diff --git "a/\345\221\250\345\277\227\345\215\216\343\200\212Machine Learning\343\200\213\345\255\246\344\271\240\347\254\224\350\256\260(4)--\347\272\277\346\200\247\346\250\241\345\236\213.md" "b/\345\221\250\345\277\227\345\215\216\343\200\212Machine Learning\343\200\213\345\255\246\344\271\240\347\254\224\350\256\260(4)--\347\272\277\346\200\247\346\250\241\345\236\213.md" index 81eabeb..03db0c8 100644 --- "a/\345\221\250\345\277\227\345\215\216\343\200\212Machine Learning\343\200\213\345\255\246\344\271\240\347\254\224\350\256\260(4)--\347\272\277\346\200\247\346\250\241\345\236\213.md" +++ "b/\345\221\250\345\277\227\345\215\216\343\200\212Machine Learning\343\200\213\345\255\246\344\271\240\347\254\224\350\256\260(4)--\347\272\277\346\200\247\346\250\241\345\236\213.md" @@ -1,13 +1,13 @@ 笔记的前一部分主要是对机器学习预备知识的概括,包括机器学习的定义/术语、学习器性能的评估/度量以及比较,本篇之后将主要对具体的学习算法进行理解总结,本篇则主要是第3章的内容--线性模型。 -#**3、线性模型** +# **3、线性模型** 谈及线性模型,其实我们很早就已经与它打过交道,还记得高中数学必修3课本中那个顽皮的“最小二乘法”吗?这就是线性模型的经典算法之一:根据给定的(x,y)点对,求出一条与这些点拟合效果最好的直线y=ax+b,之前我们利用下面的公式便可以计算出拟合直线的系数a,b(3.1中给出了具体的计算过程),从而对于一个新的x,可以预测它所对应的y值。前面我们提到:在机器学习的术语中,当预测值为连续值时,称为“回归问题”,离散值时为“分类问题”。本篇先从线性回归任务开始,接着讨论分类和多分类问题。 ![1.png](https://i.loli.net/2018/10/17/5bc722b068e48.png) -##**3.1 线性回归** +## **3.1 线性回归** 线性回归问题就是试图学到一个线性模型尽可能准确地预测新样本的输出值,例如:通过历年的人口数据预测2017年人口数量。在这类问题中,往往我们会先得到一系列的有标记数据,例如:2000-->13亿...2016-->15亿,这时输入的属性只有一个,即年份;也有输入多属性的情形,假设我们预测一个人的收入,这时输入的属性值就不止一个了,例如:(学历,年龄,性别,颜值,身高,体重)-->15k。 @@ -45,7 +45,7 @@ ![8.png](https://i.loli.net/2018/10/17/5bc722b0a2841.png) -##**3.2 线性几率回归** +## **3.2 线性几率回归** 回归就是通过输入的属性值得到一个预测值,利用上述广义线性模型的特征,是否可以通过一个联系函数,将预测值转化为离散值从而进行分类呢?线性几率回归正是研究这样的问题。对数几率引入了一个对数几率函数(logistic function),将预测值投影到0-1之间,从而将线性回归问题转化为二分类问题。 @@ -61,7 +61,7 @@ -##**3.3 线性判别分析** +## **3.3 线性判别分析** 线性判别分析(Linear Discriminant Analysis,简称LDA),其基本思想是:将训练样本投影到一条直线上,使得同类的样例尽可能近,不同类的样例尽可能远。如图所示: @@ -86,8 +86,8 @@ ![18.png](https://i.loli.net/2018/10/17/5bc723b83d5e0.png) 若将w看做一个投影矩阵,类似PCA的思想,则LDA可将样本投影到N-1维空间(N为类簇数),投影的过程使用了类别信息(标记信息),因此LDA也常被视为一种经典的监督降维技术。 -​ -##**3.4 多分类学习** + +## **3.4 多分类学习** 现实中我们经常遇到不只两个类别的分类问题,即多分类问题,在这种情形下,我们常常运用“拆分”的策略,通过多个二分类学习器来解决多分类问题,即将多分类问题拆解为多个二分类问题,训练出多个二分类学习器,最后将多个分类结果进行集成得出结论。最为经典的拆分策略有三种:“一对一”(OvO)、“一对其余”(OvR)和“多对多”(MvM),核心思想与示意图如下所示。 @@ -101,7 +101,7 @@ ![20.png](https://i.loli.net/2018/10/17/5bc723b8300d5.png) -##**3.5 类别不平衡问题** +## **3.5 类别不平衡问题** 类别不平衡(class-imbanlance)就是指分类问题中不同类别的训练样本相差悬殊的情况,例如正例有900个,而反例只有100个,这个时候我们就需要进行相应的处理来平衡这个问题。常见的做法有三种: @@ -110,9 +110,7 @@ 3. 直接基于原数据集进行学习,对预测值进行“再缩放”处理。其中再缩放也是代价敏感学习的基础。![21.png](https://i.loli.net/2018/10/17/5bc726fe87ae2.png) - -​ -​ +