diff --git a/Python/opencv-image-processing/Hough_probablistic_transform.py b/Python/opencv-image-processing/Hough_probablistic_transform.py new file mode 100644 index 00000000..ea2be1ef --- /dev/null +++ b/Python/opencv-image-processing/Hough_probablistic_transform.py @@ -0,0 +1,17 @@ +import cv2 +import numpy as np + +img = cv2.imread('images/roads.png') +gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) +edges = cv2.Canny(img,50,150,apertureSize = 3) +cv2.imshow('Edges',edges) +lines = cv2.HoughLinesP(edges, 1 ,np.pi/180,100,minLineLength = 100, + maxLineGap = 10) + +for line in lines: + x1,y1,x2,y2 = line[0] + cv2.line(img,(x1,y1),(x2,y2),(0,255,0),2) + +cv2.imshow('image',img) +k = cv2.waitKey(0) +cv2.destroyAllWindows() \ No newline at end of file diff --git a/Python/opencv-image-processing/images/roads.png b/Python/opencv-image-processing/images/roads.png new file mode 100644 index 00000000..8f033dd4 Binary files /dev/null and b/Python/opencv-image-processing/images/roads.png differ diff --git a/Python/opencv-image-processing/smoothing_images_and_image_blurring.py b/Python/opencv-image-processing/smoothing_images_and_image_blurring.py new file mode 100644 index 00000000..81a4c7b3 --- /dev/null +++ b/Python/opencv-image-processing/smoothing_images_and_image_blurring.py @@ -0,0 +1,34 @@ +import cv2 +import numpy as np +from matplotlib import pyplot as plt + +img = cv2.imread('lena.jpg') +img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB) + + +kernel = np.ones((5,5),np.float32)/25 + +dst = cv2.filter2D(img,-1,kernel) + +blur = cv2.blur(img,(5,5)) + +guassian_blur = cv2.GaussianBlur(img,(5,5),0) + +median_blur = cv2.medianBlur(img,5)#to remove salt_and_pepper_noise + +bilateralFilter = cv2.bilateralFilter(img,9, 75,75) + +titles = ['images','2D Convolution','blur','Gaussian Blur','median','bilateralFilter'] +images= [ img,dst,blur,guassian_blur, median_blur,bilateralFilter] + + + + + +for i in range(len(images)): + plt.subplot(2,3,i+1) + plt.imshow(images[i],cmap='gray') + plt.title(titles[i]) + plt.xticks([]),plt.yticks([]) + +plt.show()