Skip to content

D435i depth image: How to properly resize and normalize 640x480 to 64x64 for simulation alignment? #14

@TaoJiang-code

Description

@TaoJiang-code

Hi,

I have successfully reproduced sim-to-sim results, but I am having trouble with sim-to-real.

I am using an Intel RealSense D435i camera to capture depth images at 640x480 resolution. In my simulation (MuJoCo), the depth camera outputs 64x64 images. I want to process the real depth images to match the simulation input.

My current processing pipeline is:

# Get 640x480 depth image
depth_image = np.asanyarray(depth_frame.get_data())

# Resize to 64x64 to match MuJoCo simulation
depth_image = cv2.resize(depth_image, (64, 64), interpolation=cv2.INTER_AREA)

# Normalize to 0~1 and center to -0.5~0.5
depth_far_clip = 2.0
depth_near_clip = 0.0
depth_image = np.clip(depth_image, depth_near_clip, depth_far_clip)
depth_image = (depth_image - depth_near_clip) / (depth_far_clip - depth_near_clip) - 0.5

Convert to torch tensor and crop/interpolate to 64x64

depth_image = torch.tensor(depth_image, dtype=torch.float32)
clip_left = 10
clip_top = 20
clip_right = 10
clip_bottom = 2
cropped = depth_image[clip_top:-clip_bottom, clip_left:64-clip_right]
cropped = depth_image
cropped = cropped.unsqueeze(0).unsqueeze(0)  # [1,1,H,W]
resized = F.interpolate(cropped, size=(64, 64), mode='bilinear', align_corners=False).squeeze(0).squeeze(0)

# Display
cv2.namedWindow('depth image', cv2.WINDOW_NORMAL)
cv2.imshow('depth image', (resized.detach().numpy() + 0.5) * 255)
cv2.waitKey(1)

Is there anything wrong with this approach?
Is there a better way to align the real depth image with the simulation input?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions