Skip to content

Python  #134

@Kvinalpha

Description

@Kvinalpha

Import necessary libraries

import pandas as pd
import matplotlib.pyplot as plt

Step 1: Load the dataset

Replace 'your_dataset.csv' with your actual dataset file

df = pd.read_csv('your_dataset.csv')

Step 2: Data Exploration

Display the first few rows of the dataset

print("First 5 rows of the dataset:")
print(df.head())

Display basic statistics of the dataset

print("\nBasic statistics of the dataset:")
print(df.describe())

Step 3: Basic Data Analysis

Example analysis: Count the number of unique values in a specific column

unique_values = df['column_name'].nunique()
print(f"\nNumber of unique values in 'column_name': {unique_values}")

Step 4: Visualizations

Example: Plot a histogram of a numerical column

plt.figure(figsize=(10, 6))
plt.hist(df['numerical_column'], bins=30, edgecolor='k', alpha=0.7)
plt.title('Histogram of Numerical Column')
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.show()

Example: Plot a bar chart of categorical column counts

category_counts = df['categorical_column'].value_counts()
plt.figure(figsize=(10, 6))
category_counts.plot(kind='bar', color='skyblue')
plt.title('Bar Chart of Categorical Column')
plt.xlabel('Category')
plt.ylabel('Count')
plt.show()

Step 5: Findings and Observations

Print findings and observations based on your analysis

print("\nFindings and Observations:")
print("1. Example finding: Describe your observation here.")
print("2. Example finding: Describe another observation here.")

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions