将 TorchDynamo 生成的 FX 图转换为高度优化的 C++/Triton 内核。 +本教程将指导在 Windows CPU 上使用 TorchInductor。 + +.. grid:: 2 + + .. grid-item-card:: :octicon:`mortar-board;1em;` What you will learn + :class-card: card-prerequisites + + * 如何在 Windows CPU 上编译和执行使用 PyTorch 的 Python 函数 + * TorchInductor 使用 C++/Triton 内核进行优化的基础知识 + + .. grid-item-card:: :octicon:`list-unordered;1em;` Prerequisites + :class-card: card-prerequisites + + * PyTorch v2.5 或更高版本 + * Microsoft Visual C++ (MSVC) + * Windows 版 Miniforge + +安装所需软件 +----------------------------- + +首先,让我们安装所需的软件。TorchInductor 优化需要 C++ 编译器。 +在本示例中,我们将使用 Microsoft Visual C++ (MSVC)。 + +1. 下载并安装 `MSVC `_。 + +2. 在安装过程中,在 **工作负载** 表中的 **桌面和移动** 部分选择 **使用 C++ 进行桌面开发**。然后安装软件。 + +.. note:: + + 我们推荐使用 C++ 编译器 `Clang `_ 和 `Intel 编译器 `_。 + 请查看 `更高性能的替代编译器 <#alternative-compiler-for-better-performance>`_。 + +3. 下载并安装 `Miniforge3-Windows-x86_64.exe `__。 + + +设置环境 +---------------------- + +#. 通过 ``cmd.exe`` 打开命令行环境。 +#. 使用以下命令激活 ``MSVC``: + + .. code-block:: sh + + "C:/Program Files/Microsoft Visual Studio/2022/Community/VC/Auxiliary/Build/vcvars64.bat" +#. 使用以下命令激活 ``conda``: + + .. code-block:: sh + + "C:/ProgramData/miniforge3/Scripts/activate.bat" +#. 创建并激活conda环境: + + .. code-block:: sh + + conda create -n inductor_cpu_windows python=3.10 -y + conda activate inductor_cpu_windows + +#. 安装 `PyTorch 2.5 `_ 或更新版本。 + +在 Windows CPU 上使用 TorchInductor +---------------------------------- + +这里有一个简单的例子来演示如何使用 TorchInductor: + +.. code-block:: python + + + import torch + def foo(x, y): + a = torch.sin(x) + b = torch.cos(y) + return a + b + opt_foo1 = torch.compile(foo) + print(opt_foo1(torch.randn(10, 10), torch.randn(10, 10))) + +以下是此代码可能返回的示例输出: + +.. code-block:: sh + + tensor([[-3.9074e-02, 1.3994e+00, 1.3894e+00, 3.2630e-01, 8.3060e-01, + 1.1833e+00, 1.4016e+00, 7.1905e-01, 9.0637e-01, -1.3648e+00], + [ 1.3728e+00, 7.2863e-01, 8.6888e-01, -6.5442e-01, 5.6790e-01, + 5.2025e-01, -1.2647e+00, 1.2684e+00, -1.2483e+00, -7.2845e-01], + [-6.7747e-01, 1.2028e+00, 1.1431e+00, 2.7196e-02, 5.5304e-01, + 6.1945e-01, 4.6654e-01, -3.7376e-01, 9.3644e-01, 1.3600e+00], + [-1.0157e-01, 7.7200e-02, 1.0146e+00, 8.8175e-02, -1.4057e+00, + 8.8119e-01, 6.2853e-01, 3.2773e-01, 8.5082e-01, 8.4615e-01], + [ 1.4140e+00, 1.2130e+00, -2.0762e-01, 3.3914e-01, 4.1122e-01, + 8.6895e-01, 5.8852e-01, 9.3310e-01, 1.4101e+00, 9.8318e-01], + [ 1.2355e+00, 7.9290e-02, 1.3707e+00, 1.3754e+00, 1.3768e+00, + 9.8970e-01, 1.1171e+00, -5.9944e-01, 1.2553e+00, 1.3394e+00], + [-1.3428e+00, 1.8400e-01, 1.1756e+00, -3.0654e-01, 9.7973e-01, + 1.4019e+00, 1.1886e+00, -1.9194e-01, 1.3632e+00, 1.1811e+00], + [-7.1615e-01, 4.6622e-01, 1.2089e+00, 9.2011e-01, 1.0659e+00, + 9.0892e-01, 1.1932e+00, 1.3888e+00, 1.3898e+00, 1.3218e+00], + [ 1.4139e+00, -1.4000e-01, 9.1192e-01, 3.0175e-01, -9.6432e-01, + -1.0498e+00, 1.4115e+00, -9.3212e-01, -9.0964e-01, 1.0127e+00], + [ 5.7244e-04, 1.2799e+00, 1.3595e+00, 1.0907e+00, 3.7191e-01, + 1.4062e+00, 1.3672e+00, 6.8502e-02, 8.5216e-01, 8.6046e-01]]) + +使用替代编译器以获得更好的性能 +------------------------------------------- + +为了提高 Windows Inductor 的性能,您可以使用 Intel 编译器或 LLVM 编译器。然而,它们依赖于 Microsoft Visual C++ (MSVC) 的运行时库。因此,您的第一步应该是安装 MSVC。 + +Intel 编译器 +^^^^^^^^^^^^^ + +#. 下载并安装 `Intel 编译器 `_ 的 Windows 版本。 +#. 使用 CXX 环境变量 ``set CXX=icx-cl`` 设置 Windows Inductor 编译器。 + +Intel 还提供了一个全面的分步指南,包含性能数据。请查看 `Intel® oneAPI DPC++/C++ Compiler Boosts PyTorch* Inductor Performance on Windows* for CPU Devices `_。 + +LLVM 编译器 +^^^^^^^^^^^^^ + +#. 下载并安装 `LLVM 编译器 `_ 并选择 win64 版本。 +#. 使用 CXX 环境变量 ``set CXX=clang-cl`` 设置 Windows Inductor 编译器。 + +结论 +---------- + +在本教程中,我们学习了如何在 Windows CPU 上使用 PyTorch 的 Inductor。此外,我们还讨论了使用 Intel 编译器和 LLVM 编译器进一步提高性能的方法。 \ No newline at end of file diff --git a/docs/advanced/ONNXLive.html b/docs/advanced/ONNXLive.html index 1aae446..75e24d5 100644 --- a/docs/advanced/ONNXLive.html +++ b/docs/advanced/ONNXLive.html @@ -9,7 +9,7 @@ - ONNX Live Tutorial — PyTorch Tutorials 2.3.0+cu121 documentation + ONNX Live Tutorial — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/advanced/coding_ddpg.html b/docs/advanced/coding_ddpg.html index 63936eb..4208d50 100644 --- a/docs/advanced/coding_ddpg.html +++ b/docs/advanced/coding_ddpg.html @@ -9,7 +9,7 @@ - TorchRL objectives: Coding a DDPG loss — PyTorch Tutorials 2.3.0+cu121 documentation + TorchRL objectives: Coding a DDPG loss — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/advanced/cpp_autograd.html b/docs/advanced/cpp_autograd.html index 8849753..c60c4c1 100644 --- a/docs/advanced/cpp_autograd.html +++ b/docs/advanced/cpp_autograd.html @@ -9,7 +9,7 @@ - Autograd in C++ Frontend — PyTorch Tutorials 2.3.0+cu121 documentation + Autograd in C++ Frontend — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/advanced/cpp_cuda_graphs.html b/docs/advanced/cpp_cuda_graphs.html index d09c4b5..5a91c4f 100644 --- a/docs/advanced/cpp_cuda_graphs.html +++ b/docs/advanced/cpp_cuda_graphs.html @@ -9,7 +9,7 @@ - Using CUDA Graphs in PyTorch C++ API — PyTorch Tutorials 2.3.0+cu121 documentation + Using CUDA Graphs in PyTorch C++ API — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/advanced/cpp_export.html b/docs/advanced/cpp_export.html index f405148..7267e79 100644 --- a/docs/advanced/cpp_export.html +++ b/docs/advanced/cpp_export.html @@ -9,7 +9,7 @@ - 在 C++ 中加载 TorchScript 模型 — PyTorch Tutorials 2.3.0+cu121 documentation + 在 C++ 中加载 TorchScript 模型 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/advanced/cpp_extension.html b/docs/advanced/cpp_extension.html index f1e769f..589637b 100644 --- a/docs/advanced/cpp_extension.html +++ b/docs/advanced/cpp_extension.html @@ -9,7 +9,7 @@ - Custom C++ and CUDA Extensions — PyTorch Tutorials 2.3.0+cu121 documentation + Custom C++ and CUDA Extensions — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/advanced/cpp_frontend.html b/docs/advanced/cpp_frontend.html index 001be20..8696301 100644 --- a/docs/advanced/cpp_frontend.html +++ b/docs/advanced/cpp_frontend.html @@ -9,7 +9,7 @@ - Using the PyTorch C++ Frontend — PyTorch Tutorials 2.3.0+cu121 documentation + Using the PyTorch C++ Frontend — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/advanced/ddp_pipeline.html b/docs/advanced/ddp_pipeline.html index 74101d0..7a2f89b 100644 --- a/docs/advanced/ddp_pipeline.html +++ b/docs/advanced/ddp_pipeline.html @@ -9,7 +9,7 @@ - Training Transformer models using Distributed Data Parallel and Pipeline Parallelism — PyTorch Tutorials 2.3.0+cu121 documentation + Training Transformer models using Distributed Data Parallel and Pipeline Parallelism — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/advanced/dispatcher.html b/docs/advanced/dispatcher.html index 48c8954..5597081 100644 --- a/docs/advanced/dispatcher.html +++ b/docs/advanced/dispatcher.html @@ -9,7 +9,7 @@ - Registering a Dispatched Operator in C++ — PyTorch Tutorials 2.3.0+cu121 documentation + Registering a Dispatched Operator in C++ — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/advanced/dynamic_quantization_tutorial.html b/docs/advanced/dynamic_quantization_tutorial.html index 9e9ed88..b24cc42 100644 --- a/docs/advanced/dynamic_quantization_tutorial.html +++ b/docs/advanced/dynamic_quantization_tutorial.html @@ -9,7 +9,7 @@ - (beta) Dynamic Quantization on an LSTM Word Language Model — PyTorch Tutorials 2.3.0+cu121 documentation + (beta) Dynamic Quantization on an LSTM Word Language Model — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/advanced/extend_dispatcher.html b/docs/advanced/extend_dispatcher.html index f48b722..27d9283 100644 --- a/docs/advanced/extend_dispatcher.html +++ b/docs/advanced/extend_dispatcher.html @@ -9,7 +9,7 @@ - Extending dispatcher for a new backend in C++ — PyTorch Tutorials 2.3.0+cu121 documentation + Extending dispatcher for a new backend in C++ — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/advanced/generic_join.html b/docs/advanced/generic_join.html index 49adb45..6c6d50f 100644 --- a/docs/advanced/generic_join.html +++ b/docs/advanced/generic_join.html @@ -9,7 +9,7 @@ - Distributed Training with Uneven Inputs Using the Join Context Manager — PyTorch Tutorials 2.3.0+cu121 documentation + Distributed Training with Uneven Inputs Using the Join Context Manager — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/advanced/neural_style_tutorial.html b/docs/advanced/neural_style_tutorial.html index e568c2a..2757064 100644 --- a/docs/advanced/neural_style_tutorial.html +++ b/docs/advanced/neural_style_tutorial.html @@ -9,7 +9,7 @@ - Neural Transfer Using PyTorch — PyTorch Tutorials 2.3.0+cu121 documentation + Neural Transfer Using PyTorch — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/advanced/numpy_extensions_tutorial.html b/docs/advanced/numpy_extensions_tutorial.html index 1593859..c74fd0b 100644 --- a/docs/advanced/numpy_extensions_tutorial.html +++ b/docs/advanced/numpy_extensions_tutorial.html @@ -9,7 +9,7 @@ - Creating Extensions Using NumPy and SciPy — PyTorch Tutorials 2.3.0+cu121 documentation + Creating Extensions Using NumPy and SciPy — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/advanced/pendulum.html b/docs/advanced/pendulum.html index 2a2b8f5..93e0a99 100644 --- a/docs/advanced/pendulum.html +++ b/docs/advanced/pendulum.html @@ -9,7 +9,7 @@ - Pendulum:使用 TorchRL 编写环境和transforms — PyTorch Tutorials 2.3.0+cu121 documentation + Pendulum:使用 TorchRL 编写环境和transforms — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/advanced/privateuseone.html b/docs/advanced/privateuseone.html index 190ae2f..988074b 100644 --- a/docs/advanced/privateuseone.html +++ b/docs/advanced/privateuseone.html @@ -9,7 +9,7 @@ - Facilitating New Backend Integration by PrivateUse1 — PyTorch Tutorials 2.3.0+cu121 documentation + Facilitating New Backend Integration by PrivateUse1 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/advanced/rpc_ddp_tutorial.html b/docs/advanced/rpc_ddp_tutorial.html index b2e6c8a..a9955fc 100644 --- a/docs/advanced/rpc_ddp_tutorial.html +++ b/docs/advanced/rpc_ddp_tutorial.html @@ -9,7 +9,7 @@ - Combining Distributed DataParallel with Distributed RPC Framework — PyTorch Tutorials 2.3.0+cu121 documentation + Combining Distributed DataParallel with Distributed RPC Framework — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/advanced/semi_structured_sparse.html b/docs/advanced/semi_structured_sparse.html index ed4b9cd..97f77b4 100644 --- a/docs/advanced/semi_structured_sparse.html +++ b/docs/advanced/semi_structured_sparse.html @@ -9,7 +9,7 @@ - (beta) Accelerating BERT with semi-structured (2:4) sparsity — PyTorch Tutorials 2.3.0+cu121 documentation + (beta) Accelerating BERT with semi-structured (2:4) sparsity — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/advanced/sharding.html b/docs/advanced/sharding.html index af78a37..ee683be 100644 --- a/docs/advanced/sharding.html +++ b/docs/advanced/sharding.html @@ -9,7 +9,7 @@ - Exploring TorchRec sharding — PyTorch Tutorials 2.3.0+cu121 documentation + Exploring TorchRec sharding — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/advanced/static_quantization_tutorial.html b/docs/advanced/static_quantization_tutorial.html index 37cdf5f..dcd2293 100644 --- a/docs/advanced/static_quantization_tutorial.html +++ b/docs/advanced/static_quantization_tutorial.html @@ -9,7 +9,7 @@ - (beta) Static Quantization with Eager Mode in PyTorch — PyTorch Tutorials 2.3.0+cu121 documentation + (beta) Static Quantization with Eager Mode in PyTorch — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/advanced/super_resolution_with_onnxruntime.html b/docs/advanced/super_resolution_with_onnxruntime.html index d5738a5..4f823a1 100644 --- a/docs/advanced/super_resolution_with_onnxruntime.html +++ b/docs/advanced/super_resolution_with_onnxruntime.html @@ -9,7 +9,7 @@ - (optional) PyTorch 模型导出到 ONNX 并使用 ONNX Runtime 运行 — PyTorch Tutorials 2.3.0+cu121 documentation + (optional) PyTorch 模型导出到 ONNX 并使用 ONNX Runtime 运行 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/advanced/torch-script-parallelism.html b/docs/advanced/torch-script-parallelism.html index 5dbb604..72d100d 100644 --- a/docs/advanced/torch-script-parallelism.html +++ b/docs/advanced/torch-script-parallelism.html @@ -9,7 +9,7 @@ - Dynamic Parallelism in TorchScript — PyTorch Tutorials 2.3.0+cu121 documentation + Dynamic Parallelism in TorchScript — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/advanced/torch_script_custom_classes.html b/docs/advanced/torch_script_custom_classes.html index dd7ab1f..7174ae1 100644 --- a/docs/advanced/torch_script_custom_classes.html +++ b/docs/advanced/torch_script_custom_classes.html @@ -9,7 +9,7 @@ - Extending TorchScript with Custom C++ Classes — PyTorch Tutorials 2.3.0+cu121 documentation + Extending TorchScript with Custom C++ Classes — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/advanced/torch_script_custom_ops.html b/docs/advanced/torch_script_custom_ops.html index 731e6ac..00754eb 100644 --- a/docs/advanced/torch_script_custom_ops.html +++ b/docs/advanced/torch_script_custom_ops.html @@ -9,7 +9,7 @@ - Extending TorchScript with Custom C++ Operators — PyTorch Tutorials 2.3.0+cu121 documentation + Extending TorchScript with Custom C++ Operators — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/advanced/usb_semisup_learn.html b/docs/advanced/usb_semisup_learn.html index 1cfb5b1..b1e0487 100644 --- a/docs/advanced/usb_semisup_learn.html +++ b/docs/advanced/usb_semisup_learn.html @@ -9,7 +9,7 @@ - Semi-Supervised Learning using USB built upon PyTorch — PyTorch Tutorials 2.3.0+cu121 documentation + Semi-Supervised Learning using USB built upon PyTorch — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/Intro_to_TorchScript_tutorial.html b/docs/beginner/Intro_to_TorchScript_tutorial.html index 2904283..a53c41a 100644 --- a/docs/beginner/Intro_to_TorchScript_tutorial.html +++ b/docs/beginner/Intro_to_TorchScript_tutorial.html @@ -9,7 +9,7 @@ - TorchScript 介绍 — PyTorch Tutorials 2.3.0+cu121 documentation + TorchScript 介绍 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/audio_data_augmentation_tutorial.html b/docs/beginner/audio_data_augmentation_tutorial.html index 33950d5..35973eb 100644 --- a/docs/beginner/audio_data_augmentation_tutorial.html +++ b/docs/beginner/audio_data_augmentation_tutorial.html @@ -9,7 +9,7 @@ - 音频数据增强 — PyTorch Tutorials 2.3.0+cu121 documentation + 音频数据增强 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/audio_datasets_tutorial.html b/docs/beginner/audio_datasets_tutorial.html index 8abca30..7b18677 100644 --- a/docs/beginner/audio_datasets_tutorial.html +++ b/docs/beginner/audio_datasets_tutorial.html @@ -9,7 +9,7 @@ - 音频数据集 — PyTorch Tutorials 2.3.0+cu121 documentation + 音频数据集 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/audio_feature_augmentation_tutorial.html b/docs/beginner/audio_feature_augmentation_tutorial.html index 5b1ba4e..798c3e3 100644 --- a/docs/beginner/audio_feature_augmentation_tutorial.html +++ b/docs/beginner/audio_feature_augmentation_tutorial.html @@ -9,7 +9,7 @@ - 音频特征增强 — PyTorch Tutorials 2.3.0+cu121 documentation + 音频特征增强 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/audio_feature_extractions_tutorial.html b/docs/beginner/audio_feature_extractions_tutorial.html index fc13cc9..ea21d9d 100644 --- a/docs/beginner/audio_feature_extractions_tutorial.html +++ b/docs/beginner/audio_feature_extractions_tutorial.html @@ -9,7 +9,7 @@ - 音频特征提取 — PyTorch Tutorials 2.3.0+cu121 documentation + 音频特征提取 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/audio_io_tutorial.html b/docs/beginner/audio_io_tutorial.html index 31c5835..debd7b9 100644 --- a/docs/beginner/audio_io_tutorial.html +++ b/docs/beginner/audio_io_tutorial.html @@ -9,7 +9,7 @@ - 音频 I/O — PyTorch Tutorials 2.3.0+cu121 documentation + 音频 I/O — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/audio_resampling_tutorial.html b/docs/beginner/audio_resampling_tutorial.html index 8ad5f45..17a86d7 100644 --- a/docs/beginner/audio_resampling_tutorial.html +++ b/docs/beginner/audio_resampling_tutorial.html @@ -9,7 +9,7 @@ - Audio 重采样 — PyTorch Tutorials 2.3.0+cu121 documentation + Audio 重采样 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/basics/autogradqs_tutorial.html b/docs/beginner/basics/autogradqs_tutorial.html index 5e65599..641b6e7 100644 --- a/docs/beginner/basics/autogradqs_tutorial.html +++ b/docs/beginner/basics/autogradqs_tutorial.html @@ -9,7 +9,7 @@ - 自动微分 — PyTorch Tutorials 2.3.0+cu121 documentation + 自动微分 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/basics/buildmodel_tutorial.html b/docs/beginner/basics/buildmodel_tutorial.html index a65b67a..be15958 100644 --- a/docs/beginner/basics/buildmodel_tutorial.html +++ b/docs/beginner/basics/buildmodel_tutorial.html @@ -9,7 +9,7 @@ - 构建神经网络 — PyTorch Tutorials 2.3.0+cu121 documentation + 构建神经网络 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/basics/data_tutorial.html b/docs/beginner/basics/data_tutorial.html index d9a2b99..30b4eff 100644 --- a/docs/beginner/basics/data_tutorial.html +++ b/docs/beginner/basics/data_tutorial.html @@ -9,7 +9,7 @@ - 数据集与数据加载器 — PyTorch Tutorials 2.3.0+cu121 documentation + 数据集与数据加载器 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/basics/index.html b/docs/beginner/basics/index.html index a53af4d..2a039fa 100644 --- a/docs/beginner/basics/index.html +++ b/docs/beginner/basics/index.html @@ -9,7 +9,7 @@ - Learn the Basics — PyTorch Tutorials 2.3.0+cu121 documentation + Learn the Basics — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/basics/intro.html b/docs/beginner/basics/intro.html index 4a948a0..9560d7c 100644 --- a/docs/beginner/basics/intro.html +++ b/docs/beginner/basics/intro.html @@ -9,7 +9,7 @@ - 基础知识 — PyTorch Tutorials 2.3.0+cu121 documentation + 基础知识 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/basics/optimization_tutorial.html b/docs/beginner/basics/optimization_tutorial.html index 343616c..5f50ded 100644 --- a/docs/beginner/basics/optimization_tutorial.html +++ b/docs/beginner/basics/optimization_tutorial.html @@ -9,7 +9,7 @@ - 优化模型参数 — PyTorch Tutorials 2.3.0+cu121 documentation + 优化模型参数 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/basics/quickstart_tutorial.html b/docs/beginner/basics/quickstart_tutorial.html index 8fbfed7..5309649 100644 --- a/docs/beginner/basics/quickstart_tutorial.html +++ b/docs/beginner/basics/quickstart_tutorial.html @@ -9,7 +9,7 @@ - 快速入门 — PyTorch Tutorials 2.3.0+cu121 documentation + 快速入门 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/basics/saveloadrun_tutorial.html b/docs/beginner/basics/saveloadrun_tutorial.html index ebf159e..aa979d3 100644 --- a/docs/beginner/basics/saveloadrun_tutorial.html +++ b/docs/beginner/basics/saveloadrun_tutorial.html @@ -9,7 +9,7 @@ - 保存和加载模型 — PyTorch Tutorials 2.3.0+cu121 documentation + 保存和加载模型 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/basics/tensorqs_tutorial.html b/docs/beginner/basics/tensorqs_tutorial.html index a6af676..9321b8a 100644 --- a/docs/beginner/basics/tensorqs_tutorial.html +++ b/docs/beginner/basics/tensorqs_tutorial.html @@ -9,7 +9,7 @@ - 张量 — PyTorch Tutorials 2.3.0+cu121 documentation + 张量 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/basics/transforms_tutorial.html b/docs/beginner/basics/transforms_tutorial.html index 5e640a7..e860276 100644 --- a/docs/beginner/basics/transforms_tutorial.html +++ b/docs/beginner/basics/transforms_tutorial.html @@ -9,7 +9,7 @@ - Transforms — PyTorch Tutorials 2.3.0+cu121 documentation + Transforms — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/bettertransformer_tutorial.html b/docs/beginner/bettertransformer_tutorial.html index a5aee91..b7c5421 100644 --- a/docs/beginner/bettertransformer_tutorial.html +++ b/docs/beginner/bettertransformer_tutorial.html @@ -9,7 +9,7 @@ - 使用 Better Transformer 进行快速 Transformer 推断 — PyTorch Tutorials 2.3.0+cu121 documentation + 使用 Better Transformer 进行快速 Transformer 推断 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/blitz/autograd_tutorial.html b/docs/beginner/blitz/autograd_tutorial.html index be68c5d..c21ba3a 100644 --- a/docs/beginner/blitz/autograd_tutorial.html +++ b/docs/beginner/blitz/autograd_tutorial.html @@ -9,7 +9,7 @@ - A Gentle Introduction to torch.autograd — PyTorch Tutorials 2.3.0+cu121 documentation + A Gentle Introduction to torch.autograd — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/blitz/cifar10_tutorial.html b/docs/beginner/blitz/cifar10_tutorial.html index eeec9ba..60a84ae 100644 --- a/docs/beginner/blitz/cifar10_tutorial.html +++ b/docs/beginner/blitz/cifar10_tutorial.html @@ -9,7 +9,7 @@ - Training a Classifier — PyTorch Tutorials 2.3.0+cu121 documentation + Training a Classifier — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/blitz/data_parallel_tutorial.html b/docs/beginner/blitz/data_parallel_tutorial.html index 5dcd6c6..a99baa9 100644 --- a/docs/beginner/blitz/data_parallel_tutorial.html +++ b/docs/beginner/blitz/data_parallel_tutorial.html @@ -9,7 +9,7 @@ - Optional: Data Parallelism — PyTorch Tutorials 2.3.0+cu121 documentation + Optional: Data Parallelism — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/blitz/index.html b/docs/beginner/blitz/index.html index 7d1b2f6..59dbec3 100644 --- a/docs/beginner/blitz/index.html +++ b/docs/beginner/blitz/index.html @@ -9,7 +9,7 @@ - Deep Learning with PyTorch: A 60 Minute Blitz — PyTorch Tutorials 2.3.0+cu121 documentation + Deep Learning with PyTorch: A 60 Minute Blitz — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/blitz/neural_networks_tutorial.html b/docs/beginner/blitz/neural_networks_tutorial.html index 9711da6..f16286e 100644 --- a/docs/beginner/blitz/neural_networks_tutorial.html +++ b/docs/beginner/blitz/neural_networks_tutorial.html @@ -9,7 +9,7 @@ - Neural Networks — PyTorch Tutorials 2.3.0+cu121 documentation + Neural Networks — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/blitz/tensor_tutorial.html b/docs/beginner/blitz/tensor_tutorial.html index 4855e87..0ced028 100644 --- a/docs/beginner/blitz/tensor_tutorial.html +++ b/docs/beginner/blitz/tensor_tutorial.html @@ -9,7 +9,7 @@ - Tensors — PyTorch Tutorials 2.3.0+cu121 documentation + Tensors — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/chatbot_tutorial.html b/docs/beginner/chatbot_tutorial.html index f47f44d..204f8f3 100644 --- a/docs/beginner/chatbot_tutorial.html +++ b/docs/beginner/chatbot_tutorial.html @@ -9,7 +9,7 @@ - Chatbot Tutorial — PyTorch Tutorials 2.3.0+cu121 documentation + Chatbot Tutorial — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/colab.html b/docs/beginner/colab.html index cd2deca..febb2ad 100644 --- a/docs/beginner/colab.html +++ b/docs/beginner/colab.html @@ -9,7 +9,7 @@ - Running Tutorials in Google Colab — PyTorch Tutorials 2.3.0+cu121 documentation + Running Tutorials in Google Colab — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/data_loading_tutorial.html b/docs/beginner/data_loading_tutorial.html index 54c745a..02ead51 100644 --- a/docs/beginner/data_loading_tutorial.html +++ b/docs/beginner/data_loading_tutorial.html @@ -9,7 +9,7 @@ - Writing Custom Datasets, DataLoaders and Transforms — PyTorch Tutorials 2.3.0+cu121 documentation + Writing Custom Datasets, DataLoaders and Transforms — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/dcgan_faces_tutorial.html b/docs/beginner/dcgan_faces_tutorial.html index ef587d5..1c35915 100644 --- a/docs/beginner/dcgan_faces_tutorial.html +++ b/docs/beginner/dcgan_faces_tutorial.html @@ -9,7 +9,7 @@ - DCGAN 教程 — PyTorch Tutorials 2.3.0+cu121 documentation + DCGAN 教程 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/ddp_series_fault_tolerance.html b/docs/beginner/ddp_series_fault_tolerance.html index ad2112c..9bbaebc 100644 --- a/docs/beginner/ddp_series_fault_tolerance.html +++ b/docs/beginner/ddp_series_fault_tolerance.html @@ -9,7 +9,7 @@ - Fault-tolerant Distributed Training with torchrun — PyTorch Tutorials 2.3.0+cu121 documentation + Fault-tolerant Distributed Training with torchrun — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/ddp_series_intro.html b/docs/beginner/ddp_series_intro.html index 2913e7e..2cbf431 100644 --- a/docs/beginner/ddp_series_intro.html +++ b/docs/beginner/ddp_series_intro.html @@ -9,7 +9,7 @@ - PyTorch 分布式并行 - Video Tutorials — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch 分布式并行 - Video Tutorials — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/ddp_series_multigpu.html b/docs/beginner/ddp_series_multigpu.html index 416e45d..303a140 100644 --- a/docs/beginner/ddp_series_multigpu.html +++ b/docs/beginner/ddp_series_multigpu.html @@ -9,7 +9,7 @@ - 使用 DDP 进行多 GPU 训练 — PyTorch Tutorials 2.3.0+cu121 documentation + 使用 DDP 进行多 GPU 训练 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/ddp_series_theory.html b/docs/beginner/ddp_series_theory.html index d212591..4f5757e 100644 --- a/docs/beginner/ddp_series_theory.html +++ b/docs/beginner/ddp_series_theory.html @@ -9,7 +9,7 @@ - What is Distributed Data Parallel (DDP) — PyTorch Tutorials 2.3.0+cu121 documentation + What is Distributed Data Parallel (DDP) — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/deep_learning_60min_blitz.html b/docs/beginner/deep_learning_60min_blitz.html index 7fd4974..370ac84 100644 --- a/docs/beginner/deep_learning_60min_blitz.html +++ b/docs/beginner/deep_learning_60min_blitz.html @@ -9,7 +9,7 @@ - PyTorch 深度学习:60分钟入门 — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch 深度学习:60分钟入门 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/deeplabv3_on_android.html b/docs/beginner/deeplabv3_on_android.html index cf8ec5f..cc20c92 100644 --- a/docs/beginner/deeplabv3_on_android.html +++ b/docs/beginner/deeplabv3_on_android.html @@ -9,7 +9,7 @@ - Image Segmentation DeepLabV3 on Android — PyTorch Tutorials 2.3.0+cu121 documentation + Image Segmentation DeepLabV3 on Android — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/deeplabv3_on_ios.html b/docs/beginner/deeplabv3_on_ios.html index b0b4fd7..ee82aa4 100644 --- a/docs/beginner/deeplabv3_on_ios.html +++ b/docs/beginner/deeplabv3_on_ios.html @@ -9,7 +9,7 @@ - Image Segmentation DeepLabV3 on iOS — PyTorch Tutorials 2.3.0+cu121 documentation + Image Segmentation DeepLabV3 on iOS — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/deploy_seq2seq_hybrid_frontend_tutorial.html b/docs/beginner/deploy_seq2seq_hybrid_frontend_tutorial.html index 9f38739..dab9a5c 100644 --- a/docs/beginner/deploy_seq2seq_hybrid_frontend_tutorial.html +++ b/docs/beginner/deploy_seq2seq_hybrid_frontend_tutorial.html @@ -9,7 +9,7 @@ - Deploying a Seq2Seq Model with TorchScript — PyTorch Tutorials 2.3.0+cu121 documentation + Deploying a Seq2Seq Model with TorchScript — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/dist_overview.html b/docs/beginner/dist_overview.html index 2e251e1..09b93c0 100644 --- a/docs/beginner/dist_overview.html +++ b/docs/beginner/dist_overview.html @@ -9,7 +9,7 @@ - PyTorch 分布式概述 — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch 分布式概述 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/examples_autograd/index.html b/docs/beginner/examples_autograd/index.html index 9141817..7b15c18 100644 --- a/docs/beginner/examples_autograd/index.html +++ b/docs/beginner/examples_autograd/index.html @@ -9,7 +9,7 @@ - <no title> — PyTorch Tutorials 2.3.0+cu121 documentation + <no title> — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/examples_autograd/polynomial_autograd.html b/docs/beginner/examples_autograd/polynomial_autograd.html index 61dbbb6..adf78d5 100644 --- a/docs/beginner/examples_autograd/polynomial_autograd.html +++ b/docs/beginner/examples_autograd/polynomial_autograd.html @@ -9,7 +9,7 @@ - PyTorch: Tensors and autograd — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch: Tensors and autograd — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/examples_autograd/polynomial_custom_function.html b/docs/beginner/examples_autograd/polynomial_custom_function.html index 6f240d7..75d725c 100644 --- a/docs/beginner/examples_autograd/polynomial_custom_function.html +++ b/docs/beginner/examples_autograd/polynomial_custom_function.html @@ -9,7 +9,7 @@ - PyTorch: Defining New autograd Functions — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch: Defining New autograd Functions — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/examples_nn/dynamic_net.html b/docs/beginner/examples_nn/dynamic_net.html index c1cd586..6c27347 100644 --- a/docs/beginner/examples_nn/dynamic_net.html +++ b/docs/beginner/examples_nn/dynamic_net.html @@ -9,7 +9,7 @@ - PyTorch: Control Flow + Weight Sharing — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch: Control Flow + Weight Sharing — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/examples_nn/index.html b/docs/beginner/examples_nn/index.html index 7c803de..2b07408 100644 --- a/docs/beginner/examples_nn/index.html +++ b/docs/beginner/examples_nn/index.html @@ -9,7 +9,7 @@ - <no title> — PyTorch Tutorials 2.3.0+cu121 documentation + <no title> — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/examples_nn/polynomial_module.html b/docs/beginner/examples_nn/polynomial_module.html index 101b9ab..bf28a49 100644 --- a/docs/beginner/examples_nn/polynomial_module.html +++ b/docs/beginner/examples_nn/polynomial_module.html @@ -9,7 +9,7 @@ - PyTorch: Custom nn Modules — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch: Custom nn Modules — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/examples_nn/polynomial_nn.html b/docs/beginner/examples_nn/polynomial_nn.html index e775ec7..de9496d 100644 --- a/docs/beginner/examples_nn/polynomial_nn.html +++ b/docs/beginner/examples_nn/polynomial_nn.html @@ -9,7 +9,7 @@ - PyTorch: nn — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch: nn — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/examples_nn/polynomial_optim.html b/docs/beginner/examples_nn/polynomial_optim.html index 8b3d42a..a166cdd 100644 --- a/docs/beginner/examples_nn/polynomial_optim.html +++ b/docs/beginner/examples_nn/polynomial_optim.html @@ -9,7 +9,7 @@ - PyTorch: optim — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch: optim — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/examples_tensor/index.html b/docs/beginner/examples_tensor/index.html index 4a8c80e..64ae697 100644 --- a/docs/beginner/examples_tensor/index.html +++ b/docs/beginner/examples_tensor/index.html @@ -9,7 +9,7 @@ - <no title> — PyTorch Tutorials 2.3.0+cu121 documentation + <no title> — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/examples_tensor/polynomial_numpy.html b/docs/beginner/examples_tensor/polynomial_numpy.html index a401a72..64ca031 100644 --- a/docs/beginner/examples_tensor/polynomial_numpy.html +++ b/docs/beginner/examples_tensor/polynomial_numpy.html @@ -9,7 +9,7 @@ - Warm-up: numpy — PyTorch Tutorials 2.3.0+cu121 documentation + Warm-up: numpy — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/examples_tensor/polynomial_tensor.html b/docs/beginner/examples_tensor/polynomial_tensor.html index 989112c..69befc6 100644 --- a/docs/beginner/examples_tensor/polynomial_tensor.html +++ b/docs/beginner/examples_tensor/polynomial_tensor.html @@ -9,7 +9,7 @@ - PyTorch:张量(Tensors) — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch:张量(Tensors) — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/fgsm_tutorial.html b/docs/beginner/fgsm_tutorial.html index 9039c87..7770577 100644 --- a/docs/beginner/fgsm_tutorial.html +++ b/docs/beginner/fgsm_tutorial.html @@ -9,7 +9,7 @@ - 对抗样本生成 — PyTorch Tutorials 2.3.0+cu121 documentation + 对抗样本生成 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/finetuning_torchvision_models_tutorial.html b/docs/beginner/finetuning_torchvision_models_tutorial.html index 846feed..d2cceb5 100644 --- a/docs/beginner/finetuning_torchvision_models_tutorial.html +++ b/docs/beginner/finetuning_torchvision_models_tutorial.html @@ -9,7 +9,7 @@ - Finetuning Torchvision Models — PyTorch Tutorials 2.3.0+cu121 documentation + Finetuning Torchvision Models — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/flava_finetuning_tutorial.html b/docs/beginner/flava_finetuning_tutorial.html index 030345f..491b6fe 100644 --- a/docs/beginner/flava_finetuning_tutorial.html +++ b/docs/beginner/flava_finetuning_tutorial.html @@ -9,7 +9,7 @@ - TorchMultimodal 教程:微调 FLAVA — PyTorch Tutorials 2.3.0+cu121 documentation + TorchMultimodal 教程:微调 FLAVA — PyTorch Tutorials 2.5.0+cu124 documentation @@ -277,7 +277,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/former_torchies/autograd_tutorial_old.html b/docs/beginner/former_torchies/autograd_tutorial_old.html index 754ab72..c31b865 100644 --- a/docs/beginner/former_torchies/autograd_tutorial_old.html +++ b/docs/beginner/former_torchies/autograd_tutorial_old.html @@ -9,7 +9,7 @@ - Autograd — PyTorch Tutorials 2.3.0+cu121 documentation + Autograd — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/former_torchies/index.html b/docs/beginner/former_torchies/index.html index e48c20a..4942cb9 100644 --- a/docs/beginner/former_torchies/index.html +++ b/docs/beginner/former_torchies/index.html @@ -9,7 +9,7 @@ - <no title> — PyTorch Tutorials 2.3.0+cu121 documentation + <no title> — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/former_torchies/nnft_tutorial.html b/docs/beginner/former_torchies/nnft_tutorial.html index 8b20801..1cc4930 100644 --- a/docs/beginner/former_torchies/nnft_tutorial.html +++ b/docs/beginner/former_torchies/nnft_tutorial.html @@ -9,7 +9,7 @@ - nn package — PyTorch Tutorials 2.3.0+cu121 documentation + nn package — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/former_torchies/parallelism_tutorial.html b/docs/beginner/former_torchies/parallelism_tutorial.html index 3312410..a319641 100644 --- a/docs/beginner/former_torchies/parallelism_tutorial.html +++ b/docs/beginner/former_torchies/parallelism_tutorial.html @@ -9,7 +9,7 @@ - Multi-GPU Examples — PyTorch Tutorials 2.3.0+cu121 documentation + Multi-GPU Examples — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/former_torchies/tensor_tutorial_old.html b/docs/beginner/former_torchies/tensor_tutorial_old.html index fac45ab..0cfb4d8 100644 --- a/docs/beginner/former_torchies/tensor_tutorial_old.html +++ b/docs/beginner/former_torchies/tensor_tutorial_old.html @@ -9,7 +9,7 @@ - Tensors — PyTorch Tutorials 2.3.0+cu121 documentation + Tensors — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/former_torchies_tutorial.html b/docs/beginner/former_torchies_tutorial.html index 105cd48..0ba5abc 100644 --- a/docs/beginner/former_torchies_tutorial.html +++ b/docs/beginner/former_torchies_tutorial.html @@ -9,7 +9,7 @@ - PyTorch for Former Torch Users — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch for Former Torch Users — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/hta_intro_tutorial.html b/docs/beginner/hta_intro_tutorial.html index b384a1c..a84ff75 100644 --- a/docs/beginner/hta_intro_tutorial.html +++ b/docs/beginner/hta_intro_tutorial.html @@ -9,7 +9,7 @@ - Holistic Trace Analysis 介绍 — PyTorch Tutorials 2.3.0+cu121 documentation + Holistic Trace Analysis 介绍 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/hta_trace_diff_tutorial.html b/docs/beginner/hta_trace_diff_tutorial.html index 98416b3..80153b3 100644 --- a/docs/beginner/hta_trace_diff_tutorial.html +++ b/docs/beginner/hta_trace_diff_tutorial.html @@ -9,7 +9,7 @@ - Holistic Trace Analysis 差异分析 — PyTorch Tutorials 2.3.0+cu121 documentation + Holistic Trace Analysis 差异分析 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/hybrid_frontend/index.html b/docs/beginner/hybrid_frontend/index.html index c7d8e4d..8313810 100644 --- a/docs/beginner/hybrid_frontend/index.html +++ b/docs/beginner/hybrid_frontend/index.html @@ -9,7 +9,7 @@ - <no title> — PyTorch Tutorials 2.3.0+cu121 documentation + <no title> — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/hybrid_frontend/learning_hybrid_frontend_through_example_tutorial.html b/docs/beginner/hybrid_frontend/learning_hybrid_frontend_through_example_tutorial.html index 8806efb..d73281e 100644 --- a/docs/beginner/hybrid_frontend/learning_hybrid_frontend_through_example_tutorial.html +++ b/docs/beginner/hybrid_frontend/learning_hybrid_frontend_through_example_tutorial.html @@ -9,7 +9,7 @@ - Learning Hybrid Frontend Syntax Through Example — PyTorch Tutorials 2.3.0+cu121 documentation + Learning Hybrid Frontend Syntax Through Example — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/hybrid_frontend_tutorial.html b/docs/beginner/hybrid_frontend_tutorial.html index f037c21..f219ed2 100644 --- a/docs/beginner/hybrid_frontend_tutorial.html +++ b/docs/beginner/hybrid_frontend_tutorial.html @@ -9,7 +9,7 @@ - Hybrid Frontend 教程 — PyTorch Tutorials 2.3.0+cu121 documentation + Hybrid Frontend 教程 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/hyperparameter_tuning_tutorial.html b/docs/beginner/hyperparameter_tuning_tutorial.html index 5bfd377..ce93a26 100644 --- a/docs/beginner/hyperparameter_tuning_tutorial.html +++ b/docs/beginner/hyperparameter_tuning_tutorial.html @@ -9,7 +9,7 @@ - Ray Tune 超参数调优 — PyTorch Tutorials 2.3.0+cu121 documentation + Ray Tune 超参数调优 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/introyt.html b/docs/beginner/introyt.html index 1ed3399..31e4eb5 100644 --- a/docs/beginner/introyt.html +++ b/docs/beginner/introyt.html @@ -9,7 +9,7 @@ - PyTorch 介绍 - YouTube — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch 介绍 - YouTube — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/introyt/autogradyt_tutorial.html b/docs/beginner/introyt/autogradyt_tutorial.html index 8c388db..4a1ed85 100644 --- a/docs/beginner/introyt/autogradyt_tutorial.html +++ b/docs/beginner/introyt/autogradyt_tutorial.html @@ -9,7 +9,7 @@ - 自动微分基础 — PyTorch Tutorials 2.3.0+cu121 documentation + 自动微分基础 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/introyt/captumyt.html b/docs/beginner/introyt/captumyt.html index c5a8603..d486d91 100644 --- a/docs/beginner/introyt/captumyt.html +++ b/docs/beginner/introyt/captumyt.html @@ -9,7 +9,7 @@ - 使用 Captum 进行模型理解 — PyTorch Tutorials 2.3.0+cu121 documentation + 使用 Captum 进行模型理解 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/introyt/index.html b/docs/beginner/introyt/index.html index 82e9ca9..d58b512 100644 --- a/docs/beginner/introyt/index.html +++ b/docs/beginner/introyt/index.html @@ -9,7 +9,7 @@ - Introduction to PyTorch on YouTube — PyTorch Tutorials 2.3.0+cu121 documentation + Introduction to PyTorch on YouTube — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/introyt/introyt1_tutorial.html b/docs/beginner/introyt/introyt1_tutorial.html index 4c5373f..66e08a3 100644 --- a/docs/beginner/introyt/introyt1_tutorial.html +++ b/docs/beginner/introyt/introyt1_tutorial.html @@ -9,7 +9,7 @@ - PyTorch 简介 — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch 简介 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/introyt/modelsyt_tutorial.html b/docs/beginner/introyt/modelsyt_tutorial.html index 3dc7a2a..b228576 100644 --- a/docs/beginner/introyt/modelsyt_tutorial.html +++ b/docs/beginner/introyt/modelsyt_tutorial.html @@ -9,7 +9,7 @@ - 使用 PyTorch 构建模型 — PyTorch Tutorials 2.3.0+cu121 documentation + 使用 PyTorch 构建模型 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/introyt/tensorboardyt_tutorial.html b/docs/beginner/introyt/tensorboardyt_tutorial.html index 0a4ca3d..e430f8b 100644 --- a/docs/beginner/introyt/tensorboardyt_tutorial.html +++ b/docs/beginner/introyt/tensorboardyt_tutorial.html @@ -9,7 +9,7 @@ - PyTorch TensorBoard 支持 — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch TensorBoard 支持 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/introyt/tensors_deeper_tutorial.html b/docs/beginner/introyt/tensors_deeper_tutorial.html index 3ec5a88..9c7e695 100644 --- a/docs/beginner/introyt/tensors_deeper_tutorial.html +++ b/docs/beginner/introyt/tensors_deeper_tutorial.html @@ -9,7 +9,7 @@ - PyTorch Tensors 介绍 — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch Tensors 介绍 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/introyt/trainingyt.html b/docs/beginner/introyt/trainingyt.html index 3c3b8ed..afa25a7 100644 --- a/docs/beginner/introyt/trainingyt.html +++ b/docs/beginner/introyt/trainingyt.html @@ -9,7 +9,7 @@ - 使用 PyTorch 训练模型 — PyTorch Tutorials 2.3.0+cu121 documentation + 使用 PyTorch 训练模型 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/knowledge_distillation_tutorial.html b/docs/beginner/knowledge_distillation_tutorial.html index 5b53238..df6a0a5 100644 --- a/docs/beginner/knowledge_distillation_tutorial.html +++ b/docs/beginner/knowledge_distillation_tutorial.html @@ -9,7 +9,7 @@ - Knowledge Distillation 教程 — PyTorch Tutorials 2.3.0+cu121 documentation + Knowledge Distillation 教程 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/nlp/advanced_tutorial.html b/docs/beginner/nlp/advanced_tutorial.html index 36f610f..7d6f441 100644 --- a/docs/beginner/nlp/advanced_tutorial.html +++ b/docs/beginner/nlp/advanced_tutorial.html @@ -9,7 +9,7 @@ - Advanced: Making Dynamic Decisions and the Bi-LSTM CRF — PyTorch Tutorials 2.3.0+cu121 documentation + Advanced: Making Dynamic Decisions and the Bi-LSTM CRF — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/nlp/deep_learning_tutorial.html b/docs/beginner/nlp/deep_learning_tutorial.html index 4274ffd..17607bd 100644 --- a/docs/beginner/nlp/deep_learning_tutorial.html +++ b/docs/beginner/nlp/deep_learning_tutorial.html @@ -9,7 +9,7 @@ - Deep Learning with PyTorch — PyTorch Tutorials 2.3.0+cu121 documentation + Deep Learning with PyTorch — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/nlp/index.html b/docs/beginner/nlp/index.html index d7e7478..bea6a6d 100644 --- a/docs/beginner/nlp/index.html +++ b/docs/beginner/nlp/index.html @@ -9,7 +9,7 @@ - Deep Learning for NLP with Pytorch — PyTorch Tutorials 2.3.0+cu121 documentation + Deep Learning for NLP with Pytorch — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/nlp/pytorch_tutorial.html b/docs/beginner/nlp/pytorch_tutorial.html index 9844b9b..a48c49d 100644 --- a/docs/beginner/nlp/pytorch_tutorial.html +++ b/docs/beginner/nlp/pytorch_tutorial.html @@ -9,7 +9,7 @@ - Introduction to PyTorch — PyTorch Tutorials 2.3.0+cu121 documentation + Introduction to PyTorch — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/nlp/sequence_models_tutorial.html b/docs/beginner/nlp/sequence_models_tutorial.html index d9f993c..dca6924 100644 --- a/docs/beginner/nlp/sequence_models_tutorial.html +++ b/docs/beginner/nlp/sequence_models_tutorial.html @@ -9,7 +9,7 @@ - Sequence Models and Long Short-Term Memory Networks — PyTorch Tutorials 2.3.0+cu121 documentation + Sequence Models and Long Short-Term Memory Networks — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/nlp/word_embeddings_tutorial.html b/docs/beginner/nlp/word_embeddings_tutorial.html index 7a5d930..4943fea 100644 --- a/docs/beginner/nlp/word_embeddings_tutorial.html +++ b/docs/beginner/nlp/word_embeddings_tutorial.html @@ -9,7 +9,7 @@ - Word Embeddings: Encoding Lexical Semantics — PyTorch Tutorials 2.3.0+cu121 documentation + Word Embeddings: Encoding Lexical Semantics — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/nn_tutorial.html b/docs/beginner/nn_tutorial.html index 3c36688..2101f5c 100644 --- a/docs/beginner/nn_tutorial.html +++ b/docs/beginner/nn_tutorial.html @@ -9,7 +9,7 @@ - torch.nn 具体是什么? — PyTorch Tutorials 2.3.0+cu121 documentation + torch.nn 具体是什么? — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/onnx/export_simple_model_to_onnx_tutorial.html b/docs/beginner/onnx/export_simple_model_to_onnx_tutorial.html index b2cafad..640de6a 100644 --- a/docs/beginner/onnx/export_simple_model_to_onnx_tutorial.html +++ b/docs/beginner/onnx/export_simple_model_to_onnx_tutorial.html @@ -9,7 +9,7 @@ - Export a PyTorch model to ONNX — PyTorch Tutorials 2.3.0+cu121 documentation + Export a PyTorch model to ONNX — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/onnx/index.html b/docs/beginner/onnx/index.html index aef7354..61aa185 100644 --- a/docs/beginner/onnx/index.html +++ b/docs/beginner/onnx/index.html @@ -9,7 +9,7 @@ - ONNX — PyTorch Tutorials 2.3.0+cu121 documentation + ONNX — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/onnx/intro_onnx.html b/docs/beginner/onnx/intro_onnx.html index 053e4b4..0748171 100644 --- a/docs/beginner/onnx/intro_onnx.html +++ b/docs/beginner/onnx/intro_onnx.html @@ -9,7 +9,7 @@ - ONNX 介绍 — PyTorch Tutorials 2.3.0+cu121 documentation + ONNX 介绍 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/onnx/onnx_registry_tutorial.html b/docs/beginner/onnx/onnx_registry_tutorial.html index f715938..cae1bf7 100644 --- a/docs/beginner/onnx/onnx_registry_tutorial.html +++ b/docs/beginner/onnx/onnx_registry_tutorial.html @@ -9,7 +9,7 @@ - Extending the ONNX Registry — PyTorch Tutorials 2.3.0+cu121 documentation + Extending the ONNX Registry — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/profiler.html b/docs/beginner/profiler.html index 471acee..9a140f3 100644 --- a/docs/beginner/profiler.html +++ b/docs/beginner/profiler.html @@ -9,7 +9,7 @@ - PyTorch 模型分析 — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch 模型分析 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/ptcheat.html b/docs/beginner/ptcheat.html index 40af3f1..726b7f3 100644 --- a/docs/beginner/ptcheat.html +++ b/docs/beginner/ptcheat.html @@ -9,7 +9,7 @@ - PyTorch Cheat Sheet — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch Cheat Sheet — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/pytorch_with_examples.html b/docs/beginner/pytorch_with_examples.html index 2118baa..f7fd984 100644 --- a/docs/beginner/pytorch_with_examples.html +++ b/docs/beginner/pytorch_with_examples.html @@ -9,7 +9,7 @@ - 跟着示例学习 PyTorch — PyTorch Tutorials 2.3.0+cu121 documentation + 跟着示例学习 PyTorch — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/saving_loading_models.html b/docs/beginner/saving_loading_models.html index 9e57784..022e43c 100644 --- a/docs/beginner/saving_loading_models.html +++ b/docs/beginner/saving_loading_models.html @@ -9,7 +9,7 @@ - Saving and Loading Models — PyTorch Tutorials 2.3.0+cu121 documentation + Saving and Loading Models — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/t5_tutorial.html b/docs/beginner/t5_tutorial.html index 07af324..45654ea 100644 --- a/docs/beginner/t5_tutorial.html +++ b/docs/beginner/t5_tutorial.html @@ -9,7 +9,7 @@ - T5-Base Model for Summarization, Sentiment Classification, and Translation — PyTorch Tutorials 2.3.0+cu121 documentation + T5-Base Model for Summarization, Sentiment Classification, and Translation — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/template_tutorial.html b/docs/beginner/template_tutorial.html index 7e3103b..664e919 100644 --- a/docs/beginner/template_tutorial.html +++ b/docs/beginner/template_tutorial.html @@ -9,7 +9,7 @@ - Template Tutorial — PyTorch Tutorials 2.3.0+cu121 documentation + Template Tutorial — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/text_sentiment_ngrams_tutorial.html b/docs/beginner/text_sentiment_ngrams_tutorial.html index 974601a..dd4c191 100644 --- a/docs/beginner/text_sentiment_ngrams_tutorial.html +++ b/docs/beginner/text_sentiment_ngrams_tutorial.html @@ -9,7 +9,7 @@ - torchtext 文本分类 — PyTorch Tutorials 2.3.0+cu121 documentation + torchtext 文本分类 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/torchtext_custom_dataset_tutorial.html b/docs/beginner/torchtext_custom_dataset_tutorial.html index c85f53d..41e0110 100644 --- a/docs/beginner/torchtext_custom_dataset_tutorial.html +++ b/docs/beginner/torchtext_custom_dataset_tutorial.html @@ -9,7 +9,7 @@ - Torchtext 预处理自定义文本数据集 — PyTorch Tutorials 2.3.0+cu121 documentation + Torchtext 预处理自定义文本数据集 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/transfer_learning_tutorial.html b/docs/beginner/transfer_learning_tutorial.html index 3f17f6a..9e09819 100644 --- a/docs/beginner/transfer_learning_tutorial.html +++ b/docs/beginner/transfer_learning_tutorial.html @@ -9,7 +9,7 @@ - 计算机视觉迁移学习教程 — PyTorch Tutorials 2.3.0+cu121 documentation + 计算机视觉迁移学习教程 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/translation_transformer.html b/docs/beginner/translation_transformer.html index d978263..f4a4495 100644 --- a/docs/beginner/translation_transformer.html +++ b/docs/beginner/translation_transformer.html @@ -9,7 +9,7 @@ - 数据获取和处理 — PyTorch Tutorials 2.3.0+cu121 documentation + 数据获取和处理 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/beginner/vt_tutorial.html b/docs/beginner/vt_tutorial.html index 2f9f8a7..a42074c 100644 --- a/docs/beginner/vt_tutorial.html +++ b/docs/beginner/vt_tutorial.html @@ -9,7 +9,7 @@ - 优化视觉 Transformer 模型 — PyTorch Tutorials 2.3.0+cu121 documentation + 优化视觉 Transformer 模型 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/distributed/home.html b/docs/distributed/home.html index 0e0b55b..fe6ef57 100644 --- a/docs/distributed/home.html +++ b/docs/distributed/home.html @@ -9,7 +9,7 @@ - Distributed and Parallel Training Tutorials — PyTorch Tutorials 2.3.0+cu121 documentation + Distributed and Parallel Training Tutorials — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/genindex.html b/docs/genindex.html index 839baf0..3aada16 100644 --- a/docs/genindex.html +++ b/docs/genindex.html @@ -9,7 +9,7 @@ - Index — PyTorch Tutorials 2.3.0+cu121 documentation + Index — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
diff --git a/docs/index.html b/docs/index.html index e727e44..1c26d04 100644 --- a/docs/index.html +++ b/docs/index.html @@ -9,7 +9,7 @@ - 欢迎来到 PyTorch 教程 — PyTorch Tutorials 2.3.0+cu121 documentation + 欢迎来到 PyTorch 教程 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -277,7 +277,7 @@
- 2.3.0+cu121 + 2.5.0+cu124
@@ -597,10 +597,7 @@

欢迎来到 PyTorch 教程
  • Compiled Autograd: 为 torch.compile 捕获更大的后向图

  • 通过区域编译减少 torch.compile 冷启动编译时间

  • -
  • 使用 Tensor Parallel (TP) 进行大规模 Transformer 模型训练

  • -
  • 利用半结构化(2:4)稀疏性加速 BERT

  • -
  • torch.export 教程

  • -
  • nn.Module 中 load_state_dict 和张量子类的扩展点

  • +
  • 如何在 Windows CPU 上使用 TorchInductor

  • diff --git a/docs/intermediate/FSDP_adavnced_tutorial.html b/docs/intermediate/FSDP_adavnced_tutorial.html index f86ead6..7a87b6f 100644 --- a/docs/intermediate/FSDP_adavnced_tutorial.html +++ b/docs/intermediate/FSDP_adavnced_tutorial.html @@ -9,7 +9,7 @@ - Advanced Model Training with Fully Sharded Data Parallel (FSDP) — PyTorch Tutorials 2.3.0+cu121 documentation + Advanced Model Training with Fully Sharded Data Parallel (FSDP) — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/FSDP_tutorial.html b/docs/intermediate/FSDP_tutorial.html index 3985ec5..65b81da 100644 --- a/docs/intermediate/FSDP_tutorial.html +++ b/docs/intermediate/FSDP_tutorial.html @@ -9,7 +9,7 @@ - Getting Started with Fully Sharded Data Parallel(FSDP) — PyTorch Tutorials 2.3.0+cu121 documentation + Getting Started with Fully Sharded Data Parallel(FSDP) — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/TP_tutorial.html b/docs/intermediate/TP_tutorial.html index 2def3a9..11983f0 100644 --- a/docs/intermediate/TP_tutorial.html +++ b/docs/intermediate/TP_tutorial.html @@ -9,7 +9,7 @@ - Large Scale Transformer model training with Tensor Parallel (TP) — PyTorch Tutorials 2.3.0+cu121 documentation + Large Scale Transformer model training with Tensor Parallel (TP) — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/autograd_saved_tensors_hooks_tutorial.html b/docs/intermediate/autograd_saved_tensors_hooks_tutorial.html index cdd553f..4d7e86b 100644 --- a/docs/intermediate/autograd_saved_tensors_hooks_tutorial.html +++ b/docs/intermediate/autograd_saved_tensors_hooks_tutorial.html @@ -9,7 +9,7 @@ - Hooks for autograd saved tensors — PyTorch Tutorials 2.3.0+cu121 documentation + Hooks for autograd saved tensors — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/ax_multiobjective_nas_tutorial.html b/docs/intermediate/ax_multiobjective_nas_tutorial.html index 2579374..2b248d4 100644 --- a/docs/intermediate/ax_multiobjective_nas_tutorial.html +++ b/docs/intermediate/ax_multiobjective_nas_tutorial.html @@ -9,7 +9,7 @@ - Multi-Objective NAS with Ax — PyTorch Tutorials 2.3.0+cu121 documentation + Multi-Objective NAS with Ax — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/char_rnn_classification_tutorial.html b/docs/intermediate/char_rnn_classification_tutorial.html index acfbbd3..141bdd5 100644 --- a/docs/intermediate/char_rnn_classification_tutorial.html +++ b/docs/intermediate/char_rnn_classification_tutorial.html @@ -9,7 +9,7 @@ - 从零开始的自然语言处理:字符级 RNN 进行姓名分类 — PyTorch Tutorials 2.3.0+cu121 documentation + 从零开始的自然语言处理:字符级 RNN 进行姓名分类 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/char_rnn_generation_tutorial.html b/docs/intermediate/char_rnn_generation_tutorial.html index 96c3925..a008141 100644 --- a/docs/intermediate/char_rnn_generation_tutorial.html +++ b/docs/intermediate/char_rnn_generation_tutorial.html @@ -9,7 +9,7 @@ - 从零开始的自然语言处理:字符级 RNN 生成姓名 — PyTorch Tutorials 2.3.0+cu121 documentation + 从零开始的自然语言处理:字符级 RNN 生成姓名 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/compiled_autograd_tutorial.html b/docs/intermediate/compiled_autograd_tutorial.html index aaedaf5..1f078f9 100644 --- a/docs/intermediate/compiled_autograd_tutorial.html +++ b/docs/intermediate/compiled_autograd_tutorial.html @@ -9,7 +9,7 @@ - Compiled Autograd: 为 torch.compile 捕获更大的后向图 — PyTorch Tutorials 2.3.0+cu121 documentation + Compiled Autograd: 为 torch.compile 捕获更大的后向图 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/custom_function_conv_bn_tutorial.html b/docs/intermediate/custom_function_conv_bn_tutorial.html index 8c01b0a..608ed1f 100644 --- a/docs/intermediate/custom_function_conv_bn_tutorial.html +++ b/docs/intermediate/custom_function_conv_bn_tutorial.html @@ -9,7 +9,7 @@ - Fusing Convolution and Batch Norm using Custom Function — PyTorch Tutorials 2.3.0+cu121 documentation + Fusing Convolution and Batch Norm using Custom Function — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/custom_function_double_backward_tutorial.html b/docs/intermediate/custom_function_double_backward_tutorial.html index fb61090..64aeaf8 100644 --- a/docs/intermediate/custom_function_double_backward_tutorial.html +++ b/docs/intermediate/custom_function_double_backward_tutorial.html @@ -9,7 +9,7 @@ - Double Backward with Custom Functions — PyTorch Tutorials 2.3.0+cu121 documentation + Double Backward with Custom Functions — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/ddp_series_minGPT.html b/docs/intermediate/ddp_series_minGPT.html index b00d103..7f4dabd 100644 --- a/docs/intermediate/ddp_series_minGPT.html +++ b/docs/intermediate/ddp_series_minGPT.html @@ -9,7 +9,7 @@ - Training “real-world” models with DDP — PyTorch Tutorials 2.3.0+cu121 documentation + Training “real-world” models with DDP — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/ddp_series_multinode.html b/docs/intermediate/ddp_series_multinode.html index 0e89aca..90d7a18 100644 --- a/docs/intermediate/ddp_series_multinode.html +++ b/docs/intermediate/ddp_series_multinode.html @@ -9,7 +9,7 @@ - Multinode Training — PyTorch Tutorials 2.3.0+cu121 documentation + Multinode Training — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/ddp_tutorial.html b/docs/intermediate/ddp_tutorial.html index 03ff371..59f1a90 100644 --- a/docs/intermediate/ddp_tutorial.html +++ b/docs/intermediate/ddp_tutorial.html @@ -9,7 +9,7 @@ - Getting Started with Distributed Data Parallel — PyTorch Tutorials 2.3.0+cu121 documentation + Getting Started with Distributed Data Parallel — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/dist_pipeline_parallel_tutorial.html b/docs/intermediate/dist_pipeline_parallel_tutorial.html index ca102fc..d6efb0c 100644 --- a/docs/intermediate/dist_pipeline_parallel_tutorial.html +++ b/docs/intermediate/dist_pipeline_parallel_tutorial.html @@ -9,7 +9,7 @@ - Distributed Pipeline Parallelism Using RPC — PyTorch Tutorials 2.3.0+cu121 documentation + Distributed Pipeline Parallelism Using RPC — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/dist_tuto.html b/docs/intermediate/dist_tuto.html index f902c03..5b95277 100644 --- a/docs/intermediate/dist_tuto.html +++ b/docs/intermediate/dist_tuto.html @@ -9,7 +9,7 @@ - Writing Distributed Applications with PyTorch — PyTorch Tutorials 2.3.0+cu121 documentation + Writing Distributed Applications with PyTorch — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/dqn_with_rnn_tutorial.html b/docs/intermediate/dqn_with_rnn_tutorial.html index 5889f7a..0852414 100644 --- a/docs/intermediate/dqn_with_rnn_tutorial.html +++ b/docs/intermediate/dqn_with_rnn_tutorial.html @@ -9,7 +9,7 @@ - Recurrent DQN: Training recurrent policies — PyTorch Tutorials 2.3.0+cu121 documentation + Recurrent DQN: Training recurrent policies — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/dynamic_quantization_bert_tutorial.html b/docs/intermediate/dynamic_quantization_bert_tutorial.html index 19380e8..4c15b1b 100644 --- a/docs/intermediate/dynamic_quantization_bert_tutorial.html +++ b/docs/intermediate/dynamic_quantization_bert_tutorial.html @@ -9,7 +9,7 @@ - (beta) Dynamic Quantization on BERT — PyTorch Tutorials 2.3.0+cu121 documentation + (beta) Dynamic Quantization on BERT — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/ensembling.html b/docs/intermediate/ensembling.html index ad5f65b..db5c303 100644 --- a/docs/intermediate/ensembling.html +++ b/docs/intermediate/ensembling.html @@ -9,7 +9,7 @@ - Model ensembling — PyTorch Tutorials 2.3.0+cu121 documentation + Model ensembling — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/flask_rest_api_tutorial.html b/docs/intermediate/flask_rest_api_tutorial.html index 472b340..963d98d 100644 --- a/docs/intermediate/flask_rest_api_tutorial.html +++ b/docs/intermediate/flask_rest_api_tutorial.html @@ -9,7 +9,7 @@ - API 定义 — PyTorch Tutorials 2.3.0+cu121 documentation + API 定义 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/forced_alignment_with_torchaudio_tutorial.html b/docs/intermediate/forced_alignment_with_torchaudio_tutorial.html index c2a055e..d3b760c 100644 --- a/docs/intermediate/forced_alignment_with_torchaudio_tutorial.html +++ b/docs/intermediate/forced_alignment_with_torchaudio_tutorial.html @@ -9,7 +9,7 @@ - Wav2Vec2 强制对齐 — PyTorch Tutorials 2.3.0+cu121 documentation + Wav2Vec2 强制对齐 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/forward_ad_usage.html b/docs/intermediate/forward_ad_usage.html index 2a58385..0effea9 100644 --- a/docs/intermediate/forward_ad_usage.html +++ b/docs/intermediate/forward_ad_usage.html @@ -9,7 +9,7 @@ - Forward-mode Automatic Differentiation (Beta) — PyTorch Tutorials 2.3.0+cu121 documentation + Forward-mode Automatic Differentiation (Beta) — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/fx_conv_bn_fuser.html b/docs/intermediate/fx_conv_bn_fuser.html index 2265034..8b91a62 100644 --- a/docs/intermediate/fx_conv_bn_fuser.html +++ b/docs/intermediate/fx_conv_bn_fuser.html @@ -9,7 +9,7 @@ - (beta) Building a Convolution/Batch Norm fuser in FX — PyTorch Tutorials 2.3.0+cu121 documentation + (beta) Building a Convolution/Batch Norm fuser in FX — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/fx_profiling_tutorial.html b/docs/intermediate/fx_profiling_tutorial.html index 1465bc3..253935c 100644 --- a/docs/intermediate/fx_profiling_tutorial.html +++ b/docs/intermediate/fx_profiling_tutorial.html @@ -9,7 +9,7 @@ - (beta) Building a Simple CPU Performance Profiler with FX — PyTorch Tutorials 2.3.0+cu121 documentation + (beta) Building a Simple CPU Performance Profiler with FX — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/inductor_debug_cpu.html b/docs/intermediate/inductor_debug_cpu.html index a127c7b..fe5d76b 100644 --- a/docs/intermediate/inductor_debug_cpu.html +++ b/docs/intermediate/inductor_debug_cpu.html @@ -9,7 +9,7 @@ - Inductor CPU backend debugging and profiling — PyTorch Tutorials 2.3.0+cu121 documentation + Inductor CPU backend debugging and profiling — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/jacobians_hessians.html b/docs/intermediate/jacobians_hessians.html index 16937eb..1da0dcd 100644 --- a/docs/intermediate/jacobians_hessians.html +++ b/docs/intermediate/jacobians_hessians.html @@ -9,7 +9,7 @@ - Jacobians, Hessians, hvp, vhp, and more: composing function transforms — PyTorch Tutorials 2.3.0+cu121 documentation + Jacobians, Hessians, hvp, vhp, and more: composing function transforms — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/mario_rl_tutorial.html b/docs/intermediate/mario_rl_tutorial.html index 010cc66..6de3b2d 100644 --- a/docs/intermediate/mario_rl_tutorial.html +++ b/docs/intermediate/mario_rl_tutorial.html @@ -9,7 +9,7 @@ - 训练一个马里奥游戏的 RL Agent — PyTorch Tutorials 2.3.0+cu121 documentation + 训练一个马里奥游戏的 RL Agent — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/memory_format_tutorial.html b/docs/intermediate/memory_format_tutorial.html index 0e3663a..a87b94f 100644 --- a/docs/intermediate/memory_format_tutorial.html +++ b/docs/intermediate/memory_format_tutorial.html @@ -9,7 +9,7 @@ - (beta) Channels Last Memory Format in PyTorch — PyTorch Tutorials 2.3.0+cu121 documentation + (beta) Channels Last Memory Format in PyTorch — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/mnist_train_nas.html b/docs/intermediate/mnist_train_nas.html index 809c30f..e4b0264 100644 --- a/docs/intermediate/mnist_train_nas.html +++ b/docs/intermediate/mnist_train_nas.html @@ -9,7 +9,7 @@ - <no title> — PyTorch Tutorials 2.3.0+cu121 documentation + <no title> — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/model_parallel_tutorial.html b/docs/intermediate/model_parallel_tutorial.html index f2950f4..1c8a25a 100644 --- a/docs/intermediate/model_parallel_tutorial.html +++ b/docs/intermediate/model_parallel_tutorial.html @@ -9,7 +9,7 @@ - Single-Machine Model Parallel Best Practices — PyTorch Tutorials 2.3.0+cu121 documentation + Single-Machine Model Parallel Best Practices — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/neural_tangent_kernels.html b/docs/intermediate/neural_tangent_kernels.html index 3f2d992..1632612 100644 --- a/docs/intermediate/neural_tangent_kernels.html +++ b/docs/intermediate/neural_tangent_kernels.html @@ -9,7 +9,7 @@ - Neural Tangent Kernels — PyTorch Tutorials 2.3.0+cu121 documentation + Neural Tangent Kernels — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/nvfuser_intro_tutorial.html b/docs/intermediate/nvfuser_intro_tutorial.html index 625ba41..bdfb0d9 100644 --- a/docs/intermediate/nvfuser_intro_tutorial.html +++ b/docs/intermediate/nvfuser_intro_tutorial.html @@ -9,7 +9,7 @@ - Getting Started - Accelerate Your Scripts with nvFuser — PyTorch Tutorials 2.3.0+cu121 documentation + Getting Started - Accelerate Your Scripts with nvFuser — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/optimizer_step_in_backward_tutorial.html b/docs/intermediate/optimizer_step_in_backward_tutorial.html index 6518777..b202407 100644 --- a/docs/intermediate/optimizer_step_in_backward_tutorial.html +++ b/docs/intermediate/optimizer_step_in_backward_tutorial.html @@ -9,7 +9,7 @@ - How to save memory by fusing the optimizer step into the backward pass — PyTorch Tutorials 2.3.0+cu121 documentation + How to save memory by fusing the optimizer step into the backward pass — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/parametrizations.html b/docs/intermediate/parametrizations.html index b806fd5..63887ff 100644 --- a/docs/intermediate/parametrizations.html +++ b/docs/intermediate/parametrizations.html @@ -9,7 +9,7 @@ - Parametrizations Tutorial — PyTorch Tutorials 2.3.0+cu121 documentation + Parametrizations Tutorial — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/per_sample_grads.html b/docs/intermediate/per_sample_grads.html index d21d785..d089fd2 100644 --- a/docs/intermediate/per_sample_grads.html +++ b/docs/intermediate/per_sample_grads.html @@ -9,7 +9,7 @@ - Per-sample-gradients — PyTorch Tutorials 2.3.0+cu121 documentation + Per-sample-gradients — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/process_group_cpp_extension_tutorial.html b/docs/intermediate/process_group_cpp_extension_tutorial.html index dcee91b..3f2fae9 100644 --- a/docs/intermediate/process_group_cpp_extension_tutorial.html +++ b/docs/intermediate/process_group_cpp_extension_tutorial.html @@ -9,7 +9,7 @@ - Customize Process Group Backends Using Cpp Extensions — PyTorch Tutorials 2.3.0+cu121 documentation + Customize Process Group Backends Using Cpp Extensions — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/pruning_tutorial.html b/docs/intermediate/pruning_tutorial.html index 9fdcc18..8fdea7f 100644 --- a/docs/intermediate/pruning_tutorial.html +++ b/docs/intermediate/pruning_tutorial.html @@ -9,7 +9,7 @@ - Pruning Tutorial — PyTorch Tutorials 2.3.0+cu121 documentation + Pruning Tutorial — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/quantized_transfer_learning_tutorial.html b/docs/intermediate/quantized_transfer_learning_tutorial.html index f97a32a..f86e059 100644 --- a/docs/intermediate/quantized_transfer_learning_tutorial.html +++ b/docs/intermediate/quantized_transfer_learning_tutorial.html @@ -9,7 +9,7 @@ - (beta) Quantized Transfer Learning for Computer Vision Tutorial — PyTorch Tutorials 2.3.0+cu121 documentation + (beta) Quantized Transfer Learning for Computer Vision Tutorial — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/realtime_rpi.html b/docs/intermediate/realtime_rpi.html index c4cbb19..341d754 100644 --- a/docs/intermediate/realtime_rpi.html +++ b/docs/intermediate/realtime_rpi.html @@ -9,7 +9,7 @@ - 在 Raspberry Pi 4 上进行实时推理 (30 fps!) — PyTorch Tutorials 2.3.0+cu121 documentation + 在 Raspberry Pi 4 上进行实时推理 (30 fps!) — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/reinforcement_ppo.html b/docs/intermediate/reinforcement_ppo.html index f6fbfb5..c38ef29 100644 --- a/docs/intermediate/reinforcement_ppo.html +++ b/docs/intermediate/reinforcement_ppo.html @@ -9,7 +9,7 @@ - 使用 TorchRL 强化学习 (PPO) 教程 — PyTorch Tutorials 2.3.0+cu121 documentation + 使用 TorchRL 强化学习 (PPO) 教程 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/reinforcement_q_learning.html b/docs/intermediate/reinforcement_q_learning.html index 3b5164a..ac7985d 100644 --- a/docs/intermediate/reinforcement_q_learning.html +++ b/docs/intermediate/reinforcement_q_learning.html @@ -9,7 +9,7 @@ - 强化学习 (DQN) 教程 — PyTorch Tutorials 2.3.0+cu121 documentation + 强化学习 (DQN) 教程 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/rpc_async_execution.html b/docs/intermediate/rpc_async_execution.html index a61e867..c201152 100644 --- a/docs/intermediate/rpc_async_execution.html +++ b/docs/intermediate/rpc_async_execution.html @@ -9,7 +9,7 @@ - Implementing Batch RPC Processing Using Asynchronous Executions — PyTorch Tutorials 2.3.0+cu121 documentation + Implementing Batch RPC Processing Using Asynchronous Executions — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/rpc_param_server_tutorial.html b/docs/intermediate/rpc_param_server_tutorial.html index 90dd960..249c909 100644 --- a/docs/intermediate/rpc_param_server_tutorial.html +++ b/docs/intermediate/rpc_param_server_tutorial.html @@ -9,7 +9,7 @@ - Implementing a Parameter Server Using Distributed RPC Framework — PyTorch Tutorials 2.3.0+cu121 documentation + Implementing a Parameter Server Using Distributed RPC Framework — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/rpc_tutorial.html b/docs/intermediate/rpc_tutorial.html index 0bda2de..0ec3807 100644 --- a/docs/intermediate/rpc_tutorial.html +++ b/docs/intermediate/rpc_tutorial.html @@ -9,7 +9,7 @@ - Getting Started with Distributed RPC Framework — PyTorch Tutorials 2.3.0+cu121 documentation + Getting Started with Distributed RPC Framework — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/scaled_dot_product_attention_tutorial.html b/docs/intermediate/scaled_dot_product_attention_tutorial.html index 0444342..3c4e6b3 100644 --- a/docs/intermediate/scaled_dot_product_attention_tutorial.html +++ b/docs/intermediate/scaled_dot_product_attention_tutorial.html @@ -9,7 +9,7 @@ - (Beta) Implementing High-Performance Transformers with Scaled Dot Product Attention (SDPA) — PyTorch Tutorials 2.3.0+cu121 documentation + (Beta) Implementing High-Performance Transformers with Scaled Dot Product Attention (SDPA) — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/seq2seq_translation_tutorial.html b/docs/intermediate/seq2seq_translation_tutorial.html index af7c761..83b39f9 100644 --- a/docs/intermediate/seq2seq_translation_tutorial.html +++ b/docs/intermediate/seq2seq_translation_tutorial.html @@ -9,7 +9,7 @@ - 从零开始的自然语言处理:序列到序列网络和注意力机制进行翻译 — PyTorch Tutorials 2.3.0+cu121 documentation + 从零开始的自然语言处理:序列到序列网络和注意力机制进行翻译 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/spatial_transformer_tutorial.html b/docs/intermediate/spatial_transformer_tutorial.html index 67dec0d..499d5ce 100644 --- a/docs/intermediate/spatial_transformer_tutorial.html +++ b/docs/intermediate/spatial_transformer_tutorial.html @@ -9,7 +9,7 @@ - Spatial Transformer Networks 教程 — PyTorch Tutorials 2.3.0+cu121 documentation + Spatial Transformer Networks 教程 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/speech_recognition_pipeline_tutorial.html b/docs/intermediate/speech_recognition_pipeline_tutorial.html index b115b8f..b17fe00 100644 --- a/docs/intermediate/speech_recognition_pipeline_tutorial.html +++ b/docs/intermediate/speech_recognition_pipeline_tutorial.html @@ -9,7 +9,7 @@ - Wav2Vec2 进行语音识别 — PyTorch Tutorials 2.3.0+cu121 documentation + Wav2Vec2 进行语音识别 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/tensorboard_profiler_tutorial.html b/docs/intermediate/tensorboard_profiler_tutorial.html index 16496de..041e773 100644 --- a/docs/intermediate/tensorboard_profiler_tutorial.html +++ b/docs/intermediate/tensorboard_profiler_tutorial.html @@ -9,7 +9,7 @@ - PyTorch Profiler With TensorBoard — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch Profiler With TensorBoard — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/tensorboard_tutorial.html b/docs/intermediate/tensorboard_tutorial.html index 04b7ff4..2b607fb 100644 --- a/docs/intermediate/tensorboard_tutorial.html +++ b/docs/intermediate/tensorboard_tutorial.html @@ -9,7 +9,7 @@ - TensorBoard 可视化模型、数据和训练 — PyTorch Tutorials 2.3.0+cu121 documentation + TensorBoard 可视化模型、数据和训练 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/text_to_speech_with_torchaudio.html b/docs/intermediate/text_to_speech_with_torchaudio.html index c5ae3e3..a9777ab 100644 --- a/docs/intermediate/text_to_speech_with_torchaudio.html +++ b/docs/intermediate/text_to_speech_with_torchaudio.html @@ -9,7 +9,7 @@ - Tacotron2 文本转语音 — PyTorch Tutorials 2.3.0+cu121 documentation + Tacotron2 文本转语音 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/tiatoolbox_tutorial.html b/docs/intermediate/tiatoolbox_tutorial.html index bb0be7e..8403132 100644 --- a/docs/intermediate/tiatoolbox_tutorial.html +++ b/docs/intermediate/tiatoolbox_tutorial.html @@ -9,7 +9,7 @@ - PyTorch 和 TIAToolbox 进行全切片图像分类 — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch 和 TIAToolbox 进行全切片图像分类 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/torch_compile_tutorial.html b/docs/intermediate/torch_compile_tutorial.html index b861b66..d845efa 100644 --- a/docs/intermediate/torch_compile_tutorial.html +++ b/docs/intermediate/torch_compile_tutorial.html @@ -9,7 +9,7 @@ - Introduction to torch.compile — PyTorch Tutorials 2.3.0+cu121 documentation + Introduction to torch.compile — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/torch_export_nightly_tutorial.html b/docs/intermediate/torch_export_nightly_tutorial.html index f169116..272d2c6 100644 --- a/docs/intermediate/torch_export_nightly_tutorial.html +++ b/docs/intermediate/torch_export_nightly_tutorial.html @@ -9,7 +9,7 @@ - torch.export Nightly Tutorial — PyTorch Tutorials 2.3.0+cu121 documentation + torch.export Nightly Tutorial — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/torch_export_tutorial.html b/docs/intermediate/torch_export_tutorial.html index b16fae4..88cab23 100644 --- a/docs/intermediate/torch_export_tutorial.html +++ b/docs/intermediate/torch_export_tutorial.html @@ -9,7 +9,7 @@ - torch.export Tutorial — PyTorch Tutorials 2.3.0+cu121 documentation + torch.export Tutorial — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/torchrec_tutorial.html b/docs/intermediate/torchrec_tutorial.html index e5d0147..a57a6af 100644 --- a/docs/intermediate/torchrec_tutorial.html +++ b/docs/intermediate/torchrec_tutorial.html @@ -9,7 +9,7 @@ - Introduction to TorchRec — PyTorch Tutorials 2.3.0+cu121 documentation + Introduction to TorchRec — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/torchserve_with_ipex.html b/docs/intermediate/torchserve_with_ipex.html index 4b07272..eaa06ab 100644 --- a/docs/intermediate/torchserve_with_ipex.html +++ b/docs/intermediate/torchserve_with_ipex.html @@ -9,7 +9,7 @@ - Grokking PyTorch Intel CPU performance from first principles — PyTorch Tutorials 2.3.0+cu121 documentation + Grokking PyTorch Intel CPU performance from first principles — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/torchserve_with_ipex_2.html b/docs/intermediate/torchserve_with_ipex_2.html index b4ce8d3..d3cdf76 100644 --- a/docs/intermediate/torchserve_with_ipex_2.html +++ b/docs/intermediate/torchserve_with_ipex_2.html @@ -9,7 +9,7 @@ - Grokking PyTorch Intel CPU performance from first principles (Part 2) — PyTorch Tutorials 2.3.0+cu121 documentation + Grokking PyTorch Intel CPU performance from first principles (Part 2) — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/intermediate/torchvision_tutorial.html b/docs/intermediate/torchvision_tutorial.html index bc522f9..77c14fa 100644 --- a/docs/intermediate/torchvision_tutorial.html +++ b/docs/intermediate/torchvision_tutorial.html @@ -9,7 +9,7 @@ - TorchVision 对象检测微调教程 — PyTorch Tutorials 2.3.0+cu121 documentation + TorchVision 对象检测微调教程 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/objects.inv b/docs/objects.inv index e404ce5..bd5c9e3 100644 Binary files a/docs/objects.inv and b/docs/objects.inv differ diff --git a/docs/prototype/backend_config_tutorial.html b/docs/prototype/backend_config_tutorial.html index 8f9d0d6..3a57666 100644 --- a/docs/prototype/backend_config_tutorial.html +++ b/docs/prototype/backend_config_tutorial.html @@ -9,7 +9,7 @@ - (prototype) PyTorch BackendConfig Tutorial — PyTorch Tutorials 2.3.0+cu121 documentation + (prototype) PyTorch BackendConfig Tutorial — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/prototype/distributed_rpc_profiling.html b/docs/prototype/distributed_rpc_profiling.html index 117c5f3..53362be 100644 --- a/docs/prototype/distributed_rpc_profiling.html +++ b/docs/prototype/distributed_rpc_profiling.html @@ -9,7 +9,7 @@ - Profiling PyTorch RPC-Based Workloads — PyTorch Tutorials 2.3.0+cu121 documentation + Profiling PyTorch RPC-Based Workloads — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/prototype/fx_graph_mode_ptq_dynamic.html b/docs/prototype/fx_graph_mode_ptq_dynamic.html index 825e3c7..831e3f3 100644 --- a/docs/prototype/fx_graph_mode_ptq_dynamic.html +++ b/docs/prototype/fx_graph_mode_ptq_dynamic.html @@ -9,7 +9,7 @@ - (prototype) FX Graph Mode Post Training Dynamic Quantization — PyTorch Tutorials 2.3.0+cu121 documentation + (prototype) FX Graph Mode Post Training Dynamic Quantization — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/prototype/fx_graph_mode_ptq_static.html b/docs/prototype/fx_graph_mode_ptq_static.html index 1a2c99f..ba627f1 100644 --- a/docs/prototype/fx_graph_mode_ptq_static.html +++ b/docs/prototype/fx_graph_mode_ptq_static.html @@ -9,7 +9,7 @@ - (prototype) FX Graph Mode Post Training Static Quantization — PyTorch Tutorials 2.3.0+cu121 documentation + (prototype) FX Graph Mode Post Training Static Quantization — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/prototype/fx_graph_mode_quant_guide.html b/docs/prototype/fx_graph_mode_quant_guide.html index 05a8ec6..5f73f99 100644 --- a/docs/prototype/fx_graph_mode_quant_guide.html +++ b/docs/prototype/fx_graph_mode_quant_guide.html @@ -9,7 +9,7 @@ - (prototype) FX Graph Mode Quantization User Guide — PyTorch Tutorials 2.3.0+cu121 documentation + (prototype) FX Graph Mode Quantization User Guide — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/prototype/gpu_quantization_torchao_tutorial.html b/docs/prototype/gpu_quantization_torchao_tutorial.html index af4cf75..2a69474 100644 --- a/docs/prototype/gpu_quantization_torchao_tutorial.html +++ b/docs/prototype/gpu_quantization_torchao_tutorial.html @@ -9,7 +9,7 @@ - (prototype) GPU Quantization with TorchAO — PyTorch Tutorials 2.3.0+cu121 documentation + (prototype) GPU Quantization with TorchAO — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/prototype/graph_mode_dynamic_bert_tutorial.html b/docs/prototype/graph_mode_dynamic_bert_tutorial.html index aafe69f..cae00e7 100644 --- a/docs/prototype/graph_mode_dynamic_bert_tutorial.html +++ b/docs/prototype/graph_mode_dynamic_bert_tutorial.html @@ -9,7 +9,7 @@ - (prototype) Graph Mode Dynamic Quantization on BERT — PyTorch Tutorials 2.3.0+cu121 documentation + (prototype) Graph Mode Dynamic Quantization on BERT — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/prototype/inductor_cpp_wrapper_tutorial.html b/docs/prototype/inductor_cpp_wrapper_tutorial.html index 86ec016..6838b84 100644 --- a/docs/prototype/inductor_cpp_wrapper_tutorial.html +++ b/docs/prototype/inductor_cpp_wrapper_tutorial.html @@ -9,7 +9,7 @@ - Inductor C++ Wrapper Tutorial — PyTorch Tutorials 2.3.0+cu121 documentation + Inductor C++ Wrapper Tutorial — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/prototype/inductor_windows_cpu.html b/docs/prototype/inductor_windows_cpu.html new file mode 100644 index 0000000..02d07e6 --- /dev/null +++ b/docs/prototype/inductor_windows_cpu.html @@ -0,0 +1,1183 @@ + + + + + + + + + + + + 如何在 Windows CPU 上使用 TorchInductor — PyTorch Tutorials 2.5.0+cu124 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    +
    + + + + + +
    +
    +
    + + + + + + + + + + + +
    +
    +
    + + + + + + + + + + + + + + + + +
    + +
      + +
    • + + + Tutorials + + > +
    • + + +
    • 如何在 Windows CPU 上使用 TorchInductor
    • + + +
    • + + + + + +
    • + +
    + + +
    +
    + +
    + Shortcuts +
    +
    + +
    +
    + + + + + + + + + + + +
    + +
    +
    + +
    +

    如何在 Windows CPU 上使用 TorchInductor

    +

    Author: Zhaoqiong Zheng, Xu, Han

    +

    TorchInductor 是一个编译器后端,它将 TorchDynamo 生成的 FX 图转换为高度优化的 C++/Triton 内核。 +本教程将指导在 Windows CPU 上使用 TorchInductor。

    +
    +
    +
    +
    +
    +
    + What you will learn
    +
      +
    • 如何在 Windows CPU 上编译和执行使用 PyTorch 的 Python 函数

    • +
    • TorchInductor 使用 C++/Triton 内核进行优化的基础知识

    • +
    +
    +
    +
    +
    +
    +
    +
    + Prerequisites
    +
      +
    • PyTorch v2.5 或更高版本

    • +
    • Microsoft Visual C++ (MSVC)

    • +
    • Windows 版 Miniforge

    • +
    +
    +
    +
    +
    +
    +
    +

    安装所需软件

    +

    首先,让我们安装所需的软件。TorchInductor 优化需要 C++ 编译器。 +在本示例中,我们将使用 Microsoft Visual C++ (MSVC)。

    +
      +
    1. 下载并安装 MSVC

    2. +
    3. 在安装过程中,在 工作负载 表中的 桌面和移动 部分选择 使用 C++ 进行桌面开发。然后安装软件。

    4. +
    +
    +

    Note

    +

    我们推荐使用 C++ 编译器 ClangIntel 编译器。 +请查看 更高性能的替代编译器

    +
    +
      +
    1. 下载并安装 Miniforge3-Windows-x86_64.exe

    2. +
    +
    +
    +

    设置环境

    +
      +
    1. 通过 cmd.exe 打开命令行环境。

    2. +
    3. 使用以下命令激活 MSVC:

      +
      "C:/Program Files/Microsoft Visual Studio/2022/Community/VC/Auxiliary/Build/vcvars64.bat"
      +
      +
      +
    4. +
    5. 使用以下命令激活 conda:

      +
      "C:/ProgramData/miniforge3/Scripts/activate.bat"
      +
      +
      +
    6. +
    7. 创建并激活conda环境:

      +
      conda create -n inductor_cpu_windows python=3.10 -y
      +conda activate inductor_cpu_windows
      +
      +
      +
    8. +
    9. 安装 PyTorch 2.5 或更新版本。

    10. +
    +
    +
    +

    在 Windows CPU 上使用 TorchInductor

    +

    这里有一个简单的例子来演示如何使用 TorchInductor:

    +
    import torch
    +def foo(x, y):
    +    a = torch.sin(x)
    +    b = torch.cos(y)
    +    return a + b
    +opt_foo1 = torch.compile(foo)
    +print(opt_foo1(torch.randn(10, 10), torch.randn(10, 10)))
    +
    +
    +

    以下是此代码可能返回的示例输出:

    +
    tensor([[-3.9074e-02,  1.3994e+00,  1.3894e+00,  3.2630e-01,  8.3060e-01,
    +        1.1833e+00,  1.4016e+00,  7.1905e-01,  9.0637e-01, -1.3648e+00],
    +        [ 1.3728e+00,  7.2863e-01,  8.6888e-01, -6.5442e-01,  5.6790e-01,
    +        5.2025e-01, -1.2647e+00,  1.2684e+00, -1.2483e+00, -7.2845e-01],
    +        [-6.7747e-01,  1.2028e+00,  1.1431e+00,  2.7196e-02,  5.5304e-01,
    +        6.1945e-01,  4.6654e-01, -3.7376e-01,  9.3644e-01,  1.3600e+00],
    +        [-1.0157e-01,  7.7200e-02,  1.0146e+00,  8.8175e-02, -1.4057e+00,
    +        8.8119e-01,  6.2853e-01,  3.2773e-01,  8.5082e-01,  8.4615e-01],
    +        [ 1.4140e+00,  1.2130e+00, -2.0762e-01,  3.3914e-01,  4.1122e-01,
    +        8.6895e-01,  5.8852e-01,  9.3310e-01,  1.4101e+00,  9.8318e-01],
    +        [ 1.2355e+00,  7.9290e-02,  1.3707e+00,  1.3754e+00,  1.3768e+00,
    +        9.8970e-01,  1.1171e+00, -5.9944e-01,  1.2553e+00,  1.3394e+00],
    +        [-1.3428e+00,  1.8400e-01,  1.1756e+00, -3.0654e-01,  9.7973e-01,
    +        1.4019e+00,  1.1886e+00, -1.9194e-01,  1.3632e+00,  1.1811e+00],
    +        [-7.1615e-01,  4.6622e-01,  1.2089e+00,  9.2011e-01,  1.0659e+00,
    +        9.0892e-01,  1.1932e+00,  1.3888e+00,  1.3898e+00,  1.3218e+00],
    +        [ 1.4139e+00, -1.4000e-01,  9.1192e-01,  3.0175e-01, -9.6432e-01,
    +        -1.0498e+00,  1.4115e+00, -9.3212e-01, -9.0964e-01,  1.0127e+00],
    +        [ 5.7244e-04,  1.2799e+00,  1.3595e+00,  1.0907e+00,  3.7191e-01,
    +        1.4062e+00,  1.3672e+00,  6.8502e-02,  8.5216e-01,  8.6046e-01]])
    +
    +
    +
    +
    +

    使用替代编译器以获得更好的性能

    +

    为了提高 Windows Inductor 的性能,您可以使用 Intel 编译器或 LLVM 编译器。然而,它们依赖于 Microsoft Visual C++ (MSVC) 的运行时库。因此,您的第一步应该是安装 MSVC。

    +
    +

    Intel 编译器

    +
      +
    1. 下载并安装 Intel 编译器 的 Windows 版本。

    2. +
    3. 使用 CXX 环境变量 set CXX=icx-cl 设置 Windows Inductor 编译器。

    4. +
    +

    Intel 还提供了一个全面的分步指南,包含性能数据。请查看 Intel® oneAPI DPC++/C++ Compiler Boosts PyTorch* Inductor Performance on Windows* for CPU Devices

    +
    +
    +

    LLVM 编译器

    +
      +
    1. 下载并安装 LLVM 编译器 并选择 win64 版本。

    2. +
    3. 使用 CXX 环境变量 set CXX=clang-cl 设置 Windows Inductor 编译器。

    4. +
    +
    +
    +
    +

    结论

    +

    在本教程中,我们学习了如何在 Windows CPU 上使用 PyTorch 的 Inductor。此外,我们还讨论了使用 Intel 编译器和 LLVM 编译器进一步提高性能的方法。

    +
    +
    + + +
    + +
    +
    + + + + +
    +
    +
    Rate this Tutorial
    +
    + + + + + +
    +
    +
    + + + +
    +

    + © Copyright 2024, PyTorch. + +

    +
    + +
    + Built with Sphinx using a theme provided by Read the Docs. +
    + + +
    + +
    + +
    + + +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    +
    +
    +

    Docs

    +

    Access comprehensive developer documentation for PyTorch

    + View Docs +
    + +
    +

    Tutorials

    +

    Get in-depth tutorials for beginners and advanced developers

    + View Tutorials +
    + +
    +

    Resources

    +

    Find development resources and get your questions answered

    + View Resources +
    +
    +
    +
    + + + + + + + + + +
    +
    +
    +
    + + +
    +
    +
    + + +
    + + + + + + + + \ No newline at end of file diff --git a/docs/prototype/ios_coreml_workflow.html b/docs/prototype/ios_coreml_workflow.html index e2517fe..cf3126f 100644 --- a/docs/prototype/ios_coreml_workflow.html +++ b/docs/prototype/ios_coreml_workflow.html @@ -9,7 +9,7 @@ - (Prototype) Convert Mobilenetv2 to Core ML — PyTorch Tutorials 2.3.0+cu121 documentation + (Prototype) Convert Mobilenetv2 to Core ML — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/prototype/ios_gpu_workflow.html b/docs/prototype/ios_gpu_workflow.html index 530dad5..e823b77 100644 --- a/docs/prototype/ios_gpu_workflow.html +++ b/docs/prototype/ios_gpu_workflow.html @@ -9,7 +9,7 @@ - (Prototype) Use iOS GPU in PyTorch — PyTorch Tutorials 2.3.0+cu121 documentation + (Prototype) Use iOS GPU in PyTorch — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/prototype/maskedtensor_adagrad.html b/docs/prototype/maskedtensor_adagrad.html index 194a5ec..44fc76c 100644 --- a/docs/prototype/maskedtensor_adagrad.html +++ b/docs/prototype/maskedtensor_adagrad.html @@ -9,7 +9,7 @@ - (Prototype) Efficiently writing “sparse” semantics for Adagrad with MaskedTensor — PyTorch Tutorials 2.3.0+cu121 documentation + (Prototype) Efficiently writing “sparse” semantics for Adagrad with MaskedTensor — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/prototype/maskedtensor_advanced_semantics.html b/docs/prototype/maskedtensor_advanced_semantics.html index 8778bef..5211f87 100644 --- a/docs/prototype/maskedtensor_advanced_semantics.html +++ b/docs/prototype/maskedtensor_advanced_semantics.html @@ -9,7 +9,7 @@ - (Prototype) MaskedTensor Advanced Semantics — PyTorch Tutorials 2.3.0+cu121 documentation + (Prototype) MaskedTensor Advanced Semantics — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/prototype/maskedtensor_overview.html b/docs/prototype/maskedtensor_overview.html index be1887e..8639ffc 100644 --- a/docs/prototype/maskedtensor_overview.html +++ b/docs/prototype/maskedtensor_overview.html @@ -9,7 +9,7 @@ - (Prototype) MaskedTensor Overview — PyTorch Tutorials 2.3.0+cu121 documentation + (Prototype) MaskedTensor Overview — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/prototype/maskedtensor_sparsity.html b/docs/prototype/maskedtensor_sparsity.html index c4f1156..3c0724b 100644 --- a/docs/prototype/maskedtensor_sparsity.html +++ b/docs/prototype/maskedtensor_sparsity.html @@ -9,7 +9,7 @@ - (Prototype) MaskedTensor Sparsity — PyTorch Tutorials 2.3.0+cu121 documentation + (Prototype) MaskedTensor Sparsity — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/prototype/nestedtensor.html b/docs/prototype/nestedtensor.html index 6b75739..d9bbb62 100644 --- a/docs/prototype/nestedtensor.html +++ b/docs/prototype/nestedtensor.html @@ -9,7 +9,7 @@ - Getting Started with Nested Tensors — PyTorch Tutorials 2.3.0+cu121 documentation + Getting Started with Nested Tensors — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/prototype/nnapi_mobilenetv2.html b/docs/prototype/nnapi_mobilenetv2.html index 88ec38b..c2c2776 100644 --- a/docs/prototype/nnapi_mobilenetv2.html +++ b/docs/prototype/nnapi_mobilenetv2.html @@ -9,7 +9,7 @@ - (Beta) Convert MobileNetV2 to NNAPI — PyTorch Tutorials 2.3.0+cu121 documentation + (Beta) Convert MobileNetV2 to NNAPI — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/prototype/numeric_suite_tutorial.html b/docs/prototype/numeric_suite_tutorial.html index ba80a4c..8ba1560 100644 --- a/docs/prototype/numeric_suite_tutorial.html +++ b/docs/prototype/numeric_suite_tutorial.html @@ -9,7 +9,7 @@ - PyTorch Numeric Suite Tutorial — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch Numeric Suite Tutorial — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/prototype/prototype_index.html b/docs/prototype/prototype_index.html index ec5a87c..bfdea00 100644 --- a/docs/prototype/prototype_index.html +++ b/docs/prototype/prototype_index.html @@ -9,7 +9,7 @@ - PyTorch Prototype Recipes — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch Prototype Recipes — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/prototype/pt2e_quant_ptq.html b/docs/prototype/pt2e_quant_ptq.html index 02173ac..c3b373d 100644 --- a/docs/prototype/pt2e_quant_ptq.html +++ b/docs/prototype/pt2e_quant_ptq.html @@ -9,7 +9,7 @@ - (prototype) PyTorch 2 Export Post Training Quantization — PyTorch Tutorials 2.3.0+cu121 documentation + (prototype) PyTorch 2 Export Post Training Quantization — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/prototype/pt2e_quant_qat.html b/docs/prototype/pt2e_quant_qat.html index ef60fff..bc882c1 100644 --- a/docs/prototype/pt2e_quant_qat.html +++ b/docs/prototype/pt2e_quant_qat.html @@ -9,7 +9,7 @@ - (prototype) PyTorch 2 Export Quantization-Aware Training (QAT) — PyTorch Tutorials 2.3.0+cu121 documentation + (prototype) PyTorch 2 Export Quantization-Aware Training (QAT) — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/prototype/pt2e_quant_x86_inductor.html b/docs/prototype/pt2e_quant_x86_inductor.html index 8d238cc..9a18d47 100644 --- a/docs/prototype/pt2e_quant_x86_inductor.html +++ b/docs/prototype/pt2e_quant_x86_inductor.html @@ -9,7 +9,7 @@ - PyTorch 2 Export Quantization with X86 Backend through Inductor — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch 2 Export Quantization with X86 Backend through Inductor — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/prototype/pt2e_quantizer.html b/docs/prototype/pt2e_quantizer.html index 407580c..3c7c223 100644 --- a/docs/prototype/pt2e_quantizer.html +++ b/docs/prototype/pt2e_quantizer.html @@ -9,7 +9,7 @@ - How to Write a Quantizer for PyTorch 2 Export Quantization — PyTorch Tutorials 2.3.0+cu121 documentation + How to Write a Quantizer for PyTorch 2 Export Quantization — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/prototype/semi_structured_sparse.html b/docs/prototype/semi_structured_sparse.html index 52f01a8..b48b739 100644 --- a/docs/prototype/semi_structured_sparse.html +++ b/docs/prototype/semi_structured_sparse.html @@ -9,7 +9,7 @@ - (prototype) Accelerating BERT with semi-structured (2:4) sparsity — PyTorch Tutorials 2.3.0+cu121 documentation + (prototype) Accelerating BERT with semi-structured (2:4) sparsity — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/prototype/skip_param_init.html b/docs/prototype/skip_param_init.html index 68270ac..ebf3902 100644 --- a/docs/prototype/skip_param_init.html +++ b/docs/prototype/skip_param_init.html @@ -9,7 +9,7 @@ - Skipping Module Parameter Initialization — PyTorch Tutorials 2.3.0+cu121 documentation + Skipping Module Parameter Initialization — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/prototype/torchscript_freezing.html b/docs/prototype/torchscript_freezing.html index 0b842f5..42fcfea 100644 --- a/docs/prototype/torchscript_freezing.html +++ b/docs/prototype/torchscript_freezing.html @@ -9,7 +9,7 @@ - Model Freezing in TorchScript — PyTorch Tutorials 2.3.0+cu121 documentation + Model Freezing in TorchScript — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/prototype/tracing_based_selective_build.html b/docs/prototype/tracing_based_selective_build.html index 9ee264c..1052625 100644 --- a/docs/prototype/tracing_based_selective_build.html +++ b/docs/prototype/tracing_based_selective_build.html @@ -9,7 +9,7 @@ - (prototype) Tracing-based Selective Build Mobile Interpreter in Android and iOS — PyTorch Tutorials 2.3.0+cu121 documentation + (prototype) Tracing-based Selective Build Mobile Interpreter in Android and iOS — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/prototype/vmap_recipe.html b/docs/prototype/vmap_recipe.html index 4a3824e..cf1f619 100644 --- a/docs/prototype/vmap_recipe.html +++ b/docs/prototype/vmap_recipe.html @@ -9,7 +9,7 @@ - torch.vmap — PyTorch Tutorials 2.3.0+cu121 documentation + torch.vmap — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/prototype/vulkan_workflow.html b/docs/prototype/vulkan_workflow.html index 97a7c57..773afdb 100644 --- a/docs/prototype/vulkan_workflow.html +++ b/docs/prototype/vulkan_workflow.html @@ -9,7 +9,7 @@ - PyTorch Vulkan Backend User Workflow — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch Vulkan Backend User Workflow — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/amx.html b/docs/recipes/amx.html index 0c59611..a8a412d 100644 --- a/docs/recipes/amx.html +++ b/docs/recipes/amx.html @@ -9,7 +9,7 @@ - 利用英特尔®高级矩阵扩展(Intel® Advanced Matrix Extensions) — PyTorch Tutorials 2.3.0+cu121 documentation + 利用英特尔®高级矩阵扩展(Intel® Advanced Matrix Extensions) — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/android_native_app_with_custom_op.html b/docs/recipes/android_native_app_with_custom_op.html index bb46830..3361ff0 100644 --- a/docs/recipes/android_native_app_with_custom_op.html +++ b/docs/recipes/android_native_app_with_custom_op.html @@ -9,7 +9,7 @@ - Making Native Android Application that uses PyTorch prebuilt libraries — PyTorch Tutorials 2.3.0+cu121 documentation + Making Native Android Application that uses PyTorch prebuilt libraries — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/bundled_inputs.html b/docs/recipes/bundled_inputs.html index 23e18f6..71b77ff 100644 --- a/docs/recipes/bundled_inputs.html +++ b/docs/recipes/bundled_inputs.html @@ -9,7 +9,7 @@ - (beta) Bundling inputs to PyTorch Models — PyTorch Tutorials 2.3.0+cu121 documentation + (beta) Bundling inputs to PyTorch Models — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/compiling_optimizer.html b/docs/recipes/compiling_optimizer.html index 7eff5ee..dcb71f1 100644 --- a/docs/recipes/compiling_optimizer.html +++ b/docs/recipes/compiling_optimizer.html @@ -9,7 +9,7 @@ - (beta) 使用 torch.compile 编译优化器 — PyTorch Tutorials 2.3.0+cu121 documentation + (beta) 使用 torch.compile 编译优化器 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/compiling_optimizer_lr_scheduler.html b/docs/recipes/compiling_optimizer_lr_scheduler.html index 7adb311..1df20c0 100644 --- a/docs/recipes/compiling_optimizer_lr_scheduler.html +++ b/docs/recipes/compiling_optimizer_lr_scheduler.html @@ -9,7 +9,7 @@ - (beta) Running the compiled optimizer with an LR Scheduler — PyTorch Tutorials 2.3.0+cu121 documentation + (beta) Running the compiled optimizer with an LR Scheduler — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/cuda_rpc.html b/docs/recipes/cuda_rpc.html index 67744ad..963eca1 100644 --- a/docs/recipes/cuda_rpc.html +++ b/docs/recipes/cuda_rpc.html @@ -9,7 +9,7 @@ - 使用TensorPipe CUDA RPC进行设备到设备通信 — PyTorch Tutorials 2.3.0+cu121 documentation + 使用TensorPipe CUDA RPC进行设备到设备通信 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/deployment_with_flask.html b/docs/recipes/deployment_with_flask.html index 3fa450a..0e0f359 100644 --- a/docs/recipes/deployment_with_flask.html +++ b/docs/recipes/deployment_with_flask.html @@ -9,7 +9,7 @@ - 使用 Flask 进行部署 — PyTorch Tutorials 2.3.0+cu121 documentation + 使用 Flask 进行部署 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/distributed_checkpoint_recipe.html b/docs/recipes/distributed_checkpoint_recipe.html index 017037b..280b602 100644 --- a/docs/recipes/distributed_checkpoint_recipe.html +++ b/docs/recipes/distributed_checkpoint_recipe.html @@ -9,7 +9,7 @@ - 分布式检查点 (DCP) 入门 — PyTorch Tutorials 2.3.0+cu121 documentation + 分布式检查点 (DCP) 入门 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/distributed_device_mesh.html b/docs/recipes/distributed_device_mesh.html index 841f9cc..ee923a1 100644 --- a/docs/recipes/distributed_device_mesh.html +++ b/docs/recipes/distributed_device_mesh.html @@ -9,7 +9,7 @@ - 开始使用 DeviceMesh — PyTorch Tutorials 2.3.0+cu121 documentation + 开始使用 DeviceMesh — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/distributed_optim_torchscript.html b/docs/recipes/distributed_optim_torchscript.html index cf422ec..c02c455 100644 --- a/docs/recipes/distributed_optim_torchscript.html +++ b/docs/recipes/distributed_optim_torchscript.html @@ -9,7 +9,7 @@ - 支持 TorchScript 的分布式优化器 — PyTorch Tutorials 2.3.0+cu121 documentation + 支持 TorchScript 的分布式优化器 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/distributed_rpc_profiling.html b/docs/recipes/distributed_rpc_profiling.html index fab889f..2bdec0d 100644 --- a/docs/recipes/distributed_rpc_profiling.html +++ b/docs/recipes/distributed_rpc_profiling.html @@ -9,7 +9,7 @@ - Profiling PyTorch RPC-Based Workloads — PyTorch Tutorials 2.3.0+cu121 documentation + Profiling PyTorch RPC-Based Workloads — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/fuse.html b/docs/recipes/fuse.html index 8b70386..44832be 100644 --- a/docs/recipes/fuse.html +++ b/docs/recipes/fuse.html @@ -9,7 +9,7 @@ - Fuse Modules Recipe — PyTorch Tutorials 2.3.0+cu121 documentation + Fuse Modules Recipe — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/inference_tuning_on_aws_graviton.html b/docs/recipes/inference_tuning_on_aws_graviton.html index dd3f81b..50c22d1 100644 --- a/docs/recipes/inference_tuning_on_aws_graviton.html +++ b/docs/recipes/inference_tuning_on_aws_graviton.html @@ -9,7 +9,7 @@ - (Beta) PyTorch在AWS Graviton处理器上的推理性能优化 — PyTorch Tutorials 2.3.0+cu121 documentation + (Beta) PyTorch在AWS Graviton处理器上的推理性能优化 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/intel_extension_for_pytorch.html b/docs/recipes/intel_extension_for_pytorch.html index 9debeff..39c5c5e 100644 --- a/docs/recipes/intel_extension_for_pytorch.html +++ b/docs/recipes/intel_extension_for_pytorch.html @@ -9,7 +9,7 @@ - Intel® Extension for PyTorch* — PyTorch Tutorials 2.3.0+cu121 documentation + Intel® Extension for PyTorch* — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/intel_neural_compressor_for_pytorch.html b/docs/recipes/intel_neural_compressor_for_pytorch.html index c3fe2d0..04f7370 100644 --- a/docs/recipes/intel_neural_compressor_for_pytorch.html +++ b/docs/recipes/intel_neural_compressor_for_pytorch.html @@ -9,7 +9,7 @@ - 使用Intel® Neural Compressor实现PyTorch的简易量化 — PyTorch Tutorials 2.3.0+cu121 documentation + 使用Intel® Neural Compressor实现PyTorch的简易量化 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/mobile_interpreter.html b/docs/recipes/mobile_interpreter.html index cc0bfb6..3807f01 100644 --- a/docs/recipes/mobile_interpreter.html +++ b/docs/recipes/mobile_interpreter.html @@ -9,7 +9,7 @@ - (beta) Efficient mobile interpreter in Android and iOS — PyTorch Tutorials 2.3.0+cu121 documentation + (beta) Efficient mobile interpreter in Android and iOS — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/mobile_perf.html b/docs/recipes/mobile_perf.html index 23ab204..8826cc2 100644 --- a/docs/recipes/mobile_perf.html +++ b/docs/recipes/mobile_perf.html @@ -9,7 +9,7 @@ - Pytorch Mobile Performance Recipes — PyTorch Tutorials 2.3.0+cu121 documentation + Pytorch Mobile Performance Recipes — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/model_preparation_android.html b/docs/recipes/model_preparation_android.html index 7a4d31c..73faf5a 100644 --- a/docs/recipes/model_preparation_android.html +++ b/docs/recipes/model_preparation_android.html @@ -9,7 +9,7 @@ - Model Preparation for Android Recipe — PyTorch Tutorials 2.3.0+cu121 documentation + Model Preparation for Android Recipe — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/model_preparation_ios.html b/docs/recipes/model_preparation_ios.html index 7b9a760..bdcf175 100644 --- a/docs/recipes/model_preparation_ios.html +++ b/docs/recipes/model_preparation_ios.html @@ -9,7 +9,7 @@ - Model Preparation for iOS Recipe — PyTorch Tutorials 2.3.0+cu121 documentation + Model Preparation for iOS Recipe — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/profile_with_itt.html b/docs/recipes/profile_with_itt.html index 1511b5a..39afad6 100644 --- a/docs/recipes/profile_with_itt.html +++ b/docs/recipes/profile_with_itt.html @@ -9,7 +9,7 @@ - 使用 Instrumentation and Tracing Technology (ITT) API 分析 PyTorch 工作负载 — PyTorch Tutorials 2.3.0+cu121 documentation + 使用 Instrumentation and Tracing Technology (ITT) API 分析 PyTorch 工作负载 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/ptmobile_recipes_summary.html b/docs/recipes/ptmobile_recipes_summary.html index 54a51ac..f6b1526 100644 --- a/docs/recipes/ptmobile_recipes_summary.html +++ b/docs/recipes/ptmobile_recipes_summary.html @@ -9,7 +9,7 @@ - Summary of PyTorch Mobile Recipes — PyTorch Tutorials 2.3.0+cu121 documentation + Summary of PyTorch Mobile Recipes — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/quantization.html b/docs/recipes/quantization.html index 24e72ac..568282e 100644 --- a/docs/recipes/quantization.html +++ b/docs/recipes/quantization.html @@ -9,7 +9,7 @@ - Quantization Recipe — PyTorch Tutorials 2.3.0+cu121 documentation + Quantization Recipe — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/recipes/Captum_Recipe.html b/docs/recipes/recipes/Captum_Recipe.html index 43845b2..c279423 100644 --- a/docs/recipes/recipes/Captum_Recipe.html +++ b/docs/recipes/recipes/Captum_Recipe.html @@ -9,7 +9,7 @@ - 使用 Captum 进行模型可解释性 — PyTorch Tutorials 2.3.0+cu121 documentation + 使用 Captum 进行模型可解释性 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/recipes/amp_recipe.html b/docs/recipes/recipes/amp_recipe.html index 434b84d..492069e 100644 --- a/docs/recipes/recipes/amp_recipe.html +++ b/docs/recipes/recipes/amp_recipe.html @@ -9,7 +9,7 @@ - 自动混合精度 — PyTorch Tutorials 2.3.0+cu121 documentation + 自动混合精度 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/recipes/benchmark.html b/docs/recipes/recipes/benchmark.html index 8b05962..ae8d330 100644 --- a/docs/recipes/recipes/benchmark.html +++ b/docs/recipes/recipes/benchmark.html @@ -9,7 +9,7 @@ - PyTorch Benchmark — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch Benchmark — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/recipes/changing_default_device.html b/docs/recipes/recipes/changing_default_device.html index 2f6134d..1b3181e 100644 --- a/docs/recipes/recipes/changing_default_device.html +++ b/docs/recipes/recipes/changing_default_device.html @@ -9,7 +9,7 @@ - Changing default device — PyTorch Tutorials 2.3.0+cu121 documentation + Changing default device — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/recipes/defining_a_neural_network.html b/docs/recipes/recipes/defining_a_neural_network.html index 9efbe9d..fdde09f 100644 --- a/docs/recipes/recipes/defining_a_neural_network.html +++ b/docs/recipes/recipes/defining_a_neural_network.html @@ -9,7 +9,7 @@ - PyTorch 创建神经网络 — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch 创建神经网络 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/recipes/dynamic_quantization.html b/docs/recipes/recipes/dynamic_quantization.html index 46ab625..6059524 100644 --- a/docs/recipes/recipes/dynamic_quantization.html +++ b/docs/recipes/recipes/dynamic_quantization.html @@ -9,7 +9,7 @@ - 动态量化 — PyTorch Tutorials 2.3.0+cu121 documentation + 动态量化 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/recipes/index.html b/docs/recipes/recipes/index.html index 9e30df6..d528420 100644 --- a/docs/recipes/recipes/index.html +++ b/docs/recipes/recipes/index.html @@ -9,7 +9,7 @@ - PyTorch Recipes — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch Recipes — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/recipes/loading_data_recipe.html b/docs/recipes/recipes/loading_data_recipe.html index cc4b863..0e86240 100644 --- a/docs/recipes/recipes/loading_data_recipe.html +++ b/docs/recipes/recipes/loading_data_recipe.html @@ -9,7 +9,7 @@ - PyTorch 加载数据 — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch 加载数据 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/recipes/module_load_state_dict_tips.html b/docs/recipes/recipes/module_load_state_dict_tips.html index c75926a..e2f8d45 100644 --- a/docs/recipes/recipes/module_load_state_dict_tips.html +++ b/docs/recipes/recipes/module_load_state_dict_tips.html @@ -9,7 +9,7 @@ - 从检查点加载 nn.Module 的技巧 — PyTorch Tutorials 2.3.0+cu121 documentation + 从检查点加载 nn.Module 的技巧 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/recipes/profiler_recipe.html b/docs/recipes/recipes/profiler_recipe.html index 5ddf12f..a50336a 100644 --- a/docs/recipes/recipes/profiler_recipe.html +++ b/docs/recipes/recipes/profiler_recipe.html @@ -9,7 +9,7 @@ - PyTorch Profiler — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch Profiler — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/recipes/reasoning_about_shapes.html b/docs/recipes/recipes/reasoning_about_shapes.html index a4704c3..41e3e8e 100644 --- a/docs/recipes/recipes/reasoning_about_shapes.html +++ b/docs/recipes/recipes/reasoning_about_shapes.html @@ -9,7 +9,7 @@ - 在PyTorch中推理形状 — PyTorch Tutorials 2.3.0+cu121 documentation + 在PyTorch中推理形状 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/recipes/save_load_across_devices.html b/docs/recipes/recipes/save_load_across_devices.html index 675b868..67bf78f 100644 --- a/docs/recipes/recipes/save_load_across_devices.html +++ b/docs/recipes/recipes/save_load_across_devices.html @@ -9,7 +9,7 @@ - PyTorch 中跨设备保存和加载模型 — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch 中跨设备保存和加载模型 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/recipes/saving_and_loading_a_general_checkpoint.html b/docs/recipes/recipes/saving_and_loading_a_general_checkpoint.html index 58b5f1e..ce898b5 100644 --- a/docs/recipes/recipes/saving_and_loading_a_general_checkpoint.html +++ b/docs/recipes/recipes/saving_and_loading_a_general_checkpoint.html @@ -9,7 +9,7 @@ - PyTorch 保存和加载通用检查点 — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch 保存和加载通用检查点 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/recipes/saving_and_loading_models_for_inference.html b/docs/recipes/recipes/saving_and_loading_models_for_inference.html index 2c19e01..fb37cf2 100644 --- a/docs/recipes/recipes/saving_and_loading_models_for_inference.html +++ b/docs/recipes/recipes/saving_and_loading_models_for_inference.html @@ -9,7 +9,7 @@ - PyTorch 保存和加载模型 — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch 保存和加载模型 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/recipes/saving_multiple_models_in_one_file.html b/docs/recipes/recipes/saving_multiple_models_in_one_file.html index 06e68e7..79c18d2 100644 --- a/docs/recipes/recipes/saving_multiple_models_in_one_file.html +++ b/docs/recipes/recipes/saving_multiple_models_in_one_file.html @@ -9,7 +9,7 @@ - PyTorch 在一个文件中保存和加载多个模型 — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch 在一个文件中保存和加载多个模型 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/recipes/swap_tensors.html b/docs/recipes/recipes/swap_tensors.html index 6a8233c..92665a1 100644 --- a/docs/recipes/recipes/swap_tensors.html +++ b/docs/recipes/recipes/swap_tensors.html @@ -9,7 +9,7 @@ - 在 nn.Module 中为 load_state_dict 和张量子类提供扩展点 — PyTorch Tutorials 2.3.0+cu121 documentation + 在 nn.Module 中为 load_state_dict 和张量子类提供扩展点 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/recipes/tensorboard_with_pytorch.html b/docs/recipes/recipes/tensorboard_with_pytorch.html index 7c0bca0..5ed03bc 100644 --- a/docs/recipes/recipes/tensorboard_with_pytorch.html +++ b/docs/recipes/recipes/tensorboard_with_pytorch.html @@ -9,7 +9,7 @@ - 如何在PyTorch中使用TensorBoard — PyTorch Tutorials 2.3.0+cu121 documentation + 如何在PyTorch中使用TensorBoard — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/recipes/timer_quick_start.html b/docs/recipes/recipes/timer_quick_start.html index 525dd3c..36d2f9f 100644 --- a/docs/recipes/recipes/timer_quick_start.html +++ b/docs/recipes/recipes/timer_quick_start.html @@ -9,7 +9,7 @@ - Timer快速入门 — PyTorch Tutorials 2.3.0+cu121 documentation + Timer快速入门 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/recipes/tuning_guide.html b/docs/recipes/recipes/tuning_guide.html index b329d67..f2b227e 100644 --- a/docs/recipes/recipes/tuning_guide.html +++ b/docs/recipes/recipes/tuning_guide.html @@ -9,7 +9,7 @@ - 性能调优指南 — PyTorch Tutorials 2.3.0+cu121 documentation + 性能调优指南 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/recipes/warmstarting_model_using_parameters_from_a_different_model.html b/docs/recipes/recipes/warmstarting_model_using_parameters_from_a_different_model.html index 487841d..7962b75 100644 --- a/docs/recipes/recipes/warmstarting_model_using_parameters_from_a_different_model.html +++ b/docs/recipes/recipes/warmstarting_model_using_parameters_from_a_different_model.html @@ -9,7 +9,7 @@ - PyTorch 使用不同模型的参数对模型进行热启动 — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch 使用不同模型的参数对模型进行热启动 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/recipes/what_is_state_dict.html b/docs/recipes/recipes/what_is_state_dict.html index 6688fa5..799fa13 100644 --- a/docs/recipes/recipes/what_is_state_dict.html +++ b/docs/recipes/recipes/what_is_state_dict.html @@ -9,7 +9,7 @@ - PyTorch 中 state_dict 是什么 — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch 中 state_dict 是什么 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/recipes/zeroing_out_gradients.html b/docs/recipes/recipes/zeroing_out_gradients.html index 4434bcd..bad53e0 100644 --- a/docs/recipes/recipes/zeroing_out_gradients.html +++ b/docs/recipes/recipes/zeroing_out_gradients.html @@ -9,7 +9,7 @@ - 介绍 — PyTorch Tutorials 2.3.0+cu121 documentation + 介绍 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/recipes_index.html b/docs/recipes/recipes_index.html index 0aa0637..6fafedf 100644 --- a/docs/recipes/recipes_index.html +++ b/docs/recipes/recipes_index.html @@ -9,7 +9,7 @@ - PyTorch 示例 — PyTorch Tutorials 2.3.0+cu121 documentation + PyTorch 示例 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/regional_compilation.html b/docs/recipes/regional_compilation.html index e19e022..9d231e5 100644 --- a/docs/recipes/regional_compilation.html +++ b/docs/recipes/regional_compilation.html @@ -9,7 +9,7 @@ - 通过区域编译减少 torch.compile 冷启动编译时间 — PyTorch Tutorials 2.3.0+cu121 documentation + 通过区域编译减少 torch.compile 冷启动编译时间 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/script_optimized.html b/docs/recipes/script_optimized.html index 247fc1d..3844d44 100644 --- a/docs/recipes/script_optimized.html +++ b/docs/recipes/script_optimized.html @@ -9,7 +9,7 @@ - Script and Optimize for Mobile Recipe — PyTorch Tutorials 2.3.0+cu121 documentation + Script and Optimize for Mobile Recipe — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/torch_compile_backend_ipex.html b/docs/recipes/torch_compile_backend_ipex.html index 6c55d09..852fb2d 100644 --- a/docs/recipes/torch_compile_backend_ipex.html +++ b/docs/recipes/torch_compile_backend_ipex.html @@ -9,7 +9,7 @@ - Intel® PyTorch* 扩展后端 — PyTorch Tutorials 2.3.0+cu121 documentation + Intel® PyTorch* 扩展后端 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/torch_compile_user_defined_triton_kernel_tutorial.html b/docs/recipes/torch_compile_user_defined_triton_kernel_tutorial.html index 4554129..a43ae5e 100644 --- a/docs/recipes/torch_compile_user_defined_triton_kernel_tutorial.html +++ b/docs/recipes/torch_compile_user_defined_triton_kernel_tutorial.html @@ -9,7 +9,7 @@ - 使用 torch.compile 和用户自定义的 Triton 内核 — PyTorch Tutorials 2.3.0+cu121 documentation + 使用 torch.compile 和用户自定义的 Triton 内核 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/torch_logs.html b/docs/recipes/torch_logs.html index 5db5122..288cdaa 100644 --- a/docs/recipes/torch_logs.html +++ b/docs/recipes/torch_logs.html @@ -9,7 +9,7 @@ - (Beta) 使用 TORCH_LOGS python API 与 torch.compile — PyTorch Tutorials 2.3.0+cu121 documentation + (Beta) 使用 TORCH_LOGS python API 与 torch.compile — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/torchscript_inference.html b/docs/recipes/torchscript_inference.html index 4c6b3d3..bb5d7fe 100644 --- a/docs/recipes/torchscript_inference.html +++ b/docs/recipes/torchscript_inference.html @@ -9,7 +9,7 @@ - TorchScript 部署 — PyTorch Tutorials 2.3.0+cu121 documentation + TorchScript 部署 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/torchserve_vertexai_tutorial.html b/docs/recipes/torchserve_vertexai_tutorial.html index b3cf82e..d64870d 100644 --- a/docs/recipes/torchserve_vertexai_tutorial.html +++ b/docs/recipes/torchserve_vertexai_tutorial.html @@ -9,7 +9,7 @@ - 将 PyTorch Stable Diffusion 模型部署为 Vertex AI 端点 — PyTorch Tutorials 2.3.0+cu121 documentation + 将 PyTorch Stable Diffusion 模型部署为 Vertex AI 端点 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/recipes/zero_redundancy_optimizer.html b/docs/recipes/zero_redundancy_optimizer.html index f2858cc..1f87f40 100644 --- a/docs/recipes/zero_redundancy_optimizer.html +++ b/docs/recipes/zero_redundancy_optimizer.html @@ -9,7 +9,7 @@ - 使用ZeroRedundancyOptimizer分片优化器状态 — PyTorch Tutorials 2.3.0+cu121 documentation + 使用ZeroRedundancyOptimizer分片优化器状态 — PyTorch Tutorials 2.5.0+cu124 documentation @@ -278,7 +278,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/search.html b/docs/search.html index c3e1d41..e90e32d 100644 --- a/docs/search.html +++ b/docs/search.html @@ -9,7 +9,7 @@ - Search — PyTorch Tutorials 2.3.0+cu121 documentation + Search — PyTorch Tutorials 2.5.0+cu124 documentation @@ -276,7 +276,7 @@
    - 2.3.0+cu121 + 2.5.0+cu124
    diff --git a/docs/searchindex.js b/docs/searchindex.js index d27de43..ebc5ef3 100644 --- a/docs/searchindex.js +++ b/docs/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["advanced/ONNXLive", "advanced/coding_ddpg", "advanced/cpp_autograd", "advanced/cpp_cuda_graphs", "advanced/cpp_export", "advanced/cpp_extension", "advanced/cpp_frontend", "advanced/ddp_pipeline", "advanced/dispatcher", "advanced/dynamic_quantization_tutorial", "advanced/extend_dispatcher", "advanced/generic_join", "advanced/neural_style_tutorial", "advanced/numpy_extensions_tutorial", "advanced/pendulum", "advanced/privateuseone", "advanced/rpc_ddp_tutorial", "advanced/semi_structured_sparse", "advanced/sharding", "advanced/static_quantization_tutorial", "advanced/super_resolution_with_onnxruntime", "advanced/torch-script-parallelism", "advanced/torch_script_custom_classes", "advanced/torch_script_custom_ops", "advanced/usb_semisup_learn", "beginner/Intro_to_TorchScript_tutorial", "beginner/audio_data_augmentation_tutorial", "beginner/audio_datasets_tutorial", "beginner/audio_feature_augmentation_tutorial", "beginner/audio_feature_extractions_tutorial", "beginner/audio_io_tutorial", "beginner/audio_resampling_tutorial", "beginner/basics/autogradqs_tutorial", "beginner/basics/buildmodel_tutorial", "beginner/basics/data_tutorial", "beginner/basics/index", "beginner/basics/intro", "beginner/basics/optimization_tutorial", "beginner/basics/quickstart_tutorial", "beginner/basics/saveloadrun_tutorial", "beginner/basics/tensorqs_tutorial", "beginner/basics/transforms_tutorial", "beginner/bettertransformer_tutorial", "beginner/blitz/autograd_tutorial", "beginner/blitz/cifar10_tutorial", "beginner/blitz/data_parallel_tutorial", "beginner/blitz/index", "beginner/blitz/neural_networks_tutorial", "beginner/blitz/tensor_tutorial", "beginner/chatbot_tutorial", "beginner/colab", "beginner/data_loading_tutorial", "beginner/dcgan_faces_tutorial", "beginner/ddp_series_fault_tolerance", "beginner/ddp_series_intro", "beginner/ddp_series_multigpu", "beginner/ddp_series_theory", "beginner/deep_learning_60min_blitz", "beginner/deeplabv3_on_android", "beginner/deeplabv3_on_ios", "beginner/deploy_seq2seq_hybrid_frontend_tutorial", "beginner/dist_overview", "beginner/examples_autograd/index", "beginner/examples_autograd/polynomial_autograd", "beginner/examples_autograd/polynomial_custom_function", "beginner/examples_nn/dynamic_net", "beginner/examples_nn/index", "beginner/examples_nn/polynomial_module", "beginner/examples_nn/polynomial_nn", "beginner/examples_nn/polynomial_optim", "beginner/examples_tensor/index", "beginner/examples_tensor/polynomial_numpy", "beginner/examples_tensor/polynomial_tensor", "beginner/fgsm_tutorial", "beginner/finetuning_torchvision_models_tutorial", "beginner/flava_finetuning_tutorial", "beginner/former_torchies/autograd_tutorial_old", "beginner/former_torchies/index", "beginner/former_torchies/nnft_tutorial", "beginner/former_torchies/parallelism_tutorial", "beginner/former_torchies/tensor_tutorial_old", "beginner/former_torchies_tutorial", "beginner/hta_intro_tutorial", "beginner/hta_trace_diff_tutorial", "beginner/hybrid_frontend/index", "beginner/hybrid_frontend/learning_hybrid_frontend_through_example_tutorial", "beginner/hybrid_frontend_tutorial", "beginner/hyperparameter_tuning_tutorial", "beginner/introyt", "beginner/introyt/autogradyt_tutorial", "beginner/introyt/captumyt", "beginner/introyt/index", "beginner/introyt/introyt1_tutorial", "beginner/introyt/modelsyt_tutorial", "beginner/introyt/tensorboardyt_tutorial", "beginner/introyt/tensors_deeper_tutorial", "beginner/introyt/trainingyt", "beginner/knowledge_distillation_tutorial", "beginner/nlp/advanced_tutorial", "beginner/nlp/deep_learning_tutorial", "beginner/nlp/index", "beginner/nlp/pytorch_tutorial", "beginner/nlp/sequence_models_tutorial", "beginner/nlp/word_embeddings_tutorial", "beginner/nn_tutorial", "beginner/onnx/export_simple_model_to_onnx_tutorial", "beginner/onnx/index", "beginner/onnx/intro_onnx", "beginner/onnx/onnx_registry_tutorial", "beginner/profiler", "beginner/ptcheat", "beginner/pytorch_with_examples", "beginner/saving_loading_models", "beginner/t5_tutorial", "beginner/template_tutorial", "beginner/text_sentiment_ngrams_tutorial", "beginner/torchtext_custom_dataset_tutorial", "beginner/transfer_learning_tutorial", "beginner/translation_transformer", "beginner/vt_tutorial", "distributed/home", "index", "intermediate/FSDP_adavnced_tutorial", "intermediate/FSDP_tutorial", "intermediate/TP_tutorial", "intermediate/autograd_saved_tensors_hooks_tutorial", "intermediate/ax_multiobjective_nas_tutorial", "intermediate/char_rnn_classification_tutorial", "intermediate/char_rnn_generation_tutorial", "intermediate/compiled_autograd_tutorial", "intermediate/custom_function_conv_bn_tutorial", "intermediate/custom_function_double_backward_tutorial", "intermediate/ddp_series_minGPT", "intermediate/ddp_series_multinode", "intermediate/ddp_tutorial", "intermediate/dist_pipeline_parallel_tutorial", "intermediate/dist_tuto", "intermediate/dqn_with_rnn_tutorial", "intermediate/dynamic_quantization_bert_tutorial", "intermediate/ensembling", "intermediate/flask_rest_api_tutorial", "intermediate/forced_alignment_with_torchaudio_tutorial", "intermediate/forward_ad_usage", "intermediate/fx_conv_bn_fuser", "intermediate/fx_profiling_tutorial", "intermediate/inductor_debug_cpu", "intermediate/jacobians_hessians", "intermediate/mario_rl_tutorial", "intermediate/memory_format_tutorial", "intermediate/mnist_train_nas", "intermediate/model_parallel_tutorial", "intermediate/neural_tangent_kernels", "intermediate/nvfuser_intro_tutorial", "intermediate/optimizer_step_in_backward_tutorial", "intermediate/parametrizations", "intermediate/per_sample_grads", "intermediate/process_group_cpp_extension_tutorial", "intermediate/pruning_tutorial", "intermediate/quantized_transfer_learning_tutorial", "intermediate/realtime_rpi", "intermediate/reinforcement_ppo", "intermediate/reinforcement_q_learning", "intermediate/rpc_async_execution", "intermediate/rpc_param_server_tutorial", "intermediate/rpc_tutorial", "intermediate/scaled_dot_product_attention_tutorial", "intermediate/seq2seq_translation_tutorial", "intermediate/spatial_transformer_tutorial", "intermediate/speech_recognition_pipeline_tutorial", "intermediate/tensorboard_profiler_tutorial", "intermediate/tensorboard_tutorial", "intermediate/text_to_speech_with_torchaudio", "intermediate/tiatoolbox_tutorial", "intermediate/torch_compile_tutorial", "intermediate/torch_export_nightly_tutorial", "intermediate/torch_export_tutorial", "intermediate/torchrec_tutorial", "intermediate/torchserve_with_ipex", "intermediate/torchserve_with_ipex_2", "intermediate/torchvision_tutorial", "prototype/backend_config_tutorial", "prototype/distributed_rpc_profiling", "prototype/fx_graph_mode_ptq_dynamic", "prototype/fx_graph_mode_ptq_static", "prototype/fx_graph_mode_quant_guide", "prototype/gpu_quantization_torchao_tutorial", "prototype/graph_mode_dynamic_bert_tutorial", "prototype/inductor_cpp_wrapper_tutorial", "prototype/ios_coreml_workflow", "prototype/ios_gpu_workflow", "prototype/maskedtensor_adagrad", "prototype/maskedtensor_advanced_semantics", "prototype/maskedtensor_overview", "prototype/maskedtensor_sparsity", "prototype/nestedtensor", "prototype/nnapi_mobilenetv2", "prototype/numeric_suite_tutorial", "prototype/prototype_index", "prototype/pt2e_quant_ptq", "prototype/pt2e_quant_qat", "prototype/pt2e_quant_x86_inductor", "prototype/pt2e_quantizer", "prototype/semi_structured_sparse", "prototype/skip_param_init", "prototype/torchscript_freezing", "prototype/tracing_based_selective_build", "prototype/vmap_recipe", "prototype/vulkan_workflow", "recipes/amx", "recipes/android_native_app_with_custom_op", "recipes/bundled_inputs", "recipes/compiling_optimizer", "recipes/compiling_optimizer_lr_scheduler", "recipes/cuda_rpc", "recipes/deployment_with_flask", "recipes/distributed_checkpoint_recipe", "recipes/distributed_device_mesh", "recipes/distributed_optim_torchscript", "recipes/distributed_rpc_profiling", "recipes/fuse", "recipes/inference_tuning_on_aws_graviton", "recipes/intel_extension_for_pytorch", "recipes/intel_neural_compressor_for_pytorch", "recipes/mobile_interpreter", "recipes/mobile_perf", "recipes/model_preparation_android", "recipes/model_preparation_ios", "recipes/profile_with_itt", "recipes/ptmobile_recipes_summary", "recipes/quantization", "recipes/recipes/Captum_Recipe", "recipes/recipes/amp_recipe", "recipes/recipes/benchmark", "recipes/recipes/changing_default_device", "recipes/recipes/defining_a_neural_network", "recipes/recipes/dynamic_quantization", "recipes/recipes/index", "recipes/recipes/loading_data_recipe", "recipes/recipes/module_load_state_dict_tips", "recipes/recipes/profiler_recipe", "recipes/recipes/reasoning_about_shapes", "recipes/recipes/save_load_across_devices", "recipes/recipes/saving_and_loading_a_general_checkpoint", "recipes/recipes/saving_and_loading_models_for_inference", "recipes/recipes/saving_multiple_models_in_one_file", "recipes/recipes/swap_tensors", "recipes/recipes/tensorboard_with_pytorch", "recipes/recipes/timer_quick_start", "recipes/recipes/tuning_guide", "recipes/recipes/warmstarting_model_using_parameters_from_a_different_model", "recipes/recipes/what_is_state_dict", "recipes/recipes/zeroing_out_gradients", "recipes/recipes_index", "recipes/regional_compilation", "recipes/script_optimized", "recipes/torch_compile_backend_ipex", "recipes/torch_compile_user_defined_triton_kernel_tutorial", "recipes/torch_logs", "recipes/torchscript_inference", "recipes/torchserve_vertexai_tutorial", "recipes/zero_redundancy_optimizer", "src/pytorch-sphinx-theme/docs/changelog", "src/pytorch-sphinx-theme/docs/configuring", "src/pytorch-sphinx-theme/docs/demo/api", "src/pytorch-sphinx-theme/docs/demo/demo", "src/pytorch-sphinx-theme/docs/demo/lists_tables", "src/pytorch-sphinx-theme/docs/demo/long", "src/pytorch-sphinx-theme/docs/demo/structure", "src/pytorch-sphinx-theme/docs/index", "src/pytorch-sphinx-theme/docs/installing"], "filenames": ["advanced/ONNXLive.rst", "advanced/coding_ddpg.rst", "advanced/cpp_autograd.rst", "advanced/cpp_cuda_graphs.rst", "advanced/cpp_export.rst", "advanced/cpp_extension.rst", "advanced/cpp_frontend.rst", "advanced/ddp_pipeline.rst", "advanced/dispatcher.rst", "advanced/dynamic_quantization_tutorial.rst", "advanced/extend_dispatcher.rst", "advanced/generic_join.rst", "advanced/neural_style_tutorial.rst", "advanced/numpy_extensions_tutorial.rst", "advanced/pendulum.rst", "advanced/privateuseone.rst", "advanced/rpc_ddp_tutorial.rst", "advanced/semi_structured_sparse.rst", "advanced/sharding.rst", "advanced/static_quantization_tutorial.rst", "advanced/super_resolution_with_onnxruntime.rst", "advanced/torch-script-parallelism.rst", "advanced/torch_script_custom_classes.rst", "advanced/torch_script_custom_ops.rst", "advanced/usb_semisup_learn.rst", "beginner/Intro_to_TorchScript_tutorial.rst", "beginner/audio_data_augmentation_tutorial.rst", "beginner/audio_datasets_tutorial.rst", "beginner/audio_feature_augmentation_tutorial.rst", "beginner/audio_feature_extractions_tutorial.rst", "beginner/audio_io_tutorial.rst", "beginner/audio_resampling_tutorial.rst", "beginner/basics/autogradqs_tutorial.rst", "beginner/basics/buildmodel_tutorial.rst", "beginner/basics/data_tutorial.rst", "beginner/basics/index.rst", "beginner/basics/intro.rst", "beginner/basics/optimization_tutorial.rst", "beginner/basics/quickstart_tutorial.rst", "beginner/basics/saveloadrun_tutorial.rst", "beginner/basics/tensorqs_tutorial.rst", "beginner/basics/transforms_tutorial.rst", "beginner/bettertransformer_tutorial.rst", "beginner/blitz/autograd_tutorial.rst", "beginner/blitz/cifar10_tutorial.rst", "beginner/blitz/data_parallel_tutorial.rst", "beginner/blitz/index.rst", "beginner/blitz/neural_networks_tutorial.rst", "beginner/blitz/tensor_tutorial.rst", "beginner/chatbot_tutorial.rst", "beginner/colab.rst", "beginner/data_loading_tutorial.rst", "beginner/dcgan_faces_tutorial.rst", "beginner/ddp_series_fault_tolerance.rst", "beginner/ddp_series_intro.rst", "beginner/ddp_series_multigpu.rst", "beginner/ddp_series_theory.rst", "beginner/deep_learning_60min_blitz.rst", "beginner/deeplabv3_on_android.rst", "beginner/deeplabv3_on_ios.rst", "beginner/deploy_seq2seq_hybrid_frontend_tutorial.rst", "beginner/dist_overview.rst", "beginner/examples_autograd/index.rst", "beginner/examples_autograd/polynomial_autograd.rst", "beginner/examples_autograd/polynomial_custom_function.rst", "beginner/examples_nn/dynamic_net.rst", "beginner/examples_nn/index.rst", "beginner/examples_nn/polynomial_module.rst", "beginner/examples_nn/polynomial_nn.rst", "beginner/examples_nn/polynomial_optim.rst", "beginner/examples_tensor/index.rst", "beginner/examples_tensor/polynomial_numpy.rst", "beginner/examples_tensor/polynomial_tensor.rst", "beginner/fgsm_tutorial.rst", "beginner/finetuning_torchvision_models_tutorial.rst", "beginner/flava_finetuning_tutorial.rst", "beginner/former_torchies/autograd_tutorial_old.rst", "beginner/former_torchies/index.rst", "beginner/former_torchies/nnft_tutorial.rst", "beginner/former_torchies/parallelism_tutorial.rst", "beginner/former_torchies/tensor_tutorial_old.rst", "beginner/former_torchies_tutorial.rst", "beginner/hta_intro_tutorial.rst", "beginner/hta_trace_diff_tutorial.rst", "beginner/hybrid_frontend/index.rst", "beginner/hybrid_frontend/learning_hybrid_frontend_through_example_tutorial.rst", "beginner/hybrid_frontend_tutorial.rst", "beginner/hyperparameter_tuning_tutorial.rst", "beginner/introyt.rst", "beginner/introyt/autogradyt_tutorial.rst", "beginner/introyt/captumyt.rst", "beginner/introyt/index.rst", "beginner/introyt/introyt1_tutorial.rst", "beginner/introyt/modelsyt_tutorial.rst", "beginner/introyt/tensorboardyt_tutorial.rst", "beginner/introyt/tensors_deeper_tutorial.rst", "beginner/introyt/trainingyt.rst", "beginner/knowledge_distillation_tutorial.rst", "beginner/nlp/advanced_tutorial.rst", "beginner/nlp/deep_learning_tutorial.rst", "beginner/nlp/index.rst", "beginner/nlp/pytorch_tutorial.rst", "beginner/nlp/sequence_models_tutorial.rst", "beginner/nlp/word_embeddings_tutorial.rst", "beginner/nn_tutorial.rst", "beginner/onnx/export_simple_model_to_onnx_tutorial.rst", "beginner/onnx/index.rst", "beginner/onnx/intro_onnx.rst", "beginner/onnx/onnx_registry_tutorial.rst", "beginner/profiler.rst", "beginner/ptcheat.rst", "beginner/pytorch_with_examples.rst", "beginner/saving_loading_models.rst", "beginner/t5_tutorial.rst", "beginner/template_tutorial.rst", "beginner/text_sentiment_ngrams_tutorial.rst", "beginner/torchtext_custom_dataset_tutorial.rst", "beginner/transfer_learning_tutorial.rst", "beginner/translation_transformer.rst", "beginner/vt_tutorial.rst", "distributed/home.rst", "index.rst", "intermediate/FSDP_adavnced_tutorial.rst", "intermediate/FSDP_tutorial.rst", "intermediate/TP_tutorial.rst", "intermediate/autograd_saved_tensors_hooks_tutorial.rst", "intermediate/ax_multiobjective_nas_tutorial.rst", "intermediate/char_rnn_classification_tutorial.rst", "intermediate/char_rnn_generation_tutorial.rst", "intermediate/compiled_autograd_tutorial.rst", "intermediate/custom_function_conv_bn_tutorial.rst", "intermediate/custom_function_double_backward_tutorial.rst", "intermediate/ddp_series_minGPT.rst", "intermediate/ddp_series_multinode.rst", "intermediate/ddp_tutorial.rst", "intermediate/dist_pipeline_parallel_tutorial.rst", "intermediate/dist_tuto.rst", "intermediate/dqn_with_rnn_tutorial.rst", "intermediate/dynamic_quantization_bert_tutorial.rst", "intermediate/ensembling.rst", "intermediate/flask_rest_api_tutorial.rst", "intermediate/forced_alignment_with_torchaudio_tutorial.rst", "intermediate/forward_ad_usage.rst", "intermediate/fx_conv_bn_fuser.rst", "intermediate/fx_profiling_tutorial.rst", "intermediate/inductor_debug_cpu.rst", "intermediate/jacobians_hessians.rst", "intermediate/mario_rl_tutorial.rst", "intermediate/memory_format_tutorial.rst", "intermediate/mnist_train_nas.rst", "intermediate/model_parallel_tutorial.rst", "intermediate/neural_tangent_kernels.rst", "intermediate/nvfuser_intro_tutorial.rst", "intermediate/optimizer_step_in_backward_tutorial.rst", "intermediate/parametrizations.rst", "intermediate/per_sample_grads.rst", "intermediate/process_group_cpp_extension_tutorial.rst", "intermediate/pruning_tutorial.rst", "intermediate/quantized_transfer_learning_tutorial.rst", "intermediate/realtime_rpi.rst", "intermediate/reinforcement_ppo.rst", "intermediate/reinforcement_q_learning.rst", "intermediate/rpc_async_execution.rst", "intermediate/rpc_param_server_tutorial.rst", "intermediate/rpc_tutorial.rst", "intermediate/scaled_dot_product_attention_tutorial.rst", "intermediate/seq2seq_translation_tutorial.rst", "intermediate/spatial_transformer_tutorial.rst", "intermediate/speech_recognition_pipeline_tutorial.rst", "intermediate/tensorboard_profiler_tutorial.rst", "intermediate/tensorboard_tutorial.rst", "intermediate/text_to_speech_with_torchaudio.rst", "intermediate/tiatoolbox_tutorial.rst", "intermediate/torch_compile_tutorial.rst", "intermediate/torch_export_nightly_tutorial.rst", "intermediate/torch_export_tutorial.rst", "intermediate/torchrec_tutorial.rst", "intermediate/torchserve_with_ipex.rst", "intermediate/torchserve_with_ipex_2.rst", "intermediate/torchvision_tutorial.rst", "prototype/backend_config_tutorial.rst", "prototype/distributed_rpc_profiling.rst", "prototype/fx_graph_mode_ptq_dynamic.rst", "prototype/fx_graph_mode_ptq_static.rst", "prototype/fx_graph_mode_quant_guide.rst", "prototype/gpu_quantization_torchao_tutorial.rst", "prototype/graph_mode_dynamic_bert_tutorial.rst", "prototype/inductor_cpp_wrapper_tutorial.rst", "prototype/ios_coreml_workflow.rst", "prototype/ios_gpu_workflow.rst", "prototype/maskedtensor_adagrad.rst", "prototype/maskedtensor_advanced_semantics.rst", "prototype/maskedtensor_overview.rst", "prototype/maskedtensor_sparsity.rst", "prototype/nestedtensor.rst", "prototype/nnapi_mobilenetv2.rst", "prototype/numeric_suite_tutorial.rst", "prototype/prototype_index.rst", "prototype/pt2e_quant_ptq.rst", "prototype/pt2e_quant_qat.rst", "prototype/pt2e_quant_x86_inductor.rst", "prototype/pt2e_quantizer.rst", "prototype/semi_structured_sparse.rst", "prototype/skip_param_init.rst", "prototype/torchscript_freezing.rst", "prototype/tracing_based_selective_build.rst", "prototype/vmap_recipe.rst", "prototype/vulkan_workflow.rst", "recipes/amx.rst", "recipes/android_native_app_with_custom_op.rst", "recipes/bundled_inputs.rst", "recipes/compiling_optimizer.rst", "recipes/compiling_optimizer_lr_scheduler.rst", "recipes/cuda_rpc.rst", "recipes/deployment_with_flask.rst", "recipes/distributed_checkpoint_recipe.rst", "recipes/distributed_device_mesh.rst", "recipes/distributed_optim_torchscript.rst", "recipes/distributed_rpc_profiling.rst", "recipes/fuse.rst", "recipes/inference_tuning_on_aws_graviton.rst", "recipes/intel_extension_for_pytorch.rst", "recipes/intel_neural_compressor_for_pytorch.rst", "recipes/mobile_interpreter.rst", "recipes/mobile_perf.rst", "recipes/model_preparation_android.rst", "recipes/model_preparation_ios.rst", "recipes/profile_with_itt.rst", "recipes/ptmobile_recipes_summary.rst", "recipes/quantization.rst", "recipes/recipes/Captum_Recipe.rst", "recipes/recipes/amp_recipe.rst", "recipes/recipes/benchmark.rst", "recipes/recipes/changing_default_device.rst", "recipes/recipes/defining_a_neural_network.rst", "recipes/recipes/dynamic_quantization.rst", "recipes/recipes/index.rst", "recipes/recipes/loading_data_recipe.rst", "recipes/recipes/module_load_state_dict_tips.rst", "recipes/recipes/profiler_recipe.rst", "recipes/recipes/reasoning_about_shapes.rst", "recipes/recipes/save_load_across_devices.rst", "recipes/recipes/saving_and_loading_a_general_checkpoint.rst", "recipes/recipes/saving_and_loading_models_for_inference.rst", "recipes/recipes/saving_multiple_models_in_one_file.rst", "recipes/recipes/swap_tensors.rst", "recipes/recipes/tensorboard_with_pytorch.rst", "recipes/recipes/timer_quick_start.rst", "recipes/recipes/tuning_guide.rst", "recipes/recipes/warmstarting_model_using_parameters_from_a_different_model.rst", "recipes/recipes/what_is_state_dict.rst", "recipes/recipes/zeroing_out_gradients.rst", "recipes/recipes_index.rst", "recipes/regional_compilation.rst", "recipes/script_optimized.rst", "recipes/torch_compile_backend_ipex.rst", "recipes/torch_compile_user_defined_triton_kernel_tutorial.rst", "recipes/torch_logs.rst", "recipes/torchscript_inference.rst", "recipes/torchserve_vertexai_tutorial.rst", "recipes/zero_redundancy_optimizer.rst", "src/pytorch-sphinx-theme/docs/changelog.rst", "src/pytorch-sphinx-theme/docs/configuring.rst", "src/pytorch-sphinx-theme/docs/demo/api.rst", "src/pytorch-sphinx-theme/docs/demo/demo.rst", "src/pytorch-sphinx-theme/docs/demo/lists_tables.rst", "src/pytorch-sphinx-theme/docs/demo/long.rst", "src/pytorch-sphinx-theme/docs/demo/structure.rst", "src/pytorch-sphinx-theme/docs/index.rst", "src/pytorch-sphinx-theme/docs/installing.rst"], "titles": ["ONNX Live Tutorial", "TorchRL objectives: Coding a DDPG loss", "Autograd in C++ Frontend", "Using CUDA Graphs in PyTorch C++ API", "\u5728 C++ \u4e2d\u52a0\u8f7d TorchScript \u6a21\u578b", "Custom C++ and CUDA Extensions", "Using the PyTorch C++ Frontend", "Training Transformer models using Distributed Data Parallel and Pipeline Parallelism", "Registering a Dispatched Operator in C++", "(beta) Dynamic Quantization on an LSTM Word Language Model", "Extending dispatcher for a new backend in C++", "Distributed Training with Uneven Inputs Using the Join Context Manager", "Neural Transfer Using PyTorch", "Creating Extensions Using NumPy and SciPy", "Pendulum\uff1a\u4f7f\u7528 TorchRL \u7f16\u5199\u73af\u5883\u548ctransforms", "Facilitating New Backend Integration by PrivateUse1", "Combining Distributed DataParallel with Distributed RPC Framework", "(beta) Accelerating BERT with semi-structured (2:4) sparsity", "Exploring TorchRec sharding", "(beta) Static Quantization with Eager Mode in PyTorch", "(optional) PyTorch \u6a21\u578b\u5bfc\u51fa\u5230 ONNX \u5e76\u4f7f\u7528 ONNX Runtime \u8fd0\u884c", "Dynamic Parallelism in TorchScript", "Extending TorchScript with Custom C++ Classes", "Extending TorchScript with Custom C++ Operators", "Semi-Supervised Learning using USB built upon PyTorch", "TorchScript \u4ecb\u7ecd", "\u97f3\u9891\u6570\u636e\u589e\u5f3a", "\u97f3\u9891\u6570\u636e\u96c6", "\u97f3\u9891\u7279\u5f81\u589e\u5f3a", "\u97f3\u9891\u7279\u5f81\u63d0\u53d6", "\u97f3\u9891 I/O", "Audio \u91cd\u91c7\u6837", "\u81ea\u52a8\u5fae\u5206", "\u6784\u5efa\u795e\u7ecf\u7f51\u7edc", "\u6570\u636e\u96c6\u4e0e\u6570\u636e\u52a0\u8f7d\u5668", "Learn the Basics", "\u57fa\u7840\u77e5\u8bc6", "\u4f18\u5316\u6a21\u578b\u53c2\u6570", "\u5feb\u901f\u5165\u95e8", "\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b", "\u5f20\u91cf", "Transforms", "\u4f7f\u7528 Better Transformer \u8fdb\u884c\u5feb\u901f Transformer \u63a8\u65ad", "A Gentle Introduction to torch.autograd", "Training a Classifier", "Optional: Data Parallelism", "Deep Learning with PyTorch: A 60 Minute Blitz", "Neural Networks", "Tensors", "Chatbot Tutorial", "Running Tutorials in Google Colab", "Writing Custom Datasets, DataLoaders and Transforms", "DCGAN \u6559\u7a0b", "Fault-tolerant Distributed Training with torchrun", "PyTorch \u5206\u5e03\u5f0f\u5e76\u884c - Video Tutorials", "\u4f7f\u7528 DDP \u8fdb\u884c\u591a GPU \u8bad\u7ec3", "What is Distributed Data Parallel (DDP)", "PyTorch \u6df1\u5ea6\u5b66\u4e60\uff1a60\u5206\u949f\u5165\u95e8", "Image Segmentation DeepLabV3 on Android", "Image Segmentation DeepLabV3 on iOS", "Deploying a Seq2Seq Model with TorchScript", "PyTorch \u5206\u5e03\u5f0f\u6982\u8ff0", "<no title>", "PyTorch: Tensors and autograd", "PyTorch: Defining New autograd Functions", "PyTorch: Control Flow + Weight Sharing", "<no title>", "PyTorch: Custom nn Modules", "PyTorch: nn", "PyTorch: optim", "<no title>", "Warm-up: numpy", "PyTorch\uff1a\u5f20\u91cf(Tensors)", "\u5bf9\u6297\u6837\u672c\u751f\u6210", "Finetuning Torchvision Models", "TorchMultimodal \u6559\u7a0b\uff1a\u5fae\u8c03 FLAVA", "Autograd", "<no title>", "nn package", "Multi-GPU Examples", "Tensors", "PyTorch for Former Torch Users", "Holistic Trace Analysis \u4ecb\u7ecd", "Holistic Trace Analysis \u5dee\u5f02\u5206\u6790", "<no title>", "Learning Hybrid Frontend Syntax Through Example", "Hybrid Frontend \u6559\u7a0b", "Ray Tune \u8d85\u53c2\u6570\u8c03\u4f18", "PyTorch \u4ecb\u7ecd - YouTube", "\u81ea\u52a8\u5fae\u5206\u57fa\u7840", "\u4f7f\u7528 Captum \u8fdb\u884c\u6a21\u578b\u7406\u89e3", "Introduction to PyTorch on YouTube", "PyTorch \u7b80\u4ecb", "\u4f7f\u7528 PyTorch \u6784\u5efa\u6a21\u578b", "PyTorch TensorBoard \u652f\u6301", "PyTorch Tensors \u4ecb\u7ecd", "\u4f7f\u7528 PyTorch \u8bad\u7ec3\u6a21\u578b", "Knowledge Distillation \u6559\u7a0b", "Advanced: Making Dynamic Decisions and the Bi-LSTM CRF", "Deep Learning with PyTorch", "Deep Learning for NLP with Pytorch", "Introduction to PyTorch", "Sequence Models and Long Short-Term Memory Networks", "Word Embeddings: Encoding Lexical Semantics", "torch.nn \u5177\u4f53\u662f\u4ec0\u4e48?", "Export a PyTorch model to ONNX", "ONNX", "ONNX \u4ecb\u7ecd", "Extending the ONNX Registry", "PyTorch \u6a21\u578b\u5206\u6790", "PyTorch Cheat Sheet", "\u8ddf\u7740\u793a\u4f8b\u5b66\u4e60 PyTorch", "Saving and Loading Models", "T5-Base Model for Summarization, Sentiment Classification, and Translation", "Template Tutorial", "torchtext \u6587\u672c\u5206\u7c7b", "Torchtext \u9884\u5904\u7406\u81ea\u5b9a\u4e49\u6587\u672c\u6570\u636e\u96c6", "\u8ba1\u7b97\u673a\u89c6\u89c9\u8fc1\u79fb\u5b66\u4e60\u6559\u7a0b", "\u6570\u636e\u83b7\u53d6\u548c\u5904\u7406", "\u4f18\u5316\u89c6\u89c9 Transformer \u6a21\u578b", "Distributed and Parallel Training Tutorials", "\u6b22\u8fce\u6765\u5230 PyTorch \u6559\u7a0b", "Advanced Model Training with Fully Sharded Data Parallel (FSDP)", "Getting Started with Fully Sharded Data Parallel(FSDP)", "Large Scale Transformer model training with Tensor Parallel (TP)", "Hooks for autograd saved tensors", "Multi-Objective NAS with Ax", "\u4ece\u96f6\u5f00\u59cb\u7684\u81ea\u7136\u8bed\u8a00\u5904\u7406\uff1a\u5b57\u7b26\u7ea7 RNN \u8fdb\u884c\u59d3\u540d\u5206\u7c7b", "\u4ece\u96f6\u5f00\u59cb\u7684\u81ea\u7136\u8bed\u8a00\u5904\u7406\uff1a\u5b57\u7b26\u7ea7 RNN \u751f\u6210\u59d3\u540d", "Compiled Autograd: \u4e3a torch.compile \u6355\u83b7\u66f4\u5927\u7684\u540e\u5411\u56fe", "Fusing Convolution and Batch Norm using Custom Function", "Double Backward with Custom Functions", "Training \u201creal-world\u201d models with DDP", "Multinode Training", "Getting Started with Distributed Data Parallel", "Distributed Pipeline Parallelism Using RPC", "Writing Distributed Applications with PyTorch", "Recurrent DQN: Training recurrent policies", "(beta) Dynamic Quantization on BERT", "Model ensembling", "API \u5b9a\u4e49", "Wav2Vec2 \u5f3a\u5236\u5bf9\u9f50", "Forward-mode Automatic Differentiation (Beta)", "(beta) Building a Convolution/Batch Norm fuser in FX", "(beta) Building a Simple CPU Performance Profiler with FX", "Inductor CPU backend debugging and profiling", "Jacobians, Hessians, hvp, vhp, and more: composing function transforms", "\u8bad\u7ec3\u4e00\u4e2a\u9a6c\u91cc\u5965\u6e38\u620f\u7684 RL Agent", "(beta) Channels Last Memory Format in PyTorch", "<no title>", "Single-Machine Model Parallel Best Practices", "Neural Tangent Kernels", "Getting Started - Accelerate Your Scripts with nvFuser", "How to save memory by fusing the optimizer step into the backward pass", "Parametrizations Tutorial", "Per-sample-gradients", "Customize Process Group Backends Using Cpp Extensions", "Pruning Tutorial", "(beta) Quantized Transfer Learning for Computer Vision Tutorial", "\u5728 Raspberry Pi 4 \u4e0a\u8fdb\u884c\u5b9e\u65f6\u63a8\u7406 (30 fps!)", "\u4f7f\u7528 TorchRL \u5f3a\u5316\u5b66\u4e60 (PPO) \u6559\u7a0b", "\u5f3a\u5316\u5b66\u4e60 (DQN) \u6559\u7a0b", "Implementing Batch RPC Processing Using Asynchronous Executions", "Implementing a Parameter Server Using Distributed RPC Framework", "Getting Started with Distributed RPC Framework", "(Beta) Implementing High-Performance Transformers with Scaled Dot Product Attention (SDPA)", "\u4ece\u96f6\u5f00\u59cb\u7684\u81ea\u7136\u8bed\u8a00\u5904\u7406\uff1a\u5e8f\u5217\u5230\u5e8f\u5217\u7f51\u7edc\u548c\u6ce8\u610f\u529b\u673a\u5236\u8fdb\u884c\u7ffb\u8bd1", "Spatial Transformer Networks \u6559\u7a0b", "Wav2Vec2 \u8fdb\u884c\u8bed\u97f3\u8bc6\u522b", "PyTorch Profiler With TensorBoard", "TensorBoard \u53ef\u89c6\u5316\u6a21\u578b\u3001\u6570\u636e\u548c\u8bad\u7ec3", "Tacotron2 \u6587\u672c\u8f6c\u8bed\u97f3", "PyTorch \u548c TIAToolbox \u8fdb\u884c\u5168\u5207\u7247\u56fe\u50cf\u5206\u7c7b", "Introduction to torch.compile", "torch.export Nightly Tutorial", "torch.export Tutorial", "Introduction to TorchRec", "Grokking PyTorch Intel CPU performance from first principles", "Grokking PyTorch Intel CPU performance from first principles (Part 2)", "TorchVision \u5bf9\u8c61\u68c0\u6d4b\u5fae\u8c03\u6559\u7a0b", "(prototype) PyTorch BackendConfig Tutorial", "Profiling PyTorch RPC-Based Workloads", "(prototype) FX Graph Mode Post Training Dynamic Quantization", "(prototype) FX Graph Mode Post Training Static Quantization", "(prototype) FX Graph Mode Quantization User Guide", "(prototype) GPU Quantization with TorchAO", "(prototype) Graph Mode Dynamic Quantization on BERT", "Inductor C++ Wrapper Tutorial", "(Prototype) Convert Mobilenetv2 to Core ML", "(Prototype) Use iOS GPU in PyTorch", "(Prototype) Efficiently writing \u201csparse\u201d semantics for Adagrad with MaskedTensor", "(Prototype) MaskedTensor Advanced Semantics", "(Prototype) MaskedTensor Overview", "(Prototype) MaskedTensor Sparsity", "Getting Started with Nested Tensors", "(Beta) Convert MobileNetV2 to NNAPI", "PyTorch Numeric Suite Tutorial", "PyTorch Prototype Recipes", "(prototype) PyTorch 2 Export Post Training Quantization", "(prototype) PyTorch 2 Export Quantization-Aware Training (QAT)", "PyTorch 2 Export Quantization with X86 Backend through Inductor", "How to Write a Quantizer for PyTorch 2 Export Quantization", "(prototype) Accelerating BERT with semi-structured (2:4) sparsity", "Skipping Module Parameter Initialization", "Model Freezing in TorchScript", "(prototype) Tracing-based Selective Build Mobile Interpreter in Android and iOS", "torch.vmap", "PyTorch Vulkan Backend User Workflow", "\u5229\u7528\u82f1\u7279\u5c14\u00ae\u9ad8\u7ea7\u77e9\u9635\u6269\u5c55(Intel\u00ae Advanced Matrix Extensions)", "Making Native Android Application that uses PyTorch prebuilt libraries", "(beta) Bundling inputs to PyTorch Models", "(beta) \u4f7f\u7528 torch.compile \u7f16\u8bd1\u4f18\u5316\u5668", "(beta) Running the compiled optimizer with an LR Scheduler", "\u4f7f\u7528TensorPipe CUDA RPC\u8fdb\u884c\u8bbe\u5907\u5230\u8bbe\u5907\u901a\u4fe1", "\u4f7f\u7528 Flask \u8fdb\u884c\u90e8\u7f72", "\u5206\u5e03\u5f0f\u68c0\u67e5\u70b9 (DCP) \u5165\u95e8", "\u5f00\u59cb\u4f7f\u7528 DeviceMesh", "\u652f\u6301 TorchScript \u7684\u5206\u5e03\u5f0f\u4f18\u5316\u5668", "Profiling PyTorch RPC-Based Workloads", "Fuse Modules Recipe", "(Beta) PyTorch\u5728AWS Graviton\u5904\u7406\u5668\u4e0a\u7684\u63a8\u7406\u6027\u80fd\u4f18\u5316", "Intel\u00ae Extension for PyTorch*", "\u4f7f\u7528Intel\u00ae Neural Compressor\u5b9e\u73b0PyTorch\u7684\u7b80\u6613\u91cf\u5316", "(beta) Efficient mobile interpreter in Android and iOS", "Pytorch Mobile Performance Recipes", "Model Preparation for Android Recipe", "Model Preparation for iOS Recipe", "\u4f7f\u7528 Instrumentation and Tracing Technology (ITT) API \u5206\u6790 PyTorch \u5de5\u4f5c\u8d1f\u8f7d", "Summary of PyTorch Mobile Recipes", "Quantization Recipe", "\u4f7f\u7528 Captum \u8fdb\u884c\u6a21\u578b\u53ef\u89e3\u91ca\u6027", "\u81ea\u52a8\u6df7\u5408\u7cbe\u5ea6", "PyTorch Benchmark", "Changing default device", "PyTorch \u521b\u5efa\u795e\u7ecf\u7f51\u7edc", "\u52a8\u6001\u91cf\u5316", "PyTorch Recipes", "PyTorch \u52a0\u8f7d\u6570\u636e", "\u4ece\u68c0\u67e5\u70b9\u52a0\u8f7d nn.Module \u7684\u6280\u5de7", "PyTorch Profiler", "\u5728PyTorch\u4e2d\u63a8\u7406\u5f62\u72b6", "PyTorch \u4e2d\u8de8\u8bbe\u5907\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b", "PyTorch \u4fdd\u5b58\u548c\u52a0\u8f7d\u901a\u7528\u68c0\u67e5\u70b9", "PyTorch \u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b", "PyTorch \u5728\u4e00\u4e2a\u6587\u4ef6\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u6a21\u578b", "\u5728 nn.Module \u4e2d\u4e3a load_state_dict \u548c\u5f20\u91cf\u5b50\u7c7b\u63d0\u4f9b\u6269\u5c55\u70b9", "\u5982\u4f55\u5728PyTorch\u4e2d\u4f7f\u7528TensorBoard", "Timer\u5feb\u901f\u5165\u95e8", "\u6027\u80fd\u8c03\u4f18\u6307\u5357", "PyTorch \u4f7f\u7528\u4e0d\u540c\u6a21\u578b\u7684\u53c2\u6570\u5bf9\u6a21\u578b\u8fdb\u884c\u70ed\u542f\u52a8", "PyTorch \u4e2d state_dict \u662f\u4ec0\u4e48", "\u4ecb\u7ecd", "PyTorch \u793a\u4f8b", "\u901a\u8fc7\u533a\u57df\u7f16\u8bd1\u51cf\u5c11 torch.compile \u51b7\u542f\u52a8\u7f16\u8bd1\u65f6\u95f4", "Script and Optimize for Mobile Recipe", "Intel\u00ae PyTorch* \u6269\u5c55\u540e\u7aef", "\u4f7f\u7528 torch.compile \u548c\u7528\u6237\u81ea\u5b9a\u4e49\u7684 Triton \u5185\u6838", "(Beta) \u4f7f\u7528 TORCH_LOGS python API \u4e0e torch.compile", "TorchScript \u90e8\u7f72", "\u5c06 PyTorch Stable Diffusion \u6a21\u578b\u90e8\u7f72\u4e3a Vertex AI \u7aef\u70b9", "\u4f7f\u7528ZeroRedundancyOptimizer\u5206\u7247\u4f18\u5316\u5668\u72b6\u6001", "Changelog", "Configuration", "5. test_py_module", "3. Paragraph Level Markup", "4. Lists & Tables", "1. Long Sticky Nav", "1. Structural Elements", "<no title>", "Installation"], "terms": {"thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 40, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 97, 98, 99, 100, 101, 102, 103, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 209, 210, 211, 212, 218, 219, 221, 223, 224, 225, 226, 228, 229, 233, 239, 241, 242, 254, 262, 263, 264, 266, 267], "show": [0, 1, 5, 10, 11, 12, 14, 17, 18, 19, 22, 24, 34, 42, 44, 51, 52, 58, 59, 61, 73, 75, 82, 83, 85, 87, 90, 104, 108, 109, 113, 115, 116, 117, 118, 119, 121, 123, 126, 127, 128, 130, 131, 134, 135, 137, 139, 140, 145, 146, 148, 150, 156, 158, 159, 160, 161, 162, 164, 166, 167, 169, 170, 172, 173, 174, 175, 177, 178, 180, 183, 186, 188, 189, 190, 195, 196, 198, 199, 202, 205, 209, 212, 221, 223, 224, 226, 229, 232, 262, 264], "you": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 31, 32, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 64, 65, 67, 68, 73, 75, 76, 78, 81, 82, 85, 86, 87, 95, 97, 98, 99, 100, 101, 102, 103, 105, 108, 109, 111, 112, 113, 114, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 176, 177, 179, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 198, 199, 200, 201, 202, 203, 205, 206, 207, 209, 210, 214, 221, 223, 224, 225, 226, 229, 233, 241, 242, 254, 262, 264, 265, 266], "neural": [0, 2, 5, 13, 14, 17, 20, 32, 35, 43, 46, 49, 51, 57, 60, 68, 73, 78, 79, 81, 97, 98, 99, 100, 101, 102, 103, 105, 107, 111, 116, 117, 119, 121, 126, 127, 128, 130, 137, 150, 157, 160, 161, 163, 166, 167, 170, 172, 178, 188, 195, 197, 200, 202, 221, 227, 236, 252], "ha": [0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 42, 43, 44, 47, 49, 50, 58, 59, 60, 61, 63, 68, 73, 74, 75, 76, 78, 80, 83, 85, 87, 97, 98, 99, 101, 102, 103, 104, 105, 108, 109, 111, 113, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 130, 131, 132, 133, 136, 137, 138, 139, 141, 143, 145, 146, 148, 151, 152, 153, 154, 157, 158, 159, 160, 161, 164, 165, 166, 168, 169, 170, 171, 172, 174, 175, 176, 177, 178, 179, 181, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 196, 198, 199, 201, 202, 203, 204, 209, 212, 218, 221, 224, 229, 233, 254, 264, 265], "been": [0, 1, 3, 4, 6, 7, 9, 14, 15, 17, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 42, 50, 58, 59, 69, 73, 74, 80, 83, 85, 87, 101, 102, 105, 113, 119, 123, 128, 130, 131, 132, 136, 137, 141, 143, 144, 145, 146, 151, 152, 153, 154, 157, 159, 160, 161, 165, 168, 169, 170, 171, 172, 174, 175, 177, 178, 181, 183, 188, 190, 193, 194, 199, 200, 201, 202, 212, 218, 221, 265], "export": [0, 4, 8, 20, 21, 23, 47, 60, 85, 106, 107, 108, 110, 121, 133, 134, 138, 145, 165, 173, 197, 204, 205, 208, 209, 210, 220, 223, 231, 248, 258, 259], "from": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 23, 24, 25, 33, 34, 37, 38, 41, 42, 44, 45, 47, 48, 49, 51, 52, 53, 55, 58, 59, 60, 61, 63, 64, 67, 68, 69, 73, 75, 76, 78, 80, 82, 83, 85, 87, 90, 92, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 107, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 130, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 173, 174, 175, 180, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 205, 206, 207, 209, 210, 214, 215, 216, 217, 219, 220, 221, 222, 223, 224, 225, 226, 229, 230, 232, 236, 238, 239, 246, 247, 252, 253, 254, 256, 259, 260, 262, 263, 264, 265], "appl": [0, 98, 102, 177, 185, 188, 189], "format": [0, 1, 5, 7, 9, 12, 16, 17, 19, 20, 23, 25, 51, 52, 58, 59, 60, 87, 94, 95, 96, 97, 107, 108, 110, 115, 119, 121, 122, 123, 130, 136, 138, 144, 145, 157, 158, 159, 162, 164, 167, 169, 170, 172, 174, 175, 177, 179, 182, 183, 186, 188, 189, 190, 192, 193, 195, 198, 199, 201, 202, 204, 217, 221, 222, 225, 226, 229, 231, 235, 237, 248, 258, 264, 265], "us": [0, 1, 4, 8, 9, 10, 14, 15, 16, 17, 18, 19, 21, 32, 33, 38, 42, 44, 45, 47, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 61, 63, 64, 65, 67, 68, 69, 72, 73, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 95, 97, 98, 99, 100, 101, 102, 103, 107, 108, 110, 111, 114, 115, 117, 118, 120, 121, 122, 124, 125, 126, 127, 128, 131, 133, 136, 138, 140, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 157, 158, 159, 160, 161, 166, 167, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 190, 191, 193, 194, 195, 196, 197, 198, 199, 200, 202, 203, 204, 205, 206, 210, 211, 212, 219, 220, 221, 225, 226, 228, 231, 232, 233, 236, 247, 252, 259, 260, 262, 263, 264, 265], "allow": [0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 14, 19, 22, 23, 24, 25, 32, 43, 49, 50, 51, 52, 53, 60, 61, 79, 82, 83, 85, 87, 97, 99, 101, 102, 103, 105, 108, 113, 119, 122, 123, 124, 126, 128, 131, 136, 137, 138, 140, 143, 147, 148, 151, 153, 154, 156, 157, 158, 160, 161, 162, 164, 165, 166, 167, 172, 173, 174, 175, 176, 177, 178, 179, 186, 187, 190, 191, 194, 196, 198, 199, 200, 201, 207, 209, 229, 262], "easili": [0, 1, 5, 12, 19, 24, 45, 60, 61, 73, 95, 97, 109, 112, 118, 119, 122, 124, 126, 134, 136, 143, 144, 145, 151, 157, 160, 161, 164, 172, 173, 174, 175, 177, 178, 179, 183, 185, 203], "deep": [0, 1, 6, 12, 13, 25, 47, 49, 52, 60, 69, 97, 101, 103, 117, 119, 120, 121, 127, 128, 130, 138, 145, 146, 147, 154, 157, 158, 161, 166, 172, 176, 178, 212, 219, 222, 227, 262], "learn": [0, 1, 4, 6, 7, 9, 13, 14, 17, 20, 21, 25, 43, 45, 47, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 69, 73, 79, 81, 82, 84, 86, 87, 97, 101, 103, 104, 105, 107, 108, 112, 113, 114, 115, 116, 121, 122, 123, 126, 127, 128, 132, 133, 134, 136, 137, 145, 146, 149, 153, 154, 155, 157, 159, 160, 161, 163, 166, 167, 170, 172, 174, 175, 176, 178, 179, 185, 190, 191, 192, 193, 194, 197, 198, 200, 201, 202, 204, 205, 209, 212, 217, 222, 224], "devic": [0, 1, 3, 6, 7, 8, 9, 10, 11, 14, 16, 18, 19, 20, 23, 24, 25, 33, 38, 40, 42, 43, 44, 45, 48, 49, 50, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 72, 73, 79, 80, 87, 89, 95, 97, 99, 104, 105, 110, 111, 115, 117, 118, 120, 121, 123, 124, 125, 126, 130, 133, 134, 135, 136, 137, 138, 139, 145, 147, 148, 150, 151, 153, 155, 157, 158, 159, 160, 161, 163, 164, 165, 166, 167, 169, 175, 176, 179, 180, 182, 183, 185, 186, 187, 188, 189, 194, 195, 198, 199, 200, 202, 203, 209, 211, 212, 213, 215, 219, 220, 221, 224, 229, 231, 232, 236, 240, 241, 245, 248, 253, 254, 256, 257, 260], "case": [0, 1, 2, 3, 4, 5, 6, 8, 10, 11, 13, 14, 16, 17, 20, 22, 23, 25, 32, 43, 49, 51, 60, 61, 68, 73, 75, 82, 85, 97, 98, 99, 101, 102, 103, 108, 111, 112, 120, 121, 122, 123, 124, 125, 126, 127, 130, 131, 135, 136, 137, 139, 140, 142, 145, 146, 148, 150, 151, 153, 154, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 169, 172, 173, 174, 175, 177, 178, 179, 180, 185, 186, 190, 192, 193, 194, 195, 198, 201, 202, 203, 206, 207, 209, 221, 224, 254], "stream": [0, 3, 15, 82, 98, 119, 135, 150, 159, 187, 209, 221], "camera": [0, 121, 159], "open": [0, 5, 9, 12, 20, 38, 49, 50, 58, 59, 60, 75, 87, 90, 103, 104, 105, 107, 115, 116, 117, 119, 122, 127, 128, 136, 138, 139, 140, 144, 147, 153, 155, 166, 167, 169, 172, 182, 186, 189, 205, 207, 209, 214, 221, 223, 224, 225, 226, 230, 259], "network": [0, 2, 3, 5, 7, 8, 12, 13, 14, 17, 19, 20, 21, 25, 32, 35, 43, 46, 49, 51, 57, 60, 68, 69, 73, 78, 79, 81, 92, 97, 98, 100, 101, 103, 105, 107, 111, 116, 117, 119, 121, 125, 126, 130, 133, 134, 144, 150, 151, 154, 157, 158, 163, 166, 169, 170, 172, 178, 195, 197, 200, 202, 221, 227, 236, 254], "exchang": [0, 49, 105, 107, 122, 136, 166, 169], "an": [0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 32, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 61, 65, 67, 69, 73, 75, 76, 78, 80, 82, 83, 85, 86, 87, 92, 97, 98, 99, 100, 101, 105, 107, 108, 109, 110, 111, 112, 113, 116, 117, 121, 122, 123, 124, 126, 127, 128, 130, 131, 133, 134, 135, 136, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 150, 151, 153, 154, 155, 156, 157, 159, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 185, 186, 187, 188, 189, 190, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 209, 210, 214, 219, 221, 223, 224, 226, 228, 229, 233, 254, 259, 262, 264, 265], "repres": [0, 1, 5, 7, 10, 12, 13, 18, 20, 21, 25, 43, 49, 51, 52, 60, 63, 73, 75, 82, 85, 97, 103, 105, 107, 109, 110, 115, 116, 122, 123, 124, 126, 127, 137, 140, 142, 143, 144, 147, 148, 160, 161, 164, 166, 172, 174, 175, 177, 179, 183, 190, 194, 198, 199, 205, 264], "With": [0, 4, 8, 10, 15, 16, 17, 18, 19, 21, 42, 48, 52, 58, 59, 61, 73, 85, 101, 115, 124, 131, 136, 138, 145, 150, 151, 153, 162, 163, 164, 165, 166, 177, 178, 185, 187, 195, 198, 200, 201, 202, 205, 212, 225, 226, 229, 262, 264], "ai": [0, 75, 90, 99, 100, 104, 123, 126, 138, 147, 166, 176, 215, 221, 230, 252], "develop": [0, 1, 3, 5, 8, 10, 12, 15, 23, 24, 58, 59, 60, 82, 85, 101, 105, 107, 113, 115, 136, 140, 148, 156, 164, 169, 180, 185, 187, 188, 189, 190, 193, 198, 199, 201, 205, 209, 221, 223, 228, 236, 264, 265], "can": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 34, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 64, 65, 67, 68, 73, 76, 78, 79, 80, 82, 83, 85, 87, 95, 97, 98, 99, 100, 101, 102, 103, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 209, 210, 212, 219, 221, 223, 224, 225, 226, 228, 229, 232, 233, 250, 254, 262, 264], "more": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 17, 19, 20, 21, 22, 25, 38, 42, 43, 44, 45, 48, 49, 50, 51, 52, 53, 55, 56, 61, 67, 69, 73, 75, 76, 78, 79, 85, 97, 98, 99, 101, 102, 103, 105, 109, 110, 111, 112, 113, 115, 116, 117, 118, 120, 121, 122, 124, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 140, 142, 143, 144, 147, 150, 151, 153, 154, 157, 158, 159, 160, 161, 163, 164, 165, 166, 167, 170, 172, 173, 174, 175, 177, 178, 179, 180, 183, 184, 185, 186, 190, 191, 192, 193, 194, 196, 197, 198, 199, 200, 202, 204, 205, 206, 207, 209, 221, 224, 232, 262, 265], "move": [0, 1, 4, 5, 7, 12, 23, 26, 27, 28, 29, 30, 31, 40, 43, 47, 48, 73, 74, 99, 110, 122, 123, 124, 133, 134, 135, 137, 141, 147, 150, 153, 154, 155, 156, 158, 161, 163, 164, 165, 167, 168, 169, 171, 178, 179, 184, 189, 191, 199, 200, 207, 210, 224, 254], "between": [0, 1, 5, 6, 8, 11, 12, 14, 16, 17, 19, 21, 22, 23, 40, 47, 48, 49, 58, 59, 60, 65, 73, 82, 83, 85, 87, 95, 97, 98, 99, 102, 103, 108, 121, 123, 124, 126, 136, 137, 138, 144, 147, 148, 150, 151, 157, 161, 163, 164, 165, 166, 170, 172, 173, 174, 175, 177, 178, 179, 182, 185, 186, 187, 190, 191, 193, 196, 197, 199, 200, 201, 202, 219, 233, 264, 265], "state": [0, 1, 5, 8, 9, 10, 11, 12, 14, 17, 22, 38, 44, 49, 52, 53, 55, 60, 61, 78, 79, 87, 97, 98, 102, 112, 119, 122, 123, 127, 128, 130, 132, 134, 137, 138, 139, 142, 147, 153, 155, 157, 160, 161, 162, 163, 164, 166, 169, 182, 186, 190, 193, 196, 202, 217], "art": [0, 5, 44, 52, 79, 103, 119, 138, 157, 186], "tool": [0, 3, 6, 8, 14, 21, 25, 51, 60, 82, 87, 98, 123, 134, 136, 137, 145, 162, 165, 169, 170, 172, 178, 183, 196, 209, 210, 224], "choos": [0, 1, 8, 10, 12, 15, 44, 49, 52, 55, 59, 65, 87, 99, 111, 112, 124, 128, 134, 136, 144, 147, 154, 159, 160, 161, 166, 169, 172, 178, 179, 185, 186, 198, 200, 228], "combin": [0, 5, 10, 21, 61, 75, 87, 97, 98, 101, 103, 115, 120, 121, 123, 125, 127, 128, 130, 139, 151, 157, 158, 161, 164, 166, 184, 187, 194, 198, 200], "best": [0, 5, 6, 7, 8, 17, 23, 37, 43, 52, 58, 61, 73, 87, 98, 105, 108, 109, 112, 115, 117, 119, 121, 132, 135, 136, 138, 139, 145, 155, 158, 159, 161, 162, 164, 167, 185, 195, 200, 202, 221, 224, 264], "them": [0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 14, 17, 18, 19, 23, 25, 43, 44, 47, 48, 49, 51, 53, 55, 59, 60, 61, 65, 67, 68, 73, 75, 78, 87, 97, 98, 99, 100, 101, 102, 103, 105, 107, 108, 111, 112, 115, 116, 118, 121, 122, 124, 126, 127, 128, 130, 131, 135, 136, 137, 139, 140, 144, 145, 146, 150, 151, 153, 154, 155, 157, 159, 161, 162, 163, 164, 172, 177, 178, 179, 182, 185, 192, 194, 195, 196, 201, 202, 203, 209, 210, 212, 214, 219, 221, 226, 254, 262], "support": [0, 4, 6, 7, 11, 14, 15, 16, 17, 18, 19, 22, 23, 24, 42, 47, 51, 56, 60, 61, 73, 78, 80, 83, 85, 91, 97, 105, 107, 109, 113, 121, 122, 123, 126, 131, 133, 134, 136, 137, 138, 142, 145, 148, 154, 156, 157, 159, 160, 162, 163, 164, 169, 172, 173, 174, 175, 177, 178, 179, 180, 182, 183, 184, 186, 188, 189, 190, 191, 192, 194, 195, 196, 197, 198, 199, 200, 201, 202, 205, 207, 208, 209, 211, 212, 221, 224, 229, 252, 254, 262, 263], "commun": [0, 11, 15, 18, 55, 61, 110, 113, 121, 122, 123, 124, 126, 132, 133, 134, 156, 160, 162, 163, 164, 169, 172, 177, 197], "partner": [0, 113], "about": [0, 1, 4, 5, 6, 7, 8, 9, 10, 14, 15, 17, 19, 20, 21, 22, 23, 38, 42, 43, 49, 52, 53, 54, 55, 57, 73, 78, 87, 97, 99, 100, 101, 102, 103, 105, 107, 108, 109, 112, 113, 117, 119, 120, 121, 122, 126, 127, 128, 131, 133, 134, 136, 139, 140, 143, 144, 145, 146, 153, 155, 158, 159, 160, 161, 162, 164, 165, 166, 167, 169, 172, 173, 174, 175, 177, 179, 184, 185, 186, 188, 189, 191, 192, 193, 195, 197, 198, 199, 200, 201, 202, 204, 205, 209, 210, 223, 224, 229, 262], "ar": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 37, 42, 43, 44, 47, 48, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 67, 68, 69, 73, 75, 76, 78, 80, 82, 83, 85, 87, 95, 97, 98, 99, 100, 101, 102, 103, 105, 107, 108, 109, 111, 112, 113, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 150, 151, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 177, 178, 179, 180, 182, 183, 184, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 209, 210, 212, 219, 221, 223, 224, 229, 232, 242, 252, 254, 262, 264, 265, 266], "go": [0, 4, 11, 12, 13, 14, 16, 18, 19, 21, 22, 23, 25, 48, 49, 51, 58, 59, 60, 78, 95, 98, 101, 102, 105, 107, 108, 117, 119, 121, 122, 125, 127, 133, 136, 139, 142, 143, 144, 146, 158, 159, 161, 163, 166, 170, 178, 179, 180, 185, 188, 189, 190, 201, 205, 224, 229], "walk": [0, 5, 6, 10, 15, 16, 22, 23, 24, 25, 43, 54, 58, 59, 60, 61, 100, 114, 120, 121, 125, 145, 147, 163, 177, 180, 185, 187, 188, 189, 200, 205, 223], "through": [0, 1, 3, 4, 5, 6, 7, 8, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 34, 43, 44, 47, 49, 52, 54, 55, 58, 59, 60, 61, 73, 75, 78, 84, 87, 97, 98, 99, 100, 101, 102, 105, 107, 108, 110, 114, 115, 118, 119, 120, 121, 122, 124, 125, 127, 130, 131, 136, 139, 143, 144, 145, 146, 147, 148, 150, 151, 153, 155, 156, 160, 161, 162, 163, 164, 165, 166, 169, 170, 172, 173, 175, 176, 177, 178, 183, 184, 185, 187, 188, 189, 190, 192, 196, 197, 198, 201, 202, 205, 206, 209, 210, 221, 223, 229, 264], "4": [0, 1, 2, 3, 5, 6, 7, 12, 13, 14, 16, 21, 23, 24, 25, 32, 34, 36, 40, 43, 45, 48, 51, 52, 53, 54, 55, 63, 64, 65, 73, 75, 80, 87, 90, 92, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 108, 111, 113, 115, 116, 117, 119, 121, 122, 123, 125, 126, 129, 130, 132, 133, 136, 137, 145, 147, 148, 150, 153, 154, 157, 158, 160, 161, 162, 163, 164, 167, 172, 174, 175, 177, 179, 182, 185, 190, 191, 192, 193, 194, 197, 198, 199, 205, 209, 216, 220, 223, 246, 253, 254, 256, 262, 264, 265, 268], "main": [0, 1, 3, 4, 5, 6, 7, 11, 16, 19, 22, 23, 52, 53, 55, 58, 59, 61, 87, 97, 104, 107, 108, 113, 119, 122, 123, 127, 132, 135, 136, 138, 145, 158, 161, 162, 163, 164, 167, 174, 175, 177, 178, 179, 185, 187, 188, 198, 201, 206, 207, 209, 219, 221, 222, 223, 224, 227, 238, 258, 260, 262, 264, 266], "step": [0, 3, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 37, 38, 43, 44, 47, 49, 52, 60, 61, 65, 67, 69, 73, 82, 85, 87, 89, 92, 94, 96, 97, 98, 99, 102, 103, 104, 105, 108, 110, 111, 115, 117, 118, 119, 120, 121, 122, 123, 127, 128, 130, 132, 134, 136, 137, 138, 140, 143, 145, 147, 150, 151, 154, 158, 161, 162, 163, 164, 165, 166, 167, 170, 172, 173, 174, 175, 177, 178, 179, 180, 182, 183, 185, 186, 189, 194, 195, 196, 198, 199, 200, 201, 202, 203, 205, 207, 209, 210, 211, 212, 215, 217, 221, 222, 223, 224, 229, 231, 239, 245, 246, 251, 254, 255, 260], "we": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, 34, 39, 40, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 55, 58, 59, 60, 63, 64, 65, 67, 68, 69, 73, 75, 76, 78, 79, 82, 83, 85, 87, 95, 97, 98, 99, 101, 102, 103, 105, 108, 109, 111, 113, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 209, 210, 212, 223, 224, 225, 226, 229, 232, 250, 254, 262, 264], "work": [0, 1, 2, 4, 5, 6, 7, 9, 12, 14, 17, 18, 20, 21, 22, 23, 25, 42, 43, 49, 50, 51, 52, 55, 56, 58, 59, 60, 61, 73, 78, 85, 87, 97, 98, 100, 103, 113, 115, 116, 119, 121, 125, 127, 128, 130, 131, 132, 134, 135, 136, 137, 139, 140, 142, 143, 144, 146, 150, 153, 154, 155, 156, 157, 159, 160, 162, 164, 165, 166, 169, 172, 174, 175, 177, 179, 182, 183, 184, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 198, 199, 200, 202, 203, 204, 206, 207, 209, 221, 224, 225, 226, 254, 264, 265], "virtualenv": 0, "order": [0, 4, 6, 11, 12, 15, 17, 20, 22, 34, 44, 45, 49, 50, 55, 60, 63, 64, 65, 67, 68, 69, 73, 82, 87, 105, 107, 108, 109, 111, 113, 118, 121, 123, 125, 126, 128, 131, 134, 135, 136, 143, 144, 145, 146, 148, 156, 157, 163, 166, 167, 172, 173, 174, 175, 176, 179, 180, 183, 189, 192, 194, 195, 201, 202, 206, 223, 254], "avoid": [0, 5, 16, 44, 58, 59, 87, 97, 122, 123, 124, 130, 134, 135, 136, 148, 151, 153, 160, 162, 178, 185, 190, 191, 194, 197, 202, 203, 224], "conflict": [0, 16, 145], "your": [0, 2, 6, 8, 9, 11, 12, 14, 15, 17, 18, 19, 22, 23, 25, 38, 42, 43, 44, 45, 47, 49, 50, 51, 53, 54, 55, 58, 59, 61, 67, 73, 75, 78, 82, 87, 99, 101, 102, 103, 105, 107, 108, 109, 110, 112, 113, 114, 121, 122, 123, 125, 130, 131, 132, 133, 134, 136, 137, 138, 140, 142, 144, 146, 147, 148, 150, 153, 154, 156, 157, 158, 159, 160, 163, 164, 165, 167, 169, 170, 172, 173, 174, 175, 177, 178, 186, 187, 188, 189, 195, 197, 198, 199, 200, 201, 202, 203, 205, 206, 207, 210, 214, 219, 223, 225, 226, 247, 258, 259, 262, 264, 265, 269], "local": [0, 5, 6, 7, 8, 9, 16, 18, 19, 22, 23, 49, 50, 98, 112, 114, 122, 124, 126, 134, 135, 136, 138, 153, 157, 158, 162, 163, 164, 166, 167, 178, 186, 209, 219, 223, 224, 254, 260, 262], "packag": [0, 2, 5, 6, 17, 18, 22, 23, 24, 44, 47, 51, 57, 61, 68, 69, 75, 76, 77, 79, 81, 87, 97, 99, 107, 110, 111, 115, 116, 117, 119, 120, 121, 122, 123, 134, 136, 138, 144, 156, 158, 159, 161, 164, 169, 172, 178, 186, 188, 202, 209, 221, 224, 239, 247], "also": [0, 1, 2, 4, 5, 6, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 37, 42, 43, 47, 48, 49, 51, 52, 53, 54, 58, 59, 60, 61, 65, 67, 68, 73, 75, 76, 78, 79, 80, 82, 85, 87, 95, 97, 98, 99, 100, 101, 102, 103, 108, 109, 111, 112, 113, 115, 116, 118, 119, 122, 123, 124, 125, 126, 127, 128, 130, 131, 134, 135, 136, 137, 138, 140, 142, 143, 144, 145, 146, 150, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 164, 165, 166, 169, 172, 173, 174, 175, 177, 178, 179, 180, 182, 183, 184, 189, 190, 191, 192, 193, 196, 198, 200, 201, 202, 203, 204, 206, 207, 209, 212, 221, 223, 224, 229, 233, 254, 262, 264, 265], "python": [0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 14, 15, 17, 18, 20, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 56, 57, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 125, 126, 127, 128, 129, 130, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 159, 160, 161, 163, 165, 166, 167, 169, 173, 174, 175, 176, 178, 179, 182, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 198, 200, 204, 205, 206, 209, 212, 214, 216, 217, 221, 222, 223, 224, 227, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 256, 258, 264, 265], "3": [0, 1, 2, 3, 5, 6, 7, 13, 14, 16, 17, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40, 42, 43, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 87, 89, 90, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 108, 109, 110, 111, 112, 113, 114, 115, 116, 118, 119, 121, 122, 123, 124, 127, 129, 130, 131, 136, 137, 139, 140, 141, 143, 144, 145, 147, 148, 150, 151, 152, 153, 154, 155, 157, 158, 159, 160, 162, 163, 164, 165, 167, 168, 171, 172, 173, 174, 175, 176, 178, 179, 184, 185, 188, 189, 190, 191, 192, 193, 194, 195, 198, 199, 202, 203, 204, 205, 206, 207, 208, 209, 212, 214, 216, 220, 221, 222, 223, 227, 228, 230, 231, 238, 240, 245, 248, 255, 256, 258, 264, 265, 268], "6": [0, 3, 6, 7, 11, 13, 19, 23, 34, 36, 43, 44, 47, 49, 58, 59, 60, 61, 63, 64, 65, 67, 68, 71, 72, 85, 87, 90, 92, 93, 94, 95, 96, 101, 102, 103, 109, 111, 112, 116, 117, 130, 131, 135, 136, 138, 145, 148, 150, 156, 157, 159, 162, 164, 172, 174, 175, 177, 178, 185, 186, 194, 198, 199, 202, 209, 214, 216, 219, 220, 222, 225, 226, 228, 229, 231, 240, 242, 243, 244, 248, 249, 250, 251, 254, 258, 268], "other": [0, 1, 5, 6, 7, 8, 10, 11, 14, 17, 19, 21, 22, 23, 25, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 59, 60, 61, 68, 69, 73, 75, 79, 80, 82, 83, 87, 95, 97, 99, 101, 102, 103, 111, 112, 113, 114, 116, 123, 124, 126, 127, 128, 130, 132, 133, 134, 136, 137, 138, 140, 142, 143, 144, 145, 146, 147, 150, 151, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 166, 170, 173, 174, 175, 177, 178, 179, 180, 183, 184, 185, 186, 190, 191, 192, 193, 194, 195, 198, 199, 200, 201, 202, 203, 205, 210, 219, 224, 229, 245, 254, 263, 264], "version": [0, 1, 3, 4, 5, 6, 7, 8, 10, 12, 14, 20, 22, 23, 25, 42, 80, 105, 107, 108, 115, 116, 119, 122, 123, 125, 126, 127, 130, 136, 137, 138, 139, 142, 146, 148, 154, 156, 157, 158, 159, 160, 167, 169, 170, 172, 176, 179, 184, 185, 186, 188, 189, 190, 198, 199, 201, 204, 205, 207, 209, 219, 221, 223, 224, 229, 258, 259, 262, 265], "should": [0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 14, 15, 16, 18, 19, 20, 21, 22, 23, 32, 42, 43, 44, 49, 50, 51, 52, 53, 55, 58, 59, 60, 69, 73, 78, 82, 85, 87, 97, 98, 99, 100, 102, 103, 111, 117, 119, 121, 122, 125, 126, 127, 131, 134, 136, 137, 139, 140, 144, 147, 148, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 166, 170, 172, 173, 174, 175, 176, 177, 178, 179, 183, 185, 188, 189, 190, 191, 192, 198, 201, 206, 207, 209, 219, 223, 224, 254, 262, 264, 267], "well": [0, 1, 3, 4, 5, 6, 8, 10, 11, 19, 20, 22, 23, 42, 44, 48, 49, 53, 60, 67, 82, 85, 87, 97, 99, 101, 105, 110, 111, 112, 113, 117, 122, 123, 125, 126, 127, 130, 131, 136, 137, 138, 142, 143, 144, 153, 154, 158, 159, 162, 163, 164, 165, 166, 169, 170, 172, 173, 178, 179, 183, 186, 188, 189, 190, 191, 192, 194, 196, 198, 201, 203, 221, 223, 224, 264], "python3": [0, 5, 18, 22, 23, 169, 188, 220, 247], "m": [0, 4, 5, 6, 7, 8, 10, 14, 15, 19, 22, 23, 32, 43, 49, 52, 89, 93, 96, 101, 104, 110, 113, 116, 117, 118, 122, 123, 127, 128, 135, 138, 143, 145, 146, 147, 148, 150, 156, 157, 158, 162, 164, 166, 174, 175, 184, 186, 193, 198, 199, 200, 203, 209, 220, 227, 232, 238, 245, 247, 248, 265], "venv": 0, "sourc": [0, 1, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 17, 20, 22, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 55, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 122, 124, 125, 126, 127, 128, 130, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 160, 161, 162, 164, 165, 166, 167, 169, 172, 173, 175, 178, 179, 182, 185, 187, 188, 190, 191, 192, 193, 194, 195, 196, 197, 200, 204, 205, 206, 207, 212, 219, 221, 223, 224, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 253, 256, 257], "bin": [0, 4, 6, 22, 23, 92, 136, 187, 195, 196, 205, 209, 219, 221, 224, 227], "activ": [0, 5, 6, 9, 10, 12, 14, 15, 17, 19, 47, 52, 82, 93, 97, 99, 104, 122, 124, 132, 136, 138, 145, 146, 153, 157, 159, 165, 169, 178, 180, 183, 186, 187, 188, 196, 200, 201, 202, 206, 209, 220, 221, 229, 239, 258, 264], "need": [0, 1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, 34, 43, 44, 45, 47, 49, 50, 51, 52, 53, 54, 55, 58, 59, 60, 61, 63, 64, 67, 75, 76, 79, 82, 83, 87, 97, 98, 99, 101, 102, 103, 105, 108, 111, 112, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 133, 134, 136, 137, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 172, 173, 174, 175, 176, 178, 179, 180, 183, 185, 186, 188, 189, 190, 194, 195, 196, 198, 199, 200, 201, 202, 203, 205, 207, 209, 210, 221, 223, 224, 225, 226, 229, 254, 264], "instal": [0, 1, 5, 6, 7, 8, 17, 20, 23, 24, 50, 51, 53, 55, 57, 58, 87, 90, 94, 107, 115, 116, 118, 119, 122, 123, 124, 127, 128, 132, 133, 136, 137, 140, 142, 144, 147, 156, 159, 160, 161, 162, 166, 169, 172, 173, 179, 185, 186, 188, 189, 195, 205, 207, 209, 220, 222, 223, 224, 225, 226, 228, 232, 234, 237, 239, 241, 242, 243, 244, 246, 247, 249, 250, 251, 253, 258, 268], "pip": [0, 17, 20, 24, 50, 75, 82, 90, 94, 105, 107, 115, 118, 119, 138, 140, 147, 158, 159, 161, 169, 172, 173, 179, 185, 195, 207, 220, 222, 224, 230, 232, 234, 237, 239, 241, 242, 243, 244, 246, 249, 250, 251, 253], "torchvis": [0, 4, 10, 12, 19, 20, 33, 34, 37, 38, 39, 41, 43, 44, 50, 52, 57, 58, 59, 73, 75, 87, 90, 92, 94, 96, 97, 110, 117, 119, 121, 122, 123, 130, 135, 138, 140, 143, 144, 147, 149, 150, 153, 158, 159, 162, 163, 167, 169, 170, 172, 173, 177, 178, 183, 185, 188, 189, 195, 196, 198, 199, 200, 201, 205, 207, 214, 221, 222, 224, 225, 226, 228, 229, 230, 234, 237, 239, 246, 248, 251, 255, 258], "xcode": [0, 59, 189, 205, 223, 224, 226, 228], "want": [0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 19, 21, 22, 23, 24, 32, 43, 44, 47, 49, 51, 52, 58, 59, 60, 63, 64, 67, 73, 76, 78, 79, 85, 87, 97, 98, 99, 100, 101, 102, 103, 108, 111, 112, 116, 124, 125, 126, 127, 136, 137, 138, 139, 142, 144, 146, 148, 149, 151, 154, 157, 158, 159, 160, 163, 165, 166, 167, 172, 174, 175, 176, 179, 182, 183, 184, 190, 192, 196, 197, 198, 199, 201, 206, 209, 223, 224, 229, 241], "iphon": [0, 188, 224], "linux": [0, 5, 6, 18, 20, 22, 23, 105, 124, 134, 136, 159, 169, 177, 178, 179, 195, 207, 209, 221], "howev": [0, 1, 5, 6, 8, 10, 12, 14, 15, 17, 20, 22, 23, 25, 45, 47, 49, 51, 52, 60, 61, 73, 76, 85, 87, 97, 98, 113, 117, 124, 125, 130, 131, 135, 136, 137, 139, 140, 144, 148, 150, 153, 156, 157, 158, 161, 162, 163, 164, 165, 166, 170, 172, 173, 174, 175, 177, 180, 184, 187, 191, 192, 194, 199, 201, 202, 205, 206, 223, 224, 262, 263], "itself": [0, 5, 7, 11, 23, 32, 43, 60, 61, 82, 85, 97, 101, 102, 108, 112, 113, 124, 125, 127, 131, 136, 142, 143, 147, 160, 163, 164, 166, 196], "mac": [0, 20, 138, 207, 226], "For": [0, 1, 2, 4, 5, 6, 7, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 32, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 55, 58, 59, 60, 61, 63, 64, 65, 68, 73, 75, 78, 79, 80, 82, 83, 87, 97, 98, 99, 100, 102, 103, 105, 108, 111, 112, 113, 114, 115, 116, 119, 121, 122, 123, 124, 125, 126, 127, 128, 130, 133, 134, 135, 136, 137, 138, 139, 140, 143, 144, 145, 147, 148, 150, 154, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 185, 186, 187, 189, 190, 191, 192, 193, 194, 196, 198, 199, 200, 201, 202, 203, 207, 209, 210, 212, 219, 221, 224, 228, 229, 254, 262, 264, 265], "publish": [0, 209], "http": [0, 4, 6, 7, 18, 19, 20, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 37, 38, 40, 45, 46, 49, 58, 59, 60, 74, 75, 77, 78, 84, 90, 91, 94, 100, 104, 105, 106, 108, 113, 115, 118, 119, 120, 122, 123, 127, 128, 130, 138, 140, 141, 142, 143, 144, 148, 153, 154, 155, 156, 158, 159, 161, 166, 168, 169, 170, 171, 172, 173, 175, 179, 180, 182, 183, 185, 188, 189, 191, 193, 195, 204, 205, 206, 207, 208, 209, 214, 217, 219, 222, 223, 230, 231, 232, 235, 236, 237, 238, 246, 262, 264], "github": [0, 2, 3, 4, 6, 7, 10, 11, 16, 19, 22, 23, 24, 33, 49, 53, 54, 55, 60, 61, 78, 104, 108, 115, 118, 121, 122, 123, 124, 130, 132, 133, 134, 135, 136, 138, 139, 140, 142, 143, 144, 147, 148, 155, 156, 162, 163, 164, 169, 172, 179, 180, 183, 185, 187, 189, 205, 206, 207, 208, 209, 214, 215, 216, 217, 219, 221, 222, 223, 230, 262], "com": [0, 7, 10, 18, 19, 20, 24, 25, 33, 37, 49, 60, 75, 78, 104, 108, 115, 118, 119, 123, 127, 128, 130, 142, 143, 144, 148, 155, 156, 161, 166, 172, 179, 180, 182, 183, 185, 195, 205, 206, 207, 208, 209, 214, 217, 219, 222, 223, 230, 232], "exampl": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 76, 77, 80, 82, 83, 84, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 100, 101, 104, 105, 107, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 188, 189, 190, 191, 192, 193, 194, 196, 198, 199, 200, 202, 203, 204, 205, 206, 207, 209, 210, 212, 214, 223, 224, 225, 226, 229, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 256, 257, 260, 262, 263, 265, 268], "tree": [0, 6, 10, 12, 15, 22, 49, 60, 78, 98, 103, 113, 130, 205, 223, 262], "master": [0, 4, 16, 19, 49, 60, 78, 118, 119, 123, 130, 135, 136, 143, 144, 148, 163, 164, 179, 180, 183, 189, 195, 197, 200, 205, 207, 221, 223], "fast_neural_styl": 0, "If": [0, 1, 2, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 21, 22, 23, 24, 32, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 55, 58, 60, 61, 63, 73, 75, 76, 78, 82, 87, 95, 97, 98, 99, 100, 101, 102, 103, 112, 113, 114, 117, 118, 122, 123, 124, 125, 127, 128, 130, 134, 136, 137, 139, 140, 142, 143, 144, 145, 146, 148, 150, 153, 154, 155, 156, 159, 160, 161, 162, 163, 164, 165, 166, 169, 172, 173, 174, 175, 176, 177, 179, 180, 183, 184, 185, 186, 187, 188, 189, 190, 191, 193, 194, 195, 196, 198, 199, 202, 203, 206, 207, 209, 210, 219, 221, 223, 224, 226, 233, 242, 254, 262, 264], "would": [0, 3, 4, 5, 6, 7, 8, 14, 16, 18, 19, 20, 21, 22, 23, 25, 43, 49, 53, 55, 60, 61, 73, 76, 87, 97, 98, 101, 102, 103, 108, 112, 113, 116, 117, 123, 124, 125, 126, 127, 128, 130, 131, 134, 135, 137, 138, 140, 143, 144, 145, 146, 148, 150, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 164, 166, 172, 173, 174, 175, 177, 178, 179, 183, 186, 192, 193, 197, 199, 206, 210, 224, 226], "like": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 25, 43, 44, 45, 47, 48, 49, 51, 52, 53, 58, 59, 60, 61, 65, 67, 68, 75, 78, 79, 80, 82, 85, 87, 97, 98, 99, 101, 102, 103, 105, 108, 109, 110, 111, 112, 113, 114, 116, 117, 120, 121, 123, 124, 125, 126, 127, 128, 131, 133, 134, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 148, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 166, 169, 170, 172, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 186, 187, 188, 191, 192, 193, 195, 197, 198, 199, 200, 201, 202, 206, 207, 209, 210, 219, 221, 223, 226, 233, 263, 264], "differ": [0, 1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 32, 47, 48, 49, 51, 52, 58, 59, 60, 61, 73, 80, 81, 82, 83, 85, 87, 92, 97, 98, 99, 103, 105, 115, 116, 119, 121, 122, 123, 124, 126, 127, 128, 130, 133, 134, 135, 136, 138, 139, 140, 142, 144, 145, 146, 148, 150, 151, 153, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 169, 172, 173, 174, 175, 177, 178, 180, 183, 185, 187, 189, 190, 191, 192, 193, 194, 196, 198, 199, 200, 201, 202, 203, 205, 207, 209, 219, 224, 229, 232, 236, 252, 254, 262], "feel": [0, 6, 10, 19, 43, 49, 78, 97, 103, 105, 107, 108, 112, 122, 143, 144, 145, 147, 148, 153, 169, 174, 175, 188], "free": [0, 6, 10, 19, 22, 23, 25, 43, 49, 60, 73, 78, 85, 97, 105, 107, 108, 112, 122, 126, 130, 136, 142, 143, 144, 147, 148, 153, 160, 162, 166, 169, 174, 175, 176, 188, 230, 247], "skip": [0, 1, 4, 5, 10, 14, 17, 19, 23, 42, 43, 98, 112, 116, 131, 142, 147, 162, 164, 169, 175, 183, 197, 202], "These": [0, 1, 5, 7, 8, 11, 12, 14, 17, 19, 20, 21, 25, 43, 49, 52, 55, 82, 87, 98, 100, 102, 103, 108, 109, 113, 117, 118, 136, 147, 158, 160, 161, 163, 165, 166, 172, 177, 178, 183, 185, 198, 199, 201, 202, 262, 264], "meant": [0, 6, 11, 85, 122, 192], "appli": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 17, 19, 23, 25, 51, 52, 58, 59, 60, 61, 64, 68, 73, 79, 82, 85, 97, 99, 108, 111, 113, 116, 119, 121, 123, 130, 131, 134, 135, 136, 139, 140, 142, 143, 146, 147, 148, 151, 153, 154, 155, 157, 160, 162, 163, 164, 166, 167, 172, 177, 178, 179, 182, 185, 186, 190, 191, 194, 199, 202, 203, 206, 209, 219, 221, 224, 229, 245, 254], "still": [0, 1, 5, 6, 8, 10, 11, 12, 14, 15, 17, 18, 19, 20, 23, 42, 47, 52, 61, 73, 79, 80, 87, 97, 101, 105, 109, 112, 113, 119, 122, 126, 127, 128, 134, 136, 137, 142, 143, 144, 148, 150, 153, 164, 173, 175, 177, 180, 182, 183, 185, 187, 188, 189, 190, 192, 196, 198, 201, 202, 205, 209, 210, 223, 224, 229], "imag": [0, 1, 19, 23, 34, 43, 47, 49, 51, 52, 57, 60, 73, 75, 82, 87, 90, 92, 94, 96, 97, 121, 124, 126, 139, 147, 148, 150, 153, 155, 157, 159, 161, 167, 169, 170, 179, 183, 185, 194, 198, 199, 200, 205, 207, 209, 214, 223, 224, 225, 226, 230, 259], "realli": [0, 5, 8, 23, 25, 42, 44, 98, 99, 103, 108, 113, 125, 158, 170, 190, 192, 206], "optim": [0, 3, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 32, 35, 37, 38, 43, 47, 49, 53, 55, 58, 59, 60, 61, 65, 66, 67, 73, 75, 79, 82, 85, 87, 89, 92, 94, 96, 97, 98, 102, 103, 112, 115, 117, 118, 121, 122, 123, 124, 127, 130, 132, 134, 135, 136, 137, 139, 143, 144, 145, 147, 148, 149, 150, 154, 155, 157, 158, 159, 160, 161, 162, 163, 166, 167, 169, 170, 172, 173, 175, 176, 177, 179, 183, 185, 186, 189, 190, 194, 195, 196, 197, 199, 200, 202, 204, 205, 207, 211, 215, 217, 219, 221, 222, 223, 228, 229, 231, 238, 241, 242, 243, 244, 245, 246, 249, 250, 251, 252, 255, 260], "fast": [0, 1, 5, 6, 17, 18, 21, 42, 49, 104, 123, 124, 134, 151, 160, 165, 172, 185, 197, 202, 224], "enough": [0, 5, 6, 17, 21, 23, 49, 82, 101, 125, 130, 159, 202], "video": [0, 20, 43, 44, 53, 55, 56, 75, 79, 114, 120, 121, 132, 133, 159, 169, 176], "reduc": [0, 3, 6, 9, 11, 17, 19, 37, 43, 56, 58, 59, 61, 97, 109, 119, 122, 123, 124, 126, 130, 132, 134, 136, 138, 146, 147, 148, 153, 157, 159, 162, 164, 169, 172, 173, 174, 175, 177, 178, 186, 187, 195, 200, 202, 204, 205, 219, 223, 224, 228, 229, 232], "resolut": [0, 20, 172], "low": [0, 1, 4, 5, 6, 7, 14, 24, 25, 49, 52, 68, 82, 99, 113, 121, 127, 147, 160, 169, 178, 221], "thei": [0, 1, 3, 4, 5, 6, 8, 10, 12, 14, 16, 19, 20, 21, 23, 25, 44, 48, 49, 52, 55, 58, 59, 60, 73, 80, 82, 85, 97, 99, 100, 101, 102, 103, 105, 107, 108, 109, 112, 113, 115, 122, 125, 126, 127, 128, 131, 134, 135, 136, 137, 145, 146, 148, 153, 154, 160, 161, 162, 164, 166, 172, 174, 175, 177, 178, 179, 180, 183, 186, 190, 191, 192, 193, 194, 196, 198, 199, 201, 203, 204, 209, 221, 225, 226, 254, 262, 264], "let": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 43, 44, 45, 47, 49, 51, 52, 58, 59, 60, 68, 73, 75, 76, 78, 79, 80, 85, 87, 97, 98, 99, 101, 102, 103, 104, 105, 108, 109, 111, 112, 116, 117, 118, 119, 124, 126, 131, 134, 135, 136, 137, 138, 139, 143, 144, 145, 146, 148, 150, 151, 153, 154, 155, 157, 158, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 185, 188, 189, 190, 191, 194, 201, 202, 209, 223, 224, 262, 264], "s": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 57, 58, 59, 61, 68, 73, 76, 78, 79, 80, 85, 87, 92, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 115, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 130, 131, 132, 134, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 148, 150, 151, 153, 154, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 176, 177, 179, 180, 182, 183, 185, 186, 187, 188, 189, 190, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 205, 206, 209, 210, 214, 223, 224, 225, 226, 229, 231, 250, 254, 258, 262, 264, 265], "git": [0, 179, 185, 214, 219, 268], "clone": [0, 1, 11, 12, 14, 22, 23, 54, 95, 110, 127, 131, 132, 136, 145, 146, 148, 157, 209, 210, 214, 219], "cd": [0, 4, 6, 22, 23, 169, 179, 182, 189, 195, 207, 209, 219, 226, 227], "yourself": [0, 4, 5, 6, 8, 23, 42, 60, 101, 147, 184], "repositori": [0, 6, 10, 54, 58, 59, 83, 114, 119, 122, 124, 136, 156, 164, 165, 166, 179, 205, 207, 209, 223, 262, 269], "just": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 42, 44, 45, 47, 49, 50, 51, 52, 53, 56, 60, 65, 67, 73, 76, 78, 85, 87, 95, 97, 98, 99, 101, 102, 103, 111, 112, 113, 116, 117, 122, 123, 124, 126, 127, 128, 134, 137, 138, 145, 146, 150, 151, 153, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 170, 172, 177, 179, 183, 185, 187, 189, 192, 195, 198, 199, 201, 202, 205, 209, 221, 229, 233, 264, 266], "inform": [0, 1, 2, 4, 5, 7, 8, 10, 14, 20, 22, 23, 25, 45, 49, 53, 64, 73, 78, 82, 87, 97, 101, 102, 103, 108, 111, 112, 113, 118, 119, 123, 125, 126, 127, 128, 134, 136, 137, 138, 142, 143, 144, 147, 158, 159, 160, 161, 163, 165, 166, 169, 170, 172, 174, 176, 177, 178, 179, 180, 183, 184, 185, 188, 193, 194, 195, 198, 203, 206, 207, 224, 229, 232, 254, 264], "how": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 42, 43, 44, 45, 47, 49, 50, 51, 52, 55, 56, 57, 58, 59, 60, 61, 73, 75, 78, 80, 82, 85, 86, 87, 97, 99, 100, 101, 102, 103, 104, 105, 108, 109, 112, 113, 115, 116, 117, 118, 119, 120, 121, 125, 126, 127, 128, 131, 132, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 147, 148, 150, 151, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 200, 202, 204, 205, 209, 210, 212, 219, 224, 225, 226, 227, 229, 232, 252, 254, 258, 264, 266, 268], "do": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 32, 39, 42, 47, 49, 50, 51, 52, 54, 58, 59, 60, 61, 63, 64, 68, 69, 76, 78, 80, 85, 87, 97, 98, 99, 101, 102, 103, 105, 108, 111, 112, 114, 116, 118, 121, 123, 124, 125, 126, 127, 130, 133, 134, 135, 136, 137, 139, 140, 142, 143, 144, 145, 146, 147, 149, 150, 151, 153, 154, 156, 157, 158, 159, 160, 161, 164, 166, 170, 172, 174, 175, 177, 178, 179, 182, 183, 185, 186, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 206, 209, 219, 223, 224, 225, 226, 229, 233, 242, 258, 263, 265], "now": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 42, 43, 44, 45, 47, 49, 50, 51, 52, 55, 58, 59, 60, 63, 73, 76, 78, 80, 85, 87, 96, 97, 98, 99, 101, 103, 105, 107, 108, 111, 116, 117, 118, 119, 122, 124, 125, 126, 127, 128, 130, 131, 134, 135, 136, 137, 138, 140, 143, 144, 145, 146, 147, 151, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 166, 167, 169, 170, 172, 173, 175, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 190, 191, 194, 195, 198, 200, 201, 202, 203, 206, 209, 212, 224, 225, 233, 250, 264], "ll": [0, 1, 4, 5, 6, 8, 9, 10, 17, 19, 20, 22, 23, 48, 49, 50, 60, 87, 98, 105, 127, 128, 136, 137, 139, 140, 142, 146, 151, 153, 155, 159, 160, 161, 163, 166, 170, 177, 182, 183, 184, 185, 186, 188, 189, 190, 192, 196, 198, 199, 201, 202, 212, 224, 232], "pre": [0, 19, 98, 122, 124, 136, 138, 158, 159, 172, 179, 185, 186, 188, 189, 201, 223, 224], "script": [0, 1, 5, 6, 7, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 24, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 55, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 122, 123, 125, 126, 127, 128, 130, 132, 133, 134, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 159, 160, 161, 163, 165, 166, 167, 169, 172, 173, 174, 175, 177, 178, 179, 182, 183, 185, 188, 189, 190, 191, 192, 193, 194, 195, 196, 198, 199, 200, 204, 205, 206, 207, 209, 210, 212, 217, 219, 221, 223, 224, 228, 229, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 253, 256, 257, 258], "provid": [0, 1, 4, 5, 6, 8, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 44, 49, 51, 52, 56, 58, 59, 60, 61, 73, 82, 83, 85, 87, 97, 98, 99, 105, 107, 108, 112, 113, 115, 116, 118, 120, 121, 122, 124, 125, 126, 132, 133, 134, 135, 136, 137, 138, 143, 144, 145, 146, 147, 148, 157, 159, 160, 162, 163, 165, 169, 172, 173, 174, 175, 179, 186, 188, 192, 193, 195, 196, 197, 198, 199, 201, 202, 203, 206, 209, 210, 217, 219, 221, 224, 228, 264], "download_saved_model": 0, "py": [0, 1, 5, 6, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 22, 23, 24, 25, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 55, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 77, 78, 79, 80, 84, 85, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 160, 161, 163, 165, 166, 167, 169, 173, 174, 175, 179, 182, 183, 184, 185, 186, 188, 189, 190, 191, 192, 193, 194, 196, 200, 204, 205, 206, 207, 212, 214, 216, 217, 222, 224, 227, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 253, 256, 257, 259, 262, 264, 269], "put": [0, 2, 5, 6, 8, 12, 14, 16, 42, 45, 49, 51, 59, 75, 85, 113, 115, 121, 122, 123, 135, 136, 137, 150, 154, 159, 160, 161, 163, 164, 166, 172, 188, 200, 201, 209, 264], "saved_model": [0, 96], "folder": [0, 4, 6, 19, 23, 50, 52, 82, 83, 122, 138, 170, 179, 182, 183, 186, 189, 198, 199, 205, 207, 209, 219, 225, 226], "There": [0, 4, 6, 8, 10, 14, 15, 17, 22, 23, 25, 47, 73, 76, 79, 85, 97, 98, 99, 102, 103, 113, 117, 120, 128, 133, 137, 139, 144, 146, 148, 150, 151, 153, 155, 158, 159, 160, 163, 164, 166, 174, 175, 179, 180, 182, 192, 195, 198, 201, 202, 229, 254, 265], "file": [0, 2, 5, 6, 7, 8, 9, 10, 15, 19, 20, 21, 22, 23, 50, 51, 52, 55, 58, 59, 60, 75, 82, 83, 87, 101, 109, 110, 114, 116, 118, 119, 122, 125, 126, 127, 128, 134, 136, 138, 140, 145, 153, 156, 159, 169, 172, 174, 175, 179, 182, 183, 186, 187, 189, 193, 194, 198, 199, 205, 207, 210, 214, 219, 221, 223, 224, 225, 226, 236, 262, 263, 265, 269], "candi": 0, "pth": [0, 5, 9, 19, 20, 23, 24, 38, 39, 44, 60, 73, 112, 172, 182, 183, 185, 198, 199, 221, 222, 238, 243, 254], "mosaic": 0, "rain_princess": 0, "udni": 0, "directori": [0, 1, 4, 5, 6, 12, 22, 23, 49, 51, 52, 75, 87, 97, 112, 114, 117, 126, 127, 128, 138, 145, 158, 166, 169, 172, 185, 186, 189, 195, 205, 209, 224], "have": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 34, 40, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 63, 68, 69, 73, 76, 78, 79, 80, 82, 83, 85, 87, 95, 97, 98, 99, 100, 101, 102, 103, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 131, 132, 133, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 150, 153, 154, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 169, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 198, 199, 200, 201, 202, 203, 204, 206, 207, 209, 210, 212, 221, 223, 224, 225, 226, 229, 233, 241, 242, 250, 254, 264], "The": [0, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, 42, 43, 44, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 67, 68, 69, 73, 75, 76, 78, 79, 80, 82, 83, 85, 91, 93, 95, 97, 98, 99, 100, 101, 102, 103, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 126, 127, 128, 130, 131, 134, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 150, 151, 153, 154, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 167, 169, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 209, 210, 212, 214, 219, 221, 223, 224, 225, 226, 229, 254, 262, 265], "definit": [0, 5, 6, 8, 10, 20, 22, 25, 47, 58, 59, 60, 68, 73, 78, 85, 99, 111, 121, 144, 154, 161, 165, 182, 191, 209, 210, 219, 229, 254, 264], "previous": [0, 4, 5, 8, 20, 32, 60, 85, 101, 115, 118, 142, 143, 157, 160, 161, 162, 169, 190, 198, 206, 224], "few": [0, 5, 6, 8, 9, 10, 15, 19, 21, 22, 23, 47, 51, 56, 60, 79, 85, 97, 99, 100, 101, 102, 103, 112, 113, 115, 116, 120, 122, 125, 127, 128, 130, 134, 136, 137, 150, 154, 159, 160, 163, 166, 173, 178, 180, 185, 191, 192, 193, 198, 199, 209, 210, 212, 221], "line": [0, 4, 5, 6, 8, 9, 12, 13, 17, 21, 22, 23, 49, 50, 51, 56, 58, 59, 60, 61, 82, 97, 99, 109, 115, 116, 126, 127, 128, 136, 144, 145, 150, 159, 163, 164, 166, 169, 170, 173, 174, 178, 182, 187, 189, 190, 192, 209, 221, 223, 225, 226, 254, 265], "In": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, 42, 43, 45, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 64, 65, 67, 68, 73, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 95, 97, 98, 99, 101, 102, 103, 105, 108, 109, 111, 112, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 143, 144, 145, 146, 147, 148, 150, 151, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 196, 198, 199, 200, 201, 202, 203, 204, 205, 207, 209, 212, 219, 221, 223, 224, 225, 264, 265, 267], "instead": [0, 4, 5, 6, 8, 10, 14, 17, 19, 20, 22, 23, 25, 32, 44, 45, 49, 51, 52, 53, 58, 59, 60, 61, 64, 98, 99, 103, 107, 108, 109, 113, 116, 117, 122, 123, 125, 126, 127, 128, 130, 131, 132, 135, 136, 143, 144, 146, 147, 148, 150, 151, 153, 156, 157, 158, 159, 162, 163, 164, 166, 167, 170, 172, 173, 177, 178, 179, 180, 185, 190, 192, 193, 194, 199, 200, 201, 202, 206, 210, 224, 254], "actual": [0, 1, 3, 5, 6, 8, 11, 13, 14, 15, 19, 21, 22, 23, 25, 38, 49, 51, 52, 58, 59, 60, 73, 85, 97, 98, 101, 103, 108, 112, 116, 118, 121, 125, 126, 127, 130, 134, 136, 140, 143, 144, 151, 153, 160, 166, 169, 170, 173, 174, 175, 176, 178, 183, 185, 190, 192, 198, 199, 201, 205, 206, 224, 225, 226, 254], "net": [0, 3, 6, 14, 19, 24, 44, 45, 47, 49, 52, 73, 79, 81, 85, 87, 92, 94, 97, 110, 123, 125, 130, 136, 147, 151, 159, 163, 167, 169, 170, 204, 210, 222, 231, 234, 240, 241, 242, 243, 244, 250, 251, 264, 265], "call": [0, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 32, 42, 43, 44, 45, 47, 49, 51, 52, 53, 55, 58, 59, 60, 61, 63, 67, 68, 69, 73, 75, 76, 78, 80, 85, 95, 97, 98, 99, 101, 102, 103, 109, 111, 112, 113, 116, 118, 120, 121, 123, 124, 125, 126, 128, 134, 135, 136, 137, 138, 142, 143, 144, 145, 147, 148, 150, 151, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 164, 165, 166, 167, 169, 172, 173, 174, 175, 176, 177, 178, 183, 184, 186, 187, 188, 189, 195, 196, 199, 202, 205, 206, 207, 209, 212, 219, 220, 224, 225, 226, 229, 233, 239, 242, 254, 264], "torch": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 63, 64, 65, 67, 68, 69, 72, 73, 75, 76, 78, 79, 85, 87, 89, 90, 92, 94, 95, 96, 97, 98, 99, 102, 103, 105, 107, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 127, 128, 130, 131, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 164, 166, 167, 169, 170, 172, 176, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 193, 194, 195, 196, 197, 200, 201, 202, 203, 204, 205, 207, 208, 209, 210, 212, 213, 215, 216, 217, 219, 220, 221, 222, 223, 225, 226, 227, 229, 233, 234, 235, 237, 239, 240, 242, 243, 244, 246, 247, 248, 249, 250, 251, 252, 254, 255, 258, 259, 260], "_export": [0, 175, 198, 199, 200], "which": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 32, 42, 43, 44, 47, 48, 49, 50, 51, 52, 55, 56, 58, 59, 60, 61, 63, 64, 67, 68, 69, 73, 75, 76, 78, 79, 82, 83, 85, 87, 97, 98, 99, 101, 102, 103, 105, 108, 109, 111, 112, 113, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 150, 151, 153, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 196, 198, 199, 200, 201, 202, 203, 205, 209, 212, 223, 224, 228, 229, 232, 233, 254, 262, 264, 265], "api": [0, 2, 5, 8, 10, 11, 14, 15, 18, 20, 21, 22, 23, 24, 25, 33, 34, 41, 48, 56, 60, 61, 82, 90, 107, 108, 109, 113, 121, 123, 124, 125, 126, 127, 134, 135, 136, 138, 144, 145, 146, 155, 158, 162, 163, 164, 169, 174, 175, 176, 178, 179, 180, 182, 183, 184, 185, 188, 189, 195, 196, 197, 198, 199, 200, 204, 205, 206, 209, 214, 215, 216, 217, 221, 222, 223, 224, 229, 230, 232, 233, 235, 237, 247, 248, 252, 254, 255, 256, 258, 263], "directli": [0, 4, 5, 6, 8, 11, 12, 14, 20, 22, 23, 25, 42, 48, 52, 61, 85, 87, 105, 107, 108, 113, 118, 124, 131, 132, 138, 146, 159, 160, 164, 166, 183, 185, 186, 192, 193, 194, 203, 207, 210, 223, 229], "don": [0, 5, 6, 8, 10, 21, 42, 43, 44, 52, 53, 63, 73, 76, 87, 98, 99, 102, 108, 111, 112, 113, 117, 125, 126, 127, 130, 131, 138, 144, 146, 147, 149, 153, 158, 160, 161, 164, 165, 183, 184, 186, 188, 189, 190, 191, 192, 201, 212, 223, 262, 264, 265], "t": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 24, 25, 32, 34, 37, 38, 40, 42, 43, 44, 47, 48, 49, 50, 52, 53, 58, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 76, 78, 87, 89, 94, 96, 97, 98, 99, 101, 102, 103, 105, 108, 110, 111, 112, 113, 115, 116, 117, 122, 123, 125, 126, 127, 130, 131, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 149, 151, 153, 154, 155, 157, 158, 159, 160, 161, 162, 164, 165, 166, 169, 170, 172, 173, 174, 175, 177, 179, 180, 182, 183, 184, 185, 186, 188, 189, 190, 191, 192, 194, 196, 198, 199, 201, 202, 206, 207, 209, 210, 212, 220, 223, 229, 235, 237, 238, 240, 250, 254, 256, 262, 264, 265], "even": [0, 1, 4, 5, 6, 8, 10, 14, 16, 21, 23, 25, 43, 44, 51, 73, 76, 78, 95, 103, 108, 112, 113, 115, 122, 123, 124, 131, 134, 140, 143, 144, 146, 154, 160, 162, 165, 172, 174, 175, 177, 185, 190, 192, 193, 196, 201, 204, 229], "becaus": [0, 1, 2, 4, 5, 6, 8, 12, 14, 15, 16, 17, 19, 20, 21, 22, 23, 32, 34, 42, 43, 44, 47, 48, 49, 51, 52, 55, 56, 58, 59, 60, 61, 63, 69, 73, 78, 79, 85, 87, 97, 98, 99, 101, 105, 108, 111, 112, 116, 117, 119, 125, 127, 130, 131, 134, 135, 137, 138, 142, 144, 146, 147, 148, 150, 151, 155, 157, 158, 162, 164, 166, 167, 169, 173, 174, 175, 177, 179, 182, 184, 185, 186, 189, 190, 192, 195, 196, 199, 201, 202, 204, 206, 209, 211, 212, 229, 254], "alreadi": [0, 1, 2, 4, 5, 6, 10, 11, 15, 22, 23, 79, 97, 98, 108, 113, 124, 126, 130, 134, 140, 148, 150, 153, 158, 159, 160, 165, 170, 174, 175, 177, 178, 192, 195, 201, 221, 224, 229], "exist": [0, 2, 4, 6, 8, 9, 10, 11, 17, 22, 23, 25, 47, 49, 52, 53, 67, 73, 76, 80, 83, 85, 95, 101, 104, 121, 136, 138, 143, 157, 159, 164, 165, 166, 167, 169, 172, 173, 174, 175, 182, 186, 189, 190, 191, 193, 198, 201, 202, 204, 209, 210, 226], "neural_styl": 0, "take": [0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15, 16, 17, 19, 20, 21, 23, 25, 34, 43, 44, 47, 48, 49, 50, 51, 52, 58, 59, 60, 61, 68, 73, 75, 78, 82, 85, 95, 97, 99, 101, 102, 103, 108, 110, 112, 113, 116, 117, 118, 124, 125, 126, 127, 128, 131, 134, 135, 136, 138, 140, 144, 146, 147, 150, 153, 154, 155, 158, 159, 160, 161, 162, 163, 164, 166, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 183, 185, 190, 193, 194, 196, 198, 199, 200, 201, 202, 206, 209, 210, 221, 223, 224, 229, 232, 233, 254, 262, 264], "look": [0, 2, 4, 5, 6, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 23, 25, 34, 43, 44, 47, 48, 49, 50, 51, 52, 73, 78, 79, 85, 87, 98, 99, 101, 102, 103, 105, 108, 112, 113, 116, 117, 118, 123, 124, 125, 126, 131, 136, 137, 139, 148, 150, 151, 153, 157, 159, 160, 163, 164, 165, 166, 169, 170, 172, 174, 175, 176, 178, 179, 182, 183, 187, 188, 190, 193, 194, 198, 199, 200, 221, 224, 232], "essenti": [0, 6, 10, 14, 32, 49, 98, 99, 101, 136, 161, 174, 175, 203, 210, 254], "trace": [0, 5, 8, 10, 20, 21, 43, 49, 60, 78, 107, 109, 110, 112, 121, 138, 143, 145, 151, 165, 169, 174, 175, 188, 195, 197, 204, 210, 221, 224, 225, 226, 239, 248, 252], "so": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 42, 44, 47, 49, 51, 52, 53, 58, 59, 60, 65, 68, 73, 75, 76, 78, 80, 83, 85, 87, 95, 97, 98, 99, 100, 101, 102, 103, 105, 108, 109, 111, 113, 115, 116, 117, 119, 122, 123, 124, 125, 126, 127, 128, 130, 131, 135, 136, 137, 138, 140, 143, 144, 145, 146, 147, 149, 150, 153, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 169, 172, 173, 174, 175, 177, 178, 179, 180, 183, 184, 185, 186, 188, 189, 190, 192, 193, 194, 195, 196, 198, 199, 201, 202, 203, 205, 207, 209, 210, 221, 223, 224, 225, 226, 228, 229, 232, 247, 248, 254, 263, 264, 265], "intern": [0, 5, 8, 10, 11, 15, 22, 49, 56, 60, 68, 76, 97, 111, 113, 121, 123, 126, 136, 169, 177, 189, 190, 197, 204, 209, 264], "dummi": [0, 1, 8, 20, 47, 78, 85, 110, 134, 139, 146, 155, 156, 177, 186, 200, 254], "data": [0, 2, 3, 5, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 33, 34, 37, 38, 40, 41, 43, 46, 47, 48, 51, 58, 59, 67, 68, 71, 72, 73, 75, 76, 78, 79, 82, 85, 89, 92, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 111, 112, 113, 116, 118, 119, 120, 121, 125, 126, 130, 132, 135, 136, 137, 138, 139, 140, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 155, 159, 161, 162, 163, 164, 170, 173, 174, 175, 177, 178, 179, 183, 184, 185, 186, 189, 191, 193, 194, 197, 198, 199, 200, 201, 202, 206, 207, 209, 214, 217, 219, 221, 222, 224, 231, 236, 237, 245, 248, 250, 251, 254, 255, 264, 268], "gener": [0, 1, 4, 5, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 20, 22, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 53, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 114, 116, 117, 118, 119, 121, 124, 125, 127, 128, 130, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 158, 160, 161, 162, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 177, 178, 179, 182, 185, 187, 189, 190, 191, 192, 193, 194, 196, 199, 200, 201, 202, 204, 205, 206, 209, 210, 212, 221, 223, 224, 226, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 253, 254, 256, 257, 262, 264, 265, 268], "graph": [0, 1, 5, 10, 14, 20, 22, 23, 25, 32, 47, 49, 63, 65, 68, 76, 78, 82, 85, 86, 98, 100, 107, 110, 111, 125, 127, 129, 131, 143, 144, 145, 146, 148, 163, 164, 169, 170, 172, 177, 180, 187, 197, 198, 199, 201, 207, 219, 221, 248, 254, 257], "input": [0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 20, 21, 22, 23, 25, 32, 42, 43, 44, 45, 47, 48, 49, 56, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 76, 78, 79, 83, 85, 87, 89, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118, 120, 122, 123, 124, 126, 128, 130, 132, 134, 135, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 151, 153, 155, 157, 158, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 177, 179, 180, 182, 183, 184, 185, 186, 188, 189, 193, 194, 195, 198, 199, 200, 201, 202, 204, 205, 206, 207, 208, 209, 211, 212, 221, 224, 231, 232, 234, 235, 239, 240, 251, 253, 257, 258, 265], "simpli": [0, 1, 3, 4, 5, 6, 7, 8, 9, 13, 19, 21, 23, 43, 44, 49, 53, 58, 59, 60, 78, 85, 101, 103, 112, 113, 124, 126, 128, 131, 135, 136, 145, 146, 150, 153, 156, 157, 160, 161, 162, 163, 166, 167, 170, 173, 177, 178, 180, 188, 189, 191, 203, 206, 219, 221, 224, 225, 226, 229, 254], "blank": [0, 264], "pixel": [0, 1, 20, 44, 73, 97, 137, 148, 167, 172, 205], "size": [0, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 19, 20, 21, 23, 25, 32, 33, 34, 37, 38, 43, 44, 45, 47, 49, 51, 52, 55, 58, 59, 60, 75, 78, 80, 82, 87, 92, 93, 97, 98, 101, 102, 103, 104, 110, 112, 113, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 127, 128, 130, 136, 137, 139, 140, 142, 145, 146, 147, 148, 149, 150, 151, 153, 155, 156, 158, 159, 160, 161, 162, 163, 165, 166, 167, 169, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 189, 190, 193, 194, 195, 197, 199, 202, 204, 205, 209, 210, 219, 221, 223, 224, 228, 229, 232, 235, 238, 240, 246, 248, 250, 252, 254, 262], "import": [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 52, 53, 58, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 82, 85, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 134, 135, 136, 137, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 200, 202, 203, 204, 205, 206, 207, 209, 210, 211, 212, 213, 214, 215, 216, 217, 219, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 253, 254, 255, 256, 257, 258, 259, 260, 262, 264], "To": [0, 1, 4, 5, 6, 7, 8, 10, 11, 12, 14, 16, 17, 19, 20, 23, 42, 47, 49, 50, 51, 57, 58, 59, 60, 61, 64, 65, 79, 82, 83, 85, 87, 97, 98, 99, 101, 102, 103, 107, 108, 111, 112, 114, 115, 118, 119, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 134, 136, 137, 138, 140, 142, 145, 150, 153, 154, 156, 157, 158, 159, 160, 161, 162, 163, 165, 166, 169, 170, 172, 175, 176, 177, 178, 183, 185, 186, 187, 188, 189, 190, 192, 193, 197, 198, 199, 200, 201, 202, 203, 205, 207, 209, 210, 221, 223, 224, 225, 226, 228, 229, 239, 241, 254, 262], "get": [0, 1, 2, 5, 6, 7, 8, 11, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 38, 43, 44, 45, 49, 50, 51, 52, 55, 56, 60, 61, 63, 73, 75, 78, 83, 87, 92, 97, 98, 99, 100, 101, 102, 104, 105, 109, 111, 112, 116, 117, 119, 120, 121, 122, 124, 126, 127, 128, 130, 135, 136, 137, 138, 139, 140, 143, 144, 146, 147, 149, 150, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 166, 167, 169, 170, 172, 174, 175, 176, 177, 178, 179, 182, 183, 185, 186, 190, 192, 195, 196, 198, 199, 200, 201, 202, 205, 207, 209, 210, 214, 219, 223, 224, 229, 230, 232, 239, 258], "good": [0, 1, 2, 4, 5, 6, 20, 21, 44, 50, 52, 59, 97, 99, 103, 105, 113, 116, 123, 126, 136, 137, 145, 151, 159, 160, 161, 165, 170, 172, 177, 178, 179, 196, 201, 229, 264], "perform": [0, 1, 3, 4, 6, 8, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 23, 25, 42, 43, 44, 45, 49, 52, 56, 60, 61, 64, 65, 67, 73, 82, 85, 87, 97, 98, 99, 103, 108, 111, 112, 113, 115, 116, 119, 120, 121, 122, 123, 124, 125, 126, 127, 130, 131, 136, 137, 138, 140, 142, 143, 146, 147, 150, 151, 156, 158, 159, 160, 161, 162, 164, 167, 170, 172, 173, 179, 183, 185, 186, 187, 190, 191, 194, 195, 196, 199, 200, 202, 203, 214, 219, 221, 228, 229, 233, 236, 254], "250x540": 0, "larger": [0, 3, 8, 12, 73, 82, 97, 112, 119, 122, 123, 124, 126, 132, 143, 150, 158, 161, 164, 166, 169, 172, 185, 194, 204, 262], "care": [0, 1, 5, 14, 21, 61, 73, 87, 97, 113, 118, 131, 136, 150, 160, 164, 190, 198, 233], "less": [0, 3, 5, 6, 8, 19, 56, 60, 82, 97, 98, 113, 116, 117, 119, 122, 126, 137, 142, 153, 160, 161, 162, 169, 170, 173, 174, 175, 177, 185, 198], "fp": [0, 49, 87, 121, 151], "qualiti": [0, 24, 113, 147, 166], "imagemagick": 0, "creat": [0, 1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 38, 39, 42, 43, 44, 47, 48, 50, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 80, 82, 85, 95, 97, 98, 100, 102, 103, 105, 108, 110, 111, 114, 116, 117, 118, 119, 121, 122, 124, 131, 134, 135, 136, 137, 138, 140, 142, 143, 147, 148, 149, 150, 153, 154, 155, 156, 158, 159, 160, 161, 163, 164, 166, 169, 170, 172, 173, 176, 179, 182, 183, 185, 186, 188, 189, 190, 193, 194, 195, 196, 198, 200, 201, 203, 205, 207, 209, 210, 212, 223, 224, 226, 254, 259, 260, 264], "xc": 0, "white": [0, 12, 17, 73, 113, 170, 172, 202, 264], "png24": 0, "jpg": [0, 12, 20, 34, 51, 52, 58, 59, 90, 117, 140, 147, 205, 214, 230, 259], "eval": [0, 1, 7, 9, 12, 17, 19, 20, 24, 37, 38, 39, 42, 49, 58, 59, 60, 73, 90, 96, 97, 104, 112, 113, 115, 117, 118, 119, 122, 123, 125, 130, 138, 140, 143, 144, 158, 160, 163, 165, 166, 167, 172, 173, 174, 177, 178, 179, 182, 184, 185, 186, 188, 195, 196, 199, 200, 202, 205, 207, 209, 214, 221, 222, 223, 224, 229, 230, 242, 243, 244, 248, 255, 258], "content": [0, 2, 5, 9, 14, 23, 25, 50, 56, 61, 104, 112, 125, 134, 136, 159, 160, 164, 166, 173, 174, 175, 177, 178, 182, 189, 209, 214, 223, 230, 268], "output": [0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 32, 42, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 78, 79, 82, 83, 85, 87, 90, 92, 94, 96, 97, 98, 99, 101, 102, 103, 105, 108, 109, 111, 112, 114, 115, 116, 117, 118, 119, 122, 123, 124, 125, 127, 128, 130, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 155, 156, 157, 158, 159, 160, 161, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 178, 179, 180, 182, 183, 185, 186, 188, 194, 195, 196, 198, 199, 200, 201, 202, 204, 205, 207, 208, 209, 210, 211, 212, 214, 219, 221, 222, 223, 224, 229, 231, 232, 234, 239, 240, 251, 254, 255, 256, 258, 260, 262, 264, 265], "out": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 20, 21, 22, 23, 24, 25, 32, 40, 43, 44, 45, 47, 48, 49, 51, 52, 58, 59, 60, 61, 73, 75, 76, 78, 83, 85, 87, 89, 95, 97, 98, 99, 100, 102, 103, 104, 107, 109, 113, 117, 118, 119, 121, 124, 125, 126, 127, 131, 132, 135, 136, 137, 139, 140, 142, 144, 145, 146, 148, 150, 153, 154, 156, 157, 158, 159, 160, 162, 163, 164, 166, 169, 170, 172, 174, 175, 177, 178, 182, 183, 184, 189, 190, 191, 192, 193, 194, 195, 198, 199, 200, 202, 206, 207, 209, 221, 223, 235, 236, 240, 254, 256, 264], "cuda": [0, 1, 4, 6, 7, 8, 10, 11, 12, 15, 16, 17, 18, 19, 20, 23, 24, 33, 38, 40, 42, 43, 44, 45, 48, 49, 52, 53, 54, 55, 63, 64, 72, 73, 79, 83, 87, 89, 95, 97, 99, 104, 109, 110, 111, 112, 115, 117, 118, 121, 122, 123, 124, 130, 132, 133, 134, 135, 136, 137, 139, 147, 148, 150, 151, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 164, 165, 166, 167, 169, 172, 173, 175, 176, 179, 185, 187, 194, 199, 202, 211, 212, 215, 216, 231, 232, 233, 238, 239, 241, 248, 252, 253, 256, 257, 260], "0": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 55, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 127, 128, 130, 131, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 193, 194, 195, 196, 198, 199, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264], "export_onnx": 0, "end": [0, 4, 5, 6, 7, 8, 14, 17, 19, 22, 23, 25, 32, 43, 49, 52, 54, 58, 59, 60, 75, 82, 85, 89, 97, 102, 113, 115, 116, 121, 122, 124, 126, 127, 128, 130, 135, 136, 137, 138, 145, 147, 149, 153, 158, 159, 161, 162, 164, 166, 167, 169, 170, 173, 174, 175, 176, 177, 184, 185, 186, 190, 194, 199, 201, 202, 204, 209, 221, 223, 229, 240, 253, 264], "up": [0, 1, 3, 4, 5, 6, 7, 8, 10, 14, 17, 18, 19, 21, 22, 42, 49, 52, 55, 60, 61, 70, 76, 78, 82, 85, 97, 98, 99, 101, 102, 103, 105, 109, 113, 119, 121, 122, 123, 124, 127, 128, 130, 132, 133, 134, 136, 137, 139, 144, 145, 151, 153, 155, 158, 159, 160, 161, 162, 163, 166, 167, 169, 170, 173, 176, 177, 178, 183, 186, 187, 188, 194, 197, 198, 199, 201, 202, 204, 205, 221, 224, 225, 226, 232, 264], "correspond": [0, 1, 2, 3, 5, 6, 8, 10, 12, 14, 15, 43, 49, 55, 60, 75, 82, 99, 102, 109, 112, 116, 118, 123, 125, 126, 134, 145, 153, 157, 160, 163, 166, 167, 169, 170, 172, 173, 176, 179, 186, 188, 193, 201, 210], "come": [0, 1, 5, 6, 10, 17, 19, 20, 22, 23, 51, 52, 60, 73, 85, 87, 97, 98, 112, 123, 124, 126, 136, 137, 145, 153, 154, 156, 160, 165, 173, 176, 183, 185, 186, 199, 200, 202, 263], "abov": [0, 1, 3, 4, 5, 6, 8, 10, 11, 14, 15, 16, 19, 20, 22, 23, 43, 44, 49, 51, 52, 58, 59, 61, 65, 67, 68, 73, 82, 95, 97, 98, 99, 101, 102, 103, 108, 110, 111, 113, 116, 122, 124, 125, 126, 127, 130, 131, 132, 133, 134, 135, 136, 140, 142, 145, 146, 147, 148, 150, 151, 153, 154, 155, 157, 158, 160, 162, 163, 164, 165, 169, 172, 173, 174, 175, 176, 177, 178, 179, 180, 185, 188, 189, 190, 191, 192, 193, 196, 198, 199, 201, 219, 221, 223, 224, 225, 226, 228, 229, 254, 263, 264], "ad": [0, 2, 5, 6, 10, 15, 18, 22, 23, 24, 25, 32, 37, 49, 50, 53, 58, 59, 60, 61, 73, 83, 85, 95, 99, 101, 110, 112, 113, 115, 122, 123, 128, 134, 137, 140, 142, 146, 147, 151, 153, 156, 157, 161, 165, 166, 174, 175, 178, 179, 188, 189, 199, 210, 221, 224, 225, 226, 254], "our": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 40, 43, 44, 45, 48, 49, 50, 51, 52, 53, 55, 58, 59, 60, 61, 64, 65, 67, 68, 69, 75, 78, 79, 87, 97, 98, 99, 102, 103, 104, 105, 108, 109, 111, 116, 117, 118, 122, 123, 126, 127, 128, 131, 132, 133, 137, 138, 140, 142, 144, 145, 146, 147, 148, 150, 151, 154, 155, 157, 158, 160, 161, 162, 163, 165, 166, 167, 170, 172, 173, 174, 175, 177, 179, 180, 183, 185, 188, 189, 190, 191, 192, 193, 195, 196, 198, 199, 202, 204, 206, 209, 210, 212, 223, 224, 250, 252], "path": [0, 4, 5, 6, 9, 18, 19, 22, 23, 34, 42, 44, 49, 50, 51, 52, 53, 59, 60, 73, 82, 87, 96, 97, 98, 104, 108, 112, 116, 117, 122, 123, 125, 126, 127, 128, 138, 140, 143, 145, 147, 149, 156, 158, 172, 173, 177, 179, 182, 183, 185, 186, 189, 190, 195, 196, 198, 199, 200, 201, 205, 207, 209, 214, 223, 224, 225, 226, 229, 232, 235, 241, 242, 243, 244, 247, 248, 249, 258, 259], "unfortun": [0, 8, 23, 25, 136], "won": [0, 3, 5, 10, 43, 115, 123, 130, 131, 142, 151, 155, 160, 229, 254], "mark": [0, 49, 58, 59, 75, 124, 147, 148, 161, 162, 177, 178, 183, 184, 192, 262], "while": [0, 1, 2, 3, 4, 5, 6, 9, 11, 12, 13, 14, 16, 17, 19, 21, 23, 49, 52, 55, 60, 78, 82, 89, 105, 108, 109, 113, 116, 119, 120, 122, 125, 126, 132, 134, 136, 137, 138, 140, 145, 146, 147, 148, 150, 153, 157, 158, 159, 160, 163, 164, 165, 166, 167, 173, 174, 175, 177, 178, 180, 183, 185, 186, 190, 191, 192, 193, 194, 198, 201, 202, 209, 224, 229], "onli": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 42, 43, 44, 45, 47, 49, 53, 55, 56, 60, 61, 73, 78, 80, 82, 87, 95, 97, 98, 99, 103, 107, 108, 109, 112, 113, 114, 116, 117, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 142, 143, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 163, 164, 165, 166, 169, 170, 172, 173, 174, 175, 177, 178, 179, 180, 183, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 200, 201, 203, 204, 205, 206, 207, 209, 210, 212, 219, 223, 224, 225, 226, 229, 232, 254, 264], "when": [0, 1, 5, 6, 8, 10, 11, 12, 14, 15, 17, 18, 20, 21, 22, 23, 25, 32, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 55, 58, 59, 60, 61, 65, 68, 73, 75, 78, 79, 82, 85, 87, 97, 98, 101, 103, 108, 109, 110, 111, 112, 115, 118, 119, 121, 122, 123, 125, 126, 128, 130, 133, 134, 135, 136, 137, 138, 140, 142, 144, 145, 147, 148, 150, 151, 153, 154, 156, 157, 158, 160, 161, 162, 164, 165, 166, 169, 172, 173, 174, 175, 176, 177, 178, 179, 183, 184, 185, 189, 190, 193, 194, 196, 198, 199, 200, 201, 202, 203, 204, 207, 209, 210, 212, 228, 262, 264, 266], "applic": [0, 2, 3, 11, 12, 14, 15, 23, 49, 58, 59, 60, 61, 75, 97, 105, 117, 120, 121, 123, 125, 126, 130, 134, 138, 140, 144, 150, 153, 157, 158, 162, 164, 172, 177, 185, 192, 195, 207, 223, 224], "netron": [0, 108], "see": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 17, 18, 19, 20, 21, 23, 24, 25, 42, 44, 45, 47, 48, 49, 50, 51, 52, 55, 58, 59, 60, 65, 73, 75, 78, 80, 82, 83, 85, 87, 97, 98, 99, 100, 101, 102, 103, 105, 108, 109, 111, 112, 113, 116, 119, 122, 123, 124, 126, 127, 128, 130, 131, 134, 136, 137, 138, 139, 140, 142, 143, 144, 145, 147, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 163, 164, 165, 166, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 185, 186, 188, 189, 190, 192, 193, 195, 197, 198, 201, 202, 203, 204, 206, 207, 209, 212, 219, 223, 225, 226, 229, 254, 264], "name": [0, 1, 2, 4, 5, 6, 7, 8, 10, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 33, 49, 50, 51, 52, 59, 60, 78, 79, 82, 98, 103, 105, 108, 109, 110, 112, 122, 124, 125, 126, 128, 134, 135, 137, 138, 140, 142, 143, 144, 145, 148, 154, 156, 157, 160, 161, 162, 163, 165, 166, 169, 172, 173, 174, 175, 176, 179, 183, 186, 188, 196, 198, 199, 201, 202, 204, 205, 207, 209, 210, 220, 221, 222, 223, 229, 232, 239, 240, 247, 257, 259, 264, 265], "186": [0, 185], "numer": [0, 17, 19, 20, 49, 97, 98, 105, 113, 126, 130, 160, 183, 186, 197, 198, 199, 200, 202, 254, 265], "id": [0, 9, 17, 49, 82, 95, 113, 126, 134, 138, 140, 154, 162, 163, 164, 172, 174, 175, 176, 179, 182, 202, 215, 245, 262, 263, 267], "assign": [0, 6, 22, 45, 47, 53, 65, 67, 97, 98, 99, 102, 103, 111, 136, 154, 160, 177, 245, 263], "small": [0, 1, 3, 5, 6, 9, 12, 17, 18, 20, 21, 23, 24, 25, 42, 43, 44, 47, 57, 73, 78, 79, 80, 97, 99, 100, 102, 103, 105, 116, 117, 122, 123, 126, 128, 130, 144, 150, 153, 154, 158, 159, 160, 161, 164, 166, 167, 172, 179, 185, 190, 202, 210], "onnx_to_coreml": 0, "touch": [0, 2, 4, 6, 14, 22, 23], "command": [0, 4, 5, 6, 14, 23, 50, 75, 107, 114, 119, 126, 127, 133, 134, 135, 138, 140, 156, 160, 162, 163, 164, 166, 169, 170, 172, 177, 179, 189, 209, 219, 221, 223, 224, 264, 265], "edit": [0, 3, 6, 9, 11, 12, 16, 19, 20, 48, 50, 61, 113, 123, 124, 134, 135, 136, 138, 144, 145, 156, 158, 159, 162, 163, 164, 183, 185, 226, 262], "favorit": [0, 42, 59, 136, 144], "editor": [0, 226], "add": [0, 2, 4, 6, 7, 8, 9, 10, 12, 14, 15, 17, 19, 21, 22, 23, 40, 44, 47, 48, 49, 50, 58, 59, 60, 61, 73, 78, 80, 85, 87, 98, 99, 102, 108, 113, 114, 116, 118, 121, 122, 123, 124, 126, 127, 128, 129, 130, 136, 137, 140, 143, 144, 145, 146, 147, 153, 155, 156, 159, 160, 162, 163, 164, 166, 169, 174, 175, 177, 178, 182, 183, 185, 187, 188, 189, 190, 192, 200, 201, 202, 205, 207, 209, 219, 223, 228, 232, 239, 254, 262, 264, 269], "follow": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 42, 44, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 73, 75, 81, 82, 83, 85, 86, 87, 97, 98, 99, 101, 102, 103, 105, 107, 108, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 130, 132, 133, 134, 136, 137, 138, 140, 143, 144, 145, 146, 147, 148, 150, 153, 154, 156, 157, 158, 159, 160, 161, 162, 163, 165, 166, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 186, 187, 188, 189, 191, 193, 194, 195, 196, 198, 199, 200, 201, 202, 203, 205, 206, 207, 209, 210, 219, 221, 223, 224, 225, 226, 228, 229, 254, 262, 264, 265, 269], "code": [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 83, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 132, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 177, 178, 179, 182, 183, 185, 186, 188, 189, 191, 192, 193, 194, 195, 196, 198, 199, 200, 201, 202, 204, 206, 212, 219, 221, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 253, 254, 256, 257, 263, 265], "sy": [0, 3, 7, 18, 19, 53, 55, 90, 134, 138, 149, 156, 183, 186, 195, 198, 199, 211, 212], "onnx_pb": 0, "onnx_coreml": 0, "model_in": 0, "argv": [0, 4, 22, 23, 53, 55, 221, 258], "1": [0, 1, 2, 3, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 47, 48, 49, 51, 52, 53, 55, 60, 61, 63, 64, 68, 69, 73, 75, 76, 80, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 153, 154, 155, 157, 159, 160, 161, 162, 163, 164, 165, 166, 167, 172, 173, 174, 175, 176, 178, 184, 185, 187, 188, 189, 190, 191, 192, 193, 194, 195, 197, 198, 199, 202, 203, 204, 205, 206, 207, 208, 209, 210, 213, 215, 216, 217, 220, 221, 222, 223, 227, 228, 230, 231, 238, 240, 245, 246, 248, 250, 255, 258, 259, 260, 261, 262, 264, 265, 268], "model_out": 0, "2": [0, 1, 2, 3, 5, 6, 7, 11, 12, 14, 15, 16, 18, 20, 21, 23, 24, 32, 33, 34, 36, 40, 42, 43, 47, 48, 49, 51, 52, 53, 55, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 80, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 107, 108, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 129, 130, 131, 132, 133, 134, 136, 137, 139, 140, 142, 144, 145, 146, 147, 148, 149, 150, 153, 154, 155, 157, 159, 160, 161, 162, 163, 164, 165, 166, 167, 172, 173, 174, 175, 176, 184, 185, 187, 190, 191, 192, 193, 194, 197, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 216, 217, 220, 221, 222, 223, 230, 231, 233, 238, 240, 245, 248, 253, 256, 257, 258, 260, 262, 264, 265, 268], "model_fil": [0, 19, 183, 198, 199, 205], "rb": [0, 49, 87, 104, 116, 137, 140, 224], "model_proto": [0, 108], "modelproto": [0, 20], "parsefromstr": 0, "read": [0, 1, 2, 5, 6, 9, 14, 19, 22, 23, 38, 47, 49, 51, 73, 101, 102, 112, 113, 116, 117, 120, 122, 125, 126, 127, 128, 136, 138, 140, 143, 145, 150, 153, 159, 160, 163, 166, 167, 170, 173, 186, 188, 189, 196, 205, 209, 223, 224, 228, 262, 264], "coreml_model": 0, "image_input_nam": 0, "image_output_nam": 0, "save": [0, 2, 4, 6, 7, 9, 11, 12, 19, 20, 23, 35, 38, 39, 44, 48, 49, 50, 52, 58, 59, 73, 87, 96, 97, 108, 115, 117, 119, 121, 123, 124, 126, 127, 130, 138, 140, 145, 146, 149, 157, 158, 161, 162, 163, 164, 166, 169, 172, 182, 183, 186, 188, 189, 195, 196, 205, 207, 209, 215, 219, 221, 222, 223, 224, 225, 226, 229, 231, 232, 235, 236, 238, 242, 243, 244, 249, 254, 258], "mlmodel": [0, 188], "i": [0, 1, 5, 6, 7, 8, 9, 11, 12, 14, 17, 18, 19, 22, 23, 25, 32, 34, 39, 42, 43, 49, 51, 52, 58, 59, 60, 61, 69, 73, 75, 76, 85, 87, 89, 90, 92, 94, 96, 98, 99, 101, 102, 103, 104, 111, 112, 113, 116, 117, 118, 122, 124, 127, 128, 129, 133, 135, 136, 137, 139, 143, 147, 148, 153, 154, 155, 157, 160, 162, 163, 164, 166, 170, 172, 173, 174, 175, 176, 177, 178, 182, 190, 192, 193, 194, 202, 203, 204, 209, 210, 216, 222, 227, 232, 238, 251, 264, 265], "e": [0, 4, 5, 6, 7, 8, 10, 11, 18, 22, 23, 25, 32, 39, 42, 43, 44, 49, 51, 52, 58, 60, 61, 65, 69, 73, 75, 76, 79, 85, 87, 89, 95, 97, 100, 103, 108, 110, 111, 112, 117, 121, 123, 124, 126, 127, 128, 131, 133, 134, 135, 136, 139, 143, 147, 148, 154, 155, 156, 157, 160, 162, 164, 166, 169, 173, 174, 175, 176, 177, 180, 183, 185, 186, 191, 192, 193, 194, 197, 201, 203, 206, 207, 209, 221, 258], "one": [0, 1, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 17, 18, 19, 21, 22, 23, 25, 45, 47, 48, 49, 51, 52, 55, 56, 60, 61, 73, 76, 80, 85, 87, 93, 95, 97, 98, 100, 101, 102, 103, 108, 112, 113, 114, 116, 117, 122, 123, 124, 125, 126, 127, 128, 130, 131, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 150, 153, 154, 155, 157, 159, 160, 161, 162, 163, 164, 165, 166, 169, 170, 172, 174, 175, 176, 178, 179, 180, 184, 185, 190, 191, 192, 194, 195, 196, 199, 201, 202, 206, 209, 225, 229, 236, 254, 264], "re": [0, 1, 4, 5, 6, 7, 9, 10, 14, 16, 19, 21, 22, 23, 24, 44, 48, 49, 50, 60, 73, 78, 97, 98, 117, 125, 127, 128, 137, 139, 140, 142, 144, 146, 151, 153, 155, 159, 160, 161, 162, 163, 166, 174, 175, 176, 177, 179, 183, 185, 188, 190, 195, 198, 199, 203, 206, 209, 224, 247, 264], "current": [0, 1, 5, 6, 8, 10, 11, 12, 14, 15, 19, 22, 23, 37, 38, 49, 52, 60, 82, 107, 113, 117, 122, 123, 125, 126, 127, 128, 136, 137, 142, 143, 147, 148, 150, 155, 157, 158, 160, 161, 162, 163, 164, 165, 166, 169, 174, 175, 180, 183, 186, 188, 189, 190, 192, 193, 194, 195, 196, 198, 199, 219, 225, 229, 262], "readm": [0, 119, 180], "md": [0, 119, 180], "contain": [0, 1, 2, 4, 6, 8, 9, 10, 12, 14, 15, 17, 20, 21, 22, 23, 25, 34, 42, 47, 49, 50, 55, 58, 60, 64, 67, 68, 69, 75, 76, 78, 82, 85, 95, 101, 102, 111, 112, 116, 117, 122, 123, 125, 126, 127, 132, 134, 135, 137, 140, 143, 150, 154, 157, 158, 160, 161, 162, 164, 165, 166, 167, 169, 170, 172, 174, 175, 176, 179, 180, 182, 183, 188, 193, 196, 199, 201, 202, 203, 207, 209, 223, 224, 259, 264, 265], "abl": [0, 1, 3, 4, 5, 6, 14, 15, 17, 23, 49, 60, 85, 97, 98, 100, 103, 112, 117, 126, 130, 131, 132, 133, 136, 137, 139, 140, 145, 147, 148, 153, 155, 158, 160, 163, 170, 173, 174, 175, 179, 183, 186, 189, 192, 198, 201, 202, 209, 224], "phone": [0, 97, 105, 189, 224], "onnxliv": 0, "xcodeproj": [0, 224], "project": [0, 4, 5, 6, 23, 52, 58, 59, 60, 112, 116, 124, 140, 156, 161, 165, 166, 170, 188, 189, 194, 205, 209, 221, 223, 224, 225, 226, 227, 228, 258, 259, 263, 268], "recommend": [0, 4, 6, 8, 10, 15, 18, 19, 20, 23, 61, 82, 108, 115, 116, 119, 121, 128, 134, 138, 158, 159, 166, 169, 173, 176, 177, 178, 179, 182, 183, 186, 192, 197, 200, 221, 228, 229, 264], "9": [0, 1, 3, 5, 6, 17, 18, 19, 23, 34, 43, 44, 49, 65, 87, 92, 94, 95, 96, 103, 104, 109, 111, 112, 115, 116, 117, 118, 145, 147, 154, 158, 159, 161, 162, 169, 170, 172, 173, 174, 177, 178, 179, 202, 205, 207, 209, 221, 222, 223, 230, 232, 239, 242, 243, 244, 250, 251, 255, 268], "x": [0, 1, 2, 5, 6, 7, 12, 14, 17, 18, 19, 20, 21, 22, 23, 25, 32, 33, 37, 38, 40, 43, 44, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 76, 78, 79, 80, 85, 87, 89, 92, 93, 94, 95, 96, 97, 98, 99, 101, 104, 105, 108, 110, 111, 112, 113, 114, 115, 116, 117, 123, 124, 125, 127, 128, 129, 130, 131, 134, 135, 136, 139, 140, 142, 143, 145, 146, 147, 148, 149, 150, 151, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 167, 170, 172, 173, 174, 175, 176, 177, 178, 179, 180, 184, 185, 187, 194, 196, 198, 199, 200, 202, 204, 206, 209, 210, 213, 214, 215, 216, 219, 220, 221, 222, 224, 227, 229, 232, 234, 238, 240, 241, 242, 243, 244, 246, 247, 248, 249, 250, 251, 253, 254, 256, 257, 265], "might": [0, 1, 5, 8, 10, 15, 16, 25, 44, 50, 51, 52, 53, 60, 79, 97, 98, 102, 103, 105, 108, 109, 113, 127, 131, 132, 133, 134, 136, 143, 144, 146, 150, 154, 158, 164, 165, 166, 169, 173, 179, 183, 185, 186, 189, 190, 198, 201, 205, 207, 224, 233, 254, 262], "issu": [0, 2, 4, 5, 6, 8, 9, 19, 20, 22, 23, 51, 58, 113, 118, 122, 133, 138, 139, 143, 144, 145, 148, 155, 159, 169, 175, 185, 186, 187, 188, 189, 190, 192, 194, 196, 200, 205, 206, 208, 223, 231, 233], "older": [0, 56, 109, 139, 155, 161, 176, 185], "some": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 19, 20, 22, 23, 25, 42, 43, 44, 47, 48, 49, 50, 51, 52, 58, 59, 60, 61, 63, 68, 73, 76, 78, 80, 82, 87, 92, 97, 98, 99, 100, 101, 102, 103, 108, 109, 110, 112, 113, 116, 121, 122, 123, 126, 128, 130, 131, 132, 134, 135, 136, 137, 139, 140, 142, 143, 144, 145, 146, 149, 150, 151, 153, 155, 157, 158, 160, 161, 163, 164, 166, 167, 169, 170, 172, 173, 174, 175, 177, 178, 179, 183, 184, 185, 188, 189, 190, 191, 192, 193, 194, 195, 198, 199, 200, 201, 202, 203, 204, 206, 210, 221, 224, 239, 254, 263, 264], "replac": [0, 3, 6, 12, 19, 24, 43, 55, 57, 58, 59, 78, 99, 108, 109, 117, 118, 119, 123, 136, 138, 140, 142, 143, 148, 157, 158, 164, 166, 169, 174, 175, 178, 179, 185, 192, 195, 219, 221, 223, 232, 254], "all": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 32, 34, 42, 43, 44, 45, 47, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 68, 69, 73, 76, 78, 80, 82, 85, 87, 90, 98, 99, 100, 101, 102, 103, 105, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 148, 149, 150, 151, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 169, 170, 172, 173, 174, 175, 177, 178, 179, 180, 182, 185, 186, 188, 189, 190, 191, 193, 194, 197, 198, 200, 201, 202, 203, 205, 206, 207, 209, 221, 224, 229, 230, 232, 247, 252, 264, 265], "set": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 22, 23, 24, 25, 37, 42, 43, 44, 47, 48, 49, 50, 52, 53, 55, 58, 59, 60, 61, 63, 64, 68, 73, 76, 79, 82, 83, 86, 97, 98, 99, 102, 103, 104, 105, 110, 111, 112, 113, 115, 116, 117, 118, 121, 122, 123, 124, 127, 128, 130, 132, 133, 134, 136, 137, 140, 145, 147, 149, 150, 153, 154, 156, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 173, 174, 175, 178, 179, 182, 188, 189, 190, 192, 194, 195, 199, 200, 202, 205, 207, 209, 221, 224, 225, 226, 229, 233, 242, 262, 266, 269], "tap": 0, "screen": [0, 58, 59, 147, 161, 262], "switch": [0, 5, 8, 15, 19, 95, 112, 140, 153, 195, 207, 233], "hope": [0, 5, 25, 49, 147, 153, 166, 173, 265], "gave": [0, 103], "framework": [0, 6, 7, 10, 24, 25, 52, 60, 61, 99, 100, 120, 121, 135, 150, 162, 165, 172, 177, 178, 184, 189, 222, 223], "experi": [0, 6, 10, 97, 98, 122, 136, 138, 147, 150, 156, 158, 160, 161, 165, 166, 167, 172, 173, 176, 177, 178, 185, 186, 190, 197, 206, 229], "test": [0, 3, 8, 13, 19, 20, 22, 23, 24, 37, 38, 42, 49, 58, 59, 60, 83, 85, 92, 97, 99, 100, 105, 108, 113, 114, 119, 122, 123, 136, 137, 139, 140, 142, 145, 148, 159, 160, 163, 166, 167, 170, 173, 174, 175, 182, 183, 184, 185, 197, 198, 200, 205, 206, 221, 222, 223, 224, 264, 265], "own": [0, 5, 6, 7, 8, 10, 11, 14, 16, 17, 18, 23, 25, 49, 52, 58, 59, 64, 73, 87, 103, 108, 109, 111, 113, 121, 122, 123, 128, 130, 134, 140, 145, 150, 153, 154, 157, 159, 160, 163, 164, 166, 172, 173, 177, 179, 180, 185, 195, 196, 198, 199, 201, 202, 210, 264], "pleas": [0, 2, 4, 5, 6, 7, 9, 10, 19, 20, 22, 23, 44, 45, 47, 51, 61, 75, 87, 108, 113, 115, 118, 122, 123, 124, 134, 138, 139, 142, 143, 144, 145, 148, 150, 153, 155, 156, 158, 162, 163, 164, 169, 172, 173, 174, 175, 176, 177, 179, 180, 184, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 198, 199, 200, 201, 205, 206, 210, 221, 223, 233, 254, 264], "know": [0, 1, 5, 6, 8, 11, 18, 19, 22, 23, 43, 49, 73, 95, 99, 101, 103, 108, 113, 125, 127, 128, 131, 136, 137, 139, 145, 147, 148, 150, 151, 155, 160, 161, 162, 166, 170, 174, 175, 177, 178, 179, 180, 183, 191, 196, 262, 264], "hit": [0, 5, 9, 19, 61, 73, 113, 124, 169], "ani": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 22, 23, 43, 45, 47, 49, 51, 52, 53, 55, 60, 65, 67, 76, 97, 98, 100, 101, 103, 105, 107, 108, 110, 111, 112, 113, 115, 120, 123, 124, 125, 127, 131, 132, 136, 138, 139, 142, 143, 144, 147, 148, 150, 153, 154, 155, 159, 160, 161, 163, 164, 167, 169, 172, 174, 175, 177, 178, 182, 184, 186, 187, 188, 189, 190, 191, 192, 193, 195, 196, 199, 202, 203, 205, 208, 209, 210, 212, 219, 223, 226, 229, 241, 254, 262, 264], "give": [0, 1, 2, 5, 6, 11, 14, 17, 23, 25, 45, 47, 49, 50, 52, 58, 59, 60, 61, 73, 75, 79, 97, 98, 99, 101, 102, 103, 112, 118, 128, 132, 139, 143, 144, 145, 146, 147, 155, 159, 163, 166, 169, 172, 173, 174, 175, 177, 178, 183, 191, 194, 202, 224, 262, 264], "feedback": [0, 6, 9, 19, 122, 138, 143, 144, 147, 148, 177, 178, 186, 188, 189, 196, 197, 198, 205, 223], "d": [0, 2, 5, 6, 7, 8, 12, 19, 22, 52, 61, 63, 64, 65, 67, 71, 72, 76, 87, 89, 92, 95, 99, 103, 111, 113, 115, 122, 124, 126, 127, 128, 130, 134, 136, 138, 146, 147, 150, 153, 166, 169, 172, 176, 186, 193, 194, 199, 206, 209, 216, 221, 251, 264, 265], "hear": [0, 143, 144], "think": [0, 6, 22, 23, 44, 52, 68, 78, 98, 99, 101, 102, 103, 113, 144, 146, 160, 163, 165, 193, 206, 264], "click": [1, 7, 9, 12, 13, 14, 17, 20, 21, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 130, 137, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 160, 161, 165, 166, 167, 169, 170, 173, 175, 179, 182, 185, 189, 190, 191, 192, 193, 194, 196, 204, 205, 206, 209, 212, 226, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 253, 256, 257], "here": [1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 55, 58, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 158, 160, 161, 163, 164, 165, 166, 167, 169, 170, 173, 174, 175, 176, 177, 179, 180, 182, 183, 184, 185, 186, 188, 189, 190, 191, 192, 193, 194, 196, 198, 199, 200, 201, 202, 204, 205, 206, 209, 210, 212, 219, 221, 223, 224, 226, 229, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 253, 254, 256, 257, 262, 264, 265], "download": [1, 4, 6, 7, 9, 12, 13, 14, 17, 19, 20, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 58, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 130, 136, 137, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 158, 159, 160, 161, 163, 165, 166, 167, 169, 170, 173, 175, 179, 183, 185, 188, 189, 190, 191, 192, 193, 194, 196, 198, 199, 204, 205, 206, 207, 209, 212, 221, 222, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 253, 255, 256, 257, 268], "full": [1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 19, 20, 22, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 130, 132, 135, 137, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 160, 161, 162, 165, 166, 167, 169, 173, 175, 179, 182, 183, 185, 190, 191, 192, 193, 194, 195, 196, 199, 204, 205, 206, 209, 210, 212, 223, 229, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 256, 257], "author": [1, 5, 7, 9, 11, 12, 13, 14, 16, 17, 19, 24, 36, 42, 45, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 73, 81, 82, 83, 85, 86, 97, 98, 99, 101, 102, 103, 104, 107, 108, 109, 111, 112, 113, 114, 116, 117, 122, 123, 124, 126, 127, 128, 132, 133, 134, 135, 136, 137, 138, 140, 143, 144, 145, 147, 148, 150, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 173, 174, 175, 177, 178, 180, 182, 183, 184, 185, 186, 187, 188, 189, 198, 199, 200, 201, 202, 205, 206, 207, 209, 210, 212, 223, 265], "vincent": [1, 14, 137, 160], "moen": [1, 14, 137, 160], "separ": [1, 5, 6, 7, 8, 20, 22, 23, 25, 49, 52, 85, 97, 109, 124, 126, 139, 145, 147, 154, 158, 163, 166, 172, 179, 180, 182, 183, 190, 194, 198, 201, 257], "rl": [1, 61, 121, 160, 161, 162], "algorithm": [1, 5, 6, 10, 11, 12, 49, 52, 56, 69, 82, 87, 98, 99, 100, 101, 111, 118, 122, 124, 126, 130, 136, 137, 147, 156, 160, 163, 167, 212], "variou": [1, 8, 15, 47, 48, 49, 50, 60, 83, 85, 102, 109, 112, 116, 126, 144, 146, 157, 160, 163, 164, 172, 185, 192, 194], "piec": [1, 5, 8, 14, 59, 85, 159, 160, 164, 172, 176, 178, 179, 180, 189, 214], "assembl": [1, 8, 49, 135], "collect": [1, 4, 6, 11, 14, 15, 17, 18, 19, 21, 42, 43, 44, 45, 49, 55, 60, 61, 73, 75, 79, 97, 99, 103, 121, 122, 123, 124, 134, 135, 137, 144, 147, 150, 156, 161, 164, 176, 178, 202, 231], "final": [1, 6, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 42, 43, 47, 49, 52, 58, 60, 73, 75, 85, 87, 97, 102, 105, 107, 108, 109, 112, 113, 117, 118, 119, 122, 123, 124, 126, 127, 128, 130, 131, 135, 136, 140, 144, 145, 146, 147, 151, 153, 155, 157, 158, 160, 161, 162, 163, 164, 166, 169, 170, 176, 177, 178, 180, 185, 186, 188, 189, 190, 193, 198, 199, 200, 201, 202, 204, 205, 209], "function": [1, 3, 4, 5, 6, 8, 9, 10, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 32, 38, 42, 43, 48, 49, 51, 53, 55, 59, 60, 61, 62, 65, 67, 68, 69, 75, 76, 79, 80, 82, 83, 89, 90, 92, 93, 94, 95, 96, 101, 102, 103, 104, 105, 107, 108, 109, 111, 112, 113, 116, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 135, 136, 137, 139, 143, 144, 145, 147, 148, 149, 150, 153, 154, 156, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 177, 178, 179, 180, 182, 186, 187, 188, 190, 191, 192, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 209, 210, 212, 221, 222, 224, 231, 232, 233, 234, 240, 247, 250, 251, 254, 256, 258], "trainabl": [1, 6, 68, 97, 99, 158], "paramet": [1, 4, 5, 7, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 22, 24, 25, 32, 33, 35, 37, 38, 43, 44, 47, 48, 49, 51, 52, 61, 65, 67, 68, 69, 73, 75, 85, 87, 89, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 109, 110, 111, 115, 116, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 132, 134, 135, 136, 137, 138, 139, 140, 142, 143, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 158, 161, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 177, 178, 179, 183, 185, 190, 196, 197, 198, 202, 204, 211, 212, 213, 215, 221, 222, 229, 231, 236, 238, 242, 243, 244, 245, 246, 250, 251, 254, 255, 260, 268], "tutori": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 35, 43, 44, 45, 46, 51, 52, 53, 55, 56, 58, 59, 60, 61, 73, 74, 75, 77, 79, 81, 82, 84, 86, 87, 91, 97, 98, 100, 101, 104, 105, 106, 107, 108, 112, 113, 115, 116, 117, 118, 119, 121, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 150, 151, 152, 153, 155, 156, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 176, 178, 179, 181, 182, 183, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 209, 210, 212, 218, 223, 224, 229, 230, 235, 236, 238, 248, 252, 254], "guid": [1, 17, 58, 59, 61, 82, 85, 123, 136, 148, 159, 169, 174, 175, 177, 185, 197, 202, 230, 263], "ground": [1, 14, 44, 73, 179], "aim": [1, 6, 61, 75, 97, 100, 153, 161, 164, 193], "focus": [1, 3, 20, 97, 100, 150, 156, 166], "rel": [1, 5, 6, 7, 117, 119, 125, 126, 138, 146, 150, 151, 164, 166, 177, 187, 198, 222], "straightforward": [1, 5, 6, 16, 17, 49, 60, 97, 98, 145, 201], "determinist": [1, 11, 14, 137, 149, 161], "gradient": [1, 6, 7, 10, 11, 13, 14, 16, 25, 37, 42, 43, 44, 47, 49, 52, 56, 61, 63, 64, 65, 67, 68, 69, 71, 72, 78, 87, 97, 98, 99, 101, 102, 103, 104, 110, 111, 115, 117, 121, 122, 123, 124, 125, 127, 130, 131, 132, 134, 136, 142, 146, 147, 150, 153, 157, 158, 160, 161, 162, 163, 164, 170, 172, 190, 206, 217, 230, 236], "simpl": [1, 3, 4, 5, 6, 8, 12, 15, 16, 17, 19, 21, 22, 23, 24, 25, 47, 49, 51, 54, 56, 61, 67, 73, 79, 85, 87, 97, 107, 112, 116, 120, 121, 123, 125, 126, 131, 136, 139, 140, 145, 146, 151, 155, 157, 160, 162, 163, 164, 165, 167, 169, 173, 183, 186, 200, 202, 206, 208, 212, 221, 222, 229, 254, 264, 265], "continu": [1, 5, 17, 20, 21, 49, 53, 60, 73, 85, 87, 97, 102, 113, 116, 121, 124, 128, 132, 136, 143, 144, 147, 158, 160, 164, 166, 169, 177, 188, 189, 190, 192, 193, 199, 200, 201, 202, 205, 223, 254, 264], "control": [1, 4, 8, 10, 14, 21, 23, 25, 34, 43, 60, 61, 66, 83, 85, 97, 110, 111, 113, 114, 122, 125, 126, 135, 136, 142, 154, 160, 161, 162, 173, 184, 198, 209, 254], "It": [1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 42, 43, 44, 45, 47, 49, 51, 52, 60, 61, 73, 74, 75, 76, 82, 87, 95, 97, 98, 99, 100, 101, 103, 108, 112, 113, 115, 117, 122, 123, 124, 126, 127, 128, 130, 131, 132, 134, 135, 136, 137, 139, 141, 142, 144, 145, 146, 147, 150, 151, 153, 154, 155, 157, 158, 161, 162, 164, 166, 167, 168, 169, 171, 172, 174, 175, 178, 179, 180, 194, 201, 202, 203, 204, 205, 206, 209, 214, 223, 224, 225, 226, 229, 233, 262, 264], "consist": [1, 3, 6, 7, 14, 15, 16, 22, 24, 25, 43, 75, 97, 99, 118, 124, 132, 143, 144, 147, 151, 153, 160, 165, 166, 169, 174, 175, 178, 180, 192, 193, 200, 201, 209, 212, 264], "parametr": [1, 2, 17, 121, 160, 202], "action": [1, 19, 58, 59, 101, 113, 122, 123, 147, 157, 160, 161, 162, 163, 164, 169, 183, 190, 191, 192, 193, 198, 199, 205, 209, 252, 264], "pair": [1, 6, 14, 47, 49, 52, 116, 118, 128, 130, 138, 151, 155, 160, 161, 166, 169, 179, 180, 195, 200, 212, 264], "maxim": [1, 14, 52, 73, 82, 97, 99, 126, 147, 161, 173, 177, 195], "given": [1, 6, 8, 10, 12, 14, 17, 20, 21, 22, 23, 25, 32, 43, 48, 49, 51, 52, 60, 61, 73, 76, 78, 82, 85, 97, 98, 100, 101, 103, 112, 116, 122, 127, 128, 134, 136, 139, 142, 143, 146, 147, 148, 155, 157, 160, 161, 163, 164, 166, 173, 174, 175, 178, 179, 193, 196, 201, 202, 232], "certain": [1, 4, 5, 6, 10, 11, 15, 49, 55, 60, 101, 113, 120, 122, 124, 125, 130, 142, 146, 148, 160, 165, 189, 190, 193, 194, 195, 199], "what": [1, 2, 3, 5, 8, 14, 18, 19, 20, 21, 22, 23, 25, 43, 45, 46, 53, 54, 55, 58, 59, 61, 73, 78, 86, 87, 98, 99, 101, 102, 103, 114, 121, 124, 125, 126, 128, 132, 133, 136, 137, 143, 147, 151, 153, 157, 160, 161, 162, 165, 170, 172, 174, 179, 188, 192, 196, 198, 201, 223, 227, 233, 236, 250, 254, 258, 264], "write": [1, 4, 8, 9, 10, 21, 22, 23, 44, 49, 58, 59, 60, 61, 64, 75, 98, 99, 100, 101, 104, 116, 117, 121, 125, 126, 131, 132, 134, 137, 138, 140, 142, 143, 145, 147, 148, 150, 151, 154, 156, 160, 163, 164, 166, 169, 172, 173, 186, 189, 193, 197, 198, 199, 206, 207, 209, 224, 225, 226, 233, 259, 264], "custom": [1, 4, 6, 8, 11, 17, 49, 52, 64, 65, 66, 79, 90, 109, 111, 121, 126, 137, 147, 160, 163, 172, 173, 178, 180, 184, 189, 196, 198, 200, 201, 202, 203, 205, 221, 236], "its": [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 25, 43, 47, 49, 51, 52, 53, 55, 60, 61, 68, 69, 73, 75, 80, 82, 95, 97, 99, 101, 102, 103, 105, 107, 109, 111, 112, 113, 115, 122, 123, 124, 125, 126, 127, 128, 136, 137, 138, 139, 140, 142, 144, 145, 147, 148, 150, 153, 154, 157, 160, 161, 162, 163, 164, 166, 169, 170, 173, 174, 175, 176, 177, 185, 189, 192, 193, 194, 198, 201, 202, 203, 205, 207, 209, 210, 219, 221, 223, 229, 264], "includ": [1, 2, 3, 4, 5, 6, 8, 14, 15, 16, 22, 23, 24, 25, 42, 48, 49, 53, 55, 58, 59, 60, 61, 69, 73, 75, 82, 85, 87, 97, 98, 105, 107, 109, 113, 115, 124, 126, 127, 128, 131, 132, 134, 136, 137, 145, 147, 148, 156, 157, 160, 163, 166, 169, 170, 173, 174, 175, 176, 177, 178, 179, 183, 185, 189, 190, 192, 195, 200, 201, 205, 207, 209, 221, 223, 225, 226, 229, 232, 239, 258, 262, 264], "design": [1, 5, 6, 14, 17, 24, 25, 52, 56, 61, 73, 85, 103, 128, 134, 137, 160, 161, 162, 164, 165, 169, 170, 178, 180, 190, 191, 192, 196, 198, 201, 202, 206], "effici": [1, 5, 7, 10, 12, 15, 17, 20, 23, 25, 42, 49, 51, 73, 82, 95, 97, 101, 103, 115, 119, 122, 123, 124, 126, 127, 136, 137, 146, 151, 157, 160, 164, 165, 169, 172, 176, 178, 187, 188, 193, 194, 195, 202, 205], "store": [1, 4, 5, 6, 16, 17, 19, 20, 22, 23, 40, 43, 48, 51, 53, 60, 68, 87, 95, 98, 99, 101, 103, 105, 111, 125, 126, 128, 136, 137, 142, 144, 145, 147, 148, 154, 156, 157, 160, 161, 162, 163, 164, 166, 183, 185, 193, 198, 199, 202, 205, 254, 256], "trajectori": [1, 14, 61, 137, 160], "transit": [1, 14, 60, 85, 86, 98, 137, 161, 201], "assum": [1, 2, 4, 6, 8, 10, 12, 14, 15, 19, 21, 22, 43, 44, 51, 54, 60, 73, 97, 98, 100, 102, 116, 124, 125, 127, 128, 136, 137, 140, 154, 157, 160, 163, 165, 166, 174, 175, 176, 179, 192, 193, 194, 200, 201, 224], "complet": [1, 4, 5, 6, 15, 21, 25, 49, 76, 78, 85, 87, 98, 99, 101, 113, 117, 119, 122, 124, 126, 131, 136, 157, 158, 159, 160, 161, 163, 166, 172, 173, 178, 179, 185, 192, 193, 226, 229, 254], "ppo": [1, 121], "compon": [1, 5, 6, 8, 10, 14, 20, 25, 52, 61, 85, 97, 101, 112, 113, 115, 119, 121, 126, 137, 143, 147, 160, 164, 167, 169, 173, 174, 175, 178, 194], "depend": [1, 5, 6, 7, 8, 11, 14, 21, 22, 23, 42, 47, 50, 52, 60, 73, 82, 85, 97, 98, 102, 110, 118, 119, 121, 124, 126, 130, 131, 136, 137, 138, 140, 142, 143, 144, 146, 147, 150, 156, 159, 160, 163, 169, 173, 174, 175, 182, 183, 184, 185, 189, 192, 197, 198, 199, 205, 207, 209, 223, 225, 226, 233, 254], "tensordict": [1, 14, 137, 147, 160], "nn": [1, 2, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 32, 37, 38, 39, 42, 43, 44, 45, 47, 49, 52, 55, 60, 65, 66, 69, 73, 75, 77, 79, 87, 89, 90, 92, 94, 96, 97, 98, 99, 102, 103, 105, 107, 108, 109, 110, 115, 117, 118, 119, 121, 122, 123, 124, 125, 127, 128, 129, 130, 134, 135, 137, 138, 139, 142, 143, 144, 146, 147, 148, 149, 150, 151, 154, 155, 158, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 178, 180, 182, 183, 184, 186, 191, 194, 195, 196, 198, 199, 200, 201, 202, 203, 204, 210, 211, 212, 213, 215, 216, 219, 220, 221, 222, 224, 227, 229, 231, 233, 234, 235, 236, 239, 240, 242, 243, 244, 246, 248, 249, 250, 251, 252, 253, 254, 255, 258, 260], "tensordictmodul": [1, 14, 137, 160], "although": [1, 12, 16, 43, 49, 60, 61, 98, 99, 103, 105, 108, 115, 119, 125, 147, 150, 154, 158, 163, 173, 174, 175, 177, 183, 204, 264], "suffici": [1, 6, 49, 52, 97, 98, 117, 132, 134, 153], "transpar": [1, 12, 42, 99, 137, 163, 207, 221], "understood": [1, 4, 113], "without": [1, 4, 5, 6, 8, 9, 10, 14, 17, 20, 23, 32, 42, 49, 53, 55, 60, 73, 78, 97, 98, 107, 112, 113, 116, 123, 124, 125, 128, 130, 136, 138, 139, 142, 144, 146, 147, 148, 153, 155, 156, 157, 158, 159, 160, 161, 162, 165, 166, 169, 172, 177, 178, 190, 192, 193, 194, 195, 200, 201, 202, 204, 209, 210, 212, 221, 228, 229, 254, 262, 264], "understand": [1, 2, 4, 6, 15, 23, 43, 44, 52, 57, 58, 59, 82, 85, 91, 98, 99, 101, 108, 117, 121, 125, 126, 127, 128, 131, 136, 138, 142, 144, 145, 150, 158, 166, 172, 174, 175, 177, 191, 196, 200, 201, 209, 250], "class": [1, 2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 19, 20, 21, 23, 24, 25, 33, 34, 37, 38, 42, 44, 45, 47, 49, 52, 53, 58, 59, 60, 64, 65, 67, 73, 75, 76, 78, 79, 83, 85, 87, 89, 90, 92, 93, 94, 96, 98, 99, 100, 102, 103, 104, 105, 108, 109, 110, 111, 112, 115, 117, 118, 119, 121, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 147, 148, 149, 150, 151, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 170, 172, 173, 174, 175, 178, 179, 180, 182, 183, 184, 190, 191, 192, 194, 195, 196, 198, 199, 200, 201, 203, 204, 209, 210, 213, 214, 215, 216, 217, 219, 220, 222, 224, 227, 234, 235, 238, 240, 241, 242, 243, 244, 245, 249, 250, 251, 253, 254, 263, 264, 265], "sota": [1, 75, 113, 119], "implement": [1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 20, 24, 42, 43, 45, 47, 49, 51, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 76, 79, 85, 103, 108, 111, 115, 120, 121, 124, 125, 126, 127, 131, 134, 135, 136, 137, 139, 140, 142, 145, 146, 147, 148, 150, 151, 155, 157, 160, 161, 164, 169, 174, 175, 179, 180, 187, 191, 193, 194, 195, 197, 198, 201, 202, 205, 207, 208, 209, 221, 223, 225, 232, 263], "rather": [1, 13, 23, 25, 49, 52, 69, 73, 85, 97, 103, 112, 121, 128, 130, 144, 145, 150, 154, 155, 160, 172, 185, 189, 190, 224], "high": [1, 2, 5, 6, 14, 15, 19, 23, 25, 42, 44, 49, 52, 53, 55, 57, 60, 82, 85, 99, 103, 105, 109, 112, 121, 122, 123, 124, 126, 127, 130, 136, 140, 147, 150, 160, 169, 170, 172, 177, 178, 187, 193, 196, 197, 198, 200, 254, 262], "level": [1, 2, 5, 6, 17, 19, 20, 23, 25, 44, 49, 53, 55, 57, 68, 79, 100, 105, 115, 122, 123, 124, 126, 127, 128, 132, 134, 136, 138, 142, 143, 144, 145, 148, 150, 165, 166, 169, 172, 174, 175, 177, 178, 183, 186, 196, 197, 198, 200, 202, 210, 224, 228, 268], "illustr": [1, 19, 44, 47, 56, 116, 117, 124, 125, 126, 139, 161, 170, 172, 179, 192, 193, 196], "librari": [1, 3, 4, 5, 6, 8, 12, 14, 18, 20, 22, 23, 25, 42, 44, 50, 51, 57, 61, 75, 87, 107, 108, 113, 115, 118, 121, 126, 130, 131, 138, 140, 144, 156, 159, 160, 164, 169, 174, 175, 178, 195, 205, 207, 220, 221, 223, 224, 227, 228, 229, 250, 252], "featur": [1, 4, 6, 10, 11, 12, 14, 17, 19, 22, 23, 34, 49, 50, 51, 52, 58, 59, 60, 61, 82, 83, 85, 90, 94, 95, 97, 98, 103, 108, 113, 121, 123, 125, 137, 138, 145, 146, 147, 150, 153, 156, 159, 160, 164, 165, 170, 173, 174, 175, 176, 177, 178, 179, 186, 187, 188, 189, 193, 194, 197, 200, 202, 205, 206, 207, 209, 252, 254], "context": [1, 2, 5, 8, 14, 16, 17, 43, 49, 60, 61, 64, 73, 103, 109, 111, 120, 124, 135, 142, 154, 160, 163, 164, 165, 166, 169, 178, 187, 200, 202, 207, 209, 213, 233], "bash": [1, 18, 20, 147, 161, 227], "pip3": [1, 18, 50, 122, 137, 160, 161, 169, 176, 185, 188, 189], "mujoco": [1, 137, 160], "glfw": 1, "tqdm": [1, 14, 17, 122, 137, 138, 160, 186, 202], "avail": [1, 2, 3, 5, 6, 10, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23, 40, 42, 43, 44, 48, 50, 51, 52, 53, 58, 59, 73, 80, 87, 97, 101, 105, 113, 115, 119, 122, 125, 136, 137, 140, 142, 147, 148, 157, 158, 159, 160, 161, 164, 165, 166, 169, 172, 176, 177, 178, 179, 182, 183, 188, 189, 197, 198, 199, 200, 202, 206, 221, 223, 224, 225, 226, 228, 229, 233, 262], "is_fork": [1, 137, 160], "multiprocess": [1, 6, 7, 11, 14, 34, 51, 53, 55, 56, 110, 122, 123, 134, 135, 136, 137, 160, 163, 164, 213, 215, 260], "get_start_method": [1, 137, 160], "fork": [1, 21, 137, 160, 161], "is_avail": [1, 5, 6, 12, 20, 33, 38, 40, 42, 44, 45, 48, 49, 52, 63, 73, 80, 87, 89, 95, 97, 104, 110, 111, 115, 117, 118, 130, 137, 147, 148, 156, 157, 158, 160, 161, 163, 165, 166, 167, 173, 179, 194, 231], "els": [1, 4, 5, 8, 9, 11, 12, 14, 16, 17, 18, 19, 20, 23, 25, 33, 38, 42, 44, 45, 47, 49, 51, 52, 58, 59, 60, 63, 73, 87, 94, 95, 96, 97, 103, 104, 105, 108, 110, 111, 115, 116, 117, 118, 122, 127, 128, 130, 135, 136, 137, 138, 143, 147, 148, 151, 156, 157, 158, 160, 161, 162, 163, 164, 165, 166, 167, 170, 172, 173, 179, 182, 183, 186, 187, 194, 196, 198, 199, 202, 209, 210, 213, 216, 217, 219, 223, 231, 232, 245, 247, 253, 254, 256, 257, 260, 264, 265], "cpu": [1, 3, 5, 6, 8, 9, 10, 11, 12, 14, 15, 18, 19, 20, 23, 33, 38, 42, 43, 44, 45, 48, 49, 52, 60, 63, 64, 72, 73, 80, 82, 83, 87, 89, 90, 95, 97, 99, 104, 105, 108, 109, 110, 111, 115, 117, 118, 121, 123, 124, 130, 134, 135, 136, 137, 138, 147, 148, 151, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 172, 176, 179, 182, 183, 186, 187, 188, 189, 194, 195, 196, 198, 199, 200, 203, 207, 208, 213, 217, 220, 224, 227, 230, 231, 233, 235, 238, 239, 241, 245, 252, 254, 255], "collector_devic": 1, "chang": [1, 2, 5, 6, 10, 11, 12, 14, 19, 21, 22, 23, 24, 40, 43, 48, 50, 51, 52, 53, 55, 58, 59, 61, 76, 78, 79, 80, 82, 83, 85, 87, 95, 97, 98, 100, 101, 102, 105, 108, 112, 116, 121, 123, 124, 126, 132, 133, 136, 137, 138, 140, 142, 145, 146, 147, 150, 153, 154, 156, 157, 158, 162, 169, 172, 173, 174, 175, 178, 182, 183, 185, 187, 188, 189, 192, 194, 198, 199, 201, 205, 207, 209, 212, 221, 223, 236, 254, 262], "seri": [1, 6, 15, 23, 52, 53, 54, 55, 56, 82, 91, 120, 121, 127, 128, 132, 133, 140, 144, 157, 160, 192], "reusabl": [1, 6, 25], "swappabl": 1, "signatur": [1, 5, 8, 10, 14, 15, 23, 108, 136, 154, 163, 174, 175, 254], "characterist": [1, 14, 43, 144, 146, 147, 159, 165], "copi": [1, 5, 6, 12, 18, 22, 23, 44, 45, 50, 55, 58, 61, 73, 82, 97, 109, 110, 112, 114, 117, 123, 125, 130, 134, 136, 137, 138, 139, 142, 143, 144, 147, 150, 154, 158, 163, 169, 172, 182, 183, 184, 189, 195, 199, 200, 205, 207, 209, 219, 220, 235, 265], "loss_modul": [1, 160], "whatev": [1, 8, 22, 23, 99, 101, 112, 196], "convent": [1, 14, 52, 60, 112, 126, 137, 172], "receiv": [1, 4, 6, 14, 16, 55, 64, 87, 101, 111, 136, 160, 162, 163, 164, 173], "necessari": [1, 4, 5, 6, 7, 8, 10, 12, 15, 16, 18, 19, 23, 24, 44, 52, 53, 55, 60, 85, 87, 98, 112, 113, 122, 123, 124, 130, 134, 147, 150, 160, 162, 163, 164, 169, 174, 175, 178, 180, 183, 186, 192, 194, 196, 198, 199, 200, 250], "return": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 25, 33, 34, 37, 38, 40, 44, 45, 47, 49, 51, 52, 59, 60, 64, 65, 67, 68, 73, 75, 78, 79, 80, 82, 85, 87, 89, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118, 122, 123, 124, 126, 127, 128, 129, 130, 131, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 190, 192, 194, 195, 196, 198, 199, 200, 201, 202, 204, 206, 207, 209, 210, 211, 213, 214, 215, 216, 219, 220, 221, 222, 223, 224, 227, 231, 232, 234, 235, 238, 240, 241, 242, 243, 244, 245, 247, 248, 249, 250, 251, 253, 254, 256, 257, 258], "replay_buff": [1, 160], "sampl": [1, 6, 8, 44, 47, 48, 49, 51, 52, 55, 60, 61, 75, 78, 79, 87, 92, 97, 99, 105, 110, 115, 116, 117, 118, 121, 123, 127, 130, 136, 137, 138, 140, 146, 147, 153, 154, 158, 160, 161, 162, 164, 172, 174, 175, 179, 183, 186, 194, 195, 198, 200, 206, 210, 226, 227, 264], "loss_dict": 1, "instanc": [1, 4, 5, 6, 7, 11, 12, 14, 21, 22, 23, 25, 45, 53, 54, 55, 58, 59, 60, 78, 82, 87, 97, 98, 99, 102, 103, 122, 123, 125, 126, 132, 133, 134, 135, 137, 145, 147, 158, 160, 162, 163, 164, 166, 173, 183, 184, 198, 200, 201, 203, 221, 254, 259], "written": [1, 4, 5, 6, 8, 10, 14, 22, 23, 25, 85, 100, 131, 137, 144, 151, 154, 155, 158, 165, 169, 172, 185, 190, 221], "under": [1, 4, 5, 8, 14, 18, 19, 23, 47, 49, 50, 52, 54, 56, 97, 99, 109, 113, 115, 124, 125, 136, 138, 140, 146, 147, 154, 157, 164, 169, 170, 178, 179, 180, 188, 189, 191, 193, 205, 223, 226, 264], "loss_": 1, "smth": 1, "where": [1, 3, 4, 6, 7, 8, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 32, 47, 49, 51, 60, 61, 64, 68, 75, 78, 79, 83, 85, 87, 97, 98, 99, 101, 102, 103, 110, 113, 122, 124, 126, 127, 128, 131, 133, 134, 135, 136, 138, 139, 140, 142, 145, 148, 150, 151, 153, 154, 155, 159, 160, 161, 162, 163, 164, 165, 166, 170, 173, 175, 176, 178, 179, 180, 183, 185, 188, 190, 193, 194, 195, 196, 201, 202, 205, 209, 227, 229, 265], "string": [1, 8, 15, 22, 23, 49, 51, 58, 59, 60, 65, 67, 105, 111, 115, 116, 118, 126, 127, 128, 137, 140, 157, 160, 166, 172, 183, 209, 210, 259, 262], "describ": [1, 4, 5, 6, 8, 10, 14, 15, 16, 19, 20, 21, 22, 23, 48, 49, 52, 58, 59, 61, 73, 97, 105, 114, 120, 136, 151, 160, 161, 164, 169, 172, 174, 175, 177, 197, 198, 199, 203, 254], "addit": [1, 2, 5, 7, 8, 11, 15, 17, 19, 50, 60, 73, 75, 97, 102, 105, 108, 109, 113, 122, 124, 125, 134, 136, 138, 139, 140, 143, 145, 148, 150, 157, 162, 163, 166, 170, 173, 174, 175, 177, 186, 190, 191, 192, 193, 198, 201, 202, 207, 209, 219, 221], "kei": [1, 6, 8, 11, 14, 15, 17, 49, 58, 75, 82, 90, 100, 103, 105, 109, 112, 114, 115, 116, 119, 122, 126, 137, 138, 140, 144, 147, 157, 159, 160, 161, 162, 165, 166, 169, 170, 172, 174, 175, 176, 178, 186, 194, 195, 196, 202, 210, 212, 221, 238, 256, 264], "mai": [1, 4, 5, 6, 8, 10, 11, 12, 14, 15, 17, 19, 21, 22, 23, 25, 42, 49, 50, 52, 58, 59, 60, 68, 73, 85, 95, 99, 112, 113, 116, 123, 124, 125, 126, 130, 131, 137, 138, 139, 140, 142, 144, 145, 146, 151, 153, 154, 159, 160, 163, 166, 169, 172, 173, 174, 175, 177, 178, 180, 182, 183, 186, 189, 192, 194, 198, 199, 200, 201, 202, 203, 209, 219, 229, 232, 254, 264, 265], "metric": [1, 17, 87, 97, 109, 122, 138, 147, 169, 172, 178, 179, 202, 222], "log": [1, 7, 14, 18, 49, 50, 52, 53, 58, 73, 97, 98, 99, 102, 103, 104, 118, 123, 126, 130, 133, 138, 149, 159, 160, 162, 164, 167, 169, 170, 172, 174, 175, 178, 186, 196, 209, 212, 257], "dure": [1, 3, 7, 8, 12, 14, 16, 18, 19, 25, 32, 37, 49, 52, 60, 61, 63, 64, 76, 78, 85, 97, 99, 103, 108, 111, 112, 113, 118, 121, 122, 123, 124, 125, 128, 130, 131, 132, 134, 137, 143, 144, 145, 150, 151, 154, 158, 159, 160, 161, 162, 164, 169, 173, 177, 178, 179, 186, 197, 199, 203, 207, 221, 224, 225, 226, 229, 254], "reason": [1, 5, 6, 8, 14, 15, 17, 23, 25, 52, 78, 82, 97, 99, 102, 112, 117, 125, 130, 136, 145, 150, 158, 160, 165, 166, 185, 192, 202, 224, 254], "independ": [1, 7, 23, 49, 60, 79, 103, 108, 110, 146, 147, 151, 163, 190], "user": [1, 3, 5, 14, 17, 18, 19, 22, 24, 25, 44, 49, 50, 60, 76, 79, 82, 83, 85, 97, 101, 108, 110, 113, 114, 115, 122, 124, 128, 134, 138, 140, 143, 144, 145, 148, 162, 164, 165, 166, 167, 169, 172, 174, 175, 176, 177, 178, 179, 180, 183, 186, 188, 190, 191, 192, 193, 196, 197, 198, 199, 200, 201, 202, 205, 208, 221, 229, 264, 265], "sum": [1, 2, 4, 5, 7, 11, 13, 14, 16, 18, 19, 21, 25, 37, 38, 40, 43, 44, 49, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 76, 78, 82, 87, 89, 92, 97, 98, 99, 101, 103, 104, 109, 111, 115, 117, 122, 123, 125, 127, 128, 129, 130, 131, 136, 137, 146, 147, 151, 153, 154, 157, 158, 160, 161, 162, 163, 164, 167, 169, 173, 174, 175, 176, 183, 190, 191, 192, 193, 198, 199, 211, 212, 213, 215, 222, 232, 254, 260], "done": [1, 4, 5, 6, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 37, 38, 49, 54, 58, 59, 82, 85, 97, 98, 99, 108, 113, 115, 122, 123, 124, 125, 128, 130, 136, 137, 139, 144, 145, 147, 148, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 170, 172, 174, 175, 185, 186, 195, 202, 203, 209, 221, 224, 258], "via": [1, 3, 5, 6, 7, 16, 17, 18, 20, 22, 23, 54, 55, 58, 59, 73, 85, 97, 121, 122, 123, 124, 126, 136, 137, 140, 146, 154, 159, 160, 165, 170, 172, 173, 177, 178, 179, 189, 192, 202, 221, 262, 268], "loss_val": [1, 137, 160], "item": [1, 2, 6, 7, 9, 10, 11, 12, 14, 15, 34, 37, 38, 40, 44, 49, 52, 60, 63, 64, 65, 67, 68, 69, 72, 73, 87, 90, 92, 94, 95, 96, 97, 98, 101, 103, 104, 109, 111, 112, 114, 115, 117, 118, 119, 122, 123, 127, 128, 130, 136, 137, 138, 140, 142, 144, 147, 148, 158, 159, 160, 161, 162, 163, 164, 166, 167, 170, 172, 179, 180, 182, 194, 210, 214, 219, 222, 231, 235, 248, 251, 263, 265], "startswith": [1, 83, 148, 166, 247], "parent": [1, 14, 104, 115, 143, 147, 184, 186], "As": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 19, 20, 21, 22, 23, 25, 43, 49, 50, 52, 58, 59, 60, 61, 73, 85, 87, 97, 103, 105, 108, 112, 116, 118, 122, 123, 124, 125, 126, 127, 134, 136, 137, 138, 142, 143, 144, 145, 146, 147, 150, 153, 154, 157, 158, 160, 161, 162, 163, 164, 165, 169, 172, 175, 176, 177, 178, 179, 180, 183, 185, 186, 188, 189, 193, 194, 196, 198, 201, 205, 209, 223], "mani": [1, 2, 4, 5, 6, 10, 14, 15, 17, 18, 23, 25, 49, 51, 52, 60, 61, 65, 69, 73, 82, 97, 99, 100, 101, 104, 105, 107, 111, 113, 122, 124, 126, 127, 130, 136, 138, 139, 146, 148, 150, 151, 155, 158, 160, 162, 163, 166, 174, 175, 177, 178, 192, 195, 202, 205, 206, 221, 254, 262, 264, 265], "expect": [1, 4, 5, 6, 10, 11, 14, 20, 22, 23, 32, 45, 47, 49, 51, 58, 59, 60, 61, 73, 85, 87, 97, 101, 102, 103, 112, 113, 117, 119, 126, 130, 134, 135, 137, 146, 147, 153, 154, 157, 159, 160, 161, 162, 163, 165, 172, 173, 174, 175, 177, 179, 180, 183, 188, 189, 195, 196, 198, 200, 201, 205, 206, 221, 224], "similar": [1, 3, 5, 8, 10, 11, 14, 15, 19, 22, 23, 48, 49, 58, 59, 61, 82, 83, 97, 98, 103, 108, 116, 124, 131, 135, 136, 137, 140, 144, 150, 154, 160, 162, 163, 164, 165, 166, 169, 170, 172, 177, 179, 180, 183, 186, 190, 191, 192, 193, 194, 199, 200, 219], "structur": [1, 4, 5, 6, 8, 9, 14, 18, 19, 20, 21, 22, 23, 33, 48, 49, 52, 53, 60, 61, 78, 85, 97, 98, 102, 105, 110, 112, 121, 132, 137, 139, 144, 147, 148, 150, 154, 155, 157, 160, 164, 170, 172, 173, 179, 193, 195, 197, 198, 206, 209, 262, 264, 268], "make": [1, 4, 5, 6, 8, 10, 12, 14, 18, 19, 22, 23, 43, 44, 45, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 68, 69, 73, 87, 97, 99, 100, 101, 102, 103, 108, 111, 112, 113, 114, 115, 117, 118, 121, 122, 123, 124, 126, 127, 128, 130, 134, 136, 137, 138, 140, 143, 144, 145, 146, 147, 150, 153, 154, 156, 157, 158, 160, 161, 162, 163, 164, 165, 166, 170, 172, 173, 174, 175, 177, 179, 183, 185, 186, 189, 190, 191, 192, 193, 194, 195, 196, 198, 201, 206, 214, 219, 221, 224, 228, 229, 254, 258, 264, 266], "possibl": [1, 2, 4, 5, 6, 8, 10, 14, 15, 17, 22, 23, 52, 60, 61, 75, 98, 101, 108, 119, 125, 130, 131, 137, 139, 142, 144, 146, 147, 150, 158, 159, 160, 162, 163, 166, 179, 183, 186, 188, 194, 198, 199, 200, 201, 202, 203, 205, 221, 224, 254, 264], "across": [1, 5, 7, 8, 9, 11, 14, 16, 18, 20, 24, 49, 52, 54, 55, 56, 61, 82, 97, 105, 115, 120, 122, 123, 124, 132, 133, 134, 135, 136, 139, 147, 150, 157, 163, 164, 176, 177, 182, 212, 236, 262], "modal": [1, 60], "complex": [1, 6, 23, 25, 50, 61, 67, 68, 97, 105, 112, 120, 123, 134, 151, 154, 162, 164, 170, 194, 204, 210], "multipl": [1, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 23, 40, 45, 48, 49, 53, 54, 55, 56, 61, 65, 78, 79, 81, 82, 87, 97, 101, 110, 120, 123, 124, 125, 126, 127, 128, 134, 135, 136, 139, 140, 144, 145, 147, 150, 159, 160, 162, 163, 164, 166, 169, 170, 172, 174, 175, 176, 177, 178, 183, 185, 194, 200, 201, 202, 236, 251, 264, 265], "entri": [1, 4, 11, 14, 23, 53, 75, 98, 101, 103, 109, 110, 112, 115, 132, 137, 144, 145, 157, 160, 162, 165, 169, 174, 175, 192, 193, 194, 196], "word": [1, 6, 7, 10, 11, 14, 42, 44, 49, 60, 73, 79, 82, 97, 98, 100, 102, 112, 115, 116, 118, 121, 127, 128, 136, 138, 144, 153, 154, 157, 164, 166, 177, 182, 191, 193, 194, 196, 200, 264], "oblivi": [1, 160], "type": [1, 4, 5, 6, 8, 9, 10, 14, 18, 19, 20, 21, 22, 23, 37, 38, 40, 42, 48, 49, 50, 51, 52, 60, 61, 73, 78, 80, 82, 85, 95, 101, 105, 108, 113, 118, 120, 122, 123, 124, 126, 135, 138, 139, 140, 143, 144, 145, 148, 149, 155, 156, 157, 160, 162, 163, 164, 165, 169, 172, 173, 174, 175, 176, 178, 180, 182, 186, 188, 190, 195, 198, 200, 201, 203, 205, 209, 210, 214, 217, 221, 222, 223, 224, 229, 245, 259, 264], "being": [1, 3, 4, 5, 6, 10, 12, 14, 17, 20, 21, 23, 42, 47, 49, 52, 58, 59, 60, 76, 80, 82, 97, 98, 99, 101, 103, 105, 110, 113, 117, 122, 124, 126, 130, 136, 137, 143, 154, 157, 160, 161, 163, 178, 186, 189, 191, 192, 194, 196, 200, 202, 203, 221], "run": [1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 51, 52, 56, 57, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 82, 87, 89, 90, 92, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 111, 112, 113, 114, 116, 117, 118, 119, 121, 122, 123, 124, 125, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 170, 173, 174, 176, 177, 178, 179, 182, 183, 184, 185, 187, 188, 189, 190, 191, 192, 193, 194, 196, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 209, 210, 214, 219, 221, 223, 224, 226, 228, 229, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 253, 254, 256, 257, 264], "elementari": [1, 2], "those": [1, 4, 5, 6, 10, 11, 14, 17, 42, 43, 61, 79, 87, 98, 103, 113, 115, 116, 124, 125, 127, 136, 139, 144, 153, 154, 156, 157, 164, 166, 170, 172, 174, 175, 178, 183, 185, 189, 191, 202, 203, 205, 206, 207, 224, 264], "keep": [1, 6, 7, 10, 11, 14, 23, 43, 49, 51, 52, 60, 61, 73, 82, 85, 95, 97, 99, 101, 102, 108, 112, 116, 119, 121, 122, 123, 124, 125, 127, 128, 133, 134, 137, 143, 145, 151, 158, 160, 164, 166, 178, 182, 183, 198, 209, 219], "didact": [1, 136], "displai": [1, 2, 5, 6, 12, 14, 34, 44, 52, 58, 75, 108, 109, 117, 130, 140, 158, 161, 166, 169, 259, 262], "each": [1, 2, 5, 6, 7, 8, 10, 11, 12, 14, 16, 17, 18, 19, 21, 23, 24, 25, 34, 43, 44, 45, 48, 49, 51, 52, 53, 55, 56, 58, 59, 60, 61, 65, 68, 73, 75, 76, 79, 82, 83, 85, 87, 97, 98, 99, 102, 103, 107, 108, 109, 111, 112, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 131, 132, 133, 134, 135, 136, 137, 139, 142, 143, 144, 146, 147, 148, 150, 151, 153, 154, 155, 157, 158, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 174, 175, 176, 177, 178, 179, 186, 187, 190, 193, 194, 196, 198, 199, 201, 202, 209, 210, 212, 221, 232, 254, 262, 264], "popul": [1, 14, 22, 43, 49, 58, 59, 87, 122, 137, 147, 160, 162, 212], "later": [1, 3, 4, 5, 6, 11, 23, 47, 49, 52, 60, 73, 78, 87, 97, 101, 102, 112, 113, 123, 124, 127, 128, 130, 131, 135, 136, 139, 142, 143, 144, 145, 146, 147, 151, 155, 160, 161, 164, 165, 166, 170, 172, 174, 175, 183, 190, 198, 199, 212, 224, 229, 233], "stage": [1, 7, 14, 16, 149, 187, 189, 207], "start": [1, 4, 5, 6, 9, 11, 14, 16, 17, 18, 19, 23, 24, 25, 43, 44, 49, 50, 52, 53, 54, 55, 59, 60, 61, 73, 87, 97, 98, 100, 101, 105, 113, 116, 120, 121, 122, 124, 125, 126, 127, 128, 130, 135, 136, 138, 140, 144, 145, 146, 147, 149, 150, 153, 154, 158, 159, 161, 162, 163, 166, 169, 170, 172, 173, 174, 177, 178, 179, 183, 185, 186, 188, 192, 196, 198, 199, 200, 201, 202, 204, 209, 224, 240, 253, 265], "solv": [1, 6, 14, 49, 51, 97, 103, 117, 118, 150, 154, 158, 160, 162, 164, 177, 192], "task": [1, 6, 7, 13, 14, 17, 21, 24, 49, 58, 59, 60, 75, 97, 98, 103, 109, 113, 116, 117, 118, 119, 120, 121, 123, 137, 138, 154, 158, 160, 161, 166, 167, 172, 179, 186, 202, 205, 209], "strategi": [1, 5, 17, 18, 24, 52, 82, 113, 121, 128, 136, 145, 146, 150, 155, 162, 163, 202], "predict": [1, 9, 17, 19, 20, 33, 37, 38, 43, 44, 49, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 87, 89, 90, 92, 97, 98, 102, 103, 104, 111, 113, 115, 116, 118, 121, 124, 126, 127, 128, 138, 139, 146, 147, 150, 155, 161, 166, 170, 179, 182, 183, 198, 199, 202, 214, 220, 258, 259], "henc": [1, 14, 17, 43, 48, 61, 78, 80, 82, 113, 123, 125, 134, 135, 148, 150, 151, 156, 160, 162, 164, 177, 202, 221], "two": [1, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24, 25, 40, 42, 43, 48, 49, 50, 52, 57, 58, 59, 60, 73, 75, 83, 85, 87, 92, 95, 97, 98, 99, 101, 102, 103, 105, 107, 108, 109, 116, 117, 119, 122, 123, 126, 127, 130, 131, 133, 134, 135, 136, 137, 140, 142, 144, 145, 146, 147, 148, 150, 151, 154, 155, 156, 157, 158, 160, 161, 162, 164, 165, 166, 172, 176, 177, 178, 179, 180, 184, 185, 187, 191, 193, 194, 196, 198, 199, 200, 201, 202, 203, 204, 225, 226, 230, 254, 264, 265, 269], "constructor": [1, 6, 10, 11, 12, 21, 22, 23, 25, 60, 65, 67, 69, 78, 85, 111, 116, 122, 123, 134, 135, 144, 156, 157, 160, 162, 164, 193, 203, 254], "both": [1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 14, 16, 19, 20, 21, 22, 23, 24, 25, 42, 49, 51, 52, 58, 59, 60, 61, 73, 82, 85, 97, 103, 109, 113, 116, 118, 122, 124, 126, 127, 130, 133, 134, 135, 136, 142, 143, 145, 146, 148, 150, 151, 157, 158, 160, 162, 163, 164, 165, 166, 174, 175, 176, 177, 178, 179, 180, 183, 185, 186, 187, 190, 193, 195, 196, 198, 200, 201, 210, 221, 224, 229, 232, 262, 264], "compat": [1, 4, 5, 6, 8, 11, 17, 50, 60, 94, 95, 101, 137, 148, 165, 174, 175, 183, 188, 203, 205, 223], "comput": [1, 3, 5, 6, 8, 11, 12, 13, 16, 17, 19, 20, 21, 23, 24, 25, 32, 37, 38, 40, 44, 47, 48, 49, 52, 53, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 83, 85, 95, 97, 98, 99, 100, 102, 105, 107, 110, 111, 115, 117, 119, 120, 121, 122, 123, 124, 125, 126, 130, 131, 132, 133, 134, 136, 137, 138, 140, 142, 143, 144, 145, 147, 149, 150, 153, 154, 155, 157, 159, 160, 161, 163, 165, 166, 169, 172, 173, 174, 175, 177, 178, 179, 183, 185, 188, 189, 194, 195, 196, 197, 198, 199, 200, 202, 203, 206, 207, 209, 212, 220, 224, 229, 232, 264], "fit": [1, 6, 7, 9, 10, 11, 12, 20, 24, 61, 87, 103, 122, 123, 124, 134, 149, 150, 164, 182, 264], "crucial": [1, 2, 12, 14, 23, 82, 101, 137, 160, 224], "convert_to_funct": 1, "extract": [1, 5, 20, 49, 52, 58, 59, 73, 97, 116, 117, 127, 128, 138, 142, 145, 155, 158, 160, 166, 173, 174, 175, 179, 209], "convert": [1, 5, 9, 10, 12, 14, 19, 20, 22, 23, 44, 49, 51, 52, 55, 73, 75, 95, 97, 105, 107, 110, 112, 113, 115, 116, 118, 119, 121, 127, 128, 138, 140, 158, 159, 160, 161, 162, 163, 167, 170, 178, 179, 182, 184, 185, 186, 189, 190, 191, 193, 194, 197, 200, 201, 210, 219, 221, 224, 225, 226, 228, 229, 254], "strictli": [1, 160], "speak": [1, 8, 43, 125, 136, 150], "perfectli": [1, 14, 65, 78, 111], "encourag": [1, 6, 19, 140, 161, 166, 172], "usag": [1, 3, 4, 11, 13, 15, 21, 23, 37, 60, 82, 109, 116, 121, 123, 125, 136, 137, 145, 146, 160, 162, 164, 165, 169, 178, 185, 186, 189, 194, 195, 196, 200, 221, 258, 264], "doe": [1, 2, 5, 6, 8, 13, 14, 15, 19, 22, 23, 25, 43, 47, 60, 61, 73, 79, 80, 85, 97, 98, 99, 101, 103, 105, 108, 112, 113, 117, 122, 123, 131, 134, 135, 136, 137, 140, 143, 146, 147, 148, 150, 153, 154, 159, 160, 161, 163, 164, 165, 166, 169, 170, 173, 174, 175, 177, 179, 183, 184, 185, 191, 192, 193, 198, 200, 203, 204, 206, 209, 224, 226, 229, 232, 264], "often": [1, 4, 5, 6, 10, 14, 17, 49, 73, 87, 97, 99, 101, 103, 112, 113, 124, 125, 126, 128, 147, 154, 178, 194, 202, 204, 264], "same": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 17, 19, 20, 21, 22, 23, 25, 32, 40, 43, 44, 47, 49, 51, 52, 53, 55, 58, 59, 60, 65, 73, 78, 80, 85, 87, 95, 97, 98, 99, 101, 102, 103, 105, 108, 109, 111, 112, 118, 119, 122, 123, 124, 125, 127, 130, 133, 134, 136, 138, 139, 140, 142, 145, 146, 147, 148, 150, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 177, 178, 180, 182, 183, 186, 187, 190, 191, 192, 193, 194, 195, 198, 199, 200, 201, 202, 209, 219, 223, 224, 229, 232, 254, 258, 262, 264], "usual": [1, 5, 6, 8, 19, 23, 43, 58, 59, 60, 61, 99, 100, 102, 103, 113, 117, 124, 125, 128, 130, 131, 134, 136, 137, 145, 148, 153, 157, 158, 160, 167, 196, 206, 262], "former": [1, 5, 61, 79, 127, 128, 166], "lag": [1, 160], "absolut": [1, 6, 7, 10, 82, 99, 126, 157, 161, 209], "dilut": 1, "averag": [1, 3, 19, 49, 52, 61, 82, 87, 97, 113, 115, 123, 127, 128, 130, 136, 138, 144, 147, 155, 160, 161, 164, 166, 167, 169, 177, 178, 183, 198, 199], "associ": [1, 5, 6, 8, 10, 17, 50, 82, 131, 142, 143, 157, 165, 172, 191, 202, 203], "One": [1, 2, 4, 5, 6, 7, 10, 11, 15, 21, 23, 49, 51, 60, 61, 73, 79, 82, 97, 98, 99, 101, 122, 123, 124, 125, 128, 134, 136, 138, 139, 143, 144, 150, 153, 154, 167, 170, 173, 178, 179, 192, 196, 201, 206, 210, 224, 264, 265], "advantag": [1, 3, 6, 14, 17, 23, 49, 60, 85, 95, 98, 107, 120, 122, 125, 136, 137, 154, 160, 173, 178, 183, 186, 193, 202, 210, 221, 223], "match": [1, 4, 5, 10, 14, 17, 19, 20, 22, 49, 51, 58, 59, 60, 61, 68, 75, 76, 92, 97, 105, 108, 111, 112, 113, 135, 138, 139, 143, 145, 148, 150, 153, 155, 160, 163, 173, 174, 175, 183, 186, 191, 193, 196, 198, 202, 221], "exactli": [1, 5, 7, 8, 10, 12, 17, 25, 43, 51, 52, 60, 78, 80, 101, 103, 105, 137, 145, 154, 175, 186, 202], "configur": [1, 4, 5, 6, 14, 18, 19, 20, 22, 23, 24, 42, 49, 50, 60, 61, 82, 113, 122, 124, 132, 134, 143, 145, 150, 153, 158, 160, 163, 169, 172, 177, 184, 185, 200, 201, 209, 221, 226, 227, 268], "pessimist": [1, 160], "bound": [1, 23, 49, 112, 126, 145, 160, 161, 169, 174, 175, 177, 179, 185], "pai": [1, 10, 45, 49, 60, 115], "attent": [1, 7, 10, 42, 45, 49, 115, 118, 119, 121, 124, 137, 167, 185, 186, 194, 254], "create_target_param": 1, "keyword": [1, 5, 157, 160, 172], "argument": [1, 2, 4, 5, 6, 8, 14, 21, 22, 23, 32, 43, 44, 48, 51, 55, 60, 69, 76, 78, 82, 89, 97, 99, 102, 103, 109, 111, 112, 115, 122, 123, 126, 127, 128, 133, 134, 136, 137, 139, 145, 146, 155, 156, 157, 160, 162, 163, 164, 165, 169, 172, 173, 174, 175, 180, 189, 192, 195, 200, 206, 207, 209, 210, 223, 224, 264, 265], "below": [1, 2, 4, 6, 10, 11, 12, 14, 16, 17, 18, 19, 20, 23, 24, 34, 43, 45, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 79, 82, 85, 97, 98, 99, 101, 102, 103, 105, 107, 108, 113, 114, 116, 118, 119, 124, 126, 130, 132, 133, 134, 135, 136, 137, 138, 142, 145, 148, 150, 153, 156, 158, 160, 161, 162, 163, 164, 165, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 185, 186, 187, 189, 191, 192, 193, 194, 196, 203, 204, 205, 212, 219, 223, 224, 226, 229, 254, 264], "tell": [1, 18, 23, 42, 69, 87, 103, 111, 126, 127, 137, 139, 142, 153, 161, 162, 164, 166, 176, 188, 189, 210, 264], "fals": [1, 2, 6, 7, 10, 11, 12, 14, 19, 20, 23, 24, 34, 37, 38, 42, 43, 44, 49, 52, 55, 59, 60, 63, 64, 73, 82, 83, 87, 89, 92, 94, 96, 97, 101, 110, 111, 112, 115, 116, 117, 119, 122, 123, 124, 125, 126, 130, 135, 138, 142, 144, 145, 147, 148, 149, 151, 153, 154, 158, 159, 160, 161, 162, 163, 165, 166, 167, 170, 172, 173, 174, 175, 177, 178, 179, 180, 183, 185, 186, 187, 191, 192, 193, 195, 196, 198, 199, 201, 202, 207, 209, 211, 212, 219, 220, 221, 222, 224, 229, 231, 233, 245, 247, 248, 249, 251, 253, 254, 255, 260, 262, 263, 264, 265], "target_actor_network_param": 1, "attribut": [1, 6, 11, 14, 22, 25, 43, 47, 53, 60, 73, 76, 79, 82, 85, 90, 103, 108, 116, 125, 135, 137, 142, 148, 149, 154, 157, 174, 175, 177, 183, 186, 194, 195, 197, 200, 204, 208, 230, 264], "access": [1, 5, 6, 7, 10, 12, 14, 17, 19, 23, 50, 60, 68, 73, 78, 79, 87, 97, 102, 111, 112, 118, 119, 122, 125, 132, 136, 143, 154, 159, 161, 163, 172, 174, 175, 178, 186, 188, 190, 191, 193, 195, 202, 209, 210, 219, 254, 262], "detach": [1, 2, 6, 9, 11, 12, 13, 20, 32, 52, 73, 89, 90, 95, 101, 105, 108, 138, 151, 155, 166, 182, 186, 230, 245], "def": [1, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 33, 34, 37, 38, 44, 45, 47, 49, 51, 52, 53, 55, 60, 64, 65, 67, 73, 75, 78, 79, 85, 87, 89, 90, 92, 93, 94, 96, 97, 98, 99, 102, 103, 104, 105, 108, 109, 111, 112, 113, 115, 116, 117, 118, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 134, 135, 136, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 190, 194, 195, 196, 198, 199, 200, 201, 202, 203, 204, 206, 209, 210, 211, 212, 213, 214, 215, 216, 217, 219, 220, 222, 224, 227, 229, 231, 232, 234, 235, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 253, 254, 256, 257, 260, 264], "_init": 1, "self": [1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 24, 25, 33, 34, 37, 38, 44, 45, 47, 49, 51, 52, 53, 55, 60, 65, 67, 73, 78, 79, 85, 87, 89, 92, 93, 94, 96, 97, 98, 99, 102, 103, 104, 105, 108, 109, 111, 112, 115, 118, 123, 124, 125, 127, 128, 129, 130, 134, 135, 136, 139, 143, 144, 145, 147, 149, 150, 151, 154, 155, 157, 161, 162, 163, 164, 166, 167, 169, 170, 172, 173, 174, 175, 178, 179, 180, 182, 183, 184, 186, 194, 195, 196, 198, 199, 200, 203, 204, 210, 213, 215, 216, 217, 219, 220, 222, 223, 224, 227, 229, 234, 235, 238, 239, 240, 241, 242, 243, 244, 245, 249, 250, 251, 253, 254], "actor_network": [1, 160], "value_network": [1, 160], "none": [1, 7, 11, 12, 14, 15, 17, 18, 19, 20, 24, 34, 49, 51, 60, 63, 64, 76, 79, 87, 89, 90, 97, 104, 105, 108, 111, 113, 115, 117, 118, 119, 122, 123, 130, 135, 136, 138, 139, 142, 143, 145, 146, 147, 148, 149, 151, 153, 155, 158, 161, 163, 165, 166, 172, 174, 175, 176, 179, 180, 183, 186, 195, 202, 203, 208, 210, 214, 216, 217, 231, 245, 246, 254, 262, 264], "super": [1, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 25, 33, 37, 38, 44, 45, 47, 49, 52, 59, 60, 65, 67, 73, 78, 79, 85, 87, 89, 92, 93, 94, 96, 97, 98, 99, 102, 103, 104, 105, 109, 111, 112, 115, 118, 123, 125, 127, 128, 129, 130, 134, 135, 139, 143, 144, 147, 149, 150, 151, 154, 155, 157, 161, 162, 163, 164, 165, 166, 167, 170, 172, 173, 174, 175, 178, 180, 182, 194, 195, 196, 198, 199, 200, 203, 204, 209, 210, 213, 215, 216, 219, 220, 222, 223, 224, 227, 234, 235, 238, 240, 241, 242, 243, 244, 249, 250, 251, 253], "true": [1, 2, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 22, 23, 24, 32, 34, 37, 38, 41, 42, 43, 44, 45, 47, 49, 51, 52, 55, 58, 59, 60, 63, 64, 68, 73, 76, 82, 87, 89, 90, 92, 94, 95, 96, 97, 98, 101, 104, 108, 109, 110, 111, 113, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 127, 129, 130, 131, 134, 135, 136, 137, 138, 140, 142, 144, 145, 147, 148, 149, 150, 154, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 177, 178, 179, 180, 183, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 198, 199, 200, 201, 202, 204, 205, 206, 207, 209, 212, 213, 214, 215, 219, 221, 222, 223, 224, 225, 226, 229, 230, 231, 232, 237, 239, 245, 251, 253, 254, 255, 256, 257, 258, 259, 260, 262, 265], "compare_against": 1, "list": [1, 5, 6, 8, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 24, 44, 47, 48, 49, 50, 52, 60, 61, 68, 73, 87, 90, 101, 102, 103, 105, 107, 108, 110, 111, 113, 115, 116, 118, 119, 125, 127, 128, 135, 136, 138, 143, 144, 148, 154, 155, 157, 158, 159, 160, 162, 163, 164, 166, 169, 170, 172, 173, 174, 175, 179, 184, 186, 187, 192, 194, 199, 201, 202, 205, 207, 209, 210, 216, 217, 219, 223, 224, 228, 229, 232, 254, 268], "actor_in_kei": 1, "in_kei": [1, 14, 137, 160], "sinc": [1, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 19, 20, 21, 23, 44, 49, 51, 52, 53, 60, 65, 73, 78, 85, 97, 98, 99, 101, 102, 103, 105, 111, 113, 115, 116, 117, 118, 119, 124, 126, 127, 128, 131, 132, 136, 137, 140, 143, 144, 149, 151, 153, 154, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 170, 172, 173, 176, 177, 179, 180, 183, 184, 185, 186, 188, 189, 190, 191, 192, 198, 199, 200, 201, 205, 224, 232, 264], "base": [1, 5, 6, 7, 9, 10, 11, 14, 16, 17, 18, 20, 23, 24, 25, 42, 44, 49, 52, 57, 58, 59, 60, 73, 75, 76, 78, 85, 87, 97, 99, 105, 109, 112, 115, 116, 119, 120, 121, 122, 123, 126, 127, 129, 137, 138, 147, 156, 157, 161, 163, 166, 169, 170, 172, 175, 178, 179, 182, 183, 185, 186, 187, 192, 196, 197, 198, 199, 200, 201, 202, 224, 226, 264], "singl": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 17, 18, 20, 21, 22, 23, 43, 47, 51, 53, 54, 55, 56, 58, 59, 60, 61, 78, 85, 87, 97, 99, 113, 115, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 144, 146, 147, 151, 155, 160, 161, 162, 163, 164, 166, 169, 172, 173, 174, 175, 176, 180, 183, 185, 194, 198, 201, 202, 206, 219, 224, 228, 254, 264], "critic": [1, 52, 73, 85, 133, 224, 229], "actor_crit": 1, "actorcriticwrapp": 1, "loss_funct": [1, 99, 102, 103], "l2": [1, 87, 93, 157], "q": [1, 7, 17, 43, 49, 60, 121, 124, 147, 165, 172, 196, 198, 202, 235], "empir": [1, 151, 160], "bootstrap": [1, 137], "td": [1, 14, 52, 137], "varianc": [1, 6, 19, 160], "bia": [1, 2, 5, 6, 7, 9, 13, 19, 43, 47, 52, 68, 69, 93, 99, 104, 109, 111, 112, 115, 123, 129, 130, 135, 137, 143, 146, 157, 160, 164, 165, 167, 174, 180, 182, 186, 194, 196, 199, 201, 202, 204, 219, 224, 245, 248], "mean": [1, 2, 5, 6, 7, 10, 12, 14, 19, 23, 25, 42, 47, 49, 51, 52, 58, 59, 60, 68, 73, 76, 80, 82, 85, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 109, 111, 112, 115, 116, 117, 122, 124, 126, 127, 130, 136, 138, 140, 144, 147, 148, 150, 154, 158, 159, 160, 161, 163, 164, 165, 166, 167, 169, 170, 172, 174, 175, 183, 186, 188, 190, 191, 192, 194, 198, 199, 201, 205, 206, 207, 211, 229, 230, 232, 235, 239, 254], "obtain": [1, 9, 24, 49, 60, 68, 87, 111, 126, 130, 136, 138, 143, 146, 155, 160, 161, 163, 169, 172, 179], "reward": [1, 4, 14, 137, 147, 160, 161, 162, 164], "noth": [1, 16, 23, 42, 73, 113, 131, 150, 160, 164, 169, 180], "mont": 1, "carlo": 1, "whole": [1, 3, 25, 44, 47, 60, 112, 113, 121, 136, 144, 157, 158, 160, 166, 183, 184, 186, 191, 201, 206, 209], "sequenc": [1, 5, 6, 12, 21, 23, 48, 49, 60, 67, 68, 98, 100, 103, 111, 112, 113, 115, 116, 118, 137, 138, 154, 160, 165, 166, 174, 175, 176, 183, 185, 186, 194, 196, 206, 212, 219, 224, 254, 264], "upcom": 1, "intermedi": [1, 17, 25, 74, 108, 112, 120, 121, 132, 135, 142, 145, 146, 147, 150, 153, 201, 202], "lambda": [1, 5, 7, 17, 20, 22, 49, 90, 104, 115, 116, 125, 129, 144, 159, 161, 162, 173, 174, 175, 202, 206, 231, 232, 247, 256, 264], "compromis": 1, "easi": [1, 2, 5, 6, 9, 23, 24, 44, 45, 51, 58, 59, 60, 61, 68, 80, 95, 97, 99, 122, 124, 126, 136, 143, 144, 146, 151, 154, 160, 169, 177, 184, 187, 196, 202, 206, 210, 221], "valueestim": 1, "enum": 1, "pointer": [1, 5, 6, 22, 23, 98, 163], "defin": [1, 2, 5, 12, 14, 15, 16, 17, 18, 20, 21, 23, 25, 38, 43, 45, 52, 58, 59, 62, 65, 67, 68, 69, 73, 78, 79, 85, 87, 98, 99, 103, 105, 111, 112, 113, 116, 118, 121, 122, 123, 125, 127, 132, 136, 137, 139, 140, 143, 144, 147, 151, 153, 155, 161, 162, 163, 165, 167, 169, 170, 173, 174, 175, 184, 188, 190, 196, 200, 201, 202, 209, 210, 221, 229, 236, 262], "default": [1, 3, 5, 6, 8, 9, 10, 11, 12, 15, 19, 20, 21, 24, 43, 45, 49, 51, 52, 55, 60, 63, 64, 69, 75, 76, 78, 82, 95, 99, 101, 108, 111, 115, 116, 117, 118, 119, 121, 122, 123, 124, 130, 135, 136, 137, 139, 142, 143, 145, 148, 150, 153, 156, 158, 159, 160, 162, 163, 164, 165, 169, 170, 172, 173, 174, 175, 178, 179, 180, 182, 183, 187, 189, 193, 194, 195, 196, 198, 199, 200, 201, 203, 207, 209, 217, 221, 224, 229, 231, 236, 245, 254, 255, 262, 263, 264], "simplest": [1, 6, 23, 47, 99, 137, 160, 166], "util": [1, 3, 5, 7, 10, 14, 15, 17, 19, 20, 22, 23, 24, 25, 33, 34, 37, 38, 44, 45, 49, 51, 52, 53, 55, 60, 73, 75, 82, 87, 92, 94, 96, 104, 109, 112, 113, 115, 116, 117, 118, 119, 121, 122, 123, 124, 126, 129, 130, 135, 136, 138, 139, 142, 143, 145, 146, 148, 149, 154, 155, 156, 158, 159, 160, 163, 165, 166, 167, 169, 170, 172, 173, 177, 178, 179, 183, 185, 186, 189, 194, 195, 198, 199, 200, 201, 202, 203, 205, 207, 209, 210, 211, 219, 221, 222, 223, 225, 226, 237, 241, 246, 247, 248, 251, 253, 254, 255, 256], "default_value_estim": 1, "td0": 1, "instruct": [1, 6, 7, 19, 23, 24, 42, 108, 113, 115, 116, 118, 127, 128, 137, 138, 142, 157, 158, 160, 162, 164, 166, 177, 178, 183, 195, 198, 199, 200, 207, 209, 221, 232, 247], "queri": [1, 14, 22, 49, 60, 112, 118, 163, 165, 166, 179, 186, 194, 198, 201], "default_value_kwarg": 1, "td0estim": 1, "td1estim": 1, "tdlambdaestim": 1, "make_value_estim": 1, "value_typ": 1, "hyperparam": [1, 202], "hp": 1, "dict": [1, 18, 49, 51, 143, 144, 147, 148, 153, 154, 157, 160, 174, 175, 179, 196, 201, 210, 217, 245], "hasattr": 1, "gamma": [1, 7, 115, 117, 122, 123, 130, 147, 158, 160, 161, 162, 164, 179], "value_kei": 1, "state_action_valu": [1, 161], "td1": 1, "_value_estim": 1, "elif": [1, 12, 16, 19, 49, 52, 60, 135, 138, 147, 148, 151, 157, 186, 217], "gae": [1, 160], "rais": [1, 8, 11, 12, 19, 49, 60, 73, 124, 125, 128, 145, 147, 148, 159, 160, 173, 174, 175, 205, 217, 245], "notimplementederror": [1, 245], "f": [1, 5, 7, 8, 9, 11, 12, 14, 17, 18, 19, 22, 32, 33, 34, 37, 38, 40, 42, 43, 44, 47, 48, 49, 53, 55, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 78, 87, 89, 90, 92, 93, 94, 96, 97, 99, 102, 103, 104, 105, 108, 110, 111, 112, 113, 116, 117, 118, 122, 123, 124, 125, 127, 130, 134, 135, 136, 137, 138, 139, 140, 145, 146, 147, 149, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 170, 172, 173, 174, 175, 179, 182, 183, 185, 186, 187, 188, 189, 194, 196, 198, 199, 202, 205, 206, 211, 213, 214, 215, 216, 217, 220, 222, 227, 232, 234, 235, 238, 240, 241, 242, 243, 244, 245, 247, 249, 250, 251, 253, 256, 257, 258, 259, 260, 264], "tdlambda": 1, "unknown": [1, 49, 60, 75, 116, 214], "set_kei": 1, "central": [1, 8, 73, 102, 103, 132], "quit": [1, 6, 17, 23, 49, 60, 73, 125, 136, 140, 150, 153, 160, 164, 190, 202, 209], "weight": [1, 2, 3, 4, 5, 6, 7, 9, 12, 13, 14, 17, 19, 20, 24, 33, 39, 43, 44, 49, 60, 63, 64, 66, 67, 68, 69, 71, 72, 73, 78, 89, 90, 93, 97, 99, 100, 102, 103, 104, 110, 111, 112, 115, 117, 121, 123, 129, 130, 132, 135, 137, 138, 139, 140, 143, 145, 146, 148, 153, 154, 155, 157, 158, 160, 161, 164, 166, 167, 169, 172, 174, 178, 179, 180, 182, 183, 184, 185, 186, 189, 198, 199, 200, 201, 202, 203, 204, 206, 217, 224, 229, 230, 233, 245, 255, 264], "must": [1, 2, 4, 5, 6, 8, 10, 11, 12, 14, 22, 23, 42, 49, 52, 60, 61, 67, 73, 85, 98, 99, 103, 107, 108, 111, 112, 113, 122, 134, 136, 137, 139, 142, 158, 160, 163, 169, 172, 173, 174, 175, 180, 190, 191, 193, 194, 195, 199, 201, 203, 206, 228, 242, 264, 265], "sure": [1, 4, 5, 6, 8, 10, 11, 14, 19, 22, 51, 57, 58, 59, 60, 87, 97, 98, 99, 103, 108, 112, 113, 115, 118, 123, 124, 128, 134, 136, 137, 138, 140, 144, 150, 158, 160, 162, 172, 186, 189, 191, 193, 195, 201, 206, 221], "otherwis": [1, 8, 10, 12, 14, 17, 19, 23, 55, 82, 85, 112, 113, 123, 125, 131, 134, 137, 142, 145, 146, 148, 153, 160, 161, 163, 199, 202, 206, 207], "mix": [1, 8, 15, 60, 61, 109, 113, 148, 183, 200, 221, 222, 236, 254], "hold_out_param": 1, "_loss_actor": 1, "tensor": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 19, 20, 21, 22, 23, 35, 37, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 57, 58, 59, 60, 61, 62, 64, 65, 67, 68, 69, 70, 73, 75, 77, 78, 81, 85, 88, 89, 91, 92, 93, 96, 97, 98, 99, 102, 103, 104, 105, 108, 109, 112, 115, 116, 117, 118, 121, 122, 123, 128, 130, 131, 134, 135, 136, 137, 138, 139, 140, 142, 145, 146, 147, 148, 150, 151, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 166, 167, 169, 170, 172, 173, 174, 175, 176, 177, 179, 182, 183, 185, 186, 187, 188, 189, 190, 191, 192, 195, 196, 197, 198, 200, 202, 203, 204, 206, 207, 209, 210, 217, 220, 221, 229, 231, 232, 245, 247, 248, 251, 256, 258], "td_copi": 1, "select": [1, 5, 10, 17, 23, 42, 50, 60, 80, 82, 87, 97, 105, 148, 157, 161, 162, 164, 169, 170, 183, 186, 192, 197, 198, 202, 207, 239, 263, 266], "made": [1, 6, 10, 15, 19, 25, 51, 52, 87, 97, 98, 103, 113, 119, 122, 125, 136, 137, 166, 170, 172, 174, 175, 176, 178, 193, 197, 201, 225, 226, 229, 264], "pass": [1, 2, 3, 4, 6, 8, 10, 12, 13, 14, 15, 16, 19, 22, 23, 25, 43, 44, 49, 51, 52, 53, 56, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 82, 85, 87, 97, 98, 99, 101, 102, 103, 111, 112, 113, 115, 116, 118, 121, 122, 123, 124, 125, 126, 127, 130, 131, 132, 134, 135, 136, 137, 139, 142, 144, 147, 148, 150, 151, 154, 155, 157, 160, 161, 162, 163, 164, 166, 167, 169, 172, 173, 174, 175, 180, 184, 185, 186, 188, 190, 193, 194, 195, 196, 199, 201, 203, 212, 223, 239, 254], "param": [1, 7, 14, 16, 19, 33, 43, 47, 51, 68, 85, 93, 99, 111, 112, 117, 122, 123, 131, 134, 136, 139, 142, 151, 155, 158, 163, 164, 179, 180, 190, 217, 232, 245, 248, 254, 259, 260], "actor_network_param": 1, "value_network_param": 1, "reli": [1, 3, 6, 8, 14, 23, 49, 103, 125, 147, 153, 157, 160, 192, 205], "distance_loss": 1, "_loss_valu": 1, "v": [1, 2, 7, 9, 19, 24, 32, 37, 43, 49, 52, 53, 55, 60, 89, 101, 102, 103, 105, 108, 124, 138, 142, 148, 151, 155, 161, 163, 169, 179, 182, 184, 190, 193, 201, 206, 209, 210, 265], "pred_val": 1, "squeez": [1, 9, 10, 12, 14, 34, 49, 60, 73, 90, 95, 110, 138, 147, 150, 151, 166, 170, 179, 185, 186, 230], "manual": [1, 5, 8, 12, 22, 23, 47, 49, 53, 63, 64, 69, 97, 111, 112, 131, 137, 139, 142, 154, 155, 158, 183, 184, 186, 194, 199, 263, 264], "reconstruct": 1, "first": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, 40, 42, 44, 45, 49, 50, 51, 52, 53, 55, 58, 59, 60, 61, 68, 69, 73, 76, 78, 79, 80, 82, 83, 85, 87, 97, 99, 101, 102, 103, 109, 111, 112, 113, 115, 116, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 150, 151, 153, 155, 156, 157, 158, 160, 161, 162, 163, 164, 166, 169, 172, 173, 174, 175, 176, 179, 180, 183, 185, 186, 188, 189, 190, 192, 193, 194, 195, 196, 198, 199, 201, 202, 204, 206, 209, 219, 223, 224, 226, 264, 265], "belong": [1, 7, 127, 138, 264], "second": [1, 4, 5, 6, 7, 8, 9, 12, 13, 14, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 126, 127, 128, 130, 131, 135, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 157, 160, 161, 165, 166, 167, 168, 169, 170, 171, 173, 174, 175, 176, 177, 179, 182, 185, 186, 190, 191, 192, 193, 194, 196, 201, 204, 206, 212, 219, 224, 225, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 253, 256, 257, 264], "target_param": 1, "target_value_network_param": 1, "batch_siz": [1, 5, 6, 7, 14, 16, 17, 19, 20, 24, 34, 37, 38, 44, 45, 49, 51, 52, 55, 60, 73, 75, 78, 87, 89, 92, 94, 96, 97, 104, 110, 113, 115, 116, 117, 118, 122, 123, 124, 126, 130, 135, 136, 137, 138, 146, 147, 149, 150, 153, 155, 158, 160, 161, 162, 163, 165, 166, 167, 169, 170, 172, 176, 177, 178, 179, 183, 186, 194, 198, 199, 202, 206, 221, 222, 231, 235, 237, 251, 255], "target_valu": 1, "value_estim": 1, "l1": [1, 17, 87, 157, 178, 202], "smooth": [1, 6, 97, 172], "loss_valu": [1, 160], "td_error": 1, "pow": [1, 2, 5, 32, 63, 64, 68, 69, 72, 89, 111, 125, 190], "miss": [1, 51, 112, 113, 134, 137, 169, 173, 178, 191, 205, 223, 264], "glue": [1, 138, 164], "cost": [1, 5, 14, 49, 52, 97, 99, 109, 122, 123, 124, 125, 151, 169, 195, 224, 233], "deliv": [1, 42, 178, 221], "tensordictbas": [1, 14], "_forward": 1, "input_tensordict": 1, "unsqueez": [1, 2, 7, 12, 14, 47, 49, 58, 59, 60, 68, 69, 78, 90, 94, 95, 104, 110, 111, 117, 118, 130, 137, 140, 147, 151, 155, 159, 161, 162, 164, 166, 170, 205, 207, 230], "ndimens": 1, "inplac": [1, 12, 19, 20, 52, 110, 123, 135, 158, 174, 175, 182, 196, 202, 219, 224, 229], "loss_actor": 1, "pred_valu": 1, "pred_value_max": 1, "max": [1, 10, 11, 17, 19, 44, 49, 52, 58, 59, 60, 73, 75, 82, 87, 92, 95, 97, 98, 104, 117, 118, 123, 126, 130, 136, 137, 138, 140, 147, 158, 160, 161, 165, 167, 170, 172, 174, 175, 179, 183, 185, 186, 194, 198, 199, 201, 202, 214, 231, 260, 262], "target_value_max": 1, "ddpgloss": 1, "most": [1, 2, 4, 5, 11, 14, 17, 22, 23, 25, 42, 43, 49, 51, 52, 58, 59, 60, 73, 75, 87, 99, 101, 102, 109, 112, 117, 120, 123, 124, 125, 126, 128, 130, 131, 136, 138, 143, 144, 145, 147, 148, 153, 158, 159, 160, 162, 163, 164, 165, 166, 169, 172, 173, 174, 175, 176, 177, 178, 183, 192, 193, 195, 196, 198, 199, 201, 202, 209, 221, 224], "taken": [1, 6, 8, 14, 19, 22, 25, 60, 82, 83, 113, 119, 137, 140, 144, 153, 160, 161, 172, 185, 186, 264], "condit": [1, 14, 49, 55, 65, 102, 111, 113, 115, 123, 136, 138, 154, 173, 174, 175, 203, 264], "remaind": [1, 7, 9, 135, 142, 182], "cheetah": 1, "goal": [1, 6, 14, 15, 44, 49, 52, 58, 61, 73, 85, 97, 125, 126, 136, 137, 144, 160, 162, 164, 177, 190], "half": [1, 7, 8, 17, 95, 117, 148, 177, 178, 202, 231, 264], "dm_control": 1, "gym": [1, 14, 121, 137, 147, 160, 161, 162, 164], "env": [1, 18, 133, 136, 137, 147, 160, 161, 162, 164, 188, 195, 207, 209, 232, 247], "gymenv": [1, 137, 160], "halfcheetah": 1, "v4": [1, 160], "dmcontrolenv": 1, "By": [1, 8, 17, 19, 25, 43, 60, 63, 64, 76, 82, 87, 101, 103, 111, 113, 122, 124, 126, 136, 139, 142, 144, 145, 153, 157, 161, 169, 174, 175, 177, 178, 187, 191, 193, 194, 195, 202, 207, 254, 262], "disabl": [1, 9, 11, 15, 42, 122, 123, 147, 149, 151, 159, 163, 165, 169, 182, 185, 190, 191, 192, 193, 199, 205, 207, 254, 262, 263], "render": [1, 6, 58, 82, 90, 126, 147, 160, 262], "easier": [1, 17, 18, 23, 24, 50, 51, 58, 98, 123, 126, 144, 145, 153, 162, 166, 170, 177, 185, 190, 193, 195, 201, 202, 206], "than": [1, 3, 5, 6, 8, 10, 11, 12, 13, 14, 17, 19, 23, 25, 44, 48, 49, 50, 52, 53, 60, 67, 69, 73, 82, 85, 95, 97, 98, 99, 101, 103, 105, 112, 113, 116, 117, 121, 122, 123, 126, 128, 130, 133, 134, 136, 139, 144, 145, 146, 147, 150, 151, 153, 154, 155, 159, 160, 161, 162, 169, 170, 172, 173, 178, 179, 183, 185, 189, 190, 194, 195, 196, 198, 202, 204, 205, 207, 210, 224, 229, 263, 264], "focu": [1, 6, 7, 10, 18, 58, 59, 97, 99, 107, 122, 124, 125, 138, 140, 160, 162, 164, 166, 178, 185, 191], "from_pixel": [1, 137], "pixels_onli": 1, "make_env": 1, "helper": [1, 5, 8, 9, 14, 16, 17, 23, 47, 51, 55, 59, 97, 98, 110, 118, 122, 123, 126, 127, 128, 130, 135, 136, 137, 161, 162, 163, 164, 166, 167, 170, 172, 179, 202, 209, 212], "either": [1, 2, 4, 5, 6, 8, 17, 19, 23, 42, 44, 49, 60, 65, 87, 97, 105, 111, 112, 113, 117, 122, 124, 134, 137, 138, 148, 157, 161, 162, 163, 169, 173, 183, 186, 193, 194, 199, 200, 202, 204, 210, 214, 221, 225, 226, 262, 264], "backend": [1, 5, 6, 7, 11, 14, 16, 18, 20, 24, 25, 33, 38, 53, 55, 61, 105, 117, 119, 120, 121, 126, 129, 130, 133, 134, 137, 138, 148, 151, 159, 160, 169, 173, 175, 176, 178, 188, 189, 195, 197, 201, 208, 224, 229, 248, 254, 255, 263], "consid": [1, 6, 10, 11, 14, 23, 49, 60, 61, 68, 73, 82, 111, 115, 116, 123, 131, 134, 136, 142, 148, 151, 153, 154, 156, 158, 162, 166, 169, 173, 179, 190, 191, 192, 206, 224, 254], "dm": [1, 127, 128, 166], "lib": [1, 4, 5, 6, 10, 18, 22, 23, 108, 137, 145, 160, 188, 205, 209, 221, 247], "env_librari": 1, "env_nam": [1, 82, 160], "global": [1, 5, 6, 17, 25, 49, 56, 60, 87, 124, 139, 145, 146, 150, 153, 155, 161, 163, 165, 167, 174, 175, 183, 185, 202, 211, 231, 232, 233, 247, 254], "env_task": 1, "env_arg": 1, "env_kwarg": 1, "frame_skip": [1, 160], "modifi": [1, 3, 6, 10, 11, 14, 19, 43, 44, 49, 52, 58, 59, 73, 78, 97, 98, 118, 119, 124, 136, 140, 143, 144, 145, 156, 157, 158, 160, 162, 166, 174, 175, 180, 189, 196, 204, 224, 265], "represent": [1, 4, 10, 14, 23, 25, 43, 52, 60, 85, 97, 99, 102, 103, 105, 108, 110, 112, 121, 126, 138, 143, 144, 147, 166, 169, 170, 174, 175, 176, 194, 197, 198, 201, 204, 210], "friendli": [1, 4, 15, 23, 178], "append": [1, 7, 8, 9, 12, 14, 16, 17, 18, 19, 21, 49, 52, 60, 73, 98, 103, 109, 112, 115, 118, 122, 125, 127, 128, 130, 135, 136, 137, 138, 144, 147, 149, 150, 157, 160, 161, 162, 163, 164, 165, 166, 170, 173, 179, 182, 183, 186, 198, 199, 202, 217, 231, 232], "special": [1, 7, 10, 18, 22, 23, 48, 60, 73, 99, 101, 103, 113, 115, 116, 118, 125, 137, 148, 156, 157, 169, 172, 174, 175, 183, 194, 198, 203, 254], "torchr": 1, "transformedenv": [1, 14, 137, 160], "common": [1, 4, 6, 8, 10, 14, 17, 19, 44, 49, 51, 60, 61, 82, 95, 97, 99, 101, 103, 112, 117, 121, 124, 134, 135, 138, 144, 147, 154, 157, 158, 159, 160, 165, 172, 176, 179, 184, 188, 192, 194, 202, 222, 232, 233, 247, 264], "rescal": [1, 51, 179, 185], "heurist": [1, 82, 201, 256], "multipli": [1, 5, 12, 19, 48, 49, 60, 95, 104, 127, 143, 166, 177, 178, 232], "5": [1, 2, 3, 5, 6, 7, 9, 11, 14, 17, 20, 23, 24, 32, 34, 36, 37, 38, 40, 43, 45, 47, 48, 49, 52, 60, 64, 65, 73, 75, 78, 80, 82, 85, 87, 89, 92, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 109, 110, 111, 112, 113, 114, 115, 116, 118, 122, 123, 125, 126, 127, 130, 134, 136, 138, 139, 142, 143, 144, 145, 147, 148, 150, 151, 154, 155, 157, 158, 159, 162, 163, 164, 165, 166, 167, 172, 173, 174, 175, 177, 178, 179, 182, 188, 190, 191, 192, 193, 194, 195, 196, 198, 199, 202, 203, 204, 206, 208, 209, 211, 212, 214, 216, 219, 220, 221, 222, 225, 227, 228, 234, 240, 244, 245, 246, 248, 249, 250, 253, 255, 258, 259, 264, 265, 268], "interfac": [1, 4, 5, 6, 14, 15, 20, 22, 23, 25, 49, 60, 126, 133, 136, 160, 172, 187, 195, 210, 221], "simul": [1, 17, 18, 19, 59, 119, 160, 161, 202, 205, 223], "doubl": [1, 2, 5, 6, 13, 23, 58, 80, 95, 104, 109, 117, 121, 125, 130, 137, 138, 142, 147, 155, 158, 160, 170, 186, 193, 264], "precis": [1, 4, 8, 10, 15, 20, 61, 125, 130, 131, 138, 148, 160, 170, 178, 183, 186, 189, 200, 221, 222, 231, 236], "number": [1, 5, 6, 7, 9, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 42, 44, 49, 51, 52, 53, 55, 58, 60, 65, 82, 85, 87, 97, 99, 101, 103, 109, 112, 115, 116, 122, 123, 124, 125, 126, 127, 133, 134, 135, 136, 137, 138, 139, 140, 142, 145, 146, 149, 150, 151, 154, 157, 158, 159, 160, 161, 162, 163, 164, 169, 172, 173, 176, 179, 185, 186, 188, 189, 193, 194, 199, 200, 206, 207, 224, 229, 262], "presum": 1, "ones": [1, 2, 4, 6, 11, 12, 14, 19, 21, 32, 40, 48, 49, 60, 76, 80, 85, 89, 92, 95, 97, 110, 113, 118, 125, 136, 139, 144, 154, 155, 156, 158, 160, 161, 169, 174, 175, 178, 179, 180, 191, 192, 199, 203, 210, 221, 232, 247, 257, 264], "goe": [1, 4, 5, 23, 51, 95, 98, 99, 131, 146, 156, 160, 163, 229, 264], "wai": [1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 14, 20, 21, 22, 25, 32, 43, 44, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 60, 67, 73, 78, 80, 82, 87, 95, 98, 99, 101, 103, 105, 108, 110, 112, 113, 115, 120, 123, 124, 125, 126, 127, 131, 133, 134, 140, 142, 143, 144, 145, 146, 147, 148, 150, 151, 153, 154, 157, 158, 160, 162, 163, 165, 167, 170, 174, 175, 176, 179, 180, 185, 186, 191, 192, 193, 194, 196, 197, 198, 199, 201, 203, 205, 210, 223, 224, 233, 241, 254], "doubletofloat": [1, 160], "refer": [1, 4, 5, 6, 8, 13, 15, 16, 17, 21, 22, 23, 24, 25, 49, 59, 60, 61, 73, 76, 82, 85, 97, 99, 101, 102, 103, 105, 107, 108, 109, 112, 113, 118, 122, 123, 124, 125, 127, 128, 133, 134, 145, 150, 153, 157, 158, 160, 162, 163, 164, 169, 172, 174, 175, 178, 179, 186, 189, 190, 193, 195, 198, 199, 200, 202, 205, 209, 210, 223, 225, 226, 254, 263, 268], "float": [1, 5, 6, 7, 8, 9, 11, 12, 13, 19, 23, 37, 38, 40, 41, 44, 48, 51, 52, 58, 59, 63, 64, 72, 73, 80, 89, 95, 101, 103, 104, 108, 109, 111, 118, 122, 123, 124, 126, 136, 138, 144, 145, 147, 148, 149, 156, 157, 158, 161, 162, 164, 165, 167, 179, 180, 182, 185, 186, 187, 190, 191, 192, 193, 194, 195, 198, 199, 201, 207, 209, 217, 219, 220, 224, 229, 231, 239, 245], "in_keys_inv": [1, 14], "befor": [1, 3, 5, 6, 8, 9, 10, 11, 12, 14, 16, 19, 20, 22, 23, 25, 32, 33, 42, 43, 44, 45, 47, 49, 51, 52, 55, 58, 59, 60, 68, 69, 73, 85, 95, 97, 98, 99, 101, 102, 103, 105, 107, 108, 109, 111, 112, 113, 115, 117, 119, 122, 124, 126, 127, 130, 134, 136, 137, 138, 140, 142, 145, 147, 150, 153, 154, 157, 158, 159, 160, 162, 163, 164, 166, 169, 170, 173, 174, 175, 177, 178, 179, 180, 183, 184, 186, 188, 190, 191, 193, 196, 198, 199, 201, 219, 225, 226, 228, 229, 232, 242, 254, 260], "concaten": [1, 14, 48, 49, 60, 79, 101, 102, 110, 115, 124, 128, 135, 161, 198], "cattensor": [1, 14], "leav": [1, 8, 17, 43, 49, 51, 53, 60, 61, 85, 113, 126, 153, 154, 159, 202, 205, 223], "constant": [1, 2, 6, 17, 20, 23, 25, 48, 58, 60, 82, 87, 99, 108, 113, 119, 137, 154, 160, 161, 170, 173, 175, 178, 186, 198, 202, 254], "envcreat": 1, "inittrack": [1, 137], "observationnorm": [1, 137, 160], "parallelenv": [1, 160], "rewardsc": [1, 137], "stepcount": [1, 137, 160], "make_transformed_env": 1, "scale": [1, 6, 12, 19, 51, 56, 61, 73, 97, 105, 112, 120, 121, 122, 123, 126, 136, 137, 147, 160, 161, 167, 178, 179, 180, 185, 186, 201, 231, 245], "base_env": [1, 160], "syntax": [1, 3, 23, 25, 48, 60, 84, 86, 99, 112, 121], "append_transform": [1, 14, 137], "loc": [1, 20, 83, 134, 137, 160, 166, 231], "reward_sc": 1, "observation_vector": 1, "renam": [1, 180, 183, 188, 198, 199], "facilit": [1, 11, 14, 49, 60, 97, 112, 121, 124, 137, 194], "downstream": [1, 6, 113, 172], "oper": [1, 4, 6, 13, 14, 15, 17, 18, 19, 20, 21, 25, 42, 43, 45, 47, 49, 51, 60, 61, 63, 64, 65, 67, 68, 76, 80, 82, 83, 85, 92, 97, 98, 99, 103, 105, 107, 109, 110, 111, 116, 118, 121, 123, 124, 125, 127, 131, 136, 137, 138, 139, 142, 143, 145, 146, 148, 150, 151, 155, 156, 159, 160, 162, 166, 169, 170, 172, 173, 174, 175, 177, 183, 184, 185, 186, 188, 189, 190, 191, 195, 197, 198, 199, 200, 202, 204, 205, 206, 207, 208, 221, 223, 229, 239, 247, 254], "vector": [1, 2, 4, 5, 6, 12, 14, 22, 23, 32, 49, 52, 60, 82, 97, 99, 101, 102, 103, 110, 115, 127, 128, 137, 138, 142, 145, 155, 156, 166, 178, 187, 200, 206, 209, 221, 258], "snippet": [1, 10, 21, 58, 59, 122, 123, 136, 145, 156, 165, 177, 186, 190, 198, 199, 209, 223, 229, 247, 254], "selected_kei": 1, "observation_spec": [1, 14, 160], "out_kei": [1, 14, 137, 160], "instanti": [1, 5, 6, 10, 14, 21, 22, 25, 51, 52, 65, 67, 78, 85, 97, 105, 111, 113, 118, 126, 156, 157, 161, 172, 176, 203], "stateless": [1, 14, 22, 139, 142], "standard_norm": [1, 137], "max_frames_per_traj": [1, 160], "marker": [1, 51, 128], "ornstein": 1, "uhlenbeck": 1, "ou": 1, "significantli": [1, 19, 102, 119, 120, 124, 130, 150, 173, 177, 185, 198, 200, 204, 229, 262], "speed": [1, 5, 6, 10, 14, 19, 48, 49, 61, 85, 97, 120, 121, 122, 124, 132, 137, 139, 145, 148, 159, 160, 162, 165, 173, 177, 185, 186, 187, 197, 204, 224, 229], "throughput": [1, 122, 178], "whether": [1, 6, 8, 10, 11, 14, 20, 22, 49, 52, 95, 97, 105, 108, 112, 126, 131, 136, 138, 144, 147, 153, 160, 162, 169, 170, 172, 180, 193, 263], "individu": [1, 5, 6, 12, 21, 25, 49, 78, 85, 110, 115, 124, 126, 130, 144, 150, 155, 157, 163, 166, 170, 180], "approach": [1, 4, 5, 6, 22, 23, 25, 56, 107, 112, 132, 140, 150, 154, 155, 160, 163, 166, 179, 184, 190, 193, 200, 205, 206, 209, 222, 224, 229], "num_work": [1, 24, 44, 51, 52, 87, 92, 94, 97, 117, 122, 123, 130, 158, 167, 169, 170, 177, 179, 248, 251], "leverag": [1, 6, 49, 73, 97, 107, 108, 112, 121, 122, 124, 134, 136, 146, 179, 187, 189, 197, 200, 223], "capabl": [1, 3, 11, 15, 17, 49, 60, 73, 124, 165, 169, 198, 200, 202, 212, 223], "pytorch": [1, 2, 7, 8, 9, 11, 14, 17, 18, 21, 23, 26, 27, 28, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 42, 44, 45, 48, 49, 51, 52, 53, 55, 56, 58, 59, 60, 62, 66, 70, 73, 74, 75, 77, 78, 79, 80, 83, 84, 85, 87, 89, 90, 97, 98, 104, 106, 107, 112, 113, 114, 115, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 137, 139, 140, 141, 142, 143, 144, 145, 146, 147, 149, 150, 151, 153, 155, 156, 157, 158, 160, 161, 162, 163, 164, 165, 166, 167, 168, 170, 171, 173, 174, 175, 176, 179, 182, 183, 184, 185, 187, 188, 190, 191, 192, 193, 194, 195, 202, 204, 205, 206, 208, 211, 212, 213, 214, 215, 216, 217, 219, 220, 222, 223, 229, 230, 231, 233, 235, 238, 245, 246, 247, 248, 251, 253, 254, 256, 257, 258, 260], "adopt": [1, 20, 24, 61, 153, 156, 163], "parallel_env_constructor": 1, "env_per_collector": 1, "transform_state_dict": 1, "make_t_env": 1, "init_stat": [1, 137, 160], "copy_": [1, 3, 40, 48, 109, 145, 162, 167, 238, 245], "env_creat": 1, "parallel_env": 1, "create_env_fn": 1, "create_env_kwarg": 1, "pin_memori": [1, 122, 123, 125, 130, 248], "limit": [1, 4, 6, 9, 10, 11, 14, 15, 17, 19, 49, 73, 119, 123, 124, 137, 138, 139, 147, 148, 150, 155, 166, 173, 174, 175, 178, 183, 185, 186, 188, 189, 195, 198, 202, 224, 229, 232, 263], "lazi": [1, 59], "cat_dim": [1, 137, 160], "reduce_dim": [1, 137, 160], "load_state_dict": [1, 9, 19, 20, 38, 39, 44, 49, 53, 60, 73, 87, 96, 97, 112, 117, 121, 134, 147, 158, 161, 172, 182, 183, 198, 199, 215, 222, 231, 236, 241, 242, 243, 244, 249], "frame": [1, 6, 107, 137, 147, 159, 160, 169], "count": [1, 6, 11, 19, 22, 42, 44, 49, 60, 61, 82, 99, 103, 136, 137, 149, 160, 161, 164, 166, 169, 172, 178, 183, 198, 199, 247], "frames_per_batch": [1, 137, 160], "total_fram": [1, 137, 160], "adjust": [1, 7, 14, 19, 43, 49, 52, 73, 115, 124, 126, 151, 162, 195, 264], "total": [1, 5, 7, 9, 11, 12, 13, 14, 16, 17, 20, 21, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 58, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 83, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 122, 125, 126, 127, 128, 130, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 159, 160, 161, 163, 165, 166, 167, 169, 172, 173, 175, 177, 179, 182, 183, 185, 186, 190, 191, 192, 193, 194, 196, 204, 206, 212, 220, 222, 225, 226, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 253, 256, 257], "unchang": [1, 8, 83, 210], "seem": [1, 44, 52, 113, 125, 127, 137], "cheat": [1, 121, 166], "compar": [1, 5, 10, 15, 17, 19, 20, 23, 44, 58, 59, 61, 83, 97, 102, 108, 116, 117, 123, 124, 126, 127, 136, 138, 144, 145, 146, 148, 151, 153, 155, 157, 160, 162, 164, 166, 169, 172, 173, 174, 175, 177, 178, 182, 183, 185, 187, 190, 197, 198, 200, 201, 202, 221, 224, 229, 232], "dataset": [1, 6, 9, 17, 24, 33, 34, 35, 37, 38, 41, 42, 43, 44, 47, 49, 52, 53, 55, 57, 58, 59, 73, 75, 87, 90, 92, 94, 96, 97, 99, 116, 117, 118, 119, 120, 122, 123, 126, 127, 128, 130, 132, 136, 139, 149, 155, 158, 159, 163, 165, 166, 167, 169, 170, 172, 176, 182, 196, 200, 202, 221, 222, 234, 237, 251, 255], "10m": 1, "element": [1, 5, 6, 7, 9, 12, 17, 19, 40, 48, 49, 58, 59, 73, 76, 95, 99, 101, 102, 103, 116, 125, 136, 145, 151, 154, 160, 161, 172, 174, 175, 179, 182, 191, 192, 193, 194, 202, 224, 264, 265, 268], "anoth": [1, 4, 5, 7, 8, 11, 14, 20, 21, 23, 25, 43, 48, 49, 52, 59, 60, 63, 73, 80, 85, 98, 102, 108, 109, 112, 113, 115, 121, 128, 130, 131, 133, 136, 137, 142, 143, 154, 157, 160, 162, 163, 164, 165, 166, 173, 175, 177, 179, 180, 183, 185, 189, 196, 198, 201, 207, 214, 229, 254, 264, 265], "ratio": [1, 51, 82, 97, 115, 145, 160, 169, 179, 196], "interact": [1, 5, 6, 14, 49, 51, 60, 117, 126, 131, 147, 160, 163, 167, 170, 173, 174, 175, 198, 264], "nutshel": [1, 192], "cautiou": 1, "deal": [1, 5, 44, 49, 51, 52, 60, 97, 110, 112, 122, 146, 160], "lead": [1, 5, 6, 14, 49, 52, 61, 73, 79, 82, 87, 97, 115, 119, 131, 137, 139, 150, 158, 192, 206, 264], "bias": [1, 33, 43, 97, 112, 165], "comparison": [1, 9, 17, 21, 83, 95, 97, 98, 123, 138, 145, 146, 177, 182, 185, 190, 192, 194, 196, 202, 205, 223], "help": [1, 5, 8, 10, 15, 17, 18, 19, 22, 23, 32, 43, 49, 52, 58, 59, 60, 61, 68, 82, 87, 97, 98, 101, 102, 103, 112, 113, 120, 121, 122, 123, 126, 133, 134, 135, 137, 138, 139, 145, 146, 149, 151, 153, 156, 160, 162, 163, 164, 165, 166, 172, 177, 178, 185, 186, 191, 192, 193, 194, 198, 202, 206, 223, 224, 228, 257], "signal": [1, 13, 43, 134, 160, 162, 196], "magnitud": [1, 17, 42, 157, 202], "truncat": [1, 17, 109, 113, 145, 160, 161, 202], "A": [1, 5, 6, 7, 8, 11, 12, 14, 16, 17, 21, 22, 25, 42, 47, 48, 49, 51, 52, 53, 55, 57, 60, 63, 64, 67, 68, 69, 73, 78, 82, 83, 92, 97, 99, 101, 102, 103, 110, 112, 113, 115, 120, 121, 125, 126, 127, 128, 131, 132, 136, 139, 143, 144, 147, 150, 153, 154, 155, 160, 161, 162, 163, 165, 166, 167, 170, 172, 174, 175, 176, 177, 178, 194, 198, 202, 221, 223, 229, 232, 254, 265], "thousand": [1, 103, 120, 124, 127, 137, 166, 172], "500": [1, 6, 17, 24, 49, 52, 60, 75, 109, 115, 128, 146, 148, 161, 164, 167, 179, 232], "statist": [1, 44, 52, 87, 117, 121, 130, 143, 144, 157, 158, 160, 166, 169, 170, 172, 178, 183, 196, 198, 199, 222], "arbitrari": [1, 5, 8, 14, 64, 67, 78, 97, 102, 111, 122, 139, 147, 155, 170, 173, 176, 196], "random": [1, 6, 14, 16, 19, 20, 21, 25, 40, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 71, 72, 73, 76, 78, 80, 92, 95, 101, 102, 105, 109, 110, 111, 116, 117, 122, 123, 126, 127, 128, 134, 135, 136, 138, 139, 147, 150, 151, 153, 154, 157, 158, 160, 161, 162, 164, 165, 166, 170, 173, 183, 186, 194, 198, 199, 210], "standard": [1, 5, 8, 20, 23, 25, 44, 48, 52, 60, 61, 73, 82, 87, 92, 97, 98, 99, 105, 107, 108, 113, 136, 140, 150, 159, 167, 173, 174, 175, 179, 185, 194, 210, 224, 259, 264], "deviat": [1, 73, 82, 92, 97, 140, 150], "purpos": [1, 5, 20, 21, 22, 57, 73, 78, 85, 115, 118, 123, 125, 126, 128, 136, 137, 143, 144, 145, 153, 159, 160, 163, 164, 169, 173, 183, 185, 191, 198], "summari": [1, 82, 103, 126, 137, 144, 160, 169, 174, 177, 198, 247], "over": [1, 4, 5, 6, 7, 10, 11, 14, 17, 18, 19, 20, 22, 23, 34, 44, 47, 48, 49, 50, 51, 52, 53, 60, 61, 73, 75, 78, 79, 87, 97, 98, 99, 101, 102, 103, 109, 113, 117, 121, 122, 123, 124, 127, 130, 133, 134, 136, 139, 143, 144, 145, 146, 147, 148, 151, 155, 157, 158, 160, 161, 162, 163, 164, 165, 166, 169, 170, 172, 173, 175, 177, 179, 183, 185, 186, 188, 195, 198, 199, 202, 206, 251, 254, 264], "get_env_stat": 1, "proof_env": 1, "init_env_step": 1, "state_dict": [1, 9, 19, 38, 39, 44, 49, 53, 55, 87, 96, 97, 117, 122, 123, 134, 138, 147, 157, 158, 161, 182, 183, 196, 198, 199, 215, 221, 229, 231, 234, 235, 236, 238, 241, 242, 244, 245, 249, 252], "close": [1, 4, 6, 9, 14, 17, 19, 23, 52, 61, 94, 97, 98, 115, 122, 126, 138, 150, 153, 170, 182, 186, 202, 246, 248, 254], "5000": [1, 2, 7, 118, 127, 128, 140, 214, 232], "earlier": [1, 4, 5, 6, 22, 23, 73, 98, 99, 102, 116, 123, 124, 137, 153, 160, 166, 174, 175, 178, 224], "compositespec": [1, 14], "turn": [1, 4, 5, 6, 7, 8, 9, 14, 15, 19, 20, 23, 25, 49, 98, 102, 103, 109, 113, 126, 128, 137, 146, 153, 154, 157, 162, 166, 182, 187, 191, 192, 200], "seen": [1, 7, 10, 11, 18, 19, 44, 47, 49, 51, 97, 102, 103, 109, 113, 116, 118, 137, 144, 155, 163, 173, 174, 175, 264, 265], "requir": [1, 2, 4, 5, 6, 8, 10, 12, 14, 15, 18, 19, 20, 22, 23, 24, 25, 43, 49, 50, 51, 52, 55, 60, 61, 75, 83, 85, 87, 103, 107, 108, 113, 115, 116, 119, 123, 124, 126, 128, 130, 131, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 146, 149, 150, 151, 153, 154, 155, 158, 159, 160, 162, 163, 164, 165, 166, 172, 173, 174, 175, 176, 177, 178, 179, 182, 183, 184, 185, 186, 187, 191, 192, 193, 195, 201, 203, 206, 209, 210, 212, 221, 223, 225, 233, 239, 258, 262], "recal": [1, 6, 23, 52, 60, 98, 103, 134, 138, 160, 170, 174, 175, 191, 192, 193], "wrap": [1, 5, 6, 7, 9, 10, 16, 22, 25, 45, 60, 63, 76, 79, 87, 98, 99, 101, 102, 103, 105, 109, 110, 111, 123, 125, 130, 134, 137, 143, 147, 158, 160, 163, 164, 172, 174, 175, 176, 182, 184, 195, 200, 212, 264, 267], "flow": [1, 4, 5, 14, 21, 23, 25, 43, 52, 60, 66, 85, 97, 110, 111, 113, 160, 161, 169, 173, 183, 184, 186, 198, 199, 200, 209, 254, 264], "handl": [1, 5, 8, 10, 23, 49, 52, 53, 61, 78, 85, 108, 113, 123, 126, 127, 138, 139, 140, 155, 157, 159, 160, 163, 164, 165, 166, 172, 173, 174, 175, 178, 183, 186, 190, 192, 194, 204, 206, 221], "specifi": [1, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 22, 23, 24, 34, 39, 51, 52, 59, 76, 82, 87, 101, 110, 113, 116, 122, 123, 124, 126, 131, 135, 137, 138, 139, 142, 156, 157, 160, 163, 164, 169, 172, 174, 175, 180, 190, 191, 192, 193, 194, 197, 198, 199, 201, 202, 205, 206, 207, 209, 210, 223, 229, 243, 254, 262, 264], "scenario": [1, 4, 6, 14, 61, 105, 107, 108, 112, 117, 125, 161, 164, 200], "tensordictsequenti": [1, 137], "valueoper": [1, 160], "automat": [1, 2, 5, 6, 8, 10, 14, 15, 22, 25, 35, 40, 43, 45, 46, 47, 48, 53, 57, 61, 76, 80, 98, 114, 121, 122, 123, 124, 125, 126, 131, 138, 140, 143, 145, 148, 150, 160, 161, 164, 167, 169, 172, 177, 178, 183, 186, 210, 221, 233, 236, 254, 264], "state_valu": 1, "built": [1, 4, 5, 6, 7, 8, 22, 23, 47, 49, 59, 60, 61, 99, 108, 113, 115, 116, 121, 136, 137, 138, 160, 165, 170, 174, 175, 178, 179, 196, 205, 223, 232], "present": [1, 6, 8, 18, 22, 61, 82, 83, 97, 108, 135, 138, 144, 154, 156, 157, 158, 161, 162, 164, 172, 173, 176, 179, 194], "origin": [1, 5, 6, 7, 8, 12, 14, 17, 19, 23, 32, 49, 52, 58, 59, 60, 73, 87, 90, 97, 102, 105, 113, 115, 118, 119, 124, 125, 127, 128, 138, 143, 151, 154, 155, 157, 158, 161, 172, 173, 174, 175, 177, 178, 180, 182, 183, 184, 185, 187, 193, 198, 201, 202, 219, 221, 229, 254], "paper": [1, 5, 12, 16, 17, 52, 58, 59, 61, 73, 97, 113, 114, 118, 119, 124, 138, 160, 163, 165, 166, 167, 194, 202], "found": [1, 4, 5, 6, 10, 16, 22, 23, 25, 42, 49, 50, 60, 79, 97, 113, 115, 116, 118, 126, 128, 134, 135, 136, 137, 138, 143, 144, 148, 161, 163, 164, 165, 172, 174, 175, 182, 183, 184, 186, 194, 207, 221, 223, 264], "ddpgmlpactor": 1, "ddpgmlpqnet": 1, "materi": [1, 61, 123, 124, 146, 190, 203, 209], "achiev": [1, 3, 6, 14, 17, 19, 24, 32, 44, 49, 56, 82, 87, 97, 108, 119, 121, 125, 130, 136, 137, 138, 145, 150, 153, 154, 157, 158, 160, 161, 169, 177, 180, 183, 185, 186, 199, 200, 202, 204, 223], "practic": [1, 5, 6, 11, 20, 23, 37, 47, 49, 51, 52, 58, 59, 60, 61, 97, 99, 114, 117, 121, 124, 125, 126, 127, 132, 135, 137, 138, 145, 154, 157, 160, 174, 175, 176, 178, 190, 191, 194, 196, 233], "fake": [1, 6, 12, 17, 19, 25, 47, 52, 78, 153, 158, 194, 198, 199, 201, 202, 229], "spec": [1, 108, 126, 137, 160, 164, 180, 201, 232], "ornsteinuhlenbeckprocesswrapp": 1, "probabilisticactor": [1, 160], "tanhdelta": 1, "make_ddpg_actor": 1, "proof_environ": 1, "out_featur": [1, 33, 109, 123, 137, 180, 202], "action_spec": [1, 14, 137, 160], "shape": [1, 4, 12, 17, 23, 34, 38, 40, 42, 43, 47, 48, 49, 51, 52, 58, 59, 60, 63, 68, 76, 85, 90, 92, 95, 97, 98, 101, 103, 104, 109, 111, 118, 122, 124, 127, 128, 137, 138, 139, 142, 143, 146, 147, 148, 151, 153, 155, 157, 160, 169, 172, 179, 185, 186, 188, 193, 194, 196, 198, 202, 203, 210, 227, 232, 239, 240, 245], "actor_net": [1, 160], "action_dim": [1, 147], "distribution_class": [1, 160], "q_net": 1, "qnet": 1, "initi": [1, 6, 8, 11, 14, 16, 18, 19, 20, 21, 22, 23, 25, 37, 43, 49, 55, 60, 64, 71, 72, 73, 80, 97, 98, 99, 102, 103, 109, 111, 112, 117, 122, 123, 124, 127, 128, 130, 137, 139, 143, 145, 148, 149, 153, 157, 158, 159, 161, 162, 163, 164, 166, 167, 169, 174, 175, 176, 190, 193, 197, 199, 204, 207, 224, 232, 264], "reset": [1, 19, 117, 128, 137, 147, 160, 161, 162, 164, 166, 169, 173, 174, 175, 183, 187, 196, 198, 199, 222, 253, 257], "suggest": [1, 4, 12, 52, 86, 97, 128, 138, 145, 146, 147, 148, 151, 158, 169, 172, 174, 175, 176], "nois": [1, 6, 12, 52, 73, 149, 196], "reach": [1, 10, 17, 52, 60, 61, 97, 134, 136, 138, 147, 148, 150, 160, 164, 174, 175, 202], "minimum": [1, 49, 82, 160, 164, 174, 175, 178, 192], "annealing_fram": 1, "1_000_000": [1, 96, 137], "actor_model_explor": 1, "annealing_num_step": [1, 137], "share_memori": 1, "iter": [1, 3, 4, 6, 11, 12, 14, 16, 24, 34, 42, 43, 44, 47, 52, 53, 55, 60, 75, 85, 87, 92, 94, 96, 98, 103, 105, 112, 113, 116, 117, 118, 126, 127, 128, 132, 134, 135, 137, 143, 145, 150, 158, 160, 161, 162, 163, 164, 167, 169, 170, 173, 179, 182, 183, 195, 198, 199, 204, 212, 219, 224, 246], "tight": [1, 105, 107, 108], "per": [1, 5, 6, 8, 11, 19, 61, 87, 97, 103, 121, 122, 126, 127, 128, 130, 134, 136, 137, 138, 146, 148, 153, 157, 160, 164, 165, 166, 169, 170, 172, 176, 177, 178, 179, 186, 190, 195, 206, 219, 224, 232, 247], "sync": [1, 7, 10, 11, 16, 55, 121, 122, 123, 143, 147, 189, 195, 259], "natur": [1, 5, 6, 17, 18, 23, 24, 25, 45, 61, 73, 75, 97, 107, 116, 119, 126, 127, 136, 137, 138, 163, 172, 192, 194, 198, 201, 202, 264], "resourc": [1, 53, 58, 59, 61, 73, 87, 105, 119, 123, 134, 136, 153, 160, 169, 172, 177, 224, 237], "alloc": [1, 6, 18, 21, 22, 23, 48, 55, 59, 130, 136, 153, 169, 176, 177, 194, 203, 224, 260], "gpu": [1, 3, 4, 7, 12, 17, 18, 19, 20, 24, 33, 38, 40, 42, 43, 47, 48, 49, 50, 52, 53, 54, 56, 57, 60, 61, 64, 72, 73, 77, 80, 81, 82, 83, 88, 92, 96, 97, 99, 105, 111, 114, 117, 120, 121, 122, 123, 124, 125, 132, 133, 134, 135, 136, 137, 138, 139, 145, 148, 149, 150, 151, 153, 155, 158, 160, 161, 163, 164, 165, 172, 173, 176, 178, 179, 186, 187, 197, 202, 207, 208, 211, 215, 217, 224, 231, 232, 235, 241, 252, 254, 256, 259], "worker": [1, 6, 7, 11, 16, 51, 52, 61, 115, 120, 122, 123, 135, 136, 148, 160, 163, 164, 169, 213], "syncdatacollector": [1, 137, 160], "process": [1, 4, 5, 6, 11, 12, 14, 15, 16, 17, 18, 20, 22, 23, 24, 25, 42, 47, 49, 50, 51, 52, 56, 60, 61, 73, 82, 85, 97, 103, 105, 110, 112, 113, 114, 116, 118, 119, 120, 121, 122, 123, 125, 126, 127, 128, 132, 133, 136, 137, 138, 144, 145, 147, 148, 150, 155, 159, 161, 163, 164, 165, 166, 169, 172, 174, 175, 176, 177, 178, 183, 185, 186, 188, 189, 194, 196, 197, 202, 204, 205, 209, 214, 229, 263, 264], "offer": [1, 11, 14, 18, 42, 43, 53, 61, 99, 122, 124, 139, 142, 145, 146, 198], "multiasyncdatacollector": [1, 160], "rollout": [1, 137, 160], "asynchron": [1, 21, 61, 120, 121, 126, 135, 150, 156, 160, 164], "manner": [1, 5, 8, 14, 19, 61, 160, 172], "therebi": [1, 187, 190, 194], "decoupl": [1, 61, 154, 198], "factori": [1, 6, 101, 115, 191, 192, 233], "empti": [1, 5, 6, 8, 14, 19, 21, 23, 49, 80, 95, 108, 128, 130, 144, 145, 148, 154, 159, 166, 169, 172, 174, 175, 177, 186, 192, 194, 203, 207, 239, 247, 265], "maximum": [1, 11, 49, 60, 82, 102, 113, 126, 128, 137, 138, 145, 160, 165, 166, 174, 175, 186, 195, 196], "non": [1, 2, 3, 5, 8, 11, 14, 19, 22, 49, 51, 53, 54, 56, 60, 82, 85, 97, 98, 100, 103, 112, 113, 119, 122, 126, 130, 131, 135, 136, 137, 138, 140, 142, 146, 148, 151, 157, 158, 161, 162, 165, 166, 169, 173, 174, 177, 183, 185, 186, 190, 200, 203, 229, 254, 265, 267], "termin": [1, 14, 23, 53, 60, 87, 160, 161, 163, 164, 172, 189, 207, 226], "effect": [1, 5, 6, 8, 9, 11, 23, 55, 73, 82, 97, 103, 108, 124, 127, 128, 139, 153, 155, 157, 161, 165, 166, 172, 177, 178, 192, 200, 201, 206, 262], "regist": [1, 22, 43, 47, 78, 108, 109, 112, 121, 122, 124, 134, 142, 153, 154, 160, 174, 175, 178, 209, 221], "new": [1, 2, 4, 5, 6, 8, 9, 12, 13, 14, 22, 23, 24, 25, 31, 42, 43, 45, 48, 49, 50, 52, 55, 60, 62, 73, 75, 79, 80, 82, 85, 97, 99, 102, 103, 108, 109, 110, 112, 113, 117, 121, 122, 123, 125, 126, 127, 137, 138, 142, 143, 145, 147, 150, 153, 154, 155, 156, 157, 158, 160, 161, 162, 165, 166, 169, 172, 174, 175, 179, 180, 182, 187, 188, 189, 190, 194, 196, 197, 198, 199, 200, 201, 205, 206, 207, 209, 223, 224, 225, 226, 227, 264], "infer": [1, 3, 6, 8, 9, 10, 19, 20, 21, 22, 23, 42, 48, 49, 60, 61, 97, 101, 103, 105, 113, 121, 125, 126, 130, 140, 143, 145, 159, 160, 162, 172, 173, 178, 179, 186, 188, 189, 194, 195, 197, 198, 199, 200, 202, 204, 207, 210, 224, 225, 226, 229, 236, 242, 258], "around": [1, 5, 6, 11, 23, 24, 49, 55, 58, 59, 75, 97, 117, 128, 139, 145, 146, 151, 155, 158, 166, 169, 170, 174, 175, 183, 190, 191, 195, 198, 264, 267], "1m": [1, 137, 160], "10_000": [1, 97], "outer": [1, 6, 122, 146], "loop": [1, 3, 4, 5, 7, 8, 11, 16, 17, 19, 21, 25, 44, 47, 49, 51, 52, 59, 60, 65, 73, 75, 78, 85, 87, 97, 111, 118, 123, 126, 127, 138, 139, 145, 146, 147, 153, 155, 163, 164, 166, 170, 178, 184, 186, 202, 251], "equal": [1, 4, 10, 95, 97, 115, 116, 125, 138, 148, 157, 160, 161, 172, 174, 175, 177, 193], "length": [1, 7, 12, 14, 17, 20, 42, 45, 49, 52, 60, 102, 103, 105, 113, 115, 116, 124, 128, 137, 138, 147, 160, 165, 166, 176, 186, 192, 194, 197, 202, 206, 209, 252, 265], "sub": [1, 6, 20, 25, 49, 60, 109, 124, 129, 144, 150, 160, 164, 166, 169, 177, 178, 186, 247, 264], "traj_len": [1, 137], "200": [1, 6, 9, 90, 93, 137, 148, 164, 185, 195, 220], "init_random_fram": 1, "num_collector": 1, "explorationtyp": [1, 137, 160], "reset_at_each_it": 1, "split_traj": [1, 160], "exploration_typ": 1, "assess": 1, "mode": [1, 4, 7, 9, 12, 13, 16, 20, 37, 42, 43, 49, 51, 52, 55, 60, 73, 79, 82, 85, 86, 87, 97, 112, 115, 116, 117, 121, 122, 130, 131, 135, 137, 140, 143, 145, 147, 148, 151, 158, 162, 165, 166, 167, 170, 172, 173, 175, 178, 180, 185, 188, 189, 195, 196, 197, 199, 200, 201, 242], "dedic": [1, 10, 55, 60, 112, 135, 163, 164, 178, 200, 209, 224, 229, 265], "frequenc": [1, 7, 83, 126, 224], "trainer": [1, 16, 17, 24, 55, 126, 132, 149, 162, 163, 164, 202], "make_record": 1, "record_interv": 1, "load": [1, 5, 17, 18, 19, 20, 21, 23, 24, 34, 35, 38, 39, 42, 43, 47, 51, 52, 55, 73, 75, 87, 90, 96, 98, 104, 105, 110, 113, 116, 119, 121, 123, 125, 127, 140, 145, 148, 153, 160, 169, 170, 172, 175, 179, 182, 183, 185, 186, 187, 188, 195, 196, 202, 205, 207, 209, 214, 215, 221, 222, 223, 225, 226, 231, 232, 236, 241, 242, 243, 244, 247, 249, 250, 256, 258], "recorder_obj": 1, "record_fram": 1, "1000": [1, 2, 7, 9, 17, 19, 43, 52, 79, 89, 94, 96, 117, 119, 122, 123, 125, 127, 135, 137, 145, 150, 160, 161, 170, 173, 177, 178, 188, 200, 202, 204, 213, 214, 227, 232, 238, 247], "policy_explor": 1, "everi": [1, 2, 6, 8, 10, 12, 14, 15, 17, 18, 19, 24, 43, 44, 47, 49, 51, 52, 60, 61, 87, 103, 117, 124, 125, 127, 128, 130, 136, 137, 142, 147, 148, 151, 153, 154, 155, 157, 158, 160, 161, 162, 164, 166, 169, 170, 179, 194, 198, 199, 202, 209, 224, 233], "10": [1, 3, 4, 6, 7, 8, 11, 13, 14, 16, 17, 19, 20, 23, 25, 33, 34, 37, 38, 41, 42, 43, 44, 45, 47, 49, 51, 52, 53, 60, 73, 78, 79, 80, 83, 87, 89, 92, 93, 94, 95, 96, 103, 104, 105, 109, 112, 115, 117, 122, 123, 125, 126, 127, 129, 130, 134, 136, 137, 139, 140, 142, 143, 145, 147, 148, 149, 150, 151, 155, 157, 158, 159, 160, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 177, 179, 180, 185, 188, 190, 191, 192, 195, 196, 197, 198, 199, 202, 203, 204, 205, 207, 209, 210, 211, 212, 213, 216, 220, 222, 224, 227, 232, 234, 238, 239, 240, 241, 242, 243, 244, 246, 247, 249, 250, 251, 253, 268], "lazymemmapstorag": [1, 137, 147], "prioritizedsampl": 1, "randomsampl": [1, 19, 138, 166, 183, 186, 198, 199], "tensordictreplaybuff": [1, 137, 147], "flavor": [1, 5, 23, 107], "priorit": [1, 194], "error": [1, 4, 5, 6, 8, 10, 11, 12, 22, 37, 38, 43, 47, 49, 50, 52, 53, 58, 60, 61, 68, 78, 97, 101, 107, 108, 111, 122, 125, 131, 135, 140, 149, 153, 156, 160, 161, 173, 174, 175, 185, 190, 191, 196, 198, 205, 209, 221, 223, 258, 264], "higher": [1, 19, 44, 48, 53, 82, 97, 99, 122, 123, 127, 128, 131, 142, 146, 158, 159, 160, 161, 169, 170, 172, 183, 186, 196, 198, 200, 204, 206, 212, 224, 229, 262, 264], "likelihood": [1, 49, 99, 104, 127], "regular": [1, 4, 5, 6, 8, 10, 19, 23, 24, 97, 114, 127, 128, 135, 146, 154, 155, 165, 166, 167, 190, 192, 194, 200, 221], "circular": 1, "compos": [1, 5, 6, 10, 12, 17, 19, 21, 25, 44, 52, 58, 59, 73, 75, 79, 87, 90, 92, 94, 96, 97, 99, 108, 110, 113, 115, 117, 119, 121, 123, 130, 136, 137, 140, 142, 143, 147, 149, 151, 155, 158, 159, 160, 163, 165, 167, 169, 170, 172, 179, 183, 198, 199, 201, 205, 210, 214, 221, 222, 230, 251, 255], "pick": [1, 6, 19, 44, 98, 127, 161, 166], "physic": [1, 14, 103, 178], "memori": [1, 4, 5, 6, 8, 10, 16, 17, 18, 19, 21, 22, 23, 37, 48, 49, 51, 55, 61, 80, 87, 95, 97, 100, 105, 110, 112, 115, 118, 121, 122, 123, 124, 132, 136, 137, 145, 146, 147, 151, 157, 163, 165, 169, 172, 176, 179, 185, 189, 190, 193, 194, 195, 200, 202, 219, 221, 229, 231, 248, 260], "map": [1, 6, 7, 12, 13, 17, 49, 52, 58, 60, 75, 90, 97, 98, 102, 103, 104, 108, 110, 112, 113, 115, 116, 119, 127, 137, 139, 140, 144, 146, 153, 154, 155, 160, 161, 164, 172, 174, 175, 177, 179, 183, 198, 201, 202, 206, 210, 214], "arrai": [1, 6, 32, 43, 44, 47, 51, 58, 59, 85, 89, 95, 103, 109, 117, 127, 128, 140, 147, 158, 159, 161, 166, 167, 172, 193, 230], "desir": [1, 5, 8, 12, 14, 16, 49, 51, 52, 73, 82, 97, 110, 112, 116, 136, 143, 157, 169, 172, 185, 191, 203, 265], "hyperparamet": [1, 6, 14, 17, 52, 87, 112, 115, 121, 126, 190, 194], "randomcroptensordict": 1, "make_replay_buff": 1, "buffer_s": 1, "random_crop_len": 1, "prefetch": [1, 137, 178], "prb": 1, "sampler": [1, 6, 19, 34, 55, 110, 122, 123, 138, 160, 166, 167, 183, 186, 198, 199], "max_capac": 1, "alpha": [1, 5, 6, 15, 98, 108, 127, 128, 147, 150, 172, 179, 190, 194, 265], "7": [1, 3, 5, 6, 17, 18, 19, 22, 23, 34, 36, 51, 58, 59, 80, 85, 95, 96, 101, 109, 116, 117, 122, 123, 130, 135, 136, 147, 148, 150, 158, 159, 167, 172, 173, 174, 175, 176, 178, 179, 185, 189, 200, 203, 204, 205, 207, 208, 209, 211, 212, 216, 219, 220, 222, 223, 225, 226, 228, 229, 231, 248, 254, 257, 268], "beta": [1, 6, 20, 52, 105, 118, 121, 193, 217, 235, 252], "scratch_dir": 1, "buffer_scratch_dir": 1, "sample_dim": 1, "temporari": [1, 5, 117, 126, 178, 182], "disk": [1, 4, 23, 25, 105, 112, 137, 188, 189, 195, 209, 224], "tempfil": [1, 7, 87, 117, 125, 126, 134], "tmpdir": 1, "temporarydirectori": [1, 87, 117, 125], "along": [1, 4, 5, 6, 7, 8, 14, 17, 21, 23, 43, 48, 49, 53, 54, 55, 56, 60, 83, 97, 101, 102, 110, 116, 117, 119, 122, 123, 127, 128, 132, 133, 137, 153, 157, 161, 163, 170, 172, 176, 192, 202, 203], "dimens": [1, 5, 6, 7, 12, 14, 18, 20, 21, 44, 47, 48, 49, 60, 78, 79, 87, 92, 99, 101, 102, 103, 110, 115, 121, 124, 127, 130, 137, 139, 147, 148, 155, 157, 159, 160, 162, 174, 175, 176, 191, 194, 198, 199, 206, 224], "feed": [1, 6, 12, 19, 44, 47, 49, 60, 97, 100, 102, 105, 112, 124, 127, 128, 134, 135, 147, 161, 166, 170, 177, 196], "adapt": [1, 2, 14, 17, 24, 87, 105, 126, 202], "divid": [1, 7, 8, 9, 10, 11, 12, 14, 15, 19, 85, 97, 99, 127, 135, 136, 150, 154, 164, 177, 178, 182], "yield": [1, 6, 11, 12, 16, 17, 19, 21, 104, 112, 115, 116, 118, 124, 125, 162, 164, 185, 193, 202, 242], "regard": [1, 6, 11, 14, 23, 60, 112, 145, 146, 160, 169, 264], "25": [1, 7, 9, 22, 23, 73, 89, 90, 97, 109, 117, 123, 158, 163, 165, 172, 182, 185, 204, 232, 234, 239], "balanc": [1, 6, 18, 134, 169], "choic": [1, 4, 6, 8, 49, 87, 126, 128, 166], "heterogen": [1, 197], "figur": [1, 8, 12, 14, 22, 34, 49, 51, 52, 73, 82, 97, 117, 121, 124, 126, 127, 128, 137, 145, 150, 160, 161, 162, 166, 169, 170, 172, 177, 179, 183, 196, 198, 237, 265, 267], "dataflow": 1, "8": [1, 3, 5, 6, 7, 9, 13, 14, 16, 17, 19, 23, 34, 49, 52, 58, 59, 65, 73, 87, 90, 93, 101, 102, 109, 111, 115, 116, 118, 119, 122, 124, 127, 128, 130, 134, 135, 138, 143, 145, 147, 148, 150, 154, 158, 159, 165, 166, 167, 169, 172, 173, 174, 175, 177, 179, 185, 186, 188, 189, 190, 194, 200, 202, 207, 208, 209, 213, 215, 216, 217, 224, 225, 226, 229, 231, 235, 239, 248, 256, 259, 260, 264, 265, 268], "ceil_div": 1, "y": [1, 2, 5, 7, 17, 18, 20, 22, 23, 25, 32, 37, 38, 40, 41, 43, 47, 48, 51, 52, 63, 64, 65, 67, 68, 69, 71, 72, 73, 76, 82, 85, 89, 92, 93, 95, 96, 97, 98, 101, 102, 104, 110, 111, 113, 116, 122, 125, 138, 142, 145, 147, 148, 149, 156, 165, 169, 172, 173, 174, 175, 176, 186, 187, 192, 196, 206, 209, 213, 246, 247, 256, 257, 265], "known": [1, 4, 5, 12, 17, 42, 113, 124, 136, 138, 142, 144, 157, 161, 166, 186, 189, 201, 202], "utd": [1, 137], "update_to_data": 1, "64": [1, 5, 6, 14, 15, 17, 18, 19, 20, 23, 34, 37, 38, 43, 49, 52, 60, 73, 87, 95, 97, 102, 104, 115, 119, 122, 123, 124, 126, 130, 135, 137, 139, 146, 147, 155, 159, 160, 162, 163, 165, 167, 174, 175, 176, 179, 185, 202, 204, 206, 209, 220, 222, 232, 234, 239, 253], "reproduc": [1, 12, 25, 52, 73, 97, 138, 145, 160, 164, 173, 186], "realiz": [1, 17, 202], "sever": [1, 2, 3, 10, 11, 15, 16, 19, 22, 25, 45, 47, 52, 53, 54, 61, 73, 78, 97, 99, 113, 122, 127, 133, 136, 143, 147, 150, 153, 154, 156, 158, 160, 162, 163, 169, 170, 173, 174, 175, 177, 178, 192, 201, 209, 221, 224, 254], "ve": [1, 5, 6, 7, 8, 17, 21, 22, 25, 45, 47, 50, 76, 78, 113, 121, 125, 130, 137, 143, 144, 146, 153, 155, 161, 163, 170, 177, 185, 190, 192, 193, 202, 214], "_must_": 1, "99": [1, 63, 64, 67, 68, 69, 71, 72, 111, 160, 161, 164], "lmbda": [1, 160], "tau": [1, 161], "001": [1, 12, 14, 24, 44, 51, 89, 92, 94, 96, 97, 103, 112, 117, 134, 150, 161, 162, 166, 169, 170, 221, 231, 242, 243, 244, 250, 251, 255], "decai": [1, 117, 137, 158, 161, 217], "factor": [1, 18, 20, 117, 130, 158, 161, 162, 173, 184, 185], "off": [1, 7, 8, 9, 12, 16, 19, 21, 24, 34, 43, 49, 51, 52, 98, 112, 113, 117, 119, 123, 126, 127, 145, 153, 158, 160, 162, 163, 164, 172, 182, 188, 190], "dictat": [1, 14], "introduc": [1, 11, 15, 16, 17, 21, 22, 23, 24, 42, 54, 60, 75, 78, 79, 87, 97, 99, 109, 118, 119, 121, 122, 134, 145, 148, 150, 153, 162, 164, 165, 166, 172, 173, 174, 175, 176, 178, 182, 183, 186, 187, 189, 190, 192, 193, 196, 198, 200, 201, 202, 204, 205, 206, 210, 221, 223, 224], "outdat": 1, "trick": [1, 6, 10, 49, 131, 136, 146], "multi": [1, 5, 6, 14, 18, 47, 49, 52, 53, 54, 55, 56, 61, 77, 99, 113, 121, 122, 124, 132, 133, 134, 135, 137, 138, 150, 160, 162, 165, 169, 178, 179, 186, 194], "altern": [1, 6, 10, 23, 48, 49, 102, 113, 117, 123, 139, 144, 148, 156, 158, 160, 166, 169, 172, 173, 183, 185, 193, 200, 210], "hack": [1, 138, 186, 190], "find": [1, 2, 4, 5, 6, 8, 10, 17, 22, 23, 48, 52, 73, 82, 83, 85, 87, 98, 101, 121, 123, 127, 128, 136, 138, 142, 143, 145, 150, 154, 158, 161, 164, 166, 169, 174, 175, 184, 190, 191, 192, 193, 196, 198, 201, 202, 205, 209, 223, 224, 254], "despit": [1, 73, 134], "fact": [1, 3, 5, 6, 8, 12, 14, 19, 22, 23, 60, 73, 80, 97, 99, 103, 113, 125, 154, 160, 161, 170], "part": [1, 3, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 20, 23, 42, 43, 45, 49, 52, 58, 59, 60, 73, 76, 87, 98, 100, 103, 113, 116, 118, 121, 122, 124, 125, 128, 131, 132, 135, 136, 137, 138, 140, 144, 145, 150, 153, 154, 160, 166, 174, 175, 182, 183, 184, 185, 187, 189, 190, 192, 197, 199, 205, 209, 210, 223, 224, 254, 262, 263, 264], "thank": [1, 9, 19, 49, 104, 115, 119, 126, 127, 128, 136, 138, 166, 177, 178, 186, 188, 189, 196, 205, 223], "hardupd": 1, "softupd": [1, 137], "appropri": [1, 6, 7, 8, 42, 49, 60, 126, 127, 134, 154, 158, 163, 170, 176, 183, 198, 199, 200, 221], "locat": [1, 6, 31, 48, 78, 80, 82, 103, 109, 113, 136, 158, 160, 166, 169, 174, 175, 177, 179, 189, 205, 223, 224, 239, 259], "target_net_updat": 1, "ep": [1, 13, 73, 118, 130, 137, 143, 164, 174, 175, 180, 190, 199, 201, 202, 219], "adam": [1, 6, 11, 13, 14, 47, 49, 52, 69, 96, 97, 99, 110, 111, 118, 136, 137, 147, 149, 153, 160, 161, 162, 164, 166, 173, 211, 212, 215, 260], "optimizer_actor": 1, "lr": [1, 7, 11, 14, 16, 19, 24, 37, 38, 43, 44, 47, 49, 52, 65, 67, 69, 87, 89, 92, 94, 96, 97, 98, 99, 102, 103, 104, 110, 111, 112, 115, 117, 118, 122, 123, 130, 134, 135, 136, 137, 145, 147, 149, 150, 158, 160, 161, 162, 163, 164, 166, 167, 169, 170, 179, 211, 215, 217, 221, 222, 231, 238, 242, 243, 244, 246, 250, 251, 255, 260], "1e": [1, 13, 17, 20, 37, 38, 43, 63, 65, 67, 68, 69, 71, 72, 87, 93, 98, 111, 118, 125, 126, 130, 139, 151, 155, 158, 160, 161, 162, 164, 180, 190, 202, 219, 238], "weight_decai": [1, 98, 112, 158, 179, 217], "optimizer_valu": 1, "total_collection_step": 1, "pretti": [1, 16, 21, 44, 109, 113, 126, 146, 164, 183, 206], "rewards_ev": 1, "collected_fram": 1, "pbar": [1, 14, 137, 160], "r0": [1, 122], "enumer": [1, 7, 17, 19, 37, 38, 44, 49, 51, 52, 75, 87, 92, 94, 96, 98, 103, 115, 117, 123, 124, 127, 130, 137, 158, 159, 160, 163, 166, 167, 169, 170, 194, 202, 221, 222, 251, 255], "update_policy_weights_": 1, "numel": [1, 7, 8, 78, 97, 125, 130, 137, 148, 151, 160, 162, 190, 247, 256], "extend": [1, 4, 5, 6, 8, 19, 24, 52, 58, 59, 61, 87, 105, 106, 107, 113, 121, 123, 128, 135, 137, 159, 160, 163, 164, 172, 176, 178, 180, 187, 200, 209, 221], "current_fram": 1, "_": [1, 5, 11, 12, 14, 15, 16, 19, 21, 33, 34, 35, 36, 37, 40, 44, 48, 49, 52, 60, 75, 80, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 104, 106, 111, 115, 117, 118, 135, 136, 137, 138, 139, 140, 143, 145, 146, 148, 150, 151, 153, 158, 160, 161, 162, 164, 165, 166, 170, 173, 177, 178, 182, 183, 185, 186, 196, 198, 199, 200, 205, 208, 211, 212, 213, 214, 217, 220, 230, 231, 235, 238, 253, 260, 264], "rang": [1, 5, 6, 7, 9, 11, 12, 14, 16, 17, 18, 19, 21, 25, 34, 37, 38, 42, 44, 49, 51, 52, 53, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 78, 82, 85, 87, 89, 92, 94, 96, 97, 98, 99, 102, 103, 104, 105, 107, 108, 111, 113, 115, 116, 117, 118, 122, 123, 126, 127, 128, 130, 135, 136, 137, 138, 139, 143, 145, 147, 150, 153, 155, 158, 159, 160, 161, 162, 164, 165, 166, 167, 169, 170, 173, 174, 175, 177, 178, 179, 180, 182, 185, 186, 187, 194, 195, 196, 199, 202, 204, 210, 211, 212, 213, 216, 220, 222, 227, 231, 238, 239, 246, 251, 253, 260], "sampled_tensordict": 1, "backward": [1, 2, 3, 6, 7, 8, 11, 12, 13, 14, 15, 16, 19, 25, 32, 37, 38, 43, 44, 45, 47, 49, 52, 61, 63, 64, 65, 67, 68, 69, 73, 75, 76, 87, 89, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 111, 115, 117, 118, 121, 123, 124, 125, 127, 128, 129, 132, 134, 135, 136, 137, 142, 146, 147, 150, 151, 155, 158, 160, 161, 162, 163, 164, 166, 167, 169, 170, 173, 174, 175, 192, 199, 211, 212, 213, 215, 221, 222, 231, 239, 246, 248, 251, 255, 260], "gn1": 1, "clip_grad_norm_": [1, 7, 14, 49, 115, 160], "zero_grad": [1, 3, 6, 7, 12, 14, 19, 37, 38, 44, 47, 49, 52, 65, 67, 68, 69, 73, 75, 87, 89, 92, 94, 96, 97, 98, 99, 102, 103, 104, 111, 115, 117, 118, 122, 123, 127, 128, 130, 134, 136, 137, 147, 150, 153, 158, 160, 161, 162, 164, 166, 167, 169, 170, 173, 199, 215, 221, 222, 231, 246, 251, 255], "gn2": 1, "gn": [1, 14], "prioriti": [1, 8, 183], "update_tensordict_prior": 1, "td_record": 1, "r_evalu": 1, "len": [1, 7, 9, 12, 14, 17, 19, 34, 37, 38, 45, 47, 49, 51, 52, 55, 60, 73, 75, 79, 87, 93, 94, 96, 97, 98, 99, 102, 103, 104, 105, 108, 115, 116, 117, 118, 122, 123, 125, 127, 128, 130, 136, 138, 143, 150, 158, 161, 162, 163, 166, 167, 170, 172, 176, 179, 182, 186, 201, 202, 210, 216, 217, 222], "rn": 1, "rs": [1, 166], "std": [1, 2, 4, 5, 6, 12, 15, 19, 22, 23, 51, 58, 59, 73, 90, 92, 95, 97, 117, 150, 156, 158, 159, 164, 167, 172, 183, 187, 188, 190, 198, 199, 205, 209, 221, 223, 230, 232, 258], "set_descript": [1, 14, 137, 160], "2f": [1, 7, 19, 97, 115, 119, 123, 127, 130, 157, 159, 162, 164, 177, 178, 183, 185, 198, 199, 204, 229, 232, 235, 253], "grad": [1, 2, 6, 12, 13, 16, 32, 43, 47, 63, 64, 68, 73, 76, 78, 89, 101, 104, 111, 123, 125, 127, 128, 129, 130, 131, 134, 136, 142, 146, 151, 153, 160, 162, 163, 164, 190, 206, 212, 217, 231, 251], "norm": [1, 2, 14, 17, 19, 52, 78, 89, 97, 110, 121, 124, 154, 157, 160, 172, 183, 196, 202], "shutdown": [1, 16, 135, 162, 163, 164, 213], "del": [1, 44, 130, 142, 153, 160, 185, 187, 238], "plot": [1, 6, 12, 14, 17, 51, 52, 73, 82, 89, 113, 117, 126, 137, 147, 150, 160, 161, 162, 167, 170, 172, 196, 237], "mention": [1, 5, 6, 10, 11, 15, 16, 52, 60, 73, 85, 95, 97, 98, 112, 123, 124, 136, 137, 161, 163, 169, 172, 186, 198], "greater": [1, 11, 49, 52, 125, 177, 189, 207], "matplotlib": [1, 6, 12, 14, 34, 44, 51, 52, 57, 73, 75, 89, 90, 92, 94, 96, 104, 117, 127, 128, 137, 147, 150, 158, 160, 161, 166, 167, 170, 172, 179, 196, 237], "pyplot": [1, 6, 12, 14, 34, 44, 51, 52, 73, 75, 89, 90, 92, 94, 96, 104, 117, 127, 128, 137, 147, 150, 158, 160, 161, 166, 167, 170, 172, 179, 196, 237], "plt": [1, 6, 12, 14, 34, 44, 51, 52, 73, 75, 89, 90, 92, 94, 96, 117, 127, 128, 137, 147, 150, 158, 160, 161, 166, 167, 170, 172, 179, 196, 237], "zip": [1, 6, 17, 18, 44, 49, 50, 52, 104, 105, 108, 112, 116, 128, 138, 139, 151, 155, 161, 162, 164, 170, 172, 179, 182, 186, 202, 209, 217, 224, 231], "label": [1, 6, 17, 34, 40, 43, 44, 51, 52, 58, 59, 73, 75, 78, 87, 90, 92, 94, 96, 97, 99, 103, 109, 110, 113, 115, 117, 119, 122, 124, 127, 134, 135, 138, 147, 150, 158, 159, 162, 166, 169, 170, 179, 186, 202, 209, 214, 222, 232, 235, 237, 251, 260, 264], "legend": [1, 52, 147, 264], "xlabel": [1, 14, 52, 73, 137, 161, 172], "ylabel": [1, 17, 52, 73, 161, 172], "tight_layout": [1, 51, 73, 150, 158], "concret": [1, 5, 6, 8, 11, 150, 160, 190, 201], "takeawai": [1, 114], "further": [1, 4, 5, 6, 8, 19, 21, 23, 47, 61, 73, 87, 97, 113, 116, 118, 124, 127, 143, 145, 150, 157, 160, 172, 173, 178, 185, 194, 196, 197, 198, 199, 200, 205, 221, 223, 229, 254], "dispatch": [1, 5, 15, 121, 156, 178, 209], "distpatch": 1, "iql": 1, "flexibl": [1, 2, 5, 6, 23, 24, 25, 49, 60, 85, 105, 112, 115, 121, 122, 132, 200, 241], "minut": [1, 7, 9, 12, 13, 14, 17, 20, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 130, 137, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 159, 160, 161, 165, 166, 167, 169, 170, 173, 175, 179, 182, 185, 190, 191, 192, 193, 194, 196, 204, 206, 212, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 253, 256, 257], "000": [1, 7, 9, 12, 13, 14, 17, 19, 20, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 130, 137, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 160, 161, 165, 166, 167, 169, 170, 172, 173, 175, 177, 179, 182, 185, 190, 191, 192, 193, 194, 196, 204, 206, 212, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 253, 256, 257], "coding_ddpg": 1, "jupyt": [1, 7, 9, 12, 13, 14, 17, 20, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 130, 137, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 160, 161, 165, 166, 167, 169, 170, 172, 173, 175, 179, 182, 185, 190, 191, 192, 193, 194, 196, 204, 206, 212, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 253, 256, 257], "notebook": [1, 7, 9, 12, 13, 14, 17, 18, 20, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 83, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 130, 137, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 160, 161, 165, 166, 167, 169, 170, 172, 173, 175, 179, 182, 185, 190, 191, 192, 193, 194, 196, 204, 206, 212, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 253, 256, 257, 259], "ipynb": [1, 7, 9, 12, 13, 14, 17, 20, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 130, 137, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 160, 161, 165, 166, 167, 169, 173, 175, 179, 182, 185, 190, 191, 192, 193, 194, 196, 204, 206, 212, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 253, 256, 257], "galleri": [1, 7, 9, 12, 13, 14, 17, 20, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 130, 137, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 160, 161, 165, 166, 167, 169, 173, 175, 179, 182, 185, 190, 191, 192, 193, 194, 196, 204, 206, 212, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 253, 256, 257], "sphinx": [1, 7, 9, 12, 13, 14, 17, 20, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 130, 137, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 160, 161, 165, 166, 167, 169, 173, 175, 179, 182, 185, 190, 191, 192, 193, 194, 196, 204, 206, 212, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 253, 256, 257, 262, 263, 264, 265, 269], "build": [2, 6, 7, 12, 14, 19, 20, 25, 35, 47, 49, 60, 61, 65, 68, 69, 75, 76, 78, 81, 87, 91, 95, 98, 103, 109, 111, 113, 114, 115, 118, 120, 121, 127, 128, 135, 136, 137, 138, 140, 142, 153, 155, 160, 161, 162, 163, 164, 175, 176, 182, 183, 186, 188, 189, 194, 195, 197, 198, 200, 206, 221, 224, 225, 226, 247, 263, 268], "highli": [2, 5, 6, 10, 18, 49, 60, 87, 166, 176, 178, 206], "dynam": [2, 4, 5, 6, 8, 12, 14, 15, 19, 20, 22, 23, 25, 43, 53, 61, 65, 97, 100, 107, 111, 112, 119, 121, 148, 157, 160, 180, 183, 184, 185, 197, 198, 199, 200, 209, 221, 223, 236], "explor": [2, 6, 8, 14, 21, 23, 45, 49, 73, 108, 121, 126, 131, 137, 145, 147, 153, 160, 165, 166], "note": [2, 4, 5, 6, 7, 8, 9, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 43, 44, 45, 47, 49, 50, 52, 61, 73, 85, 99, 100, 101, 102, 103, 108, 109, 112, 113, 116, 117, 122, 123, 124, 125, 126, 130, 131, 133, 134, 135, 136, 138, 139, 142, 143, 145, 146, 148, 150, 153, 155, 156, 157, 158, 162, 163, 164, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 186, 188, 189, 190, 191, 192, 193, 194, 198, 199, 200, 202, 203, 204, 205, 206, 223, 239, 254, 262, 264], "differenti": [2, 5, 6, 14, 18, 25, 35, 40, 46, 47, 57, 76, 121, 137, 155, 161, 167, 192], "requires_grad": [2, 6, 7, 8, 12, 13, 20, 32, 37, 43, 47, 63, 64, 68, 73, 76, 89, 95, 101, 104, 105, 108, 110, 111, 117, 125, 129, 130, 131, 142, 147, 148, 158, 179, 192, 202, 206, 238, 245, 251], "track": [2, 5, 7, 8, 9, 14, 43, 52, 63, 82, 99, 101, 110, 111, 117, 122, 127, 128, 133, 137, 143, 158, 164, 166, 169, 209], "auto": [2, 3, 5, 6, 8, 10, 12, 22, 55, 59, 122, 123, 145, 156, 187, 188, 189, 207, 209, 221, 232, 247, 264, 265], "cout": [2, 4, 6, 22, 23, 188, 258], "endl": [2, 6, 22, 23, 188, 209], "cpufloattyp": [2, 4, 6, 23, 209], "wa": [2, 3, 4, 5, 11, 17, 20, 22, 23, 25, 42, 44, 49, 51, 52, 58, 59, 60, 61, 73, 76, 79, 95, 97, 98, 99, 101, 108, 112, 113, 115, 116, 123, 124, 126, 134, 136, 147, 151, 153, 154, 155, 157, 159, 160, 161, 164, 165, 166, 170, 177, 178, 185, 189, 192, 193, 199, 202, 209, 224, 232, 264], "result": [2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 23, 24, 25, 43, 44, 51, 58, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 76, 78, 82, 83, 87, 97, 101, 107, 108, 111, 112, 114, 116, 119, 122, 124, 125, 128, 134, 136, 137, 138, 142, 143, 144, 145, 146, 147, 148, 150, 151, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 170, 172, 173, 174, 175, 176, 177, 178, 179, 180, 183, 185, 189, 191, 192, 193, 194, 196, 198, 199, 200, 201, 203, 204, 205, 206, 207, 209, 210, 219, 222, 223, 224, 229, 232, 234, 239, 242, 247, 254, 258, 262], "grad_fn": [2, 4, 25, 32, 43, 47, 76, 89, 101, 125, 131, 174, 186], "addbackward1": 2, "z": [2, 5, 7, 23, 32, 43, 49, 52, 60, 76, 80, 85, 89, 92, 95, 101, 148, 166, 175, 192, 204, 209, 257, 265], "27": [2, 7, 51, 145, 164, 177, 185, 229, 232], "mulbackward1": 2, "meanbackward0": 2, "requires_grad_": [2, 12, 32, 76, 101, 104, 146], "flag": [2, 5, 14, 23, 43, 73, 76, 101, 138, 151, 154, 166, 175, 177, 186, 197, 199, 205], "place": [2, 5, 6, 11, 12, 14, 18, 22, 23, 43, 45, 48, 49, 52, 76, 78, 85, 99, 101, 108, 113, 116, 118, 122, 126, 130, 134, 136, 139, 149, 150, 153, 155, 157, 158, 160, 161, 166, 172, 173, 176, 183, 190, 198, 199, 200, 206, 209, 254, 264, 265, 266], "randn": [2, 5, 6, 12, 13, 20, 23, 32, 45, 47, 52, 63, 65, 67, 71, 72, 76, 78, 80, 89, 97, 98, 99, 101, 102, 104, 105, 108, 110, 111, 125, 129, 134, 135, 139, 142, 143, 144, 145, 146, 150, 151, 155, 162, 164, 165, 173, 174, 175, 185, 187, 192, 194, 198, 199, 200, 206, 209, 213, 231, 232, 233, 235, 239, 240, 246, 253, 256, 260], "b": [2, 5, 6, 7, 12, 18, 21, 23, 32, 43, 47, 63, 64, 65, 67, 71, 72, 76, 80, 83, 89, 92, 93, 95, 98, 99, 102, 103, 104, 109, 110, 111, 125, 127, 128, 130, 143, 145, 146, 148, 150, 159, 161, 173, 175, 192, 194, 195, 204, 210, 232, 239, 247, 253, 265], "sumbackward0": 2, "backprop": [2, 43, 71, 72, 76, 98, 101, 111, 127, 147], "scalar": [2, 5, 14, 15, 23, 32, 43, 49, 52, 60, 63, 76, 101, 111, 170, 198, 207], "equival": [2, 4, 5, 11, 13, 17, 22, 23, 32, 43, 99, 138, 142, 155, 161, 163, 172, 174, 175, 186, 187, 190, 192, 194, 199, 200, 201, 202], "print": [2, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 32, 33, 34, 37, 38, 40, 42, 43, 44, 45, 47, 48, 49, 51, 52, 53, 58, 59, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 127, 128, 130, 133, 134, 135, 136, 137, 138, 139, 140, 143, 144, 145, 146, 147, 148, 149, 151, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 170, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 185, 186, 189, 190, 191, 192, 193, 194, 195, 196, 198, 199, 202, 204, 207, 209, 210, 211, 212, 213, 215, 216, 219, 220, 221, 222, 224, 229, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 245, 247, 248, 250, 251, 253, 254, 256, 257, 258, 260, 264], "dx": [2, 64, 76, 99, 111, 131, 175], "got": [2, 15, 19, 55, 98, 99, 101, 113, 134, 147, 148, 156, 163, 189, 198, 201, 214, 264], "matrix": [2, 5, 6, 12, 17, 23, 32, 40, 43, 48, 82, 92, 98, 99, 101, 103, 109, 110, 124, 127, 128, 146, 151, 154, 165, 166, 167, 172, 174, 175, 177, 178, 193, 194, 200, 202, 206, 221, 222, 227], "explan": [2, 52, 61, 161, 170], "arriv": [2, 6, 15, 23, 42, 113, 122, 134, 162, 209], "valu": [2, 4, 5, 6, 7, 9, 12, 14, 18, 19, 20, 21, 22, 23, 25, 32, 33, 40, 41, 43, 47, 48, 49, 50, 55, 58, 59, 60, 61, 63, 68, 73, 80, 82, 85, 87, 92, 97, 98, 99, 101, 102, 103, 105, 108, 111, 113, 115, 124, 125, 126, 127, 130, 133, 134, 136, 138, 139, 140, 142, 144, 147, 150, 151, 155, 156, 157, 161, 162, 163, 164, 165, 166, 169, 172, 173, 174, 175, 176, 183, 184, 186, 188, 190, 191, 192, 193, 194, 196, 197, 198, 199, 201, 204, 205, 209, 210, 212, 217, 223, 262], "section": [2, 4, 5, 6, 7, 8, 11, 15, 18, 19, 21, 23, 43, 44, 47, 50, 51, 52, 73, 95, 97, 98, 99, 102, 103, 108, 113, 116, 118, 125, 130, 136, 140, 142, 145, 147, 151, 158, 161, 162, 164, 169, 172, 174, 177, 178, 179, 180, 183, 189, 191, 192, 201, 203, 212, 221, 262, 264, 265, 266, 268], "jacobian": [2, 43, 89, 121, 142, 206], "product": [2, 3, 4, 6, 12, 40, 42, 43, 48, 60, 61, 85, 99, 105, 113, 121, 122, 136, 140, 142, 166, 176, 177, 178, 186, 200, 201, 206, 210, 232, 252], "1021": 2, "4020": 2, "314": 2, "6695": 2, "613": 2, "4944": [2, 209], "0001": [2, 19, 49, 87, 89, 118, 145, 222], "kfloat": [2, 3, 59, 187, 189, 207], "102": 2, "4000": [2, 49, 60, 92, 247], "1024": [2, 5, 18, 21, 42, 82, 97, 130, 148, 165, 185, 200, 209, 211, 212, 232, 240], "0000": [2, 23, 174, 202, 209, 265], "stop": [2, 4, 5, 23, 51, 58, 59, 76, 78, 87, 98, 101, 110, 126, 128, 136, 148, 153, 160, 162, 166, 169], "histori": [2, 9, 47, 48, 101, 110, 113, 117, 128, 147, 157, 158, 166, 182], "nogradguard": [2, 258], "block": [2, 5, 6, 7, 8, 10, 12, 16, 17, 19, 22, 23, 47, 49, 75, 76, 82, 90, 101, 115, 116, 123, 124, 135, 136, 137, 145, 158, 162, 163, 164, 165, 169, 172, 185, 202, 208, 209, 268], "no_grad": [2, 7, 9, 12, 17, 19, 32, 37, 38, 42, 43, 44, 52, 58, 59, 63, 64, 68, 76, 87, 89, 92, 96, 97, 98, 99, 101, 102, 104, 110, 111, 115, 117, 122, 123, 127, 128, 130, 137, 138, 145, 147, 158, 159, 160, 161, 163, 166, 167, 170, 173, 175, 178, 179, 182, 183, 185, 186, 195, 198, 199, 200, 203, 217, 221, 248, 255, 258], "Or": [2, 21, 23, 153, 164, 180, 199, 207, 209, 264], "eq": [2, 19, 23, 49, 60, 95, 123, 130, 163, 167, 174, 183, 198, 199, 222, 239, 264], "bool": [2, 11, 14, 15, 17, 23, 95, 109, 118, 138, 144, 147, 156, 160, 161, 165, 172, 180, 186, 191, 193, 202, 209, 254, 262], "is_leaf": 2, "detach_": [2, 164], "register_hook": [2, 129], "retain_grad": 2, "doc": [2, 4, 6, 32, 33, 34, 37, 38, 40, 60, 69, 94, 104, 109, 111, 133, 136, 143, 144, 162, 164, 172, 175, 182, 194, 206, 231, 238, 262, 263, 264, 269], "calcul": [2, 12, 17, 43, 44, 49, 52, 56, 60, 73, 82, 85, 87, 97, 110, 127, 128, 138, 144, 147, 161, 162, 164, 165, 166, 172, 178, 183, 192, 194, 198, 201, 202], "penalti": [2, 154, 159], "h": [2, 4, 5, 6, 7, 8, 9, 10, 12, 22, 23, 25, 38, 49, 51, 96, 124, 130, 138, 145, 147, 148, 156, 179, 182, 186, 189, 209, 214, 221, 223, 226, 247, 258], "model": [2, 3, 5, 8, 11, 14, 16, 22, 23, 24, 33, 35, 37, 38, 39, 42, 43, 44, 47, 48, 52, 53, 54, 56, 61, 65, 67, 68, 69, 75, 78, 86, 87, 89, 90, 91, 93, 95, 96, 98, 99, 100, 101, 104, 106, 107, 108, 109, 110, 111, 116, 118, 119, 120, 121, 123, 126, 127, 128, 129, 130, 133, 136, 140, 142, 143, 145, 146, 149, 153, 154, 155, 159, 160, 161, 162, 163, 164, 165, 173, 174, 175, 177, 178, 184, 185, 187, 194, 197, 200, 201, 202, 205, 206, 208, 211, 214, 215, 216, 220, 222, 223, 228, 229, 230, 231, 235, 236, 239, 242, 243, 244, 246, 249, 250, 251, 252, 253, 255, 258, 259, 260], "linear": [2, 5, 6, 7, 9, 11, 16, 17, 19, 25, 37, 38, 43, 44, 45, 47, 48, 49, 60, 68, 69, 73, 78, 79, 87, 89, 92, 93, 94, 96, 97, 98, 100, 102, 103, 105, 109, 110, 111, 112, 115, 117, 118, 119, 123, 124, 125, 127, 128, 129, 130, 134, 135, 138, 139, 142, 145, 146, 147, 149, 150, 151, 154, 155, 157, 158, 161, 162, 163, 164, 165, 166, 167, 170, 173, 174, 175, 178, 180, 182, 183, 185, 186, 190, 194, 196, 198, 199, 200, 201, 202, 203, 204, 206, 208, 210, 211, 212, 213, 215, 216, 219, 220, 221, 222, 224, 227, 229, 231, 233, 234, 235, 238, 240, 241, 242, 243, 244, 245, 246, 249, 250, 251, 253, 254, 260], "loss": [2, 3, 5, 6, 7, 9, 11, 14, 16, 17, 19, 32, 38, 43, 48, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 78, 87, 89, 92, 94, 96, 99, 102, 103, 104, 111, 112, 115, 117, 118, 121, 122, 123, 125, 127, 129, 130, 135, 136, 147, 148, 149, 150, 153, 155, 158, 161, 163, 164, 166, 167, 169, 170, 173, 179, 182, 183, 189, 192, 198, 199, 202, 221, 222, 231, 242, 246, 251, 255], "target": [2, 3, 4, 6, 9, 12, 14, 16, 18, 19, 22, 23, 44, 47, 49, 55, 60, 73, 78, 90, 94, 97, 98, 99, 102, 103, 104, 113, 116, 118, 123, 127, 128, 130, 135, 136, 137, 139, 143, 145, 153, 155, 156, 159, 161, 162, 163, 164, 166, 167, 170, 172, 173, 174, 175, 179, 180, 182, 183, 189, 198, 199, 200, 201, 205, 207, 209, 221, 222, 223, 226, 230, 231, 255, 258], "mseloss": [2, 12, 37, 47, 65, 67, 68, 69, 78, 97, 110, 111, 134, 135, 150, 162, 215, 231, 246, 260], "grad_output": [2, 8, 10, 13, 64, 76, 78, 111], "ones_lik": [2, 32, 40, 48, 95, 143, 192], "create_graph": [2, 131], "gradient_penalti": 2, "dim": [2, 4, 5, 11, 14, 21, 33, 40, 41, 45, 48, 49, 60, 73, 90, 92, 93, 94, 96, 97, 99, 102, 103, 104, 110, 115, 118, 123, 127, 128, 130, 135, 145, 148, 149, 150, 155, 157, 159, 160, 162, 163, 164, 165, 166, 167, 170, 172, 174, 175, 191, 192, 193, 194, 204, 207, 220, 222, 234, 258], "combined_loss": 2, "1042": 2, "0638": 2, "0103": 2, "0723": 2, "2543": 2, "1222": 2, "0071": 2, "0814": 2, "1683": 2, "1052": 2, "0355": 2, "document": [2, 4, 5, 6, 20, 47, 52, 60, 61, 79, 82, 85, 87, 101, 112, 113, 117, 121, 134, 136, 137, 140, 142, 144, 145, 158, 163, 164, 165, 169, 172, 173, 174, 175, 177, 178, 179, 180, 192, 198, 200, 206, 207, 210, 219, 221, 229, 254, 262, 264, 265, 269], "link": [2, 4, 5, 6, 10, 12, 22, 23, 52, 58, 59, 82, 105, 108, 114, 116, 118, 136, 140, 142, 192, 205, 207, 209, 221, 262, 263, 268], "subclass": [2, 5, 6, 14, 17, 25, 64, 67, 79, 111, 121, 126, 137, 147, 157, 163, 170, 179, 192, 194, 202], "encod": [2, 7, 9, 14, 17, 42, 47, 48, 75, 76, 100, 104, 113, 118, 122, 126, 127, 128, 137, 154, 160, 164, 172, 179, 182, 185, 186, 196, 201, 202, 209, 231, 254], "method": [2, 4, 5, 6, 7, 8, 10, 11, 12, 14, 16, 17, 19, 21, 23, 25, 44, 47, 49, 51, 55, 58, 59, 60, 64, 65, 67, 73, 79, 83, 85, 90, 95, 97, 99, 101, 111, 112, 113, 115, 120, 121, 126, 131, 134, 137, 138, 140, 142, 143, 144, 145, 146, 147, 150, 154, 155, 156, 157, 158, 160, 161, 162, 163, 170, 172, 173, 174, 175, 177, 183, 184, 190, 198, 199, 201, 202, 204, 209, 210, 214, 224, 225, 226, 229, 264], "forward": [2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 22, 23, 25, 33, 37, 38, 43, 44, 45, 47, 49, 52, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 79, 85, 87, 89, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 108, 111, 112, 115, 117, 118, 121, 122, 123, 124, 125, 127, 128, 129, 130, 131, 132, 134, 135, 136, 139, 140, 143, 147, 149, 150, 151, 153, 154, 155, 157, 158, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 178, 180, 182, 183, 184, 186, 188, 189, 194, 195, 196, 198, 199, 200, 204, 205, 207, 209, 210, 212, 213, 214, 215, 216, 219, 220, 221, 222, 227, 229, 234, 235, 238, 239, 240, 241, 242, 243, 244, 249, 250, 251, 253, 254, 258], "detail": [2, 5, 6, 8, 10, 12, 15, 16, 20, 22, 23, 25, 43, 44, 45, 52, 53, 58, 59, 60, 61, 69, 73, 82, 83, 85, 111, 113, 116, 119, 123, 124, 126, 128, 130, 132, 134, 143, 145, 150, 151, 153, 158, 161, 164, 165, 169, 170, 173, 174, 175, 178, 180, 186, 189, 190, 191, 192, 193, 195, 199, 200, 206, 209, 212, 219, 221, 225, 226, 229, 232, 247, 254], "namespac": [2, 6, 8, 10, 22, 23, 108, 138, 156, 180, 186, 194, 209, 258], "inherit": [2, 11, 15, 22, 51, 60, 85, 99, 144, 147, 150, 160, 172, 179, 192, 194, 196, 200], "linearfunct": 2, "public": [2, 8, 10, 15, 156, 209, 265], "static": [2, 8, 10, 14, 21, 58, 59, 60, 107, 121, 138, 142, 143, 156, 174, 175, 182, 184, 185, 186, 197, 198, 199, 200, 201, 209, 248, 262], "option": [2, 5, 6, 8, 10, 11, 14, 23, 44, 46, 49, 51, 53, 60, 61, 82, 87, 97, 109, 120, 121, 126, 132, 135, 137, 139, 145, 148, 150, 157, 159, 172, 174, 175, 183, 184, 185, 186, 194, 195, 198, 199, 200, 201, 205, 210, 213, 217, 219, 228, 254, 264, 268], "autogradcontext": [2, 8, 10], "ctx": [2, 5, 8, 10, 13, 18, 64, 111, 130, 131, 142, 213], "save_for_backward": [2, 5, 13, 64, 111, 130, 131], "mm": [2, 5, 12, 59, 110, 138, 186, 187, 189, 195, 198, 207, 208, 223, 226], "expand_a": [2, 19, 183, 198, 199], "tensor_list": [2, 8, 10, 136], "get_saved_vari": 2, "grad_input": [2, 13, 78, 130, 131], "grad_weight": 2, "grad_bia": [2, 13], "Then": [2, 12, 15, 17, 20, 22, 24, 25, 44, 45, 52, 58, 59, 61, 73, 85, 98, 99, 102, 103, 114, 121, 123, 134, 135, 150, 153, 156, 157, 160, 161, 162, 164, 166, 169, 174, 175, 189, 196, 201, 202, 223, 225, 226, 229], "5314": 2, "2807": 2, "4864": 2, "7608": 2, "9101": [2, 174], "0073": 2, "mulconst": [2, 78], "object": [2, 4, 5, 6, 7, 9, 10, 11, 14, 19, 20, 22, 23, 43, 49, 51, 52, 60, 61, 64, 68, 69, 75, 95, 97, 101, 110, 111, 112, 116, 117, 118, 121, 125, 130, 136, 137, 142, 143, 144, 146, 155, 156, 160, 161, 162, 163, 164, 165, 169, 170, 172, 174, 175, 178, 182, 183, 194, 198, 199, 201, 217, 221, 222, 224, 226, 232, 247], "stash": [2, 64, 111], "saved_data": 2, "were": [2, 3, 5, 6, 9, 12, 17, 18, 23, 32, 52, 60, 83, 85, 97, 99, 101, 103, 113, 114, 126, 133, 134, 139, 148, 154, 160, 161, 163, 165, 166, 174, 175, 177, 190, 202, 205, 206], "todoubl": 2, "On": [2, 4, 5, 6, 8, 17, 19, 21, 22, 23, 115, 117, 122, 134, 136, 138, 148, 154, 157, 162, 163, 173, 178, 179, 202, 204, 209], "easiest": [2, 5, 9, 23, 121, 140, 146, 158, 160, 229], "tabl": [2, 16, 21, 89, 103, 109, 115, 121, 122, 136, 138, 144, 145, 163, 164, 165, 169, 174, 175, 176, 220, 239, 268], "set_data": 2, "output_nr": 2, "after": [2, 3, 5, 6, 7, 9, 10, 12, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 32, 33, 34, 43, 45, 47, 49, 52, 53, 58, 59, 60, 61, 63, 64, 76, 79, 87, 97, 98, 99, 102, 103, 105, 110, 111, 112, 113, 115, 116, 122, 124, 127, 128, 130, 133, 134, 135, 136, 137, 138, 139, 143, 145, 147, 148, 150, 153, 154, 156, 157, 158, 159, 160, 161, 163, 164, 166, 167, 169, 170, 174, 175, 177, 179, 180, 182, 183, 184, 186, 188, 189, 196, 198, 199, 200, 201, 202, 203, 204, 205, 207, 209, 214, 224, 225, 226, 229, 232, 254, 260], "bug": [2, 5, 10, 23, 108, 145, 187], "report": [2, 10, 17, 23, 52, 73, 87, 98, 121, 138, 145, 162, 164, 165, 187, 202], "fix": [2, 14, 17, 20, 23, 24, 49, 50, 51, 52, 97, 108, 113, 125, 158, 162, 174, 175, 185, 202, 264], "soon": [2, 5, 52, 58, 59, 122, 148, 153, 199, 221], "overview": [2, 5, 6, 11, 53, 55, 61, 113, 119, 120, 121, 127, 128, 134, 135, 136, 143, 156, 160, 162, 163, 164, 166, 169, 190, 191, 193, 197, 228], "alwai": [2, 3, 4, 6, 9, 14, 16, 18, 19, 22, 23, 49, 52, 99, 102, 103, 108, 113, 124, 125, 130, 136, 137, 138, 140, 159, 160, 161, 162, 164, 174, 179, 186, 188, 189, 190, 196, 205, 223, 254, 264], "problem": [2, 4, 6, 11, 14, 15, 18, 22, 23, 49, 51, 52, 61, 98, 100, 103, 115, 117, 126, 137, 143, 145, 146, 150, 154, 158, 160, 162, 164, 169, 173, 177, 190, 192, 233, 264], "question": [2, 4, 5, 6, 8, 10, 17, 22, 23, 49, 75, 122, 136, 138, 144, 166, 184, 191, 201, 202, 232], "forum": [2, 4, 5, 6, 22, 23, 44, 79, 110, 143, 144, 184], "view": [3, 7, 9, 10, 11, 12, 14, 15, 16, 19, 25, 47, 49, 50, 52, 53, 55, 56, 61, 73, 78, 82, 92, 93, 94, 96, 98, 99, 101, 102, 103, 104, 105, 110, 112, 118, 123, 124, 126, 127, 132, 133, 134, 135, 136, 142, 143, 144, 145, 150, 151, 156, 157, 161, 162, 163, 164, 165, 166, 167, 170, 174, 175, 182, 183, 184, 194, 198, 199, 207, 212, 227, 241, 242, 243, 244, 246, 249, 250, 251, 262], "prerequisit": [3, 7, 53, 55, 56, 100, 108, 114, 124, 132, 133, 134, 135, 136, 137, 156, 162, 163, 164, 172, 198], "frontend": [3, 10, 84, 110, 121, 178, 187, 188, 194, 200, 221], "semant": [3, 6, 22, 49, 58, 59, 68, 95, 100, 102, 111, 136, 138, 192, 193, 194, 197, 206, 264], "11": [3, 5, 6, 7, 11, 17, 18, 23, 59, 61, 95, 104, 109, 122, 123, 142, 159, 164, 172, 173, 174, 175, 176, 195, 205, 209, 216, 220, 226, 228, 232, 239, 258, 264, 268], "nvidia": [3, 5, 17, 50, 95, 130, 136, 138, 148, 173, 202, 216, 231, 248, 252, 259], "toolkit": [3, 23, 100, 143, 147], "releas": [3, 4, 6, 10, 17, 20, 23, 24, 42, 50, 105, 108, 109, 112, 122, 123, 125, 140, 143, 153, 163, 165, 169, 200, 202, 205, 209, 221, 264], "greatli": [3, 6, 49, 161], "overhead": [3, 5, 6, 10, 17, 56, 82, 109, 122, 123, 124, 134, 146, 148, 150, 159, 162, 164, 165, 169, 173, 177, 178, 185, 187, 194, 200, 202], "increas": [3, 5, 6, 18, 19, 20, 24, 44, 73, 82, 83, 87, 97, 122, 123, 124, 126, 128, 132, 135, 143, 153, 159, 169, 183, 185, 194, 195, 198, 210], "mostli": [3, 10, 19, 85, 97, 116, 127, 164, 166, 180, 198, 199, 200], "deploy": [3, 4, 25, 42, 60, 97, 112, 126, 178, 187, 200, 205, 221, 228, 229, 254], "appear": [3, 11, 14, 22, 25, 103, 264], "heart": [3, 49, 113, 265], "veri": [3, 4, 5, 6, 8, 12, 14, 15, 18, 19, 21, 22, 23, 24, 25, 45, 47, 48, 49, 58, 59, 60, 61, 65, 73, 75, 76, 85, 99, 101, 113, 115, 117, 123, 124, 125, 127, 135, 136, 150, 153, 154, 158, 161, 162, 164, 165, 166, 167, 169, 170, 177, 179, 183, 190, 192, 196, 199, 206, 265, 266], "time": [3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 83, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 125, 126, 127, 128, 130, 131, 134, 135, 136, 137, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 177, 178, 179, 182, 183, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 202, 204, 205, 206, 207, 212, 213, 220, 229, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 253, 256, 257, 262, 264], "compil": [3, 4, 6, 8, 10, 17, 21, 22, 25, 60, 85, 98, 108, 121, 136, 144, 174, 175, 176, 185, 187, 194, 200, 205, 208, 221, 224, 252, 255, 258, 262], "boost": [3, 97, 99, 145, 146, 177, 185, 200, 208, 221, 222], "demonstr": [3, 7, 9, 14, 16, 17, 20, 21, 22, 25, 42, 43, 50, 57, 61, 75, 82, 85, 108, 113, 120, 121, 122, 123, 124, 125, 127, 130, 131, 134, 135, 138, 139, 142, 143, 144, 145, 151, 156, 160, 162, 163, 164, 165, 169, 172, 174, 175, 178, 180, 185, 186, 187, 188, 189, 192, 194, 196, 199, 202, 203, 204, 205, 212, 219, 223, 225, 226, 229, 254, 264, 265, 266], "mnist": [3, 6, 34, 44, 47, 73, 78, 92, 94, 96, 119, 120, 121, 123, 126, 130, 136, 139, 149, 155, 163, 167, 170, 222, 234], "libtorch": [3, 6, 22, 23, 188, 205, 207, 209, 221, 223, 226, 252, 258], "counterpart": [3, 17, 108, 135, 145, 196, 202, 221, 254], "depict": 3, "chunk": [3, 5, 7, 55, 136, 153, 165], "batch": [3, 5, 6, 9, 12, 16, 17, 19, 21, 34, 37, 38, 39, 42, 44, 45, 47, 49, 51, 52, 53, 55, 56, 60, 61, 73, 75, 78, 79, 82, 87, 90, 92, 94, 97, 102, 104, 110, 112, 113, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 132, 135, 136, 137, 138, 139, 140, 147, 148, 149, 150, 151, 153, 155, 158, 159, 160, 161, 163, 164, 165, 167, 169, 170, 172, 173, 174, 175, 176, 178, 179, 182, 183, 185, 186, 192, 194, 197, 199, 202, 205, 206, 224, 232, 242, 243, 244], "data_load": [3, 6, 19, 179, 183, 198, 199, 200, 237], "nll_loss": [3, 73, 123, 130, 136, 149, 155, 163, 167, 222], "updat": [3, 6, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 42, 43, 44, 49, 51, 52, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 82, 97, 98, 99, 102, 103, 110, 111, 112, 117, 122, 123, 126, 130, 137, 138, 140, 148, 153, 160, 161, 163, 164, 169, 179, 183, 186, 190, 198, 199, 200, 201, 202, 205, 219, 222, 223, 229, 231], "captur": [3, 4, 6, 22, 23, 25, 52, 60, 107, 123, 142, 149, 159, 172, 173, 174, 175, 187, 195, 198, 199, 201], "But": [3, 6, 8, 10, 20, 42, 44, 45, 52, 73, 78, 101, 103, 116, 125, 148, 153, 154, 155, 161, 174, 175, 177, 179, 183, 186, 190, 193, 201, 206, 219, 224, 229, 254, 264], "slightli": [3, 5, 14, 23, 122, 136, 137, 159, 166, 174, 175, 193], "prealloc": [3, 14], "reus": [3, 10, 65, 78, 111, 131, 138, 142, 154, 161, 177, 178, 186, 188], "tensoropt": [3, 187], "floatcuda": 3, "dtype": [3, 7, 8, 9, 10, 13, 14, 15, 38, 40, 41, 48, 49, 51, 52, 60, 63, 64, 72, 78, 80, 85, 89, 92, 95, 98, 101, 102, 103, 109, 111, 115, 119, 127, 130, 131, 138, 142, 145, 147, 148, 151, 161, 165, 166, 167, 174, 175, 176, 179, 180, 186, 187, 190, 191, 192, 193, 194, 196, 198, 200, 201, 207, 210, 219, 221, 224, 229, 231, 235, 238, 245, 248, 254, 255], "longcuda": 3, "klong": 3, "zero": [3, 6, 7, 11, 16, 17, 19, 25, 32, 40, 41, 44, 47, 48, 49, 60, 63, 64, 65, 67, 68, 69, 73, 78, 87, 92, 95, 98, 99, 103, 104, 110, 111, 117, 118, 122, 123, 127, 128, 135, 136, 137, 142, 145, 150, 151, 154, 156, 157, 158, 161, 162, 164, 166, 170, 179, 182, 186, 190, 192, 193, 195, 201, 202, 210, 224, 236, 247, 248, 254, 257, 260], "ktrainbatchs": 3, "28": [3, 6, 7, 17, 33, 34, 37, 38, 47, 78, 93, 94, 104, 139, 149, 155, 170, 177, 202, 204, 205, 209, 222, 224, 232, 234, 247], "training_step": [3, 149], "void": [3, 5, 6, 15, 22, 23, 59, 145, 156, 187, 189, 209, 232, 239, 247], "cudagraph": 3, "cudastream": 3, "capturestream": 3, "getstreamfrompool": 3, "setcurrentcudastream": 3, "capture_begin": 3, "capture_end": 3, "warm": [3, 21, 70, 103, 109, 169, 173, 177, 178, 194, 204, 232], "side": [3, 20, 51, 52, 82, 103, 139, 148, 153, 155, 156, 161, 162, 167, 169, 189, 262], "prepar": [3, 11, 17, 19, 25, 44, 51, 52, 58, 59, 68, 69, 102, 103, 111, 112, 116, 135, 138, 139, 153, 156, 160, 162, 182, 186, 194, 196, 197, 200, 201, 202, 205, 210, 219, 223, 228, 229], "cach": [3, 64, 111, 138, 145, 169, 177, 178, 185, 186], "cubla": [3, 232], "cudnn": [3, 5, 78, 117, 130, 137, 148, 151, 231], "warmupstream": 3, "int": [3, 4, 5, 6, 9, 11, 14, 18, 19, 22, 23, 24, 51, 53, 55, 58, 59, 60, 75, 85, 87, 98, 109, 115, 118, 122, 123, 126, 136, 138, 145, 147, 149, 156, 157, 162, 163, 164, 165, 169, 173, 174, 175, 179, 182, 186, 189, 194, 207, 209, 210, 214, 216, 221, 224, 254, 258, 262], "num_warmup_it": 3, "success": [3, 6, 14, 23, 73, 101, 103, 126, 145, 166, 189, 205, 207], "replai": [3, 14, 25, 76, 147], "spin": [3, 60, 177], "ordinari": [3, 195], "epoch": [3, 6, 7, 9, 16, 19, 24, 37, 38, 44, 52, 53, 55, 75, 87, 92, 94, 96, 97, 98, 99, 102, 103, 104, 112, 115, 117, 118, 122, 123, 126, 130, 136, 148, 149, 153, 158, 160, 164, 166, 167, 170, 179, 199, 222, 231, 242, 246, 251], "59584": 3, "60000": [3, 136], "3921": 3, "2051": 3, "accuraci": [3, 9, 17, 19, 20, 24, 37, 38, 44, 92, 97, 104, 115, 119, 120, 121, 122, 123, 126, 130, 149, 151, 157, 158, 159, 163, 167, 170, 172, 178, 183, 186, 195, 196, 199, 200, 202, 219, 222, 228, 229], "938": [3, 6, 148], "1826": 3, "1273": 3, "960": 3, "1796": 3, "1012": [3, 148], "968": 3, "1603": 3, "0869": 3, "973": 3, "2315": 3, "0736": 3, "978": 3, "0511": [3, 186], "0704": 3, "977": [3, 148, 220], "0802": 3, "0654": 3, "979": 3, "0774": 3, "0604": 3, "980": [3, 177], "0669": 3, "0544": 3, "984": 3, "0219": 3, "0517": 3, "983": 3, "real": [3, 6, 14, 20, 32, 52, 54, 58, 97, 98, 99, 100, 103, 121, 123, 126, 127, 128, 136, 137, 150, 153, 156, 159, 161, 166, 173, 177, 192, 194, 198, 201, 219], "0m44": 3, "287": [3, 178, 264], "018": 3, "0m1": 3, "116": [3, 186], "produc": [3, 4, 5, 6, 11, 22, 23, 25, 60, 68, 97, 111, 113, 115, 126, 137, 139, 142, 144, 146, 148, 150, 160, 161, 166, 172, 174, 175, 180, 183, 184, 186, 198, 199, 200, 207, 264], "4092": 3, "2037": 3, "2039": 3, "1274": 3, "961": 3, "1779": 3, "1017": 3, "1559": 3, "0871": 3, "972": 3, "2240": 3, "0735": [3, 202], "0520": 3, "0710": 3, "0935": 3, "0666": [3, 23], "0744": 3, "0603": 3, "981": 3, "0762": 3, "0547": 3, "0207": 3, "0525": [3, 209], "0m6": 3, "952": [3, 145], "0m7": 3, "048": 3, "0m0": 3, "619": 3, "gain": [3, 5, 17, 82, 146, 155, 169, 177, 202], "six": [3, 160, 167, 264], "kind": [3, 5, 6, 19, 23, 44, 47, 49, 58, 59, 73, 98, 102, 112, 119, 121, 138, 174, 178, 198, 254], "larg": [3, 5, 6, 7, 12, 16, 17, 18, 23, 42, 49, 87, 97, 102, 103, 105, 117, 120, 121, 122, 123, 126, 130, 134, 136, 139, 140, 150, 151, 160, 161, 163, 164, 165, 172, 173, 177, 178, 179, 192, 200, 202, 203, 224, 262, 264], "improv": [3, 5, 6, 8, 10, 17, 19, 21, 24, 42, 49, 56, 97, 108, 120, 121, 122, 123, 124, 130, 143, 146, 148, 150, 154, 155, 158, 161, 165, 166, 172, 173, 177, 178, 185, 186, 195, 198, 201, 202, 205, 219, 221, 223, 265], "due": [3, 5, 6, 17, 18, 22, 52, 58, 60, 82, 85, 108, 122, 123, 124, 134, 153, 154, 158, 163, 173, 177, 183, 185, 192, 201, 202, 203, 212, 263, 264], "heavi": [3, 6, 49, 97, 101, 224], "impact": [3, 12, 17, 87, 97, 137, 162, 165, 185, 202, 210, 254], "smaller": [3, 9, 51, 79, 97, 103, 123, 124, 158, 160, 162, 172, 204, 209, 224], "nevertheless": [3, 5, 19, 23, 148, 160], "primari": [4, 5, 6, 15, 143, 176, 177, 178, 187, 194, 207], "program": [4, 5, 18, 21, 22, 23, 25, 60, 61, 98, 100, 101, 103, 121, 124, 127, 144, 163, 173, 174, 178, 198, 199, 200, 201], "languag": [4, 5, 6, 7, 21, 23, 24, 25, 44, 49, 58, 59, 60, 78, 79, 98, 100, 102, 116, 118, 119, 121, 124, 126, 127, 128, 138, 164, 166, 174, 175, 182, 187, 196, 247, 254, 256, 263, 264, 265], "suitabl": [4, 8, 132, 136, 140, 172, 200, 224], "prefer": [4, 6, 8, 53, 58, 146, 151, 156, 160, 177, 195, 254], "eas": [4, 5, 85, 122, 178, 221], "situat": [4, 15, 23, 25, 37, 130, 131, 134, 136, 179, 185, 196], "properti": [4, 5, 6, 11, 14, 21, 23, 25, 32, 40, 48, 101, 103, 126, 148, 154, 166, 174, 175, 177, 178, 191, 209, 221, 250, 258, 262], "unfavor": 4, "environ": [4, 5, 6, 7, 11, 17, 18, 22, 25, 42, 55, 61, 82, 85, 105, 112, 114, 115, 121, 122, 123, 124, 133, 134, 135, 136, 145, 149, 150, 156, 161, 162, 163, 164, 173, 174, 175, 176, 177, 205, 207, 209, 213, 215, 216, 223, 224, 232, 254, 260], "latter": [4, 5, 6, 60, 61, 126, 162, 199], "land": [4, 23, 113, 147, 192, 221], "latenc": [4, 6, 17, 121, 124, 126, 133, 145, 159, 173, 177, 178, 188, 195, 202, 224], "strict": [4, 112, 172, 191, 221, 249], "bind": [4, 6, 10, 23, 121, 177, 178, 264], "java": [4, 58, 178, 205, 223, 224], "rust": 4, "paragraph": [4, 6, 23, 265, 268], "outlin": [4, 5, 6, 23, 228], "pure": [4, 5, 6, 10, 23, 47, 121, 127, 131, 139, 155, 179, 187, 200], "journei": [4, 6, 52, 138], "enabl": [4, 5, 6, 8, 11, 14, 15, 16, 18, 19, 23, 24, 42, 47, 55, 56, 58, 59, 60, 61, 75, 82, 97, 107, 112, 122, 123, 124, 126, 129, 130, 131, 134, 136, 138, 145, 148, 153, 157, 159, 160, 169, 170, 172, 176, 177, 178, 180, 184, 185, 190, 192, 194, 196, 197, 200, 205, 221, 225, 226, 229, 231, 241, 262], "vanilla": [4, 5, 6, 23, 49, 65, 99, 111, 127, 172, 190], "eager": [4, 10, 23, 60, 85, 86, 121, 129, 145, 148, 165, 173, 175, 182, 196, 198, 199, 200, 201, 211, 222], "discuss": [4, 5, 6, 8, 10, 15, 16, 23, 44, 73, 79, 101, 102, 116, 122, 123, 129, 135, 143, 144, 145, 150, 151, 173, 177, 178, 184, 190, 191, 192, 193, 208, 229], "littl": [4, 17, 25, 52, 61, 97, 99, 113, 137, 160, 162, 164, 165, 167, 169, 202], "effort": [4, 14, 49, 51, 52, 108, 183, 196, 197], "next": [4, 5, 6, 8, 9, 11, 12, 14, 15, 16, 17, 19, 20, 22, 23, 34, 42, 43, 49, 51, 53, 55, 56, 58, 59, 60, 75, 78, 80, 82, 85, 92, 94, 96, 97, 98, 99, 102, 103, 105, 112, 113, 115, 117, 121, 122, 123, 124, 125, 127, 128, 130, 131, 133, 137, 138, 139, 140, 144, 145, 147, 150, 151, 153, 155, 158, 161, 162, 163, 164, 166, 167, 169, 170, 178, 179, 182, 183, 185, 188, 189, 192, 193, 196, 198, 199, 200, 202, 204, 209, 221, 223, 224, 262, 264, 265], "mechan": [4, 5, 6, 11, 14, 15, 24, 32, 49, 56, 60, 131, 144, 154, 166, 167, 169, 175, 178, 200, 221], "evalu": [4, 6, 9, 12, 17, 19, 20, 24, 37, 73, 97, 105, 107, 112, 118, 146, 151, 160, 161, 163, 170, 173, 174, 175, 179, 182, 199, 202, 222, 242], "onc": [4, 5, 6, 8, 10, 11, 14, 16, 17, 20, 21, 22, 23, 25, 51, 52, 56, 60, 82, 97, 98, 102, 105, 113, 132, 137, 140, 148, 149, 153, 154, 157, 159, 160, 161, 163, 166, 169, 170, 178, 185, 186, 189, 194, 196, 202, 221, 224, 232], "record": [4, 6, 8, 19, 20, 23, 25, 43, 49, 60, 112, 121, 122, 123, 127, 130, 131, 144, 147, 153, 160, 161, 163, 164, 173, 175, 205, 254], "explicit": [4, 6, 21, 23, 60, 140, 148, 164, 191, 201, 210, 264], "pars": [4, 5, 23, 49, 51, 103, 116, 122, 123, 126, 210, 264], "subject": [4, 11, 14, 23, 42, 108, 113, 123, 142, 166, 174, 175, 188, 189, 194, 199, 205, 206, 207, 223], "constraint": [4, 6, 12, 17, 18, 60, 85, 98, 99, 121, 124, 126, 154, 160, 172, 198, 199, 201, 202, 254], "impos": [4, 224, 233], "guidanc": [4, 8, 177, 178, 196], "offici": [4, 82, 108, 113, 115, 136, 161, 173, 175, 182, 200, 219, 221, 254], "jit": [4, 6, 8, 15, 19, 21, 22, 25, 49, 58, 59, 60, 85, 112, 119, 138, 143, 148, 173, 178, 183, 186, 188, 189, 195, 198, 199, 204, 205, 207, 208, 209, 210, 217, 219, 221, 223, 224, 225, 226, 232, 239, 248, 253, 254, 256, 258], "scriptmodul": [4, 22, 23, 25, 85, 204, 223, 254, 258], "embed": [4, 7, 9, 16, 21, 23, 49, 60, 75, 79, 93, 98, 100, 102, 110, 112, 115, 118, 121, 122, 124, 138, 163, 164, 166, 170, 176, 182, 189, 194, 196, 242, 264], "resnet18": [4, 43, 90, 117, 148, 158, 159, 169, 172, 183, 196, 198, 199, 200, 230, 239, 258], "normal": [4, 6, 8, 11, 12, 19, 20, 21, 37, 39, 49, 51, 52, 58, 59, 60, 65, 73, 80, 85, 87, 90, 92, 94, 96, 97, 98, 99, 102, 103, 111, 112, 117, 119, 123, 127, 128, 130, 136, 137, 140, 147, 149, 154, 158, 159, 162, 163, 165, 166, 167, 169, 170, 172, 173, 178, 183, 185, 191, 198, 199, 205, 210, 214, 221, 222, 224, 225, 226, 229, 230, 242, 243, 244, 251, 254, 255, 264], "rand": [4, 5, 6, 14, 15, 17, 21, 23, 25, 33, 40, 43, 48, 85, 89, 92, 93, 95, 96, 109, 114, 130, 131, 145, 147, 153, 154, 165, 177, 178, 179, 180, 188, 196, 198, 199, 202, 204, 207, 211, 212, 215, 220, 221, 224, 225, 226, 227, 234, 240, 248, 254, 255, 258], "224": [4, 12, 19, 20, 51, 58, 59, 75, 90, 97, 117, 119, 140, 143, 144, 153, 158, 159, 167, 169, 172, 177, 178, 183, 188, 189, 195, 198, 199, 200, 205, 207, 214, 219, 221, 224, 225, 226, 230, 239, 248, 254, 255, 258], "traced_script_modul": [4, 224], "ident": [4, 6, 17, 55, 85, 124, 133, 143, 151, 158, 167, 170, 186, 193, 195, 202, 219], "2698": 4, "0381": 4, "4023": 4, "3010": 4, "0448": 4, "slicebackward": 4, "circumst": [4, 5], "emploi": [4, 97, 166, 169], "particular": [4, 5, 6, 8, 11, 23, 42, 44, 51, 60, 82, 83, 87, 103, 124, 126, 127, 136, 137, 139, 140, 151, 155, 163, 172, 174, 175, 179, 180, 190, 191, 193, 194, 224], "form": [4, 6, 9, 12, 15, 17, 23, 47, 49, 52, 60, 98, 105, 110, 113, 116, 121, 125, 128, 140, 145, 166, 172, 175, 185, 194, 202, 203, 214, 264], "accordingli": [4, 10, 12, 18, 22, 137, 150, 153, 162, 172, 189, 262], "sai": [4, 5, 6, 24, 43, 51, 99, 101, 103, 113, 115, 125, 139, 146, 150, 153, 157, 169, 185, 201, 223, 265], "mymodul": [4, 6, 109, 173, 174, 175, 203, 213], "__init__": [4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 19, 20, 21, 22, 25, 33, 37, 38, 44, 45, 47, 49, 51, 52, 53, 60, 65, 67, 73, 78, 79, 85, 87, 89, 92, 93, 94, 96, 97, 98, 99, 102, 103, 104, 105, 109, 111, 112, 115, 118, 123, 125, 127, 128, 129, 130, 134, 135, 136, 139, 143, 144, 147, 149, 150, 151, 154, 155, 157, 161, 162, 163, 164, 165, 166, 167, 170, 172, 173, 174, 175, 178, 179, 180, 182, 183, 184, 194, 195, 196, 198, 199, 200, 203, 204, 210, 213, 215, 216, 217, 219, 220, 222, 224, 227, 229, 234, 235, 238, 240, 241, 242, 243, 244, 245, 249, 250, 251, 253, 254, 264], "n": [4, 5, 6, 7, 9, 12, 17, 19, 22, 23, 32, 33, 37, 38, 40, 43, 47, 48, 49, 51, 59, 60, 75, 82, 85, 89, 90, 93, 94, 95, 97, 104, 110, 113, 115, 118, 122, 123, 127, 130, 134, 136, 137, 138, 144, 146, 147, 148, 151, 154, 157, 161, 162, 163, 164, 166, 167, 170, 179, 183, 185, 186, 190, 191, 192, 193, 194, 198, 199, 201, 202, 206, 209, 214, 221, 231, 232, 237, 245, 248, 256, 258], "mv": [4, 110], "my_modul": 4, "20": [4, 6, 7, 9, 13, 16, 17, 19, 23, 33, 58, 59, 61, 78, 79, 82, 85, 87, 93, 95, 109, 123, 126, 128, 134, 136, 137, 143, 145, 147, 148, 150, 151, 153, 157, 162, 164, 167, 169, 174, 175, 178, 185, 188, 193, 196, 199, 202, 210, 222, 224, 232, 233, 235, 239, 247, 260, 268], "sm": [4, 169], "exclud": [4, 8, 43], "doesn": [4, 7, 8, 10, 12, 13, 17, 25, 58, 99, 101, 103, 113, 125, 144, 146, 148, 157, 172, 173, 177, 180, 184, 185, 190, 196, 199, 201, 202, 206, 209, 212, 229, 264], "yet": [4, 6, 10, 11, 18, 23, 50, 73, 102, 107, 108, 113, 136, 163, 166, 176, 180, 186, 194, 199, 200, 221, 225, 226], "could": [4, 5, 6, 8, 10, 11, 23, 52, 60, 87, 97, 98, 99, 101, 102, 103, 105, 109, 122, 123, 124, 125, 127, 128, 130, 136, 140, 148, 150, 153, 160, 161, 162, 163, 164, 166, 169, 170, 172, 177, 178, 179, 180, 190, 192, 198, 200, 201, 206, 221], "ignor": [4, 19, 49, 51, 97, 102, 103, 112, 143, 149, 156, 160, 172, 179, 180, 183, 188, 190, 191, 192, 193, 194, 198, 199, 219], "readi": [4, 6, 9, 10, 16, 22, 23, 42, 49, 58, 59, 60, 98, 99, 102, 103, 122, 135, 136, 151, 156, 160, 162, 163, 164, 176, 179, 188, 195, 198, 199, 200, 209, 214, 224, 225, 226, 229, 254], "hand": [4, 5, 6, 8, 14, 17, 18, 23, 61, 73, 98, 103, 128, 136, 140, 155, 173, 178, 191, 202], "shown": [4, 6, 8, 17, 19, 20, 21, 52, 58, 59, 113, 116, 124, 126, 138, 145, 147, 158, 161, 162, 164, 165, 169, 172, 173, 177, 178, 184, 189, 191, 192, 193, 196, 199, 201, 202, 221, 229, 254, 262, 264], "filenam": [4, 6, 49, 104, 109, 116, 127, 128, 172, 231], "traced_resnet_model": 4, "pt": [4, 6, 22, 23, 25, 53, 58, 59, 75, 112, 117, 119, 122, 123, 138, 189, 195, 205, 207, 209, 219, 221, 222, 223, 224, 225, 226, 229, 241, 242, 243, 244, 249, 258], "my_module_model": 4, "left": [4, 17, 32, 43, 47, 49, 51, 52, 64, 85, 89, 99, 103, 111, 112, 113, 136, 138, 147, 151, 160, 161, 163, 165, 169, 170, 201, 202, 262, 264], "realm": [4, 6], "cross": [4, 7, 8, 13, 20, 44, 52, 95, 118, 124, 126, 177, 264], "sphere": 4, "distribut": [4, 5, 6, 14, 15, 19, 24, 52, 54, 73, 75, 79, 80, 87, 97, 99, 103, 108, 113, 121, 122, 123, 124, 126, 132, 133, 138, 148, 150, 153, 156, 160, 162, 169, 177, 186, 194, 197, 203, 209, 213, 215, 216, 217, 224, 232, 252, 260], "encompass": 4, "share": [4, 5, 6, 10, 11, 18, 22, 23, 48, 55, 66, 78, 80, 87, 97, 101, 108, 110, 113, 121, 122, 125, 134, 136, 137, 147, 160, 162, 163, 164, 174, 175, 177, 196, 209, 221], "header": [4, 5, 6, 8, 22, 23, 144, 156, 189, 205, 209, 223, 226, 262, 264, 265], "cmake": [4, 6, 189, 207, 221, 258], "futur": [4, 7, 18, 21, 22, 42, 49, 58, 59, 109, 110, 118, 123, 135, 138, 142, 147, 153, 156, 158, 161, 162, 163, 164, 174, 175, 180, 182, 188, 189, 193, 198, 199, 200, 201, 205, 209, 223, 254], "begin": [4, 5, 6, 7, 11, 12, 17, 19, 22, 23, 25, 32, 43, 49, 50, 52, 55, 58, 59, 73, 85, 89, 102, 103, 108, 113, 115, 116, 122, 124, 138, 143, 153, 158, 161, 163, 169, 170, 192, 194, 202, 224, 229, 264], "iostream": [4, 5, 6, 22, 23, 221], "argc": [4, 22, 23, 221, 258], "const": [4, 5, 6, 8, 10, 15, 22, 23, 59, 145, 156, 187, 209, 221, 223, 232, 247, 258], "char": [4, 22, 23, 59, 145, 209, 221, 258], "cerr": [4, 22, 23, 221, 258], "app": [4, 23, 105, 119, 121, 140, 195, 205, 214, 221, 223, 228, 229, 254], "try": [4, 6, 12, 14, 15, 17, 19, 21, 22, 23, 25, 42, 44, 47, 48, 49, 52, 53, 58, 59, 60, 61, 73, 79, 97, 98, 99, 100, 101, 104, 105, 109, 116, 125, 126, 127, 128, 130, 137, 143, 145, 147, 148, 150, 151, 153, 156, 157, 160, 161, 165, 166, 169, 173, 174, 175, 177, 183, 185, 188, 191, 198, 202, 204, 209, 214, 221, 223, 258, 264, 265], "deseri": [4, 6, 23, 112, 183, 198, 199], "catch": [4, 8, 11, 22, 58, 209, 221, 223, 258], "c10": [4, 8, 10, 15, 22, 145, 156, 187, 189, 209, 221, 232, 247, 258], "ok": [4, 103, 162, 264], "relev": [4, 6, 14, 53, 98, 100, 103, 113, 114, 122, 124, 157, 172], "accept": [4, 5, 20, 67, 78, 87, 97, 102, 111, 115, 116, 124, 126, 142, 146, 151, 155, 160, 163, 169, 172, 180, 201, 203, 206, 254], "proce": [4, 11, 25, 97, 99, 145, 158, 166], "examin": [4, 11, 22, 25, 58, 59, 82, 97, 144], "moment": [4, 6, 11, 174, 180, 193, 207, 224], "cpp": [4, 5, 6, 8, 22, 23, 120, 121, 145, 188, 197, 200, 209, 221, 247, 258], "cmakelist": [4, 6, 22, 23, 209, 221, 258], "txt": [4, 5, 6, 9, 22, 23, 49, 75, 116, 127, 128, 138, 145, 159, 166, 186, 209, 221, 258], "cmake_minimum_requir": [4, 6, 22, 23, 209, 221, 258], "fatal_error": [4, 6, 22, 23, 209, 221, 258], "custom_op": [4, 108, 174, 175, 258], "find_packag": [4, 6, 22, 23, 221, 258], "add_execut": [4, 6, 22, 23, 221, 258], "target_link_librari": [4, 6, 22, 23, 209, 221, 258], "torch_librari": [4, 6, 8, 22, 23, 221, 258], "set_properti": [4, 6, 221, 258], "cxx_standard": [4, 6, 221, 258], "14": [4, 6, 22, 23, 24, 47, 73, 92, 123, 145, 172, 177, 209, 221, 222, 229, 232, 239, 268], "last": [4, 6, 11, 12, 14, 19, 23, 40, 43, 49, 52, 53, 59, 60, 73, 83, 85, 87, 99, 102, 105, 113, 117, 121, 124, 125, 127, 128, 136, 137, 143, 145, 149, 150, 153, 158, 160, 161, 162, 164, 165, 166, 170, 177, 179, 189, 190, 193, 194, 219, 221, 223, 229, 248, 254], "thing": [4, 5, 6, 8, 15, 21, 22, 23, 25, 43, 44, 47, 49, 58, 59, 85, 87, 97, 98, 99, 101, 102, 103, 113, 116, 124, 125, 126, 130, 131, 132, 133, 136, 137, 140, 144, 145, 148, 149, 154, 159, 160, 167, 178, 183, 185, 196, 198, 209, 264], "grab": [4, 6, 52, 159, 164], "latest": [4, 6, 10, 14, 20, 87, 107, 108, 112, 121, 138, 158, 159, 160, 163, 166, 167, 172, 173, 209, 259, 262], "stabl": [4, 20, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 94, 98, 113, 141, 159, 168, 169, 171, 182, 224, 231, 234, 252, 262], "page": [4, 6, 10, 22, 23, 50, 54, 61, 109, 127, 140, 164, 169, 176, 200, 205, 209, 210, 218, 221, 223, 266, 268], "websit": [4, 6, 161], "unzip": [4, 6, 19, 50, 172, 179, 182, 183, 198, 199, 209], "archiv": [4, 5, 6, 25, 148, 259], "against": [4, 22, 23, 44, 60, 81, 105, 136, 148, 160, 221], "window": [4, 5, 6, 7, 20, 44, 51, 103, 105, 134, 163, 169, 179, 207, 264], "debug": [4, 6, 8, 19, 25, 58, 59, 60, 78, 98, 121, 125, 174, 175, 187, 196, 197, 232, 257], "abi": [4, 5, 6, 22, 23, 205, 207, 209, 221], "plan": [4, 6, 10, 18, 60, 112, 122, 124, 172, 176, 183, 188, 193, 199, 207, 209, 225], "correct": [4, 5, 6, 8, 10, 11, 12, 13, 19, 37, 38, 43, 44, 47, 49, 60, 64, 73, 85, 87, 92, 97, 98, 99, 102, 111, 122, 123, 125, 127, 130, 134, 137, 145, 148, 154, 157, 160, 162, 163, 166, 167, 169, 170, 183, 194, 198, 199, 222, 262], "laid": 4, "within": [4, 5, 7, 14, 18, 21, 23, 61, 85, 103, 105, 109, 110, 124, 131, 138, 143, 145, 154, 157, 161, 163, 172, 177, 178, 186, 187, 193, 194, 196, 200, 207, 209, 262, 264], "mkdir": [4, 6, 23, 104, 147, 169, 172, 182, 195, 209], "dcmake_prefix_path": [4, 6, 22, 23, 221, 258], "config": [4, 6, 10, 17, 20, 24, 87, 123, 126, 129, 138, 145, 159, 177, 178, 180, 185, 186, 187, 198, 200, 202, 221, 253, 256], "someth": [4, 5, 6, 11, 14, 19, 23, 25, 44, 87, 99, 101, 113, 116, 136, 145, 158, 159, 160, 166, 206, 264], "root": [4, 5, 6, 14, 22, 23, 34, 37, 38, 41, 43, 44, 51, 52, 87, 92, 97, 98, 110, 130, 137, 145, 163, 164, 167, 169, 179, 189, 205, 214, 221, 224, 237, 251, 254, 255, 262], "4b5a67132e81": 4, "identif": [4, 6, 22, 23, 221], "gnu": [4, 5, 6, 22, 23, 221, 248], "cxx": [4, 6, 22, 23, 205, 207, 209, 221], "check": [4, 5, 6, 7, 8, 13, 14, 15, 19, 20, 22, 23, 25, 42, 43, 44, 45, 49, 50, 52, 55, 58, 59, 60, 73, 75, 85, 97, 98, 101, 104, 105, 108, 109, 110, 115, 116, 122, 126, 134, 136, 137, 140, 142, 143, 145, 147, 148, 154, 155, 157, 159, 160, 163, 172, 173, 174, 175, 177, 179, 189, 193, 194, 199, 201, 207, 209, 221, 223, 224, 254], "usr": [4, 6, 18, 22, 23, 136, 195, 221], "cc": [4, 6, 22, 23, 43, 108, 118, 205, 207, 221], "detect": [4, 6, 11, 12, 18, 22, 23, 52, 75, 121, 140, 159, 169, 173, 221], "info": [4, 5, 6, 22, 23, 82, 118, 133, 136, 138, 147, 161, 172, 174, 175, 176, 186, 208, 221, 222, 229], "pthread": [4, 5, 6, 22, 23, 209, 221], "pthread_creat": [4, 6, 22, 23, 221], "thread": [4, 5, 6, 8, 9, 21, 22, 23, 52, 61, 109, 134, 135, 138, 150, 159, 162, 163, 164, 177, 178, 182, 183, 195, 221, 232, 247], "scan": [4, 6, 22, 23, 172], "50": [4, 6, 7, 12, 16, 17, 19, 21, 22, 23, 24, 49, 52, 53, 58, 78, 92, 137, 145, 148, 157, 161, 164, 167, 178, 179, 183, 186, 192, 198, 200, 202, 204, 220, 222, 224, 229, 231, 248], "cmakefil": [4, 6, 22, 23], "dir": [4, 6, 22, 23, 82, 126, 148, 149, 205, 209, 224, 247], "o": [4, 5, 6, 7, 17, 22, 23, 90, 97, 98, 108, 128, 138, 151, 153, 172, 202, 264], "100": [4, 6, 9, 14, 16, 17, 19, 21, 22, 23, 37, 38, 44, 45, 48, 49, 52, 63, 64, 67, 68, 69, 71, 72, 80, 89, 92, 93, 94, 97, 99, 111, 119, 123, 125, 127, 128, 129, 130, 134, 139, 144, 145, 146, 147, 148, 150, 155, 157, 159, 160, 161, 164, 166, 167, 170, 172, 173, 174, 175, 177, 178, 183, 188, 192, 196, 198, 199, 202, 216, 220, 222, 232, 235, 247, 259], "suppli": [4, 6, 101, 148, 159, 264], "binari": [4, 6, 20, 22, 23, 49, 52, 105, 136, 148, 157, 173, 179, 189, 191, 197, 200, 205, 209, 219, 221, 223, 224, 232], "incompat": [4, 174, 175, 198], "1d": [4, 68, 93, 111, 206], "4d": [4, 47, 78, 148, 201], "path_to_model": 4, "successfulli": [4, 6, 22, 50, 58, 59, 60, 105, 119, 126, 136, 145, 163, 192, 195, 207, 226, 228, 242, 258], "coupl": [4, 14, 49, 103, 122, 124, 131, 137, 139, 153, 170, 184, 204], "awai": [4, 5, 6, 23, 47, 60, 98, 99, 101, 113, 144, 150, 160, 161, 162, 193, 264], "ivalu": [4, 23, 58, 145, 156, 207, 209, 221, 224, 258], "push_back": [4, 22, 23, 221, 258], "totensor": [4, 12, 19, 20, 23, 34, 37, 38, 44, 51, 52, 58, 59, 73, 75, 87, 90, 92, 94, 96, 97, 116, 117, 119, 123, 130, 136, 140, 149, 158, 159, 163, 167, 169, 170, 172, 183, 188, 189, 198, 199, 205, 207, 214, 221, 222, 224, 230, 251, 255, 258], "slice": [4, 5, 48, 80, 102, 127, 151, 157, 194, 207], "eras": [4, 25], "org": [4, 6, 26, 27, 28, 29, 30, 32, 33, 34, 35, 37, 38, 40, 42, 45, 46, 49, 58, 59, 74, 77, 84, 91, 93, 94, 96, 100, 104, 106, 113, 120, 122, 127, 128, 138, 141, 142, 143, 144, 153, 154, 158, 159, 166, 168, 169, 171, 173, 175, 182, 185, 188, 189, 191, 193, 195, 197, 204, 205, 206, 207, 208, 209, 214, 222, 223, 224, 225, 227, 231, 234, 235, 236, 237, 238, 258, 262, 264], "cppdoc": [4, 6], "pariti": 4, "manipul": [4, 60, 103, 144, 153, 183, 186], "five": [4, 9, 65, 95, 111, 113], "ideal": [4, 6, 14, 58, 59, 97, 150, 166, 178, 198], "variabl": [4, 5, 6, 7, 8, 12, 20, 22, 23, 42, 49, 60, 69, 76, 82, 87, 98, 99, 101, 111, 114, 127, 133, 136, 145, 162, 165, 174, 175, 177, 185, 192, 194, 206, 207, 209, 223, 254], "kcuda": [4, 6, 187], "live": [4, 6, 10, 15, 121, 125, 135, 163, 164, 193, 264], "hopefulli": [4, 6, 50, 51, 73, 85, 99, 112], "equip": [4, 5, 131, 137, 190], "concept": [4, 6, 11, 22, 55, 100, 101, 114, 121, 126, 147, 162, 165, 166, 187, 198, 200, 201], "Of": [4, 14, 23, 97, 101, 125, 134, 136, 170, 191, 193], "cours": [4, 6, 14, 17, 19, 23, 53, 97, 100, 101, 103, 104, 125, 134, 136, 170, 202], "did": [4, 6, 8, 19, 23, 25, 44, 52, 60, 68, 105, 111, 113, 136, 142, 154, 160, 163, 166, 177, 183, 264], "cover": [4, 5, 14, 15, 16, 18, 22, 25, 47, 58, 59, 100, 108, 113, 114, 119, 121, 122, 126, 136, 156, 160, 163, 164, 170, 173, 174, 175, 176, 192, 194, 198, 201, 221, 254], "insid": [4, 5, 6, 10, 16, 17, 18, 20, 22, 23, 45, 78, 108, 124, 169, 179, 196, 202, 206, 224, 264], "shortli": [4, 162], "html": [4, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 40, 45, 46, 52, 57, 74, 77, 84, 90, 91, 94, 100, 104, 106, 113, 114, 118, 120, 122, 138, 141, 143, 144, 158, 168, 171, 172, 175, 182, 188, 189, 191, 193, 204, 205, 231, 234, 235, 236, 238, 264], "peter": 5, "goldsborough": 5, "plethora": 5, "relat": [5, 11, 14, 52, 60, 101, 103, 113, 124, 145, 154, 174, 175, 183, 264], "algebra": [5, 14, 48, 99], "wrangl": 5, "novel": 5, "research": [5, 6, 17, 19, 23, 25, 49, 52, 60, 73, 75, 85, 99, 114, 115, 136, 138, 151, 155, 157, 172, 182, 202], "modul": [5, 7, 9, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 33, 37, 38, 39, 42, 44, 45, 47, 49, 52, 53, 55, 58, 59, 65, 66, 68, 73, 78, 79, 87, 89, 92, 94, 95, 96, 97, 98, 99, 102, 103, 105, 107, 108, 109, 110, 112, 115, 116, 117, 118, 121, 122, 123, 124, 125, 127, 128, 129, 130, 134, 136, 139, 143, 144, 145, 147, 148, 151, 153, 155, 156, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 170, 172, 173, 174, 175, 176, 177, 178, 180, 182, 183, 184, 185, 186, 187, 188, 189, 194, 195, 197, 198, 199, 200, 201, 202, 204, 207, 209, 210, 213, 215, 216, 220, 221, 222, 223, 224, 227, 228, 229, 232, 234, 235, 236, 239, 240, 241, 242, 243, 244, 249, 250, 251, 252, 253, 254, 258, 263, 264, 265], "power": [5, 6, 23, 43, 49, 57, 65, 73, 75, 87, 97, 99, 121, 123, 126, 136, 145, 147, 151, 156, 157, 159, 166, 172, 185, 188, 193, 195, 228, 264], "spare": [5, 6], "deriv": [5, 6, 10, 17, 23, 25, 43, 48, 76, 78, 99, 101, 102, 103, 110, 125, 130, 131, 142, 146, 196, 202], "express": [5, 13, 23, 95, 98, 107, 114, 124, 138, 174, 175, 192, 198, 199, 201, 210, 264], "better": [5, 6, 14, 17, 19, 21, 44, 52, 56, 61, 79, 97, 103, 109, 113, 115, 121, 126, 127, 128, 140, 145, 146, 147, 153, 155, 158, 160, 161, 166, 169, 170, 172, 174, 175, 177, 178, 183, 185, 190, 191, 196, 198, 199, 200, 201, 202, 224], "frequent": [5, 22, 23, 75, 82, 103, 123, 176, 177, 178, 192, 221], "expens": [5, 17, 97, 109, 164, 178, 185, 202], "plausibl": 5, "address": [5, 12, 18, 22, 24, 82, 136, 162, 163, 175, 177, 198, 265], "nativ": [5, 6, 8, 15, 23, 42, 55, 87, 107, 108, 119, 121, 122, 124, 137, 138, 164, 177, 178, 180, 185, 190, 193, 198, 221, 224, 239, 247], "intend": [5, 6, 8, 12, 23, 97, 123, 124, 130, 145, 148, 165, 173, 174, 175, 190, 198], "much": [5, 6, 8, 10, 12, 14, 17, 19, 23, 25, 52, 56, 73, 97, 98, 99, 103, 112, 119, 122, 125, 126, 143, 146, 147, 153, 159, 160, 163, 164, 166, 169, 170, 173, 177, 185, 190, 193, 201, 202, 219, 228, 229, 262, 264], "boilerpl": [5, 6, 19, 44, 99, 170, 190], "degre": [5, 64, 126, 166, 169, 193], "matter": [5, 135, 172, 190, 192], "organ": [5, 8, 14, 23, 51, 112, 127, 144, 150, 265], "tackl": [5, 109], "decid": [5, 6, 8, 10, 17, 18, 52, 87, 161, 176, 193, 197, 202], "contribut": [5, 52, 61, 65, 82, 111, 138, 148, 169, 177], "upstream": [5, 221], "rest": [5, 6, 14, 44, 117, 121, 137, 140, 144, 158, 160, 162, 163, 192, 199, 219, 264, 265], "chase": [5, 113], "someon": [5, 166], "fire": [5, 134], "dai": [5, 42, 103, 115, 116, 124], "head": [5, 7, 17, 21, 42, 75, 83, 109, 113, 124, 126, 134, 158, 165, 179, 194, 202], "straight": [5, 6, 23, 140, 166], "recurr": [5, 9, 44, 49, 60, 79, 81, 98, 102, 110, 121, 127, 128, 154, 166, 182, 196], "unit": [5, 6, 25, 49, 110, 122, 123, 146, 151, 157, 160, 161, 166, 172, 177, 178, 188], "superior": 5, "lstm": [5, 44, 49, 78, 79, 93, 100, 110, 119, 121, 127, 128, 164, 182, 184, 196, 229, 235, 252], "lack": [5, 15, 82, 190], "forget": [5, 6, 112, 158, 173, 189], "gate": [5, 49], "exponenti": [5, 49, 99, 101, 154, 161, 185], "elu": [5, 110], "never": [5, 7, 98, 99, 100, 103, 115, 125, 157, 167], "lltm": 5, "long": [5, 6, 7, 9, 10, 20, 23, 49, 50, 60, 78, 80, 82, 87, 98, 99, 100, 101, 103, 113, 118, 122, 125, 127, 128, 137, 138, 144, 145, 150, 154, 161, 164, 166, 169, 179, 186, 187, 196, 198, 209, 224, 232, 239, 247, 264, 265], "term": [5, 6, 15, 52, 73, 99, 100, 101, 109, 122, 124, 151, 157, 160, 175, 185, 193, 198, 199, 200, 201, 203, 264, 265], "signific": [5, 6, 9, 19, 42, 52, 58, 59, 82, 122, 130, 138, 144, 145, 146, 148, 153, 160, 165, 169, 173, 178, 204, 224, 264], "lstmcell": 5, "cell": [5, 21, 23, 25, 50, 60, 75, 80, 109, 160, 161, 165, 172, 185, 265], "plain": [5, 6, 23, 49, 127, 128, 166, 179], "input_featur": 5, "state_s": 5, "candid": [5, 145], "reset_paramet": [5, 130], "stdv": 5, "math": [5, 7, 10, 49, 63, 64, 65, 67, 68, 69, 71, 72, 85, 89, 95, 101, 104, 110, 111, 118, 127, 128, 130, 151, 159, 161, 165, 166, 268], "sqrt": [5, 7, 85, 104, 118, 130, 190, 203], "uniform_": [5, 6, 7, 9, 115, 164, 182, 196, 203], "old_h": 5, "old_cel": 5, "cat": [5, 7, 9, 20, 21, 40, 44, 48, 49, 60, 78, 90, 92, 98, 101, 102, 110, 115, 118, 128, 135, 140, 145, 150, 161, 164, 166, 170, 179, 182, 201, 230, 251], "gate_weight": 5, "split": [5, 7, 8, 9, 18, 19, 20, 21, 45, 49, 52, 60, 79, 85, 87, 98, 99, 102, 103, 113, 118, 121, 127, 128, 134, 135, 138, 143, 150, 160, 163, 164, 166, 179, 182, 183, 186, 194, 198, 199, 247], "input_g": 5, "sigmoid": [5, 6, 52, 93, 110, 180, 201, 248, 253], "output_g": 5, "tanh": [5, 6, 14, 25, 49, 52, 60, 93, 99, 110, 127, 146, 160, 166, 248], "candidate_cel": 5, "new_cel": 5, "hidden": [5, 7, 9, 21, 49, 60, 78, 97, 98, 102, 124, 126, 127, 128, 137, 143, 149, 164, 165, 166, 182, 196, 198, 235, 262], "new_h": [5, 25, 51], "rnn": [5, 9, 21, 25, 45, 49, 60, 61, 78, 79, 93, 110, 118, 121, 135, 137, 154, 163, 166, 182, 196, 200, 248], "new_c": 5, "intel": [5, 121, 136, 145, 148, 200, 207, 222, 252], "mkl": [5, 145, 239], "nnpack": 5, "why": [5, 6, 8, 11, 14, 25, 44, 52, 85, 97, 99, 103, 112, 114, 131, 134, 145, 153, 166, 173, 174, 175, 191, 193, 264], "room": [5, 97, 150, 264], "obviou": [5, 113], "knowledg": [5, 49, 52, 73, 99, 100, 114, 121, 145, 147, 264], "execut": [5, 6, 7, 8, 11, 15, 16, 20, 21, 22, 23, 25, 42, 43, 45, 50, 60, 61, 76, 78, 82, 98, 108, 120, 121, 125, 126, 135, 136, 137, 144, 145, 148, 150, 156, 160, 161, 163, 164, 165, 173, 174, 175, 177, 178, 183, 184, 186, 187, 188, 195, 204, 205, 207, 209, 224, 225, 226, 231, 254], "kernel": [5, 6, 8, 13, 17, 18, 23, 47, 83, 108, 110, 121, 139, 145, 148, 150, 154, 155, 157, 165, 166, 169, 173, 177, 178, 185, 187, 200, 202], "involv": [5, 8, 9, 15, 16, 17, 19, 23, 25, 50, 60, 85, 98, 101, 105, 112, 120, 125, 127, 133, 140, 147, 153, 164, 166, 174, 175, 183, 185, 194, 202], "launch": [5, 6, 21, 53, 61, 115, 126, 133, 134, 150, 162, 163, 164, 165, 169, 177, 207, 227], "amount": [5, 19, 25, 73, 82, 112, 124, 134, 157, 173, 185, 224], "becom": [5, 6, 11, 21, 24, 52, 61, 73, 75, 78, 85, 97, 124, 131, 146, 148, 169, 170, 177, 187, 194, 198, 254], "furthermor": [5, 19, 97, 139, 146, 170, 177, 187, 201, 225, 226], "interpret": [5, 6, 23, 25, 40, 56, 82, 85, 103, 121, 127, 128, 138, 166, 173, 174, 175, 187, 197, 230, 236, 252, 264], "slow": [5, 6, 8, 42, 123, 149, 177, 229], "down": [5, 8, 10, 11, 16, 19, 42, 50, 82, 87, 99, 104, 123, 137, 145, 146, 147, 163, 167, 170, 177, 190, 262], "therefor": [5, 6, 9, 15, 19, 49, 51, 60, 97, 108, 112, 113, 115, 120, 134, 135, 148, 151, 156, 157, 163, 164, 174, 175, 177, 192, 193, 201, 207, 224, 264], "rewrit": [5, 21, 45, 60, 107, 130, 154, 174, 175, 201, 206, 207, 254], "fuse": [5, 17, 19, 121, 145, 158, 159, 177, 178, 180, 182, 183, 185, 195, 199, 202, 207, 228, 248, 254], "group": [5, 7, 11, 16, 18, 19, 24, 49, 61, 83, 109, 113, 120, 121, 122, 123, 128, 130, 132, 134, 135, 136, 145, 169, 176, 179, 264, 265], "profit": 5, "fewer": [5, 11, 130, 146], "visibl": [5, 22, 23, 44, 87, 172, 183], "aten": [5, 8, 10, 15, 23, 42, 109, 145, 169, 174, 175, 178, 183, 186, 187, 189, 198, 199, 200, 220, 221, 227, 239, 245, 247], "translat": [5, 23, 25, 49, 60, 105, 107, 116, 118, 151, 166, 188, 192, 254], "benefit": [5, 6, 9, 17, 18, 42, 43, 85, 87, 119, 122, 142, 148, 153, 158, 165, 177, 185, 198, 202, 221], "massiv": [5, 25, 44, 101, 103, 221], "parallel": [5, 6, 11, 16, 18, 44, 46, 49, 51, 52, 55, 73, 79, 87, 112, 121, 126, 132, 136, 138, 145, 151, 160, 162, 163, 164, 176, 177, 231, 241, 248, 260], "ahead": [5, 22, 153, 170, 174, 175, 180, 189], "cpp_extens": [5, 10, 23, 156, 209, 232], "setup": [5, 6, 7, 10, 16, 19, 22, 42, 52, 53, 55, 122, 123, 126, 134, 149, 150, 153, 156, 159, 164, 185, 189, 192, 193, 205, 206, 207, 215, 232, 247], "lltm_cpp": 5, "ext_modul": [5, 10, 23, 156], "cppextens": [5, 10, 23, 156], "cmdclass": [5, 10, 23, 156], "build_ext": [5, 10, 23, 156], "buildextens": [5, 10, 23, 156], "conveni": [5, 8, 14, 22, 23, 44, 47, 49, 101, 125, 127, 128, 139, 146, 156, 160, 191, 193, 221, 254], "wrapper": [5, 6, 8, 16, 55, 112, 122, 123, 131, 137, 147, 160, 172, 197, 200, 241], "include_dir": [5, 10, 156], "include_path": 5, "manag": [5, 22, 43, 49, 61, 108, 109, 113, 120, 124, 132, 133, 134, 150, 154, 165, 169, 178, 233], "And": [5, 6, 10, 22, 23, 24, 25, 52, 101, 103, 105, 113, 131, 145, 146, 148, 151, 159, 169, 170, 173, 174, 175, 177, 178, 196, 200, 201, 214], "overal": [5, 19, 42, 49, 122, 123, 136, 150, 161, 172, 198, 201, 229], "d_sigmoid": 5, "bit": [5, 12, 15, 23, 25, 51, 68, 95, 109, 113, 117, 137, 149, 159, 160, 161, 166, 185, 190, 198, 200, 208, 229], "pybind11": [5, 8, 22, 23, 156, 232], "datatyp": [5, 23, 40, 48, 109, 221], "Its": [5, 97, 99, 194, 264], "inspect": [5, 23, 78, 97, 108, 122, 126, 144, 165, 167, 173, 174, 175, 183, 186], "notic": [5, 8, 14, 21, 22, 23, 25, 32, 42, 43, 44, 52, 60, 73, 85, 97, 99, 112, 131, 136, 145, 147, 150, 154, 155, 158, 160, 169, 173, 174, 175, 177, 178, 189, 190, 192, 196], "dispos": 5, "nvcc": 5, "workaround": [5, 7, 23, 79, 85, 131, 142], "logic": [5, 6, 11, 17, 23, 85, 98, 123, 126, 133, 135, 157, 163, 164, 172, 178, 184, 202, 203], "sigmoidalphablendforwardcuda": 5, "port": [5, 16, 136, 163], "entir": [5, 6, 14, 16, 18, 19, 25, 47, 49, 53, 60, 78, 97, 99, 102, 117, 121, 122, 123, 127, 130, 135, 143, 150, 153, 155, 157, 158, 160, 164, 166, 177, 183, 190, 191, 192, 195, 198, 199, 209, 264], "lltm_forward": 5, "addmm": [5, 6, 109, 145, 174, 189, 198, 207, 208, 220, 239], "transpos": [5, 6, 7, 12, 40, 44, 48, 49, 51, 52, 60, 90, 92, 94, 96, 110, 117, 118, 130, 145, 147, 154, 158, 161, 165, 167, 170, 174, 175, 194, 207, 230], "respect": [5, 16, 32, 34, 43, 49, 51, 52, 63, 64, 68, 69, 71, 72, 99, 101, 111, 114, 115, 124, 125, 135, 137, 142, 144, 145, 146, 155, 160, 164, 166, 169, 174, 175, 177, 178, 199, 250], "ultim": [5, 19, 49, 52, 60, 85, 190], "plop": [5, 23], "autograd": [5, 12, 13, 15, 16, 21, 25, 32, 40, 42, 46, 47, 57, 59, 61, 62, 68, 69, 77, 78, 81, 91, 93, 98, 100, 101, 104, 109, 110, 119, 121, 127, 128, 130, 131, 134, 135, 145, 146, 151, 155, 161, 162, 163, 166, 178, 192, 201, 206, 209, 213, 217, 227, 231, 248, 256], "nice": [5, 12, 49, 80, 144, 153, 155, 160], "dig": [5, 99, 103, 165], "deeper": [5, 11, 12, 95, 97, 99, 144, 145, 165, 178, 212], "interest": [5, 6, 10, 14, 17, 20, 23, 25, 44, 49, 51, 58, 59, 78, 87, 97, 99, 105, 107, 108, 113, 117, 122, 126, 146, 153, 154, 158, 160, 167, 174, 175, 177, 179, 202, 206, 264], "alex": 5, "grave": 5, "thesi": 5, "d_tanh": 5, "relu": [5, 6, 12, 19, 20, 23, 25, 37, 38, 44, 47, 52, 73, 78, 87, 89, 92, 93, 94, 96, 97, 99, 103, 104, 105, 110, 112, 123, 134, 135, 139, 145, 147, 149, 150, 151, 155, 157, 158, 159, 161, 162, 163, 164, 166, 167, 170, 173, 174, 175, 178, 182, 183, 201, 204, 206, 215, 216, 219, 220, 221, 222, 224, 231, 234, 240, 241, 242, 243, 244, 248, 249, 250, 251, 253, 254], "exp": [5, 7, 9, 65, 89, 98, 99, 104, 111, 118, 125, 131, 142, 161, 192], "d_elu": 5, "mask": [5, 17, 58, 75, 90, 109, 118, 121, 137, 154, 157, 161, 165, 172, 179, 185, 190, 191, 193, 194, 197, 202, 221, 256], "type_a": [5, 118], "lltm_backward": 5, "grad_h": 5, "grad_cel": 5, "d_output_g": 5, "d_tanh_new_cel": 5, "d_new_cel": 5, "d_old_cel": 5, "d_candidate_cel": 5, "d_input_g": 5, "d_gate": 5, "d_weight": 5, "d_bia": 5, "keepdim": [5, 13, 19, 73, 123, 130, 163, 167, 183, 198, 199, 222], "d_x": [5, 52], "d_old_h": 5, "d_input": 5, "span": [5, 17, 75, 98, 134, 150, 169, 202, 265], "four": [5, 7, 14, 18, 22, 61, 67, 85, 94, 95, 108, 111, 115, 119, 122, 135, 136, 150, 170, 224, 229, 264, 265], "pybind11_modul": [5, 156], "torch_extension_nam": [5, 156], "macro": [5, 6, 8, 15, 23], "maintain": [5, 10, 14, 22, 43, 49, 61, 73, 97, 102, 108, 121, 132, 136, 147, 161, 164, 177, 178, 195], "mismatch": [5, 61, 97], "nasti": 5, "hard": [5, 6, 8, 15, 21, 99, 126, 157], "At": [5, 6, 8, 14, 15, 17, 20, 23, 43, 47, 49, 50, 85, 87, 102, 116, 122, 123, 124, 137, 142, 147, 158, 160, 161, 162, 165, 166, 169, 190, 193, 198, 202, 207, 224, 263], "point": [5, 6, 8, 10, 11, 14, 17, 18, 19, 20, 22, 23, 43, 47, 49, 50, 51, 52, 53, 58, 60, 82, 85, 97, 98, 100, 101, 102, 103, 110, 123, 124, 125, 126, 131, 132, 134, 144, 147, 150, 151, 158, 160, 162, 166, 170, 172, 174, 175, 182, 183, 185, 186, 190, 192, 193, 195, 198, 201, 202, 209, 224, 229, 262, 263, 264], "bdist_egg": 5, "egg_info": [5, 23], "egg": [5, 23], "pkg": [5, 23, 259], "dependency_link": [5, 23], "top": [5, 6, 8, 17, 19, 20, 22, 23, 38, 50, 51, 52, 82, 83, 94, 96, 97, 115, 124, 127, 136, 140, 144, 158, 159, 164, 165, 169, 170, 177, 179, 183, 198, 199, 200, 202, 210, 228, 258, 262, 266], "top_level": [5, 23], "manifest": [5, 23, 192, 195], "bdist": 5, "x86_64": [5, 18, 23, 205, 209], "install_lib": 5, "temp": [5, 9, 19, 23, 125, 129, 138, 182, 183, 186, 198, 199, 235], "gcc": [5, 23, 108, 145], "miniconda": [5, 18, 23], "compiler_compat": [5, 23], "wl": [5, 22, 23], "sysroot": [5, 23], "wsign": [5, 23], "dndebug": [5, 23], "g": [5, 6, 7, 8, 10, 11, 12, 14, 18, 23, 25, 42, 43, 49, 51, 52, 60, 61, 79, 87, 89, 97, 99, 100, 103, 108, 110, 117, 121, 123, 126, 127, 128, 134, 136, 138, 139, 145, 153, 155, 156, 160, 162, 164, 166, 169, 174, 175, 177, 180, 183, 186, 187, 193, 197, 201, 206, 207, 259, 264], "fwrapv": [5, 23], "o3": [5, 23, 232], "wall": [5, 23, 98, 144, 247], "wstrict": [5, 23], "prototyp": [5, 10, 11, 15, 23, 61, 113, 174, 175, 187, 194, 195, 201, 206, 207], "fpic": [5, 23, 108], "site": [5, 18, 22, 23, 50, 52, 58, 59, 143, 144, 166, 188, 225, 226, 228, 239, 247, 264], "csrc": [5, 22, 23, 156, 189, 223], "th": [5, 14, 23, 51, 99, 103, 136, 147], "thc": [5, 23], "7m": [5, 23], "dtorch_api_include_extension_h": [5, 23], "dtorch_extension_nam": [5, 23], "d_glibcxx_use_cxx11_abi": [5, 23], "cc1plu": [5, 23], "warn": [5, 19, 23, 42, 51, 138, 145, 149, 160, 165, 172, 173, 174, 175, 183, 186, 188, 190, 191, 192, 193, 198, 199, 232, 254], "valid": [5, 7, 9, 13, 17, 20, 23, 24, 49, 87, 94, 97, 104, 107, 109, 112, 113, 115, 117, 118, 122, 123, 126, 130, 131, 149, 156, 158, 172, 179, 182, 183, 191, 192, 201, 202, 205, 223], "objc": [5, 23], "l": [5, 7, 12, 14, 20, 23, 43, 49, 51, 52, 89, 99, 108, 110, 127, 128, 160, 161, 166, 174, 194, 195, 232], "rpath": [5, 23], "cpython": [5, 23], "37m": [5, 23], "stub": [5, 158, 210, 224, 265], "loader": [5, 6, 12, 24, 38, 44, 79, 160, 163, 179, 223, 232], "byte": [5, 138, 140, 175, 182, 209, 231], "37": [5, 7, 17, 109, 159, 164, 178, 202, 239], "pyc": 5, "native_lib": 5, "zip_saf": 5, "analyz": [5, 19, 23, 60, 82, 121, 153, 160, 173, 175, 186], "__pycache__": 5, "__file__": [5, 156, 232], "dist": [5, 7, 11, 16, 18, 110, 122, 123, 134, 136, 154, 156, 163, 176, 215, 216, 260], "py3": 5, "remov": [5, 9, 12, 17, 19, 49, 52, 53, 59, 60, 83, 109, 110, 114, 116, 125, 134, 138, 143, 145, 153, 159, 165, 166, 172, 173, 174, 175, 179, 182, 183, 184, 185, 186, 190, 191, 194, 195, 198, 199, 202, 205, 229, 232, 235, 247, 254, 262], "everyth": [5, 43, 87, 97, 99, 108, 126, 127, 131, 137, 140, 158, 159, 160, 161, 162, 166, 170, 188, 189, 224, 247], "finish": [5, 6, 16, 23, 44, 45, 58, 87, 92, 94, 115, 134, 135, 136, 144, 150, 162, 164, 170, 189, 200, 205, 219, 224, 251], "ubuntu": [5, 6, 169, 209], "16": [5, 7, 16, 17, 19, 23, 24, 44, 47, 52, 87, 89, 92, 93, 94, 96, 97, 104, 105, 112, 126, 134, 137, 142, 146, 148, 157, 158, 159, 164, 165, 170, 172, 173, 174, 175, 178, 179, 185, 188, 192, 195, 202, 205, 209, 215, 220, 232, 240, 241, 242, 243, 244, 249, 250, 251, 268], "04": [5, 7, 118, 169, 220, 232], "recent": [5, 49, 75, 102, 109, 113, 115, 124, 136, 138, 145, 151, 154, 158, 161, 169, 209], "maco": [5, 6, 105, 136, 172], "clang": [5, 205, 207], "worst": [5, 115, 138], "resolv": [5, 23, 97, 143, 148, 178, 192], "symbol": [5, 25, 115, 118, 143, 174, 175, 183, 201, 232, 247, 264], "linker": [5, 23, 205], "pycapsul": [5, 23], "builtin": [5, 156], "arg0": 5, "arg1": [5, 163], "arg2": [5, 163], "arg3": 5, "arg4": 5, "citizen": [5, 23, 190, 192], "lltmfunction": 5, "staticmethod": [5, 13, 14, 64, 111, 130, 131, 142, 162, 172, 245], "contigu": [5, 7, 8, 9, 14, 148, 182, 195, 200, 210, 219, 224], "saved_tensor": [5, 13, 64, 111, 130, 131], "benchmark": [5, 15, 17, 24, 42, 109, 117, 121, 126, 138, 139, 145, 146, 155, 159, 165, 173, 177, 178, 185, 188, 194, 200, 202, 211, 221, 236, 247, 248, 252], "measur": [5, 12, 21, 82, 97, 103, 123, 138, 144, 146, 150, 160, 161, 165, 167, 173, 177, 178, 185, 196, 200, 204, 213, 224, 232, 247], "durat": [5, 83, 156, 161, 169, 178, 264], "32": [5, 14, 17, 18, 19, 20, 21, 23, 24, 47, 52, 55, 73, 87, 92, 93, 97, 102, 105, 109, 123, 126, 130, 137, 138, 145, 146, 147, 148, 151, 155, 159, 163, 164, 165, 166, 167, 169, 172, 174, 175, 177, 178, 179, 199, 204, 220, 229, 232, 234, 240, 248], "128": [5, 6, 12, 22, 51, 52, 55, 73, 87, 97, 103, 109, 118, 123, 124, 126, 127, 128, 130, 135, 136, 137, 138, 139, 145, 150, 155, 159, 161, 162, 163, 164, 166, 173, 179, 186, 201, 204, 208, 213, 221, 231, 232, 233, 234, 247, 255], "100000": [5, 58, 59, 127, 128, 138, 147, 232], "3f": [5, 9, 17, 19, 44, 87, 92, 115, 118, 147, 165, 179, 182, 194, 199, 202, 231, 251], "wrote": [5, 23, 140, 173, 179, 264], "post": [5, 6, 11, 20, 49, 58, 59, 97, 121, 122, 123, 126, 138, 140, 148, 150, 167, 177, 178, 184, 186, 194, 197, 199, 201, 214], "my": [5, 21, 42, 50, 98, 103, 192, 199, 204, 264], "machin": [5, 6, 18, 20, 21, 25, 44, 49, 50, 51, 53, 54, 55, 56, 58, 59, 60, 61, 73, 87, 105, 107, 116, 118, 121, 122, 123, 126, 132, 133, 134, 135, 136, 144, 155, 159, 163, 164, 165, 166, 177, 179, 186, 195, 199, 204], "506": 5, "480": [5, 239], "444": 5, "694": 5, "349": [5, 92], "335": [5, 148, 164, 260], "443": [5, 164, 239], "523": 5, "speedup": [5, 17, 21, 42, 44, 121, 139, 145, 150, 155, 178, 182, 183, 185, 194, 202, 224], "30": [5, 6, 7, 14, 17, 19, 45, 82, 99, 115, 121, 122, 148, 157, 162, 164, 183, 193, 198, 202, 232, 233, 239], "albeit": [5, 14, 229], "major": [5, 10, 11, 19, 103, 117, 145, 153, 165, 173, 177, 178, 193], "particularli": [5, 13, 17, 53, 154, 166, 202], "engin": [5, 6, 14, 20, 43, 61, 87, 107, 119, 123, 159, 164, 172, 175, 179, 188, 206, 208, 221, 229, 262], "wonder": [5, 99, 153], "abstract": [5, 11, 14, 51, 87, 95, 100, 103, 110, 113, 124, 126, 136, 143, 156, 160, 265], "correspondingli": 5, "big": [5, 42, 52, 98, 103, 128, 130, 139, 153, 160, 166, 172, 195], "win": [5, 115, 153, 186], "No": [5, 6, 49, 53, 60, 99, 145, 149, 180, 205, 212], "cuda_devic": 5, "creation": [5, 6, 10, 193, 203, 209], "assert": [5, 9, 11, 12, 17, 18, 19, 22, 51, 94, 95, 98, 105, 108, 125, 129, 130, 134, 139, 142, 143, 145, 146, 151, 154, 155, 163, 165, 170, 173, 182, 194, 195, 201, 202, 206, 209, 210, 211, 231, 232, 245, 253], "synchron": [5, 11, 16, 55, 56, 61, 82, 134, 136, 150, 160, 162, 163, 169, 173, 177, 178, 185, 194, 213, 231, 253], "1e6": [5, 9, 19, 138, 165, 182, 183, 186, 198, 199, 211, 229, 232, 260], "1e5": 5, "again": [5, 6, 9, 21, 25, 44, 50, 60, 78, 97, 98, 102, 103, 108, 113, 116, 119, 125, 130, 136, 137, 153, 162, 164, 166, 169, 172, 173, 177, 185, 198, 201, 224, 264], "187": [5, 232], "719": 5, "410": [5, 148], "815": 5, "149": 5, "802": [5, 145], "393": [5, 178], "458": [5, 145], "That": [5, 6, 17, 23, 43, 44, 45, 49, 99, 101, 102, 103, 105, 108, 116, 124, 127, 135, 142, 144, 146, 148, 150, 151, 153, 160, 165, 169, 179, 190, 191, 193, 202, 224, 225, 264], "great": [5, 49, 60, 105, 112, 113, 192, 198, 264], "pull": [5, 7, 21, 144, 174, 175], "dive": [5, 6, 11, 23, 134, 145, 158], "elabor": [5, 6, 124, 145, 162], "fly": [5, 14, 23, 51, 98, 115, 160, 229], "background": [5, 6, 23, 58, 59, 73, 113, 159, 170, 172, 179, 264], "tmp": [5, 23, 126, 130, 145, 172, 187, 219, 224, 229, 239], "torch_extens": 5, "emit": [5, 6, 98], "ninja": 5, "verbos": [5, 23, 133, 172, 178, 208, 209, 265], "complic": [5, 14, 98, 99, 103, 126, 178, 198, 206, 210, 254], "techniqu": [5, 9, 16, 17, 19, 21, 49, 60, 97, 98, 103, 107, 121, 124, 130, 131, 132, 144, 150, 154, 157, 158, 164, 172, 178, 185, 190, 194, 202, 204, 205, 229], "fine": [5, 6, 17, 19, 49, 51, 98, 113, 120, 125, 135, 136, 145, 158, 159, 169, 186, 189, 190, 202, 248], "system": [5, 6, 8, 10, 12, 14, 15, 22, 23, 25, 55, 76, 97, 121, 126, 136, 154, 159, 160, 162, 176, 177, 178, 179, 207, 209], "increment": [5, 11, 12, 60, 85, 101, 136, 147, 161], "thu": [5, 6, 8, 10, 19, 20, 21, 23, 49, 85, 87, 97, 108, 122, 139, 143, 153, 166, 178, 198, 203, 209, 254, 264], "didn": [5, 8, 22, 76, 105, 144, 162, 182, 206, 264], "prospect": 5, "pointwis": [5, 8, 143, 148, 200], "declar": [5, 6, 13, 23, 60, 73, 78, 115, 209, 224, 254], "cu": 5, "ensur": [5, 8, 9, 10, 11, 12, 14, 15, 16, 19, 22, 37, 49, 53, 56, 60, 64, 97, 109, 111, 112, 115, 116, 123, 133, 136, 142, 160, 161, 163, 165, 172, 177, 179, 187, 195, 199, 203, 232, 242], "lltm_cuda": 5, "lltm_cuda_forward": 5, "lltm_cuda_backward": 5, "check_cuda": 5, "torch_check": [5, 8], "is_cuda": [5, 148], "check_contigu": 5, "is_contigu": [5, 148, 232, 247], "check_input": 5, "lltm_cuda_kernel": 5, "cannot": [5, 6, 11, 14, 16, 18, 22, 23, 49, 60, 61, 82, 108, 112, 113, 131, 134, 136, 137, 148, 150, 158, 160, 174, 175, 185, 196, 204, 206, 263], "peek": [5, 212], "cuda_runtim": 5, "templat": [5, 8, 22, 23, 59, 136, 145, 209, 210, 262], "typenam": [5, 209], "scalar_t": [5, 145], "__device__": 5, "__forceinline__": 5, "specif": [5, 6, 8, 9, 10, 11, 12, 17, 18, 19, 22, 23, 25, 44, 55, 58, 59, 73, 82, 87, 99, 100, 101, 105, 107, 108, 110, 112, 114, 122, 123, 124, 127, 128, 130, 134, 136, 137, 138, 144, 145, 149, 150, 157, 158, 160, 162, 163, 164, 165, 166, 169, 170, 174, 175, 177, 178, 179, 180, 186, 188, 191, 194, 200, 201, 202, 205, 207, 221, 252, 254, 264], "fmax": 5, "fmin": 5, "d_relu": 5, "wish": [5, 6, 23, 52, 60, 73, 95, 112, 113, 151, 155, 163, 172, 180, 186, 191, 199, 242, 265], "explicitli": [5, 6, 18, 25, 43, 48, 52, 53, 60, 87, 101, 124, 133, 137, 148, 164, 165, 167, 174, 177, 178, 183, 193, 194, 201], "zeros_lik": [5, 14, 95, 143, 162, 217, 256], "dim3": 5, "at_dispatch_floating_typ": 5, "lltm_forward_cuda": 5, "lltm_cuda_forward_kernel": 5, "indic": [5, 6, 10, 11, 14, 16, 23, 49, 60, 63, 64, 82, 98, 99, 102, 103, 108, 109, 110, 111, 115, 116, 118, 126, 127, 137, 138, 145, 157, 160, 161, 163, 169, 170, 172, 177, 178, 179, 186, 190, 192, 193, 196, 201, 258, 262, 264], "runtim": [5, 8, 14, 18, 21, 23, 25, 40, 50, 60, 82, 85, 107, 109, 121, 124, 130, 144, 153, 169, 173, 177, 178, 182, 185, 186, 198, 207, 208, 211], "back": [5, 6, 8, 10, 14, 15, 19, 20, 22, 23, 44, 47, 51, 58, 59, 60, 73, 80, 87, 97, 98, 101, 105, 109, 113, 125, 127, 140, 144, 148, 150, 153, 155, 160, 162, 163, 164, 166, 172, 177, 189, 190, 194, 195, 264], "determin": [5, 6, 8, 11, 17, 19, 48, 49, 97, 98, 101, 102, 103, 105, 124, 126, 139, 143, 153, 154, 155, 157, 161, 173, 183, 194, 202], "conceptu": [5, 6, 43, 49, 60, 178], "scalartyp": 5, "messag": [5, 49, 108, 136, 138, 172, 174, 175, 186, 209, 223, 226, 254], "alia": [5, 10, 64, 111, 174, 175], "retriev": [5, 6, 7, 14, 16, 21, 49, 125, 126, 147, 160, 162, 163, 178, 210], "at_dispatch_all_typ": 5, "sens": [5, 8, 12, 14, 97, 103, 113, 126, 139, 170, 264], "routin": [5, 6, 23], "convolut": [5, 6, 8, 12, 13, 20, 47, 52, 60, 97, 112, 117, 119, 121, 148, 151, 157, 158, 167, 177, 178, 183, 200, 201, 207, 208, 221, 224, 227, 239, 254], "harder": [5, 97, 185, 186], "ourselv": [5, 6, 49, 76, 130, 160], "grid": [5, 47, 51, 117, 150, 158, 167, 170, 187, 256], "fill": [5, 6, 14, 80, 103, 127, 137, 142, 177, 191, 192, 209, 224], "matric": [5, 12, 17, 23, 25, 48, 101, 146, 154, 202], "2048": [5, 18, 97, 130, 146], "heard": 5, "introductori": [5, 79], "fairli": [5, 97, 113, 136, 153, 161], "ever": [5, 6, 23, 125, 174, 175], "__global__": 5, "__restrict__": 5, "size_t": 5, "column": [5, 7, 18, 23, 40, 80, 99, 101, 109, 119, 124, 127, 145, 146, 151, 161, 169, 172, 191, 192, 193, 194, 232, 239, 265], "blockidx": 5, "blockdim": 5, "threadidx": 5, "index": [5, 6, 15, 34, 38, 41, 44, 45, 48, 49, 51, 58, 59, 60, 73, 83, 98, 99, 101, 102, 103, 109, 115, 116, 118, 119, 123, 125, 126, 127, 128, 130, 136, 140, 154, 161, 162, 166, 167, 169, 172, 173, 177, 185, 194, 206, 214, 262, 268], "gates_row": 5, "primarili": [5, 82, 163, 173], "imagin": [5, 98, 103, 131, 136, 153, 154, 166], "giant": [5, 166], "million": [5, 115, 117, 119, 122, 137, 177], "serial": [5, 6, 10, 23, 25, 60, 112, 121, 174, 175, 177, 183, 198, 199], "faster": [5, 6, 8, 9, 12, 19, 49, 56, 58, 59, 73, 97, 112, 122, 133, 137, 139, 146, 148, 155, 162, 166, 173, 178, 179, 183, 204, 219, 224, 228, 229], "right": [5, 6, 8, 10, 12, 14, 20, 23, 32, 43, 48, 49, 52, 64, 82, 89, 97, 99, 101, 103, 111, 113, 136, 138, 147, 151, 153, 158, 160, 161, 162, 165, 166, 169, 172, 179, 186, 196, 198, 206, 254, 264], "inde": [5, 14, 58, 59, 97, 130, 146, 160, 165, 173, 192, 193], "agnost": [5, 60, 110, 233], "ineffici": [5, 82, 177, 194], "readabl": [5, 25, 51, 98, 110, 128, 140, 169, 214], "especi": [5, 17, 19, 49, 52, 60, 73, 113, 122, 134, 144, 151, 153, 174, 175, 178, 185, 191, 200, 202, 224, 229], "dimension": [5, 47, 48, 49, 52, 60, 97, 100, 101, 102, 103, 113, 124, 148, 157, 165, 166, 170, 172, 193, 224], "stride": [5, 6, 19, 52, 90, 97, 104, 113, 123, 130, 135, 145, 147, 148, 167, 172, 178, 180, 193, 219, 230, 238, 245], "row": [5, 18, 23, 34, 40, 51, 73, 80, 99, 101, 102, 103, 116, 124, 126, 127, 146, 158, 161, 162, 177, 178, 191, 193, 206, 209, 232, 265], "arithmet": [5, 19, 144, 186], "fortun": [5, 6, 10, 15, 23, 87, 136, 137], "expos": [5, 6, 8, 22, 23, 108, 113, 121, 140, 164, 182, 198, 199, 207, 209], "foo": [5, 21, 22, 142, 143, 154, 163, 173, 175, 183, 198, 203, 210, 247, 264, 265], "12": [5, 7, 23, 42, 58, 59, 92, 101, 109, 122, 123, 145, 150, 162, 170, 174, 179, 180, 185, 191, 194, 201, 202, 205, 209, 222, 223, 226, 228, 232, 259, 264, 268], "hold": [5, 14, 16, 18, 47, 60, 63, 64, 65, 67, 68, 69, 76, 78, 87, 98, 111, 122, 123, 133, 135, 140, 153, 161, 162, 164], "foo_a": 5, "packed_accessor64": 5, "packed_accessor32": 5, "pack": [5, 49, 60, 78, 115, 145, 160, 162, 164, 194, 209, 224, 254], "integ": [5, 6, 8, 60, 97, 99, 101, 103, 113, 115, 126, 147, 157, 174, 175, 179, 185, 193, 198, 199, 200, 208, 229, 267], "fundament": [5, 49, 91, 101, 103, 147, 191, 199], "packedtensoraccessor32": 5, "restrictptrtrait": 5, "decompos": [5, 10, 17, 123, 150, 174, 175, 198, 202], "packedaccessor32": 5, "variant": [5, 49, 60, 124, 130, 159, 165], "int32_t": 5, "packedaccessor64": 5, "slower": [5, 17, 56, 134, 146, 150, 159, 161, 173, 177, 179, 185, 187, 194, 202], "host": [5, 7, 16, 18, 54, 82, 98, 122, 123, 124, 134, 135, 136, 150, 163, 164, 169], "reshap": [5, 6, 9, 12, 19, 51, 95, 103, 104, 110, 118, 143, 160, 182, 183, 189, 190, 191, 192, 194, 198, 199, 207, 222, 232], "pattern": [5, 17, 21, 103, 124, 136, 143, 145, 154, 163, 178, 183, 184, 186, 190, 192, 198, 202, 203, 221], "lltm_cuda_backward_kernel": 5, "lltm_backward_cuda": 5, "d_gate_weight": 5, "cudaextens": [5, 156], "hassl": [5, 6], "entail": 5, "simpler": [5, 78, 124, 130, 142, 154, 198, 206], "fastest": [5, 150, 165], "129": [5, 109, 188], "431": 5, "304": [5, 49, 178], "641": [5, 148], "faq": [5, 22, 23], "sit": [6, 42, 105, 107, 108, 150, 154, 263, 265, 267], "atop": 6, "substanti": [6, 126], "codebas": [6, 10, 14], "foundat": [6, 160, 172], "underli": [6, 8, 14, 23, 48, 73, 80, 95, 97, 112, 126, 139, 145, 150, 155, 163, 183, 192, 193, 194], "popular": [6, 68, 73, 75, 97, 111, 126, 137, 138, 178, 185, 221, 263], "stochast": [6, 7, 47, 52, 65, 104, 111, 115, 136, 160, 161], "descent": [6, 7, 43, 47, 63, 64, 65, 68, 72, 104, 110, 111, 115, 136, 185], "digit": [6, 47, 121, 122, 123, 172], "whirlwind": 6, "wet": 6, "appetit": 6, "watch": [6, 37, 113, 132, 136], "lightn": [6, 126], "talk": [6, 8, 49, 52, 55, 101, 115, 136, 160, 163], "cppcon": 6, "2018": [6, 118, 138], "quick": [6, 17, 48, 58, 59, 97, 99, 102, 103, 119, 122, 127, 134, 139, 146, 154, 155, 185, 202], "humor": 6, "sweep": [6, 165], "philosophi": [6, 113], "ecosystem": [6, 108], "descript": [6, 50, 61, 122, 123, 145, 149, 160, 162, 163, 164, 165, 172, 182, 232, 259, 265], "embark": 6, "excit": [6, 22, 23, 144, 153], "team": [6, 108, 115, 126, 138, 161, 172], "job": [6, 45, 52, 53, 54, 82, 97, 126, 132, 133, 134, 136, 224], "reinforc": [6, 14, 61, 121, 147, 160, 161, 162, 163], "game": [6, 44, 52, 79, 147], "tractabl": [6, 98], "multithread": [6, 43, 56, 109, 232], "lock": [6, 14, 25, 56, 135, 136, 162, 163, 178, 263], "gil": [6, 56, 61, 134, 217], "scalabl": [6, 126, 190, 221], "shortcom": [6, 192], "neuroevolut": 6, "owner": [6, 162, 163, 164], "anyth": [6, 13, 44, 98, 101, 102, 103, 140, 149, 159, 182, 183, 185, 264, 265], "serv": [6, 37, 57, 61, 85, 97, 102, 121, 127, 134, 140, 144, 147, 150, 156, 163, 164, 177, 178, 192, 214], "web": [6, 105, 214, 252, 264], "server": [6, 16, 25, 61, 119, 120, 121, 127, 134, 150, 156, 164, 178, 180, 186, 195, 221, 229], "3d": [6, 7, 75, 93, 101, 102, 115, 172, 198, 201], "graphic": [6, 165, 207], "photo": [6, 230], "softwar": [6, 138, 150, 156, 169, 177, 207, 214, 264], "integr": [6, 10, 14, 23, 78, 87, 109, 121, 126, 140, 170, 177, 178, 180, 200, 201, 207, 230], "remain": [6, 7, 87, 97, 119, 136, 143, 153, 157, 166, 180, 185, 192, 194, 196, 200, 210], "forth": [6, 150, 177, 265], "retain": [6, 40, 48, 76, 80, 112], "intuit": [6, 52, 73, 78, 99, 108, 112, 145, 150, 166, 172, 191], "tradit": [6, 42, 52, 97, 99, 107, 146, 163], "compet": [6, 113, 115, 119, 126, 177, 178], "complement": 6, "alik": 6, "love": [6, 113], "simplic": [6, 73, 122, 130, 160, 161, 223], "core": [6, 8, 10, 11, 42, 45, 60, 76, 98, 99, 100, 104, 108, 112, 115, 121, 124, 126, 136, 137, 145, 148, 159, 169, 174, 175, 178, 195, 197, 198, 205, 223, 247, 248], "principl": [6, 8, 102, 103, 121, 126], "curiou": [6, 139, 153, 155, 212], "tri": [6, 18, 52, 98, 103, 113, 161, 207], "experienc": [6, 85], "ask": [6, 17, 22, 23, 60, 103, 128, 137, 160, 202, 210], "rememb": [6, 44, 52, 59, 73, 76, 98, 99, 102, 109, 112, 140, 146, 147, 153, 166], "dot": [6, 14, 32, 49, 52, 60, 102, 103, 121, 146, 166, 177, 178, 206, 232], "colon": [6, 172, 264], "minim": [6, 10, 12, 17, 23, 52, 61, 63, 64, 67, 68, 69, 73, 82, 99, 103, 121, 122, 126, 133, 138, 145, 161, 173, 183, 186, 190, 200, 202, 205, 210], "verifi": [6, 20, 58, 59, 85, 108, 114, 116, 119, 131, 139, 142, 143, 146, 148, 157, 159, 177, 178, 179, 207, 221], "too": [6, 10, 14, 19, 44, 64, 68, 82, 87, 97, 98, 103, 109, 111, 124, 127, 134, 140, 150, 153, 157, 161, 162, 164, 166, 190, 229, 262, 264, 265], "cu90": 6, "url": [6, 19, 104, 118, 169, 173, 185, 209, 223, 237, 262], "wget": [6, 18, 75, 179, 182, 185, 209], "nightli": [6, 18, 75, 122, 138, 142, 173, 176, 179, 185, 188, 189, 197, 198, 200, 205, 206, 209], "dep": 6, "tini": [6, 123, 150, 153], "three": [6, 10, 12, 14, 15, 51, 52, 61, 64, 73, 82, 85, 92, 95, 98, 108, 112, 113, 115, 118, 121, 124, 128, 136, 148, 154, 156, 160, 164, 165, 166, 167, 169, 170, 176, 177, 178, 185, 193, 200, 229, 264, 265], "ey": [6, 20, 23, 32, 103, 146, 151, 154, 206, 209, 264], "fledg": 6, "visual": [6, 14, 25, 43, 52, 73, 75, 82, 83, 90, 116, 121, 122, 125, 126, 131, 144, 154, 160, 169, 170, 172, 177, 178, 187, 192, 230, 252], "studio": [6, 58, 205, 223, 225, 228], "qmake": 6, "makefil": 6, "comfort": 6, "box": [6, 8, 10, 11, 17, 73, 113, 126, 131, 136, 147, 159, 162, 169, 177, 178, 179, 200, 202, 206, 221, 226, 264], "cmake_prefix_path": [6, 22, 23], "invok": [6, 8, 22, 23, 25, 97, 134, 135, 142, 144, 145, 156, 163, 164, 178, 187, 189, 192, 200, 204], "agre": [6, 23, 138], "break": [6, 8, 10, 11, 12, 19, 38, 49, 51, 60, 75, 82, 112, 113, 116, 118, 128, 140, 147, 153, 157, 161, 162, 164, 166, 169, 173, 190, 237, 264], "unexpect": [6, 51, 192, 196, 201], "pwd": [6, 209, 227], "fa350df05ecf": 6, "home": [6, 48, 113, 190, 195, 205, 207, 210, 218, 223], "enter": [6, 49, 60, 122, 134, 136], "ran": [6, 103, 160, 163, 165, 174, 175, 205, 232], "me": [6, 17, 42, 49, 99, 153, 166, 202, 264, 265], "extens": [6, 7, 15, 22, 23, 52, 112, 121, 127, 131, 136, 172, 177, 187, 190, 192, 198, 200, 222, 252], "besid": [6, 23, 103, 154, 162, 264], "encapsul": [6, 47, 153, 162], "buffer": [6, 14, 44, 47, 59, 69, 76, 110, 111, 112, 122, 130, 134, 139, 142, 147, 151, 153, 154, 155, 157, 161, 174, 175, 178, 189, 203, 207, 209, 224], "nest": [6, 14, 43, 110, 143, 160, 162, 164, 165, 197, 264, 265], "similarli": [6, 9, 12, 22, 51, 60, 80, 83, 113, 116, 125, 126, 135, 144, 145, 146, 153, 180, 193], "w": [6, 7, 9, 12, 32, 38, 43, 47, 49, 51, 73, 76, 98, 102, 103, 122, 125, 130, 138, 147, 148, 164, 169, 179, 185, 186, 188, 223], "struct": [6, 15, 22, 209, 254], "int64_t": [6, 8, 23], "register_paramet": [6, 203], "reflect": [6, 8, 23, 48, 95, 137, 160, 196], "magic": [6, 99, 128, 136, 146], "behind": [6, 8, 17, 23, 45, 82, 97, 99, 130, 161, 180, 191, 193, 197, 202, 203, 264], "scene": [6, 23, 58, 59, 113, 203], "another_bia": 6, "recurs": [6, 16, 44, 60, 110, 203, 219], "0808": 6, "8613": 6, "2017": [6, 73, 104, 118], "5206": 6, "5353": 6, "3740": 6, "0976": 6, "4786": 6, "4928": 6, "1434": 6, "4713": 6, "1735": 6, "3293": 6, "3467": 6, "3858": 6, "1980": 6, "1986": 6, "1975": 6, "4278": 6, "1831": 6, "2709": 6, "3730": 6, "4307": 6, "3236": 6, "0629": 6, "2038": 6, "4638": 6, "2023": [6, 172, 174], "1230": 6, "0516": 6, "aptli": [6, 13], "register_modul": 6, "dropout": [6, 7, 9, 12, 19, 20, 37, 39, 49, 60, 73, 93, 96, 97, 104, 110, 112, 118, 123, 124, 126, 128, 130, 137, 149, 158, 162, 164, 165, 166, 167, 182, 194, 195, 196, 199, 202, 222, 242, 243, 244, 254, 258], "conv2d": [6, 12, 19, 20, 44, 47, 52, 73, 78, 87, 92, 93, 94, 96, 97, 104, 105, 112, 123, 130, 135, 143, 147, 148, 151, 154, 155, 157, 159, 163, 167, 170, 178, 180, 183, 198, 199, 200, 201, 204, 208, 219, 221, 222, 224, 227, 229, 234, 239, 240, 241, 242, 243, 244, 248, 249, 250, 251, 254], "subtleti": [6, 193], "bodi": [6, 113, 145, 264, 265], "upon": [6, 14, 49, 56, 79, 117, 136, 142, 166, 170, 173, 262], "p": [6, 7, 9, 18, 19, 49, 68, 69, 93, 97, 98, 103, 104, 110, 111, 118, 122, 123, 127, 128, 130, 135, 136, 138, 139, 142, 143, 145, 147, 148, 151, 153, 158, 162, 163, 164, 166, 179, 182, 183, 186, 198, 199, 202, 207, 208, 209, 213, 217, 235, 239], "0345": [6, 186], "4456": 6, "6313": 6, "3585": 6, "4008": [6, 23], "1647": 6, "2891": 6, "0527": 6, "0354": 6, "3084": 6, "2025": 6, "0343": [6, 209], "1824": 6, "4630": 6, "2862": 6, "2500": 6, "0420": 6, "3679": 6, "1482": 6, "0460": 6, "1967": 6, "2132": 6, "1992": 6, "4257": 6, "0739": 6, "01": [6, 7, 11, 19, 43, 47, 98, 109, 136, 158, 164, 165, 167, 174, 211, 212, 220, 222, 260, 265], "6861": 6, "1166": 6, "45": [6, 7, 126, 145, 164, 177, 205, 230], "0333": 6, "9983": 6, "0705": 6, "named_paramet": [6, 33, 142, 151, 154, 155, 157], "ordereddict": [6, 179], "13": [6, 23, 92, 95, 104, 109, 115, 164, 172, 177, 224, 227, 264, 268], "48": [6, 7, 17, 126, 127, 145, 148, 170, 202, 205, 220, 239], "1863": 6, "8611": 6, "1228": 6, "3269": 6, "9858": 6, "0339": 6, "2484": 6, "2035": 6, "2103": 6, "0715": 6, "2975": 6, "4350": 6, "1878": 6, "3616": 6, "1050": 6, "4982": 6, "0335": [6, 186], "1605": 6, "4963": 6, "4099": 6, "2883": 6, "1818": 6, "3447": 6, "1501": 6, "0215": 6, "0250": 6, "0408": 6, "3756": 6, "2149": 6, "3636": 6, "8559": 6, "1572": 6, "1069": 6, "1247": 6, "8060": 6, "topic": [6, 49, 58, 59, 61, 73, 105, 107, 108, 114, 120, 177], "devour": 6, "menu": [6, 50, 262, 264], "pipelin": [6, 16, 61, 113, 121, 140, 160, 162, 172, 177, 178, 179], "briefli": [6, 61, 121, 124, 160, 173], "who": [6, 42, 49, 60, 73, 79, 97, 100, 113, 136, 153, 264], "heap": 6, "referenc": [6, 135, 164], "lower": [6, 14, 17, 49, 50, 60, 73, 82, 108, 121, 122, 126, 134, 138, 142, 145, 153, 154, 158, 160, 161, 165, 166, 170, 172, 173, 180, 186, 193, 196, 199, 202, 224, 265], "heavili": [6, 113, 166, 177, 185], "influenc": [6, 52], "ergonom": 6, "far": [6, 7, 14, 20, 22, 47, 49, 58, 59, 64, 95, 97, 98, 99, 111, 115, 125, 136, 140, 150, 153, 157, 161, 166, 177, 190, 199, 264], "stack": [6, 8, 14, 15, 21, 22, 40, 48, 78, 92, 109, 121, 124, 139, 146, 147, 151, 155, 156, 162, 166, 169, 170, 172, 206], "shared_ptr": [6, 22], "cognit": 6, "everywher": [6, 103], "make_shar": 6, "though": [6, 10, 23, 47, 73, 97, 98, 113, 117, 130, 131, 139, 140, 144, 155, 160, 170, 174, 175, 185, 190, 221], "stai": [6, 82, 122, 124, 160, 161, 162, 177, 198, 199, 200, 229], "shorten": [6, 23], "wait": [6, 14, 16, 21, 82, 128, 134, 135, 136, 137, 145, 156, 161, 162, 163, 164, 169, 172, 177, 239], "hell": 6, "lot": [6, 8, 10, 15, 19, 21, 51, 79, 98, 113, 119, 123, 136, 151, 163, 166, 169, 173, 177, 185, 190], "came": [6, 52, 191], "scheme": [6, 18, 97, 121, 190, 203], "hide": [6, 118, 130, 160, 206], "reserv": [6, 10, 15, 138, 169], "simplifi": [6, 10, 14, 24, 78, 130, 134, 135, 166, 172, 178, 179, 190, 193, 197, 198, 200], "linearimpl": 6, "torch_modul": 6, "brief": [6, 24, 61, 82, 98, 160, 209], "typedef": 6, "among": [6, 8, 22, 53, 58, 59, 82, 87, 124, 157, 169, 177, 201, 229], "holder": [6, 118, 266], "arrow": [6, 43, 124, 196], "resembl": [6, 12, 23, 58, 59, 98, 132, 161], "extra": [6, 7, 8, 9, 56, 97, 101, 102, 107, 127, 128, 130, 135, 137, 142, 154, 160, 166, 172, 173, 178, 179, 182, 195, 221, 224], "netimpl": 6, "subtl": 6, "deserv": [6, 103, 113], "construct": [6, 14, 20, 21, 22, 25, 47, 52, 60, 61, 65, 67, 85, 97, 111, 117, 121, 128, 131, 135, 137, 139, 146, 150, 155, 160, 161, 163, 166, 179, 184, 194, 197, 198, 201, 203, 206, 250, 264, 265], "null": [6, 58, 209, 224, 227], "tricki": [6, 17, 131, 143, 174, 175, 177, 202], "had": [6, 23, 42, 47, 51, 102, 105, 113, 153, 154, 161, 170, 198, 221], "nullptr": [6, 187, 209], "familiar": [6, 8, 10, 22, 44, 48, 53, 54, 56, 60, 85, 98, 100, 112, 122, 125, 132, 133, 136, 140, 147, 163], "pythonista": 6, "disadvantag": [6, 112], "said": [6, 23, 25, 42, 147, 153, 160, 190, 191, 264], "introduct": [6, 11, 17, 25, 46, 53, 54, 55, 56, 57, 79, 84, 85, 99, 100, 105, 106, 107, 108, 121, 132, 133, 145, 192, 202, 221], "sooner": [6, 122], "technic": [6, 23, 136, 137, 153, 190, 212], "henceforth": 6, "recap": [6, 47, 161, 193], "adversari": [6, 44, 79, 121], "architectur": [6, 9, 17, 25, 52, 56, 60, 73, 85, 95, 97, 98, 110, 121, 122, 124, 126, 132, 139, 151, 157, 165, 170, 172, 173, 176, 177, 178, 198, 200, 202, 221, 229], "distinct": [6, 17, 21, 52, 82, 103, 122, 164, 170, 202], "transform": [6, 12, 17, 19, 20, 23, 24, 25, 32, 33, 34, 35, 36, 37, 38, 39, 40, 44, 49, 52, 58, 59, 60, 73, 75, 87, 90, 92, 93, 94, 96, 97, 109, 110, 113, 116, 117, 120, 121, 123, 130, 136, 137, 139, 140, 142, 143, 145, 147, 149, 151, 153, 154, 158, 159, 163, 166, 169, 170, 172, 179, 183, 185, 186, 194, 196, 198, 199, 200, 202, 205, 214, 221, 222, 230, 232, 247, 248, 251, 253, 255, 256], "probabl": [6, 8, 22, 49, 52, 58, 59, 60, 73, 75, 97, 98, 101, 103, 118, 123, 125, 126, 127, 128, 130, 149, 154, 159, 161, 167, 170, 172, 194], "judg": 6, "closer": [6, 97, 161, 178], "authent": 6, "theori": [6, 49, 52, 60, 97, 125, 264], "delic": 6, "tandem": 6, "indistinguish": 6, "fool": [6, 49, 73], "excel": [6, 51, 170], "realist": [6, 21, 60, 194], "2d": [6, 52, 93, 127, 130, 143, 157, 162, 172, 176, 201, 216, 254], "dcgangeneratorimpl": 6, "knoises": 6, "conv1": [6, 20, 44, 47, 73, 78, 87, 92, 93, 94, 96, 104, 105, 112, 123, 130, 143, 150, 151, 155, 157, 158, 163, 167, 170, 183, 196, 201, 204, 222, 234, 240, 241, 242, 243, 244, 249, 250, 251], "convtranspose2dopt": 6, "256": [6, 9, 17, 19, 51, 87, 90, 97, 117, 119, 124, 125, 126, 135, 145, 147, 160, 165, 166, 177, 179, 182, 183, 196, 198, 199, 201, 202, 220, 230, 231, 239], "batch_norm1": 6, "conv2": [6, 20, 44, 47, 73, 78, 87, 90, 92, 93, 94, 96, 104, 105, 112, 123, 130, 143, 151, 155, 157, 163, 167, 170, 201, 204, 222, 234, 240, 241, 242, 243, 244, 249, 250, 251], "pad": [6, 17, 19, 42, 49, 52, 60, 75, 97, 104, 113, 115, 118, 130, 135, 138, 165, 192, 194, 202], "batch_norm2": 6, "conv3": [6, 20, 104, 151], "batch_norm3": 6, "conv4": [6, 20], "convtranspose2d": [6, 52], "batchnorm2d": [6, 12, 19, 52, 104, 130, 135, 143, 144, 180, 199, 219, 224, 248, 254], "dcgangener": 6, "chosen": [6, 20, 22, 161, 173], "student": [6, 97, 113], "harm": [6, 97], "discoveri": 6, "fed": [6, 12, 49, 52, 61, 113, 118, 135, 140, 150, 172, 178, 201], "soylent": 6, "regularli": [6, 53], "channel": [6, 10, 12, 19, 21, 43, 44, 47, 52, 97, 110, 121, 122, 124, 140, 149, 153, 157, 170, 179, 186, 209, 221, 248, 263], "moduleopt": 6, "linearopt": 6, "leaki": [6, 52], "squash": [6, 137, 147], "sequenti": [6, 7, 12, 14, 19, 37, 38, 49, 52, 68, 69, 97, 103, 110, 111, 116, 118, 125, 135, 137, 143, 147, 149, 150, 154, 158, 160, 167, 186, 194, 195, 203, 206, 211, 212, 220, 231, 260], "orient": [6, 167], "layer": [6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 19, 20, 33, 37, 42, 43, 47, 49, 52, 55, 60, 68, 73, 78, 87, 93, 97, 99, 102, 110, 111, 112, 115, 117, 118, 121, 122, 123, 126, 127, 128, 135, 137, 148, 149, 150, 154, 157, 158, 159, 160, 163, 164, 166, 167, 177, 178, 179, 182, 185, 186, 201, 202, 212, 231, 234, 240, 242, 243, 253, 254], "conv2dopt": 6, "leakyrelu": [6, 52, 110], "leakyreluopt": 6, "negative_slop": 6, "composit": [6, 11, 14, 25, 99, 100, 146, 160], "third": [6, 8, 12, 22, 23, 52, 63, 64, 65, 67, 68, 69, 102, 111, 131, 156, 166, 176, 190, 196, 206, 265], "fourth": [6, 65, 131, 195, 200], "knob": [6, 177, 178], "truli": [6, 49, 147], "collat": [6, 51, 118, 265], "wherev": 6, "make_data_load": 6, "unique_ptr": 6, "spawn": [6, 7, 11, 16, 18, 49, 52, 53, 55, 123, 134, 135, 136, 150, 162, 163, 164, 213, 215, 260], "concurr": [6, 109, 124, 126, 135, 150, 177, 178], "kbatchsiz": 6, "dataloaderopt": 6, "consol": [6, 170, 172, 189], "field": [6, 10, 11, 12, 14, 15, 49, 102, 103, 113, 136, 153, 162, 169, 175, 179, 192, 201, 204, 224], "rebuild": [6, 232], "danc": [6, 12], "generator_optim": 6, "adamopt": 6, "2e": [6, 14, 89, 138], "make_tupl": 6, "discriminator_optim": 6, "5e": [6, 24, 64, 111], "adagrad": [6, 96, 110, 111, 193, 197], "lbfg": [6, 12, 110], "rmsprop": [6, 47, 69, 99, 110, 111], "sgd": [6, 7, 16, 19, 37, 38, 43, 44, 47, 65, 67, 69, 87, 89, 92, 94, 96, 98, 99, 102, 103, 104, 110, 111, 112, 115, 117, 134, 135, 136, 150, 158, 162, 163, 164, 167, 169, 170, 179, 221, 222, 231, 238, 242, 243, 244, 245, 246, 250, 251, 255], "date": [6, 10, 73, 115, 122, 163, 198, 205, 221, 265], "exhaust": [6, 11, 174, 175, 201], "knumberofepoch": 6, "batch_index": 6, "real_imag": 6, "real_label": [6, 52], "real_output": 6, "d_loss_real": 6, "binary_cross_entropi": [6, 231], "fake_imag": [6, 153], "fake_label": [6, 52], "fake_output": 6, "d_loss_fak": 6, "d_loss": [6, 52], "fill_": [6, 9, 52, 80, 118, 137, 166, 169, 192], "g_loss": [6, 52], "printf": 6, "r": [6, 7, 9, 11, 14, 16, 19, 42, 43, 47, 49, 51, 60, 73, 76, 85, 92, 98, 99, 121, 145, 146, 147, 148, 151, 161, 162, 164, 166, 172, 177, 179, 182, 183, 196, 198, 199, 205, 206, 209, 221, 232, 247, 248, 259, 264], "2ld": 6, "3ld": 6, "4f": [6, 12, 14, 49, 52, 60, 117, 122, 123, 127, 128, 130, 137, 146, 155, 158, 160, 166, 167, 204], "batches_per_epoch": 6, "uniformli": [6, 87, 161], "robust": [6, 49, 53, 54, 73, 161], "propag": [6, 10, 16, 32, 43, 45, 47, 52, 78, 97, 101, 102, 127, 131, 142, 148, 155, 160, 178, 198, 200], "repeat": [6, 14, 18, 19, 23, 128, 145, 147, 150, 160, 169, 177, 183, 190, 198, 199, 224, 239], "spiel": 6, "progress": [6, 8, 15, 24, 49, 52, 53, 110, 137, 158, 166, 170, 265], "observ": [6, 14, 19, 47, 51, 61, 82, 116, 117, 122, 123, 126, 137, 138, 147, 148, 153, 160, 161, 162, 164, 165, 166, 173, 177, 180, 182, 183, 186, 193, 198, 199, 200, 201, 204], "meaning": [6, 49, 60, 97, 148], "3c0711f20896": 6, "dcga": 6, "6876": 6, "1304": 6, "3776": 6, "3101": 6, "300": [6, 12, 98, 102, 122, 164, 179, 220, 232, 247], "3652": 6, "6626": 6, "400": [6, 47, 58, 59, 112, 138, 179, 186, 232, 247], "8057": 6, "2795": [6, 232], "3531": 6, "4452": 6, "600": [6, 119, 148, 161, 258], "3501": 6, "0811": 6, "700": 6, "3581": 6, "5623": 6, "800": 6, "6423": 6, "7385": 6, "900": 6, "3592": 6, "7333": 6, "4660": [6, 174], "5242": 6, "6364": 6, "0886": 6, "3717": 6, "8103": 6, "0201": 6, "3544": 6, "4522": 6, "6545": 6, "quickli": [6, 44, 82, 97, 98, 99, 103, 124, 153, 161, 166], "onto": [6, 8, 14, 16, 18, 44, 121, 137, 150, 153, 163, 164, 203], "somewher": [6, 23, 98, 99, 112], "kcpu": [6, 187, 207], "whose": [6, 42, 60, 82, 85, 97, 103, 122, 125, 148, 172, 188, 201], "insert": [6, 12, 17, 19, 49, 118, 138, 158, 164, 180, 182, 183, 198, 199, 200, 201, 202, 229, 254], "op": [6, 10, 11, 15, 21, 22, 23, 48, 82, 121, 122, 123, 124, 129, 130, 134, 136, 138, 143, 144, 145, 148, 159, 169, 177, 178, 179, 180, 182, 183, 185, 186, 187, 188, 189, 191, 192, 194, 198, 199, 200, 201, 203, 209, 222, 223, 224, 231, 245, 254], "previou": [6, 11, 13, 14, 15, 16, 17, 22, 23, 49, 52, 53, 55, 58, 59, 97, 98, 116, 117, 119, 122, 127, 128, 131, 132, 133, 135, 137, 147, 150, 153, 157, 158, 160, 161, 162, 164, 165, 166, 169, 170, 172, 173, 174, 175, 177, 178, 183, 198, 199, 200, 202, 209, 224, 262], "resid": [6, 7, 97, 135], "portabl": 6, "augment": [6, 24, 51, 117, 118, 119, 158, 167, 179], "period": [6, 49, 52, 126, 147, 169, 177], "crash": [6, 61], "middl": [6, 264], "procedur": [6, 23, 47, 120, 158, 161, 167], "restor": [6, 73, 112, 148], "session": [6, 20, 97, 105, 264], "interv": [6, 14, 52, 126, 164, 166, 174, 175], "kcheckpointeveri": 6, "str": [6, 9, 18, 19, 22, 49, 83, 90, 108, 113, 118, 122, 126, 138, 140, 143, 144, 149, 160, 163, 172, 174, 175, 186, 195, 204, 209, 210, 214, 217, 232, 239, 247], "checkpoint_count": 6, "counter": [6, 11, 49, 52, 73, 129, 136], "bump": 6, "beta1": [6, 52], "krestorefromcheckpoint": 6, "intermediari": [6, 125], "xxx": [6, 15, 45, 51], "argpars": [6, 52, 122, 123, 138, 149, 162, 163, 164, 186], "parser": [6, 98, 122, 123, 149, 162, 163, 164, 264], "argumentpars": [6, 122, 123, 149, 162, 163, 164], "add_argu": [6, 122, 123, 149, 162, 163, 164], "png": [6, 51, 119, 121, 150, 179], "parse_arg": [6, 122, 123, 149, 162, 163, 164], "sample_fil": [6, 140], "mul": [6, 40, 48, 108, 129, 145, 193, 198, 207, 232, 247], "255": [6, 12, 20, 59, 97, 140, 147, 172, 179, 180, 201, 214, 239], "uint8": [6, 20, 95, 145, 147, 179, 201], "numpi": [6, 12, 14, 17, 19, 20, 41, 44, 51, 52, 57, 60, 70, 72, 73, 75, 87, 89, 90, 92, 94, 96, 104, 105, 108, 109, 110, 117, 118, 119, 121, 127, 131, 138, 147, 150, 158, 159, 161, 164, 166, 167, 170, 172, 173, 183, 186, 190, 194, 196, 197, 198, 199, 202, 205, 230, 237, 247], "axi": [6, 13, 21, 34, 51, 52, 82, 101, 102, 109, 110, 117, 119, 127, 138, 147, 157, 158, 172, 186, 256], "subplot": [6, 14, 51, 52, 73, 117, 150, 158, 160, 166, 167, 179], "imshow": [6, 12, 34, 44, 51, 52, 73, 75, 90, 92, 94, 96, 104, 117, 158, 167, 170, 172, 179], "cmap": [6, 34, 73, 90, 94, 96, 104, 166, 170], "grai": [6, 34, 73, 104, 119, 147, 189], "get_xaxi": 6, "set_vis": 6, "get_yaxi": 6, "savefig": [6, 147, 150], "out_fil": 6, "17": [6, 21, 23, 58, 59, 92, 95, 109, 113, 145, 174, 175, 188, 204, 232, 268], "57": [6, 7, 17, 109, 127, 145, 239], "4953": 6, "0195": [6, 186], "3610": 6, "8148": 6, "4072": 6, "36760": 6, "4444": 6, "3761": 6, "8790": 6, "3977": 6, "3315": 6, "120": [6, 44, 47, 87, 92, 93, 94, 96, 105, 112, 117, 135, 150, 157, 158, 164, 170, 239, 240, 241, 242, 243, 244, 249, 250, 251], "8084": 6, "hoorai": [6, 25], "ball": 6, "court": 6, "digest": 6, "necess": [6, 49], "broad": [6, 57], "space": [6, 14, 22, 49, 52, 60, 73, 97, 98, 102, 103, 113, 115, 126, 137, 147, 153, 160, 161, 164, 166, 169, 170, 172, 195, 264, 265], "consult": [6, 153, 198, 263], "stuck": 6, "whenev": [6, 22, 53, 67, 69, 98, 99, 111], "rate": [6, 7, 43, 52, 87, 97, 99, 104, 115, 117, 122, 123, 126, 127, 147, 149, 158, 160, 161, 163, 179, 217, 237], "pritam": [7, 16], "damania": [7, 16], "torchtext": [7, 38, 42, 50, 92, 96, 113, 118, 121, 127, 166, 237], "positionalencod": [7, 118], "inject": 7, "posit": [7, 14, 17, 90, 99, 113, 118, 121, 138, 154, 160, 161, 165, 166, 172, 202, 230, 262], "token": [7, 9, 17, 42, 49, 60, 75, 103, 113, 115, 116, 118, 122, 124, 128, 165, 166, 182, 186, 202], "sine": [7, 14, 92, 95], "cosin": [7, 14], "os": [7, 9, 11, 17, 18, 19, 33, 34, 49, 50, 51, 52, 53, 55, 60, 87, 90, 117, 122, 123, 125, 127, 128, 134, 135, 136, 138, 147, 149, 156, 158, 159, 162, 163, 164, 176, 179, 182, 183, 186, 195, 196, 198, 199, 209, 213, 214, 215, 216, 229, 232, 235, 247, 260], "transformerencod": [7, 42, 93], "transformerencoderlay": [7, 42, 93, 165], "d_model": [7, 118], "max_len": [7, 118], "pe": 7, "arang": [7, 73, 118, 147, 150, 170, 190, 191, 192, 194, 245, 246, 256], "div_term": 7, "10000": [7, 44, 52, 92, 98, 118, 127, 137, 161, 164, 232, 247], "sin": [7, 14, 63, 64, 65, 67, 68, 69, 71, 72, 89, 95, 111, 118, 146, 173, 174, 175, 193, 248, 264], "co": [7, 14, 89, 103, 118, 173, 174, 175, 239, 248, 265], "replica": [7, 55, 56, 61, 79, 123, 134, 136, 150], "drive": [7, 16, 25, 52, 58, 59, 60, 121, 147, 190], "largest": [7, 60, 83, 161, 172, 186], "nlayer": [7, 9, 93, 164, 182, 196], "decod": [7, 9, 98, 113, 118, 122, 164, 165, 178, 182, 185, 196, 231, 254], "platform": [7, 20, 23, 105, 134, 136, 169, 195, 223, 227], "win32": 7, "exit": [7, 16, 142, 162, 163, 164, 211, 212], "device_count": [7, 11, 45, 53, 55, 87, 95, 123, 134, 151, 215, 216], "least": [7, 47, 58, 59, 73, 112, 113, 126, 128, 134, 147, 159, 166, 195, 224, 264, 265], "ntoken": [7, 9, 164, 182, 196], "ninp": [7, 9, 164, 182, 196], "pos_encod": 7, "init_weight": [7, 9, 115, 182, 196], "initrang": [7, 9, 115, 182, 196], "src": [7, 10, 11, 108, 118, 136, 156, 207, 209, 223, 245, 247], "zero_": [7, 9, 32, 104, 115, 156, 164, 167, 182, 196], "inp": [7, 19, 32, 49, 117, 143, 158, 163, 166, 167, 173, 175, 233, 240], "permut": [7, 90, 97, 110, 147, 148, 159, 166, 172, 174, 175, 179, 184], "run_work": [7, 16, 135, 162, 163, 164, 213], "rank": [7, 11, 16, 18, 42, 45, 53, 55, 82, 121, 122, 123, 134, 135, 136, 156, 162, 163, 164, 176, 194, 213, 215, 216, 260, 262], "world_siz": [7, 11, 16, 18, 24, 53, 55, 122, 123, 134, 135, 136, 156, 162, 163, 164, 176, 213, 215, 216, 260], "wikitext": [7, 9, 182, 194], "torchdata": [7, 50, 113, 115, 116, 118], "vocab": [7, 75, 99, 102, 103, 115, 116, 118, 124, 138, 186], "numeric": [7, 118], "batchifi": [7, 9, 182], "arrang": [7, 17, 202], "trim": [7, 9, 12, 60, 166, 182, 247], "alphabet": 7, "26": [7, 23, 145, 147, 148, 159, 164], "bmatrix": [7, 17, 102, 202], "text": [7, 17, 34, 38, 40, 44, 52, 73, 75, 85, 98, 99, 101, 102, 103, 113, 115, 116, 118, 120, 121, 122, 127, 128, 136, 138, 160, 161, 166, 169, 172, 182, 197, 202, 252, 265, 267], "c": [7, 12, 15, 18, 19, 21, 25, 38, 43, 49, 51, 63, 64, 65, 67, 71, 72, 85, 89, 90, 94, 95, 97, 103, 104, 108, 110, 111, 112, 115, 121, 127, 128, 130, 131, 136, 138, 140, 143, 145, 147, 148, 159, 164, 165, 166, 172, 174, 175, 176, 189, 192, 200, 210, 222, 224, 226, 227, 231, 232, 245, 246, 252, 254, 265], "ldot": 7, "rightarrow": [7, 98, 136, 161], "j": [7, 22, 23, 32, 43, 44, 58, 59, 73, 89, 92, 94, 96, 97, 98, 102, 103, 117, 127, 138, 151, 166, 195], "k": [7, 12, 17, 19, 49, 58, 59, 60, 82, 90, 98, 105, 108, 124, 138, 148, 151, 155, 162, 163, 165, 179, 183, 198, 199, 202, 210], "u": [7, 14, 115, 118, 195], "treat": [7, 60, 75, 103, 113, 155, 162, 173, 204, 254], "print_with_rank": 7, "msg": [7, 188, 214], "wikitext2": 7, "get_token": [7, 115, 118], "build_vocab_from_iter": [7, 115, 116, 118], "train_it": [7, 115, 118], "basic_english": [7, 115], "unk": [7, 115, 116, 118], "set_default_index": [7, 115, 116, 118], "data_process": 7, "raw_text_it": 7, "tupl": [7, 9, 20, 48, 51, 58, 59, 60, 78, 80, 82, 97, 102, 103, 110, 115, 116, 138, 142, 143, 147, 148, 161, 174, 175, 179, 182, 183, 186, 193, 201, 210, 231, 258], "filter": [7, 13, 24, 49, 83, 97, 125, 138, 158, 166, 186, 209, 247], "val_it": [7, 118], "test_it": [7, 115], "train_data": [7, 55, 166], "val_data": 7, "test_data": [7, 9, 20, 34, 37, 38, 99, 182], "bsz": [7, 9, 136, 182, 196], "is_train": 7, "nbatch": [7, 9, 182], "wouldn": [7, 9, 17, 103, 123, 137, 182, 202], "cleanli": [7, 9, 182, 212], "narrow": [7, 9, 80, 145, 182, 194], "evenli": [7, 9, 18, 182], "data_per_rank": 7, "eval_batch_s": [7, 9, 19, 24, 138, 182, 183, 186, 198, 199], "get_batch": [7, 9, 182], "subdivid": [7, 8], "bptt": [7, 9, 182], "35": [7, 17, 73, 124, 148, 204, 220, 222], "seq_len": [7, 9, 165, 182], "min": [7, 9, 19, 52, 82, 87, 97, 104, 117, 136, 147, 156, 158, 160, 162, 164, 172, 174, 175, 177, 178, 179, 182, 198, 201], "4096": [7, 18, 176, 220, 231], "billion": [7, 122, 124], "rpc": [7, 109, 121, 134, 150, 217, 252], "rref": [7, 16, 61, 135, 162, 163, 213, 217], "expans": [7, 135], "replic": [7, 16, 18, 56, 60, 61, 79, 121, 123, 124, 132, 134, 136, 150, 163, 164, 216], "distributeddataparallel": [7, 16, 55, 56, 120, 122, 123, 136, 156, 164, 176, 231, 260], "vocabulari": [7, 49, 60, 103, 115, 118, 124, 138, 194], "emsiz": [7, 115], "nhid": [7, 9, 164, 182, 196], "feedforward": [7, 124], "nhead": [7, 118, 194], "multihead": [7, 42], "tmpfile": 7, "namedtemporaryfil": 7, "init_rpc": [7, 16, 135, 162, 163, 164, 213], "rpc_backend_opt": [7, 16, 135, 213], "tensorpiperpcbackendopt": [7, 16, 135, 213], "init_method": [7, 16, 134, 136], "_transport": 7, "_channel": 7, "longer": [7, 12, 42, 52, 78, 99, 113, 125, 130, 145, 150, 153, 157, 161, 162, 173, 177, 178, 194, 198, 199, 212, 262], "ibv": 7, "uv": 7, "cuda_ipc": 7, "cuda_bas": 7, "num_gpu": [7, 163], "partition_len": 7, "tmp_list": 7, "module_list": 7, "transformer_block": [7, 124], "checkpoint": [7, 39, 49, 60, 61, 75, 87, 117, 132, 153, 185, 215, 221, 231, 236, 238, 242, 244, 248], "ddp": [7, 11, 16, 53, 54, 61, 121, 122, 123, 124, 133, 169, 216, 260], "master_addr": [7, 11, 18, 53, 55, 123, 134, 135, 136, 156, 162, 163, 164, 176, 213, 215, 260], "localhost": [7, 11, 16, 18, 53, 55, 94, 123, 127, 134, 135, 140, 156, 162, 163, 164, 169, 170, 176, 213, 214, 215, 216, 246, 260], "master_port": [7, 11, 18, 53, 55, 123, 134, 135, 136, 156, 162, 163, 164, 176, 213, 215, 260], "29500": [7, 11, 16, 18, 135, 136, 156, 162, 163, 164, 176, 213, 260], "init_process_group": [7, 11, 16, 18, 53, 55, 61, 122, 123, 134, 136, 156, 176, 215, 216, 260], "nccl": [7, 11, 18, 53, 55, 82, 122, 123, 124, 134, 136, 169, 176, 215, 216], "get_total_param": 7, "total_param": 7, "crossentropyloss": [7, 9, 16, 19, 37, 38, 44, 78, 87, 92, 94, 96, 97, 99, 110, 115, 117, 118, 124, 158, 164, 169, 170, 173, 182, 183, 198, 199, 221, 251, 255], "steplr": [7, 110, 115, 117, 122, 123, 130, 158, 179], "togeth": [7, 11, 17, 21, 25, 49, 51, 59, 60, 75, 85, 97, 101, 113, 118, 123, 130, 137, 139, 159, 162, 164, 166, 172, 189, 198, 200, 201, 202, 254], "prevent": [7, 49, 55, 76, 109, 118, 125, 128, 134, 145, 147], "explod": [7, 49, 127], "criterion": [7, 9, 12, 16, 19, 44, 47, 52, 65, 67, 87, 92, 94, 97, 111, 115, 117, 127, 128, 158, 161, 164, 166, 169, 170, 182, 183, 198, 199, 221, 246, 251, 255], "schedul": [7, 11, 14, 82, 87, 115, 117, 122, 123, 130, 134, 145, 158, 160, 161, 169, 177, 179, 239], "lr_schedul": [7, 14, 110, 115, 117, 122, 123, 130, 158, 160, 179, 212], "95": [7, 115, 126, 137, 160, 164, 178, 180, 220], "total_loss": [7, 9, 103, 128, 166, 182], "start_tim": [7, 19, 115, 118, 199, 231, 238], "node": [7, 8, 18, 20, 23, 32, 43, 47, 53, 54, 55, 56, 63, 98, 108, 110, 120, 122, 132, 133, 134, 143, 144, 145, 163, 166, 177, 187, 199, 200, 201, 254], "local_valu": [7, 162, 163], "log_interv": [7, 115, 164], "cur_loss": 7, "elaps": [7, 9, 19, 115, 123, 144, 166, 182, 186], "5d": [7, 37, 38, 44, 87, 92, 115, 251], "02": [7, 52, 145, 150, 164, 220], "ms": [7, 17, 19, 119, 145, 159, 177, 178, 185, 202], "ppl": 7, "get_last_lr": 7, "eval_model": 7, "data_sourc": [7, 9, 182], "output_flat": [7, 9, 182], "best_val_loss": [7, 122], "inf": [7, 118, 122, 192, 194, 196], "best_model": 7, "epoch_start_tim": [7, 115], "val_loss": [7, 87, 104, 118, 122], "89": [7, 145, 164, 177], "test_loss": [7, 37, 38, 123, 130, 167], "mp": [7, 11, 15, 16, 33, 38, 53, 55, 121, 122, 123, 134, 135, 136, 162, 163, 164, 213, 215, 260], "__name__": [7, 11, 12, 16, 51, 52, 53, 55, 78, 87, 122, 123, 134, 135, 136, 138, 140, 148, 149, 162, 163, 164, 186, 188, 195, 213, 214, 215, 227, 260], "__main__": [7, 11, 16, 51, 53, 55, 87, 122, 123, 134, 135, 136, 140, 149, 162, 163, 164, 188, 195, 213, 214, 215, 227, 232, 260], "arg": [7, 16, 18, 19, 21, 51, 53, 55, 73, 101, 110, 112, 122, 123, 125, 134, 135, 136, 138, 143, 144, 148, 149, 150, 157, 158, 161, 162, 163, 164, 165, 172, 173, 174, 175, 185, 186, 187, 194, 195, 199, 201, 211, 213, 215, 217, 221, 245, 260, 268], "nproc": [7, 11, 16, 53, 55, 123, 134, 135, 162, 164, 213, 215, 260], "join": [7, 9, 10, 16, 18, 34, 44, 48, 49, 50, 51, 53, 60, 61, 92, 96, 117, 118, 120, 123, 125, 127, 128, 134, 135, 136, 138, 158, 160, 162, 163, 164, 166, 179, 182, 186, 213, 215, 232, 247, 260], "00": [7, 92, 109, 145, 164, 172, 185, 188, 220], "778": 7, "97": [7, 145, 164, 220], "43": [7, 119, 150, 220, 232], "31": [7, 122, 145, 146, 201, 220, 232, 239, 247], "6432469059895903232": 7, "90": [7, 127, 138, 164, 166, 192], "44": [7, 17, 145, 164, 202], "21245447128217366528": 7, "699": 7, "21176949187407757312": 7, "87": [7, 24, 109, 164, 232], "62": [7, 115, 164, 202], "23975861229620961280": 7, "698": 7, "86": [7, 17, 145, 159, 164, 202, 232], "41": [7, 17, 123, 159, 177, 232, 239], "1193312915629888256": 7, "40": [7, 113, 123, 147, 148, 150, 157, 164, 166, 177, 187, 193, 196, 202, 220, 232], "69": [7, 90, 174, 186, 232], "471605759847546240": 7, "34": [7, 109, 159, 213, 220, 224, 232, 239, 247], "42812308420836458496": 7, "33": [7, 146, 159, 164, 177, 178, 188, 232], "68": [7, 17, 51, 127, 138, 145, 178, 232], "68839569686012223488": 7, "08": [7, 122, 145, 164, 222, 232], "80": [7, 87, 115, 126, 148, 164, 166, 192, 235], "22": [7, 17, 145, 148, 164, 205, 220, 232], "09": [7, 17, 49, 145, 164, 177, 202, 220], "75": [7, 22, 23, 97, 115, 117, 123, 150, 158, 235], "768": [7, 138, 148, 186, 202], "51": [7, 119, 127, 148, 150, 164, 177, 220], "36": [7, 17, 115, 159], "6063529544668166": 7, "769": 7, "23": [7, 17, 95, 145, 164, 177, 185, 220, 232, 239, 247, 265], "17651211266236086": 7, "3798441739584": 7, "56": [7, 19, 148, 159, 177, 202, 232, 239], "29": [7, 138, 159, 164, 209, 232], "5203636967575": 7, "47": [7, 17, 87, 127, 148, 232, 239], "2212498693571": 7, "05": [7, 14, 16, 20, 21, 73, 115, 122, 135, 161, 164, 180, 219, 220], "2015144761281": 7, "13121380184": 7, "92": [7, 17, 202, 232], "14653799192": 7, "39": [7, 123, 127, 164, 220, 232], "24": [7, 17, 19, 113, 145, 159, 174, 185, 192, 202, 232], "98": [7, 51, 118, 145, 164, 188, 220], "361681": 7, "287876": 7, "61": [7, 19, 109, 148, 202, 220], "164364": 7, "60": [7, 34, 105, 110, 117, 122, 127, 128, 148, 150, 158, 159, 164, 166, 170, 192, 239], "159095": 7, "697": [7, 220], "54261": 7, "91": [7, 17, 164, 202, 220, 232], "72": [7, 17, 159, 232], "53372": 7, "49": [7, 17, 148, 150, 164, 186, 202, 232], "78": [7, 17, 202, 232], "47948": 7, "79": [7, 17, 145, 198, 202, 232, 239], "48664": 7, "42": [7, 23, 73, 97, 127, 138, 164, 177, 186, 209, 232], "96": [7, 19, 145, 148, 164], "38": [7, 109, 164, 178, 247], "46": [7, 17, 138, 145, 148, 159, 177], "ddp_pipelin": 7, "respons": [8, 11, 16, 18, 49, 60, 108, 121, 124, 130, 134, 136, 140, 162, 163, 166, 173, 178, 209, 230, 259, 264], "nontrivi": [8, 210], "cut": [8, 113, 119, 264], "concern": [8, 21, 61, 99, 190, 198], "rule": [8, 22, 43, 47, 60, 102, 103, 125, 130, 139, 146, 154, 155, 160, 161, 183], "vmap": [8, 121, 142, 146, 151, 155, 197], "statement": [8, 21, 25, 43, 45, 60, 65, 98, 111, 166, 174, 175, 184, 233, 264], "convers": [8, 49, 95, 112, 148, 166, 178, 190, 195, 224, 229], "basic": [8, 11, 15, 16, 23, 24, 49, 54, 56, 57, 61, 75, 86, 97, 100, 103, 105, 107, 108, 113, 115, 121, 124, 127, 130, 145, 160, 165, 191, 194, 252, 254, 265], "registr": [8, 10, 15, 22, 23, 209, 221], "highest": [8, 19, 44, 49, 58, 59, 60, 128, 161, 172], "transfer": [8, 22, 44, 58, 59, 79, 80, 97, 98, 112, 117, 121, 136, 159, 163, 169, 179, 207, 229, 233, 254, 263], "redispatch": 8, "happen": [8, 21, 23, 25, 32, 43, 52, 97, 99, 105, 122, 124, 131, 136, 142, 157, 162, 169, 170, 185, 186, 198, 200, 209, 210], "unlik": [8, 12, 17, 60, 97, 125, 142, 143, 148, 158, 166, 202], "style": [8, 60, 113, 115, 124, 179, 209, 262, 264, 265], "abid": [8, 52], "myop": 8, "myadd": [8, 10], "myadd_cpu": 8, "self_": 8, "other_": 8, "torch_internal_assert": 8, "devicetyp": [8, 15], "self_ptr": 8, "data_ptr": [8, 23, 59, 187, 209], "other_ptr": 8, "result_ptr": 8, "torch_library_impl": [8, 10, 15], "impl": [8, 10, 15, 108, 174, 175, 247], "myadd_cuda": 8, "boundari": [8, 61, 135, 160, 169], "myops_cpu": 8, "myops_cuda": 8, "xla": [8, 10, 15, 245], "torch_xla": [8, 10], "useabl": 8, "behav": [8, 12, 20, 60, 80, 148, 154, 162, 199, 266], "autogradnotimplementedfallback": 8, "notimpl": 8, "preserv": [8, 17, 22, 25, 49, 107, 121, 135, 148, 157, 178, 184, 191, 202, 204, 224, 250, 264], "require_grad": 8, "ness": 8, "pin": [8, 125, 263], "lost": [8, 17, 99, 148, 202], "mutat": [8, 10, 139, 155, 174, 175, 206, 212], "alias": [8, 10], "adinplaceorview": 8, "bookkeep": 8, "autogradnotimplementedinplaceorviewfallback": 8, "logi": 8, "properli": [8, 9, 10, 14, 23, 50, 55, 97, 118, 131, 134, 136, 148, 150, 153, 154, 160, 162, 163, 164, 166, 177, 189, 190, 192, 195, 203, 210, 225, 226], "annot": [8, 10, 18, 21, 22, 23, 51, 60, 99, 108, 118, 138, 172, 173, 178, 217], "guess": [8, 43, 49, 52, 113, 127, 166], "twist": [8, 113], "constitut": [8, 14], "hood": [8, 14, 19, 49, 52, 54, 56, 124, 125, 146, 147, 164, 193], "singleton": [8, 163], "findschemaorthrow": 8, "decltyp": [8, 145], "qualifi": [8, 22, 108], "overload": [8, 22, 108], "typic": [8, 11, 14, 19, 21, 43, 47, 48, 54, 55, 58, 59, 82, 98, 99, 103, 115, 119, 124, 126, 130, 132, 145, 153, 160, 163, 172, 173, 174, 175, 177, 178, 201, 214, 221, 229, 233], "cast": [8, 13, 17, 18, 108, 109, 122, 202], "lookup": [8, 16, 103, 115, 164, 176], "typo": 8, "myaddfunct": [8, 10], "autononvariabletypemod": [8, 10, 59, 209], "myadd_autograd": [8, 10], "except": [8, 11, 17, 23, 43, 44, 48, 49, 52, 58, 59, 60, 61, 76, 79, 80, 87, 95, 99, 102, 104, 117, 125, 127, 135, 138, 139, 140, 142, 143, 146, 148, 150, 155, 156, 158, 165, 166, 173, 174, 175, 185, 191, 194, 197, 201, 202, 203, 204, 206, 207, 221, 223, 247], "raii": 8, "guard": [8, 59, 134, 174, 200, 209, 212], "infinit": 8, "overflow": [8, 49, 185], "send": [8, 10, 11, 12, 44, 45, 61, 73, 78, 87, 115, 136, 140, 147, 156, 158, 162, 163, 164, 174, 175], "consider": [8, 10, 20, 123, 174, 175], "handler": [8, 172, 178, 259], "autogradcpu": 8, "autogradcuda": 8, "pythondispatch": 8, "_python_dispatch": 8, "isn": [8, 98, 142, 143, 159, 170, 192, 262, 264], "glorifi": 8, "add_cpu": 8, "add_cuda": 8, "unsupport": [8, 173, 174, 175, 178], "decentr": 8, "importantli": [8, 19, 23, 42, 131, 153, 190], "parti": [8, 22, 23, 156], "aspect": [8, 15, 51, 73, 136, 179], "patch": [8, 10, 161], "dispatchkei": [8, 10], "varieti": [8, 24, 49, 112, 128, 193], "fallback": [8, 10, 15, 186], "behavior": [8, 10, 11, 12, 14, 22, 25, 49, 51, 102, 108, 137, 144, 145, 148, 150, 153, 174, 175, 191, 192, 198, 199, 203, 224], "opt": [8, 16, 22, 104, 110, 126, 135, 148, 153, 156, 163, 164, 169, 173, 185, 203, 211, 212, 231, 238], "amp": [8, 15, 61, 148, 208, 221, 252, 255], "incom": [8, 169], "float16": [8, 15, 122, 138, 148, 165, 208, 231], "float32": [8, 14, 23, 85, 122, 145, 148, 159, 161, 164, 173, 187, 190, 200, 201, 231, 245, 248], "matmul": [8, 17, 23, 32, 40, 48, 95, 124, 145, 185, 194, 202, 206, 208, 209, 231], "impair": 8, "converg": [8, 49, 52, 64, 97, 111, 112, 124, 136, 154, 161, 166, 212], "hypothet": 8, "autocast_mod": 8, "mymatmul_autocast": 8, "excludedispatchkeyguard": 8, "no_autocast": 8, "mymatmul": 8, "cached_cast": 8, "khalf": 8, "elig": 8, "polici": [8, 15, 121, 123, 147, 161, 162, 164], "mixtur": 8, "meanwhil": [8, 125, 145, 191, 221], "float64": [8, 95], "unaffect": [8, 97], "forc": [8, 14, 17, 23, 49, 60, 127, 166, 173, 190, 192, 202, 262], "fallthrough": 8, "occur": [8, 11, 19, 23, 25, 53, 75, 78, 82, 97, 116, 145, 148, 162, 163, 169, 172, 174, 175, 178, 185, 186], "fall": [8, 15, 154, 161], "aren": [8, 131, 137, 192], "dri": [8, 169], "reduct": [8, 9, 58, 59, 65, 67, 68, 69, 111, 119, 122, 123, 125, 130, 138, 153, 156, 169, 172, 182, 190, 192, 197, 224], "gemm": [8, 145, 177, 178, 200, 220], "unless": [8, 20, 48, 99, 130, 138, 160, 183, 185, 186, 206], "categori": [8, 10, 19, 49, 73, 82, 117, 127, 128, 166, 169, 174, 175, 183, 190, 191, 192, 193, 198, 199, 209], "promote_typ": 8, "widest": 8, "safest": 8, "my_multiple_input_op_autocast": 8, "t0": [8, 122, 165, 185, 191, 211, 232], "t1": [8, 40, 48, 191, 232, 245], "optimist": 8, "exec_typ": 8, "my_multiple_input_op": 8, "myadd_autocast": 8, "gymnast": 8, "invoc": [8, 25, 144, 162, 178], "stabil": [8, 97, 161, 259], "41478": 8, "jame": [9, 25, 113, 144], "reed": [9, 25, 144], "seth": [9, 19, 36], "weidman": [9, 19], "io": [9, 34, 49, 51, 58, 60, 94, 119, 121, 127, 128, 140, 149, 162, 165, 166, 172, 179, 182, 197, 209, 214, 228, 229, 230, 252, 254], "lstmmodel": [9, 182, 196], "drop": [9, 23, 50, 105, 132, 153, 164, 177, 182, 185, 225, 226, 262], "emb": [9, 23, 93, 98, 102, 103, 137, 164, 182, 196, 265], "init_hidden": [9, 98, 182, 196], "new_zero": [9, 196], "corpu": [9, 49, 50, 60, 138, 182, 194], "preprocess": [9, 20, 42, 51, 58, 59, 60, 97, 104, 113, 116, 127, 159, 166, 172, 188, 205], "dictionari": [9, 14, 49, 58, 59, 60, 82, 103, 105, 112, 127, 128, 140, 153, 155, 160, 162, 163, 166, 172, 182, 186, 196], "word2idx": [9, 182], "idx2word": [9, 182], "add_word": [9, 182], "__len__": [9, 45, 51, 104, 136, 161, 179, 182], "train": [9, 10, 12, 16, 17, 18, 20, 23, 32, 34, 37, 38, 41, 42, 43, 46, 47, 51, 54, 56, 57, 58, 59, 60, 63, 64, 65, 67, 68, 69, 73, 75, 79, 82, 85, 91, 92, 94, 96, 97, 98, 100, 102, 103, 104, 105, 111, 113, 116, 118, 119, 121, 123, 126, 129, 130, 134, 138, 143, 147, 148, 149, 150, 151, 154, 155, 156, 159, 162, 163, 164, 165, 169, 172, 173, 176, 177, 179, 184, 186, 188, 192, 195, 197, 201, 202, 212, 222, 225, 226, 228, 242, 244, 246, 251, 252, 254, 255, 258], "utf8": [9, 182], "eo": [9, 49, 60, 113, 116, 118, 128, 166, 182], "idss": [9, 182], "int64": [9, 14, 60, 85, 95, 115, 145, 176, 179, 182, 193], "model_data_filepath": [9, 182], "512": [9, 12, 18, 33, 37, 38, 43, 75, 97, 113, 118, 122, 135, 145, 146, 147, 165, 179, 182, 194, 196, 202, 208, 221, 231, 232, 239], "word_language_model_quant": [9, 182], "map_loc": [9, 20, 49, 60, 73, 112, 134, 172, 182, 231, 238, 241], "input_": [9, 196], "randint": [9, 16, 34, 51, 52, 65, 111, 127, 128, 138, 139, 145, 147, 148, 155, 165, 173, 186, 191, 196, 221], "temperatur": [9, 97, 115], "num_word": [9, 49, 60], "outf": 9, "word_weight": 9, "div": [9, 12, 129, 145, 190, 192, 193, 198], "word_idx": 9, "multinomi": 9, "utf": [9, 49, 111, 127, 128, 138, 166, 209, 264, 265], "19": [9, 12, 17, 23, 60, 95, 127, 145, 161, 175, 185, 187, 202, 239, 265, 268], "all_output": 9, "gpt": [9, 54, 123, 132, 133], "almost": [9, 12, 19, 80, 102, 103, 123, 124, 137, 159, 177, 185], "repackage_hidden": [9, 182], "isinst": [9, 12, 14, 17, 19, 49, 51, 73, 125, 135, 143, 147, 148, 157, 182, 183, 186, 187, 198, 199, 201, 202, 245], "model_": [9, 96, 182], "quantize_dynam": [9, 119, 138, 196, 229, 235], "int8": [9, 19, 95, 138, 159, 178, 185, 186, 198, 200, 201, 222, 224, 229, 235], "quantized_model": [9, 19, 119, 138, 182, 183, 186, 198, 199], "qint8": [9, 119, 138, 180, 196, 229, 235], "print_size_of_model": [9, 19, 138, 182, 183, 186, 198, 199, 235], "mb": [9, 19, 109, 123, 138, 176, 182, 183, 186, 198, 199, 229, 239, 260], "getsiz": [9, 19, 138, 182, 183, 186, 198, 199, 229, 235], "set_num_thread": [9, 138, 159, 182, 186], "time_model_evalu": [9, 138, 182, 186], "nelaps": [9, 182], "1f": [9, 37, 38, 44, 49, 138, 170, 182, 186, 232], "macbook": [9, 19, 138, 166], "pro": [9, 19, 138], "welcom": [9, 19, 138, 186, 188, 189, 196, 205, 223], "dynamic_quantization_tutori": [9, 235], "outsid": [10, 14, 15, 23, 45, 60, 121, 124, 130, 169, 172, 174, 190, 264], "repo": [10, 15, 18, 19, 54, 58, 59, 82, 119, 121, 127, 132, 136, 138, 162, 163, 185, 195], "solut": [10, 17, 52, 60, 112, 121, 135, 145, 150, 155, 172, 173, 177, 192, 194, 202], "pr": [10, 170, 221], "propos": [10, 24, 124, 137, 154, 190, 192], "request": [10, 25, 43, 87, 104, 119, 122, 140, 154, 159, 162, 163, 167, 174, 175, 177, 178, 187, 192, 193, 214, 230], "hardwar": [10, 15, 17, 20, 48, 50, 60, 97, 105, 136, 139, 146, 148, 150, 155, 156, 157, 178, 185, 202, 221, 224, 233], "googl": [10, 17, 21, 24, 25, 42, 49, 52, 75, 104, 119, 121, 137, 138, 160, 161, 169, 205, 209, 262], "tpu": [10, 149, 156], "chip": [10, 178, 189], "layout": [10, 17, 124, 142, 178, 190, 193, 194, 197, 202, 245], "spars": [10, 16, 99, 103, 115, 121, 137, 157, 192, 197], "quantiz": [10, 58, 59, 97, 117, 121, 153, 159, 178, 195, 197, 219, 222, 228, 235, 236, 252, 254], "enforc": [10, 14, 22, 60, 98, 126, 150, 154, 174, 175, 190, 191], "mainli": [10, 14, 15, 18, 138, 145, 169, 173, 200, 201], "haven": [10, 23, 87, 98, 102, 103, 139, 144, 155], "addtion": 10, "identifi": [10, 17, 53, 55, 73, 82, 83, 109, 113, 133, 147, 148, 157, 163, 178, 179, 183, 186, 193, 201, 202], "carri": [10, 14, 49, 52, 97, 101, 132, 137, 148, 166], "privateuse1": [10, 121], "autogradprivateuse1": [10, 15], "privateuse2": [10, 15], "autogradprivateuse2": [10, 15], "privateuse3": [10, 15], "autogradprivateuse3": [10, 15], "tensorimpl": [10, 15, 232, 247], "storag": [10, 15, 20, 101, 112, 125, 137, 139, 147, 148, 160, 169, 190, 192, 193, 203, 210, 224, 231], "dispatchkeyset": [10, 15], "ks": 10, "caffe2": [10, 85, 188], "typemeta": 10, "data_typ": [10, 101], "opaquetensorimpl": 10, "tweak": [10, 49], "overrid": [10, 15, 40, 48, 51, 59, 68, 99, 108, 111, 144, 148, 150, 156, 172, 186, 189, 209], "vulkan": [10, 197, 254], "submit": [10, 221], "dispath": 10, "registrationdeclar": 10, "ab": [10, 13, 85, 92, 95, 173, 183, 194, 208, 235, 239], "schema": [10, 20, 23, 209], "abs_": 10, "abs_out": 10, "absolute_": 10, "absolute_out": 10, "angl": [10, 14, 95, 103], "angle_out": 10, "sgn": 10, "uniqu": [10, 17, 49, 53, 55, 95, 98, 99, 100, 102, 103, 116, 122, 133, 163, 166, 179, 190, 202, 259], "boolean": [10, 73, 137, 174, 175, 254], "impli": [10, 97, 102, 138], "schema_my_op1": 10, "my_op1": 10, "schema_my_op2": 10, "my_op2": 10, "schema_my_op2_backward": 10, "my_op2_backward": 10, "zoom": [10, 82, 126, 169, 172], "1600": [10, 232, 247], "grow": [10, 49, 61, 99, 125, 132, 176], "unrealist": 10, "classifi": [10, 12, 19, 24, 43, 46, 47, 52, 57, 73, 82, 87, 97, 112, 117, 127, 128, 138, 147, 179, 195, 265], "metadata": [10, 17, 22, 94, 142, 160, 170, 174, 175, 202, 262], "accompani": 10, "comment": [10, 136, 153, 166, 189, 190, 206, 221, 223, 233, 264], "sacrif": [10, 157], "max_pool2d": [10, 47, 73, 92, 93, 105, 123, 130, 155, 157, 163, 167, 204, 207, 222, 234, 239], "formula": [10, 97, 142, 160], "mathemat": [10, 13, 43, 48, 64, 101, 136, 160], "worri": [10, 52, 99, 130, 131, 134, 144, 153, 164], "my_op": [10, 23, 209], "op_backward": 10, "proper": [10, 32, 122, 124, 134, 148, 150, 160, 164, 172, 177, 190], "rare": [10, 15, 49, 117, 166], "assumpt": [10, 14, 60, 73, 97, 103, 151], "myadd_schema": 10, "my_add": 10, "setuptool": [10, 156, 169], "_xlac": 10, "torch_xla_sourc": 10, "extra_compile_arg": 10, "library_dir": 10, "extra_link_arg": 10, "make_relative_rpath": 10, "seamlessli": [10, 14, 53, 78, 124, 200], "nm": [10, 151, 221], "torchvsion": 10, "adhoc": 10, "unbox": 10, "potenti": [10, 14, 25, 73, 98, 122, 163, 179, 197, 198, 200, 267], "wiki": [10, 33, 142, 148, 154, 182], "suit": [10, 109, 160, 183, 197, 198, 200], "ship": [10, 44, 61, 92, 113, 251], "guarante": [10, 97, 133, 136, 148, 157, 163, 164, 175, 177, 191], "delet": [10, 17, 83, 125, 130, 134, 153, 164, 172, 185, 189, 204, 254], "old": [10, 19, 103, 112, 113, 119, 157, 169, 182, 183, 194, 224, 229], "until": [10, 16, 49, 60, 82, 113, 122, 128, 135, 136, 137, 145, 153, 160, 162, 163, 164, 169, 190], "interrupt": [10, 53, 87, 166], "quarterli": 10, "cadenc": 10, "announc": [10, 115], "slack": [10, 44, 79], "Not": [10, 16, 58, 59, 113, 134, 159, 174, 260], "search": [10, 18, 49, 75, 113, 121, 126, 145, 157, 174, 175, 185, 205, 262], "instantiate_device_type_test": 10, "testtorchdevicetyp": 10, "testviewop": 10, "testtensordeviceop": 10, "testtypepromot": 10, "etc": [10, 44, 45, 47, 49, 51, 61, 69, 79, 98, 99, 100, 101, 102, 110, 112, 124, 157, 160, 161, 166, 174, 175, 177, 178, 182, 183, 192, 201, 221, 262, 264], "__reduce_ex__": 10, "monkei": 10, "direct": [10, 23, 25, 43, 47, 52, 73, 103, 113, 126, 136, 138, 142, 147, 151, 154, 166, 185, 193, 217, 268], "suppos": [10, 12, 22, 97, 98, 99, 103, 123, 140, 179, 180, 221], "vice": [10, 23, 48, 80, 229], "versa": [10, 23, 48, 80, 229], "Such": [10, 11], "seamless": [10, 78, 200], "coverag": [10, 142, 146, 148, 194, 198, 200], "comprehens": [10, 21, 24, 48, 79, 108, 145, 200], "bahavior": 10, "refactor": [10, 112, 132], "codegen": [10, 145], "dev": [10, 99, 104, 129, 138, 159, 169, 172, 186, 197, 209, 227, 231, 259], "andrew": [11, 180, 199], "gu": 11, "shard": [11, 61, 120, 121, 132, 155, 176, 216], "saw": [11, 14, 21, 23, 49, 59, 60, 99, 101, 142, 143, 146, 147], "skeleton": [11, 14], "implicitli": [11, 43, 49, 123, 131, 165, 201], "particip": [11, 61, 113, 133, 135, 163], "hang": [11, 55, 61, 113, 128], "persist": [11, 22, 264], "earli": [11, 23, 52, 87, 113, 126, 134, 136, 180, 192], "shadow": [11, 196], "hook": [11, 107, 124, 134, 157], "num_input": 11, "device_id": [11, 16, 55, 79, 112, 122, 134, 241, 260], "arbitrarili": [11, 49, 97], "prior": [11, 15, 19, 42, 50, 52, 97, 115, 134, 147, 157, 170, 177, 178, 198], "notabl": [11, 19, 87, 195], "addition": [11, 12, 82, 115, 125, 126, 134, 177, 178, 179, 200], "divide_by_initial_world_s": 11, "world": [11, 14, 18, 23, 42, 54, 58, 59, 99, 103, 115, 124, 126, 136, 140, 144, 147, 150, 156, 161, 162, 163, 194, 264], "nonetheless": [11, 97, 264], "mind": [11, 49, 52, 85, 97, 108, 133, 151, 177, 219, 264], "preliminari": [11, 138], "delv": [11, 145], "insight": [11, 73, 82, 90, 136, 165], "join_hook": 11, "kwarg": [11, 16, 21, 112, 125, 135, 144, 148, 150, 160, 163, 165, 174, 175, 185, 194, 203, 211, 217, 245], "join_devic": 11, "join_process_group": 11, "processgroup": [11, 16, 18, 61, 120, 121, 124, 164, 216, 248], "throw_on_early_termin": 11, "explain": [11, 12, 17, 20, 23, 43, 47, 52, 61, 73, 99, 124, 145, 150, 173, 177, 187, 200, 202], "joinconfig": 11, "_join_config": 11, "main_hook": 11, "repeatedli": [11, 160, 164], "post_hook": 11, "is_last_join": 11, "broadcast": [11, 61, 68, 95, 98, 111, 134, 136, 156], "vacuou": 11, "contextlib": [11, 172], "nullcontext": 11, "conform": [11, 172], "interleav": 11, "syncbatchnorm": [11, 55], "__exit__": 11, "heartbeat": 11, "notify_join_context": 11, "serializ": 11, "fulli": [11, 12, 14, 15, 17, 20, 21, 22, 47, 78, 82, 87, 108, 110, 117, 120, 121, 126, 132, 148, 151, 158, 161, 163, 165, 169, 177, 183, 192, 195, 198, 202, 221], "proceed": [11, 47, 97, 108], "overlap": [11, 21, 56, 61, 122, 123, 127, 132, 134, 150, 169, 172, 177], "moreov": [11, 61, 190, 221], "permit": [11, 264], "customiz": [11, 137, 196], "idea": [11, 23, 24, 60, 73, 85, 97, 99, 100, 101, 103, 124, 130, 137, 145, 150, 154, 161, 162, 164, 166, 177, 190, 206, 264], "counterjoinhook": 11, "sync_max_count": 11, "all_reduc": [11, 61, 122, 123, 136, 156], "get_rank": [11, 134, 136], "process_group": 11, "common_rank": 11, "find_common_rank": 11, "max_count": 11, "__call__": [11, 51, 68, 111, 148, 157], "meth": [11, 14, 264], "to_consid": 11, "reduceop": [11, 122, 123, 136], "highlight": [11, 49, 60, 85, 90, 94, 114, 120, 122, 165, 169, 173, 221, 264], "alexi": 12, "jacq": 12, "winston": 12, "her": [12, 42, 113, 156], "leon": [12, 113], "gati": 12, "alexand": 12, "ecker": 12, "matthia": 12, "bethg": 12, "artist": 12, "distanc": [12, 63, 64, 67, 68, 69, 97, 111], "d_c": 12, "d_": [12, 96], "indispens": [12, 160], "pil": [12, 20, 41, 51, 58, 59, 90, 117, 119, 140, 147, 159, 172, 179, 205, 214, 230], "pretrain": [12, 20, 24, 42, 43, 58, 59, 73, 75, 103, 113, 117, 119, 121, 138, 140, 158, 159, 166, 172, 177, 178, 182, 183, 186, 188, 189, 195, 196, 198, 199, 200, 205, 207, 214, 221, 223, 224, 258], "vgg19": [12, 148], "vgg19_weight": 12, "throughout": [12, 25, 52, 102, 136, 150, 153, 160, 170, 177, 178, 192], "set_default_devic": [12, 63, 111, 231, 233], "resiz": [12, 19, 20, 47, 51, 52, 75, 90, 117, 119, 137, 140, 147, 158, 169, 183, 198, 199, 214, 221, 230, 255], "unabl": [12, 23, 139, 155, 185, 192], "caff": 12, "picasso": 12, "imsiz": 12, "image_load": 12, "image_nam": [12, 51], "style_img": 12, "content_img": 12, "reconvert": 12, "correctli": [12, 49, 52, 58, 59, 60, 73, 78, 114, 127, 142, 148, 153, 157, 159, 172, 173, 175, 192, 199, 225, 226, 254], "unload": 12, "topilimag": 12, "ion": [12, 14, 51, 117, 158, 161, 167], "titl": [12, 14, 17, 34, 51, 52, 73, 90, 117, 127, 137, 158, 160, 161, 166, 172, 179, 196, 226], "paus": [12, 51, 117, 161, 162, 199], "f_": [12, 160], "xl": [12, 220], "w_": [12, 103], "cl": [12, 75, 126, 138, 184, 245], "squar": [12, 47, 51, 63, 64, 67, 68, 69, 71, 97, 111, 130, 131, 147, 154, 157, 161, 165, 180], "contentloss": 12, "throw": [12, 23, 61, 118, 140, 162, 174, 175], "mse_loss": [12, 97, 231], "recomput": [12, 97, 130, 132, 154], "act": [12, 22, 43, 49, 113, 126, 137, 157, 161, 163], "gram": 12, "g_": [12, 264], "hat": [12, 102, 113], "counteract": 12, "caus": [12, 15, 21, 22, 61, 73, 82, 119, 125, 145, 159, 162, 166, 169, 172, 175, 177, 178, 190, 196, 229, 233, 254, 262], "pool": [12, 18, 44, 52, 61, 87, 92, 94, 96, 97, 110, 112, 116, 170, 176, 178, 195, 240, 241, 242, 243, 244, 249, 250, 251], "tend": [12, 17, 97, 185, 202], "gram_matrix": 12, "f_xl": 12, "sl": 12, "styleloss": 12, "target_featur": 12, "vgg": 12, "child": [12, 60, 103, 109, 169, 186, 265], "connect": [12, 47, 59, 87, 103, 110, 117, 124, 136, 142, 144, 151, 157, 158, 159, 161, 177, 201, 209, 219, 224, 264], "cnn": [12, 45, 97, 119, 121, 147, 151, 154, 155, 167, 172, 178, 179, 200, 221, 229], "485": [12, 19, 51, 58, 59, 90, 97, 117, 140, 158, 159, 167, 183, 198, 199, 205, 214, 230], "456": [12, 19, 51, 58, 59, 90, 97, 117, 140, 158, 159, 167, 183, 198, 199, 205, 214, 230], "406": [12, 19, 51, 58, 59, 90, 97, 117, 140, 158, 159, 167, 183, 198, 199, 205, 214, 230], "229": [12, 19, 51, 58, 59, 90, 97, 117, 140, 158, 159, 167, 183, 198, 199, 205, 214, 230], "225": [12, 19, 51, 58, 59, 90, 97, 109, 117, 140, 158, 159, 167, 183, 198, 199, 205, 214, 230], "cnn_normalization_mean": 12, "cnn_normalization_std": 12, "height": [12, 43, 47, 58, 59, 78, 95, 147, 149, 153, 172, 178, 179, 264], "width": [12, 19, 43, 44, 47, 58, 59, 78, 95, 126, 147, 149, 150, 151, 153, 172, 178, 179, 264], "img": [12, 20, 34, 44, 51, 90, 92, 94, 96, 117, 119, 121, 140, 158, 170, 172, 179, 230, 259], "maxpool2d": [12, 44, 47, 78, 87, 92, 93, 94, 96, 97, 112, 135, 144, 167, 170, 240, 241, 242, 243, 244, 249, 250, 251], "align": [12, 150, 165, 166, 179, 191, 196, 264], "depth": [12, 43, 52, 56, 61, 101, 125, 145, 200, 235, 262], "immedi": [12, 18, 21, 48, 52, 102, 135, 136, 153, 162, 163, 166, 169, 185], "content_layers_default": 12, "conv_4": 12, "style_layers_default": 12, "conv_1": 12, "conv_2": 12, "conv_3": 12, "conv_5": 12, "get_style_model_and_loss": 12, "normalization_mean": 12, "normalization_std": 12, "content_lay": 12, "style_lay": 12, "content_loss": 12, "style_loss": 12, "conv": [12, 19, 52, 90, 110, 130, 143, 144, 148, 157, 158, 163, 178, 182, 183, 201, 219, 224, 227, 239, 240, 254], "children": [12, 169], "conv_": 12, "relu_": [12, 130, 201, 207], "plai": [12, 44, 49, 52, 79, 97, 99, 115, 121, 160, 178, 200], "pool_": 12, "bn_": 12, "runtimeerror": [12, 22, 118, 128, 156, 159, 165, 174, 175, 204], "unrecogn": 12, "__class__": [12, 52, 78, 148, 245], "add_modul": 12, "content_loss_": 12, "style_loss_": 12, "input_img": [12, 90, 230], "bfg": 12, "get_input_optim": 12, "closur": [12, 174, 175], "reevalu": 12, "exce": [12, 73, 130, 176, 229], "run_style_transf": 12, "num_step": [12, 162], "style_weight": 12, "1000000": 12, "content_weight": 12, "clamp_": 12, "style_scor": 12, "content_scor": 12, "sphinx_gallery_thumbnail_numb": [12, 127], "ioff": [12, 51, 117, 158, 161, 167], "neural_style_tutori": 12, "paszk": [13, 136, 161], "dziedzic": 13, "shall": [13, 47, 52, 103], "learnabl": [13, 47, 67, 68, 69, 111, 112, 121, 203], "badfftfunct": 13, "fft": [13, 173], "rfft2": 13, "irfft2": 13, "numpy_input": 13, "numpy_go": 13, "incorrect_fft": 13, "literatur": [13, 161], "confusingli": 13, "correl": [13, 82, 145], "flip": [13, 21, 146], "wrt": [13, 130, 131], "np": [13, 14, 17, 19, 20, 40, 44, 48, 51, 52, 60, 71, 73, 75, 80, 90, 92, 94, 95, 96, 98, 104, 109, 111, 117, 119, 138, 147, 150, 158, 159, 164, 166, 167, 170, 172, 173, 183, 186, 191, 194, 196, 198, 199, 202, 205, 230, 247], "convolve2d": 13, "correlate2d": 13, "scipyconv2dfunct": 13, "as_tensor": [13, 75, 192], "grad_filt": 13, "from_numpi": [13, 40, 48, 51, 80, 95, 109, 162, 164, 173], "scipyconv2d": 13, "filter_width": 13, "filter_height": 13, "gradcheck": [13, 130, 131, 142, 248], "moduleconv": 13, "atol": [13, 17, 20, 139, 151, 155, 202], "numpy_extensions_tutori": 13, "freeli": 14, "inspir": [14, 60, 116, 136, 146, 151, 165, 206], "v1": [14, 17, 61, 95, 135, 137, 161, 162, 164, 182, 193, 202, 232, 259], "openai": [14, 121, 147, 160, 161, 162, 164], "farama": [14, 160], "gymnasium": [14, 160, 161], "encount": [14, 49, 60, 110, 122, 145, 173, 254], "undertaken": 14, "broader": [14, 25], "challeng": [14, 101, 102, 123, 124, 136, 143, 154, 161, 172], "wider": [14, 146], "acquaint": 14, "set_se": [14, 138, 186], "avenu": [14, 85], "backpropag": [14, 37, 38, 43, 47, 49, 73, 98, 99, 100, 102, 103, 125, 147], "defaultdict": [14, 17, 75, 160, 202], "boundedtensorspec": 14, "unboundedcontinuoustensorspec": 14, "unsqueezetransform": 14, "_apply_to_composit": 14, "check_env_spec": [14, 160], "step_mdp": [14, 137], "default_x": 14, "pi": [14, 63, 64, 65, 67, 68, 69, 71, 72, 89, 95, 111, 121, 161, 264], "default_i": 14, "_set_se": 14, "torqu": 14, "upward": 14, "angular": 14, "stand": [14, 85, 113, 147, 193, 264], "equat": [14, 52, 138, 160, 161, 264], "motion": [14, 264], "veloc": [14, 161], "theta": [14, 73, 99, 160, 167, 264], "_t": [14, 147], "theta_t": 14, "dt": [14, 147, 264], "rad": 14, "sec": [14, 123, 138, 231], "gravit": 14, "mass": 14, "accord": [14, 15, 24, 112, 115, 119, 145, 147, 157, 161, 165, 172, 193, 203], "theta_": [14, 147], "deleg": [14, 21, 121, 144, 188, 198], "privat": [14, 15, 23, 58, 59, 115, 156, 157, 190, 209], "merg": [14, 20, 22, 45, 159, 161, 172, 221], "is_shar": 14, "modif": [14, 15, 19, 20, 21, 87, 98, 130, 136, 157, 160, 163, 167, 170, 174, 175, 183, 195], "new_th": 14, "plu": [14, 98, 99, 115, 128], "new_thdot": 14, "neg": [14, 21, 49, 90, 98, 99, 104, 113, 138, 145, 157, 160, 230, 254], "discourag": [14, 48, 160], "thdot": 14, "g_forc": 14, "clamp": [14, 73, 95, 198, 207], "max_torqu": 14, "angle_norm": 14, "max_spe": 14, "omit": [14, 23, 109, 145, 160, 178, 182, 195, 198, 199, 200, 239], "agent": [14, 61, 121, 161, 162, 164, 167], "mandatori": [14, 142, 160], "is_empti": 14, "gen_param": 14, "high_th": 14, "high_thdot": 14, "low_th": 14, "low_thdot": 14, "simultan": [14, 15, 22, 25, 43, 56, 121, 126, 136, 159], "rng": [14, 136], "domain": [14, 24, 49, 50, 73, 108, 121, 160, 194, 265], "accur": [14, 19, 73, 87, 109, 126, 144, 164, 173, 192], "lazili": [14, 153], "costli": [14, 125], "reward_spec": [14, 160], "done_spec": 14, "input_spec": [14, 160, 174], "state_spec": 14, "output_spec": [14, 174], "trivial": [14, 51, 56, 125, 140, 203, 210, 254], "neither": [14, 150, 180], "shortcut": 14, "tensorspec": [14, 188], "irrelev": [14, 156], "_make_spec": 14, "td_param": 14, "make_composite_from_td": 14, "unbound": 14, "incorpor": [14, 97, 137, 165, 265], "pseudo": [14, 24], "manual_se": [14, 17, 19, 25, 52, 73, 92, 95, 97, 98, 99, 101, 102, 103, 118, 122, 123, 130, 136, 138, 139, 146, 155, 162, 183, 186, 194, 198, 199, 202, 235, 260], "pendulumenv": 14, "expand": [14, 15, 49, 60, 98, 101, 105, 113, 145, 170, 178, 188, 194, 195, 210], "batch_lock": 14, "homonym": 14, "render_mod": [14, 147], "human": [14, 20, 49, 73, 110, 115, 128, 138, 140, 147, 166, 172, 214, 264], "rgb_arrai": 14, "render_fp": 14, "random_": [14, 16, 60, 135, 150, 162], "_make_step": 14, "rand_step": 14, "randomli": [14, 44, 51, 52, 65, 71, 72, 87, 111, 128, 138, 147, 161, 166, 186], "invers": [14, 95, 191], "showcas": [14, 23, 65, 122, 151, 153, 177, 178, 187, 197], "unsqueeze_dim": 14, "summar": [14, 49, 51, 114, 119, 120, 122, 126, 138, 144, 169, 178], "_apply_transform": 14, "_call": 14, "inv": 14, "_inv_apply_transform": 14, "eventu": [14, 130, 137], "out_keys_inv": 14, "subset": [14, 21, 23, 58, 59, 60, 85, 87, 97, 107, 117, 136, 156, 158, 172, 174, 175, 179, 192, 193, 254], "unitari": 14, "raw": [14, 23, 44, 49, 61, 68, 82, 104, 113, 118, 119, 174, 175, 179, 262], "sintransform": 14, "ob": [14, 147, 164, 201], "tensordict_reset": 14, "transform_observation_spec": 14, "costransform": 14, "t_sin": 14, "t_co": 14, "del_kei": 14, "cat_transform": 14, "met": [14, 123], "mdp": 14, "gather": [14, 49, 55, 79, 123, 124, 134, 136, 137, 144, 160, 161, 197, 206], "simple_rollout": 14, "_data": [14, 73], "keep_oth": 14, "unexplor": 14, "abil": [14, 23, 60, 61, 112, 124, 125, 136, 167, 170, 173, 192, 207], "recreat": [14, 43, 176, 209], "auto_reset": 14, "lazylinear": [14, 160], "clip": [14, 20, 49, 73, 117, 158, 160, 161, 167], "20_000": [14, 137], "cosineannealinglr": [14, 110, 160], "init_td": 14, "traj_return": 14, "last_reward": [14, 162, 164], "is_ipython": [14, 161], "inlin": [14, 25, 52, 60, 89, 92, 143, 145, 161, 190, 197, 204, 265, 268], "get_backend": [14, 161], "ipython": [14, 18, 52, 104, 109, 149, 161], "figsiz": [14, 34, 52, 73, 158, 160, 170, 179], "gcf": [14, 161], "clear_output": [14, 161], "scratch": [14, 43, 49, 53, 97, 98, 112, 114, 117, 118, 127, 128, 166, 254], "advanc": [15, 17, 19, 23, 43, 58, 59, 87, 100, 105, 107, 108, 120, 121, 134, 172, 177, 190, 193, 197, 200, 202, 206, 221, 222, 235, 265], "verif": [15, 163], "rapid": [15, 193], "manufactur": [15, 60], "imposs": [15, 98, 153, 206], "began": 15, "enhanc": [15, 115, 140, 167, 200, 229, 264], "rapidli": 15, "wrapper_custom_tensor_add": 15, "torch_fn": 15, "custom_cpu_fallback": 15, "operatorhandl": 15, "hint": [15, 18, 97, 98, 102, 108, 125, 136, 162, 169], "cpu_fallback": 15, "cppfunction": 15, "makefromboxedfunct": 15, "cumtomselufunct": 15, "selu": [15, 110], "wrapper_autogradcumstom__selu": 15, "wrapper_autogradcustom__selu": 15, "autocastprivateuse1": 15, "autocast": [15, 17, 200, 202, 208, 221, 248, 255], "kernel_privateuseon": 15, "makefallthrough": 15, "backendmodul": 15, "_register_device_modul": 15, "backend_nam": 15, "get_amp_supported_dtyp": 15, "is_autocast_en": 15, "get_autocast_dtyp": 15, "set_autocast_dtyp": 15, "set_autocast_en": 15, "generatorimpl": 15, "builder": 15, "register_generator_privateuse1": 15, "customgeneratorimpl": 15, "make_custom_gener": 15, "deviceindex": 15, "device_index": 15, "make_gener": 15, "make_cumstom_gener": 15, "event": [15, 22, 82, 109, 113, 122, 123, 162, 173, 178], "deviceguard": 15, "deviceguardimplinterfac": 15, "c10_register_guard_impl": 15, "customguardimpl": 15, "backend_meta_": 15, "extrameta": 15, "backendmeta": 15, "custombackendmetadata": 15, "unordered_map": 15, "tensorbackendmetaregistri": 15, "for_seri": 15, "for_deseri": 15, "timer": [15, 17, 52, 118, 139, 146, 155, 165, 166, 185, 188, 202, 211, 252], "ascend": [15, 52, 83], "npu": [15, 188, 224], "meet": [15, 50, 52, 203], "usabl": [15, 112, 137, 143], "compli": [15, 60], "habit": [15, 267], "torch_npu": 15, "exclus": [15, 23, 157], "strongli": [15, 137, 154, 264], "rename_privateuse1_backend": 15, "register_privateuse1_backend": 15, "unsupported_dtyp": 15, "quint8": [15, 180], "generate_methods_for_privateuse1_backend": 15, "for_tensor": 15, "for_modul": 15, "for_storag": 15, "is_npu": 15, "yi": [16, 174, 175], "wang": [16, 24, 108, 145, 147], "paradigm": [16, 17, 61, 97, 120, 134, 135, 163, 164, 202], "dens": [16, 17, 147, 190, 194, 202], "fc": [16, 43, 45, 115, 117, 135, 147, 150, 151, 158, 203], "hybrid": [16, 84, 110], "pipedream": 16, "embeddingbag": [16, 18, 115], "respond": [16, 147, 163], "amongst": [16, 191], "themselv": [16, 192, 198], "remotemodul": 16, "kick": [16, 43, 113, 153, 162, 163, 164], "remot": [16, 61, 120, 126, 135, 162, 163, 164, 169, 213], "hybridmodel": 16, "allreduc": [16, 61, 82, 123, 124, 134, 156, 248], "firstli": [16, 108, 145, 161], "tcp": [16, 55, 132, 133, 136, 213], "_run_train": [16, 164], "rpc_async": [16, 135, 162, 164], "shut": [16, 163], "29501": 16, "ps": [16, 61, 162, 163, 164, 196], "remote_emb_modul": 16, "num_embed": [16, 18, 110, 176], "embedding_dim": [16, 18, 93, 98, 102, 103, 110, 176], "fut": [16, 21, 162, 164], "trainer_rank": 16, "trainer_nam": 16, "gloo": [16, 134, 136, 156, 169, 176, 260], "offset": [16, 17, 115, 202, 256], "emb_lookup": 16, "distributedoptim": [16, 135, 163, 164, 213, 217], "remote_paramet": 16, "cannnot": 16, "aggreg": [16, 43, 109, 147, 172, 191, 239], "model_parameter_rref": 16, "get_next_batch": [16, 162, 164], "num_indic": 16, "longtensor": [16, 49, 60, 80, 99, 103, 128, 135, 150, 162, 164, 166], "offsets_tensor": 16, "dist_autograd": [16, 135, 163, 164], "context_id": [16, 135, 163, 164], "tun": 16, "jess": [17, 202], "cai": [17, 202], "seek": [17, 85, 202], "grain": [17, 34, 61, 122, 136, 169, 202], "2n": [17, 202], "degrad": [17, 73, 202, 229], "sparsifi": [17, 121, 157, 202], "answer": [17, 49, 75, 99, 103, 136, 138, 144, 153, 166, 202, 254], "tune": [17, 19, 82, 97, 113, 120, 121, 123, 126, 158, 159, 177, 185, 186, 202, 222], "recov": [17, 61, 122, 123, 134, 148, 199, 202], "nearli": [17, 170, 202], "f1": [17, 138, 173, 186, 202], "vs": [17, 18, 52, 78, 94, 122, 155, 169, 170, 177, 178, 185, 192, 195, 197, 198, 201, 202, 220], "3x": [17, 64, 111, 178, 202, 224], "beginn": [17, 35, 45, 46, 77, 84, 91, 100, 106, 120, 202, 204, 205, 235], "to_sparse_semi_structur": [17, 202], "sparsesemistructuredtensor": [17, 202], "_force_cutlass": [17, 202], "tile": [17, 172, 202, 208], "3072": [17, 97, 148, 202], "2560": [17, 202], "10240": [17, 202], "inference_mod": [17, 130, 172, 202], "dense_output": [17, 202], "dense_t": [17, 202], "stmt": [17, 139, 146, 150, 155, 165, 185, 202, 211, 232, 247], "blocked_autorang": [17, 165, 202, 211, 232], "median": [17, 173, 185, 202, 232, 247], "1e3": [17, 185, 202, 235], "sparse_output": [17, 202], "sparse_t": [17, 202], "a100": [17, 122, 125, 155, 173, 176, 185, 202], "80gb": [17, 202], "870m": [17, 202], "630m": [17, 202], "382x": [17, 202], "allclos": [17, 125, 139, 142, 145, 146, 151, 154, 155, 165, 173, 202, 206, 232], "motiv": [17, 73, 145, 163, 180, 187, 191, 192, 194, 202], "affect": [17, 97, 113, 131, 150, 177, 202], "swap": [17, 51, 99, 110, 124, 138, 160, 183, 185, 186, 194, 196, 199, 202], "compress": [17, 90, 157, 190, 193, 202, 210], "drawback": [17, 103, 202], "2020": [17, 202], "amper": [17, 122, 151, 155, 202, 231], "cutlass": [17, 202], "cusparselt": [17, 202], "milder": [17, 202], "account": [17, 50, 137, 153, 166, 170, 186, 202], "retrain": [17, 202, 228], "sweet": [17, 202], "spot": [17, 127, 202], "2x": [17, 85, 121, 131, 153, 177, 178, 182, 202], "theoret": [17, 52, 190, 202], "granular": [17, 122, 145, 178, 186, 202, 239, 248], "fp16": [17, 122, 148, 185, 189, 202], "resnet": [17, 43, 44, 79, 125, 135, 150, 158, 169, 183, 196, 198, 199, 200, 202, 224, 229, 248], "imagenet": [17, 44, 51, 79, 117, 119, 140, 158, 159, 183, 198, 199, 202, 214, 230], "76": [17, 148, 164, 202, 232], "resnext": [17, 202], "101_32x8d": [17, 202], "xception": [17, 202], "ssd": [17, 202, 248], "rn50": [17, 202], "coco2017": [17, 202], "bbap": [17, 202], "maskrcnn": [17, 202], "fairseq": [17, 202], "en": [17, 21, 33, 49, 60, 99, 113, 118, 142, 154, 166, 172, 202, 262], "de": [17, 18, 22, 49, 60, 113, 116, 118, 166, 202], "wmt14": [17, 202], "bleu": [17, 202], "squad": [17, 145, 202], "workflow": [17, 19, 58, 59, 82, 86, 87, 123, 174, 193, 197, 201, 202], "perspect": [17, 23, 101, 160, 178, 202], "subproblem": [17, 202], "handoff": [17, 202], "anticip": [17, 202], "area": [17, 113, 170, 179, 185, 193, 202, 266], "colab": [17, 18, 24, 25, 42, 48, 75, 94, 104, 115, 119, 121, 137, 138, 146, 158, 160, 161, 172, 176], "panda": [17, 34, 51, 73, 119, 172], "wandb_dis": 17, "ao": [17, 19, 180, 182, 183, 185, 198, 199, 200, 202], "weightnormsparsifi": [17, 202], "hug": [17, 75, 145], "face": [17, 44, 51, 52, 60, 73, 75, 79, 113, 145, 198], "preprocess_validation_funct": [17, 202], "strip": [17, 49, 75, 127, 128, 166, 202], "max_length": [17, 49, 60, 75, 128, 138, 166, 186, 202, 254], "384": [17, 188, 202], "only_second": [17, 202], "return_overflowing_token": [17, 202], "return_offsets_map": [17, 202], "sample_map": [17, 202], "pop": [17, 22, 98, 138, 186, 202], "overflow_to_sample_map": [17, 202], "example_id": [17, 202], "input_id": [17, 75, 122, 124, 138, 145, 166, 186, 202], "sample_idx": [17, 34, 202], "sequence_id": [17, 202], "offset_map": [17, 202], "preprocess_train_funct": [17, 202], "start_posit": [17, 202], "end_posit": [17, 202], "start_char": [17, 202], "answer_start": [17, 202], "end_char": [17, 202], "idx": [17, 19, 34, 51, 75, 98, 102, 103, 109, 115, 158, 159, 166, 170, 179, 202, 239], "context_start": [17, 202], "context_end": [17, 202], "compute_metr": [17, 138, 186, 202], "start_logit": [17, 202], "end_logit": [17, 202], "n_best": [17, 202], "max_answer_length": [17, 202], "example_to_featur": [17, 202], "predicted_answ": [17, 202], "feature_index": [17, 202], "start_index": [17, 202], "argsort": [17, 202], "tolist": [17, 51, 113, 179, 202], "end_index": [17, 202], "logit_scor": [17, 202], "score": [17, 49, 60, 98, 102, 103, 109, 138, 149, 165, 166, 179, 186, 202], "best_answ": [17, 202], "prediction_text": [17, 202], "theoretical_answ": [17, 202], "ex": [17, 73, 202, 265, 267], "measure_execution_tim": [17, 202], "dataset_for_model": [17, 202], "remove_column": [17, 202], "set_format": [17, 202], "batch_size_to_time_sec": [17, 202], "column_nam": [17, 202], "baseline_predict": 17, "p50": [17, 202], "model_c": [17, 185], "fullgraph": [17, 129, 165, 173, 211, 212, 256], "_compil": 17, "new_predict": 17, "model_nam": [17, 49, 60, 122, 185, 200, 202, 221], "autotoken": [17, 122, 202], "from_pretrain": [17, 75, 122, 138, 145, 186, 202, 221], "automodelforquestionansw": [17, 202], "val": [17, 19, 22, 117, 118, 122, 149, 158, 159, 183, 198, 199, 202], "squad_dataset": [17, 202], "load_dataset": [17, 75, 122, 202], "tokenized_squad_dataset": [17, 202], "data_col": [17, 202], "datacollatorwithpad": [17, 202], "segment": [17, 121, 185, 202, 205, 223], "wikipedia": [17, 33, 142, 154, 202], "articl": [17, 113, 116, 202], "training_arg": [17, 202], "trainingargu": [17, 202], "num_train_epoch": [17, 138, 202], "lr_scheduler_typ": [17, 202], "per_device_train_batch_s": [17, 202], "per_device_eval_batch_s": [17, 202], "logging_step": 17, "runner": 17, "max_step": [17, 75], "report_to": 17, "train_dataset": [17, 55, 97, 115, 122, 202, 221, 255], "eval_dataset": [17, 138, 186, 202], "fair": [17, 97, 103, 113, 194, 195, 202], "fp16_baselin": [17, 202], "fp16_time": [17, 202], "cuda_fp16": [17, 202], "pd": [17, 34, 51, 119, 172], "df": [17, 83, 119, 126], "datafram": [17, 82, 119, 126, 172], "log_histori": 17, "lowest": [17, 61, 123, 157, 202], "satisfi": [17, 126, 174, 175, 196, 202, 203], "sparsity_level": [17, 202], "sparse_block_shap": [17, 202], "zeros_per_block": [17, 202], "sparse_config": [17, 202], "tensor_fqn": [17, 202], "fqn": [17, 202, 215], "named_modul": [17, 143, 157, 202, 240], "anytim": [17, 202], "pruner": [17, 202], "update_mask": [17, 202], "shot": [17, 113, 162, 202], "squash_mask": [17, 202], "set_printopt": [17, 202, 232], "edgeitem": [17, 202], "sparse_loss": 17, "quickstart": [17, 35, 202, 225], "metrics_spars": [17, 202], "sparse_perf": [17, 202], "perf": [17, 178, 189, 202], "28x": [17, 202], "bs": [17, 104, 145, 202], "amen": [17, 202], "spent": [17, 82, 113, 165, 169, 177, 178, 202], "delta": [17, 125, 145, 146, 147, 155, 161, 202, 232, 247], "exact": [17, 97, 112, 130, 140, 165, 174, 175, 186, 198, 199, 202], "53": [17, 148, 202, 220, 239, 265], "93": [17, 109, 164, 202, 232], "15": [17, 23, 24, 45, 52, 58, 59, 73, 90, 92, 93, 116, 117, 147, 158, 170, 172, 179, 188, 202, 204, 220, 232, 247, 264, 268], "54": [17, 148, 150, 178, 232], "71x": [17, 178], "74": [17, 119, 164, 186, 232], "23x": 17, "71": [17, 19, 21, 51, 145, 164], "59": [17, 115, 159, 172, 232, 239], "22x": 17, "286": [17, 148, 172, 202], "65": [17, 51, 164, 179, 219, 232], "247": [17, 164], "63": [17, 229, 239], "14x": 17, "02x": 17, "ye": [17, 50, 78, 99, 138, 153, 188], "18x": [17, 202], "13x": 17, "159": 17, "142": 17, "12x": 17, "semi_structured_spars": 17, "embeddingplann": [18, 121], "conda": [18, 23, 82, 90, 94, 136, 145, 176, 185, 188, 189, 197, 222, 224, 230, 246, 247], "cudatoolkit": [18, 176], "sudo": [18, 169, 207], "rm": [18, 213, 224], "miniconda3": [18, 22, 247], "py37_4": 18, "sh": [18, 134, 189, 195, 205, 207, 219, 223, 224, 227], "anaconda": [18, 82, 136], "chmod": 18, "fbgemm": [18, 19, 119, 176, 180, 182, 183, 229], "cp": [18, 207, 209, 214, 259], "restart": [18, 23, 58, 59, 133, 161], "newli": [18, 49, 117, 136], "python37": 18, "dynload": 18, "enviro": 18, "spmd": [18, 124, 215], "mimic": [18, 19, 97, 150, 158, 185, 186, 190], "launcher": [18, 209], "embeddingbagcollect": 18, "bag": [18, 34, 38, 94, 96, 115, 170, 176], "ebc": [18, 176], "parameterconstraint": 18, "placement": [18, 177], "intra": [18, 21, 122, 124, 138], "interconnect": [18, 76, 177], "nvlink": [18, 124, 213], "data_parallel": [18, 79], "meta": [18, 49, 124, 126, 139, 155, 160, 174, 175, 176, 177, 178, 201, 203, 240, 245, 252, 256, 268], "planner": 18, "embedding_typ": 18, "embeddingcomputekernel": 18, "shardingtyp": 18, "large_table_cnt": 18, "small_table_cnt": 18, "large_t": 18, "embeddingbagconfig": [18, 176], "large_table_": 18, "feature_nam": [18, 176], "large_table_feature_": 18, "poolingtyp": [18, 176], "small_tabl": 18, "small_table_": 18, "small_table_feature_": 18, "gen_constraint": 18, "sharding_typ": 18, "table_wis": 18, "large_table_constraint": 18, "small_table_constraint": 18, "mimick": 18, "single_rank_execut": 18, "embeddingbagcollectionshard": 18, "model_parallel": 18, "embeddingshardingplann": 18, "topolog": [18, 138, 186, 221], "moduleshard": 18, "shardingenv": 18, "init_distributed_single_host": 18, "pyre": 18, "fixm": 18, "set_devic": [18, 53, 55, 122, 123, 187, 215, 216], "compute_devic": 18, "pg": 18, "sharder": [18, 176], "shardingplan": 18, "collective_plan": 18, "sharded_model": 18, "from_process_group": 18, "spmd_sharing_simul": 18, "get_context": 18, "exitcod": 18, "medium": [18, 122, 179, 264], "large_table_0": 18, "parametershard": 18, "compute_kernel": 18, "batched_fus": 18, "sharding_spec": 18, "enumerableshardingspec": 18, "shardmetadata": 18, "shard_offset": 18, "shard_siz": 18, "large_table_1": 18, "small_table_0": 18, "small_table_1": 18, "finer": [18, 34, 61, 178, 239], "halv": [18, 109], "row_wis": 18, "imbal": [18, 177], "vertic": [18, 21, 262, 264], "column_wis": 18, "unfortu": 18, "batched_dens": 18, "raghuraman": [19, 138, 158], "krishnamoorthi": [19, 138, 158], "jerri": [19, 182, 183, 184, 198, 200, 201], "zhang": [19, 182, 183, 184, 198, 200, 201, 215, 216], "decreas": [19, 49, 73, 83, 97, 103, 124, 147, 177, 178, 193, 224, 254], "mobilenetv2": [19, 189, 197, 199, 224], "dataload": [19, 33, 35, 37, 38, 44, 45, 52, 55, 73, 75, 87, 92, 94, 96, 97, 113, 115, 117, 118, 122, 123, 130, 136, 138, 149, 158, 163, 166, 167, 169, 170, 172, 179, 183, 186, 198, 199, 221, 222, 236, 237, 248, 251, 255], "filterwarn": [19, 51, 149, 160, 172, 183, 190, 191, 192, 193, 198, 199], "deprecationwarn": [19, 183, 198, 199], "seed": [19, 25, 52, 73, 97, 122, 123, 136, 138, 162, 164, 183, 186, 194, 198, 199, 232], "191009": [19, 25, 183, 198, 199], "floatfunct": 19, "quantstub": [19, 183, 219, 224, 229], "dequantstub": [19, 183, 219, 224, 229], "relu6": [19, 110], "_make_divis": 19, "divisor": 19, "min_valu": 19, "tf": [19, 94], "divis": [19, 166, 194], "tensorflow": [19, 94, 98, 100, 111], "blob": [19, 23, 33, 108, 123, 143, 169, 180, 183, 207, 217, 262], "slim": [19, 111], "mobilenet": [19, 58, 59, 121, 159, 195], "new_v": 19, "round": [19, 108, 115, 122, 147, 162], "convbnrelu": 19, "in_plan": [19, 135], "out_plan": [19, 135], "kernel_s": [19, 97, 104, 123, 130, 135, 147, 154, 167, 180, 219, 222], "momentum": [19, 43, 44, 65, 69, 87, 92, 94, 96, 104, 111, 112, 117, 130, 136, 158, 162, 169, 170, 179, 180, 199, 217, 219, 221, 222, 242, 243, 244, 250, 251, 255], "invertedresidu": 19, "oup": 19, "expand_ratio": 19, "hidden_dim": [19, 93, 98, 102], "use_res_connect": 19, "pw": 19, "dw": 19, "skip_add": 19, "num_class": [19, 24, 42, 75, 97, 115, 135, 149, 150, 162, 170, 172, 179], "width_mult": 19, "inverted_residual_set": 19, "round_nearest": 19, "v2": [19, 58, 59, 95, 97, 114, 137, 145, 159, 179, 193, 208], "input_channel": 19, "last_channel": 19, "1280": [19, 179, 185], "160": [19, 138, 164, 172, 219, 232, 239], "320": [19, 78, 167, 222], "valueerror": [19, 49, 60, 147, 191, 217], "invert": [19, 121, 160, 191], "residu": [19, 124], "output_channel": 19, "quant": [19, 158, 180, 186, 195, 198, 201, 219, 224, 229], "dequant": [19, 158, 180, 183, 185, 186, 195, 196, 198, 200, 201, 219, 222, 224, 229], "init": [19, 20, 22, 23, 52, 59, 99, 118, 130, 135, 154, 160, 195, 203, 219, 223, 226, 259], "kaiming_normal_": [19, 135], "fan_out": [19, 135], "zeros_": 19, "ones_": 19, "normal_": [19, 52], "bn": [19, 130, 143, 144, 158, 180, 182, 199, 219, 224], "fuse_model": [19, 158, 195, 196], "is_qat": [19, 180, 199, 200], "fuse_modul": [19, 158], "fuse_modules_qat": 19, "averagemet": [19, 183, 198, 199], "fmt": [19, 150, 183, 198, 199, 210], "avg": [19, 37, 38, 127, 183, 198, 199, 220, 239], "__str__": [19, 183, 198, 199], "fmtstr": [19, 183, 198, 199], "__dict__": [19, 49, 60, 183, 198, 199, 200, 245], "topk": [19, 49, 90, 127, 128, 166, 183, 198, 199, 222, 258], "maxk": [19, 58, 59, 183, 198, 199], "pred": [19, 37, 38, 104, 117, 123, 124, 130, 138, 149, 158, 163, 167, 170, 173, 174, 175, 179, 183, 186, 198, 199, 222], "correct_k": [19, 183, 198, 199], "mul_": [19, 95, 183, 198, 199, 217], "neval_batch": [19, 199], "top1": [19, 183, 198, 199, 222], "acc": [19, 73, 117, 149, 158, 172, 183, 198, 199], "top5": [19, 183, 198, 199, 258], "cnt": [19, 73, 183, 198, 199], "acc1": [19, 183, 198, 199], "acc5": [19, 183, 198, 199], "load_model": [19, 183, 198, 199], "data_path": [19, 87, 104, 183, 198, 199], "prepare_data_load": [19, 183, 198, 199], "randomresizedcrop": [19, 117, 183, 198, 199], "randomhorizontalflip": [19, 51, 117, 158, 179, 183, 198, 199], "dataset_test": [19, 179, 183, 198, 199], "centercrop": [19, 52, 90, 117, 119, 140, 158, 183, 198, 199, 214, 230], "train_sampl": [19, 166, 183, 198, 199], "test_sampl": [19, 183, 198, 199], "sequentialsampl": [19, 138, 183, 186, 198, 199], "train_batch_s": [19, 183, 198, 199], "data_loader_test": [19, 179, 183, 198, 199, 200], "saved_model_dir": [19, 183, 198, 199], "float_model_fil": [19, 183, 198, 199], "mobilenet_pretrained_float": 19, "scripted_float_model_fil": [19, 183, 198], "mobilenet_quantization_script": 19, "scripted_quantized_model_fil": 19, "mobilenet_quantization_scripted_quant": 19, "float_model": [19, 182, 183, 186, 196, 198, 199, 200], "fusion": [19, 82, 144, 145, 178, 183, 185, 199, 219, 221, 254, 257], "baselin": [19, 21, 24, 90, 97, 172, 185, 198, 202, 230, 232, 247], "un": [19, 166], "num_eval_batch": [19, 199], "sophist": [19, 160], "num_calibration_batch": 19, "mymodel": [19, 105, 180], "estim": [19, 47, 51, 52, 126, 160, 161, 166, 185], "qconfig": [19, 119, 158, 180, 182, 183, 184, 186, 196, 198, 201, 219, 224, 229], "default_qconfig": [19, 183, 196], "calibr": [19, 180, 182, 184, 199, 200, 224], "safe": [19, 23, 65, 97, 111, 143, 188, 210], "4x": [19, 122, 178, 182, 183], "exercis": [19, 44, 136, 158, 177], "x86": [19, 119, 180, 182, 183, 195, 197, 205, 223, 229], "basi": [19, 122, 138, 151, 264], "histogram": [19, 196, 198], "per_channel_quantized_model": 19, "get_default_qconfig": [19, 119, 182, 183, 219, 224, 229], "67": [19, 109, 145, 178, 180, 186], "wors": [19, 119, 210], "qat": [19, 158, 180, 200], "train_one_epoch": [19, 96, 179, 199], "ntrain_batch": [19, 199], "avgloss": [19, 199], "5f": [19, 199, 235], "global_avg": [19, 199], "qat_model": 19, "get_default_qat_qconfig": [19, 229], "prepare_qat": [19, 158, 229], "toward": [19, 49, 60, 97, 128, 161, 183], "freez": [19, 43, 117, 158, 178, 197, 199, 200, 221, 248], "num_train_batch": [19, 199], "nepoch": [19, 199], "disable_observ": [19, 199], "intrins": [19, 180], "freeze_bn_stat": 19, "confirm": [19, 20, 58, 59, 87, 122, 146, 162], "allud": [19, 73], "run_benchmark": 19, "img_load": 19, "num_batch": [19, 37, 38, 135, 136, 150, 231], "num_imag": [19, 117], "0f": [19, 117, 130, 158, 167, 222], "dynamo_export": [20, 105, 107, 108], "newest": [20, 105], "torchdynamo": [20, 105, 107, 121, 174, 175, 200, 201], "technolog": [20, 61, 97, 105, 121, 136, 252], "torchscript": [20, 58, 59, 105, 119, 121, 140, 143, 148, 178, 186, 188, 189, 195, 197, 210, 224, 225, 226, 229, 239, 248, 252], "prove": [20, 103, 177], "onnxruntim": [20, 105, 107, 108], "model_zoo": 20, "wide": [20, 61, 124, 127, 128, 136, 138, 150, 156, 166, 185, 209, 268], "superresolut": 20, "shi": 20, "et": [20, 24, 49, 52, 60, 73, 136, 157, 166, 267], "al": [20, 24, 49, 52, 60, 73, 157, 166], "upscal": 20, "ycbcr": 20, "superresolutionnet": 20, "upscale_factor": 20, "pixel_shuffl": 20, "pixelshuffl": 20, "_initialize_weight": 20, "orthogonal_": [20, 154, 203], "calculate_gain": 20, "torch_model": [20, 105], "ordinarili": 20, "batchnorm": [20, 52, 55, 112, 143, 148, 183, 195, 198, 199, 200, 248, 250, 254], "model_url": 20, "s3": [20, 174, 182], "amazonaw": [20, 182], "superres_epoch100": 20, "44c6958e": 20, "load_url": 20, "ax": [20, 51, 99, 102, 117, 121, 127, 150, 158, 166, 170], "dynamic_ax": 20, "torch_out": 20, "super_resolut": 20, "export_param": 20, "opset_vers": 20, "do_constant_fold": 20, "fold": [20, 143, 178, 183, 198, 200, 254, 265], "input_nam": [20, 174], "output_nam": [20, 128], "bundl": [20, 59, 195, 205, 209, 223], "ml": [20, 73, 95, 97, 120, 121, 126, 197, 220, 224, 259], "proto": [20, 110], "checker": [20, 105, 110], "check_model": [20, 105, 110], "onnx_model": [20, 105], "ort_sess": [20, 105, 108], "inferencesess": [20, 105, 108], "cpuexecutionprovid": [20, 105, 108], "to_numpi": [20, 105, 108], "ort_input": 20, "get_input": [20, 105, 108], "ort_out": 20, "assert_allclos": [20, 143], "rtol": [20, 139, 155], "03": [20, 92, 118, 119, 163, 164, 172, 185, 220, 247, 265], "contact": [20, 122, 206, 265], "famou": [20, 24, 73], "224x224": [20, 159, 214], "cb": 20, "cr": 20, "grayscal": [20, 137, 147], "blue": [20, 43, 58, 59, 90, 122, 124, 179, 264], "red": [20, 58, 59, 60, 124, 150, 170, 179, 196], "chroma": 20, "sensit": [20, 97, 132, 142, 183], "_static": [20, 104, 121, 140], "img_ycbcr": 20, "img_i": 20, "img_cb": 20, "img_cr": 20, "to_tensor": [20, 42, 191, 192], "unsqueeze_": [20, 95, 128, 214], "img_out_i": 20, "fromarrai": [20, 172], "final_img": 20, "bicub": 20, "rgb": [20, 52, 58, 59, 75, 92, 97, 140, 147, 159, 172, 179, 214, 230], "mobil": [20, 58, 59, 97, 119, 180, 188, 189, 195, 197, 207, 209, 210, 219, 229, 236, 252], "cat_superres_with_ort": 20, "deploi": [20, 54, 58, 59, 105, 121, 126, 133, 140, 157, 159, 210, 254, 259], "cloud": [20, 54, 105], "inferenc": 20, "azur": [20, 169], "servic": [20, 49, 126, 140, 159, 209, 221, 264], "super_resolution_with_onnxruntim": 20, "inter": [21, 121, 124, 133, 151], "workload": [21, 23, 61, 97, 109, 120, 121, 133, 134, 169, 177, 178, 183, 198, 221], "fragment": [21, 178], "fn": [21, 85, 129, 136, 142, 145, 148, 173, 187, 211, 212, 245, 247, 253, 257], "callabl": [21, 51, 169, 173, 174, 175, 183, 210], "x_normal": 21, "x_parallel": 21, "async": [21, 162, 164], "sort": [21, 25, 49, 98, 102, 109, 116, 138, 144, 159, 179, 186, 210], "parlanc": 21, "revers": [21, 43, 49, 60, 98, 142, 144, 151, 154, 159, 166], "bidirectionalrecurrentlstm": 21, "cell_f": 21, "input_s": [21, 45, 49, 60, 78, 127, 128, 137, 166], "hidden_s": [21, 49, 60, 78, 89, 127, 128, 137, 149, 166, 182, 254], "cell_b": 21, "output_f": 21, "x_rev": 21, "output_b": 21, "output_b_rev": 21, "lstmensembl": 21, "n_model": 21, "modulelist": [21, 154, 238, 253], "demo": [21, 25, 45, 58, 59, 113, 119, 121, 140, 156, 169, 205, 209, 223, 229, 264], "took": [21, 119, 136, 144, 153, 165, 173, 177, 178, 188], "future_f": 21, "stuff": [21, 264], "worth": [21, 23, 52, 103, 113, 153, 163], "profil": [21, 42, 82, 89, 119, 121, 123, 165, 177, 196, 220, 232, 236, 248, 252], "chrome": [21, 89, 165, 169, 239], "prof": [21, 42, 109, 165, 169, 220, 239], "export_chrome_trac": [21, 145, 165, 239], "json": [21, 49, 90, 109, 127, 140, 145, 165, 169, 214, 239], "navig": [21, 61, 169, 170, 205, 262], "button": [21, 50, 52, 58, 59, 105, 169, 189, 226, 262, 264], "timelin": [21, 153, 169, 178], "horizont": 21, "opportun": [21, 85, 105, 137, 150], "breviti": [21, 23, 190], "intro": [21, 35, 36, 55, 99, 100, 120, 137, 140, 160, 170, 212], "tracer": [21, 205], "member": [22, 65, 67, 79, 111, 158, 197, 224], "portion": [22, 82, 153, 157, 264], "custom_class": 22, "mystackclass": 22, "customclasshold": 22, "stack_": 22, "push": [22, 52, 73, 97, 146, 161, 185, 206, 219, 224], "pop_back": 22, "intrusive_ptr": [22, 156, 232, 247], "make_intrus": [22, 156], "elem": [22, 245], "smart": 22, "oppos": [22, 49, 52, 117, 136, 146, 151, 163], "class_": 22, "my_class": 22, "contructor": 22, "yourclass": 22, "ref": [22, 40, 198, 264], "unari": 22, "add_librari": [22, 23, 209], "cmake_cxx_standard": [22, 209], "custom_class_project": 22, "rh": 22, "devtoolset": 22, "torchbind_tutori": 22, "libcustom_class": 22, "load_librari": [22, 23], "loaded_librari": 22, "bar": [22, 49, 82, 143, 150, 154, 163, 172, 173, 183, 198, 203, 262, 264], "manipulate_inst": 22, "s2": [22, 47, 92, 174, 193], "do_stack": 22, "hi": [22, 103, 113, 115, 147, 194, 264, 265], "mom": 22, "wow": 22, "scripted_foo": 22, "filesystem": [22, 136], "treatment": [22, 113, 172, 192, 193], "cpp_inference_exampl": 22, "foobarbaz": 22, "tostr": 22, "add_subdirectori": [22, 23], "drill": 22, "momfoobarbaz": 22, "incred": 22, "make_custom_class": 22, "tocustomclass": 22, "iscustomclass": 22, "export_attr": 22, "__torch__": [22, 204], "def_pickl": 22, "pushivalueimpl": 22, "pickler": 22, "__getstate__": 22, "__setstate__": 22, "pickl": [22, 87, 104, 112, 153, 224, 232, 243, 247], "salient": 22, "wherea": [22, 150, 170, 172, 185, 191, 192], "confus": [22, 23, 98, 99, 127, 142, 172, 185, 191, 192, 193, 198, 224], "trycustomop": 22, "relax": [22, 154, 174, 175], "standalon": [22, 53, 124, 264], "blend": [22, 23], "smoothli": [22, 23], "subsequ": [23, 73, 97, 112, 118, 123, 137, 142, 162, 164, 166, 173, 178, 185, 200], "resort": 23, "opencv": [23, 44, 209], "vision": [23, 24, 34, 38, 44, 58, 59, 117, 119, 121, 153, 179, 188, 195, 197, 205, 223, 224, 234], "mat": [23, 209], "warpperspect": [23, 209], "warp_perspect": [23, 209], "warp": [23, 209], "image_mat": [23, 209], "cv": [23, 24, 126, 194, 209], "col": [23, 34, 158, 209], "cv_32fc1": [23, 209], "warp_mat": [23, 209], "output_mat": [23, 209], "dsize": [23, 209], "output_tensor": 23, "from_blob": [23, 59, 189, 209], "ptr": [23, 209], "short": [23, 25, 49, 60, 82, 98, 100, 115, 120, 128, 136, 154, 160, 166, 167, 198, 199, 200, 264, 265], "opencv2": [23, 209], "hpp": [23, 156, 209], "alongsid": [23, 142, 170, 172], "goodi": 23, "hardcod": [23, 130, 149, 201], "strikingli": 23, "opaqu": 23, "flat": 23, "scope": [23, 60, 101, 109, 125, 174, 175, 178], "dealloc": [23, 169, 178], "invalid": [23, 135, 191, 192, 193, 217], "quot": [23, 117, 265], "metaprogram": 23, "experiment": [23, 60, 123, 126, 143, 164, 174, 175, 180, 187, 222, 248], "target_compile_featur": 23, "cxx_std_14": 23, "opencv_cor": 23, "opencv_imgproc": 23, "libwarp_perspect": 23, "sensat": 23, "0x7f618fc6fa50": 23, "3218": 23, "4611": 23, "4636": 23, "3746": 23, "0978": 23, "5005": 23, "3245": 23, "0169": 23, "4458": 23, "1862": 23, "1692": 23, "noteworthi": 23, "frozen": [23, 43, 147, 158, 186, 204], "prim": [23, 186], "revel": 23, "restrict": [23, 25, 49, 85, 136, 169, 173, 175, 180, 205, 206], "script_method": [23, 85], "tensortobool": 23, "block0": 23, "block1": [23, 79], "21": [23, 58, 59, 109, 115, 159, 209, 220, 232, 239, 247], "sent": [23, 99, 102, 136, 162], "wire": 23, "dlopen": 23, "example_app": 23, "cxx_range_for": 23, "errorreport": 23, "mayb": [23, 101, 103, 139, 197, 264], "subdirectori": [23, 52, 179], "prefix": [23, 113, 122, 125, 137, 138, 169, 185, 186, 247, 260, 264], "inconveni": [23, 190], "altogeth": [23, 151, 192, 262], "nb": [23, 89, 95, 206], "impress": [23, 115, 145], "opencv_photo": 23, "happi": [23, 143, 144], "4125": 23, "8262": 23, "5345": 23, "6111": [23, 232], "3997": [23, 75], "4683": 23, "5969": 23, "0850": 23, "0698": 23, "4597": 23, "0926": 23, "5727": 23, "9319": 23, "4834": 23, "1747": 23, "0162": 23, "9521": 23, "6269": 23, "lastli": [23, 87, 121, 153, 223], "driver": [23, 169], "infrastructur": 23, "vener": 23, "beforehand": [23, 151, 201, 229], "is_python_modul": [23, 209], "extra_ldflag": [23, 209], "lopencv_cor": [23, 209], "lopencv_imgproc": [23, 209], "approxim": [23, 49, 108, 122, 130, 144, 147, 151, 157, 161, 177, 186], "0x7f3e0f840b10": 23, "load_inlin": [23, 209, 232], "op_sourc": [23, 209], "cpp_sourc": [23, 209, 232], "rout": [23, 60, 140, 145, 214], "quirki": 23, "with_opt": 23, "no_python_abi_suffix": 23, "bottom": [23, 98, 169, 172, 262], "suffix": [23, 48, 82, 145], "tag": [23, 51, 100, 103, 116, 174, 175, 209, 246, 264], "0x7ff51c5b7bd0": 23, "hao": 24, "chen": [24, 174, 175, 205, 223], "unifi": [24, 95, 121, 130, 196], "ssl": 24, "modular": [24, 110, 112], "fixmatch": 24, "defixmatch": 24, "speech": [24, 73, 98, 100, 103, 128], "light": [24, 25, 52, 130, 209, 264], "vit": 24, "strong": [24, 98, 177, 193, 264], "unlabel": 24, "confid": [24, 52, 99, 126, 160, 161, 170], "threshold": [24, 49, 60, 82, 109, 110, 126, 160, 164, 172], "statu": [24, 126, 164, 174, 175, 265], "absorb": 24, "gaussian": [24, 47, 52, 126, 160], "overcom": [24, 113], "quantiti": [24, 97, 121, 124, 146, 151, 155], "trade": [24, 126, 153], "afford": 24, "nlp": [24, 42, 92, 93, 99, 102, 103, 113, 114, 115, 116, 118, 127, 128, 138, 166, 178, 186, 194, 200, 231, 235, 248, 254], "audio": [24, 26, 27, 28, 29, 30, 34, 38, 44, 121, 141, 168, 171], "semilearn": 24, "get_dataset": 24, "get_data_load": 24, "weak": [24, 264], "get_net_build": 24, "get_algorithm": 24, "get_config": 24, "hyper": [24, 165], "vit_tiny_patch2_32": 24, "use_pretrain": 24, "pretrain_path": 24, "microsoft": [24, 107, 108, 138, 169], "vit_tiny_patch2_32_mlp_im_1k_32": 24, "num_train_it": 24, "num_eval_it": 24, "num_log_it": 24, "adamw": [24, 75, 110, 122, 161], "layer_decai": 24, "cifar10": [24, 57, 87, 92, 97, 169, 221, 251, 255], "num_label": [24, 99], "img_siz": 24, "crop_ratio": 24, "875": 24, "data_dir": [24, 87, 117, 122, 138, 149, 158, 186], "ulb_samples_per_class": 24, "hard_label": 24, "ema_p": 24, "999": [24, 52, 94, 96, 170], "ent_loss_ratio": 24, "uratio": 24, "ulb_loss_ratio": 24, "dataset_dict": 24, "include_lb_to_ulb": 24, "train_lb_load": 24, "train_lb": 24, "train_ulb_load": 24, "train_ulb": 24, "eval_load": 24, "from_nam": 24, "tb_log": 24, "logger": [24, 138, 147, 149, 172, 186, 196], "lb_imb_ratio": 24, "ulb_imb_ratio": 24, "1500": [24, 122, 232], "ulb_num_label": 24, "3000": [24, 170], "kihyuk": 24, "sohn": 24, "yidong": 24, "usb_semisup_learn": 24, "jamesre": 25, "fb": 25, "michael": [25, 42, 98, 211, 212, 231, 257], "suo": 25, "rev2": 25, "hierarchi": [25, 60, 178], "__version__": [25, 42, 107, 119, 138, 147, 159, 186, 189, 207, 209, 223], "mycel": 25, "my_cel": 25, "3x4": 25, "redefin": 25, "succinctli": [25, 154], "mydecisiong": [25, 254], "dg": 25, "tape": [25, 42, 76], "traced_cel": [25, 254], "rewind": 25, "tracedmodul": [25, 60, 85, 254], "ir": [25, 110, 143, 145, 184, 217], "commonli": [25, 49, 69, 87, 97, 159, 166, 169, 180, 221, 265], "acquir": [25, 112, 135, 157, 160, 164], "laden": 25, "submodul": [25, 49, 60, 85, 154, 165, 203, 219, 223, 229], "branch": [25, 174, 175, 178, 179, 200, 207, 221, 225, 226], "nowher": 25, "faithfulli": [25, 190], "analysi": [25, 87, 107, 115, 121, 123, 144, 145, 165, 169, 172, 175, 177, 185, 227], "scripted_g": 25, "scripted_cel": [25, 254], "decis": [25, 100, 137, 190, 191, 193, 225, 226], "myrnnloop": 25, "xs": [25, 135, 167], "rnn_loop": 25, "wraprnn": 25, "freestand": 25, "wrapped_rnn": 25, "neurip": 25, "1hiicg6jrkbnr5hvk2": 25, "vnmi88vi9puzej": 25, "intro_to_torchscript_tutori": [25, 204], "audio_data_augmentation_tutori": [26, 28], "redirect": [26, 27, 28, 29, 30, 31, 74, 141, 152, 168, 171, 181, 218], "audio_datasets_tutori": 27, "audio_feature_extractions_tutori": 29, "audio_io_tutori": 30, "\u57fa\u7840\u77e5\u8bc6": [32, 33, 34, 35, 37, 38, 39, 40, 41, 121], "\u5feb\u901f\u5165\u95e8": [32, 33, 34, 36, 37, 39, 40, 41, 252], "\u6570\u636e\u96c6\u4e0e\u6570\u636e\u52a0\u8f7d\u5668": [32, 33, 36, 37, 38, 39, 40, 41], "\u6784\u5efa\u795e\u7ecf\u7f51\u7edc": [32, 34, 36, 37, 38, 39, 40, 41], "\u4f18\u5316\u6a21\u578b\u53c2\u6570": [32, 33, 34, 36, 39, 40, 41], "\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": [32, 33, 34, 36, 37, 38, 40, 41, 215, 236, 252], "\u5728\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc\u65f6": [32, 251], "\u6700\u5e38\u7528\u7684\u7b97\u6cd5\u662f": 32, "\u53cd\u5411\u4f20\u64ad": [32, 37, 260], "\u5728\u8fd9\u4e2a\u7b97\u6cd5\u4e2d": 32, "\u53c2\u6570": [32, 95, 231, 239, 241, 245, 246, 248], "\u6a21\u578b\u6743\u91cd": 32, "\u6839\u636e\u635f\u5931\u51fd\u6570\u76f8\u5bf9\u4e8e\u7ed9\u5b9a\u53c2\u6570\u7684": 32, "\u68af\u5ea6": [32, 89, 248], "\u8fdb\u884c\u8c03\u6574": 32, "\u4e3a\u4e86\u8ba1\u7b97\u8fd9\u4e9b\u68af\u5ea6": 32, "\u63d0\u4f9b\u4e86\u4e00\u4e2a\u5185\u7f6e\u7684\u5fae\u5206\u5f15\u64ce": 32, "\u79f0\u4e3a": [32, 39, 89], "\u5b83\u652f\u6301\u5bf9\u4efb\u4f55\u8ba1\u7b97\u56fe\u81ea\u52a8\u8ba1\u7b97\u68af\u5ea6": 32, "\u8003\u8651\u6700\u7b80\u5355\u7684\u5355\u5c42\u795e\u7ecf\u7f51\u7edc": 32, "\u5177\u6709\u8f93\u5165": 32, "\u548c": [32, 34, 36, 37, 38, 39, 41, 89, 90, 92, 95, 96, 111, 118, 121, 129, 213, 214, 215, 216, 220, 222, 227, 230, 231, 232, 234, 235, 237, 239, 241, 242, 243, 244, 245, 247, 248, 250, 251, 252, 256, 258, 259, 260], "\u4ee5\u53ca\u4e00\u4e9b\u635f\u5931\u51fd\u6570": 32, "\u53ef\u4ee5\u5728": [32, 104, 230], "\u4e2d\u6309\u4ee5\u4e0b\u65b9\u5f0f\u5b9a\u4e49\u5b83": 32, "binary_cross_entropy_with_logit": [32, 231], "\u8fd9\u6bb5\u4ee3\u7801\u5b9a\u4e49\u4e86\u4ee5\u4e0b": 32, "\u8ba1\u7b97\u56fe": [32, 111], "\u5728\u8fd9\u4e2a\u7f51\u7edc\u4e2d": 32, "\u662f": [32, 34, 92, 93, 104, 231, 237, 245, 258, 259], "\u6211\u4eec\u9700\u8981\u5bf9\u5b83\u4eec\u8fdb\u884c\u4f18\u5316": 32, "\u56e0\u6b64": [32, 89, 111, 213, 227, 231, 232, 239, 241, 243, 248, 260], "\u6211\u4eec\u9700\u8981\u80fd\u591f\u8ba1\u7b97\u635f\u5931\u51fd\u6570\u76f8\u5bf9\u4e8e\u8fd9\u4e9b\u53d8\u91cf\u7684\u68af\u5ea6": 32, "\u4e3a\u4e86\u505a\u5230\u8fd9\u4e00\u70b9": 32, "\u6211\u4eec\u8bbe\u7f6e\u4e86\u8fd9\u4e9b\u5f20\u91cf\u7684": 32, "\u5c5e\u6027": [32, 89, 95, 231], "\u6216\u5728\u521b\u5efa\u540e\u4f7f\u7528": 32, "\u65b9\u6cd5\u6765\u8bbe\u7f6e": 32, "\u6211\u4eec\u5e94\u7528\u4e8e\u5f20\u91cf\u4ee5\u6784\u5efa\u8ba1\u7b97\u56fe\u7684\u51fd\u6570\u5b9e\u9645\u4e0a\u662f": 32, "\u7c7b\u7684\u5bf9\u8c61": 32, "\u8fd9\u4e2a\u5bf9\u8c61\u77e5\u9053\u5982\u4f55\u5728": 32, "\u524d\u5411": [32, 92, 111, 251], "\u65b9\u5411\u8ba1\u7b97\u51fd\u6570": 32, "\u4e5f\u77e5\u9053\u5982\u4f55\u5728": 32, "\u6b65\u9aa4\u4e2d\u8ba1\u7b97\u5176\u5bfc\u6570": 32, "\u5bf9\u4e8e\u53cd\u5411\u4f20\u64ad\u51fd\u6570\u7684\u5f15\u7528\u5b58\u50a8\u5728\u5f20\u91cf\u7684": 32, "\u5c5e\u6027\u4e2d": [32, 251], "\u60a8\u53ef\u4ee5\u5728": 32, "\u6587\u6863": [32, 89, 93, 95, 215, 227, 235, 246, 248, 256, 257, 258], "__": [32, 37, 40, 90, 94, 172, 235], "\u4e2d\u627e\u5230\u6709\u5173": 32, "\u7684\u66f4\u591a\u4fe1\u606f": [32, 257], "\u4e3a\u4e86\u4f18\u5316\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u53c2\u6570\u6743\u91cd": 32, "\u6211\u4eec\u9700\u8981\u8ba1\u7b97\u635f\u5931\u51fd\u6570\u76f8\u5bf9\u4e8e\u53c2\u6570\u7684\u5bfc\u6570": 32, "\u5373\u5728\u67d0\u4e9b\u56fa\u5b9a\u7684": 32, "\u503c\u4e0b": 32, "\u6211\u4eec\u9700\u8981": 32, "frac": [32, 43, 64, 85, 89, 98, 99, 101, 103, 111, 125, 131, 136, 160, 161, 264], "partial": [32, 43, 75, 87, 89, 101, 112, 113, 122, 123, 124, 125, 137, 142, 146, 221, 264], "\u8981\u8ba1\u7b97\u8fd9\u4e9b\u5bfc\u6570": 32, "\u6211\u4eec\u8c03\u7528": [32, 95], "\u7136\u540e\u4ece": 32, "\u4e2d\u68c0\u7d22\u503c": 32, "\u9ed8\u8ba4\u60c5\u51b5\u4e0b": [32, 37, 95, 214, 215, 227, 239, 248], "\u6240\u6709\u5177\u6709": 32, "\u7684\u5f20\u91cf\u90fd\u5728\u8ddf\u8e2a\u5b83\u4eec\u7684\u8ba1\u7b97\u5386\u53f2\u5e76\u652f\u6301\u68af\u5ea6\u8ba1\u7b97": 32, "\u7136\u800c": [32, 111, 129, 232, 238, 247, 253], "\u6709\u4e9b\u60c5\u51b5\u4e0b\u6211\u4eec\u4e0d\u9700\u8981\u8fd9\u6837\u505a": 32, "\u4f8b\u5982": [32, 33, 34, 38, 40, 89, 92, 93, 95, 104, 129, 208, 216, 217, 220, 227, 238, 239, 240, 245, 246, 247, 248, 251, 253, 260], "\u5f53\u6211\u4eec\u5df2\u7ecf\u8bad\u7ec3\u597d\u6a21\u578b\u5e76\u53ea\u60f3\u5c06\u5176\u5e94\u7528\u4e8e\u4e00\u4e9b\u8f93\u5165\u6570\u636e\u65f6": 32, "\u5373\u6211\u4eec\u53ea\u60f3\u901a\u8fc7\u7f51\u7edc\u8fdb\u884c": 32, "\u8ba1\u7b97": [32, 95], "\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u5c06\u6211\u4eec\u7684\u8ba1\u7b97\u4ee3\u7801\u5305\u88f9\u5728": 32, "\u5757\u4e2d\u6765\u505c\u6b62\u8ddf\u8e2a\u8ba1\u7b97": 32, "\u53e6\u4e00\u79cd\u5b9e\u73b0\u76f8\u540c\u7ed3\u679c\u7684\u65b9\u6cd5\u662f\u5bf9\u5f20\u91cf\u4f7f\u7528": 32, "\u65b9\u6cd5": [32, 33, 39, 89, 94, 95, 104, 230, 234, 246], "z_det": 32, "\u5e0c\u671b\u7981\u7528\u68af\u5ea6\u8ddf\u8e2a\u7684\u539f\u56e0\u53ef\u80fd\u5982\u4e0b": 32, "\u5c06\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u67d0\u4e9b\u53c2\u6570\u6807\u8bb0\u4e3a": 32, "\u51bb\u7ed3\u53c2\u6570": 32, "\u5728\u4ec5\u8fdb\u884c\u524d\u5411\u4f20\u9012\u65f6": 32, "\u52a0\u901f\u8ba1\u7b97": 32, "\u56e0\u4e3a\u4e0d\u8ddf\u8e2a\u68af\u5ea6\u7684\u5f20\u91cf\u4e0a\u7684\u8ba1\u7b97\u4f1a\u66f4\u9ad8\u6548": 32, "\u6982\u5ff5\u4e0a": 32, "\u5728\u4e00\u4e2a\u7531": 32, "\u5bf9\u8c61": [32, 92, 104, 247, 253], "\u7ec4\u6210\u7684\u6709\u5411\u65e0\u73af\u56fe": 32, "dag": 32, "\u4e2d\u8bb0\u5f55\u6570\u636e": 32, "\u548c\u6240\u6709\u6267\u884c\u7684\u64cd\u4f5c": 32, "\u4ee5\u53ca\u4ea7\u751f\u7684\u65b0\u5f20\u91cf": 32, "\u5728\u8fd9\u4e2a": 32, "\u4e2d": [32, 34, 92, 104, 121, 211, 217, 227, 234, 236, 237, 238, 239, 247, 249, 252], "\u53f6\u5b50\u8282\u70b9\u662f\u8f93\u5165\u5f20\u91cf": 32, "\u6839\u8282\u70b9\u662f\u8f93\u51fa\u5f20\u91cf": 32, "\u901a\u8fc7\u4ece\u6839\u5230\u53f6\u8ddf\u8e2a\u8fd9\u4e2a\u56fe": 32, "\u53ef\u4ee5\u4f7f\u7528\u94fe\u5f0f\u6cd5\u5219\u81ea\u52a8\u8ba1\u7b97\u68af\u5ea6": 32, "\u5728\u524d\u5411\u4f20\u9012\u4e2d": 32, "\u540c\u65f6\u505a\u4e24\u4ef6\u4e8b": 32, "\u6267\u884c\u8bf7\u6c42\u7684\u64cd\u4f5c\u4ee5\u8ba1\u7b97\u7ed3\u679c\u5f20\u91cf": 32, "\u5728": [32, 33, 89, 92, 93, 94, 96, 104, 121, 140, 213, 214, 215, 216, 222, 227, 231, 232, 236, 238, 247, 248, 250, 252, 253, 259, 260], "\u4e2d\u7ef4\u62a4\u64cd\u4f5c\u7684": 32, "\u68af\u5ea6\u51fd\u6570": 32, "\u5f53\u5728": 32, "\u6839\u8282\u70b9\u4e0a\u8c03\u7528": 32, "\u65f6": [32, 89, 90, 95, 129, 216, 231, 238, 245, 248, 260], "\u53cd\u5411\u4f20\u9012\u5f00\u59cb": 32, "\u7136\u540e": [32, 93, 104, 111, 213, 216, 253], "\u4ece\u6bcf\u4e2a": 32, "\u5c06\u5b83\u4eec\u7d2f\u79ef\u5230\u5404\u81ea\u5f20\u91cf\u7684": 32, "\u4f7f\u7528\u94fe\u5f0f\u6cd5\u5219": 32, "\u4e00\u76f4\u4f20\u64ad\u5230\u53f6\u5b50\u5f20\u91cf": 32, "\u5728\u5f88\u591a\u60c5\u51b5\u4e0b": 32, "\u6211\u4eec\u6709\u4e00\u4e2a\u6807\u91cf\u635f\u5931\u51fd\u6570": 32, "\u9700\u8981\u8ba1\u7b97\u76f8\u5bf9\u4e8e\u67d0\u4e9b\u53c2\u6570\u7684\u68af\u5ea6": 32, "\u4e5f\u6709\u4e00\u4e9b\u60c5\u51b5\u4e0b": 32, "\u8f93\u51fa\u51fd\u6570\u662f\u4e00\u4e2a\u4efb\u610f\u7684\u5f20\u91cf": 32, "\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b": [32, 39, 95, 104, 231, 235, 241], "\u5141\u8bb8\u60a8\u8ba1\u7b97\u6240\u8c13\u7684": 32, "\u96c5\u53ef\u6bd4\u4e58\u79ef": 32, "\u800c\u4e0d\u662f\u5b9e\u9645\u7684\u68af\u5ea6": 32, "vec": [32, 43, 89, 98, 99, 145, 146, 151], "langl": 32, "x_1": [32, 101, 116, 151, 264], "x_n": [32, 52], "rangl": 32, "y_1": [32, 101, 116], "y_m": 32, "ccc": [32, 43, 89], "y_": [32, 43, 89, 98], "x_": [32, 43, 89, 264], "cdot": [32, 43, 52, 89, 103, 125], "vdot": [32, 43, 89], "ddot": [32, 43, 89], "v_1": 32, "v_m": 32, "retain_graph": [32, 76, 129, 192, 206], "nsecond": 32, "ncall": 32, "accumul": [32, 43, 47, 49, 52, 69, 76, 98, 99, 101, 102, 103, 111, 115, 130, 131, 147, 153, 161, 162, 163, 164], "leaf": [32, 43, 184], "life": [32, 97, 113, 127, 128], "autogradqs_tutori": [32, 35, 40], "\u5f20\u91cf": [33, 34, 36, 37, 38, 39, 41, 70, 88, 89, 90, 93, 94, 95, 96, 104, 214, 245], "\u81ea\u52a8\u5fae\u5206": [33, 34, 36, 37, 38, 39, 40, 41, 88, 89, 90, 92, 93, 94, 95, 96, 111], "\u795e\u7ecf\u7f51\u7edc\u7531\u6267\u884c\u6570\u636e\u64cd\u4f5c\u7684": 33, "\u5c42": [33, 92, 93, 104, 111, 231, 245, 248, 253], "\u6a21\u5757": [33, 90, 232, 239], "\u7ec4\u6210": [33, 227], "\u547d\u540d\u7a7a\u95f4\u63d0\u4f9b\u4e86\u6784\u5efa\u4f60\u81ea\u5df1\u7684\u795e\u7ecf\u7f51\u7edc\u6240\u9700\u7684\u6240\u6709\u6784\u5efa\u5757": 33, "\u4e2d\u7684\u6bcf\u4e2a\u6a21\u5757\u90fd\u662f": 33, "\u7684\u5b50\u7c7b": [33, 34, 92, 93, 230, 231, 258], "\u795e\u7ecf\u7f51\u7edc\u672c\u8eab\u5c31\u662f\u4e00\u4e2a\u7531\u5176\u4ed6\u6a21\u5757": 33, "\u7ec4\u6210\u7684\u6a21\u5757": 33, "\u8fd9\u79cd\u5d4c\u5957\u7ed3\u6784\u5141\u8bb8\u8f7b\u677e\u6784\u5efa\u548c\u7ba1\u7406\u590d\u6742\u7684\u67b6\u6784": 33, "\u5728\u63a5\u4e0b\u6765\u7684\u90e8\u5206\u4e2d": 33, "\u6211\u4eec\u5c06\u6784\u5efa\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc": 33, "\u7528\u4e8e\u5bf9": 33, "fashionmnist": [33, 34, 37, 38, 41, 94, 96, 170], "\u6570\u636e\u96c6\u4e2d\u7684\u56fe\u50cf\u8fdb\u884c\u5206\u7c7b": 33, "\u6211\u4eec\u5e0c\u671b\u80fd\u591f\u5728\u786c\u4ef6\u52a0\u901f\u5668": 33, "\u5982": [33, 93, 104, 230, 238, 245, 258, 259], "\u6216": [33, 38, 72, 93, 95, 96, 104, 208, 222, 227, 230, 231, 235, 237, 243, 245], "\u4e0a\u8bad\u7ec3\u6211\u4eec\u7684\u6a21\u578b": 33, "\u5982\u679c\u53ef\u7528": [33, 38], "\u8ba9\u6211\u4eec\u68c0\u67e5\u4e00\u4e0b": 33, "\u662f\u5426\u53ef\u7528": 33, "\u5426\u5219\u6211\u4eec\u4f7f\u7528": 33, "\u6211\u4eec\u901a\u8fc7\u7ee7\u627f": 33, "\u6765\u5b9a\u4e49\u6211\u4eec\u7684\u795e\u7ecf\u7f51\u7edc": 33, "\u5e76\u5728": [33, 38, 129, 220], "\u65b9\u6cd5\u4e2d\u521d\u59cb\u5316\u795e\u7ecf\u7f51\u7edc\u5c42": 33, "\u6bcf\u4e2a": [33, 215], "\u5b50\u7c7b\u90fd\u5728": 33, "\u65b9\u6cd5\u4e2d\u5b9e\u73b0\u5bf9\u8f93\u5165\u6570\u636e\u7684\u64cd\u4f5c": 33, "neuralnetwork": [33, 37, 38, 188], "linear_relu_stack": [33, 37, 38, 220], "logit": [33, 37, 38, 97, 118, 138, 149, 186, 220], "\u6211\u4eec\u521b\u5efa\u4e00\u4e2a": 33, "\u7684\u5b9e\u4f8b": [33, 93, 220, 231], "\u5e76\u5c06\u5176\u79fb\u52a8\u5230": 33, "\u4e0a": [33, 38, 89, 95, 104, 213, 215, 231, 239, 248], "\u7136\u540e\u6253\u5370\u5176\u7ed3\u6784": 33, "\u8981\u4f7f\u7528\u6a21\u578b": 33, "\u6211\u4eec\u5c06\u8f93\u5165\u6570\u636e\u4f20\u9012\u7ed9\u5b83": 33, "\u8fd9\u5c06\u6267\u884c\u6a21\u578b\u7684": 33, "\u4ee5\u53ca\u4e00\u4e9b": 33, "\u540e\u53f0\u64cd\u4f5c": 33, "270111b7b611d174967ed204776985cefca9c144": 33, "l866": 33, "\u4e0d\u8981\u76f4\u63a5\u8c03\u7528": 33, "\u5c06\u8f93\u5165\u4f20\u9012\u7ed9\u6a21\u578b\u4f1a\u8fd4\u56de\u4e00\u4e2a\u4e8c\u7ef4\u5f20\u91cf": 33, "\u5176\u4e2d": [33, 93, 95, 111, 214], "\u5bf9\u5e94\u6bcf\u4e2a\u7c7b\u522b\u7684": 33, "\u4e2a\u539f\u59cb\u9884\u6d4b\u503c\u7684\u8f93\u51fa": 33, "\u5bf9\u5e94\u6bcf\u4e2a\u8f93\u51fa\u7684\u5404\u4e2a\u503c": 33, "\u6211\u4eec\u901a\u8fc7\u5c06\u5176\u4f20\u9012\u7ed9": 33, "\u6a21\u5757\u7684\u5b9e\u4f8b\u6765\u83b7\u5f97\u9884\u6d4b\u6982\u7387": 33, "pred_probab": [33, 220], "y_pred": [33, 63, 64, 65, 67, 68, 69, 71, 72, 111, 220], "argmax": [33, 37, 38, 98, 102, 104, 115, 119, 123, 130, 138, 147, 149, 163, 186, 220, 222], "\u8ba9\u6211\u4eec\u5206\u89e3\u4e00\u4e0b": 33, "\u6a21\u578b\u4e2d\u7684\u5404\u5c42": 33, "\u4e3a\u4e86\u89e3\u91ca\u5b83": 33, "\u6211\u4eec\u5c06\u53d6\u4e00\u4e2a\u5305\u542b": 33, "\u5f20": 33, "28x28": [33, 104, 170], "\u5c3a\u5bf8\u56fe\u50cf\u7684\u5c0f\u6279\u91cf\u6837\u672c": 33, "\u5e76\u89c2\u5bdf\u5b83\u5728\u901a\u8fc7\u7f51\u7edc\u65f6\u53d1\u751f\u4e86\u4ec0\u4e48": 33, "input_imag": [33, 58, 59], "\u6211\u4eec\u521d\u59cb\u5316": 33, "\u5c06\u6bcf\u4e2a\u4e8c\u7ef4": 33, "\u56fe\u50cf\u8f6c\u6362\u4e3a\u5305\u542b": 33, "784": [33, 94, 104, 139, 170], "\u4e2a\u50cf\u7d20\u503c\u7684\u8fde\u7eed\u6570\u7ec4": 33, "\u4fdd\u7559\u5c0f\u6279\u91cf\u7ef4\u5ea6": 33, "flat_imag": 33, "\u7ebf\u6027\u5c42": 33, "\u662f\u4e00\u4e2a\u6a21\u5757": 33, "\u5b83\u4f7f\u7528\u5b58\u50a8\u7684\u6743\u91cd": 33, "\u548c\u504f\u7f6e": [33, 104], "\u5bf9\u8f93\u5165\u5e94\u7528\u7ebf\u6027\u53d8\u6362": 33, "layer1": [33, 89, 150, 158, 161, 196], "in_featur": [33, 109, 117, 123, 158, 179, 180, 202, 203, 240], "hidden1": [33, 235], "\u975e\u7ebf\u6027\u6fc0\u6d3b\u51fd\u6570\u521b\u5efa\u4e86\u6a21\u578b\u8f93\u5165\u548c\u8f93\u51fa\u4e4b\u95f4\u7684\u590d\u6742\u6620\u5c04": 33, "\u5b83\u4eec\u5728\u7ebf\u6027\u53d8\u6362\u4e4b\u540e\u5e94\u7528": 33, "\u4ee5\u5f15\u5165": 33, "\u975e\u7ebf\u6027": [33, 93], "\u5e2e\u52a9\u795e\u7ecf\u7f51\u7edc\u5b66\u4e60\u5404\u79cd\u73b0\u8c61": 33, "\u5728\u8fd9\u4e2a\u6a21\u578b\u4e2d": 33, "\u6211\u4eec\u5728\u7ebf\u6027\u5c42\u4e4b\u95f4\u4f7f\u7528": 33, "\u4f46\u8fd8\u6709\u5176\u4ed6\u6fc0\u6d3b\u51fd\u6570\u53ef\u4ee5\u5728\u4f60\u7684\u6a21\u578b\u4e2d\u5f15\u5165\u975e\u7ebf\u6027": 33, "\u662f\u4e00\u4e2a\u6709\u5e8f\u7684\u6a21\u5757\u5bb9\u5668": 33, "\u6570\u636e\u6309\u7167\u5b9a\u4e49\u7684\u987a\u5e8f\u4f9d\u6b21\u901a\u8fc7\u6240\u6709\u6a21\u5757": 33, "\u60a8\u53ef\u4ee5\u4f7f\u7528\u5e8f\u5217\u5bb9\u5668\u6765\u5feb\u901f\u7ec4\u5408\u4e00\u4e2a\u7f51\u7edc": 33, "seq_modul": 33, "\u795e\u7ecf\u7f51\u7edc\u7684\u6700\u540e\u4e00\u4e2a\u7ebf\u6027\u5c42\u8fd4\u56de\u7684\u662f": 33, "\u5bf9\u6570\u51e0\u7387": 33, "infti": [33, 161], "\u8303\u56f4\u5185\u7684\u539f\u59cb\u503c": 33, "\u8fd9\u4e9b\u503c\u4f1a\u88ab\u4f20\u9012\u5230": 33, "\u5bf9\u6570\u51e0\u7387\u88ab\u7f29\u653e\u5230\u503c\u4e3a": 33, "\u7684\u8303\u56f4": 33, "\u8868\u793a\u6a21\u578b\u5bf9\u6bcf\u4e2a\u7c7b\u522b\u7684\u9884\u6d4b\u6982\u7387": 33, "\u53c2\u6570\u6307\u793a\u503c\u5fc5\u987b\u5728\u5176\u6cbf\u7740\u7684\u7ef4\u5ea6\u4e0a\u6c42\u548c\u4e3a": 33, "\u795e\u7ecf\u7f51\u7edc\u5185\u90e8\u7684\u8bb8\u591a\u5c42\u90fd\u662f": 33, "\u53c2\u6570\u5316": 33, "\u7684": [33, 34, 71, 72, 89, 90, 95, 104, 121, 211, 213, 214, 215, 230, 231, 232, 234, 238, 239, 245, 252, 256, 257], "\u5373\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u4f1a\u4f18\u5316\u7684\u76f8\u5173\u6743\u91cd\u548c\u504f\u7f6e": 33, "\u901a\u8fc7\u5b50\u7c7b\u5316": 33, "\u53ef\u4ee5\u81ea\u52a8\u8ddf\u8e2a\u6a21\u578b\u5bf9\u8c61\u5185\u5b9a\u4e49\u7684\u6240\u6709\u5b57\u6bb5": 33, "\u5e76\u4f7f\u7528\u6a21\u578b\u7684": 33, "\u65b9\u6cd5\u8bbf\u95ee\u6240\u6709\u53c2\u6570": 33, "\u5728\u8fd9\u4e2a\u793a\u4f8b\u4e2d": [33, 111, 235, 242, 252, 253], "\u6211\u4eec\u904d\u5386\u6bcf\u4e2a\u53c2\u6570": 33, "\u5e76\u6253\u5370\u5176\u5927\u5c0f\u4ee5\u53ca\u503c\u7684\u9884\u89c8": 33, "buildmodel_tutori": [33, 35, 37, 38], "\u5904\u7406\u6570\u636e\u6837\u672c\u7684\u4ee3\u7801\u53ef\u80fd\u4f1a\u53d8\u5f97\u6df7\u4e71\u4e14\u96be\u4ee5\u7ef4\u62a4": 34, "\u7406\u60f3\u60c5\u51b5\u4e0b": 34, "\u6211\u4eec\u5e0c\u671b\u6570\u636e\u96c6\u4ee3\u7801\u4e0e\u6a21\u578b\u8bad\u7ec3\u4ee3\u7801\u89e3\u8026": 34, "\u4ee5\u63d0\u9ad8\u53ef\u8bfb\u6027\u548c\u6a21\u5757\u5316": 34, "\u63d0\u4f9b\u4e86\u4e24\u4e2a\u6570\u636e\u5904\u7406\u7684\u57fa\u672c\u5de5\u5177": 34, "\u5b83\u4eec\u5141\u8bb8\u60a8\u4f7f\u7528\u9884\u52a0\u8f7d\u7684\u6570\u636e\u96c6\u4ee5\u53ca\u60a8\u81ea\u5df1\u7684\u6570\u636e": 34, "\u5b58\u50a8\u6837\u672c\u53ca\u5176\u5bf9\u5e94\u7684\u6807\u7b7e": [34, 38], "\u800c": [34, 38, 89, 238, 245], "\u5219\u4e3a": 34, "\u5305\u88c5\u4e86\u4e00\u4e2a\u53ef\u8fed\u4ee3\u5bf9\u8c61": 34, "\u4ee5\u4fbf\u4e8e\u8bbf\u95ee\u6837\u672c": 34, "\u57df\u5e93\u63d0\u4f9b\u4e86\u8bb8\u591a\u9884\u52a0\u8f7d\u7684\u6570\u636e\u96c6": 34, "\u8fd9\u4e9b\u6570\u636e\u96c6\u662f": 34, "\u5e76\u5b9e\u73b0\u4e86\u7279\u5b9a\u4e8e\u8be5\u6570\u636e\u7684\u51fd\u6570": 34, "\u5b83\u4eec\u53ef\u4ee5\u7528\u4e8e\u6a21\u578b\u7684\u539f\u578b\u8bbe\u8ba1\u548c\u57fa\u51c6\u6d4b\u8bd5": 34, "\u60a8\u53ef\u4ee5\u5728\u4ee5\u4e0b\u94fe\u63a5\u627e\u5230\u8fd9\u4e9b\u6570\u636e\u96c6": 34, "\u56fe\u50cf\u6570\u636e\u96c6": 34, "\u6587\u672c\u6570\u636e\u96c6": 34, "\u97f3\u9891\u6570\u636e\u96c6": 34, "\u4e0b\u9762\u662f\u4e00\u4e2a\u4ece": 34, "\u52a0\u8f7d": [34, 39, 241, 243], "fashion": [34, 49, 60, 94, 96, 107, 122, 124, 126, 135, 163, 167, 170, 172, 221], "\u6570\u636e\u96c6\u7684\u793a\u4f8b": 34, "zalando": 34, "\u7684\u5546\u54c1\u56fe\u7247\u6570\u636e\u96c6": 34, "\u5305\u62ec": [34, 89, 90, 93, 96, 217, 231, 232, 234, 235], "\u4e2a\u8bad\u7ec3\u6837\u672c\u548c": 34, "\u4e2a\u6d4b\u8bd5\u6837\u672c": 34, "\u6bcf\u4e2a\u6837\u672c\u5305\u542b\u4e00\u4e2a": 34, "\u7684\u7070\u5ea6\u56fe\u50cf\u548c\u4e00\u4e2a\u6765\u81ea": 34, "\u4e2a\u7c7b\u522b\u4e4b\u4e00\u7684\u6807\u7b7e": 34, "\u6211\u4eec\u4f7f\u7528\u4ee5\u4e0b\u53c2\u6570\u52a0\u8f7d": 34, "\u6570\u636e\u96c6": [34, 38, 92, 96, 104, 121, 234, 237], "\u662f\u5b58\u50a8\u8bad\u7ec3": 34, "\u6d4b\u8bd5\u6570\u636e\u7684\u8def\u5f84": 34, "\u6307\u5b9a\u662f\u8bad\u7ec3\u96c6\u8fd8\u662f\u6d4b\u8bd5\u96c6": 34, "\u8868\u793a\u5982\u679c\u6570\u636e\u5728": 34, "\u8def\u5f84\u4e2d\u4e0d\u53ef\u7528": 34, "\u5219\u4ece\u4e92\u8054\u7f51\u4e0b\u8f7d\u6570\u636e": 34, "target_transform": [34, 38, 41], "\u6307\u5b9a\u7279\u5f81\u548c\u6807\u7b7e\u7684\u8f6c\u6362": 34, "read_imag": [34, 179], "training_data": [34, 37, 38, 98, 102], "\u6211\u4eec\u53ef\u4ee5\u50cf\u5217\u8868\u4e00\u6837\u624b\u52a8\u7d22\u5f15": 34, "\u4f7f\u7528": [34, 88, 94, 95, 121, 129, 140, 208, 216, 236, 237, 243, 245, 246, 251, 252, 258, 260], "\u6765\u53ef\u89c6\u5316\u8bad\u7ec3\u6570\u636e\u4e2d\u7684\u4e00\u4e9b\u6837\u672c": 34, "labels_map": 34, "shirt": [34, 38, 94, 96, 170], "trouser": [34, 38, 94, 96, 170], "pullov": [34, 38, 94, 96, 170], "dress": [34, 38, 94, 96, 170], "coat": [34, 38, 94, 96, 170], "sandal": [34, 38, 94, 96, 170], "sneaker": [34, 38, 94, 96, 170], "ankl": [34, 38, 94, 96, 170], "boot": [34, 38, 94, 96, 159, 170], "add_subplot": [34, 127, 166, 170], "\u81ea\u5b9a\u4e49\u6570\u636e\u96c6\u7c7b\u5fc5\u987b\u5b9e\u73b0\u4e09\u4e2a\u51fd\u6570": 34, "\u8bf7\u770b\u8fd9\u4e2a\u5b9e\u73b0\u793a\u4f8b": 34, "\u56fe\u50cf\u5b58\u50a8\u5728\u76ee\u5f55": 34, "img_dir": 34, "\u5b83\u4eec\u7684\u6807\u7b7e\u5355\u72ec\u5b58\u50a8\u5728": 34, "csv": [34, 49, 51, 122], "\u6587\u4ef6": [34, 90, 104, 246, 258, 259], "annotations_fil": 34, "\u5177\u4f53\u4ee3\u7801\u5b9e\u73b0\u5982\u4e0b": 34, "customimagedataset": 34, "img_label": 34, "read_csv": [34, 51], "img_path": [34, 117, 179], "iloc": [34, 51], "\u51fd\u6570\u5728\u5b9e\u4f8b\u5316\u6570\u636e\u96c6\u5bf9\u8c61\u65f6\u8fd0\u884c\u4e00\u6b21": 34, "\u6211\u4eec\u521d\u59cb\u5316\u5305\u542b\u56fe\u50cf\u7684\u76ee\u5f55": 34, "\u6ce8\u91ca\u6587\u4ef6\u548c\u4e24\u79cd\u8f6c\u6362": 34, "\u5728\u4e0b\u4e00\u90e8\u5206\u4e2d\u5c06\u66f4\u8be6\u7ec6\u5730\u4ecb\u7ecd": 34, "\u6587\u4ef6\u7684\u5185\u5bb9\u5982\u4e0b": 34, "tshirt1": 34, "tshirt2": 34, "ankleboot999": 34, "\u51fd\u6570\u8fd4\u56de\u6570\u636e\u96c6\u4e2d\u7684\u6837\u672c\u6570\u91cf": 34, "\u51fd\u6570\u52a0\u8f7d\u5e76\u8fd4\u56de\u6570\u636e\u96c6\u4e2d\u7ed9\u5b9a\u7d22\u5f15": 34, "\u7684\u6837\u672c": 34, "\u6839\u636e\u7d22\u5f15": 34, "\u5b83\u786e\u5b9a\u56fe\u50cf\u5728\u78c1\u76d8\u4e0a\u7684\u4f4d\u7f6e": 34, "\u5c06\u5176\u8f6c\u6362\u4e3a\u5f20\u91cf": [34, 214], "\u4ece": [34, 39, 71, 90, 92, 93, 96, 214, 232, 238, 248, 256, 259], "\u4e2d\u7684": [34, 92, 104, 227, 231, 237, 238, 253], "\u6570\u636e\u4e2d\u68c0\u7d22\u76f8\u5e94\u7684\u6807\u7b7e": 34, "\u5bf9\u5b83\u4eec\u8c03\u7528\u8f6c\u6362\u51fd\u6570": 34, "\u5982\u679c\u9002\u7528": 34, "\u5e76\u4ee5\u5143\u7ec4\u5f62\u5f0f\u8fd4\u56de\u5f20\u91cf\u56fe\u50cf\u548c\u76f8\u5e94\u7684\u6807\u7b7e": 34, "\u4e00\u6b21\u68c0\u7d22\u6211\u4eec\u6570\u636e\u96c6\u7684\u4e00\u4e2a\u6837\u672c\u7684\u7279\u5f81\u548c\u6807\u7b7e": 34, "\u5728\u8bad\u7ec3\u6a21\u578b\u65f6": [34, 89], "\u6211\u4eec\u901a\u5e38\u5e0c\u671b\u4ee5": 34, "\u5c0f\u6279\u91cf": 34, "\u7684\u65b9\u5f0f\u4f20\u9012\u6837\u672c": 34, "\u5728\u6bcf\u4e2a\u5468\u671f\u91cd\u65b0\u968f\u673a\u6392\u5217\u6570\u636e\u4ee5\u51cf\u5c11\u6a21\u578b\u8fc7\u62df\u5408": 34, "\u5e76\u4f7f\u7528": [34, 104, 121, 129, 213, 242, 247, 257], "\u52a0\u901f\u6570\u636e\u68c0\u7d22": 34, "\u662f\u4e00\u4e2a\u53ef\u8fed\u4ee3\u5bf9\u8c61": 34, "\u5b83\u901a\u8fc7\u7b80\u5355\u7684": 34, "\u4e3a\u6211\u4eec\u62bd\u8c61\u4e86\u8fd9\u4e9b\u590d\u6742\u6027": 34, "train_dataload": [34, 37, 38, 75, 115, 118, 149, 166], "shuffl": [34, 44, 45, 51, 52, 55, 73, 87, 92, 94, 96, 97, 104, 113, 115, 116, 117, 122, 123, 130, 136, 158, 159, 163, 167, 169, 170, 179, 222, 237, 251], "test_dataload": [34, 37, 38, 115], "train_featur": 34, "train_label": 34, "\u6211\u4eec\u5df2\u7ecf\u5c06\u6570\u636e\u96c6\u52a0\u8f7d\u5230": 34, "\u5e76\u53ef\u4ee5\u6839\u636e\u9700\u8981\u5bf9\u6570\u636e\u96c6\u8fdb\u884c\u8fed\u4ee3": 34, "\u4e0b\u9762\u7684\u6bcf\u6b21\u8fed\u4ee3\u90fd\u4f1a\u8fd4\u56de\u4e00\u4e2a\u6279\u6b21\u7684": 34, "\u5206\u522b\u5305\u542b": 34, "\u4e2a\u7279\u5f81\u548c\u6807\u7b7e": 34, "\u56e0\u4e3a\u6211\u4eec\u6307\u5b9a\u4e86": 34, "\u6240\u4ee5\u5728\u8fed\u4ee3\u5b8c\u6240\u6709\u6279\u6b21\u540e\u6570\u636e\u4f1a\u88ab\u91cd\u65b0\u6d17\u724c": 34, "\u5982\u679c\u60f3\u5bf9\u6570\u636e\u52a0\u8f7d\u987a\u5e8f\u8fdb\u884c\u66f4\u7cbe\u7ec6\u7684\u63a7\u5236": 34, "\u8bf7\u67e5\u770b": [34, 37, 94, 95, 214, 215], "data_tutori": [34, 35, 37, 38], "quickstart_tutori": [35, 36, 38], "tensorqs_tutori": [35, 40], "tensor_tutori": [35, 46, 48, 57], "dataquickstart_tutori": 35, "transforms_tutori": [35, 41], "autograd_tutori": [35, 37, 43, 46, 57], "optimization_tutori": [35, 37, 38], "saveloadrun_tutori": [35, 38, 39], "sphx_glr_beginner_basics_intro": 35, "sphx_glr_beginner_basics_saveloadrun_tutori": 35, "sphx_glr_beginner_basics_transforms_tutori": 35, "sphx_glr_beginner_basics_autogradqs_tutori": 35, "sphx_glr_beginner_basics_buildmodel_tutori": 35, "sphx_glr_beginner_basics_tensorqs_tutori": 35, "sphx_glr_beginner_basics_optimization_tutori": 35, "sphx_glr_beginner_basics_data_tutori": 35, "sphx_glr_beginner_basics_quickstart_tutori": 35, "suraj": [36, 53, 54, 55, 56, 109, 132, 133, 147, 177], "subramanian": [36, 53, 54, 55, 56, 109, 132, 133, 147, 177], "juarez": 36, "cassi": 36, "breviu": 36, "dmitri": 36, "soshnikov": 36, "ari": 36, "bornstein": 36, "\u5927\u591a\u6570\u673a\u5668\u5b66\u4e60\u5de5\u4f5c\u6d41\u6d89\u53ca\u5904\u7406\u6570\u636e": 36, "\u521b\u5efa\u6a21\u578b": 36, "\u4f18\u5316\u6a21\u578b\u53c2\u6570\u548c\u4fdd\u5b58\u8bad\u7ec3\u597d\u7684\u6a21\u578b": 36, "\u672c\u6559\u7a0b\u5c06\u5411\u60a8\u4ecb\u7ecd\u5728pytorch\u4e2d\u5b9e\u73b0\u7684\u5b8c\u6574ml\u5de5\u4f5c\u6d41": 36, "\u5e76\u63d0\u4f9b\u94fe\u63a5\u4ee5\u4e86\u89e3\u6709\u5173\u8fd9\u4e9b\u6982\u5ff5\u7684\u66f4\u591a\u4fe1\u606f": 36, "\u6211\u4eec\u5c06\u4f7f\u7528fashionmnist\u6570\u636e\u96c6\u6765\u8bad\u7ec3\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc": 36, "\u8be5\u7f51\u7edc\u53ef\u4ee5\u9884\u6d4b\u8f93\u5165\u56fe\u50cf\u662f\u5426\u5c5e\u4e8e\u4ee5\u4e0b\u7c7b\u522b\u4e4b\u4e00": 36, "t\u6064": 36, "\u4e0a\u8863": 36, "\u957f\u88e4": 36, "\u5957\u5934\u886b": 36, "\u8fde\u8863\u88d9": 36, "\u5916\u5957": 36, "\u51c9\u978b": 36, "\u886c\u886b": 36, "\u8fd0\u52a8\u978b": 36, "\u5305\u6216\u8e1d\u9774": 36, "\u672c\u6559\u7a0b\u5047\u8bbe\u60a8\u5bf9python\u548c\u6df1\u5ea6\u5b66\u4e60\u6982\u5ff5\u6709\u57fa\u672c\u7684\u4e86\u89e3": [36, 88], "\u60a8\u53ef\u4ee5\u901a\u8fc7\u4ee5\u4e0b\u51e0\u79cd\u65b9\u5f0f\u8fd0\u884c\u672c\u6559\u7a0b": [36, 88], "\u5728\u4e91\u7aef": [36, 88], "\u8fd9\u662f\u5f00\u59cb\u7684\u6700\u7b80\u5355\u65b9\u5f0f": [36, 88], "\u6bcf\u4e2a\u90e8\u5206\u7684\u9876\u90e8\u90fd\u6709\u4e00\u4e2a": 36, "\u5728microsoft": 36, "learn\u4e2d\u8fd0\u884c": 36, "\u5728googl": 36, "colab\u4e2d\u8fd0\u884c": [36, 237], "\u7684\u94fe\u63a5": 36, "\u5206\u522b\u4f1a\u5728microsoft": 36, "learn\u6216googl": 36, "colab\u4e2d\u6253\u5f00\u4e00\u4e2a\u96c6\u6210\u7684\u7b14\u8bb0\u672c": 36, "\u63d0\u4f9b\u5e26\u6709\u4ee3\u7801\u7684\u5b8c\u5168\u6258\u7ba1\u73af\u5883": 36, "\u672c\u5730\u8fd0\u884c": 36, "\u6b64\u9009\u9879\u9700\u8981\u60a8\u9996\u5148\u5728\u672c\u5730\u673a\u5668\u4e0a\u8bbe\u7f6epytorch\u548ctorchvis": [36, 88], "\u5b89\u88c5\u8bf4\u660e": [36, 88], "\u4e0b\u8f7d\u7b14\u8bb0\u672c\u6216\u5c06\u4ee3\u7801\u590d\u5236\u5230\u60a8\u559c\u6b22\u7684ide\u4e2d": 36, "\u5982\u679c\u60a8\u719f\u6089\u5176\u4ed6\u6df1\u5ea6\u5b66\u4e60\u6846\u67b6": 36, "\u8bf7\u5148\u67e5\u770b": 36, "\u4ee5\u5feb\u901f\u719f\u6089pytorch\u7684api": 36, "\u5982\u679c\u60a8\u662f\u6df1\u5ea6\u5b66\u4e60\u6846\u67b6\u7684\u65b0\u624b": 36, "\u8bf7\u76f4\u63a5\u8fdb\u5165\u6211\u4eec\u9010\u6b65\u6307\u5357\u7684\u7b2c\u4e00\u90e8\u5206": 36, "\u4f18\u5316\u6a21\u578b": 36, "\u4fdd\u5b58": [36, 241, 243], "\u52a0\u8f7d\u548c\u4f7f\u7528\u6a21\u578b": 36, "\u73b0\u5728\u6211\u4eec\u6709\u4e86\u6a21\u578b\u548c\u6570\u636e": 37, "\u662f\u65f6\u5019\u901a\u8fc7\u5728\u6570\u636e\u4e0a\u4f18\u5316\u6a21\u578b\u53c2\u6570\u6765\u8bad\u7ec3": 37, "\u9a8c\u8bc1\u548c\u6d4b\u8bd5\u6211\u4eec\u7684\u6a21\u578b\u4e86": 37, "\u8bad\u7ec3\u6a21\u578b\u662f\u4e00\u4e2a\u8fed\u4ee3\u8fc7\u7a0b": 37, "\u5728\u6bcf\u6b21\u8fed\u4ee3\u4e2d": 37, "\u6a21\u578b\u4f1a\u5bf9\u8f93\u51fa\u8fdb\u884c\u731c\u6d4b": 37, "\u8ba1\u7b97\u5176\u731c\u6d4b\u7684\u8bef\u5dee": 37, "\u635f\u5931": [37, 89, 96], "\u6536\u96c6\u8bef\u5dee\u76f8\u5bf9\u4e8e\u5176\u53c2\u6570\u7684\u5bfc\u6570": 37, "\u5982\u6211\u4eec\u5728": 37, "\u524d\u4e00\u8282": 37, "_\u4e2d\u6240\u89c1": 37, "\u5e76\u4f7f\u7528\u68af\u5ea6\u4e0b\u964d\u6cd5": 37, "\u4f18\u5316": [37, 92, 251], "\u8fd9\u4e9b\u53c2\u6570": 37, "\u6709\u5173\u6b64\u8fc7\u7a0b\u7684\u66f4\u8be6\u7ec6\u8bb2\u89e3": 37, "3blue1brown": [37, 43], "\u7684\u8fd9\u4e2a\u89c6\u9891": 37, "www": [37, 49, 94, 104, 138, 166, 179, 237, 262, 264], "youtub": [37, 53, 54, 55, 56, 89, 90, 92, 93, 94, 95, 96, 121, 132, 133, 176], "tiehlnjs5u8": 37, "\u6211\u4eec\u52a0\u8f7d\u524d\u51e0\u8282\u4e2d\u7684": 37, "\u6570\u636e\u96c6\u548c\u6570\u636e\u52a0\u8f7d\u5668": 37, "_\u548c": 37, "\u6784\u5efa\u6a21\u578b": [37, 88, 89, 90, 92, 94, 95, 96], "_\u7684\u4ee3\u7801": 37, "flatten": [37, 38, 44, 47, 68, 69, 73, 87, 97, 105, 111, 118, 123, 124, 130, 135, 137, 139, 147, 149, 151, 155, 158, 163, 194, 196, 204, 210, 220, 232, 234, 240], "\u8d85\u53c2\u6570\u662f\u53ef\u8c03\u53c2\u6570": 37, "\u5b83\u4eec\u53ef\u4ee5\u8ba9\u60a8\u63a7\u5236\u6a21\u578b\u7684\u4f18\u5316\u8fc7\u7a0b": 37, "\u4e0d\u540c\u7684\u8d85\u53c2\u6570\u503c\u4f1a\u5f71\u54cd\u6a21\u578b\u7684\u8bad\u7ec3\u548c\u6536\u655b\u901f\u5ea6": 37, "\u9605\u8bfb\u66f4\u591a": 37, "\u5173\u4e8e\u8d85\u53c2\u6570\u8c03\u6574\u7684\u5185\u5bb9": 37, "\u6211\u4eec\u4e3a\u8bad\u7ec3\u5b9a\u4e49\u4ee5\u4e0b\u8d85\u53c2\u6570": 37, "epoch\u6570\u91cf": 37, "\u8fed\u4ee3\u6574\u4e2a\u6570\u636e\u96c6\u7684\u6b21\u6570": 37, "\u6279\u91cf\u5927\u5c0f": 37, "\u5728\u66f4\u65b0\u53c2\u6570\u4e4b\u524d": 37, "\u901a\u8fc7\u7f51\u7edc\u4f20\u64ad\u7684\u6570\u636e\u6837\u672c\u6570\u91cf": 37, "\u5b66\u4e60\u7387": 37, "\u5728\u6bcf\u4e2a\u6279\u6b21": 37, "epoch\u4e2d\u66f4\u65b0\u6a21\u578b\u53c2\u6570\u7684\u5e45\u5ea6": 37, "\u8f83\u5c0f\u7684\u503c\u4f1a\u5bfc\u81f4\u5b66\u4e60\u901f\u5ea6\u7f13\u6162": 37, "\u800c\u8f83\u5927\u7684\u503c\u53ef\u80fd\u4f1a\u5bfc\u81f4\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u51fa\u73b0\u4e0d\u53ef\u9884\u6d4b\u7684\u884c\u4e3a": 37, "learning_r": [37, 47, 49, 63, 64, 68, 69, 71, 72, 97, 111, 126, 127, 128, 138, 149, 166], "\u4e00\u65e6\u8bbe\u7f6e\u597d\u8d85\u53c2\u6570": 37, "\u6211\u4eec\u5c31\u53ef\u4ee5\u7528\u4f18\u5316\u5faa\u73af\u6765\u8bad\u7ec3\u548c\u4f18\u5316\u6211\u4eec\u7684\u6a21\u578b": 37, "\u4f18\u5316\u5faa\u73af\u7684\u6bcf\u6b21\u8fed\u4ee3\u79f0\u4e3a\u4e00\u4e2a": 37, "\u6bcf\u4e2aepoch\u7531\u4e24\u4e2a\u4e3b\u8981\u90e8\u5206\u7ec4\u6210": 37, "\u8bad\u7ec3\u5faa\u73af": 37, "\u8fed\u4ee3\u8bad\u7ec3\u6570\u636e\u96c6\u5e76\u5c1d\u8bd5\u6536\u655b\u5230\u6700\u4f73\u53c2\u6570": 37, "\u9a8c\u8bc1": [37, 96], "\u6d4b\u8bd5\u5faa\u73af": 37, "\u8fed\u4ee3\u6d4b\u8bd5\u6570\u636e\u96c6\u4ee5\u68c0\u67e5\u6a21\u578b\u6027\u80fd\u662f\u5426\u6709\u63d0\u9ad8": 37, "\u8ba9\u6211\u4eec\u7b80\u8981\u4e86\u89e3\u8bad\u7ec3\u5faa\u73af\u4e2d\u4f7f\u7528\u7684\u4e00\u4e9b\u6982\u5ff5": 37, "\u8df3\u5230\u524d\u9762\u67e5\u770b\u4f18\u5316\u5faa\u73af\u7684": 37, "\u5f53\u9762\u5bf9\u4e00\u4e9b\u8bad\u7ec3\u6570\u636e\u65f6": 37, "\u6211\u4eec\u672a\u8bad\u7ec3\u7684\u7f51\u7edc\u53ef\u80fd\u4e0d\u4f1a\u7ed9\u51fa\u6b63\u786e\u7684\u7b54\u6848": 37, "\u8861\u91cf\u83b7\u5f97\u7684\u7ed3\u679c\u4e0e\u76ee\u6807\u503c\u7684\u5dee\u5f02\u7a0b\u5ea6": 37, "\u8fd9\u662f\u6211\u4eec\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u5e0c\u671b\u6700\u5c0f\u5316\u7684": 37, "\u8981\u8ba1\u7b97\u635f\u5931": 37, "\u6211\u4eec\u4f7f\u7528\u7ed9\u5b9a\u6570\u636e\u6837\u672c\u7684\u8f93\u5165\u8fdb\u884c\u9884\u6d4b": 37, "\u5e76\u5c06\u5176\u4e0e\u771f\u5b9e\u7684\u6570\u636e\u6807\u7b7e\u503c\u8fdb\u884c\u6bd4\u8f83": 37, "\u5e38\u89c1\u7684\u635f\u5931\u51fd\u6570\u5305\u62ec\u7528\u4e8e\u56de\u5f52\u4efb\u52a1\u7684": 37, "\u5747\u65b9\u8bef\u5dee": [37, 93], "\u4ee5\u53ca\u7528\u4e8e\u5206\u7c7b\u7684": 37, "nllloss": [37, 99, 102, 103, 110, 115, 127, 128, 166], "\u8d1f\u5bf9\u6570\u4f3c\u7136": 37, "_\u7ed3\u5408\u4e86": 37, "logsoftmax": [37, 78, 110, 115, 127, 128], "\u6211\u4eec\u5c06\u6a21\u578b\u7684\u8f93\u51falogits\u4f20\u9012\u7ed9": 37, "\u5b83\u5c06\u6807\u51c6\u5316logits\u5e76\u8ba1\u7b97\u9884\u6d4b\u8bef\u5dee": 37, "loss_fn": [37, 38, 68, 69, 78, 96, 111, 118, 134, 135, 137, 147, 150, 155, 162, 215, 231, 260], "\u4f18\u5316\u662f\u8c03\u6574\u6a21\u578b\u53c2\u6570\u4ee5\u51cf\u5c11\u6bcf\u6b21\u8bad\u7ec3\u6b65\u9aa4\u4e2d\u7684\u6a21\u578b\u8bef\u5dee\u7684\u8fc7\u7a0b": 37, "\u4f18\u5316\u7b97\u6cd5": 37, "\u5b9a\u4e49\u4e86\u8fd9\u4e2a\u8fc7\u7a0b\u5982\u4f55\u8fdb\u884c": 37, "\u5728\u8fd9\u4e2a\u4f8b\u5b50\u4e2d\u6211\u4eec\u4f7f\u7528\u968f\u673a\u68af\u5ea6\u4e0b\u964d\u6cd5": 37, "\u6240\u6709\u4f18\u5316\u903b\u8f91\u90fd\u5c01\u88c5\u5728": 37, "\u5bf9\u8c61\u4e2d": 37, "\u5728\u8fd9\u91cc": [37, 90, 92, 96, 111, 235, 243, 253], "\u6211\u4eec\u4f7f\u7528sgd\u4f18\u5316\u5668": 37, "\u6b64\u5916": [37, 93, 215, 231, 232], "pytorch\u4e2d\u8fd8\u6709\u8bb8\u591a": 37, "\u4e0d\u540c\u7684\u4f18\u5316\u5668": 37, "\u5982adam\u548crmsprop": 37, "\u5b83\u4eec\u5bf9\u4e0d\u540c\u7c7b\u578b\u7684\u6a21\u578b\u548c\u6570\u636e\u6548\u679c\u66f4\u597d": 37, "\u6211\u4eec\u901a\u8fc7\u6ce8\u518c\u9700\u8981\u8bad\u7ec3\u7684\u6a21\u578b\u53c2\u6570\u5e76\u4f20\u5165\u5b66\u4e60\u7387\u8d85\u53c2\u6570\u6765\u521d\u59cb\u5316\u4f18\u5316\u5668": 37, "\u5728\u8bad\u7ec3\u5faa\u73af\u4e2d": 37, "\u4f18\u5316\u5206\u4e3a\u4e09\u4e2a\u6b65\u9aa4": 37, "\u8c03\u7528": [37, 95, 104, 238, 241, 242, 246, 247, 248], "\u6765\u91cd\u7f6e\u6a21\u578b\u53c2\u6570\u7684\u68af\u5ea6": 37, "\u68af\u5ea6\u4f1a\u7d2f\u52a0": 37, "\u4e3a\u9632\u6b62\u91cd\u590d\u8ba1\u7b97": 37, "\u6211\u4eec\u5728\u6bcf\u6b21\u8fed\u4ee3\u65f6\u663e\u5f0f\u5c06\u5176\u5f52\u96f6": 37, "\u53cd\u5411\u4f20\u64ad\u9884\u6d4b\u635f\u5931": 37, "pytorch\u4f1a\u5c06\u635f\u5931\u76f8\u5bf9\u4e8e\u6bcf\u4e2a\u53c2\u6570\u7684\u68af\u5ea6\u5b58\u50a8\u4e0b\u6765": 37, "\u4e00\u65e6\u6211\u4eec\u6709\u4e86\u68af\u5ea6": 37, "\u5c31\u8c03\u7528": 37, "\u901a\u8fc7\u53cd\u5411\u4f20\u64ad\u4e2d\u6536\u96c6\u7684\u68af\u5ea6\u6765\u8c03\u6574\u53c2\u6570": 37, "\u6211\u4eec\u5b9a\u4e49\u4e86": 37, "train_loop": 37, "\u6765\u5faa\u73af\u6267\u884c\u4f18\u5316\u4ee3\u7801": 37, "\u5e76\u5b9a\u4e49\u4e86": 37, "test_loop": 37, "\u6765\u8bc4\u4f30\u6a21\u578b\u5728\u6d4b\u8bd5\u6570\u636e\u4e0a\u7684\u6027\u80fd": 37, "unnecessari": [37, 172, 178], "7f": [37, 38], "8f": [37, 38], "\u6211\u4eec\u521d\u59cb\u5316\u635f\u5931\u51fd\u6570\u548c\u4f18\u5316\u5668": 37, "\u5e76\u5c06\u5b83\u4eec\u4f20\u9012\u7ed9": 37, "\u60a8\u53ef\u4ee5\u5c1d\u8bd5\u589e\u52a0epoch\u7684\u6570\u91cf\u4ee5\u89c2\u5bdf\u6a21\u578b\u6027\u80fd\u7684\u63d0\u5347": 37, "warmstart": [37, 236], "\u672c\u8282\u5c06\u4ecb\u7ecd\u673a\u5668\u5b66\u4e60\u4efb\u52a1\u4e2d\u5e38\u7528\u7684api": 38, "\u60f3\u66f4\u6df1\u5165\u4e86\u89e3\u5404\u6a21\u5757\u5185\u5bb9": 38, "\u53ef\u53c2\u8003\u6bcf\u8282\u6587\u672b\u5904\u7684\u94fe\u63a5": 38, "\u63d0\u4f9b\u4e86\u4e24\u4e2a\u7528\u4e8e": 38, "\u5904\u7406\u6570\u636e\u7684\u539f\u8bed": 38, "\u5219\u5728": 38, "\u5916\u90e8\u5c01\u88c5\u4e00\u5c42": 38, "\u53d8\u4e3a\u53ef\u8fed\u4ee3\u5bf9\u8c61": 38, "\u63d0\u4f9b\u4e86\u7279\u5b9a\u9886\u57df\u7684\u5e93": 38, "torchaudio": [38, 50, 92, 96, 121, 122, 159, 169, 185, 188, 237], "\u6240\u6709\u8fd9\u4e9b\u5e93\u90fd\u5305\u542b\u4e86\u5bf9\u5e94\u6570\u636e\u96c6": 38, "\u5728\u672c\u6559\u7a0b\u4e2d": [38, 129, 208, 211, 213, 215, 217, 220, 222, 227, 230, 234, 238, 239, 241, 243, 244, 245, 246, 247, 249, 250, 251, 253, 256, 257, 258, 259, 260], "\u6211\u4eec\u5c06\u4f7f\u7528": [38, 89, 90, 96, 104, 211, 217, 234, 235, 237, 239, 241, 242, 243, 244, 249, 250, 253], "\u6a21\u5757\u5305\u542b\u8bb8\u591a\u73b0\u5b9e\u4e16\u754c\u89c6\u89c9\u6570\u636e": 38, "cifar": [38, 44, 92, 170], "coco": [38, 179], "\u6570\u636e\u96c6\u5217\u8868": 38, "\u6211\u4eec\u4f7f\u7528": [38, 41, 96, 104, 111, 214, 220, 230, 250], "\u6bcf\u4e2atorchvis": 38, "\u5305\u62ec\u4e24\u4e2a\u53c2\u6570": 38, "\u5206\u522b\u7528\u4e8e\u4fee\u6539\u6837\u672c\u6570\u636e\u548c\u6807\u7b7e": 38, "\u6211\u4eec\u5c06": [38, 90, 95, 253, 259], "\u4f5c\u4e3a\u53c2\u6570\u4f20\u9012\u7ed9": 38, "\u5728\u6570\u636e\u96c6\u4e0a\u5c01\u88c5\u4e86\u4e00\u4e2a\u53ef\u8fed\u4ee3\u5bf9\u8c61": 38, "\u652f\u6301\u81ea\u52a8\u6279\u5904\u7406": 38, "\u91c7\u6837": 38, "\u6253\u4e71\u548c\u591a\u8fdb\u7a0b\u6570\u636e\u52a0\u8f7d": 38, "\u8fd9\u91cc\u6211\u4eec\u5b9a\u4e49\u4e00\u4e2a\u6279\u5904\u7406\u5927\u5c0f\u4e3a": 38, "\u5373": [38, 89, 104, 245], "\u6bcf\u6279\u5c06\u8fd4\u56de\u5927\u5c0f\u4e3a": 38, "\u7684\u7279\u5f81\u6570\u636e\u548c\u6807\u7b7e": 38, "\u83b7\u53d6\u66f4\u591a\u5173\u4e8e": 38, "pytorch\u6570\u636e\u52a0\u8f7d": 38, "\u7684\u4fe1\u606f": 38, "\u8981\u5728": [38, 72], "\u4e2d\u5b9a\u4e49\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc": 38, "\u6211\u4eec\u9700\u8981\u521b\u5efa\u4e00\u4e2a\u7ee7\u627f\u81ea": 38, "\u7684\u7c7b": [38, 93], "\u6211\u4eec\u5728": [38, 94, 104, 238], "\u51fd\u6570\u4e2d\u5b9a\u4e49\u7f51\u7edc\u7684\u5c42": 38, "\u51fd\u6570\u4e2d\u6307\u5b9a\u6570\u636e\u5982\u4f55\u7ecf\u8fc7\u7f51\u7edc": 38, "\u4e3a\u4e86\u52a0\u901f\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u8fd0\u7b97": 38, "\u6211\u4eec\u5c06\u5176\u79fb\u5230": 38, "pytorch\u6784\u5efa\u795e\u7ecf\u7f51\u7edc": 38, "\u7684\u5185\u5bb9": 38, "\u7ec3\u4e00\u4e2a\u6a21\u578b": 38, "\u6211\u4eec\u9700\u8981\u4e00\u4e2a": 38, "\u635f\u5931\u51fd\u6570": [38, 89, 92, 104], "\u548c\u4e00\u4e2a": 38, "\u4f18\u5316\u5668": [38, 92, 211, 217, 242, 243, 248, 250, 260], "\u5728\u5355\u4e2a\u8bad\u7ec3\u5faa\u73af\u4e2d": 38, "\u6a21\u578b\u5bf9\u8bad\u7ec3\u6570\u636e\u96c6": 38, "\u5206\u6279\u8f93\u5165": 38, "\u8fdb\u884c\u9884\u6d4b": 38, "\u5e76\u901a\u8fc7\u53cd\u5411\u4f20\u64ad\u9884\u6d4b\u8bef\u5dee\u6765\u8c03\u6574\u6a21\u578b\u7684\u53c2\u6570": 38, "\u6211\u4eec\u8fd8\u9700\u68c0\u67e5\u6a21\u578b\u5728\u6d4b\u8bd5\u6570\u636e\u96c6\u4e0a\u7684\u6548\u679c": 38, "\u4ee5\u786e\u4fdd\u5b83\u5728\u6301\u7eed\u5b66\u4e60": 38, "\u901a\u8fc7\u591a\u6b21\u8fed\u4ee3": 38, "\u8fdb\u884c\u8bad\u7ec3": 38, "\u5728\u6bcf\u4e2a\u8fed\u4ee3\u8fc7\u7a0b\u4e2d": 38, "\u6a21\u578b\u901a\u8fc7\u5bf9\u53c2\u6570\u7684\u5b66\u4e60\u4ee5\u63d0\u9ad8\u9884\u6d4b\u51c6\u786e\u6027": 38, "\u6211\u4eec\u5728\u6bcf\u4e2a": [38, 104], "\u6253\u5370\u6a21\u578b\u7684\u51c6\u786e\u7387\u548c\u635f\u5931": 38, "\u6211\u4eec\u5e0c\u671b\u770b\u5230\u968f\u7740\u6bcf\u4e2a": 38, "\u8bad\u7ec3": [38, 96, 237], "\u6a21\u578b\u9884\u6d4b\u51c6\u786e\u7387\u4e0d\u65ad\u63d0\u9ad8": 38, "\u635f\u5931\u9010\u6e10\u51cf\u5c11": 38, "\u8bad\u7ec3\u6a21\u578b": [38, 88, 89, 90, 92, 93, 94, 95], "\u4fdd\u5b58\u6a21\u578b\u7684\u5e38\u89c1\u65b9\u6cd5\u662f\u5c06\u5185\u90e8\u72b6\u6001\u5b57\u5178": 38, "\u5305\u542b\u6a21\u578b\u53c2\u6570": 38, "\u5e8f\u5217\u5316": 38, "\u52a0\u8f7d\u6a21\u578b\u7684\u8fc7\u7a0b\u5305\u62ec\u91cd\u65b0\u521b\u5efa\u6a21\u578b\u7ed3\u6784\u5e76\u52a0\u8f7d\u5176\u5185\u90e8\u72b6\u6001\u5b57\u5178": 38, "\u8fd9\u4e2a\u6a21\u578b\u73b0\u5728\u53ef\u4ee5\u7528\u6765\u8fdb\u884c\u9884\u6d4b\u4e86": 38, "\u83b7\u53d6\u66f4\u591a\u6709\u5173": 38, "\u5728\u672c\u8282\u4e2d": 39, "\u6211\u4eec\u5c06\u5b66\u4e60\u5982\u4f55\u901a\u8fc7\u4fdd\u5b58": 39, "\u52a0\u8f7d\u4ee5\u53ca\u8fd0\u884c\u6a21\u578b\u9884\u6d4b": 39, "\u6765\u6301\u4e45\u5316\u6a21\u578b": 39, "pytorch\u6a21\u578b\u5c06\u5b66\u4e60\u5230\u7684\u53c2\u6570\u5b58\u50a8\u5728\u4e00\u4e2a\u5185\u90e8\u72b6\u6001\u5b57\u5178\u4e2d": 39, "\u8fd9\u4e9b\u53c2\u6570\u53ef\u4ee5\u901a\u8fc7": 39, "\u8fdb\u884c\u6301\u4e45\u5316": 39, "vgg16": [39, 148], "imagenet1k_v1": [39, 90, 117, 140, 169, 196, 230], "model_weight": 39, "\u8981\u52a0\u8f7d\u6a21\u578b\u6743\u91cd": 39, "\u60a8\u9700\u8981\u5148\u521b\u5efa\u4e00\u4e2a\u76f8\u540c\u6a21\u578b\u7684\u5b9e\u4f8b": 39, "\u7136\u540e\u4f7f\u7528": [39, 242, 244], "\u65b9\u6cd5\u52a0\u8f7d\u53c2\u6570": 39, "untrain": 39, "\u6ce8\u610f": [39, 89, 90, 95, 96, 104, 214, 217, 239, 241, 243, 251, 259], "\u5728\u8fdb\u884c\u63a8\u7406\u4e4b\u524d": 39, "\u8bf7\u786e\u4fdd\u8c03\u7528": [39, 241], "\u65b9\u6cd5\u4ee5\u5c06": 39, "layers\u8bbe\u7f6e\u4e3a\u8bc4\u4f30\u6a21\u5f0f": [39, 243], "\u5982\u679c\u4e0d\u8fd9\u6837\u505a": [39, 242], "\u5c06\u5bfc\u81f4\u4e0d\u4e00\u81f4\u7684\u63a8\u7406\u7ed3\u679c": 39, "\u5728\u52a0\u8f7d\u6a21\u578b\u6743\u91cd\u65f6": 39, "\u6211\u4eec\u9700\u8981\u5148\u5b9e\u4f8b\u5316\u6a21\u578b\u7c7b": 39, "\u56e0\u4e3a\u7c7b\u5b9a\u4e49\u4e86\u7f51\u7edc\u7684\u7ed3\u6784": 39, "\u6211\u4eec\u53ef\u80fd\u5e0c\u671b\u5c06\u8fd9\u4e2a\u7c7b\u7684\u7ed3\u6784\u4e0e\u6a21\u578b\u4e00\u8d77\u4fdd\u5b58": 39, "\u6211\u4eec\u53ef\u4ee5\u5c06": 39, "\u800c\u4e0d\u662f": [39, 89, 95, 96, 104, 111, 231, 232], "\u4f20\u9012\u7ed9": [39, 239, 241], "\u51fd\u6570": [39, 41, 89, 92, 104, 111, 234, 235, 239, 241, 243, 257, 258], "\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u5982\u4e0b\u65b9\u5f0f\u52a0\u8f7d\u6a21\u578b": 39, "\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u901a\u7528checkpoint": 39, "\u7684\u5b9e\u7528\u6280\u5de7": 39, "\u7c7b\u4f3c\u4e8e\u6570\u7ec4\u548c\u77e9\u9635": 40, "\u5f20\u91cf\u4e5f\u662f\u4e00\u79cd\u7279\u5b9a\u7684\u6570\u636e\u7ed3\u6784": 40, "\u5728pytorch\u4e2d": [40, 111, 234, 243], "\u6211\u4eec\u4f7f\u7528\u5f20\u91cf\u5bf9\u4e00\u4e2a\u6a21\u578b\u7684\u53c2\u6570": 40, "\u8f93\u5165\u548c\u8f93\u51fa\u8fdb\u884c\u7f16\u7801": 40, "\u5f20\u91cf\u7684\u7ed3\u6784\u7c7b\u4f3c\u4e8e": 40, "\u4e2d\u7684ndarrai": 40, "\u800c\u5f20\u91cf\u53ef\u4ee5\u8fd0\u884c\u5728gpu\u53ca\u5176\u4ed6\u76f8\u4f3c\u7684\u786c\u4ef6\u52a0\u901f\u5668\u4e0a": 40, "\u4e8b\u5b9e\u4e0a": [40, 92, 93], "\u4e3a\u4e86\u51cf\u5c11\u6570\u636e\u7684\u62f7\u8d1d": 40, "\u5f20\u91cf\u548cnumpi": 40, "arrays\u5728\u5e95\u5c42\u5e38\u5e38\u5171\u4eab\u540c\u4e00\u5757\u5185\u5b58": 40, "bridg": [40, 85, 226], "role": [40, 103, 157, 164, 178, 264], "\u5728\u81ea\u52a8\u5fae\u5206": 40, "\u7684\u8fc7\u7a0b\u4e2d\u4e5f\u4f7f\u7528\u5f20\u91cf\u8fdb\u884c\u4f18\u5316": 40, "\u5728\u540e\u7eed": 40, "\u7ae0\u8282\u53ef\u4ee5\u770b\u5230\u66f4\u591a\u6709\u5173\u5185\u5bb9": 40, "\u5982\u679c\u5df2\u7ecf\u5bf9ndarrays\u5341\u5206\u719f\u6089\u4e86": 40, "\u90a3\u5bf9\u5f20\u91cf\u7684api\u4e5f\u53ef\u4ee5\u8fd0\u7528\u81ea\u5982": 40, "\u5982\u679c\u8fd8\u4e0d\u719f\u6089": 40, "\u4e0b\u9762\u7684\u6559\u7a0b\u4f1a\u5e2e\u52a9\u4f60\u4e0a\u624b": 40, "\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u591a\u79cd\u65b9\u5f0f\u521b\u5efa\u4e00\u4e2a\u5f20\u91cf": 40, "\u4f7f\u7528\u6570\u636e\u521b\u5efa": 40, "\u901a\u8fc7\u5df2\u5b9a\u4e49\u7684\u6570\u636e\u53ef\u4ee5\u76f4\u63a5\u521b\u5efa\u51fa\u6765\u5f20\u91cf": 40, "\u521b\u5efa\u65f6\u4f1a\u81ea\u52a8\u63a8\u65ad\u6570\u636e\u7c7b\u578b": 40, "x_data": [40, 48], "\u4f7f\u7528numpi": 40, "array\u521b\u5efa": 40, "\u53ef\u4ee5\u4f7f\u7528numpi": 40, "array\u521b\u5efa\u5f20\u91cf": 40, "\u53cd\u4e4b\u4ea6\u53ef": 40, "np_arrai": [40, 48], "x_np": [40, 48], "\u4f7f\u7528\u5df2\u6709\u5f20\u91cf\u521b\u5efa": 40, "\u65b0\u7684\u5f20\u91cf\u4f1a\u4fdd\u7559\u539f\u5f20\u91cf\u7684\u5c5e\u6027": 40, "\u5f62\u72b6": [40, 95], "\u6570\u636e\u7c7b\u578b": [40, 72, 231, 248], "\u9664\u975e\u521b\u5efa\u65f6\u663e\u793a\u58f0\u660e": 40, "x_one": [40, 48], "Ones": [40, 48], "x_rand": [40, 48], "rand_lik": [40, 48, 95, 142, 154], "\u901a\u8fc7\u968f\u673a\u6216\u5e38\u91cf\u521b\u5efa": 40, "\u63cf\u8ff0\u4e86\u5f20\u91cf\u7684\u7ef4\u5ea6": 40, "\u5728\u4e0b\u9762\u7684\u65b9\u6cd5\u8c03\u7528\u65f6": 40, "\u901a\u8fc7\u5b83\u6765\u58f0\u660e\u521b\u5efa\u5f20\u91cf\u7684\u7ef4\u5ea6": 40, "rand_tensor": [40, 48], "ones_tensor": [40, 48], "zeros_tensor": [40, 48], "\u5f20\u91cf\u7684\u5c5e\u6027\u4fdd\u5b58\u4e86\u5176\u5f62\u72b6": 40, "\u4ee5\u53ca\u5176\u5b58\u50a8\u8bbe\u5907\u7c7b\u578b": 40, "\u5f20\u91cf\u6709\u8d85\u8fc7100\u4e2a\u64cd\u4f5c\u65b9\u6cd5": 40, "\u5305\u62ec\u7b97\u6570": 40, "\u7ebf\u6027\u4ee3\u6570": 40, "\u77e9\u9635\u64cd\u4f5c": 40, "\u8f6c\u7f6e": 40, "\u7d22\u5f15": 40, "\u5207\u7247": 40, "\u91c7\u6837\u7b49": 40, "\u90fd\u5728": 40, "\u8fd9\u91cc": [40, 41, 90, 93, 95, 96, 104, 222, 231, 248], "\u6709\u8be6\u7ec6\u7684\u63cf\u8ff0": 40, "\u6bcf\u4e2a\u64cd\u4f5c\u90fd\u53ef\u4ee5\u5728gpu\u4e0a\u8fd0\u884c": 40, "\u901a\u5e38\u6bd4\u5728cpu\u4e0a\u901f\u5ea6\u66f4\u5feb": 40, "\u5982\u679c\u4f60\u5728\u4f7f\u7528colab": 40, "\u53ef\u4ee5\u901a\u8fc7\u4fee\u6539runtim": 40, "gpu\u6765\u5206\u914d\u4e00\u4e2agpu": 40, "\u9ed8\u8ba4\u60c5\u51b5\u4e0b\u5f20\u91cf\u662f\u5728cpu\u4e0a\u521b\u5efa\u7684": 40, "\u53ef\u4ee5\u901a\u8fc7": [40, 93, 232], "\u65b9\u6cd5\u5c06\u5f20\u91cf\u663e\u793a\u7684\u8f6c\u79fb\u5230gpu\u4e0a": 40, "\u5982\u679cgpu\u5728\u4f60\u7684\u73af\u5883\u91cc\u53ef\u7528\u7684\u8bdd": 40, "\u9700\u8981\u6ce8\u610f\u7684\u662f": 40, "\u5728\u4e0d\u540c\u8bbe\u5907\u95f4\u590d\u5236\u5927\u578b\u5f20\u91cf\u9700\u8981\u6d88\u8017\u5927\u91cf\u5185\u5b58": 40, "\u5e76\u4e14\u8017\u65f6\u8f83\u957f": 40, "\u5c1d\u8bd5\u4e0b\u5217\u64cd\u4f5c": 40, "\u5982\u679c\u4f60\u5df2\u7ecf\u5bf9numpi": 40, "api\u5341\u5206\u719f\u6089": 40, "\u4e0a\u624b\u5f20\u91cfapi\u5c06\u4f1a\u5f88\u7b80\u5355": 40, "\u7c7b\u4f3cnumpy\u7684\u7d22\u5f15\u548c\u5207\u7247\u64cd\u4f5c": 40, "\u8fde\u63a5\u5f20\u91cf": 40, "\u4f60\u53ef\u4ee5\u4f7f\u7528": [40, 95], "\u6cbf\u7740\u7ed9\u5b9a\u7684\u7ef4\u5ea6\u8fde\u63a5\u4e00\u7cfb\u5217\u5f20\u91cf": 40, "\u53e6\u4e00\u4e2a\u5f20\u91cf\u8fde\u63a5\u64cd\u4f5c\u7b26": 40, "\u4e0e": [40, 92, 93, 95, 111, 215, 248, 256], "\u7a0d\u6709\u4e0d\u540c": 40, "\u8bf7\u53c2\u9605": [40, 89, 94, 95, 208, 211, 214, 231, 246, 247, 248, 257, 258, 259], "\u8fd0\u7b97\u64cd\u4f5c": 40, "y1": [40, 179, 246], "y2": 40, "y3": 40, "wise": [40, 48, 73, 95, 99, 110, 124, 136, 145, 148, 151], "z1": [40, 145], "z2": 40, "z3": 40, "\u5355\u4e2a\u5143\u7d20\u7684\u5f20\u91cf": 40, "\u5728\u805a\u5408\u8fd0\u7b97\u573a\u666f\u4e2d": 40, "\u4f60\u53ef\u80fd\u4f1a\u5f97\u5230\u4e00\u4e2a\u5355\u5143\u7d20\u7684\u5f20\u91cf": 40, "\u53ef\u4f7f\u7528": 40, "\u5c06\u5176\u4f20\u5524\u4e3apython\u6570\u503c": 40, "agg": [40, 150, 166], "agg_item": 40, "\u539f\u5730\u64cd\u4f5c": 40, "\u4fee\u6539\u5f20\u91cf\u4e2d\u7684\u539f\u503c\u64cd\u4f5c\u79f0\u4e3a\u539f\u5730\u64cd\u4f5c": 40, "\u5b83\u4eec\u4ee5": 40, "\u540e\u7f00\u8868\u793a": 40, "t_": [40, 48, 264], "\u4f1a\u6539\u53d8": 40, "add_": [40, 48, 80, 95, 127, 128, 174, 175, 190, 207, 217], "\u5f20\u91cf\u5728\u4f7f\u7528cpu\u65f6": 40, "\u53ef\u4e0enumpi": 40, "arrays\u5171\u4eab\u5185\u5b58\u7a7a\u95f4": 40, "\u4fee\u6539\u5176\u4e2d\u4e00\u4e2a\u4f1a\u540c\u6b65\u6620\u5c04\u5230\u53e6\u4e00\u4e2a\u4e0a": 40, "\u5bf9\u4e8e\u5f20\u91cf\u7684\u4fee\u6539\u4f53\u73b0\u5230\u4e86numpi": 40, "array\u4e0a": 40, "\u6570\u636e\u5e76\u4e0d\u603b\u662f\u4ee5\u8bad\u7ec3\u673a\u5668\u5b66\u4e60\u7b97\u6cd5\u6240\u9700\u7684\u6700\u7ec8\u5904\u7406\u5f62\u5f0f\u5448\u73b0": 41, "\u6765\u5bf9\u6570\u636e\u8fdb\u884c\u4e00\u4e9b\u5904\u7406": 41, "\u4f7f\u5176\u9002\u7528\u4e8e\u8bad\u7ec3": 41, "\u6240\u6709": [41, 95], "\u6570\u636e\u96c6\u90fd\u6709\u4e24\u4e2a\u53c2\u6570": 41, "\u7528\u4e8e\u4fee\u6539\u7279\u5f81": 41, "\u7528\u4e8e\u4fee\u6539\u6807\u7b7e": 41, "\u5b83\u4eec\u63a5\u53d7\u5305\u542b\u8f6c\u6362\u903b\u8f91\u7684\u53ef\u8c03\u7528\u5bf9\u8c61": 41, "\u6a21\u5757\u63d0\u4f9b\u4e86\u51e0\u79cd\u5e38\u7528\u7684\u8f6c\u6362": 41, "\u7684\u7279\u5f81\u662f\u4ee5": 41, "\u56fe\u50cf\u683c\u5f0f\u5448\u73b0\u7684": 41, "\u6807\u7b7e\u662f\u6574\u6570": 41, "\u5bf9\u4e8e\u8bad\u7ec3": 41, "\u6211\u4eec\u9700\u8981\u5c06\u7279\u5f81\u8f6c\u6362\u4e3a\u5f52\u4e00\u5316\u7684\u5f20\u91cf": 41, "\u5c06\u6807\u7b7e\u8f6c\u6362\u4e3a\u7f16\u7801\u7684\u5f20\u91cf": 41, "\u4e3a\u4e86\u8fdb\u884c\u8fd9\u4e9b\u8f6c\u6362": 41, "\u6211\u4eec\u4f7f\u7528\u4e86": [41, 220], "ds": [41, 127, 128, 166], "scatter_": [41, 135, 150, 162], "\u5c06": [41, 92, 121, 214, 231, 243, 244, 248, 252], "\u56fe\u50cf\u6216": 41, "ndarrai": [41, 48, 51, 95, 110, 172], "\u8f6c\u6362\u4e3a": 41, "floattensor": [41, 49, 60, 95], "\u5e76\u5c06\u56fe\u50cf\u7684\u50cf\u7d20\u5f3a\u5ea6\u503c\u7f29\u653e\u5230\u8303\u56f4": 41, "\u5e94\u7528\u4efb\u4f55\u7528\u6237\u5b9a\u4e49\u7684": 41, "\u6211\u4eec\u5b9a\u4e49\u4e00\u4e2a\u51fd\u6570\u5c06\u6574\u6570\u8f6c\u6362\u4e3a\u72ec\u70ed\u7f16\u7801\u7684\u5f20\u91cf": 41, "\u5b83\u9996\u5148\u521b\u5efa\u4e00\u4e2a\u5927\u5c0f\u4e3a": 41, "\u6211\u4eec\u6570\u636e\u96c6\u4e2d\u6807\u7b7e\u7684\u6570\u91cf": 41, "\u7684\u96f6\u5f20\u91cf": 41, "\u7136\u540e\u8c03\u7528": 41, "\u5728\u7531\u6807\u7b7e": 41, "\u6307\u5b9a\u7684\u7d22\u5f15\u4e0a\u8d4b\u503c\u4e3a": 41, "gschwind": 42, "bt": 42, "fastpath": 42, "acceler": [42, 48, 50, 57, 75, 95, 121, 150, 178, 189, 195, 197, 212, 221], "multiheadattent": [42, 165, 194], "mha": [42, 191, 194], "exploit": [42, 97, 147, 166], "sparsiti": [42, 103, 121, 157, 190, 192, 197], "criteria": [42, 52], "blog": [42, 122, 123, 127, 132, 177, 230], "xlm": [42, 138, 186], "predefin": [42, 49, 97, 137, 201], "robertaclassificationhead": 42, "xlmr_larg": 42, "xlmr_large_encod": 42, "classifier_head": 42, "input_dim": [42, 147, 219, 224], "get_model": [42, 104, 113, 162], "small_input_batch": 42, "hello": [42, 49, 58, 59, 60, 99, 103, 140, 153], "big_input_batch": 42, "princ": 42, "genoa": 42, "lucca": 42, "famili": 42, "estat": 42, "buonapart": 42, "war": 42, "defend": [42, 73], "infami": 42, "horror": 42, "perpetr": 42, "antichrist": 42, "believ": [42, 191], "he": [42, 113, 115, 143, 147, 166], "friend": [42, 49, 153], "faith": 42, "slave": 42, "frighten": 42, "juli": 42, "1805": 42, "speaker": [42, 49], "anna": 42, "pavlovna": 42, "scherer": 42, "maid": 42, "honor": 42, "empress": 42, "marya": 42, "fedorovna": 42, "she": [42, 113, 166], "greet": 42, "vasili": 42, "kuragin": 42, "man": [42, 113, 115, 264, 265], "recept": 42, "cough": 42, "suffer": [42, 61, 113, 169], "la": [42, 99], "gripp": 42, "st": [42, 103, 115], "petersburg": 42, "elit": [42, 263, 265, 267], "input_batch": [42, 49, 58, 59, 60, 159], "model_input": [42, 113], "padding_valu": [42, 118], "_transformer_encoder_layer_fwd": 42, "use_cuda": [42, 49, 73, 89, 119, 130, 147, 233, 239], "enable_nested_tensor": 42, "prop": 43, "proportion": [43, 153], "travers": [43, 164], "walkthrough": [43, 48, 82, 109, 226], "resnet18_weight": [43, 196, 230], "3a": [43, 159], "9a": 43, "2b": 43, "dq": [43, 198], "external_grad": 43, "deposit": 43, "bf": 43, "chain": [43, 99, 100, 115, 130, 145, 162, 192, 201], "acycl": [43, 76], "finetun": [43, 75, 125, 153], "unfrozen": 43, "exclusionari": 43, "autodiff": [43, 121, 146], "pillow": [44, 92, 214], "scipi": [44, 121, 131, 173], "librosa": 44, "cython": 44, "nltk": 44, "spaci": [44, 116, 118], "viz": [44, 90, 230], "huge": [44, 99, 103, 124, 134, 137, 150], "airplan": [44, 97], "automobil": [44, 97], "bird": [44, 92, 251], "deer": [44, 92, 251], "dog": [44, 58, 59, 92, 97, 102, 113, 179, 189, 205, 230, 251, 259], "frog": [44, 92, 251], "hors": [44, 92, 251], "truck": [44, 92, 97, 251], "3x32x32": 44, "color": [44, 51, 52, 58, 59, 90, 94, 126, 147, 148, 159, 170, 172, 179, 232, 264], "32x32": [44, 47, 92, 97, 105, 170], "extrem": [44, 103, 148, 264], "pilimag": 44, "brokenpipeerror": 44, "trainset": [44, 87, 92, 170, 251], "trainload": [44, 87, 92, 170, 251], "testset": [44, 87, 92, 170, 251], "testload": [44, 87, 92, 170, 251], "plane": [44, 92, 135, 251], "car": [44, 58, 59, 92, 113, 251], "fun": [44, 49, 105, 107, 108, 160], "unnorm": [44, 92, 118, 170], "npimg": [44, 92, 94, 96, 170], "datait": [44, 92, 94, 96, 170], "make_grid": [44, 51, 52, 92, 94, 96, 117, 158, 167, 170], "5s": [44, 92], "fc1": [44, 47, 73, 78, 87, 92, 93, 94, 96, 105, 112, 123, 130, 139, 155, 157, 163, 167, 170, 186, 204, 222, 234, 240, 241, 242, 243, 244, 249, 250, 251], "fc2": [44, 47, 73, 78, 87, 92, 93, 94, 96, 105, 112, 123, 130, 139, 155, 157, 163, 167, 170, 186, 204, 222, 234, 240, 241, 242, 243, 244, 249, 250, 251], "84": [44, 47, 51, 87, 92, 93, 94, 96, 105, 109, 112, 137, 147, 157, 170, 177, 188, 240, 241, 242, 243, 244, 249, 250, 251], "fc3": [44, 47, 87, 92, 93, 94, 96, 105, 112, 139, 157, 170, 240, 241, 242, 243, 244, 249, 250, 251], "classif": [44, 52, 58, 59, 73, 75, 87, 97, 99, 115, 117, 119, 123, 128, 138, 149, 159, 167, 172, 179, 186, 207, 225, 226], "entropi": [44, 52, 118, 124], "running_loss": [44, 87, 92, 94, 96, 97, 117, 158, 170, 251], "2000": [44, 63, 64, 65, 67, 68, 69, 71, 72, 87, 92, 97, 111, 170, 172, 174, 175, 232, 251, 260], "1999": [44, 65, 87, 92, 111, 251], "mini": [44, 47, 49, 52, 78, 79, 87, 102, 104, 140, 147, 155, 159, 170, 205], "cifar_net": 44, "learnt": 44, "truth": [44, 73, 105, 179, 197], "okai": 44, "groundtruth": 44, "wasn": [44, 98, 101], "energi": [44, 49, 60, 264], "chanc": [44, 49, 97, 147, 254], "hmmm": 44, "correct_pr": 44, "classnam": [44, 52], "total_pr": 44, "correct_count": 44, "chat": [44, 49, 60, 79, 166], "cifar10_tutori": [44, 46, 57], "sung": 45, "kim": 45, "jenni": 45, "kang": 45, "mytensor": 45, "my_tensor": [45, 93, 112, 241], "parallelli": 45, "output_s": [45, 49, 51, 60, 78, 127, 128, 137, 166, 179], "data_s": [45, 78], "getitem": [45, 115], "randomdataset": 45, "__getitem__": [45, 51, 104, 136, 179], "rand_load": 45, "capsul": 45, "monitor": [45, 113, 136, 178], "tin": 45, "former_torchi": [45, 77], "parallelism_tutori": [45, 77, 79], "data_parallel_tutori": [45, 46], "neural_networks_tutori": [46, 47, 57], "gentl": [46, 56, 57, 120], "glimps": 47, "convnet": [47, 81, 137, 147, 158, 163], "5x5": [47, 92, 93, 157], "affin": [47, 92, 102, 130, 167, 177, 180, 219], "wx": [47, 92, 93], "c1": [47, 89, 92, 145, 192], "subsampl": 47, "2x2": [47, 93], "c3": [47, 89, 92], "s4": [47, 92], "f5": [47, 92], "f6": [47, 92], "lenet": [47, 73, 92, 93, 96, 157, 222], "nsampl": [47, 49, 78, 237], "nchannel": [47, 78], "next_funct": [47, 89], "clear": [47, 51, 73, 98, 99, 102, 103, 125, 129, 145, 164, 172, 187, 192], "sub_": 47, "nesterov": [47, 112], "overridden": [48, 137], "breez": [48, 80], "subtli": 48, "problemat": [48, 145, 154, 264], "matthew": [49, 60, 86, 112], "inkawhich": [49, 52, 60, 73, 85, 86, 112], "movi": [49, 50, 60, 113], "cornel": [49, 50, 60], "dialog": [49, 50, 60], "hot": [49, 73, 103, 127, 128, 137, 166], "artifici": [49, 60, 97], "intellig": 49, "onlin": [49, 137, 138, 147, 160, 163], "helpdesk": 49, "bot": [49, 60], "compani": [49, 115], "IT": 49, "teach": [49, 52, 97, 166], "boom": 49, "am": [49, 60, 101, 113, 128, 166, 209], "hospit": [49, 113], "lawyer": 49, "arrest": 49, "kid": 49, "sorri": [49, 95], "san": [49, 113], "francisco": [49, 104, 113], "goodby": [49, 194], "luong": [49, 60, 166], "jointli": [49, 166], "acknowledg": [49, 136], "borrow": [49, 61, 123, 135, 164], "yuan": [49, 60, 223], "kuei": [49, 60], "wu": [49, 60, 187], "ywk991112": [49, 60], "sean": [49, 60, 127, 128, 166], "robertson": [49, 60, 127, 128, 166], "spro": [49, 60], "floydhub": [49, 60], "textutil": [49, 60], "unicodedata": [49, 60, 127, 128, 166], "codec": 49, "itertool": [49, 161, 164, 201, 232], "reformat": 49, "rich": 49, "charact": [49, 60, 103, 113, 127, 128, 132, 160, 166, 264], "220": [49, 164], "579": [49, 148], "292": [49, 87], "035": 49, "617": 49, "713": [49, 92], "utter": [49, 50], "divers": 49, "variat": [49, 131, 190, 204], "formal": [49, 190], "sentiment": 49, "datafil": 49, "corpus_nam": [49, 50, 60], "printlin": 49, "readlin": [49, 75, 127, 128], "jsonl": [49, 50], "tab": [49, 116, 166, 170, 189], "sentenc": [49, 60, 93, 98, 99, 102, 103, 113, 118, 128, 136, 138, 166, 194, 264], "loadlinesandconvers": 49, "lineid": 49, "characterid": 49, "conversationid": 49, "movieid": 49, "extractsentencepair": 49, "iso": 49, "8859": 49, "linejson": 49, "lineobj": 49, "conversation_id": 49, "convobj": 49, "movie_id": 49, "qa_pair": 49, "inputlin": 49, "targetlin": 49, "wrong": [49, 52, 73, 99, 127, 145, 173, 196], "formatted_movie_lin": 49, "delimit": [49, 115, 116], "unescap": 49, "unicode_escap": 49, "nprocess": 49, "nwrite": 49, "outputfil": 49, "writer": [49, 94, 96, 127, 138, 143, 159, 160, 170, 186, 246], "linetermin": 49, "writerow": 49, "busi": [49, 115, 128, 177], "implicit": [49, 264], "discret": [49, 221, 264], "voc": [49, 60], "addword": [49, 60, 166], "addsent": [49, 60, 166], "infrequ": 49, "pad_token": [49, 60, 138], "sos_token": [49, 60, 166, 254], "eos_token": [49, 60, 166], "word2index": [49, 60, 166], "word2count": [49, 60, 166], "index2word": [49, 60, 166], "min_count": [49, 60], "keep_word": [49, 60], "reiniti": [49, 52, 60], "unicod": [49, 127, 128, 166], "ascii": [49, 103, 127, 128, 166], "unicodetoascii": [49, 127, 128, 166], "letter": [49, 60, 127, 128, 166, 265], "lowercas": [49, 60, 166], "punctuat": [49, 166], "normalizestr": [49, 60, 166], "aid": [49, 112, 113], "filterpair": [49, 166], "stackoverflow": [49, 127, 128, 161, 166, 232], "518232": [49, 127, 128, 166], "2809427": [49, 127, 128, 166], "nfd": [49, 127, 128, 166], "mn": [49, 127, 128, 166], "za": [49, 60, 166], "readvoc": 49, "loadpreparedata": 49, "save_dir": [49, 60, 147, 172], "npair": 49, "tactic": 49, "benefici": [49, 60, 120], "soften": [49, 97], "difficulti": [49, 160], "trimrareword": 49, "keep_pair": 49, "input_sent": [49, 60, 166], "output_sent": [49, 166], "keep_input": 49, "keep_output": 49, "massag": 49, "accommod": 49, "shorter": [49, 51, 116, 166, 169, 190], "english": [49, 99, 102, 113, 116, 118, 127, 166], "indexesfromsent": [49, 60, 166], "zeropad": 49, "inputvar": 49, "outputvar": 49, "batch2traindata": 49, "bunch": [49, 127, 128], "aforement": [49, 82, 97], "fillvalu": 49, "zip_longest": 49, "binarymatrix": 49, "seq": [49, 98, 102, 124, 135, 137], "indexes_batch": [49, 60], "padlist": 49, "padvar": 49, "max_target_len": 49, "booltensor": 49, "pair_batch": 49, "output_batch": 49, "small_batch_s": 49, "input_vari": 49, "target_vari": 49, "brain": 49, "sutskev": 49, "discov": [49, 108, 113, 136, 163], "accomplish": [49, 52, 151, 203], "jeddy92": [49, 60], "ts_seq2seq_intro": [49, 60], "invent": [49, 52, 160], "cho": [49, 177, 178], "2014": [49, 52], "bidirect": [49, 60, 98, 121, 137, 138], "gru": [49, 60, 93, 110, 127, 128, 166], "past": [49, 50, 101, 195, 264], "colah": 49, "2015": [49, 97], "unpack": [49, 60, 138, 142, 184, 186, 207, 209], "pack_padded_sequ": [49, 60], "pad_packed_sequ": [49, 60], "input_seq": [49, 60, 254], "input_length": [49, 60, 122, 254], "n_layer": [49, 60, 254], "num_direct": 49, "encoderrnn": [49, 60, 166, 254], "sole": [49, 169], "combat": [49, 103], "bahdanau": [49, 166], "groundwork": 49, "h_t": [49, 102], "_s": 49, "attn": [49, 60, 166], "softmax": [49, 60, 90, 93, 97, 102, 103, 104, 110, 127, 128, 159, 162, 164, 166, 170, 194, 220, 258], "concat": [49, 60, 101, 110, 119, 183, 201], "dot_scor": [49, 60], "encoder_output": [49, 60, 166], "general_scor": [49, 60], "concat_scor": [49, 60], "attn_energi": [49, 60], "unidirect": [49, 60], "input_step": [49, 60], "last_hidden": [49, 60, 78], "luongattndecoderrnn": [49, 60, 254], "attn_model": [49, 60], "embedding_dropout": [49, 60], "rnn_output": [49, 60], "attn_weight": [49, 60, 166], "bmm": [49, 60, 145, 166, 194, 208, 232], "concat_input": [49, 60], "concat_output": [49, 60], "masknllloss": 49, "ntotal": 49, "crossentropi": 49, "masked_select": [49, 239], "clever": [49, 99, 113], "teacher": [49, 97, 121, 166], "teacher_forcing_ratio": [49, 166], "wheel": [49, 97, 160, 169, 197], "instabl": [49, 166], "craft": [49, 73, 103, 128], "essenc": [49, 101, 264], "nan": [49, 191], "overshoot": 49, "steep": 49, "cliff": 49, "goodfellow": [49, 52, 73], "2016": 49, "deeplearningbook": 49, "realiti": [49, 52, 60, 73, 101, 158, 165], "encoder_optim": [49, 166], "decoder_optim": [49, 166], "print_loss": 49, "n_total": 49, "encoder_hidden": [49, 60, 166, 254], "decoder_input": [49, 60, 166], "decoder_hidden": [49, 60, 166], "use_teacher_forc": 49, "decoder_output": [49, 60, 166], "mask_loss": 49, "topi": [49, 127, 128, 166], "tie": 49, "trainit": [49, 166], "n_iter": [49, 127, 128, 173], "explanatori": 49, "lift": [49, 58, 59, 113, 206, 224], "tarbal": 49, "encoder_n_lay": [49, 60], "decoder_n_lay": [49, 60, 254], "print_everi": [49, 127, 128, 166], "save_everi": [49, 53, 55, 147], "loadfilenam": [49, 60], "training_batch": 49, "start_iter": 49, "print_loss_avg": [49, 166], "percent": [49, 103, 144, 146, 155, 166], "makedir": [49, 138, 186], "en_opt": [49, 60], "de_opt": [49, 60], "voc_dict": [49, 60], "tar": [49, 60, 75, 112, 118, 237, 242, 264], "NOT": [49, 60, 80, 85, 98, 102, 112, 131, 132, 134, 153, 209], "greedysearchdecod": [49, 254], "all_token": [49, 60], "all_scor": [49, 60], "decoder_scor": [49, 60], "searcher": [49, 60], "evaluateinput": [49, 60], "press": [49, 52, 264], "gracefulli": [49, 53, 163], "prompt": [49, 50, 60, 185, 259], "decoded_word": [49, 60, 166], "output_word": [49, 60, 166], "keyerror": [49, 60], "regardless": [49, 98, 146, 163, 265], "cb_model": [49, 60], "checkpoint_it": [49, 60], "_checkpoint": [49, 60, 122], "encoder_sd": [49, 60], "decoder_sd": [49, 60], "encoder_optimizer_sd": [49, 60], "decoder_optimizer_sd": [49, 60], "embedding_sd": [49, 60], "decoder_learning_ratio": 49, "uncom": [49, 51, 60, 64, 72, 101, 111], "folk": 49, "congratul": [49, 108, 125, 242], "tailor": [49, 136], "cool": [49, 52, 153, 155, 189, 206], "chatbot_tutori": 49, "uninstal": [50, 138], "reinstal": 50, "chatbot": [50, 60, 254], "browser": [50, 105, 169, 264], "subfold": 50, "visit": [50, 112, 113, 127, 185], "in_": 50, "_colab": 50, "_name": 50, "mount": 50, "gdrive": 50, "upload": [50, 259], "rerun": [50, 153], "evolv": [50, 103, 145, 151], "t4": 50, "sasank": [51, 117, 158], "chilamkurthi": [51, 117, 158], "scikit": [51, 138], "skimag": 51, "facial": 51, "pose": 51, "landmark": 51, "dlib": 51, "part_0_x": 51, "part_0_i": 51, "part_1_x": 51, "part_1_i": 51, "part_2_x": 51, "part_67_x": 51, "part_67_i": 51, "0805personali01": 51, "83": [51, 177, 247], "134": [51, 205], "1084239450_e76e00b7e7": 51, "70": [51, 148, 164, 178, 192, 202, 232], "236": 51, "257": [51, 232], "312": [51, 148], "person": [51, 58, 59, 113, 179], "img_nam": 51, "landmarks_fram": 51, "face_landmark": 51, "asarrai": [51, 75, 90], "show_landmark": 51, "scatter": [51, 79, 123, 134, 136, 172], "imread": 51, "facelandmarksdataset": 51, "csv_file": 51, "root_dir": 51, "is_tensor": 51, "face_dataset": 51, "fig": [51, 52, 117, 127, 150, 158, 166, 170], "set_titl": [51, 117, 158, 167, 170], "randomcrop": [51, 158], "crop": [51, 126, 167, 179], "tsfm": 51, "transformed_sampl": 51, "edg": [51, 98, 105, 119, 121, 144, 169, 180, 198, 201, 264], "new_w": 51, "extern": [51, 97, 112, 126, 144, 145, 187, 200, 210, 262, 264], "safer": 51, "stick": [51, 113, 136, 148, 262], "tsfrm": 51, "transformed_dataset": 51, "lose": [51, 53, 97, 147, 228, 262], "collate_fn": [51, 115, 118, 179], "show_landmarks_batch": 51, "sample_batch": 51, "images_batch": 51, "landmarks_batch": 51, "im_siz": 51, "grid_border_s": 51, "indent": [51, 148, 232, 264], "i_batch": 51, "4th": [51, 80], "imagefold": [51, 52, 92, 117, 158], "ant": [51, 117, 158, 267], "xxy": 51, "jpeg": [51, 140, 214], "xxz": 51, "bee": [51, 117, 158, 264], "123": [51, 164, 220, 265], "nsdf3": 51, "asd932_": 51, "data_transform": [51, 117, 158], "randomsizedcrop": 51, "hymenoptera_dataset": 51, "hymenoptera_data": [51, 117, 158], "dataset_load": 51, "\u8ba1\u7b97\u673a\u89c6\u89c9\u8fc1\u79fb\u5b66\u4e60\u6559\u7a0b": [51, 121], "data_loading_tutori": 51, "nathan": [52, 73, 85, 86], "celebr": [52, 121], "pictur": [52, 73, 124, 166], "thorough": [52, 177, 178], "shed": 52, "spend": [52, 82, 153], "sake": [52, 127, 137, 157, 161], "ian": 52, "constantli": [52, 73, 161], "outsmart": 52, "equilibrium": 52, "perfect": [52, 192], "notat": [52, 73, 110], "chw": [52, 159], "3x64x64": 52, "thought": [52, 83, 113, 116, 191, 264], "latent": [52, 103], "p_": 52, "p_g": 52, "minimax": 52, "logd": 52, "underset": 52, "mathbb": [52, 85, 151, 161], "sim": 52, "radford": 52, "unsupervis": 52, "compris": [52, 60, 112], "drawn": [52, 160], "volum": [52, 123], "tip": [52, 58, 59, 103, 170], "dset": 52, "vutil": 52, "anim": 52, "manualse": 52, "use_deterministic_algorithm": 52, "dataroot": 52, "image_s": [52, 153], "spatial": [52, 121, 179], "64x64": 52, "nc": [52, 89], "nz": 52, "ngf": 52, "ndf": 52, "num_epoch": [52, 117, 118, 158, 160, 179, 199], "0002": 52, "ngpu": 52, "celeba": 52, "celeb": 52, "img_align_celeba": 52, "188242": 52, "173822": 52, "284702": 52, "537394": 52, "real_batch": 52, "stdev": 52, "weights_init": 52, "netg": 52, "netd": 52, "constant_": [52, 135], "dataparallel": [52, 120, 121, 125, 138, 150, 186, 231, 248], "downsampl": [52, 135, 147], "promot": 52, "healthi": 52, "bceloss": [52, 110], "ell": [52, 166], "l_1": 52, "l_n": 52, "quad": [52, 161], "y_n": 52, "bce": 52, "gt": [52, 78, 109, 254], "fixed_nois": 52, "establish": [52, 60], "optimizerd": 52, "optimizerg": 52, "Be": 52, "somewhat": 52, "incorrect": [52, 125, 131, 173, 254], "collaps": 52, "went": [52, 145, 198], "ganhack": 52, "secondli": [52, 188], "loss_d": 52, "loss_g": 52, "img_list": 52, "real_cpu": 52, "b_size": 52, "errd_real": 52, "errd_fak": 52, "d_g_z1": 52, "errd": 52, "errg": 52, "d_g_z2": 52, "stat": [52, 55, 122, 129, 160, 169, 196, 199, 239, 247], "tloss_d": 52, "tloss_g": 52, "versu": [52, 73, 121], "im": [52, 75, 113], "artistanim": 52, "repeat_delai": 52, "blit": 52, "to_jshtml": 52, "music": 52, "dcgan_faces_tutori": 52, "mingpt": [53, 54, 55, 56, 132, 133], "aw": [53, 55, 123, 132, 133, 177, 178, 220, 252], "p3": [53, 54, 55, 64, 111, 132, 133], "8xlarg": [53, 55], "failur": [53, 61, 133, 134, 145, 174, 175, 212], "disrupt": 53, "suscept": 53, "elast": [53, 122, 134, 216], "attempt": [53, 99, 122, 174, 175], "minutia": 53, "multinod": [53, 132, 176], "load_snapshot": 53, "snapshot_path": 53, "train_step": 53, "should_checkpoint": 53, "save_snapshot": 53, "membership": [53, 133], "intervent": [53, 97, 186], "diff": [53, 55, 60, 82, 121, 198, 232], "multigpu": [53, 55, 133], "multigpu_torchrun": 53, "envvari": 53, "ddp_setup": [53, 55], "12355": [53, 55, 123, 134, 215], "local_rank": [53, 122, 133, 138, 186], "gpu_id": [53, 55, 133], "_save_snapshot": 53, "model_st": 53, "epochs_run": 53, "_load_snapshot": 53, "max_epoch": [53, 149], "_run_epoch": [53, 55], "total_epoch": [53, 55], "nproc_per_nod": [53, 122, 124, 134, 216], "migrat": [53, 55, 177], "fault": [54, 55, 56, 60, 61, 87, 132, 133], "toler": [54, 55, 56, 61, 87, 132, 133], "cluster": [54, 122, 126, 132, 133, 134, 136], "torchrun": [54, 122, 124, 132, 133, 216], "amazon": 54, "ec2": [54, 123], "gentli": 54, "convert_sync_batchnorm": 55, "single_gpu": 55, "mytraindataset": 55, "distributedsampl": [55, 56, 122, 123, 138, 186], "destroy_process_group": [55, 122, 123, 134, 215], "excess": [55, 82, 124, 221], "set_epoch": [55, 122, 123], "b_sz": 55, "_run_batch": 55, "ckp": 55, "_save_checkpoint": 55, "load_train_obj": 55, "prepare_dataload": 55, "shorthand": [55, 264], "ring": [56, 124], "destroi": [56, 142, 265], "soumith": [57, 81, 136], "chintala": [57, 81, 136], "scientif": [57, 95], "blitz": [57, 105, 110, 170], "jeff": [58, 59, 119], "tang": [58, 59, 119], "review": [58, 59, 78, 113, 132, 138, 158, 174, 175, 177, 178, 190, 191, 193, 221], "jeremiah": [58, 59], "chung": [58, 59, 126], "region": [58, 59, 126, 144, 167, 172, 177, 178, 179, 253], "bicycl": [58, 59], "bu": [58, 59], "autonom": [58, 59], "favor": [58, 126, 151, 160], "pitfal": [58, 59], "beyond": [58, 59, 61, 101, 156, 157, 210], "ndk": [58, 209, 225, 228], "recip": [58, 59, 61, 109, 119, 120, 178, 189, 195, 205, 207, 209, 223, 233, 238, 252], "deeplabv3_script": [58, 59, 205, 223], "deeplabv3_resnet50": [58, 59, 205, 223, 224], "resnet101": [58, 148], "hub": [58, 59, 119, 169, 205, 223, 224], "v0": [58, 59, 121, 147, 161, 179, 205, 223, 224, 261], "scriptedm": [58, 59], "168mb": [58, 59], "deeplab": [58, 59, 121, 205], "input_tensor": [58, 59, 159, 166, 167, 195, 214], "400x400": [58, 59], "oncreat": [58, 209], "mainact": [58, 207, 209, 223], "assetfilepath": [58, 209, 223], "ioexcept": [58, 209], "imagesegment": [58, 205, 223], "breakpoint": [58, 59], "73": [58, 145, 164, 177, 202, 232], "inputtensor": [58, 128, 156, 207], "tensorimageutil": [58, 224], "bitmaptofloat32tensor": 58, "bitmap": 58, "torchvision_norm_mean_rgb": [58, 224], "torchvision_norm_std_rgb": [58, 224], "getdataasfloatarrai": 58, "outtensor": 58, "todictstringkei": 58, "pytorch_vision_deeplabv3_resnet101": [58, 59], "outputtensor": [58, 59, 156, 188, 189, 207, 224], "getwidth": 58, "getheight": 58, "emul": [58, 147, 186, 205], "consum": [58, 59, 75, 107, 109, 125, 145, 150, 160, 162, 164, 165, 183, 189, 196, 201], "bulk": [58, 59, 130], "heaviest": [58, 59], "intvalu": 58, "classnum": [58, 59], "maxi": [58, 59], "maxj": [58, 59], "maxnum": [58, 59], "green": [58, 59, 60, 98, 113, 122, 124, 170], "sheep": [58, 59], "black": [58, 59, 73, 82, 124, 126, 162, 166], "0xffff0000": 58, "0xff00ff00": 58, "0xff0000ff": 58, "0xff000000": 58, "outputbitmap": 58, "imageview": 58, "bmpsegment": 58, "createscaledbitmap": 58, "getconfig": 58, "setpixel": 58, "setimagebitmap": 58, "textview": 58, "helloworld": [59, 119, 188, 189, 225, 226], "deeplabv3_resnet101": 59, "viewcontrol": [59, 223], "swift": [59, 223, 226], "uiviewcontrol": 59, "var": [59, 80, 130, 188, 209], "uiimag": 59, "func": [59, 104, 118, 121, 139, 142, 145, 146, 151, 155, 194, 206, 245], "viewdidload": 59, "torchmodul": [59, 189, 223, 226], "filepath": [59, 223], "forresourc": [59, 223], "oftyp": [59, 223], "fileatpath": [59, 223], "fatalerror": [59, 223], "predictimag": [59, 189], "unsign": [59, 145, 232], "imagebuff": [59, 189], "autogradmod": [59, 209], "non_var_type_mod": 59, "nsmutablearrai": 59, "floatinput": 59, "nil": [59, 223], "addobject": 59, "outputdict": 59, "_impl": [59, 188, 189, 223], "togenericdict": 59, "floatbuff": [59, 207, 224], "temporarili": 59, "nsmutabledata": 59, "datawithlength": 59, "sizeof": [59, 209], "mutablebyt": 59, "floatvalu": 59, "uiimageview": 59, "convertrgbbuffertouiimag": 59, "uiimagehelp": 59, "uitextview": 59, "segmentimag": 59, "phase": [60, 76, 78, 117, 136, 158, 164, 188, 195, 201, 205], "imper": 60, "idiomat": 60, "defer": 60, "optimiz": 60, "decor": [60, 61, 85, 110, 120, 147, 162, 173], "caveat": [60, 113, 134, 162, 201], "remind": [60, 113, 177], "necessarili": [60, 105, 107, 108, 131], "cooper": [60, 221], "chronolog": 60, "attend": 60, "greedili": 60, "_length": 60, "adher": [60, 203], "stem": 60, "surround": 60, "freedom": [60, 166], "__constants__": [60, 254], "liter": [60, 265], "_devic": [60, 254], "_sos_token": [60, 254], "pep": [60, 264], "3107": 60, "mypi": 60, "_decoder_n_lay": [60, 254], "evaluateexampl": 60, "stdin": 60, "4000_checkpoint": 60, "test_seq": 60, "num": [60, 104, 130, 138, 162, 186], "_word": 60, "test_seq_length": 60, "traced_encod": [60, 254], "presenc": [60, 173, 200], "unscript": [60, 258], "test_encoder_output": 60, "test_encoder_hidden": 60, "test_decoder_hidden": 60, "test_decoder_input": 60, "traced_decod": [60, 254], "scripted_search": 60, "script_modul": [60, 85], "scripted_chatbot": 60, "deploy_seq2seq_hybrid_frontend_tutori": 60, "shen": [61, 123, 134, 135, 150, 156, 162, 164], "li": [61, 103, 123, 127, 128, 134, 135, 136, 150, 156, 162, 164, 173, 177, 178], "categor": [61, 82, 137, 162, 164, 178], "lifetim": [61, 164], "c10d": [61, 134, 156, 248], "all_gath": [61, 122, 123, 136, 156], "p2p": 61, "isend": [61, 136], "gradual": [61, 85, 153], "willing": [61, 113], "hurdl": 61, "vldb": 61, "starter": 61, "unbalanc": 61, "zeroredundancyoptim": [61, 156, 252], "footprint": [61, 109, 122, 123, 132, 153, 219, 229], "uneven": [61, 120], "fsdp": [61, 121, 124, 132, 215, 216], "growth": [61, 172, 193], "recoveri": [61, 134], "sometim": [61, 125, 131, 133, 134, 137, 146, 161, 164, 166, 185, 192, 193], "inevit": [61, 134], "oom": [61, 122, 153], "desynchron": 61, "pillar": 61, "protocol": [61, 115], "spirit": [61, 103, 138, 264], "hogwild": 61, "async_execut": [61, 120, 121, 162], "polynomi": [63, 64, 65, 67, 68, 69, 111], "euclidean": [63, 64, 67, 68, 69, 97, 111], "linspac": [63, 64, 65, 67, 68, 69, 71, 72, 89, 111], "held": [63, 78, 97, 103, 111, 127, 163], "polynomial_autograd": 63, "bx": [64, 111], "cx": [64, 99, 111], "p_3": [64, 111], "5x": [64, 111], "legendr": 64, "legendrepolynomial3": [64, 111], "polynomial_custom_funct": 64, "strang": [65, 85, 111, 264], "fifth": [65, 265], "dynamicnet": [65, 111], "tough": [65, 111, 113], "30000": [65, 111, 136], "dynamic_net": 65, "polynomial3": [67, 111], "polynomial_modul": 67, "xx": [68, 69, 111, 145], "flaten": [68, 111], "mse": [68, 93, 97, 111], "linear_lay": [68, 69, 111], "polynomial_nn": 68, "overwritten": [69, 111, 186], "checkout": [69, 111, 117, 189, 207], "polynomial_optim": 69, "\u4e00\u4e2a\u4e09\u6b21\u591a\u9879\u5f0f": [71, 72], "\u5230": [71, 72, 89, 95, 230, 231, 232, 252], "\u901a\u8fc7\u6700\u5c0f\u5316\u6b27\u51e0\u91cc\u5f97\u8ddd\u79bb\u7684\u5e73\u65b9\u6765\u8bad\u7ec3\u9884\u6d4b": 71, "\u8be5\u5b9e\u73b0\u4f7f\u7528": [71, 72], "\u624b\u52a8\u8ba1\u7b97\u524d\u5411\u4f20\u9012": 71, "\u635f\u5931\u548c\u53cd\u5411\u4f20\u9012": [71, 72], "numpy\u6570\u7ec4\u662f\u4e00\u4e2a\u901a\u7528\u7684n\u7ef4\u6570\u7ec4": 71, "\u5b83\u4e0d\u4e86\u89e3\u6df1\u5ea6\u5b66\u4e60": [71, 72], "\u68af\u5ea6\u6216\u8ba1\u7b97\u56fe": 71, "\u53ea\u662f\u7528\u4e8e\u6267\u884c\u901a\u7528\u6570\u503c\u8ba1\u7b97\u7684\u4e00\u4e2a\u5e93": 71, "grad_y_pr": [71, 72, 111], "grad_a": [71, 72, 111], "grad_b": [71, 72, 111], "grad_c": [71, 72, 111], "grad_d": [71, 72, 111], "polynomial_numpi": 71, "\u901a\u8fc7\u6700\u5c0f\u5316\u6b27\u51e0\u91cc\u5f97\u8ddd\u79bb\u7684\u5e73\u65b9\u6765\u8bad\u7ec3\u9884\u6d4b\u4ece": 72, "\u5f20\u91cf\u624b\u52a8\u8ba1\u7b97\u524d\u5411\u4f20\u9012": 72, "\u5f20\u91cf\u57fa\u672c\u4e0a\u4e0e": 72, "\u6570\u7ec4\u76f8\u540c": 72, "\u8ba1\u7b97\u56fe\u6216\u68af\u5ea6": 72, "\u53ea\u662f\u7528\u4e8e\u4efb\u610f\u6570\u503c\u8ba1\u7b97\u7684\u901a\u7528n\u7ef4\u6570\u7ec4": 72, "\u6570\u7ec4\u548c": 72, "\u5f20\u91cf\u4e4b\u95f4\u6700\u5927\u7684\u533a\u522b\u662f": 72, "\u5f20\u91cf\u53ef\u4ee5\u5728": 72, "\u4e0a\u8fd0\u884c": 72, "\u4e0a\u8fd0\u884c\u64cd\u4f5c": 72, "\u53ea\u9700\u5c06\u5f20\u91cf\u8f6c\u6362\u4e3a": 72, "polynomial_tensor": 72, "appreci": [73, 98, 113], "overlook": 73, "secur": [73, 169], "awar": [73, 124, 126, 136, 137, 138, 148, 165, 174, 175, 177, 184, 188, 189, 190, 197], "vulner": 73, "surpris": [73, 154], "impercept": 73, "perturb": 73, "drastic": 73, "overarch": 73, "misclassif": 73, "alter": [73, 112, 185], "har": 73, "remark": [73, 173], "jump": [73, 102, 105, 107, 108, 140, 147], "mathbf": 73, "nabla_": [73, 99], "007": 73, "misclassifi": 73, "gibbon": 73, "clearli": [73, 126, 190, 191], "pretrained_model": [73, 172], "lenet_mnist_model": [73, 222], "dropout1": [73, 123, 163, 204, 234], "dropout2": [73, 123, 163, 204, 234], "9216": [73, 123, 130, 155, 163, 204, 234], "log_softmax": [73, 93, 97, 99, 102, 103, 104, 123, 130, 149, 155, 163, 166, 167, 204, 222, 234], "test_load": [73, 97, 123, 130, 163, 167, 222], "1307": [73, 123, 130, 136, 149, 163, 167, 222], "3081": [73, 123, 130, 136, 149, 163, 167, 222], "fgsm_attack": 73, "clean": [73, 102, 122, 123, 134, 153, 188, 190, 196, 264], "data_grad": 73, "_imag": 73, "_grad": 73, "sign_data_grad": 73, "perturbed_imag": 73, "denorm": 73, "strength": [73, 170, 196], "adv_exampl": 73, "init_pr": 73, "bother": 73, "datagrad": 73, "data_denorm": 73, "perturbed_data": 73, "reappli": 73, "perturbed_data_norm": 73, "final_pr": 73, "adv_ex": 73, "adv": 73, "final_acc": 73, "ttest": 73, "trend": [73, 83, 169], "curv": [73, 150, 169, 170], "linearli": 73, "ytick": [73, 170], "xtick": [73, 170], "lunch": [73, 195], "BUT": [73, 101], "percept": 73, "tradeoff": [73, 121, 125, 126, 136, 160], "evid": 73, "fontsiz": 73, "orig": [73, 143], "nip": [73, 118], "defens": 73, "competit": [73, 139, 155], "defenc": 73, "perhap": [73, 127, 157, 254], "dirti": 73, "fgsm_tutori": 73, "torchvision_tutori": [74, 179], "multimod": [75, 121], "ow": 75, "ubiquit": 75, "caption": [75, 264, 267], "vqa": 75, "unimod": 75, "contrast": [75, 128, 150, 155, 178, 190], "textvqa": 75, "bert": [75, 93, 121, 123, 178, 197, 200, 229, 235], "dl": [75, 104, 178, 185, 208, 209, 222, 264], "fbaipublicfil": [75, 185], "pythia": 75, "gz": [75, 104, 118, 237, 264, 265], "xf": 75, "prepend": [75, 155], "exclam": 75, "34602": 75, "answers_textvqa_more_than_1": 75, "answer_to_idx": 75, "uniform": [75, 113, 177, 203], "berttoken": [75, 138, 186], "functool": [75, 87, 113, 122, 123, 142, 146], "image_transform": 75, "return_tensor": 75, "ans_to_count": 75, "max_valu": 75, "ans_idx": 75, "uncas": [75, 138, 145, 178, 186], "set_transform": 75, "flava_model_for_classif": 75, "mlp": [75, 124, 139, 177], "toi": [75, 98, 102, 123, 134, 143, 150, 164, 176, 200], "mdetr": 75, "omnivor": 75, "multitask": 75, "flava_finetuning_tutori": 75, "flush": [76, 94, 96, 189, 204, 209, 246, 264], "twice": [76, 131, 185, 232], "retain_vari": 76, "freed": [76, 122, 153, 198], "fail": [76, 112, 125, 145, 148, 159, 161, 165, 173, 191, 197, 199, 201, 209, 221, 223, 242], "autograd_tutorial_old": [76, 77], "tensor_tutorial_old": [77, 80], "nnft_tutori": [77, 78], "redesign": 78, "concatt": 78, "caddtabl": 78, "nngraph": 78, "input1": 78, "input2": 78, "pdb": 78, "debugg": [78, 104], "mnistconvnet": 78, "pool1": 78, "pool2": 78, "crazi": 78, "legal": [78, 194], "ephemer": [78, 153], "classnll": 78, "err": 78, "printnorm": 78, "register_forward_hook": [78, 240], "printgradnorm": 78, "register_backward_hook": 78, "i2h": [78, 127, 128], "h2o": [78, 127], "penn": [78, 179], "bank": 78, "timestep": [78, 98, 102, 127, 128, 161], "dataparallelmodel": 79, "block2": 79, "block3": 79, "becam": [79, 209], "inaccess": 79, "clash": 79, "mydataparallel": 79, "__getattr__": [79, 85], "attributeerror": 79, "getattr": [79, 147, 148, 186, 210, 248], "primit": [79, 121, 124, 146, 178, 198, 208], "mpi": [79, 136], "parallel_appli": 79, "clariti": [79, 143], "output_devic": [79, 134], "distributedmodel": 79, "\u6df1\u5ea6\u5b66\u4e60": [79, 127, 128, 166], "60\u5206\u949f\u5165\u95e8": [79, 127, 128, 166], "uniniti": [80, 137, 203], "postfix": 80, "narrow_": 80, "lua": [80, 81, 127, 128, 166], "1st": [80, 97, 102, 123, 129], "5th": 80, "camelcas": 80, "anymor": 80, "indexadd": 80, "index_add_": 80, "chartensor": 80, "anupam": [82, 83, 116], "bhatnagar": [82, 83], "holistictraceanalysi": 82, "deactiv": 82, "trace_dir": 82, "trace_analysi": 82, "traceanalysi": 82, "engag": [82, 197], "time_spent_df": 82, "get_temporal_breakdown": 82, "enqueu": 82, "slowdown": [82, 122, 125], "consecut": [82, 128, 137, 147, 150, 159, 172, 178], "insuffici": [82, 161, 177], "delai": [82, 134, 162, 177], "stall": [82, 177, 178], "gap": [82, 85], "nanosecond": 82, "consecutive_kernel_delai": 82, "get_idle_time_breakdown": 82, "idle_time_df": 82, "show_idle_interval_stat": 82, "percentag": [82, 119, 144, 157, 177, 194], "visualize_pctg": 82, "comm": 82, "comp": 82, "mem": [82, 109, 239], "proport": [82, 153], "pie": [82, 153], "chart": 82, "kernel_type_metrics_df": 82, "kernel_metrics_df": 82, "get_gpu_kernel_breakdown": 82, "bottleneck": [82, 109, 122, 124, 133, 135, 150, 153, 162, 169, 173, 177, 178], "plotli": [82, 126], "hover": [82, 126, 159], "pan": 82, "num_kernel": 82, "duration_ratio": 82, "preced": [82, 130, 137, 143, 178, 183, 198, 200, 264], "lab": [82, 170, 185], "image_render": 82, "jupyterlab": 82, "gpu_kernel_breakdown": 82, "tflop": 82, "oversubscrib": 82, "unresolv": [82, 192], "extent": 82, "overlap_df": 82, "get_comm_comp_overlap": 82, "h2d": 82, "d2h": 82, "d2d": 82, "memcpi": 82, "memset": 82, "outstand": [82, 200], "generate_trace_with_count": 82, "_with_count": 82, "screenshot": 82, "get_memory_bw_summari": 82, "get_queue_length_summari": 82, "get_memory_bw_time_seri": 82, "get_queue_length_time_seri": 82, "mem_bw_summari": 82, "queue_len_summari": 82, "mem_bw_seri": 82, "queue_len_seri": 82, "get_queue_length_seri": 82, "25th": 82, "50th": 82, "75th": 82, "percentil": 82, "cudalaunchkernel": 82, "cudamemcpyasync": 82, "cudamemsetasync": 82, "kernel_info_df": 82, "get_cuda_kernel_launch_stat": 82, "outlier": [82, 161], "microsecond": [82, 146, 165, 219, 224, 232], "cutoff": 82, "runtime_cutoff": 82, "launch_delay_cutoff": 82, "occasion": [83, 163, 166], "hta": [83, 169], "tracediff": 83, "cumul": [83, 160, 161, 176], "compare_trac": 83, "ops_diff": 83, "absent": 83, "visualize_counts_diff": 83, "visualize_duration_diff": 83, "ten": [83, 97], "compare_traces_output": 83, "sort_valu": [83, 126], "diff_count": 83, "diff_dur": 83, "differer": 83, "overshadow": 83, "profilerstep": [83, 145], "trace_diff_demo": 83, "learning_hybrid_frontend_through_example_tutori": [84, 85], "hybrid_frontend": 84, "introduction_to_hybrid_frontend_tutori": 84, "intens": [85, 145, 178], "shini": 85, "enjoi": [85, 147], "aquaint": 85, "refin": 85, "proven": [85, 193, 200], "resouc": 85, "consumpt": [85, 109, 122, 124, 126, 145, 157, 169, 214], "discrep": 85, "interwork": 85, "intrus": [85, 153], "broken": [85, 101, 118, 178], "epsilon": [85, 130, 137, 147, 160, 161], "biggl": 85, "lfloor": 85, "prod_": 85, "biggr": 85, "rfloor": 85, "hline": 85, "190": [85, 164, 172, 232], "4377": 85, "59051": 85, "traced_fn": 85, "script_fn": 85, "floor": [85, 95, 127, 128, 166], "accomod": [85, 132], "fmod": [85, 192], "traced_modul": 85, "n_trace": 85, "onnx": [85, 121], "dramat": 87, "industri": 87, "tensorboard": [87, 88, 91, 96, 121, 126, 149, 239, 246, 252], "slight": [87, 131, 233], "pathlib": [87, 104, 122, 126, 147, 172, 195], "random_split": [87, 115], "get_checkpoint": 87, "ashaschedul": 87, "cloudpickl": 87, "trial": [87, 126, 149], "load_data": 87, "train_cifar": 87, "as_directori": 87, "checkpoint_dir": [87, 215], "pkl": [87, 104, 223], "checkpoint_st": 87, "start_epoch": 87, "net_state_dict": 87, "optimizer_state_dict": [87, 112, 215, 221, 242], "luckili": [87, 145, 192], "fraction": 87, "checkpoint_data": 87, "wb": [87, 104, 153, 259], "dump": [87, 145, 153, 189, 223, 232, 247], "from_directori": 87, "val_step": 87, "bad": [87, 113, 125, 140, 174, 175, 178, 185], "wast": [87, 169, 194, 197, 203], "test_ab": 87, "train_subset": 87, "val_subset": 87, "valload": 87, "epoch_step": 87, "test_accuraci": 87, "loguniform": [87, 232], "gpus_per_tri": 87, "resources_per_tri": 87, "num_sampl": [87, 122], "checkpoint_at_end": 87, "max_num_epoch": 87, "abspath": [87, 156], "max_t": 87, "grace_period": 87, "reduction_factor": 87, "best_trial": 87, "get_best_tri": 87, "last_result": 87, "best_trained_model": 87, "best_checkpoint": 87, "get_best_checkpoint": 87, "best_checkpoint_data": 87, "test_acc": 87, "000668163": 87, "31479": 87, "0977": 87, "0331514": 87, "31605": 87, "0983": 87, "000150295": 87, "30755": 87, "1023": 87, "0128248": 87, "66912": 87, "4391": 87, "00464561": 87, "7316": 87, "3463": 87, "00031556": 87, "19409": 87, "1736": 87, "00574329": 87, "85679": 87, "3368": 87, "00325652": 87, "30272": 87, "0984": 87, "000342987": 87, "76044": 87, "003734": 87, "53101": 87, "4761": 87, "0037339984519545164": 87, "5310075663924216": 87, "4737": 87, "hyperparameter_tuning_tutori": 87, "\u7b80\u4ecb": [88, 89, 90, 91, 93, 94], "tensorboard\u652f\u6301": [88, 89, 90, 92, 93, 94, 95, 96], "\u6a21\u578b\u7406\u89e3": [88, 89, 90, 92, 93, 94, 95, 96], "\u4f5c\u8005": [88, 129, 211, 215, 216, 220, 231, 235, 238, 245, 248, 253, 256, 257], "brad": 88, "heintz": 88, "\u672c\u6559\u7a0b\u4e0eyoutube\u4e0a\u7684": 88, "\u521d\u5b66\u8005\u7cfb\u5217": 88, "\u540c\u6b65": [88, 231], "\u6bcf\u4e2a\u90e8\u5206\u7684\u9876\u90e8\u90fd\u6709\u4e00\u4e2acolab\u94fe\u63a5": 88, "\u5b83\u4f1a\u5728\u5b8c\u5168\u6258\u7ba1\u7684\u73af\u5883\u4e2d\u6253\u5f00\u4e00\u4e2a\u5305\u542b\u4ee3\u7801\u7684\u7b14\u8bb0\u672c": 88, "\u4e13\u4e1a\u63d0\u793a": 88, "\u4f7f\u7528gpu\u8fd0\u884c\u65f6\u7684colab\u53ef\u4ee5\u52a0\u901f\u64cd\u4f5c": 88, "\u8fd0\u884c\u65f6": 88, "\u66f4\u6539\u8fd0\u884c\u65f6\u7c7b\u578b": 88, "\u672c\u5730": 88, "\u4e0b\u8f7dnotebook\u6216\u5c06\u4ee3\u7801\u590d\u5236\u5230\u60a8\u559c\u6b22\u7684ide\u4e2d": 88, "\u81ea\u52a8\u5fae\u5206\u57fa\u7840": 88, "\u652f\u6301": [88, 96, 222, 248, 252, 256], "captum": [88, 91, 236, 252], "\u8fdb\u884c\u6a21\u578b\u7406\u89e3": 88, "\u8ddf\u968f\u4e0b\u9762\u7684\u89c6\u9891\u6216\u5728": [89, 90, 92, 93, 94, 95, 96], "\u4e0a\u89c2\u770b": [89, 90, 92, 93, 94, 95, 96], "\u529f\u80fd\u662f\u4f7f": 89, "\u5728\u6784\u5efa\u673a\u5668\u5b66\u4e60\u9879\u76ee\u65f6\u7075\u6d3b\u4e14\u5feb\u901f\u7684\u90e8\u5206\u539f\u56e0": 89, "\u5b83\u5141\u8bb8\u5bf9\u590d\u6742\u8ba1\u7b97\u5feb\u901f\u8f7b\u677e\u5730\u8ba1\u7b97\u591a\u4e2a\u504f\u5bfc\u6570": 89, "\u4e5f\u79f0\u4e3a": 89, "\u8fd9\u4e2a\u64cd\u4f5c\u662f\u57fa\u4e8e\u53cd\u5411\u4f20\u64ad\u7684\u795e\u7ecf\u7f51\u7edc\u5b66\u4e60\u7684\u6838\u5fc3": 89, "\u7684\u5f3a\u5927\u4e4b\u5904\u5728\u4e8e\u5b83\u5728\u8fd0\u884c\u65f6\u52a8\u6001\u5730": 89, "\u8ddf\u8e2a\u4f60\u7684\u8ba1\u7b97": 89, "\u8fd9\u610f\u5473\u7740\u5982\u679c\u4f60\u7684\u6a21\u578b\u6709\u51b3\u7b56\u5206\u652f\u6216\u957f\u5ea6\u5728\u8fd0\u884c\u65f6\u624d\u77e5\u9053\u7684\u5faa\u73af": 89, "\u8ba1\u7b97\u4ecd\u7136\u4f1a\u88ab\u6b63\u786e\u8ddf\u8e2a": 89, "\u4f60\u4f1a\u5f97\u5230\u6b63\u786e\u7684\u68af\u5ea6\u6765\u9a71\u52a8\u5b66\u4e60": 89, "\u7ed3\u5408\u4f60\u7684\u6a21\u578b\u662f\u7528": 89, "\u6784\u5efa\u7684\u4e8b\u5b9e": 89, "\u8fd9\u6bd4\u4f9d\u8d56\u4e8e\u5bf9\u66f4\u52a0\u4e25\u683c\u7ed3\u6784\u5316\u7684\u6a21\u578b\u8fdb\u884c\u9759\u6001\u5206\u6790\u6765\u8ba1\u7b97\u68af\u5ea6\u7684\u6846\u67b6\u63d0\u4f9b\u4e86\u66f4\u5927\u7684\u7075\u6d3b\u6027": 89, "\u673a\u5668\u5b66\u4e60\u6a21\u578b\u662f\u4e00\u4e2a": 89, "\u6709\u8f93\u5165\u548c\u8f93\u51fa": 89, "\u5728\u672c\u8ba8\u8bba\u4e2d": 89, "\u6211\u4eec\u5c06\u628a\u8f93\u5165\u89c6\u4e3a\u4e00\u4e2a": 89, "\u7ef4\u5411\u91cf": 89, "\u5176\u5143\u7d20\u4e3a": 89, "\u7136\u540e\u6211\u4eec\u53ef\u4ee5\u5c06\u6a21\u578b": 89, "\u8868\u793a\u4e3a\u8f93\u5165\u7684\u5411\u91cf\u503c\u51fd\u6570": 89, "\u6211\u4eec\u5c06\u6a21\u578b": 89, "\u7684\u8f93\u51fa\u503c\u89c6\u4e3a\u5411\u91cf": 89, "\u56e0\u4e3a\u4e00\u822c\u6765\u8bf4": 89, "\u4e00\u4e2a\u6a21\u578b\u53ef\u80fd\u6709\u4efb\u610f\u6570\u91cf\u7684\u8f93\u51fa": 89, "\u7531\u4e8e\u6211\u4eec\u4e3b\u8981\u5728\u8bad\u7ec3\u7684\u80cc\u666f\u4e0b\u8ba8\u8bba\u81ea\u52a8\u5fae\u5206": 89, "\u6211\u4eec\u611f\u5174\u8da3\u7684\u8f93\u51fa\u5c06\u662f\u6a21\u578b\u7684\u635f\u5931": 89, "\u662f\u6a21\u578b\u8f93\u51fa\u7684\u5355\u503c\u6807\u91cf\u51fd\u6570": 89, "\u8be5\u51fd\u6570\u8868\u793a\u6211\u4eec\u6a21\u578b\u5bf9\u7279\u5b9a\u8f93\u5165\u7684": 89, "\u7406\u60f3": 89, "\u8f93\u51fa\u7684\u9884\u6d4b\u504f\u5dee\u6709\u591a\u5927": 89, "\u4ece\u8fd9\u4e00\u70b9\u5f00\u59cb": 89, "\u6211\u4eec\u901a\u5e38\u4f1a\u7701\u7565\u5411\u91cf\u7b26\u53f7": 89, "\u4f8b\u5982\u4f7f\u7528": 89, "\u6211\u4eec\u5e0c\u671b\u6700\u5c0f\u5316\u635f\u5931": 89, "\u5728\u7406\u60f3\u60c5\u51b5\u4e0b": [89, 95], "\u5373\u5b8c\u7f8e\u6a21\u578b\u7684\u60c5\u51b5\u4e0b": 89, "\u8fd9\u610f\u5473\u7740\u8c03\u6574\u5176\u5b66\u4e60\u6743\u91cd": 89, "\u4e5f\u5c31\u662f\u8be5\u51fd\u6570\u7684\u53ef\u8c03\u53c2\u6570": 89, "\u4f7f\u5f97\u5bf9\u4e8e\u6240\u6709\u8f93\u5165": 89, "\u635f\u5931\u4e3a\u96f6": 89, "\u5728\u73b0\u5b9e\u4e16\u754c\u4e2d": 89, "\u8fd9\u610f\u5473\u7740\u4e00\u4e2a\u8fed\u4ee3\u8fc7\u7a0b": 89, "\u4e0d\u65ad\u5fae\u8c03\u5b66\u4e60\u6743\u91cd": 89, "\u76f4\u5230\u6211\u4eec\u770b\u5230\u5bf9\u4e8e\u5e7f\u6cdb\u7684\u8f93\u5165": 89, "\u5f97\u5230\u53ef\u63a5\u53d7\u7684\u635f\u5931": 89, "\u6211\u4eec\u5982\u4f55\u51b3\u5b9a\u6743\u91cd\u5e94\u8be5\u671d\u54ea\u4e2a\u65b9\u5411\u5fae\u8c03\u591a\u8fdc\u5462": 89, "\u6211\u4eec\u5e0c\u671b": 89, "\u6700\u5c0f\u5316": 89, "\u8fd9\u610f\u5473\u7740\u4f7f\u5176\u5173\u4e8e\u8f93\u5165\u7684\u4e00\u9636\u5bfc\u6570\u7b49\u4e8e0": 89, "\u4f46\u662f\u8bf7\u8bb0\u4f4f": 89, "\u635f\u5931\u4e0d\u662f": 89, "\u76f4\u63a5": 89, "\u7531\u8f93\u5165\u5bfc\u51fa\u7684": 89, "\u800c\u662f\u7531\u6a21\u578b\u8f93\u51fa\u7684\u51fd\u6570\u5bfc\u51fa\u7684": 89, "\u800c\u6a21\u578b\u8f93\u51fa\u53c8\u662f\u8f93\u5165\u7684\u76f4\u63a5\u51fd\u6570": 89, "\u6839\u636e\u5fae\u79ef\u5206\u7684\u94fe\u5f0f\u6cd5\u5219": 89, "\u6211\u4eec\u6709": [89, 95], "\u662f\u590d\u6742\u7684\u5730\u65b9": 89, "\u5982\u679c\u6211\u4eec\u518d\u6b21\u4f7f\u7528\u94fe\u5f0f\u6cd5\u5219\u5c55\u5f00\u6a21\u578b\u8f93\u51fa\u5173\u4e8e\u8f93\u5165\u7684\u504f\u5bfc\u6570\u7684\u8868\u8fbe\u5f0f": 89, "\u5b83\u5c06\u6d89\u53ca\u6bcf\u4e2a\u4e58\u4ee5\u7684\u5b66\u4e60\u6743\u91cd": 89, "\u6bcf\u4e2a\u6fc0\u6d3b\u51fd\u6570\u4ee5\u53ca\u6a21\u578b\u4e2d\u7684\u6bcf\u4e2a\u5176\u4ed6\u6570\u5b66\u53d8\u6362\u7684\u8bb8\u591a\u5c40\u90e8\u504f\u5bfc\u6570": 89, "\u6211\u4eec\u8bd5\u56fe\u6d4b\u91cf\u5176\u68af\u5ea6\u7684\u6bcf\u4e2a\u53d8\u91cf\u7684\u5b8c\u6574\u8868\u8fbe\u5f0f": 89, "\u90fd\u662f\u901a\u8fc7\u8ba1\u7b97\u56fe\u4e2d\u6240\u6709\u53ef\u80fd\u8def\u5f84\u7684\u5c40\u90e8\u68af\u5ea6\u4e4b\u548c\u7684\u4e58\u79ef": 89, "\u7279\u522b\u611f\u5174\u8da3\u7684\u662f\u5b66\u4e60\u6743\u91cd\u4e0a\u7684\u68af\u5ea6": 89, "\u5b83\u4eec\u544a\u8bc9\u6211\u4eec": 89, "\u5e94\u8be5\u671d\u54ea\u4e2a\u65b9\u5411\u6539\u53d8\u6bcf\u4e2a\u6743\u91cd": 89, "\u4ee5\u4f7f\u635f\u5931\u51fd\u6570\u66f4\u63a5\u8fd1\u4e8e\u96f6": 89, "\u7531\u4e8e\u8fd9\u4e9b\u5c40\u90e8\u5bfc\u6570\u7684\u6570\u91cf": 89, "\u6bcf\u4e2a\u5bf9\u5e94\u4e8e\u8ba1\u7b97\u56fe\u4e2d\u7684\u5355\u72ec\u8def\u5f84": 89, "\u5f80\u5f80\u4f1a\u968f\u7740\u795e\u7ecf\u7f51\u7edc\u7684\u6df1\u5ea6\u5448\u6307\u6570\u589e\u957f": 89, "\u56e0\u6b64\u8ba1\u7b97\u5b83\u4eec\u7684\u590d\u6742\u5ea6\u4e5f\u4f1a\u589e\u52a0": 89, "\u8fd9\u5c31\u662f\u81ea\u52a8\u5fae\u5206\u53d1\u6325\u4f5c\u7528\u7684\u5730\u65b9": 89, "\u5b83\u8ddf\u8e2a\u6bcf\u4e00\u6b65\u8ba1\u7b97\u7684\u5386\u53f2": 89, "\u4f60\u5728pytorch\u6a21\u578b\u4e2d\u8ba1\u7b97\u7684\u6bcf\u4e2a\u5f20\u91cf\u90fd\u4fdd\u7559\u4e86\u5176\u8f93\u5165\u5f20\u91cf\u548c\u521b\u5efa\u5b83\u7684\u51fd\u6570\u7684\u5386\u53f2\u8bb0\u5f55": 89, "\u7ed3\u5408pytorch\u4e2d\u7528\u4e8e\u5bf9\u5f20\u91cf\u8fdb\u884c\u64cd\u4f5c\u7684\u6bcf\u4e2a\u51fd\u6570\u90fd\u5185\u7f6e\u4e86\u8ba1\u7b97\u81ea\u8eab\u5bfc\u6570\u7684\u5b9e\u73b0\u8fd9\u4e00\u4e8b\u5b9e": 89, "\u8fd9\u6781\u5927\u5730\u52a0\u5feb\u4e86\u5b66\u4e60\u6240\u9700\u7684\u5c40\u90e8\u5bfc\u6570\u7684\u8ba1\u7b97\u901f\u5ea6": 89, "\u8fd9\u662f\u5f88\u591a\u7406\u8bba": 89, "\u4f46\u5728\u5b9e\u8df5\u4e2d\u4f7f\u7528\u81ea\u52a8\u5fae\u5206\u662f\u4ec0\u4e48\u6837\u7684\u5462": 89, "\u8ba9\u6211\u4eec\u4ece\u4e00\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50\u5f00\u59cb": 89, "\u9996\u5148": [89, 90, 92, 95, 104, 216, 217, 231, 232, 235, 238, 245, 253], "\u6211\u4eec\u5c06\u5bfc\u5165\u4e00\u4e9b\u5185\u5bb9": 89, "\u4ee5\u4fbf\u53ef\u4ee5\u7ed8\u5236\u7ed3\u679c": 89, "ticker": [89, 127, 166], "\u63a5\u4e0b\u6765": [89, 92, 95, 104, 217, 220, 238, 253], "\u6211\u4eec\u5c06\u521b\u5efa\u4e00\u4e2a\u8f93\u5165\u5f20\u91cf": 89, "\u5176\u503c\u5747\u5300\u5206\u5e03\u5728\u533a\u95f4": 89, "2\u03c0": 89, "\u5e76\u6307\u5b9a": 89, "\u4e0e\u5927\u591a\u6570\u521b\u5efa\u5f20\u91cf\u7684\u51fd\u6570\u4e00\u6837": 89, "\u63a5\u53d7\u4e00\u4e2a\u53ef\u9009\u7684": 89, "\u9009\u9879": 89, "\u8bbe\u7f6e\u6b64\u6807\u5fd7\u610f\u5473\u7740\u5728\u968f\u540e\u7684\u6bcf\u4e2a\u8ba1\u7b97\u4e2d": 89, "\u90fd\u4f1a\u5728\u8be5\u8ba1\u7b97\u7684\u8f93\u51fa\u5f20\u91cf\u4e2d\u7d2f\u79ef\u8ba1\u7b97\u5386\u53f2": 89, "\u6211\u4eec\u5c06\u6267\u884c\u4e00\u4e2a\u8ba1\u7b97": 89, "\u5e76\u7ed8\u5236\u5176\u8f93\u51fa\u4e0e\u8f93\u5165\u7684\u5173\u7cfb\u56fe": 89, "\u8ba9\u6211\u4eec\u4ed4\u7ec6\u770b\u770b\u5f20\u91cf": 89, "\u5f53\u6211\u4eec\u6253\u5370\u5b83\u65f6": 89, "\u6211\u4eec\u770b\u5230\u4e00\u4e2a\u6307\u793a\u5b83\u6b63\u5728\u8ddf\u8e2a\u5176\u8ba1\u7b97\u5386\u53f2\u7684\u6307\u793a\u7b26": 89, "\u8fd9\u4e2a": [89, 92, 238], "\u7ed9\u4e86\u6211\u4eec\u4e00\u4e2a\u63d0\u793a": 89, "\u5f53\u6211\u4eec\u6267\u884c\u53cd\u5411\u4f20\u64ad\u6b65\u9aa4\u5e76\u8ba1\u7b97\u68af\u5ea6\u65f6": 89, "\u6211\u4eec\u9700\u8981\u8ba1\u7b97\u6240\u6709\u8fd9\u4e2a\u5f20\u91cf\u8f93\u5165\u7684": 89, "\u7684\u5bfc\u6570": 89, "\u8ba9\u6211\u4eec\u6267\u884c\u66f4\u591a\u8ba1\u7b97": 89, "\u6700\u540e": [89, 92, 96, 104, 214, 217, 241], "\u8ba9\u6211\u4eec\u8ba1\u7b97\u4e00\u4e2a\u5355\u5143\u7d20\u8f93\u51fa": 89, "\u5f53\u4f60\u5728\u4e0d\u5e26\u53c2\u6570\u7684\u60c5\u51b5\u4e0b\u5bf9\u4e00\u4e2a\u5f20\u91cf\u8c03\u7528": 89, "\u5b83\u671f\u671b\u8c03\u7528\u5f20\u91cf\u53ea\u5305\u542b\u4e00\u4e2a\u5143\u7d20": 89, "\u5c31\u50cf\u5728\u8ba1\u7b97\u635f\u5931\u51fd\u6570\u65f6\u4e00\u6837": 89, "\u6bcf\u4e2a\u5b58\u50a8\u5728\u6211\u4eec\u5f20\u91cf\u4e2d\u7684": 89, "\u5141\u8bb8\u4f60\u4f7f\u7528\u5176": 89, "\u6cbf\u7740\u8ba1\u7b97\u8def\u5f84\u4e00\u76f4\u56de\u6eaf\u5230\u5176\u8f93\u5165": 89, "\u6211\u4eec\u53ef\u4ee5\u770b\u5230": 89, "\u4e0a\u6df1\u5165\u94bb\u7814\u8fd9\u4e2a\u5c5e\u6027\u4f1a\u663e\u793a\u6211\u4eec\u4e4b\u524d\u6240\u6709\u5f20\u91cf\u7684\u68af\u5ea6\u51fd\u6570": 89, "\u88ab\u62a5\u544a\u4e3a": 89, "\u8868\u793a\u8fd9\u662f\u4e00\u4e2a\u6ca1\u6709\u81ea\u8eab\u5386\u53f2\u7684\u51fd\u6570\u8f93\u5165": 89, "na": [89, 92], "\u6709\u4e86\u8fd9\u4e9b\u673a\u5236": 89, "\u6211\u4eec\u5982\u4f55\u83b7\u53d6\u5bfc\u6570\u5462": 89, "\u60a8\u5728\u8f93\u51fa\u4e0a\u8c03\u7528": 89, "\u5e76\u68c0\u67e5\u8f93\u5165\u7684": 89, "\u5c5e\u6027\u6765\u68c0\u67e5\u68af\u5ea6": 89, "\u56de\u987e\u4e00\u4e0b\u6211\u4eec\u4e3a\u4e86\u8fbe\u5230\u8fd9\u4e00\u6b65\u6240\u91c7\u53d6\u7684\u8ba1\u7b97\u6b65\u9aa4": 89, "\u6dfb\u52a0\u4e00\u4e2a\u5e38\u6570": 89, "\u5c31\u50cf\u6211\u4eec\u8ba1\u7b97": 89, "\u65f6\u6240\u505a\u7684\u90a3\u6837": 89, "\u4e0d\u4f1a\u6539\u53d8\u5bfc\u6570": 89, "\u5269\u4e0b\u7684\u5c31\u662f": 89, "\u5b83\u7684\u5bfc\u6570\u5e94\u8be5\u662f": 89, "\u4ece\u4e0a\u9762\u7684\u56fe\u4e2d\u53ef\u4ee5\u770b\u51fa": 89, "\u8fd9\u6b63\u662f\u6211\u4eec\u6240\u770b\u5230\u7684": 89, "\u8bf7\u6ce8\u610f": [89, 96, 104, 213, 215, 216, 217, 248, 250, 253], "\u53ea\u6709\u8ba1\u7b97\u56fe\u7684": 89, "\u53f6\u5b50\u8282\u70b9": 89, "\u624d\u4f1a\u8ba1\u7b97\u5b83\u4eec\u7684\u68af\u5ea6": 89, "\u5982\u679c\u4f60\u5c1d\u8bd5": 89, "\u4f60\u4f1a\u5f97\u5230": 89, "\u5728\u8fd9\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50\u4e2d": 89, "\u53ea\u6709\u8f93\u5165\u662f\u53f6\u5b50\u8282\u70b9": 89, "\u6240\u4ee5\u53ea\u6709\u5b83\u6709\u8ba1\u7b97\u68af\u5ea6": 89, "\u6211\u4eec\u5df2\u7ecf\u7b80\u5355\u5730\u770b\u4e86\u4e00\u4e0b\u81ea\u52a8\u6c42\u5bfc\u662f\u5982\u4f55\u5de5\u4f5c\u7684": 89, "\u4f46\u662f\u5f53\u5b83\u5728\u5b9e\u9645\u5e94\u7528\u4e2d": 89, "\u770b\u8d77\u6765\u4f1a\u662f\u4ec0\u4e48\u6837\u5b50\u5462": 89, "\u8ba9\u6211\u4eec\u5b9a\u4e49\u4e00\u4e2a\u5c0f\u6a21\u578b\u5e76\u68c0\u67e5\u5b83\u5728\u5355\u4e2a\u8bad\u7ec3\u6279\u6b21\u540e\u662f\u5982\u4f55\u53d8\u5316\u7684": 89, "\u5b9a\u4e49\u4e00\u4e9b\u5e38\u91cf": 89, "\u6211\u4eec\u7684\u6a21\u578b": 89, "\u4ee5\u53ca\u4e00\u4e9b\u8f93\u5165\u548c\u8f93\u51fa": 89, "dim_in": 89, "dim_out": 89, "tinymodel": [89, 93], "layer2": [89, 150, 158, 161], "some_input": 89, "ideal_output": 89, "\u4f60\u53ef\u80fd\u4f1a\u6ce8\u610f\u5230": 89, "\u6211\u4eec\u4ece\u672a\u4e3a\u6a21\u578b\u7684\u5c42\u8bbe\u7f6e": 89, "\u7684\u5b50\u7c7b\u4e2d": 89, "\u5047\u5b9a\u6211\u4eec\u5e0c\u671b\u8ddf\u8e2a\u5c42\u6743\u91cd\u7684\u68af\u5ea6\u4ee5\u8fdb\u884c\u5b66\u4e60": 89, "\u5982\u679c\u6211\u4eec\u67e5\u770b\u6a21\u578b\u7684\u5c42": 89, "\u6211\u4eec\u53ef\u4ee5\u68c0\u67e5\u6743\u91cd\u7684\u503c": 89, "\u5e76\u9a8c\u8bc1\u5c1a\u672a\u8ba1\u7b97\u4efb\u4f55\u68af\u5ea6": 89, "\u53ea\u6253\u5370\u4e00\u5c0f\u90e8\u5206": 89, "\u8ba9\u6211\u4eec\u770b\u770b\u5f53\u6211\u4eec\u8fd0\u884c\u4e00\u4e2a\u8bad\u7ec3\u6279\u6b21\u65f6\u4f1a\u53d1\u751f\u4ec0\u4e48\u53d8\u5316": 89, "\u4f5c\u4e3a\u635f\u5931\u51fd\u6570": [89, 104], "\u4e4b\u95f4\u7684\u6b27\u51e0\u91cc\u5f97\u8ddd\u79bb\u7684\u5e73\u65b9": 89, "\u5e76\u4f7f\u7528\u57fa\u672c\u7684\u968f\u673a\u68af\u5ea6\u4e0b\u964d\u4f18\u5316\u5668": 89, "\u73b0\u5728": [89, 90, 94, 104, 215, 217, 237, 245, 246, 258], "\u8ba9\u6211\u4eec\u8c03\u7528": 89, "\u5e76\u770b\u770b\u4f1a\u53d1\u751f\u4ec0\u4e48": 89, "\u6bcf\u4e2a\u5b66\u4e60\u6743\u91cd\u7684\u68af\u5ea6\u90fd\u5df2\u7ecf\u8ba1\u7b97\u51fa\u6765\u4e86": 89, "\u4f46\u6743\u91cd\u4fdd\u6301\u4e0d\u53d8": 89, "\u56e0\u4e3a\u6211\u4eec\u8fd8\u6ca1\u6709\u8fd0\u884c\u4f18\u5316\u5668": 89, "\u4f18\u5316\u5668\u8d1f\u8d23\u6839\u636e\u8ba1\u7b97\u51fa\u7684\u68af\u5ea6\u66f4\u65b0\u6a21\u578b\u6743\u91cd": 89, "\u4f60\u5e94\u8be5\u770b\u5230": 89, "\u7684\u6743\u91cd\u5df2\u7ecf\u6539\u53d8": 89, "\u5173\u4e8e\u8fd9\u4e2a\u8fc7\u7a0b\u7684\u4e00\u4e2a\u91cd\u8981\u4e8b\u9879": 89, "\u5728\u8c03\u7528": [89, 129], "\u4e4b\u540e": [89, 104, 214, 245, 248], "\u4f60\u9700\u8981\u8c03\u7528": 89, "\u5426\u5219\u6bcf\u6b21\u4f60\u8fd0\u884c": 89, "\u5b66\u4e60\u6743\u91cd\u4e0a\u7684\u68af\u5ea6\u5c06\u4f1a\u7d2f\u79ef": 89, "set_to_non": [89, 231, 248], "\u5728\u8fd0\u884c\u4e0a\u9762\u7684\u5355\u5143\u683c\u540e": 89, "\u4f60\u5e94\u8be5\u4f1a\u770b\u5230\u5728\u591a\u6b21\u8fd0\u884c": 89, "\u5927\u591a\u6570\u68af\u5ea6\u7684\u5e45\u5ea6\u4f1a\u53d8\u5f97\u66f4\u5927": 89, "\u5982\u679c\u5728\u8fd0\u884c\u4e0b\u4e00\u4e2a\u8bad\u7ec3\u6279\u6b21\u4e4b\u524d": 89, "\u6ca1\u6709\u5c06\u68af\u5ea6\u6e05\u96f6": 89, "\u68af\u5ea6\u5c31\u4f1a\u4ee5\u8fd9\u79cd\u65b9\u5f0f\u81a8\u80c0": 89, "\u4ece\u800c\u5bfc\u81f4\u4e0d\u6b63\u786e\u548c": 89, "\u4e0d\u53ef\u9884\u6d4b\u7684\u5b66\u4e60\u7ed3\u679c": 89, "\u5728\u67d0\u4e9b\u60c5\u51b5\u4e0b": [89, 241, 251], "\u4f60\u9700\u8981\u5bf9\u662f\u5426\u542f\u7528\u81ea\u52a8\u6c42\u5bfc\u8fdb\u884c\u7ec6\u7c92\u5ea6\u63a7\u5236": 89, "\u6709\u591a\u79cd\u65b9\u6cd5\u53ef\u4ee5\u505a\u5230\u8fd9\u4e00\u70b9": 89, "\u5177\u4f53\u53d6\u51b3\u4e8e\u60c5\u51b5": 89, "\u6700\u7b80\u5355\u7684\u65b9\u6cd5\u662f\u76f4\u63a5\u66f4\u6539\u5f20\u91cf\u4e0a\u7684": 89, "\u6807\u5fd7": 89, "b1": 89, "b2": 89, "\u5728\u4e0a\u9762\u7684\u5355\u5143\u683c\u4e2d": [89, 95], "\u6709\u4e00\u4e2a": [89, 93, 214], "\u4e00\u4e2a": [89, 92, 234, 245, 250], "\u8ba1\u7b97\u5386\u53f2\u7684\u8ddf\u8e2a\u8bb0\u5f55": 89, "\u8fd9\u662f\u6211\u4eec\u6240\u671f\u671b\u7684": 89, "\u56e0\u4e3a\u5b83\u662f\u4ece\u4e00\u4e2a\u542f\u7528\u4e86": 89, "\u7684\u5f20\u91cf": [89, 92, 95, 111, 214], "\u6d3e\u751f\u51fa\u6765\u7684": 89, "\u5f53\u6211\u4eec\u4f7f\u7528": [89, 238], "\u663e\u5f0f\u5730\u5173\u95ed": 89, "\u8ba1\u7b97\u5386\u53f2\u5c31\u4e0d\u518d\u88ab\u8ddf\u8e2a\u4e86": 89, "\u6b63\u5982\u6211\u4eec\u5728\u8ba1\u7b97": 89, "\u6240\u770b\u5230\u7684\u90a3\u6837": 89, "\u5982\u679c\u4f60\u53ea\u9700\u8981\u4e34\u65f6\u5173\u95ed": 89, "\u4e00\u4e2a\u66f4\u597d\u7684\u65b9\u6cd5\u662f\u4f7f\u7528": 89, "c2": 89, "\u4e5f\u53ef\u4ee5\u7528\u4f5c\u51fd\u6570\u6216\u65b9\u6cd5\u88c5\u9970\u5668": 89, "add_tensors1": 89, "add_tensors2": 89, "\u6709\u4e00\u4e2a\u5bf9\u5e94\u7684\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668": 89, "enable_grad": 89, "\u7528\u4e8e\u5728\u5c1a\u672a\u542f\u7528\u65f6": 89, "\u6253\u5f00": [89, 95, 121], "\u5b83\u4e5f\u53ef\u4ee5\u7528\u4f5c\u88c5\u9970\u5668": 89, "\u4f60\u53ef\u80fd\u6709\u4e00\u4e2a\u9700\u8981\u68af\u5ea6\u8ddf\u8e2a\u7684\u5f20\u91cf": 89, "\u4f46\u4f60\u60f3\u8981\u4e00\u4e2a\u4e0d\u9700\u8981\u7684\u526f\u672c": 89, "\u4e3a\u6b64": [89, 90, 94, 95, 104, 214, 245, 259], "\u6211\u4eec\u6709\u5f20\u91cf\u5bf9\u8c61\u7684": 89, "\u5b83\u521b\u5efa\u4e00\u4e2a\u4e0e\u8ba1\u7b97\u5386\u53f2": 89, "\u5206\u79bb": 89, "\u7684\u5f20\u91cf\u526f\u672c": 89, "\u6211\u4eec\u4e4b\u524d\u8fd9\u6837\u505a\u662f\u56e0\u4e3a\u6211\u4eec\u60f3\u8981\u7ed8\u5236\u4e00\u4e9b\u5f20\u91cf\u7684\u56fe\u50cf": 89, "\u8fd9\u662f\u56e0\u4e3a": [89, 90, 232], "\u671f\u671b\u8f93\u5165\u662f\u4e00\u4e2a": 89, "\u6570\u7ec4": [89, 104, 230], "\u800c\u4ece\u5177\u6709": 89, "\u6570\u7ec4\u7684\u9690\u5f0f\u8f6c\u6362\u662f\u4e0d\u5141\u8bb8\u7684": 89, "\u5236\u4f5c\u4e00\u4e2a\u5206\u79bb\u7684\u526f\u672c\u8ba9\u6211\u4eec\u53ef\u4ee5\u7ee7\u7eed\u524d\u8fdb": 89, "\u5728\u672c\u7ec3\u4e60\u4e2d\u5230\u76ee\u524d\u4e3a\u6b62\u7684\u6bcf\u4e2a\u793a\u4f8b\u4e2d": 89, "\u6211\u4eec\u90fd\u4f7f\u7528\u4e86\u53d8\u91cf\u6765\u6355\u83b7\u8ba1\u7b97\u7684\u4e2d\u95f4\u503c": 89, "\u9700\u8981\u8fd9\u4e9b\u4e2d\u95f4\u503c\u6765\u6267\u884c\u68af\u5ea6\u8ba1\u7b97": 89, "\u5728\u4f7f\u7528": [89, 248], "\u4f60\u5fc5\u987b": 89, "\u5c0f\u5fc3\u4f7f\u7528\u539f\u4f4d\u64cd\u4f5c": 89, "\u8fd9\u6837\u505a\u53ef\u80fd\u4f1a\u7834\u574f\u8ba1\u7b97\u5bfc\u6570\u6240\u9700\u7684\u4fe1\u606f": 89, "\u8c03\u7528\u65f6\u9700\u8981\u8fd9\u4e9b\u4fe1\u606f": 89, "\u5982\u679c\u4f60\u5c1d\u8bd5\u5bf9\u9700\u8981": 89, "\u7684\u53f6\u53d8\u91cf\u8fdb\u884c\u539f\u4f4d\u64cd\u4f5c": 89, "\u751a\u81f3\u4f1a\u963b\u6b62\u4f60": 89, "\u5982\u4e0b\u6240\u793a": [89, 104, 215, 222, 245, 259], "\u4f1a\u8be6\u7ec6\u8ddf\u8e2a\u4f60\u7684\u6bcf\u4e00\u6b65\u8ba1\u7b97": 89, "\u8fd9\u79cd\u8ba1\u7b97\u5386\u53f2": 89, "\u7ed3\u5408\u65f6\u95f4\u4fe1\u606f": 89, "\u5c06\u6784\u6210\u4e00\u4e2a\u65b9\u4fbf\u7684\u5206\u6790\u5668": 89, "\u5c31\u5185\u7f6e\u4e86\u8fd9\u4e2a\u529f\u80fd": 89, "\u8fd9\u91cc\u6709\u4e00\u4e2a\u5feb\u901f\u4f7f\u7528\u793a\u4f8b": 89, "run_on_gpu": 89, "prf": 89, "key_averag": [89, 109, 145, 165, 220, 239], "sort_bi": [89, 109, 145, 165, 220, 239], "self_cpu_time_tot": [89, 109, 119, 145, 220, 239], "\u5206\u6790\u5668\u53ef\u4ee5\u6807\u8bb0\u4ee3\u7801\u7684\u5355\u4e2a\u5b50\u5757": 89, "\u6309\u8f93\u5165\u5f20\u91cf\u5f62\u72b6\u5206\u89e3\u6570\u636e": 89, "\u5e76\u5c06\u6570\u636e\u5bfc\u51fa\u4e3a": 89, "\u8ddf\u8e2a\u5de5\u5177\u6587\u4ef6": 89, "\u6709\u5173": [89, 231, 257], "\u7684\u5b8c\u6574\u8be6\u7ec6\u4fe1\u606f": 89, "\u5982\u679c\u4f60\u6709\u4e00\u4e2a\u5177\u6709": 89, "\u7ef4\u8f93\u5165\u548c": 89, "\u7ef4\u8f93\u51fa\u7684\u51fd\u6570": 89, "\u5b8c\u6574\u7684\u68af\u5ea6\u662f\u6bcf\u4e2a\u8f93\u51fa\u76f8\u5bf9\u4e8e\u6bcf\u4e2a\u8f93\u5165\u7684": 89, "\u5bfc\u6570\u7684\u77e9\u9635": 89, "\u5982\u679c\u4f60\u6709\u7b2c\u4e8c\u4e2a\u51fd\u6570": 89, "\u5b83": [89, 95, 96], "\u63a5\u53d7": [89, 248], "\u7ef4\u8f93\u5165": 89, "\u4e5f\u5c31\u662f\u4e0e\u4e0a\u9762\u7684\u8f93\u51fa\u5177\u6709\u76f8\u540c\u7684\u7ef4\u5ea6": 89, "\u5e76\u8fd4\u56de\u4e00\u4e2a": 89, "\u6807\u91cf\u8f93\u51fa": 89, "\u4f60\u53ef\u4ee5\u7528\u4e00\u4e2a\u5217\u5411\u91cf\u6765\u8868\u793a\u5b83\u76f8\u5bf9\u4e8e": 89, "\u7684\u68af\u5ea6": [89, 129], "\u8fd9\u5b9e\u9645\u4e0a\u53ea\u662f\u4e00\u4e2a\u4e00\u5217\u7684": 89, "\u66f4\u5177\u4f53\u5730\u8bf4": [89, 245], "\u60f3\u8c61\u7b2c\u4e00\u4e2a\u51fd\u6570\u662f\u4f60\u7684": 89, "\u6a21\u578b": [89, 93, 121, 140, 214, 231, 234, 235, 241, 252], "\u53ef\u80fd\u6709\u8bb8\u591a\u8f93\u5165\u548c\u8bb8\u591a\u8f93\u51fa": 89, "\u7b2c\u4e8c\u4e2a\u51fd\u6570\u662f\u4e00\u4e2a\u635f\u5931\u51fd\u6570": 89, "\u4ee5\u6a21\u578b\u7684\u8f93\u51fa\u4f5c\u4e3a\u8f93\u5165": 89, "\u635f\u5931\u503c\u4f5c\u4e3a\u6807\u91cf\u8f93\u51fa": 89, "\u5982\u679c\u6211\u4eec\u5c06\u7b2c\u4e00\u4e2a\u51fd\u6570\u7684": 89, "\u4e0e\u7b2c\u4e8c\u4e2a\u51fd\u6570\u7684\u68af\u5ea6\u76f8\u4e58": 89, "\u5e76\u5e94\u7528\u94fe\u5f0f\u6cd5\u5219": 89, "\u6211\u4eec\u5f97\u5230": 89, "\u4f60\u4e5f\u53ef\u4ee5\u4f7f\u7528\u7b49\u4ef7\u7684\u64cd\u4f5c": 89, "\u5e76\u5f97\u5230\u4e00\u4e2a\u884c\u5411\u91cf": 89, "\u6240\u5f97\u5230\u7684\u5217\u5411\u91cf\u5c31\u662f": 89, "\u7b2c\u4e8c\u4e2a\u51fd\u6570\u76f8\u5bf9\u4e8e\u7b2c\u4e00\u4e2a\u51fd\u6570\u7684\u8f93\u5165\u7684\u68af\u5ea6": 89, "\u6216\u8005\u5728\u6211\u4eec\u7684": 89, "\u6a21\u578b\u548c\u635f\u5931\u51fd\u6570\u7684\u60c5\u51b5\u4e0b": 89, "\u5c31\u662f\u635f\u5931\u76f8\u5bf9\u4e8e\u6a21\u578b\u8f93\u5165\u7684\u68af\u5ea6": 89, "\u662f\u4e00\u4e2a\u7528\u4e8e\u8ba1\u7b97\u8fd9\u4e9b\u4e58\u79ef\u7684\u5f15\u64ce": 89, "\u8fd9\u5c31\u662f\u6211\u4eec\u5728": 89, "\u53cd\u5411\u4f20\u64ad\u8fc7\u7a0b\u4e2d\u5982\u4f55\u7d2f\u79ef\u5b66\u4e60\u6743\u91cd\u7684\u68af\u5ea6": 89, "\u8c03\u7528\u4e5f\u53ef\u4ee5": 89, "\u63a5\u53d7\u4e00\u4e2a\u53ef\u9009\u7684\u5411\u91cf\u8f93\u5165": 89, "\u8be5\u5411\u91cf\u8868\u793a": 89, "\u5f20\u91cf\u4e0a\u7684\u4e00\u7ec4\u68af\u5ea6": 89, "\u8fd9\u4e9b\u68af\u5ea6\u5c06\u4e58\u4ee5\u524d\u9762\u7684": 89, "\u8ddf\u8e2a\u5f20\u91cf\u7684": 89, "\u8ba9\u6211\u4eec\u7528\u4e00\u4e2a\u5c0f\u5411\u91cf\u5c1d\u8bd5\u4e00\u4e2a\u5177\u4f53\u7684\u4f8b\u5b50": 89, "\u5982\u679c\u6211\u4eec\u5c1d\u8bd5\u73b0\u5728\u8c03\u7528": 89, "\u6211\u4eec\u4f1a\u5f97\u5230\u4e00\u4e2a\u8fd0\u884c\u65f6\u9519\u8bef\u548c\u4e00\u6761": 89, "\u6d88\u606f": 89, "\u8bf4\u660e\u53ea\u80fd": 89, "\u9690\u5f0f\u5730": 89, "\u4e3a\u6807\u91cf\u8f93\u51fa\u8ba1\u7b97\u68af\u5ea6": 89, "\u5bf9\u4e8e\u591a\u7ef4\u8f93\u51fa": 89, "\u671f\u671b\u6211\u4eec": 89, "\u63d0\u4f9b\u8fd9\u4e09\u4e2a\u8f93\u51fa\u7684\u68af\u5ea6": 89, "\u5b83\u53ef\u4ee5\u5c06\u8fd9\u4e9b\u68af\u5ea6\u4e58\u4ee5jacobian\u77e9\u9635": 89, "\u4ee3\u66ff\u68af\u5ea6": 89, "\u8f93\u51fa\u68af\u5ea6\u90fd\u4e0e2\u7684\u5e42\u6709\u5173": 89, "\u8fd9\u6b63\u662f\u6211\u4eec\u4ece\u91cd\u590d\u7684\u53cc\u500d\u64cd\u4f5c\u4e2d\u6240\u671f\u671b\u7684": 89, "\u53ef\u4ee5\u76f4\u63a5\u8bbf\u95ee\u91cd\u8981\u7684\u5dee\u5206\u77e9\u9635\u548c\u5411\u91cf\u8fd0\u7b97": 89, "\u7279\u522b\u662f": 89, "\u5b83\u5141\u8bb8\u4f60\u8ba1\u7b97\u7279\u5b9a\u51fd\u6570\u5728\u7279\u5b9a\u8f93\u5165\u4e0b\u7684jacobian\u77e9\u9635\u548c": 89, "hessian\u77e9\u9635": 89, "\u7c7b\u4f3c\u4e8ejacobian\u77e9\u9635": 89, "\u4f46\u8868\u793a\u6240\u6709\u504f\u5bfc\u6570\u7684": 89, "\u7b2c\u4e8c\u9636": 89, "\u5bfc\u6570": 89, "\u5b83\u8fd8\u63d0\u4f9b\u4e86\u4e0e\u8fd9\u4e9b\u77e9\u9635": 89, "\u8fdb\u884c\u5411\u91cf\u4e58\u79ef\u7684\u65b9\u6cd5": 89, "\u8ba9\u6211\u4eec\u8ba1\u7b97\u4e00\u4e2a\u7b80\u5355\u51fd\u6570\u7684jacobian\u77e9\u9635": 89, "\u5bf9\u4e8e\u4e24\u4e2a\u5355\u5143\u7d20\u8f93\u5165\u8fdb\u884c\u8bc4\u4f30": 89, "exp_add": 89, "\u5982\u679c\u4f60\u4ed4\u7ec6\u89c2\u5bdf": 89, "\u7b2c\u4e00\u4e2a\u8f93\u51fa\u5e94\u8be5\u7b49\u4e8e": 89, "\u56e0\u4e3a": [89, 104, 215, 217, 231, 247], "\u5bfc\u6570\u662f": 89, "\u7b2c\u4e8c\u4e2a\u503c\u5e94\u8be5\u662f3": 89, "\u4f60\u5f53\u7136\u4e5f\u53ef\u4ee5\u5bf9\u66f4\u9ad8\u9636\u7684\u5f20\u91cf\u8fd9\u6837\u505a": 89, "hessian": [89, 121, 206], "\u65b9\u6cd5\u7684\u5de5\u4f5c\u65b9\u5f0f\u5b8c\u5168\u76f8\u540c": 89, "\u5047\u8bbe\u4f60\u7684": 89, "\u51fd\u6570\u662f\u4e24\u6b21\u53ef\u5fae\u7684": 89, "\u4f46\u8fd4\u56de\u6240\u6709\u4e8c\u9636\u5bfc\u6570\u7684\u77e9\u9635": 89, "\u5982\u679c\u4f60\u63d0\u4f9b\u4e86\u5411\u91cf": 89, "\u8fd8\u6709\u4e00\u4e2a\u76f4\u63a5\u8ba1\u7b97\u5411\u91cf": 89, "\u96c5\u53ef\u6bd4\u4e58\u79ef\u7684\u51fd\u6570": 89, "do_some_doubl": 89, "my_gradi": 89, "vjp": [89, 146, 151, 206], "jvp": [89, 142, 146, 151], "\u65b9\u6cd5\u6267\u884c\u4e0e": 89, "\u76f8\u540c\u7684\u77e9\u9635\u4e58\u6cd5": 89, "\u4f46\u64cd\u4f5c\u6570\u987a\u5e8f\u76f8\u53cd": 89, "vhp": [89, 121], "hvp": [89, 121], "\u65b9\u6cd5\u5bf9\u4e8e\u5411\u91cf": 89, "\u6d77\u68ee\u77e9\u9635\u4e58\u79ef\u4e5f\u662f\u5982\u6b64": 89, "\u6709\u5173\u66f4\u591a\u4fe1\u606f": [89, 94, 95, 248, 251], "\u529f\u80fd": [89, 256], "\u4e2d\u7684\u6027\u80fd\u8bf4\u660e": 89, "autogradyt_tutori": [89, 91], "\u4e0b\u8f7d\u7b14\u8bb0\u672c\u548c\u76f8\u5e94\u6587\u4ef6": 90, "\u62c9\u4e01\u8bed\u4e2d\u7684": 90, "\u7406\u89e3": 90, "\u662f\u4e00\u4e2a\u5f00\u6e90\u7684": 90, "\u53ef\u6269\u5c55\u7684\u6a21\u578b\u53ef\u89e3\u91ca\u6027\u5e93": 90, "\u5efa\u7acb\u5728pytorch\u4e4b\u4e0a": 90, "\u968f\u7740\u6a21\u578b\u590d\u6742\u6027\u7684\u589e\u52a0\u548c\u7531\u6b64\u5e26\u6765\u7684\u900f\u660e\u5ea6\u7684\u7f3a\u4e4f": 90, "\u6a21\u578b\u53ef\u89e3\u91ca\u6027\u65b9\u6cd5\u53d8\u5f97\u8d8a\u6765\u8d8a\u91cd\u8981": 90, "\u6a21\u578b\u7406\u89e3\u662f\u4e00\u4e2a\u6d3b\u8dc3\u7684\u7814\u7a76\u9886\u57df": 90, "\u4e5f\u662f\u8de8\u884c\u4e1a\u4f7f\u7528\u673a\u5668\u5b66\u4e60\u7684\u5b9e\u9645\u5e94\u7528\u7684\u4e00\u4e2a\u5173\u6ce8\u9886\u57df": 90, "captum\u63d0\u4f9b\u4e86\u6700\u5148\u8fdb\u7684\u7b97\u6cd5": 90, "\u5305\u62ec\u96c6\u6210\u68af\u5ea6": 90, "\u4e3a\u7814\u7a76\u4eba\u5458\u548c\u5f00\u53d1\u4eba\u5458\u63d0\u4f9b\u4e86\u4e00\u79cd\u7b80\u5355\u7684\u65b9\u5f0f\u6765\u7406\u89e3\u54ea\u4e9b\u7279\u5f81\u5bf9\u6a21\u578b\u7684\u8f93\u51fa\u505a\u51fa\u4e86\u8d21\u732e": 90, "\u5b8c\u6574\u7684\u6587\u6863": 90, "api\u53c2\u8003\u548c\u4e00\u5957\u5173\u4e8e\u7279\u5b9a\u4e3b\u9898\u7684\u6559\u7a0b\u53ef\u5728": 90, "\u7f51\u7ad9\u4e0a\u627e\u5230": 90, "captum\u5bf9\u6a21\u578b\u53ef\u89e3\u91ca\u6027\u7684\u65b9\u6cd5\u662f\u57fa\u4e8e": 90, "\u5f52\u56e0": 90, "captum\u4e2d\u6709\u4e09\u79cd\u7c7b\u578b\u7684\u5f52\u56e0": 90, "\u7279\u5f81\u5f52\u56e0": 90, "\u8bd5\u56fe\u89e3\u91ca\u7279\u5b9a\u8f93\u51fa\u662f\u7531\u751f\u6210\u5b83\u7684\u8f93\u5165\u7684\u54ea\u4e9b\u7279\u5f81\u4ea7\u751f\u7684": 90, "\u7528\u67d0\u4e9b\u8bcd\u6765\u89e3\u91ca\u4e00\u7bc7\u7535\u5f71\u8bc4\u8bba\u662f\u6b63\u9762\u8fd8\u662f\u8d1f\u9762\u7684": 90, "\u5c31\u662f\u7279\u5f81\u5f52\u56e0\u7684\u4e00\u4e2a\u4f8b\u5b50": 90, "\u5c42\u5f52\u56e0": 90, "\u68c0\u67e5\u6a21\u578b\u7684\u9690\u85cf\u5c42\u5728\u7279\u5b9a\u8f93\u5165\u4e0b\u7684\u6d3b\u52a8": 90, "\u68c0\u67e5\u5377\u79ef\u5c42\u5bf9\u8f93\u5165\u56fe\u50cf\u7684\u7a7a\u95f4\u6620\u5c04\u8f93\u51fa\u5c31\u662f\u5c42\u5f52\u56e0\u7684\u4e00\u4e2a\u4f8b\u5b50": 90, "\u795e\u7ecf\u5143\u5f52\u56e0": 90, "\u7c7b\u4f3c\u4e8e\u5c42\u5f52\u56e0": 90, "\u4f46\u5173\u6ce8\u5355\u4e2a\u795e\u7ecf\u5143\u7684\u6d3b\u52a8": 90, "\u5728\u8fd9\u4e2a\u4ea4\u4e92\u5f0f\u7b14\u8bb0\u672c\u4e2d": 90, "\u6211\u4eec\u5c06\u770b\u770b\u7279\u5f81\u5f52\u56e0\u548c\u5c42\u5f52\u56e0": 90, "\u6bcf\u79cd\u5f52\u56e0\u7c7b\u578b\u90fd\u6709\u591a\u79cd": 90, "\u5f52\u56e0\u7b97\u6cd5": 90, "\u4e0e\u4e4b\u76f8\u5173\u8054": 90, "\u8bb8\u591a\u5f52\u56e0\u7b97\u6cd5\u53ef\u5206\u4e3a\u4e24\u5927\u7c7b": 90, "\u57fa\u4e8e\u68af\u5ea6\u7684\u7b97\u6cd5": 90, "\u8ba1\u7b97\u6a21\u578b\u8f93\u51fa": 90, "\u5c42\u8f93\u51fa\u6216\u795e\u7ecf\u5143\u6fc0\u6d3b\u76f8\u5bf9\u4e8e\u8f93\u5165\u7684\u53cd\u5411\u68af\u5ea6": 90, "\u96c6\u6210\u68af\u5ea6": 90, "\u7528\u4e8e\u7279\u5f81": 90, "\u5c42\u68af\u5ea6": 90, "\u6fc0\u6d3b": [90, 227], "\u795e\u7ecf\u5143\u4f20\u5bfc": 90, "\u90fd\u662f\u57fa\u4e8e\u68af\u5ea6\u7684\u7b97\u6cd5": 90, "\u57fa\u4e8e\u6270\u52a8\u7684\u7b97\u6cd5": 90, "\u68c0\u67e5\u6a21\u578b": 90, "\u5c42\u6216\u795e\u7ecf\u5143\u7684\u8f93\u51fa\u5728\u8f93\u5165\u53d1\u751f\u53d8\u5316\u65f6\u7684\u53d8\u5316\u60c5\u51b5": 90, "\u8f93\u5165\u6270\u52a8\u53ef\u80fd\u662f\u6709\u9488\u5bf9\u6027\u7684\u6216\u968f\u673a\u7684": 90, "\u906e\u6321": 90, "\u7279\u5f81\u6d88\u878d": 90, "\u7279\u5f81\u7f6e\u6362": 90, "\u90fd\u662f\u57fa\u4e8e\u6270\u52a8\u7684\u7b97\u6cd5": 90, "\u6211\u4eec\u5c06\u5728\u4e0b\u9762\u68c0\u67e5\u8fd9\u4e24\u79cd\u7c7b\u578b\u7684\u7b97\u6cd5": 90, "\u7279\u522b\u662f\u5bf9\u4e8e\u5927\u578b\u6a21\u578b": 90, "\u4ee5\u4e0e\u88ab\u68c0\u67e5\u7684\u8f93\u5165\u7279\u5f81\u76f4\u63a5\u76f8\u5173\u7684\u65b9\u5f0f\u53ef\u89c6\u5316\u5f52\u56e0\u6570\u636e\u662f\u5f88\u6709\u4ef7\u503c\u7684": 90, "\u867d\u7136\u5f53\u7136\u53ef\u4ee5\u4f7f\u7528matplotlib": 90, "plotly\u6216\u7c7b\u4f3c\u5de5\u5177\u521b\u5efa\u81ea\u5df1\u7684\u53ef\u89c6\u5316": 90, "\u4f46captum\u63d0\u4f9b\u4e86\u4e13\u95e8\u7528\u4e8e\u5176\u5f52\u56e0\u7684\u589e\u5f3a\u5de5\u5177": 90, "attr": [90, 148, 156, 208, 230], "\u4e0b\u9762\u5bfc\u5165\u4e3a": 90, "\u63d0\u4f9b\u4e86\u6709\u52a9\u4e8e\u53ef\u89c6\u5316\u4e0e\u56fe\u50cf\u76f8\u5173\u7684\u5f52\u56e0\u7684\u51fd\u6570": 90, "\u662f\u5efa\u7acb\u5728captum\u4e4b\u4e0a\u7684\u4e00\u4e2a\u6613\u4e8e\u4f7f\u7528\u7684\u53ef\u89e3\u91ca\u6027\u53ef\u89c6\u5316\u5c0f\u90e8\u4ef6": 90, "\u63d0\u4f9b\u4e86\u4e00\u4e2a\u5e26\u6709\u73b0\u6210\u53ef\u89c6\u5316\u5de5\u5177\u7684\u5c0f\u90e8\u4ef6": 90, "\u7528\u4e8e\u56fe\u50cf": 90, "\u6587\u672c\u548c\u4efb\u610f\u6a21\u578b\u7c7b\u578b": 90, "\u8fd9\u4e24\u79cd\u53ef\u89c6\u5316\u5de5\u5177\u96c6\u90fd\u5c06\u5728\u672c\u7b14\u8bb0\u672c\u4e2d\u8fdb\u884c\u6f14\u793a": 90, "\u524d\u51e0\u4e2a\u793a\u4f8b\u5c06\u96c6\u4e2d\u5728\u8ba1\u7b97\u673a\u89c6\u89c9\u7528\u4f8b\u4e0a": 90, "\u4f46\u6700\u540e\u7684captum": 90, "insights\u90e8\u5206\u5c06\u6f14\u793a\u89c6\u89c9\u95ee\u7b54\u6a21\u578b\u4e2d\u7684\u5f52\u56e0\u53ef\u89c6\u5316": 90, "\u5728\u5f00\u59cb\u4e4b\u524d": [90, 232, 234, 237, 242, 243, 244, 249, 250, 251, 253], "\u4f60\u9700\u8981\u6709\u4e00\u4e2apython\u73af\u5883": 90, "6\u6216\u66f4\u9ad8\u7248\u672c": 90, "\u5bf9\u4e8ecaptum": 90, "insights\u793a\u4f8b": 90, "\u9700\u8981flask": 90, "1\u6216\u66f4\u9ad8\u7248\u672c\u548cflask": 90, "\u63a8\u8350\u4f7f\u7528\u6700\u65b0\u7248\u672c": 90, "2\u6216\u66f4\u9ad8\u7248\u672c": 90, "4\u7248\u672c": 90, "\u56e0\u4e3acaptum\u76ee\u524d\u4f7f\u7528\u4e86\u4e00\u4e2a\u5728\u66f4\u9ad8\u7248\u672c\u4e2d\u53c2\u6570\u5df2\u88ab\u91cd\u547d\u540d\u7684matplotlib\u51fd\u6570": 90, "\u8981\u5728anaconda\u6216pip\u865a\u62df\u73af\u5883\u4e2d\u5b89\u88c5captum": 90, "\u8bf7\u4f7f\u7528\u4e0b\u9762\u9002\u7528\u4e8e\u60a8\u73af\u5883\u7684\u547d\u4ee4": 90, "flask": [90, 113, 121, 140, 252], "\u5728\u60a8\u8bbe\u7f6e\u7684\u73af\u5883\u4e2d\u91cd\u65b0\u542f\u52a8\u6b64\u7b14\u8bb0\u672c": 90, "\u60a8\u5c31\u53ef\u4ee5\u5f00\u59cb\u4e86": 90, "\u8ba9\u6211\u4eec\u770b\u4e00\u4e2a\u7b80\u5355\u7684\u89c6\u89c9\u793a\u4f8b": 90, "\u6211\u4eec\u5c06\u4ece\u4e00\u4e2a\u5728imagenet\u6570\u636e\u96c6\u4e0a\u9884\u8bad\u7ec3\u7684resnet\u6a21\u578b\u5f00\u59cb": 90, "\u6211\u4eec\u5c06\u83b7\u53d6\u4e00\u4e2a\u6d4b\u8bd5\u8f93\u5165": 90, "\u5e76\u4f7f\u7528\u4e0d\u540c\u7684": 90, "\u7b97\u6cd5\u6765\u68c0\u67e5\u8f93\u5165\u56fe\u50cf\u5982\u4f55\u5f71\u54cd\u8f93\u51fa": 90, "\u5e76\u67e5\u770b\u4e00\u4e9b\u6d4b\u8bd5\u56fe\u50cf\u7684\u8f93\u5165\u5f52\u56e0\u6620\u5c04\u7684\u6709\u7528\u53ef\u89c6\u5316": 90, "\u5bfc\u5165\u4e00\u4e9b\u5305": 90, "integratedgradi": 90, "occlus": [90, 230], "layergradcam": 90, "layerattribut": 90, "linearsegmentedcolormap": 90, "\u73b0\u5728\u6211\u4eec\u5c06\u4f7f\u7528torchvision\u6a21\u578b\u5e93\u4e0b\u8f7d\u4e00\u4e2a\u9884\u8bad\u7ec3\u7684resnet": 90, "\u7531\u4e8e\u6211\u4eec\u4e0d\u8fdb\u884c\u8bad\u7ec3": 90, "\u6211\u4eec\u5c06\u6682\u65f6\u5c06\u5176\u7f6e\u4e8e\u8bc4\u4f30\u6a21\u5f0f": 90, "\u4f60\u4ece\u4e2d\u83b7\u53d6\u8fd9\u4e2a\u4ea4\u4e92\u5f0f\u7b14\u8bb0\u672c\u7684\u5730\u65b9\u5e94\u8be5\u4e5f\u6709\u4e00\u4e2a": 90, "\u6587\u4ef6\u5939": 90, "\u5176\u4e2d\u5305\u542b\u4e00\u4e2a": 90, "test_img": 90, "test_img_data": 90, "\u6211\u4eec\u7684resnet\u6a21\u578b\u662f\u5728imagenet\u6570\u636e\u96c6\u4e0a\u8bad\u7ec3\u7684": 90, "\u5b83\u671f\u671b\u56fe\u50cf\u5177\u6709\u4e00\u5b9a\u7684\u5927\u5c0f": 90, "\u5e76\u4e14\u901a\u9053\u6570\u636e\u88ab\u5f52\u4e00\u5316\u5230\u7279\u5b9a\u7684\u503c\u8303\u56f4": 90, "\u6211\u4eec\u8fd8\u5c06\u83b7\u53d6\u6a21\u578b\u8bc6\u522b\u7684\u7c7b\u522b\u7684\u4eba\u7c7b\u53ef\u8bfb\u6807\u7b7e\u5217\u8868": 90, "\u5b83\u5e94\u8be5\u4e5f\u5728": 90, "\u6587\u4ef6\u5939\u4e2d": 90, "\u6a21\u578b\u671f\u671b224x224": 90, "3\u8272\u5f69\u56fe\u50cf": 90, "\u6807\u51c6imagenet\u5f52\u4e00\u5316": 90, "transform_norm": 90, "transformed_img": 90, "\u6a21\u578b\u9700\u8981\u4e00\u4e2a\u865a\u62df\u7684\u6279\u6b21\u7ef4\u5ea6": 90, "labels_path": 90, "imagenet_class_index": [90, 140], "json_data": 90, "idx_to_label": 90, "\u6211\u4eec\u53ef\u4ee5\u95ee": 90, "\u8fd9\u4e2a\u6a21\u578b\u8ba4\u4e3a\u8fd9\u5f20\u56fe\u50cf\u4ee3\u8868\u4ec0\u4e48": 90, "prediction_scor": 90, "pred_label_idx": 90, "squeeze_": [90, 95], "predicted_label": [90, 115], "\u9884\u6d4b": 90, "\u6211\u4eec\u5df2\u7ecf\u786e\u8ba4resnet\u8ba4\u4e3a\u6211\u4eec\u7684\u732b\u7684\u56fe\u50cf\u786e\u5b9e\u662f\u4e00\u53ea\u732b": 90, "\u4f46\u662f": [90, 93, 95, 208, 215, 220, 232, 235, 238, 256], "\u4e3a\u4ec0\u4e48": 90, "\u6a21\u578b\u8ba4\u4e3a\u8fd9\u662f\u4e00\u5f20\u732b\u7684\u56fe\u50cf\u5462": 90, "\u8981\u56de\u7b54\u8fd9\u4e2a\u95ee\u9898": 90, "\u6211\u4eec\u5c31\u8981\u6c42\u52a9\u4e8ecaptum": 90, "\u8bd5\u56fe\u7528\u751f\u6210\u7279\u5b9a\u8f93\u51fa\u7684\u8f93\u5165\u7684\u7279\u5f81\u6765\u89e3\u91ca\u8be5\u8f93\u51fa": 90, "\u5b83\u4f7f\u7528\u7279\u5b9a\u7684\u8f93\u5165": 90, "\u5728\u8fd9\u91cc\u662f\u6211\u4eec\u7684\u6d4b\u8bd5\u56fe\u50cf": 90, "\u6765\u751f\u6210\u4e00\u4e2a\u8f93\u5165\u7279\u5f81\u5bf9\u7279\u5b9a\u8f93\u51fa\u7279\u5f81\u7684\u76f8\u5bf9\u91cd\u8981\u6027\u7684\u6620\u5c04": 90, "\u662fcaptum\u4e2d\u53ef\u7528\u7684\u7279\u5f81\u5f52\u56e0\u7b97\u6cd5\u4e4b\u4e00": 90, "\u96c6\u6210\u68af\u5ea6\u901a\u8fc7\u8fd1\u4f3c\u6a21\u578b\u8f93\u51fa\u76f8\u5bf9\u4e8e\u8f93\u5165\u7684\u68af\u5ea6\u7684\u79ef\u5206": 90, "\u4e3a\u6bcf\u4e2a\u8f93\u5165\u7279\u5f81\u5206\u914d\u4e00\u4e2a\u91cd\u8981\u6027\u5206\u6570": 90, "\u5728\u6211\u4eec\u7684\u4f8b\u5b50\u4e2d": [90, 95], "\u6211\u4eec\u5c06\u4f7f\u7528\u8f93\u51fa\u5411\u91cf\u7684\u4e00\u4e2a\u7279\u5b9a\u5143\u7d20": 90, "\u4e5f\u5c31\u662f\u8868\u793a\u6a21\u578b\u5bf9\u6240\u9009\u7c7b\u522b\u7684\u7f6e\u4fe1\u5ea6\u7684\u90a3\u4e2a\u5143\u7d20": 90, "\u5e76\u4f7f\u7528\u96c6\u6210\u68af\u5ea6\u6765\u7406\u89e3\u54ea\u4e9b\u8f93\u5165\u56fe\u50cf\u90e8\u5206\u5bf9\u8fd9\u4e2a\u8f93\u51fa\u505a\u51fa\u4e86\u8d21\u732e": 90, "\u4e00\u65e6\u6211\u4eec\u4ece\u96c6\u6210\u68af\u5ea6\u83b7\u5f97\u4e86\u91cd\u8981\u6027\u6620\u5c04": 90, "\u6211\u4eec\u5c06\u4f7f\u7528captum\u4e2d\u7684\u53ef\u89c6\u5316\u5de5\u5177\u6765\u63d0\u4f9b\u4e0e\u88ab\u68c0\u67e5\u7684\u8f93\u5165\u7279\u5f81\u76f4\u63a5\u76f8\u5173\u7684\u91cd\u8981\u6027\u6620\u5c04\u7684\u6709\u7528\u8868\u793a": 90, "captum\u7684": 90, "visualize_image_attr": 90, "\u51fd\u6570\u63d0\u4f9b\u4e86\u5404\u79cd\u81ea\u5b9a\u4e49\u663e\u793a\u5f52\u56e0\u6570\u636e\u7684\u9009\u9879": 90, "\u6211\u4eec\u4f20\u5165\u4e00\u4e2a\u81ea\u5b9a\u4e49\u7684matplotlib\u989c\u8272\u6620\u5c04": 90, "\u8fd0\u884c\u5e26\u6709": 90, "integrated_gradi": 90, "\u8c03\u7528\u7684\u5355\u5143\u683c\u901a\u5e38\u9700\u8981\u4e00\u4e24\u5206\u949f": 90, "\u7528\u6a21\u578b\u521d\u59cb\u5316\u5f52\u56e0\u7b97\u6cd5": 90, "\u8981\u6c42\u7b97\u6cd5\u5c06\u6211\u4eec\u7684\u8f93\u51fa\u76ee\u6807\u5f52\u56e0\u4e8e": 90, "attributions_ig": 90, "n_step": [90, 160, 162, 164], "\u663e\u793a\u539f\u59cb\u56fe\u50cf\u4ee5\u4f9b\u6bd4\u8f83": 90, "original_imag": [90, 230], "default_cmap": 90, "from_list": 90, "ffffff": 90, "0000ff": 90, "heat_map": [90, 230], "show_colorbar": [90, 230], "sign": [90, 154, 205], "\u5728\u4e0a\u9762\u7684\u56fe\u50cf\u4e2d": 90, "\u4f60\u5e94\u8be5\u53ef\u4ee5\u770b\u5230\u96c6\u6210\u68af\u5ea6\u5728\u56fe\u50cf\u4e2d\u732b\u7684\u4f4d\u7f6e\u7ed9\u51fa\u4e86\u6700\u5f3a\u7684\u4fe1\u53f7": 90, "\u57fa\u4e8e\u68af\u5ea6\u7684\u5f52\u56e0\u65b9\u6cd5\u6709\u52a9\u4e8e\u901a\u8fc7\u76f4\u63a5\u8ba1\u7b97\u8f93\u51fa\u76f8\u5bf9\u4e8e\u8f93\u5165\u7684\u53d8\u5316\u6765\u7406\u89e3\u6a21\u578b": 90, "\u57fa\u4e8e\u6270\u52a8\u7684\u5f52\u56e0": 90, "\u65b9\u6cd5\u5219\u66f4\u76f4\u63a5\u5730\u89e3\u51b3\u8fd9\u4e2a\u95ee\u9898": 90, "\u901a\u8fc7\u5bf9\u8f93\u5165\u8fdb\u884c\u53d8\u5316\u6765\u6d4b\u91cf\u5bf9\u8f93\u51fa\u7684\u5f71\u54cd": 90, "\u5c31\u662f\u8fd9\u6837\u4e00\u79cd\u65b9\u6cd5": 90, "\u5b83\u6d89\u53ca\u66ff\u6362\u8f93\u5165\u56fe\u50cf\u7684\u90e8\u5206\u533a\u57df": 90, "\u5e76\u68c0\u67e5\u5bf9\u8f93\u51fa\u4fe1\u53f7\u7684\u5f71\u54cd": 90, "\u4e0b\u9762": [90, 92, 94, 95, 96], "\u6211\u4eec\u8bbe\u7f6e\u906e\u6321\u5f52\u56e0": 90, "\u4e0e\u914d\u7f6e\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u7c7b\u4f3c": 90, "\u4f60\u53ef\u4ee5\u6307\u5b9a\u76ee\u6807\u533a\u57df\u7684\u5927\u5c0f": 90, "\u4ee5\u53ca\u786e\u5b9a\u5355\u4e2a\u6d4b\u91cf\u95f4\u8ddd\u7684\u6b65\u957f\u957f\u5ea6": 90, "visualize_image_attr_multipl": [90, 230], "\u6765\u53ef\u89c6\u5316\u6211\u4eec\u7684\u906e\u6321\u5f52\u56e0\u8f93\u51fa": 90, "\u663e\u793a\u6bcf\u4e2a\u533a\u57df\u7684\u6b63\u9762\u548c\u8d1f\u9762\u5f52\u56e0\u7684\u70ed\u56fe": 90, "\u5e76\u7528\u6b63\u9762\u5f52\u56e0\u533a\u57df\u63a9\u7801\u539f\u59cb\u56fe\u50cf": 90, "\u63a9\u7801\u53ef\u4ee5\u7ed9\u51fa\u4e00\u4e2a\u975e\u5e38\u6709\u542f\u53d1\u6027\u7684\u89c6\u56fe": 90, "\u663e\u793a\u6a21\u578b\u53d1\u73b0\u54ea\u4e9b\u533a\u57df\u6700": 90, "\u50cf\u732b": 90, "attributions_occ": 90, "sliding_window_shap": [90, 230], "masked_imag": 90, "fig_siz": 90, "18": [90, 107, 108, 109, 118, 127, 145, 158, 159, 164, 174, 175, 185, 194, 229, 232, 268], "\u540c\u6837": [90, 95, 104, 215], "\u6211\u4eec\u770b\u5230\u56fe\u50cf\u4e2d\u5305\u542b\u732b\u7684\u533a\u57df\u88ab\u8d4b\u4e88\u4e86\u66f4\u5927\u7684\u91cd\u8981\u6027": 90, "\u5141\u8bb8\u4f60\u5c06\u6a21\u578b\u4e2d\u9690\u85cf\u5c42\u7684\u6d3b\u52a8\u5f52\u56e0\u4e8e\u8f93\u5165\u7684\u7279\u5f81": 90, "\u5c42\u5f52\u56e0\u7b97\u6cd5\u6765\u68c0\u67e5\u6a21\u578b\u4e2d\u4e00\u4e2a\u5377\u79ef\u5c42\u7684\u6d3b\u52a8": 90, "gradcam\u8ba1\u7b97\u76ee\u6807\u8f93\u51fa\u76f8\u5bf9\u4e8e\u7ed9\u5b9a\u5c42\u7684\u68af\u5ea6": 90, "\u5bf9\u6bcf\u4e2a\u8f93\u51fa\u901a\u9053": 90, "\u8f93\u51fa\u7684\u7b2c2\u7ef4": 90, "\u8fdb\u884c\u5e73\u5747": 90, "\u5e76\u5c06\u6bcf\u4e2a\u901a\u9053\u7684\u5e73\u5747\u68af\u5ea6\u4e58\u4ee5\u5c42\u6fc0\u6d3b": 90, "\u7ed3\u679c\u5728\u6240\u6709\u901a\u9053\u4e0a\u6c42\u548c": 90, "gradcam\u4e13\u4e3a\u5377\u79ef\u7f51\u7edc": 90, "\u8bbe\u8ba1": 90, "\u7531\u4e8e\u5377\u79ef\u5c42\u7684\u6d3b\u52a8\u901a\u5e38\u5728\u7a7a\u95f4\u4e0a\u6620\u5c04\u5230\u8f93\u5165": 90, "\u56e0\u6b64gradcam\u5f52\u56e0\u901a\u5e38\u4f1a\u88ab\u4e0a\u91c7\u6837": 90, "\u5e76\u7528\u4e8e\u63a9\u76d6\u8f93\u5165": 90, "\u5c42\u5f52\u56e0\u7684\u8bbe\u7f6e\u7c7b\u4f3c\u4e8e\u8f93\u5165\u5f52\u56e0": 90, "\u9664\u4e86\u9664\u4e86\u6a21\u578b\u4e4b\u5916": 90, "\u4f60\u8fd8\u5fc5\u987b\u6307\u5b9a\u6a21\u578b\u4e2d\u4f60\u5e0c\u671b\u68c0\u67e5\u7684": 90, "\u9690\u85cf\u5c42": 90, "\u4e0e\u4e0a\u9762\u4e00\u6837": 90, "\u5f53\u6211\u4eec\u8c03\u7528": 90, "\u6211\u4eec\u6307\u5b9a\u611f\u5174\u8da3\u7684\u76ee\u6807\u7c7b": 90, "layer_gradcam": 90, "layer3": [90, 150, 158, 161], "attributions_lgc": 90, "base_class": 90, "\u57fa\u7c7b\u4e2d\u7684\u4fbf\u5229\u65b9\u6cd5": 90, "interpol": [90, 119, 264], "\u6765\u4e0a\u91c7\u6837\u8fd9\u4e9b\u5f52\u56e0\u6570\u636e": 90, "\u4ee5\u4fbf\u4e0e\u8f93\u5165\u56fe\u50cf\u8fdb\u884c\u6bd4\u8f83": 90, "upsamp_attr_lgc": 90, "blended_heat_map": 90, "\u8fd9\u6837\u7684\u53ef\u89c6\u5316\u53ef\u4ee5\u8ba9\u4f60\u6df1\u5165\u4e86\u89e3\u9690\u85cf\u5c42\u5982\u4f55\u54cd\u5e94\u4f60\u7684\u8f93\u5165": 90, "insights\u662f\u4e00\u4e2a\u5efa\u7acb\u5728captum\u4e4b\u4e0a\u7684\u53ef\u89e3\u91ca\u6027\u53ef\u89c6\u5316\u5c0f\u90e8\u4ef6": 90, "\u65e8\u5728\u4fc3\u8fdb\u6a21\u578b\u7406\u89e3": 90, "insights\u53ef\u7528\u4e8e\u56fe\u50cf": 90, "\u6587\u672c\u548c\u5176\u4ed6\u7279\u5f81": 90, "\u5e2e\u52a9\u7528\u6237\u7406\u89e3\u7279\u5f81\u5f52\u56e0": 90, "\u5b83\u5141\u8bb8\u4f60\u53ef\u89c6\u5316": 90, "\u591a\u4e2a\u8f93\u5165": 90, "\u8f93\u51fa\u5bf9\u7684\u5f52\u56e0": 90, "\u5e76\u63d0\u4f9b\u7528\u4e8e\u56fe\u50cf": 90, "\u6587\u672c\u548c\u4efb\u610f\u6570\u636e\u7684\u53ef\u89c6\u5316\u5de5\u5177": 90, "\u5728\u672c\u7b14\u8bb0\u672c\u7684\u8fd9\u4e00\u90e8\u5206": 90, "\u6211\u4eec\u5c06\u4f7f\u7528captum": 90, "insights\u53ef\u89c6\u5316\u591a\u4e2a\u56fe\u50cf\u5206\u7c7b\u63a8\u7406": 90, "\u8ba9\u6211\u4eec\u6536\u96c6\u4e00\u4e9b\u56fe\u50cf": 90, "\u770b\u770b\u6a21\u578b\u5bf9\u5b83\u4eec\u7684\u770b\u6cd5": 90, "\u4e3a\u4e86\u589e\u52a0\u591a\u6837\u6027": 90, "\u6211\u4eec\u5c06\u4f7f\u7528\u732b": 90, "\u8336\u58f6\u548c\u4e09\u53f6\u866b\u5316\u77f3": 90, "teapot": 90, "trilobit": 90, "\u770b\u8d77\u6765\u6211\u4eec\u7684\u6a21\u578b\u90fd\u6b63\u786e\u8bc6\u522b\u4e86\u5b83\u4eec": 90, "\u6211\u4eec\u5f53\u7136\u5e0c\u671b\u6df1\u5165\u6316\u6398": 90, "insights\u5c0f\u90e8\u4ef6": 90, "\u6211\u4eec\u7528\u4e0b\u9762\u5bfc\u5165\u7684": 90, "attributionvisu": 90, "\u5bf9\u8c61\u5bf9\u5176\u8fdb\u884c\u914d\u7f6e": 90, "\u671f\u671b\u6279\u91cf\u6570\u636e": 90, "\u6240\u4ee5\u6211\u4eec\u5c06\u5f15\u5165captum\u7684": 90, "\u8f85\u52a9\u7c7b": 90, "\u6211\u4eec\u5c06\u67e5\u770b\u56fe\u50cf": 90, "\u56e0\u6b64\u6211\u4eec\u8fd8\u5c06\u5bfc\u5165": 90, "imagefeatur": 90, "\u6211\u4eec\u4f7f\u7528\u4ee5\u4e0b\u53c2\u6570\u914d\u7f6e": 90, "\u8981\u68c0\u67e5\u7684\u6a21\u578b\u6570\u7ec4": 90, "\u53ea\u6709\u4e00\u4e2a": 90, "\u4e00\u4e2a\u8bc4\u5206\u51fd\u6570": 90, "\u5141\u8bb8captum": 90, "insights\u4ece\u6a21\u578b\u4e2d\u63d0\u53d6\u524dk\u4e2a\u9884\u6d4b": 90, "\u6211\u4eec\u6a21\u578b\u8bad\u7ec3\u7684\u7c7b\u522b\u7684\u6709\u5e8f": 90, "\u4eba\u7c7b\u53ef\u8bfb\u5217\u8868": 90, "\u8981\u67e5\u627e\u7684\u7279\u5f81\u5217\u8868": 90, "\u662f\u4e00\u4e2a": [90, 245, 253], "\u4e00\u4e2a\u6570\u636e\u96c6": 90, "\u5b83\u662f\u4e00\u4e2a\u53ef\u8fed\u4ee3\u5bf9\u8c61": 90, "\u8fd4\u56de\u8f93\u5165\u548c\u6807\u7b7e\u7684\u6279\u6b21": 90, "\u5c31\u50cf\u4f60\u7528\u4e8e\u8bad\u7ec3\u4e00\u6837": 90, "attr_vi": 90, "\u57fa\u7ebf\u662f\u5168\u96f6\u8f93\u5165": 90, "\u8fd9\u53ef\u80fd\u4f1a\u56e0\u4f60\u7684\u6570\u636e\u800c\u6709\u6240\u4e0d\u540c": 90, "baseline_func": 90, "\u5408\u5e76\u4e0a\u9762\u7684\u56fe\u50cf\u53d8\u6362": 90, "full_img_transform": 90, "score_func": 90, "\u7167\u7247": 90, "baseline_transform": 90, "input_transform": [90, 214], "282": 90, "849": [90, 220, 232], "\u8fd0\u884c\u4e0a\u9762\u7684\u5355\u5143\u683c\u5e76\u6ca1\u6709\u82b1\u8d39\u592a\u591a\u65f6\u95f4": 90, "\u4e0d\u50cf\u6211\u4eec\u4e4b\u524d\u7684\u5f52\u56e0\u90a3\u6837": 90, "insights\u5141\u8bb8\u4f60\u5728\u53ef\u89c6\u5316\u5c0f\u90e8\u4ef6\u4e2d\u914d\u7f6e\u4e0d\u540c\u7684\u5f52\u56e0\u7b97\u6cd5": 90, "\u4e4b\u540e\u5b83\u5c06\u8ba1\u7b97\u5e76\u663e\u793a": 90, "\u90a3\u4e2a": 90, "\u8fc7\u7a0b\u5c06\u9700\u8981\u51e0\u5206\u949f\u65f6\u95f4": 90, "\u8fd0\u884c\u4e0b\u9762\u7684\u5355\u5143\u683c\u5c06\u6e32\u67d3captum": 90, "\u7136\u540e\u4f60\u53ef\u4ee5\u9009\u62e9\u5f52\u56e0\u65b9\u6cd5\u53ca\u5176\u53c2\u6570": 90, "\u6839\u636e\u9884\u6d4b\u7684\u7c7b\u6216\u9884\u6d4b\u7684\u6b63\u786e\u6027\u8fc7\u6ee4\u6a21\u578b\u54cd\u5e94": 90, "\u67e5\u770b\u6a21\u578b\u7684\u9884\u6d4b\u53ca\u76f8\u5173\u6982\u7387": 90, "\u67e5\u770b\u5f52\u56e0\u4e0e": 90, "\u539f\u59cb\u56fe\u50cf\u7684\u70ed\u529b\u56fe": 90, "captumyt": 90, "introyt": 91, "rst": [91, 262, 264], "introyt1_tutori": [91, 92], "tensors_deeper_tutori": [91, 95], "modelsyt_tutori": [91, 93], "tensorboardyt_tutori": [91, 94], "trainingyt_tutori": 91, "captumyt_tutori": 91, "sphx_glr_beginner_introyt_modelsyt_tutori": 91, "sphx_glr_beginner_introyt_autogradyt_tutori": 91, "sphx_glr_beginner_introyt_trainingyt": 91, "sphx_glr_beginner_introyt_tensorboardyt_tutori": 91, "sphx_glr_beginner_introyt_captumyt": 91, "sphx_glr_beginner_introyt_tensors_deeper_tutori": 91, "sphx_glr_beginner_introyt_introyt1_tutori": 91, "\u4ece\u89c6\u9891\u7684": 92, "\u5f00\u59cb": [92, 93, 238, 248, 256], "\u6211\u4eec\u5c06\u5bfc\u5165": 92, "\u8ba9\u6211\u4eec\u770b\u4e00\u4e9b\u57fa\u672c\u7684\u5f20\u91cf\u64cd\u4f5c": 92, "\u521b\u5efa\u5f20\u91cf\u7684\u51e0\u79cd\u65b9\u5f0f": 92, "\u4e0a\u9762": [92, 93, 94], "\u6211\u4eec\u521b\u5efa\u4e86\u4e00\u4e2a": 92, "5x3": 92, "\u7684\u96f6\u77e9\u9635": 92, "\u5e76\u67e5\u8be2\u5176\u6570\u636e\u7c7b\u578b": 92, "\u53d1\u73b0\u96f6\u662f": 92, "\u4f4d\u6d6e\u70b9\u6570": 92, "\u8fd9\u662f": [92, 93, 95, 231, 258], "\u7684\u9ed8\u8ba4\u8bbe\u7f6e": [92, 232], "\u5982\u679c\u4f60\u60f3\u8981\u6574\u6570\u5462": 92, "\u53ef\u4ee5\u8986\u76d6\u9ed8\u8ba4\u8bbe\u7f6e": 92, "int16": [92, 95, 198, 235], "\u4f60\u53ef\u4ee5\u770b\u5230": [92, 93, 95], "\u5f53\u6211\u4eec\u6539\u53d8\u9ed8\u8ba4\u8bbe\u7f6e\u65f6": 92, "\u5728\u6253\u5370\u5f20\u91cf\u65f6\u4f1a\u6709\u6240\u63d0\u793a": 92, "\u901a\u5e38\u60c5\u51b5\u4e0b": 92, "\u4f1a\u4f7f\u7528\u7279\u5b9a\u7684\u79cd\u5b50\u521d\u59cb\u5316\u5b66\u4e60\u6743\u91cd": 92, "\u4ee5\u786e\u4fdd\u7ed3\u679c\u7684\u53ef\u91cd\u590d\u6027": 92, "1729": [92, 95], "r1": 92, "r2": 92, "\u65b0\u7684\u503c": 92, "r3": 92, "nshould": 92, "\u7531\u4e8e\u91cd\u65b0\u8bbe\u7f6e\u79cd\u5b50": 92, "\u6240\u4ee5\u4e0e": 92, "\u7684\u503c\u76f8\u540c": 92, "\u5f20\u91cf\u6267\u884c\u7b97\u672f\u8fd0\u7b97\u5f88\u76f4\u89c2": 92, "\u5f62\u72b6\u76f8\u4f3c\u7684\u5f20\u91cf\u53ef\u4ee5\u76f8\u52a0": 92, "\u76f8\u4e58\u7b49": 92, "\u4e0e\u6807\u91cf\u7684\u8fd0\u7b97\u4f1a\u5728\u6574\u4e2a\u5f20\u91cf\u4e0a\u5206\u5e03\u5f0f\u8fdb\u884c": 92, "\u6bcf\u4e2a\u5143\u7d20\u90fd\u4e58\u4ee5": 92, "\u5f62\u72b6\u76f8\u4f3c": 92, "\u56e0\u6b64\u5141\u8bb8\u76f8\u52a0": 92, "\u5f20\u91cf\u6309\u5143\u7d20\u76f8\u52a0": 92, "\u8fd9\u4e0e\u8f93\u5165\u5f20\u91cf\u5177\u6709\u76f8\u540c\u7684\u7ef4\u5ea6": 92, "\u53d6\u6d88\u6ce8\u91ca\u8fd9\u4e00\u884c\u4f1a\u5bfc\u81f4\u8fd0\u884c\u65f6\u9519\u8bef": 92, "\u8fd9\u91cc\u662f\u4e00\u4e9b\u53ef\u7528\u7684\u6570\u5b66\u8fd0\u7b97\u793a\u4f8b": 92, "\u503c\u5728": 92, "\u4e4b\u95f4": [92, 232], "\u652f\u6301\u5e38\u89c1\u7684\u6570\u5b66\u8fd0\u7b97": 92, "nabsolut": 92, "\u4ee5\u53ca\u4e09\u89d2\u51fd\u6570": 92, "ninvers": 92, "asin": [92, 95], "\u548c\u7ebf\u6027\u4ee3\u6570\u8fd0\u7b97": 92, "\u5982\u884c\u5217\u5f0f\u548c\u5947\u5f02\u503c\u5206\u89e3": 92, "ndetermin": 92, "det": [92, 102, 154], "nsingular": 92, "decomposit": [92, 145], "svd": [92, 95], "\u4ee5\u53ca\u7edf\u8ba1\u548c\u805a\u5408\u8fd0\u7b97": 92, "naverag": 92, "std_mean": 92, "nmaximum": 92, "\u5173\u4e8e": 92, "\u5f20\u91cf\u7684\u5f3a\u5927\u529f\u80fd\u8fd8\u6709\u5f88\u591a\u9700\u8981\u4e86\u89e3": 92, "\u5305\u62ec\u5982\u4f55\u4e3a": 92, "\u4e0a\u7684\u5e76\u884c\u8ba1\u7b97\u8bbe\u7f6e\u5b83\u4eec": 92, "\u6211\u4eec\u5c06\u5728\u53e6\u4e00\u4e2a\u89c6\u9891\u4e2d\u6df1\u5165\u63a2\u8ba8": 92, "\u8ba9\u6211\u4eec\u8ba8\u8bba\u4e00\u4e0b\u5982\u4f55\u5728": 92, "\u4e2d\u8868\u793a\u6a21\u578b": 92, "\u6a21\u578b\u7684\u7236\u5bf9\u8c61": 92, "\u7528\u4e8e\u6fc0\u6d3b\u51fd\u6570": 92, "\u56fe": 92, "\u4e0a\u56fe\u662f": 92, "\u7684\u793a\u610f\u56fe": 92, "\u5b83\u662f\u6700\u65e9\u7684\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u4e4b\u4e00": 92, "\u4e5f\u662f\u6df1\u5ea6\u5b66\u4e60\u7206\u53d1\u5f0f\u53d1\u5c55\u7684\u9a71\u52a8\u529b\u4e4b\u4e00": 92, "\u5b83\u88ab\u6784\u5efa\u7528\u4e8e\u8bfb\u53d6\u624b\u5199\u6570\u5b57\u7684\u5c0f\u56fe\u50cf": 92, "\u5e76\u6b63\u786e\u5206\u7c7b\u56fe\u50cf\u4e2d\u8868\u793a\u7684\u6570\u5b57": 92, "\u5b83\u5de5\u4f5c\u539f\u7406\u7684\u7b80\u8ff0\u4e3a": 92, "\u662f\u4e00\u4e2a\u5377\u79ef\u5c42": 92, "\u5b83\u5728\u8f93\u5165\u56fe\u50cf\u4e2d\u626b\u63cf\u5b83\u5728\u8bad\u7ec3\u671f\u95f4\u5b66\u4e60\u5230\u7684\u7279\u5f81": 92, "\u5b83\u8f93\u51fa\u4e00\u4e2a\u7279\u5f81\u6fc0\u6d3b\u56fe": 92, "\u63cf\u8ff0\u5b83\u5728\u56fe\u50cf\u4e2d\u770b\u5230\u6bcf\u4e2a\u5b66\u4e60\u5230\u7684\u7279\u5f81\u7684\u4f4d\u7f6e": 92, "\u6fc0\u6d3b\u56fe": 92, "\u5728\u5c42": 92, "\u4e2d\u88ab\u4e0b\u91c7\u6837": 92, "\u662f\u53e6\u4e00\u4e2a\u5377\u79ef\u5c42": 92, "\u8fd9\u6b21\u626b\u63cf": 92, "\u7684\u6fc0\u6d3b\u56fe\u4ee5\u67e5\u627e\u7279\u5f81\u7ec4\u5408": 92, "\u5b83\u4e5f\u8f93\u51fa\u4e00\u4e2a\u6fc0\u6d3b\u56fe": 92, "\u63cf\u8ff0\u8fd9\u4e9b\u7279\u5f81\u7ec4\u5408\u7684\u7a7a\u95f4\u4f4d\u7f6e": 92, "\u8be5\u6fc0\u6d3b\u56fe\u5728\u5c42": 92, "\u6700\u540e\u7684\u5168\u8fde\u63a5\u5c42": 92, "\u662f\u4e00\u4e2a\u5206\u7c7b\u5668": 92, "\u5b83\u5c06\u6700\u7ec8\u7684\u6fc0\u6d3b\u56fe\u5206\u7c7b\u4e3a": 92, "\u4e2a": [92, 231, 253], "\u4e2d\u7684\u4e00\u4e2a": 92, "\u8868\u793a": 92, "\u4e2a\u6570\u5b57": 92, "\u6211\u4eec\u5982\u4f55\u5728\u4ee3\u7801\u4e2d\u8868\u793a\u8fd9\u4e2a\u7b80\u5355\u7684\u795e\u7ecf\u7f51\u7edc\u5462": 92, "\u4e2a\u8f93\u5165\u56fe\u50cf\u901a\u9053": 92, "\u9ed1\u767d": [92, 93], "\u4e2a\u8f93\u51fa\u901a\u9053": [92, 93], "\u7684\u6b63\u65b9\u5f62\u5377\u79ef\u6838": 92, "\u4e00\u4e2a\u4eff\u5c04\u64cd\u4f5c": [92, 93], "\u7a97\u53e3\u4e0a\u8fdb\u884c\u6700\u5927\u6c60\u5316": [92, 93], "\u5982\u679c\u5c3a\u5bf8\u662f\u6b63\u65b9\u5f62": [92, 93], "\u4f60\u53ea\u9700\u6307\u5b9a\u4e00\u4e2a\u6570\u5b57": [92, 93], "num_flat_featur": [92, 93], "\u9664\u6279\u6b21\u7ef4\u5ea6\u5916\u7684\u6240\u6709\u7ef4\u5ea6": [92, 93], "num_featur": [92, 93, 130], "\u67e5\u770b\u8fd9\u6bb5\u4ee3\u7801": 92, "\u4f60\u5e94\u8be5\u80fd\u591f\u53d1\u73b0\u4e00\u4e9b\u4e0e\u4e0a\u56fe\u7ed3\u6784\u76f8\u4f3c\u7684\u5730\u65b9": 92, "\u8fd9\u6f14\u793a\u4e86\u5178\u578b": 92, "\u6a21\u578b\u7684\u7ed3\u6784": 92, "\u5b83\u7ee7\u627f\u81ea": 92, "\u6a21\u5757\u53ef\u4ee5\u5d4c\u5957": 92, "\u5373\u4f7f": 92, "\u5c42\u7c7b\u4e5f\u7ee7\u627f\u81ea": 92, "\u4e00\u4e2a\u6a21\u578b\u5c06\u6709\u4e00\u4e2a": 92, "\u5728\u8fd9\u91cc\u5b83\u5b9e\u4f8b\u5316\u5176\u5c42": 92, "\u5e76\u52a0\u8f7d\u4efb\u4f55\u5b83\u53ef\u80fd\u9700\u8981\u7684\u6570\u636e\u7ec4\u4ef6": 92, "\u6a21\u578b\u53ef\u80fd\u52a0\u8f7d\u8bcd\u6c47\u8868": 92, "\u8fd9\u662f\u5b9e\u9645\u8ba1\u7b97\u53d1\u751f\u7684\u5730\u65b9": 92, "\u8f93\u5165\u901a\u8fc7\u7f51\u7edc\u5c42\u548c\u5404\u79cd\u51fd\u6570\u751f\u6210\u8f93\u51fa": 92, "\u9664\u6b64\u4e4b\u5916": 92, "\u4f60\u53ef\u4ee5\u50cf\u6784\u5efa\u4efb\u4f55\u5176\u4ed6": 92, "\u7c7b\u4e00\u6837\u6784\u5efa\u4f60\u7684\u6a21\u578b\u7c7b": 92, "\u6dfb\u52a0\u4efb\u4f55\u4f60\u9700\u8981\u652f\u6301\u6a21\u578b\u8ba1\u7b97\u7684\u5c5e\u6027\u548c\u65b9\u6cd5": 92, "\u8ba9\u6211\u4eec\u5b9e\u4f8b\u5316\u8fd9\u4e2a\u5bf9\u8c61\u5e76\u8fd0\u884c\u4e00\u4e2a\u793a\u4f8b\u8f93\u5165": 92, "\u5bf9\u8c61\u6253\u5370\u4e86\u4ec0\u4e48\u4fe1\u606f": 92, "\u7684\u9ed1\u767d\u56fe\u50cf": [92, 93, 104], "nimag": 92, "\u4e0d\u76f4\u63a5\u8c03\u7528": 92, "nraw": 92, "\u5982\u4e0a\u4ee3\u7801\u5b58\u5728\u4e00\u4e9b\u8981\u70b9": 92, "\u6211\u4eec\u5b9e\u4f8b\u5316": 92, "\u7c7b": [92, 93, 104, 217, 247], "\u5e76\u6253\u5370": 92, "\u7684\u5b50\u7c7b\u5c06\u62a5\u544a\u5b83\u521b\u5efa\u7684\u5c42\u53ca\u5176\u5f62\u72b6\u548c\u53c2\u6570": 92, "\u8fd9\u53ef\u4ee5\u63d0\u4f9b\u4e00\u4e2a\u6a21\u578b\u7684\u6982\u89c8": 92, "\u5982\u679c\u4f60\u60f3\u4e86\u89e3\u5b83\u7684\u5904\u7406\u8fc7\u7a0b": 92, "\u5728\u4e0b\u9762": [92, 95], "\u6211\u4eec\u521b\u5efa\u4e00\u4e2a\u865a\u62df\u8f93\u5165": 92, "\u8868\u793a\u4e00\u4e2a": 92, "\u7684\u5355\u901a\u9053\u56fe\u50cf": 92, "\u4f60\u4f1a\u52a0\u8f7d\u4e00\u4e2a\u56fe\u50cf\u5207\u7247\u5e76\u5c06\u5176\u8f6c\u6362\u4e3a\u8fd9\u79cd\u5f62\u72b6\u7684\u5f20\u91cf": 92, "\u4f60\u53ef\u80fd\u5df2\u7ecf\u6ce8\u610f\u5230\u6211\u4eec\u7684\u5f20\u91cf\u6709\u4e00\u4e2a\u989d\u5916\u7684\u7ef4\u5ea6": 92, "\u6279\u6b21\u7ef4\u5ea6": 92, "\u6a21\u578b\u5047\u8bbe\u5b83\u4eec\u6b63\u5728\u5904\u7406\u6570\u636e": 92, "\u6279\u6b21": [92, 95, 96], "\u5305\u542b": [92, 104], "\u4e2a\u56fe\u50cf\u5207\u7247\u7684\u6279\u6b21\u5c06\u5177\u6709\u5f62\u72b6": 92, "\u7531\u4e8e\u6211\u4eec\u53ea\u4f7f\u7528\u4e00\u4e2a\u56fe\u50cf": 92, "\u6211\u4eec\u521b\u5efa\u4e86\u4e00\u4e2a\u5f62\u72b6\u4e3a": 92, "\u7684\u6279\u6b21": 92, "\u6211\u4eec\u901a\u8fc7\u50cf\u51fd\u6570\u4e00\u6837\u8c03\u7528\u5b83\u6765\u8981\u6c42\u6a21\u578b\u8fdb\u884c\u63a8\u7406": 92, "\u8fd9\u4e2a\u8c03\u7528\u7684\u8f93\u51fa\u8868\u793a\u6a21\u578b\u5bf9\u8f93\u5165\u8868\u793a\u7279\u5b9a\u6570\u5b57\u7684\u7f6e\u4fe1\u5ea6": 92, "\u7531\u4e8e\u8fd9\u4e2a\u6a21\u578b\u5b9e\u4f8b\u8fd8\u6ca1\u6709\u5b66\u4e60\u4efb\u4f55\u4e1c\u897f": 92, "\u6211\u4eec\u4e0d\u5e94\u8be5\u671f\u671b\u5728\u8f93\u51fa\u4e2d\u770b\u5230\u4efb\u4f55\u4fe1\u53f7": 92, "\u67e5\u770b": [92, 237, 257], "\u7684\u5f62\u72b6": 92, "\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u5b83\u4e5f\u6709\u4e00\u4e2a\u6279\u6b21\u7ef4\u5ea6": 92, "\u5176\u5927\u5c0f\u5e94\u8be5\u59cb\u7ec8\u4e0e\u8f93\u5165\u6279\u6b21\u7ef4\u5ea6\u76f8\u5339\u914d": 92, "\u5982\u679c\u6211\u4eec\u4f20\u5165\u4e86\u4e00\u4e2a\u5305\u542b": 92, "\u4e2a\u5b9e\u4f8b\u7684\u8f93\u5165\u6279\u6b21": 92, "\u5c06\u5177\u6709": 92, "\u6211\u4eec\u5c06\u6f14\u793a\u5982\u4f55\u4f7f\u7528": 92, "\u4e2d\u7684\u4e00\u4e2a\u53ef\u4e0b\u8f7d\u7684\u5f00\u653e\u8bbf\u95ee\u6570\u636e\u96c6": 92, "\u5982\u4f55\u8f6c\u6362\u56fe\u50cf\u4ee5\u4f9b\u4f60\u7684\u6a21\u578b\u4f7f\u7528": 92, "\u4ee5\u53ca\u5982\u4f55\u4f7f\u7528": [92, 252], "\u5c06\u6570\u636e\u6279\u6b21\u63d0\u4f9b\u7ed9\u4f60\u7684\u6a21\u578b": 92, "\u6211\u4eec\u9700\u8981\u505a\u7684\u7b2c\u4e00\u4ef6\u4e8b\u662f\u5c06\u4f20\u5165\u7684\u56fe\u50cf\u8f6c\u6362\u4e3a": 92, "4914": 92, "4822": 92, "4465": 92, "2470": 92, "2435": 92, "2616": 92, "\u6211\u4eec\u4e3a\u8f93\u5165\u6307\u5b9a\u4e86\u4e24\u79cd\u8f6c\u6362": 92, "\u52a0\u8f7d\u7684\u56fe\u50cf\u8f6c\u6362\u4e3a": 92, "\u8c03\u6574\u5f20\u91cf\u7684\u503c": 92, "\u4f7f\u5176\u5e73\u5747\u503c\u4e3a\u96f6": 92, "\u6807\u51c6\u5dee\u4e3a": 92, "\u5927\u591a\u6570\u6fc0\u6d3b\u51fd\u6570\u5728": 92, "\u9644\u8fd1\u5177\u6709\u6700\u5f3a\u68af\u5ea6": [92, 93], "\u56e0\u6b64\u5c06\u6211\u4eec\u7684\u6570\u636e\u5c45\u4e2d\u53ef\u4ee5\u52a0\u5feb\u5b66\u4e60\u901f\u5ea6": 92, "\u4f20\u9012\u7ed9\u8f6c\u6362\u7684\u503c\u662f\u6570\u636e\u96c6\u4e2d\u56fe\u50cf\u7684": 92, "\u503c\u7684\u5747\u503c": 92, "\u7b2c\u4e00\u4e2a\u5143\u7ec4": 92, "\u548c\u6807\u51c6\u5dee": 92, "\u7b2c\u4e8c\u4e2a\u5143\u7ec4": 92, "\u4f60\u53ef\u4ee5\u901a\u8fc7\u8fd0\u884c\u4ee5\u4e0b\u51e0\u884c\u4ee3\u7801\u81ea\u5df1\u8ba1\u7b97\u8fd9\u4e9b\u503c": 92, "concatdataset": 92, "\u5c06\u6240\u6709\u8bad\u7ec3\u56fe\u50cf\u5806\u53e0\u6210\u5f62\u72b6\u4e3a": 92, "50000": 92, "\u83b7\u53d6\u6bcf\u4e2a\u901a\u9053\u7684\u5747\u503c": 92, "\u8fd8\u6709\u8bb8\u591a\u5176\u4ed6\u53ef\u7528\u7684\u8f6c\u6362": 92, "\u5305\u62ec\u88c1\u526a": 92, "\u5c45\u4e2d": 92, "\u65cb\u8f6c\u548c\u53cd\u5c04": 92, "\u6211\u4eec\u5c06\u521b\u5efa": 92, "\u6570\u636e\u96c6\u7684\u4e00\u4e2a\u5b9e\u4f8b": 92, "\u8fd9\u662f\u4e00\u7ec4": 92, "\u7684\u5f69\u8272\u56fe\u50cf\u5207\u7247": 92, "\u4ee3\u8868": [92, 95], "\u7c7b\u7269\u4f53": 92, "\u79cd\u52a8\u7269": 92, "\u9e1f": 92, "\u732b": 92, "\u9e7f": 92, "\u72d7": 92, "\u9752\u86d9": 92, "\u9a6c": 92, "\u79cd\u8f66\u8f86": 92, "\u98de\u673a": 92, "\u6c7d\u8f66": 92, "\u8239": 92, "\u5361\u8f66": 92, "\u5f53\u4f60\u8fd0\u884c\u4e0a\u9762\u7684\u5355\u5143\u683c\u65f6": 92, "\u5b83\u53ef\u80fd\u9700\u8981\u4e00\u4e9b\u65f6\u95f4\u6765\u4e0b\u8f7d\u6570\u636e\u96c6": 92, "\u8fd9\u662f\u5728": 92, "\u4e2d\u521b\u5efa\u6570\u636e\u96c6\u5bf9\u8c61\u7684\u4e00\u4e2a\u793a\u4f8b": 92, "\u53ef\u4e0b\u8f7d\u7684\u6570\u636e\u96c6": 92, "\u5982\u4e0a\u9762\u7684": 92, "\u7c7b\u5305\u62ec": 92, "\u4e2d\u7684\u53ef\u4e0b\u8f7d\u6570\u636e\u96c6": 92, "\u4ee5\u53ca\u8bf8\u5982": 92, "\u4e4b\u7c7b\u7684\u5b9e\u7528\u7a0b\u5e8f\u6570\u636e\u96c6\u7c7b": 92, "\u5b83\u5c06\u8bfb\u53d6\u4e00\u4e2a\u6807\u8bb0\u8fc7\u7684\u56fe\u50cf\u6587\u4ef6\u5939": 92, "\u4f60\u4e5f\u53ef\u4ee5\u521b\u5efa": 92, "\u7684\u81ea\u5df1\u7684\u5b50\u7c7b": 92, "\u5f53\u6211\u4eec\u5b9e\u4f8b\u5316\u6211\u4eec\u7684\u6570\u636e\u96c6\u65f6": 92, "\u6211\u4eec\u9700\u8981\u544a\u8bc9\u5b83\u4e00\u4e9b\u4e8b\u60c5": 92, "\u6211\u4eec\u5e0c\u671b\u6570\u636e\u5b58\u653e\u7684\u6587\u4ef6\u7cfb\u7edf\u8def\u5f84": 92, "\u6211\u4eec\u662f\u5426\u4f7f\u7528\u8fd9\u4e2a\u96c6\u5408\u8fdb\u884c\u8bad\u7ec3": 92, "\u5927\u591a\u6570\u6570\u636e\u96c6\u5c06\u88ab\u5206\u4e3a\u8bad\u7ec3\u548c\u6d4b\u8bd5\u5b50\u96c6": 92, "\u5982\u679c\u6211\u4eec\u8fd8\u6ca1\u6709\u4e0b\u8f7d\u6570\u636e\u96c6": 92, "\u6211\u4eec\u662f\u5426\u5e0c\u671b\u4e0b\u8f7d\u5b83": 92, "\u6211\u4eec\u60f3\u5bf9\u6570\u636e\u5e94\u7528\u54ea\u4e9b\u8f6c\u6362": 92, "\u4e00\u65e6\u4f60\u7684\u6570\u636e\u96c6\u51c6\u5907\u5c31\u7eea": 92, "\u4f60\u5c31\u53ef\u4ee5\u5c06\u5b83\u4ea4\u7ed9": 92, "\u7684\u5b50\u7c7b\u5305\u88c5\u4e86\u5bf9\u6570\u636e\u7684\u8bbf\u95ee": 92, "\u5e76\u4e13\u95e8\u9488\u5bf9\u5b83\u6b63\u5728\u670d\u52a1\u7684\u6570\u636e\u7c7b\u578b": 92, "\u5bf9\u5b83\u6b63\u5728\u670d\u52a1\u7684\u6570\u636e\u4e00\u65e0\u6240\u77e5": 92, "\u4f46\u4f1a\u6839\u636e\u4f60\u6307\u5b9a\u7684\u53c2\u6570\u5c06": 92, "\u63d0\u4f9b\u7684\u8f93\u5165\u5f20\u91cf\u7ec4\u7ec7\u6210\u6279\u6b21": 92, "\u5728\u4e0a\u9762\u7684\u793a\u4f8b\u4e2d": [92, 111, 222, 239], "\u6211\u4eec\u8981\u6c42\u4e00\u4e2a": 92, "\u4e2d\u7ed9\u6211\u4eec\u6279\u6b21\u5927\u5c0f\u4e3a": 92, "\u968f\u673a\u6253\u4e71\u5b83\u4eec\u7684\u987a\u5e8f": 92, "\u5e76\u544a\u8bc9\u5b83\u542f\u52a8\u4e24\u4e2a\u5de5\u4f5c\u8fdb\u7a0b\u4ece\u78c1\u76d8\u52a0\u8f7d\u6570\u636e": 92, "\u53ef\u89c6\u5316\u4f60\u7684": 92, "\u63d0\u4f9b\u7684\u6279\u6b21\u662f\u4e00\u4e2a\u5f88\u597d\u7684\u505a\u6cd5": 92, "\u83b7\u53d6\u4e00\u4e9b\u968f\u673a\u8bad\u7ec3\u56fe\u50cf": 92, "\u663e\u793a\u56fe\u50cf": 92, "\u6253\u5370\u6807\u7b7e": 92, "\u8fd0\u884c\u4e0a\u9762\u7684\u5355\u5143\u683c\u5e94\u8be5\u4f1a\u663e\u793a\u4f60\u4e00\u6761\u56db\u5f20\u56fe\u50cf\u7684\u6761\u5e26": 92, "\u4ee5\u53ca\u6bcf\u5f20\u56fe\u50cf\u7684\u6b63\u786e\u6807\u7b7e": 92, "\u8ba9\u6211\u4eec\u628a\u6240\u6709\u7684\u90e8\u5206\u653e\u5728\u4e00\u8d77": 92, "\u8bad\u7ec3\u4e00\u4e2a\u6a21\u578b": 92, "\u6211\u4eec\u9700\u8981\u8bad\u7ec3\u548c\u6d4b\u8bd5\u6570\u636e\u96c6": 92, "\u5982\u679c\u4f60\u8fd8\u6ca1\u6709": 92, "\u8fd0\u884c\u4e0b\u9762\u7684\u5355\u5143\u683c\u6765\u786e\u4fdd\u6570\u636e\u96c6\u5df2\u4e0b\u8f7d": 92, "\u53ef\u80fd\u9700\u8981\u4e00\u5206\u949f": 92, "\u8fd0\u884c\u5bf9": 92, "\u8f93\u51fa\u7684\u68c0\u67e5": 92, "\u8fd9\u662f\u6211\u4eec\u5c06\u8981\u8bad\u7ec3\u7684\u6a21\u578b": 92, "\u5982\u679c\u5b83\u770b\u8d77\u6765\u5f88\u719f\u6089": 92, "\u90a3\u662f\u56e0\u4e3a\u5b83\u662f": 92, "\u7684\u4e00\u4e2a\u53d8\u4f53": 92, "\u5728\u672c\u89c6\u9891\u524d\u9762\u8ba8\u8bba\u8fc7": 92, "\u9002\u7528\u4e8e": 92, "\u8272\u56fe\u50cf": 92, "\u6211\u4eec\u6700\u540e\u9700\u8981\u7684\u662f\u4e00\u4e2a\u635f\u5931\u51fd\u6570\u548c\u4e00\u4e2a\u4f18\u5316\u5668": 92, "\u5982\u672c\u89c6\u9891\u524d\u9762\u6240\u8ba8\u8bba\u7684": 92, "\u662f\u8861\u91cf\u6a21\u578b\u9884\u6d4b\u4e0e\u7406\u60f3\u8f93\u51fa\u4e4b\u95f4\u5dee\u8ddd\u7684\u6307\u6807": 92, "\u4ea4\u53c9\u71b5\u635f\u5931\u662f\u50cf\u6211\u4eec\u8fd9\u6837\u7684\u5206\u7c7b\u6a21\u578b\u7684\u5178\u578b\u635f\u5931\u51fd\u6570": 92, "\u662f\u9a71\u52a8\u5b66\u4e60\u7684\u5173\u952e": 92, "\u6211\u4eec\u521b\u5efa\u4e86\u4e00\u4e2a\u5b9e\u73b0": 92, "\u968f\u673a\u68af\u5ea6\u4e0b\u964d": 92, "\u7684\u4f18\u5316\u5668": 92, "\u8fd9\u662f\u6700\u76f4\u63a5\u7684\u4f18\u5316\u7b97\u6cd5\u4e4b\u4e00": 92, "\u9664\u4e86\u7b97\u6cd5\u7684\u53c2\u6570": 92, "\u5982\u5b66\u4e60\u7387": 92, "\u548c\u52a8\u91cf": 92, "\u4e4b\u5916": [92, 93, 230], "\u6211\u4eec\u8fd8\u4f20\u5165\u4e86": 92, "\u5b83\u662f\u6a21\u578b\u4e2d\u6240\u6709\u5b66\u4e60\u6743\u91cd\u7684\u96c6\u5408": 92, "\u8fd9\u662f\u4f18\u5316\u5668\u8981\u8c03\u6574\u7684\u5bf9\u8c61": 92, "\u6240\u6709\u8fd9\u4e9b\u90fd\u88ab\u7ec4\u88c5\u5230\u8bad\u7ec3\u5faa\u73af\u4e2d": 92, "\u7ee7\u7eed\u8fd0\u884c\u8fd9\u4e2a\u5355\u5143\u683c": 92, "\u5b83\u53ef\u80fd\u9700\u8981\u51e0\u5206\u949f\u624d\u80fd\u6267\u884c": 92, "\u5728\u6570\u636e\u96c6\u4e0a\u5faa\u73af\u591a\u6b21": [92, 94], "\u83b7\u53d6\u8f93\u5165": [92, 251], "\u5c06\u53c2\u6570\u68af\u5ea6\u5f52\u96f6": 92, "\u53cd\u5411": [92, 251], "\u6253\u5370\u7edf\u8ba1\u4fe1\u606f": [92, 251], "\u6bcf": 92, "\u4e2a\u5c0f\u6279\u6b21\u6253\u5370\u4e00\u6b21": 92, "\u6211\u4eec\u53ea\u8fdb\u884c\u4e86": 92, "\u4e2a\u8bad\u7ec3\u8f6e\u6b21": 92, "\u7b2c": 92, "\u884c": 92, "\u4e5f\u5c31\u662f\u5728\u8bad\u7ec3\u6570\u636e\u96c6\u4e0a\u8fdb\u884c\u4e86\u4e24\u6b21\u5b8c\u6574\u904d\u5386": 92, "\u6bcf\u6b21\u904d\u5386\u90fd\u6709\u4e00\u4e2a\u5185\u90e8\u5faa\u73af": 92, "\u904d\u5386\u8bad\u7ec3\u6570\u636e": 92, "\u63d0\u4f9b\u7ecf\u8fc7\u8f6c\u6362\u7684\u8f93\u5165\u56fe\u50cf\u6279\u6b21\u53ca\u5176\u6b63\u786e\u6807\u7b7e": 92, "\u5c06\u68af\u5ea6\u5f52\u96f6": [92, 96, 248], "\u662f\u4e00\u4e2a\u91cd\u8981\u6b65\u9aa4": 92, "\u68af\u5ea6\u4f1a\u5728\u4e00\u4e2a\u6279\u6b21\u4e0a\u7d2f\u79ef": 92, "\u5982\u679c\u6211\u4eec\u4e0d\u4e3a\u6bcf\u4e2a\u6279\u6b21\u91cd\u7f6e\u5b83\u4eec": 92, "\u5b83\u4eec\u5c06\u7ee7\u7eed\u7d2f\u79ef": 92, "\u4ece\u800c\u63d0\u4f9b\u9519\u8bef\u7684\u68af\u5ea6\u503c": 92, "\u4f7f\u5b66\u4e60\u53d8\u5f97\u4e0d\u53ef\u80fd": 92, "\u5728\u7b2c": 92, "\u6211\u4eec": 92, "\u8981\u6c42\u6a21\u578b\u5bf9\u8fd9\u4e2a\u6279\u6b21\u8fdb\u884c\u9884\u6d4b": 92, "\u5728\u4e0b\u4e00\u884c": 92, "\u6211\u4eec\u8ba1\u7b97\u635f\u5931": 92, "\u6a21\u578b\u9884\u6d4b": 92, "\u6b63\u786e\u8f93\u51fa": 92, "\u4e4b\u95f4\u7684\u5dee\u5f02": 92, "\u6211\u4eec\u8fdb\u884c": 92, "\u4f20\u64ad": 92, "\u8ba1\u7b97\u5c06\u6307\u5bfc\u5b66\u4e60\u7684\u68af\u5ea6": 92, "\u4f18\u5316\u5668\u6267\u884c\u4e00\u6b65\u5b66\u4e60": 92, "\u5b83\u4f7f\u7528": 92, "\u8c03\u7528\u5f97\u5230\u7684\u68af\u5ea6\u6765\u8c03\u6574\u5b66\u4e60\u6743\u91cd": 92, "\u4ee5\u51cf\u5c0f\u635f\u5931": 92, "\u5faa\u73af\u7684\u5176\u4f59\u90e8\u5206\u5bf9\u8f6e\u6b21\u53f7": 92, "\u5df2\u5b8c\u6210\u7684\u8bad\u7ec3\u5b9e\u4f8b\u6570\u4ee5\u53ca\u8bad\u7ec3\u5faa\u73af\u4e2d\u6536\u96c6\u7684\u635f\u5931\u8fdb\u884c\u4e86\u4e00\u4e9b\u8f7b\u91cf\u7ea7\u62a5\u544a": 92, "\u4f60\u5e94\u8be5\u4f1a\u770b\u5230\u7c7b\u4f3c\u8fd9\u6837\u7684\u8f93\u51fa": 92, "235": [92, 109], "940": 92, "6000": 92, "8000": [92, 247], "573": 92, "507": 92, "12000": 92, "442": 92, "378": 92, "364": 92, "319": [92, 239], "284": [92, 164], "267": 92, "\u6ce8\u610f\u635f\u5931\u503c\u662f\u5355\u8c03\u4e0b\u964d\u7684": 92, "\u8868\u660e\u6211\u4eec\u7684\u6a21\u578b\u5728\u7ee7\u7eed\u63d0\u9ad8\u5176\u5728\u8bad\u7ec3\u6570\u636e\u96c6\u4e0a\u7684\u6027\u80fd": 92, "\u4f5c\u4e3a\u6700\u540e\u4e00\u6b65": 92, "\u6211\u4eec\u5e94\u8be5\u68c0\u67e5\u6a21\u578b\u662f\u5426\u771f\u6b63\u505a\u5230\u4e86": 92, "\u6cdb\u5316": 92, "\u5b66\u4e60": [92, 104], "\u800c\u4e0d\u662f\u7b80\u5355\u5730": 92, "\u8bb0\u4f4f": 92, "\u4e86\u6570\u636e\u96c6": 92, "\u8fd9\u88ab\u79f0\u4e3a": 92, "\u8fc7\u62df\u5408": 92, "\u901a\u5e38\u8868\u660e\u6570\u636e\u96c6\u592a\u5c0f": 92, "\u6ca1\u6709\u8db3\u591f\u7684\u6837\u672c\u8fdb\u884c\u6cdb\u5316\u5b66\u4e60": 92, "\u6216\u8005\u6a21\u578b\u7684\u5b66\u4e60\u53c2\u6570\u6bd4\u6b63\u786e\u5efa\u6a21\u6570\u636e\u96c6\u6240\u9700\u7684\u66f4\u591a": 92, "\u8fd9\u5c31\u662f\u4e3a\u4ec0\u4e48\u6570\u636e\u96c6\u88ab\u5206\u4e3a\u8bad\u7ec3\u548c\u6d4b\u8bd5\u5b50\u96c6\u7684\u539f\u56e0": 92, "\u4e3a\u4e86\u6d4b\u8bd5\u6a21\u578b\u7684\u6cdb\u5316\u80fd\u529b": 92, "\u6211\u4eec\u8981\u6c42\u5b83\u5bf9\u4ece\u672a\u8bad\u7ec3\u8fc7\u7684\u6570\u636e\u8fdb\u884c\u9884\u6d4b": 92, "\u5982\u679c\u4f60\u4e00\u76f4\u8ddf\u968f\u4e0b\u6765": 92, "\u4f60\u5e94\u8be5\u4f1a\u770b\u5230\u6a21\u578b\u5728\u8fd9\u4e00\u70b9\u4e0a\u7684\u51c6\u786e\u7387\u5927\u7ea6\u4e3a": 92, "\u8fd9\u5e76\u4e0d\u662f\u6700\u5148\u8fdb\u7684\u6c34\u5e73": 92, "\u4f46\u6bd4\u968f\u673a\u8f93\u51fa\u7684": 92, "\u51c6\u786e\u7387\u8981\u597d\u5f97\u591a": 92, "\u8fd9\u8bc1\u660e\u4e86\u6a21\u578b\u786e\u5b9e\u53d1\u751f\u4e86\u4e00\u4e9b\u6cdb\u5316\u5b66\u4e60": 92, "\u5728\u8fd9\u4e2a\u89c6\u9891\u4e2d": 93, "\u6211\u4eec\u5c06\u8ba8\u8bba": 93, "\u63d0\u4f9b\u7684\u4e00\u4e9b\u7528\u4e8e\u6784\u5efa\u6df1\u5ea6\u5b66\u4e60\u7f51\u7edc\u7684\u5de5\u5177": 93, "\u9664\u4e86": [93, 230], "\u6211\u4eec\u5728\u672c\u89c6\u9891\u4e2d\u8ba8\u8bba\u7684\u6240\u6709\u7c7b\u90fd\u662f": 93, "\u7684\u57fa\u7c7b": 93, "\u65e8\u5728\u5c01\u88c5\u7279\u5b9a\u4e8e": 93, "\u6a21\u578b\u53ca\u5176\u7ec4\u4ef6\u7684\u884c\u4e3a": 93, "\u7684\u4e00\u4e2a\u91cd\u8981\u884c\u4e3a\u662f\u6ce8\u518c\u53c2\u6570": 93, "\u5982\u679c\u7279\u5b9a\u7684": 93, "\u5b50\u7c7b\u5177\u6709\u5b66\u4e60\u6743\u91cd": 93, "\u8fd9\u4e9b\u6743\u91cd\u5c06\u8868\u793a\u4e3a": 93, "\u7c7b\u662f": 93, "\u5177\u6709\u7279\u6b8a\u884c\u4e3a": 93, "\u5373\u5f53\u5b83\u4eec\u88ab\u5206\u914d\u4e3a": 93, "\u7684\u5c5e\u6027\u65f6": 93, "\u5b83\u4eec\u5c06\u88ab\u6dfb\u52a0\u5230\u8be5\u6a21\u5757\u7684\u53c2\u6570\u5217\u8868\u4e2d": 93, "\u7c7b\u4e0a\u7684": 93, "\u65b9\u6cd5\u8bbf\u95ee\u8fd9\u4e9b\u53c2\u6570": 93, "\u4f5c\u4e3a\u4e00\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50": 93, "\u8fd9\u91cc\u6709\u4e00\u4e2a\u975e\u5e38\u7b80\u5355\u7684\u6a21\u578b": 93, "\u5305\u542b\u4e24\u4e2a\u7ebf\u6027\u5c42\u548c\u4e00\u4e2a\u6fc0\u6d3b\u51fd\u6570": 93, "\u6211\u4eec\u5c06\u521b\u5efa\u5b83\u7684\u4e00\u4e2a\u5b9e\u4f8b": 93, "\u5e76\u8981\u6c42\u5b83\u62a5\u544a\u5176\u53c2\u6570": 93, "linear1": [93, 103, 253], "linear2": [93, 103, 253], "njust": 93, "nmodel": 93, "\u8fd9\u663e\u793a\u4e86": 93, "\u6a21\u578b\u7684\u57fa\u672c\u7ed3\u6784": 93, "\u65b9\u6cd5\u5b9a\u4e49\u6a21\u578b\u7684\u5c42\u548c\u5176\u4ed6\u7ec4\u4ef6": 93, "\u8fd8\u6709\u4e00\u4e2a": 93, "\u65b9\u6cd5\u6267\u884c\u8ba1\u7b97": 93, "\u6ce8\u610f\u6211\u4eec\u53ef\u4ee5\u6253\u5370\u6a21\u578b\u6216\u4efb\u4f55\u5b50\u6a21\u5757": 93, "\u4ee5\u4e86\u89e3\u5176\u7ed3\u6784": 93, "\u6700\u57fa\u672c\u7684\u795e\u7ecf\u7f51\u7edc\u5c42\u7c7b\u578b\u662f": 93, "\u7ebf\u6027": 93, "\u5168\u8fde\u63a5": 93, "\u8fd9\u662f\u4e00\u79cd\u6bcf\u4e2a\u8f93\u5165\u90fd\u4f1a\u5f71\u54cd\u8be5\u5c42\u6bcf\u4e2a\u8f93\u51fa\u7684\u5c42": 93, "\u5176\u5f71\u54cd\u7a0b\u5ea6\u7531\u5c42\u7684\u6743\u91cd\u6307\u5b9a": 93, "\u5982\u679c\u4e00\u4e2a\u6a21\u578b\u6709": 93, "\u4e2a\u8f93\u5165\u548c": 93, "\u4e2a\u8f93\u51fa": 93, "\u6743\u91cd\u5c06\u662f\u4e00\u4e2a": 93, "\u77e9\u9635": [93, 95], "lin": [93, 99, 104, 138, 158, 173, 174, 175, 210], "nweight": 93, "noutput": 93, "\u5982\u679c\u4f60\u5c06": 93, "\u4e0e\u7ebf\u6027\u5c42\u7684\u6743\u91cd\u76f8\u4e58": 93, "\u5e76\u52a0\u4e0a\u504f\u7f6e": 93, "\u4f60\u4f1a\u53d1\u73b0\u5f97\u5230\u7684\u662f\u8f93\u51fa\u5411\u91cf": 93, "\u53e6\u4e00\u4e2a\u9700\u8981\u6ce8\u610f\u7684\u91cd\u8981\u7279\u6027\u662f": 93, "\u5f53\u6211\u4eec\u7528": 93, "\u68c0\u67e5\u5c42\u7684\u6743\u91cd\u65f6": 93, "\u5b83\u5c06\u81ea\u5df1\u62a5\u544a\u4e3a\u4e00\u4e2a": 93, "\u5e76\u8ba9\u6211\u4eec\u77e5\u9053\u5b83\u6b63\u5728\u4f7f\u7528": 93, "\u8ddf\u8e2a\u68af\u5ea6": 93, "\u4e0d\u540c\u7684\u9ed8\u8ba4\u884c\u4e3a": 93, "\u7ebf\u6027\u5c42\u5728\u6df1\u5ea6\u5b66\u4e60\u6a21\u578b\u4e2d\u88ab\u5e7f\u6cdb\u4f7f\u7528": 93, "\u4f60\u4f1a\u7ecf\u5e38\u5728\u5206\u7c7b\u5668\u6a21\u578b\u7684\u672b\u7aef\u770b\u5230\u5b83\u4eec": 93, "\u5176\u4e2d\u6700\u540e\u4e00\u5c42\u5c06\u6709": 93, "\u662f\u5206\u7c7b\u5668\u6240\u5904\u7406\u7684\u7c7b\u522b\u6570": 93, "\u5377\u79ef": [93, 231], "\u5c42\u88ab\u8bbe\u8ba1\u7528\u4e8e\u5904\u7406\u5177\u6709\u9ad8\u5ea6\u7a7a\u95f4\u76f8\u5173\u6027\u7684\u6570\u636e": 93, "\u5b83\u4eec\u5728\u8ba1\u7b97\u673a\u89c6\u89c9\u9886\u57df\u975e\u5e38\u5e38\u7528": 93, "\u7528\u4e8e\u68c0\u6d4b\u7ec4\u6210\u66f4\u9ad8\u7ea7\u7279\u5f81\u7684\u7d27\u5bc6\u7279\u5f81\u7ec4": 93, "\u5b83\u4eec\u4e5f\u51fa\u73b0\u5728\u5176\u4ed6\u4e0a\u4e0b\u6587\u4e2d": 93, "\u5e94\u7528\u7a0b\u5e8f\u4e2d": 93, "\u4e00\u4e2a\u5355\u8bcd\u7684\u76f4\u63a5\u4e0a\u4e0b\u6587": 93, "\u5373\u5e8f\u5217\u4e2d\u9644\u8fd1\u7684\u5176\u4ed6\u5355\u8bcd": 93, "\u53ef\u80fd\u4f1a\u5f71\u54cd\u53e5\u5b50\u7684\u542b\u4e49": 93, "\u6211\u4eec\u5728\u4e4b\u524d\u7684\u89c6\u9891\u4e2d\u770b\u5230\u4e86": 93, "lenet5": 93, "\u4e2d\u7684\u5377\u79ef\u5c42": 93, "\u8f93\u5165\u56fe\u50cf\u901a\u9053": 93, "\u8f93\u51fa\u901a\u9053": 93, "\u5e73\u65b9\u5377\u79ef\u6838": 93, "\u6765\u81ea\u56fe\u50cf\u7ef4\u5ea6": 93, "\u8ba9\u6211\u4eec\u5206\u89e3\u4e00\u4e0b\u8fd9\u4e2a\u6a21\u578b\u4e2d\u5377\u79ef\u5c42\u7684\u5de5\u4f5c\u539f\u7406": 93, "\u65e8\u5728\u63a5\u53d7": 93, "1x32x32": 93, "\u5377\u79ef\u5c42\u6784\u9020\u51fd\u6570\u7684\u7b2c\u4e00\u4e2a\u53c2\u6570\u662f\u8f93\u5165\u901a\u9053\u6570": 93, "\u8fd9\u91cc\u662f": 93, "\u5982\u679c\u6211\u4eec\u6784\u5efa\u8fd9\u4e2a\u6a21\u578b\u6765\u67e5\u770b": 93, "\u8272\u5f69\u901a\u9053": 93, "\u5b83\u5c06\u662f": 93, "\u5377\u79ef\u5c42\u5c31\u50cf\u4e00\u4e2a\u626b\u63cf\u56fe\u50cf\u7684\u7a97\u53e3": 93, "\u5bfb\u627e\u5b83\u80fd\u8bc6\u522b\u7684\u6a21\u5f0f": 93, "\u8fd9\u4e9b\u6a21\u5f0f\u88ab\u79f0\u4e3a": 93, "\u7279\u5f81": 93, "\u5377\u79ef\u5c42\u7684\u4e00\u4e2a\u53c2\u6570\u662f\u6211\u4eec\u5e0c\u671b\u5b83\u5b66\u4e60\u7684\u7279\u5f81\u6570\u91cf": 93, "\u6784\u9020\u51fd\u6570\u7684\u7b2c\u4e8c\u4e2a\u53c2\u6570\u662f\u8f93\u51fa\u7279\u5f81\u7684\u6570\u91cf": 93, "\u6211\u4eec\u8981\u6c42\u6211\u4eec\u7684\u5c42\u5b66\u4e60": 93, "\u4e2a\u7279\u5f81": 93, "\u5c31\u5728\u4e0a\u9762": 93, "\u6211\u5c06\u5377\u79ef\u5c42\u6bd4\u4f5c\u4e00\u4e2a\u7a97\u53e3": 93, "\u4f46\u662f\u7a97\u53e3\u6709\u591a\u5927": 93, "\u7b2c\u4e09\u4e2a\u53c2\u6570\u662f\u7a97\u53e3\u6216\u5185\u6838\u5927\u5c0f": 93, "\u6570\u5b57": 93, "\u610f\u5473\u7740\u6211\u4eec\u9009\u62e9\u4e86\u4e00\u4e2a": 93, "\u7684\u5185\u6838": 93, "\u5982\u679c\u4f60\u5e0c\u671b\u5185\u6838\u7684\u9ad8\u5ea6\u4e0e\u5bbd\u5ea6\u4e0d\u540c": 93, "\u4f60\u53ef\u4ee5\u4e3a\u6b64\u53c2\u6570\u6307\u5b9a\u4e00\u4e2a\u5143\u7ec4": 93, "\u6765\u83b7\u5f97\u4e00\u4e2a": 93, "3x5": 93, "\u7684\u5377\u79ef\u6838": 93, "\u5377\u79ef\u5c42\u7684\u8f93\u51fa\u662f\u4e00\u4e2a": 93, "\u6fc0\u6d3b\u6620\u5c04": 93, "\u8f93\u5165\u5f20\u91cf\u4e2d\u7279\u5f81\u5b58\u5728\u7684\u7a7a\u95f4\u8868\u793a": 93, "\u5c06\u7ed9\u6211\u4eec\u4e00\u4e2a": 93, "6x28x28": 93, "\u7684\u8f93\u51fa\u5f20\u91cf": [93, 95], "\u662f\u7279\u5f81\u6570": 93, "\u662f\u6620\u5c04\u7684\u9ad8\u5ea6\u548c\u5bbd\u5ea6": 93, "\u6765\u81ea\u4e8e\u5f53\u5728": 93, "\u50cf\u7d20\u884c\u4e0a\u626b\u63cf": 93, "\u50cf\u7d20\u7a97\u53e3\u65f6": 93, "\u53ea\u6709": 93, "\u4e2a\u6709\u6548\u4f4d\u7f6e\u7684\u4e8b\u5b9e": 93, "\u6211\u4eec\u5c06\u5377\u79ef\u7684\u8f93\u51fa\u901a\u8fc7": 93, "\u7a0d\u540e\u5c06\u8ba8\u8bba\u6fc0\u6d3b\u51fd\u6570": 93, "\u7136\u540e\u901a\u8fc7\u6700\u5927\u6c60\u5316\u5c42": 93, "\u6700\u5927\u6c60\u5316\u5c42\u5c06\u6fc0\u6d3b\u6620\u5c04\u4e2d\u5f7c\u6b64\u9760\u8fd1\u7684\u7279\u5f81\u7ec4\u5408\u5728\u4e00\u8d77": 93, "\u5b83\u901a\u8fc7\u51cf\u5c0f\u5f20\u91cf\u6765\u5b9e\u73b0\u8fd9\u4e00\u70b9": 93, "\u5c06\u8f93\u51fa\u4e2d\u6bcf\u4e2a": 93, "\u7ec4\u7684\u5355\u5143\u683c\u5408\u5e76\u4e3a\u4e00\u4e2a\u5355\u5143\u683c": 93, "\u5e76\u5c06\u8be5\u5355\u5143\u683c\u7684\u503c\u5206\u914d\u4e3a\u7ec4\u6210\u5b83\u7684": 93, "\u4e2a\u5355\u5143\u683c\u4e2d\u7684\u6700\u5927\u503c": 93, "\u8fd9\u7ed9\u4e86\u6211\u4eec\u4e00\u4e2a\u8f83\u4f4e\u5206\u8fa8\u7387\u7684\u6fc0\u6d3b\u6620\u5c04": 93, "\u5c3a\u5bf8\u4e3a": 93, "6x14x14": 93, "\u6211\u4eec\u7684\u4e0b\u4e00\u4e2a\u5377\u79ef\u5c42": 93, "\u671f\u671b": 93, "\u4e2a\u8f93\u5165\u901a\u9053": 93, "\u5bf9\u5e94\u4e8e\u7b2c\u4e00\u5c42\u5bfb\u627e\u7684": 93, "\u6709": 93, "\u5e76\u4e14\u5185\u6838\u5927\u5c0f\u4e3a": 93, "3x3": 93, "\u5b83\u8f93\u51fa\u4e00\u4e2a": 93, "16x12x12": 93, "\u7684\u6fc0\u6d3b\u6620\u5c04": 93, "\u518d\u6b21\u901a\u8fc7\u6700\u5927\u6c60\u5316\u5c42\u51cf\u5c0f\u5230": 93, "16x6x6": 93, "\u5728\u5c06\u6b64\u8f93\u51fa\u4f20\u9012\u7ed9\u7ebf\u6027\u5c42\u4e4b\u524d": 93, "\u5b83\u88ab\u91cd\u65b0\u6574\u5f62\u4e3a\u4e00\u4e2a": 93, "576": 93, "\u5143\u7d20\u5411\u91cf": 93, "\u4f9b\u4e0b\u4e00\u5c42\u4f7f\u7528": 93, "\u6709\u9488\u5bf9": 93, "\u5f20\u91cf\u7684\u5377\u79ef\u5c42": 93, "\u5377\u79ef\u5c42\u6784\u9020\u51fd\u6570\u8fd8\u6709\u8bb8\u591a\u5176\u4ed6\u53ef\u9009\u53c2\u6570": 93, "\u5305\u62ec\u6b65\u957f\u957f\u5ea6": 93, "\u53ea\u626b\u63cf\u6bcf\u7b2c\u4e8c\u4e2a\u6216\u6bcf\u7b2c\u4e09\u4e2a\u4f4d\u7f6e": 93, "\u586b\u5145": 93, "\u56e0\u6b64\u4f60\u53ef\u4ee5\u626b\u63cf\u5230\u8f93\u5165\u7684\u8fb9\u7f18": 93, "\u7b49\u7b49": 93, "\u66f4\u591a\u4fe1\u606f\u8bf7\u53c2\u89c1": 93, "\u5faa\u73af\u795e\u7ecf\u7f51\u7edc": 93, "\u7528\u4e8e\u5e8f\u5217\u6570\u636e": 93, "\u4ece\u79d1\u5b66\u4eea\u5668\u7684\u65f6\u95f4\u5e8f\u5217\u6d4b\u91cf\u5230\u81ea\u7136\u8bed\u8a00\u53e5\u5b50\u518d\u5230": 93, "dna": 93, "\u6838\u82f7\u9178": 93, "\u901a\u8fc7\u7ef4\u62a4\u4e00\u4e2a": 93, "\u9690\u85cf\u72b6\u6001": 93, "\u6765\u5b9e\u73b0\u8fd9\u4e00\u70b9": 93, "\u8be5\u9690\u85cf\u72b6\u6001\u5145\u5f53\u4e00\u79cd\u8bb0\u5fc6": 93, "\u8bb0\u5f55\u5230\u76ee\u524d\u4e3a\u6b62\u5b83\u5728\u5e8f\u5217\u4e2d\u770b\u5230\u7684\u5185\u5bb9": 93, "\u5c42\u7684\u5185\u90e8\u7ed3\u6784": 93, "\u6216\u5176\u53d8\u4f53": 93, "\u957f\u77ed\u671f\u8bb0\u5fc6": 93, "\u95e8\u63a7\u5faa\u73af\u5355\u5143": 93, "\u76f8\u5f53\u590d\u6742": 93, "\u8d85\u51fa\u4e86\u672c\u89c6\u9891\u7684\u8303\u56f4": 93, "\u4f46\u6211\u4eec\u5c06\u5411\u4f60\u5c55\u793a\u57fa\u4e8e": 93, "\u7684\u8bcd\u6027\u6807\u6ce8\u5668": 93, "\u4e00\u79cd\u5206\u7c7b\u5668": 93, "\u7528\u4e8e\u544a\u8bc9\u4f60\u4e00\u4e2a\u5355\u8bcd\u662f\u540d\u8bcd": 93, "\u52a8\u8bcd\u7b49": 93, "\u7684\u6837\u5b50": 93, "lstmtagger": [93, 102], "vocab_s": [93, 98, 99, 102, 103, 115, 118, 138, 145, 186, 221], "tagset_s": [93, 98, 102], "word_embed": [93, 102], "\u63a5\u53d7\u8bcd\u5d4c\u5165\u4f5c\u4e3a\u8f93\u5165": 93, "\u5e76\u8f93\u51fa\u7ef4\u5ea6\u4e3a": 93, "\u7684\u9690\u85cf\u72b6\u6001": 93, "\u5c06\u4ece\u9690\u85cf\u72b6\u6001\u7a7a\u95f4\u6620\u5c04\u5230\u6807\u8bb0\u7a7a\u95f4\u7684\u7ebf\u6027\u5c42": 93, "hidden2tag": [93, 98, 102], "lstm_out": [93, 98, 102], "tag_spac": [93, 102], "tag_scor": [93, 102], "\u6784\u9020\u51fd\u6570\u6709\u56db\u4e2a\u53c2\u6570": 93, "\u662f\u8f93\u5165\u8bcd\u6c47\u8868\u4e2d\u5355\u8bcd\u7684\u6570\u91cf": 93, "\u6bcf\u4e2a\u5355\u8bcd\u662f\u4e00\u4e2a": 93, "\u7ef4\u7684\u4e00\u70ed\u5411\u91cf": 93, "\u6216\u5355\u4f4d\u5411\u91cf": 93, "\u662f\u8f93\u51fa\u6807\u7b7e\u96c6\u7684\u5927\u5c0f": 93, "\u662f\u8bcd\u6c47\u7684": 93, "\u5d4c\u5165": 93, "\u7a7a\u95f4\u7684\u5927\u5c0f": 93, "\u5d4c\u5165\u5c06\u8bcd\u6c47\u6620\u5c04\u5230\u4e00\u4e2a\u4f4e\u7ef4\u7a7a\u95f4": 93, "\u5728\u8be5\u7a7a\u95f4\u4e2d": 93, "\u610f\u4e49\u76f8\u4f3c\u7684\u5355\u8bcd\u5f7c\u6b64\u63a5\u8fd1": 93, "\u7684\u8bb0\u5fc6\u5927\u5c0f": 93, "\u8f93\u5165\u5c06\u662f\u4e00\u4e2a\u53e5\u5b50": 93, "\u5355\u8bcd\u8868\u793a\u4e3a\u4e00\u70ed\u5411\u91cf\u7684\u7d22\u5f15": 93, "\u5d4c\u5165\u5c42\u5c06\u628a\u8fd9\u4e9b\u6620\u5c04\u5230\u4e00\u4e2a": 93, "\u7ef4\u7684\u7a7a\u95f4": 93, "\u63a5\u6536\u8fd9\u4e2a\u5d4c\u5165\u5e8f\u5217\u5e76\u5bf9\u5176\u8fdb\u884c\u8fed\u4ee3": 93, "\u4ea7\u751f\u4e00\u4e2a\u957f\u5ea6\u4e3a": 93, "\u7684\u8f93\u51fa\u5411\u91cf": 93, "\u6700\u540e\u7684\u7ebf\u6027\u5c42\u5145\u5f53\u5206\u7c7b\u5668": 93, "\u5c06\u6700\u540e\u4e00\u5c42\u7684\u8f93\u51fa\u901a\u8fc7": 93, "\u8f6c\u6362\u4e3a\u4e00\u7ec4\u5f52\u4e00\u5316\u7684\u4f30\u8ba1\u6982\u7387": 93, "\u8868\u793a\u7ed9\u5b9a\u5355\u8bcd\u6620\u5c04\u5230\u7ed9\u5b9a\u6807\u7b7e\u7684\u6982\u7387": 93, "\u5982\u679c\u4f60\u60f3\u770b\u770b\u8fd9\u4e2a\u7f51\u7edc\u7684\u5b9e\u9645\u8fd0\u884c\u60c5\u51b5": 93, "\u53ef\u4ee5\u67e5\u770b": 93, "\u4e0a\u7684": [93, 121, 238, 258], "\u5e8f\u5217\u6a21\u578b\u548c": 93, "\u7f51\u7edc": 93, "\u6559\u7a0b": [93, 104, 238, 239, 246, 248, 257], "\u662f\u591a\u7528\u9014\u7f51\u7edc": 93, "\u9886\u57df\u53d6\u5f97\u4e86\u6700\u5148\u8fdb\u7684\u6210\u679c": 93, "\u8ba8\u8bba\u8f6c\u6362\u5668\u67b6\u6784\u8d85\u51fa\u4e86\u672c\u89c6\u9891\u7684\u8303\u56f4": 93, "\u5141\u8bb8\u4f60\u5b9a\u4e49\u8f6c\u6362\u5668\u6a21\u578b\u7684\u6574\u4f53\u53c2\u6570": 93, "\u6ce8\u610f\u529b\u5934\u7684\u6570\u91cf": 93, "\u7f16\u7801\u5668\u548c\u89e3\u7801\u5668\u5c42\u7684\u6570\u91cf": 93, "\u548c\u6fc0\u6d3b\u51fd\u6570\u7b49": 93, "\u4f60\u751a\u81f3\u53ef\u4ee5\u7528\u6b63\u786e\u7684\u53c2\u6570\u4ece\u8fd9\u4e2a\u5355\u4e00\u7c7b\u6784\u5efa": 93, "\u7c7b\u8fd8\u5305\u542b\u5c01\u88c5\u5355\u4e2a\u7ec4\u4ef6": 93, "transformerdecod": 93, "\u548c\u5b50\u7ec4\u4ef6": 93, "transformerdecoderlay": 93, "\u8be6\u60c5\u8bf7\u67e5\u770b": [93, 227], "\u4e2d\u5173\u4e8e\u8f6c\u6362\u5668\u7c7b\u7684\u5185\u5bb9": 93, "\u4ee5\u53ca": [93, 104, 232], "\u4e0a\u76f8\u5173\u7684": 93, "\u8fd8\u6709\u5176\u4ed6\u7c7b\u578b\u7684\u5c42\u6267\u884c\u6a21\u578b\u4e2d\u7684\u91cd\u8981\u529f\u80fd": 93, "\u4f46\u5b83\u4eec\u81ea\u8eab\u4e0d\u53c2\u4e0e\u5b66\u4e60\u8fc7\u7a0b": 93, "\u6700\u5927\u6c60\u5316": 93, "\u53ca\u5176\u5b6a\u751f\u5c42\u6700\u5c0f\u6c60\u5316": 93, "\u901a\u8fc7\u7ec4\u5408\u5355\u5143\u5e76\u5c06\u8f93\u5165\u5355\u5143\u7684\u6700\u5927\u503c\u5206\u914d\u7ed9\u8f93\u51fa\u5355\u5143\u6765\u51cf\u5c0f\u5f20\u91cf": 93, "\u6211\u4eec\u4e4b\u524d\u770b\u5230\u8fc7\u8fd9\u4e00\u70b9": 93, "maxpool_lay": 93, "\u5982\u679c\u4f60\u4ed4\u7ec6\u89c2\u5bdf\u4e0a\u9762\u7684\u503c": 93, "\u4f60\u4f1a\u53d1\u73b0\u6700\u5927\u6c60\u5316\u8f93\u51fa\u4e2d\u7684\u6bcf\u4e2a\u503c\u90fd\u662f": 93, "6x6": 93, "\u8f93\u5165\u7684\u6bcf\u4e2a\u8c61\u9650\u7684\u6700\u5927\u503c": 93, "\u5f52\u4e00\u5316\u5c42": 93, "\u5728\u5c06\u4e00\u5c42\u7684\u8f93\u51fa\u9988\u9001\u5230\u53e6\u4e00\u5c42\u4e4b\u524d": 93, "\u91cd\u65b0\u5c45\u4e2d\u5e76\u5f52\u4e00\u5316\u8f93\u51fa": 93, "\u5c45\u4e2d\u548c\u7f29\u653e\u4e2d\u95f4\u5f20\u91cf\u6709\u8bb8\u591a\u6709\u76ca\u7684\u6548\u679c": 93, "\u4f8b\u5982\u8ba9\u4f60\u53ef\u4ee5\u4f7f\u7528\u66f4\u9ad8\u7684\u5b66\u4e60\u7387\u800c\u4e0d\u4f1a\u51fa\u73b0\u68af\u5ea6\u7206\u70b8": 93, "\u6d88\u5931": 93, "norm_lay": [93, 135], "batchnorm1d": 93, "normed_tensor": 93, "\u8fd0\u884c\u4e0a\u9762\u7684\u5355\u5143\u683c": 93, "\u6211\u4eec\u4e3a\u8f93\u5165\u5f20\u91cf\u6dfb\u52a0\u4e86\u4e00\u4e2a\u5927\u7684\u7f29\u653e\u56e0\u5b50\u548c\u504f\u79fb\u91cf": 93, "\u4f60\u5e94\u8be5\u4f1a\u770b\u5230\u8f93\u5165\u5f20\u91cf\u7684": 93, "\u5de6\u53f3": 93, "\u7ecf\u8fc7\u5f52\u4e00\u5316\u5c42\u5904\u7406\u540e": 93, "\u4f60\u53ef\u4ee5\u770b\u5230\u503c\u53d8\u5c0f\u4e86": 93, "\u5e76\u4e14\u56f4\u7ed5\u7740": 93, "\u5206\u5e03": [93, 230], "\u5e73\u5747\u503c\u5e94\u8be5\u975e\u5e38\u5c0f": 93, "\u8fd9\u662f\u6709\u76ca\u7684": 93, "\u56e0\u4e3a\u8bb8\u591a\u6fc0\u6d3b\u51fd\u6570": 93, "\u4e0b\u9762\u5c06\u8ba8\u8bba": 93, "\u4f46\u6709\u65f6\u5bf9\u4e8e\u5c06\u5b83\u4eec\u63a8\u79bb": 93, "\u5f88\u8fdc\u7684\u8f93\u5165\u4f1a\u9047\u5230\u68af\u5ea6\u6d88\u5931\u6216\u7206\u70b8\u7684\u95ee\u9898": 93, "\u5c06\u6570\u636e\u4fdd\u6301\u5728\u6700\u9661\u68af\u5ea6\u533a\u57df\u5468\u56f4\u5c06\u503e\u5411\u4e8e\u610f\u5473\u7740\u66f4\u5feb": 93, "\u66f4\u597d\u7684\u5b66\u4e60\u548c\u66f4\u9ad8\u7684\u53ef\u884c\u5b66\u4e60\u7387": 93, "\u662f\u4e00\u79cd\u9f13\u52b1\u6a21\u578b": 93, "\u7a00\u758f\u8868\u793a": 93, "\u7684\u5de5\u5177": 93, "\u4e5f\u5c31\u662f\u8bf4": [93, 95], "\u63a8\u52a8\u5b83\u5728\u63a8\u7406\u65f6\u4f7f\u7528\u8f83\u5c11\u7684\u6570\u636e": 93, "\u5c42\u7684\u5de5\u4f5c\u539f\u7406\u662f\u5728": 93, "\u8bad\u7ec3\u671f\u95f4": 93, "\u968f\u673a\u8bbe\u7f6e\u8f93\u5165\u5f20\u91cf\u7684\u4e00\u90e8\u5206": 93, "\u5c42\u5728\u63a8\u7406\u65f6\u603b\u662f\u5173\u95ed\u7684": 93, "\u8fd9\u8feb\u4f7f\u6a21\u578b\u9488\u5bf9\u8fd9\u79cd\u63a9\u7801\u6216\u51cf\u5c11\u7684\u6570\u636e\u96c6\u8fdb\u884c\u5b66\u4e60": 93, "\u5bf9\u793a\u4f8b\u5f20\u91cf\u7684\u5f71\u54cd": 93, "\u4f60\u53ef\u4ee5\u4f7f\u7528\u53ef\u9009\u7684": 93, "\u53c2\u6570\u8bbe\u7f6e\u5355\u4e2a\u6743\u91cd\u4e22\u5f03\u7684\u6982\u7387": 93, "\u5982\u679c\u4e0d\u8bbe\u7f6e": 93, "\u9ed8\u8ba4\u4e3a": [93, 248], "\u6fc0\u6d3b\u51fd\u6570\u4f7f\u6df1\u5ea6\u5b66\u4e60\u6210\u4e3a\u53ef\u80fd": 93, "\u795e\u7ecf\u7f51\u7edc\u5b9e\u9645\u4e0a\u662f\u4e00\u4e2a\u7a0b\u5e8f": 93, "\u6709\u8bb8\u591a\u53c2\u6570": 93, "\u7528\u4e8e": 93, "\u6a21\u62df\u4e00\u4e2a\u6570\u5b66\u51fd\u6570": 93, "\u5982\u679c\u6211\u4eec\u53ea\u662f\u91cd\u590d\u5730\u5c06\u5f20\u91cf\u4e0e\u5c42\u6743\u91cd\u76f8\u4e58": 93, "\u6211\u4eec\u53ea\u80fd\u6a21\u62df": 93, "\u7ebf\u6027\u51fd\u6570": 93, "\u6709\u591a\u5c42\u4e5f\u6ca1\u6709\u610f\u4e49": 93, "\u56e0\u4e3a\u6574\u4e2a\u7f51\u7edc\u53ef\u4ee5\u7b80\u5316\u4e3a\u5355\u4e2a\u77e9\u9635\u4e58\u6cd5": 93, "\u5728\u5c42\u4e4b\u95f4\u63d2\u5165": 93, "\u6fc0\u6d3b\u51fd\u6570\u4f7f\u5f97\u6df1\u5ea6\u5b66\u4e60\u6a21\u578b\u80fd\u591f\u6a21\u62df\u4efb\u4f55\u51fd\u6570": 93, "\u800c\u4e0d\u4ec5\u4ec5\u662f\u7ebf\u6027\u51fd\u6570": 93, "\u6709\u5c01\u88c5\u6240\u6709\u4e3b\u8981\u6fc0\u6d3b\u51fd\u6570\u7684\u5bf9\u8c61": 93, "\u53ca\u5176\u8bb8\u591a\u53d8\u4f53": 93, "hardtanh": [93, 110, 254], "\u7b49": [93, 95, 104, 111, 213, 232, 238, 248], "\u5b83\u8fd8\u5305\u62ec\u5176\u4ed6\u51fd\u6570": 93, "\u8fd9\u4e9b\u51fd\u6570\u5728\u6a21\u578b\u7684\u8f93\u51fa\u9636\u6bb5\u6700\u6709\u7528": 93, "\u635f\u5931\u51fd\u6570\u544a\u8bc9\u6211\u4eec\u6a21\u578b\u7684\u9884\u6d4b\u4e0e\u6b63\u786e\u7b54\u6848\u76f8\u5dee\u591a\u8fdc": 93, "\u5305\u542b\u5404\u79cd\u635f\u5931\u51fd\u6570": 93, "\u5305\u62ec\u5e38\u89c1\u7684": 93, "\u8303\u6570": 93, "\u4ea4\u53c9\u71b5\u635f\u5931\u548c\u8d1f\u5bf9\u6570\u4f3c\u7136\u635f\u5931": 93, "\u5bf9\u4e8e\u5206\u7c7b\u5668\u5f88\u6709\u7528": 93, "\u8981\u8fd0\u884c\u6b64\u6559\u7a0b": 94, "\u60a8\u9700\u8981\u5b89\u88c5pytorch": 94, "matplotlib\u548ctensorboard": 94, "\u5b89\u88c5\u5b8c\u4f9d\u8d56\u9879\u540e": 94, "\u8bf7\u5728\u5b89\u88c5\u5b83\u4eec\u7684python\u73af\u5883\u4e2d\u91cd\u65b0\u542f\u52a8\u6b64\u7b14\u8bb0\u672c": 94, "\u5728\u672c\u7b14\u8bb0\u672c\u4e2d": 94, "\u6211\u4eec\u5c06\u8bad\u7ec3lenet": 94, "5\u7684\u53d8\u4f53": 94, "\u9488\u5bf9fashion": 94, "mnist\u6570\u636e\u96c6": 94, "mnist\u662f\u4e00\u7ec4\u63cf\u7ed8\u5404\u79cd\u670d\u88c5\u7684\u56fe\u50cf\u74e6\u7247": 94, "\u6709\u5341\u4e2a\u7c7b\u6807\u7b7e\u6307\u793a\u6240\u63cf\u7ed8\u7684\u670d\u88c5\u7c7b\u578b": 94, "pytorch\u6a21\u578b\u548c\u8bad\u7ec3\u5fc5\u9700\u54c1": 94, "\u56fe\u50cf\u6570\u636e\u96c6\u548c\u56fe\u50cf\u64cd\u4f5c": 94, "\u56fe\u50cf\u663e\u793a": 94, "summarywrit": [94, 96, 170, 246], "\u5982\u679c\u60a8\u4f7f\u7528\u7684\u73af\u5883\u5b89\u88c5\u4e86tensorflow": 94, "\u5982googl": 94, "\u8bf7\u53d6\u6d88\u6ce8\u91ca\u4ee5\u4e0b\u4ee3\u7801\u4ee5\u907f\u514d\u5c06\u5d4c\u5165\u4fdd\u5b58\u5230tensorboard\u76ee\u5f55\u65f6\u51fa\u73b0\u9519\u8bef": 94, "tb": [94, 173, 174, 175], "gfile": 94, "tensorflow_stub": 94, "\u8ba9\u6211\u4eec\u4ece\u5c06\u6570\u636e\u96c6\u4e2d\u7684\u793a\u4f8b\u56fe\u50cf\u6dfb\u52a0\u5230tensorboard\u5f00\u59cb": 94, "\u6536\u96c6\u6570\u636e\u96c6\u5e76\u51c6\u5907\u6d88\u8d39": 94, "data\u4e2d\u5b58\u50a8\u5355\u72ec\u7684\u8bad\u7ec3\u548c\u9a8c\u8bc1\u5206\u5272": 94, "training_set": [94, 96], "validation_set": [94, 96], "training_load": [94, 96], "validation_load": [94, 96], "\u7c7b\u6807\u7b7e": 94, "\u5185\u8054\u56fe\u50cf\u663e\u793a\u7684\u8f85\u52a9\u51fd\u6570": [94, 96], "matplotlib_imshow": [94, 96, 170], "one_channel": [94, 96, 170], "\u53cd\u5f52\u4e00\u5316": 94, "grei": [94, 96, 119, 170, 189], "\u63d0\u53d6\u4e00\u62794\u5f20\u56fe\u50cf": 94, "\u4ece\u56fe\u50cf\u521b\u5efa\u7f51\u683c\u5e76\u663e\u793a\u5b83\u4eec": [94, 96], "img_grid": [94, 96, 170], "\u6211\u4eec\u4f7f\u7528torchvision\u548cmatplotlib\u521b\u5efa\u4e86\u4e00\u4e2a\u8f93\u5165\u6570\u636e\u5c0f\u6279\u91cf\u7684\u53ef\u89c6\u7f51\u683c": 94, "\u4e0a\u4f7f\u7528": 94, "add_imag": [94, 170], "\u8c03\u7528\u6765\u8bb0\u5f55\u56fe\u50cf": 94, "\u4ee5\u4f9btensorboard\u4f7f\u7528": 94, "\u6211\u4eec\u8fd8\u8c03\u7528": 94, "\u4ee5\u786e\u4fdd\u5b83\u7acb\u5373\u5199\u5165\u78c1\u76d8": 94, "\u9ed8\u8ba4log_dir\u53c2\u6570\u4e3a": 94, "\u4f46\u6700\u597d\u660e\u786e\u6307\u5b9a": 94, "summarywriter\u5728\u4e0a\u9762\u5bfc\u5165": 94, "fashion_mnist_experiment_1": [94, 170], "\u5c06\u56fe\u50cf\u6570\u636e\u5199\u5165tensorboard\u65e5\u5fd7\u76ee\u5f55": 94, "\u8981\u67e5\u770b": 94, "\u8bf7\u5728\u547d\u4ee4\u884c\u4e0a\u542f\u52a8tensorboard": 94, "logdir": [94, 169, 170, 246], "\u5e76\u5728\u65b0\u7684\u6d4f\u89c8\u5668\u9009\u9879\u5361\u4e2d\u6253\u5f00http": 94, "6006": [94, 169, 170, 246], "\u5982\u679c\u60a8\u5728\u547d\u4ee4\u884c\u542f\u52a8tensorboard\u5e76\u5728\u65b0\u7684\u6d4f\u89c8\u5668\u9009\u9879\u5361\u4e2d\u6253\u5f00\u5b83": 94, "\u901a\u5e38\u5728": 94, "\u60a8\u5e94\u8be5\u5728images\u9009\u9879\u5361\u4e0b\u770b\u5230\u56fe\u50cf\u7f51\u683c": 94, "tensorboard\u5bf9\u4e8e\u8ddf\u8e2a\u8bad\u7ec3\u7684\u8fdb\u5ea6\u548c\u6548\u679c\u5f88\u6709\u7528": 94, "\u6211\u4eec\u5c06\u8fd0\u884c\u4e00\u4e2a\u8bad\u7ec3\u5faa\u73af": 94, "\u8ddf\u8e2a\u4e00\u4e9b\u6307\u6807": 94, "\u5e76\u4fdd\u5b58\u6570\u636e\u4ee5\u4f9btensorboard\u4f7f\u7528": 94, "\u8ba9\u6211\u4eec\u5b9a\u4e49\u4e00\u4e2a\u6a21\u578b\u6765\u5bf9\u6211\u4eec\u7684\u56fe\u50cf\u74e6\u7247\u8fdb\u884c\u5206\u7c7b": 94, "\u4ee5\u53ca\u7528\u4e8e\u8bad\u7ec3\u7684\u4f18\u5316\u5668\u548c\u635f\u5931\u51fd\u6570": 94, "\u73b0\u5728\u8ba9\u6211\u4eec\u8bad\u7ec3\u4e00\u4e2aepoch": 94, "\u5e76\u6bcf1000\u6279\u6b21\u8bc4\u4f30\u4e00\u6b21\u8bad\u7ec3\u4e0e\u9a8c\u8bc1\u96c6\u7684\u635f\u5931": 94, "\u57fa\u672c\u8bad\u7ec3\u5faa\u73af": 94, "\u6bcf1000\u4e2a\u5c0f\u6279\u91cf": 94, "\u5bf9\u7167\u9a8c\u8bc1\u96c6": 94, "running_vloss": [94, 96], "\u5728\u8bc4\u4f30\u6a21\u5f0f\u4e0b": 94, "\u53ef\u4ee5\u7701\u7565\u4e00\u4e9b\u7279\u5b9a\u4e8e\u6a21\u578b\u7684\u64cd\u4f5c": 94, "\u4f8b\u5982dropout\u5c42": 94, "\u5207\u6362\u5230\u8bc4\u4f30\u6a21\u5f0f": 94, "\u4f8b\u5982\u5173\u95ed\u6b63\u5219\u5316": 94, "vdata": [94, 96], "vinput": [94, 96], "vlabel": [94, 96], "voutput": [94, 96], "vloss": [94, 96], "\u5207\u6362\u56de\u8bad\u7ec3\u6a21\u5f0f": 94, "\u4f8b\u5982\u6253\u5f00\u6b63\u5219\u5316": 94, "avg_loss": [94, 96], "avg_vloss": [94, 96], "\u8bb0\u5f55\u6bcf\u6279\u6b21\u5e73\u5747\u7684\u8fd0\u884c\u635f\u5931": [94, 96], "add_scalar": [94, 96, 170, 246], "\u5207\u6362\u5230\u60a8\u6253\u5f00\u7684tensorboard": 94, "\u67e5\u770bscalars\u9009\u9879\u5361": 94, "tensorboard\u8fd8\u53ef\u7528\u4e8e\u68c0\u67e5\u6a21\u578b\u5185\u7684\u6570\u636e\u6d41": 94, "\u8bf7\u4f7f\u7528\u6a21\u578b\u548c\u793a\u4f8b\u8f93\u5165\u8c03\u7528": 94, "add_graph": [94, 170], "\u518d\u6b21\u83b7\u53d6\u4e00\u4e2a\u5c0f\u6279\u91cf\u7684\u56fe\u50cf": 94, "\u5c06\u901a\u8fc7\u60a8\u7684\u6a21\u578b\u8ddf\u8e2a\u793a\u4f8b\u8f93\u5165": 94, "\u5e76\u5c06\u5176\u6e32\u67d3\u4e3a\u56fe\u5f62": 94, "\u5f53\u60a8\u5207\u6362\u5230tensorboard\u65f6": 94, "\u60a8\u5e94\u8be5\u4f1a\u770b\u5230\u4e00\u4e2agraphs\u9009\u9879\u5361": 94, "\u53cc\u51fb": 94, "\u8282\u70b9\u53ef\u67e5\u770b\u6a21\u578b\u5185\u7684\u5c42\u548c\u6570\u636e\u6d41": 94, "\u6211\u4eec\u4f7f\u7528\u768428x28\u56fe\u50cf\u74e6\u7247\u53ef\u4ee5\u5efa\u6a21\u4e3a784\u7ef4\u5411\u91cf": 94, "\u5c06\u5176\u6295\u5f71\u5230\u8f83\u4f4e\u7ef4\u5ea6\u7684\u8868\u793a\u5f62\u5f0f\u53ef\u80fd\u4f1a\u5f88\u6709\u542f\u53d1\u6027": 94, "add_embed": [94, 170], "\u65b9\u6cd5\u5c06\u4e00\u7ec4\u6570\u636e\u6295\u5f71\u5230\u5177\u6709\u6700\u9ad8\u65b9\u5dee\u7684\u4e09\u4e2a\u7ef4\u5ea6\u4e0a": 94, "\u5e76\u5c06\u5b83\u4eec\u663e\u793a\u4e3a\u4ea4\u4e92\u5f0f3d\u56fe\u8868": 94, "\u65b9\u6cd5\u901a\u8fc7\u6295\u5f71\u5230\u5177\u6709\u6700\u9ad8\u65b9\u5dee\u7684\u4e09\u4e2a\u7ef4\u5ea6\u6765\u81ea\u52a8\u6267\u884c\u6b64\u64cd\u4f5c": 94, "\u6211\u4eec\u5c06\u91c7\u6837\u6570\u636e": 94, "\u5e76\u751f\u6210\u8fd9\u6837\u4e00\u4e2a\u5d4c\u5165": 94, "\u9009\u62e9\u968f\u673a\u5b50\u96c6\u7684\u6570\u636e\u548c\u76f8\u5e94\u7684\u6807\u7b7e": 94, "select_n_random": [94, 170], "perm": [94, 170], "randperm": [94, 170, 179], "\u63d0\u53d6\u968f\u673a\u5b50\u96c6\u7684\u6570\u636e": 94, "\u83b7\u53d6\u6bcf\u4e2a\u56fe\u50cf\u7684\u7c7b\u6807\u7b7e": 94, "class_label": [94, 170, 172], "\u8bb0\u5f55\u5d4c\u5165": 94, "label_img": [94, 170], "\u5982\u679c\u60a8\u5207\u6362\u5230tensorboard\u5e76\u9009\u62e9projector\u9009\u9879\u5361": 94, "\u60a8\u5e94\u8be5\u4f1a\u770b\u5230\u6295\u5f71\u76843d\u8868\u793a": 94, "\u60a8\u53ef\u4ee5\u65cb\u8f6c\u548c\u7f29\u653e\u6a21\u578b": 94, "\u5728\u5927\u5c0f\u4e0d\u540c\u7684\u5c3a\u5ea6\u4e0a\u68c0\u67e5\u5b83": 94, "\u770b\u770b\u60a8\u662f\u5426\u53ef\u4ee5\u53d1\u73b0\u6295\u5f71\u6570\u636e\u548c\u6807\u7b7e\u805a\u7c7b\u4e2d\u7684\u6a21\u5f0f": 94, "\u4e3a\u4e86\u66f4\u597d\u7684\u53ef\u89c1\u6027": 94, "\u5efa\u8bae": 94, "\u4ece\u5de6\u4fa7\u7684": 94, "\u4e0b\u62c9\u83dc\u5355\u4e2d\u9009\u62e9": 94, "\u5207\u6362\u9876\u90e8\u7684night": 94, "mode\u56fe\u6807": 94, "\u5c06\u6d45\u8272\u56fe\u50cf\u7f6e\u4e8e\u6df1\u8272\u80cc\u666f\u4e0a": 94, "pytorch\u5173\u4e8e": 94, "__\u7684\u6587\u6863": 94, "org\u6559\u7a0b": 94, "\u4e2d\u7684tensorboard\u6559\u7a0b\u5185\u5bb9": 94, "\u6709\u5173tensorboard\u7684\u66f4\u591a\u4fe1\u606f": 94, "tensorboard\u6587\u6863": 94, "\u5f20\u91cf\u662fpytorch\u4e2d\u7684\u4e2d\u5fc3\u6570\u636e\u62bd\u8c61": 95, "\u8fd9\u4e2a\u4ea4\u4e92\u5f0f\u7b14\u8bb0\u672c\u63d0\u4f9b\u4e86\u5bf9": 95, "\u7c7b\u7684\u6df1\u5165\u4ecb\u7ecd": 95, "\u8ba9\u6211\u4eec\u5bfc\u5165pytorch\u6a21\u5757": 95, "\u6211\u4eec\u8fd8\u5c06\u6dfb\u52a0python\u7684\u6570\u5b66\u6a21\u5757": 95, "\u4ee5\u4fbf\u4e8e\u4e00\u4e9b\u793a\u4f8b": 95, "\u521b\u5efa\u5f20\u91cf\u6700\u7b80\u5355\u7684\u65b9\u6cd5\u662f\u4f7f\u7528": 95, "\u8ba9\u6211\u4eec\u89e3\u91ca\u4e0b\u521a\u624d\u53d1\u751f\u7684\u4e8b\u60c5": 95, "\u6211\u4eec\u4f7f\u7528\u9644\u52a0\u5230": 95, "\u6a21\u5757\u7684\u4f17\u591a\u5de5\u5382\u65b9\u6cd5\u4e4b\u4e00\u521b\u5efa\u4e86\u4e00\u4e2a\u5f20\u91cf": 95, "\u8be5\u5f20\u91cf\u662f\u4e8c\u7ef4\u7684": 95, "\u67093\u884c4\u5217": 95, "\u8fd4\u56de\u5bf9\u8c61\u7684\u7c7b\u578b\u662f": 95, "\u7684\u522b\u540d": 95, "pytorch\u5f20\u91cf\u752832\u4f4d\u6d6e\u70b9\u6570\u586b\u5145": 95, "\u66f4\u591a\u5173\u4e8e\u6570\u636e\u7c7b\u578b\u7684\u5185\u5bb9\u89c1\u4e0b\u6587": 95, "\u5f53\u6253\u5370\u4f60\u7684\u5f20\u91cf\u65f6": 95, "\u4f60\u53ef\u80fd\u4f1a\u770b\u5230\u4e00\u4e9b\u968f\u673a\u7684\u503c": 95, "\u8c03\u7528\u4e3a\u5f20\u91cf\u5206\u914d\u5185\u5b58": 95, "\u4f46\u4e0d\u4f1a\u7528\u4efb\u4f55\u503c\u521d\u59cb\u5316\u5b83": 95, "\u6240\u4ee5\u4f60\u770b\u5230\u7684\u662f\u5206\u914d\u65f6\u5185\u5b58\u4e2d\u7684\u4efb\u4f55\u503c": 95, "\u5173\u4e8e\u5f20\u91cf\u53ca\u5176\u7ef4\u6570\u548c\u672f\u8bed\u7684\u7b80\u8981\u8bf4\u660e": 95, "\u4f60\u6709\u65f6\u4f1a\u770b\u5230\u4e00\u7ef4\u5f20\u91cf\u88ab\u79f0\u4e3a": 95, "\u5411\u91cf": 95, "\u4e8c\u7ef4\u5f20\u91cf\u901a\u5e38\u88ab\u79f0\u4e3a": 95, "\u4efb\u4f55\u8d85\u8fc7\u4e24\u4e2a\u7ef4\u5ea6\u7684\u5f20\u91cf\u901a\u5e38\u90fd\u88ab\u79f0\u4e3a\u5f20\u91cf": 95, "\u5927\u591a\u6570\u60c5\u51b5\u4e0b": 95, "\u4f60\u4f1a\u5e0c\u671b\u7528\u4e00\u4e9b\u503c\u521d\u59cb\u5316\u4f60\u7684\u5f20\u91cf": 95, "\u5e38\u89c1\u7684\u60c5\u51b5\u662f\u5168\u96f6": 95, "\u5168\u4e00\u6216\u968f\u673a\u503c": 95, "\u6a21\u5757\u4e3a\u6240\u6709\u8fd9\u4e9b\u60c5\u51b5\u63d0\u4f9b\u4e86\u5de5\u5382\u65b9\u6cd5": 95, "\u5de5\u5382\u65b9\u6cd5\u90fd\u505a\u4e86\u4f60\u671f\u671b\u7684\u4e8b\u60c5": 95, "\u6211\u4eec\u6709\u4e00\u4e2a\u5168\u96f6\u5f20\u91cf": 95, "\u4e00\u4e2a\u5168\u4e00\u5f20\u91cf\u548c\u4e00\u4e2a\u968f\u673a\u503c\u57280\u52301\u4e4b\u95f4\u7684\u5f20\u91cf": 95, "\u8bf4\u5230\u968f\u673a\u5f20\u91cf": 95, "\u4f60\u662f\u5426\u6ce8\u610f\u5230\u5728\u5b83\u4e4b\u524d\u7acb\u5373\u8c03\u7528\u4e86": 95, "\u7528\u968f\u673a\u503c\u521d\u59cb\u5316\u5f20\u91cf": 95, "\u5982\u6a21\u578b\u7684\u5b66\u4e60\u6743\u91cd": 95, "\u662f\u5f88\u5e38\u89c1\u7684": 95, "\u4f46\u5728\u67d0\u4e9b\u60c5\u51b5\u4e0b": 95, "\u7279\u522b\u662f\u5728\u7814\u7a76\u73af\u5883\u4e2d": 95, "\u4f60\u53ef\u80fd\u5e0c\u671b\u5bf9\u7ed3\u679c\u7684\u53ef\u91cd\u590d\u6027\u6709\u4e00\u4e9b\u4fdd\u8bc1": 95, "\u624b\u52a8\u8bbe\u7f6e\u968f\u673a\u6570\u751f\u6210\u5668\u7684\u79cd\u5b50\u5c31\u662f\u8fd9\u6837\u505a\u7684\u65b9\u6cd5": 95, "\u8ba9\u6211\u4eec\u4ed4\u7ec6\u770b\u770b": 95, "random1": 95, "random2": 95, "random3": 95, "random4": 95, "\u4f60\u5e94\u8be5\u770b\u5230\u4e0a\u9762": 95, "\u5305\u542b\u76f8\u540c\u7684\u503c": 95, "\u4e5f\u662f\u5982\u6b64": [95, 248], "\u624b\u52a8\u8bbe\u7f6erng\u7684\u79cd\u5b50\u4f1a\u91cd\u7f6e\u5b83": 95, "\u56e0\u6b64\u76f8\u540c\u7684\u968f\u673a\u6570\u8ba1\u7b97\u5728\u5927\u591a\u6570\u8bbe\u7f6e\u4e0b\u5e94\u8be5\u63d0\u4f9b\u76f8\u540c\u7684\u7ed3\u679c": 95, "\u8bf7\u53c2\u9605pytorch\u5173\u4e8e\u53ef\u91cd\u590d\u6027\u7684": 95, "\u5f53\u4f60\u5728\u4e24\u4e2a\u6216\u591a\u4e2a\u5f20\u91cf\u4e0a\u6267\u884c\u64cd\u4f5c\u65f6": 95, "\u5b83\u4eec\u901a\u5e38\u9700\u8981\u5177\u6709\u76f8\u540c\u7684": 95, "\u5177\u6709\u76f8\u540c\u7684\u7ef4\u6570\u548c\u6bcf\u4e2a\u7ef4\u5ea6\u4e2d\u7684\u76f8\u540c\u6570\u91cf\u7684\u5355\u5143": 95, "_like": [95, 148], "empty_like_x": 95, "empty_lik": [95, 108, 148, 174, 175, 190, 210], "zeros_like_x": 95, "ones_like_x": 95, "rand_like_x": 95, "\u4e0a\u9762\u4ee3\u7801\u5355\u5143\u4e2d\u7684\u7b2c\u4e00\u4e2a\u65b0\u4e8b\u7269\u662f\u5728\u5f20\u91cf\u4e0a\u4f7f\u7528": 95, "\u8fd9\u4e2a\u5c5e\u6027\u5305\u542b\u4e86\u6bcf\u4e2a\u7ef4\u5ea6\u5f20\u91cf\u7684\u8303\u56f4\u7684\u5217\u8868": 95, "\u662f\u4e00\u4e2a\u4e09\u7ef4\u5f20\u91cf": 95, "\u5f62\u72b6\u4e3a": 95, "\u6211\u4eec\u53ef\u4ee5\u9a8c\u8bc1\u6bcf\u4e2a\u8fd9\u4e9b\u65b9\u6cd5\u90fd\u8fd4\u56de\u4e00\u4e2a\u5177\u6709\u76f8\u540c\u7ef4\u6570\u548c\u8303\u56f4\u7684\u5f20\u91cf": 95, "\u521b\u5efa\u5f20\u91cf\u7684\u6700\u540e\u4e00\u79cd\u65b9\u5f0f\u662f\u76f4\u63a5\u4ecepytorch\u96c6\u5408\u4e2d\u6307\u5b9a\u5176\u6570\u636e": 95, "some_const": 95, "1415926": 95, "71828": 95, "61803": 95, "0072897": 95, "some_integ": 95, "more_integ": 95, "\u662f\u5728\u4f60\u5df2\u7ecf\u6709python\u5143\u7ec4\u6216\u5217\u8868\u6570\u636e\u7684\u60c5\u51b5\u4e0b\u521b\u5efa\u5f20\u91cf\u7684\u6700\u76f4\u63a5\u65b9\u5f0f": 95, "\u5982\u4e0a\u6240\u793a": [95, 230], "\u5d4c\u5957\u96c6\u5408\u4f1a\u751f\u6210\u591a\u7ef4\u5f20\u91cf": 95, "\u521b\u5efa\u6570\u636e\u7684\u526f\u672c": 95, "\u8bbe\u7f6e\u5f20\u91cf\u7684\u6570\u636e\u7c7b\u578b\u6709\u4e24\u79cd\u65b9\u5f0f": 95, "int32": [95, 138, 166, 185, 186, 198, 201, 235], "\u8bbe\u7f6e\u5f20\u91cf\u5e95\u5c42\u6570\u636e\u7c7b\u578b\u7684\u6700\u7b80\u5355\u65b9\u5f0f\u662f\u5728\u521b\u5efa\u65f6\u4f7f\u7528\u53ef\u9009\u53c2\u6570": 95, "\u5728\u4e0a\u9762\u5355\u5143\u683c\u7684\u7b2c\u4e00\u884c\u4e2d": 95, "\u8bbe\u7f6e\u4e3a\u5f20\u91cf": 95, "\u5f53\u6211\u4eec\u6253\u5370": 95, "\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u5b83\u662f\u7531": 95, "\u586b\u5145\u7684": 95, "python\u7684\u4e00\u4e2a\u5fae\u5999\u63d0\u793a": 95, "\u8fd9\u662f\u4e00\u4e2a\u6574\u6570\u7c7b\u578b\u800c\u4e0d\u662f\u6d6e\u70b9\u6570": 95, "\u4f60\u53ef\u80fd\u8fd8\u6ce8\u610f\u5230": 95, "\u6253\u5370": 95, "\u4e0e\u6211\u4eec\u5c06": 95, "\u4fdd\u7559\u4e3a\u9ed8\u8ba4\u503c": 95, "32\u4f4d\u6d6e\u70b9\u6570": 95, "\u65f6\u4e0d\u540c": 95, "\u6253\u5370\u5f20\u91cf\u65f6\u4e5f\u6307\u5b9a\u4e86\u5176": 95, "\u6211\u4eec\u4ece\u6307\u5b9a\u5f20\u91cf\u5f62\u72b6\u4e3a\u4e00\u7cfb\u5217\u6574\u6570\u53c2\u6570": 95, "\u8f6c\u4e3a\u5c06\u8fd9\u4e9b\u53c2\u6570\u5206\u7ec4\u5230\u4e00\u4e2a\u5143\u7ec4\u4e2d": 95, "\u8fd9\u4e0d\u662f\u7edd\u5bf9\u5fc5\u8981\u7684": 95, "pytorch\u4f1a\u5c06\u4e00\u7cfb\u5217\u521d\u59cb\u7684": 95, "\u672a\u6807\u8bb0\u7684\u6574\u6570\u53c2\u6570\u89c6\u4e3a\u5f20\u91cf\u5f62\u72b6": 95, "\u4f46\u662f\u5f53\u6dfb\u52a0\u53ef\u9009\u53c2\u6570\u65f6": 95, "\u5b83\u53ef\u4ee5\u4f7f\u4f60\u7684\u610f\u56fe\u66f4\u52a0\u53ef\u8bfb": 95, "\u8bbe\u7f6e\u6570\u636e\u7c7b\u578b\u7684\u53e6\u4e00\u79cd\u65b9\u5f0f\u662f\u4f7f\u7528": 95, "\u6211\u4eec\u4ee5\u901a\u5e38\u7684\u65b9\u5f0f\u521b\u5efa\u4e86\u4e00\u4e2a\u968f\u673a\u6d6e\u70b9\u5f20\u91cf": 95, "\u6211\u4eec\u901a\u8fc7\u5c06": 95, "\u8f6c\u6362\u4e3a32\u4f4d\u6574\u6570\u6765\u521b\u5efa": 95, "\u5305\u542b\u4e0e": 95, "\u76f8\u540c\u7684\u503c": 95, "\u4f46\u88ab\u622a\u65ad\u4e3a\u6574\u6570": 95, "\u53ef\u7528\u7684\u6570\u636e\u7c7b\u578b\u5305\u62ec": 95, "bfloat": 95, "\u73b0\u5728\u4f60\u77e5\u9053\u4e86\u4e00\u4e9b\u521b\u5efa\u5f20\u91cf\u7684\u65b9\u6cd5": 95, "\u90a3\u4f60\u80fd\u5bf9\u5b83\u4eec\u505a\u4ec0\u4e48\u5462": 95, "\u8ba9\u6211\u4eec\u9996\u5148\u770b\u57fa\u672c\u7b97\u672f\u8fd0\u7b97": 95, "\u4ee5\u53ca\u5f20\u91cf\u5982\u4f55\u4e0e\u7b80\u5355\u7684\u6807\u91cf\u4ea4\u4e92": 95, "sqrt2": 95, "\u5982\u4f60\u6240\u89c1": [95, 104], "\u5f20\u91cf\u548c\u6807\u91cf\u4e4b\u95f4\u7684\u52a0\u6cd5": 95, "\u51cf\u6cd5": 95, "\u4e58\u6cd5": [95, 248], "\u9664\u6cd5\u548c\u6307\u6570\u8fd0\u7b97\u90fd\u662f\u5728\u5f20\u91cf\u7684\u6bcf\u4e2a\u5143\u7d20\u4e0a\u5206\u5e03\u5f0f\u8fdb\u884c\u7684": 95, "\u7531\u4e8e\u8fd9\u79cd\u64cd\u4f5c\u7684\u8f93\u51fa\u5c06\u662f\u4e00\u4e2a\u5f20\u91cf": 95, "\u4f60\u53ef\u4ee5\u50cf\u901a\u5e38\u7684\u8fd0\u7b97\u7b26\u4f18\u5148\u7ea7\u89c4\u5219\u4e00\u6837\u5c06\u5b83\u4eec\u94fe\u63a5\u5728\u4e00\u8d77": 95, "\u5c31\u50cf\u6211\u4eec\u5728\u521b\u5efa": 95, "\u7684\u90a3\u4e00\u884c\u4e2d\u6240\u505a\u7684\u90a3\u6837": 95, "\u4e24\u4e2a\u5f20\u91cf\u4e4b\u95f4\u7684\u7c7b\u4f3c\u8fd0\u7b97\u4e5f\u50cf\u4f60\u76f4\u89c9\u4e0a\u671f\u671b\u7684\u90a3\u6837": 95, "powers2": 95, "dozen": [95, 166], "\u8fd9\u91cc\u9700\u8981\u6ce8\u610f\u7684\u662f": 95, "\u524d\u9762\u4ee3\u7801\u5355\u5143\u4e2d\u7684\u6240\u6709\u5f20\u91cf\u90fd\u5177\u6709\u76f8\u540c\u7684\u5f62\u72b6": 95, "\u5982\u679c\u6211\u4eec\u5c1d\u8bd5\u5728\u4e0d\u540c\u5f62\u72b6\u7684\u5f20\u91cf\u4e0a\u6267\u884c\u4e8c\u5143\u8fd0\u7b97\u4f1a\u600e\u6837": 95, "\u4e0b\u9762\u7684\u5355\u5143\u683c\u4f1a\u629b\u51fa\u4e00\u4e2a\u8fd0\u884c\u65f6\u9519\u8bef": 95, "\u8fd9\u662f\u6709\u610f\u7684": 95, "\u4e00\u822c\u60c5\u51b5\u4e0b": 95, "\u4f60\u4e0d\u80fd\u4ee5\u8fd9\u79cd\u65b9\u5f0f\u5bf9\u4e0d\u540c\u5f62\u72b6\u7684\u5f20\u91cf\u8fdb\u884c\u64cd\u4f5c": 95, "\u5373\u4f7f\u5728\u4e0a\u9762\u7684\u5355\u5143\u683c\u4e2d": 95, "\u5f20\u91cf\u5177\u6709\u76f8\u540c\u6570\u91cf\u7684\u5143\u7d20": 95, "\u5982\u679c\u4f60\u719f\u6089numpi": 95, "ndarrays\u4e2d\u7684\u5e7f\u64ad\u8bed\u4e49": 95, "\u4f60\u4f1a\u53d1\u73b0\u8fd9\u91cc\u5e94\u7528\u7684\u662f\u76f8\u540c\u7684\u89c4\u5219": 95, "\u540c\u5f62\u89c4\u5219\u7684\u4f8b\u5916\u662f": 95, "\u8fd9\u91cc\u6709\u4e00\u4e2a\u4f8b\u5b50": 95, "\u8fd9\u91cc\u7684\u6280\u5de7\u662f\u4ec0\u4e48": 95, "\u6211\u4eec\u662f\u5982\u4f55\u5c06": 95, "\u5f20\u91cf\u4e0e": 95, "\u5f20\u91cf\u76f8\u4e58\u7684": 95, "\u5e7f\u64ad\u662f\u4e00\u79cd\u5728\u5177\u6709\u76f8\u4f3c\u5f62\u72b6\u7684\u5f20\u91cf\u4e4b\u95f4\u6267\u884c\u64cd\u4f5c\u7684\u65b9\u5f0f": 95, "\u5728\u4e0a\u9762\u7684\u4f8b\u5b50\u4e2d": [95, 129], "\u4e00\u884c\u56db\u5217\u7684\u5f20\u91cf\u4e0e\u4e24\u884c\u56db\u5217\u5f20\u91cf\u7684": 95, "\u4e24\u884c": 95, "\u76f8\u4e58": 95, "\u8fd9\u662f\u6df1\u5ea6\u5b66\u4e60\u4e2d\u4e00\u4e2a\u91cd\u8981\u7684\u64cd\u4f5c": 95, "\u5e38\u89c1\u7684\u4f8b\u5b50\u662f\u5c06\u4e00\u6279\u8f93\u5165\u5f20\u91cf\u7684\u5b66\u4e60\u6743\u91cd\u5f20\u91cf\u76f8\u4e58": 95, "\u5206\u522b\u5bf9\u6279\u6b21\u4e2d\u7684\u6bcf\u4e2a\u5b9e\u4f8b\u5e94\u7528\u8be5\u64cd\u4f5c": 95, "\u5e76\u8fd4\u56de\u4e00\u4e2a\u5f62\u72b6\u76f8\u540c\u7684\u5f20\u91cf": 95, "\u5c31\u50cf\u6211\u4eec\u4e0a\u9762\u7684": 95, "\u793a\u4f8b\u4e00\u6837": 95, "\u8fd4\u56de\u4e86\u4e00\u4e2a\u5f62\u72b6\u4e3a": 95, "\u5e7f\u64ad\u7684\u89c4\u5219\u662f": 95, "\u6bcf\u4e2a\u5f20\u91cf\u5fc5\u987b\u81f3\u5c11\u6709\u4e00\u4e2a\u7ef4\u5ea6": 95, "\u4e0d\u5141\u8bb8\u7a7a\u5f20\u91cf": 95, "\u6bd4\u8f83\u4e24\u4e2a\u5f20\u91cf\u7684\u7ef4\u5ea6\u5927\u5c0f": 95, "\u4ece\u6700\u540e\u4e00\u4e2a\u5230\u7b2c\u4e00\u4e2a": 95, "\u6bcf\u4e2a\u7ef4\u5ea6\u5fc5\u987b\u76f8\u7b49": 95, "\u5176\u4e2d\u4e00\u4e2a\u7ef4\u5ea6\u5fc5\u987b\u4e3a1": 95, "\u8be5\u7ef4\u5ea6\u5728\u5176\u4e2d\u4e00\u4e2a\u5f20\u91cf\u4e2d\u4e0d\u5b58\u5728": 95, "\u5f53\u7136": [95, 227], "\u76f8\u540c\u5f62\u72b6\u7684\u5f20\u91cf\u662f": 95, "\u53ef\u5e7f\u64ad": 95, "\u6b63\u5982\u4f60\u4e4b\u524d\u770b\u5230\u7684\u90a3\u6837": 95, "\u8fd9\u91cc\u6709\u4e00\u4e9b\u7b26\u5408\u4e0a\u8ff0\u89c4\u5219\u5e76\u5141\u8bb8\u5e7f\u64ad\u7684\u60c5\u51b5\u793a\u4f8b": 95, "\u7b2c3\u548c\u7b2c2\u7ef4\u4e0ea\u76f8\u540c": 95, "\u7b2c1\u7ef4\u4e0d\u5b58\u5728": 95, "\u7b2c3\u7ef4\u4e3a1": 95, "\u7b2c2\u7ef4\u4e0ea\u76f8\u540c": 95, "\u7b2c3\u7ef4\u4e0ea\u76f8\u540c": 95, "\u7b2c2\u7ef4\u4e3a1": 95, "\u4ed4\u7ec6\u89c2\u5bdf\u4e0a\u9762\u6bcf\u4e2a\u5f20\u91cf\u7684\u503c": 95, "\u521b\u5efa": 95, "\u7684\u4e58\u6cd5\u8fd0\u7b97\u662f\u5728": 95, "\u7684\u6bcf\u4e00\u5c42\u4e0a\u5e7f\u64ad\u7684": 95, "\u5bf9\u4e8e": [95, 248], "\u8be5\u8fd0\u7b97\u5728": 95, "\u7684\u6bcf\u4e00\u5c42\u548c\u6bcf\u4e00\u884c\u4e0a\u90fd\u8fdb\u884c\u4e86\u5e7f\u64ad": 95, "\u6bcf\u4e00\u52173\u4e2a\u5143\u7d20\u90fd\u662f\u76f8\u540c\u7684": 95, "\u6211\u4eec\u98a0\u5012\u4e86\u4e00\u4e0b": 95, "\u73b0\u5728\u6bcf\u4e00\u884c\u5728\u5c42\u4e0e\u5217\u4e4b\u95f4\u90fd\u662f\u76f8\u540c\u7684": 95, "\u6709\u5173\u5e7f\u64ad\u7684\u66f4\u591a\u4fe1\u606f": 95, "\u8bf7\u53c2\u9605pytorch\u5173\u4e8e\u6b64\u7684": 95, "\u8fd9\u91cc\u6709\u4e00\u4e9b\u5c1d\u8bd5\u5e7f\u64ad\u4f46\u4f1a\u5931\u8d25\u7684\u4f8b\u5b50": 95, "\u7ef4\u5ea6\u5fc5\u987b\u4ece\u6700\u540e\u5230\u7b2c\u4e00\u4e2a\u5339\u914d": 95, "\u7b2c3\u548c\u7b2c2\u7ef4\u90fd\u4e0d\u540c": 95, "\u4e0d\u80fd\u4e0e\u7a7a\u5f20\u91cf\u8fdb\u884c\u5e7f\u64ad": 95, "\u5f20\u91cf\u6709\u8d85\u8fc7\u4e09\u767e\u79cd\u53ef\u4ee5\u6267\u884c\u7684\u64cd\u4f5c": 95, "\u8fd9\u91cc\u662f\u4e00\u4e9b\u4e3b\u8981\u64cd\u4f5c\u7c7b\u522b\u7684\u793a\u4f8b": 95, "\u5e38\u7528\u65b9\u6cd5": 95, "ceil": [95, 136], "\u4e09\u89d2\u51fd\u6570\u53ca\u5176\u53cd\u51fd\u6570": 95, "nsine": 95, "arcsin": 95, "\u4f4d\u8fd0\u7b97": 95, "nbitwis": 95, "xor": 95, "bitwise_xor": 95, "\u6bd4\u8f83\u64cd\u4f5c": 95, "nbroadcast": 95, "\u8fd4\u56de\u5e03\u5c14\u7c7b\u578b\u5f20\u91cf": 95, "\u5f52\u7ea6\u64cd\u4f5c": 95, "n\u5f52\u7ea6\u64cd\u4f5c": 95, "\u8fd4\u56de\u5355\u5143\u7d20\u5f20\u91cf": 95, "\u4ece\u8fd4\u56de\u7684\u5f20\u91cf\u4e2d\u63d0\u53d6\u503c": 95, "\u5e73\u5747\u503c": 95, "\u6807\u51c6\u5dee": 95, "prod": [95, 191], "\u6240\u6709\u6570\u5b57\u7684\u4e58\u79ef": 95, "\u8fc7\u6ee4\u552f\u4e00\u5143\u7d20": 95, "\u5411\u91cf\u548c\u7ebf\u6027\u4ee3\u6570\u8fd0\u7b97": 95, "\u5355\u4f4d\u5411\u91cf": 95, "m1": [95, 232], "\u968f\u673a\u77e9\u9635": 95, "m2": 95, "\u4e09\u500d\u5355\u4f4d\u77e9\u9635": 95, "n\u5411\u91cf\u548c\u77e9\u9635": 95, "\u5355\u4f4d\u5411\u91cf\u7684\u8d1f\u503c": 95, "m3": 95, "\u7684\u4e09\u500d": 95, "\u5947\u5f02\u503c\u5206\u89e3": 95, "\u6709\u5173\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f\u548c\u5b8c\u6574\u7684\u6570\u5b66\u51fd\u6570\u6e05\u5355": 95, "\u5927\u591a\u6570\u5f20\u91cf\u7684\u4e8c\u5143\u8fd0\u7b97\u5c06\u8fd4\u56de\u7b2c\u4e09\u4e2a\u65b0\u5f20\u91cf": 95, "\u5f53\u6211\u4eec\u8bf4": 95, "\u662f\u5f20\u91cf": 95, "\u65b0\u5f20\u91cf": 95, "\u5c06\u5360\u7528\u4e0e\u5176\u4ed6\u5f20\u91cf\u4e0d\u540c\u7684\u5185\u5b58\u533a\u57df": 95, "\u6709\u65f6\u60a8\u53ef\u80fd\u5e0c\u671b\u5c31\u5730\u4fee\u6539\u5f20\u91cf": 95, "\u5982\u679c\u60a8\u6b63\u5728\u6267\u884c\u5143\u7d20wise\u8ba1\u7b97": 95, "\u53ef\u4ee5\u4e22\u5f03\u4e2d\u95f4\u503c": 95, "\u5927\u591a\u6570\u6570\u5b66\u51fd\u6570\u90fd\u6709\u4e00\u4e2a\u5e26\u6709\u9644\u52a0\u4e0b\u5212\u7ebf": 95, "\u7684\u7248\u672c": 95, "\u5b83\u5c06\u5c31\u5730\u4fee\u6539\u5f20\u91cf": 95, "\u6b64\u64cd\u4f5c\u5728\u5185\u5b58\u4e2d\u521b\u5efa\u65b0\u5f20\u91cf": 95, "\u672a\u66f4\u6539": 95, "sin_": 95, "\u6ce8\u610f\u4e0b\u5212\u7ebf": 95, "\u88ab\u4fee\u6539": 95, "\u5bf9\u4e8e\u7b97\u672f\u8fd0\u7b97": 95, "\u6709\u4e00\u4e9b\u51fd\u6570\u7684\u884c\u4e3a\u7c7b\u4f3c": 95, "nafter": [95, 154], "\u8fd9\u4e9b\u5c31\u5730\u7b97\u672f\u51fd\u6570\u662f": 95, "\u5bf9\u8c61\u4e0a\u7684\u65b9\u6cd5": 95, "\u800c\u4e0d\u662f\u50cf\u8bb8\u591a\u5176\u4ed6\u51fd\u6570": 95, "\u90a3\u6837\u9644\u52a0\u5230": 95, "\u6a21\u5757\u4e0a": 95, "\u6b63\u5982\u4f60\u4ece": 95, "\u4e2d\u770b\u5230\u7684": 95, "\u88ab\u8c03\u7528\u7684\u5f20\u91cf\u662f\u5c31\u5730\u6539\u53d8\u7684\u90a3\u4e2a": 95, "\u8fd8\u6709\u53e6\u4e00\u79cd\u9009\u62e9": 95, "\u53ef\u4ee5\u5c06\u8ba1\u7b97\u7ed3\u679c\u653e\u5728\u4e00\u4e2a\u5df2\u7ecf\u5206\u914d\u7684\u5f20\u91cf\u4e2d": 95, "\u6211\u4eec\u5230\u76ee\u524d\u4e3a\u6b62\u770b\u5230\u7684\u8bb8\u591a\u65b9\u6cd5\u548c\u51fd\u6570": 95, "\u5305\u62ec\u521b\u5efa\u65b9\u6cd5": 95, "\u90fd\u6709\u4e00\u4e2a": 95, "\u8ba9\u4f60\u6307\u5b9a\u4e00\u4e2a\u5f20\u91cf\u6765\u63a5\u6536\u8f93\u51fa": 95, "\u5982\u679c": [95, 111, 213, 245, 247, 248], "\u5f20\u91cf\u7684\u5f62\u72b6\u548c": 95, "\u6b63\u786e": 95, "\u8fd9\u53ef\u4ee5\u5728\u4e0d\u5206\u914d\u65b0\u5185\u5b58\u7684\u60c5\u51b5\u4e0b\u53d1\u751f": 95, "old_id": 95, "\u7684\u5185\u5bb9\u5df2\u7ecf\u6539\u53d8": 95, "\u6d4b\u8bd5": [95, 237], "\u662f\u540c\u4e00\u4e2a\u5bf9\u8c61": 95, "\u800c\u4e0d\u53ea\u662f\u5305\u542b\u76f8\u7b49\u7684\u503c": 95, "\u786e\u4fdd\u6211\u4eec\u7684\u65b0": 95, "\u662f\u65e7": 95, "\u7684\u540c\u4e00\u4e2a\u5bf9\u8c61": 95, "\u5bf9\u4e8e\u521b\u5efa\u4e5f\u53ef\u4ee5": 95, "\u53c8\u4e00\u6b21\u6539\u53d8": 95, "\u4ecd\u7136\u662f\u540c\u4e00\u4e2a\u5bf9\u8c61": 95, "\u4e2d\u7684\u4efb\u4f55\u5bf9\u8c61\u4e00\u6837": 95, "\u5c06\u5f20\u91cf\u8d4b\u503c\u7ed9\u53d8\u91cf\u4f1a\u4f7f\u8be5\u53d8\u91cf\u6210\u4e3a\u5f20\u91cf\u7684": 95, "\u6807\u7b7e": [95, 227, 237, 251], "\u800c\u4e0d\u4f1a\u590d\u5236\u5b83": 95, "561": [95, 178], "\u6211\u4eec\u6539\u53d8": 95, "\u4e5f\u88ab\u6539\u53d8\u4e86": 95, "\u5982\u679c\u4f60\u60f3\u8981\u4e00\u4e2a\u5355\u72ec\u7684\u6570\u636e\u526f\u672c\u6765\u5904\u7406\u5462": 95, "\u8fd9\u65f6\u5c31\u53ef\u4ee5\u4f7f\u7528": 95, "\u5185\u5b58\u4e2d\u7684\u4e0d\u540c\u5bf9\u8c61": 95, "\u4f46\u4ecd\u7136\u5177\u6709\u76f8\u540c\u7684\u5185\u5bb9": 95, "\u6539\u53d8\u4e86": 95, "\u4f46": [95, 232, 245], "\u4ecd\u7136\u662f\u5168": 95, "\u6709\u4e00\u4e2a\u91cd\u8981\u7684\u4e8b\u60c5\u9700\u8981\u6ce8\u610f": 95, "\u5982\u679c\u4f60\u7684\u6e90\u5f20\u91cf\u542f\u7528\u4e86\u81ea\u52a8\u6c42\u5bfc": 95, "\u90a3\u4e48\u514b\u9686\u5f20\u91cf\u4e5f\u4f1a\u542f\u7528\u81ea\u52a8\u6c42\u5bfc": 95, "\u8fd9\u5c06\u5728\u5173\u4e8e\u81ea\u52a8\u6c42\u5bfc\u7684\u89c6\u9891\u4e2d\u66f4\u6df1\u5165\u5730\u4ecb\u7ecd": 95, "\u4f46\u5982\u679c\u4f60\u60f3\u4e86\u89e3\u7ec6\u8282\u7684\u7b80\u5355\u7248\u672c": 95, "\u8bf7\u7ee7\u7eed\u9605\u8bfb": 95, "\u5728\u8bb8\u591a\u60c5\u51b5\u4e0b": 95, "\u8fd9\u6b63\u662f\u4f60\u6240\u9700\u8981\u7684": 95, "\u5982\u679c\u4f60\u7684\u6a21\u578b\u5728\u5176": 95, "\u65b9\u6cd5\u4e2d\u6709\u591a\u4e2a\u8ba1\u7b97\u8def\u5f84": 95, "\u5e76\u4e14": 95, "\u539f\u59cb\u5f20\u91cf\u548c\u5b83\u7684\u514b\u9686": 95, "\u90fd\u4f1a\u5f71\u54cd\u6a21\u578b\u7684\u8f93\u51fa": 95, "\u90a3\u4e48\u4e3a\u4e86\u542f\u7528\u6a21\u578b\u5b66\u4e60": 95, "\u4f60\u5e0c\u671b\u4e24\u4e2a\u5f20\u91cf\u90fd\u542f\u7528\u81ea\u52a8\u6c42\u5bfc": 95, "\u901a\u5e38\u5982\u679c\u5b83\u662f\u4e00\u7ec4\u5b66\u4e60\u6743\u91cd\u6216\u6e90\u81ea\u6d89\u53ca\u6743\u91cd\u7684\u8ba1\u7b97": 95, "\u90a3\u4e48\u4f60\u5c31\u4f1a\u5f97\u5230\u6240\u9700\u7684\u7ed3\u679c": 95, "\u53e6\u4e00\u65b9\u9762": [95, 235, 253], "\u5982\u679c\u4f60\u6b63\u5728\u8fdb\u884c\u4e00\u4e2a\u8ba1\u7b97": 95, "\u90fd\u4e0d\u9700\u8981\u8ddf\u8e2a\u68af\u5ea6": 95, "\u90a3\u4e48\u53ea\u8981\u6e90\u5f20\u91cf\u5173\u95ed\u4e86\u81ea\u52a8\u6c42\u5bfc": 95, "\u4f60\u5c31\u53ef\u4ee5\u7ee7\u7eed\u4e86": 95, "\u8fd8\u6709\u7b2c\u4e09\u79cd\u60c5\u51b5": 95, "\u5047\u8bbe\u4f60\u5728\u6a21\u578b\u7684": 95, "\u51fd\u6570\u4e2d\u6267\u884c\u4e00\u4e2a\u8ba1\u7b97": 95, "\u9ed8\u8ba4\u60c5\u51b5\u4e0b\u6240\u6709\u5185\u5bb9\u7684\u68af\u5ea6\u90fd\u6253\u5f00": 95, "\u4f46\u4f60\u60f3\u5728\u4e2d\u95f4\u63d0\u53d6\u4e00\u4e9b\u503c\u6765\u751f\u6210\u4e00\u4e9b\u6307\u6807": 95, "\u4f60": 95, "\u4e0d\u5e0c\u671b": 95, "\u514b\u9686\u7684\u6e90\u5f20\u91cf\u526f\u672c\u8ddf\u8e2a\u68af\u5ea6": 95, "\u5173\u95ed\u81ea\u52a8\u6c42\u5bfc\u7684\u5386\u53f2\u8bb0\u5f55\u8ddf\u8e2a\u53ef\u4ee5\u63d0\u9ad8\u6027\u80fd": 95, "\u4f60\u53ef\u4ee5\u5728\u6e90\u5f20\u91cf\u4e0a\u4f7f\u7528": 95, "\u6253\u5f00\u81ea\u52a8\u6c42\u5bfc": 95, "\u6b64\u5904\u53d1\u751f\u4e86\u4ec0\u4e48": 95, "\u6211\u4eec\u521b\u5efa\u4e86": [95, 129], "\u5e76\u5c06": [95, 222, 227, 257], "\u6211\u4eec\u8fd8\u6ca1\u6709\u4ecb\u7ecd\u8fd9\u4e2a\u53ef\u9009\u53c2\u6570": 95, "\u4f46\u5c06\u5728\u5173\u4e8e\u81ea\u52a8\u6c42\u5bfc\u7684\u5355\u5143\u4e2d\u4ecb\u7ecd": 95, "\u5b83\u544a\u8bc9\u6211\u4eec\u5c5e\u6027": 95, "\u8fd9\u610f\u5473\u7740\u81ea\u52a8\u6c42\u5bfc\u548c\u8ba1\u7b97\u5386\u53f2\u8ddf\u8e2a\u5df2\u6253\u5f00": 95, "\u6211\u4eec\u514b\u9686": 95, "\u5e76\u5c06\u5176\u6807\u8bb0\u4e3a": 95, "\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u5b83\u6b63\u5728\u8ddf\u8e2a\u5176\u8ba1\u7b97\u5386\u53f2": 95, "\u5b83\u7ee7\u627f\u4e86": 95, "\u7684\u81ea\u52a8\u6c42\u5bfc\u8bbe\u7f6e": 95, "\u5e76\u6dfb\u52a0\u5230\u4e86\u8ba1\u7b97\u5386\u53f2\u4e2d": 95, "\u4f46\u9996\u5148\u8c03\u7528": 95, "\u6211\u4eec\u770b\u4e0d\u5230\u4efb\u4f55\u8ba1\u7b97\u5386\u53f2": 95, "\u4e5f\u6ca1\u6709": 95, "\u5c06\u5f20\u91cf\u4e0e\u5176\u8ba1\u7b97\u5386\u53f2\u5206\u79bb": 95, "\u5b83\u8bf4": 95, "\u65e0\u8bba\u63a5\u4e0b\u6765\u53d1\u751f\u4ec0\u4e48": 95, "\u90fd\u50cf\u81ea\u52a8\u6c42\u5bfc\u5173\u95ed\u65f6\u90a3\u6837\u8fdb\u884c": 95, "\u5b83\u8fd9\u6837\u505a": 95, "\u5e76\u4e0d\u4f1a\u6539\u53d8": 95, "\u5f53\u6211\u4eec\u5728\u6700\u540e\u518d\u6b21\u6253\u5370": 95, "\u5b83\u4fdd\u7559\u4e86\u5176": 95, "\u7684\u4e3b\u8981\u4f18\u52bf\u4e4b\u4e00\u662f\u5728": 95, "\u517c\u5bb9\u7684": 95, "\u4e0a\u6709\u5f3a\u5927\u7684\u52a0\u901f\u80fd\u529b": 95, "\u7684\u5e76\u884c\u8ba1\u7b97\u5e73\u53f0": 95, "\u5230\u76ee\u524d\u4e3a\u6b62": [95, 232], "\u6211\u4eec\u6240\u505a\u7684\u4e00\u5207\u90fd\u662f\u5728": 95, "\u6211\u4eec\u5982\u4f55\u79fb\u52a8\u5230\u66f4\u5feb\u7684\u786c\u4ef6\u4e0a\u5462": 95, "\u6211\u4eec\u5e94\u8be5\u4f7f\u7528": 95, "\u65b9\u6cd5\u68c0\u67e5\u662f\u5426\u6709": 95, "\u53ef\u7528": 95, "\u5982\u679c\u4f60\u6ca1\u6709\u5b89\u88c5": 95, "\u9a71\u52a8\u7a0b\u5e8f": 95, "\u672c\u8282\u4e2d\u7684\u53ef\u6267\u884c\u5355\u5143\u683c\u5c06\u4e0d\u4f1a\u6267\u884c\u4efb\u4f55": 95, "\u76f8\u5173\u7684\u4ee3\u7801": 95, "\u4e00\u65e6\u6211\u4eec\u786e\u5b9a\u6709\u4e00\u4e2a\u6216\u591a\u4e2agpu\u53ef\u7528": 95, "\u6211\u4eec\u9700\u8981\u5c06\u6570\u636e\u653e\u5728gpu\u53ef\u4ee5\u8bbf\u95ee\u7684\u5730\u65b9": 95, "\u4f60\u7684cpu\u5728\u8ba1\u7b97\u673a\u7684ram\u4e0a\u5bf9\u6570\u636e\u8fdb\u884c\u8ba1\u7b97": 95, "\u4f60\u7684gpu\u6709\u4e13\u7528\u7684\u5185\u5b58\u8fde\u63a5\u5230\u5b83": 95, "\u6bcf\u5f53\u4f60\u60f3\u5728\u4e00\u4e2a\u8bbe\u5907\u4e0a\u6267\u884c\u8ba1\u7b97\u65f6": 95, "\u4f60\u5fc5\u987b\u5c06\u8be5\u8ba1\u7b97\u6240\u9700\u7684": 95, "\u6570\u636e\u79fb\u52a8\u5230\u8be5\u8bbe\u5907\u53ef\u8bbf\u95ee\u7684\u5185\u5b58\u4e2d": 95, "\u4fd7\u79f0": 95, "\u5c06\u6570\u636e\u79fb\u52a8\u5230gpu\u53ef\u8bbf\u95ee\u7684\u5185\u5b58": 95, "\u88ab\u7b80\u79f0\u4e3a": 95, "\u5c06\u6570\u636e\u79fb\u52a8\u5230gpu": 95, "\u6709\u591a\u79cd\u65b9\u5f0f\u53ef\u4ee5\u5c06\u6570\u636e\u79fb\u52a8\u5230\u76ee\u6807\u8bbe\u5907": 95, "\u4f60\u53ef\u4ee5\u5728\u521b\u5efa\u65f6\u8fd9\u6837\u505a": 95, "gpu_rand": 95, "\u65b0\u7684\u5f20\u91cf\u662f\u5728cpu\u4e0a\u521b\u5efa\u7684": 95, "\u6240\u4ee5\u6211\u4eec\u5fc5\u987b\u4f7f\u7528\u53ef\u9009\u7684": 95, "\u53c2\u6570\u6765\u6307\u5b9a\u6211\u4eec\u60f3\u5728gpu\u4e0a\u521b\u5efa\u5f20\u91cf": 95, "\u5f53\u6211\u4eec\u6253\u5370\u65b0\u7684\u5f20\u91cf\u65f6": 95, "\u4f60\u53ef\u4ee5\u770b\u5230pytorch\u4f1a\u544a\u8bc9\u6211\u4eec\u5b83\u5728\u54ea\u4e2a\u8bbe\u5907\u4e0a": 95, "\u5982\u679c\u4e0d\u5728cpu\u4e0a": 95, "\u67e5\u8be2gpu\u7684\u6570\u91cf": 95, "\u5982\u679c\u4f60\u6709\u591a\u4e2agpu": 95, "\u4f60\u53ef\u4ee5\u901a\u8fc7\u7d22\u5f15\u6307\u5b9a\u5b83\u4eec": 95, "\u4f5c\u4e3a\u7f16\u7801\u5b9e\u8df5": 95, "\u5728\u4efb\u4f55\u5730\u65b9\u90fd\u4f7f\u7528\u5b57\u7b26\u4e32\u5e38\u91cf\u6765\u6307\u5b9a\u8bbe\u5907\u662f\u76f8\u5f53\u8106\u5f31\u7684": 95, "\u65e0\u8bba\u4f60\u5728cpu\u8fd8\u662fgpu\u786c\u4ef6\u4e0a": 95, "\u4f60\u7684\u4ee3\u7801\u90fd\u5e94\u8be5\u7a33\u5065\u5730\u6267\u884c": 95, "\u4f60\u53ef\u4ee5\u901a\u8fc7\u521b\u5efa\u4e00\u4e2a\u8bbe\u5907\u53e5\u67c4\u6765\u5b9e\u73b0\u8fd9\u4e00\u70b9": 95, "\u800c\u4e0d\u662f\u4f7f\u7528\u5b57\u7b26\u4e32\u4f20\u9012\u7ed9\u4f60\u7684\u5f20\u91cf": 95, "my_devic": 95, "\u5982\u679c\u4f60\u6709\u4e00\u4e2a\u5df2\u7ecf\u5b58\u5728\u4e8e\u4e00\u4e2a\u8bbe\u5907\u4e0a\u7684\u5f20\u91cf": 95, "\u65b9\u6cd5\u5c06\u5b83\u79fb\u52a8\u5230\u53e6\u4e00\u4e2a\u8bbe\u5907": 95, "\u4e0b\u9762\u4e00\u884c\u4ee3\u7801\u5728cpu\u4e0a\u521b\u5efa\u4e00\u4e2a\u5f20\u91cf": 95, "\u5e76\u5c06\u5b83\u79fb\u52a8\u5230\u4f60\u5728\u4e0a\u4e00\u4e2a\u5355\u5143\u683c\u4e2d\u83b7\u53d6\u7684\u4efb\u4f55\u8bbe\u5907\u53e5\u67c4\u4e0a": 95, "\u91cd\u8981\u7684\u662f\u8981\u77e5\u9053": 95, "\u4e3a\u4e86\u8fdb\u884c\u6d89\u53ca\u4e24\u4e2a\u6216\u591a\u4e2a\u5f20\u91cf\u7684\u8ba1\u7b97": 95, "\u6240\u6709\u5f20\u91cf\u5fc5\u987b\u5728\u540c\u4e00\u8bbe\u5907\u4e0a": 95, "\u65e0\u8bba\u4f60\u662f\u5426\u6709gpu\u8bbe\u5907\u53ef\u7528": 95, "\u4ee5\u4e0b\u4ee3\u7801\u90fd\u4f1a\u629b\u51fa\u8fd0\u884c\u65f6\u9519\u8bef": 95, "thrown": [95, 193, 207], "\u6709\u65f6": 95, "\u4f60\u9700\u8981\u6539\u53d8\u5f20\u91cf\u7684\u5f62\u72b6": 95, "\u6211\u4eec\u5c06\u770b\u4e00\u4e9b\u5e38\u89c1\u7684\u60c5\u51b5": 95, "\u4ee5\u53ca\u5982\u4f55\u5904\u7406\u5b83\u4eec": 95, "\u4f60\u53ef\u80fd\u9700\u8981\u6539\u53d8\u7ef4\u5ea6\u6570\u91cf\u7684\u4e00\u79cd\u60c5\u51b5\u662f\u5c06\u5355\u4e2a\u5b9e\u4f8b\u8f93\u5165\u5230\u4f60\u7684\u6a21\u578b\u4e2d": 95, "pytorch\u6a21\u578b": 95, "\u901a\u5e38\u671f\u671b\u8f93\u5165": 95, "\u6570\u636e": [95, 237], "\u5047\u8bbe\u6709\u4e00\u4e2a\u6a21\u578b\u53ef\u4ee5\u5904\u74063x226x226\u7684\u56fe\u50cf": 95, "\u4e00\u4e2a226\u50cf\u7d20\u7684\u6b63\u65b9\u5f62": 95, "\u67093\u4e2a\u989c\u8272\u901a\u9053": 95, "\u5f53\u4f60\u52a0\u8f7d\u548c\u8f6c\u6362\u5b83\u65f6": 95, "\u4f60\u4f1a\u5f97\u5230\u4e00\u4e2a\u5f62\u72b6\u4e3a": 95, "226": 95, "\u4f46\u662f\u4f60\u7684\u6a21\u578b": 95, "\u671f\u671b\u8f93\u5165\u5f62\u72b6\u4e3a": 95, "\u662f\u6279\u6b21\u4e2d\u56fe\u50cf\u7684\u6570\u91cf": 95, "\u90a3\u4e48\u5982\u4f55\u521b\u5efa\u4e00\u4e2a\u6279\u6b21\u5927\u5c0f\u4e3a1\u7684\u8f93\u5165\u5462": 95, "\u65b9\u6cd5\u6dfb\u52a0\u4e86\u4e00\u4e2a\u5927\u5c0f\u4e3a1\u7684\u7ef4\u5ea6": 95, "\u5728\u6700\u524d\u9762\u6dfb\u52a0\u4e86\u4e00\u4e2a\u65b0\u76840\u7ef4\u5ea6": 95, "\u73b0\u5728\u4f60\u6709\u4e86\u4e00\u4e2a\u6279\u6b21\u5927\u5c0f\u4e3a1\u7684\u8f93\u5165": 95, "\u90a3\u4e48\u5982\u679c\u662f": 95, "\u53bb\u9664": 95, "\u591a\u4f59\u76841\u7ef4\u5ea6\u5462": 95, "\u6211\u4eec\u6240\u8bf4\u7684\u6324\u538b": 95, "\u5c31\u662f\u5229\u7528\u4e86": 95, "\u4efb\u4f55\u5927\u5c0f\u4e3a1\u7684\u7ef4\u5ea6": 95, "\u4e0d\u4f1a": 95, "\u6539\u53d8\u5f20\u91cf\u4e2d\u5143\u7d20\u7684\u6570\u91cf\u8fd9\u4e00\u4e8b\u5b9e": 95, "\u7ee7\u7eed\u4e0a\u9762\u7684\u4f8b\u5b50": 95, "\u5047\u8bbe\u6a21\u578b\u7684\u8f93\u51fa\u662f\u4e00\u4e2a20\u5143\u7d20\u7684\u5411\u91cf": 95, "\u5bf9\u4e8e\u6bcf\u4e2a\u8f93\u5165": 95, "\u90a3\u4e48\u4f60\u4f1a\u671f\u671b\u8f93\u51fa\u7684\u5f62\u72b6\u4e3a": 95, "\u662f\u8f93\u5165\u6279\u6b21\u4e2d\u7684\u5b9e\u4f8b\u6570\u91cf": 95, "\u8fd9\u610f\u5473\u7740\u5bf9\u4e8e\u6211\u4eec\u7684\u5355\u8f93\u5165\u6279\u6b21": 95, "\u6211\u4eec\u4f1a\u5f97\u5230\u5f62\u72b6\u4e3a": 95, "\u7684\u8f93\u51fa": [95, 237], "\u5982\u679c\u4f60\u60f3\u5bf9\u8be5\u8f93\u51fa\u8fdb\u884c\u4e00\u4e9b": 95, "\u975e\u6279\u6b21": 95, "\u4e00\u4e9b\u53ea\u671f\u671b20\u5143\u7d20\u5411\u91cf\u7684\u8ba1\u7b97": 95, "\u8be5\u600e\u4e48\u529e": 95, "\u4f60\u53ef\u4ee5\u4ece\u5f62\u72b6\u770b\u51fa": 95, "\u6211\u4eec\u7684\u4e8c\u7ef4\u5f20\u91cf\u73b0\u5728\u53d8\u6210\u4e86\u4e00\u7ef4\u7684": 95, "\u5982\u679c\u4f60\u4ed4\u7ec6\u89c2\u5bdf\u4e0a\u9762\u5355\u5143\u683c\u7684\u8f93\u51fa": 95, "\u4f60\u4f1a\u53d1\u73b0\u6253\u5370": 95, "\u65f6\u4f1a\u663e\u793a\u4e00\u7ec4": 95, "\u989d\u5916": 95, "\u7684\u65b9\u62ec\u53f7": 95, "\u8fd9\u662f\u56e0\u4e3a\u591a\u4e86\u4e00\u4e2a\u7ef4\u5ea6": 95, "\u4f60\u53ea\u80fd\u5bf9\u5927\u5c0f\u4e3a1\u7684\u7ef4\u5ea6\u6267\u884c": 95, "\u770b\u4e0a\u9762\u6211\u4eec\u5c1d\u8bd5\u5bf9\u5927\u5c0f\u4e3a2\u7684\u7ef4\u5ea6": 95, "\u8fdb\u884c\u6324\u538b": 95, "\u5f97\u5230\u7684\u5f62\u72b6\u4e0e\u5f00\u59cb\u65f6\u76f8\u540c": 95, "\u7684\u8c03\u7528\u53ea\u80fd\u4f5c\u7528\u4e8e\u5927\u5c0f\u4e3a1\u7684\u7ef4\u5ea6": 95, "\u56e0\u4e3a\u5bf9\u5176\u4ed6\u7ef4\u5ea6\u64cd\u4f5c\u4f1a\u6539\u53d8\u5f20\u91cf\u4e2d\u5143\u7d20\u7684\u6570\u91cf": 95, "\u4f60\u53ef\u80fd\u4f1a\u4f7f\u7528": 95, "\u7684\u53e6\u4e00\u4e2a\u573a\u666f\u662f\u4e3a\u4e86\u65b9\u4fbf\u5e7f\u64ad\u64cd\u4f5c": 95, "\u56de\u60f3\u4e00\u4e0b\u4e0a\u9762\u7684\u4f8b\u5b50": 95, "\u6211\u4eec\u6709\u4ee5\u4e0b\u4ee3\u7801": 95, "\u5176\u51c0\u6548\u679c\u662f\u5728\u7ef4\u5ea60\u548c2\u4e0a\u8fdb\u884c\u5e7f\u64ad\u64cd\u4f5c": 95, "\u5bfc\u81f4\u5f62\u72b6\u4e3a3x1\u7684\u968f\u673a\u5f20\u91cf\u4e0e": 95, "\u4e2d\u7684\u6bcf\u4e00\u52173\u5143\u7d20\u9010\u5143\u7d20\u76f8\u4e58": 95, "\u5982\u679c\u968f\u673a\u5411\u91cf\u53ea\u662f\u4e00\u4e2a3\u5143\u7d20\u5411\u91cf\u5462": 95, "\u6211\u4eec\u5c31\u5931\u53bb\u4e86\u5e7f\u64ad\u7684\u80fd\u529b": 95, "\u56e0\u4e3a\u6700\u540e\u7684\u7ef4\u5ea6\u4e0d\u4f1a\u6839\u636e\u5e7f\u64ad\u89c4\u5219\u5339\u914d": 95, "\u53ef\u4ee5\u89e3\u6551\u6211\u4eec": 95, "\u8bd5\u56fe\u5c06": 95, "\u4f1a\u5bfc\u81f4\u8fd0\u884c\u65f6\u9519\u8bef": 95, "\u53d8\u6210\u4e8c\u7ef4\u5f20\u91cf": 95, "\u5728\u672b\u5c3e\u6dfb\u52a0\u65b0\u7ef4\u5ea6": 95, "\u5e7f\u64ad\u518d\u6b21\u751f\u6548": 95, "\u65b9\u6cd5\u4e5f\u6709\u672c\u5730\u7248\u672c": 95, "batch_m": 95, "\u6709\u65f6\u4f60\u9700\u8981\u66f4\u5f7b\u5e95\u5730\u6539\u53d8\u5f20\u91cf\u7684\u5f62\u72b6": 95, "\u540c\u65f6\u4fdd\u7559\u5143\u7d20\u6570\u91cf\u548c\u5185\u5bb9\u4e0d\u53d8": 95, "\u4e00\u79cd\u60c5\u51b5\u662f\u5728\u6a21\u578b\u7684\u5377\u79ef\u5c42\u548c\u7ebf\u6027\u5c42\u4e4b\u95f4\u7684\u63a5\u53e3": 95, "\u8fd9\u5728\u56fe\u50cf\u5206\u7c7b\u6a21\u578b\u4e2d\u5f88\u5e38\u89c1": 95, "\u5377\u79ef\u6838\u4f1a\u4ea7\u751f\u5f62\u72b6\u4e3a": 95, "\u4f46\u63a5\u4e0b\u6765\u7684\u7ebf\u6027\u5c42\u671f\u671b\u4e00\u7ef4\u8f93\u5165": 95, "\u53ef\u4ee5\u4e3a\u4f60\u505a\u8fd9\u4ef6\u4e8b": 95, "\u53ea\u8981\u4f60\u8bf7\u6c42\u7684\u7ef4\u5ea6\u4e0e\u8f93\u5165\u5f20\u91cf\u5177\u6709\u76f8\u540c\u6570\u91cf\u7684\u5143\u7d20\u5373\u53ef": 95, "output3d": 95, "input1d": 95, "\u4e0a\u9762\u6700\u540e\u4e00\u884c\u5355\u5143\u683c\u4e2d\u7684": 95, "\u53c2\u6570\u662f\u56e0\u4e3apytorch\u5728\u6307\u5b9a\u5f20\u91cf\u5f62\u72b6\u65f6": 95, "\u671f\u671b\u4e00\u4e2a": 95, "\u5143\u7ec4": 95, "\u4f46\u5f53\u5f62\u72b6\u662f\u65b9\u6cd5\u7684\u7b2c\u4e00\u4e2a\u53c2\u6570\u65f6": 95, "\u5b83\u5141\u8bb8\u6211\u4eec\u53ea\u4f7f\u7528\u4e00\u7cfb\u5217\u6574\u6570": 95, "\u6211\u4eec\u5fc5\u987b\u6dfb\u52a0\u62ec\u53f7\u548c\u9017\u53f7\u6765\u8bf4\u670d\u8be5\u65b9\u6cd5\u8fd9\u786e\u5b9e\u662f\u4e00\u4e2a\u5355\u5143\u7d20\u5143\u7ec4": 95, "\u5f53\u53ef\u80fd\u65f6": 95, "\u4f1a\u8fd4\u56de\u8be5\u5f20\u91cf\u7684": 95, "\u89c6\u56fe": 95, "\u4e5f\u5c31\u662f\u4e00\u4e2a\u5355\u72ec\u7684\u5f20\u91cf\u5bf9\u8c61": 95, "\u67e5\u770b\u76f8\u540c\u7684\u5e95\u5c42\u5185\u5b58\u533a\u57df": 95, "\u8fd9\u4e00\u70b9\u5f88\u91cd\u8981": 95, "\u8fd9\u610f\u5473\u7740\u5bf9\u6e90\u5f20\u91cf\u6240\u505a\u7684\u4efb\u4f55\u66f4\u6539\u90fd\u4f1a\u53cd\u6620\u5728\u8be5\u5f20\u91cf\u7684\u89c6\u56fe\u4e0a": 95, "\u9664\u975e\u4f60": 95, "\u786e\u5b9e\u6709\u4e00\u4e9b\u6761\u4ef6": 95, "\u8d85\u51fa\u4e86\u672c\u4ecb\u7ecd\u7684\u8303\u56f4": 95, "\u5fc5\u987b\u8fd4\u56de\u6570\u636e\u7684\u526f\u672c": 95, "kinship": 95, "numpy_arrai": 95, "pytorch_tensor": 95, "pytorch_rand": 95, "numpy_rand": 95, "\u5728\u8fc7\u53bb\u7684\u89c6\u9891\u4e2d": 96, "\u6211\u4eec\u8ba8\u8bba\u5e76\u6f14\u793a\u4e86": 96, "\u6a21\u5757\u4e2d\u7684\u795e\u7ecf\u7f51\u7edc\u5c42\u548c\u51fd\u6570\u6784\u5efa\u6a21\u578b": 96, "\u81ea\u52a8\u68af\u5ea6\u8ba1\u7b97\u7684\u673a\u5236": 96, "\u8fd9\u662f\u57fa\u4e8e\u68af\u5ea6\u7684\u6a21\u578b\u8bad\u7ec3\u7684\u6838\u5fc3": 96, "\u53ef\u89c6\u5316\u8bad\u7ec3\u8fdb\u5ea6\u548c\u5176\u4ed6\u6d3b\u52a8": 96, "\u5728\u672c\u89c6\u9891\u4e2d": 96, "\u6211\u4eec\u5c06\u4e3a\u60a8\u7684\u5e93\u5b58\u6dfb\u52a0\u4e00\u4e9b\u65b0\u5de5\u5177": 96, "\u6211\u4eec\u5c06\u719f\u6089\u6570\u636e\u96c6\u548c\u6570\u636e\u52a0\u8f7d\u5668\u62bd\u8c61": 96, "\u4ee5\u53ca\u5b83\u4eec\u5982\u4f55\u7b80\u5316\u5411\u6a21\u578b\u8bad\u7ec3\u5faa\u73af\u63d0\u4f9b\u6570\u636e\u7684\u8fc7\u7a0b": 96, "\u6211\u4eec\u5c06\u8ba8\u8bba\u7279\u5b9a\u7684\u635f\u5931\u51fd\u6570\u4ee5\u53ca\u4f55\u65f6\u4f7f\u7528\u5b83\u4eec": 96, "\u6211\u4eec\u5c06\u4e86\u89e3": 96, "\u5b83\u4eec\u5b9e\u73b0\u4e86\u6839\u636e\u635f\u5931\u51fd\u6570\u7684\u7ed3\u679c\u8c03\u6574\u6a21\u578b\u6743\u91cd\u7684\u7b97\u6cd5": 96, "\u6211\u4eec\u5c06\u628a\u6240\u6709\u8fd9\u4e9b\u7ed3\u5408\u8d77\u6765": 96, "\u770b\u4e00\u4e2a\u5b8c\u6574\u7684": 96, "\u8bad\u7ec3\u5faa\u73af\u7684\u5b9e\u9645\u8fd0\u884c": 96, "\u7c7b\u5c01\u88c5\u4e86\u4ece\u5b58\u50a8\u4e2d\u63d0\u53d6\u6570\u636e\u5e76\u4ee5\u6279\u6b21\u5f62\u5f0f\u66b4\u9732\u7ed9\u8bad\u7ec3\u5faa\u73af\u7684\u8fc7\u7a0b": 96, "\u8d1f\u8d23\u8bbf\u95ee\u548c\u5904\u7406\u5355\u4e2a\u6570\u636e\u5b9e\u4f8b": 96, "\u4e2d\u63d0\u53d6\u6570\u636e\u5b9e\u4f8b": 96, "\u65e0\u8bba\u662f\u81ea\u52a8\u63d0\u53d6\u8fd8\u662f\u4f7f\u7528\u60a8\u5b9a\u4e49\u7684\u91c7\u6837\u5668": 96, "\u5c06\u5b83\u4eec\u6536\u96c6\u5230\u6279\u6b21\u4e2d": 96, "\u5e76\u8fd4\u56de\u7ed9\u60a8\u7684\u8bad\u7ec3\u5faa\u73af\u8fdb\u884c\u6d88\u8d39": 96, "\u53ef\u4ee5\u4e0e\u6240\u6709\u7c7b\u578b\u7684\u6570\u636e\u96c6\u4e00\u8d77\u4f7f\u7528": 96, "\u65e0\u8bba\u5b83\u4eec\u5305\u542b\u4ec0\u4e48\u7c7b\u578b\u7684\u6570\u636e": 96, "\u5bf9\u4e8e\u672c\u6559\u7a0b": [96, 220, 234, 243, 244, 249, 250, 251], "\u63d0\u4f9b\u7684": 96, "\u6765\u96f6\u4e2d\u5fc3\u548c\u6807\u51c6\u5316\u56fe\u50cf\u74e6\u7247\u5185\u5bb9\u7684\u5206\u5e03": 96, "\u5e76\u4e0b\u8f7d\u8bad\u7ec3\u548c\u9a8c\u8bc1\u6570\u636e\u5206\u5272": 96, "datetim": [96, 122, 147], "\u521b\u5efa\u8bad\u7ec3\u548c\u9a8c\u8bc1\u6570\u636e\u96c6": 96, "\u5982\u679c\u9700\u8981\u5219\u4e0b\u8f7d": 96, "\u4e3a\u6211\u4eec\u7684\u6570\u636e\u96c6\u521b\u5efa\u6570\u636e\u52a0\u8f7d\u5668": 96, "\u8bad\u7ec3\u65f6\u6253\u4e71": 96, "\u9a8c\u8bc1\u65f6\u4e0d\u6253\u4e71": 96, "\u7c7b\u522b\u6807\u7b7e": 96, "\u62a5\u544a\u5206\u5272\u5927\u5c0f": 96, "\u8bad\u7ec3\u96c6\u6709": 96, "\u4e2a\u5b9e\u4f8b": 96, "\u9a8c\u8bc1\u96c6\u6709": 96, "\u50cf\u5f80\u5e38\u4e00\u6837": 96, "\u8ba9\u6211\u4eec\u53ef\u89c6\u5316\u6570\u636e\u4f5c\u4e3a\u5065\u5168\u6027\u68c0\u67e5": 96, "\u53cd\u6807\u51c6\u5316": 96, "\u6211\u4eec\u5728\u672c\u4f8b\u4e2d\u4f7f\u7528\u7684\u6a21\u578b\u662f": 96, "\u7684\u53d8\u4f53": 96, "\u5982\u679c\u60a8\u89c2\u770b\u4e86\u672c\u7cfb\u5217\u7684\u524d\u51e0\u4e2a\u89c6\u9891": 96, "\u5e94\u8be5\u4f1a\u5f88\u719f\u6089": 96, "\u6a21\u578b\u7ee7\u627f\u81ea": 96, "garmentclassifi": 96, "\u5bf9\u4e8e\u672c\u4f8b": [96, 211, 237], "\u6211\u4eec\u5c06\u4f7f\u7528\u4ea4\u53c9\u71b5\u635f\u5931": 96, "\u4e3a\u4e86\u6f14\u793a\u76ee\u7684": 96, "\u6211\u4eec\u5c06\u521b\u5efa\u865a\u62df\u8f93\u51fa\u548c\u6807\u7b7e\u503c\u7684\u6279\u6b21": 96, "\u5c06\u5b83\u4eec\u901a\u8fc7\u635f\u5931\u51fd\u6570": 96, "\u5e76\u68c0\u67e5\u7ed3\u679c": 96, "\u635f\u5931\u51fd\u6570\u671f\u671b\u6570\u636e\u4ee5\u6279\u6b21\u5f62\u5f0f": 96, "\u6240\u4ee5\u6211\u4eec\u521b\u5efa\u4e86": 96, "\u4e2a\u6279\u6b21": 96, "\u8868\u793a\u6a21\u578b\u5bf9\u7ed9\u5b9a\u8f93\u5165\u7684": 96, "\u4e2a\u7c7b\u522b\u4e2d\u6bcf\u4e00\u4e2a\u7684\u7f6e\u4fe1\u5ea6": 96, "dummy_output": 96, "\u8868\u793a\u6b63\u786e\u7684\u7c7b\u522b\u5728\u6d4b\u8bd5\u7684": 96, "\u4e2a\u7c7b\u522b\u4e2d": 96, "dummy_label": 96, "\u6b64\u6279\u6b21\u7684\u603b\u635f\u5931": 96, "\u6211\u4eec\u5c06\u4f7f\u7528\u5e26\u52a8\u91cf\u7684\u7b80\u5355\u968f\u673a\u68af\u5ea6\u4e0b\u964d": 96, "\u5c1d\u8bd5\u4e00\u4e9b\u4f18\u5316\u65b9\u6848\u7684\u53d8\u4f53\u4f1a\u5f88\u6709\u542f\u53d1\u6027": 96, "\u5b66\u4e60\u7387\u51b3\u5b9a\u4e86\u4f18\u5316\u5668\u91c7\u53d6\u7684\u6b65\u957f\u5927\u5c0f": 96, "\u4e0d\u540c\u7684\u5b66\u4e60\u7387\u5bf9\u60a8\u7684\u8bad\u7ec3\u7ed3\u679c\u6709\u4f55\u5f71\u54cd": 96, "\u5728\u51c6\u786e\u6027\u548c\u6536\u655b\u65f6\u95f4\u65b9\u9762": 96, "\u52a8\u91cf\u5728\u591a\u4e2a\u6b65\u9aa4\u4e2d\u5c06\u4f18\u5316\u5668\u63a8\u5411\u6700\u5f3a\u68af\u5ea6\u7684\u65b9\u5411": 96, "\u6539\u53d8\u8fd9\u4e2a\u503c\u4f1a\u5bf9\u7ed3\u679c\u4ea7\u751f\u4ec0\u4e48\u5f71\u54cd": 96, "\u5c1d\u8bd5\u4e00\u4e9b\u4e0d\u540c\u7684\u4f18\u5316\u7b97\u6cd5": 96, "\u5982\u5e73\u5747": 96, "\u60a8\u7684\u7ed3\u679c\u6709\u4f55\u4e0d\u540c": 96, "\u5305\u4e2d\u6307\u5b9a\u4f18\u5316\u5668": 96, "\u6211\u4eec\u6709\u4e00\u4e2a\u6267\u884c\u4e00\u4e2a\u8bad\u7ec3\u5468\u671f\u7684\u51fd\u6570": 96, "\u679a\u4e3e\u6570\u636e": 96, "\u5e76\u5728\u5faa\u73af\u7684\u6bcf\u4e00\u6b21\u901a\u8fc7\u65f6\u6267\u884c\u4ee5\u4e0b\u64cd\u4f5c": 96, "\u83b7\u53d6\u4e00\u6279\u8bad\u7ec3\u6570\u636e": 96, "\u5c06\u4f18\u5316\u5668\u7684\u68af\u5ea6\u5f52\u96f6": 96, "\u6267\u884c\u63a8\u7406": 96, "\u4e5f\u5c31\u662f\u4ece\u6a21\u578b\u83b7\u53d6\u8f93\u5165\u6279\u6b21\u7684\u9884\u6d4b": 96, "\u8ba1\u7b97\u8be5\u7ec4\u9884\u6d4b\u4e0e\u6570\u636e\u96c6\u4e0a\u7684\u6807\u7b7e\u4e4b\u95f4\u7684\u635f\u5931": 96, "\u8ba1\u7b97\u5b66\u4e60\u6743\u91cd\u7684\u53cd\u5411\u68af\u5ea6": 96, "\u544a\u8bc9\u4f18\u5316\u5668\u6267\u884c\u4e00\u4e2a\u5b66\u4e60\u6b65\u9aa4": 96, "\u4e5f\u5c31\u662f\u6839\u636e\u6211\u4eec\u9009\u62e9\u7684\u4f18\u5316\u7b97\u6cd5": 96, "\u57fa\u4e8e\u8be5\u6279\u6b21\u89c2\u5bdf\u5230\u7684\u68af\u5ea6\u6765\u8c03\u6574\u6a21\u578b\u7684\u5b66\u4e60\u6743\u91cd": 96, "\u5b83\u6bcf": 96, "\u4e2a\u6279\u6b21\u62a5\u544a\u4e00\u6b21\u635f\u5931": 96, "\u5b83\u62a5\u544a\u6700\u540e": 96, "\u4e2a\u6279\u6b21\u7684\u5e73\u5747\u6bcf\u6279\u6b21\u635f\u5931": 96, "\u4ee5\u4fbf\u4e0e\u9a8c\u8bc1\u8fd0\u884c\u8fdb\u884c\u6bd4\u8f83": 96, "epoch_index": 96, "tb_writer": 96, "last_loss": 96, "\u4ee5\u4fbf\u6211\u4eec\u53ef\u4ee5\u8ddf\u8e2a\u6279\u6b21\u7d22\u5f15\u5e76\u8fdb\u884c\u4e00\u4e9b\u5468\u671f\u5185\u62a5\u544a": 96, "\u6bcf\u4e2a\u6570\u636e\u5b9e\u4f8b\u90fd\u662f\u4e00\u4e2a\u8f93\u5165": 96, "\u6807\u7b7e\u5bf9": 96, "\u5bf9\u4e8e\u6bcf\u4e2a\u6279\u6b21": 96, "\u5bf9\u8be5\u6279\u6b21\u8fdb\u884c\u9884\u6d4b": 96, "\u8ba1\u7b97\u635f\u5931\u53ca\u5176\u68af\u5ea6": 96, "\u8c03\u6574\u5b66\u4e60\u6743\u91cd": 96, "\u6536\u96c6\u6570\u636e\u5e76\u62a5\u544a": 96, "\u6bcf\u6279\u6b21\u635f\u5931": 96, "tb_x": 96, "\u6211\u4eec\u6bcf\u4e2a\u5468\u671f\u9700\u8981\u505a\u7684\u4e8b\u60c5\u6709": 96, "\u901a\u8fc7\u68c0\u67e5\u672a\u7528\u4e8e\u8bad\u7ec3\u7684\u4e00\u7ec4\u6570\u636e\u4e0a\u7684\u76f8\u5bf9\u635f\u5931\u6765\u6267\u884c\u9a8c\u8bc1": 96, "\u5e76\u62a5\u544a\u8fd9\u4e00\u70b9": 96, "\u4fdd\u5b58\u6a21\u578b\u7684\u526f\u672c": 96, "\u6211\u4eec\u5c06\u5728": 96, "\u4e2d\u8fdb\u884c\u62a5\u544a": 96, "\u8fd9\u9700\u8981\u8f6c\u5230\u547d\u4ee4\u884c\u542f\u52a8": 96, "\u5e76\u5728\u53e6\u4e00\u4e2a\u6d4f\u89c8\u5668\u9009\u9879\u5361\u4e2d\u6253\u5f00\u5b83": 96, "\u5728\u5355\u72ec\u7684\u5355\u5143\u683c\u4e2d\u521d\u59cb\u5316": 96, "\u4ee5\u4fbf\u6211\u4eec\u53ef\u4ee5\u8f7b\u677e\u5730\u5c06\u66f4\u591a\u5468\u671f\u6dfb\u52a0\u5230\u540c\u4e00\u8fd0\u884c\u4e2d": 96, "timestamp": [96, 128, 144], "strftime": [96, 122, 147], "fashion_trainer_": 96, "epoch_numb": 96, "best_vloss": 96, "\u5468\u671f": 96, "\u786e\u4fdd\u68af\u5ea6\u8ddf\u8e2a\u5df2\u6253\u5f00": 96, "\u5e76\u5bf9\u6570\u636e\u8fdb\u884c\u4e00\u6b21\u4f20\u9012": 96, "\u5c06\u6a21\u578b\u8bbe\u7f6e\u4e3a\u8bc4\u4f30\u6a21\u5f0f": 96, "\u7981\u7528": 96, "\u5e76\u4f7f\u7528\u6279\u91cf\u89c4\u8303\u5316\u7684\u7fa4\u4f53\u7edf\u8ba1\u6570\u636e": 96, "\u7981\u7528\u68af\u5ea6\u8ba1\u7b97\u5e76\u51cf\u5c11\u5185\u5b58\u6d88\u8017": 96, "\u6709\u6548": 96, "\u5bf9\u4e8e\u8bad\u7ec3\u548c\u9a8c\u8bc1": 96, "\u8bad\u7ec3\u4e0e\u9a8c\u8bc1\u635f\u5931": 96, "\u8ddf\u8e2a\u6700\u4f73\u6027\u80fd": 96, "\u5e76\u4fdd\u5b58\u6a21\u578b\u7684\u72b6\u6001": 96, "model_path": [96, 223], "\u8981\u52a0\u8f7d\u4fdd\u5b58\u7684\u6a21\u578b\u7248\u672c": 96, "\u4e00\u65e6\u52a0\u8f7d\u4e86\u6a21\u578b": 96, "\u5b83\u5c31\u53ef\u4ee5\u7528\u4e8e\u60a8\u9700\u8981\u7684\u4efb\u4f55\u4e8b\u60c5": 96, "\u66f4\u591a\u8bad\u7ec3": 96, "\u63a8\u7406\u6216\u5206\u6790": 96, "\u5982\u679c\u60a8\u7684\u6a21\u578b\u6709\u5f71\u54cd\u6a21\u578b\u7ed3\u6784\u7684\u6784\u9020\u51fd\u6570\u53c2\u6570": 96, "\u60a8\u9700\u8981\u63d0\u4f9b\u5b83\u4eec\u5e76\u4ee5\u4e0e\u4fdd\u5b58\u65f6\u76f8\u540c\u7684\u65b9\u5f0f\u914d\u7f6e\u6a21\u578b": 96, "\u4e0a\u7684\u6570\u636e\u5de5\u5177\u6587\u6863": 96, "\u5173\u4e8e\u4f7f\u7528\u56fa\u5b9a\u5185\u5b58\u8fdb\u884c": 96, "\u8bad\u7ec3\u7684\u8bf4\u660e": 96, "\u4e2d\u53ef\u7528\u6570\u636e\u96c6\u7684\u6587\u6863": 96, "\u4e2d\u53ef\u7528\u635f\u5931": 96, "trainingyt": 96, "alexandro": 97, "chariton": 97, "computation": [97, 172], "lightweight": [97, 121, 157], "drone": 97, "4gb": [97, 153, 159, 224], "satur": [97, 200], "subtract": 97, "greedi": [97, 113, 118, 137, 147, 161], "transforms_cifar": 97, "test_dataset": [97, 115], "num_images_to_keep": 97, "50_000": [97, 160], "train_load": [97, 122, 123, 130, 163, 167, 169, 221, 222, 255], "extractor": [97, 172], "neuron": 97, "deepnn": 97, "lightnn": 97, "detriment": 97, "denot": [97, 99, 102, 190, 191, 194, 264], "nn_deep": 97, "test_accuracy_deep": 97, "nn_light": 97, "new_nn_light": 97, "conclud": [97, 131, 150, 201], "total_params_deep": 97, "total_params_light": 97, "test_accuracy_light_c": 97, "interven": 97, "soft": [97, 161], "mistaken": 97, "valuabl": [97, 166, 194], "alon": [97, 112, 124, 166, 170], "meaningfulli": 97, "smoother": 97, "soft_target_loss_weight": 97, "ce_loss_weight": 97, "train_knowledge_distil": 97, "ce_loss": 97, "teacher_logit": 97, "student_logit": 97, "soft_target": 97, "soft_prob": 97, "soft_targets_loss": 97, "label_loss": 97, "ce": [97, 166], "test_accuracy_light_ce_and_kd": 97, "kd": 97, "coeffici": 97, "convei": [97, 201], "naiv": [97, 125, 146, 155, 165, 194], "rational": 97, "capac": [97, 132, 160, 161, 172], "cosineembeddingloss": [97, 110], "obvious": [97, 101, 164], "somehow": [97, 103], "modifieddeepnncosin": 97, "flattened_conv_output": 97, "flattened_conv_output_after_pool": 97, "avg_pool1d": 97, "modifiedlightnncosin": 97, "modified_nn_deep": 97, "deep_nn": 97, "modified_deep_nn": 97, "modified_nn_light": 97, "hidden_represent": 97, "sample_input": [97, 210, 248], "total_class": 97, "hidden_representation_s": 97, "train_cosine_loss": 97, "hidden_rep_loss_weight": 97, "cosine_loss": 97, "teacher_hidden_represent": 97, "student_hidden_represent": 97, "hidden_rep_loss": 97, "test_multiple_output": 97, "disregard": 97, "test_accuracy_light_ce_and_cosine_loss": 97, "convolutional_fe_output_stud": 97, "convolutional_fe_output_teach": 97, "modifieddeepnnregressor": 97, "conv_feature_map": 97, "modifiedlightnnregressor": 97, "regressor_output": 97, "train_mse_loss": 97, "feature_map_weight": 97, "teacher_feature_map": 97, "regressor_feature_map": 97, "modified_nn_light_reg": 97, "modified_nn_deep_reg": 97, "test_accuracy_light_ce_and_mse_loss": 97, "cosineloss": 97, "wiggl": 97, "regressorms": 97, "hinton": [97, 127], "vinyal": 97, "dean": 97, "workshop": 97, "romero": 97, "balla": 97, "kahou": 97, "chassang": 97, "gatta": 97, "bengio": 97, "fitnet": 97, "thin": [97, 264], "confer": 97, "knowledge_distillation_tutori": 97, "kit": 98, "dynet": [98, 100], "opposit": [98, 191], "theano": [98, 100], "kera": [98, 100, 111], "difficult": [98, 113, 146, 154, 166, 192, 196, 206], "constitu": 98, "roughli": [98, 122, 134, 145, 150, 182], "fat": [98, 113], "exception": 98, "entiti": [98, 103, 176, 264], "recognit": 98, "tagger": 98, "ner": 98, "sound": [98, 101, 174, 175], "scari": 98, "viterbi": [98, 102], "sum_": [98, 103, 161], "psi_i": 98, "sum_i": 98, "partit": [98, 121, 124, 136, 150], "emiss": 98, "textbf": 98, "psi_": 98, "y_i": [98, 102], "x_i": [98, 99], "tran": [98, 172], "h_i": [98, 102], "collin": 98, "robert": [98, 99, 101, 102, 103, 235], "guthri": [98, 99, 101, 102, 103, 235], "prepare_sequ": [98, 102], "to_ix": [98, 102], "log_sum_exp": 98, "max_scor": 98, "max_score_broadcast": 98, "bilstm_crf": 98, "tag_to_ix": [98, 102], "word_emb": 98, "num_lay": [98, 182, 231], "start_tag": 98, "stop_tag": 98, "_forward_alg": 98, "feat": [98, 172], "init_alpha": 98, "forward_var": 98, "alphas_t": 98, "next_tag": 98, "emit_scor": 98, "ith": [98, 103, 194], "trans_scor": 98, "next_tag_var": 98, "terminal_var": 98, "_get_lstm_featur": 98, "lstm_feat": 98, "_score_sent": 98, "_viterbi_decod": 98, "backpoint": 98, "init_vvar": 98, "bptrs_t": 98, "viterbivars_t": 98, "best_tag_id": 98, "path_scor": 98, "best_path": 98, "dont": [98, 99], "caller": [98, 135, 163], "saniti": [98, 126, 160, 172], "neg_log_likelihood": 98, "forward_scor": 98, "gold_scor": 98, "bilstm": 98, "tag_seq": 98, "street": [98, 265], "journal": 98, "todai": [98, 117, 158, 192, 224], "corpor": [98, 138], "monei": 98, "georgia": 98, "tech": 98, "univers": [98, 113, 115, 161, 172, 177, 264], "word_to_ix": [98, 99, 102, 103], "precheck_s": 98, "precheck_tag": 98, "sentence_in": [98, 102], "anywai": [98, 101], "gold": [98, 166], "perceptron": [98, 177], "score_sent": 98, "advanced_tutori": [98, 100], "workhors": 99, "2x5": 99, "acx": 99, "ac": [99, 172, 267], "sigma": [99, 160], "plenti": 99, "peopl": [99, 100, 103, 113, 117, 186, 201, 264], "shy": 99, "vanish": 99, "linearit": 99, "sum_j": 99, "x_j": 99, "theres": 99, "unseen": [99, 103], "supervis": [99, 167, 172], "eta": 99, "vari": [99, 113, 130, 147, 166, 173, 182, 183, 192, 194, 200, 224], "spanish": [99, 127, 128], "bow": 99, "gusta": 99, "comer": 99, "cafeteria": 99, "creo": 99, "que": [99, 166], "sea": [99, 118], "una": 99, "buena": 99, "yo": 99, "si": [99, 156, 166], "bowclassifi": 99, "bow_vec": 99, "make_bow_vector": 99, "make_target": 99, "label_to_ix": 99, "bow_vector": 99, "log_prob": [99, 103, 162, 164], "bigger": [99, 127, 128, 159, 172, 264], "0th": [99, 155, 157, 165, 194], "deep_learning_tutori": [99, 100], "russel": 100, "norvig": 100, "book": [100, 102], "rip": 100, "pytorch_tutori": [100, 101], "word_embeddings_tutori": [100, 103], "lexic": 100, "sequence_models_tutori": [100, 102, 235], "bi": [100, 138], "crf": 100, "v_data": 101, "m_data": 101, "2x2x2": 101, "t_data": 101, "terminolog": 101, "z_1": 101, "x_2": [101, 116, 151, 264], "y_2": [101, 116], "z_2": 101, "complain": 101, "vagu": 101, "programm": [101, 103, 198, 200, 264], "x_0": [101, 264], "overbrac": [101, 102, 103], "y_0": 101, "z_0": 101, "gloss": 101, "new_z": 101, "NO": 101, "forgotten": 101, "classic": [102, 113, 148, 154, 167], "markov": 102, "myriad": 102, "cow": 102, "q_": [102, 103, 147], "2nd": [102, 129, 163, 194], "reader": [102, 136, 150, 177, 264], "unfamiliar": 102, "w_1": 102, "w_m": 102, "w_i": [102, 103], "_i": [102, 186], "_1": [102, 254], "_m": 102, "_j": 102, "ah_i": 102, "noun": 102, "verb": 102, "ate": 102, "everybodi": [102, 136], "affix": [102, 103], "bear": 102, "ly": 102, "adverb": 102, "c_w": 102, "x_w": 102, "po": [102, 118, 172], "capit": [103, 264], "enorm": [103, 172], "notion": [103, 118], "mathematician": 103, "physicist": 103, "orthograph": 103, "linguist": 103, "hypothesi": 103, "coffe": 103, "phi": [103, 264], "dissimilar": 103, "pain": [103, 113], "earth": [103, 113], "herself": 103, "lookup_tensor": 103, "hello_emb": 103, "context_s": 103, "shakespear": [103, 165], "sonnet": 103, "test_sent": 103, "forti": 103, "winter": [103, 113], "besieg": 103, "thy": 103, "brow": 103, "trench": 103, "beauti": [103, 230], "youth": 103, "proud": 103, "liveri": 103, "gaze": 103, "Will": 103, "totter": 103, "weed": [103, 190], "treasur": 103, "lusti": 103, "thine": 103, "sunken": 103, "eat": [103, 153], "shame": 103, "thriftless": 103, "prais": 103, "thou": 103, "couldst": 103, "mine": [103, 165, 264], "excus": 103, "blood": 103, "cold": [103, 113, 166], "word_i": 103, "ngram": 103, "ngramlanguagemodel": 103, "context_idx": 103, "cbow": 103, "probabilist": [103, 160], "q_w": 103, "raw_text": 103, "studi": [103, 115, 121, 126, 157, 172, 177], "beings": 103, "inhabit": 103, "evolut": 103, "conjur": 103, "spell": [103, 127], "dedupl": 103, "make_context_vector": 103, "jeremi": 104, "howard": [104, 147, 156], "rachel": 104, "thoma": 104, "ingham": 104, "\u6211\u4eec\u5efa\u8bae\u5c06\u672c\u6559\u7a0b\u4f5c\u4e3a\u7b14\u8bb0\u672c": 104, "\u8fd0\u884c": [104, 231], "\u8bf7\u70b9\u51fb\u9875\u9762\u9876\u90e8\u7684\u94fe\u63a5": 104, "\u4e0b\u8f7d\u7b14\u8bb0\u672c": 104, "\u63d0\u4f9b\u4e86\u4f18\u96c5\u8bbe\u8ba1\u7684\u6a21\u5757\u548c\u7c7b": 104, "\u4ee5\u5e2e\u52a9\u4f60\u521b\u5efa\u548c\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc": 104, "\u4e3a\u4e86\u5145\u5206\u5229\u7528\u5b83\u4eec\u7684\u529f\u80fd": 104, "\u5e76\u901a\u8fc7\u81ea\u5b9a\u4e49\u5bf9\u5e94\u6a21\u5757\u6216\u7c7b": 104, "\u6765\u89e3\u51b3\u7279\u5b9a\u95ee\u9898": 104, "\u9700\u8981\u7406\u89e3\u5b83\u4eec\u7684\u5177\u4f53\u529f\u80fd": 104, "\u6211\u4eec\u5c06\u9996\u5148\u5728": 104, "\u6570\u636e\u96c6\u4e0a\u8bad\u7ec3\u4e00\u4e2a\u57fa\u672c\u7684\u795e\u7ecf\u7f51\u7edc": 104, "\u800c\u4e0d\u4f7f\u7528\u8fd9\u4e9b\u6a21\u578b\u7684\u4efb\u4f55\u7279\u6027": 104, "\u6211\u4eec\u6700\u521d\u53ea\u4f7f\u7528\u6700\u57fa\u672c\u7684": 104, "\u5f20\u91cf\u529f\u80fd": 104, "\u6211\u4eec\u5c06\u9010\u6b65\u6dfb\u52a0": 104, "\u4e2d\u7684\u4e00\u4e2a\u7279\u6027": 104, "\u5c55\u793a\u6bcf\u4e2a\u90e8\u5206\u7684\u4f5c\u7528": 104, "\u4ee5\u53ca\u5982\u4f55\u4f7f\u7528\u5b83\u4eec\u8ba9\u4ee3\u7801\u66f4\u7b80\u6d01\u6216\u66f4\u7075\u6d3b": 104, "\u672c\u6559\u7a0b\u5047\u5b9a\u4f60\u5df2\u7ecf\u5b89\u88c5\u4e86": 104, "\u5e76\u4e14\u719f\u6089\u5f20\u91cf\u64cd\u4f5c\u7684\u57fa\u7840\u77e5\u8bc6": 104, "\u5982\u679c\u4f60\u719f\u6089": 104, "\u6570\u7ec4\u64cd\u4f5c": 104, "\u4f60\u4f1a\u53d1\u73b0\u8fd9\u91cc\u4f7f\u7528\u7684": 104, "\u5f20\u91cf\u64cd\u4f5c\u51e0\u4e4e\u76f8\u540c": 104, "\u6211\u4eec\u5c06\u4f7f\u7528\u7ecf\u5178\u7684": 104, "\u8be5\u6570\u636e\u96c6\u5305\u542b\u624b\u7ed8\u6570\u5b57": 104, "0\u52309\u4e4b\u95f4": 104, "\u6765\u5904\u7406\u8def\u5f84": 104, "\u6807\u51c6\u5e93\u7684\u4e00\u90e8\u5206": 104, "\u4e0b\u8f7d\u6570\u636e\u96c6": 104, "\u6211\u4eec\u53ea\u4f1a\u5728\u4f7f\u7528\u6a21\u5757\u65f6\u624d\u5bfc\u5165\u5b83\u4eec": 104, "\u56e0\u6b64\u4f60\u53ef\u4ee5\u6e05\u695a\u5730\u770b\u5230\u6bcf\u4e2a\u6b65\u9aa4\u4e2d\u6b63\u5728\u4f7f\u7528\u7684\u5185\u5bb9": 104, "exist_ok": 104, "\u8fd9\u4e2a\u6570\u636e\u96c6\u662f": 104, "\u6570\u7ec4\u683c\u5f0f\u7684": 104, "\u5e76\u4e14\u4f7f\u7528": 104, "\u5b58\u50a8": 104, "\u8fd9\u662f\u4e00\u4e2a": 104, "\u7279\u6709\u7684\u7528\u4e8e\u5e8f\u5217\u5316\u6570\u636e\u7684\u683c\u5f0f": 104, "gzip": 104, "as_posix": [104, 126], "x_train": [104, 151], "y_train": 104, "x_valid": 104, "y_valid": 104, "latin": 104, "\u6bcf\u5f20\u56fe\u50cf\u7684\u5c3a\u5bf8\u4e3a": 104, "\u5e76\u4ee5\u957f\u5ea6\u4e3a": 104, "\u7684\u5c55\u5e73\u884c\u5b58\u50a8": 104, "\u8ba9\u6211\u4eec\u6765\u770b\u770b\u5176\u4e2d\u4e00\u5f20": 104, "\u6211\u4eec\u9700\u8981\u5148\u5c06\u5176\u91cd\u5851\u4e3a\u4e8c\u7ef4": 104, "\u5728\u4e0d\u4f7f\u7528": 104, "\u65f6\u4f7f\u7528": [104, 238], "importerror": 104, "\u6240\u4ee5\u6211\u4eec\u9700\u8981\u8f6c\u6362\u6211\u4eec\u7684\u6570\u636e": 104, "\u6211\u4eec\u53ea\u4f7f\u7528": [104, 251], "\u5f20\u91cf\u64cd\u4f5c\u521b\u5efa\u4e00\u4e2a\u6a21\u578b": 104, "\u6211\u4eec\u5047\u8bbe\u4f60\u5df2\u7ecf\u719f\u6089\u795e\u7ecf\u7f51\u7edc\u7684\u57fa\u7840\u77e5\u8bc6": 104, "\u5982\u679c\u4e0d\u719f\u6089": 104, "\u63d0\u4f9b\u65b9\u6cd5\u6765\u521b\u5efa": 104, "\u968f\u673a": 104, "\u96f6": 104, "\u586b\u5145\u7684\u5f20\u91cf": 104, "\u6211\u4eec\u5c06\u4f7f\u7528\u8fd9\u4e9b\u65b9\u6cd5\u4e3a\u4e00\u4e2a\u7b80\u5355\u7684\u7ebf\u6027\u6a21\u578b\u521b\u5efa\u6743\u91cd\u548c\u504f\u7f6e": 104, "\u8fd9\u4e9b\u53ea\u662f\u5e38\u89c4\u7684\u5f20\u91cf": 104, "\u6709\u4e00\u4e2a\u975e\u5e38\u7279\u522b\u7684\u9644\u52a0\u529f\u80fd": 104, "\u6211\u4eec\u544a\u8bc9": 104, "\u5b83\u4eec\u9700\u8981\u68af\u5ea6": 104, "\u4f1a\u8bb0\u5f55\u5728\u5f20\u91cf\u4e0a\u5b8c\u6210\u7684\u6240\u6709\u64cd\u4f5c": 104, "\u4ee5\u4fbf\u5728\u53cd\u5411\u4f20\u64ad\u671f\u95f4": 104, "\u81ea\u52a8": 104, "\u8ba1\u7b97\u68af\u5ea6": [104, 129], "\u5bf9\u4e8e\u6743\u91cd": 104, "\u6211\u4eec\u5728\u521d\u59cb\u5316": 104, "\u8bbe\u7f6e": [104, 216, 248], "\u56e0\u4e3a\u6211\u4eec\u4e0d\u5e0c\u671b\u521d\u59cb\u5316\u6b65\u9aa4\u5305\u62ec\u5728\u68af\u5ea6\u4e2d": 104, "\u4e2d\u7684\u5c3e\u968f": 104, "\u8868\u793a\u64cd\u4f5c\u662f\u5728\u539f\u5730\u6267\u884c": 104, "\u7531\u4e8e": [104, 250], "\u80fd\u591f\u81ea\u52a8\u8ba1\u7b97\u68af\u5ea6": 104, "\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u4efb\u4f55\u6807\u51c6\u7684": 104, "\u6216\u53ef\u8c03\u7528\u5bf9\u8c61": 104, "\u4f5c\u4e3a\u6a21\u578b": 104, "\u8ba9\u6211\u4eec\u7f16\u5199\u4e00\u4e2a\u7b80\u5355\u7684\u77e9\u9635\u4e58\u6cd5\u548c\u5e7f\u64ad\u52a0\u6cd5": 104, "\u6765\u521b\u5efa\u4e00\u4e2a\u7b80\u5355\u7684\u7ebf\u6027\u6a21\u578b": 104, "\u6211\u4eec\u8fd8\u9700\u8981\u7f16\u5199\u4e00\u4e2a\u6fc0\u6d3b\u51fd\u6570": 104, "\u63d0\u4f9b\u4e86\u8bb8\u591a\u9884\u5148\u7f16\u5199\u7684\u635f\u5931\u51fd\u6570": 104, "\u6fc0\u6d3b\u51fd\u6570\u7b49": 104, "\u4f60\u4ecd\u53ef\u4ee5\u4f7f\u7528\u666e\u901a\u7684": 104, "\u7f16\u5199\u81ea\u5df1\u7684\u51fd\u6570": 104, "\u4f1a\u4e3a\u4f60\u7684\u51fd\u6570\u81ea\u52a8\u521b\u5efa": 104, "\u6216\u77e2\u91cf\u5316": 104, "\u4ee3\u7801": [104, 258], "xb": 104, "\u5728\u4e0a\u9762\u7684\u4ee3\u7801\u4e2d": 104, "\u8868\u793a\u77e9\u9635\u4e58\u6cd5\u64cd\u4f5c": 104, "\u5728\u4e00\u4e2a\u6570\u636e\u6279\u6b21\u4e0a\u8c03\u7528\u6211\u4eec\u7684\u51fd\u6570": 104, "\u5728\u672c\u4f8b\u4e2d\u4e3a64\u5f20\u56fe\u50cf": 104, "\u8fd9\u5c31\u662f\u4e00\u6b21": 104, "\u524d\u5411\u4f20\u9012": 104, "\u7531\u4e8e\u6211\u4eec\u5728\u5f00\u59cb\u65f6\u8bbe\u7f6e\u6743\u91cd\u4e3a\u968f\u673a\u6570\u503c": 104, "\u6b64\u65f6\u9884\u6d4b\u7ed3\u679c\u51c6\u786e\u6027\u8f83\u4f4e": 104, "\u5f20\u91cf\u4e0d\u4ec5\u5305\u542b\u5f20\u91cf\u503c": 104, "\u8fd8\u5305\u542b\u68af\u5ea6\u51fd\u6570": 104, "\u5728\u7a0d\u540e\u7684\u53cd\u5411\u4f20\u64ad\u8fc7\u7a0b\u4e2d\u4f1a\u7528\u5230\u5b83": 104, "\u8ba9\u6211\u4eec\u5b9e\u73b0": 104, "\u6211\u4eec\u53ef\u4ee5\u53ea\u4f7f\u7528\u6807\u51c6\u7684": 104, "nll": 104, "loss_func": 104, "\u8ba9\u6211\u4eec\u4f7f\u7528\u6211\u4eec\u7684\u968f\u673a\u6a21\u578b\u6765\u68c0\u67e5\u635f\u5931": 104, "\u8fd9\u6837\u6211\u4eec\u5c31\u53ef\u4ee5\u770b\u5230\u5728\u4e4b\u540e\u8fdb\u884c\u53cd\u5411\u4f20\u64ad\u540e": 104, "\u9884\u6d4b\u7ed3\u679c\u51c6\u786e\u7387\u662f\u5426\u6709\u6240\u63d0\u5347": 104, "yb": 104, "\u6211\u4eec\u8fd8\u8981\u5b9e\u73b0\u4e00\u4e2a\u51fd\u6570\u6765\u8ba1\u7b97\u6211\u4eec\u6a21\u578b\u7684\u51c6\u786e\u7387": 104, "\u5bf9\u4e8e\u6bcf\u4e2a\u9884\u6d4b\u7ed3\u679c": 104, "\u5982\u679c\u5177\u6709\u6700\u5927\u503c\u7684\u7d22\u5f15\u4e0e\u76ee\u6807\u503c\u5339\u914d": 104, "\u5219\u9884\u6d4b\u662f\u6b63\u786e\u7684": 104, "\u68c0\u67e5\u6211\u4eec\u968f\u673a\u6a21\u578b\u7684\u51c6\u786e\u7387": 104, "\u8fd9\u6837\u6211\u4eec\u5c31\u53ef\u4ee5\u770b\u5230\u968f\u7740\u635f\u5931\u7684\u6539\u5584": 104, "\u51c6\u786e\u7387\u662f\u5426\u6709\u6240\u63d0\u9ad8": 104, "\u73b0\u5728\u53ef\u4ee5\u8fd0\u884c\u4e00\u4e2a\u8bad\u7ec3\u5faa\u73af": 104, "\u5bf9\u4e8e\u6bcf\u6b21\u8fed\u4ee3": 104, "\u9009\u62e9\u4e00\u4e2a\u5927\u5c0f\u4e3a": 104, "\u7684\u6279\u91cf\u6570\u636e": 104, "\u4f7f\u7528\u6a21\u578b\u8fdb\u884c\u9884\u6d4b": 104, "\u8ba1\u7b97\u635f\u5931": 104, "\u66f4\u65b0\u6a21\u578b\u7684\u68af\u5ea6": 104, "\u5373\u66f4\u65b0": 104, "\u6211\u4eec\u73b0\u5728\u4f7f\u7528\u8fd9\u4e9b\u68af\u5ea6\u6765\u66f4\u65b0\u6743\u91cd": 104, "\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668\u4e2d\u6267\u884c\u6b64\u64cd\u4f5c": 104, "\u56e0\u4e3a\u6211\u4eec\u4e0d\u5e0c\u671b\u8fd9\u4e9b\u64cd\u4f5c\u8bb0\u5f55\u4e3a\u4e0b\u4e00\u6b21\u68af\u5ea6\u8ba1\u7b97\u7684\u4e00\u90e8\u5206": 104, "\u4f60\u53ef\u4ee5\u5728": [104, 234], "\u9605\u8bfb\u6709\u5173": 104, "\u5982\u4f55\u8bb0\u5f55\u64cd\u4f5c\u7684\u66f4\u591a\u4fe1\u606f": 104, "\u6211\u4eec\u5c06\u68af\u5ea6\u8bbe\u7f6e\u4e3a\u96f6": 104, "\u4ee5\u4fbf\u6211\u4eec\u51c6\u5907\u8fdb\u884c\u4e0b\u4e00\u6b21\u5faa\u73af": 104, "\u5426\u5219": [104, 213], "\u6211\u4eec\u7684\u68af\u5ea6\u5c06\u8bb0\u5f55\u6240\u6709\u5df2\u53d1\u751f\u7684\u64cd\u4f5c": 104, "\u6dfb\u52a0": 104, "\u68af\u5ea6\u5230\u5df2\u6709\u7684\u68af\u5ea6\u4e2d": 104, "\u800c\u4e0d\u662f\u66ff\u6362\u5b83\u4eec": 104, "set_trac": 104, "start_i": 104, "end_i": 104, "\u6211\u4eec\u5df2\u7ecf\u4ece\u96f6\u5f00\u59cb\u521b\u5efa\u5e76\u8bad\u7ec3\u4e86\u4e00\u4e2a\u6700\u5c0f\u7684\u795e\u7ecf\u7f51\u7edc": 104, "\u4f7f\u7528\u903b\u8f91\u56de\u5f52": 104, "\u6ca1\u6709\u9690\u85cf\u5c42": 104, "\u8ba9\u6211\u4eec\u68c0\u67e5\u4e00\u4e0b\u635f\u5931\u548c\u51c6\u786e\u7387": 104, "\u5e76\u5c06\u5b83\u4eec\u4e0e\u4e4b\u524d\u5f97\u5230\u7684\u7ed3\u679c\u8fdb\u884c\u6bd4\u8f83": 104, "\u9884\u8ba1\u635f\u5931\u4f1a\u51cf\u5c11": 104, "\u51c6\u786e\u7387\u4f1a\u63d0\u9ad8": 104, "\u73b0\u5728\u6211\u4eec\u5c06\u91cd\u6784\u4ee3\u7801": 104, "\u4f7f\u5176\u4e0e\u4e4b\u524d\u505a\u7684\u4e8b\u60c5\u76f8\u540c": 104, "\u53ea\u662f\u6211\u4eec\u5c06\u5f00\u59cb\u5229\u7528": 104, "\u4f7f\u5176\u66f4\u7b80\u6d01\u548c\u7075\u6d3b": 104, "\u4ece\u8fd9\u91cc\u5f00\u59cb\u7684\u6bcf\u4e00\u6b65": 104, "\u90fd\u8ba9\u6211\u4eec\u7684\u4ee3\u7801\u53d8\u5f97\u66f4\u77ed": 104, "\u66f4\u6613\u7406\u89e3\u548c\u66f4\u7075\u6d3b": 104, "\u7b2c\u4e00\u6b65\u4e5f\u662f\u6700\u7b80\u5355\u7684\u4e00\u6b65\u662f\u901a\u8fc7\u7528": 104, "\u901a\u5e38\u6309\u60ef\u4f8b\u5bfc\u5165\u4e3a\u547d\u540d\u7a7a\u95f4": 104, "\u4e2d\u7684\u6fc0\u6d3b\u548c\u635f\u5931\u51fd\u6570\u66ff\u6362\u6211\u4eec\u624b\u5199\u7684\u6fc0\u6d3b\u548c\u635f\u5931\u51fd\u6570": 104, "\u4ece\u800c\u4f7f\u6211\u4eec\u7684\u4ee3\u7801\u66f4\u7b80\u77ed": 104, "\u8be5\u6a21\u5757\u5305\u542b": 104, "\u5e93\u4e2d\u7684\u6240\u6709\u51fd\u6570": 104, "\u9664\u4e86\u5404\u79cd\u635f\u5931\u548c\u6fc0\u6d3b\u51fd\u6570": 104, "\u4f60\u8fd8\u4f1a\u770b\u5230\u4e00\u4e9b\u521b\u5efa\u795e\u7ecf\u7f51\u7edc\u7684\u4fbf\u6377\u51fd\u6570": 104, "\u6bd4\u5982\u6c60\u5316\u51fd\u6570": 104, "\u8fd8\u6709\u7528\u4e8e\u5377\u79ef": 104, "\u7ebf\u6027\u5c42\u7b49\u7684\u51fd\u6570": 104, "\u4f46\u6b63\u5982\u6211\u4eec\u5c06\u770b\u5230\u7684": 104, "\u8fd9\u4e9b\u901a\u5e38\u66f4\u9002\u5408\u4f7f\u7528\u5e93\u7684\u5176\u4ed6\u6a21\u5757\u6765\u5904\u7406": 104, "\u5982\u679c\u4f60\u4f7f\u7528neg": 104, "\u90a3\u4e48": [104, 111, 248], "\u63d0\u4f9b\u4e86\u4e00\u4e2a\u7ed3\u5408\u4e86\u4e24\u8005\u7684\u5355\u4e00\u51fd\u6570": 104, "cross_entropi": [104, 124], "\u6240\u4ee5\u6211\u4eec\u53ef\u4ee5\u4ece\u6a21\u578b\u4e2d\u79fb\u9664\u6fc0\u6d3b\u51fd\u6570": 104, "\u6211\u4eec\u4e0d\u518d\u5728": 104, "\u51fd\u6570\u4e2d\u8c03\u7528": 104, "\u67e5\u770b\u4e0b\u635f\u5931\u548c\u51c6\u786e\u7387\u662f\u5426\u4e0e\u4e4b\u524d\u7ed3\u679c\u4e00\u81f4": 104, "\u4ee5\u5b9e\u73b0\u66f4\u6e05\u6670\u548c\u7b80\u6d01\u7684\u8bad\u7ec3\u5faa\u73af": 104, "\u6211\u4eec\u5c06\u7ee7\u627f": 104, "\u5b83\u672c\u8eab\u662f\u4e00\u4e2a\u7c7b": 104, "\u80fd\u591f\u8ddf\u8e2a\u72b6\u6001": 104, "\u6211\u4eec\u60f3\u521b\u5efa\u4e00\u4e2a\u7c7b\u6765\u4fdd\u5b58\u6211\u4eec\u7684\u6743\u91cd": 104, "\u504f\u7f6e\u548cforward\u65b9\u6cd5": 104, "\u6211\u4eec\u5c06\u4f1a\u4f7f\u7528": 104, "\u7684\u5c5e\u6027\u548c\u65b9\u6cd5": 104, "\u5927\u5199": 104, "\u7279\u6709\u7684\u6982\u5ff5": 104, "\u662f\u4f7f\u7528pytorch\u8fc7\u7a0b\u4e2d\u5927\u91cf\u4f7f\u7528\u7684\u7c7b": 104, "\u4e0d\u8981\u4e0e": 104, "\u6982\u5ff5\u7684": 104, "\u5c0f\u5199": 104, "\u6df7\u6dc6": 104, "mnist_logist": 104, "\u7531\u4e8e\u6211\u4eec\u73b0\u5728\u4f7f\u7528\u7684\u662f\u5bf9\u8c61\u800c\u4e0d\u662f\u4ec5\u4ec5\u4f7f\u7528\u51fd\u6570": 104, "\u6211\u4eec\u9996\u5148\u8981\u521b\u5efa\u6a21\u578b\u5bf9\u8c61": 104, "\u73b0\u5728\u6211\u4eec\u53ef\u4ee5\u50cf\u4e4b\u524d\u4e00\u6837\u8ba1\u7b97\u635f\u5931": 104, "\u5bf9\u8c61\u53ef\u4ee5\u50cf\u51fd\u6570\u4e00\u6837\u4f7f\u7528": 104, "\u5373\u5b83\u4eec\u662f": 104, "\u53ef\u8c03\u7528\u7684": 104, "\u4f1a\u81ea\u52a8\u8c03\u7528\u6211\u4eec\u7684": 104, "\u5728\u4e4b\u524d\u7684\u8bad\u7ec3\u5faa\u73af\u4e2d": 104, "\u6211\u4eec\u5fc5\u987b\u6309\u540d\u79f0\u66f4\u65b0\u6bcf\u4e2a\u53c2\u6570\u7684\u503c": 104, "\u5e76\u624b\u52a8\u5c06\u6bcf\u4e2a\u53c2\u6570\u7684\u68af\u5ea6\u5206\u522b\u6e05\u96f6": 104, "\u73b0\u5728\u6211\u4eec\u53ef\u4ee5\u5229\u7528": 104, "\u5b9a\u4e49\u7684\u65b9\u6cd5": 104, "\u6765\u4f7f\u8fd9\u4e9b\u6b65\u9aa4\u66f4\u7b80\u6d01": 104, "\u9632\u6b62\u5fd8\u8bb0\u5904\u7406\u67d0\u4e9b\u53c2\u6570\u5bfc\u81f4\u9519\u8bef": 104, "\u5c24\u5176\u662f\u5f53\u6211\u4eec\u5b9e\u73b0\u4e00\u4e2a\u66f4\u590d\u6742\u7684\u6a21\u578b\u65f6": 104, "\u5c06\u8bad\u7ec3\u5faa\u73af\u5305\u88c5\u5728\u4e00\u4e2a": 104, "\u51fd\u6570\u4e2d": 104, "\u8fd9\u6837\u53ef\u4ee5\u591a\u6b21\u8fd0\u884c\u5b83": 104, "gone": [104, 113, 125], "\u8ba9\u6211\u4eec\u67e5\u770b\u4e0b\u8bad\u7ec3\u540e": 104, "\u635f\u5931\u662f\u5426\u4e0b\u964d\u4e86": 104, "\u6211\u4eec\u7ee7\u7eed\u91cd\u6784\u4ee3\u7801": 104, "\u6765\u5b9e\u73b0\u7ebf\u6027\u5c42": 104, "\u4e0d\u518d\u624b\u52a8\u5b9a\u4e49\u548c\u521d\u59cb\u5316": 104, "\u4ee5\u53ca\u8ba1\u7b97": 104, "\u5177\u6709\u591a\u79cd\u9884\u5b9a\u4e49\u7684\u5c42": 104, "\u53ef\u4ee5\u5927\u5927\u7b80\u5316\u6211\u4eec\u7684\u4ee3\u7801": 104, "\u5e76\u4e14\u63d0\u9ad8\u6267\u884c\u901f\u5ea6": 104, "\u521d\u59cb\u5316\u6a21\u578b\u5bf9\u8c61": 104, "\u5e76\u8ba1\u7b97\u635f\u5931\u6570\u503c": 104, "\u65b9\u6cd5\u8fdb\u884c\u8bad\u7ec3\u6a21\u578b": 104, "\u67e5\u770b\u8bad\u7ec3\u7ed3\u679c": 104, "\u5305\u542b\u591a\u79cd\u4f18\u5316\u7b97\u6cd5": 104, "\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u4f18\u5316\u5668\u7684": 104, "\u65b9\u6cd5\u8fdb\u884c\u4f18\u5316\u6b65\u9aa4": 104, "\u65e0\u9700\u624b\u52a8\u66f4\u65b0\u6bcf\u4e2a\u53c2\u6570": 104, "\u4e4b\u524d\u7684\u4f18\u5316\u6b65\u9aa4": 104, "\u91cd\u6784\u4e3a": 104, "\u5728\u4e0b\u4e2a\u8bad\u7ec3\u5faa\u73af\u5f00\u59cb\u524d": 104, "\u6211\u4eec\u9700\u8c03\u7528": 104, "\u5c06\u53c2\u6570\u7684\u68af\u5ea6\u91cd\u7f6e\u4e3a0": 104, "\u5b9a\u4e49\u521b\u5efa\u6a21\u578b\u548c\u4f18\u5316\u5668\u7684\u65b9\u6cd5\u5982\u4e0b": 104, "\u6709\u4e00\u4e2a\u62bd\u8c61\u7684": 104, "\u53ef\u4ee5\u662f\u4efb\u4f55\u5177\u6709": 104, "\u7531": [104, 227], "\u7684\u6807\u51c6": 104, "\u51fd\u6570\u8c03\u7528": 104, "\u4f5c\u4e3a\u7d22\u5f15\u65b9\u5f0f": 104, "\u7684\u5bf9\u8c61": 104, "\u8be6\u7ec6\u4ecb\u7ecd\u4e86\u521b\u5efa\u4e00\u4e2a\u81ea\u5b9a\u4e49": 104, "faciallandmarkdataset": 104, "\u7c7b\u4f5c\u4e3a": 104, "\u5b50\u7c7b\u7684\u4f8b\u5b50": 104, "tensordataset": [104, 110, 138, 166, 186], "\u662f\u4e00\u4e2a\u5305\u88c5\u5f20\u91cf\u7684": 104, "\u4e3a\u6211\u4eec\u63d0\u4f9b\u4e86\u4e00\u79cd\u8fed\u4ee3": 104, "\u7d22\u5f15\u548c\u6cbf\u5f20\u91cf\u7684\u7b2c\u4e00\u4e2a\u7ef4\u5ea6\u5207\u7247\u7684\u65b9\u5f0f": 104, "\u4f7f\u6211\u4eec\u5728\u8bad\u7ec3\u65f6\u66f4\u5bb9\u6613\u540c\u65f6\u8bbf\u95ee\u81ea\u53d8\u91cf\u548c\u56e0\u53d8\u91cf": 104, "\u5bf9": [104, 231, 238, 245, 248, 256, 258], "\u8fdb\u884c\u5305\u88c5": 104, "\u8ba9\u6211\u4eec\u66f4\u5bb9\u6613\u5bf9\u6570\u636e\u8fdb\u884c\u904d\u5386\u548c\u5207\u7247\u64cd\u4f5c": 104, "train_d": 104, "\u4e4b\u524d\u6211\u4eec\u9700\u8981\u5355\u72ec\u5904\u7406": 104, "\u4e24\u7ec4\u6570\u503c": 104, "\u73b0\u5728\u53ef\u4ee5\u5408\u5e76\u5904\u7406": 104, "\u4f60\u53ef\u4ee5\u4ece\u4efb\u4f55": 104, "\u521b\u5efa\u4e00\u4e2a": 104, "\u800c\u540e\u7531": 104, "\u8d1f\u8d23\u5bf9\u6570\u636e\u5206\u6279": 104, "\u6211\u4eec\u4e0d\u5fc5\u518d\u53bb\u5b9e\u73b0\u5206\u6279\u4ee3\u7801": 104, "\u4f1a\u81ea\u52a8\u4e3a\u6211\u4eec\u63d0\u4f9b\u6bcf\u6279\u6570\u636e": 104, "train_dl": 104, "\u4e4b\u524d\u6211\u4eec\u7f16\u5199\u5206\u6279\u4ee3\u7801\u5982\u4e0b": 104, "\u6211\u4eec\u7684\u5faa\u73af\u53d8\u5f97\u66f4\u52a0\u7b80\u6d01": 104, "\u81ea\u52a8\u4ecedataloader\u4e2d\u52a0\u8f7d": 104, "\u901a\u8fc7\u4f7f\u7528": [104, 215, 237], "\u6211\u4eec\u5b9e\u73b0\u7684\u8bad\u7ec3\u5faa\u4ee3\u7801\u91cf\u5e76\u4e14\u66f4\u5bb9\u6613\u7406\u89e3": 104, "\u73b0\u5728\u8ba9\u6211\u4eec\u5c1d\u8bd5\u589e\u52a0\u4e00\u4e9b\u521b\u5efa\u5b9e\u9645\u6709\u6548\u6a21\u578b\u6240\u9700\u7684\u57fa\u672c\u529f\u80fd": 104, "\u5728\u7b2c\u4e00\u90e8\u5206\u4e2d": 104, "\u6211\u4eec\u53ea\u662f\u5b9e\u73b0\u4e86\u4f7f\u7528\u6570\u636e\u8fdb\u884c\u8bad\u7ec3\u7684\u903b\u8f91": 104, "\u5b9e\u9645\u5e94\u7528\u4e2d": 104, "\u8fd8\u9700\u8981": 104, "\u9a8c\u8bc1\u96c6": 104, "\u4ee5\u786e\u5b9a\u6211\u4eec\u7684\u6a21\u578b\u662f\u5426\u5b58\u5728\u8fc7\u62df\u5408\u95ee\u9898": 104, "\u6253\u4e71\u8bad\u7ec3\u6570\u636e\u662f": 104, "\u5341\u5206\u5fc5\u8981\u7684": 104, "\u4ee5\u9632\u6b62\u6279\u6b21\u4e4b\u95f4\u7684\u76f8\u5173\u6027\u548c\u8fc7\u62df\u5408": 104, "\u800c\u9a8c\u8bc1\u6570\u636e\u96c6\u5219\u65e0\u9700\u8fdb\u6b64\u64cd\u4f5c": 104, "\u65e0\u8bba\u6253\u4e71\u4e0e\u5426": 104, "\u9a8c\u8bc1\u635f\u5931\u503c\u662f\u76f8\u540c\u7684": 104, "\u800c\u4e14\u6253\u4e71\u64cd\u4f5c\u9700\u8981\u6d88\u8017\u989d\u5916\u7684\u65f6\u95f4": 104, "\u6ca1\u6709\u5b9e\u9645\u610f\u4e49": 104, "\u6211\u4eec\u5c06\u4e3a\u9a8c\u8bc1\u96c6\u4f7f\u7528\u7684\u6279\u91cf\u5927\u5c0f\u8bbe\u4e3a\u8bad\u7ec3\u96c6\u7684\u4e24\u500d": 104, "\u56e0\u4e3a\u9a8c\u8bc1\u96c6\u4e0d\u9700\u8981\u8fdb\u884c\u53cd\u5411\u4f20\u64ad": 104, "\u56e0\u6b64\u9700\u8981\u7684\u5185\u5b58\u8f83\u5c11": 104, "\u4e0d\u9700\u8981\u5b58\u50a8\u68af\u5ea6": 104, "\u56e0\u6b64\u6211\u6211\u4eec\u53ef\u4ee5\u914d\u7f6e\u8f83\u5927\u5355\u6279\u6570\u91cf": 104, "\u63d0\u9ad8\u8ba1\u7b97\u901f\u5ea6": 104, "valid_d": 104, "valid_dl": 104, "\u7ed3\u675f\u65f6\u8ba1\u7b97\u5e76\u6253\u5370\u635f\u5931\u503c": 104, "\u6211\u4eec\u5728\u8bad\u7ec3\u4e4b\u524d\u603b\u662f\u8c03\u7528": 104, "\u5728\u63a8\u65ad\u4e4b\u524d\u8c03\u7528": 104, "\u5c42\u4f1a\u4f7f\u7528": 104, "\u6765\u786e\u4fdd\u5176\u7ed3\u679c\u6b63\u786e": 104, "valid_loss": 104, "\u6211\u4eec\u5728\u8ba1\u7b97\u8bad\u7ec3\u96c6\u548c\u9a8c\u8bc1\u96c6\u7684\u635f\u5931\u7c7b\u4f3c\u7684\u4ee3\u7801": 104, "\u62bd\u53d6\u4e00\u4e2a\u72ec\u7acb\u7684\u51fd\u6570": 104, "loss_batch": 104, "\u7528\u4e8e\u8ba1\u7b97\u4e00\u4e2a\u6279\u6b21\u7684\u635f\u5931": 104, "\u8bad\u7ec3\u96c6\u4f20\u5165\u4e00\u4e2a\u4f18\u5316\u5668": 104, "\u5e76\u4f7f\u7528\u5b83\u6267\u884c\u53cd\u5411\u4f20\u64ad": 104, "\u5bf9\u4e8e\u9a8c\u8bc1\u96c6": 104, "\u5219\u4e0d\u4f20\u5165\u4f18\u5316\u5668": 104, "\u4e0d\u6267\u884c\u53cd\u5411\u4f20\u64ad": 104, "\u5728\u6bcf\u4e2a\u8bad\u7ec3\u5faa\u73af\u4e2d\u8ba1\u7b97\u8bad\u7ec3\u548c\u9a8c\u8bc1\u635f\u5931": 104, "\u8fd4\u56de\u8bad\u7ec3\u548c\u9a8c\u8bc1\u6570\u636e\u96c6\u7684dataload": 104, "\u6211\u4eec\u83b7\u53d6\u6570\u636e\u52a0\u8f7d\u5668\u548c\u62df\u5408\u6a21\u578b\u7684\u6574\u4e2a\u8fc7\u7a0b\u53ef\u4ee5\u7528": 104, "\u884c\u4ee3\u7801\u6765\u5b9e\u73b0": 104, "\u4f60\u53ef\u4ee5\u4f7f\u7528\u8fd9\u4e09\u884c\u57fa\u672c\u4ee3\u7801\u6765\u8bad\u7ec3\u5404\u79cd\u5404\u6837\u7684\u6a21\u578b": 104, "\u8ba9\u6211\u4eec\u770b\u770b\u662f\u5426\u53ef\u4ee5\u7528\u6765\u8bad\u7ec3\u4e00\u4e2a\u5377\u79ef\u795e\u7ecf\u7f51\u7edc": 104, "\u73b0\u5728\u6211\u4eec\u5c06\u4f7f\u7528\u4e09\u4e2a\u5377\u79ef\u5c42\u6784\u5efa\u6211\u4eec\u7684\u795e\u7ecf\u7f51\u7edc": 104, "\u56e0\u4e3a\u524d\u9762\u90e8\u5206\u7684\u51fd\u6570\u90fd\u4e0d\u5047\u8bbe\u4efb\u4f55\u5173\u4e8e\u6a21\u578b\u5f62\u5f0f\u7684\u4e1c\u897f": 104, "\u6240\u4ee5\u6211\u4eec\u53ef\u4ee5\u5728\u4e0d\u505a\u4efb\u4f55\u4fee\u6539\u7684\u60c5\u51b5\u4e0b\u4f7f\u7528\u5b83\u4eec\u6765\u8bad\u7ec3\u4e00\u4e2a": 104, "\u9884\u5b9a\u4e49\u7684": 104, "\u7c7b\u4f5c\u4e3a\u6211\u4eec\u7684\u5377\u79ef\u5c42": 104, "\u6211\u4eec\u5b9a\u4e49\u4e00\u4e2a\u5177\u6709": 104, "\u4e2a\u5377\u79ef\u5c42\u7684": 104, "\u6bcf\u4e2a\u5377\u79ef\u5c42\u540e\u9762\u8ddf\u7740\u4e00\u4e2a": 104, "\u6211\u4eec\u6267\u884c\u5e73\u5747\u6c60\u5316": 104, "\u7248\u7684": 104, "mnist_cnn": [104, 123], "avg_pool2d": [104, 207], "\u7684\u4e00\u79cd\u53d8\u4f53": 104, "\u901a\u8fc7\u7edf\u8ba1\u66f4\u65b0\u8bb0\u5f55\u6765\u63d0\u5347\u8bad\u7ec3\u901f\u5ea6": 104, "\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528": [104, 111, 232, 239, 240, 245], "\u6765\u5e2e\u52a9\u6211\u4eec\u7b80\u5316\u4ee3\u7801": 104, "\u63d0\u4f9b\u4e86\u4e00\u79cd\u66f4\u7b80\u5355\u7684\u7f16\u5199\u795e\u7ecf\u7f51\u7edc\u7684\u65b9\u5f0f": 104, "\u5176\u4f1a\u6309\u987a\u5e8f\u8fd0\u884c\u5b9a\u4e49\u4e2d\u5305\u542b\u7684\u6bcf\u4e2a\u6a21\u5757": 104, "\u6211\u4eec\u53ef\u4ee5\u521b\u5efa\u4e00\u4e2a": [104, 216], "\u81ea\u5b9a\u4e49\u5c42": 104, "\u6ca1\u6709\u7684": 104, "view\u5c42": 104, "\u521b\u5efa\u6a21\u578b\u5341\u5206\u7b80\u5355": 104, "avgpool2d": 104, "\u6211\u4eec\u7f16\u5199\u7684": 104, "\u5341\u5206\u7b80\u6d01": 104, "\u4f46\u4ec5\u9002\u7528\u4e8emnist": 104, "\u5b83\u5047\u8bbe\u8f93\u5165\u662f\u4e00\u4e2a": 104, "\u957f\u7684\u5411\u91cf": 104, "\u5b83\u5047\u8bbe\u6700\u7ec8\u7684": 104, "\u7f51\u683c\u5927\u5c0f\u662f": 104, "\u6211\u4eec\u4f7f\u7528\u7684\u5e73\u5747\u6c60\u5316\u6838\u5927\u5c0f": 104, "\u8ba9\u6211\u4eec\u53bb\u9664\u8fd9\u4e24\u4e2a\u5047\u8bbe": 104, "\u4f7f\u6211\u4eec\u7684\u6a21\u578b\u9002\u7528\u4e8e\u4efb\u4f552d\u5355\u901a\u9053\u56fe\u50cf": 104, "\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u5c06\u6570\u636e\u9884\u5904\u7406\u79fb\u5230\u751f\u6210\u5668\u4e2d\u6765\u5220\u9664": 104, "wrappeddataload": 104, "__iter__": 104, "\u4e3a\u4e86\u8ba9\u6211\u4eec\u5b9a\u4e49\u6211\u4eec\u60f3\u8981\u7684\u8f93\u51fa\u5f20\u91cf\u7684\u5927\u5c0f": 104, "\u800c\u975e": 104, "\u8f93\u5165": [104, 251], "\u6211\u4eec\u53ef\u4ee5\u7528": 104, "adaptiveavgpool2d": [104, 135, 137], "\u66ff\u6362": 104, "\u4ece\u800c\u4f7f\u6211\u4eec\u7684\u6a21\u578b\u53ef\u9002\u7528\u4e8e\u4efb\u4f55\u5927\u5c0f\u7684\u8f93\u5165": 104, "\u8ba9\u6211\u4eec\u67e5\u770b\u4e0b\u7ed3\u679c": 104, "\u5728\u62e5\u6709": 104, "gpu\u7684\u73af\u5883\u4e2d": 104, "\u4f60\u53ef\u4ee5\u4f7f\u7528\u5b83\u6765\u52a0\u901f\u4ee3\u7801": 104, "\u9996\u5148\u68c0\u67e5\u4f60\u7684gpu\u5728pytorch\u4e2d\u662f\u5426\u6b63\u5e38\u5de5\u4f5c": 104, "\u7136\u540e\u521b\u5efa": 104, "\u4fee\u6539": 104, "\u6b65\u9aa4": [104, 239], "\u5c06\u6570\u636e\u79fb\u52a8\u81f3": 104, "\u5c06\u6a21\u578b\u52a0\u8f7d\u5230": 104, "\u8fd0\u884c\u901f\u5ea6\u4f1a\u63d0\u5347\u5f88\u591a": 104, "\u7f16\u5199\u4e86\u4e00\u4e2a\u53ef\u4ee5\u7528\u4e8e\u591a\u79cd\u6a21\u578b\u8bad\u7ec3\u7684\u5b9e\u73b0": 104, "\u5b8c\u6574\u7684\u8bad\u7ec3\u4ee3\u7801": 104, "mnist_sampl": 104, "\u540e\u7eed\u8fd8\u53ef\u5c1d\u8bd5\u589e\u52a0\u5176\u4ed6\u529f\u80fd": 104, "\u4f8b\u5982\u6570\u636e\u589e\u5f3a": 104, "\u8d85\u53c2\u6570\u8c03\u4f18": 104, "\u76d1\u63a7\u8bad\u7ec3": 104, "\u8fc1\u79fb\u5b66\u4e60\u7b49\u7b49": 104, "\u8fd9\u4e9b\u529f\u80fd\u5728fastai\u5e93\u4e2d\u90fd\u6709\u63d0\u4f9b": 104, "\u8be5\u5e93\u662f\u4f7f\u7528\u672c\u6559\u7a0b\u4e2d\u6240\u793a\u7684\u76f8\u540c\u8bbe\u8ba1\u65b9\u6cd5\u5f00\u53d1\u7684": 104, "\u4e3a\u5e0c\u671b\u8fdb\u4e00\u6b65\u6539\u8fdb\u6a21\u578b\u7684\u4ece\u4e1a\u4eba\u5458\u63d0\u4f9b\u4e0b\u4e00\u6b65\u6307\u5bfc": 104, "\u6211\u4eec\u5b66\u4e60\u4e86\u5982\u4f55\u4f7f\u7528": [104, 215], "\u73b0\u5728\u8ba9\u6211\u4eec\u603b\u7ed3\u4e00\u4e0b": 104, "\u521b\u5efa\u4e00\u4e2a\u7c7b\u4f3c\u4e8e\u51fd\u6570\u7684\u53ef\u8c03\u7528\u5bf9\u8c61": 104, "\u5176\u4e2d\u5305\u542b\u4e86\u72b6\u6001\u6570\u636e": 104, "\u5982\u795e\u7ecf\u7f51\u7edc\u5c42\u6743\u91cd": 104, "\u5b83\u53ef\u4ee5\u81ea\u52a8\u5bf9\u5305\u542b\u7684\u53c2\u6570": 104, "\u8fdb\u884c\u68af\u5ea6\u5f52\u96f6\u548c\u66f4\u65b0\u6743\u91cd\u7b49\u64cd\u4f5c": 104, "\u5bf9\u5f20\u91cf\u8fdb\u884c\u5305\u88c5": 104, "\u4f7f": [104, 250], "\u5bf9\u8c61\u5728\u8fdb\u884c\u53cd\u5411\u4f20\u64ad\u65f6": 104, "\u53ef\u66f4\u65b0\u6743\u91cd\u53c2\u6570": 104, "\u4ec5\u8bbe\u7f6e": 104, "\u53c2\u6570\u65f6\u751f\u6548": 104, "\u5305\u542b\u591a\u79cd\u6fc0\u6d3b\u51fd\u6570": 104, "\u4ee5\u53ca\u65e0\u72b6\u6001\u7684\u5377\u79ef\u5c42\u548c\u7ebf\u6027\u5c42\u7b49\u7684\u5b9e\u73b0": 104, "\u5305\u542b\u591a\u79cd\u4f18\u5316\u5668": 104, "\u5728\u53cd\u5411\u4f20\u64ad\u8fc7\u7a0b\u4e2d\u4f18\u5316\u6743\u91cd\u53c2\u6570": 104, "\u65b9\u6cd5\u7684\u62bd\u8c61\u63a5\u53e3\u5b9a\u4e49": 104, "\u5b9e\u73b0\u7c7b": 104, "\u8fdb\u884c\u5c01\u88c5": 104, "\u63d0\u4f9b\u5206\u6279\u904d\u5386\u6570\u636e\u96c6\u7684\u80fd\u529b": 104, "nn_tutori": 104, "registri": [105, 106, 107, 121, 209], "thiago": [105, 107], "crepaldi": [105, 107], "gamut": 105, "supercomput": 105, "constrain": [105, 126, 154, 174, 175], "onnxscript": [105, 107, 108], "torch_input": 105, "onnx_program": [105, 108], "onnxprogram": 105, "protobuf": [105, 108, 188], "my_image_classifi": 105, "drag": [105, 153, 169, 170, 225, 226], "onnx_input": [105, 108], "adapt_torch_inputs_to_onnx": [105, 108], "onnxruntime_input": [105, 108], "onnxruntime_output": [105, 108], "torch_output": [105, 108], "adapt_torch_outputs_to_onnx": [105, 108], "assert_clos": [105, 108], "export_simple_model_to_onnx_tutori": [105, 106], "intro_onnx": [106, 107], "onnx_registry_tutori": [106, 108], "sphx_glr_beginner_onnx_intro_onnx": 106, "sphx_glr_beginner_onnx_export_simple_model_to_onnx_tutori": 106, "sphx_glr_beginner_onnx_onnx_registry_tutori": 106, "bytecod": [107, 173, 223], "fx": [107, 121, 145, 174, 175, 180, 197, 198, 201, 222, 248], "polish": [107, 127, 263], "newer": [107, 148, 153, 155], "upgrad": [107, 154, 159, 169, 197], "opset18": [107, 108], "opset": [107, 108, 174, 175], "succe": 107, "ti": 108, "tai": 108, "titaiwang": 108, "empow": 108, "runtimeerrorwithdiagnost": 108, "call_funct": [108, 174, 201], "operator_nam": 108, "onnxregistri": 108, "input_x": 108, "input_i": 108, "input_add_x": 108, "input_add_i": 108, "aten_add_model": 108, "custom_aten_add": 108, "custom_aten": 108, "native_funct": 108, "yaml": [108, 132, 205, 222, 223], "castlik": 108, "onnx_registri": 108, "register_op": 108, "op_nam": 108, "is_registered_op": 108, "export_opt": 108, "exportopt": 108, "op_typ": 108, "custom_aten_add_model": 108, "custom_add_model": 108, "gelu": [108, 110], "customgelu": 108, "namspac": 108, "custom_ort": 108, "custom_aten_gelu": 108, "aten_gelu_model": 108, "input_gelu_x": 108, "diagram": [108, 161], "custom_aten_gelu_model": 108, "custom_gelu_model": 108, "_custom_op": 108, "mylibrari": 108, "addandround_op": 108, "tensor_x": 108, "impl_abstract": [108, 175], "addandround_op_impl_abstract": 108, "addandround_op_impl": 108, "_dynamo": [108, 129, 145, 173, 174, 200, 253, 257], "allow_in_graph": 108, "customfoo": 108, "input_addandround_x": 108, "custom_addandround_model": 108, "customop": 108, "customopon": 108, "customoptwo": 108, "cpu_op": 108, "custom_opset": 108, "custom_addandround": 108, "add_x": 108, "round_x": 108, "libcustom_op_librari": 108, "custom_op_librari": 108, "ort": 108, "lonnxruntim": 108, "ort_session_opt": 108, "sessionopt": 108, "register_custom_ops_librari": 108, "sess_opt": 108, "quicker": 109, "record_funct": [109, 145, 165, 220, 239], "incur": [109, 124], "investig": [109, 113, 148, 157, 172, 173], "hi_idx": 109, "argwher": 109, "with_stack": [109, 169, 239], "profile_memori": [109, 169, 239], "group_by_stack_n": [109, 239], "traceback": [109, 145, 173, 174, 175], "193a910735e8": 109, "stacktrac": 109, "row_limit": [109, 145, 165, 239], "88": [109, 164, 177, 198], "212": 109, "953": 109, "mnt": [109, 136], "xarfus": 109, "au": 109, "07": [109, 122, 219, 220, 247], "715": 109, "848m": 109, "350": [109, 138], "151u": 109, "293": [109, 148], "342u": 109, "095u": 109, "931": 109, "006": 109, "476": 109, "338": 109, "759m": 109, "as_strid": [109, 145], "281": [109, 148], "808u": 109, "275": 109, "721u": 109, "_local": 109, "268": 109, "650u": [109, 239], "_scalar_dens": 109, "347": 109, "elimin": [109, 130, 139, 145, 146, 159, 184, 194], "nonzero": [109, 248], "as_tupl": [109, 116], "089m": 109, "402m": 109, "491m": 109, "119": [109, 186], "441": 109, "587u": 109, "_numpi": 109, "395": [109, 164], "602u": 109, "801m": 109, "xxxx": 110, "alexnet": [110, 148], "printable_graph": 110, "tensor_seq": 110, "ret": [110, 150, 159, 162, 210], "disable_cuda": 110, "convxd": 110, "maxpoolxd": 110, "batchnormxd": 110, "dropout2d": [110, 163, 167, 204, 222, 234], "l1loss": 110, "ctcloss": 110, "poissonnllloss": 110, "kldivloss": 110, "bcewithlogitsloss": 110, "marginrankingloss": 110, "hingeembeddingloss": 110, "multilabelmarginloss": 110, "smoothl1loss": [110, 147, 161], "softmarginloss": 110, "multilabelsoftmarginloss": 110, "multimarginloss": 110, "tripletmarginloss": 110, "prelu": 110, "rrelu": 110, "celu": 110, "hardshrink": 110, "logsigmoid": 110, "softplu": 110, "softshrink": 110, "softsign": 110, "tanhshrink": 110, "softmin": 110, "softmax2d": 110, "adaptivesoftmaxwithloss": 110, "adadelta": [110, 123, 130], "sparseadam": 110, "adamax": 110, "asgd": 110, "rprop": 110, "lambdalr": 110, "multiplicativelr": 110, "multisteplr": 110, "exponentiallr": 110, "reducelronplateau": 110, "cycliclr": 110, "onecyclelr": 110, "cosineannealingwarmrestart": 110, "xsampler": 110, "subsetrandom": 110, "weightedrandom": 110, "justin": 111, "johnson": 111, "\u672c\u6559\u7a0b\u901a\u8fc7\u81ea\u5305\u542b\u793a\u4f8b\u4ecb\u7ecd\u4e86": 111, "\u7684\u57fa\u672c\u6982\u5ff5": [111, 121], "\u5728\u5176\u6838\u5fc3": 111, "pytorch\u63d0\u4f9b\u4e86\u4e24\u4e2a\u4e3b\u8981\u529f\u80fd": 111, "\u4e00\u4e2an\u7ef4\u5f20\u91cf": 111, "\u7c7b\u4f3c\u4e8enumpi": 111, "\u4f46\u53ef\u4ee5\u5728gpu\u4e0a\u8fd0\u884c": 111, "\u7528\u4e8e\u6784\u5efa\u548c\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc\u7684\u81ea\u52a8\u5fae\u5206": 111, "\u6211\u4eec\u5c06\u4f7f\u7528\u62df\u5408": 111, "\u7684\u95ee\u9898\u4f5c\u4e3a\u793a\u4f8b": 111, "\u7f51\u7edc\u5c06\u5177\u6709\u56db\u4e2a\u53c2\u6570": 111, "\u5e76\u5c06\u4f7f\u7528\u68af\u5ea6\u4e0b\u964d\u6cd5\u8bad\u7ec3": 111, "\u901a\u8fc7\u6700\u5c0f\u5316\u7f51\u7edc\u8f93\u51fa\u4e0e\u771f\u5b9e\u8f93\u51fa\u4e4b\u95f4\u7684\u6b27\u51e0\u91cc\u5f97\u8ddd\u79bb": 111, "\u6765\u62df\u5408\u968f\u673a\u6570\u636e": 111, "\u53ef\u5728": [111, 227], "\u672c\u6587\u672b\u5c3e\u5904": 111, "\u67e5\u770b\u793a\u4f8b": [111, 121], "\u5728\u4ecb\u7ecd": 111, "\u4e4b\u524d": [111, 238, 245], "\u6211\u4eec\u5c06\u5148\u4f7f\u7528": 111, "\u6765\u5b9e\u73b0\u7f51\u7edc": 111, "numpy\u63d0\u4f9b\u4e86\u4e00\u4e2an\u7ef4\u6570\u7ec4\u5bf9\u8c61": 111, "\u5e76\u63d0\u4f9b\u4e86\u8bb8\u591a\u7528\u4e8e\u64cd\u4f5c\u8fd9\u4e9b\u6570\u7ec4\u7684\u51fd\u6570": 111, "numpy\u662f\u4e00\u4e2a\u901a\u7528\u7684\u79d1\u5b66\u8ba1\u7b97\u6846\u67b6": 111, "\u5b83\u4e0d\u77e5\u9053\u4efb\u4f55\u5173\u4e8e\u8ba1\u7b97\u56fe": 111, "\u6df1\u5ea6\u5b66\u4e60\u6216\u68af\u5ea6\u7684\u4fe1\u606f": 111, "\u6211\u4eec\u53ef\u4ee5\u5f88\u5bb9\u6613\u5730\u4f7f\u7528": 111, "\u63d0\u4f9b\u7684\u65b9\u6cd5": 111, "\u624b\u52a8\u5b9e\u73b0\u524d\u5411\u548c\u540e\u5411\u4f20\u64ad\u8fc7\u7a0b": 111, "\u6765\u62df\u5408\u4e00\u4e2a\u4e09\u6b21\u591a\u9879\u5f0f\u5230\u6b63\u5f26\u51fd\u6570": 111, "numpy\u662f\u4e00\u4e2a\u5f88\u68d2\u7684\u6846\u67b6": 111, "\u4f46\u5b83\u4e0d\u80fd\u5229\u7528gpu\u6765\u52a0\u901f\u5176\u6570\u503c\u8ba1\u7b97": 111, "\u5bf9\u4e8e\u73b0\u4ee3\u6df1\u5ea6\u795e\u7ecf\u7f51\u7edc": 111, "gpu\u901a\u5e38\u63d0\u4f9b": 111, "50\u500d\u6216\u66f4\u5927\u7684\u52a0\u901f": 111, "numpy\u5bf9\u4e8e\u73b0\u4ee3\u6df1\u5ea6\u5b66\u4e60\u6765\u8bf4\u8fd8\u662f\u4e0d\u591f\u7684": 111, "\u6211\u4eec\u4ecb\u7ecd\u4e86pytorch\u6700\u57fa\u672c\u7684\u6982\u5ff5": 111, "\u4e00\u4e2apytorch\u5f20\u91cf\u5728\u6982\u5ff5\u4e0a\u4e0enumpy\u6570\u7ec4\u76f8\u540c": 111, "\u4e00\u4e2an\u7ef4\u6570\u7ec4": 111, "pytorch\u63d0\u4f9b\u4e86\u8bb8\u591a\u64cd\u4f5c\u8fd9\u4e9b\u5f20\u91cf\u7684\u51fd\u6570": 111, "\u53ef\u4ee5\u81ea\u52a8\u8ddf\u8e2a\u8ba1\u7b97\u56fe\u548c\u68af\u5ea6": 111, "\u5b83\u4eec\u4e5f\u4f5c\u4e3a\u79d1\u5b66\u8ba1\u7b97\u7684\u901a\u7528\u5de5\u5177\u975e\u5e38\u6709\u7528": 111, "\u4e0d\u540c": [111, 245], "\u5f20\u91cf\u53ef\u4ee5\u5229\u7528gpu\u6765\u52a0\u901f\u5b83\u4eec\u7684\u6570\u503c\u8ba1\u7b97": 111, "\u8981\u5728gpu\u4e0a\u8fd0\u884c": 111, "\u60a8\u53ea\u9700\u8981\u6307\u5b9a\u6b63\u786e\u7684\u8bbe\u5907": 111, "\u5f20\u91cf\u6765\u62df\u5408\u4e00\u4e2a\u4e09\u6b21\u591a\u9879\u5f0f\u5230\u6b63\u5f26\u51fd\u6570\u4e2d": 111, "\u4e0e\u4e0a\u9762\u7684numpy\u793a\u4f8b\u7c7b\u4f3c": 111, "\u6211\u4eec\u9700\u8981\u624b\u52a8\u5b9e\u73b0\u7f51\u7edc\u7684\u524d\u5411\u548c\u540e\u5411\u4f20\u9012": 111, "\u6211\u4eec\u5fc5\u987b\u624b\u52a8\u5b9e\u73b0\u795e\u7ecf\u7f51\u7edc\u7684\u524d\u5411\u548c\u540e\u5411\u4f20\u9012": 111, "\u5bf9\u4e8e\u4e00\u4e2a\u5c0f\u578b\u7684\u4e24\u5c42\u7f51\u7edc\u6765\u8bf4": 111, "\u624b\u52a8\u5b9e\u73b0\u540e\u5411\u4f20\u9012\u5e76\u4e0d\u662f\u4ec0\u4e48\u5927\u95ee\u9898": 111, "\u4f46\u5bf9\u4e8e\u5927\u578b\u590d\u6742\u7684\u7f51\u7edc\u6765\u8bf4": 111, "\u5f88\u5feb\u5c31\u4f1a\u53d8\u5f97\u975e\u5e38\u9ebb\u70e6": 111, "\u5e78\u8fd0\u7684\u662f": [111, 232], "\u6765\u81ea\u52a8\u8ba1\u7b97\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u540e\u5411\u4f20\u9012": 111, "pytorch\u4e2d\u7684": 111, "\u5305\u6b63\u662f\u63d0\u4f9b\u4e86\u8fd9\u79cd\u529f\u80fd": 111, "\u5f53\u4f7f\u7528\u81ea\u52a8\u6c42\u5bfc\u65f6": 111, "\u7f51\u7edc\u7684\u524d\u5411\u4f20\u9012\u5c06\u5b9a\u4e49\u4e00\u4e2a": 111, "\u56fe\u4e2d\u7684\u8282\u70b9\u662f\u5f20\u91cf": 111, "\u8fb9\u662f\u4ece\u8f93\u5165\u5f20\u91cf\u751f\u6210\u8f93\u51fa\u5f20\u91cf\u7684\u51fd\u6570": 111, "\u901a\u8fc7\u8fd9\u4e2a\u56fe\u8fdb\u884c\u53cd\u5411\u4f20\u64ad": 111, "\u7136\u540e\u53ef\u4ee5\u8f7b\u677e\u8ba1\u7b97\u68af\u5ea6": 111, "\u8fd9\u542c\u8d77\u6765\u5f88\u590d\u6742": 111, "\u4f46\u5728\u5b9e\u9645\u4f7f\u7528\u4e2d\u975e\u5e38\u7b80\u5355": 111, "\u6bcf\u4e2a\u5f20\u91cf\u4ee3\u8868\u8ba1\u7b97\u56fe\u4e2d\u7684\u4e00\u4e2a\u8282\u70b9": 111, "\u662f\u4e00\u4e2a\u8bbe\u7f6e\u4e86": 111, "\u5c06\u662f\u53e6\u4e00\u4e2a\u5f20\u91cf": 111, "\u5b83\u5305\u542b\u4e86": [111, 235], "\u76f8\u5bf9\u4e8e\u67d0\u4e2a\u6807\u91cf\u503c\u7684\u68af\u5ea6": 111, "\u6211\u4eec\u4f7f\u7528pytorch\u5f20\u91cf\u548c\u81ea\u52a8\u6c42\u5bfc\u6765\u5b9e\u73b0\u6211\u4eec\u7528\u4e09\u6b21\u591a\u9879\u5f0f\u62df\u5408\u6b63\u5f26\u6ce2\u7684\u793a\u4f8b": 111, "\u73b0\u5728\u6211\u4eec\u4e0d\u518d\u9700\u8981\u624b\u52a8\u5b9e\u73b0\u7f51\u7edc\u7684\u540e\u5411\u4f20\u9012": 111, "\u5728\u5e95\u5c42": [111, 213], "\u6bcf\u4e2a\u539f\u59cb\u7684\u81ea\u52a8\u6c42\u5bfc\u64cd\u4f5c\u5b9e\u9645\u4e0a\u662f\u5bf9\u5f20\u91cf\u8fdb\u884c\u64cd\u4f5c\u7684\u4e24\u4e2a\u51fd\u6570": 111, "\u51fd\u6570\u4ece\u8f93\u5165\u5f20\u91cf\u8ba1\u7b97\u8f93\u51fa\u5f20\u91cf": 111, "\u540e\u5411": 111, "\u51fd\u6570\u63a5\u6536\u8f93\u51fa\u5f20\u91cf\u76f8\u5bf9\u4e8e\u67d0\u4e2a\u6807\u91cf\u503c\u7684\u68af\u5ea6": 111, "\u5e76\u8ba1\u7b97\u8f93\u5165\u5f20\u91cf\u76f8\u5bf9\u4e8e\u540c\u4e00\u6807\u91cf\u503c\u7684\u68af\u5ea6": 111, "\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u5b9a\u4e49\u4e00\u4e2a": 111, "\u7684\u5b50\u7c7b\u5e76\u5b9e\u73b0": 111, "\u8f7b\u677e\u5b9a\u4e49\u81ea\u5df1\u7684\u81ea\u52a8\u6c42\u5bfc\u64cd\u4f5c\u7b26": 111, "\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u6784\u9020\u5b9e\u4f8b\u5e76\u50cf\u51fd\u6570\u4e00\u6837\u8c03\u7528\u5b83": 111, "\u4f20\u9012\u5305\u542b\u8f93\u5165\u6570\u636e\u7684\u5f20\u91cf": 111, "\u6765\u4f7f\u7528\u6211\u4eec\u65b0\u7684\u81ea\u52a8\u6c42\u5bfc\u64cd\u4f5c\u7b26": 111, "\u6211\u4eec\u5c06\u6a21\u578b\u5b9a\u4e49\u4e3a": 111, "\u662f\u4e09\u9636\u7684": 111, "\u52d2\u8ba9\u5fb7\u591a\u9879\u5f0f": 111, "\u6211\u4eec\u7f16\u5199\u4e86\u81ea\u5df1\u7684\u81ea\u5b9a\u4e49\u81ea\u52a8\u6c42\u5bfc\u51fd\u6570\u6765\u8ba1\u7b97": 111, "\u7684\u524d\u5411\u548c\u540e\u5411\u4f20\u9012": 111, "\u5e76\u4f7f\u7528\u5b83\u6765\u5b9e\u73b0\u6211\u4eec\u7684\u6a21\u578b": 111, "\u548c\u81ea\u52a8\u6c42\u5bfc": 111, "\u662f\u5b9a\u4e49\u590d\u6742\u64cd\u4f5c\u975e\u5e38\u5f3a\u5927\u7684\u529f\u80fd": 111, "\u539f\u59cb\u7684\u81ea\u52a8\u6c42\u5bfc\u8fd8\u662f\u4e0d\u8db3\u4ee5\u652f\u6301\u5b9e\u73b0\u5927\u578b\u795e\u7ecf\u7f51\u7edc": 111, "\u5728\u6784\u5efa\u795e\u7ecf\u7f51\u7edc\u65f6": 111, "\u6211\u4eec\u901a\u5e38\u4f1a\u8003\u8651\u5c06\u8ba1\u7b97\u5b89\u6392\u6210": 111, "\u5176\u4e2d\u4e00\u4e9b\u5c42\u5177\u6709": 111, "\u53ef\u5b66\u4e60\u7684\u53c2\u6570": 111, "\u8fd9\u4e9b\u53c2\u6570\u5c06\u5728\u5b66\u4e60\u8fc7\u7a0b\u4e2d\u8fdb\u884c\u4f18\u5316": 111, "\u5728tensorflow\u4e2d": 111, "\u50cf": 111, "tflearn": 111, "\u63d0\u4f9b\u4e86\u76f8\u8f83\u4e8e\u539f\u59cb\u8ba1\u7b97\u56fe\u7684\u66f4\u9ad8\u5c42\u6b21\u7684\u62bd\u8c61": 111, "\u8fd9\u4e9b\u62bd\u8c61\u5bf9\u4e8e\u6784\u5efa\u795e\u7ecf\u7f51\u7edc\u975e\u5e38\u6709\u7528": 111, "\u5305\u8d77\u5230\u4e86\u540c\u6837\u7684\u4f5c\u7528": 111, "\u5305\u5b9a\u4e49\u4e86\u4e00\u7ec4": 111, "\u8fd9\u4e9b\u6a21\u5757\u76f8\u5f53\u4e8e\u795e\u7ecf\u7f51\u7edc\u5c42": 111, "\u4e00\u4e2a\u6a21\u5757\u63a5\u6536\u8f93\u5165\u5f20\u91cf\u5e76\u8ba1\u7b97\u8f93\u51fa\u5f20\u91cf": 111, "\u4f46\u4e5f\u53ef\u4ee5\u5305\u542b\u5185\u90e8\u72b6\u6001": 111, "\u4f8b\u5982\u5305\u542b\u53ef\u5b66\u4e60\u53c2\u6570\u7684\u5f20\u91cf": 111, "\u5305\u8fd8\u5b9a\u4e49\u4e86\u4e00\u7ec4\u5e38\u7528\u4e8e\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc\u7684\u6709\u7528\u7684\u635f\u5931\u51fd\u6570": 111, "\u5305\u6765\u5b9e\u73b0\u6211\u4eec\u7684\u591a\u9879\u5f0f\u6a21\u578b\u7f51\u7edc": 111, "\u6211\u4eec\u901a\u8fc7\u4f7f\u7528": 111, "\u624b\u52a8\u66f4\u6539\u5f20\u91cf\u7684\u53ef\u5b66\u4e60\u53c2\u6570": 111, "\u6765\u66f4\u65b0\u6a21\u578b\u7684\u6743\u91cd": 111, "\u5bf9\u4e8e\u50cf\u968f\u673a\u68af\u5ea6\u4e0b\u964d\u8fd9\u6837\u7684\u4f18\u5316\u7b97\u6cd5\u6765\u8bf4": 111, "\u8fd9\u5e76\u4e0d\u662f\u4e00\u4e2a\u5f88\u5927\u7684\u8d1f\u62c5": 111, "\u4f46\u5728\u5b9e\u8df5\u4e2d": 111, "\u6211\u4eec\u7ecf\u5e38\u4f7f\u7528\u66f4\u590d\u6742\u7684\u4f18\u5316\u5668\u6765\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc": 111, "\u6bd4\u5982": 111, "\u5305\u62bd\u8c61\u4e86\u4f18\u5316\u7b97\u6cd5\u7684\u5b9a\u4e49": 111, "\u5e76\u63d0\u4f9b\u4e86\u5e38\u7528\u4f18\u5316\u7b97\u6cd5\u7684\u5b9e\u73b0": 111, "\u6211\u4eec\u5c06\u50cf\u4ee5\u524d\u4e00\u6837\u4f7f\u7528": 111, "\u5305\u6765\u5b9a\u4e49\u6211\u4eec\u7684\u6a21\u578b": 111, "\u4f46\u6211\u4eec\u5c06\u4f7f\u7528": 111, "\u5305\u63d0\u4f9b\u7684": 111, "\u7b97\u6cd5\u6765\u4f18\u5316\u6a21\u578b": 111, "\u6709\u65f6\u4f60\u53ef\u80fd\u4f1a\u5e0c\u671b\u81ea\u5b9a\u4e49\u6bd4\u73b0\u6709\u6a21\u5757\u96c6\u66f4\u590d\u6742\u7684\u6a21\u578b": 111, "\u5728\u8fd9\u4e9b\u60c5\u51b5\u4e0b": 111, "\u4f60\u53ef\u4ee5\u901a\u8fc7\u7ee7\u627f": 111, "\u5e76\u5b9a\u4e49\u4e00\u4e2a": 111, "\u65b9\u6cd5\u6765\u81ea\u5b9a\u4e49\u6a21\u5757": 111, "\u8be5\u65b9\u6cd5\u63a5\u6536\u8f93\u5165\u5f20\u91cf": 111, "\u5e76\u4f7f\u7528\u5176\u4ed6\u6a21\u5757\u6216\u5728\u5f20\u91cf\u4e0a\u81ea\u52a8\u6c42\u5bfc\u7b49\u64cd\u4f5c\u751f\u6210\u65b0\u7684\u8f93\u51fa\u5f20\u91cf": 111, "\u6211\u4eec\u5c06\u5b9e\u73b0\u4e00\u4e2a\u4e09\u6b21\u591a\u9879\u5f0f\u4f5c\u4e3a\u81ea\u5b9a\u4e49\u6a21\u5757\u7684\u5b50\u7c7b": 111, "\u4f5c\u4e3a\u52a8\u6001\u8ba1\u7b97\u56fe\u548c\u6743\u91cd\u5171\u4eab\u7684\u4e00\u4e2a\u793a\u4f8b": 111, "\u6211\u4eec\u5b9e\u73b0\u4e86\u4e00\u4e2a\u975e\u5e38\u5947\u7279\u7684\u6a21\u578b": 111, "\u4e00\u4e2a\u4e09\u81f3\u4e94\u9636\u7684\u591a\u9879\u5f0f": 111, "\u5728\u6bcf\u6b21\u524d\u5411\u4f20\u9012\u65f6\u968f\u673a\u9009\u62e9\u4e00\u4e2a3\u52305\u4e4b\u95f4\u7684\u6570\u5b57": 111, "\u5e76\u4f7f\u7528\u8be5\u9636\u6570\u591a\u9879\u5f0f\u6765\u8ba1\u7b97": 111, "\u91cd\u590d\u4f7f\u7528\u76f8\u540c\u7684\u6743\u91cd\u591a\u6b21\u4ee5\u8ba1\u7b97\u56db\u9636\u548c\u4e94\u9636\u591a\u9879\u5f0f": 111, "\u5bf9\u4e8e\u8fd9\u4e2a\u6a21\u578b": 111, "\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528python\u6d41\u63a7\u5236\u6765\u5b9e\u73b0\u5faa\u73af": 111, "\u5e76\u4e14\u53ef\u4ee5\u901a\u8fc7\u5728\u5b9a\u4e49\u524d\u5411\u4f20\u9012\u65f6": 111, "\u591a\u6b21\u91cd\u590d\u4f7f\u7528\u76f8\u540c\u7684\u53c2\u6570": 111, "\u6765\u5b9e\u73b0\u6743\u91cd\u5171\u4eab": 111, "\u6211\u4eec\u53ef\u4ee5\u5f88\u5bb9\u6613\u5730\u5c06\u8fd9\u4e2a\u6a21\u578b\u5b9e\u73b0\u4e3a\u4e00\u4e2a\u6a21\u5757\u7684\u5b50\u7c7b": 111, "\u5177\u4f53\u793a\u4f8b\u5982\u4e0b": 111, "unpickl": 112, "facil": 112, "running_mean": [112, 143, 199, 250], "themodelclass": 112, "param_tensor": [112, 250], "var_nam": [112, 250], "param_group": [112, 160, 212, 217, 245], "dampen": 112, "4675713712": 112, "4675713784": 112, "4675714000": 112, "4675714072": 112, "4675714216": 112, "4675714288": 112, "4675714432": 112, "4675714504": 112, "4675714648": 112, "4675714720": 112, "_use_new_zipfile_seri": 112, "inconsist": [112, 145, 242], "best_model_st": 112, "deepcopi": [112, 139, 143, 158, 183, 199, 200], "overfit": [112, 128, 158], "model_script": 112, "model_state_dict": [112, 215, 221, 242], "theoptimizerclass": 112, "modela_state_dict": [112, 244], "modela": [112, 244], "modelb_state_dict": [112, 244], "modelb": [112, 244], "optimizera_state_dict": [112, 244], "optimizera": [112, 244], "optimizerb_state_dict": [112, 244], "optimizerb": [112, 244], "themodelaclass": 112, "themodelbclass": 112, "theoptimizeraclass": 112, "theoptimizerbclass": 112, "gan": [112, 121, 154, 244], "ensembl": [112, 121], "remap": 112, "overwrit": 112, "saving_loading_model": 112, "pendo": 113, "abbo": 113, "joe": [113, 134], "cum": 113, "cnndm": 113, "imdb": 113, "multi30k": [113, 118], "sentencepiec": 113, "t5transform": 113, "padding_idx": 113, "eos_idx": [113, 118], "max_seq_len": 113, "t5_sp_model_path": 113, "t5_tokenizer_bas": 113, "sp_model_path": 113, "t5_base_gener": 113, "t5_base": 113, "beam": 113, "sequence_gener": 113, "datapip": [113, 116], "appendix": 113, "cnndm_batch_siz": 113, "cnndm_datapip": 113, "apply_prefix": 113, "rows2columnar": 113, "cnndm_dataload": 113, "batch_prefix": 113, "sst2": 113, "imdb_batch_s": 113, "imdb_datapip": 113, "process_label": 113, "imdb_dataload": 113, "german": [113, 116, 118, 127, 128], "multi_batch_s": 113, "language_pair": [113, 118], "multi_datapip": 113, "multi_dataload": 113, "input_text": 113, "beam_siz": 113, "model_output": [113, 142, 163], "num_beam": 113, "output_text": 113, "year": [113, 151, 154], "tattoo": 113, "decad": [113, 177], "australia": 113, "campaign": 113, "honest": 113, "london": 113, "stephen": 113, "hendri": 113, "fame": [113, 267], "supermodel": 113, "sydnei": 113, "australian": 113, "fan": [113, 129, 159], "him": 113, "hotel": 113, "heartthrob": 113, "strai": 113, "pooch": 113, "buri": 113, "stagger": 113, "nearbi": 113, "farm": 113, "dirt": 113, "emaci": 113, "disloc": 113, "jaw": 113, "leg": 113, "injuri": [113, 264], "cave": 113, "sinu": 113, "caviti": 113, "surgeri": [113, 172], "breath": 113, "theia": 113, "bulli": 113, "breed": 113, "appar": [113, 158], "whack": 113, "hammer": 113, "miracl": 113, "sara": 113, "mellado": 113, "mohammad": 113, "javad": 113, "zarif": 113, "iran": 113, "sunni": 113, "fridai": 113, "morn": 113, "bring": [113, 160, 169, 172, 185, 193, 206], "rejoin": 113, "john": 113, "kerri": 113, "foreign": 113, "minist": 113, "takeov": 113, "iranian": 113, "consul": 113, "tweet": 113, "american": 113, "week": 113, "ebola": 113, "west": 113, "africa": 113, "discharg": 113, "hasn": 113, "clinician": 113, "health": 113, "boston": 113, "viru": 113, "sierra": 113, "march": 113, "diagnos": [113, 133], "diseas": [113, 172], "maryland": 113, "nation": 113, "institut": 113, "patient": [113, 172], "campu": 113, "polic": 113, "offic": [113, 198, 199], "affair": 113, "admit": 113, "noos": 113, "wednesdai": 113, "incid": 113, "racist": 113, "colleg": 113, "duke": 113, "disciplinari": 113, "school": 113, "rope": 113, "sci": [113, 115], "fi": 113, "tv": 113, "underfund": 113, "misunderstood": 113, "babylon": 113, "star": 113, "trek": 113, "silli": [113, 125], "prosthet": 113, "cheap": 113, "cardboard": 113, "stilt": 113, "dialogu": 113, "cg": 113, "painfulli": 113, "clich\u00e9d": 113, "uninspir": 113, "viewer": 113, "emot": 113, "genr": 113, "serious": 113, "cf": 113, "seriou": 113, "foolish": 113, "spark": 113, "Their": [113, 191, 193], "reaction": 113, "wooden": [113, 264], "maker": 113, "rubbish": 113, "gene": 113, "roddenberri": 113, "ash": 113, "orbit": 113, "dull": 113, "poorli": [113, 127], "advert": 113, "trudg": 113, "trabant": 113, "lumber": 113, "spoiler": 113, "kill": 113, "actor": [113, 137], "jeeez": 113, "dalla": 113, "entertain": 113, "rental": 113, "fight": 113, "van": 113, "damm": 113, "shoot": 113, "battl": 113, "shell": [113, 209, 214, 219, 224], "shotgun": 113, "terrorist": 113, "bomb": 113, "blow": 113, "br": 113, "inclus": [113, 174, 175, 247], "rabbit": 113, "hardli": [113, 115], "profound": 113, "stereotyp": 113, "angri": 113, "veteran": 113, "terrifi": 113, "illeg": 113, "alien": 113, "crook": 113, "cop": 113, "indiffer": 113, "bitchi": 113, "ladi": 113, "station": 113, "politician": 113, "federal": 113, "typecast": 113, "mexican": 113, "hollywood": 113, "1940": 113, "passabl": 113, "villain": 113, "certainli": [113, 144, 191, 193], "knew": 113, "gui": [113, 227, 252, 264], "weren": [113, 139, 155], "desert": 113, "simplist": 113, "hamlet": 113, "annoi": [113, 146], "vd": 113, "daughter": 113, "film": 113, "semi": [113, 121, 194, 197], "alright": 113, "dam": 113, "disappoint": [113, 115], "budget": [113, 126], "poor": 113, "orang": [113, 125, 159], "ein": [113, 118], "mann": 113, "einem": [113, 118], "orangen": 113, "hut": 113, "der": 113, "etwa": 113, "schaut": 113, "mit": [113, 140], "orangefarbenen": 113, "anstarrt": 113, "terrier": 113, "lush": 113, "grass": 113, "front": [113, 115, 139, 157, 177, 178], "fenc": 113, "l\u00e4uft": 113, "auf": 113, "\u00fcppigem": 113, "gr\u00fcnem": 113, "gra": 113, "vor": [113, 118], "wei\u00dfen": 113, "zaun": 113, "\u00fcber": 113, "saftig": 113, "gr\u00fcne": 113, "girl": 113, "karat": 113, "m\u00e4dchen": 113, "bricht": 113, "einen": [113, 116], "st\u00f6ck": 113, "frontkick": 113, "karateanzug": 113, "brett": 113, "tritt": 113, "wear": 113, "jacket": 113, "helmet": 113, "snow": 113, "snowmobil": 113, "f\u00fcnf": 113, "menschen": [113, 118], "winterjacken": 113, "und": 113, "helmen": 113, "stehen": 113, "schnee": 113, "schneemobilen": 113, "hintergrund": 113, "leut": 113, "roof": 113, "hous": 113, "die": 113, "fixieren": 113, "da": 113, "dach": 113, "haus": 113, "reparieren": 113, "t5_tutori": 113, "firstnam": 114, "lastnam": 114, "gallery_pattern": 114, "neural_style_transfer_tutori": 114, "_build": 114, "beginner_sourc": 114, "link1": 114, "link2": 114, "template_tutori": 114, "portalock": 115, "ag_new": 115, "fear": 115, "pension": 115, "union": [115, 180], "turner": 115, "newal": 115, "stricken": 115, "firm": 115, "feder": 115, "mogul": 115, "race": [115, 136], "spaceflight": 115, "toronto": 115, "canada": [115, 265], "rocket": 115, "ansari": 115, "prize": 115, "contest": 115, "fund": 115, "suborbit": 115, "flight": 115, "ky": 115, "grant": 115, "peptid": 115, "ap": 115, "chemistri": 115, "louisvil": 115, "amino": 115, "acid": 115, "protein": 115, "revisit": [115, 191, 264], "yield_token": [115, 118], "data_it": [115, 116, 118], "475": [115, 164], "5297": 115, "text_pipelin": 115, "label_pipelin": 115, "collate_batch": 115, "label_list": [115, 138, 172, 186], "text_list": 115, "_label": 115, "_text": 115, "processed_text": 115, "cumsum": 115, "textclassificationmodel": 115, "embed_dim": [115, 165], "sport": 115, "tec": 115, "total_acc": 115, "total_count": 115, "to_map_style_dataset": 115, "total_accu": 115, "num_train": 115, "split_train_": 115, "split_valid_": 115, "valid_dataload": 115, "accu_v": 115, "accu_test": 115, "golf": 115, "ag_news_label": 115, "ex_text_str": 115, "memphi": 115, "tenn": 115, "ago": 115, "jon": 115, "rahm": 115, "endur": 115, "season": 115, "weather": 115, "sundai": 115, "royal": 115, "portrush": 115, "wind": 115, "rain": 115, "thursdai": 115, "wgc": 115, "fedex": 115, "jude": 115, "invit": 115, "stori": 115, "mid": 115, "spaniard": 115, "stroke": 115, "flawless": 115, "pga": 115, "tour": 115, "nine": 115, "tpc": 115, "southwind": 115, "text_sentiment_ngrams_tutori": 115, "sharma": 116, "legaci": 116, "tatoeba": [116, 166], "deu": 116, "en_core_web_sm": [116, 118], "de_core_news_sm": [116, 118], "dp": [116, 124, 177, 178], "eng": [116, 166, 195], "file_path": 116, "data_pip": 116, "iterablewrapp": 116, "fileopen": 116, "parse_csv": 116, "skip_lin": 116, "removeattribut": 116, "engtoken": 116, "detoken": 116, "haben": 116, "sie": 116, "guten": 116, "gettoken": 116, "source_vocab": 116, "min_freq": [116, 118], "special_first": [116, 118], "target_vocab": 116, "get_ito": 116, "gettransform": 116, "text_tranform": 116, "vocabtransform": 116, "addtoken": 116, "temp_list": 116, "some_sent": 116, "798": 116, "transformed_sent": 116, "index_to_str": 116, "applytransform": 116, "sequence_pair": 116, "bucketbatch": 116, "sortbucket": 116, "batch_num": 116, "bucket_num": 116, "use_in_batch_shuffl": 116, "sort_kei": 116, "x_3": [116, 264], "y_3": 116, "x_4": [116, 264], "y_4": 116, "separatesourcetarget": 116, "applypad": 116, "pair_of_sequ": 116, "source_index_to_str": 116, "target_index_to_str": 116, "showsometransformedsent": 116, "traget": 116, "torchtext_custom_dataset_tutori": 116, "cs231n": 117, "licens": [117, 138, 140, 167], "bsd": [117, 167], "image_dataset": [117, 158], "dataset_s": [117, 158], "class_nam": [117, 140, 158, 172, 214], "train_model": [117, 158, 246], "tempdir": 117, "best_model_params_path": 117, "best_model_param": 117, "best_acc": [117, 158], "running_correct": [117, 158], "set_grad_en": [117, 158, 220], "epoch_loss": [117, 136, 158], "epoch_acc": [117, 158], "time_elaps": [117, 158], "visualize_model": [117, 158], "was_train": [117, 158], "images_so_far": 117, "model_ft": [117, 158], "num_ftr": [117, 158], "optimizer_ft": [117, 158], "exp_lr_schedul": [117, 158], "step_siz": [117, 122, 123, 130, 158, 179], "model_conv": 117, "optimizer_conv": 117, "visualize_model_predict": 117, "72100438_73de9f17af": 117, "transfer_learning_tutori": 117, "\u8fdb\u884c\u8bed\u8a00\u7ffb\u8bd1": [118, 121], "inbuilt": [118, 154], "1756": 118, "issuecom": 118, "1163664163": 118, "githubusercont": [118, 119, 179], "neychev": 118, "small_dl_repo": 118, "src_languag": 118, "tgt_languag": 118, "token_transform": 118, "vocab_transform": 118, "language_index": 118, "data_sampl": 118, "unk_idx": 118, "pad_idx": 118, "bos_idx": 118, "special_symbol": 118, "bo": 118, "ln": 118, "emb_siz": 118, "maxlen": [118, 161], "den": 118, "pos_embed": 118, "register_buff": [118, 154, 203], "token_embed": 118, "tokenembed": 118, "seq2seqtransform": 118, "num_encoder_lay": 118, "num_decoder_lay": 118, "src_vocab_s": 118, "tgt_vocab_s": 118, "dim_feedforward": 118, "src_tok_emb": 118, "tgt_tok_emb": 118, "positional_encod": 118, "trg": 118, "src_mask": 118, "tgt_mask": 118, "src_padding_mask": 118, "tgt_padding_mask": 118, "memory_key_padding_mask": 118, "src_emb": 118, "tgt_emb": 118, "tgt": [118, 166], "generate_square_subsequent_mask": 118, "sz": 118, "triu": [118, 154], "masked_fil": [118, 192], "create_mask": 118, "src_seq_len": 118, "tgt_seq_len": 118, "ffn_hid_dim": 118, "xavier_uniform_": 118, "ignore_index": 118, "pad_sequ": 118, "club": 118, "sequential_transform": 118, "txt_input": 118, "tensor_transform": 118, "token_id": 118, "text_transform": 118, "src_batch": 118, "tgt_batch": 118, "src_sampl": 118, "tgt_sampl": 118, "rstrip": 118, "train_epoch": [118, 166], "tgt_input": 118, "tgt_out": 118, "val_dataload": [118, 149], "ingredi": 118, "timeit": [118, 139, 145, 146, 150, 155, 194, 224, 235, 240, 247], "default_tim": [118, 194, 240], "train_loss": 118, "end_tim": [118, 231, 238], "greedy_decod": 118, "start_symbol": 118, "ys": 118, "prob": [118, 160, 162, 164, 170], "next_word": 118, "src_sentenc": 118, "num_token": 118, "tgt_token": 118, "lookup_token": 118, "grupp": 118, "von": 118, "steht": 118, "iglu": 118, "3f5ee243547dee91fbd053c1c4a845aa": 118, "pdf": 118, "harvard": 118, "edu": [118, 179], "translation_transform": 118, "geeta": [119, 177], "chauhan": [119, 177], "facebook": [119, 136, 205, 223], "android": [119, 121, 195, 197, 228, 229, 252, 254], "2012": [119, 265], "hundr": [119, 120, 124, 172], "distil": [119, 121, 188], "timm": 119, "imagenet_default_mean": 119, "imagenet_default_std": 119, "facebookresearch": [119, 185, 217], "deit_base_patch16_224": 119, "clsidx": 119, "269": [119, 148], "timber": [119, 189], "wolf": [119, 189], "cani": [119, 189], "lupu": [119, 189], "scripted_model": [119, 189], "fbdeit_script": 119, "346mb": 119, "qnnpack": [119, 159, 180, 219, 224, 229], "qconfig_spec": [119, 229], "scripted_quantized_model": 119, "fbdeit_scripted_quant": 119, "fbdeit_quantized_script": 119, "89mb": 119, "mobile_optim": [119, 189, 195, 207, 219, 223, 225, 226, 254], "optimize_for_mobil": [119, 189, 195, 207, 219, 223, 224, 225, 226, 254], "optimized_scripted_quantized_model": 119, "fbdeit_optimized_scripted_quant": 119, "_save_for_lite_interpret": [119, 188, 189, 195, 205, 223, 224], "fbdeit_optimized_scripted_quantized_lit": 119, "ptl": [119, 188, 205, 223, 224], "prof1": 119, "prof2": 119, "prof3": 119, "prof4": 119, "prof5": 119, "1236": 119, "69m": 119, "1226": 119, "72m": 119, "593": 119, "19m": 119, "598": 119, "01m": 119, "81": [119, 145], "52": [119, 127, 148, 177], "vt_tutori": 119, "spread": [120, 172], "demand": 120, "mesh": [120, 124], "ddp_series_intro": 120, "utm_sourc": 120, "distr_land": 120, "utm_medium": 120, "distributeddata": 120, "ddp_tutori": 120, "intermediate_ddp_tutori": 120, "generic_join": 120, "fsdp_tutori": 120, "fsdp_getting_start": 120, "huggingfac": [120, 122, 123, 186, 202], "hf": 120, "t5": 120, "fsdp_adavnced_tutori": 120, "fsdp_advanc": 120, "tp_tutori": [120, 124], "distributed_device_mesh": 120, "rpc_tutori": 120, "rpc_getting_start": 120, "rpc_param_server_tutori": 120, "rpc_async_execut": 120, "rpc_ddp_tutori": 120, "rpc_plus_ddp": 120, "plug": [120, 156, 167, 224], "process_group_cpp_extension_tutori": 120, "custom_extensions_cpp": 120, "\u65b0\u589e\u6559\u7a0b": 121, "\u4e3a": [121, 215, 245], "\u6355\u83b7\u66f4\u5927\u7684\u540e\u5411\u56fe": 121, "\u901a\u8fc7\u533a\u57df\u7f16\u8bd1\u51cf\u5c11": [121, 252], "\u51b7\u542f\u52a8\u7f16\u8bd1\u65f6\u95f4": [121, 252], "tp": 121, "\u8fdb\u884c\u5927\u89c4\u6a21": 121, "\u6a21\u578b\u8bad\u7ec3": 121, "\u5229\u7528\u534a\u7ed3\u6784\u5316": 121, "\u7a00\u758f\u6027\u52a0\u901f": 121, "\u548c\u5f20\u91cf\u5b50\u7c7b\u7684\u6269\u5c55\u70b9": [121, 252], "\u719f\u6089": 121, "\u7684\u6982\u5ff5\u548c\u6a21\u5757": 121, "\u901a\u8fc7\u672c\u5feb\u901f\u5165\u95e8\u6307\u5357": 121, "\u5b66\u4e60\u5982\u4f55\u52a0\u8f7d\u6570\u636e": 121, "\u6784\u5efa\u6df1\u5ea6\u795e\u7ecf\u7f51\u7edc": 121, "\u8bad\u7ec3\u548c\u4fdd\u5b58\u6a21\u578b": 121, "\u5f00\u542f": 121, "\u65c5\u7a0b": 121, "\u793a\u4f8b": [121, 248, 259], "\u5c0f\u5de7\u6613\u7528": 121, "\u5373\u65f6\u90e8\u7f72\u7684": 121, "\u4ee3\u7801\u793a\u4f8b": 121, "\u5168\u90e8": 121, "\u9010\u6b65\u6559\u4f60\u5982\u4f55\u7528pytorch\u6784\u5efa\u5b8c\u6574\u7684\u673a\u5668\u5b66\u4e60\u6d41\u7a0b": 121, "\u4ecb\u7ecd\u89c6\u9891": 121, "\u7528pytorch\u6784\u5efa\u5b8c\u6574\u7684\u673a\u5668\u5b66\u4e60\u5de5\u4f5c\u6d41\u7a0b": 121, "pytorch\u521d\u5b66\u8005\u7cfb\u5217": 121, "\u901a\u8fc7\u793a\u4f8b\u5b66\u4e60": 121, "\u672c\u6559\u7a0b\u901a\u8fc7\u72ec\u7acb\u7684\u793a\u4f8b\u4ecb\u7ecd\u4e86": 121, "\u4ec0\u4e48\u662f": 121, "\u6765\u521b\u5efa\u548c\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc": 121, "\u5c55\u73b0\u6a21\u578b": 121, "\u6570\u636e\u548c\u8bad\u7ec3\u8fc7\u7a0b": 121, "\u5b66\u4e60\u4f7f\u7528": 121, "\u53ef\u89c6\u5316\u6570\u636e\u96c6\u548c\u6a21\u578b\u8bad\u7ec3\u8fc7\u7a0b": 121, "\u76ee\u6807\u68c0\u6d4b\u5fae\u8c03\u6559\u7a0b": 121, "\u5fae\u8c03\u9884\u8bad\u7ec3\u7684": 121, "\u4f7f\u7528\u8fc1\u79fb\u5b66\u4e60\u8bad\u7ec3\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u8fdb\u884c\u56fe\u50cf\u5206\u7c7b": 121, "\u4f18\u5316\u89c6\u89c9transformer\u6a21\u578b": 121, "\u5e94\u7528\u6700\u524d\u6cbf\u7684": 121, "\u57fa\u4e8e": 121, "\u6a21\u578b\u5230\u8ba1\u7b97\u673a\u89c6\u89c9\u4efb\u52a1\u4e2d": 121, "\u5bf9\u6297\u6027\u6837\u672c\u751f\u6210": 121, "dcgan": 121, "\u5b66\u4e60\u5982\u4f55\u901a\u8fc7\u89c6\u89c9\u6ce8\u610f\u673a\u5236\u589e\u5f3a\u4f60\u7684\u7f51\u7edc": 121, "tiatoolbox": 121, "\u5bf9\u56fe\u50cf\u8fdb\u884c\u63a8\u7406": 121, "\u5b66\u4e60\u5982\u4f55\u4f7f\u7528tiatoolbox\u5bf9\u56fe\u50cf\u8fdb\u884c\u63a8\u7406": 121, "usb": [121, 159], "\u7684\u534a\u76d1\u7763\u5b66\u4e60\u6559\u7a0b": 121, "\u5b66\u4e60\u5982\u4f55\u4f7f\u7528": [121, 252], "\u5bf9\u81ea\u5b9a\u4e49\u6570\u636e\u8fdb\u884c\u534a\u76d1\u7763\u5b66\u4e60\u7b97\u6cd5\u7684\u8bad\u7ec3": 121, "\u52a0\u8f7d\u6570\u636e": [121, 236, 252], "\u91cd\u91c7\u6837": 121, "\u5bf9\u97f3\u9891\u6ce2\u5f62\u8fdb\u884c\u91cd\u65b0\u91c7\u6837": 121, "\u6570\u636e\u589e\u5f3a": 121, "\u5e94\u7528\u6570\u636e\u589e\u5f3a": 121, "\u7279\u5f81\u63d0\u53d6": 121, "\u63d0\u53d6\u7279\u5f81": 121, "\u7279\u5f81\u589e\u5f3a": 121, "\u5bf9\u7279\u5f81\u8fdb\u884c\u589e\u5f3a": 121, "\u4e2d\u4f7f\u7528": [121, 252], "wav2vec2": 121, "\u8fdb\u884c\u81ea\u52a8\u8bed\u97f3\u8bc6\u522b": 121, "\u7684\u9884\u8bad\u7ec3\u6a21\u578b\u6765\u6784\u5efa\u8bed\u97f3\u8bc6\u522b\u5e94\u7528\u7a0b\u5e8f": 121, "\u8bed\u97f3\u547d\u4ee4\u5206\u7c7b": 121, "\u5b66\u4e60\u5982\u4f55\u6b63\u786e\u683c\u5f0f\u5316\u97f3\u9891\u6570\u636e\u96c6": 121, "\u7136\u540e\u5728\u8be5\u6570\u636e\u96c6\u4e0a\u8bad\u7ec3": 121, "\u6d4b\u8bd5\u97f3\u9891\u5206\u7c7b\u5668\u7f51\u7edc": 121, "\u8fdb\u884c\u6587\u672c\u8f6c\u8bed\u97f3": 121, "\u7684\u9884\u8bad\u7ec3\u6a21\u578b\u6784\u5efa\u6587\u672c\u8f6c\u8bed\u97f3\u5e94\u7528\u7a0b\u5e8f": 121, "\u8fdb\u884c\u5bf9\u9f50": 121, "\u9884\u8bad\u7ec3\u6a21\u578b\u5bf9\u6587\u672c\u8fdb\u884c\u4e0e\u8bed\u97f3\u5bf9\u9f50": 121, "\u63d0\u5347\u63a8\u7406\u6548\u7387": 121, "\u5b9e\u73b0\u7684": [121, 245], "\u4ee5\u5b9e\u73b0\u9ad8\u6027\u80fd\u7684\u63a8\u65ad": 121, "\u4ece\u96f6\u5f00\u59cb\u7684\u81ea\u7136\u8bed\u8a00\u5904\u7406": 121, "\u4f7f\u7528\u5b57\u7b26\u7ea7": 121, "\u5bf9\u59d3\u540d\u8fdb\u884c\u5206\u7c7b": 121, "\u6784\u5efa\u5e76\u8bad\u7ec3\u4e00\u4e2a\u57fa\u672c\u7684\u5b57\u7b26\u7ea7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc": 121, "\u4ece\u96f6\u5f00\u59cb\u5206\u7c7b\u5355\u8bcd": 121, "\u800c\u4e0d\u4f7f\u7528": 121, "\u751f\u6210\u59d3\u540d": [121, 127, 166], "\u5728\u4f7f\u7528\u5b57\u7b26\u7ea7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u5bf9\u59d3\u540d\u8fdb\u884c\u5206\u7c7b\u4e4b\u540e": 121, "\u5b66\u4e60\u5982\u4f55\u4ece\u8bed\u8a00\u4e2d\u751f\u6210\u59d3\u540d": 121, "\u4f7f\u7528\u5e8f\u5217\u5230\u5e8f\u5217\u7f51\u7edc\u548c\u6ce8\u610f\u529b\u8fdb\u884c\u7ffb\u8bd1": 121, "\u5728\u8fd9\u91cc\u6211\u4eec\u7f16\u5199\u81ea\u5df1\u7684\u7c7b\u548c\u51fd\u6570\u6765\u9884\u5904\u7406\u6570\u636e\u4ee5\u6267\u884c\u6211\u4eec\u7684\u81ea\u7136\u8bed\u8a00\u5904\u7406\u5efa\u6a21\u4efb\u52a1": 121, "\u8fdb\u884c\u6587\u672c\u5206\u7c7b": 121, "\u5e93\u6784\u5efa\u6570\u636e\u96c6\u5e76\u5bf9\u6587\u672c\u8fdb\u884c\u5206\u7c7b": 121, "\u4ece\u96f6\u5f00\u59cb\u8bad\u7ec3\u4e00\u4e2a\u4f7f\u7528": 121, "\u7684\u8bed\u8a00\u7ffb\u8bd1\u6a21\u578b": 121, "\u4f7f\u7528torchtext\u9884\u5904\u7406\u81ea\u5b9a\u4e49\u6587\u672c\u6570\u636e\u96c6": 121, "\u51c6\u5907\u81ea\u5b9a\u4e49\u6570\u636e\u96c6": 121, "\u53ef\u9009": [121, 252], "\u6a21\u578b\u5bfc\u51fa\u4e3a": 121, "\u8fd0\u884c\u5b83": 121, "\u6784\u5efa\u4e00\u4e2a": 121, "\u56fe\u50cf\u5206\u7c7b\u5668\u6a21\u578b": 121, "\u7136\u540e\u5c06\u5176\u8f6c\u6362\u4e3a": 121, "\u683c\u5f0f": [121, 248, 252, 258], "\u6700\u540e\u4f7f\u7528": 121, "\u90e8\u7f72\u5b83": 121, "\u4ecb\u7ecd": [121, 248, 252, 256], "\u6f14\u793a\u5982\u4f55\u901a\u8fc7\u4f7f\u7528": 121, "\u6765\u89e3\u51b3\u4e0d\u652f\u6301\u7684\u64cd\u4f5c\u7b26": 121, "\u4ece\u800c\u5b9e\u73b0\u7aef\u5230\u7aef\u7684\u6d41\u7a0b": 121, "\u5f3a\u5316\u5b66\u4e60": 121, "dqn": 121, "cartpol": [121, 137, 161, 164], "\u4efb\u52a1\u4e0a\u8bad\u7ec3\u4e00\u4e2a": 121, "\u4ee3\u7406": 121, "\u4f7f\u7528torchrl\u8fdb\u884c\u5f3a\u5316\u5b66\u4e60": 121, "torchrl": [121, 137, 147], "proxim": [121, 160], "pendulum": [121, 160], "\u8bad\u7ec3\u4e00\u4e2a\u9a6c\u91cc\u5965\u6e38\u620f\u7684": 121, "mario": [121, 147, 154], "ddpg": 121, "\u4e2d\u90e8\u7f72": [121, 140], "densenet": [121, 140, 214], "121": [121, 140, 145, 179, 239], "\u4e2d\u52a0\u8f7d": [121, 140, 252], "thumbnail": [121, 172], "holist": 121, "fuser": 121, "nchw": [121, 130, 148, 178, 221, 224], "raspberri": 121, "nerur": 121, "netork": 121, "exploresever": 121, "tangent": [121, 142, 146], "plugin": [121, 169, 209], "rai": 121, "orthogon": [121, 154], "symmetr": [121, 138, 154, 198, 201], "prune": [121, 154, 197], "snapshot": [121, 132, 175, 209, 223], "grok": 121, "torchserv": [121, 162, 214, 252], "torchx": 121, "inductor": [121, 175, 185, 197, 198, 256, 257], "scaled_dot_product_attent": [121, 165, 194], "paral": 121, "executorch": [121, 198], "sdk": [121, 209, 228, 259], "v3": [121, 229], "xnnpack": [121, 180, 198, 199, 201], "metal": 121, "shader": 121, "fp32": [121, 122, 132, 138, 148, 178, 180, 185, 186, 189, 198, 200, 222, 235], "torchrec": 121, "distributedmodelparallel": 121, "torchmultimod": 121, "\u89c6\u89c9": 121, "\u6587\u672c": 121, "\u5f3a\u5316\u5b66\u4e60\u7684": 121, "\u53ef\u4ee5\u5c06\u5176\u878d\u5165\u73b0\u6709\u5de5\u4f5c\u5185\u5bb9": 121, "sheet": 121, "\u57fa\u7840\u5185\u5bb9\u901f\u89c8": 121, "\u4e0a\u7684\u6559\u7a0b": 121, "\u83b7\u53d6": 121, "\u4e0a\u8fd0\u884c\u6559\u7a0b": 121, "\u5b66\u4e60\u5982\u4f55\u5c06\u6559\u7a0b\u6570\u636e\u590d\u5236\u5230": 121, "\u4ee5\u4fbf\u60a8\u53ef\u4ee5\u5728": 121, "hamid": [122, 123, 177, 178], "shojanazeri": [122, 123, 177, 178], "wright": 122, "rohan": [122, 163], "varma": [122, 163], "yanli": [122, 123], "zhao": [122, 123], "wikihow": 122, "p4dn": 122, "pressur": 122, "fdsp": 122, "discard": [122, 123, 169], "reduce_scatt": [122, 123, 124], "xxl": 122, "3b": [122, 159], "whl": [122, 138, 158, 169, 173, 185, 188, 189], "cu113": 122, "torch_nightli": [122, 138, 158, 188, 189], "wikihowal": 122, "wikihowsep": 122, "cs": 122, "summarization_dataset": 122, "t5_train": 122, "gpt2tokenizerfast": 122, "t5token": 122, "t5forconditionalgener": 122, "modeling_t5": 122, "t5block": 122, "checkpoint_wrapp": 122, "checkpointimpl": 122, "apply_activation_checkpointing_wrapp": 122, "fullyshardeddataparallel": [122, 123, 124, 156, 215, 216], "mixedprecis": 122, "backwardprefetch": [122, 123], "shardingstrategi": [122, 216], "fullstatedictconfig": 122, "statedicttyp": [122, 215], "transformer_auto_wrap_polici": 122, "enable_wrap": [122, 123], "cleanup": [122, 123, 134, 215], "setup_model": 122, "get_date_of_run": 122, "2022": 122, "12_pm": 122, "date_of_run": 122, "s_": [122, 161], "format_metrics_to_gb": 122, "gigabyt": 122, "metric_num": 122, "g_gigabyt": 122, "ndigit": 122, "fsdp_loss": 122, "inner_pbar": 122, "colour": 122, "desc": [122, 138, 186], "source_id": 122, "attention_mask": [122, 138, 186], "source_mask": 122, "target_id": [122, 166], "train_accuraci": 122, "val_load": 122, "fsdp_main": [122, 123], "type_path": 122, "output_length": 122, "print_text": 122, "150": [122, 164], "val_dataset": 122, "sampler1": [122, 123], "num_replica": [122, 123], "sampler2": [122, 123], "train_kwarg": [122, 123, 130], "test_kwarg": [122, 123, 130], "test_batch_s": [122, 123], "cuda_kwarg": [122, 123, 130], "t5_auto_wrap_polici": 122, "transformer_layer_cl": 122, "sharding_strategi": [122, 216], "shard_grad_op": 122, "zero2": 122, "full_shard": 122, "zero3": 122, "init_start_ev": [122, 123], "enable_tim": [122, 123, 173], "init_end_ev": [122, 123], "bf16_readi": 122, "is_bf16_support": 122, "loosevers": 122, "is_nccl_avail": 122, "mp_polici": 122, "bfsixteen": 122, "auto_wrap_polici": [122, 123], "mixed_precis": 122, "current_devic": [122, 231], "curr_val_loss": 122, "file_save_nam": 122, "time_of_run": 122, "dur": 122, "train_acc_track": 122, "val_acc_track": 122, "training_start_tim": 122, "track_memori": 122, "mem_alloc_track": 122, "mem_reserved_track": 122, "run_valid": 122, "zone": 122, "memory_alloc": [122, 130], "memory_reserv": 122, "save_model": [122, 123], "save_polici": 122, "offload_to_cpu": 122, "rank0_onli": 122, "state_dict_typ": 122, "full_state_dict": 122, "cpu_stat": 122, "currepoch": 122, "save_nam": 122, "barrier": [122, 123, 134, 136, 138, 177, 186], "metavar": [122, 123, 162, 164], "002": 122, "store_tru": [122, 123], "store_fals": 122, "nnode": [122, 134], "transfom": 122, "mhsa": 122, "ffn": 122, "fsdp_auto_wrap_polici": [122, 123], "bfloat16": [122, 185, 200, 208, 231, 238, 245, 248, 255], "v100": [122, 173, 176], "percis": 122, "fpsixteen": 122, "param_dtyp": 122, "reduce_dtyp": 122, "buffer_dtyp": 122, "fp32_polici": 122, "grad_bf16": 122, "backward_pr": 122, "backward_prefetch": 122, "backward_post": 122, "offload": [122, 123], "allgath": [122, 123, 124, 156, 248], "ram": [122, 224, 238], "1t": [123, 132], "feasibl": 123, "possess": [123, 185], "fsdp_mnist": 123, "size_based_auto_wrap_polici": 123, "default_auto_wrap_polici": 123, "fully_sharded_data_parallel": [123, 215], "cpuoffload": 123, "handwritten": 123, "ddp_loss": 123, "batch_idx": [123, 130, 149, 167, 221, 222, 255], "tloss": [123, 130, 167], "6f": [123, 130, 167, 222], "view_a": [123, 130, 163, 167, 222], "dataset1": [123, 130], "dataset2": [123, 130], "my_auto_wrap_polici": 123, "min_num_param": 123, "elapsed_tim": [123, 173], "110": [123, 164, 186, 232], "85": [123, 138, 220, 232], "67462890625sec": 123, "_fsdp_wrapped_modul": 123, "flattenparamswrapp": 123, "_fpw_modul": 123, "peak": [123, 130, 153, 159, 185], "g4dn": 123, "xlarg": 123, "seal": 123, "20000": 123, "89130859375sec": 123, "auto_wrap": 123, "66": [123, 220, 232], "cpu_offload": 123, "offload_param": 123, "dpp": 123, "ddp_mnist": 123, "77766015625sec": 123, "wanchao": [124, 216], "liang": [124, 216], "tianyu": 124, "liu": 124, "devicemesh": [124, 252], "megatron": 124, "lm": [124, 213], "sp": 124, "parallelstyl": 124, "parallelize_modul": 124, "dtensor": 124, "foward": 124, "aris": [124, 185, 192], "exceed": [124, 160], "domin": [124, 148, 172, 204], "consequ": [124, 161], "ballpark": 124, "flop": 124, "llm": 124, "trillion": [124, 132], "month": 124, "llama": 124, "70b": 124, "2k": 124, "llama2": 124, "1k": 124, "colwiseparallel": 124, "rowwiseparallel": 124, "sequenceparallel": 124, "rmsnormpython": 124, "preparemoduleinput": 124, "preparemoduleoutput": 124, "device_mesh": [124, 216], "init_device_mesh": [124, 216], "tp_mesh": 124, "transformerblock": 124, "swiglu": 124, "w2": 124, "silu": 124, "w1": 124, "w3": 124, "colwis": 124, "rowwis": [124, 232], "parallelize_plan": 124, "layer_tp_plan": 124, "feed_foward": 124, "feed_forward": 124, "wq": 124, "wk": 124, "wv": 124, "wo": 124, "tp_plan": 124, "draft": [124, 136], "num_head": [124, 165], "layer_id": 124, "attn_lay": 124, "n_head": 124, "n_kv_head": 124, "tok_embed": 124, "input_layout": 124, "output_layout": 124, "attention_norm": 124, "ffn_norm": 124, "desired_input_layout": 124, "yellow": 124, "loss_parallel": 124, "use_local_output": 124, "mesh_2d": [124, 216], "submesh": 124, "dp_mesh": 124, "model_tp": 124, "model_2d": 124, "use_orig_param": 124, "broadli": 125, "torchviz": [125, 131], "_save": 125, "_saved_self": 125, "_saved_oth": 125, "kept": [125, 127, 265], "_saved_result": 125, "cycl": [125, 169], "thumb": [125, 146, 160], "pack_hook": 125, "unpack_hook": 125, "saved_tensors_hook": 125, "harmless": 125, "debat": 125, "__repr__": [125, 245], "repr": [125, 232], "save_on_cpu": 125, "152": 125, "48gb": 125, "5gb": 125, "6x": [125, 178, 224], "savetocpu": 125, "uuid": 125, "tmp_dir": 125, "uuid4": 125, "leak": 125, "tmp_dir_obj": 125, "succeed": [125, 209], "selfdeletingtempfil": 125, "__del__": 125, "temp_fil": 125, "save_on_disk_threshold": 125, "tensor_or_sctf": 125, "savetodisk": 125, "autograd_saved_tensors_hooks_tutori": 125, "david": [126, 265], "eriksson": 126, "balandat": 126, "methodolog": [126, 178, 221], "runnabl": [126, 145], "laptop": [126, 195], "sustain": 126, "botorch": 126, "bayesian": 126, "mnist_train_na": [126, 149], "appdef": 126, "log_path": [126, 149], "hidden_size_1": [126, 149], "hidden_size_2": [126, 149], "trial_idx": 126, "joinpath": 126, "torchx_imag": 126, "kubernet": 126, "local_cwd": 126, "torchxrunn": 126, "log_dir": [126, 170], "mkdtemp": 126, "ax_runn": 126, "tracker_bas": 126, "component_const_param": 126, "cfg": 126, "choiceparamet": 126, "parametertyp": 126, "rangeparamet": 126, "num_param": [126, 149], "pareto": 126, "frontier": 126, "weird": 126, "upper": [126, 154, 165, 265], "parameter_typ": 126, "log_scal": 126, "is_ord": 126, "search_spac": 126, "parameter_constraint": 126, "outcom": [126, 201], "fetch": [126, 128, 135, 162, 163, 164, 177, 178], "proxi": [126, 190, 193], "tensorboardcurvemetr": 126, "mytensorboardmetr": 126, "prespecifi": 126, "classmethod": [126, 184, 245], "get_ids_from_tri": 126, "queryabl": 126, "is_available_while_run": 126, "curve_nam": 126, "lower_is_bett": 126, "val_acc": [126, 149], "model_num_param": 126, "multiobjectiveoptimizationconfig": 126, "94": [126, 198, 220, 239], "multiobject": 126, "objectivethreshold": 126, "optimization_config": 126, "opt_config": 126, "objective_threshold": 126, "80_000": 126, "torchx_mnist": 126, "generationstrategi": 126, "total_tri": 126, "modelbridg": 126, "dispatch_util": 126, "choose_generation_strategi": 126, "gs": [126, 259], "num_trial": 126, "scheduleropt": 126, "max_pending_tri": 126, "generation_strategi": 126, "autom": [126, 144, 148, 172, 183], "run_all_tri": 126, "report_util": 126, "exp_to_df": 126, "_pareto_frontier_scatter_2d_plotli": 126, "surrog": 126, "uncertainti": 126, "cross_valid": 126, "compute_diagnost": 126, "diagnost": 126, "interact_cross_validation_plotli": 126, "init_notebook_plot": 126, "contour": 126, "interact_contour_plotli": 126, "metric_nam": 126, "kiuk": 126, "tristan": [126, 159], "rice": [126, 159], "ax_multiobjective_nas_tutori": [126, 149], "\u5e8f\u5217\u5230\u5e8f\u5217\u7f51\u7edc\u548c\u6ce8\u610f\u529b\u673a\u5236\u8fdb\u884c\u7ffb\u8bd1": 127, "surnam": 127, "scottish": 127, "irish": 127, "schmidhub": 127, "czech": 127, "dutch": 127, "\u8ddf\u7740\u793a\u4f8b\u5b66\u4e60": [127, 128, 166], "unreason": [127, 128], "roman": [127, 265], "glob": [127, 128, 209], "findfil": [127, 128], "all_lett": [127, 128], "ascii_lett": [127, 128], "n_letter": [127, 128], "\u015blus\u00e0rski": 127, "category_lin": [127, 128], "all_categori": [127, 128], "splitext": [127, 128], "basenam": [127, 128], "n_categori": [127, 128], "italian": 127, "0s": [127, 137, 186], "line_length": 127, "lettertoindex": 127, "lettertotensor": 127, "linetotensor": 127, "jone": 127, "h2h": 127, "inithidden": [127, 128], "n_hidden": 127, "next_hidden": 127, "precomput": 127, "albert": 127, "greatest": [127, 172], "categoryfromoutput": 127, "top_n": 127, "top_i": 127, "category_i": 127, "randomchoic": [127, 128], "randomtrainingexampl": [127, 128], "category_tensor": [127, 128], "line_tensor": 127, "005": [127, 161, 179], "plot_everi": [127, 128, 166], "current_loss": 127, "all_loss": [127, 128], "timesinc": [127, 128, 166], "guess_i": 127, "histor": [127, 128], "minu": [127, 169], "n_confus": 127, "111": [127, 164, 166, 177, 186, 232, 258], "cax": [127, 166], "matshow": [127, 166], "colorbar": [127, 166], "set_xticklabel": [127, 150, 166], "rotat": [127, 166, 167, 170], "set_yticklabel": [127, 166], "tick": [127, 166], "xaxi": [127, 166], "set_major_loc": [127, 166], "multipleloc": [127, 166], "yaxi": [127, 150, 166], "bright": 127, "incorrectli": [127, 199], "chines": [127, 128], "korean": 127, "greek": 127, "input_lin": 127, "n_predict": 127, "topv": [127, 128], "category_index": 127, "doveski": 127, "jackson": 127, "satoshi": 127, "bottl": [127, 145], "hazaki": 127, "japanes": 127, "5533": 127, "yournam": 127, "gender": 127, "subreddit": 127, "char_rnn_classification_tutori": 127, "russian": 128, "ru": 128, "rovakov": 128, "uantov": 128, "shavakov": 128, "ger": 128, "gerren": 128, "ereng": 128, "rosher": 128, "spa": 128, "salla": 128, "parer": 128, "allan": 128, "chi": 128, "chan": 128, "iun": 128, "\u8fdb\u884c\u59d3\u540d\u5206\u7c7b": [128, 166], "some_fil": [128, 134], "n\u00e9\u00e0l": 128, "o2o": 128, "muscl": [128, 172], "fuzz": 128, "chao": 128, "i2o": 128, "input_combin": 128, "output_combin": 128, "randomtrainingpair": 128, "abcd": 128, "categorytensor": 128, "targettensor": 128, "letter_index": 128, "input_line_tensor": 128, "target_line_tensor": 128, "0005": [128, 179], "start_lett": 128, "abc": [128, 172], "fiction": 128, "countri": 128, "citi": 128, "char_rnn_generation_tutori": 128, "simon": 129, "\u4f60\u5c06\u5b66\u5230\u4ec0\u4e48": 129, "\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u5982\u4f55\u4e0e": 129, "\u4ea4\u4e92": 129, "\u5982\u4f55\u4f7f\u7528\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206api": 129, "\u5982\u4f55\u4f7f\u7528": [129, 252], "torch_log": [129, 174, 175, 252, 253], "\u68c0\u67e5\u65e5\u5fd7": 129, "\u9884\u5907\u77e5\u8bc6": 129, "\u5b8c\u6210": 129, "compile\u4ecb\u7ecd": 129, "\u9605\u8bfb": 129, "\u5f00\u59cb\u4f7f\u7528pytorch": 129, "\u4e2d\u7684torchdynamo\u548caotautograd\u90e8\u5206": 129, "\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u662f": 129, "\u4e2d\u5f15\u5165\u7684": 129, "\u6269\u5c55": [129, 232], "\u5b83\u5141\u8bb8\u6355\u83b7\u66f4\u5927\u7684\u540e\u5411\u56fe": 129, "\u867d\u7136": [129, 232, 256], "\u786e\u5b9e\u4f1a\u6355\u83b7\u540e\u5411\u56fe": 129, "\u4f46\u5b83\u662f": 129, "\u90e8\u5206": [129, 231], "\u6355\u83b7\u7684": 129, "aotautograd": 129, "\u7ec4\u4ef6\u63d0\u524d\u6355\u83b7\u540e\u5411\u56fe": 129, "\u4f46\u5b58\u5728\u4e00\u4e9b\u9650\u5236": 129, "\u524d\u5411\u4e2d\u7684\u56fe\u65ad\u88c2\u5bfc\u81f4\u540e\u5411\u4e2d\u7684\u56fe\u65ad\u88c2": 129, "\u540e\u5411\u94a9\u5b50": 129, "\u6ca1\u6709\u88ab\u6355\u83b7": 129, "\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u901a\u8fc7\u76f4\u63a5\u4e0e\u81ea\u52a8\u5fae\u5206\u5f15\u64ce\u96c6\u6210": 129, "\u5141\u8bb8\u5728\u8fd0\u884c\u65f6\u6355\u83b7\u5b8c\u6574\u7684\u540e\u5411\u56fe": 129, "\u5177\u6709\u4ee5\u4e0b\u4e24\u4e2a\u7279\u5f81\u7684\u6a21\u578b\u5e94\u8be5\u5c1d\u8bd5\u4f7f\u7528\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206": 129, "\u5e76\u53ef\u80fd\u89c2\u5bdf\u5230\u66f4\u597d\u7684\u6027\u80fd": 129, "\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u4e5f\u6709\u5bf9\u5e94\u7684\u9650\u5236": 129, "\u5728\u540e\u5411\u5f00\u59cb\u65f6\u589e\u52a0\u4e86\u8fd0\u884c\u65f6\u5f00\u9500": 129, "\u7528\u4e8e\u7f13\u5b58\u67e5\u627e": 129, "\u5728\u52a8\u6001\u4e2d\u66f4\u5bb9\u6613\u91cd\u65b0\u7f16\u8bd1\u548c\u56fe\u65ad\u88c2": 129, "\u56e0\u4e3a\u6355\u83b7\u7684\u8303\u56f4\u66f4\u5927": 129, "\u6211\u4eec\u5c06\u57fa\u4e8e\u8fd9\u4e2a\u7b80\u5355\u7684\u795e\u7ecf\u7f51\u7edc\u6a21\u578b\u8fdb\u884c\u793a\u4f8b": 129, "\u5b83\u63a5\u53d7\u4e00\u4e2a10\u7ef4\u8f93\u5165\u5411\u91cf": 129, "\u901a\u8fc7\u5355\u4e2a\u7ebf\u6027\u5c42\u5904\u7406\u5b83": 129, "\u5e76\u8f93\u51fa\u53e6\u4e00\u4e2a10\u7ef4\u5411\u91cf": 129, "api\u4e4b\u524d": 129, "\u8bf7\u786e\u4fdd\u5c06": 129, "compiled_autograd": 129, "\u8bbe\u7f6e\u4e3a": [129, 235, 251, 257], "\u5728\u4e0a\u8ff0\u4ee3\u7801\u4e2d": 129, "\u7c7b\u7684\u5b9e\u4f8b": 129, "\u751f\u6210\u4e86\u4e00\u4e2a\u968f\u673a\u768410\u7ef4\u5f20\u91cf": 129, "\u6211\u4eec\u5b9a\u4e49\u4e86\u8bad\u7ec3\u5faa\u73af\u51fd\u6570": 129, "\u5e76\u7528": 129, "\u88c5\u9970\u5b83\u4ee5\u4f18\u5316\u5176\u6267\u884c": 129, "\u5f53\u8c03\u7528": 129, "python\u89e3\u91ca\u5668\u8c03\u7528dynamo": 129, "\u56e0\u4e3a\u6b64\u8c03\u7528\u88ab\u88c5\u9970\u6709": 129, "dynamo\u62e6\u622apython\u5b57\u8282\u7801": 129, "\u6a21\u62df\u5b83\u4eec\u7684\u6267\u884c\u5e76\u5c06\u64cd\u4f5c\u8bb0\u5f55\u5230\u56fe\u4e2d": 129, "aotdispatch": 129, "\u7981\u7528\u94a9\u5b50\u5e76\u8c03\u7528\u81ea\u52a8\u5fae\u5206\u5f15\u64ce\u4e3a": 129, "\u5e76\u5c06\u64cd\u4f5c\u8bb0\u5f55\u5230\u56fe\u4e2d": 129, "aotdispatcher\u91cd\u5199": 129, "\u7684\u524d\u5411\u548c\u540e\u5411\u5b9e\u73b0": 129, "inductor\u751f\u6210\u4e00\u4e2a\u5bf9\u5e94\u4e8eaotdispatcher\u524d\u5411\u548c\u540e\u5411\u7684\u4f18\u5316\u5b9e\u73b0\u7684\u51fd\u6570": 129, "dynamo\u5c06\u4f18\u5316\u540e\u7684\u51fd\u6570\u8bbe\u7f6e\u4e3apython\u89e3\u91ca\u5668\u4e0b\u4e00\u6b21\u6267\u884c": 129, "python\u89e3\u91ca\u5668\u6267\u884c\u4f18\u5316\u540e\u7684\u51fd\u6570": 129, "\u6267\u884c": 129, "python\u89e3\u91ca\u5668\u6267\u884c": 129, "\u8c03\u7528\u81ea\u52a8\u5fae\u5206\u5f15\u64ce": 129, "\u56e0\u4e3a\u6211\u4eec\u8bbe\u7f6e\u4e86": 129, "\u6240\u4ee5\u8def\u7531\u5230\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u5f15\u64ce": 129, "\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u8ba1\u7b97": 129, "\u5305\u62ec\u5b83\u9047\u5230\u7684\u4efb\u4f55\u94a9\u5b50": 129, "\u5728\u6b64\u8fc7\u7a0b\u4e2d": 129, "\u5b83\u5c06\u8bb0\u5f55aotdispatcher\u4e4b\u524d\u91cd\u5199\u7684\u540e\u5411": 129, "\u7136\u540e\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u751f\u6210\u4e00\u4e2a\u65b0\u7684\u51fd\u6570": 129, "\u5bf9\u5e94\u4e8e": 129, "\u7684\u5b8c\u5168\u8ddf\u8e2a\u5b9e\u73b0": 129, "\u7684\u63a8\u7406\u6a21\u5f0f\u4e0b\u6267\u884c\u5b83": 129, "\u76f8\u540c\u7684\u6b65\u9aa4\u9012\u5f52\u5730\u9002\u7528\u4e8e\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u56fe": 129, "\u4f46\u8fd9\u4e00\u6b21aotdispatcher\u5c06\u4e0d\u9700\u8981\u5212\u5206\u56fe": 129, "\u73af\u5883\u53d8\u91cf\u8fd0\u884c\u811a\u672c": 129, "\u4ec5\u6253\u5370\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u56fe": 129, "\u4ee5\u6027\u80fd\u4e3a\u4ee3\u4ef7\u6253\u5370\u5e26\u6709\u66f4\u591a\u5f20\u91cf\u5143\u6570\u636e\u548c\u91cd\u65b0\u7f16\u8bd1\u539f\u56e0\u7684\u56fe": 129, "compiled_autograd_verbos": 129, "\u91cd\u65b0\u8fd0\u884c\u4e0a\u8ff0\u4ee3\u7801\u7247\u6bb5": 129, "\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u56fe\u73b0\u5728\u5e94\u8be5\u88ab\u8bb0\u5f55\u5230": 129, "stderr": 129, "\u67d0\u4e9b\u56fe\u8282\u70b9\u7684\u540d\u79f0\u5c06\u6709": 129, "aot0_": 129, "\u7684\u524d\u7f00": 129, "\u8fd9\u4e9b\u5bf9\u5e94\u4e8eaotautograd\u540e\u5411\u56fe0\u4e2d\u9884\u5148\u7f16\u8bd1\u7684\u8282\u70b9": 129, "aot0_view_2": 129, "\u5bf9\u5e94\u4e8eid\u4e3a0\u7684aot\u540e\u5411\u56fe\u4e2d\u7684view_2": 129, "\u4e0b\u56fe\u4e2d": 129, "\u7ea2\u8272\u6846\u5305\u542b\u4e86": 129, "\u5728\u6ca1\u6709\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u7684\u60c5\u51b5\u4e0b\u6355\u83b7\u7684aot\u540e\u5411\u56fe": 129, "\u4f60\u53ef\u4ee5\u4e3a\u4e24\u6b21\u7f16\u8bd1\u4f7f\u7528\u4e0d\u540c\u7684\u7f16\u8bd1\u5668\u914d\u7f6e": 129, "\u5373\u4f7f\u524d\u5411\u5b58\u5728\u56fe\u65ad\u88c2": 129, "\u540e\u5411\u53ef\u80fd\u662f\u5168\u56fe": 129, "\u6216\u8005\u4f60\u53ef\u4ee5\u4f7f\u7528\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668": 129, "\u5b83\u5c06\u9002\u7528\u4e8e\u5176\u4f5c\u7528\u57df\u5185\u7684\u6240\u6709\u81ea\u52a8\u5fae\u5206\u8c03\u7528": 129, "\u524d\u5411\u4f20\u9012\u4e2d\u7684\u56fe\u65ad\u88c2\u4e0d\u518d\u5fc5\u7136\u5bfc\u81f4\u540e\u5411\u4f20\u9012\u4e2d\u7684\u56fe\u65ad\u88c2": 129, "aot_eag": [129, 145], "graph_break": 129, "3rd": [129, 221], "unique_graph": 129, "\u5728\u7b2c\u4e00\u4e2a": [129, 239], "\u6848\u4f8b\u4e2d": 129, "\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u7531\u4e8e\u7f16\u8bd1\u51fd\u6570": 129, "\u4e2d\u7684\u4e24\u4e2a\u56fe\u65ad\u88c2": 129, "\u4ea7\u751f\u4e863\u4e2a\u540e\u5411\u56fe": 129, "\u800c\u5728\u7b2c\u4e8c\u4e2a\u5e26\u6709\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u7684": 129, "\u5c3d\u7ba1\u5b58\u5728\u56fe\u65ad\u88c2": 129, "\u6211\u4eec\u770b\u5230\u4e86\u6574\u4e2a\u540e\u5411\u56fe\u88ab\u8ddf\u8e2a": 129, "\u73b0\u5728\u53ef\u4ee5\u6355\u83b7\u540e\u5411\u94a9\u5b50": 129, "\u56fe\u4e2d\u5e94\u8be5\u6709\u4e00\u4e2a": 129, "call_hook": 129, "\u8282\u70b9": 129, "dynamo\u7a0d\u540e\u5c06\u5176\u5185\u8054\u5230\u4ee5\u4e0b\u5185\u5bb9": 129, "\u7531\u4e8e\u635f\u5931\u503c\u7684\u81ea\u52a8\u5fae\u5206\u7ed3\u6784\u53d1\u751f\u53d8\u5316": 129, "\u6211\u4eec\u5728\u6bcf\u6b21\u8fed\u4ee3\u4e2d\u8c03\u7528\u4e0d\u540c\u7684\u64cd\u4f5c\u7b26": 129, "\u5bfc\u81f4": 129, "\u6bcf\u6b21\u90fd\u8ddf\u8e2a\u4e0d\u540c\u7684\u81ea\u52a8\u5fae\u5206\u5386\u53f2": 129, "\u4f60\u5e94\u8be5\u770b\u5230\u4e00\u4e9b\u91cd\u65b0\u7f16\u8bd1\u6d88\u606f": 129, "\u7531\u4e8e\u65b0\u7684\u81ea\u52a8\u5fae\u5206\u8282\u70b9\u5bfc\u81f4\u7684\u7f13\u5b58\u672a\u547d\u4e2d": 129, "\u7531\u4e8e\u5f20\u91cf\u5f62\u72b6\u53d8\u5316": 129, "\u6539\u53d8\u4e86\u5f62\u72b6": 129, "\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u5728\u7b2c\u4e00\u6b21\u53d8\u5316\u540e\u5c06x\u6807\u8bb0\u4e3a\u52a8\u6001\u5f62\u72b6\u5f20\u91cf": 129, "\u4f60\u5e94\u8be5\u770b\u5230\u91cd\u65b0\u7f16\u8bd1\u6d88\u606f": 129, "\u7531\u4e8e\u5f62\u72b6\u53d8\u5316\u5bfc\u81f4\u7684\u7f13\u5b58\u672a\u547d\u4e2d": 129, "\u6211\u4eec\u4ecb\u7ecd\u4e86": [129, 257], "\u4e0e\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u7684\u9ad8\u7ea7\u751f\u6001\u7cfb\u7edf": 129, "\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u7684\u57fa\u7840\u77e5\u8bc6\u4ee5\u53ca\u4e00\u4e9b\u5e38\u89c1\u7684\u91cd\u65b0\u7f16\u8bd1\u539f\u56e0": 129, "\u8bf7\u7ee7\u7eed\u5173\u6ce8": 129, "\u4e0a\u7684\u6df1\u5165\u63a2\u8ba8": 129, "adjac": [130, 264], "dilat": [130, 135], "track_running_statist": 130, "denomin": 130, "nenadmarku": [130, 143], "once_differenti": 130, "convolution_backward": 130, "grad_out": [130, 131], "grad_x": [130, 131], "conv_transpose2d": [130, 208], "unsqueeze_al": 130, "batch_norm_backward": 130, "sqrt_var": 130, "d_denom": 130, "denom": 130, "unnecessarili": 130, "d_var": 130, "d_mean_dx": 130, "reassign": [130, 157], "unbiased_var": 130, "unbias": 130, "fast_mod": 130, "fusedconvbn2dfunct": 130, "conv_weight": 130, "ndim": [130, 193], "x_conv_out": 130, "fusedconvbn": 130, "in_channel": [130, 147, 154, 179], "out_channel": [130, 147, 154, 179], "exp_avg_factor": 130, "factory_kwarg": 130, "weight_shap": 130, "kaiming_uniform_": [130, 203], "convbn1": 130, "convbn2": 130, "bn1": [130, 143, 150, 158], "track_running_stat": [130, 180, 219], "bn2": 130, "ntest": [130, 167], "geforc": 130, "rtx": 130, "3070": 130, "56gb": 130, "unfus": [130, 143], "68gb": 130, "shallow": [130, 137], "peak_memory_alloc": 130, "123456": 130, "max_memory_alloc": [130, 185, 231, 260], "reset_peak_memory_stat": [130, 185], "gb": [130, 185], "custom_function_conv_bn_tutori": 130, "finit": [131, 151], "differenc": 131, "magnifi": 131, "gradgradcheck": [131, 248], "make_dot": 131, "dout": [131, 146], "ouptut": 131, "sinh": 131, "cosh": 131, "expx": 131, "expnegx": 131, "_grad_out_exp": 131, "_grad_out_negexp": 131, "sinhbad": 131, "cube_backward": 131, "cubebackward": 131, "cube_forward": 131, "cube_backward_backward": 131, "sav_grad_out": 131, "cube_backward_backward_grad_out": 131, "cube": 131, "dgrad_out": 131, "artifact": [132, 175], "reachabl": [132, 133, 136], "2xlarg": [132, 133], "hydra": 132, "slurm": [132, 133, 134], "char_dataset": 132, "gpt2_train_cfg": 132, "bucket": [132, 259], "aggress": 132, "rendezv": [133, 156], "nccl_debug": 133, "nccl_socket_ifnam": 133, "eth0": 133, "zhu": [134, 145], "trigger": [134, 145, 162, 164], "clarifi": 134, "filestor": 134, "tcpstore": 134, "libtmp": 134, "toymodel": [134, 150, 215, 216], "net1": [134, 150, 215, 216], "net2": [134, 150, 215, 216], "demo_bas": 134, "ddp_model": [134, 260], "run_demo": 134, "demo_fn": 134, "caution": 134, "timeout": [134, 156], "straggler": [134, 169], "unpredict": 134, "spike": [134, 159], "AND": [134, 254], "torchelast": 134, "demo_checkpoint": 134, "checkpoint_path": [134, 185, 199], "gettempdir": 134, "toympmodel": 134, "dev0": 134, "dev1": 134, "demo_model_parallel": 134, "mp_model": 134, "ddp_mp_model": 134, "n_gpu": [134, 138, 186], "elastic_ddp": 134, "rdzv_id": [134, 216], "rdzv_backend": 134, "rdzv_endpoint": [134, 216], "29400": [134, 216], "aka": [134, 146, 148, 158, 174, 175, 221, 224], "scontrol": 134, "hostnam": 134, "slurm_nodelist": 134, "srun": 134, "torchrun_script": 134, "rpc_sync": [135, 162, 163, 164, 213], "embeddingt": [135, 164, 176], "amort": [135, 160, 162], "resnetbas": 135, "conv1x1": 135, "inplan": 135, "width_per_group": 135, "_lock": 135, "_block": 135, "_norm_lay": 135, "base_width": 135, "_make_lay": 135, "previous_dil": 135, "parameter_rref": [135, 164, 213], "calle": [135, 162, 163], "resnetshard1": 135, "nonlinear": 135, "x_rref": 135, "to_her": 135, "resnetshard2": 135, "distresnet50": 135, "micro": [135, 177, 178], "y_rref": 135, "num_split": 135, "p1_rref": 135, "p2_rref": 135, "out_futur": 135, "z_fut": 135, "wait_al": [135, 162], "remote_param": [135, 163, 164], "worker1": [135, 213], "worker2": 135, "image_w": [135, 150, 162], "image_h": [135, 150, 162], "run_mast": 135, "one_hot_indic": [135, 150, 162], "passiv": [135, 162, 164], "num_worker_thread": [135, 213], "tik": [135, 162, 213], "tok": [135, 162, 213], "s\u00e9b": 136, "arnold": 136, "practition": [136, 193], "sysadmin": 136, "coordin": [136, 167, 179, 185, 193], "pdsh": 136, "clustershel": 136, "init_process": 136, "127": [136, 180, 201], "set_start_method": 136, "ip": 136, "recv": [136, 164], "irecv": 136, "dst": 136, "req": 136, "nor": [136, 143, 180, 190], "undefin": [136, 150, 190, 191, 192], "behaviour": 136, "fanci": 136, "baidu": 136, "deepspeech": 136, "communc": 136, "new_group": [136, 216], "commut": 136, "scatter_list": 136, "gather_list": 136, "tnt": 136, "splitdataset": 136, "data_idx": 136, "datapartition": 136, "1234": 136, "data_len": 136, "part_len": 136, "partition_dataset": 136, "get_world_s": 136, "partition_s": 136, "train_set": [136, 169], "average_gradi": 136, "voil\u00e0": 136, "send_buff": 136, "recv_buff": 136, "accum": 136, "send_req": 136, "bandwidth": [136, 169, 197], "subsect": [136, 264], "eleg": 136, "handi": [136, 147, 170], "smi": [136, 231], "mvapich2": 136, "ipc": [136, 169], "recompil": [136, 143, 173, 199, 212], "requisit": 136, "forg": [136, 222], "openmpi": 136, "mpirun": 136, "myscript": 136, "handshak": 136, "superflu": 136, "readili": 136, "fcntl": 136, "nf": 136, "sharedfil": 136, "23456": 136, "socket": [136, 145, 177, 178], "everyon": 136, "unclear": [136, 150, 174, 175], "natalia": 136, "gimelshein": 136, "carrier": [137, 160], "brought": [137, 160], "mod": [137, 143, 144, 173, 174, 175, 195, 204, 233, 245], "set_exploration_typ": [137, 160], "totensorimag": 137, "egreedymodul": 137, "lstmmodul": 137, "qvaluemodul": 137, "dqnloss": 137, "84x84": 137, "accessori": [137, 159], "stamp": 137, "is_init": 137, "tensordictprim": 137, "primer": [137, 193], "disappear": 137, "keep_dim": 137, "backbon": [137, 172], "flank": 137, "assist": 137, "num_cel": [137, 160], "squeeze_output": 137, "aggregator_class": 137, "aggregator_kwarg": 137, "n_cell": 137, "tensordictmodulebas": 137, "batch_first": [137, 166], "make_tensordict_prim": 137, "action_valu": [137, 147], "qval": 137, "action_spac": [137, 147, 161], "qvalueactor": 137, "stoch_polici": 137, "exploration_modul": 137, "eps_init": 137, "set_recurrent_mod": 137, "redund": 137, "delay_valu": 137, "3e": [137, 155, 160], "longest": [137, 144], "npai": 137, "chosen_action_valu": 137, "recurrent_st": 137, "to_tensordict": 137, "non_block": 137, "step_count": [137, 160], "action_spread": 137, "dqn_with_rnn_tutori": 137, "jianyu": 138, "huang": [138, 156, 215], "jessica": [138, 158], "paraphras": 138, "mrpc": [138, 186], "dolan": 138, "brockett": 138, "2005": 138, "imbalanc": 138, "sklearn": [138, 172], "tochvis": 138, "cu101": [138, 158], "bertconfig": [138, 186], "bertforsequenceclassif": [138, 186], "glue_compute_metr": [138, 186], "glue_output_mod": [138, 186], "output_mod": [138, 186], "glue_processor": [138, 186], "processor": [138, 177, 186, 200, 221], "glue_convert_examples_to_featur": [138, 186], "convert_examples_to_featur": [138, 186], "getlogg": [138, 149, 172, 186], "basicconfig": [138, 186], "asctim": [138, 186], "levelnam": [138, 186], "datefmt": [138, 186], "modeling_util": [138, 186], "setlevel": [138, 149, 186], "__config__": [138, 186], "parallel_info": [138, 186], "sep": [138, 194], "glue_data": [138, 186], "download_glue_data": [138, 186], "glue_dir": [138, 186], "task_nam": [138, 186], "out_dir": [138, 186], "run_glu": 138, "model_typ": [138, 185, 186], "model_name_or_path": [138, 186], "do_train": 138, "do_ev": 138, "do_lower_cas": [138, 186], "max_seq_length": [138, 186], "per_gpu_eval_batch_s": [138, 186], "per_gpu_train_batch_s": 138, "save_step": 138, "output_dir": [138, 186], "get_label": [138, 186], "overwrite_cach": [138, 186], "copyright": [138, 265], "inc": 138, "apach": [138, 177, 178], "complianc": 138, "law": [138, 194], "AS": 138, "IS": 138, "warranti": 138, "OR": 138, "OF": 138, "govern": [138, 162], "permiss": 138, "mnli": [138, 186], "mi": [138, 186, 267], "eval_task_nam": [138, 186], "eval_outputs_dir": [138, 186], "eval_task": [138, 186], "eval_output_dir": [138, 186], "load_and_cache_exampl": [138, 186], "eval_sampl": [138, 186], "eval_dataload": [138, 186, 222], "eval_loss": 138, "nb_eval_step": [138, 186], "out_label_id": [138, 186], "distilbert": [138, 186], "token_type_id": [138, 186], "xlnet": [138, 186], "roberta": [138, 186], "segment_id": [138, 186], "tmp_eval_loss": 138, "regress": [138, 167, 186], "output_eval_fil": [138, 186], "eval_result": [138, 186], "cached_features_fil": [138, 186], "cached_": [138, 186], "get_dev_exampl": [138, 186], "get_train_exampl": [138, 186], "pad_on_left": 138, "convert_tokens_to_id": 138, "pad_token_segment_id": 138, "all_input_id": [138, 186], "all_attention_mask": [138, 186], "all_token_type_id": [138, 186], "all_label": [138, 186], "438": [138, 186], "181": [138, 232], "30522": 138, "eval_start_tim": [138, 186], "eval_end_tim": [138, 186], "eval_duration_tim": [138, 186], "408": [138, 178], "prec": [138, 148], "9019": 138, "902": [138, 186], "8788": 138, "8956": 138, "asymmetr": [138, 201], "openmp": [138, 177, 208, 227, 248], "tbb": 138, "ids_tensor": [138, 186], "dummy_input": [138, 186, 225, 226, 254, 258], "traced_model": [138, 143, 186, 248], "bert_traced_eager_qu": 138, "loaded_quantized_model": [138, 183, 198], "implic": [138, 186], "devlin": 138, "lee": 138, "toutanova": 138, "zafrir": 138, "boudoukh": 138, "izsak": 138, "wasserblat": 138, "2019": 138, "q8bert": 138, "8bit": 138, "tradition": [139, 203], "simplemlp": 139, "pretend": [139, 155], "minibatch": [139, 155], "num_model": [139, 155], "6400": 139, "predictions_diff_minibatch_loop": 139, "predictions2": 139, "stack_module_st": 139, "functional_cal": [139, 142, 151, 155], "base_model": 139, "fmodel": 139, "predictions1_vmap": 139, "in_dim": [139, 146, 155, 206, 235], "predictions2_vmap": 139, "without_vmap": [139, 146, 155], "with_vmap": [139, 146, 155], "avinash": 140, "sajjanshetti": 140, "refresh": [140, 170], "endpoint": [140, 214, 259], "class_id": [140, 214], "n02124075": 140, "egyptian_cat": [140, 214], "jsonifi": [140, 214], "image_net_xxx": 140, "transform_imag": [140, 214], "image_byt": 140, "my_transform": [140, 214], "bytesio": [140, 230], "densenet121": [140, 148, 173, 214], "get_predict": [140, 214], "y_hat": [140, 214], "predicted_idx": 140, "img_byt": 140, "TO": [140, 254], "flask_env": 140, "flask_app": [140, 214], "resp": 140, "recogn": [140, 156, 201], "ui": [140, 159, 252, 263], "streamer": 140, "queue": 140, "flask_rest_api_tutori": 140, "forced_alignment_tutori": 141, "incomplet": 142, "eagerli": [142, 153, 175], "primal": [142, 146, 264], "dual": [142, 264], "forward_ad": 142, "fwad": 142, "dual_level": 142, "make_du": 142, "dual_input": 142, "unpack_du": 142, "dual_input_alt": 142, "plain_tensor": 142, "dual_output": 142, "namedtupl": [142, 161], "delattr": 142, "setattr": [142, 143, 148], "fresh": 142, "dual_param": 142, "jvp2": 142, "gi": 142, "check_forward_ad": 142, "check_backward_ad": 142, "check_undefined_grad": 142, "check_batched_grad": 142, "functorch": [142, 174, 175], "downsid": 142, "ft": 142, "primal0": 142, "tangent0": 142, "primal1": 142, "tangent1": 142, "primal_out": 142, "tangent_out": 142, "new_fn": 142, "reformul": [142, 151], "make_functional_with_buff": 142, "analog": [142, 192, 193], "consolid": [142, 162, 199], "func_params_onli": 142, "jvp_out": 142, "dual_numb": 142, "forward_ad_usag": 142, "horac": 143, "wrappedbatchnorm": 143, "symbolic_trac": [143, 144, 173], "bake": 143, "fuse_conv_bn_ev": 143, "batch_norm": [143, 239], "fused_conv": 143, "fuse_conv_bn_weight": 143, "running_var": [143, 199], "conv_w": 143, "conv_b": 143, "bn_rm": 143, "bn_rv": 143, "bn_ep": 143, "bn_w": 143, "bn_b": 143, "bn_var_rsqrt": 143, "rsqrt": 143, "_parent_nam": 143, "qualnam": 143, "atom": 143, "baz": 143, "rsplit": 143, "replace_node_modul": 143, "new_modul": 143, "parent_nam": 143, "graphmodul": [143, 144, 173, 174, 175, 180], "fx_model": 143, "call_modul": 143, "replace_all_uses_with": 143, "erase_nod": 143, "lint": 143, "simplif": 143, "fused_model": 143, "rn18": [143, 144], "fused_rn18": 143, "jit_rn18": 143, "conclus": 143, "tracker": [143, 144], "fx_conv_bn_fus": 143, "nicer": 144, "instrument": [144, 252], "tabul": [144, 173], "traced_rn18": 144, "ca": 144, "profilinginterpret": 144, "gm": [144, 173, 201], "total_runtime_sec": 144, "runtimes_sec": 144, "intercept": [144, 178], "t_start": 144, "return_v": 144, "t_end": 144, "run_nod": 144, "setdefault": 144, "should_sort": 144, "node_summari": 144, "mean_total_runtim": 144, "mean_runtim": 144, "pct_total": 144, "pct": 144, "clock": 144, "interp": 144, "51393": 144, "fx_profiling_tutori": 144, "xuan": 145, "liao": 145, "haozh": 145, "jiong": [145, 177, 178, 187, 200, 201], "gong": [145, 177, 178, 187, 200, 201], "weihan": 145, "intricaci": 145, "troubleshoot": 145, "pinpoint": [145, 178], "foo1": 145, "x1": [145, 151, 179], "x2": [145, 151], "8390": 145, "compiled_foo1": 145, "neg1": 145, "torch_compile_debug": 145, "_inductor": [145, 175, 185, 187, 200, 253], "model___20": 145, "torchinductor_root": 145, "rx": 145, "crxfi2ybd7yp5sbj2pnhw33wfhtdw7wumvrobyp5sjvdui5ktjc2": 145, "fx_graph_runn": 145, "fx_graph_transform": 145, "ir_post_fus": 145, "ir_pre_fus": 145, "output_cod": [145, 257], "triton": [145, 173, 200, 252], "forward1": 145, "arg0_1": [145, 174, 187], "arg1_1": [145, 174], "codecach": 145, "asynccompil": 145, "async_compil": 145, "cpp_fused_cat_maximum_neg_0": 145, "gv": 145, "cgv6n5aotqjo5w4vknjibhengeycuattfto532hkxpozszcgxr3x": 145, "in_ptr0": [145, 256], "in_ptr1": [145, 256], "out_ptr0": 145, "pragma": 145, "ivdep": 145, "i0": 145, "static_cast": 145, "0l": 145, "8390l": 145, "1l": [145, 187], "i1": 145, "8l": 145, "tmp0": 145, "tmp1": 145, "tmp2": 145, "tmp3": 145, "max_propagate_nan": 145, "dynamo": [145, 174, 175, 187, 257], "aot": [145, 256], "neg2": 145, "exc": [145, 174], "backendcompilerfail": 145, "cppcompileerror": 145, "xg": 145, "cxga5tk3b4lkwoxyigrtocjp5s7vc5cg2ikuscf6bk6pjqip2bhx": 145, "deduct": 145, "substitut": [145, 146, 153, 201, 264], "deduc": 145, "buf0": [145, 187], "schedulernod": 145, "computedbuff": 145, "memorydep": 145, "c0": 145, "67120": 145, "unmet_depend": 145, "met_depend": 145, "nodeus": 145, "can_inplac": 145, "buf0_loop_bodi": 145, "var_rang": 145, "z0": 145, "index0": 145, "index1": 145, "get_index": 145, "get_index_1": 145, "load_1": 145, "get_index_2": 145, "silent": [145, 173, 200], "minifi": 145, "dead": 145, "unus": [145, 156], "minif": 145, "foo2": 145, "expected_result": 145, "compiled_foo2": 145, "actual_result": 145, "neg3": 145, "tol": 145, "test_script": 145, "assertionerror": 145, "torchdynamo_repro_aft": 145, "torchdynamo_repro_level": 145, "forward2": 145, "conduct": [145, 156, 185], "mobilebertforquestionansw": 145, "xeon": [145, 148, 177, 200, 221], "platinum": [145, 177], "8358": 145, "60ghz": 145, "kmp_blocktim": [145, 248], "kmp_set": 145, "kmp_affin": [145, 248], "compact": [145, 210, 248], "ld_preload": [145, 248], "conda_prefix": [145, 232], "dirnam": [145, 156, 227], "libiomp5": [145, 248], "libjemalloc": 145, "malloc_conf": 145, "oversize_threshold": 145, "background_thread": 145, "metadata_thp": 145, "dirty_decay_m": 145, "muzzy_decay_m": 145, "numactl": [145, 248], "bench": [145, 177, 178], "csarron": 145, "mobilebert": 145, "seq_length": [145, 221], "input_dict": 145, "compiled_model": [145, 165], "num_it": [145, 160], "warmup": [145, 169, 195, 204, 212, 220, 224, 239], "eager_t": 145, "inductor_t": 145, "1023553796113": 145, "339": 145, "95180135127157": 145, "359459053287382": 145, "355x": 145, "enable_kernel_profil": 145, "profileract": [145, 165, 220, 239], "result_dir": 145, "prof_trac": 145, "my_schedul": [145, 239], "skip_first": [145, 239], "trace_handl": [145, 239], "step_num": [145, 239], "on_trace_readi": [145, 169, 239], "370": 145, "814m": 145, "362": 145, "161": [145, 219], "276m": 145, "363": 145, "416m": 145, "488": [145, 232], "154m": 145, "194": 145, "clamp_min": [145, 220], "444m": 145, "258m": 145, "810": 145, "920m": 145, "447m": 145, "_softmax": 145, "087m": 145, "376": [145, 174, 188], "888m": 145, "77": 145, "430m": 145, "502m": 145, "161m": 145, "850": 145, "377m": 145, "386": [145, 164, 194], "index_select": 145, "000u": [145, 239], "986": 145, "420m": 145, "703": 145, "656": [145, 260], "963": 145, "864m": 145, "_mkl_linear": 145, "231": [145, 232, 239], "573m": [145, 239], "992m": 145, "336": [145, 239], "642m": 145, "graph_0_cpp_fused_constant_pad_nd_embedding_0": 145, "915": 145, "911": 145, "graph_0_cpp_fused__mkl_linear_add_mul_relu_151": 145, "901": [145, 186], "graph_0_cpp_fused__mkl_linear_add_mul_relu_226": 145, "899": [145, 258], "graph_0_cpp_fused__mkl_linear_add_mul_relu_361": 145, "898": [145, 258], "graph_0_cpp_fused__mkl_linear_add_mul_relu_121": 145, "895": 145, "graph_0_cpp_fused__mkl_linear_add_mul_relu_31": 145, "893": 145, "graph_0_cpp_fused__mkl_linear_add_mul_relu_76": 145, "892": [145, 159, 232, 258], "graph_0_cpp_fused__mkl_linear_add_mul_relu_256": 145, "graph_0_cpp_fused__mkl_linear_add_mul_relu_346": 145, "graph_0_cpp_fused__mkl_linear_add_mul_relu_241": 145, "891": 145, "graph_0_cpp_fused__mkl_linear_add_mul_relu_316": 145, "graph_0_cpp_fused__mkl_linear_add_mul_relu_91": 145, "890": 145, "graph_0_cpp_fused__mkl_linear_add_mul_relu_106": 145, "graph_0_cpp_fused__mkl_linear_add_mul_relu_211": 145, "graph_0_cpp_fused__mkl_linear_add_mul_relu_61": 145, "889": 145, "graph_0_cpp_fused__mkl_linear_add_mul_relu_286": 145, "graph_0_cpp_fused_": 145, "63x": 145, "cblas_sgemm_comput": 145, "339m": 145, "94x": 145, "cpp_fused__mkl_linear_add_mul_relu_151": 145, "clrlgu27q4ggd472umdzwsu6qcpqxcuusjxqvx2hwitjbujiiz7z": 145, "in_out_ptr0": 145, "in_ptr2": 145, "in_ptr3": 145, "arrayref": 145, "omp": [145, 177], "num_thread": [145, 232, 247], "16384l": 145, "512l": 145, "loadu": 145, "tmp5": 145, "tmp7": 145, "tmp4": 145, "tmp6": 145, "tmp8": 145, "neck": 145, "arg_0": 145, "arg_1": 145, "arg_2": 145, "arg_3": 145, "arg_4": 145, "add_0": 145, "add_1": 145, "mul_1": 145, "add_2": 145, "16384": [145, 232], "inductor_func": 145, "780875144992024": 145, "9588955780491233": 145, "0286805751604735": 145, "smallest": [145, 157], "solid": 145, "analyt": [145, 262], "hotspot": [145, 177, 178], "phenomenon": 145, "inductor_debug_cpu": 145, "jax": [146, 151, 206], "compute_jac": 146, "xp": 146, "jacobian_row": [146, 206], "unit_vector": 146, "rid": 146, "vjp_fn": [146, 151], "ft_jacobian": 146, "argnum": 146, "millisecond": [146, 156, 188, 224], "get_perf": [146, 155], "first_descriptor": [146, 155], "second_descriptor": [146, 155], "final_gain": [146, 155], "no_vmap_tim": [146, 155], "with_vmap_tim": [146, 155], "ft_jac_weight": 146, "ft_jac_bia": 146, "rigor": 146, "taller": 146, "din": 146, "using_fwd": 146, "using_bwd": 146, "jacfwd_tim": 146, "jacrev_tim": 146, "hessiani": 146, "overwhelm": 146, "hess_api": 146, "hess_fwdfwd": 146, "hess_revrev": 146, "compute_batch_jacobian": 146, "batch_jacobian0": 146, "predict_with_output_sum": 146, "batch_jacobian1": 146, "movedim": 146, "compute_batch_hessian": 146, "batch_hess": 146, "hvp_revrev": 146, "result_hvp_revrev": 146, "jacobians_hessian": 146, "yuansong": 147, "feng": [147, 156], "steven": 147, "guo": 147, "cheatsheet": 147, "companion": 147, "bro": 147, "dequ": [147, 161], "framestack": 147, "ne": [147, 166, 174, 239], "nes_pi": 147, "joypadspac": 147, "gym_super_mario_bro": 147, "tube": 147, "mushroom": 147, "supermariobro": 147, "new_step_api": 147, "apply_api_compat": 147, "next_stat": [147, 161], "trunc": 147, "240": [147, 164, 239], "pipe": 147, "sky": 147, "grayscaleobserv": 147, "resizeobserv": 147, "skipfram": 147, "movement": 147, "_skip": 147, "total_reward": 147, "trunk": 147, "observationwrapp": 147, "obs_shap": 147, "observation_spac": 147, "permute_orient": 147, "antialia": 147, "num_stack": 147, "exploration_r": 147, "marionet": 147, "state_dim": 147, "dnn": [147, 239], "exploration_rate_decai": 147, "99999975": 147, "exploration_rate_min": 147, "curr_step": 147, "5e5": 147, "lazyfram": 147, "action_idx": 147, "__array__": 147, "first_if_tupl": 147, "ddqn": 147, "output_dim": 147, "__build_cnn": 147, "q_target": 147, "3136": 147, "_e": 147, "argmax_": 147, "td_target": 147, "td_estim": 147, "current_q": 147, "q_onlin": 147, "next_state_q": 147, "best_act": 147, "next_q": 147, "td_t": 147, "td_e": 147, "leftarrow": 147, "nabla": [147, 264], "00025": 147, "update_q_onlin": 147, "sync_q_target": 147, "save_path": 147, "mario_net_": 147, "chkpt": 147, "burnin": 147, "1e4": 147, "learn_everi": 147, "sync_everi": 147, "td_est": 147, "td_tgt": 147, "metriclogg": 147, "save_log": 147, "episod": [147, 161, 162, 164], "meanreward": 147, "meanlength": 147, "meanloss": 147, "meanqvalu": 147, "timedelta": 147, "ep_rewards_plot": 147, "reward_plot": 147, "ep_lengths_plot": 147, "length_plot": 147, "ep_avg_losses_plot": 147, "loss_plot": 147, "ep_avg_qs_plot": 147, "q_plot": 147, "ep_reward": [147, 162, 164], "ep_length": 147, "ep_avg_loss": 147, "ep_avg_q": 147, "moving_avg_ep_reward": 147, "moving_avg_ep_length": 147, "moving_avg_ep_avg_loss": 147, "moving_avg_ep_avg_q": 147, "init_episod": 147, "record_tim": 147, "log_step": 147, "curr_ep_reward": 147, "curr_ep_length": 147, "curr_ep_loss": 147, "curr_ep_q": 147, "curr_ep_loss_length": 147, "log_episod": 147, "mean_ep_reward": 147, "mean_ep_length": 147, "mean_ep_loss": 147, "mean_ep_q": 147, "last_record_tim": 147, "time_since_last_record": 147, "8d": 147, "clf": [147, 161], "moving_avg_": 147, "_plot": 147, "flag_get": 147, "mario_rl_tutori": 147, "vitali": 148, "fedyunin": 148, "densest": 148, "4x4": 148, "10x3x16x16": 148, "memory_format": [148, 195, 200, 207, 208, 217, 219, 221, 224], "channels_last": [148, 178, 195, 200, 208, 219, 221, 224], "contiguous_format": 148, "minor": [148, 158, 164, 170, 221], "ambigu": [148, 191, 192], "n1hw": 148, "contrari": [148, 157], "restrid": 148, "special_x": 148, "unintend": 148, "7603": 148, "apex": 148, "main_amp": 148, "resnet50": [148, 150, 159, 162, 177, 178, 221, 248, 255], "o2": 148, "opt_level": 148, "keep_batchnorm_fp32": 148, "nonetyp": 148, "loss_scal": 148, "cast_model_typ": 148, "patch_torch_funct": 148, "master_weight": 148, "125": [148, 239], "866": 148, "230": [148, 164, 172], "949": 148, "6735125184": 148, "6735": 148, "259": 148, "562": 148, "773": 148, "481": 148, "355": 148, "693": 148, "6968704462": 148, "6852": 148, "55": [148, 177, 198, 205, 232], "58": [148, 202, 222], "258": [148, 264], "461": 148, "775": 148, "089": 148, "433": 148, "965": 148, "7877287269": 148, "7194": 148, "833": 148, "771": 148, "710": 148, "487": 148, "8285319805": 148, "7467": 148, "260": [148, 164], "380": 148, "770": 148, "090": 148, "525": 148, "908": 148, "7370464802": 148, "7447": 148, "360": 148, "623": 148, "555": 148, "728": 148, "7592862844": 148, "7472": 148, "917": 148, "345": [148, 179], "774": 148, "746": [148, 232], "115": [148, 186, 220], "9698858261": 148, "9218": 148, "324": 148, "597": 148, "659": 148, "2505953312": 148, "0879": 148, "767": [148, 224], "785": 148, "7579724789": 148, "7580": 148, "198": 148, "482": 148, "135": [148, 159, 232], "414": 148, "716": [148, 232], "7007197738": 148, "7293": 148, "250": [148, 164, 239], "387": 148, "1010": 148, "516": 148, "7113101482": 148, "7233": 148, "667": 148, "197": 148, "340": 148, "1013": 148, "023": 148, "588": 148, "333": 148, "8943189979": 148, "7661": 148, "541": 148, "7113249302": 148, "9551": 148, "1011": 148, "163": 148, "683": 148, "574": 148, "8537774086": 148, "7716": 148, "279": 148, "453": 148, "7595844269": 148, "3413": 148, "429": 148, "827": 148, "743": [148, 174], "883": 148, "8196096420": 148, "4011": 148, "volta": [148, 231, 248], "mnasnet0_5": 148, "mnasnet0_75": 148, "mnasnet1_0": 148, "mnasnet1_3": 148, "mobilenet_v2": [148, 159, 179, 188, 189, 195, 207, 224, 225, 226, 229], "resnet152": 148, "resnet34": 148, "resnext50_32x4d": 148, "shufflenet_v2_x0_5": [148, 159], "shufflenet_v2_x1_0": [148, 159], "shufflenet_v2_x1_5": [148, 159], "shufflenet_v2_x2_0": [148, 159], "squeezenet1_0": 148, "squeezenet1_1": 148, "vgg11": 148, "vgg11_bn": 148, "vgg13": 148, "vgg13_bn": 148, "vgg16_bn": 148, "vgg19_bn": 148, "wide_resnet101_2": 148, "wide_resnet50_2": 148, "ic": 148, "lake": [148, 221], "densenet161": 148, "densenet169": 148, "googlenet": [148, 159, 229], "inception_v3": [148, 159], "resnext101_32x8d": [148, 159], "spite": 148, "contains_cl": 148, "print_input": 148, "check_wrapp": 148, "check_cl": 148, "was_cl": 148, "old_attr": 148, "exclude_funct": 148, "has_nam": 148, "nc11": 148, "memory_format_tutori": 148, "pytorch_lightn": 149, "lightningmodul": 149, "pl_logger": 149, "torchmetr": 149, "multiclass_accuraci": 149, "path_dataset": 149, "mnistmodel": 149, "tunabl": 149, "hidden_lay": [149, 179], "validation_step": 149, "prog_bar": 149, "configure_optim": 149, "prepare_data": 149, "mnist_train": 149, "mnist_val": 149, "run_training_job": 149, "mnist_model": 149, "enable_progress_bar": 149, "default_root_dir": 149, "tensorboardlogg": 149, "train_tim": 149, "log_metr": 149, "capture_output": 149, "val_accuraci": 149, "stitch": [150, 162, 163], "modelparallelresnet50": 150, "seq1": 150, "maxpool": [150, 158, 201], "seq2": 150, "layer4": [150, 158], "avgpool": [150, 158], "deterior": 150, "quantit": 150, "switch_backend": [150, 166], "num_repeat": 150, "mp_run_tim": 150, "mp_mean": 150, "mp_std": 150, "rn_run_tim": 150, "rn_mean": 150, "rn_std": 150, "fig_nam": 150, "yerr": 150, "center": [150, 161, 169], "ecolor": 150, "capsiz": 150, "set_ylabel": 150, "set_xtick": [150, 158], "mp_vs_rn": 150, "idl": [150, 162, 169], "pipelineparallelresnet50": 150, "split_siz": 150, "s_next": 150, "s_prev": 150, "pp_run_tim": 150, "pp_mean": 150, "pp_std": 150, "mp_vs_rn_vs_pp": 150, "destin": [150, 164], "errorbar": 150, "ro": 150, "set_xlabel": 150, "split_size_tradeoff": 150, "prev": 150, "model_parallel_tutori": 150, "jacrev": 151, "21632": 151, "x_test": 151, "fnet_singl": 151, "j_": 151, "empirical_ntk_jacobian_contract": 151, "jac1": 151, "jac2": 151, "einsum": 151, "naf": 151, "mbf": 151, "nmab": 151, "j1": 151, "j2": 151, "diagon": 151, "einsum_expr": 151, "maf": 151, "nma": 151, "asymptot": 151, "i_o": 151, "i_": 151, "e_o": 151, "textrm": 151, "_o": 151, "empirical_ntk_ntk_vp": 151, "get_ntk": 151, "func_x1": 151, "func_x2": 151, "get_ntk_slic": 151, "nmkk": 151, "nmk": 151, "tensorfloat": 151, "sacrific": [151, 195], "allow_tf32": 151, "result_from_jacobian_contract": 151, "result_from_ntk_vp": 151, "luck": [151, 153], "neural_tangent_kernel": 151, "deprec": [152, 169, 181, 218], "homepag": [152, 181], "ooz": 153, "_might_": 153, "vit_l_16": 153, "2p": 153, "_record_memory_histori": 153, "_snapshot": 153, "memory_viz": 153, "devot": 153, "bat": 153, "2gb": [153, 159], "6gb": 153, "foreach": 153, "reveal": [153, 165, 173, 174], "silver": 153, "bullet": 153, "sizabl": 153, "tantamount": 153, "lora": 153, "unlock": [153, 183, 186], "optimizer_dict": 153, "optimizer_hook": 153, "neat": 153, "lrschedul": [153, 252], "convinc": 153, "slate": 153, "bwd": 153, "likewis": 153, "woohoo": 153, "apart": 153, "shrunk": 153, "0gb": 153, "optimizer_step_in_backward_tutori": 153, "lezcano": 154, "surprisingli": 154, "ill": 154, "singular": [154, 165], "frobeniu": 154, "spectral": 154, "lipschitz": 154, "x\u1d40": 154, "triangular": 154, "linearsymmetr": 154, "n_featur": 154, "reimplement": [154, 157], "register_parametr": 154, "skew": [154, 169], "unparametr": 154, "nparametr": 154, "moduledict": [154, 202], "parametrizationlist": [154, 202], "weight_orig": [154, 157], "noisyparametr": 154, "caylei": 154, "cayleymap": 154, "linalg": 154, "spd": 154, "matrixexponenti": 154, "matrix_exp": 154, "layer_orthogon": 154, "layer_spd": 154, "eigvalsh": 154, "right_invers": 154, "cayley_transform": 154, "matrix_map": 154, "neg_": 154, "pruningparametr": 154, "p_drop": 154, "full_lik": [154, 190], "bernoulli": 154, "niniti": 154, "remove_parametr": 154, "unconstrain": [154, 174, 175], "parametri": 154, "leave_parametr": 154, "privaci": [155, 157], "simplecnn": 155, "compute_grad": 155, "compute_sample_grad": 155, "sample_grad": 155, "per_sample_grad": 155, "named_buff": [155, 157], "compute_loss": 155, "ft_compute_grad": 155, "ft_compute_sample_grad": 155, "ft_per_sample_grad": 155, "25x": [155, 172, 202], "second_r": 155, "first_r": 155, "opacu": 155, "tian": 156, "processgroupnccl": 156, "processgroupgloo": 156, "processgroupmpi": 156, "ucc": 156, "oneccl": [156, 248], "trainum": 156, "emerg": 156, "backenddummi": 156, "chrono": 156, "allgatheropt": 156, "allreduceopt": 156, "workdummi": 156, "optyp": 156, "recvanysourc": 156, "future_": 156, "iscomplet": 156, "issuccess": 156, "kunsettimeout": 156, "virtual": 156, "getfutur": 156, "outputtensorvec": 156, "listtyp": 156, "tensortyp": 156, "markcomplet": 156, "createbackenddummi": 156, "backenddummyconstructor": 156, "__attribute__": 156, "register_backend": 156, "cpp_function": [156, 232], "libraries_dir": 156, "dummy_collect": 156, "michela": 157, "paganini": 157, "biolog": 157, "batteri": 157, "lucki": 157, "subnetwork": 157, "lotteri": 157, "ticket": 157, "destruct": [157, 178], "0a0": [157, 189, 207], "8e8a5e0": 157, "lecun": 157, "1998": 157, "nelement": 157, "unprun": 157, "basepruningmethod": 157, "adequ": [157, 160], "random_unstructur": 157, "_orig": 157, "intact": [157, 162], "weight_mask": 157, "_mask": 157, "forward_pre_hook": 157, "_forward_pre_hook": 157, "l1_unstructur": 157, "bias_orig": 157, "bias_mask": 157, "pruningcontain": 157, "compute_mask": 157, "ln_structur": 157, "_tensor_nam": 157, "perman": 157, "undo": 157, "new_model": [157, 158], "global_unstructur": 157, "parameters_to_prun": 157, "pruning_method": 157, "l1unstructur": 157, "induc": 157, "apply_mask": 157, "shouldn": 157, "unstructur": 157, "preprun": 157, "pruning_typ": 157, "foobarpruningmethod": 157, "default_mask": 157, "foobar_unstructur": 157, "pruning_tutori": 157, "zafar": 158, "takhirov": 158, "initializaion": 158, "unfreez": 158, "set_ytick": 158, "nrow": 158, "best_model_wt": 158, "current_row": 158, "current_col": 158, "lbl": 158, "jdx": 158, "model_f": 158, "isol": 158, "create_combined_model": 158, "model_fe_featur": 158, "new_head": 158, "default_qat_qconfig": 158, "model_ft_tun": 158, "model_quantized_and_train": 158, "heat": 159, "sink": [159, 264], "5v": 159, "sd": 159, "card": [159, 165], "8gb": 159, "arm": [159, 220, 229], "64bit": 159, "aarch64": 159, "arm64": [159, 189, 205, 207, 219, 224], "raspberrypi": 159, "raspios_arm64": 159, "rpi": 159, "internet": 159, "sdcard": 159, "start_x": 159, "128m": 159, "gpu_mem": 159, "commment": 159, "camera_auto_detect": 159, "v4l2": 159, "reboot": 159, "video4linux2": 159, "video0": 159, "picamera": 159, "36fp": 159, "30fp": 159, "framer": 159, "cv2": 159, "cap": [159, 160, 169], "videocaptur": 159, "cap_prop_frame_width": 159, "cap_prop_frame_height": 159, "cap_prop_fp": 159, "bgr": 159, "chose": 159, "mobilenet_v3_larg": 159, "109": 159, "233": [159, 164], "885": [159, 220], "204": [159, 220, 232], "195": [159, 164], "132": 159, "82": [159, 198, 220], "prequant": 159, "20fp": 159, "cap_v4l2": 159, "last_log": 159, "frame_count": 159, "htop": [159, 177], "mug": 159, "allevi": 159, "repetit": [160, 232], "maximis": 160, "clipppoloss": 160, "theta_k": 160, "pi_": 160, "shift": [160, 264], "lingua": 160, "franca": 160, "normalparamextractor": 160, "replaybuff": 160, "samplerwithoutreplac": 160, "lazytensorstorag": 160, "tanhnorm": 160, "max_grad_norm": 160, "sub_batch_s": 160, "inner": [160, 178, 265], "cardin": 160, "clip_epsilon": 160, "entropy_ep": 160, "deepmind": [160, 167], "interchang": 160, "panel": [160, 169], "inverteddoublependulum": 160, "transmit": [160, 264], "gymwrapp": 160, "loos": 160, "supplementari": 160, "told": 160, "stringent": 160, "mu_": 160, "d_ob": 160, "d_action": 160, "mu": [160, 172, 264], "policy_modul": 160, "distribution_kwarg": 160, "return_log_prob": 160, "discount": [160, 161, 162], "value_net": 160, "value_modul": 160, "datacollector": 160, "multisyncdatacollector": 160, "refil": [160, 224], "max_siz": 160, "value_target": 160, "advantage_modul": 160, "average_ga": 160, "critic_network": 160, "entropy_bonu": 160, "entropy_coef": 160, "critic_coef": 160, "loss_critic_typ": 160, "smooth_l1": 160, "eval_str": 160, "tensordict_data": 160, "data_view": 160, "subdata": 160, "loss_object": 160, "loss_crit": 160, "loss_entropi": 160, "cum_reward_str": 160, "stepcount_str": 160, "lr_str": 160, "horizon": 160, "eval_rollout": 160, "videorecord": 160, "reinforcement_ppo": 160, "tower": 161, "cart": 161, "pole": 161, "attach": [161, 196, 201, 210, 214], "upright": 161, "classic_control": 161, "decorrel": 161, "replaymemori": 161, "cyclic": 161, "formul": 161, "r_": 161, "t_0": 161, "r_t": 161, "uncertain": 161, "tempor": 161, "max_a": 161, "obei": 161, "bellman": 161, "huber": 161, "noisi": [161, 232, 247], "mathcal": 161, "le": [161, 166], "mathrm": 161, "n_observ": 161, "n_action": 161, "left0exp": 161, "right0exp": 161, "select_act": [161, 162, 164], "eps_start": 161, "eps_end": 161, "eps_decai": 161, "plot_dur": 161, "underneath": 161, "policy_net": 161, "target_net": 161, "amsgrad": 161, "steps_don": 161, "eps_threshold": 161, "episode_dur": 161, "show_result": 161, "durations_t": 161, "unfold": [161, 166], "optimize_model": 161, "s_t": 161, "a_t": 161, "19343": 161, "3343043": 161, "non_final_mask": 161, "non_final_next_st": 161, "state_batch": 161, "action_batch": 161, "reward_batch": 161, "next_state_valu": 161, "expected_state_action_valu": 161, "clip_grad_value_": 161, "num_episod": [161, 162], "i_episod": [161, 162, 164], "\u03b8": 161, "\u03c4": 161, "target_net_state_dict": 161, "policy_net_state_dict": 161, "reinforcement_q_learn": 161, "unblock": 162, "callback": 162, "update_and_fetch_model": 162, "future_model": 162, "notifi": [162, 169], "batch_update_s": 162, "batchupdateparameterserv": 162, "curr_update_s": 162, "ps_rref": 162, "setti": 162, "set_result": 162, "get_worker_info": [162, 164], "543": 162, "affine1": [162, 164], "affine2": [162, 164], "action_scor": [162, 164], "select_action_batch": 162, "run_episod": [162, 164], "agent_rref": [162, 164], "start_step": 162, "curr_reward": 162, "saved_log_prob": [162, 164], "rob": 162, "ob_rref": [162, 164], "running_reward": [162, 164], "ob_rank": [162, 164], "ob_info": [162, 164], "observer_nam": [162, 164], "future_act": 162, "pending_st": 162, "select_acion": 162, "ob_id": [162, 164], "oberv": [162, 164], "policy_loss": [162, 164], "n_episod": 162, "print_log": 162, "rank0": [162, 164], "agent_nam": [162, 164], "tlast": [162, 164], "taverag": [162, 164], "next_devic": 163, "call_method": 163, "remote_method": 163, "foo_inst": 163, "parameterserv": 163, "input_devic": 163, "intention": [163, 164], "miscellan": 163, "get_dist_gradi": 163, "get_gradi": 163, "get_param_rref": 163, "cid": 163, "cpu_grad": 163, "k_cpu": 163, "v_cpu": 163, "paramt": 163, "param_rref": [163, 164], "run_parameter_serv": 163, "param_serv": 163, "global_lock": 163, "get_parameter_serv": 163, "parameter_serv": 163, "offlin": 163, "trainernet": 163, "param_server_rref": 163, "get_global_param_rref": 163, "paramat": 163, "run_training_loop": 163, "nueral": 163, "get_accuraci": 163, "correct_sum": 163, "trainer_": 163, "traffic": [163, 177], "listen": 163, "subprocess": 163, "rpc_parameter_serv": 163, "solver": 164, "formatter_class": 164, "argumentdefaultshelpformatt": 164, "report_reward": 164, "_max_episode_step": 164, "finfo": 164, "reward_threshold": 164, "finish_episod": 164, "min_reward": 164, "distinguish": [164, 170], "surpass": 164, "ctrl": 164, "131": 164, "130": 164, "137": 164, "140": 164, "104": 164, "170": [164, 179], "126": [164, 174], "180": [164, 174, 175, 232], "213": 164, "322": [164, 220], "165": 164, "272": [164, 220], "210": 164, "168": [164, 174], "184": [164, 186], "208": [164, 172, 230], "270": [164, 172], "405": 164, "280": 164, "290": 164, "464": 164, "3163778435275": 164, "vehicl": 164, "rnnmodel": 164, "emb_table_rref": 164, "decoder_rref": 164, "_remote_method": 164, "rremot": 164, "_parameter_rref": 164, "run_train": 164, "nindic": 164, "driss": 165, "guessou": 165, "flashattent": 165, "benchmark_torch_function_in_microsecond": [165, 211], "max_sequence_len": 165, "embed_dimens": 165, "sdpbackend": 165, "sdpa_kernel": 165, "math_tim": 165, "flash_attent": 165, "flash_tim": 165, "flash": [165, 185], "efficient_attent": 165, "efficient_tim": 165, "efficientattent": 165, "andrej": 165, "karpathi": 165, "nanogpt": 165, "causalselfattent": 165, "is_caus": [165, 194], "c_attn": 165, "c_proj": 165, "resid_dropout": 165, "query_project": 165, "head_dim": 165, "attn_mask": 165, "dropout_p": [165, 166, 194], "heads_per_dim": 165, "generate_rand_batch": 165, "pad_percentag": 165, "seq_len_list": 165, "gauss": 165, "nested_tensor": [165, 194], "random_nt": 165, "random_dens": 165, "nt": [165, 194], "166": 165, "616": 165, "726": 165, "amaz": 165, "record_shap": [165, 169, 239], "compili": 165, "cuda_time_tot": [165, 239], "compiled_causal_attention_trac": 165, "concentr": 165, "6090": 165, "49m": 165, "3273": 165, "17m": 165, "commit": [165, 197, 208], "ae3a8d5": 165, "causal_upper_left": 165, "causal_lower_right": 165, "sequence_length_q": 165, "sequence_length_kv": 165, "upper_left_bia": 165, "lower_right_bia": 165, "issubclass": 165, "causalbia": 165, "corner": 165, "attn_scor": 165, "out_upper_left": 165, "out_lower_right": 165, "out_is_caus": 165, "compiled_sdpa": 165, "scaled_dot_product_attention_tutori": 165, "french": 166, "il": 166, "est": [166, 169, 267], "peindr": 166, "tableau": 166, "paint": 166, "pourquoi": 166, "pa": 166, "essay": 166, "vin": 166, "delicieux": 166, "delici": 166, "wine": 166, "poet": 166, "romancier": 166, "novelist": 166, "vou": 166, "trop": 166, "maigr": 166, "skinni": 166, "condens": [166, 210, 247], "phrase": [166, 264], "\u5b57\u7b26\u7ea7": 166, "__future__": [166, 172, 238, 245], "unicode_liter": 166, "print_funct": 166, "manyth": 166, "anki": 166, "fra": 166, "froid": 166, "lang": [166, 209, 263], "n_word": [166, 254], "readlang": 166, "lang1": 166, "lang2": 166, "input_lang": [166, 254], "output_lang": [166, 254], "apostroph": 166, "eng_prefix": 166, "preparedata": 166, "je": 166, "sui": 166, "noir": 166, "decoderrnn": 166, "target_tensor": 166, "forward_step": 166, "burden": 166, "attn_appli": 166, "bahdanauattent": 166, "ua": 166, "va": 166, "attndecoderrnn": [166, 254], "input_gru": 166, "tensorfromsent": 166, "tensorsfrompair": 166, "get_dataload": 166, "inp_id": 166, "tgt_id": 166, "exhibit": 166, "coher": 166, "grammar": 166, "wander": 166, "asminut": 166, "es": 166, "n_epoch": 166, "plot_loss": 166, "print_loss_tot": 166, "plot_loss_tot": 166, "plot_loss_avg": 166, "showplot": 166, "decoder_attn": 166, "decoded_id": 166, "judgement": 166, "evaluaterandomli": 166, "showattent": 166, "bone": 166, "evaluateandshowattent": 166, "aussi": 166, "grand": 166, "son": 166, "pere": 166, "fatigu": 166, "pour": 166, "conduir": 166, "desol": 166, "idiot": 166, "reellement": 166, "fier": 166, "iot": 166, "word2vec": 166, "glove": 166, "autoencod": 166, "seq2seq_translation_tutori": 166, "ghassen": 167, "hamrouni": 167, "geometr": 167, "invari": [167, 191], "urllib": 167, "build_open": 167, "addhead": 167, "mozilla": 167, "install_open": 167, "boil": 167, "affine_grid": 167, "grid_sampl": 167, "conv2_drop": [167, 222], "regressor": 167, "fc_loc": 167, "size_averag": 167, "convert_image_np": 167, "visualize_stn": 167, "transformed_input_tensor": 167, "in_grid": 167, "out_grid": 167, "axarr": 167, "spatial_transformer_tutori": 167, "speech_recognition_pipeline_tutori": 168, "tensorboard_trace_handl": 169, "batch_data": [169, 172], "torch_tb_profil": 169, "safari": 169, "pytorch_profil": 169, "breakdown": 169, "dropdown": 169, "callstack": 169, "multiprocessor": 169, "occup": 169, "tooltip": 169, "toolbar": 169, "keyboard": [169, 264], "mous": [169, 264], "resnet18_4work": 169, "76m": [169, 183], "132m": 169, "torchtbprofil": 169, "memory_demo_1_10": 169, "gpu0": 169, "distributed_bert": 169, "rocm": 169, "docker": [169, 259], "profiler_tutori": 169, "test_cifar10": 169, "vi": [169, 264], "kfd": 169, "sys_ptrac": 169, "seccomp": 169, "unconfin": 169, "shm": [169, 213], "8g": 169, "apt": [169, 172, 209], "libjpeg": 169, "rocm5": 169, "scp": 169, "tensorboard_profiler_tutori": 169, "plot_classes_pr": 170, "four_fashion_mnist_imag": 170, "datapoint": 170, "night": [170, 265], "thoroughli": 170, "clearer": 170, "images_to_prob": 170, "preds_tensor": 170, "el": 170, "add_figur": 170, "global_step": [170, 246], "scroll": [170, 262, 266], "test_siz": 170, "class_prob": 170, "class_probs_batch": 170, "test_prob": 170, "test_label": 170, "add_pr_curve_tensorboard": 170, "class_index": 170, "tensorboard_truth": 170, "tensorboard_prob": 170, "add_pr_curv": 170, "poke": 170, "tacotron2_pipeline_tutori": 171, "wsi": 172, "tissu": 172, "biopsi": 172, "scanner": 172, "pathologist": 172, "cancer": 172, "microscop": 172, "tumor": 172, "000x100": 172, "25x0": 172, "micron": 172, "pyramid": 172, "magnif": 172, "sketch": 172, "histoencod": 172, "jopo666": 172, "openjpeg": 172, "openslid": 172, "pixman": 172, "qq": 172, "libopenjp2": 172, "libpixman": 172, "echo": [172, 209, 264], "brew": 172, "hashandl": 172, "nopython": 172, "shutil": 172, "zipfil": 172, "mpl": 172, "cm": 172, "accuracy_scor": 172, "confusion_matrix": 172, "patch_predictor": 172, "iopatchpredictorconfig": 172, "misc": 172, "download_data": 172, "grab_files_from_dir": 172, "overlay_prediction_mask": 172, "wsicor": 172, "wsiread": 172, "rcparam": 172, "dpi": 172, "facecolor": 172, "dark": 172, "on_gpu": 172, "suppress": 172, "overli": 172, "suppress_console_output": 172, "redirect_stderr": 172, "stringio": 172, "abnorm": 172, "global_save_dir": 172, "mainten": 172, "rmdir": 172, "dir_path": 172, "is_dir": 172, "rmtree": 172, "kather": 172, "100k": 172, "wsi_path": 172, "sample_wsi": 172, "sv": 172, "patches_path": 172, "kather100k": 172, "weights_path": 172, "dc": 172, "warwick": 172, "uk": 172, "tcga": 172, "3l": 172, "aa1b": 172, "01z": 172, "dx1": 172, "8923a151": 172, "a690": 172, "40b7": 172, "9e5a": 172, "fcbedfc2394f": 172, "extractal": 172, "pc": 172, "patch_list": 172, "dataset_path": 172, "image_ext": 172, "tif": 172, "label_dict": 172, "glass": 172, "mucosa": 172, "deb": 172, "debri": 172, "tum": 172, "colorect": 172, "adenocarcinoma": 172, "epithelium": 172, "adi": 172, "adipos": 172, "muc": 172, "mucu": 172, "stroma": 172, "lym": 172, "lymphocyt": 172, "dataset_class_path": 172, "patch_list_single_class": 172, "file_typ": 172, "299": 172, "211": [172, 239], "176": 172, "178": 172, "209": 172, "232": [172, 232], "modelabc": 172, "tia": 172, "toolbox": 172, "readthedoc": 172, "_autosummari": 172, "models_abc": 172, "preproc_func": 172, "predictor": [172, 179], "pretrained_weight": 172, "cnnmodel": 172, "conf": [172, 222, 262, 269], "df_cm": 172, "215": [172, 178], "993000": 172, "000000": 172, "00000": 172, "988636": 172, "011364": 172, "991304": 172, "008696": 172, "996503": 172, "003497": 172, "004808": 172, "990385": 172, "988764": 172, "011236": 172, "996296": 172, "003704": 172, "004785": 172, "985646": 172, "004310": 172, "99569": 172, "input_resolut": 172, "patch_input_shap": 172, "stride_shap": 172, "wsi_ioconfig": 172, "mpp": 172, "return_prob": 172, "ioconfig": 172, "merge_predict": 172, "wsi_output": 172, "wsi_predict": 172, "overlai": 172, "overlay_patch_predict": 172, "overview_resolut": 172, "overview_unit": 172, "wsi_overview": 172, "slide_thumbnail": 172, "label_color_dict": 172, "get_cmap": 172, "set1": 172, "pred_map": 172, "label_info": 172, "return_ax": 172, "histolog": 172, "pohjonen": 172, "joona": 172, "helsinki": 172, "umap": 172, "semantic_segmentor": 172, "deepfeatureextractor": 172, "iosegmentorconfig": 172, "histoencwrapp": 172, "histoenc": 172, "feat_extract": 172, "extract_featur": 172, "num_block": 172, "avg_pool": 172, "infer_batch": 172, "img_patches_devic": 172, "create_encod": 172, "prostate_medium": 172, "662": 172, "446": 172, "605": 172, "169": [172, 220], "155": [172, 174], "output_resolut": 172, "patch_output_shap": 172, "auto_generate_mask": 172, "otsu": 172, "num_loader_work": 172, "num_postproc_work": 172, "wsi_featur": 172, "umap_reduc": 172, "n_neighbor": 172, "n_compon": 172, "manhattan": 172, "random_st": 172, "fit_transform": 172, "npy": 172, "5mpp": 172, "4mpp": 172, "william": [173, 174, 175], "wen": [173, 174, 175], "modern": [173, 188, 195], "h100": 173, "elsewher": 173, "gpu_ok": 173, "device_cap": 173, "get_device_cap": [173, 211, 212, 257], "torchinductor": [173, 187, 200], "torchtriton": 173, "cu117": 173, "opt_foo1": 173, "opt_foo2": 173, "opt_mod": 173, "generate_data": 173, "init_model": 173, "model_opt": 173, "eager_tim": 173, "compile_tim": 173, "eager_m": 173, "compile_m": 173, "train_opt": 173, "dashboard": 173, "struggl": 173, "fn1": 173, "fn2": 173, "test_fn": 173, "out1": [173, 235], "out2": [173, 235], "inp1": [173, 174, 175], "inp2": [173, 174, 175], "traced_f1": 173, "print_exc": [173, 174, 175], "fx_f1": 173, "concrete_arg": 173, "compile_f1": 173, "f2": 173, "script_f2": 173, "compile_f2": 173, "f3": 173, "dct": 173, "traced_f3": 173, "disallow": 173, "compile_f3": 173, "unoptim": 173, "custom_backend": 173, "example_input": [173, 180, 182, 183, 184, 198, 199, 200, 201, 248], "print_tabular": 173, "opt_model": 173, "opt_bar": 173, "resum": [173, 199, 242], "explain_output": 173, "torch_compile_tutori": 173, "zhengxu": [174, 175], "angela": [174, 175], "exportedprogram": [174, 175, 198], "synonym": [174, 175], "dynamic_shap": [174, 175], "exportedgraph": [174, 175], "exported_mod": [174, 175], "exported_program": 174, "2178": 174, "4397": 174, "4774": 174, "0943": [174, 186], "4656": 174, "8333": 174, "5912": 174, "4689": 174, "2122": 174, "1996": 174, "4628": 174, "7495": 174, "3900": 174, "4515": 174, "8187": 174, "8938": 174, "5753": 174, "7709": 174, "8081": 174, "8002": 174, "9441": 174, "5711": 174, "0921": [174, 202], "3438": 174, "3268": 174, "4640": 174, "2434": 174, "7253": 174, "6886": 174, "6982": 174, "5100": [174, 247], "2279": 174, "2951": 174, "1055": 174, "2088": 174, "5022": 174, "1468": [174, 232], "5220": 174, "1592": 174, "9096": 174, "4248": 174, "2142": 174, "relubackward0": 174, "graph_modul": [174, 175], "f32": 174, "arg2_1": 174, "arg3_1": 174, "torch_export_nightly_tutori": 174, "exportgraphsignatur": 174, "inputspec": 174, "inputkind": 174, "tensorargu": 174, "user_input": 174, "outputspec": 174, "outputkind": 174, "user_output": 174, "graph_signatur": [174, 175], "range_constraint": [174, 175], "equality_constraint": 174, "inputs_to_paramet": 174, "inputs_to_buff": 174, "buffers_to_mut": 174, "backward_signatur": 174, "assertion_dep_token": 174, "bad1": [174, 175], "usererror": 174, "control_flow": [174, 175], "cond": [174, 175], "bad2": [174, 175], "ban": 174, "aot_export": 174, "bad3": [174, 175], "call_id": 174, "tensorvari": 174, "bad4": [174, 175], "builtinvari": 174, "constantvari": 174, "bad1_fix": 174, "true_fn": [174, 175], "false_fn": [174, 175], "exported_bad1_fix": [174, 175], "8415": 174, "5403": 174, "predic": [174, 175], "operand": [174, 175], "mymodule2": [174, 175], "mod2": [174, 175], "exported_mod2": [174, 175], "dynamic_shapes_example1": 174, "inp1_dim0": [174, 175], "inp1_dim1": [174, 175], "dynamic_shapes1": [174, 175], "exported_dynamic_shapes_example1": [174, 175], "0828": 174, "8190": 174, "0037": 174, "0221": 174, "0898": 174, "8182": 174, "9165": 174, "3572": 174, "7422": 174, "4423": 174, "2497": 174, "1912": 174, "0522": 174, "4442": 174, "4188": 174, "8161": 174, "inp1_dim1_bad": [174, 175], "dynamic_shapes1_bad": [174, 175], "inp3": [174, 175], "dynamic_shapes_example2": 174, "inp2_dim0": [174, 175], "inner_dim": [174, 175], "inp3_dim1": [174, 175], "dynamic_shapes2": [174, 175], "exported_dynamic_shapes_example2": [174, 175], "5352": 174, "3836": 174, "8961": 174, "3412": 174, "3891": 174, "4326": 174, "1697": [174, 260], "inp4": [174, 175], "inp5": [174, 175], "dynamic_shapes_example3": [174, 175], "dynamic_shapes3": [174, 175], "inp4_dim": [174, 175], "inp5_dim": [174, 175], "violat": 174, "inp4_dim0": [174, 175], "inp5_dim0": [174, 175], "inp5_dim1": [174, 175], "inp4_dim1": [174, 175], "suggested_fix": [174, 175], "shared_dim": [174, 175], "dynamic_shapes3_fix": [174, 175], "exported_dynamic_shapes_example3": [174, 175], "1510": 174, "1174": 174, "5075": 174, "3566": 174, "2102": 174, "2033": 174, "3611": 174, "9041": 174, "2987": 174, "5751": 174, "1508": 174, "4470": 174, "2460": 174, "9288": 174, "1764": 174, "5879": 174, "5107": 174, "0845": 174, "3962": 174, "4359": 174, "2877": 174, "2839": 174, "3742": 174, "5569": 174, "0485": 174, "1028": 174, "4692": 174, "3837": 174, "8744": 174, "4191": 174, "9387": 174, "8480": 174, "9857": 174, "7783": 174, "2220": 174, "5934": 174, "9793": 174, "1118": 174, "9817": 174, "6156": 174, "2070": 174, "6976": 174, "8177": 174, "4002": 174, "3291": 174, "0860": 174, "7406": 174, "6509": 174, "1847": 174, "6311": 174, "8144": 174, "0439": 174, "9141": 174, "8778": 174, "5971": 174, "8781": 174, "1364": 174, "3096": 174, "0822": 174, "0587": 174, "3681": 174, "_log": [174, 175, 212, 257], "set_log": [174, 175, 212, 257], "657": 174, "symbolic_convert": 174, "374": 174, "658": 174, "symbolic_shap": 174, "create_env": 174, "663": 174, "create_symbol": 174, "s0": 174, "665": 174, "s1": [174, 193], "9223372036854775806": 174, "677": [174, 185], "680": 174, "734": [174, 239], "_meta_registr": 174, "1891": 174, "meta_mm": 174, "738": 174, "return_valu": 174, "output_graph": 174, "dynamo_normalization_capturing_compil": 174, "747": [174, 211], "produce_guard": 174, "839": 174, "eval_fram": 174, "847": 174, "rangeconstraint": 174, "min_val": 174, "max_val": 174, "inputdim": 174, "my_custom_librari": [174, 175], "compositeexplicitautograd": [174, 175], "custom_op_meta": [174, 175], "custom_op_exampl": 174, "exported_custom_op_exampl": [174, 175], "print_read": [174, 175], "5947": 174, "8062": 174, "6231": 174, "6615": 174, "5412": 174, "evidenc": [174, 175], "_schema": [174, 175], "is_mut": [174, 175], "run_decomposit": [174, 175], "decomposition_t": [174, 175], "_op": [174, 175], "operatorbas": [174, 175], "core_ir_ep": [174, 175], "num_us": 174, "placehold": 174, "get_decomposit": [174, 175], "_decomp": [174, 175], "decomp_t": [174, 175], "cond_pred": [174, 175], "stronger": 175, "safeti": 175, "bad2_nonstrict": 175, "bad3_nonstrict": 175, "bad4_nonstrict": 175, "bad1fix": 175, "dynamicshapesexample1": 175, "dynamicshapesexample2": 175, "deriveddimexample1": 175, "dimx": 175, "dimi": 175, "derived_dynamic_shapes1": 175, "derived_dim_example1": 175, "deriveddimexample2": 175, "dz": 175, "dy": 175, "derived_dynamic_shapes2": 175, "derived_dim_example2": 175, "dynamicshapesexample3": 175, "customopexampl": 175, "aotinductor": 175, "tensorrt": [175, 180], "so_path": 175, "aot_compil": 175, "compiler_aot_inductor": 175, "aot_load": 175, "torch_export_tutori": 175, "dlrm": 176, "dmp": 176, "datastructur": 176, "k80": 176, "appripri": 176, "product_t": 176, "user_t": 176, "101": 176, "202": 176, "303": 176, "product_eb": 176, "jag": [176, 194], "404": 176, "505": 176, "606": 176, "keyedtensor": 176, "3x64": 176, "pooled_embed": 176, "criteo": 176, "terabyt": 176, "jean": [177, 178], "saroufim": [177, 178], "ashok": [177, 178], "emani": [177, 178], "tl": [177, 186, 256], "dr": [177, 186], "numa": [177, 178], "upi": 177, "fma": [177, 178], "hyperthread": 177, "contend": 177, "ultra": 177, "cpu_launcher_en": [177, 178], "toepliz": 177, "toggl": 177, "use_logical_cor": 177, "vtune": [177, 252], "8180m": 177, "omp_num_thread": [177, 248], "982": 177, "__kmp_fork_barri": 177, "589": 177, "neglig": 177, "887": 177, "530": 177, "lscpu": 177, "112": [177, 186, 205, 239], "llc": [177, 178], "asid": 177, "get_num_thread": [177, 232], "node_id": [177, 178], "base_handl": 177, "56x4": 177, "affinit": [177, 178], "amplifi": 177, "slot": 177, "uop": [177, 178], "__sched_yield": 177, "disassoci": 177, "exacerb": 177, "core_51": 177, "8180": 177, "tid": 177, "97097": 177, "cpu_81": 177, "cpu_14": 177, "cpu_5": 177, "cpu_70": 177, "cpu_100": 177, "cpu_24": 177, "num_physical_cor": 177, "94290": 177, "cpu_78": 177, "cpu_108": 177, "microarchitectur": 177, "onednn": [177, 178, 200, 208, 220, 221, 227, 248], "immens": [177, 178], "ning": [177, 178], "jing": [177, 178], "xu": [177, 178, 188, 189], "20x": 178, "toplev": 178, "pmu": 178, "mispredict": 178, "hierarch": 178, "retir": 178, "specul": 178, "cancel": 178, "untun": 178, "subsystem": 178, "l3": 178, "dram": 178, "starv": 178, "wll": 178, "uncomplet": 178, "oneapi": [178, 227], "deconvolut": [178, 230], "emit_itt": [178, 227], "intel_extension_for_pytorch": [178, 221, 255], "ipex_en": 178, "submetr": 178, "spinlock": 178, "arena": 178, "enable_tcmalloc": 178, "enable_jemalloc": 178, "use_default_alloc": 178, "range_push": [178, 227], "step_": 178, "range_pop": [178, 227], "step_x": 178, "step_99": 178, "308": 178, "261": 178, "843": 178, "8960": 178, "cpu_launcher_arg": 178, "688": 178, "251": 178, "401": 178, "392": [178, 211], "bf16": [178, 185, 200, 220], "ipex": [178, 221, 252, 255], "8x": 178, "851": 178, "310": [178, 232], "7x": [178, 185], "803": 178, "248": 178, "eltwis": 178, "elementwis": 178, "nhwc": [178, 195, 221, 224], "disable_auto_channels_last": 178, "reorder": [178, 208, 227], "731": [178, 258], "634": 178, "fudan": 179, "databas": 179, "pedestrian": 179, "keypoint": 179, "tv_tensor": 179, "boundingbox": 179, "x0": 179, "y0": 179, "image_id": 179, "iscrowd": 179, "compliant": 179, "pycocotool": 179, "gautamchitni": 179, "cocoapi": 179, "cocodataset": 179, "pythonapi": 179, "get_height_and_width": 179, "ci": 179, "upenn": 179, "jshi": 179, "ped_html": 179, "pennfudanp": 179, "pedmask": 179, "fudanped00001_mask": 179, "fudanped00002_mask": 179, "fudanped00003_mask": 179, "fudanped00004_mask": 179, "pngimag": 179, "fudanped00001": 179, "fudanped00002": 179, "fudanped00003": 179, "fudanped00004": 179, "fudanped00046": 179, "fudanped00046_mask": 179, "122": [179, 239], "tvtensor": 179, "masks_to_box": 179, "pennfudandataset": 179, "listdir": 179, "mask_path": 179, "obj_id": 179, "num_obj": 179, "crowd": 179, "xyxi": 179, "canvas_s": 179, "get_siz": 179, "zoo": 179, "faster_rcnn": 179, "fastrcnnpredictor": 179, "fasterrcnn_resnet50_fpn": 179, "roi_head": 179, "box_predictor": 179, "cls_score": 179, "fasterrcnn": 179, "rpn": 179, "anchorgener": 179, "anchor": 179, "anchor_gener": 179, "aspect_ratio": 179, "featmap_nam": 179, "roi_pool": 179, "multiscaleroialign": 179, "sampling_ratio": 179, "rcnn": 179, "rpn_anchor_gener": 179, "box_roi_pool": 179, "mask_rcnn": 179, "maskrcnnpredictor": 179, "get_model_instance_segment": 179, "maskrcnn_resnet50_fpn": 179, "in_features_mask": 179, "mask_predictor": 179, "conv5_mask": 179, "coco_util": 179, "coco_ev": 179, "get_transform": 179, "todtyp": 179, "topuretensor": 179, "print_freq": 179, "draw_bounding_box": 179, "draw_segmentation_mask": 179, "eval_transform": 179, "rgba": 179, "pred_label": 179, "pred_box": 179, "output_imag": 179, "train2017": 179, "prepare_fx": [180, 182, 183, 184], "convert_fx": [180, 182, 183, 184], "default_weight_observ": 180, "get_default_qconfig_map": 180, "minmaxobserv": [180, 201], "backend_config": 180, "backendpatternconfig": 180, "dtypewithconstraint": 180, "observationtyp": 180, "quantize_fx": [180, 182, 183], "fp32_linear": 180, "quant1": 180, "dequant1": 180, "quant2": 180, "dequant2": 180, "bracket": [180, 264], "fp32_conv_relu": 180, "quint8_with_constraint": 180, "quant_min_lower_bound": 180, "quant_max_upper_bound": 180, "scale_min_lower_bound": 180, "weighted_int8_dtype_config": 180, "input_dtyp": 180, "output_dtyp": 180, "weight_dtyp": 180, "bias_dtyp": 180, "fuse_conv2d_relu": 180, "convrelu2d": [180, 183], "linear_config": 180, "set_pattern": 180, "set_observation_typ": 180, "output_use_different_observer_as_input": 180, "add_dtype_config": 180, "set_root_modul": 180, "set_qat_modul": 180, "set_reference_quantized_modul": 180, "conv_relu_config": 180, "set_fused_modul": 180, "set_fuser_method": 180, "fused_conv_relu_config": 180, "my_backend": 180, "set_backend_pattern_config": 180, "quant_max": [180, 201], "activation_observ": 180, "with_arg": [180, 201], "quant_min": [180, 201], "qconfig_map": [180, 182, 183, 184], "set_object_typ": [180, 182, 183, 198], "use_bn": 180, "quantizedlinear": 180, "012136868201196194": 180, "zero_point": [180, 186, 201], "qscheme": [180, 201], "per_tensor_affin": [180, 201], "quantizedconvrelu2d": 180, "0029353597201406956": 180, "linear_input_scale_0": 180, "linear_input_zero_point_0": 180, "quantize_per_tensor": [180, 186, 198, 222], "dequantize_2": 180, "015307803638279438": 180, "dequantize_1": 180, "get_fbgemm_backend_config": 180, "get_qnnpack_backend_config": 180, "get_native_backend_config": 180, "rfc": [180, 191, 264], "0019": [180, 186], "tldr": [182, 183], "default_dynamic_qconfig": [182, 186], "qconfigmap": [182, 184, 198, 201], "release": 182, "set_glob": [182, 183, 184, 198, 199, 200], "prepared_model": [182, 183, 198, 199, 200], "metamind": 182, "asset": [182, 207, 209, 225], "lstm_model": 182, "float_qparams_weight_only_qconfig": 182, "model_to_quant": [182, 183, 198], "forunct": 182, "fx_graph_mode_ptq_dynam": 182, "charl": 183, "hernandez": 183, "traceabl": 183, "identitc": [183, 198], "resnet18_pretrained_float": [183, 198, 199], "fuse_fx": 183, "recursivescriptmodul": [183, 186, 198, 199], "qconfig_opt": [183, 198], "set_module_name_regex": 183, "set_module_nam": [183, 198], "set_module_name_object_type_ord": 183, "object_typ": 183, "module_name_regex": 183, "module_nam": 183, "serila": [183, 198], "fx_graph_mode_model_file_path": 183, "resnet18_fx_graph_mode_quant": 183, "erro": 183, "convrelu": 183, "moduleattributeerror": 183, "_modul": 183, "conv1_weight_after_fus": 183, "conv1_weight_after_qu": 183, "resnet18_script": [183, 198], "eager_quantized_model": 183, "eager_mode_model_fil": 183, "resnet18_eager_mode_quant": 183, "aibench": 183, "192": 183, "48m": 183, "63m": 183, "non_traceable_code_1": 184, "traceable_cod": 184, "non_traceable_code_2": 184, "fp32traceabl": 184, "traceable_submodul": 184, "traceable_code_1": 184, "traceable_code_2": 184, "model_fp32": 184, "non_traceable_cod": 184, "fp32nontrac": 184, "non_traceable_submodul": 184, "prepare_custom_config_dict": 184, "non_traceable_module_nam": 184, "non_traceable_module_class": 184, "mnontrac": 184, "model_prepar": 184, "transpose_for_scor": 184, "new_x_shap": 184, "num_attention_head": 184, "attention_head_s": 184, "custommodul": 184, "observednontrac": 184, "from_float": 184, "from_observ": 184, "staticquantnontrac": 184, "float_to_observed_custom_module_class": 184, "convert_custom_config_dict": 184, "observed_to_quantized_custom_module_class": 184, "model_quant": [184, 225, 226, 229, 254], "thee": 184, "dynamicquantnontrac": 184, "weightonlyquantmnontrac": 184, "test_custom_module_class": 184, "test_quantize_fx": 184, "hdcharl": 185, "pg509": 185, "330": 185, "myenv": 185, "cu121": [185, 264], "vit_h": 185, "segment_anyth": 185, "sam_vit_h_4b8939": 185, "sam_checkpoint_base_path": 185, "change_linear_weights_to_int8_dqtensor": 185, "sam_model_registri": 185, "batchsiz": 185, "only_one_block": 185, "adaptive_autorang": 185, "min_run_tim": [185, 232, 247], "max_run_tim": 185, "1e9": 185, "get_sam_model": 185, "sam": 185, "image_encod": 185, "fp32_re": 185, "16m": 185, "33gb": 185, "instant": 185, "protect": [185, 209, 223, 224], "bf16_re": 185, "43m": 185, "17gb": 185, "autotun": [185, 256], "comp_r": 185, "95m": 185, "24gb": 185, "int4": 185, "change_linear_weights_to_int8_woqtensor": 185, "change_linear_weights_to_int4_woqtensor": 185, "apply_dynamic_qu": 185, "apply_weight_only_int8_qu": 185, "change_linear_weight": 185, "quant_r": 185, "04m": 185, "58gb": 185, "force_fuse_int_mm_with_mul": 185, "78m": 185, "37gb": 185, "unquant": [185, 201], "epilogu": 185, "enlarg": 185, "epilogue_fus": 185, "coordinate_descent_tun": 185, "coordinate_descent_check_all_direct": 185, "39gb": 185, "10x": 185, "729": 185, "65m": 185, "96gb": 185, "28m": 185, "93gb": 185, "gpu_quantization_torchao_tutori": 185, "supriya": 186, "rao": 186, "per_channel_dynamic_qconfig": 186, "quantize_dynamic_jit": 186, "ts_model": 186, "installaion": 186, "necesessari": 186, "lenght": 186, "qconfig_glob": 186, "qconfig_sub": 186, "qconfig_fc": 186, "242141": 186, "354759": 186, "188": [186, 232], "157": 186, "4s": 186, "quantized_model_debug": 186, "prepare_dynamic_jit": 186, "convert_dynamic_jit": 186, "406429": 186, "897": 186, "113": 186, "4_scale_0": 186, "114": 186, "4_zero_point_0": 186, "4_axis_0": 186, "4_scalar_type_0": 186, "quantize_per_channel": 186, "1640": 186, "_choose_qparams_per_tensor": 186, "98304": 186, "linear_dynam": 186, "_c": [186, 188, 245, 248], "0157": 186, "0257": 186, "0269": 186, "0158": 186, "0764": 186, "0548": 186, "0325": 186, "0423": 186, "0528": 186, "1382": 186, "0069": 186, "0106": 186, "0113": 186, "0275": 186, "0253": 186, "0457": 186, "0090": 186, "0512": 186, "0555": 186, "0277": 186, "0543": 186, "0539": 186, "0619": 186, "1040": 186, "0598": [186, 202], "0465": 186, "0009": 186, "0949": 186, "0097": 186, "0183": 186, "0085": 186, "clonebackward": 186, "0011": 186, "0010": 186, "0034": 186, "0013": 186, "0012": 186, "0015": 186, "0016": 186, "0036": 186, "0014": 186, "0008": 186, "0023": 186, "0018": 186, "0031": 186, "0022": 186, "0024": 186, "016605": 186, "182": 186, "878029": 186, "jit_model_path_float": 186, "jit_model_path_eag": 186, "jit_model_path_graph": 186, "chunyuan": 187, "bao": 187, "cpp_wrapper": [187, 200], "opt_fn": 187, "assert_size_strid": 187, "empty_strid": [187, 207, 239], "cpp_fused_add_lift_fresh_0": 187, "c_void_p": 187, "constant0": 187, "inductor_entry_cpp": 187, "19l": 187, "cppwrappercodecach": 187, "cpp_wrapper_src": 187, "c2buojsvlqbywxe3itb43hldieh4jqulk72iswa2awalwev7hjn2": 187, "_wrap_func": 187, "args_tensor": 187, "constants_tensor": 187, "_deviceguard": 187, "lift_fresh": 187, "stream0": 187, "get_cuda_stream": 187, "triton_poi_fused_add_lift_fresh_0": 187, "run_intermediate_hook": 187, "cudaguard": 187, "device_guard": 187, "loadkernel": 187, "torchinductor_us": 187, "cmm6xjgijjffxjku4akv55eyzibirvw6bti6uqmfnruujm5cvvmw": 187, "cubin": 187, "triton_poi_fused_add_lift_fresh_0_0d1d2d3": 187, "cudeviceptr": 187, "var_0": 187, "reinterpret_cast": [187, 209], "var_1": 187, "var_2": 187, "var_3": 187, "kernel_args_var_0": 187, "cudastream_t": 187, "getcurrentcudastream": 187, "launchkernel": 187, "czbpeilh4qqmbyejdgsbpdfuk2ss5jigl2qjb7xs4gearrjvuwem": 187, "tao": [188, 189], "solidifi": [188, 195], "coremltool": 188, "0b5": 188, "to_backend": 188, "_coreml": 188, "compilespec": 188, "coremlcomputeunit": 188, "mobilenetv2_spec": 188, "allow_low_precis": 188, "compile_spec": 188, "_jit_to_backend": 188, "coreml": 188, "mobilenetv2_coreml": 188, "cpuandgpu": 188, "mil": 188, "385": 188, "1496": 188, "anaconda3": 188, "name_sanitization_util": 188, "userwarn": [188, 190, 191, 192, 193], "647": 188, "var_647": 188, "new_nam": 188, "138": 188, "495": [188, 232], "1977": 188, "backend_detail": 188, "codegen_backend_modul": 188, "desktop": [188, 189, 209], "cocoapod": [188, 189, 205, 223, 226], "podfil": [188, 223, 226], "pod": [188, 205, 223, 226, 228, 252], "lite": [188, 205, 223], "client": [189, 224], "prepack": [189, 209, 254], "pytorch_root": [189, 207], "use_pytorch_metal_export": 189, "ON": [189, 196, 219, 224], "41237a4": [189, 207], "optimized_model": [189, 200], "export_opnam": [189, 223], "mobilenetv2_met": 189, "optimized_mobil": 189, "adaptive_avg_pool2d": 189, "copy_to_host": 189, "metal_prepack": 189, "conv2d_run": 189, "conect": 189, "slighli": 189, "malamut": 189, "malemut": 189, "alaskan": 189, "eskimo": 189, "huski": 189, "ios_arch": [189, 224], "use_pytorch_met": 189, "build_io": [189, 205, 223, 224], "a9": 189, "nsarrai": 189, "nsnumber": 189, "inferencemod": 189, "metalperformanceshad": 189, "1369": 190, "clr": 190, "sparse_coo_tensor": [190, 193], "state_sum": 190, "addcmul_": 190, "addcdiv_": 190, "_make_spars": 190, "grad_indic": 190, "coalesc": 190, "_indic": 190, "grad_valu": 190, "_valu": 190, "sparse_mask": [190, 193], "std_valu": 190, "sqrt_": 190, "state_sum2": 190, "masked_grad": 190, "get_data": [190, 192, 193], "std2": 190, "masked_tensor": [190, 191, 192, 193], "to_spars": [190, 193], "param2": [190, 203], "glanc": 190, "dodg": 190, "make_spars": 190, "diverg": [190, 192], "brittl": 190, "argu": 190, "densif": 190, "csc": [190, 193], "bsr": [190, 193], "bsc": 190, "conflat": 190, "disentangl": 190, "purposefulli": 190, "to_dens": [190, 193], "cleaner": [190, 192, 197, 198], "relianc": 190, "unreli": [190, 192], "maskedarrai": [190, 197], "maskedtensor_adagrad": 190, "maskedtensor_overview": [191, 192, 193], "unspecifi": [191, 192, 193, 197], "intersect": 191, "logical_or": 191, "npm0": 191, "ma": 191, "masked_arrai": 191, "npm1": 191, "mt0": 191, "mt1": [191, 193], "mt2": [191, 193], "get_mask": [191, 192], "mt": [191, 192, 193], "amin": [191, 193], "amax": 191, "data0": 191, "data1": 191, "mask0": 191, "mask1": 191, "intent": [191, 198, 201, 209, 264], "necessit": 191, "maskedtensor_advanced_semant": 191, "as_masked_tensor": 192, "afterthought": 192, "born": 192, "recur": 192, "inabl": 192, "10729": 192, "troubl": 192, "mx": 192, "52248": 192, "frustrat": 192, "4132": 192, "67180": 192, "longstand": 192, "bgrad1": 192, "isnan": 192, "unsaf": 192, "61474": 192, "nanmax": 192, "nanmin": 192, "lend": 192, "argmin": 192, "substructur": 193, "sparse_coo": 193, "sparse_csr": 193, "nse": 193, "sparse_tensor_data": 193, "sparse_tensor_mask": 193, "dense_masked_tensor": 193, "to_sparse_coo": 193, "to_sparse_csr": 193, "nuanc": 193, "sparse_coo_mt": 193, "crow_indic": 193, "col_indic": 193, "nnz": 193, "mt_sparse_csr": 193, "mt_sparse_coo": 193, "mt_dens": 193, "is_spars": 193, "is_sparse_coo": 193, "is_sparse_csr": 193, "surfac": 193, "vast": 193, "mask_valu": 193, "sparse_csr_tensor": 193, "synergi": 193, "invest": 193, "maskedtensor_spars": 193, "rag": 194, "invalu": 194, "nestedtensor": [194, 197], "padded_out_tensor": 194, "to_padded_tensor": 194, "poss": 194, "is_nest": 194, "irregularli": 194, "nt_reshap": 194, "nt_transpos": 194, "nt_mm": 194, "nt3": 194, "nt4": 194, "nt5": 194, "embrac": 194, "padded_sent": 194, "nested_sent": 194, "semnat": 194, "ux": [194, 198, 200], "padded_sentences_for_softmax": 194, "e_q": 194, "e_k": 194, "e_v": 194, "e_tot": 194, "query_proj": 194, "key_proj": 194, "value_proj": 194, "e_out": 194, "out_proj": 194, "e_head": 194, "sdpa": 194, "l_t": 194, "l_": 194, "attn_output": 194, "todo": [194, 262], "unflatten": 194, "zipf": 194, "zipf_sentence_length": 194, "unigram": 194, "858": [194, 219], "sentence_length": 194, "ibatch": 194, "gen_batch": 194, "jagged_to_pad": 194, "jt": 194, "padding_v": 194, "unbind": [194, 206], "padded_queri": 194, "padded_kei": 194, "padded_valu": 194, "output_nest": 194, "time_nest": 194, "output_pad": 194, "time_pad": 194, "entry_length": 194, "compiled_mha": 194, "compiled_output_nest": 194, "compiled_time_nest": 194, "compiled_output_pad": 194, "compiled_time_pad": 194, "_nnapi": 195, "convert_model_to_nnapi": 195, "bundled_input": [195, 205, 210], "make_mobilenetv2_nnapi": 195, "output_dir_path": 195, "quantize_mod": 195, "quantize_cor": 195, "quantize_ifac": 195, "input_float": 195, "nnapi_nhwc": 195, "nnapi_model": 195, "bundlewrapp": 195, "augment_model_with_bundled_input": 195, "bundle_large_tensor": [195, 205], "quant_": 195, "quant_ful": 195, "speed_benchmark_torch": [195, 219, 224], "pthreadpool_s": 195, "use_bundled_input": 195, "use_caching_alloc": 195, "200gb": 195, "googlesourc": [195, 207], "envsetup": 195, "aosp_x86_64": 195, "j16": 195, "lib64": 195, "libneuralnetwork": 195, "ctype": 195, "cdll": 195, "loadlibrari": [195, 209], "get_all_bundled_input": [195, 210], "_numeric_suit": 196, "ns": 196, "default_eval_fn": 196, "qmodel": 196, "img_data": 196, "compare_weight": 196, "wt_compare_dict": 196, "nkei": 196, "sqnr": 196, "relationship": 196, "nomin": 196, "compute_error": 196, "pn": 196, "log10": 196, "hist": 196, "compare_model_output": 196, "act_compare_dict": 196, "white_list": 196, "outputlogg": 196, "default_numeric_suite_compare_model_output_white_list": 196, "prepare_model_output": 196, "get_matching_activ": 196, "myoutputlogg": 196, "logger_cl": 196, "prepare_model_with_stub": 196, "shadowlogg": 196, "compare_model_stub": 196, "quantizablebasicblock": 196, "module_swap_list": 196, "ob_dict": 196, "get_logger_dict": 196, "myshadowlogg": 196, "is_quant": 196, "db": [196, 198], "numeric_suite_tutori": 196, "pypi": [197, 222], "pt2": [197, 200, 211, 212, 216], "optimizi": 197, "nnapi": 197, "autovector": [197, 206], "maskedtensor": 197, "coo": 197, "csr": 197, "14k": 198, "prepare_pt2": [198, 200], "convert_pt2": [198, 199, 200], "capture_pre_autograd_graph": [198, 199, 200], "shoud": [198, 199, 200], "quantize_pt2": [198, 199, 200], "xnnpackquant": [198, 199, 201], "get_symmetric_quantization_config": [198, 199], "backendconfig": [198, 201], "fake_qu": 198, "embedding_byt": 198, "executorchquant": 198, "prone": 198, "composed_quant": 198, "quantization_cap": 198, "minmax": 198, "exported_model": [198, 199, 200], "dynamic_dim": [198, 199], "xnnpack_quant": [198, 199], "themodel": 198, "fp32_op": 198, "qauntiz": 198, "quantized_linear": 198, "x_int8": 198, "x_scale": 198, "x_zero_point": 198, "weight_int8": 198, "weight_scal": [198, 201], "weight_zero_point": 198, "bias_fp32": 198, "output_scal": 198, "output_zero_point": 198, "x_fp32": 198, "quantized_decompos": 198, "dequantize_per_tensor": 198, "x_i8": 198, "x_quant_min": 198, "x_quant_max": 198, "weight_fp32": 198, "weight_i8": 198, "weight_quant_min": 198, "weight_quant_max": 198, "weight_permut": 198, "permute_copi": 198, "out_fp32": 198, "out_i8": 198, "out_scal": 198, "out_zero_point": 198, "out_quant_min": 198, "out_quant_max": 198, "float32_op": 198, "use_reference_represent": 198, "x_int16": 198, "weight_int16": 198, "acc_int32": 198, "out_dtyp": 198, "bias_scal": 198, "bias_int32": 198, "out_int8": 198, "qmin": 198, "qmax": 198, "pt2e_quantized_model_file_path": 198, "resnet18_pt2e_quant": 198, "quantized_ep": 198, "loaded_quantized_ep": 198, "ptq": [199, 200], "prepare_qat_pt2": [199, 200], "move_exported_model_to_ev": [199, 200], "move_exported_model_to_train": 199, "subgraph": 199, "_native_batch_norm_legit": 199, "cudnn_batch_norm": 199, "num_observer_update_epoch": 199, "num_batch_norm_update_epoch": 199, "num_epochs_between_ev": 199, "subseq": 199, "new_arg": 199, "prepared_model_copi": 199, "checkpoint_": 199, "lesli": [200, 201], "fang": [200, 201], "weiwen": [200, 201], "xia": [200, 201], "x86inductorquant": 200, "spr": 200, "x86_inductor_quant": 200, "xiq": 200, "traced_b": 200, "aten_graph": 200, "get_default_x86_inductor_quantization_config": 200, "is_dynam": [200, 201], "converted_model": 200, "absenc": 200, "mirror": 200, "device_typ": [200, 231, 255], "qconvolut": 200, "qlinear": 200, "conting": 200, "qmaxpool2d": 200, "torchinductor_freez": 200, "example_x86inductorquantizer_pytorch_2_1": 200, "torchbench": [200, 220], "example_x86inductorquantizer_qat": 200, "kimish": 201, "patel": 201, "quantiat": 201, "qnnpackquant": 201, "quantizationspec": 201, "quantizationannot": 201, "bitwidth": 201, "histogramobserv": 201, "dataclass": 201, "input_qspec_map": 201, "output_qspec": 201, "_annot": 201, "matcher": 201, "get_source_partit": 201, "add_partit": 201, "add_nod": 201, "output_nod": 201, "act_quantization_spec": 201, "observer_or_fake_quant_ctr": 201, "input_act_qspec": 201, "output_act_qspec": 201, "input_act0": 201, "input_act1": 201, "quantization_annot": 201, "sharedquantizationspec": 201, "average_pool": 201, "edgeornod": 201, "conv1_out": 201, "conv2_out": 201, "qspec1": 201, "cat_input0": 201, "cat_input1": 201, "share_qparams_with_input_act0_qspec": 201, "fixedqparamsquantizationspec": 201, "act_qspec": 201, "sigmoid_nod": 201, "input_act": 201, "derivedquantizationspec": 201, "derive_qparams_fn": 201, "observerorfakequant": 201, "observerbas": 201, "fakequantizebas": 201, "obejct": 201, "obs_or_fq": 201, "fq": 201, "act_obs_or_fq": 201, "weight_obs_or_fq": 201, "act_scal": 201, "act_zp": 201, "calculate_qparam": 201, "weight_zp": 201, "bias_qspec": 201, "derived_from": 201, "per_tensor_symmetr": 201, "weight_quantization_spec": 201, "backendquant": 201, "quantizationconfig": 201, "get_input_act_qspec": 201, "get_output_act_qspec": 201, "get_weight_qspec": 201, "get_bias_qspec": 201, "relu_nod": 201, "maybe_conv_nod": 201, "conv1d": [201, 208, 248], "recognz": 201, "subgraphmatch": 201, "conv_relu_pattern": 201, "name_node_map": 201, "input_nod": 201, "weight_nod": 201, "bias_nod": 201, "exact_match": 202, "53358561967833": 202, "9280493093186": 202, "927572380751371": 202, "607915310189128": 202, "18846387788653": 202, "91255673766136": 202, "parameter": 202, "elemen": 202, "paramter": 202, "bertoutput": 202, "parametrizedlinear": 202, "fakespars": 202, "layernorm": 202, "elementwise_affin": 202, "59602649006622": 202, "51610004515979": 202, "0237": 202, "0130": 202, "0462": 202, "0272": 202, "0436": 202, "0492": 202, "0844": 202, "0340": 202, "0302": 202, "0350": 202, "0303": 202, "0175": 202, "0529": 202, "0327": 202, "0213": 202, "0258": 202, "0239": 202, "0380": 202, "0562": 202, "0432": 202, "0262": 202, "0227": 202, "0244": 202, "0784": 202, "0761": 202, "0225": 202, "0395": 202, "0684": 202, "0344": 202, "43897824030275": 202, "48718950090766": 202, "621004460379481": 202, "368514601141214": 202, "702805917710066": 202, "244": [202, 227], "19364519417286": 202, "87x": 202, "skip_init": 203, "param1": 203, "some_buff": 203, "to_empti": [203, 245], "intial": 203, "fnet": 204, "___torch_mangle_3": 204, "fnet2": 204, "0107": 204, "0048": 204, "torchscript_freez": 204, "lai": [205, 223], "cccclai": 205, "dhruv": 205, "matani": 205, "dhruvbird": 205, "scripted_modul": [205, 210, 223], "input_image_1": 205, "input_tensor_1": 205, "input_batch_1": 205, "input_image_2": 205, "input_tensor_2": 205, "input_batch_2": 205, "step2": 205, "bundled_model_input": 205, "bundled_model": [205, 210], "bundle_input": [205, 210], "deeplabv3_scripted_with_bundled_input": 205, "macosx_deployment_target": [205, 207], "max_job": 205, "tracing_bas": 205, "model_trac": 205, "model_input_path": 205, "build_yaml_path": 205, "armeabi": 205, "v7a": 205, "v8a": [205, 207, 219, 224], "selected_op_list": [205, 223], "build_pytorch_android": [205, 207, 223], "cmd": 205, "build_lite_interpret": 205, "chenlai": 205, "aar": [205, 207, 209], "xarg": 205, "ls": 205, "lah": 205, "rw": 205, "staff": 205, "13m": 205, "feb": 205, "pytorch_android": [205, 207, 209, 225], "36k": 205, "pytorch_android_torchvis": [205, 223, 225], "gradl": [205, 207, 223, 225, 228], "androidx": [205, 209, 223], "appcompat": [205, 209, 223], "constraintlayout": [205, 223], "testimplement": [205, 223], "junit": [205, 223], "androidtestimplement": [205, 223], "ext": [205, 221, 223, 264, 265], "espresso": [205, 223], "v7": [205, 209], "fbjni": [205, 209, 223], "allproject": [205, 209], "jcenter": [205, 209], "flatdir": 205, "ios_platform": [205, 223], "deintegr": 205, "all_load": 205, "bitcod": 205, "deeplabv3": [205, 223], "deeplabv3_on_android": 205, "42368": 206, "unsuccessfulli": 206, "rummag": 206, "batched_dot": [206, 232], "feature_s": 206, "shenanigin": 206, "feature_vec": 206, "8304": 206, "23475": 206, "basis_vector": 206, "get_vjp": 206, "jacobian_vmap": 206, "performantli": 206, "7786": 206, "grad_sampl": 206, "batch_of_sampl": 206, "vmap_recip": 206, "ivan": [207, 209], "kobzarev": [207, 209], "use_vulkan": 207, "vulkan_wrapp": 207, "use_vulkan_wrapp": 207, "libvulkan": 207, "vulkansdk": 207, "lunarg": 207, "vulkan_sdk": 207, "vulkan_sdk_root": 207, "install_vulkan": 207, "use_vulkan_shaderc_runtim": 207, "android_abi": [207, 209, 219, 224], "build_android": [207, 219, 224], "script_model": 207, "mobilenet2": 207, "32bit": 207, "script_model_vulkan": 207, "optimization_blocklist": 207, "mobileoptimizertyp": 207, "vulkan_automatic_gpu_transf": 207, "is_vulkan_avail": 207, "tensor_vulkan": 207, "tensor_output_vulkan": 207, "tensor_output": 207, "_adaptive_avg_pool2d": 207, "_cat": 207, "hardtanh_": 207, "transpose_": 207, "upsample_nearest2d": 207, "allocatefloatbuff": [207, 224], "fromblob": [207, 224], "mmodul": [207, 223, 224], "test_app": 207, "testapp": [207, 224], "l133": 207, "apploc": 207, "installmbvulkanlocalbasedebug": 207, "mbq": 207, "swiftshad": 207, "amx": [208, 221, 222], "\u4e5f\u79f0\u4e3a\u82f1\u7279\u5c14": 208, "\u662f\u4e00\u79cdx86\u6269\u5c55": 208, "\u5f15\u5165\u4e86\u4e24\u4e2a\u65b0\u7ec4\u4ef6": 208, "\u4e00\u4e2a\u79f0\u4e3a": 208, "\u7684\u4e8c\u7ef4\u5bc4\u5b58\u5668\u6587\u4ef6\u548c\u4e00\u4e2a\u80fd\u591f\u5728\u8fd9\u4e9btile\u4e0a\u8fdb\u884c\u77e9\u9635\u4e58\u6cd5": 208, "tmul": 208, "\u7684\u52a0\u901f\u5668": 208, "amx\u65e8\u5728\u52a0\u901fcpu\u4e0a\u7684\u6df1\u5ea6\u5b66\u4e60\u8bad\u7ec3\u548c\u63a8\u7406\u5de5\u4f5c\u8d1f\u8f7d": 208, "\u975e\u5e38\u9002\u5408\u81ea\u7136\u8bed\u8a00\u5904\u7406": 208, "\u63a8\u8350\u7cfb\u7edf\u548c\u56fe\u50cf\u8bc6\u522b\u7b49\u5de5\u4f5c\u8d1f\u8f7d": 208, "\u82f1\u7279\u5c14\u901a\u8fc7\u7b2c4\u4ee3\u82f1\u7279\u5c14": 208, "\u81f3\u5f3a": 208, "\u53ef\u6269\u5c55\u5904\u7406\u5668\u548c\u82f1\u7279\u5c14": 208, "amx\u63a8\u8fdb\u4e86ai\u80fd\u529b": 208, "\u76f8\u6bd4\u4e0a\u4e00\u4ee3\u4ea7\u54c1": 208, "\u63a8\u7406\u548c\u8bad\u7ec3\u6027\u80fd\u63d0\u9ad8\u4e863\u500d\u81f310\u500d": 208, "\u8be6\u89c1": 208, "\u4f7f\u7528intel": [208, 248], "amx\u52a0\u901fai\u5de5\u4f5c\u8d1f\u8f7d": 208, "\u4e0e\u8fd0\u884cintel": 208, "\u9ad8\u7ea7\u77e2\u91cf\u6269\u5c55512\u795e\u7ecf\u7f51\u7edc\u6307\u4ee4": 208, "avx": [208, 221], "vnni": [208, 221], "\u7684\u7b2c3\u4ee3\u82f1\u7279\u5c14\u81f3\u5f3a\u53ef\u6269\u5c55\u5904\u7406\u5668\u76f8\u6bd4": 208, "\u8fd0\u884cintel": 208, "amx\u7684\u7b2c4\u4ee3\u82f1\u7279\u5c14\u81f3\u5f3a\u53ef\u6269\u5c55\u5904\u7406\u5668\u6bcf\u5468\u671f\u53ef\u6267\u884c2": 208, "048\u4e2aint8\u64cd\u4f5c": 208, "\u800c\u4e0d\u662f256\u4e2aint8\u64cd\u4f5c": 208, "\u5b83\u4eec\u8fd8\u53ef\u4ee5\u6bcf\u5468\u671f\u6267\u884c1": 208, "024\u4e2abf16\u64cd\u4f5c": 208, "\u800c\u4e0d\u662f64\u4e2afp32\u64cd\u4f5c": 208, "_\u7b2c4\u9875": 208, "\u6709\u5173amx\u7684\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f": 208, "amx\u6982\u8ff0": 208, "pytorch\u901a\u8fc7\u5176\u540e\u7aefonednn\u5229\u7528amx\u6765\u8ba1\u7b97bfloat16\u548cint8\u91cf\u5316\u7684\u8ba1\u7b97\u5bc6\u96c6\u578b\u7b97\u5b50": 208, "\u4ece\u800c\u5728\u652f\u6301amx\u7684x86": 208, "cpu\u4e0a\u83b7\u5f97\u66f4\u9ad8\u7684\u6027\u80fd": 208, "\u6709\u5173onednn\u7684\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f": 208, "\u64cd\u4f5c\u5b8c\u5168\u7531onednn\u6839\u636e\u751f\u6210\u7684\u6267\u884c\u4ee3\u7801\u8def\u5f84\u5904\u7406": 208, "\u5f53\u652f\u6301\u7684\u64cd\u4f5c\u5728\u652f\u6301amx\u7684\u786c\u4ef6\u5e73\u53f0\u4e0a\u6267\u884c\u5230onednn\u5b9e\u73b0\u65f6": 208, "amx\u6307\u4ee4\u5c06\u5728onednn\u5185\u90e8\u81ea\u52a8\u8c03\u7528": 208, "\u7531\u4e8eonednn\u662fpytorch": 208, "cpu\u7684\u9ed8\u8ba4\u52a0\u901f\u5e93": 208, "\u56e0\u6b64\u65e0\u9700\u624b\u52a8\u64cd\u4f5c\u5373\u53ef\u542f\u7528amx\u652f\u6301": 208, "\u672c\u8282\u63d0\u4f9b\u4e86\u5982\u4f55\u5229\u7528amx\u52a0\u901f\u5404\u79cd\u5de5\u4f5c\u8d1f\u8f7d\u7684\u6307\u5357": 208, "bfloat16\u6570\u636e\u7c7b\u578b": 208, "\u5c06\u5229\u7528amx\u52a0\u901f\u652f\u6301\u7684\u7b97\u5b50": 208, "\u5185\u5b58\u683c\u5f0f\u53ef\u83b7\u5f97\u66f4\u597d\u7684\u6027\u80fd": 208, "\u91cf\u5316": [208, 222, 235], "\u5e94\u7528\u91cf\u5316\u5c06\u5229\u7528amx\u52a0\u901f\u652f\u6301\u7684\u7b97\u5b50": 208, "\u5f53\u751f\u6210\u7684\u56fe\u6a21\u578b\u8fd0\u884c\u5230onednn\u5b9e\u73b0\u7684\u652f\u6301\u7b97\u5b50\u65f6": 208, "amx\u52a0\u901f\u5c06\u88ab\u6fc0\u6d3b": 208, "\u5728\u652f\u6301amx\u7684cpu\u4e0a\u4f7f\u7528pytorch\u65f6": 208, "\u6846\u67b6\u5c06\u9ed8\u8ba4\u81ea\u52a8\u542f\u7528amx\u4f7f\u7528": 208, "\u8fd9\u610f\u5473\u7740pytorch\u5c06\u5c3d\u53ef\u80fd\u5229\u7528amx\u529f\u80fd\u6765\u52a0\u901f\u77e9\u9635\u4e58\u6cd5\u64cd\u4f5c": 208, "\u91cd\u8981\u7684\u662f\u8981\u6ce8\u610f": 208, "\u662f\u5426\u8c03\u5ea6\u5230amx\u5185\u6838\u6700\u7ec8\u53d6\u51b3\u4e8epytorch\u6240\u4f9d\u8d56\u7684onednn\u5e93\u548c\u91cf\u5316\u540e\u7aef\u7684\u5185\u90e8\u4f18\u5316\u7b56\u7565": 208, "pytorch\u548conednn\u5e93\u5185\u90e8\u5982\u4f55\u5904\u7406amx\u5229\u7528\u7684\u5177\u4f53\u7ec6\u8282\u53ef\u80fd\u4f1a\u968f\u7740\u6846\u67b6\u7684\u66f4\u65b0\u548c\u6539\u8fdb\u800c\u53d1\u751f\u53d8\u5316": 208, "\u53ef\u5229\u7528amx\u7684bf16": 208, "cpu\u7b97\u5b50": 208, "conv3d": [208, 248], "conv_transpose1d": 208, "conv_transpose3d": 208, "baddbmm": 208, "addbmm": 208, "\u53ef\u5229\u7528amx\u7684\u91cf\u5316cpu\u7b97\u5b50": 208, "\u8bbe\u7f6e\u73af\u5883\u53d8\u91cf": 208, "onednn_verbos": 208, "\u6216\u4f7f\u7528": 208, "mkldnn": [208, 220], "\u4ee5\u542f\u7528onednn\u8f6c\u50a8\u8be6\u7ec6\u6d88\u606f": 208, "verbose_on": 208, "\u83b7\u53d6onednn\u8be6\u7ec6\u8f93\u51fa": 208, "6dbeffbae1f23cbbeae17adb7b5b13f1f37c080": 208, "nthr": 208, "isa": [208, 248], "prim_templ": 208, "prop_kind": 208, "memory_descriptor": 208, "auxiliari": 208, "problem_desc": 208, "exec_tim": 208, "exec": 208, "undef": 208, "src_f32": 208, "f0": 208, "dst_f32": 208, "scratchpad": 208, "2561": 208, "avx512_core_amx_bf16": 208, "forward_train": 208, "src_bf16": 208, "acdb": 208, "wei_bf16": 208, "abcd16b16a2b": 208, "bia_f32": 208, "dst_bf16": 208, "alg": 208, "convolution_direct": 208, "mb7_ic2oc1_ih224oh111kh3sh2dh1ph1_iw224ow111kw3sw2dw1pw1": 208, "628906": 208, "brg": 208, "avx512_core_amx_int8": 208, "src_s8": 208, "wei_s8": 208, "ba16a64b4a": 208, "dst_s8": 208, "1x30522": 208, "30522x768": 208, "1x768": 208, "66382": 208, "\u5982\u679c\u4f60\u83b7\u5f97\u4e86": 208, "\u7684\u8be6\u7ec6\u8f93\u51fa": 208, "\u7528\u4e8ebfloat16": 208, "\u7528\u4e8eint8\u91cf\u5316": 208, "\u5219\u8868\u793aamx\u5df2\u88ab\u6fc0\u6d3b": 208, "\u6211\u4eec\u7b80\u8981\u4ecb\u7ecd\u4e86amx": 208, "\u5982\u4f55\u5728pytorch\u4e2d\u5229\u7528amx\u6765\u52a0\u901f\u5de5\u4f5c\u8d1f\u8f7d": 208, "\u4ee5\u53ca\u5982\u4f55\u786e\u8ba4amx\u6b63\u5728\u88ab\u5229\u7528": 208, "\u968f\u7740pytorch\u548conednn\u7684\u6539\u8fdb\u548c\u66f4\u65b0": 208, "amx\u7684\u5229\u7528\u60c5\u51b5\u53ef\u80fd\u4f1a\u76f8\u5e94\u53d1\u751f\u53d8\u5316": 208, "\u5982\u679c\u60a8\u9047\u5230\u4efb\u4f55\u95ee\u9898\u6216\u6709\u4efb\u4f55\u7591\u95ee": 208, "\u60a8\u53ef\u4ee5\u4f7f\u7528": [208, 259], "\u8bba\u575b": 208, "_\u6216": 208, "_\u4e0e\u6211\u4eec\u8054\u7cfb": 208, "r19c": 209, "android_ndk": 209, "3859397": 209, "android_sdk": 209, "android_hom": 209, "gradle_hom": 209, "jdk": [209, 228], "java_hom": 209, "openjdk": 209, "opencv_android_sdk": 209, "registeroper": 209, "cento": 209, "yum": 209, "devel": 209, "libopencv": 209, "nativeapp": 209, "useandroidx": 209, "enablejetifi": 209, "buildscript": 209, "classpath": 209, "maven": [209, 223], "oss": [209, 223], "sonatyp": [209, 223], "extractfornativebuild": 209, "compilesdkvers": 209, "buildtoolsvers": 209, "defaultconfig": 209, "applicationid": 209, "minsdkvers": 209, "targetsdkvers": 209, "versioncod": 209, "versionnam": 209, "externalnativebuild": 209, "dandroid_stl": 209, "_share": 209, "buildtyp": 209, "minifyen": 209, "sourceset": 209, "jnilib": 209, "srcdir": 209, "extractaarfornativebuild": 209, "dolast": 209, "absolutefil": 209, "ziptre": 209, "builddir": 209, "jni": 209, "whentaskad": 209, "dependson": 209, "nexu": 209, "libpytorch_jni": 209, "libfbjni": 209, "stl": 209, "pytorch_nativeapp": 209, "build_dir": 209, "cmake_source_dir": 209, "pytorch_testapp_cpp_dir": 209, "cmake_current_list_dir": 209, "pytorch_testapp_sourc": 209, "pytorch_include_dir": 209, "pytorch_link_dir": 209, "target_compile_opt": 209, "fexcept": 209, "build_subdir": 209, "find_librari": 209, "pytorch_librari": 209, "pytorch_jni": 209, "no_cmake_find_root_path": 209, "fbjni_librari": 209, "endif": 209, "opencv_include_dir": 209, "target_include_directori": 209, "opencv_lib_dir": 209, "opencv_librari": 209, "opencv_java4": 209, "libopencv_java4": 209, "logcat": 209, "torschscript": 209, "androidmanifest": 209, "xml": 209, "xmln": 209, "apk": 209, "allowbackup": 209, "pytorchnativeapp": 209, "supportsrtl": 209, "theme": 209, "darkactionbar": 209, "appcompatact": 209, "fileoutputstream": 209, "inputstream": 209, "outputstream": 209, "assetnam": 209, "getfilesdir": 209, "getabsolutepath": 209, "getasset": 209, "savedinstancest": 209, "modelfileabsolutefilepath": 209, "nativecli": 209, "loadandforwardmodel": 209, "assertfilepath": 209, "nativep": 209, "libpytorch_nativeapp": 209, "modelpath": 209, "cassert": 209, "cmath": 209, "unistd": 209, "alogi": 209, "__android_log_print": 209, "android_log_info": 209, "__va_args__": 209, "alog": 209, "android_log_error": 209, "ostringstream": 209, "c_str": 209, "jitcallguard": 209, "no_autograd_guard": 209, "non_var_guard": 209, "graphoptimizerenabledguard": 209, "no_optimizer_guard": 209, "jnienv": 209, "jclass": 209, "jstring": 209, "jmodelpath": 209, "getstringutfchar": 209, "t_out": 209, "releasestringutfchar": 209, "jniexport": 209, "jint": 209, "jni_onload": 209, "javavm": 209, "vm": [209, 265], "getenv": [209, 232], "jni_version_1_6": 209, "jni_ok": 209, "jni_err": 209, "findclass": 209, "jninativemethod": 209, "ljava": 209, "rc": 209, "registern": 209, "intermix": 209, "assembledebug": 209, "installdebug": 209, "icon": [209, 262, 264], "adb": [209, 219, 224], "grep": 209, "26968": 209, "9484": 209, "1757": 209, "5832": 209, "9144": 209, "8867": 209, "0933": 209, "4004": 209, "3389": 209, "5200": [209, 232], "7625": 209, "5724": 209, "2073": 209, "4613": 209, "2730": 209, "6789": 209, "2247": 209, "2790": 209, "0067": 209, "9266": 209, "6034": 209, "1941": 209, "7021": 209, "5368": 209, "3803": 209, "0188": 209, "2021": [209, 222], "7412": 209, "2257": 209, "5044": 209, "6592": 209, "0826": 209, "0084": 209, "8733": 209, "5435": 209, "1087": 209, "1066": 209, "9926": 209, "1047": 209, "5311": 209, "9178": 209, "5451": 209, "0473": 209, "7571": 209, "3909": 209, "4039": 209, "5085": 209, "2776": 209, "4080": 209, "9203": 209, "3655": 209, "4395": 209, "4467": 209, "9837": 209, "3335": 209, "0445": 209, "8039": 209, "2512": 209, "3122": 209, "6543": 209, "5819": 209, "5680": 209, "6442": 209, "3090": 209, "6197": 209, "0773": 209, "5967": 209, "1105": 209, "0274": 209, "0330": 209, "0124": 209, "8644": 209, "0493": 209, "7633": 209, "9657": 209, "3469": 209, "3159": 209, "0683": 209, "4529": 209, "4559": 209, "7038": 209, "8396": 209, "9716": 209, "5279": 209, "1780": 209, "3849": 209, "4368": 209, "1480": 209, "jacob": 210, "szwejbka": 210, "example_dict": 210, "all_info": 210, "get_bundled_inputs_functions_and_info": 210, "func_nam": 210, "input_func_nam": 210, "get_inputs_function_nam": 210, "func_to_run": 210, "model_funct": 210, "decompress": 210, "ie": 210, "bundle_randn": 210, "deflat": 210, "create_exampl": 210, "deflated_input": 210, "inflatablearg": 210, "randn_lik": 210, "bundle_optional_dict_of_randn": 210, "fmt_fn": 210, "lazo": [211, 212, 257], "\u4f18\u5316\u5668\u662f\u8bad\u7ec3\u4efb\u4f55\u6df1\u5ea6\u5b66\u4e60\u6a21\u578b\u7684\u5173\u952e\u7b97\u6cd5": 211, "\u7531\u4e8e\u5b83\u8d1f\u8d23\u66f4\u65b0\u6bcf\u4e2a\u6a21\u578b\u53c2\u6570": 211, "\u56e0\u6b64\u5bf9\u4e8e\u5927\u578b\u6a21\u578b": 211, "\u5b83\u5f80\u5f80\u4f1a\u6210\u4e3a\u8bad\u7ec3\u6027\u80fd\u7684\u74f6\u9888": 211, "\u6211\u4eec\u5c06\u5728\u4f18\u5316\u5668\u4f7f\u7528": 211, "\u63d0\u5347\u5728": 211, "\u4e0a\u7684\u6027\u80fd": 211, "\u672c\u6559\u7a0b\u9700\u8981": [211, 238, 245, 257], "\u6216\u66f4\u9ad8\u7248\u672c": [211, 227, 231, 238, 245, 253, 256, 257], "\u6211\u4eec\u5c06\u4f7f\u7528\u4e00\u4e2a\u7b80\u5355\u7684\u7ebf\u6027\u5c42\u5e8f\u5217": 211, "\u7531\u4e8e\u6211\u4eec\u53ea\u662f\u5bf9\u4f18\u5316\u5668\u8fdb\u884c\u57fa\u51c6\u6d4b\u8bd5": 211, "\u6240\u9009\u62e9\u7684\u6a21\u578b\u5e76\u4e0d\u91cd\u8981": 211, "\u56e0\u4e3a\u4f18\u5316\u5668\u7684\u6027\u80fd\u4e0e\u51fd\u6570\u53c2\u6570\u6570\u91cf\u6709\u5173": 211, "\u6839\u636e\u60a8\u4f7f\u7528\u7684\u673a\u5668\u4e0d\u540c": 211, "\u7ed3\u679c\u53ef\u80fd\u4f1a\u6709\u6240\u4e0d\u540c": 211, "\u5728\u672c\u4f8b\u4e2d": 211, "\u5e76\u521b\u5efa\u4e00\u4e2a\u8f85\u52a9\u51fd\u6570\u6765\u5c06": 211, "\u5305\u88c5\u5728": 211, "\u4ec5\u652f\u6301device_cap": 211, "\u8bbe\u5907": [211, 216, 232], "\u5982\u679c\u6211\u4eec\u5728\u4e0d\u652f\u6301": 211, "\u7684\u8bbe\u5907\u4e0a": 211, "\u5219\u5e72\u51c0\u5730\u9000\u51fa": [211, 257], "\u8ba9\u6211\u4eec\u5b9a\u4e49\u4e00\u4e2a\u6709\u7528\u7684\u57fa\u51c6\u6d4b\u8bd5\u51fd\u6570": 211, "\u9884\u70ed\u8fd0\u884c\u4ee5\u7f16\u8bd1\u51fd\u6570": 211, "eager_runtim": 211, "compiled_runtim": 211, "\u793a\u4f8b\u7ed3\u679c": 211, "2437149845064u": 211, "07384741178u": 211, "\u6709\u5173\u6df1\u5165\u7684\u6280\u672f\u6982\u8ff0": 211, "linearlr": 212, "sched": 212, "total_it": 212, "compiling_optimizer_lr_schedul": 212, "\u76f4\u63a5\u8bbe\u5907\u5230\u8bbe\u5907rpc": 213, "\u5728pytorch": [213, 248], "8\u4e2d\u4f5c\u4e3a\u539f\u578b\u529f\u80fd\u5f15\u5165": 213, "\u6b64api\u53ef\u80fd\u4f1a\u53d1\u751f\u53d8\u5316": 213, "\u60a8\u5c06\u5b66\u4e60": [213, 214, 217, 227, 258, 260], "rpc\u7684\u9ad8\u7ea7\u6982\u5ff5": 213, "\u5206\u5e03\u5f0frpc\u6846\u67b6\u5165\u95e8": 213, "rpc\u652f\u6301\u76f4\u63a5\u4ece\u672c\u5730cuda\u5185\u5b58\u5411\u8fdc\u7a0bcuda\u5185\u5b58\u53d1\u9001\u5f20\u91cf": 213, "\u57281": 213, "8\u7248\u672c\u53d1\u5e03\u4e4b\u524d": 213, "rpc\u53ea\u63a5\u53d7cpu\u5f20\u91cf": 213, "\u5f53\u5e94\u7528\u7a0b\u5e8f\u9700\u8981\u901a\u8fc7rpc\u53d1\u9001cuda\u5f20\u91cf\u65f6": 213, "\u5b83\u5fc5\u987b\u9996\u5148\u5c06\u5f20\u91cf\u79fb\u52a8\u5230\u8c03\u7528\u65b9\u7684cpu": 213, "\u901a\u8fc7rpc\u53d1\u9001": 213, "\u7136\u540e\u5728\u88ab\u8c03\u7528\u65b9\u5c06\u5176\u79fb\u52a8\u5230\u76ee\u6807\u8bbe\u5907": 213, "\u8fd9\u4f1a\u5bfc\u81f4\u4e0d\u5fc5\u8981\u7684\u540c\u6b65\u548cd2h\u548ch2d\u590d\u5236": 213, "\u4ece1": 213, "8\u7248\u672c\u5f00\u59cb": 213, "rpc\u5141\u8bb8\u7528\u6237\u4f7f\u7528": 213, "set_device_map": 213, "api\u914d\u7f6e\u6bcf\u4e2a\u8fdb\u7a0b\u7684\u5168\u5c40\u8bbe\u5907\u6620\u5c04": 213, "\u6307\u5b9a\u5982\u4f55\u5c06\u672c\u5730\u8bbe\u5907\u6620\u5c04\u5230\u8fdc\u7a0b\u8bbe\u5907": 213, "\u5177\u4f53\u6765\u8bf4": [213, 260], "worker0": 213, "\u7684\u8bbe\u5907\u6620\u5c04\u6709\u4e00\u4e2a\u6761\u76ee": 213, "\u6240\u6709\u6765\u81ea": 213, "\u4e0a\u7684rpc\u53c2\u6570": 213, "\u5c06\u76f4\u63a5\u53d1\u9001\u5230": 213, "rpc\u7684\u54cd\u5e94\u5c06\u4f7f\u7528\u8c03\u7528\u65b9\u8bbe\u5907\u6620\u5c04\u7684\u9006\u6620\u5c04": 213, "\u5373\u5982\u679c": 213, "\u8fd4\u56de": 213, "\u4e0a\u7684\u5f20\u91cf": 213, "\u5b83\u5c06\u76f4\u63a5\u53d1\u9001\u5230": 213, "\u6240\u6709\u9884\u671f\u7684\u8bbe\u5907\u5230\u8bbe\u5907\u76f4\u63a5\u901a\u4fe1\u5fc5\u987b\u5728\u6bcf\u4e2a\u8fdb\u7a0b\u7684\u8bbe\u5907\u6620\u5c04\u4e2d\u6307\u5b9a": 213, "\u53ea\u5141\u8bb8cpu\u5f20\u91cf": 213, "rpc\u4f9d\u8d56\u4e8e": 213, "tensorpip": [213, 252], "\u4f5c\u4e3a\u901a\u4fe1\u540e\u7aef": 213, "rpc\u4ece\u6bcf\u4e2a\u8bf7\u6c42\u6216\u54cd\u5e94\u4e2d\u63d0\u53d6\u6240\u6709\u5f20\u91cf\u5230\u4e00\u4e2a\u5217\u8868\u4e2d": 213, "\u5e76\u5c06\u5176\u4ed6\u6240\u6709\u5185\u5bb9\u6253\u5305\u6210\u4e8c\u8fdb\u5236\u8d1f\u8f7d": 213, "tensorpipe\u5c06\u6839\u636e\u5f20\u91cf\u8bbe\u5907\u7c7b\u578b\u548c\u8c03\u7528\u65b9\u548c\u88ab\u8c03\u7528\u65b9\u7684\u901a\u9053\u53ef\u7528\u6027": 213, "\u81ea\u52a8\u4e3a\u6bcf\u4e2a\u5f20\u91cf\u9009\u62e9\u901a\u4fe1\u901a\u9053": 213, "\u73b0\u6709\u7684": 213, "\u901a\u9053\u6db5\u76d6": 213, "infiniband": 213, "cma": 213, "\u4ee5\u4e0b\u4ee3\u7801\u5c55\u793a\u4e86\u5982\u4f55\u4f7f\u7528cuda": 213, "\u8be5\u6a21\u578b\u5305\u542b\u4e24\u4e2a\u7ebf\u6027\u5c42": 213, "\u88ab\u5206\u6210\u4e24\u4e2a\u5206\u7247": 213, "\u8fd9\u4e24\u4e2a\u5206\u7247\u5206\u522b\u653e\u7f6e\u5728": 213, "\u4f5c\u4e3a\u4e3b\u8282\u70b9\u9a71\u52a8\u524d\u5411\u548c\u540e\u5411\u4f20\u64ad": 213, "\u6211\u4eec\u6709\u610f\u8df3\u8fc7\u4e86": 213, "\u4ee5\u7a81\u51fa\u4f7f\u7528": 213, "\u65f6\u7684\u6027\u80fd\u6539\u8fdb": 213, "\u5b9e\u9a8c\u91cd\u590d\u524d\u5411\u548c\u540e\u5411\u4f20\u64ad": 213, "\u6b21": [213, 253], "\u5e76\u6d4b\u91cf\u603b\u6267\u884c\u65f6\u95f4": 213, "\u5b83\u6bd4\u8f83\u4e86\u4f7f\u7528": 213, "\u4e0e\u624b\u52a8\u6682\u5b58\u5230": 213, "\u5185\u5b58": 213, "\u7684\u60c5\u51b5": 213, "comm_mod": 213, "\u5982\u679cx\u5df2\u7ecf\u5728self": 213, "device\u4e0a": 213, "\u662f\u4e00\u4e2a\u7a7a\u64cd\u4f5c": 213, "\u4e0a\u7684\u672c\u5730\u6a21\u5757": 213, "\u4e0a\u7684\u8fdc\u7a0b\u6a21\u5757": 213, "\u51c6\u5907\u968f\u673a\u8f93\u5165": 213, "\u4e0a\u540c\u6b65": 213, "\u4ee5\u786e\u4fdd\u6240\u6709\u5f85\u5904\u7406\u7684cuda\u64cd\u4f5c\u90fd\u5305\u542b\u5728\u6d4b\u91cf\u4e2d": 213, "current_stream": 213, "rpc\u603b\u6267\u884c\u65f6\u95f4": 213, "\u963b\u585e\u76f4\u5230\u6240\u6709rpc\u5b8c\u6210": 213, "\u8f93\u51fa\u663e\u793a\u5982\u4e0b": 213, "\u8868\u660e\u5728\u8fd9\u4e2a\u5b9e\u9a8c\u4e2d": 213, "\u53ef\u4ee5\u5e2e\u52a9\u5b9e\u73b0": 213, "\u500d\u7684\u901f\u5ea6\u63d0\u5347": 213, "\u76f8\u6bd4\u4e8e": 213, "3145179748535156\u79d2": 213, "06867480278015137\u79d2": 213, "\u5728\u8fd9\u4e2a\u6559\u7a0b\u4e2d": 214, "\u5982\u4f55\u5c06\u8bad\u7ec3\u597d\u7684": 214, "\u6a21\u578b\u5c01\u88c5\u5230": 214, "\u5bb9\u5668\u4e2d": 214, "\u901a\u8fc7": [214, 250], "\u66b4\u9732\u51fa\u53bb": 214, "\u5982\u4f55\u5c06\u4f20\u5165\u7684": 214, "\u8bf7\u6c42\u8f6c\u6362\u4e3a": 214, "\u4ee5\u4f9b\u60a8\u7684\u6a21\u578b\u4f7f\u7528": 214, "\u5982\u4f55\u4e3a": 214, "\u54cd\u5e94\u6253\u5305\u60a8\u6a21\u578b\u7684\u8f93\u51fa": 214, "\u60a8\u9700\u8981\u4e00\u4e2a\u5b89\u88c5\u4e86\u4ee5\u4e0b\u8f6f\u4ef6\u5305": 214, "\u53ca\u5176\u4f9d\u8d56\u9879": 214, "\u73af\u5883": [214, 227], "\u53e6\u5916": [214, 258], "\u5982\u679c\u9700\u8981\u83b7\u53d6\u4e00\u4e9b\u652f\u6301\u6587\u4ef6": 214, "\u60a8\u8fd8\u9700\u8981": 214, "\u5b89\u88c5": [214, 227, 237], "\u7684\u8bf4\u660e\u5728": 214, "org_": [214, 258], "\u4e0a\u6709\u4ecb\u7ecd": 214, "\u5b98\u7f51_": 214, "\u662f\u4e00\u4e2a\u7528": 214, "\u7f16\u5199\u7684\u8f7b\u91cf\u7ea7": 214, "\u670d\u52a1\u5668": [214, 252], "\u5b83\u4e3a\u60a8\u63d0\u4f9b\u4e86\u4e00\u79cd\u4fbf\u6377\u7684\u65b9\u5f0f": 214, "\u5feb\u901f\u5efa\u7acb\u4e00\u4e2a": 214, "\u7528\u4e8e\u60a8\u8bad\u7ec3\u597d\u7684": 214, "\u6a21\u578b\u7684\u9884\u6d4b": 214, "\u53ef\u76f4\u63a5\u4f7f\u7528": 214, "\u6216\u4f5c\u4e3a\u66f4\u5927\u7cfb\u7edf\u4e2d\u7684": 214, "\u6211\u4eec\u5c06\u521b\u5efa\u4e00\u4e2a": 214, "\u63a5\u6536\u56fe\u50cf": 214, "\u5e76\u5c06\u5176\u6620\u5c04\u5230": 214, "\u6570\u636e\u96c6\u7684": 214, "\u4e2a\u7c7b\u522b\u4e4b\u4e00": 214, "\u60a8\u9700\u8981\u4e00\u4e2a\u7528\u4e8e\u6d4b\u8bd5\u7684\u56fe\u50cf\u6587\u4ef6": 214, "\u60a8\u8fd8\u53ef\u4ee5\u83b7\u53d6\u4e00\u4e2a\u6587\u4ef6": 214, "\u5c06\u6a21\u578b\u8f93\u51fa\u7684\u7c7b\u7d22\u5f15\u6620\u5c04\u4e3a\u53ef\u8bfb\u7684\u7c7b\u540d": 214, "\u53ef\u4ee5\u901a\u8fc7\u68c0\u51fa": 214, "\u4ed3\u5e93\u5e76\u5c06\u6587\u4ef6\u590d\u5236\u5230\u60a8\u7684\u5de5\u4f5c\u6587\u4ef6\u5939\u6765\u5feb\u901f\u83b7\u53d6\u8fd9\u4e24\u4e2a\u652f\u6301\u6587\u4ef6": 214, "\u672c\u6559\u7a0b\u4e0d\u4f9d\u8d56\u4e8e": 214, "\u8fd9\u53ea\u662f\u5feb\u901f\u83b7\u53d6\u6587\u4ef6\u7684\u4e00\u79cd\u65b9\u5f0f": 214, "\u4ece\u60a8\u7684": 214, "\u63d0\u793a\u7b26\u4e0b\u53d1\u51fa\u4ee5\u4e0b\u547d\u4ee4": 214, "image_classifi": 214, "kitten": 214, "index_to_nam": 214, "\u6587\u4ef6\u5728\u4e0b\u9762\u7684": 214, "\u670d\u52a1\u4e2d\u662f\u53ef\u9009\u7684": 214, "\u60a8\u53ef\u4ee5\u4f7f\u7528\u81ea\u5df1\u7684\u56fe\u50cf\u6d4b\u8bd5\u60a8\u7684\u670d\u52a1": 214, "\u9700\u786e\u4fdd\u662f\u4e00\u4e2a": 214, "\u8272": 214, "\u56fe\u50cf": [214, 234, 258], "\u670d\u52a1\u7684\u5b8c\u6574": 214, "\u811a\u672c\u5728\u672c\u6559\u7a0b\u7684\u6700\u540e\u5c55\u793a": 214, "\u60a8\u53ef\u4ee5\u590d\u5236\u5e76\u7c98\u8d34\u5230\u60a8\u81ea\u5df1\u7684": 214, "\u6587\u4ef6\u4e2d": [214, 222], "\u4e0b\u9762\u6211\u4eec\u5c06\u67e5\u770b\u5404\u4e2a\u90e8\u5206": 214, "\u4ee5\u660e\u786e\u5b83\u4eec\u7684\u529f\u80fd": 214, "\u6309\u987a\u5e8f": 214, "\u5c06\u4f7f\u7528\u6765\u81ea": 214, "\u7684\u9884\u8bad\u7ec3": 214, "\u5305\u542b\u7528\u4e8e\u64cd\u4f5c\u56fe\u50cf\u6570\u636e\u7684\u5de5\u5177": 214, "\u662f\u6211\u4eec\u6700\u521d\u52a0\u8f7d\u56fe\u50cf\u6587\u4ef6\u65f6\u5c06\u4f7f\u7528\u7684\u5e93": 214, "\u5f53\u7136\u6211\u4eec\u8fd8\u9700\u8981\u4ece": 214, "\u5bfc\u5165\u4e00\u4e9b\u7c7b": 214, "infil": 214, "timg": 214, "\u8bf7\u6c42\u7ed9\u4e86\u6211\u4eec\u4e00\u4e2a\u56fe\u50cf\u6587\u4ef6": 214, "\u4f46\u6211\u4eec\u7684\u6a21\u578b\u671f\u671b\u4e00\u4e2a\u5f62\u72b6\u4e3a": 214, "\u662f\u8f93\u5165\u6279\u6b21\u7684\u6570\u91cf": 214, "\u6211\u4eec\u5c06\u53ea\u4f7f\u7528\u6279\u91cf\u5927\u5c0f\u4e3a": 214, "\u6211\u4eec\u9996\u5148\u8981\u505a\u7684\u662f\u7ec4\u5408\u4e00\u7ec4": 214, "\u8f6c\u6362": 214, "\u8c03\u6574\u56fe\u50cf\u5927\u5c0f\u548c\u88c1\u526a\u56fe\u50cf": 214, "\u7136\u540e\u5bf9\u5f20\u91cf\u4e2d\u7684\u503c\u8fdb\u884c\u5f52\u4e00\u5316": 214, "\u6709\u5173\u6b64\u5f52\u4e00\u5316\u7684\u66f4\u591a\u4fe1\u606f": 214, "models_": 214, "\u7684\u6587\u6863": 214, "\u6211\u4eec\u6253\u5f00\u6587\u4ef6\u5e76\u5e94\u7528\u8f6c\u6362": 214, "\u8f6c\u6362\u8fd4\u56de\u4e00\u4e2a\u5f62\u72b6\u4e3a": 214, "\u56fe\u50cf\u7684": 214, "\u4e2a\u989c\u8272\u901a\u9053": 214, "\u56e0\u4e3a\u6211\u4eec\u9700\u8981\u5c06\u8fd9\u4e2a\u5355\u4e2a\u56fe\u50cf\u53d8\u6210\u4e00\u4e2a\u6279\u6b21": 214, "\u6240\u4ee5\u6211\u4eec\u4f7f\u7528": 214, "\u8c03\u7528\u901a\u8fc7\u6dfb\u52a0\u4e00\u4e2a\u65b0\u7684\u7b2c\u4e00\u7ef4\u6765\u5c31\u5730\u4fee\u6539\u5f20\u91cf": 214, "\u5f20\u91cf\u5305\u542b\u76f8\u540c\u7684\u6570\u636e": 214, "\u4f46\u73b0\u5728\u5f62\u72b6\u4e3a": 214, "\u4e00\u822c\u6765\u8bf4": [214, 248], "\u5373\u4f7f\u60a8\u4e0d\u662f\u5728\u5904\u7406\u56fe\u50cf\u6570\u636e": 214, "\u60a8\u4e5f\u9700\u8981\u5c06\u6765\u81ea": 214, "\u8bf7\u6c42\u7684\u8f93\u5165\u8f6c\u6362\u4e3a": 214, "\u53ef\u4ee5\u4f7f\u7528\u7684\u5f20\u91cf": 214, "\u63a8\u7406\u672c\u8eab\u662f\u6700\u7b80\u5355\u7684\u90e8\u5206": 214, "\u5f53\u6211\u4eec\u5c06\u8f93\u5165\u5f20\u91cf\u4f20\u9012\u7ed9\u6a21\u578b\u65f6": 214, "\u6211\u4eec\u4f1a\u5f97\u5230\u4e00\u4e2a\u5f20\u91cf\u503c": 214, "\u4ee3\u8868\u6a21\u578b\u4f30\u8ba1\u56fe\u50cf\u5c5e\u4e8e\u7279\u5b9a\u7c7b\u522b\u7684\u53ef\u80fd\u6027": 214, "\u8c03\u7528\u627e\u5230\u5177\u6709\u6700\u5927\u53ef\u80fd\u6027\u503c\u7684\u7c7b\u522b": 214, "\u5e76\u8fd4\u56de\u8be5\u503c\u53ca\u5176": 214, "\u7c7b\u7d22\u5f15": 214, "\u8c03\u7528\u4ece\u5305\u542b\u5b83\u7684\u5f20\u91cf\u4e2d\u63d0\u53d6\u8be5\u7c7b\u7d22\u5f15": 214, "\u5e76\u8fd4\u56de\u5b83": 214, "render_predict": 214, "prediction_idx": 214, "stridx": 214, "img_class_map": 214, "\u65b9\u6cd5\u5c06\u9884\u6d4b\u7684\u7c7b\u7d22\u5f15\u6620\u5c04\u4e3a\u4eba\u7c7b\u53ef\u8bfb\u7684\u7c7b\u6807\u7b7e": 214, "\u5728\u4ece\u60a8\u7684\u6a21\u578b\u83b7\u5f97\u9884\u6d4b\u4e4b\u540e": 214, "\u901a\u5e38\u9700\u8981\u8fdb\u884c\u540e\u5904\u7406": 214, "\u4f7f\u9884\u6d4b\u53ef\u4f9b\u4eba\u7c7b\u4f7f\u7528\u6216\u4f9b\u53e6\u4e00\u4e2a\u8f6f\u4ef6\u4f7f\u7528": 214, "\u5c06\u4ee5\u4e0b\u5185\u5bb9\u7c98\u8d34\u5230\u540d\u4e3a": 214, "\u7684\u6587\u4ef6\u4e2d": 214, "\u4e2a\u7c7b\u522b\u4e0a\u8bad\u7ec3": 214, "\u5173\u95ed\u81ea\u52a8\u68af\u5ea6\u8ba1\u7b97": 214, "mapping_file_path": 214, "\u7c7b\u522b\u7684\u53ef\u8bfb\u540d\u79f0": 214, "isfil": 214, "\u5c06\u8f93\u5165\u8f6c\u6362\u4e3a\u6a21\u578b\u671f\u671b\u7684\u5f62\u5f0f": 214, "\u6211\u4eec\u4f7f\u7528\u591a\u4e2a": 214, "\u8f6c\u6362\u6765\u51c6\u5907\u56fe\u50cf": 214, "\u6a21\u578b\u8f93\u5165\u7684\u6807\u51c6\u5f52\u4e00\u5316": 214, "\u6253\u5f00\u56fe\u50cf\u6587\u4ef6": 214, "\u56fe\u50cf\u8f6c\u6362\u4e3a\u5408\u9002\u5f62\u72b6\u7684": 214, "\u6a21\u578b\u671f\u671b\u6279\u91cf\u8f93\u5165": 214, "\u521b\u5efa\u6279\u91cf\u5927\u5c0f\u4e3a": 214, "\u83b7\u53d6\u9884\u6d4b": 214, "\u83b7\u53d6\u6240\u6709": 214, "\u7c7b\u522b\u7684\u53ef\u80fd\u6027": 214, "\u63d0\u53d6\u6700\u53ef\u80fd\u7684\u7c7b\u522b": 214, "\u5f20\u91cf\u4e2d\u63d0\u53d6": 214, "\u503c": [214, 235], "\u4f7f\u9884\u6d4b\u7ed3\u679c\u53ef\u8bfb": 214, "\u63d0\u793a\u7b26\u542f\u52a8\u670d\u52a1\u5668": 214, "\u8bf7\u6267\u884c\u4ee5\u4e0b\u547d\u4ee4": 214, "\u60a8\u7684": 214, "\u670d\u52a1\u5668\u76d1\u542c": 214, "\u7aef\u53e3": 214, "\u670d\u52a1\u5668\u8fd0\u884c\u540e": 214, "\u6253\u5f00\u53e6\u4e00\u4e2a\u7ec8\u7aef\u7a97\u53e3": 214, "\u6d4b\u8bd5\u60a8\u65b0\u7684\u63a8\u7406\u670d\u52a1\u5668": 214, "curl": [214, 264], "multipart": 214, "\u5982\u679c\u4e00\u5207\u8bbe\u7f6e\u6b63\u786e": 214, "\u60a8\u5e94\u8be5\u4f1a\u6536\u5230\u7c7b\u4f3c\u5982\u4e0b\u7684\u54cd\u5e94": 214, "285": 214, "\u63d0\u4f9b\u5b89\u88c5\u8bf4\u660e": 214, "\u4ee5\u53ca\u66f4\u591a\u6587\u6863\u548c\u6559\u7a0b": 214, "\u5b98\u7f51": 214, "\u5feb\u901f\u5165\u95e8\u6307\u5357": 214, "\u5bf9\u8bbe\u7f6e\u4e00\u4e2a\u7b80\u5355\u7684": 214, "\u670d\u52a1\u6709\u66f4\u8be6\u7ec6\u7684\u4ecb\u7ecd": 214, "iri": [215, 216], "rodrigo": 215, "kumpera": 215, "chien": 215, "chin": 215, "luca": 215, "pasqualin": 215, "\u4e0a\u67e5\u770b\u548c\u7f16\u8f91\u672c\u6559\u7a0b": [215, 216], "\u5148\u51b3\u6761\u4ef6": [215, 216], "\u5728\u5206\u5e03\u5f0f\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u5bf9": 215, "\u6a21\u578b\u8fdb\u884c\u68c0\u67e5\u70b9\u4fdd\u5b58\u53ef\u80fd\u5177\u6709\u6311\u6218\u6027": 215, "\u56e0\u4e3a\u53c2\u6570\u548c\u68af\u5ea6\u5206\u5e03\u5728\u4e0d\u540c\u7684\u8bad\u7ec3\u5668\u4e0a": 215, "\u800c\u4e14\u6062\u590d\u8bad\u7ec3\u65f6\u53ef\u7528\u7684\u8bad\u7ec3\u5668\u6570\u91cf\u53ef\u80fd\u4f1a\u53d1\u751f\u53d8\u5316": 215, "\u53ef\u4ee5\u5e2e\u52a9\u7b80\u5316\u8fd9\u4e2a\u8fc7\u7a0b": 215, "\u6211\u4eec\u5c06\u5c55\u793a\u5982\u4f55\u4f7f\u7528": 215, "\u5904\u7406\u4e00\u4e2a\u7b80\u5355\u7684": 215, "\u5305\u88c5\u6a21\u578b": 215, "\u5141\u8bb8\u5e76\u884c\u5730\u4ece\u591a\u4e2a": 215, "\u60a8\u53ef\u4ee5\u4f7f\u7528\u6b64\u6a21\u5757\u5728\u4efb\u610f\u6570\u91cf\u7684": 215, "\u4e0a\u5e76\u884c\u4fdd\u5b58": 215, "\u7136\u540e\u5728\u52a0\u8f7d\u65f6\u91cd\u65b0\u5206\u7247\u5230\u4e0d\u540c\u7684\u96c6\u7fa4\u62d3\u6251\u7ed3\u6784": 215, "\u4e2d\u7684\u6a21\u5757": 215, "\u63d0\u4f9b\u4e86\u5728\u5206\u5e03\u5f0f\u8bbe\u7f6e\u4e2d\u4f18\u96c5\u5904\u7406": 215, "\u751f\u6210\u548c\u52a0\u8f7d\u7684\u652f\u6301": 215, "\u8fd9\u5305\u62ec\u7ba1\u7406\u6a21\u578b\u548c\u4f18\u5316\u5668\u4e4b\u95f4\u7684\u5168\u9650\u5b9a\u540d\u79f0": 215, "\u6620\u5c04": 215, "\u4ee5\u53ca\u4e3a": 215, "\u63d0\u4f9b\u7684\u5e76\u884c\u6027\u8bbe\u7f6e\u9ed8\u8ba4\u53c2\u6570": 215, "\u5728\u51e0\u4e2a\u91cd\u8981\u65b9\u9762\u6709\u6240\u4e0d\u540c": 215, "\u5b83\u4e3a\u6bcf\u4e2a\u68c0\u67e5\u70b9\u751f\u6210\u591a\u4e2a\u6587\u4ef6": 215, "\u81f3\u5c11\u4e00\u4e2a": 215, "\u5b83\u5c31\u5730\u64cd\u4f5c": 215, "\u8fd9\u610f\u5473\u7740\u6a21\u578b\u5e94\u8be5\u9996\u5148\u5206\u914d\u5176\u6570\u636e": 215, "\u4f7f\u7528\u8be5\u5b58\u50a8\u800c\u4e0d\u662f\u521b\u5efa\u65b0\u7684\u5b58\u50a8": 215, "\u672c\u6559\u7a0b\u4e2d\u7684\u4ee3\u7801\u5728": 215, "\u670d\u52a1\u5668\u4e0a\u8fd0\u884c": 215, "\u4f46\u53ef\u4ee5\u8f7b\u677e\u5730\u63a8\u5e7f\u5230\u5176\u4ed6\u73af\u5883": 215, "\u8fd9\u91cc\u6211\u4eec\u4f7f\u7528\u4e00\u4e2a\u7528": 215, "\u5305\u88c5\u7684\u73a9\u5177\u6a21\u578b\u8fdb\u884c\u6f14\u793a": 215, "\u8fd9\u4e9b": 215, "\u548c\u903b\u8f91\u53ef\u4ee5\u5e94\u7528\u4e8e\u66f4\u5927\u7684\u6a21\u578b\u8fdb\u884c\u68c0\u67e5\u70b9\u4fdd\u5b58": 215, "\u8ba9\u6211\u4eec\u521b\u5efa\u4e00\u4e2a\u73a9\u5177\u6a21\u5757": 215, "\u7528": 215, "\u5305\u88c5\u5b83": 215, "\u7528\u4e00\u4e9b\u865a\u62df\u8f93\u5165\u6570\u636e\u5bf9\u5176\u8fdb\u884c\u8bad\u7ec3": 215, "\u7136\u540e\u4fdd\u5b58\u5b83": 215, "get_state_dict": 215, "\u521d\u59cb\u5316\u8fdb\u7a0b\u7ec4": 215, "run_fsdp_checkpoint_save_exampl": 215, "\u4e0a\u8fd0\u884c\u57fa\u672c\u7684": 215, "\u68c0\u67e5\u70b9\u4fdd\u5b58\u793a\u4f8b": 215, "\u521b\u5efa\u4e00\u4e2a\u6a21\u578b\u5e76\u5c06\u5176\u79fb\u52a8\u5230": 215, "\u8fd9\u884c\u4ee3\u7801\u81ea\u52a8\u7ba1\u7406": 215, "\u5e76\u5c06\u9ed8\u8ba4\u72b6\u6001\u5b57\u5178\u7c7b\u578b\u8bbe\u7f6e\u4e3a": 215, "sharded_state_dict": 215, "checkpoint_id": 215, "\u4e2a\u8bbe\u5907\u4e0a\u8fd0\u884c": 215, "\u68c0\u67e5\u70b9\u793a\u4f8b": 215, "\u76ee\u5f55": [215, 237, 246], "\u60a8\u5e94\u8be5\u770b\u5230": 215, "\u4e2a\u68c0\u67e5\u70b9\u6587\u4ef6": 215, "\u4fdd\u5b58\u4e4b\u540e": 215, "\u8ba9\u6211\u4eec\u521b\u5efa\u76f8\u540c\u7684": 215, "\u5e76\u4ece\u5b58\u50a8\u4e2d\u52a0\u8f7d\u4fdd\u5b58\u7684\u72b6\u6001\u5b57\u5178\u5230\u6a21\u578b\u4e2d": 215, "\u60a8\u53ef\u4ee5\u5728\u76f8\u540c\u7684\u4e16\u754c\u5927\u5c0f\u6216\u4e0d\u540c\u7684\u4e16\u754c\u5927\u5c0f\u4e2d\u52a0\u8f7d": 215, "\u60a8\u9700\u8981\u5728\u52a0\u8f7d\u4e4b\u524d\u8c03\u7528": 215, "\u5e76\u5c06\u5176\u4f20\u9012\u7ed9": 215, "\u8fd9\u4e0e": 215, "\u6709\u6839\u672c\u7684\u4e0d\u540c": 215, "\u53ea\u9700\u8981\u52a0\u8f7d\u524d\u7684\u68c0\u67e5\u70b9\u8def\u5f84": 215, "\u6211\u4eec\u9700\u8981\u5728\u52a0\u8f7d\u4e4b\u524d\u63d0\u4f9b": 215, "\u7684\u539f\u56e0\u662f": 215, "\u4f7f\u7528\u6a21\u578b\u72b6\u6001\u5b57\u5178\u4e2d\u9884\u5206\u914d\u7684\u5b58\u50a8\u6765\u4ece\u68c0\u67e5\u70b9\u76ee\u5f55\u52a0\u8f7d": 215, "\u5728\u52a0\u8f7d\u8fc7\u7a0b\u4e2d": 215, "\u4f20\u5165\u7684\u72b6\u6001\u5b57\u5178\u5c06\u88ab\u5c31\u5730\u66f4\u65b0": 215, "\u5728\u52a0\u8f7d\u4e4b\u524d\u9700\u8981\u6a21\u578b\u7684\u5206\u7247\u4fe1\u606f\u4ee5\u652f\u6301\u91cd\u65b0\u5206\u7247": 215, "set_state_dict": 215, "run_fsdp_checkpoint_load_exampl": 215, "\u68c0\u67e5\u70b9\u52a0\u8f7d\u793a\u4f8b": 215, "\u751f\u6210\u6211\u4eec\u5c06\u52a0\u8f7d\u5230\u7684\u72b6\u6001\u5b57\u5178": 215, "\u5728\u52a0\u8f7d\u5b8c\u6210\u540e": 215, "\u5c06\u6211\u4eec\u7684\u72b6\u6001\u5b57\u5178\u8bbe\u7f6e\u5230\u6a21\u578b\u548c\u4f18\u5316\u5668\u4e0a": 215, "optim_state_dict": 215, "\u5982\u679c\u60a8\u60f3\u5728\u975e\u5206\u5e03\u5f0f\u8bbe\u7f6e\u4e2d\u5c06\u4fdd\u5b58\u7684\u68c0\u67e5\u70b9\u52a0\u8f7d\u5230\u975e": 215, "\u5305\u88c5\u7684\u6a21\u578b\u4e2d": 215, "\u53ef\u80fd\u662f\u4e3a\u4e86\u63a8\u7406": 215, "\u60a8\u4e5f\u53ef\u4ee5\u4f7f\u7528": 215, "\u6765\u5b9e\u73b0": 215, "\u4ee5\u5355\u7a0b\u5e8f\u591a\u6570\u636e": 215, "\u98ce\u683c\u4fdd\u5b58\u548c\u52a0\u8f7d\u5206\u5e03\u5f0f": 215, "\u5982\u679c\u6ca1\u6709\u521d\u59cb\u5316\u8fdb\u7a0b\u7ec4": 215, "\u4f1a\u63a8\u65ad\u610f\u56fe\u662f\u4ee5": 215, "\u975e\u5206\u5e03\u5f0f": 215, "\u65b9\u5f0f\u4fdd\u5b58\u6216\u52a0\u8f7d": 215, "\u8fd9\u610f\u5473\u7740\u5b8c\u5168\u5728\u5f53\u524d\u8fdb\u7a0b\u4e2d\u8fdb\u884c": 215, "\u591a\u7a0b\u5e8f\u591a\u6570\u636e\u7684\u5206\u5e03\u5f0f\u68c0\u67e5\u70b9\u652f\u6301\u4ecd\u5728\u5f00\u53d1\u4e2d": 215, "run_checkpoint_load_exampl": 215, "\u521b\u5efa\u975e": 215, "\u5305\u88c5\u7684\u73a9\u5177\u6a21\u578b": 215, "\u7531\u4e8e\u6ca1\u6709\u521d\u59cb\u5316\u8fdb\u7a0b\u7ec4": 215, "\u5c06\u7981\u7528\u4efb\u4f55\u96c6\u4f53\u64cd\u4f5c": 215, "\u8fd0\u884c\u57fa\u672c\u7684": 215, "\u603b\u4e4b": [215, 216, 247], "\u4ee5\u53ca\u5b83\u4eec\u4e0e": 215, "\u7684\u4e0d\u540c\u4e4b\u5904": 215, "\u6211\u4eec\u8fd8\u5b66\u4e60\u4e86\u5982\u4f55\u4f7f\u7528": 215, "\u5728\u72b6\u6001\u5b57\u5178\u751f\u6210\u548c\u52a0\u8f7d\u671f\u95f4\u81ea\u52a8\u7ba1\u7406\u5e76\u884c\u6027\u7279\u5b9a\u7684": 215, "\u548c\u9ed8\u8ba4\u503c": 215, "\u66f4\u591a\u4fe1\u606f": [215, 237, 258], "\u8bf7\u53c2\u9605\u4ee5\u4e0b\u5185\u5bb9": [215, 216], "\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u6559\u7a0b": 215, "\u5165\u95e8\u6559\u7a0b": [215, 258], "\u5206\u5e03\u5f0f\u901a\u4fe1\u5305": 216, "\u4e3a\u5206\u5e03\u5f0f\u8bad\u7ec3\u8bbe\u7f6e\u5206\u5e03\u5f0f\u901a\u4fe1\u5668": 216, "\u96c6\u4f53\u901a\u4fe1\u5e93": [216, 248], "\u901a\u4fe1\u5668": 216, "\u53ef\u80fd\u662f\u4e00\u4e2a\u91cd\u5927\u6311\u6218": 216, "\u5bf9\u4e8e\u9700\u8981\u7ec4\u5408\u4e0d\u540c\u5e76\u884c\u6027\u7684\u5de5\u4f5c\u8d1f\u8f7d": 216, "\u7528\u6237\u9700\u8981\u4e3a\u6bcf\u4e2a\u5e76\u884c\u6027\u89e3\u51b3\u65b9\u6848\u624b\u52a8\u8bbe\u7f6e\u548c\u7ba1\u7406": 216, "\u8fd9\u4e2a\u8fc7\u7a0b\u53ef\u80fd\u5f88\u590d\u6742\u4e14\u5bb9\u6613\u51fa\u9519": 216, "\u53ef\u4ee5\u7b80\u5316\u8fd9\u4e2a\u8fc7\u7a0b": 216, "\u4f7f\u5176\u66f4\u6613\u4e8e\u7ba1\u7406\u548c\u51cf\u5c11\u9519\u8bef": 216, "\u662f\u4e00\u4e2a\u7ba1\u7406": 216, "\u7684\u9ad8\u7ea7\u62bd\u8c61": 216, "\u5b83\u5141\u8bb8\u7528\u6237\u8f7b\u677e\u521b\u5efa\u8282\u70b9\u95f4\u548c\u8282\u70b9\u5185\u8fdb\u7a0b\u7ec4": 216, "\u800c\u65e0\u9700\u62c5\u5fc3\u5982\u4f55\u4e3a\u4e0d\u540c\u7684\u5b50\u8fdb\u7a0b\u7ec4\u6b63\u786e\u8bbe\u7f6e\u7b49\u7ea7": 216, "\u7528\u6237\u8fd8\u53ef\u4ee5\u901a\u8fc7": 216, "\u8f7b\u677e\u7ba1\u7406\u591a\u7ef4\u5e76\u884c\u6027\u7684\u5e95\u5c42\u8fdb\u7a0b\u7ec4": 216, "\u5f53\u5904\u7406\u591a\u7ef4\u5e76\u884c\u6027": 216, "\u5e76\u884c": 216, "\u975e\u5e38\u6709\u7528": 216, "\u56e0\u4e3a\u8fd9\u79cd\u60c5\u51b5\u9700\u8981\u5e76\u884c\u6027\u7ec4\u5408": 216, "\u5f53\u60a8\u7684\u5e76\u884c\u6027\u89e3\u51b3\u65b9\u6848\u9700\u8981\u8de8\u4e3b\u673a\u548c\u6bcf\u4e2a\u4e3b\u673a\u5185\u90e8\u8fdb\u884c\u901a\u4fe1\u65f6": 216, "\u4e0a\u56fe\u663e\u793a": 216, "\u7f51\u683c": 216, "\u8fde\u63a5\u6bcf\u4e2a\u4e3b\u673a\u5185\u7684\u8bbe\u5907": 216, "\u5e76\u5728\u540c\u6784\u8bbe\u7f6e\u4e2d\u5c06\u6bcf\u4e2a\u8bbe\u5907\u4e0e\u5176\u4ed6\u4e3b\u673a\u4e0a\u7684\u5bf9\u5e94\u8bbe\u5907\u8fde\u63a5\u8d77\u6765": 216, "\u5982\u679c\u6ca1\u6709": 216, "\u7528\u6237\u5728\u5e94\u7528\u4efb\u4f55\u5e76\u884c\u6027\u4e4b\u524d\u9700\u8981\u624b\u52a8\u8bbe\u7f6e\u6bcf\u4e2a\u8fdb\u7a0b\u4e0a\u7684": 216, "\u901a\u4fe1\u5668\u548c": 216, "\u8fd9\u53ef\u80fd\u76f8\u5f53\u590d\u6742": 216, "\u4ee5\u4e0b\u4ee3\u7801\u7247\u6bb5\u8bf4\u660e\u4e86\u5982\u4f55\u5728\u6ca1\u6709": 216, "\u7684\u60c5\u51b5\u4e0b\u8bbe\u7f6e\u6df7\u5408\u5206\u7247": 216, "\u5e76\u884c\u6a21\u5f0f": 216, "\u6211\u4eec\u9700\u8981\u624b\u52a8\u8ba1\u7b97\u5206\u7247\u7ec4\u548c\u590d\u5236\u7ec4": 216, "\u6211\u4eec\u9700\u8981\u4e3a\u6bcf\u4e2a\u7b49\u7ea7\u5206\u914d\u6b63\u786e\u7684\u5206\u7247\u548c\u590d\u5236\u7ec4": 216, "\u4e86\u89e3\u4e16\u754c\u62d3\u6251": 216, "\u4e0a\u8fd0\u884c\u793a\u4f8b": 216, "\u4e16\u754c\u5927\u5c0f\u4e3a": 216, "\u521b\u5efa\u8fdb\u7a0b\u7ec4\u4ee5\u7ba1\u7406": 216, "\u7c7b\u4f3c\u7684\u5e76\u884c\u6a21\u5f0f": 216, "\u521b\u5efa\u5206\u7247\u7ec4": 216, "\u5e76\u4e3a\u6bcf\u4e2a\u7b49\u7ea7\u5206\u914d\u6b63\u786e\u7684\u5206\u7247\u7ec4": 216, "num_node_devic": 216, "shard_rank_list": 216, "shard_group": 216, "current_shard_group": 216, "\u521b\u5efa\u590d\u5236\u7ec4": 216, "\u5e76\u4e3a\u6bcf\u4e2a\u7b49\u7ea7\u5206\u914d\u6b63\u786e\u7684\u590d\u5236\u7ec4": 216, "current_replicate_group": 216, "shard_factor": 216, "replicate_group_rank": 216, "replicate_group": 216, "\u8981\u8fd0\u884c\u4e0a\u9762\u7684\u4ee3\u7801\u7247\u6bb5": 216, "\u6211\u4eec\u53ef\u4ee5\u5229\u7528": 216, "\u8ba9\u6211\u4eec\u521b\u5efa\u4e00\u4e2a\u540d\u4e3a": 216, "2d_setup": 216, "\u7684\u6587\u4ef6": 216, "\u8fd0\u884c\u4ee5\u4e0b": [216, 258], "\u547d\u4ee4": 216, "\u4e3a\u4e86\u7b80\u5316\u6f14\u793a": 216, "\u6211\u4eec\u4ec5\u4f7f\u7528\u4e00\u4e2a\u8282\u70b9\u6a21\u62df": 216, "\u6b64\u4ee3\u7801\u7247\u6bb5\u4e5f\u53ef\u7528\u4e8e\u591a\u4e3b\u673a\u8bbe\u7f6e": 216, "\u501f\u52a9": 216, "\u6211\u4eec\u53ef\u4ee5\u4ec5\u7528\u4e24\u884c\u4ee3\u7801\u5b8c\u6210\u4e0a\u8ff0": 216, "\u5e76\u4e14\u5982\u679c\u9700\u8981": 216, "\u6211\u4eec\u4ecd\u7136\u53ef\u4ee5\u8bbf\u95ee\u5e95\u5c42\u7684": 216, "mesh_dim_nam": 216, "\u7528\u6237\u53ef\u4ee5\u901a\u8fc7": [216, 222], "get_group": 216, "\u8bbf\u95ee\u5e95\u5c42\u8fdb\u7a0b\u7ec4": 216, "mesh_dim": 216, "2d_setup_with_device_mesh": 216, "\u6df7\u5408\u5206\u7247\u6570\u636e\u5e76\u884c": 216, "\u662f\u4e00\u79cd": 216, "\u7b56\u7565": 216, "\u5728\u4e3b\u673a\u5185\u6267\u884c": 216, "\u5728\u4e3b\u673a\u95f4\u6267\u884c": 216, "\u8ba9\u6211\u4eec\u770b\u4e00\u4e2a\u793a\u4f8b": 216, "\u8bf4\u660e": 216, "\u5982\u4f55\u5e2e\u52a9\u5c06": 216, "\u5e94\u7528\u5230\u60a8\u7684\u6a21\u578b": 216, "\u4f7f\u7528\u7b80\u5355\u7684\u8bbe\u7f6e": 216, "\u7528\u6237\u65e0\u9700\u624b\u52a8\u521b\u5efa\u548c\u7ba1\u7406\u5206\u7247\u7ec4\u548c\u590d\u5236\u7ec4": 216, "meshshap": 216, "hybrid_shard": 216, "\u6211\u4eec\u5df2\u7ecf\u4e86\u89e3\u4e86": 216, "\u4ee5\u53ca\u5982\u4f55": 216, "\u4f7f\u7528\u5b83\u4eec\u6765\u63cf\u8ff0\u96c6\u7fa4\u4e2d\u8bbe\u5907\u7684\u5e03\u5c40": 216, "\u6b32\u4e86\u89e3\u66f4\u591a\u4fe1\u606f": 216, "\u5c06\u5f20\u91cf": 216, "\u5e8f\u5217\u5e76\u884c\u4e0e": 216, "\u7ed3\u5408\u7684": 216, "\u7684\u53ef\u7ec4\u5408": 216, "\u5206\u5e03\u5f0f": [216, 217], "\u7684\u5206\u5e03\u5f0f\u4f18\u5316\u5668\u5728": 217, "\u4e2d\u4f5c\u4e3a": 217, "\u529f\u80fd\u5f15\u5165": 217, "\u6b64": 217, "\u53ef\u80fd\u4f1a\u53d1\u751f\u53d8\u5316": 217, "\u7684\u5206\u5e03\u5f0f\u4f18\u5316\u5668\u7684\u9ad8\u7ea7\u6982\u5ff5\u53ca\u5176\u5e26\u6765\u7684\u529f\u80fd": 217, "\u6846\u67b6\u5165\u95e8": 217, "\u63a5\u53d7\u4e00\u4e2a\u8fdc\u7a0b\u53c2\u6570\u5217\u8868": 217, "\u5e76\u5728\u53c2\u6570\u6240\u5728\u7684\u5de5\u4f5c\u8282\u70b9\u4e0a\u672c\u5730\u8fd0\u884c\u4f18\u5316\u5668": 217, "\u5b83\u901a\u5e38\u4e0e\u5206\u5e03\u5f0f": 217, "\u4e00\u8d77\u4f7f\u7528": [217, 255], "\u7528\u4e8e\u6a21\u578b\u5e76\u884c\u8bad\u7ec3": 217, "\u5b83\u53ef\u4ee5\u4f7f\u7528\u4efb\u4f55\u672c\u5730\u4f18\u5316\u5668\u7b97\u6cd5": 217, "\u65e0\u8bba\u662f": 217, "\u4e2d\u9884\u5b9a\u4e49\u7684\u7b97\u6cd5\u8fd8\u662f\u81ea\u5b9a\u4e49\u7684\u7b97\u6cd5": 217, "\u5728\u6bcf\u4e2a\u5de5\u4f5c\u8282\u70b9\u4e0a\u5e94\u7528\u68af\u5ea6": 217, "\u5206\u5e03\u5f0f\u4f18\u5316\u5668\u5728\u5206\u5e03\u5f0f\u6a21\u578b\u5e76\u884c\u8bad\u7ec3\u4e2d\u88ab\u5e7f\u6cdb\u4f7f\u7528": 217, "\u5728\u4e00\u4e9b\u5e38\u89c1\u7528\u4f8b\u4e2d": 217, "\u7531\u4e8e\u6027\u80fd\u8003\u8651\u548c\u8d44\u6e90\u5229\u7528": 217, "\u8bad\u7ec3\u9700\u8981\u4ee5\u591a\u7ebf\u7a0b\u65b9\u5f0f\u8fdb\u884c": 217, "\u800c\u4e0d\u662f\u591a\u8fdb\u7a0b\u65b9\u5f0f": 217, "\u6216\u81f3\u5c11\u90e8\u5206\u591a\u7ebf\u7a0b": 217, "\u4f8b\u5982\u53c2\u6570\u670d\u52a1\u5668\u6258\u7ba1\u90e8\u5206\u6a21\u578b\u548c\u53c2\u6570": 217, "\u65b0\u7ebf\u7a0b\u6839\u636e\u8bf7\u6c42\u66f4\u65b0\u53c2\u6570": 217, "\u672c\u8eab\u7531\u4e8e": 217, "\u7684\u5168\u5c40\u89e3\u91ca\u5668\u9501": 217, "\u800c\u4e0d\u652f\u6301\u539f\u751f\u591a\u7ebf\u7a0b\u8bad\u7ec3": 217, "\u4f46\u5b83\u53ef\u4ee5\u5229\u7528": 217, "\u6765\u6446\u8131": 217, "\u5e76\u4ee5\u591a\u7ebf\u7a0b\u65b9\u5f0f\u8fd0\u884c\u6a21\u578b": 217, "\u5bf9\u4e8e\u5173\u952e\u7684\u6a21\u578b\u8bad\u7ec3\u5de5\u4f5c\u8d1f\u8f7d": 217, "\u63d0\u9ad8\u8bad\u7ec3\u6027\u80fd\u662f\u4e00\u4e2a\u91cd\u8981\u8bdd\u9898": 217, "\u7814\u7a76\u4eba\u5458\u7ecf\u5e38\u5e0c\u671b\u901a\u8fc7\u56fe\u8868\u793a\u5b9e\u73b0\u4e0d\u540c\u7684\u4f18\u5316\u7b56\u7565": 217, "\u4f8b\u5982\u901a\u8fc7\u7b97\u5b50\u878d\u5408": 217, "\u6216\u5b9e\u73b0\u81ea\u5b9a\u4e49\u7b97\u5b50\u5185\u6838\u4ee5\u52a0\u901f\u8bad\u7ec3": 217, "\u7684\u5206\u5e03\u5f0f\u4f18\u5316\u5668\u53ef\u4ee5\u5e2e\u52a9\u6446\u8131": 217, "\u4ece\u800c\u63d0\u9ad8": 217, "\u5728\u591a\u7ebf\u7a0b\u73af\u5883\u4e2d\u7684\u8bad\u7ec3\u6027\u80fd": 217, "\u5b83\u8fd8\u89e3\u9501\u4e86\u4f7f\u7528": 217, "\u63d0\u4f9b\u7684\u9ad8\u7ea7\u7f16\u8bd1\u5668\u6280\u672f": 217, "\u878d\u5408": 217, "\u6765\u8fdb\u4e00\u6b65\u63d0\u5347\u6027\u80fd\u7684\u6f5c\u529b": 217, "\u4ee5\u4e0b\u4ee3\u7801\u5c55\u793a\u4e86\u5982\u4f55\u57fa\u4e8e\u73b0\u6709\u7684\u672c\u5730\u4f18\u5316\u5668\u5b9e\u73b0\u7f16\u5199\u81ea\u5b9a\u4e49\u5206\u5e03\u5f0f\u4f18\u5316\u5668": 217, "\u4ece\u800c\u89e3\u9501": 217, "\u7684\u4f18\u52bf": 217, "\u79fb\u9664\u548c\u6027\u80fd\u6539\u8fdb\u673a\u4f1a": 217, "\u5047\u8bbe\u60a8\u5df2\u7ecf\u6709\u4e00\u4e2a\u5728\u8bad\u7ec3\u4e2d\u4f7f\u7528\u7684\u672c\u5730\u4f18\u5316\u5668": 217, "\u5728\u8fd9\u4e2a\u4f8b\u5b50\u4e2d": [217, 257], "\u51c6\u8d85\u66f2\u9762\u52a8\u91cf": 217, "qhm": 217, "qhoptim": 217, "e81dea3f2765780cf4fbb90b87b22ba7604b8625": 217, "pyt": 217, "l12": 217, "\u6765\u5c55\u793a\u5982\u4f55\u542f\u7528": 217, "\u8fd9\u4e5f\u9002\u7528\u4e8e\u4efb\u4f55\u7ee7\u627f\u81ea": 217, "\u7684\u81ea\u5b9a\u4e49\u4f18\u5316\u5668": 217, "\u6211\u4eec\u9700\u8981\u5c06\u8ba1\u7b97\u548c\u72b6\u6001\u7ba1\u7406\u4ece\u4f18\u5316\u5668\u5b9e\u73b0\u4e2d\u5206\u79bb\u51fa\u6765": 217, "\u8fd9\u6837\u6211\u4eec\u5c31\u53ef\u4ee5\u63d0\u53d6\u8ba1\u7b97\u90e8\u5206\u5e76\u5c06\u5176\u53d8\u6210\u4e00\u4e2a\u72ec\u7acb\u51fd\u6570": 217, "\u8fd9\u5bf9": 217, "\u53cb\u597d": 217, "\u8fd9\u6709\u4e24\u4e2a\u597d\u5904": 217, "\u8ba1\u7b97\u903b\u8f91\u53d8\u5f97\u66f4\u5bb9\u6613\u68c0\u67e5": 217, "\u6211\u4eec\u53ef\u4ee5\u5feb\u901f\u5c06\u53c2\u6570\u66f4\u65b0": 217, "\u8ba1\u7b97\u90e8\u5206\u8f6c\u6362\u4e3a": 217, "\u5e76\u5229\u7528": 217, "\u8fdb\u884c\u8fdb\u4e00\u6b65\u4f18\u5316": 217, "\u7b97\u5b50\u878d\u5408\u7b49": 217, "\u5206\u5e03\u5f0f\u4f18\u5316\u5668\u5e95\u5c42\u4f7f\u7528\u4e0d\u540c\u7684\u673a\u5236\u6765\u83b7\u53d6\u68af\u5ea6\u548c\u66f4\u65b0\u53c2\u6570": 217, "\u6211\u4eec\u5355\u72ec\u5b58\u50a8\u68af\u5ea6": 217, "\u800c\u4e0d\u662f\u5728\u53cd\u5411\u4f20\u64ad\u671f\u95f4\u76f4\u63a5\u586b\u5145": 217, "\u5b57\u6bb5": 217, "\u5206\u79bb\u8ba1\u7b97\u5141\u8bb8\u5206\u5e03\u5f0f\u4f18\u5316\u5668\u5728\u591a\u7ebf\u7a0b\u6a21\u5f0f\u4e0b\u8fdb\u884c\u4f18\u5316\u5668\u66f4\u65b0": 217, "\u56e0\u4e3a\u5b83\u6d88\u9664\u4e86\u5bf9": 217, "\u7684\u53ef\u80fd\u7ade\u4e89\u6761\u4ef6": 217, "qhm_updat": 217, "dp_list": 217, "momentum_buffer_list": 217, "nu": [217, 264], "weight_decay_typ": 217, "d_p": 217, "momentum_buff": 217, "\u6211\u4eec\u5c06\u5b9a\u4e49\u4e00\u4e2a\u652f\u6301": 217, "\u7684\u5206\u5e03\u5f0f\u51fd\u6570\u5f0f\u4f18\u5316\u5668\u6765\u7ba1\u7406\u4f18\u5316\u5668\u72b6\u6001": 217, "\u5e76\u8c03\u7528\u6211\u4eec\u4e0a\u9762\u5b9a\u4e49\u7684\u517c\u5bb9": 217, "\u7684\u66f4\u65b0\u51fd\u6570": 217, "\u4e0e\u666e\u901a\u81ea\u5b9a\u4e49\u4f18\u5316\u5668\u76f8\u6bd4": 217, "\u6709\u51e0\u4e2a\u7ea6\u5b9a\u4e0d\u540c": 217, "\u6211\u4eec\u4e0d\u7ee7\u627f": 217, "\u4e0d\u652f\u6301\u591a\u6001": 217, "\u63a5\u53d7\u68af\u5ea6\u5217\u8868\u800c\u4e0d\u662f\u635f\u5931\u95ed\u5305": 217, "\u5c06\u5176\u5b9a\u4e49\u4e3a": 217, "functionalqhm": 217, "\u6211\u4eec\u8fd9\u91cc\u53ea\u6709\u4e00\u4e2a\u53c2\u6570\u7ec4": 217, "\u4e0d\u5141\u8bb8\u7528\u6237\u6dfb\u52a0\u989d\u5916\u7684\u53c2\u6570\u7ec4": 217, "\u56e0\u4e3a\u8fd9\u4e0d\u662f\u5e38\u89c1\u7528\u4f8b": 217, "params_with_grad": 217, "\u4f20\u5165\u7684\u68af\u5ea6\u6570\u91cf\u4e0e\u53c2\u6570\u6570\u91cf\u4e0d\u76f8\u7b49": 217, "\u53c2\u6570\u957f\u5ea6": 217, "\u68af\u5ea6\u957f\u5ea6": 217, "preserve_format": 217, "\u8c03\u7528\u6211\u4eec\u521a\u521a\u5b9a\u4e49\u7684\u66f4\u65b0\u51fd\u6570": 217, "\u6211\u4eec\u5c06\u65b0\u5b9a\u4e49\u7684\u5206\u5e03\u5f0f\u51fd\u6570\u5f0f\u4f18\u5316\u5668\u6ce8\u518c\u5230": 217, "functional_optim_map": 217, "\u8fd9\u6837": [217, 241], "\u5c31\u4f1a\u5c1d\u8bd5\u4f7f\u7528\u6211\u4eec\u7684\u81ea\u5b9a\u4e49\u5b9e\u73b0": 217, "\u800c\u4e0d\u662f\u9884\u5b9a\u4e49\u7684\u9ed8\u8ba4\u5b9e\u73b0": 217, "\u60a8\u53ef\u4ee5\u5728\u5206\u5e03\u5f0f\u8bad\u7ec3\u4e2d\u6b63\u5e38\u4f7f\u7528": 217, "\u53ea\u9700\u5c06\u5176\u4f20\u9012\u7ed9": 217, "remote_params_list": 217, "dist_optim": 217, "\u5c06\u81ea\u52a8\u5728\u5e95\u5c42\u5c06": 217, "\u4f18\u5316\u5668\u8f6c\u6362\u4e3a": 217, "\u5e76\u542f\u7528": 217, "\u8fd9\u5c06\u89e3\u9501\u591a\u7ebf\u7a0b\u8bad\u7ec3\u5e26\u6765\u7684\u6027\u80fd\u63d0\u5347": 217, "\u5e76\u4e3a\u8fdb\u4e00\u6b65\u6539\u8fdb\u63d0\u4f9b\u66f4\u591a\u6f5c\u529b": 217, "\u878d\u5408\u7b49": 217, "\u5927\u591a\u6570": 217, "\u5185\u7f6e\u4f18\u5316\u5668\u5df2\u7ecf\u4f7f\u7528\u8fd9\u79cd\u65b9\u6cd5\u6765\u52a0\u901f\u5206\u5e03\u5f0f\u8bad\u7ec3": 217, "\u5982\u679c\u60a8\u770b\u5230\u6709\u5173\u67d0\u4e9b\u4f18\u5316\u5668\u5c1a\u672a\u8f6c\u6362\u7684\u8b66\u544a": 217, "\u60a8\u53ef\u4ee5\u6309\u7167\u672c\u6559\u7a0b\u7f16\u5199\u81ea\u5df1\u7684\u8f6c\u6362": 217, "annotatedconvbnrelumodel": [219, 224], "prepare_sav": 219, "torchscript_model": [219, 224, 225, 226, 254], "torchscript_model_optim": [219, 224, 225, 226], "model_fus": 219, "bnrelu2d": 219, "build_pytorch_mobil": [219, 223, 224], "dbuild_binari": [219, 224], "input_typ": [219, 224], "6189": 219, "575": 219, "6216": 219, "sunita": 220, "nadamp": 220, "graviton": [220, 252], "\u662f\u4e00\u7cfb\u5217\u7531aws\u8bbe\u8ba1\u7684\u57fa\u4e8earm\u7684\u5904\u7406\u5668": 220, "graviton3\u5904\u7406\u5668\u9488\u5bf9\u673a\u5668\u5b66\u4e60": 220, "\u5de5\u4f5c\u8d1f\u8f7d\u8fdb\u884c\u4e86\u4f18\u5316": 220, "\u5305\u62ec\u652f\u6301": 220, "\u53ef\u6269\u5c55\u5411\u91cf\u6269\u5c55": 220, "sve": 220, "\u4ee5\u53ca\u6bd4graviton2\u9ad8\u4e24\u500d\u7684\u5355\u6307\u4ee4\u591a\u6570\u636e": 220, "simd": 220, "\u5e26\u5bbd": 220, "pytorch\u4e3a\u673a\u5668\u5b66\u4e60\u7b97\u5b50": 220, "\u5982\u5377\u79ef": [220, 248], "\u77e9\u9635\u4e58\u6cd5": [220, 248], "relu\u7b49": 220, "\u63d0\u4f9b\u4e86\u539f\u751f\u53c2\u8003aten\u5185\u6838": 220, "\u8fd9\u4e9b\u7b97\u5b50\u53ef\u4ee5\u901a\u8fc7\u6765\u81ea\u57fa\u672c\u7ebf\u6027\u4ee3\u6570": 220, "bla": 220, "\u5e93\u7684\u7279\u5b9a\u4e8e\u5e73\u53f0\u7684\u5185\u6838\u5b9e\u73b0\u8fdb\u884c\u52a0\u901f": 220, "\u5728aw": 220, "cpu\u4e0a": 220, "mkldnn\u4e0earm": 220, "acl": 220, "\u5e93\u4e3a\u4e00\u90e8\u5206\u7b97\u5b50\u63d0\u4f9b\u4e86\u4f18\u5316\u5b9e\u73b0": 220, "\u4ecepytorch": 220, "0\u7248\u672c\u5f00\u59cb": 220, "\u8fd9\u4e24\u4e2a\u5e93\u90fd\u96c6\u6210\u5230\u4e86pytorch\u4e2d": 220, "\u6211\u4eec\u5c06\u4ecb\u7ecd\u5982\u4f55\u901a\u8fc7": 220, "\u5185\u6838\u548c\u6b63\u786e\u7684\u540e\u7aef\u9009\u62e9": 220, "graviton3": 220, "c7g\u5b9e\u4f8b": 220, "\u4e0a\u5b9e\u73b0\u7ebf\u6027\u5c42\u795e\u7ecf\u7f51\u7edc\u7684\u6700\u4f73\u63a8\u7406\u6027\u80fd": 220, "\u4f7f\u7528bfloat16\u5feb\u901f\u6570\u5b66\u5185\u6838\u52a0\u901f\u63a8\u7406": 220, "\u5bf9\u4e8e\u8f83\u5c0f\u7684\u6279\u6b21\u7ef4\u5ea6": 220, "\u4f7f\u7528openblas\u63d0\u9ad8\u63a8\u7406\u6027\u80fd": 220, "\u4f7f\u7528linux\u900f\u660e\u5927\u9875\u4f18\u5316\u5185\u5b58\u5206\u914d\u5f00\u9500": 220, "\u603b\u7ed3": 220, "\u8981\u6210\u529f\u8fd0\u884c\u672c\u6559\u7a0b\u5e76\u91cd\u73b0\u4e0b\u9762\u663e\u793a\u7684\u52a0\u901f\u6570\u5b57": 220, "\u60a8\u9700\u8981\u6765\u81eagraviton3\u7cfb\u5217": 220, "c7g": 220, "r7g": 220, "m7g": 220, "\u7684\u786c\u4ef6\u5b9e\u4f8b": 220, "4vcpu": 220, "\u5b9e\u4f8b": [220, 227, 231, 246], "pytorch\u539f\u751f\u652f\u6301aw": 220, "graviton3\u4f18\u5316": 220, "\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f\u8bf7\u53c2\u9605\u6b64": 220, "\u535a\u5ba2": 220, "\u8fd0\u884c\u4ee5\u4e0b\u547d\u4ee4\u5b89\u88c5pytorch": 220, "\u6211\u4eec\u5c06\u4ece\u5bfc\u5165\u6240\u9700\u7684\u4f9d\u8d56\u9879\u5e76\u5b9a\u4e49\u5c06\u5728\u5176\u4e0a\u8fd0\u884c\u7684\u8bbe\u5907\u5f00\u59cb": 220, "\u9274\u4e8e\u7ebf\u6027\u5c42\u662f\u8bb8\u591a\u795e\u7ecf\u7f51\u7edc": 220, "\u5305\u62ectransform": 220, "\u7684\u6838\u5fc3": 220, "\u6211\u4eec\u5728\u6b64\u6f14\u793a\u4e2d\u4f7f\u7528\u7ebf\u6027\u5c42": 220, "\u6211\u4eec\u901a\u8fc7\u5b50\u7c7b\u5316": 220, "\u4e2d\u521d\u59cb\u5316\u5c42\u6765\u5b9a\u4e49\u6211\u4eec\u7684\u795e\u7ecf\u7f51\u7edc": 220, "\u6211\u4eec\u4f7f\u7528\u5178\u578b\u7684\u5927\u578b\u8bed\u8a00\u6a21\u578b\u53c2\u6570\u6784\u5efa\u7f51\u7edc": 220, "\u4ee5\u5339\u914d\u771f\u5b9e\u4e16\u754c\u573a\u666f": 220, "myneuralnetwork": 220, "11008": 220, "\u8ba9\u6211\u4eec\u521b\u5efa\u4e00\u4e2a": [220, 239, 245], "\u5e76\u5c06\u5176\u79fb\u52a8\u5230\u8bbe\u5907\u4e0a": 220, "\u8ba9\u6211\u4eec\u901a\u8fc7\u5c06\u5b83\u4eec\u4f20\u9012\u7ed9": 220, "\u6a21\u5757\u7684\u5b9e\u4f8b\u6765\u83b7\u53d6\u9884\u6d4b\u6982\u7387": 220, "\u8f93\u51fa": 220, "\u6211\u4eec\u5df2\u9a8c\u8bc1\u4e86\u7f51\u7edc\u529f\u80fd": 220, "\u6211\u4eec\u5c06\u5206\u6790\u6027\u80fd": 220, "\u8ba9\u6211\u4eec\u68c0\u67e5\u4e24\u79cd\u4e0d\u540c\u7684\u60c5\u51b5": 220, "\u5c0f\u6279\u6b21\u7ef4\u5ea6\u548c\u5927\u6279\u6b21\u7ef4\u5ea6": 220, "\u60c5\u51b51": 220, "\u8f83\u5927\u7684\u6279\u6b21\u7ef4\u5ea6": 220, "\u4f8b\u5982256": 220, "\u9996\u5148\u8fdb\u884c\u9884\u70ed": 220, "\u5e76\u5faa\u73af\u591a\u6b21\u4ee5\u83b7\u5f97\u8db3\u591f\u7684\u6267\u884c\u65f6\u95f4": 220, "mymodel_infer": 220, "\u4f7f\u7528\u9ed8\u8ba4pytorch\u914d\u7f6e\u65f6\u7684\u5206\u6790\u5668\u8f93\u51fa\u5982\u4e0b": 220, "813": 220, "255m": 220, "177": 220, "032m": 220, "160u": 220, "162": [220, 232], "054m": 220, "540": 220, "180u": 220, "738m": 220, "201": 220, "955m": 220, "985": 220, "282m": 220, "421m": 220, "043m": 220, "810u": 220, "356m": 220, "179": 220, "388m": 220, "896": 220, "940u": 220, "graviton3\u5904\u7406\u5668\u652f\u6301": 220, "mmla\u6307\u4ee4": 220, "\u4e3aaw": 220, "graviton\u5904\u7406\u5668\u63d0\u4f9b\u4e86\u4f18\u5316\u7684": 220, "\u901a\u7528\u77e9\u9635\u4e58\u6cd5": 220, "\u5185\u6838": [220, 234, 252], "\u5e76\u4ecepytorch": 220, "0\u7248\u672c\u5f00\u59cb\u901a\u8fc7mkldnn\u540e\u7aef\u96c6\u6210\u5230pytorch\u4e2d": 220, "\u53ef\u4ee5\u4f7f\u7528\u5feb\u901f\u6570\u5b66gemm\u5185\u6838\u4f18\u5316\u63a8\u7406\u6027\u80fd": 220, "\u9ed8\u8ba4\u60c5\u51b5\u4e0b\u4e0d\u542f\u7528\u5feb\u901f\u6570\u5b66\u6a21\u5f0f": 220, "\u56e0\u4e3a\u8fd9\u4e9b\u5185\u6838\u4ee5": 220, "\u7cbe\u5ea6\u800c\u4e0d\u662f": 220, "\u6267\u884cgemm": 220, "\u56e0\u6b64\u4f1a\u5bfc\u81f4\u6a21\u578b\u63a8\u7406\u7cbe\u5ea6\u7565\u6709\u4e0b\u964d": 220, "\u7cbe\u5ea6\u4e0b\u964d\u5728": 220, "\u6d4b\u8bd5\u5957\u4ef6\u4e2d\u4e3a": 220, "\u540e\u7aef\u5b9a\u4e49\u7684": 220, "\u4f59\u5f26\u76f8\u4f3c\u5ea6": 220, "\u9608\u503c\u8303\u56f4\u5185": 220, "\u56e0\u6b64\u5bf9\u5927\u591a\u6570\u5e94\u7528\u7a0b\u5e8f\u6765\u8bf4\u662f\u53ef\u4ee5\u63a5\u53d7\u7684": 220, "\u8981\u542f\u7528\u5feb\u901f\u6570\u5b66gemm\u5185\u6838": 220, "\u8bf7\u8bbe\u7f6e\u4ee5\u4e0b\u73af\u5883\u53d8\u91cf": 220, "dnnl_default_fpmath_mod": 220, "\u5f53\u60a8\u8fd0\u884c\u4e0a\u8ff0\u63a8\u7406\u811a\u672c\u65f6": 220, "\u5e94\u8be5\u4f1a\u770b\u5230\u542f\u7528mkldnn\u5feb\u901f\u6570\u5b66\u6a21\u5f0f\u540e\u7684\u5206\u6790\u5668\u8f93\u51fa": 220, "943": 220, "052": 220, "507m": 220, "167": 220, "653m": 220, "838": 220, "265u": 220, "107": 220, "593m": 220, "358": 220, "643u": 220, "167m": 220, "262": 220, "911m": 220, "060": 220, "533m": 220, "414m": 220, "892m": 220, "307u": 220, "281m": 220, "934m": 220, "670u": 220, "\u8fd9\u6bd4\u9ed8\u8ba4\u914d\u7f6e\u5feb\u7ea6": 220, "2\u500d": 220, "\u8ba9\u6211\u4eec\u770b\u770b\u8f83\u5c0f\u6279\u6b21\u7ef4\u5ea6\u7684\u60c5\u51b5": 220, "\u573a\u666f": 220, "\u8f83\u5c0f\u7684\u6279\u91cf\u7ef4\u5ea6": 220, "\u9884\u70ed": [220, 239], "\u9ed8\u8ba4\u914d\u7f6e\u8fd0\u884c\u4e0a\u8ff0\u811a\u672c\u65f6": 220, "\u60a8\u5e94\u8be5\u4f1a\u770b\u5230\u4ee5\u4e0b": 220, "\u81ea\u8eab": 220, "\u603b\u8ba1": 220, "094": 220, "\u4ee5\u4e0b\u662f\u542f\u7528": 220, "\u5feb\u901f\u6570\u5b66\u6a21\u5f0f\u65f6\u7684": 220, "\u5feb\u901f\u6570\u5b66\u6a21\u5f0f\u4e3a\u8f83\u5c0f\u7684\u6279\u91cf\u7ef4\u5ea6\u63d0\u4f9b\u4e86\u5927\u7ea6": 220, "47x": 220, "\u7684\u6027\u80fd\u63d0\u5347": 220, "\u5c3d\u7ba1\u6027\u80fd\u63d0\u5347\u660e\u663e": 220, "\u4f46\u6574\u4f53\u4ecd\u6709\u63d0\u5347\u7a7a\u95f4": 220, "\u56e0\u4e3a\u6765\u81ea": 220, "\u540e\u7aef\u7684\u8fd0\u884c\u65f6\u5f00\u9500": 220, "\u6743\u91cd\u91cd\u6392\u548c\u5185\u6838\u542f\u52a8\u65f6\u95f4": 220, "\u8d85\u8fc7\u4e86": 220, "\u5185\u6838\u5bf9\u8f83\u5c0f\u6279\u91cf\u8ba1\u7b97\u7684\u8ba1\u7b97\u4f18\u52bf": 220, "\u53ef\u4ee5\u901a\u8fc7\u5c06\u8f83\u5c0f\u7684\u5f62\u72b6\u4ece": 220, "\u5378\u8f7d\u5230": 220, "\u540e\u7aef\u6765\u63d0\u9ad8\u8f83\u5c0f\u6279\u91cf\u7ef4\u5ea6\u7684\u63a8\u7406\u6027\u80fd": 220, "\u6211\u4eec\u6b63\u5728\u52aa\u529b\u4e3a\u672a\u6765\u7248\u672c\u5b9e\u73b0\u81ea\u52a8\u5316\u7684\u540e\u7aef\u9009\u62e9": 220, "\u5e76\u5177\u6709\u5065\u58ee\u7684\u542f\u53d1\u5f0f\u7b97\u6cd5": 220, "\u5728\u5b9e\u73b0\u542f\u53d1\u5f0f\u7b97\u6cd5\u4e4b\u524d": 220, "\u53ef\u4ee5\u901a\u8fc7\u589e\u52a0": 220, "\u540e\u7aef\u9009\u62e9\u7684\u9608\u503c\u5c06\u8f83\u5c0f\u7684\u5f62\u72b6\u5378\u8f7d\u5230": 220, "\u5728\u4ee5\u4e0b\u793a\u4f8b\u4e2d": 220, "\u4f5c\u4e3a\u9608\u503c": 220, "\u56e0\u6b64\u6279\u91cf\u7ef4\u5ea6\u4e3a": 220, "\u7684\u8f93\u5165\u4e0d\u4f1a\u5206\u6d3e\u5230": 220, "\u76f8\u53cd": [220, 240], "\u5b83\u4f1a\u88ab\u5206\u6d3e\u5230": 220, "torch_mkldnn_matmul_min_dim": 220, "\u4ee5\u4e0b\u662f\u4f7f\u7528": 220, "\u540e\u7aef\u65f6\u7684": 220, "034": 220, "\u5982\u60a8\u6240\u89c1": [220, 235], "\u5207\u6362\u5230": 220, "\u5c06\u6027\u80fd\u63d0\u9ad8\u4e86\u4e00\u500d": 220, "\u4e0e\u9ed8\u8ba4\u7684": [220, 248], "\u540e\u7aef\u914d\u7f6e\u76f8\u6bd4": 220, "\u5bf9\u4e8e\u66f4\u5c0f\u7684\u6279\u91cf\u7ef4\u5ea6": 220, "\u4f8b\u5982\u6279\u91cf\u7ef4\u5ea6\u4e3a": 220, "\u8fd9\u4e00\u70b9\u66f4\u52a0\u663e\u8457": 220, "\u8fd9\u91cc\u6211\u4eec\u89c2\u5bdf\u5230\u901a\u8fc7\u9002\u5f53\u8c03\u6574\u540e\u7aef\u9608\u503c": 220, "\u6027\u80fd\u63d0\u9ad8\u4e863": 220, "\u6211\u4eec\u8fd8\u89c2\u5bdf\u5230": 220, "\u5bf9\u4e8e\u8fd9\u4e9b\u8f83\u5927\u7684\u7f51\u7edc": 220, "\u5f20\u91cf\u5185\u5b58\u5206\u914d\u5360\u63a8\u7406\u5ef6\u8fdf\u7684\u5f88\u5927\u4e00\u90e8\u5206": 220, "\u8fd9\u53ef\u4ee5\u901a\u8fc7\u4ecepytorch": 220, "c10\u5185\u5b58\u5206\u914d\u5668": 220, "\u542f\u7528": 220, "\u6765\u4f18\u5316": 220, "\u76ee\u524d": 220, "\u8be5\u529f\u80fd\u9ed8\u8ba4\u672a\u542f\u7528": 220, "\u56e0\u4e3a\u5b83\u4f1a\u7565\u5fae\u589e\u52a0\u5185\u5b58\u5360\u7528": 220, "\u8bbe\u7f6e\u4ee5\u4e0b\u73af\u5883\u53d8\u91cf\u4ee5\u542f\u7528\u5b83": 220, "thp_mem_alloc_en": 220, "\u5bf9\u4e8e\u6279\u91cf\u7ef4\u5ea6\u4e3a": 220, "\u4e14\u542f\u7528": 220, "\u6a21\u5f0f": [220, 222], "\u542f\u7528thp\u5185\u5b58\u5206\u914d\u540e": 220, "profiler\u7684\u8f93\u51fa\u5982\u4e0b": 220, "\u540d\u79f0": 220, "\u81ea\u8eabcpu": 220, "cpu\u603b": 220, "cpu\u5e73\u5747\u65f6\u95f4": 220, "\u8c03\u7528\u6b21\u6570": 220, "321": 220, "069m": 220, "568m": 220, "613m": 220, "06": 220, "602m": 220, "682": 220, "007u": 220, "777m": 220, "082m": 220, "329": 220, "097m": 220, "547m": 220, "325": 220, "115m": 220, "626m": 220, "\u81ea\u8eabcpu\u603b\u65f6\u95f4": 220, "\u8fd9\u6bd4\u4e0a\u9762\u6d4b\u91cf\u7684\u5df2\u4f18\u5316\u7684": 220, "\u6a21\u5f0f\u53c8\u63d0\u9ad8\u4e86": 220, "08\u500d\u62168": 220, "\u6211\u4eec\u4ecb\u7ecd\u4e86\u5728aw": 220, "graviton3\u5b9e\u4f8b\u4e0a\u7684pytorch\u63a8\u7406": 220, "\u5305\u62ec\u57fa\u672c\u7528\u6cd5": 220, "\u4f7f\u7528\u5feb\u901f\u6570\u5b66\u5185\u6838\u7684\u52a0\u901f": 220, "\u6bd4\u8f83\u4e0d\u540c\u6279\u91cf\u7ef4\u5ea6\u4e0b\u4e0d\u540c\u540e\u7aef\u7684\u6027\u80fd": 220, "\u4ee5\u53ca\u5982\u4f55\u4f7f\u7528linux\u900f\u660e\u5927\u9875\u9762\u4f18\u5316\u5f20\u91cf\u5185\u5b58\u5206\u914d\u5ef6\u8fdf": 220, "\u5bf9\u4e8e\u8f83\u5927\u7684\u5f20\u91cf\u5f62\u72b6": 220, "\u5efa\u8bae\u4f7f\u7528mkldnn\u540e\u7aef\u548cbfloat16\u5feb\u901f\u6570\u5b66\u6a21\u5f0f\u4ee5\u53cathp\u5185\u5b58\u5206\u914d": 220, "\u5bf9\u4e8e\u8f83\u5c0f\u7684\u5f20\u91cf\u5f62\u72b6": 220, "\u5efa\u8bae\u4f7f\u7528openblas\u540e\u7aef": 220, "\u5e0c\u671b\u60a8\u80fd\u5c1d\u8bd5\u4e00\u4e0b": 220, "avx512": 221, "xmx": 221, "xpu": 221, "claus": 221, "roialign": 221, "bertmodel": 221, "check_trac": 221, "cache_en": [221, 248], "memoryformat": 221, "channelslast": [221, 224], "intel_ext_pt_cpu": 221, "libpytorch_path": 221, "ldd": 221, "workspac": 221, "cmake_have_libc_pthread": 221, "0x00007f3cf98e0000": 221, "libc10": 221, "0x00007f3cf985a000": 221, "libintel": 221, "0x00007f3cf70fc000": 221, "libtorch_cpu": [221, 247], "0x00007f3ce16ac000": 221, "libdnnl_graph": 221, "0x00007f3cde954000": 221, "\u5927\u591a\u6570\u6df1\u5ea6\u5b66\u4e60\u5e94\u7528\u7a0b\u5e8f\u5728\u63a8\u7406\u65f6\u4f7f\u752832\u4f4d\u6d6e\u70b9\u7cbe\u5ea6": 222, "\u4f46\u662f\u7531\u4e8e\u663e\u8457\u7684\u6027\u80fd\u63d0\u5347": 222, "\u4f4e\u7cbe\u5ea6\u6570\u636e\u7c7b\u578b": 222, "\u5c24\u5176\u662fint8": 222, "\u6b63\u53d7\u5230\u8d8a\u6765\u8d8a\u591a\u7684\u5173\u6ce8": 222, "\u91c7\u7528\u4f4e\u7cbe\u5ea6\u65f6\u7684\u4e00\u4e2a\u4e3b\u8981\u95ee\u9898\u662f\u5982\u4f55\u8f7b\u677e\u5730\u51cf\u8f7b\u53ef\u80fd\u7684\u7cbe\u5ea6\u635f\u5931\u5e76\u8fbe\u5230\u9884\u5b9a\u7684\u7cbe\u5ea6\u8981\u6c42": 222, "compressor": [222, 252], "\u65e8\u5728\u901a\u8fc7\u6269\u5c55": 222, "\u7684\u7cbe\u5ea6\u9a71\u52a8\u81ea\u52a8\u8c03\u4f18\u7b56\u7565\u6765\u89e3\u51b3\u4e0a\u8ff0\u95ee\u9898": 222, "\u5e2e\u52a9\u7528\u6237\u5728intel\u786c\u4ef6\u4e0a\u5feb\u901f\u627e\u5230\u6700\u4f73\u91cf\u5316\u6a21\u578b": 222, "\u5305\u62ecintel": 222, "\u548cintel": 222, "compressor\u5df2\u4f5c\u4e3a\u5f00\u6e90\u9879\u76ee\u53d1\u5e03\u5728": 222, "_\u4e0a": 222, "\u6613\u7528\u7684python": 222, "\u63d0\u4f9b\u7b80\u5355\u7684\u524d\u7aefpython": 222, "api\u548c\u5b9e\u7528\u5de5\u5177": 222, "\u7528\u6237\u53ea\u9700\u66f4\u6539\u51e0\u884c\u4ee3\u7801\u5373\u53ef\u8fdb\u884c\u795e\u7ecf\u7f51\u7edc\u538b\u7f29": 222, "\u901a\u5e38\u53ea\u9700\u8981\u5728\u539f\u59cb\u4ee3\u7801\u4e2d\u6dfb\u52a05\u52306\u4e2a\u5b50\u53e5": 222, "\u652f\u6301\u5728": 222, "\u56fe\u6a21\u5f0f\u548c": 222, "\u6a21\u5f0f\u4e0b\u8fdb\u884c\u7cbe\u5ea6\u9a71\u52a8\u7684\u81ea\u52a8\u8c03\u4f18\u8fc7\u7a0b": 222, "\u5305\u62ec\u8bad\u7ec3\u540e\u9759\u6001\u91cf\u5316": 222, "\u8bad\u7ec3\u540e\u52a8\u6001\u91cf\u5316\u548c\u91cf\u5316\u611f\u77e5\u8bad\u7ec3": 222, "\u672c\u6559\u7a0b\u4e3b\u8981\u5173\u6ce8\u91cf\u5316\u90e8\u5206": 222, "\u5173\u4e8e\u5982\u4f55\u4f7f\u7528": 222, "\u8fdb\u884c\u526a\u679d\u548c\u84b8\u998f": 222, "\u8bf7\u53c2\u8003": 222, "github\u4ed3\u5e93\u4e2d\u7684\u76f8\u5e94\u6587\u6863": 222, "\u4ecepip\u5b89\u88c5\u7a33\u5b9a\u7248\u672c": 222, "\u4ecepip\u5b89\u88c5\u6bcf\u65e5\u6784\u5efa\u7248\u672c": 222, "\u4ececonda\u5b89\u88c5\u7a33\u5b9a\u7248\u672c": 222, "\u652f\u6301\u7684python\u7248\u672c\u4e3a3": 222, "8\u62163": 222, "\u7528\u6237\u53ea\u9700\u8fdb\u884c\u5c11\u91cf\u4ee3\u7801\u66f4\u6539\u5373\u53ef\u5f00\u59cb\u4f7f\u7528": 222, "\u91cf\u5316api": 222, "\u63a5\u53d7\u4e00\u4e2a": 222, "\u6a21\u578b\u548c\u4e00\u4e2a": 222, "\u914d\u7f6e\u6587\u4ef6\u4f5c\u4e3a\u8f93\u5165": 222, "\u8981\u6784\u5efa\u91cf\u5316\u8fc7\u7a0b": 222, "\u914d\u7f6e\u6587\u4ef6": 222, "\u6307\u5b9a\u4ee5\u4e0b\u8bbe\u7f6e": 222, "\u6821\u51c6\u6570\u636e\u52a0\u8f7d\u5668": 222, "\u9759\u6001\u91cf\u5316\u9700\u8981": 222, "\u8bc4\u4f30\u6570\u636e\u52a0\u8f7d\u5668": 222, "\u8bc4\u4f30\u6307\u6807": 222, "\u652f\u6301\u4e00\u4e9b\u5e38\u7528\u7684\u6570\u636e\u52a0\u8f7d\u5668\u548c\u8bc4\u4f30\u6307\u6807": 222, "\u5173\u4e8e\u5982\u4f55\u5728": 222, "\u914d\u7f6e\u6587\u4ef6\u4e2d\u914d\u7f6e\u5b83\u4eec": 222, "\u7528\u6237\u53ef\u4ee5\u53c2\u8003": 222, "\u5185\u7f6e\u6570\u636e\u96c6": 222, "\u5982\u679c\u7528\u6237\u60f3\u4f7f\u7528\u81ea\u5b9a\u4e49\u7684\u6570\u636e\u52a0\u8f7d\u5668\u6216\u8bc4\u4f30\u6307\u6807": 222, "\u652f\u6301\u901a\u8fc7": 222, "\u4ee3\u7801\u6ce8\u518c\u81ea\u5b9a\u4e49\u6570\u636e\u52a0\u8f7d\u5668": 222, "\u6307\u6807": 222, "\u5173\u4e8eyaml\u914d\u7f6e\u6587\u4ef6\u683c\u5f0f": 222, "yaml\u6a21\u677f": 222, "\u6240\u9700\u7684\u4ee3\u7801\u66f4\u6539\u5728\u4e0a\u9762\u7684\u6ce8\u91ca\u4e2d\u7a81\u51fa\u663e\u793a": 222, "\u6211\u4eec\u4f7f\u7528lenet\u6a21\u578b\u6765\u6f14\u793a\u5982\u4f55\u4f7f\u7528": 222, "lenet\u6a21\u578b\u5b9a\u4e49": 222, "fc1_drop": 222, "\u9884\u8bad\u7ec3\u6a21\u578b\u6743\u91cd": 222, "\u6765\u81ea": 222, "\u652f\u6301\u7cbe\u5ea6\u9a71\u52a8\u7684\u81ea\u52a8\u8c03\u4f18": 222, "\u4ee5\u751f\u6210\u6ee1\u8db3\u9884\u5b9a\u7cbe\u5ea6\u76ee\u6807\u7684\u6700\u4f73": 222, "\u4ee5\u4e0b\u662f\u901a\u8fc7\u81ea\u52a8\u8c03\u4f18\u5728pytorch": 222, "fx\u56fe\u6a21\u5f0f": 222, "\u4e0a\u91cf\u5316\u7b80\u5355\u7f51\u7edc\u7684\u793a\u4f8b": 222, "pytorch_fx": 222, "accuracy_criterion": 222, "compressor\u542f\u52a8\u4ee3\u7801": 222, "neural_compressor": 222, "calib_dataload": 222, "q_model": 222, "\u6307\u5b9a\u4e86": 222, "\u7684\u5185\u7f6e\u6307\u6807": 222, "\u4f5c\u4e3a\u8bc4\u4f30\u65b9\u6cd5": 222, "\u7684\u76f8\u5bf9\u7cbe\u5ea6\u635f\u5931\u8bbe\u7f6e\u4e3a\u81ea\u52a8\u8c03\u4f18\u7684\u7cbe\u5ea6\u76ee\u6807": 222, "\u5c06\u904d\u5386\u6bcf\u4e2a\u64cd\u4f5c\u7ea7\u522b\u4e0a\u6240\u6709\u53ef\u80fd\u7684\u91cf\u5316\u914d\u7f6e\u7ec4\u5408": 222, "\u4ee5\u627e\u51fa\u8fbe\u5230\u9884\u5b9a\u7cbe\u5ea6\u76ee\u6807\u7684\u6700\u4f73": 222, "\u9664\u4e86\u8fd9\u4e9b\u5185\u7f6e\u6307\u6807\u5916": 222, "\u8fd8\u652f\u6301\u901a\u8fc7": 222, "\u4ee3\u7801\u81ea\u5b9a\u4e49\u6307\u6807": 222, "\u5b9a\u4e49\u81ea\u5b9a\u4e49\u6307\u6807": 222, "top1metr": 222, "\u5b9e\u73b0\u4e86\u4e00\u4e2a\u5305\u542b": 222, "\u51fd\u6570\u7684": [222, 241], "\u7528\u4e8e\u8bb0\u5f55\u6bcf\u4e2a\u5c0f\u6279\u91cf\u7684\u7ed3\u679c\u5e76\u5728\u6700\u540e\u8ba1\u7b97\u6700\u7ec8\u7cbe\u5ea6": 222, "\u9664\u4e86\u8bad\u7ec3\u540e\u9759\u6001\u91cf\u5316\u548c\u8bad\u7ec3\u540e\u52a8\u6001\u91cf\u5316\u5916": 222, "\u8fd8\u652f\u6301\u5177\u6709\u7cbe\u5ea6\u9a71\u52a8\u81ea\u52a8\u8c03\u4f18\u673a\u5236\u7684\u91cf\u5316\u611f\u77e5\u8bad\u7ec3": 222, "\u4ee5\u4e0b\u662f\u5728pytorch": 222, "\u4e0a\u5bf9\u7b80\u5355\u7f51\u7edc\u8fdb\u884c\u91cf\u5316\u611f\u77e5\u8bad\u7ec3\u7684\u793a\u4f8b": 222, "quant_aware_train": 222, "training_func": 222, "\u8bad\u7ec3\u8f6e\u6b21": 222, "t\u635f\u5931": 222, "\u542f\u52a8\u4ee3\u7801": 222, "q_func": 222, "\u652f\u6301\u4f7f\u7528\u865a\u62df\u6570\u636e\u96c6\u76f4\u63a5\u751f\u6210": 222, "\u7528\u4e8e\u6027\u80fd\u57fa\u51c6\u6d4b\u8bd5\u76ee\u7684": 222, "\u4ee5\u4e0b\u662f\u4f7f\u7528\u865a\u62df\u6570\u636e\u96c6\u5728pytorch": 222, "dummy_dataset": 222, "dummydataset": 222, "\u7528\u6237\u53ef\u4ee5\u4ece": 222, "\u6253\u5370\u7684\u65e5\u5fd7\u4e2d\u4e86\u89e3\u6709\u591a\u5c11\u64cd\u4f5c\u88ab\u91cf\u5316": 222, "linearrelu": 222, "\u91cf\u5316\u6a21\u578b\u5c06\u5728": 222, "\u76ee\u5f55\u4e0b\u751f\u6210": 222, "\u5176\u4e2d\u5305\u542b\u4e24\u4e2a\u6587\u4ef6": 222, "best_configur": 222, "best_model_weight": 222, "\u7b2c\u4e00\u4e2a\u6587\u4ef6\u5305\u542b\u6bcf\u4e2a\u64cd\u4f5c\u7684\u91cf\u5316\u914d\u7f6e": 222, "\u7b2c\u4e8c\u4e2a\u6587\u4ef6\u5305\u542b": 222, "\u6743\u91cd\u4ee5\u53ca\u6fc0\u6d3b\u7684\u96f6\u70b9\u548c\u6bd4\u4f8b\u4fe1\u606f": 222, "\u7528\u6237\u53ef\u4ee5\u4f7f\u7528\u4ee5\u4e0b\u4ee3\u7801\u52a0\u8f7d\u91cf\u5316\u6a21\u578b": 222, "\u7136\u540e\u8fdb\u884c\u63a8\u7406\u6216\u6027\u80fd\u57fa\u51c6\u6d4b\u8bd5": 222, "int8_model": 222, "\u8bf7\u8bbf\u95ee": 222, "\u4ed3\u5e93": 222, "\u83b7\u53d6\u66f4\u591a\u6559\u7a0b": 222, "martin": 223, "pytorchstreamread": 223, "regener": 223, "model_psth": 223, "_load_for_lite_interpret": [223, 224], "optimized_scripted_modul": 223, "pytorch_android_lit": 223, "litemoduleload": 223, "getapplicationcontext": 223, "prebuilt": 223, "use_framework": 223, "libtorch_lit": 223, "nullabl": 223, "instancetyp": 223, "initwithfileatpath": 223, "nsstring": 223, "_load_for_mobil": [223, 224], "utf8str": 223, "nslog": 223, "architechtur": 223, "pend": 224, "dsp": 224, "calibration_data": 224, "588kb": 224, "nio": 224, "suboptim": 224, "analysisresult": 224, "analyzeimag": 224, "imageproxi": 224, "rotationdegre": 224, "modulefileabsolutefilepath": 224, "minputtensorbuff": 224, "minputtensor": 224, "imageyuv420centercroptofloatbuff": 224, "getimag": 224, "flatbuff": 224, "_use_flatbuff": 224, "jit_model": 224, "ff": 224, "5387594579999999": 224, "038842832999999466": 224, "nake": 224, "rf": 224, "speedbenchark_torch": 224, "speedbenchmark": 224, "121318": 224, "24281": 224, "trace_model": 224, "rubi": 224, "iphonex": 224, "2121": 224, "722447": 224, "762": 224, "mobilenetv2_quant": [225, 226], "hackathon": [225, 226], "xcworkspac": 226, "your_project_nam": 226, "\u7684\u8bf4\u660e\u53ef\u5728": 227, "\u4e0a\u627e\u5230": [227, 258], "\u662f\u4e00\u6b3e\u7528\u4e8e\u4e32\u884c\u548c\u591a\u7ebf\u7a0b\u5e94\u7528\u7a0b\u5e8f\u7684\u6027\u80fd\u5206\u6790\u5de5\u5177": 227, "\u5bf9\u4e8e\u719f\u6089": 227, "\u67b6\u6784\u7684\u4eba\u6765\u8bf4": 227, "\u63d0\u4f9b\u4e86\u4e30\u5bcc\u7684\u6307\u6807\u96c6": 227, "\u5e2e\u52a9\u7528\u6237\u4e86\u89e3\u5e94\u7528\u7a0b\u5e8f\u5728": 227, "\u5e73\u53f0\u4e0a\u7684\u6267\u884c\u60c5\u51b5": 227, "\u4ece\u800c\u4e86\u89e3\u6027\u80fd\u74f6\u9888\u6240\u5728": 227, "\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f": 227, "\u5305\u62ec\u5165\u95e8\u6307\u5357": 227, "\u7f51\u7ad9": 227, "\u63d0\u4f9b": 227, "\u4f7f\u76ee\u6807\u5e94\u7528\u7a0b\u5e8f\u80fd\u591f\u5728\u6267\u884c\u671f\u95f4\u751f\u6210\u548c\u63a7\u5236\u8ddf\u8e2a\u6570\u636e\u7684\u6536\u96c6": 227, "\u529f\u80fd\u7684\u4f18\u52bf\u5728\u4e8e\u80fd\u591f\u5728": 227, "\u4e0a\u6807\u8bb0\u5355\u4e2a": 227, "\u7b97\u5b50\u548c\u81ea\u5b9a\u4e49\u533a\u57df\u7684\u65f6\u95f4\u8de8\u5ea6": 227, "\u5f53\u7528\u6237\u53d1\u73b0\u4efb\u4f55\u5f02\u5e38\u65f6": 227, "\u8fd9\u5c06\u975e\u5e38\u6709\u52a9\u4e8e\u5b9a\u4f4d\u54ea\u4e2a\u7b97\u5b50\u8868\u73b0\u5f02\u5e38": 227, "\u5df2\u5728": 227, "\u4e2d\u96c6\u6210": 227, "\u7528\u6237\u65e0\u9700\u8c03\u7528\u539f\u59cb\u7684": 227, "\u53ea\u9700\u8c03\u7528": 227, "\u5373\u53ef": 227, "\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f\u53ef\u5728": 227, "\u4e2d\u627e\u5230": 227, "\u63d0\u4f9b\u4e86\u4e24\u79cd\u4f7f\u7528\u65b9\u5f0f": 227, "\u9690\u5f0f\u8c03\u7528": 227, "\u6240\u6709\u901a\u8fc7": 227, "\u7b97\u5b50\u6ce8\u518c\u673a\u5236\u6ce8\u518c\u7684\u7b97\u5b50\u5728\u542f\u7528": 227, "\u529f\u80fd\u65f6\u90fd\u4f1a\u81ea\u52a8\u6807\u8bb0": 227, "\u663e\u5f0f\u8c03\u7528": 227, "\u5982\u679c\u9700\u8981\u81ea\u5b9a\u4e49\u6807\u8bb0": 227, "\u7528\u6237\u53ef\u4ee5\u5728": 227, "\u4e2d\u4f7f\u7528\u663e\u5f0f": 227, "\u5bf9\u6240\u9700\u8303\u56f4\u8fdb\u884c\u6807\u8bb0": 227, "\u8981\u542f\u7528\u663e\u5f0f\u8c03\u7528": 227, "\u9700\u8981\u5728": 227, "\u4f5c\u7528\u57df\u4e0b\u8c03\u7528\u9884\u671f\u6807\u8bb0\u7684\u4ee3\u7801": 227, "\u8981\u9a8c\u8bc1\u529f\u80fd": 227, "\u60a8\u9700\u8981\u542f\u52a8\u4e00\u4e2a": 227, "\u7684\u6b65\u9aa4\u8bf7\u67e5\u770b": 227, "\u7528\u6237\u6307\u5357": 227, "\u4e00\u65e6\u542f\u52a8\u4e86": 227, "\u60a8\u5e94\u8be5\u4f1a\u770b\u5230\u5982\u4e0b\u7528\u6237\u754c\u9762": 227, "\u5de6\u4fa7\u5bfc\u822a\u680f\u4e0b\u7684": 227, "\u9879\u76ee\u4e2d\u6709\u4e09\u4e2a\u793a\u4f8b\u7ed3\u679c": 227, "\u5982\u679c\u60a8\u4e0d\u5e0c\u671b\u5206\u6790\u7ed3\u679c\u51fa\u73b0\u5728\u6b64\u9ed8\u8ba4\u793a\u4f8b\u9879\u76ee\u4e2d": 227, "\u53ef\u4ee5\u901a\u8fc7\u84dd\u8272": 227, "\u6309\u94ae\u4e0b\u7684": 227, "\u6309\u94ae\u521b\u5efa\u4e00\u4e2a\u65b0\u9879\u76ee": 227, "\u8981\u542f\u52a8\u65b0\u7684\u5206\u6790": 227, "\u8bf7\u5355\u51fb\u84dd\u8272\u7684": 227, "\u6309\u94ae\u4ee5\u5f00\u59cb\u914d\u7f6e\u5206\u6790": 227, "\u5355\u51fb": 227, "\u6309\u94ae\u540e": 227, "\u60a8\u5e94\u8be5\u4f1a\u770b\u5230\u5982\u4e0b\u754c\u9762": 227, "\u7a97\u53e3\u7684\u53f3\u4fa7\u5206\u4e3a\u4e09\u90e8\u5206": 227, "\u5de6\u4e0a\u89d2": 227, "\u5de6\u4e0b\u89d2": 227, "\u53f3\u4fa7": 227, "\u60a8\u53ef\u4ee5\u6307\u5b9a\u8981\u5728\u54ea\u53f0\u673a\u5668\u4e0a\u8fd0\u884c\u5206\u6790": 227, "\u60a8\u53ef\u4ee5\u8bbe\u7f6e\u8981\u5206\u6790\u7684\u5e94\u7528\u7a0b\u5e8f\u7684\u8def\u5f84": 227, "\u8981\u5206\u6790": 227, "\u811a\u672c": [227, 231, 257], "\u5efa\u8bae\u5c06\u6240\u6709\u624b\u52a8\u6b65\u9aa4": 227, "\u5305\u62ec\u6fc0\u6d3b": 227, "\u73af\u5883\u548c\u8bbe\u7f6e\u6240\u9700\u73af\u5883\u53d8\u91cf": 227, "\u5c01\u88c5\u5230\u4e00\u4e2a": 227, "\u811a\u672c\u4e2d": 227, "\u7136\u540e\u5bf9\u8be5": 227, "\u811a\u672c\u8fdb\u884c\u5206\u6790": 227, "\u5728\u4e0a\u9762\u7684\u622a\u56fe\u4e2d": 227, "\u6211\u4eec\u5c06\u6240\u6709\u6b65\u9aa4\u5c01\u88c5\u5230": 227, "\u7684\u53c2\u6570\u8bbe\u7f6e\u4e3a": 227, "path_of_launch": 227, "\u7684\u8def\u5f84": 227, "\u5728\u53f3\u4fa7\u7684": 227, "\u60a8\u53ef\u4ee5\u9009\u62e9\u8981\u5206\u6790\u7684\u7c7b\u578b": 227, "\u63d0\u4f9b\u4e86\u591a\u79cd\u53ef\u9009\u7684\u5206\u6790\u7c7b\u578b": 227, "\u6210\u529f\u8fdb\u884c\u4e86\u5e26\u6709": 227, "\u7684\u5206\u6790\u540e": 227, "\u60a8\u53ef\u4ee5\u6253\u5f00\u5206\u6790\u7ed3\u679c\u7684": 227, "\u9009\u9879\u5361": 227, "\u65f6\u95f4\u7ebf\u4e0a\u67e5\u770b\u6807\u8bb0": 227, "\u65f6\u95f4\u7ebf\u663e\u793a\u4e86\u9876\u90e8\u7684\u4e3b\u7ebf\u7a0b\u4f5c\u4e3a": 227, "\u7ebf\u7a0b": 227, "\u4e0b\u9762\u662f\u5404\u4e2a": 227, "\u6807\u8bb0\u7684": 227, "\u7b97\u5b50\u548c\u81ea\u5b9a\u4e49\u533a\u57df\u663e\u793a\u5728\u4e3b\u7ebf\u7a0b\u884c\u4e2d": 227, "\u6240\u6709\u4ee5": 227, "\u5f00\u5934\u7684\u7b97\u5b50\u90fd\u662f\u7531": 227, "\u529f\u80fd\u9690\u5f0f\u6807\u8bb0\u7684": 227, "iteration_n": 227, "\u662f\u4f7f\u7528\u7279\u5b9a\u7684": 227, "\u4f5c\u7528\u57df\u663e\u5f0f\u6807\u8bb0\u7684": 227, "\u8bf7\u67e5\u770b\u4e0b\u4e00\u8282\u4e2d\u7684\u793a\u4f8b\u4ee3\u7801\u4ee5\u4e86\u89e3\u8be6\u60c5": 227, "\u65f6\u95f4\u7ebf\u4e2d\u6807\u8bb0\u4e3a": 227, "\u7684\u7ea2\u8272\u6846\u662f\u7531": 227, "\u5982\u53f3\u4fa7\u5bfc\u822a\u680f\u6240\u793a": 227, "\u65f6\u95f4\u7ebf\u884c\u4e2d\u7684\u68d5\u8272\u90e8\u5206\u663e\u793a\u4e86\u5404\u4e2a\u7ebf\u7a0b\u7684": 227, "\u4f7f\u7528\u60c5\u51b5": 227, "\u5728\u67d0\u4e2a\u65f6\u95f4\u70b9": 227, "\u68d5\u8272\u90e8\u5206\u5728\u7ebf\u7a0b\u884c\u4e2d\u6240\u5360\u7684\u9ad8\u5ea6\u767e\u5206\u6bd4\u4e0e\u8be5\u7ebf\u7a0b\u5728\u8be5\u65f6\u95f4\u70b9\u7684": 227, "\u4f7f\u7528\u7387\u76f8\u5bf9\u5e94": 227, "\u4ece\u8fd9\u4e2a\u65f6\u95f4\u7ebf\u53ef\u4ee5\u76f4\u89c2\u5730\u4e86\u89e3\u4ee5\u4e0b\u51e0\u70b9": 227, "\u6bcf\u4e2a\u7ebf\u7a0b\u7684": 227, "\u6838\u5fc3\u5229\u7528\u7387\u5982\u4f55": 227, "\u6240\u6709\u7ebf\u7a0b\u7684": 227, "\u6838\u5fc3\u5229\u7528\u7387\u662f\u5426\u5e73\u8861": 227, "\u4f7f\u7528\u60c5\u51b5\u662f\u5426\u826f\u597d": 227, "\u7ebf\u7a0b\u662f\u5426\u540c\u6b65\u826f\u597d": 227, "\u7ebf\u7a0b\u6216": 227, "\u7ebf\u7a0b\u5b8c\u6210\u65f6\u662f\u5426\u5b58\u5728\u6296\u52a8": 227, "\u8fd8\u63d0\u4f9b\u4e86\u66f4\u591a\u4e30\u5bcc\u7684\u5206\u6790\u529f\u80fd": 227, "\u5e2e\u52a9\u60a8\u4e86\u89e3\u6027\u80fd\u95ee\u9898\u7684\u6839\u6e90": 227, "\u4e00\u65e6\u60a8\u4e86\u89e3\u4e86\u6027\u80fd\u95ee\u9898\u7684\u6839\u6e90": 227, "\u5c31\u53ef\u4ee5\u52a0\u4ee5\u4fee\u590d": 227, "\u66f4\u591a\u8be6\u7ec6\u7684\u4f7f\u7528\u8bf4\u660e\u53ef\u5728": 227, "\u4e0b\u9762\u7684\u793a\u4f8b\u4ee3\u7801\u5c31\u662f\u5728\u4e0a\u9762\u7684\u622a\u56fe\u4e2d\u7528\u4e8e\u5206\u6790\u7684\u811a\u672c": 227, "\u8be5\u62d3\u6251\u7531\u4e24\u4e2a\u7b97\u5b50": 227, "\u8fdb\u884c\u4e86\u4e09\u6b21\u63a8\u7406\u8fed\u4ee3": 227, "\u6bcf\u6b21\u8fed\u4ee3\u90fd\u4f7f\u7528": 227, "\u6807\u8bb0\u4e3a\u6587\u672c\u5b57\u7b26\u4e32": 227, "\u65e0\u8bba\u662f\u4f7f\u7528": 227, "\u7684\u914d\u5bf9": 227, "\u8fd8\u662f\u4f7f\u7528": 227, "\u4f5c\u7528\u57df": 227, "\u90fd\u53ef\u4ee5\u5b9e\u73b0\u81ea\u5b9a\u4e49\u6807\u8bb0\u529f\u80fd": 227, "ittsampl": 227, "292820": 227, "\u914d\u5bf9\u6807\u8bb0\u533a\u57df": 227, "iteration_": 227, "\u4f5c\u7528\u57df\u6807\u8bb0\u533a\u57df": 227, "\u4e0b\u9762\u662f\u5728": 227, "\u622a\u56fe\u4e2d\u63d0\u5230\u7684": 227, "\u7528\u4e8e\u5c01\u88c5\u6240\u6709\u624b\u52a8\u6b65\u9aa4": 227, "\u83b7\u53d6\u5305\u542b": 227, "\u7684\u76ee\u5f55\u8def\u5f84": 227, "\u4ee5\u4fbf\u4ece\u4efb\u4f55\u76ee\u5f55\u8c03\u7528\u6b64": 227, "basefold": 227, "bash_sourc": 227, "torchscipt": 228, "ota": 229, "incept": 229, "print_model_s": 229, "mdl": 229, "till": 229, "model_dynamic_quant": 229, "model_static_quant": 229, "98mb": 229, "tra": 229, "model_qat": 229, "\u53ef\u4ee5\u5e2e\u52a9\u60a8\u4e86\u89e3\u6570\u636e\u7279\u5f81\u5982\u4f55\u5f71\u54cd\u6a21\u578b\u7684\u9884\u6d4b\u6216\u795e\u7ecf\u5143\u6fc0\u6d3b": 230, "\u4ece\u800c\u63ed\u793a\u6a21\u578b\u7684\u5de5\u4f5c\u539f\u7406": 230, "\u60a8\u53ef\u4ee5\u7edf\u4e00\u5730\u5e94\u7528\u5e7f\u6cdb\u7684\u6700\u5148\u8fdb\u7684\u7279\u5f81\u5f52\u56e0\u7b97\u6cd5": 230, "gradcam": 230, "\u60a8\u5c06\u5b66\u4e60\u5982\u4f55\u4f7f\u7528": 230, "\u5c06\u56fe\u50cf\u5206\u7c7b\u5668\u7684\u9884\u6d4b\u5f52\u56e0\u4e8e\u76f8\u5e94\u7684\u56fe\u50cf\u7279\u5f81": [230, 252], "\u53ef\u89c6\u5316\u5f52\u56e0\u7ed3\u679c": 230, "\u786e\u4fdd\u5728\u60a8\u7684\u6d3b\u8dc3": 230, "\u73af\u5883\u4e2d\u5b89\u88c5\u4e86": 230, "\u4e0a\u83b7\u53d6": 230, "\u4e5f\u53ef\u4ee5\u4f5c\u4e3a": 230, "\u5305\u6216": 230, "\u5305\u83b7\u53d6": 230, "\u6709\u5173\u8be6\u7ec6\u8bf4\u660e": 230, "\u8bf7\u67e5\u9605\u5b89\u88c5\u6307\u5357": 230, "\u5bf9\u4e8e\u6a21\u578b": 230, "\u4e2d\u7684\u5185\u7f6e\u56fe\u50cf\u5206\u7c7b\u5668": 230, "\u53ef\u4ee5\u63ed\u793a\u6837\u672c\u56fe\u50cf\u7684\u54ea\u4e9b\u90e8\u5206\u652f\u6301\u4e86\u6a21\u578b\u505a\u51fa\u7684\u67d0\u4e9b\u9884\u6d4b": 230, "freepik": 230, "puppi": 230, "dog_58409": 230, "6024": 230, "center_crop": 230, "\u5c06\u56fe\u50cf\u8f6c\u6362\u4e3a\u503c\u5728": 230, "\u4e4b\u95f4\u7684\u5f20\u91cf": 230, "\u5f52\u4e00\u5316\u4ee5\u9075\u5faa": 230, "\u5747\u503c\u7684": 230, "\u50cf\u7d20": 230, "\u5728\u6a21\u578b\u7684\u524d": 230, "\u4e2a\u9884\u6d4b\u4e2d": 230, "\u7c7b\u522b": 230, "283": 230, "\u5206\u522b\u5bf9\u5e94\u4e8e\u72d7\u548c\u732b": 230, "\u8ba9\u6211\u4eec\u4f7f\u7528": [230, 232, 247], "\u7b97\u6cd5\u5c06\u8fd9\u4e9b\u9884\u6d4b\u5f52\u56e0\u4e8e\u8f93\u5165\u7684\u76f8\u5e94\u90e8\u5206": 230, "\u6b65\u957f\u8d8a\u5c0f": 230, "\u5f52\u56e0\u8d8a\u7ec6\u7c92\u5ea6": 230, "\u4f46\u901f\u5ea6\u8d8a\u6162": 230, "\u4e2d\u7684\u62c9\u5e03\u62c9\u591a\u7d22\u5f15": 230, "\u9009\u62e9\u8db3\u4ee5\u6539\u53d8\u5bf9\u8c61\u5916\u89c2\u7684\u5927\u5c0f": 230, "\u7528\u4e8e\u906e\u6321\u56fe\u50cf\u7684\u503c": 230, "\u5bf9\u5e94\u7070\u8272": 230, "attribution_dog": 230, "\u4e2d\u7684\u6ce2\u65af\u732b\u7d22\u5f15": 230, "attribution_cat": 230, "\u8fd8\u63d0\u4f9b\u4e86\u8bb8\u591a\u7b97\u6cd5": 230, "guidedbackprop": 230, "deeplift": 230, "gradientshap": 230, "\u6240\u6709\u8fd9\u4e9b\u7b97\u6cd5\u90fd\u662f": 230, "\u5728\u521d\u59cb\u5316\u65f6\u9700\u8981\u5c06\u60a8\u7684\u6a21\u578b\u4f5c\u4e3a\u53ef\u8c03\u7528\u7684": 230, "forward_func": 230, "\u4f20\u5165": 230, "\u5e76\u5177\u6709": 230, "\u8be5\u65b9\u6cd5\u4ee5\u7edf\u4e00\u7684\u683c\u5f0f\u8fd4\u56de\u5f52\u56e0\u7ed3\u679c": 230, "\u8ba9\u6211\u4eec\u53ef\u89c6\u5316\u8ba1\u7b97\u51fa\u7684\u56fe\u50cf\u5f52\u56e0\u7ed3\u679c": 230, "\u5b9e\u7528\u7a0b\u5e8f\u63d0\u4f9b\u4e86\u5f00\u7bb1\u5373\u7528\u7684\u65b9\u6cd5": 230, "\u7528\u4e8e\u53ef\u89c6\u5316\u56fe\u50cf\u548c\u6587\u672c\u8f93\u5165\u7684\u5f52\u56e0\u7ed3\u679c": 230, "\u5c06\u8ba1\u7b97\u51fa\u7684\u5f52\u56e0\u5f20\u91cf\u8f6c\u6362\u4e3a\u7c7b\u4f3c\u56fe\u50cf\u7684": 230, "vis_typ": 230, "vis_sign": 230, "\u4ee5\u663e\u793a\u4e24\u8005": 230, "\u6b63\u5f52\u56e0\u8868\u793a\u8be5\u533a\u57df\u7684\u5b58\u5728\u4f1a\u589e\u52a0\u9884\u6d4b\u5206\u6570": 230, "\u8d1f\u5f52\u56e0\u8868\u793a\u8be5\u533a\u57df\u7684\u7f3a\u5931\u4f1a\u589e\u52a0\u9884\u6d4b\u5206\u6570": 230, "\u6b63": 230, "\u8d1f\u5f52\u56e0\u6216\u5168\u90e8": 230, "\u5982\u679c\u60a8\u7684\u6570\u636e\u662f\u6587\u672c": 230, "visualize_text": 230, "\u63d0\u4f9b\u4e86\u4e00\u4e2a\u4e13\u7528\u89c6\u56fe": 230, "\u7528\u4e8e\u63a2\u7d22\u8f93\u5165\u6587\u672c\u7684\u5f52\u56e0": 230, "\u66f4\u591a\u4fe1\u606f\u8bf7\u8bbf\u95ee": 230, "imdb_torchtext_interpret": 230, "\u53ef\u4ee5\u5904\u7406": 230, "\u4e2d\u5305\u62ec\u89c6\u89c9": 230, "\u6587\u672c\u7b49\u5404\u79cd\u6a21\u6001\u7684\u5927\u591a\u6570\u6a21\u578b\u7c7b\u578b": 230, "\u60a8\u53ef\u4ee5": [230, 259], "\u5c06\u7279\u5b9a\u8f93\u51fa\u5f52\u56e0\u4e8e\u6a21\u578b\u8f93\u5165": 230, "\u5c06\u7279\u5b9a\u8f93\u51fa\u5f52\u56e0\u4e8e\u9690\u85cf\u5c42\u795e\u7ecf\u5143": 230, "\u53c2\u89c1": [230, 256], "\u53c2\u8003": [230, 256, 258], "\u5c06\u9690\u85cf\u5c42\u795e\u7ecf\u5143\u54cd\u5e94\u5f52\u56e0\u4e8e\u6a21\u578b\u8f93\u5165": 230, "\u6709\u5173\u652f\u6301\u65b9\u6cd5\u7684\u5b8c\u6574": 230, "\u548c\u6559\u7a0b\u5217\u8868": 230, "\u8bf7\u67e5\u9605\u6211\u4eec\u7684\u7f51\u7ad9": 230, "gilbert": 230, "tanner": 230, "\u7684\u53e6\u4e00\u7bc7\u6709\u7528\u6587\u7ae0": 230, "gilberttann": 230, "captum_recip": [230, 236], "carilli": 231, "\u63d0\u4f9b\u4e86\u6df7\u5408\u7cbe\u5ea6\u7684\u4fbf\u5229\u65b9\u6cd5": 231, "\u5176\u4e2d\u4e00\u4e9b\u64cd\u4f5c\u4f7f\u7528": 231, "\u800c\u53e6\u4e00\u4e9b\u64cd\u4f5c\u4f7f\u7528": 231, "\u4e00\u4e9b\u64cd\u4f5c": 231, "\u5982\u7ebf\u6027\u5c42\u548c\u5377\u79ef": 231, "\u4e0b\u8fd0\u884c\u901f\u5ea6\u66f4\u5feb": 231, "\u800c\u5176\u4ed6\u64cd\u4f5c": 231, "\u5982\u5f52\u7ea6\u64cd\u4f5c": 231, "\u901a\u5e38\u9700\u8981": 231, "\u7684\u52a8\u6001\u8303\u56f4": 231, "\u6df7\u5408\u7cbe\u5ea6\u8bd5\u56fe\u5c06\u6bcf\u4e2a\u64cd\u4f5c\u4e0e\u5176\u5408\u9002\u7684\u6570\u636e\u7c7b\u578b\u76f8\u5339\u914d": 231, "\u4ece\u800c\u51cf\u5c11\u7f51\u7edc\u7684\u8fd0\u884c\u65f6\u95f4\u548c\u5185\u5b58\u5360\u7528": 231, "\u901a\u5e38": [231, 248, 253, 260], "\u81ea\u52a8\u6df7\u5408\u7cbe\u5ea6\u8bad\u7ec3": 231, "\u540c\u65f6\u4f7f\u7528": 231, "\u672c\u6559\u7a0b\u6d4b\u91cf\u4e86\u4e00\u4e2a\u7b80\u5355\u7f51\u7edc\u5728\u9ed8\u8ba4\u7cbe\u5ea6\u4e0b\u7684\u6027\u80fd": 231, "\u7136\u540e\u901a\u8fc7\u6dfb\u52a0": 231, "\u4ee5\u6df7\u5408\u7cbe\u5ea6\u8fd0\u884c\u76f8\u540c\u7684\u7f51\u7edc": 231, "\u63d0\u9ad8\u6027\u80fd": 231, "\u60a8\u53ef\u4ee5\u4e0b\u8f7d\u5e76\u8fd0\u884c\u672c\u6559\u7a0b\u4f5c\u4e3a\u72ec\u7acb\u7684": 231, "\u552f\u4e00\u7684\u8981\u6c42\u662f": 231, "\u4ee5\u53ca\u652f\u6301": 231, "\u6df7\u5408\u7cbe\u5ea6\u4e3b\u8981\u53d7\u76ca\u4e8e\u652f\u6301\u5f20\u91cf\u6838\u5fc3\u7684\u67b6\u6784": 231, "ture": 231, "\u5728\u8fd9\u4e9b\u67b6\u6784\u4e0a": 231, "\u672c\u6559\u7a0b\u5e94\u663e\u793a\u663e\u8457\u7684": 231, "3\u500d": 231, "\u52a0\u901f": 231, "\u5728\u8f83\u65e9\u7684\u67b6\u6784": 231, "kepler": 231, "maxwel": 231, "pascal": 231, "\u60a8\u53ef\u80fd\u4f1a\u89c2\u5bdf\u5230\u9002\u5ea6\u7684\u52a0\u901f": 231, "\u53ef\u4ee5\u663e\u793a\u60a8\u7684": 231, "\u67b6\u6784": 231, "gc": 231, "\u8ba1\u65f6\u5de5\u5177": 231, "empty_cach": 231, "reset_max_memory_alloc": 231, "end_timer_and_print": 231, "local_msg": 231, "\u4ee5\u4e0b\u7ebf\u6027\u5c42\u548c": 231, "\u7684\u5e8f\u5217\u5e94\u8be5\u5728\u6df7\u5408\u7cbe\u5ea6\u4e0b\u663e\u793a\u52a0\u901f": 231, "make_model": 231, "in_siz": 231, "out_siz": 231, "\u88ab\u9009\u62e9\u4e3a\u8db3\u591f\u5927\u7684\u503c": 231, "\u4ee5\u9971\u548c": 231, "\u5de5\u4f5c\u8d1f\u8f7d": 231, "\u5f53": [231, 245], "\u9971\u548c\u65f6": 231, "\u6df7\u5408\u7cbe\u5ea6\u63d0\u4f9b\u7684\u52a0\u901f\u6700\u5927": 231, "\u5c0f\u578b\u7f51\u7edc\u53ef\u80fd\u53d7": 231, "\u9650\u5236": 231, "\u6df7\u5408\u7cbe\u5ea6\u4e0d\u4f1a\u63d0\u9ad8\u6027\u80fd": 231, "\u8fd9\u4e9b\u5927\u5c0f\u8fd8\u88ab\u9009\u62e9\u4e3a\u7ebf\u6027\u5c42\u7684\u53c2\u4e0e\u7ef4\u5ea6\u662f": 231, "\u7684\u500d\u6570": [231, 248], "\u4ee5\u5141\u8bb8\u5728\u652f\u6301\u5f20\u91cf\u6838\u5fc3\u7684": 231, "\u4e0a\u4f7f\u7528\u5f20\u91cf\u6838\u5fc3": 231, "\u89c1\u4e0b\u9762\u7684": [231, 239], "\u7ec3\u4e60": 231, "\u6539\u53d8\u53c2\u4e0e\u5927\u5c0f": 231, "\u89c2\u5bdf\u6df7\u5408\u7cbe\u5ea6\u52a0\u901f\u7684\u53d8\u5316": 231, "\u5c1d\u8bd5": 231, "513": 231, "\u4ee5\u9ed8\u8ba4\u7cbe\u5ea6\u521b\u5efa\u6570\u636e": 231, "\u4e0b\u9762\u7684\u9ed8\u8ba4\u7cbe\u5ea6\u548c\u6df7\u5408\u7cbe\u5ea6\u8bd5\u9a8c\u4f7f\u7528\u76f8\u540c\u7684\u6570\u636e": 231, "\u542f\u7528\u6df7\u5408\u7cbe\u5ea6\u65f6": 231, "\u60a8\u4e0d\u9700\u8981\u624b\u52a8\u66f4\u6539\u8f93\u5165\u7684": 231, "\u4e0d\u4f7f\u7528": [231, 238], "\u4ee5\u4e0b\u7b80\u5355\u7f51\u7edc\u4ee5\u9ed8\u8ba4\u7cbe\u5ea6": 231, "\u6267\u884c\u6240\u6709\u64cd\u4f5c": 231, "\u8fd9\u91cc\u53ef\u4ee5\u9002\u5ea6\u63d0\u9ad8\u6027\u80fd": 231, "\u4f5c\u4e3a\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668": 231, "\u5141\u8bb8\u811a\u672c\u7684\u67d0\u4e9b\u533a\u57df\u4ee5\u6df7\u5408\u7cbe\u5ea6\u8fd0\u884c": 231, "\u5728\u8fd9\u4e9b\u533a\u57df\u4e2d": 231, "\u64cd\u4f5c\u4ee5": 231, "\u9009\u62e9\u7684": 231, "\u4ee5\u63d0\u9ad8\u6027\u80fd": 231, "\u540c\u65f6\u4fdd\u6301\u7cbe\u5ea6": 231, "\u4e3a\u6bcf\u4e2a\u64cd\u4f5c\u9009\u62e9\u7684\u7cbe\u5ea6\u4ee5\u53ca\u5728\u4ec0\u4e48\u60c5\u51b5\u4e0b\u9009\u62e9\u7684\u8be6\u7ec6\u4fe1\u606f": 231, "\u64cd\u4f5c\u53c2\u8003": 231, "\u6b64\u90e8\u5206\u4ec5\u7528\u4e8e\u8bf4\u660e": 231, "\u4e0b\u8fd0\u884c\u524d\u5411\u4f20\u9012": 231, "\u8f93\u51fa\u662f": 231, "\u56e0\u4e3a\u7ebf\u6027\u5c42": 231, "\u4e4b\u524d\u9000\u51fa": 231, "\u4e0d\u5efa\u8bae\u5728": 231, "\u4e0b\u8fdb\u884c\u53cd\u5411\u4f20\u64ad": 231, "\u53cd\u5411\u64cd\u4f5c\u4ee5": 231, "\u4e3a\u76f8\u5e94\u524d\u5411\u64cd\u4f5c\u9009\u62e9\u7684\u76f8\u540c": 231, "\u68af\u5ea6\u7f29\u653e": 231, "\u6709\u52a9\u4e8e\u9632\u6b62\u68af\u5ea6\u5e45\u5ea6\u8f83\u5c0f\u65f6\u5728\u6df7\u5408\u7cbe\u5ea6\u8bad\u7ec3\u4e2d\u88ab\u51b2\u5237\u4e3a\u96f6": 231, "\u4e0b\u6ea2": 231, "\u65b9\u4fbf\u5730\u6267\u884c\u68af\u5ea6\u7f29\u653e\u7684\u6b65\u9aa4": 231, "\u5728\u6536\u655b\u8fd0\u884c\u5f00\u59cb\u65f6\u4f7f\u7528\u9ed8\u8ba4\u53c2\u6570\u6784\u9020\u4e00\u4e2a": 231, "scaler": 231, "\u5982\u679c\u60a8\u7684\u7f51\u7edc\u5728\u9ed8\u8ba4": 231, "\u53c2\u6570\u4e0b\u65e0\u6cd5\u6536\u655b": 231, "\u8bf7\u63d0\u4ea4\u4e00\u4e2a": 231, "\u6574\u4e2a\u6536\u655b\u8fd0\u884c\u5e94\u8be5\u4f7f\u7528\u76f8\u540c\u7684": 231, "\u5982\u679c\u60a8\u5728\u540c\u4e00\u4e2a\u811a\u672c\u4e2d\u6267\u884c\u591a\u4e2a\u6536\u655b\u8fd0\u884c": 231, "\u6bcf\u4e2a\u8fd0\u884c\u5e94\u8be5\u4f7f\u7528\u4e00\u4e2a\u4e13\u7528\u7684\u65b0": 231, "\u5b9e\u4f8b\u662f\u8f7b\u91cf\u7ea7\u7684": 231, "\u7f29\u653e\u635f\u5931": 231, "\u5728\u7f29\u653e\u540e\u7684\u635f\u5931\u4e0a\u8c03\u7528": 231, "\u4ee5\u521b\u5efa\u7f29\u653e\u540e\u7684\u68af\u5ea6": 231, "\u9996\u5148\u5c06\u4f18\u5316\u5668\u5206\u914d\u7684\u53c2\u6570\u7684\u68af\u5ea6\u53cd\u7f29\u653e": 231, "\u5982\u679c\u8fd9\u4e9b\u68af\u5ea6\u4e0d\u5305\u542b": 231, "\u5219\u8c03\u7528": 231, "\u5426\u5219\u8df3\u8fc7": 231, "\u66f4\u65b0\u4e0b\u4e00\u6b21\u8fed\u4ee3\u7684\u7f29\u653e\u6bd4\u4f8b": 231, "\u4ee5\u4e0b\u8fd8\u6f14\u793a\u4e86": 231, "\u7684\u4e00\u4e2a\u53ef\u9009\u4fbf\u5229\u53c2\u6570": 231, "\u5982\u679c\u4e3a": 231, "\u7684\u8c03\u7528\u5c06\u6210\u4e3a\u65e0\u64cd\u4f5c": 231, "\u8fd9\u5141\u8bb8\u5728\u9ed8\u8ba4\u7cbe\u5ea6\u548c\u6df7\u5408\u7cbe\u5ea6\u4e4b\u95f4\u5207\u6362": 231, "\u800c\u65e0\u9700\u4f7f\u7528": 231, "\u8bed\u53e5": 231, "use_amp": 231, "\u6df7\u5408\u7cbe\u5ea6": 231, "\u4ea7\u751f\u7684\u6240\u6709\u68af\u5ea6\u90fd\u662f\u7f29\u653e\u8fc7\u7684": 231, "\u5982\u679c\u60a8\u5e0c\u671b\u5728": 231, "\u4e4b\u95f4\u68c0\u67e5\u6216\u4fee\u6539": 231, "\u53c2\u6570\u7684": 231, "\u60a8\u5e94\u8be5\u9996\u5148\u4f7f\u7528": 231, "unscale_": 231, "\u5bf9\u5b83\u4eec\u8fdb\u884c\u53cd\u7f29\u653e": 231, "0\u4e2aepoch": 231, "\u8fd9\u4e00\u90e8\u5206\u4ec5\u7528\u4e8e\u8bf4\u660e": 231, "\u4e0b\u8fd0\u884c\u524d\u5411\u4f20\u64ad": 231, "\u56e0\u4e3a\u7ebf\u6027\u5c42\u4f1a": 231, "\u5c42\u4f1a": 231, "\u4e0d\u63a8\u8350\u5728": 231, "\u53cd\u5411\u4f20\u64ad\u7684": 231, "\u5728\u4e0e\u5bf9\u5e94\u524d\u5411\u4f20\u64ad\u76f8\u540c\u7684": 231, "\u4e0b\u8fd0\u884c": 231, "\u8fd9\u91cc\u53ef\u4ee5\u7565\u5fae\u63d0\u9ad8\u6027\u80fd": 231, "\u8981\u4ee5\u4f4d\u7ea7\u7cbe\u5ea6\u4fdd\u5b58": 231, "\u6062\u590d\u542f\u7528\u4e86": 231, "\u7684\u8fd0\u884c": 231, "\u8bf7\u4f7f\u7528": [231, 246], "\u4fdd\u5b58\u65f6": 231, "\u7684\u72b6\u6001\u5b57\u5178\u4e0e\u901a\u5e38\u7684\u6a21\u578b\u548c\u4f18\u5316\u5668\u72b6\u6001\u5b57\u5178\u4e00\u8d77\u4fdd\u5b58": 231, "\u53ef\u4ee5\u5728\u8fed\u4ee3\u5f00\u59cb\u65f6": 231, "\u4efb\u4f55\u524d\u5411\u4f20\u64ad\u4e4b\u524d": 231, "\u6216\u5728\u8fed\u4ee3\u7ed3\u675f\u65f6": 231, "\u4e4b\u540e\u6267\u884c\u6b64\u64cd\u4f5c": 231, "\u6309\u9700\u5199\u5165\u68c0\u67e5\u70b9": 231, "\u6062\u590d\u65f6": 231, "\u7684\u72b6\u6001\u5b57\u5178\u4e0e\u6a21\u578b\u548c\u4f18\u5316\u5668\u72b6\u6001\u5b57\u5178\u4e00\u8d77\u52a0\u8f7d": 231, "\u6309\u9700\u8bfb\u53d6\u68c0\u67e5\u70b9": 231, "\u5982\u679c\u68c0\u67e5\u70b9\u662f\u4ece\u4e00\u4e2a\u6ca1\u6709\u4f7f\u7528": 231, "\u7684\u8fd0\u884c\u4e2d\u521b\u5efa\u7684": 231, "\u800c\u60a8\u60f3\u6062\u590d\u8bad\u7ec3\u65f6\u4f7f\u7528": 231, "\u50cf\u5f80\u5e38\u4e00\u6837\u4ece\u68c0\u67e5\u70b9\u52a0\u8f7d\u6a21\u578b\u548c\u4f18\u5316\u5668\u72b6\u6001": 231, "\u68c0\u67e5\u70b9\u4e0d\u4f1a\u5305\u542b\u5df2\u4fdd\u5b58\u7684": 231, "\u72b6\u6001": [231, 260], "\u4f7f\u7528\u4e00\u4e2a\u65b0\u7684": 231, "\u5982\u679c\u68c0\u67e5\u70b9\u662f\u4ece\u4e00\u4e2a\u4f7f\u7528\u4e86": 231, "\u800c\u60a8\u60f3\u6062\u590d\u8bad\u7ec3\u65f6\u4e0d\u4f7f\u7528": 231, "\u5e76\u5ffd\u7565\u5df2\u4fdd\u5b58\u7684": 231, "\u53ef\u4ee5\u5355\u72ec\u7528\u4e8e\u5305\u88c5\u63a8\u7406\u6216\u8bc4\u4f30\u7684\u524d\u5411\u4f20\u64ad": 231, "\u4e0d\u9700\u8981": 231, "\u81ea\u52a8\u6df7\u5408\u7cbe\u5ea6\u793a\u4f8b": 231, "\u4ee5\u4e86\u89e3\u9ad8\u7ea7\u7528\u4f8b": 231, "\u68af\u5ea6\u7d2f\u79ef": 231, "\u68af\u5ea6\u60e9\u7f5a": 231, "\u53cc\u5411\u53cd\u5411\u4f20\u64ad": 231, "\u5305\u542b\u591a\u4e2a\u6a21\u578b": 231, "\u4f18\u5316\u5668\u6216\u635f\u5931\u7684\u7f51\u7edc": 231, "\u591a": 231, "\u81ea\u5b9a\u4e49\u81ea\u52a8\u68af\u5ea6\u51fd\u6570": 231, "\u5982\u679c\u5728\u540c\u4e00\u4e2a\u811a\u672c\u4e2d\u6267\u884c\u591a\u4e2a\u6536\u655b\u8fd0\u884c": 231, "\u6bcf\u4e2a\u8fd0\u884c\u90fd\u5e94\u8be5\u4f7f\u7528\u4e00\u4e2a\u4e13\u7528\u7684\u65b0": 231, "\u5982\u679c\u60a8\u6b63\u5728\u4f7f\u7528\u8c03\u5ea6\u7a0b\u5e8f\u6ce8\u518c\u81ea\u5b9a\u4e49": 231, "\u8c03\u5ea6\u7a0b\u5e8f\u6559\u7a0b": 231, "\u60a8\u7684\u7f51\u7edc\u53ef\u80fd\u65e0\u6cd5\u5145\u5206\u5229\u7528": 231, "\u7684\u8ba1\u7b97\u80fd\u529b": 231, "\u56e0\u6b64\u53d7\u5230": 231, "\u7684\u9650\u5236": 231, "\u6027\u80fd\u7684\u5f71\u54cd\u5c06\u65e0\u5173\u7d27\u8981": 231, "\u4e00\u4e2a\u7c97\u7565\u7684\u7ecf\u9a8c\u6cd5\u5219\u662f": 231, "\u5c3d\u53ef\u80fd\u589e\u52a0\u6279\u91cf\u548c": 231, "\u6216\u7f51\u7edc\u5927\u5c0f": 231, "\u76f4\u5230\u4e0d\u4f1a\u53d1\u751f\u5185\u5b58\u4e0d\u8db3\u9519\u8bef": 231, "\u5c3d\u91cf\u907f\u514d\u8fc7\u591a\u7684": 231, "\u8c03\u7528\u6216\u4ece": 231, "\u5f20\u91cf\u6253\u5370\u503c": 231, "\u5c3d\u91cf\u907f\u514d\u5927\u91cf\u5c0f\u578b": 231, "\u64cd\u4f5c\u7684\u5e8f\u5217": 231, "\u5982\u679c\u53ef\u80fd": [231, 248], "\u8bf7\u5c06\u8fd9\u4e9b\u64cd\u4f5c\u5408\u5e76\u4e3a\u51e0\u4e2a\u5927\u578b": 231, "\u64cd\u4f5c": [231, 259], "\u60a8\u7684\u7f51\u7edc\u53ef\u80fd\u662f": 231, "\u8ba1\u7b97\u5bc6\u96c6\u578b\u7684": 231, "\u5927\u91cf": 231, "\u4f46\u60a8\u7684": 231, "\u6ca1\u6709\u5f20\u91cf\u6838\u5fc3": 231, "\u9884\u671f\u52a0\u901f\u6548\u679c\u4f1a\u964d\u4f4e": 231, "\u7684\u7ef4\u5ea6\u4e0d\u9002\u5408\u5f20\u91cf\u6838\u5fc3": 231, "\u8bf7\u786e\u4fdd\u53c2\u4e0e\u8ba1\u7b97\u7684": 231, "\u7684\u5927\u5c0f\u662f": 231, "\u5bf9\u4e8e\u5e26\u6709": 231, "\u8fd9\u53ef\u80fd\u662f\u4e00\u4e2a\u5fae\u5999\u7684\u95ee\u9898": 231, "\u65e9\u671f\u7248\u672c\u7684\u5377\u79ef\u4e5f\u6709\u7c7b\u4f3c\u7684\u5c3a\u5bf8\u9650\u5236": 231, "\u4ee5\u4fbf\u4f7f\u7528\u5f20\u91cf\u6838\u5fc3": 231, "\u4f46\u5bf9\u4e8e": 231, "\u53ca\u66f4\u9ad8\u7248\u672c": 231, "\u4e0d\u5b58\u5728\u6b64\u7c7b\u9650\u5236": 231, "\u4ee5\u83b7\u53d6\u6307\u5bfc": 231, "\u68c0\u67e5\u60a8\u7684\u7f51\u7edc\u662f\u5426\u7b26\u5408": 231, "\u9ad8\u7ea7\u7528\u4f8b": 231, "\u53e6\u8bf7\u53c2\u9605": 231, "\u4f18\u5148\u4f7f\u7528": 231, "\u5982\u679c\u60a8\u786e\u4fe1\u60a8\u7684": 231, "\u7528\u6cd5\u662f\u6b63\u786e\u7684": 231, "\u60a8\u53ef\u80fd\u9700\u8981\u63d0\u4ea4\u4e00\u4e2a": 231, "\u4f46\u5728\u8fd9\u6837\u505a\u4e4b\u524d": 231, "\u6536\u96c6\u4ee5\u4e0b\u4fe1\u606f\u4f1a\u5f88\u6709\u5e2e\u52a9": 231, "\u901a\u8fc7\u5c06": 231, "\u4f20\u9012\u7ed9\u5b83\u4eec\u7684\u6784\u9020\u51fd\u6570": 231, "\u5206\u522b\u7981\u7528": 231, "\u5e76\u67e5\u770b": 231, "\u662f\u5426\u4ecd\u7136\u5b58\u5728": 231, "\u5982\u679c\u60a8\u6000\u7591\u7f51\u7edc\u7684\u67d0\u4e00\u90e8\u5206": 231, "\u4e00\u4e2a\u590d\u6742\u7684\u635f\u5931\u51fd\u6570": 231, "\u6ea2\u51fa": 231, "\u8bf7\u5728": [231, 241], "\u4e2d\u8fd0\u884c\u8be5\u524d\u5411\u533a\u57df": 231, "\u6587\u6863\u5b57\u7b26\u4e32": 231, "\u7684\u6700\u540e\u4e00\u4e2a\u4ee3\u7801\u7247\u6bb5": 231, "\u5c55\u793a\u4e86\u5982\u4f55\u5f3a\u5236\u5b50\u533a\u57df\u5728": 231, "\u4e2d\u8fd0\u884c": [231, 258], "\u901a\u8fc7\u5728\u672c\u5730\u7981\u7528": 231, "\u5e76\u5c06\u5b50\u533a\u57df\u7684\u8f93\u5165\u8f6c\u6362\u4e3a": 231, "\u8bd5\u56fe\u6db5\u76d6\u6240\u6709\u53ef\u4ece\u4e2d\u53d7\u76ca\u6216\u9700\u8981\u8f6c\u6362\u7684": 231, "\u83b7\u5f97\u660e\u786e\u8986\u76d6\u7684": 231, "\u662f\u6839\u636e\u6570\u503c\u5c5e\u6027\u9009\u62e9\u7684": 231, "\u4f46\u4e5f\u57fa\u4e8e\u7ecf\u9a8c": 231, "\u5982\u679c\u60a8\u5728\u542f\u7528\u4e86": 231, "\u7684\u524d\u5411\u533a\u57df\u6216\u968f\u540e\u7684\u53cd\u5411\u4f20\u64ad\u4e2d\u770b\u5230\u7c7b\u578b\u4e0d\u5339\u914d\u9519\u8bef": 231, "\u90a3\u53ef\u80fd\u662f": 231, "\u6f0f\u6389\u4e86\u4e00\u4e2a": 231, "\u8bf7\u63d0\u4ea4\u4e00\u4e2a\u5305\u542b\u9519\u8bef\u56de\u6eaf\u7684": 231, "\u5728\u8fd0\u884c\u60a8\u7684\u811a\u672c\u4e4b\u524d": 231, "torch_show_cpp_stacktrac": 231, "\u4ee5\u63d0\u4f9b\u6709\u5173\u54ea\u4e2a\u540e\u7aef": 231, "\u5931\u8d25\u7684\u8be6\u7ec6\u4fe1\u606f": 231, "amp_recip": [231, 236], "\u672c\u6559\u7a0b\u63d0\u4f9b\u4e86\u4f7f\u7528": 232, "\u6a21\u5757\u6765\u6d4b\u91cf\u548c\u6bd4\u8f83\u4ee3\u7801\u6027\u80fd\u7684\u5feb\u901f\u5165\u95e8\u6307\u5357": 232, "\u57fa\u51c6\u6d4b\u8bd5\u662f\u7f16\u5199\u4ee3\u7801\u65f6\u7684\u4e00\u4e2a\u91cd\u8981\u6b65\u9aa4": 232, "\u5b83\u5e2e\u52a9\u6211\u4eec\u9a8c\u8bc1\u4ee3\u7801\u662f\u5426\u6ee1\u8db3\u6027\u80fd\u9884\u671f": 232, "\u6bd4\u8f83\u89e3\u51b3\u540c\u4e00\u95ee\u9898\u7684\u4e0d\u540c\u65b9\u6cd5": 232, "\u5e76\u9632\u6b62\u6027\u80fd\u88c2\u5316": 232, "\u5bf9\u4e8e\u57fa\u51c6\u6d4b\u8bd5": 232, "\u4ee3\u7801\u6709\u8bb8\u591a\u9009\u62e9": 232, "\u5185\u7f6e\u7684": 232, "\u57fa\u51c6\u6d4b\u8bd5": [232, 239], "\u4ee3\u7801\u6709\u8bb8\u591a\u5bb9\u6613\u88ab\u5ffd\u89c6\u7684\u6ce8\u610f\u4e8b\u9879": 232, "\u4f8b\u5982\u7ba1\u7406\u7ebf\u7a0b\u6570\u91cf\u548c\u540c\u6b65": 232, "\u4e3a\u57fa\u51c6\u6d4b\u8bd5\u751f\u6210\u5f20\u91cf\u8f93\u5165\u53ef\u80fd\u76f8\u5f53\u7e41\u7410": 232, "\u672c\u6559\u7a0b\u6f14\u793a\u4e86\u5982\u4f55\u4f7f\u7528": 232, "\u6a21\u5757\u6765\u907f\u514d\u5e38\u89c1\u9519\u8bef": 232, "\u540c\u65f6\u66f4\u5bb9\u6613\u6bd4\u8f83\u4e0d\u540c\u4ee3\u7801\u7684\u6027\u80fd": 232, "\u4e3a\u57fa\u51c6\u6d4b\u8bd5\u751f\u6210\u8f93\u5165\u7b49": 232, "\u5982\u679c\u5c1a\u672a\u5b89\u88c5": [232, 244, 249, 251], "\u8bf7\u5148\u5b89\u88c5": 232, "\u5728\u64b0\u5199\u672c\u6587\u65f6": 232, "\u4e0d\u652f\u6301\u6279\u91cf\u6a21\u5f0f": 232, "\u56e0\u6b64\u6211\u4eec\u5c06\u6bd4\u8f83\u4f7f\u7528\u73b0\u6709": 232, "\u8fd0\u7b97\u7b26\u5b9e\u73b0\u5b83\u7684\u4e24\u79cd\u65b9\u6cd5": 232, "\u4e00\u79cd\u65b9\u6cd5\u4f7f\u7528": 232, "\u7684\u7ec4\u5408": 232, "\u53e6\u4e00\u79cd\u65b9\u6cd5\u4f7f\u7528": 232, "batched_dot_mul_sum": 232, "batched_dot_bmm": 232, "\u6a21\u5757\u5bf9\u4ee3\u7801\u8fdb\u884c\u57fa\u51c6\u6d4b\u8bd5": 232, "\u6211\u4eec\u5728\u8fd9\u91cc\u4fdd\u6301\u57fa\u51c6\u6d4b\u8bd5\u4ee3\u7801\u7b80\u5355": 232, "\u4ee5\u4fbf\u6211\u4eec\u53ef\u4ee5\u6bd4\u8f83": 232, "mul_sum": 232, "\u6a21\u5757\u7684\u8bbe\u8ba1\u4f7f\u5f97\u5bf9\u4e8e\u90a3\u4e9b\u66fe\u7ecf\u4f7f\u7528\u8fc7": 232, "\u6a21\u5757\u7684\u4eba\u6765\u8bf4": 232, "\u5b83\u770b\u8d77\u6765\u5f88\u719f\u6089": 232, "\u5b83\u7684\u9ed8\u8ba4\u8bbe\u7f6e\u4f7f\u5f97\u5b83\u66f4\u5bb9\u6613\u4e14\u66f4\u5b89\u5168\u5730\u7528\u4e8e\u5bf9": 232, "\u4ee3\u7801\u8fdb\u884c\u57fa\u51c6\u6d4b\u8bd5": 232, "\u9996\u5148\u8ba9\u6211\u4eec\u5bf9\u6bd4\u4e00\u4e0b\u57fa\u672capi\u7684\u4f7f\u7528": 232, "0x7fb10400d0f0": 232, "379": 232, "0x7fb103d67048": 232, "\u867d\u7136\u57fa\u672c\u529f\u80fd\u7684api\u662f\u76f8\u540c\u7684": 232, "\u4f46\u662f\u8fd8\u662f\u6709\u4e00\u4e9b\u91cd\u8981\u7684\u533a\u522b": 232, "\u8fd4\u56de\u7684\u662f\u6bcf\u6b21\u8fd0\u884c\u7684\u65f6\u95f4": 232, "\u8fd4\u56de\u7684\u603b\u8fd0\u884c\u65f6\u95f4": 232, "\u6a21\u5757\u8fd8\u63d0\u4f9b\u4e86\u683c\u5f0f\u5316\u7684\u5b57\u7b26\u4e32\u8868\u793a": 232, "\u7528\u4e8e\u6253\u5370\u7ed3\u679c": 232, "\u53e6\u4e00\u4e2a\u91cd\u8981\u7684\u533a\u522b": 232, "\u4e5f\u662f\u7ed3\u679c\u4e0d\u540c\u7684\u539f\u56e0": 232, "\u662fpytorch\u57fa\u51c6\u6d4b\u8bd5\u6a21\u5757\u9ed8\u8ba4\u5728\u5355\u7ebf\u7a0b\u4e2d\u8fd0\u884c": 232, "\u53c2\u6570\u6765\u66f4\u6539\u7ebf\u7a0b\u6570\u91cf": 232, "\u63a5\u53d7\u51e0\u4e2a\u989d\u5916\u7684\u53c2\u6570": 232, "sub_label": 232, "\u8fd9\u4e9b\u53c2\u6570\u4f1a\u6539\u53d8\u8fd4\u56de\u7684\u6d4b\u91cf\u5bf9\u8c61\u7684__repr__": 232, "\u5e76\u7528\u4e8e\u5bf9\u7ed3\u679c\u8fdb\u884c\u5206\u7ec4": 232, "\u7a0d\u540e\u4f1a\u8be6\u7ec6\u4ecb\u7ecd": 232, "0x7fb103d54080": 232, "118": 232, "0x7fb16935d2e8": 232, "\u4f7f\u7528\u6240\u6709\u53ef\u7528\u7ebf\u7a0b\u8fd0\u884c": 232, "\u4f1a\u5f97\u5230\u4e0e": 232, "\u6a21\u5757\u7c7b\u4f3c\u7684\u7ed3\u679c": 232, "\u66f4\u91cd\u8981\u7684\u662f": 232, "\u54ea\u4e2a\u7248\u672c\u66f4\u5feb\u53d6\u51b3\u4e8e\u6211\u4eec\u4f7f\u7528\u591a\u5c11\u7ebf\u7a0b\u8fd0\u884c\u4ee3\u7801": 232, "\u8fd9\u5c31\u662f\u4e3a\u4ec0\u4e48\u5728\u57fa\u51c6\u6d4b\u8bd5\u65f6": 232, "\u4f7f\u7528\u4e0e\u5b9e\u9645\u7528\u4f8b\u76f8\u7b26\u7684\u7ebf\u7a0b\u8bbe\u7f6e\u975e\u5e38\u91cd\u8981": 232, "\u53e6\u4e00\u4e2a\u9700\u8981\u8bb0\u4f4f\u7684\u91cd\u8981\u4e8b\u60c5\u662f": 232, "\u4e0a\u8fdb\u884c\u57fa\u51c6\u6d4b\u8bd5\u65f6": 232, "\u8981\u540c\u6b65cpu\u548ccuda": 232, "\u8ba9\u6211\u4eec\u518d\u6b21\u5728cuda\u5f20\u91cf\u4e0a\u8fd0\u884c\u4e0a\u9762\u7684\u57fa\u51c6\u6d4b\u8bd5": 232, "\u770b\u770b\u4f1a\u53d1\u751f\u4ec0\u4e48": 232, "2775": 232, "0x7fb10400d080": 232, "\u7ed3\u679c\u63ed\u793a\u4e86\u4e00\u4e9b\u6709\u8da3\u7684\u4e8b\u60c5": 232, "\u6a21\u5757\u8fd0\u884c": 232, "\u7248\u672c\u7684\u7b2c\u4e00\u6b21\u8fd0\u884c\u6bd4\u7b2c\u4e8c\u6b21\u8fd0\u884c\u6162\u5f88\u591a": 232, "\u9700\u8981\u8c03\u7528": 232, "\u7b2c\u4e00\u6b21\u8c03\u7528\u65f6\u9700\u8981\u52a0\u8f7d\u5b83": 232, "\u8fd9\u9700\u8981\u4e00\u4e9b\u65f6\u95f4": 232, "\u8fd9\u5c31\u662f\u4e3a\u4ec0\u4e48\u5728\u57fa\u51c6\u6d4b\u8bd5\u4e4b\u524d\u505a\u4e00\u6b21\u9884\u70ed\u8fd0\u884c\u5f88\u91cd\u8981": 232, "\u6a21\u5757\u4e3a\u6211\u4eec\u5904\u7406\u4e86\u8fd9\u4e2a\u95ee\u9898": 232, "\u6a21\u5757\u548c": 232, "\u6a21\u5757\u4e4b\u95f4\u7ed3\u679c\u7684\u5dee\u5f02\u662f\u56e0\u4e3a": 232, "\u6a21\u5757\u6ca1\u6709\u540c\u6b65": 232, "\u56e0\u6b64\u53ea\u8ba1\u65f6\u4e86\u542f\u52a8\u5185\u6838\u7684\u65f6\u95f4": 232, "\u6a21\u5757\u4e3a\u6211\u4eec\u505a\u4e86\u540c\u6b65": 232, "\u91c7\u53d6\u81f3\u5c11": 232, "\u79d2\u7684\u5355\u6b21\u8fde\u7eed\u6d4b\u91cf": 232, "\u91c7\u53d6\u591a\u6b21\u6d4b\u91cf": 232, "\u5176\u603b\u65f6\u95f4\u81f3\u5c11\u4e3a": 232, "\u79d2": 232, "\u53ef\u901a\u8fc7": [232, 237], "\u53c2\u6570\u66f4\u6539": 232, "\u5e76\u4e14\u6d4b\u91cf\u5f00\u9500\u53ea\u5360\u603b\u4f53\u6d4b\u91cf\u7684\u4e00\u5c0f\u90e8\u5206": 232, "\u8fd9\u662f\u901a\u8fc7\u9996\u5148\u4ee5\u9012\u589e\u7684\u5faa\u73af\u6b21\u6570\u8fd0\u884c": 232, "\u76f4\u5230\u8fd0\u884c\u65f6\u95f4\u8fdc\u5927\u4e8e\u6d4b\u91cf\u5f00\u9500": 232, "\u8fd9\u4e5f\u8d77\u5230\u4e86\u70ed\u8eab\u7684\u4f5c\u7528": 232, "\u7136\u540e\u8fdb\u884c\u6d4b\u91cf\u76f4\u5230\u8fbe\u5230\u76ee\u6807\u65f6\u95f4": 232, "\u8fd9\u6709\u4e00\u4e2a\u6709\u7528\u7684\u7279\u6027": 232, "\u5373\u5b83\u6d6a\u8d39\u7684\u6570\u636e\u66f4\u5c11": 232, "\u5e76\u4e14\u5141\u8bb8\u6211\u4eec\u8ba1\u7b97\u7edf\u8ba1\u6570\u636e\u6765\u4f30\u8ba1\u6d4b\u91cf\u7684\u53ef\u9760\u6027": 232, "m0": 232, "\u6211\u4eec\u8fd8\u53ef\u4ee5\u67e5\u770b\u8fd4\u56de\u7684\u6d4b\u91cf\u5bf9\u8c61\u4e2d\u83b7\u5f97\u7684\u5404\u4e2a\u7edf\u8ba1\u6570\u636e": 232, "\u6211\u4eec\u4e00\u76f4\u5728\u6bd4\u8f83\u6211\u4eec\u7684\u4e24\u4e2a\u6279\u91cf\u70b9\u79ef\u7248\u672c\u5bf9\u540c\u4e00\u8f93\u5165\u7684\u8868\u73b0": 232, "\u5728\u5b9e\u8df5\u4e2d": 232, "\u6211\u4eec\u5e0c\u671b\u5c1d\u8bd5\u4e0d\u540c\u7684\u8f93\u5165\u7ec4\u5408\u4ee5\u53ca\u4e0d\u540c\u7684\u7ebf\u7a0b\u6570\u91cf": 232, "\u7c7b\u5e2e\u52a9\u6211\u4eec\u4ee5\u683c\u5f0f\u5316\u8868\u683c\u7684\u5f62\u5f0f\u663e\u793a\u591a\u4e2a\u6d4b\u91cf\u7ed3\u679c": 232, "\u5b83\u4f7f\u7528\u4e0a\u9762\u63cf\u8ff0\u7684\u6ce8\u91ca": 232, "\u6765\u5bf9\u8868\u683c\u8fdb\u884c\u5206\u7ec4\u548c\u7ec4\u7ec7": 232, "\u6765\u770b\u770b\u6211\u4eec\u7684\u51fd\u6570\u5728\u4e0d\u540c\u7684\u8f93\u5165\u5927\u5c0f\u548c\u7ebf\u7a0b\u6570\u91cf\u4e0b\u7684\u8868\u73b0\u5982\u4f55": 232, "274": 232, "748": 232, "432": 232, "22657": 232, "11899": 232, "609": 232, "23098": 232, "27246": 232, "267073": 232, "118823": 232, "189": 232, "2782": 232, "7471": 232, "11874": 232, "173": 232, "7264": 232, "27824": 232, "100060": 232, "121499": 232, "2773": 232, "12833": 232, "6295": 232, "27062": 232, "71804": 232, "120365": 232, "103": 232, "2804": 232, "6764": 232, "11871": 232, "6640": 232, "27592": 232, "73003": 232, "120083": 232, "\u4e0a\u9762\u7684\u7ed3\u679c\u8868\u660e": 232, "\u5bf9\u4e8e\u5728\u591a\u7ebf\u7a0b\u4e0a\u8fd0\u884c\u7684\u8f83\u5927\u5f20\u91cf": 232, "\u7684\u7248\u672c\u6548\u679c\u66f4\u597d": 232, "\u800c\u5bf9\u4e8e\u8f83\u5c0f\u548c": 232, "\u6216\u5355\u7ebf\u7a0b\u4ee3\u7801": 232, "\u53e6\u4e00\u4e2a\u7248\u672c\u6548\u679c\u66f4\u597d": 232, "\u8fd8\u63d0\u4f9b\u4e86\u7528\u4e8e\u66f4\u6539\u8868\u683c\u683c\u5f0f\u7684\u51fd\u6570": 232, "trim_significant_figur": 232, "\u548c\u7b2c8\u8282\u4e2d\u63cf\u8ff0\u7684": 232, "callgrindstat": [232, 247], "\u6a21\u5757\u5e8f\u5217\u5316": 232, "\u8fd9\u4f7f\u5f97a": 232, "b\u6d4b\u8bd5\u53d8\u5f97\u5f88\u5bb9\u6613": 232, "\u56e0\u4e3a\u60a8\u53ef\u4ee5\u4ece\u4e24\u4e2a\u72ec\u7acb\u7684\u73af\u5883\u4e2d\u6536\u96c6\u6d4b\u91cf\u7ed3\u679c": 232, "\u5c06\u5b83\u4eec\u5e8f\u5217\u5316": 232, "\u7136\u540e\u5728\u5355\u4e2a\u73af\u5883\u4e2d\u52a0\u8f7d\u4e24\u8005": 232, "timer\u751a\u81f3\u63a5\u53d7\u4e00\u4e2a": 232, "\u6784\u9020\u51fd\u6570\u53c2\u6570": 232, "\u4ee5\u4fbf\u8fd9\u79cda": 232, "b\u6d4b\u8bd5\u53ef\u4ee5\u65e0\u7f1d\u8854\u63a5": 232, "\u5047\u8bbe": 232, "\u65b9\u6cd5\u4e0d\u662f\u4e24\u4e2apython\u51fd\u6570": 232, "\u800c\u662f": 232, "\u7684\u4e24\u4e2a\u4e0d\u540c\u7248\u672c": 232, "\u4e0b\u9762\u7684\u793a\u4f8b\u6f14\u793a\u4e86\u5982\u4f55\u8fdb\u884ca": 232, "b\u6d4b\u8bd5": 232, "\u4e3a\u4e86\u7b80\u5355\u8d77\u89c1": 232, "\u6211\u4eec\u53ea\u4f7f\u7528\u4e86\u4e00\u90e8\u5206\u6570\u636e": 232, "\u5e76\u7b80\u5355\u5730\u901a\u8fc7pickle\u6765\u56de\u4f20\u7ed3\u679c": 232, "\u800c\u4e0d\u662f\u5b9e\u9645\u4f7f\u7528\u591a\u4e2a\u73af\u5883\u5e76\u5c06\u7ed3\u679c\u5199\u5165\u78c1\u76d8": 232, "ab_test_result": 232, "dot_fn": 232, "ab_result": 232, "36000": 232, "40000": 232, "\u4ec5\u4e3a\u5c55\u793a\u53ef\u4ee5\u5c06\u4e4b\u524d\u6240\u6709\u7684\u7ed3\u679c\u901a\u8fc7": 232, "\u8fdb\u884c\u56de\u4f20": 232, "round_tripped_result": 232, "\u6b63\u5982\u6211\u4eec\u5728\u4e0a\u4e00\u8282\u4e2d\u770b\u5230\u7684": 232, "\u6839\u636e\u8f93\u5165\u5f20\u91cf\u7684\u4e0d\u540c": 232, "\u6027\u80fd\u5dee\u5f02\u53ef\u80fd\u4f1a\u5f88\u5927": 232, "\u5728\u591a\u4e2a\u4e0d\u540c\u7684\u8f93\u5165\u4e0a\u8fd0\u884c\u57fa\u51c6\u6d4b\u8bd5\u662f\u4e00\u4e2a\u597d\u4e3b\u610f": 232, "\u521b\u5efa\u6240\u6709\u8fd9\u4e9b\u8f93\u5165\u5f20\u91cf\u53ef\u80fd\u4f1a\u5f88\u9ebb\u70e6": 232, "\u8fd9\u5c31\u662f": 232, "fuzzer": 232, "\u548c\u76f8\u5173\u7c7b\u7684\u7528\u6b66\u4e4b\u5730": 232, "\u8ba9\u6211\u4eec\u770b\u770b\u5982\u4f55\u4f7f\u7528": 232, "\u6765\u521b\u5efa\u4e00\u4e9b\u7528\u4e8e\u57fa\u51c6\u6d4b\u8bd5\u7684\u6d4b\u8bd5\u7528\u4f8b": 232, "fuzzedparamet": 232, "fuzzedtensor": 232, "parameteralia": 232, "\u751f\u6210\u968f\u673a\u5f20\u91cf": 232, "\u5143\u7d20\u6570\u91cf\u5728": 232, "10000000": 232, "\u5927\u5c0f": [232, 235], "k0": 232, "k1": 232, "\u5206\u5e03\u4e2d\u9009\u62e9": 232, "\u5176\u4e2d\u5e73\u5747": 232, "\u5c06\u662f\u4e0d\u8fde\u7eed\u7684": 232, "example_fuzz": 232, "minval": 232, "maxval": 232, "min_el": 232, "max_el": 232, "probability_contigu": 232, "tensor_param": 232, "discontigu": 232, "725": 232, "383": 232, "5039": 232, "1200": [232, 259], "2140": 232, "1296": 232, "41000": 232, "1598": 232, "519": 232, "763": 232, "141": 232, "1082": 232, "\u5b9a\u4e49\u81ea\u5df1\u7684": 232, "\u6709\u5f88\u5927\u7684\u7075\u6d3b\u6027": 232, "\u8fd9\u5bf9\u4e8e\u521b\u5efa\u5f3a\u5927\u7684\u8f93\u5165\u96c6\u8fdb\u884c\u57fa\u51c6\u6d4b\u8bd5\u975e\u5e38\u6709\u7528": 232, "\u4f46\u4e3a\u4e86\u8ba9\u4e8b\u60c5\u53d8\u5f97\u66f4\u7b80\u5355": 232, "\u57fa\u51c6\u6d4b\u8bd5\u6a21\u5757\u4e3a\u5e38\u89c1\u7684\u57fa\u51c6\u6d4b\u8bd5\u9700\u6c42\u63d0\u4f9b\u4e86\u4e00\u4e9b\u5185\u7f6e\u7684": 232, "\u8ba9\u6211\u4eec\u770b\u770b\u5982\u4f55\u4f7f\u7528\u5176\u4e2d\u4e00\u4e2a\u5185\u7f6e\u7684": 232, "op_fuzz": 232, "binaryopfuzz": 232, "473": 232, "12642115": 232, "8192": 232, "4800": 232, "20400": 232, "110000": 232, "400000": 232, "493": 232, "1100": [232, 247], "2440": 232, "870": 232, "2030": 232, "23600": 232, "24000": [232, 247], "62374": 232, "90000": 232, "240372": 232, "16000": 232, "40156": 232, "2670": 232, "\u4f18\u5316\u4ee3\u7801\u7684\u4e00\u4e2a\u6311\u6218\u662f\u65f6\u95f4\u7684\u53d8\u5316\u548c\u4e0d\u900f\u660e\u6027": 232, "\u6709\u8bb8\u591a\u4e0d\u786e\u5b9a\u6027\u7684\u6765\u6e90": 232, "\u4ece\u81ea\u9002\u5e94\u65f6\u949f\u901f\u5ea6\u5230\u4e0e\u5176\u4ed6\u8fdb\u7a0b\u7684\u8d44\u6e90\u4e89\u7528": 232, "\u7aef\u5230\u7aef\u65f6\u95f4\u5e76\u4e0d\u80fd\u63ed\u793a\u65f6\u95f4\u82b1\u8d39\u5728\u54ea\u91cc": 232, "\u800c\u8fd9\u6b63\u662f\u6211\u4eec\u5728\u4f18\u5316\u4ee3\u7801\u65f6\u611f\u5174\u8da3\u7684": 232, "\u4e00\u79cd\u8865\u5145\u65b9\u6cd5\u662f\u4e5f\u6536\u96c6\u6307\u4ee4\u8ba1\u6570": 232, "\u8fd9\u4e9b\u8ba1\u6570\u662f\u4e00\u79cd\u4ee3\u7406\u6307\u6807": 232, "\u5e76\u4e0d\u80fd\u6355\u83b7\u6027\u80fd\u7684\u6240\u6709\u65b9\u9762": 232, "\u4f8b\u5982\u5185\u5b58\u6216i": 232, "o\u7ed1\u5b9a\u4efb\u52a1": 232, "\u4f46\u5b83\u4eec\u786e\u5b9e\u5177\u6709\u4e00\u4e9b\u6709\u7528\u7684\u7279\u6027": 232, "\u6307\u4ee4\u8ba1\u6570\u662f\u53ef\u91cd\u590d\u7684": 232, "\u4e0d\u53d7\u73af\u5883\u53d8\u5316\u7684\u5f71\u54cd": 232, "\u5e76\u4e14\u53ef\u4ee5\u63d0\u4f9b\u5bf9\u7a0b\u5e8f\u5728\u54ea\u91cc\u82b1\u8d39\u5468\u671f\u7684\u7ec6\u7c92\u5ea6\u6d1e\u5bdf": 232, "\u4e3a\u4e86\u770b\u5230\u6307\u4ee4\u8ba1\u6570\u7684\u5b9e\u7528\u6027": 232, "\u8ba9\u6211\u4eec\u770b\u770b\u5982\u4f55\u51cf\u5c11": 232, "\u7684\u5f00\u9500": 232, "\u663e\u800c\u6613\u89c1\u7684\u89e3\u51b3\u65b9\u6848\u662f\u5c06\u5176\u79fb\u81f3": 232, "\u8fd9\u6837\u6211\u4eec\u5c31\u53ef\u4ee5\u907f\u514d\u5728": 232, "\u4e4b\u95f4\u591a\u6b21\u6765\u56de\u5207\u6362": 232, "\u6e90\u4ee3\u7801\u51e0\u4e4e\u662f\u76f8\u540c\u7684": 232, "\u4e2d\u6211\u4eec\u5fc5\u987b\u95ee\u7684\u4e00\u4e2a\u95ee\u9898\u662f": 232, "\u6211\u4eec\u662f\u901a\u8fc7\u503c\u8fd8\u662f\u5f15\u7528\u6765\u4f20\u9012\u53c2\u6570": 232, "batched_dot_src": 232, "batched_dot_mul_sum_v0": 232, "batched_dot_mul_sum_v1": 232, "\u63d0\u4f9b\u4e00\u4e2a\u5b9e\u7528\u7a0b\u5e8f\u6765": 232, "\u7f16\u8bd1": 232, "\u6e90\u4ee3\u7801\u4e3a": 232, "\u4f7f\u5f97\u6d4b\u8bd5\u6211\u4eec\u7684": 232, "\u5b9e\u73b0\u53d8\u5f97\u5f88\u5bb9\u6613": 232, "cpp_lib": 232, "extra_cflag": 232, "extra_include_path": 232, "\u9700\u8981\u77e5\u9053": 232, "\u5934\u6587\u4ef6\u7684\u4f4d\u7f6e": 232, "\u5c06\u521b\u5efa\u4e00\u4e2a\u5171\u4eab\u5bf9\u8c61": 232, "\u5e76\u52a0\u8f7d\u5230python\u4e2d": 232, "\u5f53\u6211\u4eec\u6536\u96c6\u6307\u4ee4\u8ba1\u6570\u65f6": 232, "timer\u5c06\u521b\u5efa\u4e00\u4e2a\u5b50\u8fdb\u7a0b": 232, "\u56e0\u6b64\u6211\u4eec\u9700\u8981\u91cd\u65b0\u5bfc\u5165\u5b83": 232, "\u5bf9\u4e8ec\u6269\u5c55": 232, "\u5bfc\u5165\u8fc7\u7a0b\u7565\u6709\u4e0d\u540c": 232, "\u4f46\u8fd9\u5c31\u662f\u6211\u4eec\u5728\u8fd9\u91cc\u6240\u505a\u7684": 232, "module_import_str": 232, "67631": 232, "importlib": 232, "spec_from_file_loc": 232, "module_from_spec": 232, "exec_modul": 232, "textwrap": 232, "pretty_print": 232, "machineri": 232, "t_baselin": 232, "\u8f6c\u79fb\u5230": [232, 247], "\u786e\u5b9e\u51cf\u5c11\u4e86\u5f00\u9500": 232, "\u4f46\u5f88\u96be\u5224\u65ad\u54ea\u79cd\u8c03\u7528\u7ea6\u5b9a\u66f4\u6709\u6548": 232, "\u4f7f\u7528\u5f15\u7528\u8c03\u7528": 232, "\u4f3c\u4e4e\u7a0d\u5feb\u4e00\u4e9b": 232, "\u4f46\u5728\u6d4b\u91cf\u8bef\u5dee\u8303\u56f4\u5185": 232, "\u6765\u786e\u5b9a\u54ea\u79cd\u65b9\u5f0f\u66f4\u597d": 232, "stats_v0": 232, "collect_callgrind": 232, "stats_v1": 232, "as_standard": [232, 247], "\u79fb\u9664\u4e86\u6587\u4ef6\u540d\u548c\u67d0\u4e9b\u8def\u5f84\u524d\u7f00": 232, "\u4f7f\u51fd\u6570\u7b26\u53f7\u66f4\u6613\u8bfb": 232, "\u5bf9\u6307\u4ee4\u8ba1\u6570\u8fdb\u884c\u5dee\u5206": 232, "denois": 232, "\u5219\u79fb\u9664\u4e86": 232, "\u89e3\u91ca\u5668\u4e2d\u5df2\u77e5\u5b58\u5728\u663e\u8457\u6296\u52a8\u7684\u51e0\u4e2a\u51fd\u6570": 232, "\u662f\u4e00\u4e2a\u8f6c\u6362\u51fd\u6570\u540d\u7684\u4fbf\u5229": 232, "\u5b83\u5728\u8fdb\u884c": 232, "ing": 232, "\u65f6\u5f88\u6709\u7528": 232, "\u56e0\u4e3a\u53ef\u4ee5\u589e\u52a0\u62b5\u6d88": 232, "\u540c\u65f6\u4e5f\u80fd\u63d0\u9ad8\u53ef\u8bfb\u6027": 232, "wrap_pybind_function_impl_": 232, "\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u6253\u5370\u9009\u9879\u6765\u63a7\u5236\u663e\u793a\u51fd\u6570\u7684\u591a\u5c11\u5185\u5bb9": 232, "linewidth": 232, "\u89e3\u6790\u540e": 232, "\u6307\u4ee4\u8ba1\u6570\u6e05\u695a\u5730\u8868\u660e": 232, "\u901a\u8fc7\u5f15\u7528\u4f20\u9012": 232, "\u66f4\u6709\u6548": 232, "\u56e0\u4e3a\u5b83\u8df3\u8fc7\u4e86\u4e00\u4e9b": 232, "\u4e2d\u95f4\u5f20\u91cf\u7684\u7c3f\u8bb0\u64cd\u4f5c": 232, "\u5e76\u4e14\u4e0e": 232, "\u4e5f\u66f4\u517c\u5bb9": 232, "\u8fd9\u4e0e\u6211\u4eec\u6709\u566a\u58f0\u65f6\u95f4\u89c2\u5bdf\u7ed3\u679c\u4e00\u81f4": 232, "valgrind_wrapp": [232, 247], "timer_interfac": [232, 247], "0x7fb0f06e7630": 232, "2392671": 232, "4367": 232, "rel_with_deb_info": [232, 247], "0x7fb10400d208": 232, "2378978": 232, "functioncount": [232, 247], "0x7fb1000ab358": 232, "0x000000000020d9e0": 232, "0x000000000020db10": 232, "integer_sequ": 232, "0ul": 232, "1ul": 232, "undefinedtensorimpl": 232, "reset_": 232, "5935": 232, "0x000000000022c0e0": 232, "13693": 232, "\u67e5\u770b\u5176\u4ed6\u6559\u7a0b\u7ee7\u7eed\u5b66\u4e60": 232, "changing_default_devic": 233, "\u6df1\u5ea6\u5b66\u4e60\u4f7f\u7528\u4eba\u5de5\u795e\u7ecf\u7f51\u7edc": 234, "\u8fd9\u662f\u7531\u8bb8\u591a\u4e92\u8fde\u5355\u5143\u5c42\u7ec4\u6210\u7684\u8ba1\u7b97\u7cfb\u7edf": 234, "\u901a\u8fc7\u5c06\u6570\u636e\u4f20\u9012\u5230\u8fd9\u4e9b\u4e92\u8fde\u5355\u5143": 234, "\u795e\u7ecf\u7f51\u7edc\u80fd\u591f\u5b66\u4e60\u5982\u4f55\u8fd1\u4f3c\u5c06\u8f93\u5165\u8f6c\u6362\u4e3a\u8f93\u51fa\u6240\u9700\u7684\u8ba1\u7b97": 234, "\u53ef\u4ee5\u4f7f\u7528": [234, 238, 247], "\u5305\u6784\u5efa\u795e\u7ecf\u7f51\u7edc": 234, "\u63d0\u4f9b\u4e86\u4f18\u96c5\u8bbe\u8ba1\u7684\u6a21\u5757\u548c\u7c7b\u6765\u5e2e\u52a9\u60a8\u521b\u5efa\u548c\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc": 234, "\u4e2d\u6709\u5c42": 234, "\u4ee5\u53ca\u4e00\u4e2a\u8fd4\u56de": 234, "\u6765\u5b9a\u4e49\u4e00\u4e2a\u7528\u4e8e": 234, "hhttp": 234, "\u7684\u795e\u7ecf\u7f51\u7edc": 234, "\u5982\u679c\u8fd8\u6ca1\u6709\u5b89\u88c5": [234, 241, 242, 243, 250], "\u7684\u8bdd": 234, "\u6211\u4eec\u9700\u8981\u5148\u5b89\u88c5\u5b83": [234, 243, 244, 249, 250], "\u5bfc\u5165\u52a0\u8f7d\u6570\u636e\u6240\u9700\u7684\u6240\u6709\u5fc5\u8981\u5e93": [234, 237, 241, 242, 243, 244, 249, 250, 251], "\u53ca\u5176\u5b50\u6a21\u5757": [234, 241, 242, 243, 244, 249, 250], "\u6211\u4eec\u7684\u7f51\u7edc\u5c06\u8bc6\u522b\u56fe\u50cf": 234, "\u6211\u4eec\u5c06\u4f7f\u7528pytorch\u5185\u7f6e\u7684\u5377\u79ef\u8fc7\u7a0b": 234, "\u5377\u79ef\u5c06\u6bcf\u4e2a\u56fe\u50cf\u5143\u7d20\u4e0e\u5176\u5c40\u90e8\u90bb\u5c45\u76f8\u52a0": 234, "\u5e76\u7531\u4e00\u4e2a\u5c0f\u77e9\u9635": 234, "\u52a0\u6743": 234, "\u8be5\u5185\u6838\u53ef\u5e2e\u52a9\u6211\u4eec\u4ece\u8f93\u5165\u56fe\u50cf\u4e2d\u63d0\u53d6\u67d0\u4e9b\u7279\u5f81": 234, "\u5982\u8fb9\u7f18\u68c0\u6d4b": 234, "\u9510\u5229\u5ea6": 234, "\u6a21\u7cca\u5ea6\u7b49": 234, "\u5b9a\u4e49\u6a21\u578b\u7684": 234, "\u7c7b\u6709\u4e24\u4e2a\u8981\u6c42": 234, "\u7b2c\u4e00\u662f\u7f16\u5199\u4e00\u4e2a\u5f15\u7528": 234, "\u5728\u8fd9\u4e2a\u51fd\u6570\u4e2d": 234, "\u4f60\u5b9a\u4e49\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u5168\u8fde\u63a5\u5c42": 234, "\u4f7f\u7528\u5377\u79ef": 234, "\u6211\u4eec\u5c06\u5b9a\u4e49\u6211\u4eec\u7684\u6a21\u578b\u4ee5\u63a5\u53d71\u4e2a\u8f93\u5165\u56fe\u50cf\u901a\u9053": 234, "\u5e76\u8f93\u51fa\u4e0e\u6211\u4eec\u7684\u76ee\u6807\u76f8\u5339\u914d\u768410\u4e2a\u6807\u7b7e": 234, "\u8868\u793a0\u52309\u7684\u6570\u5b57": 234, "\u8fd9\u4e2a\u7b97\u6cd5\u7531\u4f60\u81ea\u5df1\u521b\u5efa": 234, "\u6211\u4eec\u5c06\u9075\u5faa\u6807\u51c6\u7684mnist\u7b97\u6cd5": 234, "\u7b2c\u4e00\u4e2a2d\u5377\u79ef\u5c42": 234, "\u63a5\u53d71\u4e2a\u8f93\u5165\u901a\u9053": 234, "\u8f93\u51fa32\u4e2a\u5377\u79ef\u7279\u5f81": 234, "\u4f7f\u75283x3\u7684\u65b9\u5f62\u6838": 234, "\u7b2c\u4e8c\u4e2a2d\u5377\u79ef\u5c42": 234, "\u63a5\u53d732\u4e2a\u8f93\u5165\u5c42": 234, "\u8f93\u51fa64\u4e2a\u5377\u79ef\u7279\u5f81": 234, "\u8bbe\u8ba1\u4e3a\u786e\u4fdd\u76f8\u90bb\u50cf\u7d20\u8981\u4e48\u5168\u4e3a0": 234, "\u8981\u4e48\u5168\u4e3a\u6fc0\u6d3b": 234, "\u5177\u6709\u4e00\u5b9a\u8f93\u5165\u6982\u7387": 234, "\u7b2c\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42": 234, "\u7b2c\u4e8c\u4e2a\u5168\u8fde\u63a5\u5c42": 234, "\u8f93\u51fa\u6211\u4eec\u768410\u4e2a\u6807\u7b7e": 234, "my_nn": 234, "\u6211\u4eec\u5df2\u7ecf\u5b8c\u6210\u4e86\u795e\u7ecf\u7f51\u7edc\u7684\u5b9a\u4e49": 234, "\u73b0\u5728\u6211\u4eec\u5fc5\u987b\u5b9a\u4e49\u6570\u636e\u5982\u4f55\u901a\u8fc7\u5b83": 234, "\u5f53\u4f60\u4f7f\u7528pytorch\u6784\u5efa\u6a21\u578b\u65f6": 234, "\u4f60\u53ea\u9700\u8981\u5b9a\u4e49": 234, "\u5b83\u5c06\u6570\u636e\u4f20\u9012\u5230\u8ba1\u7b97\u56fe": 234, "\u5373\u6211\u4eec\u7684\u795e\u7ecf\u7f51\u7edc": 234, "\u8fd9\u5c06\u4ee3\u8868\u6211\u4eec\u7684\u524d\u5411\u7b97\u6cd5": 234, "\u51fd\u6570\u4e2d\u4f7f\u7528\u4efb\u4f55\u5f20\u91cf\u64cd\u4f5c": 234, "x\u8868\u793a\u6211\u4eec\u7684\u6570\u636e": 234, "\u5c06\u6570\u636e\u4f20\u9012\u7ed9conv1": 234, "\u5bf9x\u4f7f\u7528\u6574\u6d41\u7ebf\u6027\u6fc0\u6d3b\u51fd\u6570": 234, "\u5bf9x\u8fd0\u884c\u6700\u5927\u6c60\u5316": 234, "\u5c06\u6570\u636e\u4f20\u9012\u7ed9dropout1": 234, "\u5c55\u5e73x": 234, "start_dim": 234, "\u5c06\u6570\u636e\u4f20\u9012\u7ed9": 234, "\u5bf9x\u5e94\u7528softmax": 234, "\u4e3a\u4e86\u786e\u4fdd\u6211\u4eec\u5f97\u5230\u671f\u671b\u7684\u8f93\u51fa": 234, "\u8ba9\u6211\u4eec\u901a\u8fc7\u4e00\u4e9b\u968f\u673a\u6570\u636e\u6d4b\u8bd5\u6211\u4eec\u7684\u6a21\u578b": 234, "\u7b49\u540c\u4e8e\u4e00\u4e2a\u968f\u673a\u768428x28\u56fe\u50cf": 234, "random_data": 234, "\u8fd9\u4e2a\u7ed3\u679c\u5f20\u91cf\u4e2d\u7684\u6bcf\u4e2a\u6570\u5b57\u90fd\u7b49\u540c\u4e8e\u968f\u673a\u5f20\u91cf\u6240\u5173\u8054\u7684\u6807\u7b7e\u7684\u9884\u6d4b": 234, "\u795d\u8d3a\u4f60": [234, 242, 243, 250, 251], "\u4f60\u5df2\u7ecf\u6210\u529f\u5730\u5728pytorch\u4e2d\u5b9a\u4e49\u4e86\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc": 234, "\u67e5\u770b\u8fd9\u4e9b\u5176\u4ed6\u6559\u7a0b\u4ee5\u7ee7\u7eed\u5b66\u4e60": [234, 243], "\u662f\u4ec0\u4e48": [234, 236, 237, 252, 258], "\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u7528\u4e8e\u63a8\u7406": 234, "defining_a_neural_network": [234, 236], "\u60a8\u5c06\u770b\u5230\u5982\u4f55\u5229\u7528\u52a8\u6001\u91cf\u5316\u6765\u52a0\u901f": 235, "\u98ce\u683c\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u63a8\u7406": 235, "\u8fd9\u53ef\u4ee5\u51cf\u5c0f\u6a21\u578b\u6743\u91cd\u7684\u5927\u5c0f": 235, "\u5e76\u52a0\u5feb\u6a21\u578b\u6267\u884c\u901f\u5ea6": 235, "\u5728\u8bbe\u8ba1\u795e\u7ecf\u7f51\u7edc\u65f6": 235, "\u53ef\u4ee5\u505a\u51fa\u591a\u79cd\u6743\u8861": 235, "\u5728\u6a21\u578b\u5f00\u53d1\u548c\u8bad\u7ec3\u671f\u95f4": 235, "\u60a8\u53ef\u4ee5\u6539\u53d8\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u5c42\u6570\u548c\u53c2\u6570\u6570\u91cf": 235, "\u5728\u6a21\u578b\u5927\u5c0f\u548c": 235, "\u6216\u6a21\u578b\u5ef6\u8fdf\u6216\u541e\u5410\u91cf\u4e0e\u7cbe\u5ea6\u4e4b\u95f4\u8fdb\u884c\u6743\u8861": 235, "\u7531\u4e8e\u60a8\u9700\u8981\u91cd\u590d\u6a21\u578b\u8bad\u7ec3\u8fc7\u7a0b": 235, "\u56e0\u6b64\u8fd9\u79cd\u6539\u53d8\u9700\u8981\u5927\u91cf\u7684\u65f6\u95f4\u548c\u8ba1\u7b97\u8d44\u6e90": 235, "\u91cf\u5316\u4e3a\u60a8\u63d0\u4f9b\u4e86\u4e00\u79cd\u5728\u5df2\u77e5\u6a21\u578b\u4e0a\u5728\u6027\u80fd\u548c\u6a21\u578b\u7cbe\u5ea6\u4e4b\u95f4\u8fdb\u884c\u6743\u8861\u7684\u65b9\u5f0f": 235, "\u800c\u65e0\u9700\u91cd\u65b0\u8bad\u7ec3\u6a21\u578b": 235, "\u60a8\u53ef\u4ee5\u5728\u5355\u4e2a\u4f1a\u8bdd\u4e2d\u5c1d\u8bd5\u4e00\u4e0b": 235, "\u60a8\u80af\u5b9a\u4f1a\u663e\u8457\u51cf\u5c0f\u6a21\u578b\u5927\u5c0f": 235, "\u5e76\u53ef\u80fd\u5728\u4e0d\u4f1a\u635f\u5931\u592a\u591a\u7cbe\u5ea6\u7684\u60c5\u51b5\u4e0b\u83b7\u5f97\u663e\u8457\u7684\u5ef6\u8fdf\u51cf\u5c11": 235, "\u91cf\u5316\u7f51\u7edc\u610f\u5473\u7740\u5c06\u5176\u8f6c\u6362\u4e3a\u4f7f\u7528\u8f83\u4f4e\u7cbe\u5ea6\u7684\u6574\u6570\u8868\u793a\u5f62\u5f0f\u6765\u8868\u793a\u6743\u91cd\u548c": 235, "\u6216\u6fc0\u6d3b": 235, "\u8fd9\u53ef\u4ee5\u51cf\u5c0f\u6a21\u578b\u5927\u5c0f": 235, "\u5e76\u5141\u8bb8\u5728": 235, "\u4e0a\u4f7f\u7528\u66f4\u9ad8\u541e\u5410\u91cf\u7684\u6570\u5b66\u8fd0\u7b97": 235, "\u4ece\u6d6e\u70b9\u6570\u8f6c\u6362\u4e3a\u6574\u6570\u503c\u65f6": 235, "\u60a8\u5b9e\u9645\u4e0a\u662f\u5c06\u6d6e\u70b9\u6570\u4e58\u4ee5\u67d0\u4e2a\u6bd4\u4f8b\u56e0\u5b50": 235, "\u7136\u540e\u5c06\u7ed3\u679c\u820d\u5165\u4e3a\u6574\u6570": 235, "\u4e0d\u540c\u7684\u91cf\u5316\u65b9\u6cd5\u5728\u786e\u5b9a\u8be5\u6bd4\u4f8b\u56e0\u5b50\u7684\u65b9\u5f0f\u4e0a\u6709\u6240\u4e0d\u540c": 235, "\u8fd9\u91cc\u4ecb\u7ecd\u7684\u52a8\u6001\u91cf\u5316\u7684\u5173\u952e\u601d\u60f3\u662f": 235, "\u6211\u4eec\u5c06\u6839\u636e\u8fd0\u884c\u65f6\u89c2\u5bdf\u5230\u7684\u6570\u636e\u8303\u56f4\u52a8\u6001\u786e\u5b9a\u6fc0\u6d3b\u7684\u6bd4\u4f8b\u56e0\u5b50": 235, "\u8fd9\u53ef\u786e\u4fdd\u6bd4\u4f8b\u56e0\u5b50\u88ab": 235, "\u8c03\u6574": 235, "\u4e3a\u5c3d\u53ef\u80fd\u4fdd\u7559\u6bcf\u4e2a\u89c2\u5bdf\u5230\u7684\u6570\u636e\u96c6\u7684\u4fe1\u53f7": 235, "\u6a21\u578b\u53c2\u6570\u5728\u6a21\u578b\u8f6c\u6362\u671f\u95f4\u662f\u5df2\u77e5\u7684": 235, "\u5b83\u4eec\u4f1a\u63d0\u524d\u8f6c\u6362\u5e76\u4ee5": 235, "\u5f62\u5f0f\u5b58\u50a8": 235, "\u91cf\u5316\u6a21\u578b\u4e2d\u7684\u7b97\u672f\u8fd0\u7b97\u4f7f\u7528\u77e2\u91cf\u5316\u7684": 235, "\u6307\u4ee4\u5b8c\u6210": 235, "\u7d2f\u52a0\u901a\u5e38\u4f7f\u7528": 235, "\u6765\u907f\u514d\u6ea2\u51fa": 235, "\u5982\u679c\u4e0b\u4e00\u5c42\u662f\u91cf\u5316\u7684": 235, "\u5219\u5c06\u6b64\u8f83\u9ad8\u7cbe\u5ea6\u503c\u7f29\u653e\u56de": 235, "\u5982\u679c\u662f\u8f93\u51fa": 235, "\u5219\u5c06\u5176\u8f6c\u6362\u4e3a": 235, "\u52a8\u6001\u91cf\u5316\u76f8\u5bf9\u6765\u8bf4\u6ca1\u6709\u592a\u591a\u9700\u8981\u8c03\u6574\u7684\u53c2\u6570": 235, "\u56e0\u6b64\u975e\u5e38\u9002\u5408\u4f5c\u4e3a\u5c06": 235, "\u6a21\u578b\u8f6c\u6362\u4e3a\u90e8\u7f72\u7684\u6807\u51c6\u90e8\u5206\u6dfb\u52a0\u5230\u751f\u4ea7\u7ba1\u9053\u4e2d": 235, "\u672c\u793a\u4f8b\u4e2d\u91c7\u7528\u7684\u65b9\u6cd5\u7684\u5c40\u9650\u6027": 235, "\u672c\u793a\u4f8b\u63d0\u4f9b\u4e86\u5bf9": 235, "\u4e2d\u52a8\u6001\u91cf\u5316\u529f\u80fd\u7684\u5feb\u901f\u4ecb\u7ecd": 235, "\u4ee5\u53ca\u4f7f\u7528\u5b83\u7684\u5de5\u4f5c\u6d41\u7a0b": 235, "\u6211\u4eec\u7684\u91cd\u70b9\u662f\u89e3\u91ca\u7528\u4e8e\u8f6c\u6362\u6a21\u578b\u7684\u7279\u5b9a\u51fd\u6570": 235, "\u4e3a\u4e86\u7b80\u6d01\u548c\u6e05\u6670": 235, "\u6211\u4eec\u505a\u51fa\u4e86\u4e00\u4e9b\u91cd\u5927\u7b80\u5316": 235, "\u60a8\u5c06\u4ece\u4e00\u4e2a\u6700\u5c0f\u7684": 235, "\u7f51\u7edc\u5f00\u59cb": 235, "\u60a8\u53ea\u9700\u7528\u968f\u673a\u9690\u85cf\u72b6\u6001\u521d\u59cb\u5316\u7f51\u7edc": 235, "\u60a8\u5c06\u4f7f\u7528\u968f\u673a\u8f93\u5165\u6765\u6d4b\u8bd5\u7f51\u7edc": 235, "\u60a8\u4e0d\u4f1a\u5728\u672c\u6559\u7a0b\u4e2d\u8bad\u7ec3\u7f51\u7edc": 235, "\u60a8\u5c06\u770b\u5230": 235, "\u4e0e\u6211\u4eec\u5f00\u59cb\u65f6\u7684\u6d6e\u70b9\u7f51\u7edc\u76f8\u6bd4": 235, "\u91cf\u5316\u540e\u7684\u7f51\u7edc\u66f4\u5c0f\u4e14\u8fd0\u884c\u901f\u5ea6\u66f4\u5feb": 235, "\u91cf\u5316\u7f51\u7edc\u4ea7\u751f\u7684\u8f93\u51fa\u5f20\u91cf\u503c\u4e0e": 235, "\u7f51\u7edc\u8f93\u51fa\u7684\u503c\u5728\u540c\u4e00\u6570\u91cf\u7ea7": 235, "\u4f46\u6211\u4eec\u5e76\u672a\u5728\u8fd9\u91cc\u5c55\u793a\u8be5\u6280\u672f\u5728\u7ecf\u8fc7\u8bad\u7ec3\u7684": 235, "\u4e0a\u80fd\u591f\u4fdd\u7559\u8f83\u9ad8\u6a21\u578b\u7cbe\u5ea6\u7684\u60c5\u51b5": 235, "\u60a8\u5c06\u4e86\u89e3\u5982\u4f55\u8fdb\u884c\u52a8\u6001\u91cf\u5316": 235, "\u5e76\u80fd\u591f\u770b\u5230\u5185\u5b58\u4f7f\u7528\u548c\u5ef6\u8fdf\u65f6\u95f4\u7684\u6f5c\u5728\u51cf\u5c0f": 235, "\u5173\u4e8e\u8be5\u6280\u672f\u5728\u7ecf\u8fc7\u8bad\u7ec3\u7684": 235, "\u4e0a\u80fd\u591f\u4fdd\u7559\u8f83\u9ad8\u6a21\u578b\u7cbe\u5ea6\u7684\u6f14\u793a": 235, "\u5c06\u7559\u5f85\u66f4\u9ad8\u7ea7\u7684\u6559\u7a0b": 235, "\u5982\u679c\u60a8\u60f3\u76f4\u63a5\u8fdb\u5165\u66f4\u4e25\u683c\u7684\u5904\u7406": 235, "\u8bf7\u7ee7\u7eed\u5b66\u4e60": 235, "\u9ad8\u7ea7\u52a8\u6001\u91cf\u5316\u6559\u7a0b": 235, "\u672c\u793a\u4f8b\u5305\u542b": 235, "\u4e2a\u6b65\u9aa4": 235, "\u60a8\u5b9a\u4e49\u4e00\u4e2a\u975e\u5e38\u7b80\u5355\u7684": 235, "\u5bfc\u5165\u6a21\u5757": 235, "\u5e76\u5efa\u7acb\u4e00\u4e9b\u968f\u673a\u8f93\u5165\u5f20\u91cf": 235, "\u60a8\u5b9e\u4f8b\u5316\u4e00\u4e2a\u6d6e\u70b9\u6a21\u578b": 235, "\u7136\u540e\u521b\u5efa\u5176\u91cf\u5316\u7248\u672c": 235, "\u60a8\u663e\u793a\u6a21\u578b\u5927\u5c0f\u53d8\u5c0f\u4e86": 235, "\u60a8\u8fd0\u884c\u4e24\u4e2a\u6a21\u578b\u5e76\u6bd4\u8f83\u6a21\u578b\u8fd0\u884c\u65f6\u95f4": 235, "\u5ef6\u8fdf": 235, "\u60a8\u8fd0\u884c\u4e24\u4e2a\u6a21\u578b\u5e76\u6bd4\u8f83\u8f93\u51fa": 235, "\u8fd9\u662f\u4e00\u6bb5\u76f4\u63a5\u7684\u4ee3\u7801": 235, "\u7528\u4e8e\u4e3a\u672c\u793a\u4f8b\u7684\u5176\u4f59\u90e8\u5206\u505a\u51c6\u5907": 235, "\u6211\u4eec\u5728\u8fd9\u91cc\u5bfc\u5165\u7684\u552f\u4e00\u6a21\u5757\u662f": 235, "\u7684\u91cf\u5316\u7b97\u5b50\u548c\u8f6c\u6362\u51fd\u6570": 235, "\u6211\u4eec\u8fd8\u5b9a\u4e49\u4e86\u4e00\u4e2a\u975e\u5e38\u7b80\u5355\u7684": 235, "\u5e76\u8bbe\u7f6e\u4e86\u4e00\u4e9b\u8f93\u5165": 235, "\u5bfc\u5165\u672c\u793a\u4f8b\u4e2d\u4f7f\u7528\u7684\u6a21\u5757": 235, "\u4e3a\u6f14\u793a\u76ee\u7684\u5b9a\u4e49\u4e00\u4e2a\u975e\u5e38\u7b80\u5355\u7684": 235, "\u6211\u4eec\u53ea\u662f\u5305\u88c5\u4e86": 235, "\u4e00\u5c42": 235, "\u6ca1\u6709\u9884\u5904\u7406\u6216\u540e\u5904\u7406": 235, "\u53d7\u5230\u4ee5\u4e0b\u6559\u7a0b\u7684\u542f\u53d1": 235, "\u5e8f\u5217\u6a21\u578b\u548c\u957f\u77ed\u671f\u8bb0\u5fc6\u7f51\u7edc\u6559\u7a0b": 235, "\u52a8\u6001\u91cf\u5316\u6559\u7a0b": 235, "lstm_for_demonstr": 235, "\u57fa\u672c\u7684\u957f\u77ed\u671f\u8bb0\u5fc6\u98ce\u683c\u6a21\u578b": 235, "\u53ea\u662f\u5305\u88c5\u4e86": 235, "\u4e0d\u5e94\u7528\u4e8e\u9664\u6f14\u793a\u4e4b\u5916\u7684\u4efb\u4f55\u5176\u4ed6\u7528\u9014": 235, "out_dim": 235, "29592": 235, "\u8bbe\u7f6e\u79cd\u5b50\u4ee5\u83b7\u5f97\u53ef\u91cd\u590d\u7ed3\u679c": 235, "\u5f62\u72b6\u53c2\u6570": 235, "model_dimens": 235, "sequence_length": 235, "lstm_depth": 235, "\u968f\u673a\u8f93\u5165\u6570\u636e": 235, "\u5b9e\u9645\u4e0a\u662f\u521d\u59cb\u9690\u85cf\u72b6\u6001\u548c\u521d\u59cb\u7ec6\u80de\u72b6\u6001\u7684\u5143\u7ec4": 235, "\u73b0\u5728\u6211\u4eec\u6765\u6267\u884c\u6709\u8da3\u7684\u90e8\u5206": 235, "\u6211\u4eec\u521b\u5efa\u4e00\u4e2a\u540d\u4e3a": 235, "float_lstm": 235, "\u7684\u6a21\u578b\u5b9e\u4f8b": 235, "\u7136\u540e\u6211\u4eec\u5c06\u5bf9\u5176\u8fdb\u884c\u91cf\u5316": 235, "\u5b83\u63a5\u53d7\u6a21\u578b": 235, "\u6211\u4eec\u5e0c\u671b\u91cf\u5316\u7684\u5b50\u6a21\u5757\u5217\u8868": 235, "\u5982\u679c\u5b58\u5728": 235, "\u4ee5\u53ca\u76ee\u6807\u6570\u636e\u7c7b\u578b": 235, "\u6b64\u51fd\u6570\u8fd4\u56de\u539f\u59cb\u6a21\u578b\u7684\u91cf\u5316\u7248\u672c": 235, "\u4f5c\u4e3a\u4e00\u4e2a\u65b0\u6a21\u5757": 235, "\u5c31\u8fd9\u4e48\u7b80\u5355": 235, "\u8fd9\u662f\u6211\u4eec\u7684\u6d6e\u70b9\u5b9e\u4f8b": 235, "\u8fd9\u662f\u6267\u884c\u91cf\u5316\u7684\u8c03\u7528": 235, "quantized_lstm": 235, "\u663e\u793a\u6240\u505a\u7684\u66f4\u6539": 235, "\u8fd9\u662f\u8be5\u6a21\u5757\u7684\u6d6e\u70b9\u7248\u672c": 235, "\u73b0\u5728\u662f\u91cf\u5316\u7248\u672c": 235, "\u6211\u4eec\u5df2\u7ecf\u91cf\u5316\u4e86\u6a21\u578b": 235, "\u8fd9\u7ed9\u6211\u4eec\u5e26\u6765\u4e86\u4ec0\u4e48\u597d\u5904": 235, "\u597d\u5904\u4e4b\u4e00\u662f\u6211\u4eec\u7528": 235, "\u548c\u4e00\u4e9b\u8bb0\u5f55\u7684\u6bd4\u4f8b\u56e0\u5b50": 235, "\u66ff\u6362\u4e86": 235, "\u6a21\u578b\u53c2\u6570": 235, "\u8fd9\u610f\u5473\u7740\u5b58\u50a8\u548c\u79fb\u52a8\u6570\u636e\u7684\u5927\u5c0f\u51cf\u5c0f\u4e86\u7ea6": 235, "\u4f7f\u7528\u9ed8\u8ba4\u503c\u65f6": 235, "\u4e0b\u9762\u663e\u793a\u7684\u51cf\u5c0f\u91cf\u5c06\u5c0f\u4e8e": 235, "\u4f46\u5982\u679c\u60a8\u5c06\u6a21\u578b\u5927\u5c0f\u589e\u52a0\u5230\u66f4\u5927\u503c": 235, "\u4f8b\u5982\u5c06": 235, "\u968f\u7740\u5b58\u50a8\u7684\u6a21\u578b\u5927\u5c0f\u8d8a\u6765\u8d8a\u591a\u5730\u7531\u53c2\u6570\u503c\u4e3b\u5bfc": 235, "\u51cf\u5c0f\u91cf\u5c06\u8d8b\u8fd1\u4e8e": 235, "\u500d": 235, "kb": [235, 239], "\u6bd4\u8f83\u5927\u5c0f": 235, "\u500d\u66f4\u5c0f": 235, "\u7b2c\u4e8c\u4e2a\u597d\u5904\u662f\u91cf\u5316\u6a21\u578b\u901a\u5e38\u4f1a\u8fd0\u884c\u5f97\u66f4\u5feb": 235, "\u8fd9\u662f\u7531\u4e8e\u591a\u79cd\u6548\u679c\u7684\u7ec4\u5408": 235, "\u81f3\u5c11\u5305\u62ec": 235, "\u51cf\u5c11\u4e86\u79fb\u52a8\u53c2\u6570\u6570\u636e\u6240\u82b1\u8d39\u7684\u65f6\u95f4": 235, "\u64cd\u4f5c\u66f4\u5feb": 235, "\u8fd9\u4e2a\u8d85\u7ea7\u7b80\u5355\u7684\u7f51\u7edc\u7684\u91cf\u5316\u7248\u672c\u8fd0\u884c\u901f\u5ea6\u66f4\u5feb": 235, "\u5bf9\u4e8e\u66f4\u590d\u6742\u7684\u7f51\u7edc\u901a\u5e38\u4e5f\u662f\u5982\u6b64": 235, "\u4f46\u6b63\u5982\u4ed6\u4eec\u6240\u8bf4": 235, "\u60a8\u7684\u91cc\u7a0b\u53ef\u80fd\u4f1a\u6709\u6240\u4e0d\u540c": 235, "\u8fd9\u53d6\u51b3\u4e8e\u8bb8\u591a\u56e0\u7d20": 235, "\u5305\u62ec\u6a21\u578b\u7684\u7ed3\u6784\u548c\u60a8\u8fd0\u884c\u7684\u786c\u4ef6": 235, "\u6bd4\u8f83\u6027\u80fd": 235, "\u6d6e\u70b9": 235, "\u6211\u4eec\u4e0d\u4f1a\u5728\u8fd9\u91cc\u4ed4\u7ec6\u67e5\u770b\u7cbe\u5ea6": 235, "\u56e0\u4e3a\u6211\u4eec\u4f7f\u7528\u7684\u662f\u968f\u673a\u521d\u59cb\u5316\u7684\u7f51\u7edc": 235, "\u800c\u4e0d\u662f\u7ecf\u8fc7\u6b63\u786e\u8bad\u7ec3\u7684\u7f51\u7edc": 235, "\u6211\u8ba4\u4e3a\u503c\u5f97\u5feb\u901f\u5c55\u793a\u4e00\u4e0b\u91cf\u5316\u7f51\u7edc\u786e\u5b9e\u4ea7\u751f\u4e86\u4e0e\u539f\u59cb\u7f51\u7edc": 235, "\u540c\u4e00\u6570\u91cf\u7ea7": 235, "\u7684\u8f93\u51fa\u5f20\u91cf\u503c": 235, "\u6709\u5173\u66f4\u8be6\u7ec6\u7684\u5206\u6790": 235, "\u8bf7\u53c2\u9605\u672c\u793a\u4f8b\u7ed3\u5c3e\u5904\u5f15\u7528\u7684\u66f4\u9ad8\u7ea7\u6559\u7a0b": 235, "\u8fd0\u884c\u6d6e\u70b9\u6a21\u578b": 235, "mag1": 235, "\u6a21\u578b\u4e2d\u8f93\u51fa\u5f20\u91cf\u503c\u7684\u7edd\u5bf9\u503c\u5747\u503c\u4e3a": 235, "\u8fd0\u884c\u91cf\u5316\u6a21\u578b": 235, "hidden2": 235, "mag2": 235, "\u6bd4\u8f83\u5b83\u4eec": 235, "mag3": 235, "\u8f93\u51fa\u5f20\u91cf\u4e4b\u95f4\u5dee\u503c\u7684\u7edd\u5bf9\u503c\u5747\u503c\u4e3a": 235, "\u6216\u5360": 235, "\u767e\u5206\u6bd4": 235, "\u6211\u4eec\u5df2\u7ecf\u89e3\u91ca\u4e86\u4ec0\u4e48\u662f\u52a8\u6001\u91cf\u5316": 235, "\u5b83\u5e26\u6765\u4e86\u4ec0\u4e48\u597d\u5904": 235, "\u60a8\u5df2\u7ecf\u4f7f\u7528": 235, "\u51fd\u6570\u5feb\u901f\u91cf\u5316\u4e86\u4e00\u4e2a\u7b80\u5355\u7684": 235, "\u8fd9\u662f\u5bf9\u8be5\u6750\u6599\u7684\u5feb\u901f\u548c\u9ad8\u7ea7\u5904\u7406": 235, "\u8981\u4e86\u89e3\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f": 235, "\u8bcd\u8bed\u8a00\u6a21\u578b\u6559\u7a0b": 235, "\u8bcd\u8bed\u8a00\u6a21\u578b": 235, "\u91cf\u5316\u4ecb\u7ecd": 235, "dynamic_quant": [235, 236], "loading_data_recip": [236, 237], "what_is_state_dict": [236, 250], "saving_and_loading_models_for_infer": [236, 243], "custom_dataset_transforms_load": 236, "save_load_across_devic": [236, 241], "saving_and_loading_a_general_checkpoint": [236, 242], "saving_multiple_models_in_one_fil": [236, 244], "warmstarting_model_using_parameters_from_a_different_model": [236, 249], "zeroing_out_gradi": [236, 251], "mobile_perf": 236, "\u5982\u4f55\u5728pytorch\u4e2d\u4f7f\u7528tensorboard": 236, "\u6027\u80fd\u8c03\u4f18\u6307\u5357": 236, "\u5728pytorch\u4e2d\u63a8\u7406\u5f62\u72b6": 236, "\u4f7f\u7528\u4e0d\u540c\u6a21\u578b\u7684\u53c2\u6570\u5bf9\u6a21\u578b\u8fdb\u884c\u70ed\u542f\u52a8": [236, 252], "\u4fdd\u5b58\u548c\u52a0\u8f7d\u901a\u7528\u68c0\u67e5\u70b9": [236, 252], "\u4e2d\u8de8\u8bbe\u5907\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": 236, "\u521b\u5efa\u795e\u7ecf\u7f51\u7edc": [236, 252], "\u5728\u4e00\u4e2a\u6587\u4ef6\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u6a21\u578b": [236, 252], "timer\u5feb\u901f\u5165\u95e8": 236, "\u8fdb\u884c\u6a21\u578b\u53ef\u89e3\u91ca\u6027": [236, 252], "\u52a8\u6001\u91cf\u5316": [236, 252], "sphx_glr_recipes_recipes_zeroing_out_gradi": 236, "\u4e2d\u6e05\u96f6\u68af\u5ea6": [236, 251], "\u4ece\u68c0\u67e5\u70b9\u52a0\u8f7d": [236, 252], "\u7684\u6280\u5de7": [236, 252], "\u4e2d\u4e3a": 236, "\u548c\u5f20\u91cf\u5b50\u7c7b\u63d0\u4f9b\u6269\u5c55\u70b9": 236, "\u81ea\u52a8\u6df7\u5408\u7cbe\u5ea6": [236, 252], "\u63d0\u4f9b\u4e86\u5e7f\u6cdb\u7684\u795e\u7ecf\u7f51\u7edc\u6784\u5efa\u6a21\u5757": 237, "\u5e76\u62e5\u6709\u7b80\u5355": 237, "\u76f4\u89c2\u4e14\u7a33\u5b9a\u7684": 237, "pytorch\u5305\u542b\u7528\u4e8e\u51c6\u5907\u548c\u52a0\u8f7d\u5e38\u89c1\u6570\u636e\u96c6\u7684\u5de5\u5177\u5305": 237, "\u4e3a\u8bad\u7ec3\u6a21\u578b\u63d0\u4f9b\u6570\u636e": 237, "\u6570\u636e\u52a0\u8f7d\u5de5\u5177\u7684\u6838\u5fc3\u7c7b\u4e3a": 237, "\u5b83\u8868\u793a\u6570\u636e\u96c6\u4e0a\u7684\u4e00\u4e2a": 237, "\u53ef\u8fed\u4ee3\u5bf9\u8c61": 237, "\u63d0\u4f9b\u4e86\u5185\u7f6e\u7684\u9ad8\u8d28\u91cf\u6570\u636e\u96c6": 237, "\u4f7f\u7528\u8fd9\u4e9b\u6570\u636e\u96c6\u53ef\u901a\u8fc7": 237, "\u672a\u6765\u4f1a\u6301\u7eed\u65b0\u589e": 237, "yesno": 237, "\u6211\u4eec\u5c06\u6f14\u793a\u5982\u4f55\u6709\u6548\u5730\u5c06\u6570\u636e\u4ece": 237, "\u52a0\u8f7d\u5230": 237, "\u6211\u4eec\u9700\u8981\u5b89\u88c5": 237, "\u4ee5\u8bbf\u95ee\u8be5\u6570\u636e\u96c6": 237, "\u5982\u679c\u5728googl": 237, "\u8bf7\u53d6\u6d88\u6ce8\u91ca\u4ee5\u4e0b\u884c": 237, "\u6839\u636e\u4f7f\u7528\u7684\u5185\u7f6e\u6570\u636e\u96c6": 237, "\u60a8\u8fd8\u53ef\u4ee5\u5b89\u88c5\u5e76\u5bfc\u5165": 237, "\u6570\u636e\u96c6\u5305\u542b\u4e00\u4e2a\u4eba\u8bf4\u5e0c\u4f2f\u6765\u8bed": 237, "\u5426": 237, "\u768460\u4e2a\u5f55\u97f3": 237, "\u6bcf\u4e2a\u5f55\u97f3\u957f\u5ea6\u4e3a8\u4e2a\u5355\u8bcd": 237, "\u521b\u5efa\u4e86\u4e00\u4e2a": 237, "openslr": 237, "waves_yesno": 237, "folder_in_arch": 237, "\u6570\u636e\u96c6\u4e2d\u7684\u6bcf\u4e2a\u6761\u76ee\u90fd\u662f\u4e00\u4e2a\u5143\u7ec4": 237, "\u5f62\u5f0f\u4e3a": 237, "\u6ce2\u5f62": 237, "\u91c7\u6837\u7387": 237, "\u60a8\u5fc5\u987b\u4e3a": 237, "\u6570\u636e\u96c6\u8bbe\u7f6e\u4e00\u4e2a": 237, "\u7528\u4e8e\u5b58\u653e\u8bad\u7ec3\u548c\u6d4b\u8bd5\u6570\u636e\u96c6": 237, "\u5176\u4ed6\u53c2\u6570\u662f\u53ef\u9009\u7684": 237, "\u663e\u793a\u4e86\u5b83\u4eec\u7684\u9ed8\u8ba4\u503c": 237, "\u4ee5\u4e0b\u662f\u5176\u4ed6\u53c2\u6570\u7684\u4e00\u4e9b\u6709\u7528\u4fe1\u606f": 237, "\u5982\u679c\u4e3atrue": 237, "\u5219\u4ece\u4e92\u8054\u7f51\u4e0b\u8f7d\u6570\u636e\u96c6\u5e76\u5c06\u5176\u653e\u5728root\u76ee\u5f55\u4e2d": 237, "\u5982\u679c\u6570\u636e\u96c6\u5df2\u4e0b\u8f7d": 237, "\u5219\u4e0d\u4f1a\u91cd\u65b0\u4e0b\u8f7d": 237, "\u8ba9\u6211\u4eec\u8bbf\u95ee": 237, "\u4e2d\u7684\u4e00\u4e2a\u6570\u636e\u70b9\u662f\u4e00\u4e2a\u5143\u7ec4": 237, "\u5176\u4e2d\u6807\u7b7e\u662f\u4e00\u4e2a\u6574\u6570\u5217\u8868": 237, "1\u8868\u793aye": 237, "0\u8868\u793ano": 237, "yesno_data": 237, "\u9009\u62e9\u6570\u636e\u70b9\u7f16\u53f73": 237, "\u7684\u793a\u4f8b": [237, 256], "waveform": 237, "sample_r": 237, "nlabel": 237, "\u5728\u5b9e\u8df5\u4e2d\u4f7f\u7528\u8fd9\u4e9b\u6570\u636e\u65f6": 237, "\u6700\u597d\u5c06\u6570\u636e\u5212\u5206\u4e3a": 237, "\u6570\u636e\u96c6\u548c": 237, "\u8fd9\u53ef\u786e\u4fdd\u60a8\u6709\u672a\u4f7f\u7528\u7684\u6570\u636e\u6765\u6d4b\u8bd5\u6a21\u578b\u7684\u6027\u80fd": 237, "\u73b0\u5728\u6211\u4eec\u53ef\u4ee5\u8bbf\u95ee\u6570\u636e\u96c6": 237, "\u6211\u4eec\u5fc5\u987b\u901a\u8fc7": 237, "\u4f20\u9012\u5b83": 237, "\u5c06\u6570\u636e\u96c6\u548c\u91c7\u6837\u5668\u7ec4\u5408\u5728\u4e00\u8d77": 237, "\u8fd4\u56de\u6570\u636e\u96c6\u4e0a\u7684\u4e00\u4e2a\u53ef\u8fed\u4ee3\u5bf9\u8c61": 237, "\u6211\u4eec\u7684\u6570\u636e\u73b0\u5728\u53ef\u4ee5\u4f7f\u7528": 237, "\u8fdb\u884c\u8fed\u4ee3": 237, "\u5728\u5f00\u59cb\u8bad\u7ec3\u6a21\u578b\u65f6": 237, "\u8fd9\u5c06\u662f\u5fc5\u9700\u7684": 237, "\u60a8\u4f1a\u6ce8\u610f\u5230": 237, "\u5bf9\u8c61\u4e2d\u7684\u6bcf\u4e2a\u6570\u636e\u6761\u76ee\u90fd\u8f6c\u6362\u4e3a\u4e00\u4e2a\u5f20\u91cf": 237, "\u5176\u4e2d\u5305\u542b\u8868\u793a\u6ce2\u5f62": 237, "\u91c7\u6837\u7387\u548c\u6807\u7b7e\u7684\u5f20\u91cf": 237, "\u60a8\u53ef\u4ee5\u9009\u62e9\u53ef\u89c6\u5316\u6570\u636e": 237, "\u4ee5\u8fdb\u4e00\u6b65\u4e86\u89e3": 237, "\u795d\u8d3a\u60a8": [237, 241, 244, 249], "\u60a8\u5df2\u6210\u529f\u5728pytorch\u4e2d\u52a0\u8f7d\u6570\u636e": 237, "\u67e5\u770b\u8fd9\u4e9b\u5176\u4ed6\u6559\u7a0b": [237, 249, 250, 251], "\u7ee7\u7eed\u60a8\u7684\u5b66\u4e60": [237, 249], "\u5b9a\u4e49\u795e\u7ecf\u7f51\u7edc": 237, "pytorch\u4e2d\u7684state_dict": 237, "mikayla": [238, 245], "gawarecki": [238, 245], "\u5982\u679c\u4f60\u8981\u52a0\u8f7d\u4e00\u4e2a\u68c0\u67e5\u70b9\u5e76\u5e0c\u671b\u5c3d\u53ef\u80fd\u51cf\u5c11\u8ba1\u7b97\u548c\u5185\u5b58\u7684\u4f7f\u7528": 238, "\u672c\u6559\u7a0b\u5c06\u5206\u4eab\u4e00\u4e9b\u63a8\u8350\u7684\u505a\u6cd5": 238, "\u7279\u522b\u662f\u6211\u4eec\u5c06\u8ba8\u8bba\u4ee5\u4e0b\u51e0\u70b9": 238, "\u5173\u952e\u5b57\u53c2\u6570": 238, "\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668": [238, 248], "\u8ba9\u6211\u4eec\u8003\u8651\u4e00\u4e2a\u7b80\u5355\u7684": 238, "\u5b83\u5305\u542b\u4e00\u4e2a\u7ebf\u6027\u5c42\u5217\u8868": 238, "somemodul": 238, "\u4ee5\u4e0b\u4ee3\u7801\u7247\u6bb5\u6f14\u793a\u4e86\u5982\u4f55\u4f7f\u7528": 238, "\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668\u548c": 238, "meta_m": 238, "\u5c06\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u4e0e\u4e0a\u9762\u7684\u8fdb\u884c\u6bd4\u8f83": 238, "\u7b2c\u4e8c\u4e2a\u793a\u4f8b\u6ca1\u6709\u4f7f\u7528\u4e0a\u9762\u5217\u51fa\u7684\u4efb\u4f55\u7279\u6027": 238, "\u56e0\u6b64\u5728\u52a0\u8f7d\u68c0\u67e5\u70b9\u65f6\u8ba1\u7b97\u548c\u5185\u5b58\u6548\u7387\u4f1a\u8f83\u4f4e": 238, "\u5728\u4e0b\u9762\u7684\u90e8\u5206\u4e2d": 238, "\u6211\u4eec\u5c06\u8be6\u7ec6\u8ba8\u8bba\u6bcf\u4e2a\u7279\u6027": 238, "\u8ba9\u6211\u4eec\u8003\u8651\u4f7f\u7528": 238, "\u52a0\u8f7d\u68c0\u67e5\u70b9\u65f6\u4f1a\u53d1\u751f\u4ec0\u4e48": 238, "\u4fdd\u5b58\u68c0\u67e5\u70b9\u65f6": 238, "\u5f20\u91cf\u5b58\u50a8\u4f1a\u88ab\u6807\u8bb0\u4e3a\u4fdd\u5b58\u65f6\u6240\u5728\u7684\u8bbe\u5907": 238, "\u5f20\u91cf\u5b58\u50a8\u5c06\u88ab\u52a0\u8f7d\u5230\u5b83\u4eec\u88ab\u6807\u8bb0\u7684\u8bbe\u5907\u4e0a": 238, "\u9664\u975e\u4f7f\u7528": 238, "\u6807\u5fd7\u8986\u76d6\u6b64\u884c\u4e3a": 238, "\u4e3a\u4e86\u89e3\u91ca\u65b9\u4fbf": 238, "\u6211\u4eec\u5047\u8bbe\u5f20\u91cf\u662f\u4fdd\u5b58\u5728": 238, "\u8fd9\u610f\u5473\u7740\u5728\u7b2c\u4e00\u884c\u4e2d": 238, "\u6240\u6709\u5f20\u91cf\u5b58\u50a8\u5c06\u88ab\u52a0\u8f7d\u5230": 238, "\u5185\u5b58\u4e2d": 238, "\u5728\u4ee5\u4e0b\u60c5\u51b5\u4e0b\u8fd9\u662f\u4e0d\u53ef\u53d6\u7684": 238, "\u5185\u5b58\u5c0f\u4e8e\u68c0\u67e5\u70b9\u7684\u5927\u5c0f": 238, "\u5728\u6267\u884c\u4e00\u4e9b\u6bcf\u5f20\u91cf\u5904\u7406\u4e4b\u524d\u7b49\u5f85\u6574\u4e2a\u68c0\u67e5\u70b9\u88ab\u52a0\u8f7d\u5230\u5185\u5b58\u4e2d": 238, "\u7684\u52a0\u8f7d\u65f6\u95f4": 238, "\u5173\u952e\u5b57\u53c2\u6570\u8bd5\u56fe\u89e3\u51b3\u4e0a\u8ff0\u4e24\u4e2a\u95ee\u9898": 238, "\u987e\u540d\u601d\u4e49": 238, "\u5173\u952e\u5b57\u53c2\u6570\u4f7f\u7528\u4e86": 238, "\u5b83\u5c06\u78c1\u76d8\u4e0a\u7684\u6587\u4ef6\u6620\u5c04\u5230\u865a\u62df\u5185\u5b58\u4e2d": 238, "\u5e76\u8ba9\u64cd\u4f5c\u7cfb\u7edf\u81ea\u52a8\u5904\u7406\u52a0\u8f7d\u548c\u5378\u8f7d\u5230\u7269\u7406\u5185\u5b58": 238, "\u5f53\u4f20\u9012\u6b64\u6807\u5fd7\u65f6": 238, "\u5f20\u91cf\u5b58\u50a8\u5c06\u88ab\u5185\u5b58\u6620\u5c04": 238, "\u5982\u4e0a\u6240\u8ff0": 238, "\u53ef\u4ee5\u4f7f\u7528\u6b64\u53c2\u6570\u5728\u4e0d\u5c06\u6240\u6709\u5f20\u91cf\u5b58\u50a8\u52a0\u8f7d\u5230": 238, "\u5185\u5b58\u4e2d\u7684\u60c5\u51b5\u4e0b\u5bf9\u68c0\u67e5\u70b9\u6267\u884c\u6bcf\u5f20\u91cf\u5904\u7406": 238, "my_special_routin": 238, "\u8fd9\u53ef\u80fd\u662f\u4e00\u4e2a\u66f4\u590d\u6742\u7684\u64cd\u4f5c": 238, "my_processing_funct": 238, "processed_t": 238, "\u8ba9\u6211\u4eec\u8003\u8651\u6a21\u5757\u7684\u521b\u5efa": 238, "\u8fd9\u5c06\u4e3a\u6240\u6709\u53c2\u6570": 238, "\u7f13\u51b2\u533a\u5206\u914d\u5185\u5b58\u5e76\u6839\u636e": 238, "\u4e2d\u5b9a\u4e49\u7684\u9ed8\u8ba4\u521d\u59cb\u5316\u65b9\u6848\u5bf9\u5176\u8fdb\u884c\u521d\u59cb\u5316": 238, "\u5f53\u6211\u4eec\u60f3\u8981\u52a0\u8f7d\u68c0\u67e5\u70b9\u65f6": 238, "\u8fd9\u662f\u6d6a\u8d39\u7684": 238, "\u539f\u56e0\u5982\u4e0b": 238, "\u521d\u59cb\u5316\u5185\u6838\u7684\u7ed3\u679c\u5c06\u88ab": 238, "\u8986\u76d6\u800c\u4ece\u672a\u88ab\u4f7f\u7528": 238, "\u56e0\u6b64\u521d\u59cb\u5316\u662f\u6d6a\u8d39\u7684": 238, "\u4e2d\u4e3a\u8fd9\u4e9b\u53c2\u6570": 238, "\u7f13\u51b2\u533a\u5206\u914d\u4e86\u5185\u5b58": 238, "\u4fdd\u5b58\u7684\u72b6\u6001\u5b57\u5178\u4e5f\u5728": 238, "\u4e2d\u4e3a\u68c0\u67e5\u70b9\u4e2d\u7684\u53c2\u6570": 238, "\u4e3a\u4e86\u89e3\u51b3\u8fd9\u4e24\u4e2a\u95ee\u9898": 238, "\u6211\u4eec\u53ef\u4ee5\u5728\u5b9e\u4f8b\u5316": 238, "tensor_attribut": 238, "\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668\u786e\u4fdd\u5de5\u5382\u8c03\u7528\u5c06\u88ab\u89c6\u4e3a\u4f20\u9012\u4e86\u6307\u5b9a\u7684": 238, "\u4f5c\u4e3a\u53c2\u6570": 238, "\u4e0a\u7684\u5f20\u91cf\u4e0d\u643a\u5e26\u6570\u636e": 238, "\u5b83\u4eec\u5177\u6709\u5f20\u91cf\u6240\u643a\u5e26\u7684\u5176\u4ed6\u5143\u6570\u636e": 238, "new_m": 238, "\u6211\u4eec\u8003\u8651\u52a0\u8f7d\u72b6\u6001\u5b57\u5178": 238, "\u901a\u5e38\u662f\u901a\u8fc7": 238, "param_in_model": 238, "param_in_state_dict": 238, "\u7684\u5c31\u5730\u590d\u5236\u5b9e\u73b0\u7684": 238, "\u8fd9\u610f\u5473\u7740\u72b6\u6001\u5b57\u5178\u4e2d\u5bf9\u5e94\u952e\u7684\u53c2\u6570": 238, "\u7f13\u51b2\u533a\u5c06\u88ab\u590d\u5236\u5230": 238, "\u4e2d\u7684\u53c2\u6570": 238, "\u7f13\u51b2\u533a": 238, "\u8bbe\u5907\u4e0a\u7684\u5f20\u91cf\u8fdb\u884c\u5c31\u5730\u590d\u5236\u662f\u65e0\u64cd\u4f5c\u7684": 238, "\u4e3a\u4e86\u907f\u514d\u8fd9\u79cd\u60c5\u51b5": [238, 239], "\u6211\u4eec\u53ef\u4ee5\u5728": [238, 258], "\u4e2d\u4f20\u9012": 238, "\u8fd9\u91cc\u7684\u4e00\u4e2a\u8b66\u544a\u662f": 238, "\u7531\u4e8e\u4f18\u5316\u5668\u6301\u6709\u5bf9": 238, "\u7684\u5f15\u7528": 238, "\u5982\u679c\u4f20\u9012\u4e86": 238, "\u5219\u5fc5\u987b\u5728\u4ece\u72b6\u6001\u5b57\u5178\u52a0\u8f7d\u6a21\u5757\u540e\u521d\u59cb\u5316\u4f18\u5316\u5668": 238, "set_swap_module_params_on_convers": [238, 245], "\u6765\u907f\u514d\u8fd9\u4e2a\u8b66\u544a": 238, "swap_tensor": 238, "\u63d0\u4f9b\u4e86\u66f4\u591a\u7ec6\u8282": 238, "\u8fd9\u4e00\u6b65\u5fc5\u987b\u5728": 238, "\u4e4b\u540e\u5b8c\u6210": 238, "\u5728\u7248\u672c": 238, "\u53ef\u4ee5\u8003\u8651\u8bbe\u7f6e": 238, "\u603b\u7ed3\u4e00\u4e0b": 238, "\u6211\u4eec\u5b66\u4e60\u4e86": [238, 245], "\u4ee5\u53ca\u5982\u4f55\u5728\u4ece\u68c0\u67e5\u70b9\u52a0\u8f7d\u6a21\u578b\u65f6\u4f7f\u7528\u8fd9\u4e9b\u5de5\u5177\u6765\u63d0\u9ad8\u6548\u7387": 238, "module_load_state_dict_tip": 238, "\u672c\u6559\u7a0b\u89e3\u91ca\u4e86\u5982\u4f55\u4f7f\u7528pytorch": 239, "\u5e76\u6d4b\u91cf\u6a21\u578b\u7b97\u5b50\u7684\u65f6\u95f4\u548c\u5185\u5b58\u6d88\u8017": 239, "\u5f53\u7528\u6237\u9700\u8981\u786e\u5b9a\u6a21\u578b\u4e2d\u6700\u8017\u8d39\u8d44\u6e90\u7684\u7b97\u5b50\u65f6": 239, "pytorch\u5305\u542b\u4e00\u4e2a\u7b80\u5355\u7684profil": 239, "api\u975e\u5e38\u6709\u7528": 239, "\u6211\u4eec\u5c06\u4f7f\u7528\u4e00\u4e2a\u7b80\u5355\u7684": 239, "\u6a21\u578b\u6765\u6f14\u793a\u5982\u4f55\u4f7f\u7528profiler\u5206\u6790\u6a21\u578b\u6027\u80fd": 239, "\u8981\u5b89\u88c5": 239, "\u8bf7\u4f7f\u7528\u4ee5\u4e0b\u547d\u4ee4": 239, "\u5bfc\u5165\u6240\u6709\u5fc5\u9700\u7684\u5e93": 239, "\u5b9e\u4f8b\u5316\u4e00\u4e2a\u7b80\u5355\u7684resnet\u6a21\u578b": 239, "\u4f7f\u7528profiler\u5206\u6790\u5185\u5b58\u6d88\u8017": 239, "\u4f7f\u7528profiler\u5206\u6790\u957f\u65f6\u95f4\u8fd0\u884c\u7684\u4f5c\u4e1a": 239, "\u6a21\u578b\u5b9e\u4f8b": 239, "\u5e76\u4e3a\u5b83\u51c6\u5907\u4e00\u4e2a\u8f93\u5165": 239, "profiler\u901a\u8fc7\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668\u542f\u7528": 239, "\u5e76\u63a5\u53d7\u591a\u4e2a\u53c2\u6570": 239, "\u5176\u4e2d\u4e00\u4e9b\u6700\u6709\u7528\u7684\u53c2\u6570\u5982\u4e0b": 239, "\u8981\u5206\u6790\u7684\u6d3b\u52a8\u5217\u8868": 239, "pytorch\u7b97\u5b50": 239, "torchscript\u51fd\u6570\u548c\u7528\u6237\u5b9a\u4e49\u7684\u4ee3\u7801\u6807\u7b7e": 239, "\u8bbe\u5907\u4e0a\u7684cuda\u5185\u6838": 239, "\u662f\u5426\u8bb0\u5f55\u7b97\u5b50\u8f93\u5165\u7684\u5f62\u72b6": 239, "\u662f\u5426\u62a5\u544a\u6a21\u578b\u5f20\u91cf\u6240\u6d88\u8017\u7684\u5185\u5b58\u91cf": 239, "\u662f\u5426\u6d4b\u91cfcuda\u5185\u6838\u7684\u6267\u884c\u65f6\u95f4": 239, "\u5f53\u4f7f\u7528cuda\u65f6": 239, "profiler\u8fd8\u4f1a\u663e\u793a\u4e3b\u673a\u4e0a\u53d1\u751f\u7684\u8fd0\u884c\u65f6cuda\u4e8b\u4ef6": 239, "\u8ba9\u6211\u4eec\u770b\u770b\u5982\u4f55\u4f7f\u7528profiler\u5206\u6790\u6267\u884c\u65f6\u95f4": 239, "model_infer": 239, "\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668\u4e3a\u4efb\u610f\u4ee3\u7801\u8303\u56f4\u6dfb\u52a0\u7528\u6237\u63d0\u4f9b\u7684\u540d\u79f0\u6807\u7b7e": 239, "\u5728\u4e0a\u9762\u7684\u793a\u4f8b\u4e2d\u4f7f\u7528": 239, "\u4f5c\u4e3a\u6807\u7b7e": 239, "profiler\u5141\u8bb8\u68c0\u67e5\u5728\u4f7f\u7528profiler\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668\u5305\u88c5\u7684\u4ee3\u7801\u8303\u56f4\u5185\u6267\u884c\u671f\u95f4\u8c03\u7528\u4e86\u54ea\u4e9b\u7b97\u5b50": 239, "\u5982\u679c\u540c\u65f6\u5b58\u5728\u591a\u4e2a\u6d3b\u52a8\u7684profiler\u8303\u56f4": 239, "\u4f8b\u5982\u5728\u5e76\u884cpytorch\u7ebf\u7a0b\u4e2d": 239, "\u6bcf\u4e2aprofiling\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668\u53ea\u8ddf\u8e2a\u5176\u5bf9\u5e94\u8303\u56f4\u7684\u7b97\u5b50": 239, "profiler\u8fd8\u4f1a\u81ea\u52a8\u5206\u6790\u4f7f\u7528": 239, "_fork": 239, "\u542f\u52a8\u7684\u5f02\u6b65\u4efb\u52a1": 239, "\u4ee5\u53ca\u5728\u53cd\u5411\u4f20\u64ad\u8fc7\u7a0b\u4e2d\u4f7f\u7528": 239, "\u8c03\u7528\u542f\u52a8\u7684\u53cd\u5411\u4f20\u64ad\u7b97\u5b50": 239, "\u8ba9\u6211\u4eec\u6253\u5370\u51fa\u4e0a\u8ff0\u6267\u884c\u7684\u7edf\u8ba1\u4fe1\u606f": 239, "cpu_time_tot": 239, "\u8f93\u51fa\u5c06\u5982\u4e0b\u6240\u793a": 239, "\u7701\u7565\u4e86\u4e00\u4e9b\u5217": 239, "509m": 239, "503m": 239, "931m": 239, "597m": 239, "700m": 239, "585m": 239, "_convolut": 239, "450m": 239, "mkldnn_convolut": 239, "838m": 239, "114m": 239, "556m": 239, "693m": 239, "_batch_norm_impl_index": 239, "482m": 239, "724": 239, "100u": 239, "native_batch_norm": 239, "229m": 239, "109m": 239, "705": 239, "450u": 239, "332": 239, "631m": 239, "286u": 239, "668m": 239, "292m": 239, "988u": 239, "549m": 239, "group_by_input_shap": 239, "\u8fd9\u91cc\u6211\u4eec\u53ef\u4ee5\u770b\u5230": 239, "\u5982\u9884\u671f\u7684\u90a3\u6837": 239, "\u5927\u90e8\u5206\u65f6\u95f4\u90fd\u82b1\u5728\u4e86\u5377\u79ef\u4e0a": 239, "\u5bf9\u4e8e\u4f7f\u7528": 239, "\u652f\u6301\u7f16\u8bd1\u7684pytorch": 239, "\u7279\u522b\u662f\u5728": 239, "\u6ce8\u610f\u81ea\u8eabcpu\u65f6\u95f4\u548ccpu\u65f6\u95f4\u4e4b\u95f4\u7684\u533a\u522b": 239, "\u7b97\u5b50\u53ef\u4ee5\u8c03\u7528\u5176\u4ed6\u7b97\u5b50": 239, "\u81ea\u8eabcpu\u65f6\u95f4\u4e0d\u5305\u62ec\u5728\u5b50\u7b97\u5b50\u8c03\u7528\u4e2d\u82b1\u8d39\u7684\u65f6\u95f4": 239, "\u800c\u603bcpu\u65f6\u95f4\u5305\u62ec\u4e86\u5b83": 239, "\u4f60\u53ef\u4ee5\u901a\u8fc7\u5c06": 239, "\u8c03\u7528\u6765\u9009\u62e9\u6309\u81ea\u8eabcpu\u65f6\u95f4\u6392\u5e8f": 239, "\u8981\u83b7\u5f97\u66f4\u7ec6\u7c92\u5ea6\u7684\u7ed3\u679c\u5e76\u5305\u542b\u7b97\u5b50\u8f93\u5165\u5f62\u72b6": 239, "\u8bf7\u4f20\u9012": 239, "\u8fd9\u9700\u8981\u4f7f\u7528": 239, "\u8fd0\u884cprofil": 239, "\u8f93\u51fa\u53ef\u80fd\u5982\u4e0b\u6240\u793a": 239, "008m": 239, "956m": 239, "909m": 239, "834m": 239, "332m": 239, "303m": 239, "273m": 239, "233m": 239, "751m": 239, "\u51fa\u73b0\u4e86\u4e24\u6b21": 239, "\u5177\u6709\u4e0d\u540c\u7684\u8f93\u5165\u5f62\u72b6": 239, "profiler\u4e5f\u53ef\u7528\u4e8e\u5206\u6790\u5728gpu\u4e0a\u6267\u884c\u7684\u6a21\u578b\u7684\u6027\u80fd": 239, "\u7b2c\u4e00\u6b21\u4f7f\u7528cuda\u5206\u6790\u53ef\u80fd\u4f1a\u5e26\u6765\u989d\u5916\u7684\u5f00\u9500": 239, "\u7ed3\u679c\u8f93\u51fa": 239, "666m": 239, "484m": 239, "_convolution_nogroup": 239, "thnn_conv2d": 239, "thnn_conv2d_forward": 239, "im2col_kernel": 239, "844m": 239, "sgemm_32x32x32_nn": 239, "206m": 239, "sgemm_32x32x32_nn_vec": 239, "093m": 239, "015m": 239, "\u6ce8\u610f\u5728\u8f93\u51fa\u4e2d\u51fa\u73b0\u4e86\u8bbe\u5907\u4e0a\u7684\u5185\u6838": 239, "profiler\u8fd8\u53ef\u4ee5\u663e\u793a\u5728\u6267\u884c\u6a21\u578b\u7b97\u5b50\u671f\u95f4\u5206\u914d": 239, "\u6216\u91ca\u653e": 239, "\u7684\u5185\u5b58\u91cf": 239, "\u7531\u6a21\u578b\u5f20\u91cf\u4f7f\u7528": 239, "\u5728\u4e0b\u9762\u7684\u8f93\u51fa\u4e2d": 239, "\u5185\u5b58\u5bf9\u5e94\u4e8e\u7b97\u5b50\u5206\u914d": 239, "\u91ca\u653e": 239, "\u7684\u5185\u5b58": 239, "\u4e0d\u5305\u62ec\u5bf9\u5176\u4ed6\u7b97\u5b50\u7684\u5b50\u8c03\u7528": 239, "\u8981\u542f\u7528\u5185\u5b58\u5206\u6790\u529f\u80fd": 239, "self_cpu_memory_usag": 239, "max_pool2d_with_indic": 239, "572": 239, "resize_": 239, "064m": 239, "cpu_memory_usag": 239, "\u8f93\u51fa\u5982\u4e0b\u6240\u793a": [239, 260], "\u53ef\u4ee5\u5c06\u5206\u6790\u7ed3\u679c\u8f93\u51fa\u4e3a": 239, "\u8ddf\u8e2a\u6587\u4ef6": 239, "\u4f60\u53ef\u4ee5\u5728chrome\u8ddf\u8e2a\u67e5\u770b\u5668": 239, "\u4e2d\u68c0\u67e5\u5206\u6790\u7684\u7b97\u5b50\u548ccuda\u5185\u6838\u5e8f\u5217": 239, "\u53ef\u7528\u4e8e\u5206\u6790": 239, "\u5806\u6808\u8ddf\u8e2a": 239, "self_cuda_time_tot": 239, "439": 239, "_conv_forward": 239, "1051": 239, "_call_impl": 239, "016m": 239, "659m": 239, "\u6ce8\u610f\u5728": 239, "\u811a\u672c\u4e2d\u7684\u4e24\u4e2a\u5377\u79ef\u548c\u4e24\u4e2a\u8c03\u7528\u4f4d\u7f6e": 239, "\u8b66\u544a": 239, "\u5806\u6808\u8ddf\u8e2a\u4f1a\u589e\u52a0\u989d\u5916\u7684\u5206\u6790\u5f00\u9500": 239, "pytorch\u5206\u6790\u5668\u63d0\u4f9b\u4e86\u4e00\u4e2a\u989d\u5916\u7684api\u6765\u5904\u7406\u957f\u65f6\u95f4\u8fd0\u884c\u7684\u4f5c\u4e1a": 239, "\u4f8b\u5982\u8bad\u7ec3\u5faa\u73af": 239, "\u8ddf\u8e2a\u6240\u6709\u6267\u884c\u53ef\u80fd\u4f1a\u5f88\u6162": 239, "\u5e76\u5bfc\u81f4\u975e\u5e38\u5927\u7684\u8ddf\u8e2a\u6587\u4ef6": 239, "\u53ef\u4ee5\u4f7f\u7528\u53ef\u9009\u53c2\u6570": 239, "\u6307\u5b9a\u4e00\u4e2a\u51fd\u6570": 239, "\u8be5\u51fd\u6570\u4ee5\u6574\u6570\u53c2\u6570": 239, "\u6b65\u9aa4\u7f16\u53f7": 239, "\u4f5c\u4e3a\u8f93\u5165": 239, "\u5e76\u8fd4\u56de\u5206\u6790\u5668\u7684\u64cd\u4f5c": 239, "\u4f7f\u7528\u6b64\u53c2\u6570\u7684\u6700\u4f73\u65b9\u5f0f\u662f\u4f7f\u7528": 239, "\u5e2e\u52a9\u51fd\u6570": 239, "\u5b83\u53ef\u4ee5\u4e3a\u60a8\u751f\u6210\u4e00\u4e2a\u8ba1\u5212": 239, "\u8be5\u51fd\u6570\u4ee5\u5206\u6790\u5668\u7684\u5f15\u7528\u4f5c\u4e3a\u8f93\u5165": 239, "\u5e76\u5728\u6bcf\u6b21\u65b0\u7684\u8ddf\u8e2a\u51c6\u5907\u5c31\u7eea\u65f6\u7531\u5206\u6790\u5668\u8c03\u7528": 239, "\u4e3a\u4e86\u8bf4\u660e\u8be5api\u7684\u5de5\u4f5c\u539f\u7406": 239, "\u8ba9\u6211\u4eec\u9996\u5148\u8003\u8651\u4ee5\u4e0b\u4f7f\u7528": 239, "\u5e2e\u52a9\u51fd\u6570\u7684\u793a\u4f8b": 239, "\u5206\u6790\u5668\u5047\u8bbe\u957f\u65f6\u95f4\u8fd0\u884c\u7684\u4f5c\u4e1a\u7531\u4ece\u96f6\u5f00\u59cb\u7f16\u53f7\u7684\u6b65\u9aa4\u7ec4\u6210": 239, "\u4e0a\u9762\u7684\u793a\u4f8b\u4e3a\u5206\u6790\u5668\u5b9a\u4e49\u4e86\u4ee5\u4e0b\u64cd\u4f5c\u5e8f\u5217": 239, "\u544a\u8bc9\u5206\u6790\u5668\u5b83\u5e94\u8be5\u5ffd\u7565\u524d10\u4e2a\u6b65\u9aa4": 239, "\u7684\u9ed8\u8ba4\u503c\u4e3a\u96f6": 239, "\u6b65\u9aa4\u4e4b\u540e": 239, "\u5206\u6790\u5668\u5f00\u59cb\u6267\u884c\u5206\u6790\u5668\u5468\u671f": 239, "\u6bcf\u4e2a\u5468\u671f\u7531\u4e09\u4e2a\u9636\u6bb5\u7ec4\u6210": 239, "\u7a7a\u95f2": 239, "\u5728\u6b64\u9636\u6bb5\u5206\u6790\u5668\u4e0d\u6d3b\u52a8": 239, "\u5728\u6b64\u9636\u6bb5\u5206\u6790\u5668\u5f00\u59cb\u8ddf\u8e2a": 239, "\u4f46\u7ed3\u679c\u88ab\u4e22\u5f03": 239, "\u6b64\u9636\u6bb5\u7528\u4e8e\u4e22\u5f03\u5206\u6790\u5668\u5728\u8ddf\u8e2a\u5f00\u59cb\u65f6\u83b7\u5f97\u7684\u6837\u672c": 239, "\u56e0\u4e3a\u5b83\u4eec\u901a\u5e38\u7531\u989d\u5916\u7684\u5f00\u9500\u626d\u66f2": 239, "\u4e3b\u52a8\u8ddf\u8e2a": 239, "\u5728\u6b64\u9636\u6bb5\u5206\u6790\u5668\u8ddf\u8e2a\u548c\u8bb0\u5f55\u6570\u636e": 239, "\u53ef\u9009\u7684": 239, "\u53c2\u6570\u6307\u5b9a\u5468\u671f\u7684\u4e0a\u9650": 239, "\u96f6\u503c": 239, "\u5206\u6790\u5668\u5c06\u5c3d\u53ef\u80fd\u957f\u65f6\u95f4\u5730\u6267\u884c\u5468\u671f": 239, "\u5206\u6790\u5668\u5c06\u8df3\u8fc7\u524d15\u4e2a\u6b65\u9aa4": 239, "\u5728\u4e0b\u4e00\u6b65\u8fdb\u884c\u9884\u70ed": 239, "\u5728\u63a5\u4e0b\u6765\u76843\u4e2a\u6b65\u9aa4\u4e2d\u4e3b\u52a8\u8bb0\u5f55": 239, "\u518d\u8df3\u8fc7\u53e6\u59165\u4e2a\u6b65\u9aa4": 239, "\u5728\u53e6\u59163\u4e2a\u6b65\u9aa4\u4e2d\u4e3b\u52a8\u8bb0\u5f55": 239, "\u7531\u4e8e\u6307\u5b9a\u4e86": 239, "\u53c2\u6570\u503c": 239, "\u5206\u6790\u5668\u5c06\u5728\u524d\u4e24\u4e2a\u5468\u671f\u4e4b\u540e\u505c\u6b62\u8bb0\u5f55": 239, "\u5728\u6bcf\u4e2a\u5468\u671f\u7ed3\u675f\u65f6": 239, "\u5206\u6790\u5668\u8c03\u7528\u6307\u5b9a\u7684": 239, "\u51fd\u6570\u5e76\u5c06\u81ea\u8eab\u4f5c\u4e3a\u53c2\u6570\u4f20\u9012": 239, "\u6b64\u51fd\u6570\u7528\u4e8e\u5904\u7406\u65b0\u7684\u8ddf\u8e2a": 239, "\u901a\u8fc7\u83b7\u53d6\u8868\u8f93\u51fa\u6216\u5c06\u8f93\u51fa\u4fdd\u5b58\u5230\u78c1\u76d8\u4e0a\u7684\u8ddf\u8e2a\u6587\u4ef6": 239, "\u8981\u5411\u5206\u6790\u5668\u53d1\u9001\u4e0b\u4e00\u6b65\u5df2\u7ecf\u5f00\u59cb\u7684\u4fe1\u53f7": 239, "\u8bf7\u8c03\u7528": [239, 244, 246], "\u5f53\u524d\u5206\u6790\u5668\u6b65\u9aa4\u5b58\u50a8\u5728": 239, "\u4ee5\u4e0b\u793a\u4f8b\u663e\u793a\u4e86\u5982\u4f55\u4f7f\u7528\u4e0a\u8ff0\u6240\u6709\u6982\u5ff5": 239, "trace_": 239, "\u67e5\u770b\u4ee5\u4e0b\u6559\u7a0b\u4ee5\u7ee7\u7eed\u5b66\u4e60": 239, "\u5206\u6790\u5668": 239, "\u53ef\u89c6\u5316\u6a21\u578b": 239, "\u6570\u636e\u548c\u8bad\u7ec3": [239, 246], "profiler_recip": 239, "\u5728\u4f7f\u7528pytorch\u7f16\u5199\u6a21\u578b\u65f6": 240, "\u901a\u5e38\u4f1a\u9047\u5230\u67d0\u4e00\u5c42\u7684\u53c2\u6570\u53d6\u51b3\u4e8e\u524d\u4e00\u5c42\u8f93\u51fa\u7684\u5f62\u72b6\u7684\u60c5\u51b5": 240, "\u5c42\u7684": 240, "\u5fc5\u987b\u4e0e\u8f93\u5165\u7684": 240, "\u76f8\u5339\u914d": 240, "\u5bf9\u4e8e\u67d0\u4e9b\u5c42": 240, "\u5f62\u72b6\u8ba1\u7b97\u6d89\u53ca\u590d\u6742\u7684\u7b49\u5f0f": 240, "\u4f8b\u5982\u5377\u79ef\u8fd0\u7b97": 240, "\u4e00\u79cd\u89e3\u51b3\u65b9\u6cd5\u662f\u4f7f\u7528\u968f\u673a\u8f93\u5165\u8fdb\u884c\u524d\u5411\u4f20\u64ad": 240, "\u4f46\u8fd9\u5728\u5185\u5b58\u548c\u8ba1\u7b97\u65b9\u9762\u662f\u6d6a\u8d39\u7684": 240, "\u8bbe\u5907\u6765\u786e\u5b9a\u5c42\u7684\u8f93\u51fa\u5f62\u72b6": 240, "\u800c\u65e0\u9700\u5b9e\u9645\u5316\u4efb\u4f55\u6570\u636e": 240, "\u6240\u9700\u65f6\u95f4": 240, "\u89c2\u5bdf\u5230": 240, "\u7531\u4e8e\u6ca1\u6709\u5b9e\u9645\u5316\u6570\u636e": 240, "\u5373\u4f7f\u4f20\u5165\u4efb\u610f\u5927\u7684\u8f93\u5165": 240, "\u7528\u4e8e\u5f62\u72b6\u8ba1\u7b97\u7684\u65f6\u95f4\u4e5f\u4e0d\u4f1a\u663e\u8457\u6539\u53d8": 240, "t_larg": 240, "\u8003\u8651\u4ee5\u4e0b\u4efb\u610f\u7f51\u7edc": 240, "\u5c55\u5e73\u9664\u6279\u6b21\u7ef4\u5ea6\u5916\u7684\u6240\u6709\u7ef4\u5ea6": 240, "\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u4e3a\u6bcf\u4e00\u5c42\u6ce8\u518c\u4e00\u4e2a\u524d\u5411\u94a9\u5b50\u6765\u6253\u5370\u8f93\u51fa\u7684\u5f62\u72b6": 240, "\u4ece\u800c\u67e5\u770b\u6574\u4e2a\u7f51\u7edc\u4e2d\u95f4\u5c42\u7684\u5f62\u72b6": 240, "fw_hook": 240, "\u7684\u8f93\u51fa\u5f62\u72b6\u4e3a": 240, "\u5728\u6b64torch": 240, "device\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668\u4e2d\u521b\u5efa\u7684\u4efb\u4f55\u5f20\u91cf\u90fd\u5c06\u5728meta\u8bbe\u5907\u4e0a": 240, "reasoning_about_shap": 240, "\u60a8\u53ef\u80fd\u9700\u8981\u5728\u4e0d\u540c\u7684\u8bbe\u5907\u4e4b\u95f4\u4fdd\u5b58\u548c\u52a0\u8f7d\u795e\u7ecf\u7f51\u7edc\u6a21\u578b": 241, "\u4f7f\u7528pytorch\u5728\u4e0d\u540c\u8bbe\u5907\u4e4b\u95f4\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u662f\u76f8\u5bf9\u76f4\u63a5\u7684": 241, "\u6211\u4eec\u5c06\u5c1d\u8bd5\u5728cpu\u548cgpu\u4e4b\u95f4\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": 241, "\u4e3a\u4e86\u8ba9\u672c\u6559\u7a0b\u4e2d\u7684\u6bcf\u4e2a\u4ee3\u7801\u5757\u90fd\u80fd\u6b63\u786e\u8fd0\u884c": 241, "\u60a8\u5fc5\u987b\u5148\u5c06\u8fd0\u884c\u73af\u5883\u5207\u6362\u5230": 241, "\u6216\u66f4\u9ad8": 241, "\u5b8c\u6210\u540e": 241, "\u6211\u4eec\u9700\u8981\u5b89\u88c5\u5b83": [241, 242], "\u4fdd\u5b58\u548c\u52a0\u8f7d": 241, "\u4e3a\u4e86\u6f14\u793a": [241, 243, 244, 250], "\u6211\u4eec\u5c06\u521b\u5efa\u4e00\u4e2a\u7528\u4e8e\u8bad\u7ec3\u56fe\u50cf\u7684\u795e\u7ecf\u7f51\u7edc": [241, 242, 243, 244, 249, 250], "\u8981\u4e86\u89e3\u66f4\u591a\u4fe1\u606f": [241, 242, 243, 244, 249, 250, 251], "\u8bf7\u53c2\u9605\u5b9a\u4e49\u795e\u7ecf\u7f51\u7edc\u7684\u6559\u7a0b": [241, 243, 244, 249, 250], "\u5f53\u5728cpu\u4e0a\u52a0\u8f7d\u4f7f\u7528gpu\u8bad\u7ec3\u7684\u6a21\u578b\u65f6": 241, "\u8bf7\u5c06": 241, "\u6307\u5b9a\u4fdd\u5b58\u8def\u5f84": [241, 244, 249], "\u5f20\u91cf\u5e95\u5c42\u7684\u5b58\u50a8\u5c06\u4f7f\u7528": 241, "\u53c2\u6570\u52a8\u6001\u91cd\u65b0\u6620\u5c04\u5230cpu\u8bbe\u5907": 241, "\u5f53\u5728gpu\u4e0a\u52a0\u8f7d\u4f7f\u7528gpu\u8bad\u7ec3\u548c\u4fdd\u5b58\u7684\u6a21\u578b\u65f6": 241, "\u53ea\u9700\u4f7f\u7528": 241, "\u5c06\u521d\u59cb\u5316\u7684\u6a21\u578b\u8f6c\u6362\u4e3acuda\u4f18\u5316\u6a21\u578b": 241, "\u8bf7\u786e\u4fdd\u5bf9\u6240\u6709\u6a21\u578b\u8f93\u5165\u4f7f\u7528": 241, "\u4e3a\u6a21\u578b\u51c6\u5907\u6570\u636e": 241, "\u4f1a\u8fd4\u56de": 241, "\u5728gpu\u4e0a\u7684\u65b0\u526f\u672c": 241, "\u5b83\u4e0d\u4f1a\u8986\u76d6": 241, "\u8bf7\u8bb0\u4f4f\u624b\u52a8\u8986\u76d6\u5f20\u91cf": 241, "\u5f53\u5728gpu\u4e0a\u52a0\u8f7d\u4f7f\u7528cpu\u8bad\u7ec3\u548c\u4fdd\u5b58\u7684\u6a21\u578b\u65f6": 241, "\u51fd\u6570\u4e2d\u5c06": [241, 249], "\u53c2\u6570\u8bbe\u7f6e\u4e3a": [241, 249], "\u5c06\u6a21\u578b\u52a0\u8f7d\u5230\u7ed9\u5b9a\u7684gpu\u8bbe\u5907": 241, "\u5c06\u6a21\u578b\u7684\u53c2\u6570\u5f20\u91cf\u8f6c\u6362\u4e3acuda\u5f20\u91cf": 241, "\u8fd8\u8981\u786e\u4fdd\u5bf9\u6240\u6709\u6a21\u578b\u8f93\u5165\u4f7f\u7528": 241, "\u4e3acuda\u4f18\u5316\u7684\u6a21\u578b\u51c6\u5907\u6570\u636e": 241, "\u9009\u62e9\u60a8\u60f3\u7528\u7684gpu\u8bbe\u5907\u7f16\u53f7": 241, "\u662f\u4e00\u4e2a\u6a21\u578b\u5305\u88c5\u5668": 241, "\u53ef\u4ee5\u542f\u7528\u5e76\u884cgpu\u5229\u7528": 241, "\u8981\u901a\u7528\u5730\u4fdd\u5b58": 241, "\u8bf7\u4fdd\u5b58": 241, "\u60a8\u5c31\u53ef\u4ee5\u7075\u6d3b\u5730\u5c06\u6a21\u578b\u52a0\u8f7d\u5230\u4efb\u4f55\u8bbe\u5907": 241, "\u52a0\u8f7d\u5230\u4efb\u4f55\u60a8\u60f3\u8981\u7684\u8bbe\u5907": 241, "\u60a8\u5df2\u6210\u529f\u5728pytorch\u4e2d\u8de8\u8bbe\u5907\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": 241, "\u4fdd\u5b58\u548c\u52a0\u8f7d\u901a\u7528\u68c0\u67e5\u70b9\u6a21\u578b\u7528\u4e8e\u63a8\u7406\u6216\u6062\u590d\u8bad\u7ec3\u53ef\u4ee5\u5e2e\u52a9\u4f60\u4ece\u4e0a\u6b21\u79bb\u5f00\u7684\u5730\u65b9\u7ee7\u7eed": 242, "\u5f53\u4fdd\u5b58\u901a\u7528\u68c0\u67e5\u70b9\u65f6": 242, "\u4f60\u5fc5\u987b\u4fdd\u5b58\u4e0d\u4ec5\u4ec5\u662f\u6a21\u578b\u7684": 242, "\u540c\u65f6\u4e5f\u5f88\u91cd\u8981\u4fdd\u5b58\u4f18\u5316\u5668\u7684": 242, "\u56e0\u4e3a\u5b83\u5305\u542b\u4e86\u5728\u6a21\u578b\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u66f4\u65b0\u7684\u7f13\u51b2\u533a\u548c\u53c2\u6570": 242, "\u6839\u636e\u4f60\u81ea\u5df1\u7684\u7b97\u6cd5": 242, "\u4f60\u53ef\u80fd\u8fd8\u9700\u8981\u4fdd\u5b58\u4f60\u79bb\u5f00\u65f6\u7684": 242, "\u6700\u65b0\u8bb0\u5f55\u7684\u8bad\u7ec3\u635f\u5931": 242, "\u5916\u90e8\u7684": 242, "\u5c42\u7b49\u7b49": 242, "\u8981\u4fdd\u5b58\u591a\u4e2a\u68c0\u67e5\u70b9": 242, "\u4f60\u5fc5\u987b\u5c06\u5b83\u4eec\u7ec4\u7ec7\u5728\u4e00\u4e2a\u5b57\u5178\u4e2d": 242, "\u6765\u5e8f\u5217\u5316\u8fd9\u4e2a\u5b57\u5178": 242, "\u4e00\u4e2a\u5e38\u89c1\u7684": 242, "\u7ea6\u5b9a\u662f\u4f7f\u7528": 242, "\u6587\u4ef6\u6269\u5c55\u540d\u6765\u4fdd\u5b58\u8fd9\u4e9b\u68c0\u67e5\u70b9": 242, "\u8981\u52a0\u8f7d\u8fd9\u4e9b\u9879\u76ee": 242, "\u9996\u5148\u521d\u59cb\u5316\u6a21\u578b\u548c\u4f18\u5316\u5668": [242, 244], "\u5728\u672c\u5730\u52a0\u8f7d\u5b57\u5178": [242, 244], "\u4ece\u8fd9\u91cc\u5f00\u59cb": [242, 244], "\u4f60\u53ef\u4ee5\u901a\u8fc7\u7b80\u5355\u5730\u67e5\u8be2\u5b57\u5178\u6765\u8f7b\u677e\u8bbf\u95ee\u4fdd\u5b58\u7684\u9879\u76ee": 242, "\u5c31\u50cf\u4f60\u671f\u671b\u7684\u90a3\u6837": 242, "\u6211\u4eec\u5c06\u63a2\u7d22\u5982\u4f55\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u68c0\u67e5\u70b9": 242, "\u5bf9\u4e8e\u8fd9\u4e2a\u793a\u4f8b": 242, "\u4e3a\u4e86\u793a\u4f8b": 242, "\u8bf7\u53c2\u9605\u5b9a\u4e49\u795e\u7ecf\u7f51\u7edc\u7684\u793a\u4f8b": 242, "\u6536\u96c6\u6240\u6709\u76f8\u5173\u4fe1\u606f\u5e76\u6784\u5efa\u5b57\u5178": [242, 244], "\u9644\u52a0\u4fe1\u606f": 242, "\u7136\u540e\u5728\u672c\u5730\u52a0\u8f7d\u5b57\u5178": [242, 244], "\u6216\u8005": [242, 247, 248, 257], "\u4f60\u5fc5\u987b\u8c03\u7528model": 242, "\u6765\u5c06dropout\u548c\u6279\u5f52\u4e00\u5316\u5c42\u8bbe\u7f6e\u4e3a\u8bc4\u4f30\u6a21\u5f0f": 242, "\u7136\u540e\u624d\u80fd\u8fd0\u884c\u63a8\u7406": 242, "\u5c06\u4f1a\u5f97\u5230\u4e0d\u4e00\u81f4\u7684\u63a8\u7406\u7ed3\u679c": 242, "\u5982\u679c\u4f60\u5e0c\u671b\u6062\u590d\u8bad\u7ec3": 242, "\u4ee5\u786e\u4fdd\u8fd9\u4e9b\u5c42\u5904\u4e8e\u8bad\u7ec3\u6a21\u5f0f": [242, 244], "\u4f60\u5df2\u7ecf\u6210\u529f\u4fdd\u5b58\u548c\u52a0\u8f7d\u4e86\u4e00\u4e2a\u901a\u7528\u68c0\u67e5\u70b9": 242, "\u5728pytorch\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u6709\u4e24\u79cd\u65b9\u6cd5": 243, "\u7b2c\u4e00\u79cd\u662f\u4fdd\u5b58\u548c\u52a0\u8f7d": 243, "\u7b2c\u4e8c\u79cd\u662f\u4fdd\u5b58\u548c\u52a0\u8f7d\u6574\u4e2a\u6a21\u578b": 243, "\u51fd\u6570\u4fdd\u5b58\u6a21\u578b\u7684": 243, "\u4e3a\u540e\u7eed\u6062\u590d\u6a21\u578b\u63d0\u4f9b\u8f83\u5927\u7684\u7075\u6d3b\u6027": 243, "\u4fdd\u5b58\u6a21\u578b\u7684\u63a8\u8350\u4f7f\u7528\u6b64\u65b9\u6cd5": 243, "\u56e0\u4e3a\u53ea\u9700\u8981\u4fdd\u5b58\u8bad\u7ec3\u597d\u7684\u6a21\u578b\u7684\u5b66\u4e60\u53c2\u6570": 243, "\u5f53\u4fdd\u5b58\u548c\u52a0\u8f7d\u6574\u4e2a\u6a21\u578b\u65f6": 243, "\u4f60\u4f7f\u7528python": 243, "\u6a21\u5757\u4fdd\u5b58\u6574\u4e2a\u6a21\u5757": 243, "\u4f7f\u7528\u8fd9\u79cd\u65b9\u6cd5\u8bed\u6cd5\u6700\u76f4\u89c2": 243, "\u4ee3\u7801\u91cf\u6700\u5c11": 243, "\u4f46\u8fd9\u79cd\u65b9\u6cd5\u7684\u7f3a\u70b9\u662f\u5e8f\u5217\u5316\u7684\u6570\u636e\u4e0e\u4fdd\u5b58\u6a21\u578b\u65f6\u4f7f\u7528\u7684\u7279\u5b9a\u7c7b\u548c\u76ee\u5f55\u7ed3\u6784\u7ed1\u5b9a\u5728\u4e00\u8d77": 243, "\u539f\u56e0\u662fpickle\u4e0d\u4fdd\u5b58\u6a21\u578b\u7c7b\u672c\u8eab": 243, "\u800c\u662f\u4fdd\u5b58\u5305\u542b\u8be5\u7c7b\u7684\u6587\u4ef6\u7684\u8def\u5f84": 243, "\u8be5\u8def\u5f84\u5728\u52a0\u8f7d\u65f6\u4f7f\u7528": 243, "\u5f53\u5728\u5176\u4ed6\u9879\u76ee\u4e2d\u4f7f\u7528\u6216\u91cd\u6784\u540e": 243, "\u4ee3\u7801\u53ef\u80fd\u4f1a\u51fa\u73b0\u5404\u79cd\u5f02\u5e38\u5bfc\u81f4\u7a0b\u5e8f\u4e2d\u65ad": 243, "\u6211\u4eec\u5c06\u5c55\u793a\u4e24\u79cd\u65b9\u5f0f\u5982\u4f55\u5728pytorch\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": 243, "\u8ba9\u6211\u4eec\u53ea\u4f7f\u7528": 243, "\u6765\u4fdd\u5b58\u548c\u52a0\u8f7d\u6211\u4eec\u7684\u6a21\u578b": 243, "\u8def\u5f84": 243, "state_dict_model": 243, "\u901a\u5e38\u4f7f\u7528": 243, "\u6587\u4ef6\u6269\u5c55\u540d\u6765\u4fdd\u5b58\u6a21\u578b": 243, "\u51fd\u6570\u63a5\u53d7\u4e00\u4e2a\u5b57\u5178\u5bf9\u8c61": 243, "\u800c\u4e0d\u662f\u4fdd\u5b58\u5bf9\u8c61\u7684\u8def\u5f84": 243, "\u8fd9\u610f\u5473\u7740\u4f60\u5fc5\u987b\u5148\u53cd\u5e8f\u5217\u5316\u4fdd\u5b58\u7684state_dict": 243, "\u7136\u540e\u518d\u4f20\u9012\u7ed9": 243, "\u4e0d\u80fd\u4f7f\u7528": 243, "\u6765\u52a0\u8f7d": 243, "\u8fd8\u8981\u8bb0\u4f4f": 243, "\u5728\u8fd0\u884c\u63a8\u7406\u4e4b\u524d": [243, 244], "\u4f60\u5fc5\u987b\u8c03\u7528": 243, "\u5c06dropout\u548cbatch": 243, "\u5426\u5219\u5c06\u5bfc\u81f4\u63a8\u7406\u7ed3\u679c\u4e0d\u4e00\u81f4": [243, 244], "\u73b0\u5728\u8ba9\u6211\u4eec\u5c1d\u8bd5\u5c06\u6574\u4e2a\u6a21\u578b\u8fdb\u884c\u4fdd\u5b58\u548c\u52a0\u8f7d": 243, "entire_model": 243, "\u540c\u6837\u8981\u8bb0\u4f4f\u5728\u8fd0\u884c\u63a8\u7406\u4e4b\u524d\u8c03\u7528": 243, "\u8bbe\u7f6e\u4e3a\u8bc4\u4f30\u6a21\u5f0f": 243, "\u4f60\u5df2\u7ecf\u6210\u529f\u5730\u5728pytorch\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u4e86\u7528\u4e8e\u63a8\u7406\u7684\u6a21\u578b": 243, "pytorch\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u901a\u7528\u68c0\u67e5\u70b9": 243, "pytorch\u4e2d\u5c06\u591a\u4e2a\u6a21\u578b\u4fdd\u5b58\u5728\u4e00\u4e2a\u6587\u4ef6\u4e2d": 243, "\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u6a21\u578b": 244, "\u53ef\u4ee5\u5e2e\u52a9\u60a8\u91cd\u7528\u4e4b\u524d\u8bad\u7ec3\u8fc7\u7684\u6a21\u578b": 244, "\u5f53\u4fdd\u5b58\u7531\u591a\u4e2a": 244, "\u7ec4\u6210\u7684\u6a21\u578b\u65f6": 244, "\u4f8b\u5982\u751f\u6210\u5bf9\u6297\u7f51\u7edc": 244, "\u5e8f\u5217\u5230\u5e8f\u5217\u6a21\u578b\u6216\u6a21\u578b\u96c6\u5408\u65f6": 244, "\u60a8\u5fc5\u987b\u4fdd\u5b58\u6bcf\u4e2a\u6a21\u578b\u7684state_dict\u548c\u76f8\u5e94\u7684\u4f18\u5316\u5668": 244, "\u60a8\u8fd8\u53ef\u4ee5\u901a\u8fc7\u7b80\u5355\u5730\u5c06\u5176\u9644\u52a0\u5230\u5b57\u5178\u4e2d\u6765\u4fdd\u5b58\u4efb\u4f55\u53ef\u80fd\u6709\u52a9\u4e8e\u6062\u590d\u8bad\u7ec3\u7684\u5176\u4ed6\u9879\u76ee": 244, "\u8981\u52a0\u8f7d\u6a21\u578b": 244, "\u60a8\u53ef\u4ee5\u50cf\u671f\u671b\u7684\u90a3\u6837\u7b80\u5355\u5730\u67e5\u8be2\u5b57\u5178\u6765\u8f7b\u677e\u8bbf\u95ee\u4fdd\u5b58\u7684\u9879\u76ee": 244, "\u6211\u4eec\u5c06\u6f14\u793a\u5982\u4f55\u4f7f\u7528pytorch\u5728\u4e00\u4e2a\u6587\u4ef6\u4e2d\u4fdd\u5b58\u591a\u4e2a\u6a21\u578b": 244, "\u6784\u5efa\u4e24\u4e2a\u53d8\u91cf\u7528\u4e8e\u6700\u7ec8\u4fdd\u5b58\u6a21\u578b": 244, "neta": [244, 249], "netb": [244, 249], "\u4e3a\u6211\u4eec\u521b\u5efa\u7684\u6bcf\u4e2a\u6a21\u578b\u6784\u5efa\u4f18\u5316\u5668": 244, "\u8bb0\u4f4f\u9996\u5148\u521d\u59cb\u5316\u6a21\u578b\u548c\u4f18\u5316\u5668": 244, "optimmodela": 244, "optimmodelb": 244, "\u60a8\u5fc5\u987b\u8c03\u7528": 244, "\u5c42\u8bbe\u7f6e\u4e3a\u8bc4\u4f30\u6a21\u5f0f": 244, "\u5982\u679c\u60a8\u5e0c\u671b\u6062\u590d\u8bad\u7ec3": 244, "\u60a8\u5df2\u7ecf\u6210\u529f\u5730\u5728pytorch\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u4e86\u591a\u4e2a\u6a21\u578b": 244, "\u672c\u6559\u7a0b\u4ecb\u7ecd\u4e86\u4e00\u4e2a\u65b0\u7684\u5b9e\u7528\u51fd\u6570": 245, "\u4ee5\u53ca\u5728": 245, "\u4e2d\u96c6\u6210\u5b83\u7684\u4e24\u4e2a\u65b0\u6269\u5c55\u70b9": 245, "\u4ee5\u4e0b\u7b80\u79f0\u4e3a": 245, "\u5b9e\u7528\u51fd\u6570": 245, "\u5b83\u63a5\u53d7\u4e24\u4e2a": 245, "\u5f20\u91cf\u5e76\u4ea4\u6362\u5b83\u4eec": 245, "t2": 245, "\u4ea4\u6362\u524d": 245, "\u4ea4\u6362\u540e": 245, "\u4ea4\u6362\u4e86\u4e24\u4e2a\u5f20\u91cf\u7684": 245, "__slots__": 245, "\u4ee5\u53ca\u5b83\u4eec\u76f8\u5173\u7684": 245, "\u4e4b\u5916\u7684": 245, "\u5bf9\u8c61\u6301\u6709\u8be5\u6a21\u5757\u53c2\u6570\u7684\u5f15\u7528\u65f6": 245, "\u6b64\u5b9e\u7528\u51fd\u6570\u5c31\u5f88\u6709\u7528": 245, "\u5c31\u5730\u4fee\u6539\u4e86\u4efb\u4f55\u53c2\u6570": 245, "\u6301\u6709\u8fd9\u4e9b\u53c2\u6570\u5f15\u7528\u7684\u5bf9\u8c61\u5c06\u65e0\u6cd5\u770b\u5230\u66f4\u6539": 245, "\u4e00\u4e2a\u5178\u578b\u7684\u4f8b\u5b50\u662f\u4f18\u5316\u5668": 245, "\u5b83\u6301\u6709": 245, "\u53c2\u6570\u7684\u5f15\u7528": 245, "\u8fd9\u4f1a\u5bfc\u81f4\u4e00\u4e2a\u6f5c\u5728\u7684\u6b63\u786e\u6027\u95ee\u9898": 245, "\u4f1a\u65e0\u9519\u8bef\u8fd0\u884c": 245, "\u7684\u6743\u91cd\u4e0d\u4f1a\u88ab\u66f4\u65b0": 245, "\u4e2d\u7684\u6743\u91cd": 245, "\u4f18\u5316\u5668\u4e2d\u7684\u6743\u91cd": 245, "\u8fd9\u5305\u62ec\u6539\u53d8\u6a21\u5757\u8bbe\u5907\u7684\u65b9\u6cd5": 245, "\u6539\u53d8\u6a21\u5757": 245, "\u7684\u65b9\u6cd5": 245, "\u4ee5\u53ca\u5141\u8bb8\u6a21\u5757\u5b9e\u4f8b\u5316\u7684\u65b9\u6cd5": 245, "\u4e4d\u4e00\u770b": 245, "\u8fd9\u4e9b\u65b9\u6cd5\u80fd\u591f\u5c31\u5730\u4fee\u6539\u6a21\u5757\u7684\u53c2\u6570\u53ef\u80fd\u770b\u8d77\u6765\u4e0d\u592a\u76f4\u89c2": 245, "\u73b0\u6709\u7684\u65b9\u6cd5\u662f\u4f7f\u7528\u4e00\u79cd\u8ffd\u6eaf\u5230": 245, "\u6700\u521d\u51e0\u5929\u7684\u4e11\u964b\u9ed1\u5ba2\u624b\u6bb5": 245, "\u503c\u5f97\u6ce8\u610f\u7684\u662f": 245, "\u73b0\u6709\u65b9\u6cd5\u5728\u4ee5\u4e0b\u60c5\u51b5\u4e0b\u65e0\u6cd5\u5de5\u4f5c": 245, "__torch_dispatch__": 245, "\u5b50\u7c7b": [245, 256], "new_param": 245, "\u5bf9\u4e8e\u5177\u6709\u7279\u6b8a": 245, "\u8868\u793a\u7684\u5f20\u91cf": 245, "\u5982\u7a00\u758f\u5f20\u91cf\u548c": 245, "\u5728\u672c\u6559\u7a0b\u7684\u4e0b\u4e00\u90e8\u5206": 245, "\u6211\u4eec\u5c06\u5b9a\u4e49\u4e00\u4e2a\u73a9\u5177": 245, "myquantizedlinearweight": 245, "\u6765\u8868\u793a\u91cf\u5316\u7684\u7ebf\u6027\u6743\u91cd": 245, "\u5728\u672c\u6559\u7a0b\u7684\u5269\u4f59\u90e8\u5206": 245, "\u6211\u4eec\u5c06\u4f7f\u7528\u8fd9\u4e2a\u5b50\u7c7b\u8fdb\u884c\u8bf4\u660e": 245, "\u4e3a\u7b80\u6d01\u8d77\u89c1": 245, "\u6211\u4eec\u7701\u7565\u4e86\u5927\u90e8\u5206": 245, "\u5b9e\u73b0": [245, 248], "__new__": 245, "_make_wrapper_subclass": 245, "storage_offset": 245, "_to_copi": 245, "new_elem": 245, "\u67d0\u4e9b\u64cd\u4f5c\u7684\u5b9e\u73b0\u5c06\u6dfb\u52a0\u5230": 245, "op_tabl": 245, "\u6211\u4eec\u5728\u6b64\u7701\u7565": 245, "\u4e0d\u652f\u6301\u7684\u51fd\u6570": 245, "\u5176\u6743\u91cd\u662f": 245, "\u7136\u540e\u5c1d\u8bd5\u5c06\u5176\u8f6c\u6362\u4e3a": 245, "\u89c2\u5bdf\u5230\u6743\u91cd\u7684": 245, "\u5982\u9884\u671f\u822c\u6539\u53d8\u4e86": 245, "\u4f46\u662f\u5b50\u7c7b\u7684\u6709\u6548\u8f7d\u8377": 245, "\u6ca1\u6709\u6539\u53d8": 245, "\u6211\u4eec\u5f15\u5165\u4e86\u4e00\u4e2a\u5168\u5c40\u914d\u7f6e": 245, "\u5b83\u5c06\u4f7f\u7528": 245, "\u4ea4\u6362\u6a21\u5757\u7684\u53c2\u6570": 245, "\u540c\u65f6\u4fdd\u7559": 245, "\u8bbe\u7f6e\u4e2d\u7684\u5f15\u7528": 245, "\u8bbe\u7f6e\u6b64\u914d\u7f6e\u540e": 245, "\u5728\u8f6c\u6362\u671f\u95f4\u5c06\u4f7f\u7528": 245, "\u4ece\u800c\u786e\u4fdd\u6709\u6548\u8f7d\u8377\u7684": 245, "\u6b63\u786e\u8f6c\u6362": 245, "\u6839\u636e\u4f20\u9012\u7ed9": 245, "\u5173\u952e\u5b57\u53c2\u6570\u7684\u503c": 245, "\u6709\u4e24\u79cd\u65b9\u5f0f\u52a0\u8f7d": 245, "\u4fdd\u7559": 245, "\u7684\u5c5e\u6027": 245, "\u53ea\u4ece": 245, "param_nam": 245, "\u4e2d\u83b7\u53d6\u503c": 245, "\u7684\u5c5e\u6027\u548c\u503c": 245, "\u8fd9\u4e9b\u5206\u522b\u662f\u901a\u8fc7\u5c31\u5730": 245, "__setattr__": 245, "\u5728\u73b0\u6709\u5b9e\u73b0\u4e2d": 245, "\u6bcf\u79cd\u65b9\u6cd5\u90fd\u6709\u81ea\u5df1\u7684\u9650\u5236": 245, "\u8981\u6c42": 245, "\u4e2d\u7684\u53c2\u6570\u7c7b\u578b": 245, "\u5fc5\u987b\u4e0e\u6a21\u5757\u4e2d\u7684\u53c2\u6570\u7c7b\u578b\u76f8\u540c": 245, "\u8981\u6c42\u5728": 245, "\u521d\u59cb\u5316\u4efb\u4f55\u6301\u6709\u6a21\u5757\u53c2\u6570\u5f15\u7528\u7684\u5bf9\u8c61": 245, "\u6211\u4eec\u901a\u8fc7\u5728": 245, "\u4e2d\u6dfb\u52a0": 245, "\u8def\u5f84\u5e76\u5f15\u5165\u65b0\u7684\u6269\u5c55\u70b9": 245, "module_load": 245, "\u6765\u89e3\u51b3\u8fd9\u4e24\u4e2a\u9650\u5236": 245, "\u5f53\u542f\u7528\u4e0a\u8ff0": 245, "__torch_function__": 245, "\u5904\u7406\u7a0b\u5e8f": 245, "\u4e2d\u7684\u503c\u5e94\u7528\u81ea\u5b9a\u4e49\u8f6c\u6362": 245, "\u8f6c\u6362\u7684\u7ed3\u679c\u5c06\u4e0e\u6a21\u5757\u4e2d\u7684\u53c2\u6570\u4ea4\u6362": 245, "\u5728\u4e0b\u9762\u7684\u793a\u4f8b\u4e2d": 245, "\u6211\u4eec\u5c06\u4f7f\u7528\u4e0a\u9762\u5b9a\u4e49\u7684": 245, "\u6765\u8bf4\u660e\u5982\u4f55\u4f7f\u7528\u8fd9\u4e9b\u529f\u80fd\u5728\u52a0\u8f7d": 245, "\u65f6\u5bf9\u7ebf\u6027\u5c42\u7684\u6743\u91cd\u5e94\u7528\u81ea\u5b9a\u4e49\u91cf\u5316\u65b9\u6848": 245, "\u56de\u987e\u4e00\u4e0b": 245, "\u5728\u672c\u4f8b\u4e2d\u662f": 245, "param_kei": 245, "\u5219\u4f1a\u8c03\u7528": 245, "\u5047\u8bbe\u6211\u4eec\u671f\u671b": 245, "\u5305\u542b\u666e\u901a\u5f20\u91cf": 245, "\u800c\u6a21\u5757\u5305\u542b": 245, "\u6211\u4eec\u5e0c\u671b\u5c06": 245, "\u4e2d\u7684\u5f20\u91cf\u8f6c\u6362\u4e3a\u5b50\u7c7b": 245, "\u90a3\u4e48\u6211\u4eec\u53ef\u4ee5\u4e3a": 245, "\u5b9a\u4e49": 245, "custom_torch_funct": 245, "dest": 245, "disabletorchfunctionsubclass": 245, "\u8ba9\u6211\u4eec\u5728": 245, "\u8bbe\u5907\u4e0a\u521b\u5efa\u4e00\u4e2a\u6a21\u578b\u6846\u67b6": 245, "\u4ee5\u907f\u514d\u5b9e\u4f8b\u5316\u5b58\u50a8": 245, "\u6211\u4eec\u5c06\u6a21\u5757\u4e2d\u7684\u6240\u6709\u6743\u91cd\u8f6c\u6362\u4e3a": 245, "\u540c\u65f6\u4fdd\u7559\u504f\u7f6e\u4e0d\u53d8": 245, "\u7136\u540e\u6211\u4eec\u53ef\u4ee5\u52a0\u8f7d": 245, "\u6ce8\u610f\u6211\u4eec\u4f7f\u7528": 245, "\u56e0\u4e3a\u5bf9\u4e8e\u504f\u7f6e": 245, "\u6211\u4eec\u5e0c\u671b\u4fdd\u7559": 245, "\u4e2d\u5f20\u91cf\u7684\u5c5e\u6027": 245, "\u6211\u4eec\u4e0d\u5e0c\u671b\u504f\u7f6e\u5728\u52a0\u8f7d\u540e\u4f4d\u4e8e": 245, "\u8bbe\u5907\u4e0a": 245, "\u4e4b\u524d\u7684": 245, "\u4e4b\u540e\u7684": 245, "\u4e0a\u9762\u662f\u4e00\u4e2a\u5982\u4f55\u4f7f\u7528": 245, "\u4e2d\u7684\u65b0\u6269\u5c55\u70b9\u7684\u73a9\u5177\u793a\u4f8b": 245, "\u6211\u4eec\u8fd8\u53ef\u4ee5\u60f3\u8c61\u5176\u4ed6\u573a\u666f": 245, "\u4f8b\u5982\u5f53": 245, "\u4e2d\u6709\u5f20\u91cf\u5b50\u7c7b\u800c\u6a21\u5757\u4e2d\u6709\u666e\u901a": 245, "\u5f20\u91cf\u65f6": 245, "\u6216\u8005\u4e24\u8005\u90fd\u662f\u5f20\u91cf\u5b50\u7c7b\u65f6": 245, "\u6839\u636e\u4f7f\u7528\u573a\u666f": 245, "\u6211\u4eec\u53ef\u4ee5\u5b9a\u4e49": 245, "\u6765\u5e94\u7528\u6240\u9700\u7684\u8f6c\u6362": 245, "\u4e2d\u4fdd\u7559\u53c2\u6570\u5f15\u7528\u7684\u91cd\u8981\u6027": 245, "\u4ee5\u53ca\u5982\u4f55\u4f7f\u7528\u7531": 245, "\u63a7\u5236\u7684\u4e24\u4e2a\u65b0\u6269\u5c55\u70b9": 245, "tensorboard\u662f\u4e00\u4e2a\u7528\u4e8e\u673a\u5668\u5b66\u4e60\u5b9e\u9a8c\u7684\u53ef\u89c6\u5316\u5de5\u5177\u5305": 246, "tensorboard\u5141\u8bb8\u8ddf\u8e2a\u548c\u53ef\u89c6\u5316\u6307\u6807": 246, "\u5982\u635f\u5931\u548c\u51c6\u786e\u7387": 246, "\u53ef\u89c6\u5316\u6a21\u578b\u56fe": 246, "\u67e5\u770b\u76f4\u65b9\u56fe": 246, "\u663e\u793a\u56fe\u50cf\u7b49": 246, "\u6211\u4eec\u5c06\u4ecb\u7ecdtensorboard\u7684\u5b89\u88c5": 246, "\u5728pytorch\u4e2d\u7684\u57fa\u672c\u7528\u6cd5": 246, "\u4ee5\u53ca\u5982\u4f55\u5728tensorboard": 246, "ui\u4e2d\u53ef\u89c6\u5316\u60a8\u8bb0\u5f55\u7684\u6570\u636e": 246, "\u5e94\u5b89\u88c5pytorch\u4ee5\u5c06\u6a21\u578b\u548c\u6307\u6807\u8bb0\u5f55\u5230tensorboard\u65e5\u5fd7": 246, "\u4ee5\u4e0b\u547d\u4ee4\u5c06\u901a\u8fc7anaconda": 246, "\u63a8\u8350": 246, "\u5b89\u88c5pytorch": 246, "\u6216\u8005\u4f7f\u7528pip": 246, "\u73b0\u5728\u8ba9\u6211\u4eec\u5c1d\u8bd5\u5728pytorch\u4e2d\u4f7f\u7528tensorboard": 246, "\u5728\u8bb0\u5f55\u4efb\u4f55\u5185\u5bb9\u4e4b\u524d": 246, "\u6211\u4eec\u9700\u8981\u521b\u5efa\u4e00\u4e2a": 246, "\u5199\u5165\u5668\u9ed8\u8ba4\u5c06\u8f93\u51fa\u5230": 246, "\u5728\u673a\u5668\u5b66\u4e60\u4e2d": 246, "\u4e86\u89e3\u5173\u952e\u6307\u6807": 246, "\u5982\u635f\u5931": 246, "\u53ca\u5176\u5728\u8bad\u7ec3\u671f\u95f4\u7684\u53d8\u5316\u975e\u5e38\u91cd\u8981": 246, "\u6807\u91cf\u53ef\u7528\u4e8e\u4fdd\u5b58\u6bcf\u4e2a\u8bad\u7ec3\u6b65\u9aa4\u7684\u635f\u5931\u503c\u6216\u6bcf\u4e2aepoch\u7684\u51c6\u786e\u7387": 246, "\u8981\u8bb0\u5f55\u6807\u91cf\u503c": 246, "scalar_valu": 246, "walltim": 246, "\u8ba9\u6211\u4eec\u521b\u5efa\u4e00\u4e2a\u7b80\u5355\u7684\u7ebf\u6027\u56de\u5f52\u8bad\u7ec3": 246, "\u5e76": [246, 252], "\u8bb0\u5f55\u635f\u5931\u503c": 246, "\u65b9\u6cd5\u4ee5\u786e\u4fdd\u6240\u6709\u5f85\u5904\u7406\u4e8b\u4ef6": 246, "\u5df2\u5199\u5165\u78c1\u76d8": 246, "\u4ee5\u4e86\u89e3\u60a8\u53ef\u4ee5\u8bb0\u5f55\u7684\u66f4\u591atensorboard\u53ef\u89c6\u5316\u7c7b\u578b": 246, "\u5982\u679c\u60a8\u4e0d\u518d\u9700\u8981\u6458\u8981\u5199\u5165\u5668": 246, "\u901a\u8fc7\u547d\u4ee4\u884c\u5b89\u88c5tensorboard\u4ee5\u53ef\u89c6\u5316\u60a8\u8bb0\u5f55\u7684\u6570\u636e": 246, "\u542f\u52a8tensorboard": 246, "\u6307\u5b9a\u60a8\u4e4b\u524d\u4f7f\u7528\u7684\u6839\u65e5\u5fd7\u76ee\u5f55": 246, "\u6307\u5411tensorboard\u5c06\u67e5\u627e\u53ef\u663e\u793a\u7684\u4e8b\u4ef6\u6587\u4ef6\u7684\u76ee\u5f55": 246, "tensorboard\u5c06\u9012\u5f52\u904d\u5386": 246, "\u6839\u76ee\u5f55\u4e0b\u7684\u76ee\u5f55\u7ed3\u6784": 246, "\u5bfb\u627e": 246, "tfevent": 246, "\u8f6c\u5230\u5b83\u63d0\u4f9b\u7684url\u6216": 246, "\u6b64\u4eea\u8868\u677f\u663e\u793a\u4e86\u635f\u5931\u548c\u51c6\u786e\u7387\u5982\u4f55\u968f\u7740\u6bcf\u4e2aepoch\u800c\u53d8\u5316": 246, "\u60a8\u53ef\u4ee5\u4f7f\u7528\u5b83\u6765\u8ddf\u8e2a\u8bad\u7ec3\u901f\u5ea6": 246, "\u5b66\u4e60\u7387\u548c\u5176\u4ed6\u6807\u91cf\u503c": 246, "\u6bd4\u8f83\u4e0d\u540c\u8bad\u7ec3\u8fd0\u884c\u7684\u8fd9\u4e9b\u6307\u6807\u6709\u52a9\u4e8e\u6539\u8fdb\u60a8\u7684\u6a21\u578b": 246, "\u4f7f\u7528tensorboard\u53ef\u89c6\u5316\u6a21\u578b": 246, "tensorboard_with_pytorch": 246, "\u6211\u4eec\u5c06\u4ecb\u7ecd": 247, "\u7684\u4e3b\u8981api": 247, "timer\u57fa\u4e8e": 247, "\u5e76\u505a\u4e86\u4e00\u4e9bpytorch\u7279\u5b9a\u7684\u4fee\u6539": 247, "\u672c\u6559\u7a0b\u4e0d\u8981\u6c42\u8bfb\u8005\u719f\u6089\u5185\u7f6e\u7684": 247, "\u4f46\u5047\u8bbe\u8bfb\u8005\u719f\u6089\u6027\u80fd\u5de5\u4f5c\u7684\u57fa\u7840\u77e5\u8bc6": 247, "\u6709\u5173\u66f4\u5168\u9762\u7684\u6027\u80fd\u8c03\u4f18\u6559\u7a0b": 247, "\u5185\u5bb9": 247, "\u4f7f\u7528callgrind\u8fdb\u884ca": 247, "\u7528\u4e8e\u5b9a\u4e49\u4efb\u52a1": 247, "\u5c06\u5728\u5faa\u73af\u4e2d\u8fd0\u884c\u5e76\u8ba1\u65f6\u7684\u8ba1\u7b97": 247, "\u5c06\u5728\u8c03\u7528\u6d4b\u91cf\u5faa\u73af\u4e4b\u524d\u8fd0\u884c": 247, "\u7528\u4e8e\u586b\u5145": 247, "\u6240\u9700\u7684\u4efb\u4f55\u72b6\u6001": 247, "\u4ece\u5916\u90e8\u4f5c\u7528\u57df\u4f20\u9012\u53d8\u91cf": 247, "\u63a7\u5236pytorch\u4f7f\u7528\u7684\u7ebf\u7a0b\u6570": 247, "\u9ed8\u8ba4\u503c": 247, "\u6b64\u65b9\u6cd5\u5c06\u5904\u7406\u8bf8\u5982\u9009\u62e9\u5408\u9002\u7684\u91cd\u590d\u6b21\u6570": 247, "\u56fa\u5b9a\u7ebf\u7a0b\u6570\u4ee5\u53ca\u63d0\u4f9b\u7ed3\u679c\u7684\u65b9\u4fbf\u8868\u793a\u7b49\u7ec6\u8282": 247, "measurement\u5bf9\u8c61\u5b58\u50a8\u591a\u6b21\u91cd\u590d\u7684\u7ed3\u679c": 247, "\u5e76\u63d0\u4f9b\u5404\u79cd\u5b9e\u7528\u529f\u80fd": 247, "0x7f1929a38ed0": 247, "iqr": 247, "424": 247, "cpp_timer": 247, "0x7f192b019ed0": 247, "\u4e0d\u51fa\u6240\u6599": 247, "\u4ee3\u7801\u7247\u6bb5\u7684\u901f\u5ea6\u66f4\u5feb": 247, "\u53d8\u5316\u4e5f\u66f4\u5c0f": 247, "\u4e3a\u4e86\u6df1\u5165\u8c03\u67e5": 247, "\u5c01\u88c5\u4e86": 247, "\u4ee5\u6536\u96c6\u6307\u4ee4\u8ba1\u6570": 247, "\u8fd9\u4e9b\u6307\u4ee4\u8ba1\u6570\u975e\u5e38\u6709\u7528": 247, "\u56e0\u4e3a\u5b83\u4eec\u63d0\u4f9b\u4e86\u7ec6\u7c92\u5ea6\u548c\u786e\u5b9a\u6027\u7684": 247, "\u6216\u5728python\u7684\u60c5\u51b5\u4e0b\u566a\u58f0\u5f88\u4f4e\u7684": 247, "\u89c1\u89e3": 247, "\u8bf4\u660e\u4e86\u4ee3\u7801\u7247\u6bb5\u662f\u5982\u4f55\u8fd0\u884c\u7684": 247, "0x7f1929a35850": 247, "563600": 247, "\u7684\u5b57\u7b26\u4e32\u8868\u793a\u5f62\u5f0f\u7c7b\u4f3c\u4e8e": 247, "\u662f\u4e00\u4e2apython\u6982\u5ff5": 247, "\u79fb\u9664\u4e86\u5728cpython\u89e3\u91ca\u5668\u4e2d\u5df2\u77e5\u7684\u566a\u58f0\u8c03\u7528": 247, "\u4e3a\u4e86\u8fdb\u884c\u66f4\u8be6\u7ec6\u7684\u5206\u6790": 247, "\u6211\u4eec\u9700\u8981\u67e5\u770b\u7279\u5b9a\u7684\u8c03\u7528": 247, "\u8fd4\u56de\u4e00\u4e2a": 247, "\u4ee5\u4fbf\u4e8e\u6b64\u64cd\u4f5c": 247, "\u4ece\u6982\u5ff5\u4e0a\u8bb2": 247, "\u53ef\u4ee5\u88ab\u89c6\u4e3a\u4e00\u4e2a\u5e26\u6709\u4e00\u4e9b\u5b9e\u7528\u65b9\u6cd5\u7684\u6210\u5bf9\u5143\u7ec4": 247, "\u5176\u4e2d\u6bcf\u4e00\u5bf9\u90fd\u662f": 247, "\u6307\u4ee4\u6570\u91cf": 247, "\u6587\u4ef6\u8def\u5f84\u548c\u51fd\u6570\u540d\u79f0": 247, "\u5173\u4e8e\u8def\u5f84\u7684\u8bf4\u660e": 247, "\u901a\u5e38\u6211\u4eec\u4e0d\u5173\u5fc3\u7edd\u5bf9\u8def\u5f84": 247, "\u4e00\u4e2a\u4e58\u6cd5\u8c03\u7528\u7684\u5b8c\u6574\u8def\u5f84\u548c\u51fd\u6570\u540d\u662f\u8fd9\u6837\u7684": 247, "tensormethod": 247, "ab_ref": 247, "\u800c\u5b9e\u9645\u4e0a": 247, "\u6211\u4eec\u611f\u5174\u8da3\u7684\u6240\u6709\u4fe1\u606f\u90fd\u53ef\u4ee5\u8868\u793a\u4e3a": 247, "\u4f1a\u5c3d\u6700\u5927\u52aa\u529b\u53bb\u9664\u6587\u4ef6\u8def\u5f84\u4e2d\u4f4e\u4fe1\u53f7\u90e8\u5206": 247, "\u4ee5\u53ca\u5171\u4eab\u5bf9\u8c61": 247, "\u901a\u5e38\u5efa\u8bae\u4f7f\u7528": 247, "inclusive_stat": 247, "0x7f192a6dfd90": 247, "47264": 247, "_int_fre": 247, "25963": 247, "_int_malloc": 247, "19900": 247, "tensorit": 247, "tensoriteratorconfig": 247, "18000": 247, "__tls_get_addr": 247, "13500": 247, "malloc": [247, 248], "11300": 247, "smallvector": 247, "10345": 247, "_int_memalign": 247, "9200": 247, "iteratorbas": 247, "get_strid": 247, "173472": 247, "\u8fd9\u4ecd\u7136\u6709\u5f88\u591a\u5185\u5bb9\u9700\u8981\u6d88\u5316": 247, "\u65b9\u6cd5\u6765\u53bb\u9664\u4e00\u4e9b\u51fd\u6570\u8def\u5f84": 247, "\u5e76\u4e22\u5f03\u51fd\u6570\u8c03\u7528": 247, "\u8fd9\u6837\u505a\u65f6": 247, "\u4efb\u4f55\u51b2\u7a81": 247, "\u90fd\u5c06\u6620\u5c04\u5230": 247, "\u7684\u8ba1\u6570\u5c06\u88ab\u7d2f\u52a0": 247, "group_by_fil": 247, "fn_name": 247, "fn_dir": 247, "fn_file": 247, "0x7f192995d750": 247, "118200": 247, "tensoriter": 247, "65000": 247, "20900": 247, "15900": 247, "15100": 247, "cpualloc": 247, "12500": 247, "352327": 247, "\u6307\u4ee4\u8ba1\u6570\u6700\u6709\u7528\u7684\u7279\u6027\u4e4b\u4e00\u662f\u5141\u8bb8\u5bf9\u8ba1\u7b97\u8fdb\u884c\u7ec6\u7c92\u5ea6\u6bd4\u8f83": 247, "\u8fd9\u5728\u5206\u6790\u6027\u80fd\u65f6\u81f3\u5173\u91cd\u8981": 247, "\u4e3a\u4e86\u770b\u5230\u8fd9\u4e00\u70b9": 247, "\u8ba9\u6211\u4eec\u5c06\u4e24\u4e2a\u5927\u5c0f\u4e3a128\u7684\u5f20\u91cf\u76f8\u4e58\u4e0e\u4e00\u4e2a": 247, "\u7684\u4e58\u6cd5\u8fdb\u884c\u6bd4\u8f83": 247, "\u540e\u8005\u5c06\u5bf9\u7b2c\u4e8c\u4e2a\u5f20\u91cf\u8fdb\u884c\u5e7f\u64ad": 247, "a0": 247, "b0": 247, "a1": 247, "a127": 247, "broadcasting_stat": 247, "\u6211\u4eec\u7ecf\u5e38\u9700\u8981\u5bf9\u4e24\u79cd\u4e0d\u540c\u7684\u73af\u5883\u8fdb\u884ca": 247, "\u4f8b\u5982\u6d4b\u8bd5\u4e00\u4e2apr": 247, "\u6216\u5c1d\u8bd5\u4e0d\u540c\u7684\u7f16\u8bd1\u6807\u5fd7": 247, "\u8fd9\u5f88\u7b80\u5355": 247, "\u90fd\u662f\u53efpickle\u5316\u7684": 247, "\u53ea\u9700\u5728\u6bcf\u4e2a\u73af\u5883\u4e2d\u4fdd\u5b58\u6d4b\u91cf\u7ed3\u679c": 247, "\u7136\u540e\u5728\u5355\u4e2a\u8fdb\u7a0b\u4e2d\u52a0\u8f7d\u5b83\u4eec\u8fdb\u884c\u5206\u6790": 247, "extract_fn_nam": 247, "17600": 247, "tensoriteratorbas": 247, "compute_strid": 247, "12700": 247, "allocate_or_resize_output": 247, "10200": 247, "smallvectorimpl": 247, "7400": 247, "infer_s": 247, "6200": 247, "invert_perm": 247, "6064": 247, "reorder_dimens": 247, "4300": 247, "compatible_strid": 247, "check_tensor_options_and_extract_memory_format": 247, "__memcmp_avx2_movb": 247, "empty_cpu": 247, "1300": 247, "2400": 247, "6100": 247, "compute_fast_setup_typ": 247, "22600": 247, "fast_set_up": 247, "58091": 247, "\u6240\u4ee5\u5e7f\u64ad\u7248\u672c\u6bcf\u6b21\u8c03\u7528\u9700\u8981\u989d\u5916580\u6761\u6307\u4ee4": 247, "\u56de\u60f3\u4e00\u4e0b\u6211\u4eec\u6536\u96c6\u4e86100\u6b21\u8fd0\u884c\u7684\u6837\u672c": 247, "\u7ea6\u536010": 247, "\u6709\u76f8\u5f53\u591a\u7684": 247, "\u6240\u4ee5\u8ba9\u6211\u4eec\u6df1\u5165\u7814\u7a76\u8fd9\u4e9b\u8c03\u7528": 247, "\u53ef\u4ee5\u5f88\u5bb9\u6613\u5730\u505a\u5230\u8fd9\u4e00\u70b9": 247, "0x7f19299544d0": 247, "compute_shap": 247, "2300": 247, "coalesce_dimens": 247, "\u8fd9\u8bf4\u660e\u4e86\u6b63\u5728\u53d1\u751f\u7684\u60c5\u51b5": 247, "\u8bbe\u7f6e\u4e2d\u6709\u4e00\u6761\u5feb\u901f\u8def\u5f84": 247, "\u4f46\u5728": 247, "\u7684\u60c5\u51b5\u4e0b": 247, "\u6211\u4eec\u9519\u8fc7\u4e86\u5b83": 247, "\u4e0d\u5f97\u4e0d\u8fdb\u884c\u66f4\u901a\u7528\u7684\u5206\u6790": 247, "\u8fd9\u66f4\u52a0\u6602\u8d35": 247, "\u88ab\u8fc7\u6ee4\u5668\u7701\u7565\u7684\u6700\u663e\u8457\u7684\u8c03\u7528\u662f": 247, "\u8fd9\u4e5f\u662f\u66f4\u901a\u7528\u8bbe\u7f6e\u7684\u4e00\u90e8\u5206": 247, "\u6765\u6536\u96c6\u5899\u4e0a\u65f6\u95f4": 247, "\u5982\u679c\u8ba1\u65f6\u53d8\u5316\u8fc7\u9ad8": 247, "\u8bf7\u589e\u52a0": 247, "\u6216\u8005\u5982\u679c\u65b9\u4fbf\u7684\u8bdd": 247, "\u5bf9\u4e8e\u7ec6\u7c92\u5ea6\u5206\u6790": 247, "\u6765\u6d4b\u91cf\u6307\u4ee4\u8ba1\u6570": 247, "__add__": 247, "__sub__": 247, "\u6765\u5207\u5206\u548c\u5904\u7406\u5b83\u4eec": 247, "\u9690\u542b\u7684": 247, "\u4e0d\u5305\u542b": 247, "\u5c06\u81ea\u52a8\u586b\u5145\u5b83": 247, "\u8fd9\u610f\u5473\u7740": 247, "\u5c06\u6b63\u5e38\u5de5\u4f5c": 247, "\u4e0d\u8fc7\u5176\u4ed6\u5bfc\u5165\u5e94\u8be5\u653e\u5728": 247, "\u4e3a\u4e86\u63d0\u4f9b\u6709\u5173\u6267\u884c\u7684": 247, "\u5185\u90e8\u4fe1\u606f\u7684\u5b8c\u6574\u4fe1\u606f": 247, "\u9700\u8981\u8bbf\u95ee": 247, "\u8c03\u8bd5\u7b26\u53f7": 247, "\u8fd9\u662f\u901a\u8fc7\u5728\u6784\u5efa": 247, "\u65f6\u8bbe\u7f6e": 247, "\u6765\u5b9e\u73b0\u7684": 247, "\u5426\u5219\u51fd\u6570\u8c03\u7528\u5c06\u662f\u4e0d\u900f\u660e\u7684": 247, "\u751f\u6210\u7684": 247, "\u5c06\u5728\u7f3a\u5c11\u8c03\u8bd5\u7b26\u53f7\u65f6\u53d1\u51fa\u8b66\u544a": 247, "timer_quick_start": 247, "szymon": 248, "migacz": 248, "\u6027\u80fd\u8c03\u4f18\u6307\u5357\u662f\u4e00\u7ec4\u4f18\u5316\u548c\u6700\u4f73\u5b9e\u8df5": 248, "\u53ef\u4ee5\u52a0\u901fpytorch\u4e2d\u6df1\u5ea6\u5b66\u4e60\u6a21\u578b\u7684\u8bad\u7ec3\u548c\u63a8\u7406": 248, "\u63d0\u51fa\u7684\u6280\u672f\u901a\u5e38\u53ea\u9700\u8981\u66f4\u6539\u51e0\u884c\u4ee3\u7801": 248, "\u5c31\u53ef\u4ee5\u5e94\u7528\u4e8e\u5404\u4e2a\u9886\u57df\u7684\u5e7f\u6cdb\u6df1\u5ea6\u5b66\u4e60\u6a21\u578b": 248, "\u652f\u6301\u5728\u5355\u72ec\u7684\u5de5\u4f5c\u5b50\u8fdb\u7a0b\u4e2d\u5f02\u6b65\u52a0\u8f7d\u6570\u636e\u548c\u8fdb\u884c\u6570\u636e\u589e\u5f3a": 248, "\u7684\u9ed8\u8ba4\u8bbe\u7f6e\u662f": 248, "\u8fd9\u610f\u5473\u7740\u6570\u636e\u52a0\u8f7d\u662f\u540c\u6b65\u7684": 248, "\u5e76\u5728\u4e3b\u8fdb\u7a0b\u4e2d\u5b8c\u6210": 248, "\u4e3b\u8bad\u7ec3\u8fdb\u7a0b\u5fc5\u987b\u7b49\u5f85\u6570\u636e\u53ef\u7528\u624d\u80fd\u7ee7\u7eed\u6267\u884c": 248, "\u53ef\u542f\u7528\u5f02\u6b65\u6570\u636e\u52a0\u8f7d": 248, "\u5e76\u5b9e\u73b0\u8bad\u7ec3\u548c\u6570\u636e\u52a0\u8f7d\u4e4b\u95f4\u7684\u91cd\u53e0": 248, "\u5e94\u6839\u636e\u5de5\u4f5c\u8d1f\u8f7d": 248, "\u548c\u8bad\u7ec3\u6570\u636e\u7684\u4f4d\u7f6e\u8fdb\u884c\u8c03\u6574": 248, "\u6700\u597d\u8bbe\u7f6e": 248, "\u8fd9\u4f1a\u6307\u793a": 248, "\u4f7f\u7528\u9501\u9875\u5185\u5b58": 248, "\u5e76\u542f\u7528\u4ece\u4e3b\u673a\u5230": 248, "\u7684\u66f4\u5feb\u548c\u5f02\u6b65\u5185\u5b58\u590d\u5236": 248, "\u4f1a\u4fdd\u5b58\u6d89\u53ca\u9700\u8981\u68af\u5ea6\u7684\u5f20\u91cf\u7684\u6240\u6709\u64cd\u4f5c\u7684\u4e2d\u95f4\u7f13\u51b2\u533a": 248, "\u901a\u5e38\u5728\u9a8c\u8bc1\u6216\u63a8\u7406\u65f6\u4e0d\u9700\u8981\u68af\u5ea6": 248, "\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668\u53ef\u5e94\u7528\u4e8e\u7981\u7528\u6307\u5b9a\u4ee3\u7801\u5757\u5185\u7684\u68af\u5ea6\u8ba1\u7b97": 248, "\u8fd9\u53ef\u52a0\u5feb\u6267\u884c\u901f\u5ea6\u5e76\u51cf\u5c11\u6240\u9700\u5185\u5b58\u91cf": 248, "\u4e5f\u53ef\u4ee5\u7528\u4f5c\u51fd\u6570\u88c5\u9970\u5668": 248, "\u5177\u6709": 248, "\u5c42\u76f4\u63a5\u540e\u8ddf": 248, "\u5219\u5377\u79ef\u4e2d\u7684\u504f\u7f6e\u662f\u4e0d\u9700\u8981\u7684": 248, "\u8bf7\u6539\u7528": 248, "\u4e0d\u9700\u8981\u504f\u7f6e": 248, "\u56e0\u4e3a\u5728\u7b2c\u4e00\u6b65\u4e2d": 248, "\u4f1a\u51cf\u53bb\u5747\u503c": 248, "\u8fd9\u5b9e\u9645\u4e0a\u4f1a\u62b5\u6d88\u504f\u7f6e\u7684\u6548\u679c": 248, "\u53ea\u8981": 248, "\u6216\u5176\u4ed6\u5f52\u4e00\u5316\u5c42": 248, "\u5728\u4e0e\u5377\u79ef\u504f\u7f6e\u76f8\u540c\u7684\u7ef4\u5ea6\u4e0a\u8fdb\u884c\u5f52\u4e00\u5316": 248, "\u8fd9\u4e5f\u9002\u7528\u4e8e1d\u548c3d\u5377\u79ef": 248, "\u4e2d\u53ef\u7528\u7684\u6a21\u578b\u5df2\u7ecf\u5b9e\u73b0\u4e86\u8fd9\u79cd\u4f18\u5316": 248, "\u4e0d\u8981\u8c03\u7528": 248, "\u800c\u662f\u4f7f\u7528\u4ee5\u4e0b\u65b9\u6cd5\u6e05\u96f6\u68af\u5ea6": 248, "\u7b2c\u4e8c\u6bb5\u4ee3\u7801\u4e0d\u4f1a\u6e05\u96f6\u6bcf\u4e2a\u53c2\u6570\u7684\u5185\u5b58": 248, "\u800c\u4e14\u5728\u540e\u7eed\u7684\u53cd\u5411\u4f20\u64ad\u8fc7\u7a0b\u4e2d\u4f7f\u7528\u8d4b\u503c\u800c\u4e0d\u662f\u7d2f\u52a0\u6765\u5b58\u50a8\u68af\u5ea6": 248, "\u8fd9\u51cf\u5c11\u4e86\u5185\u5b58\u64cd\u4f5c\u7684\u6570\u91cf": 248, "\u5c06\u68af\u5ea6\u8bbe\u7f6e\u4e3a": 248, "\u4e0e\u5c06\u5176\u8bbe\u7f6e\u4e3a\u96f6\u6709\u7565\u5fae\u4e0d\u540c\u7684\u6570\u503c\u884c\u4e3a": 248, "\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f\u8bf7\u53c2\u9605": 248, "\u70b9\u8fd0\u7b97": 248, "\u5143\u7d20\u7ea7\u52a0\u6cd5": 248, "\u6570\u5b66\u51fd\u6570": 248, "\u53ef\u4ee5\u878d\u5408\u4e3a\u5355\u4e2a\u5185\u6838": 248, "\u4ece\u800c\u5206\u644a\u5185\u5b58\u8bbf\u95ee\u65f6\u95f4\u548c\u5185\u6838\u542f\u52a8\u65f6\u95f4": 248, "\u53ef\u4ee5\u81ea\u52a8\u878d\u5408\u5185\u6838": 248, "\u5c3d\u7ba1\u7f16\u8bd1\u5668\u4e2d\u53ef\u80fd\u8fd8\u6709\u672a\u5b9e\u73b0\u7684\u5176\u4ed6\u878d\u5408\u673a\u4f1a": 248, "\u5e76\u4e14\u5e76\u975e\u6240\u6709\u8bbe\u5907\u7c7b\u578b\u90fd\u5f97\u5230\u540c\u7b49\u652f\u6301": 248, "\u70b9\u8fd0\u7b97\u662f\u5185\u5b58\u5bc6\u96c6\u578b\u7684": 248, "\u4f1a\u4e3a\u6bcf\u4e2a\u64cd\u4f5c\u542f\u52a8\u5355\u72ec\u7684\u5185\u6838": 248, "\u6bcf\u4e2a\u5185\u6838\u90fd\u4f1a\u4ece\u5185\u5b58\u52a0\u8f7d\u6570\u636e": 248, "\u6267\u884c\u8ba1\u7b97": 248, "\u8fd9\u4e00\u6b65\u901a\u5e38\u662f\u5ec9\u4ef7\u7684": 248, "\u5e76\u5c06\u7ed3\u679c\u5b58\u50a8\u56de\u5185\u5b58": 248, "\u878d\u5408\u7684\u7b97\u5b50\u53ea\u4e3a\u591a\u4e2a\u878d\u5408\u7684\u70b9\u8fd0\u7b97\u542f\u52a8\u4e00\u4e2a\u5185\u6838": 248, "\u5e76\u4e14\u53ea\u9700\u8981\u4e00\u6b21\u4ece\u5185\u5b58\u52a0\u8f7d": 248, "\u5b58\u50a8\u6570\u636e": 248, "\u8fd9\u4f7f\u5f97": 248, "\u975e\u5e38\u9002\u7528\u4e8e\u6fc0\u6d3b\u51fd\u6570": 248, "\u81ea\u5b9a\u4e49": 248, "\u5355\u5143\u7b49": 248, "\u5728\u6700\u7b80\u5355\u7684\u60c5\u51b5\u4e0b": 248, "\u53ef\u4ee5\u901a\u8fc7\u5c06": 248, "\u88c5\u9970\u5668\u5e94\u7528\u4e8e\u51fd\u6570\u5b9a\u4e49\u6765\u542f\u7528\u878d\u5408": 248, "fused_gelu": 248, "erf": 248, "41421": 248, "\u6709\u5173\u66f4\u9ad8\u7ea7\u7528\u6cd5": 248, "\u5f15\u5165\u4e86\u5bf9\u5377\u79ef\u7f51\u7edc": 248, "\u5185\u5b58\u683c\u5f0f\u7684\u652f\u6301": 248, "\u6b64\u683c\u5f0f\u65e8\u5728\u4e0e": 248, "\u7ed3\u5408\u4f7f\u7528": 248, "\u8fdb\u4e00\u6b65\u52a0\u901f\u4f7f\u7528": 248, "\u7684\u5377\u79ef\u795e\u7ecf\u7f51\u7edc": 248, "\u7684\u652f\u6301\u662f\u5b9e\u9a8c\u6027\u7684": 248, "\u4f46\u9884\u8ba1\u53ef\u4ee5\u7528\u4e8e\u6807\u51c6\u8ba1\u7b97\u673a\u89c6\u89c9\u6a21\u578b": 248, "\u8981\u5c06\u6a21\u578b\u8f6c\u6362\u4e3a": 248, "\u8bf7\u6309\u7167": 248, "\u4e2d\u7684\u8bf4\u660e\u64cd\u4f5c": 248, "\u8be5\u6559\u7a0b\u5305\u62ec\u4e00\u8282\u5173\u4e8e": 248, "\u8f6c\u6362\u73b0\u6709\u6a21\u578b": 248, "\u7f13\u51b2\u533a\u68c0\u67e5\u70b9\u662f\u4e00\u79cd\u6280\u672f": 248, "\u7528\u4e8e\u7f13\u89e3\u6a21\u578b\u8bad\u7ec3\u7684\u5185\u5b58\u5bb9\u91cf\u8d1f\u62c5": 248, "\u4e0e\u5b58\u50a8\u6240\u6709\u5c42\u7684\u8f93\u5165\u4ee5\u8ba1\u7b97\u53cd\u5411\u4f20\u64ad\u4e2d\u7684\u4e0a\u6e38\u68af\u5ea6\u4e0d\u540c": 248, "\u5b83\u5b58\u50a8\u5c11\u6570\u51e0\u5c42\u7684\u8f93\u5165": 248, "\u5176\u4f59\u5c42\u7684\u8f93\u5165\u5728\u53cd\u5411\u4f20\u64ad\u8fc7\u7a0b\u4e2d\u91cd\u65b0\u8ba1\u7b97": 248, "\u51cf\u5c11\u7684\u5185\u5b58\u9700\u6c42\u4f7f\u5f97\u53ef\u4ee5\u589e\u52a0\u6279\u91cf\u5927\u5c0f": 248, "\u4ece\u800c\u63d0\u9ad8\u5229\u7528\u7387": 248, "\u5e94\u8c28\u614e\u9009\u62e9\u68c0\u67e5\u70b9\u76ee\u6807": 248, "\u6700\u597d\u4e0d\u8981\u5b58\u50a8\u5177\u6709\u5c0f\u91cd\u65b0\u8ba1\u7b97\u6210\u672c\u7684\u5927\u578b\u5c42\u8f93\u51fa": 248, "\u793a\u4f8b\u76ee\u6807\u5c42\u5305\u62ec\u6fc0\u6d3b\u51fd\u6570": 248, "\u4e0b\u91c7\u6837\u4ee5\u53ca\u5177\u6709\u5c0f\u7d2f\u79ef\u6df1\u5ea6\u7684\u77e9\u9635": 248, "\u5411\u91cf\u8fd0\u7b97": 248, "\u652f\u6301\u539f\u751f": 248, "\u81ea\u52a8\u6267\u884c\u68c0\u67e5\u70b9\u548c\u91cd\u65b0\u8ba1\u7b97\u7684api": 248, "\u8bb8\u591apytorch": 248, "api\u65e8\u5728\u7528\u4e8e\u8c03\u8bd5": 248, "\u5728\u5e38\u89c4\u8bad\u7ec3\u8fd0\u884c\u65f6\u5e94\u8be5\u7981\u7528": 248, "\u5f02\u5e38\u68c0\u6d4b": 248, "detect_anomali": 248, "set_detect_anomali": 248, "\u4e0eprofiler\u76f8\u5173": 248, "emit_nvtx": 248, "numa\u6216\u975e\u5747\u5300\u5185\u5b58\u8bbf\u95ee\u662f\u4e00\u79cd\u5185\u5b58\u5e03\u5c40\u8bbe\u8ba1": 248, "\u7528\u4e8e\u591a\u5185\u5b58\u63a7\u5236\u5668\u548c\u5185\u5b58\u5757\u7684\u591a\u5957\u63a5\u5b57\u673a\u5668\u4e2d": 248, "\u65e8\u5728\u5229\u7528\u672c\u5730\u5185\u5b58\u7684\u5c40\u90e8\u6027": 248, "\u6240\u6709\u6df1\u5ea6\u5b66\u4e60\u5de5\u4f5c\u8d1f\u8f7d": 248, "\u8bad\u7ec3\u6216\u63a8\u7406": 248, "\u90fd\u80fd\u4ece\u4e0d\u8de8numa\u8282\u70b9\u8bbf\u95ee\u786c\u4ef6\u8d44\u6e90\u4e2d\u83b7\u5f97\u66f4\u597d\u7684\u6027\u80fd": 248, "\u53ef\u4ee5\u4f7f\u7528\u591a\u4e2a\u5b9e\u4f8b\u8fd0\u884c\u63a8\u7406": 248, "\u6bcf\u4e2a\u5b9e\u4f8b\u5728\u4e00\u4e2a\u5957\u63a5\u5b57\u4e0a\u8fd0\u884c": 248, "\u4ee5\u63d0\u9ad8\u541e\u5410\u91cf": 248, "\u5bf9\u4e8e\u5355\u8282\u70b9\u4e0a\u7684\u8bad\u7ec3\u4efb\u52a1": 248, "\u5efa\u8bae\u4f7f\u7528\u5206\u5e03\u5f0f\u8bad\u7ec3": 248, "\u4f7f\u6bcf\u4e2a\u8bad\u7ec3\u8fdb\u7a0b\u5728\u4e00\u4e2a\u5957\u63a5\u5b57\u4e0a\u8fd0\u884c": 248, "\u4ee5\u4e0b\u547d\u4ee4\u4ec5\u5728\u7b2cn\u4e2a\u8282\u70b9\u4e0a\u7684\u6838\u5fc3\u4e0a\u6267\u884cpytorch\u811a\u672c": 248, "\u5e76\u907f\u514d\u8de8\u5957\u63a5\u5b57\u5185\u5b58\u8bbf\u95ee": 248, "\u4ece\u800c\u51cf\u5c11\u5185\u5b58\u8bbf\u95ee\u5f00\u9500": 248, "cpunodebind": 248, "membind": 248, "pytorch_script": 248, "\u66f4\u8be6\u7ec6\u7684\u63cf\u8ff0\u53ef\u4ee5\u5728": 248, "\u627e\u5230": 248, "openmp\u7528\u4e8e\u4e3a\u5e76\u884c\u8ba1\u7b97\u4efb\u52a1\u5e26\u6765\u66f4\u597d\u7684\u6027\u80fd": 248, "\u662f\u53ef\u7528\u4e8e\u52a0\u901f\u8ba1\u7b97\u7684\u6700\u7b80\u5355\u5f00\u5173": 248, "\u5b83\u51b3\u5b9a\u4e86\u7528\u4e8eopenmp\u8ba1\u7b97\u7684\u7ebf\u7a0b\u6570": 248, "cpu\u4eb2\u548c\u6027\u8bbe\u7f6e\u63a7\u5236\u5982\u4f55\u5728\u591a\u4e2a\u6838\u5fc3\u4e0a\u5206\u914d\u5de5\u4f5c\u8d1f\u8f7d": 248, "\u5b83\u4f1a\u5f71\u54cd\u901a\u4fe1\u5f00\u9500": 248, "\u7f13\u5b58\u884c\u5931\u6548\u5f00\u9500\u6216\u9875\u9762\u6296\u52a8": 248, "\u56e0\u6b64\u6b63\u786e\u8bbe\u7f6ecpu\u4eb2\u548c\u6027\u4f1a\u5e26\u6765\u6027\u80fd\u4f18\u52bf": 248, "gomp_cpu_affin": 248, "\u51b3\u5b9a\u5982\u4f55\u5c06openmp\u7ebf\u7a0b\u7ed1\u5b9a\u5230\u7269\u7406\u5904\u7406\u5355\u5143": 248, "\u8be6\u7ec6\u4fe1\u606f\u53ef\u4ee5\u5728": 248, "\u4f7f\u7528\u4ee5\u4e0b\u547d\u4ee4": 248, "pytorch\u5c06\u5728n\u4e2aopenmp\u7ebf\u7a0b\u4e0a\u8fd0\u884c\u4efb\u52a1": 248, "\u4f7f\u7528\u4ee5\u4e0b\u73af\u5883\u53d8\u91cf\u6765\u8bbe\u7f6egnu": 248, "openmp\u5b9e\u73b0\u7684cpu\u4eb2\u548c\u6027": 248, "omp_proc_bind": 248, "\u6307\u5b9a\u7ebf\u7a0b\u662f\u5426\u53ef\u4ee5\u5728\u5904\u7406\u5668\u4e4b\u95f4\u79fb\u52a8": 248, "\u5c06\u5176\u8bbe\u7f6e\u4e3aclose\u53ef\u4ee5\u4f7fopenmp\u7ebf\u7a0b\u9760\u8fd1\u4e3b\u7ebf\u7a0b\u5728\u8fde\u7eed\u7684\u5206\u533a\u4e2d": 248, "omp_schedul": 248, "\u51b3\u5b9a\u4e86openmp\u7ebf\u7a0b\u7684\u8c03\u5ea6\u65b9\u5f0f": 248, "\u5c06\u7ebf\u7a0b\u7ed1\u5b9a\u5230\u7279\u5b9a\u7684cpu": 248, "pytorch\u4f7f\u7528gnu": 248, "libgomp": 248, "\u8fdb\u884c\u5e76\u884c\u8ba1\u7b97": 248, "\u5728intel\u5e73\u53f0\u4e0a": 248, "\u63d0\u4f9b\u4e86openmp": 248, "api\u89c4\u8303\u652f\u6301": 248, "\u76f8\u6bd4": 248, "\u5b83\u6709\u65f6\u4f1a\u5e26\u6765\u66f4\u591a\u7684\u6027\u80fd\u4f18\u52bf": 248, "\u5229\u7528\u73af\u5883\u53d8\u91cf": 248, "\u53ef\u4ee5\u5c06openmp\u5e93\u5207\u6362\u5230": 248, "\u4e0egnu": 248, "openmp\u4e2d\u7684cpu\u4eb2\u548c\u6027\u8bbe\u7f6e\u7c7b\u4f3c": 248, "\u4e2d\u4e5f\u63d0\u4f9b\u4e86\u73af\u5883\u53d8\u91cf\u6765\u63a7\u5236cpu\u4eb2\u548c\u6027\u8bbe\u7f6e": 248, "\u5c06openmp\u7ebf\u7a0b\u7ed1\u5b9a\u5230\u7269\u7406\u5904\u7406\u5355\u5143": 248, "\u8bbe\u7f6e\u7ebf\u7a0b\u5728\u5b8c\u6210\u5e76\u884c\u533a\u57df\u6267\u884c\u540e\u7b49\u5f85\u7761\u7720\u4e4b\u524d\u7684\u65f6\u95f4": 248, "\u4ee5\u6beb\u79d2\u4e3a\u5355\u4f4d": 248, "\u5728\u5927\u591a\u6570\u60c5\u51b5\u4e0b": 248, "\u8bbe\u7f6e\u4e3a1\u62160\u53ef\u4ee5\u83b7\u5f97\u826f\u597d\u7684\u6027\u80fd": 248, "\u4ee5\u4e0b\u547d\u4ee4\u663e\u793a\u4e86\u4f7f\u7528intel": 248, "openmp\u8fd0\u884c\u65f6\u5e93\u7684\u5e38\u89c1\u8bbe\u7f6e": 248, "\u5bf9\u4e8e\u6df1\u5ea6\u5b66\u4e60\u5de5\u4f5c\u8d1f\u8f7d": 248, "\u51fd\u6570\u76f8\u6bd4": 248, "jemalloc": 248, "tcmalloc": 248, "\u53ef\u4ee5\u901a\u8fc7\u5c3d\u53ef\u80fd\u91cd\u7528\u5185\u5b58\u83b7\u5f97\u66f4\u597d\u7684\u6027\u80fd": 248, "\u662f\u4e00\u4e2a\u901a\u7528\u7684": 248, "\u5f3a\u8c03\u907f\u514d\u788e\u7247\u548c\u53ef\u6269\u5c55\u7684\u5e76\u53d1\u652f\u6301": 248, "\u4e5f\u5177\u6709\u4e00\u4e9b\u4f18\u5316": 248, "\u53ef\u4ee5\u52a0\u901f\u7a0b\u5e8f\u6267\u884c": 248, "\u5176\u4e2d\u4e00\u4e2a\u4f18\u5316\u662f\u5728\u7f13\u5b58\u4e2d\u4fdd\u5b58\u5185\u5b58": 248, "\u4ee5\u52a0\u5feb\u5e38\u7528\u5bf9\u8c61\u7684\u8bbf\u95ee\u901f\u5ea6": 248, "\u5373\u4f7f\u5728\u91ca\u653e\u5185\u5b58\u540e": 248, "\u4fdd\u6301\u8fd9\u4e9b\u7f13\u5b58\u4e5f\u6709\u52a9\u4e8e\u907f\u514d\u6602\u8d35\u7684\u7cfb\u7edf\u8c03\u7528": 248, "\u5982\u679c\u7a0d\u540e\u91cd\u65b0\u5206\u914d\u8fd9\u4e9b\u5185\u5b58": 248, "\u4f7f\u7528\u73af\u5883\u53d8\u91cf": 248, "\u6765\u5229\u7528\u5176\u4e2d\u4e4b\u4e00": 248, "graph\u53ef\u4ee5\u663e\u8457\u63d0\u9ad8\u63a8\u7406\u6027\u80fd": 248, "\u5b83\u5c06\u4e00\u4e9b\u8ba1\u7b97\u5bc6\u96c6\u578b\u64cd\u4f5c": 248, "\u4e0e\u5176\u76f8\u90bb\u64cd\u4f5c\u878d\u5408": 248, "0\u4e2d": 248, "\u5b83\u4f5c\u4e3a\u6d4b\u8bd5\u7248\u529f\u80fd\u652f\u6301": 248, "graph\u63a5\u6536\u6a21\u578b\u7684\u56fe\u5f62": 248, "\u5e76\u6839\u636e\u793a\u4f8b\u8f93\u5165\u7684\u5f62\u72b6\u8bc6\u522b\u8fd0\u7b97\u7b26\u878d\u5408\u7684\u5019\u9009\u5bf9\u8c61": 248, "\u6a21\u578b\u5e94\u8be5\u4f7f\u7528\u793a\u4f8b\u8f93\u5165\u8fdb\u884cjit\u8ddf\u8e2a": 248, "\u5bf9\u4e8e\u4e0e\u793a\u4f8b\u8f93\u5165\u5177\u6709\u76f8\u540c\u5f62\u72b6\u7684\u8f93\u5165": 248, "\u5728\u51e0\u6b21\u70ed\u8eab\u8fed\u4ee3\u540e\u5c31\u4f1a\u89c2\u5bdf\u5230\u52a0\u901f": 248, "\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u662f\u9488\u5bf9resnet50\u7684": 248, "\u4f46\u5b83\u4eec\u4e5f\u53ef\u4ee5\u5f88\u597d\u5730\u6269\u5c55\u5230\u4f7f\u7528\u81ea\u5b9a\u4e49\u6a21\u578b\u7684onednn": 248, "\u53ea\u9700\u8981\u8fd9\u4e00\u884c\u989d\u5916\u7684\u4ee3\u7801\u5373\u53ef\u4f7f\u7528onednn": 248, "enable_onednn_fus": 248, "api\u8fdb\u884cfloat32\u63a8\u7406\u53ea\u9700\u8981\u4e00\u884c\u989d\u5916\u7684\u4ee3\u7801": 248, "\u5982\u679c\u60a8\u6b63\u5728\u4f7f\u7528onednn": 248, "\u8bf7\u907f\u514d\u8c03\u7528": 248, "optimize_for_infer": 248, "\u793a\u4f8b\u8f93\u5165\u5e94\u8be5\u4e0e\u9884\u671f\u8f93\u5165\u5177\u6709\u76f8\u540c\u7684\u5f62\u72b6": 248, "\u5728\u6b64\u793a\u4f8b\u4e2d\u4f7f\u7528torchvision\u4e2d\u7684resnet50\u8fdb\u884c\u8bf4\u660e": 248, "\u4f46\u4e0b\u9762\u7684\u4ee3\u7801\u786e\u5b9e\u53ef\u4ee5\u4fee\u6539\u4e3a\u4f7f\u7528\u81ea\u5b9a\u4e49\u6a21\u578b": 248, "\u4f7f\u7528\u793a\u4f8b\u8f93\u5165\u8ddf\u8e2a\u6a21\u578b": 248, "\u8c03\u7528torch": 248, "\u4e00\u65e6\u4f7f\u7528\u793a\u4f8b\u8f93\u5165\u5bf9\u6a21\u578b\u8fdb\u884c\u4e86jit\u8ddf\u8e2a": 248, "\u5c31\u53ef\u4ee5\u5728\u51e0\u6b21\u70ed\u8eab\u8fd0\u884c\u540e\u7528\u4e8e\u63a8\u7406": 248, "\u51e0\u6b21\u70ed\u8eab\u8fd0\u884c": 248, "\u5728\u70ed\u8eab\u8fd0\u884c\u540e\u4f1a\u89c2\u5bdf\u5230\u52a0\u901f": 248, "\u867d\u7136onednn": 248, "graph\u7684jit\u878d\u5408\u5668\u4e5f\u652f\u6301": 248, "\u6570\u636e\u7c7b\u578b\u7684\u63a8\u7406": 248, "\u4f46\u53ea\u6709\u5177\u6709avx512_bf16\u6307\u4ee4\u96c6\u67b6\u6784": 248, "\u7684\u673a\u5668\u624d\u80fd\u4eceonednn": 248, "graph\u4e2d\u83b7\u5f97\u6027\u80fd\u4f18\u52bf": 248, "\u4ee5\u4e0b\u4ee3\u7801\u7247\u6bb5\u662f\u4f7f\u7528": 248, "\u6570\u636e\u7c7b\u578b\u8fdb\u884conednn": 248, "graph\u63a8\u7406\u7684\u793a\u4f8b": 248, "jit\u6a21\u5f0f\u4e0b\u7684amp\u9ed8\u8ba4\u542f\u7528": 248, "\u5e76\u4e14\u4e0e\u5176eager\u6a21\u5f0f\u5bf9\u5e94\u7248\u672c\u4e0d\u540c": 248, "_jit_set_autocast_mod": 248, "\u5f53\u4f7f\u7528amp\u65f6": 248, "\u5e94\u4f7f\u7528": 248, "\u8fdb\u884c\u57fa\u4e8ecnn\u7684\u89c6\u89c9\u6a21\u578b\u7684conv": 248, "batchnorm\u6298\u53e0": 248, "\u5f53\u4e0d\u4f7f\u7528amp\u65f6": 248, "\u65e0\u9700\u8c03\u7528optim": 248, "\u5728\u540e\u7eed\u8fd0\u884c\u4e2d\u4f1a\u89c2\u5bdf\u5230\u52a0\u901f": 248, "\u5bf9\u4e8e\u5c0f\u578b\u6a21\u578b\u6216\u5185\u5b58\u9650\u5236\u578b\u6a21\u578b": 248, "\u5982dlrm": 248, "\u5728cpu\u4e0a\u8fdb\u884c\u8bad\u7ec3\u4e5f\u662f\u4e00\u4e2a\u4e0d\u9519\u7684\u9009\u62e9": 248, "\u5728\u5177\u6709\u591a\u4e2a\u5957\u63a5\u5b57\u7684\u673a\u5668\u4e0a": 248, "\u5206\u5e03\u5f0f\u8bad\u7ec3\u53ef\u4ee5\u5e26\u6765\u9ad8\u6548\u7684\u786c\u4ef6\u8d44\u6e90\u4f7f\u7528": 248, "\u4ece\u800c\u52a0\u901f\u8bad\u7ec3\u8fc7\u7a0b": 248, "ccl": 248, "\u8fdb\u884c\u4e86\u4f18\u5316": 248, "\u7528\u4e8e\u9ad8\u6548\u7684\u5206\u5e03\u5f0f\u6df1\u5ea6\u5b66\u4e60\u8bad\u7ec3": 248, "\u5b9e\u73b0\u4e86\u8bf8\u5982": 248, "alltoal": 248, "\u7b49\u96c6\u4f53\u64cd\u4f5c": 248, "\u5b9e\u73b0\u4e86pytorch": 248, "\u5e76\u53ef\u4ee5\u4f5c\u4e3a\u5916\u90e8": 248, "\u52a8\u6001\u52a0\u8f7d": 248, "ddp\u6a21\u5757\u4e2d\u5b9e\u73b0\u7684\u4f18\u5316\u4e4b\u4e0a": 248, "\u52a0\u901f\u4e86\u901a\u4fe1\u64cd\u4f5c": 248, "\u9664\u4e86\u5bf9\u901a\u4fe1\u5185\u6838\u8fdb\u884c\u4f18\u5316\u5916": 248, "\u8fd8\u652f\u6301\u540c\u6b65\u8ba1\u7b97\u548c\u901a\u4fe1\u529f\u80fd": 248, "\u652f\u6301\u8bb8\u591a\u7b97\u6cd5\u6765\u8ba1\u7b97\u5377\u79ef": 248, "\u81ea\u52a8\u8c03\u4f18\u5668\u4f1a\u8fd0\u884c\u4e00\u4e2a\u7b80\u77ed\u7684\u57fa\u51c6\u6d4b\u8bd5": 248, "\u5e76\u4e3a\u7ed9\u5b9a\u7684\u786c\u4ef6\u548c\u8f93\u5165\u5927\u5c0f\u9009\u62e9\u6027\u80fd\u6700\u4f73\u7684\u5185\u6838": 248, "\u5bf9\u4e8e\u5377\u79ef\u7f51\u7edc": 248, "\u76ee\u524d\u5176\u4ed6\u7c7b\u578b\u5c1a\u4e0d\u652f\u6301": 248, "\u53ef\u4ee5\u5728\u542f\u52a8\u8bad\u7ec3\u5faa\u73af\u4e4b\u524d\u542f\u7528": 248, "\u65b9\u6cd5\u662f\u8bbe\u7f6e": 248, "\u81ea\u52a8\u8c03\u4f18\u5668\u7684\u51b3\u7b56\u53ef\u80fd\u662f\u975e\u786e\u5b9a\u6027\u7684": 248, "\u4e0d\u540c\u7684\u7b97\u6cd5\u53ef\u80fd\u4f1a\u5728\u4e0d\u540c\u7684\u8fd0\u884c\u4e2d\u88ab\u9009\u62e9": 248, "\u6709\u5173\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f": 248, "\u53ef\u91cd\u590d\u6027": 248, "\u5728\u67d0\u4e9b\u7f55\u89c1\u7684\u60c5\u51b5\u4e0b": 248, "\u4f8b\u5982\u8f93\u5165\u5927\u5c0f\u9ad8\u5ea6\u53ef\u53d8\u65f6": 248, "\u6700\u597d\u5728\u7981\u7528\u81ea\u52a8\u8c03\u4f18\u5668\u7684\u60c5\u51b5\u4e0b\u8fd0\u884c\u5377\u79ef\u7f51\u7edc": 248, "\u4ee5\u907f\u514d\u4e3a\u6bcf\u4e2a\u8f93\u5165\u5927\u5c0f\u9009\u62e9\u7b97\u6cd5\u6240\u5e26\u6765\u7684\u5f00\u9500": 248, "\u907f\u514d\u4e0d\u5fc5\u8981\u7684\u540c\u6b65": 248, "\u5c3d\u53ef\u80fd\u8ba9": 248, "\u9886\u5148\u4e8e\u52a0\u901f\u5668\u8fd0\u884c": 248, "\u4ee5\u786e\u4fdd\u52a0\u901f\u5668\u5de5\u4f5c\u961f\u5217\u4e2d\u5305\u542b\u8bb8\u591a\u64cd\u4f5c": 248, "\u8bf7\u907f\u514d\u9700\u8981\u540c\u6b65\u7684\u64cd\u4f5c": 248, "cuda_tensor": 248, "\u5185\u5b58\u590d\u5236": 248, "\u548c\u7b49\u6548\u7684": 248, "\u4f9d\u8d56\u4e8e\u5728": 248, "\u5f20\u91cf\u4e0a\u6267\u884c\u7684\u64cd\u4f5c\u7ed3\u679c\u7684": 248, "\u63a7\u5236\u6d41": 248, "\u6765\u751f\u6210\u968f\u673a\u5f20\u91cf": 248, "\u800c\u662f\u76f4\u63a5\u5728\u76ee\u6807\u8bbe\u5907\u4e0a\u751f\u6210\u8f93\u51fa": 248, "\u8fd9\u9002\u7528\u4e8e\u6240\u6709\u521b\u5efa\u65b0\u5f20\u91cf\u5e76\u63a5\u53d7": 248, "\u53c2\u6570\u7684\u51fd\u6570": 248, "\u548c\u7c7b\u4f3c\u51fd\u6570": 248, "\u6df7\u5408\u7cbe\u5ea6\u5229\u7528": 248, "\u53ca\u66f4\u65b0\u7684": 248, "\u67b6\u6784\u4e0a\u53ef\u63d0\u4f9b\u9ad8\u8fbe": 248, "\u500d\u7684\u6574\u4f53\u52a0\u901f": 248, "\u8981\u4f7f\u7528": 248, "\u9700\u8981\u542f\u7528": 248, "\u5e76\u4e14\u77e9\u9635": 248, "\u5f20\u91cf\u7684\u7ef4\u5ea6\u9700\u8981\u6ee1\u8db3\u8c03\u7528\u4f7f\u7528": 248, "\u7684\u5185\u6838\u7684\u8981\u6c42": 248, "\u5c06\u5927\u5c0f\u8bbe\u7f6e\u4e3a": 248, "\u4ee5\u6620\u5c04\u5230": 248, "\u7684\u7ef4\u5ea6": 248, "\u6df1\u5ea6\u5b66\u4e60\u6027\u80fd\u6587\u6863": 248, "\u4ee5\u83b7\u53d6\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f\u548c\u7279\u5b9a\u4e8e\u5c42\u7c7b\u578b\u7684\u6307\u5357": 248, "\u5982\u679c\u5c42\u5927\u5c0f\u662f\u7531\u5176\u4ed6\u53c2\u6570\u800c\u4e0d\u662f\u56fa\u5b9a\u503c\u6d3e\u751f\u7684": 248, "\u5b83\u4ecd\u7136\u53ef\u4ee5\u663e\u5f0f\u586b\u5145": 248, "\u6a21\u578b\u4e2d\u7684\u8bcd\u6c47\u91cf\u5927\u5c0f": 248, "\u6df7\u5408\u7cbe\u5ea6\u8bad\u7ec3\u548c": 248, "\u89c6\u9891": 248, "\u5e7b\u706f\u7247": 248, "\u7248\u672c\u5f00\u59cb\u63d0\u4f9b\u539f\u751f": 248, "\u7528\u4e8e\u8bed\u97f3\u8bc6\u522b\u6216": 248, "\u7684\u6a21\u578b\u901a\u5e38\u5728\u5177\u6709\u53ef\u53d8\u5e8f\u5217\u957f\u5ea6\u7684\u8f93\u5165\u5f20\u91cf\u4e0a\u8fdb\u884c\u8bad\u7ec3": 248, "\u53ef\u53d8\u957f\u5ea6\u53ef\u80fd\u4f1a\u5bf9": 248, "\u7f13\u5b58\u5206\u914d\u5668\u9020\u6210\u95ee\u9898": 248, "\u5e76\u5bfc\u81f4\u6027\u80fd\u964d\u4f4e\u6216\u610f\u5916\u7684\u5185\u5b58\u4e0d\u8db3\u9519\u8bef": 248, "\u5982\u679c\u4e00\u4e2a\u77ed\u5e8f\u5217\u957f\u5ea6\u7684\u6279\u6b21\u540e\u9762\u7d27\u8ddf\u7740\u53e6\u4e00\u4e2a\u957f\u5e8f\u5217\u957f\u5ea6\u7684\u6279\u6b21": 248, "\u5c31\u88ab\u8feb\u91ca\u653e\u524d\u4e00\u6b21\u8fed\u4ee3\u7684\u4e2d\u95f4\u7f13\u51b2\u533a": 248, "\u5e76\u91cd\u65b0\u5206\u914d\u65b0\u7684\u7f13\u51b2\u533a": 248, "\u8fd9\u4e2a\u8fc7\u7a0b\u662f\u8017\u65f6\u7684": 248, "\u5e76\u4f1a\u5728\u7f13\u5b58\u5206\u914d\u5668\u4e2d\u9020\u6210\u788e\u7247": 248, "\u4ece\u800c\u53ef\u80fd\u5bfc\u81f4\u5185\u5b58\u4e0d\u8db3\u9519\u8bef": 248, "\u4e00\u4e2a\u5178\u578b\u7684\u89e3\u51b3\u65b9\u6848\u662f\u5b9e\u73b0\u9884\u5206\u914d": 248, "\u5b83\u5305\u62ec\u4ee5\u4e0b\u6b65\u9aa4": 248, "\u751f\u6210\u4e00\u4e2a": [248, 253], "\u901a\u5e38\u662f\u968f\u673a\u7684": 248, "\u5177\u6709\u6700\u5927\u5e8f\u5217\u957f\u5ea6\u7684\u8f93\u5165\u6279\u6b21": 248, "\u8981\u4e48\u5bf9\u5e94\u4e8e\u8bad\u7ec3\u6570\u636e\u96c6\u4e2d\u7684\u6700\u5927\u957f\u5ea6": 248, "\u8981\u4e48\u5bf9\u5e94\u4e8e\u67d0\u4e2a\u9884\u5b9a\u4e49\u7684\u9608\u503c": 248, "\u4f7f\u7528\u751f\u6210\u7684\u6279\u6b21\u6267\u884c\u524d\u5411\u548c\u540e\u5411\u4f20\u9012": 248, "\u4e0d\u6267\u884c\u4f18\u5316\u5668\u6216\u5b66\u4e60\u7387\u8c03\u5ea6\u5668": 248, "\u8fd9\u4e00\u6b65\u9884\u5206\u914d\u4e86\u6700\u5927\u5927\u5c0f\u7684\u7f13\u51b2\u533a": 248, "\u53ef\u5728\u540e\u7eed\u8bad\u7ec3\u8fed\u4ee3\u4e2d\u91cd\u7528": 248, "\u7ee7\u7eed\u5e38\u89c4\u8bad\u7ec3": 248, "\u6709\u4e24\u79cd\u65b9\u5f0f\u6765\u5b9e\u73b0\u6570\u636e\u5e76\u884c\u8bad\u7ec3": 248, "\u63d0\u4f9b\u4e86\u66f4\u597d\u7684\u6027\u80fd\u548c\u591a": 248, "\u6269\u5c55\u80fd\u529b": 248, "\u6587\u6863\u4e2d": 248, "\u76f8\u5173": 248, "\u6700\u4f73\u5b9e\u8df5\u90e8\u5206": 248, "\u5728\u6bcf\u6b21\u53cd\u5411\u4f20\u64ad\u540e\u6267\u884c\u68af\u5ea6": 248, "\u4ee5\u8ba1\u7b97\u53c2\u4e0e\u8bad\u7ec3\u7684\u6240\u6709\u5de5\u4f5c\u8fdb\u7a0b\u4e0a\u7684\u5e73\u5747\u68af\u5ea6": 248, "\u5982\u679c\u8bad\u7ec3\u4f7f\u7528\u4e86": 248, "\u6b65\u68af\u5ea6\u7d2f\u79ef": 248, "\u90a3\u4e48\u5728\u6bcf\u4e2a\u8bad\u7ec3\u6b65\u9aa4\u540e\u90fd\u4e0d\u9700\u8981\u6267\u884c": 248, "\u53ea\u9700\u5728\u6700\u540e\u4e00\u6b21\u8c03\u7528": 248, "\u5728\u6267\u884c\u4f18\u5316\u5668\u4e4b\u524d\u6267\u884c": 248, "\u63d0\u4f9b\u4e86": 248, "no_sync": 248, "\u7528\u4e8e\u5728\u7279\u5b9a\u8fed\u4ee3\u4e2d\u7981\u7528\u68af\u5ea6": 248, "\u5e94\u8be5\u5e94\u7528\u4e8e\u68af\u5ea6\u7d2f\u79ef\u7684\u524d": 248, "\u6b21\u8fed\u4ee3": 248, "\u6700\u540e\u4e00\u6b21\u8fed\u4ee3\u5e94\u8be5\u9075\u5faa\u9ed8\u8ba4\u6267\u884c": 248, "\u5e76\u6267\u884c\u6240\u9700\u7684\u68af\u5ea6": 248, "\u4f1a\u6839\u636e\u6a21\u578b\u6784\u9020\u51fd\u6570\u4e2d\u5c42\u548c\u53c2\u6570\u7684\u987a\u5e8f\u6765\u6784\u5efa": 248, "\u7684\u6876": 248, "\u4f1a\u4e0e\u53cd\u5411\u4f20\u64ad\u91cd\u53e0": 248, "\u53ea\u6709\u5f53\u7ed9\u5b9a\u6876\u4e2d\u7684\u6240\u6709\u53c2\u6570\u7684\u68af\u5ea6\u90fd\u53ef\u7528\u65f6": 248, "\u624d\u4f1a\u5f02\u6b65\u89e6\u53d1\u8be5\u6876\u7684": 248, "\u4e3a\u4e86\u6700\u5927\u5316\u91cd\u53e0\u91cf": 248, "\u6a21\u578b\u6784\u9020\u51fd\u6570\u4e2d\u7684\u987a\u5e8f\u5e94\u8be5\u5927\u81f4\u4e0e\u6267\u884c\u671f\u95f4\u7684\u987a\u5e8f\u76f8\u5339\u914d": 248, "\u5982\u679c\u987a\u5e8f\u4e0d\u5339\u914d": 248, "\u90a3\u4e48\u6574\u4e2a\u6876\u7684": 248, "\u5c06\u7b49\u5f85\u6700\u540e\u5230\u8fbe\u7684\u68af\u5ea6": 248, "\u8fd9\u53ef\u80fd\u4f1a\u51cf\u5c11\u53cd\u5411\u4f20\u64ad\u548c": 248, "\u4e4b\u95f4\u7684\u91cd\u53e0": 248, "\u53ef\u80fd\u4f1a\u66b4\u9732\u51fa\u6765": 248, "\u4ece\u800c\u51cf\u6162\u8bad\u7ec3\u901f\u5ea6": 248, "\u8fd9\u662f\u9ed8\u8ba4\u8bbe\u7f6e": 248, "\u4f9d\u8d56\u4e8e\u57fa\u4e8e\u53cd\u5411\u4f20\u64ad\u671f\u95f4\u9047\u5230\u7684\u64cd\u4f5c\u987a\u5e8f\u7684\u81ea\u52a8\u6876\u5f62\u6210": 248, "\u65e0\u9700\u91cd\u65b0\u6392\u5217\u5c42\u6216\u53c2\u6570\u5373\u53ef\u83b7\u5f97\u6700\u4f73\u6027\u80fd": 248, "\u5bf9\u4e8e\u5904\u7406\u5e8f\u5217\u6570\u636e\u7684\u6a21\u578b": 248, "\u8bed\u97f3\u8bc6\u522b": 248, "\u7ffb\u8bd1": 248, "\u8bed\u8a00\u6a21\u578b\u7b49": 248, "\u901a\u5e38\u53ef\u80fd\u4f1a\u53d1\u751f\u8d1f\u8f7d\u4e0d\u5747\u8861": 248, "\u5982\u679c\u4e00\u4e2a\u8bbe\u5907\u6536\u5230\u7684\u6279\u6b21\u6570\u636e\u7684\u5e8f\u5217\u957f\u5ea6\u6bd4\u5176\u4ed6\u8bbe\u5907\u957f": 248, "\u90a3\u4e48\u6240\u6709\u8bbe\u5907\u90fd\u8981\u7b49\u5f85\u5b8c\u6210\u6700\u540e\u7684\u5de5\u4f5c\u8fdb\u7a0b": 248, "\u540e\u7aef\u7684\u5206\u5e03\u5f0f\u8bbe\u7f6e\u4e2d": 248, "\u53cd\u5411\u4f20\u64ad\u51fd\u6570\u4f5c\u4e3a\u4e00\u4e2a\u9690\u5f0f\u7684\u540c\u6b65\u70b9": 248, "\u6709\u591a\u79cd\u65b9\u6cd5\u53ef\u4ee5\u89e3\u51b3\u8d1f\u8f7d\u5e73\u8861\u95ee\u9898": 248, "\u6838\u5fc3\u601d\u60f3\u662f\u5728\u6bcf\u4e2a\u5168\u5c40\u6279\u6b21\u4e2d\u5c3d\u53ef\u80fd\u5747\u5300\u5730\u5c06\u5de5\u4f5c\u8d1f\u8f7d\u5206\u5e03\u5230\u6240\u6709\u5de5\u4f5c\u8fdb\u7a0b": 248, "\u901a\u8fc7\u5f62\u6210\u5177\u6709\u5927\u7ea6\u6052\u5b9a\u4ee4\u724c\u6570": 248, "\u800c\u4e0d\u662f\u5e8f\u5217\u6570": 248, "\u7684\u6279\u6b21\u6765\u89e3\u51b3\u4e0d\u5e73\u8861\u95ee\u9898": 248, "\u5176\u4ed6\u6a21\u578b\u901a\u8fc7\u5bf9\u5177\u6709\u76f8\u4f3c\u5e8f\u5217\u957f\u5ea6\u7684\u6837\u672c\u8fdb\u884c\u5206\u6876\u6216\u751a\u81f3\u5bf9\u6570\u636e\u96c6\u6309\u5e8f\u5217\u957f\u5ea6\u8fdb\u884c\u6392\u5e8f\u6765\u89e3\u51b3\u4e0d\u5e73\u8861\u95ee\u9898": 248, "tuning_guid": 248, "\u5728\u8f6c\u79fb\u5b66\u4e60\u6216\u8bad\u7ec3\u65b0\u7684\u590d\u6742\u6a21\u578b\u65f6": 249, "\u52a0\u8f7d\u90e8\u5206\u6a21\u578b\u662f\u5f88\u5e38\u89c1\u7684\u573a\u666f": 249, "\u5229\u7528\u5df2\u7ecf\u8bad\u7ec3\u597d\u7684\u53c2\u6570": 249, "\u5373\u4f7f\u53ea\u6709\u5c11\u6570\u53ef\u7528": 249, "\u4e5f\u5c06\u6709\u52a9\u4e8e\u52a0\u5feb\u8bad\u7ec3\u8fc7\u7a0b\u7684\u542f\u52a8": 249, "\u5e76\u6709\u671b\u4f7f\u60a8\u7684\u6a21\u578b\u6bd4\u4ece\u5934\u5f00\u59cb\u8bad\u7ec3\u6536\u655b\u5f97\u66f4\u5feb": 249, "\u65e0\u8bba\u60a8\u662f\u52a0\u8f7d\u7f3a\u5c11\u67d0\u4e9b\u952e\u7684\u90e8\u5206": 249, "\u8fd8\u662f\u52a0\u8f7d\u6bd4\u9884\u671f\u7684\u6a21\u578b\u66f4\u591a\u952e\u7684": 249, "\u60a8\u90fd\u53ef\u4ee5\u901a\u8fc7": 249, "\u4ee5\u5ffd\u7565\u4e0d\u5339\u914d\u7684\u952e": 249, "\u6211\u4eec\u5c06\u5c1d\u8bd5\u4f7f\u7528\u4e0d\u540c\u6a21\u578b\u7684\u53c2\u6570\u5bf9\u6a21\u578b\u8fdb\u884c\u70ed\u542f\u52a8": 249, "\u6211\u4eec\u5c06\u521b\u5efa\u4e24\u4e2a\u795e\u7ecf\u7f51\u7edc": 249, "\u5c06\u7c7b\u578b": 249, "\u7684\u4e00\u4e2a\u53c2\u6570\u52a0\u8f7d\u5230\u7c7b\u578b": 249, "\u5982\u679c\u60a8\u60f3\u5c06\u4e00\u4e2a\u5c42\u7684\u53c2\u6570\u52a0\u8f7d\u5230\u53e6\u4e00\u4e2a\u5c42": 249, "\u4f46\u662f\u67d0\u4e9b\u952e\u4e0d\u5339\u914d": 249, "\u53ea\u9700\u5c06\u8981\u52a0\u8f7d\u7684": 249, "\u4e2d\u7684\u53c2\u6570\u952e\u540d\u79f0\u66f4\u6539\u4e3a\u4e0e\u8981\u52a0\u8f7d\u5230\u7684\u6a21\u578b\u4e2d\u7684\u952e\u540d\u79f0\u76f8\u5339\u914d\u5373\u53ef": 249, "\u60a8\u53ef\u4ee5\u770b\u5230\u6240\u6709\u952e\u90fd\u5339\u914d\u6210\u529f": 249, "\u60a8\u5df2\u6210\u529f\u4f7f\u7528\u4e0d\u540c\u6a21\u578b\u7684\u53c2\u6570\u5bf9\u6a21\u578b\u8fdb\u884c\u4e86\u70ed\u542f\u52a8": 249, "\u4f7f\u7528pytorch\u5728\u4e00\u4e2a\u6587\u4ef6\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u6a21\u578b": 249, "\u5728pytorch\u4e2d\u8de8\u8bbe\u5907\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": [249, 251], "\u6a21\u578b\u7684\u53ef\u5b66\u4e60\u53c2\u6570": 250, "\u5373\u6743\u91cd\u548c\u504f\u7f6e": 250, "\u5305\u542b\u5728\u6a21\u578b\u7684\u53c2\u6570\u4e2d": 250, "\u8bbf\u95ee": 250, "\u53ea\u662f\u4e00\u4e2a": 250, "\u5b57\u5178\u5bf9\u8c61": 250, "\u5b83\u5c06\u6bcf\u4e00\u5c42\u6620\u5c04\u5230\u5176\u53c2\u6570\u5f20\u91cf": 250, "\u5982\u679c\u4f7f\u7528": 250, "\u4fdd\u5b58\u6216\u52a0\u8f7d\u6a21\u578b": 250, "\u5c31\u662f\u4e00\u4e2a\u4e0d\u53ef\u6216\u7f3a\u7684\u5b9e\u4f53": 250, "\u5bf9\u8c61\u662f": 250, "\u5b57\u5178": 250, "\u5b83\u4eec\u53ef\u4ee5\u5f88\u5bb9\u6613\u5730\u88ab\u4fdd\u5b58": 250, "\u66f4\u65b0": 250, "\u4fee\u6539\u548c\u6062\u590d": 250, "\u6a21\u578b\u548c\u4f18\u5316\u5668\u66f4\u597d\u7684\u505a\u5230\u4e86\u6a21\u5757\u5316": 250, "\u53ea\u6709\u5177\u6709\u53ef\u5b66\u4e60\u53c2\u6570\u7684\u5c42": 250, "\u5377\u79ef\u5c42": 250, "\u7ebf\u6027\u5c42\u7b49": 250, "\u548c\u5df2\u6ce8\u518c\u7684\u7f13\u51b2\u533a": 250, "\u5728\u6a21\u578b\u7684": 250, "\u4e2d\u6709\u6761\u76ee": 250, "\u4f18\u5316\u5668\u5bf9\u8c61": 250, "\u4e5f\u6709\u4e00\u4e2a": 250, "\u5b83\u5305\u542b\u4e86\u4f18\u5316\u5668\u72b6\u6001\u7684\u4fe1\u606f": 250, "\u4ee5\u53ca\u4f7f\u7528\u7684\u8d85\u53c2\u6570": 250, "\u6211\u4eec\u5c06\u770b\u5230\u5982\u4f55\u5728\u4e00\u4e2a\u7b80\u5355\u7684\u6a21\u578b\u4e2d": 250, "\u662f\u5982\u4f55\u4f7f\u7528\u7684": 250, "\u5b9a\u4e49\u548c\u521d\u59cb\u5316\u795e\u7ecf\u7f51\u7edc": 250, "\u5bfc\u5165\u52a0\u8f7d\u6570\u636e\u6240\u9700\u7684\u5fc5\u8981\u5e93": 250, "\u73b0\u5728\u6211\u4eec\u5df2\u7ecf\u6784\u5efa\u4e86\u6a21\u578b\u548c\u4f18\u5316\u5668": 250, "\u6211\u4eec\u53ef\u4ee5\u4e86\u89e3\u5b83\u4eec\u5404\u81ea\u7684": 250, "\u5c5e\u6027\u4e2d\u4fdd\u5b58\u4e86\u4ec0\u4e48": 250, "\u8fd9\u4e9b\u4fe1\u606f\u5bf9\u4e8e\u5c06\u6765\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u548c\u4f18\u5316\u5668\u5f88\u6709\u7528": 250, "\u4f60\u5df2\u7ecf\u6210\u529f\u4f7f\u7528\u4e86": 250, "\u7ee7\u7eed\u4f60\u7684\u5b66\u4e60": 250, "\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u7528\u4e8e\u63a8\u7406": 250, "\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u901a\u7528\u68c0\u67e5\u70b9": 250, "\u6a21\u578b\u80fd\u591f\u901a\u8fc7\u4f7f\u7528\u68af\u5ea6\u4e0b\u964d\u6765\u63d0\u9ad8\u5b83\u4eec\u7684\u7cbe\u5ea6": 251, "\u7b80\u800c\u8a00\u4e4b": 251, "\u68af\u5ea6\u4e0b\u964d\u662f\u901a\u8fc7\u8c03\u6574\u6a21\u578b\u4e2d\u7684\u6743\u91cd\u548c\u504f\u7f6e\u6765\u6700\u5c0f\u5316\u635f\u5931": 251, "\u6216\u8bef\u5dee": 251, "\u7684\u8fc7\u7a0b": 251, "\u662fpytorch\u7684\u4e2d\u5fc3\u7c7b": 251, "\u5f53\u4f60\u521b\u5efa\u4e00\u4e2a\u5f20\u91cf\u65f6": 251, "\u5982\u679c\u5c06\u5176\u5c5e\u6027": 251, "\u8be5\u5bf9\u8c61\u4f1a\u8ddf\u8e2a\u5bf9\u5b83\u7684\u6240\u6709\u64cd\u4f5c": 251, "\u8fd9\u53d1\u751f\u5728\u540e\u7eed\u7684\u53cd\u5411\u4f20\u64ad\u8fc7\u7a0b\u4e2d": 251, "\u8be5\u5f20\u91cf\u7684\u68af\u5ea6\u5c06\u7d2f\u79ef\u5230": 251, "\u6240\u6709\u68af\u5ea6\u7684\u7d2f\u79ef": 251, "\u6216\u6c42\u548c": 251, "\u662f\u5728\u5bf9\u635f\u5931\u5f20\u91cf\u8c03\u7528": 251, "\u65f6\u8ba1\u7b97\u7684": 251, "\u53ef\u80fd\u9700\u8981\u6e05\u96f6\u5f20\u91cf\u7684\u68af\u5ea6": 251, "\u5f53\u4f60\u5f00\u59cb\u8bad\u7ec3\u5faa\u73af\u65f6": 251, "\u4f60\u5e94\u8be5\u6e05\u96f6\u68af\u5ea6": 251, "\u4ee5\u4fbf\u6b63\u786e\u6267\u884c\u6b64\u8ddf\u8e2a": 251, "\u6211\u4eec\u5c06\u5b66\u4e60\u5982\u4f55\u4f7f\u7528pytorch\u5e93\u6e05\u96f6\u68af\u5ea6": 251, "\u6211\u4eec\u5c06\u901a\u8fc7\u5728pytorch\u5185\u7f6e\u7684": 251, "\u6570\u636e\u96c6\u4e0a\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc\u6765\u6f14\u793a\u5982\u4f55\u505a\u5230\u8fd9\u4e00\u70b9": 251, "\u7531\u4e8e\u6211\u4eec\u5c06\u5728\u672c\u6559\u7a0b\u4e2d\u8bad\u7ec3\u6570\u636e": 251, "\u5982\u679c\u4f60\u5728\u53ef\u8fd0\u884c\u7684\u7b14\u8bb0\u672c\u4e2d": 251, "\u6700\u597d\u5c06\u8fd0\u884c\u65f6\u5207\u6362\u5230gpu\u6216tpu": 251, "\u6211\u4eec\u9700\u8981\u5b89\u88c5\u5b83\u4eec": 251, "\u6b65\u9aa41\u52304\u8bbe\u7f6e\u4e86\u6211\u4eec\u7528\u4e8e\u8bad\u7ec3\u7684\u6570\u636e\u548c\u795e\u7ecf\u7f51\u7edc": 251, "\u6e05\u96f6\u68af\u5ea6\u7684\u8fc7\u7a0b\u53d1\u751f\u5728\u6b65\u9aa45": 251, "\u5982\u679c\u4f60\u5df2\u7ecf\u6784\u5efa\u4e86\u6570\u636e\u548c\u795e\u7ecf\u7f51\u7edc": 251, "\u53ef\u4ee5\u8df3\u8fc7\u524d\u56db\u6b65": 251, "\u76f4\u63a5\u8fdb\u5165\u7b2c5\u6b65": 251, "\u5b9a\u4e49\u635f\u5931\u51fd\u6570": 251, "\u6765\u8bbf\u95ee\u6570\u636e\u96c6": 251, "pytorch\u63d0\u4f9b\u4e86\u5404\u79cd\u5185\u7f6e\u6570\u636e\u96c6": 251, "\u8bf7\u53c2\u9605\u52a0\u8f7d\u6570\u636e\u6559\u7a0b": 251, "\u6211\u4eec\u5c06\u4f7f\u7528\u5377\u79ef\u795e\u7ecf\u7f51\u7edc": 251, "\u8bf7\u53c2\u9605\u5b9a\u4e49\u795e\u7ecf\u7f51\u7edc\u6559\u7a0b": 251, "\u8ba9\u6211\u4eec\u4f7f\u7528\u5206\u7c7b\u4ea4\u53c9\u71b5\u635f\u5931\u548c\u5e26\u52a8\u91cf\u7684sgd": 251, "\u6211\u4eec\u53ea\u9700\u8981\u904d\u5386\u6570\u636e\u8fed\u4ee3\u5668": 251, "\u5e76\u5c06\u8f93\u5165\u9988\u9001\u5230\u7f51\u7edc\u4e2d\u5e76\u4f18\u5316": 251, "\u5bf9\u4e8e\u6bcf\u4e2a\u6570\u636e\u5b9e\u4f53": 251, "\u6211\u4eec\u90fd\u4f1a\u6e05\u96f6\u68af\u5ea6": 251, "\u8fd9\u662f\u4e3a\u4e86\u786e\u4fdd\u5728\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc\u65f6": 251, "\u6211\u4eec\u4e0d\u4f1a\u8ddf\u8e2a\u4efb\u4f55\u4e0d\u5fc5\u8981\u7684\u4fe1\u606f": 251, "data\u662f\u4e00\u4e2a\u5305\u542b": 251, "\u7684\u5217\u8868": 251, "\u6e05\u96f6\u53c2\u6570\u68af\u5ea6": 251, "\u6bcf2000\u4e2a\u5c0f\u6279\u6b21\u6253\u5370\u4e00\u6b21": 251, "\u4f60\u4e5f\u53ef\u4ee5\u4f7f\u7528": 251, "\u53ea\u8981\u4f60\u7684\u6240\u6709\u6a21\u578b\u53c2\u6570\u90fd\u5728\u8be5\u4f18\u5316\u5668\u4e2d": 251, "\u548c\u4f7f\u7528": 251, "\u662f\u4e00\u6837\u7684": 251, "\u8bf7\u6839\u636e\u5177\u4f53\u60c5\u51b5\u51b3\u5b9a\u4f7f\u7528\u54ea\u4e00\u79cd\u65b9\u5f0f": 251, "\u4f60\u5df2\u7ecf\u6210\u529f\u5730\u5728pytorch\u4e2d\u6e05\u96f6\u4e86\u68af\u5ea6": 251, "\u7ee7\u7eed\u4f60\u7684\u5b66\u4e60\u4e4b\u65c5": 251, "\u5728pytorch\u4e2d\u52a0\u8f7d\u6570\u636e": 251, "bite": 252, "\u4e0e\u5165\u95e8\u6559\u7a0b\u4e0d\u540c": 252, "\u6b64\u7cfb\u5217\u901a\u8fc7\u7b80\u6d01\u5b9e\u7528\u7684\u793a\u4f8b": 252, "\u5c55\u793a\u4e86\u5982\u4f55\u4f7f\u7528pytorch\u7684\u7279\u6027": 252, "\u6765\u51c6\u5907\u548c\u52a0\u8f7d\u5e38\u89c1\u7684\u6570\u636e\u96c6": 252, "\u5b66\u4e60\u5982\u4f55\u4f7f\u7528torch": 252, "\u4e3amnist\u6570\u636e\u96c6\u521b\u5efa\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc": 252, "\u5bf9\u8c61\u548c": 252, "\u5b57\u5178\u5728": 252, "\u4e2d\u4fdd\u5b58\u6216\u52a0\u8f7d\u6a21\u578b": 252, "\u5728pytorch\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u7528\u4e8e\u63a8\u7406\u7684\u4e24\u79cd\u65b9\u5f0f": 252, "state_dict\u548c\u5b8c\u6574\u6a21\u578b": 252, "\u4fdd\u5b58\u548c\u52a0\u8f7d\u4e00\u4e2a\u901a\u7528\u7684\u68c0\u67e5\u70b9\u6a21\u578b": 252, "\u53ef\u4ee5\u5e2e\u52a9\u60a8\u4ece\u4e0a\u6b21\u505c\u6b62\u7684\u5730\u65b9\u7ee7\u7eed\u63a8\u7406\u6216\u8bad\u7ec3": 252, "\u63a2\u7d22\u5982\u4f55\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u68c0\u67e5\u70b9": 252, "\u5b66\u4e60\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u6a21\u578b": 252, "\u6709\u52a9\u4e8e\u91cd\u7528\u60a8\u4e4b\u524d\u8bad\u7ec3\u8fc7\u7684\u6a21\u578b": 252, "\u4e86\u89e3\u5982\u4f55\u901a\u8fc7\u90e8\u5206\u52a0\u8f7d\u6a21\u578b\u6216\u52a0\u8f7d\u90e8\u5206\u6a21\u578b\u65b9\u5f0f\u6765\u70ed\u542f\u52a8\u8bad\u7ec3\u8fc7\u7a0b": 252, "\u8fd9\u53ef\u4ee5\u5e2e\u52a9\u60a8\u7684\u6a21\u578b\u6bd4\u4ece\u5934\u5f00\u59cb\u8bad\u7ec3\u6536\u655b\u5f97\u66f4\u5feb": 252, "\u8de8\u8bbe\u5907\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": 252, "\u4e86\u89e3\u5982\u4f55\u4f7f\u7528pytorch\u5728\u4e0d\u540c\u8bbe\u5907": 252, "cpu\u548cgpu": 252, "\u4e4b\u95f4\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": 252, "\u6e05\u96f6\u68af\u5ea6": 252, "\u4e86\u89e3\u4f55\u65f6\u5e94\u8be5\u6e05\u96f6\u68af\u5ea6": 252, "\u4ee5\u53ca\u8fd9\u6837\u505a\u5982\u4f55\u6709\u52a9\u4e8e\u63d0\u9ad8\u6a21\u578b\u7684\u7cbe\u5ea6": 252, "\u6a21\u5757\u6765\u6d4b\u91cf\u548c\u6bd4\u8f83\u4ee3\u7801\u6027\u80fd": 252, "\u5b66\u4e60\u5982\u4f55\u6d4b\u91cf\u4ee3\u7801\u7247\u6bb5\u7684\u8fd0\u884c\u65f6\u95f4\u548c\u6536\u96c6\u6307\u4ee4": 252, "\u6765\u6d4b\u91cf\u7b97\u5b50\u7684\u65f6\u95f4\u548c\u5185\u5b58\u6d88\u8017": 252, "itt": 252, "\u5b66\u4e60\u5982\u4f55\u4f7f\u7528\u652f\u6301": 252, "\u4e2d\u53ef\u89c6\u5316\u7b97\u5b50\u6807\u7b7e": 252, "\u540e\u7aef": 252, "\u4e2d\u63a8\u7406\u5f62\u72b6": 252, "\u8bbe\u5907\u6765\u63a8\u7406\u6a21\u578b\u4e2d\u7684\u5f62\u72b6": 252, "\u5b66\u4e60\u4ece\u68c0\u67e5\u70b9\u52a0\u8f7d": 252, "\u89c2\u5bdf": 252, "\u65e5\u5fd7": 252, "\u89c2\u5bdf\u7f16\u8bd1\u8fc7\u7a0b": [252, 257], "\u4e2d\u7528\u4e8e\u52a0\u8f7d": 252, "\u4e2d\u7684\u65b0\u6269\u5c55\u70b9": 252, "\u5e76\u53ef\u89c6\u5316\u5f52\u56e0\u7ed3\u679c": 252, "\u5982\u4f55\u5728": [252, 258], "\u5b66\u4e60\u5728": 252, "\u7684\u57fa\u672c\u7528\u6cd5": 252, "\u4ee5\u53ca\u5982\u4f55\u5728": 252, "\u4e2d\u53ef\u89c6\u5316\u6570\u636e": 252, "\u5bf9\u4e00\u4e2a\u7b80\u5355\u7684": 252, "\u6a21\u578b\u5e94\u7528\u52a8\u6001\u91cf\u5316": 252, "\u90e8\u7f72\u65f6\u4f7f\u7528": 252, "\u5b66\u4e60\u5982\u4f55\u5c06\u8bad\u7ec3\u597d\u7684\u6a21\u578b\u5bfc\u51fa\u4e3a": 252, "\u6a21\u578b\u5e76\u8fdb\u884c\u63a8\u7406": [252, 258], "\u8fdb\u884c\u90e8\u7f72": 252, "\u5b66\u4e60\u5982\u4f55\u4f7f\u7528\u8f7b\u91cf\u7ea7": 252, "\u5feb\u901f\u4ece\u8bad\u7ec3\u597d\u7684": 252, "\u6a21\u578b\u642d\u5efa": 252, "\u79fb\u52a8\u7aef\u6027\u80fd\u4f18\u5316\u6280\u5de7": 252, "\u5728\u79fb\u52a8\u7aef": 252, "\u65f6\u7684\u4e00\u4e9b\u6027\u80fd\u4f18\u5316\u6280\u5de7": 252, "\u5236\u4f5c\u4f7f\u7528": 252, "\u9884\u7f16\u8bd1\u5e93\u7684": 252, "\u539f\u751f\u5e94\u7528": 252, "\u5b66\u4e60\u5982\u4f55\u4ece\u5934\u5f00\u59cb\u5236\u4f5c\u4f7f\u7528": 252, "\u5e26\u81ea\u5b9a\u4e49": 252, "\u7b97\u5b50": 252, "\u5e94\u7528": 252, "\u878d\u5408\u6a21\u5757\u6280\u5de7": 252, "\u5b66\u4e60\u5982\u4f55\u5728\u91cf\u5316\u4e4b\u524d\u5c06\u4e00\u7cfb\u5217": 252, "\u6a21\u5757\u878d\u5408\u4e3a\u5355\u4e2a\u6a21\u5757": 252, "\u4ee5\u51cf\u5c0f\u6a21\u578b\u5927\u5c0f": 252, "\u79fb\u52a8\u7aef\u91cf\u5316\u6280\u5de7": 252, "\u5b66\u4e60\u5982\u4f55\u5728\u4e0d\u592a\u635f\u5931\u7cbe\u5ea6\u7684\u60c5\u51b5\u4e0b\u51cf\u5c0f\u6a21\u578b\u5927\u5c0f\u5e76\u52a0\u5feb\u8fd0\u884c\u901f\u5ea6": 252, "\u4e3a\u79fb\u52a8\u7aef\u811a\u672c\u5316\u548c\u4f18\u5316": 252, "\u5b66\u4e60\u5982\u4f55\u5c06\u6a21\u578b\u8f6c\u6362\u4e3a": 252, "\u4e3a\u79fb\u52a8\u5e94\u7528\u4f18\u5316": 252, "\u7aef\u6a21\u578b\u51c6\u5907\u6280\u5de7": 252, "\u5b66\u4e60\u5982\u4f55\u5c06\u6a21\u578b\u6dfb\u52a0\u5230": 252, "\u9879\u76ee\u4e2d": 252, "\u4e0a\u7684\u79fb\u52a8\u7aef\u89e3\u91ca\u5668\u5de5\u4f5c\u6d41\u7a0b": 252, "\u5b66\u4e60\u5982\u4f55\u5728": 252, "\u8bbe\u5907\u4e0a\u4f7f\u7528\u79fb\u52a8\u7aef\u89e3\u91ca\u5668": 252, "\u5206\u6790\u57fa\u4e8e": 252, "\u7684\u5de5\u4f5c\u8d1f\u8f7d": 252, "\u4e0a\u51cf\u5c11\u8fd0\u884c\u65f6\u95f4\u5e76\u8282\u7701\u5185\u5b58": 252, "\u6027\u80fd\u4f18\u5316\u6307\u5357": 252, "\u5b9e\u73b0\u6700\u4f73\u6027\u80fd\u7684\u6280\u5de7": 252, "\u5904\u7406\u5668\u4e0a\u4f18\u5316": 252, "\u63a8\u7406\u6027\u80fd": 252, "\u4e0a\u5b9e\u73b0\u6700\u4f73\u63a8\u7406\u6027\u80fd\u7684\u6280\u5de7": 252, "\u5229\u7528": 252, "\u9ad8\u7ea7\u77e9\u9635\u6269\u5c55": 252, "\u5b66\u4e60\u5982\u4f55\u5229\u7528": 252, "\u7f16\u8bd1\u4f18\u5316\u5668": [252, 256], "\u52a0\u901f\u4f18\u5316\u5668": 252, "\u4f7f\u7528\u5b66\u4e60\u7387\u8c03\u5ea6\u5668\u8fd0\u884c\u7f16\u8bd1\u540e\u7684\u4f18\u5316\u5668": 252, "\u4f18\u5316\u5668\u52a0\u901f\u8bad\u7ec3": 252, "\u4e2d\u4f7f\u7528\u7528\u6237\u5b9a\u4e49\u7684": 252, "\u4e2d\u4f7f\u7528\u7528\u6237\u5b9a\u4e49\u7684\u5185\u6838": 252, "\u4e86\u89e3\u5982\u4f55\u4f7f\u7528\u533a\u57df\u7f16\u8bd1\u6765\u63a7\u5236\u51b7\u542f\u52a8\u7f16\u8bd1\u65f6\u95f4": 252, "\u8f7b\u677e\u91cf\u5316": 252, "\u5165\u95e8": 252, "\u5206\u7247\u4f18\u5316\u5668\u72b6\u6001": [252, 260], "\u51cf\u5c11\u5185\u5b58\u6d88\u8017": 252, "\u5b9e\u73b0\u76f4\u63a5\u8bbe\u5907\u95f4\u901a\u4fe1": 252, "\u5982\u4f55\u4f7f\u7528\u652f\u6301\u76f4\u63a5": 252, "\u901a\u4fe1\u7684": 252, "\u7684\u5206\u5e03\u5f0f\u4f18\u5316\u5668": 252, "\u5982\u4f55\u4e3a\u5206\u5e03\u5f0f\u4f18\u5316\u5668\u542f\u7528": 252, "\u5206\u5e03\u5f0f\u68c0\u67e5\u70b9": 252, "dcp": 252, "\u5b66\u4e60\u5982\u4f55\u4f7f\u7528\u5206\u5e03\u5f0f\u68c0\u67e5\u70b9\u5305\u68c0\u67e5\u70b9\u5206\u5e03\u5f0f\u6a21\u578b": 252, "diffus": 252, "\u6a21\u578b\u90e8\u7f72\u4e3a": 252, "vertex": 252, "\u7aef\u70b9": 252, "\u4e2d\u90e8\u7f72\u6a21\u578b": 252, "animesh": 253, "jain": 253, "\u968f\u7740\u6df1\u5ea6\u5b66\u4e60\u6a21\u578b\u53d8\u5f97\u8d8a\u6765\u8d8a\u5927": 253, "\u8fd9\u4e9b\u6a21\u578b\u7684\u7f16\u8bd1\u65f6\u95f4\u4e5f\u4f1a\u589e\u52a0": 253, "\u8fd9\u79cd\u5ef6\u957f\u7684\u7f16\u8bd1\u65f6\u95f4\u53ef\u80fd\u4f1a\u589e\u52a0": 253, "\u63a8\u7406\u670d\u52a1\u7684\u542f\u52a8\u65f6\u95f4\u6216\u5927\u89c4\u6a21\u8bad\u7ec3\u4e2d\u7684\u8d44\u6e90\u6d6a\u8d39": 253, "\u672c\u6559\u7a0b\u5c55\u793a\u4e86\u4e00\u4e2a\u901a\u8fc7\u9009\u62e9\u7f16\u8bd1\u6a21\u578b\u7684\u91cd\u590d\u533a\u57df": 253, "\u800c\u4e0d\u662f\u6574\u4e2a\u6a21\u578b\u6765\u51cf\u5c11\u51b7\u542f\u52a8\u7f16\u8bd1\u65f6\u95f4\u7684\u793a\u4f8b": 253, "\u9700\u8981\u5148\u5b89\u88c5": 253, "\u6b64\u529f\u80fd\u4ece": 253, "\u7248\u672c\u5f00\u59cb\u53ef\u7528": 253, "\u5982\u679c\u60a8\u4f7f\u7528\u7684\u662f": 253, "\u7248\u672c": 253, "\u53ef\u4ee5\u542f\u7528\u914d\u7f6e\u6807\u5fd7": 253, "inline_inbuilt_nn_modul": 253, "\u4ee5\u9632\u6b62\u533a\u57df\u7f16\u8bd1\u671f\u95f4\u7684\u91cd\u65b0\u7f16\u8bd1": 253, "\u7248\u672c\u4e2d": 253, "\u6b64\u6807\u5fd7\u9ed8\u8ba4\u542f\u7528": 253, "perf_count": 253, "\u6211\u4eec\u5c06\u9075\u5faa\u4ee5\u4e0b\u6b65\u9aa4": 253, "\u5bfc\u5165\u6240\u6709\u5fc5\u8981\u7684\u5e93": 253, "\u5b9a\u4e49\u5e76\u521d\u59cb\u5316\u4e00\u4e2a\u5177\u6709\u91cd\u590d\u533a\u57df\u7684\u795e\u7ecf\u7f51\u7edc": 253, "\u7406\u89e3\u5b8c\u6574\u6a21\u578b\u548c\u533a\u57df\u7f16\u8bd1\u4e4b\u95f4\u7684\u533a\u522b": 253, "\u6d4b\u91cf\u5b8c\u6574\u6a21\u578b\u548c\u533a\u57df\u7f16\u8bd1\u7684\u7f16\u8bd1\u65f6\u95f4": 253, "\u8ba9\u6211\u4eec\u5bfc\u5165\u52a0\u8f7d\u6570\u636e\u6240\u9700\u7684\u5e93": 253, "\u8ba9\u6211\u4eec\u5b9a\u4e49\u5e76\u521d\u59cb\u5316\u4e00\u4e2a\u5177\u6709\u91cd\u590d\u533a\u57df\u7684\u795e\u7ecf\u7f51\u7edc": 253, "\u795e\u7ecf\u7f51\u7edc\u7531\u91cd\u590d\u7684\u5c42\u7ec4\u6210": 253, "\u4e00\u4e2a\u5927\u578b\u8bed\u8a00\u6a21\u578b\u7531\u8bb8\u591a": 253, "\u5757\u7ec4\u6210": 253, "\u7c7b\u521b\u5efa\u4e00\u4e2a": 253, "\u4f5c\u4e3a\u91cd\u590d\u533a\u57df\u7684\u4ee3\u7406": 253, "\u6211\u4eec\u5c06\u521b\u5efa\u4e00\u4e2a\u7531": 253, "\u7c7b\u5b9e\u4f8b\u7ec4\u6210\u7684": 253, "relu1": 253, "relu2": 253, "apply_regional_compil": 253, "\u4ec5\u5bf9\u91cd\u590d\u7684\u5c42\u5e94\u7528\u7f16\u8bd1": 253, "\u5728\u533a\u57df\u7f16\u8bd1\u4e2d": 253, "\u4e0d\u5728": 253, "\u7684\u8303\u56f4\u5185": 253, "\u8ba9\u6211\u4eec\u56de\u987e\u4e00\u4e0b\u5b8c\u6574\u6a21\u578b\u548c\u533a\u57df\u7f16\u8bd1\u4e4b\u95f4\u7684\u533a\u522b": 253, "\u5728\u5b8c\u6574\u6a21\u578b\u7f16\u8bd1\u4e2d": 253, "\u6574\u4e2a\u6a21\u578b\u4f5c\u4e3a\u4e00\u4e2a\u6574\u4f53\u8fdb\u884c\u7f16\u8bd1": 253, "\u8fd9\u662f\u5927\u591a\u6570\u7528\u6237\u4f7f\u7528": 253, "\u7684\u5e38\u89c1\u65b9\u6cd5": 253, "\u5e94\u7528\u4e8e": 253, "\u8fd9\u5c06\u6709\u6548\u5730\u5185\u8054": 253, "\u5927\u7684\u56fe\u8fdb\u884c\u7f16\u8bd1": 253, "\u60a8\u53ef\u4ee5\u901a\u8fc7\u8fd0\u884c\u6b64\u6559\u7a0b\u5e76\u8bbe\u7f6e": 253, "graph_cod": 253, "\u6765\u67e5\u770b\u5b8c\u6574\u7684\u56fe": 253, "full_compiled_model": 253, "\u533a\u57df\u7f16\u8bd1\u5bf9\u6a21\u578b\u7684\u67d0\u4e2a\u533a\u57df\u8fdb\u884c\u7f16\u8bd1": 253, "\u901a\u8fc7\u6218\u7565\u6027\u5730\u9009\u62e9\u7f16\u8bd1\u6a21\u578b\u7684\u91cd\u590d\u533a\u57df": 253, "\u6211\u4eec\u53ef\u4ee5\u7f16\u8bd1\u4e00\u4e2a\u5c0f\u5f97\u591a\u7684\u56fe": 253, "\u7136\u540e\u5c06\u7f16\u8bd1\u540e\u7684\u56fe\u7528\u4e8e\u6240\u6709\u533a\u57df": 253, "\u4ec5\u5e94\u7528\u4e8e": 253, "\u800c\u4e0d\u662f\u6574\u4e2a\u6a21\u578b": 253, "regional_compiled_model": 253, "\u5c06\u7f16\u8bd1\u5e94\u7528\u4e8e\u91cd\u590d\u533a\u57df\u800c\u4e0d\u662f\u6574\u4e2a\u6a21\u578b": 253, "\u53ef\u4ee5\u5927\u5927\u8282\u7701\u7f16\u8bd1\u65f6\u95f4": 253, "\u6211\u4eec\u5c06\u53ea\u7f16\u8bd1\u4e00\u4e2a\u5c42\u5b9e\u4f8b": 253, "\u7136\u540e\u5728": 253, "\u5bf9\u8c61\u4e2d\u91cd\u590d\u4f7f\u7528": 253, "\u5bf9\u4e8e\u91cd\u590d\u533a\u57df": 253, "\u6a21\u578b\u7684\u67d0\u4e9b\u90e8\u5206\u53ef\u80fd\u4e0d\u4f1a\u88ab\u7f16\u8bd1": 253, "\u4e0d\u5728\u533a\u57df\u7f16\u8bd1\u7684\u8303\u56f4\u5185": 253, "\u8fd8\u8981\u6ce8\u610f": 253, "\u6027\u80fd\u63d0\u5347\u548c\u7f16\u8bd1\u65f6\u95f4\u4e4b\u95f4\u5b58\u5728\u6743\u8861": 253, "\u5b8c\u6574\u6a21\u578b\u7f16\u8bd1\u6d89\u53ca\u66f4\u5927\u7684\u56fe": 253, "\u5e76\u4e14\u7406\u8bba\u4e0a\u63d0\u4f9b\u4e86\u66f4\u591a\u7684\u4f18\u5316\u7a7a\u95f4": 253, "\u51fa\u4e8e\u5b9e\u9645\u76ee\u7684": 253, "\u5e76\u4e14\u6839\u636e\u6a21\u578b\u7684\u4e0d\u540c": 253, "\u6211\u4eec\u89c2\u5bdf\u5230\u5b8c\u6574\u6a21\u578b\u548c\u533a\u57df\u7f16\u8bd1\u4e4b\u95f4\u7684\u901f\u5ea6\u63d0\u5347\u5dee\u5f02\u5f88\u5c0f\u7684\u60c5\u51b5\u5f88\u591a": 253, "\u8ba9\u6211\u4eec\u6d4b\u91cf\u5b8c\u6574\u6a21\u578b\u548c\u533a\u57df\u7f16\u8bd1\u7684\u7f16\u8bd1\u65f6\u95f4": 253, "\u7f16\u8bd1\u5668": [253, 258], "\u8fd9\u610f\u5473\u7740\u5b83\u5728\u7b2c\u4e00\u6b21\u8c03\u7528\u65f6\u8fdb\u884c\u7f16\u8bd1": 253, "\u5728\u4e0b\u9762\u7684\u4ee3\u7801\u4e2d": 253, "\u6211\u4eec\u6d4b\u91cf\u7b2c\u4e00\u6b21\u8c03\u7528\u6240\u82b1\u8d39\u7684\u603b\u65f6\u95f4": 253, "\u867d\u7136\u8fd9\u79cd\u65b9\u6cd5\u4e0d\u7cbe\u786e": 253, "\u4f46\u5b83\u63d0\u4f9b\u4e86\u4e00\u4e2a\u5f88\u597d\u7684\u4f30\u8ba1": 253, "\u56e0\u4e3a\u5927\u90e8\u5206\u65f6\u95f4\u90fd\u82b1\u5728\u7f16\u8bd1\u4e0a": 253, "measure_lat": 253, "\u91cd\u7f6e\u7f16\u8bd1\u5668\u7f13\u5b58\u4ee5\u786e\u4fdd\u4e0d\u540c\u8fd0\u884c\u4e4b\u95f4\u6ca1\u6709\u91cd\u7528": 253, "fresh_inductor_cach": 253, "full_model_compilation_lat": 253, "regional_compilation_lat": 253, "\u672c\u6559\u7a0b\u5c55\u793a\u4e86\u5982\u4f55\u5728\u6a21\u578b\u5177\u6709\u91cd\u590d\u533a\u57df\u65f6\u63a7\u5236\u51b7\u542f\u52a8\u7f16\u8bd1\u65f6\u95f4": 253, "\u8fd9\u79cd\u65b9\u6cd5\u9700\u8981\u7528\u6237\u4fee\u6539\u4ee5\u5c06": 253, "\u91cd\u590d\u533a\u57df": 253, "\u800c\u4e0d\u662f\u66f4\u5e38\u7528\u7684\u5168\u6a21\u578b\u7f16\u8bd1": 253, "\u6211\u4eec\u6b63\u5728\u4e0d\u65ad\u52aa\u529b\u51cf\u5c11\u51b7\u542f\u52a8\u7f16\u8bd1\u65f6\u95f4": 253, "regional_compil": 253, "tracerwarn": 254, "_0": 254, "WITH": 254, "encoder_input": 254, "decoder_input1": 254, "decoder_input2": 254, "decoder_input3": 254, "scripted_encod": 254, "scripted_decod": 254, "optimized_torchscript_model": 254, "hoist": 254, "blocklist": 254, "\u4e3a\u4e86\u66f4\u597d\u5730\u4e0e": 255, "\u534f\u4f5c": 255, "\u6269\u5c55\u5b9e\u73b0\u4e86\u4e00\u4e2a\u540d\u4e3a": 255, "\u7684\u540e\u7aef": 255, "\u5b83\u65e8\u5728\u63d0\u9ad8": 255, "\u5e73\u53f0\u4e0a\u7684\u786c\u4ef6\u8d44\u6e90\u4f7f\u7528\u6548\u7387": 255, "\u4ece\u800c\u83b7\u5f97\u66f4\u597d\u7684\u6027\u80fd": 255, "\u540e\u7aef\u662f\u901a\u8fc7": 255, "\u6269\u5c55\u4e2d\u8fdb\u4e00\u6b65\u7684\u5b9a\u5236\u8bbe\u8ba1\u6765\u5b9e\u73b0\u6a21\u578b\u7f16\u8bd1\u7684": 255, "\u67e5\u770b\u4e0b\u9762\u7684\u793a\u4f8b": 255, "\u4e86\u89e3\u5982\u4f55\u5c06": 255, "\u540e\u7aef\u4e0e": 255, "\u8fdb\u884c": 255, "\u6570\u636e\u7c7b\u578b\u7684\u6a21\u578b\u8bad\u7ec3": 255, "\u4ee3\u7801\u4fee\u6539": 255, "\u53ef\u9009\u62e9\u8c03\u7528\u4ee5\u4e0b": 255, "\u5e94\u7528\u524d\u7aef\u4f18\u5316": 255, "compile_model": 255, "\u6570\u636e\u7c7b\u578b\u7684\u6a21\u578b\u63a8\u7406": 255, "resnet50_weight": 255, "weights_prepack": 255, "oguz": 256, "ulgen": 256, "\u7528\u6237\u81ea\u5b9a\u4e49\u7684": 256, "\u5185\u6838\u53ef\u7528\u4e8e\u4f18\u5316\u6a21\u578b\u8ba1\u7b97\u7684\u7279\u5b9a\u90e8\u5206": 256, "\u8fd9\u4e9b\u5185\u6838\u662f\u7528": 256, "\u8bed\u8a00\u7f16\u5199\u7684": 256, "\u65e8\u5728\u66f4\u5bb9\u6613\u5b9e\u73b0\u786c\u4ef6\u7684\u5cf0\u503c\u6027\u80fd": 256, "\u901a\u8fc7\u5728": 256, "\u4e2d\u4f7f\u7528\u7528\u6237\u81ea\u5b9a\u4e49\u7684": 256, "\u60a8\u53ef\u4ee5\u5c06\u8fd9\u4e9b\u4f18\u5316\u8fc7\u7684\u8ba1\u7b97\u96c6\u6210\u5230": 256, "\u6a21\u578b\u4e2d": 256, "\u4ece\u800c\u53ef\u80fd\u83b7\u5f97\u663e\u8457\u7684\u6027\u80fd\u63d0\u5347": 256, "\u672c\u6559\u7a0b\u6f14\u793a\u4e86\u5982\u4f55\u5728": 256, "\u5728\u5f00\u59cb\u672c\u6559\u7a0b\u4e4b\u524d": 256, "\u8bf7\u786e\u4fdd\u60a8\u5177\u5907\u4ee5\u4e0b\u6761\u4ef6": 256, "\u6709\u57fa\u672c\u7684\u4e86\u89e3": 256, "\u8bed\u8a00\u6587\u6863": 256, "_triton": 256, "has_triton": 256, "\u5728\u6b64\u793a\u4f8b\u4e2d": 256, "\u6211\u4eec\u5c06\u4f7f\u7528\u6765\u81ea": 256, "\u6587\u6863\u7684\u4e00\u4e2a\u7b80\u5355\u5411\u91cf\u52a0\u6cd5\u5185\u6838\u4e0e": 256, "\u7531\u4e8e\u6b64\u8bbe\u5907\u4e0d\u652f\u6301": 256, "\u56e0\u6b64\u8df3\u8fc7": 256, "add_kernel": 256, "out_ptr": 256, "n_element": 256, "block_siz": 256, "constexpr": 256, "pid": 256, "program_id": 256, "block_start": 256, "add_fn": 256, "cdiv": 256, "\u5411\u91cf\u52a0\u6cd5": 256, "nx": 256, "ny": 256, "n\u7ed3\u679c\u4e3a": 256, "\u7684\u81ea\u52a8\u8c03\u4f18\u529f\u80fd\u662f\u4e00\u4e2a\u5f3a\u5927\u7684\u5de5\u5177": 256, "\u53ef\u81ea\u52a8\u4f18\u5316": 256, "\u5185\u6838\u7684\u914d\u7f6e\u53c2\u6570": 256, "\u5b83\u63a2\u7d22\u4e00\u7cfb\u5217\u53ef\u80fd\u7684\u914d\u7f6e": 256, "\u5e76\u9009\u62e9\u4e3a\u60a8\u7684\u7279\u5b9a\u7528\u4f8b\u63d0\u4f9b\u6700\u4f73\u6027\u80fd\u7684\u914d\u7f6e": 256, "\u4e00\u8d77\u4f7f\u7528\u65f6": 256, "\u53ef\u4ee5\u5e2e\u52a9\u786e\u4fdd\u60a8\u7684": 256, "\u6a21\u578b\u4ee5\u6700\u9ad8\u6548\u7684\u65b9\u5f0f\u8fd0\u884c": 256, "\u4e0b\u9762\u662f\u4f7f\u7528": 256, "\u4ec5\u652f\u6301": 256, "\u7684\u914d\u7f6e\u548c\u5173\u952e\u53c2\u6570": 256, "num_stag": 256, "num_warp": 256, "add_kernel_autotun": 256, "\u4e2d\u5bf9\u7528\u6237\u81ea\u5b9a\u4e49": 256, "\u5185\u6838\u7684\u652f\u6301\u5305\u62ec\u52a8\u6001\u5f62\u72b6": 256, "\u60a8\u53ef\u4ee5\u5c06\u8fd9\u4e9b\u529f\u80fd\u7ec4\u5408\u5728\u4e00\u8d77\u6784\u5efa\u590d\u6742\u7684\u9ad8\u6027\u80fd\u6a21\u578b": 256, "\u4e5f\u9700\u8981\u6ce8\u610f\u4e00\u4e9b\u9650\u5236": 256, "\u76ee\u524d\u4e0d\u652f\u6301\u5f20\u91cf\u5b50\u7c7b\u548c\u5176\u4ed6\u9ad8\u7ea7\u529f\u80fd": 256, "\u53ef\u4ee5\u5355\u72ec\u4f7f\u7528\u6216\u5728": 256, "\u4e4b\u524d\u4f7f\u7528": 256, "\u4f46\u4e0d\u80fd\u5728": 256, "\u4e4b\u540e\u4f7f\u7528": 256, "\u8fd9\u610f\u5473\u7740\u5982\u679c\u8981\u4e00\u8d77\u4f7f\u7528": 256, "\u5219\u5fc5\u987b\u5148\u4f7f\u7528": 256, "\u6211\u4eec\u63a2\u8ba8\u4e86\u5982\u4f55\u5728": 256, "\u6211\u4eec\u6df1\u5165\u7814\u7a76\u4e86\u4f7f\u7528\u7b80\u5355\u5411\u91cf\u52a0\u6cd5\u5185\u6838\u7684\u57fa\u672c\u7528\u6cd5": 256, "\u4ee5\u53ca\u6d89\u53ca": 256, "\u81ea\u52a8\u8c03\u4f18\u529f\u80fd\u7684\u9ad8\u7ea7\u7528\u6cd5": 256, "\u6211\u4eec\u8fd8\u8ba8\u8bba\u4e86\u7528\u6237\u81ea\u5b9a\u4e49": 256, "\u5185\u6838\u4e0e\u5176\u4ed6": 256, "\u529f\u80fd\u7684\u53ef\u7ec4\u5408\u6027": 256, "\u5e76\u5f3a\u8c03\u4e86\u4e00\u4e9b\u5f53\u524d\u7684\u9650\u5236": 256, "\u4f7f\u7528\u7f29\u653e\u70b9\u79ef\u6ce8\u610f\u529b\u5b9e\u73b0\u9ad8\u6027\u80fd": 256, "torch_compile_user_defined_triton_kernel_tutori": 256, "\u672c\u6559\u7a0b\u4ecb\u7ecd\u4e86": 257, "\u73af\u5883\u53d8\u91cf\u4ee5\u53ca": 257, "\u5e76\u6f14\u793a\u4e86\u5982\u4f55\u5c06\u5176\u5e94\u7528\u4e8e\u89c2\u5bdf": 257, "\u7684\u5404\u4e2a\u9636\u6bb5": 257, "\u6211\u4eec\u5c06\u8bbe\u7f6e\u4e00\u4e2a\u7b80\u5355\u7684": 257, "\u6267\u884c\u5143\u7d20\u7ea7\u52a0\u6cd5": 257, "\u8fd8\u6709\u4e00\u4e2a\u73af\u5883\u53d8\u91cf": 257, "\u53ef\u7528\u4e8e\u5728\u547d\u4ee4\u884c\u4e2d\u66f4\u6539\u65e5\u5fd7\u8bbe\u7f6e": 257, "\u6bcf\u4e2a\u793a\u4f8b\u90fd\u663e\u793a\u4e86\u7b49\u6548\u7684\u73af\u5883\u53d8\u91cf\u8bbe\u7f6e": 257, "\u5982\u679c\u8bbe\u5907\u4e0d\u652f\u6301": 257, "\u8df3\u8fc7": 257, "\u56e0\u4e3a\u6b64\u8bbe\u5907\u4e0d\u652f\u6301": 257, "\u5728\u6bcf\u4e2a\u793a\u4f8b\u4e4b\u95f4\u6253\u5370\u5206\u9694\u7b26\u5e76\u91cd\u7f6e": 257, "\u8ddf\u8e2a": 257, "\u8ddf\u8e2a\u7684\u56fe\u5f62": 257, "\u67e5\u770b\u8ddf\u8e2a\u7684\u56fe\u5f62": 257, "\u878d\u5408\u51b3\u7b56": 257, "\u67e5\u770b\u878d\u5408\u51b3\u7b56": 257, "\u8f93\u51fa\u4ee3\u7801": 257, "\u751f\u6210\u7684\u8f93\u51fa\u4ee3\u7801": 257, "\u73af\u5883\u53d8\u91cf\u548c": 257, "\u5e76\u901a\u8fc7\u5b9e\u9a8c\u4e86\u4e00\u5c0f\u90e8\u5206\u53ef\u7528\u7684\u65e5\u5fd7\u9009\u9879": 257, "\u8981\u67e5\u770b\u6240\u6709\u53ef\u7528\u9009\u9879\u7684\u63cf\u8ff0": 257, "\u8bf7\u8fd0\u884c\u4efb\u4f55\u5bfc\u5165": 257, "\u60a8\u53ef\u4ee5\u67e5\u770b": 257, "\u4ee5\u67e5\u770b\u6240\u6709\u53ef\u7528\u65e5\u5fd7\u9009\u9879\u7684\u63cf\u8ff0": 257, "\u5982\u4f55\u5c06\u8bad\u7ec3\u597d\u7684\u6a21\u578b\u5bfc\u51fa\u4e3a": 258, "\u5b89\u88c5\u8fd9\u4e09\u4e2a": 258, "\u7ec4\u4ef6\u7684\u8bf4\u660e\u53ef\u5728": 258, "\u7f16\u8bd1\u5668\u5219\u53d6\u51b3\u4e8e\u60a8\u7684\u5e73\u53f0": 258, "\u7684\u4e2d\u95f4\u8868\u793a": 258, "\u53ef\u4ee5\u5728\u9ad8\u6027\u80fd\u73af\u5883": 258, "\u5b83\u662f": 258, "\u7684\u4e00\u4e2a\u9ad8\u6027\u80fd\u5b50\u96c6": 258, "\u65e8\u5728\u88ab": 258, "\u540e\u8005\u4f1a\u5bf9\u6a21\u578b\u7684\u8ba1\u7b97\u8fdb\u884c\u8fd0\u884c\u65f6\u4f18\u5316": 258, "\u662f\u4f7f\u7528": 258, "\u6a21\u578b\u8fdb\u884c\u5927\u89c4\u6a21\u63a8\u7406\u7684\u63a8\u8350\u6a21\u578b\u683c\u5f0f": 258, "\u6a21\u578b\u6559\u7a0b": 258, "\u5b8c\u6574\u7684": 258, "\u6587\u6863_": 258, "\u4f5c\u4e3a\u793a\u4f8b": 258, "\u8ba9\u6211\u4eec\u4f7f\u7528\u4e00\u4e2a\u9884\u8bad\u7ec3\u7684\u89c6\u89c9\u6a21\u578b": 258, "\u4e2d\u7684\u6240\u6709\u9884\u8bad\u7ec3\u6a21\u578b\u90fd\u4e0e": 258, "\u517c\u5bb9": 258, "\u53ef\u4ee5\u5728\u811a\u672c\u4e2d\u6216\u4ece": 258, "repl": 258, "r18": 258, "\u73b0\u5728\u6211\u4eec\u6709\u4e00\u4e2a\u9884\u8bad\u7ec3\u6a21\u578b\u7684\u5b9e\u4f8b": 258, "r18_script": 258, "\u5bfc\u51fa": 258, "\u5feb\u901f\u6d4b\u8bd5\u4e00\u4e0b": 258, "\u8ba9\u6211\u4eec\u5feb\u901f\u68c0\u67e5\u4e00\u4e0b\u4e24\u4e2a\u6a21\u578b\u7684\u7b49\u4ef7\u6027": 258, "unscripted_output": 258, "scripted_output": 258, "unscripted_top5": 258, "scripted_top5": 258, "\u4f1a\u770b\u5230\u4e24\u4e2a\u7248\u672c\u7684\u6a21\u578b\u7ed9\u51fa\u76f8\u540c\u7684\u7ed3\u679c": 258, "463": 258, "\u786e\u8ba4\u68c0\u67e5\u901a\u8fc7\u540e": 258, "\u7ee7\u7eed\u4fdd\u5b58\u6a21\u578b": 258, "\u521b\u5efa\u4ee5\u4e0b": 258, "\u5e76\u5c06\u5176\u547d\u540d\u4e3a": 258, "ts": 258, "\u53cd\u5e8f\u5217\u5316": 258, "msg_without_backtrac": 258, "\u786e\u4fdd\u81ea\u52a8\u68af\u5ea6\u8ba1\u7b97\u5173\u95ed": 258, "\u5173\u95ed": 258, "\u548c\u5176\u4ed6\u8bad\u7ec3\u65f6\u5c42": 258, "\u521b\u5efa\u4e00\u4e2a\u8f93\u5165": 258, "\u6267\u884c\u6a21\u578b\u5e76\u5c06\u8f93\u51fa\u6253\u5305\u4e3a\u5f20\u91cf": 258, "output_sm": 258, "softmaxfuncopt": 258, "top5_tensor": 258, "ndone": 258, "\u7a0b\u5e8f\u6b65\u9aa4": 258, "\u52a0\u8f7d\u60a8\u5728\u547d\u4ee4\u884c\u4e0a\u6307\u5b9a\u7684\u6a21\u578b": 258, "\u521b\u5efa\u4e00\u4e2a\u865a\u62df\u7684": 258, "\u8f93\u5165\u5f20\u91cf": 258, "\u5bf9\u8f93\u5165\u6267\u884c\u63a8\u7406": 258, "\u8bf7\u6ce8\u610f\u8fd9\u6bb5\u4ee3\u7801\u4e2d\u6ca1\u6709\u4f9d\u8d56": 258, "\u4fdd\u5b58\u7684": 258, "\u6a21\u578b\u5305\u542b\u60a8\u7684\u5b66\u4e60\u6743\u91cd\u548c\u60a8\u7684\u8ba1\u7b97\u56fe": 258, "\u6784\u5efa\u7a0b\u5e8f": 258, "\u4e2d\u8fd0\u884c\u63a8\u7406": 258, "\u5e76\u9a8c\u8bc1\u6211\u4eec\u5f97\u5230\u7ed3\u679c": 258, "418": 258, "845": 258, "644": 258, "cpulongtyp": 258, "\u67e5\u770b\u5b89\u88c5\u8bf4\u660e\u548c\u66f4\u591a\u6587\u6863\u548c\u6559\u7a0b": 258, "\u8fdb\u4e00\u6b65\u4e86\u89e3": 258, "\u67e5\u770b\u5b8c\u6574\u7684": 258, "\u8bed\u8a00\u548c": 258, "\u90e8\u7f72\u5927\u578b\u6a21\u578b": 259, "\u53ef\u80fd\u5177\u6709\u6311\u6218\u6027\u4e14\u8017\u65f6": 259, "\u6211\u4eec\u5c06\u5c55\u793a\u5982\u4f55\u901a\u8fc7\u5229\u7528": 259, "\u6765\u7b80\u5316": 259, "\u6a21\u578b\u7684\u90e8\u7f72\u8fc7\u7a0b": 259, "\u4e0a\u4f7f\u7528\u7684\u6846\u67b6": 259, "\u662f\u4e00\u4e2a\u5168\u6258\u7ba1\u7684\u673a\u5668\u5b66\u4e60\u5e73\u53f0": 259, "\u63d0\u4f9b\u5de5\u5177\u548c\u57fa\u7840\u8bbe\u65bd": 259, "\u65e8\u5728\u5e2e\u52a9": 259, "\u4ece\u4e1a\u8005\u52a0\u901f\u548c\u6269\u5c55\u751f\u4ea7\u4e2d\u7684": 259, "\u540c\u65f6\u53d7\u76ca\u4e8e": 259, "\u7b49\u5f00\u6e90\u6846\u67b6": 259, "\u60a8\u53ef\u4ee5\u901a\u8fc7\u56db\u4e2a\u6b65\u9aa4\u90e8\u7f72": 259, "\u7aef\u70b9\u4e0a\u90e8\u7f72": 259, "\u6a21\u578b\u53ef\u4ee5\u901a\u8fc7\u4ee5\u4e0b\u56db\u4e2a\u6b65\u9aa4\u5b8c\u6210": 259, "\u8ba9\u6211\u4eec\u8be6\u7ec6\u770b\u770b\u6bcf\u4e2a\u6b65\u9aa4": 259, "\u6765\u8ddf\u968f\u5e76\u5b9e\u65bd\u8fd9\u4e9b\u6b65\u9aa4": 259, "\u8bf7\u8bb0\u4f4f": 259, "\u6b64\u6559\u7a0b\u9700\u8981\u4e00\u4e2a\u8ba1\u8d39\u7684": 259, "\u793a\u4f8b\u4e2d\u66f4\u8be6\u7ec6\u5730\u89e3\u91ca\u7684\u90a3\u6837": 259, "\u662f\u4e00\u4e2a\u7b80\u5355\u7075\u6d3b\u7684": 259, "\u6a21\u578b\u670d\u52a1\u5de5\u5177": 259, "\u90e8\u7f72\u5230": 259, "\u7684\u6a21\u578b\u4f7f\u7528": 259, "\u6765\u5904\u7406\u8bf7\u6c42\u5e76\u4ece\u6a21\u578b\u8fd4\u56de\u54cd\u5e94": 259, "\u60a8\u5fc5\u987b\u521b\u5efa\u4e00\u4e2a\u81ea\u5b9a\u4e49": 259, "\u4ee5\u5305\u542b\u5728\u4e0a\u4f20\u5230": 259, "\u7684\u6a21\u578b\u5de5\u4ef6\u4e2d": 259, "\u5c06\u5904\u7406\u7a0b\u5e8f\u6587\u4ef6\u5305\u542b\u5728\u4e0e\u5176\u4ed6\u6a21\u578b\u5de5\u4ef6\u76f8\u540c\u7684\u76ee\u5f55\u4e2d": 259, "model_artifact": 259, "\u521b\u5efa\u5904\u7406\u7a0b\u5e8f\u6587\u4ef6\u540e": 259, "\u60a8\u5fc5\u987b\u5c06\u5904\u7406\u7a0b\u5e8f\u6253\u5305\u4e3a\u6a21\u578b\u5f52\u6863": 259, "mar": 259, "\u8f93\u51fa\u6587\u4ef6\u5fc5\u987b\u547d\u540d\u4e3a": 259, "your_model_nam": 259, "\u5728\u8fd9\u4e00\u6b65\u4e2d": 259, "\u6a21\u578b\u5de5\u4ef6": 259, "\u4e0a\u4f20\u5230": 259, "\u4f8b\u5982\u6a21\u578b\u6587\u4ef6\u6216\u5904\u7406\u7a0b\u5e8f": 259, "\u5c06\u5de5\u4ef6\u5b58\u50a8\u5728": 259, "\u4e0a\u7684\u4f18\u52bf\u5728\u4e8e\u60a8\u53ef\u4ee5\u5728\u4e2d\u592e\u5b58\u50a8\u6876\u4e2d\u8ddf\u8e2a\u5de5\u4ef6": 259, "bucket_nam": 259, "bucket_uri": 259, "\u5c06\u5de5\u4ef6\u590d\u5236\u5230\u5b58\u50a8\u6876\u4e2d": 259, "gsutil": 259, "\u5b58\u50a8\u6876\u540e": 259, "\u60a8\u53ef\u4ee5\u5c06": 259, "\u6a21\u578b\u4e0a\u4f20\u5230": 259, "\u6a21\u578b\u6ce8\u518c\u8868": 259, "\u6a21\u578b\u6ce8\u518c\u8868\u4e2d": 259, "\u60a8\u53ef\u4ee5\u6982\u89c8\u60a8\u7684\u6a21\u578b": 259, "\u4ee5\u4fbf\u66f4\u597d\u5730\u7ec4\u7ec7": 259, "\u8ddf\u8e2a\u548c\u8bad\u7ec3\u65b0\u7248\u672c": 259, "\u548c\u8fd9\u4e2a": 259, "\u9884\u6784\u5efa\u7684": 259, "\u5bb9\u5668": 259, "aiplatform": 259, "vertexai": 259, "pytorch_prediction_image_uri": 259, "model_display_nam": 259, "stable_diffusion_1_5": 259, "model_descript": 259, "your_project": 259, "central1": 259, "staging_bucket": 259, "display_nam": 259, "serving_container_image_uri": 259, "artifact_uri": 259, "\u5c06\u6a21\u578b\u4e0a\u4f20\u5230": 259, "\u6a21\u578b\u6ce8\u518c\u8868\u540e": 259, "\u60a8\u53ef\u4ee5\u5c06\u5176\u90e8\u7f72\u5230": 259, "\u60a8\u53ef\u4ee5\u4f7f\u7528\u63a7\u5236\u53f0\u6216": 259, "\u5728\u6b64": 259, "\u793a\u4f8b\u4e2d": 259, "\u60a8\u5c06\u5728": 259, "tesla": 259, "p100": 259, "n1": 259, "\u673a\u5668\u4e0a\u90e8\u7f72\u6a21\u578b": 259, "\u6307\u5b9a\u60a8\u7684\u673a\u5668\u7c7b\u578b": 259, "endpoint_display_nam": 259, "deployed_model_display_nam": 259, "machine_typ": 259, "accelerator_typ": 259, "nvidia_tesla_p100": 259, "accelerator_count": 259, "traffic_percentag": 259, "deploy_request_timeout": 259, "\u5982\u679c\u60a8\u6309\u7167\u8fd9\u4e2a": 259, "\u60a8\u8fd8\u53ef\u4ee5\u4f7f\u7528": 259, "\u83b7\u53d6\u5728\u7ebf\u9884\u6d4b": 259, "\u5982\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u6240\u793a": 259, "examplepup": 259, "basebal": 259, "jersei": 259, "base64": 259, "b64decod": 259, "\u672c\u6559\u7a0b\u662f\u4f7f\u7528\u4f9b\u5e94\u5546\u6587\u6863\u521b\u5efa\u7684": 259, "\u8981\u53c2\u8003\u4f9b\u5e94\u5546\u7f51\u7ad9\u4e0a\u7684\u539f\u59cb\u6587\u6863": 259, "\u7684\u9ad8\u7ea7\u6982\u5ff5": 260, "\u5982\u4f55\u5728\u5206\u5e03\u5f0f\u8bad\u7ec3\u4e2d\u4f7f\u7528": 260, "\u53ca\u5176\u5f71\u54cd": 260, "\u5206\u5e03\u5f0f\u6570\u636e\u5e76\u884c\u5165\u95e8": 260, "\u7684\u60f3\u6cd5\u6765\u81ea": 260, "deepspe": 260, "\u9879\u76ee": 260, "marian": 260, "\u5b83\u4eec\u5728\u5206\u5e03\u5f0f\u6570\u636e\u5e76\u884c\u8fdb\u7a0b\u4e2d": 260, "\u4ee5\u51cf\u5c11\u6bcf\u4e2a\u8fdb\u7a0b\u7684\u5185\u5b58\u5360\u7528": 260, "\u6559\u7a0b\u4e2d": 260, "\u6211\u4eec\u5c55\u793a\u4e86\u5982\u4f55\u4f7f\u7528": 260, "\u6765\u8bad\u7ec3\u6a21\u578b": 260, "\u5728\u8be5\u6559\u7a0b\u4e2d": 260, "\u6bcf\u4e2a\u8fdb\u7a0b\u90fd\u4fdd\u7559\u4e00\u4e2a\u4e13\u7528\u7684\u4f18\u5316\u5668\u526f\u672c": 260, "\u7531\u4e8eddp\u5df2\u7ecf\u5728\u53cd\u5411\u4f20\u64ad\u4e2d\u540c\u6b65\u4e86\u68af\u5ea6": 260, "\u6240\u6709\u4f18\u5316\u5668\u526f\u672c\u5728\u6bcf\u6b21\u8fed\u4ee3\u4e2d\u90fd\u5c06\u5bf9\u76f8\u540c\u7684\u53c2\u6570\u548c\u68af\u5ea6\u503c\u8fdb\u884c\u64cd\u4f5c": 260, "\u8fd9\u5c31\u662fddp\u4fdd\u6301\u6a21\u578b\u526f\u672c\u5904\u4e8e\u76f8\u540c\u72b6\u6001\u7684\u65b9\u5f0f": 260, "\u4f18\u5316\u5668\u8fd8\u4f1a\u7ef4\u62a4\u672c\u5730\u72b6\u6001": 260, "\u4f18\u5316\u5668\u4f7f\u7528\u6bcf\u4e2a\u53c2\u6570\u7684": 260, "exp_avg": 260, "exp_avg_sq": 260, "\u4f18\u5316\u5668\u7684\u5185\u5b58\u6d88\u8017\u81f3\u5c11\u662f\u6a21\u578b\u5927\u5c0f\u7684\u4e24\u500d": 260, "\u57fa\u4e8e\u8fd9\u4e2a\u89c2\u5bdf": 260, "\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u5728ddp\u8fdb\u7a0b\u4e4b\u95f4\u5206\u7247": 260, "\u4f18\u5316\u5668\u72b6\u6001\u6765\u51cf\u5c11\u4f18\u5316\u5668\u7684\u5185\u5b58\u5360\u7528": 260, "\u4e0d\u662f\u4e3a\u6240\u6709\u53c2\u6570\u521b\u5efa\u6bcf\u4e2a\u53c2\u6570\u7684\u72b6\u6001": 260, "\u800c\u662f\u6bcf\u4e2addp\u8fdb\u7a0b\u4e2d\u7684\u4f18\u5316\u5668\u5b9e\u4f8b": 260, "\u53ea\u4fdd\u7559\u6240\u6709\u6a21\u578b\u53c2\u6570\u4e2d\u4e00\u4e2a\u5206\u7247\u7684\u4f18\u5316\u5668\u72b6\u6001": 260, "\u4f18\u5316\u5668\u7684": 260, "\u51fd\u6570\u53ea\u66f4\u65b0\u5176\u5206\u7247\u4e2d\u7684\u53c2\u6570": 260, "\u7136\u540e\u5c06\u66f4\u65b0\u540e\u7684\u53c2\u6570\u5e7f\u64ad\u5230\u6240\u6709\u5176\u4ed6\u5bf9\u7b49ddp\u8fdb\u7a0b": 260, "\u4ee5\u4fbf\u6240\u6709\u6a21\u578b\u526f\u672c\u4ecd\u7136\u5904\u4e8e\u76f8\u540c\u7684\u72b6\u6001": 260, "\u4ee5\u4e0b\u4ee3\u7801\u6f14\u793a\u4e86\u5982\u4f55\u4f7f\u7528": 260, "\u5927\u90e8\u5206\u4ee3\u7801\u4e0e": 260, "\u5206\u5e03\u5f0f\u6570\u636e\u5e76\u884c\u8bf4\u660e": 260, "\u4e2d\u7684\u7b80\u5355ddp\u793a\u4f8b\u76f8\u4f3c": 260, "\u4e3b\u8981\u533a\u522b\u5728\u4e8e": 260, "\u51fd\u6570\u4e2d\u7684": 260, "\u5b50\u53e5": 260, "\u5b83\u5305\u88c5\u4e86\u4f18\u5316\u5668\u6784\u9020": 260, "\u4f18\u5316\u5668\u4e4b\u95f4\u5207\u6362": 260, "print_peak_memori": 260, "use_zero": 260, "\u521b\u5efa\u9ed8\u8ba4\u8fdb\u7a0b\u7ec4": 260, "\u521b\u5efa\u672c\u5730\u6a21\u578b": 260, "\u521b\u5efa\u672c\u5730\u6a21\u578b\u540e\u7684\u6700\u5927\u5185\u5b58\u5206\u914d": 260, "\u6784\u5efaddp\u6a21\u578b": 260, "\u521b\u5efaddp\u540e\u7684\u6700\u5927\u5185\u5b58\u5206\u914d": 260, "\u5b9a\u4e49\u635f\u5931\u51fd\u6570\u548c\u4f18\u5316\u5668": 260, "optimizer_class": 260, "\u524d\u5411\u4f20\u64ad": 260, "\u66f4\u65b0\u53c2\u6570": 260, "\u4f18\u5316\u5668step": 260, "\u4e4b\u524d\u7684\u6700\u5927\u5185\u5b58\u5206\u914d": 260, "\u4e4b\u540e\u7684\u6700\u5927\u5185\u5b58\u5206\u914d": 260, "\u53c2\u6570\u603b\u548c\u4e3a": 260, "\u5f53\u4f7f\u7528": 260, "\u7684\u5cf0\u503c\u5185\u5b58\u6d88\u8017": 260, "\u662f\u666e\u901a": 260, "\u5185\u5b58\u6d88\u8017\u7684\u4e00\u534a": 260, "\u8fd9\u7b26\u5408\u6211\u4eec\u7684\u9884\u671f": 260, "\u56e0\u4e3a\u6211\u4eec\u5728\u4e24\u4e2a\u8fdb\u7a0b\u4e4b\u95f4\u5206\u7247\u4e86": 260, "\u4f18\u5316\u5668\u72b6\u6001": 260, "\u8f93\u51fa\u8fd8\u663e\u793a": 260, "\u6a21\u578b\u53c2\u6570\u5728\u4e00\u6b21\u8fed\u4ee3\u540e\u4ecd\u7136\u5f97\u5230\u76f8\u540c\u7684\u503c": 260, "\u4f7f\u7528\u548c\u4e0d\u4f7f\u7528": 260, "\u65f6\u53c2\u6570\u603b\u548c\u76f8\u540c": 260, "0mb": 260, "992": 260, "1361": 260, "3453": 260, "6123046875": 260, "pytorch_sphinx_them": [262, 269], "html_theme_opt": 262, "canonical_url": 262, "analytics_id": 262, "logo_onli": 262, "display_vers": 262, "prev_next_buttons_loc": 262, "style_external_link": 262, "vcs_pageview_mod": 262, "collapse_navig": 262, "sticky_navig": [262, 266], "navigation_depth": 262, "includehidden": 262, "titles_onli": 262, "canon": 262, "trail": 262, "slash": 262, "sidebar": [262, 268], "display_github": 262, "display_gitlab": 262, "gitlab": 262, "bitbucket": 262, "toctre": 262, "unlimit": 262, "github_url": 262, "bitbucket_url": 262, "gitlab_url": 262, "visitor": 262, "revert": 262, "misbuild": 262, "sticki": [262, 268], "nav": [262, 268], "django": 263, "payment": 263, "dotpai": 263, "dotpayprovid": 263, "seller_id": 263, "pl": 263, "gatewai": 263, "purchas": 263, "seller": 263, "data_item_1": 263, "data_item_2": 263, "data_item_3": 263, "lorem": [263, 265, 267], "ipsum": [263, 265, 267], "dolor": [263, 265, 267], "amet": [263, 265, 267], "consectetur": [263, 265, 267], "adipisc": [263, 265, 267], "fusc": [263, 267], "congu": [263, 267], "eu": [263, 267], "hendrerit": [263, 267], "matti": [263, 265], "emphasi": 264, "hyperlink": 264, "uri": 264, "anonym": 264, "exceedingli": 264, "ugli": 264, "autodoc": [264, 265], "test_py_modul": [264, 268], "2822": 264, "subscript": 264, "superscript": 264, "interfer": 264, "mmb": 264, "menuselect": 264, "whitespac": 264, "hyphen": 264, "restructuredtext": [264, 265], "literal_block": 264, "spaces_and_linebreak": 264, "markup_process": 264, "eric": 264, "orchestra": 264, "leader": 264, "philosoph": 264, "ipso": 264, "facto": 264, "ancient": 264, "sing": 264, "elk": 264, "brontosaurus": 264, "thicker": 264, "ann": 264, "begun": 264, "someurl": 264, "pane": 264, "shell_command": 264, "window_nam": 264, "session_nam": 264, "some_funct": 264, "THE": 264, "heaven": 264, "hexagram": 264, "unbroken": 264, "unrestrict": 264, "conceiv": 264, "men": 264, "deiti": 264, "holi": 264, "sage": 264, "ruler": 264, "awaken": 264, "sphinx_rtd_them": [264, 265], "docstr": [264, 265], "tt": 264, "descnam": 264, "descclassnam": 264, "myclass": 264, "dothismethod": 264, "flox": 264, "unreferenc": 264, "nonexist": 264, "bold": 264, "ital": 264, "heck": 264, "backlink": 264, "indirect": 264, "docutil": [264, 265], "sourceforg": [264, 265], "clickabl": 264, "revis": [264, 265], "structuredtext": 264, "nickel": 264, "mad": 264, "scientist": 264, "bread": 264, "wash": 264, "ear": 264, "closet": 264, "bathroom": 264, "trash": 264, "mother": 264, "rho_": 264, "thing1": 264, "thing2": 264, "thing3": 264, "prose": 264, "provok": 264, "mental": 264, "exert": 264, "advis": 264, "subtitl": 264, "border": 264, "disconnect": 264, "arab": 265, "iii": 265, "iv": 265, "goodger": 265, "a1b": 265, "2c3": 265, "myself": 265, "humankind": 265, "tue": 265, "jan": 265, "7302": 265, "redistribut": 265, "reattribut": 265, "sell": 265, "bui": 265, "rent": 265, "leas": 265, "excerpt": 265, "stapl": 265, "mutil": 265, "anyon": 265, "bibliograph": 265, "markup": [265, 268], "literal": 265, "yahoo": 265, "oh": 265, "heh": 265, "beat": 265, "hehe": 265, "cackl": 265, "lone": 265, "guangzhou": 265, "destini": 265, "dream": 265, "sixth": 265, "donec": [265, 267], "porttitor": [265, 267], "odio": [265, 267], "posuer": [265, 267], "vita": [265, 267], "ornar": [265, 267], "libero": [265, 267], "loborti": [265, 267], "justo": [265, 267], "vestibulum": [265, 267], "nibh": [265, 267], "aliquet": [265, 267], "sed": [265, 267], "feugiat": [265, 267], "sagitti": [265, 267], "nequ": [265, 267], "qui": [265, 267], "eleifend": 265, "dui": [265, 267], "rutrum": [265, 267], "lectu": [265, 267], "suscipit": [265, 267], "nam": [265, 267], "mauri": [265, 267], "arcu": [265, 267], "interdum": 267, "nec": 267, "finibu": 267, "dictum": 267, "velit": 267, "ut": 267, "efficitur": 267, "aliquam": 267, "erat": 267, "diam": 267, "gravida": 267, "imperdiet": 267, "tellu": 267, "nisl": 267, "praesent": 267, "eget": 267, "elementum": 267, "rhoncu": 267, "tincidunt": 267, "suspendiss": 267, "volutpat": 267, "scelerisqu": 267, "tristiqu": 267, "aenean": 267, "condimentum": 267, "risu": 267, "accumsan": 267, "laoreet": 267, "maximu": 267, "sapien": 267, "ligula": 267, "fringilla": 267, "commodo": 267, "proin": 267, "pharetra": 267, "etiam": 267, "turpi": 267, "luctu": 267, "vel": 267, "malesuada": 267, "dignissim": 267, "nunc": 267, "augu": 267, "sem": 267, "cursu": 267, "nulla": 267, "pellentesqu": 267, "morbi": 267, "senectu": 267, "netu": 267, "egesta": 267, "placerat": 267, "tortor": 267, "iaculi": 267, "venenati": 267, "cra": 267, "puru": 267, "ero": 267, "vehicula": 267, "auctor": 267, "phasellu": 267, "viverra": 267, "conval": 267, "faucibu": 267, "vulput": 267, "feli": 267, "sodal": 267, "maecena": 267, "semper": 267, "enim": 267, "blandit": 267, "sollicitudin": 267, "urna": 267, "orci": 267, "lacu": 267, "quisqu": 267, "facilisi": 267, "curabitur": 267, "variu": 267, "bibendum": 267, "massa": 267, "magna": 267, "tempu": 267, "metu": 267, "nisi": 267, "pretium": 267, "leo": 267, "euismod": 267, "ultric": 267, "dapibu": 267, "lacinia": 267, "vivamu": 267, "molesti": 267, "hac": 267, "habitass": 267, "platea": 267, "dictumst": 267, "changelog": 268, "submenu": 268, "symlink": 269, "subtre": 269, "_theme": 269, "html_theme": 269, "html_theme_path": 269}, "objects": {"": [[263, 0, 1, "", "Data_item_1"], [263, 0, 1, "", "Data_item_2"], [263, 0, 1, "", "Data_item_3"]], "payments.dotpay": [[263, 1, 1, "", "DotpayProvider"]]}, "objtypes": {"0": "py:data", "1": "py:class"}, "objnames": {"0": ["py", "data", "Python data"], "1": ["py", "class", "Python class"]}, "titleterms": {"onnx": [0, 20, 105, 106, 107, 108, 110], "live": 0, "tutori": [0, 42, 49, 50, 54, 57, 114, 120, 122, 154, 157, 158, 174, 175, 180, 187, 196, 221], "what": [0, 6, 10, 11, 15, 17, 44, 52, 56, 57, 60, 112, 119, 131, 139, 148, 155, 202, 206, 212], "overview": [0, 1, 17, 60, 108, 114, 137, 145, 165, 176, 192], "prepar": [0, 49, 60, 113, 115, 127, 128, 140, 166, 169, 180, 183, 188, 189, 190, 191, 192, 195, 198, 199, 207, 209, 224, 225, 226], "environ": [0, 1, 14, 23, 53, 60, 137, 147, 160, 172, 185, 188, 195], "download": [0, 138, 172, 182, 186, 264, 269], "train": [0, 1, 3, 6, 7, 11, 14, 19, 24, 44, 49, 52, 53, 55, 61, 87, 99, 110, 112, 115, 117, 120, 122, 124, 125, 127, 128, 132, 133, 135, 136, 137, 153, 158, 160, 161, 166, 167, 170, 182, 183, 198, 199, 200, 221, 229], "pytorch": [0, 3, 4, 5, 6, 10, 12, 15, 19, 20, 24, 25, 43, 46, 50, 54, 57, 61, 63, 64, 65, 67, 68, 69, 72, 81, 88, 91, 92, 93, 94, 95, 96, 99, 100, 101, 102, 103, 105, 108, 109, 110, 111, 121, 136, 138, 148, 159, 169, 172, 177, 178, 180, 181, 189, 196, 197, 198, 199, 200, 201, 207, 209, 210, 218, 221, 224, 225, 226, 227, 228, 232, 234, 236, 237, 239, 241, 242, 243, 244, 249, 250, 252, 255, 259], "style": [0, 12], "transfer": [0, 12, 158], "model": [0, 1, 4, 6, 7, 9, 12, 17, 18, 19, 20, 21, 25, 45, 49, 55, 58, 59, 60, 73, 74, 79, 85, 97, 102, 103, 105, 112, 113, 115, 117, 122, 124, 125, 132, 134, 135, 137, 138, 139, 144, 147, 148, 150, 151, 157, 158, 166, 167, 169, 170, 172, 176, 179, 180, 182, 183, 186, 188, 189, 195, 196, 198, 199, 204, 207, 209, 210, 212, 219, 221, 224, 225, 226, 241, 248, 254], "convert": [0, 4, 25, 58, 59, 60, 80, 148, 180, 183, 188, 195, 198, 199], "coreml": 0, "run": [0, 6, 7, 20, 22, 45, 49, 50, 53, 54, 55, 58, 59, 60, 73, 85, 97, 115, 126, 127, 134, 169, 172, 175, 186, 195, 212], "io": [0, 59, 188, 189, 205, 223, 224, 226], "app": [0, 58, 59, 126, 188, 207, 209, 225, 226], "conclus": [0, 1, 2, 3, 5, 6, 9, 14, 15, 17, 19, 21, 22, 23, 49, 75, 82, 97, 105, 108, 114, 124, 137, 138, 144, 145, 147, 153, 160, 165, 173, 174, 175, 177, 178, 182, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 196, 198, 199, 200, 201, 202, 204, 205, 212, 223], "torchrl": [1, 14, 160], "object": [1, 58, 59, 99, 126, 179], "code": [1, 2, 14, 22, 54, 184, 187, 190, 207, 209, 264], "ddpg": 1, "loss": [1, 12, 37, 44, 47, 49, 52, 97, 98, 110, 124, 128, 137, 160], "prerequisit": [1, 58, 59, 97, 115, 158, 178, 187, 200, 201], "import": [1, 12, 45, 55, 87, 110, 138, 172, 198, 199], "setup": [1, 17, 18, 23, 87, 116, 136, 137, 138, 151, 169, 170, 176, 180, 186, 188, 196, 202, 209, 212, 224], "lossmodul": 1, "The": [1, 6, 87, 125, 135, 156, 166, 264], "__init__": [1, 34], "method": [1, 15, 22, 136, 151, 178, 179, 193, 254], "valu": [1, 137, 154, 160, 254], "estim": [1, 147], "actor": 1, "put": [1, 147, 176, 179], "thing": [1, 14], "togeth": [1, 14, 124, 147, 153, 176, 179], "forward": [1, 5, 6, 21, 78, 109, 142, 146, 179, 224], "call": 1, "transform": [1, 7, 14, 41, 42, 51, 118, 119, 122, 124, 138, 146, 155, 160, 165, 167], "parallel": [1, 7, 21, 45, 56, 61, 120, 122, 123, 124, 134, 135, 150], "execut": [1, 4, 14, 18, 105, 162, 169], "normal": [1, 44, 160], "observ": [1, 184], "stat": 1, "build": [1, 4, 5, 10, 22, 23, 58, 59, 99, 116, 143, 144, 156, 158, 205, 207, 209, 219, 223, 262], "explor": [1, 4, 18], "data": [1, 6, 7, 9, 19, 44, 45, 49, 50, 52, 55, 56, 60, 61, 87, 110, 115, 117, 122, 123, 124, 127, 128, 134, 158, 160, 166, 167, 169, 172, 182, 192, 196, 263], "collector": [1, 137, 160], "evalu": [1, 7, 49, 60, 115, 117, 125, 126, 127, 138, 158, 166, 183, 186, 198], "your": [1, 4, 5, 10, 60, 152, 179, 184, 185, 224], "record": [1, 169], "replai": [1, 137, 160, 161], "buffer": [1, 137, 160], "storag": [1, 259], "batch": [1, 7, 8, 14, 115, 116, 130, 143, 146, 162], "size": [1, 138, 186, 198], "modul": [1, 4, 6, 15, 25, 60, 67, 85, 93, 104, 111, 135, 137, 138, 142, 150, 154, 157, 196, 203, 219, 238, 245], "construct": [1, 18, 55, 192, 193], "target": [1, 7, 147, 264], "network": [1, 6, 44, 47, 52, 87, 99, 102, 110, 118, 127, 128, 137, 147, 160, 161, 167], "updat": [1, 47, 147, 162, 203], "optim": [1, 44, 52, 69, 99, 104, 110, 111, 119, 126, 153, 164, 178, 212, 224, 225, 226, 248, 254], "time": [1, 82, 109, 138, 224], "polici": [1, 14, 122, 137, 160], "experi": [1, 14, 15, 126, 180], "result": [1, 3, 45, 52, 73, 105, 109, 115, 126, 127, 131, 160, 166, 167, 169, 186, 202], "next": [1, 44, 52, 73, 160], "step": [1, 4, 58, 59, 75, 114, 135, 153, 156, 160, 169, 219, 225, 226], "autograd": [2, 8, 10, 43, 63, 64, 76, 89, 111, 125, 129, 142, 164], "c": [2, 3, 4, 5, 6, 8, 10, 22, 23, 187, 207, 209, 221, 247, 258], "frontend": [2, 6, 85, 86], "basic": [2, 6, 21, 25, 35, 134, 135, 142, 150, 156, 162, 173, 174, 175, 204], "oper": [2, 5, 8, 10, 22, 23, 48, 101, 108, 178, 180, 192, 193, 194, 201, 209, 224], "comput": [2, 14, 43, 82, 101, 103, 146, 151, 158], "higher": 2, "order": 2, "gradient": [2, 12, 32, 73, 76, 155, 192], "us": [2, 3, 5, 6, 7, 11, 12, 13, 20, 22, 23, 24, 25, 43, 50, 53, 60, 105, 109, 112, 113, 116, 119, 123, 130, 132, 134, 135, 137, 139, 142, 155, 156, 162, 163, 164, 165, 169, 170, 189, 192, 201, 207, 209, 223, 224, 229, 254], "custom": [2, 5, 10, 14, 15, 22, 23, 51, 67, 108, 117, 120, 130, 131, 142, 156, 157, 158, 174, 175, 179, 209, 223], "function": [2, 7, 12, 15, 19, 37, 44, 47, 52, 64, 73, 78, 85, 87, 97, 98, 99, 110, 115, 130, 131, 138, 142, 146, 151, 155, 157, 158, 160, 183, 198, 199], "translat": [2, 113], "from": [2, 19, 22, 43, 50, 105, 112, 132, 172, 176, 177, 178, 179, 189], "python": [2, 5, 22, 23, 58, 59, 85, 156, 207, 254, 257], "cuda": [3, 5, 50, 80, 82, 213], "graph": [3, 43, 60, 101, 105, 108, 173, 174, 175, 178, 182, 183, 184, 186, 200], "api": [3, 4, 6, 89, 110, 140, 142, 148, 153, 156, 186, 187, 201, 207, 227, 257], "get": [3, 4, 10, 58, 59, 82, 103, 123, 134, 145, 152, 164, 194, 221, 225, 226], "start": [3, 7, 82, 123, 134, 152, 164, 194, 221], "\u5728": [4, 159, 245, 258], "\u4e2d\u52a0\u8f7d": [4, 258], "torchscript": [4, 21, 22, 23, 25, 60, 110, 112, 173, 204, 209, 217, 221, 254, 258], "\u6a21\u578b": [4, 92, 96, 119, 222, 239, 258, 259], "1": [4, 9, 19, 44, 58, 59, 78, 85, 105, 135, 138, 151, 156, 158, 169, 170, 177, 179, 180, 182, 183, 186, 196, 200, 201, 214, 219, 224, 225, 226, 229, 232, 234, 235, 237, 239, 241, 242, 243, 244, 247, 249, 251, 254, 266], "torch": [4, 43, 61, 80, 81, 93, 101, 104, 112, 129, 134, 157, 165, 173, 174, 175, 177, 192, 198, 199, 206, 211, 224, 231, 232, 238, 241, 245, 253, 256, 257], "script": [4, 23, 25, 53, 85, 119, 152, 186, 225, 226, 254], "via": [4, 15, 269], "trace": [4, 23, 25, 82, 83, 85, 144, 173, 178, 184, 186, 205, 227, 254], "annot": [4, 201], "2": [4, 9, 17, 19, 44, 45, 58, 59, 78, 85, 105, 135, 138, 151, 156, 158, 169, 170, 177, 178, 179, 180, 182, 183, 186, 196, 198, 199, 200, 201, 202, 214, 219, 224, 225, 226, 229, 232, 234, 235, 237, 239, 241, 242, 243, 244, 247, 249, 250, 251, 254, 266, 267], "serial": [4, 15, 22, 138, 157], "file": [4, 49, 105, 112, 132, 166, 209], "3": [4, 9, 19, 44, 45, 58, 59, 85, 105, 135, 138, 156, 169, 170, 177, 180, 182, 183, 186, 196, 200, 201, 219, 224, 225, 226, 229, 232, 234, 235, 237, 239, 241, 242, 243, 244, 247, 249, 250, 251, 254, 266], "load": [4, 6, 7, 9, 12, 22, 25, 44, 49, 53, 58, 59, 60, 97, 112, 117, 132, 134, 138, 158, 166, 167, 198, 199, 224, 238], "A": [4, 23, 43, 46, 98, 130, 201, 249, 264], "minim": [4, 97], "applic": [4, 6, 136, 156, 209], "depend": [4, 105, 107, 165], "libtorch": [4, 189], "4": [4, 9, 17, 19, 44, 58, 59, 85, 105, 135, 138, 156, 159, 169, 170, 180, 183, 186, 201, 202, 219, 224, 229, 232, 234, 235, 237, 239, 241, 242, 243, 244, 247, 249, 250, 251, 266], "5": [4, 19, 44, 58, 59, 105, 169, 170, 180, 183, 186, 201, 224, 232, 235, 237, 239, 241, 242, 243, 247, 251, 266], "help": [4, 169], "extens": [5, 10, 13, 120, 156, 178, 208, 212, 221], "motiv": [5, 6, 85, 183, 190, 198, 201], "exampl": [5, 13, 21, 22, 58, 59, 73, 78, 79, 85, 99, 102, 103, 112, 125, 187, 201, 219, 221, 264, 266], "write": [5, 6, 14, 51, 136, 170, 179, 184, 190, 201], "setuptool": [5, 23], "op": [5, 8, 108, 174, 175], "pass": [5, 11, 109, 143, 153], "backward": [5, 10, 21, 78, 122, 130, 131, 153], "bind": [5, 22], "perform": [5, 109, 139, 144, 145, 148, 155, 165, 169, 177, 178, 198, 224], "comparison": [5, 130, 134, 155, 173, 183], "gpu": [5, 6, 44, 45, 55, 79, 87, 95, 104, 110, 112, 169, 185, 189, 221, 248], "devic": [5, 12, 15, 112, 122, 207, 233, 238], "jit": [5, 10, 23, 110, 159], "compil": [5, 23, 129, 145, 165, 173, 211, 212, 253, 256, 257], "mix": [5, 25, 122, 132], "accessor": 5, "integr": [5, 15, 188, 195], "defin": [6, 7, 8, 9, 19, 22, 44, 47, 49, 60, 64, 97, 115, 126, 135, 138, 160, 172, 179, 180, 182, 183, 198, 199, 219, 254], "neural": [6, 12, 44, 47, 87, 110, 147, 151, 222], "regist": [6, 8, 10, 15, 23], "paramet": [6, 13, 45, 60, 93, 112, 157, 160, 162, 163, 201, 203, 232, 248, 263], "submodul": [6, 184], "travers": 6, "hierarchi": 6, "mode": [6, 18, 19, 142, 146, 182, 183, 184, 186, 198, 221], "ownership": 6, "dcgan": [6, 52], "wa": 6, "gan": [6, 52], "agan": 6, "gener": [6, 7, 15, 52, 110, 112, 113, 115, 126, 219, 263], "discrimin": [6, 52, 98], "loop": [6, 14, 135, 137, 160, 161, 199], "move": [6, 22], "checkpoint": [6, 55, 112, 122, 134, 147, 199], "recov": 6, "state": 6, "inspect": [6, 154, 157, 170], "imag": [6, 12, 20, 44, 58, 59, 105, 117, 119, 140, 158, 172, 264, 265], "distribut": [7, 11, 16, 18, 53, 55, 56, 61, 82, 110, 120, 134, 135, 136, 163, 164, 176], "pipelin": [7, 115, 135, 150], "multipl": [7, 44, 112, 157], "process": [7, 53, 55, 58, 59, 115, 134, 135, 156, 162], "input": [7, 11, 52, 55, 58, 59, 60, 73, 127, 131, 150, 176, 196, 210, 254], "sequenc": [7, 102, 124], "scale": [7, 124, 133, 165], "pipe": 7, "initi": [7, 48, 52, 53, 115, 134, 136, 147, 154, 194, 203], "test": [7, 9, 10, 14, 44, 73, 87, 115, 130, 143, 179, 207, 219], "dataset": [7, 19, 45, 51, 104, 110, 113, 115, 138, 179, 183, 186, 198, 199], "output": [7, 58, 59, 113, 131], "dispatch": [8, 10, 165], "schema": 8, "backend": [8, 10, 15, 136, 145, 156, 180, 198, 199, 200, 207], "implement": [8, 22, 23, 52, 73, 98, 130, 154, 156, 162, 163, 165, 190, 192, 203], "For": 8, "do": [8, 44, 131, 148], "need": [8, 184], "In": 8, "place": [8, 80], "view": [8, 169], "ad": [8, 87, 170, 209], "support": [8, 10, 87, 108, 158, 165, 193, 203], "go": [8, 44, 52, 73, 172], "beyond": 8, "autocast": [8, 231], "tracer": 8, "beta": [9, 17, 19, 108, 138, 142, 143, 144, 148, 158, 165, 195, 210, 211, 212, 220, 223, 257], "dynam": [9, 21, 98, 138, 174, 175, 182, 186, 196, 229], "quantiz": [9, 19, 119, 138, 158, 180, 182, 183, 184, 185, 186, 196, 198, 199, 200, 201, 224, 225, 226, 229], "an": [9, 10, 14, 20, 44, 58, 59, 60, 102, 103, 115, 125, 137, 160, 212, 268], "lstm": [9, 21, 98, 102, 137], "word": [9, 99, 103], "languag": [9, 103], "introduct": [9, 12, 24, 43, 52, 58, 59, 61, 91, 101, 138, 154, 169, 172, 173, 176, 186, 187, 188, 189, 190, 193, 195, 196, 200, 201, 203, 205, 207, 210, 219, 223, 224, 225, 226, 228, 229, 254], "text": [9, 49, 264], "pretrain": [9, 60, 179, 225, 226, 229], "extend": [10, 22, 23, 108, 157], "new": [10, 15, 58, 59, 64, 98, 115, 130, 228], "s": [10, 60, 101, 147, 178, 191], "kei": 10, "full": [10, 87], "list": [10, 265], "kernel": [10, 15, 82, 151], "against": 10, "nativ": [10, 209], "compat": [10, 189], "known": 10, "issu": 10, "addit": [10, 42, 114, 169], "note": [10, 60, 98, 201], "futur": [10, 15], "work": [10, 11, 15, 122, 123, 124, 148], "stai": 10, "touch": 10, "uneven": 11, "join": 11, "context": [11, 262], "manag": 11, "requir": [11, 17, 105, 125, 157, 202], "distributeddataparallel": [11, 61, 134, 248], "zeroredundancyoptim": [11, 260], "keyword": 11, "argument": [11, 254], "how": [11, 15, 122, 123, 124, 153, 183, 198, 199, 201, 223, 262], "doe": [11, 17, 125, 202], "joinabl": 11, "joinhook": 11, "make": [11, 98, 116, 184, 209], "toi": [11, 201], "class": [11, 14, 22, 51, 97, 154], "underli": 12, "principl": [12, 177, 178, 193], "packag": [12, 78], "select": [12, 137, 205], "content": [12, 111, 262, 263, 264, 265, 266, 267], "descent": 12, "creat": [13, 45, 49, 99, 101, 126, 127, 128, 144, 151, 157], "numpi": [13, 40, 48, 71, 80, 95, 111, 191], "scipi": 13, "less": 13, "parametr": [13, 154, 157], "pendulum": 14, "\u4f7f\u7528": [14, 42, 55, 90, 93, 96, 104, 118, 160, 211, 214, 220, 227, 230, 231, 232, 238, 239, 247, 248, 256, 257], "\u7f16\u5199\u73af\u5883\u548ctransform": 14, "effect": 14, "action": [14, 137], "_step": 14, "reset": 14, "simul": 14, "_reset": 14, "metadata": [14, 15], "env": 14, "_spec": 14, "spec": 14, "shape": [14, 174, 175], "reproduc": 14, "seed": 14, "wrap": [14, 122, 179], "envbas": 14, "our": [14, 18, 130, 136, 143, 153, 176], "rollout": 14, "simpl": [14, 45, 105, 144, 166], "facilit": 15, "privateuse1": 15, "guard": 15, "deseri": [15, 22], "other": [15, 18, 169], "improv": [15, 109, 169], "user": [15, 81, 127, 184, 207], "renam": 15, "name": [15, 127], "properti": 15, "relat": [15, 172, 178], "combin": [16, 124, 134], "dataparallel": [16, 45, 56, 61, 79, 87, 112, 134, 241], "rpc": [16, 61, 120, 135, 162, 163, 164, 181, 213, 218], "framework": [16, 163, 164], "acceler": [17, 152, 202], "bert": [17, 138, 186, 202], "semi": [17, 24, 202], "structur": [17, 202, 267], "sparsiti": [17, 193, 202], "problem": [17, 201, 202], "solv": [17, 202], "intro": [17, 202], "establish": 17, "baselin": [17, 183], "prune": [17, 157, 202], "spars": [17, 190, 193, 202], "infer": [17, 58, 59, 112, 117, 119, 138, 177, 221, 254], "torchrec": [18, 176], "shard": [18, 122, 123, 124, 135], "instal": [18, 75, 82, 105, 138, 158, 176, 269], "embed": [18, 103], "distributedmodelparallel": [18, 176], "multiprocess": 18, "tabl": [18, 111, 262, 263, 264, 265, 266, 267], "wise": 18, "static": [19, 98, 183, 196, 229], "eager": [19, 183, 186], "architectur": 19, "helper": [19, 138, 183, 193, 198, 199], "loader": [19, 87], "imagenet": 19, "post": [19, 182, 183, 198, 200, 229], "awar": [19, 199, 200, 229], "speedup": [19, 173], "option": [20, 43, 45, 114, 179, 207, 262, 263, 265], "\u6a21\u578b\u5bfc\u51fa\u5230": 20, "\u5e76\u4f7f\u7528": 20, "runtim": [20, 105, 108], "\u8fd0\u884c": 20, "syntax": [21, 85, 204], "appli": [21, 124, 138, 150, 200], "ensembl": [21, 139], "bidirect": 21, "layer": [21, 90, 124, 130], "asid": 21, "visual": [21, 105, 117, 153, 158, 166, 167], "project": [22, 262], "With": [22, 169, 209], "cmake": [22, 23, 209], "save": [22, 25, 53, 55, 60, 105, 112, 122, 125, 131, 132, 134, 147, 153, 198, 199, 241], "To": 22, "ivalu": 22, "take": 22, "return": [22, 125], "bound": [22, 178], "appendix": [23, 193], "more": [23, 58, 59, 119, 125, 145, 146, 162, 169, 176, 188, 189, 195, 210, 219, 223, 225, 226, 228, 229, 254], "wai": [23, 155, 264], "supervis": 24, "learn": [24, 35, 46, 58, 59, 85, 98, 99, 100, 110, 117, 119, 120, 138, 147, 158, 162, 164, 169, 177, 188, 189, 195, 210, 219, 223, 225, 226, 228, 229, 254], "usb": 24, "built": [24, 180, 189], "upon": 24, "freematch": 24, "softmatch": 24, "cifar": [24, 97], "10": [24, 97, 153, 183, 266], "onli": [24, 184, 221], "40": 24, "label": [24, 172], "specif": [24, 172, 198, 199], "imbalanc": 24, "algorithm": [24, 161], "\u4ecb\u7ecd": [25, 82, 88, 90, 94, 95, 107, 232, 234, 235, 250, 251], "author": [25, 105], "further": [25, 32, 43, 53, 55, 56, 105, 107, 108, 109, 114, 117, 132, 133, 137, 180, 190, 192, 193], "read": [25, 32, 43, 53, 55, 56, 105, 107, 108, 109, 114, 132, 133, 137, 172, 178, 180, 190, 192, 193], "\u97f3\u9891\u6570\u636e\u589e\u5f3a": 26, "\u97f3\u9891\u6570\u636e\u96c6": 27, "\u97f3\u9891\u7279\u5f81\u589e\u5f3a": 28, "\u97f3\u9891\u7279\u5f81\u63d0\u53d6": 29, "\u97f3\u9891": 30, "i": [30, 44], "o": 30, "audio": 31, "\u91cd\u91c7\u6837": 31, "\u81ea\u52a8\u5fae\u5206": 32, "\u5f20\u91cf": [32, 40, 72, 92, 111], "\u51fd\u6570\u548c\u8ba1\u7b97\u56fe": 32, "\u8ba1\u7b97\u68af\u5ea6": 32, "\u7981\u7528\u68af\u5ea6\u8ddf\u8e2a": 32, "\u66f4\u591a\u5173\u4e8e\u8ba1\u7b97\u56fe": 32, "\u53ef\u9009\u9605\u8bfb": 32, "\u5f20\u91cf\u68af\u5ea6": 32, "tensor": [32, 48, 63, 72, 76, 80, 95, 101, 110, 111, 120, 124, 125, 127, 153, 165, 193, 194, 201, 212, 224, 254], "\u548c\u96c5\u53ef\u6bd4\u4e58\u79ef": 32, "jacobian": [32, 146, 151], "product": [32, 146, 151, 165], "\u6784\u5efa\u795e\u7ecf\u7f51\u7edc": [33, 251], "\u83b7\u53d6\u8bad\u7ec3\u8bbe\u5907": 33, "\u5b9a\u4e49\u7c7b": 33, "\u6a21\u578b\u5c42": 33, "nn": [33, 61, 67, 68, 78, 85, 93, 104, 111, 112, 157, 176, 238, 241, 245], "flatten": 33, "linear": [33, 99, 104], "relu": [33, 180], "sequenti": [33, 104], "softmax": [33, 99, 192], "\u6a21\u578b\u53c2\u6570": 33, "\u5ef6\u4f38\u9605\u8bfb": [33, 34, 37, 41], "\u6570\u636e\u96c6\u4e0e\u6570\u636e\u52a0\u8f7d\u5668": 34, "\u52a0\u8f7d\u6570\u636e\u96c6": 34, "\u8fed\u4ee3\u548c\u53ef\u89c6\u5316\u6570\u636e\u96c6": 34, "\u521b\u5efa\u81ea\u5b9a\u4e49\u6570\u636e\u96c6": 34, "__len__": 34, "__getitem__": 34, "\u4f7f\u7528\u6570\u636e\u52a0\u8f7d\u5668\u4e3a\u8bad\u7ec3\u51c6\u5907\u6570\u636e": 34, "\u901a\u8fc7": [34, 243], "dataload": [34, 51, 104, 110], "\u8fdb\u884c\u8fed\u4ee3": 34, "\u57fa\u7840\u77e5\u8bc6": 36, "\u8fd0\u884c\u6559\u7a0b\u4ee3\u7801": [36, 88], "\u5982\u4f55\u4f7f\u7528\u672c\u6307\u5357": 36, "\u4f18\u5316\u6a21\u578b\u53c2\u6570": [37, 38], "\u524d\u7f6e\u4ee3\u7801": 37, "\u8d85\u53c2\u6570": 37, "\u4f18\u5316\u5faa\u73af": 37, "\u635f\u5931\u51fd\u6570": [37, 93, 96], "\u4f18\u5316\u5668": [37, 96], "\u5b8c\u6574\u5b9e\u73b0": 37, "\u5feb\u901f\u5165\u95e8": 38, "\u5904\u7406\u6570\u636e": 38, "\u521b\u5efa\u6a21\u578b": 38, "\u4fdd\u5b58\u6a21\u578b": [38, 249], "\u52a0\u8f7d\u6a21\u578b": 38, "\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": [39, 243], "\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u6743\u91cd": 39, "\u4fdd\u5b58\u548c\u52a0\u8f7d\u5e26\u6709\u7ed3\u6784\u7684\u6a21\u578b": 39, "\u76f8\u5173\u6559\u7a0b": 39, "\u521d\u59cb\u5316\u5f20\u91cf": 40, "\u5f20\u91cf\u7684\u5c5e\u6027": 40, "\u5f20\u91cf\u64cd\u4f5c": 40, "\u4e0enumpy\u8f6c\u6362": 40, "\u5f20\u91cf\u8f6c\u4e3anumpi": 40, "arrai": [40, 48, 80], "array\u8f6c\u4e3a\u5f20\u91cf": 40, "totensor": 41, "lambda": 41, "better": 42, "\u8fdb\u884c\u5feb\u901f": 42, "\u63a8\u65ad": 42, "featur": [42, 102, 117, 122, 158, 169, 172, 221], "thi": [42, 57, 122, 153, 265, 268], "inform": [42, 85, 145], "summari": [42, 45, 113, 122, 165, 228], "gentl": 43, "background": 43, "usag": [43, 110, 130, 142, 150, 153, 173, 174, 175, 177, 207], "differenti": [43, 101, 142], "vector": [43, 139, 146, 151], "calculu": 43, "exclus": 43, "dag": 43, "classifi": [44, 99, 105, 119, 158, 172], "about": [44, 138], "cifar10": 44, "convolut": [44, 130, 137, 143], "where": [44, 52, 73, 172, 192], "dummi": 45, "8": [45, 183, 232, 247, 266], "deep": [46, 98, 99, 100, 110, 177], "60": 46, "minut": 46, "blitz": 46, "backprop": 47, "weight": [47, 52, 65, 196], "attribut": [48, 254], "bridg": [48, 80, 95], "chatbot": 49, "preprocess": [49, 147], "format": [49, 105, 112, 148, 178, 224], "trim": 49, "seq2seq": [49, 60, 118, 166], "encod": [49, 60, 103, 166], "decod": [49, 60, 166], "procedur": 49, "mask": [49, 192], "singl": [49, 150], "iter": [49, 51, 115, 157], "greedi": [49, 60], "my": 49, "googl": [50, 259], "colab": 50, "version": [50, 151], "drive": 50, "enabl": [50, 187], "compos": [51, 146], "through": [51, 85, 180, 200], "afterword": 51, "torchvis": [51, 74, 179], "\u6559\u7a0b": [52, 75, 86, 97, 121, 160, 161, 167, 222], "adversari": [52, 73], "fault": 53, "toler": 53, "torchrun": [53, 134], "why": [53, 56, 124, 125, 192, 194], "grace": 53, "restart": 53, "group": [53, 55, 156], "provid": 53, "variabl": 53, "snapshot": [53, 153], "trainer": 53, "constructor": 53, "resum": [53, 112], "\u5206\u5e03\u5f0f\u5e76\u884c": 54, "video": 54, "section": [54, 267], "ddp": [55, 56, 120, 132, 134, 248], "\u8fdb\u884c\u591a": 55, "\u8bad\u7ec3": [55, 255], "job": 55, "you": [56, 124], "should": [56, 124], "prefer": [56, 224], "over": 56, "dp": 56, "\u6df1\u5ea6\u5b66\u4e60": 57, "60\u5206\u949f\u5165\u95e8": 57, "goal": 57, "segment": [58, 59, 179], "deeplabv3": [58, 59], "android": [58, 205, 207, 209, 219, 223, 224, 225], "deploy": [58, 59], "reus": [58, 59, 224], "complet": [58, 59], "ui": [58, 59], "refactor": [58, 59, 184], "recap": [58, 59, 122], "deploi": 60, "acknowledg": [60, 126, 177, 178], "handl": 60, "attent": [60, 165, 166], "search": [60, 87], "chang": [60, 233], "host": [60, 195], "own": [60, 136, 184], "greedysearchdecod": 60, "print": [60, 109], "\u5206\u5e03\u5f0f\u6982\u8ff0": 61, "fullyshardeddataparallel": 61, "elast": 61, "base": [61, 113, 158, 181, 205, 218, 262], "develop": 61, "control": [65, 165, 174, 175], "flow": [65, 174, 175, 201], "share": [65, 201], "warm": 71, "up": [71, 126, 150, 172, 179, 180, 185, 212], "\u5bf9\u6297\u6837\u672c\u751f\u6210": 73, "threat": 73, "fast": [73, 220], "sign": 73, "attack": 73, "under": 73, "fgsm": 73, "accuraci": [73, 87, 138, 145, 198], "vs": [73, 146, 191], "epsilon": 73, "sampl": [73, 128, 155], "finetun": [74, 117, 158, 179], "torchmultimod": 75, "\u5fae\u8c03": 75, "flava": 75, "track": [76, 131, 170], "histori": 76, "convnet": [78, 117], "hook": [78, 125, 153], "recurr": [78, 137], "net": 78, "multi": [79, 87, 126, 177], "part": [79, 85, 102, 158, 178], "cpu": [79, 112, 122, 125, 144, 145, 177, 178, 221, 248], "inplac": 80, "out": [80, 130, 143], "zero": 80, "index": [80, 192, 263], "No": 80, "camel": 80, "case": [80, 134, 210], "former": 81, "holist": [82, 83], "analysi": [82, 83, 178], "hta": 82, "tempor": 82, "breakdown": 82, "idl": 82, "durat": 82, "commun": [82, 87, 136], "overlap": 82, "augment": [82, 102], "counter": 82, "memori": [82, 102, 109, 125, 130, 148, 153, 161, 177, 178, 224], "bandwidth": 82, "queue": 82, "length": 82, "launch": [82, 135], "statist": 82, "\u5dee\u5f02\u5206\u6790": 83, "hybrid": [85, 86], "pure": 85, "top": [85, 178], "level": [85, 102, 262, 264, 265], "rai": 87, "tune": [87, 122, 138, 178], "\u8d85\u53c2\u6570\u8c03\u4f18": 87, "configur": [87, 126, 138, 178, 186, 198, 199, 262], "set": [87, 126, 138, 172, 177, 180, 183, 185, 186, 198, 212], "space": 87, "youtub": [88, 91], "\u81ea\u52a8\u5fae\u5206\u57fa\u7840": 89, "\u6211\u4eec\u4e3a\u4ec0\u4e48\u9700\u8981": 89, "\u4e00\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50": 89, "\u81ea\u52a8\u6c42\u5bfc\u5728\u8bad\u7ec3\u4e2d": 89, "\u5173\u95ed\u548c\u6253\u5f00\u81ea\u52a8\u6c42\u5bfc": 89, "\u548c\u539f\u4f4d\u64cd\u4f5c": 89, "\u5206\u6790\u5668": 89, "\u9ad8\u7ea7\u4e3b\u9898": [89, 231], "\u66f4\u591a": 89, "\u7ec6\u8282\u548c\u9ad8\u7ea7": 89, "\u9ad8\u7ea7": 89, "captum": [90, 230], "\u8fdb\u884c\u6a21\u578b\u7406\u89e3": 90, "\u5b89\u88c5": [90, 159, 222, 246], "\u7b2c\u4e00\u4e2a\u793a\u4f8b": 90, "\u4f7f\u7528\u96c6\u6210\u68af\u5ea6\u8fdb\u884c\u7279\u5f81\u5f52\u56e0": 90, "\u4f7f\u7528\u906e\u6321\u8fdb\u884c\u7279\u5f81\u5f52\u56e0": 90, "\u4f7f\u7528\u5c42\u68af\u5ea6\u7c7b\u6fc0\u6d3b\u6620\u5c04": 90, "gradcam": 90, "\u8fdb\u884c\u5c42\u5f52\u56e0": 90, "\u4f7f\u7528captum": 90, "insights\u8fdb\u884c\u53ef\u89c6\u5316": 90, "\u7b80\u4ecb": [92, 95, 96, 208, 237, 239, 241, 242, 243, 244, 249], "\u6570\u636e\u96c6\u548c\u6570\u636e\u52a0\u8f7d\u5668": [92, 96], "\u8bad\u7ec3\u4f60\u7684": 92, "\u6784\u5efa\u6a21\u578b": 93, "\u548c": [93, 104, 159, 172, 249], "\u5e38\u89c1\u5c42\u7c7b\u578b": 93, "\u7ebf\u6027\u5c42": 93, "\u5377\u79ef\u5c42": 93, "\u5faa\u73af\u5c42": 93, "\u8f6c\u6362\u5668": 93, "\u5176\u4ed6\u5c42\u548c\u51fd\u6570": 93, "\u6570\u636e\u64cd\u4f5c\u5c42": 93, "\u6fc0\u6d3b\u51fd\u6570": 93, "tensorboard": [94, 169, 170], "\u652f\u6301": [94, 217], "\u5f00\u59cb\u4e4b\u524d": [94, 230], "\u5728tensorboard\u4e2d\u663e\u793a\u56fe\u50cf": 94, "\u7ed8\u5236\u6807\u91cf\u4ee5\u53ef\u89c6\u5316\u8bad\u7ec3": 94, "\u53ef\u89c6\u5316\u60a8\u7684\u6a21\u578b": 94, "\u4f7f\u7528\u5d4c\u5165\u53ef\u89c6\u5316\u60a8\u7684\u6570\u636e\u96c6": 94, "\u5176\u4ed6\u8d44\u6e90": [94, 96, 235, 258], "\u521b\u5efa\u5f20\u91cf": 95, "\u968f\u673a\u5f20\u91cf\u548c\u79cd\u5b50": 95, "\u5f20\u91cf\u5f62\u72b6": 95, "\u5f20\u91cf\u6570\u636e\u7c7b\u578b": 95, "\u4f7f\u7528pytorch\u5f20\u91cf\u8fdb\u884c\u6570\u5b66\u548c\u903b\u8f91\u8fd0\u7b97": 95, "\u5f20\u91cf\u5e7f\u64ad": 95, "\u66f4\u591a\u5f20\u91cf\u6570\u5b66\u8fd0\u7b97": 95, "\u672c\u5730\u4fee\u6539\u5f20\u91cf": 95, "\u590d\u5236\u5f20\u91cf": 95, "\u79fb\u52a8\u5230": 95, "\u64cd\u4f5c\u5f20\u91cf\u5f62\u72b6": 95, "\u6539\u53d8\u7ef4\u5ea6\u6570\u91cf": 95, "\u8bad\u7ec3\u6a21\u578b": 96, "\u8bad\u7ec3\u5faa\u73af": 96, "\u6bcf\u5468\u671f\u6d3b\u52a8": 96, "knowledg": 97, "distil": 97, "util": [97, 110, 157, 161, 224, 232, 245], "cross": 97, "entropi": 97, "cosin": 97, "intermedi": [97, 131], "regressor": 97, "advanc": [98, 122, 136, 169, 178, 191, 208], "decis": 98, "bi": 98, "crf": 98, "versu": 98, "toolkit": 98, "condit": 98, "random": [98, 115], "field": [98, 265], "discuss": 98, "exercis": [98, 102, 103, 114, 127, 128, 166, 178], "tag": [98, 102], "block": [99, 232, 264], "affin": 99, "map": 99, "non": [99, 175, 184, 212, 219], "probabl": 99, "compon": [99, 145], "logist": 99, "regress": 99, "bag": [99, 103], "nlp": 100, "librari": [101, 172, 189, 209, 225, 226], "reshap": 101, "automat": [101, 142], "long": [102, 266, 268], "short": 102, "term": 102, "speech": 102, "tagger": 102, "charact": 102, "lexic": 103, "semant": [103, 190, 191], "dens": [103, 165], "n": 103, "gram": 103, "continu": 103, "\u5177\u4f53\u662f\u4ec0\u4e48": 104, "mnist": 104, "\u6570\u636e\u96c6\u8bbe\u7f6e": 104, "\u4ece\u96f6\u5f00\u59cb\u7684\u795e\u7ecf\u7f51\u7edc": 104, "\u4e0d\u4f7f\u7528": 104, "\u91cd\u6784": 104, "\u6dfb\u52a0\u9a8c\u8bc1\u96c6": 104, "\u521b\u5efa": 104, "fit": [104, 153], "get_data": 104, "cnn": 104, "\u5305\u88c5": 104, "\u603b\u7ed3": [104, 159, 247], "export": [105, 112, 174, 175, 198, 199, 200, 201], "netron": 105, "6": [105, 169, 170, 180, 183, 224, 232, 239, 241, 247, 266], "7": [105, 169, 180, 183, 232, 239, 247, 266], "compar": [105, 119, 186, 196, 219], "ones": 105, "registri": 108, "unsupport": 108, "aten": [108, 201], "exist": [108, 148, 150], "without": [108, 207, 219], "registr": 108, "fx": [108, 143, 144, 173, 182, 183, 184, 200], "\u6a21\u578b\u5206\u6790": 109, "debug": [109, 145, 183, 186, 198], "profil": [109, 144, 145, 169, 178, 181, 218, 227, 239], "cheat": 110, "sheet": 110, "vision": [110, 158], "creation": 110, "dimension": 110, "algebra": 110, "activ": 110, "rate": 110, "schedul": [110, 126, 212], "datasampl": 110, "also": 110, "see": 110, "\u8ddf\u7740\u793a\u4f8b\u5b66\u4e60": 111, "\u70ed\u8eab": 111, "\u81ea\u52a8\u6c42\u5bfc": 111, "\u5f20\u91cf\u548c\u81ea\u52a8\u6c42\u5bfc": 111, "\u5b9a\u4e49\u65b0\u7684\u81ea\u52a8\u6c42\u5bfc\u51fd\u6570": 111, "\u81ea\u5b9a\u4e49": 111, "\u6a21\u5757": 111, "\u63a7\u5236\u6d41": 111, "\u6743\u91cd\u5171\u4eab": 111, "\u793a\u4f8b": [111, 252], "state_dict": [112, 243, 250], "recommend": [112, 127, 201], "entir": 112, "One": [112, 135], "warmstart": 112, "differ": [112, 179], "across": 112, "t5": [113, 122], "summar": 113, "sentiment": 113, "classif": 113, "generationutil": 113, "templat": 114, "torchtext": [115, 116], "\u6587\u672c\u5206\u7c7b": 115, "access": [115, 177, 192], "raw": 115, "instanc": [115, 179], "split": 115, "\u9884\u5904\u7406\u81ea\u5b9a\u4e49\u6587\u672c\u6570\u636e\u96c6": 116, "vocabulari": 116, "numeric": 116, "sentenc": 116, "bucket": 116, "pad": 116, "\u8ba1\u7b97\u673a\u89c6\u89c9\u8fc1\u79fb\u5b66\u4e60\u6559\u7a0b": 117, "few": [117, 158], "predict": [117, 140, 158, 172], "fix": [117, 201, 254], "extractor": [117, 158], "\u6570\u636e\u83b7\u53d6\u548c\u5904\u7406": 118, "\u7684": 118, "\u6570\u636e\u6574\u7406": 118, "\u5f15\u7528": 118, "\u4f18\u5316\u89c6\u89c9": 119, "deit": 119, "lite": [119, 189], "interpret": [119, 144, 205, 223], "speed": [119, 134, 150], "fsdp": [120, 122, 123], "tp": [120, 124], "devicemesh": [120, 216], "\u6b22\u8fce\u6765\u5230": 121, "\u66f4\u591a\u8d44\u6e90": [121, 259], "fulli": [122, 123, 124], "fine": [122, 138], "hf": 122, "precis": [122, 132], "intial": 122, "strategi": [122, 126], "prefetch": 122, "stream": 122, "rank0": 122, "larg": 124, "when": [124, 131, 132, 192, 254], "layernorm": 124, "rmsnorm": 124, "typic": 125, "than": [125, 177], "concept": 125, "pack": 125, "unpack": 125, "some": 125, "unconvent": 125, "int": 125, "tupl": 125, "str": 125, "disk": 125, "na": 126, "ax": 126, "torchx": 126, "runner": 126, "searchspac": 126, "metric": 126, "optimizationconfig": 126, "choos": 126, "\u4ece\u96f6\u5f00\u59cb\u7684\u81ea\u7136\u8bed\u8a00\u5904\u7406": [127, 128, 166], "\u5b57\u7b26\u7ea7": [127, 128], "rnn": [127, 128, 164], "\u8fdb\u884c\u59d3\u540d\u5206\u7c7b": 127, "turn": 127, "plot": [127, 128, 166], "\u751f\u6210\u59d3\u540d": 128, "\u4e3a": 129, "\u6355\u83b7\u66f4\u5927\u7684\u540e\u5411\u56fe": 129, "\u6982\u89c8": 129, "\u8bbe\u7f6e": [129, 159, 232, 235, 253, 257], "\u57fa\u672c\u7528\u6cd5": [129, 220, 256], "\u68c0\u67e5\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u65e5\u5fd7": 129, "\u4f7f\u7528\u4e0d\u540c\u7684\u6807\u5fd7\u7f16\u8bd1\u524d\u5411\u548c\u540e\u5411\u4f20\u9012": 129, "\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u89e3\u51b3\u4e86aotautograd\u7684\u67d0\u4e9b\u9650\u5236": 129, "\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u7684\u5e38\u89c1\u91cd\u65b0\u7f16\u8bd1\u539f\u56e0": 129, "\u7ed3\u8bba": [129, 208, 215, 216, 220, 238, 245, 253, 256, 257], "fuse": [130, 143, 153, 165, 219, 224], "norm": [130, 143], "formula": 130, "batchnorm": 130, "doubl": 131, "real": 132, "world": 132, "cloud": [132, 259], "enough": 132, "multinod": 133, "local": [133, 177], "global": [133, 138, 157, 186], "rank": 133, "heteregen": 133, "troubleshoot": 133, "between": [134, 192], "skew": 134, "partit": 135, "resnet50": 135, "stitch": 135, "Into": 135, "point": [136, 196], "collect": [136, 160], "ring": 136, "allreduc": 136, "topic": [136, 264], "dqn": [137, 161], "mlp": 137, "q": [137, 161], "huggingfac": 138, "necessari": 138, "token": 138, "check": [138, 186, 198], "refer": [138, 180, 196, 264], "vmap": [139, 206], "\u5b9a\u4e49": 140, "\u4f9d\u8d56": 140, "\u7b80\u5355\u7684": 140, "web": 140, "server": [140, 162, 163], "\u63a8\u7406": [140, 214, 231, 255], "wav2vec2": [141, 168], "\u5f3a\u5236\u5bf9\u9f50": 141, "fuser": 143, "fusion": [143, 180], "benchmark": [143, 186, 195, 219, 224, 232], "resnet18": [143, 144, 201], "captur": [144, 153, 200], "symbol": [144, 184], "investig": 144, "inductor": [145, 187, 200], "log": [145, 147], "determin": 145, "error": [145, 254], "hessian": 146, "hvp": 146, "vhp": 146, "revers": 146, "jacrev": 146, "jacfwd": 146, "functorch": 146, "\u8bad\u7ec3\u4e00\u4e2a\u9a6c\u91cc\u5965\u6e38\u620f\u7684": 147, "rl": 147, "agent": 147, "definit": [147, 265], "act": 147, "cach": [147, 154], "recal": 147, "td": 147, "all": [147, 153, 176, 248, 254], "let": 147, "plai": 147, "channel": [148, 178, 224], "last": [148, 178, 224], "gain": 148, "machin": 150, "best": 150, "practic": [150, 169], "tangent": 151, "ntk": 151, "contract": 151, "nvfuser": 152, "dure": 153, "disclaim": 153, "techniqu": 153, "register_post_accumulate_grad_hook": 153, "everyth": [153, 179], "line": [153, 186, 264], "hand": 154, "ar": 154, "first": [154, 177, 178], "citizen": 154, "concaten": 154, "remov": [154, 157], "per": 155, "grad": [155, 192, 248], "effici": [155, 177, 190, 223], "cpp": 156, "subclass": [156, 165], "expos": 156, "re": 157, "0": [158, 192], "nightli": [158, 174], "raspberri": 159, "pi": 159, "\u4e0a\u8fdb\u884c\u5b9e\u65f6\u63a8\u7406": 159, "30": 159, "fp": 159, "\u51c6\u5907\u73af\u5883": 159, "opencv": 159, "\u89c6\u9891\u6355\u83b7": 159, "\u56fe\u7247\u5904\u7406": 159, "\u9009\u62e9\u6a21\u578b": 159, "mobilenetv2": [159, 188, 195], "\u91cf\u5316\u548c": 159, "\u6027\u80fd\u4f18\u5316": 159, "\u540e\u7eed": 159, "\u5f3a\u5316\u5b66\u4e60": [160, 161], "ppo": 160, "hyperparamet": [160, 161], "asynchron": 162, "cartpol": 162, "solver": 162, "reinforc": 164, "rref": 164, "high": 165, "dot": 165, "sdpa": 165, "explicit": 165, "hardwar": 165, "causal": 165, "self": 165, "nestedtensor": 165, "attn_bia": 165, "\u5e8f\u5217\u5230\u5e8f\u5217\u7f51\u7edc\u548c\u6ce8\u610f\u529b\u673a\u5236\u8fdb\u884c\u7ffb\u8bd1": 166, "spatial": 167, "depict": 167, "stn": 167, "\u8fdb\u884c\u8bed\u97f3\u8bc6\u522b": 168, "event": 169, "analyz": 169, "amd": 169, "\u53ef\u89c6\u5316\u6a21\u578b": 170, "\u6570\u636e\u548c\u8bad\u7ec3": 170, "projector": 170, "assess": 170, "tacotron2": 171, "\u6587\u672c\u8f6c\u8bed\u97f3": 171, "tiatoolbox": 172, "\u8fdb\u884c\u5168\u5207\u7247\u56fe\u50cf\u5206\u7c7b": 172, "clean": 172, "befor": 172, "patch": 172, "patchpredictor": 172, "whole": 172, "slide": 172, "extract": 172, "patholog": 172, "here": 172, "demonstr": 173, "torchdynamo": 173, "break": [174, 175], "constraint": [174, 175, 180], "decomposit": [174, 175], "exportdb": [174, 175], "strict": 175, "program": 175, "embeddingbag": 176, "embeddingbagcollect": 176, "queri": 176, "vanilla": 176, "offset": 176, "repres": 176, "minibatch": 176, "keyedjaggedtensor": 176, "kjt": 176, "resourc": 176, "grok": [177, 178], "intel": [177, 178, 208, 221, 227, 248, 255], "avoid": 177, "logic": 177, "core": [177, 188], "alwai": 177, "faster": 177, "remot": 177, "pin": 177, "worker": 177, "default": [177, 233], "torchserv": [177, 178, 259], "set_num_thread": 177, "number": [177, 264, 265], "physic": 177, "launcher": [177, 178], "down": [178, 265], "microarchitectur": 178, "tma": 178, "back": 178, "end": 178, "vtune": [178, 227], "instrument": [178, 227], "technolog": [178, 227], "itt": [178, 227], "leverag": 178, "alloc": 178, "tcmalloc": 178, "jemalloc": 178, "ptmalloc": 178, "boost": 178, "\u5bf9\u8c61\u68c0\u6d4b\u5fae\u8c03\u6559\u7a0b": 179, "pennfudan": 179, "modifi": 179, "add": [179, 225, 226], "backbon": 179, "detect": 179, "prototyp": [180, 182, 183, 184, 185, 186, 188, 189, 190, 191, 192, 193, 197, 198, 199, 202, 205], "backendconfig": 180, "deriv": [180, 201], "pattern": [180, 201], "each": 180, "dtypeconfig": 180, "conv": 180, "qconfigmap": [180, 183], "satisfi": 180, "faulti": 180, "workload": [181, 218], "eval": [183, 198], "specifi": [183, 186], "calibr": [183, 198], "9": [183, 266], "float": [183, 196], "guid": 184, "skip": [184, 203], "traceabl": 184, "torchao": 185, "glue": 186, "qconfig_dict": 186, "one": [186, 265], "wrapper": [187, 207], "ml": 188, "maco": 188, "metal": 189, "sourc": [189, 209], "adagrad": 190, "maskedtensor": [190, 191, 192, 193], "simpler": 190, "origin": 190, "maskedarrai": 191, "reduct": [191, 193], "slice": 192, "distinguish": 192, "nan": [192, 231], "anoth": 192, "x": 192, "yield": 192, "nansum": 192, "nanmean": 192, "safe": 192, "miss": 192, "coo": 193, "csr": 193, "unari": 193, "binari": 193, "nest": 194, "nnapi": 195, "numer": 196, "suit": 196, "correspond": 196, "locat": 196, "its": 196, "equival": 196, "same": 196, "recip": [197, 219, 224, 225, 226, 228, 229, 236, 254], "lower": [198, 200], "qat": 199, "x86": 200, "common": [201, 210, 254], "param": 201, "ir": 201, "pt2e": 201, "match": 201, "directli": 201, "subgraphmatcherwithnamenodemap": 201, "detail": 203, "freez": 204, "mobil": [205, 223, 224, 225, 226, 228, 254], "so": 206, "vulkan": 207, "workflow": [207, 229], "desktop": 207, "sdk": 207, "java": [207, 209], "upload": 207, "\u5229\u7528\u82f1\u7279\u5c14": 208, "\u9ad8\u7ea7\u77e9\u9635\u6269\u5c55": 208, "matrix": 208, "pytorch\u4e2d\u7684amx": 208, "\u5229\u7528amx\u52a0\u901f\u5de5\u4f5c\u8d1f\u8f7d\u7684\u6307\u5357": 208, "\u53ef\u5229\u7528amx\u7684cpu\u7b97\u5b50": 208, "\u786e\u8ba4amx\u6b63\u5728\u88ab\u5229\u7528": 208, "prebuilt": 209, "gradl": 209, "manifest": 209, "bundl": 210, "uncommon": 210, "inflat": 210, "arg": [210, 263], "\u7f16\u8bd1\u4f18\u5316\u5668": 211, "\u6a21\u578b\u8bbe\u7f6e": 211, "\u8bbe\u7f6e\u548c\u8fd0\u884c\u4f18\u5316\u5668\u57fa\u51c6\u6d4b\u8bd5": 211, "\u53e6\u8bf7\u53c2\u9605": [211, 256], "lr": 212, "happen": 212, "\u4f7f\u7528tensorpip": 213, "rpc\u8fdb\u884c\u8bbe\u5907\u5230\u8bbe\u5907\u901a\u4fe1": 213, "\u8981\u6c42": [213, 217, 227, 260], "\u4ec0\u4e48\u662fcuda": 213, "\u5982\u4f55\u4f7f\u7528cuda": 213, "flask": 214, "\u8fdb\u884c\u90e8\u7f72": 214, "\u73af\u5883\u8bbe\u7f6e": [214, 234, 239, 241, 242, 243, 244, 249, 250, 251], "\u4ec0\u4e48\u662f": [214, 216, 227, 258, 260], "\u8bbe\u7f6e\u548c\u652f\u6301\u6587\u4ef6": 214, "\u9009\u9879": 214, "\u5feb\u901f\u83b7\u53d6\u6587\u4ef6": 214, "\u4f7f\u7528\u60a8\u81ea\u5df1\u7684\u56fe\u50cf": 214, "\u6784\u5efa\u60a8\u7684": 214, "\u670d\u52a1": 214, "\u5bfc\u5165": 214, "\u9884\u5904\u7406": 214, "\u540e\u5904\u7406": 214, "\u8fd0\u884c\u5b8c\u6574\u7684": 214, "\u5e94\u7528": 214, "\u91cd\u8981\u8d44\u6e90": 214, "\u5206\u5e03\u5f0f\u68c0\u67e5\u70b9": 215, "dcp": 215, "\u5165\u95e8": [215, 222], "\u5982\u4f55\u5de5\u4f5c": 215, "\u5982\u4f55\u4f7f\u7528": [215, 260], "\u4fdd\u5b58": [215, 231, 232], "\u52a0\u8f7d": 215, "\u5f00\u59cb\u4f7f\u7528": 216, "\u4e3a\u4ec0\u4e48": 216, "\u6709\u7528": 216, "\u5982\u4f55\u5c06": 216, "\u4e0e": [216, 257], "hsdp": 216, "\u4e00\u8d77\u4f7f\u7528": 216, "\u7684\u5206\u5e03\u5f0f\u4f18\u5316\u5668": 217, "\u4ec0\u4e48\u662f\u5206\u5e03\u5f0f\u4f18\u5316\u5668": 217, "\u4ec0\u4e48\u662f\u652f\u6301": 217, "\u5982\u4f55\u7f16\u5199\u652f\u6301": 217, "\u7684\u81ea\u5b9a\u4e49\u5206\u5e03\u5f0f\u4f18\u5316\u5668": 217, "pre": [219, 225, 226, 228, 229, 254], "requisit": [219, 225, 226, 228, 229, 254], "two": 219, "fuse_modul": [219, 224], "tool": 219, "pytorch\u5728aw": 220, "graviton\u5904\u7406\u5668\u4e0a\u7684\u63a8\u7406\u6027\u80fd\u4f18\u5316": 220, "\u5185\u5bb9": 220, "bfloat16": [220, 221], "math": [220, 264], "kernels\u52a0\u901f\u63a8\u7406": 220, "openbla": 220, "\u63d0\u9ad8\u8f83\u5c0f\u6279\u91cf\u7ef4\u5ea6\u7684\u63a8\u7406\u6027\u80fd": 220, "linux": 220, "transpar": 220, "huge": 220, "page": [220, 262], "thp": 220, "\u4f18\u5316\u5185\u5b58\u5206\u914d\u5f00\u9500": 220, "float32": 221, "imper": 221, "float16": 221, "zoo": 221, "\u4f7f\u7528intel": 222, "compressor\u5b9e\u73b0pytorch\u7684\u7b80\u6613\u91cf\u5316": 222, "\u6982\u8ff0": 222, "\u7279\u6027": 222, "\u7528\u6cd5": 222, "\u7cbe\u5ea6\u9a71\u52a8\u91cf\u5316": 222, "\u91cf\u5316\u611f\u77e5\u8bad\u7ec3": 222, "\u4ec5\u6027\u80fd\u91cf\u5316": 222, "\u91cf\u5316\u8f93\u51fa": 222, "\u90e8\u7f72": [222, 258], "mobile_optim": 224, "mobilenet": [225, 226, 229], "v2": [225, 226, 229], "\u5206\u6790": 227, "\u5de5\u4f5c\u8d1f\u8f7d": 227, "\u5982\u4f55\u5728": 227, "\u4e2d\u53ef\u89c6\u5316": 227, "\u6a21\u578b\u5c42\u6b21\u7ed3\u6784": 227, "\u542f\u52a8": 227, "\u914d\u7f6e\u5206\u6790": 227, "\u8bfb\u53d6\u5206\u6790\u7ed3\u679c": 227, "\u4e00\u4e2a\u7b80\u77ed\u7684\u793a\u4f8b\u4ee3\u7801": 227, "\u5c55\u793a\u5982\u4f55\u4f7f\u7528": 227, "\u8fdb\u884c\u6a21\u578b\u53ef\u89e3\u91ca\u6027": 230, "\u8ba1\u7b97\u5f52\u56e0": 230, "\u53ef\u89c6\u5316\u7ed3\u679c": 230, "\u6700\u540e\u6ce8\u610f": 230, "\u81ea\u52a8\u6df7\u5408\u7cbe\u5ea6": 231, "\u4e00\u4e2a\u7b80\u5355\u7684\u7f51\u7edc": 231, "\u9ed8\u8ba4\u7cbe\u5ea6": 231, "\u6dfb\u52a0": 231, "gradscal": 231, "\u5168\u90e8\u96c6\u6210": 231, "\u68c0\u67e5": 231, "\u4fee\u6539\u68af\u5ea6": 231, "\u4f8b\u5982": 231, "\u68af\u5ea6\u88c1\u526a": 231, "\u6062\u590d": 231, "\u8bc4\u4f30": 231, "\u6545\u969c\u6392\u9664": 231, "amp": [231, 248], "\u7684\u52a0\u901f\u6548\u679c\u5fae\u4e4e\u5176\u5fae": 231, "\u635f\u5931\u662f": 231, "inf": 231, "\u7c7b\u578b\u4e0d\u5339\u914d\u9519\u8bef": 231, "\u53ef\u80fd\u8868\u73b0\u4e3a": 231, "cudnn_status_bad_param": 231, "\u5177\u4f53\u6b65\u9aa4": [232, 234, 239, 241, 242, 243, 244, 249, 250, 251], "\u5b9a\u4e49\u8981\u57fa\u51c6\u6d4b\u8bd5\u7684\u51fd\u6570": 232, "timeit": 232, "timer": [232, 247], "\u8fdb\u884c\u57fa\u51c6\u6d4b\u8bd5": 232, "autorang": 232, "\u6bd4\u8f83\u57fa\u51c6\u6d4b\u8bd5\u7ed3\u679c": 232, "\u52a0\u8f7d\u57fa\u51c6\u6d4b\u8bd5\u7ed3\u679c": 232, "fuzz": 232, "\u751f\u6210\u8f93\u5165": 232, "callgrind": [232, 247], "\u6536\u96c6\u6307\u4ee4\u8ba1\u6570": 232, "\u5b66\u4e60\u66f4\u591a": [232, 234, 237, 249, 250], "\u521b\u5efa\u795e\u7ecf\u7f51\u7edc": 234, "\u5bfc\u5165\u52a0\u8f7d\u6570\u636e\u6240\u9700\u7684\u5fc5\u8981\u5e93": [234, 237, 241, 242, 243, 244, 249, 251], "\u5b9a\u4e49\u548c\u521d\u59cb\u5316\u795e\u7ecf\u7f51\u7edc": [234, 242, 243, 244], "\u6307\u5b9a\u6570\u636e\u5982\u4f55\u901a\u8fc7\u4f60\u7684\u6a21\u578b": 234, "\u53ef\u9009": [234, 237], "\u901a\u8fc7\u4f60\u7684\u6a21\u578b\u4f20\u9012\u6570\u636e\u8fdb\u884c\u6d4b\u8bd5": 234, "\u52a8\u6001\u91cf\u5316": 235, "\u4ec0\u4e48\u662f\u52a8\u6001\u91cf\u5316": 235, "\u6b65\u9aa4": [235, 253], "\u6267\u884c\u91cf\u5316": 235, "\u67e5\u770b\u6a21\u578b\u5927\u5c0f": 235, "\u67e5\u770b\u5ef6\u8fdf": 235, "\u67e5\u770b\u7cbe\u5ea6": 235, "\u4e86\u89e3\u66f4\u591a": [235, 239, 246], "\u52a0\u8f7d\u6570\u636e": 237, "\u4f7f\u7528\u6b65\u9aa4": 237, "\u8bbf\u95ee\u6570\u636e\u96c6\u4e2d\u7684\u6570\u636e": 237, "\u904d\u5386\u6570\u636e": 237, "\u53ef\u89c6\u5316\u6570\u636e": 237, "\u4ece\u68c0\u67e5\u70b9\u52a0\u8f7d": 238, "\u7684\u6280\u5de7": 238, "mmap": 238, "true": [238, 248], "meta": [238, 264], "load_state_dict": [238, 245], "assign": 238, "\u5bfc\u5165\u4f9d\u8d56\u7684\u5e93": 239, "\u521b\u5efa\u4e00\u4e2a\u7b80\u5355\u7684": 239, "resnet": 239, "\u4f7f\u7528profiler\u5206\u6790\u6267\u884c\u65f6\u95f4": 239, "\u5206\u6790\u5185\u5b58\u6d88\u8017": 239, "\u4f7f\u7528\u8ddf\u8e2a\u529f\u80fd": 239, "\u68c0\u67e5\u5806\u6808\u8ddf\u8e2a": 239, "\u4f7f\u7528\u5206\u6790\u5668\u5206\u6790\u957f\u65f6\u95f4\u8fd0\u884c\u7684\u4f5c\u4e1a": 239, "\u5728pytorch\u4e2d\u63a8\u7406\u5f62\u72b6": 240, "\u4e2d\u8de8\u8bbe\u5907\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": 241, "\u5b9a\u4e49\u5e76\u521d\u59cb\u5316\u795e\u7ecf\u7f51\u7edc": [241, 249, 250], "\u5728gpu\u4e0a\u4fdd\u5b58": 241, "cpu\u4e0a\u52a0\u8f7d": 241, "gpu\u4e0a\u52a0\u8f7d": 241, "\u5728cpu\u4e0a\u4fdd\u5b58": 241, "\u5728gpu\u4e0a\u52a0\u8f7d": 241, "\u4fdd\u5b58\u548c\u52a0\u8f7d\u901a\u7528\u68c0\u67e5\u70b9": 242, "\u521d\u59cb\u5316\u4f18\u5316\u5668": [242, 243, 244, 250], "\u4fdd\u5b58\u901a\u7528\u68c0\u67e5\u70b9": 242, "\u52a0\u8f7d\u901a\u7528\u68c0\u67e5\u70b9": 242, "\u4fdd\u5b58\u548c\u52a0\u8f7d\u6574\u4e2a\u6a21\u578b": 243, "\u7ee7\u7eed\u5b66\u4e60": [243, 251], "\u5728\u4e00\u4e2a\u6587\u4ef6\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u6a21\u578b": 244, "\u4fdd\u5b58\u591a\u4e2a\u6a21\u578b": 244, "\u52a0\u8f7d\u591a\u4e2a\u6a21\u578b": 244, "\u4e2d\u4e3a": 245, "\u548c\u5f20\u91cf\u5b50\u7c7b\u63d0\u4f9b\u6269\u5c55\u70b9": 245, "swap_tensor": 245, "\u5e94\u7528\u4e8e": 245, "\u548c\u76f8\u5173\u65b9\u6cd5": 245, "\u5982\u4f55\u5728pytorch\u4e2d\u4f7f\u7528tensorboard": 246, "\u5728pytorch\u4e2d\u4f7f\u7528tensorboard": 246, "\u8bb0\u5f55\u6807\u91cf": 246, "\u8fd0\u884ctensorboard": 246, "timer\u5feb\u901f\u5165\u95e8": 247, "\u5b9a\u4e49timer": 247, "wall\u65f6\u95f4": 247, "blocked_autorang": 247, "\u4ee3\u7801\u7247\u6bb5": 247, "\u6307\u4ee4\u8ba1\u6570": 247, "collect_callgrind": 247, "\u6df1\u5165\u63a2\u8ba8": 247, "\u8fdb\u884ca": 247, "b\u6d4b\u8bd5": 247, "\u811a\u6ce8": 247, "\u6027\u80fd\u8c03\u4f18\u6307\u5357": 248, "\u4e00\u822c\u4f18\u5316": 248, "\u542f\u7528\u5f02\u6b65\u6570\u636e\u52a0\u8f7d\u548c\u6570\u636e\u589e\u5f3a": 248, "\u5bf9\u4e8e\u9a8c\u8bc1\u6216\u63a8\u7406": 248, "\u7981\u7528\u68af\u5ea6\u8ba1\u7b97": 248, "\u5bf9\u4e8e\u76f4\u63a5\u540e\u8ddf\u6279\u91cf\u5f52\u4e00\u5316\u7684\u5377\u79ef": 248, "\u7981\u7528\u504f\u7f6e": 248, "none": 248, "\u800c\u4e0d\u662f": 248, "zero_grad": 248, "\u6216": 248, "\u878d\u5408\u70b9\u8fd0\u7b97": 248, "\u4e3a\u8ba1\u7b97\u673a\u89c6\u89c9\u6a21\u578b\u542f\u7528": 248, "channels_last": 248, "\u5185\u5b58\u683c\u5f0f": 248, "\u68c0\u67e5\u70b9\u4e2d\u95f4\u7f13\u51b2\u533a": 248, "\u7981\u7528\u8c03\u8bd5api": 248, "cpu\u7279\u5b9a\u4f18\u5316": 248, "\u5229\u7528\u975e\u5747\u5300\u5185\u5b58\u8bbf\u95ee": 248, "numa": 248, "\u63a7\u5236": 248, "\u5229\u7528openmp": 248, "openmp\u8fd0\u884c\u65f6\u5e93": 248, "libiomp": 248, "\u5207\u6362\u5185\u5b58\u5206\u914d\u5668": 248, "\u4f7f\u7528onednn": 248, "graph\u4e0etorchscript\u8fdb\u884c\u63a8\u7406": 248, "\u4f7f\u7528pytorch": 248, "\u529f\u80fd\u5728cpu\u4e0a\u8bad\u7ec3\u6a21\u578b": 248, "\u7279\u5b9a\u4f18\u5316": 248, "\u542f\u7528": 248, "cudnn": 248, "\u81ea\u52a8\u8c03\u4f18\u5668": 248, "\u907f\u514d\u4e0d\u5fc5\u8981\u7684": 248, "\u540c\u6b65": 248, "\u76f4\u63a5\u5728\u76ee\u6807\u8bbe\u5907\u4e0a\u521b\u5efa\u5f20\u91cf": 248, "\u4f7f\u7528\u6df7\u5408\u7cbe\u5ea6\u548c": 248, "\u5728\u8f93\u5165\u957f\u5ea6\u53ef\u53d8\u7684\u60c5\u51b5\u4e0b\u9884\u5206\u914d\u5185\u5b58": 248, "\u5206\u5e03\u5f0f\u4f18\u5316": 248, "\u4f7f\u7528\u9ad8\u6548\u7684\u6570\u636e\u5e76\u884c\u540e\u7aef": 248, "\u5982\u679c\u5728\u4f7f\u7528": 248, "\u548c\u68af\u5ea6\u7d2f\u79ef\u8fdb\u884c\u8bad\u7ec3\u65f6": 248, "\u8df3\u8fc7\u4e0d\u5fc5\u8981\u7684": 248, "reduc": 248, "\u5982\u679c\u4f7f\u7528": 248, "find_unused_paramet": 248, "\u5219\u5728\u6784\u9020\u51fd\u6570\u548c\u6267\u884c\u671f\u95f4\u5339\u914d\u5c42\u7684\u987a\u5e8f": 248, "\u5728\u5206\u5e03\u5f0f\u8bbe\u7f6e\u4e2d\u5e73\u8861\u5de5\u4f5c\u8d1f\u8f7d": 248, "\u4f7f\u7528\u4e0d\u540c\u6a21\u578b\u7684\u53c2\u6570\u5bf9\u6a21\u578b\u8fdb\u884c\u70ed\u542f\u52a8": 249, "b": 249, "\u52a0\u8f7d\u5230\u6a21\u578b": 249, "\u4e2d": 250, "\u662f\u4ec0\u4e48": 250, "\u4e2d\u7684": 250, "\u8bbf\u95ee\u6a21\u578b\u548c\u4f18\u5316\u5668\u7684": 250, "\u52a0\u8f7d\u548c\u6807\u51c6\u5316\u6570\u636e\u96c6": 251, "\u5b9a\u4e49\u635f\u5931\u51fd\u6570\u548c\u4f18\u5316\u5668": 251, "\u5728\u8bad\u7ec3\u7f51\u7edc\u65f6\u6e05\u96f6\u68af\u5ea6": 251, "\u901a\u8fc7\u533a\u57df\u7f16\u8bd1\u51cf\u5c11": 253, "\u51b7\u542f\u52a8\u7f16\u8bd1\u65f6\u95f4": 253, "\u5148\u51b3\u6761\u4ef6": [253, 256], "convers": 254, "runtimeerror": 254, "lookup": 254, "type": 254, "cannot": 254, "rang": 254, "must": 254, "found": 254, "\u6269\u5c55\u540e\u7aef": 255, "\u4f7f\u7528\u793a\u4f8b": 255, "fp32": 255, "bf16": 255, "\u548c\u7528\u6237\u81ea\u5b9a\u4e49\u7684": 256, "triton": 256, "\u5185\u6838": 256, "\u9ad8\u7ea7\u7528\u6cd5": 256, "\u53ef\u7ec4\u5408\u6027\u548c\u9650\u5236": 256, "torch_log": 257, "\u73af\u5883\u8981\u6c42": 258, "\u5982\u4f55\u5bfc\u51fa\u6a21\u578b": 258, "\u6784\u5efa\u548c\u8fd0\u884c\u60a8\u7684": 258, "\u63a8\u7406\u5f15\u64ce": 258, "\u5c06": 259, "stabl": 259, "diffus": 259, "\u6a21\u578b\u90e8\u7f72\u4e3a": 259, "vertex": 259, "ai": 259, "\u7aef\u70b9": 259, "\u521b\u5efa\u81ea\u5b9a\u4e49": 259, "\u5904\u7406\u7a0b\u5e8f": 259, "\u5c06\u6a21\u578b\u5de5\u4ef6\u4e0a\u4f20\u5230": 259, "gc": 259, "\u4f7f\u7528\u6a21\u578b\u5de5\u4ef6\u548c\u9884\u6784\u5efa\u7684": 259, "\u5bb9\u5668\u955c\u50cf\u521b\u5efa": 259, "\u6a21\u578b\u90e8\u7f72\u5230\u7aef\u70b9": 259, "\u4f7f\u7528zeroredundancyoptimizer\u5206\u7247\u4f18\u5316\u5668\u72b6\u6001": 260, "changelog": 261, "wide": 262, "html": 262, "theme": [262, 268], "toc": 262, "test_py_modul": 263, "paragraph": [264, 267], "markup": 264, "inlin": 264, "liter": 264, "quot": 264, "doctest": 264, "emphas": 264, "sidebar": 264, "ch": 264, "ien": 264, "creativ": 264, "footnot": 264, "citat": 264, "glossari": 264, "direct": 264, "center": 264, "figur": 264, "admonit": 264, "And": 264, "rubric": 264, "titl": 264, "replac": 264, "compound": 264, "link": 264, "enumer": 265, "bullet": 265, "second": 265, "But": 265, "deeper": 265, "rabbit": 265, "hole": 265, "hlist": 265, "grid": 265, "giant": 265, "can": 265, "have": 265, "caption": [265, 268], "like": 265, "sticki": 266, "nav": 266, "menu": [266, 268], "11": 266, "12": 266, "13": 266, "14": 266, "15": 266, "16": 266, "17": 266, "18": 266, "19": 266, "20": 266, "submenu": 266, "subsubmenu": 266, "element": 267, "document": [267, 268], "subsect": 267, "subsubsect": 267, "demo": 268, "incred": 268, "git": 269}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx": 56}}) \ No newline at end of file +Search.setIndex({"docnames": ["advanced/ONNXLive", "advanced/coding_ddpg", "advanced/cpp_autograd", "advanced/cpp_cuda_graphs", "advanced/cpp_export", "advanced/cpp_extension", "advanced/cpp_frontend", "advanced/ddp_pipeline", "advanced/dispatcher", "advanced/dynamic_quantization_tutorial", "advanced/extend_dispatcher", "advanced/generic_join", "advanced/neural_style_tutorial", "advanced/numpy_extensions_tutorial", "advanced/pendulum", "advanced/privateuseone", "advanced/rpc_ddp_tutorial", "advanced/semi_structured_sparse", "advanced/sharding", "advanced/static_quantization_tutorial", "advanced/super_resolution_with_onnxruntime", "advanced/torch-script-parallelism", "advanced/torch_script_custom_classes", "advanced/torch_script_custom_ops", "advanced/usb_semisup_learn", "beginner/Intro_to_TorchScript_tutorial", "beginner/audio_data_augmentation_tutorial", "beginner/audio_datasets_tutorial", "beginner/audio_feature_augmentation_tutorial", "beginner/audio_feature_extractions_tutorial", "beginner/audio_io_tutorial", "beginner/audio_resampling_tutorial", "beginner/basics/autogradqs_tutorial", "beginner/basics/buildmodel_tutorial", "beginner/basics/data_tutorial", "beginner/basics/index", "beginner/basics/intro", "beginner/basics/optimization_tutorial", "beginner/basics/quickstart_tutorial", "beginner/basics/saveloadrun_tutorial", "beginner/basics/tensorqs_tutorial", "beginner/basics/transforms_tutorial", "beginner/bettertransformer_tutorial", "beginner/blitz/autograd_tutorial", "beginner/blitz/cifar10_tutorial", "beginner/blitz/data_parallel_tutorial", "beginner/blitz/index", "beginner/blitz/neural_networks_tutorial", "beginner/blitz/tensor_tutorial", "beginner/chatbot_tutorial", "beginner/colab", "beginner/data_loading_tutorial", "beginner/dcgan_faces_tutorial", "beginner/ddp_series_fault_tolerance", "beginner/ddp_series_intro", "beginner/ddp_series_multigpu", "beginner/ddp_series_theory", "beginner/deep_learning_60min_blitz", "beginner/deeplabv3_on_android", "beginner/deeplabv3_on_ios", "beginner/deploy_seq2seq_hybrid_frontend_tutorial", "beginner/dist_overview", "beginner/examples_autograd/index", "beginner/examples_autograd/polynomial_autograd", "beginner/examples_autograd/polynomial_custom_function", "beginner/examples_nn/dynamic_net", "beginner/examples_nn/index", "beginner/examples_nn/polynomial_module", "beginner/examples_nn/polynomial_nn", "beginner/examples_nn/polynomial_optim", "beginner/examples_tensor/index", "beginner/examples_tensor/polynomial_numpy", "beginner/examples_tensor/polynomial_tensor", "beginner/fgsm_tutorial", "beginner/finetuning_torchvision_models_tutorial", "beginner/flava_finetuning_tutorial", "beginner/former_torchies/autograd_tutorial_old", "beginner/former_torchies/index", "beginner/former_torchies/nnft_tutorial", "beginner/former_torchies/parallelism_tutorial", "beginner/former_torchies/tensor_tutorial_old", "beginner/former_torchies_tutorial", "beginner/hta_intro_tutorial", "beginner/hta_trace_diff_tutorial", "beginner/hybrid_frontend/index", "beginner/hybrid_frontend/learning_hybrid_frontend_through_example_tutorial", "beginner/hybrid_frontend_tutorial", "beginner/hyperparameter_tuning_tutorial", "beginner/introyt", "beginner/introyt/autogradyt_tutorial", "beginner/introyt/captumyt", "beginner/introyt/index", "beginner/introyt/introyt1_tutorial", "beginner/introyt/modelsyt_tutorial", "beginner/introyt/tensorboardyt_tutorial", "beginner/introyt/tensors_deeper_tutorial", "beginner/introyt/trainingyt", "beginner/knowledge_distillation_tutorial", "beginner/nlp/advanced_tutorial", "beginner/nlp/deep_learning_tutorial", "beginner/nlp/index", "beginner/nlp/pytorch_tutorial", "beginner/nlp/sequence_models_tutorial", "beginner/nlp/word_embeddings_tutorial", "beginner/nn_tutorial", "beginner/onnx/export_simple_model_to_onnx_tutorial", "beginner/onnx/index", "beginner/onnx/intro_onnx", "beginner/onnx/onnx_registry_tutorial", "beginner/profiler", "beginner/ptcheat", "beginner/pytorch_with_examples", "beginner/saving_loading_models", "beginner/t5_tutorial", "beginner/template_tutorial", "beginner/text_sentiment_ngrams_tutorial", "beginner/torchtext_custom_dataset_tutorial", "beginner/transfer_learning_tutorial", "beginner/translation_transformer", "beginner/vt_tutorial", "distributed/home", "index", "intermediate/FSDP_adavnced_tutorial", "intermediate/FSDP_tutorial", "intermediate/TP_tutorial", "intermediate/autograd_saved_tensors_hooks_tutorial", "intermediate/ax_multiobjective_nas_tutorial", "intermediate/char_rnn_classification_tutorial", "intermediate/char_rnn_generation_tutorial", "intermediate/compiled_autograd_tutorial", "intermediate/custom_function_conv_bn_tutorial", "intermediate/custom_function_double_backward_tutorial", "intermediate/ddp_series_minGPT", "intermediate/ddp_series_multinode", "intermediate/ddp_tutorial", "intermediate/dist_pipeline_parallel_tutorial", "intermediate/dist_tuto", "intermediate/dqn_with_rnn_tutorial", "intermediate/dynamic_quantization_bert_tutorial", "intermediate/ensembling", "intermediate/flask_rest_api_tutorial", "intermediate/forced_alignment_with_torchaudio_tutorial", "intermediate/forward_ad_usage", "intermediate/fx_conv_bn_fuser", "intermediate/fx_profiling_tutorial", "intermediate/inductor_debug_cpu", "intermediate/jacobians_hessians", "intermediate/mario_rl_tutorial", "intermediate/memory_format_tutorial", "intermediate/mnist_train_nas", "intermediate/model_parallel_tutorial", "intermediate/neural_tangent_kernels", "intermediate/nvfuser_intro_tutorial", "intermediate/optimizer_step_in_backward_tutorial", "intermediate/parametrizations", "intermediate/per_sample_grads", "intermediate/process_group_cpp_extension_tutorial", "intermediate/pruning_tutorial", "intermediate/quantized_transfer_learning_tutorial", "intermediate/realtime_rpi", "intermediate/reinforcement_ppo", "intermediate/reinforcement_q_learning", "intermediate/rpc_async_execution", "intermediate/rpc_param_server_tutorial", "intermediate/rpc_tutorial", "intermediate/scaled_dot_product_attention_tutorial", "intermediate/seq2seq_translation_tutorial", "intermediate/spatial_transformer_tutorial", "intermediate/speech_recognition_pipeline_tutorial", "intermediate/tensorboard_profiler_tutorial", "intermediate/tensorboard_tutorial", "intermediate/text_to_speech_with_torchaudio", "intermediate/tiatoolbox_tutorial", "intermediate/torch_compile_tutorial", "intermediate/torch_export_nightly_tutorial", "intermediate/torch_export_tutorial", "intermediate/torchrec_tutorial", "intermediate/torchserve_with_ipex", "intermediate/torchserve_with_ipex_2", "intermediate/torchvision_tutorial", "prototype/backend_config_tutorial", "prototype/distributed_rpc_profiling", "prototype/fx_graph_mode_ptq_dynamic", "prototype/fx_graph_mode_ptq_static", "prototype/fx_graph_mode_quant_guide", "prototype/gpu_quantization_torchao_tutorial", "prototype/graph_mode_dynamic_bert_tutorial", "prototype/inductor_cpp_wrapper_tutorial", "prototype/inductor_windows_cpu", "prototype/ios_coreml_workflow", "prototype/ios_gpu_workflow", "prototype/maskedtensor_adagrad", "prototype/maskedtensor_advanced_semantics", "prototype/maskedtensor_overview", "prototype/maskedtensor_sparsity", "prototype/nestedtensor", "prototype/nnapi_mobilenetv2", "prototype/numeric_suite_tutorial", "prototype/prototype_index", "prototype/pt2e_quant_ptq", "prototype/pt2e_quant_qat", "prototype/pt2e_quant_x86_inductor", "prototype/pt2e_quantizer", "prototype/semi_structured_sparse", "prototype/skip_param_init", "prototype/torchscript_freezing", "prototype/tracing_based_selective_build", "prototype/vmap_recipe", "prototype/vulkan_workflow", "recipes/amx", "recipes/android_native_app_with_custom_op", "recipes/bundled_inputs", "recipes/compiling_optimizer", "recipes/compiling_optimizer_lr_scheduler", "recipes/cuda_rpc", "recipes/deployment_with_flask", "recipes/distributed_checkpoint_recipe", "recipes/distributed_device_mesh", "recipes/distributed_optim_torchscript", "recipes/distributed_rpc_profiling", "recipes/fuse", "recipes/inference_tuning_on_aws_graviton", "recipes/intel_extension_for_pytorch", "recipes/intel_neural_compressor_for_pytorch", "recipes/mobile_interpreter", "recipes/mobile_perf", "recipes/model_preparation_android", "recipes/model_preparation_ios", "recipes/profile_with_itt", "recipes/ptmobile_recipes_summary", "recipes/quantization", "recipes/recipes/Captum_Recipe", "recipes/recipes/amp_recipe", "recipes/recipes/benchmark", "recipes/recipes/changing_default_device", "recipes/recipes/defining_a_neural_network", "recipes/recipes/dynamic_quantization", "recipes/recipes/index", "recipes/recipes/loading_data_recipe", "recipes/recipes/module_load_state_dict_tips", "recipes/recipes/profiler_recipe", "recipes/recipes/reasoning_about_shapes", "recipes/recipes/save_load_across_devices", "recipes/recipes/saving_and_loading_a_general_checkpoint", "recipes/recipes/saving_and_loading_models_for_inference", "recipes/recipes/saving_multiple_models_in_one_file", "recipes/recipes/swap_tensors", "recipes/recipes/tensorboard_with_pytorch", "recipes/recipes/timer_quick_start", "recipes/recipes/tuning_guide", "recipes/recipes/warmstarting_model_using_parameters_from_a_different_model", "recipes/recipes/what_is_state_dict", "recipes/recipes/zeroing_out_gradients", "recipes/recipes_index", "recipes/regional_compilation", "recipes/script_optimized", "recipes/torch_compile_backend_ipex", "recipes/torch_compile_user_defined_triton_kernel_tutorial", "recipes/torch_logs", "recipes/torchscript_inference", "recipes/torchserve_vertexai_tutorial", "recipes/zero_redundancy_optimizer", "src/pytorch-sphinx-theme/docs/changelog", "src/pytorch-sphinx-theme/docs/configuring", "src/pytorch-sphinx-theme/docs/demo/api", "src/pytorch-sphinx-theme/docs/demo/demo", "src/pytorch-sphinx-theme/docs/demo/lists_tables", "src/pytorch-sphinx-theme/docs/demo/long", "src/pytorch-sphinx-theme/docs/demo/structure", "src/pytorch-sphinx-theme/docs/index", "src/pytorch-sphinx-theme/docs/installing"], "filenames": ["advanced/ONNXLive.rst", "advanced/coding_ddpg.rst", "advanced/cpp_autograd.rst", "advanced/cpp_cuda_graphs.rst", "advanced/cpp_export.rst", "advanced/cpp_extension.rst", "advanced/cpp_frontend.rst", "advanced/ddp_pipeline.rst", "advanced/dispatcher.rst", "advanced/dynamic_quantization_tutorial.rst", "advanced/extend_dispatcher.rst", "advanced/generic_join.rst", "advanced/neural_style_tutorial.rst", "advanced/numpy_extensions_tutorial.rst", "advanced/pendulum.rst", "advanced/privateuseone.rst", "advanced/rpc_ddp_tutorial.rst", "advanced/semi_structured_sparse.rst", "advanced/sharding.rst", "advanced/static_quantization_tutorial.rst", "advanced/super_resolution_with_onnxruntime.rst", "advanced/torch-script-parallelism.rst", "advanced/torch_script_custom_classes.rst", "advanced/torch_script_custom_ops.rst", "advanced/usb_semisup_learn.rst", "beginner/Intro_to_TorchScript_tutorial.rst", "beginner/audio_data_augmentation_tutorial.rst", "beginner/audio_datasets_tutorial.rst", "beginner/audio_feature_augmentation_tutorial.rst", "beginner/audio_feature_extractions_tutorial.rst", "beginner/audio_io_tutorial.rst", "beginner/audio_resampling_tutorial.rst", "beginner/basics/autogradqs_tutorial.rst", "beginner/basics/buildmodel_tutorial.rst", "beginner/basics/data_tutorial.rst", "beginner/basics/index.rst", "beginner/basics/intro.rst", "beginner/basics/optimization_tutorial.rst", "beginner/basics/quickstart_tutorial.rst", "beginner/basics/saveloadrun_tutorial.rst", "beginner/basics/tensorqs_tutorial.rst", "beginner/basics/transforms_tutorial.rst", "beginner/bettertransformer_tutorial.rst", "beginner/blitz/autograd_tutorial.rst", "beginner/blitz/cifar10_tutorial.rst", "beginner/blitz/data_parallel_tutorial.rst", "beginner/blitz/index.rst", "beginner/blitz/neural_networks_tutorial.rst", "beginner/blitz/tensor_tutorial.rst", "beginner/chatbot_tutorial.rst", "beginner/colab.rst", "beginner/data_loading_tutorial.rst", "beginner/dcgan_faces_tutorial.rst", "beginner/ddp_series_fault_tolerance.rst", "beginner/ddp_series_intro.rst", "beginner/ddp_series_multigpu.rst", "beginner/ddp_series_theory.rst", "beginner/deep_learning_60min_blitz.rst", "beginner/deeplabv3_on_android.rst", "beginner/deeplabv3_on_ios.rst", "beginner/deploy_seq2seq_hybrid_frontend_tutorial.rst", "beginner/dist_overview.rst", "beginner/examples_autograd/index.rst", "beginner/examples_autograd/polynomial_autograd.rst", "beginner/examples_autograd/polynomial_custom_function.rst", "beginner/examples_nn/dynamic_net.rst", "beginner/examples_nn/index.rst", "beginner/examples_nn/polynomial_module.rst", "beginner/examples_nn/polynomial_nn.rst", "beginner/examples_nn/polynomial_optim.rst", "beginner/examples_tensor/index.rst", "beginner/examples_tensor/polynomial_numpy.rst", "beginner/examples_tensor/polynomial_tensor.rst", "beginner/fgsm_tutorial.rst", "beginner/finetuning_torchvision_models_tutorial.rst", "beginner/flava_finetuning_tutorial.rst", "beginner/former_torchies/autograd_tutorial_old.rst", "beginner/former_torchies/index.rst", "beginner/former_torchies/nnft_tutorial.rst", "beginner/former_torchies/parallelism_tutorial.rst", "beginner/former_torchies/tensor_tutorial_old.rst", "beginner/former_torchies_tutorial.rst", "beginner/hta_intro_tutorial.rst", "beginner/hta_trace_diff_tutorial.rst", "beginner/hybrid_frontend/index.rst", "beginner/hybrid_frontend/learning_hybrid_frontend_through_example_tutorial.rst", "beginner/hybrid_frontend_tutorial.rst", "beginner/hyperparameter_tuning_tutorial.rst", "beginner/introyt.rst", "beginner/introyt/autogradyt_tutorial.rst", "beginner/introyt/captumyt.rst", "beginner/introyt/index.rst", "beginner/introyt/introyt1_tutorial.rst", "beginner/introyt/modelsyt_tutorial.rst", "beginner/introyt/tensorboardyt_tutorial.rst", "beginner/introyt/tensors_deeper_tutorial.rst", "beginner/introyt/trainingyt.rst", "beginner/knowledge_distillation_tutorial.rst", "beginner/nlp/advanced_tutorial.rst", "beginner/nlp/deep_learning_tutorial.rst", "beginner/nlp/index.rst", "beginner/nlp/pytorch_tutorial.rst", "beginner/nlp/sequence_models_tutorial.rst", "beginner/nlp/word_embeddings_tutorial.rst", "beginner/nn_tutorial.rst", "beginner/onnx/export_simple_model_to_onnx_tutorial.rst", "beginner/onnx/index.rst", "beginner/onnx/intro_onnx.rst", "beginner/onnx/onnx_registry_tutorial.rst", "beginner/profiler.rst", "beginner/ptcheat.rst", "beginner/pytorch_with_examples.rst", "beginner/saving_loading_models.rst", "beginner/t5_tutorial.rst", "beginner/template_tutorial.rst", "beginner/text_sentiment_ngrams_tutorial.rst", "beginner/torchtext_custom_dataset_tutorial.rst", "beginner/transfer_learning_tutorial.rst", "beginner/translation_transformer.rst", "beginner/vt_tutorial.rst", "distributed/home.rst", "index.rst", "intermediate/FSDP_adavnced_tutorial.rst", "intermediate/FSDP_tutorial.rst", "intermediate/TP_tutorial.rst", "intermediate/autograd_saved_tensors_hooks_tutorial.rst", "intermediate/ax_multiobjective_nas_tutorial.rst", "intermediate/char_rnn_classification_tutorial.rst", "intermediate/char_rnn_generation_tutorial.rst", "intermediate/compiled_autograd_tutorial.rst", "intermediate/custom_function_conv_bn_tutorial.rst", "intermediate/custom_function_double_backward_tutorial.rst", "intermediate/ddp_series_minGPT.rst", "intermediate/ddp_series_multinode.rst", "intermediate/ddp_tutorial.rst", "intermediate/dist_pipeline_parallel_tutorial.rst", "intermediate/dist_tuto.rst", "intermediate/dqn_with_rnn_tutorial.rst", "intermediate/dynamic_quantization_bert_tutorial.rst", "intermediate/ensembling.rst", "intermediate/flask_rest_api_tutorial.rst", "intermediate/forced_alignment_with_torchaudio_tutorial.rst", "intermediate/forward_ad_usage.rst", "intermediate/fx_conv_bn_fuser.rst", "intermediate/fx_profiling_tutorial.rst", "intermediate/inductor_debug_cpu.rst", "intermediate/jacobians_hessians.rst", "intermediate/mario_rl_tutorial.rst", "intermediate/memory_format_tutorial.rst", "intermediate/mnist_train_nas.rst", "intermediate/model_parallel_tutorial.rst", "intermediate/neural_tangent_kernels.rst", "intermediate/nvfuser_intro_tutorial.rst", "intermediate/optimizer_step_in_backward_tutorial.rst", "intermediate/parametrizations.rst", "intermediate/per_sample_grads.rst", "intermediate/process_group_cpp_extension_tutorial.rst", "intermediate/pruning_tutorial.rst", "intermediate/quantized_transfer_learning_tutorial.rst", "intermediate/realtime_rpi.rst", "intermediate/reinforcement_ppo.rst", "intermediate/reinforcement_q_learning.rst", "intermediate/rpc_async_execution.rst", "intermediate/rpc_param_server_tutorial.rst", "intermediate/rpc_tutorial.rst", "intermediate/scaled_dot_product_attention_tutorial.rst", "intermediate/seq2seq_translation_tutorial.rst", "intermediate/spatial_transformer_tutorial.rst", "intermediate/speech_recognition_pipeline_tutorial.rst", "intermediate/tensorboard_profiler_tutorial.rst", "intermediate/tensorboard_tutorial.rst", "intermediate/text_to_speech_with_torchaudio.rst", "intermediate/tiatoolbox_tutorial.rst", "intermediate/torch_compile_tutorial.rst", "intermediate/torch_export_nightly_tutorial.rst", "intermediate/torch_export_tutorial.rst", "intermediate/torchrec_tutorial.rst", "intermediate/torchserve_with_ipex.rst", "intermediate/torchserve_with_ipex_2.rst", "intermediate/torchvision_tutorial.rst", "prototype/backend_config_tutorial.rst", "prototype/distributed_rpc_profiling.rst", "prototype/fx_graph_mode_ptq_dynamic.rst", "prototype/fx_graph_mode_ptq_static.rst", "prototype/fx_graph_mode_quant_guide.rst", "prototype/gpu_quantization_torchao_tutorial.rst", "prototype/graph_mode_dynamic_bert_tutorial.rst", "prototype/inductor_cpp_wrapper_tutorial.rst", "prototype/inductor_windows_cpu.rst", "prototype/ios_coreml_workflow.rst", "prototype/ios_gpu_workflow.rst", "prototype/maskedtensor_adagrad.rst", "prototype/maskedtensor_advanced_semantics.rst", "prototype/maskedtensor_overview.rst", "prototype/maskedtensor_sparsity.rst", "prototype/nestedtensor.rst", "prototype/nnapi_mobilenetv2.rst", "prototype/numeric_suite_tutorial.rst", "prototype/prototype_index.rst", "prototype/pt2e_quant_ptq.rst", "prototype/pt2e_quant_qat.rst", "prototype/pt2e_quant_x86_inductor.rst", "prototype/pt2e_quantizer.rst", "prototype/semi_structured_sparse.rst", "prototype/skip_param_init.rst", "prototype/torchscript_freezing.rst", "prototype/tracing_based_selective_build.rst", "prototype/vmap_recipe.rst", "prototype/vulkan_workflow.rst", "recipes/amx.rst", "recipes/android_native_app_with_custom_op.rst", "recipes/bundled_inputs.rst", "recipes/compiling_optimizer.rst", "recipes/compiling_optimizer_lr_scheduler.rst", "recipes/cuda_rpc.rst", "recipes/deployment_with_flask.rst", "recipes/distributed_checkpoint_recipe.rst", "recipes/distributed_device_mesh.rst", "recipes/distributed_optim_torchscript.rst", "recipes/distributed_rpc_profiling.rst", "recipes/fuse.rst", "recipes/inference_tuning_on_aws_graviton.rst", "recipes/intel_extension_for_pytorch.rst", "recipes/intel_neural_compressor_for_pytorch.rst", "recipes/mobile_interpreter.rst", "recipes/mobile_perf.rst", "recipes/model_preparation_android.rst", "recipes/model_preparation_ios.rst", "recipes/profile_with_itt.rst", "recipes/ptmobile_recipes_summary.rst", "recipes/quantization.rst", "recipes/recipes/Captum_Recipe.rst", "recipes/recipes/amp_recipe.rst", "recipes/recipes/benchmark.rst", "recipes/recipes/changing_default_device.rst", "recipes/recipes/defining_a_neural_network.rst", "recipes/recipes/dynamic_quantization.rst", "recipes/recipes/index.rst", "recipes/recipes/loading_data_recipe.rst", "recipes/recipes/module_load_state_dict_tips.rst", "recipes/recipes/profiler_recipe.rst", "recipes/recipes/reasoning_about_shapes.rst", "recipes/recipes/save_load_across_devices.rst", "recipes/recipes/saving_and_loading_a_general_checkpoint.rst", "recipes/recipes/saving_and_loading_models_for_inference.rst", "recipes/recipes/saving_multiple_models_in_one_file.rst", "recipes/recipes/swap_tensors.rst", "recipes/recipes/tensorboard_with_pytorch.rst", "recipes/recipes/timer_quick_start.rst", "recipes/recipes/tuning_guide.rst", "recipes/recipes/warmstarting_model_using_parameters_from_a_different_model.rst", "recipes/recipes/what_is_state_dict.rst", "recipes/recipes/zeroing_out_gradients.rst", "recipes/recipes_index.rst", "recipes/regional_compilation.rst", "recipes/script_optimized.rst", "recipes/torch_compile_backend_ipex.rst", "recipes/torch_compile_user_defined_triton_kernel_tutorial.rst", "recipes/torch_logs.rst", "recipes/torchscript_inference.rst", "recipes/torchserve_vertexai_tutorial.rst", "recipes/zero_redundancy_optimizer.rst", "src/pytorch-sphinx-theme/docs/changelog.rst", "src/pytorch-sphinx-theme/docs/configuring.rst", "src/pytorch-sphinx-theme/docs/demo/api.rst", "src/pytorch-sphinx-theme/docs/demo/demo.rst", "src/pytorch-sphinx-theme/docs/demo/lists_tables.rst", "src/pytorch-sphinx-theme/docs/demo/long.rst", "src/pytorch-sphinx-theme/docs/demo/structure.rst", "src/pytorch-sphinx-theme/docs/index.rst", "src/pytorch-sphinx-theme/docs/installing.rst"], "titles": ["ONNX Live Tutorial", "TorchRL objectives: Coding a DDPG loss", "Autograd in C++ Frontend", "Using CUDA Graphs in PyTorch C++ API", "\u5728 C++ \u4e2d\u52a0\u8f7d TorchScript \u6a21\u578b", "Custom C++ and CUDA Extensions", "Using the PyTorch C++ Frontend", "Training Transformer models using Distributed Data Parallel and Pipeline Parallelism", "Registering a Dispatched Operator in C++", "(beta) Dynamic Quantization on an LSTM Word Language Model", "Extending dispatcher for a new backend in C++", "Distributed Training with Uneven Inputs Using the Join Context Manager", "Neural Transfer Using PyTorch", "Creating Extensions Using NumPy and SciPy", "Pendulum\uff1a\u4f7f\u7528 TorchRL \u7f16\u5199\u73af\u5883\u548ctransforms", "Facilitating New Backend Integration by PrivateUse1", "Combining Distributed DataParallel with Distributed RPC Framework", "(beta) Accelerating BERT with semi-structured (2:4) sparsity", "Exploring TorchRec sharding", "(beta) Static Quantization with Eager Mode in PyTorch", "(optional) PyTorch \u6a21\u578b\u5bfc\u51fa\u5230 ONNX \u5e76\u4f7f\u7528 ONNX Runtime \u8fd0\u884c", "Dynamic Parallelism in TorchScript", "Extending TorchScript with Custom C++ Classes", "Extending TorchScript with Custom C++ Operators", "Semi-Supervised Learning using USB built upon PyTorch", "TorchScript \u4ecb\u7ecd", "\u97f3\u9891\u6570\u636e\u589e\u5f3a", "\u97f3\u9891\u6570\u636e\u96c6", "\u97f3\u9891\u7279\u5f81\u589e\u5f3a", "\u97f3\u9891\u7279\u5f81\u63d0\u53d6", "\u97f3\u9891 I/O", "Audio \u91cd\u91c7\u6837", "\u81ea\u52a8\u5fae\u5206", "\u6784\u5efa\u795e\u7ecf\u7f51\u7edc", "\u6570\u636e\u96c6\u4e0e\u6570\u636e\u52a0\u8f7d\u5668", "Learn the Basics", "\u57fa\u7840\u77e5\u8bc6", "\u4f18\u5316\u6a21\u578b\u53c2\u6570", "\u5feb\u901f\u5165\u95e8", "\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b", "\u5f20\u91cf", "Transforms", "\u4f7f\u7528 Better Transformer \u8fdb\u884c\u5feb\u901f Transformer \u63a8\u65ad", "A Gentle Introduction to torch.autograd", "Training a Classifier", "Optional: Data Parallelism", "Deep Learning with PyTorch: A 60 Minute Blitz", "Neural Networks", "Tensors", "Chatbot Tutorial", "Running Tutorials in Google Colab", "Writing Custom Datasets, DataLoaders and Transforms", "DCGAN \u6559\u7a0b", "Fault-tolerant Distributed Training with torchrun", "PyTorch \u5206\u5e03\u5f0f\u5e76\u884c - Video Tutorials", "\u4f7f\u7528 DDP \u8fdb\u884c\u591a GPU \u8bad\u7ec3", "What is Distributed Data Parallel (DDP)", "PyTorch \u6df1\u5ea6\u5b66\u4e60\uff1a60\u5206\u949f\u5165\u95e8", "Image Segmentation DeepLabV3 on Android", "Image Segmentation DeepLabV3 on iOS", "Deploying a Seq2Seq Model with TorchScript", "PyTorch \u5206\u5e03\u5f0f\u6982\u8ff0", "<no title>", "PyTorch: Tensors and autograd", "PyTorch: Defining New autograd Functions", "PyTorch: Control Flow + Weight Sharing", "<no title>", "PyTorch: Custom nn Modules", "PyTorch: nn", "PyTorch: optim", "<no title>", "Warm-up: numpy", "PyTorch\uff1a\u5f20\u91cf(Tensors)", "\u5bf9\u6297\u6837\u672c\u751f\u6210", "Finetuning Torchvision Models", "TorchMultimodal \u6559\u7a0b\uff1a\u5fae\u8c03 FLAVA", "Autograd", "<no title>", "nn package", "Multi-GPU Examples", "Tensors", "PyTorch for Former Torch Users", "Holistic Trace Analysis \u4ecb\u7ecd", "Holistic Trace Analysis \u5dee\u5f02\u5206\u6790", "<no title>", "Learning Hybrid Frontend Syntax Through Example", "Hybrid Frontend \u6559\u7a0b", "Ray Tune \u8d85\u53c2\u6570\u8c03\u4f18", "PyTorch \u4ecb\u7ecd - YouTube", "\u81ea\u52a8\u5fae\u5206\u57fa\u7840", "\u4f7f\u7528 Captum \u8fdb\u884c\u6a21\u578b\u7406\u89e3", "Introduction to PyTorch on YouTube", "PyTorch \u7b80\u4ecb", "\u4f7f\u7528 PyTorch \u6784\u5efa\u6a21\u578b", "PyTorch TensorBoard \u652f\u6301", "PyTorch Tensors \u4ecb\u7ecd", "\u4f7f\u7528 PyTorch \u8bad\u7ec3\u6a21\u578b", "Knowledge Distillation \u6559\u7a0b", "Advanced: Making Dynamic Decisions and the Bi-LSTM CRF", "Deep Learning with PyTorch", "Deep Learning for NLP with Pytorch", "Introduction to PyTorch", "Sequence Models and Long Short-Term Memory Networks", "Word Embeddings: Encoding Lexical Semantics", "torch.nn \u5177\u4f53\u662f\u4ec0\u4e48?", "Export a PyTorch model to ONNX", "ONNX", "ONNX \u4ecb\u7ecd", "Extending the ONNX Registry", "PyTorch \u6a21\u578b\u5206\u6790", "PyTorch Cheat Sheet", "\u8ddf\u7740\u793a\u4f8b\u5b66\u4e60 PyTorch", "Saving and Loading Models", "T5-Base Model for Summarization, Sentiment Classification, and Translation", "Template Tutorial", "torchtext \u6587\u672c\u5206\u7c7b", "Torchtext \u9884\u5904\u7406\u81ea\u5b9a\u4e49\u6587\u672c\u6570\u636e\u96c6", "\u8ba1\u7b97\u673a\u89c6\u89c9\u8fc1\u79fb\u5b66\u4e60\u6559\u7a0b", "\u6570\u636e\u83b7\u53d6\u548c\u5904\u7406", "\u4f18\u5316\u89c6\u89c9 Transformer \u6a21\u578b", "Distributed and Parallel Training Tutorials", "\u6b22\u8fce\u6765\u5230 PyTorch \u6559\u7a0b", "Advanced Model Training with Fully Sharded Data Parallel (FSDP)", "Getting Started with Fully Sharded Data Parallel(FSDP)", "Large Scale Transformer model training with Tensor Parallel (TP)", "Hooks for autograd saved tensors", "Multi-Objective NAS with Ax", "\u4ece\u96f6\u5f00\u59cb\u7684\u81ea\u7136\u8bed\u8a00\u5904\u7406\uff1a\u5b57\u7b26\u7ea7 RNN \u8fdb\u884c\u59d3\u540d\u5206\u7c7b", "\u4ece\u96f6\u5f00\u59cb\u7684\u81ea\u7136\u8bed\u8a00\u5904\u7406\uff1a\u5b57\u7b26\u7ea7 RNN \u751f\u6210\u59d3\u540d", "Compiled Autograd: \u4e3a torch.compile \u6355\u83b7\u66f4\u5927\u7684\u540e\u5411\u56fe", "Fusing Convolution and Batch Norm using Custom Function", "Double Backward with Custom Functions", "Training \u201creal-world\u201d models with DDP", "Multinode Training", "Getting Started with Distributed Data Parallel", "Distributed Pipeline Parallelism Using RPC", "Writing Distributed Applications with PyTorch", "Recurrent DQN: Training recurrent policies", "(beta) Dynamic Quantization on BERT", "Model ensembling", "API \u5b9a\u4e49", "Wav2Vec2 \u5f3a\u5236\u5bf9\u9f50", "Forward-mode Automatic Differentiation (Beta)", "(beta) Building a Convolution/Batch Norm fuser in FX", "(beta) Building a Simple CPU Performance Profiler with FX", "Inductor CPU backend debugging and profiling", "Jacobians, Hessians, hvp, vhp, and more: composing function transforms", "\u8bad\u7ec3\u4e00\u4e2a\u9a6c\u91cc\u5965\u6e38\u620f\u7684 RL Agent", "(beta) Channels Last Memory Format in PyTorch", "<no title>", "Single-Machine Model Parallel Best Practices", "Neural Tangent Kernels", "Getting Started - Accelerate Your Scripts with nvFuser", "How to save memory by fusing the optimizer step into the backward pass", "Parametrizations Tutorial", "Per-sample-gradients", "Customize Process Group Backends Using Cpp Extensions", "Pruning Tutorial", "(beta) Quantized Transfer Learning for Computer Vision Tutorial", "\u5728 Raspberry Pi 4 \u4e0a\u8fdb\u884c\u5b9e\u65f6\u63a8\u7406 (30 fps!)", "\u4f7f\u7528 TorchRL \u5f3a\u5316\u5b66\u4e60 (PPO) \u6559\u7a0b", "\u5f3a\u5316\u5b66\u4e60 (DQN) \u6559\u7a0b", "Implementing Batch RPC Processing Using Asynchronous Executions", "Implementing a Parameter Server Using Distributed RPC Framework", "Getting Started with Distributed RPC Framework", "(Beta) Implementing High-Performance Transformers with Scaled Dot Product Attention (SDPA)", "\u4ece\u96f6\u5f00\u59cb\u7684\u81ea\u7136\u8bed\u8a00\u5904\u7406\uff1a\u5e8f\u5217\u5230\u5e8f\u5217\u7f51\u7edc\u548c\u6ce8\u610f\u529b\u673a\u5236\u8fdb\u884c\u7ffb\u8bd1", "Spatial Transformer Networks \u6559\u7a0b", "Wav2Vec2 \u8fdb\u884c\u8bed\u97f3\u8bc6\u522b", "PyTorch Profiler With TensorBoard", "TensorBoard \u53ef\u89c6\u5316\u6a21\u578b\u3001\u6570\u636e\u548c\u8bad\u7ec3", "Tacotron2 \u6587\u672c\u8f6c\u8bed\u97f3", "PyTorch \u548c TIAToolbox \u8fdb\u884c\u5168\u5207\u7247\u56fe\u50cf\u5206\u7c7b", "Introduction to torch.compile", "torch.export Nightly Tutorial", "torch.export Tutorial", "Introduction to TorchRec", "Grokking PyTorch Intel CPU performance from first principles", "Grokking PyTorch Intel CPU performance from first principles (Part 2)", "TorchVision \u5bf9\u8c61\u68c0\u6d4b\u5fae\u8c03\u6559\u7a0b", "(prototype) PyTorch BackendConfig Tutorial", "Profiling PyTorch RPC-Based Workloads", "(prototype) FX Graph Mode Post Training Dynamic Quantization", "(prototype) FX Graph Mode Post Training Static Quantization", "(prototype) FX Graph Mode Quantization User Guide", "(prototype) GPU Quantization with TorchAO", "(prototype) Graph Mode Dynamic Quantization on BERT", "Inductor C++ Wrapper Tutorial", "\u5982\u4f55\u5728 Windows CPU \u4e0a\u4f7f\u7528 TorchInductor", "(Prototype) Convert Mobilenetv2 to Core ML", "(Prototype) Use iOS GPU in PyTorch", "(Prototype) Efficiently writing \u201csparse\u201d semantics for Adagrad with MaskedTensor", "(Prototype) MaskedTensor Advanced Semantics", "(Prototype) MaskedTensor Overview", "(Prototype) MaskedTensor Sparsity", "Getting Started with Nested Tensors", "(Beta) Convert MobileNetV2 to NNAPI", "PyTorch Numeric Suite Tutorial", "PyTorch Prototype Recipes", "(prototype) PyTorch 2 Export Post Training Quantization", "(prototype) PyTorch 2 Export Quantization-Aware Training (QAT)", "PyTorch 2 Export Quantization with X86 Backend through Inductor", "How to Write a Quantizer for PyTorch 2 Export Quantization", "(prototype) Accelerating BERT with semi-structured (2:4) sparsity", "Skipping Module Parameter Initialization", "Model Freezing in TorchScript", "(prototype) Tracing-based Selective Build Mobile Interpreter in Android and iOS", "torch.vmap", "PyTorch Vulkan Backend User Workflow", "\u5229\u7528\u82f1\u7279\u5c14\u00ae\u9ad8\u7ea7\u77e9\u9635\u6269\u5c55(Intel\u00ae Advanced Matrix Extensions)", "Making Native Android Application that uses PyTorch prebuilt libraries", "(beta) Bundling inputs to PyTorch Models", "(beta) \u4f7f\u7528 torch.compile \u7f16\u8bd1\u4f18\u5316\u5668", "(beta) Running the compiled optimizer with an LR Scheduler", "\u4f7f\u7528TensorPipe CUDA RPC\u8fdb\u884c\u8bbe\u5907\u5230\u8bbe\u5907\u901a\u4fe1", "\u4f7f\u7528 Flask \u8fdb\u884c\u90e8\u7f72", "\u5206\u5e03\u5f0f\u68c0\u67e5\u70b9 (DCP) \u5165\u95e8", "\u5f00\u59cb\u4f7f\u7528 DeviceMesh", "\u652f\u6301 TorchScript \u7684\u5206\u5e03\u5f0f\u4f18\u5316\u5668", "Profiling PyTorch RPC-Based Workloads", "Fuse Modules Recipe", "(Beta) PyTorch\u5728AWS Graviton\u5904\u7406\u5668\u4e0a\u7684\u63a8\u7406\u6027\u80fd\u4f18\u5316", "Intel\u00ae Extension for PyTorch*", "\u4f7f\u7528Intel\u00ae Neural Compressor\u5b9e\u73b0PyTorch\u7684\u7b80\u6613\u91cf\u5316", "(beta) Efficient mobile interpreter in Android and iOS", "Pytorch Mobile Performance Recipes", "Model Preparation for Android Recipe", "Model Preparation for iOS Recipe", "\u4f7f\u7528 Instrumentation and Tracing Technology (ITT) API \u5206\u6790 PyTorch \u5de5\u4f5c\u8d1f\u8f7d", "Summary of PyTorch Mobile Recipes", "Quantization Recipe", "\u4f7f\u7528 Captum \u8fdb\u884c\u6a21\u578b\u53ef\u89e3\u91ca\u6027", "\u81ea\u52a8\u6df7\u5408\u7cbe\u5ea6", "PyTorch Benchmark", "Changing default device", "PyTorch \u521b\u5efa\u795e\u7ecf\u7f51\u7edc", "\u52a8\u6001\u91cf\u5316", "PyTorch Recipes", "PyTorch \u52a0\u8f7d\u6570\u636e", "\u4ece\u68c0\u67e5\u70b9\u52a0\u8f7d nn.Module \u7684\u6280\u5de7", "PyTorch Profiler", "\u5728PyTorch\u4e2d\u63a8\u7406\u5f62\u72b6", "PyTorch \u4e2d\u8de8\u8bbe\u5907\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b", "PyTorch \u4fdd\u5b58\u548c\u52a0\u8f7d\u901a\u7528\u68c0\u67e5\u70b9", "PyTorch \u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b", "PyTorch \u5728\u4e00\u4e2a\u6587\u4ef6\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u6a21\u578b", "\u5728 nn.Module \u4e2d\u4e3a load_state_dict \u548c\u5f20\u91cf\u5b50\u7c7b\u63d0\u4f9b\u6269\u5c55\u70b9", "\u5982\u4f55\u5728PyTorch\u4e2d\u4f7f\u7528TensorBoard", "Timer\u5feb\u901f\u5165\u95e8", "\u6027\u80fd\u8c03\u4f18\u6307\u5357", "PyTorch \u4f7f\u7528\u4e0d\u540c\u6a21\u578b\u7684\u53c2\u6570\u5bf9\u6a21\u578b\u8fdb\u884c\u70ed\u542f\u52a8", "PyTorch \u4e2d state_dict \u662f\u4ec0\u4e48", "\u4ecb\u7ecd", "PyTorch \u793a\u4f8b", "\u901a\u8fc7\u533a\u57df\u7f16\u8bd1\u51cf\u5c11 torch.compile \u51b7\u542f\u52a8\u7f16\u8bd1\u65f6\u95f4", "Script and Optimize for Mobile Recipe", "Intel\u00ae PyTorch* \u6269\u5c55\u540e\u7aef", "\u4f7f\u7528 torch.compile \u548c\u7528\u6237\u81ea\u5b9a\u4e49\u7684 Triton \u5185\u6838", "(Beta) \u4f7f\u7528 TORCH_LOGS python API \u4e0e torch.compile", "TorchScript \u90e8\u7f72", "\u5c06 PyTorch Stable Diffusion \u6a21\u578b\u90e8\u7f72\u4e3a Vertex AI \u7aef\u70b9", "\u4f7f\u7528ZeroRedundancyOptimizer\u5206\u7247\u4f18\u5316\u5668\u72b6\u6001", "Changelog", "Configuration", "5. test_py_module", "3. Paragraph Level Markup", "4. Lists & Tables", "1. Long Sticky Nav", "1. Structural Elements", "<no title>", "Installation"], "terms": {"thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 40, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 97, 98, 99, 100, 101, 102, 103, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 210, 211, 212, 213, 219, 220, 222, 224, 225, 226, 227, 229, 230, 234, 240, 242, 243, 255, 263, 264, 265, 267, 268], "show": [0, 1, 5, 10, 11, 12, 14, 17, 18, 19, 22, 24, 34, 42, 44, 51, 52, 58, 59, 61, 73, 75, 82, 83, 85, 87, 90, 104, 108, 109, 113, 115, 116, 117, 118, 119, 121, 123, 126, 127, 128, 130, 131, 134, 135, 137, 139, 140, 145, 146, 148, 150, 156, 158, 159, 160, 161, 162, 164, 166, 167, 169, 170, 172, 173, 174, 175, 177, 178, 180, 183, 186, 189, 190, 191, 196, 197, 199, 200, 203, 206, 210, 213, 222, 224, 225, 227, 230, 233, 263, 265], "you": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 31, 32, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 64, 65, 67, 68, 73, 75, 76, 78, 81, 82, 85, 86, 87, 95, 97, 98, 99, 100, 101, 102, 103, 105, 108, 109, 111, 112, 113, 114, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 176, 177, 179, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 206, 207, 208, 210, 211, 215, 222, 224, 225, 226, 227, 230, 234, 242, 243, 255, 263, 265, 266, 267], "neural": [0, 2, 5, 13, 14, 17, 20, 32, 35, 43, 46, 49, 51, 57, 60, 68, 73, 78, 79, 81, 97, 98, 99, 100, 101, 102, 103, 105, 107, 111, 116, 117, 119, 121, 126, 127, 128, 130, 137, 150, 157, 160, 161, 163, 166, 167, 170, 172, 178, 189, 196, 198, 201, 203, 222, 228, 237, 253], "ha": [0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 42, 43, 44, 47, 49, 50, 58, 59, 60, 61, 63, 68, 73, 74, 75, 76, 78, 80, 83, 85, 87, 97, 98, 99, 101, 102, 103, 104, 105, 108, 109, 111, 113, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 130, 131, 132, 133, 136, 137, 138, 139, 141, 143, 145, 146, 148, 151, 152, 153, 154, 157, 158, 159, 160, 161, 164, 165, 166, 168, 169, 170, 171, 172, 174, 175, 176, 177, 178, 179, 181, 183, 184, 185, 186, 189, 191, 192, 193, 194, 195, 197, 199, 200, 202, 203, 204, 205, 210, 213, 219, 222, 225, 230, 234, 255, 265, 266], "been": [0, 1, 3, 4, 6, 7, 9, 14, 15, 17, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 42, 50, 58, 59, 69, 73, 74, 80, 83, 85, 87, 101, 102, 105, 113, 119, 123, 128, 130, 131, 132, 136, 137, 141, 143, 144, 145, 146, 151, 152, 153, 154, 157, 159, 160, 161, 165, 168, 169, 170, 171, 172, 174, 175, 177, 178, 181, 183, 189, 191, 194, 195, 200, 201, 202, 203, 213, 219, 222, 266], "export": [0, 4, 8, 20, 21, 23, 47, 60, 85, 106, 107, 108, 110, 121, 133, 134, 138, 145, 165, 173, 198, 205, 206, 209, 210, 211, 221, 224, 232, 249, 259, 260], "from": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 23, 24, 25, 33, 34, 37, 38, 41, 42, 44, 45, 47, 48, 49, 51, 52, 53, 55, 58, 59, 60, 61, 63, 64, 67, 68, 69, 73, 75, 76, 78, 80, 82, 83, 85, 87, 90, 92, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 107, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 130, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 173, 174, 175, 180, 182, 183, 184, 185, 186, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 206, 207, 208, 210, 211, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 230, 231, 233, 237, 239, 240, 247, 248, 253, 254, 255, 257, 260, 261, 263, 264, 265, 266], "appl": [0, 98, 102, 177, 185, 189, 190], "format": [0, 1, 5, 7, 9, 12, 16, 17, 19, 20, 23, 25, 51, 52, 58, 59, 60, 87, 94, 95, 96, 97, 107, 108, 110, 115, 119, 121, 122, 123, 130, 136, 138, 144, 145, 157, 158, 159, 162, 164, 167, 169, 170, 172, 174, 175, 177, 179, 182, 183, 186, 189, 190, 191, 193, 194, 196, 199, 200, 202, 203, 205, 218, 222, 223, 226, 227, 230, 232, 236, 238, 249, 259, 265, 266], "us": [0, 1, 4, 8, 9, 10, 14, 15, 16, 17, 18, 19, 21, 32, 33, 38, 42, 44, 45, 47, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 61, 63, 64, 65, 67, 68, 69, 72, 73, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 95, 97, 98, 99, 100, 101, 102, 103, 107, 108, 110, 111, 114, 115, 117, 118, 120, 121, 122, 124, 125, 126, 127, 128, 131, 133, 136, 138, 140, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 157, 158, 159, 160, 161, 166, 167, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 189, 191, 192, 194, 195, 196, 197, 198, 199, 200, 201, 203, 204, 205, 206, 207, 211, 212, 213, 220, 221, 222, 226, 227, 229, 232, 233, 234, 237, 248, 253, 260, 261, 263, 264, 265, 266], "allow": [0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 14, 19, 22, 23, 24, 25, 32, 43, 49, 50, 51, 52, 53, 60, 61, 79, 82, 83, 85, 87, 97, 99, 101, 102, 103, 105, 108, 113, 119, 122, 123, 124, 126, 128, 131, 136, 137, 138, 140, 143, 147, 148, 151, 153, 154, 156, 157, 158, 160, 161, 162, 164, 165, 166, 167, 172, 173, 174, 175, 176, 177, 178, 179, 186, 187, 191, 192, 195, 197, 199, 200, 201, 202, 208, 210, 230, 263], "easili": [0, 1, 5, 12, 19, 24, 45, 60, 61, 73, 95, 97, 109, 112, 118, 119, 122, 124, 126, 134, 136, 143, 144, 145, 151, 157, 160, 161, 164, 172, 173, 174, 175, 177, 178, 179, 183, 185, 204], "deep": [0, 1, 6, 12, 13, 25, 47, 49, 52, 60, 69, 97, 101, 103, 117, 119, 120, 121, 127, 128, 130, 138, 145, 146, 147, 154, 157, 158, 161, 166, 172, 176, 178, 213, 220, 223, 228, 263], "learn": [0, 1, 4, 6, 7, 9, 13, 14, 17, 20, 21, 25, 43, 45, 47, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 69, 73, 79, 81, 82, 84, 86, 87, 97, 101, 103, 104, 105, 107, 108, 112, 113, 114, 115, 116, 121, 122, 123, 126, 127, 128, 132, 133, 134, 136, 137, 145, 146, 149, 153, 154, 155, 157, 159, 160, 161, 163, 166, 167, 170, 172, 174, 175, 176, 178, 179, 185, 188, 191, 192, 193, 194, 195, 198, 199, 201, 202, 203, 205, 206, 210, 213, 218, 223, 225], "devic": [0, 1, 3, 6, 7, 8, 9, 10, 11, 14, 16, 18, 19, 20, 23, 24, 25, 33, 38, 40, 42, 43, 44, 45, 48, 49, 50, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 72, 73, 79, 80, 87, 89, 95, 97, 99, 104, 105, 110, 111, 115, 117, 118, 120, 121, 123, 124, 125, 126, 130, 133, 134, 135, 136, 137, 138, 139, 145, 147, 148, 150, 151, 153, 155, 157, 158, 159, 160, 161, 163, 164, 165, 166, 167, 169, 175, 176, 179, 180, 182, 183, 185, 186, 187, 188, 189, 190, 195, 196, 199, 200, 201, 203, 204, 210, 212, 213, 214, 216, 220, 221, 222, 225, 230, 232, 233, 237, 241, 242, 246, 249, 254, 255, 257, 258, 261], "case": [0, 1, 2, 3, 4, 5, 6, 8, 10, 11, 13, 14, 16, 17, 20, 22, 23, 25, 32, 43, 49, 51, 60, 61, 68, 73, 75, 82, 85, 97, 98, 99, 101, 102, 103, 108, 111, 112, 120, 121, 122, 123, 124, 125, 126, 127, 130, 131, 135, 136, 137, 139, 140, 142, 145, 146, 148, 150, 151, 153, 154, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 169, 172, 173, 174, 175, 177, 178, 179, 180, 185, 186, 191, 193, 194, 195, 196, 199, 202, 203, 204, 207, 208, 210, 222, 225, 255], "stream": [0, 3, 15, 82, 98, 119, 135, 150, 159, 187, 210, 222], "camera": [0, 121, 159], "open": [0, 5, 9, 12, 20, 38, 49, 50, 58, 59, 60, 75, 87, 90, 103, 104, 105, 107, 115, 116, 117, 119, 122, 127, 128, 136, 138, 139, 140, 144, 147, 153, 155, 166, 167, 169, 172, 182, 186, 190, 206, 208, 210, 215, 222, 224, 225, 226, 227, 231, 260], "network": [0, 2, 3, 5, 7, 8, 12, 13, 14, 17, 19, 20, 21, 25, 32, 35, 43, 46, 49, 51, 57, 60, 68, 69, 73, 78, 79, 81, 92, 97, 98, 100, 101, 103, 105, 107, 111, 116, 117, 119, 121, 125, 126, 130, 133, 134, 144, 150, 151, 154, 157, 158, 163, 166, 169, 170, 172, 178, 196, 198, 201, 203, 222, 228, 237, 255], "exchang": [0, 49, 105, 107, 122, 136, 166, 169], "an": [0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 32, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 61, 65, 67, 69, 73, 75, 76, 78, 80, 82, 83, 85, 86, 87, 92, 97, 98, 99, 100, 101, 105, 107, 108, 109, 110, 111, 112, 113, 116, 117, 121, 122, 123, 124, 126, 127, 128, 130, 131, 133, 134, 135, 136, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 150, 151, 153, 154, 155, 156, 157, 159, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 185, 186, 187, 189, 190, 191, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 210, 211, 215, 220, 222, 224, 225, 227, 229, 230, 234, 255, 260, 263, 265, 266], "repres": [0, 1, 5, 7, 10, 12, 13, 18, 20, 21, 25, 43, 49, 51, 52, 60, 63, 73, 75, 82, 85, 97, 103, 105, 107, 109, 110, 115, 116, 122, 123, 124, 126, 127, 137, 140, 142, 143, 144, 147, 148, 160, 161, 164, 166, 172, 174, 175, 177, 179, 183, 191, 195, 199, 200, 206, 265], "With": [0, 4, 8, 10, 15, 16, 17, 18, 19, 21, 42, 48, 52, 58, 59, 61, 73, 85, 101, 115, 124, 131, 136, 138, 145, 150, 151, 153, 162, 163, 164, 165, 166, 177, 178, 185, 187, 196, 199, 201, 202, 203, 206, 213, 226, 227, 230, 263, 265], "ai": [0, 75, 90, 99, 100, 104, 123, 126, 138, 147, 166, 176, 216, 222, 231, 253], "develop": [0, 1, 3, 5, 8, 10, 12, 15, 23, 24, 58, 59, 60, 82, 85, 101, 105, 107, 113, 115, 136, 140, 148, 156, 164, 169, 180, 185, 187, 189, 190, 191, 194, 199, 200, 202, 206, 210, 222, 224, 229, 237, 265, 266], "can": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 34, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 64, 65, 67, 68, 73, 76, 78, 79, 80, 82, 83, 85, 87, 95, 97, 98, 99, 100, 101, 102, 103, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 210, 211, 213, 220, 222, 224, 225, 226, 227, 229, 230, 233, 234, 251, 255, 263, 265], "more": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 17, 19, 20, 21, 22, 25, 38, 42, 43, 44, 45, 48, 49, 50, 51, 52, 53, 55, 56, 61, 67, 69, 73, 75, 76, 78, 79, 85, 97, 98, 99, 101, 102, 103, 105, 109, 110, 111, 112, 113, 115, 116, 117, 118, 120, 121, 122, 124, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 140, 142, 143, 144, 147, 150, 151, 153, 154, 157, 158, 159, 160, 161, 163, 164, 165, 166, 167, 170, 172, 173, 174, 175, 177, 178, 179, 180, 183, 184, 185, 186, 191, 192, 193, 194, 195, 197, 198, 199, 200, 201, 203, 205, 206, 207, 208, 210, 222, 225, 233, 263, 266], "move": [0, 1, 4, 5, 7, 12, 23, 26, 27, 28, 29, 30, 31, 40, 43, 47, 48, 73, 74, 99, 110, 122, 123, 124, 133, 134, 135, 137, 141, 147, 150, 153, 154, 155, 156, 158, 161, 163, 164, 165, 167, 168, 169, 171, 178, 179, 184, 190, 192, 200, 201, 208, 211, 225, 255], "between": [0, 1, 5, 6, 8, 11, 12, 14, 16, 17, 19, 21, 22, 23, 40, 47, 48, 49, 58, 59, 60, 65, 73, 82, 83, 85, 87, 95, 97, 98, 99, 102, 103, 108, 121, 123, 124, 126, 136, 137, 138, 144, 147, 148, 150, 151, 157, 161, 163, 164, 165, 166, 170, 172, 173, 174, 175, 177, 178, 179, 182, 185, 186, 187, 191, 192, 194, 197, 198, 200, 201, 202, 203, 220, 234, 265, 266], "state": [0, 1, 5, 8, 9, 10, 11, 12, 14, 17, 22, 38, 44, 49, 52, 53, 55, 60, 61, 78, 79, 87, 97, 98, 102, 112, 119, 122, 123, 127, 128, 130, 132, 134, 137, 138, 139, 142, 147, 153, 155, 157, 160, 161, 162, 163, 164, 166, 169, 182, 186, 191, 194, 197, 203, 218], "art": [0, 5, 44, 52, 79, 103, 119, 138, 157, 186], "tool": [0, 3, 6, 8, 14, 21, 25, 51, 60, 82, 87, 98, 123, 134, 136, 137, 145, 162, 165, 169, 170, 172, 178, 183, 197, 210, 211, 225], "choos": [0, 1, 8, 10, 12, 15, 44, 49, 52, 55, 59, 65, 87, 99, 111, 112, 124, 128, 134, 136, 144, 147, 154, 159, 160, 161, 166, 169, 172, 178, 179, 185, 186, 199, 201, 229], "combin": [0, 5, 10, 21, 61, 75, 87, 97, 98, 101, 103, 115, 120, 121, 123, 125, 127, 128, 130, 139, 151, 157, 158, 161, 164, 166, 184, 187, 195, 199, 201], "best": [0, 5, 6, 7, 8, 17, 23, 37, 43, 52, 58, 61, 73, 87, 98, 105, 108, 109, 112, 115, 117, 119, 121, 132, 135, 136, 138, 139, 145, 155, 158, 159, 161, 162, 164, 167, 185, 196, 201, 203, 222, 225, 265], "them": [0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 14, 17, 18, 19, 23, 25, 43, 44, 47, 48, 49, 51, 53, 55, 59, 60, 61, 65, 67, 68, 73, 75, 78, 87, 97, 98, 99, 100, 101, 102, 103, 105, 107, 108, 111, 112, 115, 116, 118, 121, 122, 124, 126, 127, 128, 130, 131, 135, 136, 137, 139, 140, 144, 145, 146, 150, 151, 153, 154, 155, 157, 159, 161, 162, 163, 164, 172, 177, 178, 179, 182, 185, 193, 195, 196, 197, 202, 203, 204, 210, 211, 213, 215, 220, 222, 227, 255, 263], "support": [0, 4, 6, 7, 11, 14, 15, 16, 17, 18, 19, 22, 23, 24, 42, 47, 51, 56, 60, 61, 73, 78, 80, 83, 85, 91, 97, 105, 107, 109, 113, 121, 122, 123, 126, 131, 133, 134, 136, 137, 138, 142, 145, 148, 154, 156, 157, 159, 160, 162, 163, 164, 169, 172, 173, 174, 175, 177, 178, 179, 180, 182, 183, 184, 186, 189, 190, 191, 192, 193, 195, 196, 197, 198, 199, 200, 201, 202, 203, 206, 208, 209, 210, 212, 213, 222, 225, 230, 253, 255, 263, 264], "commun": [0, 11, 15, 18, 55, 61, 110, 113, 121, 122, 123, 124, 126, 132, 133, 134, 156, 160, 162, 163, 164, 169, 172, 177, 188, 198], "partner": [0, 113], "about": [0, 1, 4, 5, 6, 7, 8, 9, 10, 14, 15, 17, 19, 20, 21, 22, 23, 38, 42, 43, 49, 52, 53, 54, 55, 57, 73, 78, 87, 97, 99, 100, 101, 102, 103, 105, 107, 108, 109, 112, 113, 117, 119, 120, 121, 122, 126, 127, 128, 131, 133, 134, 136, 139, 140, 143, 144, 145, 146, 153, 155, 158, 159, 160, 161, 162, 164, 165, 166, 167, 169, 172, 173, 174, 175, 177, 179, 184, 185, 186, 189, 190, 192, 193, 194, 196, 198, 199, 200, 201, 202, 203, 205, 206, 210, 211, 224, 225, 230, 263], "ar": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 37, 42, 43, 44, 47, 48, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 67, 68, 69, 73, 75, 76, 78, 80, 82, 83, 85, 87, 95, 97, 98, 99, 100, 101, 102, 103, 105, 107, 108, 109, 111, 112, 113, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 150, 151, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 177, 178, 179, 180, 182, 183, 184, 185, 186, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 210, 211, 213, 220, 222, 224, 225, 230, 233, 243, 253, 255, 263, 265, 266, 267], "go": [0, 4, 11, 12, 13, 14, 16, 18, 19, 21, 22, 23, 25, 48, 49, 51, 58, 59, 60, 78, 95, 98, 101, 102, 105, 107, 108, 117, 119, 121, 122, 125, 127, 133, 136, 139, 142, 143, 144, 146, 158, 159, 161, 163, 166, 170, 178, 179, 180, 185, 189, 190, 191, 202, 206, 225, 230], "walk": [0, 5, 6, 10, 15, 16, 22, 23, 24, 25, 43, 54, 58, 59, 60, 61, 100, 114, 120, 121, 125, 145, 147, 163, 177, 180, 185, 187, 189, 190, 201, 206, 224], "through": [0, 1, 3, 4, 5, 6, 7, 8, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 34, 43, 44, 47, 49, 52, 54, 55, 58, 59, 60, 61, 73, 75, 78, 84, 87, 97, 98, 99, 100, 101, 102, 105, 107, 108, 110, 114, 115, 118, 119, 120, 121, 122, 124, 125, 127, 130, 131, 136, 139, 143, 144, 145, 146, 147, 148, 150, 151, 153, 155, 156, 160, 161, 162, 163, 164, 165, 166, 169, 170, 172, 173, 175, 176, 177, 178, 183, 184, 185, 187, 189, 190, 191, 193, 197, 198, 199, 202, 203, 206, 207, 210, 211, 222, 224, 230, 265], "4": [0, 1, 2, 3, 5, 6, 7, 12, 13, 14, 16, 21, 23, 24, 25, 32, 34, 36, 40, 43, 45, 48, 51, 52, 53, 54, 55, 63, 64, 65, 73, 75, 80, 87, 90, 92, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 108, 111, 113, 115, 116, 117, 119, 121, 122, 123, 125, 126, 129, 130, 132, 133, 136, 137, 145, 147, 148, 150, 153, 154, 157, 158, 160, 161, 162, 163, 164, 167, 172, 174, 175, 177, 179, 182, 185, 188, 191, 192, 193, 194, 195, 198, 199, 200, 206, 210, 217, 221, 224, 247, 254, 255, 257, 263, 265, 266, 269], "main": [0, 1, 3, 4, 5, 6, 7, 11, 16, 19, 22, 23, 52, 53, 55, 58, 59, 61, 87, 97, 104, 107, 108, 113, 119, 122, 123, 127, 132, 135, 136, 138, 145, 158, 161, 162, 163, 164, 167, 174, 175, 177, 178, 179, 185, 187, 189, 199, 202, 207, 208, 210, 220, 222, 223, 224, 225, 228, 239, 259, 261, 263, 265, 267], "step": [0, 3, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 37, 38, 43, 44, 47, 49, 52, 60, 61, 65, 67, 69, 73, 82, 85, 87, 89, 92, 94, 96, 97, 98, 99, 102, 103, 104, 105, 108, 110, 111, 115, 117, 118, 119, 120, 121, 122, 123, 127, 128, 130, 132, 134, 136, 137, 138, 140, 143, 145, 147, 150, 151, 154, 158, 161, 162, 163, 164, 165, 166, 167, 170, 172, 173, 174, 175, 177, 178, 179, 180, 182, 183, 185, 186, 190, 195, 196, 197, 199, 200, 201, 202, 203, 204, 206, 208, 210, 211, 212, 213, 216, 218, 222, 223, 224, 225, 230, 232, 240, 246, 247, 252, 255, 256, 261], "we": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, 34, 39, 40, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 55, 58, 59, 60, 63, 64, 65, 67, 68, 69, 73, 75, 76, 78, 79, 82, 83, 85, 87, 95, 97, 98, 99, 101, 102, 103, 105, 108, 109, 111, 113, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 205, 206, 207, 208, 210, 211, 213, 224, 225, 226, 227, 230, 233, 251, 255, 263, 265], "work": [0, 1, 2, 4, 5, 6, 7, 9, 12, 14, 17, 18, 20, 21, 22, 23, 25, 42, 43, 49, 50, 51, 52, 55, 56, 58, 59, 60, 61, 73, 78, 85, 87, 97, 98, 100, 103, 113, 115, 116, 119, 121, 125, 127, 128, 130, 131, 132, 134, 135, 136, 137, 139, 140, 142, 143, 144, 146, 150, 153, 154, 155, 156, 157, 159, 160, 162, 164, 165, 166, 169, 172, 174, 175, 177, 179, 182, 183, 184, 185, 186, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 203, 204, 205, 207, 208, 210, 222, 225, 226, 227, 255, 265, 266], "virtualenv": 0, "order": [0, 4, 6, 11, 12, 15, 17, 20, 22, 34, 44, 45, 49, 50, 55, 60, 63, 64, 65, 67, 68, 69, 73, 82, 87, 105, 107, 108, 109, 111, 113, 118, 121, 123, 125, 126, 128, 131, 134, 135, 136, 143, 144, 145, 146, 148, 156, 157, 163, 166, 167, 172, 173, 174, 175, 176, 179, 180, 183, 190, 193, 195, 196, 202, 203, 207, 224, 255], "avoid": [0, 5, 16, 44, 58, 59, 87, 97, 122, 123, 124, 130, 134, 135, 136, 148, 151, 153, 160, 162, 178, 185, 191, 192, 195, 198, 203, 204, 225], "conflict": [0, 16, 145], "your": [0, 2, 6, 8, 9, 11, 12, 14, 15, 17, 18, 19, 22, 23, 25, 38, 42, 43, 44, 45, 47, 49, 50, 51, 53, 54, 55, 58, 59, 61, 67, 73, 75, 78, 82, 87, 99, 101, 102, 103, 105, 107, 108, 109, 110, 112, 113, 114, 121, 122, 123, 125, 130, 131, 132, 133, 134, 136, 137, 138, 140, 142, 144, 146, 147, 148, 150, 153, 154, 156, 157, 158, 159, 160, 163, 164, 165, 167, 169, 170, 172, 173, 174, 175, 177, 178, 186, 187, 189, 190, 196, 198, 199, 200, 201, 202, 203, 204, 206, 207, 208, 211, 215, 220, 224, 226, 227, 248, 259, 260, 263, 265, 266, 270], "local": [0, 5, 6, 7, 8, 9, 16, 18, 19, 22, 23, 49, 50, 98, 112, 114, 122, 124, 126, 134, 135, 136, 138, 153, 157, 158, 162, 163, 164, 166, 167, 178, 186, 210, 220, 224, 225, 255, 261, 263], "packag": [0, 2, 5, 6, 17, 18, 22, 23, 24, 44, 47, 51, 57, 61, 68, 69, 75, 76, 77, 79, 81, 87, 97, 99, 107, 110, 111, 115, 116, 117, 119, 120, 121, 122, 123, 134, 136, 138, 144, 156, 158, 159, 161, 164, 169, 172, 178, 186, 189, 203, 210, 222, 225, 240, 248], "also": [0, 1, 2, 4, 5, 6, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 37, 42, 43, 47, 48, 49, 51, 52, 53, 54, 58, 59, 60, 61, 65, 67, 68, 73, 75, 76, 78, 79, 80, 82, 85, 87, 95, 97, 98, 99, 100, 101, 102, 103, 108, 109, 111, 112, 113, 115, 116, 118, 119, 122, 123, 124, 125, 126, 127, 128, 130, 131, 134, 135, 136, 137, 138, 140, 142, 143, 144, 145, 146, 150, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 164, 165, 166, 169, 172, 173, 174, 175, 177, 178, 179, 180, 182, 183, 184, 190, 191, 192, 193, 194, 197, 199, 201, 202, 203, 204, 205, 207, 208, 210, 213, 222, 224, 225, 230, 234, 255, 263, 265, 266], "python": [0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 14, 15, 17, 18, 20, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 56, 57, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 125, 126, 127, 128, 129, 130, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 159, 160, 161, 163, 165, 166, 167, 169, 173, 174, 175, 176, 178, 179, 182, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 201, 205, 206, 207, 210, 213, 215, 217, 218, 222, 223, 224, 225, 228, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 257, 259, 265, 266], "3": [0, 1, 2, 3, 5, 6, 7, 13, 14, 16, 17, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40, 42, 43, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 87, 89, 90, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 108, 109, 110, 111, 112, 113, 114, 115, 116, 118, 119, 121, 122, 123, 124, 127, 129, 130, 131, 136, 137, 139, 140, 141, 143, 144, 145, 147, 148, 150, 151, 152, 153, 154, 155, 157, 158, 159, 160, 162, 163, 164, 165, 167, 168, 171, 172, 173, 174, 175, 176, 178, 179, 184, 185, 188, 189, 190, 191, 192, 193, 194, 195, 196, 199, 200, 203, 204, 205, 206, 207, 208, 209, 210, 213, 215, 217, 221, 222, 223, 224, 228, 229, 231, 232, 239, 241, 246, 249, 256, 257, 259, 265, 266, 269], "6": [0, 3, 6, 7, 11, 13, 19, 23, 34, 36, 43, 44, 47, 49, 58, 59, 60, 61, 63, 64, 65, 67, 68, 71, 72, 85, 87, 90, 92, 93, 94, 95, 96, 101, 102, 103, 109, 111, 112, 116, 117, 130, 131, 135, 136, 138, 145, 148, 150, 156, 157, 159, 162, 164, 172, 174, 175, 177, 178, 185, 186, 188, 195, 199, 200, 203, 210, 215, 217, 220, 221, 223, 226, 227, 229, 230, 232, 241, 243, 244, 245, 249, 250, 251, 252, 255, 259, 269], "other": [0, 1, 5, 6, 7, 8, 10, 11, 14, 17, 19, 21, 22, 23, 25, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 59, 60, 61, 68, 69, 73, 75, 79, 80, 82, 83, 87, 95, 97, 99, 101, 102, 103, 111, 112, 113, 114, 116, 123, 124, 126, 127, 128, 130, 132, 133, 134, 136, 137, 138, 140, 142, 143, 144, 145, 146, 147, 150, 151, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 166, 170, 173, 174, 175, 177, 178, 179, 180, 183, 184, 185, 186, 191, 192, 193, 194, 195, 196, 199, 200, 201, 202, 203, 204, 206, 211, 220, 225, 230, 246, 255, 264, 265], "version": [0, 1, 3, 4, 5, 6, 7, 8, 10, 12, 14, 20, 22, 23, 25, 42, 80, 105, 107, 108, 115, 116, 119, 122, 123, 125, 126, 127, 130, 136, 137, 138, 139, 142, 146, 148, 154, 156, 157, 158, 159, 160, 167, 169, 170, 172, 176, 179, 184, 185, 186, 189, 190, 191, 199, 200, 202, 205, 206, 208, 210, 220, 222, 224, 225, 230, 259, 260, 263, 266], "should": [0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 14, 15, 16, 18, 19, 20, 21, 22, 23, 32, 42, 43, 44, 49, 50, 51, 52, 53, 55, 58, 59, 60, 69, 73, 78, 82, 85, 87, 97, 98, 99, 100, 102, 103, 111, 117, 119, 121, 122, 125, 126, 127, 131, 134, 136, 137, 139, 140, 144, 147, 148, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 166, 170, 172, 173, 174, 175, 176, 177, 178, 179, 183, 185, 189, 190, 191, 192, 193, 199, 202, 207, 208, 210, 220, 224, 225, 255, 263, 265, 268], "well": [0, 1, 3, 4, 5, 6, 8, 10, 11, 19, 20, 22, 23, 42, 44, 48, 49, 53, 60, 67, 82, 85, 87, 97, 99, 101, 105, 110, 111, 112, 113, 117, 122, 123, 125, 126, 127, 130, 131, 136, 137, 138, 142, 143, 144, 153, 154, 158, 159, 162, 163, 164, 165, 166, 169, 170, 172, 173, 178, 179, 183, 186, 189, 190, 191, 192, 193, 195, 197, 199, 202, 204, 222, 224, 225, 265], "python3": [0, 5, 18, 22, 23, 169, 189, 221, 248], "m": [0, 4, 5, 6, 7, 8, 10, 14, 15, 19, 22, 23, 32, 43, 49, 52, 89, 93, 96, 101, 104, 110, 113, 116, 117, 118, 122, 123, 127, 128, 135, 138, 143, 145, 146, 147, 148, 150, 156, 157, 158, 162, 164, 166, 174, 175, 184, 186, 194, 199, 200, 201, 204, 210, 221, 228, 233, 239, 246, 248, 249, 266], "venv": 0, "sourc": [0, 1, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 17, 20, 22, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 55, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 122, 124, 125, 126, 127, 128, 130, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 160, 161, 162, 164, 165, 166, 167, 169, 172, 173, 175, 178, 179, 182, 185, 187, 189, 191, 192, 193, 194, 195, 196, 197, 198, 201, 205, 206, 207, 208, 213, 220, 222, 224, 225, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 257, 258], "bin": [0, 4, 6, 22, 23, 92, 136, 187, 196, 197, 206, 210, 220, 222, 225, 228], "activ": [0, 5, 6, 9, 10, 12, 14, 15, 17, 19, 47, 52, 82, 93, 97, 99, 104, 122, 124, 132, 136, 138, 145, 146, 153, 157, 159, 165, 169, 178, 180, 183, 186, 187, 188, 189, 197, 201, 202, 203, 207, 210, 221, 222, 230, 240, 259, 265], "need": [0, 1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, 34, 43, 44, 45, 47, 49, 50, 51, 52, 53, 54, 55, 58, 59, 60, 61, 63, 64, 67, 75, 76, 79, 82, 83, 87, 97, 98, 99, 101, 102, 103, 105, 108, 111, 112, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 133, 134, 136, 137, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 172, 173, 174, 175, 176, 178, 179, 180, 183, 185, 186, 189, 190, 191, 195, 196, 197, 199, 200, 201, 202, 203, 204, 206, 208, 210, 211, 222, 224, 225, 226, 227, 230, 255, 265], "instal": [0, 1, 5, 6, 7, 8, 17, 20, 23, 24, 50, 51, 53, 55, 57, 58, 87, 90, 94, 107, 115, 116, 118, 119, 122, 123, 124, 127, 128, 132, 133, 136, 137, 140, 142, 144, 147, 156, 159, 160, 161, 162, 166, 169, 172, 173, 179, 185, 186, 189, 190, 196, 206, 208, 210, 221, 223, 224, 225, 226, 227, 229, 233, 235, 238, 240, 242, 243, 244, 245, 247, 248, 250, 251, 252, 254, 259, 269], "pip": [0, 17, 20, 24, 50, 75, 82, 90, 94, 105, 107, 115, 118, 119, 138, 140, 147, 158, 159, 161, 169, 172, 173, 179, 185, 196, 208, 221, 223, 225, 231, 233, 235, 238, 240, 242, 243, 244, 245, 247, 250, 251, 252, 254], "torchvis": [0, 4, 10, 12, 19, 20, 33, 34, 37, 38, 39, 41, 43, 44, 50, 52, 57, 58, 59, 73, 75, 87, 90, 92, 94, 96, 97, 110, 117, 119, 121, 122, 123, 130, 135, 138, 140, 143, 144, 147, 149, 150, 153, 158, 159, 162, 163, 167, 169, 170, 172, 173, 177, 178, 183, 185, 189, 190, 196, 197, 199, 200, 201, 202, 206, 208, 215, 222, 223, 225, 226, 227, 229, 230, 231, 235, 238, 240, 247, 249, 252, 256, 259], "xcode": [0, 59, 190, 206, 224, 225, 227, 229], "want": [0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 19, 21, 22, 23, 24, 32, 43, 44, 47, 49, 51, 52, 58, 59, 60, 63, 64, 67, 73, 76, 78, 79, 85, 87, 97, 98, 99, 100, 101, 102, 103, 108, 111, 112, 116, 124, 125, 126, 127, 136, 137, 138, 139, 142, 144, 146, 148, 149, 151, 154, 157, 158, 159, 160, 163, 165, 166, 167, 172, 174, 175, 176, 179, 182, 183, 184, 191, 193, 197, 198, 199, 200, 202, 207, 210, 224, 225, 230, 242], "iphon": [0, 189, 225], "linux": [0, 5, 6, 18, 20, 22, 23, 105, 124, 134, 136, 159, 169, 177, 178, 179, 196, 208, 210, 222], "howev": [0, 1, 5, 6, 8, 10, 12, 14, 15, 17, 20, 22, 23, 25, 45, 47, 49, 51, 52, 60, 61, 73, 76, 85, 87, 97, 98, 113, 117, 124, 125, 130, 131, 135, 136, 137, 139, 140, 144, 148, 150, 153, 156, 157, 158, 161, 162, 163, 164, 165, 166, 170, 172, 173, 174, 175, 177, 180, 184, 187, 192, 193, 195, 200, 202, 203, 206, 207, 224, 225, 263, 264], "itself": [0, 5, 7, 11, 23, 32, 43, 60, 61, 82, 85, 97, 101, 102, 108, 112, 113, 124, 125, 127, 131, 136, 142, 143, 147, 160, 163, 164, 166, 197], "mac": [0, 20, 138, 208, 227], "For": [0, 1, 2, 4, 5, 6, 7, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 32, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 55, 58, 59, 60, 61, 63, 64, 65, 68, 73, 75, 78, 79, 80, 82, 83, 87, 97, 98, 99, 100, 102, 103, 105, 108, 111, 112, 113, 114, 115, 116, 119, 121, 122, 123, 124, 125, 126, 127, 128, 130, 133, 134, 135, 136, 137, 138, 139, 140, 143, 144, 145, 147, 148, 150, 154, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 185, 186, 187, 190, 191, 192, 193, 194, 195, 197, 199, 200, 201, 202, 203, 204, 208, 210, 211, 213, 220, 222, 225, 229, 230, 255, 263, 265, 266], "publish": [0, 210], "http": [0, 4, 6, 7, 18, 19, 20, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 37, 38, 40, 45, 46, 49, 58, 59, 60, 74, 75, 77, 78, 84, 90, 91, 94, 100, 104, 105, 106, 108, 113, 115, 118, 119, 120, 122, 123, 127, 128, 130, 138, 140, 141, 142, 143, 144, 148, 153, 154, 155, 156, 158, 159, 161, 166, 168, 169, 170, 171, 172, 173, 175, 179, 180, 182, 183, 185, 189, 190, 192, 194, 196, 205, 206, 207, 208, 209, 210, 215, 218, 220, 223, 224, 231, 232, 233, 236, 237, 238, 239, 247, 263, 265], "github": [0, 2, 3, 4, 6, 7, 10, 11, 16, 19, 22, 23, 24, 33, 49, 53, 54, 55, 60, 61, 78, 104, 108, 115, 118, 121, 122, 123, 124, 130, 132, 133, 134, 135, 136, 138, 139, 140, 142, 143, 144, 147, 148, 155, 156, 162, 163, 164, 169, 172, 179, 180, 183, 185, 187, 190, 206, 207, 208, 209, 210, 215, 216, 217, 218, 220, 222, 223, 224, 231, 263], "com": [0, 7, 10, 18, 19, 20, 24, 25, 33, 37, 49, 60, 75, 78, 104, 108, 115, 118, 119, 123, 127, 128, 130, 142, 143, 144, 148, 155, 156, 161, 166, 172, 179, 180, 182, 183, 185, 196, 206, 207, 208, 209, 210, 215, 218, 220, 223, 224, 231, 233], "exampl": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 76, 77, 80, 82, 83, 84, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 100, 101, 104, 105, 107, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 189, 190, 191, 192, 193, 194, 195, 197, 199, 200, 201, 203, 204, 205, 206, 207, 208, 210, 211, 213, 215, 224, 225, 226, 227, 230, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 257, 258, 261, 263, 264, 266, 269], "tree": [0, 6, 10, 12, 15, 22, 49, 60, 78, 98, 103, 113, 130, 206, 224, 263], "master": [0, 4, 16, 19, 49, 60, 78, 118, 119, 123, 130, 135, 136, 143, 144, 148, 163, 164, 179, 180, 183, 190, 196, 198, 201, 206, 208, 222, 224], "fast_neural_styl": 0, "If": [0, 1, 2, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 21, 22, 23, 24, 32, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 55, 58, 60, 61, 63, 73, 75, 76, 78, 82, 87, 95, 97, 98, 99, 100, 101, 102, 103, 112, 113, 114, 117, 118, 122, 123, 124, 125, 127, 128, 130, 134, 136, 137, 139, 140, 142, 143, 144, 145, 146, 148, 150, 153, 154, 155, 156, 159, 160, 161, 162, 163, 164, 165, 166, 169, 172, 173, 174, 175, 176, 177, 179, 180, 183, 184, 185, 186, 187, 189, 190, 191, 192, 194, 195, 196, 197, 199, 200, 203, 204, 207, 208, 210, 211, 220, 222, 224, 225, 227, 234, 243, 255, 263, 265], "would": [0, 3, 4, 5, 6, 7, 8, 14, 16, 18, 19, 20, 21, 22, 23, 25, 43, 49, 53, 55, 60, 61, 73, 76, 87, 97, 98, 101, 102, 103, 108, 112, 113, 116, 117, 123, 124, 125, 126, 127, 128, 130, 131, 134, 135, 137, 138, 140, 143, 144, 145, 146, 148, 150, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 164, 166, 172, 173, 174, 175, 177, 178, 179, 183, 186, 193, 194, 198, 200, 207, 211, 225, 227], "like": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 25, 43, 44, 45, 47, 48, 49, 51, 52, 53, 58, 59, 60, 61, 65, 67, 68, 75, 78, 79, 80, 82, 85, 87, 97, 98, 99, 101, 102, 103, 105, 108, 109, 110, 111, 112, 113, 114, 116, 117, 120, 121, 123, 124, 125, 126, 127, 128, 131, 133, 134, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 148, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 166, 169, 170, 172, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 186, 187, 189, 192, 193, 194, 196, 198, 199, 200, 201, 202, 203, 207, 208, 210, 211, 220, 222, 224, 227, 234, 264, 265], "differ": [0, 1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 32, 47, 48, 49, 51, 52, 58, 59, 60, 61, 73, 80, 81, 82, 83, 85, 87, 92, 97, 98, 99, 103, 105, 115, 116, 119, 121, 122, 123, 124, 126, 127, 128, 130, 133, 134, 135, 136, 138, 139, 140, 142, 144, 145, 146, 148, 150, 151, 153, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 169, 172, 173, 174, 175, 177, 178, 180, 183, 185, 187, 190, 191, 192, 193, 194, 195, 197, 199, 200, 201, 202, 203, 204, 206, 208, 210, 220, 225, 230, 233, 237, 253, 255, 263], "feel": [0, 6, 10, 19, 43, 49, 78, 97, 103, 105, 107, 108, 112, 122, 143, 144, 145, 147, 148, 153, 169, 174, 175, 189], "free": [0, 6, 10, 19, 22, 23, 25, 43, 49, 60, 73, 78, 85, 97, 105, 107, 108, 112, 122, 126, 130, 136, 142, 143, 144, 147, 148, 153, 160, 162, 166, 169, 174, 175, 176, 189, 231, 248], "skip": [0, 1, 4, 5, 10, 14, 17, 19, 23, 42, 43, 98, 112, 116, 131, 142, 147, 162, 164, 169, 175, 183, 198, 203], "These": [0, 1, 5, 7, 8, 11, 12, 14, 17, 19, 20, 21, 25, 43, 49, 52, 55, 82, 87, 98, 100, 102, 103, 108, 109, 113, 117, 118, 136, 147, 158, 160, 161, 163, 165, 166, 172, 177, 178, 183, 185, 199, 200, 202, 203, 263, 265], "meant": [0, 6, 11, 85, 122, 193], "appli": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 17, 19, 23, 25, 51, 52, 58, 59, 60, 61, 64, 68, 73, 79, 82, 85, 97, 99, 108, 111, 113, 116, 119, 121, 123, 130, 131, 134, 135, 136, 139, 140, 142, 143, 146, 147, 148, 151, 153, 154, 155, 157, 160, 162, 163, 164, 166, 167, 172, 177, 178, 179, 182, 185, 186, 191, 192, 195, 200, 203, 204, 207, 210, 220, 222, 225, 230, 246, 255], "still": [0, 1, 5, 6, 8, 10, 11, 12, 14, 15, 17, 18, 19, 20, 23, 42, 47, 52, 61, 73, 79, 80, 87, 97, 101, 105, 109, 112, 113, 119, 122, 126, 127, 128, 134, 136, 137, 142, 143, 144, 148, 150, 153, 164, 173, 175, 177, 180, 182, 183, 185, 187, 189, 190, 191, 193, 197, 199, 202, 203, 206, 210, 211, 224, 225, 230], "imag": [0, 1, 19, 23, 34, 43, 47, 49, 51, 52, 57, 60, 73, 75, 82, 87, 90, 92, 94, 96, 97, 121, 124, 126, 139, 147, 148, 150, 153, 155, 157, 159, 161, 167, 169, 170, 179, 183, 185, 195, 199, 200, 201, 206, 208, 210, 215, 224, 225, 226, 227, 231, 260], "realli": [0, 5, 8, 23, 25, 42, 44, 98, 99, 103, 108, 113, 125, 158, 170, 191, 193, 207], "optim": [0, 3, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 32, 35, 37, 38, 43, 47, 49, 53, 55, 58, 59, 60, 61, 65, 66, 67, 73, 75, 79, 82, 85, 87, 89, 92, 94, 96, 97, 98, 102, 103, 112, 115, 117, 118, 121, 122, 123, 124, 127, 130, 132, 134, 135, 136, 137, 139, 143, 144, 145, 147, 148, 149, 150, 154, 155, 157, 158, 159, 160, 161, 162, 163, 166, 167, 169, 170, 172, 173, 175, 176, 177, 179, 183, 185, 186, 190, 191, 195, 196, 197, 198, 200, 201, 203, 205, 206, 208, 212, 216, 218, 220, 222, 223, 224, 229, 230, 232, 239, 242, 243, 244, 245, 246, 247, 250, 251, 252, 253, 256, 261], "fast": [0, 1, 5, 6, 17, 18, 21, 42, 49, 104, 123, 124, 134, 151, 160, 165, 172, 185, 198, 203, 225], "enough": [0, 5, 6, 17, 21, 23, 49, 82, 101, 125, 130, 159, 203], "video": [0, 20, 43, 44, 53, 55, 56, 75, 79, 114, 120, 121, 132, 133, 159, 169, 176], "reduc": [0, 3, 6, 9, 11, 17, 19, 37, 43, 56, 58, 59, 61, 97, 109, 119, 122, 123, 124, 126, 130, 132, 134, 136, 138, 146, 147, 148, 153, 157, 159, 162, 164, 169, 172, 173, 174, 175, 177, 178, 186, 187, 196, 201, 203, 205, 206, 220, 224, 225, 229, 230, 233], "resolut": [0, 20, 172], "low": [0, 1, 4, 5, 6, 7, 14, 24, 25, 49, 52, 68, 82, 99, 113, 121, 127, 147, 160, 169, 178, 222], "thei": [0, 1, 3, 4, 5, 6, 8, 10, 12, 14, 16, 19, 20, 21, 23, 25, 44, 48, 49, 52, 55, 58, 59, 60, 73, 80, 82, 85, 97, 99, 100, 101, 102, 103, 105, 107, 108, 109, 112, 113, 115, 122, 125, 126, 127, 128, 131, 134, 135, 136, 137, 145, 146, 148, 153, 154, 160, 161, 162, 164, 166, 172, 174, 175, 177, 178, 179, 180, 183, 186, 191, 192, 193, 194, 195, 197, 199, 200, 202, 204, 205, 210, 222, 226, 227, 255, 263, 265], "let": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 43, 44, 45, 47, 49, 51, 52, 58, 59, 60, 68, 73, 75, 76, 78, 79, 80, 85, 87, 97, 98, 99, 101, 102, 103, 104, 105, 108, 109, 111, 112, 116, 117, 118, 119, 124, 126, 131, 134, 135, 136, 137, 138, 139, 143, 144, 145, 146, 148, 150, 151, 153, 154, 155, 157, 158, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 185, 189, 190, 191, 192, 195, 202, 203, 210, 224, 225, 263, 265], "s": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 57, 58, 59, 61, 68, 73, 76, 78, 79, 80, 85, 87, 92, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 115, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 130, 131, 132, 134, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 148, 150, 151, 153, 154, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 176, 177, 179, 180, 182, 183, 185, 186, 187, 189, 190, 191, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 206, 207, 210, 211, 215, 224, 225, 226, 227, 230, 232, 251, 255, 259, 263, 265, 266], "git": [0, 179, 185, 215, 220, 269], "clone": [0, 1, 11, 12, 14, 22, 23, 54, 95, 110, 127, 131, 132, 136, 145, 146, 148, 157, 210, 211, 215, 220], "cd": [0, 4, 6, 22, 23, 169, 179, 182, 190, 196, 208, 210, 220, 227, 228], "yourself": [0, 4, 5, 6, 8, 23, 42, 60, 101, 147, 184], "repositori": [0, 6, 10, 54, 58, 59, 83, 114, 119, 122, 124, 136, 156, 164, 165, 166, 179, 206, 208, 210, 224, 263, 270], "just": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 42, 44, 45, 47, 49, 50, 51, 52, 53, 56, 60, 65, 67, 73, 76, 78, 85, 87, 95, 97, 98, 99, 101, 102, 103, 111, 112, 113, 116, 117, 122, 123, 124, 126, 127, 128, 134, 137, 138, 145, 146, 150, 151, 153, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 170, 172, 177, 179, 183, 185, 187, 190, 193, 196, 199, 200, 202, 203, 206, 210, 222, 230, 234, 265, 267], "inform": [0, 1, 2, 4, 5, 7, 8, 10, 14, 20, 22, 23, 25, 45, 49, 53, 64, 73, 78, 82, 87, 97, 101, 102, 103, 108, 111, 112, 113, 118, 119, 123, 125, 126, 127, 128, 134, 136, 137, 138, 142, 143, 144, 147, 158, 159, 160, 161, 163, 165, 166, 169, 170, 172, 174, 176, 177, 178, 179, 180, 183, 184, 185, 189, 194, 195, 196, 199, 204, 207, 208, 225, 230, 233, 255, 265], "how": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 42, 43, 44, 45, 47, 49, 50, 51, 52, 55, 56, 57, 58, 59, 60, 61, 73, 75, 78, 80, 82, 85, 86, 87, 97, 99, 100, 101, 102, 103, 104, 105, 108, 109, 112, 113, 115, 116, 117, 118, 119, 120, 121, 125, 126, 127, 128, 131, 132, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 147, 148, 150, 151, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 185, 186, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 201, 203, 205, 206, 210, 211, 213, 220, 225, 226, 227, 228, 230, 233, 253, 255, 259, 265, 267, 269], "do": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 32, 39, 42, 47, 49, 50, 51, 52, 54, 58, 59, 60, 61, 63, 64, 68, 69, 76, 78, 80, 85, 87, 97, 98, 99, 101, 102, 103, 105, 108, 111, 112, 114, 116, 118, 121, 123, 124, 125, 126, 127, 130, 133, 134, 135, 136, 137, 139, 140, 142, 143, 144, 145, 146, 147, 149, 150, 151, 153, 154, 156, 157, 158, 159, 160, 161, 164, 166, 170, 172, 174, 175, 177, 178, 179, 182, 183, 185, 186, 190, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 207, 210, 220, 224, 225, 226, 227, 230, 234, 243, 259, 264, 266], "now": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 42, 43, 44, 45, 47, 49, 50, 51, 52, 55, 58, 59, 60, 63, 73, 76, 78, 80, 85, 87, 96, 97, 98, 99, 101, 103, 105, 107, 108, 111, 116, 117, 118, 119, 122, 124, 125, 126, 127, 128, 130, 131, 134, 135, 136, 137, 138, 140, 143, 144, 145, 146, 147, 151, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 166, 167, 169, 170, 172, 173, 175, 176, 177, 179, 180, 182, 183, 185, 186, 189, 190, 191, 192, 195, 196, 199, 201, 202, 203, 204, 207, 210, 213, 225, 226, 234, 251, 265], "ll": [0, 1, 4, 5, 6, 8, 9, 10, 17, 19, 20, 22, 23, 48, 49, 50, 60, 87, 98, 105, 127, 128, 136, 137, 139, 140, 142, 146, 151, 153, 155, 159, 160, 161, 163, 166, 170, 177, 182, 183, 184, 185, 186, 189, 190, 191, 193, 197, 199, 200, 202, 203, 213, 225, 233], "pre": [0, 19, 98, 122, 124, 136, 138, 158, 159, 172, 179, 185, 186, 189, 190, 202, 224, 225], "script": [0, 1, 5, 6, 7, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 24, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 55, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 122, 123, 125, 126, 127, 128, 130, 132, 133, 134, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 159, 160, 161, 163, 165, 166, 167, 169, 172, 173, 174, 175, 177, 178, 179, 182, 183, 185, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 205, 206, 207, 208, 210, 211, 213, 218, 220, 222, 224, 225, 229, 230, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 257, 258, 259], "provid": [0, 1, 4, 5, 6, 8, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 44, 49, 51, 52, 56, 58, 59, 60, 61, 73, 82, 83, 85, 87, 97, 98, 99, 105, 107, 108, 112, 113, 115, 116, 118, 120, 121, 122, 124, 125, 126, 132, 133, 134, 135, 136, 137, 138, 143, 144, 145, 146, 147, 148, 157, 159, 160, 162, 163, 165, 169, 172, 173, 174, 175, 179, 186, 189, 193, 194, 196, 197, 198, 199, 200, 202, 203, 204, 207, 210, 211, 218, 220, 222, 225, 229, 265], "download_saved_model": 0, "py": [0, 1, 5, 6, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 22, 23, 24, 25, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 55, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 77, 78, 79, 80, 84, 85, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 160, 161, 163, 165, 166, 167, 169, 173, 174, 175, 179, 182, 183, 184, 185, 186, 189, 190, 191, 192, 193, 194, 195, 197, 201, 205, 206, 207, 208, 213, 215, 217, 218, 223, 225, 228, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 257, 258, 260, 263, 265, 270], "put": [0, 2, 5, 6, 8, 12, 14, 16, 42, 45, 49, 51, 59, 75, 85, 113, 115, 121, 122, 123, 135, 136, 137, 150, 154, 159, 160, 161, 163, 164, 166, 172, 189, 201, 202, 210, 265], "saved_model": [0, 96], "folder": [0, 4, 6, 19, 23, 50, 52, 82, 83, 122, 138, 170, 179, 182, 183, 186, 190, 199, 200, 206, 208, 210, 220, 226, 227], "There": [0, 4, 6, 8, 10, 14, 15, 17, 22, 23, 25, 47, 73, 76, 79, 85, 97, 98, 99, 102, 103, 113, 117, 120, 128, 133, 137, 139, 144, 146, 148, 150, 151, 153, 155, 158, 159, 160, 163, 164, 166, 174, 175, 179, 180, 182, 193, 196, 199, 202, 203, 230, 255, 266], "file": [0, 2, 5, 6, 7, 8, 9, 10, 15, 19, 20, 21, 22, 23, 50, 51, 52, 55, 58, 59, 60, 75, 82, 83, 87, 101, 109, 110, 114, 116, 118, 119, 122, 125, 126, 127, 128, 134, 136, 138, 140, 145, 153, 156, 159, 169, 172, 174, 175, 179, 182, 183, 186, 187, 188, 190, 194, 195, 199, 200, 206, 208, 211, 215, 220, 222, 224, 225, 226, 227, 237, 263, 264, 266, 270], "candi": 0, "pth": [0, 5, 9, 19, 20, 23, 24, 38, 39, 44, 60, 73, 112, 172, 182, 183, 185, 199, 200, 222, 223, 239, 244, 255], "mosaic": 0, "rain_princess": 0, "udni": 0, "directori": [0, 1, 4, 5, 6, 12, 22, 23, 49, 51, 52, 75, 87, 97, 112, 114, 117, 126, 127, 128, 138, 145, 158, 166, 169, 172, 185, 186, 190, 196, 206, 210, 225], "have": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 34, 40, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 63, 68, 69, 73, 76, 78, 79, 80, 82, 83, 85, 87, 95, 97, 98, 99, 100, 101, 102, 103, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 131, 132, 133, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 150, 153, 154, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 169, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 207, 208, 210, 211, 213, 222, 224, 225, 226, 227, 230, 234, 242, 243, 251, 255, 265], "The": [0, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, 42, 43, 44, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 67, 68, 69, 73, 75, 76, 78, 79, 80, 82, 83, 85, 91, 93, 95, 97, 98, 99, 100, 101, 102, 103, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 126, 127, 128, 130, 131, 134, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 150, 151, 153, 154, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 167, 169, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 210, 211, 213, 215, 220, 222, 224, 225, 226, 227, 230, 255, 263, 266], "definit": [0, 5, 6, 8, 10, 20, 22, 25, 47, 58, 59, 60, 68, 73, 78, 85, 99, 111, 121, 144, 154, 161, 165, 182, 192, 210, 211, 220, 230, 255, 265], "previous": [0, 4, 5, 8, 20, 32, 60, 85, 101, 115, 118, 142, 143, 157, 160, 161, 162, 169, 191, 199, 207, 225], "few": [0, 5, 6, 8, 9, 10, 15, 19, 21, 22, 23, 47, 51, 56, 60, 79, 85, 97, 99, 100, 101, 102, 103, 112, 113, 115, 116, 120, 122, 125, 127, 128, 130, 134, 136, 137, 150, 154, 159, 160, 163, 166, 173, 178, 180, 185, 192, 193, 194, 199, 200, 210, 211, 213, 222], "line": [0, 4, 5, 6, 8, 9, 12, 13, 17, 21, 22, 23, 49, 50, 51, 56, 58, 59, 60, 61, 82, 97, 99, 109, 115, 116, 126, 127, 128, 136, 144, 145, 150, 159, 163, 164, 166, 169, 170, 173, 174, 178, 182, 187, 190, 191, 193, 210, 222, 224, 226, 227, 255, 266], "In": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, 42, 43, 45, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 64, 65, 67, 68, 73, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 95, 97, 98, 99, 101, 102, 103, 105, 108, 109, 111, 112, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 143, 144, 145, 146, 147, 148, 150, 151, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 185, 186, 187, 189, 190, 191, 192, 193, 194, 195, 197, 199, 200, 201, 202, 203, 204, 205, 206, 208, 210, 213, 220, 222, 224, 225, 226, 265, 266, 268], "instead": [0, 4, 5, 6, 8, 10, 14, 17, 19, 20, 22, 23, 25, 32, 44, 45, 49, 51, 52, 53, 58, 59, 60, 61, 64, 98, 99, 103, 107, 108, 109, 113, 116, 117, 122, 123, 125, 126, 127, 128, 130, 131, 132, 135, 136, 143, 144, 146, 147, 148, 150, 151, 153, 156, 157, 158, 159, 162, 163, 164, 166, 167, 170, 172, 173, 177, 178, 179, 180, 185, 191, 193, 194, 195, 200, 201, 202, 203, 207, 211, 225, 255], "actual": [0, 1, 3, 5, 6, 8, 11, 13, 14, 15, 19, 21, 22, 23, 25, 38, 49, 51, 52, 58, 59, 60, 73, 85, 97, 98, 101, 103, 108, 112, 116, 118, 121, 125, 126, 127, 130, 134, 136, 140, 143, 144, 151, 153, 160, 166, 169, 170, 173, 174, 175, 176, 178, 183, 185, 191, 193, 199, 200, 202, 206, 207, 225, 226, 227, 255], "net": [0, 3, 6, 14, 19, 24, 44, 45, 47, 49, 52, 73, 79, 81, 85, 87, 92, 94, 97, 110, 123, 125, 130, 136, 147, 151, 159, 163, 167, 169, 170, 205, 211, 223, 232, 235, 241, 242, 243, 244, 245, 251, 252, 265, 266], "call": [0, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 32, 42, 43, 44, 45, 47, 49, 51, 52, 53, 55, 58, 59, 60, 61, 63, 67, 68, 69, 73, 75, 76, 78, 80, 85, 95, 97, 98, 99, 101, 102, 103, 109, 111, 112, 113, 116, 118, 120, 121, 123, 124, 125, 126, 128, 134, 135, 136, 137, 138, 142, 143, 144, 145, 147, 148, 150, 151, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 164, 165, 166, 167, 169, 172, 173, 174, 175, 176, 177, 178, 183, 184, 186, 187, 189, 190, 196, 197, 200, 203, 206, 207, 208, 210, 213, 220, 221, 225, 226, 227, 230, 234, 240, 243, 255, 265], "torch": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 63, 64, 65, 67, 68, 69, 72, 73, 75, 76, 78, 79, 85, 87, 89, 90, 92, 94, 95, 96, 97, 98, 99, 102, 103, 105, 107, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 127, 128, 130, 131, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 164, 166, 167, 169, 170, 172, 176, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 194, 195, 196, 197, 198, 201, 202, 203, 204, 205, 206, 208, 209, 210, 211, 213, 214, 216, 217, 218, 220, 221, 222, 223, 224, 226, 227, 228, 230, 234, 235, 236, 238, 240, 241, 243, 244, 245, 247, 248, 249, 250, 251, 252, 253, 255, 256, 259, 260, 261], "_export": [0, 175, 199, 200, 201], "which": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 32, 42, 43, 44, 47, 48, 49, 50, 51, 52, 55, 56, 58, 59, 60, 61, 63, 64, 67, 68, 69, 73, 75, 76, 78, 79, 82, 83, 85, 87, 97, 98, 99, 101, 102, 103, 105, 108, 109, 111, 112, 113, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 150, 151, 153, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 189, 191, 192, 193, 194, 195, 197, 199, 200, 201, 202, 203, 204, 206, 210, 213, 224, 225, 229, 230, 233, 234, 255, 263, 265, 266], "api": [0, 2, 5, 8, 10, 11, 14, 15, 18, 20, 21, 22, 23, 24, 25, 33, 34, 41, 48, 56, 60, 61, 82, 90, 107, 108, 109, 113, 121, 123, 124, 125, 126, 127, 134, 135, 136, 138, 144, 145, 146, 155, 158, 162, 163, 164, 169, 174, 175, 176, 178, 179, 180, 182, 183, 184, 185, 189, 190, 196, 197, 198, 199, 200, 201, 205, 206, 207, 210, 215, 216, 217, 218, 222, 223, 224, 225, 230, 231, 233, 234, 236, 238, 248, 249, 253, 255, 256, 257, 259, 264], "directli": [0, 4, 5, 6, 8, 11, 12, 14, 20, 22, 23, 25, 42, 48, 52, 61, 85, 87, 105, 107, 108, 113, 118, 124, 131, 132, 138, 146, 159, 160, 164, 166, 183, 185, 186, 193, 194, 195, 204, 208, 211, 224, 230], "don": [0, 5, 6, 8, 10, 21, 42, 43, 44, 52, 53, 63, 73, 76, 87, 98, 99, 102, 108, 111, 112, 113, 117, 125, 126, 127, 130, 131, 138, 144, 146, 147, 149, 153, 158, 160, 161, 164, 165, 183, 184, 186, 189, 190, 191, 192, 193, 202, 213, 224, 263, 265, 266], "t": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 24, 25, 32, 34, 37, 38, 40, 42, 43, 44, 47, 48, 49, 50, 52, 53, 58, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 76, 78, 87, 89, 94, 96, 97, 98, 99, 101, 102, 103, 105, 108, 110, 111, 112, 113, 115, 116, 117, 122, 123, 125, 126, 127, 130, 131, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 149, 151, 153, 154, 155, 157, 158, 159, 160, 161, 162, 164, 165, 166, 169, 170, 172, 173, 174, 175, 177, 179, 180, 182, 183, 184, 185, 186, 189, 190, 191, 192, 193, 195, 197, 199, 200, 202, 203, 207, 208, 210, 211, 213, 221, 224, 230, 236, 238, 239, 241, 251, 255, 257, 263, 265, 266], "even": [0, 1, 4, 5, 6, 8, 10, 14, 16, 21, 23, 25, 43, 44, 51, 73, 76, 78, 95, 103, 108, 112, 113, 115, 122, 123, 124, 131, 134, 140, 143, 144, 146, 154, 160, 162, 165, 172, 174, 175, 177, 185, 191, 193, 194, 197, 202, 205, 230], "becaus": [0, 1, 2, 4, 5, 6, 8, 12, 14, 15, 16, 17, 19, 20, 21, 22, 23, 32, 34, 42, 43, 44, 47, 48, 49, 51, 52, 55, 56, 58, 59, 60, 61, 63, 69, 73, 78, 79, 85, 87, 97, 98, 99, 101, 105, 108, 111, 112, 116, 117, 119, 125, 127, 130, 131, 134, 135, 137, 138, 142, 144, 146, 147, 148, 150, 151, 155, 157, 158, 162, 164, 166, 167, 169, 173, 174, 175, 177, 179, 182, 184, 185, 186, 190, 191, 193, 196, 197, 200, 202, 203, 205, 207, 210, 212, 213, 230, 255], "alreadi": [0, 1, 2, 4, 5, 6, 10, 11, 15, 22, 23, 79, 97, 98, 108, 113, 124, 126, 130, 134, 140, 148, 150, 153, 158, 159, 160, 165, 170, 174, 175, 177, 178, 193, 196, 202, 222, 225, 230], "exist": [0, 2, 4, 6, 8, 9, 10, 11, 17, 22, 23, 25, 47, 49, 52, 53, 67, 73, 76, 80, 83, 85, 95, 101, 104, 121, 136, 138, 143, 157, 159, 164, 165, 166, 167, 169, 172, 173, 174, 175, 182, 186, 190, 191, 192, 194, 199, 202, 203, 205, 210, 211, 227], "neural_styl": 0, "take": [0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15, 16, 17, 19, 20, 21, 23, 25, 34, 43, 44, 47, 48, 49, 50, 51, 52, 58, 59, 60, 61, 68, 73, 75, 78, 82, 85, 95, 97, 99, 101, 102, 103, 108, 110, 112, 113, 116, 117, 118, 124, 125, 126, 127, 128, 131, 134, 135, 136, 138, 140, 144, 146, 147, 150, 153, 154, 155, 158, 159, 160, 161, 162, 163, 164, 166, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 183, 185, 191, 194, 195, 197, 199, 200, 201, 202, 203, 207, 210, 211, 222, 224, 225, 230, 233, 234, 255, 263, 265], "look": [0, 2, 4, 5, 6, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 23, 25, 34, 43, 44, 47, 48, 49, 50, 51, 52, 73, 78, 79, 85, 87, 98, 99, 101, 102, 103, 105, 108, 112, 113, 116, 117, 118, 123, 124, 125, 126, 131, 136, 137, 139, 148, 150, 151, 153, 157, 159, 160, 163, 164, 165, 166, 169, 170, 172, 174, 175, 176, 178, 179, 182, 183, 187, 189, 191, 194, 195, 199, 200, 201, 222, 225, 233], "essenti": [0, 6, 10, 14, 32, 49, 98, 99, 101, 136, 161, 174, 175, 204, 211, 255], "trace": [0, 5, 8, 10, 20, 21, 43, 49, 60, 78, 107, 109, 110, 112, 121, 138, 143, 145, 151, 165, 169, 174, 175, 189, 196, 198, 205, 211, 222, 225, 226, 227, 240, 249, 253], "so": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 42, 44, 47, 49, 51, 52, 53, 58, 59, 60, 65, 68, 73, 75, 76, 78, 80, 83, 85, 87, 95, 97, 98, 99, 100, 101, 102, 103, 105, 108, 109, 111, 113, 115, 116, 117, 119, 122, 123, 124, 125, 126, 127, 128, 130, 131, 135, 136, 137, 138, 140, 143, 144, 145, 146, 147, 149, 150, 153, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 169, 172, 173, 174, 175, 177, 178, 179, 180, 183, 184, 185, 186, 189, 190, 191, 193, 194, 195, 196, 197, 199, 200, 202, 203, 204, 206, 208, 210, 211, 222, 224, 225, 226, 227, 229, 230, 233, 248, 249, 255, 264, 265, 266], "intern": [0, 5, 8, 10, 11, 15, 22, 49, 56, 60, 68, 76, 97, 111, 113, 121, 123, 126, 136, 169, 177, 190, 191, 198, 205, 210, 265], "dummi": [0, 1, 8, 20, 47, 78, 85, 110, 134, 139, 146, 155, 156, 177, 186, 201, 255], "data": [0, 2, 3, 5, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 33, 34, 37, 38, 40, 41, 43, 46, 47, 48, 51, 58, 59, 67, 68, 71, 72, 73, 75, 76, 78, 79, 82, 85, 89, 92, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 111, 112, 113, 116, 118, 119, 120, 121, 125, 126, 130, 132, 135, 136, 137, 138, 139, 140, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 155, 159, 161, 162, 163, 164, 170, 173, 174, 175, 177, 178, 179, 183, 184, 185, 186, 190, 192, 194, 195, 198, 199, 200, 201, 202, 203, 207, 208, 210, 215, 218, 220, 222, 223, 225, 232, 237, 238, 246, 249, 251, 252, 255, 256, 265, 269], "gener": [0, 1, 4, 5, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 20, 22, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 53, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 114, 116, 117, 118, 119, 121, 124, 125, 127, 128, 130, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 158, 160, 161, 162, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 177, 178, 179, 182, 185, 187, 190, 191, 192, 193, 194, 195, 197, 200, 201, 202, 203, 205, 206, 207, 210, 211, 213, 222, 224, 225, 227, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 255, 257, 258, 263, 265, 266, 269], "graph": [0, 1, 5, 10, 14, 20, 22, 23, 25, 32, 47, 49, 63, 65, 68, 76, 78, 82, 85, 86, 98, 100, 107, 110, 111, 125, 127, 129, 131, 143, 144, 145, 146, 148, 163, 164, 169, 170, 172, 177, 180, 187, 198, 199, 200, 202, 208, 220, 222, 249, 255, 258], "input": [0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 20, 21, 22, 23, 25, 32, 42, 43, 44, 45, 47, 48, 49, 56, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 76, 78, 79, 83, 85, 87, 89, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118, 120, 122, 123, 124, 126, 128, 130, 132, 134, 135, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 151, 153, 155, 157, 158, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 177, 179, 180, 182, 183, 184, 185, 186, 189, 190, 194, 195, 196, 199, 200, 201, 202, 203, 205, 206, 207, 208, 209, 210, 212, 213, 222, 225, 232, 233, 235, 236, 240, 241, 252, 254, 258, 259, 266], "simpli": [0, 1, 3, 4, 5, 6, 7, 8, 9, 13, 19, 21, 23, 43, 44, 49, 53, 58, 59, 60, 78, 85, 101, 103, 112, 113, 124, 126, 128, 131, 135, 136, 145, 146, 150, 153, 156, 157, 160, 161, 162, 163, 166, 167, 170, 173, 177, 178, 180, 189, 190, 192, 204, 207, 220, 222, 225, 226, 227, 230, 255], "blank": [0, 265], "pixel": [0, 1, 20, 44, 73, 97, 137, 148, 167, 172, 206], "size": [0, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 19, 20, 21, 23, 25, 32, 33, 34, 37, 38, 43, 44, 45, 47, 49, 51, 52, 55, 58, 59, 60, 75, 78, 80, 82, 87, 92, 93, 97, 98, 101, 102, 103, 104, 110, 112, 113, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 127, 128, 130, 136, 137, 139, 140, 142, 145, 146, 147, 148, 149, 150, 151, 153, 155, 156, 158, 159, 160, 161, 162, 163, 165, 166, 167, 169, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 190, 191, 194, 195, 196, 198, 200, 203, 205, 206, 210, 211, 220, 222, 224, 225, 229, 230, 233, 236, 239, 241, 247, 249, 251, 253, 255, 263], "import": [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 52, 53, 58, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 82, 85, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 134, 135, 136, 137, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 201, 203, 204, 205, 206, 207, 208, 210, 211, 212, 213, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 263, 265], "To": [0, 1, 4, 5, 6, 7, 8, 10, 11, 12, 14, 16, 17, 19, 20, 23, 42, 47, 49, 50, 51, 57, 58, 59, 60, 61, 64, 65, 79, 82, 83, 85, 87, 97, 98, 99, 101, 102, 103, 107, 108, 111, 112, 114, 115, 118, 119, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 134, 136, 137, 138, 140, 142, 145, 150, 153, 154, 156, 157, 158, 159, 160, 161, 162, 163, 165, 166, 169, 170, 172, 175, 176, 177, 178, 183, 185, 186, 187, 189, 190, 191, 193, 194, 198, 199, 200, 201, 202, 203, 204, 206, 208, 210, 211, 222, 224, 225, 226, 227, 229, 230, 240, 242, 255, 263], "get": [0, 1, 2, 5, 6, 7, 8, 11, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 38, 43, 44, 45, 49, 50, 51, 52, 55, 56, 60, 61, 63, 73, 75, 78, 83, 87, 92, 97, 98, 99, 100, 101, 102, 104, 105, 109, 111, 112, 116, 117, 119, 120, 121, 122, 124, 126, 127, 128, 130, 135, 136, 137, 138, 139, 140, 143, 144, 146, 147, 149, 150, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 166, 167, 169, 170, 172, 174, 175, 176, 177, 178, 179, 182, 183, 185, 186, 191, 193, 196, 197, 199, 200, 201, 202, 203, 206, 208, 210, 211, 215, 220, 224, 225, 230, 231, 233, 240, 259], "good": [0, 1, 2, 4, 5, 6, 20, 21, 44, 50, 52, 59, 97, 99, 103, 105, 113, 116, 123, 126, 136, 137, 145, 151, 159, 160, 161, 165, 170, 172, 177, 178, 179, 197, 202, 230, 265], "perform": [0, 1, 3, 4, 6, 8, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 23, 25, 42, 43, 44, 45, 49, 52, 56, 60, 61, 64, 65, 67, 73, 82, 85, 87, 97, 98, 99, 103, 108, 111, 112, 113, 115, 116, 119, 120, 121, 122, 123, 124, 125, 126, 127, 130, 131, 136, 137, 138, 140, 142, 143, 146, 147, 150, 151, 156, 158, 159, 160, 161, 162, 164, 167, 170, 172, 173, 179, 183, 185, 186, 187, 188, 191, 192, 195, 196, 197, 200, 201, 203, 204, 215, 220, 222, 229, 230, 234, 237, 255], "250x540": 0, "larger": [0, 3, 8, 12, 73, 82, 97, 112, 119, 122, 123, 124, 126, 132, 143, 150, 158, 161, 164, 166, 169, 172, 185, 195, 205, 263], "care": [0, 1, 5, 14, 21, 61, 73, 87, 97, 113, 118, 131, 136, 150, 160, 164, 191, 199, 234], "less": [0, 3, 5, 6, 8, 19, 56, 60, 82, 97, 98, 113, 116, 117, 119, 122, 126, 137, 142, 153, 160, 161, 162, 169, 170, 173, 174, 175, 177, 185, 199], "fp": [0, 49, 87, 121, 151], "qualiti": [0, 24, 113, 147, 166], "imagemagick": 0, "creat": [0, 1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 38, 39, 42, 43, 44, 47, 48, 50, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 80, 82, 85, 95, 97, 98, 100, 102, 103, 105, 108, 110, 111, 114, 116, 117, 118, 119, 121, 122, 124, 131, 134, 135, 136, 137, 138, 140, 142, 143, 147, 148, 149, 150, 153, 154, 155, 156, 158, 159, 160, 161, 163, 164, 166, 169, 170, 172, 173, 176, 179, 182, 183, 185, 186, 188, 189, 190, 191, 194, 195, 196, 197, 199, 201, 202, 204, 206, 208, 210, 211, 213, 224, 225, 227, 255, 260, 261, 265], "xc": 0, "white": [0, 12, 17, 73, 113, 170, 172, 203, 265], "png24": 0, "jpg": [0, 12, 20, 34, 51, 52, 58, 59, 90, 117, 140, 147, 206, 215, 231, 260], "eval": [0, 1, 7, 9, 12, 17, 19, 20, 24, 37, 38, 39, 42, 49, 58, 59, 60, 73, 90, 96, 97, 104, 112, 113, 115, 117, 118, 119, 122, 123, 125, 130, 138, 140, 143, 144, 158, 160, 163, 165, 166, 167, 172, 173, 174, 177, 178, 179, 182, 184, 185, 186, 189, 196, 197, 200, 201, 203, 206, 208, 210, 215, 222, 223, 224, 225, 230, 231, 243, 244, 245, 249, 256, 259], "content": [0, 2, 5, 9, 14, 23, 25, 50, 56, 61, 104, 112, 125, 134, 136, 159, 160, 164, 166, 173, 174, 175, 177, 178, 182, 190, 210, 215, 224, 231, 269], "output": [0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 32, 42, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 78, 79, 82, 83, 85, 87, 90, 92, 94, 96, 97, 98, 99, 101, 102, 103, 105, 108, 109, 111, 112, 114, 115, 116, 117, 118, 119, 122, 123, 124, 125, 127, 128, 130, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 155, 156, 157, 158, 159, 160, 161, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 178, 179, 180, 182, 183, 185, 186, 189, 195, 196, 197, 199, 200, 201, 202, 203, 205, 206, 208, 209, 210, 211, 212, 213, 215, 220, 222, 223, 224, 225, 230, 232, 233, 235, 240, 241, 252, 255, 256, 257, 259, 261, 263, 265, 266], "out": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 20, 21, 22, 23, 24, 25, 32, 40, 43, 44, 45, 47, 48, 49, 51, 52, 58, 59, 60, 61, 73, 75, 76, 78, 83, 85, 87, 89, 95, 97, 98, 99, 100, 102, 103, 104, 107, 109, 113, 117, 118, 119, 121, 124, 125, 126, 127, 131, 132, 135, 136, 137, 139, 140, 142, 144, 145, 146, 148, 150, 153, 154, 156, 157, 158, 159, 160, 162, 163, 164, 166, 169, 170, 172, 174, 175, 177, 178, 182, 183, 184, 190, 191, 192, 193, 194, 195, 196, 199, 200, 201, 203, 207, 208, 210, 222, 224, 236, 237, 241, 255, 257, 265], "cuda": [0, 1, 4, 6, 7, 8, 10, 11, 12, 15, 16, 17, 18, 19, 20, 23, 24, 33, 38, 40, 42, 43, 44, 45, 48, 49, 52, 53, 54, 55, 63, 64, 72, 73, 79, 83, 87, 89, 95, 97, 99, 104, 109, 110, 111, 112, 115, 117, 118, 121, 122, 123, 124, 130, 132, 133, 134, 135, 136, 137, 139, 147, 148, 150, 151, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 164, 165, 166, 167, 169, 172, 173, 175, 176, 179, 185, 187, 195, 200, 203, 212, 213, 216, 217, 232, 233, 234, 239, 240, 242, 249, 253, 254, 257, 258, 261], "0": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 55, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 127, 128, 130, 131, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 189, 190, 191, 192, 194, 195, 196, 197, 199, 200, 202, 203, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 264, 265], "export_onnx": 0, "end": [0, 4, 5, 6, 7, 8, 14, 17, 19, 22, 23, 25, 32, 43, 49, 52, 54, 58, 59, 60, 75, 82, 85, 89, 97, 102, 113, 115, 116, 121, 122, 124, 126, 127, 128, 130, 135, 136, 137, 138, 145, 147, 149, 153, 158, 159, 161, 162, 164, 166, 167, 169, 170, 173, 174, 175, 176, 177, 184, 185, 186, 191, 195, 200, 202, 203, 205, 210, 222, 224, 230, 241, 254, 265], "up": [0, 1, 3, 4, 5, 6, 7, 8, 10, 14, 17, 18, 19, 21, 22, 42, 49, 52, 55, 60, 61, 70, 76, 78, 82, 85, 97, 98, 99, 101, 102, 103, 105, 109, 113, 119, 121, 122, 123, 124, 127, 128, 130, 132, 133, 134, 136, 137, 139, 144, 145, 151, 153, 155, 158, 159, 160, 161, 162, 163, 166, 167, 169, 170, 173, 176, 177, 178, 183, 186, 187, 189, 195, 198, 199, 200, 202, 203, 205, 206, 222, 225, 226, 227, 233, 265], "correspond": [0, 1, 2, 3, 5, 6, 8, 10, 12, 14, 15, 43, 49, 55, 60, 75, 82, 99, 102, 109, 112, 116, 118, 123, 125, 126, 134, 145, 153, 157, 160, 163, 166, 167, 169, 170, 172, 173, 176, 179, 186, 189, 194, 202, 211], "come": [0, 1, 5, 6, 10, 17, 19, 20, 22, 23, 51, 52, 60, 73, 85, 87, 97, 98, 112, 123, 124, 126, 136, 137, 145, 153, 154, 156, 160, 165, 173, 176, 183, 185, 186, 200, 201, 203, 264], "abov": [0, 1, 3, 4, 5, 6, 8, 10, 11, 14, 15, 16, 19, 20, 22, 23, 43, 44, 49, 51, 52, 58, 59, 61, 65, 67, 68, 73, 82, 95, 97, 98, 99, 101, 102, 103, 108, 110, 111, 113, 116, 122, 124, 125, 126, 127, 130, 131, 132, 133, 134, 135, 136, 140, 142, 145, 146, 147, 148, 150, 151, 153, 154, 155, 157, 158, 160, 162, 163, 164, 165, 169, 172, 173, 174, 175, 176, 177, 178, 179, 180, 185, 189, 190, 191, 192, 193, 194, 197, 199, 200, 202, 220, 222, 224, 225, 226, 227, 229, 230, 255, 264, 265], "ad": [0, 2, 5, 6, 10, 15, 18, 22, 23, 24, 25, 32, 37, 49, 50, 53, 58, 59, 60, 61, 73, 83, 85, 95, 99, 101, 110, 112, 113, 115, 122, 123, 128, 134, 137, 140, 142, 146, 147, 151, 153, 156, 157, 161, 165, 166, 174, 175, 178, 179, 189, 190, 200, 211, 222, 225, 226, 227, 255], "our": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 40, 43, 44, 45, 48, 49, 50, 51, 52, 53, 55, 58, 59, 60, 61, 64, 65, 67, 68, 69, 75, 78, 79, 87, 97, 98, 99, 102, 103, 104, 105, 108, 109, 111, 116, 117, 118, 122, 123, 126, 127, 128, 131, 132, 133, 137, 138, 140, 142, 144, 145, 146, 147, 148, 150, 151, 154, 155, 157, 158, 160, 161, 162, 163, 165, 166, 167, 170, 172, 173, 174, 175, 177, 179, 180, 183, 185, 189, 190, 191, 192, 193, 194, 196, 197, 199, 200, 203, 205, 207, 210, 211, 213, 224, 225, 251, 253], "path": [0, 4, 5, 6, 9, 18, 19, 22, 23, 34, 42, 44, 49, 50, 51, 52, 53, 59, 60, 73, 82, 87, 96, 97, 98, 104, 108, 112, 116, 117, 122, 123, 125, 126, 127, 128, 138, 140, 143, 145, 147, 149, 156, 158, 172, 173, 177, 179, 182, 183, 185, 186, 190, 191, 196, 197, 199, 200, 201, 202, 206, 208, 210, 215, 224, 225, 226, 227, 230, 233, 236, 242, 243, 244, 245, 248, 249, 250, 259, 260], "unfortun": [0, 8, 23, 25, 136], "won": [0, 3, 5, 10, 43, 115, 123, 130, 131, 142, 151, 155, 160, 230, 255], "mark": [0, 49, 58, 59, 75, 124, 147, 148, 161, 162, 177, 178, 183, 184, 193, 263], "while": [0, 1, 2, 3, 4, 5, 6, 9, 11, 12, 13, 14, 16, 17, 19, 21, 23, 49, 52, 55, 60, 78, 82, 89, 105, 108, 109, 113, 116, 119, 120, 122, 125, 126, 132, 134, 136, 137, 138, 140, 145, 146, 147, 148, 150, 153, 157, 158, 159, 160, 163, 164, 165, 166, 167, 173, 174, 175, 177, 178, 180, 183, 185, 186, 191, 192, 193, 194, 195, 199, 202, 203, 210, 225, 230], "onli": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 42, 43, 44, 45, 47, 49, 53, 55, 56, 60, 61, 73, 78, 80, 82, 87, 95, 97, 98, 99, 103, 107, 108, 109, 112, 113, 114, 116, 117, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 142, 143, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 163, 164, 165, 166, 169, 170, 172, 173, 174, 175, 177, 178, 179, 180, 183, 185, 186, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 201, 202, 204, 205, 206, 207, 208, 210, 211, 213, 220, 224, 225, 226, 227, 230, 233, 255, 265], "when": [0, 1, 5, 6, 8, 10, 11, 12, 14, 15, 17, 18, 20, 21, 22, 23, 25, 32, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 55, 58, 59, 60, 61, 65, 68, 73, 75, 78, 79, 82, 85, 87, 97, 98, 101, 103, 108, 109, 110, 111, 112, 115, 118, 119, 121, 122, 123, 125, 126, 128, 130, 133, 134, 135, 136, 137, 138, 140, 142, 144, 145, 147, 148, 150, 151, 153, 154, 156, 157, 158, 160, 161, 162, 164, 165, 166, 169, 172, 173, 174, 175, 176, 177, 178, 179, 183, 184, 185, 190, 191, 194, 195, 197, 199, 200, 201, 202, 203, 204, 205, 208, 210, 211, 213, 229, 263, 265, 267], "applic": [0, 2, 3, 11, 12, 14, 15, 23, 49, 58, 59, 60, 61, 75, 97, 105, 117, 120, 121, 123, 125, 126, 130, 134, 138, 140, 144, 150, 153, 157, 158, 162, 164, 172, 177, 185, 193, 196, 208, 224, 225], "netron": [0, 108], "see": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 17, 18, 19, 20, 21, 23, 24, 25, 42, 44, 45, 47, 48, 49, 50, 51, 52, 55, 58, 59, 60, 65, 73, 75, 78, 80, 82, 83, 85, 87, 97, 98, 99, 100, 101, 102, 103, 105, 108, 109, 111, 112, 113, 116, 119, 122, 123, 124, 126, 127, 128, 130, 131, 134, 136, 137, 138, 139, 140, 142, 143, 144, 145, 147, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 163, 164, 165, 166, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 185, 186, 189, 190, 191, 193, 194, 196, 198, 199, 202, 203, 204, 205, 207, 208, 210, 213, 220, 224, 226, 227, 230, 255, 265], "name": [0, 1, 2, 4, 5, 6, 7, 8, 10, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 33, 49, 50, 51, 52, 59, 60, 78, 79, 82, 98, 103, 105, 108, 109, 110, 112, 122, 124, 125, 126, 128, 134, 135, 137, 138, 140, 142, 143, 144, 145, 148, 154, 156, 157, 160, 161, 162, 163, 165, 166, 169, 172, 173, 174, 175, 176, 179, 183, 186, 189, 197, 199, 200, 202, 203, 205, 206, 208, 210, 211, 221, 222, 223, 224, 230, 233, 240, 241, 248, 258, 260, 265, 266], "186": [0, 185], "numer": [0, 17, 19, 20, 49, 97, 98, 105, 113, 126, 130, 160, 183, 186, 198, 199, 200, 201, 203, 255, 266], "id": [0, 9, 17, 49, 82, 95, 113, 126, 134, 138, 140, 154, 162, 163, 164, 172, 174, 175, 176, 179, 182, 203, 216, 246, 263, 264, 268], "assign": [0, 6, 22, 45, 47, 53, 65, 67, 97, 98, 99, 102, 103, 111, 136, 154, 160, 177, 246, 264], "small": [0, 1, 3, 5, 6, 9, 12, 17, 18, 20, 21, 23, 24, 25, 42, 43, 44, 47, 57, 73, 78, 79, 80, 97, 99, 100, 102, 103, 105, 116, 117, 122, 123, 126, 128, 130, 144, 150, 153, 154, 158, 159, 160, 161, 164, 166, 167, 172, 179, 185, 191, 203, 211], "onnx_to_coreml": 0, "touch": [0, 2, 4, 6, 14, 22, 23], "command": [0, 4, 5, 6, 14, 23, 50, 75, 107, 114, 119, 126, 127, 133, 134, 135, 138, 140, 156, 160, 162, 163, 164, 166, 169, 170, 172, 177, 179, 190, 210, 220, 222, 224, 225, 265, 266], "edit": [0, 3, 6, 9, 11, 12, 16, 19, 20, 48, 50, 61, 113, 123, 124, 134, 135, 136, 138, 144, 145, 156, 158, 159, 162, 163, 164, 183, 185, 227, 263], "favorit": [0, 42, 59, 136, 144], "editor": [0, 227], "add": [0, 2, 4, 6, 7, 8, 9, 10, 12, 14, 15, 17, 19, 21, 22, 23, 40, 44, 47, 48, 49, 50, 58, 59, 60, 61, 73, 78, 80, 85, 87, 98, 99, 102, 108, 113, 114, 116, 118, 121, 122, 123, 124, 126, 127, 128, 129, 130, 136, 137, 140, 143, 144, 145, 146, 147, 153, 155, 156, 159, 160, 162, 163, 164, 166, 169, 174, 175, 177, 178, 182, 183, 185, 187, 189, 190, 191, 193, 201, 202, 203, 206, 208, 210, 220, 224, 229, 233, 240, 255, 263, 265, 270], "follow": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 42, 44, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 73, 75, 81, 82, 83, 85, 86, 87, 97, 98, 99, 101, 102, 103, 105, 107, 108, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 130, 132, 133, 134, 136, 137, 138, 140, 143, 144, 145, 146, 147, 148, 150, 153, 154, 156, 157, 158, 159, 160, 161, 162, 163, 165, 166, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 186, 187, 189, 190, 192, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 206, 207, 208, 210, 211, 220, 222, 224, 225, 226, 227, 229, 230, 255, 263, 265, 266, 270], "code": [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 83, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 132, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 177, 178, 179, 182, 183, 185, 186, 189, 190, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 205, 207, 213, 220, 222, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 255, 257, 258, 264, 266], "sy": [0, 3, 7, 18, 19, 53, 55, 90, 134, 138, 149, 156, 183, 186, 196, 199, 200, 212, 213], "onnx_pb": 0, "onnx_coreml": 0, "model_in": 0, "argv": [0, 4, 22, 23, 53, 55, 222, 259], "1": [0, 1, 2, 3, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 47, 48, 49, 51, 52, 53, 55, 60, 61, 63, 64, 68, 69, 73, 75, 76, 80, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 153, 154, 155, 157, 159, 160, 161, 162, 163, 164, 165, 166, 167, 172, 173, 174, 175, 176, 178, 184, 185, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 198, 199, 200, 203, 204, 205, 206, 207, 208, 209, 210, 211, 214, 216, 217, 218, 221, 222, 223, 224, 228, 229, 231, 232, 239, 241, 246, 247, 249, 251, 256, 259, 260, 261, 262, 263, 265, 266, 269], "model_out": 0, "2": [0, 1, 2, 3, 5, 6, 7, 11, 12, 14, 15, 16, 18, 20, 21, 23, 24, 32, 33, 34, 36, 40, 42, 43, 47, 48, 49, 51, 52, 53, 55, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 80, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 107, 108, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 129, 130, 131, 132, 133, 134, 136, 137, 139, 140, 142, 144, 145, 146, 147, 148, 149, 150, 153, 154, 155, 157, 159, 160, 161, 162, 163, 164, 165, 166, 167, 172, 173, 174, 175, 176, 184, 185, 187, 188, 191, 192, 193, 194, 195, 198, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 217, 218, 221, 222, 223, 224, 231, 232, 234, 239, 241, 246, 249, 254, 257, 258, 259, 261, 263, 265, 266, 269], "model_fil": [0, 19, 183, 199, 200, 206], "rb": [0, 49, 87, 104, 116, 137, 140, 225], "model_proto": [0, 108], "modelproto": [0, 20], "parsefromstr": 0, "read": [0, 1, 2, 5, 6, 9, 14, 19, 22, 23, 38, 47, 49, 51, 73, 101, 102, 112, 113, 116, 117, 120, 122, 125, 126, 127, 128, 136, 138, 140, 143, 145, 150, 153, 159, 160, 163, 166, 167, 170, 173, 186, 189, 190, 197, 206, 210, 224, 225, 229, 263, 265], "coreml_model": 0, "image_input_nam": 0, "image_output_nam": 0, "save": [0, 2, 4, 6, 7, 9, 11, 12, 19, 20, 23, 35, 38, 39, 44, 48, 49, 50, 52, 58, 59, 73, 87, 96, 97, 108, 115, 117, 119, 121, 123, 124, 126, 127, 130, 138, 140, 145, 146, 149, 157, 158, 161, 162, 163, 164, 166, 169, 172, 182, 183, 186, 189, 190, 196, 197, 206, 208, 210, 216, 220, 222, 223, 224, 225, 226, 227, 230, 232, 233, 236, 237, 239, 243, 244, 245, 250, 255, 259], "mlmodel": [0, 189], "i": [0, 1, 5, 6, 7, 8, 9, 11, 12, 14, 17, 18, 19, 22, 23, 25, 32, 34, 39, 42, 43, 49, 51, 52, 58, 59, 60, 61, 69, 73, 75, 76, 85, 87, 89, 90, 92, 94, 96, 98, 99, 101, 102, 103, 104, 111, 112, 113, 116, 117, 118, 122, 124, 127, 128, 129, 133, 135, 136, 137, 139, 143, 147, 148, 153, 154, 155, 157, 160, 162, 163, 164, 166, 170, 172, 173, 174, 175, 176, 177, 178, 182, 191, 193, 194, 195, 203, 204, 205, 210, 211, 217, 223, 228, 233, 239, 252, 265, 266], "e": [0, 4, 5, 6, 7, 8, 10, 11, 18, 22, 23, 25, 32, 39, 42, 43, 44, 49, 51, 52, 58, 60, 61, 65, 69, 73, 75, 76, 79, 85, 87, 89, 95, 97, 100, 103, 108, 110, 111, 112, 117, 121, 123, 124, 126, 127, 128, 131, 133, 134, 135, 136, 139, 143, 147, 148, 154, 155, 156, 157, 160, 162, 164, 166, 169, 173, 174, 175, 176, 177, 180, 183, 185, 186, 192, 193, 194, 195, 198, 202, 204, 207, 208, 210, 222, 259], "one": [0, 1, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 17, 18, 19, 21, 22, 23, 25, 45, 47, 48, 49, 51, 52, 55, 56, 60, 61, 73, 76, 80, 85, 87, 93, 95, 97, 98, 100, 101, 102, 103, 108, 112, 113, 114, 116, 117, 122, 123, 124, 125, 126, 127, 128, 130, 131, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 150, 153, 154, 155, 157, 159, 160, 161, 162, 163, 164, 165, 166, 169, 170, 172, 174, 175, 176, 178, 179, 180, 184, 185, 191, 192, 193, 195, 196, 197, 200, 202, 203, 207, 210, 226, 230, 237, 255, 265], "re": [0, 1, 4, 5, 6, 7, 9, 10, 14, 16, 19, 21, 22, 23, 24, 44, 48, 49, 50, 60, 73, 78, 97, 98, 117, 125, 127, 128, 137, 139, 140, 142, 144, 146, 151, 153, 155, 159, 160, 161, 162, 163, 166, 174, 175, 176, 177, 179, 183, 185, 189, 191, 196, 199, 200, 204, 207, 210, 225, 248, 265], "current": [0, 1, 5, 6, 8, 10, 11, 12, 14, 15, 19, 22, 23, 37, 38, 49, 52, 60, 82, 107, 113, 117, 122, 123, 125, 126, 127, 128, 136, 137, 142, 143, 147, 148, 150, 155, 157, 158, 160, 161, 162, 163, 164, 165, 166, 169, 174, 175, 180, 183, 186, 189, 190, 191, 193, 194, 195, 196, 197, 199, 200, 220, 226, 230, 263], "readm": [0, 119, 180], "md": [0, 119, 180], "contain": [0, 1, 2, 4, 6, 8, 9, 10, 12, 14, 15, 17, 20, 21, 22, 23, 25, 34, 42, 47, 49, 50, 55, 58, 60, 64, 67, 68, 69, 75, 76, 78, 82, 85, 95, 101, 102, 111, 112, 116, 117, 122, 123, 125, 126, 127, 132, 134, 135, 137, 140, 143, 150, 154, 157, 158, 160, 161, 162, 164, 165, 166, 167, 169, 170, 172, 174, 175, 176, 179, 180, 182, 183, 189, 194, 197, 200, 202, 203, 204, 208, 210, 224, 225, 260, 265, 266], "abl": [0, 1, 3, 4, 5, 6, 14, 15, 17, 23, 49, 60, 85, 97, 98, 100, 103, 112, 117, 126, 130, 131, 132, 133, 136, 137, 139, 140, 145, 147, 148, 153, 155, 158, 160, 163, 170, 173, 174, 175, 179, 183, 186, 190, 193, 199, 202, 203, 210, 225], "phone": [0, 97, 105, 190, 225], "onnxliv": 0, "xcodeproj": [0, 225], "project": [0, 4, 5, 6, 23, 52, 58, 59, 60, 112, 116, 124, 140, 156, 161, 165, 166, 170, 189, 190, 195, 206, 210, 222, 224, 225, 226, 227, 228, 229, 259, 260, 264, 269], "recommend": [0, 4, 6, 8, 10, 15, 18, 19, 20, 23, 61, 82, 108, 115, 116, 119, 121, 128, 134, 138, 158, 159, 166, 169, 173, 176, 177, 178, 179, 182, 183, 186, 193, 198, 201, 222, 229, 230, 265], "9": [0, 1, 3, 5, 6, 17, 18, 19, 23, 34, 43, 44, 49, 65, 87, 92, 94, 95, 96, 103, 104, 109, 111, 112, 115, 116, 117, 118, 145, 147, 154, 158, 159, 161, 162, 169, 170, 172, 173, 174, 177, 178, 179, 188, 203, 206, 208, 210, 222, 223, 224, 231, 233, 240, 243, 244, 245, 251, 252, 256, 269], "x": [0, 1, 2, 5, 6, 7, 12, 14, 17, 18, 19, 20, 21, 22, 23, 25, 32, 33, 37, 38, 40, 43, 44, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 76, 78, 79, 80, 85, 87, 89, 92, 93, 94, 95, 96, 97, 98, 99, 101, 104, 105, 108, 110, 111, 112, 113, 114, 115, 116, 117, 123, 124, 125, 127, 128, 129, 130, 131, 134, 135, 136, 139, 140, 142, 143, 145, 146, 147, 148, 149, 150, 151, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 167, 170, 172, 173, 174, 175, 176, 177, 178, 179, 180, 184, 185, 187, 188, 195, 197, 199, 200, 201, 203, 205, 207, 210, 211, 214, 215, 216, 217, 220, 221, 222, 223, 225, 228, 230, 233, 235, 239, 241, 242, 243, 244, 245, 247, 248, 249, 250, 251, 252, 254, 255, 257, 258, 266], "might": [0, 1, 5, 8, 10, 15, 16, 25, 44, 50, 51, 52, 53, 60, 79, 97, 98, 102, 103, 105, 108, 109, 113, 127, 131, 132, 133, 134, 136, 143, 144, 146, 150, 154, 158, 164, 165, 166, 169, 173, 179, 183, 185, 186, 190, 191, 199, 202, 206, 208, 225, 234, 255, 263], "issu": [0, 2, 4, 5, 6, 8, 9, 19, 20, 22, 23, 51, 58, 113, 118, 122, 133, 138, 139, 143, 144, 145, 148, 155, 159, 169, 175, 185, 186, 187, 189, 190, 191, 193, 195, 197, 201, 206, 207, 209, 224, 232, 234], "older": [0, 56, 109, 139, 155, 161, 176, 185], "some": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 19, 20, 22, 23, 25, 42, 43, 44, 47, 48, 49, 50, 51, 52, 58, 59, 60, 61, 63, 68, 73, 76, 78, 80, 82, 87, 92, 97, 98, 99, 100, 101, 102, 103, 108, 109, 110, 112, 113, 116, 121, 122, 123, 126, 128, 130, 131, 132, 134, 135, 136, 137, 139, 140, 142, 143, 144, 145, 146, 149, 150, 151, 153, 155, 157, 158, 160, 161, 163, 164, 166, 167, 169, 170, 172, 173, 174, 175, 177, 178, 179, 183, 184, 185, 189, 190, 191, 192, 193, 194, 195, 196, 199, 200, 201, 202, 203, 204, 205, 207, 211, 222, 225, 240, 255, 264, 265], "replac": [0, 3, 6, 12, 19, 24, 43, 55, 57, 58, 59, 78, 99, 108, 109, 117, 118, 119, 123, 136, 138, 140, 142, 143, 148, 157, 158, 164, 166, 169, 174, 175, 178, 179, 185, 193, 196, 220, 222, 224, 233, 255], "all": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 32, 34, 42, 43, 44, 45, 47, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 68, 69, 73, 76, 78, 80, 82, 85, 87, 90, 98, 99, 100, 101, 102, 103, 105, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 148, 149, 150, 151, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 169, 170, 172, 173, 174, 175, 177, 178, 179, 180, 182, 185, 186, 189, 190, 191, 192, 194, 195, 198, 199, 201, 202, 203, 204, 206, 207, 208, 210, 222, 225, 230, 231, 233, 248, 253, 265, 266], "set": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 22, 23, 24, 25, 37, 42, 43, 44, 47, 48, 49, 50, 52, 53, 55, 58, 59, 60, 61, 63, 64, 68, 73, 76, 79, 82, 83, 86, 97, 98, 99, 102, 103, 104, 105, 110, 111, 112, 113, 115, 116, 117, 118, 121, 122, 123, 124, 127, 128, 130, 132, 133, 134, 136, 137, 140, 145, 147, 149, 150, 153, 154, 156, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 173, 174, 175, 178, 179, 182, 188, 189, 190, 191, 193, 195, 196, 200, 201, 203, 206, 208, 210, 222, 225, 226, 227, 230, 234, 243, 263, 267, 270], "tap": 0, "screen": [0, 58, 59, 147, 161, 263], "switch": [0, 5, 8, 15, 19, 95, 112, 140, 153, 196, 208, 234], "hope": [0, 5, 25, 49, 147, 153, 166, 173, 266], "gave": [0, 103], "framework": [0, 6, 7, 10, 24, 25, 52, 60, 61, 99, 100, 120, 121, 135, 150, 162, 165, 172, 177, 178, 184, 190, 223, 224], "experi": [0, 6, 10, 97, 98, 122, 136, 138, 147, 150, 156, 158, 160, 161, 165, 166, 167, 172, 173, 176, 177, 178, 185, 186, 191, 198, 207, 230], "test": [0, 3, 8, 13, 19, 20, 22, 23, 24, 37, 38, 42, 49, 58, 59, 60, 83, 85, 92, 97, 99, 100, 105, 108, 113, 114, 119, 122, 123, 136, 137, 139, 140, 142, 145, 148, 159, 160, 163, 166, 167, 170, 173, 174, 175, 182, 183, 184, 185, 198, 199, 201, 206, 207, 222, 223, 224, 225, 265, 266], "own": [0, 5, 6, 7, 8, 10, 11, 14, 16, 17, 18, 23, 25, 49, 52, 58, 59, 64, 73, 87, 103, 108, 109, 111, 113, 121, 122, 123, 128, 130, 134, 140, 145, 150, 153, 154, 157, 159, 160, 163, 164, 166, 172, 173, 177, 179, 180, 185, 196, 197, 199, 200, 202, 203, 211, 265], "pleas": [0, 2, 4, 5, 6, 7, 9, 10, 19, 20, 22, 23, 44, 45, 47, 51, 61, 75, 87, 108, 113, 115, 118, 122, 123, 124, 134, 138, 139, 142, 143, 144, 145, 148, 150, 153, 155, 156, 158, 162, 163, 164, 169, 172, 173, 174, 175, 176, 177, 179, 180, 184, 186, 187, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 206, 207, 211, 222, 224, 234, 255, 265], "know": [0, 1, 5, 6, 8, 11, 18, 19, 22, 23, 43, 49, 73, 95, 99, 101, 103, 108, 113, 125, 127, 128, 131, 136, 137, 139, 145, 147, 148, 150, 151, 155, 160, 161, 162, 166, 170, 174, 175, 177, 178, 179, 180, 183, 192, 197, 263, 265], "hit": [0, 5, 9, 19, 61, 73, 113, 124, 169], "ani": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 22, 23, 43, 45, 47, 49, 51, 52, 53, 55, 60, 65, 67, 76, 97, 98, 100, 101, 103, 105, 107, 108, 110, 111, 112, 113, 115, 120, 123, 124, 125, 127, 131, 132, 136, 138, 139, 142, 143, 144, 147, 148, 150, 153, 154, 155, 159, 160, 161, 163, 164, 167, 169, 172, 174, 175, 177, 178, 182, 184, 186, 187, 189, 190, 191, 192, 193, 194, 196, 197, 200, 203, 204, 206, 209, 210, 211, 213, 220, 224, 227, 230, 242, 255, 263, 265], "give": [0, 1, 2, 5, 6, 11, 14, 17, 23, 25, 45, 47, 49, 50, 52, 58, 59, 60, 61, 73, 75, 79, 97, 98, 99, 101, 102, 103, 112, 118, 128, 132, 139, 143, 144, 145, 146, 147, 155, 159, 163, 166, 169, 172, 173, 174, 175, 177, 178, 183, 192, 195, 203, 225, 263, 265], "feedback": [0, 6, 9, 19, 122, 138, 143, 144, 147, 148, 177, 178, 186, 189, 190, 197, 198, 199, 206, 224], "d": [0, 2, 5, 6, 7, 8, 12, 19, 22, 52, 61, 63, 64, 65, 67, 71, 72, 76, 87, 89, 92, 95, 99, 103, 111, 113, 115, 122, 124, 126, 127, 128, 130, 134, 136, 138, 146, 147, 150, 153, 166, 169, 172, 176, 186, 194, 195, 200, 207, 210, 217, 222, 252, 265, 266], "hear": [0, 143, 144], "think": [0, 6, 22, 23, 44, 52, 68, 78, 98, 99, 101, 102, 103, 113, 144, 146, 160, 163, 165, 194, 207, 265], "click": [1, 7, 9, 12, 13, 14, 17, 20, 21, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 130, 137, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 160, 161, 165, 166, 167, 169, 170, 173, 175, 179, 182, 185, 190, 191, 192, 193, 194, 195, 197, 205, 206, 207, 210, 213, 227, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 257, 258], "here": [1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 55, 58, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 158, 160, 161, 163, 164, 165, 166, 167, 169, 170, 173, 174, 175, 176, 177, 179, 180, 182, 183, 184, 185, 186, 189, 190, 191, 192, 193, 194, 195, 197, 199, 200, 201, 202, 203, 205, 206, 207, 210, 211, 213, 220, 222, 224, 225, 227, 230, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 255, 257, 258, 263, 265, 266], "download": [1, 4, 6, 7, 9, 12, 13, 14, 17, 19, 20, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 58, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 130, 136, 137, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 158, 159, 160, 161, 163, 165, 166, 167, 169, 170, 173, 175, 179, 183, 185, 189, 190, 191, 192, 193, 194, 195, 197, 199, 200, 205, 206, 207, 208, 210, 213, 222, 223, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 256, 257, 258, 269], "full": [1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 19, 20, 22, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 130, 132, 135, 137, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 160, 161, 162, 165, 166, 167, 169, 173, 175, 179, 182, 183, 185, 191, 192, 193, 194, 195, 196, 197, 200, 205, 206, 207, 210, 211, 213, 224, 230, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 257, 258], "author": [1, 5, 7, 9, 11, 12, 13, 14, 16, 17, 19, 24, 36, 42, 45, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 73, 81, 82, 83, 85, 86, 97, 98, 99, 101, 102, 103, 104, 107, 108, 109, 111, 112, 113, 114, 116, 117, 122, 123, 124, 126, 127, 128, 132, 133, 134, 135, 136, 137, 138, 140, 143, 144, 145, 147, 148, 150, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 173, 174, 175, 177, 178, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 199, 200, 201, 202, 203, 206, 207, 208, 210, 211, 213, 224, 266], "vincent": [1, 14, 137, 160], "moen": [1, 14, 137, 160], "separ": [1, 5, 6, 7, 8, 20, 22, 23, 25, 49, 52, 85, 97, 109, 124, 126, 139, 145, 147, 154, 158, 163, 166, 172, 179, 180, 182, 183, 191, 195, 199, 202, 258], "rl": [1, 61, 121, 160, 161, 162], "algorithm": [1, 5, 6, 10, 11, 12, 49, 52, 56, 69, 82, 87, 98, 99, 100, 101, 111, 118, 122, 124, 126, 130, 136, 137, 147, 156, 160, 163, 167, 213], "variou": [1, 8, 15, 47, 48, 49, 50, 60, 83, 85, 102, 109, 112, 116, 126, 144, 146, 157, 160, 163, 164, 172, 185, 193, 195], "piec": [1, 5, 8, 14, 59, 85, 159, 160, 164, 172, 176, 178, 179, 180, 190, 215], "assembl": [1, 8, 49, 135], "collect": [1, 4, 6, 11, 14, 15, 17, 18, 19, 21, 42, 43, 44, 45, 49, 55, 60, 61, 73, 75, 79, 97, 99, 103, 121, 122, 123, 124, 134, 135, 137, 144, 147, 150, 156, 161, 164, 176, 178, 203, 232], "final": [1, 6, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 42, 43, 47, 49, 52, 58, 60, 73, 75, 85, 87, 97, 102, 105, 107, 108, 109, 112, 113, 117, 118, 119, 122, 123, 124, 126, 127, 128, 130, 131, 135, 136, 140, 144, 145, 146, 147, 151, 153, 155, 157, 158, 160, 161, 162, 163, 164, 166, 169, 170, 176, 177, 178, 180, 185, 186, 189, 190, 191, 194, 199, 200, 201, 202, 203, 205, 206, 210], "function": [1, 3, 4, 5, 6, 8, 9, 10, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 32, 38, 42, 43, 48, 49, 51, 53, 55, 59, 60, 61, 62, 65, 67, 68, 69, 75, 76, 79, 80, 82, 83, 89, 90, 92, 93, 94, 95, 96, 101, 102, 103, 104, 105, 107, 108, 109, 111, 112, 113, 116, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 135, 136, 137, 139, 143, 144, 145, 147, 148, 149, 150, 153, 154, 156, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 177, 178, 179, 180, 182, 186, 187, 189, 191, 192, 193, 194, 195, 196, 197, 202, 203, 204, 205, 207, 208, 210, 211, 213, 222, 223, 225, 232, 233, 234, 235, 241, 248, 251, 252, 255, 257, 259], "trainabl": [1, 6, 68, 97, 99, 158], "paramet": [1, 4, 5, 7, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 22, 24, 25, 32, 33, 35, 37, 38, 43, 44, 47, 48, 49, 51, 52, 61, 65, 67, 68, 69, 73, 75, 85, 87, 89, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 109, 110, 111, 115, 116, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 132, 134, 135, 136, 137, 138, 139, 140, 142, 143, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 158, 161, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 177, 178, 179, 183, 185, 191, 197, 198, 199, 203, 205, 212, 213, 214, 216, 222, 223, 230, 232, 237, 239, 243, 244, 245, 246, 247, 251, 252, 255, 256, 261, 269], "tutori": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 35, 43, 44, 45, 46, 51, 52, 53, 55, 56, 58, 59, 60, 61, 73, 74, 75, 77, 79, 81, 82, 84, 86, 87, 91, 97, 98, 100, 101, 104, 105, 106, 107, 108, 112, 113, 115, 116, 117, 118, 119, 121, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 150, 151, 152, 153, 155, 156, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 176, 178, 179, 181, 182, 183, 185, 186, 189, 190, 191, 192, 193, 194, 195, 196, 198, 199, 200, 201, 202, 203, 205, 206, 207, 208, 210, 211, 213, 219, 224, 225, 230, 231, 236, 237, 239, 249, 253, 255], "guid": [1, 17, 58, 59, 61, 82, 85, 123, 136, 148, 159, 169, 174, 175, 177, 185, 198, 203, 231, 264], "ground": [1, 14, 44, 73, 179], "aim": [1, 6, 61, 75, 97, 100, 153, 161, 164, 194], "focus": [1, 3, 20, 97, 100, 150, 156, 166], "rel": [1, 5, 6, 7, 117, 119, 125, 126, 138, 146, 150, 151, 164, 166, 177, 187, 199, 223], "straightforward": [1, 5, 6, 16, 17, 49, 60, 97, 98, 145, 202], "determinist": [1, 11, 14, 137, 149, 161], "gradient": [1, 6, 7, 10, 11, 13, 14, 16, 25, 37, 42, 43, 44, 47, 49, 52, 56, 61, 63, 64, 65, 67, 68, 69, 71, 72, 78, 87, 97, 98, 99, 101, 102, 103, 104, 110, 111, 115, 117, 121, 122, 123, 124, 125, 127, 130, 131, 132, 134, 136, 142, 146, 147, 150, 153, 157, 158, 160, 161, 162, 163, 164, 170, 172, 191, 207, 218, 231, 237], "simpl": [1, 3, 4, 5, 6, 8, 12, 15, 16, 17, 19, 21, 22, 23, 24, 25, 47, 49, 51, 54, 56, 61, 67, 73, 79, 85, 87, 97, 107, 112, 116, 120, 121, 123, 125, 126, 131, 136, 139, 140, 145, 146, 151, 155, 157, 160, 162, 163, 164, 165, 167, 169, 173, 183, 186, 201, 203, 207, 209, 213, 222, 223, 230, 255, 265, 266], "continu": [1, 5, 17, 20, 21, 49, 53, 60, 73, 85, 87, 97, 102, 113, 116, 121, 124, 128, 132, 136, 143, 144, 147, 158, 160, 164, 166, 169, 177, 189, 190, 191, 193, 194, 200, 201, 202, 203, 206, 224, 255, 265], "control": [1, 4, 8, 10, 14, 21, 23, 25, 34, 43, 60, 61, 66, 83, 85, 97, 110, 111, 113, 114, 122, 125, 126, 135, 136, 142, 154, 160, 161, 162, 173, 184, 199, 210, 255], "It": [1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 42, 43, 44, 45, 47, 49, 51, 52, 60, 61, 73, 74, 75, 76, 82, 87, 95, 97, 98, 99, 100, 101, 103, 108, 112, 113, 115, 117, 122, 123, 124, 126, 127, 128, 130, 131, 132, 134, 135, 136, 137, 139, 141, 142, 144, 145, 146, 147, 150, 151, 153, 154, 155, 157, 158, 161, 162, 164, 166, 167, 168, 169, 171, 172, 174, 175, 178, 179, 180, 195, 202, 203, 204, 205, 206, 207, 210, 215, 224, 225, 226, 227, 230, 234, 263, 265], "consist": [1, 3, 6, 7, 14, 15, 16, 22, 24, 25, 43, 75, 97, 99, 118, 124, 132, 143, 144, 147, 151, 153, 160, 165, 166, 169, 174, 175, 178, 180, 193, 194, 201, 202, 210, 213, 265], "parametr": [1, 2, 17, 121, 160, 203], "action": [1, 19, 58, 59, 101, 113, 122, 123, 147, 157, 160, 161, 162, 163, 164, 169, 183, 191, 192, 193, 194, 199, 200, 206, 210, 253, 265], "pair": [1, 6, 14, 47, 49, 52, 116, 118, 128, 130, 138, 151, 155, 160, 161, 166, 169, 179, 180, 196, 201, 213, 265], "maxim": [1, 14, 52, 73, 82, 97, 99, 126, 147, 161, 173, 177, 196], "given": [1, 6, 8, 10, 12, 14, 17, 20, 21, 22, 23, 25, 32, 43, 48, 49, 51, 52, 60, 61, 73, 76, 78, 82, 85, 97, 98, 100, 101, 103, 112, 116, 122, 127, 128, 134, 136, 139, 142, 143, 146, 147, 148, 155, 157, 160, 161, 163, 164, 166, 173, 174, 175, 178, 179, 194, 197, 202, 203, 233], "certain": [1, 4, 5, 6, 10, 11, 15, 49, 55, 60, 101, 113, 120, 122, 124, 125, 130, 142, 146, 148, 160, 165, 190, 191, 194, 195, 196, 200], "what": [1, 2, 3, 5, 8, 14, 18, 19, 20, 21, 22, 23, 25, 43, 45, 46, 53, 54, 55, 58, 59, 61, 73, 78, 86, 87, 98, 99, 101, 102, 103, 114, 121, 124, 125, 126, 128, 132, 133, 136, 137, 143, 147, 151, 153, 157, 160, 161, 162, 165, 170, 172, 174, 179, 188, 189, 193, 197, 199, 202, 224, 228, 234, 237, 251, 255, 259, 265], "write": [1, 4, 8, 9, 10, 21, 22, 23, 44, 49, 58, 59, 60, 61, 64, 75, 98, 99, 100, 101, 104, 116, 117, 121, 125, 126, 131, 132, 134, 137, 138, 140, 142, 143, 145, 147, 148, 150, 151, 154, 156, 160, 163, 164, 166, 169, 172, 173, 186, 190, 194, 198, 199, 200, 207, 208, 210, 225, 226, 227, 234, 260, 265], "custom": [1, 4, 6, 8, 11, 17, 49, 52, 64, 65, 66, 79, 90, 109, 111, 121, 126, 137, 147, 160, 163, 172, 173, 178, 180, 184, 190, 197, 199, 201, 202, 203, 204, 206, 222, 237], "its": [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 25, 43, 47, 49, 51, 52, 53, 55, 60, 61, 68, 69, 73, 75, 80, 82, 95, 97, 99, 101, 102, 103, 105, 107, 109, 111, 112, 113, 115, 122, 123, 124, 125, 126, 127, 128, 136, 137, 138, 139, 140, 142, 144, 145, 147, 148, 150, 153, 154, 157, 160, 161, 162, 163, 164, 166, 169, 170, 173, 174, 175, 176, 177, 185, 190, 193, 194, 195, 199, 202, 203, 204, 206, 208, 210, 211, 220, 222, 224, 230, 265], "includ": [1, 2, 3, 4, 5, 6, 8, 14, 15, 16, 22, 23, 24, 25, 42, 48, 49, 53, 55, 58, 59, 60, 61, 69, 73, 75, 82, 85, 87, 97, 98, 105, 107, 109, 113, 115, 124, 126, 127, 128, 131, 132, 134, 136, 137, 145, 147, 148, 156, 157, 160, 163, 166, 169, 170, 173, 174, 175, 176, 177, 178, 179, 183, 185, 190, 191, 193, 196, 201, 202, 206, 208, 210, 222, 224, 226, 227, 230, 233, 240, 259, 263, 265], "design": [1, 5, 6, 14, 17, 24, 25, 52, 56, 61, 73, 85, 103, 128, 134, 137, 160, 161, 162, 164, 165, 169, 170, 178, 180, 191, 192, 193, 197, 199, 202, 203, 207], "effici": [1, 5, 7, 10, 12, 15, 17, 20, 23, 25, 42, 49, 51, 73, 82, 95, 97, 101, 103, 115, 119, 122, 123, 124, 126, 127, 136, 137, 146, 151, 157, 160, 164, 165, 169, 172, 176, 178, 187, 189, 194, 195, 196, 203, 206], "store": [1, 4, 5, 6, 16, 17, 19, 20, 22, 23, 40, 43, 48, 51, 53, 60, 68, 87, 95, 98, 99, 101, 103, 105, 111, 125, 126, 128, 136, 137, 142, 144, 145, 147, 148, 154, 156, 157, 160, 161, 162, 163, 164, 166, 183, 185, 194, 199, 200, 203, 206, 255, 257], "trajectori": [1, 14, 61, 137, 160], "transit": [1, 14, 60, 85, 86, 98, 137, 161, 202], "assum": [1, 2, 4, 6, 8, 10, 12, 14, 15, 19, 21, 22, 43, 44, 51, 54, 60, 73, 97, 98, 100, 102, 116, 124, 125, 127, 128, 136, 137, 140, 154, 157, 160, 163, 165, 166, 174, 175, 176, 179, 193, 194, 195, 201, 202, 225], "complet": [1, 4, 5, 6, 15, 21, 25, 49, 76, 78, 85, 87, 98, 99, 101, 113, 117, 119, 122, 124, 126, 131, 136, 157, 158, 159, 160, 161, 163, 166, 172, 173, 178, 179, 185, 193, 194, 227, 230, 255], "ppo": [1, 121], "compon": [1, 5, 6, 8, 10, 14, 20, 25, 52, 61, 85, 97, 101, 112, 113, 115, 119, 121, 126, 137, 143, 147, 160, 164, 167, 169, 173, 174, 175, 178, 195], "depend": [1, 5, 6, 7, 8, 11, 14, 21, 22, 23, 42, 47, 50, 52, 60, 73, 82, 85, 97, 98, 102, 110, 118, 119, 121, 124, 126, 130, 131, 136, 137, 138, 140, 142, 143, 144, 146, 147, 150, 156, 159, 160, 163, 169, 173, 174, 175, 182, 183, 184, 185, 190, 193, 198, 199, 200, 206, 208, 210, 224, 226, 227, 234, 255], "tensordict": [1, 14, 137, 147, 160], "nn": [1, 2, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 32, 37, 38, 39, 42, 43, 44, 45, 47, 49, 52, 55, 60, 65, 66, 69, 73, 75, 77, 79, 87, 89, 90, 92, 94, 96, 97, 98, 99, 102, 103, 105, 107, 108, 109, 110, 115, 117, 118, 119, 121, 122, 123, 124, 125, 127, 128, 129, 130, 134, 135, 137, 138, 139, 142, 143, 144, 146, 147, 148, 149, 150, 151, 154, 155, 158, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 178, 180, 182, 183, 184, 186, 192, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 211, 212, 213, 214, 216, 217, 220, 221, 222, 223, 225, 228, 230, 232, 234, 235, 236, 237, 240, 241, 243, 244, 245, 247, 249, 250, 251, 252, 253, 254, 255, 256, 259, 261], "tensordictmodul": [1, 14, 137, 160], "although": [1, 12, 16, 43, 49, 60, 61, 98, 99, 103, 105, 108, 115, 119, 125, 147, 150, 154, 158, 163, 173, 174, 175, 177, 183, 205, 265], "suffici": [1, 6, 49, 52, 97, 98, 117, 132, 134, 153], "transpar": [1, 12, 42, 99, 137, 163, 208, 222], "understood": [1, 4, 113], "without": [1, 4, 5, 6, 8, 9, 10, 14, 17, 20, 23, 32, 42, 49, 53, 55, 60, 73, 78, 97, 98, 107, 112, 113, 116, 123, 124, 125, 128, 130, 136, 138, 139, 142, 144, 146, 147, 148, 153, 155, 156, 157, 158, 159, 160, 161, 162, 165, 166, 169, 172, 177, 178, 191, 193, 194, 195, 196, 201, 202, 203, 205, 210, 211, 213, 222, 229, 230, 255, 263, 265], "understand": [1, 2, 4, 6, 15, 23, 43, 44, 52, 57, 58, 59, 82, 85, 91, 98, 99, 101, 108, 117, 121, 125, 126, 127, 128, 131, 136, 138, 142, 144, 145, 150, 158, 166, 172, 174, 175, 177, 192, 197, 201, 202, 210, 251], "class": [1, 2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 19, 20, 21, 23, 24, 25, 33, 34, 37, 38, 42, 44, 45, 47, 49, 52, 53, 58, 59, 60, 64, 65, 67, 73, 75, 76, 78, 79, 83, 85, 87, 89, 90, 92, 93, 94, 96, 98, 99, 100, 102, 103, 104, 105, 108, 109, 110, 111, 112, 115, 117, 118, 119, 121, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 147, 148, 149, 150, 151, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 170, 172, 173, 174, 175, 178, 179, 180, 182, 183, 184, 191, 192, 193, 195, 196, 197, 199, 200, 201, 202, 204, 205, 210, 211, 214, 215, 216, 217, 218, 220, 221, 223, 225, 228, 235, 236, 239, 241, 242, 243, 244, 245, 246, 250, 251, 252, 254, 255, 264, 265, 266], "sota": [1, 75, 113, 119], "implement": [1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 20, 24, 42, 43, 45, 47, 49, 51, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 76, 79, 85, 103, 108, 111, 115, 120, 121, 124, 125, 126, 127, 131, 134, 135, 136, 137, 139, 140, 142, 145, 146, 147, 148, 150, 151, 155, 157, 160, 161, 164, 169, 174, 175, 179, 180, 187, 192, 194, 195, 196, 198, 199, 202, 203, 206, 208, 209, 210, 222, 224, 226, 233, 264], "rather": [1, 13, 23, 25, 49, 52, 69, 73, 85, 97, 103, 112, 121, 128, 130, 144, 145, 150, 154, 155, 160, 172, 185, 190, 191, 225], "high": [1, 2, 5, 6, 14, 15, 19, 23, 25, 42, 44, 49, 52, 53, 55, 57, 60, 82, 85, 99, 103, 105, 109, 112, 121, 122, 123, 124, 126, 127, 130, 136, 140, 147, 150, 160, 169, 170, 172, 177, 178, 187, 194, 197, 198, 199, 201, 255, 263], "level": [1, 2, 5, 6, 17, 19, 20, 23, 25, 44, 49, 53, 55, 57, 68, 79, 100, 105, 115, 122, 123, 124, 126, 127, 128, 132, 134, 136, 138, 142, 143, 144, 145, 148, 150, 165, 166, 169, 172, 174, 175, 177, 178, 183, 186, 197, 198, 199, 201, 203, 211, 225, 229, 269], "illustr": [1, 19, 44, 47, 56, 116, 117, 124, 125, 126, 139, 161, 170, 172, 179, 193, 194, 197], "librari": [1, 3, 4, 5, 6, 8, 12, 14, 18, 20, 22, 23, 25, 42, 44, 50, 51, 57, 61, 75, 87, 107, 108, 113, 115, 118, 121, 126, 130, 131, 138, 140, 144, 156, 159, 160, 164, 169, 174, 175, 178, 196, 206, 208, 221, 222, 224, 225, 228, 229, 230, 251, 253], "featur": [1, 4, 6, 10, 11, 12, 14, 17, 19, 22, 23, 34, 49, 50, 51, 52, 58, 59, 60, 61, 82, 83, 85, 90, 94, 95, 97, 98, 103, 108, 113, 121, 123, 125, 137, 138, 145, 146, 147, 150, 153, 156, 159, 160, 164, 165, 170, 173, 174, 175, 176, 177, 178, 179, 186, 187, 189, 190, 194, 195, 198, 201, 203, 206, 207, 208, 210, 253, 255], "context": [1, 2, 5, 8, 14, 16, 17, 43, 49, 60, 61, 64, 73, 103, 109, 111, 120, 124, 135, 142, 154, 160, 163, 164, 165, 166, 169, 178, 187, 201, 203, 208, 210, 214, 234], "bash": [1, 18, 20, 147, 161, 228], "pip3": [1, 18, 50, 122, 137, 160, 161, 169, 176, 185, 189, 190], "mujoco": [1, 137, 160], "glfw": 1, "tqdm": [1, 14, 17, 122, 137, 138, 160, 186, 203], "avail": [1, 2, 3, 5, 6, 10, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23, 40, 42, 43, 44, 48, 50, 51, 52, 53, 58, 59, 73, 80, 87, 97, 101, 105, 113, 115, 119, 122, 125, 136, 137, 140, 142, 147, 148, 157, 158, 159, 160, 161, 164, 165, 166, 169, 172, 176, 177, 178, 179, 182, 183, 189, 190, 198, 199, 200, 201, 203, 207, 222, 224, 225, 226, 227, 229, 230, 234, 263], "is_fork": [1, 137, 160], "multiprocess": [1, 6, 7, 11, 14, 34, 51, 53, 55, 56, 110, 122, 123, 134, 135, 136, 137, 160, 163, 164, 214, 216, 261], "get_start_method": [1, 137, 160], "fork": [1, 21, 137, 160, 161], "is_avail": [1, 5, 6, 12, 20, 33, 38, 40, 42, 44, 45, 48, 49, 52, 63, 73, 80, 87, 89, 95, 97, 104, 110, 111, 115, 117, 118, 130, 137, 147, 148, 156, 157, 158, 160, 161, 163, 165, 166, 167, 173, 179, 195, 232], "els": [1, 4, 5, 8, 9, 11, 12, 14, 16, 17, 18, 19, 20, 23, 25, 33, 38, 42, 44, 45, 47, 49, 51, 52, 58, 59, 60, 63, 73, 87, 94, 95, 96, 97, 103, 104, 105, 108, 110, 111, 115, 116, 117, 118, 122, 127, 128, 130, 135, 136, 137, 138, 143, 147, 148, 151, 156, 157, 158, 160, 161, 162, 163, 164, 165, 166, 167, 170, 172, 173, 179, 182, 183, 186, 187, 195, 197, 199, 200, 203, 210, 211, 214, 217, 218, 220, 224, 232, 233, 246, 248, 254, 255, 257, 258, 261, 265, 266], "cpu": [1, 3, 5, 6, 8, 9, 10, 11, 12, 14, 15, 18, 19, 20, 23, 33, 38, 42, 43, 44, 45, 48, 49, 52, 60, 63, 64, 72, 73, 80, 82, 83, 87, 89, 90, 95, 97, 99, 104, 105, 108, 109, 110, 111, 115, 117, 118, 121, 123, 124, 130, 134, 135, 136, 137, 138, 147, 148, 151, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 172, 176, 179, 182, 183, 186, 187, 189, 190, 195, 196, 197, 199, 200, 201, 204, 208, 209, 214, 218, 221, 225, 228, 231, 232, 234, 236, 239, 240, 242, 246, 253, 255, 256], "collector_devic": 1, "chang": [1, 2, 5, 6, 10, 11, 12, 14, 19, 21, 22, 23, 24, 40, 43, 48, 50, 51, 52, 53, 55, 58, 59, 61, 76, 78, 79, 80, 82, 83, 85, 87, 95, 97, 98, 100, 101, 102, 105, 108, 112, 116, 121, 123, 124, 126, 132, 133, 136, 137, 138, 140, 142, 145, 146, 147, 150, 153, 154, 156, 157, 158, 162, 169, 172, 173, 174, 175, 178, 182, 183, 185, 187, 189, 190, 193, 195, 199, 200, 202, 206, 208, 210, 213, 222, 224, 237, 255, 263], "seri": [1, 6, 15, 23, 52, 53, 54, 55, 56, 82, 91, 120, 121, 127, 128, 132, 133, 140, 144, 157, 160, 193], "reusabl": [1, 6, 25], "swappabl": 1, "signatur": [1, 5, 8, 10, 14, 15, 23, 108, 136, 154, 163, 174, 175, 255], "characterist": [1, 14, 43, 144, 146, 147, 159, 165], "copi": [1, 5, 6, 12, 18, 22, 23, 44, 45, 50, 55, 58, 61, 73, 82, 97, 109, 110, 112, 114, 117, 123, 125, 130, 134, 136, 137, 138, 139, 142, 143, 144, 147, 150, 154, 158, 163, 169, 172, 182, 183, 184, 190, 196, 200, 201, 206, 208, 210, 220, 221, 236, 266], "loss_modul": [1, 160], "whatev": [1, 8, 22, 23, 99, 101, 112, 197], "convent": [1, 14, 52, 60, 112, 126, 137, 172], "receiv": [1, 4, 6, 14, 16, 55, 64, 87, 101, 111, 136, 160, 162, 163, 164, 173], "necessari": [1, 4, 5, 6, 7, 8, 10, 12, 15, 16, 18, 19, 23, 24, 44, 52, 53, 55, 60, 85, 87, 98, 112, 113, 122, 123, 124, 130, 134, 147, 150, 160, 162, 163, 164, 169, 174, 175, 178, 180, 183, 186, 193, 195, 197, 199, 200, 201, 251], "return": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 25, 33, 34, 37, 38, 40, 44, 45, 47, 49, 51, 52, 59, 60, 64, 65, 67, 68, 73, 75, 78, 79, 80, 82, 85, 87, 89, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118, 122, 123, 124, 126, 127, 128, 129, 130, 131, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 189, 191, 193, 195, 196, 197, 199, 200, 201, 202, 203, 205, 207, 208, 210, 211, 212, 214, 215, 216, 217, 220, 221, 222, 223, 224, 225, 228, 232, 233, 235, 236, 239, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 254, 255, 257, 258, 259], "replay_buff": [1, 160], "sampl": [1, 6, 8, 44, 47, 48, 49, 51, 52, 55, 60, 61, 75, 78, 79, 87, 92, 97, 99, 105, 110, 115, 116, 117, 118, 121, 123, 127, 130, 136, 137, 138, 140, 146, 147, 153, 154, 158, 160, 161, 162, 164, 172, 174, 175, 179, 183, 186, 195, 196, 199, 201, 207, 211, 227, 228, 265], "loss_dict": 1, "instanc": [1, 4, 5, 6, 7, 11, 12, 14, 21, 22, 23, 25, 45, 53, 54, 55, 58, 59, 60, 78, 82, 87, 97, 98, 99, 102, 103, 122, 123, 125, 126, 132, 133, 134, 135, 137, 145, 147, 158, 160, 162, 163, 164, 166, 173, 183, 184, 199, 201, 202, 204, 222, 255, 260], "written": [1, 4, 5, 6, 8, 10, 14, 22, 23, 25, 85, 100, 131, 137, 144, 151, 154, 155, 158, 165, 169, 172, 185, 191, 222], "under": [1, 4, 5, 8, 14, 18, 19, 23, 47, 49, 50, 52, 54, 56, 97, 99, 109, 113, 115, 124, 125, 136, 138, 140, 146, 147, 154, 157, 164, 169, 170, 178, 179, 180, 189, 190, 192, 194, 206, 224, 227, 265], "loss_": 1, "smth": 1, "where": [1, 3, 4, 6, 7, 8, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 32, 47, 49, 51, 60, 61, 64, 68, 75, 78, 79, 83, 85, 87, 97, 98, 99, 101, 102, 103, 110, 113, 122, 124, 126, 127, 128, 131, 133, 134, 135, 136, 138, 139, 140, 142, 145, 148, 150, 151, 153, 154, 155, 159, 160, 161, 162, 163, 164, 165, 166, 170, 173, 175, 176, 178, 179, 180, 183, 185, 189, 191, 194, 195, 196, 197, 202, 203, 206, 210, 228, 230, 266], "string": [1, 8, 15, 22, 23, 49, 51, 58, 59, 60, 65, 67, 105, 111, 115, 116, 118, 126, 127, 128, 137, 140, 157, 160, 166, 172, 183, 210, 211, 260, 263], "describ": [1, 4, 5, 6, 8, 10, 14, 15, 16, 19, 20, 21, 22, 23, 48, 49, 52, 58, 59, 61, 73, 97, 105, 114, 120, 136, 151, 160, 161, 164, 169, 172, 174, 175, 177, 198, 199, 200, 204, 255], "addit": [1, 2, 5, 7, 8, 11, 15, 17, 19, 50, 60, 73, 75, 97, 102, 105, 108, 109, 113, 122, 124, 125, 134, 136, 138, 139, 140, 143, 145, 148, 150, 157, 162, 163, 166, 170, 173, 174, 175, 177, 186, 191, 192, 193, 194, 199, 202, 203, 208, 210, 220, 222], "kei": [1, 6, 8, 11, 14, 15, 17, 49, 58, 75, 82, 90, 100, 103, 105, 109, 112, 114, 115, 116, 119, 122, 126, 137, 138, 140, 144, 147, 157, 159, 160, 161, 162, 165, 166, 169, 170, 172, 174, 175, 176, 178, 186, 195, 196, 197, 203, 211, 213, 222, 239, 257, 265], "mai": [1, 4, 5, 6, 8, 10, 11, 12, 14, 15, 17, 19, 21, 22, 23, 25, 42, 49, 50, 52, 58, 59, 60, 68, 73, 85, 95, 99, 112, 113, 116, 123, 124, 125, 126, 130, 131, 137, 138, 139, 140, 142, 144, 145, 146, 151, 153, 154, 159, 160, 163, 166, 169, 172, 173, 174, 175, 177, 178, 180, 182, 183, 186, 190, 193, 195, 199, 200, 201, 202, 203, 204, 210, 220, 230, 233, 255, 265, 266], "metric": [1, 17, 87, 97, 109, 122, 138, 147, 169, 172, 178, 179, 203, 223], "log": [1, 7, 14, 18, 49, 50, 52, 53, 58, 73, 97, 98, 99, 102, 103, 104, 118, 123, 126, 130, 133, 138, 149, 159, 160, 162, 164, 167, 169, 170, 172, 174, 175, 178, 186, 197, 210, 213, 258], "dure": [1, 3, 7, 8, 12, 14, 16, 18, 19, 25, 32, 37, 49, 52, 60, 61, 63, 64, 76, 78, 85, 97, 99, 103, 108, 111, 112, 113, 118, 121, 122, 123, 124, 125, 128, 130, 131, 132, 134, 137, 143, 144, 145, 150, 151, 154, 158, 159, 160, 161, 162, 164, 169, 173, 177, 178, 179, 186, 198, 200, 204, 208, 222, 225, 226, 227, 230, 255], "reason": [1, 5, 6, 8, 14, 15, 17, 23, 25, 52, 78, 82, 97, 99, 102, 112, 117, 125, 130, 136, 145, 150, 158, 160, 165, 166, 185, 193, 203, 225, 255], "independ": [1, 7, 23, 49, 60, 79, 103, 108, 110, 146, 147, 151, 163, 191], "user": [1, 3, 5, 14, 17, 18, 19, 22, 24, 25, 44, 49, 50, 60, 76, 79, 82, 83, 85, 97, 101, 108, 110, 113, 114, 115, 122, 124, 128, 134, 138, 140, 143, 144, 145, 148, 162, 164, 165, 166, 167, 169, 172, 174, 175, 176, 177, 178, 179, 180, 183, 186, 189, 191, 192, 193, 194, 197, 198, 199, 200, 201, 202, 203, 206, 209, 222, 230, 265, 266], "sum": [1, 2, 4, 5, 7, 11, 13, 14, 16, 18, 19, 21, 25, 37, 38, 40, 43, 44, 49, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 76, 78, 82, 87, 89, 92, 97, 98, 99, 101, 103, 104, 109, 111, 115, 117, 122, 123, 125, 127, 128, 129, 130, 131, 136, 137, 146, 147, 151, 153, 154, 157, 158, 160, 161, 162, 163, 164, 167, 169, 173, 174, 175, 176, 183, 191, 192, 193, 194, 199, 200, 212, 213, 214, 216, 223, 233, 255, 261], "done": [1, 4, 5, 6, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 37, 38, 49, 54, 58, 59, 82, 85, 97, 98, 99, 108, 113, 115, 122, 123, 124, 125, 128, 130, 136, 137, 139, 144, 145, 147, 148, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 170, 172, 174, 175, 185, 186, 196, 203, 204, 210, 222, 225, 259], "via": [1, 3, 5, 6, 7, 16, 17, 18, 20, 22, 23, 54, 55, 58, 59, 73, 85, 97, 121, 122, 123, 124, 126, 136, 137, 140, 146, 154, 159, 160, 165, 170, 172, 173, 177, 178, 179, 190, 193, 203, 222, 263, 269], "loss_val": [1, 137, 160], "item": [1, 2, 6, 7, 9, 10, 11, 12, 14, 15, 34, 37, 38, 40, 44, 49, 52, 60, 63, 64, 65, 67, 68, 69, 72, 73, 87, 90, 92, 94, 95, 96, 97, 98, 101, 103, 104, 109, 111, 112, 114, 115, 117, 118, 119, 122, 123, 127, 128, 130, 136, 137, 138, 140, 142, 144, 147, 148, 158, 159, 160, 161, 162, 163, 164, 166, 167, 170, 172, 179, 180, 182, 195, 211, 215, 220, 223, 232, 236, 249, 252, 264, 266], "startswith": [1, 83, 148, 166, 248], "parent": [1, 14, 104, 115, 143, 147, 184, 186], "As": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 19, 20, 21, 22, 23, 25, 43, 49, 50, 52, 58, 59, 60, 61, 73, 85, 87, 97, 103, 105, 108, 112, 116, 118, 122, 123, 124, 125, 126, 127, 134, 136, 137, 138, 142, 143, 144, 145, 146, 147, 150, 153, 154, 157, 158, 160, 161, 162, 163, 164, 165, 169, 172, 175, 176, 177, 178, 179, 180, 183, 185, 186, 189, 190, 194, 195, 197, 199, 202, 206, 210, 224], "mani": [1, 2, 4, 5, 6, 10, 14, 15, 17, 18, 23, 25, 49, 51, 52, 60, 61, 65, 69, 73, 82, 97, 99, 100, 101, 104, 105, 107, 111, 113, 122, 124, 126, 127, 130, 136, 138, 139, 146, 148, 150, 151, 155, 158, 160, 162, 163, 166, 174, 175, 177, 178, 193, 196, 203, 206, 207, 222, 255, 263, 265, 266], "expect": [1, 4, 5, 6, 10, 11, 14, 20, 22, 23, 32, 45, 47, 49, 51, 58, 59, 60, 61, 73, 85, 87, 97, 101, 102, 103, 112, 113, 117, 119, 126, 130, 134, 135, 137, 146, 147, 153, 154, 157, 159, 160, 161, 162, 163, 165, 172, 173, 174, 175, 177, 179, 180, 183, 189, 190, 196, 197, 199, 201, 202, 206, 207, 222, 225], "similar": [1, 3, 5, 8, 10, 11, 14, 15, 19, 22, 23, 48, 49, 58, 59, 61, 82, 83, 97, 98, 103, 108, 116, 124, 131, 135, 136, 137, 140, 144, 150, 154, 160, 162, 163, 164, 165, 166, 169, 170, 172, 177, 179, 180, 183, 186, 191, 192, 193, 194, 195, 200, 201, 220], "structur": [1, 4, 5, 6, 8, 9, 14, 18, 19, 20, 21, 22, 23, 33, 48, 49, 52, 53, 60, 61, 78, 85, 97, 98, 102, 105, 110, 112, 121, 132, 137, 139, 144, 147, 148, 150, 154, 155, 157, 160, 164, 170, 172, 173, 179, 194, 196, 198, 199, 207, 210, 263, 265, 269], "make": [1, 4, 5, 6, 8, 10, 12, 14, 18, 19, 22, 23, 43, 44, 45, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 68, 69, 73, 87, 97, 99, 100, 101, 102, 103, 108, 111, 112, 113, 114, 115, 117, 118, 121, 122, 123, 124, 126, 127, 128, 130, 134, 136, 137, 138, 140, 143, 144, 145, 146, 147, 150, 153, 154, 156, 157, 158, 160, 161, 162, 163, 164, 165, 166, 170, 172, 173, 174, 175, 177, 179, 183, 185, 186, 190, 191, 192, 193, 194, 195, 196, 197, 199, 202, 207, 215, 220, 222, 225, 229, 230, 255, 259, 265, 267], "possibl": [1, 2, 4, 5, 6, 8, 10, 14, 15, 17, 22, 23, 52, 60, 61, 75, 98, 101, 108, 119, 125, 130, 131, 137, 139, 142, 144, 146, 147, 150, 158, 159, 160, 162, 163, 166, 179, 183, 186, 189, 195, 199, 200, 201, 202, 203, 204, 206, 222, 225, 255, 265], "across": [1, 5, 7, 8, 9, 11, 14, 16, 18, 20, 24, 49, 52, 54, 55, 56, 61, 82, 97, 105, 115, 120, 122, 123, 124, 132, 133, 134, 135, 136, 139, 147, 150, 157, 163, 164, 176, 177, 182, 213, 237, 263], "modal": [1, 60], "complex": [1, 6, 23, 25, 50, 61, 67, 68, 97, 105, 112, 120, 123, 134, 151, 154, 162, 164, 170, 195, 205, 211], "multipl": [1, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 23, 40, 45, 48, 49, 53, 54, 55, 56, 61, 65, 78, 79, 81, 82, 87, 97, 101, 110, 120, 123, 124, 125, 126, 127, 128, 134, 135, 136, 139, 140, 144, 145, 147, 150, 159, 160, 162, 163, 164, 166, 169, 170, 172, 174, 175, 176, 177, 178, 183, 185, 195, 201, 202, 203, 237, 252, 265, 266], "entri": [1, 4, 11, 14, 23, 53, 75, 98, 101, 103, 109, 110, 112, 115, 132, 137, 144, 145, 157, 160, 162, 165, 169, 174, 175, 193, 194, 195, 197], "word": [1, 6, 7, 10, 11, 14, 42, 44, 49, 60, 73, 79, 82, 97, 98, 100, 102, 112, 115, 116, 118, 121, 127, 128, 136, 138, 144, 153, 154, 157, 164, 166, 177, 182, 192, 194, 195, 197, 201, 265], "oblivi": [1, 160], "type": [1, 4, 5, 6, 8, 9, 10, 14, 18, 19, 20, 21, 22, 23, 37, 38, 40, 42, 48, 49, 50, 51, 52, 60, 61, 73, 78, 80, 82, 85, 95, 101, 105, 108, 113, 118, 120, 122, 123, 124, 126, 135, 138, 139, 140, 143, 144, 145, 148, 149, 155, 156, 157, 160, 162, 163, 164, 165, 169, 172, 173, 174, 175, 176, 178, 180, 182, 186, 189, 191, 196, 199, 201, 202, 204, 206, 210, 211, 215, 218, 222, 223, 224, 225, 230, 246, 260, 265], "being": [1, 3, 4, 5, 6, 10, 12, 14, 17, 20, 21, 23, 42, 47, 49, 52, 58, 59, 60, 76, 80, 82, 97, 98, 99, 101, 103, 105, 110, 113, 117, 122, 124, 126, 130, 136, 137, 143, 154, 157, 160, 161, 163, 178, 186, 190, 192, 193, 195, 197, 201, 203, 204, 222], "run": [1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 51, 52, 56, 57, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 82, 87, 89, 90, 92, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 111, 112, 113, 114, 116, 117, 118, 119, 121, 122, 123, 124, 125, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 170, 173, 174, 176, 177, 178, 179, 182, 183, 184, 185, 187, 189, 190, 191, 192, 193, 194, 195, 197, 198, 199, 200, 201, 202, 203, 205, 206, 207, 208, 210, 211, 215, 220, 222, 224, 225, 227, 229, 230, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 255, 257, 258, 265], "elementari": [1, 2], "those": [1, 4, 5, 6, 10, 11, 14, 17, 42, 43, 61, 79, 87, 98, 103, 113, 115, 116, 124, 125, 127, 136, 139, 144, 153, 154, 156, 157, 164, 166, 170, 172, 174, 175, 178, 183, 185, 190, 192, 203, 204, 206, 207, 208, 225, 265], "keep": [1, 6, 7, 10, 11, 14, 23, 43, 49, 51, 52, 60, 61, 73, 82, 85, 95, 97, 99, 101, 102, 108, 112, 116, 119, 121, 122, 123, 124, 125, 127, 128, 133, 134, 137, 143, 145, 151, 158, 160, 164, 166, 178, 182, 183, 199, 210, 220], "didact": [1, 136], "displai": [1, 2, 5, 6, 12, 14, 34, 44, 52, 58, 75, 108, 109, 117, 130, 140, 158, 161, 166, 169, 260, 263], "each": [1, 2, 5, 6, 7, 8, 10, 11, 12, 14, 16, 17, 18, 19, 21, 23, 24, 25, 34, 43, 44, 45, 48, 49, 51, 52, 53, 55, 56, 58, 59, 60, 61, 65, 68, 73, 75, 76, 79, 82, 83, 85, 87, 97, 98, 99, 102, 103, 107, 108, 109, 111, 112, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 131, 132, 133, 134, 135, 136, 137, 139, 142, 143, 144, 146, 147, 148, 150, 151, 153, 154, 155, 157, 158, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 174, 175, 176, 177, 178, 179, 186, 187, 191, 194, 195, 197, 199, 200, 202, 203, 210, 211, 213, 222, 233, 255, 263, 265], "popul": [1, 14, 22, 43, 49, 58, 59, 87, 122, 137, 147, 160, 162, 213], "later": [1, 3, 4, 5, 6, 11, 23, 47, 49, 52, 60, 73, 78, 87, 97, 101, 102, 112, 113, 123, 124, 127, 128, 130, 131, 135, 136, 139, 142, 143, 144, 145, 146, 147, 151, 155, 160, 161, 164, 165, 166, 170, 172, 174, 175, 183, 191, 199, 200, 213, 225, 230, 234], "stage": [1, 7, 14, 16, 149, 187, 190, 208], "start": [1, 4, 5, 6, 9, 11, 14, 16, 17, 18, 19, 23, 24, 25, 43, 44, 49, 50, 52, 53, 54, 55, 59, 60, 61, 73, 87, 97, 98, 100, 101, 105, 113, 116, 120, 121, 122, 124, 125, 126, 127, 128, 130, 135, 136, 138, 140, 144, 145, 146, 147, 149, 150, 153, 154, 158, 159, 161, 162, 163, 166, 169, 170, 172, 173, 174, 177, 178, 179, 183, 185, 186, 189, 193, 197, 199, 200, 201, 202, 203, 205, 210, 225, 241, 254, 266], "solv": [1, 6, 14, 49, 51, 97, 103, 117, 118, 150, 154, 158, 160, 162, 164, 177, 193], "task": [1, 6, 7, 13, 14, 17, 21, 24, 49, 58, 59, 60, 75, 97, 98, 103, 109, 113, 116, 117, 118, 119, 120, 121, 123, 137, 138, 154, 158, 160, 161, 166, 167, 172, 179, 186, 203, 206, 210], "strategi": [1, 5, 17, 18, 24, 52, 82, 113, 121, 128, 136, 145, 146, 150, 155, 162, 163, 203], "predict": [1, 9, 17, 19, 20, 33, 37, 38, 43, 44, 49, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 87, 89, 90, 92, 97, 98, 102, 103, 104, 111, 113, 115, 116, 118, 121, 124, 126, 127, 128, 138, 139, 146, 147, 150, 155, 161, 166, 170, 179, 182, 183, 199, 200, 203, 215, 221, 259, 260], "henc": [1, 14, 17, 43, 48, 61, 78, 80, 82, 113, 123, 125, 134, 135, 148, 150, 151, 156, 160, 162, 164, 177, 203, 222], "two": [1, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24, 25, 40, 42, 43, 48, 49, 50, 52, 57, 58, 59, 60, 73, 75, 83, 85, 87, 92, 95, 97, 98, 99, 101, 102, 103, 105, 107, 108, 109, 116, 117, 119, 122, 123, 126, 127, 130, 131, 133, 134, 135, 136, 137, 140, 142, 144, 145, 146, 147, 148, 150, 151, 154, 155, 156, 157, 158, 160, 161, 162, 164, 165, 166, 172, 176, 177, 178, 179, 180, 184, 185, 187, 192, 194, 195, 197, 199, 200, 201, 202, 203, 204, 205, 226, 227, 231, 255, 265, 266, 270], "constructor": [1, 6, 10, 11, 12, 21, 22, 23, 25, 60, 65, 67, 69, 78, 85, 111, 116, 122, 123, 134, 135, 144, 156, 157, 160, 162, 164, 194, 204, 255], "both": [1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 14, 16, 19, 20, 21, 22, 23, 24, 25, 42, 49, 51, 52, 58, 59, 60, 61, 73, 82, 85, 97, 103, 109, 113, 116, 118, 122, 124, 126, 127, 130, 133, 134, 135, 136, 142, 143, 145, 146, 148, 150, 151, 157, 158, 160, 162, 163, 164, 165, 166, 174, 175, 176, 177, 178, 179, 180, 183, 185, 186, 187, 191, 194, 196, 197, 199, 201, 202, 211, 222, 225, 230, 233, 263, 265], "compat": [1, 4, 5, 6, 8, 11, 17, 50, 60, 94, 95, 101, 137, 148, 165, 174, 175, 183, 189, 204, 206, 224], "comput": [1, 3, 5, 6, 8, 11, 12, 13, 16, 17, 19, 20, 21, 23, 24, 25, 32, 37, 38, 40, 44, 47, 48, 49, 52, 53, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 83, 85, 95, 97, 98, 99, 100, 102, 105, 107, 110, 111, 115, 117, 119, 120, 121, 122, 123, 124, 125, 126, 130, 131, 132, 133, 134, 136, 137, 138, 140, 142, 143, 144, 145, 147, 149, 150, 153, 154, 155, 157, 159, 160, 161, 163, 165, 166, 169, 172, 173, 174, 175, 177, 178, 179, 183, 185, 189, 190, 195, 196, 197, 198, 199, 200, 201, 203, 204, 207, 208, 210, 213, 221, 225, 230, 233, 265], "fit": [1, 6, 7, 9, 10, 11, 12, 20, 24, 61, 87, 103, 122, 123, 124, 134, 149, 150, 164, 182, 265], "crucial": [1, 2, 12, 14, 23, 82, 101, 137, 160, 225], "convert_to_funct": 1, "extract": [1, 5, 20, 49, 52, 58, 59, 73, 97, 116, 117, 127, 128, 138, 142, 145, 155, 158, 160, 166, 173, 174, 175, 179, 210], "convert": [1, 5, 9, 10, 12, 14, 19, 20, 22, 23, 44, 49, 51, 52, 55, 73, 75, 95, 97, 105, 107, 110, 112, 113, 115, 116, 118, 119, 121, 127, 128, 138, 140, 158, 159, 160, 161, 162, 163, 167, 170, 178, 179, 182, 184, 185, 186, 190, 191, 192, 194, 195, 198, 201, 202, 211, 220, 222, 225, 226, 227, 229, 230, 255], "strictli": [1, 160], "speak": [1, 8, 43, 125, 136, 150], "perfectli": [1, 14, 65, 78, 111], "encourag": [1, 6, 19, 140, 161, 166, 172], "usag": [1, 3, 4, 11, 13, 15, 21, 23, 37, 60, 82, 109, 116, 121, 123, 125, 136, 137, 145, 146, 160, 162, 164, 165, 169, 178, 185, 186, 190, 195, 196, 197, 201, 222, 259, 265], "doe": [1, 2, 5, 6, 8, 13, 14, 15, 19, 22, 23, 25, 43, 47, 60, 61, 73, 79, 80, 85, 97, 98, 99, 101, 103, 105, 108, 112, 113, 117, 122, 123, 131, 134, 135, 136, 137, 140, 143, 146, 147, 148, 150, 153, 154, 159, 160, 161, 163, 164, 165, 166, 169, 170, 173, 174, 175, 177, 179, 183, 184, 185, 192, 193, 194, 199, 201, 204, 205, 207, 210, 225, 227, 230, 233, 265], "often": [1, 4, 5, 6, 10, 14, 17, 49, 73, 87, 97, 99, 101, 103, 112, 113, 124, 125, 126, 128, 147, 154, 178, 195, 203, 205, 265], "same": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 17, 19, 20, 21, 22, 23, 25, 32, 40, 43, 44, 47, 49, 51, 52, 53, 55, 58, 59, 60, 65, 73, 78, 80, 85, 87, 95, 97, 98, 99, 101, 102, 103, 105, 108, 109, 111, 112, 118, 119, 122, 123, 124, 125, 127, 130, 133, 134, 136, 138, 139, 140, 142, 145, 146, 147, 148, 150, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 177, 178, 180, 182, 183, 186, 187, 191, 192, 193, 194, 195, 196, 199, 200, 201, 202, 203, 210, 220, 224, 225, 230, 233, 255, 259, 263, 265], "usual": [1, 5, 6, 8, 19, 23, 43, 58, 59, 60, 61, 99, 100, 102, 103, 113, 117, 124, 125, 128, 130, 131, 134, 136, 137, 145, 148, 153, 157, 158, 160, 167, 197, 207, 263], "former": [1, 5, 61, 79, 127, 128, 166], "lag": [1, 160], "absolut": [1, 6, 7, 10, 82, 99, 126, 157, 161, 210], "dilut": 1, "averag": [1, 3, 19, 49, 52, 61, 82, 87, 97, 113, 115, 123, 127, 128, 130, 136, 138, 144, 147, 155, 160, 161, 164, 166, 167, 169, 177, 178, 183, 199, 200], "associ": [1, 5, 6, 8, 10, 17, 50, 82, 131, 142, 143, 157, 165, 172, 192, 203, 204], "One": [1, 2, 4, 5, 6, 7, 10, 11, 15, 21, 23, 49, 51, 60, 61, 73, 79, 82, 97, 98, 99, 101, 122, 123, 124, 125, 128, 134, 136, 138, 139, 143, 144, 150, 153, 154, 167, 170, 173, 178, 179, 193, 197, 202, 207, 211, 225, 265, 266], "advantag": [1, 3, 6, 14, 17, 23, 49, 60, 85, 95, 98, 107, 120, 122, 125, 136, 137, 154, 160, 173, 178, 183, 186, 194, 203, 211, 222, 224], "match": [1, 4, 5, 10, 14, 17, 19, 20, 22, 49, 51, 58, 59, 60, 61, 68, 75, 76, 92, 97, 105, 108, 111, 112, 113, 135, 138, 139, 143, 145, 148, 150, 153, 155, 160, 163, 173, 174, 175, 183, 186, 192, 194, 197, 199, 203, 222], "exactli": [1, 5, 7, 8, 10, 12, 17, 25, 43, 51, 52, 60, 78, 80, 101, 103, 105, 137, 145, 154, 175, 186, 203], "configur": [1, 4, 5, 6, 14, 18, 19, 20, 22, 23, 24, 42, 49, 50, 60, 61, 82, 113, 122, 124, 132, 134, 143, 145, 150, 153, 158, 160, 163, 169, 172, 177, 184, 185, 201, 202, 210, 222, 227, 228, 269], "pessimist": [1, 160], "bound": [1, 23, 49, 112, 126, 145, 160, 161, 169, 174, 175, 177, 179, 185], "pai": [1, 10, 45, 49, 60, 115], "attent": [1, 7, 10, 42, 45, 49, 115, 118, 119, 121, 124, 137, 167, 185, 186, 195, 255], "create_target_param": 1, "keyword": [1, 5, 157, 160, 172], "argument": [1, 2, 4, 5, 6, 8, 14, 21, 22, 23, 32, 43, 44, 48, 51, 55, 60, 69, 76, 78, 82, 89, 97, 99, 102, 103, 109, 111, 112, 115, 122, 123, 126, 127, 128, 133, 134, 136, 137, 139, 145, 146, 155, 156, 157, 160, 162, 163, 164, 165, 169, 172, 173, 174, 175, 180, 190, 193, 196, 201, 207, 208, 210, 211, 224, 225, 265, 266], "below": [1, 2, 4, 6, 10, 11, 12, 14, 16, 17, 18, 19, 20, 23, 24, 34, 43, 45, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 79, 82, 85, 97, 98, 99, 101, 102, 103, 105, 107, 108, 113, 114, 116, 118, 119, 124, 126, 130, 132, 133, 134, 135, 136, 137, 138, 142, 145, 148, 150, 153, 156, 158, 160, 161, 162, 163, 164, 165, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 185, 186, 187, 190, 192, 193, 194, 195, 197, 204, 205, 206, 213, 220, 224, 225, 227, 230, 255, 265], "tell": [1, 18, 23, 42, 69, 87, 103, 111, 126, 127, 137, 139, 142, 153, 161, 162, 164, 166, 176, 189, 190, 211, 265], "fals": [1, 2, 6, 7, 10, 11, 12, 14, 19, 20, 23, 24, 34, 37, 38, 42, 43, 44, 49, 52, 55, 59, 60, 63, 64, 73, 82, 83, 87, 89, 92, 94, 96, 97, 101, 110, 111, 112, 115, 116, 117, 119, 122, 123, 124, 125, 126, 130, 135, 138, 142, 144, 145, 147, 148, 149, 151, 153, 154, 158, 159, 160, 161, 162, 163, 165, 166, 167, 170, 172, 173, 174, 175, 177, 178, 179, 180, 183, 185, 186, 187, 192, 193, 194, 196, 197, 199, 200, 202, 203, 208, 210, 212, 213, 220, 221, 222, 223, 225, 230, 232, 234, 246, 248, 249, 250, 252, 254, 255, 256, 261, 263, 264, 265, 266], "target_actor_network_param": 1, "attribut": [1, 6, 11, 14, 22, 25, 43, 47, 53, 60, 73, 76, 79, 82, 85, 90, 103, 108, 116, 125, 135, 137, 142, 148, 149, 154, 157, 174, 175, 177, 183, 186, 195, 196, 198, 201, 205, 209, 231, 265], "access": [1, 5, 6, 7, 10, 12, 14, 17, 19, 23, 50, 60, 68, 73, 78, 79, 87, 97, 102, 111, 112, 118, 119, 122, 125, 132, 136, 143, 154, 159, 161, 163, 172, 174, 175, 178, 186, 189, 191, 192, 194, 196, 203, 210, 211, 220, 255, 263], "detach": [1, 2, 6, 9, 11, 12, 13, 20, 32, 52, 73, 89, 90, 95, 101, 105, 108, 138, 151, 155, 166, 182, 186, 231, 246], "def": [1, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 33, 34, 37, 38, 44, 45, 47, 49, 51, 52, 53, 55, 60, 64, 65, 67, 73, 75, 78, 79, 85, 87, 89, 90, 92, 93, 94, 96, 97, 98, 99, 102, 103, 104, 105, 108, 109, 111, 112, 113, 115, 116, 117, 118, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 134, 135, 136, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 189, 191, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 207, 210, 211, 212, 213, 214, 215, 216, 217, 218, 220, 221, 223, 225, 228, 230, 232, 233, 235, 236, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 255, 257, 258, 261, 265], "_init": 1, "self": [1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 24, 25, 33, 34, 37, 38, 44, 45, 47, 49, 51, 52, 53, 55, 60, 65, 67, 73, 78, 79, 85, 87, 89, 92, 93, 94, 96, 97, 98, 99, 102, 103, 104, 105, 108, 109, 111, 112, 115, 118, 123, 124, 125, 127, 128, 129, 130, 134, 135, 136, 139, 143, 144, 145, 147, 149, 150, 151, 154, 155, 157, 161, 162, 163, 164, 166, 167, 169, 170, 172, 173, 174, 175, 178, 179, 180, 182, 183, 184, 186, 195, 196, 197, 199, 200, 201, 204, 205, 211, 214, 216, 217, 218, 220, 221, 223, 224, 225, 228, 230, 235, 236, 239, 240, 241, 242, 243, 244, 245, 246, 250, 251, 252, 254, 255], "actor_network": [1, 160], "value_network": [1, 160], "none": [1, 7, 11, 12, 14, 15, 17, 18, 19, 20, 24, 34, 49, 51, 60, 63, 64, 76, 79, 87, 89, 90, 97, 104, 105, 108, 111, 113, 115, 117, 118, 119, 122, 123, 130, 135, 136, 138, 139, 142, 143, 145, 146, 147, 148, 149, 151, 153, 155, 158, 161, 163, 165, 166, 172, 174, 175, 176, 179, 180, 183, 186, 196, 203, 204, 209, 211, 215, 217, 218, 232, 246, 247, 255, 263, 265], "super": [1, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 25, 33, 37, 38, 44, 45, 47, 49, 52, 59, 60, 65, 67, 73, 78, 79, 85, 87, 89, 92, 93, 94, 96, 97, 98, 99, 102, 103, 104, 105, 109, 111, 112, 115, 118, 123, 125, 127, 128, 129, 130, 134, 135, 139, 143, 144, 147, 149, 150, 151, 154, 155, 157, 161, 162, 163, 164, 165, 166, 167, 170, 172, 173, 174, 175, 178, 180, 182, 195, 196, 197, 199, 200, 201, 204, 205, 210, 211, 214, 216, 217, 220, 221, 223, 224, 225, 228, 235, 236, 239, 241, 242, 243, 244, 245, 250, 251, 252, 254], "true": [1, 2, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 22, 23, 24, 32, 34, 37, 38, 41, 42, 43, 44, 45, 47, 49, 51, 52, 55, 58, 59, 60, 63, 64, 68, 73, 76, 82, 87, 89, 90, 92, 94, 95, 96, 97, 98, 101, 104, 108, 109, 110, 111, 113, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 127, 129, 130, 131, 134, 135, 136, 137, 138, 140, 142, 144, 145, 147, 148, 149, 150, 154, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 177, 178, 179, 180, 183, 185, 186, 187, 189, 190, 192, 193, 194, 195, 196, 199, 200, 201, 202, 203, 205, 206, 207, 208, 210, 213, 214, 215, 216, 220, 222, 223, 224, 225, 226, 227, 230, 231, 232, 233, 238, 240, 246, 252, 254, 255, 256, 257, 258, 259, 260, 261, 263, 266], "compare_against": 1, "list": [1, 5, 6, 8, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 24, 44, 47, 48, 49, 50, 52, 60, 61, 68, 73, 87, 90, 101, 102, 103, 105, 107, 108, 110, 111, 113, 115, 116, 118, 119, 125, 127, 128, 135, 136, 138, 143, 144, 148, 154, 155, 157, 158, 159, 160, 162, 163, 164, 166, 169, 170, 172, 173, 174, 175, 179, 184, 186, 187, 193, 195, 200, 202, 203, 206, 208, 210, 211, 217, 218, 220, 224, 225, 229, 230, 233, 255, 269], "actor_in_kei": 1, "in_kei": [1, 14, 137, 160], "sinc": [1, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 19, 20, 21, 23, 44, 49, 51, 52, 53, 60, 65, 73, 78, 85, 97, 98, 99, 101, 102, 103, 105, 111, 113, 115, 116, 117, 118, 119, 124, 126, 127, 128, 131, 132, 136, 137, 140, 143, 144, 149, 151, 153, 154, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 170, 172, 173, 176, 177, 179, 180, 183, 184, 185, 186, 189, 190, 191, 192, 193, 199, 200, 201, 202, 206, 225, 233, 265], "base": [1, 5, 6, 7, 9, 10, 11, 14, 16, 17, 18, 20, 23, 24, 25, 42, 44, 49, 52, 57, 58, 59, 60, 73, 75, 76, 78, 85, 87, 97, 99, 105, 109, 112, 115, 116, 119, 120, 121, 122, 123, 126, 127, 129, 137, 138, 147, 156, 157, 161, 163, 166, 169, 170, 172, 175, 178, 179, 182, 183, 185, 186, 187, 193, 197, 198, 199, 200, 201, 202, 203, 225, 227, 265], "singl": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 17, 18, 20, 21, 22, 23, 43, 47, 51, 53, 54, 55, 56, 58, 59, 60, 61, 78, 85, 87, 97, 99, 113, 115, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 144, 146, 147, 151, 155, 160, 161, 162, 163, 164, 166, 169, 172, 173, 174, 175, 176, 180, 183, 185, 195, 199, 202, 203, 207, 220, 225, 229, 255, 265], "critic": [1, 52, 73, 85, 133, 225, 230], "actor_crit": 1, "actorcriticwrapp": 1, "loss_funct": [1, 99, 102, 103], "l2": [1, 87, 93, 157], "q": [1, 7, 17, 43, 49, 60, 121, 124, 147, 165, 172, 197, 199, 203, 236], "empir": [1, 151, 160], "bootstrap": [1, 137], "td": [1, 14, 52, 137], "varianc": [1, 6, 19, 160], "bia": [1, 2, 5, 6, 7, 9, 13, 19, 43, 47, 52, 68, 69, 93, 99, 104, 109, 111, 112, 115, 123, 129, 130, 135, 137, 143, 146, 157, 160, 164, 165, 167, 174, 180, 182, 186, 195, 197, 200, 202, 203, 205, 220, 225, 246, 249], "mean": [1, 2, 5, 6, 7, 10, 12, 14, 19, 23, 25, 42, 47, 49, 51, 52, 58, 59, 60, 68, 73, 76, 80, 82, 85, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 109, 111, 112, 115, 116, 117, 122, 124, 126, 127, 130, 136, 138, 140, 144, 147, 148, 150, 154, 158, 159, 160, 161, 163, 164, 165, 166, 167, 169, 170, 172, 174, 175, 183, 186, 189, 191, 192, 193, 195, 199, 200, 202, 206, 207, 208, 212, 230, 231, 233, 236, 240, 255], "obtain": [1, 9, 24, 49, 60, 68, 87, 111, 126, 130, 136, 138, 143, 146, 155, 160, 161, 163, 169, 172, 179], "reward": [1, 4, 14, 137, 147, 160, 161, 162, 164], "noth": [1, 16, 23, 42, 73, 113, 131, 150, 160, 164, 169, 180], "mont": 1, "carlo": 1, "whole": [1, 3, 25, 44, 47, 60, 112, 113, 121, 136, 144, 157, 158, 160, 166, 183, 184, 186, 192, 202, 207, 210], "sequenc": [1, 5, 6, 12, 21, 23, 48, 49, 60, 67, 68, 98, 100, 103, 111, 112, 113, 115, 116, 118, 137, 138, 154, 160, 165, 166, 174, 175, 176, 183, 185, 186, 195, 197, 207, 213, 220, 225, 255, 265], "upcom": 1, "intermedi": [1, 17, 25, 74, 108, 112, 120, 121, 132, 135, 142, 145, 146, 147, 150, 153, 202, 203], "lambda": [1, 5, 7, 17, 20, 22, 49, 90, 104, 115, 116, 125, 129, 144, 159, 161, 162, 173, 174, 175, 203, 207, 232, 233, 248, 257, 265], "compromis": 1, "easi": [1, 2, 5, 6, 9, 23, 24, 44, 45, 51, 58, 59, 60, 61, 68, 80, 95, 97, 99, 122, 124, 126, 136, 143, 144, 146, 151, 154, 160, 169, 177, 184, 187, 197, 203, 207, 211, 222], "valueestim": 1, "enum": 1, "pointer": [1, 5, 6, 22, 23, 98, 163], "defin": [1, 2, 5, 12, 14, 15, 16, 17, 18, 20, 21, 23, 25, 38, 43, 45, 52, 58, 59, 62, 65, 67, 68, 69, 73, 78, 79, 85, 87, 98, 99, 103, 105, 111, 112, 113, 116, 118, 121, 122, 123, 125, 127, 132, 136, 137, 139, 140, 143, 144, 147, 151, 153, 155, 161, 162, 163, 165, 167, 169, 170, 173, 174, 175, 184, 189, 191, 197, 201, 202, 203, 210, 211, 222, 230, 237, 263], "default": [1, 3, 5, 6, 8, 9, 10, 11, 12, 15, 19, 20, 21, 24, 43, 45, 49, 51, 52, 55, 60, 63, 64, 69, 75, 76, 78, 82, 95, 99, 101, 108, 111, 115, 116, 117, 118, 119, 121, 122, 123, 124, 130, 135, 136, 137, 139, 142, 143, 145, 148, 150, 153, 156, 158, 159, 160, 162, 163, 164, 165, 169, 170, 172, 173, 174, 175, 178, 179, 180, 182, 183, 187, 190, 194, 195, 196, 197, 199, 200, 201, 202, 204, 208, 210, 218, 222, 225, 230, 232, 237, 246, 255, 256, 263, 264, 265], "simplest": [1, 6, 23, 47, 99, 137, 160, 166], "util": [1, 3, 5, 7, 10, 14, 15, 17, 19, 20, 22, 23, 24, 25, 33, 34, 37, 38, 44, 45, 49, 51, 52, 53, 55, 60, 73, 75, 82, 87, 92, 94, 96, 104, 109, 112, 113, 115, 116, 117, 118, 119, 121, 122, 123, 124, 126, 129, 130, 135, 136, 138, 139, 142, 143, 145, 146, 148, 149, 154, 155, 156, 158, 159, 160, 163, 165, 166, 167, 169, 170, 172, 173, 177, 178, 179, 183, 185, 186, 190, 195, 196, 199, 200, 201, 202, 203, 204, 206, 208, 210, 211, 212, 220, 222, 223, 224, 226, 227, 238, 242, 247, 248, 249, 252, 254, 255, 256, 257], "default_value_estim": 1, "td0": 1, "instruct": [1, 6, 7, 19, 23, 24, 42, 108, 113, 115, 116, 118, 127, 128, 137, 138, 142, 157, 158, 160, 162, 164, 166, 177, 178, 183, 196, 199, 200, 201, 208, 210, 222, 233, 248], "queri": [1, 14, 22, 49, 60, 112, 118, 163, 165, 166, 179, 186, 195, 199, 202], "default_value_kwarg": 1, "td0estim": 1, "td1estim": 1, "tdlambdaestim": 1, "make_value_estim": 1, "value_typ": 1, "hyperparam": [1, 203], "hp": 1, "dict": [1, 18, 49, 51, 143, 144, 147, 148, 153, 154, 157, 160, 174, 175, 179, 197, 202, 211, 218, 246], "hasattr": 1, "gamma": [1, 7, 115, 117, 122, 123, 130, 147, 158, 160, 161, 162, 164, 179], "value_kei": 1, "state_action_valu": [1, 161], "td1": 1, "_value_estim": 1, "elif": [1, 12, 16, 19, 49, 52, 60, 135, 138, 147, 148, 151, 157, 186, 218], "gae": [1, 160], "rais": [1, 8, 11, 12, 19, 49, 60, 73, 124, 125, 128, 145, 147, 148, 159, 160, 173, 174, 175, 206, 218, 246], "notimplementederror": [1, 246], "f": [1, 5, 7, 8, 9, 11, 12, 14, 17, 18, 19, 22, 32, 33, 34, 37, 38, 40, 42, 43, 44, 47, 48, 49, 53, 55, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 78, 87, 89, 90, 92, 93, 94, 96, 97, 99, 102, 103, 104, 105, 108, 110, 111, 112, 113, 116, 117, 118, 122, 123, 124, 125, 127, 130, 134, 135, 136, 137, 138, 139, 140, 145, 146, 147, 149, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 170, 172, 173, 174, 175, 179, 182, 183, 185, 186, 187, 189, 190, 195, 197, 199, 200, 203, 206, 207, 212, 214, 215, 216, 217, 218, 221, 223, 228, 233, 235, 236, 239, 241, 242, 243, 244, 245, 246, 248, 250, 251, 252, 254, 257, 258, 259, 260, 261, 265], "tdlambda": 1, "unknown": [1, 49, 60, 75, 116, 215], "set_kei": 1, "central": [1, 8, 73, 102, 103, 132], "quit": [1, 6, 17, 23, 49, 60, 73, 125, 136, 140, 150, 153, 160, 164, 191, 203, 210], "weight": [1, 2, 3, 4, 5, 6, 7, 9, 12, 13, 14, 17, 19, 20, 24, 33, 39, 43, 44, 49, 60, 63, 64, 66, 67, 68, 69, 71, 72, 73, 78, 89, 90, 93, 97, 99, 100, 102, 103, 104, 110, 111, 112, 115, 117, 121, 123, 129, 130, 132, 135, 137, 138, 139, 140, 143, 145, 146, 148, 153, 154, 155, 157, 158, 160, 161, 164, 166, 167, 169, 172, 174, 178, 179, 180, 182, 183, 184, 185, 186, 190, 199, 200, 201, 202, 203, 204, 205, 207, 218, 225, 230, 231, 234, 246, 256, 265], "must": [1, 2, 4, 5, 6, 8, 10, 11, 12, 14, 22, 23, 42, 49, 52, 60, 61, 67, 73, 85, 98, 99, 103, 107, 108, 111, 112, 113, 122, 134, 136, 137, 139, 142, 158, 160, 163, 169, 172, 173, 174, 175, 180, 191, 192, 194, 195, 196, 200, 202, 204, 207, 229, 243, 265, 266], "sure": [1, 4, 5, 6, 8, 10, 11, 14, 19, 22, 51, 57, 58, 59, 60, 87, 97, 98, 99, 103, 108, 112, 113, 115, 118, 123, 124, 128, 134, 136, 137, 138, 140, 144, 150, 158, 160, 162, 172, 186, 190, 192, 194, 196, 202, 207, 222], "otherwis": [1, 8, 10, 12, 14, 17, 19, 23, 55, 82, 85, 112, 113, 123, 125, 131, 134, 137, 142, 145, 146, 148, 153, 160, 161, 163, 200, 203, 207, 208], "mix": [1, 8, 15, 60, 61, 109, 113, 148, 183, 201, 222, 223, 237, 255], "hold_out_param": 1, "_loss_actor": 1, "tensor": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 19, 20, 21, 22, 23, 35, 37, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 57, 58, 59, 60, 61, 62, 64, 65, 67, 68, 69, 70, 73, 75, 77, 78, 81, 85, 88, 89, 91, 92, 93, 96, 97, 98, 99, 102, 103, 104, 105, 108, 109, 112, 115, 116, 117, 118, 121, 122, 123, 128, 130, 131, 134, 135, 136, 137, 138, 139, 140, 142, 145, 146, 147, 148, 150, 151, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 166, 167, 169, 170, 172, 173, 174, 175, 176, 177, 179, 182, 183, 185, 186, 187, 188, 189, 190, 191, 192, 193, 196, 197, 198, 199, 201, 203, 204, 205, 207, 208, 210, 211, 218, 221, 222, 230, 232, 233, 246, 248, 249, 252, 257, 259], "td_copi": 1, "select": [1, 5, 10, 17, 23, 42, 50, 60, 80, 82, 87, 97, 105, 148, 157, 161, 162, 164, 169, 170, 183, 186, 193, 198, 199, 203, 208, 240, 264, 267], "made": [1, 6, 10, 15, 19, 25, 51, 52, 87, 97, 98, 103, 113, 119, 122, 125, 136, 137, 166, 170, 172, 174, 175, 176, 178, 194, 198, 202, 226, 227, 230, 265], "pass": [1, 2, 3, 4, 6, 8, 10, 12, 13, 14, 15, 16, 19, 22, 23, 25, 43, 44, 49, 51, 52, 53, 56, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 82, 85, 87, 97, 98, 99, 101, 102, 103, 111, 112, 113, 115, 116, 118, 121, 122, 123, 124, 125, 126, 127, 130, 131, 132, 134, 135, 136, 137, 139, 142, 144, 147, 148, 150, 151, 154, 155, 157, 160, 161, 162, 163, 164, 166, 167, 169, 172, 173, 174, 175, 180, 184, 185, 186, 189, 191, 194, 195, 196, 197, 200, 202, 204, 213, 224, 240, 255], "param": [1, 7, 14, 16, 19, 33, 43, 47, 51, 68, 85, 93, 99, 111, 112, 117, 122, 123, 131, 134, 136, 139, 142, 151, 155, 158, 163, 164, 179, 180, 191, 218, 233, 246, 249, 255, 260, 261], "actor_network_param": 1, "value_network_param": 1, "reli": [1, 3, 6, 8, 14, 23, 49, 103, 125, 147, 153, 157, 160, 193, 206], "distance_loss": 1, "_loss_valu": 1, "v": [1, 2, 7, 9, 19, 24, 32, 37, 43, 49, 52, 53, 55, 60, 89, 101, 102, 103, 105, 108, 124, 138, 142, 148, 151, 155, 161, 163, 169, 179, 182, 184, 191, 194, 202, 207, 210, 211, 266], "pred_val": 1, "squeez": [1, 9, 10, 12, 14, 34, 49, 60, 73, 90, 95, 110, 138, 147, 150, 151, 166, 170, 179, 185, 186, 231], "manual": [1, 5, 8, 12, 22, 23, 47, 49, 53, 63, 64, 69, 97, 111, 112, 131, 137, 139, 142, 154, 155, 158, 183, 184, 186, 195, 200, 264, 265], "reconstruct": 1, "first": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, 40, 42, 44, 45, 49, 50, 51, 52, 53, 55, 58, 59, 60, 61, 68, 69, 73, 76, 78, 79, 80, 82, 83, 85, 87, 97, 99, 101, 102, 103, 109, 111, 112, 113, 115, 116, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 150, 151, 153, 155, 156, 157, 158, 160, 161, 162, 163, 164, 166, 169, 172, 173, 174, 175, 176, 179, 180, 183, 185, 186, 189, 190, 191, 193, 194, 195, 196, 197, 199, 200, 202, 203, 205, 207, 210, 220, 224, 225, 227, 265, 266], "belong": [1, 7, 127, 138, 265], "second": [1, 4, 5, 6, 7, 8, 9, 12, 13, 14, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 126, 127, 128, 130, 131, 135, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 157, 160, 161, 165, 166, 167, 168, 169, 170, 171, 173, 174, 175, 176, 177, 179, 182, 185, 186, 191, 192, 193, 194, 195, 197, 202, 205, 207, 213, 220, 225, 226, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 257, 258, 265], "target_param": 1, "target_value_network_param": 1, "batch_siz": [1, 5, 6, 7, 14, 16, 17, 19, 20, 24, 34, 37, 38, 44, 45, 49, 51, 52, 55, 60, 73, 75, 78, 87, 89, 92, 94, 96, 97, 104, 110, 113, 115, 116, 117, 118, 122, 123, 124, 126, 130, 135, 136, 137, 138, 146, 147, 149, 150, 153, 155, 158, 160, 161, 162, 163, 165, 166, 167, 169, 170, 172, 176, 177, 178, 179, 183, 186, 195, 199, 200, 203, 207, 222, 223, 232, 236, 238, 252, 256], "target_valu": 1, "value_estim": 1, "l1": [1, 17, 87, 157, 178, 203], "smooth": [1, 6, 97, 172], "loss_valu": [1, 160], "td_error": 1, "pow": [1, 2, 5, 32, 63, 64, 68, 69, 72, 89, 111, 125, 191], "miss": [1, 51, 112, 113, 134, 137, 169, 173, 178, 192, 206, 224, 265], "glue": [1, 138, 164], "cost": [1, 5, 14, 49, 52, 97, 99, 109, 122, 123, 124, 125, 151, 169, 196, 225, 234], "deliv": [1, 42, 178, 222], "tensordictbas": [1, 14], "_forward": 1, "input_tensordict": 1, "unsqueez": [1, 2, 7, 12, 14, 47, 49, 58, 59, 60, 68, 69, 78, 90, 94, 95, 104, 110, 111, 117, 118, 130, 137, 140, 147, 151, 155, 159, 161, 162, 164, 166, 170, 206, 208, 231], "ndimens": 1, "inplac": [1, 12, 19, 20, 52, 110, 123, 135, 158, 174, 175, 182, 197, 203, 220, 225, 230], "loss_actor": 1, "pred_valu": 1, "pred_value_max": 1, "max": [1, 10, 11, 17, 19, 44, 49, 52, 58, 59, 60, 73, 75, 82, 87, 92, 95, 97, 98, 104, 117, 118, 123, 126, 130, 136, 137, 138, 140, 147, 158, 160, 161, 165, 167, 170, 172, 174, 175, 179, 183, 185, 186, 195, 199, 200, 202, 203, 215, 232, 261, 263], "target_value_max": 1, "ddpgloss": 1, "most": [1, 2, 4, 5, 11, 14, 17, 22, 23, 25, 42, 43, 49, 51, 52, 58, 59, 60, 73, 75, 87, 99, 101, 102, 109, 112, 117, 120, 123, 124, 125, 126, 128, 130, 131, 136, 138, 143, 144, 145, 147, 148, 153, 158, 159, 160, 162, 163, 164, 165, 166, 169, 172, 173, 174, 175, 176, 177, 178, 183, 193, 194, 196, 197, 199, 200, 202, 203, 210, 222, 225], "taken": [1, 6, 8, 14, 19, 22, 25, 60, 82, 83, 113, 119, 137, 140, 144, 153, 160, 161, 172, 185, 186, 265], "condit": [1, 14, 49, 55, 65, 102, 111, 113, 115, 123, 136, 138, 154, 173, 174, 175, 204, 265], "remaind": [1, 7, 9, 135, 142, 182], "cheetah": 1, "goal": [1, 6, 14, 15, 44, 49, 52, 58, 61, 73, 85, 97, 125, 126, 136, 137, 144, 160, 162, 164, 177, 191], "half": [1, 7, 8, 17, 95, 117, 148, 177, 178, 203, 232, 265], "dm_control": 1, "gym": [1, 14, 121, 137, 147, 160, 161, 162, 164], "env": [1, 18, 133, 136, 137, 147, 160, 161, 162, 164, 189, 196, 208, 210, 233, 248], "gymenv": [1, 137, 160], "halfcheetah": 1, "v4": [1, 160], "dmcontrolenv": 1, "By": [1, 8, 17, 19, 25, 43, 60, 63, 64, 76, 82, 87, 101, 103, 111, 113, 122, 124, 126, 136, 139, 142, 144, 145, 153, 157, 161, 169, 174, 175, 177, 178, 187, 192, 194, 195, 196, 203, 208, 255, 263], "disabl": [1, 9, 11, 15, 42, 122, 123, 147, 149, 151, 159, 163, 165, 169, 182, 185, 191, 192, 193, 194, 200, 206, 208, 255, 263, 264], "render": [1, 6, 58, 82, 90, 126, 147, 160, 263], "easier": [1, 17, 18, 23, 24, 50, 51, 58, 98, 123, 126, 144, 145, 153, 162, 166, 170, 177, 185, 191, 194, 196, 202, 203, 207], "than": [1, 3, 5, 6, 8, 10, 11, 12, 13, 14, 17, 19, 23, 25, 44, 48, 49, 50, 52, 53, 60, 67, 69, 73, 82, 85, 95, 97, 98, 99, 101, 103, 105, 112, 113, 116, 117, 121, 122, 123, 126, 128, 130, 133, 134, 136, 139, 144, 145, 146, 147, 150, 151, 153, 154, 155, 159, 160, 161, 162, 169, 170, 172, 173, 178, 179, 183, 185, 190, 191, 195, 196, 197, 199, 203, 205, 206, 208, 211, 225, 230, 264, 265], "focu": [1, 6, 7, 10, 18, 58, 59, 97, 99, 107, 122, 124, 125, 138, 140, 160, 162, 164, 166, 178, 185, 192], "from_pixel": [1, 137], "pixels_onli": 1, "make_env": 1, "helper": [1, 5, 8, 9, 14, 16, 17, 23, 47, 51, 55, 59, 97, 98, 110, 118, 122, 123, 126, 127, 128, 130, 135, 136, 137, 161, 162, 163, 164, 166, 167, 170, 172, 179, 203, 210, 213], "either": [1, 2, 4, 5, 6, 8, 17, 19, 23, 42, 44, 49, 60, 65, 87, 97, 105, 111, 112, 113, 117, 122, 124, 134, 137, 138, 148, 157, 161, 162, 163, 169, 173, 183, 186, 194, 195, 200, 201, 203, 205, 211, 215, 222, 226, 227, 263, 265], "backend": [1, 5, 6, 7, 11, 14, 16, 18, 20, 24, 25, 33, 38, 53, 55, 61, 105, 117, 119, 120, 121, 126, 129, 130, 133, 134, 137, 138, 148, 151, 159, 160, 169, 173, 175, 176, 178, 189, 190, 196, 198, 202, 209, 225, 230, 249, 255, 256, 264], "consid": [1, 6, 10, 11, 14, 23, 49, 60, 61, 68, 73, 82, 111, 115, 116, 123, 131, 134, 136, 142, 148, 151, 153, 154, 156, 158, 162, 166, 169, 173, 179, 191, 192, 193, 207, 225, 255], "dm": [1, 127, 128, 166], "lib": [1, 4, 5, 6, 10, 18, 22, 23, 108, 137, 145, 160, 189, 206, 210, 222, 248], "env_librari": 1, "env_nam": [1, 82, 160], "global": [1, 5, 6, 17, 25, 49, 56, 60, 87, 124, 139, 145, 146, 150, 153, 155, 161, 163, 165, 167, 174, 175, 183, 185, 203, 212, 232, 233, 234, 248, 255], "env_task": 1, "env_arg": 1, "env_kwarg": 1, "frame_skip": [1, 160], "modifi": [1, 3, 6, 10, 11, 14, 19, 43, 44, 49, 52, 58, 59, 73, 78, 97, 98, 118, 119, 124, 136, 140, 143, 144, 145, 156, 157, 158, 160, 162, 166, 174, 175, 180, 190, 197, 205, 225, 266], "represent": [1, 4, 10, 14, 23, 25, 43, 52, 60, 85, 97, 99, 102, 103, 105, 108, 110, 112, 121, 126, 138, 143, 144, 147, 166, 169, 170, 174, 175, 176, 195, 198, 199, 202, 205, 211], "friendli": [1, 4, 15, 23, 178], "append": [1, 7, 8, 9, 12, 14, 16, 17, 18, 19, 21, 49, 52, 60, 73, 98, 103, 109, 112, 115, 118, 122, 125, 127, 128, 130, 135, 136, 137, 138, 144, 147, 149, 150, 157, 160, 161, 162, 163, 164, 165, 166, 170, 173, 179, 182, 183, 186, 199, 200, 203, 218, 232, 233], "special": [1, 7, 10, 18, 22, 23, 48, 60, 73, 99, 101, 103, 113, 115, 116, 118, 125, 137, 148, 156, 157, 169, 172, 174, 175, 183, 195, 199, 204, 255], "torchr": 1, "transformedenv": [1, 14, 137, 160], "common": [1, 4, 6, 8, 10, 14, 17, 19, 44, 49, 51, 60, 61, 82, 95, 97, 99, 101, 103, 112, 117, 121, 124, 134, 135, 138, 144, 147, 154, 157, 158, 159, 160, 165, 172, 176, 179, 184, 189, 193, 195, 203, 223, 233, 234, 248, 265], "rescal": [1, 51, 179, 185], "heurist": [1, 82, 202, 257], "multipli": [1, 5, 12, 19, 48, 49, 60, 95, 104, 127, 143, 166, 177, 178, 233], "5": [1, 2, 3, 5, 6, 7, 9, 11, 14, 17, 20, 23, 24, 32, 34, 36, 37, 38, 40, 43, 45, 47, 48, 49, 52, 60, 64, 65, 73, 75, 78, 80, 82, 85, 87, 89, 92, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 109, 110, 111, 112, 113, 114, 115, 116, 118, 122, 123, 125, 126, 127, 130, 134, 136, 138, 139, 142, 143, 144, 145, 147, 148, 150, 151, 154, 155, 157, 158, 159, 162, 163, 164, 165, 166, 167, 172, 173, 174, 175, 177, 178, 179, 182, 188, 189, 191, 192, 193, 194, 195, 196, 197, 199, 200, 203, 204, 205, 207, 209, 210, 212, 213, 215, 217, 220, 221, 222, 223, 226, 228, 229, 235, 241, 245, 246, 247, 249, 250, 251, 254, 256, 259, 260, 265, 266, 269], "interfac": [1, 4, 5, 6, 14, 15, 20, 22, 23, 25, 49, 60, 126, 133, 136, 160, 172, 187, 196, 211, 222], "simul": [1, 17, 18, 19, 59, 119, 160, 161, 203, 206, 224], "doubl": [1, 2, 5, 6, 13, 23, 58, 80, 95, 104, 109, 117, 121, 125, 130, 137, 138, 142, 147, 155, 158, 160, 170, 186, 194, 265], "precis": [1, 4, 8, 10, 15, 20, 61, 125, 130, 131, 138, 148, 160, 170, 178, 183, 186, 190, 201, 222, 223, 232, 237], "number": [1, 5, 6, 7, 9, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 42, 44, 49, 51, 52, 53, 55, 58, 60, 65, 82, 85, 87, 97, 99, 101, 103, 109, 112, 115, 116, 122, 123, 124, 125, 126, 127, 133, 134, 135, 136, 137, 138, 139, 140, 142, 145, 146, 149, 150, 151, 154, 157, 158, 159, 160, 161, 162, 163, 164, 169, 172, 173, 176, 179, 185, 186, 189, 190, 194, 195, 200, 201, 207, 208, 225, 230, 263], "presum": 1, "ones": [1, 2, 4, 6, 11, 12, 14, 19, 21, 32, 40, 48, 49, 60, 76, 80, 85, 89, 92, 95, 97, 110, 113, 118, 125, 136, 139, 144, 154, 155, 156, 158, 160, 161, 169, 174, 175, 178, 179, 180, 192, 193, 200, 204, 211, 222, 233, 248, 258, 265], "goe": [1, 4, 5, 23, 51, 95, 98, 99, 131, 146, 156, 160, 163, 230, 265], "wai": [1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 14, 20, 21, 22, 25, 32, 43, 44, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 60, 67, 73, 78, 80, 82, 87, 95, 98, 99, 101, 103, 105, 108, 110, 112, 113, 115, 120, 123, 124, 125, 126, 127, 131, 133, 134, 140, 142, 143, 144, 145, 146, 147, 148, 150, 151, 153, 154, 157, 158, 160, 162, 163, 165, 167, 170, 174, 175, 176, 179, 180, 185, 186, 192, 193, 194, 195, 197, 198, 199, 200, 202, 204, 206, 211, 224, 225, 234, 242, 255], "doubletofloat": [1, 160], "refer": [1, 4, 5, 6, 8, 13, 15, 16, 17, 21, 22, 23, 24, 25, 49, 59, 60, 61, 73, 76, 82, 85, 97, 99, 101, 102, 103, 105, 107, 108, 109, 112, 113, 118, 122, 123, 124, 125, 127, 128, 133, 134, 145, 150, 153, 157, 158, 160, 162, 163, 164, 169, 172, 174, 175, 178, 179, 186, 190, 191, 194, 196, 199, 200, 201, 203, 206, 210, 211, 224, 226, 227, 255, 264, 269], "float": [1, 5, 6, 7, 8, 9, 11, 12, 13, 19, 23, 37, 38, 40, 41, 44, 48, 51, 52, 58, 59, 63, 64, 72, 73, 80, 89, 95, 101, 103, 104, 108, 109, 111, 118, 122, 123, 124, 126, 136, 138, 144, 145, 147, 148, 149, 156, 157, 158, 161, 162, 164, 165, 167, 179, 180, 182, 185, 186, 187, 191, 192, 193, 194, 195, 196, 199, 200, 202, 208, 210, 218, 220, 221, 225, 230, 232, 240, 246], "in_keys_inv": [1, 14], "befor": [1, 3, 5, 6, 8, 9, 10, 11, 12, 14, 16, 19, 20, 22, 23, 25, 32, 33, 42, 43, 44, 45, 47, 49, 51, 52, 55, 58, 59, 60, 68, 69, 73, 85, 95, 97, 98, 99, 101, 102, 103, 105, 107, 108, 109, 111, 112, 113, 115, 117, 119, 122, 124, 126, 127, 130, 134, 136, 137, 138, 140, 142, 145, 147, 150, 153, 154, 157, 158, 159, 160, 162, 163, 164, 166, 169, 170, 173, 174, 175, 177, 178, 179, 180, 183, 184, 186, 189, 191, 192, 194, 197, 199, 200, 202, 220, 226, 227, 229, 230, 233, 243, 255, 261], "concaten": [1, 14, 48, 49, 60, 79, 101, 102, 110, 115, 124, 128, 135, 161, 199], "cattensor": [1, 14], "leav": [1, 8, 17, 43, 49, 51, 53, 60, 61, 85, 113, 126, 153, 154, 159, 203, 206, 224], "constant": [1, 2, 6, 17, 20, 23, 25, 48, 58, 60, 82, 87, 99, 108, 113, 119, 137, 154, 160, 161, 170, 173, 175, 178, 186, 199, 203, 255], "envcreat": 1, "inittrack": [1, 137], "observationnorm": [1, 137, 160], "parallelenv": [1, 160], "rewardsc": [1, 137], "stepcount": [1, 137, 160], "make_transformed_env": 1, "scale": [1, 6, 12, 19, 51, 56, 61, 73, 97, 105, 112, 120, 121, 122, 123, 126, 136, 137, 147, 160, 161, 167, 178, 179, 180, 185, 186, 202, 232, 246], "base_env": [1, 160], "syntax": [1, 3, 23, 25, 48, 60, 84, 86, 99, 112, 121], "append_transform": [1, 14, 137], "loc": [1, 20, 83, 134, 137, 160, 166, 232], "reward_sc": 1, "observation_vector": 1, "renam": [1, 180, 183, 189, 199, 200], "facilit": [1, 11, 14, 49, 60, 97, 112, 121, 124, 137, 195], "downstream": [1, 6, 113, 172], "oper": [1, 4, 6, 13, 14, 15, 17, 18, 19, 20, 21, 25, 42, 43, 45, 47, 49, 51, 60, 61, 63, 64, 65, 67, 68, 76, 80, 82, 83, 85, 92, 97, 98, 99, 103, 105, 107, 109, 110, 111, 116, 118, 121, 123, 124, 125, 127, 131, 136, 137, 138, 139, 142, 143, 145, 146, 148, 150, 151, 155, 156, 159, 160, 162, 166, 169, 170, 172, 173, 174, 175, 177, 183, 184, 185, 186, 189, 190, 191, 192, 196, 198, 199, 200, 201, 203, 205, 206, 207, 208, 209, 222, 224, 230, 240, 248, 255], "vector": [1, 2, 4, 5, 6, 12, 14, 22, 23, 32, 49, 52, 60, 82, 97, 99, 101, 102, 103, 110, 115, 127, 128, 137, 138, 142, 145, 155, 156, 166, 178, 187, 201, 207, 210, 222, 259], "snippet": [1, 10, 21, 58, 59, 122, 123, 136, 145, 156, 165, 177, 186, 191, 199, 200, 210, 224, 230, 248, 255], "selected_kei": 1, "observation_spec": [1, 14, 160], "out_kei": [1, 14, 137, 160], "instanti": [1, 5, 6, 10, 14, 21, 22, 25, 51, 52, 65, 67, 78, 85, 97, 105, 111, 113, 118, 126, 156, 157, 161, 172, 176, 204], "stateless": [1, 14, 22, 139, 142], "standard_norm": [1, 137], "max_frames_per_traj": [1, 160], "marker": [1, 51, 128], "ornstein": 1, "uhlenbeck": 1, "ou": 1, "significantli": [1, 19, 102, 119, 120, 124, 130, 150, 173, 177, 185, 199, 201, 205, 230, 263], "speed": [1, 5, 6, 10, 14, 19, 48, 49, 61, 85, 97, 120, 121, 122, 124, 132, 137, 139, 145, 148, 159, 160, 162, 165, 173, 177, 185, 186, 187, 198, 205, 225, 230], "throughput": [1, 122, 178], "whether": [1, 6, 8, 10, 11, 14, 20, 22, 49, 52, 95, 97, 105, 108, 112, 126, 131, 136, 138, 144, 147, 153, 160, 162, 169, 170, 172, 180, 194, 264], "individu": [1, 5, 6, 12, 21, 25, 49, 78, 85, 110, 115, 124, 126, 130, 144, 150, 155, 157, 163, 166, 170, 180], "approach": [1, 4, 5, 6, 22, 23, 25, 56, 107, 112, 132, 140, 150, 154, 155, 160, 163, 166, 179, 184, 191, 194, 201, 206, 207, 210, 223, 225, 230], "num_work": [1, 24, 44, 51, 52, 87, 92, 94, 97, 117, 122, 123, 130, 158, 167, 169, 170, 177, 179, 249, 252], "leverag": [1, 6, 49, 73, 97, 107, 108, 112, 121, 122, 124, 134, 136, 146, 179, 187, 190, 198, 201, 224], "capabl": [1, 3, 11, 15, 17, 49, 60, 73, 124, 165, 169, 199, 201, 203, 213, 224], "pytorch": [1, 2, 7, 8, 9, 11, 14, 17, 18, 21, 23, 26, 27, 28, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 42, 44, 45, 48, 49, 51, 52, 53, 55, 56, 58, 59, 60, 62, 66, 70, 73, 74, 75, 77, 78, 79, 80, 83, 84, 85, 87, 89, 90, 97, 98, 104, 106, 107, 112, 113, 114, 115, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 137, 139, 140, 141, 142, 143, 144, 145, 146, 147, 149, 150, 151, 153, 155, 156, 157, 158, 160, 161, 162, 163, 164, 165, 166, 167, 168, 170, 171, 173, 174, 175, 176, 179, 182, 183, 184, 185, 187, 188, 189, 191, 192, 193, 194, 195, 196, 203, 205, 206, 207, 209, 212, 213, 214, 215, 216, 217, 218, 220, 221, 223, 224, 230, 231, 232, 234, 236, 239, 246, 247, 248, 249, 252, 254, 255, 257, 258, 259, 261], "adopt": [1, 20, 24, 61, 153, 156, 163], "parallel_env_constructor": 1, "env_per_collector": 1, "transform_state_dict": 1, "make_t_env": 1, "init_stat": [1, 137, 160], "copy_": [1, 3, 40, 48, 109, 145, 162, 167, 239, 246], "env_creat": 1, "parallel_env": 1, "create_env_fn": 1, "create_env_kwarg": 1, "pin_memori": [1, 122, 123, 125, 130, 249], "limit": [1, 4, 6, 9, 10, 11, 14, 15, 17, 19, 49, 73, 119, 123, 124, 137, 138, 139, 147, 148, 150, 155, 166, 173, 174, 175, 178, 183, 185, 186, 189, 190, 196, 199, 203, 225, 230, 233, 264], "lazi": [1, 59], "cat_dim": [1, 137, 160], "reduce_dim": [1, 137, 160], "load_state_dict": [1, 9, 19, 20, 38, 39, 44, 49, 53, 60, 73, 87, 96, 97, 112, 117, 134, 147, 158, 161, 172, 182, 183, 199, 200, 216, 223, 232, 237, 242, 243, 244, 245, 250], "frame": [1, 6, 107, 137, 147, 159, 160, 169], "count": [1, 6, 11, 19, 22, 42, 44, 49, 60, 61, 82, 99, 103, 136, 137, 149, 160, 161, 164, 166, 169, 172, 178, 183, 199, 200, 248], "frames_per_batch": [1, 137, 160], "total_fram": [1, 137, 160], "adjust": [1, 7, 14, 19, 43, 49, 52, 73, 115, 124, 126, 151, 162, 196, 265], "total": [1, 5, 7, 9, 11, 12, 13, 14, 16, 17, 20, 21, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 58, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 83, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 122, 125, 126, 127, 128, 130, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 159, 160, 161, 163, 165, 166, 167, 169, 172, 173, 175, 177, 179, 182, 183, 185, 186, 191, 192, 193, 194, 195, 197, 205, 207, 213, 221, 223, 226, 227, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 257, 258], "unchang": [1, 8, 83, 211], "seem": [1, 44, 52, 113, 125, 127, 137], "cheat": [1, 121, 166], "compar": [1, 5, 10, 15, 17, 19, 20, 23, 44, 58, 59, 61, 83, 97, 102, 108, 116, 117, 123, 124, 126, 127, 136, 138, 144, 145, 146, 148, 151, 153, 155, 157, 160, 162, 164, 166, 169, 172, 173, 174, 175, 177, 178, 182, 183, 185, 187, 191, 198, 199, 201, 202, 203, 222, 225, 230, 233], "dataset": [1, 6, 9, 17, 24, 33, 34, 35, 37, 38, 41, 42, 43, 44, 47, 49, 52, 53, 55, 57, 58, 59, 73, 75, 87, 90, 92, 94, 96, 97, 99, 116, 117, 118, 119, 120, 122, 123, 126, 127, 128, 130, 132, 136, 139, 149, 155, 158, 159, 163, 165, 166, 167, 169, 170, 172, 176, 182, 197, 201, 203, 222, 223, 235, 238, 252, 256], "10m": 1, "element": [1, 5, 6, 7, 9, 12, 17, 19, 40, 48, 49, 58, 59, 73, 76, 95, 99, 101, 102, 103, 116, 125, 136, 145, 151, 154, 160, 161, 172, 174, 175, 179, 182, 192, 193, 194, 195, 203, 225, 265, 266, 269], "anoth": [1, 4, 5, 7, 8, 11, 14, 20, 21, 23, 25, 43, 48, 49, 52, 59, 60, 63, 73, 80, 85, 98, 102, 108, 109, 112, 113, 115, 121, 128, 130, 131, 133, 136, 137, 142, 143, 154, 157, 160, 162, 163, 164, 165, 166, 173, 175, 177, 179, 180, 183, 185, 190, 197, 199, 202, 208, 215, 230, 255, 265, 266], "ratio": [1, 51, 82, 97, 115, 145, 160, 169, 179, 197], "interact": [1, 5, 6, 14, 49, 51, 60, 117, 126, 131, 147, 160, 163, 167, 170, 173, 174, 175, 199, 265], "nutshel": [1, 193], "cautiou": 1, "deal": [1, 5, 44, 49, 51, 52, 60, 97, 110, 112, 122, 146, 160], "lead": [1, 5, 6, 14, 49, 52, 61, 73, 79, 82, 87, 97, 115, 119, 131, 137, 139, 150, 158, 193, 207, 265], "bias": [1, 33, 43, 97, 112, 165], "comparison": [1, 9, 17, 21, 83, 95, 97, 98, 123, 138, 145, 146, 177, 182, 185, 191, 193, 195, 197, 203, 206, 224], "help": [1, 5, 8, 10, 15, 17, 18, 19, 22, 23, 32, 43, 49, 52, 58, 59, 60, 61, 68, 82, 87, 97, 98, 101, 102, 103, 112, 113, 120, 121, 122, 123, 126, 133, 134, 135, 137, 138, 139, 145, 146, 149, 151, 153, 156, 160, 162, 163, 164, 165, 166, 172, 177, 178, 185, 186, 192, 193, 194, 195, 199, 203, 207, 224, 225, 229, 258], "signal": [1, 13, 43, 134, 160, 162, 197], "magnitud": [1, 17, 42, 157, 203], "truncat": [1, 17, 109, 113, 145, 160, 161, 203], "A": [1, 5, 6, 7, 8, 11, 12, 14, 16, 17, 21, 22, 25, 42, 47, 48, 49, 51, 52, 53, 55, 57, 60, 63, 64, 67, 68, 69, 73, 78, 82, 83, 92, 97, 99, 101, 102, 103, 110, 112, 113, 115, 120, 121, 125, 126, 127, 128, 131, 132, 136, 139, 143, 144, 147, 150, 153, 154, 155, 160, 161, 162, 163, 165, 166, 167, 170, 172, 174, 175, 176, 177, 178, 195, 199, 203, 222, 224, 230, 233, 255, 266], "thousand": [1, 103, 120, 124, 127, 137, 166, 172], "500": [1, 6, 17, 24, 49, 52, 60, 75, 109, 115, 128, 146, 148, 161, 164, 167, 179, 233], "statist": [1, 44, 52, 87, 117, 121, 130, 143, 144, 157, 158, 160, 166, 169, 170, 172, 178, 183, 197, 199, 200, 223], "arbitrari": [1, 5, 8, 14, 64, 67, 78, 97, 102, 111, 122, 139, 147, 155, 170, 173, 176, 197], "random": [1, 6, 14, 16, 19, 20, 21, 25, 40, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 71, 72, 73, 76, 78, 80, 92, 95, 101, 102, 105, 109, 110, 111, 116, 117, 122, 123, 126, 127, 128, 134, 135, 136, 138, 139, 147, 150, 151, 153, 154, 157, 158, 160, 161, 162, 164, 165, 166, 170, 173, 183, 186, 195, 199, 200, 211], "standard": [1, 5, 8, 20, 23, 25, 44, 48, 52, 60, 61, 73, 82, 87, 92, 97, 98, 99, 105, 107, 108, 113, 136, 140, 150, 159, 167, 173, 174, 175, 179, 185, 195, 211, 225, 260, 265], "deviat": [1, 73, 82, 92, 97, 140, 150], "purpos": [1, 5, 20, 21, 22, 57, 73, 78, 85, 115, 118, 123, 125, 126, 128, 136, 137, 143, 144, 145, 153, 159, 160, 163, 164, 169, 173, 183, 185, 192, 199], "summari": [1, 82, 103, 126, 137, 144, 160, 169, 174, 177, 199, 248], "over": [1, 4, 5, 6, 7, 10, 11, 14, 17, 18, 19, 20, 22, 23, 34, 44, 47, 48, 49, 50, 51, 52, 53, 60, 61, 73, 75, 78, 79, 87, 97, 98, 99, 101, 102, 103, 109, 113, 117, 121, 122, 123, 124, 127, 130, 133, 134, 136, 139, 143, 144, 145, 146, 147, 148, 151, 155, 157, 158, 160, 161, 162, 163, 164, 165, 166, 169, 170, 172, 173, 175, 177, 179, 183, 185, 186, 189, 196, 199, 200, 203, 207, 252, 255, 265], "get_env_stat": 1, "proof_env": 1, "init_env_step": 1, "state_dict": [1, 9, 19, 38, 39, 44, 49, 53, 55, 87, 96, 97, 117, 122, 123, 134, 138, 147, 157, 158, 161, 182, 183, 197, 199, 200, 216, 222, 230, 232, 235, 236, 237, 239, 242, 243, 245, 246, 250, 253], "close": [1, 4, 6, 9, 14, 17, 19, 23, 52, 61, 94, 97, 98, 115, 122, 126, 138, 150, 153, 170, 182, 186, 203, 247, 249, 255], "5000": [1, 2, 7, 118, 127, 128, 140, 215, 233], "earlier": [1, 4, 5, 6, 22, 23, 73, 98, 99, 102, 116, 123, 124, 137, 153, 160, 166, 174, 175, 178, 225], "compositespec": [1, 14], "turn": [1, 4, 5, 6, 7, 8, 9, 14, 15, 19, 20, 23, 25, 49, 98, 102, 103, 109, 113, 126, 128, 137, 146, 153, 154, 157, 162, 166, 182, 187, 192, 193, 201], "seen": [1, 7, 10, 11, 18, 19, 44, 47, 49, 51, 97, 102, 103, 109, 113, 116, 118, 137, 144, 155, 163, 173, 174, 175, 265, 266], "requir": [1, 2, 4, 5, 6, 8, 10, 12, 14, 15, 18, 19, 20, 22, 23, 24, 25, 43, 49, 50, 51, 52, 55, 60, 61, 75, 83, 85, 87, 103, 107, 108, 113, 115, 116, 119, 123, 124, 126, 128, 130, 131, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 146, 149, 150, 151, 153, 154, 155, 158, 159, 160, 162, 163, 164, 165, 166, 172, 173, 174, 175, 176, 177, 178, 179, 182, 183, 184, 185, 186, 187, 192, 193, 194, 196, 202, 204, 207, 210, 211, 213, 222, 224, 226, 234, 240, 259, 263], "recal": [1, 6, 23, 52, 60, 98, 103, 134, 138, 160, 170, 174, 175, 192, 193, 194], "wrap": [1, 5, 6, 7, 9, 10, 16, 22, 25, 45, 60, 63, 76, 79, 87, 98, 99, 101, 102, 103, 105, 109, 110, 111, 123, 125, 130, 134, 137, 143, 147, 158, 160, 163, 164, 172, 174, 175, 176, 182, 184, 196, 201, 213, 265, 268], "flow": [1, 4, 5, 14, 21, 23, 25, 43, 52, 60, 66, 85, 97, 110, 111, 113, 160, 161, 169, 173, 183, 184, 186, 199, 200, 201, 210, 255, 265], "handl": [1, 5, 8, 10, 23, 49, 52, 53, 61, 78, 85, 108, 113, 123, 126, 127, 138, 139, 140, 155, 157, 159, 160, 163, 164, 165, 166, 172, 173, 174, 175, 178, 183, 186, 191, 193, 195, 205, 207, 222], "specifi": [1, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 22, 23, 24, 34, 39, 51, 52, 59, 76, 82, 87, 101, 110, 113, 116, 122, 123, 124, 126, 131, 135, 137, 138, 139, 142, 156, 157, 160, 163, 164, 169, 172, 174, 175, 180, 191, 192, 193, 194, 195, 198, 199, 200, 202, 203, 206, 207, 208, 210, 211, 224, 230, 244, 255, 263, 265], "scenario": [1, 4, 6, 14, 61, 105, 107, 108, 112, 117, 125, 161, 164, 201], "tensordictsequenti": [1, 137], "valueoper": [1, 160], "automat": [1, 2, 5, 6, 8, 10, 14, 15, 22, 25, 35, 40, 43, 45, 46, 47, 48, 53, 57, 61, 76, 80, 98, 114, 121, 122, 123, 124, 125, 126, 131, 138, 140, 143, 145, 148, 150, 160, 161, 164, 167, 169, 172, 177, 178, 183, 186, 211, 222, 234, 237, 255, 265], "state_valu": 1, "built": [1, 4, 5, 6, 7, 8, 22, 23, 47, 49, 59, 60, 61, 99, 108, 113, 115, 116, 121, 136, 137, 138, 160, 165, 170, 174, 175, 178, 179, 197, 206, 224, 233], "present": [1, 6, 8, 18, 22, 61, 82, 83, 97, 108, 135, 138, 144, 154, 156, 157, 158, 161, 162, 164, 172, 173, 176, 179, 195], "origin": [1, 5, 6, 7, 8, 12, 14, 17, 19, 23, 32, 49, 52, 58, 59, 60, 73, 87, 90, 97, 102, 105, 113, 115, 118, 119, 124, 125, 127, 128, 138, 143, 151, 154, 155, 157, 158, 161, 172, 173, 174, 175, 177, 178, 180, 182, 183, 184, 185, 187, 194, 199, 202, 203, 220, 222, 230, 255], "paper": [1, 5, 12, 16, 17, 52, 58, 59, 61, 73, 97, 113, 114, 118, 119, 124, 138, 160, 163, 165, 166, 167, 195, 203], "found": [1, 4, 5, 6, 10, 16, 22, 23, 25, 42, 49, 50, 60, 79, 97, 113, 115, 116, 118, 126, 128, 134, 135, 136, 137, 138, 143, 144, 148, 161, 163, 164, 165, 172, 174, 175, 182, 183, 184, 186, 195, 208, 222, 224, 265], "ddpgmlpactor": 1, "ddpgmlpqnet": 1, "materi": [1, 61, 123, 124, 146, 191, 204, 210], "achiev": [1, 3, 6, 14, 17, 19, 24, 32, 44, 49, 56, 82, 87, 97, 108, 119, 121, 125, 130, 136, 137, 138, 145, 150, 153, 154, 157, 158, 160, 161, 169, 177, 180, 183, 185, 186, 200, 201, 203, 205, 224], "practic": [1, 5, 6, 11, 20, 23, 37, 47, 49, 51, 52, 58, 59, 60, 61, 97, 99, 114, 117, 121, 124, 125, 126, 127, 132, 135, 137, 138, 145, 154, 157, 160, 174, 175, 176, 178, 191, 192, 195, 197, 234], "fake": [1, 6, 12, 17, 19, 25, 47, 52, 78, 153, 158, 195, 199, 200, 202, 203, 230], "spec": [1, 108, 126, 137, 160, 164, 180, 202, 233], "ornsteinuhlenbeckprocesswrapp": 1, "probabilisticactor": [1, 160], "tanhdelta": 1, "make_ddpg_actor": 1, "proof_environ": 1, "out_featur": [1, 33, 109, 123, 137, 180, 203], "action_spec": [1, 14, 137, 160], "shape": [1, 4, 12, 17, 23, 34, 38, 40, 42, 43, 47, 48, 49, 51, 52, 58, 59, 60, 63, 68, 76, 85, 90, 92, 95, 97, 98, 101, 103, 104, 109, 111, 118, 122, 124, 127, 128, 137, 138, 139, 142, 143, 146, 147, 148, 151, 153, 155, 157, 160, 169, 172, 179, 185, 186, 189, 194, 195, 197, 199, 203, 204, 211, 228, 233, 240, 241, 246], "actor_net": [1, 160], "action_dim": [1, 147], "distribution_class": [1, 160], "q_net": 1, "qnet": 1, "initi": [1, 6, 8, 11, 14, 16, 18, 19, 20, 21, 22, 23, 25, 37, 43, 49, 55, 60, 64, 71, 72, 73, 80, 97, 98, 99, 102, 103, 109, 111, 112, 117, 122, 123, 124, 127, 128, 130, 137, 139, 143, 145, 148, 149, 153, 157, 158, 159, 161, 162, 163, 164, 166, 167, 169, 174, 175, 176, 191, 194, 198, 200, 205, 208, 225, 233, 265], "reset": [1, 19, 117, 128, 137, 147, 160, 161, 162, 164, 166, 169, 173, 174, 175, 183, 187, 197, 199, 200, 223, 254, 258], "suggest": [1, 4, 12, 52, 86, 97, 128, 138, 145, 146, 147, 148, 151, 158, 169, 172, 174, 175, 176], "nois": [1, 6, 12, 52, 73, 149, 197], "reach": [1, 10, 17, 52, 60, 61, 97, 134, 136, 138, 147, 148, 150, 160, 164, 174, 175, 203], "minimum": [1, 49, 82, 160, 164, 174, 175, 178, 193], "annealing_fram": 1, "1_000_000": [1, 96, 137], "actor_model_explor": 1, "annealing_num_step": [1, 137], "share_memori": 1, "iter": [1, 3, 4, 6, 11, 12, 14, 16, 24, 34, 42, 43, 44, 47, 52, 53, 55, 60, 75, 85, 87, 92, 94, 96, 98, 103, 105, 112, 113, 116, 117, 118, 126, 127, 128, 132, 134, 135, 137, 143, 145, 150, 158, 160, 161, 162, 163, 164, 167, 169, 170, 173, 179, 182, 183, 196, 199, 200, 205, 213, 220, 225, 247], "tight": [1, 105, 107, 108], "per": [1, 5, 6, 8, 11, 19, 61, 87, 97, 103, 121, 122, 126, 127, 128, 130, 134, 136, 137, 138, 146, 148, 153, 157, 160, 164, 165, 166, 169, 170, 172, 176, 177, 178, 179, 186, 191, 196, 207, 220, 225, 233, 248], "sync": [1, 7, 10, 11, 16, 55, 121, 122, 123, 143, 147, 190, 196, 260], "natur": [1, 5, 6, 17, 18, 23, 24, 25, 45, 61, 73, 75, 97, 107, 116, 119, 126, 127, 136, 137, 138, 163, 172, 193, 195, 199, 202, 203, 265], "resourc": [1, 53, 58, 59, 61, 73, 87, 105, 119, 123, 134, 136, 153, 160, 169, 172, 177, 225, 238], "alloc": [1, 6, 18, 21, 22, 23, 48, 55, 59, 130, 136, 153, 169, 176, 177, 195, 204, 225, 261], "gpu": [1, 3, 4, 7, 12, 17, 18, 19, 20, 24, 33, 38, 40, 42, 43, 47, 48, 49, 50, 52, 53, 54, 56, 57, 60, 61, 64, 72, 73, 77, 80, 81, 82, 83, 88, 92, 96, 97, 99, 105, 111, 114, 117, 120, 121, 122, 123, 124, 125, 132, 133, 134, 135, 136, 137, 138, 139, 145, 148, 149, 150, 151, 153, 155, 158, 160, 161, 163, 164, 165, 172, 173, 176, 178, 179, 186, 187, 198, 203, 208, 209, 212, 216, 218, 225, 232, 233, 236, 242, 253, 255, 257, 260], "worker": [1, 6, 7, 11, 16, 51, 52, 61, 115, 120, 122, 123, 135, 136, 148, 160, 163, 164, 169, 214], "syncdatacollector": [1, 137, 160], "process": [1, 4, 5, 6, 11, 12, 14, 15, 16, 17, 18, 20, 22, 23, 24, 25, 42, 47, 49, 50, 51, 52, 56, 60, 61, 73, 82, 85, 97, 103, 105, 110, 112, 113, 114, 116, 118, 119, 120, 121, 122, 123, 125, 126, 127, 128, 132, 133, 136, 137, 138, 144, 145, 147, 148, 150, 155, 159, 161, 163, 164, 165, 166, 169, 172, 174, 175, 176, 177, 178, 183, 185, 186, 189, 190, 195, 197, 198, 203, 205, 206, 210, 215, 230, 264, 265], "offer": [1, 11, 14, 18, 42, 43, 53, 61, 99, 122, 124, 139, 142, 145, 146, 199], "multiasyncdatacollector": [1, 160], "rollout": [1, 137, 160], "asynchron": [1, 21, 61, 120, 121, 126, 135, 150, 156, 160, 164], "manner": [1, 5, 8, 14, 19, 61, 160, 172], "therebi": [1, 187, 191, 195], "decoupl": [1, 61, 154, 199], "factori": [1, 6, 101, 115, 192, 193, 234], "empti": [1, 5, 6, 8, 14, 19, 21, 23, 49, 80, 95, 108, 128, 130, 144, 145, 148, 154, 159, 166, 169, 172, 174, 175, 177, 186, 193, 195, 204, 208, 240, 248, 266], "maximum": [1, 11, 49, 60, 82, 102, 113, 126, 128, 137, 138, 145, 160, 165, 166, 174, 175, 186, 196, 197], "non": [1, 2, 3, 5, 8, 11, 14, 19, 22, 49, 51, 53, 54, 56, 60, 82, 85, 97, 98, 100, 103, 112, 113, 119, 122, 126, 130, 131, 135, 136, 137, 138, 140, 142, 146, 148, 151, 157, 158, 161, 162, 165, 166, 169, 173, 174, 177, 183, 185, 186, 191, 201, 204, 230, 255, 266, 268], "termin": [1, 14, 23, 53, 60, 87, 160, 161, 163, 164, 172, 190, 208, 227], "effect": [1, 5, 6, 8, 9, 11, 23, 55, 73, 82, 97, 103, 108, 124, 127, 128, 139, 153, 155, 157, 161, 165, 166, 172, 177, 178, 193, 201, 202, 207, 263], "regist": [1, 22, 43, 47, 78, 108, 109, 112, 121, 122, 124, 134, 142, 153, 154, 160, 174, 175, 178, 210, 222], "new": [1, 2, 4, 5, 6, 8, 9, 12, 13, 14, 22, 23, 24, 25, 31, 42, 43, 45, 48, 49, 50, 52, 55, 60, 62, 73, 75, 79, 80, 82, 85, 97, 99, 102, 103, 108, 109, 110, 112, 113, 117, 121, 122, 123, 125, 126, 127, 137, 138, 142, 143, 145, 147, 150, 153, 154, 155, 156, 157, 158, 160, 161, 162, 165, 166, 169, 172, 174, 175, 179, 180, 182, 187, 189, 190, 191, 195, 197, 198, 199, 200, 201, 202, 206, 207, 208, 210, 224, 225, 226, 227, 228, 265], "infer": [1, 3, 6, 8, 9, 10, 19, 20, 21, 22, 23, 42, 48, 49, 60, 61, 97, 101, 103, 105, 113, 121, 125, 126, 130, 140, 143, 145, 159, 160, 162, 172, 173, 178, 179, 186, 189, 190, 195, 196, 198, 199, 200, 201, 203, 205, 208, 211, 225, 226, 227, 230, 237, 243, 259], "around": [1, 5, 6, 11, 23, 24, 49, 55, 58, 59, 75, 97, 117, 128, 139, 145, 146, 151, 155, 158, 166, 169, 170, 174, 175, 183, 191, 192, 196, 199, 265, 268], "1m": [1, 137, 160], "10_000": [1, 97], "outer": [1, 6, 122, 146], "loop": [1, 3, 4, 5, 7, 8, 11, 16, 17, 19, 21, 25, 44, 47, 49, 51, 52, 59, 60, 65, 73, 75, 78, 85, 87, 97, 111, 118, 123, 126, 127, 138, 139, 145, 146, 147, 153, 155, 163, 164, 166, 170, 178, 184, 186, 203, 252], "equal": [1, 4, 10, 95, 97, 115, 116, 125, 138, 148, 157, 160, 161, 172, 174, 175, 177, 194], "length": [1, 7, 12, 14, 17, 20, 42, 45, 49, 52, 60, 102, 103, 105, 113, 115, 116, 124, 128, 137, 138, 147, 160, 165, 166, 176, 186, 193, 195, 198, 203, 207, 210, 253, 266], "sub": [1, 6, 20, 25, 49, 60, 109, 124, 129, 144, 150, 160, 164, 166, 169, 177, 178, 186, 248, 265], "traj_len": [1, 137], "200": [1, 6, 9, 90, 93, 137, 148, 164, 185, 196, 221], "init_random_fram": 1, "num_collector": 1, "explorationtyp": [1, 137, 160], "reset_at_each_it": 1, "split_traj": [1, 160], "exploration_typ": 1, "assess": 1, "mode": [1, 4, 7, 9, 12, 13, 16, 20, 37, 42, 43, 49, 51, 52, 55, 60, 73, 79, 82, 85, 86, 87, 97, 112, 115, 116, 117, 121, 122, 130, 131, 135, 137, 140, 143, 145, 147, 148, 151, 158, 162, 165, 166, 167, 170, 172, 173, 175, 178, 180, 185, 189, 190, 196, 197, 198, 200, 201, 202, 243], "dedic": [1, 10, 55, 60, 112, 135, 163, 164, 178, 201, 210, 225, 230, 266], "frequenc": [1, 7, 83, 126, 225], "trainer": [1, 16, 17, 24, 55, 126, 132, 149, 162, 163, 164, 203], "make_record": 1, "record_interv": 1, "load": [1, 5, 17, 18, 19, 20, 21, 23, 24, 34, 35, 38, 39, 42, 43, 47, 51, 52, 55, 73, 75, 87, 90, 96, 98, 104, 105, 110, 113, 116, 119, 121, 123, 125, 127, 140, 145, 148, 153, 160, 169, 170, 172, 175, 179, 182, 183, 185, 186, 187, 189, 196, 197, 203, 206, 208, 210, 215, 216, 222, 223, 224, 226, 227, 232, 233, 237, 242, 243, 244, 245, 248, 250, 251, 257, 259], "recorder_obj": 1, "record_fram": 1, "1000": [1, 2, 7, 9, 17, 19, 43, 52, 79, 89, 94, 96, 117, 119, 122, 123, 125, 127, 135, 137, 145, 150, 160, 161, 170, 173, 177, 178, 189, 201, 203, 205, 214, 215, 228, 233, 239, 248], "policy_explor": 1, "everi": [1, 2, 6, 8, 10, 12, 14, 15, 17, 18, 19, 24, 43, 44, 47, 49, 51, 52, 60, 61, 87, 103, 117, 124, 125, 127, 128, 130, 136, 137, 142, 147, 148, 151, 153, 154, 155, 157, 158, 160, 161, 162, 164, 166, 169, 170, 179, 195, 199, 200, 203, 210, 225, 234], "10": [1, 3, 4, 6, 7, 8, 11, 13, 14, 16, 17, 19, 20, 23, 25, 33, 34, 37, 38, 41, 42, 43, 44, 45, 47, 49, 51, 52, 53, 60, 73, 78, 79, 80, 83, 87, 89, 92, 93, 94, 95, 96, 103, 104, 105, 109, 112, 115, 117, 122, 123, 125, 126, 127, 129, 130, 134, 136, 137, 139, 140, 142, 143, 145, 147, 148, 149, 150, 151, 155, 157, 158, 159, 160, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 177, 179, 180, 185, 188, 189, 191, 192, 193, 196, 197, 198, 199, 200, 203, 204, 205, 206, 208, 210, 211, 212, 213, 214, 217, 221, 223, 225, 228, 233, 235, 239, 240, 241, 242, 243, 244, 245, 247, 248, 250, 251, 252, 254, 269], "lazymemmapstorag": [1, 137, 147], "prioritizedsampl": 1, "randomsampl": [1, 19, 138, 166, 183, 186, 199, 200], "tensordictreplaybuff": [1, 137, 147], "flavor": [1, 5, 23, 107], "priorit": [1, 195], "error": [1, 4, 5, 6, 8, 10, 11, 12, 22, 37, 38, 43, 47, 49, 50, 52, 53, 58, 60, 61, 68, 78, 97, 101, 107, 108, 111, 122, 125, 131, 135, 140, 149, 153, 156, 160, 161, 173, 174, 175, 185, 191, 192, 197, 199, 206, 210, 222, 224, 259, 265], "higher": [1, 19, 44, 48, 53, 82, 97, 99, 122, 123, 127, 128, 131, 142, 146, 158, 159, 160, 161, 169, 170, 172, 183, 186, 197, 199, 201, 205, 207, 213, 225, 230, 263, 265], "likelihood": [1, 49, 99, 104, 127], "regular": [1, 4, 5, 6, 8, 10, 19, 23, 24, 97, 114, 127, 128, 135, 146, 154, 155, 165, 166, 167, 191, 193, 195, 201, 222], "circular": 1, "compos": [1, 5, 6, 10, 12, 17, 19, 21, 25, 44, 52, 58, 59, 73, 75, 79, 87, 90, 92, 94, 96, 97, 99, 108, 110, 113, 115, 117, 119, 121, 123, 130, 136, 137, 140, 142, 143, 147, 149, 151, 155, 158, 159, 160, 163, 165, 167, 169, 170, 172, 179, 183, 199, 200, 202, 206, 211, 215, 222, 223, 231, 252, 256], "pick": [1, 6, 19, 44, 98, 127, 161, 166], "physic": [1, 14, 103, 178], "memori": [1, 4, 5, 6, 8, 10, 16, 17, 18, 19, 21, 22, 23, 37, 48, 49, 51, 55, 61, 80, 87, 95, 97, 100, 105, 110, 112, 115, 118, 121, 122, 123, 124, 132, 136, 137, 145, 146, 147, 151, 157, 163, 165, 169, 172, 176, 179, 185, 190, 191, 194, 195, 196, 201, 203, 220, 222, 230, 232, 249, 261], "map": [1, 6, 7, 12, 13, 17, 49, 52, 58, 60, 75, 90, 97, 98, 102, 103, 104, 108, 110, 112, 113, 115, 116, 119, 127, 137, 139, 140, 144, 146, 153, 154, 155, 160, 161, 164, 172, 174, 175, 177, 179, 183, 199, 202, 203, 207, 211, 215], "arrai": [1, 6, 32, 43, 44, 47, 51, 58, 59, 85, 89, 95, 103, 109, 117, 127, 128, 140, 147, 158, 159, 161, 166, 167, 172, 194, 231], "desir": [1, 5, 8, 12, 14, 16, 49, 51, 52, 73, 82, 97, 110, 112, 116, 136, 143, 157, 169, 172, 185, 192, 204, 266], "hyperparamet": [1, 6, 14, 17, 52, 87, 112, 115, 121, 126, 191, 195], "randomcroptensordict": 1, "make_replay_buff": 1, "buffer_s": 1, "random_crop_len": 1, "prefetch": [1, 137, 178], "prb": 1, "sampler": [1, 6, 19, 34, 55, 110, 122, 123, 138, 160, 166, 167, 183, 186, 199, 200], "max_capac": 1, "alpha": [1, 5, 6, 15, 98, 108, 127, 128, 147, 150, 172, 179, 191, 195, 266], "7": [1, 3, 5, 6, 17, 18, 19, 22, 23, 34, 36, 51, 58, 59, 80, 85, 95, 96, 101, 109, 116, 117, 122, 123, 130, 135, 136, 147, 148, 150, 158, 159, 167, 172, 173, 174, 175, 176, 178, 179, 185, 188, 190, 201, 204, 205, 206, 208, 209, 210, 212, 213, 217, 220, 221, 223, 224, 226, 227, 229, 230, 232, 249, 255, 258, 269], "beta": [1, 6, 20, 52, 105, 118, 121, 194, 218, 236, 253], "scratch_dir": 1, "buffer_scratch_dir": 1, "sample_dim": 1, "temporari": [1, 5, 117, 126, 178, 182], "disk": [1, 4, 23, 25, 105, 112, 137, 189, 190, 196, 210, 225], "tempfil": [1, 7, 87, 117, 125, 126, 134], "tmpdir": 1, "temporarydirectori": [1, 87, 117, 125], "along": [1, 4, 5, 6, 7, 8, 14, 17, 21, 23, 43, 48, 49, 53, 54, 55, 56, 60, 83, 97, 101, 102, 110, 116, 117, 119, 122, 123, 127, 128, 132, 133, 137, 153, 157, 161, 163, 170, 172, 176, 193, 203, 204], "dimens": [1, 5, 6, 7, 12, 14, 18, 20, 21, 44, 47, 48, 49, 60, 78, 79, 87, 92, 99, 101, 102, 103, 110, 115, 121, 124, 127, 130, 137, 139, 147, 148, 155, 157, 159, 160, 162, 174, 175, 176, 192, 195, 199, 200, 207, 225], "feed": [1, 6, 12, 19, 44, 47, 49, 60, 97, 100, 102, 105, 112, 124, 127, 128, 134, 135, 147, 161, 166, 170, 177, 197], "adapt": [1, 2, 14, 17, 24, 87, 105, 126, 203], "divid": [1, 7, 8, 9, 10, 11, 12, 14, 15, 19, 85, 97, 99, 127, 135, 136, 150, 154, 164, 177, 178, 182], "yield": [1, 6, 11, 12, 16, 17, 19, 21, 104, 112, 115, 116, 118, 124, 125, 162, 164, 185, 194, 203, 243], "regard": [1, 6, 11, 14, 23, 60, 112, 145, 146, 160, 169, 265], "25": [1, 7, 9, 22, 23, 73, 89, 90, 97, 109, 117, 123, 158, 163, 165, 172, 182, 185, 205, 233, 235, 240], "balanc": [1, 6, 18, 134, 169], "choic": [1, 4, 6, 8, 49, 87, 126, 128, 166], "heterogen": [1, 198], "figur": [1, 8, 12, 14, 22, 34, 49, 51, 52, 73, 82, 97, 117, 121, 124, 126, 127, 128, 137, 145, 150, 160, 161, 162, 166, 169, 170, 172, 177, 179, 183, 197, 199, 238, 266, 268], "dataflow": 1, "8": [1, 3, 5, 6, 7, 9, 13, 14, 16, 17, 19, 23, 34, 49, 52, 58, 59, 65, 73, 87, 90, 93, 101, 102, 109, 111, 115, 116, 118, 119, 122, 124, 127, 128, 130, 134, 135, 138, 143, 145, 147, 148, 150, 154, 158, 159, 165, 166, 167, 169, 172, 173, 174, 175, 177, 179, 185, 186, 188, 189, 190, 191, 195, 201, 203, 208, 209, 210, 214, 216, 217, 218, 225, 226, 227, 230, 232, 236, 240, 249, 257, 260, 261, 265, 266, 269], "ceil_div": 1, "y": [1, 2, 5, 7, 17, 18, 20, 22, 23, 25, 32, 37, 38, 40, 41, 43, 47, 48, 51, 52, 63, 64, 65, 67, 68, 69, 71, 72, 73, 76, 82, 85, 89, 92, 93, 95, 96, 97, 98, 101, 102, 104, 110, 111, 113, 116, 122, 125, 138, 142, 145, 147, 148, 149, 156, 165, 169, 172, 173, 174, 175, 176, 186, 187, 188, 193, 197, 207, 210, 214, 247, 248, 257, 258, 266], "known": [1, 4, 5, 12, 17, 42, 113, 124, 136, 138, 142, 144, 157, 161, 166, 186, 190, 202, 203], "utd": [1, 137], "update_to_data": 1, "64": [1, 5, 6, 14, 15, 17, 18, 19, 20, 23, 34, 37, 38, 43, 49, 52, 60, 73, 87, 95, 97, 102, 104, 115, 119, 122, 123, 124, 126, 130, 135, 137, 139, 146, 147, 155, 159, 160, 162, 163, 165, 167, 174, 175, 176, 179, 185, 203, 205, 207, 210, 221, 223, 233, 235, 240, 254], "reproduc": [1, 12, 25, 52, 73, 97, 138, 145, 160, 164, 173, 186], "realiz": [1, 17, 203], "sever": [1, 2, 3, 10, 11, 15, 16, 19, 22, 25, 45, 47, 52, 53, 54, 61, 73, 78, 97, 99, 113, 122, 127, 133, 136, 143, 147, 150, 153, 154, 156, 158, 160, 162, 163, 169, 170, 173, 174, 175, 177, 178, 193, 202, 210, 222, 225, 255], "ve": [1, 5, 6, 7, 8, 17, 21, 22, 25, 45, 47, 50, 76, 78, 113, 121, 125, 130, 137, 143, 144, 146, 153, 155, 161, 163, 170, 177, 185, 191, 193, 194, 203, 215], "_must_": 1, "99": [1, 63, 64, 67, 68, 69, 71, 72, 111, 160, 161, 164], "lmbda": [1, 160], "tau": [1, 161], "001": [1, 12, 14, 24, 44, 51, 89, 92, 94, 96, 97, 103, 112, 117, 134, 150, 161, 162, 166, 169, 170, 222, 232, 243, 244, 245, 251, 252, 256], "decai": [1, 117, 137, 158, 161, 218], "factor": [1, 18, 20, 117, 130, 158, 161, 162, 173, 184, 185], "off": [1, 7, 8, 9, 12, 16, 19, 21, 24, 34, 43, 49, 51, 52, 98, 112, 113, 117, 119, 123, 126, 127, 145, 153, 158, 160, 162, 163, 164, 172, 182, 189, 191], "dictat": [1, 14], "introduc": [1, 11, 15, 16, 17, 21, 22, 23, 24, 42, 54, 60, 75, 78, 79, 87, 97, 99, 109, 118, 119, 121, 122, 134, 145, 148, 150, 153, 162, 164, 165, 166, 172, 173, 174, 175, 176, 178, 182, 183, 186, 187, 190, 191, 193, 194, 197, 199, 201, 202, 203, 205, 206, 207, 211, 222, 224, 225], "outdat": 1, "trick": [1, 6, 10, 49, 131, 136, 146], "multi": [1, 5, 6, 14, 18, 47, 49, 52, 53, 54, 55, 56, 61, 77, 99, 113, 121, 122, 124, 132, 133, 134, 135, 137, 138, 150, 160, 162, 165, 169, 178, 179, 186, 195], "altern": [1, 6, 10, 23, 48, 49, 102, 113, 117, 123, 139, 144, 148, 156, 158, 160, 166, 169, 172, 173, 183, 185, 194, 201, 211], "hack": [1, 138, 186, 191], "find": [1, 2, 4, 5, 6, 8, 10, 17, 22, 23, 48, 52, 73, 82, 83, 85, 87, 98, 101, 121, 123, 127, 128, 136, 138, 142, 143, 145, 150, 154, 158, 161, 164, 166, 169, 174, 175, 184, 191, 192, 193, 194, 197, 199, 202, 203, 206, 210, 224, 225, 255], "despit": [1, 73, 134], "fact": [1, 3, 5, 6, 8, 12, 14, 19, 22, 23, 60, 73, 80, 97, 99, 103, 113, 125, 154, 160, 161, 170], "part": [1, 3, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 20, 23, 42, 43, 45, 49, 52, 58, 59, 60, 73, 76, 87, 98, 100, 103, 113, 116, 118, 121, 122, 124, 125, 128, 131, 132, 135, 136, 137, 138, 140, 144, 145, 150, 153, 154, 160, 166, 174, 175, 182, 183, 184, 185, 187, 190, 191, 193, 198, 200, 206, 210, 211, 224, 225, 255, 263, 264, 265], "thank": [1, 9, 19, 49, 104, 115, 119, 126, 127, 128, 136, 138, 166, 177, 178, 186, 189, 190, 197, 206, 224], "hardupd": 1, "softupd": [1, 137], "appropri": [1, 6, 7, 8, 42, 49, 60, 126, 127, 134, 154, 158, 163, 170, 176, 183, 199, 200, 201, 222], "locat": [1, 6, 31, 48, 78, 80, 82, 103, 109, 113, 136, 158, 160, 166, 169, 174, 175, 177, 179, 190, 206, 224, 225, 240, 260], "target_net_updat": 1, "ep": [1, 13, 73, 118, 130, 137, 143, 164, 174, 175, 180, 191, 200, 202, 203, 220], "adam": [1, 6, 11, 13, 14, 47, 49, 52, 69, 96, 97, 99, 110, 111, 118, 136, 137, 147, 149, 153, 160, 161, 162, 164, 166, 173, 212, 213, 216, 261], "optimizer_actor": 1, "lr": [1, 7, 11, 14, 16, 19, 24, 37, 38, 43, 44, 47, 49, 52, 65, 67, 69, 87, 89, 92, 94, 96, 97, 98, 99, 102, 103, 104, 110, 111, 112, 115, 117, 118, 122, 123, 130, 134, 135, 136, 137, 145, 147, 149, 150, 158, 160, 161, 162, 163, 164, 166, 167, 169, 170, 179, 212, 216, 218, 222, 223, 232, 239, 243, 244, 245, 247, 251, 252, 256, 261], "1e": [1, 13, 17, 20, 37, 38, 43, 63, 65, 67, 68, 69, 71, 72, 87, 93, 98, 111, 118, 125, 126, 130, 139, 151, 155, 158, 160, 161, 162, 164, 180, 191, 203, 220, 239], "weight_decai": [1, 98, 112, 158, 179, 218], "optimizer_valu": 1, "total_collection_step": 1, "pretti": [1, 16, 21, 44, 109, 113, 126, 146, 164, 183, 207], "rewards_ev": 1, "collected_fram": 1, "pbar": [1, 14, 137, 160], "r0": [1, 122], "enumer": [1, 7, 17, 19, 37, 38, 44, 49, 51, 52, 75, 87, 92, 94, 96, 98, 103, 115, 117, 123, 124, 127, 130, 137, 158, 159, 160, 163, 166, 167, 169, 170, 195, 203, 222, 223, 252, 256], "update_policy_weights_": 1, "numel": [1, 7, 8, 78, 97, 125, 130, 137, 148, 151, 160, 162, 191, 248, 257], "extend": [1, 4, 5, 6, 8, 19, 24, 52, 58, 59, 61, 87, 105, 106, 107, 113, 121, 123, 128, 135, 137, 159, 160, 163, 164, 172, 176, 178, 180, 187, 201, 210, 222], "current_fram": 1, "_": [1, 5, 11, 12, 14, 15, 16, 19, 21, 33, 34, 35, 36, 37, 40, 44, 48, 49, 52, 60, 75, 80, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 104, 106, 111, 115, 117, 118, 135, 136, 137, 138, 139, 140, 143, 145, 146, 148, 150, 151, 153, 158, 160, 161, 162, 164, 165, 166, 170, 173, 177, 178, 182, 183, 185, 186, 197, 199, 200, 201, 206, 209, 212, 213, 214, 215, 218, 221, 231, 232, 236, 239, 254, 261, 265], "rang": [1, 5, 6, 7, 9, 11, 12, 14, 16, 17, 18, 19, 21, 25, 34, 37, 38, 42, 44, 49, 51, 52, 53, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 78, 82, 85, 87, 89, 92, 94, 96, 97, 98, 99, 102, 103, 104, 105, 107, 108, 111, 113, 115, 116, 117, 118, 122, 123, 126, 127, 128, 130, 135, 136, 137, 138, 139, 143, 145, 147, 150, 153, 155, 158, 159, 160, 161, 162, 164, 165, 166, 167, 169, 170, 173, 174, 175, 177, 178, 179, 180, 182, 185, 186, 187, 195, 196, 197, 200, 203, 205, 211, 212, 213, 214, 217, 221, 223, 228, 232, 239, 240, 247, 252, 254, 261], "sampled_tensordict": 1, "backward": [1, 2, 3, 6, 7, 8, 11, 12, 13, 14, 15, 16, 19, 25, 32, 37, 38, 43, 44, 45, 47, 49, 52, 61, 63, 64, 65, 67, 68, 69, 73, 75, 76, 87, 89, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 111, 115, 117, 118, 121, 123, 124, 125, 127, 128, 129, 132, 134, 135, 136, 137, 142, 146, 147, 150, 151, 155, 158, 160, 161, 162, 163, 164, 166, 167, 169, 170, 173, 174, 175, 193, 200, 212, 213, 214, 216, 222, 223, 232, 240, 247, 249, 252, 256, 261], "gn1": 1, "clip_grad_norm_": [1, 7, 14, 49, 115, 160], "zero_grad": [1, 3, 6, 7, 12, 14, 19, 37, 38, 44, 47, 49, 52, 65, 67, 68, 69, 73, 75, 87, 89, 92, 94, 96, 97, 98, 99, 102, 103, 104, 111, 115, 117, 118, 122, 123, 127, 128, 130, 134, 136, 137, 147, 150, 153, 158, 160, 161, 162, 164, 166, 167, 169, 170, 173, 200, 216, 222, 223, 232, 247, 252, 256], "gn2": 1, "gn": [1, 14], "prioriti": [1, 8, 183], "update_tensordict_prior": 1, "td_record": 1, "r_evalu": 1, "len": [1, 7, 9, 12, 14, 17, 19, 34, 37, 38, 45, 47, 49, 51, 52, 55, 60, 73, 75, 79, 87, 93, 94, 96, 97, 98, 99, 102, 103, 104, 105, 108, 115, 116, 117, 118, 122, 123, 125, 127, 128, 130, 136, 138, 143, 150, 158, 161, 162, 163, 166, 167, 170, 172, 176, 179, 182, 186, 202, 203, 211, 217, 218, 223], "rn": 1, "rs": [1, 166], "std": [1, 2, 4, 5, 6, 12, 15, 19, 22, 23, 51, 58, 59, 73, 90, 92, 95, 97, 117, 150, 156, 158, 159, 164, 167, 172, 183, 187, 189, 191, 199, 200, 206, 210, 222, 224, 231, 233, 259], "set_descript": [1, 14, 137, 160], "2f": [1, 7, 19, 97, 115, 119, 123, 127, 130, 157, 159, 162, 164, 177, 178, 183, 185, 199, 200, 205, 230, 233, 236, 254], "grad": [1, 2, 6, 12, 13, 16, 32, 43, 47, 63, 64, 68, 73, 76, 78, 89, 101, 104, 111, 123, 125, 127, 128, 129, 130, 131, 134, 136, 142, 146, 151, 153, 160, 162, 163, 164, 191, 207, 213, 218, 232, 252], "norm": [1, 2, 14, 17, 19, 52, 78, 89, 97, 110, 121, 124, 154, 157, 160, 172, 183, 197, 203], "shutdown": [1, 16, 135, 162, 163, 164, 214], "del": [1, 44, 130, 142, 153, 160, 185, 187, 239], "plot": [1, 6, 12, 14, 17, 51, 52, 73, 82, 89, 113, 117, 126, 137, 147, 150, 160, 161, 162, 167, 170, 172, 197, 238], "mention": [1, 5, 6, 10, 11, 15, 16, 52, 60, 73, 85, 95, 97, 98, 112, 123, 124, 136, 137, 161, 163, 169, 172, 186, 199], "greater": [1, 11, 49, 52, 125, 177, 190, 208], "matplotlib": [1, 6, 12, 14, 34, 44, 51, 52, 57, 73, 75, 89, 90, 92, 94, 96, 104, 117, 127, 128, 137, 147, 150, 158, 160, 161, 166, 167, 170, 172, 179, 197, 238], "pyplot": [1, 6, 12, 14, 34, 44, 51, 52, 73, 75, 89, 90, 92, 94, 96, 104, 117, 127, 128, 137, 147, 150, 158, 160, 161, 166, 167, 170, 172, 179, 197, 238], "plt": [1, 6, 12, 14, 34, 44, 51, 52, 73, 75, 89, 90, 92, 94, 96, 117, 127, 128, 137, 147, 150, 158, 160, 161, 166, 167, 170, 172, 179, 197, 238], "zip": [1, 6, 17, 18, 44, 49, 50, 52, 104, 105, 108, 112, 116, 128, 138, 139, 151, 155, 161, 162, 164, 170, 172, 179, 182, 186, 203, 210, 218, 225, 232], "label": [1, 6, 17, 34, 40, 43, 44, 51, 52, 58, 59, 73, 75, 78, 87, 90, 92, 94, 96, 97, 99, 103, 109, 110, 113, 115, 117, 119, 122, 124, 127, 134, 135, 138, 147, 150, 158, 159, 162, 166, 169, 170, 179, 186, 203, 210, 215, 223, 233, 236, 238, 252, 261, 265], "legend": [1, 52, 147, 265], "xlabel": [1, 14, 52, 73, 137, 161, 172], "ylabel": [1, 17, 52, 73, 161, 172], "tight_layout": [1, 51, 73, 150, 158], "concret": [1, 5, 6, 8, 11, 150, 160, 191, 202], "takeawai": [1, 114], "further": [1, 4, 5, 6, 8, 19, 21, 23, 47, 61, 73, 87, 97, 113, 116, 118, 124, 127, 143, 145, 150, 157, 160, 172, 173, 178, 185, 195, 197, 198, 199, 200, 201, 206, 222, 224, 230, 255], "dispatch": [1, 5, 15, 121, 156, 178, 210], "distpatch": 1, "iql": 1, "flexibl": [1, 2, 5, 6, 23, 24, 25, 49, 60, 85, 105, 112, 115, 121, 122, 132, 201, 242], "minut": [1, 7, 9, 12, 13, 14, 17, 20, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 130, 137, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 159, 160, 161, 165, 166, 167, 169, 170, 173, 175, 179, 182, 185, 191, 192, 193, 194, 195, 197, 205, 207, 213, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 257, 258], "000": [1, 7, 9, 12, 13, 14, 17, 19, 20, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 130, 137, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 160, 161, 165, 166, 167, 169, 170, 172, 173, 175, 177, 179, 182, 185, 191, 192, 193, 194, 195, 197, 205, 207, 213, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 257, 258], "coding_ddpg": 1, "jupyt": [1, 7, 9, 12, 13, 14, 17, 20, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 130, 137, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 160, 161, 165, 166, 167, 169, 170, 172, 173, 175, 179, 182, 185, 191, 192, 193, 194, 195, 197, 205, 207, 213, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 257, 258], "notebook": [1, 7, 9, 12, 13, 14, 17, 18, 20, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 83, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 130, 137, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 160, 161, 165, 166, 167, 169, 170, 172, 173, 175, 179, 182, 185, 191, 192, 193, 194, 195, 197, 205, 207, 213, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 257, 258, 260], "ipynb": [1, 7, 9, 12, 13, 14, 17, 20, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 130, 137, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 160, 161, 165, 166, 167, 169, 173, 175, 179, 182, 185, 191, 192, 193, 194, 195, 197, 205, 207, 213, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 257, 258], "galleri": [1, 7, 9, 12, 13, 14, 17, 20, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 130, 137, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 160, 161, 165, 166, 167, 169, 173, 175, 179, 182, 185, 191, 192, 193, 194, 195, 197, 205, 207, 213, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 257, 258], "sphinx": [1, 7, 9, 12, 13, 14, 17, 20, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 130, 137, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 160, 161, 165, 166, 167, 169, 173, 175, 179, 182, 185, 191, 192, 193, 194, 195, 197, 205, 207, 213, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 257, 258, 263, 264, 265, 266, 270], "build": [2, 6, 7, 12, 14, 19, 20, 25, 35, 47, 49, 60, 61, 65, 68, 69, 75, 76, 78, 81, 87, 91, 95, 98, 103, 109, 111, 113, 114, 115, 118, 120, 121, 127, 128, 135, 136, 137, 138, 140, 142, 153, 155, 160, 161, 162, 163, 164, 175, 176, 182, 183, 186, 188, 189, 190, 195, 196, 198, 199, 201, 207, 222, 225, 226, 227, 248, 264, 269], "highli": [2, 5, 6, 10, 18, 49, 60, 87, 166, 176, 178, 207], "dynam": [2, 4, 5, 6, 8, 12, 14, 15, 19, 20, 22, 23, 25, 43, 53, 61, 65, 97, 100, 107, 111, 112, 119, 121, 148, 157, 160, 180, 183, 184, 185, 198, 199, 200, 201, 210, 222, 224, 237], "explor": [2, 6, 8, 14, 21, 23, 45, 49, 73, 108, 121, 126, 131, 137, 145, 147, 153, 160, 165, 166], "note": [2, 4, 5, 6, 7, 8, 9, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 43, 44, 45, 47, 49, 50, 52, 61, 73, 85, 99, 100, 101, 102, 103, 108, 109, 112, 113, 116, 117, 122, 123, 124, 125, 126, 130, 131, 133, 134, 135, 136, 138, 139, 142, 143, 145, 146, 148, 150, 153, 155, 156, 157, 158, 162, 163, 164, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 186, 189, 190, 191, 192, 193, 194, 195, 199, 200, 201, 203, 204, 205, 206, 207, 224, 240, 255, 263, 265], "differenti": [2, 5, 6, 14, 18, 25, 35, 40, 46, 47, 57, 76, 121, 137, 155, 161, 167, 193], "requires_grad": [2, 6, 7, 8, 12, 13, 20, 32, 37, 43, 47, 63, 64, 68, 73, 76, 89, 95, 101, 104, 105, 108, 110, 111, 117, 125, 129, 130, 131, 142, 147, 148, 158, 179, 193, 203, 207, 239, 246, 252], "track": [2, 5, 7, 8, 9, 14, 43, 52, 63, 82, 99, 101, 110, 111, 117, 122, 127, 128, 133, 137, 143, 158, 164, 166, 169, 210], "auto": [2, 3, 5, 6, 8, 10, 12, 22, 55, 59, 122, 123, 145, 156, 187, 189, 190, 208, 210, 222, 233, 248, 265, 266], "cout": [2, 4, 6, 22, 23, 189, 259], "endl": [2, 6, 22, 23, 189, 210], "cpufloattyp": [2, 4, 6, 23, 210], "wa": [2, 3, 4, 5, 11, 17, 20, 22, 23, 25, 42, 44, 49, 51, 52, 58, 59, 60, 61, 73, 76, 79, 95, 97, 98, 99, 101, 108, 112, 113, 115, 116, 123, 124, 126, 134, 136, 147, 151, 153, 154, 155, 157, 159, 160, 161, 164, 165, 166, 170, 177, 178, 185, 190, 193, 194, 200, 203, 210, 225, 233, 265], "result": [2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 23, 24, 25, 43, 44, 51, 58, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 76, 78, 82, 83, 87, 97, 101, 107, 108, 111, 112, 114, 116, 119, 122, 124, 125, 128, 134, 136, 137, 138, 142, 143, 144, 145, 146, 147, 148, 150, 151, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 170, 172, 173, 174, 175, 176, 177, 178, 179, 180, 183, 185, 190, 192, 193, 194, 195, 197, 199, 200, 201, 202, 204, 205, 206, 207, 208, 210, 211, 220, 223, 224, 225, 230, 233, 235, 240, 243, 248, 255, 259, 263], "grad_fn": [2, 4, 25, 32, 43, 47, 76, 89, 101, 125, 131, 174, 186], "addbackward1": 2, "z": [2, 5, 7, 23, 32, 43, 49, 52, 60, 76, 80, 85, 89, 92, 95, 101, 148, 166, 175, 193, 205, 210, 258, 266], "27": [2, 7, 51, 145, 164, 177, 185, 230, 233], "mulbackward1": 2, "meanbackward0": 2, "requires_grad_": [2, 12, 32, 76, 101, 104, 146], "flag": [2, 5, 14, 23, 43, 73, 76, 101, 138, 151, 154, 166, 175, 177, 186, 198, 200, 206], "place": [2, 5, 6, 11, 12, 14, 18, 22, 23, 43, 45, 48, 49, 52, 76, 78, 85, 99, 101, 108, 113, 116, 118, 122, 126, 130, 134, 136, 139, 149, 150, 153, 155, 157, 158, 160, 161, 166, 172, 173, 176, 183, 191, 199, 200, 201, 207, 210, 255, 265, 266, 267], "randn": [2, 5, 6, 12, 13, 20, 23, 32, 45, 47, 52, 63, 65, 67, 71, 72, 76, 78, 80, 89, 97, 98, 99, 101, 102, 104, 105, 108, 110, 111, 125, 129, 134, 135, 139, 142, 143, 144, 145, 146, 150, 151, 155, 162, 164, 165, 173, 174, 175, 185, 187, 188, 193, 195, 199, 200, 201, 207, 210, 214, 232, 233, 234, 236, 240, 241, 247, 254, 257, 261], "b": [2, 5, 6, 7, 12, 18, 21, 23, 32, 43, 47, 63, 64, 65, 67, 71, 72, 76, 80, 83, 89, 92, 93, 95, 98, 99, 102, 103, 104, 109, 110, 111, 125, 127, 128, 130, 143, 145, 146, 148, 150, 159, 161, 173, 175, 188, 193, 195, 196, 205, 211, 233, 240, 248, 254, 266], "sumbackward0": 2, "backprop": [2, 43, 71, 72, 76, 98, 101, 111, 127, 147], "scalar": [2, 5, 14, 15, 23, 32, 43, 49, 52, 60, 63, 76, 101, 111, 170, 199, 208], "equival": [2, 4, 5, 11, 13, 17, 22, 23, 32, 43, 99, 138, 142, 155, 161, 163, 172, 174, 175, 186, 187, 191, 193, 195, 200, 201, 202, 203], "print": [2, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 32, 33, 34, 37, 38, 40, 42, 43, 44, 45, 47, 48, 49, 51, 52, 53, 58, 59, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 127, 128, 130, 133, 134, 135, 136, 137, 138, 139, 140, 143, 144, 145, 146, 147, 148, 149, 151, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 170, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 203, 205, 208, 210, 211, 212, 213, 214, 216, 217, 220, 221, 222, 223, 225, 230, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 246, 248, 249, 251, 252, 254, 255, 257, 258, 259, 261, 265], "dx": [2, 64, 76, 99, 111, 131, 175], "got": [2, 15, 19, 55, 98, 99, 101, 113, 134, 147, 148, 156, 163, 190, 199, 202, 215, 265], "matrix": [2, 5, 6, 12, 17, 23, 32, 40, 43, 48, 82, 92, 98, 99, 101, 103, 109, 110, 124, 127, 128, 146, 151, 154, 165, 166, 167, 172, 174, 175, 177, 178, 194, 195, 201, 203, 207, 222, 223, 228], "explan": [2, 52, 61, 161, 170], "arriv": [2, 6, 15, 23, 42, 113, 122, 134, 162, 210], "valu": [2, 4, 5, 6, 7, 9, 12, 14, 18, 19, 20, 21, 22, 23, 25, 32, 33, 40, 41, 43, 47, 48, 49, 50, 55, 58, 59, 60, 61, 63, 68, 73, 80, 82, 85, 87, 92, 97, 98, 99, 101, 102, 103, 105, 108, 111, 113, 115, 124, 125, 126, 127, 130, 133, 134, 136, 138, 139, 140, 142, 144, 147, 150, 151, 155, 156, 157, 161, 162, 163, 164, 165, 166, 169, 172, 173, 174, 175, 176, 183, 184, 186, 189, 191, 192, 193, 194, 195, 197, 198, 199, 200, 202, 205, 206, 210, 211, 213, 218, 224, 263], "section": [2, 4, 5, 6, 7, 8, 11, 15, 18, 19, 21, 23, 43, 44, 47, 50, 51, 52, 73, 95, 97, 98, 99, 102, 103, 108, 113, 116, 118, 125, 130, 136, 140, 142, 145, 147, 151, 158, 161, 162, 164, 169, 172, 174, 177, 178, 179, 180, 183, 190, 192, 193, 202, 204, 213, 222, 263, 265, 266, 267, 269], "jacobian": [2, 43, 89, 121, 142, 207], "product": [2, 3, 4, 6, 12, 40, 42, 43, 48, 60, 61, 85, 99, 105, 113, 121, 122, 136, 140, 142, 166, 176, 177, 178, 186, 201, 202, 207, 211, 233, 253], "1021": 2, "4020": 2, "314": 2, "6695": 2, "613": 2, "4944": [2, 210], "0001": [2, 19, 49, 87, 89, 118, 145, 223], "kfloat": [2, 3, 59, 187, 190, 208], "102": 2, "4000": [2, 49, 60, 92, 248], "1024": [2, 5, 18, 21, 42, 82, 97, 130, 148, 165, 185, 201, 210, 212, 213, 233, 241], "0000": [2, 23, 174, 203, 210, 266], "stop": [2, 4, 5, 23, 51, 58, 59, 76, 78, 87, 98, 101, 110, 126, 128, 136, 148, 153, 160, 162, 166, 169], "histori": [2, 9, 47, 48, 101, 110, 113, 117, 128, 147, 157, 158, 166, 182], "nogradguard": [2, 259], "block": [2, 5, 6, 7, 8, 10, 12, 16, 17, 19, 22, 23, 47, 49, 75, 76, 82, 90, 101, 115, 116, 123, 124, 135, 136, 137, 145, 158, 162, 163, 164, 165, 169, 172, 185, 203, 209, 210, 269], "no_grad": [2, 7, 9, 12, 17, 19, 32, 37, 38, 42, 43, 44, 52, 58, 59, 63, 64, 68, 76, 87, 89, 92, 96, 97, 98, 99, 101, 102, 104, 110, 111, 115, 117, 122, 123, 127, 128, 130, 137, 138, 145, 147, 158, 159, 160, 161, 163, 166, 167, 170, 173, 175, 178, 179, 182, 183, 185, 186, 196, 199, 200, 201, 204, 218, 222, 249, 256, 259], "Or": [2, 21, 23, 153, 164, 180, 200, 208, 210, 265], "eq": [2, 19, 23, 49, 60, 95, 123, 130, 163, 167, 174, 183, 199, 200, 223, 240, 265], "bool": [2, 11, 14, 15, 17, 23, 95, 109, 118, 138, 144, 147, 156, 160, 161, 165, 172, 180, 186, 192, 194, 203, 210, 255, 263], "is_leaf": 2, "detach_": [2, 164], "register_hook": [2, 129], "retain_grad": 2, "doc": [2, 4, 6, 32, 33, 34, 37, 38, 40, 60, 69, 94, 104, 109, 111, 133, 136, 143, 144, 162, 164, 172, 175, 182, 195, 207, 232, 239, 263, 264, 265, 270], "calcul": [2, 12, 17, 43, 44, 49, 52, 56, 60, 73, 82, 85, 87, 97, 110, 127, 128, 138, 144, 147, 161, 162, 164, 165, 166, 172, 178, 183, 193, 195, 199, 202, 203], "penalti": [2, 154, 159], "h": [2, 4, 5, 6, 7, 8, 9, 10, 12, 22, 23, 25, 38, 49, 51, 96, 124, 130, 138, 145, 147, 148, 156, 179, 182, 186, 190, 210, 215, 222, 224, 227, 248, 259], "model": [2, 3, 5, 8, 11, 14, 16, 22, 23, 24, 33, 35, 37, 38, 39, 42, 43, 44, 47, 48, 52, 53, 54, 56, 61, 65, 67, 68, 69, 75, 78, 86, 87, 89, 90, 91, 93, 95, 96, 98, 99, 100, 101, 104, 106, 107, 108, 109, 110, 111, 116, 118, 119, 120, 121, 123, 126, 127, 128, 129, 130, 133, 136, 140, 142, 143, 145, 146, 149, 153, 154, 155, 159, 160, 161, 162, 163, 164, 165, 173, 174, 175, 177, 178, 184, 185, 187, 195, 198, 201, 202, 203, 206, 207, 209, 212, 215, 216, 217, 221, 223, 224, 229, 230, 231, 232, 236, 237, 240, 243, 244, 245, 247, 250, 251, 252, 253, 254, 256, 259, 260, 261], "linear": [2, 5, 6, 7, 9, 11, 16, 17, 19, 25, 37, 38, 43, 44, 45, 47, 48, 49, 60, 68, 69, 73, 78, 79, 87, 89, 92, 93, 94, 96, 97, 98, 100, 102, 103, 105, 109, 110, 111, 112, 115, 117, 118, 119, 123, 124, 125, 127, 128, 129, 130, 134, 135, 138, 139, 142, 145, 146, 147, 149, 150, 151, 154, 155, 157, 158, 161, 162, 163, 164, 165, 166, 167, 170, 173, 174, 175, 178, 180, 182, 183, 185, 186, 191, 195, 197, 199, 200, 201, 202, 203, 204, 205, 207, 209, 211, 212, 213, 214, 216, 217, 220, 221, 222, 223, 225, 228, 230, 232, 234, 235, 236, 239, 241, 242, 243, 244, 245, 246, 247, 250, 251, 252, 254, 255, 261], "loss": [2, 3, 5, 6, 7, 9, 11, 14, 16, 17, 19, 32, 38, 43, 48, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 78, 87, 89, 92, 94, 96, 99, 102, 103, 104, 111, 112, 115, 117, 118, 121, 122, 123, 125, 127, 129, 130, 135, 136, 147, 148, 149, 150, 153, 155, 158, 161, 163, 164, 166, 167, 169, 170, 173, 179, 182, 183, 190, 193, 199, 200, 203, 222, 223, 232, 243, 247, 252, 256], "target": [2, 3, 4, 6, 9, 12, 14, 16, 18, 19, 22, 23, 44, 47, 49, 55, 60, 73, 78, 90, 94, 97, 98, 99, 102, 103, 104, 113, 116, 118, 123, 127, 128, 130, 135, 136, 137, 139, 143, 145, 153, 155, 156, 159, 161, 162, 163, 164, 166, 167, 170, 172, 173, 174, 175, 179, 180, 182, 183, 190, 199, 200, 201, 202, 206, 208, 210, 222, 223, 224, 227, 231, 232, 256, 259], "mseloss": [2, 12, 37, 47, 65, 67, 68, 69, 78, 97, 110, 111, 134, 135, 150, 162, 216, 232, 247, 261], "grad_output": [2, 8, 10, 13, 64, 76, 78, 111], "ones_lik": [2, 32, 40, 48, 95, 143, 193], "create_graph": [2, 131], "gradient_penalti": 2, "dim": [2, 4, 5, 11, 14, 21, 33, 40, 41, 45, 48, 49, 60, 73, 90, 92, 93, 94, 96, 97, 99, 102, 103, 104, 110, 115, 118, 123, 127, 128, 130, 135, 145, 148, 149, 150, 155, 157, 159, 160, 162, 163, 164, 165, 166, 167, 170, 172, 174, 175, 192, 193, 194, 195, 205, 208, 221, 223, 235, 259], "combined_loss": 2, "1042": 2, "0638": 2, "0103": 2, "0723": 2, "2543": 2, "1222": 2, "0071": 2, "0814": 2, "1683": 2, "1052": 2, "0355": 2, "document": [2, 4, 5, 6, 20, 47, 52, 60, 61, 79, 82, 85, 87, 101, 112, 113, 117, 121, 134, 136, 137, 140, 142, 144, 145, 158, 163, 164, 165, 169, 172, 173, 174, 175, 177, 178, 179, 180, 193, 199, 201, 207, 208, 211, 220, 222, 230, 255, 263, 265, 266, 270], "link": [2, 4, 5, 6, 10, 12, 22, 23, 52, 58, 59, 82, 105, 108, 114, 116, 118, 136, 140, 142, 193, 206, 208, 210, 222, 263, 264, 269], "subclass": [2, 5, 6, 14, 17, 25, 64, 67, 79, 111, 121, 126, 137, 147, 157, 163, 170, 179, 193, 195, 203], "encod": [2, 7, 9, 14, 17, 42, 47, 48, 75, 76, 100, 104, 113, 118, 122, 126, 127, 128, 137, 154, 160, 164, 172, 179, 182, 185, 186, 197, 202, 203, 210, 232, 255], "method": [2, 4, 5, 6, 7, 8, 10, 11, 12, 14, 16, 17, 19, 21, 23, 25, 44, 47, 49, 51, 55, 58, 59, 60, 64, 65, 67, 73, 79, 83, 85, 90, 95, 97, 99, 101, 111, 112, 113, 115, 120, 121, 126, 131, 134, 137, 138, 140, 142, 143, 144, 145, 146, 147, 150, 154, 155, 156, 157, 158, 160, 161, 162, 163, 170, 172, 173, 174, 175, 177, 183, 184, 191, 199, 200, 202, 203, 205, 210, 211, 215, 225, 226, 227, 230, 265], "forward": [2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 22, 23, 25, 33, 37, 38, 43, 44, 45, 47, 49, 52, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 79, 85, 87, 89, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 108, 111, 112, 115, 117, 118, 121, 122, 123, 124, 125, 127, 128, 129, 130, 131, 132, 134, 135, 136, 139, 140, 143, 147, 149, 150, 151, 153, 154, 155, 157, 158, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 178, 180, 182, 183, 184, 186, 189, 190, 195, 196, 197, 199, 200, 201, 205, 206, 208, 210, 211, 213, 214, 215, 216, 217, 220, 221, 222, 223, 228, 230, 235, 236, 239, 240, 241, 242, 243, 244, 245, 250, 251, 252, 254, 255, 259], "detail": [2, 5, 6, 8, 10, 12, 15, 16, 20, 22, 23, 25, 43, 44, 45, 52, 53, 58, 59, 60, 61, 69, 73, 82, 83, 85, 111, 113, 116, 119, 123, 124, 126, 128, 130, 132, 134, 143, 145, 150, 151, 153, 158, 161, 164, 165, 169, 170, 173, 174, 175, 178, 180, 186, 190, 191, 192, 193, 194, 196, 200, 201, 207, 210, 213, 220, 222, 226, 227, 230, 233, 248, 255], "namespac": [2, 6, 8, 10, 22, 23, 108, 138, 156, 180, 186, 195, 210, 259], "inherit": [2, 11, 15, 22, 51, 60, 85, 99, 144, 147, 150, 160, 172, 179, 193, 195, 197, 201], "linearfunct": 2, "public": [2, 8, 10, 15, 156, 210, 266], "static": [2, 8, 10, 14, 21, 58, 59, 60, 107, 121, 138, 142, 143, 156, 174, 175, 182, 184, 185, 186, 198, 199, 200, 201, 202, 210, 249, 263], "option": [2, 5, 6, 8, 10, 11, 14, 23, 44, 46, 49, 51, 53, 60, 61, 82, 87, 97, 109, 120, 121, 126, 132, 135, 137, 139, 145, 148, 150, 157, 159, 172, 174, 175, 183, 184, 185, 186, 195, 196, 199, 200, 201, 202, 206, 211, 214, 218, 220, 229, 255, 265, 269], "autogradcontext": [2, 8, 10], "ctx": [2, 5, 8, 10, 13, 18, 64, 111, 130, 131, 142, 214], "save_for_backward": [2, 5, 13, 64, 111, 130, 131], "mm": [2, 5, 12, 59, 110, 138, 186, 187, 190, 196, 199, 208, 209, 224, 227], "expand_a": [2, 19, 183, 199, 200], "tensor_list": [2, 8, 10, 136], "get_saved_vari": 2, "grad_input": [2, 13, 78, 130, 131], "grad_weight": 2, "grad_bia": [2, 13], "Then": [2, 12, 15, 17, 20, 22, 24, 25, 44, 45, 52, 58, 59, 61, 73, 85, 98, 99, 102, 103, 114, 121, 123, 134, 135, 150, 153, 156, 157, 160, 161, 162, 164, 166, 169, 174, 175, 190, 197, 202, 203, 224, 226, 227, 230], "5314": 2, "2807": 2, "4864": 2, "7608": 2, "9101": [2, 174], "0073": 2, "mulconst": [2, 78], "object": [2, 4, 5, 6, 7, 9, 10, 11, 14, 19, 20, 22, 23, 43, 49, 51, 52, 60, 61, 64, 68, 69, 75, 95, 97, 101, 110, 111, 112, 116, 117, 118, 121, 125, 130, 136, 137, 142, 143, 144, 146, 155, 156, 160, 161, 162, 163, 164, 165, 169, 170, 172, 174, 175, 178, 182, 183, 195, 199, 200, 202, 218, 222, 223, 225, 227, 233, 248], "stash": [2, 64, 111], "saved_data": 2, "were": [2, 3, 5, 6, 9, 12, 17, 18, 23, 32, 52, 60, 83, 85, 97, 99, 101, 103, 113, 114, 126, 133, 134, 139, 148, 154, 160, 161, 163, 165, 166, 174, 175, 177, 191, 203, 206, 207], "todoubl": 2, "On": [2, 4, 5, 6, 8, 17, 19, 21, 22, 23, 115, 117, 122, 134, 136, 138, 148, 154, 157, 162, 163, 173, 178, 179, 203, 205, 210], "easiest": [2, 5, 9, 23, 121, 140, 146, 158, 160, 230], "tabl": [2, 16, 21, 89, 103, 109, 115, 121, 122, 136, 138, 144, 145, 163, 164, 165, 169, 174, 175, 176, 221, 240, 269], "set_data": 2, "output_nr": 2, "after": [2, 3, 5, 6, 7, 9, 10, 12, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 32, 33, 34, 43, 45, 47, 49, 52, 53, 58, 59, 60, 61, 63, 64, 76, 79, 87, 97, 98, 99, 102, 103, 105, 110, 111, 112, 113, 115, 116, 122, 124, 127, 128, 130, 133, 134, 135, 136, 137, 138, 139, 143, 145, 147, 148, 150, 153, 154, 156, 157, 158, 159, 160, 161, 163, 164, 166, 167, 169, 170, 174, 175, 177, 179, 180, 182, 183, 184, 186, 189, 190, 197, 199, 200, 201, 202, 203, 204, 205, 206, 208, 210, 215, 225, 226, 227, 230, 233, 255, 261], "bug": [2, 5, 10, 23, 108, 145, 187], "report": [2, 10, 17, 23, 52, 73, 87, 98, 121, 138, 145, 162, 164, 165, 187, 203], "fix": [2, 14, 17, 20, 23, 24, 49, 50, 51, 52, 97, 108, 113, 125, 158, 162, 174, 175, 185, 203, 265], "soon": [2, 5, 52, 58, 59, 122, 148, 153, 200, 222], "overview": [2, 5, 6, 11, 53, 55, 61, 113, 119, 120, 121, 127, 128, 134, 135, 136, 143, 156, 160, 162, 163, 164, 166, 169, 191, 192, 194, 198, 229], "alwai": [2, 3, 4, 6, 9, 14, 16, 18, 19, 22, 23, 49, 52, 99, 102, 103, 108, 113, 124, 125, 130, 136, 137, 138, 140, 159, 160, 161, 162, 164, 174, 179, 186, 189, 190, 191, 197, 206, 224, 255, 265], "problem": [2, 4, 6, 11, 14, 15, 18, 22, 23, 49, 51, 52, 61, 98, 100, 103, 115, 117, 126, 137, 143, 145, 146, 150, 154, 158, 160, 162, 164, 169, 173, 177, 191, 193, 234, 265], "question": [2, 4, 5, 6, 8, 10, 17, 22, 23, 49, 75, 122, 136, 138, 144, 166, 184, 192, 202, 203, 233], "forum": [2, 4, 5, 6, 22, 23, 44, 79, 110, 143, 144, 184], "view": [3, 7, 9, 10, 11, 12, 14, 15, 16, 19, 25, 47, 49, 50, 52, 53, 55, 56, 61, 73, 78, 82, 92, 93, 94, 96, 98, 99, 101, 102, 103, 104, 105, 110, 112, 118, 123, 124, 126, 127, 132, 133, 134, 135, 136, 142, 143, 144, 145, 150, 151, 156, 157, 161, 162, 163, 164, 165, 166, 167, 170, 174, 175, 182, 183, 184, 195, 199, 200, 208, 213, 228, 242, 243, 244, 245, 247, 250, 251, 252, 263], "prerequisit": [3, 7, 53, 55, 56, 100, 108, 114, 124, 132, 133, 134, 135, 136, 137, 156, 162, 163, 164, 172, 188, 199], "frontend": [3, 10, 84, 110, 121, 178, 187, 189, 195, 201, 222], "semant": [3, 6, 22, 49, 58, 59, 68, 95, 100, 102, 111, 136, 138, 193, 194, 195, 198, 207, 265], "11": [3, 5, 6, 7, 11, 17, 18, 23, 59, 61, 95, 104, 109, 122, 123, 142, 159, 164, 172, 173, 174, 175, 176, 196, 206, 210, 217, 221, 227, 229, 233, 240, 259, 265, 269], "nvidia": [3, 5, 17, 50, 95, 130, 136, 138, 148, 173, 203, 217, 232, 249, 253, 260], "toolkit": [3, 23, 100, 143, 147], "releas": [3, 4, 6, 10, 17, 20, 23, 24, 42, 50, 105, 108, 109, 112, 122, 123, 125, 140, 143, 153, 163, 165, 169, 201, 203, 206, 210, 222, 265], "greatli": [3, 6, 49, 161], "overhead": [3, 5, 6, 10, 17, 56, 82, 109, 122, 123, 124, 134, 146, 148, 150, 159, 162, 164, 165, 169, 173, 177, 178, 185, 187, 195, 201, 203], "increas": [3, 5, 6, 18, 19, 20, 24, 44, 73, 82, 83, 87, 97, 122, 123, 124, 126, 128, 132, 135, 143, 153, 159, 169, 183, 185, 195, 196, 199, 211], "mostli": [3, 10, 19, 85, 97, 116, 127, 164, 166, 180, 199, 200, 201], "deploy": [3, 4, 25, 42, 60, 97, 112, 126, 178, 187, 201, 206, 222, 229, 230, 255], "appear": [3, 11, 14, 22, 25, 103, 265], "heart": [3, 49, 113, 266], "veri": [3, 4, 5, 6, 8, 12, 14, 15, 18, 19, 21, 22, 23, 24, 25, 45, 47, 48, 49, 58, 59, 60, 61, 65, 73, 75, 76, 85, 99, 101, 113, 115, 117, 123, 124, 125, 127, 135, 136, 150, 153, 154, 158, 161, 162, 164, 165, 166, 167, 169, 170, 177, 179, 183, 191, 193, 197, 200, 207, 266, 267], "time": [3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 83, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 125, 126, 127, 128, 130, 131, 134, 135, 136, 137, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 177, 178, 179, 182, 183, 185, 186, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 203, 205, 206, 207, 208, 213, 214, 221, 230, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 257, 258, 263, 265], "compil": [3, 4, 6, 8, 10, 17, 21, 22, 25, 60, 85, 98, 108, 121, 136, 144, 174, 175, 176, 185, 187, 188, 195, 201, 206, 209, 222, 225, 253, 256, 259, 263], "boost": [3, 97, 99, 145, 146, 177, 185, 188, 201, 209, 222, 223], "demonstr": [3, 7, 9, 14, 16, 17, 20, 21, 22, 25, 42, 43, 50, 57, 61, 75, 82, 85, 108, 113, 120, 121, 122, 123, 124, 125, 127, 130, 131, 134, 135, 138, 139, 142, 143, 144, 145, 151, 156, 160, 162, 163, 164, 165, 169, 172, 174, 175, 178, 180, 185, 186, 187, 189, 190, 193, 195, 197, 200, 203, 204, 205, 206, 213, 220, 224, 226, 227, 230, 255, 265, 266, 267], "mnist": [3, 6, 34, 44, 47, 73, 78, 92, 94, 96, 119, 120, 121, 123, 126, 130, 136, 139, 149, 155, 163, 167, 170, 223, 235], "libtorch": [3, 6, 22, 23, 189, 206, 208, 210, 222, 224, 227, 253, 259], "counterpart": [3, 17, 108, 135, 145, 197, 203, 222, 255], "depict": 3, "chunk": [3, 5, 7, 55, 136, 153, 165], "batch": [3, 5, 6, 9, 12, 16, 17, 19, 21, 34, 37, 38, 39, 42, 44, 45, 47, 49, 51, 52, 53, 55, 56, 60, 61, 73, 75, 78, 79, 82, 87, 90, 92, 94, 97, 102, 104, 110, 112, 113, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 132, 135, 136, 137, 138, 139, 140, 147, 148, 149, 150, 151, 153, 155, 158, 159, 160, 161, 163, 164, 165, 167, 169, 170, 172, 173, 174, 175, 176, 178, 179, 182, 183, 185, 186, 193, 195, 198, 200, 203, 206, 207, 225, 233, 243, 244, 245], "data_load": [3, 6, 19, 179, 183, 199, 200, 201, 238], "nll_loss": [3, 73, 123, 130, 136, 149, 155, 163, 167, 223], "updat": [3, 6, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 42, 43, 44, 49, 51, 52, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 82, 97, 98, 99, 102, 103, 110, 111, 112, 117, 122, 123, 126, 130, 137, 138, 140, 148, 153, 160, 161, 163, 164, 169, 179, 183, 186, 191, 199, 200, 201, 202, 203, 206, 220, 223, 224, 230, 232], "captur": [3, 4, 6, 22, 23, 25, 52, 60, 107, 123, 142, 149, 159, 172, 173, 174, 175, 187, 196, 199, 200, 202], "But": [3, 6, 8, 10, 20, 42, 44, 45, 52, 73, 78, 101, 103, 116, 125, 148, 153, 154, 155, 161, 174, 175, 177, 179, 183, 186, 191, 194, 202, 207, 220, 225, 230, 255, 265], "slightli": [3, 5, 14, 23, 122, 136, 137, 159, 166, 174, 175, 194], "prealloc": [3, 14], "reus": [3, 10, 65, 78, 111, 131, 138, 142, 154, 161, 177, 178, 186, 189], "tensoropt": [3, 187], "floatcuda": 3, "dtype": [3, 7, 8, 9, 10, 13, 14, 15, 38, 40, 41, 48, 49, 51, 52, 60, 63, 64, 72, 78, 80, 85, 89, 92, 95, 98, 101, 102, 103, 109, 111, 115, 119, 127, 130, 131, 138, 142, 145, 147, 148, 151, 161, 165, 166, 167, 174, 175, 176, 179, 180, 186, 187, 191, 192, 193, 194, 195, 197, 199, 201, 202, 208, 211, 220, 222, 225, 230, 232, 236, 239, 246, 249, 255, 256], "longcuda": 3, "klong": 3, "zero": [3, 6, 7, 11, 16, 17, 19, 25, 32, 40, 41, 44, 47, 48, 49, 60, 63, 64, 65, 67, 68, 69, 73, 78, 87, 92, 95, 98, 99, 103, 104, 110, 111, 117, 118, 122, 123, 127, 128, 135, 136, 137, 142, 145, 150, 151, 154, 156, 157, 158, 161, 162, 164, 166, 170, 179, 182, 186, 191, 193, 194, 196, 202, 203, 211, 225, 237, 248, 249, 255, 258, 261], "ktrainbatchs": 3, "28": [3, 6, 7, 17, 33, 34, 37, 38, 47, 78, 93, 94, 104, 139, 149, 155, 170, 177, 203, 205, 206, 210, 223, 225, 233, 235, 248], "training_step": [3, 149], "void": [3, 5, 6, 15, 22, 23, 59, 145, 156, 187, 190, 210, 233, 240, 248], "cudagraph": 3, "cudastream": 3, "capturestream": 3, "getstreamfrompool": 3, "setcurrentcudastream": 3, "capture_begin": 3, "capture_end": 3, "warm": [3, 21, 70, 103, 109, 169, 173, 177, 178, 195, 205, 233], "side": [3, 20, 51, 52, 82, 103, 139, 148, 153, 155, 156, 161, 162, 167, 169, 190, 263], "prepar": [3, 11, 17, 19, 25, 44, 51, 52, 58, 59, 68, 69, 102, 103, 111, 112, 116, 135, 138, 139, 153, 156, 160, 162, 182, 186, 195, 197, 198, 201, 202, 203, 206, 211, 220, 224, 229, 230], "cach": [3, 64, 111, 138, 145, 169, 177, 178, 185, 186], "cubla": [3, 233], "cudnn": [3, 5, 78, 117, 130, 137, 148, 151, 232], "warmupstream": 3, "int": [3, 4, 5, 6, 9, 11, 14, 18, 19, 22, 23, 24, 51, 53, 55, 58, 59, 60, 75, 85, 87, 98, 109, 115, 118, 122, 123, 126, 136, 138, 145, 147, 149, 156, 157, 162, 163, 164, 165, 169, 173, 174, 175, 179, 182, 186, 190, 195, 208, 210, 211, 215, 217, 222, 225, 255, 259, 263], "num_warmup_it": 3, "success": [3, 6, 14, 23, 73, 101, 103, 126, 145, 166, 190, 206, 208], "replai": [3, 14, 25, 76, 147], "spin": [3, 60, 177], "ordinari": [3, 196], "epoch": [3, 6, 7, 9, 16, 19, 24, 37, 38, 44, 52, 53, 55, 75, 87, 92, 94, 96, 97, 98, 99, 102, 103, 104, 112, 115, 117, 118, 122, 123, 126, 130, 136, 148, 149, 153, 158, 160, 164, 166, 167, 170, 179, 200, 223, 232, 243, 247, 252], "59584": 3, "60000": [3, 136], "3921": 3, "2051": 3, "accuraci": [3, 9, 17, 19, 20, 24, 37, 38, 44, 92, 97, 104, 115, 119, 120, 121, 122, 123, 126, 130, 149, 151, 157, 158, 159, 163, 167, 170, 172, 178, 183, 186, 196, 197, 200, 201, 203, 220, 223, 229, 230], "938": [3, 6, 148], "1826": 3, "1273": 3, "960": 3, "1796": 3, "1012": [3, 148], "968": 3, "1603": 3, "0869": 3, "973": 3, "2315": 3, "0736": 3, "978": 3, "0511": [3, 186], "0704": 3, "977": [3, 148, 221], "0802": 3, "0654": 3, "979": 3, "0774": 3, "0604": 3, "980": [3, 177], "0669": 3, "0544": 3, "984": 3, "0219": 3, "0517": 3, "983": 3, "real": [3, 6, 14, 20, 32, 52, 54, 58, 97, 98, 99, 100, 103, 121, 123, 126, 127, 128, 136, 137, 150, 153, 156, 159, 161, 166, 173, 177, 193, 195, 199, 202, 220], "0m44": 3, "287": [3, 178, 265], "018": 3, "0m1": 3, "116": [3, 186], "produc": [3, 4, 5, 6, 11, 22, 23, 25, 60, 68, 97, 111, 113, 115, 126, 137, 139, 142, 144, 146, 148, 150, 160, 161, 166, 172, 174, 175, 180, 183, 184, 186, 199, 200, 201, 208, 265], "4092": 3, "2037": 3, "2039": 3, "1274": 3, "961": 3, "1779": 3, "1017": 3, "1559": 3, "0871": 3, "972": 3, "2240": 3, "0735": [3, 203], "0520": 3, "0710": 3, "0935": 3, "0666": [3, 23], "0744": 3, "0603": 3, "981": 3, "0762": 3, "0547": 3, "0207": 3, "0525": [3, 210], "0m6": 3, "952": [3, 145], "0m7": 3, "048": 3, "0m0": 3, "619": 3, "gain": [3, 5, 17, 82, 146, 155, 169, 177, 203], "six": [3, 160, 167, 265], "kind": [3, 5, 6, 19, 23, 44, 47, 49, 58, 59, 73, 98, 102, 112, 119, 121, 138, 174, 178, 199, 255], "larg": [3, 5, 6, 7, 12, 16, 17, 18, 23, 42, 49, 87, 97, 102, 103, 105, 117, 120, 121, 122, 123, 126, 130, 134, 136, 139, 140, 150, 151, 160, 161, 163, 164, 165, 172, 173, 177, 178, 179, 193, 201, 203, 204, 225, 263, 265], "improv": [3, 5, 6, 8, 10, 17, 19, 21, 24, 42, 49, 56, 97, 108, 120, 121, 122, 123, 124, 130, 143, 146, 148, 150, 154, 155, 158, 161, 165, 166, 172, 173, 177, 178, 185, 186, 196, 199, 202, 203, 206, 220, 222, 224, 266], "due": [3, 5, 6, 17, 18, 22, 52, 58, 60, 82, 85, 108, 122, 123, 124, 134, 153, 154, 158, 163, 173, 177, 183, 185, 193, 202, 203, 204, 213, 264, 265], "heavi": [3, 6, 49, 97, 101, 225], "impact": [3, 12, 17, 87, 97, 137, 162, 165, 185, 203, 211, 255], "smaller": [3, 9, 51, 79, 97, 103, 123, 124, 158, 160, 162, 172, 205, 210, 225], "nevertheless": [3, 5, 19, 23, 148, 160], "primari": [4, 5, 6, 15, 143, 176, 177, 178, 187, 195, 208], "program": [4, 5, 18, 21, 22, 23, 25, 60, 61, 98, 100, 101, 103, 121, 124, 127, 144, 163, 173, 174, 178, 188, 199, 200, 201, 202], "languag": [4, 5, 6, 7, 21, 23, 24, 25, 44, 49, 58, 59, 60, 78, 79, 98, 100, 102, 116, 118, 119, 121, 124, 126, 127, 128, 138, 164, 166, 174, 175, 182, 187, 197, 248, 255, 257, 264, 265, 266], "suitabl": [4, 8, 132, 136, 140, 172, 201, 225], "prefer": [4, 6, 8, 53, 58, 146, 151, 156, 160, 177, 196, 255], "eas": [4, 5, 85, 122, 178, 222], "situat": [4, 15, 23, 25, 37, 130, 131, 134, 136, 179, 185, 197], "properti": [4, 5, 6, 11, 14, 21, 23, 25, 32, 40, 48, 101, 103, 126, 148, 154, 166, 174, 175, 177, 178, 192, 210, 222, 251, 259, 263], "unfavor": 4, "environ": [4, 5, 6, 7, 11, 17, 18, 22, 25, 42, 55, 61, 82, 85, 105, 112, 114, 115, 121, 122, 123, 124, 133, 134, 135, 136, 145, 149, 150, 156, 161, 162, 163, 164, 173, 174, 175, 176, 177, 206, 208, 210, 214, 216, 217, 224, 225, 233, 255, 261], "latter": [4, 5, 6, 60, 61, 126, 162, 200], "land": [4, 23, 113, 147, 193, 222], "latenc": [4, 6, 17, 121, 124, 126, 133, 145, 159, 173, 177, 178, 189, 196, 203, 225], "strict": [4, 112, 172, 192, 222, 250], "bind": [4, 6, 10, 23, 121, 177, 178, 265], "java": [4, 58, 178, 206, 224, 225], "rust": 4, "paragraph": [4, 6, 23, 266, 269], "outlin": [4, 5, 6, 23, 229], "pure": [4, 5, 6, 10, 23, 47, 121, 127, 131, 139, 155, 179, 187, 201], "journei": [4, 6, 52, 138], "enabl": [4, 5, 6, 8, 11, 14, 15, 16, 18, 19, 23, 24, 42, 47, 55, 56, 58, 59, 60, 61, 75, 82, 97, 107, 112, 122, 123, 124, 126, 129, 130, 131, 134, 136, 138, 145, 148, 153, 157, 159, 160, 169, 170, 172, 176, 177, 178, 180, 184, 185, 191, 193, 195, 197, 198, 201, 206, 222, 226, 227, 230, 232, 242, 263], "vanilla": [4, 5, 6, 23, 49, 65, 99, 111, 127, 172, 191], "eager": [4, 10, 23, 60, 85, 86, 121, 129, 145, 148, 165, 173, 175, 182, 197, 199, 200, 201, 202, 212, 223], "discuss": [4, 5, 6, 8, 10, 15, 16, 23, 44, 73, 79, 101, 102, 116, 122, 123, 129, 135, 143, 144, 145, 150, 151, 173, 177, 178, 184, 191, 192, 193, 194, 209, 230], "littl": [4, 17, 25, 52, 61, 97, 99, 113, 137, 160, 162, 164, 165, 167, 169, 203], "effort": [4, 14, 49, 51, 52, 108, 183, 197, 198], "next": [4, 5, 6, 8, 9, 11, 12, 14, 15, 16, 17, 19, 20, 22, 23, 34, 42, 43, 49, 51, 53, 55, 56, 58, 59, 60, 75, 78, 80, 82, 85, 92, 94, 96, 97, 98, 99, 102, 103, 105, 112, 113, 115, 117, 121, 122, 123, 124, 125, 127, 128, 130, 131, 133, 137, 138, 139, 140, 144, 145, 147, 150, 151, 153, 155, 158, 161, 162, 163, 164, 166, 167, 169, 170, 178, 179, 182, 183, 185, 189, 190, 193, 194, 197, 199, 200, 201, 203, 205, 210, 222, 224, 225, 263, 265, 266], "mechan": [4, 5, 6, 11, 14, 15, 24, 32, 49, 56, 60, 131, 144, 154, 166, 167, 169, 175, 178, 201, 222], "evalu": [4, 6, 9, 12, 17, 19, 20, 24, 37, 73, 97, 105, 107, 112, 118, 146, 151, 160, 161, 163, 170, 173, 174, 175, 179, 182, 200, 203, 223, 243], "onc": [4, 5, 6, 8, 10, 11, 14, 16, 17, 20, 21, 22, 23, 25, 51, 52, 56, 60, 82, 97, 98, 102, 105, 113, 132, 137, 140, 148, 149, 153, 154, 157, 159, 160, 161, 163, 166, 169, 170, 178, 185, 186, 190, 195, 197, 203, 222, 225, 233], "record": [4, 6, 8, 19, 20, 23, 25, 43, 49, 60, 112, 121, 122, 123, 127, 130, 131, 144, 147, 153, 160, 161, 163, 164, 173, 175, 206, 255], "explicit": [4, 6, 21, 23, 60, 140, 148, 164, 192, 202, 211, 265], "pars": [4, 5, 23, 49, 51, 103, 116, 122, 123, 126, 211, 265], "subject": [4, 11, 14, 23, 42, 108, 113, 123, 142, 166, 174, 175, 189, 190, 195, 200, 206, 207, 208, 224], "constraint": [4, 6, 12, 17, 18, 60, 85, 98, 99, 121, 124, 126, 154, 160, 172, 199, 200, 202, 203, 255], "impos": [4, 225, 234], "guidanc": [4, 8, 177, 178, 197], "offici": [4, 82, 108, 113, 115, 136, 161, 173, 175, 182, 201, 220, 222, 255], "jit": [4, 6, 8, 15, 19, 21, 22, 25, 49, 58, 59, 60, 85, 112, 119, 138, 143, 148, 173, 178, 183, 186, 189, 190, 196, 199, 200, 205, 206, 208, 209, 210, 211, 218, 220, 222, 224, 225, 226, 227, 233, 240, 249, 254, 255, 257, 259], "scriptmodul": [4, 22, 23, 25, 85, 205, 224, 255, 259], "embed": [4, 7, 9, 16, 21, 23, 49, 60, 75, 79, 93, 98, 100, 102, 110, 112, 115, 118, 121, 122, 124, 138, 163, 164, 166, 170, 176, 182, 190, 195, 197, 243, 265], "resnet18": [4, 43, 90, 117, 148, 158, 159, 169, 172, 183, 197, 199, 200, 201, 231, 240, 259], "normal": [4, 6, 8, 11, 12, 19, 20, 21, 37, 39, 49, 51, 52, 58, 59, 60, 65, 73, 80, 85, 87, 90, 92, 94, 96, 97, 98, 99, 102, 103, 111, 112, 117, 119, 123, 127, 128, 130, 136, 137, 140, 147, 149, 154, 158, 159, 162, 163, 165, 166, 167, 169, 170, 172, 173, 178, 183, 185, 192, 199, 200, 206, 211, 215, 222, 223, 225, 226, 227, 230, 231, 243, 244, 245, 252, 255, 256, 265], "rand": [4, 5, 6, 14, 15, 17, 21, 23, 25, 33, 40, 43, 48, 85, 89, 92, 93, 95, 96, 109, 114, 130, 131, 145, 147, 153, 154, 165, 177, 178, 179, 180, 189, 197, 199, 200, 203, 205, 208, 212, 213, 216, 221, 222, 225, 226, 227, 228, 235, 241, 249, 255, 256, 259], "224": [4, 12, 19, 20, 51, 58, 59, 75, 90, 97, 117, 119, 140, 143, 144, 153, 158, 159, 167, 169, 172, 177, 178, 183, 189, 190, 196, 199, 200, 201, 206, 208, 215, 220, 222, 225, 226, 227, 231, 240, 249, 255, 256, 259], "traced_script_modul": [4, 225], "ident": [4, 6, 17, 55, 85, 124, 133, 143, 151, 158, 167, 170, 186, 194, 196, 203, 220], "2698": 4, "0381": 4, "4023": 4, "3010": 4, "0448": 4, "slicebackward": 4, "circumst": [4, 5], "emploi": [4, 97, 166, 169], "particular": [4, 5, 6, 8, 11, 23, 42, 44, 51, 60, 82, 83, 87, 103, 124, 126, 127, 136, 137, 139, 140, 151, 155, 163, 172, 174, 175, 179, 180, 191, 192, 194, 195, 225], "form": [4, 6, 9, 12, 15, 17, 23, 47, 49, 52, 60, 98, 105, 110, 113, 116, 121, 125, 128, 140, 145, 166, 172, 175, 185, 195, 203, 204, 215, 265], "accordingli": [4, 10, 12, 18, 22, 137, 150, 153, 162, 172, 190, 263], "sai": [4, 5, 6, 24, 43, 51, 99, 101, 103, 113, 115, 125, 139, 146, 150, 153, 157, 169, 185, 202, 224, 266], "mymodul": [4, 6, 109, 173, 174, 175, 204, 214], "__init__": [4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 19, 20, 21, 22, 25, 33, 37, 38, 44, 45, 47, 49, 51, 52, 53, 60, 65, 67, 73, 78, 79, 85, 87, 89, 92, 93, 94, 96, 97, 98, 99, 102, 103, 104, 105, 109, 111, 112, 115, 118, 123, 125, 127, 128, 129, 130, 134, 135, 136, 139, 143, 144, 147, 149, 150, 151, 154, 155, 157, 161, 162, 163, 164, 165, 166, 167, 170, 172, 173, 174, 175, 178, 179, 180, 182, 183, 184, 195, 196, 197, 199, 200, 201, 204, 205, 211, 214, 216, 217, 218, 220, 221, 223, 225, 228, 230, 235, 236, 239, 241, 242, 243, 244, 245, 246, 250, 251, 252, 254, 255, 265], "n": [4, 5, 6, 7, 9, 12, 17, 19, 22, 23, 32, 33, 37, 38, 40, 43, 47, 48, 49, 51, 59, 60, 75, 82, 85, 89, 90, 93, 94, 95, 97, 104, 110, 113, 115, 118, 122, 123, 127, 130, 134, 136, 137, 138, 144, 146, 147, 148, 151, 154, 157, 161, 162, 163, 164, 166, 167, 170, 179, 183, 185, 186, 188, 191, 192, 193, 194, 195, 199, 200, 202, 203, 207, 210, 215, 222, 232, 233, 238, 246, 249, 257, 259], "mv": [4, 110], "my_modul": 4, "20": [4, 6, 7, 9, 13, 16, 17, 19, 23, 33, 58, 59, 61, 78, 79, 82, 85, 87, 93, 95, 109, 123, 126, 128, 134, 136, 137, 143, 145, 147, 148, 150, 151, 153, 157, 162, 164, 167, 169, 174, 175, 178, 185, 189, 194, 197, 200, 203, 211, 223, 225, 233, 234, 236, 240, 248, 261, 269], "sm": [4, 169], "exclud": [4, 8, 43], "doesn": [4, 7, 8, 10, 12, 13, 17, 25, 58, 99, 101, 103, 113, 125, 144, 146, 148, 157, 172, 173, 177, 180, 184, 185, 191, 197, 200, 202, 203, 207, 210, 213, 230, 265], "yet": [4, 6, 10, 11, 18, 23, 50, 73, 102, 107, 108, 113, 136, 163, 166, 176, 180, 186, 195, 200, 201, 222, 226, 227], "could": [4, 5, 6, 8, 10, 11, 23, 52, 60, 87, 97, 98, 99, 101, 102, 103, 105, 109, 122, 123, 124, 125, 127, 128, 130, 136, 140, 148, 150, 153, 160, 161, 162, 163, 164, 166, 169, 170, 172, 177, 178, 179, 180, 191, 193, 199, 201, 202, 207, 222], "ignor": [4, 19, 49, 51, 97, 102, 103, 112, 143, 149, 156, 160, 172, 179, 180, 183, 189, 191, 192, 193, 194, 195, 199, 200, 220], "readi": [4, 6, 9, 10, 16, 22, 23, 42, 49, 58, 59, 60, 98, 99, 102, 103, 122, 135, 136, 151, 156, 160, 162, 163, 164, 176, 179, 189, 196, 199, 200, 201, 210, 215, 225, 226, 227, 230, 255], "hand": [4, 5, 6, 8, 14, 17, 18, 23, 61, 73, 98, 103, 128, 136, 140, 155, 173, 178, 192, 203], "shown": [4, 6, 8, 17, 19, 20, 21, 52, 58, 59, 113, 116, 124, 126, 138, 145, 147, 158, 161, 162, 164, 165, 169, 172, 173, 177, 178, 184, 190, 192, 193, 194, 197, 200, 202, 203, 222, 230, 255, 263, 265], "filenam": [4, 6, 49, 104, 109, 116, 127, 128, 172, 232], "traced_resnet_model": 4, "pt": [4, 6, 22, 23, 25, 53, 58, 59, 75, 112, 117, 119, 122, 123, 138, 190, 196, 206, 208, 210, 220, 222, 223, 224, 225, 226, 227, 230, 242, 243, 244, 245, 250, 259], "my_module_model": 4, "left": [4, 17, 32, 43, 47, 49, 51, 52, 64, 85, 89, 99, 103, 111, 112, 113, 136, 138, 147, 151, 160, 161, 163, 165, 169, 170, 202, 203, 263, 265], "realm": [4, 6], "cross": [4, 7, 8, 13, 20, 44, 52, 95, 118, 124, 126, 177, 265], "sphere": 4, "distribut": [4, 5, 6, 14, 15, 19, 24, 52, 54, 73, 75, 79, 80, 87, 97, 99, 103, 108, 113, 121, 122, 123, 124, 126, 132, 133, 138, 148, 150, 153, 156, 160, 162, 169, 177, 186, 195, 198, 204, 210, 214, 216, 217, 218, 225, 233, 253, 261], "encompass": 4, "share": [4, 5, 6, 10, 11, 18, 22, 23, 48, 55, 66, 78, 80, 87, 97, 101, 108, 110, 113, 121, 122, 125, 134, 136, 137, 147, 160, 162, 163, 164, 174, 175, 177, 197, 210, 222], "header": [4, 5, 6, 8, 22, 23, 144, 156, 190, 206, 210, 224, 227, 263, 265, 266], "cmake": [4, 6, 190, 208, 222, 259], "futur": [4, 7, 18, 21, 22, 42, 49, 58, 59, 109, 110, 118, 123, 135, 138, 142, 147, 153, 156, 158, 161, 162, 163, 164, 174, 175, 180, 182, 189, 190, 194, 199, 200, 201, 202, 206, 210, 224, 255], "begin": [4, 5, 6, 7, 11, 12, 17, 19, 22, 23, 25, 32, 43, 49, 50, 52, 55, 58, 59, 73, 85, 89, 102, 103, 108, 113, 115, 116, 122, 124, 138, 143, 153, 158, 161, 163, 169, 170, 193, 195, 203, 225, 230, 265], "iostream": [4, 5, 6, 22, 23, 222], "argc": [4, 22, 23, 222, 259], "const": [4, 5, 6, 8, 10, 15, 22, 23, 59, 145, 156, 187, 210, 222, 224, 233, 248, 259], "char": [4, 22, 23, 59, 145, 210, 222, 259], "cerr": [4, 22, 23, 222, 259], "app": [4, 23, 105, 119, 121, 140, 196, 206, 215, 222, 224, 229, 230, 255], "try": [4, 6, 12, 14, 15, 17, 19, 21, 22, 23, 25, 42, 44, 47, 48, 49, 52, 53, 58, 59, 60, 61, 73, 79, 97, 98, 99, 100, 101, 104, 105, 109, 116, 125, 126, 127, 128, 130, 137, 143, 145, 147, 148, 150, 151, 153, 156, 157, 160, 161, 165, 166, 169, 173, 174, 175, 177, 183, 185, 189, 192, 199, 203, 205, 210, 215, 222, 224, 259, 265, 266], "deseri": [4, 6, 23, 112, 183, 199, 200], "catch": [4, 8, 11, 22, 58, 210, 222, 224, 259], "c10": [4, 8, 10, 15, 22, 145, 156, 187, 190, 210, 222, 233, 248, 259], "ok": [4, 103, 162, 265], "relev": [4, 6, 14, 53, 98, 100, 103, 113, 114, 122, 124, 157, 172], "accept": [4, 5, 20, 67, 78, 87, 97, 102, 111, 115, 116, 124, 126, 142, 146, 151, 155, 160, 163, 169, 172, 180, 202, 204, 207, 255], "proce": [4, 11, 25, 97, 99, 145, 158, 166], "examin": [4, 11, 22, 25, 58, 59, 82, 97, 144], "moment": [4, 6, 11, 174, 180, 194, 208, 225], "cpp": [4, 5, 6, 8, 22, 23, 120, 121, 145, 189, 198, 201, 210, 222, 248, 259], "cmakelist": [4, 6, 22, 23, 210, 222, 259], "txt": [4, 5, 6, 9, 22, 23, 49, 75, 116, 127, 128, 138, 145, 159, 166, 186, 210, 222, 259], "cmake_minimum_requir": [4, 6, 22, 23, 210, 222, 259], "fatal_error": [4, 6, 22, 23, 210, 222, 259], "custom_op": [4, 108, 174, 175, 259], "find_packag": [4, 6, 22, 23, 222, 259], "add_execut": [4, 6, 22, 23, 222, 259], "target_link_librari": [4, 6, 22, 23, 210, 222, 259], "torch_librari": [4, 6, 8, 22, 23, 222, 259], "set_properti": [4, 6, 222, 259], "cxx_standard": [4, 6, 222, 259], "14": [4, 6, 22, 23, 24, 47, 73, 92, 123, 145, 172, 177, 210, 222, 223, 230, 233, 240, 269], "last": [4, 6, 11, 12, 14, 19, 23, 40, 43, 49, 52, 53, 59, 60, 73, 83, 85, 87, 99, 102, 105, 113, 117, 121, 124, 125, 127, 128, 136, 137, 143, 145, 149, 150, 153, 158, 160, 161, 162, 164, 165, 166, 170, 177, 179, 190, 191, 194, 195, 220, 222, 224, 230, 249, 255], "thing": [4, 5, 6, 8, 15, 21, 22, 23, 25, 43, 44, 47, 49, 58, 59, 85, 87, 97, 98, 99, 101, 102, 103, 113, 116, 124, 125, 126, 130, 131, 132, 133, 136, 137, 140, 144, 145, 148, 149, 154, 159, 160, 167, 178, 183, 185, 197, 199, 210, 265], "grab": [4, 6, 52, 159, 164], "latest": [4, 6, 10, 14, 20, 87, 107, 108, 112, 121, 138, 158, 159, 160, 163, 166, 167, 172, 173, 210, 260, 263], "stabl": [4, 20, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 94, 98, 113, 141, 159, 168, 169, 171, 182, 225, 232, 235, 253, 263], "page": [4, 6, 10, 22, 23, 50, 54, 61, 109, 127, 140, 164, 169, 176, 201, 206, 210, 211, 219, 222, 224, 267, 269], "websit": [4, 6, 161], "unzip": [4, 6, 19, 50, 172, 179, 182, 183, 199, 200, 210], "archiv": [4, 5, 6, 25, 148, 260], "against": [4, 22, 23, 44, 60, 81, 105, 136, 148, 160, 222], "window": [4, 5, 6, 7, 20, 44, 51, 103, 105, 121, 134, 163, 169, 179, 208, 265], "debug": [4, 6, 8, 19, 25, 58, 59, 60, 78, 98, 121, 125, 174, 175, 187, 197, 198, 233, 258], "abi": [4, 5, 6, 22, 23, 206, 208, 210, 222], "plan": [4, 6, 10, 18, 60, 112, 122, 124, 172, 176, 183, 189, 194, 200, 208, 210, 226], "correct": [4, 5, 6, 8, 10, 11, 12, 13, 19, 37, 38, 43, 44, 47, 49, 60, 64, 73, 85, 87, 92, 97, 98, 99, 102, 111, 122, 123, 125, 127, 130, 134, 137, 145, 148, 154, 157, 160, 162, 163, 166, 167, 169, 170, 183, 195, 199, 200, 223, 263], "laid": 4, "within": [4, 5, 7, 14, 18, 21, 23, 61, 85, 103, 105, 109, 110, 124, 131, 138, 143, 145, 154, 157, 161, 163, 172, 177, 178, 186, 187, 194, 195, 197, 201, 208, 210, 263, 265], "mkdir": [4, 6, 23, 104, 147, 169, 172, 182, 196, 210], "dcmake_prefix_path": [4, 6, 22, 23, 222, 259], "config": [4, 6, 10, 17, 20, 24, 87, 123, 126, 129, 138, 145, 159, 177, 178, 180, 185, 186, 187, 199, 201, 203, 222, 254, 257], "someth": [4, 5, 6, 11, 14, 19, 23, 25, 44, 87, 99, 101, 113, 116, 136, 145, 158, 159, 160, 166, 207, 265], "root": [4, 5, 6, 14, 22, 23, 34, 37, 38, 41, 43, 44, 51, 52, 87, 92, 97, 98, 110, 130, 137, 145, 163, 164, 167, 169, 179, 190, 206, 215, 222, 225, 238, 252, 255, 256, 263], "4b5a67132e81": 4, "identif": [4, 6, 22, 23, 222], "gnu": [4, 5, 6, 22, 23, 222, 249], "cxx": [4, 6, 22, 23, 188, 206, 208, 210, 222], "check": [4, 5, 6, 7, 8, 13, 14, 15, 19, 20, 22, 23, 25, 42, 43, 44, 45, 49, 50, 52, 55, 58, 59, 60, 73, 75, 85, 97, 98, 101, 104, 105, 108, 109, 110, 115, 116, 122, 126, 134, 136, 137, 140, 142, 143, 145, 147, 148, 154, 155, 157, 159, 160, 163, 172, 173, 174, 175, 177, 179, 190, 194, 195, 200, 202, 208, 210, 222, 224, 225, 255], "usr": [4, 6, 18, 22, 23, 136, 196, 222], "cc": [4, 6, 22, 23, 43, 108, 118, 206, 208, 222], "detect": [4, 6, 11, 12, 18, 22, 23, 52, 75, 121, 140, 159, 169, 173, 222], "info": [4, 5, 6, 22, 23, 82, 118, 133, 136, 138, 147, 161, 172, 174, 175, 176, 186, 209, 222, 223, 230], "pthread": [4, 5, 6, 22, 23, 210, 222], "pthread_creat": [4, 6, 22, 23, 222], "thread": [4, 5, 6, 8, 9, 21, 22, 23, 52, 61, 109, 134, 135, 138, 150, 159, 162, 163, 164, 177, 178, 182, 183, 196, 222, 233, 248], "scan": [4, 6, 22, 23, 172], "50": [4, 6, 7, 12, 16, 17, 19, 21, 22, 23, 24, 49, 52, 53, 58, 78, 92, 137, 145, 148, 157, 161, 164, 167, 178, 179, 183, 186, 193, 199, 201, 203, 205, 221, 223, 225, 230, 232, 249], "cmakefil": [4, 6, 22, 23], "dir": [4, 6, 22, 23, 82, 126, 148, 149, 206, 210, 225, 248], "o": [4, 5, 6, 7, 17, 22, 23, 90, 97, 98, 108, 128, 138, 151, 153, 172, 203, 265], "100": [4, 6, 9, 14, 16, 17, 19, 21, 22, 23, 37, 38, 44, 45, 48, 49, 52, 63, 64, 67, 68, 69, 71, 72, 80, 89, 92, 93, 94, 97, 99, 111, 119, 123, 125, 127, 128, 129, 130, 134, 139, 144, 145, 146, 147, 148, 150, 155, 157, 159, 160, 161, 164, 166, 167, 170, 172, 173, 174, 175, 177, 178, 183, 189, 193, 197, 199, 200, 203, 217, 221, 223, 233, 236, 248, 260], "suppli": [4, 6, 101, 148, 159, 265], "binari": [4, 6, 20, 22, 23, 49, 52, 105, 136, 148, 157, 173, 179, 190, 192, 198, 201, 206, 210, 220, 222, 224, 225, 233], "incompat": [4, 174, 175, 199], "1d": [4, 68, 93, 111, 207], "4d": [4, 47, 78, 148, 202], "path_to_model": 4, "successfulli": [4, 6, 22, 50, 58, 59, 60, 105, 119, 126, 136, 145, 163, 193, 196, 208, 227, 229, 243, 259], "coupl": [4, 14, 49, 103, 122, 124, 131, 137, 139, 153, 170, 184, 205], "awai": [4, 5, 6, 23, 47, 60, 98, 99, 101, 113, 144, 150, 160, 161, 162, 194, 265], "ivalu": [4, 23, 58, 145, 156, 208, 210, 222, 225, 259], "push_back": [4, 22, 23, 222, 259], "totensor": [4, 12, 19, 20, 23, 34, 37, 38, 44, 51, 52, 58, 59, 73, 75, 87, 90, 92, 94, 96, 97, 116, 117, 119, 123, 130, 136, 140, 149, 158, 159, 163, 167, 169, 170, 172, 183, 189, 190, 199, 200, 206, 208, 215, 222, 223, 225, 231, 252, 256, 259], "slice": [4, 5, 48, 80, 102, 127, 151, 157, 195, 208], "eras": [4, 25], "org": [4, 6, 26, 27, 28, 29, 30, 32, 33, 34, 35, 37, 38, 40, 42, 45, 46, 49, 58, 59, 74, 77, 84, 91, 93, 94, 96, 100, 104, 106, 113, 120, 122, 127, 128, 138, 141, 142, 143, 144, 153, 154, 158, 159, 166, 168, 169, 171, 173, 175, 182, 185, 189, 190, 192, 194, 196, 198, 205, 206, 207, 208, 209, 210, 215, 223, 224, 225, 226, 228, 232, 235, 236, 237, 238, 239, 259, 263, 265], "cppdoc": [4, 6], "pariti": 4, "manipul": [4, 60, 103, 144, 153, 183, 186], "five": [4, 9, 65, 95, 111, 113], "ideal": [4, 6, 14, 58, 59, 97, 150, 166, 178, 199], "variabl": [4, 5, 6, 7, 8, 12, 20, 22, 23, 42, 49, 60, 69, 76, 82, 87, 98, 99, 101, 111, 114, 127, 133, 136, 145, 162, 165, 174, 175, 177, 185, 193, 195, 207, 208, 210, 224, 255], "kcuda": [4, 6, 187], "live": [4, 6, 10, 15, 121, 125, 135, 163, 164, 194, 265], "hopefulli": [4, 6, 50, 51, 73, 85, 99, 112], "equip": [4, 5, 131, 137, 191], "concept": [4, 6, 11, 22, 55, 100, 101, 114, 121, 126, 147, 162, 165, 166, 187, 199, 201, 202], "Of": [4, 14, 23, 97, 101, 125, 134, 136, 170, 192, 194], "cours": [4, 6, 14, 17, 19, 23, 53, 97, 100, 101, 103, 104, 125, 134, 136, 170, 203], "did": [4, 6, 8, 19, 23, 25, 44, 52, 60, 68, 105, 111, 113, 136, 142, 154, 160, 163, 166, 177, 183, 265], "cover": [4, 5, 14, 15, 16, 18, 22, 25, 47, 58, 59, 100, 108, 113, 114, 119, 121, 122, 126, 136, 156, 160, 163, 164, 170, 173, 174, 175, 176, 193, 195, 199, 202, 222, 255], "insid": [4, 5, 6, 10, 16, 17, 18, 20, 22, 23, 45, 78, 108, 124, 169, 179, 197, 203, 207, 225, 265], "shortli": [4, 162], "html": [4, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 40, 45, 46, 52, 57, 74, 77, 84, 90, 91, 94, 100, 104, 106, 113, 114, 118, 120, 122, 138, 141, 143, 144, 158, 168, 171, 172, 175, 182, 189, 190, 192, 194, 205, 206, 232, 235, 236, 237, 239, 265], "peter": 5, "goldsborough": 5, "plethora": 5, "relat": [5, 11, 14, 52, 60, 101, 103, 113, 124, 145, 154, 174, 175, 183, 265], "algebra": [5, 14, 48, 99], "wrangl": 5, "novel": 5, "research": [5, 6, 17, 19, 23, 25, 49, 52, 60, 73, 75, 85, 99, 114, 115, 136, 138, 151, 155, 157, 172, 182, 203], "modul": [5, 7, 9, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 33, 37, 38, 39, 42, 44, 45, 47, 49, 52, 53, 55, 58, 59, 65, 66, 68, 73, 78, 79, 87, 89, 92, 94, 95, 96, 97, 98, 99, 102, 103, 105, 107, 108, 109, 110, 112, 115, 116, 117, 118, 121, 122, 123, 124, 125, 127, 128, 129, 130, 134, 136, 139, 143, 144, 145, 147, 148, 151, 153, 155, 156, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 170, 172, 173, 174, 175, 176, 177, 178, 180, 182, 183, 184, 185, 186, 187, 189, 190, 195, 196, 198, 199, 200, 201, 202, 203, 205, 208, 210, 211, 214, 216, 217, 221, 222, 223, 224, 225, 228, 229, 230, 233, 235, 236, 237, 240, 241, 242, 243, 244, 245, 250, 251, 252, 253, 254, 255, 259, 264, 265, 266], "power": [5, 6, 23, 43, 49, 57, 65, 73, 75, 87, 97, 99, 121, 123, 126, 136, 145, 147, 151, 156, 157, 159, 166, 172, 185, 189, 194, 196, 229, 265], "spare": [5, 6], "deriv": [5, 6, 10, 17, 23, 25, 43, 48, 76, 78, 99, 101, 102, 103, 110, 125, 130, 131, 142, 146, 197, 203], "express": [5, 13, 23, 95, 98, 107, 114, 124, 138, 174, 175, 193, 199, 200, 202, 211, 265], "better": [5, 6, 14, 17, 19, 21, 44, 52, 56, 61, 79, 97, 103, 109, 113, 115, 121, 126, 127, 128, 140, 145, 146, 147, 153, 155, 158, 160, 161, 166, 169, 170, 172, 174, 175, 177, 178, 183, 185, 191, 192, 197, 199, 200, 201, 202, 203, 225], "frequent": [5, 22, 23, 75, 82, 103, 123, 176, 177, 178, 193, 222], "expens": [5, 17, 97, 109, 164, 178, 185, 203], "plausibl": 5, "address": [5, 12, 18, 22, 24, 82, 136, 162, 163, 175, 177, 199, 266], "nativ": [5, 6, 8, 15, 23, 42, 55, 87, 107, 108, 119, 121, 122, 124, 137, 138, 164, 177, 178, 180, 185, 191, 194, 199, 222, 225, 240, 248], "intend": [5, 6, 8, 12, 23, 97, 123, 124, 130, 145, 148, 165, 173, 174, 175, 191, 199], "much": [5, 6, 8, 10, 12, 14, 17, 19, 23, 25, 52, 56, 73, 97, 98, 99, 103, 112, 119, 122, 125, 126, 143, 146, 147, 153, 159, 160, 163, 164, 166, 169, 170, 173, 177, 185, 191, 194, 202, 203, 220, 229, 230, 263, 265], "boilerpl": [5, 6, 19, 44, 99, 170, 191], "degre": [5, 64, 126, 166, 169, 194], "matter": [5, 135, 172, 191, 193], "organ": [5, 8, 14, 23, 51, 112, 127, 144, 150, 266], "tackl": [5, 109], "decid": [5, 6, 8, 10, 17, 18, 52, 87, 161, 176, 194, 198, 203], "contribut": [5, 52, 61, 65, 82, 111, 138, 148, 169, 177], "upstream": [5, 222], "rest": [5, 6, 14, 44, 117, 121, 137, 140, 144, 158, 160, 162, 163, 193, 200, 220, 265, 266], "chase": [5, 113], "someon": [5, 166], "fire": [5, 134], "dai": [5, 42, 103, 115, 116, 124], "head": [5, 7, 17, 21, 42, 75, 83, 109, 113, 124, 126, 134, 158, 165, 179, 195, 203], "straight": [5, 6, 23, 140, 166], "recurr": [5, 9, 44, 49, 60, 79, 81, 98, 102, 110, 121, 127, 128, 154, 166, 182, 197], "unit": [5, 6, 25, 49, 110, 122, 123, 146, 151, 157, 160, 161, 166, 172, 177, 178, 189], "superior": 5, "lstm": [5, 44, 49, 78, 79, 93, 100, 110, 119, 121, 127, 128, 164, 182, 184, 197, 230, 236, 253], "lack": [5, 15, 82, 191], "forget": [5, 6, 112, 158, 173, 190], "gate": [5, 49], "exponenti": [5, 49, 99, 101, 154, 161, 185], "elu": [5, 110], "never": [5, 7, 98, 99, 100, 103, 115, 125, 157, 167], "lltm": 5, "long": [5, 6, 7, 9, 10, 20, 23, 49, 50, 60, 78, 80, 82, 87, 98, 99, 100, 101, 103, 113, 118, 122, 125, 127, 128, 137, 138, 144, 145, 150, 154, 161, 164, 166, 169, 179, 186, 187, 197, 199, 210, 225, 233, 240, 248, 265, 266], "term": [5, 6, 15, 52, 73, 99, 100, 101, 109, 122, 124, 151, 157, 160, 175, 185, 194, 199, 200, 201, 202, 204, 265, 266], "signific": [5, 6, 9, 19, 42, 52, 58, 59, 82, 122, 130, 138, 144, 145, 146, 148, 153, 160, 165, 169, 173, 178, 205, 225, 265], "lstmcell": 5, "cell": [5, 21, 23, 25, 50, 60, 75, 80, 109, 160, 161, 165, 172, 185, 266], "plain": [5, 6, 23, 49, 127, 128, 166, 179], "input_featur": 5, "state_s": 5, "candid": [5, 145], "reset_paramet": [5, 130], "stdv": 5, "math": [5, 7, 10, 49, 63, 64, 65, 67, 68, 69, 71, 72, 85, 89, 95, 101, 104, 110, 111, 118, 127, 128, 130, 151, 159, 161, 165, 166, 269], "sqrt": [5, 7, 85, 104, 118, 130, 191, 204], "uniform_": [5, 6, 7, 9, 115, 164, 182, 197, 204], "old_h": 5, "old_cel": 5, "cat": [5, 7, 9, 20, 21, 40, 44, 48, 49, 60, 78, 90, 92, 98, 101, 102, 110, 115, 118, 128, 135, 140, 145, 150, 161, 164, 166, 170, 179, 182, 202, 231, 252], "gate_weight": 5, "split": [5, 7, 8, 9, 18, 19, 20, 21, 45, 49, 52, 60, 79, 85, 87, 98, 99, 102, 103, 113, 118, 121, 127, 128, 134, 135, 138, 143, 150, 160, 163, 164, 166, 179, 182, 183, 186, 195, 199, 200, 248], "input_g": 5, "sigmoid": [5, 6, 52, 93, 110, 180, 202, 249, 254], "output_g": 5, "tanh": [5, 6, 14, 25, 49, 52, 60, 93, 99, 110, 127, 146, 160, 166, 249], "candidate_cel": 5, "new_cel": 5, "hidden": [5, 7, 9, 21, 49, 60, 78, 97, 98, 102, 124, 126, 127, 128, 137, 143, 149, 164, 165, 166, 182, 197, 199, 236, 263], "new_h": [5, 25, 51], "rnn": [5, 9, 21, 25, 45, 49, 60, 61, 78, 79, 93, 110, 118, 121, 135, 137, 154, 163, 166, 182, 197, 201, 249], "new_c": 5, "intel": [5, 121, 136, 145, 148, 201, 208, 223, 253], "mkl": [5, 145, 240], "nnpack": 5, "why": [5, 6, 8, 11, 14, 25, 44, 52, 85, 97, 99, 103, 112, 114, 131, 134, 145, 153, 166, 173, 174, 175, 192, 194, 265], "room": [5, 97, 150, 265], "obviou": [5, 113], "knowledg": [5, 49, 52, 73, 99, 100, 114, 121, 145, 147, 265], "execut": [5, 6, 7, 8, 11, 15, 16, 20, 21, 22, 23, 25, 42, 43, 45, 50, 60, 61, 76, 78, 82, 98, 108, 120, 121, 125, 126, 135, 136, 137, 144, 145, 148, 150, 156, 160, 161, 163, 164, 165, 173, 174, 175, 177, 178, 183, 184, 186, 187, 189, 196, 205, 206, 208, 210, 225, 226, 227, 232, 255], "kernel": [5, 6, 8, 13, 17, 18, 23, 47, 83, 108, 110, 121, 139, 145, 148, 150, 154, 155, 157, 165, 166, 169, 173, 177, 178, 185, 187, 201, 203], "involv": [5, 8, 9, 15, 16, 17, 19, 23, 25, 50, 60, 85, 98, 101, 105, 112, 120, 125, 127, 133, 140, 147, 153, 164, 166, 174, 175, 183, 185, 195, 203], "launch": [5, 6, 21, 53, 61, 115, 126, 133, 134, 150, 162, 163, 164, 165, 169, 177, 208, 228], "amount": [5, 19, 25, 73, 82, 112, 124, 134, 157, 173, 185, 225], "becom": [5, 6, 11, 21, 24, 52, 61, 73, 75, 78, 85, 97, 124, 131, 146, 148, 169, 170, 177, 187, 195, 199, 255], "furthermor": [5, 19, 97, 139, 146, 170, 177, 187, 202, 226, 227], "interpret": [5, 6, 23, 25, 40, 56, 82, 85, 103, 121, 127, 128, 138, 166, 173, 174, 175, 187, 198, 231, 237, 253, 265], "slow": [5, 6, 8, 42, 123, 149, 177, 230], "down": [5, 8, 10, 11, 16, 19, 42, 50, 82, 87, 99, 104, 123, 137, 145, 146, 147, 163, 167, 170, 177, 191, 263], "therefor": [5, 6, 9, 15, 19, 49, 51, 60, 97, 108, 112, 113, 115, 120, 134, 135, 148, 151, 156, 157, 163, 164, 174, 175, 177, 193, 194, 202, 208, 225, 265], "rewrit": [5, 21, 45, 60, 107, 130, 154, 174, 175, 202, 207, 208, 255], "fuse": [5, 17, 19, 121, 145, 158, 159, 177, 178, 180, 182, 183, 185, 196, 200, 203, 208, 229, 249, 255], "group": [5, 7, 11, 16, 18, 19, 24, 49, 61, 83, 109, 113, 120, 121, 122, 123, 128, 130, 132, 134, 135, 136, 145, 169, 176, 179, 265, 266], "profit": 5, "fewer": [5, 11, 130, 146], "visibl": [5, 22, 23, 44, 87, 172, 183], "aten": [5, 8, 10, 15, 23, 42, 109, 145, 169, 174, 175, 178, 183, 186, 187, 190, 199, 200, 201, 221, 222, 228, 240, 246, 248], "translat": [5, 23, 25, 49, 60, 105, 107, 116, 118, 151, 166, 189, 193, 255], "benefit": [5, 6, 9, 17, 18, 42, 43, 85, 87, 119, 122, 142, 148, 153, 158, 165, 177, 185, 199, 203, 222], "massiv": [5, 25, 44, 101, 103, 222], "parallel": [5, 6, 11, 16, 18, 44, 46, 49, 51, 52, 55, 73, 79, 87, 112, 121, 126, 132, 136, 138, 145, 151, 160, 162, 163, 164, 176, 177, 232, 242, 249, 261], "ahead": [5, 22, 153, 170, 174, 175, 180, 190], "cpp_extens": [5, 10, 23, 156, 210, 233], "setup": [5, 6, 7, 10, 16, 19, 22, 42, 52, 53, 55, 122, 123, 126, 134, 149, 150, 153, 156, 159, 164, 185, 190, 193, 194, 206, 207, 208, 216, 233, 248], "lltm_cpp": 5, "ext_modul": [5, 10, 23, 156], "cppextens": [5, 10, 23, 156], "cmdclass": [5, 10, 23, 156], "build_ext": [5, 10, 23, 156], "buildextens": [5, 10, 23, 156], "conveni": [5, 8, 14, 22, 23, 44, 47, 49, 101, 125, 127, 128, 139, 146, 156, 160, 192, 194, 222, 255], "wrapper": [5, 6, 8, 16, 55, 112, 122, 123, 131, 137, 147, 160, 172, 198, 201, 242], "include_dir": [5, 10, 156], "include_path": 5, "manag": [5, 22, 43, 49, 61, 108, 109, 113, 120, 124, 132, 133, 134, 150, 154, 165, 169, 178, 234], "And": [5, 6, 10, 22, 23, 24, 25, 52, 101, 103, 105, 113, 131, 145, 146, 148, 151, 159, 169, 170, 173, 174, 175, 177, 178, 197, 201, 202, 215], "overal": [5, 19, 42, 49, 122, 123, 136, 150, 161, 172, 199, 202, 230], "d_sigmoid": 5, "bit": [5, 12, 15, 23, 25, 51, 68, 95, 109, 113, 117, 137, 149, 159, 160, 161, 166, 185, 191, 199, 201, 209, 230], "pybind11": [5, 8, 22, 23, 156, 233], "datatyp": [5, 23, 40, 48, 109, 222], "Its": [5, 97, 99, 195, 265], "inspect": [5, 23, 78, 97, 108, 122, 126, 144, 165, 167, 173, 174, 175, 183, 186], "notic": [5, 8, 14, 21, 22, 23, 25, 32, 42, 43, 44, 52, 60, 73, 85, 97, 99, 112, 131, 136, 145, 147, 150, 154, 155, 158, 160, 169, 173, 174, 175, 177, 178, 190, 191, 193, 197], "dispos": 5, "nvcc": 5, "workaround": [5, 7, 23, 79, 85, 131, 142], "logic": [5, 6, 11, 17, 23, 85, 98, 123, 126, 133, 135, 157, 163, 164, 172, 178, 184, 203, 204], "sigmoidalphablendforwardcuda": 5, "port": [5, 16, 136, 163], "entir": [5, 6, 14, 16, 18, 19, 25, 47, 49, 53, 60, 78, 97, 99, 102, 117, 121, 122, 123, 127, 130, 135, 143, 150, 153, 155, 157, 158, 160, 164, 166, 177, 183, 191, 192, 193, 196, 199, 200, 210, 265], "lltm_forward": 5, "addmm": [5, 6, 109, 145, 174, 190, 199, 208, 209, 221, 240], "transpos": [5, 6, 7, 12, 40, 44, 48, 49, 51, 52, 60, 90, 92, 94, 96, 110, 117, 118, 130, 145, 147, 154, 158, 161, 165, 167, 170, 174, 175, 195, 208, 231], "respect": [5, 16, 32, 34, 43, 49, 51, 52, 63, 64, 68, 69, 71, 72, 99, 101, 111, 114, 115, 124, 125, 135, 137, 142, 144, 145, 146, 155, 160, 164, 166, 169, 174, 175, 177, 178, 200, 251], "ultim": [5, 19, 49, 52, 60, 85, 191], "plop": [5, 23], "autograd": [5, 12, 13, 15, 16, 21, 25, 32, 40, 42, 46, 47, 57, 59, 61, 62, 68, 69, 77, 78, 81, 91, 93, 98, 100, 101, 104, 109, 110, 119, 121, 127, 128, 130, 131, 134, 135, 145, 146, 151, 155, 161, 162, 163, 166, 178, 193, 202, 207, 210, 214, 218, 228, 232, 249, 257], "nice": [5, 12, 49, 80, 144, 153, 155, 160], "dig": [5, 99, 103, 165], "deeper": [5, 11, 12, 95, 97, 99, 144, 145, 165, 178, 213], "interest": [5, 6, 10, 14, 17, 20, 23, 25, 44, 49, 51, 58, 59, 78, 87, 97, 99, 105, 107, 108, 113, 117, 122, 126, 146, 153, 154, 158, 160, 167, 174, 175, 177, 179, 203, 207, 265], "alex": 5, "grave": 5, "thesi": 5, "d_tanh": 5, "relu": [5, 6, 12, 19, 20, 23, 25, 37, 38, 44, 47, 52, 73, 78, 87, 89, 92, 93, 94, 96, 97, 99, 103, 104, 105, 110, 112, 123, 134, 135, 139, 145, 147, 149, 150, 151, 155, 157, 158, 159, 161, 162, 163, 164, 166, 167, 170, 173, 174, 175, 178, 182, 183, 202, 205, 207, 216, 217, 220, 221, 222, 223, 225, 232, 235, 241, 242, 243, 244, 245, 249, 250, 251, 252, 254, 255], "exp": [5, 7, 9, 65, 89, 98, 99, 104, 111, 118, 125, 131, 142, 161, 193], "d_elu": 5, "mask": [5, 17, 58, 75, 90, 109, 118, 121, 137, 154, 157, 161, 165, 172, 179, 185, 191, 192, 194, 195, 198, 203, 222, 257], "type_a": [5, 118], "lltm_backward": 5, "grad_h": 5, "grad_cel": 5, "d_output_g": 5, "d_tanh_new_cel": 5, "d_new_cel": 5, "d_old_cel": 5, "d_candidate_cel": 5, "d_input_g": 5, "d_gate": 5, "d_weight": 5, "d_bia": 5, "keepdim": [5, 13, 19, 73, 123, 130, 163, 167, 183, 199, 200, 223], "d_x": [5, 52], "d_old_h": 5, "d_input": 5, "span": [5, 17, 75, 98, 134, 150, 169, 203, 266], "four": [5, 7, 14, 18, 22, 61, 67, 85, 94, 95, 108, 111, 115, 119, 122, 135, 136, 150, 170, 225, 230, 265, 266], "pybind11_modul": [5, 156], "torch_extension_nam": [5, 156], "macro": [5, 6, 8, 15, 23], "maintain": [5, 10, 14, 22, 43, 49, 61, 73, 97, 102, 108, 121, 132, 136, 147, 161, 164, 177, 178, 196], "mismatch": [5, 61, 97], "nasti": 5, "hard": [5, 6, 8, 15, 21, 99, 126, 157], "At": [5, 6, 8, 14, 15, 17, 20, 23, 43, 47, 49, 50, 85, 87, 102, 116, 122, 123, 124, 137, 142, 147, 158, 160, 161, 162, 165, 166, 169, 191, 194, 199, 203, 208, 225, 264], "point": [5, 6, 8, 10, 11, 14, 17, 18, 19, 20, 22, 23, 43, 47, 49, 50, 51, 52, 53, 58, 60, 82, 85, 97, 98, 100, 101, 102, 103, 110, 123, 124, 125, 126, 131, 132, 134, 144, 147, 150, 151, 158, 160, 162, 166, 170, 172, 174, 175, 182, 183, 185, 186, 191, 193, 194, 196, 199, 202, 203, 210, 225, 230, 263, 264, 265], "bdist_egg": 5, "egg_info": [5, 23], "egg": [5, 23], "pkg": [5, 23, 260], "dependency_link": [5, 23], "top": [5, 6, 8, 17, 19, 20, 22, 23, 38, 50, 51, 52, 82, 83, 94, 96, 97, 115, 124, 127, 136, 140, 144, 158, 159, 164, 165, 169, 170, 177, 179, 183, 199, 200, 201, 203, 211, 229, 259, 263, 267], "top_level": [5, 23], "manifest": [5, 23, 193, 196], "bdist": 5, "x86_64": [5, 18, 23, 188, 206, 210], "install_lib": 5, "temp": [5, 9, 19, 23, 125, 129, 138, 182, 183, 186, 199, 200, 236], "gcc": [5, 23, 108, 145], "miniconda": [5, 18, 23], "compiler_compat": [5, 23], "wl": [5, 22, 23], "sysroot": [5, 23], "wsign": [5, 23], "dndebug": [5, 23], "g": [5, 6, 7, 8, 10, 11, 12, 14, 18, 23, 25, 42, 43, 49, 51, 52, 60, 61, 79, 87, 89, 97, 99, 100, 103, 108, 110, 117, 121, 123, 126, 127, 128, 134, 136, 138, 139, 145, 153, 155, 156, 160, 162, 164, 166, 169, 174, 175, 177, 180, 183, 186, 187, 194, 198, 202, 207, 208, 260, 265], "fwrapv": [5, 23], "o3": [5, 23, 233], "wall": [5, 23, 98, 144, 248], "wstrict": [5, 23], "prototyp": [5, 10, 11, 15, 23, 61, 113, 174, 175, 187, 195, 196, 202, 207, 208], "fpic": [5, 23, 108], "site": [5, 18, 22, 23, 50, 52, 58, 59, 143, 144, 166, 189, 226, 227, 229, 240, 248, 265], "csrc": [5, 22, 23, 156, 190, 224], "th": [5, 14, 23, 51, 99, 103, 136, 147], "thc": [5, 23], "7m": [5, 23], "dtorch_api_include_extension_h": [5, 23], "dtorch_extension_nam": [5, 23], "d_glibcxx_use_cxx11_abi": [5, 23], "cc1plu": [5, 23], "warn": [5, 19, 23, 42, 51, 138, 145, 149, 160, 165, 172, 173, 174, 175, 183, 186, 189, 191, 192, 193, 194, 199, 200, 233, 255], "valid": [5, 7, 9, 13, 17, 20, 23, 24, 49, 87, 94, 97, 104, 107, 109, 112, 113, 115, 117, 118, 122, 123, 126, 130, 131, 149, 156, 158, 172, 179, 182, 183, 192, 193, 202, 203, 206, 224], "objc": [5, 23], "l": [5, 7, 12, 14, 20, 23, 43, 49, 51, 52, 89, 99, 108, 110, 127, 128, 160, 161, 166, 174, 195, 196, 233], "rpath": [5, 23], "cpython": [5, 23], "37m": [5, 23], "stub": [5, 158, 211, 225, 266], "loader": [5, 6, 12, 24, 38, 44, 79, 160, 163, 179, 224, 233], "byte": [5, 138, 140, 175, 182, 210, 232], "37": [5, 7, 17, 109, 159, 164, 178, 203, 240], "pyc": 5, "native_lib": 5, "zip_saf": 5, "analyz": [5, 19, 23, 60, 82, 121, 153, 160, 173, 175, 186], "__pycache__": 5, "__file__": [5, 156, 233], "dist": [5, 7, 11, 16, 18, 110, 122, 123, 134, 136, 154, 156, 163, 176, 216, 217, 261], "py3": 5, "remov": [5, 9, 12, 17, 19, 49, 52, 53, 59, 60, 83, 109, 110, 114, 116, 125, 134, 138, 143, 145, 153, 159, 165, 166, 172, 173, 174, 175, 179, 182, 183, 184, 185, 186, 191, 192, 195, 196, 199, 200, 203, 206, 230, 233, 236, 248, 255, 263], "everyth": [5, 43, 87, 97, 99, 108, 126, 127, 131, 137, 140, 158, 159, 160, 161, 162, 166, 170, 189, 190, 225, 248], "finish": [5, 6, 16, 23, 44, 45, 58, 87, 92, 94, 115, 134, 135, 136, 144, 150, 162, 164, 170, 190, 201, 206, 220, 225, 252], "ubuntu": [5, 6, 169, 210], "16": [5, 7, 16, 17, 19, 23, 24, 44, 47, 52, 87, 89, 92, 93, 94, 96, 97, 104, 105, 112, 126, 134, 137, 142, 146, 148, 157, 158, 159, 164, 165, 170, 172, 173, 174, 175, 178, 179, 185, 189, 193, 196, 203, 206, 210, 216, 221, 233, 241, 242, 243, 244, 245, 250, 251, 252, 269], "04": [5, 7, 118, 169, 188, 221, 233], "recent": [5, 49, 75, 102, 109, 113, 115, 124, 136, 138, 145, 151, 154, 158, 161, 169, 210], "maco": [5, 6, 105, 136, 172], "clang": [5, 188, 206, 208], "worst": [5, 115, 138], "resolv": [5, 23, 97, 143, 148, 178, 193], "symbol": [5, 25, 115, 118, 143, 174, 175, 183, 202, 233, 248, 265], "linker": [5, 23, 206], "pycapsul": [5, 23], "builtin": [5, 156], "arg0": 5, "arg1": [5, 163], "arg2": [5, 163], "arg3": 5, "arg4": 5, "citizen": [5, 23, 191, 193], "lltmfunction": 5, "staticmethod": [5, 13, 14, 64, 111, 130, 131, 142, 162, 172, 246], "contigu": [5, 7, 8, 9, 14, 148, 182, 196, 201, 211, 220, 225], "saved_tensor": [5, 13, 64, 111, 130, 131], "benchmark": [5, 15, 17, 24, 42, 109, 117, 121, 126, 138, 139, 145, 146, 155, 159, 165, 173, 177, 178, 185, 189, 195, 201, 203, 212, 222, 237, 248, 249, 253], "measur": [5, 12, 21, 82, 97, 103, 123, 138, 144, 146, 150, 160, 161, 165, 167, 173, 177, 178, 185, 197, 201, 205, 214, 225, 233, 248], "durat": [5, 83, 156, 161, 169, 178, 265], "32": [5, 14, 17, 18, 19, 20, 21, 23, 24, 47, 52, 55, 73, 87, 92, 93, 97, 102, 105, 109, 123, 126, 130, 137, 138, 145, 146, 147, 148, 151, 155, 159, 163, 164, 165, 166, 167, 169, 172, 174, 175, 177, 178, 179, 200, 205, 221, 230, 233, 235, 241, 249], "128": [5, 6, 12, 22, 51, 52, 55, 73, 87, 97, 103, 109, 118, 123, 124, 126, 127, 128, 130, 135, 136, 137, 138, 139, 145, 150, 155, 159, 161, 162, 163, 164, 166, 173, 179, 186, 202, 205, 209, 214, 222, 232, 233, 234, 235, 248, 256], "100000": [5, 58, 59, 127, 128, 138, 147, 233], "3f": [5, 9, 17, 19, 44, 87, 92, 115, 118, 147, 165, 179, 182, 195, 200, 203, 232, 252], "wrote": [5, 23, 140, 173, 179, 265], "post": [5, 6, 11, 20, 49, 58, 59, 97, 121, 122, 123, 126, 138, 140, 148, 150, 167, 177, 178, 184, 186, 195, 198, 200, 202, 215], "my": [5, 21, 42, 50, 98, 103, 193, 200, 205, 265], "machin": [5, 6, 18, 20, 21, 25, 44, 49, 50, 51, 53, 54, 55, 56, 58, 59, 60, 61, 73, 87, 105, 107, 116, 118, 121, 122, 123, 126, 132, 133, 134, 135, 136, 144, 155, 159, 163, 164, 165, 166, 177, 179, 186, 196, 200, 205], "506": 5, "480": [5, 240], "444": 5, "694": 5, "349": [5, 92], "335": [5, 148, 164, 261], "443": [5, 164, 240], "523": 5, "speedup": [5, 17, 21, 42, 44, 121, 139, 145, 150, 155, 178, 182, 183, 185, 195, 203, 225], "30": [5, 6, 7, 14, 17, 19, 45, 82, 99, 115, 121, 122, 148, 157, 162, 164, 183, 194, 199, 203, 233, 234, 240], "albeit": [5, 14, 230], "major": [5, 10, 11, 19, 103, 117, 145, 153, 165, 173, 177, 178, 194], "particularli": [5, 13, 17, 53, 154, 166, 203], "engin": [5, 6, 14, 20, 43, 61, 87, 107, 119, 123, 159, 164, 172, 175, 179, 189, 207, 209, 222, 230, 263], "wonder": [5, 99, 153], "abstract": [5, 11, 14, 51, 87, 95, 100, 103, 110, 113, 124, 126, 136, 143, 156, 160, 266], "correspondingli": 5, "big": [5, 42, 52, 98, 103, 128, 130, 139, 153, 160, 166, 172, 196], "win": [5, 115, 153, 186], "No": [5, 6, 49, 53, 60, 99, 145, 149, 180, 206, 213], "cuda_devic": 5, "creation": [5, 6, 10, 194, 204, 210], "assert": [5, 9, 11, 12, 17, 18, 19, 22, 51, 94, 95, 98, 105, 108, 125, 129, 130, 134, 139, 142, 143, 145, 146, 151, 154, 155, 163, 165, 170, 173, 182, 195, 196, 202, 203, 207, 210, 211, 212, 232, 233, 246, 254], "synchron": [5, 11, 16, 55, 56, 61, 82, 134, 136, 150, 160, 162, 163, 169, 173, 177, 178, 185, 195, 214, 232, 254], "1e6": [5, 9, 19, 138, 165, 182, 183, 186, 199, 200, 212, 230, 233, 261], "1e5": 5, "again": [5, 6, 9, 21, 25, 44, 50, 60, 78, 97, 98, 102, 103, 108, 113, 116, 119, 125, 130, 136, 137, 153, 162, 164, 166, 169, 172, 173, 177, 185, 199, 202, 225, 265], "187": [5, 233], "719": 5, "410": [5, 148], "815": 5, "149": 5, "802": [5, 145], "393": [5, 178], "458": [5, 145], "That": [5, 6, 17, 23, 43, 44, 45, 49, 99, 101, 102, 103, 105, 108, 116, 124, 127, 135, 142, 144, 146, 148, 150, 151, 153, 160, 165, 169, 179, 191, 192, 194, 203, 225, 226, 265], "great": [5, 49, 60, 105, 112, 113, 193, 199, 265], "pull": [5, 7, 21, 144, 174, 175], "dive": [5, 6, 11, 23, 134, 145, 158], "elabor": [5, 6, 124, 145, 162], "fly": [5, 14, 23, 51, 98, 115, 160, 230], "background": [5, 6, 23, 58, 59, 73, 113, 159, 170, 172, 179, 265], "tmp": [5, 23, 126, 130, 145, 172, 187, 220, 225, 230, 240], "torch_extens": 5, "emit": [5, 6, 98], "ninja": 5, "verbos": [5, 23, 133, 172, 178, 209, 210, 266], "complic": [5, 14, 98, 99, 103, 126, 178, 199, 207, 211, 255], "techniqu": [5, 9, 16, 17, 19, 21, 49, 60, 97, 98, 103, 107, 121, 124, 130, 131, 132, 144, 150, 154, 157, 158, 164, 172, 178, 185, 191, 195, 203, 205, 206, 230], "fine": [5, 6, 17, 19, 49, 51, 98, 113, 120, 125, 135, 136, 145, 158, 159, 169, 186, 190, 191, 203, 249], "system": [5, 6, 8, 10, 12, 14, 15, 22, 23, 25, 55, 76, 97, 121, 126, 136, 154, 159, 160, 162, 176, 177, 178, 179, 208, 210], "increment": [5, 11, 12, 60, 85, 101, 136, 147, 161], "thu": [5, 6, 8, 10, 19, 20, 21, 23, 49, 85, 87, 97, 108, 122, 139, 143, 153, 166, 178, 199, 204, 210, 255, 265], "didn": [5, 8, 22, 76, 105, 144, 162, 182, 207, 265], "prospect": 5, "pointwis": [5, 8, 143, 148, 201], "declar": [5, 6, 13, 23, 60, 73, 78, 115, 210, 225, 255], "cu": 5, "ensur": [5, 8, 9, 10, 11, 12, 14, 15, 16, 19, 22, 37, 49, 53, 56, 60, 64, 97, 109, 111, 112, 115, 116, 123, 133, 136, 142, 160, 161, 163, 165, 172, 177, 179, 187, 196, 200, 204, 233, 243], "lltm_cuda": 5, "lltm_cuda_forward": 5, "lltm_cuda_backward": 5, "check_cuda": 5, "torch_check": [5, 8], "is_cuda": [5, 148], "check_contigu": 5, "is_contigu": [5, 148, 233, 248], "check_input": 5, "lltm_cuda_kernel": 5, "cannot": [5, 6, 11, 14, 16, 18, 22, 23, 49, 60, 61, 82, 108, 112, 113, 131, 134, 136, 137, 148, 150, 158, 160, 174, 175, 185, 197, 205, 207, 264], "peek": [5, 213], "cuda_runtim": 5, "templat": [5, 8, 22, 23, 59, 136, 145, 210, 211, 263], "typenam": [5, 210], "scalar_t": [5, 145], "__device__": 5, "__forceinline__": 5, "specif": [5, 6, 8, 9, 10, 11, 12, 17, 18, 19, 22, 23, 25, 44, 55, 58, 59, 73, 82, 87, 99, 100, 101, 105, 107, 108, 110, 112, 114, 122, 123, 124, 127, 128, 130, 134, 136, 137, 138, 144, 145, 149, 150, 157, 158, 160, 162, 163, 164, 165, 166, 169, 170, 174, 175, 177, 178, 179, 180, 186, 189, 192, 195, 201, 202, 203, 206, 208, 222, 253, 255, 265], "fmax": 5, "fmin": 5, "d_relu": 5, "wish": [5, 6, 23, 52, 60, 73, 95, 112, 113, 151, 155, 163, 172, 180, 186, 192, 200, 243, 266], "explicitli": [5, 6, 18, 25, 43, 48, 52, 53, 60, 87, 101, 124, 133, 137, 148, 164, 165, 167, 174, 177, 178, 183, 194, 195, 202], "zeros_lik": [5, 14, 95, 143, 162, 218, 257], "dim3": 5, "at_dispatch_floating_typ": 5, "lltm_forward_cuda": 5, "lltm_cuda_forward_kernel": 5, "indic": [5, 6, 10, 11, 14, 16, 23, 49, 60, 63, 64, 82, 98, 99, 102, 103, 108, 109, 110, 111, 115, 116, 118, 126, 127, 137, 138, 145, 157, 160, 161, 163, 169, 170, 172, 177, 178, 179, 186, 191, 193, 194, 197, 202, 259, 263, 265], "runtim": [5, 8, 14, 18, 21, 23, 25, 40, 50, 60, 82, 85, 107, 109, 121, 124, 130, 144, 153, 169, 173, 177, 178, 182, 185, 186, 199, 208, 209, 212], "back": [5, 6, 8, 10, 14, 15, 19, 20, 22, 23, 44, 47, 51, 58, 59, 60, 73, 80, 87, 97, 98, 101, 105, 109, 113, 125, 127, 140, 144, 148, 150, 153, 155, 160, 162, 163, 164, 166, 172, 177, 190, 191, 195, 196, 265], "determin": [5, 6, 8, 11, 17, 19, 48, 49, 97, 98, 101, 102, 103, 105, 124, 126, 139, 143, 153, 154, 155, 157, 161, 173, 183, 195, 203], "conceptu": [5, 6, 43, 49, 60, 178], "scalartyp": 5, "messag": [5, 49, 108, 136, 138, 172, 174, 175, 186, 210, 224, 227, 255], "alia": [5, 10, 64, 111, 174, 175], "retriev": [5, 6, 7, 14, 16, 21, 49, 125, 126, 147, 160, 162, 163, 178, 211], "at_dispatch_all_typ": 5, "sens": [5, 8, 12, 14, 97, 103, 113, 126, 139, 170, 265], "routin": [5, 6, 23], "convolut": [5, 6, 8, 12, 13, 20, 47, 52, 60, 97, 112, 117, 119, 121, 148, 151, 157, 158, 167, 177, 178, 183, 201, 202, 208, 209, 222, 225, 228, 240, 255], "harder": [5, 97, 185, 186], "ourselv": [5, 6, 49, 76, 130, 160], "grid": [5, 47, 51, 117, 150, 158, 167, 170, 187, 257], "fill": [5, 6, 14, 80, 103, 127, 137, 142, 177, 192, 193, 210, 225], "matric": [5, 12, 17, 23, 25, 48, 101, 146, 154, 203], "2048": [5, 18, 97, 130, 146], "heard": 5, "introductori": [5, 79], "fairli": [5, 97, 113, 136, 153, 161], "ever": [5, 6, 23, 125, 174, 175], "__global__": 5, "__restrict__": 5, "size_t": 5, "column": [5, 7, 18, 23, 40, 80, 99, 101, 109, 119, 124, 127, 145, 146, 151, 161, 169, 172, 192, 193, 194, 195, 233, 240, 266], "blockidx": 5, "blockdim": 5, "threadidx": 5, "index": [5, 6, 15, 34, 38, 41, 44, 45, 48, 49, 51, 58, 59, 60, 73, 83, 98, 99, 101, 102, 103, 109, 115, 116, 118, 119, 123, 125, 126, 127, 128, 130, 136, 140, 154, 161, 162, 166, 167, 169, 172, 173, 177, 185, 195, 207, 215, 263, 269], "gates_row": 5, "primarili": [5, 82, 163, 173], "imagin": [5, 98, 103, 131, 136, 153, 154, 166], "giant": [5, 166], "million": [5, 115, 117, 119, 122, 137, 177], "serial": [5, 6, 10, 23, 25, 60, 112, 121, 174, 175, 177, 183, 199, 200], "faster": [5, 6, 8, 9, 12, 19, 49, 56, 58, 59, 73, 97, 112, 122, 133, 137, 139, 146, 148, 155, 162, 166, 173, 178, 179, 183, 205, 220, 225, 229, 230], "right": [5, 6, 8, 10, 12, 14, 20, 23, 32, 43, 48, 49, 52, 64, 82, 89, 97, 99, 101, 103, 111, 113, 136, 138, 147, 151, 153, 158, 160, 161, 162, 165, 166, 169, 172, 179, 186, 197, 199, 207, 255, 265], "inde": [5, 14, 58, 59, 97, 130, 146, 160, 165, 173, 193, 194], "agnost": [5, 60, 110, 234], "ineffici": [5, 82, 177, 195], "readabl": [5, 25, 51, 98, 110, 128, 140, 169, 215], "especi": [5, 17, 19, 49, 52, 60, 73, 113, 122, 134, 144, 151, 153, 174, 175, 178, 185, 192, 201, 203, 225, 230], "dimension": [5, 47, 48, 49, 52, 60, 97, 100, 101, 102, 103, 113, 124, 148, 157, 165, 166, 170, 172, 194, 225], "stride": [5, 6, 19, 52, 90, 97, 104, 113, 123, 130, 135, 145, 147, 148, 167, 172, 178, 180, 194, 220, 231, 239, 246], "row": [5, 18, 23, 34, 40, 51, 73, 80, 99, 101, 102, 103, 116, 124, 126, 127, 146, 158, 161, 162, 177, 178, 192, 194, 207, 210, 233, 266], "arithmet": [5, 19, 144, 186], "fortun": [5, 6, 10, 15, 23, 87, 136, 137], "expos": [5, 6, 8, 22, 23, 108, 113, 121, 140, 164, 182, 199, 200, 208, 210], "foo": [5, 21, 22, 142, 143, 154, 163, 173, 175, 183, 188, 199, 204, 211, 248, 265, 266], "12": [5, 7, 23, 42, 58, 59, 92, 101, 109, 122, 123, 145, 150, 162, 170, 174, 179, 180, 185, 192, 195, 202, 203, 206, 210, 223, 224, 227, 229, 233, 260, 265, 269], "hold": [5, 14, 16, 18, 47, 60, 63, 64, 65, 67, 68, 69, 76, 78, 87, 98, 111, 122, 123, 133, 135, 140, 153, 161, 162, 164], "foo_a": 5, "packed_accessor64": 5, "packed_accessor32": 5, "pack": [5, 49, 60, 78, 115, 145, 160, 162, 164, 195, 210, 225, 255], "integ": [5, 6, 8, 60, 97, 99, 101, 103, 113, 115, 126, 147, 157, 174, 175, 179, 185, 194, 199, 200, 201, 209, 230, 268], "fundament": [5, 49, 91, 101, 103, 147, 192, 200], "packedtensoraccessor32": 5, "restrictptrtrait": 5, "decompos": [5, 10, 17, 123, 150, 174, 175, 199, 203], "packedaccessor32": 5, "variant": [5, 49, 60, 124, 130, 159, 165], "int32_t": 5, "packedaccessor64": 5, "slower": [5, 17, 56, 134, 146, 150, 159, 161, 173, 177, 179, 185, 187, 195, 203], "host": [5, 7, 16, 18, 54, 82, 98, 122, 123, 124, 134, 135, 136, 150, 163, 164, 169], "reshap": [5, 6, 9, 12, 19, 51, 95, 103, 104, 110, 118, 143, 160, 182, 183, 190, 191, 192, 193, 195, 199, 200, 208, 223, 233], "pattern": [5, 17, 21, 103, 124, 136, 143, 145, 154, 163, 178, 183, 184, 186, 191, 193, 199, 203, 204, 222], "lltm_cuda_backward_kernel": 5, "lltm_backward_cuda": 5, "d_gate_weight": 5, "cudaextens": [5, 156], "hassl": [5, 6], "entail": 5, "simpler": [5, 78, 124, 130, 142, 154, 199, 207], "fastest": [5, 150, 165], "129": [5, 109, 189], "431": 5, "304": [5, 49, 178], "641": [5, 148], "faq": [5, 22, 23], "sit": [6, 42, 105, 107, 108, 150, 154, 264, 266, 268], "atop": 6, "substanti": [6, 126], "codebas": [6, 10, 14], "foundat": [6, 160, 172], "underli": [6, 8, 14, 23, 48, 73, 80, 95, 97, 112, 126, 139, 145, 150, 155, 163, 183, 193, 194, 195], "popular": [6, 68, 73, 75, 97, 111, 126, 137, 138, 178, 185, 222, 264], "stochast": [6, 7, 47, 52, 65, 104, 111, 115, 136, 160, 161], "descent": [6, 7, 43, 47, 63, 64, 65, 68, 72, 104, 110, 111, 115, 136, 185], "digit": [6, 47, 121, 122, 123, 172], "whirlwind": 6, "wet": 6, "appetit": 6, "watch": [6, 37, 113, 132, 136], "lightn": [6, 126], "talk": [6, 8, 49, 52, 55, 101, 115, 136, 160, 163], "cppcon": 6, "2018": [6, 118, 138], "quick": [6, 17, 48, 58, 59, 97, 99, 102, 103, 119, 122, 127, 134, 139, 146, 154, 155, 185, 203], "humor": 6, "sweep": [6, 165], "philosophi": [6, 113], "ecosystem": [6, 108], "descript": [6, 50, 61, 122, 123, 145, 149, 160, 162, 163, 164, 165, 172, 182, 233, 260, 266], "embark": 6, "excit": [6, 22, 23, 144, 153], "team": [6, 108, 115, 126, 138, 161, 172], "job": [6, 45, 52, 53, 54, 82, 97, 126, 132, 133, 134, 136, 225], "reinforc": [6, 14, 61, 121, 147, 160, 161, 162, 163], "game": [6, 44, 52, 79, 147], "tractabl": [6, 98], "multithread": [6, 43, 56, 109, 233], "lock": [6, 14, 25, 56, 135, 136, 162, 163, 178, 264], "gil": [6, 56, 61, 134, 218], "scalabl": [6, 126, 191, 222], "shortcom": [6, 193], "neuroevolut": 6, "owner": [6, 162, 163, 164], "anyth": [6, 13, 44, 98, 101, 102, 103, 140, 149, 159, 182, 183, 185, 265, 266], "serv": [6, 37, 57, 61, 85, 97, 102, 121, 127, 134, 140, 144, 147, 150, 156, 163, 164, 177, 178, 193, 215], "web": [6, 105, 215, 253, 265], "server": [6, 16, 25, 61, 119, 120, 121, 127, 134, 150, 156, 164, 178, 180, 186, 196, 222, 230], "3d": [6, 7, 75, 93, 101, 102, 115, 172, 199, 202], "graphic": [6, 165, 208], "photo": [6, 231], "softwar": [6, 138, 150, 156, 169, 177, 208, 215, 265], "integr": [6, 10, 14, 23, 78, 87, 109, 121, 126, 140, 170, 177, 178, 180, 201, 202, 208, 231], "remain": [6, 7, 87, 97, 119, 136, 143, 153, 157, 166, 180, 185, 193, 195, 197, 201, 211], "forth": [6, 150, 177, 266], "retain": [6, 40, 48, 76, 80, 112], "intuit": [6, 52, 73, 78, 99, 108, 112, 145, 150, 166, 172, 192], "tradit": [6, 42, 52, 97, 99, 107, 146, 163], "compet": [6, 113, 115, 119, 126, 177, 178], "complement": 6, "alik": 6, "love": [6, 113], "simplic": [6, 73, 122, 130, 160, 161, 224], "core": [6, 8, 10, 11, 42, 45, 60, 76, 98, 99, 100, 104, 108, 112, 115, 121, 124, 126, 136, 137, 145, 148, 159, 169, 174, 175, 178, 196, 198, 199, 206, 224, 248, 249], "principl": [6, 8, 102, 103, 121, 126], "curiou": [6, 139, 153, 155, 213], "tri": [6, 18, 52, 98, 103, 113, 161, 208], "experienc": [6, 85], "ask": [6, 17, 22, 23, 60, 103, 128, 137, 160, 203, 211], "rememb": [6, 44, 52, 59, 73, 76, 98, 99, 102, 109, 112, 140, 146, 147, 153, 166], "dot": [6, 14, 32, 49, 52, 60, 102, 103, 121, 146, 166, 177, 178, 207, 233], "colon": [6, 172, 265], "minim": [6, 10, 12, 17, 23, 52, 61, 63, 64, 67, 68, 69, 73, 82, 99, 103, 121, 122, 126, 133, 138, 145, 161, 173, 183, 186, 191, 201, 203, 206, 211], "verifi": [6, 20, 58, 59, 85, 108, 114, 116, 119, 131, 139, 142, 143, 146, 148, 157, 159, 177, 178, 179, 208, 222], "too": [6, 10, 14, 19, 44, 64, 68, 82, 87, 97, 98, 103, 109, 111, 124, 127, 134, 140, 150, 153, 157, 161, 162, 164, 166, 191, 230, 263, 265, 266], "cu90": 6, "url": [6, 19, 104, 118, 169, 173, 185, 210, 224, 238, 263], "wget": [6, 18, 75, 179, 182, 185, 210], "nightli": [6, 18, 75, 122, 138, 142, 173, 176, 179, 185, 189, 190, 198, 199, 201, 206, 207, 210], "dep": 6, "tini": [6, 123, 150, 153], "three": [6, 10, 12, 14, 15, 51, 52, 61, 64, 73, 82, 85, 92, 95, 98, 108, 112, 113, 115, 118, 121, 124, 128, 136, 148, 154, 156, 160, 164, 165, 166, 167, 169, 170, 176, 177, 178, 185, 194, 201, 230, 265, 266], "ey": [6, 20, 23, 32, 103, 146, 151, 154, 207, 210, 265], "fledg": 6, "visual": [6, 14, 25, 43, 52, 73, 75, 82, 83, 90, 116, 121, 122, 125, 126, 131, 144, 154, 160, 169, 170, 172, 177, 178, 187, 188, 193, 231, 253], "studio": [6, 58, 188, 206, 224, 226, 229], "qmake": 6, "makefil": 6, "comfort": 6, "box": [6, 8, 10, 11, 17, 73, 113, 126, 131, 136, 147, 159, 162, 169, 177, 178, 179, 201, 203, 207, 222, 227, 265], "cmake_prefix_path": [6, 22, 23], "invok": [6, 8, 22, 23, 25, 97, 134, 135, 142, 144, 145, 156, 163, 164, 178, 187, 190, 193, 201, 205], "agre": [6, 23, 138], "break": [6, 8, 10, 11, 12, 19, 38, 49, 51, 60, 75, 82, 112, 113, 116, 118, 128, 140, 147, 153, 157, 161, 162, 164, 166, 169, 173, 191, 238, 265], "unexpect": [6, 51, 193, 197, 202], "pwd": [6, 210, 228], "fa350df05ecf": 6, "home": [6, 48, 113, 191, 196, 206, 208, 211, 219, 224], "enter": [6, 49, 60, 122, 134, 136], "ran": [6, 103, 160, 163, 165, 174, 175, 206, 233], "me": [6, 17, 42, 49, 99, 153, 166, 203, 265, 266], "extens": [6, 7, 15, 22, 23, 52, 112, 121, 127, 131, 136, 172, 177, 187, 191, 193, 199, 201, 223, 253], "besid": [6, 23, 103, 154, 162, 265], "encapsul": [6, 47, 153, 162], "buffer": [6, 14, 44, 47, 59, 69, 76, 110, 111, 112, 122, 130, 134, 139, 142, 147, 151, 153, 154, 155, 157, 161, 174, 175, 178, 190, 204, 208, 210, 225], "nest": [6, 14, 43, 110, 143, 160, 162, 164, 165, 198, 265, 266], "similarli": [6, 9, 12, 22, 51, 60, 80, 83, 113, 116, 125, 126, 135, 144, 145, 146, 153, 180, 194], "w": [6, 7, 9, 12, 32, 38, 43, 47, 49, 51, 73, 76, 98, 102, 103, 122, 125, 130, 138, 147, 148, 164, 169, 179, 185, 186, 189, 224], "struct": [6, 15, 22, 210, 255], "int64_t": [6, 8, 23], "register_paramet": [6, 204], "reflect": [6, 8, 23, 48, 95, 137, 160, 197], "magic": [6, 99, 128, 136, 146], "behind": [6, 8, 17, 23, 45, 82, 97, 99, 130, 161, 180, 192, 194, 198, 203, 204, 265], "scene": [6, 23, 58, 59, 113, 204], "another_bia": 6, "recurs": [6, 16, 44, 60, 110, 204, 220], "0808": 6, "8613": 6, "2017": [6, 73, 104, 118], "5206": 6, "5353": 6, "3740": 6, "0976": 6, "4786": 6, "4928": 6, "1434": 6, "4713": 6, "1735": 6, "3293": 6, "3467": 6, "3858": 6, "1980": 6, "1986": 6, "1975": 6, "4278": 6, "1831": 6, "2709": 6, "3730": 6, "4307": 6, "3236": 6, "0629": 6, "2038": 6, "4638": 6, "2023": [6, 172, 174], "1230": 6, "0516": 6, "aptli": [6, 13], "register_modul": 6, "dropout": [6, 7, 9, 12, 19, 20, 37, 39, 49, 60, 73, 93, 96, 97, 104, 110, 112, 118, 123, 124, 126, 128, 130, 137, 149, 158, 162, 164, 165, 166, 167, 182, 195, 196, 197, 200, 203, 223, 243, 244, 245, 255, 259], "conv2d": [6, 12, 19, 20, 44, 47, 52, 73, 78, 87, 92, 93, 94, 96, 97, 104, 105, 112, 123, 130, 135, 143, 147, 148, 151, 154, 155, 157, 159, 163, 167, 170, 178, 180, 183, 199, 200, 201, 202, 205, 209, 220, 222, 223, 225, 228, 230, 235, 240, 241, 242, 243, 244, 245, 249, 250, 251, 252, 255], "subtleti": [6, 194], "bodi": [6, 113, 145, 265, 266], "upon": [6, 14, 49, 56, 79, 117, 136, 142, 166, 170, 173, 263], "p": [6, 7, 9, 18, 19, 49, 68, 69, 93, 97, 98, 103, 104, 110, 111, 118, 122, 123, 127, 128, 130, 135, 136, 138, 139, 142, 143, 145, 147, 148, 151, 153, 158, 162, 163, 164, 166, 179, 182, 183, 186, 199, 200, 203, 208, 209, 210, 214, 218, 236, 240], "0345": [6, 186], "4456": 6, "6313": 6, "3585": 6, "4008": [6, 23], "1647": 6, "2891": 6, "0527": 6, "0354": 6, "3084": 6, "2025": 6, "0343": [6, 210], "1824": 6, "4630": 6, "2862": 6, "2500": 6, "0420": 6, "3679": 6, "1482": 6, "0460": 6, "1967": 6, "2132": 6, "1992": 6, "4257": 6, "0739": 6, "01": [6, 7, 11, 19, 43, 47, 98, 109, 136, 158, 164, 165, 167, 174, 188, 212, 213, 221, 223, 261, 266], "6861": 6, "1166": 6, "45": [6, 7, 126, 145, 164, 177, 206, 231], "0333": 6, "9983": 6, "0705": 6, "named_paramet": [6, 33, 142, 151, 154, 155, 157], "ordereddict": [6, 179], "13": [6, 23, 92, 95, 104, 109, 115, 164, 172, 177, 225, 228, 265, 269], "48": [6, 7, 17, 126, 127, 145, 148, 170, 203, 206, 221, 240], "1863": 6, "8611": 6, "1228": 6, "3269": 6, "9858": 6, "0339": 6, "2484": 6, "2035": 6, "2103": 6, "0715": 6, "2975": 6, "4350": 6, "1878": 6, "3616": 6, "1050": 6, "4982": 6, "0335": [6, 186], "1605": 6, "4963": 6, "4099": 6, "2883": 6, "1818": 6, "3447": 6, "1501": 6, "0215": 6, "0250": 6, "0408": 6, "3756": 6, "2149": 6, "3636": 6, "8559": 6, "1572": 6, "1069": 6, "1247": 6, "8060": 6, "topic": [6, 49, 58, 59, 61, 73, 105, 107, 108, 114, 120, 177], "devour": 6, "menu": [6, 50, 263, 265], "pipelin": [6, 16, 61, 113, 121, 140, 160, 162, 172, 177, 178, 179], "briefli": [6, 61, 121, 124, 160, 173], "who": [6, 42, 49, 60, 73, 79, 97, 100, 113, 136, 153, 265], "heap": 6, "referenc": [6, 135, 164], "lower": [6, 14, 17, 49, 50, 60, 73, 82, 108, 121, 122, 126, 134, 138, 142, 145, 153, 154, 158, 160, 161, 165, 166, 170, 172, 173, 180, 186, 194, 197, 200, 203, 225, 266], "heavili": [6, 113, 166, 177, 185], "influenc": [6, 52], "ergonom": 6, "far": [6, 7, 14, 20, 22, 47, 49, 58, 59, 64, 95, 97, 98, 99, 111, 115, 125, 136, 140, 150, 153, 157, 161, 166, 177, 191, 200, 265], "stack": [6, 8, 14, 15, 21, 22, 40, 48, 78, 92, 109, 121, 124, 139, 146, 147, 151, 155, 156, 162, 166, 169, 170, 172, 207], "shared_ptr": [6, 22], "cognit": 6, "everywher": [6, 103], "make_shar": 6, "though": [6, 10, 23, 47, 73, 97, 98, 113, 117, 130, 131, 139, 140, 144, 155, 160, 170, 174, 175, 185, 191, 222], "stai": [6, 82, 122, 124, 160, 161, 162, 177, 199, 200, 201, 230], "shorten": [6, 23], "wait": [6, 14, 16, 21, 82, 128, 134, 135, 136, 137, 145, 156, 161, 162, 163, 164, 169, 172, 177, 240], "hell": 6, "lot": [6, 8, 10, 15, 19, 21, 51, 79, 98, 113, 119, 123, 136, 151, 163, 166, 169, 173, 177, 185, 191], "came": [6, 52, 192], "scheme": [6, 18, 97, 121, 191, 204], "hide": [6, 118, 130, 160, 207], "reserv": [6, 10, 15, 138, 169], "simplifi": [6, 10, 14, 24, 78, 130, 134, 135, 166, 172, 178, 179, 191, 194, 198, 199, 201], "linearimpl": 6, "torch_modul": 6, "brief": [6, 24, 61, 82, 98, 160, 210], "typedef": 6, "among": [6, 8, 22, 53, 58, 59, 82, 87, 124, 157, 169, 177, 202, 230], "holder": [6, 118, 267], "arrow": [6, 43, 124, 197], "resembl": [6, 12, 23, 58, 59, 98, 132, 161], "extra": [6, 7, 8, 9, 56, 97, 101, 102, 107, 127, 128, 130, 135, 137, 142, 154, 160, 166, 172, 173, 178, 179, 182, 196, 222, 225], "netimpl": 6, "subtl": 6, "deserv": [6, 103, 113], "construct": [6, 14, 20, 21, 22, 25, 47, 52, 60, 61, 65, 67, 85, 97, 111, 117, 121, 128, 131, 135, 137, 139, 146, 150, 155, 160, 161, 163, 166, 179, 184, 195, 198, 199, 202, 204, 207, 251, 265, 266], "null": [6, 58, 210, 225, 228], "tricki": [6, 17, 131, 143, 174, 175, 177, 203], "had": [6, 23, 42, 47, 51, 102, 105, 113, 153, 154, 161, 170, 199, 222], "nullptr": [6, 187, 210], "familiar": [6, 8, 10, 22, 44, 48, 53, 54, 56, 60, 85, 98, 100, 112, 122, 125, 132, 133, 136, 140, 147, 163], "pythonista": 6, "disadvantag": [6, 112], "said": [6, 23, 25, 42, 147, 153, 160, 191, 192, 265], "introduct": [6, 11, 17, 25, 46, 53, 54, 55, 56, 57, 79, 84, 85, 99, 100, 105, 106, 107, 108, 121, 132, 133, 145, 193, 203, 222], "sooner": [6, 122], "technic": [6, 23, 136, 137, 153, 191, 213], "henceforth": 6, "recap": [6, 47, 161, 194], "adversari": [6, 44, 79, 121], "architectur": [6, 9, 17, 25, 52, 56, 60, 73, 85, 95, 97, 98, 110, 121, 122, 124, 126, 132, 139, 151, 157, 165, 170, 172, 173, 176, 177, 178, 199, 201, 203, 222, 230], "distinct": [6, 17, 21, 52, 82, 103, 122, 164, 170, 203], "transform": [6, 12, 17, 19, 20, 23, 24, 25, 32, 33, 34, 35, 36, 37, 38, 39, 40, 44, 49, 52, 58, 59, 60, 73, 75, 87, 90, 92, 93, 94, 96, 97, 109, 110, 113, 116, 117, 120, 121, 123, 130, 136, 137, 139, 140, 142, 143, 145, 147, 149, 151, 153, 154, 158, 159, 163, 166, 169, 170, 172, 179, 183, 185, 186, 195, 197, 199, 200, 201, 203, 206, 215, 222, 223, 231, 233, 248, 249, 252, 254, 256, 257], "probabl": [6, 8, 22, 49, 52, 58, 59, 60, 73, 75, 97, 98, 101, 103, 118, 123, 125, 126, 127, 128, 130, 149, 154, 159, 161, 167, 170, 172, 195], "judg": 6, "closer": [6, 97, 161, 178], "authent": 6, "theori": [6, 49, 52, 60, 97, 125, 265], "delic": 6, "tandem": 6, "indistinguish": 6, "fool": [6, 49, 73], "excel": [6, 51, 170], "realist": [6, 21, 60, 195], "2d": [6, 52, 93, 127, 130, 143, 157, 162, 172, 176, 202, 217, 255], "dcgangeneratorimpl": 6, "knoises": 6, "conv1": [6, 20, 44, 47, 73, 78, 87, 92, 93, 94, 96, 104, 105, 112, 123, 130, 143, 150, 151, 155, 157, 158, 163, 167, 170, 183, 197, 202, 205, 223, 235, 241, 242, 243, 244, 245, 250, 251, 252], "convtranspose2dopt": 6, "256": [6, 9, 17, 19, 51, 87, 90, 97, 117, 119, 124, 125, 126, 135, 145, 147, 160, 165, 166, 177, 179, 182, 183, 197, 199, 200, 202, 203, 221, 231, 232, 240], "batch_norm1": 6, "conv2": [6, 20, 44, 47, 73, 78, 87, 90, 92, 93, 94, 96, 104, 105, 112, 123, 130, 143, 151, 155, 157, 163, 167, 170, 202, 205, 223, 235, 241, 242, 243, 244, 245, 250, 251, 252], "pad": [6, 17, 19, 42, 49, 52, 60, 75, 97, 104, 113, 115, 118, 130, 135, 138, 165, 193, 195, 203], "batch_norm2": 6, "conv3": [6, 20, 104, 151], "batch_norm3": 6, "conv4": [6, 20], "convtranspose2d": [6, 52], "batchnorm2d": [6, 12, 19, 52, 104, 130, 135, 143, 144, 180, 200, 220, 225, 249, 255], "dcgangener": 6, "chosen": [6, 20, 22, 161, 173], "student": [6, 97, 113], "harm": [6, 97], "discoveri": 6, "fed": [6, 12, 49, 52, 61, 113, 118, 135, 140, 150, 172, 178, 202], "soylent": 6, "regularli": [6, 53], "channel": [6, 10, 12, 19, 21, 43, 44, 47, 52, 97, 110, 121, 122, 124, 140, 149, 153, 157, 170, 179, 186, 210, 222, 249, 264], "moduleopt": 6, "linearopt": 6, "leaki": [6, 52], "squash": [6, 137, 147], "sequenti": [6, 7, 12, 14, 19, 37, 38, 49, 52, 68, 69, 97, 103, 110, 111, 116, 118, 125, 135, 137, 143, 147, 149, 150, 154, 158, 160, 167, 186, 195, 196, 204, 207, 212, 213, 221, 232, 261], "orient": [6, 167], "layer": [6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 19, 20, 33, 37, 42, 43, 47, 49, 52, 55, 60, 68, 73, 78, 87, 93, 97, 99, 102, 110, 111, 112, 115, 117, 118, 121, 122, 123, 126, 127, 128, 135, 137, 148, 149, 150, 154, 157, 158, 159, 160, 163, 164, 166, 167, 177, 178, 179, 182, 185, 186, 202, 203, 213, 232, 235, 241, 243, 244, 254, 255], "conv2dopt": 6, "leakyrelu": [6, 52, 110], "leakyreluopt": 6, "negative_slop": 6, "composit": [6, 11, 14, 25, 99, 100, 146, 160], "third": [6, 8, 12, 22, 23, 52, 63, 64, 65, 67, 68, 69, 102, 111, 131, 156, 166, 176, 191, 197, 207, 266], "fourth": [6, 65, 131, 196, 201], "knob": [6, 177, 178], "truli": [6, 49, 147], "collat": [6, 51, 118, 266], "wherev": 6, "make_data_load": 6, "unique_ptr": 6, "spawn": [6, 7, 11, 16, 18, 49, 52, 53, 55, 123, 134, 135, 136, 150, 162, 163, 164, 214, 216, 261], "concurr": [6, 109, 124, 126, 135, 150, 177, 178], "kbatchsiz": 6, "dataloaderopt": 6, "consol": [6, 170, 172, 190], "field": [6, 10, 11, 12, 14, 15, 49, 102, 103, 113, 136, 153, 162, 169, 175, 179, 193, 202, 205, 225], "rebuild": [6, 233], "danc": [6, 12], "generator_optim": 6, "adamopt": 6, "2e": [6, 14, 89, 138], "make_tupl": 6, "discriminator_optim": 6, "5e": [6, 24, 64, 111], "adagrad": [6, 96, 110, 111, 194, 198], "lbfg": [6, 12, 110], "rmsprop": [6, 47, 69, 99, 110, 111], "sgd": [6, 7, 16, 19, 37, 38, 43, 44, 47, 65, 67, 69, 87, 89, 92, 94, 96, 98, 99, 102, 103, 104, 110, 111, 112, 115, 117, 134, 135, 136, 150, 158, 162, 163, 164, 167, 169, 170, 179, 222, 223, 232, 239, 243, 244, 245, 246, 247, 251, 252, 256], "date": [6, 10, 73, 115, 122, 163, 199, 206, 222, 266], "exhaust": [6, 11, 174, 175, 202], "knumberofepoch": 6, "batch_index": 6, "real_imag": 6, "real_label": [6, 52], "real_output": 6, "d_loss_real": 6, "binary_cross_entropi": [6, 232], "fake_imag": [6, 153], "fake_label": [6, 52], "fake_output": 6, "d_loss_fak": 6, "d_loss": [6, 52], "fill_": [6, 9, 52, 80, 118, 137, 166, 169, 193], "g_loss": [6, 52], "printf": 6, "r": [6, 7, 9, 11, 14, 16, 19, 42, 43, 47, 49, 51, 60, 73, 76, 85, 92, 98, 99, 121, 145, 146, 147, 148, 151, 161, 162, 164, 166, 172, 177, 179, 182, 183, 197, 199, 200, 206, 207, 210, 222, 233, 248, 249, 260, 265], "2ld": 6, "3ld": 6, "4f": [6, 12, 14, 49, 52, 60, 117, 122, 123, 127, 128, 130, 137, 146, 155, 158, 160, 166, 167, 205], "batches_per_epoch": 6, "uniformli": [6, 87, 161], "robust": [6, 49, 53, 54, 73, 161], "propag": [6, 10, 16, 32, 43, 45, 47, 52, 78, 97, 101, 102, 127, 131, 142, 148, 155, 160, 178, 199, 201], "repeat": [6, 14, 18, 19, 23, 128, 145, 147, 150, 160, 169, 177, 183, 191, 199, 200, 225, 240], "spiel": 6, "progress": [6, 8, 15, 24, 49, 52, 53, 110, 137, 158, 166, 170, 266], "observ": [6, 14, 19, 47, 51, 61, 82, 116, 117, 122, 123, 126, 137, 138, 147, 148, 153, 160, 161, 162, 164, 165, 166, 173, 177, 180, 182, 183, 186, 194, 199, 200, 201, 202, 205], "meaning": [6, 49, 60, 97, 148], "3c0711f20896": 6, "dcga": 6, "6876": 6, "1304": 6, "3776": 6, "3101": 6, "300": [6, 12, 98, 102, 122, 164, 179, 221, 233, 248], "3652": 6, "6626": 6, "400": [6, 47, 58, 59, 112, 138, 179, 186, 233, 248], "8057": 6, "2795": [6, 233], "3531": 6, "4452": 6, "600": [6, 119, 148, 161, 259], "3501": 6, "0811": 6, "700": 6, "3581": 6, "5623": 6, "800": 6, "6423": 6, "7385": 6, "900": 6, "3592": 6, "7333": 6, "4660": [6, 174], "5242": 6, "6364": 6, "0886": 6, "3717": 6, "8103": 6, "0201": 6, "3544": 6, "4522": 6, "6545": 6, "quickli": [6, 44, 82, 97, 98, 99, 103, 124, 153, 161, 166], "onto": [6, 8, 14, 16, 18, 44, 121, 137, 150, 153, 163, 164, 204], "somewher": [6, 23, 98, 99, 112], "kcpu": [6, 187, 208], "whose": [6, 42, 60, 82, 85, 97, 103, 122, 125, 148, 172, 189, 202], "insert": [6, 12, 17, 19, 49, 118, 138, 158, 164, 180, 182, 183, 199, 200, 201, 202, 203, 230, 255], "op": [6, 10, 11, 15, 21, 22, 23, 48, 82, 121, 122, 123, 124, 129, 130, 134, 136, 138, 143, 144, 145, 148, 159, 169, 177, 178, 179, 180, 182, 183, 185, 186, 187, 189, 190, 192, 193, 195, 199, 200, 201, 202, 204, 210, 223, 224, 225, 232, 246, 255], "previou": [6, 11, 13, 14, 15, 16, 17, 22, 23, 49, 52, 53, 55, 58, 59, 97, 98, 116, 117, 119, 122, 127, 128, 131, 132, 133, 135, 137, 147, 150, 153, 157, 158, 160, 161, 162, 164, 165, 166, 169, 170, 172, 173, 174, 175, 177, 178, 183, 199, 200, 201, 203, 210, 225, 263], "resid": [6, 7, 97, 135], "portabl": 6, "augment": [6, 24, 51, 117, 118, 119, 158, 167, 179], "period": [6, 49, 52, 126, 147, 169, 177], "crash": [6, 61], "middl": [6, 265], "procedur": [6, 23, 47, 120, 158, 161, 167], "restor": [6, 73, 112, 148], "session": [6, 20, 97, 105, 265], "interv": [6, 14, 52, 126, 164, 166, 174, 175], "kcheckpointeveri": 6, "str": [6, 9, 18, 19, 22, 49, 83, 90, 108, 113, 118, 122, 126, 138, 140, 143, 144, 149, 160, 163, 172, 174, 175, 186, 196, 205, 210, 211, 215, 218, 233, 240, 248], "checkpoint_count": 6, "counter": [6, 11, 49, 52, 73, 129, 136], "bump": 6, "beta1": [6, 52], "krestorefromcheckpoint": 6, "intermediari": [6, 125], "xxx": [6, 15, 45, 51], "argpars": [6, 52, 122, 123, 138, 149, 162, 163, 164, 186], "parser": [6, 98, 122, 123, 149, 162, 163, 164, 265], "argumentpars": [6, 122, 123, 149, 162, 163, 164], "add_argu": [6, 122, 123, 149, 162, 163, 164], "png": [6, 51, 119, 121, 150, 179], "parse_arg": [6, 122, 123, 149, 162, 163, 164], "sample_fil": [6, 140], "mul": [6, 40, 48, 108, 129, 145, 194, 199, 208, 233, 248], "255": [6, 12, 20, 59, 97, 140, 147, 172, 179, 180, 202, 215, 240], "uint8": [6, 20, 95, 145, 147, 179, 202], "numpi": [6, 12, 14, 17, 19, 20, 41, 44, 51, 52, 57, 60, 70, 72, 73, 75, 87, 89, 90, 92, 94, 96, 104, 105, 108, 109, 110, 117, 118, 119, 121, 127, 131, 138, 147, 150, 158, 159, 161, 164, 166, 167, 170, 172, 173, 183, 186, 191, 195, 197, 198, 199, 200, 203, 206, 231, 238, 248], "axi": [6, 13, 21, 34, 51, 52, 82, 101, 102, 109, 110, 117, 119, 127, 138, 147, 157, 158, 172, 186, 257], "subplot": [6, 14, 51, 52, 73, 117, 150, 158, 160, 166, 167, 179], "imshow": [6, 12, 34, 44, 51, 52, 73, 75, 90, 92, 94, 96, 104, 117, 158, 167, 170, 172, 179], "cmap": [6, 34, 73, 90, 94, 96, 104, 166, 170], "grai": [6, 34, 73, 104, 119, 147, 190], "get_xaxi": 6, "set_vis": 6, "get_yaxi": 6, "savefig": [6, 147, 150], "out_fil": 6, "17": [6, 21, 23, 58, 59, 92, 95, 109, 113, 145, 174, 175, 189, 205, 233, 269], "57": [6, 7, 17, 109, 127, 145, 240], "4953": 6, "0195": [6, 186], "3610": 6, "8148": 6, "4072": 6, "36760": 6, "4444": 6, "3761": 6, "8790": 6, "3977": 6, "3315": 6, "120": [6, 44, 47, 87, 92, 93, 94, 96, 105, 112, 117, 135, 150, 157, 158, 164, 170, 240, 241, 242, 243, 244, 245, 250, 251, 252], "8084": 6, "hoorai": [6, 25], "ball": 6, "court": 6, "digest": 6, "necess": [6, 49], "broad": [6, 57], "space": [6, 14, 22, 49, 52, 60, 73, 97, 98, 102, 103, 113, 115, 126, 137, 147, 153, 160, 161, 164, 166, 169, 170, 172, 196, 265, 266], "consult": [6, 153, 199, 264], "stuck": 6, "whenev": [6, 22, 53, 67, 69, 98, 99, 111], "rate": [6, 7, 43, 52, 87, 97, 99, 104, 115, 117, 122, 123, 126, 127, 147, 149, 158, 160, 161, 163, 179, 218, 238], "pritam": [7, 16], "damania": [7, 16], "torchtext": [7, 38, 42, 50, 92, 96, 113, 118, 121, 127, 166, 238], "positionalencod": [7, 118], "inject": 7, "posit": [7, 14, 17, 90, 99, 113, 118, 121, 138, 154, 160, 161, 165, 166, 172, 203, 231, 263], "token": [7, 9, 17, 42, 49, 60, 75, 103, 113, 115, 116, 118, 122, 124, 128, 165, 166, 182, 186, 203], "sine": [7, 14, 92, 95], "cosin": [7, 14], "os": [7, 9, 11, 17, 18, 19, 33, 34, 49, 50, 51, 52, 53, 55, 60, 87, 90, 117, 122, 123, 125, 127, 128, 134, 135, 136, 138, 147, 149, 156, 158, 159, 162, 163, 164, 176, 179, 182, 183, 186, 196, 197, 199, 200, 210, 214, 215, 216, 217, 230, 233, 236, 248, 261], "transformerencod": [7, 42, 93], "transformerencoderlay": [7, 42, 93, 165], "d_model": [7, 118], "max_len": [7, 118], "pe": 7, "arang": [7, 73, 118, 147, 150, 170, 191, 192, 193, 195, 246, 247, 257], "div_term": 7, "10000": [7, 44, 52, 92, 98, 118, 127, 137, 161, 164, 233, 248], "sin": [7, 14, 63, 64, 65, 67, 68, 69, 71, 72, 89, 95, 111, 118, 146, 173, 174, 175, 188, 194, 249, 265], "co": [7, 14, 89, 103, 118, 173, 174, 175, 188, 240, 249, 266], "replica": [7, 55, 56, 61, 79, 123, 134, 136, 150], "drive": [7, 16, 25, 52, 58, 59, 60, 121, 147, 191], "largest": [7, 60, 83, 161, 172, 186], "nlayer": [7, 9, 93, 164, 182, 197], "decod": [7, 9, 98, 113, 118, 122, 164, 165, 178, 182, 185, 197, 232, 255], "platform": [7, 20, 23, 105, 134, 136, 169, 196, 224, 228], "win32": 7, "exit": [7, 16, 142, 162, 163, 164, 212, 213], "device_count": [7, 11, 45, 53, 55, 87, 95, 123, 134, 151, 216, 217], "least": [7, 47, 58, 59, 73, 112, 113, 126, 128, 134, 147, 159, 166, 196, 225, 265, 266], "ntoken": [7, 9, 164, 182, 197], "ninp": [7, 9, 164, 182, 197], "pos_encod": 7, "init_weight": [7, 9, 115, 182, 197], "initrang": [7, 9, 115, 182, 197], "src": [7, 10, 11, 108, 118, 136, 156, 208, 210, 224, 246, 248], "zero_": [7, 9, 32, 104, 115, 156, 164, 167, 182, 197], "inp": [7, 19, 32, 49, 117, 143, 158, 163, 166, 167, 173, 175, 234, 241], "permut": [7, 90, 97, 110, 147, 148, 159, 166, 172, 174, 175, 179, 184], "run_work": [7, 16, 135, 162, 163, 164, 214], "rank": [7, 11, 16, 18, 42, 45, 53, 55, 82, 121, 122, 123, 134, 135, 136, 156, 162, 163, 164, 176, 195, 214, 216, 217, 261, 263], "world_siz": [7, 11, 16, 18, 24, 53, 55, 122, 123, 134, 135, 136, 156, 162, 163, 164, 176, 214, 216, 217, 261], "wikitext": [7, 9, 182, 195], "torchdata": [7, 50, 113, 115, 116, 118], "vocab": [7, 75, 99, 102, 103, 115, 116, 118, 124, 138, 186], "numeric": [7, 118], "batchifi": [7, 9, 182], "arrang": [7, 17, 203], "trim": [7, 9, 12, 60, 166, 182, 248], "alphabet": 7, "26": [7, 23, 145, 147, 148, 159, 164], "bmatrix": [7, 17, 102, 203], "text": [7, 17, 34, 38, 40, 44, 52, 73, 75, 85, 98, 99, 101, 102, 103, 113, 115, 116, 118, 120, 121, 122, 127, 128, 136, 138, 160, 161, 166, 169, 172, 182, 198, 203, 253, 266, 268], "c": [7, 12, 15, 18, 19, 21, 25, 38, 43, 49, 51, 63, 64, 65, 67, 71, 72, 85, 89, 90, 94, 95, 97, 103, 104, 108, 110, 111, 112, 115, 121, 127, 128, 130, 131, 136, 138, 140, 143, 145, 147, 148, 159, 164, 165, 166, 172, 174, 175, 176, 188, 190, 193, 201, 211, 223, 225, 227, 228, 232, 233, 246, 247, 253, 255, 266], "ldot": 7, "rightarrow": [7, 98, 136, 161], "j": [7, 22, 23, 32, 43, 44, 58, 59, 73, 89, 92, 94, 96, 97, 98, 102, 103, 117, 127, 138, 151, 166, 196], "k": [7, 12, 17, 19, 49, 58, 59, 60, 82, 90, 98, 105, 108, 124, 138, 148, 151, 155, 162, 163, 165, 179, 183, 199, 200, 203, 211], "u": [7, 14, 115, 118, 196], "treat": [7, 60, 75, 103, 113, 155, 162, 173, 205, 255], "print_with_rank": 7, "msg": [7, 189, 215], "wikitext2": 7, "get_token": [7, 115, 118], "build_vocab_from_iter": [7, 115, 116, 118], "train_it": [7, 115, 118], "basic_english": [7, 115], "unk": [7, 115, 116, 118], "set_default_index": [7, 115, 116, 118], "data_process": 7, "raw_text_it": 7, "tupl": [7, 9, 20, 48, 51, 58, 59, 60, 78, 80, 82, 97, 102, 103, 110, 115, 116, 138, 142, 143, 147, 148, 161, 174, 175, 179, 182, 183, 186, 194, 202, 211, 232, 259], "filter": [7, 13, 24, 49, 83, 97, 125, 138, 158, 166, 186, 210, 248], "val_it": [7, 118], "test_it": [7, 115], "train_data": [7, 55, 166], "val_data": 7, "test_data": [7, 9, 20, 34, 37, 38, 99, 182], "bsz": [7, 9, 136, 182, 197], "is_train": 7, "nbatch": [7, 9, 182], "wouldn": [7, 9, 17, 103, 123, 137, 182, 203], "cleanli": [7, 9, 182, 213], "narrow": [7, 9, 80, 145, 182, 195], "evenli": [7, 9, 18, 182], "data_per_rank": 7, "eval_batch_s": [7, 9, 19, 24, 138, 182, 183, 186, 199, 200], "get_batch": [7, 9, 182], "subdivid": [7, 8], "bptt": [7, 9, 182], "35": [7, 17, 73, 124, 148, 205, 221, 223], "seq_len": [7, 9, 165, 182], "min": [7, 9, 19, 52, 82, 87, 97, 104, 117, 136, 147, 156, 158, 160, 162, 164, 172, 174, 175, 177, 178, 179, 182, 199, 202], "4096": [7, 18, 176, 221, 232], "billion": [7, 122, 124], "rpc": [7, 109, 121, 134, 150, 218, 253], "rref": [7, 16, 61, 135, 162, 163, 214, 218], "expans": [7, 135], "replic": [7, 16, 18, 56, 60, 61, 79, 121, 123, 124, 132, 134, 136, 150, 163, 164, 217], "distributeddataparallel": [7, 16, 55, 56, 120, 122, 123, 136, 156, 164, 176, 232, 261], "vocabulari": [7, 49, 60, 103, 115, 118, 124, 138, 195], "emsiz": [7, 115], "nhid": [7, 9, 164, 182, 197], "feedforward": [7, 124], "nhead": [7, 118, 195], "multihead": [7, 42], "tmpfile": 7, "namedtemporaryfil": 7, "init_rpc": [7, 16, 135, 162, 163, 164, 214], "rpc_backend_opt": [7, 16, 135, 214], "tensorpiperpcbackendopt": [7, 16, 135, 214], "init_method": [7, 16, 134, 136], "_transport": 7, "_channel": 7, "longer": [7, 12, 42, 52, 78, 99, 113, 125, 130, 145, 150, 153, 157, 161, 162, 173, 177, 178, 195, 199, 200, 213, 263], "ibv": 7, "uv": 7, "cuda_ipc": 7, "cuda_bas": 7, "num_gpu": [7, 163], "partition_len": 7, "tmp_list": 7, "module_list": 7, "transformer_block": [7, 124], "checkpoint": [7, 39, 49, 60, 61, 75, 87, 117, 132, 153, 185, 216, 222, 232, 237, 239, 243, 245, 249], "ddp": [7, 11, 16, 53, 54, 61, 121, 122, 123, 124, 133, 169, 217, 261], "master_addr": [7, 11, 18, 53, 55, 123, 134, 135, 136, 156, 162, 163, 164, 176, 214, 216, 261], "localhost": [7, 11, 16, 18, 53, 55, 94, 123, 127, 134, 135, 140, 156, 162, 163, 164, 169, 170, 176, 214, 215, 216, 217, 247, 261], "master_port": [7, 11, 18, 53, 55, 123, 134, 135, 136, 156, 162, 163, 164, 176, 214, 216, 261], "29500": [7, 11, 16, 18, 135, 136, 156, 162, 163, 164, 176, 214, 261], "init_process_group": [7, 11, 16, 18, 53, 55, 61, 122, 123, 134, 136, 156, 176, 216, 217, 261], "nccl": [7, 11, 18, 53, 55, 82, 122, 123, 124, 134, 136, 169, 176, 216, 217], "get_total_param": 7, "total_param": 7, "crossentropyloss": [7, 9, 16, 19, 37, 38, 44, 78, 87, 92, 94, 96, 97, 99, 110, 115, 117, 118, 124, 158, 164, 169, 170, 173, 182, 183, 199, 200, 222, 252, 256], "steplr": [7, 110, 115, 117, 122, 123, 130, 158, 179], "togeth": [7, 11, 17, 21, 25, 49, 51, 59, 60, 75, 85, 97, 101, 113, 118, 123, 130, 137, 139, 159, 162, 164, 166, 172, 190, 199, 201, 202, 203, 255], "prevent": [7, 49, 55, 76, 109, 118, 125, 128, 134, 145, 147], "explod": [7, 49, 127], "criterion": [7, 9, 12, 16, 19, 44, 47, 52, 65, 67, 87, 92, 94, 97, 111, 115, 117, 127, 128, 158, 161, 164, 166, 169, 170, 182, 183, 199, 200, 222, 247, 252, 256], "schedul": [7, 11, 14, 82, 87, 115, 117, 122, 123, 130, 134, 145, 158, 160, 161, 169, 177, 179, 240], "lr_schedul": [7, 14, 110, 115, 117, 122, 123, 130, 158, 160, 179, 213], "95": [7, 115, 126, 137, 160, 164, 178, 180, 221], "total_loss": [7, 9, 103, 128, 166, 182], "start_tim": [7, 19, 115, 118, 200, 232, 239], "node": [7, 8, 18, 20, 23, 32, 43, 47, 53, 54, 55, 56, 63, 98, 108, 110, 120, 122, 132, 133, 134, 143, 144, 145, 163, 166, 177, 187, 200, 201, 202, 255], "local_valu": [7, 162, 163], "log_interv": [7, 115, 164], "cur_loss": 7, "elaps": [7, 9, 19, 115, 123, 144, 166, 182, 186], "5d": [7, 37, 38, 44, 87, 92, 115, 252], "02": [7, 52, 145, 150, 164, 188, 221], "ms": [7, 17, 19, 119, 145, 159, 177, 178, 185, 203], "ppl": 7, "get_last_lr": 7, "eval_model": 7, "data_sourc": [7, 9, 182], "output_flat": [7, 9, 182], "best_val_loss": [7, 122], "inf": [7, 118, 122, 193, 195, 197], "best_model": 7, "epoch_start_tim": [7, 115], "val_loss": [7, 87, 104, 118, 122], "89": [7, 145, 164, 177], "test_loss": [7, 37, 38, 123, 130, 167], "mp": [7, 11, 15, 16, 33, 38, 53, 55, 121, 122, 123, 134, 135, 136, 162, 163, 164, 214, 216, 261], "__name__": [7, 11, 12, 16, 51, 52, 53, 55, 78, 87, 122, 123, 134, 135, 136, 138, 140, 148, 149, 162, 163, 164, 186, 189, 196, 214, 215, 216, 228, 261], "__main__": [7, 11, 16, 51, 53, 55, 87, 122, 123, 134, 135, 136, 140, 149, 162, 163, 164, 189, 196, 214, 215, 216, 228, 233, 261], "arg": [7, 16, 18, 19, 21, 51, 53, 55, 73, 101, 110, 112, 122, 123, 125, 134, 135, 136, 138, 143, 144, 148, 149, 150, 157, 158, 161, 162, 163, 164, 165, 172, 173, 174, 175, 185, 186, 187, 195, 196, 200, 202, 212, 214, 216, 218, 222, 246, 261, 269], "nproc": [7, 11, 16, 53, 55, 123, 134, 135, 162, 164, 214, 216, 261], "join": [7, 9, 10, 16, 18, 34, 44, 48, 49, 50, 51, 53, 60, 61, 92, 96, 117, 118, 120, 123, 125, 127, 128, 134, 135, 136, 138, 158, 160, 162, 163, 164, 166, 179, 182, 186, 214, 216, 233, 248, 261], "00": [7, 92, 109, 145, 164, 172, 185, 188, 189, 221], "778": 7, "97": [7, 145, 164, 221], "43": [7, 119, 150, 221, 233], "31": [7, 122, 145, 146, 202, 221, 233, 240, 248], "6432469059895903232": 7, "90": [7, 127, 138, 164, 166, 193], "44": [7, 17, 145, 164, 203], "21245447128217366528": 7, "699": 7, "21176949187407757312": 7, "87": [7, 24, 109, 164, 233], "62": [7, 115, 164, 203], "23975861229620961280": 7, "698": 7, "86": [7, 17, 145, 159, 164, 203, 233], "41": [7, 17, 123, 159, 177, 233, 240], "1193312915629888256": 7, "40": [7, 113, 123, 147, 148, 150, 157, 164, 166, 177, 187, 194, 197, 203, 221, 233], "69": [7, 90, 174, 186, 233], "471605759847546240": 7, "34": [7, 109, 159, 214, 221, 225, 233, 240, 248], "42812308420836458496": 7, "33": [7, 146, 159, 164, 177, 178, 189, 233], "68": [7, 17, 51, 127, 138, 145, 178, 233], "68839569686012223488": 7, "08": [7, 122, 145, 164, 223, 233], "80": [7, 87, 115, 126, 148, 164, 166, 193, 236], "22": [7, 17, 145, 148, 164, 206, 221, 233], "09": [7, 17, 49, 145, 164, 177, 203, 221], "75": [7, 22, 23, 97, 115, 117, 123, 150, 158, 236], "768": [7, 138, 148, 186, 203], "51": [7, 119, 127, 148, 150, 164, 177, 221], "36": [7, 17, 115, 159], "6063529544668166": 7, "769": 7, "23": [7, 17, 95, 145, 164, 177, 185, 221, 233, 240, 248, 266], "17651211266236086": 7, "3798441739584": 7, "56": [7, 19, 148, 159, 177, 203, 233, 240], "29": [7, 138, 159, 164, 210, 233], "5203636967575": 7, "47": [7, 17, 87, 127, 148, 233, 240], "2212498693571": 7, "05": [7, 14, 16, 20, 21, 73, 115, 122, 135, 161, 164, 180, 220, 221], "2015144761281": 7, "13121380184": 7, "92": [7, 17, 203, 233], "14653799192": 7, "39": [7, 123, 127, 164, 221, 233], "24": [7, 17, 19, 113, 145, 159, 174, 185, 193, 203, 233], "98": [7, 51, 118, 145, 164, 189, 221], "361681": 7, "287876": 7, "61": [7, 19, 109, 148, 203, 221], "164364": 7, "60": [7, 34, 105, 110, 117, 122, 127, 128, 148, 150, 158, 159, 164, 166, 170, 193, 240], "159095": 7, "697": [7, 221], "54261": 7, "91": [7, 17, 164, 203, 221, 233], "72": [7, 17, 159, 233], "53372": 7, "49": [7, 17, 148, 150, 164, 186, 203, 233], "78": [7, 17, 203, 233], "47948": 7, "79": [7, 17, 145, 199, 203, 233, 240], "48664": 7, "42": [7, 23, 73, 97, 127, 138, 164, 177, 186, 210, 233], "96": [7, 19, 145, 148, 164], "38": [7, 109, 164, 178, 248], "46": [7, 17, 138, 145, 148, 159, 177], "ddp_pipelin": 7, "respons": [8, 11, 16, 18, 49, 60, 108, 121, 124, 130, 134, 136, 140, 162, 163, 166, 173, 178, 210, 231, 260, 265], "nontrivi": [8, 211], "cut": [8, 113, 119, 265], "concern": [8, 21, 61, 99, 191, 199], "rule": [8, 22, 43, 47, 60, 102, 103, 125, 130, 139, 146, 154, 155, 160, 161, 183], "vmap": [8, 121, 142, 146, 151, 155, 198], "statement": [8, 21, 25, 43, 45, 60, 65, 98, 111, 166, 174, 175, 184, 234, 265], "convers": [8, 49, 95, 112, 148, 166, 178, 191, 196, 225, 230], "basic": [8, 11, 15, 16, 23, 24, 49, 54, 56, 57, 61, 75, 86, 97, 100, 103, 105, 107, 108, 113, 115, 121, 124, 127, 130, 145, 160, 165, 192, 195, 253, 255, 266], "registr": [8, 10, 15, 22, 23, 210, 222], "highest": [8, 19, 44, 49, 58, 59, 60, 128, 161, 172], "transfer": [8, 22, 44, 58, 59, 79, 80, 97, 98, 112, 117, 121, 136, 159, 163, 169, 179, 208, 230, 234, 255, 264], "redispatch": 8, "happen": [8, 21, 23, 25, 32, 43, 52, 97, 99, 105, 122, 124, 131, 136, 142, 157, 162, 169, 170, 185, 186, 199, 201, 210, 211], "unlik": [8, 12, 17, 60, 97, 125, 142, 143, 148, 158, 166, 203], "style": [8, 60, 113, 115, 124, 179, 210, 263, 265, 266], "abid": [8, 52], "myop": 8, "myadd": [8, 10], "myadd_cpu": 8, "self_": 8, "other_": 8, "torch_internal_assert": 8, "devicetyp": [8, 15], "self_ptr": 8, "data_ptr": [8, 23, 59, 187, 210], "other_ptr": 8, "result_ptr": 8, "torch_library_impl": [8, 10, 15], "impl": [8, 10, 15, 108, 174, 175, 248], "myadd_cuda": 8, "boundari": [8, 61, 135, 160, 169], "myops_cpu": 8, "myops_cuda": 8, "xla": [8, 10, 15, 246], "torch_xla": [8, 10], "useabl": 8, "behav": [8, 12, 20, 60, 80, 148, 154, 162, 200, 267], "autogradnotimplementedfallback": 8, "notimpl": 8, "preserv": [8, 17, 22, 25, 49, 107, 121, 135, 148, 157, 178, 184, 192, 203, 205, 225, 251, 265], "require_grad": 8, "ness": 8, "pin": [8, 125, 264], "lost": [8, 17, 99, 148, 203], "mutat": [8, 10, 139, 155, 174, 175, 207, 213], "alias": [8, 10], "adinplaceorview": 8, "bookkeep": 8, "autogradnotimplementedinplaceorviewfallback": 8, "logi": 8, "properli": [8, 9, 10, 14, 23, 50, 55, 97, 118, 131, 134, 136, 148, 150, 153, 154, 160, 162, 163, 164, 166, 177, 190, 191, 193, 196, 204, 211, 226, 227], "annot": [8, 10, 18, 21, 22, 23, 51, 60, 99, 108, 118, 138, 172, 173, 178, 218], "guess": [8, 43, 49, 52, 113, 127, 166], "twist": [8, 113], "constitut": [8, 14], "hood": [8, 14, 19, 49, 52, 54, 56, 124, 125, 146, 147, 164, 194], "singleton": [8, 163], "findschemaorthrow": 8, "decltyp": [8, 145], "qualifi": [8, 22, 108], "overload": [8, 22, 108], "typic": [8, 11, 14, 19, 21, 43, 47, 48, 54, 55, 58, 59, 82, 98, 99, 103, 115, 119, 124, 126, 130, 132, 145, 153, 160, 163, 172, 173, 174, 175, 177, 178, 202, 215, 222, 230, 234], "cast": [8, 13, 17, 18, 108, 109, 122, 203], "lookup": [8, 16, 103, 115, 164, 176], "typo": 8, "myaddfunct": [8, 10], "autononvariabletypemod": [8, 10, 59, 210], "myadd_autograd": [8, 10], "except": [8, 11, 17, 23, 43, 44, 48, 49, 52, 58, 59, 60, 61, 76, 79, 80, 87, 95, 99, 102, 104, 117, 125, 127, 135, 138, 139, 140, 142, 143, 146, 148, 150, 155, 156, 158, 165, 166, 173, 174, 175, 185, 192, 195, 198, 202, 203, 204, 205, 207, 208, 222, 224, 248], "raii": 8, "guard": [8, 59, 134, 174, 201, 210, 213], "infinit": 8, "overflow": [8, 49, 185], "send": [8, 10, 11, 12, 44, 45, 61, 73, 78, 87, 115, 136, 140, 147, 156, 158, 162, 163, 164, 174, 175], "consider": [8, 10, 20, 123, 174, 175], "handler": [8, 172, 178, 260], "autogradcpu": 8, "autogradcuda": 8, "pythondispatch": 8, "_python_dispatch": 8, "isn": [8, 98, 142, 143, 159, 170, 193, 263, 265], "glorifi": 8, "add_cpu": 8, "add_cuda": 8, "unsupport": [8, 173, 174, 175, 178], "decentr": 8, "importantli": [8, 19, 23, 42, 131, 153, 191], "parti": [8, 22, 23, 156], "aspect": [8, 15, 51, 73, 136, 179], "patch": [8, 10, 161], "dispatchkei": [8, 10], "varieti": [8, 24, 49, 112, 128, 194], "fallback": [8, 10, 15, 186], "behavior": [8, 10, 11, 12, 14, 22, 25, 49, 51, 102, 108, 137, 144, 145, 148, 150, 153, 174, 175, 192, 193, 199, 200, 204, 225], "opt": [8, 16, 22, 104, 110, 126, 135, 148, 153, 156, 163, 164, 169, 173, 185, 204, 212, 213, 232, 239], "amp": [8, 15, 61, 148, 209, 222, 253, 256], "incom": [8, 169], "float16": [8, 15, 122, 138, 148, 165, 209, 232], "float32": [8, 14, 23, 85, 122, 145, 148, 159, 161, 164, 173, 187, 191, 201, 202, 232, 246, 249], "matmul": [8, 17, 23, 32, 40, 48, 95, 124, 145, 185, 195, 203, 207, 209, 210, 232], "impair": 8, "converg": [8, 49, 52, 64, 97, 111, 112, 124, 136, 154, 161, 166, 213], "hypothet": 8, "autocast_mod": 8, "mymatmul_autocast": 8, "excludedispatchkeyguard": 8, "no_autocast": 8, "mymatmul": 8, "cached_cast": 8, "khalf": 8, "elig": 8, "polici": [8, 15, 121, 123, 147, 161, 162, 164], "mixtur": 8, "meanwhil": [8, 125, 145, 192, 222], "float64": [8, 95], "unaffect": [8, 97], "forc": [8, 14, 17, 23, 49, 60, 127, 166, 173, 191, 193, 203, 263], "fallthrough": 8, "occur": [8, 11, 19, 23, 25, 53, 75, 78, 82, 97, 116, 145, 148, 162, 163, 169, 172, 174, 175, 178, 185, 186], "fall": [8, 15, 154, 161], "aren": [8, 131, 137, 193], "dri": [8, 169], "reduct": [8, 9, 58, 59, 65, 67, 68, 69, 111, 119, 122, 123, 125, 130, 138, 153, 156, 169, 172, 182, 191, 193, 198, 225], "gemm": [8, 145, 177, 178, 201, 221], "unless": [8, 20, 48, 99, 130, 138, 160, 183, 185, 186, 207], "categori": [8, 10, 19, 49, 73, 82, 117, 127, 128, 166, 169, 174, 175, 183, 191, 192, 193, 194, 199, 200, 210], "promote_typ": 8, "widest": 8, "safest": 8, "my_multiple_input_op_autocast": 8, "t0": [8, 122, 165, 185, 192, 212, 233], "t1": [8, 40, 48, 192, 233, 246], "optimist": 8, "exec_typ": 8, "my_multiple_input_op": 8, "myadd_autocast": 8, "gymnast": 8, "invoc": [8, 25, 144, 162, 178], "stabil": [8, 97, 161, 260], "41478": 8, "jame": [9, 25, 113, 144], "reed": [9, 25, 144], "seth": [9, 19, 36], "weidman": [9, 19], "io": [9, 34, 49, 51, 58, 60, 94, 119, 121, 127, 128, 140, 149, 162, 165, 166, 172, 179, 182, 198, 210, 215, 229, 230, 231, 253, 255], "lstmmodel": [9, 182, 197], "drop": [9, 23, 50, 105, 132, 153, 164, 177, 182, 185, 226, 227, 263], "emb": [9, 23, 93, 98, 102, 103, 137, 164, 182, 197, 266], "init_hidden": [9, 98, 182, 197], "new_zero": [9, 197], "corpu": [9, 49, 50, 60, 138, 182, 195], "preprocess": [9, 20, 42, 51, 58, 59, 60, 97, 104, 113, 116, 127, 159, 166, 172, 189, 206], "dictionari": [9, 14, 49, 58, 59, 60, 82, 103, 105, 112, 127, 128, 140, 153, 155, 160, 162, 163, 166, 172, 182, 186, 197], "word2idx": [9, 182], "idx2word": [9, 182], "add_word": [9, 182], "__len__": [9, 45, 51, 104, 136, 161, 179, 182], "train": [9, 10, 12, 16, 17, 18, 20, 23, 32, 34, 37, 38, 41, 42, 43, 46, 47, 51, 54, 56, 57, 58, 59, 60, 63, 64, 65, 67, 68, 69, 73, 75, 79, 82, 85, 91, 92, 94, 96, 97, 98, 100, 102, 103, 104, 105, 111, 113, 116, 118, 119, 121, 123, 126, 129, 130, 134, 138, 143, 147, 148, 149, 150, 151, 154, 155, 156, 159, 162, 163, 164, 165, 169, 172, 173, 176, 177, 179, 184, 186, 189, 193, 196, 198, 202, 203, 213, 223, 226, 227, 229, 243, 245, 247, 252, 253, 255, 256, 259], "utf8": [9, 182], "eo": [9, 49, 60, 113, 116, 118, 128, 166, 182], "idss": [9, 182], "int64": [9, 14, 60, 85, 95, 115, 145, 176, 179, 182, 194], "model_data_filepath": [9, 182], "512": [9, 12, 18, 33, 37, 38, 43, 75, 97, 113, 118, 122, 135, 145, 146, 147, 165, 179, 182, 195, 197, 203, 209, 222, 232, 233, 240], "word_language_model_quant": [9, 182], "map_loc": [9, 20, 49, 60, 73, 112, 134, 172, 182, 232, 239, 242], "input_": [9, 197], "randint": [9, 16, 34, 51, 52, 65, 111, 127, 128, 138, 139, 145, 147, 148, 155, 165, 173, 186, 192, 197, 222], "temperatur": [9, 97, 115], "num_word": [9, 49, 60], "outf": 9, "word_weight": 9, "div": [9, 12, 129, 145, 191, 193, 194, 199], "word_idx": 9, "multinomi": 9, "utf": [9, 49, 111, 127, 128, 138, 166, 210, 265, 266], "19": [9, 12, 17, 23, 60, 95, 127, 145, 161, 175, 185, 187, 203, 240, 266, 269], "all_output": 9, "gpt": [9, 54, 123, 132, 133], "almost": [9, 12, 19, 80, 102, 103, 123, 124, 137, 159, 177, 185], "repackage_hidden": [9, 182], "isinst": [9, 12, 14, 17, 19, 49, 51, 73, 125, 135, 143, 147, 148, 157, 182, 183, 186, 187, 199, 200, 202, 203, 246], "model_": [9, 96, 182], "quantize_dynam": [9, 119, 138, 197, 230, 236], "int8": [9, 19, 95, 138, 159, 178, 185, 186, 199, 201, 202, 223, 225, 230, 236], "quantized_model": [9, 19, 119, 138, 182, 183, 186, 199, 200], "qint8": [9, 119, 138, 180, 197, 230, 236], "print_size_of_model": [9, 19, 138, 182, 183, 186, 199, 200, 236], "mb": [9, 19, 109, 123, 138, 176, 182, 183, 186, 199, 200, 230, 240, 261], "getsiz": [9, 19, 138, 182, 183, 186, 199, 200, 230, 236], "set_num_thread": [9, 138, 159, 182, 186], "time_model_evalu": [9, 138, 182, 186], "nelaps": [9, 182], "1f": [9, 37, 38, 44, 49, 138, 170, 182, 186, 233], "macbook": [9, 19, 138, 166], "pro": [9, 19, 138], "welcom": [9, 19, 138, 186, 189, 190, 197, 206, 224], "dynamic_quantization_tutori": [9, 236], "outsid": [10, 14, 15, 23, 45, 60, 121, 124, 130, 169, 172, 174, 191, 265], "repo": [10, 15, 18, 19, 54, 58, 59, 82, 119, 121, 127, 132, 136, 138, 162, 163, 185, 196], "solut": [10, 17, 52, 60, 112, 121, 135, 145, 150, 155, 172, 173, 177, 193, 195, 203], "pr": [10, 170, 222], "propos": [10, 24, 124, 137, 154, 191, 193], "request": [10, 25, 43, 87, 104, 119, 122, 140, 154, 159, 162, 163, 167, 174, 175, 177, 178, 187, 193, 194, 215, 231], "hardwar": [10, 15, 17, 20, 48, 50, 60, 97, 105, 136, 139, 146, 148, 150, 155, 156, 157, 178, 185, 203, 222, 225, 234], "googl": [10, 17, 21, 24, 25, 42, 49, 52, 75, 104, 119, 121, 137, 138, 160, 161, 169, 206, 210, 263], "tpu": [10, 149, 156], "chip": [10, 178, 190], "layout": [10, 17, 124, 142, 178, 191, 194, 195, 198, 203, 246], "spars": [10, 16, 99, 103, 115, 121, 137, 157, 193, 198], "quantiz": [10, 58, 59, 97, 117, 121, 153, 159, 178, 196, 198, 220, 223, 229, 236, 237, 253, 255], "enforc": [10, 14, 22, 60, 98, 126, 150, 154, 174, 175, 191, 192], "mainli": [10, 14, 15, 18, 138, 145, 169, 173, 201, 202], "haven": [10, 23, 87, 98, 102, 103, 139, 144, 155], "addtion": 10, "identifi": [10, 17, 53, 55, 73, 82, 83, 109, 113, 133, 147, 148, 157, 163, 178, 179, 183, 186, 194, 202, 203], "carri": [10, 14, 49, 52, 97, 101, 132, 137, 148, 166], "privateuse1": [10, 121], "autogradprivateuse1": [10, 15], "privateuse2": [10, 15], "autogradprivateuse2": [10, 15], "privateuse3": [10, 15], "autogradprivateuse3": [10, 15], "tensorimpl": [10, 15, 233, 248], "storag": [10, 15, 20, 101, 112, 125, 137, 139, 147, 148, 160, 169, 191, 193, 194, 204, 211, 225, 232], "dispatchkeyset": [10, 15], "ks": 10, "caffe2": [10, 85, 189], "typemeta": 10, "data_typ": [10, 101], "opaquetensorimpl": 10, "tweak": [10, 49], "overrid": [10, 15, 40, 48, 51, 59, 68, 99, 108, 111, 144, 148, 150, 156, 172, 186, 190, 210], "vulkan": [10, 198, 255], "submit": [10, 222], "dispath": 10, "registrationdeclar": 10, "ab": [10, 13, 85, 92, 95, 173, 183, 195, 209, 236, 240], "schema": [10, 20, 23, 210], "abs_": 10, "abs_out": 10, "absolute_": 10, "absolute_out": 10, "angl": [10, 14, 95, 103], "angle_out": 10, "sgn": 10, "uniqu": [10, 17, 49, 53, 55, 95, 98, 99, 100, 102, 103, 116, 122, 133, 163, 166, 179, 191, 203, 260], "boolean": [10, 73, 137, 174, 175, 255], "impli": [10, 97, 102, 138], "schema_my_op1": 10, "my_op1": 10, "schema_my_op2": 10, "my_op2": 10, "schema_my_op2_backward": 10, "my_op2_backward": 10, "zoom": [10, 82, 126, 169, 172], "1600": [10, 233, 248], "grow": [10, 49, 61, 99, 125, 132, 176], "unrealist": 10, "classifi": [10, 12, 19, 24, 43, 46, 47, 52, 57, 73, 82, 87, 97, 112, 117, 127, 128, 138, 147, 179, 196, 266], "metadata": [10, 17, 22, 94, 142, 160, 170, 174, 175, 203, 263], "accompani": 10, "comment": [10, 136, 153, 166, 190, 191, 207, 222, 224, 234, 265], "sacrif": [10, 157], "max_pool2d": [10, 47, 73, 92, 93, 105, 123, 130, 155, 157, 163, 167, 205, 208, 223, 235, 240], "formula": [10, 97, 142, 160], "mathemat": [10, 13, 43, 48, 64, 101, 136, 160], "worri": [10, 52, 99, 130, 131, 134, 144, 153, 164], "my_op": [10, 23, 210], "op_backward": 10, "proper": [10, 32, 122, 124, 134, 148, 150, 160, 164, 172, 177, 191], "rare": [10, 15, 49, 117, 166], "assumpt": [10, 14, 60, 73, 97, 103, 151], "myadd_schema": 10, "my_add": 10, "setuptool": [10, 156, 169], "_xlac": 10, "torch_xla_sourc": 10, "extra_compile_arg": 10, "library_dir": 10, "extra_link_arg": 10, "make_relative_rpath": 10, "seamlessli": [10, 14, 53, 78, 124, 201], "nm": [10, 151, 222], "torchvsion": 10, "adhoc": 10, "unbox": 10, "potenti": [10, 14, 25, 73, 98, 122, 163, 179, 198, 199, 201, 268], "wiki": [10, 33, 142, 148, 154, 182], "suit": [10, 109, 160, 183, 198, 199, 201], "ship": [10, 44, 61, 92, 113, 252], "guarante": [10, 97, 133, 136, 148, 157, 163, 164, 175, 177, 192], "delet": [10, 17, 83, 125, 130, 134, 153, 164, 172, 185, 190, 205, 255], "old": [10, 19, 103, 112, 113, 119, 157, 169, 182, 183, 195, 225, 230], "until": [10, 16, 49, 60, 82, 113, 122, 128, 135, 136, 137, 145, 153, 160, 162, 163, 164, 169, 191], "interrupt": [10, 53, 87, 166], "quarterli": 10, "cadenc": 10, "announc": [10, 115], "slack": [10, 44, 79], "Not": [10, 16, 58, 59, 113, 134, 159, 174, 261], "search": [10, 18, 49, 75, 113, 121, 126, 145, 157, 174, 175, 185, 206, 263], "instantiate_device_type_test": 10, "testtorchdevicetyp": 10, "testviewop": 10, "testtensordeviceop": 10, "testtypepromot": 10, "etc": [10, 44, 45, 47, 49, 51, 61, 69, 79, 98, 99, 100, 101, 102, 110, 112, 124, 157, 160, 161, 166, 174, 175, 177, 178, 182, 183, 193, 202, 222, 263, 265], "__reduce_ex__": 10, "monkei": 10, "direct": [10, 23, 25, 43, 47, 52, 73, 103, 113, 126, 136, 138, 142, 147, 151, 154, 166, 185, 194, 218, 269], "suppos": [10, 12, 22, 97, 98, 99, 103, 123, 140, 179, 180, 222], "vice": [10, 23, 48, 80, 230], "versa": [10, 23, 48, 80, 230], "Such": [10, 11], "seamless": [10, 78, 201], "coverag": [10, 142, 146, 148, 195, 199, 201], "comprehens": [10, 21, 24, 48, 79, 108, 145, 201], "bahavior": 10, "refactor": [10, 112, 132], "codegen": [10, 145], "dev": [10, 99, 104, 129, 138, 159, 169, 172, 186, 198, 210, 228, 232, 260], "andrew": [11, 180, 200], "gu": 11, "shard": [11, 61, 120, 121, 132, 155, 176, 217], "saw": [11, 14, 21, 23, 49, 59, 60, 99, 101, 142, 143, 146, 147], "skeleton": [11, 14], "implicitli": [11, 43, 49, 123, 131, 165, 202], "particip": [11, 61, 113, 133, 135, 163], "hang": [11, 55, 61, 113, 128], "persist": [11, 22, 265], "earli": [11, 23, 52, 87, 113, 126, 134, 136, 180, 193], "shadow": [11, 197], "hook": [11, 107, 124, 134, 157], "num_input": 11, "device_id": [11, 16, 55, 79, 112, 122, 134, 242, 261], "arbitrarili": [11, 49, 97], "prior": [11, 15, 19, 42, 50, 52, 97, 115, 134, 147, 157, 170, 177, 178, 199], "notabl": [11, 19, 87, 196], "addition": [11, 12, 82, 115, 125, 126, 134, 177, 178, 179, 201], "divide_by_initial_world_s": 11, "world": [11, 14, 18, 23, 42, 54, 58, 59, 99, 103, 115, 124, 126, 136, 140, 144, 147, 150, 156, 161, 162, 163, 195, 265], "nonetheless": [11, 97, 265], "mind": [11, 49, 52, 85, 97, 108, 133, 151, 177, 220, 265], "preliminari": [11, 138], "delv": [11, 145], "insight": [11, 73, 82, 90, 136, 165], "join_hook": 11, "kwarg": [11, 16, 21, 112, 125, 135, 144, 148, 150, 160, 163, 165, 174, 175, 185, 195, 204, 212, 218, 246], "join_devic": 11, "join_process_group": 11, "processgroup": [11, 16, 18, 61, 120, 121, 124, 164, 217, 249], "throw_on_early_termin": 11, "explain": [11, 12, 17, 20, 23, 43, 47, 52, 61, 73, 99, 124, 145, 150, 173, 177, 187, 201, 203], "joinconfig": 11, "_join_config": 11, "main_hook": 11, "repeatedli": [11, 160, 164], "post_hook": 11, "is_last_join": 11, "broadcast": [11, 61, 68, 95, 98, 111, 134, 136, 156], "vacuou": 11, "contextlib": [11, 172], "nullcontext": 11, "conform": [11, 172], "interleav": 11, "syncbatchnorm": [11, 55], "__exit__": 11, "heartbeat": 11, "notify_join_context": 11, "serializ": 11, "fulli": [11, 12, 14, 15, 17, 20, 21, 22, 47, 78, 82, 87, 108, 110, 117, 120, 121, 126, 132, 148, 151, 158, 161, 163, 165, 169, 177, 183, 193, 196, 199, 203, 222], "proceed": [11, 47, 97, 108], "overlap": [11, 21, 56, 61, 122, 123, 127, 132, 134, 150, 169, 172, 177], "moreov": [11, 61, 191, 222], "permit": [11, 265], "customiz": [11, 137, 197], "idea": [11, 23, 24, 60, 73, 85, 97, 99, 100, 101, 103, 124, 130, 137, 145, 150, 154, 161, 162, 164, 166, 177, 191, 207, 265], "counterjoinhook": 11, "sync_max_count": 11, "all_reduc": [11, 61, 122, 123, 136, 156], "get_rank": [11, 134, 136], "process_group": 11, "common_rank": 11, "find_common_rank": 11, "max_count": 11, "__call__": [11, 51, 68, 111, 148, 157], "meth": [11, 14, 265], "to_consid": 11, "reduceop": [11, 122, 123, 136], "highlight": [11, 49, 60, 85, 90, 94, 114, 120, 122, 165, 169, 173, 222, 265], "alexi": 12, "jacq": 12, "winston": 12, "her": [12, 42, 113, 156], "leon": [12, 113], "gati": 12, "alexand": 12, "ecker": 12, "matthia": 12, "bethg": 12, "artist": 12, "distanc": [12, 63, 64, 67, 68, 69, 97, 111], "d_c": 12, "d_": [12, 96], "indispens": [12, 160], "pil": [12, 20, 41, 51, 58, 59, 90, 117, 119, 140, 147, 159, 172, 179, 206, 215, 231], "pretrain": [12, 20, 24, 42, 43, 58, 59, 73, 75, 103, 113, 117, 119, 121, 138, 140, 158, 159, 166, 172, 177, 178, 182, 183, 186, 189, 190, 196, 197, 199, 200, 201, 206, 208, 215, 222, 224, 225, 259], "vgg19": [12, 148], "vgg19_weight": 12, "throughout": [12, 25, 52, 102, 136, 150, 153, 160, 170, 177, 178, 193], "set_default_devic": [12, 63, 111, 232, 234], "resiz": [12, 19, 20, 47, 51, 52, 75, 90, 117, 119, 137, 140, 147, 158, 169, 183, 199, 200, 215, 222, 231, 256], "unabl": [12, 23, 139, 155, 185, 193], "caff": 12, "picasso": 12, "imsiz": 12, "image_load": 12, "image_nam": [12, 51], "style_img": 12, "content_img": 12, "reconvert": 12, "correctli": [12, 49, 52, 58, 59, 60, 73, 78, 114, 127, 142, 148, 153, 157, 159, 172, 173, 175, 193, 200, 226, 227, 255], "unload": 12, "topilimag": 12, "ion": [12, 14, 51, 117, 158, 161, 167], "titl": [12, 14, 17, 34, 51, 52, 73, 90, 117, 127, 137, 158, 160, 161, 166, 172, 179, 197, 227], "paus": [12, 51, 117, 161, 162, 200], "f_": [12, 160], "xl": [12, 221], "w_": [12, 103], "cl": [12, 75, 126, 138, 184, 188, 246], "squar": [12, 47, 51, 63, 64, 67, 68, 69, 71, 97, 111, 130, 131, 147, 154, 157, 161, 165, 180], "contentloss": 12, "throw": [12, 23, 61, 118, 140, 162, 174, 175], "mse_loss": [12, 97, 232], "recomput": [12, 97, 130, 132, 154], "act": [12, 22, 43, 49, 113, 126, 137, 157, 161, 163], "gram": 12, "g_": [12, 265], "hat": [12, 102, 113], "counteract": 12, "caus": [12, 15, 21, 22, 61, 73, 82, 119, 125, 145, 159, 162, 166, 169, 172, 175, 177, 178, 191, 197, 230, 234, 255, 263], "pool": [12, 18, 44, 52, 61, 87, 92, 94, 96, 97, 110, 112, 116, 170, 176, 178, 196, 241, 242, 243, 244, 245, 250, 251, 252], "tend": [12, 17, 97, 185, 203], "gram_matrix": 12, "f_xl": 12, "sl": 12, "styleloss": 12, "target_featur": 12, "vgg": 12, "child": [12, 60, 103, 109, 169, 186, 266], "connect": [12, 47, 59, 87, 103, 110, 117, 124, 136, 142, 144, 151, 157, 158, 159, 161, 177, 202, 210, 220, 225, 265], "cnn": [12, 45, 97, 119, 121, 147, 151, 154, 155, 167, 172, 178, 179, 201, 222, 230], "485": [12, 19, 51, 58, 59, 90, 97, 117, 140, 158, 159, 167, 183, 199, 200, 206, 215, 231], "456": [12, 19, 51, 58, 59, 90, 97, 117, 140, 158, 159, 167, 183, 199, 200, 206, 215, 231], "406": [12, 19, 51, 58, 59, 90, 97, 117, 140, 158, 159, 167, 183, 199, 200, 206, 215, 231], "229": [12, 19, 51, 58, 59, 90, 97, 117, 140, 158, 159, 167, 183, 199, 200, 206, 215, 231], "225": [12, 19, 51, 58, 59, 90, 97, 109, 117, 140, 158, 159, 167, 183, 199, 200, 206, 215, 231], "cnn_normalization_mean": 12, "cnn_normalization_std": 12, "height": [12, 43, 47, 58, 59, 78, 95, 147, 149, 153, 172, 178, 179, 265], "width": [12, 19, 43, 44, 47, 58, 59, 78, 95, 126, 147, 149, 150, 151, 153, 172, 178, 179, 265], "img": [12, 20, 34, 44, 51, 90, 92, 94, 96, 117, 119, 121, 140, 158, 170, 172, 179, 231, 260], "maxpool2d": [12, 44, 47, 78, 87, 92, 93, 94, 96, 97, 112, 135, 144, 167, 170, 241, 242, 243, 244, 245, 250, 251, 252], "align": [12, 150, 165, 166, 179, 192, 197, 265], "depth": [12, 43, 52, 56, 61, 101, 125, 145, 201, 236, 263], "immedi": [12, 18, 21, 48, 52, 102, 135, 136, 153, 162, 163, 166, 169, 185], "content_layers_default": 12, "conv_4": 12, "style_layers_default": 12, "conv_1": 12, "conv_2": 12, "conv_3": 12, "conv_5": 12, "get_style_model_and_loss": 12, "normalization_mean": 12, "normalization_std": 12, "content_lay": 12, "style_lay": 12, "content_loss": 12, "style_loss": 12, "conv": [12, 19, 52, 90, 110, 130, 143, 144, 148, 157, 158, 163, 178, 182, 183, 202, 220, 225, 228, 240, 241, 255], "children": [12, 169], "conv_": 12, "relu_": [12, 130, 202, 208], "plai": [12, 44, 49, 52, 79, 97, 99, 115, 121, 160, 178, 201], "pool_": 12, "bn_": 12, "runtimeerror": [12, 22, 118, 128, 156, 159, 165, 174, 175, 205], "unrecogn": 12, "__class__": [12, 52, 78, 148, 246], "add_modul": 12, "content_loss_": 12, "style_loss_": 12, "input_img": [12, 90, 231], "bfg": 12, "get_input_optim": 12, "closur": [12, 174, 175], "reevalu": 12, "exce": [12, 73, 130, 176, 230], "run_style_transf": 12, "num_step": [12, 162], "style_weight": 12, "1000000": 12, "content_weight": 12, "clamp_": 12, "style_scor": 12, "content_scor": 12, "sphinx_gallery_thumbnail_numb": [12, 127], "ioff": [12, 51, 117, 158, 161, 167], "neural_style_tutori": 12, "paszk": [13, 136, 161], "dziedzic": 13, "shall": [13, 47, 52, 103], "learnabl": [13, 47, 67, 68, 69, 111, 112, 121, 204], "badfftfunct": 13, "fft": [13, 173], "rfft2": 13, "irfft2": 13, "numpy_input": 13, "numpy_go": 13, "incorrect_fft": 13, "literatur": [13, 161], "confusingli": 13, "correl": [13, 82, 145], "flip": [13, 21, 146], "wrt": [13, 130, 131], "np": [13, 14, 17, 19, 20, 40, 44, 48, 51, 52, 60, 71, 73, 75, 80, 90, 92, 94, 95, 96, 98, 104, 109, 111, 117, 119, 138, 147, 150, 158, 159, 164, 166, 167, 170, 172, 173, 183, 186, 192, 195, 197, 199, 200, 203, 206, 231, 248], "convolve2d": 13, "correlate2d": 13, "scipyconv2dfunct": 13, "as_tensor": [13, 75, 193], "grad_filt": 13, "from_numpi": [13, 40, 48, 51, 80, 95, 109, 162, 164, 173], "scipyconv2d": 13, "filter_width": 13, "filter_height": 13, "gradcheck": [13, 130, 131, 142, 249], "moduleconv": 13, "atol": [13, 17, 20, 139, 151, 155, 203], "numpy_extensions_tutori": 13, "freeli": 14, "inspir": [14, 60, 116, 136, 146, 151, 165, 207], "v1": [14, 17, 61, 95, 135, 137, 161, 162, 164, 182, 194, 203, 233, 260], "openai": [14, 121, 147, 160, 161, 162, 164], "farama": [14, 160], "gymnasium": [14, 160, 161], "encount": [14, 49, 60, 110, 122, 145, 173, 255], "undertaken": 14, "broader": [14, 25], "challeng": [14, 101, 102, 123, 124, 136, 143, 154, 161, 172], "wider": [14, 146], "acquaint": 14, "set_se": [14, 138, 186], "avenu": [14, 85], "backpropag": [14, 37, 38, 43, 47, 49, 73, 98, 99, 100, 102, 103, 125, 147], "defaultdict": [14, 17, 75, 160, 203], "boundedtensorspec": 14, "unboundedcontinuoustensorspec": 14, "unsqueezetransform": 14, "_apply_to_composit": 14, "check_env_spec": [14, 160], "step_mdp": [14, 137], "default_x": 14, "pi": [14, 63, 64, 65, 67, 68, 69, 71, 72, 89, 95, 111, 121, 161, 265], "default_i": 14, "_set_se": 14, "torqu": 14, "upward": 14, "angular": 14, "stand": [14, 85, 113, 147, 194, 265], "equat": [14, 52, 138, 160, 161, 265], "motion": [14, 265], "veloc": [14, 161], "theta": [14, 73, 99, 160, 167, 265], "_t": [14, 147], "theta_t": 14, "dt": [14, 147, 265], "rad": 14, "sec": [14, 123, 138, 232], "gravit": 14, "mass": 14, "accord": [14, 15, 24, 112, 115, 119, 145, 147, 157, 161, 165, 172, 194, 204], "theta_": [14, 147], "deleg": [14, 21, 121, 144, 189, 199], "privat": [14, 15, 23, 58, 59, 115, 156, 157, 191, 210], "merg": [14, 20, 22, 45, 159, 161, 172, 222], "is_shar": 14, "modif": [14, 15, 19, 20, 21, 87, 98, 130, 136, 157, 160, 163, 167, 170, 174, 175, 183, 196], "new_th": 14, "plu": [14, 98, 99, 115, 128], "new_thdot": 14, "neg": [14, 21, 49, 90, 98, 99, 104, 113, 138, 145, 157, 160, 231, 255], "discourag": [14, 48, 160], "thdot": 14, "g_forc": 14, "clamp": [14, 73, 95, 199, 208], "max_torqu": 14, "angle_norm": 14, "max_spe": 14, "omit": [14, 23, 109, 145, 160, 178, 182, 196, 199, 200, 201, 240], "agent": [14, 61, 121, 161, 162, 164, 167], "mandatori": [14, 142, 160], "is_empti": 14, "gen_param": 14, "high_th": 14, "high_thdot": 14, "low_th": 14, "low_thdot": 14, "simultan": [14, 15, 22, 25, 43, 56, 121, 126, 136, 159], "rng": [14, 136], "domain": [14, 24, 49, 50, 73, 108, 121, 160, 195, 266], "accur": [14, 19, 73, 87, 109, 126, 144, 164, 173, 193], "lazili": [14, 153], "costli": [14, 125], "reward_spec": [14, 160], "done_spec": 14, "input_spec": [14, 160, 174], "state_spec": 14, "output_spec": [14, 174], "trivial": [14, 51, 56, 125, 140, 204, 211, 255], "neither": [14, 150, 180], "shortcut": 14, "tensorspec": [14, 189], "irrelev": [14, 156], "_make_spec": 14, "td_param": 14, "make_composite_from_td": 14, "unbound": 14, "incorpor": [14, 97, 137, 165, 266], "pseudo": [14, 24], "manual_se": [14, 17, 19, 25, 52, 73, 92, 95, 97, 98, 99, 101, 102, 103, 118, 122, 123, 130, 136, 138, 139, 146, 155, 162, 183, 186, 195, 199, 200, 203, 236, 261], "pendulumenv": 14, "expand": [14, 15, 49, 60, 98, 101, 105, 113, 145, 170, 178, 189, 195, 196, 211], "batch_lock": 14, "homonym": 14, "render_mod": [14, 147], "human": [14, 20, 49, 73, 110, 115, 128, 138, 140, 147, 166, 172, 215, 265], "rgb_arrai": 14, "render_fp": 14, "random_": [14, 16, 60, 135, 150, 162], "_make_step": 14, "rand_step": 14, "randomli": [14, 44, 51, 52, 65, 71, 72, 87, 111, 128, 138, 147, 161, 166, 186], "invers": [14, 95, 192], "showcas": [14, 23, 65, 122, 151, 153, 177, 178, 187, 198], "unsqueeze_dim": 14, "summar": [14, 49, 51, 114, 119, 120, 122, 126, 138, 144, 169, 178], "_apply_transform": 14, "_call": 14, "inv": 14, "_inv_apply_transform": 14, "eventu": [14, 130, 137], "out_keys_inv": 14, "subset": [14, 21, 23, 58, 59, 60, 85, 87, 97, 107, 117, 136, 156, 158, 172, 174, 175, 179, 193, 194, 255], "unitari": 14, "raw": [14, 23, 44, 49, 61, 68, 82, 104, 113, 118, 119, 174, 175, 179, 263], "sintransform": 14, "ob": [14, 147, 164, 202], "tensordict_reset": 14, "transform_observation_spec": 14, "costransform": 14, "t_sin": 14, "t_co": 14, "del_kei": 14, "cat_transform": 14, "met": [14, 123], "mdp": 14, "gather": [14, 49, 55, 79, 123, 124, 134, 136, 137, 144, 160, 161, 198, 207], "simple_rollout": 14, "_data": [14, 73], "keep_oth": 14, "unexplor": 14, "abil": [14, 23, 60, 61, 112, 124, 125, 136, 167, 170, 173, 193, 208], "recreat": [14, 43, 176, 210], "auto_reset": 14, "lazylinear": [14, 160], "clip": [14, 20, 49, 73, 117, 158, 160, 161, 167], "20_000": [14, 137], "cosineannealinglr": [14, 110, 160], "init_td": 14, "traj_return": 14, "last_reward": [14, 162, 164], "is_ipython": [14, 161], "inlin": [14, 25, 52, 60, 89, 92, 143, 145, 161, 191, 198, 205, 266, 269], "get_backend": [14, 161], "ipython": [14, 18, 52, 104, 109, 149, 161], "figsiz": [14, 34, 52, 73, 158, 160, 170, 179], "gcf": [14, 161], "clear_output": [14, 161], "scratch": [14, 43, 49, 53, 97, 98, 112, 114, 117, 118, 127, 128, 166, 255], "advanc": [15, 17, 19, 23, 43, 58, 59, 87, 100, 105, 107, 108, 120, 121, 134, 172, 177, 191, 194, 198, 201, 203, 207, 222, 223, 236, 266], "verif": [15, 163], "rapid": [15, 194], "manufactur": [15, 60], "imposs": [15, 98, 153, 207], "began": 15, "enhanc": [15, 115, 140, 167, 201, 230, 265], "rapidli": 15, "wrapper_custom_tensor_add": 15, "torch_fn": 15, "custom_cpu_fallback": 15, "operatorhandl": 15, "hint": [15, 18, 97, 98, 102, 108, 125, 136, 162, 169], "cpu_fallback": 15, "cppfunction": 15, "makefromboxedfunct": 15, "cumtomselufunct": 15, "selu": [15, 110], "wrapper_autogradcumstom__selu": 15, "wrapper_autogradcustom__selu": 15, "autocastprivateuse1": 15, "autocast": [15, 17, 201, 203, 209, 222, 249, 256], "kernel_privateuseon": 15, "makefallthrough": 15, "backendmodul": 15, "_register_device_modul": 15, "backend_nam": 15, "get_amp_supported_dtyp": 15, "is_autocast_en": 15, "get_autocast_dtyp": 15, "set_autocast_dtyp": 15, "set_autocast_en": 15, "generatorimpl": 15, "builder": 15, "register_generator_privateuse1": 15, "customgeneratorimpl": 15, "make_custom_gener": 15, "deviceindex": 15, "device_index": 15, "make_gener": 15, "make_cumstom_gener": 15, "event": [15, 22, 82, 109, 113, 122, 123, 162, 173, 178], "deviceguard": 15, "deviceguardimplinterfac": 15, "c10_register_guard_impl": 15, "customguardimpl": 15, "backend_meta_": 15, "extrameta": 15, "backendmeta": 15, "custombackendmetadata": 15, "unordered_map": 15, "tensorbackendmetaregistri": 15, "for_seri": 15, "for_deseri": 15, "timer": [15, 17, 52, 118, 139, 146, 155, 165, 166, 185, 189, 203, 212, 253], "ascend": [15, 52, 83], "npu": [15, 189, 225], "meet": [15, 50, 52, 204], "usabl": [15, 112, 137, 143], "compli": [15, 60], "habit": [15, 268], "torch_npu": 15, "exclus": [15, 23, 157], "strongli": [15, 137, 154, 265], "rename_privateuse1_backend": 15, "register_privateuse1_backend": 15, "unsupported_dtyp": 15, "quint8": [15, 180], "generate_methods_for_privateuse1_backend": 15, "for_tensor": 15, "for_modul": 15, "for_storag": 15, "is_npu": 15, "yi": [16, 174, 175], "wang": [16, 24, 108, 145, 147], "paradigm": [16, 17, 61, 97, 120, 134, 135, 163, 164, 203], "dens": [16, 17, 147, 191, 195, 203], "fc": [16, 43, 45, 115, 117, 135, 147, 150, 151, 158, 204], "hybrid": [16, 84, 110], "pipedream": 16, "embeddingbag": [16, 18, 115], "respond": [16, 147, 163], "amongst": [16, 192], "themselv": [16, 193, 199], "remotemodul": 16, "kick": [16, 43, 113, 153, 162, 163, 164], "remot": [16, 61, 120, 126, 135, 162, 163, 164, 169, 214], "hybridmodel": 16, "allreduc": [16, 61, 82, 123, 124, 134, 156, 249], "firstli": [16, 108, 145, 161], "tcp": [16, 55, 132, 133, 136, 214], "_run_train": [16, 164], "rpc_async": [16, 135, 162, 164], "shut": [16, 163], "29501": 16, "ps": [16, 61, 162, 163, 164, 197], "remote_emb_modul": 16, "num_embed": [16, 18, 110, 176], "embedding_dim": [16, 18, 93, 98, 102, 103, 110, 176], "fut": [16, 21, 162, 164], "trainer_rank": 16, "trainer_nam": 16, "gloo": [16, 134, 136, 156, 169, 176, 261], "offset": [16, 17, 115, 203, 257], "emb_lookup": 16, "distributedoptim": [16, 135, 163, 164, 214, 218], "remote_paramet": 16, "cannnot": 16, "aggreg": [16, 43, 109, 147, 172, 192, 240], "model_parameter_rref": 16, "get_next_batch": [16, 162, 164], "num_indic": 16, "longtensor": [16, 49, 60, 80, 99, 103, 128, 135, 150, 162, 164, 166], "offsets_tensor": 16, "dist_autograd": [16, 135, 163, 164], "context_id": [16, 135, 163, 164], "tun": 16, "jess": [17, 203], "cai": [17, 203], "seek": [17, 85, 203], "grain": [17, 34, 61, 122, 136, 169, 203], "2n": [17, 203], "degrad": [17, 73, 203, 230], "sparsifi": [17, 121, 157, 203], "answer": [17, 49, 75, 99, 103, 136, 138, 144, 153, 166, 203, 255], "tune": [17, 19, 82, 97, 113, 120, 121, 123, 126, 158, 159, 177, 185, 186, 203, 223], "recov": [17, 61, 122, 123, 134, 148, 200, 203], "nearli": [17, 170, 203], "f1": [17, 138, 173, 186, 203], "vs": [17, 18, 52, 78, 94, 122, 155, 169, 170, 177, 178, 185, 193, 196, 198, 199, 202, 203, 221], "3x": [17, 64, 111, 178, 203, 225], "beginn": [17, 35, 45, 46, 77, 84, 91, 100, 106, 120, 203, 205, 206, 236], "to_sparse_semi_structur": [17, 203], "sparsesemistructuredtensor": [17, 203], "_force_cutlass": [17, 203], "tile": [17, 172, 203, 209], "3072": [17, 97, 148, 203], "2560": [17, 203], "10240": [17, 203], "inference_mod": [17, 130, 172, 203], "dense_output": [17, 203], "dense_t": [17, 203], "stmt": [17, 139, 146, 150, 155, 165, 185, 203, 212, 233, 248], "blocked_autorang": [17, 165, 203, 212, 233], "median": [17, 173, 185, 203, 233, 248], "1e3": [17, 185, 203, 236], "sparse_output": [17, 203], "sparse_t": [17, 203], "a100": [17, 122, 125, 155, 173, 176, 185, 203], "80gb": [17, 203], "870m": [17, 203], "630m": [17, 203], "382x": [17, 203], "allclos": [17, 125, 139, 142, 145, 146, 151, 154, 155, 165, 173, 203, 207, 233], "motiv": [17, 73, 145, 163, 180, 187, 192, 193, 195, 203], "affect": [17, 97, 113, 131, 150, 177, 203], "swap": [17, 51, 99, 110, 124, 138, 160, 183, 185, 186, 195, 197, 200, 203], "compress": [17, 90, 157, 191, 194, 203, 211], "drawback": [17, 103, 203], "2020": [17, 203], "amper": [17, 122, 151, 155, 203, 232], "cutlass": [17, 203], "cusparselt": [17, 203], "milder": [17, 203], "account": [17, 50, 137, 153, 166, 170, 186, 203], "retrain": [17, 203, 229], "sweet": [17, 203], "spot": [17, 127, 203], "2x": [17, 85, 121, 131, 153, 177, 178, 182, 203], "theoret": [17, 52, 191, 203], "granular": [17, 122, 145, 178, 186, 203, 240, 249], "fp16": [17, 122, 148, 185, 190, 203], "resnet": [17, 43, 44, 79, 125, 135, 150, 158, 169, 183, 197, 199, 200, 201, 203, 225, 230, 249], "imagenet": [17, 44, 51, 79, 117, 119, 140, 158, 159, 183, 199, 200, 203, 215, 231], "76": [17, 148, 164, 203, 233], "resnext": [17, 203], "101_32x8d": [17, 203], "xception": [17, 203], "ssd": [17, 203, 249], "rn50": [17, 203], "coco2017": [17, 203], "bbap": [17, 203], "maskrcnn": [17, 203], "fairseq": [17, 203], "en": [17, 21, 33, 49, 60, 99, 113, 118, 142, 154, 166, 172, 203, 263], "de": [17, 18, 22, 49, 60, 113, 116, 118, 166, 203], "wmt14": [17, 203], "bleu": [17, 203], "squad": [17, 145, 203], "workflow": [17, 19, 58, 59, 82, 86, 87, 123, 174, 194, 198, 202, 203], "perspect": [17, 23, 101, 160, 178, 203], "subproblem": [17, 203], "handoff": [17, 203], "anticip": [17, 203], "area": [17, 113, 170, 179, 185, 194, 203, 267], "colab": [17, 18, 24, 25, 42, 48, 75, 94, 104, 115, 119, 121, 137, 138, 146, 158, 160, 161, 172, 176], "panda": [17, 34, 51, 73, 119, 172], "wandb_dis": 17, "ao": [17, 19, 180, 182, 183, 185, 199, 200, 201, 203], "weightnormsparsifi": [17, 203], "hug": [17, 75, 145], "face": [17, 44, 51, 52, 60, 73, 75, 79, 113, 145, 199], "preprocess_validation_funct": [17, 203], "strip": [17, 49, 75, 127, 128, 166, 203], "max_length": [17, 49, 60, 75, 128, 138, 166, 186, 203, 255], "384": [17, 189, 203], "only_second": [17, 203], "return_overflowing_token": [17, 203], "return_offsets_map": [17, 203], "sample_map": [17, 203], "pop": [17, 22, 98, 138, 186, 203], "overflow_to_sample_map": [17, 203], "example_id": [17, 203], "input_id": [17, 75, 122, 124, 138, 145, 166, 186, 203], "sample_idx": [17, 34, 203], "sequence_id": [17, 203], "offset_map": [17, 203], "preprocess_train_funct": [17, 203], "start_posit": [17, 203], "end_posit": [17, 203], "start_char": [17, 203], "answer_start": [17, 203], "end_char": [17, 203], "idx": [17, 19, 34, 51, 75, 98, 102, 103, 109, 115, 158, 159, 166, 170, 179, 203, 240], "context_start": [17, 203], "context_end": [17, 203], "compute_metr": [17, 138, 186, 203], "start_logit": [17, 203], "end_logit": [17, 203], "n_best": [17, 203], "max_answer_length": [17, 203], "example_to_featur": [17, 203], "predicted_answ": [17, 203], "feature_index": [17, 203], "start_index": [17, 203], "argsort": [17, 203], "tolist": [17, 51, 113, 179, 203], "end_index": [17, 203], "logit_scor": [17, 203], "score": [17, 49, 60, 98, 102, 103, 109, 138, 149, 165, 166, 179, 186, 203], "best_answ": [17, 203], "prediction_text": [17, 203], "theoretical_answ": [17, 203], "ex": [17, 73, 188, 203, 266, 268], "measure_execution_tim": [17, 203], "dataset_for_model": [17, 203], "remove_column": [17, 203], "set_format": [17, 203], "batch_size_to_time_sec": [17, 203], "column_nam": [17, 203], "baseline_predict": 17, "p50": [17, 203], "model_c": [17, 185], "fullgraph": [17, 129, 165, 173, 212, 213, 257], "_compil": 17, "new_predict": 17, "model_nam": [17, 49, 60, 122, 185, 201, 203, 222], "autotoken": [17, 122, 203], "from_pretrain": [17, 75, 122, 138, 145, 186, 203, 222], "automodelforquestionansw": [17, 203], "val": [17, 19, 22, 117, 118, 122, 149, 158, 159, 183, 199, 200, 203], "squad_dataset": [17, 203], "load_dataset": [17, 75, 122, 203], "tokenized_squad_dataset": [17, 203], "data_col": [17, 203], "datacollatorwithpad": [17, 203], "segment": [17, 121, 185, 203, 206, 224], "wikipedia": [17, 33, 142, 154, 203], "articl": [17, 113, 116, 203], "training_arg": [17, 203], "trainingargu": [17, 203], "num_train_epoch": [17, 138, 203], "lr_scheduler_typ": [17, 203], "per_device_train_batch_s": [17, 203], "per_device_eval_batch_s": [17, 203], "logging_step": 17, "runner": 17, "max_step": [17, 75], "report_to": 17, "train_dataset": [17, 55, 97, 115, 122, 203, 222, 256], "eval_dataset": [17, 138, 186, 203], "fair": [17, 97, 103, 113, 195, 196, 203], "fp16_baselin": [17, 203], "fp16_time": [17, 203], "cuda_fp16": [17, 203], "pd": [17, 34, 51, 119, 172], "df": [17, 83, 119, 126], "datafram": [17, 82, 119, 126, 172], "log_histori": 17, "lowest": [17, 61, 123, 157, 203], "satisfi": [17, 126, 174, 175, 197, 203, 204], "sparsity_level": [17, 203], "sparse_block_shap": [17, 203], "zeros_per_block": [17, 203], "sparse_config": [17, 203], "tensor_fqn": [17, 203], "fqn": [17, 203, 216], "named_modul": [17, 143, 157, 203, 241], "anytim": [17, 203], "pruner": [17, 203], "update_mask": [17, 203], "shot": [17, 113, 162, 203], "squash_mask": [17, 203], "set_printopt": [17, 203, 233], "edgeitem": [17, 203], "sparse_loss": 17, "quickstart": [17, 35, 203, 226], "metrics_spars": [17, 203], "sparse_perf": [17, 203], "perf": [17, 178, 190, 203], "28x": [17, 203], "bs": [17, 104, 145, 203], "amen": [17, 203], "spent": [17, 82, 113, 165, 169, 177, 178, 203], "delta": [17, 125, 145, 146, 147, 155, 161, 203, 233, 248], "exact": [17, 97, 112, 130, 140, 165, 174, 175, 186, 199, 200, 203], "53": [17, 148, 203, 221, 240, 266], "93": [17, 109, 164, 203, 233], "15": [17, 23, 24, 45, 52, 58, 59, 73, 90, 92, 93, 116, 117, 147, 158, 170, 172, 179, 189, 203, 205, 221, 233, 248, 265, 269], "54": [17, 148, 150, 178, 233], "71x": [17, 178], "74": [17, 119, 164, 186, 233], "23x": 17, "71": [17, 19, 21, 51, 145, 164], "59": [17, 115, 159, 172, 233, 240], "22x": 17, "286": [17, 148, 172, 203], "65": [17, 51, 164, 179, 220, 233], "247": [17, 164], "63": [17, 230, 240], "14x": 17, "02x": 17, "ye": [17, 50, 78, 99, 138, 153, 189], "18x": [17, 203], "13x": 17, "159": 17, "142": 17, "12x": 17, "semi_structured_spars": 17, "embeddingplann": [18, 121], "conda": [18, 23, 82, 90, 94, 136, 145, 176, 185, 188, 189, 190, 198, 223, 225, 231, 247, 248], "cudatoolkit": [18, 176], "sudo": [18, 169, 208], "rm": [18, 214, 225], "miniconda3": [18, 22, 248], "py37_4": 18, "sh": [18, 134, 190, 196, 206, 208, 220, 224, 225, 228], "anaconda": [18, 82, 136], "chmod": 18, "fbgemm": [18, 19, 119, 176, 180, 182, 183, 230], "cp": [18, 208, 210, 215, 260], "restart": [18, 23, 58, 59, 133, 161], "newli": [18, 49, 117, 136], "python37": 18, "dynload": 18, "enviro": 18, "spmd": [18, 124, 216], "mimic": [18, 19, 97, 150, 158, 185, 186, 191], "launcher": [18, 210], "embeddingbagcollect": 18, "bag": [18, 34, 38, 94, 96, 115, 170, 176], "ebc": [18, 176], "parameterconstraint": 18, "placement": [18, 177], "intra": [18, 21, 122, 124, 138], "interconnect": [18, 76, 177], "nvlink": [18, 124, 214], "data_parallel": [18, 79], "meta": [18, 49, 124, 126, 139, 155, 160, 174, 175, 176, 177, 178, 202, 204, 241, 246, 253, 257, 269], "planner": 18, "embedding_typ": 18, "embeddingcomputekernel": 18, "shardingtyp": 18, "large_table_cnt": 18, "small_table_cnt": 18, "large_t": 18, "embeddingbagconfig": [18, 176], "large_table_": 18, "feature_nam": [18, 176], "large_table_feature_": 18, "poolingtyp": [18, 176], "small_tabl": 18, "small_table_": 18, "small_table_feature_": 18, "gen_constraint": 18, "sharding_typ": 18, "table_wis": 18, "large_table_constraint": 18, "small_table_constraint": 18, "mimick": 18, "single_rank_execut": 18, "embeddingbagcollectionshard": 18, "model_parallel": 18, "embeddingshardingplann": 18, "topolog": [18, 138, 186, 222], "moduleshard": 18, "shardingenv": 18, "init_distributed_single_host": 18, "pyre": 18, "fixm": 18, "set_devic": [18, 53, 55, 122, 123, 187, 216, 217], "compute_devic": 18, "pg": 18, "sharder": [18, 176], "shardingplan": 18, "collective_plan": 18, "sharded_model": 18, "from_process_group": 18, "spmd_sharing_simul": 18, "get_context": 18, "exitcod": 18, "medium": [18, 122, 179, 265], "large_table_0": 18, "parametershard": 18, "compute_kernel": 18, "batched_fus": 18, "sharding_spec": 18, "enumerableshardingspec": 18, "shardmetadata": 18, "shard_offset": 18, "shard_siz": 18, "large_table_1": 18, "small_table_0": 18, "small_table_1": 18, "finer": [18, 34, 61, 178, 240], "halv": [18, 109], "row_wis": 18, "imbal": [18, 177], "vertic": [18, 21, 263, 265], "column_wis": 18, "unfortu": 18, "batched_dens": 18, "raghuraman": [19, 138, 158], "krishnamoorthi": [19, 138, 158], "jerri": [19, 182, 183, 184, 199, 201, 202], "zhang": [19, 182, 183, 184, 199, 201, 202, 216, 217], "decreas": [19, 49, 73, 83, 97, 103, 124, 147, 177, 178, 194, 225, 255], "mobilenetv2": [19, 190, 198, 200, 225], "dataload": [19, 33, 35, 37, 38, 44, 45, 52, 55, 73, 75, 87, 92, 94, 96, 97, 113, 115, 117, 118, 122, 123, 130, 136, 138, 149, 158, 163, 166, 167, 169, 170, 172, 179, 183, 186, 199, 200, 222, 223, 237, 238, 249, 252, 256], "filterwarn": [19, 51, 149, 160, 172, 183, 191, 192, 193, 194, 199, 200], "deprecationwarn": [19, 183, 199, 200], "seed": [19, 25, 52, 73, 97, 122, 123, 136, 138, 162, 164, 183, 186, 195, 199, 200, 233], "191009": [19, 25, 183, 199, 200], "floatfunct": 19, "quantstub": [19, 183, 220, 225, 230], "dequantstub": [19, 183, 220, 225, 230], "relu6": [19, 110], "_make_divis": 19, "divisor": 19, "min_valu": 19, "tf": [19, 94], "divis": [19, 166, 195], "tensorflow": [19, 94, 98, 100, 111], "blob": [19, 23, 33, 108, 123, 143, 169, 180, 183, 208, 218, 263], "slim": [19, 111], "mobilenet": [19, 58, 59, 121, 159, 196], "new_v": 19, "round": [19, 108, 115, 122, 147, 162], "convbnrelu": 19, "in_plan": [19, 135], "out_plan": [19, 135], "kernel_s": [19, 97, 104, 123, 130, 135, 147, 154, 167, 180, 220, 223], "momentum": [19, 43, 44, 65, 69, 87, 92, 94, 96, 104, 111, 112, 117, 130, 136, 158, 162, 169, 170, 179, 180, 200, 218, 220, 222, 223, 243, 244, 245, 251, 252, 256], "invertedresidu": 19, "oup": 19, "expand_ratio": 19, "hidden_dim": [19, 93, 98, 102], "use_res_connect": 19, "pw": 19, "dw": 19, "skip_add": 19, "num_class": [19, 24, 42, 75, 97, 115, 135, 149, 150, 162, 170, 172, 179], "width_mult": 19, "inverted_residual_set": 19, "round_nearest": 19, "v2": [19, 58, 59, 95, 97, 114, 137, 145, 159, 179, 188, 194, 209], "input_channel": 19, "last_channel": 19, "1280": [19, 179, 185], "160": [19, 138, 164, 172, 220, 233, 240], "320": [19, 78, 167, 223], "valueerror": [19, 49, 60, 147, 192, 218], "invert": [19, 121, 160, 192], "residu": [19, 124], "output_channel": 19, "quant": [19, 158, 180, 186, 196, 199, 202, 220, 225, 230], "dequant": [19, 158, 180, 183, 185, 186, 196, 197, 199, 201, 202, 220, 223, 225, 230], "init": [19, 20, 22, 23, 52, 59, 99, 118, 130, 135, 154, 160, 196, 204, 220, 224, 227, 260], "kaiming_normal_": [19, 135], "fan_out": [19, 135], "zeros_": 19, "ones_": 19, "normal_": [19, 52], "bn": [19, 130, 143, 144, 158, 180, 182, 200, 220, 225], "fuse_model": [19, 158, 196, 197], "is_qat": [19, 180, 200, 201], "fuse_modul": [19, 158], "fuse_modules_qat": 19, "averagemet": [19, 183, 199, 200], "fmt": [19, 150, 183, 199, 200, 211], "avg": [19, 37, 38, 127, 183, 199, 200, 221, 240], "__str__": [19, 183, 199, 200], "fmtstr": [19, 183, 199, 200], "__dict__": [19, 49, 60, 183, 199, 200, 201, 246], "topk": [19, 49, 90, 127, 128, 166, 183, 199, 200, 223, 259], "maxk": [19, 58, 59, 183, 199, 200], "pred": [19, 37, 38, 104, 117, 123, 124, 130, 138, 149, 158, 163, 167, 170, 173, 174, 175, 179, 183, 186, 199, 200, 223], "correct_k": [19, 183, 199, 200], "mul_": [19, 95, 183, 199, 200, 218], "neval_batch": [19, 200], "top1": [19, 183, 199, 200, 223], "acc": [19, 73, 117, 149, 158, 172, 183, 199, 200], "top5": [19, 183, 199, 200, 259], "cnt": [19, 73, 183, 199, 200], "acc1": [19, 183, 199, 200], "acc5": [19, 183, 199, 200], "load_model": [19, 183, 199, 200], "data_path": [19, 87, 104, 183, 199, 200], "prepare_data_load": [19, 183, 199, 200], "randomresizedcrop": [19, 117, 183, 199, 200], "randomhorizontalflip": [19, 51, 117, 158, 179, 183, 199, 200], "dataset_test": [19, 179, 183, 199, 200], "centercrop": [19, 52, 90, 117, 119, 140, 158, 183, 199, 200, 215, 231], "train_sampl": [19, 166, 183, 199, 200], "test_sampl": [19, 183, 199, 200], "sequentialsampl": [19, 138, 183, 186, 199, 200], "train_batch_s": [19, 183, 199, 200], "data_loader_test": [19, 179, 183, 199, 200, 201], "saved_model_dir": [19, 183, 199, 200], "float_model_fil": [19, 183, 199, 200], "mobilenet_pretrained_float": 19, "scripted_float_model_fil": [19, 183, 199], "mobilenet_quantization_script": 19, "scripted_quantized_model_fil": 19, "mobilenet_quantization_scripted_quant": 19, "float_model": [19, 182, 183, 186, 197, 199, 200, 201], "fusion": [19, 82, 144, 145, 178, 183, 185, 200, 220, 222, 255, 258], "baselin": [19, 21, 24, 90, 97, 172, 185, 199, 203, 231, 233, 248], "un": [19, 166], "num_eval_batch": [19, 200], "sophist": [19, 160], "num_calibration_batch": 19, "mymodel": [19, 105, 180], "estim": [19, 47, 51, 52, 126, 160, 161, 166, 185], "qconfig": [19, 119, 158, 180, 182, 183, 184, 186, 197, 199, 202, 220, 225, 230], "default_qconfig": [19, 183, 197], "calibr": [19, 180, 182, 184, 200, 201, 225], "safe": [19, 23, 65, 97, 111, 143, 189, 211], "4x": [19, 122, 178, 182, 183], "exercis": [19, 44, 136, 158, 177], "x86": [19, 119, 180, 182, 183, 196, 198, 206, 224, 230], "basi": [19, 122, 138, 151, 265], "histogram": [19, 197, 199], "per_channel_quantized_model": 19, "get_default_qconfig": [19, 119, 182, 183, 220, 225, 230], "67": [19, 109, 145, 178, 180, 186], "wors": [19, 119, 211], "qat": [19, 158, 180, 201], "train_one_epoch": [19, 96, 179, 200], "ntrain_batch": [19, 200], "avgloss": [19, 200], "5f": [19, 200, 236], "global_avg": [19, 200], "qat_model": 19, "get_default_qat_qconfig": [19, 230], "prepare_qat": [19, 158, 230], "toward": [19, 49, 60, 97, 128, 161, 183], "freez": [19, 43, 117, 158, 178, 198, 200, 201, 222, 249], "num_train_batch": [19, 200], "nepoch": [19, 200], "disable_observ": [19, 200], "intrins": [19, 180], "freeze_bn_stat": 19, "confirm": [19, 20, 58, 59, 87, 122, 146, 162], "allud": [19, 73], "run_benchmark": 19, "img_load": 19, "num_batch": [19, 37, 38, 135, 136, 150, 232], "num_imag": [19, 117], "0f": [19, 117, 130, 158, 167, 223], "dynamo_export": [20, 105, 107, 108], "newest": [20, 105], "torchdynamo": [20, 105, 107, 121, 174, 175, 188, 201, 202], "technolog": [20, 61, 97, 105, 121, 136, 253], "torchscript": [20, 58, 59, 105, 119, 121, 140, 143, 148, 178, 186, 189, 190, 196, 198, 211, 225, 226, 227, 230, 240, 249, 253], "prove": [20, 103, 177], "onnxruntim": [20, 105, 107, 108], "model_zoo": 20, "wide": [20, 61, 124, 127, 128, 136, 138, 150, 156, 166, 185, 210, 269], "superresolut": 20, "shi": 20, "et": [20, 24, 49, 52, 60, 73, 136, 157, 166, 268], "al": [20, 24, 49, 52, 60, 73, 157, 166], "upscal": 20, "ycbcr": 20, "superresolutionnet": 20, "upscale_factor": 20, "pixel_shuffl": 20, "pixelshuffl": 20, "_initialize_weight": 20, "orthogonal_": [20, 154, 204], "calculate_gain": 20, "torch_model": [20, 105], "ordinarili": 20, "batchnorm": [20, 52, 55, 112, 143, 148, 183, 196, 199, 200, 201, 249, 251, 255], "model_url": 20, "s3": [20, 174, 182], "amazonaw": [20, 182], "superres_epoch100": 20, "44c6958e": 20, "load_url": 20, "ax": [20, 51, 99, 102, 117, 121, 127, 150, 158, 166, 170], "dynamic_ax": 20, "torch_out": 20, "super_resolut": 20, "export_param": 20, "opset_vers": 20, "do_constant_fold": 20, "fold": [20, 143, 178, 183, 199, 201, 255, 266], "input_nam": [20, 174], "output_nam": [20, 128], "bundl": [20, 59, 196, 206, 210, 224], "ml": [20, 73, 95, 97, 120, 121, 126, 198, 221, 225, 260], "proto": [20, 110], "checker": [20, 105, 110], "check_model": [20, 105, 110], "onnx_model": [20, 105], "ort_sess": [20, 105, 108], "inferencesess": [20, 105, 108], "cpuexecutionprovid": [20, 105, 108], "to_numpi": [20, 105, 108], "ort_input": 20, "get_input": [20, 105, 108], "ort_out": 20, "assert_allclos": [20, 143], "rtol": [20, 139, 155], "03": [20, 92, 118, 119, 163, 164, 172, 185, 221, 248, 266], "contact": [20, 122, 207, 266], "famou": [20, 24, 73], "224x224": [20, 159, 215], "cb": 20, "cr": 20, "grayscal": [20, 137, 147], "blue": [20, 43, 58, 59, 90, 122, 124, 179, 265], "red": [20, 58, 59, 60, 124, 150, 170, 179, 197], "chroma": 20, "sensit": [20, 97, 132, 142, 183], "_static": [20, 104, 121, 140], "img_ycbcr": 20, "img_i": 20, "img_cb": 20, "img_cr": 20, "to_tensor": [20, 42, 192, 193], "unsqueeze_": [20, 95, 128, 215], "img_out_i": 20, "fromarrai": [20, 172], "final_img": 20, "bicub": 20, "rgb": [20, 52, 58, 59, 75, 92, 97, 140, 147, 159, 172, 179, 215, 231], "mobil": [20, 58, 59, 97, 119, 180, 189, 190, 196, 198, 208, 210, 211, 220, 230, 237, 253], "cat_superres_with_ort": 20, "deploi": [20, 54, 58, 59, 105, 121, 126, 133, 140, 157, 159, 211, 255, 260], "cloud": [20, 54, 105], "inferenc": 20, "azur": [20, 169], "servic": [20, 49, 126, 140, 159, 210, 222, 265], "super_resolution_with_onnxruntim": 20, "inter": [21, 121, 124, 133, 151], "workload": [21, 23, 61, 97, 109, 120, 121, 133, 134, 169, 177, 178, 183, 199, 222], "fragment": [21, 178], "fn": [21, 85, 129, 136, 142, 145, 148, 173, 187, 212, 213, 246, 248, 254, 258], "callabl": [21, 51, 169, 173, 174, 175, 183, 211], "x_normal": 21, "x_parallel": 21, "async": [21, 162, 164], "sort": [21, 25, 49, 98, 102, 109, 116, 138, 144, 159, 179, 186, 211], "parlanc": 21, "revers": [21, 43, 49, 60, 98, 142, 144, 151, 154, 159, 166], "bidirectionalrecurrentlstm": 21, "cell_f": 21, "input_s": [21, 45, 49, 60, 78, 127, 128, 137, 166], "hidden_s": [21, 49, 60, 78, 89, 127, 128, 137, 149, 166, 182, 255], "cell_b": 21, "output_f": 21, "x_rev": 21, "output_b": 21, "output_b_rev": 21, "lstmensembl": 21, "n_model": 21, "modulelist": [21, 154, 239, 254], "demo": [21, 25, 45, 58, 59, 113, 119, 121, 140, 156, 169, 206, 210, 224, 230, 265], "took": [21, 119, 136, 144, 153, 165, 173, 177, 178, 189], "future_f": 21, "stuff": [21, 265], "worth": [21, 23, 52, 103, 113, 153, 163], "profil": [21, 42, 82, 89, 119, 121, 123, 165, 177, 197, 221, 233, 237, 249, 253], "chrome": [21, 89, 165, 169, 240], "prof": [21, 42, 109, 165, 169, 221, 240], "export_chrome_trac": [21, 145, 165, 240], "json": [21, 49, 90, 109, 127, 140, 145, 165, 169, 215, 240], "navig": [21, 61, 169, 170, 206, 263], "button": [21, 50, 52, 58, 59, 105, 169, 190, 227, 263, 265], "timelin": [21, 153, 169, 178], "horizont": 21, "opportun": [21, 85, 105, 137, 150], "breviti": [21, 23, 191], "intro": [21, 35, 36, 55, 99, 100, 120, 137, 140, 160, 170, 213], "tracer": [21, 206], "member": [22, 65, 67, 79, 111, 158, 198, 225], "portion": [22, 82, 153, 157, 265], "custom_class": 22, "mystackclass": 22, "customclasshold": 22, "stack_": 22, "push": [22, 52, 73, 97, 146, 161, 185, 207, 220, 225], "pop_back": 22, "intrusive_ptr": [22, 156, 233, 248], "make_intrus": [22, 156], "elem": [22, 246], "smart": 22, "oppos": [22, 49, 52, 117, 136, 146, 151, 163], "class_": 22, "my_class": 22, "contructor": 22, "yourclass": 22, "ref": [22, 40, 199, 265], "unari": 22, "add_librari": [22, 23, 210], "cmake_cxx_standard": [22, 210], "custom_class_project": 22, "rh": 22, "devtoolset": 22, "torchbind_tutori": 22, "libcustom_class": 22, "load_librari": [22, 23], "loaded_librari": 22, "bar": [22, 49, 82, 143, 150, 154, 163, 172, 173, 183, 199, 204, 263, 265], "manipulate_inst": 22, "s2": [22, 47, 92, 174, 194], "do_stack": 22, "hi": [22, 103, 113, 115, 147, 195, 265, 266], "mom": 22, "wow": 22, "scripted_foo": 22, "filesystem": [22, 136], "treatment": [22, 113, 172, 193, 194], "cpp_inference_exampl": 22, "foobarbaz": 22, "tostr": 22, "add_subdirectori": [22, 23], "drill": 22, "momfoobarbaz": 22, "incred": 22, "make_custom_class": 22, "tocustomclass": 22, "iscustomclass": 22, "export_attr": 22, "__torch__": [22, 205], "def_pickl": 22, "pushivalueimpl": 22, "pickler": 22, "__getstate__": 22, "__setstate__": 22, "pickl": [22, 87, 104, 112, 153, 225, 233, 244, 248], "salient": 22, "wherea": [22, 150, 170, 172, 185, 192, 193], "confus": [22, 23, 98, 99, 127, 142, 172, 185, 192, 193, 194, 199, 225], "trycustomop": 22, "relax": [22, 154, 174, 175], "standalon": [22, 53, 124, 265], "blend": [22, 23], "smoothli": [22, 23], "subsequ": [23, 73, 97, 112, 118, 123, 137, 142, 162, 164, 166, 173, 178, 185, 201], "resort": 23, "opencv": [23, 44, 210], "vision": [23, 24, 34, 38, 44, 58, 59, 117, 119, 121, 153, 179, 189, 196, 198, 206, 224, 225, 235], "mat": [23, 210], "warpperspect": [23, 210], "warp_perspect": [23, 210], "warp": [23, 210], "image_mat": [23, 210], "cv": [23, 24, 126, 195, 210], "col": [23, 34, 158, 210], "cv_32fc1": [23, 210], "warp_mat": [23, 210], "output_mat": [23, 210], "dsize": [23, 210], "output_tensor": 23, "from_blob": [23, 59, 190, 210], "ptr": [23, 210], "short": [23, 25, 49, 60, 82, 98, 100, 115, 120, 128, 136, 154, 160, 166, 167, 199, 200, 201, 265, 266], "opencv2": [23, 210], "hpp": [23, 156, 210], "alongsid": [23, 142, 170, 172], "goodi": 23, "hardcod": [23, 130, 149, 202], "strikingli": 23, "opaqu": 23, "flat": 23, "scope": [23, 60, 101, 109, 125, 174, 175, 178], "dealloc": [23, 169, 178], "invalid": [23, 135, 192, 193, 194, 218], "quot": [23, 117, 266], "metaprogram": 23, "experiment": [23, 60, 123, 126, 143, 164, 174, 175, 180, 187, 223, 249], "target_compile_featur": 23, "cxx_std_14": 23, "opencv_cor": 23, "opencv_imgproc": 23, "libwarp_perspect": 23, "sensat": 23, "0x7f618fc6fa50": 23, "3218": 23, "4611": 23, "4636": 23, "3746": 23, "0978": 23, "5005": 23, "3245": 23, "0169": 23, "4458": 23, "1862": 23, "1692": 23, "noteworthi": 23, "frozen": [23, 43, 147, 158, 186, 205], "prim": [23, 186], "revel": 23, "restrict": [23, 25, 49, 85, 136, 169, 173, 175, 180, 206, 207], "script_method": [23, 85], "tensortobool": 23, "block0": 23, "block1": [23, 79], "21": [23, 58, 59, 109, 115, 159, 210, 221, 233, 240, 248], "sent": [23, 99, 102, 136, 162], "wire": 23, "dlopen": 23, "example_app": 23, "cxx_range_for": 23, "errorreport": 23, "mayb": [23, 101, 103, 139, 198, 265], "subdirectori": [23, 52, 179], "prefix": [23, 113, 122, 125, 137, 138, 169, 185, 186, 248, 261, 265], "inconveni": [23, 191], "altogeth": [23, 151, 193, 263], "nb": [23, 89, 95, 207], "impress": [23, 115, 145], "opencv_photo": 23, "happi": [23, 143, 144], "4125": 23, "8262": 23, "5345": 23, "6111": [23, 233], "3997": [23, 75], "4683": 23, "5969": 23, "0850": 23, "0698": 23, "4597": 23, "0926": 23, "5727": 23, "9319": 23, "4834": 23, "1747": 23, "0162": 23, "9521": 23, "6269": 23, "lastli": [23, 87, 121, 153, 224], "driver": [23, 169], "infrastructur": 23, "vener": 23, "beforehand": [23, 151, 202, 230], "is_python_modul": [23, 210], "extra_ldflag": [23, 210], "lopencv_cor": [23, 210], "lopencv_imgproc": [23, 210], "approxim": [23, 49, 108, 122, 130, 144, 147, 151, 157, 161, 177, 186], "0x7f3e0f840b10": 23, "load_inlin": [23, 210, 233], "op_sourc": [23, 210], "cpp_sourc": [23, 210, 233], "rout": [23, 60, 140, 145, 215], "quirki": 23, "with_opt": 23, "no_python_abi_suffix": 23, "bottom": [23, 98, 169, 172, 263], "suffix": [23, 48, 82, 145], "tag": [23, 51, 100, 103, 116, 174, 175, 210, 247, 265], "0x7ff51c5b7bd0": 23, "hao": 24, "chen": [24, 174, 175, 206, 224], "unifi": [24, 95, 121, 130, 197], "ssl": 24, "modular": [24, 110, 112], "fixmatch": 24, "defixmatch": 24, "speech": [24, 73, 98, 100, 103, 128], "light": [24, 25, 52, 130, 210, 265], "vit": 24, "strong": [24, 98, 177, 194, 265], "unlabel": 24, "confid": [24, 52, 99, 126, 160, 161, 170], "threshold": [24, 49, 60, 82, 109, 110, 126, 160, 164, 172], "statu": [24, 126, 164, 174, 175, 266], "absorb": 24, "gaussian": [24, 47, 52, 126, 160], "overcom": [24, 113], "quantiti": [24, 97, 121, 124, 146, 151, 155], "trade": [24, 126, 153], "afford": 24, "nlp": [24, 42, 92, 93, 99, 102, 103, 113, 114, 115, 116, 118, 127, 128, 138, 166, 178, 186, 195, 201, 232, 236, 249, 255], "audio": [24, 26, 27, 28, 29, 30, 34, 38, 44, 121, 141, 168, 171], "semilearn": 24, "get_dataset": 24, "get_data_load": 24, "weak": [24, 265], "get_net_build": 24, "get_algorithm": 24, "get_config": 24, "hyper": [24, 165], "vit_tiny_patch2_32": 24, "use_pretrain": 24, "pretrain_path": 24, "microsoft": [24, 107, 108, 138, 169, 188], "vit_tiny_patch2_32_mlp_im_1k_32": 24, "num_train_it": 24, "num_eval_it": 24, "num_log_it": 24, "adamw": [24, 75, 110, 122, 161], "layer_decai": 24, "cifar10": [24, 57, 87, 92, 97, 169, 222, 252, 256], "num_label": [24, 99], "img_siz": 24, "crop_ratio": 24, "875": 24, "data_dir": [24, 87, 117, 122, 138, 149, 158, 186], "ulb_samples_per_class": 24, "hard_label": 24, "ema_p": 24, "999": [24, 52, 94, 96, 170], "ent_loss_ratio": 24, "uratio": 24, "ulb_loss_ratio": 24, "dataset_dict": 24, "include_lb_to_ulb": 24, "train_lb_load": 24, "train_lb": 24, "train_ulb_load": 24, "train_ulb": 24, "eval_load": 24, "from_nam": 24, "tb_log": 24, "logger": [24, 138, 147, 149, 172, 186, 197], "lb_imb_ratio": 24, "ulb_imb_ratio": 24, "1500": [24, 122, 233], "ulb_num_label": 24, "3000": [24, 170], "kihyuk": 24, "sohn": 24, "yidong": 24, "usb_semisup_learn": 24, "jamesre": 25, "fb": 25, "michael": [25, 42, 98, 212, 213, 232, 258], "suo": 25, "rev2": 25, "hierarchi": [25, 60, 178], "__version__": [25, 42, 107, 119, 138, 147, 159, 186, 190, 208, 210, 224], "mycel": 25, "my_cel": 25, "3x4": 25, "redefin": 25, "succinctli": [25, 154], "mydecisiong": [25, 255], "dg": 25, "tape": [25, 42, 76], "traced_cel": [25, 255], "rewind": 25, "tracedmodul": [25, 60, 85, 255], "ir": [25, 110, 143, 145, 184, 218], "commonli": [25, 49, 69, 87, 97, 159, 166, 169, 180, 222, 266], "acquir": [25, 112, 135, 157, 160, 164], "laden": 25, "submodul": [25, 49, 60, 85, 154, 165, 204, 220, 224, 230], "branch": [25, 174, 175, 178, 179, 201, 208, 222, 226, 227], "nowher": 25, "faithfulli": [25, 191], "analysi": [25, 87, 107, 115, 121, 123, 144, 145, 165, 169, 172, 175, 177, 185, 228], "scripted_g": 25, "scripted_cel": [25, 255], "decis": [25, 100, 137, 191, 192, 194, 226, 227], "myrnnloop": 25, "xs": [25, 135, 167], "rnn_loop": 25, "wraprnn": 25, "freestand": 25, "wrapped_rnn": 25, "neurip": 25, "1hiicg6jrkbnr5hvk2": 25, "vnmi88vi9puzej": 25, "intro_to_torchscript_tutori": [25, 205], "audio_data_augmentation_tutori": [26, 28], "redirect": [26, 27, 28, 29, 30, 31, 74, 141, 152, 168, 171, 181, 219], "audio_datasets_tutori": 27, "audio_feature_extractions_tutori": 29, "audio_io_tutori": 30, "\u57fa\u7840\u77e5\u8bc6": [32, 33, 34, 35, 37, 38, 39, 40, 41, 121], "\u5feb\u901f\u5165\u95e8": [32, 33, 34, 36, 37, 39, 40, 41, 253], "\u6570\u636e\u96c6\u4e0e\u6570\u636e\u52a0\u8f7d\u5668": [32, 33, 36, 37, 38, 39, 40, 41], "\u6784\u5efa\u795e\u7ecf\u7f51\u7edc": [32, 34, 36, 37, 38, 39, 40, 41], "\u4f18\u5316\u6a21\u578b\u53c2\u6570": [32, 33, 34, 36, 39, 40, 41], "\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": [32, 33, 34, 36, 37, 38, 40, 41, 216, 237, 253], "\u5728\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc\u65f6": [32, 252], "\u6700\u5e38\u7528\u7684\u7b97\u6cd5\u662f": 32, "\u53cd\u5411\u4f20\u64ad": [32, 37, 261], "\u5728\u8fd9\u4e2a\u7b97\u6cd5\u4e2d": 32, "\u53c2\u6570": [32, 95, 232, 240, 242, 246, 247, 249], "\u6a21\u578b\u6743\u91cd": 32, "\u6839\u636e\u635f\u5931\u51fd\u6570\u76f8\u5bf9\u4e8e\u7ed9\u5b9a\u53c2\u6570\u7684": 32, "\u68af\u5ea6": [32, 89, 249], "\u8fdb\u884c\u8c03\u6574": 32, "\u4e3a\u4e86\u8ba1\u7b97\u8fd9\u4e9b\u68af\u5ea6": 32, "\u63d0\u4f9b\u4e86\u4e00\u4e2a\u5185\u7f6e\u7684\u5fae\u5206\u5f15\u64ce": 32, "\u79f0\u4e3a": [32, 39, 89], "\u5b83\u652f\u6301\u5bf9\u4efb\u4f55\u8ba1\u7b97\u56fe\u81ea\u52a8\u8ba1\u7b97\u68af\u5ea6": 32, "\u8003\u8651\u6700\u7b80\u5355\u7684\u5355\u5c42\u795e\u7ecf\u7f51\u7edc": 32, "\u5177\u6709\u8f93\u5165": 32, "\u548c": [32, 34, 36, 37, 38, 39, 41, 89, 90, 92, 95, 96, 111, 118, 121, 129, 188, 214, 215, 216, 217, 221, 223, 228, 231, 232, 233, 235, 236, 238, 240, 242, 243, 244, 245, 246, 248, 249, 251, 252, 253, 257, 259, 260, 261], "\u4ee5\u53ca\u4e00\u4e9b\u635f\u5931\u51fd\u6570": 32, "\u53ef\u4ee5\u5728": [32, 104, 231], "\u4e2d\u6309\u4ee5\u4e0b\u65b9\u5f0f\u5b9a\u4e49\u5b83": 32, "binary_cross_entropy_with_logit": [32, 232], "\u8fd9\u6bb5\u4ee3\u7801\u5b9a\u4e49\u4e86\u4ee5\u4e0b": 32, "\u8ba1\u7b97\u56fe": [32, 111], "\u5728\u8fd9\u4e2a\u7f51\u7edc\u4e2d": 32, "\u662f": [32, 34, 92, 93, 104, 232, 238, 246, 259, 260], "\u6211\u4eec\u9700\u8981\u5bf9\u5b83\u4eec\u8fdb\u884c\u4f18\u5316": 32, "\u56e0\u6b64": [32, 89, 111, 188, 214, 228, 232, 233, 240, 242, 244, 249, 261], "\u6211\u4eec\u9700\u8981\u80fd\u591f\u8ba1\u7b97\u635f\u5931\u51fd\u6570\u76f8\u5bf9\u4e8e\u8fd9\u4e9b\u53d8\u91cf\u7684\u68af\u5ea6": 32, "\u4e3a\u4e86\u505a\u5230\u8fd9\u4e00\u70b9": 32, "\u6211\u4eec\u8bbe\u7f6e\u4e86\u8fd9\u4e9b\u5f20\u91cf\u7684": 32, "\u5c5e\u6027": [32, 89, 95, 232], "\u6216\u5728\u521b\u5efa\u540e\u4f7f\u7528": 32, "\u65b9\u6cd5\u6765\u8bbe\u7f6e": 32, "\u6211\u4eec\u5e94\u7528\u4e8e\u5f20\u91cf\u4ee5\u6784\u5efa\u8ba1\u7b97\u56fe\u7684\u51fd\u6570\u5b9e\u9645\u4e0a\u662f": 32, "\u7c7b\u7684\u5bf9\u8c61": 32, "\u8fd9\u4e2a\u5bf9\u8c61\u77e5\u9053\u5982\u4f55\u5728": 32, "\u524d\u5411": [32, 92, 111, 252], "\u65b9\u5411\u8ba1\u7b97\u51fd\u6570": 32, "\u4e5f\u77e5\u9053\u5982\u4f55\u5728": 32, "\u6b65\u9aa4\u4e2d\u8ba1\u7b97\u5176\u5bfc\u6570": 32, "\u5bf9\u4e8e\u53cd\u5411\u4f20\u64ad\u51fd\u6570\u7684\u5f15\u7528\u5b58\u50a8\u5728\u5f20\u91cf\u7684": 32, "\u5c5e\u6027\u4e2d": [32, 252], "\u60a8\u53ef\u4ee5\u5728": 32, "\u6587\u6863": [32, 89, 93, 95, 216, 228, 236, 247, 249, 257, 258, 259], "__": [32, 37, 40, 90, 94, 172, 236], "\u4e2d\u627e\u5230\u6709\u5173": 32, "\u7684\u66f4\u591a\u4fe1\u606f": [32, 258], "\u4e3a\u4e86\u4f18\u5316\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u53c2\u6570\u6743\u91cd": 32, "\u6211\u4eec\u9700\u8981\u8ba1\u7b97\u635f\u5931\u51fd\u6570\u76f8\u5bf9\u4e8e\u53c2\u6570\u7684\u5bfc\u6570": 32, "\u5373\u5728\u67d0\u4e9b\u56fa\u5b9a\u7684": 32, "\u503c\u4e0b": 32, "\u6211\u4eec\u9700\u8981": 32, "frac": [32, 43, 64, 85, 89, 98, 99, 101, 103, 111, 125, 131, 136, 160, 161, 265], "partial": [32, 43, 75, 87, 89, 101, 112, 113, 122, 123, 124, 125, 137, 142, 146, 222, 265], "\u8981\u8ba1\u7b97\u8fd9\u4e9b\u5bfc\u6570": 32, "\u6211\u4eec\u8c03\u7528": [32, 95], "\u7136\u540e\u4ece": 32, "\u4e2d\u68c0\u7d22\u503c": 32, "\u9ed8\u8ba4\u60c5\u51b5\u4e0b": [32, 37, 95, 215, 216, 228, 240, 249], "\u6240\u6709\u5177\u6709": 32, "\u7684\u5f20\u91cf\u90fd\u5728\u8ddf\u8e2a\u5b83\u4eec\u7684\u8ba1\u7b97\u5386\u53f2\u5e76\u652f\u6301\u68af\u5ea6\u8ba1\u7b97": 32, "\u7136\u800c": [32, 111, 129, 188, 233, 239, 248, 254], "\u6709\u4e9b\u60c5\u51b5\u4e0b\u6211\u4eec\u4e0d\u9700\u8981\u8fd9\u6837\u505a": 32, "\u4f8b\u5982": [32, 33, 34, 38, 40, 89, 92, 93, 95, 104, 129, 209, 217, 218, 221, 228, 239, 240, 241, 246, 247, 248, 249, 252, 254, 261], "\u5f53\u6211\u4eec\u5df2\u7ecf\u8bad\u7ec3\u597d\u6a21\u578b\u5e76\u53ea\u60f3\u5c06\u5176\u5e94\u7528\u4e8e\u4e00\u4e9b\u8f93\u5165\u6570\u636e\u65f6": 32, "\u5373\u6211\u4eec\u53ea\u60f3\u901a\u8fc7\u7f51\u7edc\u8fdb\u884c": 32, "\u8ba1\u7b97": [32, 95], "\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u5c06\u6211\u4eec\u7684\u8ba1\u7b97\u4ee3\u7801\u5305\u88f9\u5728": 32, "\u5757\u4e2d\u6765\u505c\u6b62\u8ddf\u8e2a\u8ba1\u7b97": 32, "\u53e6\u4e00\u79cd\u5b9e\u73b0\u76f8\u540c\u7ed3\u679c\u7684\u65b9\u6cd5\u662f\u5bf9\u5f20\u91cf\u4f7f\u7528": 32, "\u65b9\u6cd5": [32, 33, 39, 89, 94, 95, 104, 231, 235, 247], "z_det": 32, "\u5e0c\u671b\u7981\u7528\u68af\u5ea6\u8ddf\u8e2a\u7684\u539f\u56e0\u53ef\u80fd\u5982\u4e0b": 32, "\u5c06\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u67d0\u4e9b\u53c2\u6570\u6807\u8bb0\u4e3a": 32, "\u51bb\u7ed3\u53c2\u6570": 32, "\u5728\u4ec5\u8fdb\u884c\u524d\u5411\u4f20\u9012\u65f6": 32, "\u52a0\u901f\u8ba1\u7b97": 32, "\u56e0\u4e3a\u4e0d\u8ddf\u8e2a\u68af\u5ea6\u7684\u5f20\u91cf\u4e0a\u7684\u8ba1\u7b97\u4f1a\u66f4\u9ad8\u6548": 32, "\u6982\u5ff5\u4e0a": 32, "\u5728\u4e00\u4e2a\u7531": 32, "\u5bf9\u8c61": [32, 92, 104, 248, 254], "\u7ec4\u6210\u7684\u6709\u5411\u65e0\u73af\u56fe": 32, "dag": 32, "\u4e2d\u8bb0\u5f55\u6570\u636e": 32, "\u548c\u6240\u6709\u6267\u884c\u7684\u64cd\u4f5c": 32, "\u4ee5\u53ca\u4ea7\u751f\u7684\u65b0\u5f20\u91cf": 32, "\u5728\u8fd9\u4e2a": 32, "\u4e2d": [32, 34, 92, 104, 212, 218, 228, 235, 237, 238, 239, 240, 248, 250, 253], "\u53f6\u5b50\u8282\u70b9\u662f\u8f93\u5165\u5f20\u91cf": 32, "\u6839\u8282\u70b9\u662f\u8f93\u51fa\u5f20\u91cf": 32, "\u901a\u8fc7\u4ece\u6839\u5230\u53f6\u8ddf\u8e2a\u8fd9\u4e2a\u56fe": 32, "\u53ef\u4ee5\u4f7f\u7528\u94fe\u5f0f\u6cd5\u5219\u81ea\u52a8\u8ba1\u7b97\u68af\u5ea6": 32, "\u5728\u524d\u5411\u4f20\u9012\u4e2d": 32, "\u540c\u65f6\u505a\u4e24\u4ef6\u4e8b": 32, "\u6267\u884c\u8bf7\u6c42\u7684\u64cd\u4f5c\u4ee5\u8ba1\u7b97\u7ed3\u679c\u5f20\u91cf": 32, "\u5728": [32, 33, 89, 92, 93, 94, 96, 104, 121, 140, 214, 215, 216, 217, 223, 228, 232, 233, 237, 239, 248, 249, 251, 253, 254, 260, 261], "\u4e2d\u7ef4\u62a4\u64cd\u4f5c\u7684": 32, "\u68af\u5ea6\u51fd\u6570": 32, "\u5f53\u5728": 32, "\u6839\u8282\u70b9\u4e0a\u8c03\u7528": 32, "\u65f6": [32, 89, 90, 95, 129, 217, 232, 239, 246, 249, 261], "\u53cd\u5411\u4f20\u9012\u5f00\u59cb": 32, "\u7136\u540e": [32, 93, 104, 111, 214, 217, 254], "\u4ece\u6bcf\u4e2a": 32, "\u5c06\u5b83\u4eec\u7d2f\u79ef\u5230\u5404\u81ea\u5f20\u91cf\u7684": 32, "\u4f7f\u7528\u94fe\u5f0f\u6cd5\u5219": 32, "\u4e00\u76f4\u4f20\u64ad\u5230\u53f6\u5b50\u5f20\u91cf": 32, "\u5728\u5f88\u591a\u60c5\u51b5\u4e0b": 32, "\u6211\u4eec\u6709\u4e00\u4e2a\u6807\u91cf\u635f\u5931\u51fd\u6570": 32, "\u9700\u8981\u8ba1\u7b97\u76f8\u5bf9\u4e8e\u67d0\u4e9b\u53c2\u6570\u7684\u68af\u5ea6": 32, "\u4e5f\u6709\u4e00\u4e9b\u60c5\u51b5\u4e0b": 32, "\u8f93\u51fa\u51fd\u6570\u662f\u4e00\u4e2a\u4efb\u610f\u7684\u5f20\u91cf": 32, "\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b": [32, 39, 95, 104, 232, 236, 242], "\u5141\u8bb8\u60a8\u8ba1\u7b97\u6240\u8c13\u7684": 32, "\u96c5\u53ef\u6bd4\u4e58\u79ef": 32, "\u800c\u4e0d\u662f\u5b9e\u9645\u7684\u68af\u5ea6": 32, "vec": [32, 43, 89, 98, 99, 145, 146, 151], "langl": 32, "x_1": [32, 101, 116, 151, 265], "x_n": [32, 52], "rangl": 32, "y_1": [32, 101, 116], "y_m": 32, "ccc": [32, 43, 89], "y_": [32, 43, 89, 98], "x_": [32, 43, 89, 265], "cdot": [32, 43, 52, 89, 103, 125], "vdot": [32, 43, 89], "ddot": [32, 43, 89], "v_1": 32, "v_m": 32, "retain_graph": [32, 76, 129, 193, 207], "nsecond": 32, "ncall": 32, "accumul": [32, 43, 47, 49, 52, 69, 76, 98, 99, 101, 102, 103, 111, 115, 130, 131, 147, 153, 161, 162, 163, 164], "leaf": [32, 43, 184], "life": [32, 97, 113, 127, 128], "autogradqs_tutori": [32, 35, 40], "\u5f20\u91cf": [33, 34, 36, 37, 38, 39, 41, 70, 88, 89, 90, 93, 94, 95, 96, 104, 215, 246], "\u81ea\u52a8\u5fae\u5206": [33, 34, 36, 37, 38, 39, 40, 41, 88, 89, 90, 92, 93, 94, 95, 96, 111], "\u795e\u7ecf\u7f51\u7edc\u7531\u6267\u884c\u6570\u636e\u64cd\u4f5c\u7684": 33, "\u5c42": [33, 92, 93, 104, 111, 232, 246, 249, 254], "\u6a21\u5757": [33, 90, 233, 240], "\u7ec4\u6210": [33, 228], "\u547d\u540d\u7a7a\u95f4\u63d0\u4f9b\u4e86\u6784\u5efa\u4f60\u81ea\u5df1\u7684\u795e\u7ecf\u7f51\u7edc\u6240\u9700\u7684\u6240\u6709\u6784\u5efa\u5757": 33, "\u4e2d\u7684\u6bcf\u4e2a\u6a21\u5757\u90fd\u662f": 33, "\u7684\u5b50\u7c7b": [33, 34, 92, 93, 231, 232, 259], "\u795e\u7ecf\u7f51\u7edc\u672c\u8eab\u5c31\u662f\u4e00\u4e2a\u7531\u5176\u4ed6\u6a21\u5757": 33, "\u7ec4\u6210\u7684\u6a21\u5757": 33, "\u8fd9\u79cd\u5d4c\u5957\u7ed3\u6784\u5141\u8bb8\u8f7b\u677e\u6784\u5efa\u548c\u7ba1\u7406\u590d\u6742\u7684\u67b6\u6784": 33, "\u5728\u63a5\u4e0b\u6765\u7684\u90e8\u5206\u4e2d": 33, "\u6211\u4eec\u5c06\u6784\u5efa\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc": 33, "\u7528\u4e8e\u5bf9": 33, "fashionmnist": [33, 34, 37, 38, 41, 94, 96, 170], "\u6570\u636e\u96c6\u4e2d\u7684\u56fe\u50cf\u8fdb\u884c\u5206\u7c7b": 33, "\u6211\u4eec\u5e0c\u671b\u80fd\u591f\u5728\u786c\u4ef6\u52a0\u901f\u5668": 33, "\u5982": [33, 93, 104, 231, 239, 246, 259, 260], "\u6216": [33, 38, 72, 93, 95, 96, 104, 209, 223, 228, 231, 232, 236, 238, 244, 246], "\u4e0a\u8bad\u7ec3\u6211\u4eec\u7684\u6a21\u578b": 33, "\u5982\u679c\u53ef\u7528": [33, 38], "\u8ba9\u6211\u4eec\u68c0\u67e5\u4e00\u4e0b": 33, "\u662f\u5426\u53ef\u7528": 33, "\u5426\u5219\u6211\u4eec\u4f7f\u7528": 33, "\u6211\u4eec\u901a\u8fc7\u7ee7\u627f": 33, "\u6765\u5b9a\u4e49\u6211\u4eec\u7684\u795e\u7ecf\u7f51\u7edc": 33, "\u5e76\u5728": [33, 38, 129, 221], "\u65b9\u6cd5\u4e2d\u521d\u59cb\u5316\u795e\u7ecf\u7f51\u7edc\u5c42": 33, "\u6bcf\u4e2a": [33, 216], "\u5b50\u7c7b\u90fd\u5728": 33, "\u65b9\u6cd5\u4e2d\u5b9e\u73b0\u5bf9\u8f93\u5165\u6570\u636e\u7684\u64cd\u4f5c": 33, "neuralnetwork": [33, 37, 38, 189], "linear_relu_stack": [33, 37, 38, 221], "logit": [33, 37, 38, 97, 118, 138, 149, 186, 221], "\u6211\u4eec\u521b\u5efa\u4e00\u4e2a": 33, "\u7684\u5b9e\u4f8b": [33, 93, 221, 232], "\u5e76\u5c06\u5176\u79fb\u52a8\u5230": 33, "\u4e0a": [33, 38, 89, 95, 104, 214, 216, 232, 240, 249], "\u7136\u540e\u6253\u5370\u5176\u7ed3\u6784": 33, "\u8981\u4f7f\u7528\u6a21\u578b": 33, "\u6211\u4eec\u5c06\u8f93\u5165\u6570\u636e\u4f20\u9012\u7ed9\u5b83": 33, "\u8fd9\u5c06\u6267\u884c\u6a21\u578b\u7684": 33, "\u4ee5\u53ca\u4e00\u4e9b": 33, "\u540e\u53f0\u64cd\u4f5c": 33, "270111b7b611d174967ed204776985cefca9c144": 33, "l866": 33, "\u4e0d\u8981\u76f4\u63a5\u8c03\u7528": 33, "\u5c06\u8f93\u5165\u4f20\u9012\u7ed9\u6a21\u578b\u4f1a\u8fd4\u56de\u4e00\u4e2a\u4e8c\u7ef4\u5f20\u91cf": 33, "\u5176\u4e2d": [33, 93, 95, 111, 215], "\u5bf9\u5e94\u6bcf\u4e2a\u7c7b\u522b\u7684": 33, "\u4e2a\u539f\u59cb\u9884\u6d4b\u503c\u7684\u8f93\u51fa": 33, "\u5bf9\u5e94\u6bcf\u4e2a\u8f93\u51fa\u7684\u5404\u4e2a\u503c": 33, "\u6211\u4eec\u901a\u8fc7\u5c06\u5176\u4f20\u9012\u7ed9": 33, "\u6a21\u5757\u7684\u5b9e\u4f8b\u6765\u83b7\u5f97\u9884\u6d4b\u6982\u7387": 33, "pred_probab": [33, 221], "y_pred": [33, 63, 64, 65, 67, 68, 69, 71, 72, 111, 221], "argmax": [33, 37, 38, 98, 102, 104, 115, 119, 123, 130, 138, 147, 149, 163, 186, 221, 223], "\u8ba9\u6211\u4eec\u5206\u89e3\u4e00\u4e0b": 33, "\u6a21\u578b\u4e2d\u7684\u5404\u5c42": 33, "\u4e3a\u4e86\u89e3\u91ca\u5b83": 33, "\u6211\u4eec\u5c06\u53d6\u4e00\u4e2a\u5305\u542b": 33, "\u5f20": 33, "28x28": [33, 104, 170], "\u5c3a\u5bf8\u56fe\u50cf\u7684\u5c0f\u6279\u91cf\u6837\u672c": 33, "\u5e76\u89c2\u5bdf\u5b83\u5728\u901a\u8fc7\u7f51\u7edc\u65f6\u53d1\u751f\u4e86\u4ec0\u4e48": 33, "input_imag": [33, 58, 59], "\u6211\u4eec\u521d\u59cb\u5316": 33, "\u5c06\u6bcf\u4e2a\u4e8c\u7ef4": 33, "\u56fe\u50cf\u8f6c\u6362\u4e3a\u5305\u542b": 33, "784": [33, 94, 104, 139, 170], "\u4e2a\u50cf\u7d20\u503c\u7684\u8fde\u7eed\u6570\u7ec4": 33, "\u4fdd\u7559\u5c0f\u6279\u91cf\u7ef4\u5ea6": 33, "flat_imag": 33, "\u7ebf\u6027\u5c42": 33, "\u662f\u4e00\u4e2a\u6a21\u5757": 33, "\u5b83\u4f7f\u7528\u5b58\u50a8\u7684\u6743\u91cd": 33, "\u548c\u504f\u7f6e": [33, 104], "\u5bf9\u8f93\u5165\u5e94\u7528\u7ebf\u6027\u53d8\u6362": 33, "layer1": [33, 89, 150, 158, 161, 197], "in_featur": [33, 109, 117, 123, 158, 179, 180, 203, 204, 241], "hidden1": [33, 236], "\u975e\u7ebf\u6027\u6fc0\u6d3b\u51fd\u6570\u521b\u5efa\u4e86\u6a21\u578b\u8f93\u5165\u548c\u8f93\u51fa\u4e4b\u95f4\u7684\u590d\u6742\u6620\u5c04": 33, "\u5b83\u4eec\u5728\u7ebf\u6027\u53d8\u6362\u4e4b\u540e\u5e94\u7528": 33, "\u4ee5\u5f15\u5165": 33, "\u975e\u7ebf\u6027": [33, 93], "\u5e2e\u52a9\u795e\u7ecf\u7f51\u7edc\u5b66\u4e60\u5404\u79cd\u73b0\u8c61": 33, "\u5728\u8fd9\u4e2a\u6a21\u578b\u4e2d": 33, "\u6211\u4eec\u5728\u7ebf\u6027\u5c42\u4e4b\u95f4\u4f7f\u7528": 33, "\u4f46\u8fd8\u6709\u5176\u4ed6\u6fc0\u6d3b\u51fd\u6570\u53ef\u4ee5\u5728\u4f60\u7684\u6a21\u578b\u4e2d\u5f15\u5165\u975e\u7ebf\u6027": 33, "\u662f\u4e00\u4e2a\u6709\u5e8f\u7684\u6a21\u5757\u5bb9\u5668": 33, "\u6570\u636e\u6309\u7167\u5b9a\u4e49\u7684\u987a\u5e8f\u4f9d\u6b21\u901a\u8fc7\u6240\u6709\u6a21\u5757": 33, "\u60a8\u53ef\u4ee5\u4f7f\u7528\u5e8f\u5217\u5bb9\u5668\u6765\u5feb\u901f\u7ec4\u5408\u4e00\u4e2a\u7f51\u7edc": 33, "seq_modul": 33, "\u795e\u7ecf\u7f51\u7edc\u7684\u6700\u540e\u4e00\u4e2a\u7ebf\u6027\u5c42\u8fd4\u56de\u7684\u662f": 33, "\u5bf9\u6570\u51e0\u7387": 33, "infti": [33, 161], "\u8303\u56f4\u5185\u7684\u539f\u59cb\u503c": 33, "\u8fd9\u4e9b\u503c\u4f1a\u88ab\u4f20\u9012\u5230": 33, "\u5bf9\u6570\u51e0\u7387\u88ab\u7f29\u653e\u5230\u503c\u4e3a": 33, "\u7684\u8303\u56f4": 33, "\u8868\u793a\u6a21\u578b\u5bf9\u6bcf\u4e2a\u7c7b\u522b\u7684\u9884\u6d4b\u6982\u7387": 33, "\u53c2\u6570\u6307\u793a\u503c\u5fc5\u987b\u5728\u5176\u6cbf\u7740\u7684\u7ef4\u5ea6\u4e0a\u6c42\u548c\u4e3a": 33, "\u795e\u7ecf\u7f51\u7edc\u5185\u90e8\u7684\u8bb8\u591a\u5c42\u90fd\u662f": 33, "\u53c2\u6570\u5316": 33, "\u7684": [33, 34, 71, 72, 89, 90, 95, 104, 121, 188, 212, 214, 215, 216, 231, 232, 233, 235, 239, 240, 246, 253, 257, 258], "\u5373\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u4f1a\u4f18\u5316\u7684\u76f8\u5173\u6743\u91cd\u548c\u504f\u7f6e": 33, "\u901a\u8fc7\u5b50\u7c7b\u5316": 33, "\u53ef\u4ee5\u81ea\u52a8\u8ddf\u8e2a\u6a21\u578b\u5bf9\u8c61\u5185\u5b9a\u4e49\u7684\u6240\u6709\u5b57\u6bb5": 33, "\u5e76\u4f7f\u7528\u6a21\u578b\u7684": 33, "\u65b9\u6cd5\u8bbf\u95ee\u6240\u6709\u53c2\u6570": 33, "\u5728\u8fd9\u4e2a\u793a\u4f8b\u4e2d": [33, 111, 236, 243, 253, 254], "\u6211\u4eec\u904d\u5386\u6bcf\u4e2a\u53c2\u6570": 33, "\u5e76\u6253\u5370\u5176\u5927\u5c0f\u4ee5\u53ca\u503c\u7684\u9884\u89c8": 33, "buildmodel_tutori": [33, 35, 37, 38], "\u5904\u7406\u6570\u636e\u6837\u672c\u7684\u4ee3\u7801\u53ef\u80fd\u4f1a\u53d8\u5f97\u6df7\u4e71\u4e14\u96be\u4ee5\u7ef4\u62a4": 34, "\u7406\u60f3\u60c5\u51b5\u4e0b": 34, "\u6211\u4eec\u5e0c\u671b\u6570\u636e\u96c6\u4ee3\u7801\u4e0e\u6a21\u578b\u8bad\u7ec3\u4ee3\u7801\u89e3\u8026": 34, "\u4ee5\u63d0\u9ad8\u53ef\u8bfb\u6027\u548c\u6a21\u5757\u5316": 34, "\u63d0\u4f9b\u4e86\u4e24\u4e2a\u6570\u636e\u5904\u7406\u7684\u57fa\u672c\u5de5\u5177": 34, "\u5b83\u4eec\u5141\u8bb8\u60a8\u4f7f\u7528\u9884\u52a0\u8f7d\u7684\u6570\u636e\u96c6\u4ee5\u53ca\u60a8\u81ea\u5df1\u7684\u6570\u636e": 34, "\u5b58\u50a8\u6837\u672c\u53ca\u5176\u5bf9\u5e94\u7684\u6807\u7b7e": [34, 38], "\u800c": [34, 38, 89, 239, 246], "\u5219\u4e3a": 34, "\u5305\u88c5\u4e86\u4e00\u4e2a\u53ef\u8fed\u4ee3\u5bf9\u8c61": 34, "\u4ee5\u4fbf\u4e8e\u8bbf\u95ee\u6837\u672c": 34, "\u57df\u5e93\u63d0\u4f9b\u4e86\u8bb8\u591a\u9884\u52a0\u8f7d\u7684\u6570\u636e\u96c6": 34, "\u8fd9\u4e9b\u6570\u636e\u96c6\u662f": 34, "\u5e76\u5b9e\u73b0\u4e86\u7279\u5b9a\u4e8e\u8be5\u6570\u636e\u7684\u51fd\u6570": 34, "\u5b83\u4eec\u53ef\u4ee5\u7528\u4e8e\u6a21\u578b\u7684\u539f\u578b\u8bbe\u8ba1\u548c\u57fa\u51c6\u6d4b\u8bd5": 34, "\u60a8\u53ef\u4ee5\u5728\u4ee5\u4e0b\u94fe\u63a5\u627e\u5230\u8fd9\u4e9b\u6570\u636e\u96c6": 34, "\u56fe\u50cf\u6570\u636e\u96c6": 34, "\u6587\u672c\u6570\u636e\u96c6": 34, "\u97f3\u9891\u6570\u636e\u96c6": 34, "\u4e0b\u9762\u662f\u4e00\u4e2a\u4ece": 34, "\u52a0\u8f7d": [34, 39, 242, 244], "fashion": [34, 49, 60, 94, 96, 107, 122, 124, 126, 135, 163, 167, 170, 172, 222], "\u6570\u636e\u96c6\u7684\u793a\u4f8b": 34, "zalando": 34, "\u7684\u5546\u54c1\u56fe\u7247\u6570\u636e\u96c6": 34, "\u5305\u62ec": [34, 89, 90, 93, 96, 218, 232, 233, 235, 236], "\u4e2a\u8bad\u7ec3\u6837\u672c\u548c": 34, "\u4e2a\u6d4b\u8bd5\u6837\u672c": 34, "\u6bcf\u4e2a\u6837\u672c\u5305\u542b\u4e00\u4e2a": 34, "\u7684\u7070\u5ea6\u56fe\u50cf\u548c\u4e00\u4e2a\u6765\u81ea": 34, "\u4e2a\u7c7b\u522b\u4e4b\u4e00\u7684\u6807\u7b7e": 34, "\u6211\u4eec\u4f7f\u7528\u4ee5\u4e0b\u53c2\u6570\u52a0\u8f7d": 34, "\u6570\u636e\u96c6": [34, 38, 92, 96, 104, 121, 235, 238], "\u662f\u5b58\u50a8\u8bad\u7ec3": 34, "\u6d4b\u8bd5\u6570\u636e\u7684\u8def\u5f84": 34, "\u6307\u5b9a\u662f\u8bad\u7ec3\u96c6\u8fd8\u662f\u6d4b\u8bd5\u96c6": 34, "\u8868\u793a\u5982\u679c\u6570\u636e\u5728": 34, "\u8def\u5f84\u4e2d\u4e0d\u53ef\u7528": 34, "\u5219\u4ece\u4e92\u8054\u7f51\u4e0b\u8f7d\u6570\u636e": 34, "target_transform": [34, 38, 41], "\u6307\u5b9a\u7279\u5f81\u548c\u6807\u7b7e\u7684\u8f6c\u6362": 34, "read_imag": [34, 179], "training_data": [34, 37, 38, 98, 102], "\u6211\u4eec\u53ef\u4ee5\u50cf\u5217\u8868\u4e00\u6837\u624b\u52a8\u7d22\u5f15": 34, "\u4f7f\u7528": [34, 88, 94, 95, 121, 129, 140, 188, 209, 217, 237, 238, 244, 246, 247, 252, 253, 259, 261], "\u6765\u53ef\u89c6\u5316\u8bad\u7ec3\u6570\u636e\u4e2d\u7684\u4e00\u4e9b\u6837\u672c": 34, "labels_map": 34, "shirt": [34, 38, 94, 96, 170], "trouser": [34, 38, 94, 96, 170], "pullov": [34, 38, 94, 96, 170], "dress": [34, 38, 94, 96, 170], "coat": [34, 38, 94, 96, 170], "sandal": [34, 38, 94, 96, 170], "sneaker": [34, 38, 94, 96, 170], "ankl": [34, 38, 94, 96, 170], "boot": [34, 38, 94, 96, 159, 170], "add_subplot": [34, 127, 166, 170], "\u81ea\u5b9a\u4e49\u6570\u636e\u96c6\u7c7b\u5fc5\u987b\u5b9e\u73b0\u4e09\u4e2a\u51fd\u6570": 34, "\u8bf7\u770b\u8fd9\u4e2a\u5b9e\u73b0\u793a\u4f8b": 34, "\u56fe\u50cf\u5b58\u50a8\u5728\u76ee\u5f55": 34, "img_dir": 34, "\u5b83\u4eec\u7684\u6807\u7b7e\u5355\u72ec\u5b58\u50a8\u5728": 34, "csv": [34, 49, 51, 122], "\u6587\u4ef6": [34, 90, 104, 247, 259, 260], "annotations_fil": 34, "\u5177\u4f53\u4ee3\u7801\u5b9e\u73b0\u5982\u4e0b": 34, "customimagedataset": 34, "img_label": 34, "read_csv": [34, 51], "img_path": [34, 117, 179], "iloc": [34, 51], "\u51fd\u6570\u5728\u5b9e\u4f8b\u5316\u6570\u636e\u96c6\u5bf9\u8c61\u65f6\u8fd0\u884c\u4e00\u6b21": 34, "\u6211\u4eec\u521d\u59cb\u5316\u5305\u542b\u56fe\u50cf\u7684\u76ee\u5f55": 34, "\u6ce8\u91ca\u6587\u4ef6\u548c\u4e24\u79cd\u8f6c\u6362": 34, "\u5728\u4e0b\u4e00\u90e8\u5206\u4e2d\u5c06\u66f4\u8be6\u7ec6\u5730\u4ecb\u7ecd": 34, "\u6587\u4ef6\u7684\u5185\u5bb9\u5982\u4e0b": 34, "tshirt1": 34, "tshirt2": 34, "ankleboot999": 34, "\u51fd\u6570\u8fd4\u56de\u6570\u636e\u96c6\u4e2d\u7684\u6837\u672c\u6570\u91cf": 34, "\u51fd\u6570\u52a0\u8f7d\u5e76\u8fd4\u56de\u6570\u636e\u96c6\u4e2d\u7ed9\u5b9a\u7d22\u5f15": 34, "\u7684\u6837\u672c": 34, "\u6839\u636e\u7d22\u5f15": 34, "\u5b83\u786e\u5b9a\u56fe\u50cf\u5728\u78c1\u76d8\u4e0a\u7684\u4f4d\u7f6e": 34, "\u5c06\u5176\u8f6c\u6362\u4e3a\u5f20\u91cf": [34, 215], "\u4ece": [34, 39, 71, 90, 92, 93, 96, 215, 233, 239, 249, 257, 260], "\u4e2d\u7684": [34, 92, 104, 228, 232, 238, 239, 254], "\u6570\u636e\u4e2d\u68c0\u7d22\u76f8\u5e94\u7684\u6807\u7b7e": 34, "\u5bf9\u5b83\u4eec\u8c03\u7528\u8f6c\u6362\u51fd\u6570": 34, "\u5982\u679c\u9002\u7528": 34, "\u5e76\u4ee5\u5143\u7ec4\u5f62\u5f0f\u8fd4\u56de\u5f20\u91cf\u56fe\u50cf\u548c\u76f8\u5e94\u7684\u6807\u7b7e": 34, "\u4e00\u6b21\u68c0\u7d22\u6211\u4eec\u6570\u636e\u96c6\u7684\u4e00\u4e2a\u6837\u672c\u7684\u7279\u5f81\u548c\u6807\u7b7e": 34, "\u5728\u8bad\u7ec3\u6a21\u578b\u65f6": [34, 89], "\u6211\u4eec\u901a\u5e38\u5e0c\u671b\u4ee5": 34, "\u5c0f\u6279\u91cf": 34, "\u7684\u65b9\u5f0f\u4f20\u9012\u6837\u672c": 34, "\u5728\u6bcf\u4e2a\u5468\u671f\u91cd\u65b0\u968f\u673a\u6392\u5217\u6570\u636e\u4ee5\u51cf\u5c11\u6a21\u578b\u8fc7\u62df\u5408": 34, "\u5e76\u4f7f\u7528": [34, 104, 121, 129, 214, 243, 248, 258], "\u52a0\u901f\u6570\u636e\u68c0\u7d22": 34, "\u662f\u4e00\u4e2a\u53ef\u8fed\u4ee3\u5bf9\u8c61": 34, "\u5b83\u901a\u8fc7\u7b80\u5355\u7684": 34, "\u4e3a\u6211\u4eec\u62bd\u8c61\u4e86\u8fd9\u4e9b\u590d\u6742\u6027": 34, "train_dataload": [34, 37, 38, 75, 115, 118, 149, 166], "shuffl": [34, 44, 45, 51, 52, 55, 73, 87, 92, 94, 96, 97, 104, 113, 115, 116, 117, 122, 123, 130, 136, 158, 159, 163, 167, 169, 170, 179, 223, 238, 252], "test_dataload": [34, 37, 38, 115], "train_featur": 34, "train_label": 34, "\u6211\u4eec\u5df2\u7ecf\u5c06\u6570\u636e\u96c6\u52a0\u8f7d\u5230": 34, "\u5e76\u53ef\u4ee5\u6839\u636e\u9700\u8981\u5bf9\u6570\u636e\u96c6\u8fdb\u884c\u8fed\u4ee3": 34, "\u4e0b\u9762\u7684\u6bcf\u6b21\u8fed\u4ee3\u90fd\u4f1a\u8fd4\u56de\u4e00\u4e2a\u6279\u6b21\u7684": 34, "\u5206\u522b\u5305\u542b": 34, "\u4e2a\u7279\u5f81\u548c\u6807\u7b7e": 34, "\u56e0\u4e3a\u6211\u4eec\u6307\u5b9a\u4e86": 34, "\u6240\u4ee5\u5728\u8fed\u4ee3\u5b8c\u6240\u6709\u6279\u6b21\u540e\u6570\u636e\u4f1a\u88ab\u91cd\u65b0\u6d17\u724c": 34, "\u5982\u679c\u60f3\u5bf9\u6570\u636e\u52a0\u8f7d\u987a\u5e8f\u8fdb\u884c\u66f4\u7cbe\u7ec6\u7684\u63a7\u5236": 34, "\u8bf7\u67e5\u770b": [34, 37, 94, 95, 188, 215, 216], "data_tutori": [34, 35, 37, 38], "quickstart_tutori": [35, 36, 38], "tensorqs_tutori": [35, 40], "tensor_tutori": [35, 46, 48, 57], "dataquickstart_tutori": 35, "transforms_tutori": [35, 41], "autograd_tutori": [35, 37, 43, 46, 57], "optimization_tutori": [35, 37, 38], "saveloadrun_tutori": [35, 38, 39], "sphx_glr_beginner_basics_intro": 35, "sphx_glr_beginner_basics_saveloadrun_tutori": 35, "sphx_glr_beginner_basics_transforms_tutori": 35, "sphx_glr_beginner_basics_autogradqs_tutori": 35, "sphx_glr_beginner_basics_buildmodel_tutori": 35, "sphx_glr_beginner_basics_tensorqs_tutori": 35, "sphx_glr_beginner_basics_optimization_tutori": 35, "sphx_glr_beginner_basics_data_tutori": 35, "sphx_glr_beginner_basics_quickstart_tutori": 35, "suraj": [36, 53, 54, 55, 56, 109, 132, 133, 147, 177], "subramanian": [36, 53, 54, 55, 56, 109, 132, 133, 147, 177], "juarez": 36, "cassi": 36, "breviu": 36, "dmitri": 36, "soshnikov": 36, "ari": 36, "bornstein": 36, "\u5927\u591a\u6570\u673a\u5668\u5b66\u4e60\u5de5\u4f5c\u6d41\u6d89\u53ca\u5904\u7406\u6570\u636e": 36, "\u521b\u5efa\u6a21\u578b": 36, "\u4f18\u5316\u6a21\u578b\u53c2\u6570\u548c\u4fdd\u5b58\u8bad\u7ec3\u597d\u7684\u6a21\u578b": 36, "\u672c\u6559\u7a0b\u5c06\u5411\u60a8\u4ecb\u7ecd\u5728pytorch\u4e2d\u5b9e\u73b0\u7684\u5b8c\u6574ml\u5de5\u4f5c\u6d41": 36, "\u5e76\u63d0\u4f9b\u94fe\u63a5\u4ee5\u4e86\u89e3\u6709\u5173\u8fd9\u4e9b\u6982\u5ff5\u7684\u66f4\u591a\u4fe1\u606f": 36, "\u6211\u4eec\u5c06\u4f7f\u7528fashionmnist\u6570\u636e\u96c6\u6765\u8bad\u7ec3\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc": 36, "\u8be5\u7f51\u7edc\u53ef\u4ee5\u9884\u6d4b\u8f93\u5165\u56fe\u50cf\u662f\u5426\u5c5e\u4e8e\u4ee5\u4e0b\u7c7b\u522b\u4e4b\u4e00": 36, "t\u6064": 36, "\u4e0a\u8863": 36, "\u957f\u88e4": 36, "\u5957\u5934\u886b": 36, "\u8fde\u8863\u88d9": 36, "\u5916\u5957": 36, "\u51c9\u978b": 36, "\u886c\u886b": 36, "\u8fd0\u52a8\u978b": 36, "\u5305\u6216\u8e1d\u9774": 36, "\u672c\u6559\u7a0b\u5047\u8bbe\u60a8\u5bf9python\u548c\u6df1\u5ea6\u5b66\u4e60\u6982\u5ff5\u6709\u57fa\u672c\u7684\u4e86\u89e3": [36, 88], "\u60a8\u53ef\u4ee5\u901a\u8fc7\u4ee5\u4e0b\u51e0\u79cd\u65b9\u5f0f\u8fd0\u884c\u672c\u6559\u7a0b": [36, 88], "\u5728\u4e91\u7aef": [36, 88], "\u8fd9\u662f\u5f00\u59cb\u7684\u6700\u7b80\u5355\u65b9\u5f0f": [36, 88], "\u6bcf\u4e2a\u90e8\u5206\u7684\u9876\u90e8\u90fd\u6709\u4e00\u4e2a": 36, "\u5728microsoft": 36, "learn\u4e2d\u8fd0\u884c": 36, "\u5728googl": 36, "colab\u4e2d\u8fd0\u884c": [36, 238], "\u7684\u94fe\u63a5": 36, "\u5206\u522b\u4f1a\u5728microsoft": 36, "learn\u6216googl": 36, "colab\u4e2d\u6253\u5f00\u4e00\u4e2a\u96c6\u6210\u7684\u7b14\u8bb0\u672c": 36, "\u63d0\u4f9b\u5e26\u6709\u4ee3\u7801\u7684\u5b8c\u5168\u6258\u7ba1\u73af\u5883": 36, "\u672c\u5730\u8fd0\u884c": 36, "\u6b64\u9009\u9879\u9700\u8981\u60a8\u9996\u5148\u5728\u672c\u5730\u673a\u5668\u4e0a\u8bbe\u7f6epytorch\u548ctorchvis": [36, 88], "\u5b89\u88c5\u8bf4\u660e": [36, 88], "\u4e0b\u8f7d\u7b14\u8bb0\u672c\u6216\u5c06\u4ee3\u7801\u590d\u5236\u5230\u60a8\u559c\u6b22\u7684ide\u4e2d": 36, "\u5982\u679c\u60a8\u719f\u6089\u5176\u4ed6\u6df1\u5ea6\u5b66\u4e60\u6846\u67b6": 36, "\u8bf7\u5148\u67e5\u770b": 36, "\u4ee5\u5feb\u901f\u719f\u6089pytorch\u7684api": 36, "\u5982\u679c\u60a8\u662f\u6df1\u5ea6\u5b66\u4e60\u6846\u67b6\u7684\u65b0\u624b": 36, "\u8bf7\u76f4\u63a5\u8fdb\u5165\u6211\u4eec\u9010\u6b65\u6307\u5357\u7684\u7b2c\u4e00\u90e8\u5206": 36, "\u4f18\u5316\u6a21\u578b": 36, "\u4fdd\u5b58": [36, 242, 244], "\u52a0\u8f7d\u548c\u4f7f\u7528\u6a21\u578b": 36, "\u73b0\u5728\u6211\u4eec\u6709\u4e86\u6a21\u578b\u548c\u6570\u636e": 37, "\u662f\u65f6\u5019\u901a\u8fc7\u5728\u6570\u636e\u4e0a\u4f18\u5316\u6a21\u578b\u53c2\u6570\u6765\u8bad\u7ec3": 37, "\u9a8c\u8bc1\u548c\u6d4b\u8bd5\u6211\u4eec\u7684\u6a21\u578b\u4e86": 37, "\u8bad\u7ec3\u6a21\u578b\u662f\u4e00\u4e2a\u8fed\u4ee3\u8fc7\u7a0b": 37, "\u5728\u6bcf\u6b21\u8fed\u4ee3\u4e2d": 37, "\u6a21\u578b\u4f1a\u5bf9\u8f93\u51fa\u8fdb\u884c\u731c\u6d4b": 37, "\u8ba1\u7b97\u5176\u731c\u6d4b\u7684\u8bef\u5dee": 37, "\u635f\u5931": [37, 89, 96], "\u6536\u96c6\u8bef\u5dee\u76f8\u5bf9\u4e8e\u5176\u53c2\u6570\u7684\u5bfc\u6570": 37, "\u5982\u6211\u4eec\u5728": 37, "\u524d\u4e00\u8282": 37, "_\u4e2d\u6240\u89c1": 37, "\u5e76\u4f7f\u7528\u68af\u5ea6\u4e0b\u964d\u6cd5": 37, "\u4f18\u5316": [37, 92, 252], "\u8fd9\u4e9b\u53c2\u6570": 37, "\u6709\u5173\u6b64\u8fc7\u7a0b\u7684\u66f4\u8be6\u7ec6\u8bb2\u89e3": 37, "3blue1brown": [37, 43], "\u7684\u8fd9\u4e2a\u89c6\u9891": 37, "www": [37, 49, 94, 104, 138, 166, 179, 238, 263, 265], "youtub": [37, 53, 54, 55, 56, 89, 90, 92, 93, 94, 95, 96, 121, 132, 133, 176], "tiehlnjs5u8": 37, "\u6211\u4eec\u52a0\u8f7d\u524d\u51e0\u8282\u4e2d\u7684": 37, "\u6570\u636e\u96c6\u548c\u6570\u636e\u52a0\u8f7d\u5668": 37, "_\u548c": 37, "\u6784\u5efa\u6a21\u578b": [37, 88, 89, 90, 92, 94, 95, 96], "_\u7684\u4ee3\u7801": 37, "flatten": [37, 38, 44, 47, 68, 69, 73, 87, 97, 105, 111, 118, 123, 124, 130, 135, 137, 139, 147, 149, 151, 155, 158, 163, 195, 197, 205, 211, 221, 233, 235, 241], "\u8d85\u53c2\u6570\u662f\u53ef\u8c03\u53c2\u6570": 37, "\u5b83\u4eec\u53ef\u4ee5\u8ba9\u60a8\u63a7\u5236\u6a21\u578b\u7684\u4f18\u5316\u8fc7\u7a0b": 37, "\u4e0d\u540c\u7684\u8d85\u53c2\u6570\u503c\u4f1a\u5f71\u54cd\u6a21\u578b\u7684\u8bad\u7ec3\u548c\u6536\u655b\u901f\u5ea6": 37, "\u9605\u8bfb\u66f4\u591a": 37, "\u5173\u4e8e\u8d85\u53c2\u6570\u8c03\u6574\u7684\u5185\u5bb9": 37, "\u6211\u4eec\u4e3a\u8bad\u7ec3\u5b9a\u4e49\u4ee5\u4e0b\u8d85\u53c2\u6570": 37, "epoch\u6570\u91cf": 37, "\u8fed\u4ee3\u6574\u4e2a\u6570\u636e\u96c6\u7684\u6b21\u6570": 37, "\u6279\u91cf\u5927\u5c0f": 37, "\u5728\u66f4\u65b0\u53c2\u6570\u4e4b\u524d": 37, "\u901a\u8fc7\u7f51\u7edc\u4f20\u64ad\u7684\u6570\u636e\u6837\u672c\u6570\u91cf": 37, "\u5b66\u4e60\u7387": 37, "\u5728\u6bcf\u4e2a\u6279\u6b21": 37, "epoch\u4e2d\u66f4\u65b0\u6a21\u578b\u53c2\u6570\u7684\u5e45\u5ea6": 37, "\u8f83\u5c0f\u7684\u503c\u4f1a\u5bfc\u81f4\u5b66\u4e60\u901f\u5ea6\u7f13\u6162": 37, "\u800c\u8f83\u5927\u7684\u503c\u53ef\u80fd\u4f1a\u5bfc\u81f4\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u51fa\u73b0\u4e0d\u53ef\u9884\u6d4b\u7684\u884c\u4e3a": 37, "learning_r": [37, 47, 49, 63, 64, 68, 69, 71, 72, 97, 111, 126, 127, 128, 138, 149, 166], "\u4e00\u65e6\u8bbe\u7f6e\u597d\u8d85\u53c2\u6570": 37, "\u6211\u4eec\u5c31\u53ef\u4ee5\u7528\u4f18\u5316\u5faa\u73af\u6765\u8bad\u7ec3\u548c\u4f18\u5316\u6211\u4eec\u7684\u6a21\u578b": 37, "\u4f18\u5316\u5faa\u73af\u7684\u6bcf\u6b21\u8fed\u4ee3\u79f0\u4e3a\u4e00\u4e2a": 37, "\u6bcf\u4e2aepoch\u7531\u4e24\u4e2a\u4e3b\u8981\u90e8\u5206\u7ec4\u6210": 37, "\u8bad\u7ec3\u5faa\u73af": 37, "\u8fed\u4ee3\u8bad\u7ec3\u6570\u636e\u96c6\u5e76\u5c1d\u8bd5\u6536\u655b\u5230\u6700\u4f73\u53c2\u6570": 37, "\u9a8c\u8bc1": [37, 96], "\u6d4b\u8bd5\u5faa\u73af": 37, "\u8fed\u4ee3\u6d4b\u8bd5\u6570\u636e\u96c6\u4ee5\u68c0\u67e5\u6a21\u578b\u6027\u80fd\u662f\u5426\u6709\u63d0\u9ad8": 37, "\u8ba9\u6211\u4eec\u7b80\u8981\u4e86\u89e3\u8bad\u7ec3\u5faa\u73af\u4e2d\u4f7f\u7528\u7684\u4e00\u4e9b\u6982\u5ff5": 37, "\u8df3\u5230\u524d\u9762\u67e5\u770b\u4f18\u5316\u5faa\u73af\u7684": 37, "\u5f53\u9762\u5bf9\u4e00\u4e9b\u8bad\u7ec3\u6570\u636e\u65f6": 37, "\u6211\u4eec\u672a\u8bad\u7ec3\u7684\u7f51\u7edc\u53ef\u80fd\u4e0d\u4f1a\u7ed9\u51fa\u6b63\u786e\u7684\u7b54\u6848": 37, "\u8861\u91cf\u83b7\u5f97\u7684\u7ed3\u679c\u4e0e\u76ee\u6807\u503c\u7684\u5dee\u5f02\u7a0b\u5ea6": 37, "\u8fd9\u662f\u6211\u4eec\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u5e0c\u671b\u6700\u5c0f\u5316\u7684": 37, "\u8981\u8ba1\u7b97\u635f\u5931": 37, "\u6211\u4eec\u4f7f\u7528\u7ed9\u5b9a\u6570\u636e\u6837\u672c\u7684\u8f93\u5165\u8fdb\u884c\u9884\u6d4b": 37, "\u5e76\u5c06\u5176\u4e0e\u771f\u5b9e\u7684\u6570\u636e\u6807\u7b7e\u503c\u8fdb\u884c\u6bd4\u8f83": 37, "\u5e38\u89c1\u7684\u635f\u5931\u51fd\u6570\u5305\u62ec\u7528\u4e8e\u56de\u5f52\u4efb\u52a1\u7684": 37, "\u5747\u65b9\u8bef\u5dee": [37, 93], "\u4ee5\u53ca\u7528\u4e8e\u5206\u7c7b\u7684": 37, "nllloss": [37, 99, 102, 103, 110, 115, 127, 128, 166], "\u8d1f\u5bf9\u6570\u4f3c\u7136": 37, "_\u7ed3\u5408\u4e86": 37, "logsoftmax": [37, 78, 110, 115, 127, 128], "\u6211\u4eec\u5c06\u6a21\u578b\u7684\u8f93\u51falogits\u4f20\u9012\u7ed9": 37, "\u5b83\u5c06\u6807\u51c6\u5316logits\u5e76\u8ba1\u7b97\u9884\u6d4b\u8bef\u5dee": 37, "loss_fn": [37, 38, 68, 69, 78, 96, 111, 118, 134, 135, 137, 147, 150, 155, 162, 216, 232, 261], "\u4f18\u5316\u662f\u8c03\u6574\u6a21\u578b\u53c2\u6570\u4ee5\u51cf\u5c11\u6bcf\u6b21\u8bad\u7ec3\u6b65\u9aa4\u4e2d\u7684\u6a21\u578b\u8bef\u5dee\u7684\u8fc7\u7a0b": 37, "\u4f18\u5316\u7b97\u6cd5": 37, "\u5b9a\u4e49\u4e86\u8fd9\u4e2a\u8fc7\u7a0b\u5982\u4f55\u8fdb\u884c": 37, "\u5728\u8fd9\u4e2a\u4f8b\u5b50\u4e2d\u6211\u4eec\u4f7f\u7528\u968f\u673a\u68af\u5ea6\u4e0b\u964d\u6cd5": 37, "\u6240\u6709\u4f18\u5316\u903b\u8f91\u90fd\u5c01\u88c5\u5728": 37, "\u5bf9\u8c61\u4e2d": 37, "\u5728\u8fd9\u91cc": [37, 90, 92, 96, 111, 236, 244, 254], "\u6211\u4eec\u4f7f\u7528sgd\u4f18\u5316\u5668": 37, "\u6b64\u5916": [37, 93, 188, 216, 232, 233], "pytorch\u4e2d\u8fd8\u6709\u8bb8\u591a": 37, "\u4e0d\u540c\u7684\u4f18\u5316\u5668": 37, "\u5982adam\u548crmsprop": 37, "\u5b83\u4eec\u5bf9\u4e0d\u540c\u7c7b\u578b\u7684\u6a21\u578b\u548c\u6570\u636e\u6548\u679c\u66f4\u597d": 37, "\u6211\u4eec\u901a\u8fc7\u6ce8\u518c\u9700\u8981\u8bad\u7ec3\u7684\u6a21\u578b\u53c2\u6570\u5e76\u4f20\u5165\u5b66\u4e60\u7387\u8d85\u53c2\u6570\u6765\u521d\u59cb\u5316\u4f18\u5316\u5668": 37, "\u5728\u8bad\u7ec3\u5faa\u73af\u4e2d": 37, "\u4f18\u5316\u5206\u4e3a\u4e09\u4e2a\u6b65\u9aa4": 37, "\u8c03\u7528": [37, 95, 104, 239, 242, 243, 247, 248, 249], "\u6765\u91cd\u7f6e\u6a21\u578b\u53c2\u6570\u7684\u68af\u5ea6": 37, "\u68af\u5ea6\u4f1a\u7d2f\u52a0": 37, "\u4e3a\u9632\u6b62\u91cd\u590d\u8ba1\u7b97": 37, "\u6211\u4eec\u5728\u6bcf\u6b21\u8fed\u4ee3\u65f6\u663e\u5f0f\u5c06\u5176\u5f52\u96f6": 37, "\u53cd\u5411\u4f20\u64ad\u9884\u6d4b\u635f\u5931": 37, "pytorch\u4f1a\u5c06\u635f\u5931\u76f8\u5bf9\u4e8e\u6bcf\u4e2a\u53c2\u6570\u7684\u68af\u5ea6\u5b58\u50a8\u4e0b\u6765": 37, "\u4e00\u65e6\u6211\u4eec\u6709\u4e86\u68af\u5ea6": 37, "\u5c31\u8c03\u7528": 37, "\u901a\u8fc7\u53cd\u5411\u4f20\u64ad\u4e2d\u6536\u96c6\u7684\u68af\u5ea6\u6765\u8c03\u6574\u53c2\u6570": 37, "\u6211\u4eec\u5b9a\u4e49\u4e86": 37, "train_loop": 37, "\u6765\u5faa\u73af\u6267\u884c\u4f18\u5316\u4ee3\u7801": 37, "\u5e76\u5b9a\u4e49\u4e86": 37, "test_loop": 37, "\u6765\u8bc4\u4f30\u6a21\u578b\u5728\u6d4b\u8bd5\u6570\u636e\u4e0a\u7684\u6027\u80fd": 37, "unnecessari": [37, 172, 178], "7f": [37, 38], "8f": [37, 38], "\u6211\u4eec\u521d\u59cb\u5316\u635f\u5931\u51fd\u6570\u548c\u4f18\u5316\u5668": 37, "\u5e76\u5c06\u5b83\u4eec\u4f20\u9012\u7ed9": 37, "\u60a8\u53ef\u4ee5\u5c1d\u8bd5\u589e\u52a0epoch\u7684\u6570\u91cf\u4ee5\u89c2\u5bdf\u6a21\u578b\u6027\u80fd\u7684\u63d0\u5347": 37, "warmstart": [37, 237], "\u672c\u8282\u5c06\u4ecb\u7ecd\u673a\u5668\u5b66\u4e60\u4efb\u52a1\u4e2d\u5e38\u7528\u7684api": 38, "\u60f3\u66f4\u6df1\u5165\u4e86\u89e3\u5404\u6a21\u5757\u5185\u5bb9": 38, "\u53ef\u53c2\u8003\u6bcf\u8282\u6587\u672b\u5904\u7684\u94fe\u63a5": 38, "\u63d0\u4f9b\u4e86\u4e24\u4e2a\u7528\u4e8e": 38, "\u5904\u7406\u6570\u636e\u7684\u539f\u8bed": 38, "\u5219\u5728": 38, "\u5916\u90e8\u5c01\u88c5\u4e00\u5c42": 38, "\u53d8\u4e3a\u53ef\u8fed\u4ee3\u5bf9\u8c61": 38, "\u63d0\u4f9b\u4e86\u7279\u5b9a\u9886\u57df\u7684\u5e93": 38, "torchaudio": [38, 50, 92, 96, 121, 122, 159, 169, 185, 189, 238], "\u6240\u6709\u8fd9\u4e9b\u5e93\u90fd\u5305\u542b\u4e86\u5bf9\u5e94\u6570\u636e\u96c6": 38, "\u5728\u672c\u6559\u7a0b\u4e2d": [38, 129, 188, 209, 212, 214, 216, 218, 221, 223, 228, 231, 235, 239, 240, 242, 244, 245, 246, 247, 248, 250, 251, 252, 254, 257, 258, 259, 260, 261], "\u6211\u4eec\u5c06\u4f7f\u7528": [38, 89, 90, 96, 104, 188, 212, 218, 235, 236, 238, 240, 242, 243, 244, 245, 250, 251, 254], "\u6a21\u5757\u5305\u542b\u8bb8\u591a\u73b0\u5b9e\u4e16\u754c\u89c6\u89c9\u6570\u636e": 38, "cifar": [38, 44, 92, 170], "coco": [38, 179], "\u6570\u636e\u96c6\u5217\u8868": 38, "\u6211\u4eec\u4f7f\u7528": [38, 41, 96, 104, 111, 215, 221, 231, 251], "\u6bcf\u4e2atorchvis": 38, "\u5305\u62ec\u4e24\u4e2a\u53c2\u6570": 38, "\u5206\u522b\u7528\u4e8e\u4fee\u6539\u6837\u672c\u6570\u636e\u548c\u6807\u7b7e": 38, "\u6211\u4eec\u5c06": [38, 90, 95, 254, 260], "\u4f5c\u4e3a\u53c2\u6570\u4f20\u9012\u7ed9": 38, "\u5728\u6570\u636e\u96c6\u4e0a\u5c01\u88c5\u4e86\u4e00\u4e2a\u53ef\u8fed\u4ee3\u5bf9\u8c61": 38, "\u652f\u6301\u81ea\u52a8\u6279\u5904\u7406": 38, "\u91c7\u6837": 38, "\u6253\u4e71\u548c\u591a\u8fdb\u7a0b\u6570\u636e\u52a0\u8f7d": 38, "\u8fd9\u91cc\u6211\u4eec\u5b9a\u4e49\u4e00\u4e2a\u6279\u5904\u7406\u5927\u5c0f\u4e3a": 38, "\u5373": [38, 89, 104, 246], "\u6bcf\u6279\u5c06\u8fd4\u56de\u5927\u5c0f\u4e3a": 38, "\u7684\u7279\u5f81\u6570\u636e\u548c\u6807\u7b7e": 38, "\u83b7\u53d6\u66f4\u591a\u5173\u4e8e": 38, "pytorch\u6570\u636e\u52a0\u8f7d": 38, "\u7684\u4fe1\u606f": 38, "\u8981\u5728": [38, 72], "\u4e2d\u5b9a\u4e49\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc": 38, "\u6211\u4eec\u9700\u8981\u521b\u5efa\u4e00\u4e2a\u7ee7\u627f\u81ea": 38, "\u7684\u7c7b": [38, 93], "\u6211\u4eec\u5728": [38, 94, 104, 239], "\u51fd\u6570\u4e2d\u5b9a\u4e49\u7f51\u7edc\u7684\u5c42": 38, "\u51fd\u6570\u4e2d\u6307\u5b9a\u6570\u636e\u5982\u4f55\u7ecf\u8fc7\u7f51\u7edc": 38, "\u4e3a\u4e86\u52a0\u901f\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u8fd0\u7b97": 38, "\u6211\u4eec\u5c06\u5176\u79fb\u5230": 38, "pytorch\u6784\u5efa\u795e\u7ecf\u7f51\u7edc": 38, "\u7684\u5185\u5bb9": 38, "\u7ec3\u4e00\u4e2a\u6a21\u578b": 38, "\u6211\u4eec\u9700\u8981\u4e00\u4e2a": 38, "\u635f\u5931\u51fd\u6570": [38, 89, 92, 104], "\u548c\u4e00\u4e2a": 38, "\u4f18\u5316\u5668": [38, 92, 212, 218, 243, 244, 249, 251, 261], "\u5728\u5355\u4e2a\u8bad\u7ec3\u5faa\u73af\u4e2d": 38, "\u6a21\u578b\u5bf9\u8bad\u7ec3\u6570\u636e\u96c6": 38, "\u5206\u6279\u8f93\u5165": 38, "\u8fdb\u884c\u9884\u6d4b": 38, "\u5e76\u901a\u8fc7\u53cd\u5411\u4f20\u64ad\u9884\u6d4b\u8bef\u5dee\u6765\u8c03\u6574\u6a21\u578b\u7684\u53c2\u6570": 38, "\u6211\u4eec\u8fd8\u9700\u68c0\u67e5\u6a21\u578b\u5728\u6d4b\u8bd5\u6570\u636e\u96c6\u4e0a\u7684\u6548\u679c": 38, "\u4ee5\u786e\u4fdd\u5b83\u5728\u6301\u7eed\u5b66\u4e60": 38, "\u901a\u8fc7\u591a\u6b21\u8fed\u4ee3": 38, "\u8fdb\u884c\u8bad\u7ec3": 38, "\u5728\u6bcf\u4e2a\u8fed\u4ee3\u8fc7\u7a0b\u4e2d": 38, "\u6a21\u578b\u901a\u8fc7\u5bf9\u53c2\u6570\u7684\u5b66\u4e60\u4ee5\u63d0\u9ad8\u9884\u6d4b\u51c6\u786e\u6027": 38, "\u6211\u4eec\u5728\u6bcf\u4e2a": [38, 104], "\u6253\u5370\u6a21\u578b\u7684\u51c6\u786e\u7387\u548c\u635f\u5931": 38, "\u6211\u4eec\u5e0c\u671b\u770b\u5230\u968f\u7740\u6bcf\u4e2a": 38, "\u8bad\u7ec3": [38, 96, 238], "\u6a21\u578b\u9884\u6d4b\u51c6\u786e\u7387\u4e0d\u65ad\u63d0\u9ad8": 38, "\u635f\u5931\u9010\u6e10\u51cf\u5c11": 38, "\u8bad\u7ec3\u6a21\u578b": [38, 88, 89, 90, 92, 93, 94, 95], "\u4fdd\u5b58\u6a21\u578b\u7684\u5e38\u89c1\u65b9\u6cd5\u662f\u5c06\u5185\u90e8\u72b6\u6001\u5b57\u5178": 38, "\u5305\u542b\u6a21\u578b\u53c2\u6570": 38, "\u5e8f\u5217\u5316": 38, "\u52a0\u8f7d\u6a21\u578b\u7684\u8fc7\u7a0b\u5305\u62ec\u91cd\u65b0\u521b\u5efa\u6a21\u578b\u7ed3\u6784\u5e76\u52a0\u8f7d\u5176\u5185\u90e8\u72b6\u6001\u5b57\u5178": 38, "\u8fd9\u4e2a\u6a21\u578b\u73b0\u5728\u53ef\u4ee5\u7528\u6765\u8fdb\u884c\u9884\u6d4b\u4e86": 38, "\u83b7\u53d6\u66f4\u591a\u6709\u5173": 38, "\u5728\u672c\u8282\u4e2d": 39, "\u6211\u4eec\u5c06\u5b66\u4e60\u5982\u4f55\u901a\u8fc7\u4fdd\u5b58": 39, "\u52a0\u8f7d\u4ee5\u53ca\u8fd0\u884c\u6a21\u578b\u9884\u6d4b": 39, "\u6765\u6301\u4e45\u5316\u6a21\u578b": 39, "pytorch\u6a21\u578b\u5c06\u5b66\u4e60\u5230\u7684\u53c2\u6570\u5b58\u50a8\u5728\u4e00\u4e2a\u5185\u90e8\u72b6\u6001\u5b57\u5178\u4e2d": 39, "\u8fd9\u4e9b\u53c2\u6570\u53ef\u4ee5\u901a\u8fc7": 39, "\u8fdb\u884c\u6301\u4e45\u5316": 39, "vgg16": [39, 148], "imagenet1k_v1": [39, 90, 117, 140, 169, 197, 231], "model_weight": 39, "\u8981\u52a0\u8f7d\u6a21\u578b\u6743\u91cd": 39, "\u60a8\u9700\u8981\u5148\u521b\u5efa\u4e00\u4e2a\u76f8\u540c\u6a21\u578b\u7684\u5b9e\u4f8b": 39, "\u7136\u540e\u4f7f\u7528": [39, 243, 245], "\u65b9\u6cd5\u52a0\u8f7d\u53c2\u6570": 39, "untrain": 39, "\u6ce8\u610f": [39, 89, 90, 95, 96, 104, 215, 218, 240, 242, 244, 252, 260], "\u5728\u8fdb\u884c\u63a8\u7406\u4e4b\u524d": 39, "\u8bf7\u786e\u4fdd\u8c03\u7528": [39, 242], "\u65b9\u6cd5\u4ee5\u5c06": 39, "layers\u8bbe\u7f6e\u4e3a\u8bc4\u4f30\u6a21\u5f0f": [39, 244], "\u5982\u679c\u4e0d\u8fd9\u6837\u505a": [39, 243], "\u5c06\u5bfc\u81f4\u4e0d\u4e00\u81f4\u7684\u63a8\u7406\u7ed3\u679c": 39, "\u5728\u52a0\u8f7d\u6a21\u578b\u6743\u91cd\u65f6": 39, "\u6211\u4eec\u9700\u8981\u5148\u5b9e\u4f8b\u5316\u6a21\u578b\u7c7b": 39, "\u56e0\u4e3a\u7c7b\u5b9a\u4e49\u4e86\u7f51\u7edc\u7684\u7ed3\u6784": 39, "\u6211\u4eec\u53ef\u80fd\u5e0c\u671b\u5c06\u8fd9\u4e2a\u7c7b\u7684\u7ed3\u6784\u4e0e\u6a21\u578b\u4e00\u8d77\u4fdd\u5b58": 39, "\u6211\u4eec\u53ef\u4ee5\u5c06": 39, "\u800c\u4e0d\u662f": [39, 89, 95, 96, 104, 111, 232, 233], "\u4f20\u9012\u7ed9": [39, 240, 242], "\u51fd\u6570": [39, 41, 89, 92, 104, 111, 188, 235, 236, 240, 242, 244, 258, 259], "\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u5982\u4e0b\u65b9\u5f0f\u52a0\u8f7d\u6a21\u578b": 39, "\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u901a\u7528checkpoint": 39, "\u7684\u5b9e\u7528\u6280\u5de7": 39, "\u7c7b\u4f3c\u4e8e\u6570\u7ec4\u548c\u77e9\u9635": 40, "\u5f20\u91cf\u4e5f\u662f\u4e00\u79cd\u7279\u5b9a\u7684\u6570\u636e\u7ed3\u6784": 40, "\u5728pytorch\u4e2d": [40, 111, 235, 244], "\u6211\u4eec\u4f7f\u7528\u5f20\u91cf\u5bf9\u4e00\u4e2a\u6a21\u578b\u7684\u53c2\u6570": 40, "\u8f93\u5165\u548c\u8f93\u51fa\u8fdb\u884c\u7f16\u7801": 40, "\u5f20\u91cf\u7684\u7ed3\u6784\u7c7b\u4f3c\u4e8e": 40, "\u4e2d\u7684ndarrai": 40, "\u800c\u5f20\u91cf\u53ef\u4ee5\u8fd0\u884c\u5728gpu\u53ca\u5176\u4ed6\u76f8\u4f3c\u7684\u786c\u4ef6\u52a0\u901f\u5668\u4e0a": 40, "\u4e8b\u5b9e\u4e0a": [40, 92, 93], "\u4e3a\u4e86\u51cf\u5c11\u6570\u636e\u7684\u62f7\u8d1d": 40, "\u5f20\u91cf\u548cnumpi": 40, "arrays\u5728\u5e95\u5c42\u5e38\u5e38\u5171\u4eab\u540c\u4e00\u5757\u5185\u5b58": 40, "bridg": [40, 85, 227], "role": [40, 103, 157, 164, 178, 265], "\u5728\u81ea\u52a8\u5fae\u5206": 40, "\u7684\u8fc7\u7a0b\u4e2d\u4e5f\u4f7f\u7528\u5f20\u91cf\u8fdb\u884c\u4f18\u5316": 40, "\u5728\u540e\u7eed": 40, "\u7ae0\u8282\u53ef\u4ee5\u770b\u5230\u66f4\u591a\u6709\u5173\u5185\u5bb9": 40, "\u5982\u679c\u5df2\u7ecf\u5bf9ndarrays\u5341\u5206\u719f\u6089\u4e86": 40, "\u90a3\u5bf9\u5f20\u91cf\u7684api\u4e5f\u53ef\u4ee5\u8fd0\u7528\u81ea\u5982": 40, "\u5982\u679c\u8fd8\u4e0d\u719f\u6089": 40, "\u4e0b\u9762\u7684\u6559\u7a0b\u4f1a\u5e2e\u52a9\u4f60\u4e0a\u624b": 40, "\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u591a\u79cd\u65b9\u5f0f\u521b\u5efa\u4e00\u4e2a\u5f20\u91cf": 40, "\u4f7f\u7528\u6570\u636e\u521b\u5efa": 40, "\u901a\u8fc7\u5df2\u5b9a\u4e49\u7684\u6570\u636e\u53ef\u4ee5\u76f4\u63a5\u521b\u5efa\u51fa\u6765\u5f20\u91cf": 40, "\u521b\u5efa\u65f6\u4f1a\u81ea\u52a8\u63a8\u65ad\u6570\u636e\u7c7b\u578b": 40, "x_data": [40, 48], "\u4f7f\u7528numpi": 40, "array\u521b\u5efa": 40, "\u53ef\u4ee5\u4f7f\u7528numpi": 40, "array\u521b\u5efa\u5f20\u91cf": 40, "\u53cd\u4e4b\u4ea6\u53ef": 40, "np_arrai": [40, 48], "x_np": [40, 48], "\u4f7f\u7528\u5df2\u6709\u5f20\u91cf\u521b\u5efa": 40, "\u65b0\u7684\u5f20\u91cf\u4f1a\u4fdd\u7559\u539f\u5f20\u91cf\u7684\u5c5e\u6027": 40, "\u5f62\u72b6": [40, 95], "\u6570\u636e\u7c7b\u578b": [40, 72, 232, 249], "\u9664\u975e\u521b\u5efa\u65f6\u663e\u793a\u58f0\u660e": 40, "x_one": [40, 48], "Ones": [40, 48], "x_rand": [40, 48], "rand_lik": [40, 48, 95, 142, 154], "\u901a\u8fc7\u968f\u673a\u6216\u5e38\u91cf\u521b\u5efa": 40, "\u63cf\u8ff0\u4e86\u5f20\u91cf\u7684\u7ef4\u5ea6": 40, "\u5728\u4e0b\u9762\u7684\u65b9\u6cd5\u8c03\u7528\u65f6": 40, "\u901a\u8fc7\u5b83\u6765\u58f0\u660e\u521b\u5efa\u5f20\u91cf\u7684\u7ef4\u5ea6": 40, "rand_tensor": [40, 48], "ones_tensor": [40, 48], "zeros_tensor": [40, 48], "\u5f20\u91cf\u7684\u5c5e\u6027\u4fdd\u5b58\u4e86\u5176\u5f62\u72b6": 40, "\u4ee5\u53ca\u5176\u5b58\u50a8\u8bbe\u5907\u7c7b\u578b": 40, "\u5f20\u91cf\u6709\u8d85\u8fc7100\u4e2a\u64cd\u4f5c\u65b9\u6cd5": 40, "\u5305\u62ec\u7b97\u6570": 40, "\u7ebf\u6027\u4ee3\u6570": 40, "\u77e9\u9635\u64cd\u4f5c": 40, "\u8f6c\u7f6e": 40, "\u7d22\u5f15": 40, "\u5207\u7247": 40, "\u91c7\u6837\u7b49": 40, "\u90fd\u5728": 40, "\u8fd9\u91cc": [40, 41, 90, 93, 95, 96, 104, 223, 232, 249], "\u6709\u8be6\u7ec6\u7684\u63cf\u8ff0": 40, "\u6bcf\u4e2a\u64cd\u4f5c\u90fd\u53ef\u4ee5\u5728gpu\u4e0a\u8fd0\u884c": 40, "\u901a\u5e38\u6bd4\u5728cpu\u4e0a\u901f\u5ea6\u66f4\u5feb": 40, "\u5982\u679c\u4f60\u5728\u4f7f\u7528colab": 40, "\u53ef\u4ee5\u901a\u8fc7\u4fee\u6539runtim": 40, "gpu\u6765\u5206\u914d\u4e00\u4e2agpu": 40, "\u9ed8\u8ba4\u60c5\u51b5\u4e0b\u5f20\u91cf\u662f\u5728cpu\u4e0a\u521b\u5efa\u7684": 40, "\u53ef\u4ee5\u901a\u8fc7": [40, 93, 233], "\u65b9\u6cd5\u5c06\u5f20\u91cf\u663e\u793a\u7684\u8f6c\u79fb\u5230gpu\u4e0a": 40, "\u5982\u679cgpu\u5728\u4f60\u7684\u73af\u5883\u91cc\u53ef\u7528\u7684\u8bdd": 40, "\u9700\u8981\u6ce8\u610f\u7684\u662f": 40, "\u5728\u4e0d\u540c\u8bbe\u5907\u95f4\u590d\u5236\u5927\u578b\u5f20\u91cf\u9700\u8981\u6d88\u8017\u5927\u91cf\u5185\u5b58": 40, "\u5e76\u4e14\u8017\u65f6\u8f83\u957f": 40, "\u5c1d\u8bd5\u4e0b\u5217\u64cd\u4f5c": 40, "\u5982\u679c\u4f60\u5df2\u7ecf\u5bf9numpi": 40, "api\u5341\u5206\u719f\u6089": 40, "\u4e0a\u624b\u5f20\u91cfapi\u5c06\u4f1a\u5f88\u7b80\u5355": 40, "\u7c7b\u4f3cnumpy\u7684\u7d22\u5f15\u548c\u5207\u7247\u64cd\u4f5c": 40, "\u8fde\u63a5\u5f20\u91cf": 40, "\u4f60\u53ef\u4ee5\u4f7f\u7528": [40, 95], "\u6cbf\u7740\u7ed9\u5b9a\u7684\u7ef4\u5ea6\u8fde\u63a5\u4e00\u7cfb\u5217\u5f20\u91cf": 40, "\u53e6\u4e00\u4e2a\u5f20\u91cf\u8fde\u63a5\u64cd\u4f5c\u7b26": 40, "\u4e0e": [40, 92, 93, 95, 111, 216, 249, 257], "\u7a0d\u6709\u4e0d\u540c": 40, "\u8bf7\u53c2\u9605": [40, 89, 94, 95, 209, 212, 215, 232, 247, 248, 249, 258, 259, 260], "\u8fd0\u7b97\u64cd\u4f5c": 40, "y1": [40, 179, 247], "y2": 40, "y3": 40, "wise": [40, 48, 73, 95, 99, 110, 124, 136, 145, 148, 151], "z1": [40, 145], "z2": 40, "z3": 40, "\u5355\u4e2a\u5143\u7d20\u7684\u5f20\u91cf": 40, "\u5728\u805a\u5408\u8fd0\u7b97\u573a\u666f\u4e2d": 40, "\u4f60\u53ef\u80fd\u4f1a\u5f97\u5230\u4e00\u4e2a\u5355\u5143\u7d20\u7684\u5f20\u91cf": 40, "\u53ef\u4f7f\u7528": 40, "\u5c06\u5176\u4f20\u5524\u4e3apython\u6570\u503c": 40, "agg": [40, 150, 166], "agg_item": 40, "\u539f\u5730\u64cd\u4f5c": 40, "\u4fee\u6539\u5f20\u91cf\u4e2d\u7684\u539f\u503c\u64cd\u4f5c\u79f0\u4e3a\u539f\u5730\u64cd\u4f5c": 40, "\u5b83\u4eec\u4ee5": 40, "\u540e\u7f00\u8868\u793a": 40, "t_": [40, 48, 265], "\u4f1a\u6539\u53d8": 40, "add_": [40, 48, 80, 95, 127, 128, 174, 175, 191, 208, 218], "\u5f20\u91cf\u5728\u4f7f\u7528cpu\u65f6": 40, "\u53ef\u4e0enumpi": 40, "arrays\u5171\u4eab\u5185\u5b58\u7a7a\u95f4": 40, "\u4fee\u6539\u5176\u4e2d\u4e00\u4e2a\u4f1a\u540c\u6b65\u6620\u5c04\u5230\u53e6\u4e00\u4e2a\u4e0a": 40, "\u5bf9\u4e8e\u5f20\u91cf\u7684\u4fee\u6539\u4f53\u73b0\u5230\u4e86numpi": 40, "array\u4e0a": 40, "\u6570\u636e\u5e76\u4e0d\u603b\u662f\u4ee5\u8bad\u7ec3\u673a\u5668\u5b66\u4e60\u7b97\u6cd5\u6240\u9700\u7684\u6700\u7ec8\u5904\u7406\u5f62\u5f0f\u5448\u73b0": 41, "\u6765\u5bf9\u6570\u636e\u8fdb\u884c\u4e00\u4e9b\u5904\u7406": 41, "\u4f7f\u5176\u9002\u7528\u4e8e\u8bad\u7ec3": 41, "\u6240\u6709": [41, 95], "\u6570\u636e\u96c6\u90fd\u6709\u4e24\u4e2a\u53c2\u6570": 41, "\u7528\u4e8e\u4fee\u6539\u7279\u5f81": 41, "\u7528\u4e8e\u4fee\u6539\u6807\u7b7e": 41, "\u5b83\u4eec\u63a5\u53d7\u5305\u542b\u8f6c\u6362\u903b\u8f91\u7684\u53ef\u8c03\u7528\u5bf9\u8c61": 41, "\u6a21\u5757\u63d0\u4f9b\u4e86\u51e0\u79cd\u5e38\u7528\u7684\u8f6c\u6362": 41, "\u7684\u7279\u5f81\u662f\u4ee5": 41, "\u56fe\u50cf\u683c\u5f0f\u5448\u73b0\u7684": 41, "\u6807\u7b7e\u662f\u6574\u6570": 41, "\u5bf9\u4e8e\u8bad\u7ec3": 41, "\u6211\u4eec\u9700\u8981\u5c06\u7279\u5f81\u8f6c\u6362\u4e3a\u5f52\u4e00\u5316\u7684\u5f20\u91cf": 41, "\u5c06\u6807\u7b7e\u8f6c\u6362\u4e3a\u7f16\u7801\u7684\u5f20\u91cf": 41, "\u4e3a\u4e86\u8fdb\u884c\u8fd9\u4e9b\u8f6c\u6362": 41, "\u6211\u4eec\u4f7f\u7528\u4e86": [41, 221], "ds": [41, 127, 128, 166], "scatter_": [41, 135, 150, 162], "\u5c06": [41, 92, 121, 215, 232, 244, 245, 249, 253], "\u56fe\u50cf\u6216": 41, "ndarrai": [41, 48, 51, 95, 110, 172], "\u8f6c\u6362\u4e3a": 41, "floattensor": [41, 49, 60, 95], "\u5e76\u5c06\u56fe\u50cf\u7684\u50cf\u7d20\u5f3a\u5ea6\u503c\u7f29\u653e\u5230\u8303\u56f4": 41, "\u5e94\u7528\u4efb\u4f55\u7528\u6237\u5b9a\u4e49\u7684": 41, "\u6211\u4eec\u5b9a\u4e49\u4e00\u4e2a\u51fd\u6570\u5c06\u6574\u6570\u8f6c\u6362\u4e3a\u72ec\u70ed\u7f16\u7801\u7684\u5f20\u91cf": 41, "\u5b83\u9996\u5148\u521b\u5efa\u4e00\u4e2a\u5927\u5c0f\u4e3a": 41, "\u6211\u4eec\u6570\u636e\u96c6\u4e2d\u6807\u7b7e\u7684\u6570\u91cf": 41, "\u7684\u96f6\u5f20\u91cf": 41, "\u7136\u540e\u8c03\u7528": 41, "\u5728\u7531\u6807\u7b7e": 41, "\u6307\u5b9a\u7684\u7d22\u5f15\u4e0a\u8d4b\u503c\u4e3a": 41, "gschwind": 42, "bt": 42, "fastpath": 42, "acceler": [42, 48, 50, 57, 75, 95, 121, 150, 178, 190, 196, 198, 213, 222], "multiheadattent": [42, 165, 195], "mha": [42, 192, 195], "exploit": [42, 97, 147, 166], "sparsiti": [42, 103, 121, 157, 191, 193, 198], "criteria": [42, 52], "blog": [42, 122, 123, 127, 132, 177, 231], "xlm": [42, 138, 186], "predefin": [42, 49, 97, 137, 202], "robertaclassificationhead": 42, "xlmr_larg": 42, "xlmr_large_encod": 42, "classifier_head": 42, "input_dim": [42, 147, 220, 225], "get_model": [42, 104, 113, 162], "small_input_batch": 42, "hello": [42, 49, 58, 59, 60, 99, 103, 140, 153], "big_input_batch": 42, "princ": 42, "genoa": 42, "lucca": 42, "famili": 42, "estat": 42, "buonapart": 42, "war": 42, "defend": [42, 73], "infami": 42, "horror": 42, "perpetr": 42, "antichrist": 42, "believ": [42, 192], "he": [42, 113, 115, 143, 147, 166], "friend": [42, 49, 153], "faith": 42, "slave": 42, "frighten": 42, "juli": 42, "1805": 42, "speaker": [42, 49], "anna": 42, "pavlovna": 42, "scherer": 42, "maid": 42, "honor": 42, "empress": 42, "marya": 42, "fedorovna": 42, "she": [42, 113, 166], "greet": 42, "vasili": 42, "kuragin": 42, "man": [42, 113, 115, 265, 266], "recept": 42, "cough": 42, "suffer": [42, 61, 113, 169], "la": [42, 99], "gripp": 42, "st": [42, 103, 115], "petersburg": 42, "elit": [42, 264, 266, 268], "input_batch": [42, 49, 58, 59, 60, 159], "model_input": [42, 113], "padding_valu": [42, 118], "_transformer_encoder_layer_fwd": 42, "use_cuda": [42, 49, 73, 89, 119, 130, 147, 234, 240], "enable_nested_tensor": 42, "prop": 43, "proportion": [43, 153], "travers": [43, 164], "walkthrough": [43, 48, 82, 109, 227], "resnet18_weight": [43, 197, 231], "3a": [43, 159], "9a": 43, "2b": 43, "dq": [43, 199], "external_grad": 43, "deposit": 43, "bf": 43, "chain": [43, 99, 100, 115, 130, 145, 162, 193, 202], "acycl": [43, 76], "finetun": [43, 75, 125, 153], "unfrozen": 43, "exclusionari": 43, "autodiff": [43, 121, 146], "pillow": [44, 92, 215], "scipi": [44, 121, 131, 173], "librosa": 44, "cython": 44, "nltk": 44, "spaci": [44, 116, 118], "viz": [44, 90, 231], "huge": [44, 99, 103, 124, 134, 137, 150], "airplan": [44, 97], "automobil": [44, 97], "bird": [44, 92, 252], "deer": [44, 92, 252], "dog": [44, 58, 59, 92, 97, 102, 113, 179, 190, 206, 231, 252, 260], "frog": [44, 92, 252], "hors": [44, 92, 252], "truck": [44, 92, 97, 252], "3x32x32": 44, "color": [44, 51, 52, 58, 59, 90, 94, 126, 147, 148, 159, 170, 172, 179, 233, 265], "32x32": [44, 47, 92, 97, 105, 170], "extrem": [44, 103, 148, 265], "pilimag": 44, "brokenpipeerror": 44, "trainset": [44, 87, 92, 170, 252], "trainload": [44, 87, 92, 170, 252], "testset": [44, 87, 92, 170, 252], "testload": [44, 87, 92, 170, 252], "plane": [44, 92, 135, 252], "car": [44, 58, 59, 92, 113, 252], "fun": [44, 49, 105, 107, 108, 160], "unnorm": [44, 92, 118, 170], "npimg": [44, 92, 94, 96, 170], "datait": [44, 92, 94, 96, 170], "make_grid": [44, 51, 52, 92, 94, 96, 117, 158, 167, 170], "5s": [44, 92], "fc1": [44, 47, 73, 78, 87, 92, 93, 94, 96, 105, 112, 123, 130, 139, 155, 157, 163, 167, 170, 186, 205, 223, 235, 241, 242, 243, 244, 245, 250, 251, 252], "fc2": [44, 47, 73, 78, 87, 92, 93, 94, 96, 105, 112, 123, 130, 139, 155, 157, 163, 167, 170, 186, 205, 223, 235, 241, 242, 243, 244, 245, 250, 251, 252], "84": [44, 47, 51, 87, 92, 93, 94, 96, 105, 109, 112, 137, 147, 157, 170, 177, 189, 241, 242, 243, 244, 245, 250, 251, 252], "fc3": [44, 47, 87, 92, 93, 94, 96, 105, 112, 139, 157, 170, 241, 242, 243, 244, 245, 250, 251, 252], "classif": [44, 52, 58, 59, 73, 75, 87, 97, 99, 115, 117, 119, 123, 128, 138, 149, 159, 167, 172, 179, 186, 208, 226, 227], "entropi": [44, 52, 118, 124], "running_loss": [44, 87, 92, 94, 96, 97, 117, 158, 170, 252], "2000": [44, 63, 64, 65, 67, 68, 69, 71, 72, 87, 92, 97, 111, 170, 172, 174, 175, 233, 252, 261], "1999": [44, 65, 87, 92, 111, 252], "mini": [44, 47, 49, 52, 78, 79, 87, 102, 104, 140, 147, 155, 159, 170, 206], "cifar_net": 44, "learnt": 44, "truth": [44, 73, 105, 179, 198], "okai": 44, "groundtruth": 44, "wasn": [44, 98, 101], "energi": [44, 49, 60, 265], "chanc": [44, 49, 97, 147, 255], "hmmm": 44, "correct_pr": 44, "classnam": [44, 52], "total_pr": 44, "correct_count": 44, "chat": [44, 49, 60, 79, 166], "cifar10_tutori": [44, 46, 57], "sung": 45, "kim": 45, "jenni": 45, "kang": 45, "mytensor": 45, "my_tensor": [45, 93, 112, 242], "parallelli": 45, "output_s": [45, 49, 51, 60, 78, 127, 128, 137, 166, 179], "data_s": [45, 78], "getitem": [45, 115], "randomdataset": 45, "__getitem__": [45, 51, 104, 136, 179], "rand_load": 45, "capsul": 45, "monitor": [45, 113, 136, 178], "tin": 45, "former_torchi": [45, 77], "parallelism_tutori": [45, 77, 79], "data_parallel_tutori": [45, 46], "neural_networks_tutori": [46, 47, 57], "gentl": [46, 56, 57, 120], "glimps": 47, "convnet": [47, 81, 137, 147, 158, 163], "5x5": [47, 92, 93, 157], "affin": [47, 92, 102, 130, 167, 177, 180, 220], "wx": [47, 92, 93], "c1": [47, 89, 92, 145, 193], "subsampl": 47, "2x2": [47, 93], "c3": [47, 89, 92], "s4": [47, 92], "f5": [47, 92], "f6": [47, 92], "lenet": [47, 73, 92, 93, 96, 157, 223], "nsampl": [47, 49, 78, 238], "nchannel": [47, 78], "next_funct": [47, 89], "clear": [47, 51, 73, 98, 99, 102, 103, 125, 129, 145, 164, 172, 187, 193], "sub_": 47, "nesterov": [47, 112], "overridden": [48, 137], "breez": [48, 80], "subtli": 48, "problemat": [48, 145, 154, 265], "matthew": [49, 60, 86, 112], "inkawhich": [49, 52, 60, 73, 85, 86, 112], "movi": [49, 50, 60, 113], "cornel": [49, 50, 60], "dialog": [49, 50, 60], "hot": [49, 73, 103, 127, 128, 137, 166], "artifici": [49, 60, 97], "intellig": 49, "onlin": [49, 137, 138, 147, 160, 163], "helpdesk": 49, "bot": [49, 60], "compani": [49, 115], "IT": 49, "teach": [49, 52, 97, 166], "boom": 49, "am": [49, 60, 101, 113, 128, 166, 210], "hospit": [49, 113], "lawyer": 49, "arrest": 49, "kid": 49, "sorri": [49, 95], "san": [49, 113], "francisco": [49, 104, 113], "goodby": [49, 195], "luong": [49, 60, 166], "jointli": [49, 166], "acknowledg": [49, 136], "borrow": [49, 61, 123, 135, 164], "yuan": [49, 60, 224], "kuei": [49, 60], "wu": [49, 60, 187], "ywk991112": [49, 60], "sean": [49, 60, 127, 128, 166], "robertson": [49, 60, 127, 128, 166], "spro": [49, 60], "floydhub": [49, 60], "textutil": [49, 60], "unicodedata": [49, 60, 127, 128, 166], "codec": 49, "itertool": [49, 161, 164, 202, 233], "reformat": 49, "rich": 49, "charact": [49, 60, 103, 113, 127, 128, 132, 160, 166, 265], "220": [49, 164], "579": [49, 148], "292": [49, 87], "035": 49, "617": 49, "713": [49, 92], "utter": [49, 50], "divers": 49, "variat": [49, 131, 191, 205], "formal": [49, 191], "sentiment": 49, "datafil": 49, "corpus_nam": [49, 50, 60], "printlin": 49, "readlin": [49, 75, 127, 128], "jsonl": [49, 50], "tab": [49, 116, 166, 170, 190], "sentenc": [49, 60, 93, 98, 99, 102, 103, 113, 118, 128, 136, 138, 166, 195, 265], "loadlinesandconvers": 49, "lineid": 49, "characterid": 49, "conversationid": 49, "movieid": 49, "extractsentencepair": 49, "iso": 49, "8859": 49, "linejson": 49, "lineobj": 49, "conversation_id": 49, "convobj": 49, "movie_id": 49, "qa_pair": 49, "inputlin": 49, "targetlin": 49, "wrong": [49, 52, 73, 99, 127, 145, 173, 197], "formatted_movie_lin": 49, "delimit": [49, 115, 116], "unescap": 49, "unicode_escap": 49, "nprocess": 49, "nwrite": 49, "outputfil": 49, "writer": [49, 94, 96, 127, 138, 143, 159, 160, 170, 186, 247], "linetermin": 49, "writerow": 49, "busi": [49, 115, 128, 177], "implicit": [49, 265], "discret": [49, 222, 265], "voc": [49, 60], "addword": [49, 60, 166], "addsent": [49, 60, 166], "infrequ": 49, "pad_token": [49, 60, 138], "sos_token": [49, 60, 166, 255], "eos_token": [49, 60, 166], "word2index": [49, 60, 166], "word2count": [49, 60, 166], "index2word": [49, 60, 166], "min_count": [49, 60], "keep_word": [49, 60], "reiniti": [49, 52, 60], "unicod": [49, 127, 128, 166], "ascii": [49, 103, 127, 128, 166], "unicodetoascii": [49, 127, 128, 166], "letter": [49, 60, 127, 128, 166, 266], "lowercas": [49, 60, 166], "punctuat": [49, 166], "normalizestr": [49, 60, 166], "aid": [49, 112, 113], "filterpair": [49, 166], "stackoverflow": [49, 127, 128, 161, 166, 233], "518232": [49, 127, 128, 166], "2809427": [49, 127, 128, 166], "nfd": [49, 127, 128, 166], "mn": [49, 127, 128, 166], "za": [49, 60, 166], "readvoc": 49, "loadpreparedata": 49, "save_dir": [49, 60, 147, 172], "npair": 49, "tactic": 49, "benefici": [49, 60, 120], "soften": [49, 97], "difficulti": [49, 160], "trimrareword": 49, "keep_pair": 49, "input_sent": [49, 60, 166], "output_sent": [49, 166], "keep_input": 49, "keep_output": 49, "massag": 49, "accommod": 49, "shorter": [49, 51, 116, 166, 169, 191], "english": [49, 99, 102, 113, 116, 118, 127, 166], "indexesfromsent": [49, 60, 166], "zeropad": 49, "inputvar": 49, "outputvar": 49, "batch2traindata": 49, "bunch": [49, 127, 128], "aforement": [49, 82, 97], "fillvalu": 49, "zip_longest": 49, "binarymatrix": 49, "seq": [49, 98, 102, 124, 135, 137], "indexes_batch": [49, 60], "padlist": 49, "padvar": 49, "max_target_len": 49, "booltensor": 49, "pair_batch": 49, "output_batch": 49, "small_batch_s": 49, "input_vari": 49, "target_vari": 49, "brain": 49, "sutskev": 49, "discov": [49, 108, 113, 136, 163], "accomplish": [49, 52, 151, 204], "jeddy92": [49, 60], "ts_seq2seq_intro": [49, 60], "invent": [49, 52, 160], "cho": [49, 177, 178], "2014": [49, 52], "bidirect": [49, 60, 98, 121, 137, 138], "gru": [49, 60, 93, 110, 127, 128, 166], "past": [49, 50, 101, 196, 265], "colah": 49, "2015": [49, 97], "unpack": [49, 60, 138, 142, 184, 186, 208, 210], "pack_padded_sequ": [49, 60], "pad_packed_sequ": [49, 60], "input_seq": [49, 60, 255], "input_length": [49, 60, 122, 255], "n_layer": [49, 60, 255], "num_direct": 49, "encoderrnn": [49, 60, 166, 255], "sole": [49, 169], "combat": [49, 103], "bahdanau": [49, 166], "groundwork": 49, "h_t": [49, 102], "_s": 49, "attn": [49, 60, 166], "softmax": [49, 60, 90, 93, 97, 102, 103, 104, 110, 127, 128, 159, 162, 164, 166, 170, 195, 221, 259], "concat": [49, 60, 101, 110, 119, 183, 202], "dot_scor": [49, 60], "encoder_output": [49, 60, 166], "general_scor": [49, 60], "concat_scor": [49, 60], "attn_energi": [49, 60], "unidirect": [49, 60], "input_step": [49, 60], "last_hidden": [49, 60, 78], "luongattndecoderrnn": [49, 60, 255], "attn_model": [49, 60], "embedding_dropout": [49, 60], "rnn_output": [49, 60], "attn_weight": [49, 60, 166], "bmm": [49, 60, 145, 166, 195, 209, 233], "concat_input": [49, 60], "concat_output": [49, 60], "masknllloss": 49, "ntotal": 49, "crossentropi": 49, "masked_select": [49, 240], "clever": [49, 99, 113], "teacher": [49, 97, 121, 166], "teacher_forcing_ratio": [49, 166], "wheel": [49, 97, 160, 169, 198], "instabl": [49, 166], "craft": [49, 73, 103, 128], "essenc": [49, 101, 265], "nan": [49, 192], "overshoot": 49, "steep": 49, "cliff": 49, "goodfellow": [49, 52, 73], "2016": 49, "deeplearningbook": 49, "realiti": [49, 52, 60, 73, 101, 158, 165], "encoder_optim": [49, 166], "decoder_optim": [49, 166], "print_loss": 49, "n_total": 49, "encoder_hidden": [49, 60, 166, 255], "decoder_input": [49, 60, 166], "decoder_hidden": [49, 60, 166], "use_teacher_forc": 49, "decoder_output": [49, 60, 166], "mask_loss": 49, "topi": [49, 127, 128, 166], "tie": 49, "trainit": [49, 166], "n_iter": [49, 127, 128, 173], "explanatori": 49, "lift": [49, 58, 59, 113, 207, 225], "tarbal": 49, "encoder_n_lay": [49, 60], "decoder_n_lay": [49, 60, 255], "print_everi": [49, 127, 128, 166], "save_everi": [49, 53, 55, 147], "loadfilenam": [49, 60], "training_batch": 49, "start_iter": 49, "print_loss_avg": [49, 166], "percent": [49, 103, 144, 146, 155, 166], "makedir": [49, 138, 186], "en_opt": [49, 60], "de_opt": [49, 60], "voc_dict": [49, 60], "tar": [49, 60, 75, 112, 118, 238, 243, 265], "NOT": [49, 60, 80, 85, 98, 102, 112, 131, 132, 134, 153, 210], "greedysearchdecod": [49, 255], "all_token": [49, 60], "all_scor": [49, 60], "decoder_scor": [49, 60], "searcher": [49, 60], "evaluateinput": [49, 60], "press": [49, 52, 265], "gracefulli": [49, 53, 163], "prompt": [49, 50, 60, 185, 260], "decoded_word": [49, 60, 166], "output_word": [49, 60, 166], "keyerror": [49, 60], "regardless": [49, 98, 146, 163, 266], "cb_model": [49, 60], "checkpoint_it": [49, 60], "_checkpoint": [49, 60, 122], "encoder_sd": [49, 60], "decoder_sd": [49, 60], "encoder_optimizer_sd": [49, 60], "decoder_optimizer_sd": [49, 60], "embedding_sd": [49, 60], "decoder_learning_ratio": 49, "uncom": [49, 51, 60, 64, 72, 101, 111], "folk": 49, "congratul": [49, 108, 125, 243], "tailor": [49, 136], "cool": [49, 52, 153, 155, 190, 207], "chatbot_tutori": 49, "uninstal": [50, 138], "reinstal": 50, "chatbot": [50, 60, 255], "browser": [50, 105, 169, 265], "subfold": 50, "visit": [50, 112, 113, 127, 185], "in_": 50, "_colab": 50, "_name": 50, "mount": 50, "gdrive": 50, "upload": [50, 260], "rerun": [50, 153], "evolv": [50, 103, 145, 151], "t4": 50, "sasank": [51, 117, 158], "chilamkurthi": [51, 117, 158], "scikit": [51, 138], "skimag": 51, "facial": 51, "pose": 51, "landmark": 51, "dlib": 51, "part_0_x": 51, "part_0_i": 51, "part_1_x": 51, "part_1_i": 51, "part_2_x": 51, "part_67_x": 51, "part_67_i": 51, "0805personali01": 51, "83": [51, 177, 248], "134": [51, 206], "1084239450_e76e00b7e7": 51, "70": [51, 148, 164, 178, 193, 203, 233], "236": 51, "257": [51, 233], "312": [51, 148], "person": [51, 58, 59, 113, 179], "img_nam": 51, "landmarks_fram": 51, "face_landmark": 51, "asarrai": [51, 75, 90], "show_landmark": 51, "scatter": [51, 79, 123, 134, 136, 172], "imread": 51, "facelandmarksdataset": 51, "csv_file": 51, "root_dir": 51, "is_tensor": 51, "face_dataset": 51, "fig": [51, 52, 117, 127, 150, 158, 166, 170], "set_titl": [51, 117, 158, 167, 170], "randomcrop": [51, 158], "crop": [51, 126, 167, 179], "tsfm": 51, "transformed_sampl": 51, "edg": [51, 98, 105, 119, 121, 144, 169, 180, 199, 202, 265], "new_w": 51, "extern": [51, 97, 112, 126, 144, 145, 187, 201, 211, 263, 265], "safer": 51, "stick": [51, 113, 136, 148, 263], "tsfrm": 51, "transformed_dataset": 51, "lose": [51, 53, 97, 147, 229, 263], "collate_fn": [51, 115, 118, 179], "show_landmarks_batch": 51, "sample_batch": 51, "images_batch": 51, "landmarks_batch": 51, "im_siz": 51, "grid_border_s": 51, "indent": [51, 148, 233, 265], "i_batch": 51, "4th": [51, 80], "imagefold": [51, 52, 92, 117, 158], "ant": [51, 117, 158, 268], "xxy": 51, "jpeg": [51, 140, 215], "xxz": 51, "bee": [51, 117, 158, 265], "123": [51, 164, 221, 266], "nsdf3": 51, "asd932_": 51, "data_transform": [51, 117, 158], "randomsizedcrop": 51, "hymenoptera_dataset": 51, "hymenoptera_data": [51, 117, 158], "dataset_load": 51, "\u8ba1\u7b97\u673a\u89c6\u89c9\u8fc1\u79fb\u5b66\u4e60\u6559\u7a0b": [51, 121], "data_loading_tutori": 51, "nathan": [52, 73, 85, 86], "celebr": [52, 121], "pictur": [52, 73, 124, 166], "thorough": [52, 177, 178], "shed": 52, "spend": [52, 82, 153], "sake": [52, 127, 137, 157, 161], "ian": 52, "constantli": [52, 73, 161], "outsmart": 52, "equilibrium": 52, "perfect": [52, 193], "notat": [52, 73, 110], "chw": [52, 159], "3x64x64": 52, "thought": [52, 83, 113, 116, 192, 265], "latent": [52, 103], "p_": 52, "p_g": 52, "minimax": 52, "logd": 52, "underset": 52, "mathbb": [52, 85, 151, 161], "sim": 52, "radford": 52, "unsupervis": 52, "compris": [52, 60, 112], "drawn": [52, 160], "volum": [52, 123], "tip": [52, 58, 59, 103, 170], "dset": 52, "vutil": 52, "anim": 52, "manualse": 52, "use_deterministic_algorithm": 52, "dataroot": 52, "image_s": [52, 153], "spatial": [52, 121, 179], "64x64": 52, "nc": [52, 89], "nz": 52, "ngf": 52, "ndf": 52, "num_epoch": [52, 117, 118, 158, 160, 179, 200], "0002": 52, "ngpu": 52, "celeba": 52, "celeb": 52, "img_align_celeba": 52, "188242": 52, "173822": 52, "284702": 52, "537394": 52, "real_batch": 52, "stdev": 52, "weights_init": 52, "netg": 52, "netd": 52, "constant_": [52, 135], "dataparallel": [52, 120, 121, 125, 138, 150, 186, 232, 249], "downsampl": [52, 135, 147], "promot": 52, "healthi": 52, "bceloss": [52, 110], "ell": [52, 166], "l_1": 52, "l_n": 52, "quad": [52, 161], "y_n": 52, "bce": 52, "gt": [52, 78, 109, 255], "fixed_nois": 52, "establish": [52, 60], "optimizerd": 52, "optimizerg": 52, "Be": 52, "somewhat": 52, "incorrect": [52, 125, 131, 173, 255], "collaps": 52, "went": [52, 145, 199], "ganhack": 52, "secondli": [52, 189], "loss_d": 52, "loss_g": 52, "img_list": 52, "real_cpu": 52, "b_size": 52, "errd_real": 52, "errd_fak": 52, "d_g_z1": 52, "errd": 52, "errg": 52, "d_g_z2": 52, "stat": [52, 55, 122, 129, 160, 169, 197, 200, 240, 248], "tloss_d": 52, "tloss_g": 52, "versu": [52, 73, 121], "im": [52, 75, 113], "artistanim": 52, "repeat_delai": 52, "blit": 52, "to_jshtml": 52, "music": 52, "dcgan_faces_tutori": 52, "mingpt": [53, 54, 55, 56, 132, 133], "aw": [53, 55, 123, 132, 133, 177, 178, 221, 253], "p3": [53, 54, 55, 64, 111, 132, 133], "8xlarg": [53, 55], "failur": [53, 61, 133, 134, 145, 174, 175, 213], "disrupt": 53, "suscept": 53, "elast": [53, 122, 134, 217], "attempt": [53, 99, 122, 174, 175], "minutia": 53, "multinod": [53, 132, 176], "load_snapshot": 53, "snapshot_path": 53, "train_step": 53, "should_checkpoint": 53, "save_snapshot": 53, "membership": [53, 133], "intervent": [53, 97, 186], "diff": [53, 55, 60, 82, 121, 199, 233], "multigpu": [53, 55, 133], "multigpu_torchrun": 53, "envvari": 53, "ddp_setup": [53, 55], "12355": [53, 55, 123, 134, 216], "local_rank": [53, 122, 133, 138, 186], "gpu_id": [53, 55, 133], "_save_snapshot": 53, "model_st": 53, "epochs_run": 53, "_load_snapshot": 53, "max_epoch": [53, 149], "_run_epoch": [53, 55], "total_epoch": [53, 55], "nproc_per_nod": [53, 122, 124, 134, 217], "migrat": [53, 55, 177], "fault": [54, 55, 56, 60, 61, 87, 132, 133], "toler": [54, 55, 56, 61, 87, 132, 133], "cluster": [54, 122, 126, 132, 133, 134, 136], "torchrun": [54, 122, 124, 132, 133, 217], "amazon": 54, "ec2": [54, 123], "gentli": 54, "convert_sync_batchnorm": 55, "single_gpu": 55, "mytraindataset": 55, "distributedsampl": [55, 56, 122, 123, 138, 186], "destroy_process_group": [55, 122, 123, 134, 216], "excess": [55, 82, 124, 222], "set_epoch": [55, 122, 123], "b_sz": 55, "_run_batch": 55, "ckp": 55, "_save_checkpoint": 55, "load_train_obj": 55, "prepare_dataload": 55, "shorthand": [55, 265], "ring": [56, 124], "destroi": [56, 142, 266], "soumith": [57, 81, 136], "chintala": [57, 81, 136], "scientif": [57, 95], "blitz": [57, 105, 110, 170], "jeff": [58, 59, 119], "tang": [58, 59, 119], "review": [58, 59, 78, 113, 132, 138, 158, 174, 175, 177, 178, 191, 192, 194, 222], "jeremiah": [58, 59], "chung": [58, 59, 126], "region": [58, 59, 126, 144, 167, 172, 177, 178, 179, 254], "bicycl": [58, 59], "bu": [58, 59], "autonom": [58, 59], "favor": [58, 126, 151, 160], "pitfal": [58, 59], "beyond": [58, 59, 61, 101, 156, 157, 211], "ndk": [58, 210, 226, 229], "recip": [58, 59, 61, 109, 119, 120, 178, 190, 196, 206, 208, 210, 224, 234, 239, 253], "deeplabv3_script": [58, 59, 206, 224], "deeplabv3_resnet50": [58, 59, 206, 224, 225], "resnet101": [58, 148], "hub": [58, 59, 119, 169, 206, 224, 225], "v0": [58, 59, 121, 147, 161, 179, 206, 224, 225, 262], "scriptedm": [58, 59], "168mb": [58, 59], "deeplab": [58, 59, 121, 206], "input_tensor": [58, 59, 159, 166, 167, 196, 215], "400x400": [58, 59], "oncreat": [58, 210], "mainact": [58, 208, 210, 224], "assetfilepath": [58, 210, 224], "ioexcept": [58, 210], "imagesegment": [58, 206, 224], "breakpoint": [58, 59], "73": [58, 145, 164, 177, 203, 233], "inputtensor": [58, 128, 156, 208], "tensorimageutil": [58, 225], "bitmaptofloat32tensor": 58, "bitmap": 58, "torchvision_norm_mean_rgb": [58, 225], "torchvision_norm_std_rgb": [58, 225], "getdataasfloatarrai": 58, "outtensor": 58, "todictstringkei": 58, "pytorch_vision_deeplabv3_resnet101": [58, 59], "outputtensor": [58, 59, 156, 189, 190, 208, 225], "getwidth": 58, "getheight": 58, "emul": [58, 147, 186, 206], "consum": [58, 59, 75, 107, 109, 125, 145, 150, 160, 162, 164, 165, 183, 190, 197, 202], "bulk": [58, 59, 130], "heaviest": [58, 59], "intvalu": 58, "classnum": [58, 59], "maxi": [58, 59], "maxj": [58, 59], "maxnum": [58, 59], "green": [58, 59, 60, 98, 113, 122, 124, 170], "sheep": [58, 59], "black": [58, 59, 73, 82, 124, 126, 162, 166], "0xffff0000": 58, "0xff00ff00": 58, "0xff0000ff": 58, "0xff000000": 58, "outputbitmap": 58, "imageview": 58, "bmpsegment": 58, "createscaledbitmap": 58, "getconfig": 58, "setpixel": 58, "setimagebitmap": 58, "textview": 58, "helloworld": [59, 119, 189, 190, 226, 227], "deeplabv3_resnet101": 59, "viewcontrol": [59, 224], "swift": [59, 224, 227], "uiviewcontrol": 59, "var": [59, 80, 130, 189, 210], "uiimag": 59, "func": [59, 104, 118, 121, 139, 142, 145, 146, 151, 155, 195, 207, 246], "viewdidload": 59, "torchmodul": [59, 190, 224, 227], "filepath": [59, 224], "forresourc": [59, 224], "oftyp": [59, 224], "fileatpath": [59, 224], "fatalerror": [59, 224], "predictimag": [59, 190], "unsign": [59, 145, 233], "imagebuff": [59, 190], "autogradmod": [59, 210], "non_var_type_mod": 59, "nsmutablearrai": 59, "floatinput": 59, "nil": [59, 224], "addobject": 59, "outputdict": 59, "_impl": [59, 189, 190, 224], "togenericdict": 59, "floatbuff": [59, 208, 225], "temporarili": 59, "nsmutabledata": 59, "datawithlength": 59, "sizeof": [59, 210], "mutablebyt": 59, "floatvalu": 59, "uiimageview": 59, "convertrgbbuffertouiimag": 59, "uiimagehelp": 59, "uitextview": 59, "segmentimag": 59, "phase": [60, 76, 78, 117, 136, 158, 164, 189, 196, 202, 206], "imper": 60, "idiomat": 60, "defer": 60, "optimiz": 60, "decor": [60, 61, 85, 110, 120, 147, 162, 173], "caveat": [60, 113, 134, 162, 202], "remind": [60, 113, 177], "necessarili": [60, 105, 107, 108, 131], "cooper": [60, 222], "chronolog": 60, "attend": 60, "greedili": 60, "_length": 60, "adher": [60, 204], "stem": 60, "surround": 60, "freedom": [60, 166], "__constants__": [60, 255], "liter": [60, 266], "_devic": [60, 255], "_sos_token": [60, 255], "pep": [60, 265], "3107": 60, "mypi": 60, "_decoder_n_lay": [60, 255], "evaluateexampl": 60, "stdin": 60, "4000_checkpoint": 60, "test_seq": 60, "num": [60, 104, 130, 138, 162, 186], "_word": 60, "test_seq_length": 60, "traced_encod": [60, 255], "presenc": [60, 173, 201], "unscript": [60, 259], "test_encoder_output": 60, "test_encoder_hidden": 60, "test_decoder_hidden": 60, "test_decoder_input": 60, "traced_decod": [60, 255], "scripted_search": 60, "script_modul": [60, 85], "scripted_chatbot": 60, "deploy_seq2seq_hybrid_frontend_tutori": 60, "shen": [61, 123, 134, 135, 150, 156, 162, 164], "li": [61, 103, 123, 127, 128, 134, 135, 136, 150, 156, 162, 164, 173, 177, 178], "categor": [61, 82, 137, 162, 164, 178], "lifetim": [61, 164], "c10d": [61, 134, 156, 249], "all_gath": [61, 122, 123, 136, 156], "p2p": 61, "isend": [61, 136], "gradual": [61, 85, 153], "willing": [61, 113], "hurdl": 61, "vldb": 61, "starter": 61, "unbalanc": 61, "zeroredundancyoptim": [61, 156, 253], "footprint": [61, 109, 122, 123, 132, 153, 220, 230], "uneven": [61, 120], "fsdp": [61, 121, 124, 132, 216, 217], "growth": [61, 172, 194], "recoveri": [61, 134], "sometim": [61, 125, 131, 133, 134, 137, 146, 161, 164, 166, 185, 193, 194], "inevit": [61, 134], "oom": [61, 122, 153], "desynchron": 61, "pillar": 61, "protocol": [61, 115], "spirit": [61, 103, 138, 265], "hogwild": 61, "async_execut": [61, 120, 121, 162], "polynomi": [63, 64, 65, 67, 68, 69, 111], "euclidean": [63, 64, 67, 68, 69, 97, 111], "linspac": [63, 64, 65, 67, 68, 69, 71, 72, 89, 111], "held": [63, 78, 97, 103, 111, 127, 163], "polynomial_autograd": 63, "bx": [64, 111], "cx": [64, 99, 111], "p_3": [64, 111], "5x": [64, 111], "legendr": 64, "legendrepolynomial3": [64, 111], "polynomial_custom_funct": 64, "strang": [65, 85, 111, 265], "fifth": [65, 266], "dynamicnet": [65, 111], "tough": [65, 111, 113], "30000": [65, 111, 136], "dynamic_net": 65, "polynomial3": [67, 111], "polynomial_modul": 67, "xx": [68, 69, 111, 145], "flaten": [68, 111], "mse": [68, 93, 97, 111], "linear_lay": [68, 69, 111], "polynomial_nn": 68, "overwritten": [69, 111, 186], "checkout": [69, 111, 117, 190, 208], "polynomial_optim": 69, "\u4e00\u4e2a\u4e09\u6b21\u591a\u9879\u5f0f": [71, 72], "\u5230": [71, 72, 89, 95, 231, 232, 233, 253], "\u901a\u8fc7\u6700\u5c0f\u5316\u6b27\u51e0\u91cc\u5f97\u8ddd\u79bb\u7684\u5e73\u65b9\u6765\u8bad\u7ec3\u9884\u6d4b": 71, "\u8be5\u5b9e\u73b0\u4f7f\u7528": [71, 72], "\u624b\u52a8\u8ba1\u7b97\u524d\u5411\u4f20\u9012": 71, "\u635f\u5931\u548c\u53cd\u5411\u4f20\u9012": [71, 72], "numpy\u6570\u7ec4\u662f\u4e00\u4e2a\u901a\u7528\u7684n\u7ef4\u6570\u7ec4": 71, "\u5b83\u4e0d\u4e86\u89e3\u6df1\u5ea6\u5b66\u4e60": [71, 72], "\u68af\u5ea6\u6216\u8ba1\u7b97\u56fe": 71, "\u53ea\u662f\u7528\u4e8e\u6267\u884c\u901a\u7528\u6570\u503c\u8ba1\u7b97\u7684\u4e00\u4e2a\u5e93": 71, "grad_y_pr": [71, 72, 111], "grad_a": [71, 72, 111], "grad_b": [71, 72, 111], "grad_c": [71, 72, 111], "grad_d": [71, 72, 111], "polynomial_numpi": 71, "\u901a\u8fc7\u6700\u5c0f\u5316\u6b27\u51e0\u91cc\u5f97\u8ddd\u79bb\u7684\u5e73\u65b9\u6765\u8bad\u7ec3\u9884\u6d4b\u4ece": 72, "\u5f20\u91cf\u624b\u52a8\u8ba1\u7b97\u524d\u5411\u4f20\u9012": 72, "\u5f20\u91cf\u57fa\u672c\u4e0a\u4e0e": 72, "\u6570\u7ec4\u76f8\u540c": 72, "\u8ba1\u7b97\u56fe\u6216\u68af\u5ea6": 72, "\u53ea\u662f\u7528\u4e8e\u4efb\u610f\u6570\u503c\u8ba1\u7b97\u7684\u901a\u7528n\u7ef4\u6570\u7ec4": 72, "\u6570\u7ec4\u548c": 72, "\u5f20\u91cf\u4e4b\u95f4\u6700\u5927\u7684\u533a\u522b\u662f": 72, "\u5f20\u91cf\u53ef\u4ee5\u5728": 72, "\u4e0a\u8fd0\u884c": 72, "\u4e0a\u8fd0\u884c\u64cd\u4f5c": 72, "\u53ea\u9700\u5c06\u5f20\u91cf\u8f6c\u6362\u4e3a": 72, "polynomial_tensor": 72, "appreci": [73, 98, 113], "overlook": 73, "secur": [73, 169], "awar": [73, 124, 126, 136, 137, 138, 148, 165, 174, 175, 177, 184, 189, 190, 191, 198], "vulner": 73, "surpris": [73, 154], "impercept": 73, "perturb": 73, "drastic": 73, "overarch": 73, "misclassif": 73, "alter": [73, 112, 185], "har": 73, "remark": [73, 173], "jump": [73, 102, 105, 107, 108, 140, 147], "mathbf": 73, "nabla_": [73, 99], "007": 73, "misclassifi": 73, "gibbon": 73, "clearli": [73, 126, 191, 192], "pretrained_model": [73, 172], "lenet_mnist_model": [73, 223], "dropout1": [73, 123, 163, 205, 235], "dropout2": [73, 123, 163, 205, 235], "9216": [73, 123, 130, 155, 163, 205, 235], "log_softmax": [73, 93, 97, 99, 102, 103, 104, 123, 130, 149, 155, 163, 166, 167, 205, 223, 235], "test_load": [73, 97, 123, 130, 163, 167, 223], "1307": [73, 123, 130, 136, 149, 163, 167, 223], "3081": [73, 123, 130, 136, 149, 163, 167, 223], "fgsm_attack": 73, "clean": [73, 102, 122, 123, 134, 153, 189, 191, 197, 265], "data_grad": 73, "_imag": 73, "_grad": 73, "sign_data_grad": 73, "perturbed_imag": 73, "denorm": 73, "strength": [73, 170, 197], "adv_exampl": 73, "init_pr": 73, "bother": 73, "datagrad": 73, "data_denorm": 73, "perturbed_data": 73, "reappli": 73, "perturbed_data_norm": 73, "final_pr": 73, "adv_ex": 73, "adv": 73, "final_acc": 73, "ttest": 73, "trend": [73, 83, 169], "curv": [73, 150, 169, 170], "linearli": 73, "ytick": [73, 170], "xtick": [73, 170], "lunch": [73, 196], "BUT": [73, 101], "percept": 73, "tradeoff": [73, 121, 125, 126, 136, 160], "evid": 73, "fontsiz": 73, "orig": [73, 143], "nip": [73, 118], "defens": 73, "competit": [73, 139, 155], "defenc": 73, "perhap": [73, 127, 157, 255], "dirti": 73, "fgsm_tutori": 73, "torchvision_tutori": [74, 179], "multimod": [75, 121], "ow": 75, "ubiquit": 75, "caption": [75, 265, 268], "vqa": 75, "unimod": 75, "contrast": [75, 128, 150, 155, 178, 191], "textvqa": 75, "bert": [75, 93, 121, 123, 178, 198, 201, 230, 236], "dl": [75, 104, 178, 185, 209, 210, 223, 265], "fbaipublicfil": [75, 185], "pythia": 75, "gz": [75, 104, 118, 238, 265, 266], "xf": 75, "prepend": [75, 155], "exclam": 75, "34602": 75, "answers_textvqa_more_than_1": 75, "answer_to_idx": 75, "uniform": [75, 113, 177, 204], "berttoken": [75, 138, 186], "functool": [75, 87, 113, 122, 123, 142, 146], "image_transform": 75, "return_tensor": 75, "ans_to_count": 75, "max_valu": 75, "ans_idx": 75, "uncas": [75, 138, 145, 178, 186], "set_transform": 75, "flava_model_for_classif": 75, "mlp": [75, 124, 139, 177], "toi": [75, 98, 102, 123, 134, 143, 150, 164, 176, 201], "mdetr": 75, "omnivor": 75, "multitask": 75, "flava_finetuning_tutori": 75, "flush": [76, 94, 96, 190, 205, 210, 247, 265], "twice": [76, 131, 185, 233], "retain_vari": 76, "freed": [76, 122, 153, 199], "fail": [76, 112, 125, 145, 148, 159, 161, 165, 173, 192, 198, 200, 202, 210, 222, 224, 243], "autograd_tutorial_old": [76, 77], "tensor_tutorial_old": [77, 80], "nnft_tutori": [77, 78], "redesign": 78, "concatt": 78, "caddtabl": 78, "nngraph": 78, "input1": 78, "input2": 78, "pdb": 78, "debugg": [78, 104], "mnistconvnet": 78, "pool1": 78, "pool2": 78, "crazi": 78, "legal": [78, 195], "ephemer": [78, 153], "classnll": 78, "err": 78, "printnorm": 78, "register_forward_hook": [78, 241], "printgradnorm": 78, "register_backward_hook": 78, "i2h": [78, 127, 128], "h2o": [78, 127], "penn": [78, 179], "bank": 78, "timestep": [78, 98, 102, 127, 128, 161], "dataparallelmodel": 79, "block2": 79, "block3": 79, "becam": [79, 210], "inaccess": 79, "clash": 79, "mydataparallel": 79, "__getattr__": [79, 85], "attributeerror": 79, "getattr": [79, 147, 148, 186, 211, 249], "primit": [79, 121, 124, 146, 178, 199, 209], "mpi": [79, 136], "parallel_appli": 79, "clariti": [79, 143], "output_devic": [79, 134], "distributedmodel": 79, "\u6df1\u5ea6\u5b66\u4e60": [79, 127, 128, 166], "60\u5206\u949f\u5165\u95e8": [79, 127, 128, 166], "uniniti": [80, 137, 204], "postfix": 80, "narrow_": 80, "lua": [80, 81, 127, 128, 166], "1st": [80, 97, 102, 123, 129], "5th": 80, "camelcas": 80, "anymor": 80, "indexadd": 80, "index_add_": 80, "chartensor": 80, "anupam": [82, 83, 116], "bhatnagar": [82, 83], "holistictraceanalysi": 82, "deactiv": 82, "trace_dir": 82, "trace_analysi": 82, "traceanalysi": 82, "engag": [82, 198], "time_spent_df": 82, "get_temporal_breakdown": 82, "enqueu": 82, "slowdown": [82, 122, 125], "consecut": [82, 128, 137, 147, 150, 159, 172, 178], "insuffici": [82, 161, 177], "delai": [82, 134, 162, 177], "stall": [82, 177, 178], "gap": [82, 85], "nanosecond": 82, "consecutive_kernel_delai": 82, "get_idle_time_breakdown": 82, "idle_time_df": 82, "show_idle_interval_stat": 82, "percentag": [82, 119, 144, 157, 177, 195], "visualize_pctg": 82, "comm": 82, "comp": 82, "mem": [82, 109, 240], "proport": [82, 153], "pie": [82, 153], "chart": 82, "kernel_type_metrics_df": 82, "kernel_metrics_df": 82, "get_gpu_kernel_breakdown": 82, "bottleneck": [82, 109, 122, 124, 133, 135, 150, 153, 162, 169, 173, 177, 178], "plotli": [82, 126], "hover": [82, 126, 159], "pan": 82, "num_kernel": 82, "duration_ratio": 82, "preced": [82, 130, 137, 143, 178, 183, 199, 201, 265], "lab": [82, 170, 185], "image_render": 82, "jupyterlab": 82, "gpu_kernel_breakdown": 82, "tflop": 82, "oversubscrib": 82, "unresolv": [82, 193], "extent": 82, "overlap_df": 82, "get_comm_comp_overlap": 82, "h2d": 82, "d2h": 82, "d2d": 82, "memcpi": 82, "memset": 82, "outstand": [82, 201], "generate_trace_with_count": 82, "_with_count": 82, "screenshot": 82, "get_memory_bw_summari": 82, "get_queue_length_summari": 82, "get_memory_bw_time_seri": 82, "get_queue_length_time_seri": 82, "mem_bw_summari": 82, "queue_len_summari": 82, "mem_bw_seri": 82, "queue_len_seri": 82, "get_queue_length_seri": 82, "25th": 82, "50th": 82, "75th": 82, "percentil": 82, "cudalaunchkernel": 82, "cudamemcpyasync": 82, "cudamemsetasync": 82, "kernel_info_df": 82, "get_cuda_kernel_launch_stat": 82, "outlier": [82, 161], "microsecond": [82, 146, 165, 220, 225, 233], "cutoff": 82, "runtime_cutoff": 82, "launch_delay_cutoff": 82, "occasion": [83, 163, 166], "hta": [83, 169], "tracediff": 83, "cumul": [83, 160, 161, 176], "compare_trac": 83, "ops_diff": 83, "absent": 83, "visualize_counts_diff": 83, "visualize_duration_diff": 83, "ten": [83, 97], "compare_traces_output": 83, "sort_valu": [83, 126], "diff_count": 83, "diff_dur": 83, "differer": 83, "overshadow": 83, "profilerstep": [83, 145], "trace_diff_demo": 83, "learning_hybrid_frontend_through_example_tutori": [84, 85], "hybrid_frontend": 84, "introduction_to_hybrid_frontend_tutori": 84, "intens": [85, 145, 178], "shini": 85, "enjoi": [85, 147], "aquaint": 85, "refin": 85, "proven": [85, 194, 201], "resouc": 85, "consumpt": [85, 109, 122, 124, 126, 145, 157, 169, 215], "discrep": 85, "interwork": 85, "intrus": [85, 153], "broken": [85, 101, 118, 178], "epsilon": [85, 130, 137, 147, 160, 161], "biggl": 85, "lfloor": 85, "prod_": 85, "biggr": 85, "rfloor": 85, "hline": 85, "190": [85, 164, 172, 233], "4377": 85, "59051": 85, "traced_fn": 85, "script_fn": 85, "floor": [85, 95, 127, 128, 166], "accomod": [85, 132], "fmod": [85, 193], "traced_modul": 85, "n_trace": 85, "onnx": [85, 121], "dramat": 87, "industri": 87, "tensorboard": [87, 88, 91, 96, 121, 126, 149, 240, 247, 253], "slight": [87, 131, 234], "pathlib": [87, 104, 122, 126, 147, 172, 196], "random_split": [87, 115], "get_checkpoint": 87, "ashaschedul": 87, "cloudpickl": 87, "trial": [87, 126, 149], "load_data": 87, "train_cifar": 87, "as_directori": 87, "checkpoint_dir": [87, 216], "pkl": [87, 104, 224], "checkpoint_st": 87, "start_epoch": 87, "net_state_dict": 87, "optimizer_state_dict": [87, 112, 216, 222, 243], "luckili": [87, 145, 193], "fraction": 87, "checkpoint_data": 87, "wb": [87, 104, 153, 260], "dump": [87, 145, 153, 190, 224, 233, 248], "from_directori": 87, "val_step": 87, "bad": [87, 113, 125, 140, 174, 175, 178, 185], "wast": [87, 169, 195, 198, 204], "test_ab": 87, "train_subset": 87, "val_subset": 87, "valload": 87, "epoch_step": 87, "test_accuraci": 87, "loguniform": [87, 233], "gpus_per_tri": 87, "resources_per_tri": 87, "num_sampl": [87, 122], "checkpoint_at_end": 87, "max_num_epoch": 87, "abspath": [87, 156], "max_t": 87, "grace_period": 87, "reduction_factor": 87, "best_trial": 87, "get_best_tri": 87, "last_result": 87, "best_trained_model": 87, "best_checkpoint": 87, "get_best_checkpoint": 87, "best_checkpoint_data": 87, "test_acc": 87, "000668163": 87, "31479": 87, "0977": 87, "0331514": 87, "31605": 87, "0983": 87, "000150295": 87, "30755": 87, "1023": 87, "0128248": 87, "66912": 87, "4391": 87, "00464561": 87, "7316": 87, "3463": 87, "00031556": 87, "19409": 87, "1736": 87, "00574329": 87, "85679": 87, "3368": 87, "00325652": 87, "30272": 87, "0984": 87, "000342987": 87, "76044": 87, "003734": 87, "53101": 87, "4761": 87, "0037339984519545164": 87, "5310075663924216": 87, "4737": 87, "hyperparameter_tuning_tutori": 87, "\u7b80\u4ecb": [88, 89, 90, 91, 93, 94], "tensorboard\u652f\u6301": [88, 89, 90, 92, 93, 94, 95, 96], "\u6a21\u578b\u7406\u89e3": [88, 89, 90, 92, 93, 94, 95, 96], "\u4f5c\u8005": [88, 129, 212, 216, 217, 221, 232, 236, 239, 246, 249, 254, 257, 258], "brad": 88, "heintz": 88, "\u672c\u6559\u7a0b\u4e0eyoutube\u4e0a\u7684": 88, "\u521d\u5b66\u8005\u7cfb\u5217": 88, "\u540c\u6b65": [88, 232], "\u6bcf\u4e2a\u90e8\u5206\u7684\u9876\u90e8\u90fd\u6709\u4e00\u4e2acolab\u94fe\u63a5": 88, "\u5b83\u4f1a\u5728\u5b8c\u5168\u6258\u7ba1\u7684\u73af\u5883\u4e2d\u6253\u5f00\u4e00\u4e2a\u5305\u542b\u4ee3\u7801\u7684\u7b14\u8bb0\u672c": 88, "\u4e13\u4e1a\u63d0\u793a": 88, "\u4f7f\u7528gpu\u8fd0\u884c\u65f6\u7684colab\u53ef\u4ee5\u52a0\u901f\u64cd\u4f5c": 88, "\u8fd0\u884c\u65f6": 88, "\u66f4\u6539\u8fd0\u884c\u65f6\u7c7b\u578b": 88, "\u672c\u5730": 88, "\u4e0b\u8f7dnotebook\u6216\u5c06\u4ee3\u7801\u590d\u5236\u5230\u60a8\u559c\u6b22\u7684ide\u4e2d": 88, "\u81ea\u52a8\u5fae\u5206\u57fa\u7840": 88, "\u652f\u6301": [88, 96, 223, 249, 253, 257], "captum": [88, 91, 237, 253], "\u8fdb\u884c\u6a21\u578b\u7406\u89e3": 88, "\u8ddf\u968f\u4e0b\u9762\u7684\u89c6\u9891\u6216\u5728": [89, 90, 92, 93, 94, 95, 96], "\u4e0a\u89c2\u770b": [89, 90, 92, 93, 94, 95, 96], "\u529f\u80fd\u662f\u4f7f": 89, "\u5728\u6784\u5efa\u673a\u5668\u5b66\u4e60\u9879\u76ee\u65f6\u7075\u6d3b\u4e14\u5feb\u901f\u7684\u90e8\u5206\u539f\u56e0": 89, "\u5b83\u5141\u8bb8\u5bf9\u590d\u6742\u8ba1\u7b97\u5feb\u901f\u8f7b\u677e\u5730\u8ba1\u7b97\u591a\u4e2a\u504f\u5bfc\u6570": 89, "\u4e5f\u79f0\u4e3a": 89, "\u8fd9\u4e2a\u64cd\u4f5c\u662f\u57fa\u4e8e\u53cd\u5411\u4f20\u64ad\u7684\u795e\u7ecf\u7f51\u7edc\u5b66\u4e60\u7684\u6838\u5fc3": 89, "\u7684\u5f3a\u5927\u4e4b\u5904\u5728\u4e8e\u5b83\u5728\u8fd0\u884c\u65f6\u52a8\u6001\u5730": 89, "\u8ddf\u8e2a\u4f60\u7684\u8ba1\u7b97": 89, "\u8fd9\u610f\u5473\u7740\u5982\u679c\u4f60\u7684\u6a21\u578b\u6709\u51b3\u7b56\u5206\u652f\u6216\u957f\u5ea6\u5728\u8fd0\u884c\u65f6\u624d\u77e5\u9053\u7684\u5faa\u73af": 89, "\u8ba1\u7b97\u4ecd\u7136\u4f1a\u88ab\u6b63\u786e\u8ddf\u8e2a": 89, "\u4f60\u4f1a\u5f97\u5230\u6b63\u786e\u7684\u68af\u5ea6\u6765\u9a71\u52a8\u5b66\u4e60": 89, "\u7ed3\u5408\u4f60\u7684\u6a21\u578b\u662f\u7528": 89, "\u6784\u5efa\u7684\u4e8b\u5b9e": 89, "\u8fd9\u6bd4\u4f9d\u8d56\u4e8e\u5bf9\u66f4\u52a0\u4e25\u683c\u7ed3\u6784\u5316\u7684\u6a21\u578b\u8fdb\u884c\u9759\u6001\u5206\u6790\u6765\u8ba1\u7b97\u68af\u5ea6\u7684\u6846\u67b6\u63d0\u4f9b\u4e86\u66f4\u5927\u7684\u7075\u6d3b\u6027": 89, "\u673a\u5668\u5b66\u4e60\u6a21\u578b\u662f\u4e00\u4e2a": 89, "\u6709\u8f93\u5165\u548c\u8f93\u51fa": 89, "\u5728\u672c\u8ba8\u8bba\u4e2d": 89, "\u6211\u4eec\u5c06\u628a\u8f93\u5165\u89c6\u4e3a\u4e00\u4e2a": 89, "\u7ef4\u5411\u91cf": 89, "\u5176\u5143\u7d20\u4e3a": 89, "\u7136\u540e\u6211\u4eec\u53ef\u4ee5\u5c06\u6a21\u578b": 89, "\u8868\u793a\u4e3a\u8f93\u5165\u7684\u5411\u91cf\u503c\u51fd\u6570": 89, "\u6211\u4eec\u5c06\u6a21\u578b": 89, "\u7684\u8f93\u51fa\u503c\u89c6\u4e3a\u5411\u91cf": 89, "\u56e0\u4e3a\u4e00\u822c\u6765\u8bf4": 89, "\u4e00\u4e2a\u6a21\u578b\u53ef\u80fd\u6709\u4efb\u610f\u6570\u91cf\u7684\u8f93\u51fa": 89, "\u7531\u4e8e\u6211\u4eec\u4e3b\u8981\u5728\u8bad\u7ec3\u7684\u80cc\u666f\u4e0b\u8ba8\u8bba\u81ea\u52a8\u5fae\u5206": 89, "\u6211\u4eec\u611f\u5174\u8da3\u7684\u8f93\u51fa\u5c06\u662f\u6a21\u578b\u7684\u635f\u5931": 89, "\u662f\u6a21\u578b\u8f93\u51fa\u7684\u5355\u503c\u6807\u91cf\u51fd\u6570": 89, "\u8be5\u51fd\u6570\u8868\u793a\u6211\u4eec\u6a21\u578b\u5bf9\u7279\u5b9a\u8f93\u5165\u7684": 89, "\u7406\u60f3": 89, "\u8f93\u51fa\u7684\u9884\u6d4b\u504f\u5dee\u6709\u591a\u5927": 89, "\u4ece\u8fd9\u4e00\u70b9\u5f00\u59cb": 89, "\u6211\u4eec\u901a\u5e38\u4f1a\u7701\u7565\u5411\u91cf\u7b26\u53f7": 89, "\u4f8b\u5982\u4f7f\u7528": 89, "\u6211\u4eec\u5e0c\u671b\u6700\u5c0f\u5316\u635f\u5931": 89, "\u5728\u7406\u60f3\u60c5\u51b5\u4e0b": [89, 95], "\u5373\u5b8c\u7f8e\u6a21\u578b\u7684\u60c5\u51b5\u4e0b": 89, "\u8fd9\u610f\u5473\u7740\u8c03\u6574\u5176\u5b66\u4e60\u6743\u91cd": 89, "\u4e5f\u5c31\u662f\u8be5\u51fd\u6570\u7684\u53ef\u8c03\u53c2\u6570": 89, "\u4f7f\u5f97\u5bf9\u4e8e\u6240\u6709\u8f93\u5165": 89, "\u635f\u5931\u4e3a\u96f6": 89, "\u5728\u73b0\u5b9e\u4e16\u754c\u4e2d": 89, "\u8fd9\u610f\u5473\u7740\u4e00\u4e2a\u8fed\u4ee3\u8fc7\u7a0b": 89, "\u4e0d\u65ad\u5fae\u8c03\u5b66\u4e60\u6743\u91cd": 89, "\u76f4\u5230\u6211\u4eec\u770b\u5230\u5bf9\u4e8e\u5e7f\u6cdb\u7684\u8f93\u5165": 89, "\u5f97\u5230\u53ef\u63a5\u53d7\u7684\u635f\u5931": 89, "\u6211\u4eec\u5982\u4f55\u51b3\u5b9a\u6743\u91cd\u5e94\u8be5\u671d\u54ea\u4e2a\u65b9\u5411\u5fae\u8c03\u591a\u8fdc\u5462": 89, "\u6211\u4eec\u5e0c\u671b": 89, "\u6700\u5c0f\u5316": 89, "\u8fd9\u610f\u5473\u7740\u4f7f\u5176\u5173\u4e8e\u8f93\u5165\u7684\u4e00\u9636\u5bfc\u6570\u7b49\u4e8e0": 89, "\u4f46\u662f\u8bf7\u8bb0\u4f4f": 89, "\u635f\u5931\u4e0d\u662f": 89, "\u76f4\u63a5": 89, "\u7531\u8f93\u5165\u5bfc\u51fa\u7684": 89, "\u800c\u662f\u7531\u6a21\u578b\u8f93\u51fa\u7684\u51fd\u6570\u5bfc\u51fa\u7684": 89, "\u800c\u6a21\u578b\u8f93\u51fa\u53c8\u662f\u8f93\u5165\u7684\u76f4\u63a5\u51fd\u6570": 89, "\u6839\u636e\u5fae\u79ef\u5206\u7684\u94fe\u5f0f\u6cd5\u5219": 89, "\u6211\u4eec\u6709": [89, 95], "\u662f\u590d\u6742\u7684\u5730\u65b9": 89, "\u5982\u679c\u6211\u4eec\u518d\u6b21\u4f7f\u7528\u94fe\u5f0f\u6cd5\u5219\u5c55\u5f00\u6a21\u578b\u8f93\u51fa\u5173\u4e8e\u8f93\u5165\u7684\u504f\u5bfc\u6570\u7684\u8868\u8fbe\u5f0f": 89, "\u5b83\u5c06\u6d89\u53ca\u6bcf\u4e2a\u4e58\u4ee5\u7684\u5b66\u4e60\u6743\u91cd": 89, "\u6bcf\u4e2a\u6fc0\u6d3b\u51fd\u6570\u4ee5\u53ca\u6a21\u578b\u4e2d\u7684\u6bcf\u4e2a\u5176\u4ed6\u6570\u5b66\u53d8\u6362\u7684\u8bb8\u591a\u5c40\u90e8\u504f\u5bfc\u6570": 89, "\u6211\u4eec\u8bd5\u56fe\u6d4b\u91cf\u5176\u68af\u5ea6\u7684\u6bcf\u4e2a\u53d8\u91cf\u7684\u5b8c\u6574\u8868\u8fbe\u5f0f": 89, "\u90fd\u662f\u901a\u8fc7\u8ba1\u7b97\u56fe\u4e2d\u6240\u6709\u53ef\u80fd\u8def\u5f84\u7684\u5c40\u90e8\u68af\u5ea6\u4e4b\u548c\u7684\u4e58\u79ef": 89, "\u7279\u522b\u611f\u5174\u8da3\u7684\u662f\u5b66\u4e60\u6743\u91cd\u4e0a\u7684\u68af\u5ea6": 89, "\u5b83\u4eec\u544a\u8bc9\u6211\u4eec": 89, "\u5e94\u8be5\u671d\u54ea\u4e2a\u65b9\u5411\u6539\u53d8\u6bcf\u4e2a\u6743\u91cd": 89, "\u4ee5\u4f7f\u635f\u5931\u51fd\u6570\u66f4\u63a5\u8fd1\u4e8e\u96f6": 89, "\u7531\u4e8e\u8fd9\u4e9b\u5c40\u90e8\u5bfc\u6570\u7684\u6570\u91cf": 89, "\u6bcf\u4e2a\u5bf9\u5e94\u4e8e\u8ba1\u7b97\u56fe\u4e2d\u7684\u5355\u72ec\u8def\u5f84": 89, "\u5f80\u5f80\u4f1a\u968f\u7740\u795e\u7ecf\u7f51\u7edc\u7684\u6df1\u5ea6\u5448\u6307\u6570\u589e\u957f": 89, "\u56e0\u6b64\u8ba1\u7b97\u5b83\u4eec\u7684\u590d\u6742\u5ea6\u4e5f\u4f1a\u589e\u52a0": 89, "\u8fd9\u5c31\u662f\u81ea\u52a8\u5fae\u5206\u53d1\u6325\u4f5c\u7528\u7684\u5730\u65b9": 89, "\u5b83\u8ddf\u8e2a\u6bcf\u4e00\u6b65\u8ba1\u7b97\u7684\u5386\u53f2": 89, "\u4f60\u5728pytorch\u6a21\u578b\u4e2d\u8ba1\u7b97\u7684\u6bcf\u4e2a\u5f20\u91cf\u90fd\u4fdd\u7559\u4e86\u5176\u8f93\u5165\u5f20\u91cf\u548c\u521b\u5efa\u5b83\u7684\u51fd\u6570\u7684\u5386\u53f2\u8bb0\u5f55": 89, "\u7ed3\u5408pytorch\u4e2d\u7528\u4e8e\u5bf9\u5f20\u91cf\u8fdb\u884c\u64cd\u4f5c\u7684\u6bcf\u4e2a\u51fd\u6570\u90fd\u5185\u7f6e\u4e86\u8ba1\u7b97\u81ea\u8eab\u5bfc\u6570\u7684\u5b9e\u73b0\u8fd9\u4e00\u4e8b\u5b9e": 89, "\u8fd9\u6781\u5927\u5730\u52a0\u5feb\u4e86\u5b66\u4e60\u6240\u9700\u7684\u5c40\u90e8\u5bfc\u6570\u7684\u8ba1\u7b97\u901f\u5ea6": 89, "\u8fd9\u662f\u5f88\u591a\u7406\u8bba": 89, "\u4f46\u5728\u5b9e\u8df5\u4e2d\u4f7f\u7528\u81ea\u52a8\u5fae\u5206\u662f\u4ec0\u4e48\u6837\u7684\u5462": 89, "\u8ba9\u6211\u4eec\u4ece\u4e00\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50\u5f00\u59cb": 89, "\u9996\u5148": [89, 90, 92, 95, 104, 188, 217, 218, 232, 233, 236, 239, 246, 254], "\u6211\u4eec\u5c06\u5bfc\u5165\u4e00\u4e9b\u5185\u5bb9": 89, "\u4ee5\u4fbf\u53ef\u4ee5\u7ed8\u5236\u7ed3\u679c": 89, "ticker": [89, 127, 166], "\u63a5\u4e0b\u6765": [89, 92, 95, 104, 218, 221, 239, 254], "\u6211\u4eec\u5c06\u521b\u5efa\u4e00\u4e2a\u8f93\u5165\u5f20\u91cf": 89, "\u5176\u503c\u5747\u5300\u5206\u5e03\u5728\u533a\u95f4": 89, "2\u03c0": 89, "\u5e76\u6307\u5b9a": 89, "\u4e0e\u5927\u591a\u6570\u521b\u5efa\u5f20\u91cf\u7684\u51fd\u6570\u4e00\u6837": 89, "\u63a5\u53d7\u4e00\u4e2a\u53ef\u9009\u7684": 89, "\u9009\u9879": 89, "\u8bbe\u7f6e\u6b64\u6807\u5fd7\u610f\u5473\u7740\u5728\u968f\u540e\u7684\u6bcf\u4e2a\u8ba1\u7b97\u4e2d": 89, "\u90fd\u4f1a\u5728\u8be5\u8ba1\u7b97\u7684\u8f93\u51fa\u5f20\u91cf\u4e2d\u7d2f\u79ef\u8ba1\u7b97\u5386\u53f2": 89, "\u6211\u4eec\u5c06\u6267\u884c\u4e00\u4e2a\u8ba1\u7b97": 89, "\u5e76\u7ed8\u5236\u5176\u8f93\u51fa\u4e0e\u8f93\u5165\u7684\u5173\u7cfb\u56fe": 89, "\u8ba9\u6211\u4eec\u4ed4\u7ec6\u770b\u770b\u5f20\u91cf": 89, "\u5f53\u6211\u4eec\u6253\u5370\u5b83\u65f6": 89, "\u6211\u4eec\u770b\u5230\u4e00\u4e2a\u6307\u793a\u5b83\u6b63\u5728\u8ddf\u8e2a\u5176\u8ba1\u7b97\u5386\u53f2\u7684\u6307\u793a\u7b26": 89, "\u8fd9\u4e2a": [89, 92, 239], "\u7ed9\u4e86\u6211\u4eec\u4e00\u4e2a\u63d0\u793a": 89, "\u5f53\u6211\u4eec\u6267\u884c\u53cd\u5411\u4f20\u64ad\u6b65\u9aa4\u5e76\u8ba1\u7b97\u68af\u5ea6\u65f6": 89, "\u6211\u4eec\u9700\u8981\u8ba1\u7b97\u6240\u6709\u8fd9\u4e2a\u5f20\u91cf\u8f93\u5165\u7684": 89, "\u7684\u5bfc\u6570": 89, "\u8ba9\u6211\u4eec\u6267\u884c\u66f4\u591a\u8ba1\u7b97": 89, "\u6700\u540e": [89, 92, 96, 104, 215, 218, 242], "\u8ba9\u6211\u4eec\u8ba1\u7b97\u4e00\u4e2a\u5355\u5143\u7d20\u8f93\u51fa": 89, "\u5f53\u4f60\u5728\u4e0d\u5e26\u53c2\u6570\u7684\u60c5\u51b5\u4e0b\u5bf9\u4e00\u4e2a\u5f20\u91cf\u8c03\u7528": 89, "\u5b83\u671f\u671b\u8c03\u7528\u5f20\u91cf\u53ea\u5305\u542b\u4e00\u4e2a\u5143\u7d20": 89, "\u5c31\u50cf\u5728\u8ba1\u7b97\u635f\u5931\u51fd\u6570\u65f6\u4e00\u6837": 89, "\u6bcf\u4e2a\u5b58\u50a8\u5728\u6211\u4eec\u5f20\u91cf\u4e2d\u7684": 89, "\u5141\u8bb8\u4f60\u4f7f\u7528\u5176": 89, "\u6cbf\u7740\u8ba1\u7b97\u8def\u5f84\u4e00\u76f4\u56de\u6eaf\u5230\u5176\u8f93\u5165": 89, "\u6211\u4eec\u53ef\u4ee5\u770b\u5230": 89, "\u4e0a\u6df1\u5165\u94bb\u7814\u8fd9\u4e2a\u5c5e\u6027\u4f1a\u663e\u793a\u6211\u4eec\u4e4b\u524d\u6240\u6709\u5f20\u91cf\u7684\u68af\u5ea6\u51fd\u6570": 89, "\u88ab\u62a5\u544a\u4e3a": 89, "\u8868\u793a\u8fd9\u662f\u4e00\u4e2a\u6ca1\u6709\u81ea\u8eab\u5386\u53f2\u7684\u51fd\u6570\u8f93\u5165": 89, "na": [89, 92], "\u6709\u4e86\u8fd9\u4e9b\u673a\u5236": 89, "\u6211\u4eec\u5982\u4f55\u83b7\u53d6\u5bfc\u6570\u5462": 89, "\u60a8\u5728\u8f93\u51fa\u4e0a\u8c03\u7528": 89, "\u5e76\u68c0\u67e5\u8f93\u5165\u7684": 89, "\u5c5e\u6027\u6765\u68c0\u67e5\u68af\u5ea6": 89, "\u56de\u987e\u4e00\u4e0b\u6211\u4eec\u4e3a\u4e86\u8fbe\u5230\u8fd9\u4e00\u6b65\u6240\u91c7\u53d6\u7684\u8ba1\u7b97\u6b65\u9aa4": 89, "\u6dfb\u52a0\u4e00\u4e2a\u5e38\u6570": 89, "\u5c31\u50cf\u6211\u4eec\u8ba1\u7b97": 89, "\u65f6\u6240\u505a\u7684\u90a3\u6837": 89, "\u4e0d\u4f1a\u6539\u53d8\u5bfc\u6570": 89, "\u5269\u4e0b\u7684\u5c31\u662f": 89, "\u5b83\u7684\u5bfc\u6570\u5e94\u8be5\u662f": 89, "\u4ece\u4e0a\u9762\u7684\u56fe\u4e2d\u53ef\u4ee5\u770b\u51fa": 89, "\u8fd9\u6b63\u662f\u6211\u4eec\u6240\u770b\u5230\u7684": 89, "\u8bf7\u6ce8\u610f": [89, 96, 104, 214, 216, 217, 218, 249, 251, 254], "\u53ea\u6709\u8ba1\u7b97\u56fe\u7684": 89, "\u53f6\u5b50\u8282\u70b9": 89, "\u624d\u4f1a\u8ba1\u7b97\u5b83\u4eec\u7684\u68af\u5ea6": 89, "\u5982\u679c\u4f60\u5c1d\u8bd5": 89, "\u4f60\u4f1a\u5f97\u5230": 89, "\u5728\u8fd9\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50\u4e2d": 89, "\u53ea\u6709\u8f93\u5165\u662f\u53f6\u5b50\u8282\u70b9": 89, "\u6240\u4ee5\u53ea\u6709\u5b83\u6709\u8ba1\u7b97\u68af\u5ea6": 89, "\u6211\u4eec\u5df2\u7ecf\u7b80\u5355\u5730\u770b\u4e86\u4e00\u4e0b\u81ea\u52a8\u6c42\u5bfc\u662f\u5982\u4f55\u5de5\u4f5c\u7684": 89, "\u4f46\u662f\u5f53\u5b83\u5728\u5b9e\u9645\u5e94\u7528\u4e2d": 89, "\u770b\u8d77\u6765\u4f1a\u662f\u4ec0\u4e48\u6837\u5b50\u5462": 89, "\u8ba9\u6211\u4eec\u5b9a\u4e49\u4e00\u4e2a\u5c0f\u6a21\u578b\u5e76\u68c0\u67e5\u5b83\u5728\u5355\u4e2a\u8bad\u7ec3\u6279\u6b21\u540e\u662f\u5982\u4f55\u53d8\u5316\u7684": 89, "\u5b9a\u4e49\u4e00\u4e9b\u5e38\u91cf": 89, "\u6211\u4eec\u7684\u6a21\u578b": 89, "\u4ee5\u53ca\u4e00\u4e9b\u8f93\u5165\u548c\u8f93\u51fa": 89, "dim_in": 89, "dim_out": 89, "tinymodel": [89, 93], "layer2": [89, 150, 158, 161], "some_input": 89, "ideal_output": 89, "\u4f60\u53ef\u80fd\u4f1a\u6ce8\u610f\u5230": 89, "\u6211\u4eec\u4ece\u672a\u4e3a\u6a21\u578b\u7684\u5c42\u8bbe\u7f6e": 89, "\u7684\u5b50\u7c7b\u4e2d": 89, "\u5047\u5b9a\u6211\u4eec\u5e0c\u671b\u8ddf\u8e2a\u5c42\u6743\u91cd\u7684\u68af\u5ea6\u4ee5\u8fdb\u884c\u5b66\u4e60": 89, "\u5982\u679c\u6211\u4eec\u67e5\u770b\u6a21\u578b\u7684\u5c42": 89, "\u6211\u4eec\u53ef\u4ee5\u68c0\u67e5\u6743\u91cd\u7684\u503c": 89, "\u5e76\u9a8c\u8bc1\u5c1a\u672a\u8ba1\u7b97\u4efb\u4f55\u68af\u5ea6": 89, "\u53ea\u6253\u5370\u4e00\u5c0f\u90e8\u5206": 89, "\u8ba9\u6211\u4eec\u770b\u770b\u5f53\u6211\u4eec\u8fd0\u884c\u4e00\u4e2a\u8bad\u7ec3\u6279\u6b21\u65f6\u4f1a\u53d1\u751f\u4ec0\u4e48\u53d8\u5316": 89, "\u4f5c\u4e3a\u635f\u5931\u51fd\u6570": [89, 104], "\u4e4b\u95f4\u7684\u6b27\u51e0\u91cc\u5f97\u8ddd\u79bb\u7684\u5e73\u65b9": 89, "\u5e76\u4f7f\u7528\u57fa\u672c\u7684\u968f\u673a\u68af\u5ea6\u4e0b\u964d\u4f18\u5316\u5668": 89, "\u73b0\u5728": [89, 90, 94, 104, 216, 218, 238, 246, 247, 259], "\u8ba9\u6211\u4eec\u8c03\u7528": 89, "\u5e76\u770b\u770b\u4f1a\u53d1\u751f\u4ec0\u4e48": 89, "\u6bcf\u4e2a\u5b66\u4e60\u6743\u91cd\u7684\u68af\u5ea6\u90fd\u5df2\u7ecf\u8ba1\u7b97\u51fa\u6765\u4e86": 89, "\u4f46\u6743\u91cd\u4fdd\u6301\u4e0d\u53d8": 89, "\u56e0\u4e3a\u6211\u4eec\u8fd8\u6ca1\u6709\u8fd0\u884c\u4f18\u5316\u5668": 89, "\u4f18\u5316\u5668\u8d1f\u8d23\u6839\u636e\u8ba1\u7b97\u51fa\u7684\u68af\u5ea6\u66f4\u65b0\u6a21\u578b\u6743\u91cd": 89, "\u4f60\u5e94\u8be5\u770b\u5230": 89, "\u7684\u6743\u91cd\u5df2\u7ecf\u6539\u53d8": 89, "\u5173\u4e8e\u8fd9\u4e2a\u8fc7\u7a0b\u7684\u4e00\u4e2a\u91cd\u8981\u4e8b\u9879": 89, "\u5728\u8c03\u7528": [89, 129], "\u4e4b\u540e": [89, 104, 215, 246, 249], "\u4f60\u9700\u8981\u8c03\u7528": 89, "\u5426\u5219\u6bcf\u6b21\u4f60\u8fd0\u884c": 89, "\u5b66\u4e60\u6743\u91cd\u4e0a\u7684\u68af\u5ea6\u5c06\u4f1a\u7d2f\u79ef": 89, "set_to_non": [89, 232, 249], "\u5728\u8fd0\u884c\u4e0a\u9762\u7684\u5355\u5143\u683c\u540e": 89, "\u4f60\u5e94\u8be5\u4f1a\u770b\u5230\u5728\u591a\u6b21\u8fd0\u884c": 89, "\u5927\u591a\u6570\u68af\u5ea6\u7684\u5e45\u5ea6\u4f1a\u53d8\u5f97\u66f4\u5927": 89, "\u5982\u679c\u5728\u8fd0\u884c\u4e0b\u4e00\u4e2a\u8bad\u7ec3\u6279\u6b21\u4e4b\u524d": 89, "\u6ca1\u6709\u5c06\u68af\u5ea6\u6e05\u96f6": 89, "\u68af\u5ea6\u5c31\u4f1a\u4ee5\u8fd9\u79cd\u65b9\u5f0f\u81a8\u80c0": 89, "\u4ece\u800c\u5bfc\u81f4\u4e0d\u6b63\u786e\u548c": 89, "\u4e0d\u53ef\u9884\u6d4b\u7684\u5b66\u4e60\u7ed3\u679c": 89, "\u5728\u67d0\u4e9b\u60c5\u51b5\u4e0b": [89, 242, 252], "\u4f60\u9700\u8981\u5bf9\u662f\u5426\u542f\u7528\u81ea\u52a8\u6c42\u5bfc\u8fdb\u884c\u7ec6\u7c92\u5ea6\u63a7\u5236": 89, "\u6709\u591a\u79cd\u65b9\u6cd5\u53ef\u4ee5\u505a\u5230\u8fd9\u4e00\u70b9": 89, "\u5177\u4f53\u53d6\u51b3\u4e8e\u60c5\u51b5": 89, "\u6700\u7b80\u5355\u7684\u65b9\u6cd5\u662f\u76f4\u63a5\u66f4\u6539\u5f20\u91cf\u4e0a\u7684": 89, "\u6807\u5fd7": 89, "b1": 89, "b2": 89, "\u5728\u4e0a\u9762\u7684\u5355\u5143\u683c\u4e2d": [89, 95], "\u6709\u4e00\u4e2a": [89, 93, 215], "\u4e00\u4e2a": [89, 92, 235, 246, 251], "\u8ba1\u7b97\u5386\u53f2\u7684\u8ddf\u8e2a\u8bb0\u5f55": 89, "\u8fd9\u662f\u6211\u4eec\u6240\u671f\u671b\u7684": 89, "\u56e0\u4e3a\u5b83\u662f\u4ece\u4e00\u4e2a\u542f\u7528\u4e86": 89, "\u7684\u5f20\u91cf": [89, 92, 95, 111, 215], "\u6d3e\u751f\u51fa\u6765\u7684": 89, "\u5f53\u6211\u4eec\u4f7f\u7528": [89, 239], "\u663e\u5f0f\u5730\u5173\u95ed": 89, "\u8ba1\u7b97\u5386\u53f2\u5c31\u4e0d\u518d\u88ab\u8ddf\u8e2a\u4e86": 89, "\u6b63\u5982\u6211\u4eec\u5728\u8ba1\u7b97": 89, "\u6240\u770b\u5230\u7684\u90a3\u6837": 89, "\u5982\u679c\u4f60\u53ea\u9700\u8981\u4e34\u65f6\u5173\u95ed": 89, "\u4e00\u4e2a\u66f4\u597d\u7684\u65b9\u6cd5\u662f\u4f7f\u7528": 89, "c2": 89, "\u4e5f\u53ef\u4ee5\u7528\u4f5c\u51fd\u6570\u6216\u65b9\u6cd5\u88c5\u9970\u5668": 89, "add_tensors1": 89, "add_tensors2": 89, "\u6709\u4e00\u4e2a\u5bf9\u5e94\u7684\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668": 89, "enable_grad": 89, "\u7528\u4e8e\u5728\u5c1a\u672a\u542f\u7528\u65f6": 89, "\u6253\u5f00": [89, 95, 121], "\u5b83\u4e5f\u53ef\u4ee5\u7528\u4f5c\u88c5\u9970\u5668": 89, "\u4f60\u53ef\u80fd\u6709\u4e00\u4e2a\u9700\u8981\u68af\u5ea6\u8ddf\u8e2a\u7684\u5f20\u91cf": 89, "\u4f46\u4f60\u60f3\u8981\u4e00\u4e2a\u4e0d\u9700\u8981\u7684\u526f\u672c": 89, "\u4e3a\u6b64": [89, 90, 94, 95, 104, 215, 246, 260], "\u6211\u4eec\u6709\u5f20\u91cf\u5bf9\u8c61\u7684": 89, "\u5b83\u521b\u5efa\u4e00\u4e2a\u4e0e\u8ba1\u7b97\u5386\u53f2": 89, "\u5206\u79bb": 89, "\u7684\u5f20\u91cf\u526f\u672c": 89, "\u6211\u4eec\u4e4b\u524d\u8fd9\u6837\u505a\u662f\u56e0\u4e3a\u6211\u4eec\u60f3\u8981\u7ed8\u5236\u4e00\u4e9b\u5f20\u91cf\u7684\u56fe\u50cf": 89, "\u8fd9\u662f\u56e0\u4e3a": [89, 90, 233], "\u671f\u671b\u8f93\u5165\u662f\u4e00\u4e2a": 89, "\u6570\u7ec4": [89, 104, 231], "\u800c\u4ece\u5177\u6709": 89, "\u6570\u7ec4\u7684\u9690\u5f0f\u8f6c\u6362\u662f\u4e0d\u5141\u8bb8\u7684": 89, "\u5236\u4f5c\u4e00\u4e2a\u5206\u79bb\u7684\u526f\u672c\u8ba9\u6211\u4eec\u53ef\u4ee5\u7ee7\u7eed\u524d\u8fdb": 89, "\u5728\u672c\u7ec3\u4e60\u4e2d\u5230\u76ee\u524d\u4e3a\u6b62\u7684\u6bcf\u4e2a\u793a\u4f8b\u4e2d": 89, "\u6211\u4eec\u90fd\u4f7f\u7528\u4e86\u53d8\u91cf\u6765\u6355\u83b7\u8ba1\u7b97\u7684\u4e2d\u95f4\u503c": 89, "\u9700\u8981\u8fd9\u4e9b\u4e2d\u95f4\u503c\u6765\u6267\u884c\u68af\u5ea6\u8ba1\u7b97": 89, "\u5728\u4f7f\u7528": [89, 249], "\u4f60\u5fc5\u987b": 89, "\u5c0f\u5fc3\u4f7f\u7528\u539f\u4f4d\u64cd\u4f5c": 89, "\u8fd9\u6837\u505a\u53ef\u80fd\u4f1a\u7834\u574f\u8ba1\u7b97\u5bfc\u6570\u6240\u9700\u7684\u4fe1\u606f": 89, "\u8c03\u7528\u65f6\u9700\u8981\u8fd9\u4e9b\u4fe1\u606f": 89, "\u5982\u679c\u4f60\u5c1d\u8bd5\u5bf9\u9700\u8981": 89, "\u7684\u53f6\u53d8\u91cf\u8fdb\u884c\u539f\u4f4d\u64cd\u4f5c": 89, "\u751a\u81f3\u4f1a\u963b\u6b62\u4f60": 89, "\u5982\u4e0b\u6240\u793a": [89, 104, 216, 223, 246, 260], "\u4f1a\u8be6\u7ec6\u8ddf\u8e2a\u4f60\u7684\u6bcf\u4e00\u6b65\u8ba1\u7b97": 89, "\u8fd9\u79cd\u8ba1\u7b97\u5386\u53f2": 89, "\u7ed3\u5408\u65f6\u95f4\u4fe1\u606f": 89, "\u5c06\u6784\u6210\u4e00\u4e2a\u65b9\u4fbf\u7684\u5206\u6790\u5668": 89, "\u5c31\u5185\u7f6e\u4e86\u8fd9\u4e2a\u529f\u80fd": 89, "\u8fd9\u91cc\u6709\u4e00\u4e2a\u5feb\u901f\u4f7f\u7528\u793a\u4f8b": 89, "run_on_gpu": 89, "prf": 89, "key_averag": [89, 109, 145, 165, 221, 240], "sort_bi": [89, 109, 145, 165, 221, 240], "self_cpu_time_tot": [89, 109, 119, 145, 221, 240], "\u5206\u6790\u5668\u53ef\u4ee5\u6807\u8bb0\u4ee3\u7801\u7684\u5355\u4e2a\u5b50\u5757": 89, "\u6309\u8f93\u5165\u5f20\u91cf\u5f62\u72b6\u5206\u89e3\u6570\u636e": 89, "\u5e76\u5c06\u6570\u636e\u5bfc\u51fa\u4e3a": 89, "\u8ddf\u8e2a\u5de5\u5177\u6587\u4ef6": 89, "\u6709\u5173": [89, 232, 258], "\u7684\u5b8c\u6574\u8be6\u7ec6\u4fe1\u606f": 89, "\u5982\u679c\u4f60\u6709\u4e00\u4e2a\u5177\u6709": 89, "\u7ef4\u8f93\u5165\u548c": 89, "\u7ef4\u8f93\u51fa\u7684\u51fd\u6570": 89, "\u5b8c\u6574\u7684\u68af\u5ea6\u662f\u6bcf\u4e2a\u8f93\u51fa\u76f8\u5bf9\u4e8e\u6bcf\u4e2a\u8f93\u5165\u7684": 89, "\u5bfc\u6570\u7684\u77e9\u9635": 89, "\u5982\u679c\u4f60\u6709\u7b2c\u4e8c\u4e2a\u51fd\u6570": 89, "\u5b83": [89, 95, 96], "\u63a5\u53d7": [89, 249], "\u7ef4\u8f93\u5165": 89, "\u4e5f\u5c31\u662f\u4e0e\u4e0a\u9762\u7684\u8f93\u51fa\u5177\u6709\u76f8\u540c\u7684\u7ef4\u5ea6": 89, "\u5e76\u8fd4\u56de\u4e00\u4e2a": 89, "\u6807\u91cf\u8f93\u51fa": 89, "\u4f60\u53ef\u4ee5\u7528\u4e00\u4e2a\u5217\u5411\u91cf\u6765\u8868\u793a\u5b83\u76f8\u5bf9\u4e8e": 89, "\u7684\u68af\u5ea6": [89, 129], "\u8fd9\u5b9e\u9645\u4e0a\u53ea\u662f\u4e00\u4e2a\u4e00\u5217\u7684": 89, "\u66f4\u5177\u4f53\u5730\u8bf4": [89, 246], "\u60f3\u8c61\u7b2c\u4e00\u4e2a\u51fd\u6570\u662f\u4f60\u7684": 89, "\u6a21\u578b": [89, 93, 121, 140, 215, 232, 235, 236, 242, 253], "\u53ef\u80fd\u6709\u8bb8\u591a\u8f93\u5165\u548c\u8bb8\u591a\u8f93\u51fa": 89, "\u7b2c\u4e8c\u4e2a\u51fd\u6570\u662f\u4e00\u4e2a\u635f\u5931\u51fd\u6570": 89, "\u4ee5\u6a21\u578b\u7684\u8f93\u51fa\u4f5c\u4e3a\u8f93\u5165": 89, "\u635f\u5931\u503c\u4f5c\u4e3a\u6807\u91cf\u8f93\u51fa": 89, "\u5982\u679c\u6211\u4eec\u5c06\u7b2c\u4e00\u4e2a\u51fd\u6570\u7684": 89, "\u4e0e\u7b2c\u4e8c\u4e2a\u51fd\u6570\u7684\u68af\u5ea6\u76f8\u4e58": 89, "\u5e76\u5e94\u7528\u94fe\u5f0f\u6cd5\u5219": 89, "\u6211\u4eec\u5f97\u5230": 89, "\u4f60\u4e5f\u53ef\u4ee5\u4f7f\u7528\u7b49\u4ef7\u7684\u64cd\u4f5c": 89, "\u5e76\u5f97\u5230\u4e00\u4e2a\u884c\u5411\u91cf": 89, "\u6240\u5f97\u5230\u7684\u5217\u5411\u91cf\u5c31\u662f": 89, "\u7b2c\u4e8c\u4e2a\u51fd\u6570\u76f8\u5bf9\u4e8e\u7b2c\u4e00\u4e2a\u51fd\u6570\u7684\u8f93\u5165\u7684\u68af\u5ea6": 89, "\u6216\u8005\u5728\u6211\u4eec\u7684": 89, "\u6a21\u578b\u548c\u635f\u5931\u51fd\u6570\u7684\u60c5\u51b5\u4e0b": 89, "\u5c31\u662f\u635f\u5931\u76f8\u5bf9\u4e8e\u6a21\u578b\u8f93\u5165\u7684\u68af\u5ea6": 89, "\u662f\u4e00\u4e2a\u7528\u4e8e\u8ba1\u7b97\u8fd9\u4e9b\u4e58\u79ef\u7684\u5f15\u64ce": 89, "\u8fd9\u5c31\u662f\u6211\u4eec\u5728": 89, "\u53cd\u5411\u4f20\u64ad\u8fc7\u7a0b\u4e2d\u5982\u4f55\u7d2f\u79ef\u5b66\u4e60\u6743\u91cd\u7684\u68af\u5ea6": 89, "\u8c03\u7528\u4e5f\u53ef\u4ee5": 89, "\u63a5\u53d7\u4e00\u4e2a\u53ef\u9009\u7684\u5411\u91cf\u8f93\u5165": 89, "\u8be5\u5411\u91cf\u8868\u793a": 89, "\u5f20\u91cf\u4e0a\u7684\u4e00\u7ec4\u68af\u5ea6": 89, "\u8fd9\u4e9b\u68af\u5ea6\u5c06\u4e58\u4ee5\u524d\u9762\u7684": 89, "\u8ddf\u8e2a\u5f20\u91cf\u7684": 89, "\u8ba9\u6211\u4eec\u7528\u4e00\u4e2a\u5c0f\u5411\u91cf\u5c1d\u8bd5\u4e00\u4e2a\u5177\u4f53\u7684\u4f8b\u5b50": 89, "\u5982\u679c\u6211\u4eec\u5c1d\u8bd5\u73b0\u5728\u8c03\u7528": 89, "\u6211\u4eec\u4f1a\u5f97\u5230\u4e00\u4e2a\u8fd0\u884c\u65f6\u9519\u8bef\u548c\u4e00\u6761": 89, "\u6d88\u606f": 89, "\u8bf4\u660e\u53ea\u80fd": 89, "\u9690\u5f0f\u5730": 89, "\u4e3a\u6807\u91cf\u8f93\u51fa\u8ba1\u7b97\u68af\u5ea6": 89, "\u5bf9\u4e8e\u591a\u7ef4\u8f93\u51fa": 89, "\u671f\u671b\u6211\u4eec": 89, "\u63d0\u4f9b\u8fd9\u4e09\u4e2a\u8f93\u51fa\u7684\u68af\u5ea6": 89, "\u5b83\u53ef\u4ee5\u5c06\u8fd9\u4e9b\u68af\u5ea6\u4e58\u4ee5jacobian\u77e9\u9635": 89, "\u4ee3\u66ff\u68af\u5ea6": 89, "\u8f93\u51fa\u68af\u5ea6\u90fd\u4e0e2\u7684\u5e42\u6709\u5173": 89, "\u8fd9\u6b63\u662f\u6211\u4eec\u4ece\u91cd\u590d\u7684\u53cc\u500d\u64cd\u4f5c\u4e2d\u6240\u671f\u671b\u7684": 89, "\u53ef\u4ee5\u76f4\u63a5\u8bbf\u95ee\u91cd\u8981\u7684\u5dee\u5206\u77e9\u9635\u548c\u5411\u91cf\u8fd0\u7b97": 89, "\u7279\u522b\u662f": 89, "\u5b83\u5141\u8bb8\u4f60\u8ba1\u7b97\u7279\u5b9a\u51fd\u6570\u5728\u7279\u5b9a\u8f93\u5165\u4e0b\u7684jacobian\u77e9\u9635\u548c": 89, "hessian\u77e9\u9635": 89, "\u7c7b\u4f3c\u4e8ejacobian\u77e9\u9635": 89, "\u4f46\u8868\u793a\u6240\u6709\u504f\u5bfc\u6570\u7684": 89, "\u7b2c\u4e8c\u9636": 89, "\u5bfc\u6570": 89, "\u5b83\u8fd8\u63d0\u4f9b\u4e86\u4e0e\u8fd9\u4e9b\u77e9\u9635": 89, "\u8fdb\u884c\u5411\u91cf\u4e58\u79ef\u7684\u65b9\u6cd5": 89, "\u8ba9\u6211\u4eec\u8ba1\u7b97\u4e00\u4e2a\u7b80\u5355\u51fd\u6570\u7684jacobian\u77e9\u9635": 89, "\u5bf9\u4e8e\u4e24\u4e2a\u5355\u5143\u7d20\u8f93\u5165\u8fdb\u884c\u8bc4\u4f30": 89, "exp_add": 89, "\u5982\u679c\u4f60\u4ed4\u7ec6\u89c2\u5bdf": 89, "\u7b2c\u4e00\u4e2a\u8f93\u51fa\u5e94\u8be5\u7b49\u4e8e": 89, "\u56e0\u4e3a": [89, 104, 216, 218, 232, 248], "\u5bfc\u6570\u662f": 89, "\u7b2c\u4e8c\u4e2a\u503c\u5e94\u8be5\u662f3": 89, "\u4f60\u5f53\u7136\u4e5f\u53ef\u4ee5\u5bf9\u66f4\u9ad8\u9636\u7684\u5f20\u91cf\u8fd9\u6837\u505a": 89, "hessian": [89, 121, 207], "\u65b9\u6cd5\u7684\u5de5\u4f5c\u65b9\u5f0f\u5b8c\u5168\u76f8\u540c": 89, "\u5047\u8bbe\u4f60\u7684": 89, "\u51fd\u6570\u662f\u4e24\u6b21\u53ef\u5fae\u7684": 89, "\u4f46\u8fd4\u56de\u6240\u6709\u4e8c\u9636\u5bfc\u6570\u7684\u77e9\u9635": 89, "\u5982\u679c\u4f60\u63d0\u4f9b\u4e86\u5411\u91cf": 89, "\u8fd8\u6709\u4e00\u4e2a\u76f4\u63a5\u8ba1\u7b97\u5411\u91cf": 89, "\u96c5\u53ef\u6bd4\u4e58\u79ef\u7684\u51fd\u6570": 89, "do_some_doubl": 89, "my_gradi": 89, "vjp": [89, 146, 151, 207], "jvp": [89, 142, 146, 151], "\u65b9\u6cd5\u6267\u884c\u4e0e": 89, "\u76f8\u540c\u7684\u77e9\u9635\u4e58\u6cd5": 89, "\u4f46\u64cd\u4f5c\u6570\u987a\u5e8f\u76f8\u53cd": 89, "vhp": [89, 121], "hvp": [89, 121], "\u65b9\u6cd5\u5bf9\u4e8e\u5411\u91cf": 89, "\u6d77\u68ee\u77e9\u9635\u4e58\u79ef\u4e5f\u662f\u5982\u6b64": 89, "\u6709\u5173\u66f4\u591a\u4fe1\u606f": [89, 94, 95, 249, 252], "\u529f\u80fd": [89, 257], "\u4e2d\u7684\u6027\u80fd\u8bf4\u660e": 89, "autogradyt_tutori": [89, 91], "\u4e0b\u8f7d\u7b14\u8bb0\u672c\u548c\u76f8\u5e94\u6587\u4ef6": 90, "\u62c9\u4e01\u8bed\u4e2d\u7684": 90, "\u7406\u89e3": 90, "\u662f\u4e00\u4e2a\u5f00\u6e90\u7684": 90, "\u53ef\u6269\u5c55\u7684\u6a21\u578b\u53ef\u89e3\u91ca\u6027\u5e93": 90, "\u5efa\u7acb\u5728pytorch\u4e4b\u4e0a": 90, "\u968f\u7740\u6a21\u578b\u590d\u6742\u6027\u7684\u589e\u52a0\u548c\u7531\u6b64\u5e26\u6765\u7684\u900f\u660e\u5ea6\u7684\u7f3a\u4e4f": 90, "\u6a21\u578b\u53ef\u89e3\u91ca\u6027\u65b9\u6cd5\u53d8\u5f97\u8d8a\u6765\u8d8a\u91cd\u8981": 90, "\u6a21\u578b\u7406\u89e3\u662f\u4e00\u4e2a\u6d3b\u8dc3\u7684\u7814\u7a76\u9886\u57df": 90, "\u4e5f\u662f\u8de8\u884c\u4e1a\u4f7f\u7528\u673a\u5668\u5b66\u4e60\u7684\u5b9e\u9645\u5e94\u7528\u7684\u4e00\u4e2a\u5173\u6ce8\u9886\u57df": 90, "captum\u63d0\u4f9b\u4e86\u6700\u5148\u8fdb\u7684\u7b97\u6cd5": 90, "\u5305\u62ec\u96c6\u6210\u68af\u5ea6": 90, "\u4e3a\u7814\u7a76\u4eba\u5458\u548c\u5f00\u53d1\u4eba\u5458\u63d0\u4f9b\u4e86\u4e00\u79cd\u7b80\u5355\u7684\u65b9\u5f0f\u6765\u7406\u89e3\u54ea\u4e9b\u7279\u5f81\u5bf9\u6a21\u578b\u7684\u8f93\u51fa\u505a\u51fa\u4e86\u8d21\u732e": 90, "\u5b8c\u6574\u7684\u6587\u6863": 90, "api\u53c2\u8003\u548c\u4e00\u5957\u5173\u4e8e\u7279\u5b9a\u4e3b\u9898\u7684\u6559\u7a0b\u53ef\u5728": 90, "\u7f51\u7ad9\u4e0a\u627e\u5230": 90, "captum\u5bf9\u6a21\u578b\u53ef\u89e3\u91ca\u6027\u7684\u65b9\u6cd5\u662f\u57fa\u4e8e": 90, "\u5f52\u56e0": 90, "captum\u4e2d\u6709\u4e09\u79cd\u7c7b\u578b\u7684\u5f52\u56e0": 90, "\u7279\u5f81\u5f52\u56e0": 90, "\u8bd5\u56fe\u89e3\u91ca\u7279\u5b9a\u8f93\u51fa\u662f\u7531\u751f\u6210\u5b83\u7684\u8f93\u5165\u7684\u54ea\u4e9b\u7279\u5f81\u4ea7\u751f\u7684": 90, "\u7528\u67d0\u4e9b\u8bcd\u6765\u89e3\u91ca\u4e00\u7bc7\u7535\u5f71\u8bc4\u8bba\u662f\u6b63\u9762\u8fd8\u662f\u8d1f\u9762\u7684": 90, "\u5c31\u662f\u7279\u5f81\u5f52\u56e0\u7684\u4e00\u4e2a\u4f8b\u5b50": 90, "\u5c42\u5f52\u56e0": 90, "\u68c0\u67e5\u6a21\u578b\u7684\u9690\u85cf\u5c42\u5728\u7279\u5b9a\u8f93\u5165\u4e0b\u7684\u6d3b\u52a8": 90, "\u68c0\u67e5\u5377\u79ef\u5c42\u5bf9\u8f93\u5165\u56fe\u50cf\u7684\u7a7a\u95f4\u6620\u5c04\u8f93\u51fa\u5c31\u662f\u5c42\u5f52\u56e0\u7684\u4e00\u4e2a\u4f8b\u5b50": 90, "\u795e\u7ecf\u5143\u5f52\u56e0": 90, "\u7c7b\u4f3c\u4e8e\u5c42\u5f52\u56e0": 90, "\u4f46\u5173\u6ce8\u5355\u4e2a\u795e\u7ecf\u5143\u7684\u6d3b\u52a8": 90, "\u5728\u8fd9\u4e2a\u4ea4\u4e92\u5f0f\u7b14\u8bb0\u672c\u4e2d": 90, "\u6211\u4eec\u5c06\u770b\u770b\u7279\u5f81\u5f52\u56e0\u548c\u5c42\u5f52\u56e0": 90, "\u6bcf\u79cd\u5f52\u56e0\u7c7b\u578b\u90fd\u6709\u591a\u79cd": 90, "\u5f52\u56e0\u7b97\u6cd5": 90, "\u4e0e\u4e4b\u76f8\u5173\u8054": 90, "\u8bb8\u591a\u5f52\u56e0\u7b97\u6cd5\u53ef\u5206\u4e3a\u4e24\u5927\u7c7b": 90, "\u57fa\u4e8e\u68af\u5ea6\u7684\u7b97\u6cd5": 90, "\u8ba1\u7b97\u6a21\u578b\u8f93\u51fa": 90, "\u5c42\u8f93\u51fa\u6216\u795e\u7ecf\u5143\u6fc0\u6d3b\u76f8\u5bf9\u4e8e\u8f93\u5165\u7684\u53cd\u5411\u68af\u5ea6": 90, "\u96c6\u6210\u68af\u5ea6": 90, "\u7528\u4e8e\u7279\u5f81": 90, "\u5c42\u68af\u5ea6": 90, "\u6fc0\u6d3b": [90, 228], "\u795e\u7ecf\u5143\u4f20\u5bfc": 90, "\u90fd\u662f\u57fa\u4e8e\u68af\u5ea6\u7684\u7b97\u6cd5": 90, "\u57fa\u4e8e\u6270\u52a8\u7684\u7b97\u6cd5": 90, "\u68c0\u67e5\u6a21\u578b": 90, "\u5c42\u6216\u795e\u7ecf\u5143\u7684\u8f93\u51fa\u5728\u8f93\u5165\u53d1\u751f\u53d8\u5316\u65f6\u7684\u53d8\u5316\u60c5\u51b5": 90, "\u8f93\u5165\u6270\u52a8\u53ef\u80fd\u662f\u6709\u9488\u5bf9\u6027\u7684\u6216\u968f\u673a\u7684": 90, "\u906e\u6321": 90, "\u7279\u5f81\u6d88\u878d": 90, "\u7279\u5f81\u7f6e\u6362": 90, "\u90fd\u662f\u57fa\u4e8e\u6270\u52a8\u7684\u7b97\u6cd5": 90, "\u6211\u4eec\u5c06\u5728\u4e0b\u9762\u68c0\u67e5\u8fd9\u4e24\u79cd\u7c7b\u578b\u7684\u7b97\u6cd5": 90, "\u7279\u522b\u662f\u5bf9\u4e8e\u5927\u578b\u6a21\u578b": 90, "\u4ee5\u4e0e\u88ab\u68c0\u67e5\u7684\u8f93\u5165\u7279\u5f81\u76f4\u63a5\u76f8\u5173\u7684\u65b9\u5f0f\u53ef\u89c6\u5316\u5f52\u56e0\u6570\u636e\u662f\u5f88\u6709\u4ef7\u503c\u7684": 90, "\u867d\u7136\u5f53\u7136\u53ef\u4ee5\u4f7f\u7528matplotlib": 90, "plotly\u6216\u7c7b\u4f3c\u5de5\u5177\u521b\u5efa\u81ea\u5df1\u7684\u53ef\u89c6\u5316": 90, "\u4f46captum\u63d0\u4f9b\u4e86\u4e13\u95e8\u7528\u4e8e\u5176\u5f52\u56e0\u7684\u589e\u5f3a\u5de5\u5177": 90, "attr": [90, 148, 156, 209, 231], "\u4e0b\u9762\u5bfc\u5165\u4e3a": 90, "\u63d0\u4f9b\u4e86\u6709\u52a9\u4e8e\u53ef\u89c6\u5316\u4e0e\u56fe\u50cf\u76f8\u5173\u7684\u5f52\u56e0\u7684\u51fd\u6570": 90, "\u662f\u5efa\u7acb\u5728captum\u4e4b\u4e0a\u7684\u4e00\u4e2a\u6613\u4e8e\u4f7f\u7528\u7684\u53ef\u89e3\u91ca\u6027\u53ef\u89c6\u5316\u5c0f\u90e8\u4ef6": 90, "\u63d0\u4f9b\u4e86\u4e00\u4e2a\u5e26\u6709\u73b0\u6210\u53ef\u89c6\u5316\u5de5\u5177\u7684\u5c0f\u90e8\u4ef6": 90, "\u7528\u4e8e\u56fe\u50cf": 90, "\u6587\u672c\u548c\u4efb\u610f\u6a21\u578b\u7c7b\u578b": 90, "\u8fd9\u4e24\u79cd\u53ef\u89c6\u5316\u5de5\u5177\u96c6\u90fd\u5c06\u5728\u672c\u7b14\u8bb0\u672c\u4e2d\u8fdb\u884c\u6f14\u793a": 90, "\u524d\u51e0\u4e2a\u793a\u4f8b\u5c06\u96c6\u4e2d\u5728\u8ba1\u7b97\u673a\u89c6\u89c9\u7528\u4f8b\u4e0a": 90, "\u4f46\u6700\u540e\u7684captum": 90, "insights\u90e8\u5206\u5c06\u6f14\u793a\u89c6\u89c9\u95ee\u7b54\u6a21\u578b\u4e2d\u7684\u5f52\u56e0\u53ef\u89c6\u5316": 90, "\u5728\u5f00\u59cb\u4e4b\u524d": [90, 233, 235, 238, 243, 244, 245, 250, 251, 252, 254], "\u4f60\u9700\u8981\u6709\u4e00\u4e2apython\u73af\u5883": 90, "6\u6216\u66f4\u9ad8\u7248\u672c": 90, "\u5bf9\u4e8ecaptum": 90, "insights\u793a\u4f8b": 90, "\u9700\u8981flask": 90, "1\u6216\u66f4\u9ad8\u7248\u672c\u548cflask": 90, "\u63a8\u8350\u4f7f\u7528\u6700\u65b0\u7248\u672c": 90, "2\u6216\u66f4\u9ad8\u7248\u672c": 90, "4\u7248\u672c": 90, "\u56e0\u4e3acaptum\u76ee\u524d\u4f7f\u7528\u4e86\u4e00\u4e2a\u5728\u66f4\u9ad8\u7248\u672c\u4e2d\u53c2\u6570\u5df2\u88ab\u91cd\u547d\u540d\u7684matplotlib\u51fd\u6570": 90, "\u8981\u5728anaconda\u6216pip\u865a\u62df\u73af\u5883\u4e2d\u5b89\u88c5captum": 90, "\u8bf7\u4f7f\u7528\u4e0b\u9762\u9002\u7528\u4e8e\u60a8\u73af\u5883\u7684\u547d\u4ee4": 90, "flask": [90, 113, 121, 140, 253], "\u5728\u60a8\u8bbe\u7f6e\u7684\u73af\u5883\u4e2d\u91cd\u65b0\u542f\u52a8\u6b64\u7b14\u8bb0\u672c": 90, "\u60a8\u5c31\u53ef\u4ee5\u5f00\u59cb\u4e86": 90, "\u8ba9\u6211\u4eec\u770b\u4e00\u4e2a\u7b80\u5355\u7684\u89c6\u89c9\u793a\u4f8b": 90, "\u6211\u4eec\u5c06\u4ece\u4e00\u4e2a\u5728imagenet\u6570\u636e\u96c6\u4e0a\u9884\u8bad\u7ec3\u7684resnet\u6a21\u578b\u5f00\u59cb": 90, "\u6211\u4eec\u5c06\u83b7\u53d6\u4e00\u4e2a\u6d4b\u8bd5\u8f93\u5165": 90, "\u5e76\u4f7f\u7528\u4e0d\u540c\u7684": 90, "\u7b97\u6cd5\u6765\u68c0\u67e5\u8f93\u5165\u56fe\u50cf\u5982\u4f55\u5f71\u54cd\u8f93\u51fa": 90, "\u5e76\u67e5\u770b\u4e00\u4e9b\u6d4b\u8bd5\u56fe\u50cf\u7684\u8f93\u5165\u5f52\u56e0\u6620\u5c04\u7684\u6709\u7528\u53ef\u89c6\u5316": 90, "\u5bfc\u5165\u4e00\u4e9b\u5305": 90, "integratedgradi": 90, "occlus": [90, 231], "layergradcam": 90, "layerattribut": 90, "linearsegmentedcolormap": 90, "\u73b0\u5728\u6211\u4eec\u5c06\u4f7f\u7528torchvision\u6a21\u578b\u5e93\u4e0b\u8f7d\u4e00\u4e2a\u9884\u8bad\u7ec3\u7684resnet": 90, "\u7531\u4e8e\u6211\u4eec\u4e0d\u8fdb\u884c\u8bad\u7ec3": 90, "\u6211\u4eec\u5c06\u6682\u65f6\u5c06\u5176\u7f6e\u4e8e\u8bc4\u4f30\u6a21\u5f0f": 90, "\u4f60\u4ece\u4e2d\u83b7\u53d6\u8fd9\u4e2a\u4ea4\u4e92\u5f0f\u7b14\u8bb0\u672c\u7684\u5730\u65b9\u5e94\u8be5\u4e5f\u6709\u4e00\u4e2a": 90, "\u6587\u4ef6\u5939": 90, "\u5176\u4e2d\u5305\u542b\u4e00\u4e2a": 90, "test_img": 90, "test_img_data": 90, "\u6211\u4eec\u7684resnet\u6a21\u578b\u662f\u5728imagenet\u6570\u636e\u96c6\u4e0a\u8bad\u7ec3\u7684": 90, "\u5b83\u671f\u671b\u56fe\u50cf\u5177\u6709\u4e00\u5b9a\u7684\u5927\u5c0f": 90, "\u5e76\u4e14\u901a\u9053\u6570\u636e\u88ab\u5f52\u4e00\u5316\u5230\u7279\u5b9a\u7684\u503c\u8303\u56f4": 90, "\u6211\u4eec\u8fd8\u5c06\u83b7\u53d6\u6a21\u578b\u8bc6\u522b\u7684\u7c7b\u522b\u7684\u4eba\u7c7b\u53ef\u8bfb\u6807\u7b7e\u5217\u8868": 90, "\u5b83\u5e94\u8be5\u4e5f\u5728": 90, "\u6587\u4ef6\u5939\u4e2d": 90, "\u6a21\u578b\u671f\u671b224x224": 90, "3\u8272\u5f69\u56fe\u50cf": 90, "\u6807\u51c6imagenet\u5f52\u4e00\u5316": 90, "transform_norm": 90, "transformed_img": 90, "\u6a21\u578b\u9700\u8981\u4e00\u4e2a\u865a\u62df\u7684\u6279\u6b21\u7ef4\u5ea6": 90, "labels_path": 90, "imagenet_class_index": [90, 140], "json_data": 90, "idx_to_label": 90, "\u6211\u4eec\u53ef\u4ee5\u95ee": 90, "\u8fd9\u4e2a\u6a21\u578b\u8ba4\u4e3a\u8fd9\u5f20\u56fe\u50cf\u4ee3\u8868\u4ec0\u4e48": 90, "prediction_scor": 90, "pred_label_idx": 90, "squeeze_": [90, 95], "predicted_label": [90, 115], "\u9884\u6d4b": 90, "\u6211\u4eec\u5df2\u7ecf\u786e\u8ba4resnet\u8ba4\u4e3a\u6211\u4eec\u7684\u732b\u7684\u56fe\u50cf\u786e\u5b9e\u662f\u4e00\u53ea\u732b": 90, "\u4f46\u662f": [90, 93, 95, 209, 216, 221, 233, 236, 239, 257], "\u4e3a\u4ec0\u4e48": 90, "\u6a21\u578b\u8ba4\u4e3a\u8fd9\u662f\u4e00\u5f20\u732b\u7684\u56fe\u50cf\u5462": 90, "\u8981\u56de\u7b54\u8fd9\u4e2a\u95ee\u9898": 90, "\u6211\u4eec\u5c31\u8981\u6c42\u52a9\u4e8ecaptum": 90, "\u8bd5\u56fe\u7528\u751f\u6210\u7279\u5b9a\u8f93\u51fa\u7684\u8f93\u5165\u7684\u7279\u5f81\u6765\u89e3\u91ca\u8be5\u8f93\u51fa": 90, "\u5b83\u4f7f\u7528\u7279\u5b9a\u7684\u8f93\u5165": 90, "\u5728\u8fd9\u91cc\u662f\u6211\u4eec\u7684\u6d4b\u8bd5\u56fe\u50cf": 90, "\u6765\u751f\u6210\u4e00\u4e2a\u8f93\u5165\u7279\u5f81\u5bf9\u7279\u5b9a\u8f93\u51fa\u7279\u5f81\u7684\u76f8\u5bf9\u91cd\u8981\u6027\u7684\u6620\u5c04": 90, "\u662fcaptum\u4e2d\u53ef\u7528\u7684\u7279\u5f81\u5f52\u56e0\u7b97\u6cd5\u4e4b\u4e00": 90, "\u96c6\u6210\u68af\u5ea6\u901a\u8fc7\u8fd1\u4f3c\u6a21\u578b\u8f93\u51fa\u76f8\u5bf9\u4e8e\u8f93\u5165\u7684\u68af\u5ea6\u7684\u79ef\u5206": 90, "\u4e3a\u6bcf\u4e2a\u8f93\u5165\u7279\u5f81\u5206\u914d\u4e00\u4e2a\u91cd\u8981\u6027\u5206\u6570": 90, "\u5728\u6211\u4eec\u7684\u4f8b\u5b50\u4e2d": [90, 95], "\u6211\u4eec\u5c06\u4f7f\u7528\u8f93\u51fa\u5411\u91cf\u7684\u4e00\u4e2a\u7279\u5b9a\u5143\u7d20": 90, "\u4e5f\u5c31\u662f\u8868\u793a\u6a21\u578b\u5bf9\u6240\u9009\u7c7b\u522b\u7684\u7f6e\u4fe1\u5ea6\u7684\u90a3\u4e2a\u5143\u7d20": 90, "\u5e76\u4f7f\u7528\u96c6\u6210\u68af\u5ea6\u6765\u7406\u89e3\u54ea\u4e9b\u8f93\u5165\u56fe\u50cf\u90e8\u5206\u5bf9\u8fd9\u4e2a\u8f93\u51fa\u505a\u51fa\u4e86\u8d21\u732e": 90, "\u4e00\u65e6\u6211\u4eec\u4ece\u96c6\u6210\u68af\u5ea6\u83b7\u5f97\u4e86\u91cd\u8981\u6027\u6620\u5c04": 90, "\u6211\u4eec\u5c06\u4f7f\u7528captum\u4e2d\u7684\u53ef\u89c6\u5316\u5de5\u5177\u6765\u63d0\u4f9b\u4e0e\u88ab\u68c0\u67e5\u7684\u8f93\u5165\u7279\u5f81\u76f4\u63a5\u76f8\u5173\u7684\u91cd\u8981\u6027\u6620\u5c04\u7684\u6709\u7528\u8868\u793a": 90, "captum\u7684": 90, "visualize_image_attr": 90, "\u51fd\u6570\u63d0\u4f9b\u4e86\u5404\u79cd\u81ea\u5b9a\u4e49\u663e\u793a\u5f52\u56e0\u6570\u636e\u7684\u9009\u9879": 90, "\u6211\u4eec\u4f20\u5165\u4e00\u4e2a\u81ea\u5b9a\u4e49\u7684matplotlib\u989c\u8272\u6620\u5c04": 90, "\u8fd0\u884c\u5e26\u6709": 90, "integrated_gradi": 90, "\u8c03\u7528\u7684\u5355\u5143\u683c\u901a\u5e38\u9700\u8981\u4e00\u4e24\u5206\u949f": 90, "\u7528\u6a21\u578b\u521d\u59cb\u5316\u5f52\u56e0\u7b97\u6cd5": 90, "\u8981\u6c42\u7b97\u6cd5\u5c06\u6211\u4eec\u7684\u8f93\u51fa\u76ee\u6807\u5f52\u56e0\u4e8e": 90, "attributions_ig": 90, "n_step": [90, 160, 162, 164], "\u663e\u793a\u539f\u59cb\u56fe\u50cf\u4ee5\u4f9b\u6bd4\u8f83": 90, "original_imag": [90, 231], "default_cmap": 90, "from_list": 90, "ffffff": 90, "0000ff": 90, "heat_map": [90, 231], "show_colorbar": [90, 231], "sign": [90, 154, 206], "\u5728\u4e0a\u9762\u7684\u56fe\u50cf\u4e2d": 90, "\u4f60\u5e94\u8be5\u53ef\u4ee5\u770b\u5230\u96c6\u6210\u68af\u5ea6\u5728\u56fe\u50cf\u4e2d\u732b\u7684\u4f4d\u7f6e\u7ed9\u51fa\u4e86\u6700\u5f3a\u7684\u4fe1\u53f7": 90, "\u57fa\u4e8e\u68af\u5ea6\u7684\u5f52\u56e0\u65b9\u6cd5\u6709\u52a9\u4e8e\u901a\u8fc7\u76f4\u63a5\u8ba1\u7b97\u8f93\u51fa\u76f8\u5bf9\u4e8e\u8f93\u5165\u7684\u53d8\u5316\u6765\u7406\u89e3\u6a21\u578b": 90, "\u57fa\u4e8e\u6270\u52a8\u7684\u5f52\u56e0": 90, "\u65b9\u6cd5\u5219\u66f4\u76f4\u63a5\u5730\u89e3\u51b3\u8fd9\u4e2a\u95ee\u9898": 90, "\u901a\u8fc7\u5bf9\u8f93\u5165\u8fdb\u884c\u53d8\u5316\u6765\u6d4b\u91cf\u5bf9\u8f93\u51fa\u7684\u5f71\u54cd": 90, "\u5c31\u662f\u8fd9\u6837\u4e00\u79cd\u65b9\u6cd5": 90, "\u5b83\u6d89\u53ca\u66ff\u6362\u8f93\u5165\u56fe\u50cf\u7684\u90e8\u5206\u533a\u57df": 90, "\u5e76\u68c0\u67e5\u5bf9\u8f93\u51fa\u4fe1\u53f7\u7684\u5f71\u54cd": 90, "\u4e0b\u9762": [90, 92, 94, 95, 96], "\u6211\u4eec\u8bbe\u7f6e\u906e\u6321\u5f52\u56e0": 90, "\u4e0e\u914d\u7f6e\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u7c7b\u4f3c": 90, "\u4f60\u53ef\u4ee5\u6307\u5b9a\u76ee\u6807\u533a\u57df\u7684\u5927\u5c0f": 90, "\u4ee5\u53ca\u786e\u5b9a\u5355\u4e2a\u6d4b\u91cf\u95f4\u8ddd\u7684\u6b65\u957f\u957f\u5ea6": 90, "visualize_image_attr_multipl": [90, 231], "\u6765\u53ef\u89c6\u5316\u6211\u4eec\u7684\u906e\u6321\u5f52\u56e0\u8f93\u51fa": 90, "\u663e\u793a\u6bcf\u4e2a\u533a\u57df\u7684\u6b63\u9762\u548c\u8d1f\u9762\u5f52\u56e0\u7684\u70ed\u56fe": 90, "\u5e76\u7528\u6b63\u9762\u5f52\u56e0\u533a\u57df\u63a9\u7801\u539f\u59cb\u56fe\u50cf": 90, "\u63a9\u7801\u53ef\u4ee5\u7ed9\u51fa\u4e00\u4e2a\u975e\u5e38\u6709\u542f\u53d1\u6027\u7684\u89c6\u56fe": 90, "\u663e\u793a\u6a21\u578b\u53d1\u73b0\u54ea\u4e9b\u533a\u57df\u6700": 90, "\u50cf\u732b": 90, "attributions_occ": 90, "sliding_window_shap": [90, 231], "masked_imag": 90, "fig_siz": 90, "18": [90, 107, 108, 109, 118, 127, 145, 158, 159, 164, 174, 175, 185, 195, 230, 233, 269], "\u540c\u6837": [90, 95, 104, 216], "\u6211\u4eec\u770b\u5230\u56fe\u50cf\u4e2d\u5305\u542b\u732b\u7684\u533a\u57df\u88ab\u8d4b\u4e88\u4e86\u66f4\u5927\u7684\u91cd\u8981\u6027": 90, "\u5141\u8bb8\u4f60\u5c06\u6a21\u578b\u4e2d\u9690\u85cf\u5c42\u7684\u6d3b\u52a8\u5f52\u56e0\u4e8e\u8f93\u5165\u7684\u7279\u5f81": 90, "\u5c42\u5f52\u56e0\u7b97\u6cd5\u6765\u68c0\u67e5\u6a21\u578b\u4e2d\u4e00\u4e2a\u5377\u79ef\u5c42\u7684\u6d3b\u52a8": 90, "gradcam\u8ba1\u7b97\u76ee\u6807\u8f93\u51fa\u76f8\u5bf9\u4e8e\u7ed9\u5b9a\u5c42\u7684\u68af\u5ea6": 90, "\u5bf9\u6bcf\u4e2a\u8f93\u51fa\u901a\u9053": 90, "\u8f93\u51fa\u7684\u7b2c2\u7ef4": 90, "\u8fdb\u884c\u5e73\u5747": 90, "\u5e76\u5c06\u6bcf\u4e2a\u901a\u9053\u7684\u5e73\u5747\u68af\u5ea6\u4e58\u4ee5\u5c42\u6fc0\u6d3b": 90, "\u7ed3\u679c\u5728\u6240\u6709\u901a\u9053\u4e0a\u6c42\u548c": 90, "gradcam\u4e13\u4e3a\u5377\u79ef\u7f51\u7edc": 90, "\u8bbe\u8ba1": 90, "\u7531\u4e8e\u5377\u79ef\u5c42\u7684\u6d3b\u52a8\u901a\u5e38\u5728\u7a7a\u95f4\u4e0a\u6620\u5c04\u5230\u8f93\u5165": 90, "\u56e0\u6b64gradcam\u5f52\u56e0\u901a\u5e38\u4f1a\u88ab\u4e0a\u91c7\u6837": 90, "\u5e76\u7528\u4e8e\u63a9\u76d6\u8f93\u5165": 90, "\u5c42\u5f52\u56e0\u7684\u8bbe\u7f6e\u7c7b\u4f3c\u4e8e\u8f93\u5165\u5f52\u56e0": 90, "\u9664\u4e86\u9664\u4e86\u6a21\u578b\u4e4b\u5916": 90, "\u4f60\u8fd8\u5fc5\u987b\u6307\u5b9a\u6a21\u578b\u4e2d\u4f60\u5e0c\u671b\u68c0\u67e5\u7684": 90, "\u9690\u85cf\u5c42": 90, "\u4e0e\u4e0a\u9762\u4e00\u6837": 90, "\u5f53\u6211\u4eec\u8c03\u7528": 90, "\u6211\u4eec\u6307\u5b9a\u611f\u5174\u8da3\u7684\u76ee\u6807\u7c7b": 90, "layer_gradcam": 90, "layer3": [90, 150, 158, 161], "attributions_lgc": 90, "base_class": 90, "\u57fa\u7c7b\u4e2d\u7684\u4fbf\u5229\u65b9\u6cd5": 90, "interpol": [90, 119, 265], "\u6765\u4e0a\u91c7\u6837\u8fd9\u4e9b\u5f52\u56e0\u6570\u636e": 90, "\u4ee5\u4fbf\u4e0e\u8f93\u5165\u56fe\u50cf\u8fdb\u884c\u6bd4\u8f83": 90, "upsamp_attr_lgc": 90, "blended_heat_map": 90, "\u8fd9\u6837\u7684\u53ef\u89c6\u5316\u53ef\u4ee5\u8ba9\u4f60\u6df1\u5165\u4e86\u89e3\u9690\u85cf\u5c42\u5982\u4f55\u54cd\u5e94\u4f60\u7684\u8f93\u5165": 90, "insights\u662f\u4e00\u4e2a\u5efa\u7acb\u5728captum\u4e4b\u4e0a\u7684\u53ef\u89e3\u91ca\u6027\u53ef\u89c6\u5316\u5c0f\u90e8\u4ef6": 90, "\u65e8\u5728\u4fc3\u8fdb\u6a21\u578b\u7406\u89e3": 90, "insights\u53ef\u7528\u4e8e\u56fe\u50cf": 90, "\u6587\u672c\u548c\u5176\u4ed6\u7279\u5f81": 90, "\u5e2e\u52a9\u7528\u6237\u7406\u89e3\u7279\u5f81\u5f52\u56e0": 90, "\u5b83\u5141\u8bb8\u4f60\u53ef\u89c6\u5316": 90, "\u591a\u4e2a\u8f93\u5165": 90, "\u8f93\u51fa\u5bf9\u7684\u5f52\u56e0": 90, "\u5e76\u63d0\u4f9b\u7528\u4e8e\u56fe\u50cf": 90, "\u6587\u672c\u548c\u4efb\u610f\u6570\u636e\u7684\u53ef\u89c6\u5316\u5de5\u5177": 90, "\u5728\u672c\u7b14\u8bb0\u672c\u7684\u8fd9\u4e00\u90e8\u5206": 90, "\u6211\u4eec\u5c06\u4f7f\u7528captum": 90, "insights\u53ef\u89c6\u5316\u591a\u4e2a\u56fe\u50cf\u5206\u7c7b\u63a8\u7406": 90, "\u8ba9\u6211\u4eec\u6536\u96c6\u4e00\u4e9b\u56fe\u50cf": 90, "\u770b\u770b\u6a21\u578b\u5bf9\u5b83\u4eec\u7684\u770b\u6cd5": 90, "\u4e3a\u4e86\u589e\u52a0\u591a\u6837\u6027": 90, "\u6211\u4eec\u5c06\u4f7f\u7528\u732b": 90, "\u8336\u58f6\u548c\u4e09\u53f6\u866b\u5316\u77f3": 90, "teapot": 90, "trilobit": 90, "\u770b\u8d77\u6765\u6211\u4eec\u7684\u6a21\u578b\u90fd\u6b63\u786e\u8bc6\u522b\u4e86\u5b83\u4eec": 90, "\u6211\u4eec\u5f53\u7136\u5e0c\u671b\u6df1\u5165\u6316\u6398": 90, "insights\u5c0f\u90e8\u4ef6": 90, "\u6211\u4eec\u7528\u4e0b\u9762\u5bfc\u5165\u7684": 90, "attributionvisu": 90, "\u5bf9\u8c61\u5bf9\u5176\u8fdb\u884c\u914d\u7f6e": 90, "\u671f\u671b\u6279\u91cf\u6570\u636e": 90, "\u6240\u4ee5\u6211\u4eec\u5c06\u5f15\u5165captum\u7684": 90, "\u8f85\u52a9\u7c7b": 90, "\u6211\u4eec\u5c06\u67e5\u770b\u56fe\u50cf": 90, "\u56e0\u6b64\u6211\u4eec\u8fd8\u5c06\u5bfc\u5165": 90, "imagefeatur": 90, "\u6211\u4eec\u4f7f\u7528\u4ee5\u4e0b\u53c2\u6570\u914d\u7f6e": 90, "\u8981\u68c0\u67e5\u7684\u6a21\u578b\u6570\u7ec4": 90, "\u53ea\u6709\u4e00\u4e2a": 90, "\u4e00\u4e2a\u8bc4\u5206\u51fd\u6570": 90, "\u5141\u8bb8captum": 90, "insights\u4ece\u6a21\u578b\u4e2d\u63d0\u53d6\u524dk\u4e2a\u9884\u6d4b": 90, "\u6211\u4eec\u6a21\u578b\u8bad\u7ec3\u7684\u7c7b\u522b\u7684\u6709\u5e8f": 90, "\u4eba\u7c7b\u53ef\u8bfb\u5217\u8868": 90, "\u8981\u67e5\u627e\u7684\u7279\u5f81\u5217\u8868": 90, "\u662f\u4e00\u4e2a": [90, 246, 254], "\u4e00\u4e2a\u6570\u636e\u96c6": 90, "\u5b83\u662f\u4e00\u4e2a\u53ef\u8fed\u4ee3\u5bf9\u8c61": 90, "\u8fd4\u56de\u8f93\u5165\u548c\u6807\u7b7e\u7684\u6279\u6b21": 90, "\u5c31\u50cf\u4f60\u7528\u4e8e\u8bad\u7ec3\u4e00\u6837": 90, "attr_vi": 90, "\u57fa\u7ebf\u662f\u5168\u96f6\u8f93\u5165": 90, "\u8fd9\u53ef\u80fd\u4f1a\u56e0\u4f60\u7684\u6570\u636e\u800c\u6709\u6240\u4e0d\u540c": 90, "baseline_func": 90, "\u5408\u5e76\u4e0a\u9762\u7684\u56fe\u50cf\u53d8\u6362": 90, "full_img_transform": 90, "score_func": 90, "\u7167\u7247": 90, "baseline_transform": 90, "input_transform": [90, 215], "282": 90, "849": [90, 221, 233], "\u8fd0\u884c\u4e0a\u9762\u7684\u5355\u5143\u683c\u5e76\u6ca1\u6709\u82b1\u8d39\u592a\u591a\u65f6\u95f4": 90, "\u4e0d\u50cf\u6211\u4eec\u4e4b\u524d\u7684\u5f52\u56e0\u90a3\u6837": 90, "insights\u5141\u8bb8\u4f60\u5728\u53ef\u89c6\u5316\u5c0f\u90e8\u4ef6\u4e2d\u914d\u7f6e\u4e0d\u540c\u7684\u5f52\u56e0\u7b97\u6cd5": 90, "\u4e4b\u540e\u5b83\u5c06\u8ba1\u7b97\u5e76\u663e\u793a": 90, "\u90a3\u4e2a": 90, "\u8fc7\u7a0b\u5c06\u9700\u8981\u51e0\u5206\u949f\u65f6\u95f4": 90, "\u8fd0\u884c\u4e0b\u9762\u7684\u5355\u5143\u683c\u5c06\u6e32\u67d3captum": 90, "\u7136\u540e\u4f60\u53ef\u4ee5\u9009\u62e9\u5f52\u56e0\u65b9\u6cd5\u53ca\u5176\u53c2\u6570": 90, "\u6839\u636e\u9884\u6d4b\u7684\u7c7b\u6216\u9884\u6d4b\u7684\u6b63\u786e\u6027\u8fc7\u6ee4\u6a21\u578b\u54cd\u5e94": 90, "\u67e5\u770b\u6a21\u578b\u7684\u9884\u6d4b\u53ca\u76f8\u5173\u6982\u7387": 90, "\u67e5\u770b\u5f52\u56e0\u4e0e": 90, "\u539f\u59cb\u56fe\u50cf\u7684\u70ed\u529b\u56fe": 90, "captumyt": 90, "introyt": 91, "rst": [91, 263, 265], "introyt1_tutori": [91, 92], "tensors_deeper_tutori": [91, 95], "modelsyt_tutori": [91, 93], "tensorboardyt_tutori": [91, 94], "trainingyt_tutori": 91, "captumyt_tutori": 91, "sphx_glr_beginner_introyt_modelsyt_tutori": 91, "sphx_glr_beginner_introyt_autogradyt_tutori": 91, "sphx_glr_beginner_introyt_trainingyt": 91, "sphx_glr_beginner_introyt_tensorboardyt_tutori": 91, "sphx_glr_beginner_introyt_captumyt": 91, "sphx_glr_beginner_introyt_tensors_deeper_tutori": 91, "sphx_glr_beginner_introyt_introyt1_tutori": 91, "\u4ece\u89c6\u9891\u7684": 92, "\u5f00\u59cb": [92, 93, 239, 249, 257], "\u6211\u4eec\u5c06\u5bfc\u5165": 92, "\u8ba9\u6211\u4eec\u770b\u4e00\u4e9b\u57fa\u672c\u7684\u5f20\u91cf\u64cd\u4f5c": 92, "\u521b\u5efa\u5f20\u91cf\u7684\u51e0\u79cd\u65b9\u5f0f": 92, "\u4e0a\u9762": [92, 93, 94], "\u6211\u4eec\u521b\u5efa\u4e86\u4e00\u4e2a": 92, "5x3": 92, "\u7684\u96f6\u77e9\u9635": 92, "\u5e76\u67e5\u8be2\u5176\u6570\u636e\u7c7b\u578b": 92, "\u53d1\u73b0\u96f6\u662f": 92, "\u4f4d\u6d6e\u70b9\u6570": 92, "\u8fd9\u662f": [92, 93, 95, 232, 259], "\u7684\u9ed8\u8ba4\u8bbe\u7f6e": [92, 233], "\u5982\u679c\u4f60\u60f3\u8981\u6574\u6570\u5462": 92, "\u53ef\u4ee5\u8986\u76d6\u9ed8\u8ba4\u8bbe\u7f6e": 92, "int16": [92, 95, 199, 236], "\u4f60\u53ef\u4ee5\u770b\u5230": [92, 93, 95], "\u5f53\u6211\u4eec\u6539\u53d8\u9ed8\u8ba4\u8bbe\u7f6e\u65f6": 92, "\u5728\u6253\u5370\u5f20\u91cf\u65f6\u4f1a\u6709\u6240\u63d0\u793a": 92, "\u901a\u5e38\u60c5\u51b5\u4e0b": 92, "\u4f1a\u4f7f\u7528\u7279\u5b9a\u7684\u79cd\u5b50\u521d\u59cb\u5316\u5b66\u4e60\u6743\u91cd": 92, "\u4ee5\u786e\u4fdd\u7ed3\u679c\u7684\u53ef\u91cd\u590d\u6027": 92, "1729": [92, 95], "r1": 92, "r2": 92, "\u65b0\u7684\u503c": 92, "r3": 92, "nshould": 92, "\u7531\u4e8e\u91cd\u65b0\u8bbe\u7f6e\u79cd\u5b50": 92, "\u6240\u4ee5\u4e0e": 92, "\u7684\u503c\u76f8\u540c": 92, "\u5f20\u91cf\u6267\u884c\u7b97\u672f\u8fd0\u7b97\u5f88\u76f4\u89c2": 92, "\u5f62\u72b6\u76f8\u4f3c\u7684\u5f20\u91cf\u53ef\u4ee5\u76f8\u52a0": 92, "\u76f8\u4e58\u7b49": 92, "\u4e0e\u6807\u91cf\u7684\u8fd0\u7b97\u4f1a\u5728\u6574\u4e2a\u5f20\u91cf\u4e0a\u5206\u5e03\u5f0f\u8fdb\u884c": 92, "\u6bcf\u4e2a\u5143\u7d20\u90fd\u4e58\u4ee5": 92, "\u5f62\u72b6\u76f8\u4f3c": 92, "\u56e0\u6b64\u5141\u8bb8\u76f8\u52a0": 92, "\u5f20\u91cf\u6309\u5143\u7d20\u76f8\u52a0": 92, "\u8fd9\u4e0e\u8f93\u5165\u5f20\u91cf\u5177\u6709\u76f8\u540c\u7684\u7ef4\u5ea6": 92, "\u53d6\u6d88\u6ce8\u91ca\u8fd9\u4e00\u884c\u4f1a\u5bfc\u81f4\u8fd0\u884c\u65f6\u9519\u8bef": 92, "\u8fd9\u91cc\u662f\u4e00\u4e9b\u53ef\u7528\u7684\u6570\u5b66\u8fd0\u7b97\u793a\u4f8b": 92, "\u503c\u5728": 92, "\u4e4b\u95f4": [92, 233], "\u652f\u6301\u5e38\u89c1\u7684\u6570\u5b66\u8fd0\u7b97": 92, "nabsolut": 92, "\u4ee5\u53ca\u4e09\u89d2\u51fd\u6570": 92, "ninvers": 92, "asin": [92, 95], "\u548c\u7ebf\u6027\u4ee3\u6570\u8fd0\u7b97": 92, "\u5982\u884c\u5217\u5f0f\u548c\u5947\u5f02\u503c\u5206\u89e3": 92, "ndetermin": 92, "det": [92, 102, 154], "nsingular": 92, "decomposit": [92, 145], "svd": [92, 95], "\u4ee5\u53ca\u7edf\u8ba1\u548c\u805a\u5408\u8fd0\u7b97": 92, "naverag": 92, "std_mean": 92, "nmaximum": 92, "\u5173\u4e8e": 92, "\u5f20\u91cf\u7684\u5f3a\u5927\u529f\u80fd\u8fd8\u6709\u5f88\u591a\u9700\u8981\u4e86\u89e3": 92, "\u5305\u62ec\u5982\u4f55\u4e3a": 92, "\u4e0a\u7684\u5e76\u884c\u8ba1\u7b97\u8bbe\u7f6e\u5b83\u4eec": 92, "\u6211\u4eec\u5c06\u5728\u53e6\u4e00\u4e2a\u89c6\u9891\u4e2d\u6df1\u5165\u63a2\u8ba8": 92, "\u8ba9\u6211\u4eec\u8ba8\u8bba\u4e00\u4e0b\u5982\u4f55\u5728": 92, "\u4e2d\u8868\u793a\u6a21\u578b": 92, "\u6a21\u578b\u7684\u7236\u5bf9\u8c61": 92, "\u7528\u4e8e\u6fc0\u6d3b\u51fd\u6570": 92, "\u56fe": 92, "\u4e0a\u56fe\u662f": 92, "\u7684\u793a\u610f\u56fe": 92, "\u5b83\u662f\u6700\u65e9\u7684\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u4e4b\u4e00": 92, "\u4e5f\u662f\u6df1\u5ea6\u5b66\u4e60\u7206\u53d1\u5f0f\u53d1\u5c55\u7684\u9a71\u52a8\u529b\u4e4b\u4e00": 92, "\u5b83\u88ab\u6784\u5efa\u7528\u4e8e\u8bfb\u53d6\u624b\u5199\u6570\u5b57\u7684\u5c0f\u56fe\u50cf": 92, "\u5e76\u6b63\u786e\u5206\u7c7b\u56fe\u50cf\u4e2d\u8868\u793a\u7684\u6570\u5b57": 92, "\u5b83\u5de5\u4f5c\u539f\u7406\u7684\u7b80\u8ff0\u4e3a": 92, "\u662f\u4e00\u4e2a\u5377\u79ef\u5c42": 92, "\u5b83\u5728\u8f93\u5165\u56fe\u50cf\u4e2d\u626b\u63cf\u5b83\u5728\u8bad\u7ec3\u671f\u95f4\u5b66\u4e60\u5230\u7684\u7279\u5f81": 92, "\u5b83\u8f93\u51fa\u4e00\u4e2a\u7279\u5f81\u6fc0\u6d3b\u56fe": 92, "\u63cf\u8ff0\u5b83\u5728\u56fe\u50cf\u4e2d\u770b\u5230\u6bcf\u4e2a\u5b66\u4e60\u5230\u7684\u7279\u5f81\u7684\u4f4d\u7f6e": 92, "\u6fc0\u6d3b\u56fe": 92, "\u5728\u5c42": 92, "\u4e2d\u88ab\u4e0b\u91c7\u6837": 92, "\u662f\u53e6\u4e00\u4e2a\u5377\u79ef\u5c42": 92, "\u8fd9\u6b21\u626b\u63cf": 92, "\u7684\u6fc0\u6d3b\u56fe\u4ee5\u67e5\u627e\u7279\u5f81\u7ec4\u5408": 92, "\u5b83\u4e5f\u8f93\u51fa\u4e00\u4e2a\u6fc0\u6d3b\u56fe": 92, "\u63cf\u8ff0\u8fd9\u4e9b\u7279\u5f81\u7ec4\u5408\u7684\u7a7a\u95f4\u4f4d\u7f6e": 92, "\u8be5\u6fc0\u6d3b\u56fe\u5728\u5c42": 92, "\u6700\u540e\u7684\u5168\u8fde\u63a5\u5c42": 92, "\u662f\u4e00\u4e2a\u5206\u7c7b\u5668": 92, "\u5b83\u5c06\u6700\u7ec8\u7684\u6fc0\u6d3b\u56fe\u5206\u7c7b\u4e3a": 92, "\u4e2a": [92, 232, 254], "\u4e2d\u7684\u4e00\u4e2a": 92, "\u8868\u793a": 92, "\u4e2a\u6570\u5b57": 92, "\u6211\u4eec\u5982\u4f55\u5728\u4ee3\u7801\u4e2d\u8868\u793a\u8fd9\u4e2a\u7b80\u5355\u7684\u795e\u7ecf\u7f51\u7edc\u5462": 92, "\u4e2a\u8f93\u5165\u56fe\u50cf\u901a\u9053": 92, "\u9ed1\u767d": [92, 93], "\u4e2a\u8f93\u51fa\u901a\u9053": [92, 93], "\u7684\u6b63\u65b9\u5f62\u5377\u79ef\u6838": 92, "\u4e00\u4e2a\u4eff\u5c04\u64cd\u4f5c": [92, 93], "\u7a97\u53e3\u4e0a\u8fdb\u884c\u6700\u5927\u6c60\u5316": [92, 93], "\u5982\u679c\u5c3a\u5bf8\u662f\u6b63\u65b9\u5f62": [92, 93], "\u4f60\u53ea\u9700\u6307\u5b9a\u4e00\u4e2a\u6570\u5b57": [92, 93], "num_flat_featur": [92, 93], "\u9664\u6279\u6b21\u7ef4\u5ea6\u5916\u7684\u6240\u6709\u7ef4\u5ea6": [92, 93], "num_featur": [92, 93, 130], "\u67e5\u770b\u8fd9\u6bb5\u4ee3\u7801": 92, "\u4f60\u5e94\u8be5\u80fd\u591f\u53d1\u73b0\u4e00\u4e9b\u4e0e\u4e0a\u56fe\u7ed3\u6784\u76f8\u4f3c\u7684\u5730\u65b9": 92, "\u8fd9\u6f14\u793a\u4e86\u5178\u578b": 92, "\u6a21\u578b\u7684\u7ed3\u6784": 92, "\u5b83\u7ee7\u627f\u81ea": 92, "\u6a21\u5757\u53ef\u4ee5\u5d4c\u5957": 92, "\u5373\u4f7f": 92, "\u5c42\u7c7b\u4e5f\u7ee7\u627f\u81ea": 92, "\u4e00\u4e2a\u6a21\u578b\u5c06\u6709\u4e00\u4e2a": 92, "\u5728\u8fd9\u91cc\u5b83\u5b9e\u4f8b\u5316\u5176\u5c42": 92, "\u5e76\u52a0\u8f7d\u4efb\u4f55\u5b83\u53ef\u80fd\u9700\u8981\u7684\u6570\u636e\u7ec4\u4ef6": 92, "\u6a21\u578b\u53ef\u80fd\u52a0\u8f7d\u8bcd\u6c47\u8868": 92, "\u8fd9\u662f\u5b9e\u9645\u8ba1\u7b97\u53d1\u751f\u7684\u5730\u65b9": 92, "\u8f93\u5165\u901a\u8fc7\u7f51\u7edc\u5c42\u548c\u5404\u79cd\u51fd\u6570\u751f\u6210\u8f93\u51fa": 92, "\u9664\u6b64\u4e4b\u5916": 92, "\u4f60\u53ef\u4ee5\u50cf\u6784\u5efa\u4efb\u4f55\u5176\u4ed6": 92, "\u7c7b\u4e00\u6837\u6784\u5efa\u4f60\u7684\u6a21\u578b\u7c7b": 92, "\u6dfb\u52a0\u4efb\u4f55\u4f60\u9700\u8981\u652f\u6301\u6a21\u578b\u8ba1\u7b97\u7684\u5c5e\u6027\u548c\u65b9\u6cd5": 92, "\u8ba9\u6211\u4eec\u5b9e\u4f8b\u5316\u8fd9\u4e2a\u5bf9\u8c61\u5e76\u8fd0\u884c\u4e00\u4e2a\u793a\u4f8b\u8f93\u5165": 92, "\u5bf9\u8c61\u6253\u5370\u4e86\u4ec0\u4e48\u4fe1\u606f": 92, "\u7684\u9ed1\u767d\u56fe\u50cf": [92, 93, 104], "nimag": 92, "\u4e0d\u76f4\u63a5\u8c03\u7528": 92, "nraw": 92, "\u5982\u4e0a\u4ee3\u7801\u5b58\u5728\u4e00\u4e9b\u8981\u70b9": 92, "\u6211\u4eec\u5b9e\u4f8b\u5316": 92, "\u7c7b": [92, 93, 104, 218, 248], "\u5e76\u6253\u5370": 92, "\u7684\u5b50\u7c7b\u5c06\u62a5\u544a\u5b83\u521b\u5efa\u7684\u5c42\u53ca\u5176\u5f62\u72b6\u548c\u53c2\u6570": 92, "\u8fd9\u53ef\u4ee5\u63d0\u4f9b\u4e00\u4e2a\u6a21\u578b\u7684\u6982\u89c8": 92, "\u5982\u679c\u4f60\u60f3\u4e86\u89e3\u5b83\u7684\u5904\u7406\u8fc7\u7a0b": 92, "\u5728\u4e0b\u9762": [92, 95], "\u6211\u4eec\u521b\u5efa\u4e00\u4e2a\u865a\u62df\u8f93\u5165": 92, "\u8868\u793a\u4e00\u4e2a": 92, "\u7684\u5355\u901a\u9053\u56fe\u50cf": 92, "\u4f60\u4f1a\u52a0\u8f7d\u4e00\u4e2a\u56fe\u50cf\u5207\u7247\u5e76\u5c06\u5176\u8f6c\u6362\u4e3a\u8fd9\u79cd\u5f62\u72b6\u7684\u5f20\u91cf": 92, "\u4f60\u53ef\u80fd\u5df2\u7ecf\u6ce8\u610f\u5230\u6211\u4eec\u7684\u5f20\u91cf\u6709\u4e00\u4e2a\u989d\u5916\u7684\u7ef4\u5ea6": 92, "\u6279\u6b21\u7ef4\u5ea6": 92, "\u6a21\u578b\u5047\u8bbe\u5b83\u4eec\u6b63\u5728\u5904\u7406\u6570\u636e": 92, "\u6279\u6b21": [92, 95, 96], "\u5305\u542b": [92, 104], "\u4e2a\u56fe\u50cf\u5207\u7247\u7684\u6279\u6b21\u5c06\u5177\u6709\u5f62\u72b6": 92, "\u7531\u4e8e\u6211\u4eec\u53ea\u4f7f\u7528\u4e00\u4e2a\u56fe\u50cf": 92, "\u6211\u4eec\u521b\u5efa\u4e86\u4e00\u4e2a\u5f62\u72b6\u4e3a": 92, "\u7684\u6279\u6b21": 92, "\u6211\u4eec\u901a\u8fc7\u50cf\u51fd\u6570\u4e00\u6837\u8c03\u7528\u5b83\u6765\u8981\u6c42\u6a21\u578b\u8fdb\u884c\u63a8\u7406": 92, "\u8fd9\u4e2a\u8c03\u7528\u7684\u8f93\u51fa\u8868\u793a\u6a21\u578b\u5bf9\u8f93\u5165\u8868\u793a\u7279\u5b9a\u6570\u5b57\u7684\u7f6e\u4fe1\u5ea6": 92, "\u7531\u4e8e\u8fd9\u4e2a\u6a21\u578b\u5b9e\u4f8b\u8fd8\u6ca1\u6709\u5b66\u4e60\u4efb\u4f55\u4e1c\u897f": 92, "\u6211\u4eec\u4e0d\u5e94\u8be5\u671f\u671b\u5728\u8f93\u51fa\u4e2d\u770b\u5230\u4efb\u4f55\u4fe1\u53f7": 92, "\u67e5\u770b": [92, 238, 258], "\u7684\u5f62\u72b6": 92, "\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u5b83\u4e5f\u6709\u4e00\u4e2a\u6279\u6b21\u7ef4\u5ea6": 92, "\u5176\u5927\u5c0f\u5e94\u8be5\u59cb\u7ec8\u4e0e\u8f93\u5165\u6279\u6b21\u7ef4\u5ea6\u76f8\u5339\u914d": 92, "\u5982\u679c\u6211\u4eec\u4f20\u5165\u4e86\u4e00\u4e2a\u5305\u542b": 92, "\u4e2a\u5b9e\u4f8b\u7684\u8f93\u5165\u6279\u6b21": 92, "\u5c06\u5177\u6709": 92, "\u6211\u4eec\u5c06\u6f14\u793a\u5982\u4f55\u4f7f\u7528": 92, "\u4e2d\u7684\u4e00\u4e2a\u53ef\u4e0b\u8f7d\u7684\u5f00\u653e\u8bbf\u95ee\u6570\u636e\u96c6": 92, "\u5982\u4f55\u8f6c\u6362\u56fe\u50cf\u4ee5\u4f9b\u4f60\u7684\u6a21\u578b\u4f7f\u7528": 92, "\u4ee5\u53ca\u5982\u4f55\u4f7f\u7528": [92, 253], "\u5c06\u6570\u636e\u6279\u6b21\u63d0\u4f9b\u7ed9\u4f60\u7684\u6a21\u578b": 92, "\u6211\u4eec\u9700\u8981\u505a\u7684\u7b2c\u4e00\u4ef6\u4e8b\u662f\u5c06\u4f20\u5165\u7684\u56fe\u50cf\u8f6c\u6362\u4e3a": 92, "4914": 92, "4822": 92, "4465": 92, "2470": 92, "2435": 92, "2616": 92, "\u6211\u4eec\u4e3a\u8f93\u5165\u6307\u5b9a\u4e86\u4e24\u79cd\u8f6c\u6362": 92, "\u52a0\u8f7d\u7684\u56fe\u50cf\u8f6c\u6362\u4e3a": 92, "\u8c03\u6574\u5f20\u91cf\u7684\u503c": 92, "\u4f7f\u5176\u5e73\u5747\u503c\u4e3a\u96f6": 92, "\u6807\u51c6\u5dee\u4e3a": 92, "\u5927\u591a\u6570\u6fc0\u6d3b\u51fd\u6570\u5728": 92, "\u9644\u8fd1\u5177\u6709\u6700\u5f3a\u68af\u5ea6": [92, 93], "\u56e0\u6b64\u5c06\u6211\u4eec\u7684\u6570\u636e\u5c45\u4e2d\u53ef\u4ee5\u52a0\u5feb\u5b66\u4e60\u901f\u5ea6": 92, "\u4f20\u9012\u7ed9\u8f6c\u6362\u7684\u503c\u662f\u6570\u636e\u96c6\u4e2d\u56fe\u50cf\u7684": 92, "\u503c\u7684\u5747\u503c": 92, "\u7b2c\u4e00\u4e2a\u5143\u7ec4": 92, "\u548c\u6807\u51c6\u5dee": 92, "\u7b2c\u4e8c\u4e2a\u5143\u7ec4": 92, "\u4f60\u53ef\u4ee5\u901a\u8fc7\u8fd0\u884c\u4ee5\u4e0b\u51e0\u884c\u4ee3\u7801\u81ea\u5df1\u8ba1\u7b97\u8fd9\u4e9b\u503c": 92, "concatdataset": 92, "\u5c06\u6240\u6709\u8bad\u7ec3\u56fe\u50cf\u5806\u53e0\u6210\u5f62\u72b6\u4e3a": 92, "50000": 92, "\u83b7\u53d6\u6bcf\u4e2a\u901a\u9053\u7684\u5747\u503c": 92, "\u8fd8\u6709\u8bb8\u591a\u5176\u4ed6\u53ef\u7528\u7684\u8f6c\u6362": 92, "\u5305\u62ec\u88c1\u526a": 92, "\u5c45\u4e2d": 92, "\u65cb\u8f6c\u548c\u53cd\u5c04": 92, "\u6211\u4eec\u5c06\u521b\u5efa": 92, "\u6570\u636e\u96c6\u7684\u4e00\u4e2a\u5b9e\u4f8b": 92, "\u8fd9\u662f\u4e00\u7ec4": 92, "\u7684\u5f69\u8272\u56fe\u50cf\u5207\u7247": 92, "\u4ee3\u8868": [92, 95], "\u7c7b\u7269\u4f53": 92, "\u79cd\u52a8\u7269": 92, "\u9e1f": 92, "\u732b": 92, "\u9e7f": 92, "\u72d7": 92, "\u9752\u86d9": 92, "\u9a6c": 92, "\u79cd\u8f66\u8f86": 92, "\u98de\u673a": 92, "\u6c7d\u8f66": 92, "\u8239": 92, "\u5361\u8f66": 92, "\u5f53\u4f60\u8fd0\u884c\u4e0a\u9762\u7684\u5355\u5143\u683c\u65f6": 92, "\u5b83\u53ef\u80fd\u9700\u8981\u4e00\u4e9b\u65f6\u95f4\u6765\u4e0b\u8f7d\u6570\u636e\u96c6": 92, "\u8fd9\u662f\u5728": 92, "\u4e2d\u521b\u5efa\u6570\u636e\u96c6\u5bf9\u8c61\u7684\u4e00\u4e2a\u793a\u4f8b": 92, "\u53ef\u4e0b\u8f7d\u7684\u6570\u636e\u96c6": 92, "\u5982\u4e0a\u9762\u7684": 92, "\u7c7b\u5305\u62ec": 92, "\u4e2d\u7684\u53ef\u4e0b\u8f7d\u6570\u636e\u96c6": 92, "\u4ee5\u53ca\u8bf8\u5982": 92, "\u4e4b\u7c7b\u7684\u5b9e\u7528\u7a0b\u5e8f\u6570\u636e\u96c6\u7c7b": 92, "\u5b83\u5c06\u8bfb\u53d6\u4e00\u4e2a\u6807\u8bb0\u8fc7\u7684\u56fe\u50cf\u6587\u4ef6\u5939": 92, "\u4f60\u4e5f\u53ef\u4ee5\u521b\u5efa": 92, "\u7684\u81ea\u5df1\u7684\u5b50\u7c7b": 92, "\u5f53\u6211\u4eec\u5b9e\u4f8b\u5316\u6211\u4eec\u7684\u6570\u636e\u96c6\u65f6": 92, "\u6211\u4eec\u9700\u8981\u544a\u8bc9\u5b83\u4e00\u4e9b\u4e8b\u60c5": 92, "\u6211\u4eec\u5e0c\u671b\u6570\u636e\u5b58\u653e\u7684\u6587\u4ef6\u7cfb\u7edf\u8def\u5f84": 92, "\u6211\u4eec\u662f\u5426\u4f7f\u7528\u8fd9\u4e2a\u96c6\u5408\u8fdb\u884c\u8bad\u7ec3": 92, "\u5927\u591a\u6570\u6570\u636e\u96c6\u5c06\u88ab\u5206\u4e3a\u8bad\u7ec3\u548c\u6d4b\u8bd5\u5b50\u96c6": 92, "\u5982\u679c\u6211\u4eec\u8fd8\u6ca1\u6709\u4e0b\u8f7d\u6570\u636e\u96c6": 92, "\u6211\u4eec\u662f\u5426\u5e0c\u671b\u4e0b\u8f7d\u5b83": 92, "\u6211\u4eec\u60f3\u5bf9\u6570\u636e\u5e94\u7528\u54ea\u4e9b\u8f6c\u6362": 92, "\u4e00\u65e6\u4f60\u7684\u6570\u636e\u96c6\u51c6\u5907\u5c31\u7eea": 92, "\u4f60\u5c31\u53ef\u4ee5\u5c06\u5b83\u4ea4\u7ed9": 92, "\u7684\u5b50\u7c7b\u5305\u88c5\u4e86\u5bf9\u6570\u636e\u7684\u8bbf\u95ee": 92, "\u5e76\u4e13\u95e8\u9488\u5bf9\u5b83\u6b63\u5728\u670d\u52a1\u7684\u6570\u636e\u7c7b\u578b": 92, "\u5bf9\u5b83\u6b63\u5728\u670d\u52a1\u7684\u6570\u636e\u4e00\u65e0\u6240\u77e5": 92, "\u4f46\u4f1a\u6839\u636e\u4f60\u6307\u5b9a\u7684\u53c2\u6570\u5c06": 92, "\u63d0\u4f9b\u7684\u8f93\u5165\u5f20\u91cf\u7ec4\u7ec7\u6210\u6279\u6b21": 92, "\u5728\u4e0a\u9762\u7684\u793a\u4f8b\u4e2d": [92, 111, 223, 240], "\u6211\u4eec\u8981\u6c42\u4e00\u4e2a": 92, "\u4e2d\u7ed9\u6211\u4eec\u6279\u6b21\u5927\u5c0f\u4e3a": 92, "\u968f\u673a\u6253\u4e71\u5b83\u4eec\u7684\u987a\u5e8f": 92, "\u5e76\u544a\u8bc9\u5b83\u542f\u52a8\u4e24\u4e2a\u5de5\u4f5c\u8fdb\u7a0b\u4ece\u78c1\u76d8\u52a0\u8f7d\u6570\u636e": 92, "\u53ef\u89c6\u5316\u4f60\u7684": 92, "\u63d0\u4f9b\u7684\u6279\u6b21\u662f\u4e00\u4e2a\u5f88\u597d\u7684\u505a\u6cd5": 92, "\u83b7\u53d6\u4e00\u4e9b\u968f\u673a\u8bad\u7ec3\u56fe\u50cf": 92, "\u663e\u793a\u56fe\u50cf": 92, "\u6253\u5370\u6807\u7b7e": 92, "\u8fd0\u884c\u4e0a\u9762\u7684\u5355\u5143\u683c\u5e94\u8be5\u4f1a\u663e\u793a\u4f60\u4e00\u6761\u56db\u5f20\u56fe\u50cf\u7684\u6761\u5e26": 92, "\u4ee5\u53ca\u6bcf\u5f20\u56fe\u50cf\u7684\u6b63\u786e\u6807\u7b7e": 92, "\u8ba9\u6211\u4eec\u628a\u6240\u6709\u7684\u90e8\u5206\u653e\u5728\u4e00\u8d77": 92, "\u8bad\u7ec3\u4e00\u4e2a\u6a21\u578b": 92, "\u6211\u4eec\u9700\u8981\u8bad\u7ec3\u548c\u6d4b\u8bd5\u6570\u636e\u96c6": 92, "\u5982\u679c\u4f60\u8fd8\u6ca1\u6709": 92, "\u8fd0\u884c\u4e0b\u9762\u7684\u5355\u5143\u683c\u6765\u786e\u4fdd\u6570\u636e\u96c6\u5df2\u4e0b\u8f7d": 92, "\u53ef\u80fd\u9700\u8981\u4e00\u5206\u949f": 92, "\u8fd0\u884c\u5bf9": 92, "\u8f93\u51fa\u7684\u68c0\u67e5": 92, "\u8fd9\u662f\u6211\u4eec\u5c06\u8981\u8bad\u7ec3\u7684\u6a21\u578b": 92, "\u5982\u679c\u5b83\u770b\u8d77\u6765\u5f88\u719f\u6089": 92, "\u90a3\u662f\u56e0\u4e3a\u5b83\u662f": 92, "\u7684\u4e00\u4e2a\u53d8\u4f53": 92, "\u5728\u672c\u89c6\u9891\u524d\u9762\u8ba8\u8bba\u8fc7": 92, "\u9002\u7528\u4e8e": 92, "\u8272\u56fe\u50cf": 92, "\u6211\u4eec\u6700\u540e\u9700\u8981\u7684\u662f\u4e00\u4e2a\u635f\u5931\u51fd\u6570\u548c\u4e00\u4e2a\u4f18\u5316\u5668": 92, "\u5982\u672c\u89c6\u9891\u524d\u9762\u6240\u8ba8\u8bba\u7684": 92, "\u662f\u8861\u91cf\u6a21\u578b\u9884\u6d4b\u4e0e\u7406\u60f3\u8f93\u51fa\u4e4b\u95f4\u5dee\u8ddd\u7684\u6307\u6807": 92, "\u4ea4\u53c9\u71b5\u635f\u5931\u662f\u50cf\u6211\u4eec\u8fd9\u6837\u7684\u5206\u7c7b\u6a21\u578b\u7684\u5178\u578b\u635f\u5931\u51fd\u6570": 92, "\u662f\u9a71\u52a8\u5b66\u4e60\u7684\u5173\u952e": 92, "\u6211\u4eec\u521b\u5efa\u4e86\u4e00\u4e2a\u5b9e\u73b0": 92, "\u968f\u673a\u68af\u5ea6\u4e0b\u964d": 92, "\u7684\u4f18\u5316\u5668": 92, "\u8fd9\u662f\u6700\u76f4\u63a5\u7684\u4f18\u5316\u7b97\u6cd5\u4e4b\u4e00": 92, "\u9664\u4e86\u7b97\u6cd5\u7684\u53c2\u6570": 92, "\u5982\u5b66\u4e60\u7387": 92, "\u548c\u52a8\u91cf": 92, "\u4e4b\u5916": [92, 93, 231], "\u6211\u4eec\u8fd8\u4f20\u5165\u4e86": 92, "\u5b83\u662f\u6a21\u578b\u4e2d\u6240\u6709\u5b66\u4e60\u6743\u91cd\u7684\u96c6\u5408": 92, "\u8fd9\u662f\u4f18\u5316\u5668\u8981\u8c03\u6574\u7684\u5bf9\u8c61": 92, "\u6240\u6709\u8fd9\u4e9b\u90fd\u88ab\u7ec4\u88c5\u5230\u8bad\u7ec3\u5faa\u73af\u4e2d": 92, "\u7ee7\u7eed\u8fd0\u884c\u8fd9\u4e2a\u5355\u5143\u683c": 92, "\u5b83\u53ef\u80fd\u9700\u8981\u51e0\u5206\u949f\u624d\u80fd\u6267\u884c": 92, "\u5728\u6570\u636e\u96c6\u4e0a\u5faa\u73af\u591a\u6b21": [92, 94], "\u83b7\u53d6\u8f93\u5165": [92, 252], "\u5c06\u53c2\u6570\u68af\u5ea6\u5f52\u96f6": 92, "\u53cd\u5411": [92, 252], "\u6253\u5370\u7edf\u8ba1\u4fe1\u606f": [92, 252], "\u6bcf": 92, "\u4e2a\u5c0f\u6279\u6b21\u6253\u5370\u4e00\u6b21": 92, "\u6211\u4eec\u53ea\u8fdb\u884c\u4e86": 92, "\u4e2a\u8bad\u7ec3\u8f6e\u6b21": 92, "\u7b2c": 92, "\u884c": 92, "\u4e5f\u5c31\u662f\u5728\u8bad\u7ec3\u6570\u636e\u96c6\u4e0a\u8fdb\u884c\u4e86\u4e24\u6b21\u5b8c\u6574\u904d\u5386": 92, "\u6bcf\u6b21\u904d\u5386\u90fd\u6709\u4e00\u4e2a\u5185\u90e8\u5faa\u73af": 92, "\u904d\u5386\u8bad\u7ec3\u6570\u636e": 92, "\u63d0\u4f9b\u7ecf\u8fc7\u8f6c\u6362\u7684\u8f93\u5165\u56fe\u50cf\u6279\u6b21\u53ca\u5176\u6b63\u786e\u6807\u7b7e": 92, "\u5c06\u68af\u5ea6\u5f52\u96f6": [92, 96, 249], "\u662f\u4e00\u4e2a\u91cd\u8981\u6b65\u9aa4": 92, "\u68af\u5ea6\u4f1a\u5728\u4e00\u4e2a\u6279\u6b21\u4e0a\u7d2f\u79ef": 92, "\u5982\u679c\u6211\u4eec\u4e0d\u4e3a\u6bcf\u4e2a\u6279\u6b21\u91cd\u7f6e\u5b83\u4eec": 92, "\u5b83\u4eec\u5c06\u7ee7\u7eed\u7d2f\u79ef": 92, "\u4ece\u800c\u63d0\u4f9b\u9519\u8bef\u7684\u68af\u5ea6\u503c": 92, "\u4f7f\u5b66\u4e60\u53d8\u5f97\u4e0d\u53ef\u80fd": 92, "\u5728\u7b2c": 92, "\u6211\u4eec": 92, "\u8981\u6c42\u6a21\u578b\u5bf9\u8fd9\u4e2a\u6279\u6b21\u8fdb\u884c\u9884\u6d4b": 92, "\u5728\u4e0b\u4e00\u884c": 92, "\u6211\u4eec\u8ba1\u7b97\u635f\u5931": 92, "\u6a21\u578b\u9884\u6d4b": 92, "\u6b63\u786e\u8f93\u51fa": 92, "\u4e4b\u95f4\u7684\u5dee\u5f02": 92, "\u6211\u4eec\u8fdb\u884c": 92, "\u4f20\u64ad": 92, "\u8ba1\u7b97\u5c06\u6307\u5bfc\u5b66\u4e60\u7684\u68af\u5ea6": 92, "\u4f18\u5316\u5668\u6267\u884c\u4e00\u6b65\u5b66\u4e60": 92, "\u5b83\u4f7f\u7528": 92, "\u8c03\u7528\u5f97\u5230\u7684\u68af\u5ea6\u6765\u8c03\u6574\u5b66\u4e60\u6743\u91cd": 92, "\u4ee5\u51cf\u5c0f\u635f\u5931": 92, "\u5faa\u73af\u7684\u5176\u4f59\u90e8\u5206\u5bf9\u8f6e\u6b21\u53f7": 92, "\u5df2\u5b8c\u6210\u7684\u8bad\u7ec3\u5b9e\u4f8b\u6570\u4ee5\u53ca\u8bad\u7ec3\u5faa\u73af\u4e2d\u6536\u96c6\u7684\u635f\u5931\u8fdb\u884c\u4e86\u4e00\u4e9b\u8f7b\u91cf\u7ea7\u62a5\u544a": 92, "\u4f60\u5e94\u8be5\u4f1a\u770b\u5230\u7c7b\u4f3c\u8fd9\u6837\u7684\u8f93\u51fa": 92, "235": [92, 109], "940": 92, "6000": 92, "8000": [92, 248], "573": 92, "507": 92, "12000": 92, "442": 92, "378": 92, "364": 92, "319": [92, 240], "284": [92, 164], "267": 92, "\u6ce8\u610f\u635f\u5931\u503c\u662f\u5355\u8c03\u4e0b\u964d\u7684": 92, "\u8868\u660e\u6211\u4eec\u7684\u6a21\u578b\u5728\u7ee7\u7eed\u63d0\u9ad8\u5176\u5728\u8bad\u7ec3\u6570\u636e\u96c6\u4e0a\u7684\u6027\u80fd": 92, "\u4f5c\u4e3a\u6700\u540e\u4e00\u6b65": 92, "\u6211\u4eec\u5e94\u8be5\u68c0\u67e5\u6a21\u578b\u662f\u5426\u771f\u6b63\u505a\u5230\u4e86": 92, "\u6cdb\u5316": 92, "\u5b66\u4e60": [92, 104], "\u800c\u4e0d\u662f\u7b80\u5355\u5730": 92, "\u8bb0\u4f4f": 92, "\u4e86\u6570\u636e\u96c6": 92, "\u8fd9\u88ab\u79f0\u4e3a": 92, "\u8fc7\u62df\u5408": 92, "\u901a\u5e38\u8868\u660e\u6570\u636e\u96c6\u592a\u5c0f": 92, "\u6ca1\u6709\u8db3\u591f\u7684\u6837\u672c\u8fdb\u884c\u6cdb\u5316\u5b66\u4e60": 92, "\u6216\u8005\u6a21\u578b\u7684\u5b66\u4e60\u53c2\u6570\u6bd4\u6b63\u786e\u5efa\u6a21\u6570\u636e\u96c6\u6240\u9700\u7684\u66f4\u591a": 92, "\u8fd9\u5c31\u662f\u4e3a\u4ec0\u4e48\u6570\u636e\u96c6\u88ab\u5206\u4e3a\u8bad\u7ec3\u548c\u6d4b\u8bd5\u5b50\u96c6\u7684\u539f\u56e0": 92, "\u4e3a\u4e86\u6d4b\u8bd5\u6a21\u578b\u7684\u6cdb\u5316\u80fd\u529b": 92, "\u6211\u4eec\u8981\u6c42\u5b83\u5bf9\u4ece\u672a\u8bad\u7ec3\u8fc7\u7684\u6570\u636e\u8fdb\u884c\u9884\u6d4b": 92, "\u5982\u679c\u4f60\u4e00\u76f4\u8ddf\u968f\u4e0b\u6765": 92, "\u4f60\u5e94\u8be5\u4f1a\u770b\u5230\u6a21\u578b\u5728\u8fd9\u4e00\u70b9\u4e0a\u7684\u51c6\u786e\u7387\u5927\u7ea6\u4e3a": 92, "\u8fd9\u5e76\u4e0d\u662f\u6700\u5148\u8fdb\u7684\u6c34\u5e73": 92, "\u4f46\u6bd4\u968f\u673a\u8f93\u51fa\u7684": 92, "\u51c6\u786e\u7387\u8981\u597d\u5f97\u591a": 92, "\u8fd9\u8bc1\u660e\u4e86\u6a21\u578b\u786e\u5b9e\u53d1\u751f\u4e86\u4e00\u4e9b\u6cdb\u5316\u5b66\u4e60": 92, "\u5728\u8fd9\u4e2a\u89c6\u9891\u4e2d": 93, "\u6211\u4eec\u5c06\u8ba8\u8bba": 93, "\u63d0\u4f9b\u7684\u4e00\u4e9b\u7528\u4e8e\u6784\u5efa\u6df1\u5ea6\u5b66\u4e60\u7f51\u7edc\u7684\u5de5\u5177": 93, "\u9664\u4e86": [93, 231], "\u6211\u4eec\u5728\u672c\u89c6\u9891\u4e2d\u8ba8\u8bba\u7684\u6240\u6709\u7c7b\u90fd\u662f": 93, "\u7684\u57fa\u7c7b": 93, "\u65e8\u5728\u5c01\u88c5\u7279\u5b9a\u4e8e": 93, "\u6a21\u578b\u53ca\u5176\u7ec4\u4ef6\u7684\u884c\u4e3a": 93, "\u7684\u4e00\u4e2a\u91cd\u8981\u884c\u4e3a\u662f\u6ce8\u518c\u53c2\u6570": 93, "\u5982\u679c\u7279\u5b9a\u7684": 93, "\u5b50\u7c7b\u5177\u6709\u5b66\u4e60\u6743\u91cd": 93, "\u8fd9\u4e9b\u6743\u91cd\u5c06\u8868\u793a\u4e3a": 93, "\u7c7b\u662f": 93, "\u5177\u6709\u7279\u6b8a\u884c\u4e3a": 93, "\u5373\u5f53\u5b83\u4eec\u88ab\u5206\u914d\u4e3a": 93, "\u7684\u5c5e\u6027\u65f6": 93, "\u5b83\u4eec\u5c06\u88ab\u6dfb\u52a0\u5230\u8be5\u6a21\u5757\u7684\u53c2\u6570\u5217\u8868\u4e2d": 93, "\u7c7b\u4e0a\u7684": 93, "\u65b9\u6cd5\u8bbf\u95ee\u8fd9\u4e9b\u53c2\u6570": 93, "\u4f5c\u4e3a\u4e00\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50": 93, "\u8fd9\u91cc\u6709\u4e00\u4e2a\u975e\u5e38\u7b80\u5355\u7684\u6a21\u578b": 93, "\u5305\u542b\u4e24\u4e2a\u7ebf\u6027\u5c42\u548c\u4e00\u4e2a\u6fc0\u6d3b\u51fd\u6570": 93, "\u6211\u4eec\u5c06\u521b\u5efa\u5b83\u7684\u4e00\u4e2a\u5b9e\u4f8b": 93, "\u5e76\u8981\u6c42\u5b83\u62a5\u544a\u5176\u53c2\u6570": 93, "linear1": [93, 103, 254], "linear2": [93, 103, 254], "njust": 93, "nmodel": 93, "\u8fd9\u663e\u793a\u4e86": 93, "\u6a21\u578b\u7684\u57fa\u672c\u7ed3\u6784": 93, "\u65b9\u6cd5\u5b9a\u4e49\u6a21\u578b\u7684\u5c42\u548c\u5176\u4ed6\u7ec4\u4ef6": 93, "\u8fd8\u6709\u4e00\u4e2a": 93, "\u65b9\u6cd5\u6267\u884c\u8ba1\u7b97": 93, "\u6ce8\u610f\u6211\u4eec\u53ef\u4ee5\u6253\u5370\u6a21\u578b\u6216\u4efb\u4f55\u5b50\u6a21\u5757": 93, "\u4ee5\u4e86\u89e3\u5176\u7ed3\u6784": 93, "\u6700\u57fa\u672c\u7684\u795e\u7ecf\u7f51\u7edc\u5c42\u7c7b\u578b\u662f": 93, "\u7ebf\u6027": 93, "\u5168\u8fde\u63a5": 93, "\u8fd9\u662f\u4e00\u79cd\u6bcf\u4e2a\u8f93\u5165\u90fd\u4f1a\u5f71\u54cd\u8be5\u5c42\u6bcf\u4e2a\u8f93\u51fa\u7684\u5c42": 93, "\u5176\u5f71\u54cd\u7a0b\u5ea6\u7531\u5c42\u7684\u6743\u91cd\u6307\u5b9a": 93, "\u5982\u679c\u4e00\u4e2a\u6a21\u578b\u6709": 93, "\u4e2a\u8f93\u5165\u548c": 93, "\u4e2a\u8f93\u51fa": 93, "\u6743\u91cd\u5c06\u662f\u4e00\u4e2a": 93, "\u77e9\u9635": [93, 95], "lin": [93, 99, 104, 138, 158, 173, 174, 175, 211], "nweight": 93, "noutput": 93, "\u5982\u679c\u4f60\u5c06": 93, "\u4e0e\u7ebf\u6027\u5c42\u7684\u6743\u91cd\u76f8\u4e58": 93, "\u5e76\u52a0\u4e0a\u504f\u7f6e": 93, "\u4f60\u4f1a\u53d1\u73b0\u5f97\u5230\u7684\u662f\u8f93\u51fa\u5411\u91cf": 93, "\u53e6\u4e00\u4e2a\u9700\u8981\u6ce8\u610f\u7684\u91cd\u8981\u7279\u6027\u662f": 93, "\u5f53\u6211\u4eec\u7528": 93, "\u68c0\u67e5\u5c42\u7684\u6743\u91cd\u65f6": 93, "\u5b83\u5c06\u81ea\u5df1\u62a5\u544a\u4e3a\u4e00\u4e2a": 93, "\u5e76\u8ba9\u6211\u4eec\u77e5\u9053\u5b83\u6b63\u5728\u4f7f\u7528": 93, "\u8ddf\u8e2a\u68af\u5ea6": 93, "\u4e0d\u540c\u7684\u9ed8\u8ba4\u884c\u4e3a": 93, "\u7ebf\u6027\u5c42\u5728\u6df1\u5ea6\u5b66\u4e60\u6a21\u578b\u4e2d\u88ab\u5e7f\u6cdb\u4f7f\u7528": 93, "\u4f60\u4f1a\u7ecf\u5e38\u5728\u5206\u7c7b\u5668\u6a21\u578b\u7684\u672b\u7aef\u770b\u5230\u5b83\u4eec": 93, "\u5176\u4e2d\u6700\u540e\u4e00\u5c42\u5c06\u6709": 93, "\u662f\u5206\u7c7b\u5668\u6240\u5904\u7406\u7684\u7c7b\u522b\u6570": 93, "\u5377\u79ef": [93, 232], "\u5c42\u88ab\u8bbe\u8ba1\u7528\u4e8e\u5904\u7406\u5177\u6709\u9ad8\u5ea6\u7a7a\u95f4\u76f8\u5173\u6027\u7684\u6570\u636e": 93, "\u5b83\u4eec\u5728\u8ba1\u7b97\u673a\u89c6\u89c9\u9886\u57df\u975e\u5e38\u5e38\u7528": 93, "\u7528\u4e8e\u68c0\u6d4b\u7ec4\u6210\u66f4\u9ad8\u7ea7\u7279\u5f81\u7684\u7d27\u5bc6\u7279\u5f81\u7ec4": 93, "\u5b83\u4eec\u4e5f\u51fa\u73b0\u5728\u5176\u4ed6\u4e0a\u4e0b\u6587\u4e2d": 93, "\u5e94\u7528\u7a0b\u5e8f\u4e2d": 93, "\u4e00\u4e2a\u5355\u8bcd\u7684\u76f4\u63a5\u4e0a\u4e0b\u6587": 93, "\u5373\u5e8f\u5217\u4e2d\u9644\u8fd1\u7684\u5176\u4ed6\u5355\u8bcd": 93, "\u53ef\u80fd\u4f1a\u5f71\u54cd\u53e5\u5b50\u7684\u542b\u4e49": 93, "\u6211\u4eec\u5728\u4e4b\u524d\u7684\u89c6\u9891\u4e2d\u770b\u5230\u4e86": 93, "lenet5": 93, "\u4e2d\u7684\u5377\u79ef\u5c42": 93, "\u8f93\u5165\u56fe\u50cf\u901a\u9053": 93, "\u8f93\u51fa\u901a\u9053": 93, "\u5e73\u65b9\u5377\u79ef\u6838": 93, "\u6765\u81ea\u56fe\u50cf\u7ef4\u5ea6": 93, "\u8ba9\u6211\u4eec\u5206\u89e3\u4e00\u4e0b\u8fd9\u4e2a\u6a21\u578b\u4e2d\u5377\u79ef\u5c42\u7684\u5de5\u4f5c\u539f\u7406": 93, "\u65e8\u5728\u63a5\u53d7": 93, "1x32x32": 93, "\u5377\u79ef\u5c42\u6784\u9020\u51fd\u6570\u7684\u7b2c\u4e00\u4e2a\u53c2\u6570\u662f\u8f93\u5165\u901a\u9053\u6570": 93, "\u8fd9\u91cc\u662f": 93, "\u5982\u679c\u6211\u4eec\u6784\u5efa\u8fd9\u4e2a\u6a21\u578b\u6765\u67e5\u770b": 93, "\u8272\u5f69\u901a\u9053": 93, "\u5b83\u5c06\u662f": 93, "\u5377\u79ef\u5c42\u5c31\u50cf\u4e00\u4e2a\u626b\u63cf\u56fe\u50cf\u7684\u7a97\u53e3": 93, "\u5bfb\u627e\u5b83\u80fd\u8bc6\u522b\u7684\u6a21\u5f0f": 93, "\u8fd9\u4e9b\u6a21\u5f0f\u88ab\u79f0\u4e3a": 93, "\u7279\u5f81": 93, "\u5377\u79ef\u5c42\u7684\u4e00\u4e2a\u53c2\u6570\u662f\u6211\u4eec\u5e0c\u671b\u5b83\u5b66\u4e60\u7684\u7279\u5f81\u6570\u91cf": 93, "\u6784\u9020\u51fd\u6570\u7684\u7b2c\u4e8c\u4e2a\u53c2\u6570\u662f\u8f93\u51fa\u7279\u5f81\u7684\u6570\u91cf": 93, "\u6211\u4eec\u8981\u6c42\u6211\u4eec\u7684\u5c42\u5b66\u4e60": 93, "\u4e2a\u7279\u5f81": 93, "\u5c31\u5728\u4e0a\u9762": 93, "\u6211\u5c06\u5377\u79ef\u5c42\u6bd4\u4f5c\u4e00\u4e2a\u7a97\u53e3": 93, "\u4f46\u662f\u7a97\u53e3\u6709\u591a\u5927": 93, "\u7b2c\u4e09\u4e2a\u53c2\u6570\u662f\u7a97\u53e3\u6216\u5185\u6838\u5927\u5c0f": 93, "\u6570\u5b57": 93, "\u610f\u5473\u7740\u6211\u4eec\u9009\u62e9\u4e86\u4e00\u4e2a": 93, "\u7684\u5185\u6838": 93, "\u5982\u679c\u4f60\u5e0c\u671b\u5185\u6838\u7684\u9ad8\u5ea6\u4e0e\u5bbd\u5ea6\u4e0d\u540c": 93, "\u4f60\u53ef\u4ee5\u4e3a\u6b64\u53c2\u6570\u6307\u5b9a\u4e00\u4e2a\u5143\u7ec4": 93, "\u6765\u83b7\u5f97\u4e00\u4e2a": 93, "3x5": 93, "\u7684\u5377\u79ef\u6838": 93, "\u5377\u79ef\u5c42\u7684\u8f93\u51fa\u662f\u4e00\u4e2a": 93, "\u6fc0\u6d3b\u6620\u5c04": 93, "\u8f93\u5165\u5f20\u91cf\u4e2d\u7279\u5f81\u5b58\u5728\u7684\u7a7a\u95f4\u8868\u793a": 93, "\u5c06\u7ed9\u6211\u4eec\u4e00\u4e2a": 93, "6x28x28": 93, "\u7684\u8f93\u51fa\u5f20\u91cf": [93, 95], "\u662f\u7279\u5f81\u6570": 93, "\u662f\u6620\u5c04\u7684\u9ad8\u5ea6\u548c\u5bbd\u5ea6": 93, "\u6765\u81ea\u4e8e\u5f53\u5728": 93, "\u50cf\u7d20\u884c\u4e0a\u626b\u63cf": 93, "\u50cf\u7d20\u7a97\u53e3\u65f6": 93, "\u53ea\u6709": 93, "\u4e2a\u6709\u6548\u4f4d\u7f6e\u7684\u4e8b\u5b9e": 93, "\u6211\u4eec\u5c06\u5377\u79ef\u7684\u8f93\u51fa\u901a\u8fc7": 93, "\u7a0d\u540e\u5c06\u8ba8\u8bba\u6fc0\u6d3b\u51fd\u6570": 93, "\u7136\u540e\u901a\u8fc7\u6700\u5927\u6c60\u5316\u5c42": 93, "\u6700\u5927\u6c60\u5316\u5c42\u5c06\u6fc0\u6d3b\u6620\u5c04\u4e2d\u5f7c\u6b64\u9760\u8fd1\u7684\u7279\u5f81\u7ec4\u5408\u5728\u4e00\u8d77": 93, "\u5b83\u901a\u8fc7\u51cf\u5c0f\u5f20\u91cf\u6765\u5b9e\u73b0\u8fd9\u4e00\u70b9": 93, "\u5c06\u8f93\u51fa\u4e2d\u6bcf\u4e2a": 93, "\u7ec4\u7684\u5355\u5143\u683c\u5408\u5e76\u4e3a\u4e00\u4e2a\u5355\u5143\u683c": 93, "\u5e76\u5c06\u8be5\u5355\u5143\u683c\u7684\u503c\u5206\u914d\u4e3a\u7ec4\u6210\u5b83\u7684": 93, "\u4e2a\u5355\u5143\u683c\u4e2d\u7684\u6700\u5927\u503c": 93, "\u8fd9\u7ed9\u4e86\u6211\u4eec\u4e00\u4e2a\u8f83\u4f4e\u5206\u8fa8\u7387\u7684\u6fc0\u6d3b\u6620\u5c04": 93, "\u5c3a\u5bf8\u4e3a": 93, "6x14x14": 93, "\u6211\u4eec\u7684\u4e0b\u4e00\u4e2a\u5377\u79ef\u5c42": 93, "\u671f\u671b": 93, "\u4e2a\u8f93\u5165\u901a\u9053": 93, "\u5bf9\u5e94\u4e8e\u7b2c\u4e00\u5c42\u5bfb\u627e\u7684": 93, "\u6709": 93, "\u5e76\u4e14\u5185\u6838\u5927\u5c0f\u4e3a": 93, "3x3": 93, "\u5b83\u8f93\u51fa\u4e00\u4e2a": 93, "16x12x12": 93, "\u7684\u6fc0\u6d3b\u6620\u5c04": 93, "\u518d\u6b21\u901a\u8fc7\u6700\u5927\u6c60\u5316\u5c42\u51cf\u5c0f\u5230": 93, "16x6x6": 93, "\u5728\u5c06\u6b64\u8f93\u51fa\u4f20\u9012\u7ed9\u7ebf\u6027\u5c42\u4e4b\u524d": 93, "\u5b83\u88ab\u91cd\u65b0\u6574\u5f62\u4e3a\u4e00\u4e2a": 93, "576": 93, "\u5143\u7d20\u5411\u91cf": 93, "\u4f9b\u4e0b\u4e00\u5c42\u4f7f\u7528": 93, "\u6709\u9488\u5bf9": 93, "\u5f20\u91cf\u7684\u5377\u79ef\u5c42": 93, "\u5377\u79ef\u5c42\u6784\u9020\u51fd\u6570\u8fd8\u6709\u8bb8\u591a\u5176\u4ed6\u53ef\u9009\u53c2\u6570": 93, "\u5305\u62ec\u6b65\u957f\u957f\u5ea6": 93, "\u53ea\u626b\u63cf\u6bcf\u7b2c\u4e8c\u4e2a\u6216\u6bcf\u7b2c\u4e09\u4e2a\u4f4d\u7f6e": 93, "\u586b\u5145": 93, "\u56e0\u6b64\u4f60\u53ef\u4ee5\u626b\u63cf\u5230\u8f93\u5165\u7684\u8fb9\u7f18": 93, "\u7b49\u7b49": 93, "\u66f4\u591a\u4fe1\u606f\u8bf7\u53c2\u89c1": 93, "\u5faa\u73af\u795e\u7ecf\u7f51\u7edc": 93, "\u7528\u4e8e\u5e8f\u5217\u6570\u636e": 93, "\u4ece\u79d1\u5b66\u4eea\u5668\u7684\u65f6\u95f4\u5e8f\u5217\u6d4b\u91cf\u5230\u81ea\u7136\u8bed\u8a00\u53e5\u5b50\u518d\u5230": 93, "dna": 93, "\u6838\u82f7\u9178": 93, "\u901a\u8fc7\u7ef4\u62a4\u4e00\u4e2a": 93, "\u9690\u85cf\u72b6\u6001": 93, "\u6765\u5b9e\u73b0\u8fd9\u4e00\u70b9": 93, "\u8be5\u9690\u85cf\u72b6\u6001\u5145\u5f53\u4e00\u79cd\u8bb0\u5fc6": 93, "\u8bb0\u5f55\u5230\u76ee\u524d\u4e3a\u6b62\u5b83\u5728\u5e8f\u5217\u4e2d\u770b\u5230\u7684\u5185\u5bb9": 93, "\u5c42\u7684\u5185\u90e8\u7ed3\u6784": 93, "\u6216\u5176\u53d8\u4f53": 93, "\u957f\u77ed\u671f\u8bb0\u5fc6": 93, "\u95e8\u63a7\u5faa\u73af\u5355\u5143": 93, "\u76f8\u5f53\u590d\u6742": 93, "\u8d85\u51fa\u4e86\u672c\u89c6\u9891\u7684\u8303\u56f4": 93, "\u4f46\u6211\u4eec\u5c06\u5411\u4f60\u5c55\u793a\u57fa\u4e8e": 93, "\u7684\u8bcd\u6027\u6807\u6ce8\u5668": 93, "\u4e00\u79cd\u5206\u7c7b\u5668": 93, "\u7528\u4e8e\u544a\u8bc9\u4f60\u4e00\u4e2a\u5355\u8bcd\u662f\u540d\u8bcd": 93, "\u52a8\u8bcd\u7b49": 93, "\u7684\u6837\u5b50": 93, "lstmtagger": [93, 102], "vocab_s": [93, 98, 99, 102, 103, 115, 118, 138, 145, 186, 222], "tagset_s": [93, 98, 102], "word_embed": [93, 102], "\u63a5\u53d7\u8bcd\u5d4c\u5165\u4f5c\u4e3a\u8f93\u5165": 93, "\u5e76\u8f93\u51fa\u7ef4\u5ea6\u4e3a": 93, "\u7684\u9690\u85cf\u72b6\u6001": 93, "\u5c06\u4ece\u9690\u85cf\u72b6\u6001\u7a7a\u95f4\u6620\u5c04\u5230\u6807\u8bb0\u7a7a\u95f4\u7684\u7ebf\u6027\u5c42": 93, "hidden2tag": [93, 98, 102], "lstm_out": [93, 98, 102], "tag_spac": [93, 102], "tag_scor": [93, 102], "\u6784\u9020\u51fd\u6570\u6709\u56db\u4e2a\u53c2\u6570": 93, "\u662f\u8f93\u5165\u8bcd\u6c47\u8868\u4e2d\u5355\u8bcd\u7684\u6570\u91cf": 93, "\u6bcf\u4e2a\u5355\u8bcd\u662f\u4e00\u4e2a": 93, "\u7ef4\u7684\u4e00\u70ed\u5411\u91cf": 93, "\u6216\u5355\u4f4d\u5411\u91cf": 93, "\u662f\u8f93\u51fa\u6807\u7b7e\u96c6\u7684\u5927\u5c0f": 93, "\u662f\u8bcd\u6c47\u7684": 93, "\u5d4c\u5165": 93, "\u7a7a\u95f4\u7684\u5927\u5c0f": 93, "\u5d4c\u5165\u5c06\u8bcd\u6c47\u6620\u5c04\u5230\u4e00\u4e2a\u4f4e\u7ef4\u7a7a\u95f4": 93, "\u5728\u8be5\u7a7a\u95f4\u4e2d": 93, "\u610f\u4e49\u76f8\u4f3c\u7684\u5355\u8bcd\u5f7c\u6b64\u63a5\u8fd1": 93, "\u7684\u8bb0\u5fc6\u5927\u5c0f": 93, "\u8f93\u5165\u5c06\u662f\u4e00\u4e2a\u53e5\u5b50": 93, "\u5355\u8bcd\u8868\u793a\u4e3a\u4e00\u70ed\u5411\u91cf\u7684\u7d22\u5f15": 93, "\u5d4c\u5165\u5c42\u5c06\u628a\u8fd9\u4e9b\u6620\u5c04\u5230\u4e00\u4e2a": 93, "\u7ef4\u7684\u7a7a\u95f4": 93, "\u63a5\u6536\u8fd9\u4e2a\u5d4c\u5165\u5e8f\u5217\u5e76\u5bf9\u5176\u8fdb\u884c\u8fed\u4ee3": 93, "\u4ea7\u751f\u4e00\u4e2a\u957f\u5ea6\u4e3a": 93, "\u7684\u8f93\u51fa\u5411\u91cf": 93, "\u6700\u540e\u7684\u7ebf\u6027\u5c42\u5145\u5f53\u5206\u7c7b\u5668": 93, "\u5c06\u6700\u540e\u4e00\u5c42\u7684\u8f93\u51fa\u901a\u8fc7": 93, "\u8f6c\u6362\u4e3a\u4e00\u7ec4\u5f52\u4e00\u5316\u7684\u4f30\u8ba1\u6982\u7387": 93, "\u8868\u793a\u7ed9\u5b9a\u5355\u8bcd\u6620\u5c04\u5230\u7ed9\u5b9a\u6807\u7b7e\u7684\u6982\u7387": 93, "\u5982\u679c\u4f60\u60f3\u770b\u770b\u8fd9\u4e2a\u7f51\u7edc\u7684\u5b9e\u9645\u8fd0\u884c\u60c5\u51b5": 93, "\u53ef\u4ee5\u67e5\u770b": 93, "\u4e0a\u7684": [93, 121, 239, 259], "\u5e8f\u5217\u6a21\u578b\u548c": 93, "\u7f51\u7edc": 93, "\u6559\u7a0b": [93, 104, 239, 240, 247, 249, 258], "\u662f\u591a\u7528\u9014\u7f51\u7edc": 93, "\u9886\u57df\u53d6\u5f97\u4e86\u6700\u5148\u8fdb\u7684\u6210\u679c": 93, "\u8ba8\u8bba\u8f6c\u6362\u5668\u67b6\u6784\u8d85\u51fa\u4e86\u672c\u89c6\u9891\u7684\u8303\u56f4": 93, "\u5141\u8bb8\u4f60\u5b9a\u4e49\u8f6c\u6362\u5668\u6a21\u578b\u7684\u6574\u4f53\u53c2\u6570": 93, "\u6ce8\u610f\u529b\u5934\u7684\u6570\u91cf": 93, "\u7f16\u7801\u5668\u548c\u89e3\u7801\u5668\u5c42\u7684\u6570\u91cf": 93, "\u548c\u6fc0\u6d3b\u51fd\u6570\u7b49": 93, "\u4f60\u751a\u81f3\u53ef\u4ee5\u7528\u6b63\u786e\u7684\u53c2\u6570\u4ece\u8fd9\u4e2a\u5355\u4e00\u7c7b\u6784\u5efa": 93, "\u7c7b\u8fd8\u5305\u542b\u5c01\u88c5\u5355\u4e2a\u7ec4\u4ef6": 93, "transformerdecod": 93, "\u548c\u5b50\u7ec4\u4ef6": 93, "transformerdecoderlay": 93, "\u8be6\u60c5\u8bf7\u67e5\u770b": [93, 228], "\u4e2d\u5173\u4e8e\u8f6c\u6362\u5668\u7c7b\u7684\u5185\u5bb9": 93, "\u4ee5\u53ca": [93, 104, 233], "\u4e0a\u76f8\u5173\u7684": 93, "\u8fd8\u6709\u5176\u4ed6\u7c7b\u578b\u7684\u5c42\u6267\u884c\u6a21\u578b\u4e2d\u7684\u91cd\u8981\u529f\u80fd": 93, "\u4f46\u5b83\u4eec\u81ea\u8eab\u4e0d\u53c2\u4e0e\u5b66\u4e60\u8fc7\u7a0b": 93, "\u6700\u5927\u6c60\u5316": 93, "\u53ca\u5176\u5b6a\u751f\u5c42\u6700\u5c0f\u6c60\u5316": 93, "\u901a\u8fc7\u7ec4\u5408\u5355\u5143\u5e76\u5c06\u8f93\u5165\u5355\u5143\u7684\u6700\u5927\u503c\u5206\u914d\u7ed9\u8f93\u51fa\u5355\u5143\u6765\u51cf\u5c0f\u5f20\u91cf": 93, "\u6211\u4eec\u4e4b\u524d\u770b\u5230\u8fc7\u8fd9\u4e00\u70b9": 93, "maxpool_lay": 93, "\u5982\u679c\u4f60\u4ed4\u7ec6\u89c2\u5bdf\u4e0a\u9762\u7684\u503c": 93, "\u4f60\u4f1a\u53d1\u73b0\u6700\u5927\u6c60\u5316\u8f93\u51fa\u4e2d\u7684\u6bcf\u4e2a\u503c\u90fd\u662f": 93, "6x6": 93, "\u8f93\u5165\u7684\u6bcf\u4e2a\u8c61\u9650\u7684\u6700\u5927\u503c": 93, "\u5f52\u4e00\u5316\u5c42": 93, "\u5728\u5c06\u4e00\u5c42\u7684\u8f93\u51fa\u9988\u9001\u5230\u53e6\u4e00\u5c42\u4e4b\u524d": 93, "\u91cd\u65b0\u5c45\u4e2d\u5e76\u5f52\u4e00\u5316\u8f93\u51fa": 93, "\u5c45\u4e2d\u548c\u7f29\u653e\u4e2d\u95f4\u5f20\u91cf\u6709\u8bb8\u591a\u6709\u76ca\u7684\u6548\u679c": 93, "\u4f8b\u5982\u8ba9\u4f60\u53ef\u4ee5\u4f7f\u7528\u66f4\u9ad8\u7684\u5b66\u4e60\u7387\u800c\u4e0d\u4f1a\u51fa\u73b0\u68af\u5ea6\u7206\u70b8": 93, "\u6d88\u5931": 93, "norm_lay": [93, 135], "batchnorm1d": 93, "normed_tensor": 93, "\u8fd0\u884c\u4e0a\u9762\u7684\u5355\u5143\u683c": 93, "\u6211\u4eec\u4e3a\u8f93\u5165\u5f20\u91cf\u6dfb\u52a0\u4e86\u4e00\u4e2a\u5927\u7684\u7f29\u653e\u56e0\u5b50\u548c\u504f\u79fb\u91cf": 93, "\u4f60\u5e94\u8be5\u4f1a\u770b\u5230\u8f93\u5165\u5f20\u91cf\u7684": 93, "\u5de6\u53f3": 93, "\u7ecf\u8fc7\u5f52\u4e00\u5316\u5c42\u5904\u7406\u540e": 93, "\u4f60\u53ef\u4ee5\u770b\u5230\u503c\u53d8\u5c0f\u4e86": 93, "\u5e76\u4e14\u56f4\u7ed5\u7740": 93, "\u5206\u5e03": [93, 231], "\u5e73\u5747\u503c\u5e94\u8be5\u975e\u5e38\u5c0f": 93, "\u8fd9\u662f\u6709\u76ca\u7684": 93, "\u56e0\u4e3a\u8bb8\u591a\u6fc0\u6d3b\u51fd\u6570": 93, "\u4e0b\u9762\u5c06\u8ba8\u8bba": 93, "\u4f46\u6709\u65f6\u5bf9\u4e8e\u5c06\u5b83\u4eec\u63a8\u79bb": 93, "\u5f88\u8fdc\u7684\u8f93\u5165\u4f1a\u9047\u5230\u68af\u5ea6\u6d88\u5931\u6216\u7206\u70b8\u7684\u95ee\u9898": 93, "\u5c06\u6570\u636e\u4fdd\u6301\u5728\u6700\u9661\u68af\u5ea6\u533a\u57df\u5468\u56f4\u5c06\u503e\u5411\u4e8e\u610f\u5473\u7740\u66f4\u5feb": 93, "\u66f4\u597d\u7684\u5b66\u4e60\u548c\u66f4\u9ad8\u7684\u53ef\u884c\u5b66\u4e60\u7387": 93, "\u662f\u4e00\u79cd\u9f13\u52b1\u6a21\u578b": 93, "\u7a00\u758f\u8868\u793a": 93, "\u7684\u5de5\u5177": 93, "\u4e5f\u5c31\u662f\u8bf4": [93, 95], "\u63a8\u52a8\u5b83\u5728\u63a8\u7406\u65f6\u4f7f\u7528\u8f83\u5c11\u7684\u6570\u636e": 93, "\u5c42\u7684\u5de5\u4f5c\u539f\u7406\u662f\u5728": 93, "\u8bad\u7ec3\u671f\u95f4": 93, "\u968f\u673a\u8bbe\u7f6e\u8f93\u5165\u5f20\u91cf\u7684\u4e00\u90e8\u5206": 93, "\u5c42\u5728\u63a8\u7406\u65f6\u603b\u662f\u5173\u95ed\u7684": 93, "\u8fd9\u8feb\u4f7f\u6a21\u578b\u9488\u5bf9\u8fd9\u79cd\u63a9\u7801\u6216\u51cf\u5c11\u7684\u6570\u636e\u96c6\u8fdb\u884c\u5b66\u4e60": 93, "\u5bf9\u793a\u4f8b\u5f20\u91cf\u7684\u5f71\u54cd": 93, "\u4f60\u53ef\u4ee5\u4f7f\u7528\u53ef\u9009\u7684": 93, "\u53c2\u6570\u8bbe\u7f6e\u5355\u4e2a\u6743\u91cd\u4e22\u5f03\u7684\u6982\u7387": 93, "\u5982\u679c\u4e0d\u8bbe\u7f6e": 93, "\u9ed8\u8ba4\u4e3a": [93, 249], "\u6fc0\u6d3b\u51fd\u6570\u4f7f\u6df1\u5ea6\u5b66\u4e60\u6210\u4e3a\u53ef\u80fd": 93, "\u795e\u7ecf\u7f51\u7edc\u5b9e\u9645\u4e0a\u662f\u4e00\u4e2a\u7a0b\u5e8f": 93, "\u6709\u8bb8\u591a\u53c2\u6570": 93, "\u7528\u4e8e": 93, "\u6a21\u62df\u4e00\u4e2a\u6570\u5b66\u51fd\u6570": 93, "\u5982\u679c\u6211\u4eec\u53ea\u662f\u91cd\u590d\u5730\u5c06\u5f20\u91cf\u4e0e\u5c42\u6743\u91cd\u76f8\u4e58": 93, "\u6211\u4eec\u53ea\u80fd\u6a21\u62df": 93, "\u7ebf\u6027\u51fd\u6570": 93, "\u6709\u591a\u5c42\u4e5f\u6ca1\u6709\u610f\u4e49": 93, "\u56e0\u4e3a\u6574\u4e2a\u7f51\u7edc\u53ef\u4ee5\u7b80\u5316\u4e3a\u5355\u4e2a\u77e9\u9635\u4e58\u6cd5": 93, "\u5728\u5c42\u4e4b\u95f4\u63d2\u5165": 93, "\u6fc0\u6d3b\u51fd\u6570\u4f7f\u5f97\u6df1\u5ea6\u5b66\u4e60\u6a21\u578b\u80fd\u591f\u6a21\u62df\u4efb\u4f55\u51fd\u6570": 93, "\u800c\u4e0d\u4ec5\u4ec5\u662f\u7ebf\u6027\u51fd\u6570": 93, "\u6709\u5c01\u88c5\u6240\u6709\u4e3b\u8981\u6fc0\u6d3b\u51fd\u6570\u7684\u5bf9\u8c61": 93, "\u53ca\u5176\u8bb8\u591a\u53d8\u4f53": 93, "hardtanh": [93, 110, 255], "\u7b49": [93, 95, 104, 111, 214, 233, 239, 249], "\u5b83\u8fd8\u5305\u62ec\u5176\u4ed6\u51fd\u6570": 93, "\u8fd9\u4e9b\u51fd\u6570\u5728\u6a21\u578b\u7684\u8f93\u51fa\u9636\u6bb5\u6700\u6709\u7528": 93, "\u635f\u5931\u51fd\u6570\u544a\u8bc9\u6211\u4eec\u6a21\u578b\u7684\u9884\u6d4b\u4e0e\u6b63\u786e\u7b54\u6848\u76f8\u5dee\u591a\u8fdc": 93, "\u5305\u542b\u5404\u79cd\u635f\u5931\u51fd\u6570": 93, "\u5305\u62ec\u5e38\u89c1\u7684": 93, "\u8303\u6570": 93, "\u4ea4\u53c9\u71b5\u635f\u5931\u548c\u8d1f\u5bf9\u6570\u4f3c\u7136\u635f\u5931": 93, "\u5bf9\u4e8e\u5206\u7c7b\u5668\u5f88\u6709\u7528": 93, "\u8981\u8fd0\u884c\u6b64\u6559\u7a0b": 94, "\u60a8\u9700\u8981\u5b89\u88c5pytorch": 94, "matplotlib\u548ctensorboard": 94, "\u5b89\u88c5\u5b8c\u4f9d\u8d56\u9879\u540e": 94, "\u8bf7\u5728\u5b89\u88c5\u5b83\u4eec\u7684python\u73af\u5883\u4e2d\u91cd\u65b0\u542f\u52a8\u6b64\u7b14\u8bb0\u672c": 94, "\u5728\u672c\u7b14\u8bb0\u672c\u4e2d": 94, "\u6211\u4eec\u5c06\u8bad\u7ec3lenet": 94, "5\u7684\u53d8\u4f53": 94, "\u9488\u5bf9fashion": 94, "mnist\u6570\u636e\u96c6": 94, "mnist\u662f\u4e00\u7ec4\u63cf\u7ed8\u5404\u79cd\u670d\u88c5\u7684\u56fe\u50cf\u74e6\u7247": 94, "\u6709\u5341\u4e2a\u7c7b\u6807\u7b7e\u6307\u793a\u6240\u63cf\u7ed8\u7684\u670d\u88c5\u7c7b\u578b": 94, "pytorch\u6a21\u578b\u548c\u8bad\u7ec3\u5fc5\u9700\u54c1": 94, "\u56fe\u50cf\u6570\u636e\u96c6\u548c\u56fe\u50cf\u64cd\u4f5c": 94, "\u56fe\u50cf\u663e\u793a": 94, "summarywrit": [94, 96, 170, 247], "\u5982\u679c\u60a8\u4f7f\u7528\u7684\u73af\u5883\u5b89\u88c5\u4e86tensorflow": 94, "\u5982googl": 94, "\u8bf7\u53d6\u6d88\u6ce8\u91ca\u4ee5\u4e0b\u4ee3\u7801\u4ee5\u907f\u514d\u5c06\u5d4c\u5165\u4fdd\u5b58\u5230tensorboard\u76ee\u5f55\u65f6\u51fa\u73b0\u9519\u8bef": 94, "tb": [94, 173, 174, 175], "gfile": 94, "tensorflow_stub": 94, "\u8ba9\u6211\u4eec\u4ece\u5c06\u6570\u636e\u96c6\u4e2d\u7684\u793a\u4f8b\u56fe\u50cf\u6dfb\u52a0\u5230tensorboard\u5f00\u59cb": 94, "\u6536\u96c6\u6570\u636e\u96c6\u5e76\u51c6\u5907\u6d88\u8d39": 94, "data\u4e2d\u5b58\u50a8\u5355\u72ec\u7684\u8bad\u7ec3\u548c\u9a8c\u8bc1\u5206\u5272": 94, "training_set": [94, 96], "validation_set": [94, 96], "training_load": [94, 96], "validation_load": [94, 96], "\u7c7b\u6807\u7b7e": 94, "\u5185\u8054\u56fe\u50cf\u663e\u793a\u7684\u8f85\u52a9\u51fd\u6570": [94, 96], "matplotlib_imshow": [94, 96, 170], "one_channel": [94, 96, 170], "\u53cd\u5f52\u4e00\u5316": 94, "grei": [94, 96, 119, 170, 190], "\u63d0\u53d6\u4e00\u62794\u5f20\u56fe\u50cf": 94, "\u4ece\u56fe\u50cf\u521b\u5efa\u7f51\u683c\u5e76\u663e\u793a\u5b83\u4eec": [94, 96], "img_grid": [94, 96, 170], "\u6211\u4eec\u4f7f\u7528torchvision\u548cmatplotlib\u521b\u5efa\u4e86\u4e00\u4e2a\u8f93\u5165\u6570\u636e\u5c0f\u6279\u91cf\u7684\u53ef\u89c6\u7f51\u683c": 94, "\u4e0a\u4f7f\u7528": [94, 121], "add_imag": [94, 170], "\u8c03\u7528\u6765\u8bb0\u5f55\u56fe\u50cf": 94, "\u4ee5\u4f9btensorboard\u4f7f\u7528": 94, "\u6211\u4eec\u8fd8\u8c03\u7528": 94, "\u4ee5\u786e\u4fdd\u5b83\u7acb\u5373\u5199\u5165\u78c1\u76d8": 94, "\u9ed8\u8ba4log_dir\u53c2\u6570\u4e3a": 94, "\u4f46\u6700\u597d\u660e\u786e\u6307\u5b9a": 94, "summarywriter\u5728\u4e0a\u9762\u5bfc\u5165": 94, "fashion_mnist_experiment_1": [94, 170], "\u5c06\u56fe\u50cf\u6570\u636e\u5199\u5165tensorboard\u65e5\u5fd7\u76ee\u5f55": 94, "\u8981\u67e5\u770b": 94, "\u8bf7\u5728\u547d\u4ee4\u884c\u4e0a\u542f\u52a8tensorboard": 94, "logdir": [94, 169, 170, 247], "\u5e76\u5728\u65b0\u7684\u6d4f\u89c8\u5668\u9009\u9879\u5361\u4e2d\u6253\u5f00http": 94, "6006": [94, 169, 170, 247], "\u5982\u679c\u60a8\u5728\u547d\u4ee4\u884c\u542f\u52a8tensorboard\u5e76\u5728\u65b0\u7684\u6d4f\u89c8\u5668\u9009\u9879\u5361\u4e2d\u6253\u5f00\u5b83": 94, "\u901a\u5e38\u5728": 94, "\u60a8\u5e94\u8be5\u5728images\u9009\u9879\u5361\u4e0b\u770b\u5230\u56fe\u50cf\u7f51\u683c": 94, "tensorboard\u5bf9\u4e8e\u8ddf\u8e2a\u8bad\u7ec3\u7684\u8fdb\u5ea6\u548c\u6548\u679c\u5f88\u6709\u7528": 94, "\u6211\u4eec\u5c06\u8fd0\u884c\u4e00\u4e2a\u8bad\u7ec3\u5faa\u73af": 94, "\u8ddf\u8e2a\u4e00\u4e9b\u6307\u6807": 94, "\u5e76\u4fdd\u5b58\u6570\u636e\u4ee5\u4f9btensorboard\u4f7f\u7528": 94, "\u8ba9\u6211\u4eec\u5b9a\u4e49\u4e00\u4e2a\u6a21\u578b\u6765\u5bf9\u6211\u4eec\u7684\u56fe\u50cf\u74e6\u7247\u8fdb\u884c\u5206\u7c7b": 94, "\u4ee5\u53ca\u7528\u4e8e\u8bad\u7ec3\u7684\u4f18\u5316\u5668\u548c\u635f\u5931\u51fd\u6570": 94, "\u73b0\u5728\u8ba9\u6211\u4eec\u8bad\u7ec3\u4e00\u4e2aepoch": 94, "\u5e76\u6bcf1000\u6279\u6b21\u8bc4\u4f30\u4e00\u6b21\u8bad\u7ec3\u4e0e\u9a8c\u8bc1\u96c6\u7684\u635f\u5931": 94, "\u57fa\u672c\u8bad\u7ec3\u5faa\u73af": 94, "\u6bcf1000\u4e2a\u5c0f\u6279\u91cf": 94, "\u5bf9\u7167\u9a8c\u8bc1\u96c6": 94, "running_vloss": [94, 96], "\u5728\u8bc4\u4f30\u6a21\u5f0f\u4e0b": 94, "\u53ef\u4ee5\u7701\u7565\u4e00\u4e9b\u7279\u5b9a\u4e8e\u6a21\u578b\u7684\u64cd\u4f5c": 94, "\u4f8b\u5982dropout\u5c42": 94, "\u5207\u6362\u5230\u8bc4\u4f30\u6a21\u5f0f": 94, "\u4f8b\u5982\u5173\u95ed\u6b63\u5219\u5316": 94, "vdata": [94, 96], "vinput": [94, 96], "vlabel": [94, 96], "voutput": [94, 96], "vloss": [94, 96], "\u5207\u6362\u56de\u8bad\u7ec3\u6a21\u5f0f": 94, "\u4f8b\u5982\u6253\u5f00\u6b63\u5219\u5316": 94, "avg_loss": [94, 96], "avg_vloss": [94, 96], "\u8bb0\u5f55\u6bcf\u6279\u6b21\u5e73\u5747\u7684\u8fd0\u884c\u635f\u5931": [94, 96], "add_scalar": [94, 96, 170, 247], "\u5207\u6362\u5230\u60a8\u6253\u5f00\u7684tensorboard": 94, "\u67e5\u770bscalars\u9009\u9879\u5361": 94, "tensorboard\u8fd8\u53ef\u7528\u4e8e\u68c0\u67e5\u6a21\u578b\u5185\u7684\u6570\u636e\u6d41": 94, "\u8bf7\u4f7f\u7528\u6a21\u578b\u548c\u793a\u4f8b\u8f93\u5165\u8c03\u7528": 94, "add_graph": [94, 170], "\u518d\u6b21\u83b7\u53d6\u4e00\u4e2a\u5c0f\u6279\u91cf\u7684\u56fe\u50cf": 94, "\u5c06\u901a\u8fc7\u60a8\u7684\u6a21\u578b\u8ddf\u8e2a\u793a\u4f8b\u8f93\u5165": 94, "\u5e76\u5c06\u5176\u6e32\u67d3\u4e3a\u56fe\u5f62": 94, "\u5f53\u60a8\u5207\u6362\u5230tensorboard\u65f6": 94, "\u60a8\u5e94\u8be5\u4f1a\u770b\u5230\u4e00\u4e2agraphs\u9009\u9879\u5361": 94, "\u53cc\u51fb": 94, "\u8282\u70b9\u53ef\u67e5\u770b\u6a21\u578b\u5185\u7684\u5c42\u548c\u6570\u636e\u6d41": 94, "\u6211\u4eec\u4f7f\u7528\u768428x28\u56fe\u50cf\u74e6\u7247\u53ef\u4ee5\u5efa\u6a21\u4e3a784\u7ef4\u5411\u91cf": 94, "\u5c06\u5176\u6295\u5f71\u5230\u8f83\u4f4e\u7ef4\u5ea6\u7684\u8868\u793a\u5f62\u5f0f\u53ef\u80fd\u4f1a\u5f88\u6709\u542f\u53d1\u6027": 94, "add_embed": [94, 170], "\u65b9\u6cd5\u5c06\u4e00\u7ec4\u6570\u636e\u6295\u5f71\u5230\u5177\u6709\u6700\u9ad8\u65b9\u5dee\u7684\u4e09\u4e2a\u7ef4\u5ea6\u4e0a": 94, "\u5e76\u5c06\u5b83\u4eec\u663e\u793a\u4e3a\u4ea4\u4e92\u5f0f3d\u56fe\u8868": 94, "\u65b9\u6cd5\u901a\u8fc7\u6295\u5f71\u5230\u5177\u6709\u6700\u9ad8\u65b9\u5dee\u7684\u4e09\u4e2a\u7ef4\u5ea6\u6765\u81ea\u52a8\u6267\u884c\u6b64\u64cd\u4f5c": 94, "\u6211\u4eec\u5c06\u91c7\u6837\u6570\u636e": 94, "\u5e76\u751f\u6210\u8fd9\u6837\u4e00\u4e2a\u5d4c\u5165": 94, "\u9009\u62e9\u968f\u673a\u5b50\u96c6\u7684\u6570\u636e\u548c\u76f8\u5e94\u7684\u6807\u7b7e": 94, "select_n_random": [94, 170], "perm": [94, 170], "randperm": [94, 170, 179], "\u63d0\u53d6\u968f\u673a\u5b50\u96c6\u7684\u6570\u636e": 94, "\u83b7\u53d6\u6bcf\u4e2a\u56fe\u50cf\u7684\u7c7b\u6807\u7b7e": 94, "class_label": [94, 170, 172], "\u8bb0\u5f55\u5d4c\u5165": 94, "label_img": [94, 170], "\u5982\u679c\u60a8\u5207\u6362\u5230tensorboard\u5e76\u9009\u62e9projector\u9009\u9879\u5361": 94, "\u60a8\u5e94\u8be5\u4f1a\u770b\u5230\u6295\u5f71\u76843d\u8868\u793a": 94, "\u60a8\u53ef\u4ee5\u65cb\u8f6c\u548c\u7f29\u653e\u6a21\u578b": 94, "\u5728\u5927\u5c0f\u4e0d\u540c\u7684\u5c3a\u5ea6\u4e0a\u68c0\u67e5\u5b83": 94, "\u770b\u770b\u60a8\u662f\u5426\u53ef\u4ee5\u53d1\u73b0\u6295\u5f71\u6570\u636e\u548c\u6807\u7b7e\u805a\u7c7b\u4e2d\u7684\u6a21\u5f0f": 94, "\u4e3a\u4e86\u66f4\u597d\u7684\u53ef\u89c1\u6027": 94, "\u5efa\u8bae": 94, "\u4ece\u5de6\u4fa7\u7684": 94, "\u4e0b\u62c9\u83dc\u5355\u4e2d\u9009\u62e9": 94, "\u5207\u6362\u9876\u90e8\u7684night": 94, "mode\u56fe\u6807": 94, "\u5c06\u6d45\u8272\u56fe\u50cf\u7f6e\u4e8e\u6df1\u8272\u80cc\u666f\u4e0a": 94, "pytorch\u5173\u4e8e": 94, "__\u7684\u6587\u6863": 94, "org\u6559\u7a0b": 94, "\u4e2d\u7684tensorboard\u6559\u7a0b\u5185\u5bb9": 94, "\u6709\u5173tensorboard\u7684\u66f4\u591a\u4fe1\u606f": 94, "tensorboard\u6587\u6863": 94, "\u5f20\u91cf\u662fpytorch\u4e2d\u7684\u4e2d\u5fc3\u6570\u636e\u62bd\u8c61": 95, "\u8fd9\u4e2a\u4ea4\u4e92\u5f0f\u7b14\u8bb0\u672c\u63d0\u4f9b\u4e86\u5bf9": 95, "\u7c7b\u7684\u6df1\u5165\u4ecb\u7ecd": 95, "\u8ba9\u6211\u4eec\u5bfc\u5165pytorch\u6a21\u5757": 95, "\u6211\u4eec\u8fd8\u5c06\u6dfb\u52a0python\u7684\u6570\u5b66\u6a21\u5757": 95, "\u4ee5\u4fbf\u4e8e\u4e00\u4e9b\u793a\u4f8b": 95, "\u521b\u5efa\u5f20\u91cf\u6700\u7b80\u5355\u7684\u65b9\u6cd5\u662f\u4f7f\u7528": 95, "\u8ba9\u6211\u4eec\u89e3\u91ca\u4e0b\u521a\u624d\u53d1\u751f\u7684\u4e8b\u60c5": 95, "\u6211\u4eec\u4f7f\u7528\u9644\u52a0\u5230": 95, "\u6a21\u5757\u7684\u4f17\u591a\u5de5\u5382\u65b9\u6cd5\u4e4b\u4e00\u521b\u5efa\u4e86\u4e00\u4e2a\u5f20\u91cf": 95, "\u8be5\u5f20\u91cf\u662f\u4e8c\u7ef4\u7684": 95, "\u67093\u884c4\u5217": 95, "\u8fd4\u56de\u5bf9\u8c61\u7684\u7c7b\u578b\u662f": 95, "\u7684\u522b\u540d": 95, "pytorch\u5f20\u91cf\u752832\u4f4d\u6d6e\u70b9\u6570\u586b\u5145": 95, "\u66f4\u591a\u5173\u4e8e\u6570\u636e\u7c7b\u578b\u7684\u5185\u5bb9\u89c1\u4e0b\u6587": 95, "\u5f53\u6253\u5370\u4f60\u7684\u5f20\u91cf\u65f6": 95, "\u4f60\u53ef\u80fd\u4f1a\u770b\u5230\u4e00\u4e9b\u968f\u673a\u7684\u503c": 95, "\u8c03\u7528\u4e3a\u5f20\u91cf\u5206\u914d\u5185\u5b58": 95, "\u4f46\u4e0d\u4f1a\u7528\u4efb\u4f55\u503c\u521d\u59cb\u5316\u5b83": 95, "\u6240\u4ee5\u4f60\u770b\u5230\u7684\u662f\u5206\u914d\u65f6\u5185\u5b58\u4e2d\u7684\u4efb\u4f55\u503c": 95, "\u5173\u4e8e\u5f20\u91cf\u53ca\u5176\u7ef4\u6570\u548c\u672f\u8bed\u7684\u7b80\u8981\u8bf4\u660e": 95, "\u4f60\u6709\u65f6\u4f1a\u770b\u5230\u4e00\u7ef4\u5f20\u91cf\u88ab\u79f0\u4e3a": 95, "\u5411\u91cf": 95, "\u4e8c\u7ef4\u5f20\u91cf\u901a\u5e38\u88ab\u79f0\u4e3a": 95, "\u4efb\u4f55\u8d85\u8fc7\u4e24\u4e2a\u7ef4\u5ea6\u7684\u5f20\u91cf\u901a\u5e38\u90fd\u88ab\u79f0\u4e3a\u5f20\u91cf": 95, "\u5927\u591a\u6570\u60c5\u51b5\u4e0b": 95, "\u4f60\u4f1a\u5e0c\u671b\u7528\u4e00\u4e9b\u503c\u521d\u59cb\u5316\u4f60\u7684\u5f20\u91cf": 95, "\u5e38\u89c1\u7684\u60c5\u51b5\u662f\u5168\u96f6": 95, "\u5168\u4e00\u6216\u968f\u673a\u503c": 95, "\u6a21\u5757\u4e3a\u6240\u6709\u8fd9\u4e9b\u60c5\u51b5\u63d0\u4f9b\u4e86\u5de5\u5382\u65b9\u6cd5": 95, "\u5de5\u5382\u65b9\u6cd5\u90fd\u505a\u4e86\u4f60\u671f\u671b\u7684\u4e8b\u60c5": 95, "\u6211\u4eec\u6709\u4e00\u4e2a\u5168\u96f6\u5f20\u91cf": 95, "\u4e00\u4e2a\u5168\u4e00\u5f20\u91cf\u548c\u4e00\u4e2a\u968f\u673a\u503c\u57280\u52301\u4e4b\u95f4\u7684\u5f20\u91cf": 95, "\u8bf4\u5230\u968f\u673a\u5f20\u91cf": 95, "\u4f60\u662f\u5426\u6ce8\u610f\u5230\u5728\u5b83\u4e4b\u524d\u7acb\u5373\u8c03\u7528\u4e86": 95, "\u7528\u968f\u673a\u503c\u521d\u59cb\u5316\u5f20\u91cf": 95, "\u5982\u6a21\u578b\u7684\u5b66\u4e60\u6743\u91cd": 95, "\u662f\u5f88\u5e38\u89c1\u7684": 95, "\u4f46\u5728\u67d0\u4e9b\u60c5\u51b5\u4e0b": 95, "\u7279\u522b\u662f\u5728\u7814\u7a76\u73af\u5883\u4e2d": 95, "\u4f60\u53ef\u80fd\u5e0c\u671b\u5bf9\u7ed3\u679c\u7684\u53ef\u91cd\u590d\u6027\u6709\u4e00\u4e9b\u4fdd\u8bc1": 95, "\u624b\u52a8\u8bbe\u7f6e\u968f\u673a\u6570\u751f\u6210\u5668\u7684\u79cd\u5b50\u5c31\u662f\u8fd9\u6837\u505a\u7684\u65b9\u6cd5": 95, "\u8ba9\u6211\u4eec\u4ed4\u7ec6\u770b\u770b": 95, "random1": 95, "random2": 95, "random3": 95, "random4": 95, "\u4f60\u5e94\u8be5\u770b\u5230\u4e0a\u9762": 95, "\u5305\u542b\u76f8\u540c\u7684\u503c": 95, "\u4e5f\u662f\u5982\u6b64": [95, 249], "\u624b\u52a8\u8bbe\u7f6erng\u7684\u79cd\u5b50\u4f1a\u91cd\u7f6e\u5b83": 95, "\u56e0\u6b64\u76f8\u540c\u7684\u968f\u673a\u6570\u8ba1\u7b97\u5728\u5927\u591a\u6570\u8bbe\u7f6e\u4e0b\u5e94\u8be5\u63d0\u4f9b\u76f8\u540c\u7684\u7ed3\u679c": 95, "\u8bf7\u53c2\u9605pytorch\u5173\u4e8e\u53ef\u91cd\u590d\u6027\u7684": 95, "\u5f53\u4f60\u5728\u4e24\u4e2a\u6216\u591a\u4e2a\u5f20\u91cf\u4e0a\u6267\u884c\u64cd\u4f5c\u65f6": 95, "\u5b83\u4eec\u901a\u5e38\u9700\u8981\u5177\u6709\u76f8\u540c\u7684": 95, "\u5177\u6709\u76f8\u540c\u7684\u7ef4\u6570\u548c\u6bcf\u4e2a\u7ef4\u5ea6\u4e2d\u7684\u76f8\u540c\u6570\u91cf\u7684\u5355\u5143": 95, "_like": [95, 148], "empty_like_x": 95, "empty_lik": [95, 108, 148, 174, 175, 191, 211], "zeros_like_x": 95, "ones_like_x": 95, "rand_like_x": 95, "\u4e0a\u9762\u4ee3\u7801\u5355\u5143\u4e2d\u7684\u7b2c\u4e00\u4e2a\u65b0\u4e8b\u7269\u662f\u5728\u5f20\u91cf\u4e0a\u4f7f\u7528": 95, "\u8fd9\u4e2a\u5c5e\u6027\u5305\u542b\u4e86\u6bcf\u4e2a\u7ef4\u5ea6\u5f20\u91cf\u7684\u8303\u56f4\u7684\u5217\u8868": 95, "\u662f\u4e00\u4e2a\u4e09\u7ef4\u5f20\u91cf": 95, "\u5f62\u72b6\u4e3a": 95, "\u6211\u4eec\u53ef\u4ee5\u9a8c\u8bc1\u6bcf\u4e2a\u8fd9\u4e9b\u65b9\u6cd5\u90fd\u8fd4\u56de\u4e00\u4e2a\u5177\u6709\u76f8\u540c\u7ef4\u6570\u548c\u8303\u56f4\u7684\u5f20\u91cf": 95, "\u521b\u5efa\u5f20\u91cf\u7684\u6700\u540e\u4e00\u79cd\u65b9\u5f0f\u662f\u76f4\u63a5\u4ecepytorch\u96c6\u5408\u4e2d\u6307\u5b9a\u5176\u6570\u636e": 95, "some_const": 95, "1415926": 95, "71828": 95, "61803": 95, "0072897": 95, "some_integ": 95, "more_integ": 95, "\u662f\u5728\u4f60\u5df2\u7ecf\u6709python\u5143\u7ec4\u6216\u5217\u8868\u6570\u636e\u7684\u60c5\u51b5\u4e0b\u521b\u5efa\u5f20\u91cf\u7684\u6700\u76f4\u63a5\u65b9\u5f0f": 95, "\u5982\u4e0a\u6240\u793a": [95, 231], "\u5d4c\u5957\u96c6\u5408\u4f1a\u751f\u6210\u591a\u7ef4\u5f20\u91cf": 95, "\u521b\u5efa\u6570\u636e\u7684\u526f\u672c": 95, "\u8bbe\u7f6e\u5f20\u91cf\u7684\u6570\u636e\u7c7b\u578b\u6709\u4e24\u79cd\u65b9\u5f0f": 95, "int32": [95, 138, 166, 185, 186, 199, 202, 236], "\u8bbe\u7f6e\u5f20\u91cf\u5e95\u5c42\u6570\u636e\u7c7b\u578b\u7684\u6700\u7b80\u5355\u65b9\u5f0f\u662f\u5728\u521b\u5efa\u65f6\u4f7f\u7528\u53ef\u9009\u53c2\u6570": 95, "\u5728\u4e0a\u9762\u5355\u5143\u683c\u7684\u7b2c\u4e00\u884c\u4e2d": 95, "\u8bbe\u7f6e\u4e3a\u5f20\u91cf": 95, "\u5f53\u6211\u4eec\u6253\u5370": 95, "\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u5b83\u662f\u7531": 95, "\u586b\u5145\u7684": 95, "python\u7684\u4e00\u4e2a\u5fae\u5999\u63d0\u793a": 95, "\u8fd9\u662f\u4e00\u4e2a\u6574\u6570\u7c7b\u578b\u800c\u4e0d\u662f\u6d6e\u70b9\u6570": 95, "\u4f60\u53ef\u80fd\u8fd8\u6ce8\u610f\u5230": 95, "\u6253\u5370": 95, "\u4e0e\u6211\u4eec\u5c06": 95, "\u4fdd\u7559\u4e3a\u9ed8\u8ba4\u503c": 95, "32\u4f4d\u6d6e\u70b9\u6570": 95, "\u65f6\u4e0d\u540c": 95, "\u6253\u5370\u5f20\u91cf\u65f6\u4e5f\u6307\u5b9a\u4e86\u5176": 95, "\u6211\u4eec\u4ece\u6307\u5b9a\u5f20\u91cf\u5f62\u72b6\u4e3a\u4e00\u7cfb\u5217\u6574\u6570\u53c2\u6570": 95, "\u8f6c\u4e3a\u5c06\u8fd9\u4e9b\u53c2\u6570\u5206\u7ec4\u5230\u4e00\u4e2a\u5143\u7ec4\u4e2d": 95, "\u8fd9\u4e0d\u662f\u7edd\u5bf9\u5fc5\u8981\u7684": 95, "pytorch\u4f1a\u5c06\u4e00\u7cfb\u5217\u521d\u59cb\u7684": 95, "\u672a\u6807\u8bb0\u7684\u6574\u6570\u53c2\u6570\u89c6\u4e3a\u5f20\u91cf\u5f62\u72b6": 95, "\u4f46\u662f\u5f53\u6dfb\u52a0\u53ef\u9009\u53c2\u6570\u65f6": 95, "\u5b83\u53ef\u4ee5\u4f7f\u4f60\u7684\u610f\u56fe\u66f4\u52a0\u53ef\u8bfb": 95, "\u8bbe\u7f6e\u6570\u636e\u7c7b\u578b\u7684\u53e6\u4e00\u79cd\u65b9\u5f0f\u662f\u4f7f\u7528": 95, "\u6211\u4eec\u4ee5\u901a\u5e38\u7684\u65b9\u5f0f\u521b\u5efa\u4e86\u4e00\u4e2a\u968f\u673a\u6d6e\u70b9\u5f20\u91cf": 95, "\u6211\u4eec\u901a\u8fc7\u5c06": 95, "\u8f6c\u6362\u4e3a32\u4f4d\u6574\u6570\u6765\u521b\u5efa": 95, "\u5305\u542b\u4e0e": 95, "\u76f8\u540c\u7684\u503c": 95, "\u4f46\u88ab\u622a\u65ad\u4e3a\u6574\u6570": 95, "\u53ef\u7528\u7684\u6570\u636e\u7c7b\u578b\u5305\u62ec": 95, "bfloat": 95, "\u73b0\u5728\u4f60\u77e5\u9053\u4e86\u4e00\u4e9b\u521b\u5efa\u5f20\u91cf\u7684\u65b9\u6cd5": 95, "\u90a3\u4f60\u80fd\u5bf9\u5b83\u4eec\u505a\u4ec0\u4e48\u5462": 95, "\u8ba9\u6211\u4eec\u9996\u5148\u770b\u57fa\u672c\u7b97\u672f\u8fd0\u7b97": 95, "\u4ee5\u53ca\u5f20\u91cf\u5982\u4f55\u4e0e\u7b80\u5355\u7684\u6807\u91cf\u4ea4\u4e92": 95, "sqrt2": 95, "\u5982\u4f60\u6240\u89c1": [95, 104], "\u5f20\u91cf\u548c\u6807\u91cf\u4e4b\u95f4\u7684\u52a0\u6cd5": 95, "\u51cf\u6cd5": 95, "\u4e58\u6cd5": [95, 249], "\u9664\u6cd5\u548c\u6307\u6570\u8fd0\u7b97\u90fd\u662f\u5728\u5f20\u91cf\u7684\u6bcf\u4e2a\u5143\u7d20\u4e0a\u5206\u5e03\u5f0f\u8fdb\u884c\u7684": 95, "\u7531\u4e8e\u8fd9\u79cd\u64cd\u4f5c\u7684\u8f93\u51fa\u5c06\u662f\u4e00\u4e2a\u5f20\u91cf": 95, "\u4f60\u53ef\u4ee5\u50cf\u901a\u5e38\u7684\u8fd0\u7b97\u7b26\u4f18\u5148\u7ea7\u89c4\u5219\u4e00\u6837\u5c06\u5b83\u4eec\u94fe\u63a5\u5728\u4e00\u8d77": 95, "\u5c31\u50cf\u6211\u4eec\u5728\u521b\u5efa": 95, "\u7684\u90a3\u4e00\u884c\u4e2d\u6240\u505a\u7684\u90a3\u6837": 95, "\u4e24\u4e2a\u5f20\u91cf\u4e4b\u95f4\u7684\u7c7b\u4f3c\u8fd0\u7b97\u4e5f\u50cf\u4f60\u76f4\u89c9\u4e0a\u671f\u671b\u7684\u90a3\u6837": 95, "powers2": 95, "dozen": [95, 166], "\u8fd9\u91cc\u9700\u8981\u6ce8\u610f\u7684\u662f": 95, "\u524d\u9762\u4ee3\u7801\u5355\u5143\u4e2d\u7684\u6240\u6709\u5f20\u91cf\u90fd\u5177\u6709\u76f8\u540c\u7684\u5f62\u72b6": 95, "\u5982\u679c\u6211\u4eec\u5c1d\u8bd5\u5728\u4e0d\u540c\u5f62\u72b6\u7684\u5f20\u91cf\u4e0a\u6267\u884c\u4e8c\u5143\u8fd0\u7b97\u4f1a\u600e\u6837": 95, "\u4e0b\u9762\u7684\u5355\u5143\u683c\u4f1a\u629b\u51fa\u4e00\u4e2a\u8fd0\u884c\u65f6\u9519\u8bef": 95, "\u8fd9\u662f\u6709\u610f\u7684": 95, "\u4e00\u822c\u60c5\u51b5\u4e0b": 95, "\u4f60\u4e0d\u80fd\u4ee5\u8fd9\u79cd\u65b9\u5f0f\u5bf9\u4e0d\u540c\u5f62\u72b6\u7684\u5f20\u91cf\u8fdb\u884c\u64cd\u4f5c": 95, "\u5373\u4f7f\u5728\u4e0a\u9762\u7684\u5355\u5143\u683c\u4e2d": 95, "\u5f20\u91cf\u5177\u6709\u76f8\u540c\u6570\u91cf\u7684\u5143\u7d20": 95, "\u5982\u679c\u4f60\u719f\u6089numpi": 95, "ndarrays\u4e2d\u7684\u5e7f\u64ad\u8bed\u4e49": 95, "\u4f60\u4f1a\u53d1\u73b0\u8fd9\u91cc\u5e94\u7528\u7684\u662f\u76f8\u540c\u7684\u89c4\u5219": 95, "\u540c\u5f62\u89c4\u5219\u7684\u4f8b\u5916\u662f": 95, "\u8fd9\u91cc\u6709\u4e00\u4e2a\u4f8b\u5b50": 95, "\u8fd9\u91cc\u7684\u6280\u5de7\u662f\u4ec0\u4e48": 95, "\u6211\u4eec\u662f\u5982\u4f55\u5c06": 95, "\u5f20\u91cf\u4e0e": 95, "\u5f20\u91cf\u76f8\u4e58\u7684": 95, "\u5e7f\u64ad\u662f\u4e00\u79cd\u5728\u5177\u6709\u76f8\u4f3c\u5f62\u72b6\u7684\u5f20\u91cf\u4e4b\u95f4\u6267\u884c\u64cd\u4f5c\u7684\u65b9\u5f0f": 95, "\u5728\u4e0a\u9762\u7684\u4f8b\u5b50\u4e2d": [95, 129], "\u4e00\u884c\u56db\u5217\u7684\u5f20\u91cf\u4e0e\u4e24\u884c\u56db\u5217\u5f20\u91cf\u7684": 95, "\u4e24\u884c": 95, "\u76f8\u4e58": 95, "\u8fd9\u662f\u6df1\u5ea6\u5b66\u4e60\u4e2d\u4e00\u4e2a\u91cd\u8981\u7684\u64cd\u4f5c": 95, "\u5e38\u89c1\u7684\u4f8b\u5b50\u662f\u5c06\u4e00\u6279\u8f93\u5165\u5f20\u91cf\u7684\u5b66\u4e60\u6743\u91cd\u5f20\u91cf\u76f8\u4e58": 95, "\u5206\u522b\u5bf9\u6279\u6b21\u4e2d\u7684\u6bcf\u4e2a\u5b9e\u4f8b\u5e94\u7528\u8be5\u64cd\u4f5c": 95, "\u5e76\u8fd4\u56de\u4e00\u4e2a\u5f62\u72b6\u76f8\u540c\u7684\u5f20\u91cf": 95, "\u5c31\u50cf\u6211\u4eec\u4e0a\u9762\u7684": 95, "\u793a\u4f8b\u4e00\u6837": 95, "\u8fd4\u56de\u4e86\u4e00\u4e2a\u5f62\u72b6\u4e3a": 95, "\u5e7f\u64ad\u7684\u89c4\u5219\u662f": 95, "\u6bcf\u4e2a\u5f20\u91cf\u5fc5\u987b\u81f3\u5c11\u6709\u4e00\u4e2a\u7ef4\u5ea6": 95, "\u4e0d\u5141\u8bb8\u7a7a\u5f20\u91cf": 95, "\u6bd4\u8f83\u4e24\u4e2a\u5f20\u91cf\u7684\u7ef4\u5ea6\u5927\u5c0f": 95, "\u4ece\u6700\u540e\u4e00\u4e2a\u5230\u7b2c\u4e00\u4e2a": 95, "\u6bcf\u4e2a\u7ef4\u5ea6\u5fc5\u987b\u76f8\u7b49": 95, "\u5176\u4e2d\u4e00\u4e2a\u7ef4\u5ea6\u5fc5\u987b\u4e3a1": 95, "\u8be5\u7ef4\u5ea6\u5728\u5176\u4e2d\u4e00\u4e2a\u5f20\u91cf\u4e2d\u4e0d\u5b58\u5728": 95, "\u5f53\u7136": [95, 228], "\u76f8\u540c\u5f62\u72b6\u7684\u5f20\u91cf\u662f": 95, "\u53ef\u5e7f\u64ad": 95, "\u6b63\u5982\u4f60\u4e4b\u524d\u770b\u5230\u7684\u90a3\u6837": 95, "\u8fd9\u91cc\u6709\u4e00\u4e9b\u7b26\u5408\u4e0a\u8ff0\u89c4\u5219\u5e76\u5141\u8bb8\u5e7f\u64ad\u7684\u60c5\u51b5\u793a\u4f8b": 95, "\u7b2c3\u548c\u7b2c2\u7ef4\u4e0ea\u76f8\u540c": 95, "\u7b2c1\u7ef4\u4e0d\u5b58\u5728": 95, "\u7b2c3\u7ef4\u4e3a1": 95, "\u7b2c2\u7ef4\u4e0ea\u76f8\u540c": 95, "\u7b2c3\u7ef4\u4e0ea\u76f8\u540c": 95, "\u7b2c2\u7ef4\u4e3a1": 95, "\u4ed4\u7ec6\u89c2\u5bdf\u4e0a\u9762\u6bcf\u4e2a\u5f20\u91cf\u7684\u503c": 95, "\u521b\u5efa": 95, "\u7684\u4e58\u6cd5\u8fd0\u7b97\u662f\u5728": 95, "\u7684\u6bcf\u4e00\u5c42\u4e0a\u5e7f\u64ad\u7684": 95, "\u5bf9\u4e8e": [95, 249], "\u8be5\u8fd0\u7b97\u5728": 95, "\u7684\u6bcf\u4e00\u5c42\u548c\u6bcf\u4e00\u884c\u4e0a\u90fd\u8fdb\u884c\u4e86\u5e7f\u64ad": 95, "\u6bcf\u4e00\u52173\u4e2a\u5143\u7d20\u90fd\u662f\u76f8\u540c\u7684": 95, "\u6211\u4eec\u98a0\u5012\u4e86\u4e00\u4e0b": 95, "\u73b0\u5728\u6bcf\u4e00\u884c\u5728\u5c42\u4e0e\u5217\u4e4b\u95f4\u90fd\u662f\u76f8\u540c\u7684": 95, "\u6709\u5173\u5e7f\u64ad\u7684\u66f4\u591a\u4fe1\u606f": 95, "\u8bf7\u53c2\u9605pytorch\u5173\u4e8e\u6b64\u7684": 95, "\u8fd9\u91cc\u6709\u4e00\u4e9b\u5c1d\u8bd5\u5e7f\u64ad\u4f46\u4f1a\u5931\u8d25\u7684\u4f8b\u5b50": 95, "\u7ef4\u5ea6\u5fc5\u987b\u4ece\u6700\u540e\u5230\u7b2c\u4e00\u4e2a\u5339\u914d": 95, "\u7b2c3\u548c\u7b2c2\u7ef4\u90fd\u4e0d\u540c": 95, "\u4e0d\u80fd\u4e0e\u7a7a\u5f20\u91cf\u8fdb\u884c\u5e7f\u64ad": 95, "\u5f20\u91cf\u6709\u8d85\u8fc7\u4e09\u767e\u79cd\u53ef\u4ee5\u6267\u884c\u7684\u64cd\u4f5c": 95, "\u8fd9\u91cc\u662f\u4e00\u4e9b\u4e3b\u8981\u64cd\u4f5c\u7c7b\u522b\u7684\u793a\u4f8b": 95, "\u5e38\u7528\u65b9\u6cd5": 95, "ceil": [95, 136], "\u4e09\u89d2\u51fd\u6570\u53ca\u5176\u53cd\u51fd\u6570": 95, "nsine": 95, "arcsin": 95, "\u4f4d\u8fd0\u7b97": 95, "nbitwis": 95, "xor": 95, "bitwise_xor": 95, "\u6bd4\u8f83\u64cd\u4f5c": 95, "nbroadcast": 95, "\u8fd4\u56de\u5e03\u5c14\u7c7b\u578b\u5f20\u91cf": 95, "\u5f52\u7ea6\u64cd\u4f5c": 95, "n\u5f52\u7ea6\u64cd\u4f5c": 95, "\u8fd4\u56de\u5355\u5143\u7d20\u5f20\u91cf": 95, "\u4ece\u8fd4\u56de\u7684\u5f20\u91cf\u4e2d\u63d0\u53d6\u503c": 95, "\u5e73\u5747\u503c": 95, "\u6807\u51c6\u5dee": 95, "prod": [95, 192], "\u6240\u6709\u6570\u5b57\u7684\u4e58\u79ef": 95, "\u8fc7\u6ee4\u552f\u4e00\u5143\u7d20": 95, "\u5411\u91cf\u548c\u7ebf\u6027\u4ee3\u6570\u8fd0\u7b97": 95, "\u5355\u4f4d\u5411\u91cf": 95, "m1": [95, 233], "\u968f\u673a\u77e9\u9635": 95, "m2": 95, "\u4e09\u500d\u5355\u4f4d\u77e9\u9635": 95, "n\u5411\u91cf\u548c\u77e9\u9635": 95, "\u5355\u4f4d\u5411\u91cf\u7684\u8d1f\u503c": 95, "m3": 95, "\u7684\u4e09\u500d": 95, "\u5947\u5f02\u503c\u5206\u89e3": 95, "\u6709\u5173\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f\u548c\u5b8c\u6574\u7684\u6570\u5b66\u51fd\u6570\u6e05\u5355": 95, "\u5927\u591a\u6570\u5f20\u91cf\u7684\u4e8c\u5143\u8fd0\u7b97\u5c06\u8fd4\u56de\u7b2c\u4e09\u4e2a\u65b0\u5f20\u91cf": 95, "\u5f53\u6211\u4eec\u8bf4": 95, "\u662f\u5f20\u91cf": 95, "\u65b0\u5f20\u91cf": 95, "\u5c06\u5360\u7528\u4e0e\u5176\u4ed6\u5f20\u91cf\u4e0d\u540c\u7684\u5185\u5b58\u533a\u57df": 95, "\u6709\u65f6\u60a8\u53ef\u80fd\u5e0c\u671b\u5c31\u5730\u4fee\u6539\u5f20\u91cf": 95, "\u5982\u679c\u60a8\u6b63\u5728\u6267\u884c\u5143\u7d20wise\u8ba1\u7b97": 95, "\u53ef\u4ee5\u4e22\u5f03\u4e2d\u95f4\u503c": 95, "\u5927\u591a\u6570\u6570\u5b66\u51fd\u6570\u90fd\u6709\u4e00\u4e2a\u5e26\u6709\u9644\u52a0\u4e0b\u5212\u7ebf": 95, "\u7684\u7248\u672c": 95, "\u5b83\u5c06\u5c31\u5730\u4fee\u6539\u5f20\u91cf": 95, "\u6b64\u64cd\u4f5c\u5728\u5185\u5b58\u4e2d\u521b\u5efa\u65b0\u5f20\u91cf": 95, "\u672a\u66f4\u6539": 95, "sin_": 95, "\u6ce8\u610f\u4e0b\u5212\u7ebf": 95, "\u88ab\u4fee\u6539": 95, "\u5bf9\u4e8e\u7b97\u672f\u8fd0\u7b97": 95, "\u6709\u4e00\u4e9b\u51fd\u6570\u7684\u884c\u4e3a\u7c7b\u4f3c": 95, "nafter": [95, 154], "\u8fd9\u4e9b\u5c31\u5730\u7b97\u672f\u51fd\u6570\u662f": 95, "\u5bf9\u8c61\u4e0a\u7684\u65b9\u6cd5": 95, "\u800c\u4e0d\u662f\u50cf\u8bb8\u591a\u5176\u4ed6\u51fd\u6570": 95, "\u90a3\u6837\u9644\u52a0\u5230": 95, "\u6a21\u5757\u4e0a": 95, "\u6b63\u5982\u4f60\u4ece": 95, "\u4e2d\u770b\u5230\u7684": 95, "\u88ab\u8c03\u7528\u7684\u5f20\u91cf\u662f\u5c31\u5730\u6539\u53d8\u7684\u90a3\u4e2a": 95, "\u8fd8\u6709\u53e6\u4e00\u79cd\u9009\u62e9": 95, "\u53ef\u4ee5\u5c06\u8ba1\u7b97\u7ed3\u679c\u653e\u5728\u4e00\u4e2a\u5df2\u7ecf\u5206\u914d\u7684\u5f20\u91cf\u4e2d": 95, "\u6211\u4eec\u5230\u76ee\u524d\u4e3a\u6b62\u770b\u5230\u7684\u8bb8\u591a\u65b9\u6cd5\u548c\u51fd\u6570": 95, "\u5305\u62ec\u521b\u5efa\u65b9\u6cd5": 95, "\u90fd\u6709\u4e00\u4e2a": 95, "\u8ba9\u4f60\u6307\u5b9a\u4e00\u4e2a\u5f20\u91cf\u6765\u63a5\u6536\u8f93\u51fa": 95, "\u5982\u679c": [95, 111, 214, 246, 248, 249], "\u5f20\u91cf\u7684\u5f62\u72b6\u548c": 95, "\u6b63\u786e": 95, "\u8fd9\u53ef\u4ee5\u5728\u4e0d\u5206\u914d\u65b0\u5185\u5b58\u7684\u60c5\u51b5\u4e0b\u53d1\u751f": 95, "old_id": 95, "\u7684\u5185\u5bb9\u5df2\u7ecf\u6539\u53d8": 95, "\u6d4b\u8bd5": [95, 238], "\u662f\u540c\u4e00\u4e2a\u5bf9\u8c61": 95, "\u800c\u4e0d\u53ea\u662f\u5305\u542b\u76f8\u7b49\u7684\u503c": 95, "\u786e\u4fdd\u6211\u4eec\u7684\u65b0": 95, "\u662f\u65e7": 95, "\u7684\u540c\u4e00\u4e2a\u5bf9\u8c61": 95, "\u5bf9\u4e8e\u521b\u5efa\u4e5f\u53ef\u4ee5": 95, "\u53c8\u4e00\u6b21\u6539\u53d8": 95, "\u4ecd\u7136\u662f\u540c\u4e00\u4e2a\u5bf9\u8c61": 95, "\u4e2d\u7684\u4efb\u4f55\u5bf9\u8c61\u4e00\u6837": 95, "\u5c06\u5f20\u91cf\u8d4b\u503c\u7ed9\u53d8\u91cf\u4f1a\u4f7f\u8be5\u53d8\u91cf\u6210\u4e3a\u5f20\u91cf\u7684": 95, "\u6807\u7b7e": [95, 228, 238, 252], "\u800c\u4e0d\u4f1a\u590d\u5236\u5b83": 95, "561": [95, 178], "\u6211\u4eec\u6539\u53d8": 95, "\u4e5f\u88ab\u6539\u53d8\u4e86": 95, "\u5982\u679c\u4f60\u60f3\u8981\u4e00\u4e2a\u5355\u72ec\u7684\u6570\u636e\u526f\u672c\u6765\u5904\u7406\u5462": 95, "\u8fd9\u65f6\u5c31\u53ef\u4ee5\u4f7f\u7528": 95, "\u5185\u5b58\u4e2d\u7684\u4e0d\u540c\u5bf9\u8c61": 95, "\u4f46\u4ecd\u7136\u5177\u6709\u76f8\u540c\u7684\u5185\u5bb9": 95, "\u6539\u53d8\u4e86": 95, "\u4f46": [95, 233, 246], "\u4ecd\u7136\u662f\u5168": 95, "\u6709\u4e00\u4e2a\u91cd\u8981\u7684\u4e8b\u60c5\u9700\u8981\u6ce8\u610f": 95, "\u5982\u679c\u4f60\u7684\u6e90\u5f20\u91cf\u542f\u7528\u4e86\u81ea\u52a8\u6c42\u5bfc": 95, "\u90a3\u4e48\u514b\u9686\u5f20\u91cf\u4e5f\u4f1a\u542f\u7528\u81ea\u52a8\u6c42\u5bfc": 95, "\u8fd9\u5c06\u5728\u5173\u4e8e\u81ea\u52a8\u6c42\u5bfc\u7684\u89c6\u9891\u4e2d\u66f4\u6df1\u5165\u5730\u4ecb\u7ecd": 95, "\u4f46\u5982\u679c\u4f60\u60f3\u4e86\u89e3\u7ec6\u8282\u7684\u7b80\u5355\u7248\u672c": 95, "\u8bf7\u7ee7\u7eed\u9605\u8bfb": 95, "\u5728\u8bb8\u591a\u60c5\u51b5\u4e0b": 95, "\u8fd9\u6b63\u662f\u4f60\u6240\u9700\u8981\u7684": 95, "\u5982\u679c\u4f60\u7684\u6a21\u578b\u5728\u5176": 95, "\u65b9\u6cd5\u4e2d\u6709\u591a\u4e2a\u8ba1\u7b97\u8def\u5f84": 95, "\u5e76\u4e14": 95, "\u539f\u59cb\u5f20\u91cf\u548c\u5b83\u7684\u514b\u9686": 95, "\u90fd\u4f1a\u5f71\u54cd\u6a21\u578b\u7684\u8f93\u51fa": 95, "\u90a3\u4e48\u4e3a\u4e86\u542f\u7528\u6a21\u578b\u5b66\u4e60": 95, "\u4f60\u5e0c\u671b\u4e24\u4e2a\u5f20\u91cf\u90fd\u542f\u7528\u81ea\u52a8\u6c42\u5bfc": 95, "\u901a\u5e38\u5982\u679c\u5b83\u662f\u4e00\u7ec4\u5b66\u4e60\u6743\u91cd\u6216\u6e90\u81ea\u6d89\u53ca\u6743\u91cd\u7684\u8ba1\u7b97": 95, "\u90a3\u4e48\u4f60\u5c31\u4f1a\u5f97\u5230\u6240\u9700\u7684\u7ed3\u679c": 95, "\u53e6\u4e00\u65b9\u9762": [95, 236, 254], "\u5982\u679c\u4f60\u6b63\u5728\u8fdb\u884c\u4e00\u4e2a\u8ba1\u7b97": 95, "\u90fd\u4e0d\u9700\u8981\u8ddf\u8e2a\u68af\u5ea6": 95, "\u90a3\u4e48\u53ea\u8981\u6e90\u5f20\u91cf\u5173\u95ed\u4e86\u81ea\u52a8\u6c42\u5bfc": 95, "\u4f60\u5c31\u53ef\u4ee5\u7ee7\u7eed\u4e86": 95, "\u8fd8\u6709\u7b2c\u4e09\u79cd\u60c5\u51b5": 95, "\u5047\u8bbe\u4f60\u5728\u6a21\u578b\u7684": 95, "\u51fd\u6570\u4e2d\u6267\u884c\u4e00\u4e2a\u8ba1\u7b97": 95, "\u9ed8\u8ba4\u60c5\u51b5\u4e0b\u6240\u6709\u5185\u5bb9\u7684\u68af\u5ea6\u90fd\u6253\u5f00": 95, "\u4f46\u4f60\u60f3\u5728\u4e2d\u95f4\u63d0\u53d6\u4e00\u4e9b\u503c\u6765\u751f\u6210\u4e00\u4e9b\u6307\u6807": 95, "\u4f60": 95, "\u4e0d\u5e0c\u671b": 95, "\u514b\u9686\u7684\u6e90\u5f20\u91cf\u526f\u672c\u8ddf\u8e2a\u68af\u5ea6": 95, "\u5173\u95ed\u81ea\u52a8\u6c42\u5bfc\u7684\u5386\u53f2\u8bb0\u5f55\u8ddf\u8e2a\u53ef\u4ee5\u63d0\u9ad8\u6027\u80fd": 95, "\u4f60\u53ef\u4ee5\u5728\u6e90\u5f20\u91cf\u4e0a\u4f7f\u7528": 95, "\u6253\u5f00\u81ea\u52a8\u6c42\u5bfc": 95, "\u6b64\u5904\u53d1\u751f\u4e86\u4ec0\u4e48": 95, "\u6211\u4eec\u521b\u5efa\u4e86": [95, 129], "\u5e76\u5c06": [95, 223, 228, 258], "\u6211\u4eec\u8fd8\u6ca1\u6709\u4ecb\u7ecd\u8fd9\u4e2a\u53ef\u9009\u53c2\u6570": 95, "\u4f46\u5c06\u5728\u5173\u4e8e\u81ea\u52a8\u6c42\u5bfc\u7684\u5355\u5143\u4e2d\u4ecb\u7ecd": 95, "\u5b83\u544a\u8bc9\u6211\u4eec\u5c5e\u6027": 95, "\u8fd9\u610f\u5473\u7740\u81ea\u52a8\u6c42\u5bfc\u548c\u8ba1\u7b97\u5386\u53f2\u8ddf\u8e2a\u5df2\u6253\u5f00": 95, "\u6211\u4eec\u514b\u9686": 95, "\u5e76\u5c06\u5176\u6807\u8bb0\u4e3a": 95, "\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u5b83\u6b63\u5728\u8ddf\u8e2a\u5176\u8ba1\u7b97\u5386\u53f2": 95, "\u5b83\u7ee7\u627f\u4e86": 95, "\u7684\u81ea\u52a8\u6c42\u5bfc\u8bbe\u7f6e": 95, "\u5e76\u6dfb\u52a0\u5230\u4e86\u8ba1\u7b97\u5386\u53f2\u4e2d": 95, "\u4f46\u9996\u5148\u8c03\u7528": 95, "\u6211\u4eec\u770b\u4e0d\u5230\u4efb\u4f55\u8ba1\u7b97\u5386\u53f2": 95, "\u4e5f\u6ca1\u6709": 95, "\u5c06\u5f20\u91cf\u4e0e\u5176\u8ba1\u7b97\u5386\u53f2\u5206\u79bb": 95, "\u5b83\u8bf4": 95, "\u65e0\u8bba\u63a5\u4e0b\u6765\u53d1\u751f\u4ec0\u4e48": 95, "\u90fd\u50cf\u81ea\u52a8\u6c42\u5bfc\u5173\u95ed\u65f6\u90a3\u6837\u8fdb\u884c": 95, "\u5b83\u8fd9\u6837\u505a": 95, "\u5e76\u4e0d\u4f1a\u6539\u53d8": 95, "\u5f53\u6211\u4eec\u5728\u6700\u540e\u518d\u6b21\u6253\u5370": 95, "\u5b83\u4fdd\u7559\u4e86\u5176": 95, "\u7684\u4e3b\u8981\u4f18\u52bf\u4e4b\u4e00\u662f\u5728": 95, "\u517c\u5bb9\u7684": 95, "\u4e0a\u6709\u5f3a\u5927\u7684\u52a0\u901f\u80fd\u529b": 95, "\u7684\u5e76\u884c\u8ba1\u7b97\u5e73\u53f0": 95, "\u5230\u76ee\u524d\u4e3a\u6b62": [95, 233], "\u6211\u4eec\u6240\u505a\u7684\u4e00\u5207\u90fd\u662f\u5728": 95, "\u6211\u4eec\u5982\u4f55\u79fb\u52a8\u5230\u66f4\u5feb\u7684\u786c\u4ef6\u4e0a\u5462": 95, "\u6211\u4eec\u5e94\u8be5\u4f7f\u7528": 95, "\u65b9\u6cd5\u68c0\u67e5\u662f\u5426\u6709": 95, "\u53ef\u7528": 95, "\u5982\u679c\u4f60\u6ca1\u6709\u5b89\u88c5": 95, "\u9a71\u52a8\u7a0b\u5e8f": 95, "\u672c\u8282\u4e2d\u7684\u53ef\u6267\u884c\u5355\u5143\u683c\u5c06\u4e0d\u4f1a\u6267\u884c\u4efb\u4f55": 95, "\u76f8\u5173\u7684\u4ee3\u7801": 95, "\u4e00\u65e6\u6211\u4eec\u786e\u5b9a\u6709\u4e00\u4e2a\u6216\u591a\u4e2agpu\u53ef\u7528": 95, "\u6211\u4eec\u9700\u8981\u5c06\u6570\u636e\u653e\u5728gpu\u53ef\u4ee5\u8bbf\u95ee\u7684\u5730\u65b9": 95, "\u4f60\u7684cpu\u5728\u8ba1\u7b97\u673a\u7684ram\u4e0a\u5bf9\u6570\u636e\u8fdb\u884c\u8ba1\u7b97": 95, "\u4f60\u7684gpu\u6709\u4e13\u7528\u7684\u5185\u5b58\u8fde\u63a5\u5230\u5b83": 95, "\u6bcf\u5f53\u4f60\u60f3\u5728\u4e00\u4e2a\u8bbe\u5907\u4e0a\u6267\u884c\u8ba1\u7b97\u65f6": 95, "\u4f60\u5fc5\u987b\u5c06\u8be5\u8ba1\u7b97\u6240\u9700\u7684": 95, "\u6570\u636e\u79fb\u52a8\u5230\u8be5\u8bbe\u5907\u53ef\u8bbf\u95ee\u7684\u5185\u5b58\u4e2d": 95, "\u4fd7\u79f0": 95, "\u5c06\u6570\u636e\u79fb\u52a8\u5230gpu\u53ef\u8bbf\u95ee\u7684\u5185\u5b58": 95, "\u88ab\u7b80\u79f0\u4e3a": 95, "\u5c06\u6570\u636e\u79fb\u52a8\u5230gpu": 95, "\u6709\u591a\u79cd\u65b9\u5f0f\u53ef\u4ee5\u5c06\u6570\u636e\u79fb\u52a8\u5230\u76ee\u6807\u8bbe\u5907": 95, "\u4f60\u53ef\u4ee5\u5728\u521b\u5efa\u65f6\u8fd9\u6837\u505a": 95, "gpu_rand": 95, "\u65b0\u7684\u5f20\u91cf\u662f\u5728cpu\u4e0a\u521b\u5efa\u7684": 95, "\u6240\u4ee5\u6211\u4eec\u5fc5\u987b\u4f7f\u7528\u53ef\u9009\u7684": 95, "\u53c2\u6570\u6765\u6307\u5b9a\u6211\u4eec\u60f3\u5728gpu\u4e0a\u521b\u5efa\u5f20\u91cf": 95, "\u5f53\u6211\u4eec\u6253\u5370\u65b0\u7684\u5f20\u91cf\u65f6": 95, "\u4f60\u53ef\u4ee5\u770b\u5230pytorch\u4f1a\u544a\u8bc9\u6211\u4eec\u5b83\u5728\u54ea\u4e2a\u8bbe\u5907\u4e0a": 95, "\u5982\u679c\u4e0d\u5728cpu\u4e0a": 95, "\u67e5\u8be2gpu\u7684\u6570\u91cf": 95, "\u5982\u679c\u4f60\u6709\u591a\u4e2agpu": 95, "\u4f60\u53ef\u4ee5\u901a\u8fc7\u7d22\u5f15\u6307\u5b9a\u5b83\u4eec": 95, "\u4f5c\u4e3a\u7f16\u7801\u5b9e\u8df5": 95, "\u5728\u4efb\u4f55\u5730\u65b9\u90fd\u4f7f\u7528\u5b57\u7b26\u4e32\u5e38\u91cf\u6765\u6307\u5b9a\u8bbe\u5907\u662f\u76f8\u5f53\u8106\u5f31\u7684": 95, "\u65e0\u8bba\u4f60\u5728cpu\u8fd8\u662fgpu\u786c\u4ef6\u4e0a": 95, "\u4f60\u7684\u4ee3\u7801\u90fd\u5e94\u8be5\u7a33\u5065\u5730\u6267\u884c": 95, "\u4f60\u53ef\u4ee5\u901a\u8fc7\u521b\u5efa\u4e00\u4e2a\u8bbe\u5907\u53e5\u67c4\u6765\u5b9e\u73b0\u8fd9\u4e00\u70b9": 95, "\u800c\u4e0d\u662f\u4f7f\u7528\u5b57\u7b26\u4e32\u4f20\u9012\u7ed9\u4f60\u7684\u5f20\u91cf": 95, "my_devic": 95, "\u5982\u679c\u4f60\u6709\u4e00\u4e2a\u5df2\u7ecf\u5b58\u5728\u4e8e\u4e00\u4e2a\u8bbe\u5907\u4e0a\u7684\u5f20\u91cf": 95, "\u65b9\u6cd5\u5c06\u5b83\u79fb\u52a8\u5230\u53e6\u4e00\u4e2a\u8bbe\u5907": 95, "\u4e0b\u9762\u4e00\u884c\u4ee3\u7801\u5728cpu\u4e0a\u521b\u5efa\u4e00\u4e2a\u5f20\u91cf": 95, "\u5e76\u5c06\u5b83\u79fb\u52a8\u5230\u4f60\u5728\u4e0a\u4e00\u4e2a\u5355\u5143\u683c\u4e2d\u83b7\u53d6\u7684\u4efb\u4f55\u8bbe\u5907\u53e5\u67c4\u4e0a": 95, "\u91cd\u8981\u7684\u662f\u8981\u77e5\u9053": 95, "\u4e3a\u4e86\u8fdb\u884c\u6d89\u53ca\u4e24\u4e2a\u6216\u591a\u4e2a\u5f20\u91cf\u7684\u8ba1\u7b97": 95, "\u6240\u6709\u5f20\u91cf\u5fc5\u987b\u5728\u540c\u4e00\u8bbe\u5907\u4e0a": 95, "\u65e0\u8bba\u4f60\u662f\u5426\u6709gpu\u8bbe\u5907\u53ef\u7528": 95, "\u4ee5\u4e0b\u4ee3\u7801\u90fd\u4f1a\u629b\u51fa\u8fd0\u884c\u65f6\u9519\u8bef": 95, "thrown": [95, 194, 208], "\u6709\u65f6": 95, "\u4f60\u9700\u8981\u6539\u53d8\u5f20\u91cf\u7684\u5f62\u72b6": 95, "\u6211\u4eec\u5c06\u770b\u4e00\u4e9b\u5e38\u89c1\u7684\u60c5\u51b5": 95, "\u4ee5\u53ca\u5982\u4f55\u5904\u7406\u5b83\u4eec": 95, "\u4f60\u53ef\u80fd\u9700\u8981\u6539\u53d8\u7ef4\u5ea6\u6570\u91cf\u7684\u4e00\u79cd\u60c5\u51b5\u662f\u5c06\u5355\u4e2a\u5b9e\u4f8b\u8f93\u5165\u5230\u4f60\u7684\u6a21\u578b\u4e2d": 95, "pytorch\u6a21\u578b": 95, "\u901a\u5e38\u671f\u671b\u8f93\u5165": 95, "\u6570\u636e": [95, 238], "\u5047\u8bbe\u6709\u4e00\u4e2a\u6a21\u578b\u53ef\u4ee5\u5904\u74063x226x226\u7684\u56fe\u50cf": 95, "\u4e00\u4e2a226\u50cf\u7d20\u7684\u6b63\u65b9\u5f62": 95, "\u67093\u4e2a\u989c\u8272\u901a\u9053": 95, "\u5f53\u4f60\u52a0\u8f7d\u548c\u8f6c\u6362\u5b83\u65f6": 95, "\u4f60\u4f1a\u5f97\u5230\u4e00\u4e2a\u5f62\u72b6\u4e3a": 95, "226": 95, "\u4f46\u662f\u4f60\u7684\u6a21\u578b": 95, "\u671f\u671b\u8f93\u5165\u5f62\u72b6\u4e3a": 95, "\u662f\u6279\u6b21\u4e2d\u56fe\u50cf\u7684\u6570\u91cf": 95, "\u90a3\u4e48\u5982\u4f55\u521b\u5efa\u4e00\u4e2a\u6279\u6b21\u5927\u5c0f\u4e3a1\u7684\u8f93\u5165\u5462": 95, "\u65b9\u6cd5\u6dfb\u52a0\u4e86\u4e00\u4e2a\u5927\u5c0f\u4e3a1\u7684\u7ef4\u5ea6": 95, "\u5728\u6700\u524d\u9762\u6dfb\u52a0\u4e86\u4e00\u4e2a\u65b0\u76840\u7ef4\u5ea6": 95, "\u73b0\u5728\u4f60\u6709\u4e86\u4e00\u4e2a\u6279\u6b21\u5927\u5c0f\u4e3a1\u7684\u8f93\u5165": 95, "\u90a3\u4e48\u5982\u679c\u662f": 95, "\u53bb\u9664": 95, "\u591a\u4f59\u76841\u7ef4\u5ea6\u5462": 95, "\u6211\u4eec\u6240\u8bf4\u7684\u6324\u538b": 95, "\u5c31\u662f\u5229\u7528\u4e86": 95, "\u4efb\u4f55\u5927\u5c0f\u4e3a1\u7684\u7ef4\u5ea6": 95, "\u4e0d\u4f1a": 95, "\u6539\u53d8\u5f20\u91cf\u4e2d\u5143\u7d20\u7684\u6570\u91cf\u8fd9\u4e00\u4e8b\u5b9e": 95, "\u7ee7\u7eed\u4e0a\u9762\u7684\u4f8b\u5b50": 95, "\u5047\u8bbe\u6a21\u578b\u7684\u8f93\u51fa\u662f\u4e00\u4e2a20\u5143\u7d20\u7684\u5411\u91cf": 95, "\u5bf9\u4e8e\u6bcf\u4e2a\u8f93\u5165": 95, "\u90a3\u4e48\u4f60\u4f1a\u671f\u671b\u8f93\u51fa\u7684\u5f62\u72b6\u4e3a": 95, "\u662f\u8f93\u5165\u6279\u6b21\u4e2d\u7684\u5b9e\u4f8b\u6570\u91cf": 95, "\u8fd9\u610f\u5473\u7740\u5bf9\u4e8e\u6211\u4eec\u7684\u5355\u8f93\u5165\u6279\u6b21": 95, "\u6211\u4eec\u4f1a\u5f97\u5230\u5f62\u72b6\u4e3a": 95, "\u7684\u8f93\u51fa": [95, 238], "\u5982\u679c\u4f60\u60f3\u5bf9\u8be5\u8f93\u51fa\u8fdb\u884c\u4e00\u4e9b": 95, "\u975e\u6279\u6b21": 95, "\u4e00\u4e9b\u53ea\u671f\u671b20\u5143\u7d20\u5411\u91cf\u7684\u8ba1\u7b97": 95, "\u8be5\u600e\u4e48\u529e": 95, "\u4f60\u53ef\u4ee5\u4ece\u5f62\u72b6\u770b\u51fa": 95, "\u6211\u4eec\u7684\u4e8c\u7ef4\u5f20\u91cf\u73b0\u5728\u53d8\u6210\u4e86\u4e00\u7ef4\u7684": 95, "\u5982\u679c\u4f60\u4ed4\u7ec6\u89c2\u5bdf\u4e0a\u9762\u5355\u5143\u683c\u7684\u8f93\u51fa": 95, "\u4f60\u4f1a\u53d1\u73b0\u6253\u5370": 95, "\u65f6\u4f1a\u663e\u793a\u4e00\u7ec4": 95, "\u989d\u5916": 95, "\u7684\u65b9\u62ec\u53f7": 95, "\u8fd9\u662f\u56e0\u4e3a\u591a\u4e86\u4e00\u4e2a\u7ef4\u5ea6": 95, "\u4f60\u53ea\u80fd\u5bf9\u5927\u5c0f\u4e3a1\u7684\u7ef4\u5ea6\u6267\u884c": 95, "\u770b\u4e0a\u9762\u6211\u4eec\u5c1d\u8bd5\u5bf9\u5927\u5c0f\u4e3a2\u7684\u7ef4\u5ea6": 95, "\u8fdb\u884c\u6324\u538b": 95, "\u5f97\u5230\u7684\u5f62\u72b6\u4e0e\u5f00\u59cb\u65f6\u76f8\u540c": 95, "\u7684\u8c03\u7528\u53ea\u80fd\u4f5c\u7528\u4e8e\u5927\u5c0f\u4e3a1\u7684\u7ef4\u5ea6": 95, "\u56e0\u4e3a\u5bf9\u5176\u4ed6\u7ef4\u5ea6\u64cd\u4f5c\u4f1a\u6539\u53d8\u5f20\u91cf\u4e2d\u5143\u7d20\u7684\u6570\u91cf": 95, "\u4f60\u53ef\u80fd\u4f1a\u4f7f\u7528": 95, "\u7684\u53e6\u4e00\u4e2a\u573a\u666f\u662f\u4e3a\u4e86\u65b9\u4fbf\u5e7f\u64ad\u64cd\u4f5c": 95, "\u56de\u60f3\u4e00\u4e0b\u4e0a\u9762\u7684\u4f8b\u5b50": 95, "\u6211\u4eec\u6709\u4ee5\u4e0b\u4ee3\u7801": 95, "\u5176\u51c0\u6548\u679c\u662f\u5728\u7ef4\u5ea60\u548c2\u4e0a\u8fdb\u884c\u5e7f\u64ad\u64cd\u4f5c": 95, "\u5bfc\u81f4\u5f62\u72b6\u4e3a3x1\u7684\u968f\u673a\u5f20\u91cf\u4e0e": 95, "\u4e2d\u7684\u6bcf\u4e00\u52173\u5143\u7d20\u9010\u5143\u7d20\u76f8\u4e58": 95, "\u5982\u679c\u968f\u673a\u5411\u91cf\u53ea\u662f\u4e00\u4e2a3\u5143\u7d20\u5411\u91cf\u5462": 95, "\u6211\u4eec\u5c31\u5931\u53bb\u4e86\u5e7f\u64ad\u7684\u80fd\u529b": 95, "\u56e0\u4e3a\u6700\u540e\u7684\u7ef4\u5ea6\u4e0d\u4f1a\u6839\u636e\u5e7f\u64ad\u89c4\u5219\u5339\u914d": 95, "\u53ef\u4ee5\u89e3\u6551\u6211\u4eec": 95, "\u8bd5\u56fe\u5c06": 95, "\u4f1a\u5bfc\u81f4\u8fd0\u884c\u65f6\u9519\u8bef": 95, "\u53d8\u6210\u4e8c\u7ef4\u5f20\u91cf": 95, "\u5728\u672b\u5c3e\u6dfb\u52a0\u65b0\u7ef4\u5ea6": 95, "\u5e7f\u64ad\u518d\u6b21\u751f\u6548": 95, "\u65b9\u6cd5\u4e5f\u6709\u672c\u5730\u7248\u672c": 95, "batch_m": 95, "\u6709\u65f6\u4f60\u9700\u8981\u66f4\u5f7b\u5e95\u5730\u6539\u53d8\u5f20\u91cf\u7684\u5f62\u72b6": 95, "\u540c\u65f6\u4fdd\u7559\u5143\u7d20\u6570\u91cf\u548c\u5185\u5bb9\u4e0d\u53d8": 95, "\u4e00\u79cd\u60c5\u51b5\u662f\u5728\u6a21\u578b\u7684\u5377\u79ef\u5c42\u548c\u7ebf\u6027\u5c42\u4e4b\u95f4\u7684\u63a5\u53e3": 95, "\u8fd9\u5728\u56fe\u50cf\u5206\u7c7b\u6a21\u578b\u4e2d\u5f88\u5e38\u89c1": 95, "\u5377\u79ef\u6838\u4f1a\u4ea7\u751f\u5f62\u72b6\u4e3a": 95, "\u4f46\u63a5\u4e0b\u6765\u7684\u7ebf\u6027\u5c42\u671f\u671b\u4e00\u7ef4\u8f93\u5165": 95, "\u53ef\u4ee5\u4e3a\u4f60\u505a\u8fd9\u4ef6\u4e8b": 95, "\u53ea\u8981\u4f60\u8bf7\u6c42\u7684\u7ef4\u5ea6\u4e0e\u8f93\u5165\u5f20\u91cf\u5177\u6709\u76f8\u540c\u6570\u91cf\u7684\u5143\u7d20\u5373\u53ef": 95, "output3d": 95, "input1d": 95, "\u4e0a\u9762\u6700\u540e\u4e00\u884c\u5355\u5143\u683c\u4e2d\u7684": 95, "\u53c2\u6570\u662f\u56e0\u4e3apytorch\u5728\u6307\u5b9a\u5f20\u91cf\u5f62\u72b6\u65f6": 95, "\u671f\u671b\u4e00\u4e2a": 95, "\u5143\u7ec4": 95, "\u4f46\u5f53\u5f62\u72b6\u662f\u65b9\u6cd5\u7684\u7b2c\u4e00\u4e2a\u53c2\u6570\u65f6": 95, "\u5b83\u5141\u8bb8\u6211\u4eec\u53ea\u4f7f\u7528\u4e00\u7cfb\u5217\u6574\u6570": 95, "\u6211\u4eec\u5fc5\u987b\u6dfb\u52a0\u62ec\u53f7\u548c\u9017\u53f7\u6765\u8bf4\u670d\u8be5\u65b9\u6cd5\u8fd9\u786e\u5b9e\u662f\u4e00\u4e2a\u5355\u5143\u7d20\u5143\u7ec4": 95, "\u5f53\u53ef\u80fd\u65f6": 95, "\u4f1a\u8fd4\u56de\u8be5\u5f20\u91cf\u7684": 95, "\u89c6\u56fe": 95, "\u4e5f\u5c31\u662f\u4e00\u4e2a\u5355\u72ec\u7684\u5f20\u91cf\u5bf9\u8c61": 95, "\u67e5\u770b\u76f8\u540c\u7684\u5e95\u5c42\u5185\u5b58\u533a\u57df": 95, "\u8fd9\u4e00\u70b9\u5f88\u91cd\u8981": 95, "\u8fd9\u610f\u5473\u7740\u5bf9\u6e90\u5f20\u91cf\u6240\u505a\u7684\u4efb\u4f55\u66f4\u6539\u90fd\u4f1a\u53cd\u6620\u5728\u8be5\u5f20\u91cf\u7684\u89c6\u56fe\u4e0a": 95, "\u9664\u975e\u4f60": 95, "\u786e\u5b9e\u6709\u4e00\u4e9b\u6761\u4ef6": 95, "\u8d85\u51fa\u4e86\u672c\u4ecb\u7ecd\u7684\u8303\u56f4": 95, "\u5fc5\u987b\u8fd4\u56de\u6570\u636e\u7684\u526f\u672c": 95, "kinship": 95, "numpy_arrai": 95, "pytorch_tensor": 95, "pytorch_rand": 95, "numpy_rand": 95, "\u5728\u8fc7\u53bb\u7684\u89c6\u9891\u4e2d": 96, "\u6211\u4eec\u8ba8\u8bba\u5e76\u6f14\u793a\u4e86": 96, "\u6a21\u5757\u4e2d\u7684\u795e\u7ecf\u7f51\u7edc\u5c42\u548c\u51fd\u6570\u6784\u5efa\u6a21\u578b": 96, "\u81ea\u52a8\u68af\u5ea6\u8ba1\u7b97\u7684\u673a\u5236": 96, "\u8fd9\u662f\u57fa\u4e8e\u68af\u5ea6\u7684\u6a21\u578b\u8bad\u7ec3\u7684\u6838\u5fc3": 96, "\u53ef\u89c6\u5316\u8bad\u7ec3\u8fdb\u5ea6\u548c\u5176\u4ed6\u6d3b\u52a8": 96, "\u5728\u672c\u89c6\u9891\u4e2d": 96, "\u6211\u4eec\u5c06\u4e3a\u60a8\u7684\u5e93\u5b58\u6dfb\u52a0\u4e00\u4e9b\u65b0\u5de5\u5177": 96, "\u6211\u4eec\u5c06\u719f\u6089\u6570\u636e\u96c6\u548c\u6570\u636e\u52a0\u8f7d\u5668\u62bd\u8c61": 96, "\u4ee5\u53ca\u5b83\u4eec\u5982\u4f55\u7b80\u5316\u5411\u6a21\u578b\u8bad\u7ec3\u5faa\u73af\u63d0\u4f9b\u6570\u636e\u7684\u8fc7\u7a0b": 96, "\u6211\u4eec\u5c06\u8ba8\u8bba\u7279\u5b9a\u7684\u635f\u5931\u51fd\u6570\u4ee5\u53ca\u4f55\u65f6\u4f7f\u7528\u5b83\u4eec": 96, "\u6211\u4eec\u5c06\u4e86\u89e3": 96, "\u5b83\u4eec\u5b9e\u73b0\u4e86\u6839\u636e\u635f\u5931\u51fd\u6570\u7684\u7ed3\u679c\u8c03\u6574\u6a21\u578b\u6743\u91cd\u7684\u7b97\u6cd5": 96, "\u6211\u4eec\u5c06\u628a\u6240\u6709\u8fd9\u4e9b\u7ed3\u5408\u8d77\u6765": 96, "\u770b\u4e00\u4e2a\u5b8c\u6574\u7684": 96, "\u8bad\u7ec3\u5faa\u73af\u7684\u5b9e\u9645\u8fd0\u884c": 96, "\u7c7b\u5c01\u88c5\u4e86\u4ece\u5b58\u50a8\u4e2d\u63d0\u53d6\u6570\u636e\u5e76\u4ee5\u6279\u6b21\u5f62\u5f0f\u66b4\u9732\u7ed9\u8bad\u7ec3\u5faa\u73af\u7684\u8fc7\u7a0b": 96, "\u8d1f\u8d23\u8bbf\u95ee\u548c\u5904\u7406\u5355\u4e2a\u6570\u636e\u5b9e\u4f8b": 96, "\u4e2d\u63d0\u53d6\u6570\u636e\u5b9e\u4f8b": 96, "\u65e0\u8bba\u662f\u81ea\u52a8\u63d0\u53d6\u8fd8\u662f\u4f7f\u7528\u60a8\u5b9a\u4e49\u7684\u91c7\u6837\u5668": 96, "\u5c06\u5b83\u4eec\u6536\u96c6\u5230\u6279\u6b21\u4e2d": 96, "\u5e76\u8fd4\u56de\u7ed9\u60a8\u7684\u8bad\u7ec3\u5faa\u73af\u8fdb\u884c\u6d88\u8d39": 96, "\u53ef\u4ee5\u4e0e\u6240\u6709\u7c7b\u578b\u7684\u6570\u636e\u96c6\u4e00\u8d77\u4f7f\u7528": 96, "\u65e0\u8bba\u5b83\u4eec\u5305\u542b\u4ec0\u4e48\u7c7b\u578b\u7684\u6570\u636e": 96, "\u5bf9\u4e8e\u672c\u6559\u7a0b": [96, 221, 235, 244, 245, 250, 251, 252], "\u63d0\u4f9b\u7684": 96, "\u6765\u96f6\u4e2d\u5fc3\u548c\u6807\u51c6\u5316\u56fe\u50cf\u74e6\u7247\u5185\u5bb9\u7684\u5206\u5e03": 96, "\u5e76\u4e0b\u8f7d\u8bad\u7ec3\u548c\u9a8c\u8bc1\u6570\u636e\u5206\u5272": 96, "datetim": [96, 122, 147], "\u521b\u5efa\u8bad\u7ec3\u548c\u9a8c\u8bc1\u6570\u636e\u96c6": 96, "\u5982\u679c\u9700\u8981\u5219\u4e0b\u8f7d": 96, "\u4e3a\u6211\u4eec\u7684\u6570\u636e\u96c6\u521b\u5efa\u6570\u636e\u52a0\u8f7d\u5668": 96, "\u8bad\u7ec3\u65f6\u6253\u4e71": 96, "\u9a8c\u8bc1\u65f6\u4e0d\u6253\u4e71": 96, "\u7c7b\u522b\u6807\u7b7e": 96, "\u62a5\u544a\u5206\u5272\u5927\u5c0f": 96, "\u8bad\u7ec3\u96c6\u6709": 96, "\u4e2a\u5b9e\u4f8b": 96, "\u9a8c\u8bc1\u96c6\u6709": 96, "\u50cf\u5f80\u5e38\u4e00\u6837": 96, "\u8ba9\u6211\u4eec\u53ef\u89c6\u5316\u6570\u636e\u4f5c\u4e3a\u5065\u5168\u6027\u68c0\u67e5": 96, "\u53cd\u6807\u51c6\u5316": 96, "\u6211\u4eec\u5728\u672c\u4f8b\u4e2d\u4f7f\u7528\u7684\u6a21\u578b\u662f": 96, "\u7684\u53d8\u4f53": 96, "\u5982\u679c\u60a8\u89c2\u770b\u4e86\u672c\u7cfb\u5217\u7684\u524d\u51e0\u4e2a\u89c6\u9891": 96, "\u5e94\u8be5\u4f1a\u5f88\u719f\u6089": 96, "\u6a21\u578b\u7ee7\u627f\u81ea": 96, "garmentclassifi": 96, "\u5bf9\u4e8e\u672c\u4f8b": [96, 212, 238], "\u6211\u4eec\u5c06\u4f7f\u7528\u4ea4\u53c9\u71b5\u635f\u5931": 96, "\u4e3a\u4e86\u6f14\u793a\u76ee\u7684": 96, "\u6211\u4eec\u5c06\u521b\u5efa\u865a\u62df\u8f93\u51fa\u548c\u6807\u7b7e\u503c\u7684\u6279\u6b21": 96, "\u5c06\u5b83\u4eec\u901a\u8fc7\u635f\u5931\u51fd\u6570": 96, "\u5e76\u68c0\u67e5\u7ed3\u679c": 96, "\u635f\u5931\u51fd\u6570\u671f\u671b\u6570\u636e\u4ee5\u6279\u6b21\u5f62\u5f0f": 96, "\u6240\u4ee5\u6211\u4eec\u521b\u5efa\u4e86": 96, "\u4e2a\u6279\u6b21": 96, "\u8868\u793a\u6a21\u578b\u5bf9\u7ed9\u5b9a\u8f93\u5165\u7684": 96, "\u4e2a\u7c7b\u522b\u4e2d\u6bcf\u4e00\u4e2a\u7684\u7f6e\u4fe1\u5ea6": 96, "dummy_output": 96, "\u8868\u793a\u6b63\u786e\u7684\u7c7b\u522b\u5728\u6d4b\u8bd5\u7684": 96, "\u4e2a\u7c7b\u522b\u4e2d": 96, "dummy_label": 96, "\u6b64\u6279\u6b21\u7684\u603b\u635f\u5931": 96, "\u6211\u4eec\u5c06\u4f7f\u7528\u5e26\u52a8\u91cf\u7684\u7b80\u5355\u968f\u673a\u68af\u5ea6\u4e0b\u964d": 96, "\u5c1d\u8bd5\u4e00\u4e9b\u4f18\u5316\u65b9\u6848\u7684\u53d8\u4f53\u4f1a\u5f88\u6709\u542f\u53d1\u6027": 96, "\u5b66\u4e60\u7387\u51b3\u5b9a\u4e86\u4f18\u5316\u5668\u91c7\u53d6\u7684\u6b65\u957f\u5927\u5c0f": 96, "\u4e0d\u540c\u7684\u5b66\u4e60\u7387\u5bf9\u60a8\u7684\u8bad\u7ec3\u7ed3\u679c\u6709\u4f55\u5f71\u54cd": 96, "\u5728\u51c6\u786e\u6027\u548c\u6536\u655b\u65f6\u95f4\u65b9\u9762": 96, "\u52a8\u91cf\u5728\u591a\u4e2a\u6b65\u9aa4\u4e2d\u5c06\u4f18\u5316\u5668\u63a8\u5411\u6700\u5f3a\u68af\u5ea6\u7684\u65b9\u5411": 96, "\u6539\u53d8\u8fd9\u4e2a\u503c\u4f1a\u5bf9\u7ed3\u679c\u4ea7\u751f\u4ec0\u4e48\u5f71\u54cd": 96, "\u5c1d\u8bd5\u4e00\u4e9b\u4e0d\u540c\u7684\u4f18\u5316\u7b97\u6cd5": 96, "\u5982\u5e73\u5747": 96, "\u60a8\u7684\u7ed3\u679c\u6709\u4f55\u4e0d\u540c": 96, "\u5305\u4e2d\u6307\u5b9a\u4f18\u5316\u5668": 96, "\u6211\u4eec\u6709\u4e00\u4e2a\u6267\u884c\u4e00\u4e2a\u8bad\u7ec3\u5468\u671f\u7684\u51fd\u6570": 96, "\u679a\u4e3e\u6570\u636e": 96, "\u5e76\u5728\u5faa\u73af\u7684\u6bcf\u4e00\u6b21\u901a\u8fc7\u65f6\u6267\u884c\u4ee5\u4e0b\u64cd\u4f5c": 96, "\u83b7\u53d6\u4e00\u6279\u8bad\u7ec3\u6570\u636e": 96, "\u5c06\u4f18\u5316\u5668\u7684\u68af\u5ea6\u5f52\u96f6": 96, "\u6267\u884c\u63a8\u7406": 96, "\u4e5f\u5c31\u662f\u4ece\u6a21\u578b\u83b7\u53d6\u8f93\u5165\u6279\u6b21\u7684\u9884\u6d4b": 96, "\u8ba1\u7b97\u8be5\u7ec4\u9884\u6d4b\u4e0e\u6570\u636e\u96c6\u4e0a\u7684\u6807\u7b7e\u4e4b\u95f4\u7684\u635f\u5931": 96, "\u8ba1\u7b97\u5b66\u4e60\u6743\u91cd\u7684\u53cd\u5411\u68af\u5ea6": 96, "\u544a\u8bc9\u4f18\u5316\u5668\u6267\u884c\u4e00\u4e2a\u5b66\u4e60\u6b65\u9aa4": 96, "\u4e5f\u5c31\u662f\u6839\u636e\u6211\u4eec\u9009\u62e9\u7684\u4f18\u5316\u7b97\u6cd5": 96, "\u57fa\u4e8e\u8be5\u6279\u6b21\u89c2\u5bdf\u5230\u7684\u68af\u5ea6\u6765\u8c03\u6574\u6a21\u578b\u7684\u5b66\u4e60\u6743\u91cd": 96, "\u5b83\u6bcf": 96, "\u4e2a\u6279\u6b21\u62a5\u544a\u4e00\u6b21\u635f\u5931": 96, "\u5b83\u62a5\u544a\u6700\u540e": 96, "\u4e2a\u6279\u6b21\u7684\u5e73\u5747\u6bcf\u6279\u6b21\u635f\u5931": 96, "\u4ee5\u4fbf\u4e0e\u9a8c\u8bc1\u8fd0\u884c\u8fdb\u884c\u6bd4\u8f83": 96, "epoch_index": 96, "tb_writer": 96, "last_loss": 96, "\u4ee5\u4fbf\u6211\u4eec\u53ef\u4ee5\u8ddf\u8e2a\u6279\u6b21\u7d22\u5f15\u5e76\u8fdb\u884c\u4e00\u4e9b\u5468\u671f\u5185\u62a5\u544a": 96, "\u6bcf\u4e2a\u6570\u636e\u5b9e\u4f8b\u90fd\u662f\u4e00\u4e2a\u8f93\u5165": 96, "\u6807\u7b7e\u5bf9": 96, "\u5bf9\u4e8e\u6bcf\u4e2a\u6279\u6b21": 96, "\u5bf9\u8be5\u6279\u6b21\u8fdb\u884c\u9884\u6d4b": 96, "\u8ba1\u7b97\u635f\u5931\u53ca\u5176\u68af\u5ea6": 96, "\u8c03\u6574\u5b66\u4e60\u6743\u91cd": 96, "\u6536\u96c6\u6570\u636e\u5e76\u62a5\u544a": 96, "\u6bcf\u6279\u6b21\u635f\u5931": 96, "tb_x": 96, "\u6211\u4eec\u6bcf\u4e2a\u5468\u671f\u9700\u8981\u505a\u7684\u4e8b\u60c5\u6709": 96, "\u901a\u8fc7\u68c0\u67e5\u672a\u7528\u4e8e\u8bad\u7ec3\u7684\u4e00\u7ec4\u6570\u636e\u4e0a\u7684\u76f8\u5bf9\u635f\u5931\u6765\u6267\u884c\u9a8c\u8bc1": 96, "\u5e76\u62a5\u544a\u8fd9\u4e00\u70b9": 96, "\u4fdd\u5b58\u6a21\u578b\u7684\u526f\u672c": 96, "\u6211\u4eec\u5c06\u5728": 96, "\u4e2d\u8fdb\u884c\u62a5\u544a": 96, "\u8fd9\u9700\u8981\u8f6c\u5230\u547d\u4ee4\u884c\u542f\u52a8": 96, "\u5e76\u5728\u53e6\u4e00\u4e2a\u6d4f\u89c8\u5668\u9009\u9879\u5361\u4e2d\u6253\u5f00\u5b83": 96, "\u5728\u5355\u72ec\u7684\u5355\u5143\u683c\u4e2d\u521d\u59cb\u5316": 96, "\u4ee5\u4fbf\u6211\u4eec\u53ef\u4ee5\u8f7b\u677e\u5730\u5c06\u66f4\u591a\u5468\u671f\u6dfb\u52a0\u5230\u540c\u4e00\u8fd0\u884c\u4e2d": 96, "timestamp": [96, 128, 144], "strftime": [96, 122, 147], "fashion_trainer_": 96, "epoch_numb": 96, "best_vloss": 96, "\u5468\u671f": 96, "\u786e\u4fdd\u68af\u5ea6\u8ddf\u8e2a\u5df2\u6253\u5f00": 96, "\u5e76\u5bf9\u6570\u636e\u8fdb\u884c\u4e00\u6b21\u4f20\u9012": 96, "\u5c06\u6a21\u578b\u8bbe\u7f6e\u4e3a\u8bc4\u4f30\u6a21\u5f0f": 96, "\u7981\u7528": 96, "\u5e76\u4f7f\u7528\u6279\u91cf\u89c4\u8303\u5316\u7684\u7fa4\u4f53\u7edf\u8ba1\u6570\u636e": 96, "\u7981\u7528\u68af\u5ea6\u8ba1\u7b97\u5e76\u51cf\u5c11\u5185\u5b58\u6d88\u8017": 96, "\u6709\u6548": 96, "\u5bf9\u4e8e\u8bad\u7ec3\u548c\u9a8c\u8bc1": 96, "\u8bad\u7ec3\u4e0e\u9a8c\u8bc1\u635f\u5931": 96, "\u8ddf\u8e2a\u6700\u4f73\u6027\u80fd": 96, "\u5e76\u4fdd\u5b58\u6a21\u578b\u7684\u72b6\u6001": 96, "model_path": [96, 224], "\u8981\u52a0\u8f7d\u4fdd\u5b58\u7684\u6a21\u578b\u7248\u672c": 96, "\u4e00\u65e6\u52a0\u8f7d\u4e86\u6a21\u578b": 96, "\u5b83\u5c31\u53ef\u4ee5\u7528\u4e8e\u60a8\u9700\u8981\u7684\u4efb\u4f55\u4e8b\u60c5": 96, "\u66f4\u591a\u8bad\u7ec3": 96, "\u63a8\u7406\u6216\u5206\u6790": 96, "\u5982\u679c\u60a8\u7684\u6a21\u578b\u6709\u5f71\u54cd\u6a21\u578b\u7ed3\u6784\u7684\u6784\u9020\u51fd\u6570\u53c2\u6570": 96, "\u60a8\u9700\u8981\u63d0\u4f9b\u5b83\u4eec\u5e76\u4ee5\u4e0e\u4fdd\u5b58\u65f6\u76f8\u540c\u7684\u65b9\u5f0f\u914d\u7f6e\u6a21\u578b": 96, "\u4e0a\u7684\u6570\u636e\u5de5\u5177\u6587\u6863": 96, "\u5173\u4e8e\u4f7f\u7528\u56fa\u5b9a\u5185\u5b58\u8fdb\u884c": 96, "\u8bad\u7ec3\u7684\u8bf4\u660e": 96, "\u4e2d\u53ef\u7528\u6570\u636e\u96c6\u7684\u6587\u6863": 96, "\u4e2d\u53ef\u7528\u635f\u5931": 96, "trainingyt": 96, "alexandro": 97, "chariton": 97, "computation": [97, 172], "lightweight": [97, 121, 157], "drone": 97, "4gb": [97, 153, 159, 225], "satur": [97, 201], "subtract": 97, "greedi": [97, 113, 118, 137, 147, 161], "transforms_cifar": 97, "test_dataset": [97, 115], "num_images_to_keep": 97, "50_000": [97, 160], "train_load": [97, 122, 123, 130, 163, 167, 169, 222, 223, 256], "extractor": [97, 172], "neuron": 97, "deepnn": 97, "lightnn": 97, "detriment": 97, "denot": [97, 99, 102, 191, 192, 195, 265], "nn_deep": 97, "test_accuracy_deep": 97, "nn_light": 97, "new_nn_light": 97, "conclud": [97, 131, 150, 202], "total_params_deep": 97, "total_params_light": 97, "test_accuracy_light_c": 97, "interven": 97, "soft": [97, 161], "mistaken": 97, "valuabl": [97, 166, 195], "alon": [97, 112, 124, 166, 170], "meaningfulli": 97, "smoother": 97, "soft_target_loss_weight": 97, "ce_loss_weight": 97, "train_knowledge_distil": 97, "ce_loss": 97, "teacher_logit": 97, "student_logit": 97, "soft_target": 97, "soft_prob": 97, "soft_targets_loss": 97, "label_loss": 97, "ce": [97, 166], "test_accuracy_light_ce_and_kd": 97, "kd": 97, "coeffici": 97, "convei": [97, 202], "naiv": [97, 125, 146, 155, 165, 195], "rational": 97, "capac": [97, 132, 160, 161, 172], "cosineembeddingloss": [97, 110], "obvious": [97, 101, 164], "somehow": [97, 103], "modifieddeepnncosin": 97, "flattened_conv_output": 97, "flattened_conv_output_after_pool": 97, "avg_pool1d": 97, "modifiedlightnncosin": 97, "modified_nn_deep": 97, "deep_nn": 97, "modified_deep_nn": 97, "modified_nn_light": 97, "hidden_represent": 97, "sample_input": [97, 211, 249], "total_class": 97, "hidden_representation_s": 97, "train_cosine_loss": 97, "hidden_rep_loss_weight": 97, "cosine_loss": 97, "teacher_hidden_represent": 97, "student_hidden_represent": 97, "hidden_rep_loss": 97, "test_multiple_output": 97, "disregard": 97, "test_accuracy_light_ce_and_cosine_loss": 97, "convolutional_fe_output_stud": 97, "convolutional_fe_output_teach": 97, "modifieddeepnnregressor": 97, "conv_feature_map": 97, "modifiedlightnnregressor": 97, "regressor_output": 97, "train_mse_loss": 97, "feature_map_weight": 97, "teacher_feature_map": 97, "regressor_feature_map": 97, "modified_nn_light_reg": 97, "modified_nn_deep_reg": 97, "test_accuracy_light_ce_and_mse_loss": 97, "cosineloss": 97, "wiggl": 97, "regressorms": 97, "hinton": [97, 127], "vinyal": 97, "dean": 97, "workshop": 97, "romero": 97, "balla": 97, "kahou": 97, "chassang": 97, "gatta": 97, "bengio": 97, "fitnet": 97, "thin": [97, 265], "confer": 97, "knowledge_distillation_tutori": 97, "kit": 98, "dynet": [98, 100], "opposit": [98, 192], "theano": [98, 100], "kera": [98, 100, 111], "difficult": [98, 113, 146, 154, 166, 193, 197, 207], "constitu": 98, "roughli": [98, 122, 134, 145, 150, 182], "fat": [98, 113], "exception": 98, "entiti": [98, 103, 176, 265], "recognit": 98, "tagger": 98, "ner": 98, "sound": [98, 101, 174, 175], "scari": 98, "viterbi": [98, 102], "sum_": [98, 103, 161], "psi_i": 98, "sum_i": 98, "partit": [98, 121, 124, 136, 150], "emiss": 98, "textbf": 98, "psi_": 98, "y_i": [98, 102], "x_i": [98, 99], "tran": [98, 172], "h_i": [98, 102], "collin": 98, "robert": [98, 99, 101, 102, 103, 236], "guthri": [98, 99, 101, 102, 103, 236], "prepare_sequ": [98, 102], "to_ix": [98, 102], "log_sum_exp": 98, "max_scor": 98, "max_score_broadcast": 98, "bilstm_crf": 98, "tag_to_ix": [98, 102], "word_emb": 98, "num_lay": [98, 182, 232], "start_tag": 98, "stop_tag": 98, "_forward_alg": 98, "feat": [98, 172], "init_alpha": 98, "forward_var": 98, "alphas_t": 98, "next_tag": 98, "emit_scor": 98, "ith": [98, 103, 195], "trans_scor": 98, "next_tag_var": 98, "terminal_var": 98, "_get_lstm_featur": 98, "lstm_feat": 98, "_score_sent": 98, "_viterbi_decod": 98, "backpoint": 98, "init_vvar": 98, "bptrs_t": 98, "viterbivars_t": 98, "best_tag_id": 98, "path_scor": 98, "best_path": 98, "dont": [98, 99], "caller": [98, 135, 163], "saniti": [98, 126, 160, 172], "neg_log_likelihood": 98, "forward_scor": 98, "gold_scor": 98, "bilstm": 98, "tag_seq": 98, "street": [98, 266], "journal": 98, "todai": [98, 117, 158, 193, 225], "corpor": [98, 138], "monei": 98, "georgia": 98, "tech": 98, "univers": [98, 113, 115, 161, 172, 177, 265], "word_to_ix": [98, 99, 102, 103], "precheck_s": 98, "precheck_tag": 98, "sentence_in": [98, 102], "anywai": [98, 101], "gold": [98, 166], "perceptron": [98, 177], "score_sent": 98, "advanced_tutori": [98, 100], "workhors": 99, "2x5": 99, "acx": 99, "ac": [99, 172, 268], "sigma": [99, 160], "plenti": 99, "peopl": [99, 100, 103, 113, 117, 186, 202, 265], "shy": 99, "vanish": 99, "linearit": 99, "sum_j": 99, "x_j": 99, "theres": 99, "unseen": [99, 103], "supervis": [99, 167, 172], "eta": 99, "vari": [99, 113, 130, 147, 166, 173, 182, 183, 193, 195, 201, 225], "spanish": [99, 127, 128], "bow": 99, "gusta": 99, "comer": 99, "cafeteria": 99, "creo": 99, "que": [99, 166], "sea": [99, 118], "una": 99, "buena": 99, "yo": 99, "si": [99, 156, 166], "bowclassifi": 99, "bow_vec": 99, "make_bow_vector": 99, "make_target": 99, "label_to_ix": 99, "bow_vector": 99, "log_prob": [99, 103, 162, 164], "bigger": [99, 127, 128, 159, 172, 265], "0th": [99, 155, 157, 165, 195], "deep_learning_tutori": [99, 100], "russel": 100, "norvig": 100, "book": [100, 102], "rip": 100, "pytorch_tutori": [100, 101], "word_embeddings_tutori": [100, 103], "lexic": 100, "sequence_models_tutori": [100, 102, 236], "bi": [100, 138], "crf": 100, "v_data": 101, "m_data": 101, "2x2x2": 101, "t_data": 101, "terminolog": 101, "z_1": 101, "x_2": [101, 116, 151, 265], "y_2": [101, 116], "z_2": 101, "complain": 101, "vagu": 101, "programm": [101, 103, 199, 201, 265], "x_0": [101, 265], "overbrac": [101, 102, 103], "y_0": 101, "z_0": 101, "gloss": 101, "new_z": 101, "NO": 101, "forgotten": 101, "classic": [102, 113, 148, 154, 167], "markov": 102, "myriad": 102, "cow": 102, "q_": [102, 103, 147], "2nd": [102, 129, 163, 195], "reader": [102, 136, 150, 177, 265], "unfamiliar": 102, "w_1": 102, "w_m": 102, "w_i": [102, 103], "_i": [102, 186], "_1": [102, 255], "_m": 102, "_j": 102, "ah_i": 102, "noun": 102, "verb": 102, "ate": 102, "everybodi": [102, 136], "affix": [102, 103], "bear": 102, "ly": 102, "adverb": 102, "c_w": 102, "x_w": 102, "po": [102, 118, 172], "capit": [103, 265], "enorm": [103, 172], "notion": [103, 118], "mathematician": 103, "physicist": 103, "orthograph": 103, "linguist": 103, "hypothesi": 103, "coffe": 103, "phi": [103, 265], "dissimilar": 103, "pain": [103, 113], "earth": [103, 113], "herself": 103, "lookup_tensor": 103, "hello_emb": 103, "context_s": 103, "shakespear": [103, 165], "sonnet": 103, "test_sent": 103, "forti": 103, "winter": [103, 113], "besieg": 103, "thy": 103, "brow": 103, "trench": 103, "beauti": [103, 231], "youth": 103, "proud": 103, "liveri": 103, "gaze": 103, "Will": 103, "totter": 103, "weed": [103, 191], "treasur": 103, "lusti": 103, "thine": 103, "sunken": 103, "eat": [103, 153], "shame": 103, "thriftless": 103, "prais": 103, "thou": 103, "couldst": 103, "mine": [103, 165, 265], "excus": 103, "blood": 103, "cold": [103, 113, 166], "word_i": 103, "ngram": 103, "ngramlanguagemodel": 103, "context_idx": 103, "cbow": 103, "probabilist": [103, 160], "q_w": 103, "raw_text": 103, "studi": [103, 115, 121, 126, 157, 172, 177], "beings": 103, "inhabit": 103, "evolut": 103, "conjur": 103, "spell": [103, 127], "dedupl": 103, "make_context_vector": 103, "jeremi": 104, "howard": [104, 147, 156], "rachel": 104, "thoma": 104, "ingham": 104, "\u6211\u4eec\u5efa\u8bae\u5c06\u672c\u6559\u7a0b\u4f5c\u4e3a\u7b14\u8bb0\u672c": 104, "\u8fd0\u884c": [104, 232], "\u8bf7\u70b9\u51fb\u9875\u9762\u9876\u90e8\u7684\u94fe\u63a5": 104, "\u4e0b\u8f7d\u7b14\u8bb0\u672c": 104, "\u63d0\u4f9b\u4e86\u4f18\u96c5\u8bbe\u8ba1\u7684\u6a21\u5757\u548c\u7c7b": 104, "\u4ee5\u5e2e\u52a9\u4f60\u521b\u5efa\u548c\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc": 104, "\u4e3a\u4e86\u5145\u5206\u5229\u7528\u5b83\u4eec\u7684\u529f\u80fd": 104, "\u5e76\u901a\u8fc7\u81ea\u5b9a\u4e49\u5bf9\u5e94\u6a21\u5757\u6216\u7c7b": 104, "\u6765\u89e3\u51b3\u7279\u5b9a\u95ee\u9898": 104, "\u9700\u8981\u7406\u89e3\u5b83\u4eec\u7684\u5177\u4f53\u529f\u80fd": 104, "\u6211\u4eec\u5c06\u9996\u5148\u5728": 104, "\u6570\u636e\u96c6\u4e0a\u8bad\u7ec3\u4e00\u4e2a\u57fa\u672c\u7684\u795e\u7ecf\u7f51\u7edc": 104, "\u800c\u4e0d\u4f7f\u7528\u8fd9\u4e9b\u6a21\u578b\u7684\u4efb\u4f55\u7279\u6027": 104, "\u6211\u4eec\u6700\u521d\u53ea\u4f7f\u7528\u6700\u57fa\u672c\u7684": 104, "\u5f20\u91cf\u529f\u80fd": 104, "\u6211\u4eec\u5c06\u9010\u6b65\u6dfb\u52a0": 104, "\u4e2d\u7684\u4e00\u4e2a\u7279\u6027": 104, "\u5c55\u793a\u6bcf\u4e2a\u90e8\u5206\u7684\u4f5c\u7528": 104, "\u4ee5\u53ca\u5982\u4f55\u4f7f\u7528\u5b83\u4eec\u8ba9\u4ee3\u7801\u66f4\u7b80\u6d01\u6216\u66f4\u7075\u6d3b": 104, "\u672c\u6559\u7a0b\u5047\u5b9a\u4f60\u5df2\u7ecf\u5b89\u88c5\u4e86": 104, "\u5e76\u4e14\u719f\u6089\u5f20\u91cf\u64cd\u4f5c\u7684\u57fa\u7840\u77e5\u8bc6": 104, "\u5982\u679c\u4f60\u719f\u6089": 104, "\u6570\u7ec4\u64cd\u4f5c": 104, "\u4f60\u4f1a\u53d1\u73b0\u8fd9\u91cc\u4f7f\u7528\u7684": 104, "\u5f20\u91cf\u64cd\u4f5c\u51e0\u4e4e\u76f8\u540c": 104, "\u6211\u4eec\u5c06\u4f7f\u7528\u7ecf\u5178\u7684": 104, "\u8be5\u6570\u636e\u96c6\u5305\u542b\u624b\u7ed8\u6570\u5b57": 104, "0\u52309\u4e4b\u95f4": 104, "\u6765\u5904\u7406\u8def\u5f84": 104, "\u6807\u51c6\u5e93\u7684\u4e00\u90e8\u5206": 104, "\u4e0b\u8f7d\u6570\u636e\u96c6": 104, "\u6211\u4eec\u53ea\u4f1a\u5728\u4f7f\u7528\u6a21\u5757\u65f6\u624d\u5bfc\u5165\u5b83\u4eec": 104, "\u56e0\u6b64\u4f60\u53ef\u4ee5\u6e05\u695a\u5730\u770b\u5230\u6bcf\u4e2a\u6b65\u9aa4\u4e2d\u6b63\u5728\u4f7f\u7528\u7684\u5185\u5bb9": 104, "exist_ok": 104, "\u8fd9\u4e2a\u6570\u636e\u96c6\u662f": 104, "\u6570\u7ec4\u683c\u5f0f\u7684": 104, "\u5e76\u4e14\u4f7f\u7528": 104, "\u5b58\u50a8": 104, "\u8fd9\u662f\u4e00\u4e2a": 104, "\u7279\u6709\u7684\u7528\u4e8e\u5e8f\u5217\u5316\u6570\u636e\u7684\u683c\u5f0f": 104, "gzip": 104, "as_posix": [104, 126], "x_train": [104, 151], "y_train": 104, "x_valid": 104, "y_valid": 104, "latin": 104, "\u6bcf\u5f20\u56fe\u50cf\u7684\u5c3a\u5bf8\u4e3a": 104, "\u5e76\u4ee5\u957f\u5ea6\u4e3a": 104, "\u7684\u5c55\u5e73\u884c\u5b58\u50a8": 104, "\u8ba9\u6211\u4eec\u6765\u770b\u770b\u5176\u4e2d\u4e00\u5f20": 104, "\u6211\u4eec\u9700\u8981\u5148\u5c06\u5176\u91cd\u5851\u4e3a\u4e8c\u7ef4": 104, "\u5728\u4e0d\u4f7f\u7528": 104, "\u65f6\u4f7f\u7528": [104, 239], "importerror": 104, "\u6240\u4ee5\u6211\u4eec\u9700\u8981\u8f6c\u6362\u6211\u4eec\u7684\u6570\u636e": 104, "\u6211\u4eec\u53ea\u4f7f\u7528": [104, 252], "\u5f20\u91cf\u64cd\u4f5c\u521b\u5efa\u4e00\u4e2a\u6a21\u578b": 104, "\u6211\u4eec\u5047\u8bbe\u4f60\u5df2\u7ecf\u719f\u6089\u795e\u7ecf\u7f51\u7edc\u7684\u57fa\u7840\u77e5\u8bc6": 104, "\u5982\u679c\u4e0d\u719f\u6089": 104, "\u63d0\u4f9b\u65b9\u6cd5\u6765\u521b\u5efa": 104, "\u968f\u673a": 104, "\u96f6": 104, "\u586b\u5145\u7684\u5f20\u91cf": 104, "\u6211\u4eec\u5c06\u4f7f\u7528\u8fd9\u4e9b\u65b9\u6cd5\u4e3a\u4e00\u4e2a\u7b80\u5355\u7684\u7ebf\u6027\u6a21\u578b\u521b\u5efa\u6743\u91cd\u548c\u504f\u7f6e": 104, "\u8fd9\u4e9b\u53ea\u662f\u5e38\u89c4\u7684\u5f20\u91cf": 104, "\u6709\u4e00\u4e2a\u975e\u5e38\u7279\u522b\u7684\u9644\u52a0\u529f\u80fd": 104, "\u6211\u4eec\u544a\u8bc9": 104, "\u5b83\u4eec\u9700\u8981\u68af\u5ea6": 104, "\u4f1a\u8bb0\u5f55\u5728\u5f20\u91cf\u4e0a\u5b8c\u6210\u7684\u6240\u6709\u64cd\u4f5c": 104, "\u4ee5\u4fbf\u5728\u53cd\u5411\u4f20\u64ad\u671f\u95f4": 104, "\u81ea\u52a8": 104, "\u8ba1\u7b97\u68af\u5ea6": [104, 129], "\u5bf9\u4e8e\u6743\u91cd": 104, "\u6211\u4eec\u5728\u521d\u59cb\u5316": 104, "\u8bbe\u7f6e": [104, 188, 217, 249], "\u56e0\u4e3a\u6211\u4eec\u4e0d\u5e0c\u671b\u521d\u59cb\u5316\u6b65\u9aa4\u5305\u62ec\u5728\u68af\u5ea6\u4e2d": 104, "\u4e2d\u7684\u5c3e\u968f": 104, "\u8868\u793a\u64cd\u4f5c\u662f\u5728\u539f\u5730\u6267\u884c": 104, "\u7531\u4e8e": [104, 251], "\u80fd\u591f\u81ea\u52a8\u8ba1\u7b97\u68af\u5ea6": 104, "\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u4efb\u4f55\u6807\u51c6\u7684": 104, "\u6216\u53ef\u8c03\u7528\u5bf9\u8c61": 104, "\u4f5c\u4e3a\u6a21\u578b": 104, "\u8ba9\u6211\u4eec\u7f16\u5199\u4e00\u4e2a\u7b80\u5355\u7684\u77e9\u9635\u4e58\u6cd5\u548c\u5e7f\u64ad\u52a0\u6cd5": 104, "\u6765\u521b\u5efa\u4e00\u4e2a\u7b80\u5355\u7684\u7ebf\u6027\u6a21\u578b": 104, "\u6211\u4eec\u8fd8\u9700\u8981\u7f16\u5199\u4e00\u4e2a\u6fc0\u6d3b\u51fd\u6570": 104, "\u63d0\u4f9b\u4e86\u8bb8\u591a\u9884\u5148\u7f16\u5199\u7684\u635f\u5931\u51fd\u6570": 104, "\u6fc0\u6d3b\u51fd\u6570\u7b49": 104, "\u4f60\u4ecd\u53ef\u4ee5\u4f7f\u7528\u666e\u901a\u7684": 104, "\u7f16\u5199\u81ea\u5df1\u7684\u51fd\u6570": 104, "\u4f1a\u4e3a\u4f60\u7684\u51fd\u6570\u81ea\u52a8\u521b\u5efa": 104, "\u6216\u77e2\u91cf\u5316": 104, "\u4ee3\u7801": [104, 259], "xb": 104, "\u5728\u4e0a\u9762\u7684\u4ee3\u7801\u4e2d": 104, "\u8868\u793a\u77e9\u9635\u4e58\u6cd5\u64cd\u4f5c": 104, "\u5728\u4e00\u4e2a\u6570\u636e\u6279\u6b21\u4e0a\u8c03\u7528\u6211\u4eec\u7684\u51fd\u6570": 104, "\u5728\u672c\u4f8b\u4e2d\u4e3a64\u5f20\u56fe\u50cf": 104, "\u8fd9\u5c31\u662f\u4e00\u6b21": 104, "\u524d\u5411\u4f20\u9012": 104, "\u7531\u4e8e\u6211\u4eec\u5728\u5f00\u59cb\u65f6\u8bbe\u7f6e\u6743\u91cd\u4e3a\u968f\u673a\u6570\u503c": 104, "\u6b64\u65f6\u9884\u6d4b\u7ed3\u679c\u51c6\u786e\u6027\u8f83\u4f4e": 104, "\u5f20\u91cf\u4e0d\u4ec5\u5305\u542b\u5f20\u91cf\u503c": 104, "\u8fd8\u5305\u542b\u68af\u5ea6\u51fd\u6570": 104, "\u5728\u7a0d\u540e\u7684\u53cd\u5411\u4f20\u64ad\u8fc7\u7a0b\u4e2d\u4f1a\u7528\u5230\u5b83": 104, "\u8ba9\u6211\u4eec\u5b9e\u73b0": 104, "\u6211\u4eec\u53ef\u4ee5\u53ea\u4f7f\u7528\u6807\u51c6\u7684": 104, "nll": 104, "loss_func": 104, "\u8ba9\u6211\u4eec\u4f7f\u7528\u6211\u4eec\u7684\u968f\u673a\u6a21\u578b\u6765\u68c0\u67e5\u635f\u5931": 104, "\u8fd9\u6837\u6211\u4eec\u5c31\u53ef\u4ee5\u770b\u5230\u5728\u4e4b\u540e\u8fdb\u884c\u53cd\u5411\u4f20\u64ad\u540e": 104, "\u9884\u6d4b\u7ed3\u679c\u51c6\u786e\u7387\u662f\u5426\u6709\u6240\u63d0\u5347": 104, "yb": 104, "\u6211\u4eec\u8fd8\u8981\u5b9e\u73b0\u4e00\u4e2a\u51fd\u6570\u6765\u8ba1\u7b97\u6211\u4eec\u6a21\u578b\u7684\u51c6\u786e\u7387": 104, "\u5bf9\u4e8e\u6bcf\u4e2a\u9884\u6d4b\u7ed3\u679c": 104, "\u5982\u679c\u5177\u6709\u6700\u5927\u503c\u7684\u7d22\u5f15\u4e0e\u76ee\u6807\u503c\u5339\u914d": 104, "\u5219\u9884\u6d4b\u662f\u6b63\u786e\u7684": 104, "\u68c0\u67e5\u6211\u4eec\u968f\u673a\u6a21\u578b\u7684\u51c6\u786e\u7387": 104, "\u8fd9\u6837\u6211\u4eec\u5c31\u53ef\u4ee5\u770b\u5230\u968f\u7740\u635f\u5931\u7684\u6539\u5584": 104, "\u51c6\u786e\u7387\u662f\u5426\u6709\u6240\u63d0\u9ad8": 104, "\u73b0\u5728\u53ef\u4ee5\u8fd0\u884c\u4e00\u4e2a\u8bad\u7ec3\u5faa\u73af": 104, "\u5bf9\u4e8e\u6bcf\u6b21\u8fed\u4ee3": 104, "\u9009\u62e9\u4e00\u4e2a\u5927\u5c0f\u4e3a": 104, "\u7684\u6279\u91cf\u6570\u636e": 104, "\u4f7f\u7528\u6a21\u578b\u8fdb\u884c\u9884\u6d4b": 104, "\u8ba1\u7b97\u635f\u5931": 104, "\u66f4\u65b0\u6a21\u578b\u7684\u68af\u5ea6": 104, "\u5373\u66f4\u65b0": 104, "\u6211\u4eec\u73b0\u5728\u4f7f\u7528\u8fd9\u4e9b\u68af\u5ea6\u6765\u66f4\u65b0\u6743\u91cd": 104, "\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668\u4e2d\u6267\u884c\u6b64\u64cd\u4f5c": 104, "\u56e0\u4e3a\u6211\u4eec\u4e0d\u5e0c\u671b\u8fd9\u4e9b\u64cd\u4f5c\u8bb0\u5f55\u4e3a\u4e0b\u4e00\u6b21\u68af\u5ea6\u8ba1\u7b97\u7684\u4e00\u90e8\u5206": 104, "\u4f60\u53ef\u4ee5\u5728": [104, 235], "\u9605\u8bfb\u6709\u5173": 104, "\u5982\u4f55\u8bb0\u5f55\u64cd\u4f5c\u7684\u66f4\u591a\u4fe1\u606f": 104, "\u6211\u4eec\u5c06\u68af\u5ea6\u8bbe\u7f6e\u4e3a\u96f6": 104, "\u4ee5\u4fbf\u6211\u4eec\u51c6\u5907\u8fdb\u884c\u4e0b\u4e00\u6b21\u5faa\u73af": 104, "\u5426\u5219": [104, 214], "\u6211\u4eec\u7684\u68af\u5ea6\u5c06\u8bb0\u5f55\u6240\u6709\u5df2\u53d1\u751f\u7684\u64cd\u4f5c": 104, "\u6dfb\u52a0": 104, "\u68af\u5ea6\u5230\u5df2\u6709\u7684\u68af\u5ea6\u4e2d": 104, "\u800c\u4e0d\u662f\u66ff\u6362\u5b83\u4eec": 104, "set_trac": 104, "start_i": 104, "end_i": 104, "\u6211\u4eec\u5df2\u7ecf\u4ece\u96f6\u5f00\u59cb\u521b\u5efa\u5e76\u8bad\u7ec3\u4e86\u4e00\u4e2a\u6700\u5c0f\u7684\u795e\u7ecf\u7f51\u7edc": 104, "\u4f7f\u7528\u903b\u8f91\u56de\u5f52": 104, "\u6ca1\u6709\u9690\u85cf\u5c42": 104, "\u8ba9\u6211\u4eec\u68c0\u67e5\u4e00\u4e0b\u635f\u5931\u548c\u51c6\u786e\u7387": 104, "\u5e76\u5c06\u5b83\u4eec\u4e0e\u4e4b\u524d\u5f97\u5230\u7684\u7ed3\u679c\u8fdb\u884c\u6bd4\u8f83": 104, "\u9884\u8ba1\u635f\u5931\u4f1a\u51cf\u5c11": 104, "\u51c6\u786e\u7387\u4f1a\u63d0\u9ad8": 104, "\u73b0\u5728\u6211\u4eec\u5c06\u91cd\u6784\u4ee3\u7801": 104, "\u4f7f\u5176\u4e0e\u4e4b\u524d\u505a\u7684\u4e8b\u60c5\u76f8\u540c": 104, "\u53ea\u662f\u6211\u4eec\u5c06\u5f00\u59cb\u5229\u7528": 104, "\u4f7f\u5176\u66f4\u7b80\u6d01\u548c\u7075\u6d3b": 104, "\u4ece\u8fd9\u91cc\u5f00\u59cb\u7684\u6bcf\u4e00\u6b65": 104, "\u90fd\u8ba9\u6211\u4eec\u7684\u4ee3\u7801\u53d8\u5f97\u66f4\u77ed": 104, "\u66f4\u6613\u7406\u89e3\u548c\u66f4\u7075\u6d3b": 104, "\u7b2c\u4e00\u6b65\u4e5f\u662f\u6700\u7b80\u5355\u7684\u4e00\u6b65\u662f\u901a\u8fc7\u7528": 104, "\u901a\u5e38\u6309\u60ef\u4f8b\u5bfc\u5165\u4e3a\u547d\u540d\u7a7a\u95f4": 104, "\u4e2d\u7684\u6fc0\u6d3b\u548c\u635f\u5931\u51fd\u6570\u66ff\u6362\u6211\u4eec\u624b\u5199\u7684\u6fc0\u6d3b\u548c\u635f\u5931\u51fd\u6570": 104, "\u4ece\u800c\u4f7f\u6211\u4eec\u7684\u4ee3\u7801\u66f4\u7b80\u77ed": 104, "\u8be5\u6a21\u5757\u5305\u542b": 104, "\u5e93\u4e2d\u7684\u6240\u6709\u51fd\u6570": 104, "\u9664\u4e86\u5404\u79cd\u635f\u5931\u548c\u6fc0\u6d3b\u51fd\u6570": 104, "\u4f60\u8fd8\u4f1a\u770b\u5230\u4e00\u4e9b\u521b\u5efa\u795e\u7ecf\u7f51\u7edc\u7684\u4fbf\u6377\u51fd\u6570": 104, "\u6bd4\u5982\u6c60\u5316\u51fd\u6570": 104, "\u8fd8\u6709\u7528\u4e8e\u5377\u79ef": 104, "\u7ebf\u6027\u5c42\u7b49\u7684\u51fd\u6570": 104, "\u4f46\u6b63\u5982\u6211\u4eec\u5c06\u770b\u5230\u7684": 104, "\u8fd9\u4e9b\u901a\u5e38\u66f4\u9002\u5408\u4f7f\u7528\u5e93\u7684\u5176\u4ed6\u6a21\u5757\u6765\u5904\u7406": 104, "\u5982\u679c\u4f60\u4f7f\u7528neg": 104, "\u90a3\u4e48": [104, 111, 249], "\u63d0\u4f9b\u4e86\u4e00\u4e2a\u7ed3\u5408\u4e86\u4e24\u8005\u7684\u5355\u4e00\u51fd\u6570": 104, "cross_entropi": [104, 124], "\u6240\u4ee5\u6211\u4eec\u53ef\u4ee5\u4ece\u6a21\u578b\u4e2d\u79fb\u9664\u6fc0\u6d3b\u51fd\u6570": 104, "\u6211\u4eec\u4e0d\u518d\u5728": 104, "\u51fd\u6570\u4e2d\u8c03\u7528": 104, "\u67e5\u770b\u4e0b\u635f\u5931\u548c\u51c6\u786e\u7387\u662f\u5426\u4e0e\u4e4b\u524d\u7ed3\u679c\u4e00\u81f4": 104, "\u4ee5\u5b9e\u73b0\u66f4\u6e05\u6670\u548c\u7b80\u6d01\u7684\u8bad\u7ec3\u5faa\u73af": 104, "\u6211\u4eec\u5c06\u7ee7\u627f": 104, "\u5b83\u672c\u8eab\u662f\u4e00\u4e2a\u7c7b": 104, "\u80fd\u591f\u8ddf\u8e2a\u72b6\u6001": 104, "\u6211\u4eec\u60f3\u521b\u5efa\u4e00\u4e2a\u7c7b\u6765\u4fdd\u5b58\u6211\u4eec\u7684\u6743\u91cd": 104, "\u504f\u7f6e\u548cforward\u65b9\u6cd5": 104, "\u6211\u4eec\u5c06\u4f1a\u4f7f\u7528": 104, "\u7684\u5c5e\u6027\u548c\u65b9\u6cd5": 104, "\u5927\u5199": 104, "\u7279\u6709\u7684\u6982\u5ff5": 104, "\u662f\u4f7f\u7528pytorch\u8fc7\u7a0b\u4e2d\u5927\u91cf\u4f7f\u7528\u7684\u7c7b": 104, "\u4e0d\u8981\u4e0e": 104, "\u6982\u5ff5\u7684": 104, "\u5c0f\u5199": 104, "\u6df7\u6dc6": 104, "mnist_logist": 104, "\u7531\u4e8e\u6211\u4eec\u73b0\u5728\u4f7f\u7528\u7684\u662f\u5bf9\u8c61\u800c\u4e0d\u662f\u4ec5\u4ec5\u4f7f\u7528\u51fd\u6570": 104, "\u6211\u4eec\u9996\u5148\u8981\u521b\u5efa\u6a21\u578b\u5bf9\u8c61": 104, "\u73b0\u5728\u6211\u4eec\u53ef\u4ee5\u50cf\u4e4b\u524d\u4e00\u6837\u8ba1\u7b97\u635f\u5931": 104, "\u5bf9\u8c61\u53ef\u4ee5\u50cf\u51fd\u6570\u4e00\u6837\u4f7f\u7528": 104, "\u5373\u5b83\u4eec\u662f": 104, "\u53ef\u8c03\u7528\u7684": 104, "\u4f1a\u81ea\u52a8\u8c03\u7528\u6211\u4eec\u7684": 104, "\u5728\u4e4b\u524d\u7684\u8bad\u7ec3\u5faa\u73af\u4e2d": 104, "\u6211\u4eec\u5fc5\u987b\u6309\u540d\u79f0\u66f4\u65b0\u6bcf\u4e2a\u53c2\u6570\u7684\u503c": 104, "\u5e76\u624b\u52a8\u5c06\u6bcf\u4e2a\u53c2\u6570\u7684\u68af\u5ea6\u5206\u522b\u6e05\u96f6": 104, "\u73b0\u5728\u6211\u4eec\u53ef\u4ee5\u5229\u7528": 104, "\u5b9a\u4e49\u7684\u65b9\u6cd5": 104, "\u6765\u4f7f\u8fd9\u4e9b\u6b65\u9aa4\u66f4\u7b80\u6d01": 104, "\u9632\u6b62\u5fd8\u8bb0\u5904\u7406\u67d0\u4e9b\u53c2\u6570\u5bfc\u81f4\u9519\u8bef": 104, "\u5c24\u5176\u662f\u5f53\u6211\u4eec\u5b9e\u73b0\u4e00\u4e2a\u66f4\u590d\u6742\u7684\u6a21\u578b\u65f6": 104, "\u5c06\u8bad\u7ec3\u5faa\u73af\u5305\u88c5\u5728\u4e00\u4e2a": 104, "\u51fd\u6570\u4e2d": 104, "\u8fd9\u6837\u53ef\u4ee5\u591a\u6b21\u8fd0\u884c\u5b83": 104, "gone": [104, 113, 125], "\u8ba9\u6211\u4eec\u67e5\u770b\u4e0b\u8bad\u7ec3\u540e": 104, "\u635f\u5931\u662f\u5426\u4e0b\u964d\u4e86": 104, "\u6211\u4eec\u7ee7\u7eed\u91cd\u6784\u4ee3\u7801": 104, "\u6765\u5b9e\u73b0\u7ebf\u6027\u5c42": 104, "\u4e0d\u518d\u624b\u52a8\u5b9a\u4e49\u548c\u521d\u59cb\u5316": 104, "\u4ee5\u53ca\u8ba1\u7b97": 104, "\u5177\u6709\u591a\u79cd\u9884\u5b9a\u4e49\u7684\u5c42": 104, "\u53ef\u4ee5\u5927\u5927\u7b80\u5316\u6211\u4eec\u7684\u4ee3\u7801": 104, "\u5e76\u4e14\u63d0\u9ad8\u6267\u884c\u901f\u5ea6": 104, "\u521d\u59cb\u5316\u6a21\u578b\u5bf9\u8c61": 104, "\u5e76\u8ba1\u7b97\u635f\u5931\u6570\u503c": 104, "\u65b9\u6cd5\u8fdb\u884c\u8bad\u7ec3\u6a21\u578b": 104, "\u67e5\u770b\u8bad\u7ec3\u7ed3\u679c": 104, "\u5305\u542b\u591a\u79cd\u4f18\u5316\u7b97\u6cd5": 104, "\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u4f18\u5316\u5668\u7684": 104, "\u65b9\u6cd5\u8fdb\u884c\u4f18\u5316\u6b65\u9aa4": 104, "\u65e0\u9700\u624b\u52a8\u66f4\u65b0\u6bcf\u4e2a\u53c2\u6570": 104, "\u4e4b\u524d\u7684\u4f18\u5316\u6b65\u9aa4": 104, "\u91cd\u6784\u4e3a": 104, "\u5728\u4e0b\u4e2a\u8bad\u7ec3\u5faa\u73af\u5f00\u59cb\u524d": 104, "\u6211\u4eec\u9700\u8c03\u7528": 104, "\u5c06\u53c2\u6570\u7684\u68af\u5ea6\u91cd\u7f6e\u4e3a0": 104, "\u5b9a\u4e49\u521b\u5efa\u6a21\u578b\u548c\u4f18\u5316\u5668\u7684\u65b9\u6cd5\u5982\u4e0b": 104, "\u6709\u4e00\u4e2a\u62bd\u8c61\u7684": 104, "\u53ef\u4ee5\u662f\u4efb\u4f55\u5177\u6709": 104, "\u7531": [104, 228], "\u7684\u6807\u51c6": 104, "\u51fd\u6570\u8c03\u7528": 104, "\u4f5c\u4e3a\u7d22\u5f15\u65b9\u5f0f": 104, "\u7684\u5bf9\u8c61": 104, "\u8be6\u7ec6\u4ecb\u7ecd\u4e86\u521b\u5efa\u4e00\u4e2a\u81ea\u5b9a\u4e49": 104, "faciallandmarkdataset": 104, "\u7c7b\u4f5c\u4e3a": 104, "\u5b50\u7c7b\u7684\u4f8b\u5b50": 104, "tensordataset": [104, 110, 138, 166, 186], "\u662f\u4e00\u4e2a\u5305\u88c5\u5f20\u91cf\u7684": 104, "\u4e3a\u6211\u4eec\u63d0\u4f9b\u4e86\u4e00\u79cd\u8fed\u4ee3": 104, "\u7d22\u5f15\u548c\u6cbf\u5f20\u91cf\u7684\u7b2c\u4e00\u4e2a\u7ef4\u5ea6\u5207\u7247\u7684\u65b9\u5f0f": 104, "\u4f7f\u6211\u4eec\u5728\u8bad\u7ec3\u65f6\u66f4\u5bb9\u6613\u540c\u65f6\u8bbf\u95ee\u81ea\u53d8\u91cf\u548c\u56e0\u53d8\u91cf": 104, "\u5bf9": [104, 232, 239, 246, 249, 257, 259], "\u8fdb\u884c\u5305\u88c5": 104, "\u8ba9\u6211\u4eec\u66f4\u5bb9\u6613\u5bf9\u6570\u636e\u8fdb\u884c\u904d\u5386\u548c\u5207\u7247\u64cd\u4f5c": 104, "train_d": 104, "\u4e4b\u524d\u6211\u4eec\u9700\u8981\u5355\u72ec\u5904\u7406": 104, "\u4e24\u7ec4\u6570\u503c": 104, "\u73b0\u5728\u53ef\u4ee5\u5408\u5e76\u5904\u7406": 104, "\u4f60\u53ef\u4ee5\u4ece\u4efb\u4f55": 104, "\u521b\u5efa\u4e00\u4e2a": 104, "\u800c\u540e\u7531": 104, "\u8d1f\u8d23\u5bf9\u6570\u636e\u5206\u6279": 104, "\u6211\u4eec\u4e0d\u5fc5\u518d\u53bb\u5b9e\u73b0\u5206\u6279\u4ee3\u7801": 104, "\u4f1a\u81ea\u52a8\u4e3a\u6211\u4eec\u63d0\u4f9b\u6bcf\u6279\u6570\u636e": 104, "train_dl": 104, "\u4e4b\u524d\u6211\u4eec\u7f16\u5199\u5206\u6279\u4ee3\u7801\u5982\u4e0b": 104, "\u6211\u4eec\u7684\u5faa\u73af\u53d8\u5f97\u66f4\u52a0\u7b80\u6d01": 104, "\u81ea\u52a8\u4ecedataloader\u4e2d\u52a0\u8f7d": 104, "\u901a\u8fc7\u4f7f\u7528": [104, 216, 238], "\u6211\u4eec\u5b9e\u73b0\u7684\u8bad\u7ec3\u5faa\u4ee3\u7801\u91cf\u5e76\u4e14\u66f4\u5bb9\u6613\u7406\u89e3": 104, "\u73b0\u5728\u8ba9\u6211\u4eec\u5c1d\u8bd5\u589e\u52a0\u4e00\u4e9b\u521b\u5efa\u5b9e\u9645\u6709\u6548\u6a21\u578b\u6240\u9700\u7684\u57fa\u672c\u529f\u80fd": 104, "\u5728\u7b2c\u4e00\u90e8\u5206\u4e2d": 104, "\u6211\u4eec\u53ea\u662f\u5b9e\u73b0\u4e86\u4f7f\u7528\u6570\u636e\u8fdb\u884c\u8bad\u7ec3\u7684\u903b\u8f91": 104, "\u5b9e\u9645\u5e94\u7528\u4e2d": 104, "\u8fd8\u9700\u8981": 104, "\u9a8c\u8bc1\u96c6": 104, "\u4ee5\u786e\u5b9a\u6211\u4eec\u7684\u6a21\u578b\u662f\u5426\u5b58\u5728\u8fc7\u62df\u5408\u95ee\u9898": 104, "\u6253\u4e71\u8bad\u7ec3\u6570\u636e\u662f": 104, "\u5341\u5206\u5fc5\u8981\u7684": 104, "\u4ee5\u9632\u6b62\u6279\u6b21\u4e4b\u95f4\u7684\u76f8\u5173\u6027\u548c\u8fc7\u62df\u5408": 104, "\u800c\u9a8c\u8bc1\u6570\u636e\u96c6\u5219\u65e0\u9700\u8fdb\u6b64\u64cd\u4f5c": 104, "\u65e0\u8bba\u6253\u4e71\u4e0e\u5426": 104, "\u9a8c\u8bc1\u635f\u5931\u503c\u662f\u76f8\u540c\u7684": 104, "\u800c\u4e14\u6253\u4e71\u64cd\u4f5c\u9700\u8981\u6d88\u8017\u989d\u5916\u7684\u65f6\u95f4": 104, "\u6ca1\u6709\u5b9e\u9645\u610f\u4e49": 104, "\u6211\u4eec\u5c06\u4e3a\u9a8c\u8bc1\u96c6\u4f7f\u7528\u7684\u6279\u91cf\u5927\u5c0f\u8bbe\u4e3a\u8bad\u7ec3\u96c6\u7684\u4e24\u500d": 104, "\u56e0\u4e3a\u9a8c\u8bc1\u96c6\u4e0d\u9700\u8981\u8fdb\u884c\u53cd\u5411\u4f20\u64ad": 104, "\u56e0\u6b64\u9700\u8981\u7684\u5185\u5b58\u8f83\u5c11": 104, "\u4e0d\u9700\u8981\u5b58\u50a8\u68af\u5ea6": 104, "\u56e0\u6b64\u6211\u6211\u4eec\u53ef\u4ee5\u914d\u7f6e\u8f83\u5927\u5355\u6279\u6570\u91cf": 104, "\u63d0\u9ad8\u8ba1\u7b97\u901f\u5ea6": 104, "valid_d": 104, "valid_dl": 104, "\u7ed3\u675f\u65f6\u8ba1\u7b97\u5e76\u6253\u5370\u635f\u5931\u503c": 104, "\u6211\u4eec\u5728\u8bad\u7ec3\u4e4b\u524d\u603b\u662f\u8c03\u7528": 104, "\u5728\u63a8\u65ad\u4e4b\u524d\u8c03\u7528": 104, "\u5c42\u4f1a\u4f7f\u7528": 104, "\u6765\u786e\u4fdd\u5176\u7ed3\u679c\u6b63\u786e": 104, "valid_loss": 104, "\u6211\u4eec\u5728\u8ba1\u7b97\u8bad\u7ec3\u96c6\u548c\u9a8c\u8bc1\u96c6\u7684\u635f\u5931\u7c7b\u4f3c\u7684\u4ee3\u7801": 104, "\u62bd\u53d6\u4e00\u4e2a\u72ec\u7acb\u7684\u51fd\u6570": 104, "loss_batch": 104, "\u7528\u4e8e\u8ba1\u7b97\u4e00\u4e2a\u6279\u6b21\u7684\u635f\u5931": 104, "\u8bad\u7ec3\u96c6\u4f20\u5165\u4e00\u4e2a\u4f18\u5316\u5668": 104, "\u5e76\u4f7f\u7528\u5b83\u6267\u884c\u53cd\u5411\u4f20\u64ad": 104, "\u5bf9\u4e8e\u9a8c\u8bc1\u96c6": 104, "\u5219\u4e0d\u4f20\u5165\u4f18\u5316\u5668": 104, "\u4e0d\u6267\u884c\u53cd\u5411\u4f20\u64ad": 104, "\u5728\u6bcf\u4e2a\u8bad\u7ec3\u5faa\u73af\u4e2d\u8ba1\u7b97\u8bad\u7ec3\u548c\u9a8c\u8bc1\u635f\u5931": 104, "\u8fd4\u56de\u8bad\u7ec3\u548c\u9a8c\u8bc1\u6570\u636e\u96c6\u7684dataload": 104, "\u6211\u4eec\u83b7\u53d6\u6570\u636e\u52a0\u8f7d\u5668\u548c\u62df\u5408\u6a21\u578b\u7684\u6574\u4e2a\u8fc7\u7a0b\u53ef\u4ee5\u7528": 104, "\u884c\u4ee3\u7801\u6765\u5b9e\u73b0": 104, "\u4f60\u53ef\u4ee5\u4f7f\u7528\u8fd9\u4e09\u884c\u57fa\u672c\u4ee3\u7801\u6765\u8bad\u7ec3\u5404\u79cd\u5404\u6837\u7684\u6a21\u578b": 104, "\u8ba9\u6211\u4eec\u770b\u770b\u662f\u5426\u53ef\u4ee5\u7528\u6765\u8bad\u7ec3\u4e00\u4e2a\u5377\u79ef\u795e\u7ecf\u7f51\u7edc": 104, "\u73b0\u5728\u6211\u4eec\u5c06\u4f7f\u7528\u4e09\u4e2a\u5377\u79ef\u5c42\u6784\u5efa\u6211\u4eec\u7684\u795e\u7ecf\u7f51\u7edc": 104, "\u56e0\u4e3a\u524d\u9762\u90e8\u5206\u7684\u51fd\u6570\u90fd\u4e0d\u5047\u8bbe\u4efb\u4f55\u5173\u4e8e\u6a21\u578b\u5f62\u5f0f\u7684\u4e1c\u897f": 104, "\u6240\u4ee5\u6211\u4eec\u53ef\u4ee5\u5728\u4e0d\u505a\u4efb\u4f55\u4fee\u6539\u7684\u60c5\u51b5\u4e0b\u4f7f\u7528\u5b83\u4eec\u6765\u8bad\u7ec3\u4e00\u4e2a": 104, "\u9884\u5b9a\u4e49\u7684": 104, "\u7c7b\u4f5c\u4e3a\u6211\u4eec\u7684\u5377\u79ef\u5c42": 104, "\u6211\u4eec\u5b9a\u4e49\u4e00\u4e2a\u5177\u6709": 104, "\u4e2a\u5377\u79ef\u5c42\u7684": 104, "\u6bcf\u4e2a\u5377\u79ef\u5c42\u540e\u9762\u8ddf\u7740\u4e00\u4e2a": 104, "\u6211\u4eec\u6267\u884c\u5e73\u5747\u6c60\u5316": 104, "\u7248\u7684": 104, "mnist_cnn": [104, 123], "avg_pool2d": [104, 208], "\u7684\u4e00\u79cd\u53d8\u4f53": 104, "\u901a\u8fc7\u7edf\u8ba1\u66f4\u65b0\u8bb0\u5f55\u6765\u63d0\u5347\u8bad\u7ec3\u901f\u5ea6": 104, "\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528": [104, 111, 233, 240, 241, 246], "\u6765\u5e2e\u52a9\u6211\u4eec\u7b80\u5316\u4ee3\u7801": 104, "\u63d0\u4f9b\u4e86\u4e00\u79cd\u66f4\u7b80\u5355\u7684\u7f16\u5199\u795e\u7ecf\u7f51\u7edc\u7684\u65b9\u5f0f": 104, "\u5176\u4f1a\u6309\u987a\u5e8f\u8fd0\u884c\u5b9a\u4e49\u4e2d\u5305\u542b\u7684\u6bcf\u4e2a\u6a21\u5757": 104, "\u6211\u4eec\u53ef\u4ee5\u521b\u5efa\u4e00\u4e2a": [104, 217], "\u81ea\u5b9a\u4e49\u5c42": 104, "\u6ca1\u6709\u7684": 104, "view\u5c42": 104, "\u521b\u5efa\u6a21\u578b\u5341\u5206\u7b80\u5355": 104, "avgpool2d": 104, "\u6211\u4eec\u7f16\u5199\u7684": 104, "\u5341\u5206\u7b80\u6d01": 104, "\u4f46\u4ec5\u9002\u7528\u4e8emnist": 104, "\u5b83\u5047\u8bbe\u8f93\u5165\u662f\u4e00\u4e2a": 104, "\u957f\u7684\u5411\u91cf": 104, "\u5b83\u5047\u8bbe\u6700\u7ec8\u7684": 104, "\u7f51\u683c\u5927\u5c0f\u662f": 104, "\u6211\u4eec\u4f7f\u7528\u7684\u5e73\u5747\u6c60\u5316\u6838\u5927\u5c0f": 104, "\u8ba9\u6211\u4eec\u53bb\u9664\u8fd9\u4e24\u4e2a\u5047\u8bbe": 104, "\u4f7f\u6211\u4eec\u7684\u6a21\u578b\u9002\u7528\u4e8e\u4efb\u4f552d\u5355\u901a\u9053\u56fe\u50cf": 104, "\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u5c06\u6570\u636e\u9884\u5904\u7406\u79fb\u5230\u751f\u6210\u5668\u4e2d\u6765\u5220\u9664": 104, "wrappeddataload": 104, "__iter__": 104, "\u4e3a\u4e86\u8ba9\u6211\u4eec\u5b9a\u4e49\u6211\u4eec\u60f3\u8981\u7684\u8f93\u51fa\u5f20\u91cf\u7684\u5927\u5c0f": 104, "\u800c\u975e": 104, "\u8f93\u5165": [104, 252], "\u6211\u4eec\u53ef\u4ee5\u7528": 104, "adaptiveavgpool2d": [104, 135, 137], "\u66ff\u6362": 104, "\u4ece\u800c\u4f7f\u6211\u4eec\u7684\u6a21\u578b\u53ef\u9002\u7528\u4e8e\u4efb\u4f55\u5927\u5c0f\u7684\u8f93\u5165": 104, "\u8ba9\u6211\u4eec\u67e5\u770b\u4e0b\u7ed3\u679c": 104, "\u5728\u62e5\u6709": 104, "gpu\u7684\u73af\u5883\u4e2d": 104, "\u4f60\u53ef\u4ee5\u4f7f\u7528\u5b83\u6765\u52a0\u901f\u4ee3\u7801": 104, "\u9996\u5148\u68c0\u67e5\u4f60\u7684gpu\u5728pytorch\u4e2d\u662f\u5426\u6b63\u5e38\u5de5\u4f5c": 104, "\u7136\u540e\u521b\u5efa": 104, "\u4fee\u6539": 104, "\u6b65\u9aa4": [104, 240], "\u5c06\u6570\u636e\u79fb\u52a8\u81f3": 104, "\u5c06\u6a21\u578b\u52a0\u8f7d\u5230": 104, "\u8fd0\u884c\u901f\u5ea6\u4f1a\u63d0\u5347\u5f88\u591a": 104, "\u7f16\u5199\u4e86\u4e00\u4e2a\u53ef\u4ee5\u7528\u4e8e\u591a\u79cd\u6a21\u578b\u8bad\u7ec3\u7684\u5b9e\u73b0": 104, "\u5b8c\u6574\u7684\u8bad\u7ec3\u4ee3\u7801": 104, "mnist_sampl": 104, "\u540e\u7eed\u8fd8\u53ef\u5c1d\u8bd5\u589e\u52a0\u5176\u4ed6\u529f\u80fd": 104, "\u4f8b\u5982\u6570\u636e\u589e\u5f3a": 104, "\u8d85\u53c2\u6570\u8c03\u4f18": 104, "\u76d1\u63a7\u8bad\u7ec3": 104, "\u8fc1\u79fb\u5b66\u4e60\u7b49\u7b49": 104, "\u8fd9\u4e9b\u529f\u80fd\u5728fastai\u5e93\u4e2d\u90fd\u6709\u63d0\u4f9b": 104, "\u8be5\u5e93\u662f\u4f7f\u7528\u672c\u6559\u7a0b\u4e2d\u6240\u793a\u7684\u76f8\u540c\u8bbe\u8ba1\u65b9\u6cd5\u5f00\u53d1\u7684": 104, "\u4e3a\u5e0c\u671b\u8fdb\u4e00\u6b65\u6539\u8fdb\u6a21\u578b\u7684\u4ece\u4e1a\u4eba\u5458\u63d0\u4f9b\u4e0b\u4e00\u6b65\u6307\u5bfc": 104, "\u6211\u4eec\u5b66\u4e60\u4e86\u5982\u4f55\u4f7f\u7528": [104, 216], "\u73b0\u5728\u8ba9\u6211\u4eec\u603b\u7ed3\u4e00\u4e0b": 104, "\u521b\u5efa\u4e00\u4e2a\u7c7b\u4f3c\u4e8e\u51fd\u6570\u7684\u53ef\u8c03\u7528\u5bf9\u8c61": 104, "\u5176\u4e2d\u5305\u542b\u4e86\u72b6\u6001\u6570\u636e": 104, "\u5982\u795e\u7ecf\u7f51\u7edc\u5c42\u6743\u91cd": 104, "\u5b83\u53ef\u4ee5\u81ea\u52a8\u5bf9\u5305\u542b\u7684\u53c2\u6570": 104, "\u8fdb\u884c\u68af\u5ea6\u5f52\u96f6\u548c\u66f4\u65b0\u6743\u91cd\u7b49\u64cd\u4f5c": 104, "\u5bf9\u5f20\u91cf\u8fdb\u884c\u5305\u88c5": 104, "\u4f7f": [104, 251], "\u5bf9\u8c61\u5728\u8fdb\u884c\u53cd\u5411\u4f20\u64ad\u65f6": 104, "\u53ef\u66f4\u65b0\u6743\u91cd\u53c2\u6570": 104, "\u4ec5\u8bbe\u7f6e": 104, "\u53c2\u6570\u65f6\u751f\u6548": 104, "\u5305\u542b\u591a\u79cd\u6fc0\u6d3b\u51fd\u6570": 104, "\u4ee5\u53ca\u65e0\u72b6\u6001\u7684\u5377\u79ef\u5c42\u548c\u7ebf\u6027\u5c42\u7b49\u7684\u5b9e\u73b0": 104, "\u5305\u542b\u591a\u79cd\u4f18\u5316\u5668": 104, "\u5728\u53cd\u5411\u4f20\u64ad\u8fc7\u7a0b\u4e2d\u4f18\u5316\u6743\u91cd\u53c2\u6570": 104, "\u65b9\u6cd5\u7684\u62bd\u8c61\u63a5\u53e3\u5b9a\u4e49": 104, "\u5b9e\u73b0\u7c7b": 104, "\u8fdb\u884c\u5c01\u88c5": 104, "\u63d0\u4f9b\u5206\u6279\u904d\u5386\u6570\u636e\u96c6\u7684\u80fd\u529b": 104, "nn_tutori": 104, "registri": [105, 106, 107, 121, 210], "thiago": [105, 107], "crepaldi": [105, 107], "gamut": 105, "supercomput": 105, "constrain": [105, 126, 154, 174, 175], "onnxscript": [105, 107, 108], "torch_input": 105, "onnx_program": [105, 108], "onnxprogram": 105, "protobuf": [105, 108, 189], "my_image_classifi": 105, "drag": [105, 153, 169, 170, 226, 227], "onnx_input": [105, 108], "adapt_torch_inputs_to_onnx": [105, 108], "onnxruntime_input": [105, 108], "onnxruntime_output": [105, 108], "torch_output": [105, 108], "adapt_torch_outputs_to_onnx": [105, 108], "assert_clos": [105, 108], "export_simple_model_to_onnx_tutori": [105, 106], "intro_onnx": [106, 107], "onnx_registry_tutori": [106, 108], "sphx_glr_beginner_onnx_intro_onnx": 106, "sphx_glr_beginner_onnx_export_simple_model_to_onnx_tutori": 106, "sphx_glr_beginner_onnx_onnx_registry_tutori": 106, "bytecod": [107, 173, 224], "fx": [107, 121, 145, 174, 175, 180, 188, 198, 199, 202, 223, 249], "polish": [107, 127, 264], "newer": [107, 148, 153, 155], "upgrad": [107, 154, 159, 169, 198], "opset18": [107, 108], "opset": [107, 108, 174, 175], "succe": 107, "ti": 108, "tai": 108, "titaiwang": 108, "empow": 108, "runtimeerrorwithdiagnost": 108, "call_funct": [108, 174, 202], "operator_nam": 108, "onnxregistri": 108, "input_x": 108, "input_i": 108, "input_add_x": 108, "input_add_i": 108, "aten_add_model": 108, "custom_aten_add": 108, "custom_aten": 108, "native_funct": 108, "yaml": [108, 132, 206, 223, 224], "castlik": 108, "onnx_registri": 108, "register_op": 108, "op_nam": 108, "is_registered_op": 108, "export_opt": 108, "exportopt": 108, "op_typ": 108, "custom_aten_add_model": 108, "custom_add_model": 108, "gelu": [108, 110], "customgelu": 108, "namspac": 108, "custom_ort": 108, "custom_aten_gelu": 108, "aten_gelu_model": 108, "input_gelu_x": 108, "diagram": [108, 161], "custom_aten_gelu_model": 108, "custom_gelu_model": 108, "_custom_op": 108, "mylibrari": 108, "addandround_op": 108, "tensor_x": 108, "impl_abstract": [108, 175], "addandround_op_impl_abstract": 108, "addandround_op_impl": 108, "_dynamo": [108, 129, 145, 173, 174, 201, 254, 258], "allow_in_graph": 108, "customfoo": 108, "input_addandround_x": 108, "custom_addandround_model": 108, "customop": 108, "customopon": 108, "customoptwo": 108, "cpu_op": 108, "custom_opset": 108, "custom_addandround": 108, "add_x": 108, "round_x": 108, "libcustom_op_librari": 108, "custom_op_librari": 108, "ort": 108, "lonnxruntim": 108, "ort_session_opt": 108, "sessionopt": 108, "register_custom_ops_librari": 108, "sess_opt": 108, "quicker": 109, "record_funct": [109, 145, 165, 221, 240], "incur": [109, 124], "investig": [109, 113, 148, 157, 172, 173], "hi_idx": 109, "argwher": 109, "with_stack": [109, 169, 240], "profile_memori": [109, 169, 240], "group_by_stack_n": [109, 240], "traceback": [109, 145, 173, 174, 175], "193a910735e8": 109, "stacktrac": 109, "row_limit": [109, 145, 165, 240], "88": [109, 164, 177, 199], "212": 109, "953": 109, "mnt": [109, 136], "xarfus": 109, "au": 109, "07": [109, 122, 220, 221, 248], "715": 109, "848m": 109, "350": [109, 138], "151u": 109, "293": [109, 148], "342u": 109, "095u": 109, "931": 109, "006": 109, "476": 109, "338": 109, "759m": 109, "as_strid": [109, 145], "281": [109, 148], "808u": 109, "275": 109, "721u": 109, "_local": 109, "268": 109, "650u": [109, 240], "_scalar_dens": 109, "347": 109, "elimin": [109, 130, 139, 145, 146, 159, 184, 195], "nonzero": [109, 249], "as_tupl": [109, 116], "089m": 109, "402m": 109, "491m": 109, "119": [109, 186], "441": 109, "587u": 109, "_numpi": 109, "395": [109, 164], "602u": 109, "801m": 109, "xxxx": 110, "alexnet": [110, 148], "printable_graph": 110, "tensor_seq": 110, "ret": [110, 150, 159, 162, 211], "disable_cuda": 110, "convxd": 110, "maxpoolxd": 110, "batchnormxd": 110, "dropout2d": [110, 163, 167, 205, 223, 235], "l1loss": 110, "ctcloss": 110, "poissonnllloss": 110, "kldivloss": 110, "bcewithlogitsloss": 110, "marginrankingloss": 110, "hingeembeddingloss": 110, "multilabelmarginloss": 110, "smoothl1loss": [110, 147, 161], "softmarginloss": 110, "multilabelsoftmarginloss": 110, "multimarginloss": 110, "tripletmarginloss": 110, "prelu": 110, "rrelu": 110, "celu": 110, "hardshrink": 110, "logsigmoid": 110, "softplu": 110, "softshrink": 110, "softsign": 110, "tanhshrink": 110, "softmin": 110, "softmax2d": 110, "adaptivesoftmaxwithloss": 110, "adadelta": [110, 123, 130], "sparseadam": 110, "adamax": 110, "asgd": 110, "rprop": 110, "lambdalr": 110, "multiplicativelr": 110, "multisteplr": 110, "exponentiallr": 110, "reducelronplateau": 110, "cycliclr": 110, "onecyclelr": 110, "cosineannealingwarmrestart": 110, "xsampler": 110, "subsetrandom": 110, "weightedrandom": 110, "justin": 111, "johnson": 111, "\u672c\u6559\u7a0b\u901a\u8fc7\u81ea\u5305\u542b\u793a\u4f8b\u4ecb\u7ecd\u4e86": 111, "\u7684\u57fa\u672c\u6982\u5ff5": [111, 121], "\u5728\u5176\u6838\u5fc3": 111, "pytorch\u63d0\u4f9b\u4e86\u4e24\u4e2a\u4e3b\u8981\u529f\u80fd": 111, "\u4e00\u4e2an\u7ef4\u5f20\u91cf": 111, "\u7c7b\u4f3c\u4e8enumpi": 111, "\u4f46\u53ef\u4ee5\u5728gpu\u4e0a\u8fd0\u884c": 111, "\u7528\u4e8e\u6784\u5efa\u548c\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc\u7684\u81ea\u52a8\u5fae\u5206": 111, "\u6211\u4eec\u5c06\u4f7f\u7528\u62df\u5408": 111, "\u7684\u95ee\u9898\u4f5c\u4e3a\u793a\u4f8b": 111, "\u7f51\u7edc\u5c06\u5177\u6709\u56db\u4e2a\u53c2\u6570": 111, "\u5e76\u5c06\u4f7f\u7528\u68af\u5ea6\u4e0b\u964d\u6cd5\u8bad\u7ec3": 111, "\u901a\u8fc7\u6700\u5c0f\u5316\u7f51\u7edc\u8f93\u51fa\u4e0e\u771f\u5b9e\u8f93\u51fa\u4e4b\u95f4\u7684\u6b27\u51e0\u91cc\u5f97\u8ddd\u79bb": 111, "\u6765\u62df\u5408\u968f\u673a\u6570\u636e": 111, "\u53ef\u5728": [111, 228], "\u672c\u6587\u672b\u5c3e\u5904": 111, "\u67e5\u770b\u793a\u4f8b": [111, 121], "\u5728\u4ecb\u7ecd": 111, "\u4e4b\u524d": [111, 239, 246], "\u6211\u4eec\u5c06\u5148\u4f7f\u7528": 111, "\u6765\u5b9e\u73b0\u7f51\u7edc": 111, "numpy\u63d0\u4f9b\u4e86\u4e00\u4e2an\u7ef4\u6570\u7ec4\u5bf9\u8c61": 111, "\u5e76\u63d0\u4f9b\u4e86\u8bb8\u591a\u7528\u4e8e\u64cd\u4f5c\u8fd9\u4e9b\u6570\u7ec4\u7684\u51fd\u6570": 111, "numpy\u662f\u4e00\u4e2a\u901a\u7528\u7684\u79d1\u5b66\u8ba1\u7b97\u6846\u67b6": 111, "\u5b83\u4e0d\u77e5\u9053\u4efb\u4f55\u5173\u4e8e\u8ba1\u7b97\u56fe": 111, "\u6df1\u5ea6\u5b66\u4e60\u6216\u68af\u5ea6\u7684\u4fe1\u606f": 111, "\u6211\u4eec\u53ef\u4ee5\u5f88\u5bb9\u6613\u5730\u4f7f\u7528": 111, "\u63d0\u4f9b\u7684\u65b9\u6cd5": 111, "\u624b\u52a8\u5b9e\u73b0\u524d\u5411\u548c\u540e\u5411\u4f20\u64ad\u8fc7\u7a0b": 111, "\u6765\u62df\u5408\u4e00\u4e2a\u4e09\u6b21\u591a\u9879\u5f0f\u5230\u6b63\u5f26\u51fd\u6570": 111, "numpy\u662f\u4e00\u4e2a\u5f88\u68d2\u7684\u6846\u67b6": 111, "\u4f46\u5b83\u4e0d\u80fd\u5229\u7528gpu\u6765\u52a0\u901f\u5176\u6570\u503c\u8ba1\u7b97": 111, "\u5bf9\u4e8e\u73b0\u4ee3\u6df1\u5ea6\u795e\u7ecf\u7f51\u7edc": 111, "gpu\u901a\u5e38\u63d0\u4f9b": 111, "50\u500d\u6216\u66f4\u5927\u7684\u52a0\u901f": 111, "numpy\u5bf9\u4e8e\u73b0\u4ee3\u6df1\u5ea6\u5b66\u4e60\u6765\u8bf4\u8fd8\u662f\u4e0d\u591f\u7684": 111, "\u6211\u4eec\u4ecb\u7ecd\u4e86pytorch\u6700\u57fa\u672c\u7684\u6982\u5ff5": 111, "\u4e00\u4e2apytorch\u5f20\u91cf\u5728\u6982\u5ff5\u4e0a\u4e0enumpy\u6570\u7ec4\u76f8\u540c": 111, "\u4e00\u4e2an\u7ef4\u6570\u7ec4": 111, "pytorch\u63d0\u4f9b\u4e86\u8bb8\u591a\u64cd\u4f5c\u8fd9\u4e9b\u5f20\u91cf\u7684\u51fd\u6570": 111, "\u53ef\u4ee5\u81ea\u52a8\u8ddf\u8e2a\u8ba1\u7b97\u56fe\u548c\u68af\u5ea6": 111, "\u5b83\u4eec\u4e5f\u4f5c\u4e3a\u79d1\u5b66\u8ba1\u7b97\u7684\u901a\u7528\u5de5\u5177\u975e\u5e38\u6709\u7528": 111, "\u4e0d\u540c": [111, 246], "\u5f20\u91cf\u53ef\u4ee5\u5229\u7528gpu\u6765\u52a0\u901f\u5b83\u4eec\u7684\u6570\u503c\u8ba1\u7b97": 111, "\u8981\u5728gpu\u4e0a\u8fd0\u884c": 111, "\u60a8\u53ea\u9700\u8981\u6307\u5b9a\u6b63\u786e\u7684\u8bbe\u5907": 111, "\u5f20\u91cf\u6765\u62df\u5408\u4e00\u4e2a\u4e09\u6b21\u591a\u9879\u5f0f\u5230\u6b63\u5f26\u51fd\u6570\u4e2d": 111, "\u4e0e\u4e0a\u9762\u7684numpy\u793a\u4f8b\u7c7b\u4f3c": 111, "\u6211\u4eec\u9700\u8981\u624b\u52a8\u5b9e\u73b0\u7f51\u7edc\u7684\u524d\u5411\u548c\u540e\u5411\u4f20\u9012": 111, "\u6211\u4eec\u5fc5\u987b\u624b\u52a8\u5b9e\u73b0\u795e\u7ecf\u7f51\u7edc\u7684\u524d\u5411\u548c\u540e\u5411\u4f20\u9012": 111, "\u5bf9\u4e8e\u4e00\u4e2a\u5c0f\u578b\u7684\u4e24\u5c42\u7f51\u7edc\u6765\u8bf4": 111, "\u624b\u52a8\u5b9e\u73b0\u540e\u5411\u4f20\u9012\u5e76\u4e0d\u662f\u4ec0\u4e48\u5927\u95ee\u9898": 111, "\u4f46\u5bf9\u4e8e\u5927\u578b\u590d\u6742\u7684\u7f51\u7edc\u6765\u8bf4": 111, "\u5f88\u5feb\u5c31\u4f1a\u53d8\u5f97\u975e\u5e38\u9ebb\u70e6": 111, "\u5e78\u8fd0\u7684\u662f": [111, 233], "\u6765\u81ea\u52a8\u8ba1\u7b97\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u540e\u5411\u4f20\u9012": 111, "pytorch\u4e2d\u7684": 111, "\u5305\u6b63\u662f\u63d0\u4f9b\u4e86\u8fd9\u79cd\u529f\u80fd": 111, "\u5f53\u4f7f\u7528\u81ea\u52a8\u6c42\u5bfc\u65f6": 111, "\u7f51\u7edc\u7684\u524d\u5411\u4f20\u9012\u5c06\u5b9a\u4e49\u4e00\u4e2a": 111, "\u56fe\u4e2d\u7684\u8282\u70b9\u662f\u5f20\u91cf": 111, "\u8fb9\u662f\u4ece\u8f93\u5165\u5f20\u91cf\u751f\u6210\u8f93\u51fa\u5f20\u91cf\u7684\u51fd\u6570": 111, "\u901a\u8fc7\u8fd9\u4e2a\u56fe\u8fdb\u884c\u53cd\u5411\u4f20\u64ad": 111, "\u7136\u540e\u53ef\u4ee5\u8f7b\u677e\u8ba1\u7b97\u68af\u5ea6": 111, "\u8fd9\u542c\u8d77\u6765\u5f88\u590d\u6742": 111, "\u4f46\u5728\u5b9e\u9645\u4f7f\u7528\u4e2d\u975e\u5e38\u7b80\u5355": 111, "\u6bcf\u4e2a\u5f20\u91cf\u4ee3\u8868\u8ba1\u7b97\u56fe\u4e2d\u7684\u4e00\u4e2a\u8282\u70b9": 111, "\u662f\u4e00\u4e2a\u8bbe\u7f6e\u4e86": 111, "\u5c06\u662f\u53e6\u4e00\u4e2a\u5f20\u91cf": 111, "\u5b83\u5305\u542b\u4e86": [111, 236], "\u76f8\u5bf9\u4e8e\u67d0\u4e2a\u6807\u91cf\u503c\u7684\u68af\u5ea6": 111, "\u6211\u4eec\u4f7f\u7528pytorch\u5f20\u91cf\u548c\u81ea\u52a8\u6c42\u5bfc\u6765\u5b9e\u73b0\u6211\u4eec\u7528\u4e09\u6b21\u591a\u9879\u5f0f\u62df\u5408\u6b63\u5f26\u6ce2\u7684\u793a\u4f8b": 111, "\u73b0\u5728\u6211\u4eec\u4e0d\u518d\u9700\u8981\u624b\u52a8\u5b9e\u73b0\u7f51\u7edc\u7684\u540e\u5411\u4f20\u9012": 111, "\u5728\u5e95\u5c42": [111, 214], "\u6bcf\u4e2a\u539f\u59cb\u7684\u81ea\u52a8\u6c42\u5bfc\u64cd\u4f5c\u5b9e\u9645\u4e0a\u662f\u5bf9\u5f20\u91cf\u8fdb\u884c\u64cd\u4f5c\u7684\u4e24\u4e2a\u51fd\u6570": 111, "\u51fd\u6570\u4ece\u8f93\u5165\u5f20\u91cf\u8ba1\u7b97\u8f93\u51fa\u5f20\u91cf": 111, "\u540e\u5411": 111, "\u51fd\u6570\u63a5\u6536\u8f93\u51fa\u5f20\u91cf\u76f8\u5bf9\u4e8e\u67d0\u4e2a\u6807\u91cf\u503c\u7684\u68af\u5ea6": 111, "\u5e76\u8ba1\u7b97\u8f93\u5165\u5f20\u91cf\u76f8\u5bf9\u4e8e\u540c\u4e00\u6807\u91cf\u503c\u7684\u68af\u5ea6": 111, "\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u5b9a\u4e49\u4e00\u4e2a": 111, "\u7684\u5b50\u7c7b\u5e76\u5b9e\u73b0": 111, "\u8f7b\u677e\u5b9a\u4e49\u81ea\u5df1\u7684\u81ea\u52a8\u6c42\u5bfc\u64cd\u4f5c\u7b26": 111, "\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u6784\u9020\u5b9e\u4f8b\u5e76\u50cf\u51fd\u6570\u4e00\u6837\u8c03\u7528\u5b83": 111, "\u4f20\u9012\u5305\u542b\u8f93\u5165\u6570\u636e\u7684\u5f20\u91cf": 111, "\u6765\u4f7f\u7528\u6211\u4eec\u65b0\u7684\u81ea\u52a8\u6c42\u5bfc\u64cd\u4f5c\u7b26": 111, "\u6211\u4eec\u5c06\u6a21\u578b\u5b9a\u4e49\u4e3a": 111, "\u662f\u4e09\u9636\u7684": 111, "\u52d2\u8ba9\u5fb7\u591a\u9879\u5f0f": 111, "\u6211\u4eec\u7f16\u5199\u4e86\u81ea\u5df1\u7684\u81ea\u5b9a\u4e49\u81ea\u52a8\u6c42\u5bfc\u51fd\u6570\u6765\u8ba1\u7b97": 111, "\u7684\u524d\u5411\u548c\u540e\u5411\u4f20\u9012": 111, "\u5e76\u4f7f\u7528\u5b83\u6765\u5b9e\u73b0\u6211\u4eec\u7684\u6a21\u578b": 111, "\u548c\u81ea\u52a8\u6c42\u5bfc": 111, "\u662f\u5b9a\u4e49\u590d\u6742\u64cd\u4f5c\u975e\u5e38\u5f3a\u5927\u7684\u529f\u80fd": 111, "\u539f\u59cb\u7684\u81ea\u52a8\u6c42\u5bfc\u8fd8\u662f\u4e0d\u8db3\u4ee5\u652f\u6301\u5b9e\u73b0\u5927\u578b\u795e\u7ecf\u7f51\u7edc": 111, "\u5728\u6784\u5efa\u795e\u7ecf\u7f51\u7edc\u65f6": 111, "\u6211\u4eec\u901a\u5e38\u4f1a\u8003\u8651\u5c06\u8ba1\u7b97\u5b89\u6392\u6210": 111, "\u5176\u4e2d\u4e00\u4e9b\u5c42\u5177\u6709": 111, "\u53ef\u5b66\u4e60\u7684\u53c2\u6570": 111, "\u8fd9\u4e9b\u53c2\u6570\u5c06\u5728\u5b66\u4e60\u8fc7\u7a0b\u4e2d\u8fdb\u884c\u4f18\u5316": 111, "\u5728tensorflow\u4e2d": 111, "\u50cf": 111, "tflearn": 111, "\u63d0\u4f9b\u4e86\u76f8\u8f83\u4e8e\u539f\u59cb\u8ba1\u7b97\u56fe\u7684\u66f4\u9ad8\u5c42\u6b21\u7684\u62bd\u8c61": 111, "\u8fd9\u4e9b\u62bd\u8c61\u5bf9\u4e8e\u6784\u5efa\u795e\u7ecf\u7f51\u7edc\u975e\u5e38\u6709\u7528": 111, "\u5305\u8d77\u5230\u4e86\u540c\u6837\u7684\u4f5c\u7528": 111, "\u5305\u5b9a\u4e49\u4e86\u4e00\u7ec4": 111, "\u8fd9\u4e9b\u6a21\u5757\u76f8\u5f53\u4e8e\u795e\u7ecf\u7f51\u7edc\u5c42": 111, "\u4e00\u4e2a\u6a21\u5757\u63a5\u6536\u8f93\u5165\u5f20\u91cf\u5e76\u8ba1\u7b97\u8f93\u51fa\u5f20\u91cf": 111, "\u4f46\u4e5f\u53ef\u4ee5\u5305\u542b\u5185\u90e8\u72b6\u6001": 111, "\u4f8b\u5982\u5305\u542b\u53ef\u5b66\u4e60\u53c2\u6570\u7684\u5f20\u91cf": 111, "\u5305\u8fd8\u5b9a\u4e49\u4e86\u4e00\u7ec4\u5e38\u7528\u4e8e\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc\u7684\u6709\u7528\u7684\u635f\u5931\u51fd\u6570": 111, "\u5305\u6765\u5b9e\u73b0\u6211\u4eec\u7684\u591a\u9879\u5f0f\u6a21\u578b\u7f51\u7edc": 111, "\u6211\u4eec\u901a\u8fc7\u4f7f\u7528": 111, "\u624b\u52a8\u66f4\u6539\u5f20\u91cf\u7684\u53ef\u5b66\u4e60\u53c2\u6570": 111, "\u6765\u66f4\u65b0\u6a21\u578b\u7684\u6743\u91cd": 111, "\u5bf9\u4e8e\u50cf\u968f\u673a\u68af\u5ea6\u4e0b\u964d\u8fd9\u6837\u7684\u4f18\u5316\u7b97\u6cd5\u6765\u8bf4": 111, "\u8fd9\u5e76\u4e0d\u662f\u4e00\u4e2a\u5f88\u5927\u7684\u8d1f\u62c5": 111, "\u4f46\u5728\u5b9e\u8df5\u4e2d": 111, "\u6211\u4eec\u7ecf\u5e38\u4f7f\u7528\u66f4\u590d\u6742\u7684\u4f18\u5316\u5668\u6765\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc": 111, "\u6bd4\u5982": 111, "\u5305\u62bd\u8c61\u4e86\u4f18\u5316\u7b97\u6cd5\u7684\u5b9a\u4e49": 111, "\u5e76\u63d0\u4f9b\u4e86\u5e38\u7528\u4f18\u5316\u7b97\u6cd5\u7684\u5b9e\u73b0": 111, "\u6211\u4eec\u5c06\u50cf\u4ee5\u524d\u4e00\u6837\u4f7f\u7528": 111, "\u5305\u6765\u5b9a\u4e49\u6211\u4eec\u7684\u6a21\u578b": 111, "\u4f46\u6211\u4eec\u5c06\u4f7f\u7528": 111, "\u5305\u63d0\u4f9b\u7684": 111, "\u7b97\u6cd5\u6765\u4f18\u5316\u6a21\u578b": 111, "\u6709\u65f6\u4f60\u53ef\u80fd\u4f1a\u5e0c\u671b\u81ea\u5b9a\u4e49\u6bd4\u73b0\u6709\u6a21\u5757\u96c6\u66f4\u590d\u6742\u7684\u6a21\u578b": 111, "\u5728\u8fd9\u4e9b\u60c5\u51b5\u4e0b": 111, "\u4f60\u53ef\u4ee5\u901a\u8fc7\u7ee7\u627f": 111, "\u5e76\u5b9a\u4e49\u4e00\u4e2a": 111, "\u65b9\u6cd5\u6765\u81ea\u5b9a\u4e49\u6a21\u5757": 111, "\u8be5\u65b9\u6cd5\u63a5\u6536\u8f93\u5165\u5f20\u91cf": 111, "\u5e76\u4f7f\u7528\u5176\u4ed6\u6a21\u5757\u6216\u5728\u5f20\u91cf\u4e0a\u81ea\u52a8\u6c42\u5bfc\u7b49\u64cd\u4f5c\u751f\u6210\u65b0\u7684\u8f93\u51fa\u5f20\u91cf": 111, "\u6211\u4eec\u5c06\u5b9e\u73b0\u4e00\u4e2a\u4e09\u6b21\u591a\u9879\u5f0f\u4f5c\u4e3a\u81ea\u5b9a\u4e49\u6a21\u5757\u7684\u5b50\u7c7b": 111, "\u4f5c\u4e3a\u52a8\u6001\u8ba1\u7b97\u56fe\u548c\u6743\u91cd\u5171\u4eab\u7684\u4e00\u4e2a\u793a\u4f8b": 111, "\u6211\u4eec\u5b9e\u73b0\u4e86\u4e00\u4e2a\u975e\u5e38\u5947\u7279\u7684\u6a21\u578b": 111, "\u4e00\u4e2a\u4e09\u81f3\u4e94\u9636\u7684\u591a\u9879\u5f0f": 111, "\u5728\u6bcf\u6b21\u524d\u5411\u4f20\u9012\u65f6\u968f\u673a\u9009\u62e9\u4e00\u4e2a3\u52305\u4e4b\u95f4\u7684\u6570\u5b57": 111, "\u5e76\u4f7f\u7528\u8be5\u9636\u6570\u591a\u9879\u5f0f\u6765\u8ba1\u7b97": 111, "\u91cd\u590d\u4f7f\u7528\u76f8\u540c\u7684\u6743\u91cd\u591a\u6b21\u4ee5\u8ba1\u7b97\u56db\u9636\u548c\u4e94\u9636\u591a\u9879\u5f0f": 111, "\u5bf9\u4e8e\u8fd9\u4e2a\u6a21\u578b": 111, "\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528python\u6d41\u63a7\u5236\u6765\u5b9e\u73b0\u5faa\u73af": 111, "\u5e76\u4e14\u53ef\u4ee5\u901a\u8fc7\u5728\u5b9a\u4e49\u524d\u5411\u4f20\u9012\u65f6": 111, "\u591a\u6b21\u91cd\u590d\u4f7f\u7528\u76f8\u540c\u7684\u53c2\u6570": 111, "\u6765\u5b9e\u73b0\u6743\u91cd\u5171\u4eab": 111, "\u6211\u4eec\u53ef\u4ee5\u5f88\u5bb9\u6613\u5730\u5c06\u8fd9\u4e2a\u6a21\u578b\u5b9e\u73b0\u4e3a\u4e00\u4e2a\u6a21\u5757\u7684\u5b50\u7c7b": 111, "\u5177\u4f53\u793a\u4f8b\u5982\u4e0b": 111, "unpickl": 112, "facil": 112, "running_mean": [112, 143, 200, 251], "themodelclass": 112, "param_tensor": [112, 251], "var_nam": [112, 251], "param_group": [112, 160, 213, 218, 246], "dampen": 112, "4675713712": 112, "4675713784": 112, "4675714000": 112, "4675714072": 112, "4675714216": 112, "4675714288": 112, "4675714432": 112, "4675714504": 112, "4675714648": 112, "4675714720": 112, "_use_new_zipfile_seri": 112, "inconsist": [112, 145, 243], "best_model_st": 112, "deepcopi": [112, 139, 143, 158, 183, 200, 201], "overfit": [112, 128, 158], "model_script": 112, "model_state_dict": [112, 216, 222, 243], "theoptimizerclass": 112, "modela_state_dict": [112, 245], "modela": [112, 245], "modelb_state_dict": [112, 245], "modelb": [112, 245], "optimizera_state_dict": [112, 245], "optimizera": [112, 245], "optimizerb_state_dict": [112, 245], "optimizerb": [112, 245], "themodelaclass": 112, "themodelbclass": 112, "theoptimizeraclass": 112, "theoptimizerbclass": 112, "gan": [112, 121, 154, 245], "ensembl": [112, 121], "remap": 112, "overwrit": 112, "saving_loading_model": 112, "pendo": 113, "abbo": 113, "joe": [113, 134], "cum": 113, "cnndm": 113, "imdb": 113, "multi30k": [113, 118], "sentencepiec": 113, "t5transform": 113, "padding_idx": 113, "eos_idx": [113, 118], "max_seq_len": 113, "t5_sp_model_path": 113, "t5_tokenizer_bas": 113, "sp_model_path": 113, "t5_base_gener": 113, "t5_base": 113, "beam": 113, "sequence_gener": 113, "datapip": [113, 116], "appendix": 113, "cnndm_batch_siz": 113, "cnndm_datapip": 113, "apply_prefix": 113, "rows2columnar": 113, "cnndm_dataload": 113, "batch_prefix": 113, "sst2": 113, "imdb_batch_s": 113, "imdb_datapip": 113, "process_label": 113, "imdb_dataload": 113, "german": [113, 116, 118, 127, 128], "multi_batch_s": 113, "language_pair": [113, 118], "multi_datapip": 113, "multi_dataload": 113, "input_text": 113, "beam_siz": 113, "model_output": [113, 142, 163], "num_beam": 113, "output_text": 113, "year": [113, 151, 154], "tattoo": 113, "decad": [113, 177], "australia": 113, "campaign": 113, "honest": 113, "london": 113, "stephen": 113, "hendri": 113, "fame": [113, 268], "supermodel": 113, "sydnei": 113, "australian": 113, "fan": [113, 129, 159], "him": 113, "hotel": 113, "heartthrob": 113, "strai": 113, "pooch": 113, "buri": 113, "stagger": 113, "nearbi": 113, "farm": 113, "dirt": 113, "emaci": 113, "disloc": 113, "jaw": 113, "leg": 113, "injuri": [113, 265], "cave": 113, "sinu": 113, "caviti": 113, "surgeri": [113, 172], "breath": 113, "theia": 113, "bulli": 113, "breed": 113, "appar": [113, 158], "whack": 113, "hammer": 113, "miracl": 113, "sara": 113, "mellado": 113, "mohammad": 113, "javad": 113, "zarif": 113, "iran": 113, "sunni": 113, "fridai": 113, "morn": 113, "bring": [113, 160, 169, 172, 185, 194, 207], "rejoin": 113, "john": 113, "kerri": 113, "foreign": 113, "minist": 113, "takeov": 113, "iranian": 113, "consul": 113, "tweet": 113, "american": 113, "week": 113, "ebola": 113, "west": 113, "africa": 113, "discharg": 113, "hasn": 113, "clinician": 113, "health": 113, "boston": 113, "viru": 113, "sierra": 113, "march": 113, "diagnos": [113, 133], "diseas": [113, 172], "maryland": 113, "nation": 113, "institut": 113, "patient": [113, 172], "campu": 113, "polic": 113, "offic": [113, 199, 200], "affair": 113, "admit": 113, "noos": 113, "wednesdai": 113, "incid": 113, "racist": 113, "colleg": 113, "duke": 113, "disciplinari": 113, "school": 113, "rope": 113, "sci": [113, 115], "fi": 113, "tv": 113, "underfund": 113, "misunderstood": 113, "babylon": 113, "star": 113, "trek": 113, "silli": [113, 125], "prosthet": 113, "cheap": 113, "cardboard": 113, "stilt": 113, "dialogu": 113, "cg": 113, "painfulli": 113, "clich\u00e9d": 113, "uninspir": 113, "viewer": 113, "emot": 113, "genr": 113, "serious": 113, "cf": 113, "seriou": 113, "foolish": 113, "spark": 113, "Their": [113, 192, 194], "reaction": 113, "wooden": [113, 265], "maker": 113, "rubbish": 113, "gene": 113, "roddenberri": 113, "ash": 113, "orbit": 113, "dull": 113, "poorli": [113, 127], "advert": 113, "trudg": 113, "trabant": 113, "lumber": 113, "spoiler": 113, "kill": 113, "actor": [113, 137], "jeeez": 113, "dalla": 113, "entertain": 113, "rental": 113, "fight": 113, "van": 113, "damm": 113, "shoot": 113, "battl": 113, "shell": [113, 210, 215, 220, 225], "shotgun": 113, "terrorist": 113, "bomb": 113, "blow": 113, "br": 113, "inclus": [113, 174, 175, 248], "rabbit": 113, "hardli": [113, 115], "profound": 113, "stereotyp": 113, "angri": 113, "veteran": 113, "terrifi": 113, "illeg": 113, "alien": 113, "crook": 113, "cop": 113, "indiffer": 113, "bitchi": 113, "ladi": 113, "station": 113, "politician": 113, "federal": 113, "typecast": 113, "mexican": 113, "hollywood": 113, "1940": 113, "passabl": 113, "villain": 113, "certainli": [113, 144, 192, 194], "knew": 113, "gui": [113, 228, 253, 265], "weren": [113, 139, 155], "desert": 113, "simplist": 113, "hamlet": 113, "annoi": [113, 146], "vd": 113, "daughter": 113, "film": 113, "semi": [113, 121, 195, 198], "alright": 113, "dam": 113, "disappoint": [113, 115], "budget": [113, 126], "poor": 113, "orang": [113, 125, 159], "ein": [113, 118], "mann": 113, "einem": [113, 118], "orangen": 113, "hut": 113, "der": 113, "etwa": 113, "schaut": 113, "mit": [113, 140], "orangefarbenen": 113, "anstarrt": 113, "terrier": 113, "lush": 113, "grass": 113, "front": [113, 115, 139, 157, 177, 178], "fenc": 113, "l\u00e4uft": 113, "auf": 113, "\u00fcppigem": 113, "gr\u00fcnem": 113, "gra": 113, "vor": [113, 118], "wei\u00dfen": 113, "zaun": 113, "\u00fcber": 113, "saftig": 113, "gr\u00fcne": 113, "girl": 113, "karat": 113, "m\u00e4dchen": 113, "bricht": 113, "einen": [113, 116], "st\u00f6ck": 113, "frontkick": 113, "karateanzug": 113, "brett": 113, "tritt": 113, "wear": 113, "jacket": 113, "helmet": 113, "snow": 113, "snowmobil": 113, "f\u00fcnf": 113, "menschen": [113, 118], "winterjacken": 113, "und": 113, "helmen": 113, "stehen": 113, "schnee": 113, "schneemobilen": 113, "hintergrund": 113, "leut": 113, "roof": 113, "hous": 113, "die": 113, "fixieren": 113, "da": 113, "dach": 113, "haus": 113, "reparieren": 113, "t5_tutori": 113, "firstnam": 114, "lastnam": 114, "gallery_pattern": 114, "neural_style_transfer_tutori": 114, "_build": 114, "beginner_sourc": 114, "link1": 114, "link2": 114, "template_tutori": 114, "portalock": 115, "ag_new": 115, "fear": 115, "pension": 115, "union": [115, 180], "turner": 115, "newal": 115, "stricken": 115, "firm": 115, "feder": 115, "mogul": 115, "race": [115, 136], "spaceflight": 115, "toronto": 115, "canada": [115, 266], "rocket": 115, "ansari": 115, "prize": 115, "contest": 115, "fund": 115, "suborbit": 115, "flight": 115, "ky": 115, "grant": 115, "peptid": 115, "ap": 115, "chemistri": 115, "louisvil": 115, "amino": 115, "acid": 115, "protein": 115, "revisit": [115, 192, 265], "yield_token": [115, 118], "data_it": [115, 116, 118], "475": [115, 164], "5297": 115, "text_pipelin": 115, "label_pipelin": 115, "collate_batch": 115, "label_list": [115, 138, 172, 186], "text_list": 115, "_label": 115, "_text": 115, "processed_text": 115, "cumsum": 115, "textclassificationmodel": 115, "embed_dim": [115, 165], "sport": 115, "tec": 115, "total_acc": 115, "total_count": 115, "to_map_style_dataset": 115, "total_accu": 115, "num_train": 115, "split_train_": 115, "split_valid_": 115, "valid_dataload": 115, "accu_v": 115, "accu_test": 115, "golf": 115, "ag_news_label": 115, "ex_text_str": 115, "memphi": 115, "tenn": 115, "ago": 115, "jon": 115, "rahm": 115, "endur": 115, "season": 115, "weather": 115, "sundai": 115, "royal": 115, "portrush": 115, "wind": 115, "rain": 115, "thursdai": 115, "wgc": 115, "fedex": 115, "jude": 115, "invit": 115, "stori": 115, "mid": 115, "spaniard": 115, "stroke": 115, "flawless": 115, "pga": 115, "tour": 115, "nine": 115, "tpc": 115, "southwind": 115, "text_sentiment_ngrams_tutori": 115, "sharma": 116, "legaci": 116, "tatoeba": [116, 166], "deu": 116, "en_core_web_sm": [116, 118], "de_core_news_sm": [116, 118], "dp": [116, 124, 177, 178], "eng": [116, 166, 196], "file_path": 116, "data_pip": 116, "iterablewrapp": 116, "fileopen": 116, "parse_csv": 116, "skip_lin": 116, "removeattribut": 116, "engtoken": 116, "detoken": 116, "haben": 116, "sie": 116, "guten": 116, "gettoken": 116, "source_vocab": 116, "min_freq": [116, 118], "special_first": [116, 118], "target_vocab": 116, "get_ito": 116, "gettransform": 116, "text_tranform": 116, "vocabtransform": 116, "addtoken": 116, "temp_list": 116, "some_sent": 116, "798": 116, "transformed_sent": 116, "index_to_str": 116, "applytransform": 116, "sequence_pair": 116, "bucketbatch": 116, "sortbucket": 116, "batch_num": 116, "bucket_num": 116, "use_in_batch_shuffl": 116, "sort_kei": 116, "x_3": [116, 265], "y_3": 116, "x_4": [116, 265], "y_4": 116, "separatesourcetarget": 116, "applypad": 116, "pair_of_sequ": 116, "source_index_to_str": 116, "target_index_to_str": 116, "showsometransformedsent": 116, "traget": 116, "torchtext_custom_dataset_tutori": 116, "cs231n": 117, "licens": [117, 138, 140, 167], "bsd": [117, 167], "image_dataset": [117, 158], "dataset_s": [117, 158], "class_nam": [117, 140, 158, 172, 215], "train_model": [117, 158, 247], "tempdir": 117, "best_model_params_path": 117, "best_model_param": 117, "best_acc": [117, 158], "running_correct": [117, 158], "set_grad_en": [117, 158, 221], "epoch_loss": [117, 136, 158], "epoch_acc": [117, 158], "time_elaps": [117, 158], "visualize_model": [117, 158], "was_train": [117, 158], "images_so_far": 117, "model_ft": [117, 158], "num_ftr": [117, 158], "optimizer_ft": [117, 158], "exp_lr_schedul": [117, 158], "step_siz": [117, 122, 123, 130, 158, 179], "model_conv": 117, "optimizer_conv": 117, "visualize_model_predict": 117, "72100438_73de9f17af": 117, "transfer_learning_tutori": 117, "\u8fdb\u884c\u8bed\u8a00\u7ffb\u8bd1": [118, 121], "inbuilt": [118, 154], "1756": 118, "issuecom": 118, "1163664163": 118, "githubusercont": [118, 119, 179], "neychev": 118, "small_dl_repo": 118, "src_languag": 118, "tgt_languag": 118, "token_transform": 118, "vocab_transform": 118, "language_index": 118, "data_sampl": 118, "unk_idx": 118, "pad_idx": 118, "bos_idx": 118, "special_symbol": 118, "bo": 118, "ln": 118, "emb_siz": 118, "maxlen": [118, 161], "den": 118, "pos_embed": 118, "register_buff": [118, 154, 204], "token_embed": 118, "tokenembed": 118, "seq2seqtransform": 118, "num_encoder_lay": 118, "num_decoder_lay": 118, "src_vocab_s": 118, "tgt_vocab_s": 118, "dim_feedforward": 118, "src_tok_emb": 118, "tgt_tok_emb": 118, "positional_encod": 118, "trg": 118, "src_mask": 118, "tgt_mask": 118, "src_padding_mask": 118, "tgt_padding_mask": 118, "memory_key_padding_mask": 118, "src_emb": 118, "tgt_emb": 118, "tgt": [118, 166], "generate_square_subsequent_mask": 118, "sz": 118, "triu": [118, 154], "masked_fil": [118, 193], "create_mask": 118, "src_seq_len": 118, "tgt_seq_len": 118, "ffn_hid_dim": 118, "xavier_uniform_": 118, "ignore_index": 118, "pad_sequ": 118, "club": 118, "sequential_transform": 118, "txt_input": 118, "tensor_transform": 118, "token_id": 118, "text_transform": 118, "src_batch": 118, "tgt_batch": 118, "src_sampl": 118, "tgt_sampl": 118, "rstrip": 118, "train_epoch": [118, 166], "tgt_input": 118, "tgt_out": 118, "val_dataload": [118, 149], "ingredi": 118, "timeit": [118, 139, 145, 146, 150, 155, 195, 225, 236, 241, 248], "default_tim": [118, 195, 241], "train_loss": 118, "end_tim": [118, 232, 239], "greedy_decod": 118, "start_symbol": 118, "ys": 118, "prob": [118, 160, 162, 164, 170], "next_word": 118, "src_sentenc": 118, "num_token": 118, "tgt_token": 118, "lookup_token": 118, "grupp": 118, "von": 118, "steht": 118, "iglu": 118, "3f5ee243547dee91fbd053c1c4a845aa": 118, "pdf": 118, "harvard": 118, "edu": [118, 179], "translation_transform": 118, "geeta": [119, 177], "chauhan": [119, 177], "facebook": [119, 136, 206, 224], "android": [119, 121, 196, 198, 229, 230, 253, 255], "2012": [119, 266], "hundr": [119, 120, 124, 172], "distil": [119, 121, 189], "timm": 119, "imagenet_default_mean": 119, "imagenet_default_std": 119, "facebookresearch": [119, 185, 218], "deit_base_patch16_224": 119, "clsidx": 119, "269": [119, 148], "timber": [119, 190], "wolf": [119, 190], "cani": [119, 190], "lupu": [119, 190], "scripted_model": [119, 190], "fbdeit_script": 119, "346mb": 119, "qnnpack": [119, 159, 180, 220, 225, 230], "qconfig_spec": [119, 230], "scripted_quantized_model": 119, "fbdeit_scripted_quant": 119, "fbdeit_quantized_script": 119, "89mb": 119, "mobile_optim": [119, 190, 196, 208, 220, 224, 226, 227, 255], "optimize_for_mobil": [119, 190, 196, 208, 220, 224, 225, 226, 227, 255], "optimized_scripted_quantized_model": 119, "fbdeit_optimized_scripted_quant": 119, "_save_for_lite_interpret": [119, 189, 190, 196, 206, 224, 225], "fbdeit_optimized_scripted_quantized_lit": 119, "ptl": [119, 189, 206, 224, 225], "prof1": 119, "prof2": 119, "prof3": 119, "prof4": 119, "prof5": 119, "1236": 119, "69m": 119, "1226": 119, "72m": 119, "593": 119, "19m": 119, "598": 119, "01m": 119, "81": [119, 145], "52": [119, 127, 148, 177], "vt_tutori": 119, "spread": [120, 172], "demand": 120, "mesh": [120, 124], "ddp_series_intro": 120, "utm_sourc": 120, "distr_land": 120, "utm_medium": 120, "distributeddata": 120, "ddp_tutori": 120, "intermediate_ddp_tutori": 120, "generic_join": 120, "fsdp_tutori": 120, "fsdp_getting_start": 120, "huggingfac": [120, 122, 123, 186, 203], "hf": 120, "t5": 120, "fsdp_adavnced_tutori": 120, "fsdp_advanc": 120, "tp_tutori": [120, 124], "distributed_device_mesh": 120, "rpc_tutori": 120, "rpc_getting_start": 120, "rpc_param_server_tutori": 120, "rpc_async_execut": 120, "rpc_ddp_tutori": 120, "rpc_plus_ddp": 120, "plug": [120, 156, 167, 225], "process_group_cpp_extension_tutori": 120, "custom_extensions_cpp": 120, "\u65b0\u589e\u6559\u7a0b": 121, "\u4e3a": [121, 216, 246], "\u6355\u83b7\u66f4\u5927\u7684\u540e\u5411\u56fe": 121, "\u901a\u8fc7\u533a\u57df\u7f16\u8bd1\u51cf\u5c11": [121, 253], "\u51b7\u542f\u52a8\u7f16\u8bd1\u65f6\u95f4": [121, 253], "\u5982\u4f55\u5728": [121, 253, 259], "torchinductor": [121, 173, 187, 201], "\u719f\u6089": 121, "\u7684\u6982\u5ff5\u548c\u6a21\u5757": 121, "\u901a\u8fc7\u672c\u5feb\u901f\u5165\u95e8\u6307\u5357": 121, "\u5b66\u4e60\u5982\u4f55\u52a0\u8f7d\u6570\u636e": 121, "\u6784\u5efa\u6df1\u5ea6\u795e\u7ecf\u7f51\u7edc": 121, "\u8bad\u7ec3\u548c\u4fdd\u5b58\u6a21\u578b": 121, "\u5f00\u542f": 121, "\u65c5\u7a0b": 121, "\u793a\u4f8b": [121, 249, 260], "\u5c0f\u5de7\u6613\u7528": 121, "\u5373\u65f6\u90e8\u7f72\u7684": 121, "\u4ee3\u7801\u793a\u4f8b": 121, "\u5168\u90e8": 121, "\u9010\u6b65\u6559\u4f60\u5982\u4f55\u7528pytorch\u6784\u5efa\u5b8c\u6574\u7684\u673a\u5668\u5b66\u4e60\u6d41\u7a0b": 121, "\u4ecb\u7ecd\u89c6\u9891": 121, "\u7528pytorch\u6784\u5efa\u5b8c\u6574\u7684\u673a\u5668\u5b66\u4e60\u5de5\u4f5c\u6d41\u7a0b": 121, "pytorch\u521d\u5b66\u8005\u7cfb\u5217": 121, "\u901a\u8fc7\u793a\u4f8b\u5b66\u4e60": 121, "\u672c\u6559\u7a0b\u901a\u8fc7\u72ec\u7acb\u7684\u793a\u4f8b\u4ecb\u7ecd\u4e86": 121, "\u4ec0\u4e48\u662f": 121, "\u6765\u521b\u5efa\u548c\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc": 121, "\u5c55\u73b0\u6a21\u578b": 121, "\u6570\u636e\u548c\u8bad\u7ec3\u8fc7\u7a0b": 121, "\u5b66\u4e60\u4f7f\u7528": 121, "\u53ef\u89c6\u5316\u6570\u636e\u96c6\u548c\u6a21\u578b\u8bad\u7ec3\u8fc7\u7a0b": 121, "\u76ee\u6807\u68c0\u6d4b\u5fae\u8c03\u6559\u7a0b": 121, "\u5fae\u8c03\u9884\u8bad\u7ec3\u7684": 121, "\u4f7f\u7528\u8fc1\u79fb\u5b66\u4e60\u8bad\u7ec3\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u8fdb\u884c\u56fe\u50cf\u5206\u7c7b": 121, "\u4f18\u5316\u89c6\u89c9transformer\u6a21\u578b": 121, "\u5e94\u7528\u6700\u524d\u6cbf\u7684": 121, "\u57fa\u4e8e": 121, "\u6a21\u578b\u5230\u8ba1\u7b97\u673a\u89c6\u89c9\u4efb\u52a1\u4e2d": 121, "\u5bf9\u6297\u6027\u6837\u672c\u751f\u6210": 121, "dcgan": 121, "\u5b66\u4e60\u5982\u4f55\u901a\u8fc7\u89c6\u89c9\u6ce8\u610f\u673a\u5236\u589e\u5f3a\u4f60\u7684\u7f51\u7edc": 121, "tiatoolbox": 121, "\u5bf9\u56fe\u50cf\u8fdb\u884c\u63a8\u7406": 121, "\u5b66\u4e60\u5982\u4f55\u4f7f\u7528tiatoolbox\u5bf9\u56fe\u50cf\u8fdb\u884c\u63a8\u7406": 121, "usb": [121, 159], "\u7684\u534a\u76d1\u7763\u5b66\u4e60\u6559\u7a0b": 121, "\u5b66\u4e60\u5982\u4f55\u4f7f\u7528": [121, 253], "\u5bf9\u81ea\u5b9a\u4e49\u6570\u636e\u8fdb\u884c\u534a\u76d1\u7763\u5b66\u4e60\u7b97\u6cd5\u7684\u8bad\u7ec3": 121, "\u52a0\u8f7d\u6570\u636e": [121, 237, 253], "\u91cd\u91c7\u6837": 121, "\u5bf9\u97f3\u9891\u6ce2\u5f62\u8fdb\u884c\u91cd\u65b0\u91c7\u6837": 121, "\u6570\u636e\u589e\u5f3a": 121, "\u5e94\u7528\u6570\u636e\u589e\u5f3a": 121, "\u7279\u5f81\u63d0\u53d6": 121, "\u63d0\u53d6\u7279\u5f81": 121, "\u7279\u5f81\u589e\u5f3a": 121, "\u5bf9\u7279\u5f81\u8fdb\u884c\u589e\u5f3a": 121, "\u4e2d\u4f7f\u7528": [121, 253], "wav2vec2": 121, "\u8fdb\u884c\u81ea\u52a8\u8bed\u97f3\u8bc6\u522b": 121, "\u7684\u9884\u8bad\u7ec3\u6a21\u578b\u6765\u6784\u5efa\u8bed\u97f3\u8bc6\u522b\u5e94\u7528\u7a0b\u5e8f": 121, "\u8bed\u97f3\u547d\u4ee4\u5206\u7c7b": 121, "\u5b66\u4e60\u5982\u4f55\u6b63\u786e\u683c\u5f0f\u5316\u97f3\u9891\u6570\u636e\u96c6": 121, "\u7136\u540e\u5728\u8be5\u6570\u636e\u96c6\u4e0a\u8bad\u7ec3": 121, "\u6d4b\u8bd5\u97f3\u9891\u5206\u7c7b\u5668\u7f51\u7edc": 121, "\u8fdb\u884c\u6587\u672c\u8f6c\u8bed\u97f3": 121, "\u7684\u9884\u8bad\u7ec3\u6a21\u578b\u6784\u5efa\u6587\u672c\u8f6c\u8bed\u97f3\u5e94\u7528\u7a0b\u5e8f": 121, "\u8fdb\u884c\u5bf9\u9f50": 121, "\u9884\u8bad\u7ec3\u6a21\u578b\u5bf9\u6587\u672c\u8fdb\u884c\u4e0e\u8bed\u97f3\u5bf9\u9f50": 121, "\u63d0\u5347\u63a8\u7406\u6548\u7387": 121, "\u5b9e\u73b0\u7684": [121, 246], "\u4ee5\u5b9e\u73b0\u9ad8\u6027\u80fd\u7684\u63a8\u65ad": 121, "\u4ece\u96f6\u5f00\u59cb\u7684\u81ea\u7136\u8bed\u8a00\u5904\u7406": 121, "\u4f7f\u7528\u5b57\u7b26\u7ea7": 121, "\u5bf9\u59d3\u540d\u8fdb\u884c\u5206\u7c7b": 121, "\u6784\u5efa\u5e76\u8bad\u7ec3\u4e00\u4e2a\u57fa\u672c\u7684\u5b57\u7b26\u7ea7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc": 121, "\u4ece\u96f6\u5f00\u59cb\u5206\u7c7b\u5355\u8bcd": 121, "\u800c\u4e0d\u4f7f\u7528": 121, "\u751f\u6210\u59d3\u540d": [121, 127, 166], "\u5728\u4f7f\u7528\u5b57\u7b26\u7ea7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u5bf9\u59d3\u540d\u8fdb\u884c\u5206\u7c7b\u4e4b\u540e": 121, "\u5b66\u4e60\u5982\u4f55\u4ece\u8bed\u8a00\u4e2d\u751f\u6210\u59d3\u540d": 121, "\u4f7f\u7528\u5e8f\u5217\u5230\u5e8f\u5217\u7f51\u7edc\u548c\u6ce8\u610f\u529b\u8fdb\u884c\u7ffb\u8bd1": 121, "\u5728\u8fd9\u91cc\u6211\u4eec\u7f16\u5199\u81ea\u5df1\u7684\u7c7b\u548c\u51fd\u6570\u6765\u9884\u5904\u7406\u6570\u636e\u4ee5\u6267\u884c\u6211\u4eec\u7684\u81ea\u7136\u8bed\u8a00\u5904\u7406\u5efa\u6a21\u4efb\u52a1": 121, "\u8fdb\u884c\u6587\u672c\u5206\u7c7b": 121, "\u5e93\u6784\u5efa\u6570\u636e\u96c6\u5e76\u5bf9\u6587\u672c\u8fdb\u884c\u5206\u7c7b": 121, "\u4ece\u96f6\u5f00\u59cb\u8bad\u7ec3\u4e00\u4e2a\u4f7f\u7528": 121, "\u7684\u8bed\u8a00\u7ffb\u8bd1\u6a21\u578b": 121, "\u4f7f\u7528torchtext\u9884\u5904\u7406\u81ea\u5b9a\u4e49\u6587\u672c\u6570\u636e\u96c6": 121, "\u51c6\u5907\u81ea\u5b9a\u4e49\u6570\u636e\u96c6": 121, "\u53ef\u9009": [121, 253], "\u6a21\u578b\u5bfc\u51fa\u4e3a": 121, "\u8fd0\u884c\u5b83": 121, "\u6784\u5efa\u4e00\u4e2a": 121, "\u56fe\u50cf\u5206\u7c7b\u5668\u6a21\u578b": 121, "\u7136\u540e\u5c06\u5176\u8f6c\u6362\u4e3a": 121, "\u683c\u5f0f": [121, 249, 253, 259], "\u6700\u540e\u4f7f\u7528": 121, "\u90e8\u7f72\u5b83": 121, "\u4ecb\u7ecd": [121, 249, 253, 257], "\u6f14\u793a\u5982\u4f55\u901a\u8fc7\u4f7f\u7528": 121, "\u6765\u89e3\u51b3\u4e0d\u652f\u6301\u7684\u64cd\u4f5c\u7b26": 121, "\u4ece\u800c\u5b9e\u73b0\u7aef\u5230\u7aef\u7684\u6d41\u7a0b": 121, "\u5f3a\u5316\u5b66\u4e60": 121, "dqn": 121, "cartpol": [121, 137, 161, 164], "\u4efb\u52a1\u4e0a\u8bad\u7ec3\u4e00\u4e2a": 121, "\u4ee3\u7406": 121, "\u4f7f\u7528torchrl\u8fdb\u884c\u5f3a\u5316\u5b66\u4e60": 121, "torchrl": [121, 137, 147], "proxim": [121, 160], "pendulum": [121, 160], "\u8bad\u7ec3\u4e00\u4e2a\u9a6c\u91cc\u5965\u6e38\u620f\u7684": 121, "mario": [121, 147, 154], "ddpg": 121, "\u4e2d\u90e8\u7f72": [121, 140], "densenet": [121, 140, 215], "121": [121, 140, 145, 179, 240], "\u4e2d\u52a0\u8f7d": [121, 140, 253], "thumbnail": [121, 172], "holist": 121, "fuser": 121, "nchw": [121, 130, 148, 178, 222, 225], "raspberri": 121, "nerur": 121, "netork": 121, "exploresever": 121, "tangent": [121, 142, 146], "plugin": [121, 169, 210], "rai": 121, "orthogon": [121, 154], "symmetr": [121, 138, 154, 199, 202], "prune": [121, 154, 198], "snapshot": [121, 132, 175, 210, 224], "grok": 121, "torchserv": [121, 162, 215, 253], "torchx": 121, "inductor": [121, 175, 185, 188, 198, 199, 257, 258], "scaled_dot_product_attent": [121, 165, 195], "paral": 121, "executorch": [121, 199], "sdk": [121, 210, 229, 260], "v3": [121, 230], "xnnpack": [121, 180, 199, 200, 202], "metal": 121, "shader": 121, "fp32": [121, 122, 132, 138, 148, 178, 180, 185, 186, 190, 199, 201, 223, 236], "torchrec": 121, "distributedmodelparallel": 121, "torchmultimod": 121, "\u89c6\u89c9": 121, "\u6587\u672c": 121, "\u5f3a\u5316\u5b66\u4e60\u7684": 121, "\u53ef\u4ee5\u5c06\u5176\u878d\u5165\u73b0\u6709\u5de5\u4f5c\u5185\u5bb9": 121, "sheet": 121, "\u57fa\u7840\u5185\u5bb9\u901f\u89c8": 121, "\u4e0a\u7684\u6559\u7a0b": 121, "\u83b7\u53d6": 121, "\u4e0a\u8fd0\u884c\u6559\u7a0b": 121, "\u5b66\u4e60\u5982\u4f55\u5c06\u6559\u7a0b\u6570\u636e\u590d\u5236\u5230": 121, "\u4ee5\u4fbf\u60a8\u53ef\u4ee5\u5728": 121, "hamid": [122, 123, 177, 178], "shojanazeri": [122, 123, 177, 178], "wright": 122, "rohan": [122, 163], "varma": [122, 163], "yanli": [122, 123], "zhao": [122, 123], "wikihow": 122, "p4dn": 122, "pressur": 122, "fdsp": 122, "discard": [122, 123, 169], "reduce_scatt": [122, 123, 124], "xxl": 122, "3b": [122, 159], "whl": [122, 138, 158, 169, 173, 185, 189, 190], "cu113": 122, "torch_nightli": [122, 138, 158, 189, 190], "wikihowal": 122, "wikihowsep": 122, "cs": 122, "summarization_dataset": 122, "t5_train": 122, "gpt2tokenizerfast": 122, "t5token": 122, "t5forconditionalgener": 122, "modeling_t5": 122, "t5block": 122, "checkpoint_wrapp": 122, "checkpointimpl": 122, "apply_activation_checkpointing_wrapp": 122, "fullyshardeddataparallel": [122, 123, 124, 156, 216, 217], "mixedprecis": 122, "backwardprefetch": [122, 123], "shardingstrategi": [122, 217], "fullstatedictconfig": 122, "statedicttyp": [122, 216], "transformer_auto_wrap_polici": 122, "enable_wrap": [122, 123], "cleanup": [122, 123, 134, 216], "setup_model": 122, "get_date_of_run": 122, "2022": [122, 188], "12_pm": 122, "date_of_run": 122, "s_": [122, 161], "format_metrics_to_gb": 122, "gigabyt": 122, "metric_num": 122, "g_gigabyt": 122, "ndigit": 122, "fsdp_loss": 122, "inner_pbar": 122, "colour": 122, "desc": [122, 138, 186], "source_id": 122, "attention_mask": [122, 138, 186], "source_mask": 122, "target_id": [122, 166], "train_accuraci": 122, "val_load": 122, "fsdp_main": [122, 123], "type_path": 122, "output_length": 122, "print_text": 122, "150": [122, 164], "val_dataset": 122, "sampler1": [122, 123], "num_replica": [122, 123], "sampler2": [122, 123], "train_kwarg": [122, 123, 130], "test_kwarg": [122, 123, 130], "test_batch_s": [122, 123], "cuda_kwarg": [122, 123, 130], "t5_auto_wrap_polici": 122, "transformer_layer_cl": 122, "sharding_strategi": [122, 217], "shard_grad_op": 122, "zero2": 122, "full_shard": 122, "zero3": 122, "init_start_ev": [122, 123], "enable_tim": [122, 123, 173], "init_end_ev": [122, 123], "bf16_readi": 122, "is_bf16_support": 122, "loosevers": 122, "is_nccl_avail": 122, "mp_polici": 122, "bfsixteen": 122, "auto_wrap_polici": [122, 123], "mixed_precis": 122, "current_devic": [122, 232], "curr_val_loss": 122, "file_save_nam": 122, "time_of_run": 122, "dur": 122, "train_acc_track": 122, "val_acc_track": 122, "training_start_tim": 122, "track_memori": 122, "mem_alloc_track": 122, "mem_reserved_track": 122, "run_valid": 122, "zone": 122, "memory_alloc": [122, 130], "memory_reserv": 122, "save_model": [122, 123], "save_polici": 122, "offload_to_cpu": 122, "rank0_onli": 122, "state_dict_typ": 122, "full_state_dict": 122, "cpu_stat": 122, "currepoch": 122, "save_nam": 122, "barrier": [122, 123, 134, 136, 138, 177, 186], "metavar": [122, 123, 162, 164], "002": 122, "store_tru": [122, 123], "store_fals": 122, "nnode": [122, 134], "transfom": 122, "mhsa": 122, "ffn": 122, "fsdp_auto_wrap_polici": [122, 123], "bfloat16": [122, 185, 201, 209, 232, 239, 246, 249, 256], "v100": [122, 173, 176], "percis": 122, "fpsixteen": 122, "param_dtyp": 122, "reduce_dtyp": 122, "buffer_dtyp": 122, "fp32_polici": 122, "grad_bf16": 122, "backward_pr": 122, "backward_prefetch": 122, "backward_post": 122, "offload": [122, 123], "allgath": [122, 123, 124, 156, 249], "ram": [122, 225, 239], "1t": [123, 132], "feasibl": 123, "possess": [123, 185], "fsdp_mnist": 123, "size_based_auto_wrap_polici": 123, "default_auto_wrap_polici": 123, "fully_sharded_data_parallel": [123, 216], "cpuoffload": 123, "handwritten": 123, "ddp_loss": 123, "batch_idx": [123, 130, 149, 167, 222, 223, 256], "tloss": [123, 130, 167], "6f": [123, 130, 167, 223], "view_a": [123, 130, 163, 167, 223], "dataset1": [123, 130], "dataset2": [123, 130], "my_auto_wrap_polici": 123, "min_num_param": 123, "elapsed_tim": [123, 173], "110": [123, 164, 186, 233], "85": [123, 138, 221, 233], "67462890625sec": 123, "_fsdp_wrapped_modul": 123, "flattenparamswrapp": 123, "_fpw_modul": 123, "peak": [123, 130, 153, 159, 185], "g4dn": 123, "xlarg": 123, "seal": 123, "20000": 123, "89130859375sec": 123, "auto_wrap": 123, "66": [123, 221, 233], "cpu_offload": 123, "offload_param": 123, "dpp": 123, "ddp_mnist": 123, "77766015625sec": 123, "wanchao": [124, 217], "liang": [124, 217], "tianyu": 124, "liu": 124, "devicemesh": [124, 253], "megatron": 124, "lm": [124, 214], "sp": 124, "parallelstyl": 124, "parallelize_modul": 124, "dtensor": 124, "foward": 124, "aris": [124, 185, 193], "exceed": [124, 160], "domin": [124, 148, 172, 205], "consequ": [124, 161], "ballpark": 124, "flop": 124, "llm": 124, "trillion": [124, 132], "month": 124, "llama": 124, "70b": 124, "2k": 124, "llama2": 124, "1k": 124, "colwiseparallel": 124, "rowwiseparallel": 124, "sequenceparallel": 124, "rmsnormpython": 124, "preparemoduleinput": 124, "preparemoduleoutput": 124, "device_mesh": [124, 217], "init_device_mesh": [124, 217], "tp_mesh": 124, "transformerblock": 124, "swiglu": 124, "w2": 124, "silu": 124, "w1": 124, "w3": 124, "colwis": 124, "rowwis": [124, 233], "parallelize_plan": 124, "layer_tp_plan": 124, "feed_foward": 124, "feed_forward": 124, "wq": 124, "wk": 124, "wv": 124, "wo": 124, "tp_plan": 124, "draft": [124, 136], "num_head": [124, 165], "layer_id": 124, "attn_lay": 124, "n_head": 124, "n_kv_head": 124, "tok_embed": 124, "input_layout": 124, "output_layout": 124, "attention_norm": 124, "ffn_norm": 124, "desired_input_layout": 124, "yellow": 124, "loss_parallel": 124, "use_local_output": 124, "mesh_2d": [124, 217], "submesh": 124, "dp_mesh": 124, "model_tp": 124, "model_2d": 124, "use_orig_param": 124, "broadli": 125, "torchviz": [125, 131], "_save": 125, "_saved_self": 125, "_saved_oth": 125, "kept": [125, 127, 266], "_saved_result": 125, "cycl": [125, 169], "thumb": [125, 146, 160], "pack_hook": 125, "unpack_hook": 125, "saved_tensors_hook": 125, "harmless": 125, "debat": 125, "__repr__": [125, 246], "repr": [125, 233], "save_on_cpu": 125, "152": 125, "48gb": 125, "5gb": 125, "6x": [125, 178, 225], "savetocpu": 125, "uuid": 125, "tmp_dir": 125, "uuid4": 125, "leak": 125, "tmp_dir_obj": 125, "succeed": [125, 210], "selfdeletingtempfil": 125, "__del__": 125, "temp_fil": 125, "save_on_disk_threshold": 125, "tensor_or_sctf": 125, "savetodisk": 125, "autograd_saved_tensors_hooks_tutori": 125, "david": [126, 266], "eriksson": 126, "balandat": 126, "methodolog": [126, 178, 222], "runnabl": [126, 145], "laptop": [126, 196], "sustain": 126, "botorch": 126, "bayesian": 126, "mnist_train_na": [126, 149], "appdef": 126, "log_path": [126, 149], "hidden_size_1": [126, 149], "hidden_size_2": [126, 149], "trial_idx": 126, "joinpath": 126, "torchx_imag": 126, "kubernet": 126, "local_cwd": 126, "torchxrunn": 126, "log_dir": [126, 170], "mkdtemp": 126, "ax_runn": 126, "tracker_bas": 126, "component_const_param": 126, "cfg": 126, "choiceparamet": 126, "parametertyp": 126, "rangeparamet": 126, "num_param": [126, 149], "pareto": 126, "frontier": 126, "weird": 126, "upper": [126, 154, 165, 266], "parameter_typ": 126, "log_scal": 126, "is_ord": 126, "search_spac": 126, "parameter_constraint": 126, "outcom": [126, 202], "fetch": [126, 128, 135, 162, 163, 164, 177, 178], "proxi": [126, 191, 194], "tensorboardcurvemetr": 126, "mytensorboardmetr": 126, "prespecifi": 126, "classmethod": [126, 184, 246], "get_ids_from_tri": 126, "queryabl": 126, "is_available_while_run": 126, "curve_nam": 126, "lower_is_bett": 126, "val_acc": [126, 149], "model_num_param": 126, "multiobjectiveoptimizationconfig": 126, "94": [126, 199, 221, 240], "multiobject": 126, "objectivethreshold": 126, "optimization_config": 126, "opt_config": 126, "objective_threshold": 126, "80_000": 126, "torchx_mnist": 126, "generationstrategi": 126, "total_tri": 126, "modelbridg": 126, "dispatch_util": 126, "choose_generation_strategi": 126, "gs": [126, 260], "num_trial": 126, "scheduleropt": 126, "max_pending_tri": 126, "generation_strategi": 126, "autom": [126, 144, 148, 172, 183], "run_all_tri": 126, "report_util": 126, "exp_to_df": 126, "_pareto_frontier_scatter_2d_plotli": 126, "surrog": 126, "uncertainti": 126, "cross_valid": 126, "compute_diagnost": 126, "diagnost": 126, "interact_cross_validation_plotli": 126, "init_notebook_plot": 126, "contour": 126, "interact_contour_plotli": 126, "metric_nam": 126, "kiuk": 126, "tristan": [126, 159], "rice": [126, 159], "ax_multiobjective_nas_tutori": [126, 149], "\u5e8f\u5217\u5230\u5e8f\u5217\u7f51\u7edc\u548c\u6ce8\u610f\u529b\u673a\u5236\u8fdb\u884c\u7ffb\u8bd1": 127, "surnam": 127, "scottish": 127, "irish": 127, "schmidhub": 127, "czech": 127, "dutch": 127, "\u8ddf\u7740\u793a\u4f8b\u5b66\u4e60": [127, 128, 166], "unreason": [127, 128], "roman": [127, 266], "glob": [127, 128, 210], "findfil": [127, 128], "all_lett": [127, 128], "ascii_lett": [127, 128], "n_letter": [127, 128], "\u015blus\u00e0rski": 127, "category_lin": [127, 128], "all_categori": [127, 128], "splitext": [127, 128], "basenam": [127, 128], "n_categori": [127, 128], "italian": 127, "0s": [127, 137, 186], "line_length": 127, "lettertoindex": 127, "lettertotensor": 127, "linetotensor": 127, "jone": 127, "h2h": 127, "inithidden": [127, 128], "n_hidden": 127, "next_hidden": 127, "precomput": 127, "albert": 127, "greatest": [127, 172], "categoryfromoutput": 127, "top_n": 127, "top_i": 127, "category_i": 127, "randomchoic": [127, 128], "randomtrainingexampl": [127, 128], "category_tensor": [127, 128], "line_tensor": 127, "005": [127, 161, 179], "plot_everi": [127, 128, 166], "current_loss": 127, "all_loss": [127, 128], "timesinc": [127, 128, 166], "guess_i": 127, "histor": [127, 128], "minu": [127, 169], "n_confus": 127, "111": [127, 164, 166, 177, 186, 233, 259], "cax": [127, 166], "matshow": [127, 166], "colorbar": [127, 166], "set_xticklabel": [127, 150, 166], "rotat": [127, 166, 167, 170], "set_yticklabel": [127, 166], "tick": [127, 166], "xaxi": [127, 166], "set_major_loc": [127, 166], "multipleloc": [127, 166], "yaxi": [127, 150, 166], "bright": 127, "incorrectli": [127, 200], "chines": [127, 128], "korean": 127, "greek": 127, "input_lin": 127, "n_predict": 127, "topv": [127, 128], "category_index": 127, "doveski": 127, "jackson": 127, "satoshi": 127, "bottl": [127, 145], "hazaki": 127, "japanes": 127, "5533": 127, "yournam": 127, "gender": 127, "subreddit": 127, "char_rnn_classification_tutori": 127, "russian": 128, "ru": 128, "rovakov": 128, "uantov": 128, "shavakov": 128, "ger": 128, "gerren": 128, "ereng": 128, "rosher": 128, "spa": 128, "salla": 128, "parer": 128, "allan": 128, "chi": 128, "chan": 128, "iun": 128, "\u8fdb\u884c\u59d3\u540d\u5206\u7c7b": [128, 166], "some_fil": [128, 134], "n\u00e9\u00e0l": 128, "o2o": 128, "muscl": [128, 172], "fuzz": 128, "chao": 128, "i2o": 128, "input_combin": 128, "output_combin": 128, "randomtrainingpair": 128, "abcd": 128, "categorytensor": 128, "targettensor": 128, "letter_index": 128, "input_line_tensor": 128, "target_line_tensor": 128, "0005": [128, 179], "start_lett": 128, "abc": [128, 172], "fiction": 128, "countri": 128, "citi": 128, "char_rnn_generation_tutori": 128, "simon": 129, "\u4f60\u5c06\u5b66\u5230\u4ec0\u4e48": 129, "\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u5982\u4f55\u4e0e": 129, "\u4ea4\u4e92": 129, "\u5982\u4f55\u4f7f\u7528\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206api": 129, "\u5982\u4f55\u4f7f\u7528": [129, 253], "torch_log": [129, 174, 175, 253, 254], "\u68c0\u67e5\u65e5\u5fd7": 129, "\u9884\u5907\u77e5\u8bc6": 129, "\u5b8c\u6210": 129, "compile\u4ecb\u7ecd": 129, "\u9605\u8bfb": 129, "\u5f00\u59cb\u4f7f\u7528pytorch": 129, "\u4e2d\u7684torchdynamo\u548caotautograd\u90e8\u5206": 129, "\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u662f": 129, "\u4e2d\u5f15\u5165\u7684": 129, "\u6269\u5c55": [129, 233], "\u5b83\u5141\u8bb8\u6355\u83b7\u66f4\u5927\u7684\u540e\u5411\u56fe": 129, "\u867d\u7136": [129, 233, 257], "\u786e\u5b9e\u4f1a\u6355\u83b7\u540e\u5411\u56fe": 129, "\u4f46\u5b83\u662f": 129, "\u90e8\u5206": [129, 232], "\u6355\u83b7\u7684": 129, "aotautograd": 129, "\u7ec4\u4ef6\u63d0\u524d\u6355\u83b7\u540e\u5411\u56fe": 129, "\u4f46\u5b58\u5728\u4e00\u4e9b\u9650\u5236": 129, "\u524d\u5411\u4e2d\u7684\u56fe\u65ad\u88c2\u5bfc\u81f4\u540e\u5411\u4e2d\u7684\u56fe\u65ad\u88c2": 129, "\u540e\u5411\u94a9\u5b50": 129, "\u6ca1\u6709\u88ab\u6355\u83b7": 129, "\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u901a\u8fc7\u76f4\u63a5\u4e0e\u81ea\u52a8\u5fae\u5206\u5f15\u64ce\u96c6\u6210": 129, "\u5141\u8bb8\u5728\u8fd0\u884c\u65f6\u6355\u83b7\u5b8c\u6574\u7684\u540e\u5411\u56fe": 129, "\u5177\u6709\u4ee5\u4e0b\u4e24\u4e2a\u7279\u5f81\u7684\u6a21\u578b\u5e94\u8be5\u5c1d\u8bd5\u4f7f\u7528\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206": 129, "\u5e76\u53ef\u80fd\u89c2\u5bdf\u5230\u66f4\u597d\u7684\u6027\u80fd": 129, "\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u4e5f\u6709\u5bf9\u5e94\u7684\u9650\u5236": 129, "\u5728\u540e\u5411\u5f00\u59cb\u65f6\u589e\u52a0\u4e86\u8fd0\u884c\u65f6\u5f00\u9500": 129, "\u7528\u4e8e\u7f13\u5b58\u67e5\u627e": 129, "\u5728\u52a8\u6001\u4e2d\u66f4\u5bb9\u6613\u91cd\u65b0\u7f16\u8bd1\u548c\u56fe\u65ad\u88c2": 129, "\u56e0\u4e3a\u6355\u83b7\u7684\u8303\u56f4\u66f4\u5927": 129, "\u6211\u4eec\u5c06\u57fa\u4e8e\u8fd9\u4e2a\u7b80\u5355\u7684\u795e\u7ecf\u7f51\u7edc\u6a21\u578b\u8fdb\u884c\u793a\u4f8b": 129, "\u5b83\u63a5\u53d7\u4e00\u4e2a10\u7ef4\u8f93\u5165\u5411\u91cf": 129, "\u901a\u8fc7\u5355\u4e2a\u7ebf\u6027\u5c42\u5904\u7406\u5b83": 129, "\u5e76\u8f93\u51fa\u53e6\u4e00\u4e2a10\u7ef4\u5411\u91cf": 129, "api\u4e4b\u524d": 129, "\u8bf7\u786e\u4fdd\u5c06": 129, "compiled_autograd": 129, "\u8bbe\u7f6e\u4e3a": [129, 236, 252, 258], "\u5728\u4e0a\u8ff0\u4ee3\u7801\u4e2d": 129, "\u7c7b\u7684\u5b9e\u4f8b": 129, "\u751f\u6210\u4e86\u4e00\u4e2a\u968f\u673a\u768410\u7ef4\u5f20\u91cf": 129, "\u6211\u4eec\u5b9a\u4e49\u4e86\u8bad\u7ec3\u5faa\u73af\u51fd\u6570": 129, "\u5e76\u7528": 129, "\u88c5\u9970\u5b83\u4ee5\u4f18\u5316\u5176\u6267\u884c": 129, "\u5f53\u8c03\u7528": 129, "python\u89e3\u91ca\u5668\u8c03\u7528dynamo": 129, "\u56e0\u4e3a\u6b64\u8c03\u7528\u88ab\u88c5\u9970\u6709": 129, "dynamo\u62e6\u622apython\u5b57\u8282\u7801": 129, "\u6a21\u62df\u5b83\u4eec\u7684\u6267\u884c\u5e76\u5c06\u64cd\u4f5c\u8bb0\u5f55\u5230\u56fe\u4e2d": 129, "aotdispatch": 129, "\u7981\u7528\u94a9\u5b50\u5e76\u8c03\u7528\u81ea\u52a8\u5fae\u5206\u5f15\u64ce\u4e3a": 129, "\u5e76\u5c06\u64cd\u4f5c\u8bb0\u5f55\u5230\u56fe\u4e2d": 129, "aotdispatcher\u91cd\u5199": 129, "\u7684\u524d\u5411\u548c\u540e\u5411\u5b9e\u73b0": 129, "inductor\u751f\u6210\u4e00\u4e2a\u5bf9\u5e94\u4e8eaotdispatcher\u524d\u5411\u548c\u540e\u5411\u7684\u4f18\u5316\u5b9e\u73b0\u7684\u51fd\u6570": 129, "dynamo\u5c06\u4f18\u5316\u540e\u7684\u51fd\u6570\u8bbe\u7f6e\u4e3apython\u89e3\u91ca\u5668\u4e0b\u4e00\u6b21\u6267\u884c": 129, "python\u89e3\u91ca\u5668\u6267\u884c\u4f18\u5316\u540e\u7684\u51fd\u6570": 129, "\u6267\u884c": 129, "python\u89e3\u91ca\u5668\u6267\u884c": 129, "\u8c03\u7528\u81ea\u52a8\u5fae\u5206\u5f15\u64ce": 129, "\u56e0\u4e3a\u6211\u4eec\u8bbe\u7f6e\u4e86": 129, "\u6240\u4ee5\u8def\u7531\u5230\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u5f15\u64ce": 129, "\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u8ba1\u7b97": 129, "\u5305\u62ec\u5b83\u9047\u5230\u7684\u4efb\u4f55\u94a9\u5b50": 129, "\u5728\u6b64\u8fc7\u7a0b\u4e2d": 129, "\u5b83\u5c06\u8bb0\u5f55aotdispatcher\u4e4b\u524d\u91cd\u5199\u7684\u540e\u5411": 129, "\u7136\u540e\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u751f\u6210\u4e00\u4e2a\u65b0\u7684\u51fd\u6570": 129, "\u5bf9\u5e94\u4e8e": 129, "\u7684\u5b8c\u5168\u8ddf\u8e2a\u5b9e\u73b0": 129, "\u7684\u63a8\u7406\u6a21\u5f0f\u4e0b\u6267\u884c\u5b83": 129, "\u76f8\u540c\u7684\u6b65\u9aa4\u9012\u5f52\u5730\u9002\u7528\u4e8e\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u56fe": 129, "\u4f46\u8fd9\u4e00\u6b21aotdispatcher\u5c06\u4e0d\u9700\u8981\u5212\u5206\u56fe": 129, "\u73af\u5883\u53d8\u91cf\u8fd0\u884c\u811a\u672c": 129, "\u4ec5\u6253\u5370\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u56fe": 129, "\u4ee5\u6027\u80fd\u4e3a\u4ee3\u4ef7\u6253\u5370\u5e26\u6709\u66f4\u591a\u5f20\u91cf\u5143\u6570\u636e\u548c\u91cd\u65b0\u7f16\u8bd1\u539f\u56e0\u7684\u56fe": 129, "compiled_autograd_verbos": 129, "\u91cd\u65b0\u8fd0\u884c\u4e0a\u8ff0\u4ee3\u7801\u7247\u6bb5": 129, "\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u56fe\u73b0\u5728\u5e94\u8be5\u88ab\u8bb0\u5f55\u5230": 129, "stderr": 129, "\u67d0\u4e9b\u56fe\u8282\u70b9\u7684\u540d\u79f0\u5c06\u6709": 129, "aot0_": 129, "\u7684\u524d\u7f00": 129, "\u8fd9\u4e9b\u5bf9\u5e94\u4e8eaotautograd\u540e\u5411\u56fe0\u4e2d\u9884\u5148\u7f16\u8bd1\u7684\u8282\u70b9": 129, "aot0_view_2": 129, "\u5bf9\u5e94\u4e8eid\u4e3a0\u7684aot\u540e\u5411\u56fe\u4e2d\u7684view_2": 129, "\u4e0b\u56fe\u4e2d": 129, "\u7ea2\u8272\u6846\u5305\u542b\u4e86": 129, "\u5728\u6ca1\u6709\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u7684\u60c5\u51b5\u4e0b\u6355\u83b7\u7684aot\u540e\u5411\u56fe": 129, "\u4f60\u53ef\u4ee5\u4e3a\u4e24\u6b21\u7f16\u8bd1\u4f7f\u7528\u4e0d\u540c\u7684\u7f16\u8bd1\u5668\u914d\u7f6e": 129, "\u5373\u4f7f\u524d\u5411\u5b58\u5728\u56fe\u65ad\u88c2": 129, "\u540e\u5411\u53ef\u80fd\u662f\u5168\u56fe": 129, "\u6216\u8005\u4f60\u53ef\u4ee5\u4f7f\u7528\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668": 129, "\u5b83\u5c06\u9002\u7528\u4e8e\u5176\u4f5c\u7528\u57df\u5185\u7684\u6240\u6709\u81ea\u52a8\u5fae\u5206\u8c03\u7528": 129, "\u524d\u5411\u4f20\u9012\u4e2d\u7684\u56fe\u65ad\u88c2\u4e0d\u518d\u5fc5\u7136\u5bfc\u81f4\u540e\u5411\u4f20\u9012\u4e2d\u7684\u56fe\u65ad\u88c2": 129, "aot_eag": [129, 145], "graph_break": 129, "3rd": [129, 222], "unique_graph": 129, "\u5728\u7b2c\u4e00\u4e2a": [129, 240], "\u6848\u4f8b\u4e2d": 129, "\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u7531\u4e8e\u7f16\u8bd1\u51fd\u6570": 129, "\u4e2d\u7684\u4e24\u4e2a\u56fe\u65ad\u88c2": 129, "\u4ea7\u751f\u4e863\u4e2a\u540e\u5411\u56fe": 129, "\u800c\u5728\u7b2c\u4e8c\u4e2a\u5e26\u6709\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u7684": 129, "\u5c3d\u7ba1\u5b58\u5728\u56fe\u65ad\u88c2": 129, "\u6211\u4eec\u770b\u5230\u4e86\u6574\u4e2a\u540e\u5411\u56fe\u88ab\u8ddf\u8e2a": 129, "\u73b0\u5728\u53ef\u4ee5\u6355\u83b7\u540e\u5411\u94a9\u5b50": 129, "\u56fe\u4e2d\u5e94\u8be5\u6709\u4e00\u4e2a": 129, "call_hook": 129, "\u8282\u70b9": 129, "dynamo\u7a0d\u540e\u5c06\u5176\u5185\u8054\u5230\u4ee5\u4e0b\u5185\u5bb9": 129, "\u7531\u4e8e\u635f\u5931\u503c\u7684\u81ea\u52a8\u5fae\u5206\u7ed3\u6784\u53d1\u751f\u53d8\u5316": 129, "\u6211\u4eec\u5728\u6bcf\u6b21\u8fed\u4ee3\u4e2d\u8c03\u7528\u4e0d\u540c\u7684\u64cd\u4f5c\u7b26": 129, "\u5bfc\u81f4": 129, "\u6bcf\u6b21\u90fd\u8ddf\u8e2a\u4e0d\u540c\u7684\u81ea\u52a8\u5fae\u5206\u5386\u53f2": 129, "\u4f60\u5e94\u8be5\u770b\u5230\u4e00\u4e9b\u91cd\u65b0\u7f16\u8bd1\u6d88\u606f": 129, "\u7531\u4e8e\u65b0\u7684\u81ea\u52a8\u5fae\u5206\u8282\u70b9\u5bfc\u81f4\u7684\u7f13\u5b58\u672a\u547d\u4e2d": 129, "\u7531\u4e8e\u5f20\u91cf\u5f62\u72b6\u53d8\u5316": 129, "\u6539\u53d8\u4e86\u5f62\u72b6": 129, "\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u5728\u7b2c\u4e00\u6b21\u53d8\u5316\u540e\u5c06x\u6807\u8bb0\u4e3a\u52a8\u6001\u5f62\u72b6\u5f20\u91cf": 129, "\u4f60\u5e94\u8be5\u770b\u5230\u91cd\u65b0\u7f16\u8bd1\u6d88\u606f": 129, "\u7531\u4e8e\u5f62\u72b6\u53d8\u5316\u5bfc\u81f4\u7684\u7f13\u5b58\u672a\u547d\u4e2d": 129, "\u6211\u4eec\u4ecb\u7ecd\u4e86": [129, 258], "\u4e0e\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u7684\u9ad8\u7ea7\u751f\u6001\u7cfb\u7edf": 129, "\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u7684\u57fa\u7840\u77e5\u8bc6\u4ee5\u53ca\u4e00\u4e9b\u5e38\u89c1\u7684\u91cd\u65b0\u7f16\u8bd1\u539f\u56e0": 129, "\u8bf7\u7ee7\u7eed\u5173\u6ce8": 129, "\u4e0a\u7684\u6df1\u5165\u63a2\u8ba8": 129, "adjac": [130, 265], "dilat": [130, 135], "track_running_statist": 130, "denomin": 130, "nenadmarku": [130, 143], "once_differenti": 130, "convolution_backward": 130, "grad_out": [130, 131], "grad_x": [130, 131], "conv_transpose2d": [130, 209], "unsqueeze_al": 130, "batch_norm_backward": 130, "sqrt_var": 130, "d_denom": 130, "denom": 130, "unnecessarili": 130, "d_var": 130, "d_mean_dx": 130, "reassign": [130, 157], "unbiased_var": 130, "unbias": 130, "fast_mod": 130, "fusedconvbn2dfunct": 130, "conv_weight": 130, "ndim": [130, 194], "x_conv_out": 130, "fusedconvbn": 130, "in_channel": [130, 147, 154, 179], "out_channel": [130, 147, 154, 179], "exp_avg_factor": 130, "factory_kwarg": 130, "weight_shap": 130, "kaiming_uniform_": [130, 204], "convbn1": 130, "convbn2": 130, "bn1": [130, 143, 150, 158], "track_running_stat": [130, 180, 220], "bn2": 130, "ntest": [130, 167], "geforc": 130, "rtx": 130, "3070": 130, "56gb": 130, "unfus": [130, 143], "68gb": 130, "shallow": [130, 137], "peak_memory_alloc": 130, "123456": 130, "max_memory_alloc": [130, 185, 232, 261], "reset_peak_memory_stat": [130, 185], "gb": [130, 185], "custom_function_conv_bn_tutori": 130, "finit": [131, 151], "differenc": 131, "magnifi": 131, "gradgradcheck": [131, 249], "make_dot": 131, "dout": [131, 146], "ouptut": 131, "sinh": 131, "cosh": 131, "expx": 131, "expnegx": 131, "_grad_out_exp": 131, "_grad_out_negexp": 131, "sinhbad": 131, "cube_backward": 131, "cubebackward": 131, "cube_forward": 131, "cube_backward_backward": 131, "sav_grad_out": 131, "cube_backward_backward_grad_out": 131, "cube": 131, "dgrad_out": 131, "artifact": [132, 175], "reachabl": [132, 133, 136], "2xlarg": [132, 133], "hydra": 132, "slurm": [132, 133, 134], "char_dataset": 132, "gpt2_train_cfg": 132, "bucket": [132, 260], "aggress": 132, "rendezv": [133, 156], "nccl_debug": 133, "nccl_socket_ifnam": 133, "eth0": 133, "zhu": [134, 145], "trigger": [134, 145, 162, 164], "clarifi": 134, "filestor": 134, "tcpstore": 134, "libtmp": 134, "toymodel": [134, 150, 216, 217], "net1": [134, 150, 216, 217], "net2": [134, 150, 216, 217], "demo_bas": 134, "ddp_model": [134, 261], "run_demo": 134, "demo_fn": 134, "caution": 134, "timeout": [134, 156], "straggler": [134, 169], "unpredict": 134, "spike": [134, 159], "AND": [134, 255], "torchelast": 134, "demo_checkpoint": 134, "checkpoint_path": [134, 185, 200], "gettempdir": 134, "toympmodel": 134, "dev0": 134, "dev1": 134, "demo_model_parallel": 134, "mp_model": 134, "ddp_mp_model": 134, "n_gpu": [134, 138, 186], "elastic_ddp": 134, "rdzv_id": [134, 217], "rdzv_backend": 134, "rdzv_endpoint": [134, 217], "29400": [134, 217], "aka": [134, 146, 148, 158, 174, 175, 222, 225], "scontrol": 134, "hostnam": 134, "slurm_nodelist": 134, "srun": 134, "torchrun_script": 134, "rpc_sync": [135, 162, 163, 164, 214], "embeddingt": [135, 164, 176], "amort": [135, 160, 162], "resnetbas": 135, "conv1x1": 135, "inplan": 135, "width_per_group": 135, "_lock": 135, "_block": 135, "_norm_lay": 135, "base_width": 135, "_make_lay": 135, "previous_dil": 135, "parameter_rref": [135, 164, 214], "calle": [135, 162, 163], "resnetshard1": 135, "nonlinear": 135, "x_rref": 135, "to_her": 135, "resnetshard2": 135, "distresnet50": 135, "micro": [135, 177, 178], "y_rref": 135, "num_split": 135, "p1_rref": 135, "p2_rref": 135, "out_futur": 135, "z_fut": 135, "wait_al": [135, 162], "remote_param": [135, 163, 164], "worker1": [135, 214], "worker2": 135, "image_w": [135, 150, 162], "image_h": [135, 150, 162], "run_mast": 135, "one_hot_indic": [135, 150, 162], "passiv": [135, 162, 164], "num_worker_thread": [135, 214], "tik": [135, 162, 214], "tok": [135, 162, 214], "s\u00e9b": 136, "arnold": 136, "practition": [136, 194], "sysadmin": 136, "coordin": [136, 167, 179, 185, 194], "pdsh": 136, "clustershel": 136, "init_process": 136, "127": [136, 180, 202], "set_start_method": 136, "ip": 136, "recv": [136, 164], "irecv": 136, "dst": 136, "req": 136, "nor": [136, 143, 180, 191], "undefin": [136, 150, 191, 192, 193], "behaviour": 136, "fanci": 136, "baidu": 136, "deepspeech": 136, "communc": 136, "new_group": [136, 217], "commut": 136, "scatter_list": 136, "gather_list": 136, "tnt": 136, "splitdataset": 136, "data_idx": 136, "datapartition": 136, "1234": 136, "data_len": 136, "part_len": 136, "partition_dataset": 136, "get_world_s": 136, "partition_s": 136, "train_set": [136, 169], "average_gradi": 136, "voil\u00e0": 136, "send_buff": 136, "recv_buff": 136, "accum": 136, "send_req": 136, "bandwidth": [136, 169, 198], "subsect": [136, 265], "eleg": 136, "handi": [136, 147, 170], "smi": [136, 232], "mvapich2": 136, "ipc": [136, 169], "recompil": [136, 143, 173, 200, 213], "requisit": 136, "forg": [136, 223], "openmpi": 136, "mpirun": 136, "myscript": 136, "handshak": 136, "superflu": 136, "readili": 136, "fcntl": 136, "nf": 136, "sharedfil": 136, "23456": 136, "socket": [136, 145, 177, 178], "everyon": 136, "unclear": [136, 150, 174, 175], "natalia": 136, "gimelshein": 136, "carrier": [137, 160], "brought": [137, 160], "mod": [137, 143, 144, 173, 174, 175, 196, 205, 234, 246], "set_exploration_typ": [137, 160], "totensorimag": 137, "egreedymodul": 137, "lstmmodul": 137, "qvaluemodul": 137, "dqnloss": 137, "84x84": 137, "accessori": [137, 159], "stamp": 137, "is_init": 137, "tensordictprim": 137, "primer": [137, 194], "disappear": 137, "keep_dim": 137, "backbon": [137, 172], "flank": 137, "assist": 137, "num_cel": [137, 160], "squeeze_output": 137, "aggregator_class": 137, "aggregator_kwarg": 137, "n_cell": 137, "tensordictmodulebas": 137, "batch_first": [137, 166], "make_tensordict_prim": 137, "action_valu": [137, 147], "qval": 137, "action_spac": [137, 147, 161], "qvalueactor": 137, "stoch_polici": 137, "exploration_modul": 137, "eps_init": 137, "set_recurrent_mod": 137, "redund": 137, "delay_valu": 137, "3e": [137, 155, 160], "longest": [137, 144], "npai": 137, "chosen_action_valu": 137, "recurrent_st": 137, "to_tensordict": 137, "non_block": 137, "step_count": [137, 160], "action_spread": 137, "dqn_with_rnn_tutori": 137, "jianyu": 138, "huang": [138, 156, 216], "jessica": [138, 158], "paraphras": 138, "mrpc": [138, 186], "dolan": 138, "brockett": 138, "2005": 138, "imbalanc": 138, "sklearn": [138, 172], "tochvis": 138, "cu101": [138, 158], "bertconfig": [138, 186], "bertforsequenceclassif": [138, 186], "glue_compute_metr": [138, 186], "glue_output_mod": [138, 186], "output_mod": [138, 186], "glue_processor": [138, 186], "processor": [138, 177, 186, 201, 222], "glue_convert_examples_to_featur": [138, 186], "convert_examples_to_featur": [138, 186], "getlogg": [138, 149, 172, 186], "basicconfig": [138, 186], "asctim": [138, 186], "levelnam": [138, 186], "datefmt": [138, 186], "modeling_util": [138, 186], "setlevel": [138, 149, 186], "__config__": [138, 186], "parallel_info": [138, 186], "sep": [138, 195], "glue_data": [138, 186], "download_glue_data": [138, 186], "glue_dir": [138, 186], "task_nam": [138, 186], "out_dir": [138, 186], "run_glu": 138, "model_typ": [138, 185, 186], "model_name_or_path": [138, 186], "do_train": 138, "do_ev": 138, "do_lower_cas": [138, 186], "max_seq_length": [138, 186], "per_gpu_eval_batch_s": [138, 186], "per_gpu_train_batch_s": 138, "save_step": 138, "output_dir": [138, 186], "get_label": [138, 186], "overwrite_cach": [138, 186], "copyright": [138, 266], "inc": 138, "apach": [138, 177, 178], "complianc": 138, "law": [138, 195], "AS": 138, "IS": 138, "warranti": 138, "OR": 138, "OF": 138, "govern": [138, 162], "permiss": 138, "mnli": [138, 186], "mi": [138, 186, 268], "eval_task_nam": [138, 186], "eval_outputs_dir": [138, 186], "eval_task": [138, 186], "eval_output_dir": [138, 186], "load_and_cache_exampl": [138, 186], "eval_sampl": [138, 186], "eval_dataload": [138, 186, 223], "eval_loss": 138, "nb_eval_step": [138, 186], "out_label_id": [138, 186], "distilbert": [138, 186], "token_type_id": [138, 186], "xlnet": [138, 186], "roberta": [138, 186], "segment_id": [138, 186], "tmp_eval_loss": 138, "regress": [138, 167, 186], "output_eval_fil": [138, 186], "eval_result": [138, 186], "cached_features_fil": [138, 186], "cached_": [138, 186], "get_dev_exampl": [138, 186], "get_train_exampl": [138, 186], "pad_on_left": 138, "convert_tokens_to_id": 138, "pad_token_segment_id": 138, "all_input_id": [138, 186], "all_attention_mask": [138, 186], "all_token_type_id": [138, 186], "all_label": [138, 186], "438": [138, 186], "181": [138, 233], "30522": 138, "eval_start_tim": [138, 186], "eval_end_tim": [138, 186], "eval_duration_tim": [138, 186], "408": [138, 178], "prec": [138, 148], "9019": 138, "902": [138, 186], "8788": 138, "8956": 138, "asymmetr": [138, 202], "openmp": [138, 177, 209, 228, 249], "tbb": 138, "ids_tensor": [138, 186], "dummy_input": [138, 186, 226, 227, 255, 259], "traced_model": [138, 143, 186, 249], "bert_traced_eager_qu": 138, "loaded_quantized_model": [138, 183, 199], "implic": [138, 186], "devlin": 138, "lee": 138, "toutanova": 138, "zafrir": 138, "boudoukh": 138, "izsak": 138, "wasserblat": 138, "2019": 138, "q8bert": 138, "8bit": 138, "tradition": [139, 204], "simplemlp": 139, "pretend": [139, 155], "minibatch": [139, 155], "num_model": [139, 155], "6400": 139, "predictions_diff_minibatch_loop": 139, "predictions2": 139, "stack_module_st": 139, "functional_cal": [139, 142, 151, 155], "base_model": 139, "fmodel": 139, "predictions1_vmap": 139, "in_dim": [139, 146, 155, 207, 236], "predictions2_vmap": 139, "without_vmap": [139, 146, 155], "with_vmap": [139, 146, 155], "avinash": 140, "sajjanshetti": 140, "refresh": [140, 170], "endpoint": [140, 215, 260], "class_id": [140, 215], "n02124075": 140, "egyptian_cat": [140, 215], "jsonifi": [140, 215], "image_net_xxx": 140, "transform_imag": [140, 215], "image_byt": 140, "my_transform": [140, 215], "bytesio": [140, 231], "densenet121": [140, 148, 173, 215], "get_predict": [140, 215], "y_hat": [140, 215], "predicted_idx": 140, "img_byt": 140, "TO": [140, 255], "flask_env": 140, "flask_app": [140, 215], "resp": 140, "recogn": [140, 156, 202], "ui": [140, 159, 253, 264], "streamer": 140, "queue": 140, "flask_rest_api_tutori": 140, "forced_alignment_tutori": 141, "incomplet": 142, "eagerli": [142, 153, 175], "primal": [142, 146, 265], "dual": [142, 265], "forward_ad": 142, "fwad": 142, "dual_level": 142, "make_du": 142, "dual_input": 142, "unpack_du": 142, "dual_input_alt": 142, "plain_tensor": 142, "dual_output": 142, "namedtupl": [142, 161], "delattr": 142, "setattr": [142, 143, 148], "fresh": 142, "dual_param": 142, "jvp2": 142, "gi": 142, "check_forward_ad": 142, "check_backward_ad": 142, "check_undefined_grad": 142, "check_batched_grad": 142, "functorch": [142, 174, 175], "downsid": 142, "ft": 142, "primal0": 142, "tangent0": 142, "primal1": 142, "tangent1": 142, "primal_out": 142, "tangent_out": 142, "new_fn": 142, "reformul": [142, 151], "make_functional_with_buff": 142, "analog": [142, 193, 194], "consolid": [142, 162, 200], "func_params_onli": 142, "jvp_out": 142, "dual_numb": 142, "forward_ad_usag": 142, "horac": 143, "wrappedbatchnorm": 143, "symbolic_trac": [143, 144, 173], "bake": 143, "fuse_conv_bn_ev": 143, "batch_norm": [143, 240], "fused_conv": 143, "fuse_conv_bn_weight": 143, "running_var": [143, 200], "conv_w": 143, "conv_b": 143, "bn_rm": 143, "bn_rv": 143, "bn_ep": 143, "bn_w": 143, "bn_b": 143, "bn_var_rsqrt": 143, "rsqrt": 143, "_parent_nam": 143, "qualnam": 143, "atom": 143, "baz": 143, "rsplit": 143, "replace_node_modul": 143, "new_modul": 143, "parent_nam": 143, "graphmodul": [143, 144, 173, 174, 175, 180], "fx_model": 143, "call_modul": 143, "replace_all_uses_with": 143, "erase_nod": 143, "lint": 143, "simplif": 143, "fused_model": 143, "rn18": [143, 144], "fused_rn18": 143, "jit_rn18": 143, "conclus": 143, "tracker": [143, 144], "fx_conv_bn_fus": 143, "nicer": 144, "instrument": [144, 253], "tabul": [144, 173], "traced_rn18": 144, "ca": 144, "profilinginterpret": 144, "gm": [144, 173, 202], "total_runtime_sec": 144, "runtimes_sec": 144, "intercept": [144, 178], "t_start": 144, "return_v": 144, "t_end": 144, "run_nod": 144, "setdefault": 144, "should_sort": 144, "node_summari": 144, "mean_total_runtim": 144, "mean_runtim": 144, "pct_total": 144, "pct": 144, "clock": 144, "interp": 144, "51393": 144, "fx_profiling_tutori": 144, "xuan": 145, "liao": 145, "haozh": 145, "jiong": [145, 177, 178, 187, 201, 202], "gong": [145, 177, 178, 187, 201, 202], "weihan": 145, "intricaci": 145, "troubleshoot": 145, "pinpoint": [145, 178], "foo1": 145, "x1": [145, 151, 179], "x2": [145, 151], "8390": 145, "compiled_foo1": 145, "neg1": 145, "torch_compile_debug": 145, "_inductor": [145, 175, 185, 187, 201, 254], "model___20": 145, "torchinductor_root": 145, "rx": 145, "crxfi2ybd7yp5sbj2pnhw33wfhtdw7wumvrobyp5sjvdui5ktjc2": 145, "fx_graph_runn": 145, "fx_graph_transform": 145, "ir_post_fus": 145, "ir_pre_fus": 145, "output_cod": [145, 258], "triton": [145, 173, 188, 201, 253], "forward1": 145, "arg0_1": [145, 174, 187], "arg1_1": [145, 174], "codecach": 145, "asynccompil": 145, "async_compil": 145, "cpp_fused_cat_maximum_neg_0": 145, "gv": 145, "cgv6n5aotqjo5w4vknjibhengeycuattfto532hkxpozszcgxr3x": 145, "in_ptr0": [145, 257], "in_ptr1": [145, 257], "out_ptr0": 145, "pragma": 145, "ivdep": 145, "i0": 145, "static_cast": 145, "0l": 145, "8390l": 145, "1l": [145, 187], "i1": 145, "8l": 145, "tmp0": 145, "tmp1": 145, "tmp2": 145, "tmp3": 145, "max_propagate_nan": 145, "dynamo": [145, 174, 175, 187, 258], "aot": [145, 257], "neg2": 145, "exc": [145, 174], "backendcompilerfail": 145, "cppcompileerror": 145, "xg": 145, "cxga5tk3b4lkwoxyigrtocjp5s7vc5cg2ikuscf6bk6pjqip2bhx": 145, "deduct": 145, "substitut": [145, 146, 153, 202, 265], "deduc": 145, "buf0": [145, 187], "schedulernod": 145, "computedbuff": 145, "memorydep": 145, "c0": 145, "67120": 145, "unmet_depend": 145, "met_depend": 145, "nodeus": 145, "can_inplac": 145, "buf0_loop_bodi": 145, "var_rang": 145, "z0": 145, "index0": 145, "index1": 145, "get_index": 145, "get_index_1": 145, "load_1": 145, "get_index_2": 145, "silent": [145, 173, 201], "minifi": 145, "dead": 145, "unus": [145, 156], "minif": 145, "foo2": 145, "expected_result": 145, "compiled_foo2": 145, "actual_result": 145, "neg3": 145, "tol": 145, "test_script": 145, "assertionerror": 145, "torchdynamo_repro_aft": 145, "torchdynamo_repro_level": 145, "forward2": 145, "conduct": [145, 156, 185], "mobilebertforquestionansw": 145, "xeon": [145, 148, 177, 201, 222], "platinum": [145, 177], "8358": 145, "60ghz": 145, "kmp_blocktim": [145, 249], "kmp_set": 145, "kmp_affin": [145, 249], "compact": [145, 211, 249], "ld_preload": [145, 249], "conda_prefix": [145, 233], "dirnam": [145, 156, 228], "libiomp5": [145, 249], "libjemalloc": 145, "malloc_conf": 145, "oversize_threshold": 145, "background_thread": 145, "metadata_thp": 145, "dirty_decay_m": 145, "muzzy_decay_m": 145, "numactl": [145, 249], "bench": [145, 177, 178], "csarron": 145, "mobilebert": 145, "seq_length": [145, 222], "input_dict": 145, "compiled_model": [145, 165], "num_it": [145, 160], "warmup": [145, 169, 196, 205, 213, 221, 225, 240], "eager_t": 145, "inductor_t": 145, "1023553796113": 145, "339": 145, "95180135127157": 145, "359459053287382": 145, "355x": 145, "enable_kernel_profil": 145, "profileract": [145, 165, 221, 240], "result_dir": 145, "prof_trac": 145, "my_schedul": [145, 240], "skip_first": [145, 240], "trace_handl": [145, 240], "step_num": [145, 240], "on_trace_readi": [145, 169, 240], "370": 145, "814m": 145, "362": 145, "161": [145, 220], "276m": 145, "363": 145, "416m": 145, "488": [145, 233], "154m": 145, "194": 145, "clamp_min": [145, 221], "444m": 145, "258m": 145, "810": 145, "920m": 145, "447m": 145, "_softmax": 145, "087m": 145, "376": [145, 174, 189], "888m": 145, "77": 145, "430m": 145, "502m": 145, "161m": 145, "850": 145, "377m": 145, "386": [145, 164, 195], "index_select": 145, "000u": [145, 240], "986": 145, "420m": 145, "703": 145, "656": [145, 261], "963": 145, "864m": 145, "_mkl_linear": 145, "231": [145, 233, 240], "573m": [145, 240], "992m": 145, "336": [145, 240], "642m": 145, "graph_0_cpp_fused_constant_pad_nd_embedding_0": 145, "915": 145, "911": 145, "graph_0_cpp_fused__mkl_linear_add_mul_relu_151": 145, "901": [145, 186], "graph_0_cpp_fused__mkl_linear_add_mul_relu_226": 145, "899": [145, 259], "graph_0_cpp_fused__mkl_linear_add_mul_relu_361": 145, "898": [145, 259], "graph_0_cpp_fused__mkl_linear_add_mul_relu_121": 145, "895": 145, "graph_0_cpp_fused__mkl_linear_add_mul_relu_31": 145, "893": 145, "graph_0_cpp_fused__mkl_linear_add_mul_relu_76": 145, "892": [145, 159, 233, 259], "graph_0_cpp_fused__mkl_linear_add_mul_relu_256": 145, "graph_0_cpp_fused__mkl_linear_add_mul_relu_346": 145, "graph_0_cpp_fused__mkl_linear_add_mul_relu_241": 145, "891": 145, "graph_0_cpp_fused__mkl_linear_add_mul_relu_316": 145, "graph_0_cpp_fused__mkl_linear_add_mul_relu_91": 145, "890": 145, "graph_0_cpp_fused__mkl_linear_add_mul_relu_106": 145, "graph_0_cpp_fused__mkl_linear_add_mul_relu_211": 145, "graph_0_cpp_fused__mkl_linear_add_mul_relu_61": 145, "889": 145, "graph_0_cpp_fused__mkl_linear_add_mul_relu_286": 145, "graph_0_cpp_fused_": 145, "63x": 145, "cblas_sgemm_comput": 145, "339m": 145, "94x": 145, "cpp_fused__mkl_linear_add_mul_relu_151": 145, "clrlgu27q4ggd472umdzwsu6qcpqxcuusjxqvx2hwitjbujiiz7z": 145, "in_out_ptr0": 145, "in_ptr2": 145, "in_ptr3": 145, "arrayref": 145, "omp": [145, 177], "num_thread": [145, 233, 248], "16384l": 145, "512l": 145, "loadu": 145, "tmp5": 145, "tmp7": 145, "tmp4": 145, "tmp6": 145, "tmp8": 145, "neck": 145, "arg_0": 145, "arg_1": 145, "arg_2": 145, "arg_3": 145, "arg_4": 145, "add_0": 145, "add_1": 145, "mul_1": 145, "add_2": 145, "16384": [145, 233], "inductor_func": 145, "780875144992024": 145, "9588955780491233": 145, "0286805751604735": 145, "smallest": [145, 157], "solid": 145, "analyt": [145, 263], "hotspot": [145, 177, 178], "phenomenon": 145, "inductor_debug_cpu": 145, "jax": [146, 151, 207], "compute_jac": 146, "xp": 146, "jacobian_row": [146, 207], "unit_vector": 146, "rid": 146, "vjp_fn": [146, 151], "ft_jacobian": 146, "argnum": 146, "millisecond": [146, 156, 189, 225], "get_perf": [146, 155], "first_descriptor": [146, 155], "second_descriptor": [146, 155], "final_gain": [146, 155], "no_vmap_tim": [146, 155], "with_vmap_tim": [146, 155], "ft_jac_weight": 146, "ft_jac_bia": 146, "rigor": 146, "taller": 146, "din": 146, "using_fwd": 146, "using_bwd": 146, "jacfwd_tim": 146, "jacrev_tim": 146, "hessiani": 146, "overwhelm": 146, "hess_api": 146, "hess_fwdfwd": 146, "hess_revrev": 146, "compute_batch_jacobian": 146, "batch_jacobian0": 146, "predict_with_output_sum": 146, "batch_jacobian1": 146, "movedim": 146, "compute_batch_hessian": 146, "batch_hess": 146, "hvp_revrev": 146, "result_hvp_revrev": 146, "jacobians_hessian": 146, "yuansong": 147, "feng": [147, 156], "steven": 147, "guo": 147, "cheatsheet": 147, "companion": 147, "bro": 147, "dequ": [147, 161], "framestack": 147, "ne": [147, 166, 174, 240], "nes_pi": 147, "joypadspac": 147, "gym_super_mario_bro": 147, "tube": 147, "mushroom": 147, "supermariobro": 147, "new_step_api": 147, "apply_api_compat": 147, "next_stat": [147, 161], "trunc": 147, "240": [147, 164, 240], "pipe": 147, "sky": 147, "grayscaleobserv": 147, "resizeobserv": 147, "skipfram": 147, "movement": 147, "_skip": 147, "total_reward": 147, "trunk": 147, "observationwrapp": 147, "obs_shap": 147, "observation_spac": 147, "permute_orient": 147, "antialia": 147, "num_stack": 147, "exploration_r": 147, "marionet": 147, "state_dim": 147, "dnn": [147, 240], "exploration_rate_decai": 147, "99999975": 147, "exploration_rate_min": 147, "curr_step": 147, "5e5": 147, "lazyfram": 147, "action_idx": 147, "__array__": 147, "first_if_tupl": 147, "ddqn": 147, "output_dim": 147, "__build_cnn": 147, "q_target": 147, "3136": 147, "_e": 147, "argmax_": 147, "td_target": 147, "td_estim": 147, "current_q": 147, "q_onlin": 147, "next_state_q": 147, "best_act": 147, "next_q": 147, "td_t": 147, "td_e": 147, "leftarrow": 147, "nabla": [147, 265], "00025": 147, "update_q_onlin": 147, "sync_q_target": 147, "save_path": 147, "mario_net_": 147, "chkpt": 147, "burnin": 147, "1e4": 147, "learn_everi": 147, "sync_everi": 147, "td_est": 147, "td_tgt": 147, "metriclogg": 147, "save_log": 147, "episod": [147, 161, 162, 164], "meanreward": 147, "meanlength": 147, "meanloss": 147, "meanqvalu": 147, "timedelta": 147, "ep_rewards_plot": 147, "reward_plot": 147, "ep_lengths_plot": 147, "length_plot": 147, "ep_avg_losses_plot": 147, "loss_plot": 147, "ep_avg_qs_plot": 147, "q_plot": 147, "ep_reward": [147, 162, 164], "ep_length": 147, "ep_avg_loss": 147, "ep_avg_q": 147, "moving_avg_ep_reward": 147, "moving_avg_ep_length": 147, "moving_avg_ep_avg_loss": 147, "moving_avg_ep_avg_q": 147, "init_episod": 147, "record_tim": 147, "log_step": 147, "curr_ep_reward": 147, "curr_ep_length": 147, "curr_ep_loss": 147, "curr_ep_q": 147, "curr_ep_loss_length": 147, "log_episod": 147, "mean_ep_reward": 147, "mean_ep_length": 147, "mean_ep_loss": 147, "mean_ep_q": 147, "last_record_tim": 147, "time_since_last_record": 147, "8d": 147, "clf": [147, 161], "moving_avg_": 147, "_plot": 147, "flag_get": 147, "mario_rl_tutori": 147, "vitali": 148, "fedyunin": 148, "densest": 148, "4x4": 148, "10x3x16x16": 148, "memory_format": [148, 196, 201, 208, 209, 218, 220, 222, 225], "channels_last": [148, 178, 196, 201, 209, 220, 222, 225], "contiguous_format": 148, "minor": [148, 158, 164, 170, 222], "ambigu": [148, 192, 193], "n1hw": 148, "contrari": [148, 157], "restrid": 148, "special_x": 148, "unintend": 148, "7603": 148, "apex": 148, "main_amp": 148, "resnet50": [148, 150, 159, 162, 177, 178, 222, 249, 256], "o2": 148, "opt_level": 148, "keep_batchnorm_fp32": 148, "nonetyp": 148, "loss_scal": 148, "cast_model_typ": 148, "patch_torch_funct": 148, "master_weight": 148, "125": [148, 240], "866": 148, "230": [148, 164, 172], "949": 148, "6735125184": 148, "6735": 148, "259": 148, "562": 148, "773": 148, "481": 148, "355": 148, "693": 148, "6968704462": 148, "6852": 148, "55": [148, 177, 199, 206, 233], "58": [148, 203, 223], "258": [148, 265], "461": 148, "775": 148, "089": 148, "433": 148, "965": 148, "7877287269": 148, "7194": 148, "833": 148, "771": 148, "710": 148, "487": 148, "8285319805": 148, "7467": 148, "260": [148, 164], "380": 148, "770": 148, "090": 148, "525": 148, "908": 148, "7370464802": 148, "7447": 148, "360": 148, "623": 148, "555": 148, "728": 148, "7592862844": 148, "7472": 148, "917": 148, "345": [148, 179], "774": 148, "746": [148, 233], "115": [148, 186, 221], "9698858261": 148, "9218": 148, "324": 148, "597": 148, "659": 148, "2505953312": 148, "0879": 148, "767": [148, 225], "785": 148, "7579724789": 148, "7580": 148, "198": 148, "482": 148, "135": [148, 159, 233], "414": 148, "716": [148, 233], "7007197738": 148, "7293": 148, "250": [148, 164, 240], "387": 148, "1010": 148, "516": 148, "7113101482": 148, "7233": 148, "667": 148, "197": 148, "340": 148, "1013": 148, "023": 148, "588": 148, "333": 148, "8943189979": 148, "7661": 148, "541": 148, "7113249302": 148, "9551": 148, "1011": 148, "163": 148, "683": 148, "574": 148, "8537774086": 148, "7716": 148, "279": 148, "453": 148, "7595844269": 148, "3413": 148, "429": 148, "827": 148, "743": [148, 174], "883": 148, "8196096420": 148, "4011": 148, "volta": [148, 232, 249], "mnasnet0_5": 148, "mnasnet0_75": 148, "mnasnet1_0": 148, "mnasnet1_3": 148, "mobilenet_v2": [148, 159, 179, 189, 190, 196, 208, 225, 226, 227, 230], "resnet152": 148, "resnet34": 148, "resnext50_32x4d": 148, "shufflenet_v2_x0_5": [148, 159], "shufflenet_v2_x1_0": [148, 159], "shufflenet_v2_x1_5": [148, 159], "shufflenet_v2_x2_0": [148, 159], "squeezenet1_0": 148, "squeezenet1_1": 148, "vgg11": 148, "vgg11_bn": 148, "vgg13": 148, "vgg13_bn": 148, "vgg16_bn": 148, "vgg19_bn": 148, "wide_resnet101_2": 148, "wide_resnet50_2": 148, "ic": 148, "lake": [148, 222], "densenet161": 148, "densenet169": 148, "googlenet": [148, 159, 230], "inception_v3": [148, 159], "resnext101_32x8d": [148, 159], "spite": 148, "contains_cl": 148, "print_input": 148, "check_wrapp": 148, "check_cl": 148, "was_cl": 148, "old_attr": 148, "exclude_funct": 148, "has_nam": 148, "nc11": 148, "memory_format_tutori": 148, "pytorch_lightn": 149, "lightningmodul": 149, "pl_logger": 149, "torchmetr": 149, "multiclass_accuraci": 149, "path_dataset": 149, "mnistmodel": 149, "tunabl": 149, "hidden_lay": [149, 179], "validation_step": 149, "prog_bar": 149, "configure_optim": 149, "prepare_data": 149, "mnist_train": 149, "mnist_val": 149, "run_training_job": 149, "mnist_model": 149, "enable_progress_bar": 149, "default_root_dir": 149, "tensorboardlogg": 149, "train_tim": 149, "log_metr": 149, "capture_output": 149, "val_accuraci": 149, "stitch": [150, 162, 163], "modelparallelresnet50": 150, "seq1": 150, "maxpool": [150, 158, 202], "seq2": 150, "layer4": [150, 158], "avgpool": [150, 158], "deterior": 150, "quantit": 150, "switch_backend": [150, 166], "num_repeat": 150, "mp_run_tim": 150, "mp_mean": 150, "mp_std": 150, "rn_run_tim": 150, "rn_mean": 150, "rn_std": 150, "fig_nam": 150, "yerr": 150, "center": [150, 161, 169], "ecolor": 150, "capsiz": 150, "set_ylabel": 150, "set_xtick": [150, 158], "mp_vs_rn": 150, "idl": [150, 162, 169], "pipelineparallelresnet50": 150, "split_siz": 150, "s_next": 150, "s_prev": 150, "pp_run_tim": 150, "pp_mean": 150, "pp_std": 150, "mp_vs_rn_vs_pp": 150, "destin": [150, 164], "errorbar": 150, "ro": 150, "set_xlabel": 150, "split_size_tradeoff": 150, "prev": 150, "model_parallel_tutori": 150, "jacrev": 151, "21632": 151, "x_test": 151, "fnet_singl": 151, "j_": 151, "empirical_ntk_jacobian_contract": 151, "jac1": 151, "jac2": 151, "einsum": 151, "naf": 151, "mbf": 151, "nmab": 151, "j1": 151, "j2": 151, "diagon": 151, "einsum_expr": 151, "maf": 151, "nma": 151, "asymptot": 151, "i_o": 151, "i_": 151, "e_o": 151, "textrm": 151, "_o": 151, "empirical_ntk_ntk_vp": 151, "get_ntk": 151, "func_x1": 151, "func_x2": 151, "get_ntk_slic": 151, "nmkk": 151, "nmk": 151, "tensorfloat": 151, "sacrific": [151, 196], "allow_tf32": 151, "result_from_jacobian_contract": 151, "result_from_ntk_vp": 151, "luck": [151, 153], "neural_tangent_kernel": 151, "deprec": [152, 169, 181, 219], "homepag": [152, 181], "ooz": 153, "_might_": 153, "vit_l_16": 153, "2p": 153, "_record_memory_histori": 153, "_snapshot": 153, "memory_viz": 153, "devot": 153, "bat": [153, 188], "2gb": [153, 159], "6gb": 153, "foreach": 153, "reveal": [153, 165, 173, 174], "silver": 153, "bullet": 153, "sizabl": 153, "tantamount": 153, "lora": 153, "unlock": [153, 183, 186], "optimizer_dict": 153, "optimizer_hook": 153, "neat": 153, "lrschedul": [153, 253], "convinc": 153, "slate": 153, "bwd": 153, "likewis": 153, "woohoo": 153, "apart": 153, "shrunk": 153, "0gb": 153, "optimizer_step_in_backward_tutori": 153, "lezcano": 154, "surprisingli": 154, "ill": 154, "singular": [154, 165], "frobeniu": 154, "spectral": 154, "lipschitz": 154, "x\u1d40": 154, "triangular": 154, "linearsymmetr": 154, "n_featur": 154, "reimplement": [154, 157], "register_parametr": 154, "skew": [154, 169], "unparametr": 154, "nparametr": 154, "moduledict": [154, 203], "parametrizationlist": [154, 203], "weight_orig": [154, 157], "noisyparametr": 154, "caylei": 154, "cayleymap": 154, "linalg": 154, "spd": 154, "matrixexponenti": 154, "matrix_exp": 154, "layer_orthogon": 154, "layer_spd": 154, "eigvalsh": 154, "right_invers": 154, "cayley_transform": 154, "matrix_map": 154, "neg_": 154, "pruningparametr": 154, "p_drop": 154, "full_lik": [154, 191], "bernoulli": 154, "niniti": 154, "remove_parametr": 154, "unconstrain": [154, 174, 175], "parametri": 154, "leave_parametr": 154, "privaci": [155, 157], "simplecnn": 155, "compute_grad": 155, "compute_sample_grad": 155, "sample_grad": 155, "per_sample_grad": 155, "named_buff": [155, 157], "compute_loss": 155, "ft_compute_grad": 155, "ft_compute_sample_grad": 155, "ft_per_sample_grad": 155, "25x": [155, 172, 203], "second_r": 155, "first_r": 155, "opacu": 155, "tian": 156, "processgroupnccl": 156, "processgroupgloo": 156, "processgroupmpi": 156, "ucc": 156, "oneccl": [156, 249], "trainum": 156, "emerg": 156, "backenddummi": 156, "chrono": 156, "allgatheropt": 156, "allreduceopt": 156, "workdummi": 156, "optyp": 156, "recvanysourc": 156, "future_": 156, "iscomplet": 156, "issuccess": 156, "kunsettimeout": 156, "virtual": 156, "getfutur": 156, "outputtensorvec": 156, "listtyp": 156, "tensortyp": 156, "markcomplet": 156, "createbackenddummi": 156, "backenddummyconstructor": 156, "__attribute__": 156, "register_backend": 156, "cpp_function": [156, 233], "libraries_dir": 156, "dummy_collect": 156, "michela": 157, "paganini": 157, "biolog": 157, "batteri": 157, "lucki": 157, "subnetwork": 157, "lotteri": 157, "ticket": 157, "destruct": [157, 178], "0a0": [157, 190, 208], "8e8a5e0": 157, "lecun": 157, "1998": 157, "nelement": 157, "unprun": 157, "basepruningmethod": 157, "adequ": [157, 160], "random_unstructur": 157, "_orig": 157, "intact": [157, 162], "weight_mask": 157, "_mask": 157, "forward_pre_hook": 157, "_forward_pre_hook": 157, "l1_unstructur": 157, "bias_orig": 157, "bias_mask": 157, "pruningcontain": 157, "compute_mask": 157, "ln_structur": 157, "_tensor_nam": 157, "perman": 157, "undo": 157, "new_model": [157, 158], "global_unstructur": 157, "parameters_to_prun": 157, "pruning_method": 157, "l1unstructur": 157, "induc": 157, "apply_mask": 157, "shouldn": 157, "unstructur": 157, "preprun": 157, "pruning_typ": 157, "foobarpruningmethod": 157, "default_mask": 157, "foobar_unstructur": 157, "pruning_tutori": 157, "zafar": 158, "takhirov": 158, "initializaion": 158, "unfreez": 158, "set_ytick": 158, "nrow": 158, "best_model_wt": 158, "current_row": 158, "current_col": 158, "lbl": 158, "jdx": 158, "model_f": 158, "isol": 158, "create_combined_model": 158, "model_fe_featur": 158, "new_head": 158, "default_qat_qconfig": 158, "model_ft_tun": 158, "model_quantized_and_train": 158, "heat": 159, "sink": [159, 265], "5v": 159, "sd": 159, "card": [159, 165], "8gb": 159, "arm": [159, 221, 230], "64bit": 159, "aarch64": 159, "arm64": [159, 190, 206, 208, 220, 225], "raspberrypi": 159, "raspios_arm64": 159, "rpi": 159, "internet": 159, "sdcard": 159, "start_x": 159, "128m": 159, "gpu_mem": 159, "commment": 159, "camera_auto_detect": 159, "v4l2": 159, "reboot": 159, "video4linux2": 159, "video0": 159, "picamera": 159, "36fp": 159, "30fp": 159, "framer": 159, "cv2": 159, "cap": [159, 160, 169], "videocaptur": 159, "cap_prop_frame_width": 159, "cap_prop_frame_height": 159, "cap_prop_fp": 159, "bgr": 159, "chose": 159, "mobilenet_v3_larg": 159, "109": 159, "233": [159, 164], "885": [159, 221], "204": [159, 221, 233], "195": [159, 164], "132": 159, "82": [159, 199, 221], "prequant": 159, "20fp": 159, "cap_v4l2": 159, "last_log": 159, "frame_count": 159, "htop": [159, 177], "mug": 159, "allevi": 159, "repetit": [160, 233], "maximis": 160, "clipppoloss": 160, "theta_k": 160, "pi_": 160, "shift": [160, 265], "lingua": 160, "franca": 160, "normalparamextractor": 160, "replaybuff": 160, "samplerwithoutreplac": 160, "lazytensorstorag": 160, "tanhnorm": 160, "max_grad_norm": 160, "sub_batch_s": 160, "inner": [160, 178, 266], "cardin": 160, "clip_epsilon": 160, "entropy_ep": 160, "deepmind": [160, 167], "interchang": 160, "panel": [160, 169], "inverteddoublependulum": 160, "transmit": [160, 265], "gymwrapp": 160, "loos": 160, "supplementari": 160, "told": 160, "stringent": 160, "mu_": 160, "d_ob": 160, "d_action": 160, "mu": [160, 172, 265], "policy_modul": 160, "distribution_kwarg": 160, "return_log_prob": 160, "discount": [160, 161, 162], "value_net": 160, "value_modul": 160, "datacollector": 160, "multisyncdatacollector": 160, "refil": [160, 225], "max_siz": 160, "value_target": 160, "advantage_modul": 160, "average_ga": 160, "critic_network": 160, "entropy_bonu": 160, "entropy_coef": 160, "critic_coef": 160, "loss_critic_typ": 160, "smooth_l1": 160, "eval_str": 160, "tensordict_data": 160, "data_view": 160, "subdata": 160, "loss_object": 160, "loss_crit": 160, "loss_entropi": 160, "cum_reward_str": 160, "stepcount_str": 160, "lr_str": 160, "horizon": 160, "eval_rollout": 160, "videorecord": 160, "reinforcement_ppo": 160, "tower": 161, "cart": 161, "pole": 161, "attach": [161, 197, 202, 211, 215], "upright": 161, "classic_control": 161, "decorrel": 161, "replaymemori": 161, "cyclic": 161, "formul": 161, "r_": 161, "t_0": 161, "r_t": 161, "uncertain": 161, "tempor": 161, "max_a": 161, "obei": 161, "bellman": 161, "huber": 161, "noisi": [161, 233, 248], "mathcal": 161, "le": [161, 166], "mathrm": 161, "n_observ": 161, "n_action": 161, "left0exp": 161, "right0exp": 161, "select_act": [161, 162, 164], "eps_start": 161, "eps_end": 161, "eps_decai": 161, "plot_dur": 161, "underneath": 161, "policy_net": 161, "target_net": 161, "amsgrad": 161, "steps_don": 161, "eps_threshold": 161, "episode_dur": 161, "show_result": 161, "durations_t": 161, "unfold": [161, 166], "optimize_model": 161, "s_t": 161, "a_t": 161, "19343": 161, "3343043": 161, "non_final_mask": 161, "non_final_next_st": 161, "state_batch": 161, "action_batch": 161, "reward_batch": 161, "next_state_valu": 161, "expected_state_action_valu": 161, "clip_grad_value_": 161, "num_episod": [161, 162], "i_episod": [161, 162, 164], "\u03b8": 161, "\u03c4": 161, "target_net_state_dict": 161, "policy_net_state_dict": 161, "reinforcement_q_learn": 161, "unblock": 162, "callback": 162, "update_and_fetch_model": 162, "future_model": 162, "notifi": [162, 169], "batch_update_s": 162, "batchupdateparameterserv": 162, "curr_update_s": 162, "ps_rref": 162, "setti": 162, "set_result": 162, "get_worker_info": [162, 164], "543": 162, "affine1": [162, 164], "affine2": [162, 164], "action_scor": [162, 164], "select_action_batch": 162, "run_episod": [162, 164], "agent_rref": [162, 164], "start_step": 162, "curr_reward": 162, "saved_log_prob": [162, 164], "rob": 162, "ob_rref": [162, 164], "running_reward": [162, 164], "ob_rank": [162, 164], "ob_info": [162, 164], "observer_nam": [162, 164], "future_act": 162, "pending_st": 162, "select_acion": 162, "ob_id": [162, 164], "oberv": [162, 164], "policy_loss": [162, 164], "n_episod": 162, "print_log": 162, "rank0": [162, 164], "agent_nam": [162, 164], "tlast": [162, 164], "taverag": [162, 164], "next_devic": 163, "call_method": 163, "remote_method": 163, "foo_inst": 163, "parameterserv": 163, "input_devic": 163, "intention": [163, 164], "miscellan": 163, "get_dist_gradi": 163, "get_gradi": 163, "get_param_rref": 163, "cid": 163, "cpu_grad": 163, "k_cpu": 163, "v_cpu": 163, "paramt": 163, "param_rref": [163, 164], "run_parameter_serv": 163, "param_serv": 163, "global_lock": 163, "get_parameter_serv": 163, "parameter_serv": 163, "offlin": 163, "trainernet": 163, "param_server_rref": 163, "get_global_param_rref": 163, "paramat": 163, "run_training_loop": 163, "nueral": 163, "get_accuraci": 163, "correct_sum": 163, "trainer_": 163, "traffic": [163, 177], "listen": 163, "subprocess": 163, "rpc_parameter_serv": 163, "solver": 164, "formatter_class": 164, "argumentdefaultshelpformatt": 164, "report_reward": 164, "_max_episode_step": 164, "finfo": 164, "reward_threshold": 164, "finish_episod": 164, "min_reward": 164, "distinguish": [164, 170], "surpass": 164, "ctrl": 164, "131": 164, "130": 164, "137": 164, "140": 164, "104": 164, "170": [164, 179], "126": [164, 174], "180": [164, 174, 175, 233], "213": 164, "322": [164, 221], "165": 164, "272": [164, 221], "210": 164, "168": [164, 174], "184": [164, 186], "208": [164, 172, 231], "270": [164, 172], "405": 164, "280": 164, "290": 164, "464": 164, "3163778435275": 164, "vehicl": 164, "rnnmodel": 164, "emb_table_rref": 164, "decoder_rref": 164, "_remote_method": 164, "rremot": 164, "_parameter_rref": 164, "run_train": 164, "nindic": 164, "driss": 165, "guessou": 165, "flashattent": 165, "benchmark_torch_function_in_microsecond": [165, 212], "max_sequence_len": 165, "embed_dimens": 165, "sdpbackend": 165, "sdpa_kernel": 165, "math_tim": 165, "flash_attent": 165, "flash_tim": 165, "flash": [165, 185], "efficient_attent": 165, "efficient_tim": 165, "efficientattent": 165, "andrej": 165, "karpathi": 165, "nanogpt": 165, "causalselfattent": 165, "is_caus": [165, 195], "c_attn": 165, "c_proj": 165, "resid_dropout": 165, "query_project": 165, "head_dim": 165, "attn_mask": 165, "dropout_p": [165, 166, 195], "heads_per_dim": 165, "generate_rand_batch": 165, "pad_percentag": 165, "seq_len_list": 165, "gauss": 165, "nested_tensor": [165, 195], "random_nt": 165, "random_dens": 165, "nt": [165, 195], "166": 165, "616": 165, "726": 165, "amaz": 165, "record_shap": [165, 169, 240], "compili": 165, "cuda_time_tot": [165, 240], "compiled_causal_attention_trac": 165, "concentr": 165, "6090": 165, "49m": 165, "3273": 165, "17m": 165, "commit": [165, 198, 209], "ae3a8d5": 165, "causal_upper_left": 165, "causal_lower_right": 165, "sequence_length_q": 165, "sequence_length_kv": 165, "upper_left_bia": 165, "lower_right_bia": 165, "issubclass": 165, "causalbia": 165, "corner": 165, "attn_scor": 165, "out_upper_left": 165, "out_lower_right": 165, "out_is_caus": 165, "compiled_sdpa": 165, "scaled_dot_product_attention_tutori": 165, "french": 166, "il": 166, "est": [166, 169, 268], "peindr": 166, "tableau": 166, "paint": 166, "pourquoi": 166, "pa": 166, "essay": 166, "vin": 166, "delicieux": 166, "delici": 166, "wine": 166, "poet": 166, "romancier": 166, "novelist": 166, "vou": 166, "trop": 166, "maigr": 166, "skinni": 166, "condens": [166, 211, 248], "phrase": [166, 265], "\u5b57\u7b26\u7ea7": 166, "__future__": [166, 172, 239, 246], "unicode_liter": 166, "print_funct": 166, "manyth": 166, "anki": 166, "fra": 166, "froid": 166, "lang": [166, 210, 264], "n_word": [166, 255], "readlang": 166, "lang1": 166, "lang2": 166, "input_lang": [166, 255], "output_lang": [166, 255], "apostroph": 166, "eng_prefix": 166, "preparedata": 166, "je": 166, "sui": 166, "noir": 166, "decoderrnn": 166, "target_tensor": 166, "forward_step": 166, "burden": 166, "attn_appli": 166, "bahdanauattent": 166, "ua": 166, "va": 166, "attndecoderrnn": [166, 255], "input_gru": 166, "tensorfromsent": 166, "tensorsfrompair": 166, "get_dataload": 166, "inp_id": 166, "tgt_id": 166, "exhibit": 166, "coher": 166, "grammar": 166, "wander": 166, "asminut": 166, "es": 166, "n_epoch": 166, "plot_loss": 166, "print_loss_tot": 166, "plot_loss_tot": 166, "plot_loss_avg": 166, "showplot": 166, "decoder_attn": 166, "decoded_id": 166, "judgement": 166, "evaluaterandomli": 166, "showattent": 166, "bone": 166, "evaluateandshowattent": 166, "aussi": 166, "grand": 166, "son": 166, "pere": 166, "fatigu": 166, "pour": 166, "conduir": 166, "desol": 166, "idiot": 166, "reellement": 166, "fier": 166, "iot": 166, "word2vec": 166, "glove": 166, "autoencod": 166, "seq2seq_translation_tutori": 166, "ghassen": 167, "hamrouni": 167, "geometr": 167, "invari": [167, 192], "urllib": 167, "build_open": 167, "addhead": 167, "mozilla": 167, "install_open": 167, "boil": 167, "affine_grid": 167, "grid_sampl": 167, "conv2_drop": [167, 223], "regressor": 167, "fc_loc": 167, "size_averag": 167, "convert_image_np": 167, "visualize_stn": 167, "transformed_input_tensor": 167, "in_grid": 167, "out_grid": 167, "axarr": 167, "spatial_transformer_tutori": 167, "speech_recognition_pipeline_tutori": 168, "tensorboard_trace_handl": 169, "batch_data": [169, 172], "torch_tb_profil": 169, "safari": 169, "pytorch_profil": 169, "breakdown": 169, "dropdown": 169, "callstack": 169, "multiprocessor": 169, "occup": 169, "tooltip": 169, "toolbar": 169, "keyboard": [169, 265], "mous": [169, 265], "resnet18_4work": 169, "76m": [169, 183], "132m": 169, "torchtbprofil": 169, "memory_demo_1_10": 169, "gpu0": 169, "distributed_bert": 169, "rocm": 169, "docker": [169, 260], "profiler_tutori": 169, "test_cifar10": 169, "vi": [169, 265], "kfd": 169, "sys_ptrac": 169, "seccomp": 169, "unconfin": 169, "shm": [169, 214], "8g": 169, "apt": [169, 172, 210], "libjpeg": 169, "rocm5": 169, "scp": 169, "tensorboard_profiler_tutori": 169, "plot_classes_pr": 170, "four_fashion_mnist_imag": 170, "datapoint": 170, "night": [170, 266], "thoroughli": 170, "clearer": 170, "images_to_prob": 170, "preds_tensor": 170, "el": 170, "add_figur": 170, "global_step": [170, 247], "scroll": [170, 263, 267], "test_siz": 170, "class_prob": 170, "class_probs_batch": 170, "test_prob": 170, "test_label": 170, "add_pr_curve_tensorboard": 170, "class_index": 170, "tensorboard_truth": 170, "tensorboard_prob": 170, "add_pr_curv": 170, "poke": 170, "tacotron2_pipeline_tutori": 171, "wsi": 172, "tissu": 172, "biopsi": 172, "scanner": 172, "pathologist": 172, "cancer": 172, "microscop": 172, "tumor": 172, "000x100": 172, "25x0": 172, "micron": 172, "pyramid": 172, "magnif": 172, "sketch": 172, "histoencod": 172, "jopo666": 172, "openjpeg": 172, "openslid": 172, "pixman": 172, "qq": 172, "libopenjp2": 172, "libpixman": 172, "echo": [172, 210, 265], "brew": 172, "hashandl": 172, "nopython": 172, "shutil": 172, "zipfil": 172, "mpl": 172, "cm": 172, "accuracy_scor": 172, "confusion_matrix": 172, "patch_predictor": 172, "iopatchpredictorconfig": 172, "misc": 172, "download_data": 172, "grab_files_from_dir": 172, "overlay_prediction_mask": 172, "wsicor": 172, "wsiread": 172, "rcparam": 172, "dpi": 172, "facecolor": 172, "dark": 172, "on_gpu": 172, "suppress": 172, "overli": 172, "suppress_console_output": 172, "redirect_stderr": 172, "stringio": 172, "abnorm": 172, "global_save_dir": 172, "mainten": 172, "rmdir": 172, "dir_path": 172, "is_dir": 172, "rmtree": 172, "kather": 172, "100k": 172, "wsi_path": 172, "sample_wsi": 172, "sv": 172, "patches_path": 172, "kather100k": 172, "weights_path": 172, "dc": 172, "warwick": 172, "uk": 172, "tcga": 172, "3l": 172, "aa1b": 172, "01z": 172, "dx1": 172, "8923a151": 172, "a690": 172, "40b7": 172, "9e5a": 172, "fcbedfc2394f": 172, "extractal": 172, "pc": 172, "patch_list": 172, "dataset_path": 172, "image_ext": 172, "tif": 172, "label_dict": 172, "glass": 172, "mucosa": 172, "deb": 172, "debri": 172, "tum": 172, "colorect": 172, "adenocarcinoma": 172, "epithelium": 172, "adi": 172, "adipos": 172, "muc": 172, "mucu": 172, "stroma": 172, "lym": 172, "lymphocyt": 172, "dataset_class_path": 172, "patch_list_single_class": 172, "file_typ": 172, "299": 172, "211": [172, 240], "176": 172, "178": 172, "209": 172, "232": [172, 233], "modelabc": 172, "tia": 172, "toolbox": 172, "readthedoc": 172, "_autosummari": 172, "models_abc": 172, "preproc_func": 172, "predictor": [172, 179], "pretrained_weight": 172, "cnnmodel": 172, "conf": [172, 223, 263, 270], "df_cm": 172, "215": [172, 178], "993000": 172, "000000": 172, "00000": 172, "988636": 172, "011364": 172, "991304": 172, "008696": 172, "996503": 172, "003497": 172, "004808": 172, "990385": 172, "988764": 172, "011236": 172, "996296": 172, "003704": 172, "004785": 172, "985646": 172, "004310": 172, "99569": 172, "input_resolut": 172, "patch_input_shap": 172, "stride_shap": 172, "wsi_ioconfig": 172, "mpp": 172, "return_prob": 172, "ioconfig": 172, "merge_predict": 172, "wsi_output": 172, "wsi_predict": 172, "overlai": 172, "overlay_patch_predict": 172, "overview_resolut": 172, "overview_unit": 172, "wsi_overview": 172, "slide_thumbnail": 172, "label_color_dict": 172, "get_cmap": 172, "set1": 172, "pred_map": 172, "label_info": 172, "return_ax": 172, "histolog": 172, "pohjonen": 172, "joona": 172, "helsinki": 172, "umap": 172, "semantic_segmentor": 172, "deepfeatureextractor": 172, "iosegmentorconfig": 172, "histoencwrapp": 172, "histoenc": 172, "feat_extract": 172, "extract_featur": 172, "num_block": 172, "avg_pool": 172, "infer_batch": 172, "img_patches_devic": 172, "create_encod": 172, "prostate_medium": 172, "662": 172, "446": 172, "605": 172, "169": [172, 221], "155": [172, 174], "output_resolut": 172, "patch_output_shap": 172, "auto_generate_mask": 172, "otsu": 172, "num_loader_work": 172, "num_postproc_work": 172, "wsi_featur": 172, "umap_reduc": 172, "n_neighbor": 172, "n_compon": 172, "manhattan": 172, "random_st": 172, "fit_transform": 172, "npy": 172, "5mpp": 172, "4mpp": 172, "william": [173, 174, 175], "wen": [173, 174, 175], "modern": [173, 189, 196], "h100": 173, "elsewher": 173, "gpu_ok": 173, "device_cap": 173, "get_device_cap": [173, 212, 213, 258], "torchtriton": 173, "cu117": 173, "opt_foo1": [173, 188], "opt_foo2": 173, "opt_mod": 173, "generate_data": 173, "init_model": 173, "model_opt": 173, "eager_tim": 173, "compile_tim": 173, "eager_m": 173, "compile_m": 173, "train_opt": 173, "dashboard": 173, "struggl": 173, "fn1": 173, "fn2": 173, "test_fn": 173, "out1": [173, 236], "out2": [173, 236], "inp1": [173, 174, 175], "inp2": [173, 174, 175], "traced_f1": 173, "print_exc": [173, 174, 175], "fx_f1": 173, "concrete_arg": 173, "compile_f1": 173, "f2": 173, "script_f2": 173, "compile_f2": 173, "f3": 173, "dct": 173, "traced_f3": 173, "disallow": 173, "compile_f3": 173, "unoptim": 173, "custom_backend": 173, "example_input": [173, 180, 182, 183, 184, 199, 200, 201, 202, 249], "print_tabular": 173, "opt_model": 173, "opt_bar": 173, "resum": [173, 200, 243], "explain_output": 173, "torch_compile_tutori": 173, "zhengxu": [174, 175], "angela": [174, 175], "exportedprogram": [174, 175, 199], "synonym": [174, 175], "dynamic_shap": [174, 175], "exportedgraph": [174, 175], "exported_mod": [174, 175], "exported_program": 174, "2178": 174, "4397": 174, "4774": 174, "0943": [174, 186], "4656": 174, "8333": 174, "5912": 174, "4689": 174, "2122": 174, "1996": 174, "4628": 174, "7495": 174, "3900": 174, "4515": 174, "8187": 174, "8938": 174, "5753": 174, "7709": 174, "8081": 174, "8002": 174, "9441": 174, "5711": 174, "0921": [174, 203], "3438": 174, "3268": 174, "4640": 174, "2434": 174, "7253": 174, "6886": 174, "6982": 174, "5100": [174, 248], "2279": 174, "2951": 174, "1055": 174, "2088": 174, "5022": 174, "1468": [174, 233], "5220": 174, "1592": 174, "9096": 174, "4248": 174, "2142": 174, "relubackward0": 174, "graph_modul": [174, 175], "f32": 174, "arg2_1": 174, "arg3_1": 174, "torch_export_nightly_tutori": 174, "exportgraphsignatur": 174, "inputspec": 174, "inputkind": 174, "tensorargu": 174, "user_input": 174, "outputspec": 174, "outputkind": 174, "user_output": 174, "graph_signatur": [174, 175], "range_constraint": [174, 175], "equality_constraint": 174, "inputs_to_paramet": 174, "inputs_to_buff": 174, "buffers_to_mut": 174, "backward_signatur": 174, "assertion_dep_token": 174, "bad1": [174, 175], "usererror": 174, "control_flow": [174, 175], "cond": [174, 175], "bad2": [174, 175], "ban": 174, "aot_export": 174, "bad3": [174, 175], "call_id": 174, "tensorvari": 174, "bad4": [174, 175], "builtinvari": 174, "constantvari": 174, "bad1_fix": 174, "true_fn": [174, 175], "false_fn": [174, 175], "exported_bad1_fix": [174, 175], "8415": 174, "5403": 174, "predic": [174, 175], "operand": [174, 175], "mymodule2": [174, 175], "mod2": [174, 175], "exported_mod2": [174, 175], "dynamic_shapes_example1": 174, "inp1_dim0": [174, 175], "inp1_dim1": [174, 175], "dynamic_shapes1": [174, 175], "exported_dynamic_shapes_example1": [174, 175], "0828": 174, "8190": 174, "0037": 174, "0221": 174, "0898": 174, "8182": 174, "9165": 174, "3572": 174, "7422": 174, "4423": 174, "2497": 174, "1912": 174, "0522": 174, "4442": 174, "4188": 174, "8161": 174, "inp1_dim1_bad": [174, 175], "dynamic_shapes1_bad": [174, 175], "inp3": [174, 175], "dynamic_shapes_example2": 174, "inp2_dim0": [174, 175], "inner_dim": [174, 175], "inp3_dim1": [174, 175], "dynamic_shapes2": [174, 175], "exported_dynamic_shapes_example2": [174, 175], "5352": 174, "3836": 174, "8961": 174, "3412": 174, "3891": 174, "4326": 174, "1697": [174, 261], "inp4": [174, 175], "inp5": [174, 175], "dynamic_shapes_example3": [174, 175], "dynamic_shapes3": [174, 175], "inp4_dim": [174, 175], "inp5_dim": [174, 175], "violat": 174, "inp4_dim0": [174, 175], "inp5_dim0": [174, 175], "inp5_dim1": [174, 175], "inp4_dim1": [174, 175], "suggested_fix": [174, 175], "shared_dim": [174, 175], "dynamic_shapes3_fix": [174, 175], "exported_dynamic_shapes_example3": [174, 175], "1510": 174, "1174": 174, "5075": 174, "3566": 174, "2102": 174, "2033": 174, "3611": 174, "9041": 174, "2987": 174, "5751": 174, "1508": 174, "4470": 174, "2460": 174, "9288": 174, "1764": 174, "5879": 174, "5107": 174, "0845": 174, "3962": 174, "4359": 174, "2877": 174, "2839": 174, "3742": 174, "5569": 174, "0485": 174, "1028": 174, "4692": 174, "3837": 174, "8744": 174, "4191": 174, "9387": 174, "8480": 174, "9857": 174, "7783": 174, "2220": 174, "5934": 174, "9793": 174, "1118": 174, "9817": 174, "6156": 174, "2070": 174, "6976": 174, "8177": 174, "4002": 174, "3291": 174, "0860": 174, "7406": 174, "6509": 174, "1847": 174, "6311": 174, "8144": 174, "0439": 174, "9141": 174, "8778": 174, "5971": 174, "8781": 174, "1364": 174, "3096": 174, "0822": 174, "0587": 174, "3681": 174, "_log": [174, 175, 213, 258], "set_log": [174, 175, 213, 258], "657": 174, "symbolic_convert": 174, "374": 174, "658": 174, "symbolic_shap": 174, "create_env": 174, "663": 174, "create_symbol": 174, "s0": 174, "665": 174, "s1": [174, 194], "9223372036854775806": 174, "677": [174, 185], "680": 174, "734": [174, 240], "_meta_registr": 174, "1891": 174, "meta_mm": 174, "738": 174, "return_valu": 174, "output_graph": 174, "dynamo_normalization_capturing_compil": 174, "747": [174, 212], "produce_guard": 174, "839": 174, "eval_fram": 174, "847": 174, "rangeconstraint": 174, "min_val": 174, "max_val": 174, "inputdim": 174, "my_custom_librari": [174, 175], "compositeexplicitautograd": [174, 175], "custom_op_meta": [174, 175], "custom_op_exampl": 174, "exported_custom_op_exampl": [174, 175], "print_read": [174, 175], "5947": 174, "8062": 174, "6231": 174, "6615": 174, "5412": 174, "evidenc": [174, 175], "_schema": [174, 175], "is_mut": [174, 175], "run_decomposit": [174, 175], "decomposition_t": [174, 175], "_op": [174, 175], "operatorbas": [174, 175], "core_ir_ep": [174, 175], "num_us": 174, "placehold": 174, "get_decomposit": [174, 175], "_decomp": [174, 175], "decomp_t": [174, 175], "cond_pred": [174, 175], "stronger": 175, "safeti": 175, "bad2_nonstrict": 175, "bad3_nonstrict": 175, "bad4_nonstrict": 175, "bad1fix": 175, "dynamicshapesexample1": 175, "dynamicshapesexample2": 175, "deriveddimexample1": 175, "dimx": 175, "dimi": 175, "derived_dynamic_shapes1": 175, "derived_dim_example1": 175, "deriveddimexample2": 175, "dz": 175, "dy": 175, "derived_dynamic_shapes2": 175, "derived_dim_example2": 175, "dynamicshapesexample3": 175, "customopexampl": 175, "aotinductor": 175, "tensorrt": [175, 180], "so_path": 175, "aot_compil": 175, "compiler_aot_inductor": 175, "aot_load": 175, "torch_export_tutori": 175, "dlrm": 176, "dmp": 176, "datastructur": 176, "k80": 176, "appripri": 176, "product_t": 176, "user_t": 176, "101": 176, "202": 176, "303": 176, "product_eb": 176, "jag": [176, 195], "404": 176, "505": 176, "606": 176, "keyedtensor": 176, "3x64": 176, "pooled_embed": 176, "criteo": 176, "terabyt": 176, "jean": [177, 178], "saroufim": [177, 178], "ashok": [177, 178], "emani": [177, 178], "tl": [177, 186, 257], "dr": [177, 186], "numa": [177, 178], "upi": 177, "fma": [177, 178], "hyperthread": 177, "contend": 177, "ultra": 177, "cpu_launcher_en": [177, 178], "toepliz": 177, "toggl": 177, "use_logical_cor": 177, "vtune": [177, 253], "8180m": 177, "omp_num_thread": [177, 249], "982": 177, "__kmp_fork_barri": 177, "589": 177, "neglig": 177, "887": 177, "530": 177, "lscpu": 177, "112": [177, 186, 206, 240], "llc": [177, 178], "asid": 177, "get_num_thread": [177, 233], "node_id": [177, 178], "base_handl": 177, "56x4": 177, "affinit": [177, 178], "amplifi": 177, "slot": 177, "uop": [177, 178], "__sched_yield": 177, "disassoci": 177, "exacerb": 177, "core_51": 177, "8180": 177, "tid": 177, "97097": 177, "cpu_81": 177, "cpu_14": 177, "cpu_5": 177, "cpu_70": 177, "cpu_100": 177, "cpu_24": 177, "num_physical_cor": 177, "94290": 177, "cpu_78": 177, "cpu_108": 177, "microarchitectur": 177, "onednn": [177, 178, 201, 209, 221, 222, 228, 249], "immens": [177, 178], "ning": [177, 178], "jing": [177, 178], "xu": [177, 178, 188, 189, 190], "20x": 178, "toplev": 178, "pmu": 178, "mispredict": 178, "hierarch": 178, "retir": 178, "specul": 178, "cancel": 178, "untun": 178, "subsystem": 178, "l3": 178, "dram": 178, "starv": 178, "wll": 178, "uncomplet": 178, "oneapi": [178, 188, 228], "deconvolut": [178, 231], "emit_itt": [178, 228], "intel_extension_for_pytorch": [178, 222, 256], "ipex_en": 178, "submetr": 178, "spinlock": 178, "arena": 178, "enable_tcmalloc": 178, "enable_jemalloc": 178, "use_default_alloc": 178, "range_push": [178, 228], "step_": 178, "range_pop": [178, 228], "step_x": 178, "step_99": 178, "308": 178, "261": 178, "843": 178, "8960": 178, "cpu_launcher_arg": 178, "688": 178, "251": 178, "401": 178, "392": [178, 212], "bf16": [178, 185, 201, 221], "ipex": [178, 222, 253, 256], "8x": 178, "851": 178, "310": [178, 233], "7x": [178, 185], "803": 178, "248": 178, "eltwis": 178, "elementwis": 178, "nhwc": [178, 196, 222, 225], "disable_auto_channels_last": 178, "reorder": [178, 209, 228], "731": [178, 259], "634": 178, "fudan": 179, "databas": 179, "pedestrian": 179, "keypoint": 179, "tv_tensor": 179, "boundingbox": 179, "x0": 179, "y0": 179, "image_id": 179, "iscrowd": 179, "compliant": 179, "pycocotool": 179, "gautamchitni": 179, "cocoapi": 179, "cocodataset": 179, "pythonapi": 179, "get_height_and_width": 179, "ci": 179, "upenn": 179, "jshi": 179, "ped_html": 179, "pennfudanp": 179, "pedmask": 179, "fudanped00001_mask": 179, "fudanped00002_mask": 179, "fudanped00003_mask": 179, "fudanped00004_mask": 179, "pngimag": 179, "fudanped00001": 179, "fudanped00002": 179, "fudanped00003": 179, "fudanped00004": 179, "fudanped00046": 179, "fudanped00046_mask": 179, "122": [179, 240], "tvtensor": 179, "masks_to_box": 179, "pennfudandataset": 179, "listdir": 179, "mask_path": 179, "obj_id": 179, "num_obj": 179, "crowd": 179, "xyxi": 179, "canvas_s": 179, "get_siz": 179, "zoo": 179, "faster_rcnn": 179, "fastrcnnpredictor": 179, "fasterrcnn_resnet50_fpn": 179, "roi_head": 179, "box_predictor": 179, "cls_score": 179, "fasterrcnn": 179, "rpn": 179, "anchorgener": 179, "anchor": 179, "anchor_gener": 179, "aspect_ratio": 179, "featmap_nam": 179, "roi_pool": 179, "multiscaleroialign": 179, "sampling_ratio": 179, "rcnn": 179, "rpn_anchor_gener": 179, "box_roi_pool": 179, "mask_rcnn": 179, "maskrcnnpredictor": 179, "get_model_instance_segment": 179, "maskrcnn_resnet50_fpn": 179, "in_features_mask": 179, "mask_predictor": 179, "conv5_mask": 179, "coco_util": 179, "coco_ev": 179, "get_transform": 179, "todtyp": 179, "topuretensor": 179, "print_freq": 179, "draw_bounding_box": 179, "draw_segmentation_mask": 179, "eval_transform": 179, "rgba": 179, "pred_label": 179, "pred_box": 179, "output_imag": 179, "train2017": 179, "prepare_fx": [180, 182, 183, 184], "convert_fx": [180, 182, 183, 184], "default_weight_observ": 180, "get_default_qconfig_map": 180, "minmaxobserv": [180, 202], "backend_config": 180, "backendpatternconfig": 180, "dtypewithconstraint": 180, "observationtyp": 180, "quantize_fx": [180, 182, 183], "fp32_linear": 180, "quant1": 180, "dequant1": 180, "quant2": 180, "dequant2": 180, "bracket": [180, 265], "fp32_conv_relu": 180, "quint8_with_constraint": 180, "quant_min_lower_bound": 180, "quant_max_upper_bound": 180, "scale_min_lower_bound": 180, "weighted_int8_dtype_config": 180, "input_dtyp": 180, "output_dtyp": 180, "weight_dtyp": 180, "bias_dtyp": 180, "fuse_conv2d_relu": 180, "convrelu2d": [180, 183], "linear_config": 180, "set_pattern": 180, "set_observation_typ": 180, "output_use_different_observer_as_input": 180, "add_dtype_config": 180, "set_root_modul": 180, "set_qat_modul": 180, "set_reference_quantized_modul": 180, "conv_relu_config": 180, "set_fused_modul": 180, "set_fuser_method": 180, "fused_conv_relu_config": 180, "my_backend": 180, "set_backend_pattern_config": 180, "quant_max": [180, 202], "activation_observ": 180, "with_arg": [180, 202], "quant_min": [180, 202], "qconfig_map": [180, 182, 183, 184], "set_object_typ": [180, 182, 183, 199], "use_bn": 180, "quantizedlinear": 180, "012136868201196194": 180, "zero_point": [180, 186, 202], "qscheme": [180, 202], "per_tensor_affin": [180, 202], "quantizedconvrelu2d": 180, "0029353597201406956": 180, "linear_input_scale_0": 180, "linear_input_zero_point_0": 180, "quantize_per_tensor": [180, 186, 199, 223], "dequantize_2": 180, "015307803638279438": 180, "dequantize_1": 180, "get_fbgemm_backend_config": 180, "get_qnnpack_backend_config": 180, "get_native_backend_config": 180, "rfc": [180, 192, 265], "0019": [180, 186], "tldr": [182, 183], "default_dynamic_qconfig": [182, 186], "qconfigmap": [182, 184, 199, 202], "release": 182, "set_glob": [182, 183, 184, 199, 200, 201], "prepared_model": [182, 183, 199, 200, 201], "metamind": 182, "asset": [182, 208, 210, 226], "lstm_model": 182, "float_qparams_weight_only_qconfig": 182, "model_to_quant": [182, 183, 199], "forunct": 182, "fx_graph_mode_ptq_dynam": 182, "charl": 183, "hernandez": 183, "traceabl": 183, "identitc": [183, 199], "resnet18_pretrained_float": [183, 199, 200], "fuse_fx": 183, "recursivescriptmodul": [183, 186, 199, 200], "qconfig_opt": [183, 199], "set_module_name_regex": 183, "set_module_nam": [183, 199], "set_module_name_object_type_ord": 183, "object_typ": 183, "module_name_regex": 183, "module_nam": 183, "serila": [183, 199], "fx_graph_mode_model_file_path": 183, "resnet18_fx_graph_mode_quant": 183, "erro": 183, "convrelu": 183, "moduleattributeerror": 183, "_modul": 183, "conv1_weight_after_fus": 183, "conv1_weight_after_qu": 183, "resnet18_script": [183, 199], "eager_quantized_model": 183, "eager_mode_model_fil": 183, "resnet18_eager_mode_quant": 183, "aibench": 183, "192": 183, "48m": 183, "63m": 183, "non_traceable_code_1": 184, "traceable_cod": 184, "non_traceable_code_2": 184, "fp32traceabl": 184, "traceable_submodul": 184, "traceable_code_1": 184, "traceable_code_2": 184, "model_fp32": 184, "non_traceable_cod": 184, "fp32nontrac": 184, "non_traceable_submodul": 184, "prepare_custom_config_dict": 184, "non_traceable_module_nam": 184, "non_traceable_module_class": 184, "mnontrac": 184, "model_prepar": 184, "transpose_for_scor": 184, "new_x_shap": 184, "num_attention_head": 184, "attention_head_s": 184, "custommodul": 184, "observednontrac": 184, "from_float": 184, "from_observ": 184, "staticquantnontrac": 184, "float_to_observed_custom_module_class": 184, "convert_custom_config_dict": 184, "observed_to_quantized_custom_module_class": 184, "model_quant": [184, 226, 227, 230, 255], "thee": 184, "dynamicquantnontrac": 184, "weightonlyquantmnontrac": 184, "test_custom_module_class": 184, "test_quantize_fx": 184, "hdcharl": 185, "pg509": 185, "330": 185, "myenv": 185, "cu121": 185, "vit_h": 185, "segment_anyth": 185, "sam_vit_h_4b8939": 185, "sam_checkpoint_base_path": 185, "change_linear_weights_to_int8_dqtensor": 185, "sam_model_registri": 185, "batchsiz": 185, "only_one_block": 185, "adaptive_autorang": 185, "min_run_tim": [185, 233, 248], "max_run_tim": 185, "1e9": 185, "get_sam_model": 185, "sam": 185, "image_encod": 185, "fp32_re": 185, "16m": 185, "33gb": 185, "instant": 185, "protect": [185, 210, 224, 225], "bf16_re": 185, "43m": 185, "17gb": 185, "autotun": [185, 257], "comp_r": 185, "95m": 185, "24gb": 185, "int4": 185, "change_linear_weights_to_int8_woqtensor": 185, "change_linear_weights_to_int4_woqtensor": 185, "apply_dynamic_qu": 185, "apply_weight_only_int8_qu": 185, "change_linear_weight": 185, "quant_r": 185, "04m": 185, "58gb": 185, "force_fuse_int_mm_with_mul": 185, "78m": 185, "37gb": 185, "unquant": [185, 202], "epilogu": 185, "enlarg": 185, "epilogue_fus": 185, "coordinate_descent_tun": 185, "coordinate_descent_check_all_direct": 185, "39gb": 185, "10x": 185, "729": 185, "65m": 185, "96gb": 185, "28m": 185, "93gb": 185, "gpu_quantization_torchao_tutori": 185, "supriya": 186, "rao": 186, "per_channel_dynamic_qconfig": 186, "quantize_dynamic_jit": 186, "ts_model": 186, "installaion": 186, "necesessari": 186, "lenght": 186, "qconfig_glob": 186, "qconfig_sub": 186, "qconfig_fc": 186, "242141": 186, "354759": 186, "188": [186, 233], "157": 186, "4s": 186, "quantized_model_debug": 186, "prepare_dynamic_jit": 186, "convert_dynamic_jit": 186, "406429": 186, "897": 186, "113": 186, "4_scale_0": 186, "114": 186, "4_zero_point_0": 186, "4_axis_0": 186, "4_scalar_type_0": 186, "quantize_per_channel": 186, "1640": 186, "_choose_qparams_per_tensor": 186, "98304": 186, "linear_dynam": 186, "_c": [186, 189, 246, 249], "0157": 186, "0257": 186, "0269": 186, "0158": 186, "0764": 186, "0548": 186, "0325": 186, "0423": 186, "0528": 186, "1382": 186, "0069": 186, "0106": 186, "0113": 186, "0275": 186, "0253": 186, "0457": 186, "0090": 186, "0512": 186, "0555": 186, "0277": 186, "0543": 186, "0539": 186, "0619": 186, "1040": 186, "0598": [186, 203], "0465": 186, "0009": 186, "0949": 186, "0097": 186, "0183": 186, "0085": 186, "clonebackward": 186, "0011": 186, "0010": 186, "0034": 186, "0013": 186, "0012": 186, "0015": 186, "0016": 186, "0036": 186, "0014": 186, "0008": 186, "0023": 186, "0018": 186, "0031": 186, "0022": 186, "0024": 186, "016605": 186, "182": 186, "878029": 186, "jit_model_path_float": 186, "jit_model_path_eag": 186, "jit_model_path_graph": 186, "chunyuan": 187, "bao": 187, "cpp_wrapper": [187, 201], "opt_fn": 187, "assert_size_strid": 187, "empty_strid": [187, 208, 240], "cpp_fused_add_lift_fresh_0": 187, "c_void_p": 187, "constant0": 187, "inductor_entry_cpp": 187, "19l": 187, "cppwrappercodecach": 187, "cpp_wrapper_src": 187, "c2buojsvlqbywxe3itb43hldieh4jqulk72iswa2awalwev7hjn2": 187, "_wrap_func": 187, "args_tensor": 187, "constants_tensor": 187, "_deviceguard": 187, "lift_fresh": 187, "stream0": 187, "get_cuda_stream": 187, "triton_poi_fused_add_lift_fresh_0": 187, "run_intermediate_hook": 187, "cudaguard": 187, "device_guard": 187, "loadkernel": 187, "torchinductor_us": 187, "cmm6xjgijjffxjku4akv55eyzibirvw6bti6uqmfnruujm5cvvmw": 187, "cubin": 187, "triton_poi_fused_add_lift_fresh_0_0d1d2d3": 187, "cudeviceptr": 187, "var_0": 187, "reinterpret_cast": [187, 210], "var_1": 187, "var_2": 187, "var_3": 187, "kernel_args_var_0": 187, "cudastream_t": 187, "getcurrentcudastream": 187, "launchkernel": 187, "czbpeilh4qqmbyejdgsbpdfuk2ss5jigl2qjb7xs4gearrjvuwem": 187, "zhaoqiong": 188, "zheng": 188, "han": 188, "\u662f\u4e00\u4e2a\u7f16\u8bd1\u5668\u540e\u7aef": 188, "\u5b83\u5c06": 188, "\u751f\u6210\u7684": [188, 248], "\u56fe\u8f6c\u6362\u4e3a\u9ad8\u5ea6\u4f18\u5316\u7684": 188, "\u5185\u6838": [188, 221, 235, 253], "\u672c\u6559\u7a0b\u5c06\u6307\u5bfc\u5728": 188, "\u4e0a\u7f16\u8bd1\u548c\u6267\u884c\u4f7f\u7528": 188, "\u5185\u6838\u8fdb\u884c\u4f18\u5316\u7684\u57fa\u7840\u77e5\u8bc6": 188, "\u6216\u66f4\u9ad8\u7248\u672c": [188, 212, 228, 232, 239, 246, 254, 257, 258], "msvc": 188, "\u7248": 188, "miniforg": 188, "\u8ba9\u6211\u4eec\u5b89\u88c5\u6240\u9700\u7684\u8f6f\u4ef6": 188, "\u4f18\u5316\u9700\u8981": 188, "\u5728\u672c\u793a\u4f8b\u4e2d": 188, "\u4e0b\u8f7d\u5e76\u5b89\u88c5": 188, "\u5728\u5b89\u88c5\u8fc7\u7a0b\u4e2d": 188, "\u5de5\u4f5c\u8d1f\u8f7d": [188, 232], "\u8868\u4e2d\u7684": 188, "\u684c\u9762\u548c\u79fb\u52a8": 188, "\u90e8\u5206\u9009\u62e9": 188, "\u8fdb\u884c\u684c\u9762\u5f00\u53d1": 188, "\u7136\u540e\u5b89\u88c5\u8f6f\u4ef6": 188, "\u6211\u4eec\u63a8\u8350\u4f7f\u7528": 188, "\u66f4\u9ad8\u6027\u80fd\u7684\u66ff\u4ee3\u7f16\u8bd1\u5668": 188, "miniforge3": 188, "\u901a\u8fc7": [188, 215, 251], "cmd": [188, 206], "\u6253\u5f00\u547d\u4ee4\u884c\u73af\u5883": 188, "\u4f7f\u7528\u4ee5\u4e0b\u547d\u4ee4\u6fc0\u6d3b": 188, "vc": 188, "auxiliari": [188, 209], "vcvars64": 188, "programdata": 188, "\u521b\u5efa\u5e76\u6fc0\u6d3bconda\u73af\u5883": 188, "inductor_cpu_window": 188, "\u5b89\u88c5": [188, 215, 228, 238], "\u6216\u66f4\u65b0\u7248\u672c": 188, "\u8fd9\u91cc\u6709\u4e00\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50\u6765\u6f14\u793a\u5982\u4f55\u4f7f\u7528": 188, "\u4ee5\u4e0b\u662f\u6b64\u4ee3\u7801\u53ef\u80fd\u8fd4\u56de\u7684\u793a\u4f8b\u8f93\u51fa": 188, "9074e": 188, "3994e": 188, "3894e": 188, "2630e": 188, "3060e": 188, "1833e": 188, "4016e": 188, "1905e": 188, "0637e": 188, "3648e": 188, "3728e": 188, "2863e": 188, "6888e": 188, "5442e": 188, "6790e": 188, "2025e": 188, "2647e": 188, "2684e": 188, "2483e": 188, "2845e": 188, "7747e": 188, "2028e": 188, "1431e": 188, "7196e": 188, "5304e": 188, "1945e": 188, "6654e": 188, "7376e": 188, "3644e": 188, "3600e": 188, "0157e": 188, "7200e": 188, "0146e": 188, "8175e": 188, "4057e": 188, "8119e": 188, "2853e": 188, "2773e": 188, "5082e": 188, "4615e": 188, "4140e": 188, "2130e": 188, "0762e": 188, "3914e": 188, "1122e": 188, "6895e": 188, "8852e": 188, "3310e": 188, "4101e": 188, "8318e": 188, "2355e": 188, "9290e": 188, "3707e": 188, "3754e": 188, "3768e": 188, "8970e": 188, "1171e": 188, "9944e": 188, "2553e": 188, "3394e": 188, "3428e": 188, "8400e": 188, "1756e": 188, "0654e": 188, "7973e": 188, "4019e": 188, "1886e": 188, "9194e": 188, "3632e": 188, "1811e": 188, "1615e": 188, "6622e": 188, "2089e": 188, "2011e": 188, "0659e": 188, "0892e": 188, "1932e": 188, "3888e": 188, "3898e": 188, "3218e": 188, "4139e": 188, "4000e": 188, "1192e": 188, "0175e": 188, "6432e": 188, "0498e": 188, "4115e": 188, "3212e": 188, "0964e": 188, "0127e": 188, "7244e": 188, "2799e": 188, "3595e": 188, "0907e": 188, "7191e": 188, "4062e": 188, "3672e": 188, "8502e": 188, "5216e": 188, "6046e": 188, "\u4e3a\u4e86\u63d0\u9ad8": 188, "\u7684\u6027\u80fd": 188, "\u60a8\u53ef\u4ee5\u4f7f\u7528": [188, 209, 260], "\u7f16\u8bd1\u5668\u6216": 188, "\u5b83\u4eec\u4f9d\u8d56\u4e8e": 188, "\u7684\u8fd0\u884c\u65f6\u5e93": 188, "\u60a8\u7684\u7b2c\u4e00\u6b65\u5e94\u8be5\u662f\u5b89\u88c5": 188, "\u7248\u672c": [188, 254], "\u73af\u5883\u53d8\u91cf": 188, "icx": 188, "\u8fd8\u63d0\u4f9b\u4e86\u4e00\u4e2a\u5168\u9762\u7684\u5206\u6b65\u6307\u5357": 188, "\u5305\u542b\u6027\u80fd\u6570\u636e": 188, "dpc": 188, "\u5e76\u9009\u62e9": 188, "win64": 188, "\u6211\u4eec\u5b66\u4e60\u4e86\u5982\u4f55\u5728": 188, "\u6211\u4eec\u8fd8\u8ba8\u8bba\u4e86\u4f7f\u7528": 188, "\u7f16\u8bd1\u5668\u548c": 188, "\u7f16\u8bd1\u5668\u8fdb\u4e00\u6b65\u63d0\u9ad8\u6027\u80fd\u7684\u65b9\u6cd5": 188, "tao": [189, 190], "solidifi": [189, 196], "coremltool": 189, "0b5": 189, "to_backend": 189, "_coreml": 189, "compilespec": 189, "coremlcomputeunit": 189, "mobilenetv2_spec": 189, "allow_low_precis": 189, "compile_spec": 189, "_jit_to_backend": 189, "coreml": 189, "mobilenetv2_coreml": 189, "cpuandgpu": 189, "mil": 189, "385": 189, "1496": 189, "anaconda3": 189, "name_sanitization_util": 189, "userwarn": [189, 191, 192, 193, 194], "647": 189, "var_647": 189, "new_nam": 189, "138": 189, "495": [189, 233], "1977": 189, "backend_detail": 189, "codegen_backend_modul": 189, "desktop": [189, 190, 210], "cocoapod": [189, 190, 206, 224, 227], "podfil": [189, 224, 227], "pod": [189, 206, 224, 227, 229, 253], "lite": [189, 206, 224], "client": [190, 225], "prepack": [190, 210, 255], "pytorch_root": [190, 208], "use_pytorch_metal_export": 190, "ON": [190, 197, 220, 225], "41237a4": [190, 208], "optimized_model": [190, 201], "export_opnam": [190, 224], "mobilenetv2_met": 190, "optimized_mobil": 190, "adaptive_avg_pool2d": 190, "copy_to_host": 190, "metal_prepack": 190, "conv2d_run": 190, "conect": 190, "slighli": 190, "malamut": 190, "malemut": 190, "alaskan": 190, "eskimo": 190, "huski": 190, "ios_arch": [190, 225], "use_pytorch_met": 190, "build_io": [190, 206, 224, 225], "a9": 190, "nsarrai": 190, "nsnumber": 190, "inferencemod": 190, "metalperformanceshad": 190, "1369": 191, "clr": 191, "sparse_coo_tensor": [191, 194], "state_sum": 191, "addcmul_": 191, "addcdiv_": 191, "_make_spars": 191, "grad_indic": 191, "coalesc": 191, "_indic": 191, "grad_valu": 191, "_valu": 191, "sparse_mask": [191, 194], "std_valu": 191, "sqrt_": 191, "state_sum2": 191, "masked_grad": 191, "get_data": [191, 193, 194], "std2": 191, "masked_tensor": [191, 192, 193, 194], "to_spars": [191, 194], "param2": [191, 204], "glanc": 191, "dodg": 191, "make_spars": 191, "diverg": [191, 193], "brittl": 191, "argu": 191, "densif": 191, "csc": [191, 194], "bsr": [191, 194], "bsc": 191, "conflat": 191, "disentangl": 191, "purposefulli": 191, "to_dens": [191, 194], "cleaner": [191, 193, 198, 199], "relianc": 191, "unreli": [191, 193], "maskedarrai": [191, 198], "maskedtensor_adagrad": 191, "maskedtensor_overview": [192, 193, 194], "unspecifi": [192, 193, 194, 198], "intersect": 192, "logical_or": 192, "npm0": 192, "ma": 192, "masked_arrai": 192, "npm1": 192, "mt0": 192, "mt1": [192, 194], "mt2": [192, 194], "get_mask": [192, 193], "mt": [192, 193, 194], "amin": [192, 194], "amax": 192, "data0": 192, "data1": 192, "mask0": 192, "mask1": 192, "intent": [192, 199, 202, 210, 265], "necessit": 192, "maskedtensor_advanced_semant": 192, "as_masked_tensor": 193, "afterthought": 193, "born": 193, "recur": 193, "inabl": 193, "10729": 193, "troubl": 193, "mx": 193, "52248": 193, "frustrat": 193, "4132": 193, "67180": 193, "longstand": 193, "bgrad1": 193, "isnan": 193, "unsaf": 193, "61474": 193, "nanmax": 193, "nanmin": 193, "lend": 193, "argmin": 193, "substructur": 194, "sparse_coo": 194, "sparse_csr": 194, "nse": 194, "sparse_tensor_data": 194, "sparse_tensor_mask": 194, "dense_masked_tensor": 194, "to_sparse_coo": 194, "to_sparse_csr": 194, "nuanc": 194, "sparse_coo_mt": 194, "crow_indic": 194, "col_indic": 194, "nnz": 194, "mt_sparse_csr": 194, "mt_sparse_coo": 194, "mt_dens": 194, "is_spars": 194, "is_sparse_coo": 194, "is_sparse_csr": 194, "surfac": 194, "vast": 194, "mask_valu": 194, "sparse_csr_tensor": 194, "synergi": 194, "invest": 194, "maskedtensor_spars": 194, "rag": 195, "invalu": 195, "nestedtensor": [195, 198], "padded_out_tensor": 195, "to_padded_tensor": 195, "poss": 195, "is_nest": 195, "irregularli": 195, "nt_reshap": 195, "nt_transpos": 195, "nt_mm": 195, "nt3": 195, "nt4": 195, "nt5": 195, "embrac": 195, "padded_sent": 195, "nested_sent": 195, "semnat": 195, "ux": [195, 199, 201], "padded_sentences_for_softmax": 195, "e_q": 195, "e_k": 195, "e_v": 195, "e_tot": 195, "query_proj": 195, "key_proj": 195, "value_proj": 195, "e_out": 195, "out_proj": 195, "e_head": 195, "sdpa": 195, "l_t": 195, "l_": 195, "attn_output": 195, "todo": [195, 263], "unflatten": 195, "zipf": 195, "zipf_sentence_length": 195, "unigram": 195, "858": [195, 220], "sentence_length": 195, "ibatch": 195, "gen_batch": 195, "jagged_to_pad": 195, "jt": 195, "padding_v": 195, "unbind": [195, 207], "padded_queri": 195, "padded_kei": 195, "padded_valu": 195, "output_nest": 195, "time_nest": 195, "output_pad": 195, "time_pad": 195, "entry_length": 195, "compiled_mha": 195, "compiled_output_nest": 195, "compiled_time_nest": 195, "compiled_output_pad": 195, "compiled_time_pad": 195, "_nnapi": 196, "convert_model_to_nnapi": 196, "bundled_input": [196, 206, 211], "make_mobilenetv2_nnapi": 196, "output_dir_path": 196, "quantize_mod": 196, "quantize_cor": 196, "quantize_ifac": 196, "input_float": 196, "nnapi_nhwc": 196, "nnapi_model": 196, "bundlewrapp": 196, "augment_model_with_bundled_input": 196, "bundle_large_tensor": [196, 206], "quant_": 196, "quant_ful": 196, "speed_benchmark_torch": [196, 220, 225], "pthreadpool_s": 196, "use_bundled_input": 196, "use_caching_alloc": 196, "200gb": 196, "googlesourc": [196, 208], "envsetup": 196, "aosp_x86_64": 196, "j16": 196, "lib64": 196, "libneuralnetwork": 196, "ctype": 196, "cdll": 196, "loadlibrari": [196, 210], "get_all_bundled_input": [196, 211], "_numeric_suit": 197, "ns": 197, "default_eval_fn": 197, "qmodel": 197, "img_data": 197, "compare_weight": 197, "wt_compare_dict": 197, "nkei": 197, "sqnr": 197, "relationship": 197, "nomin": 197, "compute_error": 197, "pn": 197, "log10": 197, "hist": 197, "compare_model_output": 197, "act_compare_dict": 197, "white_list": 197, "outputlogg": 197, "default_numeric_suite_compare_model_output_white_list": 197, "prepare_model_output": 197, "get_matching_activ": 197, "myoutputlogg": 197, "logger_cl": 197, "prepare_model_with_stub": 197, "shadowlogg": 197, "compare_model_stub": 197, "quantizablebasicblock": 197, "module_swap_list": 197, "ob_dict": 197, "get_logger_dict": 197, "myshadowlogg": 197, "is_quant": 197, "db": [197, 199], "numeric_suite_tutori": 197, "pypi": [198, 223], "pt2": [198, 201, 212, 213, 217], "optimizi": 198, "nnapi": 198, "autovector": [198, 207], "maskedtensor": 198, "coo": 198, "csr": 198, "14k": 199, "prepare_pt2": [199, 201], "convert_pt2": [199, 200, 201], "capture_pre_autograd_graph": [199, 200, 201], "shoud": [199, 200, 201], "quantize_pt2": [199, 200, 201], "xnnpackquant": [199, 200, 202], "get_symmetric_quantization_config": [199, 200], "backendconfig": [199, 202], "fake_qu": 199, "embedding_byt": 199, "executorchquant": 199, "prone": 199, "composed_quant": 199, "quantization_cap": 199, "minmax": 199, "exported_model": [199, 200, 201], "dynamic_dim": [199, 200], "xnnpack_quant": [199, 200], "themodel": 199, "fp32_op": 199, "qauntiz": 199, "quantized_linear": 199, "x_int8": 199, "x_scale": 199, "x_zero_point": 199, "weight_int8": 199, "weight_scal": [199, 202], "weight_zero_point": 199, "bias_fp32": 199, "output_scal": 199, "output_zero_point": 199, "x_fp32": 199, "quantized_decompos": 199, "dequantize_per_tensor": 199, "x_i8": 199, "x_quant_min": 199, "x_quant_max": 199, "weight_fp32": 199, "weight_i8": 199, "weight_quant_min": 199, "weight_quant_max": 199, "weight_permut": 199, "permute_copi": 199, "out_fp32": 199, "out_i8": 199, "out_scal": 199, "out_zero_point": 199, "out_quant_min": 199, "out_quant_max": 199, "float32_op": 199, "use_reference_represent": 199, "x_int16": 199, "weight_int16": 199, "acc_int32": 199, "out_dtyp": 199, "bias_scal": 199, "bias_int32": 199, "out_int8": 199, "qmin": 199, "qmax": 199, "pt2e_quantized_model_file_path": 199, "resnet18_pt2e_quant": 199, "quantized_ep": 199, "loaded_quantized_ep": 199, "ptq": [200, 201], "prepare_qat_pt2": [200, 201], "move_exported_model_to_ev": [200, 201], "move_exported_model_to_train": 200, "subgraph": 200, "_native_batch_norm_legit": 200, "cudnn_batch_norm": 200, "num_observer_update_epoch": 200, "num_batch_norm_update_epoch": 200, "num_epochs_between_ev": 200, "subseq": 200, "new_arg": 200, "prepared_model_copi": 200, "checkpoint_": 200, "lesli": [201, 202], "fang": [201, 202], "weiwen": [201, 202], "xia": [201, 202], "x86inductorquant": 201, "spr": 201, "x86_inductor_quant": 201, "xiq": 201, "traced_b": 201, "aten_graph": 201, "get_default_x86_inductor_quantization_config": 201, "is_dynam": [201, 202], "converted_model": 201, "absenc": 201, "mirror": 201, "device_typ": [201, 232, 256], "qconvolut": 201, "qlinear": 201, "conting": 201, "qmaxpool2d": 201, "torchinductor_freez": 201, "example_x86inductorquantizer_pytorch_2_1": 201, "torchbench": [201, 221], "example_x86inductorquantizer_qat": 201, "kimish": 202, "patel": 202, "quantiat": 202, "qnnpackquant": 202, "quantizationspec": 202, "quantizationannot": 202, "bitwidth": 202, "histogramobserv": 202, "dataclass": 202, "input_qspec_map": 202, "output_qspec": 202, "_annot": 202, "matcher": 202, "get_source_partit": 202, "add_partit": 202, "add_nod": 202, "output_nod": 202, "act_quantization_spec": 202, "observer_or_fake_quant_ctr": 202, "input_act_qspec": 202, "output_act_qspec": 202, "input_act0": 202, "input_act1": 202, "quantization_annot": 202, "sharedquantizationspec": 202, "average_pool": 202, "edgeornod": 202, "conv1_out": 202, "conv2_out": 202, "qspec1": 202, "cat_input0": 202, "cat_input1": 202, "share_qparams_with_input_act0_qspec": 202, "fixedqparamsquantizationspec": 202, "act_qspec": 202, "sigmoid_nod": 202, "input_act": 202, "derivedquantizationspec": 202, "derive_qparams_fn": 202, "observerorfakequant": 202, "observerbas": 202, "fakequantizebas": 202, "obejct": 202, "obs_or_fq": 202, "fq": 202, "act_obs_or_fq": 202, "weight_obs_or_fq": 202, "act_scal": 202, "act_zp": 202, "calculate_qparam": 202, "weight_zp": 202, "bias_qspec": 202, "derived_from": 202, "per_tensor_symmetr": 202, "weight_quantization_spec": 202, "backendquant": 202, "quantizationconfig": 202, "get_input_act_qspec": 202, "get_output_act_qspec": 202, "get_weight_qspec": 202, "get_bias_qspec": 202, "relu_nod": 202, "maybe_conv_nod": 202, "conv1d": [202, 209, 249], "recognz": 202, "subgraphmatch": 202, "conv_relu_pattern": 202, "name_node_map": 202, "input_nod": 202, "weight_nod": 202, "bias_nod": 202, "exact_match": 203, "53358561967833": 203, "9280493093186": 203, "927572380751371": 203, "607915310189128": 203, "18846387788653": 203, "91255673766136": 203, "parameter": 203, "elemen": 203, "paramter": 203, "bertoutput": 203, "parametrizedlinear": 203, "fakespars": 203, "layernorm": 203, "elementwise_affin": 203, "59602649006622": 203, "51610004515979": 203, "0237": 203, "0130": 203, "0462": 203, "0272": 203, "0436": 203, "0492": 203, "0844": 203, "0340": 203, "0302": 203, "0350": 203, "0303": 203, "0175": 203, "0529": 203, "0327": 203, "0213": 203, "0258": 203, "0239": 203, "0380": 203, "0562": 203, "0432": 203, "0262": 203, "0227": 203, "0244": 203, "0784": 203, "0761": 203, "0225": 203, "0395": 203, "0684": 203, "0344": 203, "43897824030275": 203, "48718950090766": 203, "621004460379481": 203, "368514601141214": 203, "702805917710066": 203, "244": [203, 228], "19364519417286": 203, "87x": 203, "skip_init": 204, "param1": 204, "some_buff": 204, "to_empti": [204, 246], "intial": 204, "fnet": 205, "___torch_mangle_3": 205, "fnet2": 205, "0107": 205, "0048": 205, "torchscript_freez": 205, "lai": [206, 224], "cccclai": 206, "dhruv": 206, "matani": 206, "dhruvbird": 206, "scripted_modul": [206, 211, 224], "input_image_1": 206, "input_tensor_1": 206, "input_batch_1": 206, "input_image_2": 206, "input_tensor_2": 206, "input_batch_2": 206, "step2": 206, "bundled_model_input": 206, "bundled_model": [206, 211], "bundle_input": [206, 211], "deeplabv3_scripted_with_bundled_input": 206, "macosx_deployment_target": [206, 208], "max_job": 206, "tracing_bas": 206, "model_trac": 206, "model_input_path": 206, "build_yaml_path": 206, "armeabi": 206, "v7a": 206, "v8a": [206, 208, 220, 225], "selected_op_list": [206, 224], "build_pytorch_android": [206, 208, 224], "build_lite_interpret": 206, "chenlai": 206, "aar": [206, 208, 210], "xarg": 206, "ls": 206, "lah": 206, "rw": 206, "staff": 206, "13m": 206, "feb": 206, "pytorch_android": [206, 208, 210, 226], "36k": 206, "pytorch_android_torchvis": [206, 224, 226], "gradl": [206, 208, 224, 226, 229], "androidx": [206, 210, 224], "appcompat": [206, 210, 224], "constraintlayout": [206, 224], "testimplement": [206, 224], "junit": [206, 224], "androidtestimplement": [206, 224], "ext": [206, 222, 224, 265, 266], "espresso": [206, 224], "v7": [206, 210], "fbjni": [206, 210, 224], "allproject": [206, 210], "jcenter": [206, 210], "flatdir": 206, "ios_platform": [206, 224], "deintegr": 206, "all_load": 206, "bitcod": 206, "deeplabv3": [206, 224], "deeplabv3_on_android": 206, "42368": 207, "unsuccessfulli": 207, "rummag": 207, "batched_dot": [207, 233], "feature_s": 207, "shenanigin": 207, "feature_vec": 207, "8304": 207, "23475": 207, "basis_vector": 207, "get_vjp": 207, "jacobian_vmap": 207, "performantli": 207, "7786": 207, "grad_sampl": 207, "batch_of_sampl": 207, "vmap_recip": 207, "ivan": [208, 210], "kobzarev": [208, 210], "use_vulkan": 208, "vulkan_wrapp": 208, "use_vulkan_wrapp": 208, "libvulkan": 208, "vulkansdk": 208, "lunarg": 208, "vulkan_sdk": 208, "vulkan_sdk_root": 208, "install_vulkan": 208, "use_vulkan_shaderc_runtim": 208, "android_abi": [208, 210, 220, 225], "build_android": [208, 220, 225], "script_model": 208, "mobilenet2": 208, "32bit": 208, "script_model_vulkan": 208, "optimization_blocklist": 208, "mobileoptimizertyp": 208, "vulkan_automatic_gpu_transf": 208, "is_vulkan_avail": 208, "tensor_vulkan": 208, "tensor_output_vulkan": 208, "tensor_output": 208, "_adaptive_avg_pool2d": 208, "_cat": 208, "hardtanh_": 208, "transpose_": 208, "upsample_nearest2d": 208, "allocatefloatbuff": [208, 225], "fromblob": [208, 225], "mmodul": [208, 224, 225], "test_app": 208, "testapp": [208, 225], "l133": 208, "apploc": 208, "installmbvulkanlocalbasedebug": 208, "mbq": 208, "swiftshad": 208, "amx": [209, 222, 223], "\u4e5f\u79f0\u4e3a\u82f1\u7279\u5c14": 209, "\u662f\u4e00\u79cdx86\u6269\u5c55": 209, "\u5f15\u5165\u4e86\u4e24\u4e2a\u65b0\u7ec4\u4ef6": 209, "\u4e00\u4e2a\u79f0\u4e3a": 209, "\u7684\u4e8c\u7ef4\u5bc4\u5b58\u5668\u6587\u4ef6\u548c\u4e00\u4e2a\u80fd\u591f\u5728\u8fd9\u4e9btile\u4e0a\u8fdb\u884c\u77e9\u9635\u4e58\u6cd5": 209, "tmul": 209, "\u7684\u52a0\u901f\u5668": 209, "amx\u65e8\u5728\u52a0\u901fcpu\u4e0a\u7684\u6df1\u5ea6\u5b66\u4e60\u8bad\u7ec3\u548c\u63a8\u7406\u5de5\u4f5c\u8d1f\u8f7d": 209, "\u975e\u5e38\u9002\u5408\u81ea\u7136\u8bed\u8a00\u5904\u7406": 209, "\u63a8\u8350\u7cfb\u7edf\u548c\u56fe\u50cf\u8bc6\u522b\u7b49\u5de5\u4f5c\u8d1f\u8f7d": 209, "\u82f1\u7279\u5c14\u901a\u8fc7\u7b2c4\u4ee3\u82f1\u7279\u5c14": 209, "\u81f3\u5f3a": 209, "\u53ef\u6269\u5c55\u5904\u7406\u5668\u548c\u82f1\u7279\u5c14": 209, "amx\u63a8\u8fdb\u4e86ai\u80fd\u529b": 209, "\u76f8\u6bd4\u4e0a\u4e00\u4ee3\u4ea7\u54c1": 209, "\u63a8\u7406\u548c\u8bad\u7ec3\u6027\u80fd\u63d0\u9ad8\u4e863\u500d\u81f310\u500d": 209, "\u8be6\u89c1": 209, "\u4f7f\u7528intel": [209, 249], "amx\u52a0\u901fai\u5de5\u4f5c\u8d1f\u8f7d": 209, "\u4e0e\u8fd0\u884cintel": 209, "\u9ad8\u7ea7\u77e2\u91cf\u6269\u5c55512\u795e\u7ecf\u7f51\u7edc\u6307\u4ee4": 209, "avx": [209, 222], "vnni": [209, 222], "\u7684\u7b2c3\u4ee3\u82f1\u7279\u5c14\u81f3\u5f3a\u53ef\u6269\u5c55\u5904\u7406\u5668\u76f8\u6bd4": 209, "\u8fd0\u884cintel": 209, "amx\u7684\u7b2c4\u4ee3\u82f1\u7279\u5c14\u81f3\u5f3a\u53ef\u6269\u5c55\u5904\u7406\u5668\u6bcf\u5468\u671f\u53ef\u6267\u884c2": 209, "048\u4e2aint8\u64cd\u4f5c": 209, "\u800c\u4e0d\u662f256\u4e2aint8\u64cd\u4f5c": 209, "\u5b83\u4eec\u8fd8\u53ef\u4ee5\u6bcf\u5468\u671f\u6267\u884c1": 209, "024\u4e2abf16\u64cd\u4f5c": 209, "\u800c\u4e0d\u662f64\u4e2afp32\u64cd\u4f5c": 209, "_\u7b2c4\u9875": 209, "\u6709\u5173amx\u7684\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f": 209, "amx\u6982\u8ff0": 209, "pytorch\u901a\u8fc7\u5176\u540e\u7aefonednn\u5229\u7528amx\u6765\u8ba1\u7b97bfloat16\u548cint8\u91cf\u5316\u7684\u8ba1\u7b97\u5bc6\u96c6\u578b\u7b97\u5b50": 209, "\u4ece\u800c\u5728\u652f\u6301amx\u7684x86": 209, "cpu\u4e0a\u83b7\u5f97\u66f4\u9ad8\u7684\u6027\u80fd": 209, "\u6709\u5173onednn\u7684\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f": 209, "\u64cd\u4f5c\u5b8c\u5168\u7531onednn\u6839\u636e\u751f\u6210\u7684\u6267\u884c\u4ee3\u7801\u8def\u5f84\u5904\u7406": 209, "\u5f53\u652f\u6301\u7684\u64cd\u4f5c\u5728\u652f\u6301amx\u7684\u786c\u4ef6\u5e73\u53f0\u4e0a\u6267\u884c\u5230onednn\u5b9e\u73b0\u65f6": 209, "amx\u6307\u4ee4\u5c06\u5728onednn\u5185\u90e8\u81ea\u52a8\u8c03\u7528": 209, "\u7531\u4e8eonednn\u662fpytorch": 209, "cpu\u7684\u9ed8\u8ba4\u52a0\u901f\u5e93": 209, "\u56e0\u6b64\u65e0\u9700\u624b\u52a8\u64cd\u4f5c\u5373\u53ef\u542f\u7528amx\u652f\u6301": 209, "\u672c\u8282\u63d0\u4f9b\u4e86\u5982\u4f55\u5229\u7528amx\u52a0\u901f\u5404\u79cd\u5de5\u4f5c\u8d1f\u8f7d\u7684\u6307\u5357": 209, "bfloat16\u6570\u636e\u7c7b\u578b": 209, "\u5c06\u5229\u7528amx\u52a0\u901f\u652f\u6301\u7684\u7b97\u5b50": 209, "\u5185\u5b58\u683c\u5f0f\u53ef\u83b7\u5f97\u66f4\u597d\u7684\u6027\u80fd": 209, "\u91cf\u5316": [209, 223, 236], "\u5e94\u7528\u91cf\u5316\u5c06\u5229\u7528amx\u52a0\u901f\u652f\u6301\u7684\u7b97\u5b50": 209, "\u5f53\u751f\u6210\u7684\u56fe\u6a21\u578b\u8fd0\u884c\u5230onednn\u5b9e\u73b0\u7684\u652f\u6301\u7b97\u5b50\u65f6": 209, "amx\u52a0\u901f\u5c06\u88ab\u6fc0\u6d3b": 209, "\u5728\u652f\u6301amx\u7684cpu\u4e0a\u4f7f\u7528pytorch\u65f6": 209, "\u6846\u67b6\u5c06\u9ed8\u8ba4\u81ea\u52a8\u542f\u7528amx\u4f7f\u7528": 209, "\u8fd9\u610f\u5473\u7740pytorch\u5c06\u5c3d\u53ef\u80fd\u5229\u7528amx\u529f\u80fd\u6765\u52a0\u901f\u77e9\u9635\u4e58\u6cd5\u64cd\u4f5c": 209, "\u91cd\u8981\u7684\u662f\u8981\u6ce8\u610f": 209, "\u662f\u5426\u8c03\u5ea6\u5230amx\u5185\u6838\u6700\u7ec8\u53d6\u51b3\u4e8epytorch\u6240\u4f9d\u8d56\u7684onednn\u5e93\u548c\u91cf\u5316\u540e\u7aef\u7684\u5185\u90e8\u4f18\u5316\u7b56\u7565": 209, "pytorch\u548conednn\u5e93\u5185\u90e8\u5982\u4f55\u5904\u7406amx\u5229\u7528\u7684\u5177\u4f53\u7ec6\u8282\u53ef\u80fd\u4f1a\u968f\u7740\u6846\u67b6\u7684\u66f4\u65b0\u548c\u6539\u8fdb\u800c\u53d1\u751f\u53d8\u5316": 209, "\u53ef\u5229\u7528amx\u7684bf16": 209, "cpu\u7b97\u5b50": 209, "conv3d": [209, 249], "conv_transpose1d": 209, "conv_transpose3d": 209, "baddbmm": 209, "addbmm": 209, "\u53ef\u5229\u7528amx\u7684\u91cf\u5316cpu\u7b97\u5b50": 209, "\u8bbe\u7f6e\u73af\u5883\u53d8\u91cf": 209, "onednn_verbos": 209, "\u6216\u4f7f\u7528": 209, "mkldnn": [209, 221], "\u4ee5\u542f\u7528onednn\u8f6c\u50a8\u8be6\u7ec6\u6d88\u606f": 209, "verbose_on": 209, "\u83b7\u53d6onednn\u8be6\u7ec6\u8f93\u51fa": 209, "6dbeffbae1f23cbbeae17adb7b5b13f1f37c080": 209, "nthr": 209, "isa": [209, 249], "prim_templ": 209, "prop_kind": 209, "memory_descriptor": 209, "problem_desc": 209, "exec_tim": 209, "exec": 209, "undef": 209, "src_f32": 209, "f0": 209, "dst_f32": 209, "scratchpad": 209, "2561": 209, "avx512_core_amx_bf16": 209, "forward_train": 209, "src_bf16": 209, "acdb": 209, "wei_bf16": 209, "abcd16b16a2b": 209, "bia_f32": 209, "dst_bf16": 209, "alg": 209, "convolution_direct": 209, "mb7_ic2oc1_ih224oh111kh3sh2dh1ph1_iw224ow111kw3sw2dw1pw1": 209, "628906": 209, "brg": 209, "avx512_core_amx_int8": 209, "src_s8": 209, "wei_s8": 209, "ba16a64b4a": 209, "dst_s8": 209, "1x30522": 209, "30522x768": 209, "1x768": 209, "66382": 209, "\u5982\u679c\u4f60\u83b7\u5f97\u4e86": 209, "\u7684\u8be6\u7ec6\u8f93\u51fa": 209, "\u7528\u4e8ebfloat16": 209, "\u7528\u4e8eint8\u91cf\u5316": 209, "\u5219\u8868\u793aamx\u5df2\u88ab\u6fc0\u6d3b": 209, "\u6211\u4eec\u7b80\u8981\u4ecb\u7ecd\u4e86amx": 209, "\u5982\u4f55\u5728pytorch\u4e2d\u5229\u7528amx\u6765\u52a0\u901f\u5de5\u4f5c\u8d1f\u8f7d": 209, "\u4ee5\u53ca\u5982\u4f55\u786e\u8ba4amx\u6b63\u5728\u88ab\u5229\u7528": 209, "\u968f\u7740pytorch\u548conednn\u7684\u6539\u8fdb\u548c\u66f4\u65b0": 209, "amx\u7684\u5229\u7528\u60c5\u51b5\u53ef\u80fd\u4f1a\u76f8\u5e94\u53d1\u751f\u53d8\u5316": 209, "\u5982\u679c\u60a8\u9047\u5230\u4efb\u4f55\u95ee\u9898\u6216\u6709\u4efb\u4f55\u7591\u95ee": 209, "\u8bba\u575b": 209, "_\u6216": 209, "_\u4e0e\u6211\u4eec\u8054\u7cfb": 209, "r19c": 210, "android_ndk": 210, "3859397": 210, "android_sdk": 210, "android_hom": 210, "gradle_hom": 210, "jdk": [210, 229], "java_hom": 210, "openjdk": 210, "opencv_android_sdk": 210, "registeroper": 210, "cento": 210, "yum": 210, "devel": 210, "libopencv": 210, "nativeapp": 210, "useandroidx": 210, "enablejetifi": 210, "buildscript": 210, "classpath": 210, "maven": [210, 224], "oss": [210, 224], "sonatyp": [210, 224], "extractfornativebuild": 210, "compilesdkvers": 210, "buildtoolsvers": 210, "defaultconfig": 210, "applicationid": 210, "minsdkvers": 210, "targetsdkvers": 210, "versioncod": 210, "versionnam": 210, "externalnativebuild": 210, "dandroid_stl": 210, "_share": 210, "buildtyp": 210, "minifyen": 210, "sourceset": 210, "jnilib": 210, "srcdir": 210, "extractaarfornativebuild": 210, "dolast": 210, "absolutefil": 210, "ziptre": 210, "builddir": 210, "jni": 210, "whentaskad": 210, "dependson": 210, "nexu": 210, "libpytorch_jni": 210, "libfbjni": 210, "stl": 210, "pytorch_nativeapp": 210, "build_dir": 210, "cmake_source_dir": 210, "pytorch_testapp_cpp_dir": 210, "cmake_current_list_dir": 210, "pytorch_testapp_sourc": 210, "pytorch_include_dir": 210, "pytorch_link_dir": 210, "target_compile_opt": 210, "fexcept": 210, "build_subdir": 210, "find_librari": 210, "pytorch_librari": 210, "pytorch_jni": 210, "no_cmake_find_root_path": 210, "fbjni_librari": 210, "endif": 210, "opencv_include_dir": 210, "target_include_directori": 210, "opencv_lib_dir": 210, "opencv_librari": 210, "opencv_java4": 210, "libopencv_java4": 210, "logcat": 210, "torschscript": 210, "androidmanifest": 210, "xml": 210, "xmln": 210, "apk": 210, "allowbackup": 210, "pytorchnativeapp": 210, "supportsrtl": 210, "theme": 210, "darkactionbar": 210, "appcompatact": 210, "fileoutputstream": 210, "inputstream": 210, "outputstream": 210, "assetnam": 210, "getfilesdir": 210, "getabsolutepath": 210, "getasset": 210, "savedinstancest": 210, "modelfileabsolutefilepath": 210, "nativecli": 210, "loadandforwardmodel": 210, "assertfilepath": 210, "nativep": 210, "libpytorch_nativeapp": 210, "modelpath": 210, "cassert": 210, "cmath": 210, "unistd": 210, "alogi": 210, "__android_log_print": 210, "android_log_info": 210, "__va_args__": 210, "alog": 210, "android_log_error": 210, "ostringstream": 210, "c_str": 210, "jitcallguard": 210, "no_autograd_guard": 210, "non_var_guard": 210, "graphoptimizerenabledguard": 210, "no_optimizer_guard": 210, "jnienv": 210, "jclass": 210, "jstring": 210, "jmodelpath": 210, "getstringutfchar": 210, "t_out": 210, "releasestringutfchar": 210, "jniexport": 210, "jint": 210, "jni_onload": 210, "javavm": 210, "vm": [210, 266], "getenv": [210, 233], "jni_version_1_6": 210, "jni_ok": 210, "jni_err": 210, "findclass": 210, "jninativemethod": 210, "ljava": 210, "rc": 210, "registern": 210, "intermix": 210, "assembledebug": 210, "installdebug": 210, "icon": [210, 263, 265], "adb": [210, 220, 225], "grep": 210, "26968": 210, "9484": 210, "1757": 210, "5832": 210, "9144": 210, "8867": 210, "0933": 210, "4004": 210, "3389": 210, "5200": [210, 233], "7625": 210, "5724": 210, "2073": 210, "4613": 210, "2730": 210, "6789": 210, "2247": 210, "2790": 210, "0067": 210, "9266": 210, "6034": 210, "1941": 210, "7021": 210, "5368": 210, "3803": 210, "0188": 210, "2021": [210, 223], "7412": 210, "2257": 210, "5044": 210, "6592": 210, "0826": 210, "0084": 210, "8733": 210, "5435": 210, "1087": 210, "1066": 210, "9926": 210, "1047": 210, "5311": 210, "9178": 210, "5451": 210, "0473": 210, "7571": 210, "3909": 210, "4039": 210, "5085": 210, "2776": 210, "4080": 210, "9203": 210, "3655": 210, "4395": 210, "4467": 210, "9837": 210, "3335": 210, "0445": 210, "8039": 210, "2512": 210, "3122": 210, "6543": 210, "5819": 210, "5680": 210, "6442": 210, "3090": 210, "6197": 210, "0773": 210, "5967": 210, "1105": 210, "0274": 210, "0330": 210, "0124": 210, "8644": 210, "0493": 210, "7633": 210, "9657": 210, "3469": 210, "3159": 210, "0683": 210, "4529": 210, "4559": 210, "7038": 210, "8396": 210, "9716": 210, "5279": 210, "1780": 210, "3849": 210, "4368": 210, "1480": 210, "jacob": 211, "szwejbka": 211, "example_dict": 211, "all_info": 211, "get_bundled_inputs_functions_and_info": 211, "func_nam": 211, "input_func_nam": 211, "get_inputs_function_nam": 211, "func_to_run": 211, "model_funct": 211, "decompress": 211, "ie": 211, "bundle_randn": 211, "deflat": 211, "create_exampl": 211, "deflated_input": 211, "inflatablearg": 211, "randn_lik": 211, "bundle_optional_dict_of_randn": 211, "fmt_fn": 211, "lazo": [212, 213, 258], "\u4f18\u5316\u5668\u662f\u8bad\u7ec3\u4efb\u4f55\u6df1\u5ea6\u5b66\u4e60\u6a21\u578b\u7684\u5173\u952e\u7b97\u6cd5": 212, "\u7531\u4e8e\u5b83\u8d1f\u8d23\u66f4\u65b0\u6bcf\u4e2a\u6a21\u578b\u53c2\u6570": 212, "\u56e0\u6b64\u5bf9\u4e8e\u5927\u578b\u6a21\u578b": 212, "\u5b83\u5f80\u5f80\u4f1a\u6210\u4e3a\u8bad\u7ec3\u6027\u80fd\u7684\u74f6\u9888": 212, "\u6211\u4eec\u5c06\u5728\u4f18\u5316\u5668\u4f7f\u7528": 212, "\u63d0\u5347\u5728": 212, "\u4e0a\u7684\u6027\u80fd": 212, "\u672c\u6559\u7a0b\u9700\u8981": [212, 239, 246, 258], "\u6211\u4eec\u5c06\u4f7f\u7528\u4e00\u4e2a\u7b80\u5355\u7684\u7ebf\u6027\u5c42\u5e8f\u5217": 212, "\u7531\u4e8e\u6211\u4eec\u53ea\u662f\u5bf9\u4f18\u5316\u5668\u8fdb\u884c\u57fa\u51c6\u6d4b\u8bd5": 212, "\u6240\u9009\u62e9\u7684\u6a21\u578b\u5e76\u4e0d\u91cd\u8981": 212, "\u56e0\u4e3a\u4f18\u5316\u5668\u7684\u6027\u80fd\u4e0e\u51fd\u6570\u53c2\u6570\u6570\u91cf\u6709\u5173": 212, "\u6839\u636e\u60a8\u4f7f\u7528\u7684\u673a\u5668\u4e0d\u540c": 212, "\u7ed3\u679c\u53ef\u80fd\u4f1a\u6709\u6240\u4e0d\u540c": 212, "\u5728\u672c\u4f8b\u4e2d": 212, "\u5e76\u521b\u5efa\u4e00\u4e2a\u8f85\u52a9\u51fd\u6570\u6765\u5c06": 212, "\u5305\u88c5\u5728": 212, "\u4ec5\u652f\u6301device_cap": 212, "\u8bbe\u5907": [212, 217, 233], "\u5982\u679c\u6211\u4eec\u5728\u4e0d\u652f\u6301": 212, "\u7684\u8bbe\u5907\u4e0a": 212, "\u5219\u5e72\u51c0\u5730\u9000\u51fa": [212, 258], "\u8ba9\u6211\u4eec\u5b9a\u4e49\u4e00\u4e2a\u6709\u7528\u7684\u57fa\u51c6\u6d4b\u8bd5\u51fd\u6570": 212, "\u9884\u70ed\u8fd0\u884c\u4ee5\u7f16\u8bd1\u51fd\u6570": 212, "eager_runtim": 212, "compiled_runtim": 212, "\u793a\u4f8b\u7ed3\u679c": 212, "2437149845064u": 212, "07384741178u": 212, "\u6709\u5173\u6df1\u5165\u7684\u6280\u672f\u6982\u8ff0": 212, "linearlr": 213, "sched": 213, "total_it": 213, "compiling_optimizer_lr_schedul": 213, "\u76f4\u63a5\u8bbe\u5907\u5230\u8bbe\u5907rpc": 214, "\u5728pytorch": [214, 249], "8\u4e2d\u4f5c\u4e3a\u539f\u578b\u529f\u80fd\u5f15\u5165": 214, "\u6b64api\u53ef\u80fd\u4f1a\u53d1\u751f\u53d8\u5316": 214, "\u60a8\u5c06\u5b66\u4e60": [214, 215, 218, 228, 259, 261], "rpc\u7684\u9ad8\u7ea7\u6982\u5ff5": 214, "\u5206\u5e03\u5f0frpc\u6846\u67b6\u5165\u95e8": 214, "rpc\u652f\u6301\u76f4\u63a5\u4ece\u672c\u5730cuda\u5185\u5b58\u5411\u8fdc\u7a0bcuda\u5185\u5b58\u53d1\u9001\u5f20\u91cf": 214, "\u57281": 214, "8\u7248\u672c\u53d1\u5e03\u4e4b\u524d": 214, "rpc\u53ea\u63a5\u53d7cpu\u5f20\u91cf": 214, "\u5f53\u5e94\u7528\u7a0b\u5e8f\u9700\u8981\u901a\u8fc7rpc\u53d1\u9001cuda\u5f20\u91cf\u65f6": 214, "\u5b83\u5fc5\u987b\u9996\u5148\u5c06\u5f20\u91cf\u79fb\u52a8\u5230\u8c03\u7528\u65b9\u7684cpu": 214, "\u901a\u8fc7rpc\u53d1\u9001": 214, "\u7136\u540e\u5728\u88ab\u8c03\u7528\u65b9\u5c06\u5176\u79fb\u52a8\u5230\u76ee\u6807\u8bbe\u5907": 214, "\u8fd9\u4f1a\u5bfc\u81f4\u4e0d\u5fc5\u8981\u7684\u540c\u6b65\u548cd2h\u548ch2d\u590d\u5236": 214, "\u4ece1": 214, "8\u7248\u672c\u5f00\u59cb": 214, "rpc\u5141\u8bb8\u7528\u6237\u4f7f\u7528": 214, "set_device_map": 214, "api\u914d\u7f6e\u6bcf\u4e2a\u8fdb\u7a0b\u7684\u5168\u5c40\u8bbe\u5907\u6620\u5c04": 214, "\u6307\u5b9a\u5982\u4f55\u5c06\u672c\u5730\u8bbe\u5907\u6620\u5c04\u5230\u8fdc\u7a0b\u8bbe\u5907": 214, "\u5177\u4f53\u6765\u8bf4": [214, 261], "worker0": 214, "\u7684\u8bbe\u5907\u6620\u5c04\u6709\u4e00\u4e2a\u6761\u76ee": 214, "\u6240\u6709\u6765\u81ea": 214, "\u4e0a\u7684rpc\u53c2\u6570": 214, "\u5c06\u76f4\u63a5\u53d1\u9001\u5230": 214, "rpc\u7684\u54cd\u5e94\u5c06\u4f7f\u7528\u8c03\u7528\u65b9\u8bbe\u5907\u6620\u5c04\u7684\u9006\u6620\u5c04": 214, "\u5373\u5982\u679c": 214, "\u8fd4\u56de": 214, "\u4e0a\u7684\u5f20\u91cf": 214, "\u5b83\u5c06\u76f4\u63a5\u53d1\u9001\u5230": 214, "\u6240\u6709\u9884\u671f\u7684\u8bbe\u5907\u5230\u8bbe\u5907\u76f4\u63a5\u901a\u4fe1\u5fc5\u987b\u5728\u6bcf\u4e2a\u8fdb\u7a0b\u7684\u8bbe\u5907\u6620\u5c04\u4e2d\u6307\u5b9a": 214, "\u53ea\u5141\u8bb8cpu\u5f20\u91cf": 214, "rpc\u4f9d\u8d56\u4e8e": 214, "tensorpip": [214, 253], "\u4f5c\u4e3a\u901a\u4fe1\u540e\u7aef": 214, "rpc\u4ece\u6bcf\u4e2a\u8bf7\u6c42\u6216\u54cd\u5e94\u4e2d\u63d0\u53d6\u6240\u6709\u5f20\u91cf\u5230\u4e00\u4e2a\u5217\u8868\u4e2d": 214, "\u5e76\u5c06\u5176\u4ed6\u6240\u6709\u5185\u5bb9\u6253\u5305\u6210\u4e8c\u8fdb\u5236\u8d1f\u8f7d": 214, "tensorpipe\u5c06\u6839\u636e\u5f20\u91cf\u8bbe\u5907\u7c7b\u578b\u548c\u8c03\u7528\u65b9\u548c\u88ab\u8c03\u7528\u65b9\u7684\u901a\u9053\u53ef\u7528\u6027": 214, "\u81ea\u52a8\u4e3a\u6bcf\u4e2a\u5f20\u91cf\u9009\u62e9\u901a\u4fe1\u901a\u9053": 214, "\u73b0\u6709\u7684": 214, "\u901a\u9053\u6db5\u76d6": 214, "infiniband": 214, "cma": 214, "\u4ee5\u4e0b\u4ee3\u7801\u5c55\u793a\u4e86\u5982\u4f55\u4f7f\u7528cuda": 214, "\u8be5\u6a21\u578b\u5305\u542b\u4e24\u4e2a\u7ebf\u6027\u5c42": 214, "\u88ab\u5206\u6210\u4e24\u4e2a\u5206\u7247": 214, "\u8fd9\u4e24\u4e2a\u5206\u7247\u5206\u522b\u653e\u7f6e\u5728": 214, "\u4f5c\u4e3a\u4e3b\u8282\u70b9\u9a71\u52a8\u524d\u5411\u548c\u540e\u5411\u4f20\u64ad": 214, "\u6211\u4eec\u6709\u610f\u8df3\u8fc7\u4e86": 214, "\u4ee5\u7a81\u51fa\u4f7f\u7528": 214, "\u65f6\u7684\u6027\u80fd\u6539\u8fdb": 214, "\u5b9e\u9a8c\u91cd\u590d\u524d\u5411\u548c\u540e\u5411\u4f20\u64ad": 214, "\u6b21": [214, 254], "\u5e76\u6d4b\u91cf\u603b\u6267\u884c\u65f6\u95f4": 214, "\u5b83\u6bd4\u8f83\u4e86\u4f7f\u7528": 214, "\u4e0e\u624b\u52a8\u6682\u5b58\u5230": 214, "\u5185\u5b58": 214, "\u7684\u60c5\u51b5": 214, "comm_mod": 214, "\u5982\u679cx\u5df2\u7ecf\u5728self": 214, "device\u4e0a": 214, "\u662f\u4e00\u4e2a\u7a7a\u64cd\u4f5c": 214, "\u4e0a\u7684\u672c\u5730\u6a21\u5757": 214, "\u4e0a\u7684\u8fdc\u7a0b\u6a21\u5757": 214, "\u51c6\u5907\u968f\u673a\u8f93\u5165": 214, "\u4e0a\u540c\u6b65": 214, "\u4ee5\u786e\u4fdd\u6240\u6709\u5f85\u5904\u7406\u7684cuda\u64cd\u4f5c\u90fd\u5305\u542b\u5728\u6d4b\u91cf\u4e2d": 214, "current_stream": 214, "rpc\u603b\u6267\u884c\u65f6\u95f4": 214, "\u963b\u585e\u76f4\u5230\u6240\u6709rpc\u5b8c\u6210": 214, "\u8f93\u51fa\u663e\u793a\u5982\u4e0b": 214, "\u8868\u660e\u5728\u8fd9\u4e2a\u5b9e\u9a8c\u4e2d": 214, "\u53ef\u4ee5\u5e2e\u52a9\u5b9e\u73b0": 214, "\u500d\u7684\u901f\u5ea6\u63d0\u5347": 214, "\u76f8\u6bd4\u4e8e": 214, "3145179748535156\u79d2": 214, "06867480278015137\u79d2": 214, "\u5728\u8fd9\u4e2a\u6559\u7a0b\u4e2d": 215, "\u5982\u4f55\u5c06\u8bad\u7ec3\u597d\u7684": 215, "\u6a21\u578b\u5c01\u88c5\u5230": 215, "\u5bb9\u5668\u4e2d": 215, "\u66b4\u9732\u51fa\u53bb": 215, "\u5982\u4f55\u5c06\u4f20\u5165\u7684": 215, "\u8bf7\u6c42\u8f6c\u6362\u4e3a": 215, "\u4ee5\u4f9b\u60a8\u7684\u6a21\u578b\u4f7f\u7528": 215, "\u5982\u4f55\u4e3a": 215, "\u54cd\u5e94\u6253\u5305\u60a8\u6a21\u578b\u7684\u8f93\u51fa": 215, "\u60a8\u9700\u8981\u4e00\u4e2a\u5b89\u88c5\u4e86\u4ee5\u4e0b\u8f6f\u4ef6\u5305": 215, "\u53ca\u5176\u4f9d\u8d56\u9879": 215, "\u73af\u5883": [215, 228], "\u53e6\u5916": [215, 259], "\u5982\u679c\u9700\u8981\u83b7\u53d6\u4e00\u4e9b\u652f\u6301\u6587\u4ef6": 215, "\u60a8\u8fd8\u9700\u8981": 215, "\u7684\u8bf4\u660e\u5728": 215, "org_": [215, 259], "\u4e0a\u6709\u4ecb\u7ecd": 215, "\u5b98\u7f51_": 215, "\u662f\u4e00\u4e2a\u7528": 215, "\u7f16\u5199\u7684\u8f7b\u91cf\u7ea7": 215, "\u670d\u52a1\u5668": [215, 253], "\u5b83\u4e3a\u60a8\u63d0\u4f9b\u4e86\u4e00\u79cd\u4fbf\u6377\u7684\u65b9\u5f0f": 215, "\u5feb\u901f\u5efa\u7acb\u4e00\u4e2a": 215, "\u7528\u4e8e\u60a8\u8bad\u7ec3\u597d\u7684": 215, "\u6a21\u578b\u7684\u9884\u6d4b": 215, "\u53ef\u76f4\u63a5\u4f7f\u7528": 215, "\u6216\u4f5c\u4e3a\u66f4\u5927\u7cfb\u7edf\u4e2d\u7684": 215, "\u6211\u4eec\u5c06\u521b\u5efa\u4e00\u4e2a": 215, "\u63a5\u6536\u56fe\u50cf": 215, "\u5e76\u5c06\u5176\u6620\u5c04\u5230": 215, "\u6570\u636e\u96c6\u7684": 215, "\u4e2a\u7c7b\u522b\u4e4b\u4e00": 215, "\u60a8\u9700\u8981\u4e00\u4e2a\u7528\u4e8e\u6d4b\u8bd5\u7684\u56fe\u50cf\u6587\u4ef6": 215, "\u60a8\u8fd8\u53ef\u4ee5\u83b7\u53d6\u4e00\u4e2a\u6587\u4ef6": 215, "\u5c06\u6a21\u578b\u8f93\u51fa\u7684\u7c7b\u7d22\u5f15\u6620\u5c04\u4e3a\u53ef\u8bfb\u7684\u7c7b\u540d": 215, "\u53ef\u4ee5\u901a\u8fc7\u68c0\u51fa": 215, "\u4ed3\u5e93\u5e76\u5c06\u6587\u4ef6\u590d\u5236\u5230\u60a8\u7684\u5de5\u4f5c\u6587\u4ef6\u5939\u6765\u5feb\u901f\u83b7\u53d6\u8fd9\u4e24\u4e2a\u652f\u6301\u6587\u4ef6": 215, "\u672c\u6559\u7a0b\u4e0d\u4f9d\u8d56\u4e8e": 215, "\u8fd9\u53ea\u662f\u5feb\u901f\u83b7\u53d6\u6587\u4ef6\u7684\u4e00\u79cd\u65b9\u5f0f": 215, "\u4ece\u60a8\u7684": 215, "\u63d0\u793a\u7b26\u4e0b\u53d1\u51fa\u4ee5\u4e0b\u547d\u4ee4": 215, "image_classifi": 215, "kitten": 215, "index_to_nam": 215, "\u6587\u4ef6\u5728\u4e0b\u9762\u7684": 215, "\u670d\u52a1\u4e2d\u662f\u53ef\u9009\u7684": 215, "\u60a8\u53ef\u4ee5\u4f7f\u7528\u81ea\u5df1\u7684\u56fe\u50cf\u6d4b\u8bd5\u60a8\u7684\u670d\u52a1": 215, "\u9700\u786e\u4fdd\u662f\u4e00\u4e2a": 215, "\u8272": 215, "\u56fe\u50cf": [215, 235, 259], "\u670d\u52a1\u7684\u5b8c\u6574": 215, "\u811a\u672c\u5728\u672c\u6559\u7a0b\u7684\u6700\u540e\u5c55\u793a": 215, "\u60a8\u53ef\u4ee5\u590d\u5236\u5e76\u7c98\u8d34\u5230\u60a8\u81ea\u5df1\u7684": 215, "\u6587\u4ef6\u4e2d": [215, 223], "\u4e0b\u9762\u6211\u4eec\u5c06\u67e5\u770b\u5404\u4e2a\u90e8\u5206": 215, "\u4ee5\u660e\u786e\u5b83\u4eec\u7684\u529f\u80fd": 215, "\u6309\u987a\u5e8f": 215, "\u5c06\u4f7f\u7528\u6765\u81ea": 215, "\u7684\u9884\u8bad\u7ec3": 215, "\u5305\u542b\u7528\u4e8e\u64cd\u4f5c\u56fe\u50cf\u6570\u636e\u7684\u5de5\u5177": 215, "\u662f\u6211\u4eec\u6700\u521d\u52a0\u8f7d\u56fe\u50cf\u6587\u4ef6\u65f6\u5c06\u4f7f\u7528\u7684\u5e93": 215, "\u5f53\u7136\u6211\u4eec\u8fd8\u9700\u8981\u4ece": 215, "\u5bfc\u5165\u4e00\u4e9b\u7c7b": 215, "infil": 215, "timg": 215, "\u8bf7\u6c42\u7ed9\u4e86\u6211\u4eec\u4e00\u4e2a\u56fe\u50cf\u6587\u4ef6": 215, "\u4f46\u6211\u4eec\u7684\u6a21\u578b\u671f\u671b\u4e00\u4e2a\u5f62\u72b6\u4e3a": 215, "\u662f\u8f93\u5165\u6279\u6b21\u7684\u6570\u91cf": 215, "\u6211\u4eec\u5c06\u53ea\u4f7f\u7528\u6279\u91cf\u5927\u5c0f\u4e3a": 215, "\u6211\u4eec\u9996\u5148\u8981\u505a\u7684\u662f\u7ec4\u5408\u4e00\u7ec4": 215, "\u8f6c\u6362": 215, "\u8c03\u6574\u56fe\u50cf\u5927\u5c0f\u548c\u88c1\u526a\u56fe\u50cf": 215, "\u7136\u540e\u5bf9\u5f20\u91cf\u4e2d\u7684\u503c\u8fdb\u884c\u5f52\u4e00\u5316": 215, "\u6709\u5173\u6b64\u5f52\u4e00\u5316\u7684\u66f4\u591a\u4fe1\u606f": 215, "models_": 215, "\u7684\u6587\u6863": 215, "\u6211\u4eec\u6253\u5f00\u6587\u4ef6\u5e76\u5e94\u7528\u8f6c\u6362": 215, "\u8f6c\u6362\u8fd4\u56de\u4e00\u4e2a\u5f62\u72b6\u4e3a": 215, "\u56fe\u50cf\u7684": 215, "\u4e2a\u989c\u8272\u901a\u9053": 215, "\u56e0\u4e3a\u6211\u4eec\u9700\u8981\u5c06\u8fd9\u4e2a\u5355\u4e2a\u56fe\u50cf\u53d8\u6210\u4e00\u4e2a\u6279\u6b21": 215, "\u6240\u4ee5\u6211\u4eec\u4f7f\u7528": 215, "\u8c03\u7528\u901a\u8fc7\u6dfb\u52a0\u4e00\u4e2a\u65b0\u7684\u7b2c\u4e00\u7ef4\u6765\u5c31\u5730\u4fee\u6539\u5f20\u91cf": 215, "\u5f20\u91cf\u5305\u542b\u76f8\u540c\u7684\u6570\u636e": 215, "\u4f46\u73b0\u5728\u5f62\u72b6\u4e3a": 215, "\u4e00\u822c\u6765\u8bf4": [215, 249], "\u5373\u4f7f\u60a8\u4e0d\u662f\u5728\u5904\u7406\u56fe\u50cf\u6570\u636e": 215, "\u60a8\u4e5f\u9700\u8981\u5c06\u6765\u81ea": 215, "\u8bf7\u6c42\u7684\u8f93\u5165\u8f6c\u6362\u4e3a": 215, "\u53ef\u4ee5\u4f7f\u7528\u7684\u5f20\u91cf": 215, "\u63a8\u7406\u672c\u8eab\u662f\u6700\u7b80\u5355\u7684\u90e8\u5206": 215, "\u5f53\u6211\u4eec\u5c06\u8f93\u5165\u5f20\u91cf\u4f20\u9012\u7ed9\u6a21\u578b\u65f6": 215, "\u6211\u4eec\u4f1a\u5f97\u5230\u4e00\u4e2a\u5f20\u91cf\u503c": 215, "\u4ee3\u8868\u6a21\u578b\u4f30\u8ba1\u56fe\u50cf\u5c5e\u4e8e\u7279\u5b9a\u7c7b\u522b\u7684\u53ef\u80fd\u6027": 215, "\u8c03\u7528\u627e\u5230\u5177\u6709\u6700\u5927\u53ef\u80fd\u6027\u503c\u7684\u7c7b\u522b": 215, "\u5e76\u8fd4\u56de\u8be5\u503c\u53ca\u5176": 215, "\u7c7b\u7d22\u5f15": 215, "\u8c03\u7528\u4ece\u5305\u542b\u5b83\u7684\u5f20\u91cf\u4e2d\u63d0\u53d6\u8be5\u7c7b\u7d22\u5f15": 215, "\u5e76\u8fd4\u56de\u5b83": 215, "render_predict": 215, "prediction_idx": 215, "stridx": 215, "img_class_map": 215, "\u65b9\u6cd5\u5c06\u9884\u6d4b\u7684\u7c7b\u7d22\u5f15\u6620\u5c04\u4e3a\u4eba\u7c7b\u53ef\u8bfb\u7684\u7c7b\u6807\u7b7e": 215, "\u5728\u4ece\u60a8\u7684\u6a21\u578b\u83b7\u5f97\u9884\u6d4b\u4e4b\u540e": 215, "\u901a\u5e38\u9700\u8981\u8fdb\u884c\u540e\u5904\u7406": 215, "\u4f7f\u9884\u6d4b\u53ef\u4f9b\u4eba\u7c7b\u4f7f\u7528\u6216\u4f9b\u53e6\u4e00\u4e2a\u8f6f\u4ef6\u4f7f\u7528": 215, "\u5c06\u4ee5\u4e0b\u5185\u5bb9\u7c98\u8d34\u5230\u540d\u4e3a": 215, "\u7684\u6587\u4ef6\u4e2d": 215, "\u4e2a\u7c7b\u522b\u4e0a\u8bad\u7ec3": 215, "\u5173\u95ed\u81ea\u52a8\u68af\u5ea6\u8ba1\u7b97": 215, "mapping_file_path": 215, "\u7c7b\u522b\u7684\u53ef\u8bfb\u540d\u79f0": 215, "isfil": 215, "\u5c06\u8f93\u5165\u8f6c\u6362\u4e3a\u6a21\u578b\u671f\u671b\u7684\u5f62\u5f0f": 215, "\u6211\u4eec\u4f7f\u7528\u591a\u4e2a": 215, "\u8f6c\u6362\u6765\u51c6\u5907\u56fe\u50cf": 215, "\u6a21\u578b\u8f93\u5165\u7684\u6807\u51c6\u5f52\u4e00\u5316": 215, "\u6253\u5f00\u56fe\u50cf\u6587\u4ef6": 215, "\u56fe\u50cf\u8f6c\u6362\u4e3a\u5408\u9002\u5f62\u72b6\u7684": 215, "\u6a21\u578b\u671f\u671b\u6279\u91cf\u8f93\u5165": 215, "\u521b\u5efa\u6279\u91cf\u5927\u5c0f\u4e3a": 215, "\u83b7\u53d6\u9884\u6d4b": 215, "\u83b7\u53d6\u6240\u6709": 215, "\u7c7b\u522b\u7684\u53ef\u80fd\u6027": 215, "\u63d0\u53d6\u6700\u53ef\u80fd\u7684\u7c7b\u522b": 215, "\u5f20\u91cf\u4e2d\u63d0\u53d6": 215, "\u503c": [215, 236], "\u4f7f\u9884\u6d4b\u7ed3\u679c\u53ef\u8bfb": 215, "\u63d0\u793a\u7b26\u542f\u52a8\u670d\u52a1\u5668": 215, "\u8bf7\u6267\u884c\u4ee5\u4e0b\u547d\u4ee4": 215, "\u60a8\u7684": 215, "\u670d\u52a1\u5668\u76d1\u542c": 215, "\u7aef\u53e3": 215, "\u670d\u52a1\u5668\u8fd0\u884c\u540e": 215, "\u6253\u5f00\u53e6\u4e00\u4e2a\u7ec8\u7aef\u7a97\u53e3": 215, "\u6d4b\u8bd5\u60a8\u65b0\u7684\u63a8\u7406\u670d\u52a1\u5668": 215, "curl": [215, 265], "multipart": 215, "\u5982\u679c\u4e00\u5207\u8bbe\u7f6e\u6b63\u786e": 215, "\u60a8\u5e94\u8be5\u4f1a\u6536\u5230\u7c7b\u4f3c\u5982\u4e0b\u7684\u54cd\u5e94": 215, "285": 215, "\u63d0\u4f9b\u5b89\u88c5\u8bf4\u660e": 215, "\u4ee5\u53ca\u66f4\u591a\u6587\u6863\u548c\u6559\u7a0b": 215, "\u5b98\u7f51": 215, "\u5feb\u901f\u5165\u95e8\u6307\u5357": 215, "\u5bf9\u8bbe\u7f6e\u4e00\u4e2a\u7b80\u5355\u7684": 215, "\u670d\u52a1\u6709\u66f4\u8be6\u7ec6\u7684\u4ecb\u7ecd": 215, "iri": [216, 217], "rodrigo": 216, "kumpera": 216, "chien": 216, "chin": 216, "luca": 216, "pasqualin": 216, "\u4e0a\u67e5\u770b\u548c\u7f16\u8f91\u672c\u6559\u7a0b": [216, 217], "\u5148\u51b3\u6761\u4ef6": [216, 217], "\u5728\u5206\u5e03\u5f0f\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u5bf9": 216, "\u6a21\u578b\u8fdb\u884c\u68c0\u67e5\u70b9\u4fdd\u5b58\u53ef\u80fd\u5177\u6709\u6311\u6218\u6027": 216, "\u56e0\u4e3a\u53c2\u6570\u548c\u68af\u5ea6\u5206\u5e03\u5728\u4e0d\u540c\u7684\u8bad\u7ec3\u5668\u4e0a": 216, "\u800c\u4e14\u6062\u590d\u8bad\u7ec3\u65f6\u53ef\u7528\u7684\u8bad\u7ec3\u5668\u6570\u91cf\u53ef\u80fd\u4f1a\u53d1\u751f\u53d8\u5316": 216, "\u53ef\u4ee5\u5e2e\u52a9\u7b80\u5316\u8fd9\u4e2a\u8fc7\u7a0b": 216, "\u6211\u4eec\u5c06\u5c55\u793a\u5982\u4f55\u4f7f\u7528": 216, "\u5904\u7406\u4e00\u4e2a\u7b80\u5355\u7684": 216, "\u5305\u88c5\u6a21\u578b": 216, "\u5141\u8bb8\u5e76\u884c\u5730\u4ece\u591a\u4e2a": 216, "\u60a8\u53ef\u4ee5\u4f7f\u7528\u6b64\u6a21\u5757\u5728\u4efb\u610f\u6570\u91cf\u7684": 216, "\u4e0a\u5e76\u884c\u4fdd\u5b58": 216, "\u7136\u540e\u5728\u52a0\u8f7d\u65f6\u91cd\u65b0\u5206\u7247\u5230\u4e0d\u540c\u7684\u96c6\u7fa4\u62d3\u6251\u7ed3\u6784": 216, "\u4e2d\u7684\u6a21\u5757": 216, "\u63d0\u4f9b\u4e86\u5728\u5206\u5e03\u5f0f\u8bbe\u7f6e\u4e2d\u4f18\u96c5\u5904\u7406": 216, "\u751f\u6210\u548c\u52a0\u8f7d\u7684\u652f\u6301": 216, "\u8fd9\u5305\u62ec\u7ba1\u7406\u6a21\u578b\u548c\u4f18\u5316\u5668\u4e4b\u95f4\u7684\u5168\u9650\u5b9a\u540d\u79f0": 216, "\u6620\u5c04": 216, "\u4ee5\u53ca\u4e3a": 216, "\u63d0\u4f9b\u7684\u5e76\u884c\u6027\u8bbe\u7f6e\u9ed8\u8ba4\u53c2\u6570": 216, "\u5728\u51e0\u4e2a\u91cd\u8981\u65b9\u9762\u6709\u6240\u4e0d\u540c": 216, "\u5b83\u4e3a\u6bcf\u4e2a\u68c0\u67e5\u70b9\u751f\u6210\u591a\u4e2a\u6587\u4ef6": 216, "\u81f3\u5c11\u4e00\u4e2a": 216, "\u5b83\u5c31\u5730\u64cd\u4f5c": 216, "\u8fd9\u610f\u5473\u7740\u6a21\u578b\u5e94\u8be5\u9996\u5148\u5206\u914d\u5176\u6570\u636e": 216, "\u4f7f\u7528\u8be5\u5b58\u50a8\u800c\u4e0d\u662f\u521b\u5efa\u65b0\u7684\u5b58\u50a8": 216, "\u672c\u6559\u7a0b\u4e2d\u7684\u4ee3\u7801\u5728": 216, "\u670d\u52a1\u5668\u4e0a\u8fd0\u884c": 216, "\u4f46\u53ef\u4ee5\u8f7b\u677e\u5730\u63a8\u5e7f\u5230\u5176\u4ed6\u73af\u5883": 216, "\u8fd9\u91cc\u6211\u4eec\u4f7f\u7528\u4e00\u4e2a\u7528": 216, "\u5305\u88c5\u7684\u73a9\u5177\u6a21\u578b\u8fdb\u884c\u6f14\u793a": 216, "\u8fd9\u4e9b": 216, "\u548c\u903b\u8f91\u53ef\u4ee5\u5e94\u7528\u4e8e\u66f4\u5927\u7684\u6a21\u578b\u8fdb\u884c\u68c0\u67e5\u70b9\u4fdd\u5b58": 216, "\u8ba9\u6211\u4eec\u521b\u5efa\u4e00\u4e2a\u73a9\u5177\u6a21\u5757": 216, "\u7528": 216, "\u5305\u88c5\u5b83": 216, "\u7528\u4e00\u4e9b\u865a\u62df\u8f93\u5165\u6570\u636e\u5bf9\u5176\u8fdb\u884c\u8bad\u7ec3": 216, "\u7136\u540e\u4fdd\u5b58\u5b83": 216, "get_state_dict": 216, "\u521d\u59cb\u5316\u8fdb\u7a0b\u7ec4": 216, "run_fsdp_checkpoint_save_exampl": 216, "\u4e0a\u8fd0\u884c\u57fa\u672c\u7684": 216, "\u68c0\u67e5\u70b9\u4fdd\u5b58\u793a\u4f8b": 216, "\u521b\u5efa\u4e00\u4e2a\u6a21\u578b\u5e76\u5c06\u5176\u79fb\u52a8\u5230": 216, "\u8fd9\u884c\u4ee3\u7801\u81ea\u52a8\u7ba1\u7406": 216, "\u5e76\u5c06\u9ed8\u8ba4\u72b6\u6001\u5b57\u5178\u7c7b\u578b\u8bbe\u7f6e\u4e3a": 216, "sharded_state_dict": 216, "checkpoint_id": 216, "\u4e2a\u8bbe\u5907\u4e0a\u8fd0\u884c": 216, "\u68c0\u67e5\u70b9\u793a\u4f8b": 216, "\u76ee\u5f55": [216, 238, 247], "\u60a8\u5e94\u8be5\u770b\u5230": 216, "\u4e2a\u68c0\u67e5\u70b9\u6587\u4ef6": 216, "\u4fdd\u5b58\u4e4b\u540e": 216, "\u8ba9\u6211\u4eec\u521b\u5efa\u76f8\u540c\u7684": 216, "\u5e76\u4ece\u5b58\u50a8\u4e2d\u52a0\u8f7d\u4fdd\u5b58\u7684\u72b6\u6001\u5b57\u5178\u5230\u6a21\u578b\u4e2d": 216, "\u60a8\u53ef\u4ee5\u5728\u76f8\u540c\u7684\u4e16\u754c\u5927\u5c0f\u6216\u4e0d\u540c\u7684\u4e16\u754c\u5927\u5c0f\u4e2d\u52a0\u8f7d": 216, "\u60a8\u9700\u8981\u5728\u52a0\u8f7d\u4e4b\u524d\u8c03\u7528": 216, "\u5e76\u5c06\u5176\u4f20\u9012\u7ed9": 216, "\u8fd9\u4e0e": 216, "\u6709\u6839\u672c\u7684\u4e0d\u540c": 216, "\u53ea\u9700\u8981\u52a0\u8f7d\u524d\u7684\u68c0\u67e5\u70b9\u8def\u5f84": 216, "\u6211\u4eec\u9700\u8981\u5728\u52a0\u8f7d\u4e4b\u524d\u63d0\u4f9b": 216, "\u7684\u539f\u56e0\u662f": 216, "\u4f7f\u7528\u6a21\u578b\u72b6\u6001\u5b57\u5178\u4e2d\u9884\u5206\u914d\u7684\u5b58\u50a8\u6765\u4ece\u68c0\u67e5\u70b9\u76ee\u5f55\u52a0\u8f7d": 216, "\u5728\u52a0\u8f7d\u8fc7\u7a0b\u4e2d": 216, "\u4f20\u5165\u7684\u72b6\u6001\u5b57\u5178\u5c06\u88ab\u5c31\u5730\u66f4\u65b0": 216, "\u5728\u52a0\u8f7d\u4e4b\u524d\u9700\u8981\u6a21\u578b\u7684\u5206\u7247\u4fe1\u606f\u4ee5\u652f\u6301\u91cd\u65b0\u5206\u7247": 216, "set_state_dict": 216, "run_fsdp_checkpoint_load_exampl": 216, "\u68c0\u67e5\u70b9\u52a0\u8f7d\u793a\u4f8b": 216, "\u751f\u6210\u6211\u4eec\u5c06\u52a0\u8f7d\u5230\u7684\u72b6\u6001\u5b57\u5178": 216, "\u5728\u52a0\u8f7d\u5b8c\u6210\u540e": 216, "\u5c06\u6211\u4eec\u7684\u72b6\u6001\u5b57\u5178\u8bbe\u7f6e\u5230\u6a21\u578b\u548c\u4f18\u5316\u5668\u4e0a": 216, "optim_state_dict": 216, "\u5982\u679c\u60a8\u60f3\u5728\u975e\u5206\u5e03\u5f0f\u8bbe\u7f6e\u4e2d\u5c06\u4fdd\u5b58\u7684\u68c0\u67e5\u70b9\u52a0\u8f7d\u5230\u975e": 216, "\u5305\u88c5\u7684\u6a21\u578b\u4e2d": 216, "\u53ef\u80fd\u662f\u4e3a\u4e86\u63a8\u7406": 216, "\u60a8\u4e5f\u53ef\u4ee5\u4f7f\u7528": 216, "\u6765\u5b9e\u73b0": 216, "\u4ee5\u5355\u7a0b\u5e8f\u591a\u6570\u636e": 216, "\u98ce\u683c\u4fdd\u5b58\u548c\u52a0\u8f7d\u5206\u5e03\u5f0f": 216, "\u5982\u679c\u6ca1\u6709\u521d\u59cb\u5316\u8fdb\u7a0b\u7ec4": 216, "\u4f1a\u63a8\u65ad\u610f\u56fe\u662f\u4ee5": 216, "\u975e\u5206\u5e03\u5f0f": 216, "\u65b9\u5f0f\u4fdd\u5b58\u6216\u52a0\u8f7d": 216, "\u8fd9\u610f\u5473\u7740\u5b8c\u5168\u5728\u5f53\u524d\u8fdb\u7a0b\u4e2d\u8fdb\u884c": 216, "\u591a\u7a0b\u5e8f\u591a\u6570\u636e\u7684\u5206\u5e03\u5f0f\u68c0\u67e5\u70b9\u652f\u6301\u4ecd\u5728\u5f00\u53d1\u4e2d": 216, "run_checkpoint_load_exampl": 216, "\u521b\u5efa\u975e": 216, "\u5305\u88c5\u7684\u73a9\u5177\u6a21\u578b": 216, "\u7531\u4e8e\u6ca1\u6709\u521d\u59cb\u5316\u8fdb\u7a0b\u7ec4": 216, "\u5c06\u7981\u7528\u4efb\u4f55\u96c6\u4f53\u64cd\u4f5c": 216, "\u8fd0\u884c\u57fa\u672c\u7684": 216, "\u603b\u4e4b": [216, 217, 248], "\u4ee5\u53ca\u5b83\u4eec\u4e0e": 216, "\u7684\u4e0d\u540c\u4e4b\u5904": 216, "\u6211\u4eec\u8fd8\u5b66\u4e60\u4e86\u5982\u4f55\u4f7f\u7528": 216, "\u5728\u72b6\u6001\u5b57\u5178\u751f\u6210\u548c\u52a0\u8f7d\u671f\u95f4\u81ea\u52a8\u7ba1\u7406\u5e76\u884c\u6027\u7279\u5b9a\u7684": 216, "\u548c\u9ed8\u8ba4\u503c": 216, "\u66f4\u591a\u4fe1\u606f": [216, 238, 259], "\u8bf7\u53c2\u9605\u4ee5\u4e0b\u5185\u5bb9": [216, 217], "\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u6559\u7a0b": 216, "\u5165\u95e8\u6559\u7a0b": [216, 259], "\u5206\u5e03\u5f0f\u901a\u4fe1\u5305": 217, "\u4e3a\u5206\u5e03\u5f0f\u8bad\u7ec3\u8bbe\u7f6e\u5206\u5e03\u5f0f\u901a\u4fe1\u5668": 217, "\u96c6\u4f53\u901a\u4fe1\u5e93": [217, 249], "\u901a\u4fe1\u5668": 217, "\u53ef\u80fd\u662f\u4e00\u4e2a\u91cd\u5927\u6311\u6218": 217, "\u5bf9\u4e8e\u9700\u8981\u7ec4\u5408\u4e0d\u540c\u5e76\u884c\u6027\u7684\u5de5\u4f5c\u8d1f\u8f7d": 217, "\u7528\u6237\u9700\u8981\u4e3a\u6bcf\u4e2a\u5e76\u884c\u6027\u89e3\u51b3\u65b9\u6848\u624b\u52a8\u8bbe\u7f6e\u548c\u7ba1\u7406": 217, "\u8fd9\u4e2a\u8fc7\u7a0b\u53ef\u80fd\u5f88\u590d\u6742\u4e14\u5bb9\u6613\u51fa\u9519": 217, "\u53ef\u4ee5\u7b80\u5316\u8fd9\u4e2a\u8fc7\u7a0b": 217, "\u4f7f\u5176\u66f4\u6613\u4e8e\u7ba1\u7406\u548c\u51cf\u5c11\u9519\u8bef": 217, "\u662f\u4e00\u4e2a\u7ba1\u7406": 217, "\u7684\u9ad8\u7ea7\u62bd\u8c61": 217, "\u5b83\u5141\u8bb8\u7528\u6237\u8f7b\u677e\u521b\u5efa\u8282\u70b9\u95f4\u548c\u8282\u70b9\u5185\u8fdb\u7a0b\u7ec4": 217, "\u800c\u65e0\u9700\u62c5\u5fc3\u5982\u4f55\u4e3a\u4e0d\u540c\u7684\u5b50\u8fdb\u7a0b\u7ec4\u6b63\u786e\u8bbe\u7f6e\u7b49\u7ea7": 217, "\u7528\u6237\u8fd8\u53ef\u4ee5\u901a\u8fc7": 217, "\u8f7b\u677e\u7ba1\u7406\u591a\u7ef4\u5e76\u884c\u6027\u7684\u5e95\u5c42\u8fdb\u7a0b\u7ec4": 217, "\u5f53\u5904\u7406\u591a\u7ef4\u5e76\u884c\u6027": 217, "\u5e76\u884c": 217, "\u975e\u5e38\u6709\u7528": 217, "\u56e0\u4e3a\u8fd9\u79cd\u60c5\u51b5\u9700\u8981\u5e76\u884c\u6027\u7ec4\u5408": 217, "\u5f53\u60a8\u7684\u5e76\u884c\u6027\u89e3\u51b3\u65b9\u6848\u9700\u8981\u8de8\u4e3b\u673a\u548c\u6bcf\u4e2a\u4e3b\u673a\u5185\u90e8\u8fdb\u884c\u901a\u4fe1\u65f6": 217, "\u4e0a\u56fe\u663e\u793a": 217, "\u7f51\u683c": 217, "\u8fde\u63a5\u6bcf\u4e2a\u4e3b\u673a\u5185\u7684\u8bbe\u5907": 217, "\u5e76\u5728\u540c\u6784\u8bbe\u7f6e\u4e2d\u5c06\u6bcf\u4e2a\u8bbe\u5907\u4e0e\u5176\u4ed6\u4e3b\u673a\u4e0a\u7684\u5bf9\u5e94\u8bbe\u5907\u8fde\u63a5\u8d77\u6765": 217, "\u5982\u679c\u6ca1\u6709": 217, "\u7528\u6237\u5728\u5e94\u7528\u4efb\u4f55\u5e76\u884c\u6027\u4e4b\u524d\u9700\u8981\u624b\u52a8\u8bbe\u7f6e\u6bcf\u4e2a\u8fdb\u7a0b\u4e0a\u7684": 217, "\u901a\u4fe1\u5668\u548c": 217, "\u8fd9\u53ef\u80fd\u76f8\u5f53\u590d\u6742": 217, "\u4ee5\u4e0b\u4ee3\u7801\u7247\u6bb5\u8bf4\u660e\u4e86\u5982\u4f55\u5728\u6ca1\u6709": 217, "\u7684\u60c5\u51b5\u4e0b\u8bbe\u7f6e\u6df7\u5408\u5206\u7247": 217, "\u5e76\u884c\u6a21\u5f0f": 217, "\u6211\u4eec\u9700\u8981\u624b\u52a8\u8ba1\u7b97\u5206\u7247\u7ec4\u548c\u590d\u5236\u7ec4": 217, "\u6211\u4eec\u9700\u8981\u4e3a\u6bcf\u4e2a\u7b49\u7ea7\u5206\u914d\u6b63\u786e\u7684\u5206\u7247\u548c\u590d\u5236\u7ec4": 217, "\u4e86\u89e3\u4e16\u754c\u62d3\u6251": 217, "\u4e0a\u8fd0\u884c\u793a\u4f8b": 217, "\u4e16\u754c\u5927\u5c0f\u4e3a": 217, "\u521b\u5efa\u8fdb\u7a0b\u7ec4\u4ee5\u7ba1\u7406": 217, "\u7c7b\u4f3c\u7684\u5e76\u884c\u6a21\u5f0f": 217, "\u521b\u5efa\u5206\u7247\u7ec4": 217, "\u5e76\u4e3a\u6bcf\u4e2a\u7b49\u7ea7\u5206\u914d\u6b63\u786e\u7684\u5206\u7247\u7ec4": 217, "num_node_devic": 217, "shard_rank_list": 217, "shard_group": 217, "current_shard_group": 217, "\u521b\u5efa\u590d\u5236\u7ec4": 217, "\u5e76\u4e3a\u6bcf\u4e2a\u7b49\u7ea7\u5206\u914d\u6b63\u786e\u7684\u590d\u5236\u7ec4": 217, "current_replicate_group": 217, "shard_factor": 217, "replicate_group_rank": 217, "replicate_group": 217, "\u8981\u8fd0\u884c\u4e0a\u9762\u7684\u4ee3\u7801\u7247\u6bb5": 217, "\u6211\u4eec\u53ef\u4ee5\u5229\u7528": 217, "\u8ba9\u6211\u4eec\u521b\u5efa\u4e00\u4e2a\u540d\u4e3a": 217, "2d_setup": 217, "\u7684\u6587\u4ef6": 217, "\u8fd0\u884c\u4ee5\u4e0b": [217, 259], "\u547d\u4ee4": 217, "\u4e3a\u4e86\u7b80\u5316\u6f14\u793a": 217, "\u6211\u4eec\u4ec5\u4f7f\u7528\u4e00\u4e2a\u8282\u70b9\u6a21\u62df": 217, "\u6b64\u4ee3\u7801\u7247\u6bb5\u4e5f\u53ef\u7528\u4e8e\u591a\u4e3b\u673a\u8bbe\u7f6e": 217, "\u501f\u52a9": 217, "\u6211\u4eec\u53ef\u4ee5\u4ec5\u7528\u4e24\u884c\u4ee3\u7801\u5b8c\u6210\u4e0a\u8ff0": 217, "\u5e76\u4e14\u5982\u679c\u9700\u8981": 217, "\u6211\u4eec\u4ecd\u7136\u53ef\u4ee5\u8bbf\u95ee\u5e95\u5c42\u7684": 217, "mesh_dim_nam": 217, "\u7528\u6237\u53ef\u4ee5\u901a\u8fc7": [217, 223], "get_group": 217, "\u8bbf\u95ee\u5e95\u5c42\u8fdb\u7a0b\u7ec4": 217, "mesh_dim": 217, "2d_setup_with_device_mesh": 217, "\u6df7\u5408\u5206\u7247\u6570\u636e\u5e76\u884c": 217, "\u662f\u4e00\u79cd": 217, "\u7b56\u7565": 217, "\u5728\u4e3b\u673a\u5185\u6267\u884c": 217, "\u5728\u4e3b\u673a\u95f4\u6267\u884c": 217, "\u8ba9\u6211\u4eec\u770b\u4e00\u4e2a\u793a\u4f8b": 217, "\u8bf4\u660e": 217, "\u5982\u4f55\u5e2e\u52a9\u5c06": 217, "\u5e94\u7528\u5230\u60a8\u7684\u6a21\u578b": 217, "\u4f7f\u7528\u7b80\u5355\u7684\u8bbe\u7f6e": 217, "\u7528\u6237\u65e0\u9700\u624b\u52a8\u521b\u5efa\u548c\u7ba1\u7406\u5206\u7247\u7ec4\u548c\u590d\u5236\u7ec4": 217, "meshshap": 217, "hybrid_shard": 217, "\u6211\u4eec\u5df2\u7ecf\u4e86\u89e3\u4e86": 217, "\u4ee5\u53ca\u5982\u4f55": 217, "\u4f7f\u7528\u5b83\u4eec\u6765\u63cf\u8ff0\u96c6\u7fa4\u4e2d\u8bbe\u5907\u7684\u5e03\u5c40": 217, "\u6b32\u4e86\u89e3\u66f4\u591a\u4fe1\u606f": 217, "\u5c06\u5f20\u91cf": 217, "\u5e8f\u5217\u5e76\u884c\u4e0e": 217, "\u7ed3\u5408\u7684": 217, "\u7684\u53ef\u7ec4\u5408": 217, "\u5206\u5e03\u5f0f": [217, 218], "\u7684\u5206\u5e03\u5f0f\u4f18\u5316\u5668\u5728": 218, "\u4e2d\u4f5c\u4e3a": 218, "\u529f\u80fd\u5f15\u5165": 218, "\u6b64": 218, "\u53ef\u80fd\u4f1a\u53d1\u751f\u53d8\u5316": 218, "\u7684\u5206\u5e03\u5f0f\u4f18\u5316\u5668\u7684\u9ad8\u7ea7\u6982\u5ff5\u53ca\u5176\u5e26\u6765\u7684\u529f\u80fd": 218, "\u6846\u67b6\u5165\u95e8": 218, "\u63a5\u53d7\u4e00\u4e2a\u8fdc\u7a0b\u53c2\u6570\u5217\u8868": 218, "\u5e76\u5728\u53c2\u6570\u6240\u5728\u7684\u5de5\u4f5c\u8282\u70b9\u4e0a\u672c\u5730\u8fd0\u884c\u4f18\u5316\u5668": 218, "\u5b83\u901a\u5e38\u4e0e\u5206\u5e03\u5f0f": 218, "\u4e00\u8d77\u4f7f\u7528": [218, 256], "\u7528\u4e8e\u6a21\u578b\u5e76\u884c\u8bad\u7ec3": 218, "\u5b83\u53ef\u4ee5\u4f7f\u7528\u4efb\u4f55\u672c\u5730\u4f18\u5316\u5668\u7b97\u6cd5": 218, "\u65e0\u8bba\u662f": 218, "\u4e2d\u9884\u5b9a\u4e49\u7684\u7b97\u6cd5\u8fd8\u662f\u81ea\u5b9a\u4e49\u7684\u7b97\u6cd5": 218, "\u5728\u6bcf\u4e2a\u5de5\u4f5c\u8282\u70b9\u4e0a\u5e94\u7528\u68af\u5ea6": 218, "\u5206\u5e03\u5f0f\u4f18\u5316\u5668\u5728\u5206\u5e03\u5f0f\u6a21\u578b\u5e76\u884c\u8bad\u7ec3\u4e2d\u88ab\u5e7f\u6cdb\u4f7f\u7528": 218, "\u5728\u4e00\u4e9b\u5e38\u89c1\u7528\u4f8b\u4e2d": 218, "\u7531\u4e8e\u6027\u80fd\u8003\u8651\u548c\u8d44\u6e90\u5229\u7528": 218, "\u8bad\u7ec3\u9700\u8981\u4ee5\u591a\u7ebf\u7a0b\u65b9\u5f0f\u8fdb\u884c": 218, "\u800c\u4e0d\u662f\u591a\u8fdb\u7a0b\u65b9\u5f0f": 218, "\u6216\u81f3\u5c11\u90e8\u5206\u591a\u7ebf\u7a0b": 218, "\u4f8b\u5982\u53c2\u6570\u670d\u52a1\u5668\u6258\u7ba1\u90e8\u5206\u6a21\u578b\u548c\u53c2\u6570": 218, "\u65b0\u7ebf\u7a0b\u6839\u636e\u8bf7\u6c42\u66f4\u65b0\u53c2\u6570": 218, "\u672c\u8eab\u7531\u4e8e": 218, "\u7684\u5168\u5c40\u89e3\u91ca\u5668\u9501": 218, "\u800c\u4e0d\u652f\u6301\u539f\u751f\u591a\u7ebf\u7a0b\u8bad\u7ec3": 218, "\u4f46\u5b83\u53ef\u4ee5\u5229\u7528": 218, "\u6765\u6446\u8131": 218, "\u5e76\u4ee5\u591a\u7ebf\u7a0b\u65b9\u5f0f\u8fd0\u884c\u6a21\u578b": 218, "\u5bf9\u4e8e\u5173\u952e\u7684\u6a21\u578b\u8bad\u7ec3\u5de5\u4f5c\u8d1f\u8f7d": 218, "\u63d0\u9ad8\u8bad\u7ec3\u6027\u80fd\u662f\u4e00\u4e2a\u91cd\u8981\u8bdd\u9898": 218, "\u7814\u7a76\u4eba\u5458\u7ecf\u5e38\u5e0c\u671b\u901a\u8fc7\u56fe\u8868\u793a\u5b9e\u73b0\u4e0d\u540c\u7684\u4f18\u5316\u7b56\u7565": 218, "\u4f8b\u5982\u901a\u8fc7\u7b97\u5b50\u878d\u5408": 218, "\u6216\u5b9e\u73b0\u81ea\u5b9a\u4e49\u7b97\u5b50\u5185\u6838\u4ee5\u52a0\u901f\u8bad\u7ec3": 218, "\u7684\u5206\u5e03\u5f0f\u4f18\u5316\u5668\u53ef\u4ee5\u5e2e\u52a9\u6446\u8131": 218, "\u4ece\u800c\u63d0\u9ad8": 218, "\u5728\u591a\u7ebf\u7a0b\u73af\u5883\u4e2d\u7684\u8bad\u7ec3\u6027\u80fd": 218, "\u5b83\u8fd8\u89e3\u9501\u4e86\u4f7f\u7528": 218, "\u63d0\u4f9b\u7684\u9ad8\u7ea7\u7f16\u8bd1\u5668\u6280\u672f": 218, "\u878d\u5408": 218, "\u6765\u8fdb\u4e00\u6b65\u63d0\u5347\u6027\u80fd\u7684\u6f5c\u529b": 218, "\u4ee5\u4e0b\u4ee3\u7801\u5c55\u793a\u4e86\u5982\u4f55\u57fa\u4e8e\u73b0\u6709\u7684\u672c\u5730\u4f18\u5316\u5668\u5b9e\u73b0\u7f16\u5199\u81ea\u5b9a\u4e49\u5206\u5e03\u5f0f\u4f18\u5316\u5668": 218, "\u4ece\u800c\u89e3\u9501": 218, "\u7684\u4f18\u52bf": 218, "\u79fb\u9664\u548c\u6027\u80fd\u6539\u8fdb\u673a\u4f1a": 218, "\u5047\u8bbe\u60a8\u5df2\u7ecf\u6709\u4e00\u4e2a\u5728\u8bad\u7ec3\u4e2d\u4f7f\u7528\u7684\u672c\u5730\u4f18\u5316\u5668": 218, "\u5728\u8fd9\u4e2a\u4f8b\u5b50\u4e2d": [218, 258], "\u51c6\u8d85\u66f2\u9762\u52a8\u91cf": 218, "qhm": 218, "qhoptim": 218, "e81dea3f2765780cf4fbb90b87b22ba7604b8625": 218, "pyt": 218, "l12": 218, "\u6765\u5c55\u793a\u5982\u4f55\u542f\u7528": 218, "\u8fd9\u4e5f\u9002\u7528\u4e8e\u4efb\u4f55\u7ee7\u627f\u81ea": 218, "\u7684\u81ea\u5b9a\u4e49\u4f18\u5316\u5668": 218, "\u6211\u4eec\u9700\u8981\u5c06\u8ba1\u7b97\u548c\u72b6\u6001\u7ba1\u7406\u4ece\u4f18\u5316\u5668\u5b9e\u73b0\u4e2d\u5206\u79bb\u51fa\u6765": 218, "\u8fd9\u6837\u6211\u4eec\u5c31\u53ef\u4ee5\u63d0\u53d6\u8ba1\u7b97\u90e8\u5206\u5e76\u5c06\u5176\u53d8\u6210\u4e00\u4e2a\u72ec\u7acb\u51fd\u6570": 218, "\u8fd9\u5bf9": 218, "\u53cb\u597d": 218, "\u8fd9\u6709\u4e24\u4e2a\u597d\u5904": 218, "\u8ba1\u7b97\u903b\u8f91\u53d8\u5f97\u66f4\u5bb9\u6613\u68c0\u67e5": 218, "\u6211\u4eec\u53ef\u4ee5\u5feb\u901f\u5c06\u53c2\u6570\u66f4\u65b0": 218, "\u8ba1\u7b97\u90e8\u5206\u8f6c\u6362\u4e3a": 218, "\u5e76\u5229\u7528": 218, "\u8fdb\u884c\u8fdb\u4e00\u6b65\u4f18\u5316": 218, "\u7b97\u5b50\u878d\u5408\u7b49": 218, "\u5206\u5e03\u5f0f\u4f18\u5316\u5668\u5e95\u5c42\u4f7f\u7528\u4e0d\u540c\u7684\u673a\u5236\u6765\u83b7\u53d6\u68af\u5ea6\u548c\u66f4\u65b0\u53c2\u6570": 218, "\u6211\u4eec\u5355\u72ec\u5b58\u50a8\u68af\u5ea6": 218, "\u800c\u4e0d\u662f\u5728\u53cd\u5411\u4f20\u64ad\u671f\u95f4\u76f4\u63a5\u586b\u5145": 218, "\u5b57\u6bb5": 218, "\u5206\u79bb\u8ba1\u7b97\u5141\u8bb8\u5206\u5e03\u5f0f\u4f18\u5316\u5668\u5728\u591a\u7ebf\u7a0b\u6a21\u5f0f\u4e0b\u8fdb\u884c\u4f18\u5316\u5668\u66f4\u65b0": 218, "\u56e0\u4e3a\u5b83\u6d88\u9664\u4e86\u5bf9": 218, "\u7684\u53ef\u80fd\u7ade\u4e89\u6761\u4ef6": 218, "qhm_updat": 218, "dp_list": 218, "momentum_buffer_list": 218, "nu": [218, 265], "weight_decay_typ": 218, "d_p": 218, "momentum_buff": 218, "\u6211\u4eec\u5c06\u5b9a\u4e49\u4e00\u4e2a\u652f\u6301": 218, "\u7684\u5206\u5e03\u5f0f\u51fd\u6570\u5f0f\u4f18\u5316\u5668\u6765\u7ba1\u7406\u4f18\u5316\u5668\u72b6\u6001": 218, "\u5e76\u8c03\u7528\u6211\u4eec\u4e0a\u9762\u5b9a\u4e49\u7684\u517c\u5bb9": 218, "\u7684\u66f4\u65b0\u51fd\u6570": 218, "\u4e0e\u666e\u901a\u81ea\u5b9a\u4e49\u4f18\u5316\u5668\u76f8\u6bd4": 218, "\u6709\u51e0\u4e2a\u7ea6\u5b9a\u4e0d\u540c": 218, "\u6211\u4eec\u4e0d\u7ee7\u627f": 218, "\u4e0d\u652f\u6301\u591a\u6001": 218, "\u63a5\u53d7\u68af\u5ea6\u5217\u8868\u800c\u4e0d\u662f\u635f\u5931\u95ed\u5305": 218, "\u5c06\u5176\u5b9a\u4e49\u4e3a": 218, "functionalqhm": 218, "\u6211\u4eec\u8fd9\u91cc\u53ea\u6709\u4e00\u4e2a\u53c2\u6570\u7ec4": 218, "\u4e0d\u5141\u8bb8\u7528\u6237\u6dfb\u52a0\u989d\u5916\u7684\u53c2\u6570\u7ec4": 218, "\u56e0\u4e3a\u8fd9\u4e0d\u662f\u5e38\u89c1\u7528\u4f8b": 218, "params_with_grad": 218, "\u4f20\u5165\u7684\u68af\u5ea6\u6570\u91cf\u4e0e\u53c2\u6570\u6570\u91cf\u4e0d\u76f8\u7b49": 218, "\u53c2\u6570\u957f\u5ea6": 218, "\u68af\u5ea6\u957f\u5ea6": 218, "preserve_format": 218, "\u8c03\u7528\u6211\u4eec\u521a\u521a\u5b9a\u4e49\u7684\u66f4\u65b0\u51fd\u6570": 218, "\u6211\u4eec\u5c06\u65b0\u5b9a\u4e49\u7684\u5206\u5e03\u5f0f\u51fd\u6570\u5f0f\u4f18\u5316\u5668\u6ce8\u518c\u5230": 218, "functional_optim_map": 218, "\u8fd9\u6837": [218, 242], "\u5c31\u4f1a\u5c1d\u8bd5\u4f7f\u7528\u6211\u4eec\u7684\u81ea\u5b9a\u4e49\u5b9e\u73b0": 218, "\u800c\u4e0d\u662f\u9884\u5b9a\u4e49\u7684\u9ed8\u8ba4\u5b9e\u73b0": 218, "\u60a8\u53ef\u4ee5\u5728\u5206\u5e03\u5f0f\u8bad\u7ec3\u4e2d\u6b63\u5e38\u4f7f\u7528": 218, "\u53ea\u9700\u5c06\u5176\u4f20\u9012\u7ed9": 218, "remote_params_list": 218, "dist_optim": 218, "\u5c06\u81ea\u52a8\u5728\u5e95\u5c42\u5c06": 218, "\u4f18\u5316\u5668\u8f6c\u6362\u4e3a": 218, "\u5e76\u542f\u7528": 218, "\u8fd9\u5c06\u89e3\u9501\u591a\u7ebf\u7a0b\u8bad\u7ec3\u5e26\u6765\u7684\u6027\u80fd\u63d0\u5347": 218, "\u5e76\u4e3a\u8fdb\u4e00\u6b65\u6539\u8fdb\u63d0\u4f9b\u66f4\u591a\u6f5c\u529b": 218, "\u878d\u5408\u7b49": 218, "\u5927\u591a\u6570": 218, "\u5185\u7f6e\u4f18\u5316\u5668\u5df2\u7ecf\u4f7f\u7528\u8fd9\u79cd\u65b9\u6cd5\u6765\u52a0\u901f\u5206\u5e03\u5f0f\u8bad\u7ec3": 218, "\u5982\u679c\u60a8\u770b\u5230\u6709\u5173\u67d0\u4e9b\u4f18\u5316\u5668\u5c1a\u672a\u8f6c\u6362\u7684\u8b66\u544a": 218, "\u60a8\u53ef\u4ee5\u6309\u7167\u672c\u6559\u7a0b\u7f16\u5199\u81ea\u5df1\u7684\u8f6c\u6362": 218, "annotatedconvbnrelumodel": [220, 225], "prepare_sav": 220, "torchscript_model": [220, 225, 226, 227, 255], "torchscript_model_optim": [220, 225, 226, 227], "model_fus": 220, "bnrelu2d": 220, "build_pytorch_mobil": [220, 224, 225], "dbuild_binari": [220, 225], "input_typ": [220, 225], "6189": 220, "575": 220, "6216": 220, "sunita": 221, "nadamp": 221, "graviton": [221, 253], "\u662f\u4e00\u7cfb\u5217\u7531aws\u8bbe\u8ba1\u7684\u57fa\u4e8earm\u7684\u5904\u7406\u5668": 221, "graviton3\u5904\u7406\u5668\u9488\u5bf9\u673a\u5668\u5b66\u4e60": 221, "\u5de5\u4f5c\u8d1f\u8f7d\u8fdb\u884c\u4e86\u4f18\u5316": 221, "\u5305\u62ec\u652f\u6301": 221, "\u53ef\u6269\u5c55\u5411\u91cf\u6269\u5c55": 221, "sve": 221, "\u4ee5\u53ca\u6bd4graviton2\u9ad8\u4e24\u500d\u7684\u5355\u6307\u4ee4\u591a\u6570\u636e": 221, "simd": 221, "\u5e26\u5bbd": 221, "pytorch\u4e3a\u673a\u5668\u5b66\u4e60\u7b97\u5b50": 221, "\u5982\u5377\u79ef": [221, 249], "\u77e9\u9635\u4e58\u6cd5": [221, 249], "relu\u7b49": 221, "\u63d0\u4f9b\u4e86\u539f\u751f\u53c2\u8003aten\u5185\u6838": 221, "\u8fd9\u4e9b\u7b97\u5b50\u53ef\u4ee5\u901a\u8fc7\u6765\u81ea\u57fa\u672c\u7ebf\u6027\u4ee3\u6570": 221, "bla": 221, "\u5e93\u7684\u7279\u5b9a\u4e8e\u5e73\u53f0\u7684\u5185\u6838\u5b9e\u73b0\u8fdb\u884c\u52a0\u901f": 221, "\u5728aw": 221, "cpu\u4e0a": 221, "mkldnn\u4e0earm": 221, "acl": 221, "\u5e93\u4e3a\u4e00\u90e8\u5206\u7b97\u5b50\u63d0\u4f9b\u4e86\u4f18\u5316\u5b9e\u73b0": 221, "\u4ecepytorch": 221, "0\u7248\u672c\u5f00\u59cb": 221, "\u8fd9\u4e24\u4e2a\u5e93\u90fd\u96c6\u6210\u5230\u4e86pytorch\u4e2d": 221, "\u6211\u4eec\u5c06\u4ecb\u7ecd\u5982\u4f55\u901a\u8fc7": 221, "\u5185\u6838\u548c\u6b63\u786e\u7684\u540e\u7aef\u9009\u62e9": 221, "graviton3": 221, "c7g\u5b9e\u4f8b": 221, "\u4e0a\u5b9e\u73b0\u7ebf\u6027\u5c42\u795e\u7ecf\u7f51\u7edc\u7684\u6700\u4f73\u63a8\u7406\u6027\u80fd": 221, "\u4f7f\u7528bfloat16\u5feb\u901f\u6570\u5b66\u5185\u6838\u52a0\u901f\u63a8\u7406": 221, "\u5bf9\u4e8e\u8f83\u5c0f\u7684\u6279\u6b21\u7ef4\u5ea6": 221, "\u4f7f\u7528openblas\u63d0\u9ad8\u63a8\u7406\u6027\u80fd": 221, "\u4f7f\u7528linux\u900f\u660e\u5927\u9875\u4f18\u5316\u5185\u5b58\u5206\u914d\u5f00\u9500": 221, "\u603b\u7ed3": 221, "\u8981\u6210\u529f\u8fd0\u884c\u672c\u6559\u7a0b\u5e76\u91cd\u73b0\u4e0b\u9762\u663e\u793a\u7684\u52a0\u901f\u6570\u5b57": 221, "\u60a8\u9700\u8981\u6765\u81eagraviton3\u7cfb\u5217": 221, "c7g": 221, "r7g": 221, "m7g": 221, "\u7684\u786c\u4ef6\u5b9e\u4f8b": 221, "4vcpu": 221, "\u5b9e\u4f8b": [221, 228, 232, 247], "pytorch\u539f\u751f\u652f\u6301aw": 221, "graviton3\u4f18\u5316": 221, "\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f\u8bf7\u53c2\u9605\u6b64": 221, "\u535a\u5ba2": 221, "\u8fd0\u884c\u4ee5\u4e0b\u547d\u4ee4\u5b89\u88c5pytorch": 221, "\u6211\u4eec\u5c06\u4ece\u5bfc\u5165\u6240\u9700\u7684\u4f9d\u8d56\u9879\u5e76\u5b9a\u4e49\u5c06\u5728\u5176\u4e0a\u8fd0\u884c\u7684\u8bbe\u5907\u5f00\u59cb": 221, "\u9274\u4e8e\u7ebf\u6027\u5c42\u662f\u8bb8\u591a\u795e\u7ecf\u7f51\u7edc": 221, "\u5305\u62ectransform": 221, "\u7684\u6838\u5fc3": 221, "\u6211\u4eec\u5728\u6b64\u6f14\u793a\u4e2d\u4f7f\u7528\u7ebf\u6027\u5c42": 221, "\u6211\u4eec\u901a\u8fc7\u5b50\u7c7b\u5316": 221, "\u4e2d\u521d\u59cb\u5316\u5c42\u6765\u5b9a\u4e49\u6211\u4eec\u7684\u795e\u7ecf\u7f51\u7edc": 221, "\u6211\u4eec\u4f7f\u7528\u5178\u578b\u7684\u5927\u578b\u8bed\u8a00\u6a21\u578b\u53c2\u6570\u6784\u5efa\u7f51\u7edc": 221, "\u4ee5\u5339\u914d\u771f\u5b9e\u4e16\u754c\u573a\u666f": 221, "myneuralnetwork": 221, "11008": 221, "\u8ba9\u6211\u4eec\u521b\u5efa\u4e00\u4e2a": [221, 240, 246], "\u5e76\u5c06\u5176\u79fb\u52a8\u5230\u8bbe\u5907\u4e0a": 221, "\u8ba9\u6211\u4eec\u901a\u8fc7\u5c06\u5b83\u4eec\u4f20\u9012\u7ed9": 221, "\u6a21\u5757\u7684\u5b9e\u4f8b\u6765\u83b7\u53d6\u9884\u6d4b\u6982\u7387": 221, "\u8f93\u51fa": 221, "\u6211\u4eec\u5df2\u9a8c\u8bc1\u4e86\u7f51\u7edc\u529f\u80fd": 221, "\u6211\u4eec\u5c06\u5206\u6790\u6027\u80fd": 221, "\u8ba9\u6211\u4eec\u68c0\u67e5\u4e24\u79cd\u4e0d\u540c\u7684\u60c5\u51b5": 221, "\u5c0f\u6279\u6b21\u7ef4\u5ea6\u548c\u5927\u6279\u6b21\u7ef4\u5ea6": 221, "\u60c5\u51b51": 221, "\u8f83\u5927\u7684\u6279\u6b21\u7ef4\u5ea6": 221, "\u4f8b\u5982256": 221, "\u9996\u5148\u8fdb\u884c\u9884\u70ed": 221, "\u5e76\u5faa\u73af\u591a\u6b21\u4ee5\u83b7\u5f97\u8db3\u591f\u7684\u6267\u884c\u65f6\u95f4": 221, "mymodel_infer": 221, "\u4f7f\u7528\u9ed8\u8ba4pytorch\u914d\u7f6e\u65f6\u7684\u5206\u6790\u5668\u8f93\u51fa\u5982\u4e0b": 221, "813": 221, "255m": 221, "177": 221, "032m": 221, "160u": 221, "162": [221, 233], "054m": 221, "540": 221, "180u": 221, "738m": 221, "201": 221, "955m": 221, "985": 221, "282m": 221, "421m": 221, "043m": 221, "810u": 221, "356m": 221, "179": 221, "388m": 221, "896": 221, "940u": 221, "graviton3\u5904\u7406\u5668\u652f\u6301": 221, "mmla\u6307\u4ee4": 221, "\u4e3aaw": 221, "graviton\u5904\u7406\u5668\u63d0\u4f9b\u4e86\u4f18\u5316\u7684": 221, "\u901a\u7528\u77e9\u9635\u4e58\u6cd5": 221, "\u5e76\u4ecepytorch": 221, "0\u7248\u672c\u5f00\u59cb\u901a\u8fc7mkldnn\u540e\u7aef\u96c6\u6210\u5230pytorch\u4e2d": 221, "\u53ef\u4ee5\u4f7f\u7528\u5feb\u901f\u6570\u5b66gemm\u5185\u6838\u4f18\u5316\u63a8\u7406\u6027\u80fd": 221, "\u9ed8\u8ba4\u60c5\u51b5\u4e0b\u4e0d\u542f\u7528\u5feb\u901f\u6570\u5b66\u6a21\u5f0f": 221, "\u56e0\u4e3a\u8fd9\u4e9b\u5185\u6838\u4ee5": 221, "\u7cbe\u5ea6\u800c\u4e0d\u662f": 221, "\u6267\u884cgemm": 221, "\u56e0\u6b64\u4f1a\u5bfc\u81f4\u6a21\u578b\u63a8\u7406\u7cbe\u5ea6\u7565\u6709\u4e0b\u964d": 221, "\u7cbe\u5ea6\u4e0b\u964d\u5728": 221, "\u6d4b\u8bd5\u5957\u4ef6\u4e2d\u4e3a": 221, "\u540e\u7aef\u5b9a\u4e49\u7684": 221, "\u4f59\u5f26\u76f8\u4f3c\u5ea6": 221, "\u9608\u503c\u8303\u56f4\u5185": 221, "\u56e0\u6b64\u5bf9\u5927\u591a\u6570\u5e94\u7528\u7a0b\u5e8f\u6765\u8bf4\u662f\u53ef\u4ee5\u63a5\u53d7\u7684": 221, "\u8981\u542f\u7528\u5feb\u901f\u6570\u5b66gemm\u5185\u6838": 221, "\u8bf7\u8bbe\u7f6e\u4ee5\u4e0b\u73af\u5883\u53d8\u91cf": 221, "dnnl_default_fpmath_mod": 221, "\u5f53\u60a8\u8fd0\u884c\u4e0a\u8ff0\u63a8\u7406\u811a\u672c\u65f6": 221, "\u5e94\u8be5\u4f1a\u770b\u5230\u542f\u7528mkldnn\u5feb\u901f\u6570\u5b66\u6a21\u5f0f\u540e\u7684\u5206\u6790\u5668\u8f93\u51fa": 221, "943": 221, "052": 221, "507m": 221, "167": 221, "653m": 221, "838": 221, "265u": 221, "107": 221, "593m": 221, "358": 221, "643u": 221, "167m": 221, "262": 221, "911m": 221, "060": 221, "533m": 221, "414m": 221, "892m": 221, "307u": 221, "281m": 221, "934m": 221, "670u": 221, "\u8fd9\u6bd4\u9ed8\u8ba4\u914d\u7f6e\u5feb\u7ea6": 221, "2\u500d": 221, "\u8ba9\u6211\u4eec\u770b\u770b\u8f83\u5c0f\u6279\u6b21\u7ef4\u5ea6\u7684\u60c5\u51b5": 221, "\u573a\u666f": 221, "\u8f83\u5c0f\u7684\u6279\u91cf\u7ef4\u5ea6": 221, "\u9884\u70ed": [221, 240], "\u9ed8\u8ba4\u914d\u7f6e\u8fd0\u884c\u4e0a\u8ff0\u811a\u672c\u65f6": 221, "\u60a8\u5e94\u8be5\u4f1a\u770b\u5230\u4ee5\u4e0b": 221, "\u81ea\u8eab": 221, "\u603b\u8ba1": 221, "094": 221, "\u4ee5\u4e0b\u662f\u542f\u7528": 221, "\u5feb\u901f\u6570\u5b66\u6a21\u5f0f\u65f6\u7684": 221, "\u5feb\u901f\u6570\u5b66\u6a21\u5f0f\u4e3a\u8f83\u5c0f\u7684\u6279\u91cf\u7ef4\u5ea6\u63d0\u4f9b\u4e86\u5927\u7ea6": 221, "47x": 221, "\u7684\u6027\u80fd\u63d0\u5347": 221, "\u5c3d\u7ba1\u6027\u80fd\u63d0\u5347\u660e\u663e": 221, "\u4f46\u6574\u4f53\u4ecd\u6709\u63d0\u5347\u7a7a\u95f4": 221, "\u56e0\u4e3a\u6765\u81ea": 221, "\u540e\u7aef\u7684\u8fd0\u884c\u65f6\u5f00\u9500": 221, "\u6743\u91cd\u91cd\u6392\u548c\u5185\u6838\u542f\u52a8\u65f6\u95f4": 221, "\u8d85\u8fc7\u4e86": 221, "\u5185\u6838\u5bf9\u8f83\u5c0f\u6279\u91cf\u8ba1\u7b97\u7684\u8ba1\u7b97\u4f18\u52bf": 221, "\u53ef\u4ee5\u901a\u8fc7\u5c06\u8f83\u5c0f\u7684\u5f62\u72b6\u4ece": 221, "\u5378\u8f7d\u5230": 221, "\u540e\u7aef\u6765\u63d0\u9ad8\u8f83\u5c0f\u6279\u91cf\u7ef4\u5ea6\u7684\u63a8\u7406\u6027\u80fd": 221, "\u6211\u4eec\u6b63\u5728\u52aa\u529b\u4e3a\u672a\u6765\u7248\u672c\u5b9e\u73b0\u81ea\u52a8\u5316\u7684\u540e\u7aef\u9009\u62e9": 221, "\u5e76\u5177\u6709\u5065\u58ee\u7684\u542f\u53d1\u5f0f\u7b97\u6cd5": 221, "\u5728\u5b9e\u73b0\u542f\u53d1\u5f0f\u7b97\u6cd5\u4e4b\u524d": 221, "\u53ef\u4ee5\u901a\u8fc7\u589e\u52a0": 221, "\u540e\u7aef\u9009\u62e9\u7684\u9608\u503c\u5c06\u8f83\u5c0f\u7684\u5f62\u72b6\u5378\u8f7d\u5230": 221, "\u5728\u4ee5\u4e0b\u793a\u4f8b\u4e2d": 221, "\u4f5c\u4e3a\u9608\u503c": 221, "\u56e0\u6b64\u6279\u91cf\u7ef4\u5ea6\u4e3a": 221, "\u7684\u8f93\u5165\u4e0d\u4f1a\u5206\u6d3e\u5230": 221, "\u76f8\u53cd": [221, 241], "\u5b83\u4f1a\u88ab\u5206\u6d3e\u5230": 221, "torch_mkldnn_matmul_min_dim": 221, "\u4ee5\u4e0b\u662f\u4f7f\u7528": 221, "\u540e\u7aef\u65f6\u7684": 221, "034": 221, "\u5982\u60a8\u6240\u89c1": [221, 236], "\u5207\u6362\u5230": 221, "\u5c06\u6027\u80fd\u63d0\u9ad8\u4e86\u4e00\u500d": 221, "\u4e0e\u9ed8\u8ba4\u7684": [221, 249], "\u540e\u7aef\u914d\u7f6e\u76f8\u6bd4": 221, "\u5bf9\u4e8e\u66f4\u5c0f\u7684\u6279\u91cf\u7ef4\u5ea6": 221, "\u4f8b\u5982\u6279\u91cf\u7ef4\u5ea6\u4e3a": 221, "\u8fd9\u4e00\u70b9\u66f4\u52a0\u663e\u8457": 221, "\u8fd9\u91cc\u6211\u4eec\u89c2\u5bdf\u5230\u901a\u8fc7\u9002\u5f53\u8c03\u6574\u540e\u7aef\u9608\u503c": 221, "\u6027\u80fd\u63d0\u9ad8\u4e863": 221, "\u6211\u4eec\u8fd8\u89c2\u5bdf\u5230": 221, "\u5bf9\u4e8e\u8fd9\u4e9b\u8f83\u5927\u7684\u7f51\u7edc": 221, "\u5f20\u91cf\u5185\u5b58\u5206\u914d\u5360\u63a8\u7406\u5ef6\u8fdf\u7684\u5f88\u5927\u4e00\u90e8\u5206": 221, "\u8fd9\u53ef\u4ee5\u901a\u8fc7\u4ecepytorch": 221, "c10\u5185\u5b58\u5206\u914d\u5668": 221, "\u542f\u7528": 221, "\u6765\u4f18\u5316": 221, "\u76ee\u524d": 221, "\u8be5\u529f\u80fd\u9ed8\u8ba4\u672a\u542f\u7528": 221, "\u56e0\u4e3a\u5b83\u4f1a\u7565\u5fae\u589e\u52a0\u5185\u5b58\u5360\u7528": 221, "\u8bbe\u7f6e\u4ee5\u4e0b\u73af\u5883\u53d8\u91cf\u4ee5\u542f\u7528\u5b83": 221, "thp_mem_alloc_en": 221, "\u5bf9\u4e8e\u6279\u91cf\u7ef4\u5ea6\u4e3a": 221, "\u4e14\u542f\u7528": 221, "\u6a21\u5f0f": [221, 223], "\u542f\u7528thp\u5185\u5b58\u5206\u914d\u540e": 221, "profiler\u7684\u8f93\u51fa\u5982\u4e0b": 221, "\u540d\u79f0": 221, "\u81ea\u8eabcpu": 221, "cpu\u603b": 221, "cpu\u5e73\u5747\u65f6\u95f4": 221, "\u8c03\u7528\u6b21\u6570": 221, "321": 221, "069m": 221, "568m": 221, "613m": 221, "06": 221, "602m": 221, "682": 221, "007u": 221, "777m": 221, "082m": 221, "329": 221, "097m": 221, "547m": 221, "325": 221, "115m": 221, "626m": 221, "\u81ea\u8eabcpu\u603b\u65f6\u95f4": 221, "\u8fd9\u6bd4\u4e0a\u9762\u6d4b\u91cf\u7684\u5df2\u4f18\u5316\u7684": 221, "\u6a21\u5f0f\u53c8\u63d0\u9ad8\u4e86": 221, "08\u500d\u62168": 221, "\u6211\u4eec\u4ecb\u7ecd\u4e86\u5728aw": 221, "graviton3\u5b9e\u4f8b\u4e0a\u7684pytorch\u63a8\u7406": 221, "\u5305\u62ec\u57fa\u672c\u7528\u6cd5": 221, "\u4f7f\u7528\u5feb\u901f\u6570\u5b66\u5185\u6838\u7684\u52a0\u901f": 221, "\u6bd4\u8f83\u4e0d\u540c\u6279\u91cf\u7ef4\u5ea6\u4e0b\u4e0d\u540c\u540e\u7aef\u7684\u6027\u80fd": 221, "\u4ee5\u53ca\u5982\u4f55\u4f7f\u7528linux\u900f\u660e\u5927\u9875\u9762\u4f18\u5316\u5f20\u91cf\u5185\u5b58\u5206\u914d\u5ef6\u8fdf": 221, "\u5bf9\u4e8e\u8f83\u5927\u7684\u5f20\u91cf\u5f62\u72b6": 221, "\u5efa\u8bae\u4f7f\u7528mkldnn\u540e\u7aef\u548cbfloat16\u5feb\u901f\u6570\u5b66\u6a21\u5f0f\u4ee5\u53cathp\u5185\u5b58\u5206\u914d": 221, "\u5bf9\u4e8e\u8f83\u5c0f\u7684\u5f20\u91cf\u5f62\u72b6": 221, "\u5efa\u8bae\u4f7f\u7528openblas\u540e\u7aef": 221, "\u5e0c\u671b\u60a8\u80fd\u5c1d\u8bd5\u4e00\u4e0b": 221, "avx512": 222, "xmx": 222, "xpu": 222, "claus": 222, "roialign": 222, "bertmodel": 222, "check_trac": 222, "cache_en": [222, 249], "memoryformat": 222, "channelslast": [222, 225], "intel_ext_pt_cpu": 222, "libpytorch_path": 222, "ldd": 222, "workspac": 222, "cmake_have_libc_pthread": 222, "0x00007f3cf98e0000": 222, "libc10": 222, "0x00007f3cf985a000": 222, "libintel": 222, "0x00007f3cf70fc000": 222, "libtorch_cpu": [222, 248], "0x00007f3ce16ac000": 222, "libdnnl_graph": 222, "0x00007f3cde954000": 222, "\u5927\u591a\u6570\u6df1\u5ea6\u5b66\u4e60\u5e94\u7528\u7a0b\u5e8f\u5728\u63a8\u7406\u65f6\u4f7f\u752832\u4f4d\u6d6e\u70b9\u7cbe\u5ea6": 223, "\u4f46\u662f\u7531\u4e8e\u663e\u8457\u7684\u6027\u80fd\u63d0\u5347": 223, "\u4f4e\u7cbe\u5ea6\u6570\u636e\u7c7b\u578b": 223, "\u5c24\u5176\u662fint8": 223, "\u6b63\u53d7\u5230\u8d8a\u6765\u8d8a\u591a\u7684\u5173\u6ce8": 223, "\u91c7\u7528\u4f4e\u7cbe\u5ea6\u65f6\u7684\u4e00\u4e2a\u4e3b\u8981\u95ee\u9898\u662f\u5982\u4f55\u8f7b\u677e\u5730\u51cf\u8f7b\u53ef\u80fd\u7684\u7cbe\u5ea6\u635f\u5931\u5e76\u8fbe\u5230\u9884\u5b9a\u7684\u7cbe\u5ea6\u8981\u6c42": 223, "compressor": [223, 253], "\u65e8\u5728\u901a\u8fc7\u6269\u5c55": 223, "\u7684\u7cbe\u5ea6\u9a71\u52a8\u81ea\u52a8\u8c03\u4f18\u7b56\u7565\u6765\u89e3\u51b3\u4e0a\u8ff0\u95ee\u9898": 223, "\u5e2e\u52a9\u7528\u6237\u5728intel\u786c\u4ef6\u4e0a\u5feb\u901f\u627e\u5230\u6700\u4f73\u91cf\u5316\u6a21\u578b": 223, "\u5305\u62ecintel": 223, "\u548cintel": 223, "compressor\u5df2\u4f5c\u4e3a\u5f00\u6e90\u9879\u76ee\u53d1\u5e03\u5728": 223, "_\u4e0a": 223, "\u6613\u7528\u7684python": 223, "\u63d0\u4f9b\u7b80\u5355\u7684\u524d\u7aefpython": 223, "api\u548c\u5b9e\u7528\u5de5\u5177": 223, "\u7528\u6237\u53ea\u9700\u66f4\u6539\u51e0\u884c\u4ee3\u7801\u5373\u53ef\u8fdb\u884c\u795e\u7ecf\u7f51\u7edc\u538b\u7f29": 223, "\u901a\u5e38\u53ea\u9700\u8981\u5728\u539f\u59cb\u4ee3\u7801\u4e2d\u6dfb\u52a05\u52306\u4e2a\u5b50\u53e5": 223, "\u652f\u6301\u5728": 223, "\u56fe\u6a21\u5f0f\u548c": 223, "\u6a21\u5f0f\u4e0b\u8fdb\u884c\u7cbe\u5ea6\u9a71\u52a8\u7684\u81ea\u52a8\u8c03\u4f18\u8fc7\u7a0b": 223, "\u5305\u62ec\u8bad\u7ec3\u540e\u9759\u6001\u91cf\u5316": 223, "\u8bad\u7ec3\u540e\u52a8\u6001\u91cf\u5316\u548c\u91cf\u5316\u611f\u77e5\u8bad\u7ec3": 223, "\u672c\u6559\u7a0b\u4e3b\u8981\u5173\u6ce8\u91cf\u5316\u90e8\u5206": 223, "\u5173\u4e8e\u5982\u4f55\u4f7f\u7528": 223, "\u8fdb\u884c\u526a\u679d\u548c\u84b8\u998f": 223, "\u8bf7\u53c2\u8003": 223, "github\u4ed3\u5e93\u4e2d\u7684\u76f8\u5e94\u6587\u6863": 223, "\u4ecepip\u5b89\u88c5\u7a33\u5b9a\u7248\u672c": 223, "\u4ecepip\u5b89\u88c5\u6bcf\u65e5\u6784\u5efa\u7248\u672c": 223, "\u4ececonda\u5b89\u88c5\u7a33\u5b9a\u7248\u672c": 223, "\u652f\u6301\u7684python\u7248\u672c\u4e3a3": 223, "8\u62163": 223, "\u7528\u6237\u53ea\u9700\u8fdb\u884c\u5c11\u91cf\u4ee3\u7801\u66f4\u6539\u5373\u53ef\u5f00\u59cb\u4f7f\u7528": 223, "\u91cf\u5316api": 223, "\u63a5\u53d7\u4e00\u4e2a": 223, "\u6a21\u578b\u548c\u4e00\u4e2a": 223, "\u914d\u7f6e\u6587\u4ef6\u4f5c\u4e3a\u8f93\u5165": 223, "\u8981\u6784\u5efa\u91cf\u5316\u8fc7\u7a0b": 223, "\u914d\u7f6e\u6587\u4ef6": 223, "\u6307\u5b9a\u4ee5\u4e0b\u8bbe\u7f6e": 223, "\u6821\u51c6\u6570\u636e\u52a0\u8f7d\u5668": 223, "\u9759\u6001\u91cf\u5316\u9700\u8981": 223, "\u8bc4\u4f30\u6570\u636e\u52a0\u8f7d\u5668": 223, "\u8bc4\u4f30\u6307\u6807": 223, "\u652f\u6301\u4e00\u4e9b\u5e38\u7528\u7684\u6570\u636e\u52a0\u8f7d\u5668\u548c\u8bc4\u4f30\u6307\u6807": 223, "\u5173\u4e8e\u5982\u4f55\u5728": 223, "\u914d\u7f6e\u6587\u4ef6\u4e2d\u914d\u7f6e\u5b83\u4eec": 223, "\u7528\u6237\u53ef\u4ee5\u53c2\u8003": 223, "\u5185\u7f6e\u6570\u636e\u96c6": 223, "\u5982\u679c\u7528\u6237\u60f3\u4f7f\u7528\u81ea\u5b9a\u4e49\u7684\u6570\u636e\u52a0\u8f7d\u5668\u6216\u8bc4\u4f30\u6307\u6807": 223, "\u652f\u6301\u901a\u8fc7": 223, "\u4ee3\u7801\u6ce8\u518c\u81ea\u5b9a\u4e49\u6570\u636e\u52a0\u8f7d\u5668": 223, "\u6307\u6807": 223, "\u5173\u4e8eyaml\u914d\u7f6e\u6587\u4ef6\u683c\u5f0f": 223, "yaml\u6a21\u677f": 223, "\u6240\u9700\u7684\u4ee3\u7801\u66f4\u6539\u5728\u4e0a\u9762\u7684\u6ce8\u91ca\u4e2d\u7a81\u51fa\u663e\u793a": 223, "\u6211\u4eec\u4f7f\u7528lenet\u6a21\u578b\u6765\u6f14\u793a\u5982\u4f55\u4f7f\u7528": 223, "lenet\u6a21\u578b\u5b9a\u4e49": 223, "fc1_drop": 223, "\u9884\u8bad\u7ec3\u6a21\u578b\u6743\u91cd": 223, "\u6765\u81ea": 223, "\u652f\u6301\u7cbe\u5ea6\u9a71\u52a8\u7684\u81ea\u52a8\u8c03\u4f18": 223, "\u4ee5\u751f\u6210\u6ee1\u8db3\u9884\u5b9a\u7cbe\u5ea6\u76ee\u6807\u7684\u6700\u4f73": 223, "\u4ee5\u4e0b\u662f\u901a\u8fc7\u81ea\u52a8\u8c03\u4f18\u5728pytorch": 223, "fx\u56fe\u6a21\u5f0f": 223, "\u4e0a\u91cf\u5316\u7b80\u5355\u7f51\u7edc\u7684\u793a\u4f8b": 223, "pytorch_fx": 223, "accuracy_criterion": 223, "compressor\u542f\u52a8\u4ee3\u7801": 223, "neural_compressor": 223, "calib_dataload": 223, "q_model": 223, "\u6307\u5b9a\u4e86": 223, "\u7684\u5185\u7f6e\u6307\u6807": 223, "\u4f5c\u4e3a\u8bc4\u4f30\u65b9\u6cd5": 223, "\u7684\u76f8\u5bf9\u7cbe\u5ea6\u635f\u5931\u8bbe\u7f6e\u4e3a\u81ea\u52a8\u8c03\u4f18\u7684\u7cbe\u5ea6\u76ee\u6807": 223, "\u5c06\u904d\u5386\u6bcf\u4e2a\u64cd\u4f5c\u7ea7\u522b\u4e0a\u6240\u6709\u53ef\u80fd\u7684\u91cf\u5316\u914d\u7f6e\u7ec4\u5408": 223, "\u4ee5\u627e\u51fa\u8fbe\u5230\u9884\u5b9a\u7cbe\u5ea6\u76ee\u6807\u7684\u6700\u4f73": 223, "\u9664\u4e86\u8fd9\u4e9b\u5185\u7f6e\u6307\u6807\u5916": 223, "\u8fd8\u652f\u6301\u901a\u8fc7": 223, "\u4ee3\u7801\u81ea\u5b9a\u4e49\u6307\u6807": 223, "\u5b9a\u4e49\u81ea\u5b9a\u4e49\u6307\u6807": 223, "top1metr": 223, "\u5b9e\u73b0\u4e86\u4e00\u4e2a\u5305\u542b": 223, "\u51fd\u6570\u7684": [223, 242], "\u7528\u4e8e\u8bb0\u5f55\u6bcf\u4e2a\u5c0f\u6279\u91cf\u7684\u7ed3\u679c\u5e76\u5728\u6700\u540e\u8ba1\u7b97\u6700\u7ec8\u7cbe\u5ea6": 223, "\u9664\u4e86\u8bad\u7ec3\u540e\u9759\u6001\u91cf\u5316\u548c\u8bad\u7ec3\u540e\u52a8\u6001\u91cf\u5316\u5916": 223, "\u8fd8\u652f\u6301\u5177\u6709\u7cbe\u5ea6\u9a71\u52a8\u81ea\u52a8\u8c03\u4f18\u673a\u5236\u7684\u91cf\u5316\u611f\u77e5\u8bad\u7ec3": 223, "\u4ee5\u4e0b\u662f\u5728pytorch": 223, "\u4e0a\u5bf9\u7b80\u5355\u7f51\u7edc\u8fdb\u884c\u91cf\u5316\u611f\u77e5\u8bad\u7ec3\u7684\u793a\u4f8b": 223, "quant_aware_train": 223, "training_func": 223, "\u8bad\u7ec3\u8f6e\u6b21": 223, "t\u635f\u5931": 223, "\u542f\u52a8\u4ee3\u7801": 223, "q_func": 223, "\u652f\u6301\u4f7f\u7528\u865a\u62df\u6570\u636e\u96c6\u76f4\u63a5\u751f\u6210": 223, "\u7528\u4e8e\u6027\u80fd\u57fa\u51c6\u6d4b\u8bd5\u76ee\u7684": 223, "\u4ee5\u4e0b\u662f\u4f7f\u7528\u865a\u62df\u6570\u636e\u96c6\u5728pytorch": 223, "dummy_dataset": 223, "dummydataset": 223, "\u7528\u6237\u53ef\u4ee5\u4ece": 223, "\u6253\u5370\u7684\u65e5\u5fd7\u4e2d\u4e86\u89e3\u6709\u591a\u5c11\u64cd\u4f5c\u88ab\u91cf\u5316": 223, "linearrelu": 223, "\u91cf\u5316\u6a21\u578b\u5c06\u5728": 223, "\u76ee\u5f55\u4e0b\u751f\u6210": 223, "\u5176\u4e2d\u5305\u542b\u4e24\u4e2a\u6587\u4ef6": 223, "best_configur": 223, "best_model_weight": 223, "\u7b2c\u4e00\u4e2a\u6587\u4ef6\u5305\u542b\u6bcf\u4e2a\u64cd\u4f5c\u7684\u91cf\u5316\u914d\u7f6e": 223, "\u7b2c\u4e8c\u4e2a\u6587\u4ef6\u5305\u542b": 223, "\u6743\u91cd\u4ee5\u53ca\u6fc0\u6d3b\u7684\u96f6\u70b9\u548c\u6bd4\u4f8b\u4fe1\u606f": 223, "\u7528\u6237\u53ef\u4ee5\u4f7f\u7528\u4ee5\u4e0b\u4ee3\u7801\u52a0\u8f7d\u91cf\u5316\u6a21\u578b": 223, "\u7136\u540e\u8fdb\u884c\u63a8\u7406\u6216\u6027\u80fd\u57fa\u51c6\u6d4b\u8bd5": 223, "int8_model": 223, "\u8bf7\u8bbf\u95ee": 223, "\u4ed3\u5e93": 223, "\u83b7\u53d6\u66f4\u591a\u6559\u7a0b": 223, "martin": 224, "pytorchstreamread": 224, "regener": 224, "model_psth": 224, "_load_for_lite_interpret": [224, 225], "optimized_scripted_modul": 224, "pytorch_android_lit": 224, "litemoduleload": 224, "getapplicationcontext": 224, "prebuilt": 224, "use_framework": 224, "libtorch_lit": 224, "nullabl": 224, "instancetyp": 224, "initwithfileatpath": 224, "nsstring": 224, "_load_for_mobil": [224, 225], "utf8str": 224, "nslog": 224, "architechtur": 224, "pend": 225, "dsp": 225, "calibration_data": 225, "588kb": 225, "nio": 225, "suboptim": 225, "analysisresult": 225, "analyzeimag": 225, "imageproxi": 225, "rotationdegre": 225, "modulefileabsolutefilepath": 225, "minputtensorbuff": 225, "minputtensor": 225, "imageyuv420centercroptofloatbuff": 225, "getimag": 225, "flatbuff": 225, "_use_flatbuff": 225, "jit_model": 225, "ff": 225, "5387594579999999": 225, "038842832999999466": 225, "nake": 225, "rf": 225, "speedbenchark_torch": 225, "speedbenchmark": 225, "121318": 225, "24281": 225, "trace_model": 225, "rubi": 225, "iphonex": 225, "2121": 225, "722447": 225, "762": 225, "mobilenetv2_quant": [226, 227], "hackathon": [226, 227], "xcworkspac": 227, "your_project_nam": 227, "\u7684\u8bf4\u660e\u53ef\u5728": 228, "\u4e0a\u627e\u5230": [228, 259], "\u662f\u4e00\u6b3e\u7528\u4e8e\u4e32\u884c\u548c\u591a\u7ebf\u7a0b\u5e94\u7528\u7a0b\u5e8f\u7684\u6027\u80fd\u5206\u6790\u5de5\u5177": 228, "\u5bf9\u4e8e\u719f\u6089": 228, "\u67b6\u6784\u7684\u4eba\u6765\u8bf4": 228, "\u63d0\u4f9b\u4e86\u4e30\u5bcc\u7684\u6307\u6807\u96c6": 228, "\u5e2e\u52a9\u7528\u6237\u4e86\u89e3\u5e94\u7528\u7a0b\u5e8f\u5728": 228, "\u5e73\u53f0\u4e0a\u7684\u6267\u884c\u60c5\u51b5": 228, "\u4ece\u800c\u4e86\u89e3\u6027\u80fd\u74f6\u9888\u6240\u5728": 228, "\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f": 228, "\u5305\u62ec\u5165\u95e8\u6307\u5357": 228, "\u7f51\u7ad9": 228, "\u63d0\u4f9b": 228, "\u4f7f\u76ee\u6807\u5e94\u7528\u7a0b\u5e8f\u80fd\u591f\u5728\u6267\u884c\u671f\u95f4\u751f\u6210\u548c\u63a7\u5236\u8ddf\u8e2a\u6570\u636e\u7684\u6536\u96c6": 228, "\u529f\u80fd\u7684\u4f18\u52bf\u5728\u4e8e\u80fd\u591f\u5728": 228, "\u4e0a\u6807\u8bb0\u5355\u4e2a": 228, "\u7b97\u5b50\u548c\u81ea\u5b9a\u4e49\u533a\u57df\u7684\u65f6\u95f4\u8de8\u5ea6": 228, "\u5f53\u7528\u6237\u53d1\u73b0\u4efb\u4f55\u5f02\u5e38\u65f6": 228, "\u8fd9\u5c06\u975e\u5e38\u6709\u52a9\u4e8e\u5b9a\u4f4d\u54ea\u4e2a\u7b97\u5b50\u8868\u73b0\u5f02\u5e38": 228, "\u5df2\u5728": 228, "\u4e2d\u96c6\u6210": 228, "\u7528\u6237\u65e0\u9700\u8c03\u7528\u539f\u59cb\u7684": 228, "\u53ea\u9700\u8c03\u7528": 228, "\u5373\u53ef": 228, "\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f\u53ef\u5728": 228, "\u4e2d\u627e\u5230": 228, "\u63d0\u4f9b\u4e86\u4e24\u79cd\u4f7f\u7528\u65b9\u5f0f": 228, "\u9690\u5f0f\u8c03\u7528": 228, "\u6240\u6709\u901a\u8fc7": 228, "\u7b97\u5b50\u6ce8\u518c\u673a\u5236\u6ce8\u518c\u7684\u7b97\u5b50\u5728\u542f\u7528": 228, "\u529f\u80fd\u65f6\u90fd\u4f1a\u81ea\u52a8\u6807\u8bb0": 228, "\u663e\u5f0f\u8c03\u7528": 228, "\u5982\u679c\u9700\u8981\u81ea\u5b9a\u4e49\u6807\u8bb0": 228, "\u7528\u6237\u53ef\u4ee5\u5728": 228, "\u4e2d\u4f7f\u7528\u663e\u5f0f": 228, "\u5bf9\u6240\u9700\u8303\u56f4\u8fdb\u884c\u6807\u8bb0": 228, "\u8981\u542f\u7528\u663e\u5f0f\u8c03\u7528": 228, "\u9700\u8981\u5728": 228, "\u4f5c\u7528\u57df\u4e0b\u8c03\u7528\u9884\u671f\u6807\u8bb0\u7684\u4ee3\u7801": 228, "\u8981\u9a8c\u8bc1\u529f\u80fd": 228, "\u60a8\u9700\u8981\u542f\u52a8\u4e00\u4e2a": 228, "\u7684\u6b65\u9aa4\u8bf7\u67e5\u770b": 228, "\u7528\u6237\u6307\u5357": 228, "\u4e00\u65e6\u542f\u52a8\u4e86": 228, "\u60a8\u5e94\u8be5\u4f1a\u770b\u5230\u5982\u4e0b\u7528\u6237\u754c\u9762": 228, "\u5de6\u4fa7\u5bfc\u822a\u680f\u4e0b\u7684": 228, "\u9879\u76ee\u4e2d\u6709\u4e09\u4e2a\u793a\u4f8b\u7ed3\u679c": 228, "\u5982\u679c\u60a8\u4e0d\u5e0c\u671b\u5206\u6790\u7ed3\u679c\u51fa\u73b0\u5728\u6b64\u9ed8\u8ba4\u793a\u4f8b\u9879\u76ee\u4e2d": 228, "\u53ef\u4ee5\u901a\u8fc7\u84dd\u8272": 228, "\u6309\u94ae\u4e0b\u7684": 228, "\u6309\u94ae\u521b\u5efa\u4e00\u4e2a\u65b0\u9879\u76ee": 228, "\u8981\u542f\u52a8\u65b0\u7684\u5206\u6790": 228, "\u8bf7\u5355\u51fb\u84dd\u8272\u7684": 228, "\u6309\u94ae\u4ee5\u5f00\u59cb\u914d\u7f6e\u5206\u6790": 228, "\u5355\u51fb": 228, "\u6309\u94ae\u540e": 228, "\u60a8\u5e94\u8be5\u4f1a\u770b\u5230\u5982\u4e0b\u754c\u9762": 228, "\u7a97\u53e3\u7684\u53f3\u4fa7\u5206\u4e3a\u4e09\u90e8\u5206": 228, "\u5de6\u4e0a\u89d2": 228, "\u5de6\u4e0b\u89d2": 228, "\u53f3\u4fa7": 228, "\u60a8\u53ef\u4ee5\u6307\u5b9a\u8981\u5728\u54ea\u53f0\u673a\u5668\u4e0a\u8fd0\u884c\u5206\u6790": 228, "\u60a8\u53ef\u4ee5\u8bbe\u7f6e\u8981\u5206\u6790\u7684\u5e94\u7528\u7a0b\u5e8f\u7684\u8def\u5f84": 228, "\u8981\u5206\u6790": 228, "\u811a\u672c": [228, 232, 258], "\u5efa\u8bae\u5c06\u6240\u6709\u624b\u52a8\u6b65\u9aa4": 228, "\u5305\u62ec\u6fc0\u6d3b": 228, "\u73af\u5883\u548c\u8bbe\u7f6e\u6240\u9700\u73af\u5883\u53d8\u91cf": 228, "\u5c01\u88c5\u5230\u4e00\u4e2a": 228, "\u811a\u672c\u4e2d": 228, "\u7136\u540e\u5bf9\u8be5": 228, "\u811a\u672c\u8fdb\u884c\u5206\u6790": 228, "\u5728\u4e0a\u9762\u7684\u622a\u56fe\u4e2d": 228, "\u6211\u4eec\u5c06\u6240\u6709\u6b65\u9aa4\u5c01\u88c5\u5230": 228, "\u7684\u53c2\u6570\u8bbe\u7f6e\u4e3a": 228, "path_of_launch": 228, "\u7684\u8def\u5f84": 228, "\u5728\u53f3\u4fa7\u7684": 228, "\u60a8\u53ef\u4ee5\u9009\u62e9\u8981\u5206\u6790\u7684\u7c7b\u578b": 228, "\u63d0\u4f9b\u4e86\u591a\u79cd\u53ef\u9009\u7684\u5206\u6790\u7c7b\u578b": 228, "\u6210\u529f\u8fdb\u884c\u4e86\u5e26\u6709": 228, "\u7684\u5206\u6790\u540e": 228, "\u60a8\u53ef\u4ee5\u6253\u5f00\u5206\u6790\u7ed3\u679c\u7684": 228, "\u9009\u9879\u5361": 228, "\u65f6\u95f4\u7ebf\u4e0a\u67e5\u770b\u6807\u8bb0": 228, "\u65f6\u95f4\u7ebf\u663e\u793a\u4e86\u9876\u90e8\u7684\u4e3b\u7ebf\u7a0b\u4f5c\u4e3a": 228, "\u7ebf\u7a0b": 228, "\u4e0b\u9762\u662f\u5404\u4e2a": 228, "\u6807\u8bb0\u7684": 228, "\u7b97\u5b50\u548c\u81ea\u5b9a\u4e49\u533a\u57df\u663e\u793a\u5728\u4e3b\u7ebf\u7a0b\u884c\u4e2d": 228, "\u6240\u6709\u4ee5": 228, "\u5f00\u5934\u7684\u7b97\u5b50\u90fd\u662f\u7531": 228, "\u529f\u80fd\u9690\u5f0f\u6807\u8bb0\u7684": 228, "iteration_n": 228, "\u662f\u4f7f\u7528\u7279\u5b9a\u7684": 228, "\u4f5c\u7528\u57df\u663e\u5f0f\u6807\u8bb0\u7684": 228, "\u8bf7\u67e5\u770b\u4e0b\u4e00\u8282\u4e2d\u7684\u793a\u4f8b\u4ee3\u7801\u4ee5\u4e86\u89e3\u8be6\u60c5": 228, "\u65f6\u95f4\u7ebf\u4e2d\u6807\u8bb0\u4e3a": 228, "\u7684\u7ea2\u8272\u6846\u662f\u7531": 228, "\u5982\u53f3\u4fa7\u5bfc\u822a\u680f\u6240\u793a": 228, "\u65f6\u95f4\u7ebf\u884c\u4e2d\u7684\u68d5\u8272\u90e8\u5206\u663e\u793a\u4e86\u5404\u4e2a\u7ebf\u7a0b\u7684": 228, "\u4f7f\u7528\u60c5\u51b5": 228, "\u5728\u67d0\u4e2a\u65f6\u95f4\u70b9": 228, "\u68d5\u8272\u90e8\u5206\u5728\u7ebf\u7a0b\u884c\u4e2d\u6240\u5360\u7684\u9ad8\u5ea6\u767e\u5206\u6bd4\u4e0e\u8be5\u7ebf\u7a0b\u5728\u8be5\u65f6\u95f4\u70b9\u7684": 228, "\u4f7f\u7528\u7387\u76f8\u5bf9\u5e94": 228, "\u4ece\u8fd9\u4e2a\u65f6\u95f4\u7ebf\u53ef\u4ee5\u76f4\u89c2\u5730\u4e86\u89e3\u4ee5\u4e0b\u51e0\u70b9": 228, "\u6bcf\u4e2a\u7ebf\u7a0b\u7684": 228, "\u6838\u5fc3\u5229\u7528\u7387\u5982\u4f55": 228, "\u6240\u6709\u7ebf\u7a0b\u7684": 228, "\u6838\u5fc3\u5229\u7528\u7387\u662f\u5426\u5e73\u8861": 228, "\u4f7f\u7528\u60c5\u51b5\u662f\u5426\u826f\u597d": 228, "\u7ebf\u7a0b\u662f\u5426\u540c\u6b65\u826f\u597d": 228, "\u7ebf\u7a0b\u6216": 228, "\u7ebf\u7a0b\u5b8c\u6210\u65f6\u662f\u5426\u5b58\u5728\u6296\u52a8": 228, "\u8fd8\u63d0\u4f9b\u4e86\u66f4\u591a\u4e30\u5bcc\u7684\u5206\u6790\u529f\u80fd": 228, "\u5e2e\u52a9\u60a8\u4e86\u89e3\u6027\u80fd\u95ee\u9898\u7684\u6839\u6e90": 228, "\u4e00\u65e6\u60a8\u4e86\u89e3\u4e86\u6027\u80fd\u95ee\u9898\u7684\u6839\u6e90": 228, "\u5c31\u53ef\u4ee5\u52a0\u4ee5\u4fee\u590d": 228, "\u66f4\u591a\u8be6\u7ec6\u7684\u4f7f\u7528\u8bf4\u660e\u53ef\u5728": 228, "\u4e0b\u9762\u7684\u793a\u4f8b\u4ee3\u7801\u5c31\u662f\u5728\u4e0a\u9762\u7684\u622a\u56fe\u4e2d\u7528\u4e8e\u5206\u6790\u7684\u811a\u672c": 228, "\u8be5\u62d3\u6251\u7531\u4e24\u4e2a\u7b97\u5b50": 228, "\u8fdb\u884c\u4e86\u4e09\u6b21\u63a8\u7406\u8fed\u4ee3": 228, "\u6bcf\u6b21\u8fed\u4ee3\u90fd\u4f7f\u7528": 228, "\u6807\u8bb0\u4e3a\u6587\u672c\u5b57\u7b26\u4e32": 228, "\u65e0\u8bba\u662f\u4f7f\u7528": 228, "\u7684\u914d\u5bf9": 228, "\u8fd8\u662f\u4f7f\u7528": 228, "\u4f5c\u7528\u57df": 228, "\u90fd\u53ef\u4ee5\u5b9e\u73b0\u81ea\u5b9a\u4e49\u6807\u8bb0\u529f\u80fd": 228, "ittsampl": 228, "292820": 228, "\u914d\u5bf9\u6807\u8bb0\u533a\u57df": 228, "iteration_": 228, "\u4f5c\u7528\u57df\u6807\u8bb0\u533a\u57df": 228, "\u4e0b\u9762\u662f\u5728": 228, "\u622a\u56fe\u4e2d\u63d0\u5230\u7684": 228, "\u7528\u4e8e\u5c01\u88c5\u6240\u6709\u624b\u52a8\u6b65\u9aa4": 228, "\u83b7\u53d6\u5305\u542b": 228, "\u7684\u76ee\u5f55\u8def\u5f84": 228, "\u4ee5\u4fbf\u4ece\u4efb\u4f55\u76ee\u5f55\u8c03\u7528\u6b64": 228, "basefold": 228, "bash_sourc": 228, "torchscipt": 229, "ota": 230, "incept": 230, "print_model_s": 230, "mdl": 230, "till": 230, "model_dynamic_quant": 230, "model_static_quant": 230, "98mb": 230, "tra": 230, "model_qat": 230, "\u53ef\u4ee5\u5e2e\u52a9\u60a8\u4e86\u89e3\u6570\u636e\u7279\u5f81\u5982\u4f55\u5f71\u54cd\u6a21\u578b\u7684\u9884\u6d4b\u6216\u795e\u7ecf\u5143\u6fc0\u6d3b": 231, "\u4ece\u800c\u63ed\u793a\u6a21\u578b\u7684\u5de5\u4f5c\u539f\u7406": 231, "\u60a8\u53ef\u4ee5\u7edf\u4e00\u5730\u5e94\u7528\u5e7f\u6cdb\u7684\u6700\u5148\u8fdb\u7684\u7279\u5f81\u5f52\u56e0\u7b97\u6cd5": 231, "gradcam": 231, "\u60a8\u5c06\u5b66\u4e60\u5982\u4f55\u4f7f\u7528": 231, "\u5c06\u56fe\u50cf\u5206\u7c7b\u5668\u7684\u9884\u6d4b\u5f52\u56e0\u4e8e\u76f8\u5e94\u7684\u56fe\u50cf\u7279\u5f81": [231, 253], "\u53ef\u89c6\u5316\u5f52\u56e0\u7ed3\u679c": 231, "\u786e\u4fdd\u5728\u60a8\u7684\u6d3b\u8dc3": 231, "\u73af\u5883\u4e2d\u5b89\u88c5\u4e86": 231, "\u4e0a\u83b7\u53d6": 231, "\u4e5f\u53ef\u4ee5\u4f5c\u4e3a": 231, "\u5305\u6216": 231, "\u5305\u83b7\u53d6": 231, "\u6709\u5173\u8be6\u7ec6\u8bf4\u660e": 231, "\u8bf7\u67e5\u9605\u5b89\u88c5\u6307\u5357": 231, "\u5bf9\u4e8e\u6a21\u578b": 231, "\u4e2d\u7684\u5185\u7f6e\u56fe\u50cf\u5206\u7c7b\u5668": 231, "\u53ef\u4ee5\u63ed\u793a\u6837\u672c\u56fe\u50cf\u7684\u54ea\u4e9b\u90e8\u5206\u652f\u6301\u4e86\u6a21\u578b\u505a\u51fa\u7684\u67d0\u4e9b\u9884\u6d4b": 231, "freepik": 231, "puppi": 231, "dog_58409": 231, "6024": 231, "center_crop": 231, "\u5c06\u56fe\u50cf\u8f6c\u6362\u4e3a\u503c\u5728": 231, "\u4e4b\u95f4\u7684\u5f20\u91cf": 231, "\u5f52\u4e00\u5316\u4ee5\u9075\u5faa": 231, "\u5747\u503c\u7684": 231, "\u50cf\u7d20": 231, "\u5728\u6a21\u578b\u7684\u524d": 231, "\u4e2a\u9884\u6d4b\u4e2d": 231, "\u7c7b\u522b": 231, "283": 231, "\u5206\u522b\u5bf9\u5e94\u4e8e\u72d7\u548c\u732b": 231, "\u8ba9\u6211\u4eec\u4f7f\u7528": [231, 233, 248], "\u7b97\u6cd5\u5c06\u8fd9\u4e9b\u9884\u6d4b\u5f52\u56e0\u4e8e\u8f93\u5165\u7684\u76f8\u5e94\u90e8\u5206": 231, "\u6b65\u957f\u8d8a\u5c0f": 231, "\u5f52\u56e0\u8d8a\u7ec6\u7c92\u5ea6": 231, "\u4f46\u901f\u5ea6\u8d8a\u6162": 231, "\u4e2d\u7684\u62c9\u5e03\u62c9\u591a\u7d22\u5f15": 231, "\u9009\u62e9\u8db3\u4ee5\u6539\u53d8\u5bf9\u8c61\u5916\u89c2\u7684\u5927\u5c0f": 231, "\u7528\u4e8e\u906e\u6321\u56fe\u50cf\u7684\u503c": 231, "\u5bf9\u5e94\u7070\u8272": 231, "attribution_dog": 231, "\u4e2d\u7684\u6ce2\u65af\u732b\u7d22\u5f15": 231, "attribution_cat": 231, "\u8fd8\u63d0\u4f9b\u4e86\u8bb8\u591a\u7b97\u6cd5": 231, "guidedbackprop": 231, "deeplift": 231, "gradientshap": 231, "\u6240\u6709\u8fd9\u4e9b\u7b97\u6cd5\u90fd\u662f": 231, "\u5728\u521d\u59cb\u5316\u65f6\u9700\u8981\u5c06\u60a8\u7684\u6a21\u578b\u4f5c\u4e3a\u53ef\u8c03\u7528\u7684": 231, "forward_func": 231, "\u4f20\u5165": 231, "\u5e76\u5177\u6709": 231, "\u8be5\u65b9\u6cd5\u4ee5\u7edf\u4e00\u7684\u683c\u5f0f\u8fd4\u56de\u5f52\u56e0\u7ed3\u679c": 231, "\u8ba9\u6211\u4eec\u53ef\u89c6\u5316\u8ba1\u7b97\u51fa\u7684\u56fe\u50cf\u5f52\u56e0\u7ed3\u679c": 231, "\u5b9e\u7528\u7a0b\u5e8f\u63d0\u4f9b\u4e86\u5f00\u7bb1\u5373\u7528\u7684\u65b9\u6cd5": 231, "\u7528\u4e8e\u53ef\u89c6\u5316\u56fe\u50cf\u548c\u6587\u672c\u8f93\u5165\u7684\u5f52\u56e0\u7ed3\u679c": 231, "\u5c06\u8ba1\u7b97\u51fa\u7684\u5f52\u56e0\u5f20\u91cf\u8f6c\u6362\u4e3a\u7c7b\u4f3c\u56fe\u50cf\u7684": 231, "vis_typ": 231, "vis_sign": 231, "\u4ee5\u663e\u793a\u4e24\u8005": 231, "\u6b63\u5f52\u56e0\u8868\u793a\u8be5\u533a\u57df\u7684\u5b58\u5728\u4f1a\u589e\u52a0\u9884\u6d4b\u5206\u6570": 231, "\u8d1f\u5f52\u56e0\u8868\u793a\u8be5\u533a\u57df\u7684\u7f3a\u5931\u4f1a\u589e\u52a0\u9884\u6d4b\u5206\u6570": 231, "\u6b63": 231, "\u8d1f\u5f52\u56e0\u6216\u5168\u90e8": 231, "\u5982\u679c\u60a8\u7684\u6570\u636e\u662f\u6587\u672c": 231, "visualize_text": 231, "\u63d0\u4f9b\u4e86\u4e00\u4e2a\u4e13\u7528\u89c6\u56fe": 231, "\u7528\u4e8e\u63a2\u7d22\u8f93\u5165\u6587\u672c\u7684\u5f52\u56e0": 231, "\u66f4\u591a\u4fe1\u606f\u8bf7\u8bbf\u95ee": 231, "imdb_torchtext_interpret": 231, "\u53ef\u4ee5\u5904\u7406": 231, "\u4e2d\u5305\u62ec\u89c6\u89c9": 231, "\u6587\u672c\u7b49\u5404\u79cd\u6a21\u6001\u7684\u5927\u591a\u6570\u6a21\u578b\u7c7b\u578b": 231, "\u60a8\u53ef\u4ee5": [231, 260], "\u5c06\u7279\u5b9a\u8f93\u51fa\u5f52\u56e0\u4e8e\u6a21\u578b\u8f93\u5165": 231, "\u5c06\u7279\u5b9a\u8f93\u51fa\u5f52\u56e0\u4e8e\u9690\u85cf\u5c42\u795e\u7ecf\u5143": 231, "\u53c2\u89c1": [231, 257], "\u53c2\u8003": [231, 257, 259], "\u5c06\u9690\u85cf\u5c42\u795e\u7ecf\u5143\u54cd\u5e94\u5f52\u56e0\u4e8e\u6a21\u578b\u8f93\u5165": 231, "\u6709\u5173\u652f\u6301\u65b9\u6cd5\u7684\u5b8c\u6574": 231, "\u548c\u6559\u7a0b\u5217\u8868": 231, "\u8bf7\u67e5\u9605\u6211\u4eec\u7684\u7f51\u7ad9": 231, "gilbert": 231, "tanner": 231, "\u7684\u53e6\u4e00\u7bc7\u6709\u7528\u6587\u7ae0": 231, "gilberttann": 231, "captum_recip": [231, 237], "carilli": 232, "\u63d0\u4f9b\u4e86\u6df7\u5408\u7cbe\u5ea6\u7684\u4fbf\u5229\u65b9\u6cd5": 232, "\u5176\u4e2d\u4e00\u4e9b\u64cd\u4f5c\u4f7f\u7528": 232, "\u800c\u53e6\u4e00\u4e9b\u64cd\u4f5c\u4f7f\u7528": 232, "\u4e00\u4e9b\u64cd\u4f5c": 232, "\u5982\u7ebf\u6027\u5c42\u548c\u5377\u79ef": 232, "\u4e0b\u8fd0\u884c\u901f\u5ea6\u66f4\u5feb": 232, "\u800c\u5176\u4ed6\u64cd\u4f5c": 232, "\u5982\u5f52\u7ea6\u64cd\u4f5c": 232, "\u901a\u5e38\u9700\u8981": 232, "\u7684\u52a8\u6001\u8303\u56f4": 232, "\u6df7\u5408\u7cbe\u5ea6\u8bd5\u56fe\u5c06\u6bcf\u4e2a\u64cd\u4f5c\u4e0e\u5176\u5408\u9002\u7684\u6570\u636e\u7c7b\u578b\u76f8\u5339\u914d": 232, "\u4ece\u800c\u51cf\u5c11\u7f51\u7edc\u7684\u8fd0\u884c\u65f6\u95f4\u548c\u5185\u5b58\u5360\u7528": 232, "\u901a\u5e38": [232, 249, 254, 261], "\u81ea\u52a8\u6df7\u5408\u7cbe\u5ea6\u8bad\u7ec3": 232, "\u540c\u65f6\u4f7f\u7528": 232, "\u672c\u6559\u7a0b\u6d4b\u91cf\u4e86\u4e00\u4e2a\u7b80\u5355\u7f51\u7edc\u5728\u9ed8\u8ba4\u7cbe\u5ea6\u4e0b\u7684\u6027\u80fd": 232, "\u7136\u540e\u901a\u8fc7\u6dfb\u52a0": 232, "\u4ee5\u6df7\u5408\u7cbe\u5ea6\u8fd0\u884c\u76f8\u540c\u7684\u7f51\u7edc": 232, "\u63d0\u9ad8\u6027\u80fd": 232, "\u60a8\u53ef\u4ee5\u4e0b\u8f7d\u5e76\u8fd0\u884c\u672c\u6559\u7a0b\u4f5c\u4e3a\u72ec\u7acb\u7684": 232, "\u552f\u4e00\u7684\u8981\u6c42\u662f": 232, "\u4ee5\u53ca\u652f\u6301": 232, "\u6df7\u5408\u7cbe\u5ea6\u4e3b\u8981\u53d7\u76ca\u4e8e\u652f\u6301\u5f20\u91cf\u6838\u5fc3\u7684\u67b6\u6784": 232, "ture": 232, "\u5728\u8fd9\u4e9b\u67b6\u6784\u4e0a": 232, "\u672c\u6559\u7a0b\u5e94\u663e\u793a\u663e\u8457\u7684": 232, "3\u500d": 232, "\u52a0\u901f": 232, "\u5728\u8f83\u65e9\u7684\u67b6\u6784": 232, "kepler": 232, "maxwel": 232, "pascal": 232, "\u60a8\u53ef\u80fd\u4f1a\u89c2\u5bdf\u5230\u9002\u5ea6\u7684\u52a0\u901f": 232, "\u53ef\u4ee5\u663e\u793a\u60a8\u7684": 232, "\u67b6\u6784": 232, "gc": 232, "\u8ba1\u65f6\u5de5\u5177": 232, "empty_cach": 232, "reset_max_memory_alloc": 232, "end_timer_and_print": 232, "local_msg": 232, "\u4ee5\u4e0b\u7ebf\u6027\u5c42\u548c": 232, "\u7684\u5e8f\u5217\u5e94\u8be5\u5728\u6df7\u5408\u7cbe\u5ea6\u4e0b\u663e\u793a\u52a0\u901f": 232, "make_model": 232, "in_siz": 232, "out_siz": 232, "\u88ab\u9009\u62e9\u4e3a\u8db3\u591f\u5927\u7684\u503c": 232, "\u4ee5\u9971\u548c": 232, "\u5f53": [232, 246], "\u9971\u548c\u65f6": 232, "\u6df7\u5408\u7cbe\u5ea6\u63d0\u4f9b\u7684\u52a0\u901f\u6700\u5927": 232, "\u5c0f\u578b\u7f51\u7edc\u53ef\u80fd\u53d7": 232, "\u9650\u5236": 232, "\u6df7\u5408\u7cbe\u5ea6\u4e0d\u4f1a\u63d0\u9ad8\u6027\u80fd": 232, "\u8fd9\u4e9b\u5927\u5c0f\u8fd8\u88ab\u9009\u62e9\u4e3a\u7ebf\u6027\u5c42\u7684\u53c2\u4e0e\u7ef4\u5ea6\u662f": 232, "\u7684\u500d\u6570": [232, 249], "\u4ee5\u5141\u8bb8\u5728\u652f\u6301\u5f20\u91cf\u6838\u5fc3\u7684": 232, "\u4e0a\u4f7f\u7528\u5f20\u91cf\u6838\u5fc3": 232, "\u89c1\u4e0b\u9762\u7684": [232, 240], "\u7ec3\u4e60": 232, "\u6539\u53d8\u53c2\u4e0e\u5927\u5c0f": 232, "\u89c2\u5bdf\u6df7\u5408\u7cbe\u5ea6\u52a0\u901f\u7684\u53d8\u5316": 232, "\u5c1d\u8bd5": 232, "513": 232, "\u4ee5\u9ed8\u8ba4\u7cbe\u5ea6\u521b\u5efa\u6570\u636e": 232, "\u4e0b\u9762\u7684\u9ed8\u8ba4\u7cbe\u5ea6\u548c\u6df7\u5408\u7cbe\u5ea6\u8bd5\u9a8c\u4f7f\u7528\u76f8\u540c\u7684\u6570\u636e": 232, "\u542f\u7528\u6df7\u5408\u7cbe\u5ea6\u65f6": 232, "\u60a8\u4e0d\u9700\u8981\u624b\u52a8\u66f4\u6539\u8f93\u5165\u7684": 232, "\u4e0d\u4f7f\u7528": [232, 239], "\u4ee5\u4e0b\u7b80\u5355\u7f51\u7edc\u4ee5\u9ed8\u8ba4\u7cbe\u5ea6": 232, "\u6267\u884c\u6240\u6709\u64cd\u4f5c": 232, "\u8fd9\u91cc\u53ef\u4ee5\u9002\u5ea6\u63d0\u9ad8\u6027\u80fd": 232, "\u4f5c\u4e3a\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668": 232, "\u5141\u8bb8\u811a\u672c\u7684\u67d0\u4e9b\u533a\u57df\u4ee5\u6df7\u5408\u7cbe\u5ea6\u8fd0\u884c": 232, "\u5728\u8fd9\u4e9b\u533a\u57df\u4e2d": 232, "\u64cd\u4f5c\u4ee5": 232, "\u9009\u62e9\u7684": 232, "\u4ee5\u63d0\u9ad8\u6027\u80fd": 232, "\u540c\u65f6\u4fdd\u6301\u7cbe\u5ea6": 232, "\u4e3a\u6bcf\u4e2a\u64cd\u4f5c\u9009\u62e9\u7684\u7cbe\u5ea6\u4ee5\u53ca\u5728\u4ec0\u4e48\u60c5\u51b5\u4e0b\u9009\u62e9\u7684\u8be6\u7ec6\u4fe1\u606f": 232, "\u64cd\u4f5c\u53c2\u8003": 232, "\u6b64\u90e8\u5206\u4ec5\u7528\u4e8e\u8bf4\u660e": 232, "\u4e0b\u8fd0\u884c\u524d\u5411\u4f20\u9012": 232, "\u8f93\u51fa\u662f": 232, "\u56e0\u4e3a\u7ebf\u6027\u5c42": 232, "\u4e4b\u524d\u9000\u51fa": 232, "\u4e0d\u5efa\u8bae\u5728": 232, "\u4e0b\u8fdb\u884c\u53cd\u5411\u4f20\u64ad": 232, "\u53cd\u5411\u64cd\u4f5c\u4ee5": 232, "\u4e3a\u76f8\u5e94\u524d\u5411\u64cd\u4f5c\u9009\u62e9\u7684\u76f8\u540c": 232, "\u68af\u5ea6\u7f29\u653e": 232, "\u6709\u52a9\u4e8e\u9632\u6b62\u68af\u5ea6\u5e45\u5ea6\u8f83\u5c0f\u65f6\u5728\u6df7\u5408\u7cbe\u5ea6\u8bad\u7ec3\u4e2d\u88ab\u51b2\u5237\u4e3a\u96f6": 232, "\u4e0b\u6ea2": 232, "\u65b9\u4fbf\u5730\u6267\u884c\u68af\u5ea6\u7f29\u653e\u7684\u6b65\u9aa4": 232, "\u5728\u6536\u655b\u8fd0\u884c\u5f00\u59cb\u65f6\u4f7f\u7528\u9ed8\u8ba4\u53c2\u6570\u6784\u9020\u4e00\u4e2a": 232, "scaler": 232, "\u5982\u679c\u60a8\u7684\u7f51\u7edc\u5728\u9ed8\u8ba4": 232, "\u53c2\u6570\u4e0b\u65e0\u6cd5\u6536\u655b": 232, "\u8bf7\u63d0\u4ea4\u4e00\u4e2a": 232, "\u6574\u4e2a\u6536\u655b\u8fd0\u884c\u5e94\u8be5\u4f7f\u7528\u76f8\u540c\u7684": 232, "\u5982\u679c\u60a8\u5728\u540c\u4e00\u4e2a\u811a\u672c\u4e2d\u6267\u884c\u591a\u4e2a\u6536\u655b\u8fd0\u884c": 232, "\u6bcf\u4e2a\u8fd0\u884c\u5e94\u8be5\u4f7f\u7528\u4e00\u4e2a\u4e13\u7528\u7684\u65b0": 232, "\u5b9e\u4f8b\u662f\u8f7b\u91cf\u7ea7\u7684": 232, "\u7f29\u653e\u635f\u5931": 232, "\u5728\u7f29\u653e\u540e\u7684\u635f\u5931\u4e0a\u8c03\u7528": 232, "\u4ee5\u521b\u5efa\u7f29\u653e\u540e\u7684\u68af\u5ea6": 232, "\u9996\u5148\u5c06\u4f18\u5316\u5668\u5206\u914d\u7684\u53c2\u6570\u7684\u68af\u5ea6\u53cd\u7f29\u653e": 232, "\u5982\u679c\u8fd9\u4e9b\u68af\u5ea6\u4e0d\u5305\u542b": 232, "\u5219\u8c03\u7528": 232, "\u5426\u5219\u8df3\u8fc7": 232, "\u66f4\u65b0\u4e0b\u4e00\u6b21\u8fed\u4ee3\u7684\u7f29\u653e\u6bd4\u4f8b": 232, "\u4ee5\u4e0b\u8fd8\u6f14\u793a\u4e86": 232, "\u7684\u4e00\u4e2a\u53ef\u9009\u4fbf\u5229\u53c2\u6570": 232, "\u5982\u679c\u4e3a": 232, "\u7684\u8c03\u7528\u5c06\u6210\u4e3a\u65e0\u64cd\u4f5c": 232, "\u8fd9\u5141\u8bb8\u5728\u9ed8\u8ba4\u7cbe\u5ea6\u548c\u6df7\u5408\u7cbe\u5ea6\u4e4b\u95f4\u5207\u6362": 232, "\u800c\u65e0\u9700\u4f7f\u7528": 232, "\u8bed\u53e5": 232, "use_amp": 232, "\u6df7\u5408\u7cbe\u5ea6": 232, "\u4ea7\u751f\u7684\u6240\u6709\u68af\u5ea6\u90fd\u662f\u7f29\u653e\u8fc7\u7684": 232, "\u5982\u679c\u60a8\u5e0c\u671b\u5728": 232, "\u4e4b\u95f4\u68c0\u67e5\u6216\u4fee\u6539": 232, "\u53c2\u6570\u7684": 232, "\u60a8\u5e94\u8be5\u9996\u5148\u4f7f\u7528": 232, "unscale_": 232, "\u5bf9\u5b83\u4eec\u8fdb\u884c\u53cd\u7f29\u653e": 232, "0\u4e2aepoch": 232, "\u8fd9\u4e00\u90e8\u5206\u4ec5\u7528\u4e8e\u8bf4\u660e": 232, "\u4e0b\u8fd0\u884c\u524d\u5411\u4f20\u64ad": 232, "\u56e0\u4e3a\u7ebf\u6027\u5c42\u4f1a": 232, "\u5c42\u4f1a": 232, "\u4e0d\u63a8\u8350\u5728": 232, "\u53cd\u5411\u4f20\u64ad\u7684": 232, "\u5728\u4e0e\u5bf9\u5e94\u524d\u5411\u4f20\u64ad\u76f8\u540c\u7684": 232, "\u4e0b\u8fd0\u884c": 232, "\u8fd9\u91cc\u53ef\u4ee5\u7565\u5fae\u63d0\u9ad8\u6027\u80fd": 232, "\u8981\u4ee5\u4f4d\u7ea7\u7cbe\u5ea6\u4fdd\u5b58": 232, "\u6062\u590d\u542f\u7528\u4e86": 232, "\u7684\u8fd0\u884c": 232, "\u8bf7\u4f7f\u7528": [232, 247], "\u4fdd\u5b58\u65f6": 232, "\u7684\u72b6\u6001\u5b57\u5178\u4e0e\u901a\u5e38\u7684\u6a21\u578b\u548c\u4f18\u5316\u5668\u72b6\u6001\u5b57\u5178\u4e00\u8d77\u4fdd\u5b58": 232, "\u53ef\u4ee5\u5728\u8fed\u4ee3\u5f00\u59cb\u65f6": 232, "\u4efb\u4f55\u524d\u5411\u4f20\u64ad\u4e4b\u524d": 232, "\u6216\u5728\u8fed\u4ee3\u7ed3\u675f\u65f6": 232, "\u4e4b\u540e\u6267\u884c\u6b64\u64cd\u4f5c": 232, "\u6309\u9700\u5199\u5165\u68c0\u67e5\u70b9": 232, "\u6062\u590d\u65f6": 232, "\u7684\u72b6\u6001\u5b57\u5178\u4e0e\u6a21\u578b\u548c\u4f18\u5316\u5668\u72b6\u6001\u5b57\u5178\u4e00\u8d77\u52a0\u8f7d": 232, "\u6309\u9700\u8bfb\u53d6\u68c0\u67e5\u70b9": 232, "\u5982\u679c\u68c0\u67e5\u70b9\u662f\u4ece\u4e00\u4e2a\u6ca1\u6709\u4f7f\u7528": 232, "\u7684\u8fd0\u884c\u4e2d\u521b\u5efa\u7684": 232, "\u800c\u60a8\u60f3\u6062\u590d\u8bad\u7ec3\u65f6\u4f7f\u7528": 232, "\u50cf\u5f80\u5e38\u4e00\u6837\u4ece\u68c0\u67e5\u70b9\u52a0\u8f7d\u6a21\u578b\u548c\u4f18\u5316\u5668\u72b6\u6001": 232, "\u68c0\u67e5\u70b9\u4e0d\u4f1a\u5305\u542b\u5df2\u4fdd\u5b58\u7684": 232, "\u72b6\u6001": [232, 261], "\u4f7f\u7528\u4e00\u4e2a\u65b0\u7684": 232, "\u5982\u679c\u68c0\u67e5\u70b9\u662f\u4ece\u4e00\u4e2a\u4f7f\u7528\u4e86": 232, "\u800c\u60a8\u60f3\u6062\u590d\u8bad\u7ec3\u65f6\u4e0d\u4f7f\u7528": 232, "\u5e76\u5ffd\u7565\u5df2\u4fdd\u5b58\u7684": 232, "\u53ef\u4ee5\u5355\u72ec\u7528\u4e8e\u5305\u88c5\u63a8\u7406\u6216\u8bc4\u4f30\u7684\u524d\u5411\u4f20\u64ad": 232, "\u4e0d\u9700\u8981": 232, "\u81ea\u52a8\u6df7\u5408\u7cbe\u5ea6\u793a\u4f8b": 232, "\u4ee5\u4e86\u89e3\u9ad8\u7ea7\u7528\u4f8b": 232, "\u68af\u5ea6\u7d2f\u79ef": 232, "\u68af\u5ea6\u60e9\u7f5a": 232, "\u53cc\u5411\u53cd\u5411\u4f20\u64ad": 232, "\u5305\u542b\u591a\u4e2a\u6a21\u578b": 232, "\u4f18\u5316\u5668\u6216\u635f\u5931\u7684\u7f51\u7edc": 232, "\u591a": 232, "\u81ea\u5b9a\u4e49\u81ea\u52a8\u68af\u5ea6\u51fd\u6570": 232, "\u5982\u679c\u5728\u540c\u4e00\u4e2a\u811a\u672c\u4e2d\u6267\u884c\u591a\u4e2a\u6536\u655b\u8fd0\u884c": 232, "\u6bcf\u4e2a\u8fd0\u884c\u90fd\u5e94\u8be5\u4f7f\u7528\u4e00\u4e2a\u4e13\u7528\u7684\u65b0": 232, "\u5982\u679c\u60a8\u6b63\u5728\u4f7f\u7528\u8c03\u5ea6\u7a0b\u5e8f\u6ce8\u518c\u81ea\u5b9a\u4e49": 232, "\u8c03\u5ea6\u7a0b\u5e8f\u6559\u7a0b": 232, "\u60a8\u7684\u7f51\u7edc\u53ef\u80fd\u65e0\u6cd5\u5145\u5206\u5229\u7528": 232, "\u7684\u8ba1\u7b97\u80fd\u529b": 232, "\u56e0\u6b64\u53d7\u5230": 232, "\u7684\u9650\u5236": 232, "\u6027\u80fd\u7684\u5f71\u54cd\u5c06\u65e0\u5173\u7d27\u8981": 232, "\u4e00\u4e2a\u7c97\u7565\u7684\u7ecf\u9a8c\u6cd5\u5219\u662f": 232, "\u5c3d\u53ef\u80fd\u589e\u52a0\u6279\u91cf\u548c": 232, "\u6216\u7f51\u7edc\u5927\u5c0f": 232, "\u76f4\u5230\u4e0d\u4f1a\u53d1\u751f\u5185\u5b58\u4e0d\u8db3\u9519\u8bef": 232, "\u5c3d\u91cf\u907f\u514d\u8fc7\u591a\u7684": 232, "\u8c03\u7528\u6216\u4ece": 232, "\u5f20\u91cf\u6253\u5370\u503c": 232, "\u5c3d\u91cf\u907f\u514d\u5927\u91cf\u5c0f\u578b": 232, "\u64cd\u4f5c\u7684\u5e8f\u5217": 232, "\u5982\u679c\u53ef\u80fd": [232, 249], "\u8bf7\u5c06\u8fd9\u4e9b\u64cd\u4f5c\u5408\u5e76\u4e3a\u51e0\u4e2a\u5927\u578b": 232, "\u64cd\u4f5c": [232, 260], "\u60a8\u7684\u7f51\u7edc\u53ef\u80fd\u662f": 232, "\u8ba1\u7b97\u5bc6\u96c6\u578b\u7684": 232, "\u5927\u91cf": 232, "\u4f46\u60a8\u7684": 232, "\u6ca1\u6709\u5f20\u91cf\u6838\u5fc3": 232, "\u9884\u671f\u52a0\u901f\u6548\u679c\u4f1a\u964d\u4f4e": 232, "\u7684\u7ef4\u5ea6\u4e0d\u9002\u5408\u5f20\u91cf\u6838\u5fc3": 232, "\u8bf7\u786e\u4fdd\u53c2\u4e0e\u8ba1\u7b97\u7684": 232, "\u7684\u5927\u5c0f\u662f": 232, "\u5bf9\u4e8e\u5e26\u6709": 232, "\u8fd9\u53ef\u80fd\u662f\u4e00\u4e2a\u5fae\u5999\u7684\u95ee\u9898": 232, "\u65e9\u671f\u7248\u672c\u7684\u5377\u79ef\u4e5f\u6709\u7c7b\u4f3c\u7684\u5c3a\u5bf8\u9650\u5236": 232, "\u4ee5\u4fbf\u4f7f\u7528\u5f20\u91cf\u6838\u5fc3": 232, "\u4f46\u5bf9\u4e8e": 232, "\u53ca\u66f4\u9ad8\u7248\u672c": 232, "\u4e0d\u5b58\u5728\u6b64\u7c7b\u9650\u5236": 232, "\u4ee5\u83b7\u53d6\u6307\u5bfc": 232, "\u68c0\u67e5\u60a8\u7684\u7f51\u7edc\u662f\u5426\u7b26\u5408": 232, "\u9ad8\u7ea7\u7528\u4f8b": 232, "\u53e6\u8bf7\u53c2\u9605": 232, "\u4f18\u5148\u4f7f\u7528": 232, "\u5982\u679c\u60a8\u786e\u4fe1\u60a8\u7684": 232, "\u7528\u6cd5\u662f\u6b63\u786e\u7684": 232, "\u60a8\u53ef\u80fd\u9700\u8981\u63d0\u4ea4\u4e00\u4e2a": 232, "\u4f46\u5728\u8fd9\u6837\u505a\u4e4b\u524d": 232, "\u6536\u96c6\u4ee5\u4e0b\u4fe1\u606f\u4f1a\u5f88\u6709\u5e2e\u52a9": 232, "\u901a\u8fc7\u5c06": 232, "\u4f20\u9012\u7ed9\u5b83\u4eec\u7684\u6784\u9020\u51fd\u6570": 232, "\u5206\u522b\u7981\u7528": 232, "\u5e76\u67e5\u770b": 232, "\u662f\u5426\u4ecd\u7136\u5b58\u5728": 232, "\u5982\u679c\u60a8\u6000\u7591\u7f51\u7edc\u7684\u67d0\u4e00\u90e8\u5206": 232, "\u4e00\u4e2a\u590d\u6742\u7684\u635f\u5931\u51fd\u6570": 232, "\u6ea2\u51fa": 232, "\u8bf7\u5728": [232, 242], "\u4e2d\u8fd0\u884c\u8be5\u524d\u5411\u533a\u57df": 232, "\u6587\u6863\u5b57\u7b26\u4e32": 232, "\u7684\u6700\u540e\u4e00\u4e2a\u4ee3\u7801\u7247\u6bb5": 232, "\u5c55\u793a\u4e86\u5982\u4f55\u5f3a\u5236\u5b50\u533a\u57df\u5728": 232, "\u4e2d\u8fd0\u884c": [232, 259], "\u901a\u8fc7\u5728\u672c\u5730\u7981\u7528": 232, "\u5e76\u5c06\u5b50\u533a\u57df\u7684\u8f93\u5165\u8f6c\u6362\u4e3a": 232, "\u8bd5\u56fe\u6db5\u76d6\u6240\u6709\u53ef\u4ece\u4e2d\u53d7\u76ca\u6216\u9700\u8981\u8f6c\u6362\u7684": 232, "\u83b7\u5f97\u660e\u786e\u8986\u76d6\u7684": 232, "\u662f\u6839\u636e\u6570\u503c\u5c5e\u6027\u9009\u62e9\u7684": 232, "\u4f46\u4e5f\u57fa\u4e8e\u7ecf\u9a8c": 232, "\u5982\u679c\u60a8\u5728\u542f\u7528\u4e86": 232, "\u7684\u524d\u5411\u533a\u57df\u6216\u968f\u540e\u7684\u53cd\u5411\u4f20\u64ad\u4e2d\u770b\u5230\u7c7b\u578b\u4e0d\u5339\u914d\u9519\u8bef": 232, "\u90a3\u53ef\u80fd\u662f": 232, "\u6f0f\u6389\u4e86\u4e00\u4e2a": 232, "\u8bf7\u63d0\u4ea4\u4e00\u4e2a\u5305\u542b\u9519\u8bef\u56de\u6eaf\u7684": 232, "\u5728\u8fd0\u884c\u60a8\u7684\u811a\u672c\u4e4b\u524d": 232, "torch_show_cpp_stacktrac": 232, "\u4ee5\u63d0\u4f9b\u6709\u5173\u54ea\u4e2a\u540e\u7aef": 232, "\u5931\u8d25\u7684\u8be6\u7ec6\u4fe1\u606f": 232, "amp_recip": [232, 237], "\u672c\u6559\u7a0b\u63d0\u4f9b\u4e86\u4f7f\u7528": 233, "\u6a21\u5757\u6765\u6d4b\u91cf\u548c\u6bd4\u8f83\u4ee3\u7801\u6027\u80fd\u7684\u5feb\u901f\u5165\u95e8\u6307\u5357": 233, "\u57fa\u51c6\u6d4b\u8bd5\u662f\u7f16\u5199\u4ee3\u7801\u65f6\u7684\u4e00\u4e2a\u91cd\u8981\u6b65\u9aa4": 233, "\u5b83\u5e2e\u52a9\u6211\u4eec\u9a8c\u8bc1\u4ee3\u7801\u662f\u5426\u6ee1\u8db3\u6027\u80fd\u9884\u671f": 233, "\u6bd4\u8f83\u89e3\u51b3\u540c\u4e00\u95ee\u9898\u7684\u4e0d\u540c\u65b9\u6cd5": 233, "\u5e76\u9632\u6b62\u6027\u80fd\u88c2\u5316": 233, "\u5bf9\u4e8e\u57fa\u51c6\u6d4b\u8bd5": 233, "\u4ee3\u7801\u6709\u8bb8\u591a\u9009\u62e9": 233, "\u5185\u7f6e\u7684": 233, "\u57fa\u51c6\u6d4b\u8bd5": [233, 240], "\u4ee3\u7801\u6709\u8bb8\u591a\u5bb9\u6613\u88ab\u5ffd\u89c6\u7684\u6ce8\u610f\u4e8b\u9879": 233, "\u4f8b\u5982\u7ba1\u7406\u7ebf\u7a0b\u6570\u91cf\u548c\u540c\u6b65": 233, "\u4e3a\u57fa\u51c6\u6d4b\u8bd5\u751f\u6210\u5f20\u91cf\u8f93\u5165\u53ef\u80fd\u76f8\u5f53\u7e41\u7410": 233, "\u672c\u6559\u7a0b\u6f14\u793a\u4e86\u5982\u4f55\u4f7f\u7528": 233, "\u6a21\u5757\u6765\u907f\u514d\u5e38\u89c1\u9519\u8bef": 233, "\u540c\u65f6\u66f4\u5bb9\u6613\u6bd4\u8f83\u4e0d\u540c\u4ee3\u7801\u7684\u6027\u80fd": 233, "\u4e3a\u57fa\u51c6\u6d4b\u8bd5\u751f\u6210\u8f93\u5165\u7b49": 233, "\u5982\u679c\u5c1a\u672a\u5b89\u88c5": [233, 245, 250, 252], "\u8bf7\u5148\u5b89\u88c5": 233, "\u5728\u64b0\u5199\u672c\u6587\u65f6": 233, "\u4e0d\u652f\u6301\u6279\u91cf\u6a21\u5f0f": 233, "\u56e0\u6b64\u6211\u4eec\u5c06\u6bd4\u8f83\u4f7f\u7528\u73b0\u6709": 233, "\u8fd0\u7b97\u7b26\u5b9e\u73b0\u5b83\u7684\u4e24\u79cd\u65b9\u6cd5": 233, "\u4e00\u79cd\u65b9\u6cd5\u4f7f\u7528": 233, "\u7684\u7ec4\u5408": 233, "\u53e6\u4e00\u79cd\u65b9\u6cd5\u4f7f\u7528": 233, "batched_dot_mul_sum": 233, "batched_dot_bmm": 233, "\u6a21\u5757\u5bf9\u4ee3\u7801\u8fdb\u884c\u57fa\u51c6\u6d4b\u8bd5": 233, "\u6211\u4eec\u5728\u8fd9\u91cc\u4fdd\u6301\u57fa\u51c6\u6d4b\u8bd5\u4ee3\u7801\u7b80\u5355": 233, "\u4ee5\u4fbf\u6211\u4eec\u53ef\u4ee5\u6bd4\u8f83": 233, "mul_sum": 233, "\u6a21\u5757\u7684\u8bbe\u8ba1\u4f7f\u5f97\u5bf9\u4e8e\u90a3\u4e9b\u66fe\u7ecf\u4f7f\u7528\u8fc7": 233, "\u6a21\u5757\u7684\u4eba\u6765\u8bf4": 233, "\u5b83\u770b\u8d77\u6765\u5f88\u719f\u6089": 233, "\u5b83\u7684\u9ed8\u8ba4\u8bbe\u7f6e\u4f7f\u5f97\u5b83\u66f4\u5bb9\u6613\u4e14\u66f4\u5b89\u5168\u5730\u7528\u4e8e\u5bf9": 233, "\u4ee3\u7801\u8fdb\u884c\u57fa\u51c6\u6d4b\u8bd5": 233, "\u9996\u5148\u8ba9\u6211\u4eec\u5bf9\u6bd4\u4e00\u4e0b\u57fa\u672capi\u7684\u4f7f\u7528": 233, "0x7fb10400d0f0": 233, "379": 233, "0x7fb103d67048": 233, "\u867d\u7136\u57fa\u672c\u529f\u80fd\u7684api\u662f\u76f8\u540c\u7684": 233, "\u4f46\u662f\u8fd8\u662f\u6709\u4e00\u4e9b\u91cd\u8981\u7684\u533a\u522b": 233, "\u8fd4\u56de\u7684\u662f\u6bcf\u6b21\u8fd0\u884c\u7684\u65f6\u95f4": 233, "\u8fd4\u56de\u7684\u603b\u8fd0\u884c\u65f6\u95f4": 233, "\u6a21\u5757\u8fd8\u63d0\u4f9b\u4e86\u683c\u5f0f\u5316\u7684\u5b57\u7b26\u4e32\u8868\u793a": 233, "\u7528\u4e8e\u6253\u5370\u7ed3\u679c": 233, "\u53e6\u4e00\u4e2a\u91cd\u8981\u7684\u533a\u522b": 233, "\u4e5f\u662f\u7ed3\u679c\u4e0d\u540c\u7684\u539f\u56e0": 233, "\u662fpytorch\u57fa\u51c6\u6d4b\u8bd5\u6a21\u5757\u9ed8\u8ba4\u5728\u5355\u7ebf\u7a0b\u4e2d\u8fd0\u884c": 233, "\u53c2\u6570\u6765\u66f4\u6539\u7ebf\u7a0b\u6570\u91cf": 233, "\u63a5\u53d7\u51e0\u4e2a\u989d\u5916\u7684\u53c2\u6570": 233, "sub_label": 233, "\u8fd9\u4e9b\u53c2\u6570\u4f1a\u6539\u53d8\u8fd4\u56de\u7684\u6d4b\u91cf\u5bf9\u8c61\u7684__repr__": 233, "\u5e76\u7528\u4e8e\u5bf9\u7ed3\u679c\u8fdb\u884c\u5206\u7ec4": 233, "\u7a0d\u540e\u4f1a\u8be6\u7ec6\u4ecb\u7ecd": 233, "0x7fb103d54080": 233, "118": 233, "0x7fb16935d2e8": 233, "\u4f7f\u7528\u6240\u6709\u53ef\u7528\u7ebf\u7a0b\u8fd0\u884c": 233, "\u4f1a\u5f97\u5230\u4e0e": 233, "\u6a21\u5757\u7c7b\u4f3c\u7684\u7ed3\u679c": 233, "\u66f4\u91cd\u8981\u7684\u662f": 233, "\u54ea\u4e2a\u7248\u672c\u66f4\u5feb\u53d6\u51b3\u4e8e\u6211\u4eec\u4f7f\u7528\u591a\u5c11\u7ebf\u7a0b\u8fd0\u884c\u4ee3\u7801": 233, "\u8fd9\u5c31\u662f\u4e3a\u4ec0\u4e48\u5728\u57fa\u51c6\u6d4b\u8bd5\u65f6": 233, "\u4f7f\u7528\u4e0e\u5b9e\u9645\u7528\u4f8b\u76f8\u7b26\u7684\u7ebf\u7a0b\u8bbe\u7f6e\u975e\u5e38\u91cd\u8981": 233, "\u53e6\u4e00\u4e2a\u9700\u8981\u8bb0\u4f4f\u7684\u91cd\u8981\u4e8b\u60c5\u662f": 233, "\u4e0a\u8fdb\u884c\u57fa\u51c6\u6d4b\u8bd5\u65f6": 233, "\u8981\u540c\u6b65cpu\u548ccuda": 233, "\u8ba9\u6211\u4eec\u518d\u6b21\u5728cuda\u5f20\u91cf\u4e0a\u8fd0\u884c\u4e0a\u9762\u7684\u57fa\u51c6\u6d4b\u8bd5": 233, "\u770b\u770b\u4f1a\u53d1\u751f\u4ec0\u4e48": 233, "2775": 233, "0x7fb10400d080": 233, "\u7ed3\u679c\u63ed\u793a\u4e86\u4e00\u4e9b\u6709\u8da3\u7684\u4e8b\u60c5": 233, "\u6a21\u5757\u8fd0\u884c": 233, "\u7248\u672c\u7684\u7b2c\u4e00\u6b21\u8fd0\u884c\u6bd4\u7b2c\u4e8c\u6b21\u8fd0\u884c\u6162\u5f88\u591a": 233, "\u9700\u8981\u8c03\u7528": 233, "\u7b2c\u4e00\u6b21\u8c03\u7528\u65f6\u9700\u8981\u52a0\u8f7d\u5b83": 233, "\u8fd9\u9700\u8981\u4e00\u4e9b\u65f6\u95f4": 233, "\u8fd9\u5c31\u662f\u4e3a\u4ec0\u4e48\u5728\u57fa\u51c6\u6d4b\u8bd5\u4e4b\u524d\u505a\u4e00\u6b21\u9884\u70ed\u8fd0\u884c\u5f88\u91cd\u8981": 233, "\u6a21\u5757\u4e3a\u6211\u4eec\u5904\u7406\u4e86\u8fd9\u4e2a\u95ee\u9898": 233, "\u6a21\u5757\u548c": 233, "\u6a21\u5757\u4e4b\u95f4\u7ed3\u679c\u7684\u5dee\u5f02\u662f\u56e0\u4e3a": 233, "\u6a21\u5757\u6ca1\u6709\u540c\u6b65": 233, "\u56e0\u6b64\u53ea\u8ba1\u65f6\u4e86\u542f\u52a8\u5185\u6838\u7684\u65f6\u95f4": 233, "\u6a21\u5757\u4e3a\u6211\u4eec\u505a\u4e86\u540c\u6b65": 233, "\u91c7\u53d6\u81f3\u5c11": 233, "\u79d2\u7684\u5355\u6b21\u8fde\u7eed\u6d4b\u91cf": 233, "\u91c7\u53d6\u591a\u6b21\u6d4b\u91cf": 233, "\u5176\u603b\u65f6\u95f4\u81f3\u5c11\u4e3a": 233, "\u79d2": 233, "\u53ef\u901a\u8fc7": [233, 238], "\u53c2\u6570\u66f4\u6539": 233, "\u5e76\u4e14\u6d4b\u91cf\u5f00\u9500\u53ea\u5360\u603b\u4f53\u6d4b\u91cf\u7684\u4e00\u5c0f\u90e8\u5206": 233, "\u8fd9\u662f\u901a\u8fc7\u9996\u5148\u4ee5\u9012\u589e\u7684\u5faa\u73af\u6b21\u6570\u8fd0\u884c": 233, "\u76f4\u5230\u8fd0\u884c\u65f6\u95f4\u8fdc\u5927\u4e8e\u6d4b\u91cf\u5f00\u9500": 233, "\u8fd9\u4e5f\u8d77\u5230\u4e86\u70ed\u8eab\u7684\u4f5c\u7528": 233, "\u7136\u540e\u8fdb\u884c\u6d4b\u91cf\u76f4\u5230\u8fbe\u5230\u76ee\u6807\u65f6\u95f4": 233, "\u8fd9\u6709\u4e00\u4e2a\u6709\u7528\u7684\u7279\u6027": 233, "\u5373\u5b83\u6d6a\u8d39\u7684\u6570\u636e\u66f4\u5c11": 233, "\u5e76\u4e14\u5141\u8bb8\u6211\u4eec\u8ba1\u7b97\u7edf\u8ba1\u6570\u636e\u6765\u4f30\u8ba1\u6d4b\u91cf\u7684\u53ef\u9760\u6027": 233, "m0": 233, "\u6211\u4eec\u8fd8\u53ef\u4ee5\u67e5\u770b\u8fd4\u56de\u7684\u6d4b\u91cf\u5bf9\u8c61\u4e2d\u83b7\u5f97\u7684\u5404\u4e2a\u7edf\u8ba1\u6570\u636e": 233, "\u6211\u4eec\u4e00\u76f4\u5728\u6bd4\u8f83\u6211\u4eec\u7684\u4e24\u4e2a\u6279\u91cf\u70b9\u79ef\u7248\u672c\u5bf9\u540c\u4e00\u8f93\u5165\u7684\u8868\u73b0": 233, "\u5728\u5b9e\u8df5\u4e2d": 233, "\u6211\u4eec\u5e0c\u671b\u5c1d\u8bd5\u4e0d\u540c\u7684\u8f93\u5165\u7ec4\u5408\u4ee5\u53ca\u4e0d\u540c\u7684\u7ebf\u7a0b\u6570\u91cf": 233, "\u7c7b\u5e2e\u52a9\u6211\u4eec\u4ee5\u683c\u5f0f\u5316\u8868\u683c\u7684\u5f62\u5f0f\u663e\u793a\u591a\u4e2a\u6d4b\u91cf\u7ed3\u679c": 233, "\u5b83\u4f7f\u7528\u4e0a\u9762\u63cf\u8ff0\u7684\u6ce8\u91ca": 233, "\u6765\u5bf9\u8868\u683c\u8fdb\u884c\u5206\u7ec4\u548c\u7ec4\u7ec7": 233, "\u6765\u770b\u770b\u6211\u4eec\u7684\u51fd\u6570\u5728\u4e0d\u540c\u7684\u8f93\u5165\u5927\u5c0f\u548c\u7ebf\u7a0b\u6570\u91cf\u4e0b\u7684\u8868\u73b0\u5982\u4f55": 233, "274": 233, "748": 233, "432": 233, "22657": 233, "11899": 233, "609": 233, "23098": 233, "27246": 233, "267073": 233, "118823": 233, "189": 233, "2782": 233, "7471": 233, "11874": 233, "173": 233, "7264": 233, "27824": 233, "100060": 233, "121499": 233, "2773": 233, "12833": 233, "6295": 233, "27062": 233, "71804": 233, "120365": 233, "103": 233, "2804": 233, "6764": 233, "11871": 233, "6640": 233, "27592": 233, "73003": 233, "120083": 233, "\u4e0a\u9762\u7684\u7ed3\u679c\u8868\u660e": 233, "\u5bf9\u4e8e\u5728\u591a\u7ebf\u7a0b\u4e0a\u8fd0\u884c\u7684\u8f83\u5927\u5f20\u91cf": 233, "\u7684\u7248\u672c\u6548\u679c\u66f4\u597d": 233, "\u800c\u5bf9\u4e8e\u8f83\u5c0f\u548c": 233, "\u6216\u5355\u7ebf\u7a0b\u4ee3\u7801": 233, "\u53e6\u4e00\u4e2a\u7248\u672c\u6548\u679c\u66f4\u597d": 233, "\u8fd8\u63d0\u4f9b\u4e86\u7528\u4e8e\u66f4\u6539\u8868\u683c\u683c\u5f0f\u7684\u51fd\u6570": 233, "trim_significant_figur": 233, "\u548c\u7b2c8\u8282\u4e2d\u63cf\u8ff0\u7684": 233, "callgrindstat": [233, 248], "\u6a21\u5757\u5e8f\u5217\u5316": 233, "\u8fd9\u4f7f\u5f97a": 233, "b\u6d4b\u8bd5\u53d8\u5f97\u5f88\u5bb9\u6613": 233, "\u56e0\u4e3a\u60a8\u53ef\u4ee5\u4ece\u4e24\u4e2a\u72ec\u7acb\u7684\u73af\u5883\u4e2d\u6536\u96c6\u6d4b\u91cf\u7ed3\u679c": 233, "\u5c06\u5b83\u4eec\u5e8f\u5217\u5316": 233, "\u7136\u540e\u5728\u5355\u4e2a\u73af\u5883\u4e2d\u52a0\u8f7d\u4e24\u8005": 233, "timer\u751a\u81f3\u63a5\u53d7\u4e00\u4e2a": 233, "\u6784\u9020\u51fd\u6570\u53c2\u6570": 233, "\u4ee5\u4fbf\u8fd9\u79cda": 233, "b\u6d4b\u8bd5\u53ef\u4ee5\u65e0\u7f1d\u8854\u63a5": 233, "\u5047\u8bbe": 233, "\u65b9\u6cd5\u4e0d\u662f\u4e24\u4e2apython\u51fd\u6570": 233, "\u800c\u662f": 233, "\u7684\u4e24\u4e2a\u4e0d\u540c\u7248\u672c": 233, "\u4e0b\u9762\u7684\u793a\u4f8b\u6f14\u793a\u4e86\u5982\u4f55\u8fdb\u884ca": 233, "b\u6d4b\u8bd5": 233, "\u4e3a\u4e86\u7b80\u5355\u8d77\u89c1": 233, "\u6211\u4eec\u53ea\u4f7f\u7528\u4e86\u4e00\u90e8\u5206\u6570\u636e": 233, "\u5e76\u7b80\u5355\u5730\u901a\u8fc7pickle\u6765\u56de\u4f20\u7ed3\u679c": 233, "\u800c\u4e0d\u662f\u5b9e\u9645\u4f7f\u7528\u591a\u4e2a\u73af\u5883\u5e76\u5c06\u7ed3\u679c\u5199\u5165\u78c1\u76d8": 233, "ab_test_result": 233, "dot_fn": 233, "ab_result": 233, "36000": 233, "40000": 233, "\u4ec5\u4e3a\u5c55\u793a\u53ef\u4ee5\u5c06\u4e4b\u524d\u6240\u6709\u7684\u7ed3\u679c\u901a\u8fc7": 233, "\u8fdb\u884c\u56de\u4f20": 233, "round_tripped_result": 233, "\u6b63\u5982\u6211\u4eec\u5728\u4e0a\u4e00\u8282\u4e2d\u770b\u5230\u7684": 233, "\u6839\u636e\u8f93\u5165\u5f20\u91cf\u7684\u4e0d\u540c": 233, "\u6027\u80fd\u5dee\u5f02\u53ef\u80fd\u4f1a\u5f88\u5927": 233, "\u5728\u591a\u4e2a\u4e0d\u540c\u7684\u8f93\u5165\u4e0a\u8fd0\u884c\u57fa\u51c6\u6d4b\u8bd5\u662f\u4e00\u4e2a\u597d\u4e3b\u610f": 233, "\u521b\u5efa\u6240\u6709\u8fd9\u4e9b\u8f93\u5165\u5f20\u91cf\u53ef\u80fd\u4f1a\u5f88\u9ebb\u70e6": 233, "\u8fd9\u5c31\u662f": 233, "fuzzer": 233, "\u548c\u76f8\u5173\u7c7b\u7684\u7528\u6b66\u4e4b\u5730": 233, "\u8ba9\u6211\u4eec\u770b\u770b\u5982\u4f55\u4f7f\u7528": 233, "\u6765\u521b\u5efa\u4e00\u4e9b\u7528\u4e8e\u57fa\u51c6\u6d4b\u8bd5\u7684\u6d4b\u8bd5\u7528\u4f8b": 233, "fuzzedparamet": 233, "fuzzedtensor": 233, "parameteralia": 233, "\u751f\u6210\u968f\u673a\u5f20\u91cf": 233, "\u5143\u7d20\u6570\u91cf\u5728": 233, "10000000": 233, "\u5927\u5c0f": [233, 236], "k0": 233, "k1": 233, "\u5206\u5e03\u4e2d\u9009\u62e9": 233, "\u5176\u4e2d\u5e73\u5747": 233, "\u5c06\u662f\u4e0d\u8fde\u7eed\u7684": 233, "example_fuzz": 233, "minval": 233, "maxval": 233, "min_el": 233, "max_el": 233, "probability_contigu": 233, "tensor_param": 233, "discontigu": 233, "725": 233, "383": 233, "5039": 233, "1200": [233, 260], "2140": 233, "1296": 233, "41000": 233, "1598": 233, "519": 233, "763": 233, "141": 233, "1082": 233, "\u5b9a\u4e49\u81ea\u5df1\u7684": 233, "\u6709\u5f88\u5927\u7684\u7075\u6d3b\u6027": 233, "\u8fd9\u5bf9\u4e8e\u521b\u5efa\u5f3a\u5927\u7684\u8f93\u5165\u96c6\u8fdb\u884c\u57fa\u51c6\u6d4b\u8bd5\u975e\u5e38\u6709\u7528": 233, "\u4f46\u4e3a\u4e86\u8ba9\u4e8b\u60c5\u53d8\u5f97\u66f4\u7b80\u5355": 233, "\u57fa\u51c6\u6d4b\u8bd5\u6a21\u5757\u4e3a\u5e38\u89c1\u7684\u57fa\u51c6\u6d4b\u8bd5\u9700\u6c42\u63d0\u4f9b\u4e86\u4e00\u4e9b\u5185\u7f6e\u7684": 233, "\u8ba9\u6211\u4eec\u770b\u770b\u5982\u4f55\u4f7f\u7528\u5176\u4e2d\u4e00\u4e2a\u5185\u7f6e\u7684": 233, "op_fuzz": 233, "binaryopfuzz": 233, "473": 233, "12642115": 233, "8192": 233, "4800": 233, "20400": 233, "110000": 233, "400000": 233, "493": 233, "1100": [233, 248], "2440": 233, "870": 233, "2030": 233, "23600": 233, "24000": [233, 248], "62374": 233, "90000": 233, "240372": 233, "16000": 233, "40156": 233, "2670": 233, "\u4f18\u5316\u4ee3\u7801\u7684\u4e00\u4e2a\u6311\u6218\u662f\u65f6\u95f4\u7684\u53d8\u5316\u548c\u4e0d\u900f\u660e\u6027": 233, "\u6709\u8bb8\u591a\u4e0d\u786e\u5b9a\u6027\u7684\u6765\u6e90": 233, "\u4ece\u81ea\u9002\u5e94\u65f6\u949f\u901f\u5ea6\u5230\u4e0e\u5176\u4ed6\u8fdb\u7a0b\u7684\u8d44\u6e90\u4e89\u7528": 233, "\u7aef\u5230\u7aef\u65f6\u95f4\u5e76\u4e0d\u80fd\u63ed\u793a\u65f6\u95f4\u82b1\u8d39\u5728\u54ea\u91cc": 233, "\u800c\u8fd9\u6b63\u662f\u6211\u4eec\u5728\u4f18\u5316\u4ee3\u7801\u65f6\u611f\u5174\u8da3\u7684": 233, "\u4e00\u79cd\u8865\u5145\u65b9\u6cd5\u662f\u4e5f\u6536\u96c6\u6307\u4ee4\u8ba1\u6570": 233, "\u8fd9\u4e9b\u8ba1\u6570\u662f\u4e00\u79cd\u4ee3\u7406\u6307\u6807": 233, "\u5e76\u4e0d\u80fd\u6355\u83b7\u6027\u80fd\u7684\u6240\u6709\u65b9\u9762": 233, "\u4f8b\u5982\u5185\u5b58\u6216i": 233, "o\u7ed1\u5b9a\u4efb\u52a1": 233, "\u4f46\u5b83\u4eec\u786e\u5b9e\u5177\u6709\u4e00\u4e9b\u6709\u7528\u7684\u7279\u6027": 233, "\u6307\u4ee4\u8ba1\u6570\u662f\u53ef\u91cd\u590d\u7684": 233, "\u4e0d\u53d7\u73af\u5883\u53d8\u5316\u7684\u5f71\u54cd": 233, "\u5e76\u4e14\u53ef\u4ee5\u63d0\u4f9b\u5bf9\u7a0b\u5e8f\u5728\u54ea\u91cc\u82b1\u8d39\u5468\u671f\u7684\u7ec6\u7c92\u5ea6\u6d1e\u5bdf": 233, "\u4e3a\u4e86\u770b\u5230\u6307\u4ee4\u8ba1\u6570\u7684\u5b9e\u7528\u6027": 233, "\u8ba9\u6211\u4eec\u770b\u770b\u5982\u4f55\u51cf\u5c11": 233, "\u7684\u5f00\u9500": 233, "\u663e\u800c\u6613\u89c1\u7684\u89e3\u51b3\u65b9\u6848\u662f\u5c06\u5176\u79fb\u81f3": 233, "\u8fd9\u6837\u6211\u4eec\u5c31\u53ef\u4ee5\u907f\u514d\u5728": 233, "\u4e4b\u95f4\u591a\u6b21\u6765\u56de\u5207\u6362": 233, "\u6e90\u4ee3\u7801\u51e0\u4e4e\u662f\u76f8\u540c\u7684": 233, "\u4e2d\u6211\u4eec\u5fc5\u987b\u95ee\u7684\u4e00\u4e2a\u95ee\u9898\u662f": 233, "\u6211\u4eec\u662f\u901a\u8fc7\u503c\u8fd8\u662f\u5f15\u7528\u6765\u4f20\u9012\u53c2\u6570": 233, "batched_dot_src": 233, "batched_dot_mul_sum_v0": 233, "batched_dot_mul_sum_v1": 233, "\u63d0\u4f9b\u4e00\u4e2a\u5b9e\u7528\u7a0b\u5e8f\u6765": 233, "\u7f16\u8bd1": 233, "\u6e90\u4ee3\u7801\u4e3a": 233, "\u4f7f\u5f97\u6d4b\u8bd5\u6211\u4eec\u7684": 233, "\u5b9e\u73b0\u53d8\u5f97\u5f88\u5bb9\u6613": 233, "cpp_lib": 233, "extra_cflag": 233, "extra_include_path": 233, "\u9700\u8981\u77e5\u9053": 233, "\u5934\u6587\u4ef6\u7684\u4f4d\u7f6e": 233, "\u5c06\u521b\u5efa\u4e00\u4e2a\u5171\u4eab\u5bf9\u8c61": 233, "\u5e76\u52a0\u8f7d\u5230python\u4e2d": 233, "\u5f53\u6211\u4eec\u6536\u96c6\u6307\u4ee4\u8ba1\u6570\u65f6": 233, "timer\u5c06\u521b\u5efa\u4e00\u4e2a\u5b50\u8fdb\u7a0b": 233, "\u56e0\u6b64\u6211\u4eec\u9700\u8981\u91cd\u65b0\u5bfc\u5165\u5b83": 233, "\u5bf9\u4e8ec\u6269\u5c55": 233, "\u5bfc\u5165\u8fc7\u7a0b\u7565\u6709\u4e0d\u540c": 233, "\u4f46\u8fd9\u5c31\u662f\u6211\u4eec\u5728\u8fd9\u91cc\u6240\u505a\u7684": 233, "module_import_str": 233, "67631": 233, "importlib": 233, "spec_from_file_loc": 233, "module_from_spec": 233, "exec_modul": 233, "textwrap": 233, "pretty_print": 233, "machineri": 233, "t_baselin": 233, "\u8f6c\u79fb\u5230": [233, 248], "\u786e\u5b9e\u51cf\u5c11\u4e86\u5f00\u9500": 233, "\u4f46\u5f88\u96be\u5224\u65ad\u54ea\u79cd\u8c03\u7528\u7ea6\u5b9a\u66f4\u6709\u6548": 233, "\u4f7f\u7528\u5f15\u7528\u8c03\u7528": 233, "\u4f3c\u4e4e\u7a0d\u5feb\u4e00\u4e9b": 233, "\u4f46\u5728\u6d4b\u91cf\u8bef\u5dee\u8303\u56f4\u5185": 233, "\u6765\u786e\u5b9a\u54ea\u79cd\u65b9\u5f0f\u66f4\u597d": 233, "stats_v0": 233, "collect_callgrind": 233, "stats_v1": 233, "as_standard": [233, 248], "\u79fb\u9664\u4e86\u6587\u4ef6\u540d\u548c\u67d0\u4e9b\u8def\u5f84\u524d\u7f00": 233, "\u4f7f\u51fd\u6570\u7b26\u53f7\u66f4\u6613\u8bfb": 233, "\u5bf9\u6307\u4ee4\u8ba1\u6570\u8fdb\u884c\u5dee\u5206": 233, "denois": 233, "\u5219\u79fb\u9664\u4e86": 233, "\u89e3\u91ca\u5668\u4e2d\u5df2\u77e5\u5b58\u5728\u663e\u8457\u6296\u52a8\u7684\u51e0\u4e2a\u51fd\u6570": 233, "\u662f\u4e00\u4e2a\u8f6c\u6362\u51fd\u6570\u540d\u7684\u4fbf\u5229": 233, "\u5b83\u5728\u8fdb\u884c": 233, "ing": 233, "\u65f6\u5f88\u6709\u7528": 233, "\u56e0\u4e3a\u53ef\u4ee5\u589e\u52a0\u62b5\u6d88": 233, "\u540c\u65f6\u4e5f\u80fd\u63d0\u9ad8\u53ef\u8bfb\u6027": 233, "wrap_pybind_function_impl_": 233, "\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u6253\u5370\u9009\u9879\u6765\u63a7\u5236\u663e\u793a\u51fd\u6570\u7684\u591a\u5c11\u5185\u5bb9": 233, "linewidth": 233, "\u89e3\u6790\u540e": 233, "\u6307\u4ee4\u8ba1\u6570\u6e05\u695a\u5730\u8868\u660e": 233, "\u901a\u8fc7\u5f15\u7528\u4f20\u9012": 233, "\u66f4\u6709\u6548": 233, "\u56e0\u4e3a\u5b83\u8df3\u8fc7\u4e86\u4e00\u4e9b": 233, "\u4e2d\u95f4\u5f20\u91cf\u7684\u7c3f\u8bb0\u64cd\u4f5c": 233, "\u5e76\u4e14\u4e0e": 233, "\u4e5f\u66f4\u517c\u5bb9": 233, "\u8fd9\u4e0e\u6211\u4eec\u6709\u566a\u58f0\u65f6\u95f4\u89c2\u5bdf\u7ed3\u679c\u4e00\u81f4": 233, "valgrind_wrapp": [233, 248], "timer_interfac": [233, 248], "0x7fb0f06e7630": 233, "2392671": 233, "4367": 233, "rel_with_deb_info": [233, 248], "0x7fb10400d208": 233, "2378978": 233, "functioncount": [233, 248], "0x7fb1000ab358": 233, "0x000000000020d9e0": 233, "0x000000000020db10": 233, "integer_sequ": 233, "0ul": 233, "1ul": 233, "undefinedtensorimpl": 233, "reset_": 233, "5935": 233, "0x000000000022c0e0": 233, "13693": 233, "\u67e5\u770b\u5176\u4ed6\u6559\u7a0b\u7ee7\u7eed\u5b66\u4e60": 233, "changing_default_devic": 234, "\u6df1\u5ea6\u5b66\u4e60\u4f7f\u7528\u4eba\u5de5\u795e\u7ecf\u7f51\u7edc": 235, "\u8fd9\u662f\u7531\u8bb8\u591a\u4e92\u8fde\u5355\u5143\u5c42\u7ec4\u6210\u7684\u8ba1\u7b97\u7cfb\u7edf": 235, "\u901a\u8fc7\u5c06\u6570\u636e\u4f20\u9012\u5230\u8fd9\u4e9b\u4e92\u8fde\u5355\u5143": 235, "\u795e\u7ecf\u7f51\u7edc\u80fd\u591f\u5b66\u4e60\u5982\u4f55\u8fd1\u4f3c\u5c06\u8f93\u5165\u8f6c\u6362\u4e3a\u8f93\u51fa\u6240\u9700\u7684\u8ba1\u7b97": 235, "\u53ef\u4ee5\u4f7f\u7528": [235, 239, 248], "\u5305\u6784\u5efa\u795e\u7ecf\u7f51\u7edc": 235, "\u63d0\u4f9b\u4e86\u4f18\u96c5\u8bbe\u8ba1\u7684\u6a21\u5757\u548c\u7c7b\u6765\u5e2e\u52a9\u60a8\u521b\u5efa\u548c\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc": 235, "\u4e2d\u6709\u5c42": 235, "\u4ee5\u53ca\u4e00\u4e2a\u8fd4\u56de": 235, "\u6765\u5b9a\u4e49\u4e00\u4e2a\u7528\u4e8e": 235, "hhttp": 235, "\u7684\u795e\u7ecf\u7f51\u7edc": 235, "\u5982\u679c\u8fd8\u6ca1\u6709\u5b89\u88c5": [235, 242, 243, 244, 251], "\u7684\u8bdd": 235, "\u6211\u4eec\u9700\u8981\u5148\u5b89\u88c5\u5b83": [235, 244, 245, 250, 251], "\u5bfc\u5165\u52a0\u8f7d\u6570\u636e\u6240\u9700\u7684\u6240\u6709\u5fc5\u8981\u5e93": [235, 238, 242, 243, 244, 245, 250, 251, 252], "\u53ca\u5176\u5b50\u6a21\u5757": [235, 242, 243, 244, 245, 250, 251], "\u6211\u4eec\u7684\u7f51\u7edc\u5c06\u8bc6\u522b\u56fe\u50cf": 235, "\u6211\u4eec\u5c06\u4f7f\u7528pytorch\u5185\u7f6e\u7684\u5377\u79ef\u8fc7\u7a0b": 235, "\u5377\u79ef\u5c06\u6bcf\u4e2a\u56fe\u50cf\u5143\u7d20\u4e0e\u5176\u5c40\u90e8\u90bb\u5c45\u76f8\u52a0": 235, "\u5e76\u7531\u4e00\u4e2a\u5c0f\u77e9\u9635": 235, "\u52a0\u6743": 235, "\u8be5\u5185\u6838\u53ef\u5e2e\u52a9\u6211\u4eec\u4ece\u8f93\u5165\u56fe\u50cf\u4e2d\u63d0\u53d6\u67d0\u4e9b\u7279\u5f81": 235, "\u5982\u8fb9\u7f18\u68c0\u6d4b": 235, "\u9510\u5229\u5ea6": 235, "\u6a21\u7cca\u5ea6\u7b49": 235, "\u5b9a\u4e49\u6a21\u578b\u7684": 235, "\u7c7b\u6709\u4e24\u4e2a\u8981\u6c42": 235, "\u7b2c\u4e00\u662f\u7f16\u5199\u4e00\u4e2a\u5f15\u7528": 235, "\u5728\u8fd9\u4e2a\u51fd\u6570\u4e2d": 235, "\u4f60\u5b9a\u4e49\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u5168\u8fde\u63a5\u5c42": 235, "\u4f7f\u7528\u5377\u79ef": 235, "\u6211\u4eec\u5c06\u5b9a\u4e49\u6211\u4eec\u7684\u6a21\u578b\u4ee5\u63a5\u53d71\u4e2a\u8f93\u5165\u56fe\u50cf\u901a\u9053": 235, "\u5e76\u8f93\u51fa\u4e0e\u6211\u4eec\u7684\u76ee\u6807\u76f8\u5339\u914d\u768410\u4e2a\u6807\u7b7e": 235, "\u8868\u793a0\u52309\u7684\u6570\u5b57": 235, "\u8fd9\u4e2a\u7b97\u6cd5\u7531\u4f60\u81ea\u5df1\u521b\u5efa": 235, "\u6211\u4eec\u5c06\u9075\u5faa\u6807\u51c6\u7684mnist\u7b97\u6cd5": 235, "\u7b2c\u4e00\u4e2a2d\u5377\u79ef\u5c42": 235, "\u63a5\u53d71\u4e2a\u8f93\u5165\u901a\u9053": 235, "\u8f93\u51fa32\u4e2a\u5377\u79ef\u7279\u5f81": 235, "\u4f7f\u75283x3\u7684\u65b9\u5f62\u6838": 235, "\u7b2c\u4e8c\u4e2a2d\u5377\u79ef\u5c42": 235, "\u63a5\u53d732\u4e2a\u8f93\u5165\u5c42": 235, "\u8f93\u51fa64\u4e2a\u5377\u79ef\u7279\u5f81": 235, "\u8bbe\u8ba1\u4e3a\u786e\u4fdd\u76f8\u90bb\u50cf\u7d20\u8981\u4e48\u5168\u4e3a0": 235, "\u8981\u4e48\u5168\u4e3a\u6fc0\u6d3b": 235, "\u5177\u6709\u4e00\u5b9a\u8f93\u5165\u6982\u7387": 235, "\u7b2c\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42": 235, "\u7b2c\u4e8c\u4e2a\u5168\u8fde\u63a5\u5c42": 235, "\u8f93\u51fa\u6211\u4eec\u768410\u4e2a\u6807\u7b7e": 235, "my_nn": 235, "\u6211\u4eec\u5df2\u7ecf\u5b8c\u6210\u4e86\u795e\u7ecf\u7f51\u7edc\u7684\u5b9a\u4e49": 235, "\u73b0\u5728\u6211\u4eec\u5fc5\u987b\u5b9a\u4e49\u6570\u636e\u5982\u4f55\u901a\u8fc7\u5b83": 235, "\u5f53\u4f60\u4f7f\u7528pytorch\u6784\u5efa\u6a21\u578b\u65f6": 235, "\u4f60\u53ea\u9700\u8981\u5b9a\u4e49": 235, "\u5b83\u5c06\u6570\u636e\u4f20\u9012\u5230\u8ba1\u7b97\u56fe": 235, "\u5373\u6211\u4eec\u7684\u795e\u7ecf\u7f51\u7edc": 235, "\u8fd9\u5c06\u4ee3\u8868\u6211\u4eec\u7684\u524d\u5411\u7b97\u6cd5": 235, "\u51fd\u6570\u4e2d\u4f7f\u7528\u4efb\u4f55\u5f20\u91cf\u64cd\u4f5c": 235, "x\u8868\u793a\u6211\u4eec\u7684\u6570\u636e": 235, "\u5c06\u6570\u636e\u4f20\u9012\u7ed9conv1": 235, "\u5bf9x\u4f7f\u7528\u6574\u6d41\u7ebf\u6027\u6fc0\u6d3b\u51fd\u6570": 235, "\u5bf9x\u8fd0\u884c\u6700\u5927\u6c60\u5316": 235, "\u5c06\u6570\u636e\u4f20\u9012\u7ed9dropout1": 235, "\u5c55\u5e73x": 235, "start_dim": 235, "\u5c06\u6570\u636e\u4f20\u9012\u7ed9": 235, "\u5bf9x\u5e94\u7528softmax": 235, "\u4e3a\u4e86\u786e\u4fdd\u6211\u4eec\u5f97\u5230\u671f\u671b\u7684\u8f93\u51fa": 235, "\u8ba9\u6211\u4eec\u901a\u8fc7\u4e00\u4e9b\u968f\u673a\u6570\u636e\u6d4b\u8bd5\u6211\u4eec\u7684\u6a21\u578b": 235, "\u7b49\u540c\u4e8e\u4e00\u4e2a\u968f\u673a\u768428x28\u56fe\u50cf": 235, "random_data": 235, "\u8fd9\u4e2a\u7ed3\u679c\u5f20\u91cf\u4e2d\u7684\u6bcf\u4e2a\u6570\u5b57\u90fd\u7b49\u540c\u4e8e\u968f\u673a\u5f20\u91cf\u6240\u5173\u8054\u7684\u6807\u7b7e\u7684\u9884\u6d4b": 235, "\u795d\u8d3a\u4f60": [235, 243, 244, 251, 252], "\u4f60\u5df2\u7ecf\u6210\u529f\u5730\u5728pytorch\u4e2d\u5b9a\u4e49\u4e86\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc": 235, "\u67e5\u770b\u8fd9\u4e9b\u5176\u4ed6\u6559\u7a0b\u4ee5\u7ee7\u7eed\u5b66\u4e60": [235, 244], "\u662f\u4ec0\u4e48": [235, 237, 238, 253, 259], "\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u7528\u4e8e\u63a8\u7406": 235, "defining_a_neural_network": [235, 237], "\u60a8\u5c06\u770b\u5230\u5982\u4f55\u5229\u7528\u52a8\u6001\u91cf\u5316\u6765\u52a0\u901f": 236, "\u98ce\u683c\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u63a8\u7406": 236, "\u8fd9\u53ef\u4ee5\u51cf\u5c0f\u6a21\u578b\u6743\u91cd\u7684\u5927\u5c0f": 236, "\u5e76\u52a0\u5feb\u6a21\u578b\u6267\u884c\u901f\u5ea6": 236, "\u5728\u8bbe\u8ba1\u795e\u7ecf\u7f51\u7edc\u65f6": 236, "\u53ef\u4ee5\u505a\u51fa\u591a\u79cd\u6743\u8861": 236, "\u5728\u6a21\u578b\u5f00\u53d1\u548c\u8bad\u7ec3\u671f\u95f4": 236, "\u60a8\u53ef\u4ee5\u6539\u53d8\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u5c42\u6570\u548c\u53c2\u6570\u6570\u91cf": 236, "\u5728\u6a21\u578b\u5927\u5c0f\u548c": 236, "\u6216\u6a21\u578b\u5ef6\u8fdf\u6216\u541e\u5410\u91cf\u4e0e\u7cbe\u5ea6\u4e4b\u95f4\u8fdb\u884c\u6743\u8861": 236, "\u7531\u4e8e\u60a8\u9700\u8981\u91cd\u590d\u6a21\u578b\u8bad\u7ec3\u8fc7\u7a0b": 236, "\u56e0\u6b64\u8fd9\u79cd\u6539\u53d8\u9700\u8981\u5927\u91cf\u7684\u65f6\u95f4\u548c\u8ba1\u7b97\u8d44\u6e90": 236, "\u91cf\u5316\u4e3a\u60a8\u63d0\u4f9b\u4e86\u4e00\u79cd\u5728\u5df2\u77e5\u6a21\u578b\u4e0a\u5728\u6027\u80fd\u548c\u6a21\u578b\u7cbe\u5ea6\u4e4b\u95f4\u8fdb\u884c\u6743\u8861\u7684\u65b9\u5f0f": 236, "\u800c\u65e0\u9700\u91cd\u65b0\u8bad\u7ec3\u6a21\u578b": 236, "\u60a8\u53ef\u4ee5\u5728\u5355\u4e2a\u4f1a\u8bdd\u4e2d\u5c1d\u8bd5\u4e00\u4e0b": 236, "\u60a8\u80af\u5b9a\u4f1a\u663e\u8457\u51cf\u5c0f\u6a21\u578b\u5927\u5c0f": 236, "\u5e76\u53ef\u80fd\u5728\u4e0d\u4f1a\u635f\u5931\u592a\u591a\u7cbe\u5ea6\u7684\u60c5\u51b5\u4e0b\u83b7\u5f97\u663e\u8457\u7684\u5ef6\u8fdf\u51cf\u5c11": 236, "\u91cf\u5316\u7f51\u7edc\u610f\u5473\u7740\u5c06\u5176\u8f6c\u6362\u4e3a\u4f7f\u7528\u8f83\u4f4e\u7cbe\u5ea6\u7684\u6574\u6570\u8868\u793a\u5f62\u5f0f\u6765\u8868\u793a\u6743\u91cd\u548c": 236, "\u6216\u6fc0\u6d3b": 236, "\u8fd9\u53ef\u4ee5\u51cf\u5c0f\u6a21\u578b\u5927\u5c0f": 236, "\u5e76\u5141\u8bb8\u5728": 236, "\u4e0a\u4f7f\u7528\u66f4\u9ad8\u541e\u5410\u91cf\u7684\u6570\u5b66\u8fd0\u7b97": 236, "\u4ece\u6d6e\u70b9\u6570\u8f6c\u6362\u4e3a\u6574\u6570\u503c\u65f6": 236, "\u60a8\u5b9e\u9645\u4e0a\u662f\u5c06\u6d6e\u70b9\u6570\u4e58\u4ee5\u67d0\u4e2a\u6bd4\u4f8b\u56e0\u5b50": 236, "\u7136\u540e\u5c06\u7ed3\u679c\u820d\u5165\u4e3a\u6574\u6570": 236, "\u4e0d\u540c\u7684\u91cf\u5316\u65b9\u6cd5\u5728\u786e\u5b9a\u8be5\u6bd4\u4f8b\u56e0\u5b50\u7684\u65b9\u5f0f\u4e0a\u6709\u6240\u4e0d\u540c": 236, "\u8fd9\u91cc\u4ecb\u7ecd\u7684\u52a8\u6001\u91cf\u5316\u7684\u5173\u952e\u601d\u60f3\u662f": 236, "\u6211\u4eec\u5c06\u6839\u636e\u8fd0\u884c\u65f6\u89c2\u5bdf\u5230\u7684\u6570\u636e\u8303\u56f4\u52a8\u6001\u786e\u5b9a\u6fc0\u6d3b\u7684\u6bd4\u4f8b\u56e0\u5b50": 236, "\u8fd9\u53ef\u786e\u4fdd\u6bd4\u4f8b\u56e0\u5b50\u88ab": 236, "\u8c03\u6574": 236, "\u4e3a\u5c3d\u53ef\u80fd\u4fdd\u7559\u6bcf\u4e2a\u89c2\u5bdf\u5230\u7684\u6570\u636e\u96c6\u7684\u4fe1\u53f7": 236, "\u6a21\u578b\u53c2\u6570\u5728\u6a21\u578b\u8f6c\u6362\u671f\u95f4\u662f\u5df2\u77e5\u7684": 236, "\u5b83\u4eec\u4f1a\u63d0\u524d\u8f6c\u6362\u5e76\u4ee5": 236, "\u5f62\u5f0f\u5b58\u50a8": 236, "\u91cf\u5316\u6a21\u578b\u4e2d\u7684\u7b97\u672f\u8fd0\u7b97\u4f7f\u7528\u77e2\u91cf\u5316\u7684": 236, "\u6307\u4ee4\u5b8c\u6210": 236, "\u7d2f\u52a0\u901a\u5e38\u4f7f\u7528": 236, "\u6765\u907f\u514d\u6ea2\u51fa": 236, "\u5982\u679c\u4e0b\u4e00\u5c42\u662f\u91cf\u5316\u7684": 236, "\u5219\u5c06\u6b64\u8f83\u9ad8\u7cbe\u5ea6\u503c\u7f29\u653e\u56de": 236, "\u5982\u679c\u662f\u8f93\u51fa": 236, "\u5219\u5c06\u5176\u8f6c\u6362\u4e3a": 236, "\u52a8\u6001\u91cf\u5316\u76f8\u5bf9\u6765\u8bf4\u6ca1\u6709\u592a\u591a\u9700\u8981\u8c03\u6574\u7684\u53c2\u6570": 236, "\u56e0\u6b64\u975e\u5e38\u9002\u5408\u4f5c\u4e3a\u5c06": 236, "\u6a21\u578b\u8f6c\u6362\u4e3a\u90e8\u7f72\u7684\u6807\u51c6\u90e8\u5206\u6dfb\u52a0\u5230\u751f\u4ea7\u7ba1\u9053\u4e2d": 236, "\u672c\u793a\u4f8b\u4e2d\u91c7\u7528\u7684\u65b9\u6cd5\u7684\u5c40\u9650\u6027": 236, "\u672c\u793a\u4f8b\u63d0\u4f9b\u4e86\u5bf9": 236, "\u4e2d\u52a8\u6001\u91cf\u5316\u529f\u80fd\u7684\u5feb\u901f\u4ecb\u7ecd": 236, "\u4ee5\u53ca\u4f7f\u7528\u5b83\u7684\u5de5\u4f5c\u6d41\u7a0b": 236, "\u6211\u4eec\u7684\u91cd\u70b9\u662f\u89e3\u91ca\u7528\u4e8e\u8f6c\u6362\u6a21\u578b\u7684\u7279\u5b9a\u51fd\u6570": 236, "\u4e3a\u4e86\u7b80\u6d01\u548c\u6e05\u6670": 236, "\u6211\u4eec\u505a\u51fa\u4e86\u4e00\u4e9b\u91cd\u5927\u7b80\u5316": 236, "\u60a8\u5c06\u4ece\u4e00\u4e2a\u6700\u5c0f\u7684": 236, "\u7f51\u7edc\u5f00\u59cb": 236, "\u60a8\u53ea\u9700\u7528\u968f\u673a\u9690\u85cf\u72b6\u6001\u521d\u59cb\u5316\u7f51\u7edc": 236, "\u60a8\u5c06\u4f7f\u7528\u968f\u673a\u8f93\u5165\u6765\u6d4b\u8bd5\u7f51\u7edc": 236, "\u60a8\u4e0d\u4f1a\u5728\u672c\u6559\u7a0b\u4e2d\u8bad\u7ec3\u7f51\u7edc": 236, "\u60a8\u5c06\u770b\u5230": 236, "\u4e0e\u6211\u4eec\u5f00\u59cb\u65f6\u7684\u6d6e\u70b9\u7f51\u7edc\u76f8\u6bd4": 236, "\u91cf\u5316\u540e\u7684\u7f51\u7edc\u66f4\u5c0f\u4e14\u8fd0\u884c\u901f\u5ea6\u66f4\u5feb": 236, "\u91cf\u5316\u7f51\u7edc\u4ea7\u751f\u7684\u8f93\u51fa\u5f20\u91cf\u503c\u4e0e": 236, "\u7f51\u7edc\u8f93\u51fa\u7684\u503c\u5728\u540c\u4e00\u6570\u91cf\u7ea7": 236, "\u4f46\u6211\u4eec\u5e76\u672a\u5728\u8fd9\u91cc\u5c55\u793a\u8be5\u6280\u672f\u5728\u7ecf\u8fc7\u8bad\u7ec3\u7684": 236, "\u4e0a\u80fd\u591f\u4fdd\u7559\u8f83\u9ad8\u6a21\u578b\u7cbe\u5ea6\u7684\u60c5\u51b5": 236, "\u60a8\u5c06\u4e86\u89e3\u5982\u4f55\u8fdb\u884c\u52a8\u6001\u91cf\u5316": 236, "\u5e76\u80fd\u591f\u770b\u5230\u5185\u5b58\u4f7f\u7528\u548c\u5ef6\u8fdf\u65f6\u95f4\u7684\u6f5c\u5728\u51cf\u5c0f": 236, "\u5173\u4e8e\u8be5\u6280\u672f\u5728\u7ecf\u8fc7\u8bad\u7ec3\u7684": 236, "\u4e0a\u80fd\u591f\u4fdd\u7559\u8f83\u9ad8\u6a21\u578b\u7cbe\u5ea6\u7684\u6f14\u793a": 236, "\u5c06\u7559\u5f85\u66f4\u9ad8\u7ea7\u7684\u6559\u7a0b": 236, "\u5982\u679c\u60a8\u60f3\u76f4\u63a5\u8fdb\u5165\u66f4\u4e25\u683c\u7684\u5904\u7406": 236, "\u8bf7\u7ee7\u7eed\u5b66\u4e60": 236, "\u9ad8\u7ea7\u52a8\u6001\u91cf\u5316\u6559\u7a0b": 236, "\u672c\u793a\u4f8b\u5305\u542b": 236, "\u4e2a\u6b65\u9aa4": 236, "\u60a8\u5b9a\u4e49\u4e00\u4e2a\u975e\u5e38\u7b80\u5355\u7684": 236, "\u5bfc\u5165\u6a21\u5757": 236, "\u5e76\u5efa\u7acb\u4e00\u4e9b\u968f\u673a\u8f93\u5165\u5f20\u91cf": 236, "\u60a8\u5b9e\u4f8b\u5316\u4e00\u4e2a\u6d6e\u70b9\u6a21\u578b": 236, "\u7136\u540e\u521b\u5efa\u5176\u91cf\u5316\u7248\u672c": 236, "\u60a8\u663e\u793a\u6a21\u578b\u5927\u5c0f\u53d8\u5c0f\u4e86": 236, "\u60a8\u8fd0\u884c\u4e24\u4e2a\u6a21\u578b\u5e76\u6bd4\u8f83\u6a21\u578b\u8fd0\u884c\u65f6\u95f4": 236, "\u5ef6\u8fdf": 236, "\u60a8\u8fd0\u884c\u4e24\u4e2a\u6a21\u578b\u5e76\u6bd4\u8f83\u8f93\u51fa": 236, "\u8fd9\u662f\u4e00\u6bb5\u76f4\u63a5\u7684\u4ee3\u7801": 236, "\u7528\u4e8e\u4e3a\u672c\u793a\u4f8b\u7684\u5176\u4f59\u90e8\u5206\u505a\u51c6\u5907": 236, "\u6211\u4eec\u5728\u8fd9\u91cc\u5bfc\u5165\u7684\u552f\u4e00\u6a21\u5757\u662f": 236, "\u7684\u91cf\u5316\u7b97\u5b50\u548c\u8f6c\u6362\u51fd\u6570": 236, "\u6211\u4eec\u8fd8\u5b9a\u4e49\u4e86\u4e00\u4e2a\u975e\u5e38\u7b80\u5355\u7684": 236, "\u5e76\u8bbe\u7f6e\u4e86\u4e00\u4e9b\u8f93\u5165": 236, "\u5bfc\u5165\u672c\u793a\u4f8b\u4e2d\u4f7f\u7528\u7684\u6a21\u5757": 236, "\u4e3a\u6f14\u793a\u76ee\u7684\u5b9a\u4e49\u4e00\u4e2a\u975e\u5e38\u7b80\u5355\u7684": 236, "\u6211\u4eec\u53ea\u662f\u5305\u88c5\u4e86": 236, "\u4e00\u5c42": 236, "\u6ca1\u6709\u9884\u5904\u7406\u6216\u540e\u5904\u7406": 236, "\u53d7\u5230\u4ee5\u4e0b\u6559\u7a0b\u7684\u542f\u53d1": 236, "\u5e8f\u5217\u6a21\u578b\u548c\u957f\u77ed\u671f\u8bb0\u5fc6\u7f51\u7edc\u6559\u7a0b": 236, "\u52a8\u6001\u91cf\u5316\u6559\u7a0b": 236, "lstm_for_demonstr": 236, "\u57fa\u672c\u7684\u957f\u77ed\u671f\u8bb0\u5fc6\u98ce\u683c\u6a21\u578b": 236, "\u53ea\u662f\u5305\u88c5\u4e86": 236, "\u4e0d\u5e94\u7528\u4e8e\u9664\u6f14\u793a\u4e4b\u5916\u7684\u4efb\u4f55\u5176\u4ed6\u7528\u9014": 236, "out_dim": 236, "29592": 236, "\u8bbe\u7f6e\u79cd\u5b50\u4ee5\u83b7\u5f97\u53ef\u91cd\u590d\u7ed3\u679c": 236, "\u5f62\u72b6\u53c2\u6570": 236, "model_dimens": 236, "sequence_length": 236, "lstm_depth": 236, "\u968f\u673a\u8f93\u5165\u6570\u636e": 236, "\u5b9e\u9645\u4e0a\u662f\u521d\u59cb\u9690\u85cf\u72b6\u6001\u548c\u521d\u59cb\u7ec6\u80de\u72b6\u6001\u7684\u5143\u7ec4": 236, "\u73b0\u5728\u6211\u4eec\u6765\u6267\u884c\u6709\u8da3\u7684\u90e8\u5206": 236, "\u6211\u4eec\u521b\u5efa\u4e00\u4e2a\u540d\u4e3a": 236, "float_lstm": 236, "\u7684\u6a21\u578b\u5b9e\u4f8b": 236, "\u7136\u540e\u6211\u4eec\u5c06\u5bf9\u5176\u8fdb\u884c\u91cf\u5316": 236, "\u5b83\u63a5\u53d7\u6a21\u578b": 236, "\u6211\u4eec\u5e0c\u671b\u91cf\u5316\u7684\u5b50\u6a21\u5757\u5217\u8868": 236, "\u5982\u679c\u5b58\u5728": 236, "\u4ee5\u53ca\u76ee\u6807\u6570\u636e\u7c7b\u578b": 236, "\u6b64\u51fd\u6570\u8fd4\u56de\u539f\u59cb\u6a21\u578b\u7684\u91cf\u5316\u7248\u672c": 236, "\u4f5c\u4e3a\u4e00\u4e2a\u65b0\u6a21\u5757": 236, "\u5c31\u8fd9\u4e48\u7b80\u5355": 236, "\u8fd9\u662f\u6211\u4eec\u7684\u6d6e\u70b9\u5b9e\u4f8b": 236, "\u8fd9\u662f\u6267\u884c\u91cf\u5316\u7684\u8c03\u7528": 236, "quantized_lstm": 236, "\u663e\u793a\u6240\u505a\u7684\u66f4\u6539": 236, "\u8fd9\u662f\u8be5\u6a21\u5757\u7684\u6d6e\u70b9\u7248\u672c": 236, "\u73b0\u5728\u662f\u91cf\u5316\u7248\u672c": 236, "\u6211\u4eec\u5df2\u7ecf\u91cf\u5316\u4e86\u6a21\u578b": 236, "\u8fd9\u7ed9\u6211\u4eec\u5e26\u6765\u4e86\u4ec0\u4e48\u597d\u5904": 236, "\u597d\u5904\u4e4b\u4e00\u662f\u6211\u4eec\u7528": 236, "\u548c\u4e00\u4e9b\u8bb0\u5f55\u7684\u6bd4\u4f8b\u56e0\u5b50": 236, "\u66ff\u6362\u4e86": 236, "\u6a21\u578b\u53c2\u6570": 236, "\u8fd9\u610f\u5473\u7740\u5b58\u50a8\u548c\u79fb\u52a8\u6570\u636e\u7684\u5927\u5c0f\u51cf\u5c0f\u4e86\u7ea6": 236, "\u4f7f\u7528\u9ed8\u8ba4\u503c\u65f6": 236, "\u4e0b\u9762\u663e\u793a\u7684\u51cf\u5c0f\u91cf\u5c06\u5c0f\u4e8e": 236, "\u4f46\u5982\u679c\u60a8\u5c06\u6a21\u578b\u5927\u5c0f\u589e\u52a0\u5230\u66f4\u5927\u503c": 236, "\u4f8b\u5982\u5c06": 236, "\u968f\u7740\u5b58\u50a8\u7684\u6a21\u578b\u5927\u5c0f\u8d8a\u6765\u8d8a\u591a\u5730\u7531\u53c2\u6570\u503c\u4e3b\u5bfc": 236, "\u51cf\u5c0f\u91cf\u5c06\u8d8b\u8fd1\u4e8e": 236, "\u500d": 236, "kb": [236, 240], "\u6bd4\u8f83\u5927\u5c0f": 236, "\u500d\u66f4\u5c0f": 236, "\u7b2c\u4e8c\u4e2a\u597d\u5904\u662f\u91cf\u5316\u6a21\u578b\u901a\u5e38\u4f1a\u8fd0\u884c\u5f97\u66f4\u5feb": 236, "\u8fd9\u662f\u7531\u4e8e\u591a\u79cd\u6548\u679c\u7684\u7ec4\u5408": 236, "\u81f3\u5c11\u5305\u62ec": 236, "\u51cf\u5c11\u4e86\u79fb\u52a8\u53c2\u6570\u6570\u636e\u6240\u82b1\u8d39\u7684\u65f6\u95f4": 236, "\u64cd\u4f5c\u66f4\u5feb": 236, "\u8fd9\u4e2a\u8d85\u7ea7\u7b80\u5355\u7684\u7f51\u7edc\u7684\u91cf\u5316\u7248\u672c\u8fd0\u884c\u901f\u5ea6\u66f4\u5feb": 236, "\u5bf9\u4e8e\u66f4\u590d\u6742\u7684\u7f51\u7edc\u901a\u5e38\u4e5f\u662f\u5982\u6b64": 236, "\u4f46\u6b63\u5982\u4ed6\u4eec\u6240\u8bf4": 236, "\u60a8\u7684\u91cc\u7a0b\u53ef\u80fd\u4f1a\u6709\u6240\u4e0d\u540c": 236, "\u8fd9\u53d6\u51b3\u4e8e\u8bb8\u591a\u56e0\u7d20": 236, "\u5305\u62ec\u6a21\u578b\u7684\u7ed3\u6784\u548c\u60a8\u8fd0\u884c\u7684\u786c\u4ef6": 236, "\u6bd4\u8f83\u6027\u80fd": 236, "\u6d6e\u70b9": 236, "\u6211\u4eec\u4e0d\u4f1a\u5728\u8fd9\u91cc\u4ed4\u7ec6\u67e5\u770b\u7cbe\u5ea6": 236, "\u56e0\u4e3a\u6211\u4eec\u4f7f\u7528\u7684\u662f\u968f\u673a\u521d\u59cb\u5316\u7684\u7f51\u7edc": 236, "\u800c\u4e0d\u662f\u7ecf\u8fc7\u6b63\u786e\u8bad\u7ec3\u7684\u7f51\u7edc": 236, "\u6211\u8ba4\u4e3a\u503c\u5f97\u5feb\u901f\u5c55\u793a\u4e00\u4e0b\u91cf\u5316\u7f51\u7edc\u786e\u5b9e\u4ea7\u751f\u4e86\u4e0e\u539f\u59cb\u7f51\u7edc": 236, "\u540c\u4e00\u6570\u91cf\u7ea7": 236, "\u7684\u8f93\u51fa\u5f20\u91cf\u503c": 236, "\u6709\u5173\u66f4\u8be6\u7ec6\u7684\u5206\u6790": 236, "\u8bf7\u53c2\u9605\u672c\u793a\u4f8b\u7ed3\u5c3e\u5904\u5f15\u7528\u7684\u66f4\u9ad8\u7ea7\u6559\u7a0b": 236, "\u8fd0\u884c\u6d6e\u70b9\u6a21\u578b": 236, "mag1": 236, "\u6a21\u578b\u4e2d\u8f93\u51fa\u5f20\u91cf\u503c\u7684\u7edd\u5bf9\u503c\u5747\u503c\u4e3a": 236, "\u8fd0\u884c\u91cf\u5316\u6a21\u578b": 236, "hidden2": 236, "mag2": 236, "\u6bd4\u8f83\u5b83\u4eec": 236, "mag3": 236, "\u8f93\u51fa\u5f20\u91cf\u4e4b\u95f4\u5dee\u503c\u7684\u7edd\u5bf9\u503c\u5747\u503c\u4e3a": 236, "\u6216\u5360": 236, "\u767e\u5206\u6bd4": 236, "\u6211\u4eec\u5df2\u7ecf\u89e3\u91ca\u4e86\u4ec0\u4e48\u662f\u52a8\u6001\u91cf\u5316": 236, "\u5b83\u5e26\u6765\u4e86\u4ec0\u4e48\u597d\u5904": 236, "\u60a8\u5df2\u7ecf\u4f7f\u7528": 236, "\u51fd\u6570\u5feb\u901f\u91cf\u5316\u4e86\u4e00\u4e2a\u7b80\u5355\u7684": 236, "\u8fd9\u662f\u5bf9\u8be5\u6750\u6599\u7684\u5feb\u901f\u548c\u9ad8\u7ea7\u5904\u7406": 236, "\u8981\u4e86\u89e3\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f": 236, "\u8bcd\u8bed\u8a00\u6a21\u578b\u6559\u7a0b": 236, "\u8bcd\u8bed\u8a00\u6a21\u578b": 236, "\u91cf\u5316\u4ecb\u7ecd": 236, "dynamic_quant": [236, 237], "loading_data_recip": [237, 238], "what_is_state_dict": [237, 251], "saving_and_loading_models_for_infer": [237, 244], "custom_dataset_transforms_load": 237, "save_load_across_devic": [237, 242], "saving_and_loading_a_general_checkpoint": [237, 243], "saving_multiple_models_in_one_fil": [237, 245], "warmstarting_model_using_parameters_from_a_different_model": [237, 250], "zeroing_out_gradi": [237, 252], "mobile_perf": 237, "\u5982\u4f55\u5728pytorch\u4e2d\u4f7f\u7528tensorboard": 237, "\u6027\u80fd\u8c03\u4f18\u6307\u5357": 237, "\u5728pytorch\u4e2d\u63a8\u7406\u5f62\u72b6": 237, "\u4f7f\u7528\u4e0d\u540c\u6a21\u578b\u7684\u53c2\u6570\u5bf9\u6a21\u578b\u8fdb\u884c\u70ed\u542f\u52a8": [237, 253], "\u4fdd\u5b58\u548c\u52a0\u8f7d\u901a\u7528\u68c0\u67e5\u70b9": [237, 253], "\u4e2d\u8de8\u8bbe\u5907\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": 237, "\u521b\u5efa\u795e\u7ecf\u7f51\u7edc": [237, 253], "\u5728\u4e00\u4e2a\u6587\u4ef6\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u6a21\u578b": [237, 253], "timer\u5feb\u901f\u5165\u95e8": 237, "\u8fdb\u884c\u6a21\u578b\u53ef\u89e3\u91ca\u6027": [237, 253], "\u52a8\u6001\u91cf\u5316": [237, 253], "sphx_glr_recipes_recipes_zeroing_out_gradi": 237, "\u4e2d\u6e05\u96f6\u68af\u5ea6": [237, 252], "\u4ece\u68c0\u67e5\u70b9\u52a0\u8f7d": [237, 253], "\u7684\u6280\u5de7": [237, 253], "\u4e2d\u4e3a": 237, "\u548c\u5f20\u91cf\u5b50\u7c7b\u63d0\u4f9b\u6269\u5c55\u70b9": 237, "\u81ea\u52a8\u6df7\u5408\u7cbe\u5ea6": [237, 253], "\u63d0\u4f9b\u4e86\u5e7f\u6cdb\u7684\u795e\u7ecf\u7f51\u7edc\u6784\u5efa\u6a21\u5757": 238, "\u5e76\u62e5\u6709\u7b80\u5355": 238, "\u76f4\u89c2\u4e14\u7a33\u5b9a\u7684": 238, "pytorch\u5305\u542b\u7528\u4e8e\u51c6\u5907\u548c\u52a0\u8f7d\u5e38\u89c1\u6570\u636e\u96c6\u7684\u5de5\u5177\u5305": 238, "\u4e3a\u8bad\u7ec3\u6a21\u578b\u63d0\u4f9b\u6570\u636e": 238, "\u6570\u636e\u52a0\u8f7d\u5de5\u5177\u7684\u6838\u5fc3\u7c7b\u4e3a": 238, "\u5b83\u8868\u793a\u6570\u636e\u96c6\u4e0a\u7684\u4e00\u4e2a": 238, "\u53ef\u8fed\u4ee3\u5bf9\u8c61": 238, "\u63d0\u4f9b\u4e86\u5185\u7f6e\u7684\u9ad8\u8d28\u91cf\u6570\u636e\u96c6": 238, "\u4f7f\u7528\u8fd9\u4e9b\u6570\u636e\u96c6\u53ef\u901a\u8fc7": 238, "\u672a\u6765\u4f1a\u6301\u7eed\u65b0\u589e": 238, "yesno": 238, "\u6211\u4eec\u5c06\u6f14\u793a\u5982\u4f55\u6709\u6548\u5730\u5c06\u6570\u636e\u4ece": 238, "\u52a0\u8f7d\u5230": 238, "\u6211\u4eec\u9700\u8981\u5b89\u88c5": 238, "\u4ee5\u8bbf\u95ee\u8be5\u6570\u636e\u96c6": 238, "\u5982\u679c\u5728googl": 238, "\u8bf7\u53d6\u6d88\u6ce8\u91ca\u4ee5\u4e0b\u884c": 238, "\u6839\u636e\u4f7f\u7528\u7684\u5185\u7f6e\u6570\u636e\u96c6": 238, "\u60a8\u8fd8\u53ef\u4ee5\u5b89\u88c5\u5e76\u5bfc\u5165": 238, "\u6570\u636e\u96c6\u5305\u542b\u4e00\u4e2a\u4eba\u8bf4\u5e0c\u4f2f\u6765\u8bed": 238, "\u5426": 238, "\u768460\u4e2a\u5f55\u97f3": 238, "\u6bcf\u4e2a\u5f55\u97f3\u957f\u5ea6\u4e3a8\u4e2a\u5355\u8bcd": 238, "\u521b\u5efa\u4e86\u4e00\u4e2a": 238, "openslr": 238, "waves_yesno": 238, "folder_in_arch": 238, "\u6570\u636e\u96c6\u4e2d\u7684\u6bcf\u4e2a\u6761\u76ee\u90fd\u662f\u4e00\u4e2a\u5143\u7ec4": 238, "\u5f62\u5f0f\u4e3a": 238, "\u6ce2\u5f62": 238, "\u91c7\u6837\u7387": 238, "\u60a8\u5fc5\u987b\u4e3a": 238, "\u6570\u636e\u96c6\u8bbe\u7f6e\u4e00\u4e2a": 238, "\u7528\u4e8e\u5b58\u653e\u8bad\u7ec3\u548c\u6d4b\u8bd5\u6570\u636e\u96c6": 238, "\u5176\u4ed6\u53c2\u6570\u662f\u53ef\u9009\u7684": 238, "\u663e\u793a\u4e86\u5b83\u4eec\u7684\u9ed8\u8ba4\u503c": 238, "\u4ee5\u4e0b\u662f\u5176\u4ed6\u53c2\u6570\u7684\u4e00\u4e9b\u6709\u7528\u4fe1\u606f": 238, "\u5982\u679c\u4e3atrue": 238, "\u5219\u4ece\u4e92\u8054\u7f51\u4e0b\u8f7d\u6570\u636e\u96c6\u5e76\u5c06\u5176\u653e\u5728root\u76ee\u5f55\u4e2d": 238, "\u5982\u679c\u6570\u636e\u96c6\u5df2\u4e0b\u8f7d": 238, "\u5219\u4e0d\u4f1a\u91cd\u65b0\u4e0b\u8f7d": 238, "\u8ba9\u6211\u4eec\u8bbf\u95ee": 238, "\u4e2d\u7684\u4e00\u4e2a\u6570\u636e\u70b9\u662f\u4e00\u4e2a\u5143\u7ec4": 238, "\u5176\u4e2d\u6807\u7b7e\u662f\u4e00\u4e2a\u6574\u6570\u5217\u8868": 238, "1\u8868\u793aye": 238, "0\u8868\u793ano": 238, "yesno_data": 238, "\u9009\u62e9\u6570\u636e\u70b9\u7f16\u53f73": 238, "\u7684\u793a\u4f8b": [238, 257], "waveform": 238, "sample_r": 238, "nlabel": 238, "\u5728\u5b9e\u8df5\u4e2d\u4f7f\u7528\u8fd9\u4e9b\u6570\u636e\u65f6": 238, "\u6700\u597d\u5c06\u6570\u636e\u5212\u5206\u4e3a": 238, "\u6570\u636e\u96c6\u548c": 238, "\u8fd9\u53ef\u786e\u4fdd\u60a8\u6709\u672a\u4f7f\u7528\u7684\u6570\u636e\u6765\u6d4b\u8bd5\u6a21\u578b\u7684\u6027\u80fd": 238, "\u73b0\u5728\u6211\u4eec\u53ef\u4ee5\u8bbf\u95ee\u6570\u636e\u96c6": 238, "\u6211\u4eec\u5fc5\u987b\u901a\u8fc7": 238, "\u4f20\u9012\u5b83": 238, "\u5c06\u6570\u636e\u96c6\u548c\u91c7\u6837\u5668\u7ec4\u5408\u5728\u4e00\u8d77": 238, "\u8fd4\u56de\u6570\u636e\u96c6\u4e0a\u7684\u4e00\u4e2a\u53ef\u8fed\u4ee3\u5bf9\u8c61": 238, "\u6211\u4eec\u7684\u6570\u636e\u73b0\u5728\u53ef\u4ee5\u4f7f\u7528": 238, "\u8fdb\u884c\u8fed\u4ee3": 238, "\u5728\u5f00\u59cb\u8bad\u7ec3\u6a21\u578b\u65f6": 238, "\u8fd9\u5c06\u662f\u5fc5\u9700\u7684": 238, "\u60a8\u4f1a\u6ce8\u610f\u5230": 238, "\u5bf9\u8c61\u4e2d\u7684\u6bcf\u4e2a\u6570\u636e\u6761\u76ee\u90fd\u8f6c\u6362\u4e3a\u4e00\u4e2a\u5f20\u91cf": 238, "\u5176\u4e2d\u5305\u542b\u8868\u793a\u6ce2\u5f62": 238, "\u91c7\u6837\u7387\u548c\u6807\u7b7e\u7684\u5f20\u91cf": 238, "\u60a8\u53ef\u4ee5\u9009\u62e9\u53ef\u89c6\u5316\u6570\u636e": 238, "\u4ee5\u8fdb\u4e00\u6b65\u4e86\u89e3": 238, "\u795d\u8d3a\u60a8": [238, 242, 245, 250], "\u60a8\u5df2\u6210\u529f\u5728pytorch\u4e2d\u52a0\u8f7d\u6570\u636e": 238, "\u67e5\u770b\u8fd9\u4e9b\u5176\u4ed6\u6559\u7a0b": [238, 250, 251, 252], "\u7ee7\u7eed\u60a8\u7684\u5b66\u4e60": [238, 250], "\u5b9a\u4e49\u795e\u7ecf\u7f51\u7edc": 238, "pytorch\u4e2d\u7684state_dict": 238, "mikayla": [239, 246], "gawarecki": [239, 246], "\u5982\u679c\u4f60\u8981\u52a0\u8f7d\u4e00\u4e2a\u68c0\u67e5\u70b9\u5e76\u5e0c\u671b\u5c3d\u53ef\u80fd\u51cf\u5c11\u8ba1\u7b97\u548c\u5185\u5b58\u7684\u4f7f\u7528": 239, "\u672c\u6559\u7a0b\u5c06\u5206\u4eab\u4e00\u4e9b\u63a8\u8350\u7684\u505a\u6cd5": 239, "\u7279\u522b\u662f\u6211\u4eec\u5c06\u8ba8\u8bba\u4ee5\u4e0b\u51e0\u70b9": 239, "\u5173\u952e\u5b57\u53c2\u6570": 239, "\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668": [239, 249], "\u8ba9\u6211\u4eec\u8003\u8651\u4e00\u4e2a\u7b80\u5355\u7684": 239, "\u5b83\u5305\u542b\u4e00\u4e2a\u7ebf\u6027\u5c42\u5217\u8868": 239, "somemodul": 239, "\u4ee5\u4e0b\u4ee3\u7801\u7247\u6bb5\u6f14\u793a\u4e86\u5982\u4f55\u4f7f\u7528": 239, "\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668\u548c": 239, "meta_m": 239, "\u5c06\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u4e0e\u4e0a\u9762\u7684\u8fdb\u884c\u6bd4\u8f83": 239, "\u7b2c\u4e8c\u4e2a\u793a\u4f8b\u6ca1\u6709\u4f7f\u7528\u4e0a\u9762\u5217\u51fa\u7684\u4efb\u4f55\u7279\u6027": 239, "\u56e0\u6b64\u5728\u52a0\u8f7d\u68c0\u67e5\u70b9\u65f6\u8ba1\u7b97\u548c\u5185\u5b58\u6548\u7387\u4f1a\u8f83\u4f4e": 239, "\u5728\u4e0b\u9762\u7684\u90e8\u5206\u4e2d": 239, "\u6211\u4eec\u5c06\u8be6\u7ec6\u8ba8\u8bba\u6bcf\u4e2a\u7279\u6027": 239, "\u8ba9\u6211\u4eec\u8003\u8651\u4f7f\u7528": 239, "\u52a0\u8f7d\u68c0\u67e5\u70b9\u65f6\u4f1a\u53d1\u751f\u4ec0\u4e48": 239, "\u4fdd\u5b58\u68c0\u67e5\u70b9\u65f6": 239, "\u5f20\u91cf\u5b58\u50a8\u4f1a\u88ab\u6807\u8bb0\u4e3a\u4fdd\u5b58\u65f6\u6240\u5728\u7684\u8bbe\u5907": 239, "\u5f20\u91cf\u5b58\u50a8\u5c06\u88ab\u52a0\u8f7d\u5230\u5b83\u4eec\u88ab\u6807\u8bb0\u7684\u8bbe\u5907\u4e0a": 239, "\u9664\u975e\u4f7f\u7528": 239, "\u6807\u5fd7\u8986\u76d6\u6b64\u884c\u4e3a": 239, "\u4e3a\u4e86\u89e3\u91ca\u65b9\u4fbf": 239, "\u6211\u4eec\u5047\u8bbe\u5f20\u91cf\u662f\u4fdd\u5b58\u5728": 239, "\u8fd9\u610f\u5473\u7740\u5728\u7b2c\u4e00\u884c\u4e2d": 239, "\u6240\u6709\u5f20\u91cf\u5b58\u50a8\u5c06\u88ab\u52a0\u8f7d\u5230": 239, "\u5185\u5b58\u4e2d": 239, "\u5728\u4ee5\u4e0b\u60c5\u51b5\u4e0b\u8fd9\u662f\u4e0d\u53ef\u53d6\u7684": 239, "\u5185\u5b58\u5c0f\u4e8e\u68c0\u67e5\u70b9\u7684\u5927\u5c0f": 239, "\u5728\u6267\u884c\u4e00\u4e9b\u6bcf\u5f20\u91cf\u5904\u7406\u4e4b\u524d\u7b49\u5f85\u6574\u4e2a\u68c0\u67e5\u70b9\u88ab\u52a0\u8f7d\u5230\u5185\u5b58\u4e2d": 239, "\u7684\u52a0\u8f7d\u65f6\u95f4": 239, "\u5173\u952e\u5b57\u53c2\u6570\u8bd5\u56fe\u89e3\u51b3\u4e0a\u8ff0\u4e24\u4e2a\u95ee\u9898": 239, "\u987e\u540d\u601d\u4e49": 239, "\u5173\u952e\u5b57\u53c2\u6570\u4f7f\u7528\u4e86": 239, "\u5b83\u5c06\u78c1\u76d8\u4e0a\u7684\u6587\u4ef6\u6620\u5c04\u5230\u865a\u62df\u5185\u5b58\u4e2d": 239, "\u5e76\u8ba9\u64cd\u4f5c\u7cfb\u7edf\u81ea\u52a8\u5904\u7406\u52a0\u8f7d\u548c\u5378\u8f7d\u5230\u7269\u7406\u5185\u5b58": 239, "\u5f53\u4f20\u9012\u6b64\u6807\u5fd7\u65f6": 239, "\u5f20\u91cf\u5b58\u50a8\u5c06\u88ab\u5185\u5b58\u6620\u5c04": 239, "\u5982\u4e0a\u6240\u8ff0": 239, "\u53ef\u4ee5\u4f7f\u7528\u6b64\u53c2\u6570\u5728\u4e0d\u5c06\u6240\u6709\u5f20\u91cf\u5b58\u50a8\u52a0\u8f7d\u5230": 239, "\u5185\u5b58\u4e2d\u7684\u60c5\u51b5\u4e0b\u5bf9\u68c0\u67e5\u70b9\u6267\u884c\u6bcf\u5f20\u91cf\u5904\u7406": 239, "my_special_routin": 239, "\u8fd9\u53ef\u80fd\u662f\u4e00\u4e2a\u66f4\u590d\u6742\u7684\u64cd\u4f5c": 239, "my_processing_funct": 239, "processed_t": 239, "\u8ba9\u6211\u4eec\u8003\u8651\u6a21\u5757\u7684\u521b\u5efa": 239, "\u8fd9\u5c06\u4e3a\u6240\u6709\u53c2\u6570": 239, "\u7f13\u51b2\u533a\u5206\u914d\u5185\u5b58\u5e76\u6839\u636e": 239, "\u4e2d\u5b9a\u4e49\u7684\u9ed8\u8ba4\u521d\u59cb\u5316\u65b9\u6848\u5bf9\u5176\u8fdb\u884c\u521d\u59cb\u5316": 239, "\u5f53\u6211\u4eec\u60f3\u8981\u52a0\u8f7d\u68c0\u67e5\u70b9\u65f6": 239, "\u8fd9\u662f\u6d6a\u8d39\u7684": 239, "\u539f\u56e0\u5982\u4e0b": 239, "\u521d\u59cb\u5316\u5185\u6838\u7684\u7ed3\u679c\u5c06\u88ab": 239, "\u8986\u76d6\u800c\u4ece\u672a\u88ab\u4f7f\u7528": 239, "\u56e0\u6b64\u521d\u59cb\u5316\u662f\u6d6a\u8d39\u7684": 239, "\u4e2d\u4e3a\u8fd9\u4e9b\u53c2\u6570": 239, "\u7f13\u51b2\u533a\u5206\u914d\u4e86\u5185\u5b58": 239, "\u4fdd\u5b58\u7684\u72b6\u6001\u5b57\u5178\u4e5f\u5728": 239, "\u4e2d\u4e3a\u68c0\u67e5\u70b9\u4e2d\u7684\u53c2\u6570": 239, "\u4e3a\u4e86\u89e3\u51b3\u8fd9\u4e24\u4e2a\u95ee\u9898": 239, "\u6211\u4eec\u53ef\u4ee5\u5728\u5b9e\u4f8b\u5316": 239, "tensor_attribut": 239, "\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668\u786e\u4fdd\u5de5\u5382\u8c03\u7528\u5c06\u88ab\u89c6\u4e3a\u4f20\u9012\u4e86\u6307\u5b9a\u7684": 239, "\u4f5c\u4e3a\u53c2\u6570": 239, "\u4e0a\u7684\u5f20\u91cf\u4e0d\u643a\u5e26\u6570\u636e": 239, "\u5b83\u4eec\u5177\u6709\u5f20\u91cf\u6240\u643a\u5e26\u7684\u5176\u4ed6\u5143\u6570\u636e": 239, "new_m": 239, "\u6211\u4eec\u8003\u8651\u52a0\u8f7d\u72b6\u6001\u5b57\u5178": 239, "\u901a\u5e38\u662f\u901a\u8fc7": 239, "param_in_model": 239, "param_in_state_dict": 239, "\u7684\u5c31\u5730\u590d\u5236\u5b9e\u73b0\u7684": 239, "\u8fd9\u610f\u5473\u7740\u72b6\u6001\u5b57\u5178\u4e2d\u5bf9\u5e94\u952e\u7684\u53c2\u6570": 239, "\u7f13\u51b2\u533a\u5c06\u88ab\u590d\u5236\u5230": 239, "\u4e2d\u7684\u53c2\u6570": 239, "\u7f13\u51b2\u533a": 239, "\u8bbe\u5907\u4e0a\u7684\u5f20\u91cf\u8fdb\u884c\u5c31\u5730\u590d\u5236\u662f\u65e0\u64cd\u4f5c\u7684": 239, "\u4e3a\u4e86\u907f\u514d\u8fd9\u79cd\u60c5\u51b5": [239, 240], "\u6211\u4eec\u53ef\u4ee5\u5728": [239, 259], "\u4e2d\u4f20\u9012": 239, "\u8fd9\u91cc\u7684\u4e00\u4e2a\u8b66\u544a\u662f": 239, "\u7531\u4e8e\u4f18\u5316\u5668\u6301\u6709\u5bf9": 239, "\u7684\u5f15\u7528": 239, "\u5982\u679c\u4f20\u9012\u4e86": 239, "\u5219\u5fc5\u987b\u5728\u4ece\u72b6\u6001\u5b57\u5178\u52a0\u8f7d\u6a21\u5757\u540e\u521d\u59cb\u5316\u4f18\u5316\u5668": 239, "set_swap_module_params_on_convers": [239, 246], "\u6765\u907f\u514d\u8fd9\u4e2a\u8b66\u544a": 239, "swap_tensor": 239, "\u63d0\u4f9b\u4e86\u66f4\u591a\u7ec6\u8282": 239, "\u8fd9\u4e00\u6b65\u5fc5\u987b\u5728": 239, "\u4e4b\u540e\u5b8c\u6210": 239, "\u5728\u7248\u672c": 239, "\u53ef\u4ee5\u8003\u8651\u8bbe\u7f6e": 239, "\u603b\u7ed3\u4e00\u4e0b": 239, "\u6211\u4eec\u5b66\u4e60\u4e86": [239, 246], "\u4ee5\u53ca\u5982\u4f55\u5728\u4ece\u68c0\u67e5\u70b9\u52a0\u8f7d\u6a21\u578b\u65f6\u4f7f\u7528\u8fd9\u4e9b\u5de5\u5177\u6765\u63d0\u9ad8\u6548\u7387": 239, "module_load_state_dict_tip": 239, "\u672c\u6559\u7a0b\u89e3\u91ca\u4e86\u5982\u4f55\u4f7f\u7528pytorch": 240, "\u5e76\u6d4b\u91cf\u6a21\u578b\u7b97\u5b50\u7684\u65f6\u95f4\u548c\u5185\u5b58\u6d88\u8017": 240, "\u5f53\u7528\u6237\u9700\u8981\u786e\u5b9a\u6a21\u578b\u4e2d\u6700\u8017\u8d39\u8d44\u6e90\u7684\u7b97\u5b50\u65f6": 240, "pytorch\u5305\u542b\u4e00\u4e2a\u7b80\u5355\u7684profil": 240, "api\u975e\u5e38\u6709\u7528": 240, "\u6211\u4eec\u5c06\u4f7f\u7528\u4e00\u4e2a\u7b80\u5355\u7684": 240, "\u6a21\u578b\u6765\u6f14\u793a\u5982\u4f55\u4f7f\u7528profiler\u5206\u6790\u6a21\u578b\u6027\u80fd": 240, "\u8981\u5b89\u88c5": 240, "\u8bf7\u4f7f\u7528\u4ee5\u4e0b\u547d\u4ee4": 240, "\u5bfc\u5165\u6240\u6709\u5fc5\u9700\u7684\u5e93": 240, "\u5b9e\u4f8b\u5316\u4e00\u4e2a\u7b80\u5355\u7684resnet\u6a21\u578b": 240, "\u4f7f\u7528profiler\u5206\u6790\u5185\u5b58\u6d88\u8017": 240, "\u4f7f\u7528profiler\u5206\u6790\u957f\u65f6\u95f4\u8fd0\u884c\u7684\u4f5c\u4e1a": 240, "\u6a21\u578b\u5b9e\u4f8b": 240, "\u5e76\u4e3a\u5b83\u51c6\u5907\u4e00\u4e2a\u8f93\u5165": 240, "profiler\u901a\u8fc7\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668\u542f\u7528": 240, "\u5e76\u63a5\u53d7\u591a\u4e2a\u53c2\u6570": 240, "\u5176\u4e2d\u4e00\u4e9b\u6700\u6709\u7528\u7684\u53c2\u6570\u5982\u4e0b": 240, "\u8981\u5206\u6790\u7684\u6d3b\u52a8\u5217\u8868": 240, "pytorch\u7b97\u5b50": 240, "torchscript\u51fd\u6570\u548c\u7528\u6237\u5b9a\u4e49\u7684\u4ee3\u7801\u6807\u7b7e": 240, "\u8bbe\u5907\u4e0a\u7684cuda\u5185\u6838": 240, "\u662f\u5426\u8bb0\u5f55\u7b97\u5b50\u8f93\u5165\u7684\u5f62\u72b6": 240, "\u662f\u5426\u62a5\u544a\u6a21\u578b\u5f20\u91cf\u6240\u6d88\u8017\u7684\u5185\u5b58\u91cf": 240, "\u662f\u5426\u6d4b\u91cfcuda\u5185\u6838\u7684\u6267\u884c\u65f6\u95f4": 240, "\u5f53\u4f7f\u7528cuda\u65f6": 240, "profiler\u8fd8\u4f1a\u663e\u793a\u4e3b\u673a\u4e0a\u53d1\u751f\u7684\u8fd0\u884c\u65f6cuda\u4e8b\u4ef6": 240, "\u8ba9\u6211\u4eec\u770b\u770b\u5982\u4f55\u4f7f\u7528profiler\u5206\u6790\u6267\u884c\u65f6\u95f4": 240, "model_infer": 240, "\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668\u4e3a\u4efb\u610f\u4ee3\u7801\u8303\u56f4\u6dfb\u52a0\u7528\u6237\u63d0\u4f9b\u7684\u540d\u79f0\u6807\u7b7e": 240, "\u5728\u4e0a\u9762\u7684\u793a\u4f8b\u4e2d\u4f7f\u7528": 240, "\u4f5c\u4e3a\u6807\u7b7e": 240, "profiler\u5141\u8bb8\u68c0\u67e5\u5728\u4f7f\u7528profiler\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668\u5305\u88c5\u7684\u4ee3\u7801\u8303\u56f4\u5185\u6267\u884c\u671f\u95f4\u8c03\u7528\u4e86\u54ea\u4e9b\u7b97\u5b50": 240, "\u5982\u679c\u540c\u65f6\u5b58\u5728\u591a\u4e2a\u6d3b\u52a8\u7684profiler\u8303\u56f4": 240, "\u4f8b\u5982\u5728\u5e76\u884cpytorch\u7ebf\u7a0b\u4e2d": 240, "\u6bcf\u4e2aprofiling\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668\u53ea\u8ddf\u8e2a\u5176\u5bf9\u5e94\u8303\u56f4\u7684\u7b97\u5b50": 240, "profiler\u8fd8\u4f1a\u81ea\u52a8\u5206\u6790\u4f7f\u7528": 240, "_fork": 240, "\u542f\u52a8\u7684\u5f02\u6b65\u4efb\u52a1": 240, "\u4ee5\u53ca\u5728\u53cd\u5411\u4f20\u64ad\u8fc7\u7a0b\u4e2d\u4f7f\u7528": 240, "\u8c03\u7528\u542f\u52a8\u7684\u53cd\u5411\u4f20\u64ad\u7b97\u5b50": 240, "\u8ba9\u6211\u4eec\u6253\u5370\u51fa\u4e0a\u8ff0\u6267\u884c\u7684\u7edf\u8ba1\u4fe1\u606f": 240, "cpu_time_tot": 240, "\u8f93\u51fa\u5c06\u5982\u4e0b\u6240\u793a": 240, "\u7701\u7565\u4e86\u4e00\u4e9b\u5217": 240, "509m": 240, "503m": 240, "931m": 240, "597m": 240, "700m": 240, "585m": 240, "_convolut": 240, "450m": 240, "mkldnn_convolut": 240, "838m": 240, "114m": 240, "556m": 240, "693m": 240, "_batch_norm_impl_index": 240, "482m": 240, "724": 240, "100u": 240, "native_batch_norm": 240, "229m": 240, "109m": 240, "705": 240, "450u": 240, "332": 240, "631m": 240, "286u": 240, "668m": 240, "292m": 240, "988u": 240, "549m": 240, "group_by_input_shap": 240, "\u8fd9\u91cc\u6211\u4eec\u53ef\u4ee5\u770b\u5230": 240, "\u5982\u9884\u671f\u7684\u90a3\u6837": 240, "\u5927\u90e8\u5206\u65f6\u95f4\u90fd\u82b1\u5728\u4e86\u5377\u79ef\u4e0a": 240, "\u5bf9\u4e8e\u4f7f\u7528": 240, "\u652f\u6301\u7f16\u8bd1\u7684pytorch": 240, "\u7279\u522b\u662f\u5728": 240, "\u6ce8\u610f\u81ea\u8eabcpu\u65f6\u95f4\u548ccpu\u65f6\u95f4\u4e4b\u95f4\u7684\u533a\u522b": 240, "\u7b97\u5b50\u53ef\u4ee5\u8c03\u7528\u5176\u4ed6\u7b97\u5b50": 240, "\u81ea\u8eabcpu\u65f6\u95f4\u4e0d\u5305\u62ec\u5728\u5b50\u7b97\u5b50\u8c03\u7528\u4e2d\u82b1\u8d39\u7684\u65f6\u95f4": 240, "\u800c\u603bcpu\u65f6\u95f4\u5305\u62ec\u4e86\u5b83": 240, "\u4f60\u53ef\u4ee5\u901a\u8fc7\u5c06": 240, "\u8c03\u7528\u6765\u9009\u62e9\u6309\u81ea\u8eabcpu\u65f6\u95f4\u6392\u5e8f": 240, "\u8981\u83b7\u5f97\u66f4\u7ec6\u7c92\u5ea6\u7684\u7ed3\u679c\u5e76\u5305\u542b\u7b97\u5b50\u8f93\u5165\u5f62\u72b6": 240, "\u8bf7\u4f20\u9012": 240, "\u8fd9\u9700\u8981\u4f7f\u7528": 240, "\u8fd0\u884cprofil": 240, "\u8f93\u51fa\u53ef\u80fd\u5982\u4e0b\u6240\u793a": 240, "008m": 240, "956m": 240, "909m": 240, "834m": 240, "332m": 240, "303m": 240, "273m": 240, "233m": 240, "751m": 240, "\u51fa\u73b0\u4e86\u4e24\u6b21": 240, "\u5177\u6709\u4e0d\u540c\u7684\u8f93\u5165\u5f62\u72b6": 240, "profiler\u4e5f\u53ef\u7528\u4e8e\u5206\u6790\u5728gpu\u4e0a\u6267\u884c\u7684\u6a21\u578b\u7684\u6027\u80fd": 240, "\u7b2c\u4e00\u6b21\u4f7f\u7528cuda\u5206\u6790\u53ef\u80fd\u4f1a\u5e26\u6765\u989d\u5916\u7684\u5f00\u9500": 240, "\u7ed3\u679c\u8f93\u51fa": 240, "666m": 240, "484m": 240, "_convolution_nogroup": 240, "thnn_conv2d": 240, "thnn_conv2d_forward": 240, "im2col_kernel": 240, "844m": 240, "sgemm_32x32x32_nn": 240, "206m": 240, "sgemm_32x32x32_nn_vec": 240, "093m": 240, "015m": 240, "\u6ce8\u610f\u5728\u8f93\u51fa\u4e2d\u51fa\u73b0\u4e86\u8bbe\u5907\u4e0a\u7684\u5185\u6838": 240, "profiler\u8fd8\u53ef\u4ee5\u663e\u793a\u5728\u6267\u884c\u6a21\u578b\u7b97\u5b50\u671f\u95f4\u5206\u914d": 240, "\u6216\u91ca\u653e": 240, "\u7684\u5185\u5b58\u91cf": 240, "\u7531\u6a21\u578b\u5f20\u91cf\u4f7f\u7528": 240, "\u5728\u4e0b\u9762\u7684\u8f93\u51fa\u4e2d": 240, "\u5185\u5b58\u5bf9\u5e94\u4e8e\u7b97\u5b50\u5206\u914d": 240, "\u91ca\u653e": 240, "\u7684\u5185\u5b58": 240, "\u4e0d\u5305\u62ec\u5bf9\u5176\u4ed6\u7b97\u5b50\u7684\u5b50\u8c03\u7528": 240, "\u8981\u542f\u7528\u5185\u5b58\u5206\u6790\u529f\u80fd": 240, "self_cpu_memory_usag": 240, "max_pool2d_with_indic": 240, "572": 240, "resize_": 240, "064m": 240, "cpu_memory_usag": 240, "\u8f93\u51fa\u5982\u4e0b\u6240\u793a": [240, 261], "\u53ef\u4ee5\u5c06\u5206\u6790\u7ed3\u679c\u8f93\u51fa\u4e3a": 240, "\u8ddf\u8e2a\u6587\u4ef6": 240, "\u4f60\u53ef\u4ee5\u5728chrome\u8ddf\u8e2a\u67e5\u770b\u5668": 240, "\u4e2d\u68c0\u67e5\u5206\u6790\u7684\u7b97\u5b50\u548ccuda\u5185\u6838\u5e8f\u5217": 240, "\u53ef\u7528\u4e8e\u5206\u6790": 240, "\u5806\u6808\u8ddf\u8e2a": 240, "self_cuda_time_tot": 240, "439": 240, "_conv_forward": 240, "1051": 240, "_call_impl": 240, "016m": 240, "659m": 240, "\u6ce8\u610f\u5728": 240, "\u811a\u672c\u4e2d\u7684\u4e24\u4e2a\u5377\u79ef\u548c\u4e24\u4e2a\u8c03\u7528\u4f4d\u7f6e": 240, "\u8b66\u544a": 240, "\u5806\u6808\u8ddf\u8e2a\u4f1a\u589e\u52a0\u989d\u5916\u7684\u5206\u6790\u5f00\u9500": 240, "pytorch\u5206\u6790\u5668\u63d0\u4f9b\u4e86\u4e00\u4e2a\u989d\u5916\u7684api\u6765\u5904\u7406\u957f\u65f6\u95f4\u8fd0\u884c\u7684\u4f5c\u4e1a": 240, "\u4f8b\u5982\u8bad\u7ec3\u5faa\u73af": 240, "\u8ddf\u8e2a\u6240\u6709\u6267\u884c\u53ef\u80fd\u4f1a\u5f88\u6162": 240, "\u5e76\u5bfc\u81f4\u975e\u5e38\u5927\u7684\u8ddf\u8e2a\u6587\u4ef6": 240, "\u53ef\u4ee5\u4f7f\u7528\u53ef\u9009\u53c2\u6570": 240, "\u6307\u5b9a\u4e00\u4e2a\u51fd\u6570": 240, "\u8be5\u51fd\u6570\u4ee5\u6574\u6570\u53c2\u6570": 240, "\u6b65\u9aa4\u7f16\u53f7": 240, "\u4f5c\u4e3a\u8f93\u5165": 240, "\u5e76\u8fd4\u56de\u5206\u6790\u5668\u7684\u64cd\u4f5c": 240, "\u4f7f\u7528\u6b64\u53c2\u6570\u7684\u6700\u4f73\u65b9\u5f0f\u662f\u4f7f\u7528": 240, "\u5e2e\u52a9\u51fd\u6570": 240, "\u5b83\u53ef\u4ee5\u4e3a\u60a8\u751f\u6210\u4e00\u4e2a\u8ba1\u5212": 240, "\u8be5\u51fd\u6570\u4ee5\u5206\u6790\u5668\u7684\u5f15\u7528\u4f5c\u4e3a\u8f93\u5165": 240, "\u5e76\u5728\u6bcf\u6b21\u65b0\u7684\u8ddf\u8e2a\u51c6\u5907\u5c31\u7eea\u65f6\u7531\u5206\u6790\u5668\u8c03\u7528": 240, "\u4e3a\u4e86\u8bf4\u660e\u8be5api\u7684\u5de5\u4f5c\u539f\u7406": 240, "\u8ba9\u6211\u4eec\u9996\u5148\u8003\u8651\u4ee5\u4e0b\u4f7f\u7528": 240, "\u5e2e\u52a9\u51fd\u6570\u7684\u793a\u4f8b": 240, "\u5206\u6790\u5668\u5047\u8bbe\u957f\u65f6\u95f4\u8fd0\u884c\u7684\u4f5c\u4e1a\u7531\u4ece\u96f6\u5f00\u59cb\u7f16\u53f7\u7684\u6b65\u9aa4\u7ec4\u6210": 240, "\u4e0a\u9762\u7684\u793a\u4f8b\u4e3a\u5206\u6790\u5668\u5b9a\u4e49\u4e86\u4ee5\u4e0b\u64cd\u4f5c\u5e8f\u5217": 240, "\u544a\u8bc9\u5206\u6790\u5668\u5b83\u5e94\u8be5\u5ffd\u7565\u524d10\u4e2a\u6b65\u9aa4": 240, "\u7684\u9ed8\u8ba4\u503c\u4e3a\u96f6": 240, "\u6b65\u9aa4\u4e4b\u540e": 240, "\u5206\u6790\u5668\u5f00\u59cb\u6267\u884c\u5206\u6790\u5668\u5468\u671f": 240, "\u6bcf\u4e2a\u5468\u671f\u7531\u4e09\u4e2a\u9636\u6bb5\u7ec4\u6210": 240, "\u7a7a\u95f2": 240, "\u5728\u6b64\u9636\u6bb5\u5206\u6790\u5668\u4e0d\u6d3b\u52a8": 240, "\u5728\u6b64\u9636\u6bb5\u5206\u6790\u5668\u5f00\u59cb\u8ddf\u8e2a": 240, "\u4f46\u7ed3\u679c\u88ab\u4e22\u5f03": 240, "\u6b64\u9636\u6bb5\u7528\u4e8e\u4e22\u5f03\u5206\u6790\u5668\u5728\u8ddf\u8e2a\u5f00\u59cb\u65f6\u83b7\u5f97\u7684\u6837\u672c": 240, "\u56e0\u4e3a\u5b83\u4eec\u901a\u5e38\u7531\u989d\u5916\u7684\u5f00\u9500\u626d\u66f2": 240, "\u4e3b\u52a8\u8ddf\u8e2a": 240, "\u5728\u6b64\u9636\u6bb5\u5206\u6790\u5668\u8ddf\u8e2a\u548c\u8bb0\u5f55\u6570\u636e": 240, "\u53ef\u9009\u7684": 240, "\u53c2\u6570\u6307\u5b9a\u5468\u671f\u7684\u4e0a\u9650": 240, "\u96f6\u503c": 240, "\u5206\u6790\u5668\u5c06\u5c3d\u53ef\u80fd\u957f\u65f6\u95f4\u5730\u6267\u884c\u5468\u671f": 240, "\u5206\u6790\u5668\u5c06\u8df3\u8fc7\u524d15\u4e2a\u6b65\u9aa4": 240, "\u5728\u4e0b\u4e00\u6b65\u8fdb\u884c\u9884\u70ed": 240, "\u5728\u63a5\u4e0b\u6765\u76843\u4e2a\u6b65\u9aa4\u4e2d\u4e3b\u52a8\u8bb0\u5f55": 240, "\u518d\u8df3\u8fc7\u53e6\u59165\u4e2a\u6b65\u9aa4": 240, "\u5728\u53e6\u59163\u4e2a\u6b65\u9aa4\u4e2d\u4e3b\u52a8\u8bb0\u5f55": 240, "\u7531\u4e8e\u6307\u5b9a\u4e86": 240, "\u53c2\u6570\u503c": 240, "\u5206\u6790\u5668\u5c06\u5728\u524d\u4e24\u4e2a\u5468\u671f\u4e4b\u540e\u505c\u6b62\u8bb0\u5f55": 240, "\u5728\u6bcf\u4e2a\u5468\u671f\u7ed3\u675f\u65f6": 240, "\u5206\u6790\u5668\u8c03\u7528\u6307\u5b9a\u7684": 240, "\u51fd\u6570\u5e76\u5c06\u81ea\u8eab\u4f5c\u4e3a\u53c2\u6570\u4f20\u9012": 240, "\u6b64\u51fd\u6570\u7528\u4e8e\u5904\u7406\u65b0\u7684\u8ddf\u8e2a": 240, "\u901a\u8fc7\u83b7\u53d6\u8868\u8f93\u51fa\u6216\u5c06\u8f93\u51fa\u4fdd\u5b58\u5230\u78c1\u76d8\u4e0a\u7684\u8ddf\u8e2a\u6587\u4ef6": 240, "\u8981\u5411\u5206\u6790\u5668\u53d1\u9001\u4e0b\u4e00\u6b65\u5df2\u7ecf\u5f00\u59cb\u7684\u4fe1\u53f7": 240, "\u8bf7\u8c03\u7528": [240, 245, 247], "\u5f53\u524d\u5206\u6790\u5668\u6b65\u9aa4\u5b58\u50a8\u5728": 240, "\u4ee5\u4e0b\u793a\u4f8b\u663e\u793a\u4e86\u5982\u4f55\u4f7f\u7528\u4e0a\u8ff0\u6240\u6709\u6982\u5ff5": 240, "trace_": 240, "\u67e5\u770b\u4ee5\u4e0b\u6559\u7a0b\u4ee5\u7ee7\u7eed\u5b66\u4e60": 240, "\u5206\u6790\u5668": 240, "\u53ef\u89c6\u5316\u6a21\u578b": 240, "\u6570\u636e\u548c\u8bad\u7ec3": [240, 247], "profiler_recip": 240, "\u5728\u4f7f\u7528pytorch\u7f16\u5199\u6a21\u578b\u65f6": 241, "\u901a\u5e38\u4f1a\u9047\u5230\u67d0\u4e00\u5c42\u7684\u53c2\u6570\u53d6\u51b3\u4e8e\u524d\u4e00\u5c42\u8f93\u51fa\u7684\u5f62\u72b6\u7684\u60c5\u51b5": 241, "\u5c42\u7684": 241, "\u5fc5\u987b\u4e0e\u8f93\u5165\u7684": 241, "\u76f8\u5339\u914d": 241, "\u5bf9\u4e8e\u67d0\u4e9b\u5c42": 241, "\u5f62\u72b6\u8ba1\u7b97\u6d89\u53ca\u590d\u6742\u7684\u7b49\u5f0f": 241, "\u4f8b\u5982\u5377\u79ef\u8fd0\u7b97": 241, "\u4e00\u79cd\u89e3\u51b3\u65b9\u6cd5\u662f\u4f7f\u7528\u968f\u673a\u8f93\u5165\u8fdb\u884c\u524d\u5411\u4f20\u64ad": 241, "\u4f46\u8fd9\u5728\u5185\u5b58\u548c\u8ba1\u7b97\u65b9\u9762\u662f\u6d6a\u8d39\u7684": 241, "\u8bbe\u5907\u6765\u786e\u5b9a\u5c42\u7684\u8f93\u51fa\u5f62\u72b6": 241, "\u800c\u65e0\u9700\u5b9e\u9645\u5316\u4efb\u4f55\u6570\u636e": 241, "\u6240\u9700\u65f6\u95f4": 241, "\u89c2\u5bdf\u5230": 241, "\u7531\u4e8e\u6ca1\u6709\u5b9e\u9645\u5316\u6570\u636e": 241, "\u5373\u4f7f\u4f20\u5165\u4efb\u610f\u5927\u7684\u8f93\u5165": 241, "\u7528\u4e8e\u5f62\u72b6\u8ba1\u7b97\u7684\u65f6\u95f4\u4e5f\u4e0d\u4f1a\u663e\u8457\u6539\u53d8": 241, "t_larg": 241, "\u8003\u8651\u4ee5\u4e0b\u4efb\u610f\u7f51\u7edc": 241, "\u5c55\u5e73\u9664\u6279\u6b21\u7ef4\u5ea6\u5916\u7684\u6240\u6709\u7ef4\u5ea6": 241, "\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u4e3a\u6bcf\u4e00\u5c42\u6ce8\u518c\u4e00\u4e2a\u524d\u5411\u94a9\u5b50\u6765\u6253\u5370\u8f93\u51fa\u7684\u5f62\u72b6": 241, "\u4ece\u800c\u67e5\u770b\u6574\u4e2a\u7f51\u7edc\u4e2d\u95f4\u5c42\u7684\u5f62\u72b6": 241, "fw_hook": 241, "\u7684\u8f93\u51fa\u5f62\u72b6\u4e3a": 241, "\u5728\u6b64torch": 241, "device\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668\u4e2d\u521b\u5efa\u7684\u4efb\u4f55\u5f20\u91cf\u90fd\u5c06\u5728meta\u8bbe\u5907\u4e0a": 241, "reasoning_about_shap": 241, "\u60a8\u53ef\u80fd\u9700\u8981\u5728\u4e0d\u540c\u7684\u8bbe\u5907\u4e4b\u95f4\u4fdd\u5b58\u548c\u52a0\u8f7d\u795e\u7ecf\u7f51\u7edc\u6a21\u578b": 242, "\u4f7f\u7528pytorch\u5728\u4e0d\u540c\u8bbe\u5907\u4e4b\u95f4\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u662f\u76f8\u5bf9\u76f4\u63a5\u7684": 242, "\u6211\u4eec\u5c06\u5c1d\u8bd5\u5728cpu\u548cgpu\u4e4b\u95f4\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": 242, "\u4e3a\u4e86\u8ba9\u672c\u6559\u7a0b\u4e2d\u7684\u6bcf\u4e2a\u4ee3\u7801\u5757\u90fd\u80fd\u6b63\u786e\u8fd0\u884c": 242, "\u60a8\u5fc5\u987b\u5148\u5c06\u8fd0\u884c\u73af\u5883\u5207\u6362\u5230": 242, "\u6216\u66f4\u9ad8": 242, "\u5b8c\u6210\u540e": 242, "\u6211\u4eec\u9700\u8981\u5b89\u88c5\u5b83": [242, 243], "\u4fdd\u5b58\u548c\u52a0\u8f7d": 242, "\u4e3a\u4e86\u6f14\u793a": [242, 244, 245, 251], "\u6211\u4eec\u5c06\u521b\u5efa\u4e00\u4e2a\u7528\u4e8e\u8bad\u7ec3\u56fe\u50cf\u7684\u795e\u7ecf\u7f51\u7edc": [242, 243, 244, 245, 250, 251], "\u8981\u4e86\u89e3\u66f4\u591a\u4fe1\u606f": [242, 243, 244, 245, 250, 251, 252], "\u8bf7\u53c2\u9605\u5b9a\u4e49\u795e\u7ecf\u7f51\u7edc\u7684\u6559\u7a0b": [242, 244, 245, 250, 251], "\u5f53\u5728cpu\u4e0a\u52a0\u8f7d\u4f7f\u7528gpu\u8bad\u7ec3\u7684\u6a21\u578b\u65f6": 242, "\u8bf7\u5c06": 242, "\u6307\u5b9a\u4fdd\u5b58\u8def\u5f84": [242, 245, 250], "\u5f20\u91cf\u5e95\u5c42\u7684\u5b58\u50a8\u5c06\u4f7f\u7528": 242, "\u53c2\u6570\u52a8\u6001\u91cd\u65b0\u6620\u5c04\u5230cpu\u8bbe\u5907": 242, "\u5f53\u5728gpu\u4e0a\u52a0\u8f7d\u4f7f\u7528gpu\u8bad\u7ec3\u548c\u4fdd\u5b58\u7684\u6a21\u578b\u65f6": 242, "\u53ea\u9700\u4f7f\u7528": 242, "\u5c06\u521d\u59cb\u5316\u7684\u6a21\u578b\u8f6c\u6362\u4e3acuda\u4f18\u5316\u6a21\u578b": 242, "\u8bf7\u786e\u4fdd\u5bf9\u6240\u6709\u6a21\u578b\u8f93\u5165\u4f7f\u7528": 242, "\u4e3a\u6a21\u578b\u51c6\u5907\u6570\u636e": 242, "\u4f1a\u8fd4\u56de": 242, "\u5728gpu\u4e0a\u7684\u65b0\u526f\u672c": 242, "\u5b83\u4e0d\u4f1a\u8986\u76d6": 242, "\u8bf7\u8bb0\u4f4f\u624b\u52a8\u8986\u76d6\u5f20\u91cf": 242, "\u5f53\u5728gpu\u4e0a\u52a0\u8f7d\u4f7f\u7528cpu\u8bad\u7ec3\u548c\u4fdd\u5b58\u7684\u6a21\u578b\u65f6": 242, "\u51fd\u6570\u4e2d\u5c06": [242, 250], "\u53c2\u6570\u8bbe\u7f6e\u4e3a": [242, 250], "\u5c06\u6a21\u578b\u52a0\u8f7d\u5230\u7ed9\u5b9a\u7684gpu\u8bbe\u5907": 242, "\u5c06\u6a21\u578b\u7684\u53c2\u6570\u5f20\u91cf\u8f6c\u6362\u4e3acuda\u5f20\u91cf": 242, "\u8fd8\u8981\u786e\u4fdd\u5bf9\u6240\u6709\u6a21\u578b\u8f93\u5165\u4f7f\u7528": 242, "\u4e3acuda\u4f18\u5316\u7684\u6a21\u578b\u51c6\u5907\u6570\u636e": 242, "\u9009\u62e9\u60a8\u60f3\u7528\u7684gpu\u8bbe\u5907\u7f16\u53f7": 242, "\u662f\u4e00\u4e2a\u6a21\u578b\u5305\u88c5\u5668": 242, "\u53ef\u4ee5\u542f\u7528\u5e76\u884cgpu\u5229\u7528": 242, "\u8981\u901a\u7528\u5730\u4fdd\u5b58": 242, "\u8bf7\u4fdd\u5b58": 242, "\u60a8\u5c31\u53ef\u4ee5\u7075\u6d3b\u5730\u5c06\u6a21\u578b\u52a0\u8f7d\u5230\u4efb\u4f55\u8bbe\u5907": 242, "\u52a0\u8f7d\u5230\u4efb\u4f55\u60a8\u60f3\u8981\u7684\u8bbe\u5907": 242, "\u60a8\u5df2\u6210\u529f\u5728pytorch\u4e2d\u8de8\u8bbe\u5907\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": 242, "\u4fdd\u5b58\u548c\u52a0\u8f7d\u901a\u7528\u68c0\u67e5\u70b9\u6a21\u578b\u7528\u4e8e\u63a8\u7406\u6216\u6062\u590d\u8bad\u7ec3\u53ef\u4ee5\u5e2e\u52a9\u4f60\u4ece\u4e0a\u6b21\u79bb\u5f00\u7684\u5730\u65b9\u7ee7\u7eed": 243, "\u5f53\u4fdd\u5b58\u901a\u7528\u68c0\u67e5\u70b9\u65f6": 243, "\u4f60\u5fc5\u987b\u4fdd\u5b58\u4e0d\u4ec5\u4ec5\u662f\u6a21\u578b\u7684": 243, "\u540c\u65f6\u4e5f\u5f88\u91cd\u8981\u4fdd\u5b58\u4f18\u5316\u5668\u7684": 243, "\u56e0\u4e3a\u5b83\u5305\u542b\u4e86\u5728\u6a21\u578b\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u66f4\u65b0\u7684\u7f13\u51b2\u533a\u548c\u53c2\u6570": 243, "\u6839\u636e\u4f60\u81ea\u5df1\u7684\u7b97\u6cd5": 243, "\u4f60\u53ef\u80fd\u8fd8\u9700\u8981\u4fdd\u5b58\u4f60\u79bb\u5f00\u65f6\u7684": 243, "\u6700\u65b0\u8bb0\u5f55\u7684\u8bad\u7ec3\u635f\u5931": 243, "\u5916\u90e8\u7684": 243, "\u5c42\u7b49\u7b49": 243, "\u8981\u4fdd\u5b58\u591a\u4e2a\u68c0\u67e5\u70b9": 243, "\u4f60\u5fc5\u987b\u5c06\u5b83\u4eec\u7ec4\u7ec7\u5728\u4e00\u4e2a\u5b57\u5178\u4e2d": 243, "\u6765\u5e8f\u5217\u5316\u8fd9\u4e2a\u5b57\u5178": 243, "\u4e00\u4e2a\u5e38\u89c1\u7684": 243, "\u7ea6\u5b9a\u662f\u4f7f\u7528": 243, "\u6587\u4ef6\u6269\u5c55\u540d\u6765\u4fdd\u5b58\u8fd9\u4e9b\u68c0\u67e5\u70b9": 243, "\u8981\u52a0\u8f7d\u8fd9\u4e9b\u9879\u76ee": 243, "\u9996\u5148\u521d\u59cb\u5316\u6a21\u578b\u548c\u4f18\u5316\u5668": [243, 245], "\u5728\u672c\u5730\u52a0\u8f7d\u5b57\u5178": [243, 245], "\u4ece\u8fd9\u91cc\u5f00\u59cb": [243, 245], "\u4f60\u53ef\u4ee5\u901a\u8fc7\u7b80\u5355\u5730\u67e5\u8be2\u5b57\u5178\u6765\u8f7b\u677e\u8bbf\u95ee\u4fdd\u5b58\u7684\u9879\u76ee": 243, "\u5c31\u50cf\u4f60\u671f\u671b\u7684\u90a3\u6837": 243, "\u6211\u4eec\u5c06\u63a2\u7d22\u5982\u4f55\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u68c0\u67e5\u70b9": 243, "\u5bf9\u4e8e\u8fd9\u4e2a\u793a\u4f8b": 243, "\u4e3a\u4e86\u793a\u4f8b": 243, "\u8bf7\u53c2\u9605\u5b9a\u4e49\u795e\u7ecf\u7f51\u7edc\u7684\u793a\u4f8b": 243, "\u6536\u96c6\u6240\u6709\u76f8\u5173\u4fe1\u606f\u5e76\u6784\u5efa\u5b57\u5178": [243, 245], "\u9644\u52a0\u4fe1\u606f": 243, "\u7136\u540e\u5728\u672c\u5730\u52a0\u8f7d\u5b57\u5178": [243, 245], "\u6216\u8005": [243, 248, 249, 258], "\u4f60\u5fc5\u987b\u8c03\u7528model": 243, "\u6765\u5c06dropout\u548c\u6279\u5f52\u4e00\u5316\u5c42\u8bbe\u7f6e\u4e3a\u8bc4\u4f30\u6a21\u5f0f": 243, "\u7136\u540e\u624d\u80fd\u8fd0\u884c\u63a8\u7406": 243, "\u5c06\u4f1a\u5f97\u5230\u4e0d\u4e00\u81f4\u7684\u63a8\u7406\u7ed3\u679c": 243, "\u5982\u679c\u4f60\u5e0c\u671b\u6062\u590d\u8bad\u7ec3": 243, "\u4ee5\u786e\u4fdd\u8fd9\u4e9b\u5c42\u5904\u4e8e\u8bad\u7ec3\u6a21\u5f0f": [243, 245], "\u4f60\u5df2\u7ecf\u6210\u529f\u4fdd\u5b58\u548c\u52a0\u8f7d\u4e86\u4e00\u4e2a\u901a\u7528\u68c0\u67e5\u70b9": 243, "\u5728pytorch\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u6709\u4e24\u79cd\u65b9\u6cd5": 244, "\u7b2c\u4e00\u79cd\u662f\u4fdd\u5b58\u548c\u52a0\u8f7d": 244, "\u7b2c\u4e8c\u79cd\u662f\u4fdd\u5b58\u548c\u52a0\u8f7d\u6574\u4e2a\u6a21\u578b": 244, "\u51fd\u6570\u4fdd\u5b58\u6a21\u578b\u7684": 244, "\u4e3a\u540e\u7eed\u6062\u590d\u6a21\u578b\u63d0\u4f9b\u8f83\u5927\u7684\u7075\u6d3b\u6027": 244, "\u4fdd\u5b58\u6a21\u578b\u7684\u63a8\u8350\u4f7f\u7528\u6b64\u65b9\u6cd5": 244, "\u56e0\u4e3a\u53ea\u9700\u8981\u4fdd\u5b58\u8bad\u7ec3\u597d\u7684\u6a21\u578b\u7684\u5b66\u4e60\u53c2\u6570": 244, "\u5f53\u4fdd\u5b58\u548c\u52a0\u8f7d\u6574\u4e2a\u6a21\u578b\u65f6": 244, "\u4f60\u4f7f\u7528python": 244, "\u6a21\u5757\u4fdd\u5b58\u6574\u4e2a\u6a21\u5757": 244, "\u4f7f\u7528\u8fd9\u79cd\u65b9\u6cd5\u8bed\u6cd5\u6700\u76f4\u89c2": 244, "\u4ee3\u7801\u91cf\u6700\u5c11": 244, "\u4f46\u8fd9\u79cd\u65b9\u6cd5\u7684\u7f3a\u70b9\u662f\u5e8f\u5217\u5316\u7684\u6570\u636e\u4e0e\u4fdd\u5b58\u6a21\u578b\u65f6\u4f7f\u7528\u7684\u7279\u5b9a\u7c7b\u548c\u76ee\u5f55\u7ed3\u6784\u7ed1\u5b9a\u5728\u4e00\u8d77": 244, "\u539f\u56e0\u662fpickle\u4e0d\u4fdd\u5b58\u6a21\u578b\u7c7b\u672c\u8eab": 244, "\u800c\u662f\u4fdd\u5b58\u5305\u542b\u8be5\u7c7b\u7684\u6587\u4ef6\u7684\u8def\u5f84": 244, "\u8be5\u8def\u5f84\u5728\u52a0\u8f7d\u65f6\u4f7f\u7528": 244, "\u5f53\u5728\u5176\u4ed6\u9879\u76ee\u4e2d\u4f7f\u7528\u6216\u91cd\u6784\u540e": 244, "\u4ee3\u7801\u53ef\u80fd\u4f1a\u51fa\u73b0\u5404\u79cd\u5f02\u5e38\u5bfc\u81f4\u7a0b\u5e8f\u4e2d\u65ad": 244, "\u6211\u4eec\u5c06\u5c55\u793a\u4e24\u79cd\u65b9\u5f0f\u5982\u4f55\u5728pytorch\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": 244, "\u8ba9\u6211\u4eec\u53ea\u4f7f\u7528": 244, "\u6765\u4fdd\u5b58\u548c\u52a0\u8f7d\u6211\u4eec\u7684\u6a21\u578b": 244, "\u8def\u5f84": 244, "state_dict_model": 244, "\u901a\u5e38\u4f7f\u7528": 244, "\u6587\u4ef6\u6269\u5c55\u540d\u6765\u4fdd\u5b58\u6a21\u578b": 244, "\u51fd\u6570\u63a5\u53d7\u4e00\u4e2a\u5b57\u5178\u5bf9\u8c61": 244, "\u800c\u4e0d\u662f\u4fdd\u5b58\u5bf9\u8c61\u7684\u8def\u5f84": 244, "\u8fd9\u610f\u5473\u7740\u4f60\u5fc5\u987b\u5148\u53cd\u5e8f\u5217\u5316\u4fdd\u5b58\u7684state_dict": 244, "\u7136\u540e\u518d\u4f20\u9012\u7ed9": 244, "\u4e0d\u80fd\u4f7f\u7528": 244, "\u6765\u52a0\u8f7d": 244, "\u8fd8\u8981\u8bb0\u4f4f": 244, "\u5728\u8fd0\u884c\u63a8\u7406\u4e4b\u524d": [244, 245], "\u4f60\u5fc5\u987b\u8c03\u7528": 244, "\u5c06dropout\u548cbatch": 244, "\u5426\u5219\u5c06\u5bfc\u81f4\u63a8\u7406\u7ed3\u679c\u4e0d\u4e00\u81f4": [244, 245], "\u73b0\u5728\u8ba9\u6211\u4eec\u5c1d\u8bd5\u5c06\u6574\u4e2a\u6a21\u578b\u8fdb\u884c\u4fdd\u5b58\u548c\u52a0\u8f7d": 244, "entire_model": 244, "\u540c\u6837\u8981\u8bb0\u4f4f\u5728\u8fd0\u884c\u63a8\u7406\u4e4b\u524d\u8c03\u7528": 244, "\u8bbe\u7f6e\u4e3a\u8bc4\u4f30\u6a21\u5f0f": 244, "\u4f60\u5df2\u7ecf\u6210\u529f\u5730\u5728pytorch\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u4e86\u7528\u4e8e\u63a8\u7406\u7684\u6a21\u578b": 244, "pytorch\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u901a\u7528\u68c0\u67e5\u70b9": 244, "pytorch\u4e2d\u5c06\u591a\u4e2a\u6a21\u578b\u4fdd\u5b58\u5728\u4e00\u4e2a\u6587\u4ef6\u4e2d": 244, "\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u6a21\u578b": 245, "\u53ef\u4ee5\u5e2e\u52a9\u60a8\u91cd\u7528\u4e4b\u524d\u8bad\u7ec3\u8fc7\u7684\u6a21\u578b": 245, "\u5f53\u4fdd\u5b58\u7531\u591a\u4e2a": 245, "\u7ec4\u6210\u7684\u6a21\u578b\u65f6": 245, "\u4f8b\u5982\u751f\u6210\u5bf9\u6297\u7f51\u7edc": 245, "\u5e8f\u5217\u5230\u5e8f\u5217\u6a21\u578b\u6216\u6a21\u578b\u96c6\u5408\u65f6": 245, "\u60a8\u5fc5\u987b\u4fdd\u5b58\u6bcf\u4e2a\u6a21\u578b\u7684state_dict\u548c\u76f8\u5e94\u7684\u4f18\u5316\u5668": 245, "\u60a8\u8fd8\u53ef\u4ee5\u901a\u8fc7\u7b80\u5355\u5730\u5c06\u5176\u9644\u52a0\u5230\u5b57\u5178\u4e2d\u6765\u4fdd\u5b58\u4efb\u4f55\u53ef\u80fd\u6709\u52a9\u4e8e\u6062\u590d\u8bad\u7ec3\u7684\u5176\u4ed6\u9879\u76ee": 245, "\u8981\u52a0\u8f7d\u6a21\u578b": 245, "\u60a8\u53ef\u4ee5\u50cf\u671f\u671b\u7684\u90a3\u6837\u7b80\u5355\u5730\u67e5\u8be2\u5b57\u5178\u6765\u8f7b\u677e\u8bbf\u95ee\u4fdd\u5b58\u7684\u9879\u76ee": 245, "\u6211\u4eec\u5c06\u6f14\u793a\u5982\u4f55\u4f7f\u7528pytorch\u5728\u4e00\u4e2a\u6587\u4ef6\u4e2d\u4fdd\u5b58\u591a\u4e2a\u6a21\u578b": 245, "\u6784\u5efa\u4e24\u4e2a\u53d8\u91cf\u7528\u4e8e\u6700\u7ec8\u4fdd\u5b58\u6a21\u578b": 245, "neta": [245, 250], "netb": [245, 250], "\u4e3a\u6211\u4eec\u521b\u5efa\u7684\u6bcf\u4e2a\u6a21\u578b\u6784\u5efa\u4f18\u5316\u5668": 245, "\u8bb0\u4f4f\u9996\u5148\u521d\u59cb\u5316\u6a21\u578b\u548c\u4f18\u5316\u5668": 245, "optimmodela": 245, "optimmodelb": 245, "\u60a8\u5fc5\u987b\u8c03\u7528": 245, "\u5c42\u8bbe\u7f6e\u4e3a\u8bc4\u4f30\u6a21\u5f0f": 245, "\u5982\u679c\u60a8\u5e0c\u671b\u6062\u590d\u8bad\u7ec3": 245, "\u60a8\u5df2\u7ecf\u6210\u529f\u5730\u5728pytorch\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u4e86\u591a\u4e2a\u6a21\u578b": 245, "\u672c\u6559\u7a0b\u4ecb\u7ecd\u4e86\u4e00\u4e2a\u65b0\u7684\u5b9e\u7528\u51fd\u6570": 246, "\u4ee5\u53ca\u5728": 246, "\u4e2d\u96c6\u6210\u5b83\u7684\u4e24\u4e2a\u65b0\u6269\u5c55\u70b9": 246, "\u4ee5\u4e0b\u7b80\u79f0\u4e3a": 246, "\u5b9e\u7528\u51fd\u6570": 246, "\u5b83\u63a5\u53d7\u4e24\u4e2a": 246, "\u5f20\u91cf\u5e76\u4ea4\u6362\u5b83\u4eec": 246, "t2": 246, "\u4ea4\u6362\u524d": 246, "\u4ea4\u6362\u540e": 246, "\u4ea4\u6362\u4e86\u4e24\u4e2a\u5f20\u91cf\u7684": 246, "__slots__": 246, "\u4ee5\u53ca\u5b83\u4eec\u76f8\u5173\u7684": 246, "\u4e4b\u5916\u7684": 246, "\u5bf9\u8c61\u6301\u6709\u8be5\u6a21\u5757\u53c2\u6570\u7684\u5f15\u7528\u65f6": 246, "\u6b64\u5b9e\u7528\u51fd\u6570\u5c31\u5f88\u6709\u7528": 246, "\u5c31\u5730\u4fee\u6539\u4e86\u4efb\u4f55\u53c2\u6570": 246, "\u6301\u6709\u8fd9\u4e9b\u53c2\u6570\u5f15\u7528\u7684\u5bf9\u8c61\u5c06\u65e0\u6cd5\u770b\u5230\u66f4\u6539": 246, "\u4e00\u4e2a\u5178\u578b\u7684\u4f8b\u5b50\u662f\u4f18\u5316\u5668": 246, "\u5b83\u6301\u6709": 246, "\u53c2\u6570\u7684\u5f15\u7528": 246, "\u8fd9\u4f1a\u5bfc\u81f4\u4e00\u4e2a\u6f5c\u5728\u7684\u6b63\u786e\u6027\u95ee\u9898": 246, "\u4f1a\u65e0\u9519\u8bef\u8fd0\u884c": 246, "\u7684\u6743\u91cd\u4e0d\u4f1a\u88ab\u66f4\u65b0": 246, "\u4e2d\u7684\u6743\u91cd": 246, "\u4f18\u5316\u5668\u4e2d\u7684\u6743\u91cd": 246, "\u8fd9\u5305\u62ec\u6539\u53d8\u6a21\u5757\u8bbe\u5907\u7684\u65b9\u6cd5": 246, "\u6539\u53d8\u6a21\u5757": 246, "\u7684\u65b9\u6cd5": 246, "\u4ee5\u53ca\u5141\u8bb8\u6a21\u5757\u5b9e\u4f8b\u5316\u7684\u65b9\u6cd5": 246, "\u4e4d\u4e00\u770b": 246, "\u8fd9\u4e9b\u65b9\u6cd5\u80fd\u591f\u5c31\u5730\u4fee\u6539\u6a21\u5757\u7684\u53c2\u6570\u53ef\u80fd\u770b\u8d77\u6765\u4e0d\u592a\u76f4\u89c2": 246, "\u73b0\u6709\u7684\u65b9\u6cd5\u662f\u4f7f\u7528\u4e00\u79cd\u8ffd\u6eaf\u5230": 246, "\u6700\u521d\u51e0\u5929\u7684\u4e11\u964b\u9ed1\u5ba2\u624b\u6bb5": 246, "\u503c\u5f97\u6ce8\u610f\u7684\u662f": 246, "\u73b0\u6709\u65b9\u6cd5\u5728\u4ee5\u4e0b\u60c5\u51b5\u4e0b\u65e0\u6cd5\u5de5\u4f5c": 246, "__torch_dispatch__": 246, "\u5b50\u7c7b": [246, 257], "new_param": 246, "\u5bf9\u4e8e\u5177\u6709\u7279\u6b8a": 246, "\u8868\u793a\u7684\u5f20\u91cf": 246, "\u5982\u7a00\u758f\u5f20\u91cf\u548c": 246, "\u5728\u672c\u6559\u7a0b\u7684\u4e0b\u4e00\u90e8\u5206": 246, "\u6211\u4eec\u5c06\u5b9a\u4e49\u4e00\u4e2a\u73a9\u5177": 246, "myquantizedlinearweight": 246, "\u6765\u8868\u793a\u91cf\u5316\u7684\u7ebf\u6027\u6743\u91cd": 246, "\u5728\u672c\u6559\u7a0b\u7684\u5269\u4f59\u90e8\u5206": 246, "\u6211\u4eec\u5c06\u4f7f\u7528\u8fd9\u4e2a\u5b50\u7c7b\u8fdb\u884c\u8bf4\u660e": 246, "\u4e3a\u7b80\u6d01\u8d77\u89c1": 246, "\u6211\u4eec\u7701\u7565\u4e86\u5927\u90e8\u5206": 246, "\u5b9e\u73b0": [246, 249], "__new__": 246, "_make_wrapper_subclass": 246, "storage_offset": 246, "_to_copi": 246, "new_elem": 246, "\u67d0\u4e9b\u64cd\u4f5c\u7684\u5b9e\u73b0\u5c06\u6dfb\u52a0\u5230": 246, "op_tabl": 246, "\u6211\u4eec\u5728\u6b64\u7701\u7565": 246, "\u4e0d\u652f\u6301\u7684\u51fd\u6570": 246, "\u5176\u6743\u91cd\u662f": 246, "\u7136\u540e\u5c1d\u8bd5\u5c06\u5176\u8f6c\u6362\u4e3a": 246, "\u89c2\u5bdf\u5230\u6743\u91cd\u7684": 246, "\u5982\u9884\u671f\u822c\u6539\u53d8\u4e86": 246, "\u4f46\u662f\u5b50\u7c7b\u7684\u6709\u6548\u8f7d\u8377": 246, "\u6ca1\u6709\u6539\u53d8": 246, "\u6211\u4eec\u5f15\u5165\u4e86\u4e00\u4e2a\u5168\u5c40\u914d\u7f6e": 246, "\u5b83\u5c06\u4f7f\u7528": 246, "\u4ea4\u6362\u6a21\u5757\u7684\u53c2\u6570": 246, "\u540c\u65f6\u4fdd\u7559": 246, "\u8bbe\u7f6e\u4e2d\u7684\u5f15\u7528": 246, "\u8bbe\u7f6e\u6b64\u914d\u7f6e\u540e": 246, "\u5728\u8f6c\u6362\u671f\u95f4\u5c06\u4f7f\u7528": 246, "\u4ece\u800c\u786e\u4fdd\u6709\u6548\u8f7d\u8377\u7684": 246, "\u6b63\u786e\u8f6c\u6362": 246, "\u6839\u636e\u4f20\u9012\u7ed9": 246, "\u5173\u952e\u5b57\u53c2\u6570\u7684\u503c": 246, "\u6709\u4e24\u79cd\u65b9\u5f0f\u52a0\u8f7d": 246, "\u4fdd\u7559": 246, "\u7684\u5c5e\u6027": 246, "\u53ea\u4ece": 246, "param_nam": 246, "\u4e2d\u83b7\u53d6\u503c": 246, "\u7684\u5c5e\u6027\u548c\u503c": 246, "\u8fd9\u4e9b\u5206\u522b\u662f\u901a\u8fc7\u5c31\u5730": 246, "__setattr__": 246, "\u5728\u73b0\u6709\u5b9e\u73b0\u4e2d": 246, "\u6bcf\u79cd\u65b9\u6cd5\u90fd\u6709\u81ea\u5df1\u7684\u9650\u5236": 246, "\u8981\u6c42": 246, "\u4e2d\u7684\u53c2\u6570\u7c7b\u578b": 246, "\u5fc5\u987b\u4e0e\u6a21\u5757\u4e2d\u7684\u53c2\u6570\u7c7b\u578b\u76f8\u540c": 246, "\u8981\u6c42\u5728": 246, "\u521d\u59cb\u5316\u4efb\u4f55\u6301\u6709\u6a21\u5757\u53c2\u6570\u5f15\u7528\u7684\u5bf9\u8c61": 246, "\u6211\u4eec\u901a\u8fc7\u5728": 246, "\u4e2d\u6dfb\u52a0": 246, "\u8def\u5f84\u5e76\u5f15\u5165\u65b0\u7684\u6269\u5c55\u70b9": 246, "module_load": 246, "\u6765\u89e3\u51b3\u8fd9\u4e24\u4e2a\u9650\u5236": 246, "\u5f53\u542f\u7528\u4e0a\u8ff0": 246, "__torch_function__": 246, "\u5904\u7406\u7a0b\u5e8f": 246, "\u4e2d\u7684\u503c\u5e94\u7528\u81ea\u5b9a\u4e49\u8f6c\u6362": 246, "\u8f6c\u6362\u7684\u7ed3\u679c\u5c06\u4e0e\u6a21\u5757\u4e2d\u7684\u53c2\u6570\u4ea4\u6362": 246, "\u5728\u4e0b\u9762\u7684\u793a\u4f8b\u4e2d": 246, "\u6211\u4eec\u5c06\u4f7f\u7528\u4e0a\u9762\u5b9a\u4e49\u7684": 246, "\u6765\u8bf4\u660e\u5982\u4f55\u4f7f\u7528\u8fd9\u4e9b\u529f\u80fd\u5728\u52a0\u8f7d": 246, "\u65f6\u5bf9\u7ebf\u6027\u5c42\u7684\u6743\u91cd\u5e94\u7528\u81ea\u5b9a\u4e49\u91cf\u5316\u65b9\u6848": 246, "\u56de\u987e\u4e00\u4e0b": 246, "\u5728\u672c\u4f8b\u4e2d\u662f": 246, "param_kei": 246, "\u5219\u4f1a\u8c03\u7528": 246, "\u5047\u8bbe\u6211\u4eec\u671f\u671b": 246, "\u5305\u542b\u666e\u901a\u5f20\u91cf": 246, "\u800c\u6a21\u5757\u5305\u542b": 246, "\u6211\u4eec\u5e0c\u671b\u5c06": 246, "\u4e2d\u7684\u5f20\u91cf\u8f6c\u6362\u4e3a\u5b50\u7c7b": 246, "\u90a3\u4e48\u6211\u4eec\u53ef\u4ee5\u4e3a": 246, "\u5b9a\u4e49": 246, "custom_torch_funct": 246, "dest": 246, "disabletorchfunctionsubclass": 246, "\u8ba9\u6211\u4eec\u5728": 246, "\u8bbe\u5907\u4e0a\u521b\u5efa\u4e00\u4e2a\u6a21\u578b\u6846\u67b6": 246, "\u4ee5\u907f\u514d\u5b9e\u4f8b\u5316\u5b58\u50a8": 246, "\u6211\u4eec\u5c06\u6a21\u5757\u4e2d\u7684\u6240\u6709\u6743\u91cd\u8f6c\u6362\u4e3a": 246, "\u540c\u65f6\u4fdd\u7559\u504f\u7f6e\u4e0d\u53d8": 246, "\u7136\u540e\u6211\u4eec\u53ef\u4ee5\u52a0\u8f7d": 246, "\u6ce8\u610f\u6211\u4eec\u4f7f\u7528": 246, "\u56e0\u4e3a\u5bf9\u4e8e\u504f\u7f6e": 246, "\u6211\u4eec\u5e0c\u671b\u4fdd\u7559": 246, "\u4e2d\u5f20\u91cf\u7684\u5c5e\u6027": 246, "\u6211\u4eec\u4e0d\u5e0c\u671b\u504f\u7f6e\u5728\u52a0\u8f7d\u540e\u4f4d\u4e8e": 246, "\u8bbe\u5907\u4e0a": 246, "\u4e4b\u524d\u7684": 246, "\u4e4b\u540e\u7684": 246, "\u4e0a\u9762\u662f\u4e00\u4e2a\u5982\u4f55\u4f7f\u7528": 246, "\u4e2d\u7684\u65b0\u6269\u5c55\u70b9\u7684\u73a9\u5177\u793a\u4f8b": 246, "\u6211\u4eec\u8fd8\u53ef\u4ee5\u60f3\u8c61\u5176\u4ed6\u573a\u666f": 246, "\u4f8b\u5982\u5f53": 246, "\u4e2d\u6709\u5f20\u91cf\u5b50\u7c7b\u800c\u6a21\u5757\u4e2d\u6709\u666e\u901a": 246, "\u5f20\u91cf\u65f6": 246, "\u6216\u8005\u4e24\u8005\u90fd\u662f\u5f20\u91cf\u5b50\u7c7b\u65f6": 246, "\u6839\u636e\u4f7f\u7528\u573a\u666f": 246, "\u6211\u4eec\u53ef\u4ee5\u5b9a\u4e49": 246, "\u6765\u5e94\u7528\u6240\u9700\u7684\u8f6c\u6362": 246, "\u4e2d\u4fdd\u7559\u53c2\u6570\u5f15\u7528\u7684\u91cd\u8981\u6027": 246, "\u4ee5\u53ca\u5982\u4f55\u4f7f\u7528\u7531": 246, "\u63a7\u5236\u7684\u4e24\u4e2a\u65b0\u6269\u5c55\u70b9": 246, "tensorboard\u662f\u4e00\u4e2a\u7528\u4e8e\u673a\u5668\u5b66\u4e60\u5b9e\u9a8c\u7684\u53ef\u89c6\u5316\u5de5\u5177\u5305": 247, "tensorboard\u5141\u8bb8\u8ddf\u8e2a\u548c\u53ef\u89c6\u5316\u6307\u6807": 247, "\u5982\u635f\u5931\u548c\u51c6\u786e\u7387": 247, "\u53ef\u89c6\u5316\u6a21\u578b\u56fe": 247, "\u67e5\u770b\u76f4\u65b9\u56fe": 247, "\u663e\u793a\u56fe\u50cf\u7b49": 247, "\u6211\u4eec\u5c06\u4ecb\u7ecdtensorboard\u7684\u5b89\u88c5": 247, "\u5728pytorch\u4e2d\u7684\u57fa\u672c\u7528\u6cd5": 247, "\u4ee5\u53ca\u5982\u4f55\u5728tensorboard": 247, "ui\u4e2d\u53ef\u89c6\u5316\u60a8\u8bb0\u5f55\u7684\u6570\u636e": 247, "\u5e94\u5b89\u88c5pytorch\u4ee5\u5c06\u6a21\u578b\u548c\u6307\u6807\u8bb0\u5f55\u5230tensorboard\u65e5\u5fd7": 247, "\u4ee5\u4e0b\u547d\u4ee4\u5c06\u901a\u8fc7anaconda": 247, "\u63a8\u8350": 247, "\u5b89\u88c5pytorch": 247, "\u6216\u8005\u4f7f\u7528pip": 247, "\u73b0\u5728\u8ba9\u6211\u4eec\u5c1d\u8bd5\u5728pytorch\u4e2d\u4f7f\u7528tensorboard": 247, "\u5728\u8bb0\u5f55\u4efb\u4f55\u5185\u5bb9\u4e4b\u524d": 247, "\u6211\u4eec\u9700\u8981\u521b\u5efa\u4e00\u4e2a": 247, "\u5199\u5165\u5668\u9ed8\u8ba4\u5c06\u8f93\u51fa\u5230": 247, "\u5728\u673a\u5668\u5b66\u4e60\u4e2d": 247, "\u4e86\u89e3\u5173\u952e\u6307\u6807": 247, "\u5982\u635f\u5931": 247, "\u53ca\u5176\u5728\u8bad\u7ec3\u671f\u95f4\u7684\u53d8\u5316\u975e\u5e38\u91cd\u8981": 247, "\u6807\u91cf\u53ef\u7528\u4e8e\u4fdd\u5b58\u6bcf\u4e2a\u8bad\u7ec3\u6b65\u9aa4\u7684\u635f\u5931\u503c\u6216\u6bcf\u4e2aepoch\u7684\u51c6\u786e\u7387": 247, "\u8981\u8bb0\u5f55\u6807\u91cf\u503c": 247, "scalar_valu": 247, "walltim": 247, "\u8ba9\u6211\u4eec\u521b\u5efa\u4e00\u4e2a\u7b80\u5355\u7684\u7ebf\u6027\u56de\u5f52\u8bad\u7ec3": 247, "\u5e76": [247, 253], "\u8bb0\u5f55\u635f\u5931\u503c": 247, "\u65b9\u6cd5\u4ee5\u786e\u4fdd\u6240\u6709\u5f85\u5904\u7406\u4e8b\u4ef6": 247, "\u5df2\u5199\u5165\u78c1\u76d8": 247, "\u4ee5\u4e86\u89e3\u60a8\u53ef\u4ee5\u8bb0\u5f55\u7684\u66f4\u591atensorboard\u53ef\u89c6\u5316\u7c7b\u578b": 247, "\u5982\u679c\u60a8\u4e0d\u518d\u9700\u8981\u6458\u8981\u5199\u5165\u5668": 247, "\u901a\u8fc7\u547d\u4ee4\u884c\u5b89\u88c5tensorboard\u4ee5\u53ef\u89c6\u5316\u60a8\u8bb0\u5f55\u7684\u6570\u636e": 247, "\u542f\u52a8tensorboard": 247, "\u6307\u5b9a\u60a8\u4e4b\u524d\u4f7f\u7528\u7684\u6839\u65e5\u5fd7\u76ee\u5f55": 247, "\u6307\u5411tensorboard\u5c06\u67e5\u627e\u53ef\u663e\u793a\u7684\u4e8b\u4ef6\u6587\u4ef6\u7684\u76ee\u5f55": 247, "tensorboard\u5c06\u9012\u5f52\u904d\u5386": 247, "\u6839\u76ee\u5f55\u4e0b\u7684\u76ee\u5f55\u7ed3\u6784": 247, "\u5bfb\u627e": 247, "tfevent": 247, "\u8f6c\u5230\u5b83\u63d0\u4f9b\u7684url\u6216": 247, "\u6b64\u4eea\u8868\u677f\u663e\u793a\u4e86\u635f\u5931\u548c\u51c6\u786e\u7387\u5982\u4f55\u968f\u7740\u6bcf\u4e2aepoch\u800c\u53d8\u5316": 247, "\u60a8\u53ef\u4ee5\u4f7f\u7528\u5b83\u6765\u8ddf\u8e2a\u8bad\u7ec3\u901f\u5ea6": 247, "\u5b66\u4e60\u7387\u548c\u5176\u4ed6\u6807\u91cf\u503c": 247, "\u6bd4\u8f83\u4e0d\u540c\u8bad\u7ec3\u8fd0\u884c\u7684\u8fd9\u4e9b\u6307\u6807\u6709\u52a9\u4e8e\u6539\u8fdb\u60a8\u7684\u6a21\u578b": 247, "\u4f7f\u7528tensorboard\u53ef\u89c6\u5316\u6a21\u578b": 247, "tensorboard_with_pytorch": 247, "\u6211\u4eec\u5c06\u4ecb\u7ecd": 248, "\u7684\u4e3b\u8981api": 248, "timer\u57fa\u4e8e": 248, "\u5e76\u505a\u4e86\u4e00\u4e9bpytorch\u7279\u5b9a\u7684\u4fee\u6539": 248, "\u672c\u6559\u7a0b\u4e0d\u8981\u6c42\u8bfb\u8005\u719f\u6089\u5185\u7f6e\u7684": 248, "\u4f46\u5047\u8bbe\u8bfb\u8005\u719f\u6089\u6027\u80fd\u5de5\u4f5c\u7684\u57fa\u7840\u77e5\u8bc6": 248, "\u6709\u5173\u66f4\u5168\u9762\u7684\u6027\u80fd\u8c03\u4f18\u6559\u7a0b": 248, "\u5185\u5bb9": 248, "\u4f7f\u7528callgrind\u8fdb\u884ca": 248, "\u7528\u4e8e\u5b9a\u4e49\u4efb\u52a1": 248, "\u5c06\u5728\u5faa\u73af\u4e2d\u8fd0\u884c\u5e76\u8ba1\u65f6\u7684\u8ba1\u7b97": 248, "\u5c06\u5728\u8c03\u7528\u6d4b\u91cf\u5faa\u73af\u4e4b\u524d\u8fd0\u884c": 248, "\u7528\u4e8e\u586b\u5145": 248, "\u6240\u9700\u7684\u4efb\u4f55\u72b6\u6001": 248, "\u4ece\u5916\u90e8\u4f5c\u7528\u57df\u4f20\u9012\u53d8\u91cf": 248, "\u63a7\u5236pytorch\u4f7f\u7528\u7684\u7ebf\u7a0b\u6570": 248, "\u9ed8\u8ba4\u503c": 248, "\u6b64\u65b9\u6cd5\u5c06\u5904\u7406\u8bf8\u5982\u9009\u62e9\u5408\u9002\u7684\u91cd\u590d\u6b21\u6570": 248, "\u56fa\u5b9a\u7ebf\u7a0b\u6570\u4ee5\u53ca\u63d0\u4f9b\u7ed3\u679c\u7684\u65b9\u4fbf\u8868\u793a\u7b49\u7ec6\u8282": 248, "measurement\u5bf9\u8c61\u5b58\u50a8\u591a\u6b21\u91cd\u590d\u7684\u7ed3\u679c": 248, "\u5e76\u63d0\u4f9b\u5404\u79cd\u5b9e\u7528\u529f\u80fd": 248, "0x7f1929a38ed0": 248, "iqr": 248, "424": 248, "cpp_timer": 248, "0x7f192b019ed0": 248, "\u4e0d\u51fa\u6240\u6599": 248, "\u4ee3\u7801\u7247\u6bb5\u7684\u901f\u5ea6\u66f4\u5feb": 248, "\u53d8\u5316\u4e5f\u66f4\u5c0f": 248, "\u4e3a\u4e86\u6df1\u5165\u8c03\u67e5": 248, "\u5c01\u88c5\u4e86": 248, "\u4ee5\u6536\u96c6\u6307\u4ee4\u8ba1\u6570": 248, "\u8fd9\u4e9b\u6307\u4ee4\u8ba1\u6570\u975e\u5e38\u6709\u7528": 248, "\u56e0\u4e3a\u5b83\u4eec\u63d0\u4f9b\u4e86\u7ec6\u7c92\u5ea6\u548c\u786e\u5b9a\u6027\u7684": 248, "\u6216\u5728python\u7684\u60c5\u51b5\u4e0b\u566a\u58f0\u5f88\u4f4e\u7684": 248, "\u89c1\u89e3": 248, "\u8bf4\u660e\u4e86\u4ee3\u7801\u7247\u6bb5\u662f\u5982\u4f55\u8fd0\u884c\u7684": 248, "0x7f1929a35850": 248, "563600": 248, "\u7684\u5b57\u7b26\u4e32\u8868\u793a\u5f62\u5f0f\u7c7b\u4f3c\u4e8e": 248, "\u662f\u4e00\u4e2apython\u6982\u5ff5": 248, "\u79fb\u9664\u4e86\u5728cpython\u89e3\u91ca\u5668\u4e2d\u5df2\u77e5\u7684\u566a\u58f0\u8c03\u7528": 248, "\u4e3a\u4e86\u8fdb\u884c\u66f4\u8be6\u7ec6\u7684\u5206\u6790": 248, "\u6211\u4eec\u9700\u8981\u67e5\u770b\u7279\u5b9a\u7684\u8c03\u7528": 248, "\u8fd4\u56de\u4e00\u4e2a": 248, "\u4ee5\u4fbf\u4e8e\u6b64\u64cd\u4f5c": 248, "\u4ece\u6982\u5ff5\u4e0a\u8bb2": 248, "\u53ef\u4ee5\u88ab\u89c6\u4e3a\u4e00\u4e2a\u5e26\u6709\u4e00\u4e9b\u5b9e\u7528\u65b9\u6cd5\u7684\u6210\u5bf9\u5143\u7ec4": 248, "\u5176\u4e2d\u6bcf\u4e00\u5bf9\u90fd\u662f": 248, "\u6307\u4ee4\u6570\u91cf": 248, "\u6587\u4ef6\u8def\u5f84\u548c\u51fd\u6570\u540d\u79f0": 248, "\u5173\u4e8e\u8def\u5f84\u7684\u8bf4\u660e": 248, "\u901a\u5e38\u6211\u4eec\u4e0d\u5173\u5fc3\u7edd\u5bf9\u8def\u5f84": 248, "\u4e00\u4e2a\u4e58\u6cd5\u8c03\u7528\u7684\u5b8c\u6574\u8def\u5f84\u548c\u51fd\u6570\u540d\u662f\u8fd9\u6837\u7684": 248, "tensormethod": 248, "ab_ref": 248, "\u800c\u5b9e\u9645\u4e0a": 248, "\u6211\u4eec\u611f\u5174\u8da3\u7684\u6240\u6709\u4fe1\u606f\u90fd\u53ef\u4ee5\u8868\u793a\u4e3a": 248, "\u4f1a\u5c3d\u6700\u5927\u52aa\u529b\u53bb\u9664\u6587\u4ef6\u8def\u5f84\u4e2d\u4f4e\u4fe1\u53f7\u90e8\u5206": 248, "\u4ee5\u53ca\u5171\u4eab\u5bf9\u8c61": 248, "\u901a\u5e38\u5efa\u8bae\u4f7f\u7528": 248, "inclusive_stat": 248, "0x7f192a6dfd90": 248, "47264": 248, "_int_fre": 248, "25963": 248, "_int_malloc": 248, "19900": 248, "tensorit": 248, "tensoriteratorconfig": 248, "18000": 248, "__tls_get_addr": 248, "13500": 248, "malloc": [248, 249], "11300": 248, "smallvector": 248, "10345": 248, "_int_memalign": 248, "9200": 248, "iteratorbas": 248, "get_strid": 248, "173472": 248, "\u8fd9\u4ecd\u7136\u6709\u5f88\u591a\u5185\u5bb9\u9700\u8981\u6d88\u5316": 248, "\u65b9\u6cd5\u6765\u53bb\u9664\u4e00\u4e9b\u51fd\u6570\u8def\u5f84": 248, "\u5e76\u4e22\u5f03\u51fd\u6570\u8c03\u7528": 248, "\u8fd9\u6837\u505a\u65f6": 248, "\u4efb\u4f55\u51b2\u7a81": 248, "\u90fd\u5c06\u6620\u5c04\u5230": 248, "\u7684\u8ba1\u6570\u5c06\u88ab\u7d2f\u52a0": 248, "group_by_fil": 248, "fn_name": 248, "fn_dir": 248, "fn_file": 248, "0x7f192995d750": 248, "118200": 248, "tensoriter": 248, "65000": 248, "20900": 248, "15900": 248, "15100": 248, "cpualloc": 248, "12500": 248, "352327": 248, "\u6307\u4ee4\u8ba1\u6570\u6700\u6709\u7528\u7684\u7279\u6027\u4e4b\u4e00\u662f\u5141\u8bb8\u5bf9\u8ba1\u7b97\u8fdb\u884c\u7ec6\u7c92\u5ea6\u6bd4\u8f83": 248, "\u8fd9\u5728\u5206\u6790\u6027\u80fd\u65f6\u81f3\u5173\u91cd\u8981": 248, "\u4e3a\u4e86\u770b\u5230\u8fd9\u4e00\u70b9": 248, "\u8ba9\u6211\u4eec\u5c06\u4e24\u4e2a\u5927\u5c0f\u4e3a128\u7684\u5f20\u91cf\u76f8\u4e58\u4e0e\u4e00\u4e2a": 248, "\u7684\u4e58\u6cd5\u8fdb\u884c\u6bd4\u8f83": 248, "\u540e\u8005\u5c06\u5bf9\u7b2c\u4e8c\u4e2a\u5f20\u91cf\u8fdb\u884c\u5e7f\u64ad": 248, "a0": 248, "b0": 248, "a1": 248, "a127": 248, "broadcasting_stat": 248, "\u6211\u4eec\u7ecf\u5e38\u9700\u8981\u5bf9\u4e24\u79cd\u4e0d\u540c\u7684\u73af\u5883\u8fdb\u884ca": 248, "\u4f8b\u5982\u6d4b\u8bd5\u4e00\u4e2apr": 248, "\u6216\u5c1d\u8bd5\u4e0d\u540c\u7684\u7f16\u8bd1\u6807\u5fd7": 248, "\u8fd9\u5f88\u7b80\u5355": 248, "\u90fd\u662f\u53efpickle\u5316\u7684": 248, "\u53ea\u9700\u5728\u6bcf\u4e2a\u73af\u5883\u4e2d\u4fdd\u5b58\u6d4b\u91cf\u7ed3\u679c": 248, "\u7136\u540e\u5728\u5355\u4e2a\u8fdb\u7a0b\u4e2d\u52a0\u8f7d\u5b83\u4eec\u8fdb\u884c\u5206\u6790": 248, "extract_fn_nam": 248, "17600": 248, "tensoriteratorbas": 248, "compute_strid": 248, "12700": 248, "allocate_or_resize_output": 248, "10200": 248, "smallvectorimpl": 248, "7400": 248, "infer_s": 248, "6200": 248, "invert_perm": 248, "6064": 248, "reorder_dimens": 248, "4300": 248, "compatible_strid": 248, "check_tensor_options_and_extract_memory_format": 248, "__memcmp_avx2_movb": 248, "empty_cpu": 248, "1300": 248, "2400": 248, "6100": 248, "compute_fast_setup_typ": 248, "22600": 248, "fast_set_up": 248, "58091": 248, "\u6240\u4ee5\u5e7f\u64ad\u7248\u672c\u6bcf\u6b21\u8c03\u7528\u9700\u8981\u989d\u5916580\u6761\u6307\u4ee4": 248, "\u56de\u60f3\u4e00\u4e0b\u6211\u4eec\u6536\u96c6\u4e86100\u6b21\u8fd0\u884c\u7684\u6837\u672c": 248, "\u7ea6\u536010": 248, "\u6709\u76f8\u5f53\u591a\u7684": 248, "\u6240\u4ee5\u8ba9\u6211\u4eec\u6df1\u5165\u7814\u7a76\u8fd9\u4e9b\u8c03\u7528": 248, "\u53ef\u4ee5\u5f88\u5bb9\u6613\u5730\u505a\u5230\u8fd9\u4e00\u70b9": 248, "0x7f19299544d0": 248, "compute_shap": 248, "2300": 248, "coalesce_dimens": 248, "\u8fd9\u8bf4\u660e\u4e86\u6b63\u5728\u53d1\u751f\u7684\u60c5\u51b5": 248, "\u8bbe\u7f6e\u4e2d\u6709\u4e00\u6761\u5feb\u901f\u8def\u5f84": 248, "\u4f46\u5728": 248, "\u7684\u60c5\u51b5\u4e0b": 248, "\u6211\u4eec\u9519\u8fc7\u4e86\u5b83": 248, "\u4e0d\u5f97\u4e0d\u8fdb\u884c\u66f4\u901a\u7528\u7684\u5206\u6790": 248, "\u8fd9\u66f4\u52a0\u6602\u8d35": 248, "\u88ab\u8fc7\u6ee4\u5668\u7701\u7565\u7684\u6700\u663e\u8457\u7684\u8c03\u7528\u662f": 248, "\u8fd9\u4e5f\u662f\u66f4\u901a\u7528\u8bbe\u7f6e\u7684\u4e00\u90e8\u5206": 248, "\u6765\u6536\u96c6\u5899\u4e0a\u65f6\u95f4": 248, "\u5982\u679c\u8ba1\u65f6\u53d8\u5316\u8fc7\u9ad8": 248, "\u8bf7\u589e\u52a0": 248, "\u6216\u8005\u5982\u679c\u65b9\u4fbf\u7684\u8bdd": 248, "\u5bf9\u4e8e\u7ec6\u7c92\u5ea6\u5206\u6790": 248, "\u6765\u6d4b\u91cf\u6307\u4ee4\u8ba1\u6570": 248, "__add__": 248, "__sub__": 248, "\u6765\u5207\u5206\u548c\u5904\u7406\u5b83\u4eec": 248, "\u9690\u542b\u7684": 248, "\u4e0d\u5305\u542b": 248, "\u5c06\u81ea\u52a8\u586b\u5145\u5b83": 248, "\u8fd9\u610f\u5473\u7740": 248, "\u5c06\u6b63\u5e38\u5de5\u4f5c": 248, "\u4e0d\u8fc7\u5176\u4ed6\u5bfc\u5165\u5e94\u8be5\u653e\u5728": 248, "\u4e3a\u4e86\u63d0\u4f9b\u6709\u5173\u6267\u884c\u7684": 248, "\u5185\u90e8\u4fe1\u606f\u7684\u5b8c\u6574\u4fe1\u606f": 248, "\u9700\u8981\u8bbf\u95ee": 248, "\u8c03\u8bd5\u7b26\u53f7": 248, "\u8fd9\u662f\u901a\u8fc7\u5728\u6784\u5efa": 248, "\u65f6\u8bbe\u7f6e": 248, "\u6765\u5b9e\u73b0\u7684": 248, "\u5426\u5219\u51fd\u6570\u8c03\u7528\u5c06\u662f\u4e0d\u900f\u660e\u7684": 248, "\u5c06\u5728\u7f3a\u5c11\u8c03\u8bd5\u7b26\u53f7\u65f6\u53d1\u51fa\u8b66\u544a": 248, "timer_quick_start": 248, "szymon": 249, "migacz": 249, "\u6027\u80fd\u8c03\u4f18\u6307\u5357\u662f\u4e00\u7ec4\u4f18\u5316\u548c\u6700\u4f73\u5b9e\u8df5": 249, "\u53ef\u4ee5\u52a0\u901fpytorch\u4e2d\u6df1\u5ea6\u5b66\u4e60\u6a21\u578b\u7684\u8bad\u7ec3\u548c\u63a8\u7406": 249, "\u63d0\u51fa\u7684\u6280\u672f\u901a\u5e38\u53ea\u9700\u8981\u66f4\u6539\u51e0\u884c\u4ee3\u7801": 249, "\u5c31\u53ef\u4ee5\u5e94\u7528\u4e8e\u5404\u4e2a\u9886\u57df\u7684\u5e7f\u6cdb\u6df1\u5ea6\u5b66\u4e60\u6a21\u578b": 249, "\u652f\u6301\u5728\u5355\u72ec\u7684\u5de5\u4f5c\u5b50\u8fdb\u7a0b\u4e2d\u5f02\u6b65\u52a0\u8f7d\u6570\u636e\u548c\u8fdb\u884c\u6570\u636e\u589e\u5f3a": 249, "\u7684\u9ed8\u8ba4\u8bbe\u7f6e\u662f": 249, "\u8fd9\u610f\u5473\u7740\u6570\u636e\u52a0\u8f7d\u662f\u540c\u6b65\u7684": 249, "\u5e76\u5728\u4e3b\u8fdb\u7a0b\u4e2d\u5b8c\u6210": 249, "\u4e3b\u8bad\u7ec3\u8fdb\u7a0b\u5fc5\u987b\u7b49\u5f85\u6570\u636e\u53ef\u7528\u624d\u80fd\u7ee7\u7eed\u6267\u884c": 249, "\u53ef\u542f\u7528\u5f02\u6b65\u6570\u636e\u52a0\u8f7d": 249, "\u5e76\u5b9e\u73b0\u8bad\u7ec3\u548c\u6570\u636e\u52a0\u8f7d\u4e4b\u95f4\u7684\u91cd\u53e0": 249, "\u5e94\u6839\u636e\u5de5\u4f5c\u8d1f\u8f7d": 249, "\u548c\u8bad\u7ec3\u6570\u636e\u7684\u4f4d\u7f6e\u8fdb\u884c\u8c03\u6574": 249, "\u6700\u597d\u8bbe\u7f6e": 249, "\u8fd9\u4f1a\u6307\u793a": 249, "\u4f7f\u7528\u9501\u9875\u5185\u5b58": 249, "\u5e76\u542f\u7528\u4ece\u4e3b\u673a\u5230": 249, "\u7684\u66f4\u5feb\u548c\u5f02\u6b65\u5185\u5b58\u590d\u5236": 249, "\u4f1a\u4fdd\u5b58\u6d89\u53ca\u9700\u8981\u68af\u5ea6\u7684\u5f20\u91cf\u7684\u6240\u6709\u64cd\u4f5c\u7684\u4e2d\u95f4\u7f13\u51b2\u533a": 249, "\u901a\u5e38\u5728\u9a8c\u8bc1\u6216\u63a8\u7406\u65f6\u4e0d\u9700\u8981\u68af\u5ea6": 249, "\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668\u53ef\u5e94\u7528\u4e8e\u7981\u7528\u6307\u5b9a\u4ee3\u7801\u5757\u5185\u7684\u68af\u5ea6\u8ba1\u7b97": 249, "\u8fd9\u53ef\u52a0\u5feb\u6267\u884c\u901f\u5ea6\u5e76\u51cf\u5c11\u6240\u9700\u5185\u5b58\u91cf": 249, "\u4e5f\u53ef\u4ee5\u7528\u4f5c\u51fd\u6570\u88c5\u9970\u5668": 249, "\u5177\u6709": 249, "\u5c42\u76f4\u63a5\u540e\u8ddf": 249, "\u5219\u5377\u79ef\u4e2d\u7684\u504f\u7f6e\u662f\u4e0d\u9700\u8981\u7684": 249, "\u8bf7\u6539\u7528": 249, "\u4e0d\u9700\u8981\u504f\u7f6e": 249, "\u56e0\u4e3a\u5728\u7b2c\u4e00\u6b65\u4e2d": 249, "\u4f1a\u51cf\u53bb\u5747\u503c": 249, "\u8fd9\u5b9e\u9645\u4e0a\u4f1a\u62b5\u6d88\u504f\u7f6e\u7684\u6548\u679c": 249, "\u53ea\u8981": 249, "\u6216\u5176\u4ed6\u5f52\u4e00\u5316\u5c42": 249, "\u5728\u4e0e\u5377\u79ef\u504f\u7f6e\u76f8\u540c\u7684\u7ef4\u5ea6\u4e0a\u8fdb\u884c\u5f52\u4e00\u5316": 249, "\u8fd9\u4e5f\u9002\u7528\u4e8e1d\u548c3d\u5377\u79ef": 249, "\u4e2d\u53ef\u7528\u7684\u6a21\u578b\u5df2\u7ecf\u5b9e\u73b0\u4e86\u8fd9\u79cd\u4f18\u5316": 249, "\u4e0d\u8981\u8c03\u7528": 249, "\u800c\u662f\u4f7f\u7528\u4ee5\u4e0b\u65b9\u6cd5\u6e05\u96f6\u68af\u5ea6": 249, "\u7b2c\u4e8c\u6bb5\u4ee3\u7801\u4e0d\u4f1a\u6e05\u96f6\u6bcf\u4e2a\u53c2\u6570\u7684\u5185\u5b58": 249, "\u800c\u4e14\u5728\u540e\u7eed\u7684\u53cd\u5411\u4f20\u64ad\u8fc7\u7a0b\u4e2d\u4f7f\u7528\u8d4b\u503c\u800c\u4e0d\u662f\u7d2f\u52a0\u6765\u5b58\u50a8\u68af\u5ea6": 249, "\u8fd9\u51cf\u5c11\u4e86\u5185\u5b58\u64cd\u4f5c\u7684\u6570\u91cf": 249, "\u5c06\u68af\u5ea6\u8bbe\u7f6e\u4e3a": 249, "\u4e0e\u5c06\u5176\u8bbe\u7f6e\u4e3a\u96f6\u6709\u7565\u5fae\u4e0d\u540c\u7684\u6570\u503c\u884c\u4e3a": 249, "\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f\u8bf7\u53c2\u9605": 249, "\u70b9\u8fd0\u7b97": 249, "\u5143\u7d20\u7ea7\u52a0\u6cd5": 249, "\u6570\u5b66\u51fd\u6570": 249, "\u53ef\u4ee5\u878d\u5408\u4e3a\u5355\u4e2a\u5185\u6838": 249, "\u4ece\u800c\u5206\u644a\u5185\u5b58\u8bbf\u95ee\u65f6\u95f4\u548c\u5185\u6838\u542f\u52a8\u65f6\u95f4": 249, "\u53ef\u4ee5\u81ea\u52a8\u878d\u5408\u5185\u6838": 249, "\u5c3d\u7ba1\u7f16\u8bd1\u5668\u4e2d\u53ef\u80fd\u8fd8\u6709\u672a\u5b9e\u73b0\u7684\u5176\u4ed6\u878d\u5408\u673a\u4f1a": 249, "\u5e76\u4e14\u5e76\u975e\u6240\u6709\u8bbe\u5907\u7c7b\u578b\u90fd\u5f97\u5230\u540c\u7b49\u652f\u6301": 249, "\u70b9\u8fd0\u7b97\u662f\u5185\u5b58\u5bc6\u96c6\u578b\u7684": 249, "\u4f1a\u4e3a\u6bcf\u4e2a\u64cd\u4f5c\u542f\u52a8\u5355\u72ec\u7684\u5185\u6838": 249, "\u6bcf\u4e2a\u5185\u6838\u90fd\u4f1a\u4ece\u5185\u5b58\u52a0\u8f7d\u6570\u636e": 249, "\u6267\u884c\u8ba1\u7b97": 249, "\u8fd9\u4e00\u6b65\u901a\u5e38\u662f\u5ec9\u4ef7\u7684": 249, "\u5e76\u5c06\u7ed3\u679c\u5b58\u50a8\u56de\u5185\u5b58": 249, "\u878d\u5408\u7684\u7b97\u5b50\u53ea\u4e3a\u591a\u4e2a\u878d\u5408\u7684\u70b9\u8fd0\u7b97\u542f\u52a8\u4e00\u4e2a\u5185\u6838": 249, "\u5e76\u4e14\u53ea\u9700\u8981\u4e00\u6b21\u4ece\u5185\u5b58\u52a0\u8f7d": 249, "\u5b58\u50a8\u6570\u636e": 249, "\u8fd9\u4f7f\u5f97": 249, "\u975e\u5e38\u9002\u7528\u4e8e\u6fc0\u6d3b\u51fd\u6570": 249, "\u81ea\u5b9a\u4e49": 249, "\u5355\u5143\u7b49": 249, "\u5728\u6700\u7b80\u5355\u7684\u60c5\u51b5\u4e0b": 249, "\u53ef\u4ee5\u901a\u8fc7\u5c06": 249, "\u88c5\u9970\u5668\u5e94\u7528\u4e8e\u51fd\u6570\u5b9a\u4e49\u6765\u542f\u7528\u878d\u5408": 249, "fused_gelu": 249, "erf": 249, "41421": 249, "\u6709\u5173\u66f4\u9ad8\u7ea7\u7528\u6cd5": 249, "\u5f15\u5165\u4e86\u5bf9\u5377\u79ef\u7f51\u7edc": 249, "\u5185\u5b58\u683c\u5f0f\u7684\u652f\u6301": 249, "\u6b64\u683c\u5f0f\u65e8\u5728\u4e0e": 249, "\u7ed3\u5408\u4f7f\u7528": 249, "\u8fdb\u4e00\u6b65\u52a0\u901f\u4f7f\u7528": 249, "\u7684\u5377\u79ef\u795e\u7ecf\u7f51\u7edc": 249, "\u7684\u652f\u6301\u662f\u5b9e\u9a8c\u6027\u7684": 249, "\u4f46\u9884\u8ba1\u53ef\u4ee5\u7528\u4e8e\u6807\u51c6\u8ba1\u7b97\u673a\u89c6\u89c9\u6a21\u578b": 249, "\u8981\u5c06\u6a21\u578b\u8f6c\u6362\u4e3a": 249, "\u8bf7\u6309\u7167": 249, "\u4e2d\u7684\u8bf4\u660e\u64cd\u4f5c": 249, "\u8be5\u6559\u7a0b\u5305\u62ec\u4e00\u8282\u5173\u4e8e": 249, "\u8f6c\u6362\u73b0\u6709\u6a21\u578b": 249, "\u7f13\u51b2\u533a\u68c0\u67e5\u70b9\u662f\u4e00\u79cd\u6280\u672f": 249, "\u7528\u4e8e\u7f13\u89e3\u6a21\u578b\u8bad\u7ec3\u7684\u5185\u5b58\u5bb9\u91cf\u8d1f\u62c5": 249, "\u4e0e\u5b58\u50a8\u6240\u6709\u5c42\u7684\u8f93\u5165\u4ee5\u8ba1\u7b97\u53cd\u5411\u4f20\u64ad\u4e2d\u7684\u4e0a\u6e38\u68af\u5ea6\u4e0d\u540c": 249, "\u5b83\u5b58\u50a8\u5c11\u6570\u51e0\u5c42\u7684\u8f93\u5165": 249, "\u5176\u4f59\u5c42\u7684\u8f93\u5165\u5728\u53cd\u5411\u4f20\u64ad\u8fc7\u7a0b\u4e2d\u91cd\u65b0\u8ba1\u7b97": 249, "\u51cf\u5c11\u7684\u5185\u5b58\u9700\u6c42\u4f7f\u5f97\u53ef\u4ee5\u589e\u52a0\u6279\u91cf\u5927\u5c0f": 249, "\u4ece\u800c\u63d0\u9ad8\u5229\u7528\u7387": 249, "\u5e94\u8c28\u614e\u9009\u62e9\u68c0\u67e5\u70b9\u76ee\u6807": 249, "\u6700\u597d\u4e0d\u8981\u5b58\u50a8\u5177\u6709\u5c0f\u91cd\u65b0\u8ba1\u7b97\u6210\u672c\u7684\u5927\u578b\u5c42\u8f93\u51fa": 249, "\u793a\u4f8b\u76ee\u6807\u5c42\u5305\u62ec\u6fc0\u6d3b\u51fd\u6570": 249, "\u4e0b\u91c7\u6837\u4ee5\u53ca\u5177\u6709\u5c0f\u7d2f\u79ef\u6df1\u5ea6\u7684\u77e9\u9635": 249, "\u5411\u91cf\u8fd0\u7b97": 249, "\u652f\u6301\u539f\u751f": 249, "\u81ea\u52a8\u6267\u884c\u68c0\u67e5\u70b9\u548c\u91cd\u65b0\u8ba1\u7b97\u7684api": 249, "\u8bb8\u591apytorch": 249, "api\u65e8\u5728\u7528\u4e8e\u8c03\u8bd5": 249, "\u5728\u5e38\u89c4\u8bad\u7ec3\u8fd0\u884c\u65f6\u5e94\u8be5\u7981\u7528": 249, "\u5f02\u5e38\u68c0\u6d4b": 249, "detect_anomali": 249, "set_detect_anomali": 249, "\u4e0eprofiler\u76f8\u5173": 249, "emit_nvtx": 249, "numa\u6216\u975e\u5747\u5300\u5185\u5b58\u8bbf\u95ee\u662f\u4e00\u79cd\u5185\u5b58\u5e03\u5c40\u8bbe\u8ba1": 249, "\u7528\u4e8e\u591a\u5185\u5b58\u63a7\u5236\u5668\u548c\u5185\u5b58\u5757\u7684\u591a\u5957\u63a5\u5b57\u673a\u5668\u4e2d": 249, "\u65e8\u5728\u5229\u7528\u672c\u5730\u5185\u5b58\u7684\u5c40\u90e8\u6027": 249, "\u6240\u6709\u6df1\u5ea6\u5b66\u4e60\u5de5\u4f5c\u8d1f\u8f7d": 249, "\u8bad\u7ec3\u6216\u63a8\u7406": 249, "\u90fd\u80fd\u4ece\u4e0d\u8de8numa\u8282\u70b9\u8bbf\u95ee\u786c\u4ef6\u8d44\u6e90\u4e2d\u83b7\u5f97\u66f4\u597d\u7684\u6027\u80fd": 249, "\u53ef\u4ee5\u4f7f\u7528\u591a\u4e2a\u5b9e\u4f8b\u8fd0\u884c\u63a8\u7406": 249, "\u6bcf\u4e2a\u5b9e\u4f8b\u5728\u4e00\u4e2a\u5957\u63a5\u5b57\u4e0a\u8fd0\u884c": 249, "\u4ee5\u63d0\u9ad8\u541e\u5410\u91cf": 249, "\u5bf9\u4e8e\u5355\u8282\u70b9\u4e0a\u7684\u8bad\u7ec3\u4efb\u52a1": 249, "\u5efa\u8bae\u4f7f\u7528\u5206\u5e03\u5f0f\u8bad\u7ec3": 249, "\u4f7f\u6bcf\u4e2a\u8bad\u7ec3\u8fdb\u7a0b\u5728\u4e00\u4e2a\u5957\u63a5\u5b57\u4e0a\u8fd0\u884c": 249, "\u4ee5\u4e0b\u547d\u4ee4\u4ec5\u5728\u7b2cn\u4e2a\u8282\u70b9\u4e0a\u7684\u6838\u5fc3\u4e0a\u6267\u884cpytorch\u811a\u672c": 249, "\u5e76\u907f\u514d\u8de8\u5957\u63a5\u5b57\u5185\u5b58\u8bbf\u95ee": 249, "\u4ece\u800c\u51cf\u5c11\u5185\u5b58\u8bbf\u95ee\u5f00\u9500": 249, "cpunodebind": 249, "membind": 249, "pytorch_script": 249, "\u66f4\u8be6\u7ec6\u7684\u63cf\u8ff0\u53ef\u4ee5\u5728": 249, "\u627e\u5230": 249, "openmp\u7528\u4e8e\u4e3a\u5e76\u884c\u8ba1\u7b97\u4efb\u52a1\u5e26\u6765\u66f4\u597d\u7684\u6027\u80fd": 249, "\u662f\u53ef\u7528\u4e8e\u52a0\u901f\u8ba1\u7b97\u7684\u6700\u7b80\u5355\u5f00\u5173": 249, "\u5b83\u51b3\u5b9a\u4e86\u7528\u4e8eopenmp\u8ba1\u7b97\u7684\u7ebf\u7a0b\u6570": 249, "cpu\u4eb2\u548c\u6027\u8bbe\u7f6e\u63a7\u5236\u5982\u4f55\u5728\u591a\u4e2a\u6838\u5fc3\u4e0a\u5206\u914d\u5de5\u4f5c\u8d1f\u8f7d": 249, "\u5b83\u4f1a\u5f71\u54cd\u901a\u4fe1\u5f00\u9500": 249, "\u7f13\u5b58\u884c\u5931\u6548\u5f00\u9500\u6216\u9875\u9762\u6296\u52a8": 249, "\u56e0\u6b64\u6b63\u786e\u8bbe\u7f6ecpu\u4eb2\u548c\u6027\u4f1a\u5e26\u6765\u6027\u80fd\u4f18\u52bf": 249, "gomp_cpu_affin": 249, "\u51b3\u5b9a\u5982\u4f55\u5c06openmp\u7ebf\u7a0b\u7ed1\u5b9a\u5230\u7269\u7406\u5904\u7406\u5355\u5143": 249, "\u8be6\u7ec6\u4fe1\u606f\u53ef\u4ee5\u5728": 249, "\u4f7f\u7528\u4ee5\u4e0b\u547d\u4ee4": 249, "pytorch\u5c06\u5728n\u4e2aopenmp\u7ebf\u7a0b\u4e0a\u8fd0\u884c\u4efb\u52a1": 249, "\u4f7f\u7528\u4ee5\u4e0b\u73af\u5883\u53d8\u91cf\u6765\u8bbe\u7f6egnu": 249, "openmp\u5b9e\u73b0\u7684cpu\u4eb2\u548c\u6027": 249, "omp_proc_bind": 249, "\u6307\u5b9a\u7ebf\u7a0b\u662f\u5426\u53ef\u4ee5\u5728\u5904\u7406\u5668\u4e4b\u95f4\u79fb\u52a8": 249, "\u5c06\u5176\u8bbe\u7f6e\u4e3aclose\u53ef\u4ee5\u4f7fopenmp\u7ebf\u7a0b\u9760\u8fd1\u4e3b\u7ebf\u7a0b\u5728\u8fde\u7eed\u7684\u5206\u533a\u4e2d": 249, "omp_schedul": 249, "\u51b3\u5b9a\u4e86openmp\u7ebf\u7a0b\u7684\u8c03\u5ea6\u65b9\u5f0f": 249, "\u5c06\u7ebf\u7a0b\u7ed1\u5b9a\u5230\u7279\u5b9a\u7684cpu": 249, "pytorch\u4f7f\u7528gnu": 249, "libgomp": 249, "\u8fdb\u884c\u5e76\u884c\u8ba1\u7b97": 249, "\u5728intel\u5e73\u53f0\u4e0a": 249, "\u63d0\u4f9b\u4e86openmp": 249, "api\u89c4\u8303\u652f\u6301": 249, "\u76f8\u6bd4": 249, "\u5b83\u6709\u65f6\u4f1a\u5e26\u6765\u66f4\u591a\u7684\u6027\u80fd\u4f18\u52bf": 249, "\u5229\u7528\u73af\u5883\u53d8\u91cf": 249, "\u53ef\u4ee5\u5c06openmp\u5e93\u5207\u6362\u5230": 249, "\u4e0egnu": 249, "openmp\u4e2d\u7684cpu\u4eb2\u548c\u6027\u8bbe\u7f6e\u7c7b\u4f3c": 249, "\u4e2d\u4e5f\u63d0\u4f9b\u4e86\u73af\u5883\u53d8\u91cf\u6765\u63a7\u5236cpu\u4eb2\u548c\u6027\u8bbe\u7f6e": 249, "\u5c06openmp\u7ebf\u7a0b\u7ed1\u5b9a\u5230\u7269\u7406\u5904\u7406\u5355\u5143": 249, "\u8bbe\u7f6e\u7ebf\u7a0b\u5728\u5b8c\u6210\u5e76\u884c\u533a\u57df\u6267\u884c\u540e\u7b49\u5f85\u7761\u7720\u4e4b\u524d\u7684\u65f6\u95f4": 249, "\u4ee5\u6beb\u79d2\u4e3a\u5355\u4f4d": 249, "\u5728\u5927\u591a\u6570\u60c5\u51b5\u4e0b": 249, "\u8bbe\u7f6e\u4e3a1\u62160\u53ef\u4ee5\u83b7\u5f97\u826f\u597d\u7684\u6027\u80fd": 249, "\u4ee5\u4e0b\u547d\u4ee4\u663e\u793a\u4e86\u4f7f\u7528intel": 249, "openmp\u8fd0\u884c\u65f6\u5e93\u7684\u5e38\u89c1\u8bbe\u7f6e": 249, "\u5bf9\u4e8e\u6df1\u5ea6\u5b66\u4e60\u5de5\u4f5c\u8d1f\u8f7d": 249, "\u51fd\u6570\u76f8\u6bd4": 249, "jemalloc": 249, "tcmalloc": 249, "\u53ef\u4ee5\u901a\u8fc7\u5c3d\u53ef\u80fd\u91cd\u7528\u5185\u5b58\u83b7\u5f97\u66f4\u597d\u7684\u6027\u80fd": 249, "\u662f\u4e00\u4e2a\u901a\u7528\u7684": 249, "\u5f3a\u8c03\u907f\u514d\u788e\u7247\u548c\u53ef\u6269\u5c55\u7684\u5e76\u53d1\u652f\u6301": 249, "\u4e5f\u5177\u6709\u4e00\u4e9b\u4f18\u5316": 249, "\u53ef\u4ee5\u52a0\u901f\u7a0b\u5e8f\u6267\u884c": 249, "\u5176\u4e2d\u4e00\u4e2a\u4f18\u5316\u662f\u5728\u7f13\u5b58\u4e2d\u4fdd\u5b58\u5185\u5b58": 249, "\u4ee5\u52a0\u5feb\u5e38\u7528\u5bf9\u8c61\u7684\u8bbf\u95ee\u901f\u5ea6": 249, "\u5373\u4f7f\u5728\u91ca\u653e\u5185\u5b58\u540e": 249, "\u4fdd\u6301\u8fd9\u4e9b\u7f13\u5b58\u4e5f\u6709\u52a9\u4e8e\u907f\u514d\u6602\u8d35\u7684\u7cfb\u7edf\u8c03\u7528": 249, "\u5982\u679c\u7a0d\u540e\u91cd\u65b0\u5206\u914d\u8fd9\u4e9b\u5185\u5b58": 249, "\u4f7f\u7528\u73af\u5883\u53d8\u91cf": 249, "\u6765\u5229\u7528\u5176\u4e2d\u4e4b\u4e00": 249, "graph\u53ef\u4ee5\u663e\u8457\u63d0\u9ad8\u63a8\u7406\u6027\u80fd": 249, "\u5b83\u5c06\u4e00\u4e9b\u8ba1\u7b97\u5bc6\u96c6\u578b\u64cd\u4f5c": 249, "\u4e0e\u5176\u76f8\u90bb\u64cd\u4f5c\u878d\u5408": 249, "0\u4e2d": 249, "\u5b83\u4f5c\u4e3a\u6d4b\u8bd5\u7248\u529f\u80fd\u652f\u6301": 249, "graph\u63a5\u6536\u6a21\u578b\u7684\u56fe\u5f62": 249, "\u5e76\u6839\u636e\u793a\u4f8b\u8f93\u5165\u7684\u5f62\u72b6\u8bc6\u522b\u8fd0\u7b97\u7b26\u878d\u5408\u7684\u5019\u9009\u5bf9\u8c61": 249, "\u6a21\u578b\u5e94\u8be5\u4f7f\u7528\u793a\u4f8b\u8f93\u5165\u8fdb\u884cjit\u8ddf\u8e2a": 249, "\u5bf9\u4e8e\u4e0e\u793a\u4f8b\u8f93\u5165\u5177\u6709\u76f8\u540c\u5f62\u72b6\u7684\u8f93\u5165": 249, "\u5728\u51e0\u6b21\u70ed\u8eab\u8fed\u4ee3\u540e\u5c31\u4f1a\u89c2\u5bdf\u5230\u52a0\u901f": 249, "\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u662f\u9488\u5bf9resnet50\u7684": 249, "\u4f46\u5b83\u4eec\u4e5f\u53ef\u4ee5\u5f88\u597d\u5730\u6269\u5c55\u5230\u4f7f\u7528\u81ea\u5b9a\u4e49\u6a21\u578b\u7684onednn": 249, "\u53ea\u9700\u8981\u8fd9\u4e00\u884c\u989d\u5916\u7684\u4ee3\u7801\u5373\u53ef\u4f7f\u7528onednn": 249, "enable_onednn_fus": 249, "api\u8fdb\u884cfloat32\u63a8\u7406\u53ea\u9700\u8981\u4e00\u884c\u989d\u5916\u7684\u4ee3\u7801": 249, "\u5982\u679c\u60a8\u6b63\u5728\u4f7f\u7528onednn": 249, "\u8bf7\u907f\u514d\u8c03\u7528": 249, "optimize_for_infer": 249, "\u793a\u4f8b\u8f93\u5165\u5e94\u8be5\u4e0e\u9884\u671f\u8f93\u5165\u5177\u6709\u76f8\u540c\u7684\u5f62\u72b6": 249, "\u5728\u6b64\u793a\u4f8b\u4e2d\u4f7f\u7528torchvision\u4e2d\u7684resnet50\u8fdb\u884c\u8bf4\u660e": 249, "\u4f46\u4e0b\u9762\u7684\u4ee3\u7801\u786e\u5b9e\u53ef\u4ee5\u4fee\u6539\u4e3a\u4f7f\u7528\u81ea\u5b9a\u4e49\u6a21\u578b": 249, "\u4f7f\u7528\u793a\u4f8b\u8f93\u5165\u8ddf\u8e2a\u6a21\u578b": 249, "\u8c03\u7528torch": 249, "\u4e00\u65e6\u4f7f\u7528\u793a\u4f8b\u8f93\u5165\u5bf9\u6a21\u578b\u8fdb\u884c\u4e86jit\u8ddf\u8e2a": 249, "\u5c31\u53ef\u4ee5\u5728\u51e0\u6b21\u70ed\u8eab\u8fd0\u884c\u540e\u7528\u4e8e\u63a8\u7406": 249, "\u51e0\u6b21\u70ed\u8eab\u8fd0\u884c": 249, "\u5728\u70ed\u8eab\u8fd0\u884c\u540e\u4f1a\u89c2\u5bdf\u5230\u52a0\u901f": 249, "\u867d\u7136onednn": 249, "graph\u7684jit\u878d\u5408\u5668\u4e5f\u652f\u6301": 249, "\u6570\u636e\u7c7b\u578b\u7684\u63a8\u7406": 249, "\u4f46\u53ea\u6709\u5177\u6709avx512_bf16\u6307\u4ee4\u96c6\u67b6\u6784": 249, "\u7684\u673a\u5668\u624d\u80fd\u4eceonednn": 249, "graph\u4e2d\u83b7\u5f97\u6027\u80fd\u4f18\u52bf": 249, "\u4ee5\u4e0b\u4ee3\u7801\u7247\u6bb5\u662f\u4f7f\u7528": 249, "\u6570\u636e\u7c7b\u578b\u8fdb\u884conednn": 249, "graph\u63a8\u7406\u7684\u793a\u4f8b": 249, "jit\u6a21\u5f0f\u4e0b\u7684amp\u9ed8\u8ba4\u542f\u7528": 249, "\u5e76\u4e14\u4e0e\u5176eager\u6a21\u5f0f\u5bf9\u5e94\u7248\u672c\u4e0d\u540c": 249, "_jit_set_autocast_mod": 249, "\u5f53\u4f7f\u7528amp\u65f6": 249, "\u5e94\u4f7f\u7528": 249, "\u8fdb\u884c\u57fa\u4e8ecnn\u7684\u89c6\u89c9\u6a21\u578b\u7684conv": 249, "batchnorm\u6298\u53e0": 249, "\u5f53\u4e0d\u4f7f\u7528amp\u65f6": 249, "\u65e0\u9700\u8c03\u7528optim": 249, "\u5728\u540e\u7eed\u8fd0\u884c\u4e2d\u4f1a\u89c2\u5bdf\u5230\u52a0\u901f": 249, "\u5bf9\u4e8e\u5c0f\u578b\u6a21\u578b\u6216\u5185\u5b58\u9650\u5236\u578b\u6a21\u578b": 249, "\u5982dlrm": 249, "\u5728cpu\u4e0a\u8fdb\u884c\u8bad\u7ec3\u4e5f\u662f\u4e00\u4e2a\u4e0d\u9519\u7684\u9009\u62e9": 249, "\u5728\u5177\u6709\u591a\u4e2a\u5957\u63a5\u5b57\u7684\u673a\u5668\u4e0a": 249, "\u5206\u5e03\u5f0f\u8bad\u7ec3\u53ef\u4ee5\u5e26\u6765\u9ad8\u6548\u7684\u786c\u4ef6\u8d44\u6e90\u4f7f\u7528": 249, "\u4ece\u800c\u52a0\u901f\u8bad\u7ec3\u8fc7\u7a0b": 249, "ccl": 249, "\u8fdb\u884c\u4e86\u4f18\u5316": 249, "\u7528\u4e8e\u9ad8\u6548\u7684\u5206\u5e03\u5f0f\u6df1\u5ea6\u5b66\u4e60\u8bad\u7ec3": 249, "\u5b9e\u73b0\u4e86\u8bf8\u5982": 249, "alltoal": 249, "\u7b49\u96c6\u4f53\u64cd\u4f5c": 249, "\u5b9e\u73b0\u4e86pytorch": 249, "\u5e76\u53ef\u4ee5\u4f5c\u4e3a\u5916\u90e8": 249, "\u52a8\u6001\u52a0\u8f7d": 249, "ddp\u6a21\u5757\u4e2d\u5b9e\u73b0\u7684\u4f18\u5316\u4e4b\u4e0a": 249, "\u52a0\u901f\u4e86\u901a\u4fe1\u64cd\u4f5c": 249, "\u9664\u4e86\u5bf9\u901a\u4fe1\u5185\u6838\u8fdb\u884c\u4f18\u5316\u5916": 249, "\u8fd8\u652f\u6301\u540c\u6b65\u8ba1\u7b97\u548c\u901a\u4fe1\u529f\u80fd": 249, "\u652f\u6301\u8bb8\u591a\u7b97\u6cd5\u6765\u8ba1\u7b97\u5377\u79ef": 249, "\u81ea\u52a8\u8c03\u4f18\u5668\u4f1a\u8fd0\u884c\u4e00\u4e2a\u7b80\u77ed\u7684\u57fa\u51c6\u6d4b\u8bd5": 249, "\u5e76\u4e3a\u7ed9\u5b9a\u7684\u786c\u4ef6\u548c\u8f93\u5165\u5927\u5c0f\u9009\u62e9\u6027\u80fd\u6700\u4f73\u7684\u5185\u6838": 249, "\u5bf9\u4e8e\u5377\u79ef\u7f51\u7edc": 249, "\u76ee\u524d\u5176\u4ed6\u7c7b\u578b\u5c1a\u4e0d\u652f\u6301": 249, "\u53ef\u4ee5\u5728\u542f\u52a8\u8bad\u7ec3\u5faa\u73af\u4e4b\u524d\u542f\u7528": 249, "\u65b9\u6cd5\u662f\u8bbe\u7f6e": 249, "\u81ea\u52a8\u8c03\u4f18\u5668\u7684\u51b3\u7b56\u53ef\u80fd\u662f\u975e\u786e\u5b9a\u6027\u7684": 249, "\u4e0d\u540c\u7684\u7b97\u6cd5\u53ef\u80fd\u4f1a\u5728\u4e0d\u540c\u7684\u8fd0\u884c\u4e2d\u88ab\u9009\u62e9": 249, "\u6709\u5173\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f": 249, "\u53ef\u91cd\u590d\u6027": 249, "\u5728\u67d0\u4e9b\u7f55\u89c1\u7684\u60c5\u51b5\u4e0b": 249, "\u4f8b\u5982\u8f93\u5165\u5927\u5c0f\u9ad8\u5ea6\u53ef\u53d8\u65f6": 249, "\u6700\u597d\u5728\u7981\u7528\u81ea\u52a8\u8c03\u4f18\u5668\u7684\u60c5\u51b5\u4e0b\u8fd0\u884c\u5377\u79ef\u7f51\u7edc": 249, "\u4ee5\u907f\u514d\u4e3a\u6bcf\u4e2a\u8f93\u5165\u5927\u5c0f\u9009\u62e9\u7b97\u6cd5\u6240\u5e26\u6765\u7684\u5f00\u9500": 249, "\u907f\u514d\u4e0d\u5fc5\u8981\u7684\u540c\u6b65": 249, "\u5c3d\u53ef\u80fd\u8ba9": 249, "\u9886\u5148\u4e8e\u52a0\u901f\u5668\u8fd0\u884c": 249, "\u4ee5\u786e\u4fdd\u52a0\u901f\u5668\u5de5\u4f5c\u961f\u5217\u4e2d\u5305\u542b\u8bb8\u591a\u64cd\u4f5c": 249, "\u8bf7\u907f\u514d\u9700\u8981\u540c\u6b65\u7684\u64cd\u4f5c": 249, "cuda_tensor": 249, "\u5185\u5b58\u590d\u5236": 249, "\u548c\u7b49\u6548\u7684": 249, "\u4f9d\u8d56\u4e8e\u5728": 249, "\u5f20\u91cf\u4e0a\u6267\u884c\u7684\u64cd\u4f5c\u7ed3\u679c\u7684": 249, "\u63a7\u5236\u6d41": 249, "\u6765\u751f\u6210\u968f\u673a\u5f20\u91cf": 249, "\u800c\u662f\u76f4\u63a5\u5728\u76ee\u6807\u8bbe\u5907\u4e0a\u751f\u6210\u8f93\u51fa": 249, "\u8fd9\u9002\u7528\u4e8e\u6240\u6709\u521b\u5efa\u65b0\u5f20\u91cf\u5e76\u63a5\u53d7": 249, "\u53c2\u6570\u7684\u51fd\u6570": 249, "\u548c\u7c7b\u4f3c\u51fd\u6570": 249, "\u6df7\u5408\u7cbe\u5ea6\u5229\u7528": 249, "\u53ca\u66f4\u65b0\u7684": 249, "\u67b6\u6784\u4e0a\u53ef\u63d0\u4f9b\u9ad8\u8fbe": 249, "\u500d\u7684\u6574\u4f53\u52a0\u901f": 249, "\u8981\u4f7f\u7528": 249, "\u9700\u8981\u542f\u7528": 249, "\u5e76\u4e14\u77e9\u9635": 249, "\u5f20\u91cf\u7684\u7ef4\u5ea6\u9700\u8981\u6ee1\u8db3\u8c03\u7528\u4f7f\u7528": 249, "\u7684\u5185\u6838\u7684\u8981\u6c42": 249, "\u5c06\u5927\u5c0f\u8bbe\u7f6e\u4e3a": 249, "\u4ee5\u6620\u5c04\u5230": 249, "\u7684\u7ef4\u5ea6": 249, "\u6df1\u5ea6\u5b66\u4e60\u6027\u80fd\u6587\u6863": 249, "\u4ee5\u83b7\u53d6\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f\u548c\u7279\u5b9a\u4e8e\u5c42\u7c7b\u578b\u7684\u6307\u5357": 249, "\u5982\u679c\u5c42\u5927\u5c0f\u662f\u7531\u5176\u4ed6\u53c2\u6570\u800c\u4e0d\u662f\u56fa\u5b9a\u503c\u6d3e\u751f\u7684": 249, "\u5b83\u4ecd\u7136\u53ef\u4ee5\u663e\u5f0f\u586b\u5145": 249, "\u6a21\u578b\u4e2d\u7684\u8bcd\u6c47\u91cf\u5927\u5c0f": 249, "\u6df7\u5408\u7cbe\u5ea6\u8bad\u7ec3\u548c": 249, "\u89c6\u9891": 249, "\u5e7b\u706f\u7247": 249, "\u7248\u672c\u5f00\u59cb\u63d0\u4f9b\u539f\u751f": 249, "\u7528\u4e8e\u8bed\u97f3\u8bc6\u522b\u6216": 249, "\u7684\u6a21\u578b\u901a\u5e38\u5728\u5177\u6709\u53ef\u53d8\u5e8f\u5217\u957f\u5ea6\u7684\u8f93\u5165\u5f20\u91cf\u4e0a\u8fdb\u884c\u8bad\u7ec3": 249, "\u53ef\u53d8\u957f\u5ea6\u53ef\u80fd\u4f1a\u5bf9": 249, "\u7f13\u5b58\u5206\u914d\u5668\u9020\u6210\u95ee\u9898": 249, "\u5e76\u5bfc\u81f4\u6027\u80fd\u964d\u4f4e\u6216\u610f\u5916\u7684\u5185\u5b58\u4e0d\u8db3\u9519\u8bef": 249, "\u5982\u679c\u4e00\u4e2a\u77ed\u5e8f\u5217\u957f\u5ea6\u7684\u6279\u6b21\u540e\u9762\u7d27\u8ddf\u7740\u53e6\u4e00\u4e2a\u957f\u5e8f\u5217\u957f\u5ea6\u7684\u6279\u6b21": 249, "\u5c31\u88ab\u8feb\u91ca\u653e\u524d\u4e00\u6b21\u8fed\u4ee3\u7684\u4e2d\u95f4\u7f13\u51b2\u533a": 249, "\u5e76\u91cd\u65b0\u5206\u914d\u65b0\u7684\u7f13\u51b2\u533a": 249, "\u8fd9\u4e2a\u8fc7\u7a0b\u662f\u8017\u65f6\u7684": 249, "\u5e76\u4f1a\u5728\u7f13\u5b58\u5206\u914d\u5668\u4e2d\u9020\u6210\u788e\u7247": 249, "\u4ece\u800c\u53ef\u80fd\u5bfc\u81f4\u5185\u5b58\u4e0d\u8db3\u9519\u8bef": 249, "\u4e00\u4e2a\u5178\u578b\u7684\u89e3\u51b3\u65b9\u6848\u662f\u5b9e\u73b0\u9884\u5206\u914d": 249, "\u5b83\u5305\u62ec\u4ee5\u4e0b\u6b65\u9aa4": 249, "\u751f\u6210\u4e00\u4e2a": [249, 254], "\u901a\u5e38\u662f\u968f\u673a\u7684": 249, "\u5177\u6709\u6700\u5927\u5e8f\u5217\u957f\u5ea6\u7684\u8f93\u5165\u6279\u6b21": 249, "\u8981\u4e48\u5bf9\u5e94\u4e8e\u8bad\u7ec3\u6570\u636e\u96c6\u4e2d\u7684\u6700\u5927\u957f\u5ea6": 249, "\u8981\u4e48\u5bf9\u5e94\u4e8e\u67d0\u4e2a\u9884\u5b9a\u4e49\u7684\u9608\u503c": 249, "\u4f7f\u7528\u751f\u6210\u7684\u6279\u6b21\u6267\u884c\u524d\u5411\u548c\u540e\u5411\u4f20\u9012": 249, "\u4e0d\u6267\u884c\u4f18\u5316\u5668\u6216\u5b66\u4e60\u7387\u8c03\u5ea6\u5668": 249, "\u8fd9\u4e00\u6b65\u9884\u5206\u914d\u4e86\u6700\u5927\u5927\u5c0f\u7684\u7f13\u51b2\u533a": 249, "\u53ef\u5728\u540e\u7eed\u8bad\u7ec3\u8fed\u4ee3\u4e2d\u91cd\u7528": 249, "\u7ee7\u7eed\u5e38\u89c4\u8bad\u7ec3": 249, "\u6709\u4e24\u79cd\u65b9\u5f0f\u6765\u5b9e\u73b0\u6570\u636e\u5e76\u884c\u8bad\u7ec3": 249, "\u63d0\u4f9b\u4e86\u66f4\u597d\u7684\u6027\u80fd\u548c\u591a": 249, "\u6269\u5c55\u80fd\u529b": 249, "\u6587\u6863\u4e2d": 249, "\u76f8\u5173": 249, "\u6700\u4f73\u5b9e\u8df5\u90e8\u5206": 249, "\u5728\u6bcf\u6b21\u53cd\u5411\u4f20\u64ad\u540e\u6267\u884c\u68af\u5ea6": 249, "\u4ee5\u8ba1\u7b97\u53c2\u4e0e\u8bad\u7ec3\u7684\u6240\u6709\u5de5\u4f5c\u8fdb\u7a0b\u4e0a\u7684\u5e73\u5747\u68af\u5ea6": 249, "\u5982\u679c\u8bad\u7ec3\u4f7f\u7528\u4e86": 249, "\u6b65\u68af\u5ea6\u7d2f\u79ef": 249, "\u90a3\u4e48\u5728\u6bcf\u4e2a\u8bad\u7ec3\u6b65\u9aa4\u540e\u90fd\u4e0d\u9700\u8981\u6267\u884c": 249, "\u53ea\u9700\u5728\u6700\u540e\u4e00\u6b21\u8c03\u7528": 249, "\u5728\u6267\u884c\u4f18\u5316\u5668\u4e4b\u524d\u6267\u884c": 249, "\u63d0\u4f9b\u4e86": 249, "no_sync": 249, "\u7528\u4e8e\u5728\u7279\u5b9a\u8fed\u4ee3\u4e2d\u7981\u7528\u68af\u5ea6": 249, "\u5e94\u8be5\u5e94\u7528\u4e8e\u68af\u5ea6\u7d2f\u79ef\u7684\u524d": 249, "\u6b21\u8fed\u4ee3": 249, "\u6700\u540e\u4e00\u6b21\u8fed\u4ee3\u5e94\u8be5\u9075\u5faa\u9ed8\u8ba4\u6267\u884c": 249, "\u5e76\u6267\u884c\u6240\u9700\u7684\u68af\u5ea6": 249, "\u4f1a\u6839\u636e\u6a21\u578b\u6784\u9020\u51fd\u6570\u4e2d\u5c42\u548c\u53c2\u6570\u7684\u987a\u5e8f\u6765\u6784\u5efa": 249, "\u7684\u6876": 249, "\u4f1a\u4e0e\u53cd\u5411\u4f20\u64ad\u91cd\u53e0": 249, "\u53ea\u6709\u5f53\u7ed9\u5b9a\u6876\u4e2d\u7684\u6240\u6709\u53c2\u6570\u7684\u68af\u5ea6\u90fd\u53ef\u7528\u65f6": 249, "\u624d\u4f1a\u5f02\u6b65\u89e6\u53d1\u8be5\u6876\u7684": 249, "\u4e3a\u4e86\u6700\u5927\u5316\u91cd\u53e0\u91cf": 249, "\u6a21\u578b\u6784\u9020\u51fd\u6570\u4e2d\u7684\u987a\u5e8f\u5e94\u8be5\u5927\u81f4\u4e0e\u6267\u884c\u671f\u95f4\u7684\u987a\u5e8f\u76f8\u5339\u914d": 249, "\u5982\u679c\u987a\u5e8f\u4e0d\u5339\u914d": 249, "\u90a3\u4e48\u6574\u4e2a\u6876\u7684": 249, "\u5c06\u7b49\u5f85\u6700\u540e\u5230\u8fbe\u7684\u68af\u5ea6": 249, "\u8fd9\u53ef\u80fd\u4f1a\u51cf\u5c11\u53cd\u5411\u4f20\u64ad\u548c": 249, "\u4e4b\u95f4\u7684\u91cd\u53e0": 249, "\u53ef\u80fd\u4f1a\u66b4\u9732\u51fa\u6765": 249, "\u4ece\u800c\u51cf\u6162\u8bad\u7ec3\u901f\u5ea6": 249, "\u8fd9\u662f\u9ed8\u8ba4\u8bbe\u7f6e": 249, "\u4f9d\u8d56\u4e8e\u57fa\u4e8e\u53cd\u5411\u4f20\u64ad\u671f\u95f4\u9047\u5230\u7684\u64cd\u4f5c\u987a\u5e8f\u7684\u81ea\u52a8\u6876\u5f62\u6210": 249, "\u65e0\u9700\u91cd\u65b0\u6392\u5217\u5c42\u6216\u53c2\u6570\u5373\u53ef\u83b7\u5f97\u6700\u4f73\u6027\u80fd": 249, "\u5bf9\u4e8e\u5904\u7406\u5e8f\u5217\u6570\u636e\u7684\u6a21\u578b": 249, "\u8bed\u97f3\u8bc6\u522b": 249, "\u7ffb\u8bd1": 249, "\u8bed\u8a00\u6a21\u578b\u7b49": 249, "\u901a\u5e38\u53ef\u80fd\u4f1a\u53d1\u751f\u8d1f\u8f7d\u4e0d\u5747\u8861": 249, "\u5982\u679c\u4e00\u4e2a\u8bbe\u5907\u6536\u5230\u7684\u6279\u6b21\u6570\u636e\u7684\u5e8f\u5217\u957f\u5ea6\u6bd4\u5176\u4ed6\u8bbe\u5907\u957f": 249, "\u90a3\u4e48\u6240\u6709\u8bbe\u5907\u90fd\u8981\u7b49\u5f85\u5b8c\u6210\u6700\u540e\u7684\u5de5\u4f5c\u8fdb\u7a0b": 249, "\u540e\u7aef\u7684\u5206\u5e03\u5f0f\u8bbe\u7f6e\u4e2d": 249, "\u53cd\u5411\u4f20\u64ad\u51fd\u6570\u4f5c\u4e3a\u4e00\u4e2a\u9690\u5f0f\u7684\u540c\u6b65\u70b9": 249, "\u6709\u591a\u79cd\u65b9\u6cd5\u53ef\u4ee5\u89e3\u51b3\u8d1f\u8f7d\u5e73\u8861\u95ee\u9898": 249, "\u6838\u5fc3\u601d\u60f3\u662f\u5728\u6bcf\u4e2a\u5168\u5c40\u6279\u6b21\u4e2d\u5c3d\u53ef\u80fd\u5747\u5300\u5730\u5c06\u5de5\u4f5c\u8d1f\u8f7d\u5206\u5e03\u5230\u6240\u6709\u5de5\u4f5c\u8fdb\u7a0b": 249, "\u901a\u8fc7\u5f62\u6210\u5177\u6709\u5927\u7ea6\u6052\u5b9a\u4ee4\u724c\u6570": 249, "\u800c\u4e0d\u662f\u5e8f\u5217\u6570": 249, "\u7684\u6279\u6b21\u6765\u89e3\u51b3\u4e0d\u5e73\u8861\u95ee\u9898": 249, "\u5176\u4ed6\u6a21\u578b\u901a\u8fc7\u5bf9\u5177\u6709\u76f8\u4f3c\u5e8f\u5217\u957f\u5ea6\u7684\u6837\u672c\u8fdb\u884c\u5206\u6876\u6216\u751a\u81f3\u5bf9\u6570\u636e\u96c6\u6309\u5e8f\u5217\u957f\u5ea6\u8fdb\u884c\u6392\u5e8f\u6765\u89e3\u51b3\u4e0d\u5e73\u8861\u95ee\u9898": 249, "tuning_guid": 249, "\u5728\u8f6c\u79fb\u5b66\u4e60\u6216\u8bad\u7ec3\u65b0\u7684\u590d\u6742\u6a21\u578b\u65f6": 250, "\u52a0\u8f7d\u90e8\u5206\u6a21\u578b\u662f\u5f88\u5e38\u89c1\u7684\u573a\u666f": 250, "\u5229\u7528\u5df2\u7ecf\u8bad\u7ec3\u597d\u7684\u53c2\u6570": 250, "\u5373\u4f7f\u53ea\u6709\u5c11\u6570\u53ef\u7528": 250, "\u4e5f\u5c06\u6709\u52a9\u4e8e\u52a0\u5feb\u8bad\u7ec3\u8fc7\u7a0b\u7684\u542f\u52a8": 250, "\u5e76\u6709\u671b\u4f7f\u60a8\u7684\u6a21\u578b\u6bd4\u4ece\u5934\u5f00\u59cb\u8bad\u7ec3\u6536\u655b\u5f97\u66f4\u5feb": 250, "\u65e0\u8bba\u60a8\u662f\u52a0\u8f7d\u7f3a\u5c11\u67d0\u4e9b\u952e\u7684\u90e8\u5206": 250, "\u8fd8\u662f\u52a0\u8f7d\u6bd4\u9884\u671f\u7684\u6a21\u578b\u66f4\u591a\u952e\u7684": 250, "\u60a8\u90fd\u53ef\u4ee5\u901a\u8fc7": 250, "\u4ee5\u5ffd\u7565\u4e0d\u5339\u914d\u7684\u952e": 250, "\u6211\u4eec\u5c06\u5c1d\u8bd5\u4f7f\u7528\u4e0d\u540c\u6a21\u578b\u7684\u53c2\u6570\u5bf9\u6a21\u578b\u8fdb\u884c\u70ed\u542f\u52a8": 250, "\u6211\u4eec\u5c06\u521b\u5efa\u4e24\u4e2a\u795e\u7ecf\u7f51\u7edc": 250, "\u5c06\u7c7b\u578b": 250, "\u7684\u4e00\u4e2a\u53c2\u6570\u52a0\u8f7d\u5230\u7c7b\u578b": 250, "\u5982\u679c\u60a8\u60f3\u5c06\u4e00\u4e2a\u5c42\u7684\u53c2\u6570\u52a0\u8f7d\u5230\u53e6\u4e00\u4e2a\u5c42": 250, "\u4f46\u662f\u67d0\u4e9b\u952e\u4e0d\u5339\u914d": 250, "\u53ea\u9700\u5c06\u8981\u52a0\u8f7d\u7684": 250, "\u4e2d\u7684\u53c2\u6570\u952e\u540d\u79f0\u66f4\u6539\u4e3a\u4e0e\u8981\u52a0\u8f7d\u5230\u7684\u6a21\u578b\u4e2d\u7684\u952e\u540d\u79f0\u76f8\u5339\u914d\u5373\u53ef": 250, "\u60a8\u53ef\u4ee5\u770b\u5230\u6240\u6709\u952e\u90fd\u5339\u914d\u6210\u529f": 250, "\u60a8\u5df2\u6210\u529f\u4f7f\u7528\u4e0d\u540c\u6a21\u578b\u7684\u53c2\u6570\u5bf9\u6a21\u578b\u8fdb\u884c\u4e86\u70ed\u542f\u52a8": 250, "\u4f7f\u7528pytorch\u5728\u4e00\u4e2a\u6587\u4ef6\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u6a21\u578b": 250, "\u5728pytorch\u4e2d\u8de8\u8bbe\u5907\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": [250, 252], "\u6a21\u578b\u7684\u53ef\u5b66\u4e60\u53c2\u6570": 251, "\u5373\u6743\u91cd\u548c\u504f\u7f6e": 251, "\u5305\u542b\u5728\u6a21\u578b\u7684\u53c2\u6570\u4e2d": 251, "\u8bbf\u95ee": 251, "\u53ea\u662f\u4e00\u4e2a": 251, "\u5b57\u5178\u5bf9\u8c61": 251, "\u5b83\u5c06\u6bcf\u4e00\u5c42\u6620\u5c04\u5230\u5176\u53c2\u6570\u5f20\u91cf": 251, "\u5982\u679c\u4f7f\u7528": 251, "\u4fdd\u5b58\u6216\u52a0\u8f7d\u6a21\u578b": 251, "\u5c31\u662f\u4e00\u4e2a\u4e0d\u53ef\u6216\u7f3a\u7684\u5b9e\u4f53": 251, "\u5bf9\u8c61\u662f": 251, "\u5b57\u5178": 251, "\u5b83\u4eec\u53ef\u4ee5\u5f88\u5bb9\u6613\u5730\u88ab\u4fdd\u5b58": 251, "\u66f4\u65b0": 251, "\u4fee\u6539\u548c\u6062\u590d": 251, "\u6a21\u578b\u548c\u4f18\u5316\u5668\u66f4\u597d\u7684\u505a\u5230\u4e86\u6a21\u5757\u5316": 251, "\u53ea\u6709\u5177\u6709\u53ef\u5b66\u4e60\u53c2\u6570\u7684\u5c42": 251, "\u5377\u79ef\u5c42": 251, "\u7ebf\u6027\u5c42\u7b49": 251, "\u548c\u5df2\u6ce8\u518c\u7684\u7f13\u51b2\u533a": 251, "\u5728\u6a21\u578b\u7684": 251, "\u4e2d\u6709\u6761\u76ee": 251, "\u4f18\u5316\u5668\u5bf9\u8c61": 251, "\u4e5f\u6709\u4e00\u4e2a": 251, "\u5b83\u5305\u542b\u4e86\u4f18\u5316\u5668\u72b6\u6001\u7684\u4fe1\u606f": 251, "\u4ee5\u53ca\u4f7f\u7528\u7684\u8d85\u53c2\u6570": 251, "\u6211\u4eec\u5c06\u770b\u5230\u5982\u4f55\u5728\u4e00\u4e2a\u7b80\u5355\u7684\u6a21\u578b\u4e2d": 251, "\u662f\u5982\u4f55\u4f7f\u7528\u7684": 251, "\u5b9a\u4e49\u548c\u521d\u59cb\u5316\u795e\u7ecf\u7f51\u7edc": 251, "\u5bfc\u5165\u52a0\u8f7d\u6570\u636e\u6240\u9700\u7684\u5fc5\u8981\u5e93": 251, "\u73b0\u5728\u6211\u4eec\u5df2\u7ecf\u6784\u5efa\u4e86\u6a21\u578b\u548c\u4f18\u5316\u5668": 251, "\u6211\u4eec\u53ef\u4ee5\u4e86\u89e3\u5b83\u4eec\u5404\u81ea\u7684": 251, "\u5c5e\u6027\u4e2d\u4fdd\u5b58\u4e86\u4ec0\u4e48": 251, "\u8fd9\u4e9b\u4fe1\u606f\u5bf9\u4e8e\u5c06\u6765\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u548c\u4f18\u5316\u5668\u5f88\u6709\u7528": 251, "\u4f60\u5df2\u7ecf\u6210\u529f\u4f7f\u7528\u4e86": 251, "\u7ee7\u7eed\u4f60\u7684\u5b66\u4e60": 251, "\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u7528\u4e8e\u63a8\u7406": 251, "\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u901a\u7528\u68c0\u67e5\u70b9": 251, "\u6a21\u578b\u80fd\u591f\u901a\u8fc7\u4f7f\u7528\u68af\u5ea6\u4e0b\u964d\u6765\u63d0\u9ad8\u5b83\u4eec\u7684\u7cbe\u5ea6": 252, "\u7b80\u800c\u8a00\u4e4b": 252, "\u68af\u5ea6\u4e0b\u964d\u662f\u901a\u8fc7\u8c03\u6574\u6a21\u578b\u4e2d\u7684\u6743\u91cd\u548c\u504f\u7f6e\u6765\u6700\u5c0f\u5316\u635f\u5931": 252, "\u6216\u8bef\u5dee": 252, "\u7684\u8fc7\u7a0b": 252, "\u662fpytorch\u7684\u4e2d\u5fc3\u7c7b": 252, "\u5f53\u4f60\u521b\u5efa\u4e00\u4e2a\u5f20\u91cf\u65f6": 252, "\u5982\u679c\u5c06\u5176\u5c5e\u6027": 252, "\u8be5\u5bf9\u8c61\u4f1a\u8ddf\u8e2a\u5bf9\u5b83\u7684\u6240\u6709\u64cd\u4f5c": 252, "\u8fd9\u53d1\u751f\u5728\u540e\u7eed\u7684\u53cd\u5411\u4f20\u64ad\u8fc7\u7a0b\u4e2d": 252, "\u8be5\u5f20\u91cf\u7684\u68af\u5ea6\u5c06\u7d2f\u79ef\u5230": 252, "\u6240\u6709\u68af\u5ea6\u7684\u7d2f\u79ef": 252, "\u6216\u6c42\u548c": 252, "\u662f\u5728\u5bf9\u635f\u5931\u5f20\u91cf\u8c03\u7528": 252, "\u65f6\u8ba1\u7b97\u7684": 252, "\u53ef\u80fd\u9700\u8981\u6e05\u96f6\u5f20\u91cf\u7684\u68af\u5ea6": 252, "\u5f53\u4f60\u5f00\u59cb\u8bad\u7ec3\u5faa\u73af\u65f6": 252, "\u4f60\u5e94\u8be5\u6e05\u96f6\u68af\u5ea6": 252, "\u4ee5\u4fbf\u6b63\u786e\u6267\u884c\u6b64\u8ddf\u8e2a": 252, "\u6211\u4eec\u5c06\u5b66\u4e60\u5982\u4f55\u4f7f\u7528pytorch\u5e93\u6e05\u96f6\u68af\u5ea6": 252, "\u6211\u4eec\u5c06\u901a\u8fc7\u5728pytorch\u5185\u7f6e\u7684": 252, "\u6570\u636e\u96c6\u4e0a\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc\u6765\u6f14\u793a\u5982\u4f55\u505a\u5230\u8fd9\u4e00\u70b9": 252, "\u7531\u4e8e\u6211\u4eec\u5c06\u5728\u672c\u6559\u7a0b\u4e2d\u8bad\u7ec3\u6570\u636e": 252, "\u5982\u679c\u4f60\u5728\u53ef\u8fd0\u884c\u7684\u7b14\u8bb0\u672c\u4e2d": 252, "\u6700\u597d\u5c06\u8fd0\u884c\u65f6\u5207\u6362\u5230gpu\u6216tpu": 252, "\u6211\u4eec\u9700\u8981\u5b89\u88c5\u5b83\u4eec": 252, "\u6b65\u9aa41\u52304\u8bbe\u7f6e\u4e86\u6211\u4eec\u7528\u4e8e\u8bad\u7ec3\u7684\u6570\u636e\u548c\u795e\u7ecf\u7f51\u7edc": 252, "\u6e05\u96f6\u68af\u5ea6\u7684\u8fc7\u7a0b\u53d1\u751f\u5728\u6b65\u9aa45": 252, "\u5982\u679c\u4f60\u5df2\u7ecf\u6784\u5efa\u4e86\u6570\u636e\u548c\u795e\u7ecf\u7f51\u7edc": 252, "\u53ef\u4ee5\u8df3\u8fc7\u524d\u56db\u6b65": 252, "\u76f4\u63a5\u8fdb\u5165\u7b2c5\u6b65": 252, "\u5b9a\u4e49\u635f\u5931\u51fd\u6570": 252, "\u6765\u8bbf\u95ee\u6570\u636e\u96c6": 252, "pytorch\u63d0\u4f9b\u4e86\u5404\u79cd\u5185\u7f6e\u6570\u636e\u96c6": 252, "\u8bf7\u53c2\u9605\u52a0\u8f7d\u6570\u636e\u6559\u7a0b": 252, "\u6211\u4eec\u5c06\u4f7f\u7528\u5377\u79ef\u795e\u7ecf\u7f51\u7edc": 252, "\u8bf7\u53c2\u9605\u5b9a\u4e49\u795e\u7ecf\u7f51\u7edc\u6559\u7a0b": 252, "\u8ba9\u6211\u4eec\u4f7f\u7528\u5206\u7c7b\u4ea4\u53c9\u71b5\u635f\u5931\u548c\u5e26\u52a8\u91cf\u7684sgd": 252, "\u6211\u4eec\u53ea\u9700\u8981\u904d\u5386\u6570\u636e\u8fed\u4ee3\u5668": 252, "\u5e76\u5c06\u8f93\u5165\u9988\u9001\u5230\u7f51\u7edc\u4e2d\u5e76\u4f18\u5316": 252, "\u5bf9\u4e8e\u6bcf\u4e2a\u6570\u636e\u5b9e\u4f53": 252, "\u6211\u4eec\u90fd\u4f1a\u6e05\u96f6\u68af\u5ea6": 252, "\u8fd9\u662f\u4e3a\u4e86\u786e\u4fdd\u5728\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc\u65f6": 252, "\u6211\u4eec\u4e0d\u4f1a\u8ddf\u8e2a\u4efb\u4f55\u4e0d\u5fc5\u8981\u7684\u4fe1\u606f": 252, "data\u662f\u4e00\u4e2a\u5305\u542b": 252, "\u7684\u5217\u8868": 252, "\u6e05\u96f6\u53c2\u6570\u68af\u5ea6": 252, "\u6bcf2000\u4e2a\u5c0f\u6279\u6b21\u6253\u5370\u4e00\u6b21": 252, "\u4f60\u4e5f\u53ef\u4ee5\u4f7f\u7528": 252, "\u53ea\u8981\u4f60\u7684\u6240\u6709\u6a21\u578b\u53c2\u6570\u90fd\u5728\u8be5\u4f18\u5316\u5668\u4e2d": 252, "\u548c\u4f7f\u7528": 252, "\u662f\u4e00\u6837\u7684": 252, "\u8bf7\u6839\u636e\u5177\u4f53\u60c5\u51b5\u51b3\u5b9a\u4f7f\u7528\u54ea\u4e00\u79cd\u65b9\u5f0f": 252, "\u4f60\u5df2\u7ecf\u6210\u529f\u5730\u5728pytorch\u4e2d\u6e05\u96f6\u4e86\u68af\u5ea6": 252, "\u7ee7\u7eed\u4f60\u7684\u5b66\u4e60\u4e4b\u65c5": 252, "\u5728pytorch\u4e2d\u52a0\u8f7d\u6570\u636e": 252, "bite": 253, "\u4e0e\u5165\u95e8\u6559\u7a0b\u4e0d\u540c": 253, "\u6b64\u7cfb\u5217\u901a\u8fc7\u7b80\u6d01\u5b9e\u7528\u7684\u793a\u4f8b": 253, "\u5c55\u793a\u4e86\u5982\u4f55\u4f7f\u7528pytorch\u7684\u7279\u6027": 253, "\u6765\u51c6\u5907\u548c\u52a0\u8f7d\u5e38\u89c1\u7684\u6570\u636e\u96c6": 253, "\u5b66\u4e60\u5982\u4f55\u4f7f\u7528torch": 253, "\u4e3amnist\u6570\u636e\u96c6\u521b\u5efa\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc": 253, "\u5bf9\u8c61\u548c": 253, "\u5b57\u5178\u5728": 253, "\u4e2d\u4fdd\u5b58\u6216\u52a0\u8f7d\u6a21\u578b": 253, "\u5728pytorch\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u7528\u4e8e\u63a8\u7406\u7684\u4e24\u79cd\u65b9\u5f0f": 253, "state_dict\u548c\u5b8c\u6574\u6a21\u578b": 253, "\u4fdd\u5b58\u548c\u52a0\u8f7d\u4e00\u4e2a\u901a\u7528\u7684\u68c0\u67e5\u70b9\u6a21\u578b": 253, "\u53ef\u4ee5\u5e2e\u52a9\u60a8\u4ece\u4e0a\u6b21\u505c\u6b62\u7684\u5730\u65b9\u7ee7\u7eed\u63a8\u7406\u6216\u8bad\u7ec3": 253, "\u63a2\u7d22\u5982\u4f55\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u68c0\u67e5\u70b9": 253, "\u5b66\u4e60\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u6a21\u578b": 253, "\u6709\u52a9\u4e8e\u91cd\u7528\u60a8\u4e4b\u524d\u8bad\u7ec3\u8fc7\u7684\u6a21\u578b": 253, "\u4e86\u89e3\u5982\u4f55\u901a\u8fc7\u90e8\u5206\u52a0\u8f7d\u6a21\u578b\u6216\u52a0\u8f7d\u90e8\u5206\u6a21\u578b\u65b9\u5f0f\u6765\u70ed\u542f\u52a8\u8bad\u7ec3\u8fc7\u7a0b": 253, "\u8fd9\u53ef\u4ee5\u5e2e\u52a9\u60a8\u7684\u6a21\u578b\u6bd4\u4ece\u5934\u5f00\u59cb\u8bad\u7ec3\u6536\u655b\u5f97\u66f4\u5feb": 253, "\u8de8\u8bbe\u5907\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": 253, "\u4e86\u89e3\u5982\u4f55\u4f7f\u7528pytorch\u5728\u4e0d\u540c\u8bbe\u5907": 253, "cpu\u548cgpu": 253, "\u4e4b\u95f4\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": 253, "\u6e05\u96f6\u68af\u5ea6": 253, "\u4e86\u89e3\u4f55\u65f6\u5e94\u8be5\u6e05\u96f6\u68af\u5ea6": 253, "\u4ee5\u53ca\u8fd9\u6837\u505a\u5982\u4f55\u6709\u52a9\u4e8e\u63d0\u9ad8\u6a21\u578b\u7684\u7cbe\u5ea6": 253, "\u6a21\u5757\u6765\u6d4b\u91cf\u548c\u6bd4\u8f83\u4ee3\u7801\u6027\u80fd": 253, "\u5b66\u4e60\u5982\u4f55\u6d4b\u91cf\u4ee3\u7801\u7247\u6bb5\u7684\u8fd0\u884c\u65f6\u95f4\u548c\u6536\u96c6\u6307\u4ee4": 253, "\u6765\u6d4b\u91cf\u7b97\u5b50\u7684\u65f6\u95f4\u548c\u5185\u5b58\u6d88\u8017": 253, "itt": 253, "\u5b66\u4e60\u5982\u4f55\u4f7f\u7528\u652f\u6301": 253, "\u4e2d\u53ef\u89c6\u5316\u7b97\u5b50\u6807\u7b7e": 253, "\u540e\u7aef": 253, "\u4e2d\u63a8\u7406\u5f62\u72b6": 253, "\u8bbe\u5907\u6765\u63a8\u7406\u6a21\u578b\u4e2d\u7684\u5f62\u72b6": 253, "\u5b66\u4e60\u4ece\u68c0\u67e5\u70b9\u52a0\u8f7d": 253, "\u89c2\u5bdf": 253, "\u65e5\u5fd7": 253, "\u89c2\u5bdf\u7f16\u8bd1\u8fc7\u7a0b": [253, 258], "\u4e2d\u7528\u4e8e\u52a0\u8f7d": 253, "\u548c\u5f20\u91cf\u5b50\u7c7b\u7684\u6269\u5c55\u70b9": 253, "\u4e2d\u7684\u65b0\u6269\u5c55\u70b9": 253, "\u5e76\u53ef\u89c6\u5316\u5f52\u56e0\u7ed3\u679c": 253, "\u5b66\u4e60\u5728": 253, "\u7684\u57fa\u672c\u7528\u6cd5": 253, "\u4ee5\u53ca\u5982\u4f55\u5728": 253, "\u4e2d\u53ef\u89c6\u5316\u6570\u636e": 253, "\u5bf9\u4e00\u4e2a\u7b80\u5355\u7684": 253, "\u6a21\u578b\u5e94\u7528\u52a8\u6001\u91cf\u5316": 253, "\u90e8\u7f72\u65f6\u4f7f\u7528": 253, "\u5b66\u4e60\u5982\u4f55\u5c06\u8bad\u7ec3\u597d\u7684\u6a21\u578b\u5bfc\u51fa\u4e3a": 253, "\u6a21\u578b\u5e76\u8fdb\u884c\u63a8\u7406": [253, 259], "\u8fdb\u884c\u90e8\u7f72": 253, "\u5b66\u4e60\u5982\u4f55\u4f7f\u7528\u8f7b\u91cf\u7ea7": 253, "\u5feb\u901f\u4ece\u8bad\u7ec3\u597d\u7684": 253, "\u6a21\u578b\u642d\u5efa": 253, "\u79fb\u52a8\u7aef\u6027\u80fd\u4f18\u5316\u6280\u5de7": 253, "\u5728\u79fb\u52a8\u7aef": 253, "\u65f6\u7684\u4e00\u4e9b\u6027\u80fd\u4f18\u5316\u6280\u5de7": 253, "\u5236\u4f5c\u4f7f\u7528": 253, "\u9884\u7f16\u8bd1\u5e93\u7684": 253, "\u539f\u751f\u5e94\u7528": 253, "\u5b66\u4e60\u5982\u4f55\u4ece\u5934\u5f00\u59cb\u5236\u4f5c\u4f7f\u7528": 253, "\u5e26\u81ea\u5b9a\u4e49": 253, "\u7b97\u5b50": 253, "\u5e94\u7528": 253, "\u878d\u5408\u6a21\u5757\u6280\u5de7": 253, "\u5b66\u4e60\u5982\u4f55\u5728\u91cf\u5316\u4e4b\u524d\u5c06\u4e00\u7cfb\u5217": 253, "\u6a21\u5757\u878d\u5408\u4e3a\u5355\u4e2a\u6a21\u5757": 253, "\u4ee5\u51cf\u5c0f\u6a21\u578b\u5927\u5c0f": 253, "\u79fb\u52a8\u7aef\u91cf\u5316\u6280\u5de7": 253, "\u5b66\u4e60\u5982\u4f55\u5728\u4e0d\u592a\u635f\u5931\u7cbe\u5ea6\u7684\u60c5\u51b5\u4e0b\u51cf\u5c0f\u6a21\u578b\u5927\u5c0f\u5e76\u52a0\u5feb\u8fd0\u884c\u901f\u5ea6": 253, "\u4e3a\u79fb\u52a8\u7aef\u811a\u672c\u5316\u548c\u4f18\u5316": 253, "\u5b66\u4e60\u5982\u4f55\u5c06\u6a21\u578b\u8f6c\u6362\u4e3a": 253, "\u4e3a\u79fb\u52a8\u5e94\u7528\u4f18\u5316": 253, "\u7aef\u6a21\u578b\u51c6\u5907\u6280\u5de7": 253, "\u5b66\u4e60\u5982\u4f55\u5c06\u6a21\u578b\u6dfb\u52a0\u5230": 253, "\u9879\u76ee\u4e2d": 253, "\u4e0a\u7684\u79fb\u52a8\u7aef\u89e3\u91ca\u5668\u5de5\u4f5c\u6d41\u7a0b": 253, "\u5b66\u4e60\u5982\u4f55\u5728": 253, "\u8bbe\u5907\u4e0a\u4f7f\u7528\u79fb\u52a8\u7aef\u89e3\u91ca\u5668": 253, "\u5206\u6790\u57fa\u4e8e": 253, "\u7684\u5de5\u4f5c\u8d1f\u8f7d": 253, "\u4e0a\u51cf\u5c11\u8fd0\u884c\u65f6\u95f4\u5e76\u8282\u7701\u5185\u5b58": 253, "\u6027\u80fd\u4f18\u5316\u6307\u5357": 253, "\u5b9e\u73b0\u6700\u4f73\u6027\u80fd\u7684\u6280\u5de7": 253, "\u5904\u7406\u5668\u4e0a\u4f18\u5316": 253, "\u63a8\u7406\u6027\u80fd": 253, "\u4e0a\u5b9e\u73b0\u6700\u4f73\u63a8\u7406\u6027\u80fd\u7684\u6280\u5de7": 253, "\u5229\u7528": 253, "\u9ad8\u7ea7\u77e9\u9635\u6269\u5c55": 253, "\u5b66\u4e60\u5982\u4f55\u5229\u7528": 253, "\u7f16\u8bd1\u4f18\u5316\u5668": [253, 257], "\u52a0\u901f\u4f18\u5316\u5668": 253, "\u4f7f\u7528\u5b66\u4e60\u7387\u8c03\u5ea6\u5668\u8fd0\u884c\u7f16\u8bd1\u540e\u7684\u4f18\u5316\u5668": 253, "\u4f18\u5316\u5668\u52a0\u901f\u8bad\u7ec3": 253, "\u4e2d\u4f7f\u7528\u7528\u6237\u5b9a\u4e49\u7684": 253, "\u4e2d\u4f7f\u7528\u7528\u6237\u5b9a\u4e49\u7684\u5185\u6838": 253, "\u4e86\u89e3\u5982\u4f55\u4f7f\u7528\u533a\u57df\u7f16\u8bd1\u6765\u63a7\u5236\u51b7\u542f\u52a8\u7f16\u8bd1\u65f6\u95f4": 253, "\u8f7b\u677e\u91cf\u5316": 253, "\u5165\u95e8": 253, "\u5206\u7247\u4f18\u5316\u5668\u72b6\u6001": [253, 261], "\u51cf\u5c11\u5185\u5b58\u6d88\u8017": 253, "\u5b9e\u73b0\u76f4\u63a5\u8bbe\u5907\u95f4\u901a\u4fe1": 253, "\u5982\u4f55\u4f7f\u7528\u652f\u6301\u76f4\u63a5": 253, "\u901a\u4fe1\u7684": 253, "\u7684\u5206\u5e03\u5f0f\u4f18\u5316\u5668": 253, "\u5982\u4f55\u4e3a\u5206\u5e03\u5f0f\u4f18\u5316\u5668\u542f\u7528": 253, "\u5206\u5e03\u5f0f\u68c0\u67e5\u70b9": 253, "dcp": 253, "\u5b66\u4e60\u5982\u4f55\u4f7f\u7528\u5206\u5e03\u5f0f\u68c0\u67e5\u70b9\u5305\u68c0\u67e5\u70b9\u5206\u5e03\u5f0f\u6a21\u578b": 253, "diffus": 253, "\u6a21\u578b\u90e8\u7f72\u4e3a": 253, "vertex": 253, "\u7aef\u70b9": 253, "\u4e2d\u90e8\u7f72\u6a21\u578b": 253, "animesh": 254, "jain": 254, "\u968f\u7740\u6df1\u5ea6\u5b66\u4e60\u6a21\u578b\u53d8\u5f97\u8d8a\u6765\u8d8a\u5927": 254, "\u8fd9\u4e9b\u6a21\u578b\u7684\u7f16\u8bd1\u65f6\u95f4\u4e5f\u4f1a\u589e\u52a0": 254, "\u8fd9\u79cd\u5ef6\u957f\u7684\u7f16\u8bd1\u65f6\u95f4\u53ef\u80fd\u4f1a\u589e\u52a0": 254, "\u63a8\u7406\u670d\u52a1\u7684\u542f\u52a8\u65f6\u95f4\u6216\u5927\u89c4\u6a21\u8bad\u7ec3\u4e2d\u7684\u8d44\u6e90\u6d6a\u8d39": 254, "\u672c\u6559\u7a0b\u5c55\u793a\u4e86\u4e00\u4e2a\u901a\u8fc7\u9009\u62e9\u7f16\u8bd1\u6a21\u578b\u7684\u91cd\u590d\u533a\u57df": 254, "\u800c\u4e0d\u662f\u6574\u4e2a\u6a21\u578b\u6765\u51cf\u5c11\u51b7\u542f\u52a8\u7f16\u8bd1\u65f6\u95f4\u7684\u793a\u4f8b": 254, "\u9700\u8981\u5148\u5b89\u88c5": 254, "\u6b64\u529f\u80fd\u4ece": 254, "\u7248\u672c\u5f00\u59cb\u53ef\u7528": 254, "\u5982\u679c\u60a8\u4f7f\u7528\u7684\u662f": 254, "\u53ef\u4ee5\u542f\u7528\u914d\u7f6e\u6807\u5fd7": 254, "inline_inbuilt_nn_modul": 254, "\u4ee5\u9632\u6b62\u533a\u57df\u7f16\u8bd1\u671f\u95f4\u7684\u91cd\u65b0\u7f16\u8bd1": 254, "\u7248\u672c\u4e2d": 254, "\u6b64\u6807\u5fd7\u9ed8\u8ba4\u542f\u7528": 254, "perf_count": 254, "\u6211\u4eec\u5c06\u9075\u5faa\u4ee5\u4e0b\u6b65\u9aa4": 254, "\u5bfc\u5165\u6240\u6709\u5fc5\u8981\u7684\u5e93": 254, "\u5b9a\u4e49\u5e76\u521d\u59cb\u5316\u4e00\u4e2a\u5177\u6709\u91cd\u590d\u533a\u57df\u7684\u795e\u7ecf\u7f51\u7edc": 254, "\u7406\u89e3\u5b8c\u6574\u6a21\u578b\u548c\u533a\u57df\u7f16\u8bd1\u4e4b\u95f4\u7684\u533a\u522b": 254, "\u6d4b\u91cf\u5b8c\u6574\u6a21\u578b\u548c\u533a\u57df\u7f16\u8bd1\u7684\u7f16\u8bd1\u65f6\u95f4": 254, "\u8ba9\u6211\u4eec\u5bfc\u5165\u52a0\u8f7d\u6570\u636e\u6240\u9700\u7684\u5e93": 254, "\u8ba9\u6211\u4eec\u5b9a\u4e49\u5e76\u521d\u59cb\u5316\u4e00\u4e2a\u5177\u6709\u91cd\u590d\u533a\u57df\u7684\u795e\u7ecf\u7f51\u7edc": 254, "\u795e\u7ecf\u7f51\u7edc\u7531\u91cd\u590d\u7684\u5c42\u7ec4\u6210": 254, "\u4e00\u4e2a\u5927\u578b\u8bed\u8a00\u6a21\u578b\u7531\u8bb8\u591a": 254, "\u5757\u7ec4\u6210": 254, "\u7c7b\u521b\u5efa\u4e00\u4e2a": 254, "\u4f5c\u4e3a\u91cd\u590d\u533a\u57df\u7684\u4ee3\u7406": 254, "\u6211\u4eec\u5c06\u521b\u5efa\u4e00\u4e2a\u7531": 254, "\u7c7b\u5b9e\u4f8b\u7ec4\u6210\u7684": 254, "relu1": 254, "relu2": 254, "apply_regional_compil": 254, "\u4ec5\u5bf9\u91cd\u590d\u7684\u5c42\u5e94\u7528\u7f16\u8bd1": 254, "\u5728\u533a\u57df\u7f16\u8bd1\u4e2d": 254, "\u4e0d\u5728": 254, "\u7684\u8303\u56f4\u5185": 254, "\u8ba9\u6211\u4eec\u56de\u987e\u4e00\u4e0b\u5b8c\u6574\u6a21\u578b\u548c\u533a\u57df\u7f16\u8bd1\u4e4b\u95f4\u7684\u533a\u522b": 254, "\u5728\u5b8c\u6574\u6a21\u578b\u7f16\u8bd1\u4e2d": 254, "\u6574\u4e2a\u6a21\u578b\u4f5c\u4e3a\u4e00\u4e2a\u6574\u4f53\u8fdb\u884c\u7f16\u8bd1": 254, "\u8fd9\u662f\u5927\u591a\u6570\u7528\u6237\u4f7f\u7528": 254, "\u7684\u5e38\u89c1\u65b9\u6cd5": 254, "\u5e94\u7528\u4e8e": 254, "\u8fd9\u5c06\u6709\u6548\u5730\u5185\u8054": 254, "\u5927\u7684\u56fe\u8fdb\u884c\u7f16\u8bd1": 254, "\u60a8\u53ef\u4ee5\u901a\u8fc7\u8fd0\u884c\u6b64\u6559\u7a0b\u5e76\u8bbe\u7f6e": 254, "graph_cod": 254, "\u6765\u67e5\u770b\u5b8c\u6574\u7684\u56fe": 254, "full_compiled_model": 254, "\u533a\u57df\u7f16\u8bd1\u5bf9\u6a21\u578b\u7684\u67d0\u4e2a\u533a\u57df\u8fdb\u884c\u7f16\u8bd1": 254, "\u901a\u8fc7\u6218\u7565\u6027\u5730\u9009\u62e9\u7f16\u8bd1\u6a21\u578b\u7684\u91cd\u590d\u533a\u57df": 254, "\u6211\u4eec\u53ef\u4ee5\u7f16\u8bd1\u4e00\u4e2a\u5c0f\u5f97\u591a\u7684\u56fe": 254, "\u7136\u540e\u5c06\u7f16\u8bd1\u540e\u7684\u56fe\u7528\u4e8e\u6240\u6709\u533a\u57df": 254, "\u4ec5\u5e94\u7528\u4e8e": 254, "\u800c\u4e0d\u662f\u6574\u4e2a\u6a21\u578b": 254, "regional_compiled_model": 254, "\u5c06\u7f16\u8bd1\u5e94\u7528\u4e8e\u91cd\u590d\u533a\u57df\u800c\u4e0d\u662f\u6574\u4e2a\u6a21\u578b": 254, "\u53ef\u4ee5\u5927\u5927\u8282\u7701\u7f16\u8bd1\u65f6\u95f4": 254, "\u6211\u4eec\u5c06\u53ea\u7f16\u8bd1\u4e00\u4e2a\u5c42\u5b9e\u4f8b": 254, "\u7136\u540e\u5728": 254, "\u5bf9\u8c61\u4e2d\u91cd\u590d\u4f7f\u7528": 254, "\u5bf9\u4e8e\u91cd\u590d\u533a\u57df": 254, "\u6a21\u578b\u7684\u67d0\u4e9b\u90e8\u5206\u53ef\u80fd\u4e0d\u4f1a\u88ab\u7f16\u8bd1": 254, "\u4e0d\u5728\u533a\u57df\u7f16\u8bd1\u7684\u8303\u56f4\u5185": 254, "\u8fd8\u8981\u6ce8\u610f": 254, "\u6027\u80fd\u63d0\u5347\u548c\u7f16\u8bd1\u65f6\u95f4\u4e4b\u95f4\u5b58\u5728\u6743\u8861": 254, "\u5b8c\u6574\u6a21\u578b\u7f16\u8bd1\u6d89\u53ca\u66f4\u5927\u7684\u56fe": 254, "\u5e76\u4e14\u7406\u8bba\u4e0a\u63d0\u4f9b\u4e86\u66f4\u591a\u7684\u4f18\u5316\u7a7a\u95f4": 254, "\u51fa\u4e8e\u5b9e\u9645\u76ee\u7684": 254, "\u5e76\u4e14\u6839\u636e\u6a21\u578b\u7684\u4e0d\u540c": 254, "\u6211\u4eec\u89c2\u5bdf\u5230\u5b8c\u6574\u6a21\u578b\u548c\u533a\u57df\u7f16\u8bd1\u4e4b\u95f4\u7684\u901f\u5ea6\u63d0\u5347\u5dee\u5f02\u5f88\u5c0f\u7684\u60c5\u51b5\u5f88\u591a": 254, "\u8ba9\u6211\u4eec\u6d4b\u91cf\u5b8c\u6574\u6a21\u578b\u548c\u533a\u57df\u7f16\u8bd1\u7684\u7f16\u8bd1\u65f6\u95f4": 254, "\u7f16\u8bd1\u5668": [254, 259], "\u8fd9\u610f\u5473\u7740\u5b83\u5728\u7b2c\u4e00\u6b21\u8c03\u7528\u65f6\u8fdb\u884c\u7f16\u8bd1": 254, "\u5728\u4e0b\u9762\u7684\u4ee3\u7801\u4e2d": 254, "\u6211\u4eec\u6d4b\u91cf\u7b2c\u4e00\u6b21\u8c03\u7528\u6240\u82b1\u8d39\u7684\u603b\u65f6\u95f4": 254, "\u867d\u7136\u8fd9\u79cd\u65b9\u6cd5\u4e0d\u7cbe\u786e": 254, "\u4f46\u5b83\u63d0\u4f9b\u4e86\u4e00\u4e2a\u5f88\u597d\u7684\u4f30\u8ba1": 254, "\u56e0\u4e3a\u5927\u90e8\u5206\u65f6\u95f4\u90fd\u82b1\u5728\u7f16\u8bd1\u4e0a": 254, "measure_lat": 254, "\u91cd\u7f6e\u7f16\u8bd1\u5668\u7f13\u5b58\u4ee5\u786e\u4fdd\u4e0d\u540c\u8fd0\u884c\u4e4b\u95f4\u6ca1\u6709\u91cd\u7528": 254, "fresh_inductor_cach": 254, "full_model_compilation_lat": 254, "regional_compilation_lat": 254, "\u672c\u6559\u7a0b\u5c55\u793a\u4e86\u5982\u4f55\u5728\u6a21\u578b\u5177\u6709\u91cd\u590d\u533a\u57df\u65f6\u63a7\u5236\u51b7\u542f\u52a8\u7f16\u8bd1\u65f6\u95f4": 254, "\u8fd9\u79cd\u65b9\u6cd5\u9700\u8981\u7528\u6237\u4fee\u6539\u4ee5\u5c06": 254, "\u91cd\u590d\u533a\u57df": 254, "\u800c\u4e0d\u662f\u66f4\u5e38\u7528\u7684\u5168\u6a21\u578b\u7f16\u8bd1": 254, "\u6211\u4eec\u6b63\u5728\u4e0d\u65ad\u52aa\u529b\u51cf\u5c11\u51b7\u542f\u52a8\u7f16\u8bd1\u65f6\u95f4": 254, "regional_compil": 254, "tracerwarn": 255, "_0": 255, "WITH": 255, "encoder_input": 255, "decoder_input1": 255, "decoder_input2": 255, "decoder_input3": 255, "scripted_encod": 255, "scripted_decod": 255, "optimized_torchscript_model": 255, "hoist": 255, "blocklist": 255, "\u4e3a\u4e86\u66f4\u597d\u5730\u4e0e": 256, "\u534f\u4f5c": 256, "\u6269\u5c55\u5b9e\u73b0\u4e86\u4e00\u4e2a\u540d\u4e3a": 256, "\u7684\u540e\u7aef": 256, "\u5b83\u65e8\u5728\u63d0\u9ad8": 256, "\u5e73\u53f0\u4e0a\u7684\u786c\u4ef6\u8d44\u6e90\u4f7f\u7528\u6548\u7387": 256, "\u4ece\u800c\u83b7\u5f97\u66f4\u597d\u7684\u6027\u80fd": 256, "\u540e\u7aef\u662f\u901a\u8fc7": 256, "\u6269\u5c55\u4e2d\u8fdb\u4e00\u6b65\u7684\u5b9a\u5236\u8bbe\u8ba1\u6765\u5b9e\u73b0\u6a21\u578b\u7f16\u8bd1\u7684": 256, "\u67e5\u770b\u4e0b\u9762\u7684\u793a\u4f8b": 256, "\u4e86\u89e3\u5982\u4f55\u5c06": 256, "\u540e\u7aef\u4e0e": 256, "\u8fdb\u884c": 256, "\u6570\u636e\u7c7b\u578b\u7684\u6a21\u578b\u8bad\u7ec3": 256, "\u4ee3\u7801\u4fee\u6539": 256, "\u53ef\u9009\u62e9\u8c03\u7528\u4ee5\u4e0b": 256, "\u5e94\u7528\u524d\u7aef\u4f18\u5316": 256, "compile_model": 256, "\u6570\u636e\u7c7b\u578b\u7684\u6a21\u578b\u63a8\u7406": 256, "resnet50_weight": 256, "weights_prepack": 256, "oguz": 257, "ulgen": 257, "\u7528\u6237\u81ea\u5b9a\u4e49\u7684": 257, "\u5185\u6838\u53ef\u7528\u4e8e\u4f18\u5316\u6a21\u578b\u8ba1\u7b97\u7684\u7279\u5b9a\u90e8\u5206": 257, "\u8fd9\u4e9b\u5185\u6838\u662f\u7528": 257, "\u8bed\u8a00\u7f16\u5199\u7684": 257, "\u65e8\u5728\u66f4\u5bb9\u6613\u5b9e\u73b0\u786c\u4ef6\u7684\u5cf0\u503c\u6027\u80fd": 257, "\u901a\u8fc7\u5728": 257, "\u4e2d\u4f7f\u7528\u7528\u6237\u81ea\u5b9a\u4e49\u7684": 257, "\u60a8\u53ef\u4ee5\u5c06\u8fd9\u4e9b\u4f18\u5316\u8fc7\u7684\u8ba1\u7b97\u96c6\u6210\u5230": 257, "\u6a21\u578b\u4e2d": 257, "\u4ece\u800c\u53ef\u80fd\u83b7\u5f97\u663e\u8457\u7684\u6027\u80fd\u63d0\u5347": 257, "\u672c\u6559\u7a0b\u6f14\u793a\u4e86\u5982\u4f55\u5728": 257, "\u5728\u5f00\u59cb\u672c\u6559\u7a0b\u4e4b\u524d": 257, "\u8bf7\u786e\u4fdd\u60a8\u5177\u5907\u4ee5\u4e0b\u6761\u4ef6": 257, "\u6709\u57fa\u672c\u7684\u4e86\u89e3": 257, "\u8bed\u8a00\u6587\u6863": 257, "_triton": 257, "has_triton": 257, "\u5728\u6b64\u793a\u4f8b\u4e2d": 257, "\u6211\u4eec\u5c06\u4f7f\u7528\u6765\u81ea": 257, "\u6587\u6863\u7684\u4e00\u4e2a\u7b80\u5355\u5411\u91cf\u52a0\u6cd5\u5185\u6838\u4e0e": 257, "\u7531\u4e8e\u6b64\u8bbe\u5907\u4e0d\u652f\u6301": 257, "\u56e0\u6b64\u8df3\u8fc7": 257, "add_kernel": 257, "out_ptr": 257, "n_element": 257, "block_siz": 257, "constexpr": 257, "pid": 257, "program_id": 257, "block_start": 257, "add_fn": 257, "cdiv": 257, "\u5411\u91cf\u52a0\u6cd5": 257, "nx": 257, "ny": 257, "n\u7ed3\u679c\u4e3a": 257, "\u7684\u81ea\u52a8\u8c03\u4f18\u529f\u80fd\u662f\u4e00\u4e2a\u5f3a\u5927\u7684\u5de5\u5177": 257, "\u53ef\u81ea\u52a8\u4f18\u5316": 257, "\u5185\u6838\u7684\u914d\u7f6e\u53c2\u6570": 257, "\u5b83\u63a2\u7d22\u4e00\u7cfb\u5217\u53ef\u80fd\u7684\u914d\u7f6e": 257, "\u5e76\u9009\u62e9\u4e3a\u60a8\u7684\u7279\u5b9a\u7528\u4f8b\u63d0\u4f9b\u6700\u4f73\u6027\u80fd\u7684\u914d\u7f6e": 257, "\u4e00\u8d77\u4f7f\u7528\u65f6": 257, "\u53ef\u4ee5\u5e2e\u52a9\u786e\u4fdd\u60a8\u7684": 257, "\u6a21\u578b\u4ee5\u6700\u9ad8\u6548\u7684\u65b9\u5f0f\u8fd0\u884c": 257, "\u4e0b\u9762\u662f\u4f7f\u7528": 257, "\u4ec5\u652f\u6301": 257, "\u7684\u914d\u7f6e\u548c\u5173\u952e\u53c2\u6570": 257, "num_stag": 257, "num_warp": 257, "add_kernel_autotun": 257, "\u4e2d\u5bf9\u7528\u6237\u81ea\u5b9a\u4e49": 257, "\u5185\u6838\u7684\u652f\u6301\u5305\u62ec\u52a8\u6001\u5f62\u72b6": 257, "\u60a8\u53ef\u4ee5\u5c06\u8fd9\u4e9b\u529f\u80fd\u7ec4\u5408\u5728\u4e00\u8d77\u6784\u5efa\u590d\u6742\u7684\u9ad8\u6027\u80fd\u6a21\u578b": 257, "\u4e5f\u9700\u8981\u6ce8\u610f\u4e00\u4e9b\u9650\u5236": 257, "\u76ee\u524d\u4e0d\u652f\u6301\u5f20\u91cf\u5b50\u7c7b\u548c\u5176\u4ed6\u9ad8\u7ea7\u529f\u80fd": 257, "\u53ef\u4ee5\u5355\u72ec\u4f7f\u7528\u6216\u5728": 257, "\u4e4b\u524d\u4f7f\u7528": 257, "\u4f46\u4e0d\u80fd\u5728": 257, "\u4e4b\u540e\u4f7f\u7528": 257, "\u8fd9\u610f\u5473\u7740\u5982\u679c\u8981\u4e00\u8d77\u4f7f\u7528": 257, "\u5219\u5fc5\u987b\u5148\u4f7f\u7528": 257, "\u6211\u4eec\u63a2\u8ba8\u4e86\u5982\u4f55\u5728": 257, "\u6211\u4eec\u6df1\u5165\u7814\u7a76\u4e86\u4f7f\u7528\u7b80\u5355\u5411\u91cf\u52a0\u6cd5\u5185\u6838\u7684\u57fa\u672c\u7528\u6cd5": 257, "\u4ee5\u53ca\u6d89\u53ca": 257, "\u81ea\u52a8\u8c03\u4f18\u529f\u80fd\u7684\u9ad8\u7ea7\u7528\u6cd5": 257, "\u6211\u4eec\u8fd8\u8ba8\u8bba\u4e86\u7528\u6237\u81ea\u5b9a\u4e49": 257, "\u5185\u6838\u4e0e\u5176\u4ed6": 257, "\u529f\u80fd\u7684\u53ef\u7ec4\u5408\u6027": 257, "\u5e76\u5f3a\u8c03\u4e86\u4e00\u4e9b\u5f53\u524d\u7684\u9650\u5236": 257, "\u4f7f\u7528\u7f29\u653e\u70b9\u79ef\u6ce8\u610f\u529b\u5b9e\u73b0\u9ad8\u6027\u80fd": 257, "torch_compile_user_defined_triton_kernel_tutori": 257, "\u672c\u6559\u7a0b\u4ecb\u7ecd\u4e86": 258, "\u73af\u5883\u53d8\u91cf\u4ee5\u53ca": 258, "\u5e76\u6f14\u793a\u4e86\u5982\u4f55\u5c06\u5176\u5e94\u7528\u4e8e\u89c2\u5bdf": 258, "\u7684\u5404\u4e2a\u9636\u6bb5": 258, "\u6211\u4eec\u5c06\u8bbe\u7f6e\u4e00\u4e2a\u7b80\u5355\u7684": 258, "\u6267\u884c\u5143\u7d20\u7ea7\u52a0\u6cd5": 258, "\u8fd8\u6709\u4e00\u4e2a\u73af\u5883\u53d8\u91cf": 258, "\u53ef\u7528\u4e8e\u5728\u547d\u4ee4\u884c\u4e2d\u66f4\u6539\u65e5\u5fd7\u8bbe\u7f6e": 258, "\u6bcf\u4e2a\u793a\u4f8b\u90fd\u663e\u793a\u4e86\u7b49\u6548\u7684\u73af\u5883\u53d8\u91cf\u8bbe\u7f6e": 258, "\u5982\u679c\u8bbe\u5907\u4e0d\u652f\u6301": 258, "\u8df3\u8fc7": 258, "\u56e0\u4e3a\u6b64\u8bbe\u5907\u4e0d\u652f\u6301": 258, "\u5728\u6bcf\u4e2a\u793a\u4f8b\u4e4b\u95f4\u6253\u5370\u5206\u9694\u7b26\u5e76\u91cd\u7f6e": 258, "\u8ddf\u8e2a": 258, "\u8ddf\u8e2a\u7684\u56fe\u5f62": 258, "\u67e5\u770b\u8ddf\u8e2a\u7684\u56fe\u5f62": 258, "\u878d\u5408\u51b3\u7b56": 258, "\u67e5\u770b\u878d\u5408\u51b3\u7b56": 258, "\u8f93\u51fa\u4ee3\u7801": 258, "\u751f\u6210\u7684\u8f93\u51fa\u4ee3\u7801": 258, "\u73af\u5883\u53d8\u91cf\u548c": 258, "\u5e76\u901a\u8fc7\u5b9e\u9a8c\u4e86\u4e00\u5c0f\u90e8\u5206\u53ef\u7528\u7684\u65e5\u5fd7\u9009\u9879": 258, "\u8981\u67e5\u770b\u6240\u6709\u53ef\u7528\u9009\u9879\u7684\u63cf\u8ff0": 258, "\u8bf7\u8fd0\u884c\u4efb\u4f55\u5bfc\u5165": 258, "\u60a8\u53ef\u4ee5\u67e5\u770b": 258, "\u4ee5\u67e5\u770b\u6240\u6709\u53ef\u7528\u65e5\u5fd7\u9009\u9879\u7684\u63cf\u8ff0": 258, "\u5982\u4f55\u5c06\u8bad\u7ec3\u597d\u7684\u6a21\u578b\u5bfc\u51fa\u4e3a": 259, "\u5b89\u88c5\u8fd9\u4e09\u4e2a": 259, "\u7ec4\u4ef6\u7684\u8bf4\u660e\u53ef\u5728": 259, "\u7f16\u8bd1\u5668\u5219\u53d6\u51b3\u4e8e\u60a8\u7684\u5e73\u53f0": 259, "\u7684\u4e2d\u95f4\u8868\u793a": 259, "\u53ef\u4ee5\u5728\u9ad8\u6027\u80fd\u73af\u5883": 259, "\u5b83\u662f": 259, "\u7684\u4e00\u4e2a\u9ad8\u6027\u80fd\u5b50\u96c6": 259, "\u65e8\u5728\u88ab": 259, "\u540e\u8005\u4f1a\u5bf9\u6a21\u578b\u7684\u8ba1\u7b97\u8fdb\u884c\u8fd0\u884c\u65f6\u4f18\u5316": 259, "\u662f\u4f7f\u7528": 259, "\u6a21\u578b\u8fdb\u884c\u5927\u89c4\u6a21\u63a8\u7406\u7684\u63a8\u8350\u6a21\u578b\u683c\u5f0f": 259, "\u6a21\u578b\u6559\u7a0b": 259, "\u5b8c\u6574\u7684": 259, "\u6587\u6863_": 259, "\u4f5c\u4e3a\u793a\u4f8b": 259, "\u8ba9\u6211\u4eec\u4f7f\u7528\u4e00\u4e2a\u9884\u8bad\u7ec3\u7684\u89c6\u89c9\u6a21\u578b": 259, "\u4e2d\u7684\u6240\u6709\u9884\u8bad\u7ec3\u6a21\u578b\u90fd\u4e0e": 259, "\u517c\u5bb9": 259, "\u53ef\u4ee5\u5728\u811a\u672c\u4e2d\u6216\u4ece": 259, "repl": 259, "r18": 259, "\u73b0\u5728\u6211\u4eec\u6709\u4e00\u4e2a\u9884\u8bad\u7ec3\u6a21\u578b\u7684\u5b9e\u4f8b": 259, "r18_script": 259, "\u5bfc\u51fa": 259, "\u5feb\u901f\u6d4b\u8bd5\u4e00\u4e0b": 259, "\u8ba9\u6211\u4eec\u5feb\u901f\u68c0\u67e5\u4e00\u4e0b\u4e24\u4e2a\u6a21\u578b\u7684\u7b49\u4ef7\u6027": 259, "unscripted_output": 259, "scripted_output": 259, "unscripted_top5": 259, "scripted_top5": 259, "\u4f1a\u770b\u5230\u4e24\u4e2a\u7248\u672c\u7684\u6a21\u578b\u7ed9\u51fa\u76f8\u540c\u7684\u7ed3\u679c": 259, "463": 259, "\u786e\u8ba4\u68c0\u67e5\u901a\u8fc7\u540e": 259, "\u7ee7\u7eed\u4fdd\u5b58\u6a21\u578b": 259, "\u521b\u5efa\u4ee5\u4e0b": 259, "\u5e76\u5c06\u5176\u547d\u540d\u4e3a": 259, "ts": 259, "\u53cd\u5e8f\u5217\u5316": 259, "msg_without_backtrac": 259, "\u786e\u4fdd\u81ea\u52a8\u68af\u5ea6\u8ba1\u7b97\u5173\u95ed": 259, "\u5173\u95ed": 259, "\u548c\u5176\u4ed6\u8bad\u7ec3\u65f6\u5c42": 259, "\u521b\u5efa\u4e00\u4e2a\u8f93\u5165": 259, "\u6267\u884c\u6a21\u578b\u5e76\u5c06\u8f93\u51fa\u6253\u5305\u4e3a\u5f20\u91cf": 259, "output_sm": 259, "softmaxfuncopt": 259, "top5_tensor": 259, "ndone": 259, "\u7a0b\u5e8f\u6b65\u9aa4": 259, "\u52a0\u8f7d\u60a8\u5728\u547d\u4ee4\u884c\u4e0a\u6307\u5b9a\u7684\u6a21\u578b": 259, "\u521b\u5efa\u4e00\u4e2a\u865a\u62df\u7684": 259, "\u8f93\u5165\u5f20\u91cf": 259, "\u5bf9\u8f93\u5165\u6267\u884c\u63a8\u7406": 259, "\u8bf7\u6ce8\u610f\u8fd9\u6bb5\u4ee3\u7801\u4e2d\u6ca1\u6709\u4f9d\u8d56": 259, "\u4fdd\u5b58\u7684": 259, "\u6a21\u578b\u5305\u542b\u60a8\u7684\u5b66\u4e60\u6743\u91cd\u548c\u60a8\u7684\u8ba1\u7b97\u56fe": 259, "\u6784\u5efa\u7a0b\u5e8f": 259, "\u4e2d\u8fd0\u884c\u63a8\u7406": 259, "\u5e76\u9a8c\u8bc1\u6211\u4eec\u5f97\u5230\u7ed3\u679c": 259, "418": 259, "845": 259, "644": 259, "cpulongtyp": 259, "\u67e5\u770b\u5b89\u88c5\u8bf4\u660e\u548c\u66f4\u591a\u6587\u6863\u548c\u6559\u7a0b": 259, "\u8fdb\u4e00\u6b65\u4e86\u89e3": 259, "\u67e5\u770b\u5b8c\u6574\u7684": 259, "\u8bed\u8a00\u548c": 259, "\u90e8\u7f72\u5927\u578b\u6a21\u578b": 260, "\u53ef\u80fd\u5177\u6709\u6311\u6218\u6027\u4e14\u8017\u65f6": 260, "\u6211\u4eec\u5c06\u5c55\u793a\u5982\u4f55\u901a\u8fc7\u5229\u7528": 260, "\u6765\u7b80\u5316": 260, "\u6a21\u578b\u7684\u90e8\u7f72\u8fc7\u7a0b": 260, "\u4e0a\u4f7f\u7528\u7684\u6846\u67b6": 260, "\u662f\u4e00\u4e2a\u5168\u6258\u7ba1\u7684\u673a\u5668\u5b66\u4e60\u5e73\u53f0": 260, "\u63d0\u4f9b\u5de5\u5177\u548c\u57fa\u7840\u8bbe\u65bd": 260, "\u65e8\u5728\u5e2e\u52a9": 260, "\u4ece\u4e1a\u8005\u52a0\u901f\u548c\u6269\u5c55\u751f\u4ea7\u4e2d\u7684": 260, "\u540c\u65f6\u53d7\u76ca\u4e8e": 260, "\u7b49\u5f00\u6e90\u6846\u67b6": 260, "\u60a8\u53ef\u4ee5\u901a\u8fc7\u56db\u4e2a\u6b65\u9aa4\u90e8\u7f72": 260, "\u7aef\u70b9\u4e0a\u90e8\u7f72": 260, "\u6a21\u578b\u53ef\u4ee5\u901a\u8fc7\u4ee5\u4e0b\u56db\u4e2a\u6b65\u9aa4\u5b8c\u6210": 260, "\u8ba9\u6211\u4eec\u8be6\u7ec6\u770b\u770b\u6bcf\u4e2a\u6b65\u9aa4": 260, "\u6765\u8ddf\u968f\u5e76\u5b9e\u65bd\u8fd9\u4e9b\u6b65\u9aa4": 260, "\u8bf7\u8bb0\u4f4f": 260, "\u6b64\u6559\u7a0b\u9700\u8981\u4e00\u4e2a\u8ba1\u8d39\u7684": 260, "\u793a\u4f8b\u4e2d\u66f4\u8be6\u7ec6\u5730\u89e3\u91ca\u7684\u90a3\u6837": 260, "\u662f\u4e00\u4e2a\u7b80\u5355\u7075\u6d3b\u7684": 260, "\u6a21\u578b\u670d\u52a1\u5de5\u5177": 260, "\u90e8\u7f72\u5230": 260, "\u7684\u6a21\u578b\u4f7f\u7528": 260, "\u6765\u5904\u7406\u8bf7\u6c42\u5e76\u4ece\u6a21\u578b\u8fd4\u56de\u54cd\u5e94": 260, "\u60a8\u5fc5\u987b\u521b\u5efa\u4e00\u4e2a\u81ea\u5b9a\u4e49": 260, "\u4ee5\u5305\u542b\u5728\u4e0a\u4f20\u5230": 260, "\u7684\u6a21\u578b\u5de5\u4ef6\u4e2d": 260, "\u5c06\u5904\u7406\u7a0b\u5e8f\u6587\u4ef6\u5305\u542b\u5728\u4e0e\u5176\u4ed6\u6a21\u578b\u5de5\u4ef6\u76f8\u540c\u7684\u76ee\u5f55\u4e2d": 260, "model_artifact": 260, "\u521b\u5efa\u5904\u7406\u7a0b\u5e8f\u6587\u4ef6\u540e": 260, "\u60a8\u5fc5\u987b\u5c06\u5904\u7406\u7a0b\u5e8f\u6253\u5305\u4e3a\u6a21\u578b\u5f52\u6863": 260, "mar": 260, "\u8f93\u51fa\u6587\u4ef6\u5fc5\u987b\u547d\u540d\u4e3a": 260, "your_model_nam": 260, "\u5728\u8fd9\u4e00\u6b65\u4e2d": 260, "\u6a21\u578b\u5de5\u4ef6": 260, "\u4e0a\u4f20\u5230": 260, "\u4f8b\u5982\u6a21\u578b\u6587\u4ef6\u6216\u5904\u7406\u7a0b\u5e8f": 260, "\u5c06\u5de5\u4ef6\u5b58\u50a8\u5728": 260, "\u4e0a\u7684\u4f18\u52bf\u5728\u4e8e\u60a8\u53ef\u4ee5\u5728\u4e2d\u592e\u5b58\u50a8\u6876\u4e2d\u8ddf\u8e2a\u5de5\u4ef6": 260, "bucket_nam": 260, "bucket_uri": 260, "\u5c06\u5de5\u4ef6\u590d\u5236\u5230\u5b58\u50a8\u6876\u4e2d": 260, "gsutil": 260, "\u5b58\u50a8\u6876\u540e": 260, "\u60a8\u53ef\u4ee5\u5c06": 260, "\u6a21\u578b\u4e0a\u4f20\u5230": 260, "\u6a21\u578b\u6ce8\u518c\u8868": 260, "\u6a21\u578b\u6ce8\u518c\u8868\u4e2d": 260, "\u60a8\u53ef\u4ee5\u6982\u89c8\u60a8\u7684\u6a21\u578b": 260, "\u4ee5\u4fbf\u66f4\u597d\u5730\u7ec4\u7ec7": 260, "\u8ddf\u8e2a\u548c\u8bad\u7ec3\u65b0\u7248\u672c": 260, "\u548c\u8fd9\u4e2a": 260, "\u9884\u6784\u5efa\u7684": 260, "\u5bb9\u5668": 260, "aiplatform": 260, "vertexai": 260, "pytorch_prediction_image_uri": 260, "model_display_nam": 260, "stable_diffusion_1_5": 260, "model_descript": 260, "your_project": 260, "central1": 260, "staging_bucket": 260, "display_nam": 260, "serving_container_image_uri": 260, "artifact_uri": 260, "\u5c06\u6a21\u578b\u4e0a\u4f20\u5230": 260, "\u6a21\u578b\u6ce8\u518c\u8868\u540e": 260, "\u60a8\u53ef\u4ee5\u5c06\u5176\u90e8\u7f72\u5230": 260, "\u60a8\u53ef\u4ee5\u4f7f\u7528\u63a7\u5236\u53f0\u6216": 260, "\u5728\u6b64": 260, "\u793a\u4f8b\u4e2d": 260, "\u60a8\u5c06\u5728": 260, "tesla": 260, "p100": 260, "n1": 260, "\u673a\u5668\u4e0a\u90e8\u7f72\u6a21\u578b": 260, "\u6307\u5b9a\u60a8\u7684\u673a\u5668\u7c7b\u578b": 260, "endpoint_display_nam": 260, "deployed_model_display_nam": 260, "machine_typ": 260, "accelerator_typ": 260, "nvidia_tesla_p100": 260, "accelerator_count": 260, "traffic_percentag": 260, "deploy_request_timeout": 260, "\u5982\u679c\u60a8\u6309\u7167\u8fd9\u4e2a": 260, "\u60a8\u8fd8\u53ef\u4ee5\u4f7f\u7528": 260, "\u83b7\u53d6\u5728\u7ebf\u9884\u6d4b": 260, "\u5982\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u6240\u793a": 260, "examplepup": 260, "basebal": 260, "jersei": 260, "base64": 260, "b64decod": 260, "\u672c\u6559\u7a0b\u662f\u4f7f\u7528\u4f9b\u5e94\u5546\u6587\u6863\u521b\u5efa\u7684": 260, "\u8981\u53c2\u8003\u4f9b\u5e94\u5546\u7f51\u7ad9\u4e0a\u7684\u539f\u59cb\u6587\u6863": 260, "\u7684\u9ad8\u7ea7\u6982\u5ff5": 261, "\u5982\u4f55\u5728\u5206\u5e03\u5f0f\u8bad\u7ec3\u4e2d\u4f7f\u7528": 261, "\u53ca\u5176\u5f71\u54cd": 261, "\u5206\u5e03\u5f0f\u6570\u636e\u5e76\u884c\u5165\u95e8": 261, "\u7684\u60f3\u6cd5\u6765\u81ea": 261, "deepspe": 261, "\u9879\u76ee": 261, "marian": 261, "\u5b83\u4eec\u5728\u5206\u5e03\u5f0f\u6570\u636e\u5e76\u884c\u8fdb\u7a0b\u4e2d": 261, "\u4ee5\u51cf\u5c11\u6bcf\u4e2a\u8fdb\u7a0b\u7684\u5185\u5b58\u5360\u7528": 261, "\u6559\u7a0b\u4e2d": 261, "\u6211\u4eec\u5c55\u793a\u4e86\u5982\u4f55\u4f7f\u7528": 261, "\u6765\u8bad\u7ec3\u6a21\u578b": 261, "\u5728\u8be5\u6559\u7a0b\u4e2d": 261, "\u6bcf\u4e2a\u8fdb\u7a0b\u90fd\u4fdd\u7559\u4e00\u4e2a\u4e13\u7528\u7684\u4f18\u5316\u5668\u526f\u672c": 261, "\u7531\u4e8eddp\u5df2\u7ecf\u5728\u53cd\u5411\u4f20\u64ad\u4e2d\u540c\u6b65\u4e86\u68af\u5ea6": 261, "\u6240\u6709\u4f18\u5316\u5668\u526f\u672c\u5728\u6bcf\u6b21\u8fed\u4ee3\u4e2d\u90fd\u5c06\u5bf9\u76f8\u540c\u7684\u53c2\u6570\u548c\u68af\u5ea6\u503c\u8fdb\u884c\u64cd\u4f5c": 261, "\u8fd9\u5c31\u662fddp\u4fdd\u6301\u6a21\u578b\u526f\u672c\u5904\u4e8e\u76f8\u540c\u72b6\u6001\u7684\u65b9\u5f0f": 261, "\u4f18\u5316\u5668\u8fd8\u4f1a\u7ef4\u62a4\u672c\u5730\u72b6\u6001": 261, "\u4f18\u5316\u5668\u4f7f\u7528\u6bcf\u4e2a\u53c2\u6570\u7684": 261, "exp_avg": 261, "exp_avg_sq": 261, "\u4f18\u5316\u5668\u7684\u5185\u5b58\u6d88\u8017\u81f3\u5c11\u662f\u6a21\u578b\u5927\u5c0f\u7684\u4e24\u500d": 261, "\u57fa\u4e8e\u8fd9\u4e2a\u89c2\u5bdf": 261, "\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u5728ddp\u8fdb\u7a0b\u4e4b\u95f4\u5206\u7247": 261, "\u4f18\u5316\u5668\u72b6\u6001\u6765\u51cf\u5c11\u4f18\u5316\u5668\u7684\u5185\u5b58\u5360\u7528": 261, "\u4e0d\u662f\u4e3a\u6240\u6709\u53c2\u6570\u521b\u5efa\u6bcf\u4e2a\u53c2\u6570\u7684\u72b6\u6001": 261, "\u800c\u662f\u6bcf\u4e2addp\u8fdb\u7a0b\u4e2d\u7684\u4f18\u5316\u5668\u5b9e\u4f8b": 261, "\u53ea\u4fdd\u7559\u6240\u6709\u6a21\u578b\u53c2\u6570\u4e2d\u4e00\u4e2a\u5206\u7247\u7684\u4f18\u5316\u5668\u72b6\u6001": 261, "\u4f18\u5316\u5668\u7684": 261, "\u51fd\u6570\u53ea\u66f4\u65b0\u5176\u5206\u7247\u4e2d\u7684\u53c2\u6570": 261, "\u7136\u540e\u5c06\u66f4\u65b0\u540e\u7684\u53c2\u6570\u5e7f\u64ad\u5230\u6240\u6709\u5176\u4ed6\u5bf9\u7b49ddp\u8fdb\u7a0b": 261, "\u4ee5\u4fbf\u6240\u6709\u6a21\u578b\u526f\u672c\u4ecd\u7136\u5904\u4e8e\u76f8\u540c\u7684\u72b6\u6001": 261, "\u4ee5\u4e0b\u4ee3\u7801\u6f14\u793a\u4e86\u5982\u4f55\u4f7f\u7528": 261, "\u5927\u90e8\u5206\u4ee3\u7801\u4e0e": 261, "\u5206\u5e03\u5f0f\u6570\u636e\u5e76\u884c\u8bf4\u660e": 261, "\u4e2d\u7684\u7b80\u5355ddp\u793a\u4f8b\u76f8\u4f3c": 261, "\u4e3b\u8981\u533a\u522b\u5728\u4e8e": 261, "\u51fd\u6570\u4e2d\u7684": 261, "\u5b50\u53e5": 261, "\u5b83\u5305\u88c5\u4e86\u4f18\u5316\u5668\u6784\u9020": 261, "\u4f18\u5316\u5668\u4e4b\u95f4\u5207\u6362": 261, "print_peak_memori": 261, "use_zero": 261, "\u521b\u5efa\u9ed8\u8ba4\u8fdb\u7a0b\u7ec4": 261, "\u521b\u5efa\u672c\u5730\u6a21\u578b": 261, "\u521b\u5efa\u672c\u5730\u6a21\u578b\u540e\u7684\u6700\u5927\u5185\u5b58\u5206\u914d": 261, "\u6784\u5efaddp\u6a21\u578b": 261, "\u521b\u5efaddp\u540e\u7684\u6700\u5927\u5185\u5b58\u5206\u914d": 261, "\u5b9a\u4e49\u635f\u5931\u51fd\u6570\u548c\u4f18\u5316\u5668": 261, "optimizer_class": 261, "\u524d\u5411\u4f20\u64ad": 261, "\u66f4\u65b0\u53c2\u6570": 261, "\u4f18\u5316\u5668step": 261, "\u4e4b\u524d\u7684\u6700\u5927\u5185\u5b58\u5206\u914d": 261, "\u4e4b\u540e\u7684\u6700\u5927\u5185\u5b58\u5206\u914d": 261, "\u53c2\u6570\u603b\u548c\u4e3a": 261, "\u5f53\u4f7f\u7528": 261, "\u7684\u5cf0\u503c\u5185\u5b58\u6d88\u8017": 261, "\u662f\u666e\u901a": 261, "\u5185\u5b58\u6d88\u8017\u7684\u4e00\u534a": 261, "\u8fd9\u7b26\u5408\u6211\u4eec\u7684\u9884\u671f": 261, "\u56e0\u4e3a\u6211\u4eec\u5728\u4e24\u4e2a\u8fdb\u7a0b\u4e4b\u95f4\u5206\u7247\u4e86": 261, "\u4f18\u5316\u5668\u72b6\u6001": 261, "\u8f93\u51fa\u8fd8\u663e\u793a": 261, "\u6a21\u578b\u53c2\u6570\u5728\u4e00\u6b21\u8fed\u4ee3\u540e\u4ecd\u7136\u5f97\u5230\u76f8\u540c\u7684\u503c": 261, "\u4f7f\u7528\u548c\u4e0d\u4f7f\u7528": 261, "\u65f6\u53c2\u6570\u603b\u548c\u76f8\u540c": 261, "0mb": 261, "992": 261, "1361": 261, "3453": 261, "6123046875": 261, "pytorch_sphinx_them": [263, 270], "html_theme_opt": 263, "canonical_url": 263, "analytics_id": 263, "logo_onli": 263, "display_vers": 263, "prev_next_buttons_loc": 263, "style_external_link": 263, "vcs_pageview_mod": 263, "collapse_navig": 263, "sticky_navig": [263, 267], "navigation_depth": 263, "includehidden": 263, "titles_onli": 263, "canon": 263, "trail": 263, "slash": 263, "sidebar": [263, 269], "display_github": 263, "display_gitlab": 263, "gitlab": 263, "bitbucket": 263, "toctre": 263, "unlimit": 263, "github_url": 263, "bitbucket_url": 263, "gitlab_url": 263, "visitor": 263, "revert": 263, "misbuild": 263, "sticki": [263, 269], "nav": [263, 269], "django": 264, "payment": 264, "dotpai": 264, "dotpayprovid": 264, "seller_id": 264, "pl": 264, "gatewai": 264, "purchas": 264, "seller": 264, "data_item_1": 264, "data_item_2": 264, "data_item_3": 264, "lorem": [264, 266, 268], "ipsum": [264, 266, 268], "dolor": [264, 266, 268], "amet": [264, 266, 268], "consectetur": [264, 266, 268], "adipisc": [264, 266, 268], "fusc": [264, 268], "congu": [264, 268], "eu": [264, 268], "hendrerit": [264, 268], "matti": [264, 266], "emphasi": 265, "hyperlink": 265, "uri": 265, "anonym": 265, "exceedingli": 265, "ugli": 265, "autodoc": [265, 266], "test_py_modul": [265, 269], "2822": 265, "subscript": 265, "superscript": 265, "interfer": 265, "mmb": 265, "menuselect": 265, "whitespac": 265, "hyphen": 265, "restructuredtext": [265, 266], "literal_block": 265, "spaces_and_linebreak": 265, "markup_process": 265, "eric": 265, "orchestra": 265, "leader": 265, "philosoph": 265, "ipso": 265, "facto": 265, "ancient": 265, "sing": 265, "elk": 265, "brontosaurus": 265, "thicker": 265, "ann": 265, "begun": 265, "someurl": 265, "cu124": 265, "pane": 265, "shell_command": 265, "window_nam": 265, "session_nam": 265, "some_funct": 265, "THE": 265, "heaven": 265, "hexagram": 265, "unbroken": 265, "unrestrict": 265, "conceiv": 265, "men": 265, "deiti": 265, "holi": 265, "sage": 265, "ruler": 265, "awaken": 265, "sphinx_rtd_them": [265, 266], "docstr": [265, 266], "tt": 265, "descnam": 265, "descclassnam": 265, "myclass": 265, "dothismethod": 265, "flox": 265, "unreferenc": 265, "nonexist": 265, "bold": 265, "ital": 265, "heck": 265, "backlink": 265, "indirect": 265, "docutil": [265, 266], "sourceforg": [265, 266], "clickabl": 265, "revis": [265, 266], "structuredtext": 265, "nickel": 265, "mad": 265, "scientist": 265, "bread": 265, "wash": 265, "ear": 265, "closet": 265, "bathroom": 265, "trash": 265, "mother": 265, "rho_": 265, "thing1": 265, "thing2": 265, "thing3": 265, "prose": 265, "provok": 265, "mental": 265, "exert": 265, "advis": 265, "subtitl": 265, "border": 265, "disconnect": 265, "arab": 266, "iii": 266, "iv": 266, "goodger": 266, "a1b": 266, "2c3": 266, "myself": 266, "humankind": 266, "tue": 266, "jan": 266, "7302": 266, "redistribut": 266, "reattribut": 266, "sell": 266, "bui": 266, "rent": 266, "leas": 266, "excerpt": 266, "stapl": 266, "mutil": 266, "anyon": 266, "bibliograph": 266, "markup": [266, 269], "literal": 266, "yahoo": 266, "oh": 266, "heh": 266, "beat": 266, "hehe": 266, "cackl": 266, "lone": 266, "guangzhou": 266, "destini": 266, "dream": 266, "sixth": 266, "donec": [266, 268], "porttitor": [266, 268], "odio": [266, 268], "posuer": [266, 268], "vita": [266, 268], "ornar": [266, 268], "libero": [266, 268], "loborti": [266, 268], "justo": [266, 268], "vestibulum": [266, 268], "nibh": [266, 268], "aliquet": [266, 268], "sed": [266, 268], "feugiat": [266, 268], "sagitti": [266, 268], "nequ": [266, 268], "qui": [266, 268], "eleifend": 266, "dui": [266, 268], "rutrum": [266, 268], "lectu": [266, 268], "suscipit": [266, 268], "nam": [266, 268], "mauri": [266, 268], "arcu": [266, 268], "interdum": 268, "nec": 268, "finibu": 268, "dictum": 268, "velit": 268, "ut": 268, "efficitur": 268, "aliquam": 268, "erat": 268, "diam": 268, "gravida": 268, "imperdiet": 268, "tellu": 268, "nisl": 268, "praesent": 268, "eget": 268, "elementum": 268, "rhoncu": 268, "tincidunt": 268, "suspendiss": 268, "volutpat": 268, "scelerisqu": 268, "tristiqu": 268, "aenean": 268, "condimentum": 268, "risu": 268, "accumsan": 268, "laoreet": 268, "maximu": 268, "sapien": 268, "ligula": 268, "fringilla": 268, "commodo": 268, "proin": 268, "pharetra": 268, "etiam": 268, "turpi": 268, "luctu": 268, "vel": 268, "malesuada": 268, "dignissim": 268, "nunc": 268, "augu": 268, "sem": 268, "cursu": 268, "nulla": 268, "pellentesqu": 268, "morbi": 268, "senectu": 268, "netu": 268, "egesta": 268, "placerat": 268, "tortor": 268, "iaculi": 268, "venenati": 268, "cra": 268, "puru": 268, "ero": 268, "vehicula": 268, "auctor": 268, "phasellu": 268, "viverra": 268, "conval": 268, "faucibu": 268, "vulput": 268, "feli": 268, "sodal": 268, "maecena": 268, "semper": 268, "enim": 268, "blandit": 268, "sollicitudin": 268, "urna": 268, "orci": 268, "lacu": 268, "quisqu": 268, "facilisi": 268, "curabitur": 268, "variu": 268, "bibendum": 268, "massa": 268, "magna": 268, "tempu": 268, "metu": 268, "nisi": 268, "pretium": 268, "leo": 268, "euismod": 268, "ultric": 268, "dapibu": 268, "lacinia": 268, "vivamu": 268, "molesti": 268, "hac": 268, "habitass": 268, "platea": 268, "dictumst": 268, "changelog": 269, "submenu": 269, "symlink": 270, "subtre": 270, "_theme": 270, "html_theme": 270, "html_theme_path": 270}, "objects": {"": [[264, 0, 1, "", "Data_item_1"], [264, 0, 1, "", "Data_item_2"], [264, 0, 1, "", "Data_item_3"]], "payments.dotpay": [[264, 1, 1, "", "DotpayProvider"]]}, "objtypes": {"0": "py:data", "1": "py:class"}, "objnames": {"0": ["py", "data", "Python data"], "1": ["py", "class", "Python class"]}, "titleterms": {"onnx": [0, 20, 105, 106, 107, 108, 110], "live": 0, "tutori": [0, 42, 49, 50, 54, 57, 114, 120, 122, 154, 157, 158, 174, 175, 180, 187, 197, 222], "what": [0, 6, 10, 11, 15, 17, 44, 52, 56, 57, 60, 112, 119, 131, 139, 148, 155, 203, 207, 213], "overview": [0, 1, 17, 60, 108, 114, 137, 145, 165, 176, 193], "prepar": [0, 49, 60, 113, 115, 127, 128, 140, 166, 169, 180, 183, 189, 190, 191, 192, 193, 196, 199, 200, 208, 210, 225, 226, 227], "environ": [0, 1, 14, 23, 53, 60, 137, 147, 160, 172, 185, 189, 196], "download": [0, 138, 172, 182, 186, 265, 270], "train": [0, 1, 3, 6, 7, 11, 14, 19, 24, 44, 49, 52, 53, 55, 61, 87, 99, 110, 112, 115, 117, 120, 122, 124, 125, 127, 128, 132, 133, 135, 136, 137, 153, 158, 160, 161, 166, 167, 170, 182, 183, 199, 200, 201, 222, 230], "pytorch": [0, 3, 4, 5, 6, 10, 12, 15, 19, 20, 24, 25, 43, 46, 50, 54, 57, 61, 63, 64, 65, 67, 68, 69, 72, 81, 88, 91, 92, 93, 94, 95, 96, 99, 100, 101, 102, 103, 105, 108, 109, 110, 111, 121, 136, 138, 148, 159, 169, 172, 177, 178, 180, 181, 190, 197, 198, 199, 200, 201, 202, 208, 210, 211, 219, 222, 225, 226, 227, 228, 229, 233, 235, 237, 238, 240, 242, 243, 244, 245, 250, 251, 253, 256, 260], "style": [0, 12], "transfer": [0, 12, 158], "model": [0, 1, 4, 6, 7, 9, 12, 17, 18, 19, 20, 21, 25, 45, 49, 55, 58, 59, 60, 73, 74, 79, 85, 97, 102, 103, 105, 112, 113, 115, 117, 122, 124, 125, 132, 134, 135, 137, 138, 139, 144, 147, 148, 150, 151, 157, 158, 166, 167, 169, 170, 172, 176, 179, 180, 182, 183, 186, 189, 190, 196, 197, 199, 200, 205, 208, 210, 211, 213, 220, 222, 225, 226, 227, 242, 249, 255], "convert": [0, 4, 25, 58, 59, 60, 80, 148, 180, 183, 189, 196, 199, 200], "coreml": 0, "run": [0, 6, 7, 20, 22, 45, 49, 50, 53, 54, 55, 58, 59, 60, 73, 85, 97, 115, 126, 127, 134, 169, 172, 175, 186, 196, 213], "io": [0, 59, 189, 190, 206, 224, 225, 227], "app": [0, 58, 59, 126, 189, 208, 210, 226, 227], "conclus": [0, 1, 2, 3, 5, 6, 9, 14, 15, 17, 19, 21, 22, 23, 49, 75, 82, 97, 105, 108, 114, 124, 137, 138, 144, 145, 147, 153, 160, 165, 173, 174, 175, 177, 178, 182, 185, 186, 187, 189, 190, 191, 192, 193, 194, 195, 197, 199, 200, 201, 202, 203, 205, 206, 213, 224], "torchrl": [1, 14, 160], "object": [1, 58, 59, 99, 126, 179], "code": [1, 2, 14, 22, 54, 184, 187, 191, 208, 210, 265], "ddpg": 1, "loss": [1, 12, 37, 44, 47, 49, 52, 97, 98, 110, 124, 128, 137, 160], "prerequisit": [1, 58, 59, 97, 115, 158, 178, 187, 201, 202], "import": [1, 12, 45, 55, 87, 110, 138, 172, 199, 200], "setup": [1, 17, 18, 23, 87, 116, 136, 137, 138, 151, 169, 170, 176, 180, 186, 189, 197, 203, 210, 213, 225], "lossmodul": 1, "The": [1, 6, 87, 125, 135, 156, 166, 265], "__init__": [1, 34], "method": [1, 15, 22, 136, 151, 178, 179, 194, 255], "valu": [1, 137, 154, 160, 255], "estim": [1, 147], "actor": 1, "put": [1, 147, 176, 179], "thing": [1, 14], "togeth": [1, 14, 124, 147, 153, 176, 179], "forward": [1, 5, 6, 21, 78, 109, 142, 146, 179, 225], "call": 1, "transform": [1, 7, 14, 41, 42, 51, 118, 119, 122, 124, 138, 146, 155, 160, 165, 167], "parallel": [1, 7, 21, 45, 56, 61, 120, 122, 123, 124, 134, 135, 150], "execut": [1, 4, 14, 18, 105, 162, 169], "normal": [1, 44, 160], "observ": [1, 184], "stat": 1, "build": [1, 4, 5, 10, 22, 23, 58, 59, 99, 116, 143, 144, 156, 158, 206, 208, 210, 220, 224, 263], "explor": [1, 4, 18], "data": [1, 6, 7, 9, 19, 44, 45, 49, 50, 52, 55, 56, 60, 61, 87, 110, 115, 117, 122, 123, 124, 127, 128, 134, 158, 160, 166, 167, 169, 172, 182, 193, 197, 264], "collector": [1, 137, 160], "evalu": [1, 7, 49, 60, 115, 117, 125, 126, 127, 138, 158, 166, 183, 186, 199], "your": [1, 4, 5, 10, 60, 152, 179, 184, 185, 225], "record": [1, 169], "replai": [1, 137, 160, 161], "buffer": [1, 137, 160], "storag": [1, 260], "batch": [1, 7, 8, 14, 115, 116, 130, 143, 146, 162], "size": [1, 138, 186, 199], "modul": [1, 4, 6, 15, 25, 60, 67, 85, 93, 104, 111, 135, 137, 138, 142, 150, 154, 157, 197, 204, 220, 239, 246], "construct": [1, 18, 55, 193, 194], "target": [1, 7, 147, 265], "network": [1, 6, 44, 47, 52, 87, 99, 102, 110, 118, 127, 128, 137, 147, 160, 161, 167], "updat": [1, 47, 147, 162, 204], "optim": [1, 44, 52, 69, 99, 104, 110, 111, 119, 126, 153, 164, 178, 213, 225, 226, 227, 249, 255], "time": [1, 82, 109, 138, 225], "polici": [1, 14, 122, 137, 160], "experi": [1, 14, 15, 126, 180], "result": [1, 3, 45, 52, 73, 105, 109, 115, 126, 127, 131, 160, 166, 167, 169, 186, 203], "next": [1, 44, 52, 73, 160], "step": [1, 4, 58, 59, 75, 114, 135, 153, 156, 160, 169, 220, 226, 227], "autograd": [2, 8, 10, 43, 63, 64, 76, 89, 111, 125, 129, 142, 164], "c": [2, 3, 4, 5, 6, 8, 10, 22, 23, 187, 208, 210, 222, 248, 259], "frontend": [2, 6, 85, 86], "basic": [2, 6, 21, 25, 35, 134, 135, 142, 150, 156, 162, 173, 174, 175, 205], "oper": [2, 5, 8, 10, 22, 23, 48, 101, 108, 178, 180, 193, 194, 195, 202, 210, 225], "comput": [2, 14, 43, 82, 101, 103, 146, 151, 158], "higher": 2, "order": 2, "gradient": [2, 12, 32, 73, 76, 155, 193], "us": [2, 3, 5, 6, 7, 11, 12, 13, 20, 22, 23, 24, 25, 43, 50, 53, 60, 105, 109, 112, 113, 116, 119, 123, 130, 132, 134, 135, 137, 139, 142, 155, 156, 162, 163, 164, 165, 169, 170, 190, 193, 202, 208, 210, 224, 225, 230, 255], "custom": [2, 5, 10, 14, 15, 22, 23, 51, 67, 108, 117, 120, 130, 131, 142, 156, 157, 158, 174, 175, 179, 210, 224], "function": [2, 7, 12, 15, 19, 37, 44, 47, 52, 64, 73, 78, 85, 87, 97, 98, 99, 110, 115, 130, 131, 138, 142, 146, 151, 155, 157, 158, 160, 183, 199, 200], "translat": [2, 113], "from": [2, 19, 22, 43, 50, 105, 112, 132, 172, 176, 177, 178, 179, 190], "python": [2, 5, 22, 23, 58, 59, 85, 156, 208, 255, 258], "cuda": [3, 5, 50, 80, 82, 214], "graph": [3, 43, 60, 101, 105, 108, 173, 174, 175, 178, 182, 183, 184, 186, 201], "api": [3, 4, 6, 89, 110, 140, 142, 148, 153, 156, 186, 187, 202, 208, 228, 258], "get": [3, 4, 10, 58, 59, 82, 103, 123, 134, 145, 152, 164, 195, 222, 226, 227], "start": [3, 7, 82, 123, 134, 152, 164, 195, 222], "\u5728": [4, 159, 188, 246, 259], "\u4e2d\u52a0\u8f7d": [4, 259], "torchscript": [4, 21, 22, 23, 25, 60, 110, 112, 173, 205, 210, 218, 222, 255, 259], "\u6a21\u578b": [4, 92, 96, 119, 223, 240, 259, 260], "1": [4, 9, 19, 44, 58, 59, 78, 85, 105, 135, 138, 151, 156, 158, 169, 170, 177, 179, 180, 182, 183, 186, 197, 201, 202, 215, 220, 225, 226, 227, 230, 233, 235, 236, 238, 240, 242, 243, 244, 245, 248, 250, 252, 255, 267], "torch": [4, 43, 61, 80, 81, 93, 101, 104, 112, 129, 134, 157, 165, 173, 174, 175, 177, 193, 199, 200, 207, 212, 225, 232, 233, 239, 242, 246, 254, 257, 258], "script": [4, 23, 25, 53, 85, 119, 152, 186, 226, 227, 255], "via": [4, 15, 270], "trace": [4, 23, 25, 82, 83, 85, 144, 173, 178, 184, 186, 206, 228, 255], "annot": [4, 202], "2": [4, 9, 17, 19, 44, 45, 58, 59, 78, 85, 105, 135, 138, 151, 156, 158, 169, 170, 177, 178, 179, 180, 182, 183, 186, 197, 199, 200, 201, 202, 203, 215, 220, 225, 226, 227, 230, 233, 235, 236, 238, 240, 242, 243, 244, 245, 248, 250, 251, 252, 255, 267, 268], "serial": [4, 15, 22, 138, 157], "file": [4, 49, 105, 112, 132, 166, 210], "3": [4, 9, 19, 44, 45, 58, 59, 85, 105, 135, 138, 156, 169, 170, 177, 180, 182, 183, 186, 197, 201, 202, 220, 225, 226, 227, 230, 233, 235, 236, 238, 240, 242, 243, 244, 245, 248, 250, 251, 252, 255, 267], "load": [4, 6, 7, 9, 12, 22, 25, 44, 49, 53, 58, 59, 60, 97, 112, 117, 132, 134, 138, 158, 166, 167, 199, 200, 225, 239], "A": [4, 23, 43, 46, 98, 130, 202, 250, 265], "minim": [4, 97], "applic": [4, 6, 136, 156, 210], "depend": [4, 105, 107, 165], "libtorch": [4, 190], "4": [4, 9, 17, 19, 44, 58, 59, 85, 105, 135, 138, 156, 159, 169, 170, 180, 183, 186, 202, 203, 220, 225, 230, 233, 235, 236, 238, 240, 242, 243, 244, 245, 248, 250, 251, 252, 267], "5": [4, 19, 44, 58, 59, 105, 169, 170, 180, 183, 186, 202, 225, 233, 236, 238, 240, 242, 243, 244, 248, 252, 267], "help": [4, 169], "extens": [5, 10, 13, 120, 156, 178, 209, 213, 222], "motiv": [5, 6, 85, 183, 191, 199, 202], "exampl": [5, 13, 21, 22, 58, 59, 73, 78, 79, 85, 99, 102, 103, 112, 125, 187, 202, 220, 222, 265, 267], "write": [5, 6, 14, 51, 136, 170, 179, 184, 191, 202], "setuptool": [5, 23], "op": [5, 8, 108, 174, 175], "pass": [5, 11, 109, 143, 153], "backward": [5, 10, 21, 78, 122, 130, 131, 153], "bind": [5, 22], "perform": [5, 109, 139, 144, 145, 148, 155, 165, 169, 177, 178, 199, 225], "comparison": [5, 130, 134, 155, 173, 183], "gpu": [5, 6, 44, 45, 55, 79, 87, 95, 104, 110, 112, 169, 185, 190, 222, 249], "devic": [5, 12, 15, 112, 122, 208, 234, 239], "jit": [5, 10, 23, 110, 159], "compil": [5, 23, 129, 145, 165, 173, 212, 213, 254, 257, 258], "mix": [5, 25, 122, 132], "accessor": 5, "integr": [5, 15, 189, 196], "defin": [6, 7, 8, 9, 19, 22, 44, 47, 49, 60, 64, 97, 115, 126, 135, 138, 160, 172, 179, 180, 182, 183, 199, 200, 220, 255], "neural": [6, 12, 44, 47, 87, 110, 147, 151, 223], "regist": [6, 8, 10, 15, 23], "paramet": [6, 13, 45, 60, 93, 112, 157, 160, 162, 163, 202, 204, 233, 249, 264], "submodul": [6, 184], "travers": 6, "hierarchi": 6, "mode": [6, 18, 19, 142, 146, 182, 183, 184, 186, 199, 222], "ownership": 6, "dcgan": [6, 52], "wa": 6, "gan": [6, 52], "agan": 6, "gener": [6, 7, 15, 52, 110, 112, 113, 115, 126, 220, 264], "discrimin": [6, 52, 98], "loop": [6, 14, 135, 137, 160, 161, 200], "move": [6, 22], "checkpoint": [6, 55, 112, 122, 134, 147, 200], "recov": 6, "state": 6, "inspect": [6, 154, 157, 170], "imag": [6, 12, 20, 44, 58, 59, 105, 117, 119, 140, 158, 172, 265, 266], "distribut": [7, 11, 16, 18, 53, 55, 56, 61, 82, 110, 120, 134, 135, 136, 163, 164, 176], "pipelin": [7, 115, 135, 150], "multipl": [7, 44, 112, 157], "process": [7, 53, 55, 58, 59, 115, 134, 135, 156, 162], "input": [7, 11, 52, 55, 58, 59, 60, 73, 127, 131, 150, 176, 197, 211, 255], "sequenc": [7, 102, 124], "scale": [7, 124, 133, 165], "pipe": 7, "initi": [7, 48, 52, 53, 115, 134, 136, 147, 154, 195, 204], "test": [7, 9, 10, 14, 44, 73, 87, 115, 130, 143, 179, 208, 220], "dataset": [7, 19, 45, 51, 104, 110, 113, 115, 138, 179, 183, 186, 199, 200], "output": [7, 58, 59, 113, 131], "dispatch": [8, 10, 165], "schema": 8, "backend": [8, 10, 15, 136, 145, 156, 180, 199, 200, 201, 208], "implement": [8, 22, 23, 52, 73, 98, 130, 154, 156, 162, 163, 165, 191, 193, 204], "For": 8, "do": [8, 44, 131, 148], "need": [8, 184], "In": 8, "place": [8, 80], "view": [8, 169], "ad": [8, 87, 170, 210], "support": [8, 10, 87, 108, 158, 165, 194, 204], "go": [8, 44, 52, 73, 172], "beyond": 8, "autocast": [8, 232], "tracer": 8, "beta": [9, 17, 19, 108, 138, 142, 143, 144, 148, 158, 165, 196, 211, 212, 213, 221, 224, 258], "dynam": [9, 21, 98, 138, 174, 175, 182, 186, 197, 230], "quantiz": [9, 19, 119, 138, 158, 180, 182, 183, 184, 185, 186, 197, 199, 200, 201, 202, 225, 226, 227, 230], "an": [9, 10, 14, 20, 44, 58, 59, 60, 102, 103, 115, 125, 137, 160, 213, 269], "lstm": [9, 21, 98, 102, 137], "word": [9, 99, 103], "languag": [9, 103], "introduct": [9, 12, 24, 43, 52, 58, 59, 61, 91, 101, 138, 154, 169, 172, 173, 176, 186, 187, 189, 190, 191, 194, 196, 197, 201, 202, 204, 206, 208, 211, 220, 224, 225, 226, 227, 229, 230, 255], "text": [9, 49, 265], "pretrain": [9, 60, 179, 226, 227, 230], "extend": [10, 22, 23, 108, 157], "new": [10, 15, 58, 59, 64, 98, 115, 130, 229], "s": [10, 60, 101, 147, 178, 192], "kei": 10, "full": [10, 87], "list": [10, 266], "kernel": [10, 15, 82, 151], "against": 10, "nativ": [10, 210], "compat": [10, 190], "known": 10, "issu": 10, "addit": [10, 42, 114, 169], "note": [10, 60, 98, 202], "futur": [10, 15], "work": [10, 11, 15, 122, 123, 124, 148], "stai": 10, "touch": 10, "uneven": 11, "join": 11, "context": [11, 263], "manag": 11, "requir": [11, 17, 105, 125, 157, 203], "distributeddataparallel": [11, 61, 134, 249], "zeroredundancyoptim": [11, 261], "keyword": 11, "argument": [11, 255], "how": [11, 15, 122, 123, 124, 153, 183, 199, 200, 202, 224, 263], "doe": [11, 17, 125, 203], "joinabl": 11, "joinhook": 11, "make": [11, 98, 116, 184, 210], "toi": [11, 202], "class": [11, 14, 22, 51, 97, 154], "underli": 12, "principl": [12, 177, 178, 194], "packag": [12, 78], "select": [12, 137, 206], "content": [12, 111, 263, 264, 265, 266, 267, 268], "descent": 12, "creat": [13, 45, 49, 99, 101, 126, 127, 128, 144, 151, 157], "numpi": [13, 40, 48, 71, 80, 95, 111, 192], "scipi": 13, "less": 13, "parametr": [13, 154, 157], "pendulum": 14, "\u4f7f\u7528": [14, 42, 55, 90, 93, 96, 104, 118, 160, 212, 215, 221, 228, 231, 232, 233, 239, 240, 248, 249, 257, 258], "\u7f16\u5199\u73af\u5883\u548ctransform": 14, "effect": 14, "action": [14, 137], "_step": 14, "reset": 14, "simul": 14, "_reset": 14, "metadata": [14, 15], "env": 14, "_spec": 14, "spec": 14, "shape": [14, 174, 175], "reproduc": 14, "seed": 14, "wrap": [14, 122, 179], "envbas": 14, "our": [14, 18, 130, 136, 143, 153, 176], "rollout": 14, "simpl": [14, 45, 105, 144, 166], "facilit": 15, "privateuse1": 15, "guard": 15, "deseri": [15, 22], "other": [15, 18, 169], "improv": [15, 109, 169], "user": [15, 81, 127, 184, 208], "renam": 15, "name": [15, 127], "properti": 15, "relat": [15, 172, 178], "combin": [16, 124, 134], "dataparallel": [16, 45, 56, 61, 79, 87, 112, 134, 242], "rpc": [16, 61, 120, 135, 162, 163, 164, 181, 214, 219], "framework": [16, 163, 164], "acceler": [17, 152, 203], "bert": [17, 138, 186, 203], "semi": [17, 24, 203], "structur": [17, 203, 268], "sparsiti": [17, 194, 203], "problem": [17, 202, 203], "solv": [17, 203], "intro": [17, 203], "establish": 17, "baselin": [17, 183], "prune": [17, 157, 203], "spars": [17, 191, 194, 203], "infer": [17, 58, 59, 112, 117, 119, 138, 177, 222, 255], "torchrec": [18, 176], "shard": [18, 122, 123, 124, 135], "instal": [18, 75, 82, 105, 138, 158, 176, 270], "embed": [18, 103], "distributedmodelparallel": [18, 176], "multiprocess": 18, "tabl": [18, 111, 263, 264, 265, 266, 267, 268], "wise": 18, "static": [19, 98, 183, 197, 230], "eager": [19, 183, 186], "architectur": 19, "helper": [19, 138, 183, 194, 199, 200], "loader": [19, 87], "imagenet": 19, "post": [19, 182, 183, 199, 201, 230], "awar": [19, 200, 201, 230], "speedup": [19, 173], "option": [20, 43, 45, 114, 179, 208, 263, 264, 266], "\u6a21\u578b\u5bfc\u51fa\u5230": 20, "\u5e76\u4f7f\u7528": 20, "runtim": [20, 105, 108], "\u8fd0\u884c": 20, "syntax": [21, 85, 205], "appli": [21, 124, 138, 150, 201], "ensembl": [21, 139], "bidirect": 21, "layer": [21, 90, 124, 130], "asid": 21, "visual": [21, 105, 117, 153, 158, 166, 167], "project": [22, 263], "With": [22, 169, 210], "cmake": [22, 23, 210], "save": [22, 25, 53, 55, 60, 105, 112, 122, 125, 131, 132, 134, 147, 153, 199, 200, 242], "To": 22, "ivalu": 22, "take": 22, "return": [22, 125], "bound": [22, 178], "appendix": [23, 194], "more": [23, 58, 59, 119, 125, 145, 146, 162, 169, 176, 189, 190, 196, 211, 220, 224, 226, 227, 229, 230, 255], "wai": [23, 155, 265], "supervis": 24, "learn": [24, 35, 46, 58, 59, 85, 98, 99, 100, 110, 117, 119, 120, 138, 147, 158, 162, 164, 169, 177, 189, 190, 196, 211, 220, 224, 226, 227, 229, 230, 255], "usb": 24, "built": [24, 180, 190], "upon": 24, "freematch": 24, "softmatch": 24, "cifar": [24, 97], "10": [24, 97, 153, 183, 267], "onli": [24, 184, 222], "40": 24, "label": [24, 172], "specif": [24, 172, 199, 200], "imbalanc": 24, "algorithm": [24, 161], "\u4ecb\u7ecd": [25, 82, 88, 90, 94, 95, 107, 233, 235, 236, 251, 252], "author": [25, 105], "further": [25, 32, 43, 53, 55, 56, 105, 107, 108, 109, 114, 117, 132, 133, 137, 180, 191, 193, 194], "read": [25, 32, 43, 53, 55, 56, 105, 107, 108, 109, 114, 132, 133, 137, 172, 178, 180, 191, 193, 194], "\u97f3\u9891\u6570\u636e\u589e\u5f3a": 26, "\u97f3\u9891\u6570\u636e\u96c6": 27, "\u97f3\u9891\u7279\u5f81\u589e\u5f3a": 28, "\u97f3\u9891\u7279\u5f81\u63d0\u53d6": 29, "\u97f3\u9891": 30, "i": [30, 44], "o": 30, "audio": 31, "\u91cd\u91c7\u6837": 31, "\u81ea\u52a8\u5fae\u5206": 32, "\u5f20\u91cf": [32, 40, 72, 92, 111], "\u51fd\u6570\u548c\u8ba1\u7b97\u56fe": 32, "\u8ba1\u7b97\u68af\u5ea6": 32, "\u7981\u7528\u68af\u5ea6\u8ddf\u8e2a": 32, "\u66f4\u591a\u5173\u4e8e\u8ba1\u7b97\u56fe": 32, "\u53ef\u9009\u9605\u8bfb": 32, "\u5f20\u91cf\u68af\u5ea6": 32, "tensor": [32, 48, 63, 72, 76, 80, 95, 101, 110, 111, 120, 124, 125, 127, 153, 165, 194, 195, 202, 213, 225, 255], "\u548c\u96c5\u53ef\u6bd4\u4e58\u79ef": 32, "jacobian": [32, 146, 151], "product": [32, 146, 151, 165], "\u6784\u5efa\u795e\u7ecf\u7f51\u7edc": [33, 252], "\u83b7\u53d6\u8bad\u7ec3\u8bbe\u5907": 33, "\u5b9a\u4e49\u7c7b": 33, "\u6a21\u578b\u5c42": 33, "nn": [33, 61, 67, 68, 78, 85, 93, 104, 111, 112, 157, 176, 239, 242, 246], "flatten": 33, "linear": [33, 99, 104], "relu": [33, 180], "sequenti": [33, 104], "softmax": [33, 99, 193], "\u6a21\u578b\u53c2\u6570": 33, "\u5ef6\u4f38\u9605\u8bfb": [33, 34, 37, 41], "\u6570\u636e\u96c6\u4e0e\u6570\u636e\u52a0\u8f7d\u5668": 34, "\u52a0\u8f7d\u6570\u636e\u96c6": 34, "\u8fed\u4ee3\u548c\u53ef\u89c6\u5316\u6570\u636e\u96c6": 34, "\u521b\u5efa\u81ea\u5b9a\u4e49\u6570\u636e\u96c6": 34, "__len__": 34, "__getitem__": 34, "\u4f7f\u7528\u6570\u636e\u52a0\u8f7d\u5668\u4e3a\u8bad\u7ec3\u51c6\u5907\u6570\u636e": 34, "\u901a\u8fc7": [34, 244], "dataload": [34, 51, 104, 110], "\u8fdb\u884c\u8fed\u4ee3": 34, "\u57fa\u7840\u77e5\u8bc6": 36, "\u8fd0\u884c\u6559\u7a0b\u4ee3\u7801": [36, 88], "\u5982\u4f55\u4f7f\u7528\u672c\u6307\u5357": 36, "\u4f18\u5316\u6a21\u578b\u53c2\u6570": [37, 38], "\u524d\u7f6e\u4ee3\u7801": 37, "\u8d85\u53c2\u6570": 37, "\u4f18\u5316\u5faa\u73af": 37, "\u635f\u5931\u51fd\u6570": [37, 93, 96], "\u4f18\u5316\u5668": [37, 96], "\u5b8c\u6574\u5b9e\u73b0": 37, "\u5feb\u901f\u5165\u95e8": 38, "\u5904\u7406\u6570\u636e": 38, "\u521b\u5efa\u6a21\u578b": 38, "\u4fdd\u5b58\u6a21\u578b": [38, 250], "\u52a0\u8f7d\u6a21\u578b": 38, "\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": [39, 244], "\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u6743\u91cd": 39, "\u4fdd\u5b58\u548c\u52a0\u8f7d\u5e26\u6709\u7ed3\u6784\u7684\u6a21\u578b": 39, "\u76f8\u5173\u6559\u7a0b": 39, "\u521d\u59cb\u5316\u5f20\u91cf": 40, "\u5f20\u91cf\u7684\u5c5e\u6027": 40, "\u5f20\u91cf\u64cd\u4f5c": 40, "\u4e0enumpy\u8f6c\u6362": 40, "\u5f20\u91cf\u8f6c\u4e3anumpi": 40, "arrai": [40, 48, 80], "array\u8f6c\u4e3a\u5f20\u91cf": 40, "totensor": 41, "lambda": 41, "better": 42, "\u8fdb\u884c\u5feb\u901f": 42, "\u63a8\u65ad": 42, "featur": [42, 102, 117, 122, 158, 169, 172, 222], "thi": [42, 57, 122, 153, 266, 269], "inform": [42, 85, 145], "summari": [42, 45, 113, 122, 165, 229], "gentl": 43, "background": 43, "usag": [43, 110, 130, 142, 150, 153, 173, 174, 175, 177, 208], "differenti": [43, 101, 142], "vector": [43, 139, 146, 151], "calculu": 43, "exclus": 43, "dag": 43, "classifi": [44, 99, 105, 119, 158, 172], "about": [44, 138], "cifar10": 44, "convolut": [44, 130, 137, 143], "where": [44, 52, 73, 172, 193], "dummi": 45, "8": [45, 183, 233, 248, 267], "deep": [46, 98, 99, 100, 110, 177], "60": 46, "minut": 46, "blitz": 46, "backprop": 47, "weight": [47, 52, 65, 197], "attribut": [48, 255], "bridg": [48, 80, 95], "chatbot": 49, "preprocess": [49, 147], "format": [49, 105, 112, 148, 178, 225], "trim": 49, "seq2seq": [49, 60, 118, 166], "encod": [49, 60, 103, 166], "decod": [49, 60, 166], "procedur": 49, "mask": [49, 193], "singl": [49, 150], "iter": [49, 51, 115, 157], "greedi": [49, 60], "my": 49, "googl": [50, 260], "colab": 50, "version": [50, 151], "drive": 50, "enabl": [50, 187], "compos": [51, 146], "through": [51, 85, 180, 201], "afterword": 51, "torchvis": [51, 74, 179], "\u6559\u7a0b": [52, 75, 86, 97, 121, 160, 161, 167, 223], "adversari": [52, 73], "fault": 53, "toler": 53, "torchrun": [53, 134], "why": [53, 56, 124, 125, 193, 195], "grace": 53, "restart": 53, "group": [53, 55, 156], "provid": 53, "variabl": 53, "snapshot": [53, 153], "trainer": 53, "constructor": 53, "resum": [53, 112], "\u5206\u5e03\u5f0f\u5e76\u884c": 54, "video": 54, "section": [54, 268], "ddp": [55, 56, 120, 132, 134, 249], "\u8fdb\u884c\u591a": 55, "\u8bad\u7ec3": [55, 256], "job": 55, "you": [56, 124], "should": [56, 124], "prefer": [56, 225], "over": 56, "dp": 56, "\u6df1\u5ea6\u5b66\u4e60": 57, "60\u5206\u949f\u5165\u95e8": 57, "goal": 57, "segment": [58, 59, 179], "deeplabv3": [58, 59], "android": [58, 206, 208, 210, 220, 224, 225, 226], "deploy": [58, 59], "reus": [58, 59, 225], "complet": [58, 59], "ui": [58, 59], "refactor": [58, 59, 184], "recap": [58, 59, 122], "deploi": 60, "acknowledg": [60, 126, 177, 178], "handl": 60, "attent": [60, 165, 166], "search": [60, 87], "chang": [60, 234], "host": [60, 196], "own": [60, 136, 184], "greedysearchdecod": 60, "print": [60, 109], "\u5206\u5e03\u5f0f\u6982\u8ff0": 61, "fullyshardeddataparallel": 61, "elast": 61, "base": [61, 113, 158, 181, 206, 219, 263], "develop": 61, "control": [65, 165, 174, 175], "flow": [65, 174, 175, 202], "share": [65, 202], "warm": 71, "up": [71, 126, 150, 172, 179, 180, 185, 213], "\u5bf9\u6297\u6837\u672c\u751f\u6210": 73, "threat": 73, "fast": [73, 221], "sign": 73, "attack": 73, "under": 73, "fgsm": 73, "accuraci": [73, 87, 138, 145, 199], "vs": [73, 146, 192], "epsilon": 73, "sampl": [73, 128, 155], "finetun": [74, 117, 158, 179], "torchmultimod": 75, "\u5fae\u8c03": 75, "flava": 75, "track": [76, 131, 170], "histori": 76, "convnet": [78, 117], "hook": [78, 125, 153], "recurr": [78, 137], "net": 78, "multi": [79, 87, 126, 177], "part": [79, 85, 102, 158, 178], "cpu": [79, 112, 122, 125, 144, 145, 177, 178, 188, 222, 249], "inplac": 80, "out": [80, 130, 143], "zero": 80, "index": [80, 193, 264], "No": 80, "camel": 80, "case": [80, 134, 211], "former": 81, "holist": [82, 83], "analysi": [82, 83, 178], "hta": 82, "tempor": 82, "breakdown": 82, "idl": 82, "durat": 82, "commun": [82, 87, 136], "overlap": 82, "augment": [82, 102], "counter": 82, "memori": [82, 102, 109, 125, 130, 148, 153, 161, 177, 178, 225], "bandwidth": 82, "queue": 82, "length": 82, "launch": [82, 135], "statist": 82, "\u5dee\u5f02\u5206\u6790": 83, "hybrid": [85, 86], "pure": 85, "top": [85, 178], "level": [85, 102, 263, 265, 266], "rai": 87, "tune": [87, 122, 138, 178], "\u8d85\u53c2\u6570\u8c03\u4f18": 87, "configur": [87, 126, 138, 178, 186, 199, 200, 263], "set": [87, 126, 138, 172, 177, 180, 183, 185, 186, 199, 213], "space": 87, "youtub": [88, 91], "\u81ea\u52a8\u5fae\u5206\u57fa\u7840": 89, "\u6211\u4eec\u4e3a\u4ec0\u4e48\u9700\u8981": 89, "\u4e00\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50": 89, "\u81ea\u52a8\u6c42\u5bfc\u5728\u8bad\u7ec3\u4e2d": 89, "\u5173\u95ed\u548c\u6253\u5f00\u81ea\u52a8\u6c42\u5bfc": 89, "\u548c\u539f\u4f4d\u64cd\u4f5c": 89, "\u5206\u6790\u5668": 89, "\u9ad8\u7ea7\u4e3b\u9898": [89, 232], "\u66f4\u591a": 89, "\u7ec6\u8282\u548c\u9ad8\u7ea7": 89, "\u9ad8\u7ea7": 89, "captum": [90, 231], "\u8fdb\u884c\u6a21\u578b\u7406\u89e3": 90, "\u5b89\u88c5": [90, 159, 223, 247], "\u7b2c\u4e00\u4e2a\u793a\u4f8b": 90, "\u4f7f\u7528\u96c6\u6210\u68af\u5ea6\u8fdb\u884c\u7279\u5f81\u5f52\u56e0": 90, "\u4f7f\u7528\u906e\u6321\u8fdb\u884c\u7279\u5f81\u5f52\u56e0": 90, "\u4f7f\u7528\u5c42\u68af\u5ea6\u7c7b\u6fc0\u6d3b\u6620\u5c04": 90, "gradcam": 90, "\u8fdb\u884c\u5c42\u5f52\u56e0": 90, "\u4f7f\u7528captum": 90, "insights\u8fdb\u884c\u53ef\u89c6\u5316": 90, "\u7b80\u4ecb": [92, 95, 96, 209, 238, 240, 242, 243, 244, 245, 250], "\u6570\u636e\u96c6\u548c\u6570\u636e\u52a0\u8f7d\u5668": [92, 96], "\u8bad\u7ec3\u4f60\u7684": 92, "\u6784\u5efa\u6a21\u578b": 93, "\u548c": [93, 104, 159, 172, 250], "\u5e38\u89c1\u5c42\u7c7b\u578b": 93, "\u7ebf\u6027\u5c42": 93, "\u5377\u79ef\u5c42": 93, "\u5faa\u73af\u5c42": 93, "\u8f6c\u6362\u5668": 93, "\u5176\u4ed6\u5c42\u548c\u51fd\u6570": 93, "\u6570\u636e\u64cd\u4f5c\u5c42": 93, "\u6fc0\u6d3b\u51fd\u6570": 93, "tensorboard": [94, 169, 170], "\u652f\u6301": [94, 218], "\u5f00\u59cb\u4e4b\u524d": [94, 231], "\u5728tensorboard\u4e2d\u663e\u793a\u56fe\u50cf": 94, "\u7ed8\u5236\u6807\u91cf\u4ee5\u53ef\u89c6\u5316\u8bad\u7ec3": 94, "\u53ef\u89c6\u5316\u60a8\u7684\u6a21\u578b": 94, "\u4f7f\u7528\u5d4c\u5165\u53ef\u89c6\u5316\u60a8\u7684\u6570\u636e\u96c6": 94, "\u5176\u4ed6\u8d44\u6e90": [94, 96, 236, 259], "\u521b\u5efa\u5f20\u91cf": 95, "\u968f\u673a\u5f20\u91cf\u548c\u79cd\u5b50": 95, "\u5f20\u91cf\u5f62\u72b6": 95, "\u5f20\u91cf\u6570\u636e\u7c7b\u578b": 95, "\u4f7f\u7528pytorch\u5f20\u91cf\u8fdb\u884c\u6570\u5b66\u548c\u903b\u8f91\u8fd0\u7b97": 95, "\u5f20\u91cf\u5e7f\u64ad": 95, "\u66f4\u591a\u5f20\u91cf\u6570\u5b66\u8fd0\u7b97": 95, "\u672c\u5730\u4fee\u6539\u5f20\u91cf": 95, "\u590d\u5236\u5f20\u91cf": 95, "\u79fb\u52a8\u5230": 95, "\u64cd\u4f5c\u5f20\u91cf\u5f62\u72b6": 95, "\u6539\u53d8\u7ef4\u5ea6\u6570\u91cf": 95, "\u8bad\u7ec3\u6a21\u578b": 96, "\u8bad\u7ec3\u5faa\u73af": 96, "\u6bcf\u5468\u671f\u6d3b\u52a8": 96, "knowledg": 97, "distil": 97, "util": [97, 110, 157, 161, 225, 233, 246], "cross": 97, "entropi": 97, "cosin": 97, "intermedi": [97, 131], "regressor": 97, "advanc": [98, 122, 136, 169, 178, 192, 209], "decis": 98, "bi": 98, "crf": 98, "versu": 98, "toolkit": 98, "condit": 98, "random": [98, 115], "field": [98, 266], "discuss": 98, "exercis": [98, 102, 103, 114, 127, 128, 166, 178], "tag": [98, 102], "block": [99, 233, 265], "affin": 99, "map": 99, "non": [99, 175, 184, 213, 220], "probabl": 99, "compon": [99, 145], "logist": 99, "regress": 99, "bag": [99, 103], "nlp": 100, "librari": [101, 172, 190, 210, 226, 227], "reshap": 101, "automat": [101, 142], "long": [102, 267, 269], "short": 102, "term": 102, "speech": 102, "tagger": 102, "charact": 102, "lexic": 103, "semant": [103, 191, 192], "dens": [103, 165], "n": 103, "gram": 103, "continu": 103, "\u5177\u4f53\u662f\u4ec0\u4e48": 104, "mnist": 104, "\u6570\u636e\u96c6\u8bbe\u7f6e": 104, "\u4ece\u96f6\u5f00\u59cb\u7684\u795e\u7ecf\u7f51\u7edc": 104, "\u4e0d\u4f7f\u7528": 104, "\u91cd\u6784": 104, "\u6dfb\u52a0\u9a8c\u8bc1\u96c6": 104, "\u521b\u5efa": 104, "fit": [104, 153], "get_data": 104, "cnn": 104, "\u5305\u88c5": 104, "\u603b\u7ed3": [104, 159, 248], "export": [105, 112, 174, 175, 199, 200, 201, 202], "netron": 105, "6": [105, 169, 170, 180, 183, 225, 233, 240, 242, 248, 267], "7": [105, 169, 180, 183, 233, 240, 248, 267], "compar": [105, 119, 186, 197, 220], "ones": 105, "registri": 108, "unsupport": 108, "aten": [108, 202], "exist": [108, 148, 150], "without": [108, 208, 220], "registr": 108, "fx": [108, 143, 144, 173, 182, 183, 184, 201], "\u6a21\u578b\u5206\u6790": 109, "debug": [109, 145, 183, 186, 199], "profil": [109, 144, 145, 169, 178, 181, 219, 228, 240], "cheat": 110, "sheet": 110, "vision": [110, 158], "creation": 110, "dimension": 110, "algebra": 110, "activ": 110, "rate": 110, "schedul": [110, 126, 213], "datasampl": 110, "also": 110, "see": 110, "\u8ddf\u7740\u793a\u4f8b\u5b66\u4e60": 111, "\u70ed\u8eab": 111, "\u81ea\u52a8\u6c42\u5bfc": 111, "\u5f20\u91cf\u548c\u81ea\u52a8\u6c42\u5bfc": 111, "\u5b9a\u4e49\u65b0\u7684\u81ea\u52a8\u6c42\u5bfc\u51fd\u6570": 111, "\u81ea\u5b9a\u4e49": 111, "\u6a21\u5757": 111, "\u63a7\u5236\u6d41": 111, "\u6743\u91cd\u5171\u4eab": 111, "\u793a\u4f8b": [111, 253], "state_dict": [112, 244, 251], "recommend": [112, 127, 202], "entir": 112, "One": [112, 135], "warmstart": 112, "differ": [112, 179], "across": 112, "t5": [113, 122], "summar": 113, "sentiment": 113, "classif": 113, "generationutil": 113, "templat": 114, "torchtext": [115, 116], "\u6587\u672c\u5206\u7c7b": 115, "access": [115, 177, 193], "raw": 115, "instanc": [115, 179], "split": 115, "\u9884\u5904\u7406\u81ea\u5b9a\u4e49\u6587\u672c\u6570\u636e\u96c6": 116, "vocabulari": 116, "numeric": 116, "sentenc": 116, "bucket": 116, "pad": 116, "\u8ba1\u7b97\u673a\u89c6\u89c9\u8fc1\u79fb\u5b66\u4e60\u6559\u7a0b": 117, "few": [117, 158], "predict": [117, 140, 158, 172], "fix": [117, 202, 255], "extractor": [117, 158], "\u6570\u636e\u83b7\u53d6\u548c\u5904\u7406": 118, "\u7684": 118, "\u6570\u636e\u6574\u7406": 118, "\u5f15\u7528": 118, "\u4f18\u5316\u89c6\u89c9": 119, "deit": 119, "lite": [119, 190], "interpret": [119, 144, 206, 224], "speed": [119, 134, 150], "fsdp": [120, 122, 123], "tp": [120, 124], "devicemesh": [120, 217], "\u6b22\u8fce\u6765\u5230": 121, "\u66f4\u591a\u8d44\u6e90": [121, 260], "fulli": [122, 123, 124], "fine": [122, 138], "hf": 122, "precis": [122, 132], "intial": 122, "strategi": [122, 126], "prefetch": 122, "stream": 122, "rank0": 122, "larg": 124, "when": [124, 131, 132, 193, 255], "layernorm": 124, "rmsnorm": 124, "typic": 125, "than": [125, 177], "concept": 125, "pack": 125, "unpack": 125, "some": 125, "unconvent": 125, "int": 125, "tupl": 125, "str": 125, "disk": 125, "na": 126, "ax": 126, "torchx": 126, "runner": 126, "searchspac": 126, "metric": 126, "optimizationconfig": 126, "choos": 126, "\u4ece\u96f6\u5f00\u59cb\u7684\u81ea\u7136\u8bed\u8a00\u5904\u7406": [127, 128, 166], "\u5b57\u7b26\u7ea7": [127, 128], "rnn": [127, 128, 164], "\u8fdb\u884c\u59d3\u540d\u5206\u7c7b": 127, "turn": 127, "plot": [127, 128, 166], "\u751f\u6210\u59d3\u540d": 128, "\u4e3a": 129, "\u6355\u83b7\u66f4\u5927\u7684\u540e\u5411\u56fe": 129, "\u6982\u89c8": 129, "\u8bbe\u7f6e": [129, 159, 233, 236, 254, 258], "\u57fa\u672c\u7528\u6cd5": [129, 221, 257], "\u68c0\u67e5\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u65e5\u5fd7": 129, "\u4f7f\u7528\u4e0d\u540c\u7684\u6807\u5fd7\u7f16\u8bd1\u524d\u5411\u548c\u540e\u5411\u4f20\u9012": 129, "\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u89e3\u51b3\u4e86aotautograd\u7684\u67d0\u4e9b\u9650\u5236": 129, "\u7f16\u8bd1\u81ea\u52a8\u5fae\u5206\u7684\u5e38\u89c1\u91cd\u65b0\u7f16\u8bd1\u539f\u56e0": 129, "\u7ed3\u8bba": [129, 188, 209, 216, 217, 221, 239, 246, 254, 257, 258], "fuse": [130, 143, 153, 165, 220, 225], "norm": [130, 143], "formula": 130, "batchnorm": 130, "doubl": 131, "real": 132, "world": 132, "cloud": [132, 260], "enough": 132, "multinod": 133, "local": [133, 177], "global": [133, 138, 157, 186], "rank": 133, "heteregen": 133, "troubleshoot": 133, "between": [134, 193], "skew": 134, "partit": 135, "resnet50": 135, "stitch": 135, "Into": 135, "point": [136, 197], "collect": [136, 160], "ring": 136, "allreduc": 136, "topic": [136, 265], "dqn": [137, 161], "mlp": 137, "q": [137, 161], "huggingfac": 138, "necessari": 138, "token": 138, "check": [138, 186, 199], "refer": [138, 180, 197, 265], "vmap": [139, 207], "\u5b9a\u4e49": 140, "\u4f9d\u8d56": 140, "\u7b80\u5355\u7684": 140, "web": 140, "server": [140, 162, 163], "\u63a8\u7406": [140, 215, 232, 256], "wav2vec2": [141, 168], "\u5f3a\u5236\u5bf9\u9f50": 141, "fuser": 143, "fusion": [143, 180], "benchmark": [143, 186, 196, 220, 225, 233], "resnet18": [143, 144, 202], "captur": [144, 153, 201], "symbol": [144, 184], "investig": 144, "inductor": [145, 187, 201], "log": [145, 147], "determin": 145, "error": [145, 255], "hessian": 146, "hvp": 146, "vhp": 146, "revers": 146, "jacrev": 146, "jacfwd": 146, "functorch": 146, "\u8bad\u7ec3\u4e00\u4e2a\u9a6c\u91cc\u5965\u6e38\u620f\u7684": 147, "rl": 147, "agent": 147, "definit": [147, 266], "act": 147, "cach": [147, 154], "recal": 147, "td": 147, "all": [147, 153, 176, 249, 255], "let": 147, "plai": 147, "channel": [148, 178, 225], "last": [148, 178, 225], "gain": 148, "machin": 150, "best": 150, "practic": [150, 169], "tangent": 151, "ntk": 151, "contract": 151, "nvfuser": 152, "dure": 153, "disclaim": 153, "techniqu": 153, "register_post_accumulate_grad_hook": 153, "everyth": [153, 179], "line": [153, 186, 265], "hand": 154, "ar": 154, "first": [154, 177, 178], "citizen": 154, "concaten": 154, "remov": [154, 157], "per": 155, "grad": [155, 193, 249], "effici": [155, 177, 191, 224], "cpp": 156, "subclass": [156, 165], "expos": 156, "re": 157, "0": [158, 193], "nightli": [158, 174], "raspberri": 159, "pi": 159, "\u4e0a\u8fdb\u884c\u5b9e\u65f6\u63a8\u7406": 159, "30": 159, "fp": 159, "\u51c6\u5907\u73af\u5883": 159, "opencv": 159, "\u89c6\u9891\u6355\u83b7": 159, "\u56fe\u7247\u5904\u7406": 159, "\u9009\u62e9\u6a21\u578b": 159, "mobilenetv2": [159, 189, 196], "\u91cf\u5316\u548c": 159, "\u6027\u80fd\u4f18\u5316": 159, "\u540e\u7eed": 159, "\u5f3a\u5316\u5b66\u4e60": [160, 161], "ppo": 160, "hyperparamet": [160, 161], "asynchron": 162, "cartpol": 162, "solver": 162, "reinforc": 164, "rref": 164, "high": 165, "dot": 165, "sdpa": 165, "explicit": 165, "hardwar": 165, "causal": 165, "self": 165, "nestedtensor": 165, "attn_bia": 165, "\u5e8f\u5217\u5230\u5e8f\u5217\u7f51\u7edc\u548c\u6ce8\u610f\u529b\u673a\u5236\u8fdb\u884c\u7ffb\u8bd1": 166, "spatial": 167, "depict": 167, "stn": 167, "\u8fdb\u884c\u8bed\u97f3\u8bc6\u522b": 168, "event": 169, "analyz": 169, "amd": 169, "\u53ef\u89c6\u5316\u6a21\u578b": 170, "\u6570\u636e\u548c\u8bad\u7ec3": 170, "projector": 170, "assess": 170, "tacotron2": 171, "\u6587\u672c\u8f6c\u8bed\u97f3": 171, "tiatoolbox": 172, "\u8fdb\u884c\u5168\u5207\u7247\u56fe\u50cf\u5206\u7c7b": 172, "clean": 172, "befor": 172, "patch": 172, "patchpredictor": 172, "whole": 172, "slide": 172, "extract": 172, "patholog": 172, "here": 172, "demonstr": 173, "torchdynamo": 173, "break": [174, 175], "constraint": [174, 175, 180], "decomposit": [174, 175], "exportdb": [174, 175], "strict": 175, "program": 175, "embeddingbag": 176, "embeddingbagcollect": 176, "queri": 176, "vanilla": 176, "offset": 176, "repres": 176, "minibatch": 176, "keyedjaggedtensor": 176, "kjt": 176, "resourc": 176, "grok": [177, 178], "intel": [177, 178, 188, 209, 222, 228, 249, 256], "avoid": 177, "logic": 177, "core": [177, 189], "alwai": 177, "faster": 177, "remot": 177, "pin": 177, "worker": 177, "default": [177, 234], "torchserv": [177, 178, 260], "set_num_thread": 177, "number": [177, 265, 266], "physic": 177, "launcher": [177, 178], "down": [178, 266], "microarchitectur": 178, "tma": 178, "back": 178, "end": 178, "vtune": [178, 228], "instrument": [178, 228], "technolog": [178, 228], "itt": [178, 228], "leverag": 178, "alloc": 178, "tcmalloc": 178, "jemalloc": 178, "ptmalloc": 178, "boost": 178, "\u5bf9\u8c61\u68c0\u6d4b\u5fae\u8c03\u6559\u7a0b": 179, "pennfudan": 179, "modifi": 179, "add": [179, 226, 227], "backbon": 179, "detect": 179, "prototyp": [180, 182, 183, 184, 185, 186, 189, 190, 191, 192, 193, 194, 198, 199, 200, 203, 206], "backendconfig": 180, "deriv": [180, 202], "pattern": [180, 202], "each": 180, "dtypeconfig": 180, "conv": 180, "qconfigmap": [180, 183], "satisfi": 180, "faulti": 180, "workload": [181, 219], "eval": [183, 199], "specifi": [183, 186], "calibr": [183, 199], "9": [183, 267], "float": [183, 197], "guid": 184, "skip": [184, 204], "traceabl": 184, "torchao": 185, "glue": 186, "qconfig_dict": 186, "one": [186, 266], "wrapper": [187, 208], "\u5982\u4f55\u5728": [188, 228], "window": 188, "\u4e0a\u4f7f\u7528": 188, "torchinductor": 188, "\u5b89\u88c5\u6240\u9700\u8f6f\u4ef6": 188, "\u8bbe\u7f6e\u73af\u5883": 188, "\u4f7f\u7528\u66ff\u4ee3\u7f16\u8bd1\u5668\u4ee5\u83b7\u5f97\u66f4\u597d\u7684\u6027\u80fd": 188, "\u7f16\u8bd1\u5668": 188, "llvm": 188, "ml": 189, "maco": 189, "metal": 190, "sourc": [190, 210], "adagrad": 191, "maskedtensor": [191, 192, 193, 194], "simpler": 191, "origin": 191, "maskedarrai": 192, "reduct": [192, 194], "slice": 193, "distinguish": 193, "nan": [193, 232], "anoth": 193, "x": 193, "yield": 193, "nansum": 193, "nanmean": 193, "safe": 193, "miss": 193, "coo": 194, "csr": 194, "unari": 194, "binari": 194, "nest": 195, "nnapi": 196, "numer": 197, "suit": 197, "correspond": 197, "locat": 197, "its": 197, "equival": 197, "same": 197, "recip": [198, 220, 225, 226, 227, 229, 230, 237, 255], "lower": [199, 201], "qat": 200, "x86": 201, "common": [202, 211, 255], "param": 202, "ir": 202, "pt2e": 202, "match": 202, "directli": 202, "subgraphmatcherwithnamenodemap": 202, "detail": 204, "freez": 205, "mobil": [206, 224, 225, 226, 227, 229, 255], "so": 207, "vulkan": 208, "workflow": [208, 230], "desktop": 208, "sdk": 208, "java": [208, 210], "upload": 208, "\u5229\u7528\u82f1\u7279\u5c14": 209, "\u9ad8\u7ea7\u77e9\u9635\u6269\u5c55": 209, "matrix": 209, "pytorch\u4e2d\u7684amx": 209, "\u5229\u7528amx\u52a0\u901f\u5de5\u4f5c\u8d1f\u8f7d\u7684\u6307\u5357": 209, "\u53ef\u5229\u7528amx\u7684cpu\u7b97\u5b50": 209, "\u786e\u8ba4amx\u6b63\u5728\u88ab\u5229\u7528": 209, "prebuilt": 210, "gradl": 210, "manifest": 210, "bundl": 211, "uncommon": 211, "inflat": 211, "arg": [211, 264], "\u7f16\u8bd1\u4f18\u5316\u5668": 212, "\u6a21\u578b\u8bbe\u7f6e": 212, "\u8bbe\u7f6e\u548c\u8fd0\u884c\u4f18\u5316\u5668\u57fa\u51c6\u6d4b\u8bd5": 212, "\u53e6\u8bf7\u53c2\u9605": [212, 257], "lr": 213, "happen": 213, "\u4f7f\u7528tensorpip": 214, "rpc\u8fdb\u884c\u8bbe\u5907\u5230\u8bbe\u5907\u901a\u4fe1": 214, "\u8981\u6c42": [214, 218, 228, 261], "\u4ec0\u4e48\u662fcuda": 214, "\u5982\u4f55\u4f7f\u7528cuda": 214, "flask": 215, "\u8fdb\u884c\u90e8\u7f72": 215, "\u73af\u5883\u8bbe\u7f6e": [215, 235, 240, 242, 243, 244, 245, 250, 251, 252], "\u4ec0\u4e48\u662f": [215, 217, 228, 259, 261], "\u8bbe\u7f6e\u548c\u652f\u6301\u6587\u4ef6": 215, "\u9009\u9879": 215, "\u5feb\u901f\u83b7\u53d6\u6587\u4ef6": 215, "\u4f7f\u7528\u60a8\u81ea\u5df1\u7684\u56fe\u50cf": 215, "\u6784\u5efa\u60a8\u7684": 215, "\u670d\u52a1": 215, "\u5bfc\u5165": 215, "\u9884\u5904\u7406": 215, "\u540e\u5904\u7406": 215, "\u8fd0\u884c\u5b8c\u6574\u7684": 215, "\u5e94\u7528": 215, "\u91cd\u8981\u8d44\u6e90": 215, "\u5206\u5e03\u5f0f\u68c0\u67e5\u70b9": 216, "dcp": 216, "\u5165\u95e8": [216, 223], "\u5982\u4f55\u5de5\u4f5c": 216, "\u5982\u4f55\u4f7f\u7528": [216, 261], "\u4fdd\u5b58": [216, 232, 233], "\u52a0\u8f7d": 216, "\u5f00\u59cb\u4f7f\u7528": 217, "\u4e3a\u4ec0\u4e48": 217, "\u6709\u7528": 217, "\u5982\u4f55\u5c06": 217, "\u4e0e": [217, 258], "hsdp": 217, "\u4e00\u8d77\u4f7f\u7528": 217, "\u7684\u5206\u5e03\u5f0f\u4f18\u5316\u5668": 218, "\u4ec0\u4e48\u662f\u5206\u5e03\u5f0f\u4f18\u5316\u5668": 218, "\u4ec0\u4e48\u662f\u652f\u6301": 218, "\u5982\u4f55\u7f16\u5199\u652f\u6301": 218, "\u7684\u81ea\u5b9a\u4e49\u5206\u5e03\u5f0f\u4f18\u5316\u5668": 218, "pre": [220, 226, 227, 229, 230, 255], "requisit": [220, 226, 227, 229, 230, 255], "two": 220, "fuse_modul": [220, 225], "tool": 220, "pytorch\u5728aw": 221, "graviton\u5904\u7406\u5668\u4e0a\u7684\u63a8\u7406\u6027\u80fd\u4f18\u5316": 221, "\u5185\u5bb9": 221, "bfloat16": [221, 222], "math": [221, 265], "kernels\u52a0\u901f\u63a8\u7406": 221, "openbla": 221, "\u63d0\u9ad8\u8f83\u5c0f\u6279\u91cf\u7ef4\u5ea6\u7684\u63a8\u7406\u6027\u80fd": 221, "linux": 221, "transpar": 221, "huge": 221, "page": [221, 263], "thp": 221, "\u4f18\u5316\u5185\u5b58\u5206\u914d\u5f00\u9500": 221, "float32": 222, "imper": 222, "float16": 222, "zoo": 222, "\u4f7f\u7528intel": 223, "compressor\u5b9e\u73b0pytorch\u7684\u7b80\u6613\u91cf\u5316": 223, "\u6982\u8ff0": 223, "\u7279\u6027": 223, "\u7528\u6cd5": 223, "\u7cbe\u5ea6\u9a71\u52a8\u91cf\u5316": 223, "\u91cf\u5316\u611f\u77e5\u8bad\u7ec3": 223, "\u4ec5\u6027\u80fd\u91cf\u5316": 223, "\u91cf\u5316\u8f93\u51fa": 223, "\u90e8\u7f72": [223, 259], "mobile_optim": 225, "mobilenet": [226, 227, 230], "v2": [226, 227, 230], "\u5206\u6790": 228, "\u5de5\u4f5c\u8d1f\u8f7d": 228, "\u4e2d\u53ef\u89c6\u5316": 228, "\u6a21\u578b\u5c42\u6b21\u7ed3\u6784": 228, "\u542f\u52a8": 228, "\u914d\u7f6e\u5206\u6790": 228, "\u8bfb\u53d6\u5206\u6790\u7ed3\u679c": 228, "\u4e00\u4e2a\u7b80\u77ed\u7684\u793a\u4f8b\u4ee3\u7801": 228, "\u5c55\u793a\u5982\u4f55\u4f7f\u7528": 228, "\u8fdb\u884c\u6a21\u578b\u53ef\u89e3\u91ca\u6027": 231, "\u8ba1\u7b97\u5f52\u56e0": 231, "\u53ef\u89c6\u5316\u7ed3\u679c": 231, "\u6700\u540e\u6ce8\u610f": 231, "\u81ea\u52a8\u6df7\u5408\u7cbe\u5ea6": 232, "\u4e00\u4e2a\u7b80\u5355\u7684\u7f51\u7edc": 232, "\u9ed8\u8ba4\u7cbe\u5ea6": 232, "\u6dfb\u52a0": 232, "gradscal": 232, "\u5168\u90e8\u96c6\u6210": 232, "\u68c0\u67e5": 232, "\u4fee\u6539\u68af\u5ea6": 232, "\u4f8b\u5982": 232, "\u68af\u5ea6\u88c1\u526a": 232, "\u6062\u590d": 232, "\u8bc4\u4f30": 232, "\u6545\u969c\u6392\u9664": 232, "amp": [232, 249], "\u7684\u52a0\u901f\u6548\u679c\u5fae\u4e4e\u5176\u5fae": 232, "\u635f\u5931\u662f": 232, "inf": 232, "\u7c7b\u578b\u4e0d\u5339\u914d\u9519\u8bef": 232, "\u53ef\u80fd\u8868\u73b0\u4e3a": 232, "cudnn_status_bad_param": 232, "\u5177\u4f53\u6b65\u9aa4": [233, 235, 240, 242, 243, 244, 245, 250, 251, 252], "\u5b9a\u4e49\u8981\u57fa\u51c6\u6d4b\u8bd5\u7684\u51fd\u6570": 233, "timeit": 233, "timer": [233, 248], "\u8fdb\u884c\u57fa\u51c6\u6d4b\u8bd5": 233, "autorang": 233, "\u6bd4\u8f83\u57fa\u51c6\u6d4b\u8bd5\u7ed3\u679c": 233, "\u52a0\u8f7d\u57fa\u51c6\u6d4b\u8bd5\u7ed3\u679c": 233, "fuzz": 233, "\u751f\u6210\u8f93\u5165": 233, "callgrind": [233, 248], "\u6536\u96c6\u6307\u4ee4\u8ba1\u6570": 233, "\u5b66\u4e60\u66f4\u591a": [233, 235, 238, 250, 251], "\u521b\u5efa\u795e\u7ecf\u7f51\u7edc": 235, "\u5bfc\u5165\u52a0\u8f7d\u6570\u636e\u6240\u9700\u7684\u5fc5\u8981\u5e93": [235, 238, 242, 243, 244, 245, 250, 252], "\u5b9a\u4e49\u548c\u521d\u59cb\u5316\u795e\u7ecf\u7f51\u7edc": [235, 243, 244, 245], "\u6307\u5b9a\u6570\u636e\u5982\u4f55\u901a\u8fc7\u4f60\u7684\u6a21\u578b": 235, "\u53ef\u9009": [235, 238], "\u901a\u8fc7\u4f60\u7684\u6a21\u578b\u4f20\u9012\u6570\u636e\u8fdb\u884c\u6d4b\u8bd5": 235, "\u52a8\u6001\u91cf\u5316": 236, "\u4ec0\u4e48\u662f\u52a8\u6001\u91cf\u5316": 236, "\u6b65\u9aa4": [236, 254], "\u6267\u884c\u91cf\u5316": 236, "\u67e5\u770b\u6a21\u578b\u5927\u5c0f": 236, "\u67e5\u770b\u5ef6\u8fdf": 236, "\u67e5\u770b\u7cbe\u5ea6": 236, "\u4e86\u89e3\u66f4\u591a": [236, 240, 247], "\u52a0\u8f7d\u6570\u636e": 238, "\u4f7f\u7528\u6b65\u9aa4": 238, "\u8bbf\u95ee\u6570\u636e\u96c6\u4e2d\u7684\u6570\u636e": 238, "\u904d\u5386\u6570\u636e": 238, "\u53ef\u89c6\u5316\u6570\u636e": 238, "\u4ece\u68c0\u67e5\u70b9\u52a0\u8f7d": 239, "\u7684\u6280\u5de7": 239, "mmap": 239, "true": [239, 249], "meta": [239, 265], "load_state_dict": [239, 246], "assign": 239, "\u5bfc\u5165\u4f9d\u8d56\u7684\u5e93": 240, "\u521b\u5efa\u4e00\u4e2a\u7b80\u5355\u7684": 240, "resnet": 240, "\u4f7f\u7528profiler\u5206\u6790\u6267\u884c\u65f6\u95f4": 240, "\u5206\u6790\u5185\u5b58\u6d88\u8017": 240, "\u4f7f\u7528\u8ddf\u8e2a\u529f\u80fd": 240, "\u68c0\u67e5\u5806\u6808\u8ddf\u8e2a": 240, "\u4f7f\u7528\u5206\u6790\u5668\u5206\u6790\u957f\u65f6\u95f4\u8fd0\u884c\u7684\u4f5c\u4e1a": 240, "\u5728pytorch\u4e2d\u63a8\u7406\u5f62\u72b6": 241, "\u4e2d\u8de8\u8bbe\u5907\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": 242, "\u5b9a\u4e49\u5e76\u521d\u59cb\u5316\u795e\u7ecf\u7f51\u7edc": [242, 250, 251], "\u5728gpu\u4e0a\u4fdd\u5b58": 242, "cpu\u4e0a\u52a0\u8f7d": 242, "gpu\u4e0a\u52a0\u8f7d": 242, "\u5728cpu\u4e0a\u4fdd\u5b58": 242, "\u5728gpu\u4e0a\u52a0\u8f7d": 242, "\u4fdd\u5b58\u548c\u52a0\u8f7d\u901a\u7528\u68c0\u67e5\u70b9": 243, "\u521d\u59cb\u5316\u4f18\u5316\u5668": [243, 244, 245, 251], "\u4fdd\u5b58\u901a\u7528\u68c0\u67e5\u70b9": 243, "\u52a0\u8f7d\u901a\u7528\u68c0\u67e5\u70b9": 243, "\u4fdd\u5b58\u548c\u52a0\u8f7d\u6574\u4e2a\u6a21\u578b": 244, "\u7ee7\u7eed\u5b66\u4e60": [244, 252], "\u5728\u4e00\u4e2a\u6587\u4ef6\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u6a21\u578b": 245, "\u4fdd\u5b58\u591a\u4e2a\u6a21\u578b": 245, "\u52a0\u8f7d\u591a\u4e2a\u6a21\u578b": 245, "\u4e2d\u4e3a": 246, "\u548c\u5f20\u91cf\u5b50\u7c7b\u63d0\u4f9b\u6269\u5c55\u70b9": 246, "swap_tensor": 246, "\u5e94\u7528\u4e8e": 246, "\u548c\u76f8\u5173\u65b9\u6cd5": 246, "\u5982\u4f55\u5728pytorch\u4e2d\u4f7f\u7528tensorboard": 247, "\u5728pytorch\u4e2d\u4f7f\u7528tensorboard": 247, "\u8bb0\u5f55\u6807\u91cf": 247, "\u8fd0\u884ctensorboard": 247, "timer\u5feb\u901f\u5165\u95e8": 248, "\u5b9a\u4e49timer": 248, "wall\u65f6\u95f4": 248, "blocked_autorang": 248, "\u4ee3\u7801\u7247\u6bb5": 248, "\u6307\u4ee4\u8ba1\u6570": 248, "collect_callgrind": 248, "\u6df1\u5165\u63a2\u8ba8": 248, "\u8fdb\u884ca": 248, "b\u6d4b\u8bd5": 248, "\u811a\u6ce8": 248, "\u6027\u80fd\u8c03\u4f18\u6307\u5357": 249, "\u4e00\u822c\u4f18\u5316": 249, "\u542f\u7528\u5f02\u6b65\u6570\u636e\u52a0\u8f7d\u548c\u6570\u636e\u589e\u5f3a": 249, "\u5bf9\u4e8e\u9a8c\u8bc1\u6216\u63a8\u7406": 249, "\u7981\u7528\u68af\u5ea6\u8ba1\u7b97": 249, "\u5bf9\u4e8e\u76f4\u63a5\u540e\u8ddf\u6279\u91cf\u5f52\u4e00\u5316\u7684\u5377\u79ef": 249, "\u7981\u7528\u504f\u7f6e": 249, "none": 249, "\u800c\u4e0d\u662f": 249, "zero_grad": 249, "\u6216": 249, "\u878d\u5408\u70b9\u8fd0\u7b97": 249, "\u4e3a\u8ba1\u7b97\u673a\u89c6\u89c9\u6a21\u578b\u542f\u7528": 249, "channels_last": 249, "\u5185\u5b58\u683c\u5f0f": 249, "\u68c0\u67e5\u70b9\u4e2d\u95f4\u7f13\u51b2\u533a": 249, "\u7981\u7528\u8c03\u8bd5api": 249, "cpu\u7279\u5b9a\u4f18\u5316": 249, "\u5229\u7528\u975e\u5747\u5300\u5185\u5b58\u8bbf\u95ee": 249, "numa": 249, "\u63a7\u5236": 249, "\u5229\u7528openmp": 249, "openmp\u8fd0\u884c\u65f6\u5e93": 249, "libiomp": 249, "\u5207\u6362\u5185\u5b58\u5206\u914d\u5668": 249, "\u4f7f\u7528onednn": 249, "graph\u4e0etorchscript\u8fdb\u884c\u63a8\u7406": 249, "\u4f7f\u7528pytorch": 249, "\u529f\u80fd\u5728cpu\u4e0a\u8bad\u7ec3\u6a21\u578b": 249, "\u7279\u5b9a\u4f18\u5316": 249, "\u542f\u7528": 249, "cudnn": 249, "\u81ea\u52a8\u8c03\u4f18\u5668": 249, "\u907f\u514d\u4e0d\u5fc5\u8981\u7684": 249, "\u540c\u6b65": 249, "\u76f4\u63a5\u5728\u76ee\u6807\u8bbe\u5907\u4e0a\u521b\u5efa\u5f20\u91cf": 249, "\u4f7f\u7528\u6df7\u5408\u7cbe\u5ea6\u548c": 249, "\u5728\u8f93\u5165\u957f\u5ea6\u53ef\u53d8\u7684\u60c5\u51b5\u4e0b\u9884\u5206\u914d\u5185\u5b58": 249, "\u5206\u5e03\u5f0f\u4f18\u5316": 249, "\u4f7f\u7528\u9ad8\u6548\u7684\u6570\u636e\u5e76\u884c\u540e\u7aef": 249, "\u5982\u679c\u5728\u4f7f\u7528": 249, "\u548c\u68af\u5ea6\u7d2f\u79ef\u8fdb\u884c\u8bad\u7ec3\u65f6": 249, "\u8df3\u8fc7\u4e0d\u5fc5\u8981\u7684": 249, "reduc": 249, "\u5982\u679c\u4f7f\u7528": 249, "find_unused_paramet": 249, "\u5219\u5728\u6784\u9020\u51fd\u6570\u548c\u6267\u884c\u671f\u95f4\u5339\u914d\u5c42\u7684\u987a\u5e8f": 249, "\u5728\u5206\u5e03\u5f0f\u8bbe\u7f6e\u4e2d\u5e73\u8861\u5de5\u4f5c\u8d1f\u8f7d": 249, "\u4f7f\u7528\u4e0d\u540c\u6a21\u578b\u7684\u53c2\u6570\u5bf9\u6a21\u578b\u8fdb\u884c\u70ed\u542f\u52a8": 250, "b": 250, "\u52a0\u8f7d\u5230\u6a21\u578b": 250, "\u4e2d": 251, "\u662f\u4ec0\u4e48": 251, "\u4e2d\u7684": 251, "\u8bbf\u95ee\u6a21\u578b\u548c\u4f18\u5316\u5668\u7684": 251, "\u52a0\u8f7d\u548c\u6807\u51c6\u5316\u6570\u636e\u96c6": 252, "\u5b9a\u4e49\u635f\u5931\u51fd\u6570\u548c\u4f18\u5316\u5668": 252, "\u5728\u8bad\u7ec3\u7f51\u7edc\u65f6\u6e05\u96f6\u68af\u5ea6": 252, "\u901a\u8fc7\u533a\u57df\u7f16\u8bd1\u51cf\u5c11": 254, "\u51b7\u542f\u52a8\u7f16\u8bd1\u65f6\u95f4": 254, "\u5148\u51b3\u6761\u4ef6": [254, 257], "convers": 255, "runtimeerror": 255, "lookup": 255, "type": 255, "cannot": 255, "rang": 255, "must": 255, "found": 255, "\u6269\u5c55\u540e\u7aef": 256, "\u4f7f\u7528\u793a\u4f8b": 256, "fp32": 256, "bf16": 256, "\u548c\u7528\u6237\u81ea\u5b9a\u4e49\u7684": 257, "triton": 257, "\u5185\u6838": 257, "\u9ad8\u7ea7\u7528\u6cd5": 257, "\u53ef\u7ec4\u5408\u6027\u548c\u9650\u5236": 257, "torch_log": 258, "\u73af\u5883\u8981\u6c42": 259, "\u5982\u4f55\u5bfc\u51fa\u6a21\u578b": 259, "\u6784\u5efa\u548c\u8fd0\u884c\u60a8\u7684": 259, "\u63a8\u7406\u5f15\u64ce": 259, "\u5c06": 260, "stabl": 260, "diffus": 260, "\u6a21\u578b\u90e8\u7f72\u4e3a": 260, "vertex": 260, "ai": 260, "\u7aef\u70b9": 260, "\u521b\u5efa\u81ea\u5b9a\u4e49": 260, "\u5904\u7406\u7a0b\u5e8f": 260, "\u5c06\u6a21\u578b\u5de5\u4ef6\u4e0a\u4f20\u5230": 260, "gc": 260, "\u4f7f\u7528\u6a21\u578b\u5de5\u4ef6\u548c\u9884\u6784\u5efa\u7684": 260, "\u5bb9\u5668\u955c\u50cf\u521b\u5efa": 260, "\u6a21\u578b\u90e8\u7f72\u5230\u7aef\u70b9": 260, "\u4f7f\u7528zeroredundancyoptimizer\u5206\u7247\u4f18\u5316\u5668\u72b6\u6001": 261, "changelog": 262, "wide": 263, "html": 263, "theme": [263, 269], "toc": 263, "test_py_modul": 264, "paragraph": [265, 268], "markup": 265, "inlin": 265, "liter": 265, "quot": 265, "doctest": 265, "emphas": 265, "sidebar": 265, "ch": 265, "ien": 265, "creativ": 265, "footnot": 265, "citat": 265, "glossari": 265, "direct": 265, "center": 265, "figur": 265, "admonit": 265, "And": 265, "rubric": 265, "titl": 265, "replac": 265, "compound": 265, "link": 265, "enumer": 266, "bullet": 266, "second": 266, "But": 266, "deeper": 266, "rabbit": 266, "hole": 266, "hlist": 266, "grid": 266, "giant": 266, "can": 266, "have": 266, "caption": [266, 269], "like": 266, "sticki": 267, "nav": 267, "menu": [267, 269], "11": 267, "12": 267, "13": 267, "14": 267, "15": 267, "16": 267, "17": 267, "18": 267, "19": 267, "20": 267, "submenu": 267, "subsubmenu": 267, "element": 268, "document": [268, 269], "subsect": 268, "subsubsect": 268, "demo": 269, "incred": 269, "git": 270}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx": 56}}) \ No newline at end of file diff --git a/index.rst b/index.rst index b1c1f39..2129ac0 100644 --- a/index.rst +++ b/index.rst @@ -5,10 +5,7 @@ * `Compiled Autograd: 为 torch.compile 捕获更大的后向图 `__ * `通过区域编译减少 torch.compile 冷启动编译时间 `__ -* `使用 Tensor Parallel (TP) 进行大规模 Transformer 模型训练 `__ -* `利用半结构化(2:4)稀疏性加速 BERT `__ -* `torch.export 教程 `__ -* `nn.Module 中 load_state_dict 和张量子类的扩展点 `__ +* `如何在 Windows CPU 上使用 TorchInductor `__ .. raw:: html diff --git a/prototype_source/inductor_windows_cpu.rst b/prototype_source/inductor_windows_cpu.rst new file mode 100644 index 0000000..4fc455a --- /dev/null +++ b/prototype_source/inductor_windows_cpu.rst @@ -0,0 +1,130 @@ +如何在 Windows CPU 上使用 TorchInductor +======================================= + +**Author**: `Zhaoqiong Zheng `_, `Xu, Han `_ + + + +TorchInductor 是一个编译器后端,它将 TorchDynamo 生成的 FX 图转换为高度优化的 C++/Triton 内核。 +本教程将指导在 Windows CPU 上使用 TorchInductor。 + +.. grid:: 2 + + .. grid-item-card:: :octicon:`mortar-board;1em;` What you will learn + :class-card: card-prerequisites + + * 如何在 Windows CPU 上编译和执行使用 PyTorch 的 Python 函数 + * TorchInductor 使用 C++/Triton 内核进行优化的基础知识 + + .. grid-item-card:: :octicon:`list-unordered;1em;` Prerequisites + :class-card: card-prerequisites + + * PyTorch v2.5 或更高版本 + * Microsoft Visual C++ (MSVC) + * Windows 版 Miniforge + +安装所需软件 +----------------------------- + +首先,让我们安装所需的软件。TorchInductor 优化需要 C++ 编译器。 +在本示例中,我们将使用 Microsoft Visual C++ (MSVC)。 + +1. 下载并安装 `MSVC `_。 + +2. 在安装过程中,在 **工作负载** 表中的 **桌面和移动** 部分选择 **使用 C++ 进行桌面开发**。然后安装软件。 + +.. note:: + + 我们推荐使用 C++ 编译器 `Clang `_ 和 `Intel 编译器 `_。 + 请查看 `更高性能的替代编译器 <#alternative-compiler-for-better-performance>`_。 + +3. 下载并安装 `Miniforge3-Windows-x86_64.exe `__。 + + +设置环境 +---------------------- + +#. 通过 ``cmd.exe`` 打开命令行环境。 +#. 使用以下命令激活 ``MSVC``: + + .. code-block:: sh + + "C:/Program Files/Microsoft Visual Studio/2022/Community/VC/Auxiliary/Build/vcvars64.bat" +#. 使用以下命令激活 ``conda``: + + .. code-block:: sh + + "C:/ProgramData/miniforge3/Scripts/activate.bat" +#. 创建并激活conda环境: + + .. code-block:: sh + + conda create -n inductor_cpu_windows python=3.10 -y + conda activate inductor_cpu_windows + +#. 安装 `PyTorch 2.5 `_ 或更新版本。 + +在 Windows CPU 上使用 TorchInductor +---------------------------------- + +这里有一个简单的例子来演示如何使用 TorchInductor: + +.. code-block:: python + + + import torch + def foo(x, y): + a = torch.sin(x) + b = torch.cos(y) + return a + b + opt_foo1 = torch.compile(foo) + print(opt_foo1(torch.randn(10, 10), torch.randn(10, 10))) + +以下是此代码可能返回的示例输出: + +.. code-block:: sh + + tensor([[-3.9074e-02, 1.3994e+00, 1.3894e+00, 3.2630e-01, 8.3060e-01, + 1.1833e+00, 1.4016e+00, 7.1905e-01, 9.0637e-01, -1.3648e+00], + [ 1.3728e+00, 7.2863e-01, 8.6888e-01, -6.5442e-01, 5.6790e-01, + 5.2025e-01, -1.2647e+00, 1.2684e+00, -1.2483e+00, -7.2845e-01], + [-6.7747e-01, 1.2028e+00, 1.1431e+00, 2.7196e-02, 5.5304e-01, + 6.1945e-01, 4.6654e-01, -3.7376e-01, 9.3644e-01, 1.3600e+00], + [-1.0157e-01, 7.7200e-02, 1.0146e+00, 8.8175e-02, -1.4057e+00, + 8.8119e-01, 6.2853e-01, 3.2773e-01, 8.5082e-01, 8.4615e-01], + [ 1.4140e+00, 1.2130e+00, -2.0762e-01, 3.3914e-01, 4.1122e-01, + 8.6895e-01, 5.8852e-01, 9.3310e-01, 1.4101e+00, 9.8318e-01], + [ 1.2355e+00, 7.9290e-02, 1.3707e+00, 1.3754e+00, 1.3768e+00, + 9.8970e-01, 1.1171e+00, -5.9944e-01, 1.2553e+00, 1.3394e+00], + [-1.3428e+00, 1.8400e-01, 1.1756e+00, -3.0654e-01, 9.7973e-01, + 1.4019e+00, 1.1886e+00, -1.9194e-01, 1.3632e+00, 1.1811e+00], + [-7.1615e-01, 4.6622e-01, 1.2089e+00, 9.2011e-01, 1.0659e+00, + 9.0892e-01, 1.1932e+00, 1.3888e+00, 1.3898e+00, 1.3218e+00], + [ 1.4139e+00, -1.4000e-01, 9.1192e-01, 3.0175e-01, -9.6432e-01, + -1.0498e+00, 1.4115e+00, -9.3212e-01, -9.0964e-01, 1.0127e+00], + [ 5.7244e-04, 1.2799e+00, 1.3595e+00, 1.0907e+00, 3.7191e-01, + 1.4062e+00, 1.3672e+00, 6.8502e-02, 8.5216e-01, 8.6046e-01]]) + +使用替代编译器以获得更好的性能 +------------------------------------------- + +为了提高 Windows Inductor 的性能,您可以使用 Intel 编译器或 LLVM 编译器。然而,它们依赖于 Microsoft Visual C++ (MSVC) 的运行时库。因此,您的第一步应该是安装 MSVC。 + +Intel 编译器 +^^^^^^^^^^^^^ + +#. 下载并安装 `Intel 编译器 `_ 的 Windows 版本。 +#. 使用 CXX 环境变量 ``set CXX=icx-cl`` 设置 Windows Inductor 编译器。 + +Intel 还提供了一个全面的分步指南,包含性能数据。请查看 `Intel® oneAPI DPC++/C++ Compiler Boosts PyTorch* Inductor Performance on Windows* for CPU Devices `_。 + +LLVM 编译器 +^^^^^^^^^^^^^ + +#. 下载并安装 `LLVM 编译器 `_ 并选择 win64 版本。 +#. 使用 CXX 环境变量 ``set CXX=clang-cl`` 设置 Windows Inductor 编译器。 + +结论 +---------- + +在本教程中,我们学习了如何在 Windows CPU 上使用 PyTorch 的 Inductor。此外,我们还讨论了使用 Intel 编译器和 LLVM 编译器进一步提高性能的方法。 \ No newline at end of file