From 3fdad71f0e8c177c2bbfe963dbaa9a523b28affa Mon Sep 17 00:00:00 2001 From: hemanishah00 <67570889+hemanishah00@users.noreply.github.com> Date: Tue, 19 Apr 2022 10:52:21 +0530 Subject: [PATCH] uploaded file for approach B --- approchBModel.ipynb | 3144 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 3144 insertions(+) create mode 100644 approchBModel.ipynb diff --git a/approchBModel.ipynb b/approchBModel.ipynb new file mode 100644 index 0000000..de761b5 --- /dev/null +++ b/approchBModel.ipynb @@ -0,0 +1,3144 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "approchBModel", + "provenance": [], + "collapsed_sections": [] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "Approach B:\n", + "![image.png]()" + ], + "metadata": { + "id": "iQu8IcsyLK4A" + } + }, + { + "cell_type": "markdown", + "source": [ + "Through this model we ensure that the highest importance is given to the city in which the house is located in. From our analysis we know that the highest importance is given to features which represent city like mumbai, kolkata, etc. This model also considers the fact that a house cannot be in 2 cities at once. for example, any record cannot contain Bangalore=1 and Chennai=1 as well (unless it is a mistake in which case the decision tree will traverse to sub-tree under the 'Other' branch).
\n", + "So in this approach we divided the training data according to city. We will then train 6 decision trees for all the cities present in the training data. We also train a 7th decision tree on the whole training dataset so that if the test dataset contains a record of a house in a new city(city which is not in training) then the model can still predict for that record.
\n", + "We then aggregated all our results into a list and then found our mean squared error and R2 score for train data as well as test data.
" + ], + "metadata": { + "id": "bUY98fKhQHTL" + } + }, + { + "cell_type": "markdown", + "source": [ + "Link to the drive folder: https://drive.google.com/drive/folders/1t6IG7zAGIDNgaQNLrAoFvepRxSAwpxgW?usp=sharing
\n", + "Share Notebook: https://colab.research.google.com/drive/1My3X3WBL8g13ekUkVt6MAVcUhF_ZyS1U?usp=sharing" + ], + "metadata": { + "id": "_EiRxqFOEipa" + } + }, + { + "cell_type": "code", + "source": [ + "import warnings\n", + "warnings.filterwarnings(\"ignore\", category=UserWarning) " + ], + "metadata": { + "id": "6ktS8GzlHa8h" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "!pip install eli5" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JJMd3ApwhuDv", + "outputId": "2d9d1914-b2f8-4b10-883b-73e74e603cf7" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: eli5 in /usr/local/lib/python3.7/dist-packages (0.11.0)\n", + "Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from eli5) (1.15.0)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.7/dist-packages (from eli5) (2.11.3)\n", + "Requirement already satisfied: graphviz in /usr/local/lib/python3.7/dist-packages (from eli5) (0.10.1)\n", + "Requirement already satisfied: attrs>16.0.0 in /usr/local/lib/python3.7/dist-packages (from eli5) (21.4.0)\n", + "Requirement already satisfied: scikit-learn>=0.20 in /usr/local/lib/python3.7/dist-packages (from eli5) (1.0.2)\n", + "Requirement already satisfied: tabulate>=0.7.7 in /usr/local/lib/python3.7/dist-packages (from eli5) (0.8.9)\n", + "Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from eli5) (1.4.1)\n", + "Requirement already satisfied: numpy>=1.9.0 in /usr/local/lib/python3.7/dist-packages (from eli5) (1.21.5)\n", + "Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn>=0.20->eli5) (1.1.0)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from scikit-learn>=0.20->eli5) (3.1.0)\n", + "Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.7/dist-packages (from jinja2->eli5) (2.0.1)\n" + ] + } + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "O8xMVZzL9Zu1" + }, + "outputs": [], + "source": [ + "#importing files\n", + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.metrics import mean_squared_error,r2_score \n", + "from sklearn.tree import DecisionTreeRegressor\n", + "from sklearn.model_selection import GridSearchCV\n", + "import eli5\n", + "from sklearn import tree\n", + "from eli5.sklearn import PermutationImportance" + ] + }, + { + "cell_type": "code", + "source": [ + "#importing train and test datasets\n", + "df_train = pd.read_csv('/content/drive/MyDrive/DS_2_project_models/train.csv')\n", + "df_test = pd.read_csv('/content/drive/MyDrive/DS_2_project_models/test.csv')\n", + "rs = 12" + ], + "metadata": { + "id": "zyuoRxP0-tSu" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "####Our Model" + ], + "metadata": { + "id": "S7T5jfpUOVc8" + } + }, + { + "cell_type": "code", + "source": [ + "#dropping unnecessary column\n", + "df_train.drop(\"Unnamed: 0\",axis=1,inplace=True)\n", + "df_test.drop(\"Unnamed: 0\",axis=1,inplace=True)\n", + "\n", + "#dividing the training data into cities \n", + "df_Banglore_train = df_train[df_train['Bangalore']==1]\n", + "df_Chennai_train = df_train[df_train['Chennai']==1]\n", + "df_Delhi_train = df_train[df_train['Delhi']==1]\n", + "df_Hyderabad_train = df_train[df_train['Hyderabad']==1]\n", + "df_Kolkata_train = df_train[df_train['Kolkata']==1]\n", + "df_Mumbai_train = df_train[df_train['Mumbai']==1]\n", + "\n", + "#dividing the whole dataset between X_train and y_train\n", + "X_train = df_train.drop('Price',axis=1)\n", + "y_train = df_train['Price']" + ], + "metadata": { + "id": "oO4uSQkYOoJM" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "#Defining a function fit_city_dt which takes training data and returns a decision tree, standardscaler object and scaled X_train\n", + "def fit_city_dt(df_train):\n", + " X_train = df_train.drop([\"Price\"],axis=1)\n", + " y_train = df_train['Price']\n", + " scaler = StandardScaler()\n", + " X_train_std = scaler.fit_transform(X_train)\n", + " dt = DecisionTreeRegressor(random_state=11)\n", + " params_dt = {\n", + " 'max_depth' : np.arange(1,100)\n", + " }\n", + " grid_dt = GridSearchCV(estimator=dt,scoring='neg_mean_squared_error',param_grid=params_dt,cv=5)\n", + " grid_dt.fit(X_train_std,y_train)\n", + "\n", + " #Finding the permutation importance for each decision tree after dropping cities from the dataset\n", + " perm = PermutationImportance(grid_dt, n_iter=10)\n", + " perm.fit(X_train,y_train)\n", + " \n", + " return (grid_dt.best_estimator_,scaler,X_train_std,perm)" + ], + "metadata": { + "id": "QfA_KR2NPZTW" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "#creating dictionaries of decision trees, scaler object and scaled X_train for each city\n", + "dt = {}\n", + "sc = {}\n", + "scaled_train = {}\n", + "perm = {}\n", + "dt['Bangalore'],sc['Bangalore'],scaled_train['Bangalore'],perm['Bangalore'] = fit_city_dt(df_Banglore_train)\n", + "dt['Chennai'],sc['Chennai'],scaled_train['Chennai'],perm['Chennai'] = fit_city_dt(df_Chennai_train)\n", + "dt['Delhi'],sc['Delhi'],scaled_train['Delhi'],perm['Delhi'] = fit_city_dt(df_Delhi_train)\n", + "dt['Hyderabad'],sc['Hyderabad'],scaled_train['Hyderabad'],perm['Hyderabad'] = fit_city_dt(df_Hyderabad_train)\n", + "dt['Kolkata'],sc['Kolkata'],scaled_train['Kolkata'],perm['Kolkata'] = fit_city_dt(df_Kolkata_train)\n", + "dt['Mumbai'],sc['Mumbai'],scaled_train['Mumbai'],perm['Mumbai'] = fit_city_dt(df_Mumbai_train)\n", + "dt['Other'],sc['Other'],scaled_train['Other'],perm['Other'] = fit_city_dt(df_train)" + ], + "metadata": { + "id": "YIJEXSTbPcur" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# categorizing test data into various cities We are storing the indexes in a dictionary with key as city name\n", + "X_test = df_test.drop('Price',axis=1)\n", + "y_test = df_test['Price']\n", + "city_ind = {}\n", + "city_ind['Banglore'] = []\n", + "city_ind['Chennai'] = []\n", + "city_ind['Delhi'] = []\n", + "city_ind['Hyderabad'] = []\n", + "city_ind['Kolkata'] = []\n", + "city_ind['Mumbai'] = []\n", + "city_ind['Other'] = []\n", + "for i in range(X_test.shape[0]):\n", + " if X_test.iloc[i]['Bangalore'] == 1 and X_test.iloc[i]['Chennai'] == 0 and X_test.iloc[i]['Delhi'] == 0 and X_test.iloc[i]['Hyderabad'] == 0 and X_test.iloc[i]['Kolkata'] == 0 and X_test.iloc[i]['Mumbai'] == 0:\n", + " city_ind['Banglore'].append(i)\n", + " elif X_test.iloc[i]['Bangalore'] == 0 and X_test.iloc[i]['Chennai'] == 1 and X_test.iloc[i]['Delhi'] == 0 and X_test.iloc[i]['Hyderabad'] == 0 and X_test.iloc[i]['Kolkata'] == 0 and X_test.iloc[i]['Mumbai'] == 0:\n", + " city_ind['Chennai'].append(i)\n", + " elif X_test.iloc[i]['Bangalore'] == 0 and X_test.iloc[i]['Chennai'] == 0 and X_test.iloc[i]['Delhi'] == 1 and X_test.iloc[i]['Hyderabad'] == 0 and X_test.iloc[i]['Kolkata'] == 0 and X_test.iloc[i]['Mumbai'] == 0:\n", + " city_ind['Delhi'].append(i)\n", + " elif X_test.iloc[i]['Bangalore'] == 0 and X_test.iloc[i]['Chennai'] == 0 and X_test.iloc[i]['Delhi'] == 0 and X_test.iloc[i]['Hyderabad'] == 1 and X_test.iloc[i]['Kolkata'] == 0 and X_test.iloc[i]['Mumbai'] == 0:\n", + " city_ind['Hyderabad'].append(i)\n", + " elif X_test.iloc[i]['Bangalore'] == 0 and X_test.iloc[i]['Chennai'] == 0 and X_test.iloc[i]['Delhi'] == 0 and X_test.iloc[i]['Hyderabad'] == 0 and X_test.iloc[i]['Kolkata'] == 1 and X_test.iloc[i]['Mumbai'] == 0:\n", + " city_ind['Kolkata'].append(i)\n", + " elif X_test.iloc[i]['Bangalore'] == 0 and X_test.iloc[i]['Chennai'] == 0 and X_test.iloc[i]['Delhi'] == 0 and X_test.iloc[i]['Hyderabad'] == 0 and X_test.iloc[i]['Kolkata'] == 0 and X_test.iloc[i]['Mumbai'] == 1:\n", + " city_ind['Mumbai'].append(i)\n", + " else:\n", + " city_ind['Other'].append(i)" + ], + "metadata": { + "id": "2jzCyKy1QGke" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# defining a function pred which will predict on the train data and return a list y_train_pred\n", + "def pred(X_train):\n", + "\n", + " #predicting\n", + " if len(city_ind['Banglore'])>0 : y_train_Banglore_pred = dt['Bangalore'].predict(scaled_train['Bangalore'])\n", + " if len(city_ind['Chennai'])>0 : y_train_Chennai_pred = dt['Chennai'].predict(scaled_train['Chennai'])\n", + " if len(city_ind['Delhi'])>0 : y_train_Delhi_pred = dt['Delhi'].predict(scaled_train['Delhi'])\n", + " if len(city_ind['Hyderabad'])>0 : y_train_Hyderabad_pred = dt['Hyderabad'].predict(scaled_train['Hyderabad'])\n", + " if len(city_ind['Kolkata'])>0 : y_train_Kolkata_pred = dt['Kolkata'].predict(scaled_train['Kolkata'])\n", + " if len(city_ind['Mumbai'])>0 : y_train_Mumbai_pred = dt['Mumbai'].predict(scaled_train['Mumbai'])\n", + " if len(city_ind['Other'])>0 : y_train_Other_pred = dt['Other'].predict(scaled_train['Other'])\n", + "\n", + " #creating y_pred_train\n", + " y_pred_train = ['a']*X_train.shape[0]\n", + " ptr_Banglore = 0\n", + " ptr_Chennai = 0\n", + " ptr_Delhi = 0\n", + " ptr_Hyderabad = 0\n", + " ptr_Kolkata = 0\n", + " ptr_Mumbai = 0\n", + " ptr_Other = 0\n", + " for i in range(len(X_train)):\n", + " if i in df_Banglore_train.index:\n", + " y_pred_train[i] = y_train_Banglore_pred[ptr_Banglore]\n", + " ptr_Banglore = ptr_Banglore + 1\n", + " elif i in df_Chennai_train.index:\n", + " y_pred_train[i] = y_train_Chennai_pred[ptr_Chennai]\n", + " ptr_Chennai = ptr_Chennai + 1\n", + " elif i in df_Delhi_train.index:\n", + " y_pred_train[i] = y_train_Delhi_pred[ptr_Delhi]\n", + " ptr_Delhi = ptr_Delhi + 1\n", + " elif i in df_Hyderabad_train.index:\n", + " y_pred_train[i] = y_train_Hyderabad_pred[ptr_Hyderabad]\n", + " ptr_Hyderabad = ptr_Hyderabad + 1\n", + " elif i in df_Kolkata_train.index:\n", + " y_pred_train[i] = y_train_Kolkata_pred[ptr_Kolkata]\n", + " ptr_Kolkata = ptr_Kolkata + 1\n", + " elif i in df_Mumbai_train.index:\n", + " y_pred_train[i] = y_train_Mumbai_pred[ptr_Mumbai]\n", + " ptr_Mumbai = ptr_Mumbai + 1\n", + " else:\n", + " y_pred[i] = y_train_Other_pred[ptr_Other]\n", + " ptr_Other = ptr_Other + 1\n", + " return y_pred_train" + ], + "metadata": { + "id": "aoUfucd17rHd" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "#defining a function scale_pred which first scales the data according to the city and then predicts on the scaled data. This function returns a list y_pred\n", + "def scale_pred(X_test):\n", + " #scaling data\n", + " if len(city_ind['Banglore'])>0 : X_test_Banglore_std = sc['Bangalore'].transform(X_test.loc[city_ind['Banglore']])\n", + " if len(city_ind['Chennai'])>0 : X_test_Chennai_std = sc['Chennai'].transform(X_test.loc[city_ind['Chennai']])\n", + " if len(city_ind['Delhi'])>0 : X_test_Delhi_std = sc['Delhi'].transform(X_test.loc[city_ind['Delhi']])\n", + " if len(city_ind['Hyderabad'])>0 : X_test_Hyderabad_std = sc['Hyderabad'].transform(X_test.loc[city_ind['Hyderabad']])\n", + " if len(city_ind['Kolkata'])>0 : X_test_Kolkata_std = sc['Kolkata'].transform(X_test.loc[city_ind['Kolkata']])\n", + " if len(city_ind['Mumbai'])>0 : X_test_Mumbai_std = sc['Mumbai'].transform(X_test.loc[city_ind['Mumbai']])\n", + " if len(city_ind['Other'])>0 : X_test_Other_std = sc['Other'].transform(X_test.loc[city_ind['Other']])\n", + "\n", + " #predicting\n", + " if len(city_ind['Banglore'])>0 : X_test_Banglore_pred = dt['Bangalore'].predict(X_test_Banglore_std)\n", + " if len(city_ind['Chennai'])>0 : X_test_Chennai_pred = dt['Chennai'].predict(X_test_Chennai_std)\n", + " if len(city_ind['Delhi'])>0 : X_test_Delhi_pred = dt['Delhi'].predict(X_test_Delhi_std)\n", + " if len(city_ind['Hyderabad'])>0 : X_test_Hyderabad_pred = dt['Hyderabad'].predict(X_test_Hyderabad_std)\n", + " if len(city_ind['Kolkata'])>0 : X_test_Kolkata_pred = dt['Kolkata'].predict(X_test_Kolkata_std)\n", + " if len(city_ind['Mumbai'])>0 : X_test_Mumbai_pred = dt['Mumbai'].predict(X_test_Mumbai_std)\n", + " if len(city_ind['Other'])>0 : X_test_Other_pred = dt['Other'].predict(X_test_Other_std)\n", + "\n", + " #creating y_pred\n", + " X_test_std = ['a']*X_test.shape[0]\n", + " y_pred = ['a']*X_test.shape[0]\n", + " ptr_Banglore = 0\n", + " ptr_Chennai = 0\n", + " ptr_Delhi = 0\n", + " ptr_Hyderabad = 0\n", + " ptr_Kolkata = 0\n", + " ptr_Mumbai = 0\n", + " ptr_Other = 0\n", + " for i in range(len(X_test)):\n", + " if i in city_ind['Banglore']:\n", + " X_test_std[i] = X_test_Banglore_std[ptr_Banglore]\n", + " y_pred[i] = X_test_Banglore_pred[ptr_Banglore]\n", + " ptr_Banglore = ptr_Banglore + 1\n", + " elif i in city_ind['Chennai']:\n", + " X_test_std[i] = X_test_Chennai_std[ptr_Chennai]\n", + " y_pred[i] = X_test_Chennai_pred[ptr_Chennai]\n", + " ptr_Chennai = ptr_Chennai + 1\n", + " elif i in city_ind['Delhi']:\n", + " X_test_std[i] = X_test_Delhi_std[ptr_Delhi]\n", + " y_pred[i] = X_test_Delhi_pred[ptr_Delhi]\n", + " ptr_Delhi = ptr_Delhi + 1\n", + " elif i in city_ind['Hyderabad']:\n", + " X_test_std[i] = X_test_Hyderabad_std[ptr_Hyderabad]\n", + " y_pred[i] = X_test_Hyderabad_pred[ptr_Hyderabad]\n", + " ptr_Hyderabad = ptr_Hyderabad + 1\n", + " elif i in city_ind['Kolkata']:\n", + " X_test_std[i] = X_test_Kolkata_std[ptr_Kolkata]\n", + " y_pred[i] = X_test_Kolkata_pred[ptr_Kolkata]\n", + " ptr_Kolkata = ptr_Kolkata + 1\n", + " elif i in city_ind['Mumbai']:\n", + " X_test_std[i] = X_test_Mumbai_std[ptr_Mumbai]\n", + " y_pred[i] = X_test_Mumbai_pred[ptr_Mumbai]\n", + " ptr_Mumbai = ptr_Mumbai + 1\n", + " else:\n", + " X_test_std[i] = X_test_Other_std[ptr_Other]\n", + " y_pred[i] = X_test_Other_pred[ptr_Other]\n", + " ptr_Other = ptr_Other + 1\n", + " return y_pred" + ], + "metadata": { + "id": "KGNtlrvzYvy1" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Having a look at our final results.\n", + "y_pred = scale_pred(X_test)\n", + "y_pred_train = pred(X_train)\n", + "\n", + "print(\"The Mean Squared Error for our Model on training data is : \",round(mean_squared_error(y_train,y_pred_train),2))\n", + "print(\"The R2 Score for our Model on test data is : \",round(r2_score(y_train,y_pred_train),2))\n", + "print()\n", + "\n", + "print(\"The Mean Squared Error for our Model on train data is : \",round(mean_squared_error(y_test,y_pred),2))\n", + "print(\"The R2 Score for our Model on test data is : \",round(r2_score(y_test,y_pred),2))" + ], + "metadata": { + "id": "CnpdfhRorj1j", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "65fbbffa-c4eb-4ce8-e19d-8c4d1c648592" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "The Mean Squared Error for our Model on training data is : 0.42\n", + "The R2 Score for our Model on test data is : 0.38\n", + "\n", + "The Mean Squared Error for our Model on train data is : 0.45\n", + "The R2 Score for our Model on test data is : 0.33\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "####Feature Importance and permutation Importance" + ], + "metadata": { + "id": "F7n26wIGJXfc" + } + }, + { + "cell_type": "code", + "source": [ + "eli5.show_weights(perm['Bangalore'], feature_names=X_train.columns.tolist())" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 399 + }, + "id": "TM9zzPLIh4qT", + "outputId": "6ecfad5d-0774-411f-918a-76841bee35c6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
WeightFeature
\n", + " 0.2295\n", + " \n", + " ± 0.0088\n", + " \n", + " \n", + " IndoorGames\n", + "
\n", + " 0.1238\n", + " \n", + " ± 0.0340\n", + " \n", + " \n", + " JoggingTrack\n", + "
\n", + " 0.0145\n", + " \n", + " ± 0.0471\n", + " \n", + " \n", + " No. of Bedrooms\n", + "
\n", + " 0.0049\n", + " \n", + " ± 0.0029\n", + " \n", + " \n", + " LandscapedGardens\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " RainWaterHarvesting\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " Cafeteria\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " StaffQuarter\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " CarParking\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " PowerBackup\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " 24X7Security\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " School\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " ClubHouse\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " WashingMachine\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " ShoppingMall\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " Resale\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " ATM\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " Gymnasium\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " SportsFacility\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " MultipurposeRoom\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " HQLI\n", + "
\n", + " … 26 more …\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "\n", + "\n" + ] + }, + "metadata": {}, + "execution_count": 154 + } + ] + }, + { + "cell_type": "code", + "source": [ + "print(\"Top 10 features for Bangalore\")\n", + "print()\n", + "for i in X_train.columns[np.flip(np.argsort(dt['Bangalore'].feature_importances_))][:10]:\n", + " print(i)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GI-ZiOfK5F2A", + "outputId": "dcaa3f63-77e1-4989-aeaa-679c748c7897" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Top 10 features for Bangalore\n", + "\n", + "Area\n", + "JoggingTrack\n", + "Intercom\n", + "No. of Bedrooms\n", + "Resale\n", + "Gasconnection\n", + "VaastuCompliant\n", + "LiftAvailable\n", + "SwimmingPool\n", + "IndoorGames\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "eli5.show_weights(perm['Chennai'], feature_names=X_train.columns.tolist())" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 399 + }, + "id": "j4xM5iTTozla", + "outputId": "c5c25c9d-b686-486d-864e-9a6af7fd1ba1" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
WeightFeature
\n", + " 0.5013\n", + " \n", + " ± 0.0219\n", + " \n", + " \n", + " CarParking\n", + "
\n", + " 0.4831\n", + " \n", + " ± 0.0357\n", + " \n", + " \n", + " 24X7Security\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " RainWaterHarvesting\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " StaffQuarter\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " PowerBackup\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " School\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " ClubHouse\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " ATM\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " MultipurposeRoom\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " Intercom\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " No. of Bedrooms\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " IndoorGames\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " Resale\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " MaintenanceStaff\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " SportsFacility\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " SwimmingPool\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " ShoppingMall\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " JoggingTrack\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " Cafeteria\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " HQLI\n", + "
\n", + " … 26 more …\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "\n", + "\n" + ] + }, + "metadata": {}, + "execution_count": 142 + } + ] + }, + { + "cell_type": "code", + "source": [ + "print(\"Top 10 features for Chennai\")\n", + "print()\n", + "for i in X_train.columns[np.flip(np.argsort(dt['Chennai'].feature_importances_))][:10]:\n", + " print(i)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dp-IGBO36ctI", + "outputId": "aaa4f4da-d184-4ace-bd83-7f1afb60661c" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Top 10 features for Chennai\n", + "\n", + "Area\n", + "CarParking\n", + "24X7Security\n", + "LiftAvailable\n", + "Children'splayarea\n", + "IndoorGames\n", + "VaastuCompliant\n", + "ClubHouse\n", + "No. of Bedrooms\n", + "DiningTable\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "eli5.show_weights(perm['Delhi'], feature_names=X_train.columns.tolist())" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 399 + }, + "id": "HUjyJgLvo6hZ", + "outputId": "4f880294-76c0-42b7-9a43-f65c08bdcc84" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
WeightFeature
\n", + " 0.0705\n", + " \n", + " ± 0.0051\n", + " \n", + " \n", + " Gasconnection\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " Cafeteria\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " StaffQuarter\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " CarParking\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " PowerBackup\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " 24X7Security\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " School\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " ClubHouse\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " ATM\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " SwimmingPool\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " No. of Bedrooms\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " ShoppingMall\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " Resale\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " MaintenanceStaff\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " Gymnasium\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " SportsFacility\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " Intercom\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " JoggingTrack\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " MultipurposeRoom\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " HQLI\n", + "
\n", + " … 26 more …\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "\n", + "\n" + ] + }, + "metadata": {}, + "execution_count": 144 + } + ] + }, + { + "cell_type": "code", + "source": [ + "print(\"Top 10 features for Delhi\")\n", + "print()\n", + "for i in X_train.columns[np.flip(np.argsort(dt['Delhi'].feature_importances_))][:10]:\n", + " print(i)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "h6aSCBZHFQyT", + "outputId": "d221c7c6-17f4-4930-89e0-ede85bcaa0b5" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Top 10 features for Delhi\n", + "\n", + "Area\n", + "No. of Bedrooms\n", + "Resale\n", + "Children'splayarea\n", + "LiftAvailable\n", + "Gasconnection\n", + "CarParking\n", + "24X7Security\n", + "SportsFacility\n", + "PowerBackup\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "eli5.show_weights(perm['Hyderabad'], feature_names=X_train.columns.tolist())" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 399 + }, + "id": "ao2w8Td9pFxk", + "outputId": "09651894-aa9d-4e98-b29d-3182a5f38aa6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
WeightFeature
\n", + " 0.0104\n", + " \n", + " ± 0.0044\n", + " \n", + " \n", + " No. of Bedrooms\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " JoggingTrack\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " Cafeteria\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " StaffQuarter\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " CarParking\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " PowerBackup\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " 24X7Security\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " School\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " ClubHouse\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " WashingMachine\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " ShoppingMall\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " Resale\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " MaintenanceStaff\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " ATM\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " SwimmingPool\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " SportsFacility\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " RainWaterHarvesting\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " IndoorGames\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " MultipurposeRoom\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " HQLI\n", + "
\n", + " … 26 more …\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "\n", + "\n" + ] + }, + "metadata": {}, + "execution_count": 146 + } + ] + }, + { + "cell_type": "code", + "source": [ + "print(\"Top 10 features for Hyderabad\")\n", + "print()\n", + "for i in X_train.columns[np.flip(np.argsort(dt['Hyderabad'].feature_importances_))][:10]:\n", + " print(i)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8JF0mFts6w6h", + "outputId": "103c751e-d93a-432c-ed2f-441a50049425" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Top 10 features for Hyderabad\n", + "\n", + "Area\n", + "SwimmingPool\n", + "No. of Bedrooms\n", + "LandscapedGardens\n", + "IndoorGames\n", + "Intercom\n", + "Resale\n", + "ClubHouse\n", + "Cafeteria\n", + "StaffQuarter\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "eli5.show_weights(perm['Kolkata'], feature_names=X_train.columns.tolist())" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 399 + }, + "id": "HaB_6rwopXUu", + "outputId": "e4b7170f-8436-4a8e-b585-2f829e47648a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
WeightFeature
\n", + " 0.0246\n", + " \n", + " ± 0.0090\n", + " \n", + " \n", + " No. of Bedrooms\n", + "
\n", + " 0.0030\n", + " \n", + " ± 0.0054\n", + " \n", + " \n", + " Resale\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " MultipurposeRoom\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " Cafeteria\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " StaffQuarter\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " CarParking\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " PowerBackup\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " 24X7Security\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " School\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " ClubHouse\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " ShoppingMall\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " Intercom\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " MaintenanceStaff\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " Gymnasium\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " ATM\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " JoggingTrack\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " SportsFacility\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " IndoorGames\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " WashingMachine\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " HQLI\n", + "
\n", + " … 26 more …\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "\n", + "\n" + ] + }, + "metadata": {}, + "execution_count": 148 + } + ] + }, + { + "cell_type": "code", + "source": [ + "print(\"Top 10 features for Kolkata\")\n", + "print()\n", + "for i in X_train.columns[np.flip(np.argsort(dt['Kolkata'].feature_importances_))][:10]:\n", + " print(i)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Xs_FJyuf7T4l", + "outputId": "720df86d-8a69-4d44-9b07-62dc3376965d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Top 10 features for Kolkata\n", + "\n", + "Area\n", + "No. of Bedrooms\n", + "Resale\n", + "LandscapedGardens\n", + "SportsFacility\n", + "Cafeteria\n", + "StaffQuarter\n", + "CarParking\n", + "PowerBackup\n", + "24X7Security\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "eli5.show_weights(perm['Mumbai'], feature_names=X_train.columns.tolist())" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 399 + }, + "id": "NwKtFgs5phxh", + "outputId": "96dd8883-bc51-42ea-8ae8-3cf70fc9f614" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
WeightFeature
\n", + " 0.0052\n", + " \n", + " ± 0.0006\n", + " \n", + " \n", + " No. of Bedrooms\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " RainWaterHarvesting\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " Cafeteria\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " StaffQuarter\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " CarParking\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " PowerBackup\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " 24X7Security\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " School\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " ClubHouse\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " SportsFacility\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " WashingMachine\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " IndoorGames\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " Resale\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " MaintenanceStaff\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " ATM\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " SwimmingPool\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " ShoppingMall\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " JoggingTrack\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " MultipurposeRoom\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " HQLI\n", + "
\n", + " … 26 more …\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "\n", + "\n" + ] + }, + "metadata": {}, + "execution_count": 150 + } + ] + }, + { + "cell_type": "code", + "source": [ + "print(\"Top 10 features for Mumbai\")\n", + "print()\n", + "for i in X_train.columns[np.flip(np.argsort(dt['Mumbai'].feature_importances_))][:10]:\n", + " print(i)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "m_PpkIqI7ZKd", + "outputId": "0c37523f-94ef-4611-c141-02e56607d1d2" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Top 10 features for Mumbai\n", + "\n", + "No. of Bedrooms\n", + "Area\n", + "CarParking\n", + "RainWaterHarvesting\n", + "Resale\n", + "Gasconnection\n", + "Intercom\n", + "AC\n", + "BED\n", + "LiftAvailable\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "eli5.show_weights(perm['Other'], feature_names=X_train.columns.tolist())" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 399 + }, + "id": "-nCrXoZ5jfVk", + "outputId": "ca922b3f-7e57-4666-90ce-a7dd423d6b24" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
WeightFeature
\n", + " 0.5649\n", + " \n", + " ± 0.0158\n", + " \n", + " \n", + " CarParking\n", + "
\n", + " 0.5023\n", + " \n", + " ± 0.0119\n", + " \n", + " \n", + " No. of Bedrooms\n", + "
\n", + " 0.1167\n", + " \n", + " ± 0.0041\n", + " \n", + " \n", + " Delhi\n", + "
\n", + " 0.0663\n", + " \n", + " ± 0.0071\n", + " \n", + " \n", + " Resale\n", + "
\n", + " 0.0408\n", + " \n", + " ± 0.0245\n", + " \n", + " \n", + " Intercom\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " SwimmingPool\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " Cafeteria\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " StaffQuarter\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " MaintenanceStaff\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " PowerBackup\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " SportsFacility\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " HQLI\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " ATM\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " Gymnasium\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " MultipurposeRoom\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " LandscapedGardens\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " ClubHouse\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " RainWaterHarvesting\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " School\n", + "
\n", + " 0\n", + " \n", + " ± 0.0000\n", + " \n", + " \n", + " 24X7Security\n", + "
\n", + " … 26 more …\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "\n", + "\n" + ] + }, + "metadata": {}, + "execution_count": 157 + } + ] + }, + { + "cell_type": "code", + "source": [ + "print(\"Top 10 features for Other\")\n", + "print()\n", + "for i in X_train.columns[np.flip(np.argsort(dt['Other'].feature_importances_))][:10]:\n", + " print(i)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "fine155VjvW6", + "outputId": "f6351c17-981a-41fd-bd57-1c0d36fcfc17" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Top 10 features for Other\n", + "\n", + "Area\n", + "Mumbai\n", + "No. of Bedrooms\n", + "Delhi\n", + "Kolkata\n", + "Resale\n", + "CarParking\n", + "Intercom\n", + "LiftAvailable\n", + "JoggingTrack\n" + ] + } + ] + } + ] +} \ No newline at end of file